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A B S T R A C T

The society is strongly influenced by precipitation, which forms by
cloud microphysical processes, e.g., sedimentation and aggregation.
These processes determine where and how clouds precipitate relevant
for the global water cycle, freshwater availability, and flooding.

However, the precipitation forming processes are poorly under-
stood and pose a significant challenge to earth system modeling.
Challenges arise from the difficulties of deriving parameterizations
from laboratory experiments or observations. Even if accurate process
parameterizations could be derived, implementing them into numeri-
cal models poses additional challenges due to computational cost and
unresolved scales. In the last decades, rapid progress has been made
in modeling and observing microphysical processes, which enables
or even necessitates further studies that exploit the synergy between
both fields.

In this thesis, microphysical models are employed that either re-
solve the microphysical processes up to the single particle level (3D
snowflake model and Lagrangian particle model) or are computation-
ally efficient (bulk scheme). The explicit models are used to derive
parameterizations and provide detailed insights into the processes
that can be used in the less explicit models. Improving the less explicit
but computationally efficient bulk schemes is particularly important,
as they are indispensable for weather and climate prediction. Output
from all models is compared to observations that provide information
either on individual particle properties (in situ particle observations)
or average properties of large particle ensembles (multi-frequency
Doppler radar observations). These model-observation combinations
are used to improve the knowledge about the microphysical processes
and their representation in the microphysical models.

3D snowflake models simulate the complex shape of ice particles,
the representation of which presents a major difficulty for microphysi-
cal schemes. In Study I, such a 3D snowflake model is used to derive
parameterizations of particle properties, such as mass as a function of
size, monomer number and shape. Hydrodynamic models are used to
additionally derive the particle velocity. The most detailed parameteri-
zations are used to assess the effect of aggregate composition on the
particle properties, which is challenging to do with observations alone.
It is found that aggregate properties change smoothly with increasing
monomer number but differ substantially depending on the monomer
shapes that constitute the aggregates. Other, less detailed parame-
terizations can be readily applied in bulk microphysical schemes to
improve the physical consistency of these schemes. In simulations
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with a Lagrangian particle model, it can be shown that these less de-
tailed parameterisations are very accurate even if they only distinguish
between the two classes of monomers and aggregates. Comparing
the parameterization with in situ observations ensures that they are
physically realistic in size ranges where observations are available. In
addition, the physical principles of the 3D snowflake and hydrody-
namic models help to ensure that the parameterizations are realistic
even in size ranges for which it is difficult to obtain observations.

In Study II, parameters that are important for the microphysical de-
scription of sedimentation and aggregation in a two-moment scheme
bulk microphysics scheme are constrained by observations. Tradi-
tionally, microphysical parameterizations are tuned to improve the
prediction of few variables of interest, such as the precipitation rate.
This procedure likely introduces compensating errors, since adjusting
one parameter may improve the prediction of these variables even if
that change leads away from the most physically meaningful value of
the parameters. Therefore, a different approach is used in this study
that uses several variables from multi-frequency Doppler radars si-
multaneously and focuses on single or few processes to avoid this
issue of underdetermined parameters. First, the observed statistics are
used to evaluate microphysical parameters in an idealized 1D model,
which allows efficient testing of all key parameters. These simulations
reveal that the simulation of aggregation is most sensitive to the ag-
gregate particle properties, the aggregation kernel formulation and
the size distribution width and less sensitive to the monomer habit
and the sticking efficiency. A statistical comparison between 3D large-
eddy simulations with the default and the new scheme setup and
the observations show that previously existing large biases of too fast
and too large particles in the scheme could be substantially reduced.
This bias reduction can be attributed to the improved simulation of
sedimentation and aggregation.

Since a large portion of precipitation reaches the ground as rain but
forms in the ice phase, processes in the melting layer are an essential
part of precipitation modeling. In Study III, an approach is used to
infer the dominance of growth or shrinkage processes through the
relationship of reflectivity flux at the melting layer boundaries. In
addition, radar Doppler spectra and multi-frequency observations are
used to evaluate assumptions of the approach and to classify pro-
files according to the degree of riming. For unrimed profiles, growth
processes increase the mean mass only slightly. For rimed profiles,
shrinking processes lead to a substantial decrease the mean mass
probably caused by particle breakup. Simulations using a Lagrangian
particle model reveal that breakup processes for which parameteri-
zations are available can not reproduce the observed decrease of the
mean mass for rimed profiles and suggest that further laboratory
studies of collisional breakup of melting particles are needed.
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Z U S A M M E N FA S S U N G

Die Gesellschaft wird stark vom Niederschlag beeinflusst, der sich
durch mikrophysikalische Prozesse, z.B. Sedimentation und Aggre-
gation, bildet. Diese Prozesse bestimmen, wo und wie Niederschlag
ensteht, was für den globalen Wasserkreislauf, die Verfügbarkeit von
Süßwasser und Überflutungen von Bedeutung ist.

Die Prozesse, die zu Niederschlag führen, sind jedoch nur unzu-
reichend bekannt und stellen eine große Herausforderung für die
Modellierung des Erdsystems dar. Herausfordernd ist sowohl die
Ableitung von Parametern aus Laborexperimenten oder Beobachtun-
gen, als auch die Implementierung dieser Parameter in numerische
Modelle. Für letzteres sind besonders die begrenzter Rechenzeit und
unaufgelösten Skalen kritisch. In den letzten Jahrzehnten wurden
rasche Fortschritte bei der Modellierung und Beobachtung mikrophy-
sikalischer Prozesse erzielt, welche weiterführende Studien die die
Synergie zwischen beiden Bereichen nutzt, ermöglicht und dringend
notwendig macht. In dieser Arbeit werden mikrophysikalische Mo-
delle verwendet, die entweder die mikrophysikalischen Prozesse bis
auf die Ebene einzelner Partikel auflösen (3D-Schneeflockenmodell
und Lagrangesches Partikelmodell) oder rechnerisch effizient sind
(Bulk-Schema). Die expliziten Modelle werden zur Ableitung von Pa-
rametrisierungen verwendet und liefern detaillierte Einblicke in die
Prozesse, die in den weniger expliziten Modellen verwendet werden
können. Die Verbesserung der weniger expliziten, aber rechnerisch
effizienten Bulk-Schemata ist besonders wichtig, da sie für die Wetter-
und Klimavorhersage unverzichtbar sind. Die Ergebnisse aller Modelle
werden mit Beobachtungen verglichen, die entweder Informationen
über einzelne Partikeleigenschaften (in situ-Partikelbeobachtungen)
oder über die durchschnittlichen Eigenschaften großer Partikelen-
sembles (Mehrfrequenz-Dopplerradarbeobachtungen) liefern. Diese
Modell-Beobachtungs-Kombinationen werden verwendet, um das Wis-
sen über die mikrophysikalischen Prozesse und deren Abbildung in
Mikrophysik Schemata zu verbessern.

3D-Schneeflockenmodelle simulieren die komplexe Form von Eispar-
tikeln, die eine große Schwierigkeit für mikrophysikalische Modelle
darstellt. In Studie I wird solch ein 3D-Schneeflockenmodell verwen-
det, um Parametrisierungen von Partikeleigenschaften abzuleiten, wie
z.B. die Masse als Funktion der Größe, Monomerzahl und -form.
Hydrodynamische Modelle werden verwendet, um zusätzlich die Fall-
geschwindigkeit abzuleiten. Die detailliertesten Parametrisierungen
werden benutzt, um die Bedeutung der Aggregatzusammensetzung
zu beurteilen, was anhand von Beobachtungen allein nur schwer
möglich ist. Es zeigt sich, dass sich die Aggregateigenschaften mit

v



zunehmender Monomerzahl gleichmäßig verändern, sich aber je nach
Monomertyp, aus denen die Aggregate bestehen, erheblich unter-
scheiden. Andere, weniger detaillierte Parametrisierungen können
ohne weiteres in Bulk-Schemata angewendet werden, um die physi-
kalische Konsistenz dieser Schemata zu verbessern. In Simulationen
mit einem Lagrangen Partikelmodel kann gezeigt werden, dass diese
weniger detaillierten Parameterisierungen auch dann sehr akkurat
sind, wenn sie nur zwischen den beiden Klassen der Monomere und
der Aggregate unterscheiden. Der Vergleich der Parametrisierung mit
in situ-Beobachtungen stellt sicher, dass sie in Größenbereichen, für
die Beobachtungen vorliegen, physikalisch realistisch sind. Darüber
hinaus tragen die physikalischen Prinzipien der 3D-Schneeflocken-
und hydrodynamischen Modelle dazu bei, dass die Parametrisierun-
gen auch in Größenbereichen realistisch sind, für die es schwierig ist,
Beobachtungen zu erhalten.

In Studie II werden wichtige mikrophysikalische Parametrisierun-
gen der Sedimentation und Aggregation, die in einem Bulk-Schema
verwendet werden, durch Vergleich mit Beobachtungen verbessert.
Traditionell werden mikrophysikalische Parametrisierungen optimiert,
indem einige wenige Variablen von Interesse, z.B. die Niederschlagsra-
te, optimiert werden. Dieses Vorgehensweiße führt wahrscheinlich zu
Kompensationsfehlern, da die Anpassung eines Parameters die Vor-
hersage der Variablen von Interesse auch dann verbessern kann, wenn
die neuen Parameter dadurch stärker von physikalisch sinnvollsten
Wert abweichen. Im Gegensatz dazu wird durch den gleichzeitigen
Vergleich mehrerer Variablen von Mehrfrequenz-Doppler Radaren
und die Fokussierung auf einzelne oder wenige Prozesse das Pro-
blem der unterbestimmten Parameter vermieden. Zunächst werden
die Radarstatistiken verwendet, um mikrophysikalische Parameter in
einem idealisierten 1D-Modell (das ein effizientes Testen aller wesent-
licher Parameter erlaubt) zu evaluieren. Diese Simulationen zeigen
die stärkste Sensitivität für die Partikeleigenschaften der Aggregate,
die Formulierung des Aggregationskernels und die Breite der Größen-
verteilung und eine geringere Sensitivität für die Monomerpartikelei-
genschaften und die Hafteffizienz. Der statistische Vergleich zwischen
den 3D-Simulationen mit dem default und dem neuen Schema und
den Beobachtung zeigt, dass zuvor bestehende großen Abweichungen
von zu schnellen und zu großen Partikel im Schema reduziert werden
konnten. Diese Verringerung der Abweichungen kann auf die verbes-
serte Simulation von Sedimentation und Aggregation zurückgeführt
werden.

Da ein großer Teil des Niederschlags den Boden als Regen erreicht,
sich aber in der Eisphase bildet, sind Prozesse in der Schmelzschicht
ein wesentlicher Bestandteil der Niederschlagsmodellierung. In Studie
III wird ein Ansatz angewendet, der die Dominanz von Wachstums-
oder Schrumpfungsprozessen durch die Beziehung des Reflektivitäts-
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flusses an den Rändern der Schmelzschicht ableitet. Zudem werden
Radar-Doppler-Spektren und Multifrequenzbeobachtungen benutzt
um Annahmen des Ansatzes zu evaluieren und Profile nach dem
Verreifungsgrad zu klassifizieren. Bei unverreiften Profilen erhöhen
Wachstumsprozesse die mittlere Masse geringfügig. Bei verreiften Pro-
filen führen Schrumpfungsprozesse zu einer deutlichen Abnahme der
mittlere Masse, was wahrscheinlich durch das Auseinanderbrechen
von Partikeln verursacht wird. Simulationen mit einem Lagrangeschen
Partikelmodell zeigen, dass Aufbruchsprozesse, für die Parametrisie-
rungen verfügbar sind, die beobachtete Abnahme des Reflektivitäts-
flusses nicht reproduzieren können, und deuten darauf hin, dass
weitere Laborstudien zu dem Auseinanderbrechen von schmelzenden
Partikel nach Kollision erforderlich sind.
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1
I N T R O D U C T I O N

1.1 motivation

Clouds cover about 70% of the earth’s surface (King et al., 2013; Stuben-
rauch et al., 2013). However, only one in ten clouds form precipitation
that reaches the ground (Lohmann et al., 2016, Chapter 7). For precip-
itation to occur, the particles must be large enough for the terminal
velocity of the particles to overcome the updrafts that lead to the cloud
formation in the first place. Furthermore, only particles large enough
to reach the ground despite sublimation or evaporation can lead to
precipitation if there is an undersaturated layer below the cloud base
(Lohmann et al., 2016, Chapter 7).

Knowing if, where, and how clouds precipitate is fundamental to
simulate their radiative effects, the global water cycle, freshwater avail-
ability, natural hazards, and local weather conditions. Precipitation
decreases the lifetime of clouds, which, in turn, decreases their im-
pact on radiation (Boucher et al., 2013). The net cloud radiative effect
(which is overall cooling) can be estimated increasingly better (Raschke
et al., 2016; Loeb et al., 2018), but limited knowledge about cloud prop-
erties, which are strongly affected by cloud microphysics, hamper
further improvements (Boucher et al., 2013). Thus, besides changes in
global circulation, cloud microphysics determine how cloud properties
respond to climate change and how the cloud radiative effect will
change. Furthermore, precipitation constitutes an important source of
freshwater. The quantification and monitoring of freshwater supplies
is critical for the society, especially in a changing climate. For example,
the changing location, intensity, and thermodynamic phase of the
precipitation, due to climate change will require adaption strategies
to maintain water supplies (Barnett et al., 2005). Also, precipitation
can pose a major life-threatening and economic-loss risk. For example,
high precipitation rates can lead to flooding (Ward et al., 2020). Finally,
precipitation (timing, probability, location, and type) is considered the
most relevant aspect of weather forecast by the public (Lazo et al.,
2009).

Despite their importance to the climate system and human activities,
many components of cloud and precipitation processes remain poorly
understood and represent a large uncertainty for climate modeling
and numerical weather prediction (Boucher et al., 2013; Bauer et al.,
2015). One of the biggest sources of uncertainty for these models
stem from the simulation of cloud microphysical processes, which are
processes that take place at the level of the individual particles. These
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2 introduction

uncertainties result from both, the knowledge gaps about the processes
and the difficulty to represent the processes efficiently in numerical
models (Morrison et al., 2020). For example, it is not well known
how the shape of ice particles influence their ability to aggregate.
Furthermore, in computationally efficient numerical models, the shape
of ice particles can only be roughly approximated or simulated. Thus,
even if the knowledge about the effect of particle shape on aggregation
could be improved, further investigations are necessary that investigate
how the models can benefit from this improved knowledge. The
simulation of cloud microphysics is especially challenging, when the
cloud dynamics (also referred to as cloud macrophysics) have to be
partially parameterized, too. In this case, both parameterization have
to be well coupled. For example, additional assumptions about the
depositional growth of a particle population are required if small scale
variations of vertical air motions are diagnosed, e.g. by a turbulence
scheme, but are not explicitly predicted, e.g. in a direct numerical
simulation.

About 70% of the global precipitation forms via cold rain (Mül-
menstädt et al., 2015; Heymsfield et al., 2020). The term cold rain
refers to precipitation formation where particles grow first via ice
growth mechanisms (depositional growth, aggregation, and riming),
melt at temperatures above 0

◦C and reach the ground as raindrops.
The cold rain precipitation pathway is predominant because it can
involve several efficient growth processes (ice growth mechanisms,
condensation and collision-coalescence). Additionally, cold rain often
forms in clouds with a large vertical extent, which allows the particles
to grow over a long time. Ice microphysical processes are especially
complicated to simulate with microphysics schemes because ice parti-
cles have complex shapes, which influence all microphysical processes,
and all three thermodynamic phases of water must be considered
(Morrison et al., 2020). Three processes relevant to precipitating clouds
are investigated in this dissertation and discussed in the following:
sedimentation, aggregation, and melting.

A precondition for precipitation is that the particles’ fall speed over-
comes the upwind typically present in clouds. Just after nucleation,
cloud ice particles are small and have a negligible fall speed with
respect to the air. However, if the air is supersaturated, depositional
growth increases the particles’ mass, and thus velocity, so that a fall
speed of 0.1m/s can be reached within minutes (Lohmann et al., 2016,
Section 8.3). Other ice growth processes, such as riming and aggrega-
tion, further increases the particles’ velocity, and, thus, precipitation
can also occur in clouds with higher upwind and subsaturated air be-
low the cloud base. How fast ice particles fall exactly depends on their
size and shape (Locatelli and Hobbs, 1974; Heymsfield and Kajikawa,
1987; Mitchell et al., 1990b), which is a result of the above-mentioned
processes.
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Aggregation, like depositional growth and riming, is a process that
increases the size and velocity of ice particles, thus, contributing to
precipitation formation. Unfortunately, many parameters needed to
describe and simulate aggregation are poorly constrained and chal-
lenging to represent in microphysical models. Before particles can
aggregate, they must collide. If the particles are larger than a few
µm, the collisions happen primarily due to differential sedimentation
because the fall speed are larger than Brownian or turbulent motions
(Jacobson, 2005, Section 15.6). The rate of these collisions is determined
by the particle properties (geometry and velocity). Parameterizations
of particle geometry and velocity obtained from in situ observations
(Kajikawa, 1972; Locatelli and Hobbs, 1974; Mitchell et al., 1990a) are
often based on small samples and limited size range due to the limita-
tions of the observational methods. Therefore, those parameterizations
are subject to considerable uncertainties especially at very small and
large sizes. Moreover, even when robust parameterizations for differ-
ent habits (characteristic monomer shapes) and particle types (e.g.,
aggregates, graupel) are found, it is still challenging to represent the
vast variability of particle shapes in microphysics schemes. For exam-
ple, most bulk schemes allow just a single mass-size relationship for
all monomers (cloud ice), although the diversity of observed particle
shapes is vast. Since not all collisions lead to aggregation, the sticking
efficiency that describes what portion of the particles stick after the
collisions must also be considered. The sticking efficiency is known
to be large at temperatures about -15

◦C (dendritic growth zone) and
close to the 0

◦C (Phillips et al., 2007; Connolly et al., 2012; Barrett et al.,
2019). However, also, the values of the sticking efficiency are subject to
great uncertainty, mainly due to limitations and scarcity of laboratory
studies.

Processes in the melting layer determine how the ice and the rain
particle population, e.g., their mean sizes, are connected, which is
especially relevant for cold rain formation. The melting process of in-
dividual particles has been studied in the laboratory (Knight, 1979; Ras-
mussen and Heymsfield, 1987; Oraltay and Hallett, 1989; Mitra et al.,
1990; Oraltay and Hallett, 2005). These studies explained the observed
melting rate by thermodynamic considerations and observed breakup
under certain conditions (e.g., large rimed particle and strongly sub-
saturated air). Also, microphysical processes present in ice clouds, e.g.,
aggregation, were observed in the melting layer by in situ (Stewart
et al., 1984; Yokoyama et al., 1985; Barthazy et al., 1998; Heymsfield
et al., 2015) and remote sensing (Klaassen, 1988; Fabry and Zawadzki,
1995) observations. Again, microphysics schemes must simplify the
representation of the processes and can only be as accurate as process
understanding allows. Challenging is especially the representation
of the particle properties of partially melted particles (Szyrmer and
Zawadzki, 1999; Phillips et al., 2007; Thériault and Stewart, 2010; Frick
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et al., 2013; Cholette et al., 2019). Furthermore, better knowledge and
quantification of collision and breakup processes of these particles is
required for accurate modeling of the melting layer.

To improve simulation and understanding of microphysical pro-
cesses, various modeling and observational techniques have been
developed. In the following, these techniques are discussed, focusing
on the techniques used in this dissertation.

Microphysics schemes simulate various processes and are usually
applied in the framework of dynamical models, such as large-eddy
simulations. How explicitly microphysics schemes simulate the pro-
cesses varies from scheme to scheme, and so does their computational
cost (Khain et al., 2015). The trade-off between accuracy and computa-
tional cost allows the most explicit schemes (e.g., Lagrangian particle
models) to be used only for research purposes and relatively small
simulation domains. Lagrangian particle models simulate the evolu-
tion of individual particles and their interactions with other particles
using statistical methods, e.g., Monte-Carlo simulations (Grabowski
et al., 2019). Numerical weather prediction and climate models need
to apply the computational cheaper bulk schemes. Bulk schemes are
computationally efficient because they only simulate microphysical
process rates of a small number of particle distribution moments (typ-
ically one to three) for few hydrometeor categories (typically three
to six). This bulk approach makes a number of simplifications about
hydrometeor microphysical properties necessary.

Remote sensing observations of clouds, e.g., by radars, are vital
to evaluate numerical models, along with laboratory studies and in
situ observations. Laboratory studies have provided invaluable in-
sights (e.g. Bailey and Hallett, 2004; Connolly et al., 2012) on specific
processes at the single-particle level and are therefore indispensable
for developing microphysics schemes (Morrison et al., 2020). In situ
observations can provide detailed information about particle size dis-
tribution and particle properties (Locatelli and Hobbs, 1974; Mitchell
et al., 1990a; Heymsfield, 2003; Heymsfield et al., 2015). However,
both areas, laboratory experiments and in situ observations, have
limitations. Laboratory experiments are limited to the investigation
of single or few processes acting simultaneously and can not take
the variety of processes and conditions present in natural clouds into
account. In situ methods indeed observe natural clouds but still have
a relatively low spatial and temporal coverage. Therefore, the large
coverage of remote sensing observations is indispensable for study-
ing microphysical processes and their interaction in complex systems
that clouds represent. However, the information about hydrometeors
and microphysical processes gained by remote sensing observation is
indirect and has to be interpreted carefully. For example, radars do
not observe quantities of the particle population directly modeled by
microphysical schemes, such as number or mass concentration, but
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variables such as reflectivity that depend in a complex way on these
bulk hydrometeor as well as scattering properties.

Radars provide increasingly detailed information about cloud and
precipitation processes and are especially valuable for studying mi-
crophysical properties (Fabry and Zawadzki, 1995; Illingworth et al.,
2007; Kollias et al., 2020). The most basic quantity derived from radars,
the reflectivity was used to infer precipitation strength already since
the 1950s. In the last decades, radars have also been deployed in
space, enabling the derivation of climatologies of precipitation (Kum-
merow et al., 1998; Huffman et al., 2010) and even clouds (Stephens
et al., 2008; Stubenrauch et al., 2013). Radars are especially suitable for
studying clouds because of their ranging capabilities (unlike passive
instruments, the signal received by radars can directly be assigned to
the location of the hydrometeors) and the ability to penetrate even
through optically thick clouds (in contrast to lidars). Since reflectivity
provides only limited average information about the particle popula-
tion more advanced techniques have been developed to infer different
particle population characteristics, e.g., velocity, size and shape es-
pecially relevant to improve the understanding of ice microphysical
processes. Doppler capabilities add information about the particles’
velocity. Combining radars of different frequencies (Battaglia et al.,
2020b) and exploiting radar polarimetry (Ryzhkov and Zrnic, 2019)
allows to estimate characteristic particle sizes and shapes.

1.2 objectives

This dissertation was carried out in the framework of the Emmy
Noether project "Optimal combination of Polarimetric and Triple fre-
quency radar techniques for Improving Microphysical process under-
standing of cold clouds" (EN OPTIMice) and therefore shares several
objectives with this project. EN OPTIMice aims at exploiting synergis-
tic remote sensing observations to improve model parameterization
and understanding of ice and mixed-phase microphysical processes.
Improving model parameterization and process understanding can
best be done iteratively, as better models help to understand processes
better, and better process knowledge facilitates model development.
This dissertation draws extensively on earlier work from the EN OP-
TIMIce project, which provided observational datasets and forward
modeling frameworks and thus paved the way to detailed model-
observational comparisons.

In this dissertation, observations are used to improve the under-
standing of microphysical processes focusing on sedimentation, aggre-
gation, and processes in the melting layer. Furthermore, this improved
understanding is incorporated into various microphysical models
The models used range from a 3D snowflake model that generates
three-dimensional particle shapes (Leinonen and Szyrmer, 2015), to
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a Lagrangian particle model (Brdar and Seifert, 2018), a 1D idealized
model applying the two-moment bulk microphysics scheme from
Seifert and Beheng, 2006 (SB scheme), and 3D large-eddy simulations
(Heinze et al., 2017) also using the SB scheme. Insights and parameter-
izations gained by the more detailed models are used consecutively
in the less detailed models. Also the observations used span a wide
range, from in situ single particle to remote sensing observations ap-
plying Doppler radars with multiple frequencies (Neto et al., 2019;
Neto, 2021); thus, the different observations allow to exploit the re-
spective advantages (e.g., explicitness, numerical efficiency) of the
different models. With this approach, models and observations can be
used synergistically to infer more about microphysical processes and
improve microphysics schemes.

1.3 overview of the studies

Figure 1.1 illustrates how the various models and observations are
combined in the studies comprising this dissertation (Study I-III)
and in the publications closely related to this dissertation (Ori et al.,
2020, 2021; Mróz et al., 2021). Study I and Ori et al., 2021 generate
three-dimensional ice particle shapes using the 3D snowflake model
from Leinonen and Szyrmer, 2015 to characterize particle and scatter-
ing properties. Study I provides detailed parameterizations of parti-
cle properties, such as velocity-size relationships, that are evaluated
against in situ single particle observations. These parameterizations
are used in the SB scheme and the Lagrangian particle model McSnow
(Brdar and Seifert, 2018). The microphysical and scattering properties
from Ori et al., 2021 are tailored and used for realistic forward sim-
ulations, such as in the model-observation applications of Ori et al.,
2020 and Study II. Building on the evaluation of ice particle growth
processes in Ori et al., 2020 that finds a large overestimation of particle
size and velocity, Study II implements the particle properties derived
in Study I alongside other modifications. In this way, an improved
sedimentation and aggregation parameterization in the SB scheme
could be achieved. Both studies use the multi-frequency Doppler radar
observations of Neto et al., 2019. In an analysis additional to Study II
(Section 4.1), the simulations of the size distribution of the SB scheme
are evaluated against simulations of McSnow. Other applications of
the multi-frequency Doppler radar observations are the melting layer
studies of Mróz et al., 2021 and Study III. Mróz et al., 2021 retrieve the
ice particle size distribution using assumptions about the processes
in the melting layer and applying the microphysical and scattering
properties of Ori et al., 2021 to a case study. Based on a multi-month
dataset presented in Neto, 2021, Study III investigates the difference
in microphysical processes within the melting layer between profiles
in which unrimed and rimed particles are present above the melting
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studies that comprise this dissertation or are strongly connected
with this dissertation.

layer. Finally, in a supplementary study to Study III (Section 5.1), sim-
ulations of the melting layer performed with McSnow are compared
with the observed melting layer statistics.

1.3.1 Study I: Ice Particle Properties Inferred From Aggregation Modelling

In Study I parameterizations of ice monomers’ and aggregates’ par-
ticle properties have been derived with the 3D snowflake model of
Leinonen and Szyrmer, 2015. The use of a 3D snowflake model allows
addressing research questions concerning particle properties that are
difficult to answer with the commonly used approach: the in situ
observation of ice particle properties. A shortcoming of in situ obser-
vations is that they can not observe the full range of sizes and level of
detail relevant for microphysical modeling. Particle property param-
eterizations used in microphysics schemes have often been derived
from manual observations, which collected and classified individual
particles in effort-taking work (e.g., Locatelli and Hobbs, 1974) and
thus could sample only some tenths of particles. In contrast, with
snowflake models, a vast number of particles can be created conve-
niently, and the composition of the particles can be controlled in great
detail. An aggregate database is generated containing about 105’000

individual aggregates with a huge range of monomer numbers (from
one to 1000) and particle sizes (from a few 100 µm to about 5 cm). The
properties of the generated snowflake shapes are evaluated against in
situ observations. This database allows investigating how important
the monomer number and type (e.g., plates, needles) information is for
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parameterizing aggregate properties. Combining the parameterization
derived from the snowflake shapes with hydrodynamic theory allows
assesing how well different functional relations can parameterize the
particles’ velocity.Main outcomes:

Particle properties
change smoothly
with increasing

monomer number
but differ

substantially for
different monomer

types.

The main results of Study I concern the dependency of aggregate
properties on the monomer composition and the representation of
terminal velocity in microphysics schemes. It is found that the particle
properties (mass, area, and particle velocity) change smoothly with in-
creasing monomer numbers for all monomer types. However, particle
properties of aggregates composed of different monomer types differ
substantially. Although the separation between monomers (cloud ice)
and aggregates (snow), as implemented, e.g., in the SB scheme, can notThe Atlas-type

velocity-size
approximations work
well when considered

separately for
monomers and

aggregates.

represent the smooth transition of aggregate properties with increas-
ing monomer number, this simplification does not considerably impact
the simulation of aggregation (as shown with sensitivity studies per-
formed by McSnow simulations). Concerning the terminal velocity,
the effect of different approximations has been investigated. Most
microphysics schemes approximate the velocity-size relationship by
power-law relations. In contrast to the power-law relations, Atlas-type
relations can account for the asymptotic approach of a limiting value
at approximately 1 m/s. It is found that aggregation rates are over-
estimated when assuming power-law relations once centimeter-sized
particles are present, but can be accurately simulated when assuming
Atlas-type relations.

1.3.2 Study II: Constrain Bulk Scheme Parameterizations

Study II presents a novel approach to improve our general understand-
ing of microphysical processes using aggregation as an example, by
linking aggregation theory applied in model parameterizations of a
two-moment scheme with radar statistics. First, the study exploresThe combination of a

simple model setup
and cloud radar
observation can

strongly constrain
ice microphysical

parameters.

how sensitive the simulated multi-frequency Doppler observations
are to various parameters relevant to the simulation of aggregation.
To this end, the particle properties of Study II are used in the micro-
physics scheme. To enable the use of these particle properties, new
formulations for the bulk aggregation rates had to be derived as new
functional relationships (e.g., the Atlas-type velocity-size relations) are
applied. Second, comparing the idealized single-column simulation
with multi-month statistics of observations could constrain several ag-
gregation parameters by minimizing the difference between simulated
and observed profiles. Since major simplifications are necessary in the
idealized single-column simulations, the scheme’s performance is also
tested in more realistic 3D large-eddy simulations.

Study II shows, that the simulated mean mass increase due to aggre-Aggregation is most
sensitive to particle

properties and
aggregation kernel

formulation.

gation is susceptible to the selection of the particle properties and the
aggregation kernel formulation. In contrast, the simulated mean mass
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is weakly sensitive to the size distribution width. This low sensitivity
could indicate that the simulation of the size distribution shape is of
secondary importance. However, an additional analysis (Section 4.1)
showed that aggregation rates might be slightly lower when the size
distribution is calculated explicitly with a Lagrangian particle model.
Unlike the simulated mean mass, the simulated dual-wavelength
ratios (which are indicators of the particle sizes derived from the
multi-frequency observations) are sensitive to the size distribution
width because the dual-wavelength ratios are disproportionately sensi-
tive to large particles, which are more frequent in broad distributions.
Thus, the size distribution width appears as a critical component in The size distribution

width is a crucial
parameter for linking
the model to
multi-frequency
observations.

linking modeled mean mass to indicators related to mean mass from
multi-frequency observations. Interestingly, the additional analysis
in Section 4.1 also suggests that the number concentrations of large
particles are well simulated by the new version of the SB scheme.
Thus, the good agreement between simulated mean size and the dual-
wavelength ratio when using the improved microphysical parameters
would probably also hold if the size distribution would be considered
more explicitly in the SB scheme.

Overall, the simulation of sedimentation and aggregation by the
two-moment scheme could be improved. The bias of too fast and too Biases in particle

velocity and size of
two-moment scheme
could be reduced.

large particles observed by Ori et al., 2020 could be strongly reduced,
as shown by a statistical comparison of multi-month observations
and 3D large-eddy simulations with the old and improved scheme
setup. The velocity-size relations derived in Study I contribute largely
to the reduction of these biases. These relations affect the particle
velocity directly and the particle size indirectly through its influence
on the aggregation rates. This reduction of the biases also improved
the prediction of surface precipitation in a case study where a strong
sublimation layer was present.

1.3.3 Study III: Melting Layer Processes

Study III revisits the approach of Drummond et al., 1996, which
compares the reflectivity flux at the melting layer top and bottom
(reflectivity flux ratio approach). This comparison can be used to
estimate how the microphysical processes occurring within the melting
layer change the mean mass of the particle population. An increase
of the reflectivity flux stronger/weaker than expected by the change
in scattering properties is attributed to an increase/decrease in mean
mass. However, this connection between the reflectivity flux ratio and
the change in mean mass is only valid if certain assumptions are met.
The study evaluates some of the assumptions, such as neglecting the
influence of vertical wind. To this end, characteristics of the Doppler
spectra (e.g., the velocity of particles with negligible terminal velocity)
are exploited. The multi-frequency Doppler radar observations are
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also used to separate profiles by their predominant particle type.
Thereby it can be investigated which processes in the melting layer
might be more and which might be less important for profiles with
predominantly unrimed or rimed particles at the top of the melting
layer.

Study III elaborates on the statistics of the reflectivity flux ratio
for different particle classes and reports indications for the reasons
for the differences. Profiles of radar observables within the melting
layer and model simulations are analyzed to learn which processes
might cause the differences between the particle classes. The meanMean mass increase

slightly and
decreases

substantially for
unrimed and rimed
profiles within the

melting layer.

mass of the profiles with unrimed particles at the melting layer top
(unrimed profiles) increases slightly when viewed over the entire melt-
ing layer. In contrast, the mean mass of the rimed profiles decreases
substantially. Since other shrinking processes could be excluded, it is
concluded that the decrease of the mean mass for rimed profiles is
most likely caused by collisional breakup of melting particles. This
breakup process might also occur for unrimed profiles, even at a sim-
ilar rate, but could be compensated by higher aggregation rates for
these profiles. An additional analysis in Section 5.1 shows that the
breakup mechanisms currently implemented in McSnow (shedding,
hydrodynamic and collisional breakup of liquid droplets), which ex-
plicitly predicts particle evolution of melting particles, can not explain
the observed reflectivity flux ratio for rimed profiles. This findingThe consideration of

collisional breakup of
melting particles

might be necessary
to explain the

observations in the
melting layer.

supports the hypothesis of Karrer et al., 2021b that collisional breakup
of melting particles might be necessary to consider. Implementing
this process in models is possible only after further investigations,
including quantification of process rates in laboratory studies.



2
T H E O RY

This chapter provides an overview of cloud ice microphysical pro-
cesses (Section 2.1) and techniques to simulate and observe these
processes utilizing microphysical models (Section 2.2) and radar re-
mote sensing techniques (Section 2.3). Emphasis is placed on the ice
microphysical processes most relevant to this dissertation and the
modeling and observational techniques employed, which are valuable
for inferring these processes.

2.1 ice microphysical processes

Ice microphysical processes determine the properties of many differ-
ent cloud types that contain ice-phased particles. Each of these cloud
types is affecting society: Non-precipitating clouds (e.g. cirrus clouds)
have significant radiative effects; precipitating clouds produce a large
amount of precipitation over a short (e.g., deep convective clouds) or
longer time period (e.g., nimbostratus clouds). However, investiga-
tions of growth processes with multi-frequency Doppler radars are
most insightful when observing stratiform clouds with a large vertical
extent. In these clouds, many different processes take place, and char-
acterization of these processes is more feasible compared to the highly
variable convective clouds. Therefore, the overview of microphysical
processes is shown exemplarily for these clouds in Figure 2.1 and
discussed in the following.

Cloud ice particles originate from heterogeneous or homogeneous
nucleation. The particles first increase in size by depositional growth
from the vapor (Section 2.1.1), gaining enough velocity to both sed-
iment towards the ground (Section 2.1.2) and collide with other ice
particles, possibly forming aggregates (Section 2.1.3). In the presence
of cloud droplets, the particles also grow by riming, which is a partic-
ularly efficient process in converting condensed water mass from the
supercooled liquid state to the precipitating ice phase (Section 2.1.4).
If the particles reach wetbulb temperatures above 0

◦C they inevitably
start to melt (Section 2.1.5). Once below the melting layer and thus
completely melted, the particles undergo pure liquid microphysics
processes like diffusional growth, evaporation, collision-coalescence,
or liquid breakup (Lohmann et al., 2016, Chapter 7).

11
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aggregation

nucleation

depositional growth

melting

riming

secondary ice

liquid microphysics 
(e.g. evaporation)

sedimentation

Figure 2.1: Overview of microphysical processes in stratiform clouds with
the focus on ice growth processes (modified version of Figure 12.3
in Lohmann et al., 2016).

2.1.1 Depositional Growth

Ice particles gain mass by depositional growth in supersaturated
conditions (relative humidity with respect to ice RHi >100%). As a
result, the particles get a considerable terminal velocity v (Section 2.1.2)
to sediment to lower parts of the cloud and grow there through other
microphysical processes. Therefore, depositional growth can also be
seen as a starting mechanism for precipitation formation. In contrast,
at subsaturated conditions (RHi <100%), the particles lose mass due to
sublimation, which occurs mainly below the cloud base. The resulting
phase transition from vapor to ice releases latent heat. As a result, the
diffusional flux and the heat transfer between particle and ambient air
must be considered (Lamb and Verlinde, 2011, Section 8.3) to derive
the rate by which the mass m of an individual ice particle changes:

dm

dt
= 4πC(Dmax)ρiGifv (RHi/100% − 1) (2.1)

C is the particles capacitance (which depends on the particles’ size
Dmax and shape), ρi the bulk ice particle density, fv the ventilation
coefficient, and Gi is a factor depending on atmospheric state variables
(Equation 8.41 in Lamb and Verlinde, 2011). Depositional growth in-
creases the mass concentration and mean mass of particle populations,
while it does not affect the number concentration.

Ice crystals can grow by depositional growth into various shapes
depending on the temperature and humidity (Bailey and Hallett, 2004;
Bailey and Hallett, 2009) (Figure 2.2). The common feature between
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all the shapes is the underlying hexagonal structure created by the
ice Ih lattice structure, which is dominant at the typical atmospheric
conditions (Lohmann et al., 2016, Section 8.3). Based on this hexagonal
structure, the particle shapes can be broadly classified as planar and
columnar prisms (inset box in Figure 2.2) depending on the tempera-
ture and humidity. The shapes of particles growing in highly super-
saturated air deviates from solid hexagonal prims because in these
conditions the growth does not occur in thermodynamic equilibrium
(Lohmann et al., 2016, Section 8.2), but is kinetically limited. Other
complex particle shapes such as polycrystals also occur, especially at
lower temperatures, and non-symmetrical particles are generally the
rule rather than the exception (Bailey and Hallett, 2009).

A model of the ice crystal growth that can fully explain the different
growth mechanisms leading to the various habits does not exist yet,
but several mechanisms are described or postulated (Libbrecht, 2017).
Whether the growth happens preferentially at the basal or prism faces
resulting in columnar or planar particles (inset box in Figure 2.2) can
be explained, at least partially, by the different attachment coefficients.
These coefficients can be interpreted as the probability that a water
vapor molecule is incorporated into the ice crystal lattice after contact
with the ice surface (Libbrecht, 2019, Section 3.1). In highly super-
saturated air, growth is rapid, and diffusion can not supply vapor
molecules fast enough to maintain a homogeneous field of water va-
por concentration around the particle, resulting in shapes that can be
very different from solid hexagonal prisms. For example, dendritic
shapes form because the water vapor concentration has local max-
ima at the corners of the basal hexagonal faces, which leads to the
branching events on each of the six corners of the hexagons (Libbrecht,
2019, Chapter 4). As a result of this first branching event, the water
vapor concentration field shows further local minima, leading to new
branching events and finally to the complex fractal shape of dendrites.

In mixed-phase clouds, depositional growth occurs at or near the
water saturation due to the presence of liquid droplets. At water
saturation, the depositional growth is the strongest at about -15

◦C
because at this temperature, the absolute supersaturation over ice is the
largest. If the humidity is lower than the water saturation but higher
than the ice saturation, the Wegener-Bergeron-Findeisen process leads
to an efficient ice particle growth at the expense of the liquid particles
(Korolev, 2007).

2.1.2 Sedimentation

Clouds can stay at about the same height over many hours only be-
cause small particles sediment very slowly, and even small upwinds
keep the particles in levitation. Larger particles, however, have con-
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Figure 2.2: Habit diagram depicting ice particle shapes at typical for a given
temperature and humidity range. The blue line depicts the ice
supersaturation at liquid saturation. The inset plot shows the
terminology of the geometry of columnar and planar particles
(modified from Libbrecht, 2017, Figure 1)

siderable velocity and can therefore sediment beneath the cloud and
occasionally precipitate to the ground.

In general, hydrometeors fall at speed close to their terminal velocity
v because the particle growth or shrinking is continuous, and thus
equilibrium of the acting forces is almost always given. Exceptions
are particle breakup and turbulent flows, where the particles’ inertia
should be considered (Khain and Pinsky, 2018, Section 5.5).

Forces acting on the particles with mass m are the gravitational
force:

Fgrav = m · g, (2.2)

with the gravitational acceleration g, and the drag force Fdrag

Fdrag =
1

2
· ρair ·A · v2 ·CD, (2.3)

which is a product of the air density ρair, the area projected to the
horizontal A, v, and the drag coefficient CD.

Hydrodynamic models calculate v based on this equilibrium con-
sideration by introducing a Best number, which depends only on
particle and air properties (Abraham, 1970; Bohm, 1989; Pruppacher
and Klett, 2010; Khvorostyanov and Curry, 2002, 2005; Heymsfield and
Westbrook, 2010). Together with theoretical and empirical relations
between the Best and the Reynolds number Re, v can be derived from
the definition of Re:

Re =
ρvD

η
, (2.4)



2.1 ice microphysical processes 15

where ρ is the air density, D the particle size and η the air viscosity.
The formulations of v and its derivation are shown for different hy-
drodynamic models in Study I. Here, only the general characteristics
of v are explained based on Equations 2.2 and 2.3.

Since ice particles have extremely diverse shapes, a single v size
relation cannot approximate the v of all particles. However, one can
intuitively analyze the evolution of v with size by looking at its asymp-
totic behavior for small and large sizes. At small sizes D, v is close
to 0m/s and increases for all hydrometeors because Fdrag increases
weaker than Fgrav due to a rapid decrease of CD. For large snowflakes,
v is about constant because CD is constant and m and A scale both
approximately with D2. Similar accounts, by the way, for large rain-
drops.

The v predicted by hydrodynamic models fits well with empirical
relationships and can complement them where measurements are
difficult (Mitchell et al., 1990a). Empirical relations have been reported
for many different ice particle shapes (ice habits, aggregates, rimed
particles) (Langleben, 1954; Locatelli and Hobbs, 1974; Heymsfield
and Kajikawa, 1987; Mitchell et al., 1990a; Barthazy and Schefold,
2006; Weitzel et al., 2020; Vázquez-Martín et al., 2021), but the sample
numbers and observed size range remains limited.

2.1.3 Aggregation

Besides riming, aggregation is a collision process, which efficiently
increases the ice particle sizes and therefore contributes to precip-
itation formation. Unlike deposition growth, aggregation does not
directly change the mass concentration but increases the mean mass.
This increase in mean mass results from the decrease in the number
concentration. The aggregation process removes two smaller particles
from the particle population and creates an aggregate with greater
mass and size than the original aggregation partners (illustrated in
Figure 2.3). First, the general problem of calculating the evolution of
the size distribution due to collision processes is described. Then, the
specifics of the aggregation processes are highlighted.

The effect of aggregation can be quantified by describing the change
of the number concentration at a given size or mass (Figure 2.3).
Since the mass of the aggregate is simply the sum of the masses of
the aggregating particles, the formulation of the size distribution as
a function of mass f(mi) has advantages over the formulation as a
function of the maximum dimension f(Dmax,i). The change of the
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Figure 2.3: Illustration of the stochastic collection equation (SCE) (modified
from Figure 1 of Karrer et al., 2021a). Left: A collision of particles
with mass mj and mi −mj that increases the number concentra-
tion f at mass mi. Right: A collision of particles with mass mj and
mi that decreases f at mi. Red (green) arrows indicate a decrease
(increase) of the number concentration at the given mass due to
the collision process.

concentration fm(mi) at mass mi is given by the stochastic collection
equation (SCE) (Pruppacher et al., 1998; Khain et al., 2015):

∂f(mi)

∂t
=

∫mi/2

0

f(mj)f(mi −mj)K(mi −mj,mj)dmj

−

∫∞
0

f(mi)f(mj)K(mi,mj)dmj, (2.5)

where K is the, so called, aggregation kernel. The first term considers
the gain of particles of mass mi when particles with masses mj and
mi −mj collide (left part of Figure 2.3). The second term incorporates
the loss of particles of mass mi by collisions with particles of mass mj
(right part of Figure 2.3).

Ice particles are usually large enough to allow neglecting turbu-
lence effects for the calculation of collision rates (Jacobson, 2005,
Section 15.6). Thus, the collision kernel Kcoll can be formulated by
considering the volume swept out by both colliding particles moving
at relative velocity |vi(mi) − vj(mj)| in a given time (illustrated by
Figure 2.4):

Kcoll(mi,mj) = Acoll(mi,mj)Ecoll(mi,mj)|vi(mi)− vj(mj)| (2.6)

More intuitively, this kernel can be viewed as the probability that
two particles i and j collide within 1s (Gillespie, 1975). The collision
cross-section Acoll is given by the sum of the circles circumscribing
the horizontal projection of the two colliding particles in the simple
case of spherical particles (or horizontally aligned oblate spheroid).
For complex-shaped particles, considering the true projected areas
(black circles in Figure 2.4), excluding voids in the circumscribing
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circles (gray circles in Figure 2.4) might be more accurate (Connolly
et al., 2012; Kienast-Sjögren et al., 2013; Morrison and Milbrandt, 2015;
Dunnavan, 2021). The aggregate at the bottom of Figure 2.4, resulting
from the aggregation process shown, illustrates why considering the
true projected areas instead of the circumscribing circle might be more
precise. In this case, the connection point of the colliding particles
(marked by a red circle) is not at the edge of the circumscribing circle
of the smaller particle but inside of it.

The collision efficiency Ecoll has to be introduced because Acoll
overestimates the true collision cross-section even when the non-
spherical shape is taken into account. Smaller particles tend to follow
the streamlines, deflect along the larger particles’ edges, and thus
move around them without contact.

Furthermore, the velocity difference |vi(mi) − vj(mj)| between the
colliding particles influences the collision rates (arrows in Figure 2.4).

v
i

v
jv

i
-v
j

A
coll

Figure 2.4: Illustration of the col-
lision cross-section and
differential sedimenta-
tion. Black circles illus-
trate the true projected
areas. Gray (green) cir-
cles illustrate the circum-
scribing circles of the
horizontal projection of
the two colliding parti-
cles (the resulting aggre-
gate). Arrows indicate
the absolute and relative
v of the particles. The
red circle highlights the
point of contact.

The larger this velocity difference
is, the less time the faster particle
needs to catch up with the slower
particle.

After a collision occurs, the par-
ticles might adhere to each other,
rebound, or break into several parti-
cles (Pruppacher et al., 1998, Chap-
ter 14).

In the case of aggregation, the
sticking efficiency Estick describes
the likelihood that two particles
stick after a collision, and Kcoll
has to be complemented by Estick
to calculate the aggregation kernel
Kagg:

Kagg = KcollEstick (2.7)

Estick is usually parameterized
as a function of temperature only
(Mitchell, 1988; Connolly et al.,
2012), but the influence of addi-
tional parameters like the collision
kinetic energy has also been inves-
tigated (Phillips et al., 2015). In gen-
eral, Estick is increasing with in-
creasing temperature due to the
increasing thickness of the quasi-
liquid layer at the surface of the par-
ticles (Slater and Michaelides, 2019).
However, the general increase of
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stickiness of the ice surface is su-
perimposed by the interlocking mechanism. At temperatures of about
-15

◦C the particles are likely to exhibit a dendritic shape (Section 2.1.1)
which augments the chances of ice crystals to interlock with each other
mechanically, and thus form a stable connection. Also electrical charge
of particles has been reported to enhance Estick, especially at low
temperatures (Stith et al., 2002, 2004; Connolly et al., 2005; Gallagher
et al., 2012).

The combination of the sintering and interlocking mechanisms
causes Estick to have pronounced peaks around -15 and 0

◦C. This
temperature dependency of Estick has been suggested to be responsi-
ble for the occurrence of large aggregates at these temperatures (Hobbs
et al., 1974; Lamb and Verlinde, 2011). This conjecture is supported
by the frequent observation of dendrite and needle monomers within
large aggregates (Lawson et al., 1998), which are preferentially formed
at these temperatures.

2.1.4 Riming

The collection of a supercooled liquid droplet by an ice-phased particle
is called riming. Being a collision process, riming can also be described
by the SCE (Equation 2.5) and the collision kernel (Equation 2.6) in
the same way as aggregation. Still, characteristic differences arise from
the typical size of the liquid droplets and the thermodynamic phase.

In contrast to aggregation, one collision partner, the cloud droplet,
typically has a substantially lower v and m, and thus Ecoll can be
small. In the case of tiny droplets (smaller than about 10µm), the
inertia of the droplets is so small that Ecoll approaches zero, and
riming can not take place (Böhm, 1992, e.g., ). Another difference
between riming and aggregation is that the liquid droplets always
adhere to the ice particle, as they freeze immediately after contact
(Lamb and Verlinde, 2011, Section 9.4). Thus Estick can be assumed
to be one.

Riming increases v because it increases the particles’ mass con-
siderably, while the area changes little (Lamb and Verlinde, 2011,
Section 9.2). This increase in v allows distinguishing rimed particles
from unrimed particles, e.g., by Doppler radars (Section 2.3.3). Multi-
frequency observations provide additional indications of the riming
degree (Kneifel et al., 2015; Mason et al., 2018; Li et al., 2020) (Sec-
tion 2.3.2). In stratiform clouds, riming generates graupel particles,
which fall with v up to 3 m/s (Locatelli and Hobbs, 1974; Mitchell
et al., 1990a). In convective clouds, the high vertical wind speed pro-
duces high liquid water concentration in which large hailstones can
form with v exceeding 10m/s (Lamb and Verlinde, 2011, Section 9.2).
Due to these large v, rimed particles can remain frozen over a large
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distance at temperatures above 0
◦C before melting (Section 2.1.5), and

hailstones can reach the ground even in summer convective storms.
Since riming requires the presence of liquid droplets and their

amount increases with temperature (Korolev et al., 2003; Pinsky et al.,
2015), the frequency of riming increases strongly with temperature and
is very infrequent at temperatures below -10

◦C in stratiform clouds
(Kneifel and Moisseev, 2020).

2.1.5 Melting

Melting of ice-phased particles occurs if the particle temperature
exceeds 0

◦C. At which ambient air temperature the melting starts and
how fast it proceeds is a complex thermodynamic problem because all
three phases of water play a role (Pruppacher et al., 1998, Section 16.3).
At water saturation and for particles with low v, melting starts at
0
◦C, and requires only a few hundred meters. However, subsaturated

conditions and large v can lead to delayed (Heymsfield et al., 2015,
2021) and prolonged melting (Lamb and Verlinde, 2011, Section 12.4),
respectively.

The time required to melt and the evolution of the ice particle prop-
erties have been studied in the laboratory (Knight, 1979; Rasmussen
and Heymsfield, 1987; Oraltay and Hallett, 1989; Mitra et al., 1990;
Oraltay and Hallett, 2005). According to these studies, melting starts at
the edges of the particles. Then, the meltwater flows towards the center
because of aerodynamic forces and capillary action. Finally, the occa-
sionally complex structure of the ice particles collapses into a spherical
or oblate droplet. During this process, the particles v increases due to
the increasing compactness.

Laboratory studies also observed shedding of liquid droplets for
graupel and hail larger than 9 mm (Rasmussen and Heymsfield, 1987;
Pruppacher et al., 1998) and breakup of ice fragments in subsaturated
conditions (Knight, 1979; Oraltay and Hallett, 1989; Mitra et al., 1990;
Oraltay and Hallett, 2005). These processes are illustrated in Figure 2.5.

Melting is vital to consider, both from an observational and model-
ing viewpoint. The melting layer is a prominent feature detectable by
remote sensing observations (Fabry and Zawadzki, 1995, Section 4.4)
but also challenges the retrieval of precipitation rates (Smyth and
Illingworth, 1998; Battaglia et al., 2003; Mason et al., 2017). Szyrmer
and Zawadzki, 1999 described how the latent heat released by melt-
ing induces convective cells in their dynamic, thermodynamic, and
microphysics coupled simulations. Furthermore, the changes in the
thermodynamic phase (melting and refreezing) at or near the surface
are essential for modeling hazardous situations, e.g., affecting road
traffic (Stewart et al., 2015).
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Figure 2.5: Image and visualization of the shedding (left) and melting frag-
mentation (right) process. Left: Image of a wet hailstone which
sheds liquid drops (taken from Sills and Joe, 2019) ©2019 Tay-
lor & Francis Group. Used with permission. Right: Six melting
stages of a slightly rimed aggregate which melts into several frag-
ments (taken from Leinonen and Lerber, 2018). ©2018 American
Geophysical Union. Used with permission.

2.1.6 Other Ice Microphysical Processes

Ice formation can occur via freezing of pure water droplets below
about -38

◦C (homogeneous nucleation) or with the aid of aerosols
already at higher temperatures (heterogeneous nucleation) (Lohmann
et al., 2016). Possible heterogeneous nucleation mechanisms, the con-
ditions (temperature, humidity) under which different aerosol types
can initiate nucleation, and typical concentrations of ice nucleating
particles are summarized, e.g., by Hoose and Möhler, 2012 and Kanji
et al., 2017.

In principle, the number of ice nuclei should be similar to the
number of ice particles if homogeneous nucleation (nucleation of pure
liquid droplets) is not excessive. However, the number concentration of
ice particles sometimes exceeds the number concentration of ice nuclei
by one order of magnitude, and only the presence of secondary ice for-
mation can explain this difference (Lohmann et al., 2016, Section 8.1).
Several secondary ice formation processes have been summarized by
Korolev and Leisner, 2020.

2.2 microphysical models

Microphysical models simulate the shape of individual particles, the
change in particle properties (e.g., mass, monomer number) of in-
dividual particles, and the evolution of the entire size distribution
(Figure 2.6). Suitable for different applications, these models represent
the particles either very explicitly or use simpler assumptions that
make the model more computationally efficient. 3D snowflake models
provide the most explicit representation of particle properties (Fig-
ure 2.6a)). These models simulate the three-dimensional shape of the
particles and their changes with different microphysical processes (e.g.,
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aggregation, riming). In less detailed models (microphysics schemes),
particle properties or even size distributions follow predefined rela-
tionships.

Due to their computational efficiency, microphysics schemes can be
applied within complex numerical models (global circulation models
(GCM), numerical weather prediction (NWP) models, large-eddy mod-
els (LES)) that simulate the interaction of many atmospheric processes
like dynamics, radiation, etc., on a huge range of scales (Morrison
et al., 2020). The most detailed application of microphysics schemes
within complex model employs Lagrangian particle models (LPM)
(Section 2.2.2) in direct numerical simulations, which explicitly resolve
dynamics, including turbulence at the mm scale. LPMs predict the
motion and evolution of individual particles (Figure 2.6b)). For appli-
cations that require a more computational efficient process description
(e.g., NWP), bulk schemes (Section 2.2.4) are used in simulations
with coarse grid resolutions, in which also the dynamics have to be
parameterized to some degree. Bulk schemes assume the hydromete-
ors to be distributed according to a predefined functional form and
predict the evolution of one or several moments of this distribution
(Figure 2.6d). Hydrometeors can be categorized into one or several
classes and evolve in an Eulerian coordinate system. Another Eulerian
approach is the bin scheme approach, which also has been applied in
complex numerical models (Figure 2.6c)(Section 2.2.3).

This dissertation makes use of a 3D particle model (aggregation
model, Leinonen, 2013), a LPM (McSnow, Brdar and Seifert, 2018),
and a bulk scheme (Seifert-Beheng two-moment scheme (SB scheme),
Seifert and Beheng, 2006) (Figure 2.6a)). Although 3D particle models
(Section 2.2.1) are not considered a classical element of microphysical
models and are not applied in complex numerical models (e.g, LES),
using such a model to support the microphysics schemes fits perfectly
with the objectives of this dissertation (Section 1.2).

2.2.1 3D Snowflake Models

Snowflake models generate shapes of snowflakes by simulating the
evolution of ice particle shapes due to various ice processes (e.g.,
aggregation, riming and melting). Snowflake models can be separated
into empirical and physical approaches (Tyynelä and Lerber, 2019;
Kneifel et al., 2020). Empirical models generate aggregates that follow
an a priori defined fractal dimension or mass-diameter relationship.
These models are particularly useful when one wants to match desired
particle properties, e.g., those used by a microphysics scheme, and
needs to find consistent scattering properties.

Physical aggregation models mimic the aggregation process by simu-
lating its physical mechanisms with stochastic algorithms (Westbrook,
2004; Maruyama and Fujiyoshi, 2005). More specifically, these models
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Figure 2.6: Schematic of microphysics models and their representation of
particle properties and size distributions. a) 3D Snowflake models
simulate shapes of aggregates with realistic monomer shapes
explicitly. b) Lagrangian particle models (LPM) simulate the evo-
lution of particle population by simulating several attributes (e.g.,
monomer number) of individual particles. c) Bin schemes simu-
late the size distribution of one or more categories. The dashed
arrow in c) indicates that either single- or multidimensional dis-
tributions can be predicted. d) Bulk schemes predict one or more
moments of the size distribution using several categories with
fixed particle properties.
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attach 3D ice crystal shapes and select collision pairs from a particle
ensemble considering an aggregation kernel (Section 2.1.3). In addition
to deriving the scattering properties of realistically shaped snowflakes,
this approach allows inferring microphysical characteristics of the
particles. For example, Westbrook et al., 2004a explained the observed
scaling relation of aggregates - mass scales with size to the power of
two - using a physical aggregation model. The aggregation model
used in this dissertation (Leinonen, 2013) is based on the concept
of Westbrook, 2004 and has been extended to, additionally, mimic
the riming (Leinonen and Szyrmer, 2015) and melting (Leinonen and
Lerber, 2018) process and consider various realistic monomer shapes.

2.2.2 Lagrangian Particle Model

Lagrangian particle models (LPMs) predict the motion and evolution
of the mass and other attributes of individual particles, and therefore
have several advantages over Eulerian models. For example, processes
rates can be calculated by simply applying an ordinary differential
equation, e.g., Equation 2.1 for depositional growth. Furthermore, in
contrast to Eulerian schemes, LPMs can represent collision processes,
e.g., aggregation, in their true statistic nature (Grabowski et al., 2019).
The Lagrangian framework allows considering the probability of colli-
sion between individual particles using, e.g., Monte Carlo algorithms
(Shima et al., 2009; Brdar and Seifert, 2018).

The biggest challenge in applying Lagrangian particle models is the
computational cost. Morrison et al., 2020 estimated that simulating
each particle individually in a direct numerical simulation allows
simulating only 1 m3 of a particle population with a number concen-
tration of 108m−3 with current computers. In superparticle models,
such as McSnow, computational costs are reduced by simulating only
a subset of particles representing the entire particle population (Shima
et al., 2009). The multiplicity of a superparticle determines how many
real particles it represents. Since the superparticles can only account
for average properties of all particles, a probability density function
must be assumed to consider the variability within all real particles
represented by a superparticle (Shima et al., 2009). The width of this
probability density function depends on the multiplicity. This variable
width allows the model to converge to a multiplicity of one against the
simulation of all real particles. In contrast, a high multiplicity leads
to a smooth representation of the particle population, which cannot
represent its details.

The superparticle method remains computationally cheaper than
bin schemes when the number of predicted dimensions increases. This
computational efficiency allows using LPMs in LES even when con-
sidering multidimensional microphysical problems as cloud droplet
activation (Hoffmann, 2017) and mixed-phase microphysics (Brdar
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and Seifert, 2018; Shima et al., 2020). Simulating mixed-phase clouds
with multidimensional LPMs allows prescribing particle properties
with a great degree of detail and consider, e.g., the dependency of
particle geometry on the degree of riming and rime density (Seifert
et al., 2019).

2.2.3 Bin Schemes

Bin schemes represent the size distribution explicitly using typically
several tens of size bins (Figure 2.6c)). Therefore, they can predict the
complex evolution of the size distribution, e.g., under the influence
of aggregation. Bin schemes with multidimensional distributions or
several categories can consider the variance in particle properties
(Khain et al., 2015) but quickly become numerically infeasible with
an increasing number of dimensions (Grabowski et al., 2019). Besides
numerical diffusion and difficulties in simulating the stochastic nature
of collision processes, the high numerical costs for multidimensional
applications such as ice microphysics are the main disadvantages of
bin schemes (Grabowski et al., 2019; Morrison et al., 2020).

2.2.4 Bulk Schemes

Bulk schemes predict one or more moments M:

M(k) =

∫∞
0

xk f(x)dx (2.8)

of the particle distribution f(x) for several particle categories. x can
be either the particle mass or size. All bulk schemes predict the
mass concentration (M(1) if x is the particle mass) because mass
continuity is crucial for any model (Cotton et al., 2011, Section 2.4).
Two-moment schemes additionally predict the number concentration
(M(0)) (Ziegler, 1985; Meyers et al., 1997; Morrison et al., 2005; Seifert
and Beheng, 2006; Thompson et al., 2008, e.g., ). The number con-
centration prediction is beneficial since microphysical processes like
nucleation or breakup affect this quantity directly, and the mean mass
(mass divided by number concentration) is important to consider in
the process rates. Three-moment schemes predict a third moment, in
addition to mass and number concentration, mostly M(2) (if x is the
particle mass) which is assumed to be proportional to the reflectivity
factor (Milbrandt and Yau, 2005; Szyrmer et al., 2005; Naumann and
Seifert, 2016; Milbrandt et al., 2021). Considering this third moment
allows to simulate the width of the distribution explicitly, is useful
when comparing with radar observations, and controls excessive size
sorting, which is an artifact present in two-moment schemes (Wacker
and Seifert, 2000; Milbrandt and Yau, 2005).
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In contrast to LPMs and bin schemes, bulk schemes need to assume
a functional relationship of the particle size distribution. Mostly the
modified gamma distribution

N(x) = N0x
µ exp (−λxγ) , (2.9)

or simplifications of this equation (setting γ=1 or even µ=0) are chosen.
N(x) is the normalized number concentration at the size x and N0,
µ, λ and γ are parameters of the distribution. The more moments
predicted, the more parameters in Equation 2.9 can be modeled. Addi-
tional parameters must be set to a fixed value or assumed to follow a
predefined relation to other prognostic quantities.

Bulk schemes require the formulation of microphysical process
rates for only a few moments of the size distribution and a few
hydrometeor categories. This requirement poses a challenge for the
accurate simulation of the processes. For example, the evolution of a
particle population under the action of collision is a stochastic process,
which allows the occasion of the rapid growth of individual particles
through collision-coalescence or aggregation. A particle can grow
faster than the average because it initially experiences first collisions
with a low probability. Then it continues to grow preferentially due
to its larger size and substantially enhances the growth of the total
particle population (Grabowski et al., 2019). While this phenomenon
can be simulated by LPMs, where it can manifest itself, e.g., in a peak
in the size distribution, the smooth size distribution assumed by the
bulk scheme is unable to capture the phenomenon.

The formulation of bulk process rates, e.g., collision rates, is also
mathematically rather complex. Integration over the entire distribution
often does not provide an analytical solution without major simplifi-
cations (Khain et al., 2015). Any change in particle parametrizations,
such as v, requires a lengthy revision of process rates which might
also increase the computational cost of the microphysical scheme. In
contrast, LPMs do not require an analytical solution for bulk process
rates because they solve for the evolution of individual particles and
particle interaction directly at the particle level. For example, Seifert
et al., 2014 thoroughly investigates the derivation of collision rates
required to introduce non-spherical particle shapes. They found that
modifying the functional form of the v-size relations can significantly
improve the accuracy of the collision rates with only a slight increase
in computational cost.

Despite the challenges regarding the representation of particle pop-
ulations and processes in bulk schemes, particle properties are repre-
sented in these schemes in an increasingly sophisticated way. While
early cloud schemes predicted only one moment for two categories
(namely cloud droplets and rain) and no ice-phased categories (Kessler,
1969), the addition of several ice phase categories (e.g., cloud ice, snow,
graupel, and hail) (Cotton et al., 1982; Lin et al., 1983) allowed consider-
ing the variety of ice particle properties partly. Introducing additional
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prognostic variables which are not moments of the size distribution
allowed considering continuous changing particle properties due to
riming (Morrison and Milbrandt, 2015), melting (Cholette et al., 2019),
and habit evolution (Jensen et al., 2017; Tsai and Chen, 2020).

2.3 radar remote sensing

Besides in situ observations, remote sensing is the primary technique
to observe clouds. Passive remote sensors detect the intensity of the
radiation that is emitted from various sources and partially absorbed
or scattered on its way to the sensor (Ulaby et al., 2014). Information
about hydrometeors can be inferred from passive remote sensors either
because the hydrometeors emit radiation themselves or interact with
it. However, the signals detected by passive remote sensors can not be
directly assigned to hydrometeors at a specific location. In contrast,
active sensors, namely radars and lidars, emit radiation themselves
and detect the intensity of backscattered radiation. The ability to
emit radiation with a short pulse allows assigning the backscattering
hydrometeors to a specific range of distance from the instrument
(Parker, 2010, Section 18.5). Radars have been proven beneficial to
observe precipitation and clouds since the 1950s (Fabry and Zawadzki,
1995) and continue to be a primary type of sensor employed at different
platforms (Illingworth et al., 2007; Kollias et al., 2020; Battaglia et al.,
2020a).

Reflectivity, the most basic quantity derived from radar observa-
tions, quantifies the backscattered power received by the radar, which
depends on the observed hydrometeors, but also the radar design, e.g.,
operating wavelength (Fabry, 2015, Section 3.1). To compare obser-
vations from different radars, the equivalent radar reflectivity factor:

Ze =
λ4η

|Kw|2π5
(2.10)

has been introduced. Here, λ is the radar wavelength, |Kw|2 the dielec-
tric factor of liquid water and η the volume-averaged backscattering
cross-section (also called reflectivity):

η =

∫∞
0

N(D)σb(D)dD, (2.11)

where σb is the single-particle backscattering cross-section and N(D)

is the size distribution. In the case of liquid spherical particles much
smaller than λ, σb can be well approximated by the Rayleigh approxi-
mation:

σb,droplet =
π5|Kw|

2D6

λ4
(2.12)



2.3 radar remote sensing 27

In this case, Ze is proportional to the sixth moment of N(D):

Ze,droplets =

∫∞
0

N(D)D6dD, (2.13)

which motivated the definition of Ze in the first place. For particles
with sizes near or larger than λ and particles containing ice in general,
σb differs from Equation 2.12 (Section 2.3.1). The different dependency
of σb on the particle size and shape for different wavelengths is used
by the multi-frequency approach (Section 2.3.2).

Besides Ze, the Doppler velocity (Section 2.3.3) and polarimetric
signature (Section 2.3.4) of the backscattered signal provide details of
the hydrometeor properties, such as fall velocity and particle shape.

2.3.1 Backscattering of Ice and Snow Particles

Hydrometeors scatter the radiation emitted by the radar (Liou, 2002,
Section 1.1), which determines Ze received by the radar. Scattering
occurs basically in all directions, but since radars detect only the
backscattered energy and multiple scattering is negligible for the com-
monly used frequencies (Battaglia et al., 2020a), only backscattering is
considered here.

For ice-phased particles much smaller than λ, the Rayleigh approxi-
mation is valid, and σbλ4/|K| is independent of λ (Figure 2.7). In this
case, Equation 2.12 can also be used for snow if |Kw|2 is replaced by
the dielectric factor of the air-ice mixture (Bohren and Battan, 1980).
For larger sizes, where the maximum dimension Dmax is in the order
of or larger than λ, radiation scattered at different parts of the parti-
cles interfers destructively and leads to σb smaller than predicted by
the Rayleigh approximation (differential scattering). With increasing
Dmax, this reduction appears first for the shortest wavelength (W-
Band, λ≈3.2 mm), then for Ka-Band (λ≈8.6 mm), and finally for the
X-Band (λ≈31.9 mm). How strong the deviations from the Rayleigh
approximation are, depends on the particle shape and wavelength
(compare σb of unrimed and rimed aggregates in Figure 2.7a) and b)).

Owing to the complexity of ice-shaped particles, the calculation
of their scattering properties is complicated, and many approaches
applying different assumptions have been proposed (Kneifel et al.,
2018, 2020). One such approach is the self-similar Rayleigh-Gans ap-
proximation (Hogan and Westbrook, 2014), which takes advantage
of the self-similar structures of aggregates (Westbrook, 2004) and is
used to compute σb from 3D snowflake models in Figure 2.7. Such
scattering calculations are at the heart of forward operators like the
Passive and Active Microwave TRAnsfer model (Mech et al., 2020),
e.g., used in Study II.
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Figure 2.7: Scattering properties at different wavelengths and for different
particle types. Normalized single-particle backscattering cross-
section σb (a) and b)) and dual-wavelength ratios (DWR) (c) and
d)) for unrimed particles (left; a) and c)) and rimed particles with
equivalent liquid water path of 0.5 kg/m2 (right; b) and d)). a)
and b) uses the maximum dimension, c) and d) the mean mass
diameter as a size indicator. Both unrimed and rimed particles are
the “CaE mix" aggregates presented by Ori et al., 2021. The “CaE
mix" aggregates are a computer-generated model of mixed aggre-
gates composed of column and dendrite monomers created with
the aggregation model from Leinonen and Moisseev, 2015. Radar
wavelengths are indicated with vertical dashed lines: W-Band:
λ≈3.2 mm; Ka-Band: λ≈8.6 mm; X-Band λ≈31.9 mm. In a) and b)
also the Rayleigh-approximation is shown in grey. Exponential
size distribution is assumed to derive the DWR. Adapted from
the Figures 2.13 and 2.16 of Neto, 2021.
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2.3.2 Multi-frequency Approach

Since reflectivity Ze of a single frequency provides only one value
for a whole particle population, different properties, e.g., its number
concentration and mean mass, can not be estimated unambiguously. In
other words, particle populations with different properties can cause
the same value of Ze. For example, a population with a relatively high
mean mass and lower number concentration can have the same Ze
as a population with a relatively low mean mass but higher number
concentration. To reduce ambiguity in the interpretation of the radar
return, analyzing Ze of several radars with different frequencies is
beneficial.

The advantages of the multi-frequency approach can be easily ex-
plained by the previously discussed dependence of the backscattering
cross-section on particle size, shape, and radar wavelength. If radars of
different frequencies observe the same particle, the backscattered en-
ergy differs depending on characteristic particle properties. However,
radars do not observe single particles but an ensemble of particles in a
volume, which size is determined by the radar beamwidth and range
resolution. Considering only the first moment of the radar Doppler
spetrum (Section 2.3.3) (Ze), the dual-wavelength ratio:

DWR =
Ze,λ1
Ze,λ1

, (2.14)

with the Ze at different wavelengths λ in linear units (mm6/m3), is
the only directly observable quantity that leverages on differential
scattering. In the first order, the DWRs depend mainly on the mean
size of the PSD. In contrast to Ze, DWRs do not depend on the number
concentration. However, the DWRs of two particle populations with
the same mean size can differ from each other due to different parti-
cles’ shapes and PSD widths (Battaglia et al., 2020b). On the one hand,
these additional influences make it difficult to assign the mean size to
the DWRs directly; on the other hand, these dependencies allow char-
acterization of the particle shapes and PSD width (Kneifel et al., 2011;
Kneifel et al., 2015; Mason et al., 2019). Combining multi-frequency
observations with Doppler velocities gives additional constraints. For
example, this combination allows deriving the degree of riming and
the mean particle density (Mason et al., 2018). The lower panels of
Figure 2.7 shows that the combination of X-, Ka-, and W-Band radars
allow estimating the mean size of PSD in the range of about 1 mm
to 30 mm, because in this range either DWRKa,W or DWRX,Ka is
increasing. At sizes below 1 mm, the non-Rayleigh scattering effects
are too small to be detected with the given frequency combinations,
and DWRKa,W approaches zero. At large sizes, DWRX,Ka approaches
a constant, though non-zero, value.

Challenges of the multi-frequency approach are the volume match-
ing and the calibration of the radars, which are carefully executed and
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discussed by Neto et al., 2019 and Neto, 2021. Volume matching is
crucial because only when the same particles or particles with similar
properties are observed, the DWRs can be attributed to differential
scattering. Similar accounts for the calibration, since offsets in Ze bias
the DWRs directly.

2.3.3 Doppler Velocity Spectra and Radar Moments

The Doppler effect induces a frequency shift of the backscattered
radiation relative to the reference signal (Section 19.1, Parker, 2010),
which contains information about the particles’ motion with respect
to the radar. As these frequency shifts are very small, most radars
do not observe this shift directly, but rather the phase shift between
consecutive pulses. How large the range of observed velocities and
how finely resolved the velocity bins are, depends on the pulse repeti-
tion frequency (number of radiation pulses emitted per time) and the
number of spectral bins (Section 5.5, Fabry and Zawadzki, 1995).

If the radar is pointing vertically, the Doppler velocity is the sum
of the particles’ terminal velocity v and the vertical air motion w. In
stratiform clouds v is typically larger than w (Lamb and Verlinde,
2011, Section 12.4) and might even be neglected in some cases.

Since v depends on particle size and shape, the presence of distinct
particle populations (small ice, aggregates, rimed) and processes (nu-
cleation, secondary ice production) can be inferred from the Doppler
spectrum at a given height and change with height (spectrogram) (e.g,
Zawadzki et al., 2001). The addition of spectrally resolved polarimetric
observations (Section 2.3.4) supports this characterization and pro-
cess identification (Moisseev et al., 2015; Pfitzenmaier et al., 2018).
Retrievals of the rain (Moisseev and Chandrasekar, 2007; Tridon and
Battaglia, 2015) and snow (Barrett et al., 2019; Mróz et al., 2020) size
distribution from Doppler spectra have been proposed but, especially
in the case of snow, require strongly simplified assumptions about the
particle properties, vertical wind, and turbulence.

The evolution of full Doppler spectra with time and height is a mul-
tidimensional problem that has been mostly studied only for smaller
time series (e.g., Zawadzki et al., 2001; Verlinde et al., 2013). The mo-
ments of the Doppler spectrum can be more easily used for statistical
analysis because there is only one value per time and height to con-
sider. In addition to Ze, the first (mean Doppler velocity MDV) and
second (spectral width) Doppler moments are the most commonly
used for ice microphysical processes investigations. In the case of w=0,
MDV is the reflectivity-weighted v, and its profile reveals information
about particle shape and size, and thus ice growth processes (Sec-
tion 2.1) (Matrosov et al., 2002; Avramov et al., 2011; Szyrmer et al.,
2012). In the absence of vertical wind and turbulence, the spectral
width depends on the standard deviation of the Doppler velocity. This
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standard deviation is connected to the variance in the particle shapes
and the width of the PSD (Mace et al., 2002; Deng and Mace, 2006;
Ding and Liu, 2020).

The main challenge for analyzing Doppler spectra and their mo-
ments is the separation of the superposing effects of v and w. For
microphysical studies, v is of primary interest, but also w must be
considered. Vertical air motions manifests themselves in shifts of
the Doppler spectra (larger scale) and broadening (shear wind, tur-
bulence) (Fabry and Zawadzki, 1995, Section 5.2), and is therefore
strongly affecting MDV and the spectral width. These vertical wind
effects typically influence the spectra and moments from radars op-
erating at shorter wavelengths less than radars operating at longer
wavelengths because they can ensure a smaller bandwidth and thus
smaller observation volume.

2.3.4 Radar Polarimetry

Similar to the multi-frequency approach, most polarimetric radar quan-
tities provide additional information about the particle population
because they represent ratios between two quantities that are affected
by number concentration in the same way and thus do not depend on
the number concentration (Meneghini and Liao, 2007). An exception
is the Specific Differential Phase (KDP), which is interesting precisely
because it depends mainly on the number concentration.

Dual-polarization radars can detect Ze and phase of the backscat-
tered signal in two polarizations planes emitted previously in one or
both planes to infer information about the size, shape, orientation, and
phase composition (ice and liquid) of hydrometeors (Kumjian, 2013;
Ryzhkov and Zrnic, 2019). Radar polarimetry leverages primarily on
the nonspherical shape of the particles in the projection orthogonal
to the wave propagation direction. Since the particles are mostly hor-
izontally oriented, the polarimetric signals that are due to particle
oblateness are strongest for radar instruments operating at low ele-
vation angles. Therefore, observations from radars whose scanning
patterns include low elevation angles are operationally applied for
melting layer detection and rain rate estimation (Bringi and Chan-
drasekar, 2001, Section 7.3 and Chapter 8), as well as investigation of
ice particle shapes and processes (Ryzhkov and Zrnic, 2019). However,
vertically aligned radars also show fingerprints of certain particle
shapes, e.g., needles (Oue et al., 2015) and melting particles (Bal-
dini and Gorgucci, 2006), since they can also backscatter the incident
radiation in a depolarized manner.





3
I C E PA RT I C L E P R O P E RT I E S I N F E R R E D F R O M
A G G R E G AT I O N M O D E L L I N G

Karrer, M., Seifert, A., Siewert, C., Ori, D., von Lerber, A., &
Kneifel, S. (2020). Ice particle properties inferred from aggre-
gation modelling. Journal of Advances in Modeling Earth Systems,
12(8), e2020MS002066, https://doi.org/10.1029/2020MS002066

33



Ice Particle Properties Inferred From
Aggregation Modelling
M. Karrer1 , A. Seifert2 , C. Siewert2, D. Ori1 , A. von Lerber1,3 , and S. Kneifel1

1Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany, 2Deutscher Wetterdienst,
Offenbach, Germany, 3Finnish Meteorological Institute, Helsinki, Finland

Abstract We generated a large number 105,000 of aggregates composed of various monomer types and
sizes using an aggregation model. Combined with hydrodynamic theory, we derived ice particle
properties such as mass, projected area, and terminal velocity as a function of monomer number and size.
This particle ensemble allows us to study the relation of particle properties with a high level of detail which is
often not provided by in situ measurements. The ice particle properties change rather smoothly with
monomer number. We find very little differences in all particle properties between monomers and
aggregates at sizes below 1 mm which is in contrast to many microphysics schemes. The impact of the
monomer type on the particle properties decreases with increasing monomer number. Whether, for
example, the terminal velocity of an aggregate is larger or smaller than an equal‐size monomer depends
mostly on the monomer type. We fitted commonly used power laws as well as Atlas‐type relations, which
represent the saturation of the terminal velocity at large sizes (terminal velocity asymptotically approaching
a limiting value) to the data set and tested the impact of incorporating different levels of complexity with
idealized simulations using a 1D Lagrangian super particle model. These simulations indicate that it is
sufficient to represent the monomer number dependency of ice particle properties with only two categories
(monomers and aggregates). The incorporation of the saturation velocity at larger sizes is found to be
important to avoid an overestimation of self‐aggregation of larger snowflakes.

Plain Language Summary We have simulated and analyzed the properties, such as mass, area,
and terminal fall velocity of snowflakes using a computer model. The snowflakes in the atmosphere form
by collisions of ice crystals present in many different shapes. In the computer model, ice crystal shapes
typically found in the atmosphere are stuck together to create three‐dimensional snowflakes. The properties
of the snowflakes depend on the shape and the number of ice crystals that are stuck together. While in
weather and climate models, the properties of ice crystals and snowflakes are often assumed to be very
different even if they are of the same size, we find very little differences in their properties. Many weather
and climate models assume that snowflakes have a higher fall velocity the larger they are, although field
observations have shown that particles larger than a few millimeters all fall with similar velocity. We fitted
new parameterizations of the particle velocities which can remove this deficiency in the models. Finally,
we used another model and showed that it might be sufficient to divide the properties of the ice particles in
only two categories. However, it is important to consider the almost constant velocity of the large
snowflakes.

1. Introduction

The terminal velocity vterm of ice monomers and aggregated ice particles and its relation to size has manifold
impacts on precipitation and radiative effects of ice containing clouds. For example, Morales et al. (2019)
show that parameters describing vterm of aggregates have the largest impact on the precipitation of simulated
orographic clouds. Experiments with global climate simulations revealed that also radiative fluxes are very
sensitive to changes in vterm (Jakob, 2002). Sanderson et al. (2008) found that vterm of ice is the second most
influential parameter for the climate sensitivity in their multimember perturbed physics General circulation
model ensemble. Constraining vterm of cloud ice and aggregated ice particles can reduce the degrees of free-
dom in model tuning (e.g., to improve top of atmosphere radiative fluxes Schmidt et al., 2017) and improve
the physical consistency in atmospheric models.
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The importance of vterm of ice particle has been early recognized and has motivated first observational
studies in the first third of the 20th century. Using initially manual observations and microphotography,
pioneering studies such as (Brown, 1970; Kajikawa, 1972; Langleben, 1954; Locatelli & Hobbs, 1974;
Nakaya & Terada, 1935; Zikmunda & Vali, 1972) investigated the relation of vterm to the particle's size
for various ice particle habits and aggregates. In addition to the direct measurements of velocity, several
studies started to investigate the principle relation between particle properties such as mass, size, and pro-
jected area to vterm which allows deriving vterm from these quantities (Cornford, 1965; Heymsfield, 1972).
Due to the large efforts in performing these often manual measurements, the sample size of the derived
relations is rather small. For example, some of the relations of the widely used relations by Locatelli and
Hobbs (1974) are only based on 10–50 particles. One can assume that particles with ideal monomer types
might have been subjectively chosen in order to easier associate the derived relationships to certain
well‐defined shapes. Nevertheless, the relations of size, mass, area, and vterm derived in these early studies
are still used in microphysics parameterizations (e.g., the vterm‐size relation of the snow category in
Morrison and Milbrandt (2015) is taken from Locatelli and Hobbs (1974) mixed aggregates; see
Figure 1). In Figure 1a, a selection of the aforementioned vterm relations is shown for their defined size
range. The spread of velocities for different ice particle monomers is relatively high (e.g., Kajiwa, 1972)
reported vterm to be about 0.2 m s−1 for a dendrite but about 0.5 m s−1 for a plate monomer. In contrast,
vterm of aggregates of different monomer types appears to be relatively similar and always close to 1 m s−1

in the reported size range.

Evolving computer technology allowed the realization of automated particle measurement systems such as
the 2D Video Disdrometer (2DVD Kruger & Krajewski, 2002), the Snow Video Imager (SVI Newman et al.,
2009), its successor the Particle Imaging Package (PIP Tiira et al., 2016), the Hydrometeor Velocity and
Shape Detector (HVSD Barthazy et al., 2004), or the Multi‐Angle Snowflake Camera (MASC Garrett et al.,
2012). These systems are based on optical methods to capture particle size and terminal velocity. Unlike in
the early studies, particle property relations (Barthazy & Schefold, 2006; Brandes et al., 2008; Garrett &
Yuter, 2014; Zawadzki et al., 2010) are now based on a very large number of particles which are classified
by automated algorithms rather than visual selection (Bernauer et al., 2016; von Lerber et al., 2017). All opti-
cal disdrometers have a smallest detectable size limit (e.g., 0.1–0.2 mm for 2DVD), which implies that mea-
surements close to this limit should be interpreted with care. A general behavior, which is revealed by all
instruments, is a “saturation” of aggregate terminal velocities (i.e., terminal velocities asymptotically
approaching a limiting value) at approximately 1m s−1 for unrimed particles and sizes larger than a fewmilli-
meters (Figure 1a).

Most ice microphysics schemes use two categories for unrimed ice particles, which are commonly denoted as
cloud ice and snow/aggregates. Relations between particle properties, such as size (e.g., the maximum
dimension Dmax), mass m, projected area A, or vterm, are defined for each category. Examples of the vterm

Figure 1. (a) In situ measurements of vterm of monomers (separated by monomer type; blue Kajikawa, 1972) and
aggregates composed of different monomers (green: LH74 Locatelli & Hobbs, 1974) and particle ensembles from the
PIP‐CARE data set (see section A0.1). (b) vterm of unrimed ice particles in two‐moment microphysics schemes. The
blue line represents the implementation of cloud ice (monomers), the green line the implementation for the snow
(aggregates) category in (solid lines, SB Seifert & Beheng, 2006) and (dashed lines, Morr Morrison et al., 2005).
The Predicted Particle Property (P3) scheme (Morrison & Milbrandt, 2015) assumes identical properties
for all unrimed particles (yellow line).
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dependence on size which are implemented in widely used two‐moment schemes are shown in Figure 1b.
When comparing these relations with observations (Figure 1a), we miss the saturation behavior of vterm
for larger sizes in most relations. This discrepancy is expected as most schemes use power laws, which are
unable to represent a saturation behavior. Alternative “Atlas‐type” three‐parameter fits have been suggested
(Seifert et al., 2014), but so far, they have not been tested thoroughly. The recent Predicted Particle Properties
(P3) scheme (Morrison &Milbrandt, 2015) uses only one ice category and a look‐up table approach for vterm,
which better matches the saturation at large sizes. At the smaller size range, the snow category is found for
all schemes to fall significantly faster than the ice category with the same size. Considering that vterm
depends strongly on m and A of the particle, it might sound plausible, that for example, an aggregate of a
few plates should fall faster than a single plate of the same size. Unfortunately, most observations do not pro-
vide sufficiently detailed information about monomer number and type which would be needed to answer
the question of whether there exists a “jump” in vterm for the number of monomers exceeding a certain
threshold. Fairly direct observations of the particles' m and A are only available from manual,
particle‐based observations (e.g., Locatelli & Hobbs, 1974).

An interesting new tool to better understand the underlying principles of aggregation and its effects on
particle properties are aggregation models (Hashino & Tripoli, 2011; Leinonen & Moisseev, 2015; Ori et al.,
2014; Przybylo et al., 2019; Westbrook et al., 2004a). Those models use idealized monomer shapes
(e.g., dendrites, needles, plates, and columns) with particle properties matched to in situ observations.
Aggregates simulated with the model by Westbrook et al. (2004a) helped to better understand theoretical
scaling relations associated to aggregation such as the increase of aggregate mass with size by a power of
two (Westbrook et al., 2004b), which was known from several previous in situ observations. This model
has been extended by Leinonen and Moisseev (2015) providing a large number of monomer shapes and
also provides an option to rime the aggregate (Leinonen & Szyrmer, 2015). This allowed to better under-
stand the evolution of size and mass of a large number of aggregates which were increasingly rimed
(Seifert et al., 2019).

To infer vterm from modeled ice particles or aggregates, computational fluid dynamics is an accurate but
also computational costly method. It has been recently applied to idealized ice particle shapes (Bürgesser
et al., 2019; Hashino et al., 2016; Nettesheim & Wang, 2018), and more computations with more complex
shapes can be expected shortly. Hydrodynamic theory is a computational cheaper alternative to calculate
vterm based on a number of bulk particle characteristic, rather than the complex 3D shape (e.g., Böhm,
1992; Heymsfield & Westbrook, 2010; Khvorostyanov & Curry, 2005). The accuracy of hydrodynamic the-
ories has recently been evaluated by ice particle analogs falling in an oil tank (Westbrook & Sephton,
2017). The experimental results show deviations smaller than 20% for the Heymsfield and Westbrook
(2010) theory. A problematic aspect of these theories is still the formulation of the scaling toward higher
Reynolds number (i.e., large particles) and the simulation of more complex particle shapes (Westbrook &
Sephton, 2017).

Aggregation models in combination with hydrodynamic theory have recently been used to study vterm of
aggregates (Hashino & Tripoli, 2011; Schmitt et al., 2019). Hashino and Tripoli (2011) identified a depen-
dency of the aggregation rate and aggregate mass on the mean size and type of the monomers. Schmitt et al.
(2019) analyzed vterm and its variability of simulated aggregates composed of hexagonal prisms taken from a
monodisperse monomer size distribution. They found that the variability of vterm is caused by the variability
of the number of monomers Nmono and the monomers' aspect ratio.

In this study, we aim to study the dependency of m, A, and vterm on size, monomer number, and type. For
this, we create a large number of aggregates with various monomer types including also mixtures of different
monomer types. The monomer size is sampled from a size distribution rather than a constant size to better
represent real ensembles of aggregates. Central questions of this study are, how important is the monomer
number and type information for parameterizing aggregate properties and how well can they be parameter-
ized by different functional relations?

To answer these questions, we describe in section 2 the aggregation model and the created data set of
unrimed aggregates as well as the hydrodynamic theory to calculate vterm based on m and A of these par-
ticles. The simulated particle properties are compared to in situ observations in section 3. Section
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4presents several parameterizations of the particle properties. Finally, in section 5, we use a 1D
Lagrangian particle model to test the impact of including different complexity of particle properties for
aggregation

2. Methods
2.1. Aggregation Model

We use the aggregation model developed by Leinonen and Moisseev (2015) which includes a large number
of realistic monomers (hexagonal plates, dendrites, columns, and needle). Originally, the aggregation model
was designed to produce realistic snow particle structures which can then be used to calculate their scatter-
ing properties (Leinonen & Moisseev, 2015; Leinonen et al., 2018). The model has also been used to system-
atically investigate microphysical processes, such as riming (Seifert et al., 2019).

The shape characteristics (length, thickness, etc.) of the monomers are predefined by geometric relations
based on in situ observations (Leinonen & Moisseev, 2015). The aggregation process starts with generating
Nmono monomers with sizes following a predefined inverse exponential probability density function
pd(Dmax),

pdðDmaxÞ ¼ λexpð−λDmaxÞ; (1)

where λ−1 is the size parameter of the monomer distribution and Dmax is the maximum size of the mono-
mer. The higher λ−1, the larger are the sizes of the monomers.

The monomers sizes are sampled from the monomer distribution and assembled until an aggregate
consisting of Nmono monomers is build up. In each aggregation step, pairs of particles are selected
according to a simplified gravitational collection kernel. The probability distribution of collision among
each possible particle pair is calculated as being proportional to the particle geometric cross sections
and differential fall speed (Westbrook et al., 2004a). The two colliding particles form an aggregate which then
becomes one of the candidates for the next aggregation step. This process includes the collision between
aggregates. The aggregation code is publicly available at https://github.com/jleinonen/aggregation, and
more details on the implementation can be found in Leinonen and Moisseev (2015). During the aggregation
process, the collecting particles are partially aligned with the principal axis in the x‐y plane. Rotations around
the principal axis are performed randomly with a standard deviation of 40°. The collected particles are ran-
domly aligned, whichmimics the complex flow in the vicinity of other particles (Leinonen&Moisseev, 2015).

The aggregation simulations performed in this study differ from previous studies in two main aspects. The
first aspect is the resolution of the particle structure. The particle is internally represented by a
three‐dimensional lattice with a predefined distance of the volume elements of typically 40 μm. This distance
was found to be sufficiently small for scattering computations, while being coarse enough in order to keep
the numerical costs for the scattering computations in a reasonable range. However, we discovered that
for small particle sizes, the theoretical relations for certain particle properties (see Fig. 1 in Leinonen and
Moisseev (2015)) are not exactly matched by the discretized particle. This discrepancy can be easily
explained when considering for example that plate monomers withDmax < 3.03 mm consist of only one layer
of volume elements if the default resolution of 40 μm is used. This does not necessarily affect the aggregate
properties of those monomers as shown in Leinonen andMoisseev (2015); however, in our study, the focus is
to investigate the transition from small to larger sizes particles. Hence, we need to refine the resolution espe-
cially for small particles.

As a compromise between computational feasibility and having fine enough resolved particles, aggregates
with Nmono ≤ 100 are simulated with a resolution of 5 μm, while aggregates with Nmono ≥ 100 are simulated
with 10‐μm resolution. With a resolution of 5 μm (10 μm), a plate monomer with Dmax= 3 mm has a thick-
ness of 4 (8) volume element layers. It should be noted that the sensitivity to resolution is smaller for mono-
mer types with less extreme aspect ratios (e.g., columns).

The second major difference to previous aggregation studies using the model by Leinonen and Moisseev
(2015) is that we extended the code in a way that we can also generate aggregates composed of monomers
with different habits. The motivation for this new feature was based on observations that larger snowflakes
often consist of a mixture of dendrites and needles (Lawson et al., 1998). The modified code extends
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Equation 1 to be the joint distribution of multiple mono‐dispersed distri-
butions. Each monomer distribution is defined by its own settings (e.g.,
monomer type, mean size, and truncation). The joint distribution is
defined by the relative weights of each mono‐dispersed distribution.
These modifications have been merged to the main aggregation code
and are also publicly available.

In order to account for a large variability of naturally observed particle
shapes (Bailey & Hallett, 2009), we simulated a large suite of aggregates
consisting of plates, columns, dendrites, needles, and mixtures of den-
drites and columns. The m−Dmax and A−Dmax relations for the mono-
mers are given in Table 1. Two sets of aggregates with mixed monomer
types were created. For the first mixture, the selection of the monomer
type is random with the same probability density function for both mono-
mer types (“Mix1”). This would represent a scenario, where dendrites

and needles coexist with similar PSD and likelihood of aggregation. For the second mixture, the monomers
with Dmax < 1 mm are columns, while dendrites are taken for larger monomers (“Mix2”). This choice is
motivated by the fact that at temperatures below −20°C, the particle shape is less distinct but mostly
described by polycrystals, while at temperatures between −20°C and −10°C, one finds more planar and
dendritic crystals (Bailey & Hallett, 2009). Considering a thick cloud, we could assume that the small poly-
crystal or columnar crystals forming in the upper part of the cloud begin to form the first aggregate and
then further grow by collection of larger dendrites at lower layers. Of course, both scenarios are quite ad
hoc, and more detailed studies are needed to better understand the real properties of mixed‐monomer
aggregates. Our mixtures are thus rather intended to qualitatively analyze the differences of mixed mono-
mer aggregates compared to single‐monomer type aggregates (as done in another recent study by
Dunnavan et al., 2019).

The aggregation process strongly depends on the number concentration of particles and their relative term-
inal velocity differences. In conditions which are less favorable for aggregation (e.g., low number concentra-
tion), the particles can grow by depositional growth to relatively large sizes before aggregation becomes the
dominant process. It is therefore possible that aggregation involves very different monomer sizes. In order to
account for this variability, we vary λ−1 in a large range from 50 μm to 10 mm with 500 different values of
λ−1, spaced evenly in the logarithmic space. The monomer distribution is limited to sizes of 100 μm up to
3 mm following Leinonen and Moisseev (2015) in order to be consistent with the typical size range of
observed ice particles. Due to this truncation of the inverse exponential distribution, themeanmonomer size
differs from λ−1 and ranges from 150 μm to 1.48 mm.

The spacing of the monomer number (Table 2) is finer at lowNmono and becomes more coarse at larger num-
bers. In this way, we can investigate the changes at small monomer numbers with greater detail. In fact, we
expect the largest changes in snow properties at the transition from single monomers to aggregates com-
posed of few pristine crystals as shown in earlier studies (Dunnavan et al., 2019; Schmitt & Heymsfield,
2010). The coarser spacing of Nmono also limits computational costs. With our settings, we obtain maximum
aggregates sizes ranging from 3 to 5 cm which means that we include also the typically observed large snow-
flakes during intense snowfall on the ground (Lawson et al., 1998).

In Figure 2, several examples of similar sized aggregates simulated with different combinations of λ−1,
Nmono, and monomer types are shown. In total, 105,000 particles were simulated. Apart from the visual dif-
ferences of shapes and structure, also the particle properties such as mass, area, or terminal velocity show a
wide range of values although all aggregates have maximum sizes ranging between 3 and 5 mm.

2.2. Hydrodynamic Models

Hydrodynamic models are needed in order to derive the terminal velocity vterm from the particle's mass m,
projected area A, and maximum size Dmax. The most commonly used hydrodynamic models are Böhm
(1992, hereafter B92), Khvorostyanov and Curry (2005, hereafter KC05), and Heymsfield and Westbrook
(2010, hereafter HW10). All models are based on particle boundary layer theory and rely on the Best number
(X) approach (Abraham, 1970). vterm is calculated via,

Table 1

Mass‐Size (mðDmax; Nmono ¼ 1Þ ¼ am;1D
bm;1
max ) and Projected Area‐Size (Að

Dmax; Nmono ¼ 1Þ ¼ aA;1D
bA;1
max ) Relationships for Monomers (Nmono=1)

used in the Aggregation Model

Monomer
type am,1 (kg m−bm ) bm,1 aA,1 (m

2 m−bA ) bA,1

Plate 0.788 2.48 0.631 1.99
Needle 0.005 1.89 0.002 1.42
Dendrite 0.074 2.33 0.142 1.94
Column 0.046 2.07 0.008 1.54

Note. All monomers have a grid resolution of 5 μm. The shapes are prede-
fined in the aggregationmodel andmostly based on Pruppacher and Klett
(1998) (see Fig. 1 in Leinonen and Moisseev, 2015).
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vterm ¼ η Re ðXÞ=ðρaDmaxÞ; (2)

where η is the dynamic viscosity, Re the Reynolds number (parameterized as a function of X), and ρa is the
air density. X is defined as

X ¼ CdRe
2; (3)

where Cd is the drag coefficient. The proportionality of X to the particle properties is given by

X ∼ mD0:5
maxA

−0:25; (4)

for B92.

For this study, we decided to use B92 because it best represents the saturation of vterm for our simulated par-
ticles at larger aggregate sizes (Figure A2) in accordance with observations (Figure 1). B92 includes an

Table 2
Grid Resolution, Size Parameter λ−1 of the Monomer Distribution, and Number of Monomers Nmono used to Create the
Aggregate Data Set

Resolution λ−1 Nmono Dmax of the aggregate

5 μm 50 μm–10 mm 1, 2, 3, …, 10, 20, 30, …, 100 ≈1–2 cm
10 μm 50 μm–10 mm 200, 300, …, 1,000 ≈3–5 cm

Note. Dmax denotes the maximum size range of the generated aggregates in the data set.

Figure 2. Examples of simulated aggregates with various size parameters (λ−1), number of monomers Nmono, and
monomer types. All aggregates have a comparable maximum size (in the range between 3 and 5 mm). The terminal
velocity vterm is calculated using the hydrodynamic model by Böhm (1992; see section 2.2 ).
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empirical correction of X due to wake turbulence which increases the drag of large particles. X depends on
the aspect ratio α, which is larger than one for prolate and smaller than one for oblate particles. For this
study, we set α to 1.0, because aggregates with small values of Nmono are not easily classifiable as either pro-
late or oblate and show in general a large variability of α (Jiang et al., 2019).

To be able to interpret the dependency of vterm on Nmono in section 4.3, we sketch here how vterm scales with
Dmax in the simplified case of Re≪1 (Stokes drag) and Re≫ 1 (Newtonian drag). For Re≪1, CD is approxi-
mately proportional to 1/Re. Inserting this approximation and Equations 3 and 4 into Equation 2 yields

vterm ∼ mD−0:5
maxA

−0:25: (5)

If we approximatem and A by the power lawsm¼ amDbm
max andA¼ aADbA

max, we can express vterm solely as a
function of Dmax:

vterm ∼ Dbm−0:5−0:25bA
max : (6)

For Re≫ 1, CD is approximately constant. In this case, Equation 3 gives us Re∼X0.5, and by using again the
Equations 2 and 4, we get

vterm ∼ mD−1:5
maxA

−0:25
� �0:5 ∼ Dbm−1:5−0:25bA

max

� �0:5
: (7)

In both extreme cases of Re, vterm increases the faster with size the higher bm−0.25bA is, and we expect this
also to be in between these cases where Re transitions from Re∼X to Re∼X0.5. This has certain implications
for the dependency of vterm on Nmono (section 4.3).

The differences between the three hydrodynamic models as well as an analysis of the potential impact of
changing to different hydrodynamic models is discussed in the Appendix A2.

3. Comparison of the Simulated Particle Properties to In Situ Observations
3.1. Mass‐ and Area‐Size Relations

Particle properties, such asm, A, and Dmax, are used in hydrodynamic models to calculate vterm (section 2.2).
We compare our relations of these particle properties and vterm with frequently used relations that are based
on in situ measurements from Locatelli 306 and Hobbs (1974, LH74) and Mitchell (1996, M96). LH74
defined an equivalent diameter that is equal to “the diameter of the smallest circle into which the aggregate
as photographed will fit without changing its density.” M96 collected observations as a function of Dmax

without specifying the exact definition. The definitions of particle size used in these studies are limited by
the observation equipment used, and the conversion from one to the other is not trivial. In our simulation
study, we can access the full 3D structure of the particles and use the true maximum size (i.e., the maximum
distance between any two points of the particle) as size definition.

Except for the aggregates of dendrites, which have a considerably lower density than LH74 aggregates of
dendrites, the absolute value ofm of the simulated aggregates is similar to the observations, where the same
monomer type is available (Figure 3). The slope of them−Dmax relation from this study is comparable to the
slope fromM96, while LH74 report lower slopes for the aggregates of dendrites. Them−Dmax relation of the
mixed aggregates (“aggregates of unrimed radiating assemblages of plates, side planes, bullets, and col-
umns,” LH74 mix), however, has a similar slope to the simulated Mix2 aggregates. The mixS3 and sideplane
aggregates from M96 are similar to many simulated aggregates (composed of different monomers).

M96 derived A−Dmax relations for “assemblages of planar polycrystals in cirrus clouds” (M96 polycrystal in
Figure 3) based on observations in a relatively small size range and applied them to other aggregate types.
This A−Dmax relation is also used in several microphysics schemes (Brdar & Seifert, 2018; Morrison &
Milbrandt, 2015). The absolute value of A given in M96 is slightly higher than A of the simulated particles
from this study (except for the aggregates of plates). The slope of the A−Dmax relations is slightly higher
(bA = 1.88) in M96 observations compared to the relations from this study (1.79 < bA < 1.88). Observations
of aggregates composed of the same monomer types than the one used in these studies are not available.
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3.2. Terminal Velocity‐Size Relations

Observations of vterm versus size have been reported using several different definitions of the diameter
(Szyrmer & Zawadzki, 2010). To facilitate a consistent comparison between the observations from the PIP
instrument (which are described in Section A0.1) and vterm of the simulated aggregates, we use the same
bin sizes as the PIP instrument to derive the median vterm. Moreover, we derive the maximum dimension
from a side projection of the modeled particle in the same way as in the observations from the PIP instru-
ment described by (von Lerber et al., 2017) (Dmax,side; Figures 3c and 3d). Displayed are the median and
the 25th and 75th percentiles of vterm of the detected particles. Bins with fewer than 1,000 particles are
excluded from the statistics. Although LH74, M96, and Kajikawa (1972, K72) did not use the same definition
as the PIP‐CARE data set, fits from this study are also shown in Figures 3c and 3d because they can ease the
comparison with other studies.

At small sizes (Dmax< 1 mm), vterm of the simulated aggregates of dendrites is close to vterm of the monomers
from Kajikawa (1972, K72, Figure 3c). The plate monomers in K72 are reported with a similar vterm as the
aggregates of plates, needles, andMix1 (which all have similar values). Note that vterm of plates and dendrites
from K72 and vterm of all aggregates simulated in this study (except for the aggregates of columns and
“Mix2”) are considerably smaller than vterm of the aggregates from the PIP‐CARE data set and LH74. The

Figure 3. Particle properties of simulated aggregates from this study (green and black), from previous studies (Kajikawa,
1972; Locatelli & Hobbs, 1974; Mitchell, 1996) (M96, LH74, and K72) and measurements of ice particle observed by
PIP at the CARE site (brown, see text). (a) m versus Dmax; (b) A versus Dmax; (c) median (and 25th and 75th
percentile for PIP CARE) of vterm versus side projected maximum dimension Dmax,side for data from this
study and versus the size definition of the respective study (vterm is directly observed in K72 and LH74
and calculated with B92 from the m−Dmax and A−Dmax relations of M96) (d) same as (c) but for
larger sizes. Note that K72 observations are for single monomers.
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observations from LH74 are within the 25th and 75th percentile of the
PIP‐CARE data set. Themedian of vterm of the simulated aggregates of this
study increases faster with size compared to the in situ observations at
sizes of several millimeters (Figure 3d). Only vterm of the mixture of small
columns and large dendrites (“Mix2”) has a comparably low slope.
Potential reasons for this mismatch are limitations of the observations at
these sizes (Brandes et al., 2008), turbulence affecting the observations
(Garrett & Yuter, 2014), missing processes in the aggregation model
(e.g., depositional growth on aggregates), imperfect parameterizations in
the hydrodynamic model, or the dominance of monomer type mixtures
in the aggregates.

Figures 3c and 3d also show vterm calculated with B92 and the m−Dmax

and A−Dmax relations from M96 (which did not measure vterm
directly). The simulated slope of vterm from M96 observed aggregates is
similar to the one simulated in this study, while the absolute value is
slightly higher.

At sizes larger than about 5 mm, the simulated and the observed vterm
reach a saturation value close to 1 m s−1. The median of vterm of most
simulated aggregates lies within the 25th and 75th percentile in the sub-
centimeter range, except the aggregates with the most extreme density
(aggregate of dendrites and aggregates of columns). Thus, based on this
comparison, these aggregates can be considered most representative for
many aggregates found in the atmosphere.

4. Parameterization of Particle Properties

The relationships between hydrometeor properties such as mass, size, projected area, and velocity are key
components in any ice microphysics scheme, and they strongly influence various microphysical processes
(e.g., sedimentation, depositional growth, aggregation, or riming). Different microphysics schemes require
a more or less simplified parameterization of particle properties. To address these different needs, we derive
in this section fits for m and A as a function of Dmax and Nmono that can be used in microphysics schemes,
which can predictm and Nmono given a certain Dmax (section 4.2). Of course, most bulk schemes require less
detailed fits, and hence, we also derive fits of m, A, and vterm as a function of Dmax or the mass‐equivalent
diameter Deq. This also allows us to assess the potential error of the less detailed fits (section 4.5), while their
impact on modeled processes is studied later in section 5.

4.1. Fitting Approach for Monomer Number‐Dependent Particle Properties

The particle properties of the monomers are defined a priori in the aggregation model and based on
well‐established observations. In contrast, the aggregate properties are determined by the aggregation pro-
cess and change with increasing Nmono. As we are particularly interested in quantifying how key particle
properties of aggregates differ from the properties of the same‐sized monomers, we normalize the aggregate
properties by the property of a monomer with the same Dmax

f pðDmax; NmonoÞ ¼ pðDmax; NmonoÞ
pðDmax; Nmono ¼ 1Þ: (8)

p represents the particle properties (mass or area), p(Dmax,Nmono=1) is the property of single monomers
(given in Table 1), and fp is the normalizing function. A normalizing function which is larger (smaller) than
1 indicates that the aggregate properties are larger (smaller) than its composing monomer with the same size
(Figure 4).

To fit fp to various monomer types, we parameterize fp by a power law and express the coefficients by rational
functions to fit the dependency on Nmono similar to the approach presented in Frick et al. (2013).

Figure 4. Schematic illustration of how compactness of aggregates can
cause them to be heavier or lighter compared to a monomer of the same
size. For simplicity a monodisperse monomer size distribution with
monomer sizes of Dmax = 0.2 mm is used. The red line indicates the
maximum theoretical compactness of mass of an ice sphere. The black lines
shows the m−Dmax relation of the monomer (plate). The green line
represents the m−Dmax relation of the least compact configuration of the
plate monomers in an aggregate by aligning the plates along their
maximum dimension. Particles have lower mass (fm < 1) in the green
shaded area and larger mass (fm > 1) in the red shaded region
compared to an equal‐size plate.

10.1029/2020MS002066Journal of Advances in Modeling Earth Systems

KARRER ET AL. 9 of 26



f pðDmax; NmonoÞ ¼ aðNmonoÞ DbðNmonoÞ
max

¼ 10

af ;p log10ðNmono Þ
1þa′

f ;p
log10ðNmono ÞD

bf ;p log10 ðNmonoÞ
1þb′

f ;p
log10 ðNmonoÞ

max

: (9)

The coefficients of fp for all monomer types can be found in Table 3. Note that we excluded the mixture of
monomer types from the monomer‐dependent analysis because our normalization approach cannot be
applied to monomer mixtures.

4.2. Dependence of Aggregate Mass and Area on Monomer Number

Motivated by the common classification of unrimed ice hydrometeors in cloud ice and snow in many bulk
schemes, we will investigate in this section how mass and area change when building up an aggregate with
an increasing number of monomers. In particular, we want to explore whether the properties change
smoothly with monomer number or whether they show any sharp transition at certain monomer numbers.

When we compare the mass of an aggregate with the mass of its monomer of the same size, we find in some
conditions the aggregate to be heavier or lighter than themonomer. The relevant mechanisms which explain
this behavior are illustrated in Figure 4 for aggregates of plates. Note that we assume for simplicity a mono-
disperse monomer distribution in Figure 4. When we consider pure depositional growth, we obtain a specific
m−Dmax relation for eachmonomer type (Table 1; black line in Figure 4). One extreme aggregation scenario,
which leads to the maximal size of an aggregate with a given number of monomers (which in this simplified
case of a monodisperse distribution also determines its mass), would be if we assume that all monomers
align along their maximum dimension. Clearly, the resulting aggregate would have a smaller m than a
monomer of the same size. Of course, this maximal elongated assemblage of monomers is rather unlikely,
and thus, the aggregate will have a more compact structure. If we imagine rearranging the monomers inside
the aggregate in a progressively more packed configuration (indicated by the horizontal arrow in Figure 4),
we might be able to reach the point where the size of the aggregate equals the one of the equal‐mass mono-
mer. At this point, it might be even possible to pack the monomers in a way that their size is smaller than an
equal‐mass monomer. A simple example of such an extreme packing would be to stack a number of plates on
top of each other, that is, along their smallest axis. Whether an aggregate can be smaller than an equal‐mass
monomer is of course also dependent on how close the monomerm−Dmax relation is to the theoretical max-
imum packing of an equal‐mass sphere.

The dependency of A on Nmono can be understood analogously. Also, for A, the maximal elongated assem-
blage of the monomers leads to a lower A of the aggregate compared to the monomer of the same size, but in
reality, the monomers will assemble in a more compact way. In addition, we have to consider that A is not
simply additive as it is the case form. Overlap (in the horizontally projected plane) and nonhorizontal align-
ment of the constituting monomers lead to a smaller A than the sum of A of the constituting monomers.
Based on these simplified considerations, it becomes clear that the dependency ofm andA onNmono is deter-
mined by the exponent of the monomer power laws and the overall “compactness” of the aggregates.

When considering themonomer dependence of all simulated aggregates, we find themost different behavior
for plate and needle aggregates. For plate aggregates, m and A steadily decrease for a given Dmax with an
increasing number of monomers (Figures 5b and 5d). From the principal considerations discussed in
Figure 4, this behavior can be well understood. The plate monomers have the largest exponent (bm,1 = 2.48)
of all monomers (Table 1), while the monomers itself show relatively loose connections within the aggregate
(Figures 2a–2c). Interestingly, the aggregate mass for very small Nmono can be slightly larger than the

Table 3
Coefficients in the Normalizing Functions fm and fA (Notation as in Equation 9) for Different Monomer Types

Monomer type af,m a′f,m bf,m b′f,m af, A a′f,A bf, A b′f,m

Plate −0.673 0.364 −0.092 0.091 −0.473 0.322 −0.021 −0.166
Needle 0.162 −0.008 0.018 0.102 0.349 0.005 0.060 0.013
Dendrite −0.288 0.215 −0.042 −0.056 −0.100 0.131 −0.019 −0.059
Column 0.079 −0.006 0.033 0.086 0.273 0.025 0.058 0.034
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equal‐size monomer, while A is immediately decreasing for Nmono > 1. This effect can be easily understood
when considering, for example, two plates that connect in a 90° angle of their major axes.

An opposite behavior is found for needle aggregates (Figures 6b and 6d). With increasingNmono, bothm and
A of the aggregates become larger than the equal‐size monomers. In contrast to plates, the needle monomers
have the lowest exponents for the m and A power laws (Table 1). The aggregates of the more
one‐dimensional needles also show a more compact packing.

The deviation of the particle properties of the individual simulated particles from the fit is characterized by
the mean absolute error (Table A2), which is smallest for plates (0.1190 for fm and 0.0816 for fA) and largest
for needles (0.3737 for fm and 0.3926 for fA). The mean absolute error also shows that the monomer
number‐dependent fit is superior to the more simple power law fit (section 4.4) when there is a substantial
dependence of the particle property on Nmono.

Dendrite and column aggregates have been analyzed similarly (according figures can be found in Supporting
Information S1). The dendrites are similar to plates, while the columns are similar to needles. However, for
all aggregate types, we find on average a relatively smooth transition ofm and Awhen changing from single
monomers to aggregates. For these two particle properties, we are unable to identify a “jump” due to the
onset of aggregation. The next sections will show whether this behavior will change when deriving terminal
velocity from m and A.

4.3. Dependence of Terminal Velocity on Monomer Number

The terminal velocity for all aggregates was calculated with the hydrodynamic model of B92 (section 2.2). In
Figure 7a, vterm is shown as a function of Dmax for plate aggregates. Note that the fits have been derived by
applying B92 to them−Dmax and A−Dmax fits (Table 3) rather than fitting them directly to the cloud of indi-
vidual vterm. In this way, we are consistent with the way how vterm relations are usually connected tom−Dmax

in bulk schemes. The terminal velocity of plate aggregates steadily decreases with increasing Nmono. This
dependency is much less pronounced at small Dmax as compared to the largest sizes. However, it should be
noted that the fits for very small monomer numbers are probably unrealistic for large Dmax as we do not

Figure 5. (a and c)m and A of the simulated plate aggregates as a function of Dmax. (b and d) The normalizing functions
fm and fA (defined in Equation 8) quantify the deviation of the aggregates' m or A from a monomer with same Dmax.
The dots indicate the properties of individual particles with the color showing Nmono. Lines indicate m and A for
constant Nmono as a result of the monomer number dependent fits and for all aggregates (Nmono > 1).
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expect aggregates of centimeter sizes to be composed of only a few large plates. In fact, the here used
geometrical relations for the plate monomers are only valid up to a size of 3 mm (Pruppacher & Klett, 1998).

We find a similar decreasing vterm with increasing Nmono for dendrites (see supporting information S1). As
we might expect from the different change of m and A with Nmono seen in Figure 7a, also the behavior of
vterm with increasing Nmono is different for needles (Figure 7). Needle aggregates seem to fall slightly faster
when their monomer number increases. Interestingly, all aggregates reveal a very low dependence of vterm
on monomer number at small sizes which is in contrast to assumptions in some microphysics schemes that
distinguish between monomers and aggregates (e.g., Seifert & Beheng, 2006; Tsai & Chen, 2020). Besides, all
aggregates reveal a saturation of vterm at large (centimeter) sizes which is in good agreement with

Figure 6. Same as Figure 5 but for aggregates of needles.

Figure 7. vterm versus Dmax for the simulated aggregates of plates and needles. The dots indicate the properties of individual particles with the color showing
Nmono. Lines indicate vterm for constant Nmono as a result of the monomer number dependent fits and for all aggregates (Nmono > 1). Note that the fits have
been derived by applying B92 to the m−Dmax and A−Dmax (Table 3) fits rather than fitting them directly to the cloud of individual vterm.
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observations (Figure 1). However, the absolute value of the saturation v-

term ranges from 0.8 to 1.6 m s−1 depending on the monomer type.

Because vterm of monomers and aggregates is converging toward the same
value at small sizes (Figure 7), we can use the previously derived scaling
relation (Equations 6 and 7) to relate the dependency of vterm on Nmono

to the exponents bm and bA of the monomers (bm,1 and bA,1) and aggre-
gates (bm,agg and bA,agg) in the m−Dmax relation. Starting from a similar
value of vterm at small sizes, vterm of an average aggregate increases slower
than vterm of a monomer if smonodep=bm,agg−bm,1−0.25(bA,agg−bA,1)<0 (cf.
Equations 6 and 7). As a result, at larger sizes, vterm of the aggregate is
lower than vterm of the monomer. In an analog way, vterm of an aggregate
is larger than vterm of the monomer if smonodep>0. As bm,agg and bA,agg are

similar for all aggregates (Table 4), the sign of vterm with increasing Nmono depends mainly on bm,1 and bA,1.
For plates and needles, smonodep equals −0.21 and 0.12, respectively.

How the particle properties change with increasing Nmono as well as the absolute values of calculated vterm
depends on the choice of the hydrodynamic model. Finding the optimal formulation of hydrodynamic
models for ice and snow particles is still an active field of research (Nettesheim & Wang, 2018; Westbrook
& Sephton, 2017) and outside the scope of this study. In Appendix A2, we tested the sensitivity of the results
to the choice of the hydrodynamic model for plate aggregates. HW10 seems to yield overall similar results to

Table 4

Mass‐Size (mðDmaxÞ ¼ am;aggD
bm;agg
max ) and Projected Area‐Size (AðDmaxÞ ¼

aA;aggD
bA;agg
max ) Relationships for Aggregates (Nmono > 1) in the Aggregate

Model

Monomer
type am,agg (kg m−bm ) bm,agg aA,agg (m

2 m−bA ) bA,agg

Plate 0.076 2.22 0.083 1.79
Needle 0.028 2.11 0.045 1.79
Dendrite 0.027 2.22 0.090 1.88
Column 0.074 2.15 0.060 1.79
Mix1 0.045 2.16 0.070 1.83
Mix2 0.017 1.94 0.066 1.79

Figure 8. Particle (a and c) m and (b and d) vterm as a function of Dmax calculated with B92 using the derived
m/A−Dmax relations (Tables 1 and 4). Particles are separated into (a and b) single monomers and (c and d)
aggregates composed of various monomer types (see legend).
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B92 except for the saturation at large diameters. Due to the absence of the
turbulence correction in HW10, vterm increases also at large diameters.
For KC05, the monomer dependence is much weaker. However, all
hydrodynamic models show an overall small monomer dependence at
small particle sizes.

It has also been observed (e.g., Garrett & Yuter, 2014) that tumbling of
particles caused for example by turbulence might decrease the effective
projected area and therefore increase vterm. We also tested the sensitivity
of our results to different degrees of tumbling (section A0.2.2). As
expected, the effect of tumbling is largest for single crystals (due to their
more extreme aspect ratio) but strongly decreases for aggregates.
Certainly, for aggregates, the choice of the hydrodynamic model has a
larger effect of vterm than different assumptions on particle tumbling.

4.4. Mean Particle Properties of Monomers and Aggregates of
Different Monomer Types

The relatively continuous change of particle properties with Nmono found
in the last section justifies a simplified fit, which is also necessary for

implementing the results into common bulk microphysics schemes. These schemes often only contain
two classes for unrimed ice particles, usually denoted as cloud ice (monomers) and snow (aggregates).

Figures 8a and 8b show the derivedm−Dmax relations for single monomers (Nmono=1) and the derived vterm
based on them−Dmax andA−Dmax relations summarized inTable 1. Similarfits ofm and vterm to aggregates of
anymonomernumber larger than 1 are shown inFigures 8c and 8d; thefit coefficients can be found inTable 4.

The m−Dmax relations for monomers show a larger spread especially for larger sizes as compared to the
aggregates. This is expected considering that the exponents for monomers range between 1.89 and 2.48
(Table 1), while the exponents for aggregates are between 1.95 and 2.22 (Table 4). The values for aggregates
agree well with theoretical aggregation studies (Westbrook et al., 2004b) as well as in situ observations
(section 3.1). Despite the similar exponent, the effective density of the aggregates varies considerably
(compare m at a given size in Figure 8c), which is in agreement with previous studies (Dunnavan et al.,
2019; Hashino & Tripoli, 2011), even though their approaches to simulate aggregates are very different from
the approach used in this study. Aggregates of columns exhibit the highest density, while aggregates of
dendrites show the lowest density.

The differences in the m−Dmax relation are linked to the resulting vterm−Dmax relation (Figures 8c and 8d).
AtDmax = 5 mm, the vterm of different monomers spread nearly 1 m s−1. The differences are in general smal-
ler for aggregates. Interestingly, most aggregate types reveal very similar vterm. The main exceptions are den-
drite aggregates with the slowest and column aggregates with the fastest vterm. vterm of the Mix2 aggregates
increases slower with increasing Dmax compared to the other aggregates.

Similar to the previous monomer number dependent fits, also the “two‐category” fits show similar vterm at
small sizes. The monomer type appears to have in general a much larger impact on vterm than the classifica-
tion into certain Nmono regimes.

4.5. Power‐Law and Atlas‐Type Fits for Terminal Velocity

Power‐law fits for m, A, and vterm are commonly used in bulk schemes. Especially for vterm, the power law
introduces inconsistencies with observations because a saturation value for vterm as observed for raindrops
or snowflakes cannot be represented. Instead of using standard power laws in the form,

vðDmaxÞ ¼ avDmaxD
bvDmax; (10)

and the two fit parameters avDmax and bvDmax
, Atlas et al. (1973) proposed a three‐parameter (αDeq , βDeq

, and

γDeq
) formulation

Table 5
Derived Coefficients of the Power‐Law and Atlas‐Type Fits (Equations 10
and 11) for Monomers and Aggregates of Different Monomer Types

Monomer

type

αDeq

(m s−1)

βDeq

(m s−1)

γDeq

(m −1)

av;Dmax

(m1−bv;Dmax s−1) bv;Dmax

Nmono = 1
Plate 2.265 2.275 771.138 90.386 0.755
Needle 0.848 0.871 2,276.977 9.229 0.481
Dendrite 1.133 1.153 1,177.000 41.870 0.755
Column 1.629 1.667 1,585.956 22.800 0.251
Nmono > 1
Plate 1.366 1.391 1,285.591 30.966 0.635
Needle 1.118 1.133 1,659.461 17.583 0.557
Dendrite 0.880 0.895 1,392.959 24.348 0.698
Column 1.583 1.600 1,491.168 23.416 0.534
Mix1 1.233 1.250 1,509.549 21.739 0.580
Mix2 1.121 1.119 2,292.233 8.567 0.393
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vtermðDeqÞ ¼ αDeq − βDeq
expð−γDeq

DeqÞ: (11)

Formulating this “Atlas‐type” fit with the mass equivalent diameter Deq

instead of Dmax has been found to provide optimal fit quality for snow
aggregates (Seifert et al., 2014). For small (large) values of Deq, vterm
approaches αDeq − βDeq

(αDeq ). With increasing values of γ, the transition

from small to larger values of vterm is shifted toward larger values of Deq.
Approximations for bulk collision rates based on Atlas‐type fits can be
found in Seifert et al. (2014) which makes them usable in bulk microphy-
sics schemes without the necessity of look‐up tables.

Power‐law and Atlas‐type relations have been applied to the various
aggregates and the fit coefficients are summarized in Table 5. For the fit-
ting, we did not use vterm of the individual particles but directly applied to
fit to vterm derived with B92 and the existing m−Dmax and A−Dmax

relations.

In Figure 9, the different fits are compared for plate monomers and their
aggregates. Note that the saturation region (Dmax > 1 cm) has been
excluded for the power‐law fits. It can be seen in Figure 9b that the
Atlas‐type fit is very close to the theoretical line calculated with B92 and
the m−Dmax and A−Dmax relations. The power‐law fits (Figure 9a) pro-
vide only a close fit to the theoretical values at the smaller size range.
Between 300 μm and 4 mm, they cause a slight underestimation, while
at larger sizes, they increasingly overestimate vterm. Similar fits have been
derived for all aggregate types (Table 5, figures for other monomer types
similar to Figure 9 can be found in the supporting information S1).

When we compare the calculated vterm with some widely used microphy-
sics schemes (Figure 9c), we find most schemes to overestimate vterm at
small sizes (except of the cloud ice category in Morrison et al., 2005).
The absolute values for vterm at small sizes are strongly dependent on
monomer type, and hence, additional constraints should be provided by
additional observations. However, the aggregation model shows indepen-
dent on the monomer type that at submillimeter sizes, there should be no
strong “jump” in vterm between ice particles and small aggregates. Also, in
the centimeter‐size range, models using a power‐law formulation are
strongly overestimating vterm for all aggregate types.

5. Application and Sensitivity Tests in the Lagrangian
Particle Model McSnow

In this section, we will test the possible impact of implementing particle
properties with different amount of complexity (monomer number depen-
dence) or different fitting functions (power law vs. Atlas type) on the
simulation of sedimentation, aggregation, and depositional growth. For
this, we use a one‐dimensional setup of the Lagrangian particle model
McSnow (Brdar & Seifert, 2018), which provides the flexibility to imple-
ment the different particle property formulations.

For simplicity, only sedimentation, depositional growth, and aggregation are considered in our simulations.
Aggregation is calculated with a Monte‐Carlo algorithm following Shima et al. (2009), and the sticking effi-
ciency of Connolly et al. (2012) is used. McSnow is based on the Lagrangian super particle approach (Shima
et al., 2009), which allows deriving not only the particle mass and its multiplicity Xmult but also predicts the
number of monomers the particle is composed of. This information is key to test the Nmono dependent par-
ticle relations. The thermodynamic profiles and the overall setup is similar to previous simulation studies

Figure 9. vterm of individual plate aggregates (gray scale, a–c) and vterm
derived with B92 and the m/A−Dmax of plate monomers (Table 1, solid
blue line in a and b) and aggregates (Table 4, solid green line in a and b).
Power‐law (dashed‐dotted, a) and Atlas‐type fits (dashed‐dotted, b) have
been applied to the directly calculated vterm (solid lines) rather than
the individual points. (c) vterm used in microphysics schemes
(same as in Figure 1b).

10.1029/2020MS002066Journal of Advances in Modeling Earth Systems

KARRER ET AL. 15 of 26



with McSnow in Brdar and Seifert (2018) and Seifert et al. (2019). Particles are initialized at the upper
boundary of the 5‐km thick domain with a mass flux of Fm=2·10

−5 kg s−1 and a mean mass of the
particle size distribution of mmean= 2·10−10 kg. The initial ice particles follow a generalized gamma
distribution of particle mass with a shape parameter of 0 and a dispersion parameter of 1/3 (following Eq.
9 in Khain et al., 2015). The temperature decreases linearly from 273.1 K at z = 0 km to 242.2 K at
z = 5 km. The supersaturation over ice is held constant at 5% with respect to ice in the whole column and
is not consumed by the growth of the particle. The simulations are performed with 250 vertical levels,
which result in a vertical resolution of 20 m. The model time step is set to 5 s, and the initial multiplicity
is chosen to be 1,000. The simulations are run for 10 hr, from which the last 5 hr are averaged in 10‐min
intervals to reduce noise in the analyzed profiles.

Figure 10. Idealized McSnow simulation using the Nmono‐dependent fit for plates (“monodep”; Table 3), the separation
between Nmono=1 and Nmono > 1 (“binary”; Tables 1 and 4) and single relation (the one fitted to all aggregates) for
all Nmono (“constant”; Table 4) for plates. For each individual super particle, B92 is used directly to calculate
vterm. Shown are height profiles of (a and b) number flux FN, (c and d) mass flux Fm, and (e and f) mean mass
mmean. The particles are categorized into Nmono = 1 (left) and Nmono > 1 (right).
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In the following, we will focus the comparison on particle number flux (FN), mass flux (FM), and mean mass
mmean (which is the ratio between the integrated mass density qm and the integrated number density qN).

In the first simulation experiment shown in Figure 10, we include particle properties for which the full
Nmono dependence is taken into account (Table 6). In this setup, we call hereafter the control simulation
(“CTRL”). Profiles are separated into single monomers (Nmono = 1) and aggregates (Nmono > 1) to better dis-
tinguish the effects on what we might define as “cloud ice“ and “snow” category in a bulk scheme. This
separation might be important considering that there can be cases of weak aggregation. With weak aggrega-
tion, most of the particles will remain monomers, and thus, it is especially important to match profiles of
these particles accurately.

In general, aggregation decreases the number flux (FN), while the increase in the mass flux (Fm) is due to
depositional growth. The mass flux of aggregates increases also due to conversion from monomers to aggre-
gates by aggregation. The combination of both processes is causing mmean to continuously increase toward
the surface. Aggregation rates in McSnow are proportional to the gravitational collection kernel (Eq. 21 in
Brdar & Seifert, 2018). Thus, the probability of collision for two particles is high if they have strongly differ-
ent vterm and if the sum of their cross‐sectional areas is large. FN of the monomers (Nmono = 1) decreases
monotonically with decreasing height because the monomers are converted into aggregates (Nmono > 1)
by the aggregation process and there is no source of monomers like nucleation considered (Figure 10a).
This decrease of FN (and increase of mmean) is especially strong at heights between 2 and 3 km. This region
of enhanced aggregation is found at heights where the temperature is close to −15°C where the sticking
efficiency has a local maximum. As a result of the conversion of monomers to aggregates, FN of the
aggregates increases at heights higher than about 3.5 km (Figure 10b). At lower heights, the number of
aggregate‐aggregate collisions outweighs the number of monomer‐monomer collisions, and thus, FN of
the aggregates decreases.

The signature of the conversion from monomers to aggregates is also seen in Fm of the monomers
(Figure 10c). Especially in the region of enhanced aggregation, this leads to a strong decrease of Fm. In
the heights above this region, depositional growth outweighs the loss of mass of the monomers to the
aggregates, and thus, there is an increase of Fm with decreasing height. Fm of the aggregates increases
monotonously due to both depositional growth of the aggregates and conversion from monomers to

Table 6
Settings of the McSnow Control (CTRL) and Sensitivity Runs

Simulation Habit
m−Dmax/A−Dmax

relations
vterm−Dmax
relations

Precipitation
rate (mm h−1)

(difference to CTRL)

mmean,sens (μg)
(mmean,sens/
m mean,CTRL)

in Figure 10
CTRL/monodep Plate fp(Nmono,Dmax) B92 1.844 4.214
Binary Plate fp(Nmono=1;Nmono>1,Dmax) B92 1.763 (−4.4%) 5.241 (1.2)
Constant Plate fp(Nmono>1,Dmax) B92 1.833 (−0.6%) 5.789 (1.4)
in Figure 12
Atlas Plate fp(Nmono=1;Nmono>1,Dmax) Atlas type 1.881 (+2.0%) 4.424 (×1.0)
Powerlaw Plate fp(Nmono=1;Nmono>1,Dmax) Power law 1.761 (−4.5%) 21.013 (×5.0)
Powerlawlimit Plate fp(Nmono=1;Nmono>1,Dmax) Power law

(imposed limit:
2.106 (+14.2%) 3.087 (×0.7)

vterm<¼ αDeq )

in Figure 11
Needle CTRL/monodep Needle fp(Nmono,Dmax) B92 1.988 13.173
Needle Binary Needle fp(Nmono=1;Nmono>1,Dmax) B92 2.019 (+1.6%) 10.443 (0.8)
Needle Constant Needle fp=f (Nmono>1,Dmax) B92 2.038 (+2.5%) 10.390 (0.8)

Note. The second column specifies the monomer type from which the m−Dmax and A−Dmax (and vterm−Dmax for the Atlas and power law run) fit is
taken. The third column denotes how the Nmono dependency is represented. fp(Nmono,Dmax) is the normalizing function with full Nmono dependence
(section 4.1), fp(Nmono=1;Nmono>1,Dmax) denotes only a binary seperation in Nmono=1 and Nmono>1, and fp=f (Nmono>1,Dmax) indicates that the fit for
all aggregates Nmono>1 is taken for all particles (section 4.4). The fourth column indicates whether vterm is calculated using B92 or with a parameterized
relation of vterm−Dmax (section 4.5). The fifth column shows the precipitation rate (Fm(z = 0 m)) and in brackets its deviation from the “CTRL” run. The
last column lists the mean mass mmean at the surface and the ratio of mmean between the simulation and its “CTRL” run (in brackets).
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aggregates (Figure 10d). In this setup, the change of Fm with height is governed by vterm and qN at a given
height. For example, a combination of low vterm and high qN at upper layers leads to a large increase in
Fm. Simply speaking, a large number of slow falling ice crystals can grow efficiently by deposition which
increases Fm.

5.1. Sensitivity to Representation of Monomer Number Dependency

The “CTRL” simulation is now compared to simulations with a binary separation into single‐monomer par-
ticles and aggregates of any monomer number larger than 1 (binary). An additional simulation is performed
with no monomer number dependence (constant). Here, the particle properties that were fitted to the mean
of all aggregates are used for all particles. All simulations are done for plate and needle monomers and aggre-
gates because we found the monomer dependence to be most pronounced for these monomer types. For the
other monomer types, the effect of Nmono can be expected to be smaller.

The most apparent difference between the simulations with different representations of the Nmono depen-
dencies for plate monomers and aggregates of plates is the faster decrease of FN and Fm and faster
increase of mmean of the monomers (Nmono = 1) in the “constant” simulation (Figure 10). A slightly

Figure 11. Same as Figure 10 but for needle monomers and aggregates.
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faster decrease of FN (faster increase of mmean) for aggregates (Nmono > 1) with decreasing height can be
seen for both the “binary“ and the “CTRL” simulation. However, all of the simulations show very similar
profiles.

Figure 11 shows the same experiment as Figure 10 but using the parameterizations for needles instead of
plates. Also, for needles, the most remarkable difference between the simulations is the difference between
the “constant“ and the “CTRL” run (Figures 11a and 11e). Also, aggregate‐aggregate collections are less
effective in the “CTRL” run (Figures 11b and 11f). Note that all monomers have been depleted by aggrega-
tion at a height of about 1,000 m, and thereby, mmean is not defined below.

Overall, the differences ofmmean at the ground of the total ice particle population are small (factor of 1.2 and
1.4 highermmean for the “binary“ and “constant” simulation for plates and factor of 0.8 lowermmean for the
“binary“ and “constant” simulation for needles, Table 6).

Figure 12. Idealized McSnow simulation using m−Dmax and A−Dmax for plate monomers and aggregates of plates (see
Tables 1 and 4) and power law (without (“powerlaw”) and with imposing an upper limit on vterm (“powerlawlimit”),
which is consistent with the saturation value of the Atlas‐type relation) and Atlas‐type vterm−Dmax relations for plate
monomers and aggregates of plates (see Table 5). Overlayed is the CTRL/monodep simulation in gray (see also
Figure 10). Shown are height profiles of (a and b) number flux FN, (c and d) mass flux Fm, and (e and f) mean mass
mmean. The particles are categorized into Nmono = 1 (left) and Nmono > 1 (right).
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Also, the differences in the precipitation rates (Fm) are small (less than 5%; see Table 6). These small differ-
ences are due to the small difference of the absolute value of vterm at small sizes (Figure 7) and qN at upper
heights, which lead to a similar mass uptake (Figure 10). However, the precipitation rate between the “Plate
CTRL” simulation and the “Needle CTRL” simulation is relatively large (Table 6), which might be due to the
strongly different vterm of the monomers.

The Nmono dependency is even weaker for aggregates composed of other monomer types (sections 4.2 and
4.3). In summary, the simulation experiments with different monomer dependency indicate that a binary
separation between single monomers and aggregates performs similarly well as relations which take into
account a more detailed monomer dependency. Some but still small differences are found if no monomer
dependency is taken into account, that is, a single ice class for all monomer numbers is assumed. In our simu-
lation, particles with lowNmono are only prevalent at cold temperatures, where aggregation is less important
due to the low sticking efficiency. Additional simulations (shown in the supporting information S1) with
lower Fm and therefore weaker aggregation show that the “binary” simulations stay very close to the
“CTRL” simulation, while the “monodep” simulations show considerably larger deviations. Hence, we find
that the classical separation in cloud ice (monomers) and snow (aggregates) is sufficient for the aspects of
monomer number‐dependent particle properties.

5.2. Sensitivity to the Parameterization of Terminal Velocity

In this section, we test the sensitivity of the simulations to different implementations of the vterm−Dmax for-
mulation. In Figure 12, vterm of plate monomers and aggregates is parameterized either as power‐law or
Atlas‐type fit.

As we saw in Figure 9, the power‐law and Atlas‐type fits match very closely at small particle sizes. This
explains the very close matching of the three simulations in the upper part of the simulated profiles
(Figure 12) where the PSD is dominated by small particles. As soon as the aggregation becomes stronger
(below ca. 3 km), FN in the simulations using the power law (Figure 12b) is much lower than for Atlas‐type.
The decreasing number flux of aggregates with lower height (Figure 12b) also indicates that especially the
self‐collection of aggregates is stronger than for Atlas type. In the same height region, the mean mass of the
aggregates (Figure 12f) is strongly increased for the power law (factor of 5). Instead of using an Atlas‐type
fit to consider the saturation of the terminal velocity, one can also think of imposing an upper limit on vterm
in the power law relation. In the “Powerlawlimit” simulation, we chose the saturation value of the Atlas‐type
fit (αDeq ) as an upper limit. This limit does not only affect the sedimentation but also all processes which

depend on vterm (e.g., aggregation). In this way, the overestimation ofmmean, caused by an unlimited increase
of vterm, can indeed be prevented, but the height profile of FN and mmean is not as well matched as with the
Atlas‐type approximation. As expected, the continuously increasing vterm in the unlimited power law leads
tomuch stronger growth of aggregates as compared to relations which include the saturation velocity at large
particle sizes. This is an interesting finding and could be one reason for the overestimation of radar reflectiv-
ities found at lower layers in ice clouds simulated with the Seifert‐Beheng scheme (Heinze et al., 2017).

Although mmean of the aggregates is much larger for the power law, the difference to the Atlas type in pre-
cipitation rates is very small (smaller than 5%; Figure 12d and Table 6). Note that in more realistic cases, as
for example in presence of stronger sublimation layers, the difference inmmean can induce larger differences
in the precipitation rate because larger particles can fall through a thicker layer of subsaturated air before
they sublimate completely.

6. Summary and Conclusions

In this study, we generated a large ensemble of ice aggregates (ca. 105,000 particles) using an aggregation
model and hydrodynamic theory to study the change of particle properties such as mass m, projected area
A, and terminal velocity vterm as a function of monomer number Nmono and size. The aggregates were com-
posed of various monomers types (plates, dendrites, needles, and columns), monomer sizes, and monomer
numbers. In order to test the impact of habit mixtures, we also included in our analysis two differentmixtures
of dendrites and columns. The choice of mixing specifically dendrites and columns was motivated by in situ
observations of the composing monomers in large aggregates sampled on the ground (Lawson et al., 1998).
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When comparing our aggregate properties with in situ observations, we findm andA to be very similar to the
results presented in Mitchell (1996) but the slope of our m−Dmax relations is larger than the slope given in
Locatelli and Hobbs (1974). A better agreement with Locatelli and Hobbs (1974) and also with theoretical
considerations in Westbrook et al. (2004b) is reached for mixtures of small columns and larger dendrites
(Mix2). Interestingly, this monomer mixture also achieves the best agreement with observed vterm−Dmax

relations. Considering the large spread in the observations (Figure 3), we can overall conclude that our
aggregate ensemble matches the observed range of variability and does not show any substantial bias.

Our synthetic aggregate ensemble allowed us to investigate the transition of particle properties from single
crystals to aggregates with increasing number of monomers in a level of detail which is currently unavailable
from in situ observations. Form and A as a function of size, we find the relations to change rather smoothly
with increasingNmono. The differences introduced by the choice of the monomer type are found to be overall
larger than due to the number of monomers. We find the exponents in the A−Dmax andm−Dmax relations of
the monomers to be closely connected to the resulting change with Nmono.

The derived A−Dmax and m−Dmax relations including the monomer type and number dependence were
then used to calculate vterm−Dmax relations. Again, we find a rather smooth transition from single crystals
to aggregates rather than a “jump” as found in several microphysics schemes (Figure 1b). For small sizes
below a few millimeters, our results suggests that the “ice” and “snow” category of microphysics schemes
should have similar properties. At larger sizes, the aggregates vterm are found to deviate more from themono-
mers. Again, the monomer type is found to have a larger impact than the monomer number. Aggregates of
plates tend to be faster, while aggregates of needles are slower than the equal‐size monomer. In accordance
to in situ observations, our simulations reveal for all aggregate types a saturation of vterm at centimeter sizes.
However, the saturation value varies for the different aggregate types from 0.8 to 1.6 m s−1.

In order to potentially implement our results in microphysics schemes, we derived two‐parameter power‐
law fits and three‐parameter Atlas‐type fits for single monomers (Nmono = 1) and aggregates (Nmono > 1)
representing the commonly used ice and snow classes in models. The new power‐law fits match the small
sizes well and avoid unrealistic “jumps” found in current schemes. However, the power laws are unable
to represent the saturation of vterm at larger sizes. The Atlas‐type fits are found to match the entire size range
well and should thus be considered to be implemented in ice microphysics schemes as they do not substan-
tially increase the computational costs while strongly improving the realism of the relations.

We finally tested the impact of implementing monomer dependence, habit type, and velocity fitting method
on idealized aggregation simulations. For this, we used a new 1D Lagrangian Monte Carlo model which
allowed us to implement the derived relations with different degree of complexity. The simulations experi-
ments revealed that there is only a very small impact of using a relation of only twomonomer categories (sin-
gle particle and aggregate) as compared to a continuous monomer number dependence. A single category
which does not take any monomer number into account shows slightly larger deviations, but the variability
due to monomer type is in general larger than the impact of monomer number.

In a second simulation experiment, we investigated the impact of using a power law or an Atlas‐type fit for
vterm. The simulations show very small differences in the upper part of the cloud where the profiles are domi-
nated by small particles which are fitted similarly well with the two relations. Once aggregation becomes
more dominant and the spread of particles sizes shifts to larger sizes, the simulations using the power law
lead to a much stronger aggregation and in particular stronger self‐aggregation of particles as compared to
the Atlas‐type fit. The impact of the widely used power‐law relations for vterm should thus be further studied
for bulk schemes as it seems to be likely that they might cause an overestimation of aggregation and snow
particle sizes.

We also shortly investigated the sensitivity of our derived relations to particle tumbling and the choice of the
hydrodynamic theory. While tumbling can significantly affect the properties of single monomers, it has a
surprisingly small effect on our results for the aggregates. The choice of the hydrodynamic theory is a larger
source of uncertainty which should be further investigated in future studies. It seems to be important in the
future to better constraint the composition of aggregates regarding the monomer type. This question could
be approached by improved in situ techniques but also with detailed models that allow to predict the particle
habit such as presented in (e.g., Jensen et al., 2017; Shima et al., 2019; Woods et al., 2007).
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Appendix A
A.1. Video Disdrometer Data Set

The terminal velocity vterm of the simulated aggregates from this study is compared to recent observations of
falling ice particle properties and frequently used literature in section 3.2. These surface observations are
from the Centre for Atmospheric Research Experiments (CARE), Canada. It is a research facility of the
Air Quality Research Branch of the Meteorological Service of Canada, located about 80 km north of
Toronto, Ontario (lat = 44 13′58′′N, lon = 79 46′53′′W). The instrumentation includes a video disdrometer,
PIP, precipitation weighing gauge, and meteorological measurements of, for example, wind velocity.

More detail about PIP can be found in von Lerber et al. (2017) and references therein. The particle sizes are
recorded in the range of 0.2–26 mm (disk equivalent diameter) with a resolution of 0.2 mm, which is con-
verted to the side projected Dmax. In practice, the minimum reliable size with measurement of vterm is
approximately 0.5 mm. Observations of the side projected maximum dimension Dmax,side can be conducted
from the grayscale video images. The velocity vterm is obtained from the observations of the consecutive
frames. The observed vterm utilized in the Figures 1a, and 3c, and 3d are separated from the whole data
set by limiting the exponent of the “5‐min m−D relation” between 1.7 and 2.2 to exclude rimed particles
(von Lerber et al., 2017). To apply this m−D threshold, the mass of the single particle and Dmax has to be
retrieved. The mass estimate of a single particle is calculated from the observed vterm, corrected Dmax, and

Table A1
Proportionality of the Best Number X on the Particle Properties (Mass m and Projected Area A), Scaling Relations of
the vterm−Dmax Relations and smonodep in Different Hydrodynamic Models (Böhm, 1992, B92; Heymsfield &
Westbrook, 2010, HW10; Khvorostyanov & Curry, 2005, KC05)

B92 HW10 KC05

X∼
mD0:5

maxA
−0:25

mDmaxA
−0.5

mD2
maxA

vterm,Re≪1∼ Dbm−0:25bA−0:5
max Dbm−0:5bA

max Dbm−bAþ1
max

vterm,Re≫ 1∼
Dbm−0:25bA−1:5

max

� �0:5
Dbm−0:5bA−1

max

� �0:5
Dbm−bA
max

� �0:5

smonodep= bm,agg−bm,1 bm,agg−bm,1 bm,agg−bm,1
−0.25(bA,agg−bm,1) −0.5(bA,agg−bA,1) −(bA,agg−bA,1)

Note. The derivation of the scaling relations is shown exemplary for B92 in section 2.2. smonodep, which gives an esti-
mate of the sign and strength of the dependency of vterm on Nmono is defined in section 4.3.

Figure A1. Same as Figure 7a (aggregates of plates) but using HW10 in (a) and KC05 in (b).
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area ratio using different parametrizations of the hydrodynamic theory
(Bohm, 1989; Heymsfield & Westbrook, 2010; Mitchell & Heymsfield,
2005). For each snowfall event, each of these parameterizations is calcu-
lated and the one which minimizes the error in the estimate of the liquid
water equivalent precipitation with respect to the precipitation gauge is
selected for that event. This procedure and the related uncertainties are
described more in detail in von Lerber et al. (2017). Additionally, observa-
tions during 5‐min intervals, where the mean horizontal wind speed
exceeds 4 m s−1, are excluded to reduce turbulence effects (similar to
Brandes et al., 2008).

After applying these filters, the data set, which covers the winters from
2014 to 2017 with 48 snowfall events, contains about 4.3 million ice parti-
cles. It should be noted that PIP is providing a measurement of the ensem-
ble of particles and no particle by particle‐based classification is
performed. Hence, the measurement volume includes mixtures of differ-
ent habits.

A.2. Sensitivity of the Terminal Velocity to the Hydrodynamic
Model and Tumbling
A.2.1. Hydrodynamic Models
As mentioned in section 2.2, the hydrodynamic models of B92, KC05, and
HW10 differ in several aspects. The Re(X) relation requires assumptions
about particle surface roughness, which are differently implemented in
the models. Also, the definition of X is different (Table A1). While in

B92 X is proportional to mD0:5
maxA

−0:25 , X is proportional to mDmaxA
−0.5

in HW10 andmD2
maxA

−1 in KC05. As a result in B92 and HW10, vterm increases slower with decreasing area
ratio (Ar=4Aπ

−1D−2) than in the formulation of KC05. The empirical correction of X due to wake turbulence
is also applied in KC05 but not in HW10.

These differences affect the behavior of vterm at large sizes and the monomer number dependency (which we
quantify by smonodep). Without the empirical correction of X (which considers wake turbulence), vterm only
saturates if vterm,Re≫ 1∼D

0. For example with HW10, the saturation would be reached for bm−0.5bA−1=0
(Table A1). This is, for example, not the case for aggregates of plates simulated in this study, and therefore,
HW10 does not predict a saturation of vterm at larger sizes (Figure A1a).

Also, the sign and the strength of the increase/decrease of vterm with increasing Nmono depends on the for-
mulation of X. In section 4.3, we introduced smonodep as a measure for this monomer number dependency.
Applying this measure to the aggregates of plates yields smonodep = −0.21 for HW10 and smonodep = −0.06
for KC05. Both HW10 and KC05 show the decrease of vterm with increasingNmono which we saw when using
B92, but this decrease is very weak for KC05.
A.2.2. Tumbling
To investigate the effect of the tumbling of the aggregates (as reported, e.g., by Garrett & Yuter, 2014) on the
projected area A and vterm, the particles are tilted with a standard deviation of 0° , 20° , 40°, and 60° , around

the principal axis (Figure A2). This is done only after the final aggregate is
assembled and thereby does not influence the structure of the aggregates.
This rotation reduces A, and in turn, vterm increases.

The monomers (top panel in Figure A2) are stronger effected by tumbling
(especially at large Dmax) due to their lower aspect ratio (not shown). The
largest increase in vterm with increasing tumbling is found for KC05 due to
the largest increase in the Best number with decreasingA (see section 2.2).
B92 shows the least influence of tumbling, which increases vterm at max-
imum by about 0.1 m s−1 and has a negligible effect on vterm for the
aggregates.

Figure A2. vterm based on m/A−D fits (Tables 1 and 4) and different
hydrodynamic models. The particles are horizontally aligned (“no
tumbling”) rotated by 20° or 40° around the principal axis to mimic
different strength of tumbling. (a) plate monomers; (b) aggregates
of plates.

Table A2
Mean Absolute Error of the Normalizing Function fm and fA for the
Monomer Number Dependent “monodep” Fits (Section 4.2) and the
Power Law Fits (Section 4.4) for the Particle Mass m and Projected Area A

Monomer type
fm

monodep
fm power

law
fA

monodep
fA power

law

Plate 0.1190 0.1261 0.0816 0.0950
Needle 0.3737 0.4539 0.3926 0.5916
Dendrite 0.1698 0.1721 0.1575 0.1566
Column 0.2436 0.2456 0.2728 0.3343
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A.3. Mean Absolute Error of the Mass and Area‐Size Relations

In sections 4.2 and 4.4, we provided fit relations for mass and area with and without taking into account the
monomer number dependency of the simulated aggregates. The mean absolute error of the fits shown in
Tables 3 and 4 (normalized by the properties of the monomers; e.g., shown for plates with the green dotted
lines in Figure 5) is shown in Table A2.
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Abstract. Aggregation is a key microphysical process for
the formation of precipitable ice particles. Its theoretical de-
scription involves many parameters and dependencies among
different variables that are either insufficiently understood
or difficult to accurately represent in bulk microphysics
schemes. Previous studies have demonstrated the valuable in-
formation content of multi-frequency Doppler radar observa-
tions to characterize aggregation with respect to environmen-
tal parameters such as temperature. Comparisons with model
simulations can reveal discrepancies, but the main challenge
is to identify the most critical parameters in the aggrega-
tion parameterization, which can then be improved by using
the observations as constraints. In this study, we systemati-
cally investigate the sensitivity of physical variables, such as
number and mass density, as well as the forward-simulated
multi-frequency and Doppler radar observables, to different
parameters in a two-moment microphysics scheme. Our ap-
proach includes modifying key aggregation parameters such
as the sticking efficiency or the shape of the size distribu-
tion. We also revise and test the impact of changing func-
tional relationships (e.g., the terminal velocity–size relation)
and underlying assumptions (e.g., the definition of the ag-
gregation kernel). We test the sensitivity of the various com-
ponents first in a single-column “snowshaft” model, which
allows fast and efficient identification of the parameter com-
bination optimally matching the observations. We find that
particle properties, definition of the aggregation kernel, and
size distribution width prove to be most important, while the
sticking efficiency and the cloud ice habit have less influence.
The setting which optimally matches the observations is then

implemented in a 3D model using the identical scheme setup.
Rerunning the 3D model with the new scheme setup for a
multi-week period revealed that the large overestimation of
aggregate size and terminal velocity in the model could be
substantially reduced. The method presented is expected to
be applicable to constrain other ice microphysical processes
or to evaluate and improve other schemes.

1 Introduction

Ice growth processes which lead to precipitable particles
are essential to understand because more than 60 % of the
global precipitation reaching the surface is formed in the ice
phase (Heymsfield et al., 2020). Besides depositional growth
and riming, aggregation is one of the key growth mecha-
nisms in ice clouds. Aggregation is found to be active in a
large temperature range (Hobbs et al., 1974; Kajikawa and
Heymsfield, 1989; Field, 2000). As revealed, for example, by
radar observations (e.g., Barrett et al., 2019), aggregation can
cause a rapid increase in the particle size in favorable condi-
tions, such as the dendritic growth zone close to −15 ◦C or
close to the melting layer (Lamb and Verlinde, 2011). Un-
like depositional growth, sublimation, or riming, aggrega-
tion does not directly modify the ice and snow water con-
tent. However, its strong influence on particle shape, particle
size distribution, and terminal velocity vt links aggregation
to other processes, such as depositional growth, sublimation,
and riming, that alter the mass flux considerably. Therefore,
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it is important to accurately represent aggregation in micro-
physical schemes.

A central component of the theoretical description of
aggregation (see also Sect. 3.1) is the aggregation kernel.
Therefore, many challenges in accurately simulating aggre-
gation can be discussed by considering the various compo-
nents of this kernel. The aggregation kernel is defined analo-
gously to collision–coalescence of droplets in liquid clouds.

K(Di,Dj )=
π

4
(Di +Dj )

2
|vt(Di)− vt(Dj )|

Ecoll(Di,Dj )Estick(T )Ei,j (DiDj ) (1)

The aggregation kernel is proportional to the probability
K of two particles i and j colliding (Gillespie, 1975) and
sticking together after collision. This probability increases
with increasing size D and relative vt of the particles, as
well as the collision Ecoll and sticking efficiency Estick. Ob-
viously, the size D is well-defined for spherical particles by
their diameter, but this is already much more complex for ice
and snow particles which have a nonspherical shape. How
large vt of ice and snow particles is also strongly depends on
their size, shape, and orientation (Böhm, 1992; Mitchell and
Heymsfield, 2005; Heymsfield and Westbrook, 2010). For
smaller particles, vt increases strongly, but the increase in vt
flattens with size and finally vt approaches a constant value
of 1 ms−1 for centimeter-sized aggregates (Lohmann et al.,
2016). The size ranges in which vt increases most rapidly
(i.e., has the largest slope) are highly shape-dependent (Bart-
hazy and Schefold, 2006; Hashino and Tripoli, 2011; Kar-
rer et al., 2020). Consequently, the slope of the vt–size rela-
tion is uncertain but at the same time crucial for aggregation.
Two remaining parameters, Ecoll and Estick, are also multi-
plicative in the kernel. Ecoll describes the ratio between the
actual collision cross section and the geometric cross sec-
tion. Ecoll is smaller than 1 for most particle pairs because
typically the smaller and slower particle is deflected due to
hydrodynamics as the larger particle approaches. For ice col-
lisions, Ecoll is generally poorly constrained (Wang, 2010).
This can be easily understood given the enormous variety of
particle shapes and orientation, leading to very complex flow
fields. In the temperature region most relevant for aggrega-
tion (T >−20 ◦C), the number of activated ice-nucleating
particles (INPs) and hence also the concentration of small ice
particles rapidly decrease with increasing temperature (Kanji
et al., 2017). Except for small ice particles generated by sec-
ondary ice production, the effect of small ice particles be-
ing deflected around larger particles might therefore be less
important for aggregation. In fact, many bulk microphysical
schemes (e.g., Seifert and Beheng, 2006) assume the bulk
Ecoll to be 1.
Estick is the probability of two ice particles sticking af-

ter the collision. Although laboratory (Hosler and Hallgren,
1960; Connolly et al., 2012; Phillips et al., 2015) and in situ
(Mitchell, 1988; Kajikawa and Heymsfield, 1989) estimates,
as well as multi-frequency radar retrievals (Barrett et al.,

2019) of Estick exist, the exact value of Estick and its depen-
dency on parameters such as temperature or supersaturation
are very uncertain. However, there is widespread agreement
in the literature on two main temperature ranges in which
Estick is enhanced: around −15 ◦C, the mechanical interlock
of dendrites increases Estick compared to the surrounding
temperature regions (Pruppacher et al., 1998). In addition,
sintering of ice particles due to an increasingly thick quasi-
liquid layer (Slater and Michaelides, 2019) on the ice surface
causes a general increase in Estick when temperature rises up
to 0 ◦C. In addition to the aggregation kernel, the aggrega-
tion rate is also influenced by the particle size distribution.
Simply put, the particles that have a high probability of ag-
gregation, given by the aggregation kernel, must be present
in the cloud to have efficient aggregation.

Bulk microphysics schemes cannot simulate aggregation
on an individual particle level but require the calculation of
bulk aggregation rates. Analytic solutions for the bulk aggre-
gation rates are in principle possible (Verlinde et al., 1990).
However, these solutions are computationally expensive and
require the usage of power-law relationship for vt and size,
which cannot represent the asymptotic behavior known from
observations for large sizes. Approximations of the bulk ag-
gregation rates consider characteristic velocity differences
(Wisner et al., 1972; Seifert and Beheng, 2006) and allow
the use of more complex vt–size relations, which consider
the asymptotic behavior of vt at large sizes and nonspherical
particle shapes (Seifert et al., 2014).

In general, we need to distinguish between three different
aspects of uncertainty in aggregation simulations: (1) a gen-
eral lack of understanding or quantification of parameters,
such as the absolute values of Estick; (2) formulation of func-
tional relationships, which cannot adequately represent the
whole relevant range (e.g., vt–size relationship); and (3) sim-
plifications that must be made to keep the computational cost
affordable, e.g., considering only bulk properties of the par-
ticle population. Because of these uncertainties, it is impor-
tant to constrain the model by observations of aggregation in
clouds.

In situ and remote sensing observations have provided
valuable information on the general characteristics of aggre-
gation and have allowed estimation of the relative importance
of aggregation with respect to other processes. Decades ago,
observations had already reported that the largest aggregates
are found around −15 ◦C, which is considered to be a conse-
quence of mechanical interlocking of dendrites, and at tem-
peratures a few degrees below 0 ◦C, which is related to the
quasi-liquid layer (Lamb and Verlinde, 2011).

Radar observations contain valuable information about the
aggregation process, which also is the reason we rely on them
in this study. The strong temperature dependence of aggre-
gation observed in early studies could be confirmed by radar
observations, especially in profiles of absolute and differen-
tial reflectivity (Kennedy and Rutledge, 2011; Andrić et al.,
2013; Schrom and Kumjian, 2016; Moisseev et al., 2015). By
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additionally considering the mean Doppler velocity, the rel-
ative importance of aggregation and riming can be estimated
(Mosimann, 1995; Mason et al., 2018; Kneifel et al., 2020).
Furthermore, using radars of different frequencies allows for
the estimation of mean particle size (Matrosov, 1998; Hogan
et al., 2000; Liao et al., 2005; Szyrmer and Zawadzki, 2014;
Kneifel et al., 2015) and therefore better characterization of
temperatures at which aggregation is dominant.

Ori et al. (2020, O20) evaluated ice particle growth in
simulations of the Icosahedral Nonhydrostatic Model (Zängl
et al., 2015, ICON) using the Seifert–Beheng two-moment
microphysics scheme (Seifert and Beheng, 2006, SB06) by
comparing it with measurements in observational space. To
this end, O20 used the multi-month cloud radar dataset from
Dias Neto et al. (2019, D18). This quality-controlled dataset
is particularly suitable because it contains multi-frequency
and Doppler-measured data and thus fingerprints of aggrega-
tion and sedimentation. While model–observation compar-
isons based on a single or few cases can be difficult to inter-
pret due to the specific conditions (specific water vapor field,
synoptic situation, etc.) of the case, the statistical compar-
ison of O20 could reveal model-inherent mean biases. The
comparison of models and observations in the radar space
using a radar forward operator simplifies the assessment of
uncertainties because the deviations between models and ob-
servations can be directly compared to the variability of the
observations. The alternative approach of applying a retrieval
to the observations might seem more intuitive because micro-
physical variables, such as number density, can be compared
directly. However, ensuring consistency between a model
and retrieval as well as tracing the propagation of uncertain-
ties, for example in the observables or the forward model, is
often more complicated (e.g., Reitter et al., 2011).

O20 found an overall correct temperature dependency of
aggregation but also revealed an overestimation of the snow
size and vt at temperatures above −7 ◦C. O20 suggested that
inaccurate Estick and vt–size parameterization might cause
this overestimation. However, direct attribution of the ob-
served biases (e.g., snow that is too large) to a specific com-
ponent of the aggregation process (e.g., Estick) requires si-
multaneous investigation of the influence of all parameters
relevant for the aggregation process in a suitable modeling
setup.

Microphysics schemes are usually tuned to improve the
prediction of key variables, such as precipitation, the energy
balance at the top of the atmosphere, or the near-surface tem-
perature (Schmidt et al., 2017; Morrison et al., 2020). Only a
small subset of variables (e.g., vt of cloud ice) are varied dur-
ing the tuning process, and tuning might be ad hoc rather than
evidence-based. As the models simulate complex interacting
processes, several parameter combinations can improve the
predicting skill of modeled variables such as precipitation.
Therefore, it is likely that tuning introduces compensating
errors. For example, if two parameters are not accurately im-
plemented, adjusting one of them might improve the model

performance even when the adjustment leads away from the
true value of the parameter. Detailed remote sensing obser-
vations can be used to adjust parameters and make improve-
ments on the process level rather than improving the perfor-
mance of the entire modeling system. However, because re-
mote sensing observations are sensitive to a limited number
of parameters and within a limited range of variability, there
is a risk that model parameters may be adjusted to match
observations well but still be inaccurate in regimes wherein
these observations have low sensitivity. To reduce this risk,
new methods for model improvement and development have
been proposed whose parameter selection is still based on
physical constraints, namely theory and laboratory measure-
ments, but can be optimized by Bayesian inference of ob-
servations (Morrison et al., 2020). The advantage of this ap-
proach is that uncertainty of both laboratory measurements
and remote sensing observations can be considered, and new
knowledge about parameters can be continuously incorpo-
rated. The combination of several radar observables, such as
multiple frequencies, Doppler spectra, and polarimetry, al-
lows the observed signatures to be assigned to a specific mi-
crophysical process under some conditions (Kneifel et al.,
2015; Kalesse et al., 2016; Pfitzenmaier et al., 2018; Barrett
et al., 2019). For example, Barrett et al. (2019) focused their
multi-frequency study on the dendritic growth zone, where
aggregation is known to be particularly efficient. Hence, the
rapidly changing size-dependent, multi-frequency variables
could be clearly related to aggregation and a retrieval of
Estick could be obtained.

In addition, novel cloud radar techniques, e.g., multi-
frequency Doppler observations, enable the identification of
key growth mechanisms (Kneifel et al., 2015; Kalesse et al.,
2016; Pfitzenmaier et al., 2018; Barrett et al., 2019). Barrett
et al. (2019) identified a temperature range in which aggrega-
tion rapidly increases particle size and estimated Estick from
a retrieval using multi-frequency Doppler spectra. Identify-
ing a dominant growth mechanism allows focusing on a sin-
gle process, which simplifies the inverse problem by reduc-
ing the number of parameters and observables to be consid-
ered simultaneously.

In this study, we constrain the parameters that influence
aggregation by confronting idealized and realistic simula-
tions with the multi-frequency Doppler radar observations
from D18. The methods used are described in Sect. 2. We re-
vise all main parameters and functional relationships regard-
ing the aggregation formulation in SB06 by incorporating re-
cently published parameters and revising the bulk aggrega-
tion equations. We describe these parameters and formula-
tions in Sect. 3.1 and compare them with the choices in the
default SB06 scheme. In Sect. 3.1.5 the selection of the snow
particle properties, which is a critical component of both ag-
gregation and radar simulations, is described. The sensitivity
of the aggregation and associated radar variables to individ-
ual parameters of the revised formulation is evaluated with
an ensemble of 1D model simulations (Sect. 3.2). The opti-
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mal combination of these simulations is chosen and tested in
sensitivity studies in ICON-LEM simulations (Sect. 3.3). Fi-
nally, we perform ICON-LEM simulations of several weeks,
which we evaluate against the default simulations from O20
and the observations from D18 (Sect. 3.4). This approach
allows testing many different parameters against observed
statistics of several weeks in a numerically efficient way.
Section 4 summarizes the approach and draws conclusions
regarding the following questions: how can we investigate
the sensitivity of aggregation to the components of its pa-
rameterization? How can we improve the representation of
aggregation in a two-moment microphysical scheme? Which
microphysical parameters influence the simulation of aggre-
gation the most?

2 Methods

The Icosahedral Nonhydrostatic Model (ICON; Zängl et al.,
2015) has numerous applications due to its different con-
figurations. ICON-NWP (ICON numerical weather predic-
tion) is used by the Deutscher Wetterdienst (DWD) for op-
erational weather forecast in a global and recently also in all
regional setups. ICON’s large-eddy mode is called ICON-
LEM (Dipankar et al., 2015; Heinze et al., 2017). We use
the SB06 two-moment microphysics scheme instead of the
single-moment scheme currently used in operational weather
forecasting, as do most studies that perform simulations with
ICON-LEM. Since simulations with ICON-LEM are rela-
tively computationally expensive, we also use a simple 1D
model to efficiently test different parameterizations and their
influence on the simulation.

Since we want to further investigate the causes and reduce
the discrepancies between modeled and simulated observ-
ables, we use the same simulation setup of ICON-LEM as
in O20. We only briefly describe the setup here, since an ex-
tensive description can be found in O20. The modifications
we make to the SB06 microphysics scheme are described in
detail in Sect. 3.1.

2.1 “Snowshaft” model

Simple 1D models have been used to assess the influence
of several parameters or processes on microphysical or ob-
served quantities (e.g., precipitation rates, polarimetric vari-
ables) and to test new parameterizations (Seifert, 2008;
Kumjian and Ryzhkov, 2010; Milbrandt and Morrison, 2016;
Paukert et al., 2019). These models are much simpler than
full 3D models (like ICON-LEM) and are therefore also re-
ferred to as rain-shaft models. Because we apply such a sim-
ple model to ice microphysics we use the term “snowshaft”
model. In these simple models, the atmospheric variables
(e.g., temperature gradient, relative humidity) are predefined
and feedback mechanisms from microphysics to thermody-
namic and thus dynamic variables are neglected. These sim-

plifications allow the analysis of selected processes and their
sensitivity to a range of parameters without having to con-
sider the full range of complexity. Another advantage of the
snowshaft model is the low computational effort, which al-
lows testing a large number of parameter combinations and
process formulations.

The snowshaft model has 250 layers and the temperature
spans the range from 0 to−40 ◦C, which covers the most rel-
evant range for precipitating ice clouds. The temperature pro-
file is linear with a gradient of 0.0062 K m−1. Consequently,
the top of the model is at 6450 m. The relative humidity
with reference to ice (RHi) is constant for h > 3000 m and
increases linearly until it reaches RH= 100 % (RH is the rel-
ative humidity with reference to water; Fig. B5). The ther-
modynamic variables are constant in time and there is no air
motion. These simplifications can be justified by the nearly
stationary nature of many clouds and the low vertical velocity
seen in the dataset of D18.

At the top of the model, a gamma distribution (following
the size distribution parameter as described in Table 3) is ini-
tialized for cloud ice and snow. Together with the size distri-
bution parameter, the mass densityQ and the number density
N completely define the size distribution at the model top.
Below the model top, the size distribution evolves through
the following microphysical processes: sedimentation, depo-
sitional growth, and aggregation. These processes are consid-
ered dominant below the cloud top (where nucleation is espe-
cially important) and above temperatures near the melt layer,
where riming rates increase sharply (Kneifel and Moisseev,
2020). The values of RHi ,Q, andN are chosen in Sect. 3.2.1
to match profiles of observables with substantial precipita-
tion.

2.2 ICON-LEM setup

In our simulations, we use a small domain setup of ICON-
LEM. This setup has been shown to be both computationally
efficient and to represent clouds well in various conditions
(Marke et al., 2018; Schemann and Ebell, 2020; Schemann
et al., 2020). The domain is circular with a radius of 110 km,
and the observational site Jülich Observatory for Cloud Evo-
lution Core Facility (JOYCE-CF; Löhnert et al., 2015) is in
the center. At JOYCE the TRIple-frequency and Polarimet-
ric radar Experiment for improving process observation of
winter precipitation (Tripex, D18) took place, which we use
in the model–observation comparison. The horizontal grid
spacing of the simulations is ca. 400 m, and the vertical grid
spacing ranges from 20 m at the surface to 380 m at the model
top. With a total of 150 vertical layers, the atmosphere is
simulated up to a height of 21 km. Initial and lateral bound-
ary conditions are taken from the ECMWF Integrated Fore-
casting System (IFS). Initialization is carried out each day at
00:00 UTC. IFS data are incorporated as forcing on the lat-
eral boundary every hour.
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2.3 SB06 scheme

The SB06 scheme is used in the snowshaft simulations
(Sect. 3.2) and as the microphysics scheme in the ICON-
LEM simulations (Sect. 3.3 and 3.4). The SB06 scheme is a
two-moment scheme that simulates the evolution of the num-
ber (N =M(0)) and mass density (L=M(1)) from which the
mixing ratio (Q= L · ρ−1

air ) can be easily derived. ρair is the
air density and Mn (Eq. 2) represents the moments of the
mass distribution (Eq. 5).

M(n)
=

∞∫
0

mnf (m)dm (2)

The scheme simulates six different hydrometeor classes
(cloud water, cloud ice, rain, snow, graupel, and hail). The
conversion from one class to another is in general associated
with a specific microphysical process. For example, if cloud
ice forms aggregates, Q and N of cloud ice are converted to
snow (Sect. 3.1). Therefore, it is consistent to assume proper-
ties of monomers for cloud ice and properties of aggregates
for snow. The predefined particle properties of the default
setting of the scheme are listed in Table 2 for each hydrome-
teor, along with the properties of the cloud ice and snow class
alternatives proposed in Sect. 3.1.

In the SB06 scheme, aggregation rates are the product of
collision rates and Estick because Ecoll is assumed to be 1. In
the scheme, the variance approximation (SB06), based on the
work of Wisner et al. (1972), provides a computationally fea-
sible analytical solution of bulk collision rates. The variance
approximation of Seifert and Beheng (2006) avoids the usage
of pre-calculated lookup tables (Seifert et al., 2014) and, un-
like Wisner et al. (1972), is able to estimate collision rates
of self-collection, i.e., aggregation within a particle class.
The latter is made possible by considering the square root
of the second moment of the velocity differences, which also
has the advantage over the approximation by Wisner et al.
(1972) that the collision rates between different particles are
nonzero even if their bulk velocities are equal. The default
SB06 scheme assumes power-law relations for the vt–size
relation in the calculation of the collision rates. The exten-
sion of the variance approximation of Seifert et al. (2014),
which allows using Atlas-type vt–size relations (Sect. 3.1.3),
is applied in the SB06 scheme for the first time in this study.

Details of the components of the aggregation process con-
sidered in the SB06 scheme can be found in Sect. 3.1 and
Appendix A.

2.4 Passive and Active Microwave radiative TRAnsfer
tool (PAMTRA)

The Passive and Active Microwave radiative TRAnsfer tool
(PAMTRA; Mech et al., 2020) is used to simulate synthetic
radar observations. Microphysical properties are represented
consistently in the SB06 scheme and PAMTRA (Table 2).

Throughout the study, we adopt the same scattering as-
sumptions for each of the hydrometeor classes in the SB06
default scheme (“SB cloud ice”, “SB snow”, “cloud droplet”,
“rain”, “graupel”, and “hail” in Table 2). As in O20, we ap-
ply the self-similar Rayleigh–Gans approximation (SSRGA;
Hogan and Westbrook, 2014; Hogan et al., 2017) and co-
efficients derived from 3D models of aggregates of plates
for cloud ice and aggregates of needles for snow. In O20,
the coefficients used for the snow class were slightly ad-
justed to closely match the observed triple-frequency sig-
nature. The SSRGA parameters of aggregates of plates are
also used for the new cloud ice categories (“column” and
“needle” in Table 2). For Mix2, SSRGA parameters derived
from the same 3D models used for the determination of par-
ticle properties (Karrer et al., 2020, K20) are available (Ori
et al., 2021). Since we find little influence of SSRGA param-
eters in Sect. 3.1.5, we use the adjusted SSRGA properties of
the aggregates of needles from O20 for the Mix2 aggregates
throughout the study to be consistent with 020, although us-
ing the SSRGA parameters derived from the same 3D aggre-
gate models would be most physically consistent.

2.5 Multi-frequency radar approach

Like O20, we use multi-frequency observations to derive
information about the aggregation process. Multi-frequency
observations are useful to distinguish the size of particles,
since the ratio of wavelength and particle size along with
the particle density are the main factors that determine
their scattering properties. The scattering of particles much
smaller than the wavelength can be approximated well by
the Rayleigh approximation. For larger particles, however,
the interference of waves scattered from different parts of
the particles must be considered (Kneifel et al., 2020), which
leads to differential scattering among the various frequen-
cies.

The ratio between the reflectivities of two radars with op-
erating wavelengths λ1 and λ2 (λ1 < λ2),

DWRλ1,λ2 =
Ze(λ1)

Ze(λ2)
=
λ4

1

λ4
2

∫
σb(m,λ1)f (m)dm∫
σb(m,λ2)f (m)dm

, (3)

quantifies the amount of differential scattering. DWR is
called the dual-wavelength ratio, Ze is the reflectivity, and
σb is the backscattering cross section (all variables in lin-
ear units). Although differential attenuation can also con-
tribute to DWR (Battaglia et al., 2020), we did not include
this effect in Eq. (3) because the processing of D18 already
corrects for the impact of differential attenuation on DWR.
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D18 evaluated the absolute calibration of the observed Ze
values from the Ka-band radar using disdrometer measure-
ments during rainfall. After correcting differential attenua-
tion due to gases at all three frequencies, the Ka-band radar
was then used as a reference for estimating calibration bi-
ases and differential attenuation effects due to hydrometeors
by comparing the three Ze values at cloud top. The DWRs
caused by differential scattering are usually close to 0 dB for
small ice particles present at the cloud top. Calibration bi-
ases can be identified as DWR biases which are relatively
constant over time; differential attenuation effects due to su-
percooled liquid water, rainfall, or the melting layer vary
more strongly on shorter timescales (minutes to hours). The
path-integrated differential attenuation estimated at cloud top
was then used to correct the DWRs in the entire profile.
A more in-depth discussion of various correction methods
for multi-frequency radar observations is provided in Tridon
et al. (2020). If differential scattering effects are the only
contributor to DWR, it correlates well with the mean mass
of the distribution f (m) (Sect. 3.1.1), as can be seen from
Eq. (3). For small particles, the Rayleigh approximation is
valid for all frequencies and σb scales with the mass squared.
However, for larger particles and shorter wavelengths, σb is
smaller than predicted by the Rayleigh approximation and
σb(m,λ2) is smaller than σb(m,λ1). As a result, particle pop-
ulations that contain larger particles, e.g., due to their large
mean mass, have larger DWRs than particle populations with
smaller mean masses. Mason et al. (2019) and others have
shown that not only the mean mass, but also the shape of the
distribution, the particle density, and the internal structure of
the particles (through σb) can substantially affect the DWRs.
Given the radars available in D18, we investigate the sensi-
tivity of aggregation by analyzing DWRX,Ka and DWRKa,W.
The subscripts W, Ka, and X denote the radar bands and,
more specifically, the wavelengths of 3.3, 8.6, and 31 mm.
Each combination of wavelengths is sensitive to a different
range of particle sizes. For example, DWRKa,W is most sen-
sitive to mean particle sizes of unrimed cloud ice and snow
between 0.5 and 3 mm, and DWRX,Ka is sensitive between
1.5 and 15 mm (O20). Outside this sensitivity range, DWRs
are zero (small mean size) or asymptotically approach (sat-
urate) a DWR value (large mean sizes) that depends on the
scattering properties of the particles present. More detailed
information on the approach and its sensitivities can be found
in O20.

Moreover, D18 reported that strong riming is rare in their
dataset, so aggregation is the main contributor to particle
growth and thus the increasing DWRs from cloud top to
cloud bottom.

3 Results and discussion

3.1 Ice microphysical parameters influencing
aggregation

To interpret the following sensitivity experiments, we de-
scribe which parameters need to be considered in the simula-
tion of aggregation in a bulk scheme, which parameters and
process formulations are currently used in the SB06 scheme,
and how the assumptions could be updated with recently pub-
lished parameterizations.

The stochastic collection equation (SCE) describes how
the particle distribution (PSDm) changes with time under the
action of aggregation (Khain et al., 2015).

∂f (mi)

∂t
=

mi/2∫
0

f (mj )f (mi −mj )K(mi −mj ,mj )dmj

−

∞∫
0

f (mi)f (mj )K(mi,mj )dmj (4)

Here, f (m) is the particle distribution as a function of mass
and K is the aggregation kernel described in Sect. 3.1.2. The
first term of Eq. (4) describes the gain of particles of mass
mi by aggregation of particles with masses mj and mi −mj .
The second term considers the loss of particles of massmi by
aggregation with particles of mass mj (illustrated in Fig. 1a
and b). In general, PSDs cannot be perfectly described by
simple functional relationships (e.g., gamma distribution) but
can have complex shapes (Fig. 1a). Thus, explicit prediction
of the evolution of PSDs must take into account the full SCE.

Bulk schemes, however, can only account for the evolu-
tion of the PSD in a simplified form. The tendencies of the
moments in the SB06 scheme (mass density: ∂Q/∂t , num-
ber density: ∂N/∂t) can be calculated by considering only
the loss term. The reason for this can be further explained
by Fig. 1c–h, where the collision events are separated among
the ice (monomers) and snow (aggregates) classes. In fact,
because of the mass conservation, the total mass of particles
gained (integral of the first term) has to match the total mass
of particles lost (integral of the second term). Since it is as-
sumed that within one time step a particle can participate
only in one collision event, only one snow particle results
from the collision of two ice particles (number of arrows in
Fig. 1c and d). The same applies for the ice–snow and snow–
snow collisions, but here there is no conversion of N from
one category to another but only a loss of Ni or Ns. Thus,
it is sufficient to calculate only one collision rate for each of
the three considered collision scenarios (ice–ice, ice–snow,
snow–snow) and moments (N and Q).
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Figure 1. Illustration of the SCE (Eq. 4) for an explicitly resolved PSDm (a, b) and when applied to the cloud ice and snow classes of the
SB06 scheme (c, h). The left column depicts the loss term (second term in Eq. 4) and the middle column the gain term (first term in Eq. 4).
The right column shows the sign and connection of the tendency of the bulk moments. Arrows indicate whether the number density is rising
or falling at the specified mass. Red lines indicate the ice distribution and blue the snow distribution. The arrows are red if ice particles are
collected and blue if snow particles are collected or are created as a result of the collision.

3.1.1 Size distribution

In most bulk schemes, the PSD is described by the general-
ized gamma distribution or simplifications thereof. With the
mass m as a primary variable, the generalized gamma distri-
bution can be written as

fm(m)=N0,mm
νm exp(−λmmµm). (5)

For some applications, using the mass-equivalent diameter

Deq =

(
6m
πρw

)1/3

(6)

as a primary variable and the ordinary gamma distribution is
more convenient:

f (Deq)=N0,eqD
µeq
eq exp(−λeqDeq), (7)

where Deq is the mass-equivalent diameter. One such ap-
plication is the use of the Atlas-type vt–size relationship
(Eq. 11) in the calculation of collision rates in Appendix A.
Size distributions derived from in situ observations are usu-
ally presented as a function of the maximum dimension

Dmax, which is often derived by circumscribing a sphere or
spheroid to the projected particle image.

f (Dmax)=N0,maxD
µmax
max exp(−λmaxDmax) (8)

In general, a distribution described by Eq. (5) cannot be ex-
pressed by Eq. (7) or (8). Only when µm = 1/3 can Eq. (5)
be expressed by Eq. (7). To allow conversion of Eq. (5) to
(8), µm must be set to b−1

m (exponent in the m–Dmax rela-
tion; Eq. 12). As we calculate the collision rates of particles
following an Atlas-type vt–size relation (Appendix A), we
need to set µm = 1/3. Since bm 6= 3 for cloud ice and snow,
µmax in Eq. (8) can only be approximated.

The PSD shape can vary strongly, e.g., for nonstationary
events (Seifert, 2008). Furthermore, νm, or equivalent param-
eters in distributions that use a different primary variable, is
often described as a function of other parameters (e.g., the
mean size; Heymsfield, 2003). Nevertheless, in the current
version of the SB06 scheme, we must choose a single value
of νm in each simulation. Therefore, we test two different
values of νm in the simulations and later (Sect. 3.2) select the
one with which the simulations can reproduce the observa-
tions the best. The SB06 standard configuration (νm = 0) cor-
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Figure 2. Particle distribution as a function of mass (PSDm) with
a mass density of q = 2× 10−4 kg m−3 and a number density of
qn= 104 m−3 illustrating PSDs with a different shape parameter
µm.

responds to µeq = 2.0 and µmax =−0.11. If we use νm = 2
instead of νm = 0, we obtain a narrower distribution with
much fewer particles at small masses and a peak near the
mean mass. Considering Heymsfield (2003), νm = 0 is rep-
resentative of a mean mass diameter Dmean of about 0.5 mm,
and νm=2 is representative forDmean of about 0.2 mm. Many
studies have shown that the size distribution parameters are
correlated (e.g., Field et al., 2005; Mcfarquhar et al., 2015),
further complicating the selection of νm. Moreover, PSDs
can exhibit bimodalities, e.g., due to secondary ice genera-
tion (Korolev and Leisner, 2020), which can be accounted
for by the two classes of cloud ice and snow in the SB06
scheme.

The PSD width affects the aggregation rates and the radar
variables. The narrower the distribution is, the lower the ag-
gregation rates are. This is obvious from the bulk collision
rates in Appendix A and can be explained by the small vt
difference of similarly sized particles (Sect. 3.1.2). The PSD
width also affects the radar observables. The reflectivity in
the Rayleigh regime is proportional to the second moment
of the PSD. A narrower distribution reduces the number of
large particles (above 10−7 kg in Fig. 2). Therefore, the re-
flectivity (Ze) and mean Doppler velocity (MDV) are slightly
lower for a narrower distribution compared to a broader dis-
tribution with the sameQ and N . This effect is even stronger
for DWRs, as the large particles contribute the most to the
differential scattering signal (Table 1).

3.1.2 Collision kernel

The D-kernel (Eq. 1), defined analogously to the collisional
coalescence of droplets in liquid clouds, is often used not
only for particles that can be approximated well by spheres
(e.g., cloud droplets, hail), but for all particles. However, the

collision cross section of nonspherical particles is smaller
than the one of spheres with the same Dmax because of the
presence of voids in their circumscribing sphere. This devi-
ation was previously considered, e.g., a part of Ecoll (Keith
and Saunders, 1989; Pruppacher and Klett, 2010) by using
the equivalent circular radii ri = (Ai/π)0.5 as a characteris-
tic length. Using the D-kernel with a constant Ecoll that does
not depend on particle size (as done, e.g., in SB06), the D-
kernel approximation cannot account for the decrease in Ar
with increasing size (Fig. 3d). Therefore, we test whether an
alternative formulation of the collision kernel that takes the
projected areas into account (A-kernel; Connolly et al., 2012)
provides a better approximation.

K(Di,Dj )=
(
Ai(Di)

0.5
+Aj (Dj )

0.5
)2

|vi(Di)− vj (Dj )|Estick(T )Ecoll(Di,Dj ) (9)

The A-kernel approximation has been used previously in
the same or similar formulation (Kienast-Sjögren et al., 2013;
Morrison and Milbrandt, 2015; Dunnavan, 2021). In these
studies, the aggregation rates are calculated numerically and,
in the case of the scheme proposed by Morrison and Mil-
brandt (2015), stored in lookup tables that are used at the
model run time. Lookup tables can accurately store precom-
puted process rates and might be numerically more efficient
than analytical solutions, depending on the computer archi-
tecture, size of the lookup table, and complexity of the ana-
lytical solution. However, Seifert et al. (2014) argue that the
use of lookup tables also has disadvantages, like increasing
complexity during preprocessing, additional memory access,
and difficult reproducibility for follow-up studies. To avoid
these disadvantages, the SB06 scheme uses analytical solu-
tions of the variance approximation introduced by Seifert and
Beheng (2006). To use the A-kernel we have to generalize the
collision rates. For brevity, we moved the lengthy derivations
to Appendix A. To our knowledge, this is the first applica-
tion of an A-kernel in a bulk microphysics scheme that uses
an analytical formulation of the aggregation rates. How large
the difference is between the D- and the A-kernel depends on
the particle properties (e.g., area–size and vt–size relation).

3.1.3 Particle properties

Particle properties influence aggregation because they are an
essential part of the aggregation kernel. According to Eqs. (1)
and (9) collection is enhanced if the product of the difference
in vt and the joint cross section is large. Thus, a particle pop-
ulation will aggregate rapidly if the mean mass is relatively
large and particles with largely different vt are present. The
coefficients of area–size and vt–size relations of the SB06
default scheme and the particle from K20 are included in Ta-
ble 2.

While the particle properties of the SB06 default scheme
particle classes are taken from in situ observations, K20 used
an aggregation model and hydrodynamic theory to simulate
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Table 1. Size distribution parameter for µm = 1/3, the mass–size relationship of the Mix2 particles (Table 2), q = 2× 10−4 kg m−3, and
N = 104 m4 (same as Fig. 2). ZeKa, MDVKa, and DWRX,Ka are calculated using the self-similar Rayleigh–Gans approximation (SSRGA)
and the SSRGA parameters of Mix2 as provided by Ori et al. (2021). µmax is estimated by the zeroth, third, and sixth moment of the
distribution.

νm µeq µmax ZeKa [dBz] MDVKa [m/s] DWRX,Ka [dB] DWRKa,W [dB]

0.0 2.0 −0.11 12.11 0.91 1.21 3.89
2.0 8.0 2.19 9.83 0.83 0.02 1.12

the particle properties. The advantages of this approach are
that particle properties can be studied over a large size range,
are physically consistent, and can be studied in great detail.
Particle property relations from in situ observations have a
comparably small sample size. Thus, extrapolation to small
and large sizes is unavoidable because microphysics schemes
need information about particle properties in a large size
range. This extrapolation might lead to inaccuracies, such as
the overestimation of vt at large sizes (K20). Since we take
all snow particle properties (m–size,A–size, vt–size; Table 2)
from the same aggregate type within the dataset, all proper-
ties are physically consistent. By comparing with in situ ob-
servations, K20 found that their mixed aggregates consisting
of small columns and large dendrites (Mix2) can approxi-
mate mean aggregate properties well. Besides aggregates (in-
cluding aggregates of columns and aggregates of dendrites;
Sect. 3.1.5), K20 also summarized different monomer parti-
cle properties, e.g., the columns and needles shown in Fig. 3.
vt of the default cloud ice and snow class increases con-

tinuously with increasing size (Fig. 3) due to the power-law
relation used.

vt = avelm
bvel (10)

Due to this continuous increase, the self-collection rates of
these hydrometeor classes stay relatively large at large sizes
(Figs. B3 and B4). In contrast, the asymptotic approach to
a limit of vt in the new relations leads to rapidly decreasing
collision rates at large sizes. The asymptotic approach is ev-
ident from in situ observations and can be accounted for by
using an Atlas-type vt–size relation.

vt = αv −βv exp(−γvDeq) (11)

The relative vt of cloud ice and snow particles also plays a
role in ice–snow collection rates. In the SB06 default scheme,
vt of cloud ice and vt of snow differ greatly. However, K20
showed that vt of cloud ice and snow should have similar
values. The difference between cloud ice and snow vt de-
termines the location and magnitude of the minimum of the
collection rates.

The projected area A is derived differently in the D- and
the A-kernel. In the D-kernel, the m–Dmax relation,

m= amD
bm
max, (12)

determines the relation between A and size. Since m is the
primary variable in the SB06 scheme, it is most useful to
consider the differences between the kernels and the particle
classes as a function of Deq (which is directly related to the
mass).

Asphere =
π

4
D2

max =
π

4

(
πρwD

3
eq

6am

) 2
bm

(13)

Thus, the particles which have the lowest effective density,

ρeff =
6m

πρiceD3
max

, (14)

have the largest A for a given Deq (e.g., needles of K20 in
Fig. 3b). The other particles have similar A. In the A-kernel,
the actual projected area Aact derived from the particle shape
is relevant.

Aact = γAD
σA
eq (15)

The particle shapes and thusAact are not defined for the SB06
default classes because this property is not required. The area
ratio Ar is commonly defined as the ratio of Aact to the area
of a sphere with diameter Dmax.

Ar =
4γAD

σA
eq

πD2
max

(16)

At small sizes, Ar is close to 1, indicating compact parti-
cles and small differences between the D- and the A-kernel
(Fig. 3d). With increasing size, Ar decreases down to 0.2 at
Deq = 5 mm for the Mix2 class and lower for the cloud ice
classes needle and column. Aact is similar to observations of
Mitchell (1996) as shown in K20.

However, the low values of Ar of the cloud ice classes
are less important because such large sizes of cloud ice are
rarely reached in the model. The decrease in Ar leads to a de-
crease in collision rates, especially at large sizes, similar to
the Atlas-type vt–size relations. Thus, combining the new vt–
size relations with the A-kernel substantially decreases colli-
sion rates at large sizes.

While the properties of snow can be validated well against
mean observed quantities (as done in K20 and in Sect. 3.1.5
of this study), selecting a single habit for cloud ice is a strong
simplification that is necessary for a simplified microphysics
scheme.
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Figure 3. Particle properties from the default (SB06 default cloud ice, SB06 default snow) and modified version (column, needle, Mix2) of
the scheme. (a) Terminal velocity vt, (b) projected area A of a circumscribing sphere (as assumed in D-kernel), (c) “real” projected area A
considering the voids in the circumscribing sphere (as assumed in A-kernel), and (d) area ratio (Eq. 16). The default scheme does not assume
an A–D relation explicitly, and therefore the real projected area and the area ratio are not given.

3.1.4 Sticking efficiency

The parameters discussed so far determine how often col-
lisions occur. The percentage of the colliding particles that
stick together after a collision is defined by the sticking effi-
ciency Estick.
Estick is mostly only described as a function of the tem-

perature (Mitchell, 1988; Connolly et al., 2012, M88, C12).
To stick to each other, ice particles must form ice bonds
(Lamb and Verlinde, 2011), which is highly unlikely for col-
liding solid-ice particles when the temperature is well be-
low the melting temperature and the particles only touch
for a short time. There are two main mechanisms that in-
crease the likelihood of adhesion after a collision and ex-
plain the temperature dependence. The first mechanism is
explained by the quasi-liquid layer (QLL) on the ice par-
ticle surface. The phenomenon of QLL has been studied
since the mid-19th century (Slater and Michaelides, 2019).
QLL thickens with increasing temperature and consists of
weakly bound molecules on the particle surface (Slater and
Michaelides, 2019). When two particles touch, the molecules
form a solid bond at the point of contact. The second mecha-

Figure 4. The sticking efficiency (Estick) in the SB06 scheme for
collisions among ice particles (ice self-collection) follows L83; for
other collisions (ice–snow collection, snow self-collection) it ap-
plies the C86 parameterization. Our new relation (red) combines the
relations from M88 and C12 with a characteristic maximum around
−15◦ C and values quickly approaching unity for temperature larger
than −5◦ C.

Atmos. Chem. Phys., 21, 17133–17166, 2021 https://doi.org/10.5194/acp-21-17133-2021



M. Karrer et al.: Improved representation of aggregation 17143

Table 2. Parameterizations used in ICON-LEM, the snowshaft model, and radar forward simulations of hydrometeor properties in PAMTRA.

D represents the particle maximum dimension andDeq =
(

6 m
πρw

)1/3
the mass-equivalent diameter;m is the particle mass and ρw the density

of water. The mass–size (m–D), terminal velocity vt–size, and projected area–size (A–D) relations are reported in their full mathematical
form. For the SSRGA scattering model, the four parameters (κ , β, γ , ζ0) are given in parentheses. SB indicates that the properties are
exclusively used in the default setup. Cloud droplets, rain, graupel, and hail (which are only relevant for the 3D simulations) follow the same
properties in all simulations. The aspect ratio is 1.0 for all classes except for the snow classes (SB snow, Mix2, and Mix2; O20 scat), for
which an aspect ratio of 0.6 is assumed. All variables are in SI units.

Hydrometeor m–D A–D v–D Scattering
classes

SB cloud ice 1.588D1.56
max – 30.6D0.55

max SSRGA(0.18,0.89,2.06,0.08)
Column 0.046D2.07

max 8.21D2.23
eq 1.63− 1.67e−1586Deq SSRGA(0.18,0.89,2.06,0.08)

Needle 0.0047D1.89
max 13.97D2.26

eq 1.41− 1.43e−1650Deq SSRGA(0.18,0.89,2.06,0.08)
SB snow 0.038D2.0

max – 5.51D0.25
max SSRGA(0.25,1.00,1.66,0.04)

Mix2 (O20 scat) 0.017D1.95
max 685.93D2.73

eq 1.12− 1.19e−2292Deq SSRGA(0.25,1.00,1.66,0.04)
Mix2 0.017D1.95

max 685.93D2.73
eq 1.12− 1.19e−2292Deq SSRGA(0.22,0.60,1.81,0.11)

Aggregates of columns 0.074D2.15
max 69.34D2.50

eq 1.583− 1.6e−1419Deq SSRGA(0.23,1.45,2.05,0.02)
Aggregates of dendrites 0.027D2.22

max 367.91D2.53
eq 0.88− 0.895e−1393Deq SSRGA(0.23,0.75,1.88,0.10)

Cloud drop π
6 ρwD

3
max – 2.49× 107D2

max Mie
Rain π

6 ρwD
3
max – 9.3− 9.6e−622.2Deq Mie

Graupel 500.86D3.18
max – 406.7D0.85

max soft-sphere Mie
Hail 392.33D3.0

max – 106.3D0.5
max soft-sphere Mie

nism is the mechanical interlocking of relatively large parti-
cles with dendritic features (Pruppacher et al., 1998). These
dendritic features occur at temperatures between −17 and
−12 ◦C.

The SB06 default scheme uses the Estick parameterization
of Cotton et al. (1982) for ice–ice collisions and Lin et al.
(1983) for ice–snow and snow–snow collisions (Fig. 4). The
exponential shape of both parameterizations can be justified
by the approximately exponentially increasing QLL thick-
ness. These relations, however, miss the maximum of Estick
suggested by studies (M88, C12) that consider the mechani-
cal interlocking mechanism.

We combine M88 and C12 to propose a new parametriza-
tion. For T <−20 ◦C we follow C12, then linearly approach
the plateau proposed by M88 with Estick = 1 between −17
and −12 ◦C. As discussed in the Introduction, there is ample
evidence from both in situ and remote sensing observations
that Estick is likely to be present at temperatures near−15 ◦C
(at which particles with dendritic features are present) and
near the melt boundary. At −10 ◦C the new parameteriza-
tion again follows C12 but increases towards 1 at higher
temperatures, at which C12 does not provide an estimate of
Estick. One might prefer to follow C12 rather than M88, since
C12 derived Estick directly from laboratory measurements
and M88 provided only an ad hoc parameterization. How-
ever, C12 analyzed only the initial stage of aggregation, dur-
ing which few monomers compose the aggregates. The inter-
locking mechanism might be more efficient for more com-
plex aggregates compared to early aggregates as discussed in
C12. Even considering only the initial stage of aggregation,

the confidence interval of Estick at −15 ◦C ranges from 0.35
to 0.85 (C12).

3.1.5 Selecting a particle type representative for a large
aggregate ensemble

After discussing the various components of the aggregation
process formulation, we need to decide which aggregate type
to use to best represent the physical particle properties (e.g.,
vt) and scattering properties. In O20, the particle proper-
ties were defined by the assumptions in the standard SB06
scheme. The best-fitting aggregate model and associated SS-
RGA parameters were selected based on the best fit in the
triple-frequency DWR space. In this section, we ask whether
there is an aggregate type in the database of K20 and Ori
et al. (2021) that reproduces both the physical and scattering
properties well compared to the observations.

O20 already noted that the representation of MDV as a
function of DWR resembles to some extent the underlying
vt–size relation. In contrast to the triple-frequency DWR-
DWR, the MDV-DWR space is rather insensitive to the
PSD width. Different aggregate types composed of differ-
ent monomer types generated and studied in K20 are used to
simulate their corresponding MDV-DWR signatures (Fig. 5).
The underlying distribution shows the observed values from
D18, which naturally contain larger scatter and even neg-
ative DWR values, mainly due to imperfect radar volume
matching (for a detailed discussion, see D18). Fortunately,
as shown in D18, the dataset contains only very short and
weak riming events. This scarcity of substantial riming is
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Figure 5. Comparison of the modeled and observed relationship
between MDV and DWR: (a) DWRKa,W, (b) DWRX,Ka. The his-
togram shows the observations from the Tripex campaign (D18).
The lines show the theoretical MDV at a given DWR for the vt
size relations of snow particles as assumed in the SB default (black)
and as modeled in K20. For the dashed lines, the SSRGA param-
eters have been directly derived from the corresponding aggregate
ensemble properties (as found in Ori et al., 2021). The solid lines
use SSRGA parameters as used in O20 in order to illustrate the un-
certainty due to the scattering parameters. The lines are calculated
using PAMTRA and the properties of the US standard winter atmo-
sphere at 700 hPa.

important because the increased MDV due to riming would
bias our comparison. Moderately or strongly rimed particles
would exceed 1.5 ms−1 upon reaching a size that results in
a nonzero DWRKa,W (Mason et al., 2018). The MDV-DWR
space is also well-suited to evaluate our aggregate choice, as
it combines the two radar variables that showed the largest
discrepancies with the model simulations in O20.

O20 already recognized the overestimation of vt at
large sizes, which is also evident in Fig. 5. For exam-
ple, at DWRX,Ka = 5 dB the observed MDV scatters around
1 ms−1, while the snow falls at 1.7 m s−1 in the SB06 default
scheme. From the aggregate dataset of K20 the aggregates
of dendrites fall the slowest and the aggregates of columns
fall the fastest. A mixture composed of small columns and
large dendrites (Mix2), which fit in situ observations (K20)
best, also matches the observations in the MDV-DWR space
well. Therefore, we utilize the Mix2 aggregate properties as
an improved description for the snow class in the following.

Interestingly, the use of the SSRGA coefficients of the ag-
gregate type O20 does not lead to a strong change in the
curves in the MDV-DWR space. Although it would be most
consistent to use the SSRGA coefficients of Mix2 directly,
we will use the scattering properties of O20 in the following
analysis to allow a fair comparison of our new results with
the discrepancies found in O20.

3.2 Exploring sensitivity to microphysical parameters
in the snowshaft model

The snowshaft model (Sect. 2.1) allows us to test the influ-
ence of the particle properties, the formulation of the col-
lision kernel, Estick, and the size distribution on the aggre-
gation rates with low computational effort and with reduced
complexity. In Sect. 3.1 we showed how these parameters af-
fect aggregation. We not only examine the influence of the
parameters on the predicted model variables but also on the
radar observables. After carefully setting up the model, the
comparison in radar space enables us to directly contrast the
statistics of the simulation and the observations, as given in
O20 and D18. Since we compare the statistics of the model
and observations over a relatively long time range this anal-
ysis already attempts to select a combination of parameters
that can reproduce the observational statistics well. The opti-
mal parameter combinations found in the snowshaft simula-
tions will then be applied in the 3D model to simulate a case
study (Sect. 3.3) before we use it to rerun simulations for the
whole time period of the Tripex campaign (Sect. 3.4).

This comparison between the model and observation ben-
efits from the simultaneous consideration of multiple model
parameters and multiple observables. When looking at a sin-
gle observable only, one might reduce a bias by an adjust-
ment of a single process or parameter, even though this might
just compensate for an inaccurate choice in another parame-
ter, introducing compensating errors. As the number of inde-
pendent observables increases, this problem is reduced as the
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inaccurate choice of a parameter might be detectable in one
of the remaining observables. In other words, the larger de-
gree of freedom in the observations helps to better constrain
the parameters by comparison with the model when several
observables are considered. We focus our comparison on the
DWRs (as a measure of particle size) and the MDV (as a
measure of vt). These two quantities constrain the strength
of aggregation and the assumed vt–size relationship, and the
statistical comparison in O20 also revealed the largest differ-
ences between observations and the model in these variables.

3.2.1 Optimizing the snowshaft model and selecting
microphysical parameters for new setup

O20 pointed out that the inconsistencies between observed
and synthetic MDV and DWRs are especially evident for
raining periods. As we attempt to remove these inconsisten-
cies, the atmospheric variables and the hydrometeor contents
at the top of the simulation are chosen so that the hydrome-
teor profiles in the snowshaft simulation roughly follow the
profiles of the ICON-LEM simulations from O20 wherein
RR is larger than 1 mm h−1; compare “default” and the his-
togram in Fig. 6. To match the profiles the RHi has to be
set to 1 % above about −18 ◦C with increasing values up
to about 6 % at about −7 ◦C. These values of RHi , which
are relatively high compared to those from the ICON-LEM
simulations (Fig. B5), might be necessary because of the ab-
sence of nucleation and advection in the snowshaft simula-
tions. Also, the values ofQi ,Ni ,Qs, andNs at the model top
are chosen so that the hydrometeor profiles of the CTRL sim-
ulation (performed with the SB06 default setup) match those
of the profiles of the ICON-LEM simulations of O20 with
RR> 1 mm (Fig. 6). After this optimization of the snow-
shaft model, the simulated profiles from ICON-LEM (O20
and Figs. 11 and 12) and the snowshaft model (Figs. 6) re-
veal that a simple initialization (nucleation) of the profiles
at cloud top is sufficient at least for testing the sensitivities
of aggregation to our set of parameters and various formula-
tions.

After iterating over many parameter combinations,
we found one particular setup (which we refer to as
colMix2_Akernel or simply as NEW) to match the ob-
served profiles particularly well. In these iterations, we var-
ied mostly the less-known components, e.g., the size distri-
bution width, while parameters that we were already better
able to constrain (Sect. 3.1.5), e.g., the vt size relation, were
not varied. Our approach can hence be seen as a combination
of a purely physically based approach, incorporating current
knowledge of parameters obtained, e.g., through laboratory
studies, and an empirical correction based on observations.

3.2.2 Sensitivity of aggregation to individual ice
microphysical parameters in the snowshaft model

The hydrometeor profiles (Fig. 6) and radar observables
(Fig. 7) of the NEW setup exhibit many interesting differ-
ences from the profiles of the CTRL run. In the following,
we discuss where the differences originate from by looking at
the different sensitivity runs. In each sensitivity run only one
set of parameters is different from the NEW run (Table 3).

The cloud ice mixing ratio Qi and the cloud ice number
density Ni are lower in the NEW run than in the CTRL run
for T <−10 ◦C (Fig. 6). At the same time, the snow mix-
ing ratio Qs and number density Ns are slightly larger in the
NEW run at temperatures below −17 ◦C. These differences
can be explained by the higher Estick at lower temperatures
in the NEW setup (Fig. 4), which leads to more collisions
among cloud ice particles, and therefore more particles are
converted from the cloud ice to the snow category. When us-
ing the Estick parameterization of Cotton et al. (1982) and
Lin et al. (1983) (colMix2_Akernel_LinCot;),Qi and Ni are
larger at lower temperatures (and Qs and Ns are smaller).

The smaller values of Estick in colMix2_Akernel_LinCot
compared to NEW at lower temperatures (compare L83
and C86 with “new” in Fig. 4) lead to further differences;
colMix2_Akernel_LinCot has a smaller mean mass x, which
is the mean mass of the sum of the cloud ice and snow
class ((Qi +Qs)(Ni +Ns)

−1), and correspondingly lower
DWRs for T <−7 ◦C (Fig. 7c and d). The smaller mean
size also leads to slower-falling particles (visible in MDV;
Fig. 7b). For T >−7 ◦C the strong increase in Estick in
colMix2_Akernel_LinCot triggers a strong increase in x and
DWRX,Ka. A similar increase in the mean and median of
the investigated statistics of DWRX,Ka was already discussed
in O20. As in O20 the strong increase is not visible in
DWRKa,W, since this observable already reaches saturation
for mass median diameters of about 3 mm (Sect. 2.5). The
local maximum of the new Estick parameterization at tem-
peratures from −17 to −12.5 ◦C leads in the NEW run to a
rapid increase in the x, DWRs, and MDVs in the same tem-
perature range and therefore matches the observed profile of
DWRKa,W better than the CTRL run.

O20 speculated that the overestimation of the particle sizes
at high temperatures and the mismatch in the profiles of the
DWRs might be mainly due to the Estick parameterization
and the vt–size relation. However, Figs. 6 and 7 as well as
the aggregation rates (Appendix A) reveal that the vt rela-
tion at smaller sizes and the aggregation kernel formulation
also strongly affect the aggregation rates. Both x (Fig. 6i)
and DWRX,Ka are lower in colMix2_Akernel_LinCot than in
the CTRL run. IfEstick were the dominating driver, these two
simulations would be very similar. The differences in the x
profiles of these two simulations can only be explained by
relevant influences of other parameters on the aggregation
rates.
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The simulations with the D-kernel (colMix2_Dkernel) ex-
hibit a strong influence on aggregation. This is evident in the
rapid decrease in Qi and Ni and a rapid increase in xi , xs,
and x caused by high aggregation rates (supported by Ap-
pendix A). From this simulation, it is evident that the use of
the new particle properties (including the Atlas-type vt–size
relation) together with the D-kernel results in even larger par-
ticles than in the default run, and thus DWRs are strongly
overestimated (Fig. 7d). This overestimation can only be re-
duced by using the A-kernel.

The vertical gradients of Q result from mass uptake by
depositional growth and divergence of vt (Fig. 6h). First, Q
increases from the cloud top to the cloud bottom due to de-
positional growth. Second, deposition growth and aggrega-
tion increase particle size and thus vt increases. If there were
no mass uptake (no deposit growth) but only aggregation, Q
could only decrease because the product of vt and Q would
be conserved. The vt–size relation plays an important role
in these processes: on the one hand, smaller vt for a given
particle size, e.g., as in NEW vs. CTRL, means more time
for mass uptake, leading to a faster increase in Q per height.
On the other hand, smaller vt could also lead to less venti-
lation and thus less mass uptake due to depositional growth.
The vt–size relationship, which defines the slope of vt with
increasing size, influences the divergence of vt with height
and the aggregation rates (Sect. 3.1.3). These multiple effects
also interact, which further complicates the interpretation of
the profiles of Q. Nevertheless, we attempt to interpret the
most obvious features of the profiles of Q.

At about −17 ◦C, MDV increases sharply in the NEW
run (Fig. 7b), causing a decrease in Q at these temperatures
(Fig. 6f), while Q increases continuously in the CTRL run.
The differences in the profiles of Q between the sensitivity
runs are relatively large. These large differences are likely
due to the different conversion rates of cloud ice to snow and
differently strong increasing x near the model top. For ex-
ample, in colMix2_Dkernel the cloud ice converts rapidly to
larger snow particles. As a result, particles near the model
top fall faster and therefore have less time to grow by de-
positional growth (the increase in Q is weaker compared to
the NEW run); colMix2_Akernel_LinCot shows a weaker
increase in x for T >−15 ◦C compared to the NEW run
(Fig. 6i). This weaker increase in x leads to a weaker in-
crease in MDV (Fig. 7b) and thus to a stronger increase in
Q (Fig. 6h). The reflectivity ZeKa is closely related to Q
so that colMix2_Dkernel (colMix2_Akernel_LinCot) has the
lowest (highest) reflectivity. However, the CTRL run has the
highest ZeKa, although Q is lower than in some sensitivity
runs. The large ZeKa here could be caused by the relatively
dense snow particles assumed in CTRL (Fig. 3). Overall, Q
and ZeKa show relatively large sensitivity to the varied pa-
rameters in these snowshaft simulations. However, this ob-
servation must be interpreted with caution. The simulations
assume a relatively large humidity in order to match the hy-
drometeor profiles and compensate for processes not consid-

ered (Sect. 3.2.1). This high humidity could lead to an over-
estimation of mass uptake due to depositional growth. Ad-
ditionally, considering that supersaturation is not consumed
by depositional growth but is held constant in our snowshaft
simulations, one could hypothesize that Q and Ze might be
more similar among the sensitivity runs in the ICON-LEM
simulations.

The new particle properties reduce the bias of the scheme
regarding MDV to a large extent (Fig. 7b). While all simula-
tions with the new particle properties are within the deciles
of the observations, the standard run is already outside the
deciles at −35 ◦C and is more than 0.5 m s−1 larger than the
median at some temperatures (e.g., at T = 5 ◦C). The other
parameters change the profile of the MDV to a much lesser
extent. At temperatures from −18 to −12 ◦C, all simulations
show an increase in MDV, while all quantiles of the observed
MDV decrease. This discrepancy could be due to the lack of
habit prediction, underestimated or missing upwinds, or the
lack of collisional fragmentation (Korolev and Leisner, 2020)
in the model. At these temperatures dendritic growth occurs,
which could lead to decreasing particle density and thus de-
creasing vt and/or updrafts as a result of strong latent heat
release. Collisional fragmentation could furthermore lead to
the formation of new small particles with low vt, which also
reduces the MDV.

In addition to the particle properties, the width of the size
distribution changes the MDV the most. The simulation with
the wider size distribution (colMix2broad_Akernel) has a
larger MDV (Fig. 7b) than the NEW run, which is due to
the increasing number of large particles at the larger end of
the distribution (Sect. 3.1.1). These large particles contribute
more to the MDV than the smaller particles; to calculate
MDV, each particle must be weighted by reflectivity, which
for Rayleigh scatterers scales approximately with mass to the
power of 2. The higher weight of the large participants also
explains why the DWRs in colMix2broad_Akernel are sig-
nificantly higher compared to the NEW run, even though the
mean size of the hydrometeors is relatively similar. This sen-
sitivity illustrates that the DWRs can only to some extent be
used to infer x and the size distribution width has to be addi-
tionally considered.

Despite the various simplifications in the snowshaft model
(no nucleation, no advection, constant humidity) the mean
profile of the radar profiles from the ICON-LEM simulations
of O20 could be well-matched. This allowed us to investigate
the sensitivity of aggregation to the individual model compo-
nents and to select a model setup that best matches the ob-
served radar profiles. The particle properties of the snow, the
aggregation kernel formulation, and Estick have a strong in-
fluence on the hydrometeor contents and the simulated radar
observables. Interestingly, the choice of particle size distri-
bution has little effect on the hydrometeor profiles but a large
effect on the DWR values. The choice of cloud ice properties
(needle or column) is less important than the choice of the
other parameters in this cloud regime. However, the choice of

Atmos. Chem. Phys., 21, 17133–17166, 2021 https://doi.org/10.5194/acp-21-17133-2021



M. Karrer et al.: Improved representation of aggregation 17147

cloud ice properties might be more important for clouds with
smaller aggregation rates, e.g., cirrus. If we combine the A-
kernel, the particle properties of Mix2 from K20, the newly
proposedEstick parameterization, and a relatively narrow size
distribution the observed profiles of MDV and DWRs could
be better matched. To test whether these sensitivities and im-
provements in NEW are also found persistently in more re-
alistic simulations, in the next section we test whether these
observations occur similarly in the ICON-LEM simulations.

3.3 ICON-LEM case study simulation using the new
parameterizations

In the snowshaft simulations (Sect. 3.2) we had to use sev-
eral idealized assumptions. ICON-LEM (Sect. 2.2) contains
additional processes (e.g., advection, nucleation, varying hu-
midity field) and therefore simulates a more realistic repre-
sentation of the atmosphere. In this section, we investigate
the impact of the various parameters studied in the sensitiv-
ity analysis in a more complex case study with an ICON-
LEM simulation. Furthermore, the ICON-LEM simulations
provide an opportunity to extend the analysis to various con-
ditions (e.g., nonstationary regime during the frontal passage,
sublimation layers).

The case study of interest was 3 January 2016, when a
low-pressure area over the British Isles and an accompany-
ing frontal system over western and central Europe deter-
mined the synoptic situation over the modeled domain. Shal-
low mixed-phase clouds are present in the morning and dis-
sipate around noon (Fig. 8a). The passage of a warm front
manifests itself at 10:00 UTC, first in high clouds and then in
sinking cloud bases. These frontal clouds start to precipitate
at 18:00 UTC. The selected case is particularly interesting
because it contains clouds in different regimes and precipita-
tion of weak to moderate intensity.

The observed and simulated ZeKa fields match relatively
well for all simulations in terms of cloud structure and pre-
cipitation (Fig. 8). Both the shallow mixed-phase clouds and
the frontal cloud are very well-captured in terms of temporal
and spatial structure.

ZeKa exhibits strong differences between the observations
and the simulation only in the rain and ice slightly above the
melting temperature in the period from 19:00 to 23:00 UTC.
The sharp decrease in the observed ZeKa indicates strong
sublimation. The presence of sublimation is also revealed
by the model showing subsaturated air in this time range
(Fig. B6). There are three main reasons that explain why the
model does not accurately represent the sharp decrease in
ZeKa in this sublimation scenario. First, the humidity could
be overestimated in the model, e.g., due to inaccurate forc-
ing data. Second, particle sizes could be overestimated due
to processes in microphysics that weaken the effect of sub-
limation. We cannot completely rule out the humidity mis-
match, but we found good agreement between the model and
radiosonde data when available. Unfortunately, there was no

radiosonde launched on the considered day. Thus, we are
confident in the general ability of the model to accurately
simulate the humidity field, but we cannot rule out the pos-
sibility that inaccuracies in the simulated humidity field con-
tribute to the bias in ZeKa. Lastly, the parameterization of
sublimation could also be an error source. For example, the
evolution of the PSD during sublimation is challenging to
represent in a two-moment scheme (Seifert, 2008). Since all
of these reasons might be able to explain the mismatch in
ZeKa, we should be cautious in assessing the validity of the
assumptions of the individual model settings based on this
sublimation feature. However, regardless of the accuracy of
the model in predicting the humidity or simulating sublima-
tion, the following differences in ZeKa of the model simula-
tions underscore the importance of accurate prediction.

While the NEW (Fig. 8c) and most sensitivity runs show
a slight decrease in ZeKa due to sublimation in the time
period when the air is subsaturated, the sublimation is
barely seen in ZeKa of some other simulations (e.g., CTRL,
colMix2_Dkernel; Fig. 8b and g). The differences between
the simulations are caused by the differences in the particle
size indicated by DWRX,Ka (Fig. 9). Similar to the snow-
shaft simulations, DWRX,Ka is strongly overestimated in
colMix2_Dkernel and the CTRL run. In contrast, DWRX,Ka
is well-matched closely above the melting temperature in the
NEW simulation. The hydrometeor populations with realis-
tic particle sizes are more strongly affected by the subsatu-
rated air and sublimate quickly, whereas particles that are too
large sublimate less and therefore retain more mass. Thus,
the overestimated particle size leads to overestimated precip-
itation. Between 18:00 and 24:00 UTC, 1.40 mm of accumu-
lated rain was observed, 8.91 mm simulated by the default
simulation and 2.29 mm by colMix2_Akernel. While this
represents an overestimates of 536 % by the CTRL run dur-
ing this time period, we emphasize the overall good agree-
ment between modeled and observed precipitation reported
by O20 for the entire campaign. While Estick appeared to
be important for the simulated DWRKa,W in the snowshaft
simulations (Fig. 7), the differences between the simulation
with the old (colMix2_Akernel_LinCot; Fig. 9d) and the
new Estick parameterization (colMix2_Akernel; Fig. 9c) are
relatively small. In the ICON-LEM simulation, the weaker
growth of the particles in colMix2_Akernel_LinCot at lower
temperatures might be partly compensated for by advection
or nucleation.

Besides the DWRs, MDV provides valuable information
about the microphysical properties. As also reported by O20,
MDV is overestimated in the SB06 default simulation, espe-
cially in regions where the particle sizes are overestimated
(Fig. 10). MDV is often used to distinguish rimed from un-
rimed particles (e.g., Mosimann, 1995). Using this method,
we detect some smaller episodes in which rimed particles
dominate at about 04:00, 18:00, and 22:00 UTC. At other
times, the observations indicate unrimed or only slightly
rimed particles. In the SB06 default simulation, high MDVs
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Figure 6. Profiles of model variables in the snowshaft simulations. Number density N (a, d, g), mass mixing ratio Q (b, e, h), and mean
mass x (c, f, i) of the cloud ice (a, b, c), snow (d, e, f), and the sum of cloud ice and snow (g, h, i). Lines: simulations using different model
settings as described in Table 3. Greyscale: histogram of the hydrometeor contents vs. temperature from the ICON-LEM simulations of the
Tripex campaign (O20) filtered to include only profiles for which the precipitation rate exceeds 1 mmh−1. The simulations in O20 used the
default model settings.

Figure 7. (a) Reflectivity ZeKa, (b) mean Doppler velocity MDVKa, (c) DWRKa,W, and (d) DWRX,Ka. Lines: simulated profiles based on
snowshaft simulations (Fig. 6) as well as the median and quartiles of the observations. Greyscale: histogram of observations from the Tripex
campaign (O20).
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Table 3. Overview of parameters and settings varied in the microphysical sensitivity experiments. The sensitivity runs have the same settings
as colMix2_Akernel unless otherwise noted.K is the collision kernel,D the maximum dimension, and A the particle’s projected area; µ and
ν are parameters in the generalized gamma function describing the mass distribution in the microphysics scheme (Eq. 5).

Main runs Sensitivity runs (difference to colMix2Akernel)

SB06 default/ colMix2_ needMix2_ colMix2_ colMix2_ colMix2
CTRL Akernel/ A-kernel D-kernel Akernel_LinCot broad_Akernel

NEW

Particle SB06 default cloud ice, Column Needle
properties SB06 default snow Mix2
(Fig. 3)

Collision D-kernel: A-kernel:
kernel K ∝ (Di +Dj )

2 K ∝ (A0.5
i
+A0.5

j
)2 D-kernel

Sticking efficiency L83/C86 Modification of
(Fig. 4) M88 L83/C86

Size distribution ν = 0 ν = 2 (cloud ice ν = 2 (cloud ice)
N(m)= Amνe−λm

µ
(cloud ice & snow) ν = 0 (snow)

& snow)

are obtained in the whole time range after 18:00. Since the
profiles of the hydrometeors show only very little mass of
rimed particles during this period, the larger predicted MDV
can be attributed to the overestimation of the unrimed snow
particle vt.

The new simulations, all using the new particle proper-
ties, have significantly lower values of MDV at all tempera-
tures. This reduction of MDV compared to the SB06 default
setup constitutes a significant reduction of the bias in MDV
at temperatures below −10 ◦C. For T >−10 ◦C, MDV is
even slightly underestimated. Considering that Fig. 5 shows
good agreement of MDV between the observations and the
vt–size relation of Mix2, we assume that the underestimation
of MDV is not caused by the underestimation of the vt–size
relation of aggregates. Since DWRX,Ka also matches well
at these temperatures, processes other than aggregation and
sedimentation of unrimed aggregates most probably cause
this underestimation of MDV. One could speculate that rim-
ing rates are underestimated or that the vertical air motion is
not well-simulated.

Most of the findings from the snowshaft simulations (e.g.,
the strong reduction of MDV and DWR at temperatures close
to the melting temperature) are confirmed by the ICON-LEM
simulation of this case study. However, the ICON-LEM sim-
ulations reveal that the influence of Estick seems to be over-
estimated in the snowshaft simulations. Moreover, accurate
modeling of particle sizes and vt in the presence of a subli-
mating layer is critical. The simulations with the new parti-
cle properties showed a slight underestimation of the MDV.
This underestimation most likely does not arise from an inac-
curate representation of the particle properties or the aggre-
gation rates but is caused by another process (e.g., riming,
vertical air motion). In previous analyses of the SB06 default
setup, this underestimation could not have been detected be-

cause it was masked by the overestimation of the aggregate’s
vt. Because errors can be specific to the chosen day, such as a
particular mismatch of the relative humidity, relying on only
one case to detect a discrepancy in the microphysical proper-
ties is prone to error. Therefore, we analyze the statistics of a
multi-month simulation in the next section.

3.4 Statistical comparison

After evaluating the choices of the new scheme in the snow-
shaft model and in a case study with ICON-LEM, we per-
form ICON-LEM simulations for the entire Tripex time pe-
riod. By comparing observed and modeled histograms of
DWR and MDV as a function of temperature, we can evalu-
ate the new scheme. Since we additionally contrast the his-
tograms of the NEW and CTRL simulations, we can test
whether the reduction in the bias of DWRs and MDV found
in Sect. 3.3 is specific to the selected case or rather a consis-
tent feature of the model changes. As DWRs are related to
the mean particle size, we can assess whether the chosen pa-
rameter combination can accurately simulate aggregation in
various weather situations present in the simulated days. The
same applies to MDV profiles, which are especially valuable
in evaluating the suitability of the assumed vt–size relation-
ship.

The observed and synthetic radar profiles are filtered in
the same way for comparability. For example, the first 6 h
of simulation and observation are not considered because the
model output could contain artifacts during this spin-up time.
Moreover, we include only profiles in which the rain rate RR
exceeds 1 mm h−1. The latter filter enables us to focus on
the most relevant cases for precipitation. Interestingly, O20
found the discrepancy between the model and observations
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Figure 8. Time–height profile of ZeKa from 3 January 2016 as observed (a) and simulated (b–g) with various model settings (Table 3).
Selected temperature isolines from CloudNet (Illingworth et al., 2007) for the observations (a) and the corresponding ICON-LEM output (b–
g) are also shown.

to be especially obvious for these profiles. For a detailed de-
scription of the processing, we refer to O20.

To quantify the agreement between the histograms of the
simulations and the observation, the Hellinger distance H is
used.H can be defined for two distributions P =(p1, . . . , pk)
and Q =(q1, . . . , qk) as

H(P,Q)=
1
√

2

√√√√ k∑
i=1

(√
pi −
√
qi
)2
. (17)

H is zero for two identical distributions and 1 if the distribu-
tions do not overlap at all.

The medians and larger quantiles of the observed distri-
butions of DWRs indicate a strong increase in particle size
around−15 ◦C (most evident in DWRKa,W; Fig. 11a) and just
above the melting temperature (most evident in DWRX,Ka;
Fig. 11e). Both of these characteristic increases in the parti-
cle sizes are found to some extent in CTRL (panels b and f in

Fig. 11) and NEW (panels c and g in Fig. 11). The increase in
particle sizes between −15 and −10 ◦C happens in the new
simulations at slightly lower temperatures, and the different
profiles reveal a greater variability (visible, e.g., in the dif-
ference of DWRKa,W between the lower and upper decile).
H indicates a slightly better match by CTRL in this temper-
ature range. For T >−10 ◦C the mean and higher quantiles
of DWRX,Ka increase very rapidly in CTRL and more slowly
in NEW and the observation. The increase in particle sizes as
simulated by NEW is in much better agreement with the ob-
served profiles. The upper quartile of DWRX,Ka only slightly
exceeds 5 dB in the observations and NEW but is higher than
10 dB in CTRL for T >−1 ◦C. This better match is also in-
dicated by H (Fig. 11h), which is about 5 times larger for
CTRL compared to NEW.

Besides the overestimation of DWRX,Ka closely above the
melting temperature, O20 also highlighted the overestima-
tion of MDV by CTRL. This overestimation is present at all
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Figure 9. Same as Fig. 8 but displaying DWRX,Ka, which is sensitive to mean mass diameters of 1 to 20 mm.

temperatures (compare panels a and b in Fig. 12) and can
be attributed to the overestimation of the vt–size relation-
ship of the snow class as reported in Karrer et al. (2020) and
the overestimated particle sizes for the higher temperatures.
The overestimation of MDV by CTRL is most pronounced
for T >−15 ◦C. In this temperature range, CTRL cannot re-
produce the asymptotic approach because of the power-law
vt–size relationship (Sect. 3.1.3). For example, the median of
MDVKa at−5 ◦C is 1 m s−1 in the observations and 1.3 m s−1

in CTRL. In contrast, the new simulations agree better with
the observations and H is about half as large as for CTRL.
The new scheme setup is more accurate in this temperature
range because the Atlas-type vt–size relationship of the Mix2
particles (Fig. 3) correctly considers the asymptotic approach
to 1 m s−1 at large sizes. However, MDV is slightly un-
derestimated by NEW for T >−10 ◦C. Values substantially
above 1 m s−1 occur in the observations and the new sim-
ulations only closely above the melting temperature, where
rain is present. At temperatures below −15 ◦C, both simu-

lations perform similarly, with H ranging from 0.2 to 0.5.
While CTRL exhibits a continuous overestimation of MDV,
the new simulations lack the observed increase in MDV for
T <−20 ◦C. At these temperatures, the selected PSD width
(Sect.3.1.1) and cloud ice particle properties (Sect. 3.1.3)
may not be ideal.

The statistical comparison shows that the changes we
made to the model could eliminate the most striking biases,
namely the overestimation of DWRX,Ka and MDV closely
above the melting temperatures. The match of these quanti-
ties is important for accurate simulation of precipitation, as
exemplified in the case study in Sect. 3.3. Some discrepan-
cies remain, namely the overly strong increase in the DWRs
at temperatures between −15 and −10 ◦C and the over-
estimation (underestimation) of MDV temperatures below
−25 ◦C (above −10 ◦C). These discrepancies can be caused
by several model errors (inaccurate simulation of, e.g., PSD
shape, Estick, degree of riming, variability in cloud ice prop-
erties) that cannot be fully deciphered by this observational
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Figure 10. Same as Fig. 8 but displaying MDVKa, which is strongly linked to vt.

setup and could benefit from advances in laboratory measure-
ments, observational setup, and representation of cloud ice
habits and riming degree in the model.

4 Conclusions

Aggregation is a key ice microphysical growth process for
the formation of precipitating ice particles, which are the
precursor of raindrops in cold rain formation. Recent studies
using statistics from multi-frequency Doppler radar observa-
tions provided observational constraints on how critical radar
quantities, such as DWRs or MDV, change with temperature.
In this study, we aimed at a deeper analysis of the under-
lying causes for the observed discrepancies between radar
statistics and a state-of-the-art two-moment microphysical
scheme, and we improved its simulation of aggregation.

To this end, as a first step, we revisited all relevant com-
ponents of aggregation as considered in the two-moment
scheme to see how well they represent current knowledge
of physics. These components are the size distribution width,
the temperature dependence of Estick, the particle properties
(with a focus on the vt–size relation of aggregates), and the

representation of nonspherical particles in the aggregation
kernel formulation.

To systematically test the sensitivities of various parameter
combinations, we performed 1D simulations with the snow-
shaft model, which uses simple profiles of thermodynamic
variables and a simple initialization of particles at the model
top. Moreover, the model only accounts for a subset of all
the microphysical processes that occur in real clouds. Nev-
ertheless, by adjusting the model setup we could match the
average profiles of radar observables obtained by the 3D sim-
ulations of O20, which used the SB06 default scheme setup.

The snowshaft simulations revealed high sensitivity of ag-
gregation to particle properties, the aggregation kernel for-
mulation, and Estick. Surprisingly, the size distribution width
had a relatively small effect on the modeled mean mass but
a considerable influence on the simulated DWRs. The influ-
ence of the cloud ice properties was small in both the model
and radar variables.

By comparing the profiles from the snowshaft simulation
with the average observed profiles, we were able to select
a set of parameters that provided the best agreement with
the observations. In this selection process, we mainly varied
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Figure 11. Contour frequency by temperature diagrams (CFTDs) for all profiles with RR> 1 mm h−1 of the dual-wavelength ratios between
the X and Ka band (DWRX,Ka, top) and between the Ka and W band (DWRX,Ka, bottom) from the default simulation (a, e), the new
simulation (colMix2_Akernel; b and f), and measured (c, g). The black lines represent the statistical measures (median, mean, quartiles, and
deciles) at different temperatures. Panels (d) and (h) show the Hellinger distance between the simulated and observed distributions for all
temperatures.

the less-known components, e.g., the size distribution width,
and held other parameters constant that we could better con-
strain, e.g., the vt–size relationship. The size distribution
width proved to be a critical component in linking modeled
x to observed DWRs and at the same time is difficult to con-
strain with the given observational setup. Therefore, using
a microphysical scheme that explicitly simulates the width
of the size distribution (e.g., a three-moment scheme) would
provide a more consistent link between the model and obser-
vation. However, additional observational constraints from
radar (e.g., Doppler spectrum width) and in situ observations
should be considered in this case. In particular, we find that
the vt–size relationship, which accounts for the asymptotic
behavior of vt at large sizes, leads to better agreement with
the observations. Moreover, the A-kernel appears to be a bet-
ter approximation of the aggregation kernel when combined
with a constant Ecoll.

We implemented this improved scheme setup in the ICON-
LEM and also tested the individual model modifications in
a case study. These more realistic ICON-LEM simulations
allowed us to derive potential differences in the analysis of
sensitivities compared to the snowshaft simulations, possi-
bly caused by effects such as dynamics and advection. Over-
all, the ICON-LEM simulations yielded similar sensitivities
as the snowshaft simulations, but slight differences were ap-
parent with respect to sensitivity to Estick. The differences
between simulations with different Estick parameterization
were less pronounced in the ICON-LEM simulations. This
discrepancy between the simulation frameworks could result

from accounting for feedback from microphysics to model
humidity in the ICON-LEM simulation.

On the day considered in the case study, relatively dry low-
level air resulted in strong sublimation of ice particles. This
sublimation feature demonstrated the relevancy of accurately
simulating x. The SB06 default scheme with its largely over-
estimated aggregate sizes strongly overestimated the rainfall
rate on the ground because the large snowflakes could not
sublimate fast enough. In contrast, the more realistic aggre-
gate sizes obtained with the new scheme were able to fit the
observations much better.

Finally, the entire period of the campaign dataset (46 d)
was simulated again with ICON-LEM using the best-
matching parameter combination from the previous tests.
This allowed us to directly compare the new statistics with
the previous analysis of the default scheme provided in O20.
The new aggregation formulation is clearly able to reduce
the observed overestimation of MDV. This improvement can
be attributed to the new Atlas-type vt–size relationship. The
overestimation of the mean particle size at high temperatures
revealed in the DWRs was also substantially reduced by the
new aggregation parameterization.

Remaining discrepancies are found for DWRs at temper-
atures of about −12 ◦C and for MDV at low and high tem-
peratures. The overestimated DWRs by the new simulations
could result in an overestimated x or overly broad size dis-
tribution in the model. Inclusion of a higher-frequency radar
(Battaglia et al., 2014) may help to infer the particle growth
above −12 ◦C. The analysis of Doppler spectra (e.g., simi-
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Figure 12. Contour frequency by temperature diagrams (CFTDs) of the mean Doppler velocity of the Ka band (MDVKa) from the default
simulation (a, e), the new simulation (colMix2_Akernel, b and f), and measured (c, g). The black lines represent the statistical measures
(median, mean, quartiles, and deciles) at different temperatures. The histograms on top are calculated including all data and on the bottom
only data from profiles for which the precipitation rate RR exceeds 1 mmh−1. A vertical line at 1 ms−1 eases the comparison of the different
distributions. Panels (d) and (h) show the Hellinger distance between the simulated and observed distributions for all temperatures.

lar to Barrett et al., 2019) or observational techniques, e.g.,
in situ probing of the particle size distribution, would pro-
vide additional constraints on the size distribution and ease
the interpretation of the MDV and DWR. The mismatch of
the MDV at lower temperatures could be caused by an inac-
curate size distribution width, as well as Estick or cloud ice
properties. Future studies could focus on this temperature re-
gion, which is highly relevant for cloud radiative effects. The
slight underestimation of MDV at high temperatures could
be due to underestimated riming rates, the representation of
partially rimed particles, or other effects such as vertical air
motion. Further insight could be gained, e.g., from the anal-
ysis of the Doppler spectra or comparison with other micro-
physical schemes with a different representation of the rim-
ing process (Morrison and Milbrandt, 2015; Tsai and Chen,
2020).

In addition to the results obtained in this study for aggrega-
tion in the SB06 scheme, we think that our approach for how
to utilize state-of-the-art radar datasets to improve parameter-

izations may also serve as a blueprint for future studies focus-
ing on other processes or microphysical schemes. Therefore,
we shortly summarize the approach in general terms with the
following points.

1. Revisit components of the physical parameterization.

2. Set up single-column simulations which match the av-
erage profiles of simulated observables obtained from
long-term 3D simulations with the default scheme
setup.

3. Systematically test the sensitivities of various parameter
combinations in 1D simulations.

4. Select the model configuration that best matches the ob-
servations.

5. Implement model modifications in the 3D model and
infer possible differences in sensitivities between a 3D
simulation and 1D simulations in a case study.
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6. Rerun the long-term 3D simulation using the best-
matching parameter combination and investigate the
improvements by comparing observations with simula-
tions using the default and the new scheme setup.

Appendix A: Bulk aggregation rates

We summarize the bulk aggregation formulas for all aggrega-
tion processes: ice–snow collection, ice self-collection, and
snow self-collection. While the formulations using the D-
kernel were already given by Seifert et al. (2014), the for-
mulas using the A-kernel were newly derived in this study.

Combining the definition of the moments,

Mn =

∞∫
0

mnf (m)dm, (A1)

the SCE (Eq. 4) and its simplifications in the SB06 scheme
(Sect. 3.1), an equation can be derived that allows for the
calculation of all relevant aggregation rates between particles
of the classes i and j :

∂Mi,n

∂t

∣∣∣∣
coll,ij
=8

∞∫
0

∞∫
0

fi

(Di)fj (Dj )Ki,j (Di,Dj )m
n
i dDjdDi, (A2)

where Mj,n is the nth moment of the hydrometeor class j ,
f is the particle size distribution for a selected size variable
(Dmax, Deq, or m), K is the aggregation kernel, and m is the
particle mass.

Seifert et al. (2014) use the variance approach proposed
in Seifert and Beheng (2006), which parameterizes the bulk
velocity difference by the square root of the second moment
of the velocity differences. In this way, the integral is sepa-
rated into a term containing the geometrical properties (Cn,ij )
and a part which contains the velocity difference (1vn,ij ) to
enable the analytical integration.

∂Mi,n

∂t

∣∣∣∣
coll,ij

= Ei,j1vn,ijCn,ij (A3)

The expressions of Cn,ij and 1vn,ij depend on the ex-
pression of the PSDm (Sect. 3.1.1), the formulation of the
aggregation kernel (Sect. 3.1.2), and the particle properties
(Sect. 3.1.3). The SB06 scheme assumes a modified gamma
distribution as a function of mass (Eq. 5), which can be eas-
ily converted to a gamma distribution as a function of Deq if
µm = 1/3 (Eq. 7). The particle properties are characterized
by power-law relations of m (Eq. 12) and Aact (Eq. 15) vs.
Dmax and Deq. In the new scheme, vt of cloud ice and snow
is parameterized by an Atlas-type relation as a function of
Deq (Eq. 11). Coefficients of the relations can be found in
Table 2.

A1 D-kernel

Inserting the D-kernel (Eq. 1) into Eq. (A2), the Cn,ij and
1vn,ij can be written as

Cn,ij =
π

4

∞∫
0

∞∫
0

(
Dmax,i +Dmax,j

)2
fi(mi)

fj (mj )m
n
jdmidmj , (A4)

1vn,ij =

{
1

Nn,ij

∞∫
0

∞∫
0

[
vi(Deq,i)− vj (Deq,j )

]2
×D2

eq,iD
2
eq,j

feq,i(Deq,i)feq,j (Deq,j )m
n
i dDeq,idDeq,j

} 1
2
, (A5)

where N is the normalization factor given by

Nn,ij =

∞∫
0

∞∫
0

D2
eq,iD

2
eq,jfeq,i(Deq,i)feq,j (Deq,j )

mni dDidDj . (A6)

Inserting the Dmax−m relation,

Dmax,i = aim
bi
i =

πρwai

6
D

3bi
eq,i, (A7)

and the PSDm (Eq. 5) into Cn,ij (Eq. A4) and solving the
integral, we obtain

Cn,ij =
(πρw

6

)nπ
4
NiNj[

δ0
D,iD

2
i + δ

n
D,ijDiDj + δ

n
jD

2
j

]
, (A8)

where δni and δnj are equal to δ0
p of Eq. (90) of SB2006 and

δnij is equal to δ0
g of Eq. (91) of SB2006.

δnD,i =
0((2bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)

[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]2bi+n

(A9)

δnD,ij = 2
0((bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)
0((bj + νm,j + 1)/µm,j )
0((νm,j + 1)/µm,j )

×

[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]bi+n[0((νm,j + 1)/µm,j )
0((νm,j + 2)/µm,j )

]bj
(A10)

Inserting the velocity relation (Eq. 11) and the size distri-
bution using Deq (Eq. 7) into the velocity variance (Eq. A4)
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and solving the integral, we obtain

1vn,ij =

[
(αv,j −αv,i)

2
− 2βv,j (αv,j −αv,i)

(
1+

γv,j

λeq,j

)−ξnD,i
−2βv,i(αv,i −αv,j )

(
1+

γv,i

λeq,i

)−ξnD,i
+β2

v,j

(
1+

2γv,j
λeq,j

)−ξD,j
+β2

v,i

(
1+

2γv,i
λeq,i

)−ξnD,i
− 2βv,jβv,i

(
1+

γv,j

λeq,j

)−ξD,j
×

(
1+

γv,i

λeq,i

)−ξnD,i] 1
2
, (A11)

with

ξnD,i = µeq,i + 3+ 3n,ξD,j = µeq,j + 3. (A12)

A2 A-kernel

Inserting the A-kernel (Eq. 9) into Eq. (A2), the velocity vari-
ance and the geometric part of the bulk collision rates can be
written as

Cn,ij =
∞∫

0

∞∫
0

(
A0.5
i +A

0.5
j

)2
fi(Di)fj (Dj )m

n
jdDidDj (A13)

1vn,ij =

{
1

Nn,ij

∞∫
0

∞∫
0

[
vi(Deq,i)− vj (Deq,j )

]2
×D

σA,i
eq,iD

σA,j
eq,j ,

feq,i(Deq,i)feq,j (Deq,j )m
n
i dDeq,idDeq,j

} 1
2

(A14)

Nn,ij =

∞∫
0

∞∫
0

D
σA,i
eq,iD

σA,j
eq,j feq,i(Deq,i)feq,j (Deq,j )

mni dDeq,idDeq,j . (A15)

Inserting theA–Deq relation (Eq. 15) and the size distribution
as a function ofDeq (Eq. 7) into the geometric part (Eq. A13)
and solving the integral leads to

Cn,ij =
(πρw

6

)n
NiNj[

δnA,iD
σ ∗A,i
max,i + δ

n
A,ijD

σ ∗A,i/2
max,i D

σ ∗A,j /2
max,j + δ

n
A,jD

σ ∗A,j
max,j

]
, (A16)

with the following.

δnA,i = γA,i
0(µeq,i + σA,i + 1+ 3n)

0(µeq,i + 1)
c
σA,i+3n
λ,i (A17)

δnA,ij = 2(γA,iγA,j )0.5
0(µeq,i + σA,i/2+ 1+ 3n)

0(µeq,i + 1)
c
σA,i/2+3n
λ,i

×
0(µeq,j + σA,j/2+ 1)

0(µeq,j + 1)
c
σA,j /2
λ,j (A18)

δnA,j = γA,j
0(µeq,j + σA,j + 1)

0(µeq,j + 1)
c
σA,j
λ,j

×

[
0(µeq,i + 4)
0(µeq,i + 1)

]n
c3n
λ,i (A19)

σ ∗A,i =
bm,iσA,i

3
(A20)

cλ,i =

[
6am,i
πρw

0(µeq,i + 1)
0(µeq,i + 4)

]1/3

(A21)

Inserting the velocity relation (Eq. 11) and the size distri-
bution as a function of Deq (Eq. 7) into the velocity variance
(Eq. A14) and solving the integral, we obtain

1vn,ij =

[
(αv,j −αv,i)

2
− 2βv,j (αv,j −αv,i)

(
1+

γv,j

λeq,j

)−ξA,j
−2βv,i(αv,i −αv,j )

(
1+

γv,i

λeq,i

)−ξnA,i
+β2

v,j

(
1+

2γv,j
λeq,j

)−ξA,j
+β2

v,i

(
1+

2γv,i
λeq,i

)−ξnA,i
− 2βv,jβv,i

(
1+

γv,j

λeq,j

)−ξA,j

×

(
1+

γv,i

λeq,i

)−ξnA,i] 1
2
, (A22)

with

ξni,A = µeq,i + σA,i + 1+ 3n, (A23)
ξj,A = µeq,j + σA,j + 1. (A24)

A3 Ice self-collection

A3.1 D-kernel

For ice self-collection the geometry part (Eq. A13) simplifies
to

Cn,ii =
(πρw

6

)nπ
4
N2
i

[
2δ0
D,i + δ

n
D,ii

]
D

2
i , (A25)
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where δni is equal to δ0
p of Eq. (90) of SB2006 and δnii is equal

to δ0
g of Eq. (91) of SB2006.

δnD,i =
0((2bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]2bi+n

(A26)

δnD,ii = 2
0((bi + νm,i + 1+ n)/µm,i)

0((νm,i + 1)/µm,i)2

0((bi + νm,i + 1)/µm,i)

×

[
0((νm,i + 1)/µm,i)
0((νm,i + 2)/µm,i)

]2bi+n

(A27)

The velocity variance simplifies to

1vn,ii = βv,i
√

2
[(

1+
2γv,i
λeq,i

)−ξnD,i
−

(
1+

γv,i

λeq,i

)−2ξnD,i
] 1

2
, (A28)

with

ξnD,i = µeq,i + 3+ 3n. (A29)

A3.2 A-kernel

For ice self-collection C (Eq. A13) simplifies to

Cn,ii =
(πρw

6

)n
N2
i

[
δnA,i + δ

n
A,ii + δ

n
A,i2

](
6am,i
πρw

) σA,i
3

min

γA,i( πρw

6am,i

) σA,i
3
D
σ ∗A,i
max,i,

π

4
D

2
max,i

 , (A30)

with the following.

δnA,i =
0(µeq,i + σA,i + 1+ 3n)

0(µeq,i + 1)
c
σA,i+3n
λ,i (A31)

δnA,ii = 2
0(µeq,i + σA,i/2+ 1+ 3n)

0(µeq,i + 1)2
0

(µeq,i + σA,i/2+ 1)cσA,i+3n
λ,i (A32)

δnA,i2 =
0(µeq,i + σA,i + 1)
0(µeq,i + 1)

c
σA,i+3n
λ,i

[
0(µeq,i + 4)
0(µeq,i + 1)

]n
(A33)

σ ∗A,i =
bm,iσA,i

3
(A34)

cλ,i =

[
6am,i
πρw

0(µeq,i + 1)
0(µeq,i + 4)

]1/3

(A35)

For small sizes, the parametrization of Aact yields values
of Ar larger than 1 (e.g., columns smaller than 8× 10−5;
Fig. 3d). For small mean sizes, these particles with unphys-
ical Ar can substantially contribute to Cn,ii . Therefore, we
limit Aact to Asphere in Eq. (A30). The effect of this limiter
can be seen in the kink of the bulk collision rates (Fig. B3c
and d).

Inserting the velocity relation (Eq. 11) and the size distri-
bution usingDeq (Eq. 7) into the velocity variance (Eq. A14)
and solving the integral, we find

1vn,ii =
√

2βv,i

[(
1+

2γv,i
λeq,i

)−ξnA,i
−

(
1+

γv,i

λeq,i

)−2ξnA,i
] 1

2
, (A36)

with

ξni,A = µeq,i + σA,i + 1+ 3n. (A37)

A4 Snow self-collection

A4.1 D-kernel

For snow self-collection only the first moment is relevant and
C (Eq. A13) simplifies to

C0,ss =
π

4
N2

s

[
2δ0
D,s + δ

0
D,ss

]
D

2
s , (A38)

where δns is equal to δ0
p of Eq. (90) of SB2006 and δnss is equal

to δ0
g of Eq. (91) of SB2006.

δ0
D,s =

0((2bs+ νm,s+ 1)/µm,s)
0((νm,s+ 1)/µm,s)

[
0((νm,s+ 1)/µm,s)
0((νm,s+ 2)/µm,s)

]2bs
(A39)

δ0
D,ss = 2

[
0((bs+ νm,s+ 1)/µm,s)
0((νm,s+ 1)/µm,s)

]2[
0((νm,s+ 1)/µm,s)
0((νm,s+ 2)/µm,s)

]2bs

(A40)

The velocity variance simplifies to

1v0,ss =
√

2βv,s

[(
1+

2γv,s
λeq, s

)−ξD,s
−

(
1+

γv,s
λeq, s

)−2ξD,s ] 1
2
, (A41)

with

ξD,s = µeq, s+ 3. (A42)

A4.2 A-kernel

C of the A-kernel for snow self-collection simplifies to

C0,ss =N
2
s

[
2δ0
A,s+ δ

0
A,ss

](
6am,s
πρw

) σA,s
3

min

γA,s( πρw

6am,s

) σA,s
3
D
σ ∗A,s
max,s,

π

4
D

2
max,s

 , (A43)

with the following.

δ0
A,s =

0(µeq, s+ σA,s+ 1)
0(µeq, s+ 1)

c
σA,s
λ,s (A44)

δ0
A,ss = 2

0(µeq,s+ σA,s/2+ 1)2

0(µeq,s+ 1)2
c
σA,s
λ,s (A45)

σ ∗A,s =
bm,sσA,s

3
(A46)

cλ,s =

[
6am,s
πρw

0(µeq, s+ 1)
0(µeq, s+ 4)

]1/3

(A47)

The area ratios are limited in the same way as for ice self-
collection.
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Table A1. Prefactor8 of the aggregation rates (Eq. A2) for different
aggregation processes and the predicted moments of the cloud ice
and snow distribution.

Collision partners

i j
∂Ncloud ice

∂t
∂Lcloud ice

∂t
∂Nsnow
∂t

∂Lsnow
∂t

Cloud ice cloud ice −1 −1 +1/2 +1
Cloud ice snow −1 −1 0 +1
Snow snow 0 0 −1 0

The velocity variance simplifies to

1v0,s =
√

2βv,s

[(
1+

2γv,s
λeq, s

)−ξA,s
−

(
1+

γv,s
λeq, s

)−2ξA,s
]0.5

, (A48)

with

ξA,s = µeq, s+ σA,s+ 1. (A49)
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Appendix B: Atmospheric setup for 1D simulation and
atmospheric fields of the case study predicted by
ICON-LEM

Figure B5 shows the atmospheric variables from O20 simula-
tions and the setup for the snowshaft simulations. Figure B6
shows the atmospheric variables of the case study.

Figure B1. Numeric and analytic solution of the bulk collision rates for ice–snow (column and Mix2, respectively) collisions for Atlas-type
and power-law velocity size relations. The shape parameter is µeq = 2 (Eq. 7), which is equal to µm = 0 (Eq. 5) for cloud ice and snow.
Left: number density, right: mass density; top: D-kernel; bottom: A-kernel. (a, c) normalized number collision rate, (b, d) normalized mass
collision rate, (a, b) D-kernel, (c, d) A-kernel.
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Figure B2. Same as Fig. B1 but with µeq = 8 (Eq. 7), which is equal to µm = 2 (Eq. 5) for snow.

Figure B3. Numeric and analytic solution of the bulk collision rates for ice–ice (both column) collisions: (a, c) normalized number collision
rate, (b, d) normalized mass collision rate, (a, b) D-kernel, (c, d) A-kernel.
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Figure B4. Numeric and analytic solution of the bulk collision rates
for snow–snow (both Mix2) collisions: (a) D-kernel; (b) A-kernel.

Figure B5. Setup of atmospheric variables in the 1D simulations
(Sect. 3.2) (black line), which was chosen based on the histograms
from the ICON-LEM simulation (the histogram is shown in the
background, O20). The histogram is filtered to include only profiles
for which the rain rate exceeds 1 mmh−1. (a) Temperature, (b) rel-
ative humidity with respect to water, and (c) relative humidity with
respect to ice. The height of the melting temperature 0◦C is set to
0 m, and other heights are calculated assuming a temperature gra-
dient of 0.0062 Km−1. Counts in the ICON-LEM simulations from
O20 are color-coded.
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Figure B6. Temperature (a), vertical velocity (b), and relative humidity with respect to water (c) and ice (d) over Jülich in the SB06 default
simulation on 3 January 2016. Temperature isolines are shown in each plot.
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4.1 benchmark simulations : improved sb two-moment

scheme vs . lagrangian particle model mcsnow

Karrer et al., 2021a investigated the sensitivity of aggregation to var-
ious parameters in the process description implemented in the SB
scheme. While many parameters, such as the v size relationship, could
be well constrained, the selection of the particle size distribution (PSD)
width parameter µ (Equation 2.9) was still not straightforward. µ
affects the simulated mean mass relatively little, but it affects the
DWRs strongly. Thus, knowledge about the PSD width is crucial to
link modeled mean mass and observed DWRs accurately.

Although the sensitivity of the simulated mean mass x to the cho-
sen µ was observed to be small in the SB scheme, there might be
inaccuracies of the simulated x due to the simplified treatment of the
PSD shape. These inaccuracies might be revealed by a comparison
between simulations with the SB scheme and the Lagrangian particle
model McSnow. In contrast to a two-moment scheme such as the
SB scheme, where µ is fixed for each particle category, a Lagrangian
particle model such as McSnow simulates the evolution of the PSD
explicitly (Section 2.2).

Since this section builds on the analysis in Karrer et al., 2021a us-
ing McSnow additionally, the setup of the simulations (atmospheric
variables, initialization of hydrometeors at the model top) and the
microphysical settings in McSnow are chosen to be as close as possible
to Karrer et al., 2021a. The profiles of the atmospheric variables are
the same as shown in Figure A5 of Karrer et al., 2021a. In this study,
the initialization values of the hydrometeor contents are chosen to
match the mean profiles of the multi-month simulations performed
with the three-dimensional large-eddy model (Figure 6 of Karrer et al.,
2021a). In McSnow, the same formulation of the collision kernel (A-
kernel) and sticking efficiency are used as in the new version of the
SB scheme. Although McSnow allows a more detailed consideration
of the particle properties (e.g., dependency of mass-size relation on
monomer number; calculation of v directly from mass- and area size
relations and hydrodynamic theory), the same simple functional re-
lationships between particle size and particle properties are applied
as in the SB scheme. In this way, differences between the simulations
with the SB scheme and McSnow can be directly attributed to the
representation of the particle PSD. McSnow allows the PSD to take
any form without being restricted to functional relationships such as
the gamma distribution (Equation 2.9). Minor differences between the
SB scheme and McSnow might also arise because the processes act on
the particles directly and some approximations made in bulk schemes
are not required.

The profiles of the hydrometeors in Figure 4.1 indicate lower ag-
gregation rates in McSnow compared to the SB scheme. Although
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Figure 4.1: Profiles of model variables from the SB scheme (solid lines) and
McSnow model (dashed line) in the “snowshaft" simulations
using the same simulation setup as Karrer et al., 2021a. Shown
are the vertical profiles of the number density N (left), mass
mixing ratio Q (middle) and mean mass x (right) of the cloud ice
(top), snow (middle) and the sum of both categories (bottom).
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McSnow does not distinguish between particle categories such as
cloud ice and snow, classifying the model output according to these
classes helps its interpretation. Therefore, the rows in Figure 4.1 depict
the profiles for cloud ice (a)-c)), snow (d)-f)) and the sum of both
classes (g)-i)). The number (N; left column) and mass (Q, middle
column) concentration of cloud ice (monomers; Ni and Qi) decrease
weaker in the McSnow simulation. The snow profiles (Figure 4.1, mid-
dle column) show a weaker increase of Q in the upper half. Both,
the smaller decrease of cloud ice hydrometeor content and smaller
increase of snow hydrometeor content (Figure 4.1; left and middle
column) result from lower conversion rates from cloud ice to snow
in the McSnow simulation. Also, the mean mass of all particles (x;
Figure 4.1 i)) increases more weakly in McSnow (especially below
-20

◦C), indicating overall lower aggregation rates.
The lower aggregation rates in McSnow stem from the narrower

PSD (Figure 4.2). Although both models are initialized with gamma
distributions with the same width, substantial differences among the
PSDs arise already at the highest height interval shown. Here, the
snow PSD of the SB scheme is comparably broad, leading to a slight
shift of the PSD tail towards larger sizes. At lower heights also the
cloud ice distribution is considerably narrower in the McSnow model.
The narrower PSD in McSnow leads to less spread of v and thus lower
aggregation rates (Section 3.1.2 in Karrer et al., 2021a). The cloud
ice distribution is particularly narrow since the cloud ice particles
grow purely by depositional growth, and thus a narrowing is expected
due to the diameter dependence of the depositional growth equation
(Equation 2.1), which favors the growth of smaller particles.

Since other processes, e.g., nucleation and turbulence, could broaden
the cloud ice PSD, the PSD width might be underestimated by Mc-
Snow. When nucleation is active in parallel with depositional growth,
newly nucleated particles have significantly smaller sizes than particles
already grown to larger sizes by depositional growth, thus broadening
the distribution towards smaller sizes. Turbulence can widen the PSD
in two ways. First, the mixing of different parts of the cloud can bring
particles of different sizes together. Second, in turbulent air, supersat-
uration can vary spatially and lead to different particle growth rates
depending on the supersaturation level. The latter effect is recognized
as essential for liquid clouds (Cooper, 1989; Grabowski and Abade,
2017), but has not yet been studied for ice clouds.

Although the PSDs of the McSnow model are generally narrower,
the right tail of the distribution is very similar to the one from the SB
scheme, especially at lower heights (lowest two panels in Figure 4.2).
Both models show a relatively steep decrease of number concentra-
tion at mass-equivalent sizes (Deq) of several mm. Since the DWR
is especially sensitive to large particle sizes, even slight differences
in the number concentration at these sizes could induce substantial
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mismatches in DWR (Table 1 in Karrer et al., 2021a). Thus, the similar
right tail indicates that a good agreement of observed and simulated
DWRs with the new set of microphysical parameters can be expected
even if the SB scheme would predict the PSD more explicitly. However,
it can not be excluded that the possibly too narrow cloud ice PSD also
affects the right tail of the snow PSD.
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Abstract14

Understanding which microphysical processes are dominant while ice particles pass through15

the melting layer is essential for precipitation prediction by microphysics schemes and16

precipitation estimates by remote sensing. Comparing the reflectivity flux at the top and17

bottom of the melting layer reveals the overall effect of the microphysical processes oc-18

curring within the melting layer on the particle population. If the reflectivity flux increases19

more than expected due to the change in the dielectric factor, growth processes dom-20

inate. In contrast, a weaker increase in reflectivity flux indicates that shrinking processes21

dominate. However, inference of growth or shrinking dominance from the increase in re-22

flectivity flux is only possible if other influences (e.g., vertical wind speed) are negligi-23

ble or corrected for. By analyzing radar spectra and multi-frequency observations, we24

correct the reflectivity fluxes for vertical wind speed and categorize the height profiles25

by the riming degree at the melting layer top. Our statistical analysis shows the slight26

dominance of growth processes for unrimed and a clearer dominance of shrinking pro-27

cesses for rimed profiles. The reflectivity flux profiles within the melting layer indicate28

that the difference between unrimed and rimed profiles arises mainly in the upper half29

of the melting layer, where the melting fraction increases the strongest. We further nar-30

row down which processes might be most important to explain the observed signature31

by analyzing additional radar variables. We suggest that whether the particle popula-32

tion is overall growing or shrinking depends on the relative importance of aggregation33

and collisional breakup of melting particles.34

1 Introduction35

More than 70% of rainfall reaching the earth’s surface is generated in the ice phase36

(Heymsfield et al., 2020). After nucleation, ice particles can grow by a complex inter-37

play of microphysical processes such as vapor deposition, aggregation, and riming. Once38

they sediment down to a temperature of 0◦C, they start to melt into raindrops. The tran-39

sition layer, where partially melted ice particles and raindrops coexist, is commonly called40

the melting layer (ML).41

Most prominently, the ML can be detected in radar observations. The big differ-42

ence of the refractive index of ice and liquid water in the microwave and the higher par-43

ticle velocity of liquid particles are mainly responsible for the well-known radar bright44

band, i.e., a region of strongly enhanced radar reflectivity (Fabry, 2015). In addition, also45

polarimetric observations and signal attenuation are affected by the ML (Ryzhkov & Zr-46

nic, 2019). To avoid biases in surface precipitation estimates, one must carefully consider47

these ML effects. Specifically for space-borne retrievals based on observations from higher48

frequency radars (Ka- or W-Band), the attenuation effect of the ML is considered ex-49

plicitly by a ML model (Kidd et al., 2020).50

The characterization of the morphological changes during the melting of individ-51

ual ice particles is only one important scientific problem that hampers a more accurate52

characterization of the particle’s scattering properties and the development of improved53

microphysical parametrizations of melting. The melting of sedimenting ice particles does54

not happen instantaneously but depends on temperature and humidity of the surround-55

ing air (Heymsfield et al., 2021). In addition, the temporal evolution of melting also de-56

pends on the properties of the ice particles themselves, such as size, density, and termi-57

nal fall velocity (Pruppacher et al., 1998). As a result, the ML can often have a verti-58

cal extension of a few hundred meters. This large vertical extent makes many microphys-59

ical processes likely to happen in the ML, which are currently only insufficiently under-60

stood.61

Primarily in-situ observations have been used to infer the presence and relevance62

of different processes in the ML (Stewart et al., 1984; Willis & Heymsfield, 1989; Bart-63

hazy et al., 1998; Heymsfield et al., 2015). Depositional growth/condensation of ice and64
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liquid particles is a relatively slow growth process compared to aggregation or riming at65

temperatures close to 0◦C and therefore also within the ML (Heymsfield et al., 2015).66

Evidence for additional aggregation within the ML has been found in several studies (Stewart67

et al., 1984; Yokoyama et al., 1985; Willis & Heymsfield, 1989; Barthazy et al., 1998; Mc-68

Farquhar, 2004; Heymsfield et al., 2015). In particular, the larger aggregates entering69

the ML can be expected to further aggregate due to increasing differential sedimenta-70

tion velocities, enhanced sticking efficiency, and the longer time large aggregates need71

to melt (e.g., Willis & Heymsfield, 1989). In addition to aggregation, the mass of large72

snowflakes might also increase by riming, including capturing small drops originating from73

already melted small ice particles. Once completely melted, the resulting raindrop might74

not be aerodynamically stable, and drop breakup can occur for particles larger than about75

5 mm (Pruppacher et al., 1998).76

Besides processes affecting pure ice-phase (aggregation, riming, fragmentation) and77

pure liquid phase particles (e.g., collision-coalescence and hydrodynamic breakup), also78

partially melted particles might collide or fragment. Laboratory studies found that when79

large graupel or hail particles (larger than about 9 mm) melt, a water torus surrounds80

the particle, from which eventually drops are shed (Rasmussen & Heymsfield, 1987; Prup-81

pacher et al., 1998). Breakup of smaller particles, which is usually referred to as melt-82

ing fragmentation, were observed in laboratory (Knight, 1979; Oraltay & Hallett, 1989;83

Mitra et al., 1990; Oraltay & Hallett, 2005) and 3D particle models (Leinonen & von Ler-84

ber, 2018). However, Oraltay and Hallett (1989) observed melting fragmentation only85

for relative humidities below 70% with reference to water and certain ice particle habits86

such as dendrites. However, the description remains qualitative, and parameterization87

for the frequency of fragments produced by melting fragmentation does not exist. To our88

knowledge, collision processes of partially melted particles have not been studied, and89

thus the probability for coalescence or fragmentation is unknown.90

Even more uncertain than the specific processes is their relative importance. In-91

situ studies such as Yokoyama et al. (1985) and Barthazy et al. (1998) suggested that92

aggregation in the upper part of the ML (close to the maximum of reflectivity) is in bal-93

ance with breakup below. Studies comparing observed and simulated reflectivity (Ze)94

and mean Doppler velocity (MDV) profiles within the ML revealed that aggregation and95

breakup are not essential to explain the typical radar reflectivity profile within the ML96

but might still occur (Klaassen, 1988; Fabry & Zawadzki, 1995).97

How much these processes might alter the particle population properties in the ML98

is particularly relevant because many microphysical schemes (Seifert & Beheng, 2006;99

Thompson et al., 2008; Morrison et al., 2009) and retrievals (Kidd et al., 2020) assume100

that the mass flux and mostly also the mean mass is conserved during melting. Although101

these microphysical schemes allow aggregation to continue in the ML, its effect might102

be underestimated because the depth of the ML is often underestimated (e.g., Frick et103

al., 2013). Microphysical schemes with an explicit treatment of the shapes of the melt-104

ing particles (Szyrmer & Zawadzki, 1999; Phillips et al., 2007; Thériault & Stewart, 2010;105

Frick et al., 2013; Brdar & Seifert, 2018; Cholette et al., 2019) can more accurately sim-106

ulate processes within the ML and even consider the shedding process (Rasmussen & Heyms-107

field, 1987). These schemes allow a more accurate simulation of ML depth, latent heat108

exchange, and phase (snow or rain) of the precipitation. However, many processes which109

could be relevant in the ML are not considered because they are poorly understood. Two110

of these are melting fragmentation and collisional fragmentation of melting particles. The111

further development of melting models within microphysics schemes benefits from ob-112

servational evidence, e.g., about growth and shrinking processes within the ML. For ex-113

ample, the absence of melting fragmentation has been suspected to explain differences114

between modeled and observed rain size distributions (Bringi et al., 2020). Such find-115

ings can increase the understanding of processes in the ML and guide laboratory stud-116

ies that allow considering new or improved process descriptions in the models.117
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Although the ML is a prominent feature in radar observations, its interpretation118

in terms of microphysical processes is very complicated. First, the scattering properties119

of the particles change drastically, as not only the shape and size of the ice particles change120

but also their refractive index. Second, the simultaneous occurrence of several microphys-121

ical processes in the ML makes identification or even quantification of specific processes122

extremely challenging. Drummond et al. (1996) presented an approach that avoids in-123

terpreting the radar signals inside the ML but instead intends to infer dominant processes124

by comparing the reflectivity flux between the top and the bottom of the ML. A spe-125

cific ratio of the fluxes can be expected under the assumption of steady-state conditions126

and a scenario of every snowflake melting into a single drop (”melting-only” assumption).127

Any observed deviations from this ratio indicate additional growth or shrinking processes128

within the ML. Thus, these deviations imply a change in mean mass or even mass flux,129

which is not considered in many microphysical models, or precipitation retrievals. Two130

recent studies found that the reflectivity flux ratio is in general close to the melting only131

scenario but also observed dependencies of this ratio on the ML depth (Gatlin et al., 2018)132

and particle type (unrimed or rimed) on top of the ML (Mróz et al., 2021).133

This study investigates the validity of the melting-only scenario based on a multi-134

month radar dataset obtained at a mid-latitude site. Previous studies revealed that ML135

characteristics and processes inside the ML might depend on the properties of the ice136

and snow particles entering the ML. For example, the observed sagging of the ML has137

been explained by either especially dense particles (due to riming) on top of the ML (Kumjian138

et al., 2016) or by intense precipitation (Li et al., 2020). Multi-frequency and Doppler139

radars are especially helpful to detect particle populations grown preferentially by ag-140

gregation or riming and have been used previously, e.g., by Li et al. (2020), to catego-141

rize the particle type on top of the ML. Using a revisited reflectivity flux ratio (ZFR)142

approach from Drummond et al. (1996) combined with multi-frequency and Doppler spec-143

tral methods, we investigate whether the mean mass and mass flux can be assumed to144

be constant in the ML for the different particle types (section 5). Analyzing radar pro-145

files within the ML, we discuss which processes in the ML might be differently impor-146

tant for profiles dominated by unrimed and rimed particles (section 6).147

The revisited ZFR approach from Drummond et al. (1996) is elaborated in detail148

in section 2 and applied to a multi-month dataset in section 3. Multi-frequency and Doppler149

spectral techniques are used to categorize the particles by their degree of riming at the150

ML top and estimate the impact of vertical wind on ZFRs (section 4). Finally, the re-151

sults of ZFR statistics for unrimed, transitional, and rimed particle categories are pre-152

sented in Section 5 followed by a discussion of the presumable relevance of different mi-153

crophysical processes for explaining the observed ZFR signature (section 6). Section 7154

provides conclusions and outlook.155

2 Theoretical Background: Reflectivity Flux Ratio (ZFR) Approach156

In contrast to regions above the ML, where the growth processes manifest them-157

selves clearly in an increase in Ze, the gradient of Ze can not be used as an indicator of158

particle growth or shrinking within the ML (Figure 1a)) (Fabry, 2015). In the ML, the159

profile of Ze exhibits a local maximum, known as the radar bright band, which is a re-160

sult of several superposing effects. Near the ML top, ice particles typically have a low161

density and thus have a much larger maximum dimension than a raindrop of the same162

mass. Once these ice particles start to melt and become wet, they backscatter more power163

than the dry ice particle. Simply put, radars see these ice particles roughly like raindrops164

with a large maximum dimension. The effect of the changing thermodynamic phase can165

be explained by considering the Clausius-Mossotti factor (also commonly called dielec-166

tric factor):167

K =
m2 − 1

m2 + 1
(1)
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where m is the complex refractive index, which depends on the material (ice or liquid168

water), the frequency, and the temperature. |K|2 is 0.93 for liquid water and about five169

times lower (0.18) for ice at a frequency of 9.6 GHz and 0◦C (e.g., Ori & Kneifel, 2018).170

Lower down in the ML, the particles’ shapes collapse, and their maximum dimension de-171

crease leading to increasing velocity. As a result of this increase in velocity and the re-172

sulting divergence, the number concentration decreases. This decrease in the number con-173

centration finally also reduces the reflectivity (Figure 1a) and b)).174

Drummond et al. (1996) introduced the reflectivity flux (ZFR) approach, which makes175

it more accessible to identify the dominance of processes in the ML. ZFR is easier to in-176

terpret than the profile of Ze because fewer factors need to be considered. In the follow-177

ing, we present this approach and explain its limitations and difficulties step by step.178

If each snowflake melts into a raindrop of the same mass (melting-only assumption),179

the product of number concentration N and velocity v for a given mass m is conserved180

through the ML (equation (2) in Drummond et al. (1996)):181

Nice(m)vsnow(m) = Nrain(m)vrain(m) (2)

A vertically pointing radar does usually not observe particle trajectories. Particles, e.g.,182

observed while entering the melting layer at one particular time will be advected out of183

the radar beam before they reach the ML bottom. Hence, we implicitly assume homo-184

geneous conditions for applying equation 2 using vertically pointing observations. Given185

the above considerations, the cloud must be so homogeneous that the properties of the186

particle population (size distribution, particle shapes) falling into the ML change only187

slightly within the time it typically takes a particle to pass through the ML. An impli-188

cation of equation (2) is that the fluxes F (n) of any n-th moment189

F (n) =

∫ ∞

0

Nsnow(m)vsnow(m)mndm =

∫ ∞

0

Nrain(m)vrain(m)mndm (3)

are conserved, including the number flux FN=F (0), mass flux Fm=F (1) and equivalent190

reflectivity flux FZe=F
(2). The conservation of FZe is particularly interesting because191

it is associated with the product of two observable quantities: Ze and MDV. To illus-192

trate this connection, we decompose FZe into the product of the n-moment M (n) of the193

mass distribution:194

M (n) =

∫ ∞

0

N(m)mndm (4)

and the mn-weighted terminal velocity v(n):195

v(n) =
1

M (n)

∫ ∞

0

N(m)v(m)mndm (5)

which gives:196

F (n) = M (n)
snowv

(n)
snow = M

(n)
rainv

(n)
rain (6)

If all particles can be considered as Rayleigh targets, the second moment of the mass dis-197

tribution (M (2)) is proportional to Ze and v(2) is the reflectivity weighted terminal ve-198

locity vZ . The Rayleigh theory is a valid approximation if all particles are much smaller199

than the radar wavelength λ (Fabry, 2015).200

Since the dielectric factor increases while melting, the ratio of the dielectric fac-201

tors of rain and snow has to be added to the flux continuity equation (equation (6)):202

FZe ∝
|Krain|2
|Ksnow,e|2

ZesnowvZ,snow = ZerainvZ,rain (7)

As snowflakes have air intrusions, not the bulk ice dielectric factor Kice, but the effec-203

tive dielectric factor Ksnow,e has to be considered. Following Bohren and Battan (1980),204
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Ksnow,e can be quantified as205

|Ksnow,e|2 = |Kice|2
ρ2w
ρ2ice

= 0.21 (8)

using Kice from above and the density of water ρw=1·103kg m−3 and ice ρice=0.92·103kg m−3.206

Now, we can insert K from snow and rain and use the fact that the MDV is a sum207

of vZ and the vertical wind w and rewrite equation (7) to:208

0.92

0.21
Zesnow(MDVsnow − wtop) = Zerain(MDVrain − wbottom) (9)

where wtop and wbottom (positive for wind towards the ground) are the vertical winds209

at the ML top and ML bottom.210

Finally, we can introduce ZFR to quantify deviations from the melting-only assump-211

tion by adding it on the left-hand side of equation (9) and rearrange the terms:212

ZFR = 0.23
Zerain(MDVrain − wbottom)

Zesnow(MDVsnow − wtop)
, (10)

In this form, which deviates from previous studies (Drummond et al., 1996; Gatlin et213

al., 2018; Mróz et al., 2021), ZFR directly indicates the dominance of growth mechanisms214

for values above one and shrinking mechanisms for values below one. If additionally, Fm215

is unchanged within the ML (no deposition, sublimation, condensation, and evaporation),216

then ZFR indicates directly whether collisions (ZFR>1) or breakup processes (ZFR<1)217

are dominant.218

Within the ML, the particle population can contain pure liquid phase, melting, and219

pure ice phase particles. Thus, many processes could be relevant and cause deviations220

from the melting-only assumption (ZFR=1). To simplify the discussion, we separated221

the ML into the upper part where ice-phase particles (or particles in the initial melting222

stage) are dominant and the lower part where liquid-phase particles (or almost melted223

particles) are dominant (Figure 1d)). Furthermore, we use the terminology of pure ice-224

phase and pure liquid-phase microphysical processes near the ML boundaries. Predom-225

inantly ice-phase particle populations can shrink due to ice breakup and sublimation and226

grow due to aggregation, riming, and depositional growth. Predominantly liquid-phase227

particle populations can shrink due to liquid breakup and evaporation and grow due to228

collision-coalescence, and condensation (Pruppacher et al., 1998). In the center of the229

ML, breakup due to melting fragmentation or as a result of collisions of melting parti-230

cles might also be relevant to consider.231

3 Dataset232

For this study, we analyze vertically pointing multi-frequency and Doppler spec-233

tral information obtained during the ”TRIple-frequency and Polarimetric radar Exper-234

iment for improving process observation of winter precipitation” (TRIPEx-pol) campaign.235

TRIPEx-pol took place at Jülich Observatory for Cloud Evolution Core Facility, Ger-236

many (Löhnert et al., 2015, JOYCE-CF) from 11 November 2018 to 21 February 2019.237

In total this dataset includes 132h of ML observations.238

The data quality control and post-processing of the TRIPEx-pol dataset have been239

performed analogously to a previous multi-frequency campaign dataset described in de-240

tail in Dias Neto et al. (2019). The main difference in terms of instrumentation, is a new241

vertically pointing X-Band Doppler radar providing higher sensitivity and Doppler spec-242

tra. In order to limit radar volume mismatching, the three radars are installed on the243

same roof platform in less than 10m horizontal distance. Also, the temporal averaging244

and range gate resolution is very closely matched, as summarized in Table 1.245
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Figure 1. Schematic of radar profiles, which motivates the use of the reflectivity flux FZ to

diagnose the dominance of growth or shrinking processes within the ML.
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The absolute calibration of Ze for all three radars has been evaluated using rain-246

drop size distributions from several rain events measured by a Parsivel disdrometer (Löffler-247

Mang & Joss, 2000) installed directly next to the radars. As demonstrated with the TRIPEx-248

pol dataset in Myagkov et al. (2020), using rain as a calibration target provides similar249

accuracy (± 0.7dB) as compared to more comprehensive calibration methods. Differen-250

tial attenuation has been mitigated in several steps. First, the temperature and humid-251

ity information from the European Centre for Medium-Range Weather Forecasts Inte-252

grated Forecast System (ECMWF-IFS) included in the Cloudnet products for JOYCE-253

CF (Illingworth et al., 2007) have been used to correct for gas attenuation (Dias Neto254

et al., 2019). The remaining path integrated differential attenuation due to rain, ML and255

snow was estimated at cloud top with a reflectivity threshold method as described, e.g.,256

in Tridon et al. (2020). The estimated total differential attenuation is then applied to257

the entire Ze profile.258

The corrected dataset has been used and described before by Mróz et al. (2021),259

who also studied ML processes on a single day from the campaign, and Vogel et al. (2021),260

who applied a neural network to identify riming events on several selected days.261

Table 1. Technical specifications of the radars utilized during TRIPEx-pol at JOYCE-CF.

The radars operate with frequencies in the X-, Ka- and W-Band and are all vertically pointing.

Sensitivities are given at average heights of the ML top (1560 km) and bottom (1168 km).

Specifications X Band Ka Band W Band

Frequency [GHz] 9.4 35.5 94.0
Pulse Repetition [kHz] 10 5.0 2.2-12.8
Number of Spectral Bins 4096 512 128-512
Number of Spectral Average 10 19 11-13
3dB Beam Width [◦] 1.0 0.6 0.5
Nyquist Velocity [± ms−1] 80 10.5 1.8-10.2
Sensitivity at 1560 km [dBZ], 2s integration -40.7 -54.0 -51.1
Sensitivity at 1168 km [dBZ], 2s integration -43.9 -56.6 -53.8
Range Resolution [m] 36 36 36
Temporal Sampling [s] 2 2 3
Lowest clutter-free range [m] 300 400 300
Polarimetry No LDR No

4 Methods262

Before we start applying the ZFR approach, we have in a first step to reliably iden-263

tify the top and bottom of the ML for all profiles (section 4.1). In a second step, we cat-264

egorize each profile whether the snow entering the ML is rimed using a new method pre-265

sented in Li et al. (2020) based on DWR and MDV (section 4.3). A remaining problem,266

which was already discussed in Drummond et al. (1996) and section 2 is the influence267

of vertical wind on the ZFR. Using Doppler spectral signatures, we derive w for a sub-268

set of our profiles and test how much our statistical results of ZFR change when taking269

into account the influence of w270

4.1 Detecting the ML boundaries271

Numerous approaches have been used to define the ML top and bottom. Early stud-272

ies used the absolute values, gradients, or curvature of Ze (Klaassen, 1988; Fabry & Za-273

wadzki, 1995; Drummond et al., 1996) or MDV (Klaassen, 1988; Zrnic et al., 1994). Baldini274
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and Gorgucci (2006) summarized previously established methods and added the ML de-275

tection based on the standard deviation of polarimetric variables (differential reflectiv-276

ity, differential phase shift). Also absolute values (Devisetty et al., 2019) and gradients277

(Bandera et al., 1998) of the linear depolarization ratio:278

LDR =
Zehv
Zehh

(11)

have been used. Here, Zehv (in mm6/m3) is the reflectivity detected in the cross-polarized279

(vertical) channel after emission in the horizontal polarisation. Zehh is the reflectivity280

received in the horizontal polarisation, in which the radiation was also emitted. LDR is281

large for particles in the early and intermediate melting stage, which are still large in size282

(compared to the fully melted particles), but already have increased Zehv due to the pres-283

ence of liquid, which increases the dielectric factor.284

We use the inflection points (points of maximum curvature) above and below the285

maximum LDRKa to infer the ML boundaries (Figure 2a). We think that these points286

characterize the boundaries of the ML well because they mark the region of a large change287

in LDR, expected when particles start to get wet (ML top) and when the shape of the288

particle collapses (ML bottom). The main advantage of this method is that the curva-289

ture of LDRKa is relatively independent of the growth/shrinking processes of interest290

and mainly dependent on the degree of melting. In contrast, if the ML detection is based291

on Ze curvature, strong aggregation above the ML might cause a false ML top detection.292

Although the use of the inflection points of LDRKa has advantages over other meth-293

ods for detecting the ML boundaries, the determination of the inflection points and their294

connection to the ML boundaries must still be done carefully to detect only the heights295

associated with the ML boundaries. As many inflection points might be present in noisy296

profiles, we apply a temporal moving average of 5 min on LDRKa. Second, local max-297

ima, and thus local inflection points, can also be caused by prolate ice particles, such as298

needles growing at about -6◦C (Li et al., 2021, and references therein). Therefore, we299

disregard maxima, and corresponding inflection points, at temperatures below -1◦C. Fi-300

nally, we want to make sure that we exclude melting particles at the diagnosed ML top301

(hmelt,top) and ML bottom (hmelt,bottom). Since LDRKa increases already slightly above302

the height of the upper inflection point and decreases still slightly below the height of303

the lower inflection point, these points might be slightly within the ML. Therefore, hmelt,top304

(and hmelt,bottom) are chosen as the heights of the inflection points plus (minus) 36 m305

(which is the height of one range gate).306

Figure 2 shows qualitatively that our definition of the ML boundaries is similar to307

previous approaches. The ML top is close to the maximum gradient of Ze (Figure 2e)).308

Moreover, the ML bottom is close to the height, where the MDV reaches its maximum309

(Figure 2b)). Furthermore, the spectral LDR reveals just above the ML small and slow310

particles with slightly enhanced LDR (up to -15 dB) typical for columnar or needle ice311

crystals (Li et al., 2021). From 1600m towards the ground, the LDR increases rapidly312

across all velocity bins while the smaller and slower ice particles appear to melt fastest.313

4.2 Estimating Vertical Wind at ML Top and Bottom314

Radar Doppler spectral methods for deriving w rely on the identification of spec-315

tral features whose terminal velocity is well known. Any deviation of the measured Doppler316

velocity can then be assigned to vertical air motion. In mixed-phase clouds, the spec-317

tral peak of supercooled cloud droplets is commonly used as a tracer for w (Battan, 1964;318

Luke & Kollias, 2013; Zhu et al., 2021). Cloud droplets can be assumed to have negli-319

gible terminal velocity and hence their spectral peak should be close to 0 m/s Doppler320

velocity in the absence of w. Due to the rapid increase of terminal velocity of ice crys-321

tals even at small sizes, the cloud liquid peak is usually well separated from the ice and322

snow peak in the spectrum (e.g, in Figure 2b),c),d)). The technique is often limited by323
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two factors: The sensitivity to small liquid drops increases with higher frequencies. How-324

ever, as attenuation also increases with frequency, e.g., rain and the ML might severely325

attenuate the signal causing the liquid peak to be undetectable. In this study, we there-326

fore decided to use the Ka-Band spectra to identify the liquid peak as it provides a good327

compromise between sensitivity and attenuation.328

To identify the peaks, a fourth-degree polynomial is fitted to the spectrum. Each329

local maximum is recognized as a peak, and the mean Doppler velocity (DV) and Ze of330

the peak are calculated. The main peak (Peak-0), identified as the peak with the largest331

reflectivity, follows the MDV closely. The DVs of the other peaks are mostly smaller than332

1m/s (Figure 2d)). These peaks with smaller DV could be caused by cloud droplets, driz-333

zle (Kollias et al., 2007), ice phase particles created by nucleation at warmer tempera-334

tures or secondary ice production (Li et al., 2021), or noise in the spectrum. To iden-335

tify the cloud droplet peaks, we apply a rather simple criterium based on the integrated336

reflectivity of the peaks and the DV of the peaks, in the case of more than two peaks.337

Only peaks with Ze between -50 dBz and -30 dBz are taken into account. The lower re-338

flectivity limit is chosen to disregard spurious peaks in the noise floor, the upper limit339

to disregard drizzle and ice-phase peaks. The upper limit can be considered relatively340

carefully since other studies have set this value somewhat higher (e.g., Radenz et al. (2019)341

with -20 dBz). If there are several peaks other than Peak-0, the peak with the smallest342

DV is identified as the liquid peak. Besides more sophisticated techniques that also use343

higher radar moments (e.g. Zhu et al., 2021), this DV-based separation is commonly used344

(Kalesse et al., 2016; Radenz et al., 2019) and takes advantage of the fact that even rel-345

atively small ice particles have considerable velocity (e.g. about 0.4m/s at 200µ accord-346

ing to Locatelli and Hobbs (1974)). After identifying the cloud droplet peak, the devi-347

ation of its peak DV is taken as an estimate for w at the ML top. In the exemplarily shown348

profile (Figure 2), wtop is 0.1 m/s, which is according to our convention a slight down-349

wind. Considering this downwind in the calculation of ZFR shifts it to a slightly larger350

value (from 1.14 to 1.18). In the absence of a cloud liquid peak, the lower spectral edge351

velocity SEV (Figure 2d)) could be used to estimate w, too. We defined the SEV s as352

the smallest and largest velocities, where Ze exceeds the noise level by 3 dB. However,353

using SEV as an estimate might underestimate w since the cloud droplet peak can be354

broadened by turbulence.355

In rain, a separated cloud liquid peak is usually not detectable in the Doppler spec-356

tra. However, differential scattering signatures, which can be attributed to a certain drop357

size, can be used to derive w (Kollias et al., 2002). These signatures have e.g., been used358

in size distribution retrievals (Tridon & Battaglia, 2015). More precisely, the backscat-359

tering cross-section of raindrops that are larger than the radar wavelength exhibit local360

minima due to destructive interference (Kollias et al., 2002). At a frequency of 94.0 GHz361

(W-Band), the first local minimum occurs for particles with a size of 1.67mm, which cor-362

responds to vt=5.9m/s in standard conditions. When considering the effect of the den-363

sity on the particle velocity (Heymsfield et al., 2007) by multiplying ( 101325hPa
p )0.54 the364

expected Mie-notch velocity for w=0 can be calculated for each height (Figure 2c)). With365

decreasing pressure, the Mie notch appears at higher velocities as the air density and hence366

also the air resistance drag decreases. Figure 2c) clearly shows local minima in the ob-367

served spectrogram that are associated with this Mie-notch. Deviations from the actu-368

ally observed DVs of these minima and the theoretically expected DVs directly indicate369

w (e.g. -0.2 m/s at the ML bottom). Taking wbottom into account when calculating the370

ZFR shifts it (like the correction at the ML top) to a slightly higher value (from 1.14 to371

1.23). Since the Mie-Notch minima can be superimposed by noise or can lie at the edge372

of the spectra, averaging and filtering of the spectra must be carried out. Before iden-373

tifying the local minima as the Mie-notch position, the spectra are averaged with a mov-374

ing window over six DV bins (corresponds to 0.12m/s). If the spectral reflectivity at the375

DV bin of the actual Mie notch is smaller than -40 dBz, the profile is disregarded to avoid376

noisy signatures.377
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4.3 Categorizing Profiles by their Degree of Riming378

Riming can be well detected by vertically pointing Doppler radars, as riming ini-379

tially strongly increases the particle mass and, to a lesser extend, it’s size and cross-sectional380

area. As a result, v of rimed particles quickly exceeds that of unrimed particles (Mosimann,381

1995; Kneifel & Moisseev, 2020). However, when particles fall with velocities smaller than382

1.5 m/s, large unrimed snowflakes might be indistinguishable from small rimed crystals.383

As demonstrated by Mason et al. (2018) or Li et al. (2020), the addition of multi-frequency384

information can be used to improve the detection of riming, especially in this lower Doppler385

velocity regime (v <1.5 m/s). We make use of the separation into three categories (un-386

rimed, transitional, rimed) by Li et al. (2020). They used ground-based in-situ obser-387

vations combined with collocated multi-frequency radar observations to derive the rime388

fraction for each profile and fitted a dual-wavelength ratio DWRX,Ka-MDVX relation389

which separates the observed profiles well into unrimed, transitional and rimed ice par-390

ticles. Li et al. (2020) provide these fits for several ranges of precipitation rates, which391

are overall relatively similar. We use the relations fitted to precipitation rates between392

1mm/h and 4mm/h, which is the typical range of rain rates observed during the Tripex-393

pol campaign when a ML could be detected:394

DWRX,Ka = 0.6 ·MDV7.3
X,ρ−corr (12)

separates unrimed from transitional profiles, and395

DWRX,Ka = 0.75 ·MDV2.85
X,ρ−Corr (13)

separates transitional from rimed profiles. In both equations (equation (12) and (13)),396

MDVX,ρ−Corr is the MDV of the X-Band, which was corrected to standard conditions397

applying the relation from Heymsfield et al. (2007).398

4.4 Application of the ZFR Method Including Filtering, Averaging and399

Riming Degree Categorization on a Case Study400

The ZFR diagnostic strictly holds only if multiple conditions are fulfilled (section 1).401

We discuss the condition of inhomogeneity and the categorization into different riming402

degrees exemplarily on the time range between 06:00 and 07:30 on 13 January 2019 (Fig-403

ure 3). Inhomogeneities are evident in Ze (Figure 3b)) in the form of slanted fallstreaks404

(e.g., around 06:17 UTC, periods of high reflectivity) or periods of low Ze (“cloud holes”,405

06:55 UTC). Both, the region of enhanced Ze associated with the fallstreak and the low406

Ze from the “cloud hole” appear slightly earlier at the ML top than at the ML bottom.407

As a result, ZFR goes first through a minimum/maximum in case of the fallstreak/cloud408

hole, followed by a maximum/maximum. In these cases, the temporal average of two min-409

utes already reduces the fluctuation due to the inhomogeneity to a great extent. These410

two minutes can be considered a typical time a particle with an average v of 2-3m/s re-411

quires passing a 300-400m thick ML. At the passage of slanted cloud boundaries and ”cloud412

holes”, a significant amount of hydrometeors and thus FZ exist only at ML top or bot-413

tom. In this scenario, ZFR also reaches extreme values (e.g., at 06:52 UTC) that are not414

due to growth or shrinking processes within the ML. Therefore, we introduce a filter, that415

removes low fluxes (FZ,top<20 dBzm/s or FZ,bottom/0.23<20 dBzm/s). Figure 3f) illus-416

trates well that the most extreme ZFRs are removed by applying this filter.417

The filtering of small fluxes also helps to disregard profiles where the particle type418

can not be categorized confidently. Small fluxes are correlated with small mean parti-419

cle sizes and thus low MDVX and DWRX,Ka . DWRX,Ka is very weakly sensitive to par-420

ticles of size below 1 mm (Ori et al., 2020), and MDVX can not be used to distinguish421

the degree of riming if the particle sizes are not known. For example, a particle popu-422

lation with low DWRX,Ka and MDVX of about 1.5 m/s (e.g., in the time range between423

06:00 and 06:10 UTC) could be composed of small rimed particles or larger but unrimed424
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Figure 2. Spectra and profiles of integrated quantities from the 13 January 2019 07:25UTC il-

lustrating our ML detection, calculation of ZFR and corrections based on vertical wind estimate.

a) Spectral and integrated LDRKa; b)-d) Spectrogram and MDV of the X- (b)), W- (c)), and

Ka-Band (d)); e)ZeX ; f) FZ . c) also shows the actual mie-notch Doppler velocity (DV) and the

one expected for w=0; d) also shows the DV of the main peak and the peaks with slower DV; f)

also shows the estimate of w at ML top derived from the peaks in e) and at ML bottom derived

from the mie-notch in d). Finally, also ZFR corrected by wbot (ZFRcorrTop), wtop (ZFRcorrBot)

and both wtop and wbot (ZFRcorr) is shown in f). LDRKa of melting particles are up to 20 dB

larger than the minimum observable LDRKa visible in the rain part.
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particles. Considering only the time ranges, with sufficiently high FZ the shown case is425

dominated by the transitional category in the first 70 minutes before unrimed particles426

dominate in the last 20 minutes (Figure 3e)), and ZFR is overall relatively close to one.427

5 Results: Statistics of the ZFR428

In this section, we derive the ZFR statistics for the different riming categories to429

determine whether the particle populations shrink (ZFR<1) or grow (ZFR>1) when viewed430

over the entire ML. Without applying any filter, the TRIPEx-pol dataset provides 131.8431

hours of ML observations, which divide into 34.0% unrimed, 20.0% transitional, and 45.7%432

rimed profiles (Figure 4a)). Despite the large variability of ZFR for unrimed and rimed433

profiles, the median of ZFR decreases from unrimed over transitional to rimed profiles.434

A ZFR close to one for unrimed profiles means that the mean size of the particle pop-435

ulation remains almost constant. A ZFR of 0.55 for rimed profiles indicates that the par-436

ticle population is shrinking. In order to assure that the observed relation of ZFR to the437

degree of riming is a microphysical feature, we apply, in the following, several filters, av-438

erages, and corrections in order to minimize the effect of spurious signals caused by in-439

homogeneities, ambiguous riming degree characterization and vertical wind (section 4).440

The scatter of ZFR narrows down strongly after we filter out low fluxes (flux fil-441

ter F1; Figure 4b)). Although the flux filter removes about 70% of the profiles and changes442

the relative contribution of the riming categories, the dependency of ZFR on the par-443

ticle type changes very little. Also, filtering out profiles of low relative humidity with re-444

spect to water (RH<95%) to exclude a potential impact of sublimation and evaporation445

on the ZFRs does not substantially affect the dependency of ZFR on the particle type.446

However, this filter removes about another half of the data (Figure 4b)). In the follow-447

ing analysis, we use the flux filter F1 as it is necessary to remove spurious signals. Since448

it changes little when low humidity profiles are filtered, we do not apply this filter in the449

following to maintain a balance between quality filtering and statistical robustness. Sur-450

prisingly, no matter which filter or associated profile reduction is applied (Figure 4a)-451

c)), the median ZFR is always about 1.0 for unrimed, 0.8 for transitional, and 0.6 for rimed452

profiles, with only minor deviations from the different applied filters.453

Non-stationary regimes could cause a correlation between MDV and ZFR even in454

the absence of growth or shrinking processes, e.g., due to fallstreaks (section 4.4). For455

example, if riming sets on, FZ increases first at the ML top. However, due to the time456

the particles take to pass the ML, FZ does increase only later at the ML bottom, giv-457

ing a temporary minimum in ZFR that might be associated with an increase in MDV.458

This correlation should decrease with increasingly long temporal average periods. In Fig-459

ure 4d)-f) averaging periods of 2, 5, and 10 minutes are applied. These temporal aver-460

aging shifts the median only slightly to about 1.1 for unrimed and 0.7 for rimed profiles461

and stays almost constant for transitional profiles. The scatter of the data reduces fur-462

ther so that almost the full interquartile range of the unrimed profiles is below 1.0 af-463

ter applying the 10 min average.464

Also vertical wind could cause an “artificial” connection between the particle types465

and ZFR. Hypothetically, the profiles characterized as rimed could have a high MDV not466

only due to the higher vt of the particles but also due to a systematic downwind at the467

ML top. In this scenario, the downwind at the ML top would cause an overestimation468

of FZ,top, thus underestimating ZFR. However, only a slight difference exists between469

the uncorrected ZFR and the ZFR corrected for vertical wind at the ML top (Figure 4g)).470

Unfortunately, we can correct for w at ML top only in a slight number of cases (6.8h).471

Especially for unrimed profiles, the amount of data reduces strongly, so that these pro-472

files contribute only about 10% to this subset of the data. The correction of w at the473

ML bottom is possible in slightly less than half of the cases (after the flux filter F1). The474

correction can be applied to many unrimed and transitional profiles since they have com-475
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Figure 3. Radar variables and ML diagnostics from the morning hours of the 13 January

2019 illustrating the variability of the variables close to and within the ML, the categorization

by the degree of riming, and challenges of the ZFR diagnostic. Time-height series: a) LDRKa b)

ZeX c) MDVX d) DWRX,Ka. In snow, positive DWRX,Ka indicate large particles; In rain, neg-

ative DWRX,Ka occur due to ”super-Rayleigh scattering” (e.g. Mróz et al., 2020). Dashed lines

mark the ML top and bottom. Timeseries of e) MDVX and DWRX,Ka at ML top and riming

degree categorization (bottom of the plot: blue: unrimed; green: transitional; red: rimed) f) FZ

at ML top and bottom, and ZFR. At the bottom of f) all time ranges are marked by a black line

where FZ,top is smaller than 20 dBzm/s or FZ,bottom/0.23 is smaller than 20 dBzm/s (same as

filter applied in section 5). The magenta line in f) marks ZFR=1, which is to be expected under

the melting-only assumption. Dashed lines show values on the original time grid and solid after

applying a 2 minute temporal average.
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parably large raindrops below the ML and the Mie notch is often detectable. In contrast,476

the portion of rimed profiles decreases more strongly. Nevertheless, this reduction of pro-477

files and scarcity of unrimed profiles which can be properly corrected for w does not sub-478

stantially change the dependency of ZFR on the particle category. Finally, we apply a479

correction for w at ML top and bottom simultaneously. Again, the amount of data de-480

creases and only 2.9h are left, but the median ZFR for each particle type, and thus the481

dependency between ZFR and particle type remains similar.482

None of the filters and corrections applied to the dataset induced a considerable483

shift in ZFR. From this, we can conclude that the microphysical growth or shrinking pro-484

cesses for unrimed, transitional, and rimed profiles must act in different intensities (dif-485

ferent process rates) to explain the difference in ZFR. In the case of unrimed profiles,486

shrinking and growth processes almost balance out (with a slight tendency to the dom-487

inance of growth processes), whereas shrinking processes dominate in the case of rimed488

profiles.489

6 Discussion: What processes might affect the particle size of unrimed490

and rimed particles differently?491

In section 5, we found that ZFR is close to one for unrimed profiles and around 0.6492

for rimed profiles, suggesting that the melting-only assumption may be appropriate for493

unrimed profiles, while shrinkage processes dominate over growth processes for rimed pro-494

files. In this section, we aim to find indications of which of the various processes that495

could potentially alter FZ (Figure 1) are actually active in the ML for the different par-496

ticle categories. To this end, we first characterize the melting stages for mean profiles497

of all particle categories (Figure 5). Then, we investigate whether processes in the pre-498

dominantly liquid part (e.g., hydrodynamic breakup, collisional breakup), in the predom-499

inantly ice phase (e.g., aggregation) or during melting (e.g., melting fragmentation, col-500

lisional breakup of melting particles) can explain the differences in ZFR.501

We normalize the height of each profile relative to the ML boundaries (hrel) so that502

hrel=0 corresponds to the ML bottom and hrel=1 to the ML top. This normalization503

allows us to compare all profiles with each other even though the ML depth varies. On504

average, the ML is 391 m thick with a standard deviation of 90 m.505

Melting progresses similarly with decreasing hrel for all three particle types (Fig-506

ure 5). The melting progress is indicated by the profiles of LDRKa and the melting frac-507

tion fmelt (Figure 5a) and c)). The shapes of the LDR profiles are very similar and dif-508

fer only slightly, e.g. in the height of the maximum which is at hrel=0.51 for unrimed509

and hrel=0.47 for transitional and rimed profiles (Figure 5a). Due to the higher density510

of rimed particles, we expect the melting of rimed particles to happen at a lower alti-511

tude. This is further confirmed when looking at the retrieved fmelt (dashed lines in Fig-512

ure 5c)) defined as:513

fmelt =
mliq

mice +mliq
, (14)

To diagnose fmelt, we use the method of Mitra et al. (1990), which derived a relation be-514

tween fmelt and the relative increase in v from laboratory experiments. In agreement515

with LDR, also fmelt increases somewhat slower for rimed profiles in the upper part of516

the ML (Figure 5c)). According to the diagnosed fmelt, 50% of the mass is liquid at hrel=0.73517

(hrel=0.69) for unrimed (rimed), and 90% of the mass is melted at hrel=0.49 (hrel=0.43)518

for unrimed (rimed).519

Since the shapes of the raindrops differ only slightly from each other, the mean size520

and the size of the largest particles can be inferred from the values of ZeX , MDVX and521

the spectral edge velocity SEV (Figure 5b)-d)) at the lower edge of the ML. Owing to522

these similar shapes, raindrop v can be mapped relatively unambiguously to raindrop523

size (e.g, Tridon & Battaglia, 2015), and we can attribute the increasing MDVX (Fig-524
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Figure 4. Boxplot of ZFR for different particle types (unrimed, transitional, rimed) and

different filters (first row, a)-c)), average periods (middle row, d)-f)) and corrections (last row,

g)-i)). Each box shows the interquartile range of the distribution. The horizontal line within each

box depicts the median. The whiskers show the rest of the distribution excluding outliers. Filters

applied: F1: Profiles with FZ,top<20 dBzm/s or FZ,bottom/0.23< 20 dBzm/s are removed. F2:

In addition to Filter 1, profiles with relative humidity with respect to water RH below 95% are

removed. In g)-i) ZFR is correct for wtop only (g)), wbottom only (h)), and wtop and wbottom (i)).
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ure 5c)) from rimed (4.65m/s) to transitional (5.38m/s) to unrimed (5.67m/s) profiles525

to the increase in mean particle sizes. The upper spectral edge velocity SEV (right lines526

in Figure 5d)) confirms the surprising finding that the larger MDVX found for raindrops527

originating from rimed particles is indeed due to the presence of larger drops. This ob-528

servation is exactly the opposite of what we might have expected from stronger drop breakup529

or shedding of melting rimed particles. Thus, these breakup mechanisms cannot explain530

the ZFR<1 for rimed profiles. ZeX at the ML bottom also increases from rimed to un-531

rimed profiles. This increase could again indicate an increase in mean mass, but might532

also be partly due to differences in number concentration. Due to the influence of the533

different ice and melting particle shapes, the profiles of Ze, MDVX and SEV can not534

be used to infer characteristic sizes and strength of the growth processes.535

The smaller mean mass of the rimed compared to unrimed profiles indicates that536

breakup of pure liquid particles and shedding of graupel and hailstones can not explain537

the stronger decrease of FZ for rimed profiles because both processes are especially ef-538

ficient in the presence of large drops. Hydrodynamic breakup occurs only for particles539

larger than 5 mm, which corresponds to velocities of about 9 m/s at the average pres-540

sure at the ML bottom (9234 hPa) (Pruppacher et al., 1998). Velocities above 9 m/s are541

not reached by the upper quantiles of any particle type (right side of Figure 5d)). Also,542

collisional breakup of liquid particles most likely can not explain the difference between543

unrimed and rimed profiles. The process rates of collisional breakup increase with in-544

creasing sizes (Low & List, 1982; McFarquhar, 2004; Straub et al., 2010), which would545

suggest higher rates for unrimed particles if this process is important at all. Furthermore,546

the profiles of FZ below the ML (hrel<0) indicate that these pure liquid processes are547

not important or are greatly compensated by collision-coalescence because FZ is almost548

constant here (Figure 5e)-g)). To ease the comparison of the profiles and allow closer in-549

spection of the slope, FZ is normalized by FZ,top (FZ,X,norm) in Figure 5f) and the deriva-550

tive of FZ,X,norm is shown in Figure 5g). Shedding occurs only for graupel and hailstones551

with a mass-equivalent size larger than about 8 mm, which corresponds to velocities of552

about 10 m/s once the particle is fully soaked and no air intrusions are left (Pruppacher553

et al., 1998).554

Again, FZ might be currently our best indicator for growth processes within the555

ML and can indicate the height regions at which processes differ the most for unrimed556

and rimed profiles (Figure 5e)-g)). However, the profiles of FZ within the ML are hard557

to interpret because of the poorly known scattering properties of wet ice particles (Ori558

& Kneifel, 2018; Kneifel et al., 2020). Comparing the mean profiles of the different par-559

ticle types, we can assume that the change of K, and thus its’ contribution to the increase560

of FZ , occurs similarly for all particle types. For all particle types, the increase of FZ561

is strongest at hrel of about 0.7 (Figure 5g)), where fmelt is about 0.8 (Figure 5c)). This562

region is also responsible for most of the difference between the ZFR of unrimed and rimed563

particles since FZ increases much stronger for unrimed than for rimed profiles. Besides564

the melting process, aggregation, depositional growth, and riming could increase FZ in565

this region. The strong increase of FZ due to melting (increasing K) could also mask566

shrinking processes like sublimation and breakup of melting particles.567

Condensation/deposition and presence of supercooled liquid water require sufficiently568

large supersaturation that can be generated by vertical wind (Lohmann et al., 2016). In569

contrast, evaporation/sublimation occurs in subsaturated air. In addition to the humid-570

ity information from Cloudnet, we can use w (Figure 5h)) as an indicator for potentially571

super- or subsaturated conditions favoring either condensation/deposition or sublima-572

tion/evaporation. The case of upwind is especially interesting since many models, includ-573

ing ECMWF-IFS, which is used in Cloudnet, apply saturation adjustment and thus do574

not predict RH above 100%. We excluded already strongly subsaturated air conditions575

to be important for the statistics of ZFR by excluding profiles with low humidities (RH<95%;576

section 5). However, the mass flux could be modified by large-scale lifting (Houze, 1993),577
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or small-scale dynamics (Szyrmer & Zawadzki, 1999) even though the humidity is close578

to saturation. Changes in the mass flux could efficiently consume the locally generated579

sub-/supersaturation, especially in presence of supercooled liquid water and if the mean580

size is relatively small (Lamb & Verlinde, 2011, section 10.4). As a specific feature of the581

ML, melting particles can also grow by depositional growth below 100% relative humid-582

ity due to the temperature difference between surrounding air and the particle. We find583

that small upwinds (w<0.25 m/s; bottom of Figure 5h)) are present for all particle types584

near the ML bottom which indicates conditions for condensation. Interestingly, near the585

ML top, the unrimed profiles are associated with upwind and rimed profiles with down-586

wind (top of Figure 5h)). Thus, depositional growth could occur for unrimed profiles.587

Rimed profiles might experience weaker depositional growth rates or even sublimation.588

It has to be noted that the w estimate near the ML top is only available if a cloud droplet589

peak is present, which applies only to a subset of the dataset and reduces especially the590

number of unrimed profiles drastically (Figure 4).591

So far, our analysis revealed that the origin for the lower ZFR for unrimed profiles592

can not be explained by shrinking processes in the rain or predominantly melted part593

of the ML. As we will show in the following, there are indications that the relative strength594

of aggregation and breakup determines the ZFR for each particle type (Figure 6). As595

many studies before (Stewart et al., 1984; Fabry & Zawadzki, 1995; Barthazy et al., 1998;596

Heymsfield et al., 2015; Gatlin et al., 2018), we suspect that aggregation is continuing597

within the ML. Aggregation rates are high for particles with a large maximum dimen-598

sion and high number concentration. Thus, the unrimed profiles could continue to grow599

efficiently in the upper part of the ML. In contrast, the rimed profiles have a smaller par-600

ticle size, compact shape, and perhaps smaller number concentration, and, thus, we ex-601

pect weaker aggregation (indicated by smaller arrows in Figure 6). Since ZFR is sub-602

stantially below one for unrimed profiles, shrinking processes like melting fragmentation603

(Oraltay & Hallett, 1989, 2005; Leinonen & von Lerber, 2018), collisional breakup, or604

sublimation must be present as well. Most likely, these shrinking processes also occur605

in the unrimed profiles but appear to be strongly compensated by the growth processes.606

This reasoning is supported by in-situ observations of the size distribution and derived607

number flux by Yokoyama et al. (1985) and Barthazy et al. (1998). They saw indications608

of an almost exact balance of aggregation and breakup, similar to our observations of609

the unrimed category. Barthazy et al. (1998) characterized the particle type as unrimed610

to moderately rimed based on MDVX observations, which might be similar to our un-611

rimed category. Yokoyama et al. (1985) did not report the riming degree, but snowflakes612

presented by photographs appear relatively unrimed. Changes in the mass flux (e.g., sub-613

limation) have been considered negligible by previous studies (Drummond et al., 1996;614

Szyrmer & Zawadzki, 1999; Heymsfield et al., 2007). However, differently strong depo-615

sitional growth near the ML top could also contribute slightly to the different ZFR. Melt-616

ing fragmentation only occurs in strongly subsaturated conditions (Oraltay & Hallett,617

1989). Since we also see decreasing ZFR if we exclude profiles with RH<95% (Figure 4c)),618

it is also unlikely that melting fragmentation is the dominant process that can explain619

the observed signature. Consequently, among the mechanisms proposed above, only the620

collisional breakup of melting particles remains in our opinion as an explanation for the621

decreasing FZ seen for rimed profiles (Figure 6).622

7 Conclusions and Outlook623

Knowledge about processes in the ML is crucial for precipitation modeling and es-624

timation by remote sensors. Different radar remote sensing approaches and in-situ ob-625

servations have been used to infer the importance of different processes within the ML.626

Of these approaches, the ZFR approach initially proposed by Drummond et al. (1996)627

is particularly promising to infer the evolution of properties such as mean mass in the628

ML. The main advantage of the method is that it provides a simple diagnostic of whether629
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tral edge velocities SEV , e) FZ , f) FZ normalized by FZ,top (FZ,X,norm), g) the derivative of

FZ,X,norm(dFZ,X,norm/d(−h)) and h) vertical wind w estimated from the spectral peaks for

hrel>1 and from the Mie notches for hrel<0.0. The height coordinate hrel shows the relative po-

sition in the ML, where 0.0 corresponds to hmelt,bottom and 1.0 to hmelt,top. fmelt in c) is derived

using Figure 2 from Mitra et al. (1990) as fitted by Frick et al. (2013). The vertical dashed line

in f) indicates ZFR=1. Only profiles with FZ,top>20 dBzm/s and FZ,bottom/0.23>20 dBzm/s are

used to calculate medians and quantiles.
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Figure 6. Schematic of the growth and shrinking processes that potentially modify the reflec-

tivity flux in addition to the increasing dielectric factor. In blue for unrimed and red for rimed

profiles. The thickness of horizontal arrows indicates the estimated magnitude of the processes at

the different height regions. Vertical arrows indicate up- or downwind. The typical height, where

the melting fraction fmelt is at 50 and 90% is indicated by gray dashed lines.

mean mass and mass flux are conserved within the ML or if rather growth/shrinking pro-630

cesses have to be considered. In this study, we assess the uncertainty of the ZFR approach631

and derive statistics of ZFR to systematically investigate how the mean mass changes632

within the ML. Furthermore, we investigated whether the differences between profiles633

with unrimed and rimed snowflakes above the ML found in previous studies can also be634

seen in our statistics. For this, we apply the ZFR approach proposed initially by Drummond635

et al. (1996) on 132 hours of observed ML and combine it with novel radar methods: 1. We636

infer w from characteristics of the Doppler spectra 2. We categorize between three dif-637

ferent categories of the riming degree (unrimed, transitional, rimed), applying the method-638

ology of Li et al. (2020), which uses dual-wavelength ratios and Doppler velocity obser-639

vations.640

The large dataset allows us to derive robust statistics about ZFR for different par-641

ticle types. The most intriguing feature of these statistics is that ZFR indicates slight642

growth for unrimed profiles but substantial shrinking for rimed profiles. Furthermore,643

the ZFR statistics holds even when various quality filters (low FZ), temporal averages,644

and corrections for w are applied.645

Previous studies using the ZFR approach assumed that changes in the mass flux646

could be neglected in the atmosphere. Thus, the ZFR directly indicates whether aggre-647

gation or breakup dominates. Drummond et al. (1996) reported that aggregation dom-648

inates in most cases, but breakup dominates in the case of high precipitation rates. Mróz649

et al. (2021) analyzed a 6 hour period, in which breakup is more important than aggre-650

gation for unrimed but less important for rimed profiles. Drummond et al. (1996) and651

Mróz et al. (2021) considered a rather short time range, which did not allow them to ap-652

ply as detailed filters and corrections as in this study. Thus, differences from our study653
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might be rather coincidental. Gatlin et al. (2018) showed that breakup is dominant for654

thin MLs, which corresponds to small particles, and aggregation is dominant for thick655

ML (large particles). This dependency is consistent with our analysis since unrimed pro-656

files, which show increasing fluxes, are associated with larger sizes, and rimed profiles,657

which show decreasing fluxes, are associated with smaller sizes.658

We analyzed profiles of several variables within the ML to infer which processes659

might cause the slightly increasing FZ for unrimed and the decreasing FZ for rimed pro-660

files. As many previous studies (Stewart et al., 1984; Fabry & Zawadzki, 1995; Barthazy661

et al., 1998; Heymsfield et al., 2015; Gatlin et al., 2018), we suspect that aggregation is662

continuing within the ML. Aggregation might be more efficient for unrimed than for rimed663

profiles, e.g., due to particle shape. Since ZFR is significantly below one for unrimed pro-664

files, shrinking processes must be present, too. Since the SEV suggests that even the665

largest particles are not large enough to be affected by hydrodynamic breakup or shed-666

ding, we concluded that these processes are not active in the clouds of our dataset. Sur-667

prisingly, the rain population at the ML bottom of the unrimed profiles revealed larger668

MDVX , SEV and ZeX than the rimed profiles indicating larger mean sizes and poten-669

tially higher number concentrations. Since collisional breakup of pure liquid particles is670

more effective for larger mean sizes, it is also unlikely that this breakup mechanism can671

explain the lower ZFR for rimed profiles. Also, sublimation and melting fragmentation672

are probably not considerably changing FZ , because both processes would be efficient673

only at low relative humidities. Consequently, in our opinion, only the collisional breakup674

of melting particles remains as an explanation for the lower ZFR seen for rimed profiles.675

Collisional breakup of melting particles might occur in similar magnitude for both un-676

rimed and rimed profiles. However, the aggregation rates could compensate for the breakup677

processes to a greater extent for unrimed than for rimed particles. Competing effects of678

aggregation and breakup were also suspected to explain number flux estimate from in-679

situ observations (Yokoyama et al., 1985; Barthazy et al., 1998).680

Obtaining a more complete picture of the ML processes is hampered by the lim-681

ited knowledge of the relevant processes on the particle level, their significance, and the682

difficulty in interpreting radar observations of the ML. In our opinion, a closure between683

detailed modeling, e.g., with novel Lagrangian particle models like Brdar and Seifert (2018)684

and all observational fields (laboratory, in-situ and remote sensing) is the most promis-685

ing way forward. More detailed and extensive laboratory studies, including collisional686

breakup of melting particles, and advances in melting particle scattering properties are687

crucial for the successful application of such an approach. These laboratory studies could688

help to improve the detailed models. Better knowledge of scattering properties (e.g., the689

dielectric factor for melting particles of complex shape) could ease the interpretation of690

the radar observation and enable comparison with the models.691
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Mróz, K., Battaglia, A., Kneifel, S., D’Adderio, L. P., & Dias Neto, J. (2020, mar).921

Triple-Frequency Doppler Retrieval of Characteristic Raindrop Size. Earth and922

Space Science, 7 (3). Retrieved from https://onlinelibrary.wiley.com/923

–25–

ESSOAr | https://doi.org/10.1002/essoar.10508096.1 | CC_BY_4.0 | First posted online: Mon, 4 Oct 2021 09:58:25 | This content has not been peer reviewed. 



manuscript submitted to JGR: Atmospheres

doi/abs/10.1029/2019EA000789 doi: 10.1029/2019EA000789924
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5.1 simulation of melting layer processes with the la-
grangian particle model mcsnow

Karrer et al., 2021b analyzed which processes are dominant in the
melting layer (ML) by comparing the observed reflectivity flux at the
top and the bottom of the ML and investigating mean profiles of
several radar variables. It is found that the observed reflectivity flux,
when corrected for the change of the dielectric factor, increases slightly
for unrimed and decreases substantially for rimed profiles. This in-
crease/decrease in the reflectivity flux can be directly related to a
change in the mean mass, where an increase (decrease) indicates an in-
crease (decrease) in the mean mass. This additional study investigates
whether growth and breakup mechanisms currently implemented
in the Lagrangian particle model McSnow can explain the observed
reflectivity flux ratio for unrimed and rimed profiles.

Since the mass distribution is explicitly known in the model simula-
tions, the equivalent reflectivity flux FZ (Equation 3 in Karrer et al.,
2021b) can be calculated simply as a product of the second moment
of the mass distribution and the mean velocity weighted with mass
squared. Thus, in contrast to the observations, the reflectivity flux
ratio ZFR can be defined without considering the dielectric factor:

ZFR =
FZ,bottom

FZ,top
, (5.1)

Here, FZ,bottom and FZ,top are the FZ at the ML bottom and top.
Values of ZFR below one indicate shrinking (decreasing mean mass),
values above one indicate growth (increasing mean mass).

Since McSnow contains a sophisticated and up-to-date representa-
tion of particle melting, including some breakup mechanisms, this
study aims to answer the question of whether the known and parame-
terized breakup mechanisms (hydrodynamic and collision breakup of
liquid particles and shedding of large graupel and hail particles) can
explain the observations. If McSnow can not reproduce the observa-
tions of Karrer et al., 2021b, new parameterizations of already observed
(melting fragmentation) and new processes (collision fragmentation
of melting particles) must be considered.

5.1.1 Modeling Setup and Implemented Microphysical Processes

In the McSnow simulations, the particle population is initialized at the
model top and is modified by several microphysical processes as it
sediments through the simulation column. The particles are initialized
as unrimed aggregates following a gamma-distribution of the number
distribution as a function of mass with ν=2.0 and µ=1/3 (Equation 2.9).
The unrimed aggregates follow the geometry of "Mix2" from Karrer
et al., 2020 and riming modifies this particle geometry according to



130 melting layer processes

the similarity theory of Seifert et al., 2019. The simulations have 150

vertical levels, which gives a vertical resolution of 20 m considering
the model height of 3000m. The multiplicity increases with increasing
number concentration N (Table 5.1), so that all simulations are compu-
tationally feasible, but enough superparticles are simulated to sample
the hydrometeor population realistically. For simulations with very
low N, the multiplicity is set to one, and the model can simulate all
particles explicitly (Table 5.1). The simulations are run for 20 hours
from which the last 10 hours are averaged to ensure steady-state condi-
tions and to reduce the noise in the profiles. Thermodynamic profiles
are constant over time, and thus no feedbacks from microphysical
processes such as depositional growth are considered.

The profiles of temperature and humidity and processes active at
different heights are sketched in Figure 5.1. The temperature increases
linearly with decreasing height from -8◦C to 8

◦C, so that ice growth
processes are simulated in the upper half and processes in and below
the melting layer are simulated in the lower half of the simulation
column. The particles are initialized at the model top as a population
of aggregates with various combinations of hydrometeor contents
(Table 5.1), similar to those simulated in the 3D LES simulations of
Karrer et al., 2021a (Figure 5.2). In the upper 1000m of the simulation,
the humidity is above the saturation level with respect to ice but below
the saturation level with respect to water. Thus, depositional growth,
but not riming, occurs. However, riming happens between 1500m and
2000m if supercooled drops are present (Table 5.1). Aggregation/colli-
sions can occur at all temperatures below 0

◦C and additionally within
the melting layer also when one or both colliding particles already
started to melt. Only collisions between a purely liquid particle and an
ice or mixed phase particle are not considered. Near the ML bottom,
pure liquid processes could happen. This possibility of pure liquid
processes within the ML is possible because smaller particles melt
faster than larger particles. As a result, the smaller particles can al-
ready be purely liquid and coexist with still melting particles. These
pure liquid processes include collision-coalescence and breakup due to
the collision of liquid particles (Straub et al., 2010) and hydrodynamic
instability of large liquid particles (Srivastava, 1971). Both processes
occur only in the presence of rather large particle sizes of several mm.

The mass melted per timestep is calculated by considering the avail-
able heat for the melting process following Rasmussen and Heyms-
field, 1987 and assuming a constant particle temperature of 0

◦C. As
the melting particles fall into the increasingly warmer ambient air
but remain at T=0

◦C, the air near the surface of the particle is super-
saturated and thus grows by absorbing vapor from the ambient air.
The vapor transfer is assumed to happen on the liquid surface of the
particle and is thus referred to as condensation. During the melting
of large graupel and hail particles, liquid particles are shed according
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Figure 5.1: Schematic of atmospheric variables and active processes in the
McSnow simulations. Initialization occurs at 3000m at a tempera-
ture of -8◦C and 1% supersaturation with respect to ice (Ssat,i).
The temperature increases linearly so that 0

◦C (8◦C) is reached
at 1500m (0m). At heights below 2500m, Ssat,i increases linearly
and reaches 2.5% at 2000m, which corresponds to the water sat-
uration level. Below 2000m, the relative humidity stays at water
saturation level. Processes, which could occur in the different
height intervals, are listed on the left.

Parameter values

Mass concentration Q [kg/m3] 1·10−5,5·10−5,1·10−4,5·10−4

Mean mass x [kg] 1·10−9,5·10−8, 1·10−7

Number concentration N=Q ·x−1 [1/m3] 1·102, 2·102, 5·102, 1·103, 2·103,

5·103, 1·104, 5·104, 1·105, 5·105

Multiplicity χ=max(N·2·10−4,1) 1,2,5,25

Liquid water content (LWC) [kg/m3] 0, 2·10−4, 5·10−4, 1·10−3

Table 5.1: Parameters used for the initialization at model top and genera-
tion of differently rimed particles. The number concentration N
is calculated from the mass concentration Q and mean mass x.
The multiplicity depends on N, so that all simulations are com-
putational feasible, but enough superparticles are simulated to
sample the hydrometeor population realistically. Considering the
number of different settings of Q, x and LWC, a total number of
60 simulations are performed.
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to the parameterization of Rasmussen and Heymsfield, 1987. Similar
to the hydrodynamic breakup of purely liquid droplets, shedding
also happens due to the hydrodynamic instability and occurs only
for mass-equivalent sizes larger than about 8mm (Pruppacher et al.,
1998).

As a forward model to simulate LDR from the McSnow output is
not available and thus the ML top and bottom can not be defined
in the same way as in Karrer et al., 2021b, the ML boundaries are
estimated from the ratio of Ze from the purely liquid to the total Ze.
The ML top is defined as the height where the purely liquid particles
contribute only with 1 · 10−16 to the total reflectivity. At the ML top,
the non-liquid particles (pure ice and melting particles) are responsible
for only 1 · 10−16 of the total reflectivity.

5.1.2 Simulated Profiles and Reflectivity Flux Ratio

The profiles of all McSnow simulations in Figure 5.2 allow discussing
the effect of the microphysical processes at different heights, quali-
tatively. At temperatures below 0

◦C, depositional growth and aggre-
gation increase the mean mass x and FZ. Aggregation increases x
especially effectively if N is large (e.g, purple profiles). In the LWC
zone, riming quickly increases Q, x and FZ. Riming and melting lead
to a strong decrease of Q and N since these processes strongly in-
crease the terminal velocities v. Due to these low values of N, the
profiles appear noisy even though low multiplicities χ are chosen and
10 hours of temporal average is performed. Just below the ML top, FZ
still increases due to aggregation and depositional growth, but then
quickly approaches a constant value. Since FZ does neither increase
nor decrease near the ML bottom in most of the simulations, collision-
coalescence and breakup due to collision and hydrodynamic instability
of liquid particles are either occuring at low rates or compensate for
each other.

The observed and simulated Ze and MDV are displayed together
in Figure 5.3 to facilitate their comparison. Ze is calculated from the
simulations as the second moment of the mass distribution. MDV is
calculated from the simulations as the v weighted with the second
moment of the mass distribution. Effects like non-Rayleigh scatter-
ing are not considered because the simulated particles are relatively
small and the wavelength of the radar (X-Band) is relatively large. If
non-Rayleigh scattering would be important, then the simulated reflec-
tivities would be overestimated. Comparing the observed ZFRs with
ZFRs calculated from profiles with similar Ze,top and MDVtop allows
assessing how well the simulations can reproduce the observations
of the different particle categories. All simulated ZFRs are near or
above one with a mean of 1.15 and do not show a clear dependency
on Ze,top and MDVtop. The simulations fit well to the statistics of
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Figure 5.2: Profiles of all McSnow runs which are initialized with different
hydrometeor content and where the liquid water content is varied.
Number concentration N (top left), mass concentration Q (top
right), mean mass x (lower left) and FZ (lower right). For N, Q,
and x the histogram of the hydrometeor contents vs. temperature
from the ICON-LEM simulations of Karrer et al., 2021a are shown
grayshaded in the background. Solid horizontal lines depict the
ML top and dashed horizontal lines the ML bottom of each
simulation. Runs with FZ < 30mm6m−3ms−1 are not shown
for the sake of clarity.
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Figure 5.3: Observed and simulated ZFRs for different profiles, represented
as points in Ze-MDV space, in which similar profiles (similar
riming degrees, similar hydrometeor contents) are close to each
other. Squares display the observed median of Ze, MDV and ZFR
for the three riming categories found in Karrer et al., 2021b. Each
circle depicts the values for one McSnow simulation.

the observed unrimed profiles, which have a mean ZFR of 1.04. In
contrast, the profiles can not reproduce the transitional and rimed
profiles, which have a mean ZFR of 0.78 and 0.58.

If all breakup mechanisms (shedding, collision and hydrodynamic
breakup of liquid particles) are switched off in the simulations the
mean ZFR increases only slightly from 1.15 to 1.19 and again no clear
dependency of ZFR on Ze,top and MDVtop is found (Figure 5.4). Thus,
these breakup mechanisms do not have a considerable effect on the
ZFR.

Karrer et al., 2021b suggested that hydrodynamic and collision
breakup of liquid particles and shedding of large graupel and hail
particles can not explain the decrease of FZ in the observed ML pro-
files, consisting of unrimed and moderately rimed regimes in winter
stratiform clouds. This hypothesis could be confirmed by comparing
the simulations with and without these breakup processes. As a result,
the observed decrease of FZ for transitional and rimed profiles within
the ML can not be explained by these processes. Most likely, other
breakup mechanisms such as melting fragmentation and collision
breakup of melting particles must be taken into account within the
ML to reproduce the observed dependency of ZFR on the particle
category.
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Figure 5.4: Same as Figure 5.3 but for simulations with all breakup pro-
cesses (shedding, collision and hydrodynamic breakup of liquid
particles) switched off.
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C O N C L U S I O N S A N D O U T L O O K

Precipitation prediction is crucial for many societally relevant areas,
e.g., mitigation of disasters caused by heavy rain. In this dissertation,
important precipitation forming processes have been investigated.

This investigation has been performed with a variety of microphysi-
cal models and observational methods. First, particle properties have
been derived with a 3D snowflake model and hydrodynamic theory,
revealing characteristics of the sedimentation and aggregation process.
Second, parameters relevant to the simulation of these processes, in-
cluding the previously derived particle properties, were constrained
with a two-moment bulk microphysics scheme (SB scheme) by com-
paring synthetic and observed multi-frequency Doppler observations.
Lastly, these observations have been used alongside Lagrangian parti-
cle model (McSnow) simulations to uncover processes that might be
missing in the current understanding of the melting layer.

The different models used complement each other excellently. The
more explicit models (the 3D snowflake and the Lagrangian particle
model) can examine the processes in great detail and even provide
new parameterizations. The less explicit bulk schemes, which are the
“workhorses” for operational forecasting and climate prediction, can
incorporate the results (including the newly derived parameteriza-
tions) from the explicit models. Due to the numerical efficiency of the
bulk schemes, long-term simulations can be performed that allow a
statistical comparison between model and observations. This statistical
comparison represents a thorough evaluation of the microphysical
parameters, which would not be possible with the explicit models
alone.

In this chapter, the various approaches to constrain parameters
and improve process knowledge that are applied throughout this
dissertation are summarized (Figure 6.1). The improvements to the
microphysical models achieved through these studies are also dis-
cussed. Furthermore, this chapter describes the remaining knowledge
gaps of the processes and highlights the benefits and challenges of the
different approaches. Finally, an outlook is given on how to address
both the general challenge of microphysics model improvement as
well as the individual challenges raised in the various studies.
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6.1 study i : ice particle properties inferred from aggre-
gation modelling

In Study I (Chapter 3), the most explicit model employed in this
study, the 3D snowflake model of Leinonen, 2013 was used to de-
rive parameterizations of ice particle properties, which are applied
in Study I and Study II in the less explicit models, namely McSnow
and the SB scheme. Whereas 3D snowflake models have primarily
been used to derive scattering properties (e.g. Leinonen and Moisseev,
2015; Leinonen et al., 2018) and perform theoretical studies (e.g. West-
brook et al., 2004b), these models are applied here for the first time
to develop parameterizations specifically tailored for microphysics
schemes. The application of the 3D snowflake model allowed to ad-
dress little-studied research questions, which are relevant for micro-
physical modeling. In combination with hydrodynamic theory, the
dependency of aggregate properties on the monomer number and
type and the asymptotic behavior of particle properties, such as the
terminal velocity, at large and small sizes could be studied. These
investigations could hardly be done by in situ observations because of
the limited sample size, limited observed size range, and difficulty in
analyzing the monomer composition within the aggregates.

Study I found that particle properties, such as mass-size and velocity-
size relations, change smoothly during aggregation. "Jumps" in particle
properties from monomers to early aggregates found in bulk micro-
physics which separate between monomers (cloud ice) and snow are
found to be too abrupt simplifications and introduce artificial dis-
continuities that are not physically based. These "jumps" probably"Natura non facit

saltus." - "Nature
does not make

jumps." has been a
principle of natural

philosophy
propagated, e.g., by

Leibniz, 1873

stem from limitations of the parameterization from in situ particle
observations applied in the schemes and the difficulty of selecting
suitable particle property relations for a wide range of applications.
For example, even for a single particle property (e.g., terminal velocity)
many different relations are given in Study I. This variety of relations
is necessary because at different atmospheric conditions, many dif-
ferent monomer types appear. However, most microphysics schemes
only allow the selection of one relation for monomers and one for
aggregates. This restriction is extremely challenging because the rela-
tions must represent a broad range of sizes and be somehow realistic
in many cloud regimes. Therefore, these relations must be carefully
selected, and the selection might need to be revisited if the model is
applied to another regime, such as Arctic mixed-phase clouds.

Not only the selection of the relations representing different monomer
types, but also inaccurate parameters can introduce errors in the mod-
els that apply these simiplified representations. Therefore the 3D
snowflake model and hydrodynamic models should be further im-
proved. In the 3D snowflake model used in this study, the point of
contact of the colliding particles is nearly random and only constrained
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by the preferentially horizontal alignment of the particles. However,
the flow in the vicinity of the falling particles, which is determined by
the particles boundary layer, may make collision particularly likely at
certain points on the particle surface. Considering the flow around the
particles explicitly using direct numerical simulations that resolve tur-
bulence completely could improve the realism of the aggregate shape
and the derived properties. The uncertainty of the modeled terminal
velocity is further increased by uncertainties of the hydrodynamic
models for complex-shaped particles. More precisely, this uncertainty
stems from incomplete knowledge about the relationships between
drag coefficients and particle properties for complex-shaped particles
and is particularly large when secondary motions (e.g., tumbling of the
particles) have to be considered. Laboratory experiments performed
with 3D-printed complex particles sedimenting in a fluid tank, such
as McCorquodale and Westbrook, 2021, represent a promising way to
refine hydrodynamic models.

McSnow allows using very explicit particle property parameteriza-
tions that consider the monomer number dependency of the aggregate
properties. Nevertheless, also simpler parameterizations can be used.
By comparing these different simulations, one can assess how sensitive
the model is to each simplification. This comparison allows quantifica-
tion of the error caused by a given simplification that has to be made,
e.g., in bulk schemes. The classification of unrimed frozen particles
into two categories, namely monomers and aggregates, introduces
a relatively small error compared to a more detailed parameteriza-
tion that accounts for the number of monomers in each aggregate
snowflake. This small error might be explained by the fact that the
biggest change of monomer properties occurs at low monomer num-
bers, but aggregation often occurs rapidly. As a result, aggregates
with low monomer numbers are present only in a short stage of the
aggregation process. In contrast, it is crucial to consider the asymp-
totic behavior of the terminal velocity at large sizes, e.g., by using
Atlas-type velocity-size relations. The relatively large deviation of the
terminal velocity predicted by the commonly used power-law relations
from recent in situ observations and our Atlas-type relations might
stem, again, from the fact that these relations have been derived from
a sample with a relatively narrow size range.

Another finding of the study that the aggregate properties depend
relatively strongly on the composing monomers could not be used in
the SB scheme because this scheme does currently not allow the use of
several particle property relations for a single hydrometeor category.
However, the dataset from Study I could be used to improve the
dependence of aggregate properties on the monomers composing them
in recently developed (Tsai and Chen, 2020; Shima et al., 2020) and
developing (McSnow) habit-predicting schemes. In turn, these habit-
predicting models could be used to make the selection of monomers
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Figure 6.1: Schematic of the approaches applied (blue) and proposed (red) in
this dissertation to improve the understanding and simulation of
precipitation forming processes. The explicit models are valuable
for in-depth process understanding and can be used to improve
bulk schemes, which are essential for weather forecasting and
climate modeling. While single-particle observations allow study-
ing the evolution of individual particles in situ, bulk observations
(remote sensing) allow investigating particle populations and pro-
cesses considering bulk properties observed over larger volumes,
e.g., by radars.

(type and size) composing an aggregate more physically consistent,
which might make the 3D snowflake model more realistic.

From a broader perspective, Study I shows that the combination
of models which represent microphysics in different degrees of de-
tail allows investigating many aspects along various scales that are
important for the microphysical processes (upper part of Figure 6.1).
The 3D snowflake model allowed deriving a detailed parameterization
of the particle properties but cannot simulate the evolution of the
particle population. Therefore, McSnow is an ideal complement to it.
In McSnow, the particle properties from the 3D snowflake model can
be used to simulate the particle population’s evolution and investigate
which assumptions are a good approximation in bulk schemes, which
are less explicit but more computationally efficient.

Study I also illustrates the importance of the comparison of ex-
plicit models with particle-based in situ observations (left side of
Figure 6.1). While many aggregate types which consist of only one
type of monomers (e.g., needle, plate) can not represent well the mean
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of the particle properties observed in situ, a specific type of aggregate
composed of small needles and large dendrites agreed well with mean
properties of these observations.

6.2 study ii : constrain bulk scheme parameterizations

In Study II (Chapter 4), the parameters affecting the aggregation
rates in the SB scheme are constrained by comparison with multi-
frequency Doppler radar observations. The goal of this approach is
not only to improve the simulation of a single or few processes, but
also to assist the interpretation of the observations. Using an ideal-
ized single-column simulation, new parameters could be tested in a
computationally efficient way, and it could be evaluated how these pa-
rameters affect simulated variables in model and observational space.
This evaluation benefits from the idealized model setup because it
allows to exclude feedbacks from the cloud dynamics and to control
which microphysical processes are considered. A combination of pa-
rameters could be found that best fit the statistics from the observation.
Only after this parameter combination is found are the more compu-
tationally intensive and more difficult to interpret 3D LES simulations
performed with modified microphysical parameters. The synthetic
observational output of these LES simulations shows that some biases,
already highlighted by Ori et al., 2020, could be reduced.

The single-column simulations allowed to address these biases by
revealing that aggregation is most sensitive to the particle properties
and the aggregation kernel formulation. Modifying these two param-
eterizations reduced the biases of particle velocity and size. After
implementing the particle properties from Study I into the SB scheme
and carefully considering the effects on the aggregation rates predicted
by the scheme, the biases of too high velocities and large particle sizes
were reduced. A new area-based formulation of the aggregation kernel
also contributed to the reduction of simulated particle sizes. The area-
based formulation can take the gaps in the projection of the snowflakes
into account, which reduces the probability of collisions. The effect of
the model improvements on the precipitation rate was tested on a day
with a strong subsaturated air layer near the ground. The particles
in the new model setup experienced stronger sublimation above the
melting layer and evaporation below the melting layer, and, thus, the
precipitation rate decreased. In this case, the precipitation rate pre-
dicted by the modified scheme agreed much better with the observed
rain rate than the rate predicted by the default scheme because of the
large reduction of the biases in particle size and velocity. In the 6-hour
period of that day, in which most of the precipitation occurred, the
modified scheme overestimated accumulated precipitation by 64%,
while the default scheme overestimated it by 536%.



142 conclusions and outlook

Although the size distribution width parameter showed a relatively
small effect on the simulated moments and mean mass, it turned
out to be an essential link between model and observation. Unfortu-
nately, the size distribution width could not be well constrained by
the observations, and further work is required. This work could focus
on using the full Doppler spectrum, e.g. in a retrieval framework.
In addition, an in-depth analysis of Lagrangian particle modeling
promises further improvements in the understanding and simulation
of particle distribution. As the first step in this direction, the size dis-
tributions simulated by McSnow and the SB scheme were compared in
an idealized simulation in Section 4.1. The main difference between the
distributions simulated by McSnow and the SB scheme is that the num-
ber concentrations predicted by McSnow at small diameters are lower.
However, it is not clear whether McSnow can yet serve as a reference
for this application since it has not been thoroughly evaluated against
observations, and some processes that could broaden the spectra (e.g.,
inhomogeneous humidity field) have not been considered.

At temperatures below -20
◦C, the frequencies combinations em-

ployed do not allow to draw conclusions about the characteristic
particle sizes. At these temperatures, the typical particle sizes are
small and mostly well approximated by the Rayleigh theory even for
the highest frequency (W-Band). Therefore, even the dual-wavelength
ratios between the shortest wavelengths (Ka- and W-Band) is not
sensitive to these particles. This lower sensitivity of the observation,
together with the poorly constrained size distribution width, hampers
the interpretation of the biases. At temperatures below -25

◦C, the
mean Doppler velocity is slightly overestimated. The overestimation of
the dual-wavelength ratio at about -12

◦C could be mainly propagated
from model biases at lower temperatures rather than errors at the
temperatures where the mismatches are detectable. Stratifying clouds
by their cloud-top temperature could help narrow down the causes of
the errors more precisely. Both biases, the overestimation of the mean
Doppler velocity and the dual-wavelength ratio, could result from a
too broad distribution, too large sticking efficiency, (especially at lower
temperatures) or inaccurate monomer (cloud ice) properties. Inclu-
sion of higher frequencies (Battaglia et al., 2014; Lamer et al., 2021)
could illuminate the model performance regarding smaller particle
size and thus lower temperatures. However, including higher frequen-
cies, e.g., in the G-band, requires special effort to separate differential
scattering from differential attenuation effects. Again, analysis of the
full Doppler spectra, including retrieval of the size distribution and
velocity-size relationship, e.g., similar to Barrett et al., 2019, could
help to better constrain parameters, such as size distribution width,
sticking efficiency, and monomer properties. Even though monomer
properties were estimated to be secondary to precipitation formation
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in this study, they are particularly important for the radiative effects
of clouds in previous studies (e.g., Jakob, 2002).

Other remaining discrepancies between model and observation are
the too small mean Doppler velocities at temperatures above -5◦C
predicted by the revised model. This bias could result from inaccurate
simulation of the vertical air motion, riming rates, or the representation
of partially rimed particles. In addition to the general challenges of
simulating vertical air motion, at these temperatures, the latent heat
release during melting can cause mesoscale thermal circulations (Lin
and Stewart, 1986). In case of horizontal variability of ice mass, the
latent heat release can produce even convective cells with associated
vertical winds of several 0.1m/s (Szyrmer and Zawadzki, 1999).

The remaining potential error sources - the inaccuracies in riming
rates and the representation of partially rimed particles - are strongly
linked, as one can see exemplary when considering the riming im-
plementation in the SB scheme. The SB scheme separates snow from
graupel with large differences in the particle properties between those
categories. Once riming starts and riming rates exceed the deposi-
tional growth rates, snow is converted to graupel leading to a sudden
increase in particle velocity and density. This representation of the
riming process gives rise to two errors that could cause the underesti-
mation of the mean Doppler velocity. First, at riming rates lower than
depositional growth, riming adds mass to the snow category without
increasing the particle velocity as one would expect in reality. Second,
at riming rates higher than depositional growth rates, riming changes
particle properties too rapidly, and the resulting underestimated cross-
sectional area leads to too low riming rates and thus underestimated
particle velocity. The problem of representing particles of different
riming stages can be mitigated by introducing additional prognostic
variables that allow a more continuous transition of particle properties
(Morrison and Milbrandt, 2015; Tsai and Chen, 2020). However, this
approach requires additional assumptions, e.g., about the distribution
of the rime mass among the particles of different sizes, which necessi-
tates additional constraints from observations and explicit models to
constrain all parameters well. Here, again, polarimetric radars would
be helpful due to their ability to infer particle densities. On top of
these issues related to the representation of particle properties of par-
tially rimed particles, the parameterization of the collision efficiency
could be improved. The relatively simple dependency of the collision
efficiency on the snow and cloud droplet mean mass in the SB scheme
could be replaced by a new relation derived from the integration of a
particle-based collision efficiency proposed, e.g., by Böhm, 1994 over
the size distributions of cloud droplets and snow.

Overall, Study II provides an example of how state-of-the-art ob-
servations can be used to improve bulk microphysics schemes and
reduce gaps in process knowledge (right side of Figure 6.1). More
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specifically, the multi-frequency setup and Doppler capabilities of the
vertically oriented radars have proven to be an abundant source for
gaining information on the size and velocity of ice particles and thus
on the aggregation and sedimentation process. Polarimetric radars
could help to even better constrain these and other processes by pro-
viding information, e.g., about the particles’ shape, particles’ density,
and number concentration. For example, polarimetric radars could
help to constrain particle properties at lower temperatures or better
discriminate particle growth by aggregation from growth by riming.

6.3 study iii : processes in the melting layer

Understanding processes occurring in the melting layer and their
relative importance is essential to link properties of the snow above
and the rain below the melting layer, which is crucial for microphysical
models and precipitation estimation by remote sensors. The case study
in Study II showed exemplary that the size of snow particles is closely
related to the size of raindrops, and, thus, the snow particle size
also affects pure liquid processes such as evaporation which in turn
influences the surface precipitation rates.

A connection between ice and rain properties has been investigated
in several studies by deriving the ratio of reflectivity from the top
and the bottom of the melting layer (Drummond et al., 1996; Gatlin
et al., 2018; Mróz et al., 2021; Neto, 2021). These studies assumed that
this reflectivity flux ratio (ZFR) reveals whether breakup or collisions
dominate the change of mean mass within the melting layer if certain
assumptions are met. These assumptions are the negligible influence
of vertical wind, homogeneity of the particle population entering the
ML, and mass flux conservation. If ZFR is corrected for the change of
the dielectric factor during melting, values above/below one indicate
an increasing/decreasing mean mass. Similar to Neto, 2021, Study III
(Chapter 5) leverages on multi-month statistics from multi-frequency
Doppler observations. Going beyond the previous studies, Study III
includes the inference of the vertical wind at the melting layer top
and bottom from Doppler spectra characteristics into this melting
layer analysis. Furthermore, the multi-frequency Doppler observations
allow categorizing each profile as unrimed, transitional, or rimed
following Li et al., 2020.

These combinations of techniques are used to investigate the differ-
ence of microphysical processes when unrimed or rimed ice particles
are dominating the particle population above the melting layer. This
observational study is extended by a model-observation comparison
using McSnow in Section 5.1, which assesses whether this model
with a state-of-the-art implementation of microphysical processes can
reproduce the observations.
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The statistics of Study III show a ZFR slightly above one for unrimed
and a ZFR substantially below one for rimed profiles. Since this statis-
tic does not change systematically when corrected for vertical wind,
and mass uptake is estimated to be secondary, the deviations of ZFR
from one are explained by changes in mean mass. Therefore, a slight
dominance of collision processes is present for unrimed profiles and a
more pronounced dominance of breakup processes for rimed profiles.
Based on the mean characteristics of the different categories and their
vertical profiles, it is speculated that breakup of melting particles is
occurring for unrimed and rimed profiles at similar rates. However,
aggregation could compensate for the effect of breakup stronger in
the unrimed than in the rimed profiles.

In all McSnow simulations, which simulate a similar range of mean
Doppler velocity and reflectivity as the observations, the ZFR increases
within the melting layer independently of the degree of riming. Fur-
thermore, disabling all breakup processes implemented in McSnow
does not impact the ZFR systematically. Thus, this study supports the
statement from Karrer et al., 2021b that besides the breakup processes
currently implemented in McSnow (shedding, collisional breakup of
pure liquid particles, and hydrodynamic breakup of raindrops), also
other breakup mechanisms should be considered.

Two breakup mechanisms for melting particles might explain the
decreasing ZFR. For weakly or moderately rimed particles melting
fragmentation was described by laboratory and modeling studies.
These studies report that meltwater is observed at several parts of
the particles in the early melting stage and the different parts of the
particles are only held together by fragile ice bonds. Occasionally,
these fragile bonds break, which results in the formation of several
fragments (Knight, 1979; Oraltay and Hallett, 1989; Mitra et al., 1990;
Oraltay and Hallett, 2005; Leinonen and Lerber, 2018). However, melt-
ing fragmentation was described to occur mainly in subsaturated
conditions (relative humidity with respect to water RH<70%). Since
the mean values of ZFR remained below one for rimed profiles, even
if subsaturated conditions were excluded, it is doubtful whether melt-
ing fragmentation can explain the decreasing ZFR. Another potential
breakup mechanism has not yet been described and therefore not
parameterized: the breakup after the collision of melting particles.
Similar to what has been described for the case of collision-induced
breakup of pure ice particles (Vardiman, 1978; Takahashi et al., 1995;
Phillips et al., 2017), breakup could occur at the fragile connections of
the melting particles. Therefore, its efficiency could strongly depend
on the shape of the particles, which is known to be strongly influenced
by the riming degree and melting stag stagee. The efficiency of such a
breakup process could be studied in a temperature-controlled vertical
wind tunnel, where one particle is levitated, and another faster-falling
particle is added and made to collide with the levitated particle. Based
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on such a laboratory experiment, this breakup process could be in-
cluded in the McSnow model, and the effect on the simulated ZFR
could be investigated, again.

Overall, one can conclude that studying the processes in the melting
layer is challenging due to several factors. First, scattering properties
of melting particles are poorly known (Kneifel et al., 2020), which
limits the interpretability of observed radar signatures. Thus, further
advances in scattering property parameterizations using 3D snowflake
models and scattering theory such as in Ori and Kneifel, 2018 are
crucial. Second, not all potential microphysical processes involving
melting particles are well studied or quantified. This lack of laboratory
studies hampers its simulation even with the most explicit microphys-
ical models. Compared to aggregation and sedimentation of purely
ice-phased particles, the study of melting layer processes is still in
its infancy. At this stage, laboratory studies and phenomenological
studies, e.g., using state-of-the-art radar techniques as in Study III
(lower part of Figure 6.1), are beneficial and a prerequisite for further
advances in process understanding and modeling. Furthermore, a com-
parison between basic quantities from the model and the observations
can already give hints on missing processes (center of Figure 6.1).

6.4 generalization and perspectives

The approaches used in this dissertation can be viewed as different
components of a general concept to constrain model parameterization
and reduce gaps in process knowledge (Figure 6.1), which matches
well in several aspects to the comprehensive discussion of Morrison
et al., 2020. They divide the challenge of simulating clouds and pre-
cipitation into two topics: the knowledge gaps about microphysical
processes and the representation of these processes in bulk schemes,
which are and will remain the "workhorses" for weather forecast and
climate prediction in the foreseeable future. Morrison et al., 2020 sur-
mise that Lagrangian particles, such as the McSnow model, will be
indispensable for process understanding and bulk scheme improve-
ment in the next decades. This dissertation provides an example that
models even more explicit than Lagrangian particle models, such as
3D snowflake models, are also helpful in this regard when direct in
situ observations or laboratory experiments are lacking or too difficult
to execute. Again in line with Morrison et al., 2020, this dissertation
emphasizes that detailed observations, such as the multi-frequency
Doppler observations, should be used systematically to evaluate and
improve the representation of microphysical processes in numerical
models. An example of the systematic use of observations in this
dissertation is the focus of the research on statistics of observations
rather than case studies, which allowed to reduce the noise intro-
duced by single-event weather dynamics highlighting the systematic
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signatures of cloud processes. The model evaluation is not only bene-
ficial to improve the models’ performance but also to improve process
understanding.

Depending on how well the problem is already understood, differ-
ent synergistic combinations of models and observations are the most
promising (Figure 6.1). Phenomenological studies based on state-of-
the-art observational techniques (e.g., Study III) can reveal fundamen-
tal gaps in process knowledge and can highlight the need for further
laboratory experiments (lower part of Figure 6.1). If a metric can be
established that allows direct comparison of observations with explicit
microphysical models, the gap in process knowledge can be narrowed
down further (center of Figure 6.1). Morrison et al., 2020 argue that
surrogate models that emulate the explicit microphysical models with
simplified functional approximations can facilitate model-observation
comparison when a direct comparison is not feasible, e.g., because of
computational costs. In contrast, if the underlying physics is better
understood, the explicit models, can be used to improve the bulk
models (e.g., Study I and Study II; upper part of Figure 6.1). Finally,
the parameters of the bulk model can be constrained ("fine-tuned") by
bulk observations such as radar observations (e.g., Study II, right part
of Figure 6.1), not only for the sake of the model improvement but
also to better understand the process. A systematic model-observation
comparison using bulk models is more accessible than using explicit
models because long-term simulations applying complex dynamical
models can be run and compared to long-term observations.

In this dissertation the above-described concepts are applied to few
ice-microphysical processes, namely sedimentation, aggregation, and
melting. Furthermore, the application was mainly restricted to rela-
tively simple dynamical systems (stratiform clouds). However, similar
approaches could be applied to other processes, such as riming, ice
habit evolution, or secondary ice processes, and not only stratiform
but also convective clouds could be investigated. The application to
convective clouds is of great concern, since these clouds have special
significance for high impact weather situations. Therefore, knowing
the effect of microphysical parameters on convective clouds, such as
the aggregation parameters investigated in Study II, is highly relevant.
Application of the methods to other processes would benefit from
additional observational constraints given, e.g., by polarimetric radars,
wind profilers or in situ observations, and different representations
of particle properties (e.g., continuous description of riming, Morri-
son and Milbrandt, 2015) and size distributions (e.g., three-moment
scheme, Milbrandt et al., 2021) in the microphysics schemes. How-
ever, the microphysics schemes should remain simple enough so that
their parameters can be evaluated and constrained by observations.
Detailed observational studies should accompany the introduction
of more explicit representations of processes. Given the rapid ad-
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vancement of models and observational techniques, it is essential to
combine models and observations in different frameworks. As seen in
this dissertation, such comparisons can improve the understanding
and simulation of microphysical processes on the individual process
level. These improvements can help to make weather forecasting more
accurate and reduce the uncertainty of climate predictions.
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