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Zusammenfassung

Zusammenfassung

Voraussetzung für die Induktion einer effizienten Immunantwort ist neben dem richtigen

Antigen eine effiziente Präsentation von Antigen in vitro und in vivo. Dendritische Zellen (DC)

gelten als die am besten charakterisierten antigen-präsentierenden Zellen. Allerdings

können sie kaum in großen Mengen und ausreichender Reinheit hergestellt werden, was

einen entscheidenden Nachteil bei der Nutzung von DCs in der klinischen Anwendung dar

stellt. Deshalb wurde ein alternativer Ansatz entwickelt, bei dem polyklonale B-Zellen durch

die Behandlung mit stimulierenden Zytokinen und dem CD40-Liganden als

antigenpräsentierende Zellen genutzt werden können. Die Aktivierung durch den CD40-

Liganden induziert entscheidend die Antigen-präsentation, was zu einer effizienten

Induktion von CD4+ und CD8+ T-Zellen in vitro führt. Darüber hinaus wandern diese CD40-

aktivierten (CD40)B-Zellen nicht nur in die peripheren lymphatischen Organe, sondern

induzieren auch eine anti-tumorale Immunität in Mäusen.

Die Antigen-präsentation und -prozessierung durch antigen-spezifische B-Zellen ist bis zu

tausendfach effektiver als bei polyklonalen B-Zellen. Deshalb wurden in der vorliegenden

Arbeit antigen-spezifische B-Zellen genutzt, um die antigen-präsentierende Funktion von

CD40B-Zellen zu steigern. Nach CD40-Stimulation regulieren aufgereinigte, antigen-

spezifische B-Zellen kostimulatorische Moleküle wie CD80 und CD86 signifikant hoch, was zu

einer verstärkten Antigen-präsentation und der Induktion einer spezifischen T-Zellantwort in

vitro und in vivo führt. Antigen-spezifische CD40B-Zellen induzieren eine signifikant stärkere

T-Zellanwort als polyklonale CD40B-Zellen, die mit einer DC-induzieren Reaktion vergleichbar

ist. Eine präventive Vakzinierung mit antigen-spezifischen CD40B-Zellen alleine oder in

Kombination mit antikörper-sezernierenden Plasmazellen führt zu einer Anti-Tumor

Immunität in vivo, bei der das Tumorwachstum komplett unterdrückt wird. Darüber hinaus

migrieren antigen-spezifische CD40B-Zellen in den Tumor, was neue

Anwendungsmöglichkeiten als Trägerstoff bei Imagingverfahren oder zum ‚Drug Delivery‘

ermöglicht.

Diese Ergebnisse liefern neue Einblicke in die Rolle von aktivierten antigen-spezifischen

B-Zellen als antigen-präsentierende Zellen und ihrer Nutzung in der Immuntherapie.
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Abstract

Efficient antigen presentation is a prerequisite for the development of a T-cell-mediated

immune response in vitro and in vivo. As “nature’s adjuvant”, dendritic cells (DCs) are the

most prominent professional antigen-presenting cells (APCs). However, they have several

significant disadvantages concerning application as an adjuvant in cancer immunotherapy.

They are rare in peripheral blood and the isolated population is not homogenous, since it

also contains unwanted tolerogenic DCs. Therefore, an alternative approach to DCs was

developed, in which polyclonal B cells can serve as potent APCs by treatment with the

inflammatory cytokine IL-4 and the CD40 ligand. CD40-activation dramatically improves

antigen presentation by normal and malignant B cells, efficiently inducing naïve and memory

CD4+ and CD8+ T-cell responses. Moreover, these CD40-activated (CD40) B cells do not only

home to secondary lymphoid organs, but also induce anti-tumor immunity in mice.

However, antigen-processing and -presentation by antigen-specific B cells is 1000-fold more

effective compared to polyclonal B cells. Therefore, tumorantigen-specific B cells were used

in the present study to improve the antigen-presenting function of CD40B cells. Purified

tumorantigen-specific B cells highly upregulate activation markers upon CD40-stimulation

resulting in an enhanced antigen-presentation and a specific T-cell response in vitro and in

vivo. The T cell response elicited by antigen-specific CD40B cells is significantly stronger than

that induced by polyclonal CD40B cells and comparable to the stimulation induced by

mature DCs. Alone or in combination with antibody-secreting plasma cells, preventive

vaccination with these antigen-specific CD40B cells leads to an anti-tumor immune response

in vivo resulting in complete inhibition of tumor growth. Moreover, antigen-specific B cells

home to the tumor site, thereby offering new application perspectives as vehicle for tumor

imaging and drug delivery. These results provide new insights into the role of activated

antigen-specific B cells as APCs and their use for cancer immunotherapy.
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A500 Absorbance at 500 nm
APC antigen-presenting cells
BCR B cell receptor
β-ME    beta-mercaptoethanol 
BSA bovine serum albumin
°C degrees Celsius
CCR C-C-chemokine receptor
CD cluster of differentiation
CD40B CD40-activated B cells
CD40L CD40 ligand
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CTLA-4 cytotoxic T-lymphocyte-associated Protein 4
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DC dendritic cell
DMSO dimethylsulfoxid
EDTA ethylenediaminetetraacetic acid
ELISA Enzyme Linked Immunosorbent Assay
ER endoplasmatic riticulum
FACS fluorescence activated cell sorting
FcR Fc receptor
FDA Food and Drug Administration
FITC Fluorescein isothiocyanate
FBS fetal bovine serum
g gram
GC germinal center
GM-CSF granulocyte/macrophage colony stimulating factor
Gy gray
h hour
H2O water
HBV hepatitis-B-antigen
HIV Human Immundeficient-Virus
HLA human leukocyte antigen
HSC Hematopoietic stem cells
IFA Incomplete Freund’s adjuvant
IFN interferon
Ig immunoglobulin
i.p. intraperitoneal
i.v. intravenous
IL interleukin
kDa kilo Dalton
KLH Keyhole Limpet Hemocyanin
LN lymph node
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LPS Lipopolysaccharide
Luc Luciferase
M molar
mAb monoclonal antibody
MAGE melanoma-antigen family
MFI mean fluorescent intensity
mg milligram
MHC major histocompatibility complex
min minutes
MLR mixed-lymphocyte reaction
mmol millimol
mM millimolar
ml milliliter
mm millimeter
MW molecular weight
MZ marginal zone
µg microgram
µl microliter
µm micrometer
µM micromolar
ng nanogram
NK natural killer
nm nanometer
nM nanomolar
OVA chicken ovalbumin
PBMC peripheral blood mononuclear cell
PBS phosphate buffered saline
PC plasma cell
PD-L1 Programmed death-ligand 1
PE phycoerythrin
PE-Cy phycoerythrin- cyanine
Pen/Strep Penicillin/ Streptomycin
PerCp-Cy peridinin chlorophyll protein complex-cyanine dye
PFA paraformaldehyde
rh recombinant human
rm recombinant murine
RT room temperature
s.c. subcutaneous
SD standard deviation
SDS sodium dodecylsulfate
SEM standard error of mean
TCR T cell receptor
TGFβ    transforming growth factor-beta 
Th T helper cell
TNF tumor necrosis factor
Treg regulatory T cell
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1. Introduction

The immune system plays an essential role in the development and progression of tumors.

Several different immune cells interact with tumor cells and the surrounding non-malignant

cells of the tumor micromilieu. On the one hand, the effector immune cells prevent tumor

growth and destroy established tumors. On the other hand, tolerogenic immune cells inhibit

the anti-tumor immunity and enhance tumor growth by secretion of growth factors and

expression of inhibitory surface molecules (Popi et al. 2004).

Immunotherapy of malignant diseases is one of the most promising therapeutic approaches

in modern cancer treatment. Beside the clinically established and routinely applied therapy

with antibodies, the use of tumor vaccines could further improve treatment of malignant

diseases. Tumor vaccines aim to enhance preexisting immune responses or induce novel

tumor-directed effector mechanisms, thereby tipping the balance towards immunological

enhanced tumor control.

CD40-activated B cells provide a promising source of antigen-presenting cells for the use as

cellular adjuvant in cancer immunotherapy (Schultze et al. 1997). Most published B cell-

based immunotherapeutic approaches use polyclonal B cells which are loaded with tumor

antigens (Wennhold et al. 2013). However, this strategy does not exploit the full potential of

B cell-based cancer immunotherapy, since it does not fully exploit the advantage of antigen-

specificity conferred by the B cell receptor, i.e. enhanced antigen-uptake and production of

antigen-specific antibodies.

1.1 The Adaptive Immune System

The immune system consists of specialized systems, which provide protection against

invading pathogens and degenerated endogenous cells. The first line of defense is

represented by the innate immune system. It is phylogenetically selected and provides

immediate defense against infections. Macrophages and natural killer (NK) cells make up the

cellular defense mechanism of the innate immune system. Recognition of conserved

patterns on pathogens by their diverse receptors triggers macrophage activation resulting in

phagocytosis of the pathogens and release of cytokines and chemokines for the attraction of

other leukocytes (Mantovani and Sica 2010). NK cells on the other hand recognize the
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absence of MHC molecules as it occurs in transformed or stressed cells (Herberman et al.

1986). However, unlike the adaptive immune system it does not provide a long-lasting or

protective immunity. The adaptive immune system, on the other hand, is acquired during

lifetime. Unlike innate immunity, adaptive immunity is characterized by the development on

immunologic memory and improves with repeated exposures to pathogens. An adaptive

immune response consists of two components: the humoral and the cellular mediated

immunity. The humoral immunity is mediated by antibodies produced by B cells (Kearney et

al. 1997). They are soluble molecules that bind to specific antigens on the surface of their

target, thereby neutralizing them or targeting them for destruction by phagocytes. Cellular

immunity involves direct effector functions of T cells directed against intracellular

pathogens, which are inaccessible to the humoral system.

1.1.1 T Cells

After developing in the thymus, T cell recirculate in the bloodstream and the lymphatic

tissues as mature naïve T cells until they encounter their specific antigen. The antigen is

presented to them in combination with major histocompatibility complex (MHC) and co-

stimulatory molecules (Bretscher 1999, Bevan 2004) leading to a cascade of signaling events

that result in the activation of naïve T cells. The activated T cells rapidly proliferate, migrate

through the tissues to the sites of antigen presence and perform effector functions, which

depend on the subtype of T cells (Broere et al. 2011).

1.1.1.1 CD8+ T Cells

CD8+ cytotoxic T cells recognize 8-10 amino acid long peptides presented on the surface of

their target cells in combination with self-MHC class I molecules (Klein and Sato 2000). Naïve

CD8+ T cells become initially activated (‘primed’) when their T-cell receptor binds to its

specific antigen presented by activated antigen presenting cells (APCs). The effector function

of CD8+ T cells includes secretion of interferon (IFN)-γ and the apoptosis inducing molecules 

perforin and granzyme B and the upregulation of the Fas ligand. Furthermore, interaction

with the specific antigen leads to differentiation into memory T cells, which respond faster

upon re-exposure to the antigen (Weninger et al. 2002).
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1.1.1.2 CD4+ T Cells

In contrast to CD8+ T cells, CD4+ helper T cells recognize 10-34 amino acid long peptides from

exogenous proteins presented in combination with MHC class II molecules by APCs (Klein

and Sato 2000). Depending on the context of antigen encounter CD4+ T cells can

differentiate into several distinct subgroups, which can be distinguished by their cytokine

profile.

Type 1 cytokine-secreting CD4+ helper T cells (Th1) develop in the presence of IL-12 and a

strong antigen-TCR interaction or high density of antigen (Fishman and Perelson 1999). Th1

cells by production of IFN-γ are responsible for directing cell-mediated immune responses 

(Mosmann et al. 1986). Furthermore, they enhance activation of APCs through engagement

of the CD40 ligand (CD40L) and its receptor CD40 (Bourgeois et al. 2002). Interleukin (IL)-4

and IL-6 secretion and a weak antigen-T cell receptor (TCR) interaction or low density of

antigen stimulates development of Th2 T cells, which secrete IL-4, IL-5, IL-6, IL-10 and IL-13.

Th2 cells thereby favor a humoral immune response by B cells, while inhibiting Th1 cellular

immune responses. Another subset of T helper cells develops in the presence of IL-23 into

IL-17A secreting T cells (Th17 cells). Th17 cells are the first T cells that are generated during

infection and their interaction with fibroblasts, epithelial cells and keratinocytes leads to the

recruitment of neutrophils and macrophages (Steinman 2007, Stockinger and Veldhoen

2007). They also play a major role in autoimmune diseases such as rheumatoid arthritis,

psoriasis and Crohn’s disease.

Regulatory CD4+ T cells (Tregs) are characterized by the constitutive expression of CD25 and

the transcription factor FoxP3 (Wing and Sakaguchi 2010). They build one arm of

immunological tolerance mechanisms.

1.1.2 Immunological Tolerance

Activation of self-reactive T cells and thus failure of the immune system to tolerate the

body’s own tissues can result in tissue-specific autoimmunity. Two essential mechanisms

account for self-non-self discrimination by the immune system, which allows productive

immunity to pathogens while minimizing the risk of autoimmunity. Central tolerance

includes clonal deletion of autoreactive T cells in the thymus according to their recognition

pattern (positive selection) and affinity (negative selection). This results in a repertoire of
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T-cells that recognize foreign antigens presented by self-MHC molecules (Kappler et al. 1987,

Kisielow et al. 1988). Peripheral tolerance deals with auto-reactive T cells, which escape

clonal deletion. One mechanism is the induction of anergy in naïve T cells to avoid

autoimmune responses to tissue-specific proteins, which are not presented in the thymus

and thus do not lead to clonal deletion of self-reactive T cells (Albert et al. 2001). Anergy is

induced by antigen recognition of the TCR in the absence of costimulatory signals, as it

occurs with antigens expressed on the surface of tissue cells in the periphery, and is

characterized by the induction of a hyporesponsive state of self-reactive naïve T cells. More

recently, evidence for the existence of a second mechanism of immune tolerance was

provided by the identification and characterization of regulatory T cells (Fontenot et al.

2003, Sakaguchi 2005). Tregs suppress T-cell responses through direct contact with APCs or

through production of anti-inflammatory cytokines such as transforming growth factor

(TGF)-β, IL-10 and IL-35. 

1.1.3 B Cells and Humoral Immune Response

B cells develop in the bone marrow from hematopoietic stem cells to common lymphoid

progenitor cells to pro B cells and pre B cells. These different stages are characterized by

immunoglobulin gene rearrangement, changes in gene expression and the surface

phenotype (Osmond 1990, Hardy et al. 1991, Hardy 2003). Dysfunctional or autoreactive B

cells recognizing self-antigens are eliminated by receptor editing (Melchers et al. 1995,

Hardy et al. 2000) before immature B cells leave the bone marrow and enter the spleen.

Engagement of the surface B cell receptor (BCR) of the isotype M and D by its specific

antigen leads to maturation and terminal differentiation (Osmond et al. 1998, Rolink et al.

1999)

Three different B cell subsets can be defined according to their location. B-1 B cells locate

mainly in the pleural and peritoneal cavities (Kantor and Herzenberg 1993) and are involved

in the early stages of thymus-independent immune responses against bacterial patterns

(Allman et al. 2004). Upon BCR-signaling they can differentiate into short-lived IgM-

producing plasmablasts and are responsible for the majority of the physiological IgM levels

in serum (Kraal 1992, Hardy and Hayakawa 2001).
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Fig. 1.1 B cell development under physiological conditions (A) B1 B cells develop from
hematopoietic stem cells (HSCs) in the bone marrow or the fetal liver, differentiate into short-lived
plasma cells and produce natural IgM-antibodies. (B) B2 B cells develop from HSCs in the bone
marrow. Following rearrangement of their B-cell receptor and removal of autoreactive cells via
central tolerance, immature B2 B cells relocate to the spleen. Those immature B2 B cells that escape
the processes of peripheral tolerance differentiate into marginal zone (MZ) B cells or mature
follicular B cells. Upon T-cell activation, follicular B cells develop into short-lived plasma cells or form
germinal centers (GC), where they differentiate into long-lived plasma cells or memory B cells
(Dorner et al. 2009).

Marginal zone (MZ) B cells are located in the marginal sinus in the spleen at the border of

the red and the white pulp and link the innate and adaptive immune system (Martin and

Kearney 2002). MZ B cells respond early to infections due to their close contact to blood-

borne antigens (Kraal 1992). Upon stimulation of toll-like-receptors alone or in combination

with stimulation of the BCR, MZ B cells migrate to the T-cell-B-cell border of the lymphoid

follicle, where they present antigen to CD4+ T cells (Attanavanich and Kearney 2004). After

migration into the red pulp, they differentiate into plasma cells secreting large amounts of

IgM (Martin et al. 2001). B-1 and MZ B cells do not form germinal centers and thus do not

undergo somatic hypermutation. Therefore, they express only low-affinity BCRs, which

mainly distinguishes them from follicular B cells.

Follicular B cells re-circulate through the blood and the lymph to B cell follicles of the lymph

nodes, the spleen and Peyer’s patches (Allman and Pillai 2008). Encounter of their specific
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antigen and subsequent cross-linking of the BCR leads to BCR-mediated endocytosis of the

antigen, antigen processing in endosomes and its presentation in the context of MHC II

molecules (Lanzavecchia 1990). Upon antigen encounter, follicular B cells change their

chemokine receptor profile, migrate to the T-cell-B-cell border and bind to activated CD4+ T

cells that express the corresponding TCR, building a so called “immunological synapse”

(Grakoui et al. 1999, Pereira et al. 2010). Activated B cells undergo different fates after T cell

encounter depending on the strength of BCR signaling (Paus et al. 2006). B cells with a high-

affinity BCR undergo proliferation and plasmacytic differentiation into plasmablasts and

finally short-lived plasma cells that secrete high amounts of IgM but non-somatically

mutated antibodies (Jacob et al. 1993, Paus et al. 2006). B cells with an intermediate affinity

BCR follow the second developmental path by migrating into the lymphoid follicles to form

germinal centers (Thorbecke et al. 1994, Paus et al. 2006, Carter and Myers 2008). Here,

B cells highly proliferate and undergo somatic hypermutation and isotype switching resulting

in memory B cells and long-lived plasma cells that produce affinity-matured antibodies,

mainly of the IgG isotype, some IgE and IgA (Coico et al. 1983, Ziegner et al. 1994). Memory

B cells are released from the germinal centers and mount a quicker immune response upon

re-exposure to their cognate antigen.

1.1.4 Antigen-Presentation to T Cells

Efficient antigen presentation is a prerequisite for the development of a T-cell-mediated

immune response in vitro and in vivo. APCs are crucial for development of an immune

response, since T cells are only activated when they recognize their specific antigen

presented in combination with MHC and co-stimulatory molecules (Cassell and Schwartz

1994, Askew et al. 1995, Banchereau and Steinman 1998). Uptake of antigen by APCs, such

as DCs, macrophages or B cells, takes place in the peripheral tissues or the lymphatic vessels.

In the classical antigen presentation pathway, MHC class II molecules are assembled in the

endoplasmatic reticulum (ER) and are associated with an invariant chain before the complex

is transported to late endosomal compartments, called MIIC. In the endosomal

compartments, MHC II molecules require HLA-DM (one of three polymorphic MHC II genes)

to facilitate the exchange of the invariant chain with a specific peptide derived from a

protein that was degraded in the endosomal pathway. MHC II molecules are then

transported to the plasma membrane to present their peptide to CD4+ T cells (Neefjes et al.
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2011). In addition to endocytosis, B cells are able to take up antigen in a highly specific

fashion via their B cell receptor (Abbas et al. 1985, Lanzavecchia 1985). In B cells, HLA-DM

activity is restricted to acidic compartments, which is favorable for antigens internalized

through the BCR (Alfonso et al. 1999).

Usually, presentation of antigens in the context of MHC class I molecules is restricted to

endogenously derived peptides (Neefjes et al. 2011). Proteins of cytosolic and nuclear origin

are degraded by proteasomes and translocated into the ER. There, MHC I molecules are

assembled and loaded with the degraded antigens. The fully assembled peptide-MHC class I

complexes leave the ER for presentation on the cell surface. The presentation of only

intracellularly derived peptides in the context of MHC I molecules is however insufficient in

the case of naïve CD8+ T cell priming, since they need to be activated by professional APCs

before they can fulfill their cytotoxic effector function. Therefore, APCs also have the ability

to load peptides derived from exogenous antigens to MHC class I molecules by a process

called cross-presentation (Kurts et al. 2010). Cross-presentation and priming has since been

shown to be essential for vaccination with protein antigens.

Encounter of T cells and activated APCs takes place in the secondary lymphoid organs, where

organ structure brings antigen and APCs into close contact to T cells. In addition to TCR-

mediated signal induced by binding to a matching peptide-MHC II complex, activation of a

T cells requires costimulatory signals. These are provided by the costimulatory surface

molecules such as CD80 (B7-1) and CD86 (B7-2), which are highly upregulated on activated

APCs (Lenschow et al. 1994, Bretscher 1999). Their receptor on the T cell surface is CD28.

Absence of co-stimulatory signals at the time of TCR-MHC-antigen interaction results in

anergy (Schwartz 2003).

DCs are known to be the most prominent APCs, since they play a critical role in inducing

primary T cell responses, thereby leading to the establishment of immunological memory

(Steinman 1991, Hart 1997, Banchereau and Palucka 2005, Palucka et al. 2011). Since the

first report on DCs by Steinman and Cohn (Steinman and Cohn 1973) different subtypes

arising from CD34+ bone marrow progenitors have been described (Shortman and Liu 2002,

Steinman and Idoyaga 2010). DC progenitors develop in the bone marrow and migrate into

peripheral tissues, where they encounter antigen. Upon antigen uptake and processing, DCs

mature and migrate through the afferent lymphatics to the draining lymphoid organs, where
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they present antigen to CD4+ and CD8+ T cells. Moreover, DCs are able to induce a humoral

immune response or activate cells of the innate immune system, such as NK cells,

macrophages and eosinophils (Banchereau and Steinman 1998, Banchereau et al. 2000,

Steinman 2008). Hence, DCs drive all arms of the immune system and therefore have

extensively been studied for use as cellular adjuvant.

1.2 Basic Principles of Cancer Immunology

The immune system does not only protect us from invading pathogens, it also participates in

the protection from cancer development by surveilling the body for transformed cells. A

broad range of immune cell-types and immunological mechanisms are involved in this

process.

1.2.1 Cancer Immunosurveillance

An immunological response against cancer has first been proposed by Paul Ehrlich in 1909

(Ehrlich 1909), who observed that mice were protected against rechallenge with aggressive

tumor cells when previously vaccinated with slowly growing tumor cells. In 1954 Burnet and

Thomas formulated the “cancer immunosurveillance hypothesis”, which stated that innate

and adaptive immune cells permanently monitor tissues for the presence of transformed

cells and leading to their elimination (Burnet 1970, Burnet 1971, Thomas 1982). Due to a

lack of direct experimental evidence this hypothesis remained highly controversial. It was

not before the development of knock-out and immunodeficient mice that researchers were

able to show that the immune system indeed plays a vital role in the control of neoplastic

growth. These early studies identified some fundamental mechanisms of tumor

immunosurveillance. First, the contribution of the cytokine IFN-γ to protection against tumor 

formation (Kaplan et al. 1998, Street et al. 2001); second, the effect of perforin-mediated

cytotoxicity of effector lymphocytes on tumor control (van den Broek et al. 1996, Street et

al. 2001); and third, immune-deficient Rag1 and Rag2 knock-out mice, which are incapable of

producing soluble antibodies or a functional TCR, were susceptible to tumor challenge

(Shankaran et al. 2001). Further evidence for the existence of immune surveillance derived

from observations in humans. Immunocompromised humans, like HIV patients or organ

transplant recipients, are more susceptible to certain types of cancers than the general
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population (Grulich et al. 2007). Moreover, several bacterial infections were shown to be

cancer-associated and several cancer-causing viruses have been identified (Mager 2006,

Sarid and Gao 2011).

1.2.2 Immunoediting

The cancer immunosurveillance theory was extended from a simple host-protective role of

the immune system to a more complex process, in which the immunological tumor

microenvironment shapes tumor immunogenicity (Dunn et al. 2002, Schreiber et al. 2011,

He et al. 2014). This process can lead to three possible outcomes. First, the innate and

adaptive immune system recognizes and eliminates transformed cells (elimination phase).

Second, in some cases tumor cells sustain elimination, due to tumor heterogeneity and

selection pressure. This leads to an equilibrium state, in which tumor growth is controlled by

the immune system (equilibrium phase). Third, tumor cells can become resistant to immune

detection and enter the escape phase leading to the development of a malignant disease

(escape phase).

1.2.3 Tumor Evasion Strategies

Immune-evasion strategies of tumor cells are manifold. They are the focus of interest for the

development of a successful cancer immunotherapy. Active tolerance mechanisms induced

by the tumor include downregulation of MHC molecules on the surface of tumor cells or the

impairment of antigen processing. Tumor cells thereby evade recognition and destruction by

cytotoxic T cells (Ferrone and Marincola 1995). Furthermore, tumor cells are able to shape

the tumor microenvironment by release of suppressive anti-inflammatory cytokines, such as

TGF-β or IL-10 (Chen et al. 1994, Walker et al. 1998). More recently, tumor cells were shown 

to upregulate immune checkpoint proteins, like programmed cell death ligand 1 (PD-L1) or

cytotoxic T-lymphocyte associated antigen 4 (CTLA-4). Thus, they further contribute to

shaping the tumor microenvironment (Ramsay 2013). Passive tolerance mechanisms involve

the recruitment of leukocytes into the tumor stroma. This includes mostly tumor-associated

macrophages, mast cells, NK and NKT cells, T cells and B cells. The type of infiltration and the

influence on survival outcome depends on tumor type and patient (Bremnes et al. 2011).

However, regulatory T and B cells were shown to be recruited to the tumor site, negatively

influencing the outcome for the patient (Whiteside 2008, Zhang et al. 2013).
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Overcoming evasion strategies of tumor cells and inducing an effective immune response by

T cells is therefore the key to a successful treatment of cancer.

1.3 Targeted Immunotherapy

Given that cancer resists conventional surgery and nonsurgical treatment options and still

remains the major cause of death worldwide, the development of novel prophylactic and

therapeutic strategies is required. Impressive clinical success was achieved by

immunotherapy in recent years (Couzin-Frankel 2013). In various studies, active and passive

therapy approaches were shown to induce specific immune responses against various

tumors with high therapeutic potential (Mellman et al. 2011).

1.3.1 Tumor Antigens

The immune system has to distinguish between normal and neoplastic tissue to protect the

organism from malignant cells. This is often difficult, since proteins on cancer cells and

normal tissue are similar in structure and their level of expression. However, there are

certain tumor antigens, which are self derived, but trigger an immune response anyway.

Over the last 20 years a large array of immunogenic tumor antigens has been identified and

characterized. Two primary groups of antigens can be distinguished: Tumor-specific antigens

and tumor-associated antigens.

1.3.1.1 Tumor-Specific Antigens

Tumor-specific antigens are unique to the tumor tissue. They arise from genetic alterations

like point mutations, deletions or chromosomal translocation (Bielas et al. 2006) and may be

associated with tumor formation. However, their usefulness for standard immunotherapy is

limited, since they are highly patient-specific and manufacturing such a vaccine would be

costly (Sensi and Anichini 2006). Some shared tumor-specific antigens have been identified,

among them the oncogene ras and the mutated tumor suppressive gene p53 (Bos 1989,

Chiba et al. 1990).
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1.3.1.2 Tumor-Associated Antigens

Tumor-associated antigens are shared by normal and neoplastic tissue, but their level or

location of expression is differs. Tumor-associated antigens can be divided into three

subgroups. Some of these antigens are usually expressed exclusively in germ cells of the

testes. In cancer cells, those germ line genes can be aberrantly activated (Caballero and

Chen 2009). Since germ cells do not express MHC molecules and thereby do not present

antigen to T cells, such antigens can be considered as tumor-specific. One example is the

melanoma-antigen family (MAGE) of proteins. The second subgroup represents antigens

that are expressed during embryogenesis or particular stages of differentiation. Their use as

target for cancer immunotherapy is limited since it may lead to autoimmune reactions.

Some well studied examples are Melan-A, gp100 and tyrosine, which are expressed in

healthy melanocytes, but also melanoma cells. Other examples are prostate-specific antigen

(PSA) in prostate carcinoma or cell adhesion molecule (CEA) in colorectal carcinoma (Malati

2007). The third group is characterized by antigens that are overexpressed in tumor tissue,

but are expressed in very low levels in normal tissue. These overexpressions are often the

result of gene amplifications and are associated with initial tumor formation or growth. Only

a small amount of these antigens, which include for example HER2 or telomerase, is required

to elicit a T cell response and therefore the risk for autoimmunity is low (Disis and Cheever

1997).

1.3.2 Passive Immunotherapy

Exploiting the specificity of the immune system against cancer cells provides a promising

therapeutic approach against cancer diseases with low risk for toxicity and side effects.

Breaking self-tolerance and overcoming tumor-escape mechanisms as well as identifying the

appropriate target and delivery platform are the key to a successful immunotherapy.

Passive immunotherapy with monoclonal antibodies today is a well established treatment

modality. The number of clinically used monoclonal antibodies and their cancer-associated

target proteins has increased dramatically over the past years. They act by antagonizing

oncogenic signaling pathways, blocking tumor cells or initiating cell death. Great clinical

efficacy has been reported for agents inhibiting immunological checkpoints. In 2012, Toplian

et al. reported a study with 300 melanoma, kidney or lung cancer patients that were treated
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with anti-PD1 antibodies. One third of these patients showed a clinical response (Topalian et

al. 2012). In 2013, the combined therapy with Ipilimumab (anti-CTLA-4) and Nivolumab (anti-

PD-L1) resulted in tumor reduction in one third of patients with metastasized, pretreated

melanomas (Wolchok et al. 2013). One of the most recent examples of a successful

antibody-based immunotherapy is the use of Brentuximab for targeting CD30 in patients

with CD30-positive lymphomas (Theurich et al. 2013, Theurich et al. 2013, Theurich et al. in

press).

1.3.3 Active Immunotherapy

In contrast to passive immunotherapy with monoclonal antibodies, active immunotherapy

aims to induce a specific anti-tumor response by vaccination (Schlosser et al. 2014).

Strategies include non-cellular vaccines with purified tumor-antigen, synthetic peptides or

tumor lysates, and cellular vaccines. Moreover, ex vivo expanded and/or manipulated

immune cells can be adoptively transferred into cancer patients. One promising approach

are genetically engineered T cells expressing tumor-specific “chimeric antigen receptors”

(CARs) to directly target tumor cells with high specificity. In 2013, two groups reported of 75

patients with leukemia, of which 45 patients were successfully treated with CARs (Couzin-

Frankel, 2013). Prophylactic cancer vaccines, which exploit the immunological properties of

APCs to induce tumor-specific T cells, are already successfully used in the treatment of

virally-induced cancer diseases (Kanwar et al. 2011). Therapeutically used vaccines showed

first clinical success within the past years, including the first US Food and Drug

Administration (FDA)-approved cell based immunotherapy on the basis of autologous DCs

for the treatment of prostate carcinoma patients (Small et al. 2000). Strategies with ACPs

loaded with tumor-associated antigens aim at inducing effective cellular and antibody-

mediated responses specific for antigens expressed by tumors, thereby avoiding unwanted

side effects as seen by conventional approaches (Grabbe et al. 1995, Ward et al. 2002,

Banchereau and Palucka 2005). The challenges remain in identifying immunogenic tumor

antigens, overcoming tolerance and generating professional APCs that effectively and

specifically induce T cells immunity.
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1.3.4 Dendritic Cell Vaccination

Cellular-based adjuvants are the object of intensive studies since- in contrast to non-cellular

approaches- they reflect the physiological induction of a T cell response. A number of

different subtypes of dendritic cells have been identified, since their first description by

Steinman et al. and have been explored for their use as vaccine against cancer and infectious

diseases (Steinman and Cohn 2007).

In mice, vaccination with bone-marrow derived ex vivo matured antigen-loaded DCs has

been shown to induce protective and therapeutic anti-tumor immunity (Mayordomo et al.

1995, Parkhurst et al. 1996, Zitvogel et al. 1996). Several strategies to deliver antigen to DCs

have been exploited: DCs are simply loaded with peptides or proteins (Parkhurst et al. 1996,

Li et al. 2002), they are transfected with mRNA or DNA plasmids (Boczkowski et al. 1996) or

transduced with viral vectors (Ribas et al. 2002). Other strategies include tumor-DC fusions,

loading DC with dying tumor cells (Albert et al. 1998, Berard et al. 2000) or direct target of

DC surface molecules like DEC205 or DC-SIGN to facilitate antigen uptake (Gilboa 1999, Fong

and Engleman 2000).

The potential of this approach in a human setting could be demonstrated in numerous

studies. In particular, studies with healthy volunteers demonstrated that a single vaccination

dose of DCs is sufficient to induce an antigen-specific T cell response (Dhodapkar et al.

1999). However, after more than 200 clinical studies with DC-based vaccines, the response-

rate to vaccination has been disappointingly low (Draube et al. 2011). Therefore, in order to

achieve reliable responses, several questions need to be addressed before this approach can

be routinely applied in the clinic. These include the identification of the appropriate DC

subtype, the optimal activation status, the injection route, the injection interval or dose.

DCs cannot be generated in large quantities or in sufficient purity, thereby making their

development for the clinical application laborious and expensive. In most studies the purity

of the applied DCs is not determined at all or it does not reach more than 80 % (Draube et al.

2011). An insufficient purity makes it difficult to distinguish between the effect of the DCs

itself and the effect of the bystander cells (Figdor et al. 2004, Rosenberg 2004, Schultze et al.

2004). In addition, the optimal maturation status of the generated DCs is of critical

importance. Immature DCs are usually differentiated ex vivo from CD34+ progenitors by

treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) and IL-4.
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However, antigen-presentation by immature DC subsets results in undesired antigen-specific

tolerance mechanisms (Mahnke et al. 2002). Maturation or terminal differentiation of DCs

can be achieved by antagonizing their toll-like receptors with CpG-ODN (Caux et al. 1992) or

triggering tumor-necrosis factor (TNF) receptor signaling with LPS or CD40 ligation (Romani

et al. 1994, Sallusto and Lanzavecchia 1994). However, the stimulus used for maturation

results in the release of different cytokine subsets and therefore in different T cell responses,

either of tolerogenic or immunogenic nature (Steinman et al. 2003, Mailliard et al. 2004, Liu

et al. 2009).

Another critical point for the use of DCs in a clinical setting is their lack of CD62 ligand

expression, a key molecules for migration through the high endothelial venues, and their

resulting failure of lymph node homing (von Andrian and Mempel 2003). Therefore, the

optimal injection route does not only influence DC homing and T cell response, but also

determines the clinical outcome. Injection routes with easy access to the draining lymph

nodes were shown to result in an improved clinical response than for example intravenous

injections (Draube et al. 2011). Although less than 4 % of the injected DCs reach the draining

lymph nodes, intradermal or intravenous injections are preferred in clinical studies, since

intralymphatic and intranodal injections remain challenging (Ridolfi et al. 2004, Quillien et al.

2005).

The first autologous DC-based therapeutic cancer vaccine, Sipuleucel-T (PROVENGE), has

been approved by the FDA for the treatment of prostate cancer in 2010 (Cheever and Higano

2011). This therapy is based on ex vivo generated DCs that target prostate acid phosphatase

(PAP) antigen on prostate cancer cells and prolongs the median survival of men with

advanced castrate-resistant prostate cancer by 4.1 month. However, clinical studies on

Sipuleucel-T have been criticized afterwards and, taking gain of quality-adjusted life years

into account, the treatment with Sipuleucel-T has been evaluated to be cost-ineffective

(Graff and Chamberlain 2015).

Taken together, combining immunomodulatory agents and DCs with conventional treatment

like radiation and chemotherapy currently provide the most promising approaches to

improve therapeutic efficacy of vaccination against cancer (Le et al. 2010, Palucka et al.

2010).
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1.4 B Cells as Antigen-Presenting Cells

Even though B cells are less efficient than DCs at capturing antigens by pinocytosis, Fc-

Receptor (FcR)-mediated uptake or adsorption (Chesnut et al. 1982, Grey et al. 1982, Batista

and Neuberger 1998, Rodriguez-Pinto 2005), they are increasingly recognized to play a

crucial role in the initiation of T cell responses. However, to fully extend their function as

APCs, B cells require two activation signals. The first one is the crosslinking of the BCR by its

antigen, which induces growth, proliferation and survival of the B cell. Moreover, it leads to

expression of the costimulatory molecule CD86 (Lenschow et al. 1994). The second signal

results from the interaction with CD4+ T cells and is mediated by CD40-CD40 ligand (CD40L)

interaction and the secretion of IL-4 by the T cells (Ranheim and Kipps 1993, Evans et al.

2000). CD40-derived signals induce B-cell activation and promote several changes related to

their antigen-presenting function: CD40-activated B cells (CD40B cells) upregulate the

expression of MHC class I and II and costimulatory molecules CD80 and CD86, enhance

antigen processing and are able to activate naïve T cells (Kennedy et al. 1994, Faassen et al.

1995).

1.4.1 CD40-CD40L Interaction

CD40-CD40L interaction exerts profound effects on DCs, B cells, endothelial cells and many

other cells of the hematopoietic and non- hematopoietic compartments (Elgueta et al.

2009). The CD40 receptor and its ligand are both transmembrane proteins of the TNF

superfamily (van Kooten and Banchereau 2000). The CD40L is primarily expressed on T cells,

but also on activated B cells, platelets and under inflammatory conditions on other cells of

the innate and adaptive immune system (Carbone et al. 1997). The soluble form of the

CD40L was shown to express similar activities as its transmembrane form (Graf et al. 1995,

Mazzei et al. 1995). In B cells, CD40 signaling promotes germinal center formation,

immunoglobulin (Ig) isotype switching, somatic hypermutation of the Ig to enhance affinity

for antigen and the formation of long-lived plasma cells and memory B cells (Danese et al.

2004, Elgueta et al. 2009).
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Fig. 1.2 APC activation upon encounter with an antigen-specific CD4+ T cell. Interactions that control
the outcome of CD4+ T cell-APC encounter are indicated by the receptor-ligand pairs. CD40L, CD40
ligand; TCR, T-cell antigen receptor; CTLA4, cytotoxic T lymphocyte–associated protein 4; MHCII,
major histocompatibility complex type II protein (Haanen and Schumacher 2007).

More importantly, CD40 engagement promotes B cell cytokine production, the expression of

costimulatory molecules on their surface and facilitates cross-presentation of antigen

(Robson et al. 2008, de Wit et al. 2010). Furthermore, CD40 signaling supports survival of

germinal center B cells, DCs and endothelial cells (Bishop et al. 2007) and its deregulation

has been observed to play a role in multiple autoimmunity diseases (Peters et al. 2009).

The importance of this signaling pathway in acquired immune responses makes it a

promising target for pharmacological manipulations for the treatment of immunological

diseases. Interference of the CD40-CD40L interaction by use of blocking CD40-antibodies

showed positive effects on uncontrolled immune reactions like inflammation, autoimmunity

or allo-graft rejection (Larsen et al. 1996, Kirk et al. 1997, Kirk et al. 2001, Pearson et al.

2002, Grammer et al. 2003, Sidiropoulos and Boumpas 2004). Moreover, enhancement of

the CD40-CD40L interaction by use of antagonistic CD40-antibodies was shown to result in

anti-proliferative anti-tumor effects or meditation of immune response against tumors

(Mackey et al. 1998, Diehl et al. 1999, Tong and Stone 2003, Watanabe et al. 2003,

Eliopoulos and Young 2004, Vonderheide et al. 2007). Because of their potential as APC

stimulators, CD40 agonists have been selected as one of the twelve immunotherapy drugs

that could cure cancer (Cheever 2008).
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1.4.2 CD40-Activated B Cells

In 1991, Banchereau et al. discovered that long-term human B-cell lines could be established

by stimulation with the CD40L and IL-4 (Banchereau et al. 1991, Banchereau and Rousset

1991). Since then several strategies have been developed to manipulate the CD40-CD40L

interaction to activate B cells (Neron et al. 2011). Schultze et al. established a culture system,

in which human B cells can be activated and expanded by stimulation with the CD40L and

IL-4 (Schultze et al. 1997). Under constant cultivation on CD40L expressing feeder cells,

human and murine primary B cells can be expanded from small amount of peripheral blood,

upregulate costimulatory, MHC and adhesion molecules and show an increased antigen

presenting capacity in vitro (Liebig et al. 2009, Liebig et al. 2010). The expression level of

MHC and costimulatory molecules is comparable to those of CD40L/IFN-γ or TNF-α matured 

DCs (Wiesner et al. 2008). In vitro these CD40-activated B cells present antigen in an MHC

class I or II- restricted manner to induce naïve or memory CD8+ and CD4+ T cells responses,

respectively (Schultze et al. 1997, von Bergwelt-Baildon et al. 2002, Lapointe et al. 2003, von

Bergwelt-Baildon et al. 2004, Theurich et al. 2011) and overcome T cell tolerance as shown

by generating autologous tumor antigen-specific T cells in vitro by help of peptide-pulsed

CD40B cells (von Bergwelt-Baildon et al. 2002, Shen et al. 2007, Wu et al. 2010). Moreover,

CD40B cells have the capacity to attract T cells and to home to secondary lymphoid organs

(von Bergwelt-Baildon et al. 2006, Guo et al. 2009), which is essential for T cell-APC

encounter and the induction of immunity. Human and murine CD40B cells express the

respective factors and receptors crucial for homing to secondary lymphoid organs including

CD62L, C-C-chemokine receptor (CCR) 7/ CXC-Motiv-Chemokinrezeptor (CXCR) 4, and

leukocyte function antigen (von Bergwelt-Baildon et al. 2006, Klein-Gonzalez et al. accepted

2015). The receptors CCR7 and CXCR4 are functional and induce chemotaxis toward

increasing chemokine concentrations of their ligands CCL21 and CXCL12, respectively (Fig.

1.3).
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Fig. 1.3. Chemokines involved in lymphocyte positioning in the secondary lymphoid organs.
(a) CCL21/ CCL19, chemokines expressed in the T cell zones of secondary lymphoid organs and the
ligand for CCR7; (b) CXCL12, the ligand for CXCR4 mostly involved in T cell zone entry; (c) and CXCL13,
a chemokine made in B cell zones of lymphoid organs and the ligand for CXCR5. (d) The chemokine
expression pattern of CD40B cells (e) allows them to migrate towards the B/T cell boundary (Klein-
Gonzalez et al. accepted 2015).

Nevertheless, very few studies have focused on the in vivo antigen-presenting capacity of

CD40B cells and their contribution to anti-tumor immunity (Wennhold et al. 2013). In two

preventive vaccination studies, tumor growth was delayed in mice that were immunized

with CD40 B cells (Ritchie et al. 2004, Liebig et al. 2011). The group of Mason reported the

first study in out-bred large animals using tumor RNA-loaded CD40B cells as cellular adjuvant

in privately owned dogs with NHL (Sorenmo et al. 2011). However, the correlation between

the immunological response and the clinical outcome was not significant.

Taken together, CD40B cells cannot only serve to identify tumor-antigens or to generate

T cells for adoptive immunotherapy, but show also promise as a versatile platform for

cellular cancer vaccines (Fujiwara et al. 2005, Ivanov et al. 2005, Kondo et al. 2009). Most of

all, the results from preclinical studies of application as antigen presenting cells in
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preventive and therapeutic vaccination appears promising (von Bergwelt-Baildon et al. 2002,

Coughlin et al. 2004, Van den Bosch et al. 2005, Yoon et al. 2005, Shen et al. 2008, Wu et al.

2010).

1.4.3 Antigen-Specific B Cells

Antigen-processing and -presentation, and thereby T cells activation, is 1000-10,000 fold

more effective in antigen-specific B cells compared to resting or lipopolysaccharide (LPS)-

activated polyclonal B cells (Abbas et al. 1985, Lanzavecchia 1990). The BCR has a high

affinity for a given antigen and allows B cells to concentrate very small quantities of their

specific antigen and present the antigen efficiently. In contrast, presentation after uptake by

fluid phase pinocytosis in B cells requires about 5000 higher concentrations.

Specific antigen uptake via the BCR leads to three important changes in the antigen

processing machinery that facilitates the traffic of antigen and MHC class II molecules and

the generation of peptide-MHCII complexes (Rodriguez-Pinto 2005). First, BCR receptor

ligation induces its internalization and the traffic towards MHCII rich compartments (MIIC),

the site of peptide-MHCII complex formation. Second, BCR signaling upregulates MHCII

expression and trafficking through the MIIC. Finally, BCR crosslinking induces changes in the

MIIC to generate the adequate environment for loading of MHCII with peptides. A second

characteristic of antigen processing in B cells differs from that in other antigen presenting

cells. The expression of HLA-DO, a non-classical MHCII molecule that is expressed only in

B cells and thymic epithelium, modulates peptide loading of MHCII molecules by HLA-DM

and favoring presentation of peptides derived from antigens internalized through the BCR

(Alfonso et al. 1999, Denzin et al. 2005).

1.5 Purpose of this Study

Although polyclonal CD40B cells were shown to efficiently induce anti-tumor immunity in

vivo, the tumor control is still suboptimal when using polyclonal CD40B cells as cellular

adjuvant (Liebig et al. 2011). Based on the fact that antigen-specific B cells present antigen

very efficiently when the antigen concentration is low, this study aimed at investigating

whether the use of tumorantigen-specific CD40B cells instead of polyclonal CD40B cells

improves their antigen-presenting function. For this purpose polyclonal and antigen-specific
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CD40B cells were compared with regard to their potential to induce antigen-specific T cell

reactions in vitro and in vivo. Moreover, the migratory behavior of tumorantigen-specific

CD40B cells in healthy and tumor bearing mice was investigated with the purpose of

exploiting their potential as drug delivery and imaging vehicle. With regards to the use of

antigen-specific B cells as cellular adjuvant for cancer immunotherapy, their antigen-

presenting function and antibody-secreting capacity were combined for immunotherapy in

tumor bearing mice.
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2. Material and Methods

2.1 Material

2.1.1 Chemical

For preparation of buffers and solutions, chemicals of analytical purity were used exclusively.

Bovine Serum Albumin (BSA) Sigma Adrich
CFSE Invitrogen
Active hepatitis b virus Hepatitis B
Surface Antigen full length protein (HBV-antigen) Abcam
Albumin from Chicken Egg White (OVA) Sigma Aldrich
Dimethyl sulfoxide (DMSO) Sigma Aldrich
D-Luciferin Regis Technologies
Ethanol Th Geyer
Ethylenediaminetetraacetic acid (EDTA) Sigma Aldrich
Hygromycin B Sigma Aldrich
Isofluran Actavis
Ovalbumin peptide (aa 257-264) Thermo Scientific
Paraformaldehyde (PFA) Sigma Aldrich
Sodium hydrogen carbonate (NaHCO3) Sigma Aldrich
Sodium carbonate (Na2CO3) Sigma Aldrich
Sodium chloride (NaCl) Sigma Aldrich
Trypsin-EDTA Life Technologies
Tween-20 Sigma Aldrich
Sodium Dodecyl Sulfate (SDS) Sigma Aldrich

2.1.2 Consumables

5 ml FACS tubes Sarstedt
6-well culture dish Sarstedt
12-well culture dish Sarstedt
15 ml Falcon tube Sarstedt
26G ½ needle Beckton Dickinson
50 ml Falcon tube Sarstedt
75 cm2 culture flask (adherent) Sarstedt
75 cm2 culture flask (suspension) Sarstedt
96-well culture dish, round bottom Sarstedt
96-well high binding plate Greiner
100 µm cell strainer Greiner
Cryo Tubes Sarstedt
Glass object slides Sarstedt
MS Columns Miltenyi Biotech
LD Columns Miltenyi Biotech
LS Columns Miltenyi Biotech
Slide-A-Slizer G2 Dialysis Cassette Thermo Scientific
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2.1.3 Kits

EasySep Mouse T Cell Enrichment Kit Stem Cell Technologies
EasySep Mouse Biotin Selection Kit Stem Cell Technologies
Pierce Biotin Quantitation Kit Thermo Scientific

2.1.4 Devices

EOOS 350D digital camera Canon
Gallios Flow Cytometer Beckman Coulter
HeraCell 150i CO2 Incubator Thermo Scientific
Heraeus Megafuge 16R Thermo Scientific
HeraSafe hood ThermoScientific
Microplate Reader µQuant BIO-TEK Instruments
Neubauer Counting Chamber OptikLabor
Silk-epil FG1100 Braun
Televal 31 microscope Zeiss
Vernier Caliper Hogotex
Water bath WNB14 Set Memmert
Xenogen IVIS 200 Perkin Elmer

2.1.5 Cell Culture

If not described differently, pipette tips were obtained from BD Falcon.

2.1.5.1 Cell Culture Reagents

10 x Phosphate buffered saline (PBS) Life Technologies
AB-Human serum Biochrom
AIM-V medium Life Technologies
Anti-mouse CD40Ligand (CD40L) antibody Novus Biologicals
Anti-mouse IgM(mu-chain), unconjugated Sigma Aldrich
β-Mercaptoethanol (β-ME)     Sigma Adrich 
CpG ODN 2395 Miltenyi Biotech
Cyclosporin A Sigma Adrich
DMEM medium Life Technologies
Fetal Bovine Serum (FBS) Lonza
G418 Biochrom
GM-CSF Immunotools
HEPES Life Technologies
IMDM medium Life Technologies
Incomplete Freund’s Adjuvant Sigma Aldrich
LPS from Escherichia coli 055:B5 Sigma Aldrich
MEM Life Technologies
Penicillin/ Streptomycin Life Technologies
rh Insulin Novo Nordisk
rh Interleukin-4 Immunotools
rh Transferrin Sigma Aldrich
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rm Interleukin-4 Immunotools
rm Interleukin-21 Immunotools
RPMI 1640 medium Life Technologies
Trypan Blue Stain 0.4 % Life Technologies
VLE-RPMI medium Biochrom

2.1.5.2 Media

DC medium VLE-RPMI medium
+ 5 % FBS

        + 50 µM β-ME 
+ 10 % Pen/Strep

Freezing medium FBS + 10 % DMSO
HeLa standard medium RPMI 1640

+ 300 µg/ml L-Glutamine
+ 10 % FBS
+ 10 mM HEPES
+ 10 % Pen/Strep

HeLa selection medium RPMI 1640
+ 300 µg/ml L-Glutamine
+ 10 % FBS
+ 10 mM HEPES
+ 10 % Pen/Strep
+ 0.2 mg/ml Hygromycin B

Human CD40B medium IMDM
+ 584 µg/ml L-Glutamine
+ 25 mM HEPES
+ 10 % AB-Human serum
+ 50 µg/ml rh Transferrin
+ 5 µg/ml rh Inuslin
+ 10 % Pen/Strep

Murine CD40B medium DMEM
+ 580 µg/ml L-Glutamine
+ 4.5 mg/ml Glucose
+ 10 % FBS
+ 10 mM HEPES
+ 0.1 mM MEM
+ 10 % Pen/Strep

NIH standard medium DMEM-Ham’s/ F12
+ 365 µg/ml L-Glutamine
+ 10 % FBS
+ 10 mM HEPES
+ 10 % Pen/Strep

Tumor medium DMEM
+ 580 µg/ml L-Glutamine
+ 10 % FBS
+ 10 mM HEPES
+ 10 % Pen/Strep
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2.1.6 Reagents

ABTS Peroxidase Substrate KPL
Biotin anti-mouse IgG1 Biolegend
CD19 MicroBeads human Miltenyi Biotech
CD19 MicroBeads mouse Miltenyi Biotech
Cell wash Beckton Dickinson
EZ-Link NHS-Biotin Reagent Thermo Scientific
HRP Avidin Biolegend
Pancoll Human (density 1.077 g/l) PAN Biotech
Pancoll Mouse (density 1.086 g/l) PAN Biotech
Purified anti-chicken Ovalbumin Biolegend

2.1.7 Solutions and Buffers

1x PBS 1 L 10x PBS, 9 L Ampuwa
Blocking solution 1x PBS, 10 % FBS
Coating buffer 8.4 g NaHCO3, 3.56 g Na2CO3, add

H2O up to 1.0 L, pH to 9.5
EasySep medium 1x PBS, 2 % FBS, 1 mM EDTA
MACS buffer 1x PBA, 0.5 % BSA, 2 mM EDTA
PBS/Tween 1 L 1x PBS, 0.5 ml Tween-20

2.1.8 Software

FlowJo Software TreeStar
GraphPad Prism GraphPadPrism
Kaluza Software Beckman Coulter
Living Image Software Perkin Elmer

2.2 Methods

2.2.1 Cell Subset Enrichment

2.2.1.1 Purification of Murine Lymphocytes from Spleen

Spleens were removed from 7-12 week old mice. A single suspension was prepared by

squeezing the tissue through a 100 µm cell strainer. For purification of murine lymphocytes

density-gradient centrifugation was performed. Cells of two spleens were resuspended in 8

ml murine CD40B medium and added onto a layer of 5 ml mouse Pancoll separation

medium. Cells were centrifuged at 1080 x g for 15 min without break. Afterwards, the

interphase, containing the splenocytes (lymphocytes from the spleen), was carefully

collected with a 20 G needle and cells were washed with 10 ml PBS.
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2.2.1.2 Purification of Murine Lymphocytes from Lymph Nodes

Single cell suspensions from mesenteric and inguinal lymph nodes of 7-12 week old mice

were prepared by squeezing the organs through a 100 µm cell strainer into a culture dish.

Cells were collected by washing the culture dish with 8 ml murine CD40B medium.

2.2.1.3 Purification of Human Lymphocytes from Blood

Buffy coat preparations were obtained from healthy donors at the blood bank of our

institution. The donors gave their consent and all the experiments were approved by our

institutional ethical board.

Human peripheral blood mononuclear cells (PBMCs) were isolated from buffy coats by

density-gradient centrifugation. 15 ml blood was mixed with 20 ml 1 x PBS and layered on

top of 15 ml human Pancoll separation medium. Cells were centrifuged at 1080 x g for 15

min without break. Afterwards, the interphase, containing the lymphocytes, was carefully

collected and cells were washed with 10 ml PBS.

2.2.1.4 Purification of Murine CD3+ T Cells

Murine CD3+ T cells were negatively enriched from splenocytes (chapter 2.2.1.1) of 7-12

week old OT-I or OT-II mice using EasySep Mouse T Cell Enrichment Kit (Stem Cell

Technologies, Canada) according to manufacturer’s protocol. Briefly, cells were resuspended

in EasySep medium at a concentration of 1 x 108 cells/ml. Cells were incubated for 10 min at

RT with 50 µl/ml of Normal Rat Serum and 50 µl/ml of EasySep Mouse T Cell Enrichment

Cocktail and for additional 2.5 min with 75 µl/ml of EasySep Streptavidin RapidSpheres.

Afterwards, the tube with the cells was placed into the EasySep magnet for 2.5 min. After

the incubation time, the desired cell fraction was poured off into a new tube by inverting the

magnet. The desired cell suspension was washed with 10 ml AIM-V medium. T cell purity

was determined by FACS analysis for CD3+ versus CD19+ cells.

2.2.1.5 Purification of CD34+ Bone Marrow Progenitor Cells

Murine CD34+ progenitor cells were purified from bone marrow of hind limbs of C57BL/6N

mice by positive selection with EasySep Biotin Selection Kit.
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Hind limbs of mice were isolated by cutting above the hip joint. The foot pad was cut below

the ankle joint and femur and lower leg were divided. Muscle tissue was removed and bones

put onto ice until further use. Bone tips were cut off and the bone marrow was washed from

each side with a 26G ½ needle by thorough rinsing with 4 ml cold EasySep buffer into a

falcon tube containing a buffer reservoir. The resulting cell suspension was washed through

a 100 µm cell strainer and centrifuged at 270 x g for 5 min. The cells were resuspended in

EasySep medium at a concentration of 1 x 108 cells/ml and incubated with 10 µl/ml EasySep

FcR-Block and 15 µl/ml anti-murine CD34-biotinylated antibody (0.5 mg/ml) for 15 min at RT.

Afterwards, the cells were washed, resuspended in EasySep Medium at concentration of 1 x

108 cells/ml and incubated with 100 µl/ml EasySep Biotin Selection Cocktail for 15 min at RT.

Afterwards, 50 µl/ml EasySep magnetic nanoparticles were added for additional 10 min. The

tube with the cells was placed into the EasySep magnet for 5 min. After the incubation time,

the supernatant fraction was poured off by inverting the magnet. The desired cell fraction

was collected by washing the tube 3 times with 1 ml DC-medium.

2.2.1.6 Purification of Murine and Human CD19+ B Cells

Murine CD19+ B cells were positively enriched from splenocytes (chapter 2.2.1.1) of 7-12

week old C57BL/6N or Luc+ mice using murine CD19 MACS microbeads. Human CD19+ B cells

were positively enriched from PBMCs (chapter 2.2.1.3) using human CD19 MACS

microbeads. Both isolations were performed according to manufacturer’s protocols

(Miltenyi Biotech, Germany) with minor modifications. Briefly, murine splenocytes or human

PBMCs were resuspended in MACS buffer at a concentration of 17 x 107 cells/ml. Murine or

human CD19 microbeads were added at a concentration of 127.5 µl/ml and cells were

incubated for 15 min at 4 °C. Afterwards, cells were washed with 10 ml MACS buffer and the

pellet was resuspended in 5 ml MACS buffer before the suspension was applied to the MACS

LS column. After the column was washed two times with 3 ml MACS buffer, the desired cell

fraction was removed by firmly pushing the plunger into the column. Cells were washed with

additional 10 ml murine or human CD40B medium by centrifuging them at 270 x g for 5 min.

B cell purity was determined by FACS analysis for CD19+ B220+ cells.
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2.2.1.7 Purification of Murine and Human Antigen-Specific B Cells

Murine and human antigen-specific B cells were isolated from splenocytes of 7-12 week old

immunized C57BL/6 or Luc+ mice or from blood (chapter 2.2.1.3) of vaccinated healthy

donors. Antigen-specific B cells were enriched by labeling them with antigen tetramers and

subsequent positive selection using the EasySep Biotin Selection Kit.

2.2.1.7.1 Generation of Protein-Biotin Conjugates for Antigen Tetramers

The antigens were biotinylated by using the EZ-Link NHS-Biotin Reagent (Thermo Scientific,

Rockford, USA) according to manufacturer’s protocol. 135.5 µl of a 10 µM biotin solution

were added to 1.5 ml of a 2 mg/ml protein solution. The mixture was incubated on ice for

two hours. To remove excess non-reacted biotin, the solution was applied to a Slide-A-Lyzer

G2 Dialysis Cassette (Thermo Scientific, Rockford, USA) over night at 4 °C in 1 L 1x PBS with

one complete change of the buffer after 2 h.

OVA (albumin from chicken egg white) was purchased from Sigma Aldrich (St. Louis, USA)

and HBV antigen (Active hepatitis b virus Hepatitis B Surface Antigen full length protein) was

purchased from Abcam (Cambridge, UK).

2.2.1.7.2 Quantification of Biotinylation

Biotinylation of antigens was checked using the Pierce Biotin Quantitation Kit (Thermo

Scientific, Rockford, USA) according to manufacturer’s protocol. 100 µl of HABA/Avidin

Premix were added to 800 µl 1x PBS and the absorbance of the solution at 500 nm was

recorded as A500 HABA/avidin. 100 µl of the antigen-biotin solution were added to the

mixture and once the value of the absorbance at 500 nm was stable, it was recorded as A500

HAB/avidin/ biotin sample. The number of moles of biotin per mole of protein was

calculated as follows according to manufacturer’s protocol:

1. Calculation # 1 is for the concentration of biotinylated protein in mmol/ml (before

any dilution for the assay procedure (MW = molecular weight):

2. Calculation # 2 is for the change in absorbance at 500 nm in a cuvette:
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3. Calculation # 3 is for the concentration of biotin in mmol per ml of reaction mixture:

4. Calculation # 4 is for the mmol of biotin per mmol of protein:

2.2.1.7.3 Enrichment of Antigen-Specific B Cells

OVA-specific B cells from splenocytes and HBV-specific B cells from blood were isolated

using the EasySep Biotin Selection Kit. The cells were resuspended in EasySep medium at a

concentration of 1 x 108 cells/ml and incubated with 10 µl/ml EasySep FcR-Block and 0.1 -0.3

µg/ml (depending on the concentration of mmol biotin per mmol protein calculated in

chapter 2.2.1.7.2) antigen-biotin conjugate for 10 min at RT. Afterwards, the cells incubated

with 100 µl/ml EasySep Biotin Selection Cocktail and 4 µl/ml Streptavidin-PE for 15 min at RT

and for another 10 min with 50 µl/ml EasySep magnetic nanoparticles. The tube with the

cells was placed into the EasySep magnet for 5 min. After the incubation time, the

supernatant fraction was poured off by inverting the magnet. The cells were resuspended in

2.5 ml EasySep medium. This procedure was repeated at least two times. The desired cell

fraction was collected by washing the tube 3 times with 1 ml murine or human CD40B

medium. The purity of murine or human antigen-specific B cells was determined by FACS

analysis of antigen-specific CD19+ B220+ or CD19+ CD20+ cells, respectively.

2.2.1.8 Purification of Murine Memory B Cells

Murine memory B cells were enriched from splenocytes (chapter 2.2.1.1) of 7-12 week old

C57BL/6N mice using murine Memory B Cell Isolation Kit (Miltenyi Biotech., Bergisch

Gladbach, Germany). The isolation was performed according to manufacturer’s protocol.

Murine splenocytes were resuspended in MACS buffer at a concentration of 33 x 107

cells/ml. 100 µl of Memory B Cell Biotin-Antibody Cocktail, 50 ml of Anti-IgG1-APC and 50 µl
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of Anti-IgG2ab-APC were added per 108 cells and incubated for 5 min at 4 °C. 300 ml MACS

buffer and 200 µl of Anti-Biotin microbeads were added per 108 cells for additional 10 min.

Afterwards, cells were applied to the MACS LD column. Unlabelled cells were collected and

centrifuged at 270 x g for 5 min. Cells were resuspended In 400 µl MACS buffer and 100 µl of

Anti-APC microbeads were added for 15 min at 4 °C. The cells were washed at 270 x g for 5

min, resuspended in 500 µl buffer and applied to the MACS MS column. After the column

was washed two times with 500 µl MACS buffer, the desired cell fraction was removed by

firmly pushing the plunger into the column.

2.2.2 Cell Culture

If not described differently, all cell lines were incubated at 37 °C in a humidified atmosphere

with 5% CO2. Cell culture was performed at sterile conditions under a safety cabinet with

sterile solutions, glass and plastic ware. All centrifugation steps in cell culture were

performed in a Heraeus Megafuge 16R (Thermo Scientific).

2.2.2.1 Counting of Cells

For counting, an aliquot of the cell suspension was diluted with 10x with Trypan Blue Stain

0.4 % and counted using a Neubauer Counting Chamber. 10 µl of the cell suspension were

applied to the counting chamber and bright cells within one big quadrant of the Neubauer

chamber were counted as viable using a light optical microscope with 20 fold magnification.

The average cell number of per quadrant was multiplied by the dilution factor and by the

chamber factor 104, resulting in the number of cells per 1 ml. The relative growth a cultures

during a whole cultivation period was assessed by calculating the relative increase between

two passages.

2.2.2.2. Cryopreservation and Thawing of Cells

For cryopreservation, cells were suspended in freezing medium, at a density of 3-10 x 106

cells/ml. The cell suspension was aliquoted into cryo tubes and slowly frozen at -80 °C in a

freezing chamber. 24 h later, tubes were transferred into liquid nitrogen for long-term

storage.
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Frozen cells were rapidly thawed in a water bath at 37 °C until a small ice clump was left in

the tube. Cells were transferred to an excess of medium and centrifuged at 270 x g for 5 min.

2.2.2.3 Trypsinization of Adherent Cells

The medium was removed and the adherent cells were washed with 10 ml of 1x PBS. After

removing the PBS, 4 ml of Trypsin-EDTA were added to a 75 cm2 flask. Cells were incubated

at 37 °C for 5-10 min. To stop trypsinization, 10 ml of medium were added to the cells. Cells

were harvested and centrifuged at 200 xg for 5 min and resuspended in standard medium.

2.2.2.4 Assessment of Morphology by Microscopy

Representative sections of cultures were photographed by using an inverted phase Zeiss

Televal 31 microscope fitted with a Canon EOOS 350D digital camera.

2.2.2.5 Assessment of Morphology by Pappenheim Staining

10 µl of a cell suspensions were placed at a density of 1 x 106 cells/ml on a glass object slide.

The cell suspension was allowed to dry over night. Pappenheim staining according to

standard protocols were kindly performed in the Laboratory for Hematological Diagnostic in

the Department for Internal Medicine I at the University Hospital Cologne, Germany.

Pictures were taken using a Zeiss AxioPhot microscope at a magnification of x63. Pictures

were taken using dhs-Bilddatenbank.

2.2.2.6 Cell Lines

2.2.2.6.1 Culture of the tmuCD40L HeLa Cell Line

The tmuCD40L HeLa cell line, an adherent human epithelial cell line, was kindly provided by

Clemens Wendtner (Klinikum Schwabing, Munich, Germany). Cell passaging was performed

twice a week. Adherent tmuCD40L HeLa cells were trypsinized (chapter 2.2.1.3) and

resuspended in 10 ml HeLa standard medium in order to determine cell number (chapter

2.2.1.1). 2 x 106 cells in 10 ml selection medium were seeded in a 75 cm2 culture flask and

incubated at standard conditions. Stable expression of the CD40L was tested once a week by

flow cytometry using a PE-conjugated anti-mouse CD154 (CD40L) antibody.

For generation of murine CD40B cells, tmuCD40L HeLa cells were lethally irradiated 3 times

with 26 Gy and subsequently plated on sterile 6-well culture plate at a density of 0.4 x 106
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cells/well in 2 ml HeLa standard medium. After 4-24 h of incubation at standard conditions,

cells became adherent and were used for co-cultures with murine CD40B cells.

2.2.2.6.2 Culture of the NIH3T3/tCD40L Cell Line

The NIH3T3/tCD40L cell line, an adherent murine fibroblast cell line, was kindly provided by

Gordon Freeman (DFCI, Boston, USA). Cell passaging was performed twice a week. Adherent

NIH3T3/tCD40L cells were trypsinized (chapter 2.2.1.3) and resuspended in 10 ml NIH

standard medium in order to determine cell number (chapter 2.2.1.1). 1.5 x 106 cells in 10 ml

NIH standard medium supplemented with G-418 (0.7 mg/ml) were seeded in a 75 cm2

culture flask and incubated at standard conditions. Stable expression of the CD40L was

tested once a week by flow cytometry using a PE-conjugated anti-human CD154 (CD40L)

antibody.

For generation of human CD40B cells, NIH3T3/tCD40L cells were lethally irradiated 2 times

with 26 Gy and subsequently plated on sterile 6-well culture plate at a density of 0.2 x 106

cells/well in 2 ml NIH standard medium. After 4-24 h of incubation at standard conditions,

cells became adherent and were used for co-cultures with human CD40B cells.

2.2.2.6.3 Culture of the E.G7 Lymphoma Cell Lines

The murine suspension lymphoma cell line EL4 and the OVA-expressing E.G7 cell line (EL4

background) were kindly provided by the Laboratory of Tomo Šarić (Department for 

Neurophysiology, University Hospital Cologne, Germany). Cell passaging was performed

three times a week by harvesting the cell suspension. Cells were centrifuged at 270 x g for 5

min and resuspended in 10 ml tumor medium for counting (chapter 2.2.1.1). Cells were

culture at a concentration of 0.1 x 106 cells/ml in a 75 cm2 culture flask and incubated at

standard conditions. E.G7 cells were supplemented with G-418 (1 mg/ml).

2.2.2.7 Generation of Murine and Human CD40B Cells

Murine or human CD40B cell cultures were generated as described previously (Liebig et al.

2009, Liebig et al. 2010). In short, CD19+-purified (chapter 2.2.1.6) or antigen-enriched B cells

(chapter 2.2.1.7) were resuspended at a concentration of 1.25 x 106 cell/ml in murine or

human CD40B medium, respectively. The human medium was freshly supplemented with 1

U/ml of IL-4 and 0.63 µg/ml cyclosporin A. The murine medium was additionally
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supplemented with 100 µM β-ME. For co-cultures, the supernatant of the previously 

prepared 6-well feeder cell plates (chapter 2.2.2.6.1 and 2.2.2.6.2, respectively) were

removed and the plates were washed with 1x PBS. 4 ml of the lymphocyte cell suspension

were gently added to each well of the 6-well plate and incubated at standard conditions.

Feeder cells of CD40B cultures were refreshed twice a week. CD40B cells were harvested by

vigorously pipetting the cell suspension up and down. The cells were washed at 270 x g for 5

min and resuspended at a concentration of 1.25 x 106 cells/ml in murine or human CD40B

medium. IL-4, β-ME and cyclosporin A were freshly supplemented at the concentrations 

mentioned above. The cell suspension was applied to fresh cultures of feeder cells and

cultivated at standard conditions. The expression of co-stimulatory and MHC-molecules and

surface immunoglobulins was determined twice a week by fluorescence-associated cell

sorting (FACS) analyses.

2.2.2.8 Generation of Murine Dendritic Cells

For in vitro generation of murine dendritic cell cultures, CD34+ bone marrow progenitor cells

(chapter 2.2.1.5) were used. The enriched cells were cultivated at a concentration of 0.25 x

106 cell/ml in murine DC medium supplemented with 500 U/ml of murine GM-CSF and 1

U/ml murine IL-4. 2 ml of the cell suspension was applied to each well of a 12-well plate and

incubated at standard conditions. On days 3, and 5 of the cultivation period, 1 ml medium

from each well was carefully removed and replaced by 1 ml DC medium supplemented with

1000 U/ml of murine GM-CSF and 2 U/ml of murine IL-4. For maturation of DCs, the medium

was replaced as described above, supplemented with either 10 ng/ml LPS or 1 µg/ml anti-

mouse CD40L antibody and cultivated over night at standard conditions. For further use, DCs

were harvested by gently detaching them from the culture plate with a cell scraper. Purity of

DC cultures was determined by FACS analyses of the CD11c+ CD11b+ cell population and

checked for the expression of co-stimulatory molecules.

2.2.2.9 Generation of Antibody-Secreting Plasma Cells

For in vitro generation of antibody-secreting plasma cells, CD19+-purified (chapter 2.2.1.6) or

antigen-enriched B cells (chapter 2.2.1.7) were resuspended at a concentration of 1 x 106

cells/ml in CD40B medium. The medium was supplemented with different stimuli, including

IL-4 (1 U/ml), IL-21 (50 ng/ml), anti-mouse CD40L (1 µg/ml), anti-mouse IgM (5 µg/ml), LPS
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(10 µg/ml) and OVA-biotin tetramers (0,2 µg/ml + 0.5 µg/µl Streptavidin-PE). 200 µl of the

cell suspension were applied to a round bottom 96-well plate and incubated for 72 h at

standard conditions. Differentiation into plasma cells was assessed by FACS analyses of

surface immunoglobulin and plasma cell markers, as well as Enzyme Linked Immunosorbent

Assay (ELISA) of specific immunoglobulins.

2.2.3 Phenotypical and Functional Analyses

2.2.3.1 Fluorescence Activated Cell Sorting

Acquisition and enumeration of cells were performed by using a Gallios Flow Cytometer

(Beckman Coulter, Pasadena, USA). Single-cell analyses were performed by use of the FlowJo

software (Tree Star, Ashland, USA) or the Kaluza software (Beckman Coulter, Pasadena,

USA). All washing steps were performed with cell wash in a Heraeus Megafuge 16R (Thermo

Scientific) at 270 x g for 5 min at RT.

2.2.3.1.1 Surface Staining with Monoclonal Antibodies

Surface staining with monoclonal antibodies for FACS analyses was performed by washing

0.1 – 1 x 106 cells in 4 ml cell wash. Cells were resuspended in 100 µl cell wash and stained

with 1 µl of antibody solution for 20 min at 4 °C. Afterwards, cells were washed and

resuspended in 150 - 300 µl cell wash depending on the cell number. Monoclonal antibodies

used for staining, conjugates and companies are listed in table 2.1.

Table 2.1. Monoclonal antibodies used for FACS analyses.

Antibody Conjugate Company

Murine Antibodies

B220 Alexa Fluor 750 Life Technologies

Pacific Blue Biolegend

CD3 APC-Cy7 BD

CD4 PE-Cy7 BD

CD8 PerCP-Cy5.5 BD

CD11b APC-Cy7 BD

CD11c PE BD

CD19 Alexa Fluor 700 Biolegend

PE-Texas Red Life Technologies

CD27 PE-Cy7 Biolegend

CD80 APC BD

CD86 FITC BD
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2.2.3.1.2 Staining of Antigen-Specific B Cells with Antigen Tetramers

Antigen-specific B cells were identified by staining with antigen tetramers. In order to form

tetramers, 0.2 µg of biotinylated OVA- or HBV-protein was pre-incubated with 0.5 µg of

Streptavidin-PE for 5 min at RT. Afterwards, antigen-tetramers were incubated together with

surface antibodies (chapter 2.2.3.1.1).

Alexa Fluor 700 Biolegend

CD138 PerCP-Cy5.5 Biolegend

IgG1 FITC BD

PE-Vio770 Miltenyi Biotech

IgM APC Biolegend

IgD PerCP-Cy5.5 Biolegend

VioBlue Miltenyi Biotech

MHCI FITC eBioscience

IAb (MHC II) FITC Biolegend

Vß 5.1, 5.2 PE BD

Human Antibodies

CD3 APC-Cy7 Beckman Coulter

CD4 ECD Beckman Coulter

CD8 FITC BD

CD11b Alexa Fluor 700 Biolegend

CD11c APC Biolegend

CD19 APC eFluor 780 eBioscience

CD20 Pacific Orange Life Technologies

CD21 APC Biolegend

CD27 PE-Cy7 Biolegend

CD80 FITC BD

CD86 Pacific Blue Biolegend

CD138 Alexa Fluor 700 Biolegend

IgD FITC BD

IgG1 ECD Beckman Coulter

IgM PerCP-Cy5.5 Biolegend

HLA-DR Alexa Fluor 700 eBioscience

Species Independent Antibodies

Annexin PE BD

Streptavidin PE BD

APC Biolegend
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2.2.3.2 Mixed-Lymphocyte Reaction

To study the APC capacity of CD40B cells and DCs, antigen-specific autologous mixed-

lymphocyte reactions (MLR) were performed.

APCs were incubated with the specific antigen at a concentration of 75 nM for 24 h prior to

incubation with the T cells. Afterwards, APCs were harvested and resuspended in HeLa

standard medium at a concentration of 1 x 106 cells/ml. Cells were irradiated once with 26

Gy to stop them from proliferation. Serial dilutions were performed for incubation with T

cells at APC-to-T cell ratios 3:1, 1:1, 1:5, 1:10, 1:20 and 1:50 in 100 ml HeLa standard

medium.

CD3+ T cells were isolated from spleens of OT-I or OT-II mice by positive selection (chapter

2.2.1.4). For detection of T cell proliferation, the T cells were stained with the fluorescent

proliferation marker CFSE. For this purpose, CD3+ T cells were resuspended at a

concentration of 5 x 106 cells/ ml in 1 x PBS with 5 % FBS, stained with 10 µM CFSE and

incubated for 5 min in the dark with constant agitation. The staining reaction was stopped by

adding 5 ml of pure FBS and cells were centrifuged at 270 x g for 5 min. T cells were

resuspended at a concentration of 1 x 106 cells/ml in HeLa standard medium. T cells were

plated in 100 µl at indicated APC-to-T cell ratios on a round bottom 96-well plate. Co-

cultures were incubated for 5 days at standard culture conditions. CFSE segregates equally

between daughter cells upon cell division, resulting in sequential reduction of cellular

fluorescence intensity with each successive generation. Therefore, proliferation of T cells

was detected by determining the percentage of proliferating CFSElow CD3+CD4+ or CD8+ T

cells by FACS analysis (chapter 2.2.3.1). Activation of T cells was determined by positive

staining for the T cell activation marker CD25.

2.2.3.3 Enzyme-Linked Immunosorbent Assay

Secretion of specific antibodies in plasma cell differentiation assays was determined in

ELISAs for OVA-specific IgG1 antibodies. For this purpose, 96-well high-binding plates were

incubated with OVA-protein at a concentration of 40 µg/ml in a volume of 50 µl Coating

Buffer. The plate was sealed and incubated over night at 4 °C. The day after, the protein

solution was discarded into a sink and the plate was washed three times with PBS/Tween.

Afterwards, non-specific binding was blocked by incubating the plate with 100 µl Blocking
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Solution for 1 h at RT. The plate was washed three times with PBS/Tween before applying 50

µl of standards and samples in doublets. Samples were diluted 1:5 in Blocking Solution.

Standards were applied at 5 ng/ml, 10 ng/ml, 50 ng/ml, 100 ng/ml, 250 ng/ml, 500 ng/ml,

1000 ng/ml, 2500 ng/ml and 5000 ng/ml in Blocking Solution. The plate was sealed and

incubated at RT for 2-4 h. Afterwards the plate was washed three times with PBS/Tween and

50 µl of the detection antibody anti-mouse IgG1 was added at a concentration 100 ng/ml in

Blocking Solution. The plate was sealed and incubated at RT for 1 h. The plate was washed

three times before adding the avidin-horseradish peroxidase (Av-HRP) at a dilution of 1:1000

in Blocking Solution. The plate was incubated for 30 min at RT. Afterwards, the plate was

washed 5 times with PBS/Tween before applying 50 µl of the premixed ABTS substrate

solution A and B. The enzymatic reaction was stopped with 50 µl 1 % SDS and the extinction

at 405 nm was measured in a µ-Quant microplate reader.

2.2.4 In Vivo Experiments

The animal experiments were performed in accordance with the national and European

guidelines for laboratory animal keeping with permission from the local government

authorities (permission number 84-02.04.2011.A226). Mice were bred in the animal facility

of the Department of Pathology at the University Hospital Cologne under specific pathogen-

free conditions.

C57BL/6NRj wild type mice were obtained from Janvier Labs (France) and then further bred

in our own animal facility.

C57BL/6-Tg(TcraTcrb)1100Mjb/Crl (OT-I) mice contain inserts for mouse Tcra-V2 and Tcrb-V5

genes and express transgenic T cell receptors (TCR) that recognize ovalbumin residues 257-

264 in the context of H2Kb. OT-I mice were routinely monitored for expression of TCR-chain

Vβ5 on CD3+CD8+ T cells by FACS analysis.

C57BL/6-Tg(TcraTcrb)425Cbn/Crl (OT-II) mice express the mouse alpha-chain and beta-chain

T cell receptor that pairs with the CD4 coreceptor and is specific for chicken ovalbumin 323-

339 in the context of I-Ab. They show a four-fold increase in the CD4+ to CD8+ peripheral T

cell ratio. OT-II mice were routinely monitored for expression of TCR-chain Vβ5 on CD3+CD4+

T cells by FACS analysis.



Material and Methods

41

Luciferase+ (Luc+) mice were on a C57BL/6N background and were kindly provided by Prof.

Dr. Robert Zeiser (Laboratory for Allo-Immunregulation, Department for Internal Medicine I,

University Hospital Freiburg). These mice express the firefly luciferase under control of the

β-actin promoter in many leukocyte subsets including CD19+B220+ B cells.

2.2.4.1 Vaccination Strategies

2.2.4.1.1 Immunization with Peptide-Loaded Cell Subsets

In order to immunize CD57BL/6N mice with CD40B cells or mature DCs, cell subsets were

exogenously loaded with OVA protein. For this purpose, CD40B cells or DCs were harvested

and washed with serum-free medium at 270 x g for 5 min. Cells were suspended in serum-

free medium at a concentration of 1 x 106 cells/ml and incubated with 10 µM OVA-Protein

for 1 h at standard culture conditions. Before injection, cells were washed three times with

20 ml 1 x PBS. Cells were injected in 100 µl 1 x PBS. Cell numbers and injection routes were

as indicated in experiments.

2.2.4.1.2 Immunization with Incomplete Freund’s Adjuvant

C57BL/6N or Luc+ mice were immunized with 20 µM OVA-Protein in Incomplete Freund’s

Adjuvant (IFA) for generation of OVA-specific B cells. In order to prepare the IFA/protein

emulsion, OVA-Protein was dissolved in PBS and added to the IFA in a ratio of 1:1. The

solution was strongly vortexed until it appeared white and viscous. The emulsion was

transferred to the syringes without attaching the needle. The needle was added immediately

prior to injection. 100 µl of the protein/IFA solution was injected i.p.

As positive control for in vivo cytotoxicity assays and tumor control, mice were immunized

with OVA-Protein/ IFA solutions in addition of 7 µM immunomodulatory CpG-ODN 2395

(oligodeoxynucleotide with non-methylated cytosine-guanine motifs). Positive controls were

injected i.p.

2.2.5 In Vivo Cytotoxicity Assays

In vivo cytotoxicity (cytotox) assays aim to detect in vivo killing of antigen-presenting target

cells by recognition through cognate CD8+ T cells induced by immunization (chapter
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2.2.4.1.1). Five to seven days after the last immunization, mice were injected with CFSE-

labeled target cells from naïve syngeneic mice loaded with OVA-peptide (aa 257 – 264).

2.2.5.1 Injection of Target Cells

Target cells were prepared from single cell suspension from spleens of 7-18 week old

C57BL/6 mice (chapter 2.2.1.1). Splenocytes were washed two times with 1x PBS at 270 x g

for 5 min. Afterwards, cells were resuspended in 1x PBS with 5 % FBS at a concentration of

100 x 106 cells/ml. Splenocytes were split into fractions. One fraction was labeled with a low

amount of CFSE (2 µM) and one fraction was labeled with high amount of CFSE (20 µM) by

constantly agitating the tubes for 5 min in the dark. The labeling reaction was stopped by

adding 5 ml pure FBS. The cells were washed at 270 x g for 5 min and resuspended in serum-

free medium at a concentration of 1 x 107 cells/ml. The CFSE high fraction was pulsed with

10 µM OVA-peptide, the CFSE low fraction was left unpulsed. Cells were incubated for 1 h at

standard conditions. Afterwards, both fractions were washed extensively by resuspending

them in 20 ml PBS and centrifuging at 270 x g for 5 min. For injection, cells were

resuspended at a concentration of 10 x 107 cells/ml in 1x PBS and both fractions were

2.2.5.2 Detection of Specific Cytolysis

To analyze remaining CFSE-positive target cell fractions in immunized mice, spleens were

isolated 24 hours after target cell injection. Spleen were minced through a 100 µm cell

strainer and resuspended in 1 x PBS. Splenocytes were counted and 4 x 106 cells were filled

in a FACS tube, washed and resuspended in 300 µl cell wash. Cells were analyzed by FACS

immediately. The ratio of unpulsed versus pulsed (RatioUP) target cells was determined by

dividing the percentage of CFSE low cells by the percentage of CFSE high cells. The

percentage of the specific lysis was then calculated by the following formula:

2.2.6 In Vivo Homing Studies

For in vivo migrations studies of polyclonal B cells, B cells were isolated from spleens of Luc+

mice (chapter 2.2.1.1) and activated in the CD40 culture system (chapter 2.2.2.7). For

migration studies of OVA-specific B cells, Luc+ mice were immunized with OVA-Protein 14

% Specific Lysis = (1-(RatioUP Negative Control/RatioUP Immunized))*100
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days before isolation (chapter 2.2.4.1.2). Luc+ mice were injected i.v. into 7-12 weeks old

C57BL/6N wild type mice. Detection of Luc+ B cells was performed by injecting 7.5 mg D-

luciferin in 250 ml 1x PBS i.p. into wild type mice. The luciferin was allowed to distribute in

the mouse for 5 min before mice were narcotized with 1.5-4 % isofluran. Mice were shaved

prior to imaging in order to minimize interference by the fur. Imaging was performed in the

Xenogen IVIS 200 (Perkin Elmer). Mice were constantly kept under narcosis with 1.5-4 %

isofluran at 37 °C. Bioluminescence pictures were analyzed with the Living Image Software

(Perkin Elmer).

2.2.7 Tumor Formation

For tumor control experiments, E.G7 lymphoma cells (chapter 2.2.2.6.3) were kept at a low

concentration of 1 x 106 cells/ml prior to injection. For tumor formation, cells were

harvested and resuspended at a concentration of 4 x 106 cells/ml in 1x PBS. 100 µl (0.4 x 106

cells) were injected s.c. into the right flank of immunized or naïve C57BL/6N mice. Tumor

size was determined daily from day 7 after inoculation by measuring tumor diameter in two

dimensions using a vernier caliper. The tumor volume was calculated using the following

formula:

Tumors were allowed to grow for 40 days or until one diameter reached a size of 15 mm.

2.2.8 Statistics

Significant differences were calculated by ordinary one-way ANOVA or ordinary two-way

ANOVA were appropriate using GraphPad Prism Software. P-values of less than 0.05 were

considered statistically significant and marked with asterisks: * p ≤ 0.05, ** p ≤ 0.01,      *** p 

≤ 0.001, **** p ≤ 0.0001. Mean values and standard deviations (SD) were calculated from at 

least 3 independent experiments.

Tumor volume = 0.5 x (length × width2)
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3. Results

3.1 Antigen-Specific B Cells can be Isolated by Antigen Tetramers

Study of antigen-specific B cells is challenging, because of low frequencies in peripheral

blood or spleens and low signaling by fluorescently labeled antigens

However, a sensitive method enabling the detection of B cells with defined specificity in

FACS analyses are antigen tetramers. They are produced by biotinylation of the soluble

antigen and tetramerization with fluorescently labeled streptavidin (Fig. 3.1).

Fig. 3.1 Overview of the antigen tetramer staining.
with fluorescently labeled streptavidin to form tetramers. B cells are stained with antigen tetramers
and a panel of surface antibodies.

3.1.1 Murine Antigen-Specific B Cells can be Purified by Antigen

Under normal conditions, the frequency of B cells with defined specificity in spleen is below

1 % (Oshiba et al. 1994, Kodituwakku et al. 2003

specific B cells, C57BL/6 mice were im

increased the percentage of OVA

spleens (Fig. 3.2A, middle plot) and to about 30 % in inguinal lymph nodes (Fig. 3.2B, right

plot), which was determined by labeling with antigen tetramers and FACS analyses (Fig. 3.1).

However, the percentage of OVA

greatly from 20 to 90 % (data not shown).
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FACS analyses are antigen tetramers. They are produced by biotinylation of the soluble

antigen and tetramerization with fluorescently labeled streptavidin (Fig. 3.1).

ig. 3.1 Overview of the antigen tetramer staining. Soluble antigen is biotinylated and incubated
with fluorescently labeled streptavidin to form tetramers. B cells are stained with antigen tetramers
and a panel of surface antibodies.
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Under normal conditions, the frequency of B cells with defined specificity in spleen is below

Kodituwakku et al. 2003). In order to increase the number of OVA

specific B cells, C57BL/6 mice were immunized with 20 µM OVA-protein in IFA. This

increased the percentage of OVA-specific B cells among all CD19+ B220+ B cells to

spleens (Fig. 3.2A, middle plot) and to about 30 % in inguinal lymph nodes (Fig. 3.2B, right

ned by labeling with antigen tetramers and FACS analyses (Fig. 3.1).

However, the percentage of OVA-specific B cells in the inguinal lymph nodes (LN) varied

greatly from 20 to 90 % (data not shown).
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antigen and tetramerization with fluorescently labeled streptavidin (Fig. 3.1).
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ned by labeling with antigen tetramers and FACS analyses (Fig. 3.1).

specific B cells in the inguinal lymph nodes (LN) varied
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Fig. 3.2 Percentage of OVA-specific B cells. (A) Splenocytes from mice were stained for OVA-specific
B cells among the CD19+ B220+ B cell population with OVA-Biotin tetramers. Representative flow
cytometry analyses out of at least 10 independent experiments with non-immunized mice (control,
left plot) or immunized mice (middle plot) are shown. Splenocytes from immunized mice were
purified by positive selection with OVA-Biotin tetramers (right plot). (B) Single cell suspensions from
inguinal and axillary lymph were stained for OVA-specific B cells among the CD19+ B220+ B cell
population with OVA-Biotin tetramers. Representative flow cytometry analyses out of at least 10
independent experiments of inguinal lymph nodes (draining LN, right plot) and axillary lymph nodes
(non-draining LN, middle plot) with immunized mice are shown. Inguinal lymph nodes of non-
immunized mice served as control (left plot). Numbers indicate the percentage of OVA+ B cells.

OVA-specific B cells could be enriched from splenocytes by positive selection via antigen

tetramers. The efficiency of the enrichment strongly depended on the grade of biotinylation

and therefore varied between 20 and 70 %. However, under optimal conditions an OVA-

specific B cell purity of above 60 % of all CD19+ B220+ B cells could be reached (Fig. 3.2A,

right plot). The overall purity of CD19+ B220+ B cells was around 80 % (Fig. 3.3), but was

never higher than 85 % unlike with CD19+ selection of B cells. Higher B cell purity could also
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not be reached by negative B cell selection prior to OVA-specific enrichment (data not

shown).

B cells of other specificities could also be generated and isolated, which was demonstrated

by isolation of Keyhole Limpet Hemocyanin (KLH)-specific B cells. According to the

generation of OVA-specific B cells, KLH-specific B cells were isolated from immunized mice

and stained with KLH tetramers. About 2-9 % of all CD19+ B220+ B cells in spleens were

specific for KLH (Fig. 3.4, middle plot). KLH-specific B cells were enriched using a Memory B

cell Isolation Kit, which resulted in a purity of KLH-specific B cells of about 7 % (Fig. 3.4, right

plot).

Fig. 3.4 Percentage of KLH-specific B cells. Splenocytes from mice were stained for KLH-specific B
cells among the CD19+ B220+ B cell population with KLH-Biotin tetramers. Representative flow
cytometry analyses out of 3 independent experiments with non-immunized mice (control, left plot)
or immunized mice (middle plot) are shown. Splenocytes from immunized mice were purified by
memory B cell selection (right plot). Numbers indicate the percentage of KLH+ B cells.

Fig. 3.3 B cell purity of OVA-enriched B cells.
Representative flow cytometry analysis of
purified OVA-specific B cells out of at least 10
independent experiments is shown. Splenocytes
from immunized mice were purified by positive
selection with OVA-Biotin tetramers and stained
for CD19+ B220+ B cells. Numbers indicate the
percentage of CD19+ B220+ B cells.
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3.1.2 Murine Antigen-Specific B Cells Show a Class-Switched Phenotype

The isolated antigen-specific B cells were characterized by FACS analyses for several surface

markers defining their activation status and developmental state. Bar charts represent

results of at least three independent experiments. Expression levels of B cells of immunized

mice were normalized to the expression levels of B cells of non-immunized (control) mice.

There was no difference in expression of the B cell marker B220 in OVA-specific CD19+ B220+

B cells compared to control B cells of non-immunized mice or OVA-negative B cells of

immunized mice (Fig. 3.5).

Fig. 3.5 B220 expression in OVA-specific B cells. OVA-specific B cells from immunized mice were
stained for their expression of B220 and analyzed by flow cytometry. (A) Representative analyses out
of 5 independent experiments are shown. OVA-specific B cells (black line) were compared to B cells
of non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized mice
(right plot, grey line). Cells that were analyzed without antibody staining served as unstained control
(filled histogram). (B) The mean fluorescent intensity (MFI) of B220 of OVA-specific (OVA+) and OVA-
negative (OVA-) B cells in immunized mice were normalized to the expression levels in B cells of
control mice. Bar charts show mean values ± SEM of three independent experiments. Significant
differences calculated with ordinary one-way ANOVA were not detected.

Although the B cell marker CD19 was upregulated in immunized mice, the difference was not

significant (Fig. 3.6). Phenotyping of KLH-specific B cells revealed similar results (data not

shown).
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Fig. 3.6 CD19 expression in OVA-specific B cells. OVA-specific B cells from immunized mice were
stained for their expression of CD19 and analyzed by flow cytometry. (A) Representative analyses out
of 5 independent experiments are shown. OVA-specific B cells (black line) were compared to B cells
of non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized mice
(right plot, grey line). Cells that were analyzed without antibody staining served as unstained control
(filled histogram). (B) The mean fluorescent intensity (MFI) of CD19 of OVA-specific (OVA+) and OVA-
negative (OVA-) B cells in immunized mice were normalized to the expression levels in B cells of
control mice. Bar charts show mean values ± SEM of three independent experiments. Significant
differences calculated with ordinary one-way ANOVA were not detected.

Interestingly, the percentage of IgD+ and IgM+ OVA-specific CD19+ B220+ B cells was

significantly decreased (22.41 % ± 18.81 and 26.37 % ± 19.91, respectively) compared to

control B cells of non-immunized mice (90.33 % ± 1.74 and 82.09 % ± 14.98, respectively)

and OVA-negative B cells of immunized mice (60.20 % ± 20.93 and 77.16 % ± 13.44,

respectively; Fig. 3.7 and Fig. 3.8). In contrast, IgG1+ OVA-specific B cells were significantly

increased (77.25 % ± 18.17) compared to control B cells of non-immunized mice (6.98 % ±

7.98) or OVA-negative B cells of immunized mice (51.95 % ± 2.90; Fig. 3.9). This clearly

demonstrated a class-switched phenotype of the isolated B cells, confirming the assumption

that they are antigen-specific B cells. KLH-specific B cells showed similar percentaged

distribution of immunoglobulins (data not shown).
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Fig. 3.7 Percentage of IgD+ B cells. OVA-specific B cells from immunized mice were stained for their
expression of IgD and analyzed by flow cytometry. (A) Representative analyses out of 5 independent
experiments are shown. OVA-specific B cells (black line) were compared to B cells of non-immunized
(control) mice (left plot, grey line) and OVA-negative B cells of immunized mice (right plot, grey line).
Cells that were analyzed without antibody staining served as unstained control (filled histogram). (B)
The percentage of IgD+ B cells among OVA-specific (OVA+), OVA-negative (OVA-) or B cells of control
mice are shown. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p ≤ 0.01, 
**** p ≤ 0.0001. 

Fig. 3.8 Percentage of IgM+ B cells. OVA-specific B cells from immunized mice were stained for their
expression of IgM and analyzed by flow cytometry. (A) Representative analyses out of 5 independent
experiments are shown. OVA-specific B cells (black line) were compared to B cells of non-immunized
(control) mice (left plot, grey line) and OVA-negative B cells of immunized mice (right plot, grey line).
Cells that were analyzed without antibody staining served as unstained control (filled histogram). (B)
The percentage of IgM+ B cells among OVA-specific (OVA+), OVA-negative (OVA-) or B cells of control
mice are shown. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p ≤ 0.01, 
*** p ≤ 0.001. 
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Fig. 3.9 Percentage of IgG+ B cells. OVA-specific B cells from immunized mice were stained for their
expression of IgG and analyzed by flow cytometry. (A) Representative analyses out of 5 independent
experiments are shown. OVA-specific B cells (black line) were compared to B cells of non-immunized
(control) mice (left plot, grey line) and OVA-negative B cells of immunized mice (right plot, grey line).
Cells that were analyzed without antibody staining served as unstained control (filled histogram). (B)
The percentage of IgG+ B cells among OVA-specific (OVA+), OVA-negative (OVA-) or B cells of control
mice are shown. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. * p ≤ 0.05, 
**** p ≤ 0.0001. 

OVA-specific B cells show significantly higher expression of the MHC molecules I (190.00 % ±

6.17; Fig. 3.10) and II (202.20 % ± 3.43; Fig. 3.11) compared to control cells of non-

immunized mice or OVA-negative B cells of immunized mice (106.80 % ± 13.20 and 84.96 %

± 3.22, respectively).

Fig. 3.10 MHC I expression in OVA-specific B cells. OVA-specific B cells from immunized mice were
stained for their expression of MHC I and analyzed by flow cytometry. (A) Representative analyses
out of 5 independent experiments are shown. OVA-specific B cells (black line) were compared to B
cells of non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized
mice (right plot, grey line). Cells that were analyzed without antibody staining served as unstained
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control (filled histogram). (B) The mean fluorescent intensity (MFI) of MHC I of OVA-specific (OVA+)
and OVA-negative (OVA-) B cells in immunized mice were normalized to the expression levels in B
cells of control mice. Bar charts show mean values ± SEM of three independent experiments.
Significant differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p
≤ 0.01, *** p ≤ 0.001. 

Fig. 3.11 MHC II expression in OVA-specific B cells. OVA-specific B cells from immunized mice were
stained for their expression of MHC II and analyzed by flow cytometry. (A) Representative analyses
out of 5 independent experiments are shown. OVA-specific B cells (black line) were compared to B
cells of non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized
mice (right plot, grey line). Cells that were analyzed without antibody staining served as unstained
control (filled histogram). (B) The mean fluorescent intensity (MFI) of MHC II of OVA-specific (OVA+)
and OVA-negative (OVA-) B cells in immunized mice were normalized to the expression levels in B
cells of control mice. Bar charts show mean values ± SEM of three independent experiments.
Significant differences were calculated with ordinary one-way ANOVA are marked by an asterisk. * p
≤ 0.05, **** p ≤ 0.0001. 

Moreover, the expression of the costimulatory molecules CD86 was significantly higher in

OVA-specific B cells (182.60 % ± 15.30; Fig. 3.12) than in control B cells or OVA-negative B

cells (110.50 % ± 10.49). Although OVA-specific B cells also upregulated the expression of

CD80 (129.90 % ± 49.06; Fig. 3.13), the differences to control B cells or OVA-negative B cells

(128.6 % ± 14.02) was not significant. KLH-specific B cells showed similar upregulation of the

activation markers (data not shown).
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Fig. 3.12 CD86 expression in OVA-specific B cells. OVA-specific B cells from immunized mice were
stained for their expression of CD86 and analyzed by flow cytometrry. (A) Representative analyses
out of 5 independent experiments are shown. OVA-specific B cells (black line) were compared to B
cells of non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized
mice (right plot, grey line). Cells that were analyzed without antibody staining served as unstained
control (filled histogram). (B) The mean fluorescent intensity (MFI) of CD86 of OVA-specific (OVA+)
and OVA-negative (OVA-) B cells in immunized mice were normalized to the expression levels in B
cells of control mice. Bar charts show mean values ± SEM of three independent experiments.
Significant differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p
≤ 0.01. 

Fig. 3.13 CD80 expression in OVA-specific B cells. OVA-specific B cells from immunized mice were
stained for their expression of CD80 and analyzed by flow cytometry. (A) Representative analyses out
of 5 independent experiments are shown. OVA-specific B cells (black line) were compared to B cells
of non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized mice
(right plot, grey line). Cells that were analyzed without antibody staining served as unstained control
(filled histogram). (B) The mean fluorescent intensity (MFI) of CD80 of OVA-specific (OVA+) and OVA-
negative (OVA-) B cells in immunized mice were normalized to the expression levels in B cells of
control mice. Bar charts show mean values ± SEM of three independent experiments. Significant
differences calculated with ordinary one-way ANOVA were not detected.
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The percentage CD138+ B cells in OVA-specific B cells varied greatly in the different mice, but

overall was increased (7.18 % ± 5.07; Fig. 3.14) compared to control B cells (1.85 % ± 0.50)

and OVA-negative B cells (2.48 % ± 0.73). However, the difference was not significant. KLH-

specific B cells showed similar increase in CD138+ cells (data not shown).

Fig. 3.14 CD138+ OVA-specific B cells. OVA-specific B cells from immunized mice were stained for
their expression of CD138 and analyzed by flow cytometry. (A) Representative analyses out of 5
independent experiments are shown. OVA-specific B cells (black line) were compared to B cells of
non-immunized (control) mice (left plot, grey line) and OVA-negative B cells of immunized mice (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The percentage of CD138+ B cells among OVA-specific (OVA+), OVA-negative (OVA-)
or B cells of control mice are shown. Bar charts show mean values ± SEM of three independent
experiments. Significant differences calculated with ordinary one-way ANOVA were not detected.

These data clearly indicate a class-switched, activated phenotype of the isolated B cells as

expected for antigen-specific B cells of recently immunized mice (Good-Jacobson and

Shlomchik 2010).

3.1.3 Efficient Purification of Human Antigen-Specific B Cells Depends on Initial HBV-

Specific B Cell Frequency

Hepatitis-B-Virus (HBV) antigen was chosen as model antigen for the isolation of antigen-

specific B cells in a human setting. Blood donors vaccinated against HBV are easily accessible,

since by 2012 79 % of children in 183 World Health Organization (WHO) member states had

received HBV vaccination (WHO 2015). Nevertheless, non-vaccinated donors are still

available, since HBV vaccination only became a standard treatment in children in 1982.

The percentage of HBV-specific B cells among all CD19+ CD20+ B cells was determined by

labeling with antigen tetramers and FACS analyses (Fig. 3.1). For identification of the positive
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population, gates were adjusted to negative control donors. The percentage of HBV-specific

B cells varied greatly from 0.60 to 2.50 % in vaccinated donors normalized to control donors

(Fig. 3.15 middle plot and Fig. 3.16, lower left plot, respectively).

HBV-specific B cells could be enriched from PBMCs by positive selection via antigen

tetramers. The efficiency of the enrichment strongly depended on the grade of biotinylation

of the antigen as well as the initial frequency of HBV-specific B cells. Therefore, the purity of

the enriched cells varied between 13.57 and 34.35 % (Fig. 3.15, right plot and 3.16, lower

right plot, respectively). The percentage of B cells that were stained unspecifically for HBV

increased when purifying control B cells by antigen tetramers (Fig. 3.16, upper right plot).

However, the purity of the HBV-specific population was higher and therefore specific.

Fig. 3.15 Purification of HBV-specific B cells from donors with low frequencies. PBMCs from donors
were stained for HBV-specific B cells among the CD19+ CD20+ B cell population with HBV-Biotin
tetramers. Representative flow cytometry analyses out of 5 independent experiments with non-
vaccinated donors (control, left plot) or vaccinated donors (middle and right plot) are shown. HBV-
specific B cells of vaccinated donors were purified by positive selection with HBV-Biotin tetramers
(right plot). Numbers indicate the percentage of HBV+ B cells.



Results

58

The overall purity of CD19+ CD20+ B cells varied between 4.24 % and 23.31 % for non-

vaccinated non-purified donors and 9.22 % and 20.53 % for vaccinated antigen-enriched

donors (Fig. 3.17).

3.1.4 Human Antigen-Specific B Cells Show a Class-Switched Phenotype

Analogous to murine antigen-specific B cells, the isolated HBV-specific B cells were

characterized by FACS analysis for several surface markers defining their activation status

and developmental state. Bar charts represent results of at least three independent

Fig. 3.17 B cell purity of HBV-
enriched B cells. PBMCs of
vaccinated and non-vaccinated
donors were purified by
positive selection with HBV-
Biotin tetramers and stained
for CD19+ CD20+ B cells. Results
of at least 4 donors are shown.

Fig. 3.16 Purification of HBV-
specific B cells from donors
with high frequencies. PBMCs
from donors were stained for
HBV-specific B cells among
the CD19+ CD20+ B cell
population with HBV-Biotin
tetramers. Representative
flow cytometry analyses out
of five independent
experiments with non-
vaccinated donors (control,
upper plots) or vaccinated
donors (lower plots) are
shown. PBMCs were either
stained immediately (left
plots) or were purified by
positive selection with HBV-
Biotin tetramers (right plots).
Numbers indicate the
percentage of HBV+ B cells.
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experiments. Expression levels of B cells of vaccinated donors were normalized to the

expression levels of B cells of non-vaccinated donors.

The expression of the B cell marker CD20 was significantly upregulated in HBV-specific CD19+

CD20+ B cells (222.1 % ± 21.43) compared to control B cells of non-vaccinated donors or

HBV-negative B cells of vaccinated donors (122.0 % ± 8.69; Fig. 3.18). The same was

observed for the B cell marker CD19, which was significantly upregulated in HBV-specific B

cells (174.0 % ± 9.70) compared to control B cells and HBV-negative B cells (107.5 % ± 2.70;

Fig. 3.19).

Fig. 3.18 CD20 expression in HBV-specific B cells. HBV-specific B cells from vaccinated donors were
stained for their expression of CD20 and analyzed by flow cytometry. (A) Representative analyses out
of 3 independent donors are shown. HBV-specific B cells (black line) were compared to B cells of a
non-vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The mean fluorescent intensity (MFI) of CD20 of HBV-specific (HBV+) and HBV-
negative (HBV-) B cells in vaccinated donors were normalized to the expression levels in B cells of
control donors. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p ≤ 0.01. 
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Fig. 3.19 CD19 expression in HBV-specific B cells. HBV-specific B cells from vaccinated donors were
stained for their expression of CD19 and analyzed by flow cytometry. (A) Representative analyses out
of 3 independent donors are shown. HBV-specific B cells (black line) were compared to B cells of a
non-vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The mean fluorescent intensity (MFI) of CD19 of HBV-specific (HBV+) and HBV-
negative (HBV-) B cells in vaccinated donors were normalized to the expression levels in B cells of
control donors. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p ≤ 0.01.

Interestingly, in contrast to murine antigen-specific B cells, the percentage of IgD+ and IgM+

HBV-specific CD19+ CD20+ B cells was almost as high (77.67 % ± 7.69 and 83.26 % ± 8.83,

respectively) as in control B cells (85.14 % ± 8.11 and 76.42 % ± 6.87, respectively) and HBV-

negative B cells (79.07 % ± 6.86 and 77.80 % ± 5.71, respectively; Fig. 3.20 and Fig. 3.21,

respectively). IgD+ B cells could be subdivided into two types by additional staining for CD27.

Classical IgD+ CD27- naïve B cells were significantly decreased in HBV-specific B cells (38.78 %

± 10.07) compared to control (73.48 % ± 21.58) and HBV-negative B cells (59.75 % ± 8.01,

Fig. 3.22). IgD+ CD27+ B cells were significantly increased in HBV-specific B cells (45.89 % ±

12.67) compared to control (12.59 % ± 11.32) and HBV-negative B cells (23.52 % ± 9.04). The

percentages of classical IgD- CD27+ memory B cells were more or less equal in the different

populations. As expected, significantly more HBV-specific B cells were positive for IgG1

(34.89 % ± 5.66) compared to control B cells (6.09 % ± 1.14) or HBV-negative B cells (3.32 % ±

0.01; Fig. 3.23).
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Fig. 3.20 IgD+ HBV-specific B cells. HBV-specific B cells from vaccinated donors were stained for their
expression of IgD and analyzed by flow cytometry. (A) Representative analyses out of 3 independent
donors are shown. HBV-specific B cells (black line) were compared to B cells of a non-vaccinated
(control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right plot, grey line).
Cells that were analyzed without antibody staining served as unstained control (filled histogram). (B)
The percentage of IgD+ B cells among HBV-specific (HBV+), HBV-negative (HBV-) B cells in vaccinated
donors and B cells of control donors are shown. Bar charts show mean values ± SEM of three
independent experiments. Significant differences calculated with ordinary one-way ANOVA were not
detected.

Fig. 3.21 IgM+ HBV-specific B cells. HBV-specific B cells from vaccinated donors were stained for their
expression of IgM and analyzed by flow cytometry. (A) Representative analyses out of 3 independent
donors are shown. HBV-specific B cells (black line) were compared to B cells of a non-vaccinated
(control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right plot, grey line).
Cells that were analyzed without antibody staining served as unstained control (filled histogram). (B)
The percentage of IgM+ B cells among HBV-specific (HBV+), HBV-negative (HBV-) B cells in vaccinated
donors and B cells of control donors are shown. Bar charts show mean values ± SEM of three
independent experiments. Significant differences calculated with ordinary one-way ANOVA were not
detected.
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Fig. 3.22 IgD CD27 expression in HBV-specific B cells. HBV-specific B cells from vaccinated donors
were stained for their expression of IgD and CD27 analyzed by flow cytometry. The percentages of
the different IgD and CD27 subtypes of HBV-specific (HBV+), HBV-negative (HBV-) and control B cells
are shown. Bar charts show mean values ± SD of five independent experiments. Significant
differences were calculated with two-way ANOVA are marked by an asterisk. ** p ≤ 0.01, **** p ≤ 
0.0001.

Fig. 3.23 IgG1+ HBV-specific B cells. HBV-specific B cells from vaccinated donors were stained for
their expression of IgG1 and analyzed by flow cytometry. (A) Representative analyses out of 3
independent donors are shown. HBV-specific B cells (black line) were compared to B cells of a non-
vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The percentage of IgG1+ B cells among HBV-specific (HBV+), HBV-negative (HBV-) B
cells in vaccinated donors and B cells of control donors are shown. Bar charts show mean values ±
SEM of three independent experiments. Significant differences were calculated with ordinary one-
way ANOVA are marked by an asterisk. ** p ≤ 0.01. 
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HBV-specific B cells show significantly higher expression of the MHC molecule II HLA-DR

(169.7 % ± 24.75; Fig. 3.24) compared to control B cells. The difference to HBV-negative B

cells of the same donor was not significant (142.8 % ± 12.10).

Fig. 3.24 MHC II expression in HBV-specific B cells. HBV-specific B cells from vaccinated donors were
stained for their expression of MHC II and analyzed by flow cytometry. (A) Representative analyses
out of 3 independent donors are shown. HBV-specific B cells (black line) were compared to B cells of
a non-vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor
(right plot, grey line). Cells that were analyzed without antibody staining served as unstained control
(filled histogram). (B) The mean fluorescent intensity (MFI) of MHC II of HBV-specific (HBV+) and
HBV-negative (HBV-) B cells in vaccinated donors were normalized to the expression levels in B cells
of control donors. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. * p ≤ 0.05. 

Moreover, the expression of the costimulatory molecule CD86 was significantly higher in

HBV-specific B cells (133.3 % ± 8.33; Fig. 3.25) than in control B cells or HBV-negative B cells

(94.44 % ± 3.67). Although HBV-specific B cells also upregulated the expression of CD80

(230.1 % ± 59.58; Fig. 3.26), the differences to control B cells or HBV-negative B cells (152.4

% ± 74.68) was not significant.
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Fig. 3.25 CD86 expression in HBV-specific B cells. HBV-specific B cells from vaccinated donors were
stained for their expression of CD86 and analyzed by flow cytometry. (A) Representative analyses out
of 3 independent donors are shown. HBV-specific B cells (black line) were compared to B cells of a
non-vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The mean fluorescent intensity (MFI) of CD86 of HBV-specific (HBV+) and HBV-
negative (HBV-) B cells in vaccinated donors were normalized to the expression levels in B cells of
control donors. Bar charts show mean values ± SEM of three independent experiments. Significant
differences were calculated with ordinary one-way ANOVA are marked by an asterisk. ** p ≤ 0.01.

Fig. 3.26 CD80 expression in HBV-specific B cells. HBV-specific B cells from vaccinated donors were
stained for their expression of CD80 and analyzed by flow cytometry. (A) Representative analyses out
of 3 independent donors are shown. HBV-specific B cells (black line) were compared to B cells of a
non-vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The mean fluorescent intensity (MFI) of CD80 of HBV-specific (HBV+) and HBV-
negative (HBV-) B cells in vaccinated donors were normalized to the expression levels in B cells of
control donors. Bar charts show mean values ± SEM of three independent experiments. Significant
differences calculated with ordinary one-way ANOVA were not detected.



Results

65

Interestingly, the percentage of CD138+ CD20+ CD19+ was increased in HBV-specific B cells

(16.57 % ± 1.7; Fig. 3.27) compared to control B cells (8.41 % ± 1.3) and HBV-negative B cells

(6.77 % ± 0.7).

Fig. 3.27 CD138+ HBV-specific B cells. HBV-specific B cells from vaccinated donors were stained for
their expression of CD138 and analyzed by flow cytometry. (A) Representative analyses out of 3
independent donors are shown. HBV-specific B cells (black line) were compared to B cells of a non-
vaccinated (control) donor (left plot, grey line) and HBV-negative B cells of the same donor (right
plot, grey line). Cells that were analyzed without antibody staining served as unstained control (filled
histogram). (B) The percentage of CD138+ B cells among HBV-specific (HBV+), HBV-negative (HBV-) B
cells in vaccinated donors and B cells of control donors are shown. Bar charts show mean values ±
SEM of three independent experiments. Significant differences were calculated with ordinary one-
way ANOVA are marked by an asterisk. * p ≤ 0.05, ** p ≤ 0.01. 

3.2 Stimulation with the CD40 Ligand Activates Antigen-Specific B Cells

Through stimulation with the CD40L and IL-4, B cells upregulate costimulatory and MHC

molecules and develop into highly efficient APCs (Schultze et al. 1997, Liebig et al. 2010).

This in vitro culture system is established for human and murine polyclonal B cells and leads

to more than 90 % pure CD40B cell cultures after 14 days. In order to use antigen-specific B

cells as antigen-presenting cells for cancer immunotherapy, the purified cells were cultivated

in the CD40 culture system for up to 14 days.

3.2.1 Murine Antigen-Specific B Cells Show a Proliferative Disadvantage in the CD40L

System

OVA-specific B cells were isolated from spleens of immunized C57BL/6 mice and enriched by

positive selection. The enriched OVA-specific B cells (80 % B cell purity and > 60 % OVA

purity) were cultivated on murine CD40L feeder cells (tmuCD40L HeLa cells). B cells were
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harvested on day 3, 7, 11 and 14 and recultivated on fresh feeder cells. The absolute

increase of cells in culture was determined (Fig. 3.28) and pictures (Fig. 3.29) as wells as cells

for Pappenheim staining (Fig. 3.30) were taken on day 7, 11 and 14. CD19+ B cells isolated

from non-immunized mice (> 90 % pure) served as controls.

The number of cells in OVA-cultures decreased from day 0 to 7, while the control cultures

stayed stable (Fig. 3.28). However, from day 7 to day 11 both cultures highly proliferated

resulting in a 1.3 fold expansion of initial cultures on day 14.

Fig. 3.28 Absolute increase of murine cells in the CD40L culture over 14 days. Purified B cells of
immunized or control mice were cultivated on CD40L-expressing HeLa cells over a period of 14 days.
The number of viable cells was determined every 3-4 days by trypan blue exclusion test. The absolute
increase was determined by calculating the increase between two passages in percentage. One
representative growth curve of 5 independent experiments is shown.

Control cultures formed evenly shaped round clusters on day 7, which stayed stable in size

and morphology until day 14 (Fig. 3.29 a-c). Pappenheim staining of control cultures showed

a typical lymphocyte appearance with a dark nucleus and a granulated cytoplasm (Fig. 3.30

a-d). As expected, the cell size increased from day 0 to day 7 and the cell shape appeared

impaired on day 14.

OVA cultures also formed clusters on day 7. However, their shape was not as round and

even as in control cultures and the magnetic beads from the purification process were still

visible (Fig. 3.29 d-f). Nevertheless, on day 14 OVA cultures showed a similar morphology to

control cultures with large round clusters. In Pappenheim staining, cells of OVA cultures
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showed a dark nucleus and a granulated cytoplasm (Fig. 3.30, e-h). However, compared to

control cultures their shape was not as even due to attachment of microbeads. On day 7, 11

and 14 cells appeared similar to control cultures with an increase in size and an impaired cell

shape on day 14.

Fig. 3.30 Morphology of B cells in CD40L cultures. Purified B cells of immunized or control mice were
cultivated on CD40L-expressing HeLa cells over a period of 14 days. A Pappenheim staining was
performed on day 0, 7, 11 and 14 of culture and pictures were taken at a 63x magnification using a
Zeiss AxioPhot microscope. Representative pictures of 5 independent experiments are shown.

Control and OVA cultures were analyzed by FACS for the percentage of CD19+ B220+ B cells

and the percentage of OVA-specific among the CD19+ B220+ B cell population. Control

Fig. 3.29 Cluster formation of B
cells in CD40L cultures. Purified
B cells of immunized or control
mice were cultivated on CD40L-
expressing HeLa cells over a
period of 14 days. Pictures were
taken on day 7, 11 and 14 at a
10x magnification using a light
optical microscope fitted with a
digital camera. Representative
pictures of 5 independent
experiments are shown.
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cultures were > 90 % pure CD19+ B220+ B cells on day 0 and purity stayed stable until day 14

(Fig. 3.31). OVA cultures were about 80 % pure CD19+ B220+ B cells and increased to about

95 % until day 14. However, the percentage of OVA-specific cells among CD19+ B220 + B cells

decreased rapidly from more than 60 % on day 0 to about 10 % on day 7 and further

decreased until day 14 (Fig. 3.32).

Fig. 3.31 Increase of CD19+ B220+ B cells in CD40L cultures. Purified B cells of immunized or control
mice were cultivated on CD40L-expressing HeLa cells over a period of 14 days. Staining for CD19+

B220+ B cells was performed on day 0, 7, 11 and 14 and the percentage of B cells was determined by
flow cytometry analyses. Representative curves out of at least 10 independent experiments are
shown.

Since biotinylated OVA-antigen is used for the enrichment of OVA-specific B cells, the

question arose whether the observed decrease in the percentage of OVA-specific B cells is

Fig. 3.32 Decrease of OVA-specific B cells in
percentage among the CD19+ B220+ B cell
population in CD40L cultures. Purified B cells of
immunized mice were cultivated on CD40L-
expressing HeLa cells over a period of 14 days.
Staining for OVA-specific CD19+ B220+ B cells was
performed on day 0, 7, 11 and 14 and the percentage
of OVA-specific B cells was determined by flow
cytometry analyses. Representative bar charts of 3
independent experiments are shown.
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simply a failure of the staining method due to a blocked BCR. Therefore, mixed-lymphocyte

reactions were performed, in which OVA-specific CD40B cells from day 1, 7, 11 and 14 were

cocultured with OVA-specific OT-I T cells for 5 days. Proliferation of T cells was determined

by analyzing the decrease in CFSE labeling. B-to-T-cell ratios were kept constant for the

different time points. Therefore, induction of T cell proliferation by CD40B cells should

stay stable in case the percentage of OVA-specific B cells in culture was stable, but could

simply not be detected. Polyclonal CD40B cells were used as control. As expected,

proliferation of T cells decreased with decreasing B-to-T-cell ratios (Fig. 3.33). Moreover,

induction of proliferation decreased with increasing time in CD40B culture (day 7-14)

thereby confirming the decreasing percentages of OVA-specific B cells as determined by

FACS (Fig. 3.32).

Fig. 3.33 T cell proliferation induced by CD40-activated B cells. Purified B cells of immunized mice
were cultivated on CD40L-expressing HeLa cells over a period of 14 days. Cells from day 1, 7, 11 and
14 were cocultured in different ratios together with OT-I T cells for 5 days. Proliferation of T cells was
determined by flow cytometry analyses by a decrease in CFSE-staining. CD40B cells of non-
immunized mice served as control. Bar charts represent one independent experiment.

Another possible explanation for the decrease in the percentages of OVA-specific B cells

would be their differentiation into plasma cells and the subsequent loss of the BCR.

Therefore, OVA cultures were analyzed for their expression of the plasma cell marker

CD138+ over a period of 14 days (Fig. 3.34). Although the percentage of CD138+ B cells

increased in OVA cultures on day 7, it was not high enough to account for the decrease in

the percentage of OVA-specific B cells. Furthermore, in Pappenheim staining of OVA cultures
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(Fig. 3.29) no plasma cells could be detected, which would appear larger in size and with a

more distinct cytoplasm.

Fig. 3.34 Percentage of CD138+ B cells in CD40L cultures. Purified B cells of immunized or control
mice were cultivated on CD40L-expressing HeLa cells over a period of 14 days. Staining for CD138
was performed on day 0, 7, 11 and 14 and the percentage of CD138+ B cells was determined by flow
cytometry analyses. Representative bar charts of 3 independent experiments are shown.

Next, CD19+B220+ CD40B cells of control cultures and OVA+ or OVA- CD40B cells from OVA

cultures were stained for Annexin V as an indicator for cell apoptosis (Koopman et al. 1994).

OVA+ CD40B cells of OVA cultures showed a slight increase in Annexin V + staining (Fig. 3.35,

left column) compared to control CD40B cells with or OVA- CD40B cells (Fig. 3.35, right and

middle column, respectively). However, this difference was not high enough to explain the

decrease in the percentage of OVA-specific B cells.
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Fig. 3.35 Annexin V staining of CD19+ B220+ B cells in CD40L cultures. Purified B cells of immunized
or control mice were cultivated on CD40L-expressing HeLa cells over a period of 14 days. Staining for
Annexin V was performed on day 0, 7, 11 and 14 and the percentage of Annexin V+ OVA+ and OVA- B
cells of immunized mice or control B cells of non-immunized mice was determined by flow cytometry
analyses. Representative plots of 3 independent experiments are shown. Numbers indicate the
percentage of Annexin V+ B cells.

Having ruled out the explanations of an inaccurate staining, the differentiation into plasma

cells or an increased apoptosis, OVA-specific B cells were stained with CFSE in order to

analyze their proliferation behavior. CFSE segregates equally between daughter cells upon

cell division, thereby resulting in the sequential halving of cellular fluorescence intensity with

each successive generation. Interestingly, FACS analyses revealed that OVA-specific B cells

proliferated less (Fig. 3.36, black line) than B cells in control cultures (Fig. 3.36, filled line) or

OVA- B cells in OVA cultures (Fig. 3.36, grey line). Detailed analysis of the cultures by Flow

Jo’s proliferation tool (Flow Jo Version 10, Tree Star) revealed a much lower percentage of

dividing cells among OVA-specific B cells compared to control or OVA- B cells over the whole

culture period of 14 days (Table 3.1). Accordingly, the division index, which reflects the
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average number of cell divisions that a cell in the original population has undergone, was

between 20 and 30 fold smaller on day 7 and day 11 in OVA-specific B cells than in control or

OVA- B cells, respectively (Table 3.1). Although there was no difference between the three

populations in the proliferation index (Table 3.1), which only takes into account the divisions

of cells that actually respond, these data indicate a clear proliferative disadvantage of OVA-

specific B cells compared to OVA- B cells from the same cultures. The OVA-specific B cells

seem to stay in culture, but since they proliferate less than OVA- B cells their percentage in

the overall B cell population decreases constantly over a period of 14 days. Therefore, all

following experiments were performed with OVA-specific B cells that were cultivated in the

CD40 system for a maximum of 2 days.

Fig. 3.36 CFSE staining of B cells in CD40L cultures. Purified B cells of immunized or control mice
were stained with CFSE and cultivated on CD40L-expressing HeLa cells over a period of 14 days.
Proliferation of OVA+ (black line) and OVA- B cells (grey line) of immunized mice and control B cells
(filled) of non-immunized mice was determined on day 7, 11 and 14 measuring the decrease in CFSE
by flow cytometry analyses. Histograms represent one independent experiment.
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Table 3.1 Proliferation Analysis of B cells in CD40L culture. Purified B cells of immunized or control
mice were stained with CFSE and cultivated on CD40L-expressing HeLa cells over a period of 14 days.
Proliferation of OVA-specific and OVA-negative CD40B cells of immunized mice and control CD40B
cells of non-immunized mice was determined on day 7, 11 and 14 and analyzed with the Flow Jo
Proliferation Tool (Flow Jo Version 10).

3.2.2 Murine Antigen-Specific B Cells Upregulate Activation Markers upon CD40L

Stimulation

OVA-specific and polyclonal B cells that were kept in the CD40 culture for 1 day were

analyzed for the expression levels of several surface markers in order to confirm their

antigen-presenting phenotype. Bar charts represent results of at least three independent

experiments. Expression levels on day 1 of culture of the different CD40B cells populations

(OVA-specific and OVA-negative from immunized mice and control CD40B cells from non-

immunized mice) were normalized to the expression levels of the respective population on

day 0.

There was no difference in expression of the B cell marker B220 in any of the observed

CD40B cell populations on day 1 compared to their respective population on day 0 (Fig.

3.37). The B cell marker CD19 was upregulated in all CD40B cell populations from day 0 to

day 1 (Fig. 3.38), although the difference was only significant in control cells (121.2 % ±

47.59).

% Divided Cells Division Index Proliferation Index

Day 7

Control 56.6 1 1.77

OVA- 87.4 1.58 1.81

OVA+ 3.68 0.0534 1.45

Day 11

Control 69.4 1.19 1.71

OVA- 71.4 1.48 2.06

OVA+ 3.74 0.0784 2.1

Day 14

Control 3.69 0.04 1.08

OVA- 18.2 0.226 1.24

OVA+ 2.9 0.0417 1.44
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As expected, the percentage of IgG1+ B cells in the three CD40B cell populations increased

from day 0 to day 1 in culture. The increase was not significant for control CD40B cells (12.74

% ± 1.01), OVA-negative CD40B cells (74.20 % ± 0.81) or OVA-specific CD40B cells (90.52 % ±

1.23) on day 1 (Fig. 3.39).

Fig. 3.37 B220 expression in OVA-
specific CD40B cells on day 1 of
culture. The mean fluorescent
intensity (MFI) of B220 of control
CD40B cells, OVA-specific (OVA+) or
OVA-negative (OVA-) CD40B cells
on day 1 of the CD40 culture was
determined by flow cytometry and
values were normalized to the
expression levels in B cells of the
respective populations on day 0.
Bar charts show mean values ± SEM
of three independent experiments.
Significant differences calculated
with ordinary one-way ANOVA
were not detected.

Fig. 3.38 CD19 expression in OVA-
specific CD40B cells on day 1 of
culture. The mean fluorescent
intensity (MFI) of CD19 of control
CD40B cells, OVA-specific (OVA+) or
OVA-negative (OVA-) CD40B cells
on day 1 of the CD40 culture was
determined by flow cytometry and
values were normalized to the
expression levels in B cells of the
respective populations on day 0.
Bar charts show mean values ± SEM
of three independent experiments.
Significant differences were
calculated with ordinary one-way
ANOVA are marked by an asterisk.
* p ≤ 0.05. 
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Moreover, a significant difference in IgD+ CD40B cells was observed in control CD40B cells

(55.33 % ± 4.58) and OVA-negative CD40B cells (21.10 % ± 7.82) on day 1 (Fig. 3.40), but the

difference was not significant in OVA-specific CD40B cells (22.41 % ± 8.41). Interestingly,

IgM+ B cells were increased on day 1 in control CD40B cells (96.32 % ± 0.98), OVA-specific

CD40B cells (37.83 % ± 2.14) and OVA-negative CD40B cells (82.33 % ± 5.22; Fig. 3.41).

However, the differences were not significant. These data indicate that B cells further

undergo class-switch in the CD40 culture and on day 1 seems to be still in a transitional state

from IgD- IgMhigh IgG+ to IgD- IgMlow IgGhigh B cells.

Fig. 3.40 Percentage of IgD+ CD40B
cells on day 1 of culture. The
percentage of IgD+ B cells among
control CD40B cells, OVA-specific
(OVA+) or OVA-negative (OVA-)
CD40B cells on day 1 of the CD40
culture was determined by flow
cytometry and compared to the
percentages of the respective
populations on day 0. Bar charts
show mean values ± SEM of three
independent experiments.
Significant differences were
calculated with ordinary one-way
ANOVA are marked by an asterisk. *
p ≤ 0.05. 

Fig. 3.39 Percentage of IgG1+

CD40B cells on day 1 of culture.
The percentage of IgG1+ B cells
among control CD40B cells, OVA-
specific (OVA+) or OVA-negative
(OVA-) CD40B cells on day 1 of the
CD40 culture was determined by
flow cytometry and compared to
the percentages of the respective
populations on day 0. Bar charts
show mean values ± SEM of three
independent experiments.
Significant differences were
calculated with ordinary one-way
ANOVA are marked by an asterisk. *
p ≤ 0.05. 
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The expression of MHC I molecules was highly upregulated on day 1 (Fig. 3.42) in control

CD40B cells (1026.0 % ± 48.91), OVA-specific CD40B cells (507.1 % ± 10.81) and OVA-

negative CD40B cells (901.1 % ± 40.38). The same was observed for MHC class II molecules

(Fig. 3.43) for control CD40B cells (714.1 % ± 155.1), OVA-specific CD40B cells (342.9 % ±

11.42) and OVA-negative CD40B cells (757.0 % ± 188.7).

Fig. 3.41 Percentage of IgM+ CD40B
cells on day 1 of culture. The
percentage of IgM+ B cells among
control CD40B cells, OVA-specific
(OVA+) or OVA-negative (OVA-)
CD40B cells on day 1 of the CD40
culture was determined by flow
cytometry and compared to the
percentages of the respective
populations on day 0. Bar charts
show mean values ± SEM of three
independent experiments.
Significant differences calculated
with ordinary one-way ANOVA
were not detected.

Fig. 3.42 MHC I expression in OVA-
specific CD40B cells on day 1 of
culture. The mean fluorescent
intensity (MFI) of MHC I of control
CD40B cells, OVA-specific (OVA+) or
OVA-negative (OVA-) CD40B cells
on day 1 of the CD40 culture was
determined by flow cytometry and
values were normalized to the
expression levels in B cells of the
respective populations on day 0.
Bar charts show mean values ± SEM
of three independent experiments.
Significant differences were
calculated with ordinary one-way
ANOVA are marked by an asterisk.
**** p ≤ 0.0001. 
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Moreover, the expression of the costimulatory molecule CD86 (Fig. 3.44) was significantly

upregulated in OVA-specific CD40B cells (354.3 % ± 45.18) and OVA-negative CD40B cells

(315.6 % ± 81.78) and was even higher in control CD40B cells (425.8 % ± 57.90).

Although OVA-specific CD40B cells also upregulated the expression of CD80 (137.9 % ± 1.00;

Fig. 3.45) the difference to the expression on day 0 was not significant. No differences in

CD80 expression were observed in control CD40B cells (96.71 % ± 24.69) or OVA-negative

CD40B cells (76.81 % ± 15.77) from day 0 to day 1.

Fig. 3.43 MHC II expression in OVA-
specific CD40B cells on day 1 of
culture. The mean fluorescent
intensity (MFI) of MHC II of control
CD40B cells, OVA-specific (OVA+) or
OVA-negative (OVA-) CD40B cells
on day 1 of the CD40 culture was
determined by flow cytometry and
values were normalized to the
expression levels in B cells of the
respective populations on day 0.
Bar charts show mean values ± SEM
of three independent experiments.
Significant differences were
calculated with ordinary one-way
ANOVA are marked by an asterisk.
* p ≤ 0.05, ** p ≤ 0.01,  
**** p ≤ 0.0001. 

Fig. 3.44 CD86 expression in OVA-
specific CD40B cells on day 1 of
culture. The mean fluorescent
intensity (MFI) of CD86 of control
CD40B cells, OVA-specific (OVA+) or
OVA-negative (OVA-) CD40B cells
on day 1 of the CD40 culture was
determined by flow cytometry and
values were normalized to the
expression levels in B cells of the
respective populations on day 0.
Bar charts show mean values ± SEM
of three independent experiments.
Significant differences were
calculated with ordinary one-way
ANOVA are marked by an asterisk.
*** p ≤ 0.001, **** p ≤ 0.0001. 
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The percentage of CD138+ B cells was increased in all three populations from day 0 to day 1

(control CD40Bs: 4.67 % ± 1.28; OVA-specific CD40Bs: 11.08 % ± 3.11; OVA-negative CD40Bs:

3.41 % ± 0.35), although the differences were not significant (Fig. 3.46).

These data clearly indicate that B cells undergo class-switching when stimulated with the

CD40 ligand and that antigen-specific B cells upregulate costimulatory and MHC molecules,

which has already been shown for polyclonal CD40B cells (Ahmadi et al. 2008, Liebig et al.

2010).

3.2.3 Human Antigen-Specific B Cells are Activated by Stimulation with the CD40L

Purified HBV-specific B cells (~ 15 % B cell purity, ~ 30 % HBV-specific B cells) were kept in the

CD40 culture on CD40L-expressing NIH feeder cells for up to 14 days. B cells were harvested

Fig. 3.45 CD80 expression in OVA-
specific CD40B cells on day 1 of
culture. The mean fluorescent
intensity (MFI) of CD80 of control
CD40B cells, OVA-specific (OVA+) or
OVA-negative (OVA-) CD40B cells
on day 1 of the CD40 culture was
determined by flow cytometry and
values were normalized to the
expression levels in B cells of the
respective populations on day 0.
Bar charts show mean values ± SEM
of three independent experiments.
Significant differences calculated
with ordinary one-way ANOVA
were not detected.

Fig. 3.46 Percentage of CD138+

CD40B cells on day 1 of culture.
The percentage of CD138+ B cells
among control CD40B cells, OVA-
specific (OVA+) or OVA-negative
(OVA-) CD40B cells on day 1 of the
CD40 culture was determined by
flow cytometry and compared to
the percentages of the respective
populations on day 0. Bar charts
show mean values ± SEM of three
independent experiments.
Significant differences calculated
with ordinary one-way ANOVA
were not detected.
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on day 7, 11 and 14 and recultivated on fresh feeder cells. The absolute increase of cells in

culture was determined (Fig. 3.47) and pictures (Fig. 3.48) were taken on these days. PBMCs

isolated from non-vaccinated donors (~ 15 % B cells) served as controls.

The number of cells in HBV-cultures increased from day 0 to 7, while the number of cells in

control cultures decreased slightly (Fig. 3.47). From day 7 to day 11, the control cultures

started to proliferate, resulting in a 2 fold increase of the initial culture on day 14. While

proliferation of HBV-specific cultures stayed stable from day 7 to day 11, they highly

proliferated afterwards resulting in a 3.5 fold expansion of initial cultures.

Fig. 3.47 Absolute increase of human cells in the CD40L culture over 14 days. Purified B cells of
vaccinated (HBV) or PBMCs of non-vaccinated (control) donors were cultivated on CD40L-expressing
NIH cells over a period of 14 days. The number of viable cells was determined every 3-4 days by
trypan blue exclusion test. The absolute increase was determined by calculating the increase
between two passages in percentage. Growth curve represent 3 independent donors.

Control cultures formed clusters on day 7 and day 11 with larger and evenly shapes on day

14 in correlation with their proliferative behavior (Fig. 3.48, left column).

HBV cultures formed round and evenly shaped cluster on day 7, although magnetic beads

from the purification process were still apparent (Fig. 3.48, right column). However, from

day 11 on HBV cultures showed a less stable morphology with smaller and unevenly shaped

clusters.
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Control and HBV cultures were analyzed by FACS for the percentage of CD19+ CD20+ B cells

and the percentage of HBV-specific among the CD19+ CD20+ B cell population. B cell purity

constantly increased in control and HBV-specific cultures reaching a maximum on day 14 of

77 % and 97 % purity, respectively (Fig. 3.49). However, control cultures had started with a

lower B cells purity than HBV-specific cultures. However, the percentage of HBV-specific cells

among CD19+ CD20+ B cells decreased rapidly to about 1 % on day 14 as observed in murine

CD40B cultures (data not shown).

Fig. 3.49 Increase of CD19+ CD20+ B cells in CD40L cultures. Purified B cells of vaccinated (HBV) or
PBMCs of non-vaccinated (control) donors were cultivated on CD40L-expressing NIH cells over a
period of 14 days. Staining for CD19+ CD20+ B cells was performed on day 0, 7, 11 and 14 and the
percentage of B cells was determined by flow cytometry analyses. Results of 5 independent donors
are shown.

Fig. 3.48 Cluster formation of B cells
in CD40L cultures. Purified B cells of
vaccinated (HBV) or PBMCs of non-
vaccinated (control) donors were
cultivated on CD40L-expressing NIH
cells over a period of 14 days.
Pictures were taken on day 7, 11 and
14 at a 10x magnification using a
light optical microscope fitted with a
digital camera. Representative
pictures of 3 independent
experiments are shown.
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On day 7, 11 and 14 CD40B cells were analyzed for the expression levels of several surface

markers to confirm their antigen-presenting phenotype. The MFI of the molecules of interest

was normalized to the MFI of their respective culture on day 0.

Interestingly, the expression of MHC II molecules (HLA-DR) in HBV-specific cultures was

upregulated at first, but then decreased until day 14 to 59.60 % ± 7.66 (Fig. 3.50, red and

green line). Control cultures expressed significantly more HLA-DR on 14 days than HBV-

specific cultures, although the total increase was only minor (107.85 % ± 6.66; Fig. 3.49 blue

line).

Fig. 3.50 MHC II expression in HBV-specific CD40B cells in the CD40 culture. The mean fluorescent
intensity (MFI) of MHC II of Control CD40B cells, HBV-specific (HBV+) or HBV-negative (HBV-) CD40B
cells over a period of 14 days was determined by flow cytometry and values were normalized to the
expression levels in B cells of the respective populations on day 0. Curves show mean values ± SD of
three independent experiments. Significant differences were calculated with two-way ANOVA are
marked by an asterisk. ** p ≤ 0.01. 

The expression of the costimulatory molecules CD86 (Fig. 3.51, red and green line) was

highly upregulated in HBV-specific CD40B cultures, although the expression decreased from

day 11 to 14. CD86 was also upregulated in control cultures (2024 % ± 114), although there

was a significant difference to HBV-specific cultures (Fig. 3.51, blue line)
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Fig. 3.51 CD86 expression in HBV-specific CD40B cells in the CD40 culture. The mean fluorescent
intensity (MFI) of CD86 of Control CD40B cells, HBV-specific (HBV+) or HBV-negative (HBV-) CD40B
cells over a period of 14 days was determined by flow cytometry and values were normalized to the
expression levels in B cells of the respective populations on day 0. Curves show mean values ± SD of
three independent experiments. Significant differences were calculated with two-way ANOVA are
marked by an asterisk. *** p ≤ 0.001. 

HBV-specific CD40B cells (3046 % ± 807) and control B cells (2283 % ± 84) also highly

upregulated the expression of CD80 (Fig. 3.52, red and blue line, respectively). Interestingly,

the difference to HBV-negative CD40B cells in HBV cultures on day 14 was highly significant

(7760 % ± 594; Fig. 3.52, green line).

Fig. 3.52 CD80 expression in HBV-specific CD40B cells in the CD40 culture. The mean fluorescent
intensity (MFI) of CD80 of Control CD40B cells, HBV-specific (HBV+) or HBV-negative (HBV-) CD40B
cells over a period of 14 days was determined by flow cytometry and values were normalized to the
expression levels in B cells of the respective populations on day 0. Curves show mean values ± SD of
three independent experiments. Significant differences were calculated with two-way ANOVA are
marked by an asterisk. **** p ≤ 0.0001. 
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The percentage of CD138+ HBV-negative and control CD40B cells decreased from day 0 until

day 14 and there was no difference in the two populations (Fig. 3.53, green and blue line,

respectively). However, the percentage of CD138+ HBV-specific CD40B cells increased to

51.87 % ± 24.36 until day 14 (Fig. 3.53, red line). The difference to HBV-negative and control

CD40B cells was significant.

Fig. 3.53 Percentage of CD138+ B cells in the CD40 culture. The percentage of CD138+ B cells of
Control CD40B cells, HBV-specific (HBV+) or HBV-negative (HBV-) CD40B cells over a period of 14 days
was determined by flow cytometry. Curves show mean values ± SD of three independent
experiments. Significant differences were calculated with two-way ANOVA are marked by an asterisk.
**** p ≤ 0.0001. 

3.3 Murine Antigen-Specific CD40B Cells Efficiently Present Antigen to T Cells

In Vitro

To study the antigen-presenting function of murine OVA-specific CD40B cells, their ability to

stimulate an antigen-specific response of CD4+ or CD8+ T cells in vitro was investigated. For

this purpose, a mixed-lymphocyte reaction (MLR) assay was performed (Steinman and

Witmer 1978), in which protein-pulsed APCs are co-cultured together with CD4+ or CD8+ T

cells from OT-II or OT-I mice, respectively. T cell activation and proliferation is induced via

binding of the OVA-specific T-cell receptor to its antigen in the context of MHC presented on

APCs. Co-stimulatory signals complete the activation of T cells through binding of CD80 (B7-

1) and CD86 (B7-2) expressed on APCs to its receptor CD28 on the T cell surface (Galvin et al.

1992).
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OVA-specific B cells were purified from immunized C57BL/6 mice and activated in the CD40

system over night (OVA CD40Bs). In addition, they were incubated with 75 nM OVA-protein

for 24 hours prior to incubation with T cells. Polyclonal B cells from naïve C57BL/6 mice

served as control (control CD40Bs). The activation status of CD40B cells (80 % B cell purity

and > 60 % OVA purity) was confirmed by analyzing the upregulation of the expression

markers CD80, CD86, IAb (MHC II) and H2Kb (MHC I) by FACS (Fig. 3.42-3.45).

Bone-marrow derived dendritic cells served as alternative source of APCs and positive

control in MLRs, since they have long been viewed as the most potent APCs (Inaba et al.

1990). DCs were generated from bone-marrow derived CD34+ progenitor cells and matured

by addition of anti-CD40 antibody or LPS (herein after referred to as CD40 DCs or LPS DCs,

respectively). The two different stimuli were tested to cover the heterogeneity of DC subsets

(Shortman and Liu 2002). The phenotype and activation status of mature DCs was confirmed

by analyzing the > 90 % pure CD11b+ CD11c+ population (Fig. 3.54) for their upregulation of

the activation markers CD80, CD83, CD86 and IAb by FACS (Fig. 3.55).

Fig. 3.54 Purity of matured CD40 DCs and LPS DCs. Representative flow cytometry analyses of
CD40L-matured DCs (CD40 DCs, A) and LPS-matured DCs (LPS DCs, B) out of at least 5 independent
experiments are shown. Mature DCs were stained for CD11b+ CD11c+ cells. Numbers indicate the
percentages.
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Antigen-specific CD4+ or CD8+ T cells were isolated from OT-II or OT-I mice, respectively.

Antigen-specificity of the > 90 % CD3+ T cell population (Fig. 3.56, upper row) was

determined by analyzing the expression of TCR-chain Vβ5 on CD4+ or CD8+ T cells by FACS

(Fig. 3.56, lower row).

Fig. 3.55 Expression of activation markers
in mature DCs. Representative flow
cytometry analyses of CD40L-matured DCs
(CD40 DCs, A) and LPS-matured DCs (LPS
DCs, B) out of at least 5 independent
experiments are shown. Mature DCs were
stained for the activation markers CD80,
CD83, CD86 and IAb were indicated (black
line). Unstained cells served as control
(filled line).
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T cells were labeled with CFSE to measure their proliferation and were cultured together

with control CD40Bs (with or without protein), OVA CD40Bs (with or without protein), CD40

DCs or LPS DCs at various APC-to-T cell ratios (0:1, 3:1, 1:1, 1:5,1:10, 1:20, 1:50) for 5 days.

CFSE segregates equally between daughter cells upon cell division. When analyzed by FACS,

this sequential halving of fluorescence is visualized as distinct peaks in the histogram (Fig.

3.58).

Incubation of either CD4+ or CD8+ T cells with protein-pulsed control CD40Bs in a ratio 1:1

resulted in proliferation of a small proportion of T cells (8.43 % ± 3.45 and 4.61 % ± 2.45,

respectively; Fig. 3.57 A and B). However, this induction of proliferation was not significantly

higher than in non-pulsed control CD40Bs. Cocultures of protein-pulsed OVA CD40Bs with

either CD4+ or CD8+ T cells in a ratio of 1:1 resulted in high proliferation of the T cells (61.56

% ± 12.40 and 72.66 % ± 14.15, respectively). Although protein-pulsed OVA CD40Bs induced

more proliferation than OVA CD40Bs that received no additional OVA-protein (38.18 % ±

19.57 and 50.77 % ± 33.07, respectively), the difference was not significant. Moreover,

culture of T cells with CD40 DCs or LPS DCs in a ratio of 1:1 induced high proliferation of T

cells. Proliferation of CD4+ or CD8+ T cells was higher in CD40 DCs (77.11 % ± 6.02 and 97.62

% ± 1.09, respectively) than in LPS DCs (68.55 % ± 1.41 and 76.85 % ± 19.13, respectively).

However, the difference was not significant. Furthermore, there was no significant

Fig. 3.56 Purity of OT-I and OT-II T
cells. Representative flow
cytometry analyses of OT-II (CD4+ T
cells, left column) and OT-II (CD8+ T
cells, right column) T cells out of at
least 5 independent experiments
are shown. Purified T cells were
stained for CD3+ B220- cells (upper
row) and their expression of Vβ5.1 
TCR (lower row, black line).
Numbers indicate the percentages.
T cells from C57BL/6 mice served as
negative controls (grey line) and
unstained cells as staining control
(filled line).
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difference in induction of T cell proliferation between OVA CD40Bs and the two DC subtypes,

but proliferation was significantly lower in cocultures with control CD40Bs than with OVA

CD40Bs or DCs.

Fig. 3.57 T cell proliferation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 1:1.
Polyclonal CD40B cells (Control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-
matured DCs (CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with
protein (+ OVA) over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of
1:1 and incubated for 5 days. Proliferation of T cells was determined by flow cytometry by a decrease
in CFSE labeling. Bar charts represent mean values ± SD of 4 independent experiments. Significant
differences were calculated with two-way ANOVA are marked by an asterisk. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001. 

Performing four independent MLRs, it was observed that induction of proliferation by

peptide-pulsed OVA CD40Bs is dependent on APC-to-T-cell ratio. Increasing the ratio to 3:1

induced even more proliferation of CD4+ or CD8+ T cells (77.66 % ± 11.01 and 80.99 % ±
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17.17, respectively; Fig. 3.58 and Fig. 3.59). By decreasing the APC-to-T-cell ratio to 1:5 the

differences between protein-pulsed OVA CD40Bs cells (29.46 % ± 12.97 for CD4+ T cells and

34.12 % ± 20.15 for CD8+ T cells; Fig. 3.60) and OVA CD40Bs that did not receive additional

protein (14.20 % ± 9.68 for CD4+ T cells and 5.76 % ± 3.66 for CD8+ T cells) became more

obvious, although it was not significant. Induction of proliferation further decreased in an

OVA CD40Bs-to-T-cell ratio of 1:10 (7.81 % ± 4.53 for CD4+ T cells and 8.90 % ± 4.50 for CD8+

T cells; Fig. 3.61) and reduced to almost zero in ratios of 1:20 and 1:50 (data not shown).

CD40 DCs or LPS DCs were less affected by lower APCs-to-T-cell ratios. In CD40 DC cocultures

at a ratio of 1:10 induction of proliferation was still significantly higher than in control

CD40Bs (53.06 % ± 25.26 for CD4+ T cells and 89.40 % ± 4.06 for CD8+ T cells; Fig. 3.61).

Although induction of proliferation was lower in LPS DC cocultures (33.82 % ± 0.40 for CD4+ T

cells and 42.54 % ± 29.71 for CD8+ T cells) the difference to control CD40Bs was significant.

Even at low DC-to-T-cell ratios of 1:20 and 1:50, proliferation was still detected, although

differences to control CD40Bs were not significant anymore (data not shown).
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Fig. 3.58 T cell proliferation in
co-cultures of APCs and OT-II
or OT-I T cells in the ratio 3:1.
Polyclonal CD40B cells (control
CD40B cells), OVA-specific
CD40B cells (OVA CD40B cells)
CD40-matured DCs (CD40 DCs)
or LPS-matured DCs (LPS DCs)
were left untreated (- OVA) or
pulsed with protein (+ OVA)
over night. Afterwards, they
were mixed with OT-I (left
column) or OT-II (right column)
T cells in a ratio of 3:1 and
incubated for 5 days.
Proliferation of T cells was
determined by flow cytometry
by a decrease in CFSE labeling.
Representative flow cytometry
histograms out of 4
independent experiments are
shown. Numbers indicate
percentage of proliferated
T cells.
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Fig. 3.59 T cell proliferation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 3:1.
Polyclonal CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-
matured DCs (CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with
protein (+ OVA) over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of
3:1 and incubated for 5 days. Proliferation of T cells was determined by flow cytometry by a decrease
in CFSE labeling. Bar charts represent mean values ± SD of 4 independent experiments. Significant
differences were calculated with two-way ANOVA are marked by an asterisk. ** p ≤ 0.01, *** p ≤ 
0.001, **** p ≤ 0.0001. 
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Fig. 3.60 T cell proliferation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 1:5.
Polyclonal CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-
matured DCs (CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with
protein (+ OVA) over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of
1:5 and incubated for 5 days. Proliferation of T cells was determined by flow cytometry by a decrease
in CFSE labeling. Bar charts represent mean values ± SD of 4 independent experiments. Significant
differences were calculated with two-way ANOVA are marked by an asterisk. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001. 
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Fig. 3.61 T cell proliferation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 1:10.
Polyclonal CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-
matured DCs (CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with
protein (+ OVA) over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of
1:10 and incubated for 5 days. Proliferation of T cells was determined by flow cytometry by a
decrease in CFSE labeling. Bar charts represent mean values ± SD of 4 independent experiments.
Significant differences were calculated with two-way ANOVA are marked by an asterisk. ** p ≤ 0.01, 
*** p ≤ 0.001. 

In addition, stimulation of T cell proliferation by either source of APC was accompanied by

an upregulation CD25 expression indicating T cell activation (Fig. 3.62- 3.65). In cocultures of

OVA CD40Bs and CD4+ or CD8+ T cells, upregulation of CD25 was high in ratios 3:1 (54.93 % ±

20.57 for CD4+ T cells and 85.54 % ± 5.80 for CD8+ T cells; Fig. 3.62) and 1:1 (46.45 % ± 16.39

for CD4+ T cells and 72.64 % ± 11.95 for CD8+ T cells; Fig. 3.63) and decreased in lower ratios

(Fig. 3.64 and Fig. 3.65 and data not shown) according to T cell proliferation. In ratios 3:1 and

1:1, the differences to control CD40Bs cells were significant and the influence of additional

protein pulsing became more obvious than in T cell proliferation. Although in cocultures with
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control CD40Bs upregulation of CD25 was detected in CD8+ T cells in ratios 3:1 and 1:1 (3.42

% ± 2.70 and 2.27 % ± 2.03, respectively), it dropped to almost zero in lower control CD40Bs-

to-CD8+ T-cell ratios (Fig. 3.64 and Fig. 3.65, and data not shown). CD4+ or CD8+ T cell

activation in a 3:1 ratio was high in CD40 DCs (60.72 % ± 20.48 and 84.54 % ± 5.80,

respectively) and LPS DCs (56.54 % ± 5.78 and 71.15 % ± 26.42, respectively;) and remained

above 10 % in all testes ratios.

Fig. 3.62 T cell activation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 3:1. Polyclonal
CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-matured DCs
(CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with protein (+ OVA)
over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of 3:1 and
incubated for 5 days. Activation of T cells was determined by staining for CD25 expression and
subsequent flow cytometry analysis. Bar charts represent mean values ± SD of 4 independent
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experiments. Significant differences were calculated with two-way ANOVA are marked by an asterisk.
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 

Fig. 3.63 T cell activation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 1:1. Polyclonal
CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-matured DCs
(CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with protein (+ OVA)
over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of 1:1 and
incubated for 5 days. Activation of T cells was determined by staining for CD25 expression and
subsequent flow cytometry analysis. Bar charts represent mean values ± SD of 4 independent
experiments. Significant differences were calculated with two-way ANOVA are marked by an asterisk.
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. 
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Fig. 3.64 T cell activation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 1:5. Polyclonal
CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-matured DCs
(CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with protein (+ OVA)
over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of 1:5 and
incubated for 5 days. Activation of T cells was determined by staining for CD25 expression and
subsequent flow cytometry analysis. Bar charts represent mean values ± SD of 4 independent
experiments. Significant differences were calculated with two-way ANOVA are marked by an asterisk.
** p ≤ 0.01. 
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Fig. 3.65 T cell activation in co-cultures of APCs and OT-II or OT-I T cells in the ratio 1:10. Polyclonal
CD40B cells (control CD40B cells), OVA-specific CD40B cells (OVA CD40B cells) CD40-matured DCs
(CD40 DCs) or LPS-matured DCs (LPS DCs) were left untreated (- OVA) or pulsed with protein (+ OVA)
over night. Afterwards, they were mixed with OT-I (A) or OT-II (B) T cells in a ratio of 1:10 and
incubated for 5 days. Activation of T cells was determined by staining for CD25 expression and
subsequent flow cytometry analysis. Bar charts represent mean values ± SD of 4 independent
experiments. Significant differences were calculated with two-way ANOVA are marked by an asterisk.
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 
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3.4 Antigen-Specific CD40B Cells Migrate to Secondary Lymphoid Organs and

to the Tumor

For the induction of immunity, APCs need to encounter T cells. This process is particularly

regulated by chemokine gradients in the T-cell areas of secondary lymphoid organs (von

Andrian and Mempel 2003). By expressing molecules and receptors crucial for homing to

secondary lymphoid organs or attraction of T cells (von Bergwelt-Baildon et al. 2006, Guo et

al. 2009), they fulfill an important criterion for an efficient APC. However, little is known

about the in vivo migration of CD40-activated B cells. To assess their migration kinetics in

vivo, CD40B cells were generated from Luc+ C57BL/6 mice. B cells from Luc+ mice could be

stimulated with the CD40L without affecting their autofluorescence. Moreover, these cells

displayed the typical APC phenotype (Fig. 3.42-3.45). Polyclonal CD40B cells were injected

via two different routes and their location was tracked after different time points.

Administration routes were chosen to assess the following biological and clinical aspects:

first, possible paths of homing to peripheral lymph nodes, lymph or blood vessels; and

second, their relevance for clinical application. The general migration of polyclonal CD40B

cells after intravenous (i.v.) or subcutaneous (s.c.) injection was assessed by injecting 5 x 106

Luc+ CD40B cells (> 90 % pure) into C57BL/6 mice. Subcutaneous injection did not result in

migration to the secondary lymphoid organs at any of the observed time points (Fig. 3.66,

right column). However, after i.v. injection the Luc+ CD40B cells appeared in the spleen

within 12 hours and over a period of 5 day migrated to the abdominal lymph nodes (Fig.

3.66, left column). Luc+ CD40B cells could be detected in the abdominal lymph nodes for up

to 15 days (data not shown).
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To observe the migration behavior of OVA-specific CD40B cells in healthy mice, 1 x106 Luc+

OVA-specific CD40B cells (> 80 % B cells purity and > 60 % OVA purity) were injected i.v. into

C57BL/6 mice. Their migration behavior was similar to that of polyclonal CD40B cells. OVA-

specific CD40B cells appeared in the spleen within 12 hours and over a period of 5 days

migrated to the abdominal lymph nodes (Fig. 3.67). They could be detected for up to 15 days

(data not shown).

Tumor-infiltrating B cells in human breast cancer (Hansen et al. 2001) and B cells in the

tumor-draining lymph nodes in mice (Li et al. 2009) were shown to produce autoantibodies

against tumor targets, thereby suggestion an infiltration of tumors by antigen-specific B

Fig. 3.66 CD40B cells migrate to
spleens and lymph nodes in vivo. 5-
10 x 106 CD40B cells from Luc+ mice
were injected into C57BL/6 mice
subcutaneously (s.c.) or
intravenously (i.v.). 12 hours (12 h),
36 hours (36 h) or 5 days (5 d) after
injection, mice were analyzed for
the presence of the CD40B cells by
imaging in the IVIS 200 system.
Representative pictures out of 3
experiments are shown.

Fig. 3.67 OVA-specific CD40B
cells migrate to spleens and
lymph nodes in vivo. 1 x 106

CD40B cells from Luc+ mice were
injected into C57BL/6 mice
intravenously. 12 hours (12 h),
36 hours (36 h) or 5 days (5 d)
after injection, mice were
analyzed for the presence of the
CD40B cells by imaging in the
IVIS 200 system. Representative
pictures out of 3 experiments
are shown.
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cells. In order to test this hypothesis, the migration behavior of polyclonal and OVA-specific

CD40B cells was assessed in tumor-bearing mice. For this purpose, OVA-expressing E.G7

lymphoma cells were injected s.c. into the right flanks of C57BL/6 mice and tumors were

allowed to grow for 10 days until they became clearly apparent. EG.7 lymphoma cells were

analyzed for their expression of OVA-protein in the context of MHC II by FACS (Fig. 3.68).

1x106 Luc+ OVA-specific or polyclonal CD40B cells were injected i.v. into tumor-bearing mice

and their location was tracked for 14 days. Polyclonal CD40B cells showed the same

migration behavior as in healthy mice by traveling to the spleen and the lymph nodes and in

addition to the tumor draining lymph nodes. No Luc+ cells showed up in the tumor (Fig.

3.69).

Fig. 3.68 Expression of OVA-protein in the context of MHC II
on E.G7 lymphoma cells. Representative flow cytometry
analyses of E.G7 lymphoma cells out of at least 5 independent
experiments are shown. Cells were stained for the expression
of OVA-peptide in the context of MHC II (black line). EL4 cells
served as negative controls (grey line). Unstained cells served
as staining control (filled line).

Fig. 3.69 Polyclonal CD40B cells migrate to
lymphoid organs in tumor-bearing mice. 1 x 106

CD40B cells from Luc+ mice were injected into
C57BL/6 mice intravenously. 36 hours (36 h) or 5
days (5 d) after injection, mice were analyzed for
the presence of the CD40B cells by imaging in the
IVIS 200 system. Representative pictures out of 3
experiments are shown.
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OVA-specific CD40B cells migrated to the spleen and the lymph node over a period of 36

hours (Fig. 3.70). However, in contrast to polyclonal CD40B cells, they also appeared at the

tumor site in high amounts where they still could be detected on day 5. Some Luc+ cells

stayed in the spleen and the abdominal lymph nodes.

3.5 Antigen-Specific CD40B Cells Induce an Antigen-Specific Immune

Response In Vivo

When used as cellular adjuvant, polyclonal CD40B cells are able to present antigen to T

cells in order to induce an antigen-specific immune response in vivo (Wennhold et al. 2013)

and unpublished data). Moreover, OVA-specific CD40B cells migrate to the spleen and lymph

nodes when administered i.v. Based on the previous in vitro data, antigen-specific CD40B

cells should be more effective in inducing an antigen-specific immune response in vivo than

polyclonal CD40B cells. In order to test this hypothesis, in vivo cytotoxicity assays were

performed. For this purpose, different APCs were loaded with protein by protein-pulsing,

which is a common technique to deliver antigens to APCs (Inaba et al. 1990, Zitvogel et al.

1996). Protein pulsed APCs were injected according to a previously optimized vaccination

protocol (unpublished data) (Fig. 3.71): C57BL/6N mice were immunized i.v. three times in

Fig. 3.70 CD40B cells migrate to
lymphoid organs and the tumor in
tumor-bearing mice. 1 x 106 CD40B
cells from Luc+ mice were injected
into C57BL/6 mice intravenously. 36
hours (36 h) or 5 days (5 d) after
injection, mice were analyzed for the
presence of the CD40B cells by
imaging in the IVIS 200 system.
Representative pictures out of 3
experiments are shown.
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an interval of seven days with 5x106 APCs. On day 21, CFSE+ OVA-peptide pulsed target cells

were injected into immunized mice.

Fig. 3.71 Overview of the in vivo cytotoxicity assay. Different APCs loaded with protein were
injected three times in an interval of seven days. Peptide-pulsed CFSE-labeled target cells were
injected on day 21. On day 22, specific lysis of the target cells was analyses by flow cytometry.

The in vivo cytolytic activity of antigen-specific CD8+ T cells was determined by calculating

the specific lysis from the ratio of target cells in spleens. The specific lysis of immunized mice

was normalized to the specific lysis of negative controls.

Polyclonal and OVA-specific CD40B cells were generated from non-immunized or OVA-

immunized mice, respectively, by CD19+ selection and subsequent CD40-activation. Protein-

pulsed DCs served as standard to which CD40B cells were compared. Since isolated CD19+ B

cells of OVA-immunized mice consisted of 1-4 % OVA-specific B cells, DCs were either

injected at 93 % purity as a control (Fig. 3.54) or they were supplemented with 96-99 %

polyclonal CD40B cells (DCs+CD40Bs) to mimic OVA-specific B cell purity. All APCs showed

upregulation of activation markers before injection (Fig. 3.42-3.45+ 3.55). Positive controls

were immunized with OVA-protein and CpG in PBS and IFA. Negative controls were treated

with IFA and PBS only.

The antigen-specific response was significantly higher in mice that were immunized with

OVA-specific CD40B cells (27.51 % ± 14.57) than in mice that were immunized with

polyclonal control CD40B cells (11.12 % ± 4.92) (Fig. 3.72). Immunization with OVA-specific

CD40B cells, pure DCs, and positive controls resulted in similarly effective induction of

specific lysis. However, induction of immunity was significantly higher in mice immunized

with OVA-specific CD40B cells than in mice immunized with DCs+CD40Bs (8.17 % ± 3.12).
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Fig. 3.72 Antigen-specific CD40B cells induce specific lysis of target cells. C57BL/6N mice were
immunized with 5 x 106 APCs, i.e. polyclonal CD40B cells (Control CD40Bs), OVA-specific CD40B cells
(OVA CD40Bs), pure dendritic cells (CD40 DCs) or DCs + polyclonal CD40B cells (CD40DCs+B cells),
PBS+IFA as negative controls (Neg. Control), or IFA+PBS+OVA+CpG as positive controls (Pos. Control)
three times i.v. in an interval of seven days. The ratio of CFSE+ target cells in spleens was determined
by FACS (A) and the specific lysis was calculated by normalizing values to negative controls (B).
Representative FACS data of at least three independent experiments are shown (A). Bar charts show
mean values ± SD of specific lysis of three independent experiments with three mice per group (B).
Significant differences calculated with ordinary one-way ANOVA are marked by an asterisk. * p ≤ 
0.05, **** p ≤ 0.0001.  

3.6 Antigen-Specific B Cells Differentiate into Antibody-Secreting B Cells upon

Stimulation

The classic effector function of B cells is not the presentation of antigens to T cells, but the

secretion of antibodies upon differentiation into plasma cells. Although several monoclonal

antibodies are approved for the treatment of cancer in humans, they have several

drawbacks, e.g. their development is expensive and laborious (Chames et al. 2009, Weiner et

al. 2010) and even humanized monoclonal antibodies can be antigenic (Klee 2000).

Therefore, it seems plausible to transfer patient-derived plasma cells that produce

tumorantigen-specific antibodies (Moutai et al. 2014). Moreover, the combination of both

effector functions offers additional advantages for cancer immunotherapy.

Therefore, a protocol was developed to stimulate differentiation of antigen-specific B cells

into antibody secreting plasma cells using the well known stimulator of plasma cell

differentiation, IL-21 (Ozaki et al. 2004, Moutai et al. 2014), in combination with other
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stimulating cytokines and BCR antagonists. For this purpose, OVA-specific B cells were

isolated from immunized C57BL/6 mice (80 % B cell purity and > 60 % OVA purity) and were

incubated with the stimuli for 3 days. Plasma cell differentiation was determined by FACS

analyses for the percentage of CD138+ B cells. Polyclonal B cells from non-immunized mice

served as control.

The addition of IL-21 to OVA-specific B cell cultures increased the percentage of B220low

CD19+ CD138+ plasma cells from 13.28 % ± 7.70 to 18.27 % ± 6.94 (Fig. 3.73, left panel). In

addition of soluble CD40L the percentage of CD138+ plasma cells significantly increased to

44.24 % ± 0.76. However, IL-21 was crucial for this effect, since stimulation of OVA-specific B

cells with OVA-antigen, IL-4 and CD40L alone resulted in reduced percentage of CD138+ B

cells (16.89 % ± 13.55). OVA-specific B cells that were treated with IgM and IL-4 alone were

used as negative controls (12.22 % ± 7.22) and OVA-specific B cells that were treated with

LPS served as positive controls (58.09 % ± 23.28). LPS and IgM treated cells were not

additionally treated with OVA-antigen. However, the amount of OVA-antigen added during

the purification process is sufficient to results in stimulation as indicated by MLRs of

‘unpulsed’ OVA-specific B cells (chapter 3.3).

Control B cells from non-immunized mice, which showed a different phenotype upon

isolation, reacted differently to the stimuli than OVA-specific B cells (Fig. 3.73, right panel).

Treatment with OVA-antigen and IL-4 alone or in combination with IL-21 and treatment with

IgM and IL-4 almost similarly induced plasma cell differentiation (23.63 % ± 16.10, 22.69 % ±

14.44 and 25.42 % ± 13.70, respectively). In comparison, treatment with CD40L reduced the

differentiation into CD138+ plasma cells (15.71 % ± 2.56 with OVA+ IL-4+ IL-21+ CD40L and

10.79 % ± with OVA+ IL-4+ CD40L). However, stimulation with LPS resulted in the highest

percentages of CD138+ B cells (38.99 % ± 20.59).
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Fig. 3.73 Induction of plasma cell differentiation in antigen-specific and polyclonal B cells. OVA-
specific B cells (OVA) of immunized mice or CD19+ B cells of non-immunized mice (Control) were
stimulated with the indicated stimuli for 3 days and thereafter analyzed by flow cytometry for
expression of CD138. Bar charts show mean values ± SD of the percentage of CD138+ B cells in three
independent experiments. Significant differences calculated with two-way ANOVA are marked by an
asterisk. * p ≤ 0.05, ** p ≤ 0.01.  

Another possibility to enrich antigen-specific B cells is a memory isolation kit, which works by

specifically isolating IgG+ B cells. In order to confirm that stimulation with the specific

antigen is necessary for the differentiation into plasma cells from antigen-specific B cells,

KLH-specific B cells were purified by the memory isolation kit and stimulated with the same

stimuli as shown for OVA-specific B cells. However, instead of stimulating KLH-specific B cells

with their specific antigen, the non-specific OVA-protein was added. Unexpectedly, even

though the specific antigen KLH was not present, this experiment showed similar results as

OVA-specific B cells (Fig. 3.74 compared to Fig. 3.73). KLH-specific B cells seem to be

stimulated by anti-IgG antibodies contained in the memory isolation kit and therefore

respond by differentiation into plasma cells when stimulated with additional cytokines. In

OVA-specific B cells, purification with the memory isolation kit and additional treatment with

OVA-protein does not result in a higher differentiation into plasma cells than with OVA-

protein alone (data not shown). The lack of a method for the isolation of specific B cells

without stimulating the BCR, makes it difficult to determine the role of BCR signaling in

plasma cell differentiation.
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Fig. 3.74 Induction of plasma cell differentiation in antigen-specific B cells. KLH-specific B cells (KLH)
of immunized mice were stimulated with the indicated stimuli for 3 days and thereafter analyzed by
flow cytometry for expression of CD138. Bar charts show values of the percentage of CD138+ B cells
of one representative experiment.

Clearly the most important aspect when thinking about OVA-specific plasma cells for

immunotherapy is the actual secretion of OVA-specific antibodies. Therefore, the

supernatant of the differentiation cultures were collected and an OVA-specific Elisa was

performed. As expected, control B cells and KLH-specific B cells did not secrete any OVA-

specific IgG1 antibodies when treated with OVA-protein or any of the other stimuli (Fig.

3.75). In accordance with the observed changes in CD138+ B cells, OVA-specific B cells

secreted OVA-specific IgG1 antibodies when treated with OVA-protein and IL-4 (4.53 ng/ml),

OVA-protein + IL-4 + IL-21 (5.72 ng/ml) or OVA-protein + IL-4 + IL-21 + CD40L (6.44 ng/ml).

Moreover, stimulation with OVA-protein, IL-4 and CD40L without IL-21 led to a reduced

secretion of OVA-specific IgG1 antibodies (3.64 ng/ml). As expected, OVA-specific B cells

produced higher amounts of OVA-specific IgG1 antibodies when treated with LPS (25.52

ng/ml). In contrast to the low percentage of CD138+ B cells in OVA-specific B cells that were

treated with IgM and IL-4, the secretion of OVA-specific IgG1 antibodies was relatively high

(11.65 ng/ml).
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Fig. 3.75 Secretion of OVA-specific IgG1 antibodies in stimulated culture supernatants. OVA-specific
B cells (OVA) or KLH-specific B cells (KLH) of immunized mice or CD19+ B cells of non-immunized mice
(Control) were stimulated with the indicated stimuli for 3 days and supernatants were analyzed by
ELISA for the production of OVA-specific IgG1 antibodies. Bar charts show mean values ± SD of
antibody concentration in ng/ml of one independent experiment.

For in vivo experiments, OVA-specific B cells were stimulated with the combination of OVA-

protein, IL-4, IL-21 and CD40L, since differentiation into CD138+ cells and secretion of specific

antibodies were high and cells survived best over the culture period of 3 days (data not

shown).

3.7 The Combined Vaccination with Antigen-Specific CD40B Cells and Plasma

Cells Induces Anti-Tumor Immunity and Prolongs Survival

The experiments so far have confirmed the hypothesis that OVA-specific CD40B cells more

efficiently induce an antigen-specific T cell response than polyclonal CD40B cells in vitro and

in vivo. Therefore, the influence of a preventive immunization with tumor-antigen specific

CD40B cells on tumor establishment and growth was investigated. The E.G7 lymphoma cells

express OVA-protein in the context of MHC I and gives rise to H-2 Kb restricted cytotoxic

lymphocytes specific for the OVA 258-276 peptide and was therefore chosen as tumor

model. For preventive immunization, protein-pulsed APCs were injected into C57BL/6N mice

i.v. three times in an interval of seven days with APCs numbers varying between 0.1 and 0.6

x106 (Fig. 3.76). On day 21, immunized mice were inoculated with E.G7 tumor cells, which
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were analyzed for their expression of OVA-protein in the context of MHC I by FACS (Fig.

3.68). Tumor growth was observed the earliest on day 7 after tumor inoculation and daily

measured from there on.

Fig. 3.76 Overview of the tumor vaccination scheme. Different APCs loaded with protein were
injected three times in an interval of seven days. EG.7 lymphoma cells were injected on day 21.
Tumor growth was measured thereafter.

Polyclonal CD40B cells were isolated from non-immunized mice by CD19+ selection. OVA-

specific CD40B cells were isolated from immunized mice and purified by positive selection.

Both B cell populations were activated by CD40 stimulation for 2 days. On the day of

injection, polyclonal B cell cultures consisted of > 95 % CD19+ B cells and OVA-specific B cell

cultures consisted of > 80 % CD19+ > 60 % OVA-specific B cells. Protein-pulsed DCs served as

standard, to which CD40B cells were compared, and DCs were injected at 93 % purity (Fig.

3.54). The APC phenotype of B cells and DCs was confirmed by FACS analyses before

injection (Fig. 3.42-3.45+3.55). 0.1-0.6 x 106 cells were injected in 100 µl PBS. Positive

controls were immunized with OVA-protein and CpG in IFA. Negative controls were treated

with IFA and PBS only. For plasma cell differentiation, OVA-specific B cells were stimulated

with the combination of OVA-protein, IL-4, IL-21 and CD40L. Secretion of OVA-specific IgG1

antibodies was confirmed by ELISA (Fig. 3.77).

Fig. 3.77 Secretion of OVA-specific IgG1 antibodies. OVA-
specific B cells were stimulated with OVA-protein, IL-4, IL-21
and CD40L for 3 days in order to stimulate plasma cell
differentiation. The supernatant was collected and the
concentration of OVA-specific IgG1 antibodies was
determined by ELISA. Polyclonal CD19+ B cells served as
control. Bar charts represent one representative
experiment.
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Mice that were immunized with APCs before tumor inoculation showed a delayed tumor

growth compared to negative controls (IFA + PBS only) and positive controls (IFA + CpG+

OVA-Protein + PBS) (Fig. 3.78). On day 16 after tumor inoculation, the difference in tumor

volume of negative controls was significant to all other tested groups. Mice of the negative

control group died much earlier than the mice in all other groups and this difference was

significant to mice treated with CD40B cells alone or in combination with plasma cells (Fig.

3.79). Although tumors of positive controls grew faster and the mice died earlier than mice

that were treated with APCs, the differences were not significant.

Comparing the different APC treated groups, CD40B cells prolonged survival more efficiently

than did DCs. Tumors of mice that were treated with control CD40Bs grew faster than

tumors of mice treated with DCs. Nevertheless, mice of the control CD40B group died later

than mice that were treated with DCs. Both differences were not significant. Tumors of mice

that were treated with control CD40Bs grew also faster than tumors of mice that were

treated with OVA CD40Bs alone or combination with plasma cells. This difference was

significant on day 18. Moreover, mice treated with OVA CD40Bs alone or in combination

with plasma cells survived longer than control CD40B treated mice.

Tumors in DC treated mice grew faster and the mice died earlier than tumors of mice treated

with OVA CD40Bs alone or in combination with plasma cells. The difference was not

significant on day 24 to OVA CD40Bs alone, but to OVA CD40Bs in combination with plasma

cells.

The addition of plasma cells also resulted in a significant difference in tumor growth

between the mice treated with OVA CD40Bs and mice treated with CD40Bs in combination

with plasma cells.

The difference in survival of mice that were treated with OVA CD40Bs in combination with

plasma cells was significant to all other groups except for mice treated with OVA CD40Bs

alone or plasma cell alone.

Tumors of mice that were treated with plasma cells alone grew slower than tumors of

negative controls for the first 13 days, but afterwards in two of three mice the tumor volume

increased rapidly. However, one mouse stayed tumor free until the end of the experiment

and this difference was significant to negative controls.
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Fig. 3.78 Antigen-specific CD40B cells and plasma cells induce
anti-tumor immunity. C57BL/6N mice were immunized with
0.1-0.6 x 106 APCs, i.e. polyclonal CD40B cells (Control CD40Bs),
OVA-specific CD40B cells (OVA CD40Bs), pure CD40-activated
dendritic cells (CD40 DCs); PBS+IFA as negative controls (NC),
IFA+OVA+CpG as positive controls (PC); OVA-specific plasma
cells alone (OVA PCs) or in combination with OVA-specific
CD40B cells (OVA CD40Bs+ OVA PCs) three times i.v. in an
interval of seven days. On day 21, 0.4 x 106 E.G7 lymphoma
cells were injected into immunized mice and tumor growth was

measured every day thereafter. Growth curves show increase of tumor volume in mm3 of one
out of three representative experiments with three mice per group. Significant differences
calculated with two-way ANOVA are marked by an asterisk. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 
0.001, **** p ≤ 0.0001. Curves had to be terminated when one mouse of the group had to be 
sacrificed due to extensive tumor growth as indicated by †.
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Fig. 3.79 Antigen-specific CD40B cells and plasma cells prolong survival of tumor-bearing mice.
C57BL/6N mice were immunized with 0.1-0.6 x 106 APCs, i.e. polyclonal CD40B cells (Control
CD40Bs), OVA-specific CD40B cells (OVA CD40Bs), pure CD40-activated dendritic cells (CD40 DCs);
PBS+IFA as negative controls (NC), IFA+OVA+CpG as positive controls (PC); OVA-specific plasma cells
alone (OVA PCs) or in combination with OVA-specific CD40B cells (OVA CD40Bs+ OVA PCs) three
times i.v. in an interval of seven days. On day 21, 0.4 x 106 E.G7 lymphoma cells were injected into
immunized mice. Survival of mice was observed over a period of 40 days. Survival curves show one
out of three representative experiments with three mice per group. Significant differences were as
follows: * OVA PCs vs. Neg. Controls; * OVA CD40Bs vs. Neg. Controls; * Control CD40Bs vs. Neg.
Controls; * OVA CD40Bs+ OVA PCs vs. Neg. Controls/ Pos. Controls/ Control CD40Bs/ CD40 DCs.
Significant differences calculated with the Mantel-Cox test: * p ≤ 0.05.  
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4. Discussion

The present study strongly underlines the potential of CD40B cells as APCs for cancer

immunotherapy and adds further advantages by combining induction of T cell immunity with

the secretion of specific antibodies, the B cell’s most prominent function in immune

response.

4.1 Murine Antigen-Specific B Cells are Class-Switched and Develop an APC

Phenotype when Stimulated with the CD40L

Several studies reported the detection of antigen-specific B cells in immunized mice (Julius et

al. 1976, Hayakawa et al. 1987, Hoven et al. 1989, Lalor et al. 1992, Townsend et al. 2001,

Newman et al. 2003), but only few focused on the isolation of those cells and some rather

relied on the use of mouse models with genetically modified B cells (Phan et al. 2003, Avalos

et al. 2014). None of the groups studied the antigen-presenting function of the antigen-

specific B cells.

In this study, antigen-specific B cells were isolated from mice and successfully enriched by

the use of antigen tetramers. Enrichment highly depended on the grade of biotinylation of

the antigen and the efficiency of immunization. This is in accordance with other studies

showing that a tetrameric antigen-labeling is crucial to include the whole antigen-specific B

cell repertoire (Franz et al. 2011). Detection of antigen-specific B cells in the mesenteric

lymph nodes varied, since they do not represent the only draining lymph nodes after i.p.

injection (Parungo et al. 2007). Therefore, lymph nodes were not included in the isolation of

antigen-specific B cells.

Compared to polyclonal B cells of non-immunized mice and immunized-mice, the antigen-

specific B cells showed a class-switched phenotype by downregulation of IgD and switch

from IgM to IgG. The enrichment of class-switched B cells is in agreement with antigen-

specificity of the isolated B cells, since it is well known that encounter of B cells with their

specific antigen results in isotype switching and somatic hypermutation (Good-Jacobson and

Shlomchik 2010). As expected for antigen-specific B cells that recently underwent activation,

MHC and costimulatory molecules were upregulated in OVA- and KLH-specific B cells
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(Lenschow et al. 1994, Nashar and Drake 2005, Rodriguez-Pinto 2005). In line with this, no

class-switch or activation was observed in OVA- or KLH-negative B cells in immunized mice.

The increase in the percentage of CD138+ antigen-specific B cells probably represents an

intermediate state of a part of the antigen-specific B cell population undergoing

differentiation into plasma cells (Lacotte et al. 2013). It was not expected that B220

expression stayed unchanged in antigen-specific B cell compared to control B cells. B220 is

suggested to regulate antigen-receptor mediated signal transduction by controlling

phosphorylation of multiple compartments (Brown et al. 1994). Moreover, downregulation

of B220 has been described previously in antigen-specific B cells of immunized mice (Lalor et

al. 1992, Smith et al. 1996) and after in vitro activation of B cells (Dustin et al. 1995).

However, the analyzed B cells in those studies were antibody-secreting CD138+ B cells. In

contrast, the B cells in the present study are mostly CD138- antigen-specific B cells and

therefore rather of the classical memory B cell phenotype that expresses B220 (McHeyzer-

Williams et al. 2000). The upregulation of CD19 in immunized mice was expected, since it

plays an important role in affinity maturation upon antigen encounter and the subsequent

antibody response (Del Nagro et al. 2005).

Stimulation with the CD40 ligand and IL-4 was shown to efficiently stimulate murine B

cells to proliferate and develop an antigen-presenting phenotype (Ahmadi et al. 2008, Liebig

et al. 2010). Accordingly, OVA-specific B cells proliferated when cultivated on CD40L-

expressing HeLa cells and showed the expected cluster formation and morphology (Liebig et

al. 2010). In addition, B cells could be highly enriched over a period of 14 days by stimulation

with the CD40L even when starting with a low B cell purity.

As expected from earlier studies on polyclonal CD40B cells (Ahmadi et al. 2008, Liebig et al.

2010), antigen-specific B cells further upregulate molecules that are involved in antigen-

presentation. Furthermore, they downregulate the expression of IgD and upregulate the

expression of IgM and IgG. This change was also observed in polyclonal B cells, thus

indicating an induction of class-switching and differentiation into memory B cells or

plasma cells (Good-Jacobson and Shlomchik 2010). The slight increase in the percentage of

CD138+ CD40B cells after one day in culture was expected, since it was shown that CD40

stimulation has an influence on the differentiation into plasma cells (Spriggs et al. 1992,

Grabstein et al. 1993, Maliszewski et al. 1993). B220 expression was slightly changed in
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control CD40B cells, OVA-specific and OVA-negative CD40B cells. However, this change was

not significant. The observed upregulation of CD19 after CD40L stimulation in antigen-

specific B cells was expected, since CD19 signaling decreases the threshold for BCR

stimulation (Depoil et al. 2008) and plays an important role in particular in class-switched B

cells, i.e. deficiency in CD19 signaling leads to an impaired affinity maturation and antibody

response (Kanegane et al. 2007, van Zelm et al. 2014).

Unexpectedly, antigen-specific murine B cells could not be expanded in the CD40 culture.

The percentage of OVA-specific B cells among the entire B cell population decreased rapidly,

even though the initial antigen-specific B cell purity was high. This observation is in line with

a study by Ahamdi et al. (Ahmadi et al. 2008), who cultivated B cells from antigen-

immunized mice on CD40L-expressing feeder cells and reported a drop in the percentage of

antigen-specific B cells in the first days of culture. They did in fact report a stabilization of

the percentages of antigen-specific B cells. However, these data were not shown in the

publication. Although the number of cells in culture decreased in the first seven days, the

loss of antigen-specific B cells due to apoptosis was only minor. Instead, antigen-specific

class-switched B cells seem to possess a proliferative disadvantage compared to the

polyclonal B cells that did not undergo class-switching. This hypothesis is supported by other

studies, which observed that the expansion capacity of murine IgG+ B was lower than that of

IgM+ B cells (Kometani et al. 2013). These results were different to studies with human B

cells, which do not show a dependence of proliferation on a class-switched phenotype

(Tangye et al. 2003).

The question arises why a strong activation occurs in antigen-specific CD40B cells as seen by

upregulation of MHC and costimulatory markers, although the proliferation is poor.

However, several experiments with soluble anti-CD40 antibodies indicate that the activation

of B cells is independent of the proliferation especially when using the CD40L for stimulation

(unpublished data).

Several factors might influence the outcome of antigen-specific B cell enrichment: from

varying immunization efficiency leading to low antigen-specific B cell frequency or low

affinity BCRs, over the grade of antigen biotinylation, to the strength of antigen-BCR cross-

linking during purification and the resulting activation signaling before culture (Avalos et al.

2014). Although it remains challenging to control these factors, in this study a reliable and
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efficient method was developed that provides antigen-specific B cell enrichment with stable

purity for the production of antigen-presenting B cells.

4.2 Human Antigen-Specific B Cells can be Isolated from PBMCs and Develop

an APC Phenotype when Stimulated with the CD40L

Various studies reported the detection of antigen-specific B cells in human PBMCs of

vaccinated donors , but only few focused on the isolation of those cells (Leyendeckers et al.

1999, Ward et al. 2008, Franz et al. 2011). Most studies relied on expansion and conversion

of memory B cells into antibody-secreting plasma cells to monitor B cell responses (Crotty et

al. 2003, Buisman et al. 2009, Fecteau et al. 2009, Corti et al. 2010). A recent approach

achieved the isolation of human tetanus toxoid-specific memory B cells by use of antigen-

tetramers (Franz et al. 2011) and further confirmed antigen-specificity by demonstrating

high affinity binding of the BCR antibodies to its antigen. However, the group did not

characterize the phenotype of the isolated B cells, nor did they stimulate their antigen-

presenting function.

In this study, antigen-specific B cells were isolated from vaccinated donors and enriched by

the use of antigen tetramers. The efficiency of the enrichment highly depended on initial

antigen-specific B cell frequency and the number of B cell available for purification.

Enrichment of HBV-specific B cells with high initial frequencies resulted in 30 % pure

populations, although the overall B cell purity could not be increased. The relatively low

frequency of B cells in PBMCs and the limitation of the number of PBMCs that can be

obtained from a donor, makes it challenging to increase the enrichment of antigen-specific B

cells. Higher B cell frequencies in spleens of mice and the overall higher number of available

splenocytes probably account for the differences observed in murine and human antigen-

specific B cell enrichment. Nevertheless, the here described enrichment technique achieved

higher purities of antigen-specific B cells than formerly described methods (Leyendeckers et

al. 1999, Ward et al. 2008).

The isolated antigen-specific B cells express several molecules defining their phenotype. As

expected, antigen-specific B cells upregulated IgG1 in comparison to non-specific B cells. At

first sight, the slight increase in IgD+ in antigen-specific B cells seems astonishing, since
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antigen-specific B cells would be expected to possess a classical memory B cells phenotype

(Coico et al. 1983, Ziegner et al. 1994). High expression of IgD would rather point towards a

naïve B cell phenotype. However, a closer analysis of the IgD+ subtypes revealed a lower

percentage of naïve IgD+ CD27- B cells in the antigen-specific B cell compartment compared

to control B cells and HBV-negative B cells. Moreover, another IgD+ B cell subpopulation has

been described that additionally expresses CD27 and thereby resembling neither the

classical naïve nor the classical memory B cell phenotype (Klein et al. 1999, van Zelm 2012).

These IgD+ CD27+ B cells appear to contain a high frequency of autoreactive cells (Koelsch et

al. 2007) and therefore are presumably antigen-specific. Interestingly, in the present study

the percentage of IgD+ CD27+ antigen-specific B cells was increased among the IgD+

subpopulation probably accounting for the observed overall increase in the percentage of

IgD+ B cells. The function of this antigen-specific subpopulation is however unclear.

Although antigen-specific B cells of the donors have not been recently activated, they

express higher levels of CD86 and MHC II than polyclonal B cells of the same donor. In this

context, human memory B cells were shown to express CD86, even after circulating in the

body for several years (Good et al. 2009) and unpublished data).

The percentage of CD138+ antigen-specific B cells was increased probably representing an

intermediate state of a part of the antigen-specific B cell population undergoing

differentiation into plasma blasts or plasma cells (Fink 2012). The upregulation of CD19

expression was expected in human antigen-specific B cells. Like in mice, CD19 is important

for affinity maturation and in addition for the development of memory B cells (van Zelm et

al. 2014). CD20 was upregulated in antigen-specific B cells. Although CD20 was the one of

the first B cell-specific differentiation antigen that was identified (Stashenko et al. 1980), its

specific function or ligand are still unknown. Nevertheless, a role in the regulation of B cell

activation and proliferation was demonstrated (Tedder et al. 1985) and CD20 was identified

to be a component of a multimeric cell surface complex that regulates Ca2+ transport across

the plasma membrane (Bubien et al. 1993, Kanzaki et al. 1997). However, its role in antigen-

specific B cells is even less well defined. On the one hand, CD20 was shown to be

downregulated upon CD40 signaling (Anolik et al. 2003) and to enable optimal B-cell

responses, specifically against T-independent antigens (Kuijpers et al. 2010). These

observations would be in contrast to the present data, since antigen-specific class-switched
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B cells usually develop through interaction with T cells and subsequent CD40 signaling

(Danese et al. 2004, Elgueta et al. 2009). On the other hand, in the context of BCR signaling,

CD20 induces calcium flux supporting BCR signaling (Walshe et al. 2008, Franke et al. 2011)

and anti-CD20 treatment results in a time-dependent inhibition of the BCR cascade (van de

Ven et al. 2012). This rather suggests an important role of CD20 in the BCR signaling and

therefore in antigen-specific B cells.

Stimulation with the CD40 ligand and IL-4 was shown to highly stimulate human B cells

proliferation and the development of an antigen-presenting phenotype (Schultze et al. 1997,

von Bergwelt-Baildon et al. 2004, Liebig et al. 2009). Accordingly, HBV-specific B cells

proliferated when cultivated on CD40L-expressing NIH cells and showed the expected cluster

formation and morphology (Liebig et al. 2009). B cell expansion over a period of 14 days was

not as high as expected from literature. This difference probably resulted from downsizing

the culture conditions in order to adjust to the low number of HBV-specific B cells. This has

been shown to impair B cell proliferation in preceding studies (unpublished data). Moreover,

the percentage of HBV-specific B cells stayed stable or decreased in culture (data not

shown). IgG+ antigen-specific B cells should not have a proliferative disadvantage as it was

observed for murine IgG+ B cells (Tangye et al. 2003). However, other factors might as well

contribute to the decrease of specific B cells in the culture: Initial HBV-purity was low, overall

proliferation was not high. Moreover, the percentage of CD138+ B cells increased

significantly in HBV-specific cultures from day 7 to day 14, which might indicate a

differentiation into plasma cells. Nevertheless, the overall B cells could be highly enriched

over a period of 14 days by stimulation with the CD40L even when starting with a low B cell

purity.

As expected from earlier studies on polyclonal CD40B cells (Lapointe et al. 2003, Liebig et al.

2009), antigen-specific B cells highly upregulate costimulatory molecules that are involved in

antigen-presentation. B cell activation in terms of CD86 and CD80 upregulation was shown

to be independent of B cell proliferation. Thus, the observed high activation despite the poor

proliferation was not contradictory. Unexpectedly, MHC II molecules stayed stable in

polyclonal B cells of non-vaccinated donors and where even downregulated in antigen-

specific and polyclonal B cells of vaccinated donors. This effect might also be explained by

insufficient culture conditions due to downsizing of the culture system. Whether the
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acquired antigen-presenting phenotype is effective enough to induce an antigen-specific T

cell response remains to be examined in human mixed-lymphocyte reactions.

4.3 Murine Antigen-Specific CD40B Cells Induce an Antigen-Specific T Cell

Response In Vitro and In Vivo

Murine and human CD40B cells were shown to present antigen to T cells, thereby inducing

an antigen-specific T cells response (Schultze et al. 1997, von Bergwelt-Baildon et al. 2002,

Ahmadi et al. 2008). In vitro induction of a T cell response in autologous MLRs requires TCR

signalling through binding to an autoantigen-MHC complex and T-cell activation through

costimulation by APCs. In our model, antigen-specific CD40B cells rapidly upregulate the

expression of the costimulatory molecules CD80 and CD86 and MHC I and II molecules.

Therefore, it was not astonishing that antigen-specific CD40B cells induce significant

proliferation and activation of both CD4+ and CD8+ antigen-specific T cells. In high B-to-T

cell ratios, OVA-specific CD40B cells were superior to polyclonal CD40B cells, thereby

supporting the hypothesis that the use of antigen-specific B cells improves antigen-

presentation by the B cells and thereby induction of a T cell response. The advantage of

antigen-specific B cells for the use as antigen-presenting CD40B cells over polyclonal B cells

lies in two characteristics provided by antigen uptake via their specific BCR. First, the BCR

affinity was shown to be directly proportional to the capacity of B cells to present antigen to

CD4+ T cells (Rodriguez-Pinto 2005), i.e. B cells with a very high affinity BCR (Ka of 5 x 1010 M-

1) could induce CD4+ T cell proliferation after being incubated with soluble antigen at

concentrations as low as 0.05 nM (Batista and Neuberger 1998). In the present study, the

antigen concentration for pulsing of APCs was 1500 times higher (75 nM). Nevertheless,

presentation after fluid-phase pinocytosis of antigen, as it occurs in polyclonal B cells,

required concentrations about 5000 times higher (Batista and Neuberger 1998).

Proliferation and activation by APCs was equally high in CD4+ and CD8+ T cells. One would

expect a higher response in CD4+ T cells, since presentation of exogenous antigens via MHC II

molecules is the classical pathway in professional APCs. However, the process of cross-

presentation has been described in dendritic cells and B cells (de Wit et al. 2010, Kurts et al.

2010), which allow professional APCs to process and present exogenously derived antigens
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on MHC class I molecules. Since CD40B cells were also observed to upregulate the

expression of MHC I molecules in the culture, it is no longer surprising that CD8+ T cells show

equally high responses. In lower B-to-T cell ratios OVA-specific CD40B cells were still more

potent in T cell induction than polyclonal CD40B cells. DCs are usually considered to be more

potent APCs than B cells (Salio et al. 2001). Therefore, it was astonishing that there was no

difference between OVA-specific CD40B cells and DCs in higher APC-to-T cell ratios. As

expected, differences between DCs and CD40B cells became apparent in lower APC-to-T cell

ratios. However, from a biological aspect it might be delusive to directly compare two such

fundamentally differing cell types. Murine DCs posses a 4.5 times higher surface than CD40B

cells (data not shown) and therefore express more costimulatory and MHC molecules on

their surface. Since both DCs and CD40B cells were shown to make contact with more than

one T cell at a time (Klein-Gonzalez et al. accepted 2015), a higher surface might lead to an

advantage in antigen presentation when the same numbers of APCs are compared in the

system. Nevertheless, from the aspect of clinical application it is of high relevance that

antigen-specific CD40B cells are equally potent APCs as DCs, especially when considering the

fact that, with regard to the clinical application as cellular adjuvant, CD40B cells in contrast

to DCs are available at almost unlimited numbers.

Very few studies have focused on the in vivo antigen-presenting capacity of CD40B cells. Two

independent reported that B cell activated with a soluble anti-CD40 antibody (HM40-3)

alone or in combination with CpG are weak inducers of cytotoxic T cell responses (Lee et al.

2008, Guo et al. 2009). However, two different studies contradicted these results by showing

that polyclonal CD40B cells induced LCMV-specific CD8+ T cell responses after i.p. vaccination

(Ritchie et al. 2004, Liebig et al. 2011). In the present study, OVA-specific CD40B cells

induced antigen-specific killing of target cells. Although antigen-specific B cells were only

enriched for CD19+ B cells and not for their antigen-specificity, therefore representing only 2

% of the B cell population, they induced a significantly higher cytotoxic T cell response than

polyclonal CD40B cells. Vaccination with enriched OVA-specific CD40B cells would probably

result in even stronger T cell responses. In order to match conditions of the antigen-specific

CD40B cells (i.e. 2 % OVA-specific B cells with 98 % polyclonal B cells), mature DCs were

mixed with polyclonal CD40B cells before injection. Interestingly, this combination did result

in only very weak CD8+ T cell induction, which was significantly lower than after vaccination
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with antigen-specific CD40B cells. Only when 95 % pure DCs were injected for vaccination,

equally high or higher specific lysis than with OVA-specific CD40B cells was observed.

Polyclonal CD40B cells might exert some inhibiting functions on DCs in the mixture (Tretter

et al. 2008), thereby accounting for the observed weak induction of T cell responses.

Taken together, these data provide evidence for the capacity of CD40B cells to induce T

cell responses in vitro and in vivo and that antigen-specific CD40B cells are indeed more

efficient APCs than polyclonal CD40B cells.

4.4 Tumorantigen-Specific CD40B Cells Home to Secondary Lymphoid Organs

and to the Tumor

An APC must physically encounter a T cell in order to induce an immune response. This takes

place in the secondary lymphoid organs. In the setting of the anti-tumor immune response

these interactions usually must occur in the tumor draining lymph nodes in order to achieve

a strong response. The in vivo migration experiments confirmed homing of polyclonal and

antigen-specific CD40B cells into the spleen and the abdominal lymph nodes. A five-day

period seems to be sufficient for the CD40B cells to arrive in the secondary lymphoid organs

after i.v. injection. This is in line with another study by Ahmadi et al., who could detect GFP+

CD40B cells of immunized mice in the spleen and lymph nodes seven days after injection by

flow cytometry analyses (Ahmadi et al. 2008). After s.c. injection polyclonal CD40B cells were

not detected by luciferase imaging. Therefore, s.c. injection was not included in subsequent

experiments. However, a recent study with GFP+ cells showed that a small number of

polyclonal CD40B cells homes to the secondary lymphoid organs after s.c. injection (Klein-

Gonzalez et al. accepted 2015). The luciferase detection method is probably not sensitive

enough to detect this small number of cells. In the lymphoid tissue, CD40B cells were

recently shown to accumulate in the B-cell follicles, but also to a small extend in the T-cell

zone or at the edge of the T-cell zone (Klein-Gonzalez et al. accepted 2015). These results

suggest that CD40B cells interact with T cells in the lymphoid organs. These findings imply a

clear advantage of CD40B cells over DCs, of which only 4 % of injected cells migrate to the

draining lymph nodes in mice and humans and rather stay at the site of injection (Steinman

and Banchereau 2007).
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As expected, polyclonal CD40B cells do not home to the tumor in E.G7 tumor-bearing mice,

but localize in the spleen, the abdominal lymph nodes and the tumor draining lymph nodes.

Excitingly, tumorantigen-specific CD40B cells appeared in the tumor three days after i.v.

injection while about half of the Luc+ CD40B cells remained in the spleen and the tumor

draining lymph nodes. Tumor-infiltrating B cells in human breast cancer (Hansen et al. 2001)

and B cells in the tumor-draining lymph nodes in mice (Li et al. 2009) were shown to produce

autoantibodies against tumor targets, thereby suggesting that at least some of the tumor

infiltrating B cells are antigen-specific. Tumor-infiltrating B cells also contribute to tumor cell

death by expression of granzyme B (Hagn et al. 2009) and TRAIL (Kemp et al. 2004), an

apoptosis inducing protein. Therefore, it was not completely unexpected to detect

tumorantigen-specific CD40B cells in the tumor. These findings offer new application

possibilities for CD40B cells in cancer immunotherapy. Loading of tumorantigen-specific

CD40B cells with magnetic beads that can be detected in MRI could allow early detection of

tumors. Moreover, tumorantigen-specific CD40B cells could be used as drug delivery vehicle

by loading them with oncolytic viruses.

4.5 Antigen-Specific B Cells can be Stimulated to Differentiate into Antibody-

Secreting Plasma Cells

Several protocols have been reported to differentiate B cells into antibody-secreting plasma

cells (Spriggs et al. 1992, Grabstein et al. 1993, Maliszewski et al. 1993, Kawabe et al. 1994,

Arpin et al. 1995, Callard et al. 1995, Han et al. 1995, Silvy et al. 1996, Randall et al. 1998,

Ozaki et al. 2004, Kometani et al. 2013). Most of these protocols have been focusing on B

cells in general rather than antigen-specific B cells, therefore leaving the class-switched

phenotype without consideration. However, at least one study reported the differentiation

of antigen-experienced IgG+ B cells into plasma cells after stimulation with the BCR ligand

(Kometani et al. 2013). In the present study, antigen-specific B cells were therefore

stimulated with crosslinked OVA-protein in order to trigger differentiation into plasma cells.

The combination of OVA-protein, IL-4, IL-21 and soluble CD40L induced expression of CD138,

a plasma cells marker, in about stimulated 50 % of B cells. The crucial influence of IL-21 was

not surprising, since this cytokines was reported in other studies to be essential for plasma

cell differentiation (Ozaki et al. 2004). However, the influence of CD40L was unexpected,
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because contradictory results have been reported on its role in plasma cell differentiation.

While several in vitro studies have suggested that CD40 signaling promotes B cell

differentiation and Ig secretion (Spriggs et al. 1992, Grabstein et al. 1993, Maliszewski et al.

1993), in vitro and in vivo studies in CD40-deficient mice have suggested that CD40

engagement may actively inhibit B cell differentiation into plasma cells (Kawabe et al. 1994,

Arpin et al. 1995, Callard et al. 1995, Han et al. 1995, Silvy et al. 1996, Randall et al. 1998).

However, those studies focused on differentiation of naïve B cells. In contrast, at least one

study supported the observation that CD40L stimulation is beneficial for differentiation of

antigen-experienced B cells into plasma cells (Kometani et al. 2013). Therefore, these

contradictory results might simply display the difference between naïve B cells and antigen-

experienced IgG+ B cells. Although LPS, which was used as positive control in differentiation

assays, induced stronger differentiation into CD138+ cells and higher antibody secretion than

other stimuli, it was not considered as stimulus for in vivo experiments. B cells that were

activated with bacterial stimuli were shown to possess regulatory functions (Tretter et al.

2008). Since only about 60 % of B cells in the assay differentiated into plasma cells when

stimulated with LPS, the risk was too high to induce immunosuppression rather than an anti-

tumor response when using LPS-differentiated cells for immunotherapy. Moreover, injection

of LPS is a known to induce a septic shock in humans and mice (Opal 2010).

Interestingly, beside LPS-treated cells the highest amount of OVA-specific IgG1 antibodies

was secreted by cells that were treated with IgM and IL-4. This was unexpected since only

about 12 % of IgM and IL-4 treated B cells differentiated into CD138+ cells. However, this

discrepancy can probably be explained by the existence of early antibody-secreting cells, so

called plasma blasts, that express MHC class II on their surface, but not yet CD138 (Manz et

al. 1998, Hoyer et al. 2004, Racine et al. 2011, Lacotte et al. 2013). However, this hypothesis

has to be confirmed by flow cytometry analyses of antibody-secreting cells in differentiation

assays. The secretion of IgG1, the most frequent antibody isotype in human serum and

probably the major effector of antigen clearance (Collins and Jackson 2013), by

differentiated cells could be established in this study. However, the secretion of other

antibody isotypes than IgG1 remains to be confirmed.



Discussion

124

4.6 Immunotherapy with Antigen-Specific CD40B Cells in Combination with

Plasma Cells Leads to Anti-Tumor Immunity and Prolongs Survival

So far antigen-specific CD40B cells proved to be superior APCs to polyclonal CD40B cells in

vitro and in vivo. Therefore, their ability to induce anti-tumor immunity in a preventive

vaccination approach was examined. With the expectation to enhance the anti-tumor

immune response, cellular and humoral immune functions of B cells were joined by

vaccinating mice with antigen-specific CD40B cells as APCs in combination with antibody-

secreting plasma cells. The vaccination with tumorantigen-specific CD40B cells induced anti-

tumor immunity, which resulted in the delayed growth of E.G7 lymphomas and a prolonged

survival of tumor-bearing mice. Excitingly, this response could be further improved with the

combinatorial vaccination of tumorantigen-specific CD40B cells and anti-tumor antibody-

secreting plasma cells. The differences in tumor growth and survival after combined

immunotherapy were significant to all other tested cell types and conditions. Polyclonal

CD40B cells were also shown to reduce tumor growth and prolong survival of tumor-bearing

mice. These data are supported by two studies that use CD40B cells for preventive

vaccination in LL-LCMV tumors or B16 melanomas (Ritchie et al. 2004, Liebig et al. 2011)

reporting a reduced tumor growth. In the later study, 1 x 107 CD40B cells were injected per

vaccination, which is 100 times more than were used here. It seems that even at low

numbers, CD40B cells overcome inhibitory mechanisms by the tumor. This idea is also

supported by a study on tumor-mediated immune suppression of CD40B cells. Phenotype,

migratory potential and antigen-presenting function of human CD40B cells were shown to

be resistant to PGE-2, IL-10, TGF-β and VEGF (Shimabukuro-Vornhagen et al. 2012). Tumor 

growth in mice vaccinated with peptide-pulsed DCs was reduced and survival prolonged,

however, not as efficiently as in mice that were treated with antigen-specific CD40B cells

alone or in combination with plasma cells. This was unexpected, since so far in vivo CD40B

cells have never been shown to be equal or superior to DCs as cellular adjuvants for

immunotherapy.

Whether antigen-specific CD40B cells or the combined immunotherapy with plasma cells will

be efficient when used in a therapeutic approach remains to be examined. Guo et al.

reported failure of 1 x 105 OVA-peptide pulsed CD40B cells to reduce tumor growth of E.G7

lymphomas in a therapeutic setting (Guo et al. 2009). Furthermore, Lee et al. showed no
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reduction of tumor growth when treating B16 melanoma-bearing mice with 4 x 105 RNA and

costimulatory-transfected CD40B cells (Lee et al. 2008). However, these studies used a

soluble anti-CD40 antibody (HM40-3) for the activation of B cells, which was demonstrated

to result in a weaker CD40 stimulus than activation by CD40L-expressing feeder cells

(Fanslow et al. 1994, Neron et al. 2011). When comparing the APC phenotype of the CD40B

cells in the studies of Lee et al. and Guo et al. with those obtained here, it becomes apparent

that stimulation with anti-CD40 antibodies does not result in the high upregulation of MHC

and costimulatory molecules that were observed in the present study. Therefore, it is likely

that in a therapeutic setting antigen-specific CD40B cells will prove to induce anti-tumor

immunity anyhow.

4.7 Concluding Remarks

Taken together, this study took the first step towards a use of human antigen-specific CD40B

cells as cellular adjuvant in cancer immunotherapy. Isolation and expansion of CD40B cells is

simple and fast resulting in high numbers of CD40B cells for adoptive transfer. Thus, they

provide several advantages over dendritic cell vaccines. Although human antigen-specific B

cells could not yet be expanded in the CD40 culture system, they were highly activated and

acquired an antigen-presenting phenotype. Moreover, a mixture of highly expanding

polyclonal B cells and few tumorantigen-specific CD40B cells is probably still advantageous

for T cell induction, since polyclonal B cells on their own where shown to be efficient

antigen-presenting cells. Although the combined preventive vaccination with antigen-

specific CD40B cells and plasma cells resulted in prolonged survival of mice, it remains to be

proven that they have an influence on tumor growth in a therapeutic setting. Treatment

with CD40B cells could also be combined with checkpoint blockade, i.e. anti-PD-L1 or anti-

CXCL4 antibodies, to further enhance the anti-tumor immunity. The next steps that need to

be taken into the direction of a clinical application are the isolation of tumorantigen-specific

B cells from cancer patients. One major challenge for the application of CD40B cells in the

clinic was recently solved by the development of a soluble CD40L that induces both

proliferation and activation of human B cells (Garcia-Marquez et al. 2014).
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Another exciting property of human and murine CD40B cells, which might be related to their

APC function, was recently discovered. CD40B cells form long extensions to T cells and other

CD40B cells when incubated together in a 3D-matrixgel (Fig. 4.1).

Fig. 4.1 Human CD40B cells form nanotubes. CD40B cells (green) were incubated in 3D-matrigel
together with human IL-2-stimulated CD3+ T cells (red). Images were taken with a confocal
microscope using a ×63 objective and an appropriate filter set.

These kind of extensions were observed in other types of immune cells including T cells

(Sowinski et al. 2008), NK cells (Chauveau et al. 2010), EBV-transfected B cells (Rainy et al.

2013) and others (Zhang 2011) with varying functions. A role of nanotubes in antigen-

presentation has not yet been shown. However, the fact that CD40B cells establish these

connections with T cells and that the shape of the connection point resembles the shape of

an immunological synapse (Robbiati and Guadagnini unpublished data) hints very much to

the involvement in antigen-presentation. However, more detailed analyses need to be

performed in order to reveal their function in B cell-T cell interaction.



References





References

129

5. References

Abbas, A. K., S. Haber and K. L. Rock (1985). "Antigen presentation by hapten-specific B
lymphocytes. II. Specificity and properties of antigen-presenting B lymphocytes, and function
of immunoglobulin receptors." J Immunol 135(3): 1661-1667.

Ahmadi, T., A. Flies, Y. Efebera and D. H. Sherr (2008). "CD40 Ligand-activated, antigen-
specific B cells are comparable to mature dendritic cells in presenting protein antigens and
major histocompatibility complex class I- and class II-binding peptides." Immunology 124(1):
129-140.

Albert, M. L., M. Jegathesan and R. B. Darnell (2001). "Dendritic cell maturation is required
for the cross-tolerization of CD8+ T cells." Nat Immunol 2(11): 1010-1017.

Albert, M. L., B. Sauter and N. Bhardwaj (1998). "Dendritic cells acquire antigen from
apoptotic cells and induce class I-restricted CTLs." Nature 392(6671): 86-89.

Alfonso, C., M. Liljedahl, O. Winqvist, C. D. Surh, P. A. Peterson, W. P. Fung-Leung, et al.
(1999). "The role of H2-O and HLA-DO in major histocompatibility complex class II-restricted
antigen processing and presentation." Immunol Rev 172: 255-266.

Allman, D. and S. Pillai (2008). "Peripheral B cell subsets." Curr Opin Immunol 20(2): 149-157.

Allman, D., B. Srivastava and R. C. Lindsley (2004). "Alternative routes to maturity: branch
points and pathways for generating follicular and marginal zone B cells." Immunol Rev 197:
147-160.

Anolik, J., R. J. Looney, A. Bottaro, I. Sanz and F. Young (2003). "Down-regulation of CD20 on
B cells upon CD40 activation." Eur J Immunol 33(9): 2398-2409.

Arpin, C., J. Dechanet, C. Van Kooten, P. Merville, G. Grouard, F. Briere, et al. (1995).
"Generation of memory B cells and plasma cells in vitro." Science 268(5211): 720-722.

Askew, D., J. Gatewood, E. Olivas, K. Havenith and W. S. Walker (1995). "A subset of splenic
macrophages process and present native antigen to naive antigen-specific CD4+ T-cells from
mice transgenic for an alpha beta T-cell receptor." Cell Immunol 166(1): 62-70.

Attanavanich, K. and J. F. Kearney (2004). "Marginal zone, but not follicular B cells, are
potent activators of naive CD4 T cells." J Immunol 172(2): 803-811.



References

130

Avalos, A. M., A. M. Bilate, M. D. Witte, A. K. Tai, J. He, M. P. Frushicheva, et al. (2014).
"Monovalent engagement of the BCR activates ovalbumin-specific transnuclear B cells." J
Exp Med 211(2): 365-379.

Banchereau, J., F. Briere, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, et al. (2000).
"Immunobiology of dendritic cells." Annu Rev Immunol 18: 767-811.

Banchereau, J., P. de Paoli, A. Valle, E. Garcia and F. Rousset (1991). "Long-term human B cell
lines dependent on interleukin-4 and antibody to CD40." Science 251(4989): 70-72.

Banchereau, J. and A. K. Palucka (2005). "Dendritic cells as therapeutic vaccines against
cancer." Nat Rev Immunol 5(4): 296-306.

Banchereau, J. and F. Rousset (1991). "Growing human B lymphocytes in the CD40 system."
Nature 353(6345): 678-679.

Banchereau, J. and R. M. Steinman (1998). "Dendritic cells and the control of immunity."
Nature 392(6673): 245-252.

Batista, F. D. and M. S. Neuberger (1998). "Affinity dependence of the B cell response to
antigen: a threshold, a ceiling, and the importance of off-rate." Immunity 8(6): 751-759.

Berard, F., P. Blanco, J. Davoust, E. M. Neidhart-Berard, M. Nouri-Shirazi, N. Taquet, et al.
(2000). "Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells
loaded with killed allogeneic melanoma cells." J Exp Med 192(11): 1535-1544.

Bevan, M. J. (2004). "Helping the CD8(+) T-cell response." Nat Rev Immunol 4(8): 595-602.

Bielas, J. H., K. R. Loeb, B. P. Rubin, L. D. True and L. A. Loeb (2006). "Human cancers express
a mutator phenotype." Proc Natl Acad Sci U S A 103(48): 18238-18242.

Bishop, G. A., C. R. Moore, P. Xie, L. L. Stunz and Z. J. Kraus (2007). "TRAF proteins in CD40
signaling." Adv Exp Med Biol 597: 131-151.

Boczkowski, D., S. K. Nair, D. Snyder and E. Gilboa (1996). "Dendritic cells pulsed with RNA
are potent antigen-presenting cells in vitro and in vivo." J Exp Med 184(2): 465-472.

Bos, J. L. (1989). "ras oncogenes in human cancer: a review." Cancer Res 49(17): 4682-4689.

Bourgeois, C., H. Veiga-Fernandes, A. M. Joret, B. Rocha and C. Tanchot (2002). "CD8
lethargy in the absence of CD4 help." Eur J Immunol 32(8): 2199-2207.



References

131

Bremnes, R. M., K. Al-Shibli, T. Donnem, R. Sirera, S. Al-Saad, S. Andersen, et al. (2011). "The
role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer
development, progression, and prognosis: emphasis on non-small cell lung cancer." J Thorac
Oncol 6(4): 824-833.

Bretscher, P. A. (1999). "A two-step, two-signal model for the primary activation of precursor
helper T cells." Proc Natl Acad Sci U S A 96(1): 185-190.

Broere, Apasov, Sitkovsky and v. Eden (2011). T cell subsets and T cell-mediated immunity,
Birkhäuser Basel.

Brown, V. K., E. W. Ogle, A. L. Burkhardt, R. B. Rowley, J. B. Bolen and L. B. Justement (1994).
"Multiple components of the B cell antigen receptor complex associate with the protein
tyrosine phosphatase, CD45." J Biol Chem 269(25): 17238-17244.

Bubien, J. K., L. J. Zhou, P. D. Bell, R. A. Frizzell and T. F. Tedder (1993). "Transfection of the
CD20 cell surface molecule into ectopic cell types generates a Ca2+ conductance found
constitutively in B lymphocytes." J Cell Biol 121(5): 1121-1132.

Buisman, A. M., C. G. de Rond, K. Ozturk, H. I. Ten Hulscher and R. S. van Binnendijk (2009).
"Long-term presence of memory B-cells specific for different vaccine components." Vaccine
28(1): 179-186.

Burnet, F. M. (1970). "The concept of immunological surveillance." Prog Exp Tumor Res 13:
1-27.

Burnet, F. M. (1971). "Immunological surveillance in neoplasia." Transplant Rev 7: 3-25.

Caballero, O. L. and Y. T. Chen (2009). "Cancer/testis (CT) antigens: potential targets for
immunotherapy." Cancer Sci 100(11): 2014-2021.

Callard, R. E., J. Herbert, S. H. Smith, R. J. Armitage and K. E. Costelloe (1995). "CD40 cross-
linking inhibits specific antibody production by human B cells." Int Immunol 7(11): 1809-
1815.

Carbone, E., G. Ruggiero, G. Terrazzano, C. Palomba, C. Manzo, S. Fontana, et al. (1997). "A
new mechanism of NK cell cytotoxicity activation: the CD40-CD40 ligand interaction." J Exp
Med 185(12): 2053-2060.

Carter, R. H. and R. Myers (2008). "Germinal center structure and function: lessons from
CD19." Semin Immunol 20(1): 43-48.



References

132

Cassell, D. J. and R. H. Schwartz (1994). "A quantitative analysis of antigen-presenting cell
function: activated B cells stimulate naive CD4 T cells but are inferior to dendritic cells in
providing costimulation." J Exp Med 180(5): 1829-1840.

Caux, C., C. Dezutter-Dambuyant, D. Schmitt and J. Banchereau (1992). "GM-CSF and TNF-
alpha cooperate in the generation of dendritic Langerhans cells." Nature 360(6401): 258-
261.

Chames, P., M. Van Regenmortel, E. Weiss and D. Baty (2009). "Therapeutic antibodies:
successes, limitations and hopes for the future." Br J Pharmacol 157(2): 220-233.

Chauveau, A., A. Aucher, P. Eissmann, E. Vivier and D. M. Davis (2010). "Membrane
nanotubes facilitate long-distance interactions between natural killer cells and target cells."
Proc Natl Acad Sci U S A 107(12): 5545-5550.

Cheever, M. A. (2008). "Twelve immunotherapy drugs that could cure cancers." Immunol
Rev 222: 357-368.

Cheever, M. A. and C. S. Higano (2011). "PROVENGE (Sipuleucel-T) in prostate cancer: the
first FDA-approved therapeutic cancer vaccine." Clin Cancer Res 17(11): 3520-3526.

Chen, Q., V. Daniel, D. W. Maher and P. Hersey (1994). "Production of IL-10 by melanoma
cells: examination of its role in immunosuppression mediated by melanoma." Int J Cancer
56(5): 755-760.

Chesnut, R. W., S. M. Colon and H. M. Grey (1982). "Requirements for the processing of
antigens by antigen-presenting B cells. I. Functional comparison of B cell tumors and
macrophages." J Immunol 129(6): 2382-2388.

Chiba, I., T. Takahashi, M. M. Nau, D. D'Amico, D. T. Curiel, T. Mitsudomi, et al. (1990).
"Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer.
Lung Cancer Study Group." Oncogene 5(10): 1603-1610.

Coico, R. F., B. S. Bhogal and G. J. Thorbecke (1983). "Relationship of germinal centers in
lymphoid tissue to immunologic memory. VI. Transfer of B cell memory with lymph node
cells fractionated according to their receptors for peanut agglutinin." J Immunol 131(5):
2254-2257.

Collins, A. M. and K. J. Jackson (2013). "A Temporal Model of Human IgE and IgG Antibody
Function." Front Immunol 4: 235.



References

133

Corti, D., J. P. Langedijk, A. Hinz, M. S. Seaman, F. Vanzetta, B. M. Fernandez-Rodriguez, et al.
(2010). "Analysis of memory B cell responses and isolation of novel monoclonal antibodies
with neutralizing breadth from HIV-1-infected individuals." PLoS One 5(1): e8805.

Coughlin, C. M., B. A. Vance, S. A. Grupp and R. H. Vonderheide (2004). "RNA-transfected
CD40-activated B cells induce functional T-cell responses against viral and tumor antigen
targets: implications for pediatric immunotherapy." Blood 103(6): 2046-2054.

Couzin-Frankel, J. (2013). "Breakthrough of the year 2013. Cancer immunotherapy." Science
342(6165): 1432-1433.

Crotty, S., P. Felgner, H. Davies, J. Glidewell, L. Villarreal and R. Ahmed (2003). "Cutting edge:
long-term B cell memory in humans after smallpox vaccination." J Immunol 171(10): 4969-
4973.

Danese, S., M. Sans and C. Fiocchi (2004). "The CD40/CD40L costimulatory pathway in
inflammatory bowel disease." Gut 53(7): 1035-1043.

de Wit, J., Y. Souwer, T. Jorritsma, H. Klaasse Bos, A. ten Brinke, J. Neefjes, et al. (2010).
"Antigen-specific B cells reactivate an effective cytotoxic T cell response against
phagocytosed Salmonella through cross-presentation." PLoS One 5(9): e13016.

Del Nagro, C. J., D. C. Otero, A. N. Anzelon, S. A. Omori, R. V. Kolla and R. C. Rickert (2005).
"CD19 function in central and peripheral B-cell development." Immunol Res 31(2): 119-131.

Denzin, L. K., J. L. Fallas, M. Prendes and W. Yi (2005). "Right place, right time, right peptide:
DO keeps DM focused." Immunol Rev 207: 279-292.

Depoil, D., S. Fleire, B. L. Treanor, M. Weber, N. E. Harwood, K. L. Marchbank, et al. (2008).
"CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster
formation in response to membrane-bound ligand." Nat Immunol 9(1): 63-72.

Dhodapkar, M. V., R. M. Steinman, M. Sapp, H. Desai, C. Fossella, J. Krasovsky, et al. (1999).
"Rapid generation of broad T-cell immunity in humans after a single injection of mature
dendritic cells." J Clin Invest 104(2): 173-180.

Diehl, L., A. T. den Boer, S. P. Schoenberger, E. I. van der Voort, T. N. Schumacher, C. J.
Melief, et al. (1999). "CD40 activation in vivo overcomes peptide-induced peripheral
cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy." Nat Med 5(7):
774-779.

Disis, M. L. and M. A. Cheever (1997). "HER-2/neu protein: a target for antigen-specific
immunotherapy of human cancer." Adv Cancer Res 71: 343-371.



References

134

Dorner, T., A. Radbruch and G. R. Burmester (2009). "B-cell-directed therapies for
autoimmune disease." Nat Rev Rheumatol 5(8): 433-441.

Draube, A., N. Klein-Gonzalez, S. Mattheus, C. Brillant, M. Hellmich, A. Engert, et al. (2011).
"Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review
and meta-analysis." PLoS One 6(4): e18801.

Dunn, G. P., A. T. Bruce, H. Ikeda, L. J. Old and R. D. Schreiber (2002). "Cancer
immunoediting: from immunosurveillance to tumor escape." Nat Immunol 3(11): 991-998.

Dustin, L. B., E. D. Bullock, Y. Hamada, T. Azuma and D. Y. Loh (1995). "Antigen-driven
differentiation of naive Ig-transgenic B cells in vitro." J Immunol 154(10): 4936-4949.

Ehrlich (1909). "Ueber den jetzigen Stand der Karzinomforschung." Ned Tijdschr Geneeskd 5
(Part1): 273-290.

Elgueta, R., M. J. Benson, V. C. de Vries, A. Wasiuk, Y. Guo and R. J. Noelle (2009). "Molecular
mechanism and function of CD40/CD40L engagement in the immune system." Immunol Rev
229(1): 152-172.

Eliopoulos, A. G. and L. S. Young (2004). "The role of the CD40 pathway in the pathogenesis
and treatment of cancer." Curr Opin Pharmacol 4(4): 360-367.

Evans, D. E., M. W. Munks, J. M. Purkerson and D. C. Parker (2000). "Resting B lymphocytes
as APC for naive T lymphocytes: dependence on CD40 ligand/CD40." J Immunol 164(2): 688-
697.

Faassen, A. E., D. P. Dalke, M. T. Berton, W. D. Warren and S. K. Pierce (1995). "CD40-CD40
ligand interactions stimulate B cell antigen processing." Eur J Immunol 25(12): 3249-3255.

Fanslow, W. C., S. Srinivasan, R. Paxton, M. G. Gibson, M. K. Spriggs and R. J. Armitage
(1994). "Structural characteristics of CD40 ligand that determine biological function." Semin
Immunol 6(5): 267-278.

Fecteau, J. F., A. Roy and S. Neron (2009). "Peripheral blood CD27+ IgG+ B cells rapidly
proliferate and differentiate into immunoglobulin-secreting cells after exposure to low
CD154 interaction." Immunology 128(1 Suppl): e353-365.

Ferrone, S. and F. M. Marincola (1995). "Loss of HLA class I antigens by melanoma cells:
molecular mechanisms, functional significance and clinical relevance." Immunol Today
16(10): 487-494.



References

135

Figdor, C. G., I. J. de Vries, W. J. Lesterhuis and C. J. Melief (2004). "Dendritic cell
immunotherapy: mapping the way." Nat Med 10(5): 475-480.

Fink, K. (2012). "Origin and Function of Circulating Plasmablasts during Acute Viral
Infections." Front Immunol 3: 78.

Fishman, M. A. and A. S. Perelson (1999). "Th1/Th2 differentiation and cross-regulation." Bull
Math Biol 61(3): 403-436.

Fong, L. and E. G. Engleman (2000). "Dendritic cells in cancer immunotherapy." Annu Rev
Immunol 18: 245-273.

Fontenot, J. D., M. A. Gavin and A. Y. Rudensky (2003). "Foxp3 programs the development
and function of CD4+CD25+ regulatory T cells." Nat Immunol 4(4): 330-336.

Franke, A., G. J. Niederfellner, C. Klein and H. Burtscher (2011). "Antibodies against CD20 or
B-cell receptor induce similar transcription patterns in human lymphoma cell lines." PLoS
One 6(2): e16596.

Franz, B., K. F. May, Jr., G. Dranoff and K. Wucherpfennig (2011). "Ex vivo characterization
and isolation of rare memory B cells with antigen tetramers." Blood 118(2): 348-357.

Fujiwara, H., J. J. Melenhorst, F. El Ouriaghli, S. Kajigaya, M. Grube, G. Sconocchia, et al.
(2005). "In vitro induction of myeloid leukemia-specific CD4 and CD8 T cells by CD40 ligand-
activated B cells gene modified to express primary granule proteins." Clin Cancer Res 11(12):
4495-4503.

Galvin, F., G. J. Freeman, Z. Razi-Wolf, W. Hall, Jr., B. Benacerraf, L. Nadler, et al. (1992).
"Murine B7 antigen provides a sufficient costimulatory signal for antigen-specific and MHC-
restricted T cell activation." J Immunol 149(12): 3802-3808.

Garcia-Marquez, M., A. Shimabukuro-Vornhagen, T. Liebig, K. Wennhold, A. Dauben, A.
Dzionek, et al. (2014). "A multimerized form of recombinant human CD40 ligand supports
long term activation and proliferation of B cells." Cytotherapie.

Gilboa, E. (1999). "The makings of a tumor rejection antigen." Immunity 11(3): 263-270.

Good-Jacobson, K. L. and M. J. Shlomchik (2010). "Plasticity and heterogeneity in the
generation of memory B cells and long-lived plasma cells: the influence of germinal center
interactions and dynamics." J Immunol 185(6): 3117-3125.



References

136

Good, K. L., D. T. Avery and S. G. Tangye (2009). "Resting human memory B cells are
intrinsically programmed for enhanced survival and responsiveness to diverse stimuli
compared to naive B cells." J Immunol 182(2): 890-901.

Grabbe, S., S. Beissert, T. Schwarz and R. D. Granstein (1995). "Dendritic cells as initiators of
tumor immune responses: a possible strategy for tumor immunotherapy?" Immunol Today
16(3): 117-121.

Grabstein, K. H., C. R. Maliszewski, K. Shanebeck, T. A. Sato, M. K. Spriggs, W. C. Fanslow, et
al. (1993). "The regulation of T cell-dependent antibody formation in vitro by CD40 ligand
and IL-2." J Immunol 150(8 Pt 1): 3141-3147.

Graf, D., S. Muller, U. Korthauer, C. van Kooten, C. Weise and R. A. Kroczek (1995). "A soluble
form of TRAP (CD40 ligand) is rapidly released after T cell activation." Eur J Immunol 25(6):
1749-1754.

Graff, J. N. and E. D. Chamberlain (2015). "Sipuleucel-T in the treatment of prostate cancer:
an evidence-based review of its place in therapy." Core Evid 10: 1-10.

Grakoui, A., S. K. Bromley, C. Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, et al. (1999). "The
immunological synapse: a molecular machine controlling T cell activation." Science
285(5425): 221-227.

Grammer, A. C., R. Slota, R. Fischer, H. Gur, H. Girschick, C. Yarboro, et al. (2003). "Abnormal
germinal center reactions in systemic lupus erythematosus demonstrated by blockade of
CD154-CD40 interactions." J Clin Invest 112(10): 1506-1520.

Grey, H. M., S. M. Colon and R. W. Chesnut (1982). "Requirements for the processing of
antigen by antigen-presenting B cells. II. Biochemical comparison of the fate of antigen in B
cell tumors and macrophages." J Immunol 129(6): 2389-2395.

Grulich, A. E., M. T. van Leeuwen, M. O. Falster and C. M. Vajdic (2007). "Incidence of
cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a
meta-analysis." Lancet 370(9581): 59-67.

Guo, S., J. Xu, W. Denning and Z. Hel (2009). "Induction of protective cytotoxic T-cell
responses by a B-cell-based cellular vaccine requires stable expression of antigen." Gene
Ther 16(11): 1300-1313.

Haanen, J. B. and T. N. Schumacher (2007). "Vaccine leads to memory loss." Nat Med 13(3):
248-250.



References

137

Hagn, M., E. Schwesinger, V. Ebel, K. Sontheimer, J. Maier, T. Beyer, et al. (2009). "Human B
cells secrete granzyme B when recognizing viral antigens in the context of the acute phase
cytokine IL-21." J Immunol 183(3): 1838-1845.

Han, S., K. Hathcock, B. Zheng, T. B. Kepler, R. Hodes and G. Kelsoe (1995). "Cellular
interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal
centers." J Immunol 155(2): 556-567.

Hansen, M. H., H. Nielsen and H. J. Ditzel (2001). "The tumor-infiltrating B cell response in
medullary breast cancer is oligoclonal and directed against the autoantigen actin exposed on
the surface of apoptotic cancer cells." Proc Natl Acad Sci U S A 98(22): 12659-12664.

Hardy, R. R. (2003). "B-cell commitment: deciding on the players." Curr Opin Immunol 15(2):
158-165.

Hardy, R. R., C. E. Carmack, S. A. Shinton, J. D. Kemp and K. Hayakawa (1991). "Resolution
and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow." J
Exp Med 173(5): 1213-1225.

Hardy, R. R. and K. Hayakawa (2001). "B cell development pathways." Annu Rev Immunol 19:
595-621.

Hardy, R. R., Y. S. Li, D. Allman, M. Asano, M. Gui and K. Hayakawa (2000). "B-cell
commitment, development and selection." Immunol Rev 175: 23-32.

Hart, D. N. (1997). "Dendritic cells: unique leukocyte populations which control the primary
immune response." Blood 90(9): 3245-3287.

Hayakawa, K., R. Ishii, K. Yamasaki, T. Kishimoto and R. R. Hardy (1987). "Isolation of high-
affinity memory B cells: phycoerythrin as a probe for antigen-binding cells." Proc Natl Acad
Sci U S A 84(5): 1379-1383.

He, Y., H. Qian, Y. Liu, L. Duan, Y. Li and G. Shi (2014). "The roles of regulatory B cells in
cancer." J Immunol Res 2014: 215471.

Herberman, R. B., C. W. Reynolds and J. R. Ortaldo (1986). "Mechanism of cytotoxicity by
natural killer (NK) cells." Annu Rev Immunol 4: 651-680.

Hoven, M. Y., L. De Leij, J. F. Keij and T. H. The (1989). "Detection and isolation of antigen-
specific B cells by the fluorescence activated cell sorter (FACS)." J Immunol Methods 117(2):
275-284.



References

138

Hoyer, B. F., K. Moser, A. E. Hauser, A. Peddinghaus, C. Voigt, D. Eilat, et al. (2004). "Short-
lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity
in NZB/W mice." J Exp Med 199(11): 1577-1584.

Inaba, K., J. P. Metlay, M. T. Crowley and R. M. Steinman (1990). "Dendritic cells pulsed with
protein antigens in vitro can prime antigen-specific, MHC-restricted T cells in situ." J Exp Med
172(2): 631-640.

Ivanov, R., T. Aarts, A. Hagenbeek, S. Hol and S. Ebeling (2005). "B-cell expansion in the
presence of the novel 293-CD40L-sCD40L cell line allows the generation of large numbers of
efficient xenoantigen-free APC." Cytotherapy 7(1): 62-73.

Jacob, J., J. Przylepa, C. Miller and G. Kelsoe (1993). "In situ studies of the primary immune
response to (4-hydroxy-3-nitrophenyl)acetyl. III. The kinetics of V region mutation and
selection in germinal center B cells." J Exp Med 178(4): 1293-1307.

Julius, M. H., C. A. Janeway, Jr. and L. A. Herzenberg (1976). "Isolation of antigen-binding
cells from unprimed mice. II. Evidence for monospecificity of antigen-binding cells." Eur J
Immunol 6(4): 288-292.

Kanegane, H., K. Agematsu, T. Futatani, M. M. Sira, K. Suga, T. Sekiguchi, et al. (2007). "Novel
mutations in a Japanese patient with CD19 deficiency." Genes Immun 8(8): 663-670.

Kantor, A. B. and L. A. Herzenberg (1993). "Origin of murine B cell lineages." Annu Rev
Immunol 11: 501-538.

Kanwar, R. K., N. Singh, S. Gurudevan and J. R. Kanwar (2011). "Targeting hepatitis B virus
and human papillomavirus induced carcinogenesis: novel patented therapeutics." Recent Pat
Antiinfect Drug Discov 6(2): 158-174.

Kanzaki, M., M. A. Lindorfer, J. C. Garrison and I. Kojima (1997). "Activation of the calcium-
permeable cation channel CD20 by alpha subunits of the Gi protein." J Biol Chem 272(23):
14733-14739.

Kaplan, D. H., V. Shankaran, A. S. Dighe, E. Stockert, M. Aguet, L. J. Old, et al. (1998).
"Demonstration of an interferon gamma-dependent tumor surveillance system in
immunocompetent mice." Proc Natl Acad Sci U S A 95(13): 7556-7561.

Kappler, J. W., N. Roehm and P. Marrack (1987). "T cell tolerance by clonal elimination in the
thymus." Cell 49(2): 273-280.



References

139

Kawabe, T., T. Naka, K. Yoshida, T. Tanaka, H. Fujiwara, S. Suematsu, et al. (1994). "The
immune responses in CD40-deficient mice: impaired immunoglobulin class switching and
germinal center formation." Immunity 1(3): 167-178.

Kearney, J. F., W. J. Won, C. Benedict, C. Moratz, P. Zimmer, A. Oliver, et al. (1997). "B cell
development in mice." Int Rev Immunol 15(3-4): 207-241.

Kemp, T. J., J. M. Moore and T. S. Griffith (2004). "Human B cells express functional
TRAIL/Apo-2 ligand after CpG-containing oligodeoxynucleotide stimulation." J Immunol
173(2): 892-899.

Kennedy, M. K., K. M. Mohler, K. D. Shanebeck, P. R. Baum, K. S. Picha, C. A. Otten-Evans, et
al. (1994). "Induction of B cell costimulatory function by recombinant murine CD40 ligand."
Eur J Immunol 24(1): 116-123.

Kirk, A. D., P. J. Blair, D. K. Tadaki, H. Xu and D. M. Harlan (2001). "The role of CD154 in organ
transplant rejection and acceptance." Philos Trans R Soc Lond B Biol Sci 356(1409): 691-702.

Kirk, A. D., D. M. Harlan, N. N. Armstrong, T. A. Davis, Y. Dong, G. S. Gray, et al. (1997).
"CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates." Proc Natl Acad
Sci U S A 94(16): 8789-8794.

Kisielow, P., H. Bluthmann, U. D. Staerz, M. Steinmetz and H. von Boehmer (1988).
"Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+
thymocytes." Nature 333(6175): 742-746.

Klee, G. G. (2000). "Human anti-mouse antibodies." Arch Pathol Lab Med 124(6): 921-923.

Klein-Gonzalez, N., K. Wennhold, S. Balkow, E. Kondo, T. Weber, M. Garcia-Marquez, et al.
(accepted 2015). "In vitro and in vivo imaging of initial T-B cell interactions in the setting of B
cell-based cancer immunotherapy." Oncoimmunology.

Klein, J. and A. Sato (2000). "The HLA system. First of two parts." N Engl J Med 343(10): 702-
709.

Klein, U., K. Rajewsky and R. Kuppers (1999). "Phenotypic and molecular characterization of
human peripheral blood B-cell subsets with special reference to N-region addition and J
kappa-usage in V kappa J kappa-joints and kappa/lambda-ratios in naive versus memory B-
cell subsets to identify traces of receptor editing processes." Curr Top Microbiol Immunol
246: 141-146; discussion 147.

Kodituwakku, A. P., C. Jessup, H. Zola and D. M. Roberton (2003). "Isolation of antigen-
specific B cells." Immunol Cell Biol 81(3): 163-170.



References

140

Koelsch, K., N. Y. Zheng, Q. Zhang, A. Duty, C. Helms, M. D. Mathias, et al. (2007). "Mature B
cells class switched to IgD are autoreactive in healthy individuals." J Clin Invest 117(6): 1558-
1565.

Kometani, K., R. Nakagawa, R. Shinnakasu, T. Kaji, A. Rybouchkin, S. Moriyama, et al. (2013).
"Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory
B cells toward plasma cell differentiation." Immunity 39(1): 136-147.

Kondo, E., L. Gryschok, J. L. Schultze and M. S. von Bergwelt-Baildon (2009). "Using CD40-
activated B cells to efficiently identify epitopes of tumor antigens." J Immunother 32(2): 157-
160.

Koopman, G., C. P. Reutelingsperger, G. A. Kuijten, R. M. Keehnen, S. T. Pals and M. H. van
Oers (1994). "Annexin V for flow cytometric detection of phosphatidylserine expression on B
cells undergoing apoptosis." Blood 84(5): 1415-1420.

Kraal, G. (1992). "Cells in the marginal zone of the spleen." Int Rev Cytol 132: 31-74.

Kuijpers, T. W., R. J. Bende, P. A. Baars, A. Grummels, I. A. Derks, K. M. Dolman, et al. (2010).
"CD20 deficiency in humans results in impaired T cell-independent antibody responses." J
Clin Invest 120(1): 214-222.

Kurts, C., B. W. Robinson and P. A. Knolle (2010). "Cross-priming in health and disease." Nat
Rev Immunol 10(6): 403-414.

Lacotte, S., M. Decossas, C. Le Coz, S. Brun, S. Muller and H. Dumortier (2013). "Early
differentiated CD138(high) MHCII+ IgG+ plasma cells express CXCR3 and localize into
inflamed kidneys of lupus mice." PLoS One 8(3): e58140.

Lalor, P. A., G. J. Nossal, R. D. Sanderson and M. G. McHeyzer-Williams (1992). "Functional
and molecular characterization of single, (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific,
IgG1+ B cells from antibody-secreting and memory B cell pathways in the C57BL/6 immune
response to NP." Eur J Immunol 22(11): 3001-3011.

Lanzavecchia, A. (1985). "Antigen-specific interaction between T and B cells." Nature
314(6011): 537-539.

Lanzavecchia, A. (1990). "Receptor-mediated antigen uptake and its effect on antigen
presentation to class II-restricted T lymphocytes." Annu Rev Immunol 8: 773-793.



References

141

Lapointe, R., A. Bellemare-Pelletier, F. Housseau, J. Thibodeau and P. Hwu (2003). "CD40-
stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells
that can generate specific T cells." Cancer Res 63(11): 2836-2843.

Larsen, C. P., E. T. Elwood, D. Z. Alexander, S. C. Ritchie, R. Hendrix, C. Tucker-Burden, et al.
(1996). "Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28
pathways." Nature 381(6581): 434-438.

Le, D. T., D. M. Pardoll and E. M. Jaffee (2010). "Cellular vaccine approaches." Cancer J 16(4):
304-310.

Lee, J., C. M. Dollins, D. Boczkowski, B. A. Sullenger and S. Nair (2008). "Activated B cells
modified by electroporation of multiple mRNAs encoding immune stimulatory molecules are
comparable to mature dendritic cells in inducing in vitro antigen-specific T-cell responses."
Immunology 125(2): 229-240.

Lenschow, D. J., A. I. Sperling, M. P. Cooke, G. Freeman, L. Rhee, D. C. Decker, et al. (1994).
"Differential up-regulation of the B7-1 and B7-2 costimulatory molecules after Ig receptor
engagement by antigen." J Immunol 153(5): 1990-1997.

Leyendeckers, H., M. Odendahl, A. Lohndorf, J. Irsch, M. Spangfort, S. Miltenyi, et al. (1999).
"Correlation analysis between frequencies of circulating antigen-specific IgG-bearing
memory B cells and serum titers of antigen-specific IgG." European Journal of Immunology
29(4): 1406-1417.

Li, Q., S. Teitz-Tennenbaum, E. J. Donald, M. Li and A. E. Chang (2009). "In vivo sensitized and
in vitro activated B cells mediate tumor regression in cancer adoptive immunotherapy." J
Immunol 183(5): 3195-3203.

Li, Y., M. N. Wang, H. Li, K. D. King, R. Bassi, H. Sun, et al. (2002). "Active immunization
against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and
metastasis." J Exp Med 195(12): 1575-1584.

Liebig, Shimabukuro-Vornhagen, Samir-Ghali and v. Bergwelt-Baildon (2011). In vivo
evaluation of a CD40-activated B cell-based tumor vaccine for use in cellular
immunotherapy. CIMT 9th Annual Meeting, Mainz.

Liebig, T. M., A. Fiedler, N. Klein-Gonzalez, A. Shimabukuro-Vornhagen and M. von Bergwelt-
Baildon (2010). "Murine model of CD40-activation of B cells." J Vis Exp(37).

Liebig, T. M., A. Fiedler, S. Zoghi, A. Shimabukuro-Vornhagen and M. S. von Bergwelt-Baildon
(2009). "Generation of human CD40-activated B cells." J Vis Exp(32).



References

142

Liu, Q., C. Zhang, A. Sun, Y. Zheng, L. Wang and X. Cao (2009). "Tumor-educated
CD11bhighIalow regulatory dendritic cells suppress T cell response through arginase I." J
Immunol 182(10): 6207-6216.

Mackey, M. F., J. R. Gunn, C. Maliszewsky, H. Kikutani, R. J. Noelle and R. J. Barth, Jr. (1998).
"Dendritic cells require maturation via CD40 to generate protective antitumor immunity." J
Immunol 161(5): 2094-2098.

Mager, D. L. (2006). "Bacteria and cancer: cause, coincidence or cure? A review." J Transl
Med 4: 14.

Mahnke, K., E. Schmitt, L. Bonifaz, A. H. Enk and H. Jonuleit (2002). "Immature, but not
inactive: the tolerogenic function of immature dendritic cells." Immunol Cell Biol 80(5): 477-
483.

Mailliard, R. B., A. Wankowicz-Kalinska, Q. Cai, A. Wesa, C. M. Hilkens, M. L. Kapsenberg, et
al. (2004). "alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized
CTL-inducing activity." Cancer Res 64(17): 5934-5937.

Malati, T. (2007). "Tumour markers: An overview." Indian J Clin Biochem 22(2): 17-31.

Maliszewski, C. R., K. Grabstein, W. C. Fanslow, R. Armitage, M. K. Spriggs and T. A. Sato
(1993). "Recombinant CD40 ligand stimulation of murine B cell growth and differentiation:
cooperative effects of cytokines." Eur J Immunol 23(5): 1044-1049.

Mantovani, A. and A. Sica (2010). "Macrophages, innate immunity and cancer: balance,
tolerance, and diversity." Curr Opin Immunol 22(2): 231-237.

Manz, R. A., M. Lohning, G. Cassese, A. Thiel and A. Radbruch (1998). "Survival of long-lived
plasma cells is independent of antigen." Int Immunol 10(11): 1703-1711.

Martin, F. and J. F. Kearney (2002). "Marginal-zone B cells." Nat Rev Immunol 2(5): 323-335.

Martin, F., A. M. Oliver and J. F. Kearney (2001). "Marginal zone and B1 B cells unite in the
early response against T-independent blood-borne particulate antigens." Immunity 14(5):
617-629.

Mayordomo, J. I., T. Zorina, W. J. Storkus, L. Zitvogel, C. Celluzzi, L. D. Falo, et al. (1995).
"Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective
and therapeutic antitumour immunity." Nat Med 1(12): 1297-1302.



References

143

Mazzei, G. J., M. D. Edgerton, C. Losberger, S. Lecoanet-Henchoz, P. Graber, A. Durandy, et
al. (1995). "Recombinant soluble trimeric CD40 ligand is biologically active." J Biol Chem
270(13): 7025-7028.

McHeyzer-Williams, L. J., M. Cool and M. G. McHeyzer-Williams (2000). "Antigen-specific B
cell memory: expression and replenishment of a novel b220(-) memory b cell compartment."
J Exp Med 191(7): 1149-1166.

Melchers, F., A. Rolink, U. Grawunder, T. H. Winkler, H. Karasuyama, P. Ghia, et al. (1995).
"Positive and negative selection events during B lymphopoiesis." Curr Opin Immunol 7(2):
214-227.

Mellman, I., G. Coukos and G. Dranoff (2011). "Cancer immunotherapy comes of age."
Nature 480(7378): 480-489.

Mosmann, T. R., H. Cherwinski, M. W. Bond, M. A. Giedlin and R. L. Coffman (1986). "Two
types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities
and secreted proteins." J Immunol 136(7): 2348-2357.

Moutai, T., H. Yamana, T. Nojima and D. Kitamura (2014). "A novel and effective cancer
immunotherapy mouse model using antigen-specific B cells selected in vitro." PLoS One 9(3):
e92732.

Nashar, T. O. and J. R. Drake (2005). "The pathway of antigen uptake and processing dictates
MHC class II-mediated B cell survival and activation." J Immunol 174(3): 1306-1316.

Neefjes, J., M. L. Jongsma, P. Paul and O. Bakke (2011). "Towards a systems understanding of
MHC class I and MHC class II antigen presentation." Nat Rev Immunol 11(12): 823-836.

Neron, S., P. J. Nadeau, A. Darveau and J. F. Leblanc (2011). "Tuning of CD40-CD154
interactions in human B-lymphocyte activation: a broad array of in vitro models for a
complex in vivo situation." Arch Immunol Ther Exp (Warsz) 59(1): 25-40.

Newman, J., J. S. Rice, C. Wang, S. L. Harris and B. Diamond (2003). "Identification of an
antigen-specific B cell population." J Immunol Methods 272(1-2): 177-187.

Opal, S. M. (2010). "Endotoxins and other sepsis triggers." Contrib Nephrol 167: 14-24.

Oshiba, A., H. Renz, J. Yata and E. W. Gelfand (1994). "Isolation and characterization of
human antigen-specific B lymphocytes." Clin Immunol Immunopathol 72(3): 342-349.



References

144

Osmond, D. G. (1990). "B cell development in the bone marrow." Semin Immunol 2(3): 173-
180.

Osmond, D. G., A. Rolink and F. Melchers (1998). "Murine B lymphopoiesis: towards a unified
model." Immunol Today 19(2): 65-68.

Ozaki, K., R. Spolski, R. Ettinger, H. P. Kim, G. Wang, C. F. Qi, et al. (2004). "Regulation of B
cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-
6." J Immunol 173(9): 5361-5371.

Palucka, K., H. Ueno, J. Fay and J. Banchereau (2011). "Dendritic cells and immunity against
cancer." J Intern Med 269(1): 64-73.

Palucka, K., H. Ueno, L. Roberts, J. Fay and J. Banchereau (2010). "Dendritic cells: are they
clinically relevant?" Cancer J 16(4): 318-324.

Parkhurst, M. R., M. L. Salgaller, S. Southwood, P. F. Robbins, A. Sette, S. A. Rosenberg, et al.
(1996). "Improved induction of melanoma-reactive CTL with peptides from the melanoma
antigen gp100 modified at HLA-A*0201-binding residues." J Immunol 157(6): 2539-2548.

Parungo, C. P., D. I. Soybel, Y. L. Colson, S. W. Kim, S. Ohnishi, A. M. DeGrand, et al. (2007).
"Lymphatic drainage of the peritoneal space: a pattern dependent on bowel lymphatics."
Ann Surg Oncol 14(2): 286-298.

Paus, D., T. G. Phan, T. D. Chan, S. Gardam, A. Basten and R. Brink (2006). "Antigen
recognition strength regulates the choice between extrafollicular plasma cell and germinal
center B cell differentiation." J Exp Med 203(4): 1081-1091.

Pearson, T. C., J. Trambley, K. Odom, D. C. Anderson, S. Cowan, R. Bray, et al. (2002). "Anti-
CD40 therapy extends renal allograft survival in rhesus macaques." Transplantation 74(7):
933-940.

Pereira, J. P., L. M. Kelly and J. G. Cyster (2010). "Finding the right niche: B-cell migration in
the early phases of T-dependent antibody responses." Int Immunol 22(6): 413-419.

Peters, A. L., L. L. Stunz and G. A. Bishop (2009). "CD40 and autoimmunity: the dark side of a
great activator." Semin Immunol 21(5): 293-300.

Phan, T. G., M. Amesbury, S. Gardam, J. Crosbie, J. Hasbold, P. D. Hodgkin, et al. (2003). "B
cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination
and production of IgG autoantibodies by anergic self-reactive B cells." J Exp Med 197(7): 845-
860.



References

145

Popi, A. F., J. D. Lopes and M. Mariano (2004). "Interleukin-10 secreted by B-1 cells
modulates the phagocytic activity of murine macrophages in vitro." Immunology 113(3):
348-354.

Quillien, V., A. Moisan, A. Carsin, T. Lesimple, C. Lefeuvre, H. Adamski, et al. (2005).
"Biodistribution of radiolabelled human dendritic cells injected by various routes." Eur J Nucl
Med Mol Imaging 32(7): 731-741.

Racine, R., M. McLaughlin, D. D. Jones, S. T. Wittmer, K. C. MacNamara, D. L. Woodland, et
al. (2011). "IgM production by bone marrow plasmablasts contributes to long-term
protection against intracellular bacterial infection." J Immunol 186(2): 1011-1021.

Rainy, N., D. Chetrit, V. Rouger, H. Vernitsky, O. Rechavi, D. Marguet, et al. (2013). "H-Ras
transfers from B to T cells via tunneling nanotubes." Cell Death Dis 4: e726.

Ramsay, A. G. (2013). "Immune checkpoint blockade immunotherapy to activate anti-tumour
T-cell immunity." Br J Haematol 162(3): 313-325.

Randall, T. D., A. W. Heath, L. Santos-Argumedo, M. C. Howard, I. L. Weissman and F. E. Lund
(1998). "Arrest of B lymphocyte terminal differentiation by CD40 signaling: mechanism for
lack of antibody-secreting cells in germinal centers." Immunity 8(6): 733-742.

Ranheim, E. A. and T. J. Kipps (1993). "Activated T cells induce expression of B7/BB1 on
normal or leukemic B cells through a CD40-dependent signal." J Exp Med 177(4): 925-935.

Ribas, A., L. H. Butterfield, J. A. Glaspy and J. S. Economou (2002). "Cancer immunotherapy
using gene-modified dendritic cells." Curr Gene Ther 2(1): 57-78.

Ridolfi, R., A. Riccobon, R. Galassi, G. Giorgetti, M. Petrini, L. Fiammenghi, et al. (2004).
"Evaluation of in vivo labelled dendritic cell migration in cancer patients." J Transl Med 2(1):
27.

Ritchie, D. S., J. Yang, I. F. Hermans and F. Ronchese (2004). "B-Lymphocytes activated by
CD40 ligand induce an antigen-specific anti-tumour immune response by direct and indirect
activation of CD8(+) T-cells." Scand J Immunol 60(6): 543-551.

Robbiati and Guadagnini (unpublished data). "The shape of the immunological synapse."
Lymphocyte Cell Biology Unit Institut Pasteur. from
http://www.pasteur.fr/en/research/immunology/units-groups/lymphocyte-cell-
biology/figures.



References

146

Robson, N. C., A. M. Donachie and A. M. Mowat (2008). "Simultaneous presentation and
cross-presentation of immune-stimulating complex-associated cognate antigen by antigen-
specific B cells." Eur J Immunol 38(5): 1238-1246.

Rodriguez-Pinto, D. (2005). "B cells as antigen presenting cells." Cell Immunol 238(2): 67-75.

Rolink, A. G., E. ten Boekel, T. Yamagami, R. Ceredig, J. Andersson and F. Melchers (1999). "B
cell development in the mouse from early progenitors to mature B cells." Immunol Lett
68(1): 89-93.

Romani, N., S. Gruner, D. Brang, E. Kampgen, A. Lenz, B. Trockenbacher, et al. (1994).
"Proliferating dendritic cell progenitors in human blood." J Exp Med 180(1): 83-93.

Rosenberg, S. A. (2004). "Shedding light on immunotherapy for cancer." N Engl J Med
350(14): 1461-1463.

Sakaguchi, S. (2005). "Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in
immunological tolerance to self and non-self." Nat Immunol 6(4): 345-352.

Salio, M., D. Shepherd, P. R. Dunbar, M. Palmowski, K. Murphy, L. Wu, et al. (2001). "Mature
dendritic cells prime functionally superior melan-A-specific CD8+ lymphocytes as compared
with nonprofessional APC." J Immunol 167(3): 1188-1197.

Sallusto, F. and A. Lanzavecchia (1994). "Efficient presentation of soluble antigen by cultured
human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor
plus interleukin 4 and downregulated by tumor necrosis factor alpha." J Exp Med 179(4):
1109-1118.

Sarid, R. and S. J. Gao (2011). "Viruses and human cancer: from detection to causality."
Cancer Lett 305(2): 218-227.

Schlosser, H. A., S. Theurich, A. Shimabukuro-Vornhagen, U. Holtick, D. L. Stippel and M. von
Bergwelt-Baildon (2014). "Overcoming tumor-mediated immunosuppression."
Immunotherapy 6(9): 973-988.

Schreiber, R. D., L. J. Old and M. J. Smyth (2011). "Cancer immunoediting: integrating
immunity's roles in cancer suppression and promotion." Science 331(6024): 1565-1570.

Schultze, J. L., S. Grabbe and M. S. von Bergwelt-Baildon (2004). "DCs and CD40-activated B
cells: current and future avenues to cellular cancer immunotherapy." Trends Immunol
25(12): 659-664.



References

147

Schultze, J. L., S. Michalak, M. J. Seamon, G. Dranoff, K. Jung, J. Daley, et al. (1997). "CD40-
activated human B cells: an alternative source of highly efficient antigen presenting cells to
generate autologous antigen-specific T cells for adoptive immunotherapy." J Clin Invest
100(11): 2757-2765.

Schwartz, R. H. (2003). "T cell anergy." Annu Rev Immunol 21: 305-334.

Sensi, M. and A. Anichini (2006). "Unique tumor antigens: evidence for immune control of
genome integrity and immunogenic targets for T cell-mediated patient-specific
immunotherapy." Clin Cancer Res 12(17): 5023-5032.

Shankaran, V., H. Ikeda, A. T. Bruce, J. M. White, P. E. Swanson, L. J. Old, et al. (2001).
"IFNgamma and lymphocytes prevent primary tumour development and shape tumour
immunogenicity." Nature 410(6832): 1107-1111.

Shen, S., Z. Xu, X. Qian, Y. Ding, L. Yu and B. Liu (2007). "Autogeneic rna-electroporated
CD40-ligand activated b-cells from hepatocellular carcinoma patients induce CD8+ T-cell
responses ex vivo." Exp Oncol 29(2): 137-143.

Shen, S. N., Z. Xu, X. P. Qian, Y. T. Ding, L. X. Yu and B. R. Liu (2008). "RNA-electroporated
CD40-activated B cells induce functional T-cell responses against HepG2 cells." Eur J Cancer
Care (Engl) 17(4): 404-411.

Shimabukuro-Vornhagen, A., A. Draube, T. M. Liebig, A. Rothe, M. Kochanek and M. S. von
Bergwelt-Baildon (2012). "The immunosuppressive factors IL-10, TGF-beta, and VEGF do not
affect the antigen-presenting function of CD40-activated B cells." J Exp Clin Cancer Res 31:
47.

Shortman, K. and Y. J. Liu (2002). "Mouse and human dendritic cell subtypes." Nat Rev
Immunol 2(3): 151-161.

Sidiropoulos, P. I. and D. T. Boumpas (2004). "Lessons learned from anti-CD40L treatment in
systemic lupus erythematosus patients." Lupus 13(5): 391-397.

Silvy, A., C. Lagresle, C. Bella and T. Defrance (1996). "The differentiation of human memory
B cells into specific antibody-secreting cells is CD40 independent." Eur J Immunol 26(3): 517-
524.

Small, E. J., P. Fratesi, D. M. Reese, G. Strang, R. Laus, M. V. Peshwa, et al. (2000).
"Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic
cells." J Clin Oncol 18(23): 3894-3903.



References

148

Smith, K. G., T. D. Hewitson, G. J. Nossal and D. M. Tarlinton (1996). "The phenotype and fate
of the antibody-forming cells of the splenic foci." Eur J Immunol 26(2): 444-448.

Sorenmo, K. U., E. Krick, C. M. Coughlin, B. Overley, T. P. Gregor, R. H. Vonderheide, et al.
(2011). "CD40-activated B cell cancer vaccine improves second clinical remission and survival
in privately owned dogs with non-Hodgkin's lymphoma." PLoS One 6(8): e24167.

Sowinski, S., C. Jolly, O. Berninghausen, M. A. Purbhoo, A. Chauveau, K. Kohler, et al. (2008).
"Membrane nanotubes physically connect T cells over long distances presenting a novel
route for HIV-1 transmission." Nat Cell Biol 10(2): 211-219.

Spriggs, M. K., R. J. Armitage, L. Strockbine, K. N. Clifford, B. M. Macduff, T. A. Sato, et al.
(1992). "Recombinant human CD40 ligand stimulates B cell proliferation and
immunoglobulin E secretion." J Exp Med 176(6): 1543-1550.

Stashenko, P., L. M. Nadler, R. Hardy and S. F. Schlossman (1980). "Characterization of a
human B lymphocyte-specific antigen." J Immunol 125(4): 1678-1685.

Steinman, L. (2007). "A brief history of T(H)17, the first major revision in the T(H)1/T(H)2
hypothesis of T cell-mediated tissue damage." Nat Med 13(2): 139-145.

Steinman, R. M. (1991). "The dendritic cell system and its role in immunogenicity." Annu Rev
Immunol 9: 271-296.

Steinman, R. M. (2008). "Dendritic cells in vivo: a key target for a new vaccine science."
Immunity 29(3): 319-324.

Steinman, R. M. and J. Banchereau (2007). "Taking dendritic cells into medicine." Nature
449(7161): 419-426.

Steinman, R. M. and Z. A. Cohn (1973). "Identification of a novel cell type in peripheral
lymphoid organs of mice. I. Morphology, quantitation, tissue distribution." J Exp Med 137(5):
1142-1162.

Steinman, R. M. and Z. A. Cohn (2007). "Pillars Article: Identification of a novel cell type in
peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp.
Med.1973. 137: 1142-1162." J Immunol 178(1): 5-25.

Steinman, R. M., D. Hawiger and M. C. Nussenzweig (2003). "Tolerogenic dendritic cells."
Annu Rev Immunol 21: 685-711.



References

149

Steinman, R. M. and J. Idoyaga (2010). "Features of the dendritic cell lineage." Immunol Rev
234(1): 5-17.

Steinman, R. M. and M. D. Witmer (1978). "Lymphoid dendritic cells are potent stimulators
of the primary mixed leukocyte reaction in mice." Proc Natl Acad Sci U S A 75(10): 5132-
5136.

Stockinger, B. and M. Veldhoen (2007). "Differentiation and function of Th17 T cells." Curr
Opin Immunol 19(3): 281-286.

Street, S. E., E. Cretney and M. J. Smyth (2001). "Perforin and interferon-gamma activities
independently control tumor initiation, growth, and metastasis." Blood 97(1): 192-197.

Tangye, S. G., D. T. Avery, E. K. Deenick and P. D. Hodgkin (2003). "Intrinsic differences in the
proliferation of naive and memory human B cells as a mechanism for enhanced secondary
immune responses." J Immunol 170(2): 686-694.

Tedder, T. F., A. W. Boyd, A. S. Freedman, L. M. Nadler and S. F. Schlossman (1985). "The B
cell surface molecule B1 is functionally linked with B cell activation and differentiation." J
Immunol 135(2): 973-979.

Theurich, S., J. Malcher, H. J. Becker, J. M. Chemnitz, T. M. Liebig, A. Shimabukuro-
Vornhagen, et al. (2011). "Activated primary human B cells efficiently induce early CD40L
and CD107a expression in CD4+ T cells." Blood 118(22): 5979-5980.

Theurich, S., J. Malcher, K. Wennhold, A. Shimabukuro-Vornhagen, J. Chemnitz, U. Holtick, et
al. (2013). "Brentuximab vedotin combined with donor lymphocyte infusions for early
relapse of Hodgkin lymphoma after allogeneic stem-cell transplantation induces tumor-
specific immunity and sustained clinical remission." J Clin Oncol 31(5): e59-63.

Theurich, S., M. Schlaak, H. Steguweit, L. C. Heukamp, K. Wennhold, P. Kurschat, et al. (in
press). "Targeting tumor infiltrating B cells in cutaneous T-cell lymphoma." J Clin Oncol.

Theurich, S., K. Wennhold, I. Wedemeyer, A. Rothe, K. Hubel, A. Shimabukuro-Vornhagen, et
al. (2013). "CD30-targeted therapy with brentuximab vedotin and DLI in a patient with T-cell
posttransplantation lymphoma: induction of clinical remission and cellular immunity."
Transplantation 96(3): e16-18.

Thomas, L. (1982). "On immunosurveillance in human cancer." Yale J Biol Med 55(3-4): 329-
333.

Thorbecke, G. J., A. R. Amin and V. K. Tsiagbe (1994). "Biology of germinal centers in
lymphoid tissue." FASEB J 8(11): 832-840.



References

150

Tong, A. W. and M. J. Stone (2003). "Prospects for CD40-directed experimental therapy of
human cancer." Cancer Gene Ther 10(1): 1-13.

Topalian, S. L., F. S. Hodi, J. R. Brahmer, S. N. Gettinger, D. C. Smith, D. F. McDermott, et al.
(2012). "Safety, activity, and immune correlates of anti-PD-1 antibody in cancer." N Engl J
Med 366(26): 2443-2454.

Townsend, S. E., C. C. Goodnow and R. J. Cornall (2001). "Single epitope multiple staining to
detect ultralow frequency B cells." J Immunol Methods 249(1-2): 137-146.

Tretter, T., R. K. Venigalla, V. Eckstein, R. Saffrich, S. Sertel, A. D. Ho, et al. (2008). "Induction
of CD4+ T-cell anergy and apoptosis by activated human B cells." Blood 112(12): 4555-4564.

van de Ven, A. A., E. B. Compeer, A. C. Bloem, L. van de Corput, M. van Gijn, J. M. van
Montfrans, et al. (2012). "Defective calcium signaling and disrupted CD20-B-cell receptor
dissociation in patients with common variable immunodeficiency disorders." J Allergy Clin
Immunol 129(3): 755-761 e757.

Van den Bosch, G. A., P. Ponsaerts, G. Nijs, M. Lenjou, G. Vanham, D. R. Van Bockstaele, et al.
(2005). "Ex vivo induction of viral antigen-specific CD8 T cell responses using mRNA-
electroporated CD40-activated B cells." Clin Exp Immunol 139(3): 458-467.

van den Broek, M. E., D. Kagi, F. Ossendorp, R. Toes, S. Vamvakas, W. K. Lutz, et al. (1996).
"Decreased tumor surveillance in perforin-deficient mice." J Exp Med 184(5): 1781-1790.

van Kooten, C. and J. Banchereau (2000). "CD40-CD40 ligand." J Leukoc Biol 67(1): 2-17.

van Zelm, M. C. (2012). "Human CD27+IgM+IgD+ B cells: T-cell or TLR-dependent?" Blood
120(25): 4905-4906.

van Zelm, M. C., S. J. Bartol, G. J. Driessen, F. Mascart, I. Reisli, J. L. Franco, et al. (2014).
"Human CD19 and CD40L deficiencies impair antibody selection and differentially affect
somatic hypermutation." J Allergy Clin Immunol 134(1): 135-144.

von Andrian, U. H. and T. R. Mempel (2003). "Homing and cellular traffic in lymph nodes."
Nat Rev Immunol 3(11): 867-878.

von Bergwelt-Baildon, M., J. L. Schultze, B. Maecker, I. Menezes and L. M. Nadler (2004).
"Correspondence re R. Lapointe et al., CD40-stimulated B lymphocytes pulsed with tumor
antigens are effective antigen-presenting cells that can generate specific T cells. Cancer Res
2003;63:2836-43." Cancer Res 64(11): 4055-4056; author reply 4056-4057.



References

151

von Bergwelt-Baildon, M., A. Shimabukuro-Vornhagen, A. Popov, N. Klein-Gonzalez, F. Fiore,
S. Debey, et al. (2006). "CD40-activated B cells express full lymph node homing triad and
induce T-cell chemotaxis: potential as cellular adjuvants." Blood 107(7): 2786-2789.

von Bergwelt-Baildon, M. S., R. H. Vonderheide, B. Maecker, N. Hirano, K. S. Anderson, M. O.
Butler, et al. (2002). "Human primary and memory cytotoxic T lymphocyte responses are
efficiently induced by means of CD40-activated B cells as antigen-presenting cells: potential
for clinical application." Blood 99(9): 3319-3325.

Vonderheide, R. H., K. T. Flaherty, M. Khalil, M. S. Stumacher, D. L. Bajor, N. A. Hutnick, et al.
(2007). "Clinical activity and immune modulation in cancer patients treated with CP-870,893,
a novel CD40 agonist monoclonal antibody." J Clin Oncol 25(7): 876-883.

Walker, P. R., P. Saas and P. Y. Dietrich (1998). "Tumor expression of Fas ligand (CD95L) and
the consequences." Curr Opin Immunol 10(5): 564-572.

Walshe, C. A., S. A. Beers, R. R. French, C. H. Chan, P. W. Johnson, G. K. Packham, et al.
(2008). "Induction of cytosolic calcium flux by CD20 is dependent upon B Cell antigen
receptor signaling." J Biol Chem 283(25): 16971-16984.

Ward, S., D. Casey, M. C. Labarthe, M. Whelan, A. Dalgleish, H. Pandha, et al. (2002).
"Immunotherapeutic potential of whole tumour cells." Cancer Immunol Immunother 51(7):
351-357.

Ward, S. M., P. Phalora, D. Bradshaw, H. Leyendeckers and P. Klenerman (2008). "Direct ex
vivo evaluation of long-lived protective antiviral memory B cell responses against hepatitis B
virus." Journal of Infectious Diseases 198(6): 813-817.

Watanabe, S., H. Kagamu, H. Yoshizawa, N. Fujita, H. Tanaka, J. Tanaka, et al. (2003). "The
duration of signaling through CD40 directs biological ability of dendritic cells to induce
antitumor immunity." J Immunol 171(11): 5828-5836.

Weiner, L. M., R. Surana and S. Wang (2010). "Monoclonal antibodies: versatile platforms for
cancer immunotherapy." Nat Rev Immunol 10(5): 317-327.

Weninger, W., N. Manjunath and U. H. von Andrian (2002). "Migration and differentiation of
CD8+ T cells." Immunol Rev 186: 221-233.

Wennhold, K., A. Shimabukuro-Vornhagen, S. Theurich and M. von Bergwelt-Baildon (2013).
"CD40-activated B cells as antigen-presenting cells: the final sprint toward clinical
application." Expert Rev Vaccines 12(6): 631-637.



References

152

Whiteside, T. L. (2008). "The tumor microenvironment and its role in promoting tumor
growth." Oncogene 27(45): 5904-5912.

WHO (2015). "Hepatitis B- Prevention Facts." World Health Organization. from
http://www.who.int/mediacentre/factsheets/fs204/en/.

Wiesner, M., C. Zentz, C. Mayr, R. Wimmer, W. Hammerschmidt, R. Zeidler, et al. (2008).
"Conditional immortalization of human B cells by CD40 ligation." PLoS One 3(1): e1464.

Wing, K. and S. Sakaguchi (2010). "Regulatory T cells exert checks and balances on self
tolerance and autoimmunity." Nat Immunol 11(1): 7-13.

Wolchok, J. D., H. Kluger, M. K. Callahan, M. A. Postow, N. A. Rizvi, A. M. Lesokhin, et al.
(2013). "Nivolumab plus ipilimumab in advanced melanoma." N Engl J Med 369(2): 122-133.

Wu, C., Y. Liu, Q. Zhao, G. Chen, J. Chen, X. Yan, et al. (2010). "Soluble CD40 ligand-activated
human peripheral B cells as surrogated antigen presenting cells: A preliminary approach for
anti-HBV immunotherapy." Virol J 7: 370.

Yoon, S. H., H. I. Cho and T. G. Kim (2005). "Activation of B cells using Schneider 2 cells
expressing CD40 ligand for the enhancement of antigen presentation in vitro." Exp Mol Med
37(6): 567-574.

Zhang, Y. (2011). "Tunneling-nanotube: A new way of cell-cell communication." Commun
Integr Biol 4(3): 324-325.

Zhang, Y., R. Morgan, E. R. Podack and J. Rosenblatt (2013). "B cell regulation of anti-tumor
immune response." Immunol Res 57(1-3): 115-124.

Ziegner, M., G. Steinhauser and C. Berek (1994). "Development of antibody diversity in single
germinal centers: selective expansion of high-affinity variants." Eur J Immunol 24(10): 2393-
2400.

Zitvogel, L., J. I. Mayordomo, T. Tjandrawan, A. B. DeLeo, M. R. Clarke, M. T. Lotze, et al.
(1996). "Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence
on T cells, B7 costimulation, and T helper cell 1-associated cytokines." J Exp Med 183(1): 87-
97.



Attachments

153

6. Attachments

Erklärung § 4 Abs. 1 Nr. 9

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die

benutzen Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit –

einschließlich Tabellen, Karten, Abbildungen -, die anderen Werken im Wortlaut oder dem

Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass

diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat;

dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht

worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des

Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotionsordnung

sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Thorsten Hoppe und

Prof. Dr. Dr. Michael von Bergwelt-Baildon betreut worden.

Köln, den 21.04.2015

Kerstin Wennhold

Teilpublikationen

Nela Klein Gonzalez*, Kerstin Wennhold*, Sandra Balkow , Eisei Kondo , Tanja Weber ,

Maria Garcia-Marquez, Stephan Grabbe, Wilhelm Bloch, Michael von Bergwelt-Baildon*,

Alexander Shimabukuro-Vornhagen*. ‘In vitro and in vivo imaging of initial T-B cell

interactions in the setting of B cell-based cancer immunotherapy.’ Oncoimmunology.

Accepted 2015. * Contributed equally.

Kerstin Wennhold, Martin Thelen, Maria Garcia-Marquez, Alexander Shimabukuro-

Vornhagen, Michael von Bergwelt-Baildon. ‚Tumorantigen-specific CD40B cells: Combining

enhanced antigen presentation and antibody-secretion for tumor targeting‘. Manuscript in

preparation for submission.


