
INAUGURAL-DISSERTATION ZUR

ERLANGUNG DES AKADEMISCHEN GRADES

doctor rerum naturalium (Dr. rer. nat.)

IN THEORETISCHER PHYSIK

der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln

Network inference and response
prediction in biological systems

vorgelegt von

Niklas Bonacker
aus Köln



Gutachter: Professor Dr. Johannes Berg
Privatdozent Dr. Rochus Klesse



Erklärung zur Dissertation
gemäß der Promotionsordnung vom 02. Februar 2006 mit den Änderungsor-
dnungen vom 10. Mai 2012, 16. Januar 2013 und 21. Februar 2014.

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig
angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben
und die Stellen der Arbeit − einschließlich Tabellen, Karten und Abbil-
dungen − , die anderen Werken im Wortlaut oder dem Sinn nach entnom-
men sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass
diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung
vorgelegen hat; dass sie − abgesehen von unten angegebenen Teilpublika-
tionen − noch nicht veröffentlicht worden ist, sowie, dass ich eine solche
Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen
werde. Die Bestimmungen der Promotionsordnung sind mir bekannt. Die
von mir vorgelegte Dissertation ist von Professor Dr. Johannes Berg betreut
worden.

Niklas Bonacker
Köln, den 15. November 2021

III



Kurzzusammenfassung
Anomale biologische Informationsverarbeitung spielt eine entscheidende
Rolle bei der Entstehung und Ausbreitung von Krebs. Die mathematische
Modellierung und Inferenz von Signalwegen ist eine zentrale Herausforderung
auf dem Gebiet der Krebsforschung [1].

Wir schlagen ein stochastisches Modell der Genregulation vor und lösen
unser Modell im Rahmen einer Gaußschen Theorie. Wir entwickeln eine
Maximum-Likelihood-Methode, die auf der Gaußschen Theorie basiert, um
regulatorische Interaktionen aus zeitunabhängigen Genexpressionsdaten zu
inferieren.

Innerhalb eines simulierten Datensatzes vergleichen wir unseren Ansatz
mit Methoden der kleinsten Quadrate, die Standardmethoden für die In-
ferenz von genregulatorischen Netzwerken sind. Unsere Inferenz liefert eine
genauere Rekonstruktion des Netzwerks, wenn ein erheblicher stochastis-
cher Beitrag zur Systemdynamik vorliegt. Auf der Grundlage von Stör-
experimenten in der SK-MEL-133 Melanom-Zelllinie stellen wir fest, dass
unsere Maximum-Likelihood-Methode zu genaueren Vorhersagen der Gen-
expression führt als Methoden der kleinsten Quadrate.

Die hohe Variabilität im Ansprechen der Patienten beeinträchtigt erhe-
blich den klinischen Erfolg der Krebsimmuntherapie. Das Verständnis der
Determinanten, die die Immunantwort und unerwünschte Nebenwirkungen
steuern, ist eine zentrale wissenschaftliche Frage für den Fortschritt von
Krebsimmuntherapien [2].

Mehrere Determinanten der Immunantwort werden in der Literatur kon-
trovers diskutiert [3, 4, 5]. Wir suchen nach patientenspezifischen Informa-
tionen über das Ansprechen auf eine Krebsimmuntherapie auf der Grund-
lage des Tumorgenoms. Innerhalb des Tumorgenoms ist der Beitrag von
Frameshift-Mutationen für den Erfolg der Immuntherapie nicht gut unter-
sucht [6]. Von Frameshifts erzeugte Peptide unterscheiden sich stark von
Selbstpeptiden und sind ein potenzielles Ziel für das Immunsystem. In un-
serer Analyse konzentrieren wir uns daher auf Frameshifts.

Wir finden Hinweise darauf, dass Frameshifts mit dem Ansprechen auf
eine Immuntherapie zusammenhängen. Dennoch ergibt unsere statistische
Analyse, dass Frameshifts nicht signifikant mit dem Erfolg der Immunthera-
pie verbunden sind. Wir finden einige Hinweise, dass ein versteckter Faktor,
z. B. die Mutationsrate, sowohl die Zahl der unbekannten immunogenen
Mutationen als auch die Zahl der Frameshifts erhöht. Es gibt jedoch keine
Hinweise darauf, dass die Frameshifts kausal für den Erfolg einer Immunther-
apie sind.
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Abstract
Anomalous biological information processing plays a crucial role in the for-
mation and spread of cancer. Mathematical modelling and inference of sig-
nalling pathways is a central challenge in the field of cancer research [1].

We propose a stochastic model of gene regulation and solve our model
within a Gaussian theory. We develop a maximum-likelihood estimate based
on the Gaussian theory to infer regulatory interactions from steady state
gene expression data.

Within a simulated dataset, we compare our method to least squares fits,
which are standard methods for gene regulatory network inference [7, 8].
Our estimate provides a more accurate network reconstruction in the regime
of a sizeable stochastic contribution to the system dynamics. Based on per-
turbation experiments in the SK-MEL-133 melanoma cell line, we find that
our maximum likelihood method leads to more accurate response predictions
than least squares methods.

High variability in patient response encumbers the clinical use of cancer
immunotherapy. The understanding of determinants that drive immune re-
sponse, resistance, and adverse side effects is a central scientific issue to move
the field of cancer immunotherapy forward [2].

Several hypothetical response determinants are controversially discussed
in the literature [3, 4, 5]. We search for patient-specific information about
cancer immunotherapy response based on the tumour genome. Within the
tumour genome, the contribution of frameshift mutations to immunother-
apy response is less well studied [6]. Frameshift-derived peptides are very
different from self-peptides and are a potential prime target for the immune
system. Within our analysis, we focus, therefore, on frameshift-derived pep-
tides.

We find slight evidence that frameshift mutations are related to im-
munotherapy response. Nonetheless, our statistical analysis revealed that
frameshift-derived peptides are not significantly associated with immunother-
apy response. We find some evidence that a hidden factor, e.g. the mutation
rate, increases both the number of unknown immunogenic mutations and
the number of frameshift mutations. Still, there is no evidence that the
frameshift mutations are causal for immunotherapy response.
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1. Introduction
The job of the first eight pages
is not to have the reader want
to throw the book at the wall,
during the first eight pages.

David Foster Wallace

Systems biology is an interdisciplinary field of research that studies com-
plex interactions within biological systems. This thesis combines compu-
tational methods from broadly varying research fields such as information
theory, computational biology, and statistical mechanics. We unify these
methods to learn about complex biological systems based on an interplay
between information, probability, and logic.

We address two biological problems within this thesis. In section 1.1, we
introduce the inference of gene regulatory networks. The second problem,
the response prediction to cancer immunotherapy, is posed in section 1.2.

1.1. Gene regulatory network inference
The regulation of gene expression is fundamental in the complexity and
diversity of life. Gene regulation controls everything from the response of
unicellular organisms to environmental changes up to cell differentiation and
self-organisation in multicellular organisms. The multitude of genes forms a
complex gene regulatory network (GRN). The GRN encodes response pat-
terns, cell differentiation, and self-organisation. Obtaining reliable informa-
tion about gene regulation is essential to understanding the complexity and
diversity of biological organisms.

Anomalous gene regulation plays a crucial role in the formation and spread
of cancer. Therefore, knowledge about GRNs in increasing levels of complex-
ity, from small signalling cascades to large gene regulatory networks consist-
ing of thousands of genes, is important in cancer biology and designing new
targeted therapies against cancer. Mathematical modelling of gene regula-
tion, inference of regulatory interactions, and prediction of gene expression
is a promising scientific issue in the field of cancer research [1].
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We use a stochastic model of gene expression dynamics based on an inter-
action network to infer regulatory relationships from gene expression data.

Gene expression is, due to the small number of molecules involved and
randomness in transcription and translation, an intrinsic stochastic process
[9]. We investigate whether one can learn about regulatory interactions from
correlations between fluctuations in gene expression. To this end, we propose
a system of stochastic differential equations to model gene expression and
employ stochastic calculus to characterise the steady state distribution of
our system.

Based on the steady state characterisation, we solve the forward problem,
calculating mean gene expression and their covariance given a set of model
parameters. For this purpose, we extend approximation methods developed
in statistical physics and artificial neural network research.

Gene regulatory network inference (GRNI), the reconstruction of regula-
tory interactions given gene expression measurements, is an inverse problem.
For the solution of this inverse problem, we employ statistical inference and
construct a maximum posterior estimate based on our forward problem so-
lution.

We address the question of whether our maximum posterior estimate
yields a more accurate network reconstruction than standard methods based
on a least squares fit [7]. We reconstruct networks based on simulated data
and predict gene expression within a cell line experiment to compare the
approaches.

The reconstruction of a GRN based on gene expression data is a compu-
tationally challenging problem. Without assumptions on the network struc-
ture, the computation of a maximum posterior estimate for the structure in
an undirected regulatory model is an NP-hard problem [10].

The number of possible configurations for a model with 𝑛 nodes and 𝑑
directed interactions is 𝑑𝑛2 . Accordingly, the combinatorial explosion of
configurations is a computational challenge [11]. Due to the computational
complexity, we focus on small regulatory networks to provide proof of prin-
ciple.

On account of experimental limitations, quantifying gene expression in
single-cell high-throughput experiments usually incurs cell destruction.
Therefore we focus on the inference without time-series data, which is
typical in high-throughput experiments in the context of GRNI. Because
the inverse problem of inference from a single-time point without time-series
data is ambiguous, perturbation experiments are used in the field of systems
biology to infer causality in GRNs. The idea of a perturbation experiment
is to quantify steady state gene expression without any perturbation and
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then apply a known combination of drugs to the system and measure the
gene expression after settling into the perturbed steady state. On account
of systematic perturbations, more information is available to determine reg-
ulatory mechanisms. The approach of perturbation experiments has been
successfully employed to infer GRNs [8].

1.2. Cancer immunotherapy response prediction
Immune checkpoints play a crucial role in the regulation of the immune sys-
tem. Genetic mutations occur that affect these immune checkpoints and
disable the immune system’s ability to recognise and destroy tumour cells
during the development of many cancers. Checkpoint blockade immunother-
apy (CBI), which inhibits these immune checkpoints, enables an immune
response again.

For a minority of cancer patients, checkpoint inhibition has an outstand-
ing clinical benefit [12]. Nonetheless, adverse effects and high variability in
patient response limits clinical success. The understanding of determinants
to CBI response is a key scientific issue in the field of immuno-oncology [2].

The obstacle in predicting response to CBI is the complex behaviour of
the immune system in cancer [13, 14]. Due to a large number of hypothetical
decisive response determinants, careful analysis is required.

The focus of CBI response prediction based on genetic alterations has been
mainly on point mutations. The contribution of frameshift mutations is less
well studied. Swanton et al. find that the number of frameshift mutations
is significantly associated with CBI response across three melanoma cohorts
[6].

We focus on frameshift-derived peptide sequences that are entirely differ-
ent from self-peptides. These frameshift-derived peptides are a hypothetical
rich source of immunogenic targets. We investigate whether one can predict
cancer immunotherapy response based on frameshift mutations within the
tumour genome. To answer this question, the information content of hypo-
thetical frameshift-related response determinants is analysed. We use tools
from computational biology to process patient-specific mutation data. To
investigate information about CBI response within frameshift mutations in
the tumour genome, we implement statistical inference. We aim to identify
patients that likely benefit from CBI and support clinical decision-making.
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2. Foundations
In any field, the establishment is
seldom in pursuit of the truth,
because it is composed of those
who sincerely believe that they
are already in possession of it.

Edwin Thompson Jaynes

This chapter provides an overview of the foundations on which our network
inference and response prediction is based.

We introduce, in section 2.1, computational methods employed within this
thesis. We provide references to pioneering papers in which those methods
were developed.

In section 2.2, we outline the biological foundations. We refer to excellent
and extensive textbooks about biological information processing and the
immune system’s role in cancer.

2.1. Theoretical foundations
In this section, we outline the theoretical foundations of biological infor-
mation processing and statistical inference, the mathematical framework to
draw conclusions in the presence of uncertainty.

The laws of statistical mechanics characterise biological information pro-
cessing. An information theoretical view of statistical mechanics, a subjec-
tive inference of system properties based on data, is outlined in subsection
2.1.1.

For our stochastic model of gene regulation, we employ a system of
stochastic differential equations. We define stochastic differential equations,
equilibrium, and detailed balance in subsection 2.1.2. In equilibrium statis-
tical mechanics, interactions are generally assumed to be symmetric. There
are no symmetric interactions in various inhomogeneous and irregular bi-
ological models, such as our stochastic gene expression model. Biological
systems generally run far from equilibrium. Permanent consumption and
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dissipation of energy lead to a non-equilibrium activity that is at the heart
of biological organisms [15].

In subsection 2.1.3 we introduce statistical inference, the update of beliefs
to account for new data, as an unbiased approach to inverse problems in the
field of statistical mechanics.

2.1.1. Information theory and statistical mechanics
Statistical mechanics deals with systems consisting of a multitude of inter-
acting components. On account of the large system size, the general idea of
statistical mechanics is to gain information about macroscopic observables
based on microscopic laws describing the interacting components. Thus one
leaves out the ambition to gain information about the system on a micro-
scopic level.

Within the last decades, the interplay between statistical mechanics and
information science has become more important because applications within
information science moved towards large, interacting systems [16].

We retrace a general idea of an information-theoretical approach to sta-
tistical mechanics developed by Edwin Thompson Jaynes in the 1957 paper
[17]. Jaynes, who had a penchant for logic, constructed probability distribu-
tions over system states based on a maximum entropy estimate. He extended
the methods of Bayesian inference and employed information theory to in-
terpret statistical mechanics. Edwin Thompson Jaynes’ book ”Probability
Theory: The Logic of Science” [18] was published posthumously in 2003.
In this exceptional book, he compiled findings on Bayesian probability and
statistical inference.

The theoretical basis for this subjective construction of statistical mechan-
ics is the concept of information entropy,

𝑆 = −k ∑
𝛼

𝑝𝛼 ln (𝑝𝛼) , (2.1)

as a measure for the uncertainty of an observer about the probabilities of sys-
tem configurations, 𝑝i. This concept was first discussed by Claude Shannon
in his landmark paper ”A Mathematical Theory of Communication” [19].
The choice of a basis for the logarithm and the value of constant k in the
definition (2.1) merely specify the unit in which uncertainty is quantified.
Independent of the unit, information entropy measures the average quantity
of information required to represent an event from a probability distribution.

One employs information entropy as a starting point to estimate macro-
scopic observables within statistical inference. The probability distribution
that maximises information entropy subject to constraints, which remain to
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be specified, is the unbiased estimate of the system state. One requires a
normalisation,

∑
𝛼

𝑝𝛼 = 1 , (2.2)

for a well defined probability distribution as a constrain. Despite normali-
sation one allows for N additional constraints regarding expectation values,

∀n ∈ {1, … N} ∶ ∑
𝛼

𝑝𝛼𝑓n(𝐱𝛼) = ⟨𝑓n(𝐱)⟩ , (2.3)

such as system energy or other constants of motion based on experimen-
tal measurements. Thus, one employs Lagrange multiplier, 𝜆0, … , 𝜆N, to
maximise 2.1 subject to 2.2 and 2.3. A maximum entropy estimate of the
probabilities,

𝑝𝛼 = exp (−𝜆0 − ∑
n

𝜆n𝑓n (𝐱𝛼)) , (2.4)

is obtained. Within the estimated distribution the Lagrange multiplier are
determined by the required normalisation and expectation values,

𝜆0 = ln (𝑍(𝜆1, … , 𝜆N)) and

⟨𝑓n(𝐱)⟩ = − 𝜕
𝜕𝜆n

ln (𝑍(𝜆1, … , 𝜆N))

with 𝑍(𝜆1, … , 𝜆N) = ∑
𝛼

exp (− ∑
n

𝜆n𝑓n (𝐱𝛼)) .

(2.5)

In equation 2.5 we defined the partition function, 𝑍(𝜆1, … , 𝜆N), which en-
codes how the 𝑝𝛼 are partitioned among the microstates within our maxi-
mum entropy estimate. Finally, the entropy of the inferred distribution is
given by

𝑆 = 𝜆0 + ∑
n

𝜆n ⟨𝑓n (𝐱)⟩ . (2.6)

Estimates about macroscopic observables can be expressed via the partition
function, 𝑍(𝜆1, … , 𝜆N), and partial derivertives with respect to 𝜆n.

Within the standard statistical mechanics approach, the probability mea-
sure (2.4) is known as a Boltzmann distribution. The Boltzmann distribu-
tion,

𝑝𝑖 = 1
𝑍

𝑒−𝛽𝜀i , (2.7)
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gives the probability that a system is in state i depending on energy level, 𝜀i,
and a temperature dependent constant, 𝛽. Within an information-theoretical
approach, this is the maximum entropy estimate under an expected energy
constraint and the corresponding Lagrange multiplier 𝛽.

The maximum entropy principle in an information-theoretical approach to
statistical mechanics is not a physical law like in an objective interpretation
but rather a first principle to avoid evidence-less assumptions about the
system to make unbiased predictions about macroscopic observables.

Standard statistical mechanic arguments based on microscopic laws of
motion lead to identical macroscopic predictions of time-independent ob-
servables. There is no additional information in the laws of motion for the
statistical inference of these macroscopic observables than the measurement
constraints. We encounter a similar property in our network inference ap-
proach, which is based on time-independent observables. We employ rela-
tions between these observables without additional information on the sys-
tem dynamics within our unbiased estimate to gain information about the
gene regulatory network.

2.1.2. Stochastic dynamics out of equilibrium

A stochastic process is a mathematical object used to model irregularly fluc-
tuating dynamical systems. The theory of stochastic processes is considered
as ”one of the most important mathematical developments of the twentieth
century” [20] with applications that range from statistical mechanics to bi-
ology and finance [21].

We introduce stochastic processes in the first paragraph of this subsection.
Within the second paragraph, we briefly discuss steady states, equilibrium
and detailed balance in the context of stochastic processes and statistical
mechanics.

Stochastic dynamics

The French physicist Paul Langevin modelled stochastic dynamics of molec-
ular systems and invented an analytical approach to stochastic processes in
his landmark paper ”Sur la théorie du mouvement brownien” [22] in the year
1908. The original Langevin equation describes Brownian motion, the ran-
dom movement of a particle in a liquid due to collisions with liquid molecules.
Langevin applied Newtonian dynamics and modelled the effect of interac-
tions between the particle and the fluid molecules with an irregularly random
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fluctuating contribution. In reward to his pioneering work the equation
d
dt

𝑥(𝑡) = 𝑎(𝑥, 𝑡) + 𝑏(𝑥, 𝑡)𝜉(𝑡) , (2.8)

which is defined by deterministic functions, 𝑎(𝑥, 𝑡) and 𝑏(𝑥, 𝑡), and an irreg-
ularly random fluctuating function, 𝜉(𝑡), is named Langevin equation. For
𝜉(𝑡) an expectation value of zero and no correlation between 𝜉(𝑡) and 𝜉(𝑡′)
for 𝑡 ≠ 𝑡′ are required,

⟨𝜉(𝑡)⟩ = 0 (2.9)
⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′) . (2.10)

Accordingly 𝜉(𝑡) has the interesting property of diverging variance. To con-
struct a solution of the Langevin equation the integral over 𝜉(𝑡) is defined,

𝑢(𝑡) = ∫
𝑡

0
d𝑡′𝜉(𝑡′) . (2.11)

The following definition of an Ito stochastic integral is a stochastic gener-
alisation of the well-known Riemann-Stieltjes integral. On account of the
vanishing correlation of 𝜉(𝑡) the function 𝑢(𝑡) has the property of a Markov
process, such that 𝑢(𝑡) − 𝑢(𝑡′) is independent of 𝑢(𝑡″) for all 𝑡″ < 𝑡′ < 𝑡.
The Markov process 𝑢(𝑡) is described by zero drift and a time independent
global diffusion equal to one,

lim
Δ𝑡→0

1
Δ𝑡

⟨∫
𝑡+Δ𝑡

𝑡
d𝑡′𝜉(𝑡′)⟩

(2.9)
= 0

lim
Δ𝑡→0

1
Δ𝑡

⟨∫
𝑡+Δ𝑡

𝑡
d𝑡′ ∫

𝑡+Δ𝑡

𝑡
d𝑡″𝜉(𝑡′)𝜉(𝑡″)⟩

(2.10)
= 1 .

(2.12)

Such a stochastic process is named in the literature Wiener process in hon-
our of the American mathematician and philosopher Norbert Wiener. The
Wiener process is not differentiable, and the Langevin equation (2.8) does
not exist in a strict mathematical sense. Therefore one studies the corre-
sponding integral equation,

𝑥(𝑡) − 𝑥(𝑡0) = ∫
𝑡

𝑡0

d𝑡′𝑎(𝑥, 𝑡′) + ∫
𝑡

𝑡0

d𝑡′𝑏(𝑥, 𝑡′)𝜉(𝑡′) , (2.13)

and defines the Ito stochastic integral as a limit of 𝑁 → ∞ partial sums
over intermittent points, 𝑡i, such that

∫
𝑡

𝑡0

d𝑡′𝐺(𝑡′)𝜉(𝑡′) = lim
𝑁→∞

(
𝑁

∑
i=1

𝐺(𝑡𝑖−1) (𝑢(𝑡i) − 𝑢(𝑡i −1))) . (2.14)
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The Japanese mathematician Kiyosi Itô (伊藤 清) invented the method of
stochastic integration and stochastic differential equations, nowadays known
as Itô calculus [23]. The basic concept of Itô calculus is the Itô stochastic
integral, which extends the rigorous methods of calculus to the study of
stochastic processes. Nowadays, stochastic calculus is applied in various
fields, from molecular dynamics to finance, as the mathematical descrip-
tion of a stochastic process. Gardiner’s ”Handbook of Stochastic Methods”
[24] is an excellent textbook to understand stochastic differential equations
and to gain confidence in their application. The following methods, mean
value formula and Ito’s formula, are comprehensively covered in Gardiner’s
textbook.

To calculate expectation values within a stochastic process, like mean gene
expression in our stochastic model, one uses the mean value formula,

⟨∫
𝑡

𝑡0

d𝑡′𝜉(𝑡′)𝐺(𝑡′)⟩
(2.14)

= 0 , (2.15)

for non-anticipating 𝐺(𝑡). A function 𝐺(𝑡) is non-anticipating if 𝐺(𝑡) does
not depend on the future values of the stochastic process. Therefore it is
a reasonable assumption for a function with a physical interpretation to be
non-anticipating.

We make use of Ito’s formula,

d𝑓(𝑥) = 𝑎(𝑥, 𝑡)𝑓 ′(𝑥) d𝑡 + 1
2

𝑏(𝑥, 𝑡)2𝑓″(𝑥) d𝑡 + 𝑏(𝑥, 𝑡)𝑓 ′(𝑥)𝜉(𝑡)𝑑𝑡 , (2.16)

which can be derived in an heuristic approach by Taylor expansion of the
function 𝑓(𝑥). A rigorous proof of Ito’s formula is based on the limit of a
sequence of random variables. With Ito’s formula one can calculate deriva-
tives of functions depending on a single-variable stochastic process described
be the Langevin equation (2.8). Our stochastic model of gene regulation is a
multi-variable stochastic process. For such a many variable system described
by

d𝑥i = 𝑎i(𝐱, 𝑡) d𝑡 + ∑
j

𝑏ij(𝐱, 𝑡)𝜉j(𝑡)𝑑𝑡 (2.17)

one can employ a many-variable variant of Ito’s formula,

d𝑓(𝐱) = ∑
i

𝑎i(𝐱, 𝑡) 𝜕
𝜕𝑥i

(𝑓(𝐱)) d𝑡 + 1
2

∑
ij

(𝐛𝐛T)ij(𝐱, 𝑡) 𝜕2

𝜕𝑥i𝜕𝑥j
(𝑓(𝐱)) d𝑡

+ ∑
ij

𝑏ij(𝐱, 𝑡) 𝜕
𝜕𝑥i

(𝑓(𝐱)) 𝜉j(𝑡)𝑑𝑡(𝑡) ,

(2.18)
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to calculate derivatives of a function dependent on a multivariate stochastic
process, 𝑓(𝐱). Suchlike stochastic processes and quantitative methods have
proven to be useful in various applications in natural and social science [21].

Steady states, equilibrium, and detailed balance

A system is in a steady state if the variables which characterise the system
are constant in time. Steady states of our stochastic model of gene regulation
are the theoretical foundation of our inference approach. A system is in a
stead state if and only if the steady state relation,

∀𝐱 ∶ 𝜕
𝜕𝑡

𝑝 (𝐱) = 0 , (2.19)

holds, where 𝑝 (𝐱) is the probability that the system is in the state 𝐱.
In general, steady states are divided into two categories (equilibrium

steady states and non-equilibrium steady states). Equilibrium steady states
form a subset characterised by further properties, making the equilibrium
steady state distribution more accessible. Analytical solutions for non-
equilibrium systems exist mostly in one dimension. Recently, a lot of research
has been done on non-equilibrium mechanics because many biological and
engaging small systems are usually out of equilibrium [15].

An equilibrium steady state is characterised by detailed balance. A system
fulfils the detailed balance condition if and only if there exists a unique
solution such that the relation

∀𝛼, 𝛽 ∶ 𝑝(𝐱𝛼|𝐱𝛽)𝑝(𝐱𝛽) = 𝑝(𝐱𝛽|𝐱𝛼)𝑝(𝐱𝛼) (2.20)

holds. This condition demands that the net probability flow between each
pair of configurations, 𝐱𝛼 and 𝐱𝛽, is equal to zero. Detailed balance corre-
sponds to a time-reversal symmetry, where every transition process is bal-
anced out by its reversed process.

Detailed balance is linked to the presence of an energy function associated
with a Boltzmann distribution.

In the case of discrete system with configurations, {𝐱𝛼, ⋯ , 𝐱𝜔}, we con-
struct an energy function based on the detailed balance relation 2.20,

ln (𝑝(𝐱𝛽)) = ln (
𝑝(𝐱𝛽|𝐱𝛼)
𝑝(𝐱𝛼|𝐱𝛽)

) + ln (𝑝(𝐱𝛼)) . (2.21)
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For this purpose we fix the energy for an arbitrary state, 𝜀𝛼 = 𝜀0, and
determine the energies,

𝜀𝛽 = ln (
𝑝(𝐱𝛽|𝐱𝛼)
𝑝(𝐱𝛼|𝐱𝛽)

) + 𝜀𝑎 (2.22)

with non-vanishing transition-probabilities 𝑝(𝐱𝛼|𝐱𝛽) ≠ 0. This assignment
is iteratively repeated for the entire configuration space. Kolmogorov’s cri-
terion assures that for an irreducible process the detailed balance condition
is fulfilled if and only if

𝑝(𝐱𝛼|𝐱𝛽)𝑝(𝐱𝛽|𝐱𝛾) ⋯ 𝑝(𝐱𝜓|𝐱𝜔)𝑝(𝐱𝜔|𝐱𝛼)
= 𝑝(𝐱𝛼|𝐱𝜔)𝑝(𝐱𝜔|𝐱𝜓) ⋯ 𝑝(𝐱𝛾|𝐱𝛽)𝑝(𝐱𝛽|𝐱𝛼)

(2.23)

holds for all sequences (𝛼, 𝛽, 𝛾, ⋯ , 𝜓, 𝜔) [25]. Thus, Kolmogorov’s criterion
guarantees a consistent energy distribution for each irreducible subset of
discrete system configuration.

For a continuous system that obeys the detailed balance condition for all
times one can define an energy function,

𝜀(𝐱) = −𝛽−1 log(𝑝s(𝐱)) , (2.24)

based on the corresponding steady states distribution, 𝑝s(𝐱). Gardiner es-
tablishes in Stochastic Methods section 5.3.4. [24] necessary and sufficient
conditions for a system described by the multivariate Langevin equation
(2.17) to have a stationary solution that satisfies the detailed balance condi-
tion. Under the assumption of linearity and constant coefficients (2.17) can
be written as

d𝑥i = ∑
j

𝑎ij𝑥j d𝑡 + ∑
j

𝑏ij𝜉j(𝑡)𝑑𝑡 . (2.25)

Within this system, Gardiner shows in section 5.3.6. that the detailed bal-
ance condition implies that 𝑝s(𝐱) is Gaussian distributed,

𝑝s(𝐱) = 𝑍−1 exp(−1
2

𝐱T𝜎−1𝐱) , (2.26)

with 𝐚 𝜎 + 𝜎 𝐚T = −𝐛.

2.1.3. Inverse problems and statistical inference
Statistical inference is an unbiased update of beliefs to account for new data,
𝒟. The inference is accomplished by employing Bayes theorem

𝒫(𝜃|𝒟, ℳ) = 𝑃(𝒟|𝜃, ℳ)𝑃(𝜃|ℳ)
𝑃(𝒟|ℳ)

(2.27)
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to calculate the posterior probability [26, 18]. The posterior, 𝒫(𝜃|𝒟, ℳ),
characterises the probability of a set of model parameters 𝜃, treated as a
random variable, under the condition of evidence from new data and a model
hypothesis, ℳ. The prior, 𝑃(𝜃|ℳ), is a probability distribution encoding
beliefs about the model parameter before some evidence from data is taken
into account. The likelihood of a model parameter set, 𝑃(𝒟|𝜃, ℳ), is the
conditional probability of measuring 𝒟 given ℳ and the 𝜃. One obtains the
evidence,

𝑃(𝒟|ℳ) = ∫ d𝜃𝑃(𝒟|𝜃, ℳ)𝑃(𝜃|ℳ) , (2.28)

by integrating out the model parameter. The evidence is a 𝜃-independent
normalising constant, which can be neglected within a maximum posterior
estimate.

Within the language of statistical mechanics, the forward problem is the
calculation of an observable, 𝒟, based on a model, ℳ, equipped with a set of
model parameters, 𝜃. Thus, the quantification of the likelihood, 𝑃(𝒟|𝜃, ℳ),
is connected to the forward problem in a statistical mechanics problem.

The inverse problem, the estimation of model parameters based on macro-
scopic observables, is linked to statistical inference, which provides us with
an unbiased approach to inverse problems.

Conjugate prior

For the construction of a suitable prior, we use conjugate prior distributions
within this thesis. A prior distribution, 𝑃(𝜃|ℳ), is a conjugate prior for the
likelihood if and only if the posterior, 𝒫(𝜃|𝒟ℳ), is in the same family of
probability distribution as the prior itself. A conjugate prior shows trans-
parently how our beliefs are updated to account for new data because the
update modifies only some parameters in the prior distribution. In case of
repetitive updates, a conjugate prior is algebraically facile to handle.

We employ a Gaussian distribution within the response prediction to can-
cer immunotherapy as a likelihood function. In the standard form,

𝑃 (𝑥|𝜇, 𝜎2) = 1√
2𝜋𝜎2

exp (− 1
2𝜎2 (𝑥 − 𝜇)) , (2.29)

the distribution is characterised by two parameters, mean, 𝜇, and variance,
𝜎2. Assuming 𝜇 = 0 is fixed, then the conjugate prior for 𝜎2 is an inverse
Gamma distribution,

𝑃 (𝜎2|𝛼, 𝛽) = 𝛽𝛼

Γ(𝛼)
(𝜎2)−𝛼−1 exp (− 𝛽

𝜎2 ) . (2.30)
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Thus, the posterior is once more an inverse Gamma distributions and in the
same family as the prior,

𝑃 (𝜎2|𝑥, 𝛼, 𝛽) ∝ (𝜎2)−(𝛼+ 1
2 )−1 exp (−

𝛽 + 1
2𝑥

𝜎2 ) . (2.31)

Credible region

A credible region is a region of the model parameter space within which
a parameter configuration falls with a particular probability. Within our
statistical inference, we employ the concept of credible regions to compare a
set of model parameters with a posterior probability distribution.

The 𝜑 credible region is a parameter space region, 𝐴, that is not necessarily
connected, such that 𝐴 contains the fraction 𝜑 of the posterior probability,

∫
𝐴

𝑃(𝜃) d𝜃 = 𝜑 . (2.32)

The 𝜑 credible region with the smallest volume, which contains the proba-
bility 𝜑 according to constrain (2.32),

𝐴⋆ = arg min
𝐴

∫
𝐴

d𝜃 , (2.33)

is the highest posterior density region. Within our analysis we refer to
highest posterior density regions as a 𝑛𝜎 credible region. This region is
defined via

𝜑 = erf ( 𝑛√
2

) , (2.34)

such that 1𝜎 corresponds to 𝜑 ≈ 0.68 and 2𝜎 correspond to 𝜑 ≈ 0.95.

2.2. Biological foundations
Within this section, we introduce the biological principles of our network
inference and response prediction.

In subsection 2.2.1 we outline the basic biochemical principles of gene
regulation. Based on these, we build our stochastic model of gene regulation,
which is the starting point for our network inference.

Genetic mutations in cancer, discussed in subsection 2.2.2, and the im-
mune recognition of these mutations, outlined in the closing subsection 2.2.3,
are the biological foundation of our response prediction.
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2.2.1. Central dogma of molecular biology
Biological information, the determination of nucleic acid sequences in the
genome and amino acid sequences in protein, plays a central role in the
complexity and diversity of life. The genetic code enables biological systems
to synthesise a multitude of structurally and functionally diverse proteins
based on sequential information within the genome.

The central dogma of molecular biology describes the flow of biological in-
formation within the cell. Constituents of this process are deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA) molecules, both composed of a nu-
cleic acid sequence, as well as proteins, consisting of an amino acid sequence.
The general flow of biological information consists of three sub-processes ac-
cording to the central dogma of molecular biology. These processes are
depicted in figure 2.1 and outlined in the following paragraphs. In the last
paragraph, we briefly discuss some mechanisms of error recognition within
biological information processing.

Replication

The biochemical process of DNA replication is the building of two identi-
cal DNA replicas from one template. DNA replication is the fundamental
process in cell division, providing each cell with a complete set of biological
information, and is thus part of information transfer in all living organisms.
DNA consists of two complementary nucleic acid strands, which split into
single strands during replication. Each DNA single-strand carries the com-
plete genetic information and serves as a building plan for a DNA replica.
The cell-division cycle regulates the replication of DNA.

Transcription

Transcription is the synthesis of a single-stranded RNA molecule based on
the nucleotide sequence of a double-stranded DNA molecule. The central
player of transcription is the protein complex RNA polymerase, which pro-
duces a complementary RNA strand. This stand is called primary transcript.

One refers to RNA segments that encode sequential information for pro-
tein synthesis as messenger RNA (mRNA), while all other parts are called
non-coding RNA (ncRNA). The ncRNA include several functional subtypes,
which account for the majority of human RNA and have a widespread role
in cells [27]. The biochemical process of RNA splicing transforms newly-
transcribed precursor mRNA molecules into mature mRNA molecules. Non-
coding mRNA regions, referred to as introns, are removed during RNA splic-
ing, and the coding regions, called exons, are joined together.
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The regulation of transcription, a fundamental building block in the com-
plexity and diversity of life, is accomplished by transcription factors (TFs).
These are proteins that control the transcription rate by binding to DNA.
Thus the interplay of TFs provides the right amount of transcripts according
to cell type, homeostasis, and external factors.

Translation

Translation is the protein synthesis according to sequential information en-
coded in an mRNA molecule. An initiation complex binds to the mRNA
molecule, and a ribosome assembles around the targeted mRNA to start
the synthesis. A ribosome is a macromolecular machine, found within all
living cells, that performs protein synthesis. In this process, the sequential
information is translated into an amino acid sequence, which is the basis of
a functional protein. The mechanisms of transcription regulation are pretty
diverse. They range from specific chemical catalysts to a shutdown of ini-
tiation by modification of an initiation complex. However, the most crucial
target of gene regulation within the human organism is not the translation,
but the regulation of transcription by TFs [28].

Despite these fundamental processes of sequential information flow, post-
translational modification, the chemical modification of a protein that occurs
after translation, is an essential component in cell signalling and informa-
tion processing. An essential modification in the context of signalling is
phosphorylation, the reversible attachment of a phosphoryl group to a pro-
tein. Within this thesis, we refer to the mitogen-activated protein kinase
(MAPK) pathway as a central signalling pathway in the development and
spread of cancer. The MAPK pathway consists of proteins that commu-
nicate a growth signal via phosphorylation from a cell-surface receptor to
the cell nucleus. Thus abnormal information processing within the MAPK
pathway is a key mechanism for the formation of many cancer types.

Error recognition

Based on the stop codon, a nucleotide triplet that terminates the protein
synthesis, two mechanisms prevent erroneous mRNA from translation.

One mechanism is nonsense-mediated mRNA decay (NMD), which recog-
nises a premature stop codon in mRNA and the prevention of truncated pro-
tein expression. During initial translation, the ribosome removes exon-exon
junction complexes, which are protein complexes connecting exons. Exon-
exon junction complexes located after a stop codon remain bound to the
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Figure 2.1.: General flow of biological sequence information according to
the central dogma of molecular biology. Created with
BioRender [30].
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mRNA molecule because the ribosome complex does pass them. In case an
exon-exon junction complex is still bound to the mRNA after initial transla-
tion, NMD takes place. With this mechanism, premature stop codons about
50 nucleotides before an exon-exon junction, and therefore not in the last
exon, are detected [29].

The other mechanism is non-stop decay (NSD). This control mechanism
prevents mRNA molecules that do not contain a stop codon from translation.
Ribosomes are detached from the mRNA molecule after they pass a stop
codon. The mRNA decay is initiated by ribosomes that reach the end of an
mRNA molecule. Thus, NSD safeguards against point mutations within the
stop codon and frameshift mutations resulting in mRNA molecules without
a proper stop codon.

2.2.2. Aspects of genetic mutation within cancer
All types of cancer are a consequence of genetic alterations that have oc-
curred purely by chance in the genome of cancer cells. These genetic alter-
nations comprise genetic mutation and chromosomal aberration. Chromo-
somal aberrations are either numeric, a change in chromosome number, or
structural, an abnormal spacial chromosome configuration. Errors during
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cell division are typically the origin of these chromosomal aberrations, some
of which are central in the formation of cancer. A change in sequential in-
formation is called a genetic mutation. These genetic mutations are gained
during DNA reproduction or as a consequence of external factors. Specific
sequential changes enable the development and spread of cancer.

Genetic mutations within a multicellular organism are classified according
to their origin in germline and somatic mutations. A germline mutation is
a genetic mutation within a germ cell. These cells divide to produce all
of the organism’s cells, causing germline mutations to be present in every
cell in the organism and to be inherited to offspring. In contrast, somatic
mutations occur in cells other than germline cells and are acquired by internal
or external factors during the organism’s lifespan. While somatic mutations
are not inherited to offspring, somatic mutations will be present in all cells
which are derived from the mutated cell by cell division. The development
of cancer is the result of an accumulation of somatic mutations in the course
of life.

In cancer research, a driver mutation is defined as a somatic mutation
within a signal transduction pathway that provides a growth advantage to
the tumour cell while maintaining a beneficial microenvironment, thereby
promoting cancer cell proliferation. In contrast, passenger mutations do not
promote cancer cell proliferation. Genomic instability and high mutation
rates cause cancerous cells to acquire numerous genetic mutations. Still,
most mutations are classified as passengers because they do not provide a
growth advantage to the tumour cell.

In addition to the property of tumour growth promotion, cancer cell frac-
tion (CCF) is an essential characteristic of a genetic alteration, especially
concerning an immune response. The CCF is the fraction of cancer cells
within which a specific genetic alteration is present. Thus one refers to a
genetic alteration as clonal if the corresponding CCF is close to one, oth-
erwise as non-clonal. We will employ CCF in our immunotherapy response
prediction.

Mutations can alter the sequential information within a gene in numerous
ways. Therefore multiple types of genetic alterations exist. Within this the-
sis, we focus on frameshift mutations, which cause peptide sequences highly
distinct from self-peptides. Point mutations, which are mentioned within
our response prediction, are represented in figure 2.2. We refer to missense
mutations, which cause a change in one amino acid, nonsense mutations,
resulting in a premature stop codon, and silent mutations, which do not
change the amino acid sequence.

Figure 2.3 shows a graphical representation of how frameshift mutations
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change amino acid sequences of proteins. Protein biosynthesis is based on a
non-injective mapping from a nucleotide triplet, referred to as codon, to an
amino acid. Thus, the insertion or deletion of a number of nucleotides, which
is not a multiple of three, results in a frameshift-derived peptide sequence
that is entirely different from the original sequence and therefore predestined
for immune recognition.

2.2.3. Immune recognition of genetic mutations
The immune system is an interacting defence system of biological organisms,
consisting of a multifold of biochemical structures. These constituents col-
laborate to respond to diverse pathogens, such as microorganisms, viruses,
toxins, and genetic mutations. The complexity and beauty of the whole
human immune system are presented in the textbook [14]. This subsection
focuses on the immune reaction caused by genetic mutations in the develop-
ment and spread of cancer.

The immune system consists of two distinct subsystems, which respond
to pathogens on different levels of complexity and time scales. The innate
immune system provides a pre-programmed response on short time scales to
common pathogens, whereas the sophisticated adaptive immune response is
highly specific to each pathogen. Based on information about encountered
pathogens, the adaptive immune system can learn and provide a reinforced
response when exposed to the same pathogen again. Within this subsection,
we focus on the adaptive subsystem, which is decisive for an anti-tumour
response.

A critical part of pathogen recognition by the adaptive immune system
is the binding of antibodies to antigens. An antibody molecule is a large
protein that binds to a specific pathogen molecule, called an antigen. Anti-
body binding initiates a rigid response against the encountered pathogen by
destructive parts of the immune system.

Antigen-presenting cells (APCs) form a heterogeneous group of cells that
mediate immune response by presenting antigen. These cells express major
histocompatibility complex (MHC) molecules on their cell surface to display
peptides consisting out of 8 to 11 amino acids. Almost all cells present
peptides out of their proteome, whereas professional APCs present foreign
antigens out of the cellular environment to orchestrate the immune response.

Pathogen recognition is performed by lymphocytes such as B cells, which
develop in the bone marrow and T cells, which migrate to the thymus gland
to mature. B cells provide antibodies, which bind to a specific antigen, and
additionally present antigens on their cell surface such that they are classified
as professional APCs. To detect somatic mutations and the differentiation
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Figure 2.2.: Point mutations. Created with BioRender [30].
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Figure 2.3.: Frameshift mutations. Created with BioRender [30].
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between self and non-self protein, the function of T cells is crucial. Thus T
cells provide a safeguard against the development and spread of cancer. The
T-cell receptor (TCR) is a protein complex on the T cell surface that is sub-
ject to recognising non-self peptides, which are bound to MHC molecules.
The great diversity of TCRs, enabling the recognition of a multitude of hypo-
thetical non-self peptides, results from genetic DNA segment recombination
in individual T cells. For self non-self discrimination, T cells go through
positive selection within the thymus. Such that almost exclusively non-self
peptides trigger TCR-mediated cell destruction. The activation of a T cell
requires an extracellular stimulatory signal that professional APCs mediate.
Figure 2.4 depicts an overview of an anti-tumour immune response.

Immune checkpoints are activating and inhibitory regulatory mechanisms
of the immune system, which are crucial for self-tolerance. Nevertheless,
some cancers hide from detection by the immune system by using inhibitory
checkpoints such as anti-programmed cell death protein 1 (PD-1), anti-
programmed cell death ligand 1 (PD-L1), and anti-cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4).

PD-1 is a cell-surface protein on T and B cells. PD-L1 binding to PD-
1 triggers inhibitory signals downstream of the TCR, which block TCR-
mediated cell destruction. This binding hinders autoimmune diseases but
may also prevent the immune system from a forceful anti-cancer response.

CTLA-4 is expressed by activated T cells, preventing an overreaction of
the immune system. Thus CTLA-4 is classified as an inhibitory checkpoint.
As well as PD-1 and PD-L1, CTLA-4 is a hypothetical target for checkpoint
blockade cancer immunotherapy.
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Figure 2.4.: T-cell mediated immune response to tumour cells. Created
with BioRender [30].
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3. Gene regulatory network
inference

If people do not believe that
mathematics is simple, it is only
because they do not realise how
complicated life is.

John von Neumann

The problem of gene regulatory network inference (GRNI) is the primary
objective of this chapter. We address the question of whether one can learn
something out of correlations between gene expression measurements for the
reconstruction of regulatory interactions. Therefore we develop a maximum
likelihood method (MLM), and we compare the performance of our MLM
to least squares fits, which are standard methods for GRNI [7, 8].

In section 3.1, we highlight research areas where knowledge of GRN is
essential. We motivate the reconstruction of small signalling cascades to
large gene regulatory networks consisting of thousands of genes.

The revealing of unknown regulatory relationships is based on experimen-
tal protocols to quantify gene expression, a mathematical model of the gene
regulatory network (GRN), and the inference of model parameters given gene
expression data. In section 3.2 the state-of-art of experimental protocols and
mathematical approaches to GRNI is reviewed.

Gene expression is an intrinsic stochastic process. We try to learn some-
thing from correlations between fluctuations in gene expression about the
regulatory interactions. Therefore, we propose a stochastic model of gene
regulation. We model gene regulation dynamics by a system of stochastic
differential equations. Our stochastic model of gene regulation, which we de-
fine in section 3.3, is based on a deterministic model developed by Nelander
[7].

We divide the complex challenge of GRNI up into two problems. The
first problem is the forward problem, the calculation of mean and covari-
ance of gene expression given model parameters. The second problem is
the inverse problem, the inference of model parameters given gene expres-
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sion data. An accurate solution to the forward problem is crucial for our
inference approach, as our MLM depends to a large extent on the forward
problem of our stochastic model. Therefore, we focus in the first step on a
precise solution to the forward problem.

To solve the forward problem, we employ a Gaussian theory (GT) de-
veloped by Mézard and Sakallariou in the context of the asymmetric Ising
model [31] in section 3.4. We compute mean gene expression levels and their
correlations in the steady state. The GT results are compared to the results
of mean field theory (MFT) and a numeric solution of our stochastic model.
We show that the GT outperforms the mean field approach in the regime
of strong gene interaction. We expected this behaviour because our MFT
is based on an expansion in the interactions around a factorising model. In
contrast, the GT is independent of the coupling strength.

We focus on inverse problems where time-series data is not available, which
is typical for high-throughput experiments in the context of GRNI. To solve
the inverse problem, we apply a maximum likelihood method (MLM) in
section 3.5. Our MLM is based on the GT for the solution of the forward
problem. We compare the results of our MLM to standard inference ap-
proaches based on least squares fits of the first moments of the steady state
distribution [7, 8]. We demonstrate that our MLM outperforms least squares
methods in the regime of a significant contribution of stochastic noise to the
system dynamics.

Finally, we perform an inference and response prediction of a signalling
network in a melanoma cell line based on experimental data in section 3.6.
Our findings give evidence that our MLM results in a more precise response
prediction than least squares methods.

3.1. Motivation to gene regulatory network
inference

The regulation of gene expression encodes the complexity and diversity of
life. Unravelling regulatory motives is, therefore, a fundamental step in
understanding basic mechanisms of life and the design of targeted therapies
against various diseases. GRNI based on high-throughput datasets is an
important and unsolved problem. In this section, we describe applications
that require GRNI to some extent.

Cellular differentiation is the metamorphosis in which a cell develops from
one cell type into another type of cell. The differentiation includes changes
in physical shape, metabolic activity, and response to extracellular signals.
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The metamorphosis of cells is based on altered gene expression. Therefore
the understanding of gene regulation is fundamental in understanding the
process of cellular differentiation.

Morphogenesis is the developmental process that causes pattern formation
and spatial organisation within organisms. The morphogenesis of organisms
is based on programmed and self-organised information processing, which is
encoded within the GRN [32].

In the field of evolutionary developmental biology, the developmental pro-
cesses of organisms are compared to gain information about ancestral rela-
tionships and the evolution of organisms. Knowledge about the architecture
of gene regulatory networks is one building block in evolutionary develop-
mental biology [33].

Another branch of biological research where knowledge about GRNs is es-
sential is the broad field of molecular medicine. In molecular medicine, bio-
chemical structures and mechanisms are studied, and fundamental molecular
or genetic causes of diseases are identified. One can use information about
gene regulation to develop therapies and personalised medicine to relieve
symptoms or to cure diseases [34].

Cancer is worldwide one of the most common causes of death [35]. Pre-
venting premature death from cancer is therefore crucial for global health
and the extension of life expectancy.

Knowledge about signalling pathways in both healthy and cancerous cells
is essential in the field of cancer research. A signalling pathway consists
of a chain of proteins that transfer information by biochemical activation.
Signalling pathways regulate basic cell functions and coordinate these func-
tions within their extracellular environment. The ability to perceive infor-
mation and respond to the environment is the basis of a functional organism
and tissue homeostasis. Anomalous biochemical information flow and errors
in cellular information processing can lead to structurally and functionally
modification of the cell. These modifications may cause diseases such as au-
toimmunity and cancer [36, 37]. Knowledge about tumour specific anoma-
lous regulation is therefore essential in the design of new targeted drugs
against cancer.

Targeted therapies, which use drugs that inhibit specific signalling path-
ways, are a promising alternative to conventional chemotherapy [38, 39].
A hypothetical target to inhibit is a signalling pathway, which enables or
promotes tumour growth. A targeted drug blocks signals that lead to cell
growth, cell division or increased lifespan of tumour cells. The systematic
design of new targeted drugs is based on GRNI and the prediction of gene
expression under the influence of specific drugs or drug combinations.
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Based on GRNI, we predict the response in gene expression to targeted
drugs in the SK-MEL-133 melanoma cell line. The SK-MEL-133 cell line
has functional mutations within the MAPK pathway, which we introduced
as a phosphorylation-based signalling cascade in section 2.2.1. The MAPK
pathway consists of a set of proteins that communicate a signal from a cell
surface receptor to the cell nucleus. The signalling cascade of the MAPK
pathway regulates various cellular processes such as response to environ-
mental conditions, proliferation, differentiation and cell death. A mutation
within the MAPK pathway can lead to abnormal information flow. Ab-
normal information flow plays a key role in the development of melanoma
[40] and is a necessary step in the formation and spread of many types of
cancer. Chemical compounds that target the MAPK pathway are being
investigated as promising and contributed to immense progress in the ther-
apeutic treatment of melanoma [41]. Thus knowledge about gene regulation
in the SK-MEL-133 melanoma cell line is a starting point for designing new
therapies.

3.2. Review of experimental protocols and
mathematical models

The challenge of GRNI is to gain information about regulatory relation-
ships based on measurements of gene expression. The revealing of unknown
signalling pathways is based on experimental protocols to quantify gene ex-
pression, a mathematical model of the GRN, and the inference of model
parameters given gene expression data.

Before we outline mathematical approaches to GRNI based on gene ex-
pression data in subsection 3.2.2, we give a brief overview of state-of-the-art
experimental protocols to quantify gene expression in the first subsection
3.2.1.

3.2.1. Experimental protocols
The transcriptome is the set of RNA, which is expressed at a specific mo-
ment in an individual cell or a cell group. Transcriptomics technologies are
experimental protocols and corresponding data analysis methods to study
the whole or cell-specific transcriptome.

The focus of this section is on protocols quantifying the expression of
mRNA. We neglect ncRNAs, which carry out diverse functions in protein
synthesis but are not central for the regulation of gene expression.
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The historical evolution of transcriptomics technologies is characterised by
breakthrough technologies, opening new horizons and making old techniques
obsolete. In 1991, experiments identified 609 mRNA sequences of the human
brain [42]. Currently, complete functional genomics data and transcriptomes
of hundreds of organisms under a multitude of different conditions and dis-
eases are publicly accessible [43, 44].

There are two current experimental technologies for the simultaneous mea-
surement of RNA transcription levels. DNA microarrays quantify the ex-
pression of a predefined set of genes [45, 46], whereas DNA sequencing is
principally capable of quantifying the expression level of arbitrary sequences
[47, 48].

The measurement of protein expression in a single cell is technically chal-
lenging. Some protocols have made it possible to quantify the expression of
numerous proteins in a single cell [49]. Ongoing technological advances in-
crease the coverage and sensitivity of these approaches and make it possible
to measure in parallel mRNA and protein concentrations in a single cell [50].
Combining mRNA and protein expression data could be the starting point
for the inference of multi-level gene regulation. However, the focus of this
study is to draw conclusions based on single-level expression data.

DNA microarray

In this paragraph, we give a short introduction about DNA microarray tech-
nology, and a fully detailed description can be found in the literature [45,
46]. The idea of DNA microarray technology is the binding of fluorescently
labelled single-stranded sequences with complementary probes on the mi-
croarray and the measurement of DNA concentration by the fluorescence
pattern of the microarray. The heart of the technology is a microarray chip.
The chip consists of a few up to as many as thousands of DNA probes. Each
probe consists of thousands of identical DNA sequences attached to the solid
microarray surface. One refers to the spatial location of a specific probe on
the microarray spot or feature.

The fluorescently labelled DNA sequences, of which one measures the
concentration, are called targets. The targets are applied as a solution onto
the microarray chip and bind to their complementary DNA sequences, im-
mobilised on a specific spot. Binding, the hybridisation between two com-
plementary strands of nucleic acids, is based on non-covalent interactions
between the molecules. One can estimate the concentration of each DNA se-
quence from the fluorescence pattern after washing the unbound sequences.

For the measurement of mRNA concentration, one employs reverse tran-
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Figure 3.1.: Sequencing with an DNA microarray. Created with BioRender
[30].

DNA ligation with  
corresponding probes 

Preperation of fluorescently 
labelled DNA fragments 

F 

F 

F 

F 

DNA microarray with 
fluorescent pattern 

F 

F 

F 
F 

F 

DN
A 

m
ic

ro
ar

ra
y 

F 

scription in a preparation step. Reverse transcription is performed by the re-
verse transcriptase enzyme, which synthesises complementary DNA (cDNA)
from an RNA template. In a follow-up step, one quantifies cDNA concen-
tration by microarray technology and deduces the mRNA concentration.

Approaches based on hybridisation are relatively inexpensive and scalable
up to high throughput experiments. On the downside, DNA microarray
has intrinsic limitations. They are based on a predefined set of probes.
Cross-hybridisation, the formation of double-stranded nucleic acid strains
between two molecules with similar but not identical complementary se-
quences, causes experimental noise. Furthermore, the comparison of ex-
perimental data from different setups is challenging and requires elaborate
normalisation methods.

DNA sequencing

One can find an extensive review of DNA sequencing technology in the lit-
erature [47, 48, 51], and we give an overview of the involved technology in
this paragraph. Central for the quantification of mRNA expression is the
nucleic acid sequence determination of the cDNA. Therefore mRNA is re-
verse transcribed into cDNA fragments with adaptors at one end, in the case
of single-end sequencing, or both ends, in the case of paired-end sequencing.
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After the reverse transcription of the mRNA follows the next-generation se-
quencing (NGS) of the cDNA.

The term NGS is a collective name used to describe different high-
throughput sequencing technologies. The sequencing process can be divided
into preparing a nucleic acid source, binding of labelled constituents, and
sequence determination. There are two main approaches to sequencing. The
first approach is sequencing by synthesis (SBS), and the second is sequencing
by ligation (SBL). In figure 3.2 the main steps of SBS and SBL are depicted.
SBS is based on the synthesis of fluorescently labelled nucleotides. In each
sequencing cycle, one nucleotide is added.

SBL uses DNA ligase, an enzyme that facilitates the joining of DNA
strands and is sensitive to base-pairing mismatches. DNA ligase prefer-
entially joins a complementary probe out of a pool of short labelled DNA
strands. Based on the fluorescence pattern, one can reveal the unknown
DNA sequence in both sequencing approaches.

mRNA sequencing is capable of quantifying single-cell gene expression on
account of the small amount of needed mRNA. Moreover, mRNA sequencing
covers an extensive range over which expression levels can be accurately
quantified [52]. Due to experimental limitations, the quantification of gene
expression in single-cell experiments incurs cell destruction. Therefore the
focus in this chapter is on GRNI without time-series data.

3.2.2. Mathematical models

The complex system of gene regulation can be modelled as a network. The
regulatory network is composed of nodes, representing genes, and edges,
representing regulatory relationships between the genes. The construction
of a mathematical model is the theoretical basis for GRNI. The biological
interpretation of an inferred regulatory relationship heavily depends on the
underlying mathematical model.

In this subsection, we introduce four major approaches (an information-
theoretic model, a Gaussian model, a Bayesian network, and a differential
equation model), of which we will combine two models. In section 3.3, we
propose a stochastic model of gene regulation based on a system of dif-
ferential equations. Our MLM for the network reconstruction, which we
introduce in subsection 3.5.2, is a Gaussian model of gene expression based
on the differential equation model.
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Figure 3.2.: Next-generation sequencing of a nucleic acid source by
synthesis of flourescently labelled nucleotides and ligation of
flourescently labelled oligonucleotides. Created with BioRender
[30].
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Information-theoretic model

Information-theoretic approaches are based on a measure of statistical de-
pendency. One assigns the statistical dependency between two expression
levels to the corresponding edge in the network. Measures that are, among
others, used in the context of GRNI are correlations and mutual information.

By construction, information-theoretic approaches reveal statistical de-
pendencies, no causal relationships, and do not distinguish between direct
and indirect regulatory relationships. With the use of symmetric mea-
sures, the inferred networks are intrinsic undirected. Information-theoretic
approaches reveal the topological structure of GRNs. On account of the
straightforward approach and low computational complexity, they are used
in the study of large regulatory networks [53].

Algorithms, which use a local comparison between two-point dependen-
cies, have been proposed to detect indirect interactions and reduce the num-
ber of false positive interactions which have a statistical dependence without
a direct regular relationship [53, 54].

Bayesian network

A Bayesian network represents the GRN by a set of genes and their con-
ditional dependencies via a directed acyclic graph. In contrast to an
information-theoretic model, the Bayesian network intrinsically incorpo-
rates causal regulatory relationships between genes. Koller and Friedman
provide a comprehensive description of Bayesian networks in their textbook
[55].

Within a Bayesian network, one assumes gene expression to be a stochastic
process, and random variables, 𝑥i, represent gene expression level. The
regulatory relationships are encoded in a conditional probability distribution,
𝑝(𝑥i|𝜋i), where 𝜋i defines a set of gene expression level of parental genes.
Gene expression is described by a joint probability distribution

𝑝(x) = ∏
i

𝑝(𝑥i|𝜋i) , (3.1)

which factorises on account of the assumption of acyclic regulatory relation-
ships. Inference within a Bayesian network is based on two steps. The first
step is to find an optimal set of parental genes. The second step is to es-
timate the functional dependencies that best describe the gene expression
data. The inference based on a Bayesian network is a computationally com-
plex problem. Still, under the assumption of acyclic regulatory relationships,
it is possible to infer causal regulatory interactions within the framework of
a Bayesian network [56, 57].
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Differential equation model

Detailed chemical kinetics and spatial models of molecular dynamics increase
the understanding of gene regulation [58, 59]. On account of complexity,
these models are parametrised with many sensitive constants, even for small
systems. Furthermore, parametrisation may depend substantially on the
chemical environment and could be entirely different from dilute solution
chemistry.

Instead of a detailed biochemical model, a system of differential equations
is used as a generic model of a GRN. In those models time evolution of the
gene expression level,

d𝑥i
d𝑡

= 𝑓i(x(𝑡), , 𝑢i(𝑡)) , (3.2)

is a function of the gene expression level, x(𝑡), a set of model parameter,
m, and eventually an external perturbation, 𝑢i(𝑡), which may be time-
dependent. One includes the regulatory interactions and constants of gene
expression in the model parameter set, Θ. Inference within a differential
equation model is based on a cost function that quantifies how the model
describes a given data set and model parameter optimisation. It is possible
to infer causal regulatory interactions using time series data [60] or steady
state gene expression data [7] within a differential equation model.

Gaussian model

Within the framework of a Gaussian model, statistical relationships between
gene expression levels are investigated. One combines the measurements
of gene expression levels at one point of time and under one experimental
condition into a vector, x. This gene expression vector is assumed to be
a Gaussian distributed multivariate random variable. Gene expression is
modelled by a multivariate normal distribution,

𝑝(x|m, 𝜒) = 1√
2𝜋 det 𝜒

exp (−1
2

(x − m)T 𝜒−1 (x − m)) , (3.3)

with mean expression level, m, and a covariance matrix, 𝜒. Within the
framework of Bayesian inference, one can infer the model parameter, m and
𝜒, and reveal topological information about the GRN encoded in the co-
variance matrix, 𝜒. Based on gene expression data, undirected regulatory
mechanisms can be reconstructed by integration of biological prior infor-
mation about regulatory mechanisms and prior knowledge about network
topology [61]. On account of the quadratic nature of the Gaussian model,
this approach is limited to infer two-point regulatory relationships.
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3.3. Stochastic model of gene regulation
We propose our stochastic model of gene regulation, a system of stochastic
differential equations in this section.

The motivation to employ stochastic differential equations to model a
GRN is that gene expression is an intrinsic stochastic process. Randomness
in transcription and translation leads to significant fluctuations in mRNA
and protein levels [9]. Moreover, we try to gain additional information out
of correlations between fluctuations in gene expression levels for the network
reconstruction. Within this study, we focus on GRNI based on steady state
gene expression data. Therefore, we focus on the steady state distribution
of our stochastic model of gene regulation.

Within subsection 3.3.1, we define the stochastic model of gene expression.
We characterise the steady state of gene expression within our model in
subsection 3.3.2. In the closing subsection 3.3.3, we point out that our
proposed model has a similar steady state characteristic as the asymmetric
Ising model. The gene expression levels and the spin moments obey similar
algebraic relations in the steady state. On account of this connection, we
extend in the following section methods developed in the context of the
asymmetric Ising model to solve the forward problem of our stochastic model
of gene regulation.

3.3.1. Stochastic model of gene regulation
We employ a stochastic version of a deterministic model developed in the
context of GRNI by Nelander [7]. In this chapter the system of stochastic
differential equation,

d𝑥𝜇
i

d𝑡
= 𝑎i tanh (ℎ𝜇

i ) − 𝑏i𝑥
𝜇
i + 𝑐i𝜉i, (3.4)

is used to model the dynamics of gene regulation. The time evolution of
gene expression levels is modelled with a system of non-linear differential
equations, comparable to a Hopfield network in the field of artificial neural
networks [62]. The network is composed of a set of nodes, 𝑥𝜇

i , representing
the gene expression level. The gene expression is regulated by an external
field,

ℎ𝜇
i = ∑

k
𝜔ik𝑥𝜇

k + 𝜃i + 𝑢𝜇
i , (3.5)

which is called a synaptic field in the context of neuronal networks, and
proportional to a gene specific expression coefficient, 𝑎i. The external field
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depends on the expression level, 𝑥𝜇
k , via the interaction matrix, 𝜔ik, a thresh-

old vector, 𝜃i, and a perturbation vector, 𝑢𝜇
i . The exponent 𝜇 labels differ-

ent perturbations and corresponding trajectories of gene expression, x𝜇(𝑡).
Within this model, we assume an exponential decay of mRNA or protein
concentration, which is quantified by decay constant 𝑏i > 0.

Gene expression and the decay of the gene products are intrinsic stochastic
processes because of the relatively small number of specific gene products.
Random fluctuations in transcription and translation cause significant cell-
to-cell variations in gene product concentrations [9, 63]. Mathematically we
model the stochastic nature of gene expression with a rapidly fluctuating
term, 𝜉i, defined by zero mean (2.9) and correlation (2.10). The magnitude
of the stochastic contribution is quantified by the constant 𝑐i > 0.

We assume the external field to be linear in the gene expression level.
Therefore, only two-gene interactions are considered. We do not incorporate
the phenomenon of co-activation nor co-repression, which are three-gene
interactions.

Nevertheless, the model can represent essential aspects of GRNs, including
oscillatory states, saturation, and homeostasis of gene expression. In figure
3.3 a plot of the simulated time evolution of our stochastic model of gene
regulation is shown.

There is no reasonable argument for symmetric interactions between in-
dividual genes. The amplification of gene expression by another gene does
not imply a reverse amplification. Such that the interaction is typically
asymmetric, and our model violates the detailed balance relation (2.20).
Therefore, there is no reasonable argument for the assumption that gene
expression levels are distributed according to a Boltzmann distribution. On
account of the absence of a Boltzmann distribution, we base our network
inference on the dynamic model 3.4.

To test our approach to GRNI, we simulate the time evolution according
to generated model parameters and take random samples after the system
has reached a steady state.

For the generation of the gene interaction matrix, 𝜔, we set ∀i ≠ 𝑗 ∶ 𝜔ij =
𝛽𝜁ij, where 𝜁ij is a random variable drawn independently from a normal
distribution with mean equal to zero and variance equal to the inverse of
total numbers of genes, 1/𝑁. Thus, assuming independent, 𝑥j, the variance
of the external field, ℎi, would be N-independent.

The constant 𝛽, the inter-gene coupling strength, is a measure of the
regulation strength between genes. Such a generated GRN is referred to as
a fully connected network, in contrast to a sparse network where there are
only a few non-zero matrix elements, 𝜔ij. In our proof-of-principle study,
self-regulation is not considered, ∀i ∶ 𝜔ii = 0.
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Figure 3.3.: Simulated time evolution of gene expression level for a fully
connected GRN as small as 10 nodes, where the model
parameter are are set to 𝑎i = 1, 𝑏i = 1 and 𝑐i = 0.1. For the
generation of the interaction matrix, 𝜔, the coupling strenght,
𝛽 = 0.5, is used.

0 25 50 75 100-1
.2

-0
.8

-0
.4

0.
0

0.
4

0.
8

1.
2

time

ge
ne

 e
xp

re
ss

io
n

3.3.2. Steady state of our stochastic model of gene
regulation

We characterise the state of our stochastic model with a multivariate prob-
ability distribution of gene expression levels. Because of the focus on steady
state gene expression data, we study in this subsection the steady state dis-
tribution of our model. We describe the distribution of gene expression level
with mean vector, m𝜇, and covariance matrix, 𝜒𝜇, defined by

𝑚𝜇
i = ⟨𝑥𝜇

i ⟩ and 𝜒𝜇
ij = ⟨𝑥𝜇

i 𝑥𝜇
j ⟩ − ⟨𝑥𝜇

i ⟩ ⟨𝑥𝜇
j ⟩ . (3.6)

The calculation of mean, ⟨𝑥𝜇
i ⟩, and two-point correlation function, ⟨𝑥𝜇

i 𝑥𝜇
j ⟩,

is based on the stochastic differential equation (3.4),

d
dt

𝑥𝜇
i = 𝐹i(x𝜇) + 𝑐i𝜉i . (3.7)

The first term on the right hand side of the equation (3.7) describes the
deterministic contribution to dynamics,

𝐹i(x𝜇) = 𝑎i tanh (∑
k

𝜔ik𝑥𝜇
k + 𝜃i + 𝑢𝜇

i ) − 𝑏i𝑥
𝜇
i . (3.8)

For the calculation of ⟨𝑥𝜇
i ⟩ the steady state average of the time derivative

of gene expression (3.7) is set equal to zero and one receives the mean gene
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expression in the steady state,

0 = ⟨𝐹k(x𝜇)⟩s

⟺ ⟨𝑥𝜇
i ⟩s = 𝑎i

𝑏i
⟨tanh (ℎ𝜇

i )⟩s , (3.9)

where ⟨𝑥𝜇
i ⟩s = const. and ⟨𝜉i⟩s

(2.9)
= 0 is used. For the calculation of ⟨𝑥𝜇

i 𝑥𝜇
j ⟩,

one starts with the total time derivative of 𝑓ij(x𝜇) = 𝑥𝜇
i 𝑥𝜇

j . The many
variables version of Ito´s formula (2.18) is used and one obtains a total time
derivative,

d
dt

(𝑥𝜇
k 𝑥𝜇

l ) = 𝐹k(x𝜇)𝑥𝜇
l + 𝐹l(x𝜇)𝑥𝜇

k + 𝛿kl𝑐2
l + 𝑐k𝑥𝜇

l 𝜉k + 𝑐l𝑥
𝜇
k 𝜉l . (3.10)

Similar to the calculation of mean gene expression one performs the steady
state time average over the total time derivative (3.10) and yields

0 = ⟨𝐹k(x𝜇)𝑥𝜇
l + 𝐹l(x𝜇)𝑥𝜇

k ⟩
s

+ 𝛿kl𝑐2
k

⟺ ⟨𝑥𝜇
i 𝑥𝜇

j ⟩
s

= 𝑎i
𝑏i + 𝑏j

⟨tanh (ℎ𝜇
i ) 𝑥𝜇

j ⟩
s

+ 1
2

𝑐2
i

𝑏i + 𝑏j
𝛿ij + (i ↔ j) ,

(3.11)

where ⟨𝑥𝜇
l 𝜉k⟩

s

(2.15)
= 0 for the non-anticipating variable 𝑥𝜇

l is used. The term
(i ↔ j) indicates a summand with interchanges indices.

For the solution of the forward problem within mean field approximation,
the three point correlation function, ⟨𝑥𝜇

i 𝑥𝜇
j 𝑥𝜇

k ⟩
s
, turns out to be useful for

the calculation of the covariance matrix, 𝜒𝜇
ij . The calculation of ⟨𝑥𝜇

i 𝑥𝜇
j 𝑥𝜇

k ⟩
s

is completely analogue to the calculation of ⟨𝑥𝜇
i 𝑥𝜇

j ⟩, thus the multivariable
version of Ito´s formula is applied to the function 𝑓ijk(x𝜇) = 𝑥𝜇

i 𝑥𝜇
j 𝑥𝜇

k and the
steady state average is taken. Collecting the results, the first three moments
of the steady state distribution are given by the following set of equations

⟨𝑥𝜇
i ⟩s = 𝑎i

𝑏i
⟨tanh (ℎ𝜇

i )⟩s

⟨𝑥𝜇
i 𝑥𝜇

j ⟩
s

= 𝑎i
𝑏i + 𝑏j

⟨tanh (ℎ𝜇
i ) 𝑥𝜇

j ⟩
s

+ (i ↔ j) + 𝑐2
i

𝑏i + 𝑏j
𝛿ij

⟨𝑥𝜇
i 𝑥𝜇

j 𝑥𝜇
k ⟩

s
= 𝑎i

𝑏i + 𝑏j + 𝑏k
⟨tanh (ℎ𝜇

i ) 𝑥𝜇
j 𝑥𝜇

k ⟩
s

+ 𝑐2
i

𝑏i + 𝑏j + 𝑏k
𝛿ij ⟨𝑥𝜇

k ⟩
s

+ (i ↔ j ↔ k) ,

(3.12)

where (i ↔ j ↔ k) indicates summands with cyclic permutations of indices.
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3.3.3. Connection to the asymmetric Ising model
We begin this subsection with an outline of the symmetric Ising model be-
fore we focus on the asymmetric Ising model and choose a dynamics. The
chosen dynamics leads to a non-equilibrium steady state. We show that spin
moments in the steady state of the asymmetric Ising model are similar to
the moments of steady state gene expression of our stochastic model of gene
regulation.

The Ising model is named after Cologne-born Ernst Ising. He studied the
symmetric model in his PhD thesis and solved it in one dimension, proving
that there exists no phase transition in the one-dimensional Ising model [64].
His eventful life was marked by racist oppression by the National Socialists,
but also by great kindness and joy in teaching students [65].

The free parameter of the symmetric Ising model are binary spin-variables,
𝑠i ∈ {−1, 1}, and the Hamiltonian is given by

ℋ(s) = −1
2

∑
ij

𝐽ij𝑠i𝑠j − ∑
i

𝜃i𝑠i (3.13)

with local magnetic field, 𝜃i, and symmetric interactions, 𝐽ij = 𝐽ji. The
equilibrium statistics of the symmetric Ising model are described by the
Bolzmann distribution,

𝑝(s) = 1
𝑍

exp (−𝛽ℋ(s)) , where

𝑍 = ∑
s

exp (−𝛽ℋ(s))
(3.14)

is the partition function of the system.

A common choice to introduce a time evolution is sequential Glauber
dynamics. Within sequential Glauber dynamics one assumes discrete time
steps and in every time step a random spin, 𝑠i, is updated according to the
probability distribution

𝑝(𝑠i(𝑡 + 1)|𝑠(𝑡)) = exp (𝛽𝑠i(𝑡 + 1)ℎi(𝑡))
2 cosh (𝛽ℎi(𝑡))

. (3.15)

Analogously to our stochastic model of gene expression a local effective field
acting on spin i is defined as ℎi(𝑡) = ∑j 𝐽ij𝑠j(𝑡) + 𝜃i. The time evolution
according to parallel Glauber dynamics is discussed in the Appendix section
I.1.
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An asymmetric interaction matrix characterises the asymmetric Ising
model. For the asymmetric Ising model, both choices of dynamics ( sequen-
tial as well as parallel Glauber dynamics) converge to a non-equilibrium
steady state [66], which does not hold the detailed balance relation (2.20).
The quantification of the non-equilibrium steady state of the asymmetric
Ising model is a hard problem. However one can derive a set of self-consistent
relations for the first moments of the steady state distribution. We obtain
for the first moment of the steady state distribution the relation

⟨𝑠i(𝑡 + 1)⟩
(3.15)

= 1
𝑁

⟨tanh(ℎi(𝑡))⟩ + 𝑁 − 1
𝑁

⟨𝑠i(𝑡)⟩

⇒ ⟨𝑠i⟩s = ⟨tanh(ℎi)⟩s ,
(3.16)

where in any time step one out of 𝑁 spins is updated according to the
sequential update rule (3.15). The averages become time independent in the
steady state. We obtain the analogous relation

⟨𝑠i(𝑡 + 1)𝑠j(𝑡 + 1)⟩
(3.15)

= 1
𝑁

⟨tanh(ℎi(𝑡))𝑠j(𝑡)⟩

+ 1
𝑁

⟨tanh(ℎj(𝑡))𝑠i(𝑡)⟩

+ 𝑁 − 2
𝑁

⟨𝑠i(𝑡)𝑠j(𝑡)⟩

⇒ ⟨𝑠i𝑠j⟩s
= 1

2
⟨tanh(ℎi)𝑠j⟩s

+ 1
2

⟨tanh(ℎj)𝑠i⟩s
.

(3.17)

for the two-point correlation function in the steady state.
An important property in the context of this project is that the asymmet-

ric Ising model equipped with sequential Glauber dynamics has structurally
similar steady state relations as our model of stochastic gene expression
(3.12). This is also true for the first moment with parrallel Glauber dy-
namics (I.2), whereas the second moment ⟨𝑠i𝑠j⟩ = ⟨tanh(ℎi) tanh(ℎj)⟩ has
a slightly different structure. The calculation for parallel Glauber dynamics
is presented in the Appendix section I.1.

We will use the connection between these models in the next section.
There, we extend ideas developed in the context of asymmetric Ising models
to solve the forward problem of our stochastic model of gene expression.

3.4. Forward problem
The objective of this section is the forward problem of our stochastic model
of gene regulation (3.4). We estimate mean, 𝑚𝜇

i , and covariance of gene

40



expression, 𝜒𝜇
ij , in the steady state dependent on the model parameter in-

cluding the interaction matrix.

For the forward problem, we employ an MFT in subsection 3.4.1 and a
GT in subsection 3.4.2. We show that the GT provides a precise solution
to the forward problem and outperforms the MFT in the regime of strong
inter-gene coupling, 𝛽, within the last subsection 3.4.3.

3.4.1. Mean field theory
The general idea of MFT is to compute high-dimensional sums or integrals
over random variables under the assumption that one can neglect dependen-
cies between the variables. An excellent and comprehensive description of
MFT can be found in the textbook by Opper and Saad [67], which covers the
foundations of different approaches to MFT and demonstrates their appli-
cation to various areas of probabilistic modelling. The textbook by Mézard,
Parisi and Virasoro [68] contains a comprehensive and self-contained presen-
tation of spin glass theory. The theory of spin glasses demonstrates a rich
behaviour. Methods to analyse fluctuations around the mean field solution
provide insights into other complex systems, such as our stochastic model of
gene expression.

In the first paragraph of this subsection, we outline the general idea of
MFT based on the free energy function. In the second paragraph, a vari-
ational approach to MF is introduced. This variational approach is even
applicable in the absence of a free energy function, which is the case in our
stochastic model for gene regulation. We solve the forward problem of our
stochastic model of gene expression within a mean field approximation in
the closing paragraph. To this end, we employ an approach based on an
idea by Kappen and Spanjers in the context of asymmetric neural networks
[69].

In the second paragraph, a variational approach to MF is introduced.
This variational approach is even applicable in the absence of a free energy
function, which is the case in our stochastic model for gene regulation.

General idea of MFT

The general idea of MFT is to approximate a large number of additive con-
tributions to a system hamiltonian by a mean field. For this purpose one
studies a system with a Hamiltonian,

ℋ = ℋ0 + ℋint , (3.18)
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composed of an interacting part, ℋint, and a non-interacting part, ℋ0.
One assumes that the system, which one tries to approximate, contains only
pairwise interactions,

ℋint = ∑
ij

ℎij(𝑥i, 𝑥j) . (3.19)

Within such a bipartite system the Bogoliubov inequality states that the
free energy of the whole system, 𝐹, is bounded from above,

𝐹 ≤ 𝐹 0 ∶= ⟨ℋ⟩0 − 𝑇 𝑆0 , (3.20)

by the free energy of the non-interacting system, 𝐹 0 = − kB 𝑇 ln 𝑍0 [70].
The statistical properties of the non-interacting system are described by the
partition function, 𝑍0 = ∑x e−𝛽 ℋ0(x). The non-interacting free energy,
𝐹 0, is used as an approximation from above for the free energy of the entire
system, 𝐹. To calculate ⟨ℋ⟩0 and the entropy 𝑆0 one employs the normalised
Bolzmann distribution,

𝑝0(x) = e−𝛽 ℋ0(x)

𝑍0 = ∏
i

e−𝛽ℎi(𝑥𝑖)

𝑍0
i⏟

=∶𝑝0
i (𝑥i)

, (3.21)

of the non-interacting system. The minimisation of 𝐹0 with respect to the
non-interacting distribution, 𝑝0

i (𝑥i), results in a set of self-consistent equa-
tions,

𝑝0
i (𝑥i) = e−𝛽ℎMF

i (𝑥i)

𝑍0
, (3.22)

in which the pairwise interactions are approximated by the field,

ℎMF
i (𝑥i) = ∑

j
∫ ℎij(𝑥i, 𝑥j)𝑝0

j (𝑥j) d𝑥𝑗 . (3.23)

This field, ℎMF
i (𝑥i), is referred to as a MF because it incorporates the time

averaged pairwise interaction energy between the system and the degree of
freedom 𝑥i.

Variational approach to MFT

We can not construct a free energy function within our stochastic model of
gene regulation because there is no such Hamiltonian, ℋ. On account of the
absence of a free energy function, the general idea of MFT, outlined in the
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paragraph above, is not applicable within our model. Instead of minimising
the free energy, one employs a variational approach based on the distribution
of system states in this setting.

The system is characterised with a multivariate probability distribution,
𝑝(x), and one minimises the Kullback –Leibler divergence,

DKL (𝑝(x)|𝑞(x)) = ∑
x

𝑞(x)𝑞(x)
𝑝(x)

= ⟨ln 𝑞(x)
𝑝(x)

⟩
𝑞

, (3.24)

between 𝑝(x) and a variational distribution, 𝑞(x). The probability distribu-
tion, 𝑝(x), is characterised by the Boltzmann distribution,

𝑝(x) = e− ℋ(x)

𝑍
, (3.25)

with the partition function, 𝑍 = ∑x e− ℋ(x), as a normalisation constant.
Thus, the Kullback –Leibler divergence,

DKL (𝑝(x)|𝑞(x)) = ln 𝑍 + 𝐸[𝑞] − 𝑆[𝑞]⏟⏟⏟⏟⏟
=∶𝐹[𝑞]

, (3.26)

can be expressed in terms of the variational energy, 𝐸[𝑞] = ∑x 𝑞(x) ℋ(x),
and the entropy, 𝑆[𝑞] = − ∑x 𝑞(x) ln 𝑞(x). Such that a minimal Kullback –
Leibler divergence, DKL, corresponds to a minimum in the variational free
energy, 𝐹[𝑞]. The space of distributions is restricted to factorising distribu-
tions,

𝑞(x) = ∏
i

𝑞i(𝑥i) , (3.27)

accordingly to the general idea of MFT to approximate the system interac-
tion by a meanfield.

Within the MFT of our stochastic model of gene regulation in the following
paragraph, we require the factorising distribution, 𝑞(x), to retain the mean
expectation value, ⟨𝑥i⟩𝑝 = ⟨𝑥i⟩𝑞. This requirement is motivated by the
Ising model, where the minimal Kullback – Leibler divergence corresponds
to retaining mean expectation values.

To find this result we study the Ising model with binary spin variables,
𝑥i ∈ {−1, 1}, as introduced in subsection (3.3.3). The Hamiltonian is given
by

ℋ(x) = − ∑
ij

𝐽ij𝑥i𝑥j − ∑
i

𝑥i𝜃i . (3.28)
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For the factorising distribution, one sets the couplings equal to zero, 𝐽 ∗
ij = 0,

and variates the external fields, 𝜃∗
i , to minimise DKL. The most general form

of a factorizing distribution is a product of Bernoulli distributions,

𝑞(x) = ∏
i

(1 + 𝑚∗
i (𝜃∗

i )𝑥i
2

) , (3.29)

where 𝑚∗
i (𝜃∗

i ) is the expectation value of variable 𝑥i. Setting the derivative
of the Kullback –Leibler divergence with respect to the 𝜃∗

i equal to zero,

0 != 𝜕
𝜕𝜃∗

i
∑

x
𝑝(x) ∑

k
ln (1 + 𝑚∗

k(𝜃∗
k)𝑥k

2
)

= (𝑝(𝑥i = +1)
1 + 𝑚∗

i (𝜃∗
i )

− 𝑝(𝑥i = −1)
1 − 𝑚∗

i (𝜃∗
i )

) (1 − 𝑚∗
i

2(𝜃∗
i ))

= ⟨𝑥i⟩s − 𝑚∗
i (𝜃∗

i )

(3.30)

we find the requirement of retaining the mean expectation values.

MFT of our stochastic model of gene regulation

In this paragraph, we employ MFT to solve the forward problem of our
stochastic model of gene regulation. The approach is based on an idea
developed by Kappen and Spanjers in the context of asymmetric neural
networks [69]. Kappen and Spanjers derived self-consistent equations up to
the second order in the couplings to calculate mean firing rates and their
correlations.

The neural network used by Kappen and Spanjers in their mean field
calculation is an asymmetric Ising model equipped with sequential Glauber
dynamics. The Ising model is in contrast to our stochastic model of gene
regulation discrete. Nevertheless, the steady state averages for the first two
moments, ⟨𝑥𝜇

i ⟩s and ⟨𝑥𝜇
i 𝑥𝜇

j ⟩
s
, are similar as we showed in subsection 3.3.3.

We follow the arguments by Kappen and Spanjers. The general idea is
to approximate the intractable distribution of gene expression level, 𝑝(x𝜇),
with an optimal factorising distribution, 𝑞∗(x𝜇). Further we expand mean
gene expression, 𝑚𝜇

i , and covariance of gene expression, 𝜒𝜇
ij , up to second

order in the interaction matrix, 𝜔, around 𝑞∗(x𝜇). Within our stochastic
model of gene regulation we derive a system of self-consistent equations to
calculate 𝑚𝜇

i and 𝜒𝜇
ij .

The calculation is based on the steady state averages defined in equation
(3.12). We set the model parameter 𝑎i, 𝑏i, and 𝑐i equal to one and substitute
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the perturbation, 𝑢𝜇
i , into a perturbation dependent expression threshold,

𝜃𝜇
i = 𝜃i + 𝑢𝜇

i . The mean and covariance,

𝑚𝜇
i

(3.12)
= ⟨tanh (ℎ𝜇

i )⟩s with ℎ𝜇
i (x𝜇) = ∑

k
𝜔ik𝑥𝜇

k + 𝜃𝜇
i

𝜒𝜇
ij

(3.12)
= 1

2
⟨(𝑥𝜇

i − 𝑚𝜇
i ) (tanh (ℎ𝜇

j ) − 𝑚𝜇
j )⟩

s
+ (i ↔ j) + 1

2
𝛿ij ,

(3.31)

are expanded around the factorising probability distribution, 𝑞∗(x𝜇|𝜃∗𝜇).
The construction of 𝑞∗(x𝜇|𝜃∗𝜇) is based on non-interacting gene expression,
𝜔∗𝜇

ij = 0, and a mean field, 𝜃∗𝜇
i . We require to recover the mean gene expres-

sion of the full gene regulatory model within the factorising distribution,

⟨𝑥𝜇
i ⟩𝑞

!= ⟨𝑥𝜇
i ⟩𝑞∗ = tanh (𝜃∗𝜇

i ) . (3.32)

Such that the external field, ℎ𝜇
i (x𝜇), is approximated by a mean field, 𝜃∗𝜇

i .
The expansion of 𝑚𝜇

i and 𝜒𝜇
ij at 𝑞∗(x𝜇|𝜃∗𝜇) is performed in the variables 𝛿𝜔ij

and 𝛿𝜃𝜇
i , which are defined as

𝜔ij = 0 + 𝛿𝜔ij

𝜃𝜇
i = 𝜃∗𝜇

i + 𝛿𝜃𝜇
i .

(3.33)

The Taylor expansion of the mean gene expression, 𝑚𝜇
i , up to quadratic

order in 𝛿𝜔ij and 𝛿𝜃𝜇
i around the factorising distribution,

𝑚𝜇
i (𝛿𝜃, 𝛿𝜔) = 𝑚∗𝜇

i + ∑
j

𝜕𝑚𝜇
i

𝜕𝜃j
∣
𝑞∗

𝛿𝜃j + ∑
jk

𝜕𝑚𝜇
i

𝜕𝜔 jk
∣
𝑞∗

𝛿𝜔jk

+ 1
2

∑
jk

𝜕2𝑚𝜇
i

𝜕𝜃 j𝜕𝜃 k
∣
𝑞∗

𝛿𝜃j𝛿𝜃 k

+ ∑
jkl

𝜕2𝑚𝜇
i

𝜕𝜃j𝜕𝜔kl
∣
𝑞∗

𝛿𝜃j𝛿𝜔kl

+ 1
2

∑
jklm

𝜕2𝑚𝜇
i

𝜕𝜔jk𝜕𝜔lm
∣
𝑞∗

𝛿𝜔jk𝛿𝜔lm + 𝜎 (𝛿3) ,

(3.34)

is the basis of our mean field calculation. To calculate first order terms in
the Taylor expansion of 𝑚𝜇

i = ∫ d𝑥 [𝑝 (x|𝜃𝜔) tanh (ℎ𝜇
i )] one employs partial

differentiation at 𝑞∗,

tanh (ℎ𝜇
i )|𝑞∗ = 𝑚∗𝜇

i (3.35)
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𝜕 tanh (ℎ𝜇
i )

𝜕𝜃 j
∣
𝑞∗

= (1 − (𝑚𝜇𝑞
i )2) 𝛿ij (3.36)

𝜕 tanh (ℎ𝜇
i )

𝜕𝜔jk
∣
𝑞∗

= (1 − (𝑚𝜇𝑞
i )2) 𝛿ij𝑥

𝜇
k . (3.37)

With these partial derivatives and integration over gene expression levels, x,
we obtain first order Taylor coefficients,

𝜕𝑚𝜇
i

𝜕𝜃j
∣
𝑞∗

= ∫ dx
⎡
⎢⎢
⎣

𝜕𝑝 (x|𝜃𝜔)
𝜕𝜃j

tanh (ℎ𝜇
i )⏟⏟⏟⏟⏟

(3.35)
= 𝑚𝜇𝑞

i

⎤
⎥⎥
⎦𝑞∗

+ ∫ dx
⎡
⎢
⎢
⎢
⎣

𝑝 (x|𝜃𝜔) 𝜕 tanh (ℎ𝜇
i )

𝜕𝜃j⏟⏟⏟⏟⏟
(3.36)

= (1−(𝑚𝜇𝑞
i )2)𝛿ij

⎤
⎥
⎥
⎥
⎦𝑞∗

= 0 + (1 − (𝑚𝜇𝑞
i )2) 𝛿ij and

(3.38)

𝜕𝑚𝜇
i

𝜕𝜔jk
∣
𝑞∗

= ∫ dx [𝜕𝑝 (x|𝜃𝜔)
𝜕𝜔jk

tanh (ℎ𝜇
i )]

𝑞∗

+ ∫ dx
⎡
⎢
⎢
⎢
⎣

𝑝 (x|𝜃𝜔) 𝜕 tanh (ℎ𝜇
i )

𝜕𝜔jk⏟⏟⏟⏟⏟
(3.37)

= (1−(𝑚𝜇𝑞
i )2)𝛿ij𝑥

𝜇
k

⎤
⎥
⎥
⎥
⎦𝑞∗

= 0 + (1 − (𝑚𝜇𝑞
i )2) 𝑚𝜇

k 𝛿ij .

(3.39)

Summing over all contributions linear in 𝛿𝜔 and 𝛿𝜃𝜇 one obtains first order
corrections to mean gene expression,

𝜃𝑚𝜇𝑞∗

i ∶= ∑
j

𝜕𝑚𝜇
i

𝜕𝜃j
∣
𝑞∗

𝛿𝜃j = (1 − (𝑚𝜇𝑞
i )2) 𝛿𝜃i and (3.40)

𝜔𝑚𝜇𝑞∗

i ∶= ∑
jk

𝜕𝑚𝜇
i

𝜕𝜔jk
∣
𝑞∗

𝛿𝜃j = (1 − (𝑚𝜇𝑞
i )2) ∑

𝑘
𝛿𝜔ik𝑚𝜇

k . (3.41)

46



Based on the condition to recover mean gene expression of the full regulatory
system in equation (3.32) one gets a condition,

0 != 𝜃𝑚𝜇𝑞∗

i + 𝜔𝑚𝜇𝑞∗

i + 𝜎 (𝛿2) , (3.42)

on 𝜃𝑚𝜇𝑞∗

i and 𝜔𝑚𝜇𝑞∗

i . Using this condition and the results (3.40) and (3.41)
one can calculate an analytic expression for 𝛿𝜃 in first order mean field
approximation,

𝛿𝜃MFT1
i = − ∑

𝑘
𝛿𝜔ik𝑚𝜇

k . (3.43)

With the analytic expression for 𝛿𝜃MFT1
i we finally calculate mean gene ex-

pression for our stochastic model in first order MFT,

𝑚𝜇 MFT1
i = tanh (∑

𝑘
𝜔ik𝑚𝜇

k + 𝜃i) , (3.44)

using the relation (3.32) and definition of 𝛿𝜃i in equation (3.33). The mean
field approximation for the mean gene expression in first order, 𝑚𝜇 MFT1

i ,
turns out to be equivalent to the mean field approximation of the Ising
model.

In the Appendix section I.2.1 we calculate corrections in second order
by evaluation of partial derivatives at the factorising distribution 𝑞∗ and
integration over gene expression, x. The calculation is conceptually analogue
to the first order calculation.

We find the repetitive pattern that in the calculation of higher order cor-
rections one can identify lower order derivertives (such as 𝜕𝑚𝜇

n/𝜕𝜔jk|𝑞∗ and
𝜕𝑚𝜇

n/𝜕𝜃i|𝑞∗), which we have already calculated in first order MFT. Summing
over all contributions quadratic in 𝛿𝜔 and 𝛿𝜃𝜇 one gets second order correc-
tions in the mean gene expression,

𝜃𝜃𝑚𝜇𝑞∗

i ∶= ∑
jk

𝜕2𝑚𝜇
i

𝜕𝜃j𝜕𝜃k
∣
𝑞∗

𝛿𝜃j𝛿𝜃k = (−2)𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿𝜃2
i (3.45)

𝜃𝜔𝑚𝜇𝑞∗

i ∶= ∑
jkl

𝜕𝑚𝜇
i

𝜕𝜃j𝜕𝜃𝜔𝑘𝑙
∣
𝑞∗

𝛿𝜃j𝛿𝜔kl

= (1 − (𝑚𝜇𝑞
i )2) ((−2)𝑚𝜇𝑞

i 𝛿𝜃i (−𝛿𝜃MFT1
i )

+ ∑
l

(1 − (𝑚𝜇𝑞
l )2) 𝛿𝜔il𝛿𝜃l)

(3.46)
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𝜔𝜔𝑚𝜇𝑞∗

i ∶= ∑
jklm

𝜕2𝑚𝜇
i

𝜕𝜔jk𝜕𝜔lm
∣
𝑞∗

𝛿𝜔jk𝛿𝜔lm

= (1 − (𝑚𝜇𝑞
i )2) ((−2)𝑚𝜇𝑞

i (−𝜃MFT1
i )2

+ (−2) 𝑚𝜇𝑞
i

1
2

∑
𝑗

(𝛿𝜔ij)
2

+ 2 ∑
m

𝛿𝜔im (1 − (𝑚𝜇𝑞
m )2) (−𝛿𝜃MFT1

m )) .

(3.47)

Based on the condition to recover the mean gene expression also in second
order an equation for the corrections up to quadratic order,

0 != 𝜃𝑚𝜇𝑞∗

i + 𝜔𝑚𝜇𝑞∗

i + 1
2

𝜃𝜃𝑚𝜇𝑞∗

i + 𝜃𝜔𝑚𝜇𝑞∗

i + 1
2

𝜔𝜔𝑚𝜇𝑞∗

i + 𝜎 (𝛿3) , (3.48)

is derived. Using second order corrections in equation (3.45), (3.46), and
(3.47), and the previous results (3.40) and (3.41), an analytical expression
for 𝛿𝜃 in second order mean field approximation,

𝛿𝜃MFT2
i = 𝛿𝜃MFT1

i + 1
2

𝑚𝜇
i ∑

𝑘
(𝛿𝜔ik)2 , (3.49)

is derived. Analogue to the first order approximation we finally calculate
the mean gene expression of our stochastic model in second order MFT,

𝑚𝜇 MFT2
i = tanh (∑

𝑘
𝜔ik𝑚𝜇

k + 𝜃i − 1
2

𝑚𝜇
i ∑

𝑘
(𝜔ik)2) , (3.50)

using the equations (3.32) and (3.33). The basis to MFT approximation of
the covariance is the Taylor expansion of 𝜒𝜇

ij around the factorising distri-
bution, 𝑞∗,

𝜒𝜇
ij (𝛿𝜃, 𝛿𝜔) = 𝜒𝜇𝑞∗

i + ∑
k

𝜕𝜒𝜇
ij

𝜕𝜃k
∣
𝑞∗

𝛿𝜃k + ∑
kl

𝜕𝜒𝜇
ij

𝜕𝜔kl
∣
𝑞∗

𝛿𝜔kl

+ 1
2

∑
jk

𝜕2𝜒𝜇
ij

𝜕𝜃k𝜕𝜃l
∣
𝑞∗

𝛿𝜃 k𝛿𝜃 l

+ ∑
klm

𝜕2𝜒𝜇
ij

𝜕𝜃 k𝜕𝜔 lm
∣
𝑞∗

𝛿𝜃k𝛿𝜔lm

+ 1
2

∑
klmn

𝜕2𝜒𝜇
ij

𝜕𝜔 kl𝜕𝜔 mn
∣
𝑞∗

𝛿𝜔kl𝛿𝜔mn + 𝜎 (𝛿2) .

(3.51)
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To expand the term 1
2 ∫ dx [𝑝 (x|𝜃𝜔) (𝑥𝜇

i − 𝑚𝜇
i ) (tanh (ℎ𝜇

j ) − 𝑚𝜇
j )] of the

covariance (3.31) partial derivatives at 𝑞∗,

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k

∣
𝑞∗

(3.37)(3.39)
= 0 (3.52)

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔kl

∣
𝑞∗

(3.39)
= (1 − (𝑚𝜇𝑞

i )2) 𝛿ik (𝑥𝜇
l − 𝑚𝜇

l ) , (3.53)

are used. With equation (3.52) and (3.53) one obtains first order Taylor
coefficients,

𝜕𝜒𝜇
ij

𝜕𝜃k
∣
𝑞∗

= 1
2

∫ dx ⎡
⎢
⎣

𝜕𝑝 (x|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j )
𝜕𝜃k

(tanh (ℎ𝜇
i ) − 𝑚𝜇

i )⏟⏟⏟⏟⏟⏟⏟
(3.35)

= 0

⎤
⎥
⎦𝑞∗

+ 1
2

∫ dx
⎡
⎢⎢⎢
⎣

𝑝 (x|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j ) 𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k⏟⏟⏟⏟⏟⏟⏟⏟⏟

(3.52)
= 0

⎤
⎥⎥⎥
⎦𝑞∗

+ (i ↔ j)
= 0

and

(3.54)

𝜕𝜒𝜇
ij

𝜕𝜔kl
∣
𝑞∗

= 1
2

∫ dx
⎡
⎢
⎢
⎢
⎣

𝑝 (x|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j ) 𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔kl⏟⏟⏟⏟⏟⏟⏟⏟⏟

(3.53)
= (1−(𝑚𝜇𝑞

i )2)𝛿ik(𝑥𝜇
l −𝑚𝜇

l )

⎤
⎥
⎥
⎥
⎦𝑞∗

+ 1
2

∫ dx ⎡
⎢
⎣

𝜕𝑝 (x|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j )
𝜕𝜔kl

(tanh (ℎ𝜇
i ) − 𝑚𝜇

i )⏟⏟⏟⏟⏟⏟⏟
(3.35)

= 0

⎤
⎥
⎦𝑞∗

+ (i ↔ j)

= 1
4

(1 − (𝑚𝜇𝑞
i )2) 𝛿ik𝛿jl + (i ↔ j) .

(3.55)

Only terms with at least one partial derivative with respect to 𝜔 are non-
vanishing. This result we find also within second order MFT approximation
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of the covariance. Accordingly there is no contribution linear in 𝜃,

𝜃𝜒𝜇𝑞∗

ij ∶= ∑
k

𝜕𝜒𝜇
ij

𝜕𝜃k
∣
𝑞∗

𝛿𝜃k = 0 . (3.56)

Summing over all contributions linear in 𝛿𝜔 one gets a first order correction
to the mean gene expression,

𝜔𝜒𝜇𝑞∗

ij ∶= ∑
k

𝜕𝜒𝜇
ij

𝜕𝜔k
∣
𝑞∗

𝛿𝜔k = 1
4

(1 − (𝑚𝜇𝑞
i )2) 𝛿𝜔ij + (i ↔ j) . (3.57)

Plugging in the first order contribution (3.56) and (3.57) into the Taylor
expansion (3.51) of 𝜒𝜇

ij one obtains the covariance of gene expression in first
order MFT,

𝜒𝜇 MFT1
ij = 1

2
𝛿ij + 1

4
(1 − (𝑚𝜇𝑞

i )2) 𝜔ij + (i ↔ j) . (3.58)

The approximation up to second order is conceptually equal to the first order
calculation. The calculation leading to the result,

𝜒𝜇 MFT2
ij = + 1

2
𝛿ij + 1

4
(1 − (𝑚𝜇𝑞

i )2) 𝜔ij − 1
2

(1 − (𝑚𝜇𝑞
j )

2
) 𝜔ji𝜃MFT1

j

+ 1
8

(1 − (𝑚𝜇𝑞
i )2) (1 − (𝑚𝜇𝑞

j )
2
) ∑

l
𝜔il𝜔jl

+ 1
8

(1 − (𝑚𝜇𝑞
j )

2
) ∑

k
𝜔jk (1 − (𝑚𝜇𝑞

k )2) 𝜔ki

−
𝑚𝜇𝑞

j

6
(1 − (𝑚𝜇𝑞

j )
2
) (𝑚𝜇𝑞

i (𝜔ij)
2

−2𝜔ij𝛿𝜃MFT1
i −

𝑚𝜇𝑞
j

2
∑

k
(𝜔ik)2)

+ (i ↔ j) ,

(3.59)

is given in the Appendix section I.2.2.

To solve the forward problem within MFT in first order, we iteratively
calculate m𝜇 and 𝜒𝜇 according to the set of self-consistent equation (3.44)
and (3.58). For the calculation within second order we use respectively the
equation (3.50) and (3.59). A simple iterative procedure with initial values
m𝜇

init = 0 and 𝜒𝜇
init = 𝟙 converges and thus we obtain a solution to the

forward problem of our stochastic model of gene expression within mean
field approximation.
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3.4.2. Gaussian theory
In this subsection, we employ a continuous version of the GT developed by
Mézard and Sakallariou in the context of the asymmetric Ising model [31]
to solve the forward problem of the stochastic model of gene regulation.

GT within the asymmetric Ising model

The asymmetric Ising model, which we introduced in subsection 3.3.3, is
characterised by the Hamiltonian

ℋ(s) = −1
2

∑
ij

𝐽ij𝑠i𝑠j − ∑
i

𝜃i𝑠i . (3.60)

The model parameter are local external fields, 𝜃i, and exchange couplings,
𝐽ij. To solve the forward problem, Mézard and Sakallariou introduce parallel
Glauber dynamics for the asymmetric Ising model, which is outlined in the
Appendix section I.1. To calculate the local magnetisation and equal-time
correlation,

𝑚i
(I.2)
= ⟨tanh(ℎi)⟩

𝐶ij
(I.3)
= ⟨(tanh(ℎi) − 𝑚i)(tanh(ℎj) − 𝑚j)⟩ ,

(3.61)

Mézard and Sakallariou approximate the sum over system interaction with
spin i, ∑j 𝐽ij𝑠j, with a Gaussian distribution. Thus the system interaction
is characterised by mean,

𝑔i = ∑
j

𝐽ij𝑚j , and variance,

Δi = ∑
𝑗

𝐽2
ij (1 − 𝑚2

j ) .
(3.62)

For the calculation of the variance Mézard and Sakallariou check self-
consistently that the typical correlation, ⟨𝑠i𝑠j⟩ − 𝑚i𝑚j, is of order 1/𝑁,
where 𝑁 is the system size.

Within this approximation a set of self consistent equations for 𝑚i(𝑡) and
𝐶ij(𝑡), which become exact in the limit of a large system size, is derived. The
GT provides a precise solution to the forward problem of the asymmetric
Ising model in the regime of strong interactions [31].

GT within our stochastic model of gene regulation

To derive a set of self-consistent equations for 𝑚𝜇
i and 𝜒𝜇

ij , we assume the lo-
cal effective field, ℎ𝜇

i , defined within our stochastic model of gene expression
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in equation (3.5) to be Gaussian distributed. A deterministic contribution,
𝑔𝜇

i (m𝜇), and a probabilistic contribution, 𝜂i, to the local effective field,

ℎ𝜇
i (m𝜇) = 𝑔𝜇

i (m𝜇) + 𝜂i with 𝑔𝜇
i (m𝜇) = ∑

k
𝜔ik𝑚𝜇

k + 𝜃i + 𝑢𝜇
i , (3.63)

are defined. The probability distribution of 𝜂𝜇
i is given by a multivariate

normal distribution 𝒫(𝜂𝜇
i ), which is characterised by zero mean and covari-

ance matrix Δ𝜇.

The argument for the Gaussian nature of ℎ𝜇
i (m𝜇) is that in a sizeable

system the local effective field, ℎ𝜇
i (m𝜇), is the sum of a large number of

stochastic variables. The requirement of uncorrelated variables in the central
limit theorem (CLT) only holds in a tree-like graph. Regarding regulatory
motifs like feed forward loops, we can not assume the GRN to be generally
tree-like, and we must consider correlated variables. Under rather technical
restrictions, there are versions of the standard CLT that allow for correla-
tions between the random variables that are being summed [71, 72]. It is
unknown whether these restrictions are valid for the effective local field in
our stochastic model of gene regulation. Nevertheless, simulations provide
numerical evidence for the Gaussian nature of the local effective field for
fully connected systems with as few as ten nodes.

To obtain a set of self consistent equations for 𝑚𝜇
i we start with the

steady state relation for the mean, 𝑚𝜇
i = 𝑎i/𝑏i ⟨tanh (ℎ𝜇

i )⟩s, which we derived
in equation (3.12). Performing the steady state average one obtains the
integral equation

𝑚𝜇
i = 1√

2𝜋
𝑎i
𝑏i

∫ d𝜂 exp ( 𝜂2

2Δ𝜇
ii

) tanh (𝑔𝜇
i (m𝜇) + 𝜂) . (3.64)

To solve this integral equation, one has to calculate the variance of the
probabilistic contribution to the external field, Δ𝜇

ii . Based on the definition
of the external field in equation (3.63), the relation between covariance of
external fields, Δ𝜇

ij , and covariance of gene expression level, 𝜒𝜇
ij ,

Δ𝜇
ij = cov(𝜂𝜇

i , 𝜂𝜇
j ) = cov(ℎ𝜇

i , ℎ𝜇
j )

(3.63)
= ⟨∑

k
𝜔ik (𝑥𝜇

k − 𝑚𝜇
k ) ∑

l
𝜔jl (𝑥𝜇

l − 𝑚𝜇
l )⟩

s

= ∑
kl

𝜔ik𝜔jl𝜒
𝜇
kl = [𝜔𝜒𝜇𝜔⊺]

ij
,

(3.65)
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is calculated. Equipped with the equations (3.64) and (3.65) it is left over
to find an expression for 𝜒𝜇

ij to solfe the forward problem within the Gaus-
sian approximation. To derive also a set of self consistent equations for
𝜒𝜇

ij , we calculate the steady state averages ⟨tanh (ℎ𝜇
i ) 𝑥𝜇

j ⟩
s
. Therefore the

interaction matrix,

𝑥𝜇
i = ∑

k
𝜔−1

ik (ℎ𝜇
k − 𝜃k − 𝑢𝜇

k ) , (3.66)

is inverted to replace the expression levels, 𝑥𝜇
i , with the external fields, ℎ𝜇

k .
With the inverted equation (3.66) one can rewrite the steady state average,

⟨tanh (ℎ𝜇
i ) 𝑥𝜇

j ⟩
s

(3.66)
= ∑

k
𝜔−1

ik ⟨(ℎ𝜇
k − 𝑢𝜇

k ) tanh (ℎ𝜇
j )⟩

s
, (3.67)

as a sum over steady state averages containing only external fields, which
we assumed to be Gaussian. To calculate the steady state averages in (3.67)
the correlation coefficient,

𝜌jk =
cov(ℎ𝜇

j , ℎ𝜇
k )

√Δ𝜇
jjΔ

𝜇
kk

, (3.68)

is defined. The multivariate normal distribution of the external field is ex-
panded in linear order in 𝜌jk,

𝒫(𝜂𝜇
j , 𝜂𝜇

k ) = 𝒫(𝜂𝜇
j )𝒫(𝜂𝜇

k ) ⎛⎜⎜
⎝

1 +
𝜂𝜇

j

√Δ𝜇
jj

𝜂𝜇
k

√Δ𝜇
kk

𝜌jk
⎞⎟⎟
⎠

+ 𝜎(𝜌2
jk). (3.69)

Using the expanded probability distribution (3.69), an expression for the
steady state averages on the right hand side of (3.67),

⟨ℎ𝜇
k tanh (ℎ𝜇

j )⟩
s

(3.69)
= 𝑔𝜇

k 𝑚𝜇
j + 𝜆𝜇

j cov(ℎ𝜇
𝑘ℎ𝜇

𝑗 ), (3.70)

is calculated. The factor 𝜆𝜇
j , which is a measure for sensitivity of the first

moments to fluctuations in the expression levels, is given by the integral
equation

𝜆𝜇
j = 1√

2𝜋
∫ d𝜂 exp ( 𝜂2

2Δ𝜇
ii

) (1 − tanh2 (𝑔𝜇
j + 𝜂)) . (3.71)
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Using the definition of 𝜒𝜇
ij in equation (3.6), the steady state averages (3.67)

and (3.70), one gets an expression for the covariance

𝜒𝜇
ij

(3.6)
= 𝑎i

𝑏i + 𝑏j
⟨tanh (ℎ𝜇

i ) 𝑥𝜇
j ⟩

s
+ (i ↔ j) + 𝑐2

i
2𝑏i

𝛿ij − ⟨𝑥𝜇
i ⟩ ⟨𝑥𝜇

j ⟩

(3.67)(3.70)
= 𝑎i

𝑏i + 𝑏j
∑

k
𝜔−1

ik (𝑔𝜇
k 𝑚𝜇

j + 𝜆𝜇
j cov(ℎ𝜇

𝑘ℎ𝜇
𝑗 ) − 𝑢𝜇

k 𝑚𝜇
j )

+ (i ↔ j) + 𝑐2
i

2𝑏i
− 𝑚𝜇

i 𝑚𝜇
j .

(3.72)

With the definition of 𝑔𝜇
i (m𝜇) in equation (3.63) and the covariance of the

external field in equation (3.65) one finally obtains a set of self-consistent
equations for the covariance matrix of the expression level,

𝜒𝜇
ij =

𝑎j

𝑏i + 𝑏j
(𝜒𝜇𝜔T)

ij
𝜆𝜇

j + (i ↔ j) + 𝑐2
i

2𝑏i
𝛿ij . (3.73)

To obtain a solution of the forward problem within GT we solve iteratively
the set of self-consistent equations (3.64) and (3.73). In each iteration step
the integrals in (3.64) and in (3.71) are solved numerically using adaptive
Gauss-Kronrod quadrature [73]. We find that a simple iterative procedure
with initial values m𝜇

init = 0 and 𝜒𝜇
init = 𝟙 converges. Finally, this is our

solution to the forward problem within the mean field approximation.

3.4.3. Comparison of mean field theory and Gaussian
theory

In this subsection, we discuss the results for 𝑚𝜇
i and 𝜒𝜇

ij within the first
two orders MFT and GT. We investigate the precision of MFT and GT
depending on the coupling strength, 𝛽, which we defined with our stochastic
model in section 3.3. Furthermore, we show that GT outperforms MFT in
the regime of strong inter-gene couplings.

In figure 3.4, we show scatter plots for the mean, 𝑚𝜇
i , and covariance,

𝜒𝜇
i , of gene expression obtained by first and second order MFT, and GT.

All methods give good results in the regime of weak interaction. For large
inter-gene couplings, we find an overestimation of mean gene expression
obtained by first order MFT. This behaviour is because local fluctuations in
the network are neglected, and the system order is overestimated within the
mean field approximation. Correspondingly the variance, 𝜒𝜇 MFT1

ii = 1/2, is
underestimated within first order MFT. We find that in second order MFT,
the variance is overestimated.
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To quantify the precision of MFT and GT we use the relative quadratic
error between simulated and predicted values of 𝑚𝜇

i and 𝜒𝜇
ij ,

𝑟 =
√√√

⎷

∑i (𝑞sim
i − 𝑞pre

i )2

∑i (𝑞sim
i )2 . (3.74)

For mean and covariance, we plot the 𝛽-dependence of the relative quadratic
error in figure 3.6.

The regime of weak inter-gene regulation corresponds to small values of 𝛽.
Within this regime, one can see that the MFT in first and second order, as
well as the GT, give an accurate estimate of mean gene expression, 𝑚𝜇

i , and
covariance of gene expression, 𝜒𝜇

ij . For large 𝛽-values, corresponding to the
regime of strong inter-gene regulation, MFT breaks down. The reason for
this breakdown is that the mean field approximation is based on an expansion
of 𝑚𝜇

i and 𝜒𝜇
ij at the factorizing distribution, which is characterised by 𝜔∗

ij = 0
corresponding to 𝛽 = 0.

We find that for higher coupling strength, the error in the quadratic contri-
bution outweighs the error made in the linear contribution. Thus first order
MFT outperforms second order MFT in the regime of strong couplings. The
approximation of the external field, ℎ𝜇

i , with a Gaussian distribution is also
valid for strong couplings. The relative quadratic error of 𝑚𝜇

i and 𝜒𝜇
ij within

the GT slightly decreases with increasing 𝛽. Therefore GT outperforms
MFT in a regime of strong inter-gene coupling.
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Figure 3.4.: Scatter plot of mean, 𝑚𝜇
i , and covariance, 𝜒𝜇

i , for first order
MFT , second order MFT , and GT . For the generation
of the interaction matrix a medium inter-gene coupling
strength, 𝛽 = 0.5, and a large inter-gene coupling strength,
𝛽 = 1.0, are used.
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(c) 𝛽 = 1.0
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Figure 3.6.: Relative quadratic error of mean and the covariance of gene
expression for first order MFT , second order MFT , and
the GT .

(a) Error of mean gene expression.
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(b) Error of gene expression
covariance.
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3.5. Inverse problem
The inverse problem of GRNI is solved within our stochastic model of gene
regulation. We employ two generic approaches, least squares fits and our
MLM. We find that our likelihood-based approach outperforms the least
squares fits in the regime of strong stochastic contribution to the system
dynamics.

The least squares fits, which are introduced in subsection 3.5.1, are based
on simple quadratic cost functions. These cost functions quantify the accu-
rateness of a given set of model parameters to describe steady state data.
The cost functions are based on the exact relations of the first and second
moment of the steady state distribution (3.12) and the results of the GT.
The inference within least squares methods takes place without a concrete
assumption on a statistical model of gene expression fluctuation.

Within our MLM, which is introduced in subsection 3.5.2, we employ the
framework of statistical inference. We assume the gene expression level to be
distributed according to a multivariate Gaussian distribution characterised
by the results of the forward problem, m𝜇(𝜔) and 𝜒𝜇(𝜔). Under the pre-
sumption of no prior information, we obtain an interaction matrix with a
maximum likelihood estimate.

For the minimisation within the least squares fits and respectively the
likelihood maximisation based on simulated data, we tested local and global
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optimisation algorithms implemented within the NLopt library for non-linear
optimisation [74]. We find no clear evidence for the benefit of global optimi-
sation over a local optimisation starting at the origin, ∀i,j ∶ 𝜔init

ij = 0.
Within our study, we employ bound optimisation by quadratic approxi-

mation (BOBYQA) [75]. The BOBYQA algorithm is a realisation of a local
gradient-free optimisation algorithm. In each iteration step of the algorithm
a local quadratic approximation, 𝑞, of the function to maximise, 𝑓, is com-
puted. The interpolation points are updated by minimizing the Frobenius
norm of the second derivative matrix of 𝑞. No derivatives of 𝑓 are required
explicitly, thus an implementation of a gradient is not necessary.

The results of GRNI based on simulated data within least squares fits and
our MLM are discussed in subsection 3.5.3.

3.5.1. Least squares methods
Least squares fits are used in the reconstruction of GRNs as big as 100 nodes
based on perturbation data [76, 8]. The inferred GRNs confirm and extend
the knowledge about biological pathways and accurately predict the outcome
of untested perturbations.

We employ a least squares fits based on the steady state relation of the
first moment (3.12). To obtain an estimate for the interaction matrix,

𝜔ms1o = arg min
𝜔

(∑
𝜇i

[⟨𝑥𝜇
i ⟩ − 𝑎i

𝑏i
⟨tanh (ℎ𝜇

i (x𝜇, 𝜔))⟩]
2

) , (3.75)

a quadratic cost function is minimised with respect to 𝜔. The averages in
the cost function are performed over the steady state data. Discrepancies
between mean gene expression, ⟨𝑥𝜇

i ⟩, and expected expression in the steady
state, 𝑎i/𝑏i ⟨tanh (ℎ𝜇

i (x𝜇, 𝜔))⟩, are penalised quadratically. Therefore, a lower
cost interaction matrix represents the data more accurately.

The solution of the forward problem within GT intrinsically incorporates
the second moment of the gene expression distribution. Therefore, we also
examine the information contained in the second moments of the samples
with a least squares method. The steady state relation of first and second
moments (3.12) is used to infer the interaction matrix, 𝜔ms2o, within a mean
square approach in second order,

𝜔ms2o = arg min
𝜔

(∑
𝜇i

[⟨𝑥𝜇
i ⟩ − 𝑎i

𝑏i
⟨tanh (ℎ𝜇

i (x𝜇, 𝜔))⟩]
2

+ 1
𝑁

∑
𝜇ij

[⟨𝑥𝜇
i 𝑥𝜇

j ⟩ − 𝐶𝜇
ij (ℎ𝜇

i (x𝜇, 𝜔))]
2
) .

(3.76)
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In the second line the steady state estimate of the two-point correlation
function,

𝐶𝜇
ij (ℎ𝜇

i (x𝜇, 𝜔))
(3.12)

= 1
2

𝑎i
𝑏i + 𝑏j

⟨tanh (ℎ𝜇
i (x𝜇, 𝜔)) 𝑥𝜇

j ⟩

+ (i ↔ j) + 1
2

𝛿ij𝑐2
j ,

(3.77)

is used. On account of a system-size independent relation between the con-
tributions of first and second moments, we chose a relative factor of the
inverse number of nodes, 1/𝑁.

We additionally use the results of GT developed in section 3.4.2, 𝑚𝜇
i (𝜔)

and 𝐶𝜇
ij (𝜔) = 𝜒𝜇

ij(𝜔) + 𝑚𝜇
i (𝜔)𝑚𝜇

j (𝜔), in a least squares approach. Thus we
infer the interaction matrix, 𝜔msGt, making use of the results of GT for the
first two moments,

𝜔msGt = arg min
𝜔

(∑
𝜇i

[⟨𝑥𝜇
i ⟩ − 𝑚𝜇

i (𝜔)]2 +

+ 1
𝑁

∑
𝜇ij

[⟨𝑥𝜇
i 𝑥𝜇

j ⟩ − 𝐶𝜇
ij (𝜔)]

2
) .

(3.78)

3.5.2. Maximum likelihood method
We try to get an unbiased estimate about the model parameter based on gene
expression data. Therefore we employ a maximum likelihood estimate. The
obstacle of our likelihood-based approach to GRN inference is the likelihood
calculation.

We quantify the conditional probability, 𝑝({x𝜇}|𝜔, a, b, c), of measuring
a set of gene expression values, {x𝜇}, given a complete set of model pa-
rameters. Therefore, we employ GT to solve the forward problem. We
obtain mean, m𝜇(𝜔), and covariance of gene expression, 𝜒𝜇(𝜔), given the
model parameter. Within our MLM we assume the data to be drawn from a
multivariate Gaussian distribution specified by the forward problem results.
This assumption corresponds to the Gaussian model approach introduced in
subsection 3.2.2. Finally we obtain an estimate about the gene regulatory
relationships,

𝜔mlGt = arg max
𝜔

(−1
2

∑
𝜇k

(x𝜇
k − m𝜇(𝜔)) 𝜒𝜇(𝜔)−1 (x𝜇

k − m𝜇(𝜔))

− 1
2

ln det (𝜒𝜇(𝜔))) ,
(3.79)
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by maximisation of the likelihood function, 𝑝({x𝜇}|𝜔, a, b, c), with respect
to 𝜔.

3.5.3. Comparison of least squares and maximum
likelihood method

Within this subsection, we compare the results of the least squares methods
and our MLM. For the comparison we employ scatter plots of generated and
reconstructed interactions as well as the reconstruction error as a quantita-
tive precision measure. We find that the likelihood-based approach outper-
forms the other methods in the regime of a strong stochastic contribution to
the system dynamics.

In this subsection, data is generated by drawing independent random sam-
ples from the steady state of our stochastic model of gene regulation. For
inference, we use samples from the steady state of different perturbations,
𝜇.

Inference based on our GT is not scalable to large system sizes due to
an iterative calculation with numerical integration in each iteration step.
Therefore we focus on the inference of small subnetworks. Such small sub-
networks are realised by regulatory pathways, which are of great importance
in the formation and spread of cancer [36, 40].

To visualise the precision of reconstruction, the difference between recon-
structed, 𝜔rec

𝑖𝑗 , and generated interaction, 𝜔gen
𝑖𝑗 , we employ scatter plots. In

figure 3.8 we show scatter plots of an inferred interaction matrix in a regime
of a significant stochastic contribution to system dynamics, 𝑐i = 1.0, based
on 50 samples per perturbation. All four methods tend to overestimate the
gene regulatory interactions. In the case of our MLM, an overestimation
is to be expected because of the Gaussian distribution used for the gener-
ation of the interaction matrix and the flat prior distribution used in the
likelihood-based inference. In summarising section 5.1, we discuss the use
of prior information in the context of GRNI. For 𝑐i = 1.0, we find that
the likelihood-based approach provides a significantly more accurate recon-
struction of the generated interaction matrix compared to the least squares
methods.

In the Appendix figure I.1 we show scatter plots of an inferred interaction
matrix in a regime of a small stochastic contribution to system dynamics,
𝑐i = 0.1. We find that even with only 5 samples per perturbation the
inference in the regime of a small stochastic contribution is significantly more
precise. For 𝑐i = 0.1 wo do not find a significant difference in reconstruction
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accuracy between the four employed approaches.

To quantify the reconstruction precision, we employ a quadratic recon-
struction error,

𝑟 =

√√√√

⎷

∑ij (𝜔gen
ij − 𝜔rec

ij )
2

∑ij (𝜔gen
ij )

2 , (3.80)

analogously to the forward problem. The reconstruction error is plotted
against the samples per perturbation in figure 3.9. In subplot 3.9b the
inference takes place in a regime of significant stochastic contribution to the
system dynamics, 𝑐i = 1.0, whereas in subplot 3.9a there is only a small
stochastic contribution, 𝑐i = 0.1.

As it is to be expected all methods yield a precise reconstruction in the
limit of a large number of samples. The reconstruction is for all four em-
ployed methods significantly less precise in the regime of a large stochastic
contribution to system dynamics.

Nevertheless, GT within the likelihood-based approach consistently out-
performs the other approaches in the regime of a significant stochastic con-
tribution, 𝑐i = 1.0. With a smaller stochastic contribution, 𝑐i = 0.1, there
is no significant difference between the approaches.

In the regime of a large stochastic contribution, 𝑐i = 1.0, we find signif-
icant information for the network reconstruction in the second moments of
the samples. This information is visualised in the difference of least squares
approach in first- and second-order in figure 3.9b. The impact of the prob-
abilistic samples model in the regime of a large stochastic contribution can
be estimated by comparing the results of the GT within the likelihood-based
approach and the least squares approach based on the GT 3.9b. We find
that the gain in precision based on the information in second moments and
the impact of the probabilistic model in the likelihood function is of the same
order of magnitude.

The least square methods in first and second order are only exact in the
limit of a large number of samples per perturbation, because they are based
on steady state averages. The maximum likelihood estimate is also valid for a
small number of samples per perturbation. In the limit of only a few samples
per perturbation, we expect the likelihood-based approach to outperform the
least squares methods. We do not find such a significant difference as can be
seen in figure 3.9a. It is not clear why approaches based on the steady state
averages work in the limit of only a few samples per steady state without a
significant loss of accuracy compared to our MLM.
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Figure 3.8.: Scatter plot of generated and reconstructed interactions for a
fully connected system as small as 10 nodes. The model
parameter are set to 𝑎i = 1, 𝑏i = 1, and 𝑐i = 1. For the
inference 10 distinct single drug perturbations with 50 samples
per perturbation are used.
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(b) least squares 2nd order:
𝑟ms2o = 1.81
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(c) least squares GT: 𝑟msGt = 1.73
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(d) maximum likelihood GT:
𝑟mlGt = 1.56
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Figure 3.9.: The reconstruction error is plotted against the samples per
perturbation in a fully connected system as small as 10 nodes
and set of model parameter 𝑎i = 1, 𝑏i = 1, and 𝑐i = 0.1 in
subfigure 3.9a such as 𝑐i = 1.0 in subfigure 3.9b. For the
reconstruction we use 10 distinct single drug perturbations. We
employ the least squares fit in first order, , in second order, ,
and based on the GT, . We employ furthermore our MLM, .
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(b) 𝑐i = 1.0
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3.6. Inference and response prediction in a
melanoma cell line

We focus in this section on the inference based on experimental perturbation
data. We employ the four approaches introduces in the previous section
based on measurements of signalling activity in the melanoma cell line SK-
MEL-133. We find that a prediction based on inferred model parameter gives
an accurate estimate of unknown signalling activity. For our likelihood-based
approach, we show a graph representation of the inferred interaction matrix
and compare the reconstructed signalling network to the literature.

Before we start with the response prediction we outline the experimental
setup in subsection 3.6.1. We divide the perturbation data up into training
and prediction set. Based on inference within the training set we predict
signalling activity for the prediction set in subsection 3.6.2. In the clos-
ing subsection 3.6.3 we employ our likelihood-based approach on the whole
dataset and discuss the inferred regulatory interactions.
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3.6.1. Perturbation experiment
The perturbation experiment in the SK-MEL-133 cell line is published in the
supporting information of the publication [76]. The SK-MEL-133 melanoma
cell line has functional mutations within the MAPK pathway, which is dis-
cussed in the motivational section 3.1 as an important pathway in the de-
velopment and spread of melanoma.

The SK-Mel-133 cells are singularly and pairwise perturbed using a set of
8 inhibitors, which predominantly target the PI3K/AKT and MAPK path-
way. As an inhibitory concentration the IC40 value is used to generate a
gentle perturbation with a measurable effect. The IC40 value is the minimal
concentration required to reduce the activity of the targeted protein by 40%,
which can be estimated from a dose-response curve.

Within a set of 16 proteins, protein phosphorylation levels are measured.
This set of proteins does not include the perturbed proteins, which is a fun-
damental difference to the inference based on simulated data in the previous
section. For each of the 44 perturbations, three independent biological repli-
cates are measured and response is quantified by a logarithmic ratio between
perturbed and unperturbed phosphorylation levels.

Phosphorylation levels are measured with reverse-phase protein arrays
(RPPA). RPPA is a microarray technology. DNA microarray technologies
are outlined in section 3.2.1. The RPPA technology is designed for the simul-
taneous measurement of protein concentration and phosphorylation state in
a large number of biological samples [77].

Apart from the measurement of phosphorylation level, the cell viability af-
ter drug perturbation is quantified 72 hours after perturbation in a resazurin
assay. Resazurin is a weakly blue fluorescent, cell-permeable substance. It
is irreversibly reduced to the pink-coloured and highly fluorescent resorufin
by metabolic cell activity. Therefore the reduction of resazurin is a widely
used indicator of cell proliferation and viability.

3.6.2. Response prediction
We divide the 44 perturbations up into training sets with 33 perturbations
and corresponding prediction sets consisting out of 11 perturbations. Such
that there are in total four pairs of distinct training and prediction sets.
Based on training data we infer the gene interaction matrix, 𝜔, and the
model parameter a, b, and c.

We employ the four inference approaches introduced in the previous sec-
tion. Compared to the previous section, we enlarge the parameter space by
the set of model parameter a, b, and c. Matrix elements, 𝜔ij, are set equal
to zero that quantify the regulatory effect on the perturbed proteins and for
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which there are no measurements of signalling activity. Such that 𝜔ij = 0
for all i labelling the perturbed proteins.

There exist regions of the parameter space where the GT does not con-
verge. Moreover, we find that the success of our MLM depends on the
starting point of the local optimisation. We obtain reliable predictions by
using the result of the least squares fit based on GT as a starting point for
our MLM.

Given the inferred interaction matrix and model parameter we predict
mean phosphorylation level, m𝜇, within the prediction set using a numerical
simulation based on our stochastic model.

For the first pair of training and prediction set, the predicted signalling
activities are compared to the measured ones in figure 3.10. The predictions
based on the other training sets are depicted in the Appendix section I.3.

We find that phosphorylation levels can be predicted based on our stochas-
tic model. Based on all four sets of training and prediction data, we ob-
tain for the least squares method in first order a mean square error of
𝑟ls1o = 0.8 ± 1.2 and in second order of 𝑟ls2o = 1.3 ± 2.1. Whereas the
mean square error of 𝑟lsGt = 0.086 ± 0.020 for the least squares Gaussian
theory approach and our likelihood based method 𝑟mlGt = 0.083 ± 0.014 are
significant smaller.

3.6.3. Network reconstruction

For the network reconstruction, we employ our likelihood-based method,
which we introduce in subsection 3.5.2, based on the whole dataset. To in-
corporate the knowledge that most of the proteins do not interact, we use
the heavy-tailed Laplace distribution, as a sparsity-favouring prior distribu-
tion. We employ the Laplace distribution with mean, 𝜈 = 0, and variance,
2𝜎2 = 1/2 as a prior for the matrix elements, 𝜔ij. In this way, 𝜔ij is set
equal to zero whenever there is no clear evidence in the data for an interac-
tion. On the other hand 𝜔ij which are required are allowed to be sizeable,
because the Laplace distribution decreases slightly with exp(−|𝑥|), whereas
the normal distribution decreases with exp(−𝑥2). We do not take additional
prior information for the parameter a, b, and c into account and assume a
flat prior distribution for these parameters. Finally, we obtain a maximum
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Figure 3.10.: Scatter plot of predicted and measured signalling activity.
The inference is based on a training set, which does not
include the predicted perturbations. We employ the least
squares fit in first order, , in second order, , and based on
the GT, . We employ furthermore our MLM, . We give the
mean squared distances between predicted and measured
signalling activity.
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(b) 𝑟ls2o = 0.182
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(c) 𝑟lsGt = 0.095
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(d) 𝑟mlGt = 0.092
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Table 3.1.: Confusion table between interaction from the Reactome
pathway database [78] and inferred interaction based on our
MLM. The reference interaction are classified as activating,
non-interacting, inhibiting, and undirected interaction.

inf.
ref.

act. non-
int. inh. und.

int.
𝜔ij ≥ 0.2 0 12 0 2

−0.2 ≥ 𝜔ij ≥ 0.2 26 175 2 20
𝜔ij ≤ −0.2 1 14 1 3

posterior estimate based on the GT,

{𝜔, a, b, c}mpGt = arg max
{𝜔,a,b,c}

(−1
2

∑
𝜇k

(datax𝜇
k − m𝜇(𝜔, a, b, c))T

(𝜒𝜇(𝜔, a, b, c))−1 (datax𝜇
k − m𝜇(𝜔, a, b, c))

−1
2

ln det (𝜒𝜇(𝜔, a, b, c)) − ∑
ij

|𝜔ij − 𝜈|
𝜎

) ,

(3.81)

for the model parameter.
In figure 3.11 we give a graph representation of the inferred subnetwork

of the measured proteins. We employ a lower limit of 0.2 on the absolute
value for the representation of an regulatory interaction.

Our network is more complex than most signalling cascades in the litera-
ture. Nonetheless, we compare our findings, the inferred signalling network,
to the manually curated, open access Reactome pathway database [78]. The
regulatory interactions within the database are represented in figure 3.12. In
table 3.1 we compare our inferred interactions with the data base. We find
that the inferred regulatory interactions do not represent known regulatory
relationships.

The high ratio between the number of proteins and the sample size, and
probably also the experimental noise, make the inference of biochemical
interactions without integration of prior knowledge infeasible.
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Figure 3.11.: The graph represents our maximum posterior estimate for the
signalling network. We plot inferred regulatory relationships
with |𝜔ij| ≥ 0.2. The graph representation is created with
Cytoscape [79].
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Figure 3.12.: The graph represents the reference network based on the
pathway database Reactome [78]. Shown are activating, →,
inhibiting, ⊣, and undirected interactions, −. The dashed
lines represent predicted interactions. The graph
representation is created with Cytoscape [79].
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4. Cancer immunotherapy
response prediction

Science, for me, gives a partial
explanation for life. In so far as
it goes, it is based on fact,
experience and experiment.

Rosalind Franklin

We aim to identify patients who will likely benefit from checkpoint block-
ade immunotherapy (CBI) to support clinical decision-making. Within this
chapter, we address the question of whether one can predict cancer im-
munotherapy response based on frameshift mutations which result in ran-
dom peptide sequences that are entirely different from self-peptides.

We introduce cancer immunotherapy by CBI in section 4.1 and review a
wide range of approaches to CBI response prediction. To investigate the
information about CBI response contained within frameshift mutation, we
employ statistical classification and survival analysis. We outline the mathe-
matical foundations of the employed statistical methods in section 4.3 and in-
troduce hypothetical frameshift-based response determinants in section 4.2.

Response evaluation criteria are the basis for our statistical classification
in section 4.4. We quantify the predictive power of frameshift mutation on
the overall survival of patients treated with CBI in section 4.5. For this
purpose, we sort the patients into two groups based on their mutational
profile and compare the survival rates.

We summarise our findings on the immunogenic potential of frameshift-
derived peptides in section 4.6. We find slight evidence that frameshift mu-
tations are related to immunotherapy response. Nonetheless, our statistical
analysis revealed that frameshift-derived peptides are not significantly asso-
ciated with immunotherapy response. Our findings are compatible with a
hidden factor, e.g. the mutation rate, that increases the number of unknown
immunogenic mutations and the number of frameshift mutations. Still, there
is no evidence that the frameshift mutations are causal for immunotherapy
response.
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4.1. Cancer immunotherapy by immune
checkpoint blockade

An immune checkpoint is a pathway that regulates the immune response.
This regulation is central to immune tolerance, e.g. insensitivity to the
microbiome, immune tolerance in pregnancy and tolerance to non-self pep-
tides in food. During tumour evolution, some tumours acquire the ability
to stimulate immune checkpoints that prevent an immune response. CBI
blocks inhibitory checkpoints such as PD-1, PD-L1, and CTLA-4 to restore
the protective function of the immune system [80].

Extensive clinical trials show that within a minority of patients, check-
point inhibition has outstanding benefits [12]. Although immunotherapy
generally has fewer adverse effects than chemotherapy, CBI can cause severe
adverse reactions by altering immunologic self-tolerance. Because only a
small patient group receives durable clinical benefits, the high variability in
patient response limits the clinical use. Therefore the understanding of de-
terminants that drive immune response, resistance, and adverse side effects
is a key scientific issue in the field of immuno-oncology [2].

In the following, we provide an overview of CBI response determinants
that have been studied in the literature. We refer to the expression of tumour
suppressor genes, the tumour genome, host germline genetics and the tumour
microenvironment.

Expression of the immune suppressor gene PD-L1 is a predictive biomarker
of CBI response. Improved efficacy of CBI over chemotherapy, with fewer
adverse effects than in chemotherapy, was found in patients with advanced
non-small lung cancer (NSCLC) and PD-L1 expression [81]. Within an-
other phase III clinical trial, CBI was not associated with significantly longer
survival times than chemotherapy among NSCLC patients with PD-L1 ex-
pression [82]. Although a metastudy indicates that PD-L1 expression is a
predictive biomarker, the PD-L1 expression has limitations, and further de-
terminants have to be carefully investigated [3].

Tumour genomes contain self-antigens that are a hypothetical determi-
nant for CBI response [83]. These non-mutated antigens are based on tu-
mour overexpressed genes or genes, only expressed in cells without MHC
presentation within healthy tissue. Thus, self-antigens are potential targets
for immune recognition.

Besides non-mutated self-antigens, tumour genomes have antigens based
on non-synonymous mutations. Studies show that there is a correlation
between the overall number of mutations and the response to CBI. This
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correlation is likely linked to these somatic mutations [4]. The overall num-
ber of mutations is called tumour mutational burden (TMB). TMB-based
biomarkers are in clinical use. However, in a pan-cancer dataset of more than
2500 CBI-treated patients, Mirny et al. found little evidence that TMB is
a predictive biomarker. The statistical analysis of this dataset suggests that
previously reported correlations are based on confounding cancer subtypes
and incorrect statistical testing [5].

Within the tumour genome, microsatellite instability (MSI) is a further
response determinant. MSI is a predisposition to mutations in repetitive
DNA sequences due to a non-functioning DNA repair mechanism. Thus, the
MSI consequently leads to a high TMB. Efficacy of PD-1 blockade therapy
is found in cancer patients with MSI across 12 different tumour types [84].

Frameshift mutation derived peptides are highly distinct from self-peptides.
Thus frameshift mutations in the tumour genome are hypothetically a rich
source of immunogenic antigens. Across three melanoma studies, Swanton et
al. found that the number of frameshift mutations is significantly associated
with response to CBI [6].

The MHC molecules are encoded by the human leukocyte antigen (HLA)
complex. The HLA system is the most heterogeneous gene complex within
the human genome. MHC diversity is a critical component for immune
defence. Therefore, a more diverse set of MHC molecules is a hypothetical
response determinant. An analysis of more than 1500 CBI-treated patients
gives evidence that a more diverse set of MHC molecules within a patients
genome is related with clinical benefit [85]. The ability to present a broader
range of peptides via MHC molecules on the cell surface may explain this
finding.

The expression of inhibitory checkpoints is associated with the density
and distribution of CD8+ T cells within the tumour microenvironment. The
presence of CD8+ T cells located at the tumour margin before starting ther-
apy may determine CBI response in metastatic melanoma [86].

Cancer is a systemic disease that causes far-reaching immune system dys-
function. Thus, the entire immune system can play a crucial role in the tu-
mour macroenvironment. Accumulating evidence indicates that CBI drives
new immune responses rather than enhancing pre-existing ones [87]. The
understanding of systematic immunity in cancer may be an essential step
for reliable response prediction.

In summary, there are numerous hypothetical determinants of response
to CBI. Despite further clinical studies, we need careful analysis of genomic
and systemic characteristics of CBI response.
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4.2. Hypothetical frameshift-based response
determinants

In our study, we consider that a high number of frameshift mutations is
not the whole story. Their expression is a precondition for immune recogni-
tion. Frameshift derived peptides must be trimmed for MHC presentation
and bind to an MHC molecule. Finally, the immune system must recog-
nise the peptides as non-self for a frameshift mutation to be immunogenic.
In addition to the number of frameshift mutations, we focus on additional
hypothetical frameshift-related determinants and, in particular, on frame
shift-derived peptides. We consider observables without free parameters and
search for a clear response signal.

We introduce the safeguard mechanisms nonsense-mediated decay (NMD)
and non-stop decay (NSD) that prevent the translation of erroneous mRNA
in subsection 2.2.2. NMD prevents the translation of frameshift sequences
that contain a stop codon 50 nucleotides before an exon-exon junction. NSD
safeguards against frameshift-derived mRNA sequences that do not contain
a proper stop codon. Taking into account these safeguard mechanisms, we
consider the number of frameshift-derived peptides that are not affected by
NMD and NSD.

We expect the clonal structure of the tumour to be relevant for CBI re-
sponse. A clonal mutation is likely to cause a more significant immune
response than a non-clonal mutation. In the case of an immune reaction due
to a non-clonal mutation, some tumour clones are resistant to the immune
reaction. A study within a mouse model indicates that neoantigens with a
low cancer cell fraction (CCF) do not lead to immune-mediated cell rejection
and that the CCF threshold for an immune response is antigen-dependent
[88]. We assume that the relative measure of a CCF is relevant for immune
response. We define the accumulated frequency of frameshift mutations,

𝑓i = ∑
m∈FMi

CCFm , (4.1)

where FMi is the set of frameshift mutations within the tumour genome of
individual i and CCFm is the CCF of mutation m.

The expression of a frameshift mutation is a candidate for a CBI response
determinant. We investigate the accumulated expression of frameshift mu-
tations,

𝑒i = ∑
m∈FMi

GEm , (4.2)

where GEm is the expression of gene m.
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MHC presentation relies on trimming proteins into peptides of canonical
8 – 10 amino acids. Peptide processing significantly shapes the MHC im-
munopeptidome, the set of peptides presented on MHC molecules. However,
the specificity of this process is not well understood, and the prediction of
peptide processing is not entirely reliable [89]. We, therefore, do not consider
the specificity of peptide trimming.

We investigate the length of frameshift-derived peptides,
𝑙i = ∑

m∈FMi

Lm , (4.3)

where Lm denotes the length of a frameshift derived peptide. In Appendix
section II.1, we explain our bioinformatic method for obtaining frameshift-
derived peptide sequences.

The presentation of frameshift-derived peptides on MHC molecules on the
cell surface is another hypothetical determinant of CBI response. Therefore
we investigate the number of MHC-binding frameshift-derived peptides,

𝑏i = ∑
m∈FMi

Bm , (4.4)

where we estimate peptide-MHC (pMHC) binding via NetMHC [90, 91]. We
restrict the prediction to peptides with a lenght of 9 amino acids. Because
we do not have information about a patient-specific MHC repertoire, we base
our pMHC binding prediction on supertype representatives. The first set of
supertype representatives was defined in 1999 [92]. Nowadays, it is possible
to cover the binding properties of almost all known MHC molecules based
on functional binding specificities of a few supertype representatives [93].

The adaptive immune response depends on an interaction between the T
cell receptor (TCR) and the pMHC complex. An essential feature in the
characterisation of the TCR-pMHC interaction is the binding affinity, the
electronic property by which the TCR and the pMHC are prone to form
a chemical compound. However, to predict the T cell recognition with the
TCR-pMHC affinity is far from conclusive [94]. Maybe the information
transmitted to the T Cell, measured by the entropy of TCR-pMHC binding
dynamics, is decisive for recognition [95]. Thus, we do not consider TCR-
pMHC affinity within our study.

4.3. Mathematical foundations of statistical
classification and survival analysis

We base our CBI response prediction on information about genetic alter-
ations within the patient’s genome. For this purpose, we employ statistical
classification and survival analysis.
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In subsection 4.3.1, we introduce the framework of statistical classifica-
tion. We employ statistical classification in the following section to build a
stochastic model predicting binary CBI response. We try to divide the set
of patients into responders and non-responders based on information about
their genetic alterations.

In subsection 4.3.2, we introduce the framework of survival analysis, which
is a branch of statistics for the analysis of time-to-event data, such as the
overall survival after the start of therapy.

4.3.1. Statistical classification

Before we introduce the method of Bayesian logistic regression, we formu-
late the statistical classification problem for a binary output variable. The
classification problem and the method of Bayesian logistic regression are in-
troduced in Bishop’s excellent textbook ”Pattern Recognition and Machine
Learning” [96]. To quantify the performance of a classifier, we define a qual-
ity measure in the closing paragraph.

Binary classification problem

Binary classification in the context of our CBI response prediction is the task
of classifying patients into responders and non-responders based on tumour
genetic information. Cancer tissue samples are successfully classified by their
gene expression patterns for clinical decision-making [97].

Within our CBI response prediction, we base the classification of a patient
on an input variable, xn, with patient index 𝑛, and a classification rule. The
xn characterise the mutational landscape of a patient with a real-valued
vector. The classification rule is a mapping to a binary output variable,
xn ↦ 𝑘n with 𝑘n ∈ {1, 0}. To construct a classification rule, we employ
the framework of Bayesian logistic regression, which is introduced in the
following paragraph.

The mapping can be characterised by the true positive rate (TPR) and
the false positive rate (FPR). The TPR is a measure of sensitivity. It is
the ratio between the number of patients correctly classified as responders
and the total number of patients classified as responders. The FPR is the
probability of falsely classifying an actual non-responder. Thus the FPR
is calculated as the ratio between the number of non-responders wrongly
categorised as responders and the total number of actual non-responder.
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Bayesian logistic regression

Bayesian logistic regression is based on data consisting of independent input
variables, xn, and dependent binary output variables, 𝑟n ∈ {1, 0}.

It is assumed that the dependent outcome variable is Bernoulli distributed,
such that

𝑝(𝑟n) = (𝑝n)𝑟n
(1 − 𝑝n)1−𝑟n

. (4.5)
For the response variable, 𝑝n, one assumes a linear relationship between the
input variables and the log-odds of 𝑝n,

ln ( 𝑝n

1 − 𝑝n ) = 𝛼 + ∑
i

𝛽i𝑥n
i . (4.6)

To solve the inverse problem, to get an unbiased estimate for the model
parameters 𝛼 and 𝛽i, we employ statistical inference.

As a prior for the model parameters, we assume a normal distribution
centred at zero with variance 𝜎2. We employ an inverse gamma distribution
as a conjugate prior for the variance of the normal distribution as explained
in subsection 2.1.3. The posterior distribution of the model parameters is
determined by the stochastic model

𝜎2 ∼ InverseGamma(2, 3)
𝛼 ∼ Normal(0, 𝜎2)
𝛽i ∼ Normal(0, 𝜎2)

𝑟n ∼ Bernoulli (𝑝n) with 𝑝n (4.5)
= 1

1 + exp (−𝛼 − ∑i 𝛽i𝑥n
i )

.

(4.7)

Based on the data, we obtain a maximum a posteriori probability (MAP)
estimate for the model parameter, 𝛼⋆ and 𝛽⋆

i . To this end, we draw a
sequence of random samples with a Hamiltonian Monte Carlo algorithm [98]
implemented within the probabilistic programming library Turing.jl [99].
The sample sequence converges to be distributed according to the posterior
distribution.

To solve the forward problem, the classification of a patient based on
mutational information, we define a score function

𝑠n(xn) = 𝛼⋆ + ∑
i

𝛽⋆
i 𝑥n

i . (4.8)

Within this score function we use our maximum posterior estimate of the
model parameter. Our response classification, xn ↦ 𝑘n with

𝑘n = {
1, if 𝑠n(xn) ≥ 𝛿
0, else

, (4.9)
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depends on the score function, 𝑠n(xn), and a variable threshold parameter,
𝛿.

Receiver operating characteristic

The receiver operating characteristic (ROC) is a method to quantify the
performance of a threshold dependent binary classifier. The ROC was de-
veloped in the context of signal detection and gained application in various
quantitative research fields. Nowadays, it is frequently used in medical deci-
sion making and as a performance measure in machine learning. Within this
chapter, we employ the ROC curve as a graphical representation of the per-
formance of a classifier. The area under this curve is a quantitative measure
for classification precision. A rigorous analysis of the ROC can be found in
the literature [100].

The FPR and the TPR, introduced with the binary classification prob-
lem, span the two-dimensional ROC space. Both rates characterise a binary
classifier and depend on the threshold of the classifier, 𝛿. One generates the
ROC curve by plotting the TPR against FPR for each value of 𝛿. Figure 4.1
shows the ROC curves of four classifiers with different predictive power.

To quantify the quality of a binary classifier, one can employ the area
under the curve (AUC). One assumes that the value of the score function
𝑠 is distributed according to the probability density 𝑓R(𝑠) for patients with
clinical response and according to 𝑓N(𝑠) respectively for patients without
response. Under this hypothesis, TPR and FPR can be represented as an
integral,

TPR(𝛿) = ∫
∞

𝛿
𝑓R(𝑠)d𝑠

FPR(𝛿) = ∫
∞

𝛿
𝑓N(𝑠)d𝑠 .

(4.10)

For a randomly chosen responder, xn, and a randomly chosen non-responder,
xm, the AUC is equal to the probability that the inequality 𝑠n > 𝑠m holds,

AUC = ∫
1

0
TPR (FPR−1(𝑥)) d𝑥

FPR−1(𝑥)=∶𝛿
= − ∫

∞

−∞
TPR(𝛿)𝜕 FPR

𝜕 𝛿
(𝛿) d𝛿

(4.10)
= ∫

∞

−∞
∫

∞

−∞
𝑓R(𝑠)𝑓N(𝛿)𝜃(𝑠 − 𝛿) d𝑠 d𝛿 = 𝑝(𝑠n > 𝑠m) .

(4.11)
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Figure 4.1.: Examples of ROC curves for different predictive classifier.
Random classifier , weak classifier , strong classifier ,
perfect classifier .
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4.3.2. Survival analysis
Survival analysis is a branch of statistics to analyse the timespan until one
event occurs, such as a death in CBI trials. At the end of observation time,
either an event occurred, or the patient was censored. Censoring takes place
if no event is observed and nothing is known about the patient after obser-
vation. Within the context of our CBI response prediction, the observation
time starts with treatment. Censoring occurs when the patient leaves the
clinical study on account of any reason without observing an event. An event
may or may not occur after censoring.

We define common terms in survival analysis and introduce the Kaplan-
Meier estimator to obtain patient groups’ survival rates. In the closing
paragraph, we outline the method of Bayesian linear regression, which we
employ for our survival time prediction.

Common terms in survival analysis

We refer to survival data as a dataset consisting of observation times, 𝑡n ∈
ℝ+, and information about censoring, 𝑐n ∈ {1, 0}, where 𝑐n = 1 marks
patients leaving the clinical study. The survival function,

𝑠n(𝑡) = 𝑃(𝑡n > 𝑡) , (4.12)

gives the probability that a patient will survive beyond time 𝑡.
To estimate the survival function of a patient group, we employ a Kaplan-
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Meier estimator. The Kaplan-Meier estimator of survival rates

̂𝑠(𝑡) = ∏
i∶𝑡i<𝑡

(1 − 𝑑i
𝑛i

) (4.13)

depends on 𝑑𝑖, the number of deaths that happened at 𝑡𝑖, and 𝑛𝑖, the pa-
tients at risk which have not yet died or been censored up to time 𝑡𝑖. By
comparing ̂𝑠(𝑡) between patient groups, one gets evidence for differential ef-
ficacy of therapy. The Kaplan-Meier estimator is a widely used method for
demonstrating clinical benefit.

The interested reader can find an extensive mathematical description of
survival analysis in the lecture notes [101].

Bayesian linear regression

To quantify the relation between mutational information, xn, and survival
time, 𝑡n, we employ the framework of Bayesian linear regression. On account
of unknown event times we have to deal with right-censored data. Right-
censored time spans end later than a certain point in time but it is unknown
by how much. The general assumption of our approach is a linear relation
between 𝑥n

i and 𝑡n. We employ a stochastic model,

𝜎2 ∼ InverseGamma(2, 3)
𝛼 ∼ Normal(0, 𝜎2)
𝛽i ∼ Normal(0, 𝜎2)

𝑡n ∼ {
Normal(𝜇n, 1), if 𝑐n = 0
CCDFNormal(𝜇n, 1), if 𝑐n = 1

,

(4.14)

where the inverse-gamma distribution is used as a prior for the variance
analogously to our stochastic model of logistic regression. We assume the
uncensored survival times to be distributed according to a normal distribu-
tion with mean

𝜇n(xn) = 𝛼 + ∑
i

𝛽i𝑥n
i (4.15)

and unit variance. We employ the complementary cumulative distribution
function (CCDF) of the normal distribution for the right-censored data. We
generate samples with a Hamiltonian Monte Carlo algorithm using the prob-
abilistic programming library Turing.jl [99]. If we do not fix the variance,
our stochastic model is more unstable, and the Hamilton Monte Carlo algo-
rithm does not converge. For survival time prediction we employ equation
(4.15) with a MAP estimate for the model parameter, 𝛼⋆ and 𝛽⋆

i .
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Table 4.1.: Map from RECIST to a binary outcome variable
Miao Liu

response clinical benefit complete response &
partial response

no-response stable disease &
no clinical benefit

stable disease &
progressive disease

4.4. Statistical classification
We employ binary classification to investigate the information content in
hypothetical CBI response determinants. For this purpose, we map the
discrete response evaluation criteria in solid tumours (RECIST) to a binary
outcome variable, response and no-response. The mapping is shown in table
4.1.

In this and the following section, we analyse datasets published by Miao
et al. [102] and Liu et al. [103]. The Miao dataset is based on whole-exome
sequencing of 249 tumours and healthy tissue from patients with clinically
evaluated responses to CBI across multiple cancer types. The Liu dataset
contains a cohort of 144 melanoma patients treated with anti-PD1 CBI.
These datasets contain patient-specific information about genetic mutations,
clinical information about therapy’s effects, and the overall survival after the
start of CBI. The information about various types of genetic mutations are
based on variant calling, the identification of mutations from sequencing
data [104]. We chose these datasets because of the relatively large number
of patients, their public accessibility, and the included information about
frameshift mutations.

Within the first subsection of this section, we use the ROC to investi-
gate hypothetical response determinants. To predict the outcome of CBI,
we employ the framework of Bayesian logistic regression within the second
subsection.

4.4.1. Hypothetical response determinants
Given the binary response, we compare the predictive value of frameshift
mutations with other mutation types. Therefore, we study the number of
mutations as a classifier within a series of ROC curves, which is depicted
in figure 4.2. We do not find a significant difference in the predictive value
between the number of missense, nonsense, frameshift, and silent mutations.
This finding is also valid within a second melanoma dataset in the Appendix
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Figure 4.2.: ROC curve based on the number of a specific mutation type as
classifier. We examine the number of missense , nonsense ,
frameshift , and silent mutation .
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(b) Melanoma - Miao
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subfigure II.1a. In comparison between cancer types, we find that the num-
ber of mutations has a higher predictive value for patients with lung cancer
than melanoma patients.

All ROCs in figure 4.2 are comparable and are in particular similar with
silent and nonsense mutations. Thus, the data are compatible with a hidden
factor, e.g. the mutation rate, which increases the number of all mutations
independent of whether they are a hypothetical target for an immune re-
sponse. The silent and nonsense mutations are not immunogenic, but they
still have a signal via this implicit mechanism.

In the second series of ROC curves, we investigate hypothetical response
determinants related to frameshift mutations, which we defined in section
4.2. The ROC curves are shown in figure 4.3. In addition to the underlying
signal of the number of frameshift mutations, we do not find an increased
predictive value within the investigated frameshift-related response determi-
nants. We also find no response signal in the second melanoma data set,
shown in the attached subfigure II.1b.

4.4.2. Response prediction
We use statistical inference to make a statement about the significance of the
classification based on the response determinants studied. For this purpose,
we employ our stochastic response model defined in subsection 4.3.1. We
focus on the number of missense and frameshift mutations as input variables
for our binary response prediction. Within the lung cancer dataset, we found
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Figure 4.3.: ROC curve for frameshift mutation based classifier. We
examine the number of frameshift-derived peptides, , the
accumulated frequency , the accumulated expression , the
length of frameshift peptides , and number of MHC-binding
frameshift-derived peptides .
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(b) Melanoma - Miao
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a small response signal. Therefore we focus on the response prediction within
this dataset.

In subfigure 4.4a we show a scatter plot of the drawn samples for the re-
gression coefficients, 𝛽1 and 𝛽2, corresponding to the missense and frameshift
mutations. The number of missense mutations is generally much larger.
Thus the axis scaling is not comparable.

We do not find a significant response signal. The null hypothesis, ∀𝑖 ∶
𝛽i = 0, is within the 1𝜎 credible region. Therefore, there is no evidence
at the 1𝜎 level that CBI response depends on the number of missense and
frameshift mutations.

We employ our stochastic response model to predict binary CBI response
based on our MAP estimate of the model parameter. For this purpose, we
employ cross-validation. We divide the data into two sets, one prediction set,
consisting of three individuals, and a training set, with the other 54 patients.
The response score for each patient relies on a maximum likelihood esti-
mate based on the corresponding training set. The resulting cross-validated
ROC curve is plotted in subfigure 4.4b. A comparison with subfigure 4.2a
shows that the prediction based on our stochastic response model is not
significantly better than a classification based on the number of frameshift
mutations. This finding is compatible with the hypothesis that a generally
high mutation right increases both the number of unknown immunogenic
mutations and the number of frameshifts. Still, there is no evidence that the
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Figure 4.4.: We employ Bayesian logistic regression for CBI response
prediction based on the number of missense and frameshift
mutations.

(a) Samples from the posterior, ,
MAP estimate, , 1𝜎 credible
region, , 2𝜎 credible region, .

(b) Cross-validated ROC curve based
on a MAP estimate within our
stochastic model.
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frameshift mutations are causal for CBI response.

4.5. Survival analysis
We employ survival analysis to investigate hypothetical determinants of over-
all survival after the start of CBI. Analogously to the previous section, we
explore the predictive power of hypothetical survival determinants in sub-
section 4.5.1 and try to predict the overall survival in subsection subsection:
Survival prediction.

4.5.1. Hypothetical survival determinants
To quantify the predictive power of hypothetical survival determinants, we
divide the set of patients according to a real-valued score function, represent-
ing a hypothetical response determinant, into a high-score and a low-score
subset. Within our datasets, we find that about 30% of the patients are
classified as responders. We use this prior knowledge for the subset size. We
calculate Kaplan-Meier estimators and visualise the estimated survival rates
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in a Kaplan-Meier plot.
We explore the predictive value of different mutation types within a lung

cancer and melanoma dataset in the figures 4.5 and 4.6. We show the cor-
responding Kaplan-Meier curves for a second melanoma dataset in the ap-
pended figure II.2.

We find that the patient group with more frameshift mutations has a
higher survival rate within the Miao lung cancer data. There is no significant
difference in overall survival after the start of CBI between the high-score
and the low-score subset in the Miao melanoma data. It is unclear whether
the number of frameshift mutations is the cause of CBI response or whether
there is a common cause for the frameshift mutation and the overall survival.
In contrast to the binary response prediction, we do not find a response signal
of silent mutations in overall survival within the lung cancer dataset.

We investigate whether the number of frameshift mutations has a pre-
dictive value apart from the overall number of mutations. We, therefore,
divide the whole dataset into two subsets of equal size according to the
overall mutation number and divide each of these subsets again into two
subsets of equal size according to the frameshift mutation number. The cor-
responding ROC curves are shown in figure 4.7 and for the second melanoma
dataset in the Appendix figure II.3. Within the lung cancer dataset, we find
slight evidence that the number of frameshift mutations in the subset char-
acterised by a high overall number of mutations has some predictive value.
The melanoma datasets also support this minor trend.
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Figure 4.5.: Kaplan-Meier curves based on hypothetical survival
determinants for lung cancer patients within the Miao dataset
[102], high score subset, , low score subset, .
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(b) Nonsense mutation
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(c) Frameshift mutation

0 500 1000 1500
time in days

0.
00

0.
25

0.
50

0.
75

1.
00

su
rv

iv
al

 r
at

e

(d) Silent mutation
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Figure 4.6.: Kaplan-Meier curves based on hypothetical survival
determinants for melanoma patients within the Miao dataset
[102], high score subset, , low score subset, .
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(b) Nonsense mutation
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(c) Frameshift mutation
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(d) Silent mutation
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Figure 4.7.: Kaplan-Meier curves for patient groups characterised by high
overall and high frameshift, , high overall and low frameshift,

, low overall and high frameshift, , low overall and low
frameshift, number of mutation.

(a) Lung - Miao (b) Melanoma - Miao
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4.5.2. Survival prediction
We try to predict the overall survival after the start of CBI within the
lung cancer dataset analogously to the binary response prediction. For this
purpose, we employ our stochastic survival model defined in subsection 4.3.1
to divide the set of patients into a high-score and a low-score subset. We
based our prediction on the number of missense and frameshift mutations.

The posterior distribution of the model parameter is characterised within
subfigure 4.8a. Based on our MAP estimate, we employ our stochastic sur-
vival model to predict overall survival. We use the same cross-validation
scheme as in our binary response prediction. The resulting Kaplan-Meier
curves, which are based on our MAP estimate, are plotted in subfigure 4.8b.
We find that the high-score patient group has a higher survival rate than the
low-score group. Notwithstanding, this prediction is not significantly better
than a prediction solely based on the number of frameshift mutations.
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Figure 4.8.: We employ Bayesian linear regression for CBI survival
prediction based on the number of missense and frameshift
mutations.

(a) Samples from the posterior, ,
MAP estimate, , 1𝜎 credible
region, , 2𝜎 credible region, .

(b) Kaplan-Meier curve based on a
MAP survival prediction within
our linear model.
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4.6. Conclusion about the immunogenic
potential of frameshift mutation

Our statistical analysis of CBI data revealed that the number of frameshift
mutations is not significantly related to the response class and the overall
survival across three clinical cohorts. Furthermore, we also investigated the
number of frameshift-derived peptides concerning safeguard mechanisms (
NMD and NSD), accumulated frequency based on CCF, accumulated gene
expression, length of frameshift-derived peptides, and the number of MHC-
binding frameshift-derived peptides. We also found no significant CBI re-
sponse signal in these hypothetical frameshift-related determinants.

Nonetheless, we find little evidence that the number of frameshift muta-
tions is associated with response classes and overall survival after the start
of CBI. We can make no statement about a causal relationship between the
emergence of frameshift mutation and immunotherapy success. It is beyond
the scope of the investigated datasets whether frameshift-derived peptides
have a significant physical impact on CBI response. We find some evidence
that a hidden factor, e.g. the mutation rate, increases both the number
of unknown immunogenic mutations and the number of frameshift muta-
tions. Still, there is no evidence that the frameshift mutations are causal for
immunotherapy response.

Our stochastic models, based on frameshift and missense mutations, do
neither improve cross-validated response nor survival prediction. We find no
evidence of additional information from multiple mutation types, which is
compatible with a common hidden factor.
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5. Conclusion
Science never solves a problem
without creating ten more.

George Bernard Shaw

Within this chapter, we conclude our research, combining statistical me-
chanics and information theory with high-throughput technologies, to ad-
dress open questions in systems biology.

In section 5.1, we summarise our findings on network inference and biolog-
ical information processing. We review our results on the frameshift-based
prediction of CBI response in section 5.2.

5.1. Likelihood-based gene regulatory network
inference

Our proposed system of stochastic differential equations based on an inter-
action network (3.4) proves to be a promising model for the research on
biological information processing. We employ our dynamic model to con-
struct a maximum likelihood estimate for the interaction network based on
gene expression data.

Based on exact steady state relations (3.12) we can solve the forward
problem within the MFT and our GT. We find that the GT outperforms
MFT in the regime of strong inter-gene couplings, where the mean field
approximation breaks down.

Based on the GT, we propose an MLM to solve the inverse problem. In
the regime of a sizeable stochastic contribution to the system dynamics,
we find that our MLM outperforms standard least squares fits, which are
successfully used for the reconstruction of GRNs [76, 8]. Within our MLM,
we implicitly assume a flat prior distribution, which causes an overestimation
of interactions. We find this overestimation also within the least squares
methods. In the case of the GT, the use of a prior distribution can solve
this straightforwardly. Whereas in the case of the least squares methods,
one needs an additional term in the cost function that penalises the network
complexity [76].
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We can predict unknown signalling activity levels in the SK-MEL-133 cell
line with all investigated methods. We show that the approaches based
on the GT yield a significantly smaller mean squared error than the least
squares methods.

We find that the inferred regulatory interactions do not represent known
regulatory relationships. This issue constitutes a lack of interpretability
because we constructed an accurate prediction system with hidden internal
logic.

A decisive difference between simulated and experimental perturbation
data is the missing availability and specificity of drugs, such that one can not
systematically perturb all genes within an experiment. Even with sufficient
drugs, one is limited by the financial and temporal cost of testing many drug
combinations with multiple biological replicates per perturbation. Moreover,
in perturbation experiments, the number of perturbations is typically as
large as the system size with only a few samples per perturbation [7, 76, 8].

A high ratio between the number of genes and the sample size makes the
inference of biological knowledge without integrating prior knowledge infea-
sible. Therefore, taking present-day data availability into account, biological
prior information that may be incorrect in a particular physical context is
crucial for GRNI. We note that quantitative GRNI is usually based on in-
formation from the literature or interaction databases [105, 106, 107].

Our MLM should be helpful in open questions about gene regulation and
biological information processing. One can extend our approach into several
future research directions.

Research literature and online databases offer a vast amount of biological
knowledge about gene regulation and signalling networks. The integration of
biological knowledge is challenging due to programmatic access, various gene
name conventions, and quantification of prior information. Nonetheless, our
MLM offers a straightforward way to incorporate prior knowledge to achieve
reliable network reconstruction.

The investigation of the posterior landscape could be another promising
starting point for further research. Based on the posterior distribution, one
could quantify the uncertainty of inferred regulatory relationships and pro-
pose promising drug combinations to test uncertain interactions.

We used protein concentration and phosphorylation data from a cell-line
perturbation experiment. However, incorporating additional information on
mRNA concentration could be a starting point for the inference of multi-level
gene regulation. By combining mRNA and protein data, one can expect to
generate whole-cell models of gene regulation and signalling pathways that
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support the design of clinical trials.
Finally, the investigation of hidden nodes within the GRN could be a

future research direction. We base our network inference on the convenient
but unrealistic hypothesis that all the relevant gene expression levels are
measured. In practice, it is impossible to be sure that there are no other
interacting genes. At the cost of a larger parameter space, one could extend
our MLM by allowing some hidden nodes.

5.2. Frameshift-based cancer immunotherapy
response prediction

We address the potential of statistical inference for clinical decision-making
in the context of cancer immunotherapy. Our statistical analysis of CBI
data revealed that the number of frameshift mutations is not significantly
associated with response to CBI. Nonetheless, we find slight evidence that
frameshift mutations are related to CBI response. Our findings are compat-
ible with a hidden factor, e.g. the mutation rate, that increases both the
number of unknown immunogenic mutations and the number of frameshifts.
Still, there is no evidence that the frameshift mutations are causal for CBI
response.

We found that cross-validation is essential within the investigation of hy-
pothetical determinants to CBI response. Free parameters tend to improve
the descriptiveness at the cost of predictiveness. Based on noisy data within
a small dataset, even a statistical model with few model parameters is prone
to overfitting. Such a model will probably describe a data set well but will
usually fail in making predictions. In addition to the model parameter selec-
tion, this also applies to a subset choice based on cancer subspecies or other
clinical factors. There is evidence that confounding of cancer subtypes and
incorrect statistical tests lead to previously reported response determinants
[5].

During the timespan of our research on CBI response prediction, a promis-
ing marker for melanoma is found. The protein midkine (MDK) is a driver
of an inflamed, but immune-evasive tumour microenvironment that is cor-
related with resistance to CBI in melanoma patients [108]. The study [108]
links MDK expression with poor CBI outcome and points out a promising
combined MDK immune checkpoint inhibition. Moreover, the study stresses
the importance of a systemic investigation of CBI response.

The understanding of molecular and cellular drivers of immune escape is
one of the biggest challenges to move the field of cancer immunotherapy
forward [109]. The identification of immunogenic mutations is an open re-
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search question. Extensive CBI trials and statistical inference can provide
knowledge about predictive biomarkers to improve clinical decision-making.
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I. Gene regulatory network
inference

Within this Appendix chapter, we explain technical details and show sup-
plementary figures regarding out network inference.

I.1. Parallel Glauber dynamics
Within parallel Glauber dynamics the spins, s, evolve in discrete time with
synchronous updates. Dependent on the spin configuration, 𝑠(𝑡), the spin
configuration in the next time step, 𝑠(𝑡 + 𝑡), is a random sample according
to the probability distribution

𝑝(𝑠(𝑡 + 1) ∣ 𝑠(𝑡)) = ∏
i

exp (𝛽𝑠i(𝑡 + 1)ℎi(𝑡))
2 cosh (𝛽ℎi(𝑡))

. (I.1)

One obtains for the first moment of the steady state distribution the relation

⟨𝑠i(𝑡 + 1)⟩
(I.1)
= ⟨tanh(ℎi(𝑡))⟩

⇒ ⟨𝑠i⟩s = ⟨tanh(ℎi)⟩s ,
(I.2)

where in any time step all spins are updated according to (I.1). The averages
become time independent in the steady state as it is the case for sequential
Glauber dynamics. Analogously, the relationship for the second moment is
as follows

⟨𝑠i(𝑡 + 1)𝑠j(𝑡 + 1)⟩
(I.1)
= ⟨tanh(ℎi(𝑡)) tanh(ℎj(𝑡))⟩

⇒ ⟨𝑠i𝑠j⟩s
= ⟨tanh(ℎi) tanh(ℎj)⟩s

.
(I.3)

I.2. Mean field theory
In this Appendix section, we calculate second order contributions to mean
gene expression 𝑚𝜇

i and covariance of gene expression 𝜒𝜇
ij within the mean

field approximation.
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I.2.1. Mean gene expression in second order MFT

To calculate the quadratic terms in the Taylor expansion of 𝑚𝜇
i = ∫ d𝑥 [𝑝 (𝑥|𝜃𝜔) tanh (ℎ𝜇

i )],
we use partial derivatives,

𝜕2 tanh (ℎ𝜇
i )

𝜕𝜃j𝜕𝜃k
∣
𝑞∗

= −2𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿ij𝛿ik (I.4)

𝜕2 tanh (ℎ𝜇
i )

𝜕𝜔kl𝜕𝜃j
∣
𝑞∗

= −2𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿ij𝛿ik𝑥𝜇
l (I.5)

𝜕2 tanh (ℎ𝜇
i )

𝜕𝜔jk𝜕𝜔lm
∣
𝑞∗

= −2𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿ij𝛿il𝑥
𝜇
k 𝑥𝜇

m , (I.6)

evaluated at the factorizing distribution 𝑞∗. With partial differentiation and
integration over the space of gene expression we obtain second order Taylor
coefficients,

𝜕𝑚𝜇
i

𝜕𝜃j𝜕𝜃k
∣
𝑞∗

= ∫ d𝑥 [𝜕2𝑝 (𝑥|𝜃𝜔)
𝜕𝜃j𝜕𝜃k

tanh (ℎ𝜇
i )]

𝑞∗

+ ∫ d𝑥
⎡
⎢
⎢
⎢
⎣

𝑝 (𝑥|𝜃𝜔) 𝜕2 tanh (ℎ𝜇
i )

𝜕𝜃j𝜕𝜃k⏟⏟⏟⏟⏟
(I.4)
= −2𝑚𝜇𝑞

i (1−(𝑚𝜇𝑞
i )2)𝛿ij𝛿ik

⎤
⎥
⎥
⎥
⎦𝑞∗

+ ∫ d𝑥 [𝜕𝑝 (𝑥|𝜃𝜔)
𝜕𝜃j

𝜕 tanh (ℎ𝜇
i )

𝜕𝜃j
]

𝑞∗

+ (j ↔ k)

= 0 − 2𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿ij𝛿ik + 0

(I.7)
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𝜕2𝑚𝜇
i

𝜕𝜃j𝜕𝜔kl
∣
𝑞∗

= ∫ d𝑥 [𝜕2𝑝 (𝑥|𝜃𝜔)
𝜕𝜃j𝜕𝜔kl

tanh (ℎ𝜇
i )]

𝑞∗

+ ∫ d𝑥
⎡
⎢
⎢
⎢
⎣

𝑝 (𝑥|𝜃𝜔) 𝜕2 tanh (ℎ𝜇
i )

𝜕𝜃j𝜕𝜔kl⏟⏟⏟⏟⏟
(I.5)
= −2𝑚𝜇𝑞

i (1−(𝑚𝜇𝑞
i )2)𝛿ij𝛿ik𝑥𝜇

m

⎤
⎥
⎥
⎥
⎦𝑞∗

+ ∫ d𝑥 [𝜕𝑝 (𝑥|𝜃𝜔)
𝜕𝜃j

𝜕 tanh (ℎ𝜇
i )

𝜕𝜔kl
]

𝑞∗

+ ∫ d𝑥 [𝜕𝑝 (𝑥|𝜃𝜔)
𝜕𝜔kl

𝜕 tanh (ℎ𝜇
i )

𝜕𝜃j
]

𝑞∗

= 0 − 2𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝑚𝜇
l 𝛿ij𝛿ik

+ (1 − (𝑚𝜇𝑞
i )2) (1 − (𝑚𝜇𝑞

l )2) 𝛿ik𝛿lj + 0

(I.8)

𝜕2𝑚𝜇
i

𝜕𝜔jk𝜕𝜔lm
∣
𝑞∗

= ∫ d𝑥 [𝜕2𝑝 (𝑥|𝜃𝜔)
𝜕𝜔jk𝜕𝜔lm

tanh (ℎ𝜇
i )]

𝑞∗

+ ∫ d𝑥
⎡
⎢
⎢
⎢
⎣

𝑝 (𝑥|𝜃𝜔) 𝜕2 tanh (ℎ𝜇
i )

𝜕𝜔jk𝜕𝜔lm⏟⏟⏟⏟⏟
(I.6)
= −2𝑚𝜇𝑞

i (1−(𝑚𝜇𝑞
i )2)𝛿ij𝛿il𝑥

𝜇
k 𝑥𝜇

m

⎤
⎥
⎥
⎥
⎦𝑞∗

+ ∫ d𝑥 [𝜕𝑝 (𝑥|𝜃𝜔)
𝜕𝜔jk

𝜕 tanh (ℎ𝜇
i )

𝜕𝜔lm
]

𝑞∗

+ (jk ↔ lm)

= 0 + (−2) 𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿ij𝛿il (𝑚𝜇𝑞
k 𝑚𝜇𝑞

m + 1
2

𝛿km)

+ (1 − (𝑚𝜇𝑞
i )2) (1 − (𝑚𝜇𝑞

m )2) 𝛿il𝛿mj𝑚
𝜇𝑞
k + (jk ↔ lm) .

(I.9)

In the third term of (I.9) we identify the first order derivertive 𝜕𝑚𝜇
m

𝜕𝜔jk
∣
𝑞∗

, which

we have already calculated in equation (3.39). This a repetitive pattern, in
the calculation of higher order MFT corrections one can identify contribu-
tions of lower order. Summing over all contributions in quadratic order in
𝛿𝜔 and 𝛿𝜃𝜇, we obtain the second order corrections in mean gene expression,

𝜃𝜃𝑚𝜇𝑞∗

i ∶= ∑
jk

𝜕2𝑚𝜇
i

𝜕𝜃j𝜕𝜃k
∣
𝑞∗

𝛿𝜃j𝛿𝜃k = (−2)𝑚𝜇𝑞
i (1 − (𝑚𝜇𝑞

i )2) 𝛿𝜃2
i (I.10)
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𝜃𝜔𝑚𝜇𝑞∗

i ∶= ∑
jkl

𝜕𝑚𝜇
i

𝜕𝜃j𝜕𝜃𝜔𝑘𝑙
∣
𝑞∗

𝛿𝜃j𝛿𝜔kl

= (1 − (𝑚𝜇𝑞
i )2) ((−2)𝑚𝜇𝑞

i 𝛿𝜃i (−𝛿𝜃MFT1
i )

+ ∑
l

(1 − (𝑚𝜇𝑞
l )2) 𝛿𝜔il𝛿𝜃l)

(I.11)

𝜔𝜔𝑚𝜇𝑞∗

i ∶= ∑
jklm

𝜕2𝑚𝜇
i

𝜕𝜔jk𝜕𝜔lm
∣
𝑞∗

𝛿𝜔jk𝛿𝜔lm

= (1 − (𝑚𝜇𝑞
i )2) ((−2)𝑚𝜇𝑞

i (−𝜃MFT1
i )2 + (−2) 𝑚𝜇𝑞

i
1
2

∑
𝑗

(𝛿𝜔ij)
2

+ 2 ∑
m

𝛿𝜔im (1 − (𝑚𝜇𝑞
m )2) (−𝛿𝜃MFT1

m )) .

(I.12)

Based on the condition to recover the mean gene expression also in second
order we obtain the requirement

0 != 𝜃𝑚𝜇𝑞∗

i + 𝜔𝑚𝜇𝑞∗

i + 1
2

𝜃𝜃𝑚𝜇𝑞∗

i + 𝜃𝜔𝑚𝜇𝑞∗

i + 1
2

𝜔𝜔𝑚𝜇𝑞∗

i + 𝜎 (𝛿3) (I.13)

on the corrections up to quadratic order. Using the second order corrections
(3.45), (3.46) and (3.47) as well as the previous results (3.40) and (3.41), we
obtain an analytical expression for 𝛿𝜃 in second order mean field approxima-
tion,

𝛿𝜃MFT2
i = 𝛿𝜃MFT1

i + 1
2

𝑚𝜇
i ∑

𝑘
(𝛿𝜔ik)2 . (I.14)

Finally, analogous to the first-order approximation, we calculate the mean
gene expression in second order MFT,

𝑚𝜇 MFT2
i = tanh (∑

𝑘
𝜔ik𝑚𝜇

k + 𝜃i − 1
2

𝑚𝜇
i ∑

𝑘
(𝜔ik)2) . (I.15)

This result is based on the equations (3.32) and (3.33).
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I.2.2. Covariance of gene expression in second order MFT

For the calculation of second order contributions to the covariance, we eval-
uate partial derivatives,

𝜕2 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k𝜕𝜔lm

∣
𝑞∗

(I.8)(I.5)
= − 2𝑚𝜇𝑞

i (1 − (𝑚𝜇𝑞
i )2) 𝛿ik𝛿il𝑥

𝜇𝑞
m 𝑥𝜇𝑞

m

− 𝜕2𝑚𝜇
i

𝜕𝜃k𝜕𝜔lm
∣
𝑞∗

(I.16)

𝜕2 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔kl𝜕𝜔mn

∣
𝑞∗

(I.6)(I.9)
= − 2𝑚𝜇𝑞

i (1 − (𝑚𝜇𝑞
i )2) 𝛿ik𝛿im (𝑥𝜇𝑞

l 𝑥𝜇𝑞
n )

− 𝜕2𝑚𝜇
i

𝜕𝜔kl𝜕𝜔mn
∣
𝑞∗

,

(I.17)

at the factorizing distribution 𝑞∗. As in the previous calculation, we get
second order Taylor coefficients,

𝜕2𝜒𝜇
ij

𝜕𝜃k𝜕𝜃l
∣
𝑞∗

= 1
2

∫ d𝑥 [
𝜕2𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜃k𝜕𝜃l
(tanh (ℎ𝜇

i ) − 𝑚𝜇
i )]

𝑞∗

+ 1
2

∫ d𝑥
⎡
⎢⎢⎢
⎣

𝑝 (𝑥|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j ) 𝜕2 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k𝜕𝜃l⏟⏟⏟⏟⏟⏟⏟⏟⏟
(I.6)(I.9)

= 0

⎤
⎥⎥⎥
⎦𝑞∗

+ 1
2

∫ d𝑥 [
𝜕𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜃l

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k

]
𝑞∗

+ 1
2

∫ d𝑥 [
𝜕𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜃k

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃l

]
𝑞∗

+ (i ↔ j)

= 0
(I.18)
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𝜕2𝜒𝜇
ij

𝜕𝜃k𝜕𝜔lm
∣
𝑞∗

= 1
2

∫ d𝑥 [
𝜕2𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜃k𝜕𝜔lm
(tanh (ℎ𝜇

i ) − 𝑚𝜇
i )]

𝑞∗

+ 1
2

∫ d𝑥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑝 (𝑥|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j ) 𝜕2 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k𝜕𝜔lm⏟⏟⏟⏟⏟⏟⏟⏟⏟

(I.16)
= −2𝑚𝜇𝑞

i (1−(𝑚𝜇𝑞
i )2)𝛿ik𝛿il𝑥

𝜇
m

− 𝜕2𝑚𝜇
i

𝜕𝜃k𝜕𝜔lm
∣
𝑞∗

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦𝑞∗

+ 1
2

∫ d𝑥 [
𝜕𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜔lm

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜃k

]
𝑞∗

+ 1
2

∫ d𝑥
⎡
⎢
⎢
⎢
⎣

𝜕𝑝 (𝑥|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j )
𝜕𝜃k

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔lm⏟⏟⏟⏟⏟⏟⏟⏟⏟

(3.53)
= (1−(𝑚𝜇𝑞

i )2)𝛿il(𝑥𝜇
m−𝑚𝜇

m)

⎤
⎥
⎥
⎥
⎦𝑞∗

+ (i ↔ j)

= −1
2

𝑚𝜇𝑞
j (1 − (𝑚𝜇𝑞

j )
2
) 𝛿jl𝛿jk𝛿im + 1

2
(1 − (𝑚𝜇𝑞

j )
2
) 𝛿jl

𝜕𝜒𝜇
im

𝜕𝜃k
∣
𝑞∗

+ (i ↔ j)
(I.19)
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𝜕2𝜒𝜇
ij

𝜕𝜔kl𝜕𝜔mn
∣
𝑞∗

= 1
2

∫ d𝑥 [
𝜕2𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜔kl𝜕𝜔mn
(tanh (ℎ𝜇

i ) − 𝑚𝜇
i )]

𝑞∗

+ 1
2

∫ d𝑥

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑝 (𝑥|𝜃𝜔) (𝑥𝜇
j − 𝑚𝜇

j ) 𝜕2 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔kl𝜕𝜔mn⏟⏟⏟⏟⏟⏟⏟⏟⏟

(I.6)(I.9)
= −2𝑚𝜇𝑞

i (1−(𝑚𝜇𝑞
i )2)𝛿ik𝛿im(𝑥𝜇𝑞

l 𝑥𝜇𝑞
n )

− 𝜕2𝑚𝜇
i

𝜕𝜔kl𝜕𝜔mn
∣
𝑞∗

∣
∣
∣
∣
∣
∣
∣
∣𝑞∗

+ 1
2

∫ d𝑥 [
𝜕𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜔mn

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔kl

]
𝑞∗

+ 1
2

∫ d𝑥 [
𝜕𝑝 (𝑥|𝜃𝜔) (𝑥𝜇

j − 𝑚𝜇
j )

𝜕𝜔kl

𝜕 (tanh (ℎ𝜇
i ) − 𝑚𝜇

i )
𝜕𝜔mn

]
𝑞∗

+ (i ↔ j)

= 1
2

(1 − (𝑚𝜇𝑞
j )

2
) 𝛿jm

𝜕𝜒𝜇
in

𝜕𝜔kl
∣
𝑞∗

+ 1
2

(1 − (𝑚𝜇𝑞
j )

2
) 𝛿jk

𝜕𝜒𝜇
il

𝜕𝜔mn
∣
𝑞∗

− 𝑚𝜇𝑞
j (1 − (𝑚𝜇𝑞

j )
2
) 𝛿jl𝛿jm (⟨𝑥𝜇

i 𝑥𝜇
n 𝑥𝜇

l ⟩
𝑞∗

− 𝑚𝜇
i ⟨𝑥𝜇

n 𝑥𝜇
l ⟩

𝑞∗
)

+ (i ↔ j)

= 1
2

(1 − (𝑚𝜇𝑞
j )

2
) 𝛿jm ((1 − (𝑚𝜇𝑞

i )2) 𝛿ik𝛿nl + (1 − (𝑚𝜇𝑞
n )2) 𝛿il𝛿nk)

+ ((1 − (𝑚𝜇𝑞
i )2) 𝛿im𝛿ln + (1 − (𝑚𝜇𝑞

l )2) 𝛿in𝛿lm)

− 𝑚𝜇𝑞
j (1 − (𝑚𝜇𝑞

j )
2
) 𝛿jk𝛿jm

(𝑚𝜇𝑞
i
2

𝛿in𝛿ln + 𝑚𝜇𝑞
n

3
𝛿il +

𝑚𝜇𝑞
l
3

𝛿in − 𝑚𝜇𝑞
i
6

𝛿nl)

+ (i ↔ j) ,
(I.20)

by partial differentiation and integration over the space of gene expression
levels. There is no contribution quadratic in 𝜃,

𝜃𝜃𝜒𝜇𝑞∗

i = 0 . (I.21)
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Summing over all contributions with a contribution in 𝛿𝜔, one gets the second
order corrections in the covariance of gene expression,

𝜃𝜔𝜒𝜇𝑞∗

i = − 1
2

(1 − (𝑚𝜇𝑞
j )

2
) 𝛿𝜔ji𝛿𝜃j

+ (i ↔ j)
(I.22)

𝜔𝜔𝜒𝜇𝑞∗

i = + 1
4

(1 − (𝑚𝜇𝑞
i )2) (1 − (𝑚𝜇𝑞

j )
2
) ∑

l
𝛿𝜔il𝛿𝜔jl

+ 1
4

(1 − (𝑚𝜇𝑞
j )

2
) ∑

k
𝛿𝜔jk (1 − (𝑚𝜇𝑞

k )2) 𝛿𝜔ki

+ (i ↔ j) .

(I.23)

Finally, analogous to the first-order approximation, we calculate the covari-
ance of gene expression in the second-order MFT,

𝜒𝜇 MFT2
ij = + 1

2
𝛿ij + 1

4
(1 − (𝑚𝜇𝑞

i )2) 𝜔ij

− 1
2

(1 − (𝑚𝜇𝑞
j )

2
) 𝜔ji𝜃MFT1

j

+ 1
8

(1 − (𝑚𝜇𝑞
i )2) (1 − (𝑚𝜇𝑞

j )
2
) ∑

l
𝜔il𝜔jl

+ 1
8

(1 − (𝑚𝜇𝑞
j )

2
) ∑

k
𝜔jk (1 − (𝑚𝜇𝑞

k )2) 𝜔ki

−
𝑚𝜇𝑞

j

6
(1 − (𝑚𝜇𝑞

j )
2
) (𝑚𝜇𝑞

i (𝜔ij)
2 − 2𝜔ij𝛿𝜃MFT1

i −
𝑚𝜇𝑞

j

2
∑

k
(𝜔ik)2)

+ (i ↔ j) ,
(I.24)

by plugging in the first order corrections, (3.56) and (3.57), and second order
corrections, (I.22) and (I.23), into the Taylor expansion of 𝜒𝜇

ij , (3.51).

I.3. Network inference and response prediction
Within this Appendix section, a scatter plot of generated and reconstructed
interaction is shown, and we compare predicted gene expression level to the
measured ones for three additional pairs of training and prediction set.
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Figure I.1.: Scatter plot of generated and reconstructed interactions for a
fully connected system as small as 10 nodes. The model
parameter are set to 𝑎i = 1, 𝑏i = 1, and 𝑐i = 0.1. For the
inference 10 distinct single drug perturbations with 50 samples
per perturbation are used.

(a) least squares 1st order

-1.0 -0.5 0.0 0.5 1.0
generated interactions-1

.0
-0

.5
0.

0
0.

5
1.

0

re
co

ns
tr

uc
te

d 
in

te
ra

ct
io

ns

(b) least squares 2nd order

-1.0 -0.5 0.0 0.5 1.0
generated interactions-1

.0
-0

.5
0.

0
0.

5
1.

0

re
co

ns
tr

uc
te

d 
in

te
ra

ct
io

ns

(c) least squares GT

-1.0 -0.5 0.0 0.5 1.0
generated interactions-1

.0
-0

.5
0.

0
0.

5
1.

0

re
co

ns
tr

uc
te

d 
in

te
ra

ct
io

ns

(d) maximum likelihood GT

-1.0 -0.5 0.0 0.5 1.0
generated interactions-1

.0
-0

.5
0.

0
0.

5
1.

0

re
co

ns
tr

uc
te

d 
in

te
ra

ct
io

ns

111



Figure I.2.: Scatter plot of predicted and measured gene expression level.
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Figure I.3.: Scatter plot of predicted and measured gene expression level.

(a) Least squares 1st order
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Figure I.4.: Scatter plot of predicted and measured gene expression level.
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(b) Least squares 2nd order
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(c) Least squares GT
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(d) Maximum likelihood method
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II. Cancer immunotherapy
response prediction

Within this Appendix chapter we describe some technical details about the
prediction of frameshift-derived peptide sequences and show supplementary
figures in the context of CBI response prediction.

II.1. Frameshift-derived peptide sequences
Based on information about frameshift mutations, we predict the frameshift-
derived peptide sequence using a reference genome and transcriptional in-
formation. As a human reference genome we use the GRCh37.p13 [110] and
we obtain transcriptional information from the BioMart Ensemble database
[111, 112].

For the vast majority of genes, different transcript variants exist. We used
the most biologically relevant transcript within our data analysis, which is
called the principal isoform in the Ensemble database.

The prediction of the frameshift-derived peptide sequence is based on
the information about the frameshift mutation and the nucleotide sequence
within the reference genome. To predict NMD and NSD, we check whether
a frameshift mutation occurs in the last exon based on transcriptional infor-
mation. If the mutation does not occur in the last exon, we also calculate the
distance of the frameshift derived-stop codon to the next exon-exon junction.

We consider the following exon according to the principal isoform for
frameshift-derived peptides that do not have a stop codon within the first
exon.

II.2. Response classification and survival analysis
We show supplementary figures concerning the response classification and
survival analysis in this Appendix section.
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Figure II.1.: ROC curves based on the melanoma dataset published by Liu
in the year 2019 [103].
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(b) Number of frameshift-derived
peptides , accumulated frequency

, accumulated expression ,
length of framshift-derived
peptides , number of
MHC-binding frameshift-derived
peptides .
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Figure II.2.: Kaplan-Meier curves based on hypothetical survival
determinants for melanoma patients within the Liu dataset
[103].
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(b) Nonsense mutation
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(c) Frameshift mutation
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(d) Silent mutation
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Figure II.3.: Kaplan-Meier curves for patient groups characterised by high
overall and high frameshift , high overall and low frameshift

, low overall and high frameshift , low overall and low
frameshift number of mutation.
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