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Abstract

This thesis consists of two independent parts. In the first part, we investigate the notion of
locality in the context of Matrix Product States (MPS), while in the second part, we minimise
the statistical error in a calibration protocol for quantum-gate sets.

In the first part of this thesis, we consider an MPS in a one-dimensional lattice and investi-
gate its norm squared amplitudes with respect to a local orthonormal basis. We call this norm
the classical restriction of the MPS. Concretely, we ask when the classical restriction of an MPS
is quasi-locally Gibbsian, i.e., it is exponentially well approximated by a Gibbs distribution as-
sociated with a local Hamiltonian. We prove that the classical restriction of an injective MPS
is quasi-locally Gibbsian if the matrices associated with the MPS satisfy a ‘purity’ condition,
a condition previously established in the theory of random matrix products.

Our result connects two notions of locality: locality of correlations in an MPS and locality
of interactions in the Hamiltonian generating the corresponding Gibbs distribution.

The proof of our result consists of two steps. First, given an MPS defined on a lattice
for which the purity condition holds, we demonstrate that the classical Conditional Mutual
Information (CMI) of any connected tripartition of the lattice is rapidly decaying in the width
of the middle region. Then, this decaying of the classical CMI is shown to imply that the
probability distribution associated with the classical restriction of the MPS is quasi-locally
Gibbsian.

Within this investigation, we present relevant observations around the purity condition.
We research how ‘typical’ the purity condition is by constructing a probabilistic model and
showing that, in this model, the purity condition is satisfied in general. Furthermore, we show
that violating the purity condition enables a generalised notion of error correction, reinforcing
the purity condition’s generic nature.

Within the second part of this thesis, we consider a protocol for calibrating quantum-gate
sets and implement a statistical analysis to minimise statistical errors. Calibration of quantum
gates is a necessary hurdle to overcome on the way to a reliable quantum computer. In a
recent paper, a protocol called Gate Set Calibration protocol (GSC) has been introduced and
used to extract coherent errors from multi-qubit quantum gates. We build on this study in
two ways. First, we take the uncertainty of any measurement in the protocol into account by
performing a statistical analysis. Second, we optimise the statistical uncertainty while requiring
that the protocol involves only a small number of distinct gates, aiding physical realisability.
We numerically demonstrate that, just by adding two more single-qubit gates to GSC, the
statistical error produced in the calibration of a CNOT gate is divided by a factor of more than
two.
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Introduction

Quantum information is an interdisciplinary field. At the point where quantum physics, com-
puter science, information theory and mathematics meet, quantum information establishes a
theoretical framework that studies information processing tasks performed by systems which
are governed by the laws of quantum mechanics.

The beginnings of quantum mechanics date back to the turn of the 20th century, acquiring
its current form at the end of the 1920s. Once the theory had a proper formalisation, it
began to be applied to different fields of physics. This led to important scientific achievements
such as establishing the standard model in particle physics or understanding many physical
phenomena ranging from polymers to superconductors. Although all these discoveries meant
significant advances in understanding natural phenomena, they did not shed much light on the
understanding of quantum mechanics.

In the seventies, this started to change. Some scientists began to ask whether the fun-
damentals of computer science and information theory could be applied to quantum systems.
Such a simple question completely transformed our view on quantum systems: instead of seeing
them as mere entities of nature, they began to be considered as systems that could be designed,
and thus used. As a result, new lines of research into the fundamentals of quantum mechanics
opened up and questions combining physics, computer science and information theory emerged.

Since then, the field of quantum information has grown and obtained prominent successes.
There are well-known theoretical results such as Shor’s algorithm [1], which can factor a prime
number in polynomial time, and experimental achievements that take steps towards quan-
tum technologies such as quantum key distribution [2]. Even today, modest applications have
started to emerge in industry with the goal of using quantum technology for optimisation prob-
lems, chemical simulations, or generating random numbers, among other examples.

There are still many open questions in quantum information. The most intriguing questions
are probably about the long-awaited quantum computer. Is a quantum computer experimen-
tally feasible? Which system will it be developed on? Will a quantum computer surpass the
capabilities of a classical computer? If so, will the quantum computer be superior in all tasks
or only in concrete ones? If the latter is the case, in which tasks would it be advantageous?
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As early as 2000, DiVincenzo theorised the requirements for building a large-scale quantum
computer, including scalability, qubit initialisation, long decoherence times and the ability to
perform measurements on qubits [3]. Many of these requirements have been achieved over the
years on different platforms. The preparation of quantum states, as well as the realisation of
quantum measurements, has been achieved with high accuracy on a small number of qubits
arranged in ion traps [4, 5]. Nuclear magnetic resonance has made it possible to implement
dynamics in small molecules [6]. Larger scales, but less accurate implementations, have been
achieved by solid-state technologies [7]. However, there is still no unique platform that meets
all DiVincenzo’s requirements at once.

On the other hand, some researchers have recently claimed to have demonstrated quantum
supremacy for the first time [8, 9]. Nevertheless, most experts agree that we are still far away
from large-scale quantum computers with practical applications, although it is widely believed
that quantum information will bring secure communication and fast computational solutions
to, at least, specific problems.

Many achievements in quantum computation are compared to classical computations. Thus,
it could be easy to fall into the error of thinking that quantum information is simply a new
technology within classical information as, for example, semiconductor transistors have been.
This would indeed be a mistake, as quantum information should be understood as a way of
processing information of a qualitatively incomparable nature to classical information. Quan-
tum information introduces a new point of view, as well as tools and methodologies that are
useful for understanding other fields of science, such as quantum many-body physics.

Quantum many-body physics studies the properties of quantum systems consisting of a
large (or infinite) number of degrees of freedom. The traditional approach in quantum many-
body physics is to design a Hamiltonian that represents the system’s interactions according
to some observed physical phenomena. Then, the properties of the system are calculated by
numerical methods which, in general, are difficult to control.

Quantum information proposes to determine the state that characterises the system and its
correlations instead of the Hamiltonian. However, the state lives in a Hilbert space which is too
large to be handled efficiently. Simply the task of characterising the state is already inefficient,
since it requires an amount of information that grows exponentially with the dimension of the
system. For example, consider a system consisting of N qubits. The dimension of the Hilbert
space describing this system is 2N , so we need 2N complex numbers to specify the state of the
system. This means that if N is of the order of Avogadro’s number, i.e., N ∼ O(1023), we need
more complex numbers than the number of atoms in the observable universe [10].

Fortunately, not all possible states within a Hilbert space are equally relevant in quantum
many-body physics. This difference in relevance stems from the fact that physical interactions
are local. The locality in interactions has implications for Hamiltonians describing physical
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systems and for their fundamental states. A significant consequence is that quantum corre-
lations, known as entanglement, between particles within a region of a system described by
local interactions scale with the area of the system [11]. This property is exceptional because
a randomly chosen state in a Hilbert space will have an entanglement that grows with the vol-
ume of the region, not with the area. By taking advantage of this property, physically relevant
systems can be characterised by Tensor Network (TN) states [12, 13]. TN states represent a
quantum system using a network of interconnected tensors, where the connections between the
tensors encode the correlations of the system. This representation reduces the complexity of
the state and allows for a numerically efficient characterisation.

In the first part of this thesis, we will investigate the simplest version of TN states, the
Matrix Product States (MPSs). We will review the basic notions of MPSs and present our
research on its locality.

One of the main obstacles in constructing a quantum computer is noise. Although significant
theoretical results have been achieved assuming closed systems, i.e. systems that do not interact
with the environment, the reality is different. Real systems suffer from undesired interactions
that introduce noise into quantum information processes. Quantum error correction (QEC)
is the branch of quantum information that studies how to protect information from noise of
any origin, such as decoherence, faulty measurements, errors in state initialisation, perturbed
quantum gates, among others.

All protocols designed in QEC must take into account the intrinsic uncertainty of quantum
mechanics. Quantum mechanics is a theory that does not predict future events with certainty
but only associates probabilities with them. This feature introduces statistical errors that must
be considered to obtain precise results in experimental quantum information.

In the second part of this thesis, we perform a statistical analysis of a quantum-gate cal-
ibration protocol and propose a new version of the protocol that achieves smaller statistical
errors.
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Part I

Classical restrictions
of matrix product states



Quantum many-body physics aims to describe the emergent properties of quantum systems
made of many interacting particles. The description of many-body systems generally requires
an amount of information exponentially large in the number of subsystems. Therefore, this
description is feasible for a few particles but not scalable. Physically relevant interactions are,
however, local. This property has the far-reaching consequence that ground states of the phys-
ically relevant Hamiltonians are not uniformly distributed in the ample Hilbert space. Instead,
they live in a subspace that only grows polynomially with the subsystem size [14, 15]. In the
first part of this thesis, we will delve into the mathematical representation of this Hilbert-space
corner and its applications.

This part is divided into two chapters. Chapter 1 reviews all basic concepts that are
necessary to understand the results presented in Chapter 2. Concretely, in the first chapter,
we introduce Matrix Product States (MPSs) and Gibbs states.

Chapter 2 is based on our work on classical restrictions of MPSs. We consider finite quan-
tum systems on one-dimensional lattices and study their classical restriction, i.e., their norm
squared amplitudes with respect to a local orthonormal basis. The chapter starts establishing
the notation and introduces a theoretical framework around the Conditional Mutual Informa-
tion (CMI) regarding classical restrictions of MPSs. Afterwards, we show that, when a system
satisfies that the CMI of any connected tripartition of the lattice decays rapidly in the width
of the middle region, then the probability distribution associated with the classical restriction
of the system can be exponentially well approximated by a ‘local’ Gibbs distribution. Fur-
thermore, a condition referred to as ‘purity’, well established in the context of random matrix
products, is shown to be a sufficient condition for the decay of the classical CMI for injective
MPSs. We observe later that MPSs corresponding to symmetry-protected topological phases
violate the purity condition. Afterwards, a connection is established between the violation
of the purity condition and the notion of quantum error correction. For a set of operators, a
condition that implies purity is given in terms of the span of the operators. We then investigate
how ‘often’ the purity condition holds by constructing a probabilistic model and demonstrating
that purity is a generic property within the model. Before closing the chapter with concrete
examples, we compare the convergence rate of the CMI with the rate of convergence of the
transfer operator to a fixed point.
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Chapter 1

Foundations

In this chapter, we review some theoretical concepts needed to understand the results of this
part of the thesis. Particularly, the chapter starts with Section 1.1, that reviews the notion of
MPSs and their most relevant properties. We mainly focus on MPSs that satisfy a property
called injectivity as it has interesting consequences for us. The section finishes with some
examples.

Gibbs states constitute the second relevant concept of the first part of this thesis, and thus
they are introduced in Section 1.2. We start reviewing the definition of Gibbs states. Then,
the relevance of Gibbs states is pointed out in a fundamental context as well as in the context
of quantum computation.

1.1 Matrix product states

Much effort has been put into developing tools to characterize many-body quantum systems,
such as mean-field approximation [16], renormalization [17], and tensor networks [18, 19]. The
latter has become a powerful tool in recent years, and especially its one-dimensional version,
the so-called MPSs [21, 22, 20], which have been shown to be an efficient approximation of
ground states of realistic local Hamiltonians [23]. In this section, we present a compact intro-
duction to MPSs with a particular focus on injective MPSs. For formal definitions and proofs,
see [24] and references therein.

Consider a one-dimensional lattice of N sites with open boundary conditions and assign to
each site a d-dimensional Hilbert space, Hi. An N -particle system can be represented by a
Matrix Product State (MPS) defined as

|ψ⟩ =
d−1∑

x1,...,xN=0

⟨R|A(1)
x1

· · ·A(N)
xN

|L⟩|x1, . . . , xN⟩, (1.1)
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where |x1, . . . , xN⟩ = |x1⟩ · · · |xN⟩. Here, {A(i)
xi }d−1

xi=0 is a set of Di×Di+1 matrices associated to
site i that encode the correlations of |ψ⟩, and the vectors |R⟩ and |L⟩ encode the boundary con-
ditions. The maximum matrix dimension, D := maxiDi, is referred to as the bond dimension.
If the matrices {A(i)

xi }d−1
xi=0 are the same for all i, the MPS is called translationally invariant.

An MPS can also be defined on a lattice with periodic boundary conditions. In this case,
the trace of the product of all Axi is taken such that

|ψ⟩ =
d−1∑

x1,...,xN=0

Tr
(
A(1)
x1

· · ·A(N)
xN

)
|x1, . . . , xN⟩. (1.2)

Eq. (1.1) reveals why MPSs are efficient descriptions of quantum many-body systems. A
system of N subsystems is characterised by a state in a dN -dimensional Hilbert space, H.
Therefore, the number of parameters that we need to specify such a state grows exponentially
with N . If we restrict the system to be characterised by a state of the form of Eq. (1.1), the
number of required parameters grows only linearly with the system size, as an MPS lives in a
subspace of H with dimension at most d ·D2 ·N .

As mentioned at the beginning of the section, not only are MPSs efficient representations
of many-body systems, but they also provide a good approximation of ground states of local
Hamiltonians [25]. Moreover, for a given bound dimension, the best MPS can be found effi-
ciently in time, i.e., with a time that grows polynomially with the system size [26, 27]. These
properties make MPSs a suitable approach for quantum simulations.

The MPS-representation is not unique. Consider a matrix Mα and its right-inverse M−1
α ,

then the transformation

A(α)
xi

→ A(α)
xi
Mα, A(α+1)

xi
→M−1

α A(α+1)
xi

leaves the MPS in Eq. (1.1) (as well as the one in Eq. (1.2)) invariant. This freedom can be
practical for both numerical and analytical calculations. Here, we will assume that the MPS
in Eq. (1.1) is left-normalised, which means that the corresponding matrices satisfy

d−1∑

xi=0

A(α)†

xi
A(α)
xi

= I.

For each MPS, a completely positive map called transfer operator is defined as

Eα(·) =
d−1∑

xi=0

A(α)
xi

· A(α)†

xi
.
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Note that left-normalisation ensures that the transfer operator is trace-preserving. Note further
that the transfer operator of a translationally invariant MPS uniquely defines the matrices Axi
up to local unitaries.

The transfer operator of an MPS has become an essential tool to characterise MPSs. Ap-
plying the theory of quantum channels to the transfer operator has led to the description and
classification of many properties of MPSs [20].

Injectivity of the transfer operator is, for example, one property that has relevant conse-
quences on the MPS. We can define injectivity using its natural physical interpretation on
states. Let {|α⟩}D−1

α=0 be a set of D orthonormal vectors which form an orthonormal basis in the
Hilbert space of the MPS. Let also {A(1)

x1 , . . . , A
(N)
xN }d−1

xi=0 be a collection of matrices and define
the vector

|ψαβ⟩ :=
d−1∑

x1,...,xN=0

⟨α|A(1)
x1

· · ·A(N)
xN

|β⟩|x1, . . . , xN⟩,

where α, β = 0, . . . , D − 1. Then, an MPS with corresponding matrices {A(1)
x1 , . . . , A

(N)
xN }d−1

xi=0

is called injective if the set of states {|ψαβ⟩}D−1
α,β=0 spans a vector space of dimension D2, i.e.,

if dim [span ({|ψRL⟩})] = D2, for a finite N . Note that, if an MPS is injective for N systems,
then it is also injective for N + 1 systems.

A local and frustration-free Hamiltonian with a given MPS as ground state can always be
constructed. This Hamiltonian is called the parent Hamiltonian of the MPS and was originally
defined in Ref. [28].

An injective MPS is the unique ground state of its corresponding parent Hamiltonian [20].
Moreover, injectivity ensures that the Hamiltonian is gapped, i.e., that there exists a non-trivial
energy gap between the ground state and the first excited state [21]. Exponentially decaying
correlations is also a consequence of injectivity of MPSs [29]. The latter is, in turn, equivalent
to primitivity of the corresponding transfer operator, i.e., that E has a unique full-rank fixed
point [30].

The research presented in Ch. 2 focuses on classical restrictions of MPSs. Given a local
basis, {|x1, . . . , xN⟩}d−1

xi=0, we define the classical restriction as the quantum channel

Φ(ρ) :=
d−1∑

x1,...,xN=0

|x1, . . . , xN⟩⟨x1, . . . , xN |⟨x1, . . . , xN |ρ|x1, . . . , xN⟩,

where ρ is any density matrix. Note that a classical restriction with respect to {|x1, . . . , xN⟩}d−1
xi=0

is diagonal in this basis, as Φ deletes all off-diagonal elements of the input state. Therefore, a
classical probability distribution, pρ(x1, . . . , xN) = ⟨x1, . . . , xN |ρ|x1, . . . , xN⟩, can be associated
to the normalised density matrix Φ(ρ) for any basis {|x1, . . . , xN⟩}d−1

xi=0.
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Consider now a subsystem, which we label by B, made of M ≤ N subsystems with asso-
ciated Hilbert space HB, and let {|b1, . . . , bM⟩}d−1

b1,...,bM=0 be a local orthonormal basis of HB.
Then, we analogously define a classical restriction on the subsystem B as

ΦB(ρ) :=
d−1∑

b1,...,bM=0

|b1, . . . , bM⟩⟨b1, . . . , bM | ⊗ ⟨b1, . . . , bM |ρ|b1, . . . , bM⟩, (1.3)

=
d−1∑

b1,...,bM=0

pρ(b1, . . . , bM)ρ(b1, . . . , bM). (1.4)

Here, pρ(b1, . . . , bM) := ⟨b1, . . . , bM |ρB|b1, . . . , bM⟩ is the classical probability associated to
ΦB(ρ), and ρB = TrBc ρ is referred to as the reduced state of ρ in the subsystem B, with
TrBc the partial trace over all subsystems that are not in B. Moreover, we denote

ρ(b1, . . . , bM) =
1

pρ(b1, . . . , bM)
|b1, . . . , bM⟩⟨b1, . . . , bM | ⊗ ⟨b1, . . . , bM |ρ|b1, . . . , bM⟩, (1.5)

which is the state after measuring the subsystems 1, . . . ,M and obtaining the measurement
outcomes b1, . . . , bM .

Although the input state, ρ, of a classical restriction can be any physical state, in Ch. 2 we
investigate the case where ρ is an (injective) MPS. Consider ρ = |ψ⟩⟨ψ| with |ψ⟩ of the form
of Eq. (1.1), then the probability associated to the classical restriction of |ψ⟩ is

pψ(x1, . . . , xN) =
∣∣⟨R|A(1)

x1
· · ·A(N)

xN
|L⟩
∣∣2 . (1.6)

Consider now the classical restriction of |ψ⟩, but only applied on the M first subsystems,
i.e., {b1, . . . , bM} = {x1, . . . , xM} ⊂ {x1, . . . , xN}. The probability associated to this classical
restriction is

pψ(b1, . . . , bM) = ⟨R|A(1)
b1

· · ·A(M)
bM

ExM+1···xN (|L⟩⟨L|)A(M)†
bM

· · ·A(1)†
b1

|R⟩, (1.7)

where ExM+1···xN is the convolution of the transfer operator, i.e.,

ExM+1···xN (σ) =
d−1∑

xM+1···xN=0

A(M+1)
xM+1

· · ·A(N)
xN
σA(N)†

xN
· · ·A(M+1)†

bM+1
.

The probabilities in Eqns. (1.6) and (1.7) are the main object of study in the research presented
in Ch. 2, but, before delving into that, we present some examples of MPSs in the following
section.
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1.1.1 Examples

In order to exemplify the concepts introduced previously in this section, we consider three
well-known examples of MPSs: the GHZ state, the W state and the AKLT state.

GHZ state

In 1989 Greenberger, Horne and Zeilinger constructed a state with which non-statistical pre-
dictions of quantum mechanics were shown to be in contradiction with local realism [31].
Nowadays, this state, called the GHZ state, is one of the most remarkable states in quantum
information because of its properties. For a system made of three qubits, for example, there
exist two kinds of entanglement, and the GHZ maximises one of them [32].

The GHZ state for N particles can be written in the computational basis as

|GHZ⟩ = 1√
2

(
|0⟩⊗N + |1⟩⊗N

)
.

This state also has a translationally invariant MPS-representation with matrices

A0 =

(
1 0

0 0

)
, A1 =

(
0 0

0 1

)
.

W state

As mentioned in the previous example, for a system of three qubits, there are two kinds of
entanglement. One kind is maximised by the GHZ state and the other by the W state.

The W state has been generalised to systems of N qubits as the superposition of all pure
N -qubit states which have only one excited state. Mathematically, we write

|W⟩ = 1√
N

(|10 · · · 0⟩+ |010 · · · 0⟩+ · · ·+ |0 · · · 01⟩) .

To express the W state in an MPS-representation, one can take for all i < N the matrices

A
(i)
0 =

(
0 1

0 0

)
, A

(i)
1 =

(
1 0

0 1

)
,

and, for i = N ,

A
(N)
0 =

(
1 0

0 0

)
, A

(N)
1 =

(
0 1

1 0

)
.

10



AKLT state

Affleck, Lieb, Kennedy, and Tasaki proposed in 1987 an extension of the one-dimensional
quantum Heisenberg spin model [33]. The simplicity of the ground state of this model, known
as AKLT state, and its relevance in condensed matter motivated the construction of its MPS
representation in Ref. [22].

The AKLT state can be written as a translationally invariant MPS with periodic boundary
conditions and corresponding matrices

A+ =

√
2

3

(
0 1

0 0

)
, A0 =

−1√
3

(
1 0

0 −1

)
, A− = −

√
2

3

(
0 0

1 0

)
.

1.2 Gibbs states

Statistical thermodynamics is the branch of statistical mechanics focused on describing sys-
tems in thermodynamic equilibrium. It applies probability theory to microscopic degrees of
freedom within a system to characterise the macroscopic behaviour of the system. In thermal
equilibrium and under certain conditions, such a system is characterised by the so-called Gibbs
states. In this section, we review the notion of Gibbs states and explain its importance in the
context of quantum computation.

Consider a finite-dimensional system at non-zero temperature, T , with a Hamiltonian, H.
The system is said to be in a Gibbs state if it is characterised by

ρβ =
1

Z
e−βH , (1.8)

=
1

Z

∑

i

e−βEi |ai⟩⟨ai|, (1.9)

where Z is a normalization factor, β = 1/(kBT ) with kB the Boltzmann constant, and |ai⟩ is
an eigenvector of H with corresponding eigenvalue (i.e., energy level) Ei. The normalization
factor, which is referred to as partition function in statistical mechanics, can be written as

Z =
∑

i

e−βEi .

Note that if no restrictions on the Hamiltonian are imposed, any non-null ρβ can be written in
the form of Eq. (1.8).

Gibbs states are fundamentally relevant in statistical physics because they are the equilib-
rium state of the canonical ensemble. In other words, when a (quantum or classical) system

11



can freely exchange energy with a bath at a specific temperature, T , the system equilibrates
towards a Gibbs state with temperature T and energy-expectation value ⟨E⟩ = TrHρβ. Fur-
thermore, Gibbs states maximise the entropy of the system for a given energy.

The Hamiltonian characterising a system, H, encodes all system’s properties, which will
be translated to the corresponding Gibbs state. A Hamiltonian, H, of an N -particle system
is called local if it can be written as a sum of terms, i.e., H =

∑M−1
i=0 Hi, where every term,

Hi, acts non-trivially on a subset of k < N particles. The Gibbs state corresponding to a
local Hamiltonian is then referred to as a local Gibbs state (or local Gibbsian distribution). In
Ch. 2, we moreover use the term quasi-locally Gibbsian when a probability distribution can be
approximated by a local Gibbs distribution and the error of the approximation decays expo-
nentially with k.

In Sec. 1.1, we have seen that MPSs are an efficient approach for simulating quantum
many-body systems. Gibbs states turn out to be a relevant tool in quantum simulation as well.
Quantum Monte Carlo algorithms, in particular, use a probabilistic representation of Gibbs
states to compute the thermal or ground state of a stoquastic Hamiltonian. A Hamiltonian is
said to be stoquastic on a concrete basis if it is local and all its terms Hi have non-positive
off-diagonal matrix elements on that basis. Both simulation approaches rely then on locality,
but the notion is slightly different in each case. The research that we present in Ch. 2 connects
both types of locality.

12



Chapter 2

Results

This chapter consists of the article published as

Y. Aragonés-Soria, J. Åberg, C.-Y. Park, and M. J. Kastoryano. “Classical restric-
tions of generic matrix product states are quasi-locally Gibbsian”. In: Journal of
Mathematical Physics 62.9 (Oct. 2021), p. 093511

This work is the result of a collaborative effort of all co-authors. While Yaiza Aragonés-Soria
is the main author, Johan Åberg has provided an essential mathematical background to the
project. Michael J. Kastoryano has supervised the work.

In the research presented here, we consider a quantum system defined on a finite lattice with
open boundary conditions, and characterised by a vector, |ψ⟩, on a finite-dimensional Hilbert
space. We take a specific local basis, {|x⟩ := |x1x2 . . .⟩}, where each xi refers to one site of the
lattice, and compute the probability distribution associated to the classical restriction of |ψ⟩,
i.e., pψ(x) = |⟨x|ψ⟩|2. Within this setting, we ask: when is the probability distribution pψ(x)

quasi-locally Gibbsian?

Our main result states that, if a state |ψ⟩ is an injective MPS, then the probability
pψ(x) is quasi-locally Gibbssian if the purity condition holds. The matrices associated to
an MPS, {Ax}d−1

x=0, satisfy the purity condition if any orthogonal projector, P , that fulfils
PA†

x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P has rank one.

The relevance of this question arises from the notion of locality. Locality is a natural
property of physical interactions, implying restrictions on the states that characterise quantum
matter. The origin of locality, however, is different depending on the context. In the context
of MPSs, locality originates on the description of MPS, which only allows for local correlations
(see Eq. (1.1) and the discussion below Eq. (1.2)). On the other hand, in statistical mechanics,
a Gibbs state is local if its corresponding Hamiltonian is local, i.e., if it models local interac-
tions. Our result connects these two notions of locality.
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During the demonstration of our main result, we make use of the classical CMI of pψ(x),
which is given by

Ipψ(A : C|B) = H(pψ,AB) +H(pψ,BC)−H(pψ,B)−H(pψ,ABC),

where A,B,C are lattice regions, and pψ,B := pψ(b1, . . . , b|B|) = ⟨b1, . . . , b|B||ψB|b1, . . . , b|B|⟩ is
the classical probability associated to ΦB(|ψ⟩⟨ψ|) (see Eq. (1.3)), with ψB := TrBc |ψ⟩⟨ψ|. The
probabilities pψ,AB, pψ,BC , and pψ,ABC are defined analogously.

The proof of our main result consists of two steps:

1. We show that the classical CMI of an injective MPS, |ψ⟩, decays exponentially if the
matrices associated with the MPS satisfy the purity condition.

2. We demonstrate that a probability distribution defined on a lattice, pψ(x), is quasi-locally
Gibbsian if the CMI between any tripartition of the lattice decays rapidly in the width
of the middle region.

The second step of the proof is similar to Kozlov’s theorem [35], while the first step makes use
of the theory of products of random matrices [36], and its application to quantum trajectories
[37, 38]. Note that this chapter has its own independent appendix and bibliography.
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Classical restrictions of generic matrix product states are quasi-locally Gibbsian
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We show that the norm squared amplitudes with respect to a local orthonormal basis (the classical restriction)
of finite quantum systems on one-dimensional lattices can be exponentially well approximated by Gibbs states
of local Hamiltonians (i.e., are quasi-locally Gibbsian) if the classical conditional mutual information (CMI)
of any connected tripartition of the lattice is rapidly decaying in the width of the middle region. For injective
matrix product states, we moreover show that the classical CMI decays exponentially, whenever the collection
of matrix product operators satisfies a ‘purity condition’; a notion previously established in the theory of random
matrix products. We furthermore show that violations of the purity condition enables a generalized notion of
error correction on the virtual space, thus indicating the non-generic nature of such violations. We make this
intuition more concrete by constructing a probabilistic model where purity is a typical property. The proof of our
main result makes extensive use of the theory of random matrix products, and may find applications elsewhere.
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I. INTRODUCTION

Considerable effort has been devoted to understanding the entanglement properties of many-body quantum states. For finite
one-dimensional-lattice systems, the theory of Matrix Product States (MPSs) provides a complete framework for describing
entanglement of gapped many-body systems [1], and allows for efficient high precision simulations via the DMRG algorithm
[2–4]. Similarly impressive degrees of numerical precision can be reached in other settings, such as disorder [5], open systems
[6], time evolution [7], or critical systems [8]. The success of these simulation methods can be traced back to the accurate
parametrization of entanglement in MPSs. There exist extensions to lattices of higher dimensions (projected entangled pair
states) but these have been far less useful for simulations, due to their extensive entanglement growth.

In contrast, quantum Monte-Carlo simulations are largely based on heuristic assumptions on the weights and phases of the
underlying state. Indeed, if the system under study can be cast in a form with only positive weights, then Monte-Carlo methods
often work well, though convergence guarantees are only known in very special cases [9]. This in turn is believed to be due to
the local Gibbsian nature of the classical restriction of the state. Classical Monte-Carlo sampling is known to converge rapidly
for Ising type problems [10, 11], while quantum variational Monte-Carlo is often successful when using a locally restricted
Gibbs Ansatz, such as the Jastrow-Ansatz. Further evidence of the importance of locality in the Ansatz wavefunction has been
observed for more expressive Ansätze, such as the complex Restricted Boltzmann machine [12], where the activations naturally
preserve locality in many cases. Hence, whereas tensor network states explicitly encode the local entanglement structure in their
construction, quantum (variational) Monte Carlo implicitly invokes locality through the pervasive Gibbsian nature of probability
distributions.

Here, we connect these two pictures by showing that generic injective MPSs [13] have classical restrictions that are quasi-
locally Gibbsian. More precisely, we here refer to a probability distribution as locally Gibbsian if it can be written as the
equilibrium distribution of a local Hamiltonian, i.e., as a sum of terms that each spans at most ` adjacent sites. Well known
examples include the Ising and Potts models. We similarly say that a distribution is quasi-locally Gibbsian, if it can be ap-
proximated by Gibbs distributions corresponding to local Hamiltonians, h`, where the error of the approximation in some sense
decays exponentially with increasing `. Such notions appear in various guises in the literature, e.g., Ref. 14, which requires that
the coefficients in the cluster expansion of log(p) are rapidly decaying with the order of the cluster.

As the first step towards proving the generic quasi-local Gibbs property of injective MPSs, we show (in Section IV) that
probability distributions on a one-dimensional lattice with open boundary conditions are quasi-locally Gibbsian if the Conditional
Mutual Information (CMI) between any tripartition of the lattice is decaying rapidly in the width of the middle region. The
stronger the decay of the CMI, the more local the Gibbs distribution. In the case of zero correlation length, the distribution is
(strictly) locally Gibbs [15]. A number of recent studies in quantum information theory have revealed connections between the
CMI and the Gibbsian nature of density matrices. In Ref. 16, the authors show that the quantum CMI of a full rank density
matrix on a one-dimensional lattice is small if and only if the state is Gibbsian. The Gibbsian nature of states has important
implications for the nature of edge states of topologically ordered systems [17, 18]. Our results show that similar equivalences
hold for classical restrictions of quantum states. Similar conclusions can be reached using perturbative methods for classical
restrictions of high temperature quantum Gibbs states of gaped spin chains [19].

The second step towards establishing the quasi-locality is also our main result; that the classical restriction of injective MPSs
have an exponentially decaying CMI if the matrices associated to the MPS satisfy a condition referred to as purity (see Def. 3).
This condition has previously been shown [20, 21] to imply the ‘purification’ of quantum trajectories resulting from the appli-
cations of sequences of random matrices on an initial state. In our setting, the classical CMI can be bounded by a corresponding
quantum CMI. The latter can, in turn, be rewritten in terms of the expected entanglement entropy after measurements on the
conditional subsystem. A vanishing entanglement entropy is thus equivalent to the purification of the state-trajectory induced
by the sequence of measurements on the virtual system. The purification of trajectories implies that the system asymptotically
jumps between pure states of a specific stationary measure, irrespective of what (mixed) state the system started in. We are
currently not aware of a meaningful operational interpretation of the stationary stochastic process, and believe it to be quite
hard to evaluate in practice [22]. Furthermore, and perhaps counter-intuitively, we observe that the rate of decay towards the
stationary measure is unrelated to the gap of the transfer operator of the MPS. We moreover do not know of a closed functional
form for the decay rate, in terms of the matrices associated to the MPS.

One may note that our setting, which focuses on the degree of conditional post-measurement entanglement, is closely related
to the notion of localizable entanglement [23–25]. The latter is obtained by optimizing the measurements over all possible local
bases, while we consider a fixed basis. However, to the best of our knowledge, a general proof of the exponential decay of the
localizable entanglement has not been shown previously.

As mentioned above, we show that the purity condition is sufficient for the exponential decay of the classical CMI. However,
it is less clear if it also is a sufficient condition. In order to better pinpoint the significance of the purity condition, we show that
it in essence is both necessary and sufficient for the exponential decay of the above mentioned quantum CMI.

As a further attempt to gain a better understanding of the purity condition, we moreover investigate the conspicuous similarity
between (the violation of) the purity condition (see Def. 3) and the Knill-Laflamme error correction condition [26]. Indeed, we
find (in Section VI B) that the purity-condition can be regarded as the non-existence of a non-trivial correctable subspace that
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persists indefinitely throughout iterated applications of an error-model, in a somewhat unconventional error correction scenario.
One may note that invariant subspaces are special cases of such correctable spaces. As an example, MPSs with Symmetry-
Protected Topological (SPT) order are associated to invariant subspaces [27] and would thus violate the purity condition. The
above results suggests that violations of the purity condition in some sense are ‘fragile’. In order to shed some further light on
this question, we construct a probabilistic model (in Sec. VI D), where the purity condition holds, apart for a subset of measure
zero.

The proof of our main theorem relies heavily on the theory of random matrix products, and in particular on the work of
Benoist et. al. [20] and Maassen and Kümmerer [21]. Since these results involve notions from probability theory that likely
are unfamiliar to most of the quantum information community, we reproduce in Appendixes A-D many of the basic results in
a language that should be more familiar to the quantum-information reader. We hope that this will facilitate the access to a
rich and extensive body of work that should see many more applications in the fields of quantum information and many body
physics. For instance, the theory of random matrix products has recently been leveraged in a different setting, to show ergodicity
for ensembles of quantum channels [28, 29].

Concerning the structure of the paper, we begin by introducing the notation in Section II, while Section III focuses on the
central object in this investigation, namely the CMI with respect to classical restrictions of MPSs. Section IV presents the first
result of the paper: an exponentially decaying CMI implies quasi-local Gibbs distributions. Section V is devoted to the main
result, namely the exponentially decaying CMI for a broad class of MPSs. Section VI provides examples and observations, where
we in Section VI A observe that MPSs corresponding to SPT phases violate the purity condition. In Section VI B we further
investigate the purity condition and show that its violation can be regarded as a type or error-correction condition. Section VI C
is devoted to give a sufficient condition for purity to hold for a set of operators in terms of the span of the operators. We use this
relation in Section VI D, where we construct a model of typicality of purity, to prove that purity is a generic property. Section
VI E compares the convergence rate of the CMI with the rate of the converge to the fixed point of the transfer operator. Concrete
examples are provided in Section VI F. We finish with an outlook in Section VII.

II. NOTATION

We consider pure states defined on a finite one-dimensional lattice, Λ, and associate a finite dimensional Hilbert space of
dimension d to each site. We index the sites of the lattice according to a tripartition of the lattice Λ = ABC as follows: we denote
sites in region A as −|A|+1,−|A|+2, . . . ,−1,0; sites in region B as 1, . . . ,N; and sites in region C as N +1, . . . , |BC| (see Fig.
1). This peculiar indexing of sites will make sense later on when considering the CMI for MPSs.

FIG. 1. We consider a MPS on a finite lattice, Λ, which is broken up into three contiguous regions such that Λ = ABC. We denote sites in
region A as −|A|+1,−|A|+2, . . . ,−1,0; sites in region B as 1, . . . ,N; and sites in region C as N +1, . . . , |BC|.

Let |xΛ〉= |x−|A|+1, . . . ,x0,x1, . . . ,xN , . . . ,x|BC|〉 be a local orthonormal basis, where {|xi〉}d−1
xi=0 is the local basis at site i. Unless

specified otherwise, we will be working with translationally invariant MPSs with open boundary conditions

|Ψ〉= 1
K

d−1

∑
x−|A|+1,...,x|BC|=0

〈R|Ax|BC| · · ·Ax−|A|+1 |L〉|x−|A|+1 · · ·x|BC|〉, (1)

where K is a normalization factor. Here, Axi are D×D matrices encoding correlations in the system and |L〉 and |R〉 are normal-
ized states on the D-dimensional virtual space specifying the boundary conditions, where D is known as the bond dimension of
the MPS. Without loss of generality, we consider (left-)normalized MPSs, which enforces that ∑d−1

xi=0 A†
xi

Axi = 1. Left normaliza-
tion guarantees that the completely positive map

E(·) :=
d−1

∑
xi=0

Axi ·A†
xi

(2)
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is trace preserving. The map E is often referred to as the transfer operator and maps density matrices on the virtual space to
density matrices from left to right. The adjoint map, E∗, maps operators from right to left along the chain. Our choice of
boundary conditions serves mainly for notational simplicity. The results in the paper extend naturally to periodic or mixed
boundary conditions. For periodic boundary conditions, the regions ABC need to be chosen differently to ensure that B separates
A from C.

The normalization constant can be expressed concisely as K2 =Tr
[
E|Λ| (L)R

]
, where we use the shorthand notation R= |R〉〈R|

and L = |L〉〈L|.
a. Classical Restrictions For a given local basis {|xΛ〉}, we define the quantum channel

ΦΛ(ψ) = ∑
xΛ

|xΛ〉〈xΛ|〈xΛ|ψ|xΛ〉. (3)

In other words, ΦΛ generates a state that is diagonal with respect to the basis {|xΛ〉}, by deleting the off-diagonal elements of
the input ψ . We refer to ΦΛ as the classical restriction (also commonly referred to as a ‘dephasing map’ or ‘pinching’). Since
ΦΛ(ψ) is diagonal, the map ΦΛ effectively defines a classical probability distribution, pψ(xΛ) = 〈xΛ|ψ|xΛ〉, for any choice of
basis {|xΛ〉}.

We also consider the channel that measures a subset of systems B⊂ Λ and we denote it as

ΦB(ψ) = ∑
xB

|xB〉〈xB|〈xB|ψ|xB〉,

= ∑
xB

pψ(xB)ψ(xB),
(4)

with |xB〉 =
⊗

i∈B |xi〉. Here, the channel ΦB similarly defines a classical probability distribution on the sites in B by pψ(xB) =
〈xB|ψB|xB〉, where ψB := TrΛ\AC ψ is the reduced state of ψ on B. Note that

pψ(xB) = ∑
xAC

pψ(x), (5)

where recall that Λ = ABC. Moreover, we refer to the post-measurement state after obtaining the measurement outcome xB as

ψ(xB) =
1

pψ(xB)
|xB〉〈xB|⊗ 〈xB|ψ|xB〉. (6)

Consider now the MPS defined in Eq. (1). The probability distribution on B is

pΨ(xB) =
1

K2 Tr
[
AxN · · ·Ax1E

|A|(L)A†
x1
· · ·A†

xN
E∗|C|(R)

]
, (7)

where En is understood as convolution of the map and xB := x1, . . . ,xN , with xi = 0, . . . ,d−1.
In this investigation we primarily focus on translationally invariant injective MPSs [13], which equivalently can be defined via

the primitivity of the map E [30]. The latter means that E has a unique full-rank fixed point, i.e., there exists a unique full-rank
density operator ρ such that E(ρ) = ρ . A consequence of the injectivity of the MPS is thus that lim|A|→∞E|A|(χ) = ρ Tr(χ),
lim|C|→∞E∗|C|(Q) = 1Tr(Qρ), and lim|A|→∞,|C|→∞ K2 = Tr(Rρ) 6= 0. Hence, if region B is kept fixed, while regions A and C
both grow to infinity, the probability distribution (7) on B reduces to

pΨ(xB) = Tr
[
AxN · · ·Ax1ρA†

x1
· · ·A†

xN

]
. (8)

III. THE POST-MEASUREMENT CONDITIONAL MUTUAL INFORMATION

Throughout the paper, we use a number of entropic quantities, which we introduce in this section. In particular, we switch
back and forth between classical and quantum systems. The quantum von Neumann entropy of a mixed state, χ , is denoted as
S(χ) =−Tr χ log χ , while the classical entropy is referred to as H(p) =−∑x p(x) log p(x) for a classical probability distribution
p(x). Here, log denotes the natural logarithm. In Sec. IV, we use the classical relative entropy as a measure of distinguishability
between probability distributions. The classical relative entropy of p1(x) with respect to p2(x) is defined as

S(p1||p2) = ∑
x

p1(x) log
[

p1(x)
p2(x)

]
. (9)
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The (quantum) CMI between regions A and C conditioned on region B, is given by

Iχ(A : C|B) = S(χAB)+S(χBC)−S(χB)−S(χABC). (10)

After applying the classical conditioning map, ΦΛ in Eq. (3), on a quantum state, χ , we get the classical CMI

IΦΛ(χ)(A : C|B) = Ipχ (A : C|B) = H(pχ,AB)+H(pχ,BC)−H(pχ,B)−H(pχ,ABC), (11)

where pχ,A := pχ(xA) = 〈xA|χA|xA〉.
We now point out an important observation on the CMI [31]. Suppose that we have a pure state, ψ = |ψ〉〈ψ|, and we measure

all spins in region B. Then, the quantum CMI of the post-measurement state satisfies

Ipψ (A : C|B)≤ IΦB(ψ)(A : C|B),
= 〈S [ψA(xB)]〉pψ (xB)+ 〈S [ψC(xB)]〉pψ (xB),

= 2〈S [ψC(xB)]〉pψ (xB),

(12)

where the distribution pψ is defined by pψ(xΛ) = 〈xΛ|ψ|xΛ〉, and where the state ψX (xB) = 〈xB|ρXB|xB〉 is the reduced state in
region X of the post-measurement state, ψ(xB), and 〈S [ψ(x)]〉pψ(x) is the average von Neumann entropy of ψ(x) over pψ(x), i.e.,

〈S [ψ(x)]〉pψ (x) := ∑
x

pψ(x)S [ψ(x)] . (13)

The inequality in Eq. (12) comes from monotonicity of the relative entropy. Note that S [ψA(xB)] = S [ψC(xB)] since
〈xB|ψ|xB〉/pψ(xB) is a pure state on the bipartition AC. Eq. (12) allows us to characterise the states that have a small post-
measurement CMI by finding the states that have a small average entropy of ψC(xB).

Let us now go back to the MPS described in Sec. II. With the injective MPS in the canonical form of Eq. (1), it can be shown
that the reduced state of the post-measurement state, ΨC(xB), is (up to zero eigenvalues) isospectral to

1
pΨ(xB)K2

√
E∗|C|(R)AxN · · ·Ax1E

|A|(L)A†
x1
· · ·A†

xN

√
E∗|C|(R). (14)

The average von Neumann entropy of the reduced state of a post-measurement translationally invariant injective MPS is then

〈S [ΨC(xB)]〉pΨ(xB) = ∑
xB

pΨ(xB)S

(
1

pΨ(xB)K2 FAxN · · ·Ax1σA†
x1
· · ·A†

xN
F†

)
, (15)

where σ := E|A|(L), and

F := ∑
x|BC|,...,xN+1

|xx|BC|,...,xN+1〉〈R|Ax|BC|,...,xN+1 , (16)

and thus F†F = E∗|C|(R). Eq. (15) will be the main object of study throughout this paper. As mentioned earlier, a translation-
ally invariant injective MPS results in a primitive channel E. On a finite-dimensional space, this implies that for sufficiently
large |A| and |C|, it follows that both σ and F†F are full-rank operators. We also recall that lim|A|→∞E|A|(χ) = ρ Tr(χ),
lim|C|→∞E∗|C|(Q) = 1Tr(Qρ), and lim|A|→∞,|C|→∞ K2 = Tr(Rρ) 6= 0, and consequently (15) reduces to

〈S [ΨC(xB)]〉pΨ(xB) = ∑
xB

pΨ(xB)S

(
AxN · · ·Ax1ρA†

x1
· · ·A†

xN

pΨ(xB)

)
, (17)

for infinite chains.

IV. DISTRIBUTIONS WITH SMALL CMI ARE QUASI-LOCALLY GIBBSIAN

In this section we consider probability distributions, p1,...,|Λ|, on finite one-dimensional lattices, Λ, and discuss conditions for
when these can be well approximated by Gibbs distributions of local Hamiltonians. We say that a Hamiltonian is `-local if it
can be written as a sum of terms that each span at most ` consecutive sites. A distribution is `-local if it is the Gibbs distribution
of some `-local Hamiltonian. In a similar spirit, we say that a distribution is quasi-locally Gibbsian if it can be approximated
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by `-local distributions, where the error of this approximation in some sense decays fast with respect to increasing `. In this
section we show that, if the CMI Ip1,...,|Λ|(A : C|B) of the distribution p1,...,|Λ| decays sufficiently fast with increasing size |B| of
the bridging region in a contiguous tripartition Λ = ABC of the lattice, then p1,...,|Λ| is quasi-locally Gibbsian. (For convenience
we change the notation in this section and enumerate the sites of the entire lattice as 1, . . . , |Λ|.) This result is similar in spirit to
Kozlov’s theorem [14] (see also Ref. 31). Although this section exclusively focuses on probability distributions, the application
to quantum states becomes apparent in Section V, where we consider classical restrictions of underlying injective MPSs and
show that these are quasi-locally Gibbsian under broad conditions.

Let p1,...,|Λ| be a probability distribution over a finite sub-chain Λ of a one-dimensional lattice. We let p j denote the marginal
distribution at site j. For 1≤ j≤ k≤ |Λ| we let p j,...,k denote the marginal distribution of the chain j, . . . ,k. In the following, we
assume that

p1,...,|Λ|(x1, . . . ,x|Λ|)> 0, ∀x1, . . . ,x|Λ|, (18)

which consequently leads to p j,...,k(x j, . . . ,xk)> 0. With these assumptions, we can define

h j,...,k :=− log p j,...,k, 1≤ j ≤ k ≤ |Λ|, (19)

and thus p j,...,k = e−h j,...,k , where we for notational convenience assume that h j,..., j := h j and h j,..., j+1 := h j, j+1.
Hence, we have constructed h j,...,k such that p j,...,k is Gibbs distributed with respect to h j,...,k, with β = 1 in e−βh j,...,k/Z(h j,...,k),

where one may note that Z(h j,...,k) := ∑x j ,...,xk
e−h j,...,k(x j ,...,xk) = 1.

For 1≤ `≤ |Λ|−2, we define

h`1,...,|Λ| :=
|Λ|−`
∑
j=1

h j,..., j+`−
|Λ|−`−1

∑
j=1

h j+1,..., j+`. (20)

Hence, h`1,...,|Λ| only includes the terms for which the range does not exceed `. More precisely, h`1,...,|Λ| is a (`+ 1)-local
Hamiltonian. The associated (`+1)-local Gibbs distribution is

p`1,...,|Λ|(x1, . . . ,x|Λ|) :=
e−h`1,...,|Λ|(x1,...,x|Λ|)

Z(h`1,...,|Λ|)
, (21)

with

Z(h`1,...,|Λ|) := ∑
x′1,...,x

′
|Λ|

e−h`1,...,|Λ|(x
′
1,...,x

′
|Λ|).

The following proposition expresses the classical relative entropy (see Eq. (9)) between the Gibbs distribution p1,...,|Λ| associated
to the full Hamiltonian, h1,...,|Λ|, and the Gibbs distribution p`1,...,|Λ| associated to the (`+1)-local Hamiltonian, h`1,...,|Λ|, in terms
of the CMIs between suitable regions of the chain. Hence, if the latter are sufficiently small, then the approximating (`+1)-local
distribution p`1,...,|Λ| is close to the original distribution p1,...,|Λ|.

Proposition 1. For p1,...,|Λ|(x1, . . . ,x|Λ|)> 0, let p`1,...,|Λ| be as defined in Eq. (19-21). For 1≤ `≤ |Λ|−2 it is the case that

S(p1,...,|Λ|‖p`1,...,|Λ|) =
|Λ|−`−1

∑
k=1

I(1, . . . ,k : k+ `+1|k+1, . . . ,k+ `). (22)

Proof. We first note that

〈h j,...,k〉p1,...,|Λ| = H(p j,...,k). (23)

A somewhat lengthy but straightforward calculation moreover yields

Z(h`1,...,|Λ|) = 1. (24)
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Next we observe that
|Λ|−`−1

∑
k=1

I(1, . . . ,k : k+ `+1|k+1, . . . ,k+ `)

=H(p1,...,`+1)−H(p1,...,|Λ|)

+
|Λ|−`−1

∑
k=1

[
H(pk+1,...,k+`+1)−H(pk+1,...,k+`)

]
,

[By (23)]
=〈h1,...,`+1〉−〈h1,...,|Λ|〉

+
|Λ|−`−1

∑
j=1
〈h j+1,..., j+`+1〉−

|Λ|−`−1

∑
j=1
〈h j+1,..., j+`〉,

=−〈h1,...,|Λ|〉+
|Λ|−`
∑
j=1
〈h j,..., j+`〉−

|Λ|−`−1

∑
j=1
〈h j+1,..., j+`〉.

(25)

Next we note that

S(p1,...,|Λ|‖p`1,...,|Λ|) =− ∑
x1,...,x|Λ|

p1,...,|Λ|(x1, . . . ,x|Λ|)h1,...,|Λ|(x1, . . . ,x|Λ|)

+ ∑
x1,...,x|Λ|

p1,...,|Λ|(x1, . . . ,x|Λ|)h
`
1,...,|Λ|(x1, . . . ,x|Λ|)

+ logZ(h`1,...,|Λ|),

=−〈h1,...,|Λ|〉+ 〈h`1,...,|Λ|〉+ logZ(h`1,...,|Λ|),

[ By (24) ]

=−〈h1,...,|Λ|〉+ 〈h`1,...,|Λ|〉,

=−〈h1,...,|Λ|〉+
|Λ|−`
∑
j=1
〈h j,..., j+`〉−

|Λ|−`−1

∑
j=1
〈h j+1,..., j+`〉.

(26)

A comparison with with (25) yields (22).

Loosely speaking, the above proposition tells us that, if the CMIs I(1, . . . ,k : k+ `+1|k+1, . . . ,k+ `) in some sense decrease
sufficiently fast with increasing `, then the (`+1)-local Gibbs distribution p`1,...,|Λ| approaches the true distribution p1,...,|Λ|. The
following lemma formalizes this intuition.

Lemma 2. Suppose that the probability distribution p1,...,|Λ|(x1, . . . ,x|Λ|)> 0 is such that there exists a function ξ : N→R, such
that for every contiguous partition Λ = ABC, it is the case that

Ip(A : C|B)≤ ξ (|B|), (27)

where ξ is independent of |A| and |C|. Let p`1,...,|Λ| be as defined in (21), via (20) and (19). Then, for 1≤ `≤ |Λ|−2, we have

S(p1,...,|Λ|‖p`1,...,|Λ|)≤ (|Λ|− `−1)ξ (`)≤ |Λ|ξ (`). (28)

Proof. With the general observation that I(A : C1|B) ≤ I(A : C1C2|B), we can use A = {1, . . . ,k}, B = {k+ 1, . . . ,k+ `}, C1 =
{k+ `+1} and C2 = {k+ `+2, . . . , |Λ|} in (22) and assumption (27), which yields

S(p1,...,|Λ|‖p`1,...,|Λ|)≤
|Λ|−`−1

∑
k=1

ξ (`) = (|Λ|− `−1)ξ (`). (29)

Equation (28) estimates the contribution of the tails of the distribution p1,...,|Λ|: the smaller |Λ|ξ (`) is, the smaller the con-
tribution of these tails. In suitable joint limits of ` and |Λ|, where |Λ|ξ (`) vanishes exponentially, we say that p1,...,|Λ| is a
quasi-local Gibbs distribution. At first sight it might not be clear whether there exists an exponentially decreasing bound ξ with
the necessary properties. However, in Section V, we establish such a bound, when p1,...,|Λ| is the classical restriction of a large
class of injective MPS, thus showing that those classical restrictions are quasi-locally Gibbsian.
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V. THE MAIN THEOREM

In Sec. IV, we showed that probability distributions on finite one-dimensional lattices are quasi-locally Gibbsian if the
relevant CMI decays sufficiently rapidly. Here, we apply this result to classical restrictions of injective MPSs, i.e., to the the
square amplitudes in a given local basis. We express the relevant CMI in terms of the average post-measurement entropy (as
discussed in Section III) and find sufficient conditions for when this average entropy decays exponentially. This approach thus
yields sufficient conditions for injective MPSs to have classical restrictions that are quasi-locally Gibbsian.

Our result builds extensively on the theory of products of random matrices [32], and its application to quantum trajectories
[20, 21]. We particularly follow the approach of Ref. 20 and formulate the condition for the exponential decay of the average
post-measurement entropy in terms of the following condition (referred to as Pur in Ref. 20) on the matrices Ax associated to
the MPS.

Definition 3 (Purity [20]). Let {Ax}d−1
x=0 be linear operators on a complex finite-dimensional Hilbert space, H . We say that

{Ax}d−1
x=0 satisfies the purity condition if the following implication holds:

If P is an orthogonal projector on H such that

PA†
x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P, ∀N ∈ N, ∀(x1, . . . ,xN) ∈ {0, . . . ,d−1}×N ,

then rank(P) = 1.

(30)

Note that the condition PA†
x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P is trivially true whenever P is a rank-one projector. Hence, the purity con-

dition means that PA†
x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P only holds for rank-one projectors. The purity condition bears some resemblance

to the Knill-Laflamme condition [26]. We discuss the relationship between the purity condition and error correction/detection in
Section VI B.

An immediate question is if the purity condition is commonly satisfied, or if these cases are rare. One can argue that the error-
correction perspective in Section VI B suggests that violations of the purity condition are ‘brittle’, and thus provides evidence
for the purity condition being ‘generic’ or ‘typical’. To shed some further light on this question, we do in Section VI C present
a somewhat simpler condition that implies purity, and where the nature of this simplified condition suggests that the purity
condition in some sense is ‘easily’ satisfied. As a concrete application and illustration of this simplified condition, Section VI D
considers a specific probabilistic setting, where all {Ax}d−1

x=0 satisfy the purity condition, apart from a subset of measure zero.
This construction thus formalizes the notion that purity is a typical or generic property.

Even if the purity condition is generic, another pertinent question is whether it is easy or not to check if a given MPS, in terms
of the operators {Ax}d−1

x=0 , satisfies the purity condition. Although an interesting question, we leave this as an open problem.
The primary focus of this investigation is the classical CMI IpΨ(A : C|B) of the distribution pΨ = 〈xΛ|Ψ|xΛ〉. Theorem 4,

below, shows that purity is a sufficient condition for an exponential decay of IpΨ(A : C|B) with increasing |B|. However, in
order to facilitate a better understanding of the role of the purity condition, Theorem 4 also includes the closely related quantity
IΦB(Ψ)(A : C|B), which we recall is the quantum CMI of the post-measurement state ΦB(Ψ) as defined in (4). Theorem 4
in essence shows that purity is both necessary and sufficient condition for the exponential decay of IΦB(Ψ)(A : C|B). Since
IΦB(Ψ)(A : C|B) can be viewed as the average entanglement entropy of the post-measurement states Ψ(xB) (which are pure), this
loosely speaking means that the latter typically approach pure product states with respect to the bipartition A and C. Whether
purity also is a necessary condition for the exponential decay of IpΨ(A : C|B) is less clear, although one may note that one can
find pure states for which IpΨ(A : C|B) = 0, while IΦB(Ψ)(A : C|B) 6= 0. (For further details, see the end of Section A 2.) With this
observation in mind, it is conceivable that there may exist a weaker condition than purity that would yield an exponential decay
of IpΨ(A : C|B). Although an interesting question, we leave this as an open problem for future investigations.

Theorem 4. Let Ψ be an injective MPS on a finite one-dimensional lattice, Λ, with finite bond dimension, D, and open boundary
conditions. If the purity condition holds for the matrices associated to the MPS corresponding to a specific local basis, {|x〉},
then there exist constants 1 > κ ≥ 0 and c≥ 0, such that for any three contiguous regions Λ = ABC as in Fig. 1, we have

IpΨ(A : C|B)≤ IΦB(Ψ)(A : C|B)≤ cκ |B|. (31)

The constants c and κ are independent of |A|, |B|, |C|, |L〉, and |R〉.
Conversely, suppose that there exist some |R〉, |L〉, |A|, and |C| such that σ := E|A|(L), and F†F = E∗|C|(R) are full rank

operators. Moreover, suppose that there exist constants c≥ 0 and 1 > κ ≥ 0, such that

IΦB(Ψ)(A : C|B)≤ cκ |B|, (32)

then {Ax}d−1
x=0 satisfies the purity condition in Definition 3.
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The following provides an overview of the essential steps of the proof of Theorem 4. For a more detailed account of the first
half of Theorem 4, i.e., the purity condition as a sufficient condition for (31), see the proof of Theorem 18 in Appendix A 1. For
the second half, with (32) implying the purity condition, see the proof of Theorem 24 in Appendix A 2.

Proof. For the first part of Theorem 4, the first step is to bound IΦB(Ψ)(A : C|B) in terms of the quantity f (N), defined below in
Eq. (39). Because of the inequality in (12), we consequently also bound the post-measurement CMI IpΨ(A : C|B). The second
step is to show that f (N) decays exponentially if the purity condition is satisfied; this step is shown independently in Prop. 5.
We relegate much of the technical details of the proof to Appendixes A-D to allow for a clearer presentation of the main ideas.

To start with, we bound the average entropy (Eq. (13)) in terms of a quantity that can be interpreted as the average purity and
we get

〈S [ΨC(xB)]〉pΨ(xB) ≤−Q logQ+Q [1+ log(D−1)] , (33)

with Q := 1−∑xB pΨ(xB)‖ΨC(xB)‖. The proof, which is deferred to Lemma 13 in Appendix A, follows from concavity of the
entropy functional. It is clear that exponential decay of Q implies exponential decay of IΦB(Ψ)(A : C|B) by Eq. (12).

Next, we show that Q can be bounded above by a function of the ordered singular values of the matrix product defining the
classical post-measurement MPS. First, Lemma 14 in Appendix A establishes an upper bound on Q in terms of the average
second eigenvalue of the matrix product in Eq. (15) as

Q≤ D−1
K2 ∑

xB

λ ↓2
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) , (34)

where {λ ↓j (O)} and {ν↓j (O)} denote the eigenvalues and singular values of an operator O in decreasing order, i.e., λ ↓1 (O) ≥
·· · ≥ λ ↓D(O) and ν↓1 (O)≥ ·· · ≥ ν↓D(O), respectively.

Then, recalling that for any operator O, we have λ j(OO†) = ν j(O)2, we get

Q≤ D−1
K2 ∑

xB

λ ↓2
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) ,

≤ D−1
K2 ∑

xB

√
λ ↓1 (FAxN · · ·Ax1σA†

x1 · · ·A†
xN F†)λ ↓2 (FAxN · · ·Ax1σA†

x1 · · ·A†
xN F†), (35)

=
D−1

K2 ∑
xB

ν↓1 (FAxN · · ·Ax1

√
σ)ν↓2 (FAxN · · ·Ax1

√
σ) =:

D−1
K2 f (N),

where recall that |B|= N.
Next, we need to take into account the fact that K depends on the size of the regions A, B and C, and in principle K could

approach zero. However, the assumption that the MPS is injective, implies that E(·) = ∑x Ax ·A†
x is primitive, which means that

E has a unique full-rank fixed point. The latter is used in Lemma 17 in Appendix A to show that for all sufficiently large |B|
there exists a number r > 0 such that

K2 = 〈R|E|Λ|(|L〉〈L|)|R〉= 〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉 ≥ r, (36)

where r is independent of |A|, |C|, |L〉 and |R〉. We use this to obtain an upper bound on Q that only depends on N via f (N).
Finally, in Proposition 5 below, the function f (N) is shown to decay exponentially if the purity condition holds. Moreover,

the constants c and γ in the bound (40) can be chosen to be independent of |A|, |B|, |C|, which follows from the fact that c and γ
are independent of σ and F .

The proof of the first part of Theorem 4, requires us to find an upper bound of the average entropy 〈S [ΨC(xB)]〉pΨ(xB) in terms
of the quantity f (N). For the second part of Theorem 4, i.e., that (32) implies the purity condition, we instead need to find an
upper bound to f (N) in terms of 〈S [ΨC(xB)]〉pΨ(xB). We obtain this via a chain of inequalities

4 log(2)λ ↓2 (ρ)λ
↓
1 (ρ)≤ 4log(2)λ ↓1 (ρ)

(
1−λ ↓1 (ρ)

)
≤ HB

(
λ ↓1 (ρ)

)
≤ S(ρ), (37)

where HB is the binary entropy, i.e., HB(λ ) :=−λ logλ−(1−λ ) log(1−λ ) with HB(0) := 0 and HB(1) := 0. These observations
are utilized to show that

f (N)≤ 1
2
√

log(2)

√
〈S [ΨC(xB)]〉pΨ(xB), (38)

with the consequence that an exponential decay of 〈S [ΨC(xB)]〉pΨ(xB) with increasing N, implies an exponential decay of f (N).
By Prop. 5, the exponential decay of f (N) implies purity of {Ax}d−1

x=0 , if σ :=E|A|(L), and F†F =E∗|C|(R) are full rank operators.
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Note that the bound in Eq. (35) is likely quite sub-optimal. It is an interesting open question whether there exists a more direct
bound of the average purity that does not rely on bounding the function f (N). The main reason to work with f (N) rather than
the average purity is because f (N) is explicitly submultiplicative.

We now state the key proposition adapted from Ref. 20, and references therein.

Proposition 5 (Ref. 20). Let {Ax}d−1
x=0 be operators on a finite-dimensional complex Hilbert space, H , such that ∑d−1

x=0 A†
xAx = 1.

For an operator σ and an operator F : H →H ′ for a finite-dimensional complex Hilbert space H ′, define

f (N) :=
d−1

∑
x1,...,xN=0

ν↓1 (FAxN · · ·Ax1

√
σ)ν↓2 (FAxN · · ·Ax1

√
σ). (39)

If {Ax}d−1
x=1 satisfies the purity condition in Definition 3, then there exist real constants, 0 ≤ c and 0 < γ < 1, such that for all

density operators σ , and all F such that F†F ≤ 1, it is the case that

f (N)≤ cγN , ∀N ∈ N. (40)

Conversely, if there exists constants 0 ≤ c and 0 < γ < 1 such that (40) holds for some σ and F†F that both are full-rank
operators, then {Ax}d−1

x=1 satisfies the purity condition.

In the application of this proposition, the Hilbert space H is the virtual space, while H ′ is the Hilbert space corresponding
to sub-chain C, c.f., the definition of F in (16). Theorem 4 provides the necessary bound ξ (|B|) = cκ |B| in Lemma 2 for showing
the quasi-locality of the classical restriction p1,...,|Λ|(x1, . . . ,x|Λ|) = 〈xΛ|Ψ|xΛ〉. Theorem 4 and Lemma 2 thus yield as a corollary
(for a more exact formulation, see Corollary 19 in Appendix A)

S(p1,...,|Λ|‖p`1,...,|Λ|)≤c|Λ|κ`, 1≤ `≤ |Λ|−2. (41)

A simple example that leads to an exponential decay of the relative entropy is if ` is a constant fraction of |Λ|, i.e.,

`= α|Λ|, 0 < α < 1. (42)

The result is that the relative entropy decays exponentially, and the family of `-local distributions thus approaches p1,...,|Λ|
exponentially fast. The classical restriction of typical injective MPSs is thus in this sense quasi-locally Gibbsian.

A. Proof overview for Proposition 5

Here, we give a brief overview of the general structure and ideas behind the proof of Proposition 5, i.e., that f (N) decays
exponentially if {Ax}x satisfies the purity condition. Although we do not always follow the exact same tracks, the essence of the
proof is due to Refs. 20 and 21, which we have adapted to our particular setting and cast in a language that is hopefully more
accessible to the quantum information theory community. The proof is essentially self-contained, and is presented in Appendices
B, C and D, only referencing some standard results from the theory of Martingales (see Appendix B), that can be found in a
number of classic textbook on the subject.

As one may note from Eq. (39), the sequence f (N) not only depends on the operators Ax, but also on the operators σ and F .
It turns out to be convenient to first focus on the function

w(N) =
d−1

∑
x1,...,xN=0

ν↓1 (AxN · · ·Ax1)ν
↓
2 (AxN · · ·Ax1). (43)

Once we have established the purity condition as a necessary and sufficient condition for exponential decay of w(N), we extend
(Proposition 43 in Section D 5) this result to f (N), which thus yields the statement of Proposition 5.

The proof of the exponential convergence of w(N) is essentially done in two steps. First, it is shown that w(N) converges to
zero. Next, it is shown that w(N) is submultiplicative, in the sense that w(N+M)≤w(N)w(M), and thus logw(N) is subadditive.
This observation is used, together with Fekete’s subadditive lemma, to show that w(N) goes to zero exponentially fast. These
steps are incorporated into the proof of Proposition 42.

The essential approach for proving that w(N) converges to zero is to interpret w(N) as the average over a stochastic process.
This process can be viewed as the random measurement outcomes x1, . . . ,xN due to a repeated sequential measurement of the
positive operator-valued measure (POVM) {A†

xAx}d−1
x=0 . (This process is described more precisely in Appendix C.) For the proof,

it is useful to introduce the operator

MN =
A†
x1
· · ·A†

xN
AxN · · ·Ax1

Tr(A†
x1 · · ·A†

xN AxN · · ·Ax1)
, (44)
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which thus depends on the sequence of random measurement outcomes x1, . . . ,xN . It turns out that one can express w(N)

in terms of MN via the relation w(N) = E
(√

λ ↓1 (MN)λ ↓2 (MN)
)
D, where λ ↓1 (MN) and λ ↓2 (MN) denote the largest and the

second largest eigenvalue of MN , respectively, and D the dimension of the underlying Hilbert space. Moreover, E denotes the
expectation value over all possible measurement outcomes. One can realize that MN is positive semi-definite, has trace 1, and
can thus be interpreted as a density operator. The main point is that if MN would be a rank-one operator, and thus correspond
to a pure state, then it follows that λ ↓2 (MN) is zero. Intuitively, it thus seems reasonable that w(N) converges to zero if it is
‘sufficiently likely’ thatMN converges to a rank-one operator.

The starting point for demonstrating that MN converges to a rank-one operator is to show (Lemma 35) that the sequence
(MN)N∈N is a martingale relative to the sequence of measurement outcomes (xN)N∈N. This enables us to show (Lemma 36)
that (MN)N∈N almost surely converges to a positive operatorM∞. (All these notions are reviewed in Appendix B.) Once this is
established, the bulk of the proof is focused on showing that M∞ (almost surely) is a rank-one operator if and only if {Ax}d−1

x=0
satisfies the purity condition.

The arguable least transparent part of the proof is how to show that the purity condition is sufficient for M∞ to be a rank-one
operator. The first part of the proof (Lemma 37) shows that MN+p and MN in some sense ‘approach’ each other, even when
conditioned on x1, . . . ,xN . The second part (Lemma 39) loosely speaking shows that MN+p gives rise to a term of the form√
MNU

†
NA†

x1
· · ·A†

xpAxp · · ·Ax1UN
√
MN for a unitary operator, UN , while MN gives rise to a term that is proportional to MN .

As these operators approach each other when N approaches infinity, one can use this to show that

M∞U
†
∞A†

x′1
· · ·A†

x′p
Ax′p · · ·Ax′1

U∞M∞ ∝M∞U
†
∞U∞M∞. (45)

In a reformulation (Lemma 38) of the purity condition, the projector, P, is replaced by a general operator, O, again with the
conclusion that O must be a rank-one operator. With O =U∞M∞ it follows thatM∞ is a rank-one operator.

To conversely show (Lemma 40) that the purity condition is a necessary condition is somewhat less involved. By assuming
that a projector P satisfies the proportionality in (30) while having a rank larger than one, then it follows that the only way
in which M∞ can be a rank-one operator, is if PM∞P = 0. However, this leads to a contradiction with Ax being such that
∑L

k=1 A†
xAx = 1.

Remark. Using the same tools as above, Benoist et. al. show in Ref. 20 that the stochastic process defined in Appendix C
equilibrates exponentially. It is worth noting that the average purity can converge to zero much faster than the stochastic process.
For instance, if σ is a rank-one operator, then it trivially follows that f (N) is identically zero for all N, irrespective of whether
{Ax}d−1

x=0 satisfies the purity condition or not.

VI. DISCUSSIONS AND EXAMPLES

In this section, we discuss the purity condition and the decay of the CMI in the context of quantum information theory. In
Sec. VI A we specifically study the behaviour of the CMI for SPT phases and obtain that it remains constant. The purity condition
is discussed from the point of view of quantum error correction in Sec. VI B. In Sec. VI C we find a simpler condition that implies
the purity condition, and based on this simplified condition we discuss the typicality of the purity condition in Sec. VI D. In
Sec. VI E we show, by constructing two simple examples, that the decay rate of the CMI is unrelated to the decay of the transfer
operator of the corresponding MPS. Finally, in Sec. VI F we discuss some concrete examples.

A. Symmetry-protected phases

Here we briefly discuss systems that do not satisfy the purity condition, and comment on the relation to SPT phases in one
dimension.

Consider an MPS, |Ψ〉, of the form of Eq. (1) with matrices Axi that have a tensor product decomposition into two subsystems
such that

Axi =Uxi ⊗Txi , (46)

where Uxi is a unitary matrix and Txi is any matrix. Then, the reduced post-measurement state, ΨC(xB), in the infinite chain case
(see Eq. (17)) is isospectral to

ΨC(xB)'
1

pΨ(xB)K2 (UxN · · ·Ux1 ⊗TxN · · ·Tx1)ρ
(
U†

x1
· · ·U†

xN
⊗T †

x1
· · ·T †

xN

)
.
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For simplicity, let us further consider the case where the unique fixed point of the transfer operator is proportional to the
identity, i.e., ρ = 1/(D1D2), where D1 and D2 are the dimensions of the two sub-systems respectively. We obtain

ΨC(xB)'
1

D1D2 pΨ(xB)K2

(
1⊗TxN · · ·Tx1T †

x1
· · ·T †

xN

)
.

The von Neumann entropy of this state has two independent contributions coming from each factor of the tensor product, namely

S [ΨC(xB)] = logD1 +S
(

1
pΨ(xB)D2K2 TxN · · ·Tx1T †

x1
· · ·T †

xN

)
.

Consequently, the average entropy of entanglement of ΨC(xB), and thus the post-measurement CMI, IΦB(Ψ)(A : C|B) (see
Eq. (12)), always has a constant contribution independent of the length of the middle region B. More generally, the CMI is
non-vanishing for MPSs in a basis where the matrices Axi can be isometrically mapped to a form as in Eq. (46) [25].

It was shown in Ref. 27 that, for a SPT phase in the MPS framework, there always exists a local basis in which the matrices
have the form of Eq. (46), with the additional property that the unitary matrices form a representation of the symmetry group.
The AKLT model (see Sec. VI F 1) is such an example.

B. The purity condition: Relation to error correction

In this section we will explore the purity condition (see Def. 3) in more detail. The purity condition states that the only
projectors P that satisfy

PA†
x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P, (47)

for all N ∈N, and all (x1, . . . ,xN) ∈ {0, . . . ,d−1}×N , are those that have rank one. Here we investigate the relation between this
condition (or rather the violation of it) and the Knill-Laflamme error correction condition [26].

Suppose that there exits a projector, P, onto a subspace, C , with dimC ≥ 2 such that

PA†
xAxP = λxP, ∀x. (48)

This looks suspiciously similar to the Knill-Laflamme error correction condition, which is

PA†
xAyP = cxyP, ∀x,y. (49)

The question is how one can understand the apparent similarity between Eq. (48) and (49). To this end, let us first recall the error
correction scenario. If Ax are operators on a Hilbert space, H , with ∑x A†

xAx = 1, we define the corresponding noise channel

E(χ) := ∑
x

AxχA†
x . (50)

For any state, χ , with support on the subspace C ⊆H , it is the case that E(χ) can be restored to χ if and only if (49) is true.
More precisely, there exists a recovery operation, R, (that does not depend on χ) such that R ◦E(χ) = χ for all density operators
χ with support on C .

It turns out that Eq. (48) is also a necessary and sufficient condition for error correction, but for a different type of error-
model. The channel E, in the standard error-correction scenario, is the effect of a unitary evolution that acts on H and on an
environment, HE , where the latter is inaccessible to us. In the alternative scenario, we assume that there exists an ancillary
system, A, which we do have access to, and which we can use in order to help us restore the initial state on H . More precisely,
we assume an error model of the form

Ẽ(χ) = ∑
x
|x〉A〈x|⊗AxχA†

x , (51)

where {|x〉A}l is an orthonormal basis of the Hilbert space associated to the ancillary system, HA. We can interpret this as
having access to additional classical information about the error in the register, A. We use this additional information in order
to restore the state on C . One may note that if we have no access to A, then we are back to the standard scenario, where the
channel on H is E= TrA Ẽ. It turns out that (48) is a necessary and sufficient condition for the existence of a recovery channel
R̃ : L (H ⊗HA)→L (H ), such that R̃ ◦ Ẽ(χ) = χ for all density operators χ on C . The proof of this statement is nearly
identical to that of the original Knill-Laflamme theorem and is omitted here.
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If one finds a non-trivial projector P (i.e. if Tr(P) = dimC ≥ 2) such that Eq. (48) holds, then one can explicitly construct a
collection of unitary operators, Ux, such that

∑
x

UxAxχA†
xU†

x = χ, (52)

for all density operators χ on C . In other words, the operators Ux perform the error correction on subspace C . More precisely,
if we have a set {Ax} with ∑x A†

xAx = 1, for which there exists a non-trivial projector, P, that satisfies Eq. (48), then we can
construct a new ‘error-corrected’ set, {Ax}, with Ax :=UxAx (and ∑x A†

xAx = 1). For this new set we will thus not get a decay to
zero of the average entropy (Eq. (15)), no matter how long a chain AxN · · ·Ax1 we construct.

Nothing prevents us from repeating the above reasoning for products {Ax2Ax1}x2,x1 , i.e., we can try to find the largest subspace
C2 with corresponding projector, P, such that

PA†
x1

A†
x2

Ax2Ax1P = λx2,x1P. (53)

We can similarly ask for the largest subspace C3 that is correctable for {Ax3Ax2Ax1}x3,x2,x1 . One can realize that we always have
Cn ⊆ Cn−1.

The purity condition is violated if and only if there exists a non-trivial projector P such that (47) holds for all N. By the above
reasoning we can thus conclude that the purity condition fails if and only if there for all N exists a fixed non-trivial correctable
subspace C . Loosely speaking, we can alternatively phrase the purity condition as the non-existence of a non-trivial correctable
subspace that persists indefinitely throughout iterated applications of the error channel. Intuitively, this observation suggests that
the violation of the purity condition is a rather ‘brittle’ and non-generic phenomenon.

C. A sufficient condition for purity

It is maybe not entirely clear what is the deeper meaning of the purity-condition, or how easy or difficult it is to sat-
isfy. In order to shed some light on the latter question, we here show that if there exists some N for which the set of op-
erators A†

x1
· · ·A†

xN
AxN · · ·Ax1 span the space of linear operators L (H ) on the underlying (finite-dimensional) Hilbert space

H , then {Ax}d−1
x=0 satisfies the purity condition. Another way of phrasing this is to say that if for some N, the POVM

{A†
x1
· · ·A†

xN
AxN · · ·Ax1}x1,...,xN is informationally complete, then {Ax}d−1

x=0 satisfies purity.
In the general case, it seems intuitively reasonable to expect that the set of products A†

x1
· · ·A†

xN
AxN · · ·Ax1 eventually spans

the whole of L (H ), for sufficiently large N (assuming linear combinations with complex coefficients). The exception
would be if there exists some particular algebraic relation between the operators Ax, which so to speak ‘trap’ the products
A†

x1
· · ·A†

xN
AxN · · ·Ax1 within a nontrivial subspace of L (H ). This argument suggests that the purity condition in some sense

would be ‘easily’ satisfied. We investigate this question further in Section VI D.
Let us first note that a set of operators {Ax}d−1

x=0 does not satisfy the purity condition if there exists a projector P onto an at
least two-dimensional subspace of H , and there exist numbers rx1,...,xN such that

PA†
x1
· · ·A†

xN
AxN · · ·Ax1P = rx1,...,xN P, (54)

for all N ∈ N and all x1, . . . ,xN .

Proposition 6. Let {Ax}d−1
x=0 be operators on the finite-dimensional complex Hilbert space H , such that ∑d−1

x=0 A†
xAx = 1. If there

exists an N ∈ N such that

Sp
(
{A†

x1
· · ·A†

xN
AxN · · ·Ax1}d−1

x1,...,xN=0

)
= L (H ), (55)

then {Ax}d−1
x=0 satisfies the purity condition.

Proof. It turns out to be convenient to prove that if {Ax}d−1
x=0 does not satisfy the purity condition, then {A†

x1
· · ·A†

xN
AxN · · ·Ax1}d−1

x1,...,xN=0
does not span L (H ) for any N. We thus assume that there exists a projector onto an at least two-dimensional subspace, such
that (54) is satisfied for all N, and all x1, . . . ,xN . Since P projects onto an at least two-dimensional subspace, there exists an
operator Q such that PQP = Q, and where Q 6= cP for all c ∈ C. Assume that {A†

x1
· · ·A†

xN
AxN · · ·Ax1}x1,...,xN would span the

whole of L (H ). Then, there exist cx1,...,xN ∈ C such that

∑
x1,...,xN

cx1,...,xN A†
x1
· · ·A†

xN
AxN · · ·Ax1 = Q. (56)
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This in turn implies that

∑
x1,...,xN

cx1,...,xN PA†
x1
· · ·A†

xN
AxN · · ·Ax1P = PQP = Q. (57)

However, by (54) we know that

∑
x1,...,xN

cx1,...,xN PA†
x1
· · ·A†

xN
AxN · · ·Ax1P = ∑

x1,...,xN

cx1,...,xN rx1,...,xN P. (58)

This combined with (57) yields

∑
x1,...,xN

cx1,...,xN rx1,...,xN P = Q. (59)

However, this is in contradiction with Q 6= cP for all c ∈ C. Hence, we can conclude that {A†
x1
· · ·A†

xN
AxN · · ·Ax1}x1,...,xN cannot

span the whole of L (H ).
To conclude, if {Ax}d−1

x=0 does not satisfy the purity condition, then {A†
x1
· · ·A†

xN
AxN · · ·Ax1}x1,...,xN cannot span the whole of

L (H ) for any N. This yields the statement of the Lemma.

D. A model for typicality of purity

In this section, we consider a concrete model for formalizing the notion of typicality of the purity condition. A common
method is to assign a probability measure over the set under consideration, and say that a property is typical, or generic, if it
holds for all elements in that set, apart from a subset of measure zero. This approach thus requires us to construct a probability
measure over the objects {Ax}d−1

x=0 . Within this construction, we will use Proposition 6, and a result from the previous literature
(Lemma 7 below), to show that the purity condition is satisfied generically. As the reader will note, we here only present
a construction for Hilbert spaces of odd dimensions. The reason for why we impose this restriction is to avoid the additional
technical complications that arise in the even-dimensional case (briefly explained below). It seems likely that these complications
are due to the particular proof-technique that we use, rather than some genuine limitations.

In order to construct a probability measure on the sets {Ax}d−1
x=0 , we consider, apart from the Hilbert space H , also an ancillary

Hilbert space, HA, of dimension d. On HA, we fix an orthonormal basis, {|ax〉}d−1
x=0 , and a normalized element, |a〉 ∈HA. For

each unitary operator, U , on H ⊗HA, we let

Ax := 〈ax|U |a〉, (60)

where we note that since U is a mapping on H ⊗HA, it follows that Ax is a mapping on H . We can regard this as the result
of a procedure where we append an ancillary state, |a〉〈a|, to an input state, ρ , evolve the system unitarily with U , and then
perform the projective measurement {|ax〉〈ax|}d−1

x=0 on the ancillary system. The conditional (unnormalized) post-measurement
state resulting from this procedure is AxρA†

x . If we consider the Haar measure over the set of Dd×Dd unitary matrices U , the
construction in (60) thus induces a probability measure on the class of sets {Ax}d−1

x=0 . In the following, we shall argue that, with
respect to the Haar measure, the set of {Ax}d−1

x=0 that satisfy the purity condition is typical, in the sense that the set that violates
the purity condition has measure zero. To reach this conclusion, we make use of the following result, which we have taken from
[33]. Consider some polynomial P with real coefficients, over the real and imaginary parts of the elements of complex K×K
matrices. The following lemma says that there are only two possibilities: either P is zero on the whole set of unitary K×K
matrices, U(K), or P is non-zero on almost all of U(K).

Lemma 7 (Lemma 4.3 in [33]). Given a polynomial P ∈ R[X1, . . . ,X2K2 ], the set
{
[Ui, j]

K
i, j=1 ∈ U(K) : P

(
Re(Ui, j), Im(Ui, j)

)
= 0
}
, (61)

is either equal to the whole of U(K), or it has Haar measure 0.

This means that if we can find a single unitary U for which the polynomial is non-zero, then we know that the polynomial is
non-zero for the whole set U(K), except possibly for a subset of measure zero.

Regarding the space L (H ) as an inner product space with respect to the Hilbert-Schmidt inner product 〈B,C〉 := Tr(B†C),
we note that a finite collection of operators Q := {Qx}K−1

x=0 is linearly independent if and only if the Gram matrix

M(Q) = [Mx,x′ ]
K−1
x,x′=0, Mx,x′ := 〈Qx,Qx′〉= Tr(Q†

xQx′), (62)
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is positive definite. SinceM(Q) in general is positive semi-definite, we thus know that Q is linearly independent if and only if
all the eigenvalues ofM(Q) are non-zero, and consequently, if and only if detM(Q) 6= 0.

In the following we shall prove that {Ax}d−1
x=0 , as constructed via (60), satisfies the purity condition for all U , except for a

subset of Haar measure zero. The general idea of the proof is as follows. For a sufficiently large N, we consider a specific subset
Q ⊂ {A†

x1
· · ·A†

xN
AxN · · ·Ax1}d−1

x1,...,xN=0, and we note that detM(Q) is a polynomial in the matrix elements of U . By Lemma
7, we can thus conclude that either detM(Q) = 0 on the whole of U(D), or detM(Q) 6= 0 for all U except for a subset of
measure zero. If we moreover let Q contain precisely D2 elements, |Q|= D2, then this would mean that either Q does not span
L (H ) for any U , or Q spans L (H ) for almost all U . To show the latter, it thus suffices to find one single unitary U such that
detM(Q) 6= 0. The bulk of the proof below is focused on determining such a unitary, and subset Q, yielding detM(Q) 6= 0.

An important building block for the construction of the particular unitary operator is the set of generalized Pauli-operators, or
shift and clock operators [34–37]. On a Hilbert space H with dimension D, and an orthonormal basis {|n〉}D−1

n=0 , we define the
operators

Λ1 :=
D−1

∑
n=0
|(n+1)modD〉〈n|, Λ3 :=

D−1

∑
n=0

ωn|n〉〈n|, ω := ei2π/D, U jk := Λ j
1Λk

3. (63)

(The reason for the, at first sight maybe odd-looking, numbering in the subscripts is that Λ1 can be regarded as the counterpart
to the Pauli-operator σ1, and Λ3 the counterpart to σ3.) We recall that the set of unitary operators {U jk}d−1

j,k=0 forms a basis for

L (H ), and that 〈U jk,U j′k′〉= Tr(U†
jkU j′k′) = Dδ j j′δkk′ , and moreover that Λ3Λ1 = ωΛ1Λ3, which in turn leads to

U j′k′U jk = ωk′ j− j′kU jkU j′k′ . (64)

We moreover note that

U†
jk = ω jkU(D− j)modD,(D−k)modD. (65)

Let us here recall that we want a subset Q made of positive semi-definite operators, Qx, such that detM(Q) 6= 0, and thus Q
is linearly independent. For this purpose, we will in the following consider a decomposition (Lemma 8) of Hermitian operators,
R, in terms of the operators {U jk}D−1

j,k=0. Next, we pick an operator R (Lemma 10) with particular properties, which we will use
for the construction of Q. More precisely, in the following we wish to find a positive semi-definite operator, R, that is bounded
by the identity, and has non-zero overlaps with all the operators U jk, i.e., all the expansion coefficients in the {U jk}D−1

j,k=0 basis
should be non-zero. By the virtue of being positive semi-definite, the hypothetical operator R has to be Hermitian, i.e., R† = R.
For this reason, it is useful to take a closer look on the effect, as described by (65), of the Hermitian conjugation on the basis
elements U jk. Suppose now that D≥ 3 is an odd number. This means that we can partition the index set {0, . . . ,D−1} into the
three subsets {0}, {1, . . . ,(D−1)/2}, {(D+1)/2, . . . ,D−1}. Under the mapping n 7→ (D−n)modD the set {0} is mapped to
itself, while the two sets {1, . . . ,(D−1)/2} and {(D+1)/2, . . . ,D−1} are mapped into each other. In view of (65) one can thus
conclude that every Hermitian operator is uniquely determined by the expansion coefficients corresponding to, e.g., the basis
elements

U00, {Un,0}(D−1)/2
n=1 , {U0,m}(D−1)/2

m=1 , {Un,m}n=(D−1)/2,m=(D−1)/2
n=1,m=1 , {Un,m}n=(D−1)/2,m=D−1

n=1,m=(D+1)/2 , (66)

while the expansion coefficients of the remaining basis-elements are fixed by the Hermiticity and the resulting map (65). By the
mapping (65) it also follows that for a Hermitian operator, the expansion coefficient corresponding to U00 has to be real. By the
above consideration, we can conclude the following lemma.

Lemma 8. For a finite-dimensional complex Hilbert space with odd dimension D ≥ 3, every Hermitian operator R can be
uniquely expanded as

R =rU00 +
(D−1)/2

∑
n=1

[anUn,0 +a∗nUD−n,0]+
(D−1)/2

∑
m=1

[bmU0,m +b∗mU0,D−m]

+
(D−1)/2

∑
n=1

(D−1)/2

∑
m=1

[An,mUn,m +A∗n,mωnmUD−n,D−m]

+
(D−1)/2

∑
n=1

D−1

∑
m=(D+1)/2

[Bn,mUn,m +B∗n,mωnmUD−n,D−m],

(67)

where r ∈R and (an)
(D−1)/2
n=1 ,(bm)

(D−1)/2
m=1 ∈C(D−2)/2 and (An,m)

n=(D−1)/2,m=(D−1)/2
n=1,m=1 ,(Bn,m)

n=(D+1)/2,m=D−1
n=1,m=(D+1)/2 ∈C(D−2)/2×(D−1)/2.

Moreover, by choosing the above coefficients to be non-zero, it follows that all the expansion coefficients of R in the basis
{U jk}D−1

j,k=0 are non-zero.
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Remark: The even-dimensional case is more involved since in this case, not only 0 is invariant under the map n 7→ (D−
n)modD, but also D/2. For this reason we here focus on the more straightforward odd-dimensional case.

The next step, in Lemma 10 below, consists of choosing coefficients r, an,bm, An,m, and Bn,m to obtain an operator R with the
desired properties to construct Q. However, in order to prove this lemma we first need the following observation, which we state
without proof.

Lemma 9. Let U be a unitary operator on a finite-dimensional Hilbert space, and θ a real number, then

0≤ 1
2
1+

1
4

eiθU +
1
4

e−iθU† ≤ 1. (68)

Lemma 10. On every finite-dimensional Hilbert space of odd dimension D≥ 3, there exists an operator R, such that 1≥ R≥ 0,
and Tr(U†

j,kR) 6= 0 for all j,k ∈ {0, . . . ,D−1}, where U jk are as defined in (63).

Proof. By combining Lemma 8 with Lemma 9, and the observation that UD−n,0 = U†
n,0, U0,D−m = U†

0,m and ωnmUD−n,D−m =

Un,m, we find that we can obtain an R with the desired properties, if we choose (an)
(D−1)/2
n=1 ,(bm)

(D−1)/2
m=1 ∈ C(D−2)/2 and

(An,m)
n=(D−1)/2,m=(D−1)/2
n=1,m=1 ,(Bn,m)

n=(D+1)/2,m=D−1
n=1,m=(D+1)/2 ∈ C(D−2)/2×(D−1)/2 and r ∈ R in Lemma 8 as non-zero numbers, such that

r := 2
(D−1)/2

∑
n=1

|an|+2
(D−1)/2

∑
m=1

|bm|+2
(D−1)/2

∑
n=1

(D−1)/2

∑
m=1

|Anm|+2
(D−1)/2

∑
n=1

D−1

∑
m=(D+1)/2

|Bn,m| ≤
1
2
. (69)

Having established the existence of an operator R with non-zero overlaps with all the operators U jk, which at the same time
satisfies that 1≥ R≥ 0, we are in the position to construct the subset Q ⊂ {A†

x1
· · ·A†

xN
AxN · · ·Ax1}d−1

x1,...,xN=0.

Lemma 11. Let H be a finite-dimensional complex Hilbert space with odd dimension D ≥ 3. Let HA be a finite-dimensional
complex Hilbert space with dimension d ≥ 5. Let {|ax〉}d−1

x=0 be an orthonormal basis of HA, and |a〉 ∈HA normalized. Then,
there exists a unitary operator U on H ⊗HA, and a subset Q ⊂ {A†

x1
· · ·A†

x2D−1
Ax2D−1 · · ·Ax1}d−1

x1,...,x2D−1=0, with |Q|= D2, such
that detM(Q) 6= 0, whereM(Q) is as defined in (62), and where Ax := 〈ax|U |a〉 for x = 0, . . . ,d−1.

Proof. Since D≥ 3 is odd, we begin this proof by using Lemma 10 in order to construct the subset Q. We know that there exists
an operator R on H such that 1≥ R≥ 0 and Tr(U†

j,kR) 6= 0 for all j,k = 0, . . . ,D−1, where the latter implies that

R =
D−1

∑
j,k=0

ξ j,kU j,k, ξ j,k =
1
D

Tr(U†
j,kR) 6= 0. (70)

Because of 1≥ R≥ 0 both,
√

R and
√

1−R, are well defined, and since d ≥ 5, we can define

V :=
1
2
|a0〉〈a|⊗

√
R+

1
2
|a1〉〈a|⊗Λ1 +

1
2
|a2〉〈a|⊗

√
1−R+

1
2
|a3〉〈a|⊗Λ3 +

1
2
|a4〉〈a|⊗1. (71)

We note that V †V = |a〉〈a|⊗1, and thus V is a partial isometry.
By virtue of being a partial isometry, V can be extended to a unitary operator U on H ⊗HA, that satisfies

A0 := 〈a0|U |a〉=〈a0|V |a〉=
√

R, A1 := 〈a1|U |a〉= 〈a1|V |a〉= Λ1,

A3 := 〈a3|U |a〉=〈a3|V |a〉= Λ3, A4 := 〈a4|U |a〉= 〈a4|V |a〉= 1.
(72)

(The above puts no particular restrictions on Ax := 〈ax|U |a〉 for x ≥ 5.) In the following, we consider a particular index subset
I ⊂ {0, . . . ,d−1}×(2D−1) of the form

(x1, . . . ,x2D−1) = ( 4, . . . ,4︸ ︷︷ ︸
2D−2− j−k

,3, . . . ,3︸ ︷︷ ︸
k

,1, . . . ,1︸ ︷︷ ︸
j

,0), j,k = 0, . . . ,D−1, (73)

thus leaving us with operators on the form

A†
x1
· · ·A†

x2D−1
Ax2D−1 · · ·Ax1 =A†

4
2D−2−k− j

A†
3

k
A†

1
j
A†

0A0A j
1Ak

3A2D−2−k− j
4 =U†

jkRU jk, (74)
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for j,k = 0, . . . ,D−1. We let

Q :={A†
x1
· · ·A†

x2D−1
Ax2D−1 · · ·Ax1}(x1,...x2D−1)∈I ,

={U†
jkRU jk}D−1

j,k=0.
(75)

By these constructions, it is clear that |Q|= D2. Next, we wish to show that Q is a linearly independent set. We have

Q j,k :=U†
jkRU jk,

[By (70)]

=
D−1

∑
j′,k′=0

ξ j′,k′U
†
jkU j′k′U jk,

[By (64)]

=
D−1

∑
j′,k′=0

ξ j′,k′ωk′ j− j′kU j′k′ .

(76)

Hence, if we let (c j,k)
D−1
j,k=0 ∈ CD×D, then

D−1

∑
j,k=0

c j,kQ j,k =
D−1

∑
j′,k′=0

ξ j′,k′
( D−1

∑
j,k=0

c j,kωk′ j− j′k
)

U j′k′ . (77)

In order to show that Q = {Q j,k}D−1
j,k=0 is a linearly independent set, we want to check that Eq. (77) vanishes only when all c j,k are

zero. Since {U j′k′}D−1
j′,k′=0 is a basis, we can conclude from Eq. (77) that ∑D−1

j,k=0 c j,kQ j,k = 0 implies that ξ j′,k′∑D−1
j,k=0 c j,kωk′ j− j′k =

0, for all j′,k′ = 0, . . . ,D−1. From (70), we know that ξ j′,k′ 6= 0, and thus it follows that

ω†
k′Cω j′ =

D−1

∑
j,k=0

c j,kωk′ j− j′k = 0, j′,k′ = 0, . . . ,D−1, (78)

where C := [c j,k]
D−1
j,k=0 andω j′ :=(1,ω j′ ,ω2 j′ , . . . ,ω(D−1) j′)t . We note that {ω j′}D−1

j′=0 forms a basis of CD. Hence, [ω†
k′Cω j′ ]

D−1
k′, j′=0

is nothing but the matrix-representation of C in the basis {ω j′}D−1
j′=0, and thus (78) implies that C = 0, and consequently c j,k = 0.

Hence, we can conclude that {Q j,k}D−1
j,k=0 is a linearly independent set. As in (62), we can defineM(Q) = [M jk, j′k′ ]

D−1
j,k, j′,k′=0 with

M jk, j′k′ := Tr(Q†
j,kQ j′,k′). From the linear independence of Q, it follows that detM(Q) 6= 0.

Finally, we assemble the above results in order to prove that purity is a typical property of a set of operators {Ax}d−1
x=0 of a

finite-dimensional Hilbert space with odd dimension.

Proposition 12. Let H be a finite-dimensional complex Hilbert space with odd dimension D≥ 3. Let HA be a finite-dimensional
complex Hilbert space with dimension d ≥ 5. Let {|ax〉}d−1

x=0 be an orthonormal basis of HA, and |a〉 ∈HA normalized. For
each unitary operator U on H ⊗HA, let {Ax}d−1

x=0 be defined by Ax := 〈ax|U |a〉 for x = 0, . . . ,d−1. Then, {Ax}d−1
x=0 satisfies the

purity condition in Definition 3 for all unitary operators U on H ⊗HA, except for a subset of Haar-measure zero.

Proof. For any fixed subset Q ⊂ {A†
x1
· · ·A†

x2D−1
Ax2D−1 · · ·Ax1}d−1

x1,...,x2D−1=0, with corresponding matrixM(Q) as defined by (62),
it is the case that detM(Q) is a polynomial in the real and imaginary parts of the matrix elements in a matrix representation of
U (where one may note that since M(Q) is positive semi-definite, it follows that detM(Q) is real-valued). Hence, by Lemma
7, we know that either detM(Q) = 0 for all U , or detM(Q) 6= 0 for all U except for a subset of Haar measure 0. By Lemma
11, there exists a unitary U on H ⊗HA, and a subset Q ⊂ {A†

x1
· · ·A†

x2D−1
Ax2D−1 · · ·Ax1}d−1

x1,...,x2D−1=0, with |Q| = D2, such that
detM(Q) 6= 0. Hence, we can conclude that detM(Q) 6= 0 for all U , except for a subset of measure zero. If detM(Q) 6= 0,
then this implies that the elements of Q are linearly independent. Since |Q| = D2 = dimL (H ), it moreover follows that
Sp(Q) = L (H ). Consequently, Sp

(
{A†

x1
· · ·A†

x2D−1
Ax2D−1 · · ·Ax1}d−1

x1,...,x2D−1=0

)
= L (H ). By Proposition 6 it follows that

{Ax}d−1
x=0 satisfies the purity condition. We can conclude that for all unitary operators on H ⊗HA, except for a subset of Haar

measure zero, it is the case that {Ax}d−1
x=0 satisfies the purity condition.
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E. Rate of decay

As we have seen in Section V, the CMI of an MPS decays exponentially to zero when the matrices of the MPS satisfy the
purity condition (see Def. 3). Moreover, the transfer operator of an injective MPS, E, decays to its unique fixed point exponen-
tially fast at a rate lower bounded by the gap of the channel. The decay rate is often referred to as the correlation length. One
could expect that there exists a relation between the correlation length and the decay rate of the classical CMI of Theorem 4. In
this section, we consider two examples which give clear evidence of the absence of such relation.

Consider an MPS of the form of Eq. (1) such that all matrices Axi have rank one. After a measurement of system B, the reduced
state ΨC(xB) becomes pure for any measurement outcome (see Eq. (14)). Therefore, the average von Neumann entropy of
ΨC(xB), and thus the post-measurement CMI according to Eq. (12), is zero instantaneously even if region B is a single site. On the
other hand, the correlation length need not be zero. For example, given a collection of transition probabilities, {P(x j|xi)}d−1

xi,x j=0,

and an orthonormal basis, {|xi〉}d−1
xi=0, the repeated application of the transfer operator of an MPS with Axi j =

√
P(x j|xi)|x j〉〈xi|

effectively implements a classical Markov process with transition probability P(x j|xi) such that

E◦N(χ) =
d−1

∑
x1,...,xN=0

P(x2|x1) · · ·P(xN |xN−1)〈x1|χ|x1〉|xN〉〈xN |.

Nothing prevents this Markov chain to have a slow convergence to its equilibrium distribution.
Conversely, consider an MPS with matrices Axi proportional to unitary operators. As we have discussed in Section VI A, this

implies that there is no decay of the von Neumann entropy, and thus the CMI remains constant. However, an injective MPS
always has a finite correlation length. As a concrete example, consider

Axi j :=
1
D

D−1

∑
k=0

e2πi
kx j
D |k〉〈(k+ xi) mod D|,

where {|k〉}D−1
k=0 is an orthonormal basis. One can easily check that Axi j are proportional to unitary operators, and hence the

average von Neumann entropy, 〈S [ΨC(xB)]〉, does not decay. The transfer operator of this MPS is the replacement map that
replaces any input state, χ , with the maximally mixed state, i.e.,

E(χ) =
D−1

∑
xi,x j=0

Axi j χA†
xi j

=
Tr χ
D

1.

In Refs. 23 and 24, the decay of classical and quantum correlations is also studied. There, the authors introduce an entan-
glement measure called Localizable Entanglement (LE). The LE is defined as the maximal amount of entanglement that can be
created on average between two spins at positions i and j of a chain by performing local measurements on the other spins. It is
easy to note that the LE is similar to the scenario that we are considering in this paper (see Eq. (13)). Indeed, the difference is
simply that the LE optimises over the basis of the measurement, while we pick a concrete basis. For the case when the measured
spins are spin-1/2, it is shown in Refs. 23 and 24 that the connected correlation function provides a lower bound on the LE.

F. Examples

In this section we consider examples that illustrate some features of the process under study. As a prototypical example,
we look at the AKLT model and obtain the exact convergence rate in a specific basis. Then, we consider MPSs with strictly
contractive transfer operator and pure fixed point. This second example shows that primitivity of the transfer operator is not a
necessary condition for the exponential convergence of the post-measurement CMI. In the last example that we construct, the
purity condition is violated up to a fixed length |B|= N, but satisfied thereafter.

1. AKLT state

The first state we want to consider is the 1D AKLT model. The AKLT state defined on a chain has a well-known MPS
description with bond dimension D = 2 and physical dimension d = 3. The matrices in the MPS picture are given by

A0 =−
1√
6

(
1 0
0 −1

)
, A+ =

√
1
3

(
0 0
1 0

)
, A− =−

√
1
3

(
0 1
0 0

)
. (79)
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We take the {xi} = {0,+,−} as the basis for our physical space. It can be seen by inspection that the transfer operator,
E(χ) = ∑xi Axi χA†

xi
, has a unique stationary state ρ = 1/2. In the infinite chain setting, the probability of a measurement

outcome xB = x1, . . . ,xN is given by

pΨ(xB) =
1
2

Tr
[
AxN · · ·Ax1A†

x1
· · ·A†

xN

]
. (80)

We want to calculate the average entropy on C after measurement of system B, i.e., we need to estimate

〈S [ΨC (xB)]〉= ∑
xB=0,+,−

pΨ (xB)S


 AxN · · ·Ax1 A†

x1
· · ·A†

xN

Tr
(

AxN · · ·Ax1A†
x1 · · ·A†

xN

)


 . (81)

We note two scenarios: pΨ(xB) = 0 and pΨ(xB) 6= 0. Since A+A+ = A−A− = 0, we get that whenever the string xB contains
two (or more) successive + (or −), then pΨ(xB) = 0. In other words, the only strings that give a pΨ(xB) 6= 0 are those with an
alternating sequence (Ex: +−+−), possibly interspersed with 0’s. However, the only string with non-zero entropy is the one
with all 0’s because any alternating sequence has rank one. This string will occur with probability 1/3N . We get that

〈S [ΨC(xB)]〉=
1

3N S [ΨC(x0)] , (82)

where x0 := 0, . . . ,0. Hence, the AKLT model in the standard basis has a post-measurement CMI that is exponentially decaying
in the size of B for large A and C. The correlation length is coincidentally the same as the classical CMI decay in this basis.

Let us now consider a change of basis. The 1D AKLT state is also given by the MPS representation with matrices

Ã0 :=

√
1
3

σ̂x =

√
1
3

(
0 1
1 0

)
, Ã1 :=

√
1
3

σ̂y =

√
1
3

(
0 −i
i 0

)
, Ã2 :=

√
1
3

σ̂z =

√
1
3

(
1 0
0 −1

)
,

where σ̂i are the Pauli matrices. The Pauli matrices are unitary, and thus the average von-Neumann entropy of ΨC(xB) (Eq. (81))
is constant, namely log2. In other words, the post-measurement CMI of the AKLT chain when measured in the basis corre-
sponding to the Pauli matrices is not decaying. This is consistent with the discussion in Section VI A because the AKLT chain
is in the Haldane phase, which is a SPT phase protected by the Z2× Z2 symmetry generated by the π rotations around three
orthogonal axes.

2. Strictly contractive map with a pure fixed point

As mentioned in Section II, translationally invariant MPSs are injective if and only if the transfer operator E, defined in (2), is
primitive [30], where primitivity means that the channel possesses a unique full-rank fixed point. Primitivity in turn guarantees
the existence of a gapped parent Hamiltonian and exponential decay of correlations [13, 38].

In view of the essential role played by primitivity for the decay of correlations, one may ask how it relates to the purity
condition for the exponential decay of the CMI, in the sense of Theorem 4. In this section, we present an example which shows
that primitivity is not a necessary condition for the exponential decay of the CMI. In other words, we consider an MPS with a
non-primitive transfer operator, which nevertheless yields and exponentially decaying CMI due to purity.

Consider an MPS of the form of Eq. (1) which has a strictly contractive transfer operator, E, with a pure fixed point, denoted
by |φ〉. Let us recall that a channel, Φ, is strictly contractive if there exists a number 0≤ α < 1 such that ‖Φ(χ1)−Φ(χ2)‖1 ≤
α‖χ1− χ2‖1 for all density operators χ1 and χ2. Note that if a channel is strictly contractive, then the fixed point is unique.
Note further that, since the fixed point of E is pure, the transfer operator is, by definition, not primitive. Let us also assume
that F =

√
E∗|C|(R) is full rank. Under these assumptions, our aim is to find an exponentially decaying bound of the average

von Neumann entropy of the reduced post-measurement state (see Eq. (15)). We start by using the concavity of the entropy and
obtain

〈S [ΨC(xB)]〉pΨ(xB) ≤ S

(
1

K2 ∑
xB

FAxN · · ·Ax1σA†
x1
· · ·A†

xN
F†

)
= S

(
FEN (σ)F†

Tr [FEN (σ)F†]

)
,

where K2 = Tr
[
FEN (σ)F†

]
. The purity of the fixed point of E allows us to transform the above inequality to

〈S [ΨC(xB)]〉pΨ(xB) ≤ S
(

FEN (σ)F†

Tr [FEN (σ)F†]

)
=

∣∣∣∣S
(

FEN (σ)F†

Tr [FEN (σ)F†]

)
−S
(

FEN (|φ〉〈φ |)F†

Tr [FEN (|φ〉〈φ |)F†]

)∣∣∣∣ ,
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We can further bound the average von Neumann entropy using the Fannes-Audenaert inequality [39, 40]. This yields

〈S [ΨC(xB)]〉pΨ(xB) ≤ t log(D−1)+HB(t), (83)

where HB is the binary entropy, i.e., HB(t) = −t log(t)− (1− t) log(1− t), with HB(0) := 0 and HB(1) := 0, and where t is
defined as

t :=
1
2

∥∥∥∥
FEN (σ)F†

Tr [FEN (σ)F†]
− FEN (|φ〉〈φ |)F†

Tr [FEN (|φ〉〈φ |)F†]

∥∥∥∥
1
, (84)

with ‖ · ‖1 denoting the trace norm.
For any full-rank F , and any pair of density operators χ1, χ2 on a finite-dimensional Hilbert space, one can show that

∥∥∥∥
Fχ2F†

Tr(Fχ2F†)
− Fχ1F†

Tr(Fχ1F†)

∥∥∥∥
1
≤ 2

(
ν1(F)

νD(F)

)4

‖χ1−χ2‖1, (85)

where ν1(F) and νD(F) denote the largest and the smallest singular values of F , and where we note that νD(F) > 0 since F is
full-rank on a finite-dimensional space.

By combining (84) and (85) with an iterative use of strict contractivity of E, we find an upper-bound on t such that

t ≤
(

ν1(F)

νD(F)

)4

‖EN (σ)−EN (|φ〉〈φ |)‖1,

≤
(

ν1(F)

νD(F)

)4

αN‖σ −|φ〉〈φ |‖1. (86)

If it would be possible to choose α = 0, then ‖E(χ1)−E(χ2)‖1 = 0, and thus E(χ1) =E(χ2), which implies that the convergence
is not only exponential, but immediate. Hence, without loss of generality, we may in the following assume that 0 < α < 1.

The next step consists of bounding the binary entropy, HB(t). For that, we define the function g(t) := t−t log t, with g(0) := 0.
One can show that g is monotonically increasing on t ∈ [0,1] and satisfies HB(t)≤ g(t) for 0≤ t ≤ 1. These two properties of g
together with inequality (86) lead to

HB(t)≤
(

ν1(F)

νD(F)

)4

αN ‖σ −|φ〉〈φ |‖1

−
(

ν1(F)

νD(F)

)4

αN ‖σ −|φ〉〈φ |‖1 log

[(
ν1(F)

νD(F)

)4

‖σ −|φ〉〈φ |‖1

]

−
(

ν1(F)

νD(F)

)4

‖σ −|φ〉〈φ |‖1 NαN logα.

(87)

By combining (83) with (87), and again using inequality (86), we find that

〈S [ΨC(xB)]〉pΨ(xB) ≤ c1αN + c2NαN , (88)

where c1 and c2 are defined as

c1 :=
(

ν1(F)

νD(F)

)4

‖σ −|φ〉〈φ |‖1

[
log(D−1)+1− log

((
ν1(F)

νD(F)

)4

‖σ −|φ〉〈φ |‖1

)]
,

c2 :=
(

ν1(F)

νD(F)

)4

‖σ −|φ〉〈φ |‖1 (− logα) .

The right-hand side of Eq. (88) decays exponentially to zero when N grows to infinity because 0 < α < 1. Hence, we have found
an exponentially-decaying bound on the post-measurement CMI for an MPS with a transfer operator that is strictly contractive
and has a pure fixed point. This shows that primitivity of the transfer operator is not a necessary condition for the CMI to
converge.

34



21

3. Jordan blocks

Here, we construct a simple example of a two-element set {A0,A1} that has a nontrivial correctable subspace (in the sense
of Section VI B) for small enough N, but where the purity condition nevertheless holds. For the Hilbert space H , we let
dimH = D+ 1 and let |0〉, . . . , |D− 1〉, |D〉 be an orthonormal basis of H . We define the projector P := ∑D−1

k=0 |k〉〈k| and the
operators

A0 :=
D−1

∑
k=0
|k+1〉〈k|, and A1 := |D〉〈D|. (89)

We note that A0 is a Jordan block with zeros on the diagonal, and that

A†
0A0 =

D−1

∑
k=0
|k〉〈k|= P, (90)

while A†
1A1 = A1 = |D〉〈D|. Thus, A†

0A0 +A†
1A1 = 1. Moreover, observe that

PA†
0A0P =λ0P, λ0 = 1,

PA†
1A1P =λ1P, λ1 = 0.

(91)

Hence, for a single site, the correctable subspace is C1 := span{|0〉, . . . , |D−1〉}.
Now consider the case of several sites, where we construct the sequence AxN · · ·Ax1 . It is not difficult to see that

AN
0 =

D−N

∑
k=0
|k+N〉〈k|. (92)

Hence, the correctable subspace decreases the dimension with one step along the sequence, until it is exhausted. As a conse-
quence, the CMI in this example will be exponentially decaying with a pre-factor that grows exponentially in D. Examples that
do not have a block diagonal structure can also be constructed. We note that the example above is similar in spirit to a bosonic
annihilation operator. Indeed, in the infinite system case where the operators Ai are bosonic creation and annihilation operators,
the purity condition no longer makes sense, and the theory breaks down.

VII. OUTLOOK

We have shown that the amplitudes of an injective MPS in a specific local basis follow a quasi-local Gibbs distribution with
exponentially decaying tails if the matrices associated to the MPS satisfy a particular ‘purity-condition’. The purity condition
reflects the fact that no information can be preserved in the virtual subspace on average, upon measurements. Our proof makes
extensive use of the theory of random matrix products.

A number of open questions remains. Perhaps the most obvious is whether the methods used in this paper can be applied
in higher dimensions or in the context of matrix product operators, and whether this leads to new insights or algorithmic im-
provements. In the setting of matrix product operators, the purity condition would no longer be sufficient to prevent information
transmission along the chain. There one would likely have to bound the stochastic process upon measurements from above and
below. Some recent progress in this direction has been communicated to us [41].

Another place where the present tools might be applied is in the rigorous analysis of the Wave Function Monte Carlo algorithm.
A first attempt to achieve this has been made in Ref. 22, yet some work remains to be done in connecting these mathematical
results to more realistic physical settings and particular examples. Yet another extension would be to continuous MPSs [42].

On a more technical level, it would be valuable to get a better handle on the decay rate of the stochastic process. In particular,
whether there exists a closed form expression as is the case for the correlation length (as the spectral gap of the transfer operator).

There are also open questions related to the purity condition, such as whether it can be easily checked or not for a given MPS.
In this investigation we have shown that the purity condition in essence is necessary and sufficient for the exponential decay of
the quantum conditional mutual information, IΦB(Ψ)(A : C|B), while we only have proved that purity is a sufficient condition for
the exponential decay of the classical conditional mutual information, IpΨ(A : C|B). An open question is thus whether purity in
essence also is a necessary condition for the latter, or whether there exists another weaker condition that would be both necessary
and sufficient.
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Appendix A: Elements of the proof of Theorem 4

Here we present a detailed account of the proof of Theorem 4. For convenience of presentation, we have divided the statement
of Theorem 4 into two parts. The first part, that purity implies (31), is proved in A 1, and stated in a more detailed version in
Theorem 18. The second part of Theorem 4, that (32) implies purity, is the focus of section A 2, and is formalized in Theorem
24.

1. Proof of the first part of Theorem 4

In order to show Theorem 4 in Section V, we use two key bounds, one on the average von Neumann entropy and a second on
the average purity. Here, we state these bounds in the form of two lemmas. In the following we let ‖Q‖ := sup‖ψ‖=1 ‖Q|ψ〉‖
denote the standard operator norm.

Lemma 13. Let {ρx}M−1
x=0 be a collection of density operators on a Hilbert space H , with D = dimH , and {p(x)}M−1

x=0 be real
numbers such that p(x)≥ 0 and ∑M−1

x=0 p(x) = 1. Then,

M−1

∑
x=0

p(x)S(ρx)≤−Q logQ+Q [log(D−1)+1] , (A1)

where we refer to Q as the the average purity and define it as

Q := 1−
M−1

∑
x=0

p(x)‖ρx‖. (A2)

Proof. To begin with, let us first consider a single density operator, ρx, and define the channel

Γ(ρx) := |φ〉〈φ |ρx|φ〉〈φ |+Φ⊥ρxΦ⊥,

where |φ〉 is a pure state in H , and Φ⊥ := 1−|φ〉〈φ |. The channel Γ is mixing-enhancing, i.e., S(ρx)≤ S [Γ(ρx)]. Moreover, Γ
transforms any input state into a block-diagonal state, which implies that for any function, f , and any input state, ρ , it holds that
f [Γ(ρ)] = f (|φ〉〈φ |ρ|φ〉〈φ |)+ f

(
Φ⊥ρΦ⊥

)
. Using these two properties of Γ, we obtain

S(ρx)≤ HB [q(x)]+q(x)S
[

Φ⊥ρxΦ⊥

Tr(Φ⊥ρx)

]
,

≤ HB [q(x)]+q(x) log(dimH −1) ,

where we have defined q(x) := Tr(Φ⊥ρx) = 1−〈φ |ρx|φ〉 for x = 0, . . . ,M, and recall that HB(t) =−t log t− (1− t) log(1− t) is
the binary entropy. Note that we can choose |φ〉 to be the normalized eigenvector corresponding to the largest eigenvalue of ρx,
which we denote as λ ↓1 (ρx). Then, we have q(x) = 1−λ ↓1 (ρx) = 1−‖ρx‖.

Considering now the whole set of density operators, {ρx}M
x=0, we have by the concavity of the entropy that

M−1

∑
x=0

p(x)S(ρx)≤ HB (Q)+Q log(dimH −1) , (A3)
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where Q is defined in Eq. (A2).
One can next bound the binary entropy, as HB(t) ≤ t − t log t on 0 ≤ t ≤ 1. By combining this observation with (A3), we

obtain (A1).

The average purity, Q, defined in Eq. (A2) can be bounded if one considers some structure on the density operators and
the probabilities. In particular, taking ρx = ΨC(xB) and p(x) = pΨ(xB) (see Eq. (1) and Eq. (7)), the average purity is Q =

1−K−2 ∑d−1
xN ,...,x1=0 ‖FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†‖, where recall that σ = E|A|(L) and F†F = E∗|C|(R). An upper and a lower

bound on Q are stated and shown in the following lemma.

Lemma 14. Let {Ax}d−1
x=0 be a collection of operators on a Hilbert space, H , with D := dimH ≤+∞, such that ∑d−1

x=0 A†
xAx = 1.

Let σ be a density operator on H , and F an operator on H , such that F†F ≤ 1. Then,

1
K2 ∑

xB

λ ↓2
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†)≤ Q≤ D−1

K2 ∑
xB

λ ↓2
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) , (A4)

where xB := x1, . . . ,xN , and where the sum over xB spans all of {0, . . . ,d− 1}N . Moreover, K is a normalization constant such
that

K2 := ∑
xB

Tr
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) ; (A5)

and Q is

Q = 1− 1
K2 ∑

xB

∥∥FAxN · · ·Ax1σA†
x1
· · ·A†

xN
F†∥∥ . (A6)

Proof. Consider a positive semi-definite operator, ρ ≥ 0, and define a function, L, on ρ such that

L(ρ) :=
D

∑
j=2

λ ↓j (ρ).

This function L(ρ) can be upper and lower bounded as

λ ↓2 (ρ)≤ L(ρ)≤ (D−1)λ ↓2 (ρ). (A7)

Moreover, it holds that

λ ↓1 (ρ)+L(ρ) = Tr(ρ). (A8)

If we introduce in Eq. (A8) the positive operator ρ := K−2FAxN · · ·Ax1 σA†
x1
· · ·A†

xN
F† and we sum over all possible values of

xB := x1, . . . ,xN , we obtain

1
K2 ∑

xB

λ ↓1
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†)+ 1

K2 ∑
xB

L
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†)

=
1

K2 ∑
xB

Tr
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) ,

= 1,

where the last equality holds due to the definition of K in Eq. (A5). This implies that

1
K2 ∑

xB

L
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†)= 1− 1

K2 ∑
xB

λ ↓1
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) ,

= 1− 1
K2 ∑

xB

∥∥FAxN · · ·Ax1σA†
x1
· · ·A†

xN
F†∥∥ ,

= Q.

Using the bounds of Eq. (A7), we finish the proof, since we obtain the bounds on Q in Eq. (A4).
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Recall that we throughout this investigation assume that log denotes the natural logarithm. We state the following two lemmas
without proof.

Lemma 15. Let

HB(t) :=−t log t− (1− t) log(1− t), 0 < t < 1, (A9)

and HB(0) := 0 and HB(1) := 0. Let

g(t) := t− t log t, 0 < t ≤ 1, (A10)

and g(0) := 0. Then, g is monotonically increasing on [0,1], and

HB(t)≤ g(t), 0≤ t ≤ 1. (A11)

Lemma 16.

−t log t ≤ 1
ε

t1−ε , 0≤ t ≤ 1, 0 < ε < 1. (A12)

We recall that if the channel E is primitive, then it follows that E has a unique full-rank fixed point ρ [30]. With the
replacement-map R(σ) := ρ Tr(σ), the fact that every initial state σ converges to ρ can be expressed as limN→∞EN = R.
Since the underlying Hilbert space is finite-dimensional, we can express the convergence in terms of any norm. It is convenient
to express the convergence in terms of the norm

‖F‖1:1 := sup
‖Q‖1=1

‖F (Q)‖1, (A13)

and thus limN→∞ ‖EN−R‖1:1 = 0, where ‖Q‖1 := Tr
√

Q†Q is the trace norm.

Lemma 17. Let {Ax}d−1
x=0 be operators on a Hilbert space H , with D := dimH <+∞, such that ∑d−1

x=0 A†
xAx = 1, and E(·) :=

∑d−1
x=0 Ax ·A†

x is primitive. Then, there exists a real number r > 0 and a natural number N0 such that

〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉 ≥ r, ∀|A|, |C|, ∀‖R‖= 1,‖L‖= 1, ∀|B| ≥ N0. (A14)

Proof. For the map R(σ) := ρ Tr(σ) with ρ the unique fixed point ρ of E, we first observe that
∣∣∣〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉−〈R|ρ|R〉

∣∣∣=
∣∣∣Tr
(
|R〉〈R|

(
E|A|+|B|+|C|(|L〉〈L|)−ρ

))∣∣∣,

≤
∥∥|R〉〈R|

∥∥∥∥E|A|+|B|+|C|(|L〉〈L|)−ρ
∥∥

1,

=
∥∥∥E|B|

(
E|A|+|C|(|L〉〈L|)

)
−R

(
E|A|+|C|(|L〉〈L|)

)∥∥∥
1
,

≤
∥∥E|B|−R

∥∥
1:1‖E

|A|+|C|(|L〉〈L|)‖1,

=
∥∥E|B|−R

∥∥
1:1. (A15)

Since E is assumed to be primitive, it follows that E has a unique full rank fixed point ρ . Since H is assumed to be finite-
dimensional, it follows that the minimal eigenvalue of ρ is such that λmin(ρ)> 0. By (A15), it follows that

λmin(ρ)−
∥∥E|B|−R

∥∥
1:1 ≤〈R|ρ|R〉−

∥∥E|B|−R
∥∥

1:1,

≤〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉.
(A16)

Since lim|B|→∞
∥∥E|B|−R

∥∥
1:1 = 0 and λmin(ρ)> 0, it follows that there exists an r such that λmin(ρ)> r > 0 and a N0, such that

〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉 ≥ r, ∀|B| ≥ N0. (A17)

One should note that r and N0 are independent of |A|, |C|, and all normalized |R〉 and |L〉.
Theorem 4 in the main text follows as a direct corollary of Theorem 18 below with κ := γ1−ε and c := cε for any fixed

0 < ε < 1. In essence, we use the bound f (N)≤ cγN in Proposition 5 in order to prove the bound in Theorem 18, and thus it is
the same γ that appears in both bounds. The reason for the transition from γ to γ1−ε is loosely speaking due to a leading order
term proportional to |B|γ |B|. This term appears in a bound on the CMI and can be accommodated by an arbitrarily small sacrifice
of the rate in the exponential decay. However, since we here are not only interested in the asymptotics, but rather wish to achieve
a general bound valid for all values of |B|, the construction in the proof becomes more elaborate.
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Theorem 18. For a set of operators {Ax}d−1
x=0 on a Hilbert space H with D := dimH ≥ 2, and normalized |R〉, |L〉 ∈H , let Ψ

be the MPS as defined in (1) on a region Λ = ABC. The set {Ax}d−1
x=0 is such that ∑d−1

x=0 A†
xAx = 1 satisfies the purity condition in

Definition 3, and is such that E(·) := ∑d−1
x=0 Ax ·A†

x is primitive. For the constant γ as guaranteed by Proposition 5, and for every
0 < ε < 1, there exists a constant cε ≥ 0 such that

IpΨ(A : C|B)≤ IΦB(Ψ)(A : C|B)≤cε γ |B|(1−ε), |B|= 1,2, . . . . (A18)

The constant γ is independent of |A|, |B|, |C|, |L〉, |R〉 and ε . The constant cε is independent of |A|, |B|, |C|, |L〉 and |R〉, but may
depend on ε .

Proof. We first note that

IΦB(Ψ)(A : C|B) = 〈S [ΨA(xB)]〉pΨ(xB)+ 〈S [ΨC(xB)]〉pΨ(xB),

= 2〈S [ΨC(xB)]〉pΨ(xB),
(A19)

where we recall that pΨ(xΛ) = 〈xΛ|Ψ|xΛ〉, and where the state ΨX (xB) is the reduced state in region X of the post-measurement
state, Ψ(xB), and 〈S [Ψ(x)]〉pΨ(x) is the average von Neumann entropy

〈S [ΨC(xB)]〉pΨ(xB) = ∑
xB

pΨ(xB)S(ΨC(xB)), (A20)

with

pΨ(xB) :=
1

K2 Tr
[
AxN · · ·Ax1E

|A|(L)A†
x1
· · ·A†

xN
E∗|C|(R)

]
,

=
1

K2 Tr
[
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†] ,

(A21)

and

ΨC(xB) :=
1

pΨ(xB)K2 FAxN · · ·Ax1σA†
x1
· · ·A†

xN
F†, (A22)

where

F := ∑
x|BC|,...,xN+1

|xx|BC|,...,xN+1〉〈R|Ax|BC|,...,xN+1 ,

σ :=E|A|(L).
(A23)

The equality (A19) follows from the fact that the post-measurement state is pure, and thus the reduced states on regions A and
C are isospectral (up to zero eigenvalues). With ρxB := ΨC(xB) in Lemma 13, we know that

〈S [ΨC(xB)]〉pΨ(xB) ≤HB (Q)+Q log(D−1), (A24)

with

Q := 1−∑
xB

pΨ(xB)‖ΨC(xB)‖. (A25)

By Lemma 15 we know that the function g(t) = t − t log t is monotonically increasing on the interval [0,1] and satisfies
HB(t)≤ g(t). By combining this observation with (A24), we get

〈S [ΨC(xB)]〉pΨ(xB) ≤ g(Q)+Q log(D−1) =−Q logQ+Q+Q log(D−1). (A26)

By Lemma 14 we furthermore know that

Q≤D−1
K2 ∑

xB

λ ↓2
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) , (A27)
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where λ ↓j (O) are the eigenvalues of an operator O in non-increasing order, i.e., λ ↓1 (O) ≥ ·· · ≥ λ ↓D(O). Similarly, we let in the

following ν↓j (O) denote the singular values of O in non-increasing order ν↓1 (O) ≥ ·· · ≥ ν↓D(O). Then, recalling that for any
operator O, we have λ j(OO†) = ν j(O)2, we get

Q≤D−1
K2 ∑

xB

λ ↓2
(
FAxN · · ·Ax1σA†

x1
· · ·A†

xN
F†) ,

≤D−1
K2 ∑

xB

√
λ ↓1 (FAxN · · ·Ax1σA†

x1 · · ·A†
xN F†)λ ↓2 (FAxN · · ·Ax1σA†

x1 · · ·A†
xN F†),

=
D−1

K2 ∑
xB

ν↓1 (FAxN · · ·Ax1

√
σ)ν↓2 (FAxN · · ·Ax1

√
σ),

=
D−1

K2 f (N),

[By Proposition 5]

≤D−1
K2 cγN ,

=
D−1

〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉cγ |B|,

(A28)

where recall that N = |B| and the constant c and 0 < γ < 1 are independent of σ := E|A|(L) and F as in (16), and consequently
are independent of |A| and |C| (as well as of |B|).

By Lemma 17, there exist constants r > 0 and N0 such that 〈R|E|A|+|B|+|C|(|L〉〈L|)|R〉 ≥ r for all |B| ≥ N0. By Lemma 17 we
know that r and N0 do not depend on |A|, |B|, |C|, |R〉, |L〉. By combining this observation with (A28), we can conclude that

Q≤ c̃γ |B|, with c̃ :=
D−1

r
c, ∀|B| ≥ N0, (A29)

where we note that c̃ and N0 do not depend on |A|, |B|, |C|, |R〉, |L〉. By inspection of the definition of Q in (A25), one can see
that

Q≤ 1 (A30)

is trivially true. By combining (A29) and (A30), we thus get

Q≤ t, ∀|B| ≥ N0, with t := min
[
1, c̃γ |B|

]
, (A31)

where t by necessity is contained in the interval [0,1].
We next combine (A26) and (A31) with the monotonicity of g to obtain

〈S [ΨC(xB)]〉pΨ(xB) ≤g(Q)+Q log(D−1),

[Monotonicity of g, Lemma 15, together with (A31)]
≤g(t)+ t log(D−1),
=− t log t + t [1+ log(D−1)] ,
[By Lemma 16]

≤1
ε

t1−ε + t [1+ log(D−1)] ,

[By t ≤ t1−ε , 0≤ t ≤ 1, 0 < ε < 1]

≤
[

1
ε
+1+ log(D−1)

]
t1−ε .

(A32)

Since t = min
[
1, c̃γ |B|

]
≤ c̃γ |B| we get t1−ε ≤ c̃1−ε γ |B|(1−ε), and thus

〈S [ΨC(xB)]〉pΨ(xB) ≤
[

1
ε
+1+ log(D−1)

]
c̃1−ε γ |B|(1−ε). (A33)
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By combining this with (A19) we get

IΦB(Ψ)(A : C|B)≤c̃ε γ |B|(1−ε), ∀|B| ≥ N0,

with c̃ε =2
[

1
ε
+1+ log(D−1)

]
c̃1−ε .

(A34)

Finally we should remove the restriction that |B| ≥ N0. By (A19) and (A20) we can conclude that IΦB(Ψ)(A : C|B) =
2∑xB pΨ(xB)S

(
ΨC(xB)

)
≤ 2logD, where the last inequality follows since ΨC(xB) is (up to zero eigenvalues) isospectral to

the density operator in (14), and thus the entropy of these two states are equal. The state in (14) is a density operator on H ,
which has dimension D, and thus the entropy is bounded by logD. Let

cε := max
(

c̃ε ,2log(D)γ−(N0−1)(1−ε)
)
. (A35)

One can confirm that this guarantees that

IΦB(Ψ)(A : C|B)≤ cε γ |B|(1−ε) (A36)

for all |B|= 1,2, . . . . The resulting constant cε is independent of |A|, |B|, |C|, |L〉 and |R〉. By combining (A36) with

IpΨ(A : C|B) = IΦΛ(Ψ)(A : C|B)≤ IΦB(Ψ)(A : C|B), (A37)

we obtain

IpΨ(A : C|B)≤ cε γ |B|(1−ε). (A38)

By combining Lemma 2 with Theorem 18 (for the inequality IpΨ(A : C|B)≤ cε γ |B|(1−ε)), and defining κ := γ1−ε and c := cε
for some arbitrary but fixed 0 < ε < 1, we get the following.

Corollary 19. For a set of operators {Ax}d−1
x=0 on a Hilbert space H with D := dimH ≥ 2, and normalized |R〉, |L〉 ∈H , let Ψ

be the MPS as defined in (1) on a region Λ = ABC. The set {Ax}d−1
x=0 is such that ∑d−1

x=0 A†
xAx = 1, satisfies the purity condition in

Definition 3, and is such that E(·) := ∑d−1
x=0 Ax ·A†

x is primitive. Let p1,...,|Λ|(x1, . . . ,x|Λ|) = 〈xΛ|Ψ|xΛ〉 be the classical restriction
of Ψ, and assume that this restriction is such that p1,...,|Λ|(x1, . . . ,x|Λ|)> 0 for all x1, . . . ,x|Λ|. Let p`1,...,|Λ| be as defined in (19-21).
Then, there exist constants, 0≤ c and 0 < κ < 1, such that

S(p1,...,|Λ|‖p`1,...,|Λ|)≤c|Λ|κ`, 1≤ `≤ |Λ|−2. (A39)

2. Proof of the second part of Theorem 4

In this section we prove the second part of Theorem 4, i.e., that the exponential decay of the quantum CMI IΦB(Ψ)(A : C|B)
implies purity of the set of matrices {Ax}d−1

x=0 associated to |Ψ〉. In order to do this, we show several bounds that all combined
will allow us to bound f (N), and thus the quantum CMI.

The first step is to find a lower bound to the binary entropy.

Lemma 20. Define HB : [0,1]→ R by

HB(λ ) :=−λ logλ − (1−λ ) log(1−λ ), 0 < λ < 1,
HB(0) :=0, HB(1) := 0.

(A40)

Then,

HB(λ )≥ 4log(2)λ (1−λ ), 0≤ λ ≤ 1. (A41)

Proof. Define

f (λ ) :=
HB(λ )

λ (1−λ )
= g(λ )+g(1−λ ), g(λ ) :=− log(1−λ )

λ
. (A42)
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It is clear that f is symmetric around λ = 1/2, i.e., it is symmetric under the map λ 7→ 1−λ . In the following, we will prove
that g is a convex function on the interval [0,1], with the consequence that f also is a convex function.

Consider the function r(λ ) := e−λ 2/2−λ . One can confirm that r′′(λ ) ≥ 0 for all λ ≥ 0, and thus r is convex on [0,+∞).
Consequently, the tangent of r at λ = 0 is a lower bound to r on [0,+∞). Since the tangent at λ = 0 is 1−λ , we can conclude
that

e−λ 2/2−λ ≥ 1−λ , λ ≥ 0. (A43)

Assuming that 1 > λ > 0, we can rewrite (A43) as

g(λ )≥ λ
2
+1, (A44)

with the result that

g′′(λ ) =−2λ−2(1−λ )−1 +λ−1(1−λ )−2 +2λ−2g(λ )≥ λ
(1−λ )2 ≥ 0. (A45)

Hence g is convex on 0 < λ < 1. As mentioned above, it thus follows that f is a convex function. Since f moreover is symmetric
under the map λ 7→ 1−λ , it follows that the minimum is attained at λ = 1/2. Hence, f (λ ) ≥ f (1/2) = 4log2, which in turn
yields (A41).

While the above lemma bounds the binary entropy, the following lemma relates it to the von Neuman entropy of a density
operator.

Lemma 21. Let ρ be a density operator on a finite-dimensional Hilbert space. Then

HB
(
λ ↓1 (ρ)

)
≤ S(ρ), (A46)

where HB is as defined in (A40), and λ ↓1 (ρ) denotes the largest eigenvalue of ρ .

Proof. Recall that a vector a ∈ RN majorizes a vector b ∈ RN (denoted b ≺ a) if ∑k
j=1 b

↓
j ≤ ∑k

j=1a
↓
j for k = 1, . . . ,N− 1, and

∑N
j=1 b

↓
j = ∑N

j=1a
↓
j , where a↓ denotes the vector that we obtain by permuting the components of a, such that they occur in a

non-increasing order a↓1 ≥ a
↓
2 ≥ ·· · ≥ a

↓
N , and analogous for b↓. Also recall that if a and b can be regarded as probability

distributions, then b≺ a implies that the Shannon entropy of a is lower than the Shannon entropy of r, i.e., H(a)≤ H(b) [43].
Let N be the dimension of the Hilbert space, and consider the vector of ordered eigenvalues b :=

(
λ ↓1 (ρ), . . . ,λ

↓
N(ρ)

)
. We also

consider the vector a :=
(
λ ↓1 (ρ),1−λ ↓1 (ρ),0, . . . ,0

)
. We notice that both a and b can be regarded as probability distributions.

In both cases, λ ↓1 (ρ) ≥ 1−λ ↓1 (ρ) and λ ↓1 (ρ) < 1−λ ↓1 (ρ), one can confirm that b ≺ a, and consequently H(a) ≤ H(b). The
claim of the lemma follows by the observations that H(a) = HB

(
λ ↓1 (ρ)

)
and H(b) = S(ρ).

Next, we consider a collection of density operators and use Lemmas 20 and 21 to bound the average von Neumann entropy of
these density operators.

Lemma 22. Let {ρx}M−1
x=0 be density operators on a finite-dimensional Hilbert space, and let {px}M−1

x=0 be such that px ≥ 0 and
∑M−1

x=0 px = 1. Then,

M−1

∑
x=0

px

√
λ ↓1 (ρx)λ ↓2 (ρx)≤

1
2
√

log(2)

√
M−1

∑
x=0

pxS(ρx). (A47)

Proof. We first note that due to the convexity of x 7→ x2, we have

(
M−1

∑
x=0

px

√
λ ↓1 (ρx)λ ↓2 (ρx)

)2

≤
M−1

∑
x=0

px

(√
λ ↓1 (ρx)λ ↓2 (ρx)

)2

,

=
M−1

∑
x=0

pxλ ↓1 (ρx)λ ↓2 (ρx).

(A48)
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Next we note that 1−λ ↓1 (ρx) = ∑D
k=2 λ ↓k (ρx) ≥ λ ↓2 (ρx), which implies λ ↓1 (ρx)λ ↓2 (ρx) ≤ λ ↓1 (ρx)

(
1−λ ↓1 (ρx)

)
. This, combined

with (A48), yields

4 log(2)

(
M−1

∑
x=0

px

√
λ ↓1 (ρx)λ ↓2 (ρx)

)2

≤4log(2)
M−1

∑
x=0

pxλ ↓1 (ρx)λ ↓2 (ρx),

≤
M−1

∑
x=0

px4log(2)λ ↓1 (ρx)
(

1−λ ↓1 (ρx)
)
,

[By Lemma 20]

≤
M−1

∑
x=0

pxHB
(
λ ↓1 (ρx)

)
,

[By Lemma 21]

≤
M−1

∑
x=0

pxS(ρx),

(A49)

which implies (A47).

The last result that we need before stating the second part of Theorem 4 is a bound on the function f (N) in terms of the
average entropy, which is obtained in the following lemma.

Proposition 23. For a set of operators {Ax}d−1
x=0 on a Hilbert space H with D := dimH ≥ 2, and normalized |R〉, |L〉 ∈H , let

Ψ be the MPS as defined in (1) on a region Λ = ABC. The set {Ax}d−1
x=0 is such that ∑d−1

x=0 A†
xAx = 1. Then,

f (N)≤ 1
2
√

log(2)

√
∑
xB

pΨ(xB)S[ΨC(xb)], (A50)

where xB = x1, . . . ,xN and

f (N) := ∑
xB

ν↓1 (FAxN · · ·Ax1

√
σ)ν↓2 (FAxN · · ·Ax1

√
σ), (A51)

and where pΨ(xB) is as defined in (A21), ΨC(xb) as in (A22), as well as F and σ as in (A23).

Proof. First recall that if ν↓k denotes the k:th singular value in non-increasing order, and λ ↓k denotes the k:th eigenvalue in

non-decreasing order, then ν↓k (Q) =
√

λ ↓k (Q†Q). With this observation in mind, we find that

f (N) =∑
xB

√
λ ↓1
(

FAxN · · ·Ax1σA†
x1 · · ·A†

xN F†
)

λ ↓2
(

FAxN · · ·Ax1σA†
x1 · · ·A†

xN F†
)
,

=K2 ∑
xB

pΨ(xB)

√
λ ↓1
(
ΨC(xb)

)
λ ↓2
(
ΨC(xb)

)
,

[By Lemma 22]

≤K2 1
2
√

log(2)

√
∑
xB

pΨ(xB)S[ΨC(xb)],

=Tr
(
F†FEN(σ)

) 1
2
√

log(2)

√
∑
xB

pΨ(xB)S[ΨC(xb)],

[
F†F ≤ 1, EN(σ) is a density operator since E is a channel

]

≤ 1
2
√

log(2)

√
∑
xB

pΨ(xB)S[ΨC(xb)].

(A52)

Finally, in the theorem below we use all bounds derived previously to prove that an exponential decay of IΦB(Ψ)(A : C|B)
implies purity. One may note that Theorem 4 assumes that the MPS is injective, while this is not strictly speaking needed for
Theorem 24, where the relevant assumption rather is that σ := E|A|(L), and F†F = E∗|C|(R) are full rank operators.
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Theorem 24. For a set of operators {Ax}d−1
x=0 , such that ∑d−1

x=0 A†
xAx = 1, on a Hilbert space H with D := dimH ≥ 2, and

normalized |R〉, |L〉 ∈H , let Ψ be the MPS as defined in (1) on a region Λ = ABC. Suppose that |R〉, |L〉, |A|, and |C| are such
that σ := E|A|(L), and F†F = E∗|C|(R) are full rank operators, where E(·) := ∑d−1

x=0 Ax ·A†
x . Moreover suppose that there exist

constants c̃ and 0≤ κ̃ < 1, such that

IΦB(Ψ)(A : C|B)≤c̃κ̃ |B|, |B|= 1,2, . . . . (A53)

Then, {Ax}d−1
x=0 satisfies the purity condition in Definition 3.

Proof. We first note that

IΦB(Ψ)(A : C|B) = 2∑
xB

pΨ(xB)S[ΨC(xb)], (A54)

with pΨ(xB) as in (A21) and ΨC(xb) as in (A22). By comparing with Proposition 23 we can thus conclude that

f (N)≤ 1
2
√

2log(2)

√
IΦB(Ψ)(A : C|B), (A55)

with f (N) as in (A51). By assumption, there exist constants c̃ and 0≤ κ̃ < 1, such that (A53) holds. Combining (A53) and (A55)
yields f (N) ≤ cγ |B|, with c := 1

2
√

2log(2)
c̃, and γ := κ̃1/2. Since we moreover assume that σ := E|A|(L), and F†F = E∗|C|(R)

are full rank operators, we can conclude that the conditions of Proposition 5 are satisfied, and thus {Ax}d−1
x=0 satisfies the purity

condition in Definition 3.

We can conclude from Theorems 18 and 24 that purity in all essence is a necessary and sufficient condition for the exponential
decay of IΦB(Ψ)(A : C|B), and thus the typical post-measurement state Ψ(xB) loosely speaking approaches a pure product state.
Concerning the classical CMI IpΨ(A : C|B), purity is only stated as a sufficient condition for exponential decay. In relation to the
question whether purity also is necessary, one can note that for a normalized |ψ〉 ∈HA⊗HB⊗HC, it is the case that

Ipψ (A : C|B) = IΦΛ(ψ)(A : C|B) = 0 (A56)

if and only if ΦB(|ψ〉〈ψ|) can be written

ΦB(|ψ〉〈ψ|) =∑
xB

pB(xB)|χxB〉〈χxB |,

|χxB〉= ∑
xA,xC

eiθ(xA,xB,xC)
√

pA
xB
(xA)

√
pC

xB
(xC)|xA〉|xC〉,

(A57)

where {pB(xB)} is a probability distribution, and for each xB it is the case that {pA
xB
(xA)}xA and {pC

xB
(xC)}xC are probability

distributions, and θ(xA,xB,xC) ∈ R. One can also realize that the states |χxB〉 in some sense are typically not product states,
because of the arbitrary phase factors eiθ(xA,xB,xC), and thus IΦB(ψ)(A : C|B) 6= 0. This appears to leave room for the possibility
that there may exist cases of exponential decay of Ipψ (A : C|B), even though IΦB(ψ)(A : C|B) does not decay, and that there thus
may exist a weaker condition than purity for the exponential decay of Ipψ (A : C|B). However, if this indeed can happen for MPSs
with a fixed finite-dimensional virtual space, is an open question which we leave for future investigations.

Appendix B: Notions from probability theory

As mentioned in the main text, and in the proof overview, the proof of Proposition 5 relies on various probabilistic concepts.
Here, we briefly review the pertinent notions, and also collect the technical results that we will need at various points along
the proof. Throughout these derivations we will use bold letters, such as x, Y , etc, to denote random variables and random
operators (where ‘random variables’ by default are real-valued measurable functions on the underlying probability space, while
‘random operators’ are operator-valued measurable functions). In the following E(x), E(y), etc, denote the expectation value,
and E(y|x) denotes the expectation value of y conditioned on x. One should keep in mind that E(y|x) is a random variable
(due to x). One should also keep in mind the general relation E

(
E(y|x)

)
= E(y).
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1. Almost surely

When we say that a relation for one, or several, random variables holds almost surely (a.s.), it means that the relation is true
apart from a set of probability zero. Put differently, the relation is true with probability one. For example, x= y a.s. means that
P({ω ∈Ω : x(ω) = y(ω)}) = 1, where Ω denotes the underlying sample space, and ω an element of the sample space.

As examples, one can consider various notions that intuitively remain true even if ‘a few’ points are excluded. For example,
if x and y are such that x ≤ y then (if the expectations exist) E(x) ≤ E(y). This conclusion still holds, even if the inequality
only holds almost everywhere (see e.g. Theorem 4.4 in chapter 2 of Ref. 44).

Lemma 25. If x and y are non-negative random variables, then x≤ y a.s implies E(y)≤ E(x).

Another statement in a similar spirit is the following. (The claim of the lemma is contained in Theorem 4.4 in chapter 2 of
Ref. 44.)

Lemma 26. If x is a non-negative random variable, then x= 0 a.s. if and only if E(x) = 0.

For a random variable x, we define the positive and negative components by x+ := max(x,0), x− := max(−x,0). By this
construction, it is the case that x+ ≥ 0, x− ≥ 0, x= x+−x−. The expectation value E(x) of a random variable, x, is defined
as E(x) = E(x+)−E(x−) if at least one of E(x+) and E(x−) is finite.

Lemma 27. If x is a random variable such that x≥ 0 a.s. and E(x) = 0, then x= 0 a.s.

Proof. Since x≥ 0 almost surely, we can conclude that x−= 0 almost surely. Since x− by construction is a non-negative random
variable, it follows by Lemma 26 that E(x−) = 0. We can conclude that E(x) is well defined, and E(x) = E(x+)−E(x−) and
thus E(x) = 0 implies E(x+) = E(x−) = 0. Since x+ by construction is non-negative, Lemma 26 implies x+ = 0 a.s. We can
thus conclude that x= x+−x− = 0 a.s.

2. Stochastic convergence of real-valued sequences

A sequence of random variables (xN)N∈N is said to converge almost surely to a random variable x∞ (denoted limN→∞xN =
x∞ a.s.) if

P({ω ∈Ω : lim
N→∞

xN(ω) = x∞(ω)}) = 1. (B1)

As mentioned above, ω is an element of the underlying sample space, Ω, and xN(ω) is a specific realization of the stochastic
process. (If one thinks of an infinite sequence of coin-tosses, then xN vaguely stands for all possible sequences of coin-tosses,
while xN(ω) means a specific sequence of heads and tails.) What (B1) essentially says is that if we look at the set of all
sequences xN(ω) and x∞(ω), such that xN(ω) actually do converge to x∞(ω), then this set has probability 1.

In these derivations, we will often start with a process that converges limN→∞xN = x∞ almost surely, but we want to show
that limN→∞ E(xN) = E(x∞). This is not generally true, but as a consequence of Lebesgues dominated convergence theorem
(see e.g., Theorem 5.3 in chapter 2 of Ref. 44) we have the following.

Proposition 28. Suppose that xN , x∞ and y are random variables such that |xN | ≤ y for all N, where E(y) < +∞, and that
xN → x∞ a.s., then

lim
N→∞

E(xN) = E(x∞). (B2)

In the special case that y is equal to a constant C, one obtains the following special case (sometimes referred to as the bounded
convergence theorem).

Proposition 29. Suppose that xN , x∞ are random variables, and there exists a constant C <+∞, such that |xN | ≤C for all N.
If xN → x∞ a.s., then

lim
N→∞

E(xN) = E(x∞). (B3)

The following lemma is a consequence of the Borel-Cantelli Lemma (and is included in Theorem 3.1 in chapter 5 of Ref. 44).

Lemma 30. Let (xn)n∈N and x be random variables such that ∑∞
n=1 P(|xn−x|> ε)<+∞ for all ε > 0 (sometimes referred to

as complete convergence of (xn)n∈N to x). Then, (xn)n∈N converges almost surely to x.

The above can be used to obtain the following.
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Lemma 31. Let (rN)N∈N be a sequence of random variables, such that rN ≥ 0, and such that the expectations values E(rN)

exist and are finite. Suppose that there exists a number R such that limk→∞ E
(

∑k
N=1 rN

)
= R <+∞, then limN→∞ rN = 0 a.s.

Proof. We first want to note that if (aN)N∈N is a sequence of real numbers such that aN ≥ 0, and if Ak := ∑k
N=1 aN is such

that limk→∞ Ak = R < +∞, then we have limN→∞ aN = 0. With aN := E(rN), and Ak := ∑k
N=1 aN = E

(
∑k

N=1 rN

)
, it thus

follows, by the assumptions of the lemma, that limN→∞ E(rN) = limN→∞ aN = 0. By assumption, rN ≥ 0 and E(rN) are
well defined and finite. Hence, by Markov’s inequality, it follows that P(rN > ε) ≤ E(rN)/ε for all ε > 0. Consequently,

∑k
N=1 P(rN > ε)≤ 1/εE

(
∑k

N=1 rN

)
, and thus

∞

∑
N=1

P(|rN |> ε)≤1
ε

lim
N→∞

E

(
k

∑
N=1

rN

)
=

R
ε
<+∞, ∀ε > 0. (B4)

Hence, (rN)N∈N converges completely to 0. By Lemma 30, we can conclude that (rN)N∈N converges almost surely to 0.

3. Stochastic convergence of operator-valued sequences

Convergence of various sequences of operators play an important role in this investigation. Since we here exclusively will
deal with finite-dimensional spaces, one may argue that the distinction between ‘random variables’ and ‘random operators’ is
not very dramatic. For the sake of clarity, we will nevertheless throughout these derivations make a distinction of the these two
types and, to further this, we will use small bold letters, x, y, etc to denote random variables, while capital bold letters X , Y ,
etc denote random operators.

Here, we briefly recall that, on finite-dimensional Hilbert spaces, all norms are metrically equivalent. Due to the metrical
equivalence in finite dimensions (see e.g., Corollary 5.4.5 in Ref. 45), we do not need to make a distinction between different
norms when we discuss convergences of sequences of operators, and we can equivalently consider the element-wise convergence
of the elements of the matrix-representation in some arbitrary basis. In what follows we will switch between these equivalent
manifestations of convergence without any further comments. For the operator norms, we will mainly be using the supremum
norm, ‖O‖ := sup‖ψ‖=1 ‖O|ψ〉‖, and the trace-norm, ‖O‖1 :=Tr

√
O†O, but also the Hilbert-Schmidt norm, ‖O‖2 :=

√
Tr(O†O).

Let us now consider a sequence of random operators (XN)N∈N and X∞ on a finite-dimensional Hilbert space. We interpret
the convergenceXN →X∞ a.s. as

lim
N→∞
‖XN−X∞‖= 0 a.s., (B5)

or equivalently for any other operator norm (since the underlying Hilbert space is finite-dimensional), or as

lim
N→∞
〈k|XN |k′〉= 〈k|X∞|k′〉 a.s. ∀k,k′ = 1, . . . ,D. (B6)

The following is a counterpart of Proposition 29, which can be obtained by applying Proposition 29 to the real and imaginary
matrix components with respect to a basis, i.e., Re〈k|XN |k′〉 and Im〈k|XN |k′〉.
Proposition 32. Suppose that XN and X∞ are random operators on a complex Hilbert space with finite dimension, and that
there exists a constant C <+∞, such that ‖XN‖ ≤C for all N. IfXN →X∞ a.s., then

lim
N→∞

E(XN) = E(X∞). (B7)

4. Martingales

Our primary interest in martingales is that they allow for statements concerning the stochastic convergence of sequences
of random variables. However, in order to connect to the manner that these convergence-theorems typically are phrased in
the literature, we need to briefly discuss some technical concepts. (For a more thorough introduction, see, e.g., chapter 10 in
Ref. 44.)

Consider a sequence of random variables (yN)N∈N on a probability space (Ω,F ,P), where Ω is the sample space, F is
a σ -algebra (the event space), and P a probability measure. We also consider a filtration, i.e., a non-decreasing sequence of
σ -subalgebras F1 ⊂F2 ⊂ ·· · ⊂F . A sequence (yN)N∈N of random variables is said to be adapted to (FN)N∈N if each yN
is measurable with respect to FN . A sequence (yN)N∈N is a martingale with respect to (FN)N∈N if (yN)N∈N is adapted to
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(FN)N∈N, satisfies E(yN+1|FN) = yN a.s., as well as E(|yN |)<+∞. Intuitively, FN stands for the information available to us
at step N. In our setting, this information corresponds to variables x1, . . . ,xN (which are assumed to also be random variables on
the same underlying probability space (Ω,F ,P)). More precisely, FN :=σ(xN , . . . ,x1), which denotes the σ -algebra generated
by x1, . . . ,xN and often is referred to as the natural filtration of x1, . . . ,xN . Since in the following we exclusively will use the
natural filtrations, we will employ the more succinct notation E(yN+1|xN , . . . ,x1) := E(yN+1|FN), with FN := σ(x1, . . . ,xN).
We moreover say that (yN)N∈N is a martingale with respect to (xN)N∈N if

E(yN+1|xN , . . . ,x1) =yN a.s., and E(|yN |)<+∞,

with yN = fN(xN , . . . ,x1),
(B8)

for (Borel measurable) functions fN . The construction with the functions fN guarantees that (yN)N∈N is adapted to the natural
filtration of (xN)N∈N. The following proposition is obtained as a special case of Theorem 12.1 in chapter 10 of Ref. 44.

Proposition 33. Let (yN)N∈N be a martingale with respect to another process (xN)N∈N, and suppose that there exists a real
number C such that |yN | ≤C for all N ∈ N, then there exists a random variable y∞ such that

lim
N→∞

yN = y∞ a.s. and E(|y∞|)<+∞. (B9)

As a technical remark concerning the relation to Theorem 12.1 in chapter 10 of Ref. 44, one may note that the condition
|yN | ≤C implies that (yn)n∈N is uniformly integrable.

Our main interest is not these ‘standard’ real-valued martingales, but rather operator-valued martingales. It is again worth re-
calling that we here only consider finite-dimensional spaces, and hence we can represent each operator as a finite matrix with re-
spect to some choice of basis. With this in mind, we say that an operator-valued process (YN)N∈N on a finite-dimensional Hilbert
space is an operator-valued martingale with respect to a stochastic process (xN)N∈N if each of Re〈k|YN |k′〉 and Im〈k|YN |k′〉
are a martingale with respect to (xN)N∈N for some fixed orthonormal basis {|k〉}D

k=1. One may note that the condition that
E(|Re〈k|YN |k′〉|)<+∞ and E(|Im〈k|YN |k′〉|)<+∞ in the finite-dimensional case is equivalent to

E(‖YN‖)<+∞. (B10)

Similarly, the conditions

E
(
Re〈k|YN+1|k′〉

∣∣xN , . . . ,x1
)
= Re〈k|YN+1|k′〉 a.s.,

E
(
Im〈k|YN+1|k′〉

∣∣xN , . . . ,x1
)
= Im〈k|Yn+1|k′〉 a.s.,

(B11)

can equivalently be stated as

E(YN+1|xN , . . . ,x1) = YN a.s. (B12)

In a similar manner, Proposition 33 can be applied to the real and imaginary components of an operator-valued martingale, which
yields the following ‘operator counterpart’ to Proposition 33.

Proposition 34. Let (YN)N∈N be an operator-valued martingale on a finite-dimensional complex Hilbert space with respect to
a real-valued process (xN)N∈N, and suppose that there exists real number C such that ‖YN‖ ≤C for all N ∈N, then there exists
a random operator, Y∞, such that

lim
N→∞

YN = Y∞ a.s. and E(‖Y∞‖)<+∞. (B13)

Appendix C: Stochastic process of measurements

Consider a set of operators {Ax}d−1
x=0 on a finite-dimensional Hilbert space, H , with dimension D := dimH , such that

∑d−1
x=0 A†

xAx = 1. We introduce the stochastic process (xN)N∈N with a joint distribution such that, for each N, the marginal
distribution of x1, . . . ,xN is given by

P(xN = xN , . . . ,x1 = x1) =
1
D

Tr
(
AxN · · ·Ax1A†

x1
· · ·A†

xN

)
. (C1)

This means thatx1, . . . ,xN can be interpreted as the outcomes of a sequence of measurements, where the initial state is maximally
mixed, i.e., σ = 1/D. Note that when we in the following refer to an expectation value, the underlying probability distribution
is assumed to be (C1) unless otherwise stated. It will be useful to note that

P(xN+1 = xN+1|xN = xN , . . . ,x1 = x1) =
Tr(A†

x1
· · ·A†

xN
A†

xN+1
AxN+1AxN · · ·Ax1)

Tr(A†
x1 · · ·A†

xN AxN · · ·Ax1)
, (C2)
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where P(y|x) := P(y,x)/P(x) denotes the conditional probability.
Based on the process (xN)N∈N, we define sequences of random operators

AN :=AxN ,

WN :=AN · · ·A1 = AxN · · ·Ax1 ,

MN :=





W †
NWN

Tr(W †
NWN)

if Tr(W †
NWN) 6= 0,

0 if Tr(W †
NWN) = 0.

(C3)

One should note thatMN is Hermitian, i.e.,M †
N =MN . Moreover,MN is positive semi-definite, and either has trace 1 or trace

0. Hence,MN is either a density operator, or the zero operator. One may further note that

Tr(W †
NWN) = Tr(A†

x1
· · ·A†

xN
AxN · · ·Ax1) = P(xN , . . . ,x1)D, (C4)

from which we can conclude thatMN = 0 with probability zero, i.e.,MN is almost surely a density operator.
As a side-remark, one might note that MN is not the post-measurement state of the measurement process. The post-

measurement state would rather be ρN :=WNW
†
N/Tr(W †

NWN). However, MN and ρN have the same non-zero eigenvalues
(as can be seen by a singular value decomposition ofWN). The main reason for why it is convenient to useMN , rather than ρN ,
is that onMN we can directly utilize ∑x A†

xAx = 1, which for example is used in the proof of the martingale property in Lemma
35.

In the following it will be useful to observe that since AN is a (deterministic) function of xN [as seen by (C3)] it is the case
that

E(AN |xN) = AxN =AN . (C5)

Analogously, E(WN |xN , . . . ,x1) =WN , and similarly E(MN |xN , . . . ,x1) =MN .

Appendix D: Elements of the proof of Proposition 5

1. limN→∞MN =M∞ a.s.

The purpose of this section is to show thatMN has limit operatorM∞ in a sufficiently strong sense, and that this limit operator
has ‘nice’ properties. We do this by first showing that MN is a martingale relative to the sequence of measurement outcomes
xN . This in turn yields almost sure convergence to limiting operator M∞. Recall that the underlying probability distribution is
assumed to be (C1), and that all expectations are taken with respect to this distribution.

Lemma 35. Let {Ax}d−1
x=0 be linear operators on a finite-dimensional complex Hilbert space, such that ∑d−1

x=0 A†
xAx = 1. Then,

(MN)N∈N, defined by (C3), is an operator-valued martingale with respect to (xN)N∈N with distribution (C1).

Proof. From the fact that each MN is a density operator, or the zero operator, it follows that ‖MN‖ ≤ 1, and thus in particular
that E(‖MN‖) ≤ 1 < +∞. Moreover, by the construction in (C3), it is the case that MN (and thus the matrix-elements with
respect to a given basis) are functions of xN , . . . ,x1. By (C2) and ∑d−1

xN+1=0 A†
xN+1

AxN+1 = 1 we find that

E(MN+1|xN = xN , . . . ,x1 = x1)

= ∑
xN+1

A†
x1
· · ·A†

xN
A†

xN+1
AxN+1AxN · · ·Ax1

Tr(A†
x1 · · ·A†

xN A†
xN+1AxN+1AxN · · ·Ax1)

P(xN+1 = xN+1|xN = xN , . . . ,x1 = x1),

= E(MN |xN = xN , . . . ,x1 = x1).

We can conclude that E(MN+1|xN , . . . ,x1) = E(MN |xN , . . . ,x1) =MN . Hence, (MN)N is a martingale sequence with respect
to (xN)N∈N.

Lemma 36. Let {Ax}d−1
x=0 be linear operators on a finite-dimensional complex Hilbert space, such that ∑d−1

x=0 A†
xAx = 1. Let

(MN)N∈N be as defined in (C3) with respect to (xN)N∈N and distributed as in (C1). Then, there exists a random operator,M∞,
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such that

lim
N→∞

MN =M∞ a.s., (D1)

M∞ is almost surely a density operator, (D2)

lim
N→∞

E(MN) = E(M∞), (D3)

lim
N→∞

E(‖MN‖) = E(‖M∞‖), (D4)

E(‖M∞‖)<+∞. (D5)

Proof. By Lemma 35 we know that (MN)N∈N is a martingale with respect to (xN)N∈N. From the fact that eachMN is a density
operator, or the zero operator, it follows that

‖MN‖ ≤ 1, ∀N ∈ N. (D6)

By Proposition 34 it follows that there exists a random operator,M∞, such that

lim
N→∞

MN =M∞ a.s., (D7)

with E(‖M∞‖) < +∞. By combining (D7) with (D6), Proposition 32 yields E(MN) → E(M∞). Moreover, (D7) yields
limN→∞ ‖MN‖= ‖M∞‖ a.s. By this observation together with (D6), Proposition 29 with xN := ‖MN‖ and x∞ := ‖M∞‖ yields
E(‖MN‖)→ E(‖M∞‖). Finally, we should show that M∞ almost surely is a density operator, i.e., that M∞ ≥ 0 almost surely,
and that TrM∞ = 1 almost surely. From (D7) it follows that limN→∞〈ψ|MN |ψ〉 = 〈ψ|M∞|ψ〉 a.s. Since 〈ψ|MN |ψ〉 ≥ 0, it
follows that 〈ψ|M∞|ψ〉 ≥ 0 a.s. Analogously, since TrMN = 1 almost surely, it follows that limN→∞ TrMN = TrM∞ = 1 a.s.
Hence,M∞ is almost surely a density operator.

2. If {Ax}d−1
x=0 satisfies the purity condition, then rank(M∞) = 1 a.s.

The purpose of this section is to show that the limit operator M∞, more or less always, is a rank-one operator whenever
{Ax}d−1

x=0 satisfies the purity condition. The first step (Lemma 37) is to show that the difference between the operatorsMN+p and
MN tends to vanish as N increases, even when conditioned on all the measurement outcomes xN , . . . ,x1.

Lemma 37. Let {Ax}d−1
x=0 be linear operators on a finite-dimensional complex Hilbert space, such that ∑d−1

x=0 A†
xAx = 1. Let

(MN)N∈N be as defined in (C3) with respect to (xN)N∈N and distributed as in (C1). Then,

lim
N→∞

E
(
‖MN+p−MN‖

∣∣∣xN , . . . ,x1

)
= 0 a.s. (D8)

Proof. Recall thatMN is a deterministic function of xN , . . . ,x1, and thus

E(MN |xN , . . . ,x1) =MN . (D9)

A direct consequence is thatMN andMN+p are independent when conditioned on xN , . . . ,x1, and thus

E(MN+pMN |xN , . . . ,x1) = E(MN+p|xN , . . . ,x1)E(MN |xN , . . . ,x1). (D10)

By expanding E
(
(MN+p−MN)

2
)

one obtains cross-terms such as

E(MN+pMN) = E
(

E(MN+pMN |xN , . . . ,x1)
)
,

= E
(

E(MN+p|xN , . . . ,x1)E(MN |xN , . . . ,x1)
)
,

(D11)

where the last equality follows by the conditional independence in (D10). By combining these observations with the martingale
property, as shown in Lemma 35, with (D9), E

(
(MN+p−MN)

2
)

results in

E
(
(MN+p−MN)

2)

=E(M 2
N+p)+E(M 2

N)−2E
(

E(MN |xN , . . . ,x1)E(MN |xN , . . . ,x1)
)
,

=E(M 2
N+p)−E(M 2

N),

(D12)
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where we in the last step have used (D9).
By the observation that MN is Hermitian, it follows that TrE(M 2

N+p) = E(‖MN+p‖2
2), TrE(M 2

N) = E(‖MN‖2
2) and

TrE
(
(MN+p−MN)

2
)
= E

(
‖MN+p−MN‖2

2
)
, which with (D12) yields

E(‖MN+p‖2
2)−E(‖MN‖2

2)≥ 0. (D13)

By using (D12), we next observe that

p−1

∑
N=0

E(M 2
N+k+1)−

p−1

∑
N=0

E(M 2
N) =

k

∑
N=0

E(M 2
N+p)−

k

∑
N=0

E(M 2
N),

=
k

∑
N=0

E
(
(MN+p−MN)

2),

=E

(
k

∑
N=0

E
(
(MN+p−MN)

2
∣∣∣xN , . . . ,x1

))
,

(D14)

where we in the last step use the general relation E
(
E(y|x)

)
= E(y). Recall that ‖O‖2

2 := Tr(O2). By applying the trace to
(D14) we obtain

E

(
k

∑
N=0

E
(
‖MN+p−MN‖2

2

∣∣∣xN , . . . ,x1

))
=

p−1

∑
N=0

[
E(‖MN+k+1‖2

2)−E(‖MN‖2
2)

]
.

By Lemma 36 we know that limN→∞MN =M∞ almost surely. From this observation it follows that limN→∞ ‖MN+k+1‖2
2 =

‖M∞‖2
2 a.s. Next, we note that MN is a density operator, or the zero operator, and thus it follows that ‖MN‖2

2 ≤ 1. With
xN := ‖MN‖2

2 and x∞ := ‖M∞‖2
2, it follows by Proposition 29 that

lim
N→∞

E(‖MN+k+1‖2
2) = E(‖M∞‖2

2). (D15)

By Lemma 36 we know that M∞ is almost surely a density operator, from which it follows that ‖M∞‖2
2 ≤ 1 a.s. With x :=

‖M∞‖2
2 and y := 1 in Lemma 25, we get

E(‖M∞‖2
2)≤ 1. (D16)

With p := k + 1 in the inequality (D13), it follows that E(‖MN+k+1‖2
2)− E(‖MN‖2

2) ≥ 0, which implies E(‖M∞‖2
2)−

E(‖MN‖2
2)≥ 0. Hence,

lim
k→∞

E

(
k

∑
N=0

E
(
‖MN+p−MN‖2

2

∣∣∣xN , . . . ,x1

))
=

p−1

∑
N=0

[
E(‖M∞‖2

2)−E(‖MN‖2
2)

]
,

=: R(p).

(D17)

By E(‖M∞‖2
2)−E(‖MN‖2

2) ≥ 0, it follows that R(p) ≥ 0 and, by the inequality (D16), it follows that R(p) ≤ p < +∞.
Define rN := E(‖MN+p−MN‖2

2|xN , . . . ,x1). Note that rN ≥ 0. Moreover, E(rN) = E(‖MN+p−MN‖2
2). SinceMN is either

a density operator, or the zero operator, it follows that ‖MN‖2 ≤ 1, and thus ‖MN+p−MN‖2
2 ≤ (‖MN+p‖2 + ‖MN‖2)

2 ≤ 4.
We conclude that E(‖MN+p−MN‖2

2)≤ 4, which together with E(rN) = E(‖MN+p−MN‖2
2) yields E(rN)≤ 4. By Eq. (D17),

there exists a number R(p) such that limk→∞ E(∑k
N=0 rN) = R(p)<+∞. All the conditions of Lemma 31 are thus satisfied and

it yields

lim
N→∞

E
(
‖MN+p(ω)−MN(ω)‖2

2

∣∣∣xN(ω), . . . ,x1(ω)
)
= 0. (D18)

Next, we note that x 7→ x2 is a convex function, and thus by Jensen’s inequality (E(X))2 ≤ E(X2). By combining this observation
with (D18) we obtain

lim
N→∞

E
(
‖MN+p−MN‖2

∣∣∣xN , . . . ,x1

)
= 0 a.s. (D19)

By the general relation between the supremum norm and the Hilbert-Schmidt norm, ‖R‖ ≤ ‖R‖2, we get E(‖R‖)≤ E(‖R‖2),
and thus (D19) yields (D8).
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The following lemma provides a reformulation of the purity condition that is better suited for the proof-technique that we
employ.

Lemma 38. Let {Ax}d−1
x=0 be linear operators on a complex finite-dimensional Hilbert space, H . Then, {Ax}d−1

x=0 satisfies the
purity condition if and only if the following condition holds:

If O is an operator on H such that

O†A†
x1
· · ·A†

xN
AxN · · ·Ax1O ∝ O†O, ∀N ∈ N, ∀(x1, . . . ,xN) ∈ {0, . . . ,d−1}×N ,

then rank(O) = 1.

(D20)

Proof. We start proving the direction that, if {Ax}d−1
x=0 satisfies condition (D20), then {Ax}d−1

x=0 also satisfies the purity condition.
Suppose that condition (D20) holds. For the subset of operators O = P for projectors P, we thus find that condition (30) holds,
and hence {Ax}d−1

x=0 satisfies the purity condition.
Conversely, we wish to show that, if {Ax}d−1

x=0 satisfies the purity condition, then {Ax}d−1
x=0 also satisfies condition (D20). Hence,

assume that {Ax}d−1
x=0 satisfies the purity condition. Let O be any operator on H such that

O†A†
x1
· · ·A†

xN
AxN · · ·Ax1O ∝ O†O (D21)

for all N and all x1, . . . ,xN . We next note that OO† is positive semi-definite, and let (OO†)	 denote the inverse on the support
of OO†, such that (OO†)	OO† = OO†(OO†)	 = P, where P is the projector onto the support of OO†. Multiplying (D21) from
the left with (OO†)	O and from the right with O†(OO†)	 results in PA†

x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P. Since the purity condition is

assumed to hold, it follows that rank(P) = 1. However, rank(P) = rank(OO†) = rank(O). We can thus conclude that if {Ax}d−1
x=0

satisfies the purity condition, then {Ax}d−1
x=0 also satisfies condition (D20).

In the following lemma we use the convergence in (D19) to show that M∞ almost surely is a rank-one operator. A key-step
in the proof is the equality (D23) below, which with (D19) and the observation that ‖√MN‖ ≤ 1 yields the limit in (D24).
Given that we know that limN→∞MN =M∞ a.s., it seems reasonable that we in the limit N→ ∞ obtain the proportionality in
(D28). The latter does via Lemma 38 imply the desired result that M∞ almost surely is a rank-one operator. However, there
is a complication to this reasoning, namely the sequence of unitary operators, UN . These unitary operators are the result of

a polar decomposition of the operators AxN · · ·Ax1/
√

Tr(A†
x1 · · ·A†

xN AxN · · ·Ax1), and we have very little control of the sequence
(UN)N∈N, and in particular whether it possesses a limit U∞. However, we can mend this issue by using the fact that the set of
unitary operators on a finite-dimensional Hilbert space is sequentially compact. Recall that a topological space, C, is sequentially
compact if, for every sequence (x j) j∈N ⊂C, there exists a subsequence (x jk)k∈N such that x jk converges to an element in C. On
a finite-dimensional complex Hilbert space with dimension D, the set of unitary operators, U(D), forms a sequentially compact
(as well as compact) space. Hence, whenever we have a sequence (U j) j∈N in U(D), then there exists a subsequence (U jk)k∈N
such that U jk converges to an element in U(D).

Lemma 39. With the assumptions in Lemma 36, letM∞ be the random operator guaranteed by Lemma 36. If {Ax}d−1
x=0 satisfies

the purity condition, then

rank(M∞) = 1 a.s. (D22)

Proof. In order to prove this lemma, let us start defining MxN ,...,x1 := A†
x1
· · ·A†

xN
AxN · · ·Ax1/Tr(A†

x1
· · ·A†

xN
AxN · · ·Ax1), and thus

we have MN = MxN ,...,x1 . With a unitary operator UxN ,...,x1 , we make a polar decomposition such that UxN ,...,x1

√
MxN ,...,x1 =

AxN · · ·Ax1/
√

Tr(A†
x1 · · ·A†

xN AxN · · ·Ax1), and define UN :=UxN ,...,x1 . Then, we have

E
(
‖MN+p−MN‖

∣∣∣xN = xN , . . . ,x1 = x1

)

= ∑
xN+p,...,xN+1

∥∥∥∥
√

MxN ,...,x1U†
xN ,...,x1

A†
xN+1
· · ·A†

xN+p
AxN+p · · ·AxN+1UxN ,...,x1

√
MxN ,...,x1

−MxN ,...,x1 Tr(A†
xN+1
· · ·A†

xN+p
AxN+p · · ·AxN+1UxN ,...,x1MxN ,...,x1U†

xN ,...,x1
)

∥∥∥∥,

=E


 ∑

x′p,...,x′1

∥∥∥∥
√
MNU

†
NA†

x′1
· · ·A†

x′p
Ax′p · · ·Ax′1

UN
√
MN

−MN Tr(A†
x′1
· · ·A†

x′p
Ax′p · · ·Ax′1

UNMNU
†
N)

∥∥∥∥
∣∣∣∣xN = xN , . . . ,x1 = x1

)
,
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where we in the second equality have renamed the indices xN+1, . . . ,xN+p to x′1, . . . ,x
′
p. Consequently,

E
(
‖MN+p−MN‖

∣∣∣xN , . . . ,x1

)
= ∑

x′p,...,x′1

∥∥∥∥
√
MNU

†
NA†

x′1
· · ·A†

x′p
Ax′p · · ·Ax′1

UN
√
MN

−MN Tr(A†
x′1
· · ·A†

x′p
Ax′p · · ·Ax′1

UNMNU
†
N)

∥∥∥∥,
(D23)

where we have used that MN and UN are deterministic functions of x′N , . . . ,x
′
1. Since MN is a density operator, or the zero

operator, it follows that ‖√MN‖ ≤ 1. By combining this observation with (D23), and with Lemma 37, it follows that

lim
N→∞ ∑

xp,...,x1

∥∥∥∥MNU
†
NA†

x1
· · ·A†

xpAxp · · ·Ax1UNMN

−M 2
N Tr(A†

x1
· · ·A†

xpAxp · · ·Ax1UNMNU
†
N)

∥∥∥∥= 0 a.s.

(D24)

Next, we recall that Lemma 36 guarantees that limN→∞MN =M∞ a.s., where M∞ almost surely is a density operator. Let
ω ∈ Ω be such that limN→∞MN(ω) =M∞(ω), where M∞(ω) is a density operator, and the limit in (D24) holds. The latter
implies a sequence of unitary operators (UN(ω))N∈N ⊂U(D). By the sequential compactness of U(D), it follows that there
exists a subsequence

(
UNk(ω)

)
k∈N and an element U∞(ω) ∈U(D), such that limk→∞UNk(ω) = U∞(ω). It still remains true

that limk→∞MNk(ω) =M∞(ω), and similarly the limit in (D24) remains true with N replaced with Nk. With the definition

Bk(ω) := ∑
xp,...,x1

∥∥∥∥MNk(ω)U †
Nk
(ω)A†

x1
· · ·A†

xpAxp · · ·Ax1UNk(ω)MNk(ω)

−M 2
Nk
(ω)Tr

[
A†

x1
· · ·A†

xpAxp · · ·Ax1UNk(ω)MNk(ω)UNk(ω)†]
∥∥∥∥,

it thus follows by (D24) that Bk(ω)→ 0. Define

B∞(ω) := ∑
xp,...,x1

∥∥∥∥M∞(ω)U∞(ω)†A†
x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)

−M 2
∞(ω)Tr[A†

x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)U∞(ω)†]

∥∥∥∥.
(D25)

Next we wish to show that Bk(ω)→ B∞(ω). By the inverted triangle inequality, a rearrangement, and the triangle inequality,
one obtains

|B∞(ω)−Bk(ω)| ≤ ∑
xp,...,x1

∥∥∥∥M∞(ω)U∞(ω)†A†
x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)

−MNk(ω)U †
Nk
(ω)A†

x1
· · ·A†

xpAxp · · ·Ax1UNk(ω)MNk(ω)

∥∥∥∥

+ ∑
xp,...,x1

∥∥∥∥M 2
∞(ω)Tr

(
A†

x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)U∞(ω)†)

−M 2
Nk
(ω)Tr

(
A†

x1
· · ·A†

xpAxp · · ·Ax1UNk(ω)MNk(ω)UNk(ω)†)
∥∥∥∥

(D26)

The goal is to utilize the fact thatMNk(ω)→M∞(ω), and thus thatM 2
Nk
(ω)→M 2

∞(ω), and similarly thatUNk(ω)→U∞(ω).
To this end, in the first sum in (D26), inside the norm, one can subtract and addMNk(ω)U †

Nk
(ω)A†

x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω).
Similarly in the second sum, we subtract and add M 2

Nk
(ω)Tr(A†

x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)U∞(ω)†) inside of the norm.
One can repeatedly use the triangle inequality, subtractions and additions in the similar spirit as above, and general relations
such as ‖AB‖ ≤ ‖A‖‖B‖, |Tr(AB)| ≤ ‖A‖‖B‖1, as well as observations such as ‖U∞(ω)M∞(ω)‖ ≤ 1,

∥∥MNk(ω)U †
Nk
(ω)
∥∥≤ 1,
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‖U∞(ω)M∞(ω)U∞(ω)†‖1 = ‖M∞(ω)‖1 = 1, ∑xp,...,x1
‖A†

x1
· · ·A†

xpAxp · · ·Ax1‖ ≤ dp, and ‖M 2
Nk
(ω)‖ ≤ 1 to show that

|B∞(ω)−Bn(ω)| ≤ dp‖M∞(ω)−MNk(ω)
∥∥+dp‖U∞(ω)†−U †

Nk
(ω)‖

+dp‖M∞(ω)−MNk(ω)‖+dp‖U∞(ω)−UNk(ω)‖
+dp‖M 2

∞(ω)−M 2
Nk
(ω)‖+dp‖U∞(ω)−UNk(ω)‖1

+dp‖M∞(ω)−MNk(ω)‖1 +dp‖U∞(ω)†−UNk(ω)†‖1,

=:Ck(ω),

and thus Ck(ω)→ 0. We can conclude that B∞(ω)−Bk(ω)≤ |B∞(ω)−Bk(ω)| ≤Ck(ω), which implies 0≤ B∞(ω)≤ Bk(ω)+
Ck(ω). By combining this observation with Bk(ω)→ 0 and Ck(ω)→ 0, as well as with the definition of B∞(ω) in (D25), we
can conclude that

B∞(ω) = ∑
xp,...,x1

∥∥∥∥M∞(ω)U∞(ω)†A†
x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)

−M 2
∞(ω)Tr

(
A†

x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω)U∞(ω)†)
∥∥∥∥,

= 0.

(D27)

This in turn implies

M∞(ω)U †
∞(ω)A†

x1
· · ·A†

xpAxp · · ·Ax1U∞(ω)M∞(ω) ∝M∞(ω)U †
∞(ω)U∞(ω)M∞(ω). (D28)

Since we have assumed the purity condition, it follows by Lemma 38, with O := U∞(ω)M∞(ω), that rank(M∞(ω)) =
rank(U∞(ω)M∞(ω)) = 1. Since this holds for almost all elements ω in the sample space, we can conclude that rank(M∞) =
1 a.s.

3. rank(M∞) = 1 a.s. implies the purity condition

While we in Appendix D 2 demonstrated that the purity condition is sufficient for M∞ being a rank-one operator, we here
show that it also is a necessary condition. The idea is to assume that M∞ has rank one, but that the purity condition does not
hold. The latter means that there exists a projector P with rank(P)> 1, while still PA†

x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P. The latter is then

showed to imply PM∞(ω)P ∝ P. However, since rank(M∞) = 1, the only possibility is that PM∞(ω)P = 0. This turns out to
be in contradiction with ∑d−1

x=0 A†
xAx = 1.

Lemma 40. Let {Ax}d−1
x=0 be operators on a finite-dimensional complex Hilbert space, H , such that ∑d−1

x=0 A†
xAx = 1. Let

(MN)N∈N be as defined in (C3) with respect to (xN)N∈N and distributed as in (C1). LetM∞ := limN→∞MN a.s., as guaranteed
by Lemma 36. If rank(M∞) = 1 a.s., then {Ax}d−1

x=0 satisfies the purity condition in Definition 3.

Proof. We proceed via a proof by contradiction, and thus assume that {Ax}d−1
x=0 is such that rank(M∞) = 1 a.s, but that the purity

condition does not hold. The latter means that there exists a projector P such that

PA†
x1
· · ·A†

xN
AxN · · ·Ax1P ∝ P, ∀N ∈ N, ∀(x1, . . . ,xN) ∈ {0, . . . ,d−1}×N , (D29)

but rank(P)> 1. Recall that

MN =





A†
x1
· · ·A†

xN
AxN · · ·Ax1

Tr(A†
x1 · · ·A†

xN AxN · · ·Ax1)
if Tr(A†

x1
· · ·A†

xN
AxN · · ·Ax1) 6= 0,

0 if Tr(A†
x1
· · ·A†

xN
AxN · · ·Ax1) = 0,

(D30)

where we note that Tr(A†
x1
· · ·A†

xN
AxN · · ·Ax1) = 0 if and only if A†

x1
· · ·A†

xN
AxN · · ·Ax1 = 0. By (D29), it thus follows that

PMNP ∝ P. Let ω ∈Ω be such that limN→∞MN(ω) =M∞(ω). Consequently,

lim
N→∞
‖PMN(ω)P−PM∞(ω)P‖= 0. (D31)

By PMNP ∝ P, we know that there exists a proportionality constant, aN(ω), for each N and ω , such that

PMN(ω)P = aN(ω)P. (D32)
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Next we use the general relation |Tr(AB)| ≤ ‖A‖1‖B‖ to show

|aN(ω)Tr(P)−Tr(PM∞(ω)P)|=
∣∣∣Tr
(
1
(
aN(ω)P−PM∞(ω)P

))∣∣∣,
≤D‖PMN(ω)P−PM∞(ω)P‖→ 0,

(D33)

where we have used ‖1‖1 =D, (D32) and (D31). With a∞(ω) :=Tr(PM∞(ω))/Tr(P), we can thus conclude that limN→∞ |aN(ω)−
a∞(ω)|= 0. Hence,

‖a∞(ω)P−PM∞(ω)P‖=‖a∞(ω)P−aN(ω)P+aN(ω)P−PM∞(ω)P‖,
≤ |a∞(ω)−aN(ω)|+‖PMN(ω)P−PM∞(ω)P‖→ 0.

We can thus conclude that PM∞(ω)P ∝ P, and hence PM∞P ∝ P a.s. However, since M∞ by assumption is rank-one a.s.,
and rank(P) > 1, the only possibility is that the proportionality constant is zero, i.e., that PM∞P = 0 a.s. Next, we note that
E(MN) = 1/D. By (D3) in Lemma 36, we know that E(MN)→ E(M∞), and thus E(M∞) = 1/D. However, this is in
contradiction with PM∞P = 0 a.s.

4. w(N) goes to zero exponentially if and only if the purity condition holds

In Appendices D 2 and D 3, we have shown that {Ax}d−1
x=0 satisfies the purity condition if and only if rank(M∞) = 1. Here we

show that the latter in turn is equivalent to limN→∞ w(N) = 0, and that this in turn is equivalent to w(N) converging exponentially
fast to zero.

If M∞ has rank one, i.e., rank(M∞) = 1, then it follows that ‖M∞‖ = 1 and we can relate ‖M∞‖−‖MN‖ = 1−‖MN‖ to
the eigenvalues of MN and the singular values of WN . The latter directly connects to the definition of w(N) in (D36). To this
end, we introduce the following notation. For a general operator, O, on a space of finite dimension, D, let ν↓1 (O)≥ ·· · ≥ ν↓D(O)

be the ordered singular values of O. Similarly, for a Hermitian operator, J, let λ ↓1 (J) ≥ ·· · ≥ λ ↓D(J) be the ordered eigenvalues
of J.

The fact that w(N) converges to zero does, of course, not guarantee that w(N) converges exponentially fast to zero. The
latter we obtain by first showing that w(N) is submultiplicative, i.e., w(N +M) ≤ w(N)w(M), which implies that logw(N) is
subadditive.

We obtain the submultiplicativity by rewriting w(N) in terms of the norm of the second order exterior power of AxN · · ·Ax1 .
In order to introduce the exterior power of an operator, consider a Hilbert space, H , with an orthonormal basis, {| j〉}D

j=1,
and D = dimH . On the product space H ⊗H , we construct the swap-operator, S := ∑D

j,k=1 | j〉〈k| ⊗ |k〉〈 j|, where one may
note that S2 = 1⊗1 and S† = S. We also define the projector PA := (1⊗1− S)/2 onto the the anti-symmetric subspace of
H ⊗H . For an operator O on H , we define the exterior power (of degree two) of O as∧2(O) := PA[O⊗O]PA. A consequence
of this definition is that ‖∧2(O)‖ = ν↓1 (O)ν↓2 (O). By comparing these definitions with (D36) below, we can conclude that
w(N) = ∑d−1

x1,...,xN=0 ‖∧2(AxN · · ·Ax1)‖.
One may note that the above construction presumes that O is an operator from one space to itself. However, due to the operator

F [see e.g. (16)], we need a generalization to mappings from one space to another, O : H1→H2. However, analogous to PA,
we can for these two spaces let P(1)

A and P(2)
A be the projectors onto the anti-symmetric subspaces of H1⊗H1 and H2⊗H2,

respectively. Based on these, we define the generalization ∧2(O) := P(2)
A [O⊗O]P(1)

A . For this generalization it remains true that
‖∧2(O)‖= ν↓1 (O)ν↓2 (O). By comparing with (43) we see that f (N) = ∑d−1

xN ,...,x1=1 ‖∧2(FAxN · · ·Ax1

√
σ)‖. A further observation

that also holds for the generalization is

‖∧2(O)‖ ≤ ‖O‖2. (D34)

Moreover, if OA : H1 → H2 and OB : H2 → H3, then ∧2(OBOA) = ∧2(OB)∧2(OA), and consequently ‖∧2(OBOA)‖ ≤
‖∧2(OB)‖‖∧2(OA)‖.

The exponential decay of w(N) is obtained by combining limN→∞ w(N) = 0 with the submultiplicativity of logw(N) and
Fekete’s subadditivity lemma. Fekete’s Lemma is commonly attributed to Ref. 46. For a proof, see Lemma 1.2.1 in Ref. 47, and
for a historical overview, see Section 1.10 in Ref. 47.

Lemma 41 (Fekete’s subadditive lemma). Let (aN)N∈N be a subadditive sequence of real numbers, i.e., aN+M ≤ aN +aM . Then
the limit limN→∞ aN/N is well defined (but may be −∞) and

lim
N→∞

aN

N
= inf

N∈N
aN

N
. (D35)
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Proposition 42. Let {Ax}d−1
x=0 be linear operators on a finite-dimensional Hilbert space, such that ∑d−1

x=0 A†
xAx = 1. Define

w(N) :=
d−1

∑
x1,...,xN=0

ν↓1 (AxN · · ·Ax1)ν
↓
2 (AxN · · ·Ax1). (D36)

The following statements are equivalent:

1. {Ax}d−1
x=0 satisfies the purity condition in Definition 3.

2. limN→∞ w(N) = 0.

3. There exist real constants C′ ≥ 0 and 0 < γ < 1 such that

w(N)≤C′γN , ∀N ∈ N. (D37)

Proof. 1 ⇒ 2: Let MN be as defined in (C3). We first distinguish the two cases that MN is a density operator, or that it
is the zero operator. In the case that MN is a density operator, it follows that 1 = Tr(MN) ≥ λ ↓1 (MN)+ λ ↓2 (MN), and thus

1≥ 1−λ ↓1 (MN)≥ λ ↓2 (MN)≥ 0. By noting that ‖MN‖= λ ↓1 (MN), we thus get
√
‖MN‖(1−‖MN‖)≥

√
λ ↓1 (MN)λ ↓2 (MN).

SinceMN is assumed to be a density operator, it moreover follows that ‖MN‖ ≤ 1, and thus

√
|1−‖MN‖| ≥

√
λ ↓1 (MN)λ ↓2 (MN). (D38)

In the case thatMN is the zero operator, then (D38) is trivially true.
By Lemma 36, we know that M∞ almost surely is a density operator. By Lemma 39, we also know that M∞ almost surely

is a rank-one operator. Hence, M∞ almost surely corresponds to a pure state. Consequently, ‖M∞‖ = 1 a.s. Combining this
observation with the inverted triangle inequality yields

√
‖M∞−MN‖ ≥

√
|‖M∞‖−‖MN‖|=

√
|1−‖MN‖| a.s. (D39)

Combining (D38) with (D39) yields

√
‖M∞−MN‖ ≥

√
λ ↓1 (MN)λ ↓2 (MN) a.s. (D40)

We next observe that

ν↓k


 WN√

Tr(W †
NWN)


=

√√√√λ ↓k

(
W †

NWN

Tr(W †
NWN)

)
=

√
λ ↓k (MN). (D41)

Thus, (D40) and (D41) yields

√
‖M∞−MN‖ ≥

ν↓1 (WN)ν↓2 (WN)

Tr(W †
NWN)

a.s., (D42)

which, by Lemma 25, results in

E
(√
‖M∞−MN‖

)
D≥ E

(
ν↓1 (WN)ν↓2 (WN)

Tr(W †
NWN)

)
D = w(N). (D43)

By Lemma 36, we know that MN →M∞ almost surely. Since the underlying Hilbert space is finite-dimensional, we then have
‖M∞−MN‖→ 0 a.s., and consequently

xN :=
√
‖M∞−MN‖→ 0 a.s. (D44)

We next observe that MN is a density operator, or the zero operator, and thus ‖MN‖ ≤ 1. Hence, ‖M∞−MN‖ ≤ ‖M∞‖+
‖MN‖ ≤ 1+‖M∞‖, which yields

xN =
√
‖M∞−MN‖ ≤

√
1+‖M∞‖ ≤ 1+‖M∞‖=: y. (D45)
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By Lemma 36 we know that E(‖M∞‖)<+∞, and thus E(y) = 1+E(‖M∞‖)<+∞. By using this observation and Eqns. (D44)
and (D45) into Proposition 28, we can conclude that limN→∞ E(

√
‖M∞−MN‖) = 0. By combining this with (D43), it follows

that limN→∞ w(N) = 0. Hence, we can conclude that statement 1 implies statement 2.
2 ⇒ 3: We first make the observation that

‖∧2(AxN+M · · ·Ax1)‖ ≤ ‖∧2(AxN+M · · ·AxN+1)‖‖∧2(AxN · · ·Ax1)‖, (D46)

which in turn yields w(N +M) ≤ w(M)w(N). Hence, w is submultiplicative, and thus logw(N) is subadditive. By statement
2 we know that limN→∞ w(N) = 0. It follows that there exists an N0 ∈ N such that logw(N0) < 0. Hence, since logw(N) is
subadditive, it follows by Lemma 41 that

0 >
logw(N0)

N0
≥ inf

N

logw(N)

N
= lim

N→∞

logw(N)

N
. (D47)

In the case that the limit is finite, let l := limN→∞ 1/N logw(N). By definition of the limit, we know that for any ε > 0, there
exists an Nε such that [logw(N)]/N− l ≤ ε for all N ≥ Nε . We choose an arbitrary but fixed ε > 0, and thus w(N)≤ γN for all
N ≥ Nε , where γ := el+ε . Define C′ := max

{
1,maxN=1,...,Nε w(N)/N

}
, and thus (D37) holds.

Finally consider the case that limN→∞ 1/N logw(N) = −∞. This means that for every a > 0 there exists an Na such
that [logw(N)]/N ≤ −a for all N ≥ Na, which we can easily rewrite as w(N) ≤ e−aN . Hence, with γ := e−a and C′ :=
max{1,maxN=1,...,Na w(N)/N} we again obtain (D37). We can conclude that statement 2 implies statement 3.

3 ⇒ 2: This implication is trivial.
2 ⇒ 1: In our first step, we show that limN→∞ w(N) = 0 implies that ‖M∞‖ = 1 a.s. We first observe that if η is a density

operator on a complex Hilbert space with finite dimension D, then 1−‖η‖ ≤
√

(D−1)D
√

λ ↓1 (η)λ ↓2 (η). We know thatMN is
either a density operator, or the zero operator, and thus 1−‖MN‖ ≥ 0. We moreover know that MN almost surely is a density

operator. With x := 1−‖MN‖ and y :=
√

D(D−1)
√

λ ↓1 (MN)λ ↓2 (MN), we can use the above observations to conclude that
0≤ x≤ y a.s. Moreover, by Lemma 25, we obtain

1−E(‖MN‖) = E(1−‖MN‖)≤ D

√
D−1

D
E
(√

λ ↓1 (MN)λ ↓2 (MN)

)
. (D48)

Next we note that the observation in (D41) yields

E
(√

λ ↓1 (MN)λ ↓2 (MN)

)
D = E

(
ν↓1 (WN)ν↓2 (WN)

Tr(W †
NWN)

)
D = w(N). (D49)

By combining (D48) and (D49), one obtains 1−E(‖MN‖)≤ w(N)
√

(D−1)/D. By the assumption that limN→∞ w(N) = 0, it
follows that limN→∞ E(‖MN‖) = 1. By (D4) in Lemma 36, we know that E(‖MN‖)→ E(‖M∞‖). We can thus conclude that
E(‖M∞‖) = 1. With x := 1−‖M∞‖, it follows that E(x) = 0. Since M∞ is almost surely a density operator, it follows that
1 ≥ ‖M∞‖ almost surely. Hence, x = 1−‖M∞‖ ≥ 0 a.s. By combining this observation and E(x) = 0 with Lemma 27, we
obtain x = 0 a.s., and thus ‖M∞‖ = 1 a.s. By Lemma 36, we know that M∞ almost surely is a density operator. If M∞ is a
density operator, then M∞ is a rank one operator if and only if ‖M∞‖ = 1. We can thus conclude that rank(M∞) = 1 a.s. By
Lemma 40, this implies that {Ax}d−1

x=0 satisfies the purity condition in Definition 3. Hence, statement 2 implies statement 1.

5. Generalization to F and σ

The entire proof has up to this point concerned the exponential decay of w(N), while we actually wish to find conditions for
the exponential decay of f (N). Here, we find necessary as well as sufficient conditions for the exponential decay of f (N). We
state a slightly more elaborate version of Proposition 5.

Proposition 43. Let {Ax}d−1
x=1 be linear operators on the finite-dimensional complex Hilbert space H , such that ∑d−1

x=1 A†
xAx = 1.

For an operator σ on H , and an operator F : H →H ′ for a finite-dimensional complex Hilbert space H ′, define

f (N) :=
d−1

∑
xN ,...,x1=1

ν↓1 (FAxN · · ·Ax1

√
σ)ν↓2 (FAxN · · ·Ax1

√
σ). (D50)
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If {Ax}d−1
x=1 satisfies the purity condition in Definition 3, then there exist real constants 0≤ c and 0 < γ < 1, which satisfy

f (N)≤ cγN , ∀N ∈ N, (D51)

for all density operators σ , and all F such that F†F ≤ 1. Conversely, if f is defined with respect to some full-rank operators σ
and F†F, such that there exist constants 0≤ cσ ,F and 0 < γ < 1 which fulfill

f (N)≤ cσ ,F γN , ∀N ∈ N, (D52)

then {Ax}d−1
x=1 satisfies the purity condition.

Proof. We begin by proving the first claim of the proposition. We first note that

f (N) = ∑
x1,...,xN

‖∧2(FAxN · · ·Ax1

√
σ)‖,

≤‖∧2(F)‖‖∧2(
√

σ)‖w(N),

≤‖F‖2‖
√

σ‖2w(N),

≤w(N),

(D53)

where w is as defined in (D36), and where the next to last inequality follows from (D34). The last inequality follows since σ is
assumed to be a density operator, and thus ‖√σ‖ ≤ 1, and similarly F†F ≤ 1 implies ‖F‖ ≤ 1. If {Ax}d−1

x=0 satisfies the purity
condition, then it follows by Proposition 42 that w(N)≤C′γN . By combining this observation with (D53), we obtain (D51) with
c :=C′. Note that Proposition 42 makes no reference to F or σ , and thus C′, and consequently c, is independent of these.

Next, we turn to the second claim of the proposition. For this purpose, we first note that since F†F and σ (and thus
√

σ ) are
full-rank operators on a finite-dimensional space, it follows that (F†F)−1 and

√
σ−1 exist. With w as defined in (D36), we thus

find

w(N) = ∑
x1,...,xN

‖∧2(AxN · · ·Ax1)‖ ≤‖∧2((F†F)−1F†)‖‖∧2(
√

σ−1
)‖ f (N). (D54)

Hence, with c′σ ,F := ‖∧2((F†F)−1F†
)
‖‖∧2(

√
σ−1

)‖, we get w(N) ≤ c′σ ,F f (N). Combined with the assumption (D52), it
follows

w(N)≤ cσ ,F c′σ ,F γN , ∀N ∈ N, (D55)

where w is as defined in Proposition 42, and 0 < γ < 1. With C′ := cσ ,F c′σ ,F in Proposition 42, it follows that {Ax}d−1
x=1 satisfies

the purity condition in Definition 3.
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Part II

Minimising statistical errors
in gate calibration



Probabilities are intrinsic in quantum mechanics. Indeed, the theory of quantum mechanics
states with which probability a concrete outcome of a measurement is obtained, but cannot
predict the value of the outcome with certainty. As a direct consequence, a quantum experi-
mentalist needs to carry out several runs of the same experiment. Then, a statistical treatment
of the collected data should be conducted to estimate the measured quantities. This fact cre-
ates a dialogue between the disciplines of quantum mechanics and statistical theory, a dialogue
that we will explore in this part of the thesis.

The second part of this thesis has two chapters. Within Chapter 3, we introduce the notions
of statistics and gate calibration that are fundamental for our findings in Chapter 4.

Chapter 4 builds on the work presented in Ref. [39] about calibration of quantum-gate sets.
In their work, a protocol called Gate Set Calibration protocol (GSC) is introduced and used to
extract systematic gate errors. Although in quantum mechanics physical measurements have
an intrinsic uncertainty, statistical errors are not considered in Ref. [39]. In this thesis, we
conduct a statistical analysis of GSC in order to optimise the protocol. Not only is our goal
to minimise statistical errors, but also to require physical realisability of GSC. For the latter,
we restrict the implementation of GSC to involve a small number of different quantum gates
as well as a small sequence length.
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Chapter 3

Foundations

The first chapter of this part contains the theoretical foundations behind the research presented
in Chapter 4. In Section 3.1, we review concepts about statistical theory. We start in Section
3.1.1 brushing up notions of multivariate probability distributions, such as random vector and
the central limit theorem. We focus on the probability distributions that will be used in Chapter
4, namely the multivariate Gaussian distribution and the multivariate binomial distribution.

Section 3.1.2 is an introduction to the theory of design of experiments. After beginning
with a general definition of the concept ‘process’, we review the goals of this theory. We then
put the focus on nuisance factors, which are the factors with which we deal in Chapter 4.

To finish this chapter, we give a brief overview of the field of gate calibration in Sec. 3.2.
Tomography protocols, as well as randomized benchmarking protocols, are explained. We also
identify the scenarios where each calibration approach is more suitable.

3.1 Statistics

Within this section, we introduce basic notions of statistics that are essential for a clear under-
standing of the research presented in Chapter 4. Section 3.1.1 is about the branch of statistics
that considers scenarios with more than one random variable. Afterwards, we explain the
foundations of the branch of statistics called design of experiments.

3.1.1 Multivariate probability distributions

Many interesting problems in physics take place in a multidimensional space and involve vec-
tors whose coordinates are correlated. A statistical analysis of these problems requires to deal
with random variables which form a vector. Here, we review the basic notions of the branch of
statistics that considers more than one random variable and constructs multivariate models.
Along this section we will assume that random variables are continuous unless stated differently.
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Consider k scalar-valued random variables, X1, . . . , Xk, on the same probability space with
probability density functions p(xi) for all i = 1, . . . , k. A multivariate random vector (or
simply random vector), X⃗, is a k-dimensional vector with random variables as components,
i.e., X⃗ = (X1, . . . , Xk).

A random vector gives rise to a multivariate probability density function, p(x1, . . . , xk),
defined as the joint probability density function of all components of the random vector. Then,
we write the joint probability of finding each random variable, Xi, in a concrete interval, [ai, bi],
as

Pr[a1 ≤ X1 ≤ b1 and . . . and ak ≤ Xk ≤ bk] =

∫ b1

a1

· · ·
∫ bk

ak

p(x1, . . . , xk)dx1 · · · dxk,

which, by definition, satisfies
∫

x1

· · ·
∫

xk

p(x1, . . . , xk)dx1 · · · dxk = 1.

The probability density functions of each component of the random vector, p(xi), are known
as marginal probability density functions.

Analogously to univariate probability distributions, multivariate probability distributions
are often parametrized by a couple of quantities with a practical interpretation. The mean
vector of a random vector, X⃗, is E[X⃗] = (E[X1], . . . ,E[Xk]), which we will also sometimes
denote as µ⃗. The correlation between the random variables that form a random vector is
specified with a matrix called covariance matrix. The covariance matrix, Σ, of a random
vector, X⃗ = (X1, . . . , Xk), is a k × k matrix with entries

Σij = cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])] = E[XiXj]− E[Xj]E[Xj].

Note that the diagonal entries of Σ are the variances of the random variables Xi.

When the random variables Xi are independent, the multivariate probability density func-
tion factorises and can be written as p(x1, . . . , xk) = p(x1) · · · p(xk). Furthermore, in this case
the covariance matrix is diagonal.

An important probability distribution is the Gaussian distribution, which can be extended
to the multivariate case straightforwardly. Given a k-dimensional random vector, X⃗, it is said
that X⃗ is distributed according to a multivariate Gaussian distribution if any linear combination
of its k components is distributed according to a (univariate) Gaussian distribution. We write
X⃗ ∼ N (µ⃗,Σ), where µ⃗ and Σ are the mean vector and the covariance matrix of X⃗, respectively.
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The relevance of the (multivariate) Gaussian distribution comes from the well-known (mul-
tivariate) Central Limit Theorem (CLT). This theorem states that the mean value of many
independent samples of a random vector, with finite mean and covariance matrix, is also a ran-
dom vector. Furthermore, its probability distribution converges to a (multivariate) Gaussian
distribution in the limit of a large number of samples.

Because of the CLT, the Gaussian distribution appears in many processes in nature that
depend on multiple factors, such as neural activity, gene expression or measurement errors.

In quantum physics, the so-called binomial distribution, a discrete probability distribution,
is also crucial since it appears in the context of quantum measurements. Consider an observable,
Â, with two outcomes, a1 and a2, and an experimental setting that requires N measurements of
the observable A. The data obtained in the experiment is distributed according to a binomial
distribution. Specifically, the amount of times the measurement device returns the outcome ai
gives rise to a binomial distribution such that B(N, pi), where pi is the probability of obtaining
the outcome ai. In the limit of large N , the binomial distribution can be approximated by a
Gaussian distribution with parameters N (Npi, Npi(1− pi)) due to CLT.

When each random variable that constitutes a random vector gives rise to a (univariate)
binomial distribution, we say that the random vector is distributed according to a multivariate
binomial distribution.

Random vectors can be part of algebraic transformations during statistical analysis and
create new vectors. A vector Y⃗ = MX⃗ + v⃗ is also a k−dimensional random vector if it is
an affine transformation of the random vector X⃗, where M is a k × k matrix and v⃗ is a
k-dimensional vector [40].

In the particular case that the random vector X⃗ is distributed according to a multivariate
Gaussian distribution such that X⃗ ∼ N (µ⃗,Σ), then the random vector Y⃗ also gives rise to a
multivariate Gaussian distribution with mean vector Mµ⃗+ v⃗, and covariance matrix MΣMT ,
i.e., Y⃗ ∼ N (Mµ⃗+ v⃗,MΣMT ).

Affine transformations of multivariate Gaussian distributions will be a crucial tool to im-
prove the design of a calibration protocol in Ch. 4, but, first, we need to learn about design of
experiments.

3.1.2 Design of experiments

Experimentation is required not only in science but also in industry and engineering. The
efficiency of such experiments can benefit from statistical theory to obtain more robust and
precise conclusions. Applying statistical theory to experimentation consists in planning an ex-
periment to collect the appropriated data, and conducting statistical analysis to extract valid
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and objective conclusions from the data. Therefore, there are two stages where statistics play
a crucial role in any experiment: the design of the experiment and the statistical analysis of
the collected data. This section is devoted to the former: the design of experiments (DOE).
The material presented here is based on Ref. [41].

Consider a system in some initial conditions that undergoes a process. Figure 3.1 is a
schematic description of a general process, where the initial conditions are referred to as input
variables. The word process here refers to any transformation, including operations from
industrial processing, such as changes caused by machines, or from quantum computing, such
as applications of quantum gates and measurements. Two different kind of factors affect the
process: the controllable and the uncontrollable factors. As their name suggests, the latter are
caused by variables that one cannot modify, while the former can be adjusted. The process
transforms the input into an output characterised by one or more response variables.

Process

Uncontrollable factors

Controllable factors

Input Output

Figure 3.1: Schematic description of a process.

An experiment can be defined as a series of runs of a process. Thus, the output of an
experiment is usually a data set.

In order to improve a process, DOE suggests to carry out experiments with the following goals:

1. Determining the most influential factors on the output,

2. Determining how to adjust the controllable factors such that the output’s response vari-
ables are always near the desired value,

3. Determining how to adjust the controllable factors such that the variability of the response
variables is small,

4. Determining how to adjust the controllable factors such that the effect of the uncontrol-
lable factors is minimal.

We focus in this thesis on the last two goals of DOE. In particular, we put attention
on the branch of DOE that takes care of nuisance factors, i.e., factors whose effect on the
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output is significant enough to be considered even if we are not interested in their influence.
Nuisance factors are classified as controllable, uncontrollable and noise factors. Controllable
and uncontrollable nuisance factors can be measured. Moreover, the former can be adjusted
and thus blocked, while the latter cannot be modified, so they need to be addressed with
statistical analysis. A nuisance factor is called a noise factor when it is uncontrollable and
varies naturally in each run of the process. This variability makes it impossible to control a
noise factor only with one run of the process, but it might be addressed at the experiment
level (i.e., doing several runs of a process). Noise factors are often managed by setting the
controllable (design) factors of the process in a range that minimises the variability of the
output responses.

Consider as an example the scenario that we study in Chapter 4: calibrating a quantum
gate called CNOT. As devices are not perfect, the application of a CNOT is affected by
uncontrollable nuisance factors and, instead of a CNOT gate, a perturbed version of the gate
is applied. To account for these uncontrollable nuisance factors, we build a model for the
perturbed gate that considers error parameters. Noise factors are also present in the calibration
process due to quantum measurements. The output of a quantum measurement is a random
variable, and thus it induces statistical errors. This statistical error is a noise factor because
it cannot be controlled in a single process, and it varies in each run. However, we can reduce
the statistical error by realising many runs of the process and, as we show in Chapter 4, by
adjusting controllable factors of the calibration process. Before delving into the application of
DOE on a gate calibration protocol, we review basic concepts of gate calibration in the next
section.

3.2 Gate calibration

Theoretically, a quantum computation is a unitary matrix performed on a vector. In a labora-
tory, however, everything becomes messy. The vector corresponds to a physical system, which
can spontaneously change its state due to undesired interactions with the environment. The
unitary matrix corresponds to a series of pulses that must be precisely selected and performed
to obtain the expected result. In order to consider all these factors, a model that characterises
the quantum computation is designed. Then, experiments are carried out, and the data ob-
tained is studied to choose the optimal values for the model parameters. This process is known
as gate calibration and is indispensable in quantum computing. Within this section, we give
an overview of gate calibration.

To design suitable gate calibration protocols, one must consider that errors in a quantum
computer can have different origins. We can distinguish between coherent errors and incoher-
ent errors. The former occur in the devices, while the latter arise from the interaction between
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quantum systems and the environment. In order to have a quantum computer that applies
operations close to the ideal unitary gates, both types of errors, incoherent and coherent, must
be small enough [42, 43].

Maybe the most intuitive gate calibration strategy consists of fully characterising the quan-
tum process, including its errors. Quantum process tomography (QPT) [44] and Gate Set
Tomography (GST) [45] are the two most well-known methods to realise this task. QPT char-
acterises a collection of states on which the process of interest has been applied, and uses this
information to learn about the process. The characterisation of the resulting states is done
via quantum state tomography [46, 47], which reconstructs a quantum state by performing
measurements on a collection of identical states. QPT runs, however, into a self-consistency
problem since it needs fiducial measurements and initial states, which, in turn, require already
calibrated quantum gates.

The self-consistency problem of QPT can be solved using GST. GST has a similar spirit
to QPT but includes State-Preparation and Measurement (SPAM) errors in its error model.
Tomography methods provide a complete characterisation of the quantum process and can
distinguish between individual gate errors and errors on the global gate set. Nevertheless, they
are infeasible for large system sizes, since the number of measurements scales exponentially
with the number of qubits.

To overcome the lack of scalability of tomography methods, calibration techniques that
work with a partial characterisation of the quantum process, such as Randomized Benchmark-
ing (RB) protocols, are used. Nowadays, RB refers to a family of calibration protocols [48,
49, 50, 51, 52, 53, 54, 55] based on the original proposal by Dankert et al. [56]. The idea
behind these protocols consists of three steps. First, preparing an input state, then applying
a squences of random gates, and finally measuring the resulting state. These three steps are
repeated using sequences of different lengths. While errors in the gates are amplified with
increasing sequence length, SPAM errors are independent of the sequence length. Moreover,
the measured quantities only depend linearly on SPAM errors. These differences on the de-
pendencies allow extracting an average error rate of the quantum process disentangled from
SPAM errors by exponentially fitting the measured quantities versus the sequence length. RB
protocols have been used widely because of their apparent advantages: scalability and easy im-
plementation. Nevertheless, RB protocols are unsuitable for experiments requiring a detailed
characterisation of individual quantum operations or distinguishing between incoherent and
coherent errors.

Further calibration methods make use of ideas from both GST and RB [57, 58]. RB
tomography [59], randomised linear GST [60] and compressive GST [61] are, for example,
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calibration protocols that work on a trade-off between the information extracted from the
quantum process and the resource requirements.

Another example of a calibration protocol that is a middle way between GST and RB is
GSC, a protocol introduced in Ref. [39]. Given a set of available quantum gates, initial states
and measurements, GSC constructs short gate sequences that allow all coherent gate errors
to be extracted by solving an inverse problem. This protocol offers the flexibility to either
be self-consistent or simplified for scenarios where single-qubit gates are already calibrated.
Within Chapter 4, we review GSC in detail, and we apply the statistical theory presented in
Sec. 3.1 to improve the design of this calibration protocol.
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Chapter 4

Results

A fundamental property of quantum mechanics is its intrinsic uncertainty: responses of mea-
surements can only be predicted probabilistically. Therefore, experiments aimed to extract
information from a quantum system have to be designed so as to reduce the expected sta-
tistical uncertainty. The branch of statistics concerned with such questions is the Design of
Experiments (DOE). Among the main objectives of DOE is the optimisation of statistical er-
ror, as well as validity, reliability and replicability. DOE has been applied in different quantum
information problems such as parameter estimation [62, 63], and quantum state and process
tomography [64, 65, 66]. In this chapter, we address the task of implementing DOE in a
calibration protocol for quantum gate sets.

Specifically, we will work with the Gate Set Calibration protocol (GSC) introduced in
Ref. [39] for the purpose of identifying coherent errors in unitary quantum gates. Given a
set of available quantum gates, initial states and measurements, GSC constructs short gate
sequences that allow all coherent gate errors to be extracted. This protocol can be considered
as a middle way between randomized benchmarking and gate set tomography, as it provides
more detailed information than the former using fewer measurements than the latter [50, 67].

In order to optimise GSC, we introduce parameters in the sequences that GSC builds and
perform an optimisation over these parameters to minimise the statistical error of GSC.

This chapter is structured as follows. In Sec. 4.1, a simplified version of GSC is introduced
and the notation is established. In Sec. 4.2 we present the theoretical framework under which
the optimisation of GSC will be conducted. We analyse the statistics of GSC and define a
measure of uncertainty that will allow us to compare the statistical error of different versions
of GSC. Section 4.3 is dedicated to the optimisation of GSC by minimising the statistical
error with respect to the measure of uncertainty. The version of GSC resulting from the
optimisation is further modified to take into account the feasibility of the protocol. We verify
in Sec. 4.3.1 that the reduction of the statistical error also holds when imperfect measurements
are considered. An outlook is presented in Sec. 4.4. Note that this chapter has its own appendix.
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4.1 The gate set calibration protocol

In Ref. [39], a new protocol for characterising and calibrating quantum gates, the GSC, has
been introduced. This section will introduce the precise notation and present a slightly simpli-
fied version of the protocol. In particular, we restrict attention to the specific case of calibrating
a two-qubit CNOT gate subject to coherent errors.

The GSC consists of the following steps. First, the qubits are initialised in a known state.
Then, a gate sequence from a set of available gates is applied to the initial state, and finally, a
measurement is performed. All coherent gate errors can be extracted by repeating this process
for different sequences, initial states and measurements, as we will see below.

Assume that we aim to implement a set of unitary quantum gates. In reality, the hardware
will realise perturbed gates, which we still assume to be unitary.

Consider concretely a situation where only gates in the set {CNOT,X(1)
θ ,Y(1)

θ ,X(2)
θ ,Y(2)

θ }
can be applied, namely a global CNOT and arbitrary single-qubit rotations around X- and
Y-axis. Here, the superscripts indicate on which qubit the gate is applied, and the gates are
defined as

CNOT := |0⟩⟨0| ⊗ I+ |1⟩⟨1| ⊗ σ1, Xθ := e−i
θ
2
σ1 , Yθ := e−i

θ
2
σ2 ,

where σ1, σ2, σ3 are the Pauli matrices. We assume that all single-qubit gates are already
calibrated, and thus here, we want to use GSC to tune a perturbed CNOT gate, which we
denote as ˜CNOT. The deviation from the optimal gate is measured by the coherent error
operator associated with the gate. In the particular case of the CNOT gate we define

E := CNOT−1 ˜CNOT. (4.1)

In order to analyse the perturbed gate, we expand the error operator in the Pauli basis

E(p⃗) = I− i

15∑

k=1

pkτk,

for suitable coefficients p⃗, which we call error parameters, and for τk = τij = σi ⊗ σj with
σ0 = I. The choice of the prefactor of the sum will ensure later that the unitarity of E to first
order implies that pk are real.

The ultimate goal of GSC is to obtain the error parameters, p⃗. To estimate the error
parameters, GSC considers a number of experimental settings, which we label with the letter
s. These settings can vary in the initial state, the gate sequence, and the measurement. We will
always take ρ = |00⟩⟨00| as initial state and perform a measurement Ms ∈ {σ0 ⊗ σ3, σ3 ⊗ σ0}.
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Thus, for each setting one can experimentally estimate the quantity

Rs(p⃗) = Tr
[
(Gls,s · · · ˜CNOT(p⃗) · · ·G1,s)|00⟩⟨00|(G†

1,s · · · ˜CNOT(p⃗) · · ·G†
ls,s

)Ms

]
, (4.2)

which we will refer to as the measurement response. Here, ls is the length of each sequence and
Gj,s ∈ {X(1)

θ ,Y(1)
θ ,X(2)

θ ,Y(2)
θ } are the single-qubit gates of sequence s. Note that Eq. (4.2) does

not restrict the number of CNOT gates of each sequence.

Following the framework of Ref. [39], we now make the assumption that the error parameters
are small, and thus assume that the vector of responses depends only linearly on p⃗. We write

R⃗(p⃗) = R⃗(⃗0) + Lp⃗, (4.3)

where we define the matrix elements of L as

Lsu :=
∂Rs(p⃗)

∂pu

∣∣∣∣
p⃗=0⃗

. (4.4)

These matrix elements, Lsu, as well as the vector R⃗(⃗0) can be computed analytically. Therefore,
given the perturbed responses, R⃗(p⃗), we obtain the gate errors parameters by solving the inverse
problem

p⃗ = L−1
[
R⃗(p⃗)− R⃗(⃗0)

]
. (4.5)

To ensure that the matrix L is non-singular, the number of responses must be equal to or
greater than the number of error parameters. When this is not the case, additional responses
can be added by considering more sequences, initial states or measurements. Moreover, the
condition number of L must not be too large so that computing L−1 is numerically stable.

Having introduced the basic setup, we are now able to explain more clearly the motivation
of this research. Table 4.1 summarises the combination of sequences and measurements used in
Ref. [39] to calibrate a perturbed CNOT employing GSC. In the third column of Tab. 4.1, we
see that the settings chosen consider only responses distributed around zero. Put differently,
Rs(⃗0) = 0 for all s = 1, . . . , 15. It turns out that, if one looks at statistics, this is also the
point of maximal uncertainty since the variance of the responses is maximal for Rs(⃗0) = 0

(see Fig. 4.1). In fact, it is not obvious what the optimal point is, i.e., which settings of GSC
minimise the statistical error and, at the same time, ensure stability of the numerical inverse of
L and implementability of the protocol. Our research looks into this trade-off between reducing
the statistical error, but still having a well-conditioned matrix L. Although we only consider
the calibration of a two-qubit gate, the statistical analysis performed in the following sections
can be generalised to higher dimensions straightforward.
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Figure 4.1: Variance of a estimated response, R∗
s, times the number of repetitions, N , as a

function of the expectation value, Rs (see Eq. (4.6)).

4.2 The statistics of GSC

Quantum mechanics is unable to predict with certainty future events, such as measurement
outcomes. Therefore, as we do in this section, it is essential to consider the statistics of the
problem one is investigating to minimise statistical errors. Here, we study the statistics of GSC
by determining the probability distribution according to which the measurement responses are
distributed, as well as the error parameters. Subsequently, we define a quality measure that
will allow us to compare the statistical error between different versions of GSC.

Before starting the discussion about GSC statistics, let us establish that all estimated quan-
tities will be denoted by a superscript ∗. Assuming independent measurements, the outcome
of a measurement with only two possible outcomes is described by a binomial distribution,
B(N, q), where N is the number of repetitions and q the probability of obtaining the out-
come. In the scenario presented in Section 4.1, fifteen measurements are performed, one per
setting, and each one is repeated N times. Therefore, the overall outcome is described by
a multivariate binomial distribution. The CLT, reviewed in Sec. 3.1.1, states that binomial
distribution can be approximated by a Gaussian distribution such that N (Nq,Nq(1 − q)) in
the limit of sufficiently large N . Our interest is, in particular, focused on spin qubits, which
are considered in Ref. [39] and where a high number of repetitions is easy to obtain. Therefore,
we can assume that the overall GSC outcome can be approximated by a multivariate Gaussian
distribution. We assume specifically that the estimated vector of responses is distributed as
R⃗∗(p⃗) ∼ N (R⃗(p⃗),Σ), where

Σsu =
1−R2

s(p⃗)

4N
δsu, (4.6)

with Rs(p⃗) defined in Eq. (4.2). Note that the covariance matrix Σ is diagonal, i.e., settings
are independent of each other.
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s 1st gate 2nd gate 3rd gate 4th gate Ms Rs(p⃗)/2

1 CNOT X(1)
π/2 τ12 0− p5 + p10

2 X(1)
π/2 CNOT τ12 0− p4 − p7

3 CNOT Y(1)
π/2 τ12 0− p6 − p9

4 Y(1)
π/2 CNOT τ12 0− p8 − p11

5 CNOT X(2)
π/2 τ3 0− p1 − p13

6 CNOT Y(2)
π/2 τ3 0− p2 − p14

7 X(1)
π/2 CNOT X(1)

π/2 τ12 0− p2 + p10

8 X(1)
π/2 CNOT Y(1)

π/2 τ12 0− p6 − p13

9 Y(1)
π/2 CNOT X(1)

π/2 τ12 0 + p10 + p13

10 X(1)
π/2 X(2)

π/2 CNOT τ3 0− p7 − p13

11 Y(1)
π/2 CNOT Y(1)

π/2 τ12 0− p2 − p6

12 Y(1)
π/2 Y(2)

π/2 CNOT τ3 0− p11 − p14

13 Y(2)
π/2 CNOT X(2)

π/2 τ3 0 + p3 + p15

14 X(1)
π/2 CNOT CNOT Y(1)

π/2 τ12 0− p3 − 2p12 − p15

15 X(1)
π/2 Y(2)

π/2 CNOT X(2)
π/2 τ3 0− p6 + p15

Table 4.1: Settings used in Ref. [39] to calibrate a ˜CNOT gate (Eq. (4.1)) via GSC. Each
row corresponds to one setting, where gates are applied from left to right and followed by a
measurement (either τ3 = σ0⊗σ3 or τ12 = σ3⊗σ0). The last column contains the measurement
responses, which depend on the error parameters, p⃗ (see Eqns. (4.2) and (4.3)).
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The estimated error parameters, p⃗∗, are computed with Eq. (4.5) using the estimated re-
sponses, R⃗∗, obtained from the lab. Therefore, p⃗∗ is a random vector distributed according to
a multivariate Gaussian distribution with p⃗∗ ∼ N (p⃗,Σp⃗∗), where

Σp⃗∗ := L−1ΣL−T , (4.7)

with L−T := (L−1)T . In App. 4.A, we give numerical evidences that support this theory.

In order to quantify the statistical error, we need to construct a measure of uncertainty.
We take our quality measure to be the mean squared distance between p⃗∗ and p⃗, i.e.,

⟨D2⟩ := ⟨||p⃗∗ − p⃗||2⟩ =
15∑

s=1

⟨(p∗s − ps)
2⟩ =

15∑

s=1

Σ
(ss)
p⃗∗−p⃗ , (4.8)

= TrΣp⃗∗−p⃗ = Tr(L−1ΣL−T ), (4.9)

where Σp⃗∗−p⃗ is the covariance matrix of the random vector p⃗∗ − p⃗ with matrix elements Σ
(su)
p⃗∗−p⃗

. Note that ⟨p⃗∗ − p⃗⟩ = 0⃗ since ⟨p⃗∗⟩ = p⃗, which we have used in the second equality. Note
further that Σp⃗∗−p⃗ = Σp⃗∗ is given in Eq. (4.7). We extend the definition of ⟨D2⟩ to singular L
by defining it to be ∞ in this case.

Now that we have characterised the statistics of GSC and defined a quality measure, we
are able to minimise the statistical error of GSC. In the next section, we will look for a set
of sequences, initial states and measurements which achieves a small mean squared distance
under the restrictions that, first, L is a well-conditioned matrix and, second, the settings of
GSC are physically implementable.

4.3 Optimising GSC

In this section, we employ the statistical characterisation we have developed in Sec. 4.2 to
optimise the calibration protocol GSC. To do so, we introduce some parameters in the set-
tings of GSC and minimise the statistical error over these parameters. Aiming for a physical
implementation of GSC, we further modify the optimised settings to have a small number of
different gates. Before all this, however, we start analysing the version of GSC proposed in
Ref. [39] with the quality measure defined in Sec. 4.2.

In Ref. [39], GSC is introduced and applied to calibrate a perturbed two-qubit CNOT gate,
as we have summarised in Sec. 4.1. Evaluating the statistical error of this version of the proto-
col in terms of the mean squared distance defined in Eq. (4.8), we obtain that ⟨D2⟩ ≈ 1.8/N .
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As we have already mentioned in Sec. 4.2, we can assume that each estimated response,
R∗
s, is distributed according to a Gaussian distribution such that N (Rs(p⃗),Σss) with Rs(p⃗) and

Σss defined in Eqns. (4.2) and (4.6), respectively. In Sec. 4.1, we have pointed out that, for
the settings chosen in Ref. [39], each estimated response is distributed around zero when p⃗ = 0⃗

(see the last column of Tab. 4.1). The calibration of the CNOT is, therefore, performed at the
point of maximal uncertainty, i.e., where the variance of each response reaches its maximum,
Σss = 1/(4N), as we can see in Fig. 4.1. Here we have restricted the attention to the diagonal
elements of Σ because all settings are independent of each other.

We propose to slightly modify GSC in order to benefit from working at a point with smaller
statistical error. To this end, we allow a different angle for each rotation of each GSC sequence
so that the calibration of a ˜CNOT is performed using the sequences in Tab. 4.2. Our idea is to
numerically minimise the mean squared distance of these settings over the angles θ1, . . . , θ25.
Motivation for this optimisation strategy can be found in App. 4.C.

We use a local derivative-free optimiser specified as nlopt_ln_bobyqa in the NLopt
library [68], which, according to the documentation, is derived from the BOBYQA subroutine
introduced in Ref. [69]. This algorithm optimises the objective function by iteratively con-
structing its quadratic approximation. We set boundary constraints such that θi ∈ [0, 2π] for
all i = 1, . . . , 25. A stopping tolerance for the optimiser is set to 10−10 at the angles. Note
that a local optimiser such as BOBYQA does not always converge to a global minimum. In
order to gain confidence that our result is indeed a global minimum, we have repeated the
optimisation 104 times with random starting points. In roughly one in 30 runs, the optimiser
stopped at values within a factor of 10−5 of the smallest mean squared error observed. The
code developed for this project is available in [70] and, in Appendix 4.D, we present essential
parts of the code.

We obtain a minimum mean squared distance of ⟨D2⟩ ≈ 0.84/N with the angles shown in
Fig. 4.2. The numerical values of the angles are in Appendix 4.E. This result means that one
can achieve a reduction of the statistical error of GSC by a factor of 0.47 with respect to the
version of GSC proposed in Ref. [39].

The new version of GSC requires sixteen single-qubit rotations for a maximal sequence
depth of four gates. Specifically, we need one rotation for each different angle and, for some
angles, we need two rotations: one rotation around the X-axis and one rotation around the Y-
axis. Note that, although all rotations Xnϕ and Ynϕ, where n is an integer, can be implemented
by applying n times the rotation Xϕ or Yϕ, respectively, this implies a cost in the sequence
depth. Indeed, we can reduce the number of single-qubit rotations to twelve but with a cost
of increasing the sequence depth to seven gates.
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s 1st gate 2nd gate 3rd gate 4th gate Ms

1 CNOT X(1)
θ15

τ12

2 X(1)
θ1

CNOT τ12

3 CNOT Y(1)
θ16

τ12

4 Y(1)
θ2

CNOT τ12

5 CNOT X(2)
θ17

τ3

6 CNOT Y(2)
θ18

τ3

7 X(1)
θ3

CNOT X(1)
θ19

τ12

8 X(1)
θ4

CNOT Y(1)
θ20

τ12

9 Y(1)
θ5

CNOT X(1)
θ21

τ12

10 X(1)
θ6

X(2)
θ7

CNOT τ3

11 Y(1)
θ8

CNOT Y(1)
θ22

τ12

12 Y(1)
θ9

Y(2)
θ10

CNOT τ3

13 Y(2)
θ11

CNOT X(2)
θ23

τ3

14 X(1)
θ12

CNOT CNOT Y(1)
θ24

τ12

15 X(1)
θ13

Y(2)
θ14

CNOT X(2)
θ25

τ3

Table 4.2: Settings to optimise the calibration of a ˜CNOT gate in Eq. (4.1) via GSC. A
numerical optimisation over θ1, . . . , θ25 allows to reduce the statistical error with respect to
the GSC with settings in Tab. 4.1. For clarity, the responses of the measurements are in
Appendix 4.B.
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Figure 4.2: Above, angles that minimise the mean squared distance of the calibration of a
˜CNOT using settings in Tab. 4.2 (Eq. (4.8)). Below, angles proposed here to optimise GSC.

The angles below are the same angles as above after a folding transformation (i.e., mapping
θi −→ 2π − θi for all θi > π) and setting θ1 = θ2 = θ6 = θ9 = θ15 = θ16 = θ17 = θ18 = π/2.
Since the mean squared distance is invariant under folding transformation and independent of
θ1, θ2, θ6, θ9, θ15, θ16, θ17, θ18, both angle combinations achieve the minimum mean squared
distance, ⟨D2⟩ ≈ 0.84/N . The numerical values of the angles are in Appendix 4.E.

From an experimental point of view, tuning and calibrating sixteen different single-qubit
rotations is undesirable. Hence, we would like to reduce the number of angles without increasing
significantly the mean squared distance. We have observed numerically that the mean squared
distance is invariant under the following transformations of the set of optimal angles (the
transformations are not symmetries of the objective function at non-optimal points):

1. degeneracy : any change of the angles θ1, θ2, θ6, θ9, θ15, θ16, θ17, and θ18 as long as L
remains non-singular;

2. global reflection: θi −→ 2π − θi for all i = 1, . . . , 25;

3. local reflection: θi −→ 2π − θi for one i ∈ {1, . . . , 25} as long as L remains non-singular;

4. folding transformation: θi −→ 2π − θi for all θi > π.

It would be tempting to set all the angles listed under 1. to zero, thereby eliminating the
corresponding gates. However, it turns out that this choice does lead to a singular L and will
therefore not be considered here. Still, a significant reduction of complexity can be achieved
by making use of the above symmetries. The folding transformation allows us to reduce the
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number of different rotations to thirteen for a maximal sequence depth of four gates without
cost in the mean squared distance. At the price of increasing the sequence depth to seven
gates, one can further reduce to eleven distinct rotations.

1 3 5 7 9 11 13 15 17 19 21 23 25
i
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i/

Figure 4.3: Combinations of angles that give a mean squared distance ⟨D2⟩ ≈ 0.84/N . The
mean squared distance is independent of θ1, θ2, θ6, θ9, θ15, θ16, θ17, θ18, and thus we can set
these angles at any value in [0, 2π] without any cost in the statistical error.

To reduce even more the number of necessary gates, we use the fact that the minimum
mean squared distance is degenerate. In Fig. 4.3, we can see that the minimum mean squared
distance is achieved regardless of the value of the angles θ1, θ2, θ6, θ9, θ15, θ16, θ17 and θ18.
As we can unfortunately not set these angles simply to zero, we set them to π/2, which is a
single-qubit gate already required to implement GSC (see Fig. 4.2). The mean squared distance
remains at ⟨D2⟩ ≈ 0.84/N , and now GSC needs only four rotations and a maximal sequence
depth of five gates.

Ultimately, we propose a GSC protocol that calibrates a ˜CNOT gate with a statistical error
0.47 times smaller than in Ref. [39]. The maximal sequence depth is five and the set of allowed
gates is {CNOT,X(1)

π/2,Y
(1)
π/2,X

(2)
π/2,Y

(2)
π/2,X

(1)
θ ,Y(1)

θ }, where θ = 0.62208π, as we see in Tab. 4.3.

4.3.1 GSC with imperfect measurements

In all previous sections, the measurements performed in GSC are assumed to be perfect. In
other words, we have assumed that the measurement outcome obtained by the measurement
device always corresponds to the state after the measurement. However, in the laboratory,
devices are imperfect and, therefore, there is a non-zero error probability, i.e., a probability
of obtaining a measurement outcome that differs from the true outcome corresponding to the
post-measurement state. With the intention of building a model as realistic as possible, we
introduce imperfect measurements in GSC along this section.
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s 1st gate 2nd gate 3rd gate 4th gate 5th gate Ms Rs(p⃗)/2

1 CNOT X(1)
π/2 τ12 0− p5 + p10

2 X(1)
π/2 CNOT τ12 0− p4 − p7

3 CNOT Y(1)
π/2 τ12 0− p6 − p9

4 Y(1)
π/2 CNOT τ12 0− p8 − p11

5 CNOT X(2)
π/2 τ3 0− p1 − p13

6 CNOT Y(2)
π/2 τ3 0− p2 − p14

7 X(1)
θ CNOT X(1)

π/2 τ12 0− sin θp2 − cos θp5 + p10

8 X(1)
θ CNOT Y(1)

π/2 τ12 0− p6 − cos θp9 − sin θp13

9 Y(1)
θ CNOT X(1)

π/2 τ12 0− cos θp5 + p10 + sin θp13

10 X(1)
π/2 X(2)

π/2 X(2)
π/2 CNOT τ3 0 + p4 − p7

11 Y(1)
θ CNOT Y(1)

π/2 τ12 0− sin θp2 − p6 − cos θp9

12 Y(1)
π/2 Y(2)

π/2 Y(2)
π/2 CNOT τ3 0 + p8 − p11

13 Y(2)
π/2 CNOT X(2)

π/2 τ3 0 + p3 + p15

14 X(1)
π/2 CNOT CNOT Y(1)

π/2 τ12 0− p3 − 2p12 − p15

15 X(1)
π/2 X(1)

π/2 Y(2)
π/2 CNOT X(2)

π/2 τ3 0− p3 + p15

Table 4.3: Settings proposed to reduce the statistical error in the calibration of a ˜CNOT using
GSC. The set of allowed gates is {CNOT,X(1)

π/2,Y
(1)
π/2,X

(2)
π/2,Y

(2)
π/2,X

(1)
θ ,Y(1)

θ } with θ = 0.62208π.
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Consider the scenario presented in Sec. 4.1: calibrating a perturbed gate, ˜CNOT, (see
Eq. (4.1)) using GSC. All measurements performed in GSC are Pauli observables, and thus
they have only two outcomes, the positive and the negative outcome. We now consider an
imperfect measurement device and allow a different error probability for each outcome. In
other words, the measurement device gives the correct outcome i ∈ {±} with a probability Fi,
and an incorrect outcome with probability 1− Fi.

The probability to read a positive outcome on the measurement device after measuring Ms

is then

Qs(+) :=F+qs + (1− F−)(1− qs),

=
1

2
[1 + F+ − F− +Rs (F+ + F− − 1)] ,

where qs is the probability of the positive outcome, i.e., qs = (1 + Rs)/2, and Rs is defined in
Eq. (4.2). Recall that Rs depends on the error parameters, and so do qs and Qs(+).

The probability that the measurement device gives a negative outcome after performing
the measurement Ms is

Qs(−) =F−(1− qs) + (1− F+)qs,

=
1

2
[1 + F− − F+ −Rs (F+ + F− − 1)] .

It is easy to check that Qs(+) +Qs(−) = 1.

The imperfect measurement responses are hence given by

R̃s(p⃗) = Q(+)−Q(−),

= F+ − F− +Rs(F+ + F− − 1).

Then, the matrix elements of L can be written as

L̃ru =
∂R̃r(p⃗)

∂pu

∣∣∣∣∣
p⃗=0⃗

, (4.10)

= (F+ + F− − 1)Lru. (4.11)

For imperfect measurements we also use the mean squared distance as measure of uncer-
tainty to compare different versions of GSC. The mean squared distance considering imperfect
measurements becomes

˜⟨D2⟩ = Tr(L̃−1Σ̃L̃−T ), (4.12)

where the matrix elements of the covariance matrix of the perturbed measurement responses,

Σ̃, are Σ̃su =
1

4N
(1− R̃2

s)δsu.
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Let F+ = 0.99 and F− = 0.98 and consider the GSC presented in Ref. [39], which uses
the sequences in Tab. 4.1. The statistical error measured by the mean squared distance in
Eq. (4.12) is ˜⟨D2⟩ ≈ 2.0/N .

Allow now a different angle for each GSC rotation, i.e., consider the sequences in Tab. 4.2.
With the optimisation procedure described for the case of perfect measurement, we minimise
the mean squared distance in Eq. (4.12) over the angles θ1, . . . , θ25. The angles in Fig. 4.4
achieve a minimal mean squared distance at ˜⟨D2⟩ ≈ 0.89/N . This means a statistical error
0.45 times smaller than in Ref. [39], but requires seventeen different rotations with a maximal
sequence depth of four gates. Assuming a cost of a sequence depth of seven gates, we can
decrease the number of rotations to thirteen.
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Figure 4.4: Above, angles that minimise the mean squared distance in Eq. (4.12), which consid-
ers imperfect measurements in the calibration of a ˜CNOT using sequences in Tab. 4.2. Below,
angles proposed here to optimise GSC considering imperfect measurement. The angles below
are the same angles as above after a folding transformation (i.e., mapping θi −→ 2π − θi for
all θi > π) and setting θ1 = θ2 = θ6 = θ9 = θ15 = θ16 = θ17 = θ18 = π/2.

Analogous to the case with perfect measurements, the number of rotations can be reduced
by considering symmetries of the optimal mean squared distance. We have numerically shown
that the minimal ˜⟨D2⟩ is invariant under folding transformation as well as global and local
reflection of the optimal angles. After considering the folding transformation, the number of
rotations reduces to twelve without any change in the mean squared distance and a maximal
sequence depth of four gates.

If twelve different single-qubit rotations are undesirable to perform in the lab, we can set
the angles θ1 = θ2 = θ6 = θ9 = θ15 = θ16 = θ17 = θ18 = π/2. In contrast to the case of per-
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fect measurements, the mean squared distance for imperfect measurement is not degenerated.
Therefore, setting these angles implies an increase of the statistical error to ˜⟨D2⟩ ≈ 0.90/N .
This means, however, still a reduction of the statistical error by a factor of 0.45 with respect
to the statistical error in Ref. [39]. Note that the final settings suggested for GSC are the same
in both cases, considering perfect and imperfect measurements.

In summary, we propose to calibrate a perturbed CNOT using GSC with the sequences in
Tab. 4.3 and θ = 0.62208π. This version of GSC requires a maximal sequence depth of five
gates and a set of allowed gates consisting of {CNOT,X(1)

π/2,Y
(1)
π/2,X

(2)
π/2,Y

(2)
π/2,X

(1)
θ ,Y(1)

θ }, which
contains two more single-qubit gates than the set proposed in Ref. [39]. Nevertheless, it re-
duces the statistical error by a factor of 0.47 for perfect measurements and a factor of 0.45 for
imperfect measurements, with F+ = 0.99 and F− = 0.98. All results are compiled in Tab. 4.4.

[F+, F−] ⟨D2⟩ ·N # rotations Maximal sequence depth
Angles of Ref. [39] [1, 1] 1.8 2 4

Optimal angles [1, 1] 0.84 17 4
Folded angles [1, 1] 0.84 12 4

Modified angles [1, 1] 0.84 4 5
Angles of Ref. [39] [0.99, 0.98] 2.0 2 4

Optimal angles [0.99, 0.98] 0.89 17 4
Folded angles [0.99, 0.98] 0.89 12 4

Modified angles [0.99, 0.98] 0.90 4 5

Table 4.4: Summary of numerical results, where the statistical error is measured by the mean
squared distance, ⟨D2⟩. The last two columns show the number of single-qubit rotations that
must be available and the maximal sequence depth for each version of GSC.

4.4 Conclusions and outlook

We have seen that optimising the design of an experiment is crucial for minimising statistical
errors. In particular, we have used DOE to propose a new version of GSC that reduces the sta-
tistical error by a factor of 0.47 for perfect measurements and by a factor of 0.45 for imperfect
measurements. To achieve this, one initial state, two Pauli measurements and six single-qubit
rotations must be available.

Several questions remain open. Although we have reduced the statistical error, a physical
explanation of the optimal sequences is still missing. We also do not know why the mean
squared distance is degenerate for perfect measurements and why the degeneracy breaks down
for imperfect measurements (even when F+ = F− ̸= 1).
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Our optimisation has been based on parmeterising the GSC sequences, but different initial
states and measurements could also be considered. Furthermore, we have used fifteen settings
to solve fifteen error parameters. Considering additional settings, however, and making a
statistical treatment of the redundant information could further reduce the statistical error.

Finally, it would also be interesting to put our results into practice, and thus experimentally
calibrate a ˜CNOT with the version of GSC proposed in this chapter.

Appendix

4.A Histograms of the error parameters

In Sec. 4.2, we have statistically analysed the calibration protocol GSC. Particularly assuming
that the measurement responses follow a Gaussian distribution, we have determined the prob-
ability distribution of the error parameters. Here, we present some histograms of simulated
data that support our statistical characterisation of GSC.

Making use of the CLT, we have determined in Sec. 4.2 that the vector of estimated re-
sponses, R⃗∗(p⃗), follows a multivariate Gaussian distribution such that R⃗∗(p⃗) ∼ N (R⃗(p⃗),Σ),
where the matrix elements of the Σ are given in Eq. (4.6). Consequently, the vector of esti-
mated error parameters, p⃗∗, is also distributed according to a multivariate Gaussian distribution
with p⃗∗ ∼ N (p⃗,Σp⃗∗), where Σp⃗∗ is defined in Eq. (4.7). Recall that p⃗∗ can be computed with
the affine transformation in Eq. (4.5) using the vector of estimated responses, R⃗(p⃗)∗.
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Figure 4.A.1: Histogram of the estimated error parameter p∗1 and, in green, Gaussian distribu-
tion with parameters N (p1,Σ

(11)
p⃗∗ ), where Σ

(11)
p⃗∗ is the first diagonal element of Σp⃗∗ defined in

Eq. (4.7).
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Figure 4.A.2: Histograms of the error parameters p∗2, . . . , p∗15. In green, Gaussian distributions
with parameters N (ps,Σ
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p⃗∗ ), where Σ
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p⃗∗ are the diagonal elements of Σp⃗∗ defined in Eq. (4.7).
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To confirm the mean vector and the covariance matrix of the multivariate Gaussian distri-
bution of p⃗∗ numerically, we simulate the calibration of a perturbed CNOT gate using the GSC
introduced in Ref. [39]. Assuming the calibration with GSC is repeated N = 106 times in the
lab, we perform the simulation 105 times. We compute the vector of estimated error parameters
in each simulation and save it. With this data, we build a histogram for each estimated error
parameter, p∗s for s = 1, . . . , 15. In Fig. 4.A.1, we show that the histogram of the error parame-
ter p∗1 is compatible with the theoretically predicted Gaussian distribution N (p1,Σ

(11)
p⃗∗ ), where

Σ
(su)
p⃗∗ are the matrix elements of Σp⃗∗ . Analogous histograms of the estimated error parameters

p∗2, . . . , p
∗
15 are plotted apart for clarity in Fig. 4.A.2.

4.B Responses of Table 4.2

In Sec. 4.3, we have considered GSC with the settings summarised in Tab. 4.2. We present
here the measurement responses corresponding to this protocol.

Using Eqns. (4.2) and (4.3), we obtain that the responses of the settings in Tab. 4.2 are
given by

R1(p⃗) = cos θ15 − 2 cos θ15p5 + 2 cos θ15p10,

R2(p⃗) = cos θ1 − 2 cos θ1p4 − 2 cos θ1p7,

R3(p⃗) = cos θ16 − 2 cos θ16p6 − 2 cos θ16p9,

R4(p⃗) = cos θ2 − 2 cos θ2p8 − 2 cos θ2p11,

R5(p⃗) = cos θ17 − 2 cos θ17p1 − 2 cos θ17p13,

R6(p⃗) = cos θ18 − 2 cos θ18p2 − 2 cos θ18p14,

R7(p⃗) = cos θ19 cos θ3 − 2 cos θ19 cos θ3p2 − 2 cos θ19 cos θ3p4

− 2 cos θ3 cos θ19p5 − 2 cos θ19 cos θ3p7 + 2 cos θ19p10,

R8(p⃗) = cos θ20 cos θ4 − 2 cos θ20 cos θ4p4 − 2 cos θ20p6

− 2 cos θ20 cos θ4p7 − 2 cos θ4 cos θ20p9 − 2 cos θ20 cos θ4p13,

R9(p⃗) = cos θ21 cos θ5 − 2 cos θ5 cos θ21p5 − 2 cos θ21 cos θ5p8

+ 2 cos θ21p10 − 2 cos θ21 cos θ5p11 + 2 cos θ21 cos θ5p13,

R10(p⃗) = cos θ6 cos θ7 − 2 cos θ6p7 − 2 cos θ7 cos θ6p4

− 2 sin θ7p13 − 2p1 cos θ6 sin θ7,

R11(p⃗) = cos θ22 cos θ8 − 2 cos θ22p6 − 2 cos θ8 cos θ22p9

− 2 cos θ22 cos θ8p11 − 2 cos θ22 cos θ8p8 − 2 cos θ22 cos θ8p2,

R12(p⃗) = cos θ10 cos θ9 − 2 cos θ9 cos θ10p2 − 2 cos θ10 cos θ9p8

− 2 cos θ9p11 − 2 cos θ10p14,
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R13(p⃗) = cos θ11 cos θ23 − 2 cos θ11 cos θ23p1 − 2 cos θ23 cos θ11p2

+ 2 cos θ11 cos θ23p3 − 2 cos θ11 cos θ23p13

− 2 cos θ23 cos θ11p14 + 2 cos θ11 cos θ23p15,

R14(p⃗) = cos θ12 cos θ24 − 2 cos θ12 cos θ24p3 − 2 cos θ24 cos θ12p4

− 2 cos θ24 cos θ12p5 − 2 cos θ12 cos θ24p6

− 2 cos θ24 cos θ12p7 − 2 cos θ12 cos θ24p8

− 2 cos θ12 cos θ24p9 − 2 cos θ12 cos θ24p11

+ 2 cos θ24 cos θ12p10 − 4 cos θ12 cos θ24p12

− 2 cos θ12 cos θ24p15,

R15(p⃗) = cos θ13 cos θ14 cos θ25 − 2 cos θ25 cos θ13p7 − 2 cos θ14 cos θ25 cos θ13p4

− 2 cos θ25 cos θ14p14 − 2 cos θ13 cos θ25 cos θ14p2

− 2 cos θ14 cos θ25p13 − 2 cos θ13 cos θ14 cos θ25p1

− 2 cos θ13 cos θ25p6 + 2 cos θ14 cos θ25p15

+ 2 cos θ13 cos θ14 cos θ25p3.

4.C Statistical error as a function of the rotation angle

The optimisation of GSC performed in Sec. 4.3 has been carried out by allowing a different an-
gle for each single-qubit rotation. Nevertheless, GSC permits not only changing the sequences
of the settings but also the measurements and the initial states. Here, we present some moti-
vation for our choice of optimisation strategy.

As we have mentioned in the main text, the goal of this project is to optimise GSC by
minimising statistical errors. We intend, at the same time, to propose a new version of GSC
that is physically feasible, and thus we aim to introduce small modifications on the original
version of GSC. For this reason, we start considering the same set-up as in Ref. [39], i.e.,
the settings in Tab. 4.1. In this version of GSC all single-qubit gates are π/2-rotations, so a
simple change on the protocol is considering a different rotation angle, which we denote as θ.
Computing the mean squared distance of GSC, ⟨D2⟩ defined in Eq. (4.8), for different values of
θ, we can plot the statistical error of GSC as a function of the rotation angle. In Fig. 4.C.1, we
find that the choice made in Ref. [39], i.e., θ = π/2, does not give the minimum mean squared
distance, but the minimum ⟨D2⟩ is achieved for θ = 1.428π does.

In order to further reduce the statistical error, we have considered in Sec. 4.3 not only one
rotation angle, but a different angle for each single-qubit rotation.
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Figure 4.C.1: Mean squared distance, ⟨D2⟩ defined in Eq. (4.8), as a function of the single-
qubit-rotation angle, θ.

4.D Optimisation code

Section 4.3 has been devoted to optimise GSC. Below we present the code that we developed
and used for this optimisation.

import numpy as np
import nlopt as nlopt

import functions.basic_functions as bf
import functions.fake_data_functions as fd
import functions.optimisation_functions as opt

# OPTIMISATION OVER 25 ANGLES
M = 1∗10∗∗4 # Number of optimisations
F = [1, 1] # Measurement fidelities. If F=[1,1], perfect measurements.

list_result_code = [] # Initialise list for stopping criteria
list_opt_mean_distance2 = [] # Initialise list for mean squared distance
list_opt_vec_theta = [] # Initialise list for angles

for m in range(M):
# When the optimiser runs into a RoundoffLimited error, the value of theta is skipped.
try:

# The initial point of the optimiser is chosen randomly.
vec_theta0 = np.random.random(25)∗2∗np.pi
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# Check if the initial value gives a non−singular L.
inv = bf.is_invertible(np.array(opt.L(vec_theta0,F)))
while inv == False:

vec_theta0 = np.random.random(25) ∗ 2 ∗ np.pi
inv = bf.is_invertible(opt.L(vec_theta0))

# (LOCAL) OPTIMISATION

# Choice of the optimiser and number of parameters to optimise
optL = nlopt.opt(nlopt.LN_BOBYQA, 25)

# Set max time for each optimisation
optL.set_maxtime(0.25∗60∗60)

# Set 0 as lower bound for the angles
optL.set_lower_bounds(np.zeros(25))

# Set 2∗pi as upper bound for the angles
optL.set_upper_bounds([2∗np.pi for i in range(25)])

# Choose the function called opt.mysuperfunc1 to minimise
optL.set_min_objective(opt.mysuperfunc1)

# Set tolerance for the angles
optL.set_xtol_rel(1e−10)

# Start optimisation with vec_theta0 as initial point and keep the optimal angles
opt_vec_theta = optL.optimize(vec_theta0)

# Keep optimised mean squared distance
opt_mean_distance2 = optL.last_optimum_value()

# Keep the stopping criteria
result_code_L = optL.last_optimize_result()

list_opt_vec_theta.append(opt_vec_theta)
list_opt_mean_distance2.append(opt_mean_distance2)
list_result_code.append(result_code_L)
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# Skip values of theta that produce a RoundoffLimited error
except nlopt.RoundoffLimited:

print("RoundoffLimited␣error␣at␣m=", m, ".")
print("vec_theta0␣=", vec_theta0)
print("Value␣skipped.")

The code above optimises a function called opt.mysuperfunc1, which we have defined as

def mysuperfunc1(vec_theta, grad):
N = 10∗∗6 # Number of runs of the "experiment in the lab"
F = [1, 1] # Measurement fidelities

return mean_distance2(vec_theta, N, F)

where

def mean_distance2(vec_theta, N, F):
# Constructing the matrix L
matrix_L = L(vec_theta, F)

# Constructing covariance matrix of responses
cov_matrix = cov_matrixR(vec_theta, N, F)

# If L is non−singular, the function computes the mean squared distance
if bf.is_invertible(np.array(matrix_L))==True:

D2 = np.matrix.trace(np.linalg.inv(matrix_L) @ cov_matrix @ np.matrix.transpose(np.
↪→ linalg.inv(matrix_L)))

return D2
else: # If L is singular, the function returns infinity.

return mth.inf

with the function L(vec_theta,F) computing the L matrix defined in Eq. (4.10).

4.E Optimal angles

In Sec. 4.3 we have optimised the calibration of a ˜CNOT via GSC with sequences in Tab. 4.2
considering perfect and imperfect measurements. Here, the concrete values of θ1, . . . , θ25 that
achieve the minimal mean squared distance are presented for both cases.

With the optimisation process presented in Sec. 4.3, we have obtained a minimal squared
distance in the case of perfect measurements (Eq. (4.8)) of ⟨D2⟩ ≈ 0.84/N with the angles
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θ1/π = 1.3864, θ2/π = 0.3743,

θ3/π = 1.3779, θ4/π = 1.3779,

θ5/π = 1.3779, θ6/π = 1.5722,

θ7/π = 1.0000, θ8/π = 1.3779,

θ9/π = 0.4003, θ10/π = 1.0000,

θ11/π = 0.5000, θ12/π = 1.5000,

θ13/π = 1.0000, θ14/π = 0.5000,

θ15/π = 1.0310, θ16/π = 0.2618,

θ17/π = 0.3087, θ18/π = 0.8718,

θ19/π = 0.5000, θ20/π = 0.5000,

θ21/π = 0.5000, θ22/π = 1.5000,

θ23/π = 0.5000, θ24/π = 0.5000,

θ25/π = 1.5000.

These angles are plotted in Fig. 4.2.

Using the same optimisation process, but the mean squared distance in Eq. (4.12), which
considers imperfect measurements, we have obtained a minimum mean squared distance at
˜⟨D2⟩ ≈ 0.89/N with the angles

θ1/π = 0.4459, θ2/π = 0.4459,

θ3/π = 1.3779, θ4/π = 1.3779,

θ5/π = 0.6221, θ6/π = 0.5541,

θ7/π = 1.0000, θ8/π = 0.6221,

θ9/π = 0.5541, θ10/π = 1.0000,

θ11/π = 1.5000, θ12/π = 0.5000,

θ13/π = 1.0000, θ14/π = 1.5000,

θ15/π = 1.5541, θ16/π = 0.4459,

θ17/π = 1.5541, θ18/π = 0.4459,

θ19/π = 1.4993, θ20/π = 0.5007,

θ21/π = 0.5007, θ22/π = 1.4993,

θ23/π = 1.5000, θ24/π = 0.5000,

θ25/π = 1.5000.

Figure 4.4 contains a plot of these angles.
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Conclusions

This chapter summarises the results presented along the thesis and discusses future research
as well as open questions. In accordance with the structure of the thesis, we divide the chapter
into two sections, where each presents the conclusion of one part.

Classical restrictions of matrix product states

Summary
Physical interactions are local, and this locality is one of the most relevant factors that enforces
which states are likely for low-energy physical systems. Matrix product states are an efficient
representation of ground states of any gapped Hamiltonian. Not only do MPSs provide a
complete framework for the most physically relevant Hamiltonians, but simulations based on
MPSs are also highly precise and efficient. The efficiency and high precision of MPSs rely on
the accurate description of correlations within the state, which are restricted to be local.

Other approaches to simulate many-body physics, such as quantum Monte-Carlo simula-
tions, use heuristic assumptions on the state characterising the system. Although convergence
is not guaranteed, quantum Monte-Carlo simulations usually succeed when the system is char-
acterised by a locally restricted Gibbs Ansatz. The notion of locality used in quantum Monte-
Carlo algorithm consists in assuming that the Hamiltonian describing the system is local, and
hence the corresponding Gibbs state is also local.

With the research presented in Ch. 2, we have contributed in connecting these two notions
of locality. Our main result consists in proving that classical restrictions of generic MPSs are
quasi-locally Gibbsian. The proof of this result has been divided in the following steps. First,
we have shown that any probability distribution defined on a one-dimensional lattice with open
boundary conditions is exponentially close to a local Gibbs distribution, if the CMI between
any tripartition of the lattice decays rapidly in the width of the middle region. Then, the CMI
of classical restrictions of injective MPSs is demonstrated to decay if the purity condition is
fulfilled. Finally, we have shown that the purity condition is a generic property in a concrete
probabilistic model.
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Outlook
The first question that naturally arises concerning our research presented in Ch. 2 is whether
the results obtained are also valid for tensor networks of higher dimensions. A generalisation
of our results in the context of matrix product density operators [71] or continuous MPSs [72]
would also be interesting.

Additionally, the connection that we have established between classical restrictions of MPSs
and Gibbs states could provide new understanding and algorithm improvements in quantum
simulation. For example, could this connection be used for a rigorous convergence proof of the
Monte Carlo wave function method [73]?

Within Ch. 2 we have proved that the CMI decays exponentially if the purity condition is
satisfied, but no concrete decay rate has been given. It would be desirable to have a better
insight into the dependencies of the decay rate and, even more, to obtain a closed expression.

There are also open questions regarding the purity condition. We have shown that the purity
condition is necessary and sufficient for the quantum CMI, but only a sufficient statement has
been proved for the classical CMI. One could wonder, then, if the purity condition is also a
necessary condition in the classical case or if a weaker condition which is sufficient and necessary
exists. On another note, is it easy to check whether a given MPS satisfies the purity condition?

Finally, our proofs make extensive use of the theory of random matrix products, and thus
we wonder if these tools could also be advantageous in other fields.

Minimising statistical errors in gate calibration

Summary
Statistics is an essential tool in experimental science. Either before an experiment via DOE or
afterwards via statistical analysis, statistics can be used to improve the results of experiments.

DOE is of significant importance in quantum mechanics because responses of measurements
are predicted only probabilistically. In other words, every measurement outcome is a random
variable distributed according to a concrete probability distribution with an associated vari-
ance. Moreover, when an experiment extracts more than one measurement response, we need
to consider random vectors with possibly correlated components in the statistical analysis.
Carefully planning DOE allows for the global statistical error to be minimised.

Chapter 4 encloses the application of DOE on the calibration protocol called GSC [39], and,
in particular, in the calibration of a perturbed CNOT gate. We have proposed a modification
on the calibration protocol that implies having two more single-qubit rotations available and
allowing for a sequence length of five gates instead of four. In return, these changes on the
protocol reduce the statistical error of the calibration by a factor of 0.47 when perfect mea-
surements are considered and by a factor of 0.45 for imperfect measurements.
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Outlook
The research conducted in Ch. 2 has opened some questions. We have reduced the statistical
error of GSC by finding a trade-off between numerical stability and uncertainty. Nevertheless,
we do not theoretically understand why the settings proposed here give a smaller statistical
error than the sequences proposed in Ref. [39].

During the statistical analysis, we have numerically observed that, in the case of perfect
measurements, the minimal statistical error does not depend on some of the rotations forming
the sequences. It would be useful to have more insights into this property and understand why
the dependency is different for perfect and imperfect measurements.

Our optimisation protocol has only considered modifications on the single-qubit rotations.
The settings of GSC, however, can also vary in its initial state and measurement. Including
variation on them could be a research line for further investigations.

We have assumed single-qubit rotations to be calibrated. A follow-up project could con-
sider self-consistent calibration, i.e., calibrating the CNOT gate and the single-qubit rotations
required for this calibration. How precise should single-qubit rotations be so that our GSC
version still reduces the statistical error despite the cost of the number of rotations and the
increased sequence length?

In order to obtain the error parameters, we have solved an inverse problem where the
number of equations was the same as the number of parameters. One could consider more
settings in the GSC such that the problem is overdetermined. Statistical analysis could be
then applied to the redundant information, which may eventually lead to an extra reduction
in the statistical error.

Finally, an experimental implementation of the version of GSC proposed in Ch. 4 would be
interesting follow-up project.
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Formalia



Kurzzusammenfassung

Diese Arbeit besteht aus zwei unabhängigen Teilen. Im ersten Teil untersuchen wir den Begriff
der Lokalität im Zusammenhang mit Matrizproduktzuständen (MPS, engl. Matrix Product
State), während wir im zweiten Teil den statistischen Fehler in einem Kalibrierungsprotokoll
für Quantengattersets minimieren.

Im ersten Teil dieser Arbeit betrachten wir einen MPS auf einem eindimensionalen Gitter
und untersuchen die Norm der quadrierten Amplituden in Bezug auf eine lokale orthonormale
Basis. Wir nennen diese Norm die klassische Restriktion des MPS. Konkret stellen wir die
Frage, wann die klassische Restriktion eines MPS quasi-lokal Gibbssch ist, d.h. exponentiell
gut durch eine Gibbs-Verteilung mit einem lokalen Hamiltonian approximiert ist. Wir beweisen,
dass die klassische Restriktion eines injektiven MPS quasi-lokal Gibbssch ist, wenn die mit dem
MPS assoziierten Matrizen eine ‘Reinheits’-Bedingung erfüllen, eine Bedingung, die zuvor in der
Theorie der zufälligen Matrixprodukte etabliert wurde. Unser Ergebnis verbindet zwei Begriffe
von Lokalität: Lokalität von Korrelationen in einem MPS und Lokalität von Wechselwirkungen
in dem Hamiltonian, die die entsprechende Gibbs-Verteilung erzeugt.

Der Beweis für unser Ergebnis besteht aus zwei Schritten. Zunächst zeigen wir für einen
auf einem Gitter definierten MPS, für welchen die Reinheits-Bedingung gilt, dass die bedingte
Transinformation (CMI, engl. Conditional Mutual Information) einer beliebigen zusammen-
hängenden Dreiteilung des Gitters mit der Breite der mittleren Partition schnell abnimmt.
Anschließend wird gezeigt, dass dieses Abklingen der klassischen CMI impliziert, dass die
Wahrscheinlichkeitsverteilung, die mit der klassischen Einschränkung des MPS einhergeht,
quasi-lokal Gibbssch ist. Im Rahmen dieser Untersuchung stellen wir Beobachtungen rund
um die Reinheits-Bedingung vor. Wir untersuchen, wie ‘typisch’ die Reinheits-Bedingung ist,
indem wir ein probabilistisches Modell konstruieren und zeigen, dass in diesem Modell die
Reinheits-Bedingung im Allgemeinen erfüllt ist. Darüber hinaus zeigen wir, dass die Verlet-
zung der Reinheits-Bedingung einen verallgemeinerten Begriff der Fehlerkorrektur im virtuellen
Raum ermöglicht, was den generischen Charakter der Reinheits-Bedingung unterstreicht.

Im zweiten Teil dieser Arbeit betrachten wir ein Protokoll zur Kalibrierung von Quanten-
gattersets und führen eine statistische Analyse durch, um statistische Fehler zu minimieren.
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Die Kalibrierung von Quantengattern ist eine notwendige Hürde auf dem Weg zu einem zuver-
lässigen Quantencomputer. In einer kürzlich erschienenen Arbeit wurde das Quantengatterset-
Kalibrierungsprotokoll (GSC, engl. Gate Set Calibration protocol) vorgestellt und verwendet,
um kohärente Fehler aus multi-qubit Quantengattern zu extrahieren. Wir bauen auf dieser
Studie in zweierlei Hinsicht auf. Erstens berücksichtigen wir die Unsicherheit jeder Messung
im Protokoll, indem wir eine statistische Analyse durchführen. Zweitens optimieren wir die
statistische Unsicherheit, während wir gleichzeitig verlangen, dass das Protokoll nur eine geringe
Anzahl von unterschiedlichen Gattern umfasst, was die physikalische Realisierbarkeit fördert.
Wir zeigen numerisch, dass der statistische Fehler, der bei der Kalibrierung eines CNOT-
Gatters entsteht, um mehr als den Faktor zwei verringert wird, wenn man nur zwei weitere
1-Qubit-Gatter zum GSC hinzufügt.
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