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The First Law of Ecology: Everything is
connected to everything else. The Second Law of
Ecology: Everything must go somewhere. The
Third Law of Ecology: Nature knows best. The
Fourth Law of Ecology: There is no such thing as
a free lunch.

Barry Commoner

Life is like riding a bicycle. To keep your balance,
you must keep moving.

Albert Einstein
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Abstract

In this thesis, we investigated stoichiometric imbalance due to changes in carbon
(C), nitrogen (N), and phosphorus (P) availability in different terrestrial scenarios.
In the first study, we investigated the effect on biomass of a two-way N and
P fertilisation gradient, ranging from deficient to sufficient supply of nutrients,
in barley (hordeum vulgare). In particular, shoot-root biomass allocation and
synergistic effects were investigated when availability of both N and P was varied.
In the second study, we moved our attention to soil as we investigated the accrual
of nutrients into soil microbial biomass along a soil organic matter (SOM) gradient
formed from a post-mining chronosequence. In a third study, we investigated
stoichiometric imbalance in soil due to changes in soil and microbial stoichiometry
after a freeze-thaw (FT) event. In the first two studies, we found, as expected,
that accrual of nutrients into biomass (plant and soil microbial) increased with
increasing nutrient availability. Unexpectedly however, these responses were not
linear but instead exhibited critical values that determined the response of the
variables in question. In the first study, we could show that there was a synergistic
response of barley biomass to N and P fertilisation. This effect, however, was only
observed above a critical P level, when P was not limiting growth. Furthermore,
we could show that balanced supply of nutrients had a greater effect when P was
limiting. From this we further hypothesise that the plants were not able to cope
with increases in stoichiometric imbalance due to widening N:P ratio when P was
limiting, yet they were more able to do so when not limited by P.

Similarly, in the second study of the recultivated soils of the post-mining chronose-
quence, we could show that the accrual of carbon and nitrogen into microbial
biomass and relative respiratory carbon losses shifted around a 1% soil organic
carbon (SOC) threshold. We interpreted this result to mean that when the soils
contained less than 1% SOC, soil microbes were extremely carbon limited and in
a stoichiometric inefficient state due to stoichiometric imbalance. Whereas when
SOC increased above this critical value, stoichiometric imbalance was alleviated
and the microbes shifted to a more efficient stoichiometric state. Lastly, in the third
study, we could show that, in the few hours after a freeze-thaw event, there was an
enrichment of nitrogen into soil microbial biomass. This was due to a coupled effect
of increased N uptake by the surviving microbial biomass and disproportionate
C losses via respiration. We hereby could present evidence that stoichiometric
imbalance due to enriched microbial N, in the first freeze-thaw cycle, may be
the first step that leads to significant N losses in subsequent freeze-thaw cycles

vi
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in agricultural soils. In summary, we present two main findings in this thesis:
Firstly, we provide evidence, for the first time, that critical thresholds between
stoichiometric states may exist that are dependent on the absolute nutrient status
of the system, rather than relative stoichiometric ratios. Secondly, we present
a mechanism for microbial derived N2O emissions after freeze-thaw events due
to short-term stoichiometric imbalance in soil microbial biomass. These results
contribute to a better understanding of stoichiometric transformations in ecology
and may lead to a more complete understanding of nutrient cycling and nutrient
limitations in terrestrial ecosystems.
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1 Introduction and aims

1.1 Introduction
In chemistry, stoichiometry simply refers to the ratios and balance of reactants
in a chemical reaction. Ecological stoichiometry, thus, deals with the balancing
of biologically relevant chemical elements in ecological processes and interactions
(Sterner and Elser, 2008). It predominantly deals with relative abundances of
carbon (C), nitrogen (N) and phosphorus (P), as these are the 3 most growth-
limiting nutrients.

The field of ecological stoichiometry is most often traced back to a key finding
from oceanographer Alfred C. Redfield (1958), wherein the average C:N:P ratio
of phytoplankton biomass was found to be fixed at 106:16:1 (the famous Redfield
ratio) and matched that of the surrounding water. This result prompted great
thought into how the biotic and abiotic environments interact and how matter and
energy are interchanged between these boundaries. The Redfield ratio is still used
as a reference from which to predict nutrient limitation and imbalance in aquatic
systems (Hall et al., 2011). Based on these same principles, stoichiometric ratios
of biomass C:N:P have since been derived for terrestrial ecosystems and taxa, for
example, in terrestrial plants (Kerkhoff et al., 2005; McGroddy et al., 2004), soil
microbial biomass (Chen et al., 2016; Cleveland and Liptzin, 2007; Hartman and
Richardson, 2013; Zechmeister-Boltenstern et al., 2015), and soil fungi (Zhang
and Elser, 2017). Whilst demonstrating varying degrees of inter- and intraspecific
variation, these derived ratios are considered to be the optimum elemental ratios
required for these organisms to function (Sterner and Elser, 2017b).

While it has been shown that the stoichiometry of specific taxa or ecosystems
may be constrained to varying degrees, this is not to say that the stoichiometry of
living things is fixed (Sistla and Schimel, 2012). Matter and energy are constantly
exchanged in food web and trophic interactions (Hessen et al., 2013), in global
nutrient cycling and in ecosystem processes (Lovett et al., 2006; Welti et al., 2017).
Moreover, organisms may exhibit changes in their elemental ratios according to life
history (Acharya et al., 2004). Stoichiometric flexibility can be observed at both
the organism level and community level (Chen et al., 2016; Sistla and Schimel,
2012), i.e., when the different organisms that make up a community have different
stoichiometric requirements, changes in proportions of significant/functional groups
may change the overall stoichiometric requirements of the community. Stoichiome-
try of living matter can more accurately be viewed as a dynamic equilibrium with

1



Introduction and aims

a constant flux of nutrients between levels of biological hierarchy and the abiotic
environment (Sistla and Schimel, 2012; Zechmeister-Boltenstern et al., 2015).

Like chemical stoichiometry, ecological stoichiometry is bound by physical laws;
namely, the first law of thermodynamics: energy and matter cannot be created
or destroyed. This leads us to one of the core principles of ecological stoichiom-
etry; homeostasis and plasticity of consumer resource stoichiometry vs resource
stoichiometry. Organisms cannot ”create” elements. Therefore, their elemental
make-up is determined by the nutritional resources available to them. The rela-
tionship of the organism’s stoichiometry to the resource can be classed as either
plastic (biomass stoichiometry changes proportionally with changes in resource
stoichiometry (Fig. 1.1a)), or homeostatic (biomass stoichiometry is fixed despite
changes in resource stoichiometry (Fig. 1.1b)) (Sterner and Elser, 2017b). These
are, of course, extremes of the model and the reality is that most organisms neither
maintain strict homeostasis nor are completely plastic 100% of the time. Rather,
they fall somewhere between the two extremes in varying degrees (Fig. 1.1c). Yet,
it serves a purpose to explore these extremes to understand the effect of deviations
in biomass stoichiometry to that of the resource.

Stoichiometric imbalance (or stoichiometric mismatch) is the degree to which
an organism’s stoichiometry differs from the resource stoichiometry (Sterner and
Elser, 2017b). The greater the deviation, the greater the imbalance. When an
organism exhibits stoichiometric mismatch, there must be strategies that allow it
to maintain this difference. When an element is in excess, this must be excreted.
When an element is deficient in the resource, the organism must be able to store
and enrich its own stock of said nutrient.

An organism or a system may also be deemed to be in stoichiometric imbalance
when C:nutrient and N:P ratios are high and are often classed as nutrient limited.
The specific ratios of C:nutrient and N:P, which are characteristic of nutrient
limitation, are dependent on a multitude of factors, including ecosystem type, taxa,
ambient nutrient conditions etc.

Responses to stoichiometric imbalance in terrestrial ecosystems

In this thesis, we explore responses to stoichiometric imbalance in terrestrial
ecosystems and focus on plant and soil microbial stoichiometry, as these are the
two main drivers of terrestrial systems. Plants typically show large inter- and
intraspecific variation and flexibility in biomass stoichiometry (Elser et al., 2010).
This is likely due to their ability to respond to variation in available nutrient and
carbon supply (Sistla and Schimel, 2012; Sterner and Elser, 2017b), e.g., through
nutrient storage in vacuoles (Marty, 1999), and nutrient resorption (Aerts, 1996).
A major source of plant interspecific variation is the differential investment into
structural carbohydrates. For example, lignin and cellulose (with high biomass
C:N) are characteristic of higher terrestrial plants, whereas these are lacking in non-

2



1.1 Introduction

Figure 1.1: Generalised stoichiometric patterns of homeostasis and plasticity between
consumer soichiometry and resource stoiciometry from Sterner and Elser (2017b). The
dashed lines in a-c) represents the 1 : 1 line, where an organism’s stoichiometry is
identical to that of the resource. In this case, the organism exerts no control over its
own stoichiometry and shows full plasticity. The solid lines in a) represents an organism
whose stoichiometry alters with changing resource stoichiometry, albeit in a constant and
proportional manner (i.e., non-homeostatic). In b) the solid lines represent an organism
who exerts full control on its biomass stoichiometry, maintaining fixed stoichiometry
despite changes in the resource. In c) the solid lines represent organisms that exhibit
different degrees of homeostatic regulation, H, as per Sterner and Elser (2017b).

3
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vascular plants predominantly found in aquatic systems (Sterner and Elser, 2017c).
Foliar N:P ratio has been shown to be proportional to the N:P ratio of fertilisation
input (Güsewell and Bollens, 2003) and foliar N:P ratio is negatively correlated
with biomass (Güsewell, 2004). Therefore, increasing stoichiometric imbalance due
to a widening of the N:P ratio of available N and P can negatively affect biomass.
Plants may respond to imbalance due to deficiency by allocating resources to the
acquisition of nutrients; namely, by promoting root growth (Hermans et al., 2006;
Hodge, 2004, 2009), changes in root architecture (Drew and Saker, 1978; Kumar
et al., 2020; Robinson, 1994), and promotion of symbiotic arbuscular mycorrhizal
fungi (Govindarajulu et al., 2005; Kumar et al., 2019; Ryan et al., 2012; Veresoglou
et al., 2012), all of which enhance nutrient uptake (see Chapter 2).

Microbial heterotrophs, on the other hand, have been shown to exhibit much more
constrained biomass stoichiometry than plant biomass (Cleveland and Liptzin,
2007; Hartman and Richardson, 2013). Stoichiometric imbalance is common
for soil microorganisms involved in decomposition due to the high C:nutrient
ratios inherent to plant material (Cowling and Merrill, 1966) compared to the
narrower C:nutrient ratios of their own biomass. Soil microorganisms alleviate
this imbalance by production of extracellular enzymes (Sinsabaugh and Moorhead,
1994). Sinsabaugh et al. (2008) could even show that ratios of enzyme activity
rates for the hydrolysis of C, N and P required for decomposition of plant matter
were proportional to the respective stoichiometric imbalance on a global scale.

Changes in soil microbial stoichiometry and soil resource stoichiometry can feed
back on terrestrial nutrient cycles. If soil C:N ratio is greater than that of the soil
microbial biomass, there is net microbial immobilisation of N (> 30:1). If the soil
C:N is less than the microbial demand (12:5), there is net N mineralisation (Hodge
et al., 2000). Manzoni et al. (2008) could show that soil microbes involved in
decomposition shifted from net N immobilisation to net mineralisation as resource
C:N ratio approached that of their own biomass. Therefore, lower stoichiometric
imbalance can lead to greater nutrient availability for plants. Furthermore, changes
in nutrient use efficiency (Mooshammer et al., 2014a,b; Sinsabaugh et al., 2013,
2016; Yuan et al., 2019) and nutrient turnover time (Spohn, 2016) may be an
adaptation to mitigate the imbalance, which also impact on nutrient cycling.

Measures of soil stoichiometry are most often given in terms of total concen-
trations of C and nutrients in the soil. However, a significant proportion of C
and nutrients are immobilised in the soil, and are, thus, not biologically available.
Therefore, it is important to consider the stoichiometry of dissolved (biologically
available) nutrients in the soil for a more accurate measure of stoichiometric im-
balance, as well as the total concentrations, when comparing stoichiometries of the
soil and soil microbial biomass (Griffiths et al., 2012).

4
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Imbalance due to perturbations

Natural occurring phenomena such as freezing and thawing of the soil in winter
(DeLuca et al., 1992; Wagner-Riddle et al., 2017), drought (Sun et al., 2020), and
wildfires (Kong et al., 2021) cause great surges of nutrients to be displaced in
terrestrial systems. These perturbations cause nutrient imbalances which may be
temporary or have longer lasting impacts. In the case of freeze-thaw (FT) events,
this leads to large-scale loss of N as nitrous oxide emissions (Ejack and Whalen,
2021; Wagner-Riddle et al., 2017), which has economical costs and environmental
consequences.

In soils, changes in microbial community assembly can be both the cause and
result of stoichiometric imbalance. It has been shown that changes in functional
traits due to a shift in community assembly can impact overall nutrient turnover
and stoichiometry (Aanderud et al., 2018; Wei et al., 2020). Changes in nutrient
input can also impact the microbial community composition. Specifically, fungi
have generally a higher capacity to store C (Adu and Oades, 1978), and thus
have higher C:N ratio, than bacteria (Hodge et al., 2000). It has further been
shown that organic matter with high C:N ratio promotes fungal growth over
bacterial (Henriksen and Breland, 1999), leading to increases in fungal:bacterial
biomass ratio, whereas increased N fertilisation leads to decrease in fungal:bacterial
ratio (Bardgett et al., 1999). Shifts in fungal:bacterial ratio can thus change the
overall microbial stoichiometry, which in turn can alter the nutrient demand and
immobilisation/mineralisation of C and N in the system (Hodge et al., 2000).
Principles of ecological stoichiometry can, therefore, be useful in understanding
how changes in stoichiometry can feedback on ecosystem function and nutrient
cycling.

Anthropogenic CO2 emissions and agronomic use of N- and P-rich fertiliser
are major drivers of stoichiometric imbalance in both terrestrial and aquatic
systems (Guignard et al., 2017; Peñuelas et al., 2013, 2012; Sardans et al., 2012a).
Agronomic N and P inputs through fertilisation often exceeds that which is
recovered in biomass (Kanter, 2018; MacDonald et al., 2011; Tilman et al., 2002).
This excess nutrient input has to go somewhere and usually ends up where it is
not wanted. Nitrates are leached into groundwater causing pollution (Wang et al.,
2019) and nitrous oxide emissions contribute to global heating (Tian et al., 2019).
Whereas N undergoes various transformations in the soil and eventually leaves the
soil system, P binds to soil particles and accumulates in the soil after fertilisation.
These P enriched soil particles can later lead to eutrophication of water bodies
when soil is eroded and the P-rich soil particles enter aquatic systems (Bennett
et al., 2001; MacDonald et al., 2011).

It could be argued that nutrient limitations and stoichiometric imbalance due to
nutrient deficiency in plants and soil fauna would be alleviated with such large-scale
inputs of N and P, but the opposite has been shown to be true. High input of N

5
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and P can skew terrestrial community composition in favour of fast growing species
that are well adapted to high nutrient concentrations (Leff et al., 2015; Tilman and
Wedin, 1991), and in doing so out compete the less nutrient demanding species
(Sistla and Schimel, 2012). High nutrient inputs, thus, lead to decreased biodiversity
(Allison et al., 2007; Allison and Vitousek, 2004), which in turn diminishes the
stoichiometric flexibility and functional diversity of a system (Dai et al., 2020;
Sistla and Schimel, 2012). N deposition has been shown to increase foliar N:P
ratios, which can lead to increased P limitation in herbivores (Sterner and Elser,
2017a). In agricultural systems, these effects are coupled with the removal of plant
material. In natural systems, dead plant matter would normally remain and be
decomposed, returning its respective nutrients to the soil. This natural cycling
of nutrients is missing in agriculural systems and further exasperates nutrient
limitation (Rhodes, 1995).

It may seem counter-intuitive, but high nutrient inputs often lead to increased C
limitation in soils. Although atmospheric CO2 levels are on the rise, soil C stocks
are depleting (Minasny et al., 2011; Olson et al., 2016). Highly productive lands in
terms of plant biomass production (e.g. arable land and forest plantations) are in
fact the most C deficient and nutrient limited soils (Guo and Gifford, 2002). There
is much potential for soil to sequester considerable quantities of C and N (Minasny
et al., 2017), but they are more often sources of green-house gas emissions than
sinks due to poor management.

Conversely, in recent years, it has been shown that atmospheric N deposition
improves soil organic carbon (SOC) storage (Lu et al., 2021), although the stability
of this additional sequestered C is contended (Forstner et al., 2019). At the
same time, N addition has been shown to reduce soil microbial respiration and
biomass (Treseder, 2008). Stoichiometric imbalance characterised by high biomass
C:nutrient and N:P ratios is linked to high maintenance energy demand, such as
metabolic quotient (Anderson and Domsch, 1985), and can indirectly be linked
to low C-use efficiencies due to relatively high losses of C through respiration
proportional to biomass (i.e., metabolic quotient) (Xu et al., 2017).

In light of these complex and often contradictory responses to changes in nutrient
input, it is important to fully understand how stoichiometric imbalance between soil
microbes and their resources (either soil or plant derived) can impact on ecosystems
functioning and nutrient cycling. In agriculture, it is important to understand
how the stoichiometry of the inputs effect the entire system in order to balance
sustainable use of nutrients with maintenance of high yields. Considering that
soil microbial biomass and necromass are the main drivers of stable soil organic
matter (SOM) formation (Buckeridge et al., 2020; Kallenbach et al., 2016; Ma,
2018; Wang et al., 2021) this poses the following questions: How flexible is the
microbial biomass for accrual of nutrients? How can soils be managed to promote
nutrient sequestration and prevent nutrients losses due to perturbations such as
freezing and drought? How do ambient nutrient conditions affect the potential
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of soil microbial stoichiometry to accrue and/or lose nutrients after perturbation
events?

As mentioned before, ecological processes are dynamic, therefore stoichiometric
imbalances are not in a constant state of being. Yet, most literature on stoichio-
metric imbalance considers and compares systems at one instance in time only.
Little research has been done into the effect of variation in degree of stoichiometric
imbalance/flexibility, either due to nutrient gradients or time evolution (Barrett
and Burke, 2000; Chen et al., 2016; Sistla et al., 2015).

Stoichiometry, Nutrient Limitation, and Nutrient interactions

Stoichiometric imbalance goes hand-in-hand with nutrient limitation and, therefore,
it is to be expected that the degree of nutrient limitation will change with changing
nutrient availability along a nutrient gradient.

A commonly used definition of nutrient limitation was coined by Vitousek and
Howarth (1991). They state that nutrient limitation occurs when the addition of a
nutrient causes a positive response, for example, in growth rate, or changes the
endpoint of the system. Classical nutrient limitation theory is based on Liebig’s
Law of the Minimum (Liebig, 1840, 1855), whereby an organism is limited by
the most lacking nutrient in relation to its requirements. On addition of said
limiting nutrient until requirement to that nutrient has been satisfied, the next
most lacking nutrient (relation to its requirements) will become the next limiting
nutrient. Ecological stoichiometry allows to assess when a system or organism is
limited by a particular nutrient based on element ratios. In plants, foliar N:P ratio
can determine whether a plant is N or P limited, e.g. N:P > 16 is indicative of P
limitation and N:P < 15 is indicative of N limitation (Aerts, 1996; Koerselman
and Meuleman, 1996). Nutrient limitation in heterotrophs has to be modelled
differently to plants as heterotrophs are characteristically and foremostly limited
by C. Thus, in this case, to determine when a nutrient was limiting, Threshold
Element Ratio (TER) models were developed (Sterner and Elser, 2017a; Urabe
and Watanabe, 1992, 1993), whereby the threshold ratio refers to the C:nutrient
ratio where limitation to C and said nutrient is equal. Deviations from this ratio
indicate a shift to increased limitation to one nutrient and decreased limitation to
the other.

Yet, more recent understanding of nutrient limitation is that organisms do not
always follow a sequential pattern of limitation to the scarcest available nutrient,
rather they can be limited by a combination of two or more nutrients simultaneously
(Ågren et al., 2012; Harpole et al., 2011; Saito et al., 2008). Furthermore, these
nutrients are often required in a specific optimum ratio. This makes the matter
much more complex as the co-limitation creates extra dimensions to the problem,
such as whether the effects of each nutrient are independent or co-dependent, and
whether the order in which the nutrients are applied has a bearing on the response
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(Harpole et al., 2011). Furthermore, in contrast to the Liebig based approach of
TER models where nutrient limitation status can be determined by relation to
a critical stoichiometric threshold, shifts between limiting states in co-limiting
models may even occur across a range of ratios (Ågren et al., 2012).

This current understanding of co-limitation is based on the widely recognised
phenomenon of nutrient interactions, namely nutrient synergism, whereby the
effect of adding N and P together is greater than the combined effect of adding N
and P separately (Davidson and Howarth, 2007; Elser et al., 2007). This effect has
been observed in fresh water, marine, and terrestrial systems alike (Elser et al.,
2007).

Although co-limitation and nutrient interactions are now widely recognised, little
is known about how nutrient interactions change with changing nutrient availability.
Fertilisation experiments on plants mainly focus on the effect of changing one
of either N or P. Fewer studies investigate the effect of changing both N and P
(Duncan et al., 2018), and when they do, they often have two or more levels of
N and only two P levels (high/low) in factorial design (Prystupa et al., 2004,
2003), or the number of P fertilisation rates is far less than the N fertilisation rate
(Michaelson et al., 1982; Tigre, 2014). It is not well understood whether synergistic
effects are present at all levels of N and P, or whether there is a specific fertiliser
N:P ratio or minimum level of N and/or P fertilisation where the response may be
observed.

As previously discussed, increases in agronomic N and P can lead to stoichiometric
imbalance. Therefore, in order for a more efficient and responsible use of fertilisers,
it would be valuable to determine the minimum amount of N and P fertilisation (or
range of fertiliser N:P ratios) required to give synergistic response in crop plants
(Sardans et al., 2012b).
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1.2 Aims
The central aim of this thesis was to investigate the effect of stoichiometric
imbalance due to a nutrient gradient on the accrual of carbon (C), nitrogen (N),
and phosphorus (P) in plant biomass and in soil microbial biomass. In plants,
we investigated how barley biomass changed with changing N and P fertilisation.
Biomass C and -N were measured in shoot and root tissue of barley (hordeum
vulgare) in a fertilisation pot experiment (Chapter 2). In soils, microbial parameters
such as biomass C, -N and -P, as well as microbial respiration and soil C, -N and
-P were measured along a nutrient gradient from a post-mining chronosequence
(Chapters 3 and 4). We also investigated the effect of stoichiometric imbalance in
soil microbial biomass due to a freeze-thaw (FT) event to shed light on post-harvest
N losses in arable lands (Chapter 4).

Generalised hypotheses

While specific hypotheses of each investigation are detailed in each chapter, the
overarching hypotheses of the thesis are:

1. There will be a threshold concentration of N and/or P fertilisation for
observing synergistic interaction of N and P in barley biomass and for
observing a shift from relative higher investment into root biomass to relative
higher investment into shoots on crossing this threshold in varying degrees
of N and P deficiency.

2. Accrual of nutrients in soil microbial biomass will increase and metabolic
quotient will decrease with decreasing stoichiometric imbalance/increasing
soil organic carbon (SOC) content.

3. There will be a shift in microbial stoichiometry due to a freeze-thaw event
and there will be an effect of SOC on the size of the response to freezing.

9
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1.3 Chapter summary
In this thesis, the theory of Ecological Stoichiometry is used to study stoichiometric
imbalance due to changes in nutrient availability. The effect of a nutrient gradient,
either by controlled fertilisation input (Chapter 2) or due to development of
soil organic matter (SOM) over time in recultivated soils from a post-mining
chronosequence (Chapters 3 and 4), is investigated. The contents of these chapters
focus on agricultural issues as these pose the greatest challenges in stoichiometric
imbalance in terrestrial ecology. These include the synergistic response of N and
P fertilisation in barley (Chapter 2), SOM formation in recultivated arable lands
(Chapter 3), and the response of microbial biomass to freeze-thaw event in post-
harvest arable soils to investigate N losses (Chapter 4). In all three investigations,
discrete responses to changes in nutrient availability were observed as opposed
to gradual responses, and critical threshold values for P and C availability were
observed in chapters 2 and 3, respectively.

Chapter 2: A two-way N×P fertilisation gradient experiment on barley reveals shifts
from additive to synergistic N-P interactions at critical P fertilisation level under
nutrient deficiency.

Barley was subject to varying degrees of nutrient deficiency in a controlled pot
experiment by simultaneous reductions of N and P content of the Hoagland
solution (a fertilisation solution containing the optimum concentrations of macro
and microelements required for plant growth). This study aimed to investigate
how plants respond to a two-way N and P fertilisation gradient in total biomass,
biomass-C and -N accrual, and allocation of biomass and nutrients to shoots and
roots. It aimed to find if there would be a threshold value of N and/or P where
the addition of both N and P would have a synergistic effect and where allocation
of resources would shift away from roots towards shoots as nutrient deficiency
decreased.

Chapter 3: Shifts in soil microbial stoichiometry and metabolic quotient provide
evidence for a critical tipping point at 1% soil organic carbon in an agricultural
post-mining chronosequence.

This study aimed to investigate the development of soil organic matter (SOM) and
changes in soil microbial biomass along a soil organic carbon (SOC) gradient. Soil
microbial C, -N, -P, and measures of microbial activity, such as metabolic quotient,
were measured along a chronosequence formed from the reclamation of land after
open-cast brown-coal mining. Due to the unchanged protocol of reclamation over
50 years, this gave rise to a space-for-time chronosequence consisting of soils with
exact starting conditions with ages spanning 1-52 years after time of restoration. It
was expected that the youngest soils would have the most severe nutrient dilution
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due to the restoration process, and, thus, these soils’ microorganisms would exhibit
the largest degree of stoichiometric imbalance. It was expected that soil microbial
stoichiometry would not be completely homeostatic, but would converge to an
optimum microbial C:N:P ratio with increasing time after restoration. Likewise, it
was expected that with increases in SOM over time the stoichiometric imbalance
would also decrease.

Chapter 4: Soil freezing-thawing induces immediate shifts in microbial and resource
stoichiometry in Luvisol soils along a postmining agricultural chronosequence in
Western Germany.

This study aimed to show how soil microbial biomass responds to a freeze-thaw
event in the first 18 hours after thawing in order to understand the mechanism of
N losses observed after a freeze-thaw event. It was expected that soil microbial
stoichiometry would change due to varying rates of transformation of nutrients
after freezing. Using chronosequence soils selected based on carbon content (giving
rise to a carbon gradient), the effect of carbon content on the magnitude of the
freeze-thaw event could be investigated.
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2.1 Abstract
In a pot experiment, we investigated the nitrogen-phosphorus (N-P) interaction
on shoot and root biomass of barley (Hordeum vulgare) along a two-way nitrogen
(N) and phosphorus (P) fertilisation gradient. We subjected the barley plants
to varying degrees of N and P deprivation using a modified Hoagland solution.
We chose 6 levels of N and 6 levels of P fertilisation, resulting in 36 N and P
combinations, with N:P ratios ranging 2–120. We aimed to determine whether
synergistic interactions of N and P on barley biomass (on both shoot and root
level) would be the same for all levels of N and P fertilisation. We further aimed
to determine if there was a critical level of N and P fertilisation rate where we
would observe the plants investing relatively less resource into root biomass and
more into shoots as nutrient availability increased, and expected to see a shift in
shoot:root ratio. Lastly, we aimed to determine interactions between N and P
fertiliser in nitrogen-use efficiency (NUE) and phosphorus-use efficiency (PUE). We
observed N-P interactions in shoot and root biomass, and PUE. Most strikingly, a
synergistic response of biomass to N and P fertilisation was observed only above a
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critical level of P fertilisation (P ≥ 0.25 mmol) when P was not limiting growth.
We speculate that increasing stoichiometric imbalances due to widening in N:P
ratio were driving the responses observed, and that the plants were less able to
cope with greater imbalance when P was deficient. Furthermore, we did not find a
significant N-P interaction on shoot-root allocation, but found that shoots became
more responsive to N compared to roots above the critical P value. We provide, for
the first time, stoichiometric evidence that critical levels for synergistic interactions
between N-P may exist in crop plants, and further highlight the impact of P
limitation on stoichiometric imbalance in plants.

2.2 Introduction
Nitrogen (N) and phosphorus (P) are the two most important macronutrients that
limit plant growth (Elser et al., 2007; Sterner and Elser, 2008). Both nutrients can
limit growth since both N and P are needed for core metabolic activities (Elser
et al., 2000). Classic models of nutrient limitation are based on Liebig’s Law of
the Minimum (Liebig, 1840, 1855). The law states that the scarcest nutrient (in
relation to the organisms’ requirements) limits growth and once the requirements
for this nutrient have been met, the next scarcest nutrient will become the new
limiting nutrient (Ågren et al., 2012). Yet, in the last two decades, new models
have emerged, in which nutrient limitation is a product of co-limitation or multiple-
limitation to multiple nutrients simultaneously, whereby nutrients are required
together in some optimum ratio (Ågren et al., 2012; Harpole et al., 2011; Saito
et al., 2008).

Nutrients which are co-limiting may also interact (Elser et al., 2007). These
so called nutrient interactions can be either synergistic (the combined effect on
growth is greater than the sum of the individual effects of each nutrient) or negative
(the combined effect is less than the sum of the individual effects) (Davidson and
Howarth, 2007). Despite generally synergistic effects of N and P on cereal crop
yield and nutrient-use efficiency, their potential interaction effects have been far
less extensively studied in agroecosystems (Duncan et al., 2018a,b; Elser et al.,
2007; Rietra et al., 2017).

Yet, to fully understand N-P interactions in crop yields and nutrient-use effi-
ciencies, we must first look underground and see how plants invest in above- and
belowground tissues across different N and P availabilities, thus considering scenar-
ios where nutrient supply is neither optimum nor balanced. Plants are extremely
adaptable to changing nutrient conditions and are able to optimally redistribute
resources among the tissues where they are required (Hilbert, 1990; Sadras, 2006;
Temperton et al., 2003; Werf and Nagel, 1996; Wilson, 1988). When nutrients
are scarce, plants increase investment into root biomass, causing a decrease in
shoot:root ratio (Hermans et al., 2006; Robinson, 1994; Scheible et al., 1997; Werf
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and Nagel, 1996). However, this optimisation can come with a cost to aboveground
productivity leading to a shoot-root trade off (Kim and Li, 2016; Li et al., 2010).

Adaptations such as changes in roots architecture in response to variation in
nutrient availability may allow for optimised nutrient uptake. In heterogeneous
supply of N and P, localised increases in lateral roots have been observed in the
areas of higher nutrient concentration (Drew, 1975; Drew and Saker, 1978; Drew
et al., 1973) as well as overall increased nutrient uptake flux by roots to compensate
for the non-uniform supply (Robinson, 1994). Moreover, Kumar et al. (2019) found
that root diameter correlated with colonisation of arbuscular mycorrhizal fungi for
optimised P uptake. There are also differing effects of N and P limitation on root
architecture. Kumar et al. (2020) found that plant roots foraged in deeper layers
when N was the limiting factor, but explored the topsoil when P was limiting. In
a complementary experiment where N and P were added at different timepoints in
the growing phase, delayed N addition had a stronger negative effect on biomass
than delayed P (Duijnen et al., 2021).

Although there is plenty of evidence of the underground responses to changes
in N and P availability independently, little is known about the effects of an N-P
interaction on root growth, i.e., due to changes in both N and P. Duncan et al.
(2018b) showed that there was a positive interaction between N and P on root
growth as well as N-use efficiency and N retention in wheat. It is, however, not so
well understood how nutrient interactions may shape the allocation of nutrients to
shoots and roots. The aboveground studies of N-P interaction on cereals in most
cases have a simple experimental design with few combinations of low vs high N
and P fertilisation rates (Prystupa et al., 2004, 2003) or fewer P rates compared to
N (Michaelson et al., 1982; Tigre, 2014). Fewer studies have investigated nutrient
interactions across a high number of fertilisation rates. Duncan et al. (2018a)
identified 11 fertilisation experiments on wheat in which the design had at least
two N fertilisation rates and multiple P fertilisation rates. Through investigating
N-P interaction on both the shoot and root level, it may be possible to gain insight
into shoot-root trade-offs and give answers to the following questions: At what
combined level of N and P do we see shifts to decreased root investment with
increased N and P levels? What happens when we subject plants to gradients of N
and P in magnitudes ranging from inadequate to adequate supply to the plant’s
requirements?

In a pot experiment, we investigated the N-P interaction on shoot and root
biomass of barley (Hordeum vulgare) along a two-way N and P fertilisation gradient.
We subjected the barley plants to varying degrees of N and P deprivation using a
modified Hoagland solution (Hoagland and Arnon, 1950). We chose 6 levels of N
and 6 levels of P fertilisation, resulting in 36 N and P combinations and N:P ratios
ranging 2–120. This covers a wide range of different ratios and includes the narrow
range of 4–6 (the range in which Sadras (2006) found attained the maximum yield
in over 40% of the 1500+ crops he assessed).
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We hypothesise that there will be positive interactions between N and P fertili-
sation treatments due to N-P colimitation. Due to trade-offs in plant’s below vs.
aboveground allocation, we expect to find a critical stoichiometric threshold as
nutrient provision increases, where plant investments in root biomass would be
reduced in favour of shoot biomass. Finally, we hypothesise that changes in barley
biomass yield per unit of applied N or P fertilizer (i.e., N- and P-use efficiency) show
similar patterns (i.e., would be statistically independent) along the fertilisation
gradient.

To test these hypotheses, we set up a pot experiment with an N-P gradient
using extremely low-nutrient soils from a mining site, where we expected microbial
communities to be very limited.

2.3 Materials and Methods
2.3.1 Preparation of seeds for germination and pot preparation
Barley (Hordeum vulgare) seeds were sterilized for 1 min with 70% ethanol under
vacuum and for a further 2 min with chlorine bleach (5 % sodium hypochlorite)
and finally washed with sterile water. Under sterile conditions, single seeds were
planted into small plastic tubes (< 5 mL volume) with sterile sand and watered as
required (Fig. S2.1A).

Pots with volume of ∼ 2 L were prepared with a substrate of loess soil mixed
with sand in ratio 1:4 (Fig. S2.1B). There were 36 fertilisation treatments each
replicated 8 times, giving 288 pots in total. A nutrient-poor silt loess soil, devoid
of soil organic matter, was collected from deep sandy layers at a lignite mining site
in Jackerath (North Rhine-Westphalia Germany), at a depth of 5 to 12 m. The
soil was oven dried overnight at 60� to kill spores of arbuscular mycorrrhiza and
any potential soil fauna (Endlweber and Scheu, 2006). Three seedlings per pot
were planted and were placed in a temperature-controlled greenhouse. The plants
were allowed to grow for 8 weeks in the greenhouse, were watered as necessary
and supplied with fertiliser as per the experimental set up for the fertilisation
gradient. After every fertilisation, plants were randomly repositioned to minimize
edge effects.

2.3.2 Two-way N and P fertilisation gradient
The two-way fertilisation gradient was created by modifying both the N and
P concentration of the Hoagland solution (Hoagland and Arnon, 1950), whilst
keeping all other nutrient concentrations unchanged. The concentration of N and
P containing substrates were altered to give separately 6 concentration levels: 0,
12.5, 25, 50, 75, and 100% of the original Hoagland solution. This gave 36 unique
combinations of N and P concentrations (Fig. 2.1). In order to reduce N and
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P in Hoagland solution, the nutrient salts KH2PO4, KNO3, and Ca(NO3)2 were
reduced accordingly. The missing potassium and calcium as a result of reduction
of the nutrient salts were replaced by the addition of KCl and CaCl. The exact
formulation of the modified Hoagland solution for each of the 36 treatments is
found in the supplementary material (Table S2.1). Throughout the growing period
the amount of solution applied to the plants gradually increased in accordance
with the plant’s requirements. Fertiliser solution was applied once weekly and
summed to a total of 500 mL of solution applied per pot throughout the experiment.
Absolute molar amounts of N and P applied over the full course of the experiment
can be found in Table S2.2 and the N:P ratios of each treatment in Fig. 2.1.

Figure 2.1: Schematic of the two-way
N_P fertilisation gradient depicted as
a matrix. The values 0, 12.5, 25, 50, 75,
and 100 correspond to % of the original
N or P concentration in the Hoagland so-
lution. Absolute molar concentrations of
N and P for each treatment can be found
in Table S2.2. N:P ratio of the fertiliser
solution of each treatment in brackets.

2.3.3 Harvesting and analysis of plant material
A detailed record of plant height and number of plants per pot was taken every
week. After sufficient growth, the barley plants were harvested at 48 days and roots,
shoots, and ears (if present) were separated and dried at 60�. Roots were washed
before drying. The dry weight of the biomass was determined for both roots and
shoots. Total carbon (C) and total nitrogen (N) contents were determined in both
shoot and root tissue using a Flash 2000 Organic Elemental Analyzer (Thermo
Scientific).

In order to determine whether there was a synergistic or negative effect of the
combined N and P treatments, we calculated the expected yield (YNP) for biomass,
total C and total N in both shoots and roots Eq. (2.1) as per Rietra et al. (2017).
Where YN is the mean yield of the N only treatments (when P = 0 and N > 0), YP
is the mean yield of P only treatments (when N = 0 and P > 0), Y0 is the control
(when N = 0 and P = 0), and YNP is the expected yield of N and P combined
Eq. (2.1). We used the mean, as there was little within group variation of the

26



2.4 Data handling and Statistics

N = 0 and P = 0 treatments, i.e., there was no effect of P on N = 0 treatments and
no effect of N on P = 0 treatments. The error on the expected yield (∆YNP) was
estimated using the standard errors ∆YN, ∆YP, and ∆Y0 of their respective means
Eq. (2.2). When the observed yield was greater than YNP, there was a synergistic
response. Observations below YNP indicated negative responses, and observations
within YNP ± ∆YNP indicated additive responses.

Expected yield: YNP

Y0
= YN

Y0
× YP

Y0
(2.1)

Estimated error: ∆YNP = YNP ×

√√√√(∆YN

YN

)2

+
(

∆YP

YP

)2

+
(

∆Y0

Y0

)2

(2.2)

Shoot:root (SR) ratios were calculated for biomass, total C and total N. For
example, SR-Biomass = shoot biomass (mg)/root biomass (mg), SR-Total C =
Shoot total C/Root total C, SR-Total N = Shoot total N/Root total N. Nitrogen-
use efficiency (NUE) and phosphorus use efficiency (PUE) were calculated as the
biomass per applied N and P fertilisation for roots and shoots respectively. For
example, Shoot NUE = shoot biomass (mg)/applied N fertilisation (mmol) and
Shoot PUE = shoot biomass (mg)/applied P fertilisation (mmol).

2.4 Data handling and Statistics
To avoid bias in the data, only pots which contained all 3 barley plants at the end
of the growing period were included in the analysis. There were 66 pots which
did not meet this criterion due to failure to grow or predation by rodents in the
greenhouse.

To get an overview of the whole dataset (total 222 pots), we applied Manova
models using the predictor variables N and P fertiliser treatments and log10(N:P
ratio). From each significant Manova model, Anova statistics were extracted to see
the effect of the predictor variables (e.g., N and P fertilisation) on each individual
response variable (i.e., protected Anova, (Scheiner and Gurevitch, 2001)). The
results of the Manova and Anova models can be seen in detail in the Supplementary
Material (Tables S2.4 to S2.7).

All analyses and data handling were conducted in R (version 3.5.0) with the
use of packages: dplyr (Wickham et al., 2018b), tidyr (Wickham et al., 2018c),
broom (Robinson et al., 2021), and purrr (Henry and Wickham, 2019). Figures
were produced using the R packages ggplot2 (Wickham et al., 2018a), ggpubr
(Kassambara, 2020), and RColorBrewer (Neuwirth, 2014). Statistical model
validation was carried out as per Zuur et al. (2010). Significance levels reported
throughout the manuscript are as follows: p > 0.05 (ns), p ≤ 0.05 (*), p ≤ 0.01
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(**), and p ≤ 0.001 (***).

2.5 Results

2.5.1 Biomass, total C, total N, and shoot:root ratios
The gradient in N and P fertiliser caused significant change across nearly all
response variables (Fig. 2.2), and significant interactions between N and P fertiliser
treatments and plant tissue (shoot/root) were found (Suppl. Manova model
Tables S2.4, S2.6, S2.9 and S2.11).

As expected, total barley biomass, total C, and total N in shoots and roots
significantly increased both with increasing N and increasing P fertilisation, and
there was a significant N × P interaction (Suppl. Table S2.5). The interaction
could be clearly seen in the difference in response of biomass, total C, and total N
to N fertilisation at different levels of P fertilisation (Fig. 2.2). When P was low
(P ≤ 0.25 mmol), biomass and total C in shoots and roots (Fig. 2.2a and 2.2b) did
not increase significantly with increasing N fertilisation, and there was generally
no response to N addition. Only in treatments where P > 0.25 mmol were there
strong effects of N fertiliser, where increases in N fertilisation led to large increases
in biomass and total C. There was also little or no difference due to the effect of
increasing P in treatments where P > 0.25 mmol.

Barley total biomass, total C and total N in shoots and roots showed synergistic
responses to combined N and P fertilisation compared to yields expected if N and
P were applied separately (Fig. 2.2 black lines), but generally when P > 0.25 mmol
and N > 0. For shoot total N (Fig. 2.2c-i), the synergistic response occurred at
a lower P threshold, in treatments where P > 0.062 mmol. Generally, additive
responses were observed in treatmeants where P ≤ 0.25 mmol, except in total N,
where only P = 0.062 mmol treatments showed an additive response. Exceptions
also occured in biomass and total C where P = 0.25 mmol in the particular
treatments where the N and P Hoagland proportions were balanced (e.g., N_P
25_25, corresponding to 0.25 mmol N and 0.125 mmol P), where a synergistic
response was seen.

In the treatments where P ≤ 0.25 mmol, peaks in total biomass and total C
were observed at each P level (Fig. 2.2a and 2.2b). The peaks corresponded to the
treatments where the Hoagland proportions of N and P were equal (e.g., 25_25,
50_50, etc). However, in treatments where P > 0.25 mmol it was not possible to
determine if biomass had peaked. In roots (Fig. 2.2b), the peaks occurred only in
N_P treatments 12.5_12.5 and 25_25.

The shift in the relationship of the response variables to N at a critical P value
was more clearly seen when plotted against log transformed N:P ratio of the
applied fertiliser treatment (Fig. 2.3). When looking at the P levels independently,
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increases in biomass, total C and total N with increasing N:P ratio were caused
by increases in N fertilisation (as P was constant) and the resulting relationships
were linear (Suppl. Table S2.6). Biomass, total C and total N in shoots and roots
increased with increasing N:P ratio when P > 0.25 mmol (Suppl. Table S2.6).
However, when P ≤ 0.25 mmol, there was either no effect of increased N:P ratio
or a negative effect. The linear dependency made it suitable to compare slopes
(α) of the relationships for each P level (Fig. 2.3a-iii, b-iii and c-iii). The slopes
(α) of the regressions of biomass, total C and total N to log10(N : P ), in both
roots and shoots, increased with increasing P fertilisation. Here we could show
very clearly that as P level increased, the effect of N:P ratio (or simply N) on the
response variables increased. In particular, we see a great shift in the slopes (α)
between P = 0.125 mmol and P = 0.25 mmol in both shoots and roots. The effect
of increasing P was strongest in shoots compared to roots (see full Anova and
regression statistics, Tables S2.7 and S2.8).

Shoot:root ratio of biomass and total C (SR-Biomass and SR-Total C, Fig. 2.4a
and 2.4b respectively) increased with increasing N and P fertilisation, but there
were no significant N × P interactions (Suppl. Table S2.9). SR-Total N ratio
(Fig. 2.4c) increased with increasing N fertiliser but there was no effect of P, nor a
significant N × P interaction (Suppl. Table S2.10).

2.5.2 Nutrient-use efficiencies
Generally, NUE decreased with increasing N fertilisation and increased with
increasing P fertilisation in shoots and roots (Figs. 2.5a-i and 5a-ii). Similarly,
PUE decreased with increasing P fertilisation and increased with increasing N
fertilisation in shoots and roots (Figs. 2.5b-i and 2.5b-ii). No N × P interaction
was observed in NUE in either shoots or roots, i.e., the rate of decrease in NUE
due to increased N did not change with increasing P, but the magnitude of the
NUE increased with increasing P (Suppl. Tables S2.11 and S2.12). Whereas with
PUE, there was an interaction in both roots and shoot. PUE in shoots generally
increased with increasing N, but, unlike NUE, the relationship was not the same
for all P levels. When P was high (P ≥ 0.25 mmol) PUE increased with increasing
N but only up to N = 3.75 mmol. Above this level there was no further change in
PUE with increasing N. In the low P treatments, initially PUE increased strongly
with increasing N but peaked and then decreased again with increasing N. There
was no overall statistical effect of N on PUE in roots Suppl. Table S2.12).
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Figure 2.2: Change in a)
biomass, b) total C and
c) total N in respect to N
fertilisation (x-axis) and
P fertilisation (coloured
lines) in i) shoots and ii)
roots. Points show mean
value for treatment and
shaded area around the
lines drawn by connect-
ing the points ±1 stan-
dard deviation from the
mean. Black lines indi-
cate the expected yield
YNP if N and P were
applied separately. The
dashed black lines give
±∆YNP (the estimated
error on YNP, see meth-
ods). When the observed
yield was greater than
YNP, there was a syner-
gistic response. Obser-
vations below YNP indi-
cated negative responses,
and observations within
YNP±∆YNP indicated ad-
ditive responses.
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Figure 2.3: Biomass (a), Total C (b) and Total N (c) with changing N:P ratio of the
applied fertiliser (log transformed x axis) and P fertilisation (lines) for i) shoots and ii)
roots. Panel iii) show the slopes (α) of the linear regressions of each response variable
with N:P ratio, for both roots and shoots, with respect to P fertilisation.
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Figure 2.4: Change in
shoot:root ratios in re-
spect to N fertilisation
(x-axis) and P fertilisa-
tion (lines) for the differ-
ent response variables a)
biomass, b) total C, and c)
total N. Points show mean
value for treatment and
shaded area around the
lines drawn by connecting
the points ±1 standard
deviation from the mean.
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Figure 2.5: Nutrient-use efficiency, a) NUE and b) PUE in in i) shoot- and ii) root biomass
with changing N fertilisation (x-axis) and P fertilisation (coloured lines). Nutrient-use
efficiency was calculated as the biomass (mg) per mmol nutrient applied. Dots represent
the mean and shaded areas correspond to ±1 standard deviation.
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2.6 Discussion

2.6.1 Synergistic N-P interactions and critical level of P
As expected, the treatments with low N and low P fertilisation resulted in low
yields of biomass, total C and total N, and it was to be expected that there would
be increases in yields with increasing N and P. Yet, what is interesting in our data
is that we saw that the rate of increase in biomass, total C and total N due to
increasing N fertilisation was not the same for all levels of P fertilisation. In fact,
we saw synergistic interactions between N and P only above a critical threshold of
P fertilisation, in both shoots and roots.

The critical level of P observed for biomass and total C in this study could be
interpreted as the threshold between when P was deficient (growth limiting) and
sufficient (not growth limiting). When P > 0.25 mmol, increases in P had no or
only minimal effect on yield (i.e., not growth limiting), whereas N had a strong
positive effect on yield above the threshold P level (Fig. 2.2). The synergistic
effect of N and P occurred in biomass, total C and total N in both shoots and
roots (Fig.2.2), whereby the yield when N and P were applied together was greater
than the expected yield if N and P were applied separately. This result further
confirms the synergistic effect as seen in various studies (Duncan et al., 2018a;
Rietra et al., 2017; Tigre, 2014; Zubillaga et al., 2002). Yet, crucially, in our results,
the synergistic effect was only observed when P > 0.25 mmol. When P was less
than or equal to the critical level, there was an additive effect; at this level of P, the
effect of N and P applied together was the same as the expected yield. Interestingly,
the critical value of P which determined a shift between synergistic and negative
N-P interaction was lower in shoot total N (P = 0.062 mmol) compared to the
other variables (Fig. 2.2c-i). This shows that only the smallest amount of P aided
the acquisition of shoot N immensely, which corroborates with findings from a key
study investigating the effect of an N-P gradient in wheat (Duncan et al., 2018b).

2.6.2 Effect of widening N:P ratio
The effect of the critical P value could be explained due to the ever increasing
stoichiometric imbalance caused by the widening of the N:P ratios as P decreased
and N increased (Ågren et al., 2012; Güsewell, 2005; Yan et al., 2015). When the
ratio of the nutrients supplied deviates from the optimum, an imbalance is created
causing a relative excess of one nutrient to a relative deficiency in others (Elser
et al., 2007; Reich, 2017). This can also lead to feedbacks, i.e., as the demand of
one nutrient is satisfied, this can lead to a higher demand of other nutrients (Reich,
2017). The range of N:P ratios of the highest P level (P = 0.5 mmol) in our study
was 1.9 – 15, whereas the range of N:P ratios of the lowest (P = 0.062 mmol) was
15 – 120 (Suppl. Table S2.3). This fits well with the findings of Sadras (2006),
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whereby crop species had an N:P ratio of between 4 and 6 when managing optimal
yield. Our plants only saw such an N:P range when supplied with enough P
(P ≤ 0.25 mmol), but went higher than this range when supplied with lower than
0.25 mmol P.

Breakpoints in foliar N:P ratio have been shown to exist which determine nutrient
limitation, whereby foliar N : P > 16 is indicative of P limitation and N : P < 14 is
indicative of N limitation (Aerts, 1996; Koerselman and Meuleman, 1996). However,
we did not see a breakpoint as such in our results, as ranges of fertiliser N:P ratios
for each P level were not discrete but overlapped (Fig. 2.3). Yet, despite this, we
still clearly saw a threshold level of P due to the large shifts in slopes between P
treatments P > 0.25 mmol and P ≤ 0.25 mmol (Fig. 2.3, Suppl. Table S2.8), most
notably in biomass and total C in both shoots and roots. The differences between
slopes were less extreme in total N but slopes still increased with increasing P level
(Fig. 2.3c). Ågren et al. (2012) discussed the possibilities that shifts in nutrient
limitation can occur over a range of N : P ratios rather than a discrete deviation
from a fixed optimum ratio. This, too, could explain our result of synergistic
interactions occurring across a range of N : P ratios, albeit when N : P ratio was
low.

We can speculate further that the plants in P deficiency were less equipped
to cope with widening N : P imbalance compared to when N was limiting, and
therefore a positive effect of N was not observed when P was limiting. This was
also observed in an N × P fertilisation experiment on Arabidopsis thaliana with
3×3 levels of N and P fertilisation (Yan et al., 2015), whereby growth rate of green
leaves increased with fertiliser N : P ratio in N limited conditions, but decreased
when P limited (at the lowest P fertilisation level).

2.6.3 Effect of balanced N:P ratios
When looking at the response curves for biomass, total C and total N for the
individual P levels (Fig. 2.2) we generally saw peaks in the curves where N and P
levels were balanced (e.g., 25% N and 25% P, etc, of original Hoagland solution),
with N:P ratio of 15. Yet, interestingly, we saw this effect only in the treatments
equal to or below the critical P level, where generally additive interactions were
observed. The curves of the higher P levels did not appear to saturate unlike
in the lower P levels. Therefore, it was not possible to ascertain whether the
peak responses had been reached. It is well accepted that balanced application
of nutrients results in the most positive response (Ericsson, 1995; Güsewell, 2004;
Knecht and Goransson, 2004), yet our data show that this was only the case when
P was limiting. This could mean that above the critical level, where P was not
limiting, balanced application was less important and increases in N generally
had positive effects. Whereas when P was limiting, the best-case scenario for the
plant was to receive balanced nutrient supply, as increased N supply led to large
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stoichiometric imbalance (Ågren et al., 2012; Güsewell, 2004). Furthermore, in
the treatments where P was equal to the critical value (0.25 mmol), there was
generally an additive effect of N and P, except for when both N and P levels were
balanced (25_25). Here we saw, in this instance only, that the effect of N and P
was synergistic. As soon as N increased again, the effect was lost and returned to
an additive response. Again, this is probably due to the inability of the plant to
react well to changes in N:P ratios when P was limiting.

A further effect of balanced supply of nutrients was demonstrated in the phospho-
rus use efficiency (PUE). When P was limiting (P ≤ 0.25 mmol), PUE peaked when
N and P supply were balanced, but levelled off as N:P ratio widened (Fig. 2.5b-i
and b-ii). This further illustrates the importance of a balanced supply of nutrients
when P was low.

Wide N:P ratio of plant tissue has been shown to result in reduced growth rate
(Cernusak et al., 2010; Yan et al., 2015), but there are fewer studies on the direct
effect of applied nutrients with varying N:P ratio on plant growth. Some of the
results here differ from barley root responses in N-P timing addition (Duijnen
et al., 2021) or less varied N:P stoichiometry fertilisation experiments (Kumar
et al., 2020). Kumar et al. (2020) found an expected linear increase in shoot
biomass when moving from low N/low P to high N/high P with the other factors
in between (low N/high P; high N/low P). In contrast, having N applied late was
far more detrimental than adding P late (Duijnen et al., 2021), which is in contrast
to our findings here.

2.6.4 Shoot-to-root allocation
As in our previous results (Fig. 2.2), we expected to see an interaction between N
and P in the shoot:root ratios and that there would be a critical value for N and/or
P where there would be a clear shift from investment in roots (low shoot:ratio) to
investment in shoots (high shoot:ratio). Yet, we did not observe this in our results.

Shoot:root ratios of biomass (SR-biomass), total C (SR-total C) and total
N (SR-total N) increased with increasing N and P (Fig. 2.4). In other words,
decreases in N and P caused decreases in shoot:ratio, meaning that there was
relative increase in investment into root mass when nutrient supply was low ,
as reported by (Ågren and Franklin, 2003; Hilbert, 1990; Werf and Nagel, 1996;
Wilson, 1988). SR-biomass and SR-total C were significantly affected by both
N and P, but interestingly there was no N-P interaction. The effect of N on
SR-biomass and SR-total C did not change with changing P. This is contrary to
the previous results and to our hypothesis. Moreover, SR-total N was only affected
by N and not P. Therefore, P did not have an effect on allocation of N in plant
tissue. The reason we did not see an interaction between N and P may be because
the magnitudes of the N-P interactions were the same for both shoot and roots
(i.e., the effect of N on biomass changed in a similar magnitude with respect to
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changing P in both roots and shoots), and so in calculating the shoot:root ratio
the interaction simply cancelled out.

However, when comparing the responses of biomass, total C and total N to N
fertilisation (Fig. 2.2) and N:P ratio (Fig. 2.3) between shoots and roots, differences
were observed. The synergistic effect of N and P was higher in shoots compared to
roots, and shoots appeared to respond more strongly to N than roots (Fig. 2.2). The
responses to N:P ratio (Fig. 2.3) showed that when P was limiting, the magnitude
of the responses to increased N was the same for shoots and roots (same magnitude
slopes). Whereas when P was not limiting, the magnitude of the responses to N
were suddenly much greater in shoots compared to roots (increased slopes). This
could mean that when P was not limiting, relatively more resource was directed to
shoots than roots in comparison to when P was limiting. Results to this effect have
been reported by Hilbert (1990) and Scheible et al. (1997). But to our knowledge,
this is the first study to investigate N-P interactions of this scale on root biomass
and nutrient content.

2.6.5 Nitrogen- and phosphorus-use efficiencies
Our calculations of NUE and PUE, were, in essence, a standardisation of the
biomass to the amount of fertiliser applied. As a result, we compare how much
biomass was produced per mmol N or P applied with increasing N and P. As
expected, NUE decreased with increasing N fertilisation and PUE decreased with
increasing P fertilisation, in both shoots and roots. Yet, NUE and PUE increased
with increasing P and N, respectively. Duncan et al. (2018b) showed that NUE
in wheat increased with addition of P, and also potassium (K), compared to just
N alone and attributed this to increases in root mass and architecture. Similarly,
Mehrparvar et al. (2021) showed that when sunflower plant’s P and K requirements
were met, the required N fertilisation rate decreased whilst NUE increased. Our
NUE data fit with these findings but there is little literature on the effect of N on
PUE for comparison with our results. Similar results of N having positive effect on
plant P dynamics, and vice versa, were observed in Yan et al. (2015). They showed
that P increased N resorption efficiency and likewise, N increased P resorption
efficiency.

A decrease in NUE due to decreased P availability could be explained by in-
vestments of N for P mining (i.e., production of phosphatase enzymes) which
could trade-off against direct investment of N for growth, as was shown for mi-
croorganisms (Ramin and Allison, 2019). Similarly, Marklein and Houlton (2012)
demonstrated that P-mineralising phosphatase enzyme activity in roots increased
with N fertilisation under P limitation, and Fujita et al. (2010) showed that
increased N fertilisation has been shown to promote phosphatase activity for
improved P uptake.

We expected, as with previous results, that there would be an interaction between

37



Two-way N × P fertilisation experiment on barley reveals shift from additive to
synergistic N-P interactions at critical P fertilisation level

N and P for NUE and PUE. This would mean that, for example, the rate of decrease
in NUE due to increased N would change with increasing P and result in different
slopes for the different P levels. Yet, we did not see this, as the relationship of NUE
to N remained unchanged for all P levels in both shoots and roots. However, with
PUE there was an N-P interaction in both roots and shoots, as the relationship of
PUE to N was not the same for each P level. As explained above, PUE peaked with
balanced N and P supply when P was low. But for the higher P levels, a different
pattern emerged. We saw for the first time in this investigation a potential critical
value of N for PUE in shoots where P > 0.25 mmol (Fig. 2.5b-i). When P was
not limiting, shoot PUE increased with increasing N fertilisation and peaked at
N = 3.75 mmol. Above this level, PUE in shoots remained constant despite further
increases in N. The saturation of PUE occurred at the N level containing 50%
of the original Hoagland solution. Hoagland solution should contain the perfect
amount of nutrients to enable a plant to grow, and yet 50% N was all that was
required to reach the maximum PUE.

2.7 Conclusions and outlook
Our data show two main findings: Firstly, there were positive synergistic N-P
interactions in biomass, total C, total N in both roots and shoots. Secondly,
the synergistic effects of N and P were only observed above a critical level of
P fertilisation (P ≥ 0.25 mmol). Below this critical level, N-P interactions were
additive. We provide, for the first time, stoichiometric evidence that critical levels
for synergistic interactions between N-P may exist in crop plants, which could
determine whether there is under- or overyielding of crop biomass or nutrient
content. The evidence of a critical value of P in our study further demonstrates
the vital role of P in plant growth (Hermans et al., 2006). We showed that the
plants were able to grow in very poor nutrient conditions, but they did suffer. In
low P treatments (below the critical level), the plants did not show increases in
biomass or nutrient content, even with ample N addition.

We speculate that increasing stoichiometric imbalances due to widening in N:P
ratios were driving the responses observed, and that the plants were less able to
cope with greater imbalance when P was deficient. We could show that changes in
N:P ratio can have differing effects depending on the absolute P availability. This
could mean that if P is deficient, the plant may not cope well with small changes
in N:P ratio, whereas the plant may cope better with same change in N:P ratio
when P is less limiting. This highlights that, when nutrient availability is low, it
is much more important to have balanced supply of N and P compared to when
nutrient availability is high. This has wider implications for nutrient cycling, as
nutrient imbalance in plants has been shown to have negative feedback on soil
organic matter formation (Ding et al., 2021). One solution to reduce fertiliser
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waste is to reduce fertiliser application, but we demonstrate here that it should be
done carefully, in balance with other nutrients, so as not to create a dangerous
imbalance at very low nutrient levels.

We did not see any shifts in the shoot:root ratios; therefore, we cannot say if
there was a shift of resource allocation from roots to shoots (or vice versa) at a
distinct level of N or P. However, we did see that the response of shoots and roots
to N was the same below the critical P value, but above the critical value, shoots
became more responsive to N. This could then be interpreted as the critical level of
P required to enable plants to increase resource investment into shoots. There was
no combined critical value of N and P, around which resource allocation shifted
between shoots and roots, but solely a critical P value. Importantly, absolute
amount of available P determined how the plant reacted to changes in N. This
outcome could possibly change the way we interpret stoichiometry results, since
stoichiometry usually deals with ratios as a way to understand the ecological effects
of relative changes in nutrients. Our study strongly suggests that we may need to
identify key thresholds beyond which the system and the stoichiometric interaction
functions quite differently. These results contribute further to the understanding
of terrestrial nutrient limitation and are especially important since it is predicted
that terrestrial systems are to become increasingly P limited in the future due to
anthropogenic N input (Peng et al., 2019; Yuan and Chen, 2015).
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2.9 Supplementary Material

Figure S2.1: Experimental setup: (A) Seedlings for germination. (B) Final pot arrange-
ment.
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Table S2.1: Table showing the recipes for fertilisation solutions of the 36 different
treatments. N and P level are given in terms of percentage of the full Hoagland solution.
Concentration of each compound of the Hoagland solution are given in mmol L−1.

Treatment Concentration of compounds (mmol L−1)
N level (%) P level (%) KH2PO4 KNO3 Ca(NO3)2 MgSO4 KCl CaCl

0 0 0 0 0 2 6 5
12.5 0 0 0.625 0.625 2 5.375 4.375

25 0 0 1.25 1.25 2 4.75 3.75
50 0 0 2.5 2.5 2 3.5 2.5
75 0 0 3.75 3.75 2 2.25 1.25

100 0 0 5 5 2 1 0
0 12.5 0.125 0 0 2 5.875 5

12.5 12.5 0.125 0.625 0.625 2 5.25 4.375
25 12.5 0.125 1.25 1.25 2 4.625 3.75
50 12.5 0.125 2.5 2.5 2 3.375 2.5
75 12.5 0.125 3.75 3.75 2 2.125 1.25

100 12.5 0.125 5 5 2 0.875 0
0 25 0.25 0 0 2 5.75 5

12.5 25 0.25 0.625 0.625 2 5.125 4.375
25 25 0.25 1.25 1.25 2 4.5 3.75
50 25 0.25 2.5 2.5 2 3.25 2.5
75 25 0.25 3.75 3.75 2 2 1.25

100 25 0.25 5 5 2 0.75 0
0 50 0.5 0 0 2 5.5 5

12.5 50 0.5 0.625 0.625 2 4.875 4.375
25 50 0.5 1.25 1.25 2 4.25 3.75
50 50 0.5 2.5 2.5 2 3 2.5
75 50 0.5 3.75 3.75 2 1.75 1.25

100 50 0.5 5 5 2 0.5 0
0 75 0.75 0 0 2 5.25 5

12.5 75 0.75 0.625 0.625 2 4.625 4.375
25 75 0.75 1.25 1.25 2 4 3.75
50 75 0.75 2.5 2.5 2 2.75 2.5
75 75 0.75 3.75 3.75 2 1.5 1.25

100 75 0.75 5 5 2 0.25 0
0 100 1 0 0 2 5 5

12.5 100 1 0.625 0.625 2 4.375 4.375
25 100 1 1.25 1.25 2 3.75 3.75
50 100 1 2.5 2.5 2 2.5 2.5
75 100 1 3.75 3.75 2 1.25 1.25

100 100 1 5 5 2 0 0
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Table S2.2: Absolute values in mmol of N and P added for the respective N and P
treatment levels.

Proportion of Hoag-
land solution (%)

N (mmol) P (mmol)

0 0 0
12.5 0.9375 0.0625
25 1.875 0.125
50 3.75 0.25
75 5.625 0.375
100 7.5 0.5

Table S2.3: Min, max and range of N:P ratio values for each P fertilisation level (P > 0).

P fertilisation (mmol) N:P min N:P max Range
0.0625 15 120 105
0.125 7.5 60 52.5
0.25 3.75 30 26.25

0.375 2.5 20 17.5
0.5 1.875 15 13.125
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2.9.1 Statistical models

Table S2.4: Manova model 1 summary (n = 219). (Response vari-
ables ~ N.fertilisation*P.fertilisation).

Model term Wilks λ F df1 df2 p

N fertilisation 0.22 127.16 6 209 < 0.001
P fertilisation 0.26 99.01 6 209 < 0.001
N × P interaction 0.42 48.63 6 209 < 0.001

Table S2.5: Summary of the individual Anova analyses of each response variable from
Manova model 1 (Response variable ~ N.fertilisation*P.fertilisation).

Model term
N fertilisation P fertilisation N × P interact.

Response var. Plant
tissue F p F p F p

Total biomass
root 63.75 < 0.001 188.04 < 0.001 94.73 < 0.001
shoot 227.79 < 0.001 568.59 < 0.001 209.1 < 0.001

Total C (mmol) root 83.66 < 0.001 253.63 < 0.001 129.14 < 0.001
shoot 226.41 < 0.001 580.35 < 0.001 231.11 < 0.001

Total N (mmol) root 280.54 < 0.001 128.2 < 0.001 142.75 < 0.001
shoot 335.2 < 0.001 105.9 < 0.001 72.66 < 0.001

Table S2.6: Manova summary from model 2 (n = 219). (Response variables ~ log10(N:P
ratio)*P.fertilisation)

Model term Wilks λ F df1 df2 p

log10(N:P) 0.41 33.62 6 143 < 0.001
P fertilisation 0.15 140.04 6 143 < 0.001
log10(N:P)*P interaction 0.29 57.29 6 143 < 0.001
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Table S2.7: Summary of Anova analyses for each response variable of Manova model 2
(Response variable ~ log10(N:P)*P.fertilisation)

Model term
N fertilisation P fertilisation N × P interact.

Response var. Plant
tissue F p F p F p

Total biomass
Root 16.72 < 0.001 110.09 < 0.001 83.85 < 0.001
Shoot 78.07 < 0.001 684.31 < 0.001 268.45 < 0.001

Total C (µmol) Root 25.53 < 0.001 169.45 < 0.001 130.98 < 0.001
Shoot 74.38 < 0.001 639.18 < 0.001 269.35 < 0.001

Total N (µmol) Root 5.62 0.02 168.6 < 0.001 112.89 < 0.001
Shoot 18.81 < 0.001 213.53 < 0.001 81.8 < 0.001
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Table S2.8: Statistics of linear models giving slope (α) shown in Fig. 2.3 for biomass,
total C, total N in roots and shoots for each P fertilisation level. (Linear model:
Response variable ~ log10(N:P) )

Resonse
variable

Tissue P fertil.
(mmol) Slope (α) Std. err. T stat. p

Biomass Shoot

0.0625 -0.025 0.019 -1.283 0.21
0.125 -0.004 0.034 -0.129 0.898
0.25 0.291 0.051 5.749 < 0.001

0.375 0.447 0.058 7.716 < 0.001
0.5 0.622 0.05 12.332 < 0.001

Biomass Root

0.0625 -0.06 0.019 -3.159 < 0.01
0.125 -0.006 0.022 -0.277 0.784
0.25 0.131 0.042 3.118 < 0.01

0.375 0.115 0.049 2.326 0.028
0.5 0.282 0.045 6.282 < 0.001

Total C Shoot

0.0625 -1.352 0.663 -2.039 0.051
0.125 -0.35 0.91 -0.384 0.703
0.25 10.301 1.836 5.61 < 0.001

0.375 16.27 1.87 8.699 < 0.001
0.5 22.409 2.046 10.952 < 0.001

Total C Root

0.0625 -1.813 0.575 -3.151 < 0.01
0.125 -0.391 0.716 -0.546 0.589
0.25 3.456 1.137 3.039 < 0.01

0.375 4.819 1.131 4.26 < 0.001
0.5 8.917 1.203 7.412 < 0.001

Total N Shoot

0.0625 0.404 0.076 5.296 < 0.001
0.125 0.73 0.078 9.355 < 0.001
0.25 1.277 0.185 6.899 < 0.001

0.375 1.293 0.24 5.38 < 0.001
0.5 1.432 0.109 13.175 < 0.001

Total N Root

0.0625 0.006 0.015 0.379 0.707
0.125 0.069 0.026 2.65 0.013
0.25 0.177 0.025 7.097 < 0.001

0.375 0.223 0.028 7.878 < 0.001
0.5 0.254 0.034 7.572 < 0.001
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Table S2.9: Manova summary from model 3 (n = 219). (Shoot:root ratio (SR) of response
variables ~ N.fertilisation*P.fertilisation)

Model term Wilks λ F df1 df2 p

N fertilisation 0.77 20.84 3 212 < 0.001
P fertilisation 0.68 34.01 3 212 < 0.001
N × P interaction 0.95 3.58 3 212 0.015

Table S2.10: Summary of Anova analyses for each response variable of Manova model 3.
(shoot:root ratio (SR) of response variables ~ N.fertilisation*P.fertilisation)

Model term
N fertilisation P fertilisation N × P interaction

Response variable F p F p F p

SR-total biomass 36.82 < 0.001 52.02 < 0.001 0.41 ns
SR-total C (mmol) 42.55 < 0.001 73.71 < 0.001 2.17 ns
SR-total N (mmol) 53.58 < 0.001 0.01 ns 2.7 ns

Table S2.11: Manova summary from model 4 (n = 219). (Response vari-
ables ~ N.fertilisation*P.fertilisation). Response variables were nitrogen-use efficiency
(NUE) and phosphorus-use efficiency (PUE) in shoots and roots, i.e., Shoot-NUE, Shoot-
PUE, Root-NUE and Root-PUE.

Model term df Wilks λ F statistic df1 df2 p

N fertilisation 1 0.23 121.2 4 147 < 0.001
P fertilisation 1 0.21 136.15 4 147 < 0.001
N × P interaction 1 0.82 8.11 4 147 < 0.001

Table S2.12: Summary of Anova analyses for each response variable of Manova model
4. Response variables were nitrogen-use efficiency (NUE) and phosphorus-use efficiency
(PUE) in shoots and roots.

Model term
N fertilisation P fertilisation N × P interact.

Tissue Nutrient-use
efficiency F p F p F p

Root
NUE 191.61 < 0.001 15.17 < 0.001 0.01 ns
PUE 2.12 ns 248.55 < 0.001 23.13 < 0.001

Shoot NUE 428.62 < 0.001 94.28 < 0.001 2.22 ns
PUE 31.93 < 0.001 412.16 < 0.001 23.86 < 0.001
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3.1 Abstract
Soil microbial stoichiometry (MB-C:MB-N:MB-P) and microbial maintenance
respiration (i.e. metabolic quotient, qCO2) were monitored along a nutrient gradient
in soils from a 52-year space-for-time chronosequence of reclaimed agricultural land
after brown-coal mining. Land reclamation produced loess soils of initially low
(0.2%) SOC. Consecutive agricultural land management led to a gradual recovery
of SOC contents. Our data revealed sudden shifts in microbial stoichiometry and
metabolic quotient with increasing SOC at a critical value of 1% SOC. As SOC
increased, accrual rate of C into microbial biomass decreased, whereas microbial N
increased. Simultaneously, metabolic quotient strongly decreased with increasing
SOC until the same critical value of 1% SOC and remained at a constant low
thereafter. The microbial fractions of the soil in samples containing < 1% SOC
were out of stoichiometric equilibrium and were inefficient at immobilising C due
to high maintenance respiration. Increasing SOC above the threshold value shifted
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the soil microbes towards a new equilibrium where N became growth limiting,
leading to a more efficient acquisition of C. The shift in microbial N accrual was
preluded by high variation in microbial biomass N in soils containing 0.5–0.9%
SOC indicative of a regime shift between microbial stoichiometric equilibria. Our
data may help establishing a quantitative framework for SOC targets that, along
with agricultural intensification, may better support feedback mechanisms for a
sustainable accrual of C in soils.

3.2 Introduction
Chronosequences of post-mining areas are ideal model systems to study soil
processes related to the formation of soil organic matter (SOM) over time, because
these soils, typically being reclaimed over decades from the same carbon-poor
overburden substrates, form a succession of soil development with almost identical
starting conditions and well-defined dates of origin (Bartuska and Frouz, 2015;
Dworschak and Rose, 2014). As SOM content is linked to crop yield through its
nutrient content and water retention in soil (Oldfield et al., 2019), it is important to
gain a deeper understanding of the mechanisms promoting carbon (C) sequestration
in agricultural soils (Singh et al., 2018). Agricultural management however, too
often promotes C-depletion of SOM (Liu and Greaver, 2010; Panettieri et al.,
2014; Paustian et al., 2004), while these soils instead could represent a globally
important C sink (Chabbi et al., 2017; Minasny et al., 2017; Poulton et al., 2018).
Traditionally, the build-up and persistence of soil organic carbon (SOC) was thought
to depend on the chemical ”recalcitrance” of plant inputs to decomposition, yet
recent research provides compelling evidence for microbial necromass as the main
contributor to the stable SOM fraction in soils (Kallenbach et al., 2015; Kallenbach
et al., 2016; Miltner et al., 2012, 2009). It is now thought that after microbial
death, with each iterative turnover of the microbial community, a fraction of its
necromass is stabilised by the mineral soil matrix, leading to a gradual accrual of
SOC (Chenu and Stotzky, 2002; Kögel-Knabner et al., 2008; Liang et al., 2017).
This theory implies a reconsideration of the build-up and maintenance of soil
carbon stocks, which requires a better understanding and management of soil
microbial biomass Fang et al., 2020; Kallenbach et al., 2015; Kallenbach et al.,
2016; Khan and Joergensen, 2019; Kirkby et al., 2013.

Ecological stoichiometry sets physiological constraints on the incorporation of C
and other nutrients into microbial biomass (Marklein and Houlton, 2012; Moosham-
mer et al., 2014; Sinsabaugh and Moorhead, 1994; Sinsabaugh et al., 2009), and
provides a compelling framework for the management of SOC (Buchkowski et al.,
2019; Hessen et al., 2004). However, the regulation of the build-up and maintenance
of microbial biomass in soils is still not well understood. Generally, microbial
biomass C (MB-C) grows linear with increasing SOC content (Anderson and
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Domsch, 1989), but microbial biomass N (MB-N) and P (MB-P) may not grow at
the same rate, leading to stoichiometric mismatch between microbial consumer
and resource (Khan and Joergensen, 2019; Mulder et al., 2013). Soil microor-
ganisms can respond to such a stoichiometric imbalance by either adjusting their
stoichiometry to match the resource (plasticity) or by maintaining a fixed stoi-
chiometry (homeostasis) (Spohn, 2016). Both require adaptations on the individual
level, e.g. by expelling or storing nutrients (Manzoni and Porporato, 2009) and
adjusting exoenzyme production (Allison and Vitousek, 2005; Sinsabaugh et al.,
2009) and/or on the community level through shifts in community composition to
species that are better adapted to the constraints of the resource (Ma et al., 2019;
Zechmeister-Boltenstern et al., 2015). However, a consensus on the stoichiometric
plasticity of soil microbial biomass and a good mechanistic understanding of the
factors driving the relationship between soil and microbial stoichiometry has not
yet been reached (Cleveland and Liptzin, 2007; Ehlers et al., 2010; Fanin et al.,
2017, 2013; Hartman and Richardson, 2013; Li et al., 2012; Xue et al., 2019).

In contrast to aquatic systems, nutrients in soil are mostly bound to organic
matter and only a fraction is freely accessible to microorganisms (Griffiths et al.,
2012). This transient availability of readily accessible C substrates is the main
limiting factor for microbial activity in (Demoling et al., 2007; Kaiser, 1994; Kamble
and Bååth, 2014; Kuzyakov and Blagodatskaya, 2015) soils. As a result of this,
the vast majority of soil microbial biomass remains in a dormant state most of
the time while maintaining only basic metabolic processes (Blagodatskaya and
Kuzyakov, 2013; Joergensen and Wichern, 2018).

The specific metabolic quotient (qCO2), typically given as the ratio of basal
C mineralisation rate (respired CO2) to unit biomass C (MB-C), measures the
energy required for the long-term maintenance of the microbial biomass in soils
(”maintenance respiration”, Anderson and Domsch (1985a) and Anderson and
Domsch (1985b)). Stoichiometric imbalance requires higher maintenance respi-
ration (Griffiths et al., 2012) and can lead to a gradual decline of soil microbial
biomass if C is not sufficiently supplied (Anderson and Domsch, 1985a; Joergensen
and Wichern, 2018). Still, the relationship between soil stoichiometry and main-
tenance respiration is not well explored. The metabolic quotient (qCO2) is a
measure of the fundamental physiological state of the microbial community. It is
influenced by the fungal to bacterial biomass ratio in soils (Nannipieri et al., 2003;
Sakamoto and Oba, 1994) and has been widely used as an indicator of change in
the eco-physical status of soil microorganisms (Anderson and Domsch, 2010) for
example during succession (Insam and Domsch, 1988; Insam and Haselwandter,
1989), land use change (Hartman and Richardson, 2013; Xu et al., 2017), or due to
soil management (Zhou et al., 2017) and disturbance (Insam et al., 1996; Odum,
1985).

In this study we investigated changes in microbial stoichiometry and metabolic
quotient along a soil nutrient gradient of a post-mining agricultural chronosequence,
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formed from the reclaimed land of the open-cast brown coal mine Inden, North
Rhein-Westphalia, Germany. Homogeneous agricultural loess soils have been
restored in this region according to a standardized protocol for over 50 years
(Dworschak and Rose, 2014; Lucas et al., 2019; Pihlap et al., 2019), forming an
ideal space-for-time substitution (Pickett, 1989; Walker et al., 2010) for the study
of stoichiometric changes during soil development after restoration. We studied
both the cultivated arable fields and their arable margins (grass strips directly
bordering the arable fields), because we expected the unmanaged margins would
have higher SOM contents due to the lack of ploughing nor regular removal of plant
biomass. Half a century of soil development since restoration has given rise to a
SOM gradient along the chronosequence, ranging from SOC poor freshly deposited
young soils to the more developed arable soils after 52 years of cultivation with
maximum SOC content in arable margins.

We hypothesised that 1) Soil microbial biomass in the chronosequence soils would
not follow strict homeostasis; 2) Soil microbes would be in a state of stoichiometric
imbalance in young, nutrient poor soils; 3) Soil microbial stoichiometry will
gradually converge to an optimum ratio with increasing age/SOM content; and 4)
The metabolic quotient (qCO2) will be high in soils with stoichiometric imbalance
and would decrease as optimum ratio is reached.

We found that microbial stoichiometry was flexible and converged towards
the extractable C:N with increasing age after restoration. Further, changes in
stoichiometry were not gradual as we expected but instead gave evidence of a
critical threshold of SOC due to shifts in microbial stoichiometry and energy
requirements for maintenance respiration once a critical value of 1% SOC was
passed. These results shed new light on the processes governing the conversion of
microbial biomass for the build-up of soil organic matter in C poor agricultural
soils.

3.3 Materials and Methods

3.3.1 Formation of chronosequence soils
The study was conducted in a 52-year post-mining agricultural chronosequence near
to Inden, Germany (50◦52′44.6′′N 6◦19′4.4′′E; Fig. S3.1). Mean annual temperature
is 9.8� and the mean annual precipitation is 829 mm. The mining company RWE
Power AG (Essen, Germany) extract lignite from the earth via opencast mining.
This involves completely removing the topsoil and subjacent layers of tertiary
sands to a depth of > 100 m in order to expose the lignite seam beneath. After
lignite has been extracted, the cavity is filled again with the material which was
previously removed. The process of extraction and restoration is continuous as the
mining company follow the lignite seam through the landscape. Large conveyor
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belts continuously transport material from the front of the mine (where excavation
proceeds) to the back of the mine (where exaction has ended) to refill the cavity
and restore the land to its previous usage. This has given rise to a > 50 years
chronosequence of restored agricultural soils, whereby the restored soils closest
to the mine are the youngest and those further away increase in age. RWE have
kept detailed records of the mine’s trajectory through the landscape and the dates
of when the land was restored. The reclamation process has hardly changed in
decades (Dumbeck, 1992; Dworschak and Rose, 2014). At the front of the mine
diggers first remove the top soil loess layer, occasionally reaching down to 12 m
depth, and carefully separate it from deeper substrate layers of tertiary sands.
Then the loess and sandy substrates are each separately mixed and moved by
conveyor belts to fill up the backside of the mine, where on top of the tertiary
sands a 2 m layer of homogenized loess (containing 1% former topsoil, 0.2% SOC)
is evenly spread (Dworschak and Rose, 2014). The ceaseless process creates a
continuum of very homogeneous but successively older agricultural loess soils, while
the open-cast mine continues to advance through the landscape.

3.3.2 Management of reclaimed land after mining
Reclaimed soils typically received in the first year an initial fertilization of 60, 120
and 180 kg ha−1 of, N and P and K fertilizer respectively, and are cultivated for
three subsequent years with alfalfa (Medicago sativa) without any further fertilizer
or biocide applications. Four to seven years after reclamation, fields typically
undergo a wheat and barley crop rotation. Cereals are fertilized by NPK and CAN
(Calcium ammonium nitrate) mineral fertilizers, and receive in addition in the
fourth and seventh year of reclamation 30 t ha−1 of organic fertilizer (compost),
resulting in a total annual fertilisation rate of 200, 80, 60 and 40 kg ha−1 of N,
P, K and Mg fertilizer, respectively. After seven years, fields are returned to the
previous owners and are usually managed with a sugar beet-winter wheat crop
rotation. The perimeters of the arable fields were left unmanaged and are only
between 20–100 cm wide. These strips we here name ”arable margins”. They differ
only in that they were not intensively cultivated, i.e. had a continuous grass cover
and were seldomly ploughed. Due to their narrow width we assume that the arable
margins receive the same mineral fertiliser input as the arable fields. Minimum
sampling distance between arable field and arable margin soils was 10 m (Fig. S3.2).

3.3.3 Soil sampling
Soil sampling took place in March 2016 in ten reclaimed sites of ages 1, 2, 3, 4,
5, 10, 26, 37, 45 and 52 years after reclamation at the time of sampling. The
location of sampling sites was determined by the exact recordings of the former
locations of the mine (Fig. S3.1). Most sampling sites were less than 3000 m apart
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and the maximum distance between sampling sites was 6000 m. At each site, soil
was sampled from the reclaimed arable field and from the arable margins directly
bordering the arable fields (factor ”Soil Origin”). Information on the crop growing
at time of sampling can be found in the supplementary material (Table S3.1). Per
field, five technical replicates, each consisting of five pooled soil cores (6 cm ⊘,
with a depth of 10 cm), were collected (for more details see Roy et al. (2017)). At
the adjacent arable margins three technical replicates consisting each of two soil
cores were sampled. All samples were sieved (2 mm), roots and stones removed
and stored at 4� prior to analysis.

3.3.4 Measurement of soil nutrients, microbial stoichiometry and
microbial respiration

Soil organic C (SOC) was measured after the removal of inorganic C by addition
of 10% HCl (Nelson and Sommers, 1996) and determined by combustion together
with total soil N (Ntot) using a C/N element analyser (Flash 2000 Thermo Fisher
Scientific GmbH, Germany). Soil extractable P was measured using the Calcium-
Lactate extraction.

Soil microbial biomass C (MB-C)and N (MB-N), and extractable C (Cext)
and N (Next) were determined via the chloroform fumigation-extraction (CFE)
method (Vance et al., 1987) using the respective extraction constants for C and
N, kEC = 0.45 and kEC = 0.54 (Joergensen, 1996; Wu et al., 1990). Samples were
shaken with 0.5 M K2SO4 on a platform shaker for 30 min (1:4 soil : extractant
ratio) to extract available C and N. Extracts were frozen until measurement with
a Multi N/C 2100S (Analytik Jena, Germany). Soil microbial P (MB-P) was
determined using a modified anion exchange membrane method (Kouno et al.,
1995; Myers et al., 1999) using hexanol instead of chloroform to induce cell lysis. P
concentration in the extracts was measured using the Murphy and Riley colorimetric
test (Murphy and Riley, 1962) with a microplate reader (photometric wavelength
710, VarioskanTM, Thermo Electron Corporation, Germany). Some extracts for
MB-C /MB-N analysis were lost during failure of the Multi N/C analyser, resulting
in unequal numbers of replicates between sites.

The metabolic quotient (qCO2; CO2-C mmol MB-C mol−1 h−1) was calculated as
the microbial basal respiration to unit microbial biomass C (MB-C). Microbial basal
respiration was measured over 24 h with a micro-compensation apparatus (Scheu,
1992). Prior to measurement, fresh soil with 3 g equivalent dry soil were adjusted
to 50% water holding capacity and incubated overnight at 20�. Respiration rates
were converted from O2 consumption to CO2-C respired using the ideal gas constant
(e.g. 1 µL O2 ~12/22.4 = 0.53 µg CO2-C).
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3.3.5 Statistical analyses
Non-linear shifts in microbial nutrient accrual and metabolic quotient (qCO2) with
increasing SOC were revealed by breakpoint analysis. Data were subsequently
ln(x + 1) transformed for linearity and subset into two groups by a soil nutrient
content grouping variable with two factors (soil nutrient content either above
or below a critical value). Segmented regression was performed on the subset
data to give individual slopes for the two groups. To determine whether the two
slopes of the segmented regressions were significantly different from the slopes
where no grouping criteria was applied, an ANCOVA analysis was performed
(linear model with grouping variable interaction). All statistical analyses were
conducted in R (version 3.5.0) using the base and stats packages (Team, 2018). The
segmented function in the package segmented was used to calculate breakpoints in
the data (Muggeo, 2008). Other R packages used for graphing and data handling
include, ggplot2 (Wickham et al., 2018a), dplyr (Wickham et al., 2018b) and
tidyr (Wickham et al., 2018c), lattice (Sarkar, 2008) and latticeExtra (Sarkar and
Andrews, 2013).

3.4 Results
3.4.1 Development of soil nutrients and microbial stoichiometry

over time after restoration
Changes in soil nutrient levels (SOC, total N, extractable P) and microbial biomass
(MB-C, MB-N, MB-P) followed a similar pattern with increasing age after restora-
tion (Fig. S3.3a-f). Initially, soil nutrients and microbial biomass increased at the
same rate in both arable and arable margins in soils aged 1–5 years. After 10
years the accumulation of SOC and microbial biomass ceased in the arable soils,
but continued to increase in the margin soils (Fig. S3.3a-e). SOC ranged between
0.21–0.93% in arable soils and 0.22–4.47% in the margin soils.

Plotting the ratios of soil C:N versus microbial biomass C:N (MB-C:MB-N),
with the soil C:N calculated either from SOC and total N (SOC:Ntot) or from the
extractable C and N (Cext;Next) (Fig. 3.1 1a, b) showed slopes strongly deviating
from the 1:1 line (where microbial C:N is exactly balanced by the C:N of the
soil resource). Generally, variation in MB-C:MB-N relative to soil stoichiometry
was high in young soils and decreased with soil age, indicating a progressively
constrained stoichiometry within the soil microbial community with increasing
soil age after recultivation. In particular the changes in microbial C:N relative to
extractable soil C:N appeared vertically directed towards the 1:1 line as indicated
by significant linear relationships in soils aged 4, 10 and 26 years after recultivation
(Fig. 3.1 b). In soils ages > 26 years, the slopes decreased and the values converged
close to the 1:1 line within a narrow range of extractable soil C:N (Cext:Next). This

59



Shifts in soil microbial stoichiometry and metabolic quotient provide evidence for a
critical tipping point at 1% soil organic carbon in an agricultural post-mining
chronosequence

was true for both arable and margin soils, despite significant differences in total
amounts of C and N (Fig. S3.3a-b). We calculated the final microbial C:N ratio as
the MB-C:MB-N values where the slope crossed the 1:1 line in soils aged 37, 42
and 52 years, these were 4.4, 4.6 and 5.6 respectively.
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Figure 3.1: Scatter plots and slopes (dashed line) of (a) molar soil total C:N ratio
(SOC:Ntot) versus molar microbial biomass C:N ratio (MB-C:MB-N) and (b) molar
available C:N ratio from extractable C and N (Cext:Next) versus molar microbial biomass
C:N ratio (MB-C:MB-N) in soils of different ages (1–52 years) after recultivation for
arable field (filled circle) and arable margin (open circle). Values are shown in comparison
to the 1:1 (solid) line. Adjusted R2 and p-values are given in case of significant linear
relationships.

3.4.2 Microbial biomass accumulation as a function of SOM
Nutrient contents of soil microbial biomass generally increased with increasing SOC
content. However, the rate of increase in MB-C and MB-N was not constant with
increasing SOC (Fig. 3.2) due to shifts in microbial stoichiometry around a threshold
value of 810 mmol kg−1 SOC (∼ 1% SOC). In soils containing < 810 mmol kg−1

SOC, MB-C increased strongly with increasing SOC (slope µ1 = 1.2, Table 3.1).
Above this threshold, accrual rate of MB-C decreased by 50% MB-C compared to
the soils below the threshold (slope µ2 = 0.58, Table 3.1). Conversely, increasing
SOC content had the opposite effect on microbial N accumulation (Fig. 3.2).
There was a weak accumulation of MB-N with increasing SOC in soils containing
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< 450 mmol kg−1 SOC (slope µ3 = 0.48, 3.1), whereas above the critical value
of 810 mmol kg−1 SOC, microbial N accumulation rate doubled (slope µ4 = 0.81,
Table 3.1). The shift in microbial N accrual was preluded by a region of high
variance within MB-N in soils containing 450–700 mmol kg−1 SOC (0.5–0.9% SOC).
Microbial P (MB-P) increased gradually with SOC (slope µ5 = 0.31, Table 3.1)
and no shift in P accrual rate was observed. Soil total N (Ntot) was strongly
correlated to SOC (Fig. S3.4), therefore when MB-N was plotted as a function of
Ntot (Fig. 3.3) a similar shift in MB-N was observed. Here, the shift to increased
accrual rate of MB-N (slope µ7 = 1.03, Table 3.1) occurred at critical value of
32 mmol kg−1 Ntot (∼ 0.045% Ntot).
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Figure 3.2: Accrual of C (MB-C), N (MB-N) and P (MB-P) in microbial biomass
(mmol kg−1) with increasing soil organic C (SOC, mmol kg−1) in arable field soils (circles)
and bordering arable margin soils (triangles). Data were ln(x + 1) transformed and
segmented linear regression was applied. See Table 3.1 for regression statistics. Upper
x-axis SOC unit given in %.

Parallel to the shifts in accrual rate of MB-C and MB-N, there was also a shift in
the relationship of metabolic quotient (qCO2) to SOC at the same critical value of
810 mmol kg−1 (∼ 1%) SOC (Fig. 3.4). qCO2 decreased log-linearly with increasing
SOC until the critical value (slope µ8 = −0.72, Table 3.1); above the critical
value qCO2 remained at a low level of 4.46 ± 1.26 (CO2-C mmol h−1 MB-C mol−1)
independent of increasing SOC.
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Figure 3.3: Accrual of microbial biomass N (MB-N) as a function of soil total N (Ntot)
in arable field soils (circles) and bordering arable margin soils (triangles). Data were
ln(x + 1) transformed for normality and segmented linear regression was applied. See
Table 3.1 for regression statistics.
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Table 3.1: Table of segmented regression statistics and ANCOVA model results for
individual slopes µ1- µ9 of figs. 3.2 to 3.4. All variables were ln(x + 1) transformed
for linearity. Microbial biomass carbon (MB-C), -nitrogen (MB-N) and -phosphorus
(MB-P), and metabolic quotient (qCO2) (y variables in figs. 3.2-3.4) were modelled
as a function of soil organic carbon (SOC) or soil total nitrogen (Ntot) (x variables in
figs. 3.2-3.4). Wherever a critical threshold in x or y (xc or qCO2) was identified via
breakpoint analysis, the data were subset into two groups: e.g. x ≤ xc and x > xc.
Segmented linear regression was carried out on the subset data, resulting in two slopes
per xy variable pair. To determine whether the two slopes of the segmented regressions
were significantly different from the slopes where no grouping criteria was applied, an
ANCOVA analysis was performed (linear model with grouping variable interaction). All
ANCOVA models showed a significant difference to the model without grouping variable
interaction (confidence interval, p < 0.01). ANCOVA results shown in the table are
from the regression model including grouping variable. Significance levels: p < 0.1 (*);
p < 0.05 (*), p < 0.001 (***).

Linear regression of ln(x + 1) transformed data subset according to
the breakpoint

ANCOVA

Slope
ref.

Fig.
ref.

x y n R2 Slope In-
ter-
cept

Sig-
nifi-
cance

Critical
value
(variable,
mmol kg−1)

R2 F df Sig-
nifi-
cance

µ1 3.2 SOC MB-C 67 0.88 1.2 -4.85 *** SOC <= 810 0.93 537.4 [3,75] ***
µ2 3.2 SOC MB-C 12 0.61 0.58 -0.27 ** SOC > 810
µ3 3.2 SOC MB-N 39 0.59 0.48 -2.31 *** MB-N <= 1.0 0.95 390.2 [3,67] **
µ4 3.2 SOC MB-N 32 0.83 0.81 -3.74 *** MB-N > 1.0
µ5 3.2 SOC MB-P 46 0.74 0.31 -1.69 * N/A N/A N/A N/A N/A
µ6 3.3 Ntot MB-N 33 0.09 0.17 -0.13 ns Ntot <= 32 0.91 261.6 [3,75] ***
µ7 3.3 Ntot MB-N 39 0.85 1.03 -2.73 *** Ntot > 32
µ8 3.4 SOC qCO2 62 0.53 -0.72 6.7 *** SOC <= 810 0.63 42.57 [3, 69] ***
µ9 3.4 SOC qCO2 11 0.03 0.09 0.95 ns SOC > 810
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Figure 3.4: The metabolic quotient (qCO2) as a function of soil organic C (SOC) content
in arable field soils (circles) and bordering arable margin soils (triangles). Data were
ln(x + 1) transformed for normality and segmented linear regression was applied. See
Table 3.1. for regression statistics. Upper x-axis SOC unit given in %.
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3.5 Discussion
In the recultivation chronosequence the relationships of microbial C:N ratio to soil
C:N ratio were driven by soil age after recultivation (Fig. 3.1a, b). Values above
the 1:1 line indicate good N availability due to a narrow soil C:N relationship. Yet
the microbial biomass was characterized by surprisingly high C:N ratios, especially
in soils aged < 10 y (Fig. 3.1a, b). These young soils showed the largest differences
between microbial and resource (soil) C:N ratio, demonstrating a substantial
stoichiometric imbalance. According to high MB-C:MB-N, Pihlap et al. (2019)
assumed N-limitation of microorganisms by investigating young reclaimed soils of
the Garzweiler chronosequence with roughly comparable loess substrates in 50 km
distance of our sites. With increasing soil age variation in microbial stoichiometry
decreased as microbial C:N converged towards the 1:1 relationship with soil C:N,
pointing to a weak homeostatic regulation of microbial C:N in these soils (Scott
et al., 2012). Since total SOC and soil N are not immediately accessible to
microorganisms, the extractable C and N give a much better approximation of
the potentially available resources in soil (Griffiths et al., 2012). The (linear)
convergence of microbial C:N towards to the 1:1 line (Fig. 3.1b) clearly shows that
the microbes better adjust to the available resource (Cext:Next) rather than to the
total resource (SOC:Ntot) stoichiometry, irrespective of soil origin being arable or
arable margin.

Our estimation of MB-C:MB-N in soils aged 37-52 years was approximately
5:1, which is lower than the global average as reported by Cleveland and Liptzin
(2007) but well within range of previously reported microbial biomass C:N values
for agricultural fields (Kallenbach and Grandy, 2011). It shows that stoichiometric
imbalance was a strong driver to balance soil microbial communities towards
equilibrium with soil stoichiometry.

There is intensive discussion about the extent of variation in soil microbial
stoichiometry and the factors driving it (Cleveland and Liptzin, 2007; Fanin et al.,
2017, 2013; Hartman and Richardson, 2013; Li et al., 2012; Xue et al., 2019).
Changes of the homogeneous soil substrate along the chronosequence revealed
regular stoichiometric patterns of alterations in soil and micro-organisms, which
enable a better mechanistic understanding of the processes underlying variation in
microbial stoichiometry and the associated formation of SOC.

3.5.1 Critical thresholds in microbial stoichiometry
Variation in microbial stoichiometry was not random. The much higher accrual rate
(i.e. slope) of MB-C in soils with low SOC content in comparison to the accrual of
MB-N and MB-P (Fig. 3.2) reflect a higher microbial demand for C than N and P
(Mulder et al., 2013). The most limiting element C, showed a strong increase in
microbial biomass with increasing SOC relative to the other elements until a critical
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threshold (1% SOC), where microbial stoichiometry was characterized by decreasing
C and increasing microbial N demand (Fig. 3.2). Well-developed soils function
as a slow-release fertilizer, where nutrients bound to SOM are gradually released
upon mineralization by extracellular enzymes (Sanderman et al., 2017). This
buffering pool of C and nutrients was however largely lacking in the SOM-poor, less
developed agricultural soils. Farrell et al. Farrell et al. (2014) demonstrated that
under such conditions microbial uptake of dissolved N-containing low-molecular
weight molecules, such as peptides and amino acids, is primarily driven by microbial
C-demand rather than N-demand. As soil organic C and N content increased above
the critical value, the stoichiometric demands of the microbes could be better
satisfied, as shown by the increased assimilation rate of N into microbial biomass
with increasing SOM (slope µ4, Fig. 3.2). This demonstrates a shift from principal
C limitation below the critical value, to microbial co-limitation of C and N above,
where N became the next growth limiting nutrient after C (Ma et al., 2019; Traoré
et al., 2016). The accrual of C, N and P into microbial biomass with increasing
SOM follows exactly the same pattern in both arable and margin soils until 1%
SOC, but only margin soils that surpass 1% SOC show a sudden decrease in the
accrual rate of MB-C and an increase in the accrual rate of MB-N.

3.5.2 High microbial maintenance respiration due to
stoichiometric imbalance

A parallel shift in qCO2 occurred at the same critical 1% SOC value and revealed
high C losses below the threshold, indicating stoichiometric imbalance of the
microbial community (Schimel and Weintraub, 2003; Sinsabaugh et al., 2013,
2016). In soils containing less than 1% SOC, MB-C was low while the microbes
showed a high demand for C (Fig. 3.2) but simultaneously high C losses per unit
biomass (Fig. 3.4), indicating that a large proportion of the ingested C was lost
through respiration and could not be converted to microbial biomass. In addition,
microbial C:N ratio was surprisingly high relative to available soil N in the young,
SOC-poor reclaimed soils (Fig. 3.1b) further corroborating high C demand. The
apparent inability of the microbes to assimilate more C into biomass likely results
from high microbial investments for resource acquisition in the resource-poor soils
that trade-off against microbial growth (Malik et al., 2019; Ramin and Allison,
2019). These processes likely constrain the rates of C accrual in soil.

Generally, rates of C accrual from microbial biomass via necromass into SOC
are not constant, but depend on the C saturation status of the soil matrix, which
is a function of clay content (Frouz, 2017; Stewart et al., 2007). Rates of C
accrual decrease as soils approach C saturation (Kimetu et al., 2009; Stewart et al.,
2009), but this does not necessarily equate to an increase of C accrual in soils far
from C saturation. Instead, empirical measurements of C sequestration in post
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mining chronosequences show a hyperbolic function with reduced rates of C and N
accrual in both, soils close to and far from C saturation (Bartuska and Frouz, 2015;
Frouz, 2017). Assuming that the proper functioning of a soil is maintained by
mineralisation of C and nutrients from SOM, a minimum amount of SOM would be
required for the necessary feedback processes to work. In agreement, Frouz (2017)
concluded from empirical measurements of changes in SOC of chronosequence soils
over time that a ”soil that has already accumulated some C will have a greater
ability to accumulate additional C”. Assuming that the conversion rates of C into
microbial biomass via microbial necromass directly feeds back on the formation
of SOC (Buchkowski et al., 2019), reduced rates of C accrual in soils far from C
saturation (Bartuska and Frouz, 2015; Frouz, 2017) could be explained by increased
microbial metabolic expenditures due to stoichiometric mismatch.

We infer that increasing SOC above the critical 1% SOC value transitioned the
microbes into a new state where incorporation of C into biomass was more efficient
(Fig. 3.4), as demonstrated by a the parallel shifts in microbial stoichiometry and
qCO2. This result is in line with previous studies which showed that decreases in
the ratio of soil C to the next the growth limiting nutrient (C:X) lead to decreases in
qCO2 (Hartman and Richardson, 2013; Keiblinger et al., 2010; Spohn, 2015; Spohn
and Chodak, 2015), demonstrating the coupling of nutrient limitation to qCO2
and nutrient use efficiency. The rapid decrease in qCO2 in the chronosequence
soils on approach to the critical value again indicates that microbes were out
of stoichiometric equilibrium but moved quickly into a more nutrient efficient
stoichiometric state once soil nutrient content exceeded the critical value of 1%
SOC. Correspondingly, Insam and Domsch Insam and Domsch (1988) on the study
of forest restoration in post open cast mining land reported a dramatic decrease
of qCO2 once soils nutrient content exceeded 1% SOC, demonstrating that this
observation is not only limited to agricultural soils.

3.5.3 Microbial stoichiometric transitions occur at different
critical values for different nutrients

Our data do not only indicate a shift in stoichiometric state due to the crossing of a
critical threshold level of SOM, but also indicate that these microbial stoichiometric
transitions occur at different critical values for different nutrients. Ntot was highly
correlated to SOC (Fig. S3.4), therefore a similar pattern towards increasing
microbial N limitation was observed when MB-N was described as a function of
soil Ntot (Fig. 3.3). The shift in MB-N occurred at 32 mmol kg−1 soil Ntot. Soils
with this concentration of total N contained approximately 400 mmol kg−1 SOC
(∼ 0.5% SOC, Fig. S3.4). Whereas the shift in C accrual rate occurred at 1% SOC
(Fig.1), meaning that the shift towards microbial N limitation (at ∼ 0.5% SOC)
commenced at an earlier critical value of SOC.
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Furthermore, shifts in microbial N accrual show that stoichiometric transitions
were not smooth, but preceded a phase of high variability between 30–60 mmol kg−1

Ntot (0.04–0.08% Ntot). This high variation has been observed on the approach
to a tipping point, which can be indicative of a system entering a critical state
(Clements and Ozgul, 2018). According to Scheffer et al. (Scheffer et al., 2012)
a decisive prerequisite for a tipping point is a positive feedback which drives the
change to an alternative state after exceeding a threshold. Thus, once a critical
level of Ntot (and SOC) was reached (Fig. 3.2), the more efficient incorporation
of C into the microbial community (as confirmed by qCO2) generates a positive
feedback which would be the prerequisite of a more efficient accrual of SOM from
necromass (Ma, 2018).

3.5.4 Towards a quantitative framework for SOC targets

Our results show that by increasing SOM the microbial community shifted from
an unstable, metabolic inefficient state (away from stoichiometric equilibrium) to
a stable, more nutrient-efficient state on the crossing of a critical soil organic C
content of 1%. The concept that soil functions are dependent on critical values of
SOM has been previously explored, in particular the effect of a 1% SOC critical
value on crop yield and SOM decomposition rates in agricultural soils (Aune and
Lal, 1997; Loveland and Webb, 2003). Considering the persistence of SOM as an
ecosystem property (Schmidt et al., 2011), where the proper functioning of a soil
is maintained by mineralisation of C and nutrients from SOM, a minimum amount
of SOM appears essential for the necessary feedback processes to operate. Still,
threshold ratios and nutrient limitations are most likely site-specific, depending
on parent soil material and climatic constraints. It is important to note that the
arable soils of the chronosequence did not acquire SOC in excess of 1% even 52
years after soil reclamation. Thus, the consequence of a threshold model for SOM
accumulation in soil is that soils will remain in the inefficient state unless the
critical tipping point is reached. This may well explain the repeated failure of
arable field soils in becoming a stable C sink (Minasny et al., 2017; Schulp et al.,
2008). Current meta analyses suffer from the underrepresentation of agricultural
soils, which are known for having the lowest C contents (Guo and Gifford, 2002).
Our data further indicate that it is crucial to compare soils of similar origin in order
to detect clear patterns that help to explain stoichioimetric variability. Our data
are a first step towards establishing a quantitative framework for SOC targets that,
along with agricultural intensification, support sustainable feedback mechanisms
for the accrual of C in soils.
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3.6 Conclusion
Overall, our combined results show that by increasing SOM the microbial commu-
nity shifted from an unstable, metabolic inefficient state (away from stoichiometric
equilibrium) to a stable, more nutrient-efficient state on the crossing of a critical
soil organic C content of 1%. Microorganisms in the young chronosequence soils,
where stochiometric imbalance was greatest, persisted in a nutrient inefficient state
with high C demand but low acquisition of biomass C. Our data show that when
SOC increased above a critical value of 1% SOC, soils entered into an alternative
stoichiometrically stable state where microbial C acquisition was more efficient.
Similar mechanisms may underly the functioning of all natural and managed soil
systems, but threshold ratios and nutrient limitations will be likely site-specific,
depending on parent soil material and climatic constraints. Agricultural soils have
the lowest C stocks, therefore efforts to improve this may be fruitless if soils are
still below a critical threshold value, even if C inputs are increased. A better
understanding of critical elemental threshold ratios of soil microbial biomass may
ultimately lead to an improved management of the processes governing the build-up
of organic matter in soil.
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Table S3.1: Table detailing the soil age and crop plant growing on the arable field at
time of sampling

Year of
restoration

Age of soil at time
of sampling

Crop plant growing at time of
sampling

2015 1 Alfalfa (Medicago sativa)
2014 2 Alfalfa (Medicago sativa)
2013 3 Winter wheat (Triticum sp.)
2012 4 Winter barley (Hordeum vulgare)
2011 5 Winter barley (Hordeum vulgare)
2006 10 Winter wheat (Triticum sp.)
1990 26 Winter wheat (Triticum sp.)
1979 37 Winter wheat (Triticum sp.)
1971 45 Winter wheat (Triticum sp.)
1964 52 Winter wheat (Triticum sp.)
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Figure S3.1: Map of the Inden mine and restored land in 2016. The red points mark the
locations of the study sites sampled for the chronosequence with their year of restoration.
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Figure S3.2: Photo of 37 year old restored land showing the proximity of the arable
margin with cover of mixed grasses (left) to the arable field growing wheat (right).
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Figure S3.3: Development of soil nutrients and microbial stoichiometry over time after
restoration (soil age) for arable fields (solid line) and arable margins (dashed line). Mean
and standard deviation plotted over soil age for a) soil organic carbon (SOC), b) total
N (Ntot), c) extractable P, d) microbial biomass C (MB-C), e) microbial biomass N
(MB-N), and f) microbial biomass P (MB-P).

Figure S3.4: Correlation
of soil organic carbon
(SOC) and soil total nitro-
gen (Ntot) in arable fields
(circles) and arable mar-
gins (triangles) of increas-
ing age since soil reclama-
tion (Pearson’s r = 0.96,
n = 79, df = 77, t = 59.88,
p < 0.001).
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in Luvisol soils along a postmining agricultural chronosequence in Western Germany

4.1 Abstract
Freeze-thaw (FT) events exert a great physiological stress on soil microorganisms
and hence impact biogeochemical processes in soils. As numerous environmental
factors affect microbial and chemical responses to FT, a better understanding of
the leverage factors that regulate the responses to FT events is required. To date,
FT-induced shifts and transformations in microbial and resource stoichiometry have
received particularly little attention. We exposed fifteen Luvisol soils with different
time after restoration and corresponding differences in soil organic C contents
from a postmining agricultural chronosequence to a single FT event and analysed
changes in soil chemistry and microbial stoichiometry one hour and eighteen hours
after thawing. FT considerably altered soil biochemical attributes within the
first hours of thawing. Dissolved organic carbon (C) and total dissolved nitrogen
(N) concentrations immediately increased. Subsequent disproportional losses of
dissolved organic C led to shifts in available resource stoichiometry. Microbial
biomass C declined substantially after FT, and its relative losses were positively
correlated with enhanced dissolved organic C contents. Thus, microbial cell lysis
likely led to the significant increase of dissolved organic C. Moreover, microbial
biomass C losses were disproportionally higher in C-rich soils, suggesting that soil
microorganisms in high-C soils might be particularly prone to FT stress. Microbial
biomass N marginally decreased one hour after thawing, yet returned to initial
levels eighteen hours after thawing. The alternating responses of microbial biomass
C and N caused a strong stoichiometric reduction of the microbial C:N ratio. The
resulting microbial oversaturation with N relative to C is likely the first step in
the chain of processes that generally lead to the high N losses commonly recorded
in agricultural soils in the aftermath of FT events. Metabolic activity of the soil
microbial community increased with the relative decline of the microbial biomass
C:N ratio eighteen hours after thawing, suggesting increased levels of microbial
metabolic expenditure due to stoichiometric shifts. The strength of the FT-driven
biochemical responses was strongly dependent on soil organic C content, indicating
that high-C soils might be especially vulnerable to initial C and N losses due to
shifts in microbial stoichiometry.

4.2 Introduction
Soil freeze-thaw (FT) events have a profound impact on the ecophysiology of soil
microorganisms (Miura et al., 2019; Mooshammer et al., 2017; Schimel et al., 2007;
Schimel and Mikan, 2005; Sharma et al., 2006; Williams et al., 2015) and hence
the biogeochemistry of terrestrial ecosystems (Bardgett et al., 2008; Congreves
et al., 2018). Soil microorganisms can adapt to freezing (or rather near-freezing)
temperatures by (i) upregulating protein synthesis, (ii) increasing membrane
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fluidity (through changes in the fatty acid composition), (iii) taking up/producing
polysaccharides or compatible solutes for cryo-protection or (iv) regulating specific
metabolic pathways (reviewed e.g., in Margesin and Miteva (2011) and Shivaji and
Prakash (2010)). Yet, despite these adaptations, a substantial portion of the soil
microbial biomass is usually killed during FT events (Feng et al., 2007; Han et al.,
2018; Schimel and Clein, 1996; Song et al., 2017; Yanai et al., 2004). This die-off
could either be a consequence of the freezing itself, or due to the physiological
stress induced with the subsequent thawing of soils when soil microorganisms have
to rapidly reverse their physiological adaptations to prevent cell rupture (Schimel
et al., 2007). As a result, readily available organic compounds enter the soil where
they are lost either through leaching or gaseous emissions, or metabolised by the
remaining viable microorganisms, which explains the frequently observed increase
of CO2 and N2O emissions from soils after FT events (Congreves et al., 2018;
Joseph and Henry, 2008; Matzner and Borken, 2008; Song et al., 2017).

Lossses of soil carbon (C) and nitrogen (N) after FT can be substantial (Con-
greves et al., 2018; Matzner and Borken, 2008) and have been linked to inherent
soil microbial dynamics (Christensen and Christensen, 1991; Herrmann and Wit-
ter, 2002; Matzner and Borken, 2008; Risk et al., 2013). Sharma et al. (2006)
investigated CO2 and N2O along with microbial gene expression and community
responses to FT in a microcosm study and found increased activity and expression
of denitrifying genes of the soil microbial community after FT. Herrmann and
Witter (2002) could further show that microbial necromass C contributed ca. 65%
to the C mineralisation flush upon FT. Moreover, recent evidence suggests that C
and N liberated from microbial cell lysis rather than aggregate disruption fueled
N2O emissions after FT (King et al., 2021). This suggests that soil microorganisms
are strong drivers of ecosystem responses to FT events.

Although the significance of microbial stoichiometry in predicting terrestrial C
and N fluxes has been acknowledged recently (see e.g., Buchkowski et al. (2015,
2019)), stoichiometric shifts and transformations during and after disturbances
received little attention so far. Empirical evidence suggests that FT events can
strongly alter the nutrient availability in soils. For example, Schimel and Mikan
(2005) showed that soil microorganisms shifted their N usage from N-poor detritus
at sub-zero temperatures to N-rich microbial products when soils were near 0�.
The observed N release from microbial products could either be a consequence of an
intracellular adaptation (e.g., cytoplasmic release due to osmoregulatory processes)
of the surviving microorganisms to above 0� temperatures, or be related to the
microbial die-off after FT (Schimel et al., 2007). Herrmann and Witter (2002)
and Schimel and Mikan (2005) showed that the die-off and turnover of microbial
biomass strongly contributed to dissimilatory C losses (i.e., respiration) after FT.
However, Clein and Schimel (Clein and Schimel, 1995) further demonstrated a
decoupling of microbial transformations of labile soil C and N pools during these FT
events. This shift in resource availability after FT events will most likely affect the
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stoichiometry of microbial consumers. For example, relatively high dissimilatory C
losses of the microbial community after FT could lead to an oversaturation of N
relative to C in the microbial biomass and the soil environment, while relatively
high N losses through leaching and denitrification could have the opposite effect.
As stoichiometric imbalances between soil microorganisms and their resources can
have major implications for ecosystem-level C and N fluxes (Sterner and Elser,
2002; Zechmeister-Boltenstern et al., 2015), a better understanding of FT effects
on microbial stoichiometry is urgently required. This is particularly important in
the light of current climatic projections which predict increases in the frequency
and magnitude of annual soil FT cycles (Henry, 2008).

Several factors such as soil physicochemical parameters (Schmitt et al., 2008;
Song et al., 2017; Yanai et al., 2004) or the intensity, duration and frequency of
FT events shape the chemical and microbial responses (Feng et al., 2007; Sorensen
et al., 2018; Stres et al., 2010). In their review, Griffiths and Philippot (Griffiths
and Philippot, 2013) discussed the role of soil carbon content and microbial nutrient
contents on the resistance and resilience of microbial population to stress, citing
studies where carbon limited microbes showed increased resistance to heat (Allison
et al., 2010) and chemical stressors (Overbeek et al., 1995). A very recent study of
repeated FT cycles on similar chronosequence soils found that soils with higher SOC
content showed the largest relative losses of microbial biomass carbon (Rosinger
and Bonkowski, 2021).

Due to this multifactorial complexity of FT effects on soil (Henry, 2007), experi-
mental setups are required that allow to disentangle potential driving factors of
microbial responses to FT events and the underlying mechanisms. In this study,
we set out with a mechanistic approach to investigate microbial and chemical
responses to a single FT event within the first hours after thawing, as this time
period appears critical for microbial C and N turnover processes. We chose a severe
and rapid freeze thaw event, freezing soils at −21� for 48 hours and thawing
at 10�, to amplify the response of the microbes. We used soils from a 56-year
postmining agricultural chronosequence in Western Germany, which provided a
unique opportunity to study microbial and chemical responses across a soil organic
C (SOC) and age gradient (Walker et al., 2010). The SOC contents varied between
0.29–4.65%, and time since recultivation ranged from 2–33 years (from here on
referred to as ”soil age”). Samples were taken from agricultural fields and their
directly adjacent arable margins. Dissolved organic C (DOC), total dissolved N
(TDN), microbial biomass C (MB-C) and N (MB-N) were measured before freezing,
1 hour and 18 hours after thawing. We also investigated the microbial respiratory
responses, i.e. basal respiration and metabolic quotient (qCO2), before freezing and
18 hours after thawing as measures of eco-physiological responses to FT (Anderson
and Domsch, 2010; Hartman and Richardson, 2013; Xu et al., 2017).

We hypothesize firstly that in comparison to before freezing, MB-C and MB-N
would decrease within the first hours after thawing, while soil available nutrient
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concentrations would increase due to microbial death. Secondly, we hypothesize
a subsequent change in soil microbial (MB-C:N ratio) and resource (DOC:TDN
ratio) stoichiometry at 1 hour and 18 hours after thawing due to non-equivalent
transformations of C and N by the remaining microbial population. Thirdly, we
predict that factors such as SOC content and soil age shape soil microbial and
chemical responses to FT.

4.3 Material and Methods
4.3.1 Study site and formation of chronosequence
The sampling site is located in the reclaimed agricultural lands after open-cast
mining adjacent to the Garzweiler mines, ca. 10 km south of Mönchengladbach
(6◦15′0′′E to 6◦21′0′′E; 50◦50′5′′N to 50◦53′0′′N). Mean annual temperature and
precipitation is 9.8� and 829 mm, respectively. The primary land use in this
region is for agriculture due to the fertile loess soils. Beneath the arable fields
runs an enormous lignite seam, which sits relatively close to the surface, making it
an ideal location for open-cast mining. Open-cast lignite mining, here conducted
by the energy company RWE Power AG (Essen, German), involves completely
removing the topsoil and subjacent tertiary materials (up to 100 m deep) to expose
the lignite seam beneath. The excavation and subsequent restoration of the land
is a continuous process, whereby material excavated at the front of the mine
is transported (via conveyor belts) to the back of the mine to fill the cavity
where exaction has been completed. The final top layer of the restored land
typically consists of a mixture (1:100 ratio) of loess material of the former topsoil
(characterized as Luvisol) and the parent material (unweathered loess from the
Weichselian glaciation period; Lucas et al., (Lucas et al., 2019)) which is applied in
a 2 m homogenous layer (Dworschak and Rose, 2014). Given that this process has
mostly been unchanged for decades and due to excellent records of the restoration
sites, this has given rise to a unique space-for-time substitution (Pickett, 1989) of
soils with near exact starting conditions spanning over 50 years.

4.3.2 Management of restored lands
Once the cavity has been restored, the land is managed by RWE AG Power for
7 years before being handed back to the previous owner. The soil type is Luvisol,
and soil texture of the restored soils is a silty clay loam with around 65% silt and
31% clay (Lucas et al., 2019). The bulk density of recultivated loess not affected
by soil tillage soils is around 1.6 g cm−3 (Pihlap et al., 2019). The reclaimed lands
for agriculture typically receive an initial fertilization of 60, 120 and 180 kg ha−1

of each, N and P and K fertilizer in the first year, and are cultivated for three
subsequent years with alfalfa (Medicago sativa) without any further fertiliser or
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biocide applications. Four to seven years after reclamation, fields typically undergo
a wheat and barley crop rotation. Cereals are fertilised with mineral NPK and
CAN (Calcium Ammonium Nitrate) fertilisers, and receive 30 t ha−1 of compost in
the fourth and seventh year of reclamation, resulting in a total annual fertilisation
rate of 200, 80, 60 and 40 kg ha−1 of N, P, K and Mg fertiliser, respectively. After
seven years, fields are returned to the previous owners and are usually managed
with a continuation of the sugar beet-winter wheat crop rotation (Lucas et al.,
2019; Pihlap et al., 2019). More details can be found in (Rosinger and Bonkowski,
2021).

The perimeters of the arable fields are left unmanaged and have initial widths
of ca. 100 cm. We refer to these strips as ”arable margins” from here on. The
arable margins, consisting of the same homogenous soil as the arable fields, differ
only in that they were not intensively cultivated, i.e., had a continuous grass cover
and were seldomly ploughed. Due to their narrow width, we assume that the
arable margins received similar mineral fertiliser input as the arable fields. Arable
margins studied in a neighboring chronosequence (adjacent to the Inden mine) had
elevated SOC contents compared to the arable fields (Clayton et al., 2021), and
for this reason were included in the study to broaden the range of SOC contents.

4.3.3 Soil sampling
Soil samples were taken in July/August 2018 on 8 different sampling sites along
the chronosequence, with 2, 3, 4, 10, 12, 16, 23, 24 and 33 years after time of
restoration, from both the arable field and arable margins. Five soil samples were
taken randomly at each sampling site with a minimum distance of 20 m between
replicates. The soil samples themselves consisted of 5 pooled subsamples taken
within a 1 × 1 m square. Samples were taken from the upper Ap horizon to a depth
of 10 cm using a soil auger (5.5 cm diameter). The minimum distance between
the sampling sites was ca. 500 m, whereas the minimum distance between arable
field and margin samples at each site was ca. 10 m (see Clayton et al. (2021) for
detailed sampling procedure). Samples were put in plastic bags and brought to
the laboratory the same day, where they were sieved at 2 mm and stored at 4�.
Thus, a total of 80 soil samples (8 sites ×2 management types ×5 soil samples)
were taken.

4.3.4 Freeze-thaw experimental design
For the freeze-thaw experiment we took a subsample consisting of 15 soils chosen
at random from the chronosequence soils, which covered a wide range of SOC
contents (0.29-4.65%) and time after restoration (4–33 years) (see Table 4.1). We
chose a severe freeze and rapid thawing method to induce a large response from
the microbial biomass, whereby small volumes of soil (5 g) were frozen at −21�
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for 48 hours and thawed at 10�. We decided on 3 timepoints to analyse the soils:
before freezing (control), 1 hour after thawing, and 18 hours after thawing.

Table 4.1: Age of soil at time of sampling (years after restoration), sampling location,
soil pH, SOC and total N contents (%) of the 15 soils used in the experiment

Soil Soil age (years) Management type pH SOC (%) Total N (%)
1 4 arable field 7.45 0.39 0.04
2 16 arable margin 7.23 0.52 0.07
3 4 arable margin 7.32 0.8 0.04
4 4 arable field 7.41 0.81 0.03
5 24 arable field 7.24 1.05 0.04
6 33 arable field 6.62 1.16 0.09
7 12 arable margin 7.15 1.37 0.07
8 16 arable field 7.08 1.4 0.08
9 10 arable margin 7.16 1.92 0.17

10 33 arable margin 6.89 2.09 0.14
11 33 arable margin 6.95 2.13 0.18
12 10 arable margin 7.22 2.42 0.22
13 23 arable margin 6.62 2.52 0.2
14 10 arable margin 7 2.68 0.22
15 33 arable margin 7.05 4.65 0.41

The severe temperature difference and small volume of soil was intended to
isolate the effect of one cycle of freezing. In doing so we hope to reveal the
underlying mechanisms of stoichiometric changes in microbial biomass and soil
biochemistry by amplifying the soil microbial responses to a freeze event. However,
according to the German weather service (DWD), soils in the study area typically
undergo up to ten FT cycles in the winter period, when soil temperatures typically
cycle around the freezing point. Differences between daily minimum and maximum
air temperatures of more than 21� within 72 hours have been recorded, showing
that soils in this area are exposed to severe but short temperature extremes around
the freezing point.

4.3.5 Soil preparation
Soil microbial biomass and soil dissolved nutrients were measured using a chloroform-
fumigation extraction method and microbial respiration via a micro-compensation
apparatus (see Section 4.3.6 Soil analysis). In preparation for analysis, approxi-
mately 50 g of fresh soil per sample were incubated at 10� for 7 days in 50 mL
plastic tubes in threefold replication and water content was adjusted to 50% water
holding capacity with deionised water. The threefold replication was required for
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each of the three freezing treatments, as chloroform extraction renders the sample
unusable afterwards. For the chloroform extraction, 4× ca. 5 g of fresh soil from
each sample were measured out into small plastic snap vials with lids, placed into
a plastic bag and loaded into the freezer and frozen at −21� for 48 hours. Once
removed from the freezer the soils were placed in a temperature-controlled room
at 10�. At the respective timepoints, one sample per treatment was placed in the
chamber for chloroform fumigation and the other (non-fumigated) sample directly
prepared for extraction (see Section 4.3.6 Soil analysis). Likewise, two further
subsamples of 5 g fresh soil per sample were taken for the control treatment and
analysed accordingly. For the respiration analysis, again, two subsamples of 3 g
fresh soil were weighed as before into plastic vials. One half of the subsamples
were frozen as described and the control subsamples were directly measured on
the respiration apparatus (see Section 4.3.6 Soil analysis). The frozen samples
were removed from the freezer, and placed directly in the respiration apparatus for
thawing, where respiration rate was measured every hour for up to 18 hours.

4.3.6 Soil analysis
Soil pH was measured in H2O (5:1 w/w) using a pH electrode. Total soil C and
N contents were determined by combustion using a C/N element analyser (Flash
2000 Thermo Fisher Scientific GmbH, Germany). For the SOC content, soils were
treated with 10% HCl in order to remove inorganic C (Nelson and Sommers, 1996)
and dried overnight at 60�. Thereafter, the organic C content was determined by
combustion as described.

MB-C and MB-N were analysed using the chloroform-fumigation extraction
method (Vance et al., 1987; Witt et al., 2000). Briefly, two subsamples of 5 g
fresh soil were taken from each soil treatment. One subsample was shaken in
25 mL of 0.5 M K2SO4 for 30 minutes and centrifuged at 4500 rpm for 10 minutes.
Thereafter, 3 mL of the supernatant were transferred into new 15 ml plastic tubes
and frozen until further determination of DOC and TDN. The other subsample was
fumigated under vacuum (using a desiccator) with 50 mL of ethanol-free chloroform
for 24 hours at room temperature prior to extraction (as above). Extracts were
analysed with a Multi N/C analyser (2100S, Analytik Jena, Jena, Germany).
MB-C and MB-N were calculated as the difference between fumigated and non-
fumigated DOC and TDN, respectively. MB-C and MB-N were not corrected by
any extraction efficiency coefficient. All results are expressed in µg g dry soil−1.

Basal respiration was measured by an automated electrolytic micro-respiratory
apparatus (Scheu, 1992). Briefly, ca. 3 g of fresh soil were weighed into glass vessels
and connected to the respirometer. The O2 consumption rates were measured at
21� every 60 minutes and subsequently converted to CO2 production using the
molar gas constant. Basal respiration is expressed in µg CO2-Cg dry soil−1h−1.
The metabolic quotient (qCO2) was calculated as basal respiration per unit MB-C
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and is expressed in mg CO2-C g MB-C−1h−1.

4.3.7 Statistical analysis
We conducted a multivariate analysis of covariance (MANCOVA) to test for
significant differences in DOC, TDN, the DOC:TDN ratio, MB-C, MB-N, the
MB-C:N ratio, basal respiration and qCO2 between the time points before freezing
and 1 hour as well as 18 hours after thawing. FT treatment was used as a fixed
factor (from now on referred to as ”FT” or ”FT treatment”), and SOC content
and soil age were treated as covariates. We used a SS type III model to test for
significant treatment effects as well as significant interactions with SOC content
and soil age, respectively. To evaluate the statistical significance of the overall
model, the Wilks’ lambda distributions (λ) and derived F-values, p-values and the
partial eta squared (η2) for main and interaction effects are stated. Equality of
variances (Levene’s test) was given for all measured parameters (p > 0.05) except
for the DOC:TDN ratio (p = 0.026). As the freshly recultivated loess material
contains carbonates which disaggregate over time in the upper soil horizon of
the chronosequence, soil age and soil pH were negatively correlated (R = −0.724,
p = 0.002). The use of both factors in a single one-way MANCOVA showed that
soil age (Wilks’ λ = 0.595, F = 0.987, p = 0.482, partial η2 = 0.159) appeared to
be the stronger explanatory variable as compared to soil pH (Wilks’ λ = 0.634,
F = 0.858, p = 0.629, partial η2 = 0.141) for biochemical parameters (i.e., MB-C,
MB-N, MB-C:N ratio, DOC, TDN, DOC:TDN ratio). The same was true for
the respiratory responses (i.e., basal respiration and qCO2; statistics for soil age:
Wilks’ λ = 0.815, F = 1.241, p = 0.307, partial η2 = 0.097; statistics for pH: Wilks’
λ = 0.948, F = 0.311, p = 0.869, partial η2 = 0.026). Accordingly, we omitted
the colinear soil pH as a covariate. Moreover, SOC and total N were positively
correlated (R = 0.973, p < 0.001). Using the same approach as above, the SOC
content (for biochemical responses: Wilks’ λ = 0.885, F = 0.724, p = 0.58, partial
η2 = 0.059; for respiratory responses: Wilks’ λ = 0.583, F = 1.03, p = 0.436,
partial η2 = 0.165) was kept in the model as it had the slightly higher explanatory
power compared to the soil N content (for biochemical responses: Wilks’ λ = 0.984,
F = 0.094, p = 0.984, partial η2 = 0.008; for respiratory responses: Wilks’
λ = 0.593, F = 0.995, p = 0.473, partial η2 = 0.16). Because SOC content and
soil age were only weakly correlated (R = 0.472, p = 0.076), both parameters were
kept in the main analysis. Moreover, we tested whether the sampled management
type (i.e., arable field or arable margin) had an effect on the analysis outcome.
Because management type showed no significant effect in the final MANCOVA
models with all other covariates, this factor was not further considered.

Paired sample t-tests using a Bonferroni correction for multiple comparisons
were conducted to evaluate significant differences between the three time points
before freezing, 1 hour after thawing and 18 hours after thawing. We used linear
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regression analyses and Pearson correlation coefficients to evaluate the relationship
between SOC content and relative MB-C losses 18 hours after thawing (as compared
to pre-freezing values) and to evaluate the relationships between ∆MB-C and
∆DOC as well as ∆MB-N and ∆TDN 18 hours after thawing. ∆ refers to the
percent differences between values before freezing and 18 hours after thawing. We
refer to significant differences at p < 0.05 (with *, p < 0.05; **, p < 0.01; and
***, p < 0.001). All statistical analyses and figures were conducted in SPSS 26.

4.4 Results
SOC content significantly shaped the outcome of the FT treatment in the overall
model for both the biochemical and respiratory responses, while soil age had no
predictive power (Table 4.2, 4.3). Test of between subject effects on individual
parameters revealed that FT treatment effects for MB-C, MB-N, DOC and basal
respiration were stronger in interaction with SOC content (Table 4.2, 4.3). Soil
age only affected the response of basal respiration to FT (Table 4.3).

Table 4.2: Test statistics of a MANCOVA analysis to evaluate the effect of the FT
treatment (non-frozen control, 1 hour after FT and 18 hours after FT) as well as
interactions between FT and SOC content (FT × SOC) and time since restoration
(FT × Soil age) on soil biochemical parameters (MB-C, microbial biomass C; MB-N,
microbial biomass N; DOC, dissolved organic C; TDN, total dissolved N). Test statistics
of the full model are given as well as of individual parameters separately

Full model statistics
df F p Wilks’ λ partial η2

FT treatment 1,18 12.44 <0.001 0.028 0.696
FT × SOC 3,18 8.13 <0.001 0.063 0.602
FT × Soil age 3,18 0.59 0.895 0.724 0.102

Statistics on individual parameters
FT treatment FT × SOC FT × Soil age

F p F p F p

MB-C 0.725 0.544 33.25 <0.001 1.061 0.378
MB-N 0.042 0.988 25.341 <0.001 0.255 0.858
MB-C:N ratio 32.898 <0.001 0.694 0.562 0.186 0.905
DOC 7.992 <0.001 21.455 <0.001 0.413 0.745
TDN 7.27 0.001 0.468 0.706 0.284 0.837
DOC:TDN ratio 12.005 <0.001 1.996 0.132 0.23 0.875

MB-C contents declined progressively with time after the FT event (Fig. 4.1a);
averaged over all samples, declines were ca. 15% 1 hour after thawing and ca.
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Table 4.3: Test statistics of a MANCOVA analysis to evaluate the effect of the FT
treatment (non-frozen control and 18 hours after FT) as well as interactions between
FT and SOC content (FT × SOC) and time since restoration (FT × Soil age) on basal
respiration and the metabolic quotient (qCO2). Test statistics of the full model are given
as well as of individual parameters separately

Full model statistics
df F p Wilks’ λ partial η2

FT treatment 1,4 7.306 <0.001 0.374 0.389
FT × SOC 3,4 5.258 0.001 0.471 0.314
FT × Soil age 3,4 1.889 0.128 0.738 0.141

Statistics on individual parameters
FT treatment FT × SOC FT × Soil age

F p F p F p

Basal respiration 7.388 0.003 12.278 <0.001 4.213 0.027
qCO2 9.186 0.001 0.715 0.499 0.043 0.958

49% 18 hours after thawing as compared to before freezing. Across the sample
set, the MB-C declines 18 hours after thawing were between 11-69%, while MB-N
contents remained rather unchanged (Fig. 4.1b). We recorded a marginal MB-N
decrease 1 hour after thawing followed by a slight increase back to pre-freezing
values (Fig. 4.1b). This caused significant shifts in the MB-C:N ratio 18 hours
after thawing from 8.1 (±0.5) before freezing to a MB-C:N ratio of 7.8 (±0.7) and
of 4.6 (±0.5), 1 hour and 18 hours after thawing, respectively (Fig. 4.1c). Linear
regression analysis showed a significant negative relationship between SOC content
and relative changes in ∆MB-C from before freezing to 18 hours after thawing,
with relatively higher MB-C losses after thawing with increased SOC contents
(Fig. 4.3a).

DOC contents increased progressively after the FT treatment by 16.5 and 39.9%
1 hour and 18 hours after thawing, respectively (Fig. 4.1d). TDN contents 1 hour
after thawing were still similar to pre-freezing values, but significantly increased
18 hours after thawing (by 2.4 and 14.2% as compared to before freezing and 1 hour
after thawing, respectively) (Fig. 4.1e). Because DOC contents increased dispro-
portionately to TDN contents, the DOC:TDN ratio increased in time after thawing
(Fig. 4.1f). Furthermore, DOC increased as MB-C was lost as demonstrated by a
negative correlation between ∆MB-C and ∆DOC (Fig. 4.4a). Such a relationship
was not found for ∆MB-N and ∆TDN (Fig. 4.4b). Basal respiration decreased
on average by 16.1% 18 hours after thawing (Fig. 4.2a). The metabolic quotient
in contrast increased 18 hours after thawing by ca. 40% (Fig. 4.2b). Importantly,
high-SOC soils showed relatively stronger increases in qCO2 after thawing than low
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Figure 4.1: (a) Microbial biomass C (MB-C), (b) microbial biomass N (MB-N), (c)
MB-C:N ratio, (d) dissolved organic C (DOC), (e) total dissolved N (TDN) and (f) the
DOC:TDN ratio of field and marginal field soils 1 h after thawing (light-yellow bars) and
18 h after thawing (dark-green bars). White bars represent non-frozen control samples.
Bars display the mean ± SE (n = 15), and asterisks indicate significant differences
between FT treatments (with *, p < 0.05; **, p < 0.01; ***, p < 0.001) as revealed by
paired sample t-tests
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SOC soils (Fig. 4.3b). Moreover, the ∆qCO2 increased with decreasing ∆MB-C:N
ratios (Fig. 4.5).

 

Figure 4.2: (a) Soil microbial respiration and (b) the metabolic quotient of field and
marginal field soils of non-frozen control samples (white bars) and 18 h after thawing
(dark-green bars). Bars display the mean ± SE (n = 15), and asterisks indicate significant
differences between FT treatments (with *, p < 0.05; **, p < 0.01; ***, p < 0.001) as
revealed by paired sample t-tests
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Figure 4.3: The relationship between the SOC content and (a) relative MB-C and (b)
relative qCO2 changes (%) between non-frozen controls and 18 h after thawing of field
and marginal field soils (n = 15). Given are R2 and p-values as revealed by linear
regression analyses and Pearson correlation coefficients

 

Figure 4.4: The relationship between (a) relative MB-C and DOC changes (in %) and
(b) relative MB-N and TDN changes (in %) between non-frozen controls and 18 h after
thawing of field and marginal field soils (n = 15). Given are R2 and p-values as revealed
by linear regression analyses and Pearson correlation coefficients
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Figure 4.5: The relationship between relative MB-C:N ratio and qCO2 changes (in %)
between non-frozen controls and 18 h after thawing of field and marginal field soils
(n = 15). Given is the R2 and p-value as revealed by linear regression analysis and
Pearson correlation coefficient
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4.5 Discussion
As expected, FT led to substantial losses of MB-C within the first 18 hours of
thawing (Fig. 4.1a) (Feng et al., 2007; Han et al., 2018; Schimel and Clein, 1996),
confirming our first hypothesis. Averaged over all samples, nearly 50% of MB-C was
lost within the first 18 hours of soil thawing; this magnitude is in correspondence
with a recent study conducted along the same chronosequence (Rosinger and
Bonkowski, 2021) and other studies (Schimel et al., 2007; Song et al., 2017; Yanai
et al., 2004). MB-C losses within 18 hours of thawing varied a lot between soil
samples and ranged between 11 and 69%.

Contrary to our first hypothesis, MB-N contents briefly dropped 1 hour after
soil thawing, yet increased thereafter and appeared to return to control levels at
18 hours after thawing (Fig. 4.1b)(Mooshammer et al., 2017). This suggests that
N released from disrupted microbial cells during freezing was quickly incorporated
in the remaining and regrowing microbial biomass. Recent studies confirm that
soil microorganisms can indeed store considerable amounts of N and P in their
biomass (Bingham and Cotrufo, 2016; Kamp et al., 2015).

The observed contrasting MB-C and -N responses to FT led to great microbial
stoichiometric shifts. The resulting MB-C:N ratios 18 hours after thawing were
significantly lower as compared to ratios prior to freezing and 1 hour after thawing
(Fig. 4.1c); reducing from 8.1 before freezing, to 7.8 and 4.6 one hour and 18 hours
after thawing, respectively. This finding is in line with our second hypothesis and
a recently published global meta-study on FT effects (Gao et al., 2021). Shifts in
MB-C:N ratio due to FT may indicate rapidly changing environmental conditions,
higher micro-faunal predation or microbial community shifts (Dörsch et al., 2004;
Perez-Mon et al., 2020; Song et al., 2017). We cannot comment on whether the
above mechanisms apply here, but our data rather indicate that N derived from
microbial necromass was immediately assimilated, while C was lost by respiration
by the re-growing microbial biomass, which lead to a short-term oversaturation of
MB-N relative to MB-C.

This result was supported by the significant increase in qCO2 in most soils 18
hours after thawing (Fig. 4.2b). The metabolic quotient reflects the efficiency by
which C is assimilated per unit microbial biomass and has been commonly used
as a stress indicator (Anderson and Domsch, 1990, 1993; Wardle et al., 1995) in
response to changes in environmental factors such as soil temperature (Hagerty et
al., 2014), soil texture (Jiang et al., 2013) or substrate availability (Blagodatskaya
et al., 2011). We show linear proportional increases in ∆qCO2 with increasing
SOC contents and with a stronger stoichiometric mismatch (Fig. 4.3b, 4.5),
demonstrating a clear link between microbial metabolic responses and stoichiometry.
The microbial stoichiometric mismatch was a strong determinant of the efficiency
by which C was assimilated per unit microbial biomass, which could be caused for
example by intracellular osmoregulatory processes after thawing (Schimel et al.,
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2007) or enhanced expression of denitrifying genes by the microbial community
(Sharma et al., 2006). In their global-scale meta-analysis, Xu et al. (2017) found a
negative correlation between qCO2 and the microbial N:P ratio, indicating that
stoichiometric shifts or mismatches can generally affect the metabolic quotient
of soil microorganisms. As a result, FT disturbances can lead to a decoupling
of MB-C and -N dynamics in soil, and may cause a stoichiometric mismatch of
the soil microbial biomass (Sterner and Elser, 2002), which seems to represent
a great physiological stress for the soil microbial community. Because we know
that soil microorganisms along the agricultural chronosequence are mainly C
limited (Clayton et al., 2021), FT might further exacerbate the inherent state of C
limitation. Although our data suggest that soil microorganisms have the capacity of
intracellular N storage within the first hours of thawing, soil microorganisms might
adjust to this inherent stoichiometric mismatch (i.e., high MB-N relative to -C
within the first hours after thawing) by releasing excess N to the soil environment
in the aftermath of FT events, where it is prone to being lost via leaching or
gaseous emissions (King et al., 2021; Matzner and Borken, 2008). This might
particularly be the case when C availability is low. Further studies are required
to investigate how microbial stoichiometric dynamics continue to evolve, and how
this is related to subsequent soil C and N losses within short time periods after a
FT event.

Within the time frame of our study, our data suggest an increased risk of C
loss through leaching, as indicated by increased DOC concentrations after thawing
(Fig. 4.1d) (Matzner and Borken, 2008). The ability of the soil microbial community
to re-assimilate the available C as well as edaphic conditions at a later stage might
dictate the magnitude of C losses from the soil. The increased DOC:TDN ratio
after thawing further indicated a shift in available nutrients towards increased
availability of C relative to N (Fig. 4.1f). Shifts in C:N:P resource stoichiometry
were found to profoundly affect microbial community composition and community
network structures (Aanderud et al., 2018; Wei et al., 2020), microbial nutrient
limitation for growth (Aanderud et al., 2018; Griffiths et al., 2012) and resource
partitioning towards different metabolic pathways (Chen et al., 2019) , with direct
effects on soil ecosystem properties such as C mineralisation rates (Wei et al.,
2020). Further studies should aim to investigate whether FT events and subsequent
stoichiometric shifts also trigger such changes.

Furthermore, our data clearly showed that high-SOC soils suffered relatively
higher MB-C losses as compared to low-SOC soils (Fig. 4.3a), confirming our
third hypothesis. High-SOC soils tend to harbour a more active microbial biomass
(Allison et al., 2007; Barrett and Burke, 2000). Since FT damage is greater
when soil microorganisms are more active and growing (Schimel and Clein, 1996),
the microbial communities in high-SOC soils were likely more vulnerable to FT
effects. Another explanation could be that soils with increased organic matter
have increased water holding capacity (Clein and Schimel, 1995). In this case,
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an increased number of expanding water molecules could lead to more microbial
cells being damaged and ruptured. Although microorganisms in high-SOC soils
showed a lower resistance to FT, it remains to be determined whether they are
more resilient and recover faster after such stresses (Griffiths and Philippot, 2013).
Increases in DOC contents 18 hours after thawing ranged between 10 and 45%
(Fig. 4.1d), which is substantial but within the range of previous reports (Song
et al., 2017). Our data do show a significant increase in DOC along with reduced
CO2 emissions 18 hours after thawing (Han et al., 2018). The reduced MB-C after
FT was accompanied by proportional increases of DOC (Fig. 4.4a), suggesting that
significant amounts of DOC originated from microbial cells (Larsen et al., 2002).

Interestingly, MB-C losses in low-SOC soils emerged within the first hour after
thawing, while the major MB-C losses in the high-SOC soils mainly occurred
18 hours after thawing. This temporal pattern suggests that it is not just cell
disruption due to soil freezing, but physiological processes related to the subsequent
thawing that are also responsible for the decrease in MB-C (Schimel et al., 2007).
Thus, while soil freezing might be the main diminishing factor for MB-C in the
low-SOC soils, the process of thawing and the inherent physiological stress (Schimel
et al., 2007) might be the more significant disturbance factor in high-SOC soils.

Comparing the response of soils of defined origin along a chronosequence allows
insights in fundamental mechanisms and factors of soil microbial and biochemical
responses to FT events (Walker et al., 2010). Regarding our third hypothesis,
SOC content indeed shaped the microbial response to FT, while soil age was of
minor importance (Table 4.2, 4.3). These factors represent potentially different
mechanisms that drive biochemical responses to FT. For example, high SOC
contents have been associated with higher metabolic activities (Allison et al.,
2007; Barrett and Burke, 2000), suggesting a higher susceptibility of more active
microbial communities to FT (Schimel and Clein, 1996). On the other hand, soil
age does not solely imply an increase in SOC content but also changes in edaphic
characteristics such as organic matter quality (Chaudhuri et al., 2015; Clark et al.,
2012; Egli et al., 2010; Kumar et al., 2018; Shi et al., 2006). Similarly, Delgado-
Baquerizo et al. (Delgado-Baquerizo et al., 2020) could show that soil age drives
local-scale ecosystem properties such as soil N:P and C:P ratios, microbial biomass,
or shifts in fungal:bacterial dominance. Further studies are needed to dissect the
specific factors associated with SOC content and soil age and its influence on soil
biochemical responses to soil FT.

4.6 Conclusion
To conclude, we show that a single severe FT event resulted in considerable
biochemical alterations across all our analysed soils within the first hours of
thawing. We observed both DOC and TDN increases. Disproportional increases
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in DOC contents however led to available resource stoichiometric shifts. MB-C
declined significantly after FT; because losses were positively correlated with
relative DOC changes, significant amounts of DOC must have originated from
microbial cell lysis. Moreover, MB-C losses were disproportionally higher in high-
SOC soils, suggesting that soil microbes in high-SOC soils might be particularly
prone to FT stress. MB-N marginally decreased 1 hour after thawing, yet returned
to initial levels 18 hours after thawing. Hence, the observed disproportionate
MB-C losses as well as increased metabolic activity immediately after FT led
to an oversaturation of MB-N relative to -C as identified in the strong shift of
MB-C:N stoichiometry within the first hours after thawing. The resulting microbial
stoichiometric mismatch provides a mechanisitc explanation for the subsequently
high N losses commonly recorded in agricultural soils in the aftermath of FT
events. Increased MB-C:N ratio shifts 18 hours after thawing were found in line
with increased metabolic activity (i.e., qCO2), which advocates increased levels of
microbial metabolic expenditures with disturbance-related stoichiometric shifts.
Our study further allowed the partial dissection of SOC content and soil age as
leverage factors of FT-driven changes in soil biochemistry. SOC content was the
strongest shaping factor, while soil age showed less predictive power. Future studies
on larger sample sets are required to further dissect the underlying mechanisms
associated with SOC content.
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5 General conclusions

In this thesis, the response of terrestrial systems to stoichiometric imbalance was
investigated. Chapter 2 investigated barley growth in varied degrees of N and P
fertilisation. Chapter 3 investigated changes in soil microbial stoichiometry over a
soil nutrient gradient starting from extremely low nutrient contents. In both these
chapters, it could be shown that responses to stoichiometric imbalance were not
gradual and for the first-time reported threshold critical values that determined
the response of a system to stoichiometric change. Lastly, in Chapter 4, a potential
stoichiometric mechanism for N losses in soil after a freeze thaw event caused by
stoichiometric imbalance in the remaining microbial biomass was provided.

In systems where a nutrient is limiting, it is to be expected that when said
nutrient is added or becomes more available, there will be a positive response of the
variable of interest (Vitousek and Howarth, 1991). We found this to be true in both
the barley pot experiment and in the soil chronosequence. However, what was not
so predictable was that the effect of nutrient addition was not linear. The strength
of the effect of nutrient addition was dependent on how much nutrient was already
available and appeared to be governed by a critical value in both investigations.
For example, in the chronosequence study (Chapter 3) an increase in SOC by a
0.5% increment had a great effect on microbial biomass carbon (MB-C, Fig. 3.2)
and metabolic quotient (qCO2, Fig. 3.4) in soils with less than 1% SOC. However,
above this threshold, a similar incremental increase of 0.5% had a significantly
reduced effect. Similarly, in the barley experiment, when total P fertilisation was
lower than the critical value of 0.25 mmol, an increase in N of 1.9 mmol had no
effect on biomass, yet when P was high, the same incremental increase in N had a
huge effect on biomass (Fig. 2.2).

These results can be interpreted such that the response to changes in (or
alleviation of) stoichiometric imbalance was dependent on the nutrient limitation
status. This was well exemplified in the barley experiment, as there was a huge
difference in response of biomass to N:P ratio between when P was limiting
or not limiting growth, despite overlapping N:P ratios (Fig. 2.3). Similarly, in
the chronosequence study, we could see that the soils with < 1% SOC were
predominantly C limited as microbial biomass C was strongly correlated with
SOC, yet above the 1% SOC, the dependence significantly decreased suggesting a
reduced C limitation. Interestingly, we also observed a shift towards increased N
limitation above the 1% SOC threshold as C limitation decreased (Fig. 3.2).

In their meta-analysis Sistla et al. (2015) found an effect of nutrient status
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on stoichiometric flexibility. They examined stoichiometric flexibility due to
fertilisation in both aquatic and terrestrial systems and found that stoichiometric
flexibility was highest when initial nutrient status was poor, e.g., in nutrient-poor
environments and in nutrient limited organisms as defined by high C:nutrient ratios.
They hypothesised that systems with low starting C:nutrient ratios were less able to
take up more nutrients, which limited flexibility (i.e., closer to nutrient saturation
limits), whereas high C:N ratios gave a higher potential for nutrient uptake. Our
chronosequence data confirm this effect but further show that low nutrient status
also led to disproportionate losses of C through raised maintenance respiration
(qCO2), which was alleviated on crossing the 1% SOC threshold (Fig. 3.4). This
confirms observations from Hartman and Richardson (2013) in that microbial C:N
and N:P ratios correlated with metabolic quotient.

There are two sides of the coin, on the one hand, when nutrient status is low
(high limitation) there is a great potential to shorten C:nutrient ratios via nutrient
uptake. Yet, it is also the case that when a system is very limited by a nutrient,
this results in a decrease in carbon use-efficiency which leads to low biomass and
high proportional losses (e.g., high metabolic quotient) (Sinsabaugh et al., 2013).
As also demonstrated in the barley experiment, increased N availability did not
translate to increased biomass when P was limiting (Fig. 2.2).

We interpreted the shift in responses of nutrient accrual and metabolic quotient
in the chronosequence as shifts between stoichiometric stable states, or equilibria.
Alternative states in ecology have been hotly discussed and usually used to under-
stand population dynamics (Beisner et al., 2003; Kéfi et al., 2016; Petraitis, 2013;
Schröder et al., 2005), but there is less discussion of alternative stable states in
ecological stoichiometry (Andersen et al., 2004). Scheffer et al. (2012) hypothesised
that critical transitions (regime shifts) between equilibria are often preluded by
increased variation until a tipping point is reached and the system falls into a
new stable state, which is something we observed in the chronosequence data
(Chapter 3). As well as alternative stable states, alternative transitional states
have also been debated, i.e., an intermediatory state undergoing transition to an
alternative stable state (Fukami and Nakajima, 2011; Van Geest et al., 2007).

Coming back to the findings of Sistla et al. (2015), in which systems with
initial high C:nutrient ratios exhibited high stoichiometric flexibility in response to
fertilisation, this flexibility could be explained as the high variation inherent to a
transition between stoichiometric states, i.e., from stoichiometrically imbalanced to
a more balanced state. Moreover, an investigation into soil microbial C:N:P ratios
on a precipitation gradient of the Tibetan Plateau showed marked differences in
C:N:P variability between high SOC soils of lower latitude alpine meadows and
low SOC soils of higher latitude alpine steppe soils (Chen et al., 2016). The alpine
steppe soils had a mean SOC content < 1% SOC whereas the meadow soils were
at least 3 times this. In line with our results, microbial biomass in alpine steppe
soils exhibited high C:N and N:P ratios and much greater variation than the lower
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latitude meadow soils.
Similarly, in Chapter 4 we discussed the impact of a freeze-thaw perturbation

on soil microbial biomass. In this case freeze-thaw caused significant decrease
in microbial C:N (MB-C:MB-N, Fig. 4.1c) by enrichment of microbial N and
disproportionate losses of C (qCO2, Fig. 4.2b). In a subsequent investigation on
the same chronosequence soils, Rosinger and Bonkowski (2021) could show that
the largest decreases in microbial N arose from the 2nd freeze-thaw cycle but there
was little change in total dissolved nitrogen to reflect this loss, which means that
the N lost from biomass was likely transformed to N2O. Therefore, a temporary
enrichment in microbial N 18 hours after thawing, as shown in our results, later
lead to large losses of N in subsequent freeze thaw cycles. This demonstrates the
idea that the freeze-thaw event created a temporary instable stoichiometric state
where the surviving microbial N was enriched, and in order to return to the stable
stoichiometric state this required expulsion on N, which became apparent after
subsequent freeze-thaw cycles. This gives evidence for a possible mechanism for
N2O emissions after soil freezing. There is already evidence that N2O emissions
after freeze-thaw is microbial derived (King et al., 2021). But our results show for
the first time that the first step in this natural phenomenon may be the enrichment
of N in the surviving microbial biomass after the first freeze-thaw cycle causing a
stoichiometric imbalance.

The barley experiment results can also be explained by considering stable
stoichiometric states. The plants were less able to deal with increases in N under
low P. Here, it was also shown for the first time that the synergistic effect of N
and P addition was only present when P was not limiting. This corresponds with
Yan et al. (2015), who found that growth rate of Arabidopsis thaliana decreased
with leaf N:P ratio when P limited, but increased when N limited.

The upper limits to stoichiometric flexibility are the theoretical limits imposed by
physical laws (Sterner and Elser, 2017b), but these are seldomly realised (Varma et
al., 1993). Upper stoichiometric thresholds have been considered, such as saturation
levels of C and N, to model sequestration of C and N in soils (Sterner and Elser,
2017a). Similarly, eutrophication can be viewed as a regime shift between stable
states due to high input of nutrient (Sirota et al., 2013). Yet, our data shows the
importance for considering regime shifts that may occur at lower nutrient levels at
the points where nutrient limitation is alleviated. A lower critical theshold could
indicate the boundary between a stoichiometric inefficient state (when a particular
nutrient is limiting) and a more efficient state.

Now that we are aware that these stoichiometric boundaries may exist, it should
be considered when analysing and interpreting the stoichiometric data already
available. For example, models for the prediction of when microbes may switch
from net immobilisation to net mineralisation may not give accurate results when
applied to soils that are far from a stoichiometric stable state (Wei et al., 2020).
Moreover, it may not be possible to make direct comparisons between soils in
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studies if said eco-physical states, or distance from stoichiometric equilibrium are
not comparable. More work looking at the extremes is necessary to show the
boundaries of the observed effects and to find where the assumptions of a model
breakdown.

This poses many challenges. If systems which are in an unbalanced state are
inherently more variable, this causes more difficulty in decerning the true signal
from the noise (Hillebrand et al., 2020). Soils containing < 810 mmol SOC kg−1

(< 1% SOC) are underrepresented in available meta-analyses (Cleveland and
Liptzin, 2007; Hartman and Richardson, 2013; Xu et al., 2017, 2013), as are
nutrient limited systems such as arable land. Also meta-analyses which consider
changes in SOC often neglect to give starting and ending SOC levels for comparison
(Chen et al., 2020; Guo and Gifford, 2002). Large datasets on systems with low
nutrient status are required to overcome this statistical challenge, but this is still
lacking.

Further experimental evidence is also required to investigate the role of nutrient
status on stoichiometric flexibility and imbalance. Controlled C:nutrient and
N:P ratios for different total levels of C and nutrient are required to test these
hypotheses further.

5.1 Closing remarks
In this thesis, it was shown that responses of barley and soil microorganisms to
changing nutrient availability were determined by nutrient status. We demonstrated
in two independent studies that these changes in response were not gradual but
were due to a critical level of nutrient availability. From these results, we further
hypothesise that critical thresholds between states of stoichiometric stability and
instability exist and are dependent on nutrient status of the system. It is not
certain that threshold values are present in all systems, but it is still remarkable
that critical values emerged in two independent systems as described in this thesis.
Furthermore, we propose a mechanism for microbial derived N2O emissions after
freeze-thaw due to temporary stoichiometric imbalance in soil microbial biomass.

These results contribute to a better understanding of stoichiometric transfor-
mations in ecology and may lead the way to a more complete understanding of
nutrient cycling and nutrient limitations in terrestrial ecosystems.
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