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Kurzzusammenfassung

Legt man an einen Metalloxid-Halbleiter-Feldeffekttransistor, der bei niedrigen Tem-
peraturen von einem starken magnetischen Fluss durchsetzt ist, eine longitudinale
Spannung an, so findet man, dass der transversale Leitwert eine strikte Quanti-
sierung ne2

h mit einer natürlichen Zahl n zeigt. Gleichzeitig verschwindet in dieser
sogenannten Plateau-Region die longitudinale Leitfähigkeit; dies ist der ganzzah-
lige Quanten-Hall-Effekt. Bei einer ausreichend starken Änderung des Magnetfelds
findet ein Quanten-Phasenübergang zwischen den Plateau-Regionen statt, der, in
Übereinstimmung mit einem zentralen Paradigma der statistischen Physik, durch
eine konforme Feldtheorie beschrieben werden sollte. Ausgehend vom kritischen
Chalker-Coddington-Netzwerkmodell, das ein diskretes quantenmechanisches Mo-
dell für den Phasenübergang darstellt, schlägt diese Arbeit eine Familie von Obser-
vablen als Diskretisierungen konformer Primärfelder vor. Im einfachsten Fall redu-
zieren sich diese auf das Unordnungsmittel von Momenten des Betragsquadrats sta-
tionärer Streuzustände auf einer Kante l des Netzwerks in Anwesenheit eines Punkt-
kontakts c. Für ein ebenes Netzwerk erwartet man dann einen algebraischen Abfall
dieser Observable mit dem Abstand zwischen Kontakt und Beobachtungspunkt. Im
supersymmetrischen Vertexmodell, das über eine Dualitätstransformation mit dem
Netzwerkmodell verbunden ist, entsprechen diese Observablen Zuständen höchsten
Gewichts für die Symmetriealgebra gl2n|2n. In zylindrischer und rechteckiger Geo-
metrie zeigen wir anschließend, dass die Vermutung, dass es sich hierbei tatsächlich
um Diskretisierungen von Primärfeldern handelt, numerisch bestätigt werden kann.
Abschließend untersuchen wir noch die für die genaue Natur der Kontinuumstheorie
äußerst bedeutsame Frage nach der Form des Multifraktalitätsspektrums der konfor-
men Dimensionen dieser Felder. Die Klasse der Observablen ist dabei, im Vergleich
zu früheren Arbeiten, derart umfassend, dass eine numerische Klärung der Frage
nach der Parabolizität des Spektrums nun greifbarer erscheint.



Abstract

If a longitudinal voltage is applied to a MOSFET subject to low temperature and
a strong perpendicular magnetic field, one finds that the transversal conductivity is
strictly quantized according to ne2

h with positive integer n. This is called the plateau
region. At the same time, the longitudinal conductivity vanishes; this is the integer
quantum Hall effect. Changing the magnetic field eventually results in a quantum
phase transition between the plateaus. By a central paradigm of statistical physics
this transition should be described by a conformal field theory. Starting from the
critical Chalker-Coddington network model, which is a discrete model for this tran-
sition, we suggest a family of observables as discretizations of conformal primary
fields. In the simplest case these reduce to the disorder average of moments of the
absolute value square of stationary scattering states of the network evaluated at a
specific link l in the presence of a point contact c. In a plane network algebraic de-
cay with the distance between l and c is expected. The network model is connected
to the supersymmetric vertex model by a duality transformation and the suggested
observables correspond to highest weight operators of the symmetry algebra gl2n|2n.
Numerical simulations in cylindrical and rectangular geometries provide strong evi-
dence for the conjecture that these observables have indeed the desired properties.
Finally, we address the question of the precise form of the multifractal spectrum
of conformal dimensions, which is an important one to ask in view of the correct
continuum field theory. The family of observables is, compared to work done in
the past two decades, quite extensive and will hopefully contribute to a conclusive
answer on the parabolicity of the spectrum.
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Chapter 1

Introduction

Was würde passieren, wenn Sie von einem 56000 km/h
schnellen Rostbraten getroffen würden?
Prüfungsfrage von Robert B. Laughlin

This chapter serves as an introduction of some aspects of the subject to a general
audience–but, to be honest, in view of the very limited and localized impact of in-
augural dissertations mainly to make the topic easily accessible for subsequent PhD
students–and as a motivation for the main part of this thesis. We briefly recall the
basic phenomenology and theoretical folklore of the integer quantum Hall effect, mo-
tivating the introduction of the Chalker-Coddington network model. It is generally
believed to describe the universality class of the quantum phase transition between
Hall plateaus and, since its introduction in 1985, has been used widely for numerical
simulations–this thesis being no exception. We introduce the localization length, in-
verse participation ratios and point-contact conductances as important examples of
critical observables and discuss the concepts of finite size scaling and multifractality
as well as recent numerical work on the critical exponent of the localization length.
Especially the investigation of so-called typical point-contact conductances strongly
suggests that the paradigm of conformal invariance at a two-dimensional quantum
critical point also applies to the integer quantum Hall transition. The search for
this conformal field theory has been the subject of numerous publications over the
last decades, the most notable suggestions being nonlinear sigma models with tar-
get space PSL2|2 over the base manifold S3 × H3 including a Wess-Zumino term.
The level varies between k = 1 [Z99], k = 8 [T07] and k = 1/t [BKS+00]. Since
no conclusive answer has been found so far and the discussion of these suggestions,
apart from mentioning that all of these three imply a strictly parabolic multifractal
spectrum, would lead us too far astray we omit it here and refer to the literature.
35 years have passed since the discovery of the quantum Hall effect and the basics
already found their way into textbooks. This being said it is clear that we can claim
neither much originality nor anything near comprehensiveness in this chapter, but
still we try to point out some oversimplifications and errors which are repeated quite
often. The literature from which the author learned about the subject obviously in-
fluenced the selection and presentation of the material in this chapter. Firstly, the
textbook by Altland and Simons [AS10] gives a general introduction as well as a
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discussion of Pruisken’s field theory of the plateau regime. For the early theoretical
and numerical approaches, up to the investigation of wavefunction multifractality,
the textbook by Janßen, Viehweger, Fastenrath and Hajdu [JVF+94] as well as the
review by Huckestein [H95] still serve as a valuable source of information, especially
concerning localization and scaling aspects of the topic. The recent and extensive
review by Kramer, Ohtsuki and Kettemann [KOK05] focuses on the random network
model aspect and also covers much of the material in our first three subsections. The
review by Evers and Mirlin [EM08] discusses the much broader context of Anderson
transitions, the integer quantum Hall transition falling into the unitary symmetry
class A in the Altland-Zirnbauer classification scheme [AZ97]. Our treatment of
multifractality was mainly inspired by this article. Furthermore, the introduction
into scaling and renormalization by Cardy [C96] as well as the “big yellow book” on
conformal field theory [FMS97] have been used. Thus, as far as folklore is concerned
which can either be found in the literature just mentioned or even in lecture courses
on statistical mechanics, condensed matter or quantum field theory we refrain from
cluttering the text with too many citations (since the author aims at a PhD in
theoretical physics rather than humanities).

1.1 The integer quantum Hall effect

The classical Hall effect is well-known from high-school physics: A thin rectangular
piece of metal in the x− y−plane is subjected to a magnetic field Bdx ∧ dy. If one
applies a voltage Vx in x-direction (and thus a current Ix flows through the sample),
a voltage Vy proportional to Ix and B is induced across the sample.
In 1980, von Klitzing, Dorda and Pepper [KDP80] discovered that an analogous
experiment on a two-dimensional electron gas–realized in the inversion layer of a
MOSFET–in a strong magnetic field B ∼ 15T at low temperatures T ∼ 1K yields
well-defined plateaus of the Hall resistance

ρxy =
1

n

h

e2
n ∈ N (1.1)

as a function of the magnetic field. These are accompanied by a vanishing longitu-
dinal resistance ρxx = 0. The experimental results are shown in figure 1.1.

The fact that the Hall conductance σxy = ρ−1
xy is integer when measured in units of

e2

h coined the name integer quantum Hall effect. Apart from 1985’s nobel prize, the
astonishing accuracy of (1.1) established the von Klitzing constant

RK =
h

e2
= 25812.807557(19)Ω (1.2)

as a practical standard for electrical resistance in 1990. This effect can be understood
only via a combination of localization due to disorder and the Landau level quanti-
zation of electrons in a magnetic field. Surprisingly, broken translational invariance
of the system is crucial for the very existence of a quantized Hall conductivity: Let
us consider a homogeneous electron gas in a translationally invariant system which
is placed in a perpendicular magnetic field Bdx ∧ dy. If no external electric field is
applied, no current is flowing. On the other hand, in an inertial system moving with
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Figure 1.1: Longitudinal resistance ρxx and Hall resistance ρxy vs. strength of
magnetic field, taken from [K85].

velocity vex a current density j = −vρdy ∧ dz is observed. Furthermore, the mag-
netic field in the system at rest is transformed into an electrical field E = −vBdy in
the co-moving frame, so that we find σxy = ρ

B for the Hall conductivity. Since the
argument is independent of the speed v, we can conclude that translational invari-
ance implies σxy ∼ B.

1.1.1 Landau level quantization

The quantum mechanics of a two-dimensional non-interacting electron gas can be
described by the Hamiltonian

H =
1

2m∗

[(
−i~∂x +

1

2
eBy

)2

+

(
−i~∂y −

1

2
eBx

)2
]

(1.3)

where m∗ is the effective mass and the symmetric gauge A = 1
2B(xdy − ydx) has

been chosen. Introducing complex coordinates z = x+ iy, z̄ = x− iy and operators

b =
√

2
(
l∂z̄ + z

4l

)
, a =

√
2
(
l∂z + z̄

4l

)
, where l =

√
~
eB is the magnetic length, and

noting ∂†z = −∂z̄, H assumes the form of a harmonic oscillator

H =
~eB
m∗

(
b†b+

1

2

)
. (1.4)

Since a, a† do not appear at all, each energy eigenvalue En = ~eB
m∗

(
n+ 1

2

)
is hugely

degenerate; there are nB = B
Φ0

states per unit area in each Landau level, where
Φ0 = h/(2e) is the magnetic flux quantum. We notice that proportionality to B is
also expected in the classical picture. Fixing the kinetic energy of an electron and
thus its speed v, the radius of its cyclotronic motion is r = mv

eB , i.e. the larger B,
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the more cyclotronic orbits fit into a unit area without interfering. Denoting the
number of electrons per unit area by ne, the filling factor n = ne

nB
gives the number

of filled Landau levels, but only for n ∈ N the plateau values of the conductance are
assumed, which leads to the conclusion that essential ingredients are missing for an
explanation of the effect.

1.1.2 Enter disorder, boundaries

Adding static disorder via a random potential to the Hamiltonian,

H = H0 + V (r) , (1.5)

has the effect that the infinitely sharp Landau levels are broadened into bands. The
density of states then qualitatively looks as shown in figure 1.2.

energy0.5 1.5 2.5

DOS localization length

Figure 1.2: Qualitative picture of the dependence of the density of states (solid lines)
and the localization length (dashed lines). Adapted from [KOK05].

States in the band tails turn out to be exponentially localized, i.e. their wavefunc-
tions decay as |Ψ(r)|2 ∼ exp(−r/ξ), where ξ is the so-called localization length1,
whereas extended states exist only in the band centers. Now, if the Fermi energy
lies in the so-called incompressible spectral region, where the density of states van-
ishes, or in the band tails, there are no extended states available for zero-temperature
dc transport, implying ρxx = 0. Furthermore, a strong change in the Fermi level
is needed to change the filling factor over the incompressible region, which leads to
a constant Hall conductivity there. However, contrary to the treatment in many
introductory texts, the existence of a broad plateau also requires an explanation
of why the continuous change of the filling factor in the band tails does not affect
the Hall conductance. As it turns out, this is due to the fact that only delocalized
states contribute to the Hall conductance. From the viewpoint of non-commutative
geometry this was already explained in the classic article by Belissard, van Elst and
Schulz-Baldes [BES94]. On the other hand, in the shaded central regions of the
compressible spectral region extended states are available for electric transport and
since a large number of states falls into a small energy interval, the filling factor and
thus the Hall conductivity changes drastically near the band center when the Fermi
energy is varied.

1Notice that this definition can be grasped intuitively, but it suffers from the drawback that it
cannot be employed to calculate ξ, since the wavefunction is not known exactly.
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The boundaries of a real sample have the effect of bending the Landau levels in the
vicinity of the sample edges as shown in figure 1.3 for a clean conductor.

1

2

3

y1 y2

energy

one edge mode

two edge modes

three edge modes

Figure 1.3: Landau levels in the presence of disorder and a boundary, adapted from
[B88] and [AS10].

If the Fermi energy lies between the bulk Landau levels, the crossing points with the
deformed levels correspond to edge states which acquire a velocity along the edges
of the sample

vjk =
1

~
dEjk
dy0

dy0

dk
, (1.6)

where y0 denotes the center coordinate of the cyclotronic motion. The form of the
spectrum then implies that the edge states are chiral. Finally, taking disorder into
account again, in the plateau regime there are localized bulk states which do not
contribute to electrical transport as well as chiral edge modes which escape localiza-
tion by the very presence of the boundary. This is the hallmark of systems that are
nowadays called topological insulators [KM05]. Büttiker [B88] demonstrated that
in a theoretical treatment of the precise experimental setup -a four-terminal mea-
surement with disorder in the sample and in the contacts taken into account–the
prefactor n in (1.1) corresponds to the number of chiral edge states.

1.1.3 Laughlin’s argument and topological insulators

The term topological insulator indicates that there is also another perspective on the
robustness of the Hall conductance quantization: In his famous gedankenexperiment,
Laughlin [L81] considered a cylinder connected to charge reservoirs and pierced by a
magnetic field perpendicular to its surface together with a magnetic flux tube along
its symmetry axis, see figure 1.4. A time-dependent flux results in an electromotive
force in azimuthal direction which in turn causes a charge transfer between the
reservoirs. By gauge invariance, pumping integer multiples of a flux quantum Φ0

through the system leaves the Hamiltonian invariant and it can be shown that the
number of transported charges in one pump cycle equals the Hall conductance in
units of e2

h . However, as pointed out by Avron and Seiler [AS03], although the
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charge reservoirs

Φ

Figure 1.4: Setup of the Lauglin gedankenexperiment, adapted from [AS03].

charge transported in any individual cycle is integer, quantum mechanics does not
forbid the number of charges to change between cycles per se. Thus, an explanation
for the quantization of the average transferred charge is also needed: It is possible
to write down a single-particle effective Hall Hamiltonian H(φ, θ) that depends on
two angular variables φ, θ with period φ0. θ is chosen such that the Hall current
can be written as I = c∂θH(φ, θ). Furthermore, if the ground state is gapped and
its energy is independent of φ, then the ground state expectation value of the Hall
current is given by

〈Ψ0| I |Ψ0〉 = ~c2KU , (1.7)

where U is the driving electromotive force and Kdφ ∧ dθ is the Berry curvature
(or rather its pullback) of the ground state line bundle over the parameter space
torus T . In this way, the Hall conductance receives a geometric interpretation. The
averaging procedure over pump cycles then corresponds to averaging over the torus,
i.e. to the integral 1

2π

∫
T K. This is an integer, since we can consider a closed loop

on the torus, which divides the torus into two disconnected components. By Stokes’
theorem, we can calculate the Berry phase around this loop by integrating over
any of these components, and the resulting phases have to be equal up to integer
multiples of 2π. Shrinking the loop this argument continues to hold, so the integral
above is indeed an integer. This is the celebrated Chern number, which is a prime
example of a topological invariant, since it measures the homotopy class into which
the Hamiltonian falls. Changing the homotopy class can only be achieved through
a continuous deformation of the Hamiltonian if the energy gap closes at some point,
giving an explanation for the robustness of the quantum Hall plateaus.

1.2 The network model

Further physical insight into the nature of the plateau transition can be gained by
considering two simplified models, namely the percolation model and the random
network model, where the latter is also tailor-made for numerical simulations.

1.2.1 (Semi-)Classical percolation and its insufficiency

In the experimental setup, the two-dimensional electron gas is confined to the inver-
sion layer of a MOSFET. Randomly distributed impurities in the semiconducting
material generate a long-range correlated, random electric potential. In the high
magnetic field (or semiclassical) limit, this can be assumed to vary significantly only
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on length scales much larger than the magnetic length l. In this semiclassical pic-
ture the wavefunction of the electron is essentially confined to a strip of width ∼ l
around the equipotential lines carrying a current density along these. This is also
expected classically, since the motion is directed due to the presence of a magnetic
field. In this picture it is easy to see that for very low energy E the electron encircles
potential valleys, whereas for very high energies the motion takes place around hill-
tops. In both cases the wavefunctions correspond to exponentially localized states
[KS83]. As E is increased, an equipotential line visits more and more valleys, and
at a critical energy Ec it percolates through the whole system. This corresponds
to the classical percolation threshold and the localization length ξP , in this context
defined as the correlation length of a percolating equipotential line, diverges as

ξ ∼ |E − Ec|−νP . (1.8)

νP = 4
3 has been calculated exactly [SD87], but this value differs from the experi-

mentally observed value ∼ 2.38 [LVX+09]. This large discrepancy can be resolved
by noting that two salient features of quantum mechanics has been ignored so far:
quantum tunneling at saddle points and quantum interference. We briefly mention
that the semiclassical argument [MS88] by Mil’nikov and Sokolov which ignores in-
terference received far too much acclaim by heavy recitation in the past since it
is essentially wrong. A combination of percolation and quantum tunneling alone
reproduces the percolation exponent 4

3 , as was shown in [HK97].

1.2.2 The Chalker-Coddington model

The Chalker-Coddington network model [CC88] unites all the important ingredients.
Let us consider a network of current loops which encircle potential maxima and
minima. At any saddle point of the potential, two incoming currents (ψ0,ψ2) and
two outgoing (ψ1,ψ3) currents meet2, see figure 1.5.

ψ1

ψ0

ψ2

ψ3

Figure 1.5: A node in the network model.

Conservation of probability flux enforces the relation |ψ1|2 + |ψ3|2 = |ψ0|2 + |ψ2|2
which can be expressed conveniently by a unitary scattering matrix S,(

ψ1

ψ3

)
= S

(
ψ0

ψ2

)
, S ∈ U2 . (1.9)

Instead of considering a random potential landscape, the effect of disorder can equiv-
alently be captured by a regular network of current loops with scattering matrices

2The counting of links is chosen such that it is compatible with chapter 3.
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randomly drawn from U2 according to Haar measure. Furthermore, every S ∈ U2

can be written by the polar decomposition as

S =

(
eiφ1 0

0 eiφ3

)(
r −t
t r

)(
eiφ0 0

0 eiφ2

)
. (1.10)

The transmission and reflection probabilities t2 and r2 are subject to the constraints
t2 + r2 = 1 and r, t ∈ [0, 1]. This implies that we can instead consider non-random
scattering at saddle points and absorb the effect of randomness into the link currents
ψi.

The Chalker-Coddington network model is then defined as follows: Consider a square
lattice where each elementary square, called plaquette, has a definite sense of cir-
culation that alternates between neighboring plaquettes. The links of the network
are directed accordingly, so that two incoming and two outgoing links meet at each
vertex of the lattice. The Hilbert space of the model is

H =
⊕
l∈links

Cl , (1.11)

i.e. a complex number is assigned to each link. The wave function evolves in discrete
time as

|ψ(t+ 1)〉 = U |ψ(t)〉 , U = UsUr . (1.12)

Us describes unitary scattering at the vertices, i.e. the transfer from incoming to
outgoing links. Ur is diagonal in the link basis and describes the propagation along
links by assigning to each link a random, independent and uniformly distributed
U1 phase. Apart from a rotation by 90◦ in figure 1.5, the deterministic part Us is
assumed to be the same at all nodes, i.e. the probability for an incoming current to
be scattered to the left resp. to the right is the same all over the network. This is
called the isotropic point. The probability of being scattered into one direction is,
in fact, the only parameter in the Chalker-Coddington model, since all information
like Fermi energy, strength of the magnetic field and properties of randomness are
encoded in the scattering at saddle points.

1.2.3 Localization-delocalization transition

The localization-delocalization transition can easily be visualized by considering a
network in the strip geometry as shown in figure 1.6. Let us imagine that this is a
sketch of a real system which is connected to external leads at the left and the right
edge.

There are two extremal cases: For t = 0, r = 1 left turns are forbidden and there
is no path which connects left and right edge, since there are only closed current
loops in the bulk of the strip. This is the trivial insulating phase. On the other
hand, if only left turns are allowed, there exist two delocalized edge states with
opposite chirality. This is the quantum Hall phase. In between lies the isotropic
point r = t = 1

2

√
2 where both directions become equally probable.

We mention that the definition of the model employing a unitary time evolution is a
more recent viewpoint introduced in [KM97]. The original model was formulated for
the strip geometry using transfer matrices which relate the wave function amplitudes
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Figure 1.6: Trivial insulator (left), quantum Hall insulator with two edge channels
(right).

on the left-hand side to the ones on the right-hand side of each vertex,(
ψ1

ψ0

)
= T

(
ψ2

ψ3

)
, S ∈ U2 . (1.13)

The transfer matrix T is related to S in (1.10) by

T =

(
e−iφ1 0

0 eiφ0

)(
1
r

r
t

r
t

1
t

)(
eiφ2 0

0 e−iφ3

)
. (1.14)

The shortest strip possible consists of two horizontal layers as shown in figure 1.7.

Figure 1.7: A section of a strip of width 2. The section between dashed lines is the
building block of this strip.

For a width of W plaquettes, W incoming and W outgoing links on the left are
connected to as many links of each type on the right by a transfer matrix TW . The
transfer matrix of a strip of length L is then given by the Lth power TLW . This
approach has been used to study the localization length: By Oseledec’s theorem
[O68] the matrix

T∞W := lim
L→∞

(TLWT
L†
W )

1
2L (1.15)

has only positive eigenvalues, and since T is symplectic, there is a basis in which the
underlying operator has the matrix representation

T ∞ = diag(eγW/2 , . . . eγ1 , e−γ1 , . . . , e−γW/2) , (1.16)

where γ1 ≤ . . . ≤ γW/2 are called Lyapunov exponents. Each of these gives a scale
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on which the corresponding eigenstate decays, which motivates

ξ =
1

γ1
. (1.17)

We remark that in a numerical simulation one must not multiply a large number of
transfer matrices, since the magnitude of the elements will decrease rapidly, render-
ing the result useless. Instead, after m multiplications a QR-decomposition must be
performed [KOK05]:

TW,kTW,k+1 · · ·TW,k+m−1Vk = Vk+1ωi , (1.18)

where V0 is the unit matrix, Vk are orthonormal 2W × 2W matrices and ωk are
2W × 2W upper triangular matrices. For a strip of length L = mn this yields

TLM = Vn+1ωnωn−1 · · ·ω1 . (1.19)

1.3 Critical properties and finite size scaling

After recalling the general philosophy of finite size scaling, we discuss the critical
properties of the model in terms of the divergence of the localization length as
the critical point is approached as well as the critical wave function and transport
properties.

Quantum phase transitions occur, strictly speaking, only in the thermodynamic limit
of infinite system size. They are characterized by a power law divergence of certain
observables F∞ with respect to a reduced control parameter, most commonly the
reduced Fermi energy ε,

F∞(ε) ∼ ε−µ . (1.20)

It is a hallmark of a critical phenomenon in general that no physical length scale
exists at the critical point, because otherwise exponential decay of thermodynamic
quantities is expected, the length scale governing the distance at which the quantity
has dropped by a factor of e−1. There are two extremal cases where length scales are
absent, the first of which being entirely uninteresting: The relevant scale could vanish
or diverge. Near the critical point it is assumed in finite size scaling that the only
relevant scale is set by the correlation length ξcorr of order parameter fluctuations,
which diverges as

ξcorr(ε) ∼ ε−ν . (1.21)

This is the finite size scaling hypothesis. For a system of finite width W , the observ-
ables will depend on the ratio W

ξcorr(ε)
. In principle the critical energy εc in the infinite

system does not coincide with its counterpart in the finite system. However, we are
interested in the localization-delocalization transition in the Chalker-Coddington
model, which occurs when left- and right-scattering are equally probable, regardless
of system size.

The finite size (one parameter) scaling hypothesis postulates the existence of a scal-
ing function which becomes constant at small x and has a universal power law decay
at large x,

f̃(x) ∼ x−µν , (1.22)
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such that near the critical point we have

FW (ε) = W
µ
ν f̃

(
W

ξcorr(ε)

)
. (1.23)

We notice that as W → ∞ the scaling (1.20) is recovered. Furthermore, if the
correlation length of the finite system itself is considered, µ = ν and thus

ξcorr,W (ε) = Wf̃

(
W

ξcorr(ε)

)
. (1.24)

This phenomenological approach can be justified by a renormalization group argu-
ment: In the thermodynamic limit, the system is defined by a Hamiltonian with a
set of coupling constants {ki} living on a lattice with finite lattice constant a. In a
renormalizable theory one demands that if the lattice constant is rescaled as a→ ba,
the free energy can be kept fixed if only the coupling constants in the Hamiltonian
are changed to a new set {k′i}. In this way, a “dynamical” system

{k′i} = R({ki}) (1.25)

is defined. The absence of a physical length scale at the critical point implies that
rescaling has no effect. Thus we have to look at fixed points of the transformation R.
It is then reasonable to consider the linear approximation of the dynamical system
in the vicinity of such a fixed point. The corresponding mapping is usually assumed
to possess a set of eigenvalues λi := byi such that (1.25) takes the form

φ′i = byiφi , (1.26)

where the eigenvectors {φi} are {ki}-dependent scaling fields–although they are no
fields in the sense of any field theory–which parametrize the distance from the critical
point. Obviously, there are three distinct possibilities for the values yi can take:

• Scaling fields with yi > 0 are called relevant, because the RG flow will drive
the system away from the fixed point.

• yi < 0 corresponds to irrelevant fields, since the flow is directed towards the
fixed point.

• The fields with yi = 0 are called marginal.

Thermodynamic quantities F can then be expressed as functions of the scaling fields
and the length scale W which has been reached after several iterations of the RG
transformation. Furthermore, by construction they also get at most rescaled under
the transformation, which implies the existence of an (analytic) scaling function f
with

F (W,φ1, φ2, . . .) = Wωf(φ1W
y1 , φ2W

y2 , . . .) . (1.27)

This expression coincides with the finite size scaling hypothesis (1.22) in the ther-
modynamic limit if there is only one relevant field, φ1 ∼ t + O(t2), and y1 = 1

ν ,
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which can be seen by writing

φ1W
y1 =

(
Wφ

1
y1
1

)y1
, (1.28)

i.e. φ1 ∼ ξν .
In the network model, the probability of a right turn at the vertices is the single
parameter which drives the system through the localization-delocalization transition.
This is conveniently parametrized by the energy x measured from the center of the
Landau band scaled by the Landau band width, which is related to the coefficients
r, t in the transfer matrix as

t =
1√

e2x + 1
, r =

1√
e−2x + 1

. (1.29)

A useful quantity to study is the so-called MacKinnon-Kramer-variable or reduced
localization length

ΛW (x) =
ξW (x)

W
. (1.30)

The rationale behind this definition is as follows: If the choice of x is such that the
system flows towards the localized phase, ξW (x) only grows with W until it reaches
the order of the localization length of the truly infinite system, so ΛW (x) goes to
zero. In the delocalized phase, on the other hand, Λ diverges with W . At criticality,
the system is expected to be invariant under scale transformations, so once W is
sufficiently large so that irrelevant contributions are suppressed we have ξ ∼W and
thus ΛW (x) has a finite limit Λc. Let us now suppose that it is sufficient to consider
one relevant and one irrelevant scaling field in (1.27),

ΛW (x) = f(φ1W
1
ν , φ2W

y) . (1.31)

As discussed before, in the vicinity of the critical energy x = 0 the relevant scaling
field decays at least linearly in x while the expansion of the irrelevant fields in x
has to start with a constant term. Usually, the expansion of the scaling fields is
truncated after the first nonvanishing order, so that we have

Λ(W ;x) = f(c1xW
1
ν , c2W

y) , (1.32)

which can then be expanded for small xW
1
ν to give

ΛW (x) = Λc

(
1 +

∑
k=1

akW
ky

)
+
∑
k=1

(
xW

1
ν

)k∑
l=0

blW
ly . (1.33)

This result is unpleasant in that many fitting parameters are involved. A slight
improvement can be achieved by imposing periodic instead of reflecting boundary
conditions on the strip, i.e. by considering a long cylinder of circumference W . In
this way the network model acquires a kind of particle-hole-symmetry, since in this
geometry it is invariant under transposition of r and t, which in turn implies that
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ΛW (x) is an even function of x:

ΛW (x) = λ(W ) + x2λ̃(W ) +O(x4W
4
ν ) (1.34)

λ(W ) = Λc(1 + a1W
y + a2W

2y + · · · ) (1.35)

λ̃(W ) = Λ̃W
2
ν (1 + a′1W

y + a′2W
2y + · · · ) . (1.36)

1.4 Recent results on the localization length exponent

Recent work tries to keep as much as seven coefficients in the scaling ansatz. The
largest simulations were carried out by Obuse et al. [OGE12] on cylinders3 in the
range4 8 ≤W ≤ 192. Fitting such a large set of parameters poses a difficult problem,
since the goodness of fit measure χ2 might have several local minima in which a
fitting algorithm could get stuck depending on its initial values. To overcome this
difficulty the authors invented what they call “stability map analysis”: for different
subsets of the data, i.e. taking only a restricted range of the available circumferences
into account, fittings with a random ensemble of 1000 different initial values are
employed, which the authors claim to yield global minima of χ2. The resulting
values for the most interesting quantities ν, y,Λc are quite sensitive to the inclusion
of a1 and a′1 into the fitting procedure. In this way each data set yields specific
parameter values and error bars, and the reported values are obtained by taking
the mean of the individual values for each parameter combined with the union of
all error bars, which are then called “practical error bars“. An example is shown in
figure 1.8 and we mention that the depicted situation is generic for the presented
analysis, i.e. different data sets give incompatible ranges for the parameters.

χ2
red

1

parameter

Figure 1.8: Practical error bar as union of all individual error bars.

According to the companion paper [OBL+13] the authors believe that this issue
is due to truncation in (1.34) and could be, at least in principle, resolved by an
improved data set. The results of this analysis are ν = 2.62±0.06, Λc

π = 0.257±0.02
and 0.4 ≤ |y| ≤ 0.6.
The most recent work along these lines has been carried out by Nuding, Klümper and
Sedrakyan [NKS14]. They use a seemingly less sophisticated method to extract the
parameters, namely fitting 200 times with a random ensemble of initial parameters
and afterwards taking the mean and standard deviation for the obtained parameters,
to arrive at a compatible value of ν = 2.593±0.0297. The irrelevant exponent turns
out incompatible, y = −0.145± 0.0677.

3The system length is not stated in the paper.
4Notice that here we count in plaquette units, while the paper counts links.
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Although the localization length is an obvious quantity to study, the fact that it
is self-averaging implies that only limited information on the precise nature of the
transition can be gained from this approach. In combination with the longstanding
problems in multi-parameter fits for the data as the system is driven towards the
critical point, we find it favorable to have observables at hand which could be studied
right at the critical point.

1.5 Multifractality of critical wavefunctions

As a step towards this goal, let us now consider the properties of critical wavefunc-
tions of the closed network. Being unitary, the time evolution operator U of the
Chalker-Coddington network model has a set of dimH eigenvalues of unit modulus,

U |ψk〉 = exp(iωk) |ψk〉 , (1.37)

where ωk are called quasi-energies. For fixed k, the time evolution can be redefined
as U → exp(−iωk)U without altering the nature of the randomness, so that |ψk〉
is a so-called stationary wavefunction for the redefined dynamics. We remark that
although any state satisfying (1.37) is a stationary state in the ordinary sense, the
nomenclature of the field reserves the term stationary wavefunction resp. stationary
state for eigenvectors of U with quasi-energy 0. At the critical point, r = t = 1√

2
,

the normalized wavefunction ψ defines a multifractal measure which in turn gives
rise to multifractal observables [J94], an example of which being the moments of the
inverse participation ratios

Pq =
∑

links r

|ψ(r)|2q . (1.38)

We denote the ensemble average, i.e. the average of Pq with respect to link disorder,
by E{Pq}. This quantity shows scaling with the system size L,

E{Pq} = LdE{|ψ(r)|2q} ∼ L−τ(q) . (1.39)

Here, the values τ(0) = −d and τ(1) = 0 follow directly from the definition (1.38),
d being the space dimension. Furthermore, the function τ is convex and non-
decreasing. In the simplest case one could imagine, τ is a linear function τ(q) =
d(q− 1), but this is not the case for the critical wavefunctions of the network model
and, due to strong spatial fluctuations, for any critical wavefunction at an Anderson
transition. One then defines the anomalous scaling dimension ∆q by

τ(q) = d(q − 1) + ∆q , (1.40)

which governs the decay of spatial correlations of moments of the wavefunction,

Ld(q1+q2)E{|ψ2q1(r)ψ2q2(r′)|} ∼ L−∆q1−∆q2

( |r − r′|
L

)∆q1+q2−∆q1−∆q2

. (1.41)
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The heuristic reasoning behind this equation is that the correlator falls off as a power

of |r−r
′|

L in the absence of length scales,

E{|ψ2q1(r)ψ2q2(r′)|} = c(L)

( |l − l′|
L

)X
. (1.42)

If the distance between the observation links is of the order of the system size, the
wavefunctions are statistically independent, so that

c(L) ∼ L−d(q1+q2)+∆q1+∆q2 , (1.43)

while for separations smaller than the microscopic scale set by the lattice constant
one effectively has l = l′, so that

E{ψ2(q1+q2)} ∼ L−d(q1+q2)+∆q1+q2 . (1.44)

Only recently has it been proven in the framework of supersymmetric non-linear
sigma models that the anomalous dimensions should obey exact symmetry relations
[MFM+06],[GMZ13]. At the quantum Hall transition reflection symmetry around
q = 1

2 is theoretically expected, i.e.

∆q = ∆1−q . (1.45)

We give an elementary proof of this relation in section 2.7. The behavior of the
multifractal spectrum as well as the scaling behavior of the whole distribution func-
tion P (|ψ|2) is summarized by the so-called singularity spectrum f(α). Defining the

variable α = − ln |ψ|2
lnL , the distribution functions P (|ψ|2) and P (α) are related as

Pq =

∫
|ψ|2qP (|ψ|2)d|ψ|2 =

∫
L−αqP (α)dα . (1.46)

In order to reproduce (1.39), the distribution must have the form

P (α) ∼ Lf(α)−d , (1.47)

where f(α) is the Legendre transform of τ(q),

α = τ ′(q) , f(α) = αq − τ(q) , (1.48)

and it is understood implicitly that q is a function of α which comes from inverting
the relation α = τ ′(q). By the properties of τ(q) and the general properties of the
Legendre transform, f is a convex function on R+

0 with a unique maximum at α0

which corresponds to q = 0. By

E{ln |ψ|2} =
d

dq

∣∣∣∣
q=0

E{|ψ|2q} ∼ L−α0 (1.49)

we see that this exponent governs the scaling of the typical value of the probability

P typq := eE{ln |ψ|
2} . (1.50)



16 CHAPTER 1. INTRODUCTION

The simplest non-trivial singularity spectrum is parabolic,

f(α) = d− (α− α0)2

4(α0 − d)
, (1.51)

the corresponding scaling dimension also being parabolic:

τ(q) = d(q − 1)− γq(q − 1) , γ = α0 − d . (1.52)

In general, this should also be a reasonable approximation to the spectrum in the
region where the anomalous dimension is small compared to d(q−1), i.e. in the case
γq � d. This form entails that the distribution of the wavefunction amplitudes is
log-normal,

P (|ψ|2) =
1√

2πσ|ψ|2
exp

(
−(ln |ψ|2 − µ)2

2σ2

)
, (1.53)

where µ = α0 lnL and σ2 = (α0 − d) lnL. This is the paradigm of a distribution
which is broad on all length scales, implying that for quantities like (1.39) tail con-
tributions are essential. For numerical simulations we thus see that large ensemble
sizes are crucial to capture the multifractal exponents adequately. Whether or not
such an approximation is exact is a central question to ask, since ∆q is related di-
rectly to the spectrum of an underlying conformal field theory and thus provides
the possibility to rule out certain suggestions. There were several attempts to an-
swer this question by investigation of the scaling behavior of inverse participation
ratios in the Chalker-Coddington model. Using square networks containing up to
2 ·106 links5 Evers et al. found no significant deviations from parabolicity [EMM01].
However, seven years later the same authors reinvestigated toric networks of the
same sizes with moderately improved ensemble sizes6 and refined fitting methods to
report small deviations [EMM08],

∆q = 2q(1− q)
[
b0 + b1

(
q − 1

2

)2

+ . . .

]
, (1.54)

with b0 = 0.1291(2) and b1 = 0.0029(3). Almost in parallel, Obuse et al. [OSF+08]
found 2b0 = 0.2599 and 2b1 = 0.0065 on quadratic cylinders of 1.3 · 105 links with
comparable statistics, but without giving error bars. Furthermore, the union of
these authors extended the notion of multifractality to the scaling of moments of
the local density of states near the surface of a system [SGL+06]. More pronounced
fluctuations are expected in this region, giving rise to a new set of surface multifractal
dimensions. Together with an analytical argument as well as numerics in symmetry
class C [OSF+07a], this lead to the expectation that if deviations from parabolicity
are present, they should be more pronounced at the surface. Indeed, in this case
2b0 = 0.370 and 2b1 = 0.042 was reported in [OSF+08]. We will come back to this
issue in section 3.3.

We close this section with some remarks on the possible singularities in the spectrum

5The boundary conditions are not specified in the paper.
6A factor of 8 has been gained by keeping eight critical wavefunctions for each realization of

disorder.
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τ(q). In the case of bounded observables like participation ratios or conductances,
exact parabolicity cannot hold for arbitrary real q because f is defined in the range
α ∈ R+

0 and α = 0 corresponds to qc with τ ′(qc) = 0, meaning that for parabolic
f we have τ(q) = −f(0) for q ≥ qc. In the case f(0) < 0 this behavior is called
termination, while for f(0) = 0 one speaks of freezing, where in the latter regime
the inverse participation ratios (1.38) are constant with respect to system size when
q ≥ qc. The third possibility is limα→0 f(α) = −∞, where τ(q) just increases
monotonously. All three cases are summarized in figure 1.9.

12

0 1 2 3
q

0

1

2

3

4

D
q

 

FIG. 7 Fractal dimensions Dq/q(q − 1) in 3D (dashed)
and 4D (full line). Analytical results for d = 2 + ǫ with
ǫ = 0.2 (dotted) and ǫ = 0.01 (dot-dashed) are also shown.
(Mildenberger et al., 2002)

This corresponds to f(α) of the form

f(α) = α/2 , 0 < α < 2d , (2.53)

dropping to −∞ at the boundaries of the interval [0, 2d].
In Mildenberger et al. (2002) arguments were given that
the way the multifractality spectrum approaches this lim-
iting form with increasing d is analogous to the behavior
found in the PRBM model with b≪ 1, Sec. III.C.

7. Possible singularities in multifractal spectra: termination
and freezing

In this subsection, we discuss what kinds of singular-
ities may be typically encountered in the multifractality
spectra f(α) and τq. First of all, we recall that the spec-
trum τ typq of a typical eigenfunction has non-analyticity

points at q±, corresponding to the termination of f typ(α)
at its zero α±, see Sec. II.C.5. However, the ensemble-
averaged spectra τq and f(α) (that we are considering
throughout) do not have any singularity there.
Singularities in τq and f(α) may arise, depending on

the behavior of f(α) at α = 0 in the particular critical
system under investigation. One possibility is that f(α)
approaches the α = 0 axis continuously, with f(α) →
−∞ as α→ 0 (Fig. 8a). Then τq increases monotonically
with q, without any non-analyticities. Such a situation
is realized e.g. in the PRBM model, see Sec. III.C. An
alternative option is that f(0) is finite, see Fig. 8b. This
generically implies that τq has a discontinuity in the sec-
ond derivative at certain qc ≡ f ′(α)|α→0 and is strictly
constant, τq = −f(0) at q ≥ qc. Such a behavior of
the multifractality spectrum at q = qc is called “termi-
nation”. In particular, it takes place unavoidably if the
spectrum is exactly parabolic, as is the case, e.g., for the
random vector potential problem, Sec. VI.G.3. From the
point of view of the underlying field theory, termination
implies that there is a qualitative change in properties of
the operators Oq describing the moments of the density
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FIG. 8 Possible behavior of the singularity spectrum f(α) at
α → 0: (a) no singularity, (b) termination, (c) freezing. The
corresponding behavior of τq is shown as well.

of states. An explicit example of how this may happen is
provided by the 2D Liouville field theory (Kogan et al.,
1996; Seiberg, 1990; Zamolodchikov and Zamolodchikov,
1996) (closely related to the random vector potential
problem), where the operators Oq cease to be local for
q > qc.
A spectrum with termination may show another pe-

culiarity. While normally f(0) is negative, one can also
imagine a situation with f(0) = 0, Fig. 8c (corresponding
to qc ≤ 1). In fact, this is exactly what happens in the
random vector potential problem, Sec. VI.G.3, when the
disorder strength exceeds a certain critical value. The
transition into this phase is termed “freezing transition”.
In the “frozen” phase the wave functions combine proper-
ties of localized and critical states: while the wave func-
tion normalization is governed by a vicinity of one or few
(of order unity) points, the tails away from these points
show multifractal fluctuations and correlations.

8. Surface vs. bulk multifractality

Recently, the concept of wave function multifractality
was extended (Subramaniam et al., 2006) to the surface
of a system at the critical point of an Anderson transi-
tion. It was shown that the fluctuations of critical wave
functions at the surface are characterized by a new set
of exponent τ sq (or, equivalently, anomalous exponents
∆s

q), which are in general independent from their bulk
counterparts,

Ld−1〈|ψ(r)|2q〉 ∼ L−τ s
q , (2.54)

τ sq = d(q − 1) + qµ+ 1 +∆s
q. (2.55)

Here µ is introduced for generality, in order to account
for a possibility of non-trivial scaling of the average value,

Figure 1.9: Possible behavior of the singularity spectrum (upper row) and the scaling
dimension (lower row) for multifractal wavefunctions; no singularity (left), termina-
tion (center) and freezing (right). Figure taken from [EM08].

1.6 Conformal invariance

Apart from critical wavefunctions, scale invariance also holds for energy level statis-
tics and the distribution of the two-terminal conductance at criticality, which have
not been discussed here. For details, see [KOK05]. The self-similar fixed point the-
ory which describes the phase transition should be invariant under more general
transformations than just linear rescaling. At least one expects global translations
and rotations to be symmetries, but if the interactions involved are short-ranged,
the global symmetries are generally believed to be promoted to local ones. The
most general transformation is then conformal, i.e. it leaves the metric invariant
up to rescaling by a function or, put differently, preserves angles between tangent
vectors of curves. Conformal transformations are quite constrained in arbitrary di-
mension. By Liouville’s theorem the only transformations that are conformal in
d > 2 are concatenations of translations, similarities, orthogonal transformations
and inversions. The situation changes drastically in d = 2, where the conformal
group becomes infinite-dimensional and contains all holomorphic maps, so it is cus-
tomary to work in complex coordinates (z, z∗). A central role is played by scaling
operators φ(z, z∗) which are called primary fields and transform under a conformal
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map z 7→ w(z), z∗ 7→ w∗(z∗) as

φ′(w,w∗) =

(
dw

dz

)−h(dw∗
dz∗

)−h∗
φ(z, z∗) , (1.55)

where h and h∗ are called the holomorphic resp. antiholomorphic dimension.
Primary fields can be regarded as algebraic objects: The holomorphic generators of
conformal transformations are ln = −zn+1∂z, n ∈ Z, which obey

[ln, lm] = (n−m)ln+m . (1.56)

Analogous relations hold in the antiholomorphic case; this is called the Witt algebra.
In a conformal quantum field theory, a leading role is played by the Virasoro algebra,
which is a central extension of the Witt algebra. The commutation relations are
modified according to

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (1.57)

Here, Ln are the modes of the stress-energy tensor, which is related to the change of
correlations functions under diffeomorphisms of the Riemann surface on which the
theory is defined. c is the so-called central charge. Primaries are highest weights
with respect to the Virasoro algebra, which means Lnφ = 0 for n > 0 and L0φ = hφ.
Two- and three-point functions of such fields are severely constrained by the trans-
formation property (1.55). A combined rotation and scaling, z 7→ λw = λeiθz,
gives

〈φ(w1, w
∗
1)φ(w2, w

∗
2)〉 = λ−2∆e−2siθ〈φ(z1, z

∗
1)φ(z2, z

∗
2)〉 , (1.58)

where ∆ = h + h∗ is the usual scaling dimension and s = h − h∗ is called the
spin–to be distinguished from quantum mechanical spin. Here, we will only be
concerned with the case of spinless fields, so from now on we only consider h = h∗.
By rotational and translational invariance, the two-point function can only depend
on the distance z12 := |z1 − z2| and, by the behavior under rescaling, has to be
proportional to z−2∆

12 . Furthermore, if we consider two primary fields, the correlator
has to be invariant under a transposition of the coordinates z1 and z2. On the other
hand, the prefactors in the transformation (1.55) will be affected by this change, so
the correlator can only be nonvanishing for two primary fields of the same conformal
dimension. We thus have

〈φ1(z1, z
∗
1)φ2(z2, z

∗
2)〉 =

C12

z2∆
12

. (1.59)

When we write such an equation we have a continuum field theory in mind. Super-
imposing a lattice with lattice constant a over the domain on which the fields life,
correlators of this type can be interpreted as limits

lim
a→0

a−2∆〈φlat
1 (r1)φlat

2 (r2)〉 (1.60)

of correlators of local lattice fields φlat
i . The dimension ∆ is exactly such that this

continuum limit makes sense [C08].
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In a similar fashion as before, three-point functions can be fixed up to normalization
as

〈φ1(z1, z
∗
1)φ2(z2, z

∗
2)φ3(z3, z

∗
3)〉 =

C123

z∆1+∆2−∆3
12 z∆1+∆3−∆2

13 z∆2+∆3−∆1
23

. (1.61)

Both of these results continue to hold in dimensions d > 2, since only global con-
formal transformations are needed to derive them. For our purposes a particularly
useful feature of d = 2 is given by the fact that subsets of the full complex plane
may be mapped to geometries which are convenient from the viewpoint of numerical
simulations, the most well-known example being the cylinder. Let us consider the
mapping

w : C− {0} →
{
z ∈ C

∣∣∣∣− W

2
≤ =(z) ≤ W

2

}
, z 7→ w(z) =

W

2π
ln z (1.62)

from the punctured complex plane to a strip of vertical width W with periodic
boundary conditions, which is thus effectively an infinitely long cylinder of circum-
ference W , see figure 1.10. The two-point functions of two primary fields with the

W
ℜ(w)

ℑ(w)ℑ(z)

ℜ(z)
w(z)

Figure 1.10: Mapping from the infinite punctured plane to the strip with periodic
boundary conditions in the vertical direction.

same conformal dimension h transform as

〈φ(w1, w
∗
1)φ(w2, w

∗
2)〉 =

∣∣∣∣Wπ sinh
( π
W
w12

)∣∣∣∣−2∆

, (1.63)

where w12 = w1−w2. In appendix A we utilize this machinery to give an expression
for the two-point functions on the rectangle which uses the notion of boundary
conformal field theories [C04]. As we will see, the resulting two-point functions
become much more peculiar than in the case of a long cylinder, which reduces
to exponential decay with length scale ξW = W

2π∆ at distances w12 � W . The
objective is thus to find observables which correspond to two-point functions, study
these in different geometries and check whether the decay matches the prediction
from conformal field theory–if it does, this provides strong evidence in support of
conformal symmetry at the critical point because of the non-trivial transformation
properties.
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1.7 Point-contact conductances

From a theoretical point of view, point-contact conductances are natural observables
to consider: ohmic contacts are attached at distant points of a sample and the
conductance between two of them is measured. In the Chalker-Coddington model,
this setup translates to the following construction: A set of links {c1, . . . , cn} is
severed, which effectively makes for n incoming and n outgoing links. One unit of
probability flux is injected into the incoming links, the application of U evolves the
discrete time by one unit and the procedure is iterated. The outgoing links serve as
drains for probability flux, i.e. wavefunction amplitude that is scattered into one of
the selected links is removed from the network. The wavefunction at time t+ 1 can
thus be calculated from the wavefunction at time t by the following procedure:

|ψ(t+ 1)〉 = U

(
Q |ψ(t)〉+

n∑
l=1

al |cl〉
)
. (1.64)

|cl〉 denotes the unit vector corresponding the link at position cl and
∑n

l=1 |al|2 = 1
and Q = 1 −∑n

l=1 |cl〉 〈cl| is a projection operator that implements the draining
action of the outgoing links. We then consider stationary states (in the sense defined
above) of this open-network dynamics, |ψ(t+ 1)〉 = |ψ(t)〉, and refer to them as
scattering states. In the presence of n point contacts a basis of the space of scattering
states is then furnished by

|ψk〉 = U(1−QU)−1 |ck〉 . (1.65)

This is derived from (1.64) by letting al = δlk and solving the stationarity condition.
The physical interpretation of |ψk〉 is simply that probability flux is injected only into
the link at ck. Notice that the presence of the contacts, embodied in Q, introduces
a unitary deficit in the time evolution, so that the inverse (1−QU)−1 exists. With
respect to the closed-network time evolution operator U , the scattering states are
almost stationary. Strictly speaking, the state defined by (1.65) is an element of the
closed-network Hilbert space H, so 〈ck|ψk〉 is the probability flux which is supposed
to leave the open system after each time step. Applying U to |ψk〉, this amplitude
is then scattered into the two links which usually receive a contribution from the
contact, but the amplitudes on all the other links stay constant by the stationarity
condition. If only one contact is present, we have 〈c1|ψ1〉 = eiφ by unitarity, so |ψ1〉
is (literally) a stationary state for the closed network where the random phase eiφ1

on the link corresponding to the contact is redefined as ei(φ1−φ). The set of scattering
states is tailor-made to define a scattering matrix S = (Sjk) with matrix elements
Sjk = 〈cj |ψk〉 which formally relates incoming to outgoing states. In the case n = 2,
the Landauer-Büttiker formula states that the two-point contact conductance Tc1c2
between the links c1, c2, measured in units of e2

h , is given by

Tc1c2 = |S12|2 . (1.66)

Using S, a further correspondence between open and closed networks can be estab-
lished. Being a unitary matrix, S has n eigenvalues of unit modulus in the näıve
sense. By this we mean column vectors vj such that Svj = eiφjvj , ignoring mo-
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mentarily that the vector vj on the left, viewed as an invariant object, lives in a
different space than the one on the right. By the same reasoning as above, the
states

∑n
l=1(vj)l |ψl〉 are stationary states for the network in which the phases on all

links which correspond to the contacts are multiplied by e−iφj . The relation between
open and closed networks was uncovered by Klesse and Zirnbauer in [KZ01], where
it was also shown that

2πν E
{
|ψ(c1)|2f

( |ψ(c2)|2
|ψ(c1)|2

)}
= E{F (Tc1c2)} . (1.67)

The function F is defined as

F (x) =

∫ 2π

0

dφ

2π
f(x−1|1− eiφ

√
1− x|2) (1.68)

and ψ is a stationary wavefunction of the closed network. Although this formula is
remarkable in its own right, it also had implications for numerical tests involving
the two-point contact conductance: Given a stationary state, every pair of links for
which the relative position agrees with the relative position of the point contacts
can give a statistically independent contribution to the average on the left-hand
side, thus greatly enhancing the statistics. Furthermore, since the two-point contact
conductance is invariant under a change of l and m, we have〈

|ψ(c2)|2f
( |ψ(c2)|2
|ψ(c1)|2

)〉
=

〈
|ψ(c1)|2f

( |ψ(c1)|2
|ψ(c2)|2

)〉
. (1.69)

For the special choice f(x) = xq, the left-hand side can also be transformed into
the right hand side by the transformation q → 1 − q. By our observation that the
scattering states are effectively stationary closed-network states as we move away
from the contact, we can fix ψ(c1) = 1 and conclude that the symmetry (1.45)
continues to hold at the level of disorder averages of wavefunction amplitudes, i.e.

〈|ψ(c2)|2q〉 = 〈|ψ(c2)|2(1−q)〉 . (1.70)

To the best of our knowledge this result has not been known so far.
The Chalker-Coddington network model is known to be related to a supersymmet-
ric vertex model by a duality transformation. This construction will be reviewed
thoroughly in the next chapter. The model possesses the Lie supergroup GL2|2 as a
global symmetry group and it was shown in [JMZ99] that point contacts translate to
vertex model operators which are broad in the sense that they are coherent superpo-
sitions of operators which transform irreducibly with respect to a single continuous
series of GL2|2. Assuming that these operators are in one-to-one-correspondence
with primary fields of a yet unknown conformal field theory which describes the
plateau transition of the integer quantum Hall effect, it was derived that the disor-
der average of the typical two-point contact conductance decays as a pure power,

expE{lnTc1c2} ∼ |c1 − c2|−Xtyp . (1.71)
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In [KZ01], equation (1.67) has been used on long cylinders to show that the decay
coincides with the conformal field theory prediction

T typ =

∣∣∣∣Wπa sinh
πx

W

∣∣∣∣−Xtyp

, (1.72)

where a is a nonuniversal lattice spacing, which strongly supports conformal invari-
ance at the critical point. We reproduced these results as a test for our code, see
section 3.2.1. A drawback of this observable comes from the functional equation
of the logarithm, which implies that studying typical moments of Tc1c2 does not
yield any information on the fractal dimensions ∆q apart from its value at q = 1/2.
On the other hand, a vertex model calculation by [JMZ99] presented in section 2.3
clearly indicates that the two-point contact conductance does not show pure alge-
braic decay, which gives a major motivation for this thesis.
In the following, we will first construct a family of vertex model operators which are
supposed to be lattice approximations to primary fields. We will then give, on the
other side of the duality, network model observables some of which turn out to be
so simple that it is quite surprising they have not been found earlier just by acci-
dent. These will then, as we already announced, be studied in different geometries
to provide further evidence for conformal invariance and to shed some more light on
the question of parabolicity.



Chapter 2

Pure Scaling Observables

Ist das so,
oder ist es vielleicht viel leichter?
Wir sind Helden

In this chapter we explain the mathematical background of the observables we sug-
gested in our letter [BWZ14]. We start with the passage from the network model
to the supersymmetric vertex model. This is done by introducing a supersymmet-
ric Fock space, also called spinor-oscillator module, at every link. With knowledge
from Gaussian integration one can immediately understand why both bosons and
fermions are needed: we will be interested in calculating the components of scatter-
ing states (1.65), which are matrix elements of U(1−QU)−1. Evaluating “two-point
functions“ in the complex n-dimensional case,∫

d(v†, v)vivje
−v†Av = πn det(A)−1

(
A−1

)
ji
, (2.1)

matrix elements of A−1 are generated together with an inverse determinant which
would cause trouble when averaging over disorder. This factor can be removed by an
additional fermionic Gaussian integral. This is a cornerstone of the supersymmetry
approach to disorder.
Anticipating that we do not only have to calculate the matrix elements in (1.65) on
their own, but rather moments of their absolute values like in (1.66), we will have to
introduce a second, dualized copy of the constructions advertised so far, which goes
under the names ”negatively charged“ or ”advanced“ particles. The factorization
property (1.12) of the time evolution operator in the network model carries over to
the supersymmetric setting. However, in the latter picture the disorder average can
be computed easily by projection onto the zero-charge subspace of the large Fock
space, which turns out to be an irreducible representation of the Lie superalgebra
gl2|2. From a mathematical perspective this is an instance of Howe duality [H89].
We then turn to the general case, where the link space C is replaced by Cn ⊗ C,
which could be interpreted as introducing n replicas resp. flavors for each link. The
construction outlined above also works in this case, with the modification that the
relevant Lie superalgebra is now gl2n|2n. This enhancement makes room for more
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complex observables.
The objects which we suggest on symmetry grounds as lattice versions of conformal
primary fields are highest weight vectors for the action of gl2n|2n. In the case n = 1
these correspond to moments of the local wavefunction amplitudes of the scattering
state (1.65). In our letter [BWZ14], we predicted algebraic decay with the distance
between contact c and observation link r in the infinite plane network:

E{|ψ(r)|2q} ∼ |r − c|−2∆q . (2.2)

The general result was as follows. Consider a set of nearby links R = {r1, . . . , rn}
in the network model for the purpose of (non-invasive) observation, and define for
i, j,m = 1, . . . , n:

Am = DetK(m) , Kij =

n∑
k=1

ψk(ri) ψk(rj) , (2.3)

where K(m) denotes the upper-left m ×m sub-matrix of K. The contacts used to
define the basis scattering states lie also nearby in a region C which is distant from
R. Suppose now that coarse graining of the lattice takes the contact and observation
regions (C and R) to single points, i.e. ri → r and ci → c for all i, while r and c
remain distinct. Denoting disorder averages by E{. . .} and CFT correlators as 〈. . .〉,
we then claim that

E
{(
Aq1−q21 Aq2−q32 · · ·Aqnn

)
(R,C)

}
= a2∆q1... qn

〈
ϕ̃q1... qn(r) Π0(C)

〉
, (2.4)

where q1, . . . , qn are complex numbers, ϕ̃q1... qn is a CFT primary field with scaling
dimension ∆q1... qn , the operator Π0(C) represents the contacts, and a is the non-
universal scale parameter of the network. The operators ϕq1... qn we construct in this
chapter are conjectured to be lattice discretizations of the primary fields ϕ̃q1... qn .
Even though Π0(C) is not a pure scaling field, it here contributes a definite scaling
dimension ∆q1···qn due to the orthogonality principle for two-point functions. For an
infinite planar network we predict that the observable in (2.4) depends on the dis-
tance between the contact and observation regions as a pure power |r − c|−∆q1... qn .
The observables on the left-hand side of (2.4) are the open-network analogues of
the ones constructed in [GMZ13] in the context of nonlinear sigma models for the
Anderson transition.
Furthermore, we calculate the eigenvalues of Casimir invariants on the irreducible
representations into which the highest weight operators ϕq1...qn fall, since the scal-
ing dimensions ∆q1···qn are linear combinations of these eigenvalues on symmetry
grounds. We then close this chapter by offering a larger perspective on the concep-
tual origin of the observables presented here.
The full basis-invariant backbone of the algebraic constructions presented in the
preparatory section can be found in [CFZ05], which we adapt to our situation. Here,
each link contributes a summand C to the Hilbert space of the network model. For
each of these link Hilbert spaces we choose the obvious basis 1 ∈ C and work with
fermionic and bosonic creation and annihilation operators on the corresponding Fock
space.
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2.1 Preparations

2.1.1 Fermionic Fock space

We begin with some preparations and discuss group representations on exterior and
symmetric powers of complex vector spaces. The necessity comes from the fact that,
given a Hilbert space H of dimension d, fermionic Fock space ∧(H) is given by the
direct sum of all exterior powers of H,

∧H =
∞⊕
k=0

∧kH , (2.5)

which is graded by k. Notice that for a d-dimensional Hilbert space the direct sum
on the right-hand side contains only d + 1 terms, since ∧kH = 0 for all k > d.
The element |0〉 := 1 ∈ ∧0H = C is commonly called the vacuum state. Once an
orthonormal basis {ej} of H has been chosen, it is possible to define corresponding

particle creation and annihilation operators f †i and fj . The fj annihilate the vac-
uum, fj |0〉 = for all j. Furthermore, they obey the Clifford algebra or canonical
anticommutation relations (CAR)

{fi, f †j } = δij , {fi, fj} = {f †i , f
†
j } = 0 . (2.6)

The Hilbert space scalar product 〈·, ·〉 naturally induces a scalar product on Fock
space such that the states

(f †1)n1(f †2)n2 · · · (f †d)nl |0〉 (2.7)

for nl ∈ {0, 1} form an orthonormal basis of ∧H. This justifies the notation f †i ,
i.e. this operator is the adjoint operator of fi with respect to the Fock space scalar
product. The fully occupied state f †1 · · · f †d |0〉 is then dual to the state 〈Ω| :=
〈0| fd · · · f1, and the mapping τ defined as extension of

|0〉 7→ 〈Ω| , f †j |0〉 7→ 〈Ω| fj (2.8)

is called particle-hole transformation. This mapping is well-known in physics from
the stable second quantization of the Dirac field.

2.1.2 Bosonic Fock space

An analogous construction can be made on the bosonic side, where bosonic Fock
space is defined as the symmetric algebra of H,

SH =

∞⊕
k=0

SkH , (2.9)

differing from fermionic Fock space by the fact that this direct sum is always infinite.
Again, |0〉 := 1 ∈ S0H = C is the vacuum state and there are creation and anni-

hilation operator b†i and bj which obey the Weyl algebra or canonical commutation
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relations (CCR)

[bi, b
†
j ] = δij , [bi, bj ] = [b†i , b

†
j ] = 0 . (2.10)

They are also adjoint with respect to the induced Fock space scalar product and an
orthonormal basis of SH is given by (nl ∈ N0)

(b†1)n1(b†2)n2 · · · (b†l )nl · · · |0〉 . (2.11)

2.1.3 Representations and character formulas

2.1.3.1 Fermionic Fock space

Now, let GL(H) be the group of complex linear invertible transformations of H,
which acts on H by its fundamental representation ρ1,F

+ : g 7→ gv for g ∈ GL(H)
and v ∈ H. The first superscript refers to the degree and F to fermions, while
the subscript + indicates that this construction is related to what has been called
”retarded“ or ”positively charged particles“ in the literature, to be distinguished
from the dualized case later on. For this part it is most convenient to formulate the
action of group elements on the Fock spaces in an invariant manner. ρ1,F

+ induces a

representation ρk,F+ : GL(H)→ GL(∧kH) by letting g act on each constituent of an
exterior product of degree k,

ρk,F+ (g)(v1 ∧ · · · ∧ vk) = gv1 ∧ · · · ∧ gvk , (2.12)

and thus the direct sum of these is a representation on Fock space ∧H which we
denote by ρF+. It has the property that the alternating sum of its characters is a
determinant,

d∑
k=0

(−1)k Tr ρk,F+ (g) = Det(Id−g) . (2.13)

This can be seen by first considering a diagonalizable g with eigenvalues {λ1, . . . , λd}:
The action of ρF+(g) on a product of eigenvectors of g is

ρF+(g)(vi1 ∧ · · · ∧ vik) = λi1 · · ·λikvi1 ∧ · · · ∧ vik . (2.14)

The right-hand side can be rewritten as

d∏
i=1

(1− λi) =

d∑
k=0

(−1)k
∑

1≤i1<···<ik≤d
λi1 · · ·λik (2.15)

which proves the assertion. A general g ∈ GL(H) can be Jordan decomposed into a
diagonalizable and a nilpotent part the latter of which does not contribute.

Since ∧H = ∧oddH⊕∧evenH is a Z2-graded vector space, the left-hand side of (2.13)
coincides with the supertrace STr∧H := Tr∧evenH−Tr∧oddH so that we have

STr∧H ρF+(g) = Det(Id−g) . (2.16)

On the other hand, a transformation g ∈ GL(H) acts on the dual space H∗ as
gφ := φ ◦ g−1 by demanding that the pairing between vectors and linear forms



2.1. PREPARATIONS 27

is invariant. We want the representations ρk,F− of GL(H) on ∧kH∗ to contain an
additional determinant factor,

ρk,F− (g)(φ1 ∧ · · · ∧ φk) = Det(g)(φ1 ◦ g−1) ∧ · · · ∧ (φk ◦ g−1) . (2.17)

The reason for this choice is that in top dimension ρd,F− reduces to the trivial repre-
sentation, since the space ∧dH∗ is one dimensional. Any invertible mapping g acting
on a non-trivial element in this space gives, by extension of the usual dual action,
just a rescaling by Det(g−1). As we will see shortly, ρF+ and ρF− are isomorphic by the
particle-hole transformation τ . For odd d even and odd subspaces are interchanged
by τ and (2.16) becomes

STr∧H∗ ρF−(g) = Det(g − Id) . (2.18)

We now discuss how the constructed representations look when expressed in the
usual second-quantized language, which is most conveniently done on the infinitesi-
mal level. For this we fix an orthonormal basis {e1, . . . , en} in H. The Lie algebra
gl(H) of GL(H) is just End(H), so that with respect to the chosen basis each ele-
ment X ∈ gl(H) has a matrix representation (Xij). This can be used to define the
second-quantized operators

X 7→
∑
i,j

f †+iXijf+j , X 7→
∑
i,j

f−iXijf
†
−j (2.19)

which define Lie algebra representations on ∧H and ∧H∗ respectively. We will now
show that both of them come from linearizing ρF± at the identity, i.e.

(ρ∗)
F
+(X) :=

d

dt
ρF+(etX)|t=0 =

∑
i,j

f †+iXijf+j (2.20)

and

(ρ∗)
F
−(X) :=

d

dt
ρF−(etX)|t=0 =

∑
i,j

f−iXijf
†
−j . (2.21)

To this end we notice that both of them are derivations of exterior algebras by the
definition of the creation and annihilation operators. It is thus sufficient to show
that they agree in degree k = 1 with the linearization of ρ1,F

± . On H = ∧1H the

infinitesimal action of ρ1,F
+ (etX) is by applying X to v ∈ H. On a single particle

state v =
∑

l alf
†
+l |0〉 we have∑

i,j

f †+iXijf+j

 v =
∑
i,j,l

alf
†
+iXijf+jf

†
+l |0〉

=
∑
i,j,l

alf
†
+iXij(δjl − f †+lf+j) |0〉

=
∑
i

∑
j

Xijaj

 f †i |0〉 (2.22)
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by CAR. In the dual case, by using Det(etX) = etTr(X) and the product rule, the
linearization of ρ1,F

− (etX) reads

d

dt
ρ1,F
− (etX)|t=0 = Tr(X)−XT . (2.23)

On single hole states φ =
∑

l al 〈0| fl, this coincides with the action of X by noting∑
i,j

f−iXijf
†
−j =

∑
i

Xii −
∑
i,j

f †−j(X
T )jif−i . (2.24)

In summary, we have obtained the relations

ρF+(eX) = ef
†
+iXijf+j , ρF−(eX) = ef−iXijf

†
−j . (2.25)

2.1.3.2 Bosonic Fock space

We proceed with an analogous development on the bosonic side. Denoting the
symmetric product by ∨, the representation ρB+ literally works as on the fermionic
side,

ρk,B+ (g)(v1 ∨ · · · ∨ vk) = gv1 ∨ · · · ∨ gvk. (2.26)

A minor complication arises from the fact that the direct sum SH =
⊕∞

k=0 S
kH is

infinite. The sum of characters does not exist for all g ∈ GL(H), so the domain has
to be restricted to the semigroup of contractions,

GL<(H) = {T ∈ GL(H)| 〈Tv|Tv〉 < 〈v|v〉} . (2.27)

We remark that this restriction is not in conflict with our goal of expressing com-
ponents of stationary scattering states (1.65), since the operator QU used in their
definition is a contraction. For any diagonalizable T ∈ GL<(H) any eigenvalue ob-
viously has absolute value less than 1. By the same reasoning as around equation
(2.13), we have

Tr ρk,B+ (g) =
∞∑
i1=0

· · ·
∞∑
id=0

λi11 · · ·λidd =
d∏
i=1

(1− λi)−1 , (2.28)

where the second equality comes from the summation formula of the geometric series
together with |λi| < 1. This leads, again by Jordan decomposition, to the general
formula for g ∈ GL<(H),

TrSH ρB+(g) = Det−1(Id−g) . (2.29)

On SH∗ we use the representation ρB− defined in degree k as

ρk,B− (g)(φ1 ∨ · · · ∨ φk) = Det−1(g)(φ1 ◦ g−1) ∨ · · · ∨ (φk ◦ g−1) . (2.30)

As opposed to the fermionic side, the representations ρB± are not isomorphic–this can
be understood heuristically from the fact that there is no such thing as a fully occu-
pied bosonic state, so the trivial representation is not contained in ρB−. Furthermore,
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the character is now only defined on anti-contractions

GL>(H) = {T ∈ GL(H)| 〈Tv|Tv〉 > 〈v|v〉} (2.31)

and we have
TrSH∗ ρB−(g) = Det−1(g − Id) . (2.32)

Finally, at the Lie algebra level, X ∈ gl(H) second-quantizes as

X 7→
∑
i,j

b†+iXijb+j , X 7→ −
∑
i,j

b−iXijb
†
−j , (2.33)

which can be summarized by

ρB+(eX) = eb
†
+iXijb+j , ρB−(eX) = e−b−iXijb

†
−j . (2.34)

However, it is important to remark that the first formula holds for <(X) < 0, while
the second one is true for <(X) > 0, relating to contractions and anti-contractions
respectively. The minus sign in the second formula comes from the CCR.

2.1.4 Two-point functions and matrix elements

The analogues to bosonic two-point functions with respect to a quadratic action are
in our case for arbitrary i, j

〈b†+ib+j〉SH := TrSH
(
b†+ib+jρ

B
+(T )

)
= Det−1(1− T ) 〈j|T (1− T )−1 |i〉

〈b−ib†−j〉SH∗ := TrSH∗
(
b−ib

†
−jρ

B
−(T )

)
= Det−1(T − 1) 〈j| (1− T−1)−1 |i〉 . (2.35)

We will give a proof of the positive charge relation, the negative one follows in the
same fashion. We use the formal notation b†+Xb+ :=

∑
i,j b
†
+iXijb+j , write 1 for the

unity matrix and let Eij = |i〉 〈j| be the ijth elementary matrix. Notice that Eij
squares to zero if i 6= j while E2

ii = Eii, so

etEij =

{
1 + tEij if i 6= j;
1 + (et − 1)Eii if i = j.

(2.36)

In the following calculation we assume i 6= j:

TrSH
(
ρB+(T )b†+ib+j

)
= TrSH

(
ρB+(T )b†+Eijb+

)
=

d

dt
|t=0 TrSH

(
ρB+(T )etb

†
+Eijb+

)
=

d

dt
|t=0 Det−1(1− TetEij )

=
d

dt
|t=0 Det−1((1− T )(1− t(1− T )−1TEij)
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= Det−1(1− T )
d

dt
|t=0 exp Tr

( ∞∑
k=1

1

k
tk
(
(1− T )−1TEij

)k)
= Det−1(1− T ) Tr

(
(1− T )−1TEij

)
= Det−1(1− T ) 〈j| (1− T )−1T |i〉 . (2.37)

If we instead consider the case i = j the fourth line has to be replaced by

d

dt
|t=0 Det−1((1− T )(1− (et − 1)(1− T )−1TEii) (2.38)

and again only the first order term (1−T )−1TEii contributes to the logarithm series.

2.1.5 Supersymmetric Fock space

The four Fock space representations ρ
B/F
± can now be combined to a single one. To

this end, we introduce the supersymmetric Fock space

F := ∧H ⊗ ∧H∗ ⊗ SH⊗ SH∗ (2.39)

together with the representation

ρ := ρF+ ⊗ ρF− ⊗ ρB+ ⊗ ρB− . (2.40)

From now on, unless stated otherwise, we use Fock space as synonymous to su-
persymmetric Fock space. In our situation we will insert a contraction T+ in the
positive charge and an anti-contraction T− in the negative charge sector, although in
principle we are free to insert four different group elements. We denote the average
of an operator A ∈ End(F) by

〈A〉F = STr (ρ(T+, T−)A) , (2.41)

where STr is the supertrace over F , i.e. the ordinary trace in the bosonic and the
supertrace in the fermionic parts. The average of bosonic bilinears is then given by

〈b†+ib+j〉F = (T (1− T )−1)ji (2.42)

〈b†−ib−j〉F = ((1− T−1)−1)ji , (2.43)

where the determinants in (2.35) have been canceled due to the presence of fermions.

2.1.6 Application to the network model

In the network model the draining of probability flux at the contacts is implemented
by the operator Q = 1−∑n

l=1 |cl〉 〈cl| =: 1−P . Notice that P and Q are orthogonal
projectors on complementary subspaces and P is of low rank. We then define the
positive charge and negative charge single-particle operators

T+,ε = (εP +Q)UρB+(T ) T−1
−,ε = U−1(

1

ε
P +Q) . (2.44)
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In the second quantized language this pair of operators relates to projection onto
the Fock space vacuum at the contact links,

π0(C) :=
n∑
l=1

|0cl〉 〈0cl | , (2.45)

by the following calculation:

lim
ε→0+

ρ(T+,ε, T
−1
−,ε) = ρ(U,U−1) lim

ε→0+
e

ln ε
∑n
l=1 b

†
+,cl

b+,cl+b−,clb
†
−,cl

+f†+,cl
f+,cl−f−,clf

†
−,cl

= ρ(U,U−1)π0(C) . (2.46)

Let us now consider the case of a single contact, n = 1, and introduce the following
key objects for an observation link at r, where we now make use of the spatial
structure of the actual network and write the position of the link under investigation
as an argument of the operators:

Zq(r, c) = 〈(B†−B−)q(r)π0(c)〉F
B†− = b†+ − eiαb−, B− = b+ − e−iαb†− . (2.47)

Here, eiα is any fixed unitary number. B− and B†− commute and B− does not
annihilate any state in Fock space. To see this we consider its action on a general
state |c〉 =

∑
m,n cmn(b†+)m(b†−)n |0〉:

B− |c〉 =
∑
m,n

cmn(b+ − eiαb†−)(b†+)m(b†−)n |0〉

=
∑
m,n

cmn

(
m(b†+)m−1(b†−)n − eiα(b†+)m(b†−)n+1

)
|0〉

=
∑
m,n≥1

(mcmn − eiαcm+1,n−1)(b†+)m−1(b†−)n |0〉

+
∑
n≥0

c0n(b†−)n |0〉 , (2.48)

from which we see that only for cmn = 0 for all m,n the result vanishes. It follows
from 〈v|B†−B− |v〉 = ‖B− |v〉 ‖2 that B†−B− is a strictly positive operator and thus
it is meaningful to consider its qth power for any q ∈ C. Since we consider non-
interacting particles, or equivalently, the ”action“ ρ(T+, T−) with respect to which
we average is quadratic, we can apply Wick’s theorem. Thus for q ∈ N we have

Zq(r, c) = q!Z1(r, c)q , (2.49)

which can be continued analytically to q ∈ C. We now show how Z1(r, c) is related
to the scattering state |ψ〉. To this end, we introduce the operator

g := QU(1−QU)−1 + (1− U−1Q)−1 , (2.50)



32 CHAPTER 2. PURE SCALING OBSERVABLES

which will appear due to the basic relations (2.42). g is self-adjoint,

g = QU(1−QU)−1 + (1− U−1Q)−1

= 1 +

∞∑
k=1

((QU)k + (U−1Q)k)

= (1−QU)−1 + U−1Q(1− U−1Q)−1 = g†. (2.51)

We thus have

Z1(r, c) = 〈(b†+b+ + b−b
†
−)(r)π0(c)〉F

=
(2.42)

〈r| g |r〉 =
(2.51)

1

2
〈r| g + g† |r〉

=
1

2
〈r| (1 +QU)(1−QU)−1 + (1 +QU †)(1−QU †)−1 |r〉

= 〈r| (1− U−1Q)−1U−1(1−Q)U(1− U)−1 |r〉
= 〈r| (1− U−1Q)−1U−1 |c〉 〈c|U(1− U)−1 |r〉
= |ψ(r)|2 , (2.52)

where the last step uses the unitary relation between scattering states with incoming-
wave and outgoing-wave boundary conditions. The terms with mixed charge indices
in B†−B− do not contribute, since ρ(U) does not mix charges. Taking the disorder
average is now straightforward, since the time evolution operator of the network
decomposes as U = UsUr with a diagonal random disorder part

Ur = exp(diag(iθ1, . . . , iθd)) . (2.53)

We thus have ρ(U) = ρ(Us)ρ(Ur), where Ur second quantizes as

ρ(Ur) =
∏

links l

exp
(
iθl

(
b†+b+(rl) + f †+f+(rl)− b†−b−(rl)− f †−f−(rl)

))
. (2.54)

Therefore, integrating out the random phases projects to the zero charge sector,
where the number of positive charge particles equals the number of negative charge
particles, on the Fock space attributed to each link individually. For any charge-
conserving operator A ∈ End(F) we thus obtain

E{〈A〉F} = E{STrAρ(Us)ρ(Ur)} = STr′Aρ(Us) , (2.55)

where STr′ is STr restricted to the charge-neutral sector. In this way we arrive at
what is called a vertex model V and denote vertex model averages by

〈A〉V = STr′Aρ(Us) . (2.56)

From a mathematical perspective taking the disorder average should be regarded as
a linkwise projection onto the u1-invariant subspaces Vl, called vertex model module,
of the single link supersymmetric Fock spaces

Fl = ∧C⊗ ∧C∗ ⊗ SC⊗ SC∗ . (2.57)
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There is, at the same time, an action of the Lie superalgebra gl2|2 on this subspace
which commutes with the u1 action.

2.1.7 Lie superalgebras

We briefly digress and recall some basic notions of linear superalgebra. A Z2-graded
vector space V over the field K = R or C is a vector space with a direct sum
decomposition V = V1 ⊕ V0. In the case V1 = Kp, V0 = Kq one writes V = Kp|q.
The nonzero elements of V0 are called even, the ones of V1 odd, and all elements
which are either even or odd are called homogeneous. The grading comes with a
parity function | · | which takes the value τ on Vτ . Every X ∈ End(V ) has a block
representation

X =

(
A B
C D

)
, (2.58)

where A ∈ End(V1), B ∈ Hom(V0, V1), C ∈ Hom(V1, V0) and D ∈ End(V0). End(V )
is a Z2-graded vector space in the natural way, End(V )0 = End(V1) ⊕ End(V0),
End(V )1 = Hom(V0, V1) ⊕ Hom(V1, V0). Thus End(V ) carries a natural bracket
operation which is defined for homogeneous elements X,Y ∈ End(V ) by

[X,Y ] = XY − (−1)|X||Y |Y X . (2.59)

The bracket is then linearly extended to non-homogeneous elements in End(V ) and
we notice that for X,Y ∈ End(V )1 we have [X,Y ] = {X,Y }, while in all other
homogeneous cases the bracket coincides with the ordinary commutator. The struc-
ture gl(V ) := (End(V ), [·, ·]) is then called general linear superalgebra of V . We are
primarily interested in the case V = Cp|q and write glp|q.
A Cartan subalgebra h ⊂ g of a Lie superalgebra is defined as the Cartan subalgebra
of the even part of g, which consists of arbitrary complex diagonal n × n-matrices
for the case at hand. Concentrating on gl2n|2n from now on, we introduce 2n + 2n
linear functionals

Ψ1, . . . ,Ψ2n,Φ1, . . . ,Φ2n ∈ h∗ (2.60)

such that every H ∈ h can be written as

H = diag(Ψ1(H), . . . ,Ψ2n(H),Φ1(H), . . . ,Φ2n(H)) , (2.61)

as a choice of basis for h∗. The adjoint action of the Cartan subalgebra on gl2n|2n,

h→ End(gl2n|2n) , H 7→ [H, ·] (2.62)

can be diagonalized as [H,X] = α(H)X, where the (nonzero) functionals α are
called roots. The corresponding eigenvectors X are said to span root spaces glα2n|2n.
Depending on the parity of the eigenvector, roots are called even or odd. By an
elementary calculation we have

[Eij , Ekl] = δjkEil − δilEkj , {Eij , Ekl} = δjkEil + δilEkj . (2.63)

Here, Eij is the elementary matrix which has a 1 on position (i, j) and is zero
elsewhere. From this we conclude that the even roots of gl2n|2n are Ψk−Ψk′ and Φk−
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Φk′ for k 6= k′. The odd roots are Ψk−Φk′ and φk−ψk′ , without restrictions on k, k′.
In the standard basis of C2n|2n corresponding to the block matrix decomposition
(2.58) the off-diagonal elementary matrices span the corresponding root spaces. As
in the case of classical Lie algebras, the roots come in pairs and we need to fix a set
of positive roots ∆+ in order to define what a highest resp. lowest weight is. To this
end, we introduce the following ordering in h∗:

Φ1, . . .Φn,Ψ1, . . . ,Ψ2n,Φn+1, . . . ,Φ2n . (2.64)

Any difference x−y of functionals in this sequence is then a positive root if y occurs
later than x, e.g. Ψ1 − Φn+1. Any choice of positive roots amounts to a Cartan
decomposition

gl2n|2n = n− ⊕ h⊕ n−, n± =
∑
α∈∆+

gl±α (2.65)

of the Lie superalgebra into its Cartan subalgebra and positive resp. negative root
spaces, which enables us to define the notion of highest weights in analogy to the
classical case.
With respect to (2.64), the positive root spaces are spanned by strictly upper tri-
angular elementary matrices Eij , i < j. One must, however, pay attention to the
grading: the abstract block decomposition in (2.58) does not carry over näıvely to
this choice of basis. For further convenience in calculations we thus introduce a
formal grading vector

s = (1, . . . , 1︸ ︷︷ ︸
n

,−1, . . . ,−1︸ ︷︷ ︸
2n

, 1, . . . , 1︸ ︷︷ ︸
n

) , (2.66)

so that the root vector Eij has the grade sisj . In gl2|2, elementary matrices thus
have the parity to which they correspond in the following scheme, where e stands
for even and o stands for odd: 

e o o e
o e e o
o e e o
e o o e

 . (2.67)

In contrast, (2.60) corresponds to the choice

S = (1, . . . , 1︸ ︷︷ ︸
2n

,−1, . . . ,−1︸ ︷︷ ︸
2n

) . (2.68)

Having the charged particle picture in mind, gl2n|2n admits a direct sum decompo-
sition

gl2n|2n = gl
(−2)
2n|2n ⊕ gl

(0)
2n|2n ⊕ gl

(2)
2n|2n , (2.69)

where the central term gl
(0)
2n|2n is a Lie sub-superalgebra,

gl
(0)
2n|2n = gln|n ⊕ gln|n , (2.70)
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which, for the choice (2.64), consists of block-diagonal matrices

gl
(0)
2n|2n 3 g =

(
A 0
0 D

)
, A,D ∈ gln|n (2.71)

and we have the inclusion gl
(±2)
2n|2n ⊂ n± .

2.2 Single-point observables for gl2|2

We are now in the position to return to the single link case, where the significance
of the decomposition (2.69) will become apparent. Let us define the formal vectors
of creation and annihilation operators

c =
(
b†+ f †+ f− −b−

)
, c =

(
b+ f+ f †− b†−

)
. (2.72)

The linear extension of the map

σ : gl2|2 → End(V ), Eab 7→ Jab = cacb (2.73)

is then a Lie superalgebra homomorphism, i.e. σ respects the bracket,

σ([X,Y ]) = [σ(X), σ(Y )] , (2.74)

and is compatible with the grading of V . All second quantized operators in the im-
age of σ are charge-conserving bilinears. The upper-left block A in (2.71) acts only
on the positive charge sector, whereas D acts on the negative charge sector of V .

The other blocks, gl
(±2)
2|2 , act by two creation resp. two annihilation operators and

thus raise resp. lower the particle number by 2 while leaving the total charge invari-
ant. The module V thus has the structure shown in figure 2.1. It is a lowest weight

1

-1

nB + 1

nF − 1

f †
+f

†
−|0〉

|0〉 b†+b
†
−|0〉

1

Figure 2.1: Weight diagram of V . nF /nB are the numbers of fermions/bosons.

module generated by the action of σ(gl
(2)
2|2), i.e. by applying the operators b†+f

†
−,

b†+b
†
−, f †+f

†
−, f †+b

†
− to the Fock space vacuum state |0〉. The latter lies in V because
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it is invariant under the action of u1 specified in (2.54). Furthermore, it is a lowest
weight state with respect to our choice of positive roots, i.e. it is annihilated by
all Fock space operators which correspond to strictly lower triangular matrices. We
remark that there is no fundamental difference between lowest and highest weight
representations, but from a physical perspective it seems more natural to regard the
”empty“ vacuum as the lowest state of the module. From the way how gl2|2 acts on
V it is immediately clear that V contains no gl2|2-invariant subspaces and thus it is
an irreducible representation.
This module contains some additional structure: For every n ∈ N+, a four-dimensional

irreducible representation of gl
(0)
2|2 with lowest weight (b†+b

†
−)n |0〉 is contained in V .

This is indicated by the diagonal boxes in figure 2.1.
The Lie algebra su2 can be realized in the fermion-fermion sector (which is the cen-
tral, even block in (2.67)). The vertical pairs of dots at even boson numbers are
fundamental representations, while the dots and the circle at odd boson numbers
are two trivial representations of SU2.
Furthermore, su1,1 can be realized in the boson-boson sector and every horizontal
series of dots resp. circles is an infinite dimensional unitary representation of SU1,1

which belongs to the so-called discrete series. We will come back to this point in
the next section.
Up to now, the focus was on a single link Fock space Fl resp. vertex model module
Vl. The whole Fock space F resp. vertex model space V associated to the Hilbert
space of the network model is a tensor product over links,

V =
⊗

links l

Vl , F =
⊗

links l

Fl . (2.75)

Recall that given a group representation ρ : G→ GL(V ) we can form a representa-
tion on V ⊗ V by letting ρ act on every factor,

ρ̃ : G→ (GL(V )⊗GL(V ) ↪→ GL(V ⊗ V ))

g 7→ ρ(g)⊗ ρ(g) . (2.76)

The corresponding Lie algebra representation ρ∗ : g→ End(V ) follows from lineariz-
ing the former one and using the product rule,

ρ̃∗ : g→ (End(V )⊗ End(V ) ↪→ End(V ⊗ V ))

g 7→ ρ∗(g)⊗ Id + Id⊗ρ∗(g) . (2.77)

The operator (B†−B−)q which we related to the local wavefunction amplitude has the
special significance of being a highest weight of an irreducible gl2|2-representation
itself. This can be seen as follows. Let us change the basis of generators Eab we
used in the representation (2.72) according to

Eab = UEabU
−1 , (2.78)
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where the transformation on U and its inverse are given by

U =
1√
2

(
E++ ⊗ Id2 +E+− ⊗ σ1 + eiαE−+ ⊗ σ1 − eiαE−− ⊗ Id2

)
,

U−1 =
1√
2

(
E++ ⊗ Id2 +e−iαE+− ⊗ σ1 + E−+ ⊗ σ1 − e−iαE−− ⊗ Id2

)
. (2.79)

Notice that U does not correspond to a unitary transformation Fock space, so oper-
ators which are adjoint in one representation will not be adjoint in the transformed
representation. Eττ ′ denotes a 2× 2 elementary matrix. We thus get the represen-
tation

σ : Eab 7→ Jab = CEabC , (2.80)

where

C̄ = c̄ · U =
1√
2

(
B†− F †+ F †− B†+

)
,

C = U−1 · c =
1√
2

(
B+ F+ F− B−

)T
, (2.81)

and

B± = b+ ± e−iαb†− , B†± = b†+ ± eiαb− ,
F± = f+ ± e−iαf †− , F †± = f †+ ± eiαf− . (2.82)

These operators obey the following (anti-)commutation relations:

{F †, F †} = {F, F} = {F †, F} = 0 ,

[B†, B†] = [B,B] = [B†, B] = 0 ,

[B±, B
†
∓] = {F±, F †∓} = 2 . (2.83)

In the first two lines the index is dropped because the charge is irrelevant. Using
the upper case operators, the Cartan subalgebra h is represented by

J11 = σ(E11) =
1

2
B†+B− , J22 = σ(E22) =

1

2
F †−F− ,

J33 = σ(E33) =
1

2
F †+F+ , J44 = σ(E44) =

1

2
B†−B+ . (2.84)

The operator
ϕq := (B†−B−)q ∈ End(V ) (2.85)

is a highest weight vector with respect to the adjoint action of gl(2|2) on End(V ).
It has weight (q, 0, 0,−q), i.e.

[J, ϕq] = α(J)ϕq for all J ∈ σ(h) (2.86)
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with α = q(Φ1−Φ4), Φi ∈ h being dual to Eii. This can be seen from the calculations

[J11, ϕ1] = ϕ1 , [J22, ϕ1] = 0 ,

[J33, ϕ1] = 0 , [J44, ϕ1] = −ϕ1 , (2.87)

combined with the commutator identity

[f(A), B] = f ′(A)[A,B] if [A, [A,B]] = 0 . (2.88)

It is a highest weight since it is annihilated by all raising operators,

[J ij , ϕ1] = 0 for all i < j . (2.89)

2.3 Point contacts and point contact conductances

In the following, we will explain why we expect

E{Z1(r, c)} = 〈B†−B−(r)π0(c)〉V (2.90)

to show pure scaling behavior with the distance |r − c| between contact and ob-
servation link. To this end, we also need to give another perspective on the vac-
uum projector (2.45) which was employed to establish the connection between ver-
tex and network model observables and its connection with point-contact conduc-
tances. Let O be a charge-conserving operator on V and X an arbitrary element
of the global Lie superalgebra, which we can write by the representation (2.77)
as X =

∑
links lX(rl). The image of the unitary time evolution operator ρ(U) is

gl2|2-invariant, [X, ρ(U)] = 0, and by cyclicity of the supertrace we have the Ward
identity

〈[X,O]〉V = 0 . (2.91)

A point contact is most faithfully modeled by the vertex model operator

P (c) = b†+(c)b†−(c) |0c〉 〈0c| ∈ End(Vc) . (2.92)

We will now use the Ward identity to show that, apart from a constant prefactor,
the vacuum projector can be replaced by the point contact operator in

〈ϕq(r)π0(c)〉V ∝ 〈ϕq(r)P (c)〉V . (2.93)

In the following, let O = ϕq(r)π0(c). We first choose X =
∑

r′ ϕ1(r′). From

[X,O] = ϕq(r)(eiαπ0(c)b+(c)b−(c)− e−iαb†+(c)b†−(c)π0(c)) (2.94)

we obtain the identity

〈ϕq(r)eiαπ0(c)b+(c)b−(c)〉V = 〈ϕq(r)e−iαb†+(c)b†−(c)π0(c)〉V . (2.95)

Now, let X =
∑

r′(B
†
−B+)(r′). From [X,ϕ1(r)] = 2ϕ1(r) we get [X,ϕq(r)] =

2qϕq(r). Using the Ward identity again for this choice and combining the result
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with (2.95), we arrive at

〈ϕq(r)π0(c)〉)V = −1

q
e−iα〈ϕq(r)P (c)〉V

= −1

q
eiα〈ϕq(r)P †(c)〉V . (2.96)

We are now in a position to explain more precisely what was meant in section
1.7 when we spoke about the broadness of the point contact operator. Positive
integer moments of the two-point contact conductance can be expressed as Fock
space averages as

T q̃c1c2 =
1

q̃!2

〈
|0c2〉 〈0c2 | (b+(c2)b−(c2))q̃(b†+(c1)b†−(c1))q̃ |0c1〉 〈0c1 |

〉
F

=:
〈
P †q̃ (c2)Pq̃(c1)

〉
F
, (2.97)

where we used Wick’s theorem and the fact that positive- and negative-charge op-
erators commute. The q̃ appearing here has to be distinguished from the index in
ϕq.
We now change perspective and regard the point contact operators, being endo-
morphisms on a vertex model module V , as elements in V ⊗ V ∗. The reduction of
this tensor product (or rather of its completion with respect to a hermitean scalar
product) was carried out in the context of an antiferromagnetic chain of two super-
spins in [Z94], which involves a so-called single continuous series of representation
of GL2|2.
The latter object is a Lie supergroup which is, morally speaking, in an analogous
relationship with the Lie superalgebra gl2|2 as it is the case for suN and SU(N).
However, due to the presence of odd parts, näıve exponentiation of the Lie superal-
gebra is ill-defined. To make sense of such an object, one has to consider a vector
bundle E over the base manifold G ' GL(C2) × GL(C2) (which is the Lie group
corresponding to the even part (gl2|2)0) whose fiber over a point is the vector space
of G-orbits ∧(gl2|2)∗1. GL2|2 is then an algebra of sections of this bundle which car-
ries an action of gl2|2. Since we do not need the full glory of this global picture and
work mainly on the algebraic level, we refrain from giving an extensive overview and
remark that a representation of GL2|2 on a graded vector space V = V0 ⊕ V1 is a
homomorphism ρ∗ : (gl2|2)τ → gl(V )τ together with a compatible homomorphism
ρ : G→ (GL(V0)×GL(V1) ↪→ GL(V )) such that (dρ)e = ρ∗|(gl2|2)0 .
The representations in the continuous series are of this type and two parameters
λ ∈ R+, l ∈ 2N− 1 are needed to label them. In the decomposition of V ⊗ V ∗ only
l = 1 appears, hence one speaks of a single continuous series. This comes from the
fact that the tensor product of two spin-1/2-representations of SU2 contains only
angular momentum up to 1.
This should be compared to the simplest classical non-compact situation: weight
vectors in irreducible unitary representations of SU1,1 are labeled by their weights
determined by the action of the subgroup U1 ⊂ SU1,1, which are integer or half-
integer depending on the representation, and their Casimir eigenvalues. Since this
group arises as the symmetry group of an indefinite bilinear form, the Casimir op-
erator is also indefinite. A simple calculation [BNS65] shows that the negative
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eigenvalues can be labeled by an integer. These representations are said to belong
to one of the discrete series of SU1,1. Positive eigenvalues can belong either to the
principal continuous series, labeled by R+, or the complementary series, labeled by
the open interval (−1, 0). Together with the trivial representation (being the only
unitary finite-dimensional irreducible representation) this list exhausts all unitary
irreducible representations of SU1,1.

The tensor factor (b†+(c1)b†−(c1))q̃ |0c1〉 of the point contact operator Pq̃ can be found
in the lowest row in figure 2.1 for every q̃ ∈ N0. As explained in the last section,
these purely bosonic states belong to a discrete series representation of SU1,1 sitting
in V . Analogous statements are true for the dual module V ∗, where figure 2.1 is
reflected in the origin. For the combined action of SU1,1 on the purely bosonic sub-
space in V ⊗ V ∗ the point contact operator thus has weight q̃.
Using the general decomposition of V ⊗ V ∗ from [Z94], the point-contact operator
can be decomposed into irreducible representations of SU1,1 which belong to the
principal continuous series. This calculation was done in [JMZ99], yielding

P †q̃ (c1) =

∫
R+

〈V q̃, V ∗0|λq̃〉φλq̃(c1)µ(λ)dλ (2.98)

Pq̃(c2) =

∫
R+

〈V 0, V ∗ − q̃|λ− q̃〉φλ−q̃(c2)µ(λ)dλ . (2.99)

The first object in the integrand is a Clebsch-Gordan coefficient and µ(λ)dλ is the
Plancherel measure for the continuous series. φλq̃ lies in the irreducible representa-
tion of SU1|1 with continuous quantum number λ and has discrete weight q̃. These
representations are regarded as subrepresentations of the single continuous series of
GL2|2 mentioned before. In this sense we can think of the point contact operator as
being broad in representation space.
As explained in chapter 1, there is strong evidence that there exists an underlying
conformal field theory of the integer quantum Hall transition to which the critical
vertex model flows under renormalization. We thus come to the

Central Conjecture: The operators φλq
are lattice discretizations of conformal primary fields.

Strictly speaking, at this point it would be sufficient to assume that their correlator
is of the form

〈φλq(c1)φλ′−q(c2)〉 =
δ(λ− λ′)
µ(λ)

|c1 − c2|−2∆̃λ + . . . , (2.100)

but we will see that in order to make contact with numerical simulations in the
Chalker-Coddington model conformal invariance is needed as well. The dots indi-
cate that in a discretization subleading contributions may be present which vanish
in the continuum theory. The presence of the prefactor is necessary to maintain
orthonormality of inequivalent irreducible representations of the continuous infinite
series appearing in the decomposition of V ⊗V ∗. The conformal dimensions ∆̃λ are
related to the multifractal spectrum ∆q by analytic continuation, q = 1

2 + iλ. The
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two-point contact conductance is thus given by

E{T q̃c1c2} = 2

∫ ∞
0
|〈V q̃, V ∗0|λq̃〉|2|c1 − c2|−2∆̃λµ(λ)dλ . (2.101)

The Clebsch-Gordan coefficients as well as the measure µ(λ) have been calculated
explicitly in [JMZ99]:

µ(λ)dλ = λ tanh (πλ) dλ (2.102)

|〈V q̃, V ∗0|λq̃〉|2 =
Γ(q̃ − 1

2 − iλ)Γ(q̃ − 1
2 + iλ)

Γ(q̃)2
. (2.103)

Although the formula has been derived for q̃ ∈ N, it is possible to continue the
result analytically to q̃ ∈ R. (2.101) remains valid for q̃ ≥ 1

2 . A particularly
important observation to make is that in the asymptotic limit r := |c1 − c2| → ∞
all these moments decay with the same power ∆̃0, which we called termination
of the spectrum in section 1.5. For q̃ < 1

2 we must take into account that the
integration contour crosses the poles of the numerator at λ = ±i(q̃ − 1/2) and
receives a contribution from the residues of the integrand at these points. This leads
to

E{T q̃} =
1

Γ2(q̃)

(∫ ∞
0
|Γ(q̃ − 1

2
− iλ)|2r−2∆̃λµ(λ)dλ+ 2π cot(q̃π)Γ(2q̃)r−2∆̃i(q̃−1/2)

)
.

(2.104)

Here, the symmetry property ∆̃λ = ∆̃−λ, which follows from GL2|2-invariance, has

been employed. From (2.104) it immediately follows that 〈T 0〉 = r−2∆̃−i/2 , but
on the other hand normalization implies 〈T 0〉 = 1, so that we can infer ∆̃λ =
(λ2 + 1/4)F (λ2). A priori, no further information about the scaling dimension
∆̃λ can be extracted. However, the symmetry puts another strong constraint on
it, namely that it has to be the eigenvalue of some linear combination of GL2|2
Casimir invariants, the lowest one being quadratic with eigenvalue λ2 + 1/4 on the
representations we consider here, which corresponds to a parabolic spectrum of the
multifractal dimensions.
The typical two-point contact conductance can be obtained from (2.104) by the
identity

d

dq

∣∣∣∣
q̃=0

E{T q̃} = E{lnT} . (2.105)

The first term in (2.104) gives no contribution and one has to notice 2π cot(q̃π)Γ(2q̃) =
1+O(q2), so the two-point contact conductance shows pure scaling behavior [JMZ99]:

expE{lnT} = |c1 − c2|−Xtyp , Xtyp = 2F

(
−1

4

)
. (2.106)

The operators ϕq = (B†B)q all lie in a representation space Vλ with q = 1
2 + iλ,

but they do not have definite weight with respect to the subgroup K with Lie
superalgebra gl1|1 ⊕ gl1|1 as φλq̃ does. To make contact between these two objects,
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one has to average ϕq with respect to K :

φλ0 =

∫
K
ϕ 1

2
(1+iλ)dk . (2.107)

We point out here that the analytic continuation in the parameter λ is, from the
viewpoint of mathematics, at this point only a formal calculation, since the corre-
sponding representations are not well understood. The left-hand side rests on firm
grounds–a slightly less superficial discussion can be found in section 2.8–while the
right-hand side represents uncharted territory so far. But, as we will see as we pro-
ceed, the results we produce are perfectly sensible.
Now, by combining ϕq and a vacuum projector in a vertex model average, the proper-
ties of the supertrace enforce that only a single contribution in (2.98) survives. This
gives the basis for our prediction that the network model observables E{|ψ(r)|2} in
the plane decay as pure powers with the distance from the point contact.

For the rest of this chapter, we will introduce observables of increasing complexity
which share with ϕq the property of being highest weight operators and translate
them into network model observables. By the same reasoning as before, we also
expect these to show pure scaling behavior.

2.4 Multi-point observables for gl2|2, several contacts

Until now, we discussed observables which could be defined using only a single link
of the network model. Let us now broaden the context and consider a set of n links
r1, . . . , rn. To simplify the notation, we use summation convention together with
upper/lower indices (instead of arguments) on the uppercase operators defined in
(2.82):

B†+,jB
j
+ :=

n∑
j=1

(b†+(rj)− e−iαb−(rj))(b+(rj)− eiαb†−(rj)) . (2.108)

Furthermore, we continue to write Jab for the operator coming from the global Lie
superalgebra which acts as Ca(rj)Cb(rj) on every link space Fj ,

Jab =

n∑
j=1

Ca(rj)Cb(rj) . (2.109)

It is understood that Jab acts as the identity everywhere else. The operator

ϕq,p :=
(
B†−jB

j
−
)q−p ((

F †+jF
j
−
)(

B†−jB
j
−
)
−
(
F †+jB

j
−
)(

B†−jF
j
−
))p

= 2q+p
(
J14

)q−p (
J23J14 − J24J13

)p
= ϕq,0(ϕ0,1)p (2.110)

is a more general highest weight operator for the action of the Cartan subalgebra
and corresponds to the superdeterminant of the upper-right block. The last equality
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follows from the fact that both quadrilinears commute. From

[J11, ϕ0,1] = ϕ0,1 , [J22, ϕ0,1] = ϕ0,1 , (2.111)

[J33, ϕ0,1] = −ϕ0,1 , [J44, ϕ0,1] = −ϕ0,1 (2.112)

we infer that ϕq,p has weight (q, p,−p,−q) and again, this operator is annihilated
by the action of all J ij for i < j. In order to establish a relation between ϕq,p
and network model observables we first notice that (2.52) generalizes to the new
situation,

〈B†−,lBl′
−π0(c)〉F = 〈F †+,lF l

′
−π0(c)〉F = ψ(rl)ψ(rl′) , (2.113)

if the distance between the contact and the observation links is greater than one. If
n distinct contacts are present, the last lines in the calculation (2.52) are modified
according to

〈r| (1− U−1Q)−1U−1(1−Q)U(1− U)−1 |r′〉

= 〈r| (1− U−1Q)−1U−1

(
n∑
i=1

|ci〉 〈ci|
)
U(1− U)−1 |r′〉

=
n∑
i=1

ψi(r)ψi(r′) . (2.114)

For n distinct contacts and observation links we will now show that

〈ϕ1,n−1π0(C)〉V ∝ E {An} , (2.115)

where An is the open-system analogue of one of the antisymmetrized observables
introduced in [GMZ13]:

An = |Det(ψi(rj))|2 1 ≤ i, j ≤ n . (2.116)

Since operators on different links (anti-)commute, the last (anti-)commutation rela-
tion (2.83) is modified according to

[B±i, B
j†
∓ ] = {F±j , F j†∓ } = 2δji . (2.117)

In (2.110), the bilinears in ϕq,p commute and we have (F+j
†Bj
−)2 = 0, so that we

can rewrite and expand

ϕ1,n−1 =
(
F †+jF

j
−
)n−2 ((

F †+jF
j
−
)(

B†−jB
j
−
)
− (n− 1)

(
F †+jB

j
−
)(

B†−jF
j
−
))

= F †+i1F
j1
− δ

i1
j1
· · ·F †+in−2

F
jn−2
− δ

in−2

jn−2

× F †+in−1
F
jn−1
− B†−inB

jn
−
(
δ
in−1

jn−1
δinjn − (n− 1)δ

in−1

jn
δinjn−1

)
= (−1)|(n k)|F †+i1F

j1
− · · ·F †+in−1

F
jn−1
− B†−inB

jn
−

× δi1j1 · · · δ
ik−1

jk−1
δinjk δ

ik+1

jk+1
· · · δin−1

jn−1
δikjn . (2.118)
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|(n k)| denotes the sign of the transposition of the letters k and n. Due to the anti-
commutativity of the fermionic operators we can replace the above sums over the
indices i1, . . . , in−1 and j1, . . . , jn−1 by the anti-symmetrization over these indices.
The additional sum over k could be incorporated into the sum over the permutations
of Sn−1 by noting that every τ ∈ Sn can be written as a concatenation of an element
σ ∈ Sn−1 and a transposition (n k), τ = σ ◦ (n k). We can thus rewrite

ϕ1,n−1 =
1

(n− 1)!
εi1...inεj1...jnF

†
+i1
F j1− · · ·F †+in−1

F
jn−1
− B†−inB

jn
− . (2.119)

When performing the Fock space average, there are (n− 1)! possible Wick contrac-
tions for the 2(n−1) fermionic operators, so the factor in front gets canceled. Apart
from that, the presence of n contacts generates a sum of n contributions in (2.113),
one for each contact, giving

〈ϕ1,n−1π0(C)〉F = εi1...inεj1...jnψk1(ri1)ψk1(rj1) · · ·ψkn(rin)ψkn(rjn)

= n!An . (2.120)

The framework we used so far is too narrow to allow for arbitrary moments of An to
be expressed as highest weights operators for gl2|2 in the vertex model. This issue
will be addressed in section 2.6 by enhancing the symmetry to gl2n|2n.

2.5 n+ 1-point functions of ϕq

Another case in which an easy relation between operators and observables is avail-
able are n + 1-point functions of ϕq, by which we mean that n operators ϕq at
different positions are inserted together with a single vacuum projector in a Fock
space average,

〈ϕq1(r1) · · ·ϕqn(rn)π0(c)〉F = Γ(q1 + · · ·+ qn + 1)|ψ(r1)|2q1 · · · |ψ(rn)|2qn . (2.121)

At first we restrict ourselves to positive integers qi. Apart from the correlators
(2.113) we also have

〈B†−(ri)B
†
−(rj)π0(c))〉F = 〈B−(ri)B−(rj)π0(c))〉F = 0 , (2.122)

which immediately follows from expanding the bilinears in terms of the lower case
operators b, b† and using that correlators involving different charge indices or two
annihilation resp. creation operators vanish. From (2.113) we also see that in the
elementary case B†B taking the Fock space average in the presence of a contact c
amounts to the replacements

B†−(ri)→ ψ(ri) B−(rj)→ ψ(rj) . (2.123)

In (2.121) we have qi operators B†−(ri) and B−(ri) respectively, which are
∑

i qi
operators of each type in total. There are (q1 + · · ·+ qn)! possibilities to build pairs
B†B, and each individual product which arises due to Wick’s theorem gives the
result |ψ(r1)|2q1 · · · |ψ(rn)|2qn . Since Γ(n+ 1) = n! for n ∈ N, analytic continuation
gives the result (2.121).
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2.6 Multi-point observables for gl2n|2n

To proceed further, we now introduce n replicas of charged bosons and fermions for
every link. So far we considered C as a link space and passed to the link Fock spaces

Fl = ∧C⊗ ∧C∗ ⊗ SC⊗ SC∗ . (2.124)

From a conceptual perspective it is useful to regard every copy of the link space as
a tensor product C ' C⊗ C and to consider the space

Ṽ = U ⊗ C = C2|2 ⊗ C (2.125)

with U = (U+
1 ⊕ U−1 ) ⊕ (U+

0 ⊕ U−0 ), where U±1 = C1|0, U±0 = C0|1. The intention
for introducing the tensor product is the fact that we have two commuting actions
of subalgebras gl2|2, u1 ⊂ gl(Ṽ ), which is then accounted for by letting the first
algebra act on the first tensor factor and vice versa. Especially when passing to
network models where the physical links are duplicated, for example in the unitary
symplectic symmetry class C where u1 is replaced by sp2, it is important to separate
these actions.

With this concept at hand we can briefly digress and give a larger mathematical
perspective on the nature of the vertex model modules and explain the notion of
Howe duality. On the space W = Ṽ ⊕ Ṽ ∗ one can define a canonical alternating
form

A : W0 ×W0 → C
P (v + φ, v′ + φ′) = φ(v′)− φ′(v) , (2.126)

a canonical symmetric form

S : W1 ×W1 → C
S(v + φ, v′ + φ′) = φ(v′) + φ′(v) , (2.127)

and introduce a so-called orthosymplectic form Q = S + A which restricts to S on
W1 and to A on W0 and for which the spaces W0 and W1 are orthogonal. One can
then consider the subspace osp(W ) ⊂ End(W ) of those endomorphisms X which
are skew-symmetric with respect to Q, i.e.

Q(Xv, v′) + (−1)|X||v|Q(v,Xv′) = 0 (2.128)

for all homogeneous v, v′ ∈ W . This set together with the bracket is called the
orthosymplectic Lie superalgebra of W .
In our situation, the pair (gl2|2, gl1) is a so-called classical reductive supersymmetric
Howe dual pair in osp(W ). By this one means that both gl2|2 and gl1 are Lie sub-
superalgebras in osp(W ), gl1 is a classical Lie algebra which acts reductively on W
and that gl2|2 is the centralizer of gl1 in osp(W ). In our case gl1 acts by complex-
linear extension of its compact real form u1, which is often denoted as a Howe dual
pair with compact group, (gl2|2,U1). In this situation one has a decomposition of
Fock space which is, morally speaking, much like the correspondence between irre-
ducible representations of UN and Sn on an n-fold tensor product of CN known as
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Schur-Weyl-duality. In Howe duality the supersymmetric Fock space decomposes
multiplicity-free, i.e. every irreducible representation of the compact group appear-
ing is in correspondence with an irreducible representation of the Howe dual partner
superalgebra. This is the mathematical background of the appearance of the vertex
model modules, since calculating the disorder average amounts to projection onto
the U1-invariant subspaces, i.e. on the trivial representation.
We now have a parameter at our disposal which allows us to enlarge the supersym-
metry, namely the even and odd dimension of the first tensor factor in (2.125). In
what follows, we consider the general setup Ṽ = C2n|2n⊗C, where Howe duality tells
us that the U1-invariants in the enlarged Fock space are in one-to-one correspon-
dence with an irreducible representation of gl2n|2n. In terms of operators on Fock
space, we enhance bosonic and fermionic operators by internal or replica indices,
i.e. to every link we assign n species of positive and negative bosons and fermions,
for which we introduce an additional subscript as in b†+,i. Notice that the notation
has changed in contrast to section 2.6, where a subscript resp. superscript without
comma denoted a link index for brevity in notation. From now on, the position
of the link to which specific Fock space operators are assigned will be denoted as
an argument. The representation is again generated by the action of 4n2 charge-
conserving bilinears b†+,ib

†
−,j , b

†
+,if

†
−,j , f

†
+,ib

†
−,j , f

†
+,if

†
−,j on the Fock space vacuum.

In the following we concentrate on the boson-boson sector, i.e. those elements of
gl2n|2n which translate into purely bosonic bilinears as Fock space operators. To this
end, we introduce another pair of formal vectors

b̄ =
(
b†+,1 · · · b†+,n −b−,1 · · · −b−,n

)
, (2.129)

b =
(
b+,1 · · · b+,n b†−,1 · · · b†−,n

)T
(2.130)

and change the basis using the operators [B14]

U =
1√
2

(E++ ⊗ In + E−+ ⊗Dn + E+− ⊗ Tn − E−− ⊗DnTn) (2.131)

U−1 =
1√
2

(
E++ ⊗ In + E+− ⊗D−1

n + E−+ ⊗ Tn − E−− ⊗ TnD−1
n

)
(2.132)

where we defined T =
∑n

k=1En−k+1,k and Dn = diag(eiα1 , . . . eiαn). Notice that for
n = 1 the boson-boson sector of (2.80) is recovered. For the moment we left the link
Fock space(s) on which the operators act open–this issue will be discussed shortly.
We now define the boson-boson part of a Lie superalgebra representation by

Ekl 7→ B̄kBl , 1 ≤ a, b,≤ 2n . (2.133)

The formal vectors B̄, B are given by

B̄ = b̄ · U =
1√
2

(
B†−,1 · · · B†−,n B†+,n · · · B†+,1

)
, (2.134)

B = U−1 · b =
1√
2

(
B+,1 · · · B+,n B−,n · · · B−,1

)T
, (2.135)
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where, as before, we defined

B±,k = b+,k ± e−iαkb†−,k , B†±,k = b†+,k ± eiαkb−,k . (2.136)

Notice that the replica indices in the second halves of B̄, B are decreasing from n to
1, so that we have

Ekl 7→


B†−,kB+,l if 1 ≤ k, l ≤ n ,
B†−,kB−,2n−l+1 if 1 ≤ k ≤ n, n+ 1 ≤ l ≤ 2n ,

B†+,2n−k+1B+,l if n+ 1 ≤ k ≤ 2n, 1 ≤ l ≤ n ,
B†+,2n−k+1B−,2n−l+1 if n+ 1 ≤ k, l ≤ 2n.

(2.137)

For convenience in notation we arrange these operators into a formal matrix,

S =

(
B†−,kB+,l B†−,kB−,2n−l+1

B†+,2n−k+1B+,l B†+,2n−k+1B−,2n−l+1

)
. (2.138)

We will now show that the determinant Dm of an upper-right m × m block of S
with m ≤ n,

Dm = Det

S1,2n−m+1 · · · S1,2n
...

...
Sm,2n−m+1 · · · Sm,2n

 , (2.139)

is a highest weight vector for the diagonal Cartan subalgebra h = {B̄kBk} and
the choice of positive root vectors {B̄kBl|k < l}. The charge subscripts on the
operators are dropped henceforth, since all operators in the upper right block carry
the negative ones. We first notice that Dm is well-defined, since the all operators
appearing in S commute. The weights of Dm with respect to h are easily calculated.
We first record two ways of writing Dm,

Dm = Sa1,2n−m+1 · · ·Sam,2nεa1...am
= S1,2n−m+a1 · · ·Sm,2n−m+amεa1...am . (2.140)

Using the first one we get

[Skk, Dm] =
m∑
i=1

Sa1,2n−m+1 · · · [Skk, Sai,2n−m+i] ̂Sai,2n−m+i · · ·Sam,2nεa1...am (2.141)

=
m∑
i=1

(δkai − δk,2n−m+i)Sa1,2n−m+1 · · ·Sam,2nεa1...am (2.142)

=

m∑
i=1

(δki − δk,2n−m+i)Dm . (2.143)

The hat symbol means that the corresponding factor is omitted. The weight is thus
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given by

µm =
m∑
i=1

(Φi − Φ2n−m+i) , (2.144)

where Φi ∈ h∗ is dual to Sii. It remains to show that Dm is annihilated by the
operators which lie above the diagonal in (2.138). Since 1 ≤ m ≤ n in Dm this is
obviously true for the upper-right block of S. In the upper left block of S we have
1 ≤ k < l ≤ n above the diagonal. From [Skl, Si,2n−m+ai ] = δliSk,2n−m+ai we see
that applying the commutator only gives a nonzero result on the lth factors in the
second line of (2.140). We thus have

[Skl, Dm] = S1,2n−m+a1 · · ·Sl−1,2n−m+al−1
Sk,2n−m+alSl+1,2n−m+al+1

· · ·
× · · ·Sm,2n−m+amεa1...am . (2.145)

Since k < l a term Sk,2m−n+ak appears to the left of Sk,2n−m+al in this product.
ak and al are anti-symmetrized, so the commutator vanishes. Finally, the same
argument applies to the lower-right block, so that we have shown that Dm is indeed
a highest weight vector.
We now address the question of the links involved. It is immediately obvious that
we need at least m different positions for nonvanishing Dm, but in the following we
will focus on exactly m links and record identities for Dm which follow directly from
the properties of the determinant:

(−1)b
m
2
cDm = (−1)b

m
2
cDet

(∑
iB
†
k(ri)Bm−l+1(ri)

)m
k,l=1

= Det
(∑m

i=1B
†
k(ri)Bl(ri)

)m
k,l=1

= Det
(∑m

k=1B
†
k(ri)Bk(rj)

)m
i,j=1

= Det
(
B†k(ri)

)m
i,k=1

Det (Bk(ri))
m
i,k=1 . (2.146)

The last equation allows us to prove that Dm is a positive operator for arbitrary
m ≤ n. Recall that for the case m = 1 we showed in (2.48) that B does not
annihilate any state. Every summand in

Det (Bk(ri)) = εi1···imB1(ri1) · · ·Bm(rim) (2.147)

acts on different link Fock spaces and thus does not annihilate any state individually.
However, since the determinant is totally antisymmetric, any given combination of
link and replica indices does appear in exactly one summand, so that there is no
possibility of terms adding up to zero. Now, by the same argument as around (2.48),
Dm is positive and we can consider arbitrary complex powers of it.
By the Leibniz rule for the commutator, the operator

ϕλ(R) = Dq1−q2
1 Dq2−q3

2 · · ·Dqn
n (2.148)
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is a highest weight operator for arbitrary qi ∈ C with weight

λ =
m−1∑
i=1

(qi − qi+1)µi + qnµn ≡ (q1, . . . , qn) (2.149)

and observation links R ≡ {r1, . . . , rm}. To make contact with the scaling observ-
ables from [GMZ13] we restrict to integers qi subject to q1 ≥ q2 ≥ · · · ≥ qn ≥ 0, but
in the end we will get a result which could be analytically continued to arbitrary qi.
Such a descending sequence defines a partition of λ, to which we can assign a Young
diagram with |λ| = ∑i qi boxes, see figure 2.2. These diagrams are well-known from
the representation theory of Un, since every diagram with at most n rows is in one-
to-one correspondence with an isomorphism class of irreducible Un-representations.
We follow [GMZ13] by using Young tableaux to relate vertex model averages of ϕλ
to network model observables.

p1 p2 p3 p4 p5 p6

q1

q2

q3

q4

Figure 2.2: Young diagram λ = (61, 42, 2) = [42, 32, 22].

Young tableaux are Young diagrams where the boxes are filled with positive integers
less or equal than N = |λ|. The symmetric group SN acts on a Young tableaux by
permuting the contents of its boxes. There are two distinct subgroups of SN , namely
the group of row stabilizers R(λ) and the group of column stabilizers C(λ) which
leave the contents of each individual row resp. column of a given Young tableau
invariant. Given a group G, one can pass to the group algebra K[G] over the field
K, which consists of finite formal linear combinations of elements of G. We can thus
define the row symmetrizer and column antisymmetrizer in C[SN ],

aλ =
∑

σ∈R(λ)

σ , bλ =
∑

τ∈C(λ)

(−1)|τ |τ , (2.150)

where |τ | denotes the sign of τ ∈ SN . These can now be employed to define the
Young symmetrizers

cλ = bλaλ , c̃λ = aλbλ . (2.151)

All these operators are idempotent up to a factor,

a2
λ = nRaλ , b2λ = nCbλ , c2

λ = nλcλ , c̃2
λ = nλc̃λ . (2.152)

nR and nC are the orders of R(λ) and C(λ) and nλ = |λ|!
dimVλ

, where dimVλ is the
dimension of C[SNcλ] in C[SN ] [FH04]. A special type of tableau which we need in
the following is called minimal semistandard tableau Tmin

λ , where all boxes in the
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ith row are filled with the integer i. For example, the minimal semistandard tableau
for λ = (5, 3, 1) is

Tmin
(5,3,1) = 1 1 1 1 1

2 2 2

3

. (2.153)

In this case it is clear that the row symmetrizers aλ act as multiples of the identity.
The notion of Young tableaux was extended in [GMZ13] to pairings in the following
sense: Given λ, we take two diagrams of this shape and fill them with objects
that can be paired, for example wavefunctions ψi and positions rj . This gives two
tableaux Tψ and Tr, for which the elements in the corresponding boxes are paired
according to

Ψλ(Tψ, Tr) =
∏
i∈λ

ψi(ri) . (2.154)

For example, the pairing of the two tableaux of shape (3, 2, 1),

Tψ = ψ2 ψ4 ψ5

ψ1 ψ5

ψ3

, Tr = r1 r2 r3

r1 r3

r4

, (2.155)

yields

Ψ(3,2,1)(Tψ, Tr) = ψ1(r1)ψ2(r1)ψ3(r4)ψ4(r2)ψ2
5(r3) . (2.156)

This construction can be extended by the action of group algebra elements s =∑
j sjσj ∈ C[SN ] in the natural way,

Ψλ(sTψ, Tr) =
∑
j

sj
∏
i∈λ

ψσ(i)(ri) , (2.157)

Ψλ(Tψ, sTr) =
∑
j

sj
∏
i∈λ

ψi(rσj(i)) . (2.158)

It immediately follows that Ψλ(sTψ, sTr) = Ψλ(Tψ, Tr) for all s ∈ C[S|λ|] and
Ψλ(Tψ, σTr) = Ψλ(σ−1Tψ, Tr) for all σ ∈ S|λ|. Thus we have for the (anti-)symmetrizers

Ψλ(Tψ, aλTr) = Ψλ(aλTψ, Tr) , Ψλ(Tψ, bλTr) = Ψλ(bλTψ, Tr) ,

Ψλ(Tψ, cλTr) = Ψλ(c̃λTψ, Tr) , Ψλ(Tψ, c̃λTr) = Ψλ(cλTψ, Tr) . (2.159)

For two Young tableaux S, T of shape λ we also define the self-adjoint operator

Nλ(T, S) =

(∏
i∈λ

B†
Tmin
λ (i)

(rT (i))

)(∏
i∈λ

BTmin
λ (i)(rS(i))

)
(2.160)

=
∏
i∈λ

B†
Tmin
λ (i)

(rT (i))BTmin
λ (i)(rS(i)) . (2.161)
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The boxes in the tableaux S, T are counted from left to right and top to bottom.
The general highest weight operator in (2.148) can then be rewritten as

ϕλ(R) = Nλ(bλT
min
λ , bλT

min
λ ) , (2.162)

where R = {r1, . . . , rn} is a set of n distinct points for observation. Recall the
definition of the operator g in (2.50),

g = QU(1−QU)−1 + (1− U−1Q)−1 , (2.163)

in the presence of n distinct point contacts, Q = 1−∑n
i=1 |0ci〉 〈0ci | . Recall further

that

gij =
n∑
k=1

ψk(ri)ψk(rj) . (2.164)

Now, if we define

Gλ(T, S) =
∏
i∈λ

gT (i),S(i) , (2.165)

we can express a product of powers of the determinant observables An from (2.116)
using the minimal tableau:

G(bλT
min
λ , Tmin

λ ) = Aq1−q21 Aq2−q32 · · ·Aqnn . (2.166)

Finally, we will now relate the Fock space average with observables,

〈Nλ(T, S)π0(C)〉F = Gλ(S, aλT ) , (2.167)

for two tableaux S, T of shape λ. This result is proven as follows:

〈Nλ(T, S)π0(C)〉F =
〈
B†1(T (1)) · · ·B†1(T (q1))B1(S(1)) · · ·B1(S(q1))π0(C)

〉
F
· · ·〈

B†n(T (|λ| − qn + 1)) · · ·B†n(T (|λ|))

·Bn(S(|λ| − qn + 1)) · · ·Bn(S(|λ|))π0(C)
〉
F

=
∑

π1∈Sq1

gS(1),T (π1(1)) · · · gS(q1),T (π1(q1)) · · ·∑
πn∈Sqn

gS(|λ|−qn+1),T (πn(|λ|−qn+1)) · · · gS(|λ|),T (πn(|λ|))

=
∑

π∈R(λ)

gS(1),T (π(1)) · · · gS(q1),T (π(q1)) · · ·

· · · gS(|λ|−qn+1),T (π(|λ|−qn+1)) · · · gS(|λ|),T (π(|λ|))

=
∑

π∈R(λ)

Gλ(S, πT ) (2.168)

= Gλ(S, aλT ) . (2.169)

The first equality uses the fact that different replica indices do not mix in Fock space
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averages. The second is Wick’s theorem, where Sq1 acts on {1, 2, . . . , q1}, which are
the box numbers in the first row, Sq2 acts on {q1 + 1, . . . , q1 + q2}, which are the box
numbers in the second row and so on. This is then rewritten using R(λ), which is the
row stabilizer of the normal tableau of shape λ, i.e. the one where each box is filled
with its number. To arrive at the desired result, we apply this formula to the case
S = T = bλT

min
λ and use that row stabilizers reproduce the minimal semistandard

tableau by a factor, aλT
min
λ = nRT

min
λ :〈

Nλ(bλT
min
λ , bλT

min
λ )π0(C)

〉
F = Gλ(bλT

min
λ , aλbλT

min
λ )

=
1

nR
Gλ(bλaλT

min
λ , aλbλT

min
λ )

=
nλ
nR
Gλ(bλaλT

min
λ , Tmin

λ )

= nλGλ(bλT
min
λ , Tmin

λ )

= nλA
q1−q2
1 Aq2−q32 · · ·Aqnn . (2.170)

Since the operators appearing in the definition of ϕλ descend to vertex model oper-
ators, we finally arrive at

E{(Aq1−q21 Aq2−q32 · · ·Aqnn )(R,C)} ∝ 〈(Dq1−q2
1 Dq2−q3

2 · · ·Dqn
n )(R)π0(C)〉V . (2.171)

2.7 Casimir eigenvalues

The universal enveloping superalgebra U(g) is the unital associative algebra gen-
erated by elements of g with the Lie superbracket relations imposed. A version of
the Poincaré-Birkhoff-Witt theorem is also available in the super case [CW12]. The
elements in the center ZU(g) of U(g) are called Casimir invariants and have, by defi-
nition, the property that they commute with all elements of g. Of special importance
to us is the fact that highest weight vectors of representations are eigenvectors for
Casimir invariants. To see this one has to use that every element in the center can
be decomposed into a part lying in U(h) and a part lying in U(g)n+ ∩ n−U(g).
The scaling dimensions of the observables (and thus of the conformal dimensions
of the underlying conformal field theory) must be linear combinations of an alge-
braically independent set of eigenvalues of such invariants. Explicit expressions for
these eigenvalues on highest weight representations of glm|n were obtained by Scheu-
nert [S83], which we now adapt to our situation. We first notice that the supertrace
induces an isomorphism h∗ 3 µ 7→ Hµ ∈ h by

µ(H) = STr(HµH) for all H ∈ h . (2.172)

Furthermore, the Weyl vector ρ is defined by half the sum of the positive roots, each
one counted with its parity:

2ρ :=
∑
α∈∆+

(−1)|α|α . (2.173)
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Scheunert then introduces

ri = siρ(Eii) =
1

2

∑
j>i

sj −
∑
j<i

sj

 , (2.174)

li = si(λ+ ρ)(Eii) = si STr(Hλ+ρEii) = (Hλ+ρ)ii , (2.175)

where si are the components of the formal grading vector (2.66) and λ is a highest
weight. The eigenvalue cn of the nth order Casimir operator on the highest weight
representation labeled by λ is a then a polynomial in

Qm =
∑
i

si(l
m
i − rmi ) (2.176)

with the property that cn−Qn has degree less than n. With other words, the Qm can
be taken as generators of invariant polynomials. Notice in particular that, by the
definition of li and ri, Qm is invariant under the so-called Weyl group W = Sm×Sn
which permutes even and odd root separately.
For gl2n|2n the second sum vanishes for all m,

∑
i sir

m
i = 0. We can then rewrite

the expression for Qm as

Qm = STr(Hm
λ+ρ). (2.177)

Recall that for the ordering (2.64) of the basis elements of h∗ we have the even roots

Φi − Φj 1 ≤ i < j ≤ n ,
Φn+i − Φn−j 1 ≤ i < j ≤ n ,

Φi − Φn+j 1 ≤ i, j ≤ n ,
Ψi −Ψj 1 ≤ i < j ≤ 2n (2.178)

and the odd roots

Φi −Ψj , Ψj − Φn+i , 1 ≤ i ≤ n, 1 ≤ j ≤ 2n . (2.179)

The Weyl vector is then

2ρ =
n∑
i=1

{(−2i+ 1)Φi + (2n− 2i+ 1)Φn+i}+
2n∑
i=1

(2n− 2i+ 1)Ψi

= (−1,−3, . . .− 2n+ 1; 2n− 1, 2n− 3, . . . , 1,

− 1,−3, . . .− 2n+ 1; 2n− 1, 2n− 3, . . . 1) . (2.180)

The most general operators ϕλ we want to consider have weight

λ =
n∑
i=1

qi(Φi − Φ2n−i+1) (2.181)
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with respect to this choice of basis. In this particular situation Qm vanishes for odd
m and, by an easy calculation, we arrive at

1

2
Q2k =

n∑
i=1

(
qi − i+

1

2

)2k

−
n∑
i=1

(
i− 1

2

)2k

. (2.182)

From the requirement than the scaling dimensions ∆λ are polynomials in Q2k Weyl
group invariance has some remarkable implications: (2.182) is easily seen to be
invariant under the transformations

qi 7→ 2i− 1− qi for all qi or

qi 7→ qj + i− j ∧ qj 7→ qi + j − i . (2.183)

For n = 2 and q1 = q2 = 0 we have

E{A0−0
1 A0

2(R,C)} = E{1} = 1 (2.184)

and thus ∆0,0 = 0. By applying (2.183) we get a sequence of nontrivial vanishing
scaling dimensions, for example ∆2,2 = ∆−1,1 = ∆0,3 = 0 which directly implies that
the leading contribution of a priori nontrivial ensemble averages of network model
observables are constant, e.g.

E{A−2
1 A2(R,C)} = const. + subleading . (2.185)

In particular, for n = 1 we recover the symmetry relation (1.45).

2.8 The conceptual background of ϕq

Throughout this chapter we presented several highest weight vertex model opera-
tors and related them to observables in the network model. Although, or maybe
more appropriately because the treatment was quite elementary, meaning that we
only employed superalgebra rather than superanalysis, the question arises why these
observables were only found in 2013. There are at least two reasons, one being su-
perficial and the other being mathematical: Although the case n = 1 corresponds
to the ensemble average of moments of wavefunction amplitudes in the presence of
a point contact, which seems quite a simple object to consider, there is no obvious
correspondence between this theoretical vehicle and an experiment.
This has to be seen in contrast with, say, a two-point conductance, which could
easily be imagined to be an idealization of an actual transport measurement. The
constructions presented here also apply for general transport variables, as was shown
in [GMZ13]: Take n contacts in the region C1 and n contacts in the region C2. Now,
consider the set of stationary scattering states ψ1, . . . , ψn which correspond to the
region C1. To each state we can assign a transmission probability from ci ∈ C1 to
cj ∈ C2 by tij = ψi(cj). A construction analogous to that of Am, i.e. taking Bm as
the absolute value squared of the determinant of the upper-left m×m-corner of the
matrix T = (tij) gives the transport observable

Mq1···qn = 〈Bq1−q2
1 Bq2−q3

2 · · ·Bqn
n 〉 . (2.186)
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The leading scaling behavior of this observable with the distance |C1−C2| is given by
2∆q1···qn . As in the case of the two-point contact conductance, it does not decay as
a pure power but rather has an admixture of a continuum of subleading exponents,
which jeopardize numerical investigations.

On the other hand, from a heuristic viewpoint it was crystal clear how to pro-
ceed since the decomposition (2.98) of the point-contact operator became available
in 1999: One just has to write down an appropriate highest weight operator in
End(V ). Unfortunately, the decomposition of V ⊗ V ∗ into a principal continuous
series is quite complicated and no systematic method existed to find these opera-
tors. The original construction of the modules V and V ∗ was as representations of
a supergroup in terms of a super generalization of the Borel-Weil correspondence,
i.e. as holomorphic resp. antiholomorphic sections of a line bundle over the su-
per coset space GC/KC = GL2n|2n /GLn|n×GLn|n which is the complexification of
G/K = Un,n|2n /Un|n×Un|n. The product of both types of sections then gives an
ordinary function f ∈ C∞(G/K). In summary, we have the correspondences

End(V ) ' V ⊗ V ∗ ' Hol(G/K,L)⊗Hol(G/K,L∗)→ C∞(G/K) . (2.187)

The last correspondence is also well-known from the classical case: All irreducible
representations of SO3 have a realization as ordinary functions on the sphere called
spherical harmonics Y l

m ∈ C∞(S2). Here, one should notice

S2 ' SO3 / SO2 ' SU2 /U1 . (2.188)

Each of these representations is also an irreducible representation of the group SU2.
However, the odd-integer1 representations of SU2 do not appear as ordinary func-
tions, but rather as holomorphic sections of a line bundle over S2. Let us explain
what we mean by this notion: By Vm ' C we denote the one-dimensional U1-
representation given by the highest weight m for SU2. g = eiφσ3 ∈ U1 acts on
V by multiplication of ρ(g) = eimφ. The representation ρ allows us to pass from
the trivial vector bundle G × V to the associated bundle G ×ρ V , where we iden-
tify (gk, v) = (g, ρ(k)v). The sections of this bundle are isomorphic to the SU2-
representation induced by U1,

Γ(SU2 /U1, Vm) ' C∞(SU2, Vm)U1 , (2.189)

where the latter object is the set of all U1-equivariant complex-valued smooth func-
tions on SU2,

C∞(SU2, Vm)U1 = {f ∈ C∞(SU2, V )|f(gk) = ρ(k)−1f(g), k ∈ U1} . (2.190)

To explain the notion of holomorphicity, it is customary to pass to the complexified
setting, where we have

S2 ' SU2 /U1 ' SL2,C /B . (2.191)

The so-called Borel subgroup B is the unique connected subgroup in SL2,C which

1This is the way mathematicians label the highest weights; in physics, one would call them
half-integer.
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has Lie algebra b = gl1 ⊕ n+. In the standard matrix representation of SL2,C these

are the matrices of the form

(
a b
0 a−1

)
. We can extend the representation ρ of U1

on Vm to a representation ρB of B by

ρB

(
a b
0 a−1

)
= am . (2.192)

The holomorphic sections in Γ(SU2 /U1, Vm) then correspond to the holomorphic
functions in C∞(SL2,C, Vm)B. With this very explicit realization it is easy to work
out the details on 2×2 matrices, which shows that the holomorphic sections are the
homogeneous polynomials of degree m on the first column of SL2,C matrices [S07].
An analogous story can now be told in the antiholomorphic case, where the only
difference is that instead of Vm one has to use the dual representation V ∗m = V−m.
Thus, multiplying a holomorphic and an antiholomorphic B-equivariant function f1

resp. f2 on SL2,C we end up with a B-invariant function, since the contributions of
the one-dimensional B-representations on Vm and V ∗m cancel each other:

(f1 ⊗ f2)(g) = ρB(b)f1(gb)⊗ ρB(b−1)f2(gb) = (f1 ⊗ f2)(gb) . (2.193)

Since SL2,C /B ' S2 this product can then be regarded as an ordinary function on
the sphere S2.

The good objects to consider as gradientless pure scaling operators for the nonlinear
sigma models at the Anderson transition are functions on the target space G/K
which are eigenfunctions of all Laplace-Casimir operators on G/K. The reason
is that infinitesimal RG transformations acting on sigma model operators A are
equivalent to differential operators acting on A considered as a function on the
target space. Under the assumption that the action is G-invariant, infinitesimal
RG transformations correspond to G-invariant differential operators, a complete
set of which is furnished by Laplace-Casimir operators. The main advancement in
[GMZ13] was then to relate these functions back to properly symmetrized expressions
involving critical wavefunctions.
At this point we would also like to stress that the open-network situation we consider
is conceptually superior: The second term in the sigma model action

S[Q] =
1

16πt

∫
ddrTr(∇Q)2 + h

∫
ddrTr(QΛ) (2.194)

serves the purpose of infrared regularization in infinite volume, but breaks invariance
under the full group G down to invariance under the subgroup K. In the closed
network model this is related to the fact that an infinitesimal imaginary energy shift
is needed to make Green’s functions well-defined. From the viewpoint of symmetry
opening the network is a better way of regularization, because it preserves invariance
under G away from the contact. Furthermore, the correspondence between network
and vertex models furnished by Howe duality (and thus the correspondence between
our operators and observables) is exact, while in [GMZ13] this is only the case
approximately.

With the connection between pure scaling operators and eigenfunctions uncovered
we can now use a systematic way to relate a polynomial eigenfunction f ∈ C∞(G/K)
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of all Laplace-Casimir operators, which is a highest weight for the action

(X̂f)(gK) =
d

dt

∣∣∣∣
t=0

f(e−tXgK) (2.195)

of X ∈ g as a first-order differential operator X̂ on C∞(G/K), to vertex model
operators. The function

Q : G/K → gl2n|2n , Q(g) = g(iΣ3)g−1 , (2.196)

where Σ3 = σ3⊗ I2n, intertwines the action of G on C∞(G/K) by left multiplication
with the one on gl2n|2n by conjugation,

Q(hgK) = hg(iΣ3)g−1h−1 = Ad(h)Q(gK) . (2.197)

A correspondence between gl2n|2n and highest weights in C∞(G/K) can be estab-
lished by employing the moment map

µ : G/K → gl∗2n|2n , gK 7→ (X 7→ STr(XQ(gK))) (2.198)

which has a pullback

µ∗ : S(gl2n|2n)→ C∞(G/K) . (2.199)

Notice that the symmetric algebra S(gl2n|2n) is isomorphic to the polynomial func-
tions on the dual gl∗2n|2n. Evaluation of these polynomials, by finite-dimensionality
of the Lie superalgebra, is understood in the canonical sense

v(ϑ) = ϑ(v) for v ∈ V ' (V ∗)∗, ϑ ∈ V ∗ . (2.200)

Applying (2.195) to the moment map and using the G-equivariance of Q and the
cyclicity of the supertrace we see that elements in S(gl2n|2n) which are annihilated
by the adjoint action of n+ can be related to polynomial highest weight functions
on G/K. The second-quantized operators associated with the former objects then
have the desired properties.
We close this section with a remark on the nature of the operators ϕq. The attentive
reader has noticed that the representations of the continuous series do not contain
any highest weight vectors. The functions on G/K which are eigenfunctions of all
invariant differential operators form a so-called eigenspace representation of G–see
[H09] for details in the classical case. Our highest weight vertex model operators
live, morally speaking, on the boundary of G/K. Focusing on the purely bosonic
sector, SU1,1 can be interpreted as the group of Bogoliubov transformations which

relates the operators b±, b
†
± to a new set b̃±, b̃

†
± which still obey CCR:(

eiβ cosh t −ei(α+β) sinh t

−e−i(α+β) sinh t eiβ cosh t

)(
b+
b†−

)
=

(
b̃+
b̃†−

)
. (2.201)

The space of vacua resp. U1-equivalence classes of operators is SU1,1 /U1, which
can be modeled as the Poincaré disc. In this picture the operators (2.82) sit at the
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boundary and cannot be reached by any proper Bogoliubov transformation, which
explains their peculiar commutation relations (2.83) and the fact the transformation
(2.79) does not correspond to a unitary transformation on Fock space.



Chapter 3

Numerical Tests

Nachdem er einmal Doktorarbeiten aus dem Institut
von Ludwig Prandtl, immerhin eines weltberühmten
Strömungsmechanikers und Aerodynamikers, in die Hand
bekommen hatte, bezeichnete er fortan derartige Arbeiten,
die sich mit Fragen der Anwendung befassten, nur noch
ironisch-despektierlich als

”
Schmieröl“ und die zugehörige

Wissenschaft als
”

Schmieröl-Mathematik“.
Aus dem deutschen wikipedia-Artikel über Edmund Landau

In this chapter we report our numerical results, starting with an explanation of the
program used in our simulations. The source code can be found in appendix B. We
continue by investigating falsifiability, or, in other words, whether or not we can
distinguish between a network observable showing pure algebraic decay–the typical
two-point contact conductance–and one that does not. After receiving an affirma-
tive answer, we critically recapitulate the results from our letter [BWZ14] for the
observables An, 1 ≤ n ≤ 3, on long cylinders, as well as on 2 + 1-point functions.
We then present a recent attempt to refine these results which takes into account
finite size scaling. Finally, we investigate A1 in the corner of a rectangle, again using
finite size scaling.
Throughout this chapter the dimensions of the network are counted in plaquette
units, as explained in section 3.1. Error bars in the numerical data are always
standard errors of the mean. All fits are produced by the Mathematica 9 routine
NonlinearModelFit. The weights are given by the inverse variance of the numeri-
cal data as suggested by the Mathematica documentation, MaxIterations is set to
104 and the numerically robust method Levenberg-Marquardt is used in multi-
parameter fits. Unless stated otherwise, further options for this routine are the stan-
dard ones. If the fit object is called nlm, the error bars of the parameters are the ones
given by nlm[’’ParameterErrors’’]. The choice of weights is such that the
goodness of fit measure χ2

red can be found by nlm[’’EstimatedVariance’’].
Recall that this quantity is defined as [BR03]

χ2
red =

1

ν

n∑
i=1

(yi − Yi)2

σ2
i

. (3.1)
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Here, ν is the number of degrees of freedom1, yi the measured value, σi its variance
and Yi the prediction. Values of χ2

red around 1 are considered as very good fits. More
precisely, the value χ2

red should be compared with quantiles of the χ2-distribution
for the corresponding number of degrees of freedom. The distribution function is

f(χ2) =
1

2ν/2Γ(ν/2)
e−χ

2/2(χ2)ν/2−1 , (3.2)

which is derived from the assumption that the measured values are normally dis-
tributed. χ2 = 1 is the mean of the distribution, the median being slightly smaller
and depending on ν. To perform a statistical test, one has to specify a level α such
that ∫ ∞

χ2
ν,α

f(χ2)dχ2 = α , (3.3)

meaning that the probability of having the correct model at hand, but finding
χ2

red > χ2
ν,α/ν from a measurement or simulation is less than α. As an orienta-

tion we will state values for α = 0.05 in the appropriate places. However, also a
word of caution is in order, since such a statistical test must not be (ab)used as
the single criterion for assessing the validity of a fit. Thus, we will comment on the
results in every single case.
In this chapter we put strong emphasis on an accurate and transparent description
of the numerical procedures involved to produce our results in order to allow for full
reproducibility and (justified) criticism.

3.1 Description of the program code

We now explain how to calculate the scattering states introduced in section 1.7
numerically by constructing a matrix representation of the closed-network unitary
(discrete) time evolution operator U with respect to the basis given by the link
states. To this end, we view the Chalker-Coddington network as a rectangular
network consisting of LW plaquettes, where we henceforth call L the length and W
the width of the network as measured in plaquette units, see figure 3.1. Notice that
for cylindrical or toric geometries one or both of these dimensions will play the role
of a circumference.
For reasons of convenient implementation the counting of links starts at 0. On a
given plaquette, links are counted clockwise starting from upper right–this one we
call a link of type 0, the other ones accordingly type 1, 2 and 3–and probability flux
is scattered counterclockwise. The minus signs which ensure unitarity are placed in
the lower and the right corner. With other words, the lower scattering node is of

the type shown in figure 1.5 and we keep the convention
(
ψ1

ψ3

)
= 1√

2

(
1 −1
1 1

) ( ψ0

ψ2

)
.

The counting of plaquettes starts at the top left corner and then proceeds row-wise,
so that the links in the ith row are numbered from 4(i− 1)L to 4iL− 1. After each

1The reader may tolerate that this standard symbol collides with the localization length expo-
nent, which is not used in this chapter. Furthermore, we use ν = n − p, where p is the number of
parameters.
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Figure 3.1: The Chalker-Coddington network on a cylinder as a network of plaque-
ttes.

discrete time step, the four links on the plaquette in the ith row and jth column of
the network receive contributions from neighboring links as shown in figure 3.2 and
summarized in table 3.1.

4Li+ 4(j − 1)

4L(i− 1) + 4(j − 1) + 1

4L(i− 1) + 4j + 3

4L(i− 1) + 4(j − 1)4L(i− 2) + 4(j − 1) + 2

4L(i− 1) + 4(j − 1) + 3

4L(i− 1) + 4(j − 2) + 1

4L(i− 1) + 4(j − 1) + 2

Figure 3.2: Scattering in a generic plaquette in the bulk of the network.

link receives contribution from sign

4L(i− 1) + 4(j − 1) 4L(i− 1) + 4(j − 1) + 1 	
4L(i− 1) + 4j + 3 ⊕

4L(i− 1) + 4(j − 1) + 1 4L(i− 1) + 4(j − 1) + 2 	
4Li+ 4(j − 1) ⊕

4L(i− 1) + 4(j − 1) + 2 4L(i− 1) + 4(j − 1) + 3 ⊕
4L(i− 1) + 4(j − 2) + 1 ⊕

4L(i− 1) + 4(j − 1) + 3 4L(i− 1) + 4(j − 1) ⊕
4L(i− 2) + 4(j − 1) + 2 ⊕

Table 3.1: Link contributions in the bulk of the network.

In this thesis we consider two types of boundary conditions: reflecting (RBC) and
periodic (PBC). Let us have a look at two examples to see what changes in contrast
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edge of network BC link receives contribution from

right RBC 4iL− 4 4iL− 3
PBC 4iL− 3

4L(i− 1) + 3

lower RBC 4L(W − 1) + 4(j − 1) + 1 4L(W − 1) + 4(j − 1) + 2
PBC 4L(W − 1) + 4(j − 1) + 2

4(j − 1)

left RBC 4L(i− 1) + 2 4L(i− 1) + 3
PBC 4L(i− 1) + 3

4iL− 3

upper RBC 4(j − 1) + 3 4(j − 1)
PBC 4(j − 1)

4L(W − 1) + 4(j − 1) + 2

Table 3.2: Link contributions at the boundary of the network.

to bulk plaquettes: For RBC at the right side of the network, the wave function
amplitude on link type 1 is scattered into link type 0 at any given plaquette, whereas
no change is needed for scattering into link type 1. If we consider PBC instead, a
link of type 0 on the rightmost column is fed by link type 1 on the same plaquette
as well as by link type 3 on the leftmost part of the network. Conversely, link type 2
on the left-hand side receives a contribution from link type 3 on the same plaquette
and from link type 1 on the right-hand side. The general situation is summarized in
table 3.1. With this preliminary work done it is now easy to set up a sparse matrix
representation of U for a given network size L, W and boundary conditions. We
then want to calculate the open-network scattering wavefunction

|ψk〉 = U(1−QU)−1 |ck〉 (3.4)

with projector Q = 1−∑n
l=1 |cl〉 〈cl|. Since we are ultimately interested in studying

observables of the type introduced in chapter 2, we only need to consider the am-
plitudes of |ψk〉 on links which do not lie in the direct vicinity of the contact, i.e.
which are more than one scattering event away. Thus we can multiply both sides of
(3.4) by U−1 without changing the amplitude on these links:

(1−QU) |ψ′k〉 = |ck〉 . (3.5)

This representation has the advantage that no numerical inversion is needed anymore
since |ψ′k〉 is now the solution of a system of linear equations and coincides with |ψk〉
on all links which are not directly connected to the contact(s).
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3.2 Results on long cylinders

Recall from the introductory chapter that a preferred geometry for numerical studies
is the quasi one-dimensional long cylinder, where an explicit and easy formula is
available for the decay of two-point functions of conformal primary fields. In section
1.6 we derived

〈φ(w1, w
∗
1)φ(w2, w

∗
2)〉 =

∣∣∣∣Wπ sinh
( π
W
w12

)∣∣∣∣−2∆

, (3.6)

where w is a complex coordinate on the cylinder. In the following we will use
the coordinates τ and σ for the horizontal resp. vertical distance from the point
contact(s), see figure 3.3. The presence of the network introduces a non-universal
length scale parameter a, which could be interpreted as a lattice constant, so that
we will use ∣∣∣∣Wπa sinh

( π
W

(τ − τ ′ + iσ − iσ′)
)∣∣∣∣−2∆

(3.7)

as a fitting function. In the case of the typical two-point conductance, it is however
common to denote the exponents as Xtyp.

σ

τ

c

Figure 3.3: Coordinate system on the cylinder

3.2.1 Two-point contact conductances

We begin by addressing the question of falsifiability, meaning whether or not we
can even distinguish between observables that show pure scaling behavior and those
that do not. To this end, we consider the two-point contact conductance T given in
(1.66) and the typical two-point contact conductance. From the results of [JMZ99]
presented in section 2.3 we expect the ensemble average of the latter to show pure
scaling behavior, while the former should display deviations due to a continuum of
subleading scaling dimensions. We investigate this question on cylinders of length
L = 400 and different circumferences W = 19, 22, . . . , 40 at an ensemble size N =
106. The first contact sits in the center (0|0) of the cylinder, the second contact lies
at (τ |0), 10 ≤ τ ≤ 80. We use reflecting boundary conditions at the left and right
end of the cylinder, so that we want to take the observation region in the bulk of
the cylinder. The method comes with the drawback that the second contact moves,
so that 106 runs of the program are needed for each data point. While this problem
can be circumvented by employing the Klesse-Zirnbauer formula (1.67) which relates
this particular observable to eigenstates of the closed network, no generalization is
available for more general transport observables like the ones mentioned in (2.186).
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The results for the typical two-point contact conductance are shown in figure 3.4.
The main part shows the numerical data and the fitted curves, where the smallest
circumference W = 19 corresponds to the bottom curve. The visual impression of
a perfect fit between numerical data and the predicted behavior is substantiated
by the goodness of fit measure χ2

red displayed in table 3.3. In this case we have
χ2
ν,0.05 = 1.3. The fitted exponents show a slow decay with the circumference of

the system, as is expected from our discussion of finite size scaling in section 1.3.
A value of about 0.53 is in accordance with the value 0.57 ± 0.05 found in [KZ01].
This discrepancy as well as the much larger error bars come from the fact that the
latter was not obtained by a fitting procedure, but rather from visual inspection of
a collapse plot (as shown in set inset of figure 3.4) for different values of ∆ [K13].
For producing this type of plot one plots E{lnT}+Xtyp lnW versus ln τ

W . For the
correct choice of Xtyp this makes the curves collapse onto a single one, as long as the
non-universal parameter a does not change drastically (which would shift individual
curves vertically). However, even if we include a numerically cheap data point for
W = 3, which gives the fitting value Xtyp = 0.53868(3), our collapse plot does not
show the broadening visible in figure 2 of [KZ01], so that from visual inspection
we would infer Xtyp = 0.53 ± 0.02. The situation differs drastically for the two-
point contact conductance, which is shown in figure 3.5. The visual impression of
a ”bad fit“–every curve is missing almost all data points in a systematic way–is
underpinned by values of χ2

red ranging from 28 for W = 40 to 103 for W = 19. One
should note that the argument of the fitting function contains the ratio τ

W , so that
for larger circumferences a smaller interval of the continuum curve is probed by the
data points, which results in a slightly better fit.
The optimal values for χ2

red in the case of a pure scaling observable in combination
with the large values of this measure for an observable which is expected to suffer
from continuous subleading contributions justifies to use the goodness of fit as a
criterion for the pure scaling nature of the observables An.

W 19 22 25 28

Xtyp 0.5356(1) 0.5345(1) 0.5338(1) 0.5330(1)

χ2
red 1.03 0.98 0.75 1.23

W 31 34 37 40

Xtyp 0.5322(1) 0.5320(2) 0.5312(2) 0.5306(1)

χ2
red 0.95 1.25 1.19 0.80

Table 3.3: Numerical results on the typical two-point conductance.
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Figure 3.4: Numerical results for the typical two-point contact conductance. Inset:
Collapse of the data under rescaling. For a discussion, see the main text.
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Figure 3.5: Numerical results for the two-point contact conductance. For a discus-
sion, see main text.
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3.2.2 First results on the observables A1, A2, A3

In this section we recall and critically reinvestigate the numerical results we already
presented in [BWZ14]. These were produced in a few weeks on the rather small
cluster IBM THP which only allows for 250 parallel jobs, imposing restrictions on
both ensemble and system size. We thus had to restrict ourselves to the setup we
also used for the two-point contact conductance, i.e. L = 400, 19 ≤ W ≤ 40 and
N = 106 with distances 10 ≤ τ ≤ 80 between observation region R and contact
region C. For the observables An with n > 1 we placed the links in C resp. R
as close as possible, namely on equivalent links on plaquettes on top of each other.
This setup is shown in figure 3.6 for n = 2.

...

r1

r2

c1

c2

|r − c|

Figure 3.6: Setup for the contact and observation links (dots).

Figure 3.7 displays the goodness of fit for n = 1, 2, 3 and |q| ≤ 0.7 using the prediction
(3.7), which was not contained in our letter. For A1 and A2 the data are accurately
described. The results for A3 are still acceptable for most values of q and the
goodness of fit is, depending on the circumference of the system, between one and
two orders of magnitude smaller than the one we found for the two-point contact
conductance. Figure 3.8 shows a comparison of numerical data and a fit for A0.5

3 .
These results thus strongly imply that the observables An indeed show pure scaling
behavior.
Notice that since An is defined as an n×n-determinant of a matrix containing only
small elements, one has to proceed with caution especially in the range of negative
q. The values of A3 can underflow available data types, but at the same time the
smallest values give the most important contributions for negative q. The extracted
exponents should thus be used with more caution than the ones for n = 1, 2. We
will come back to this point shortly.

q−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
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2

q−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

3
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χ
2

q−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0
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2

3

4

5

χ
2

Figure 3.7: Goodness of fit for A1 (left), A2 (center), A3 (right)
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Figure 3.8: Fluctuations of the exponents ∆q,0.5 with the circumference (left), com-
parison of numerical data and fit for A0.5

3 and a collapse plot of the curves (right,
figure taken from [BWZ14]).

Already due to the narrow interval of circumferences a finite size scaling analysis for
the data set at hand is doomed to fail, but also individually fitted scaling dimensions
∆q,n(W ) suffer from fluctuations as functions of the circumference, as is shown in
the left part of figure 3.8. To specify a scaling dimension ∆q,n we thus limited
ourselves to giving the mean and standard deviation for each set of eight exponents
{∆q,n(19), . . . ,∆q,n(40)}. The collapse plot of A0.5

3 in the inset of figure 3.8 was
generated using such a mean exponent ∆0.5,3.

We now address the important question of (non-)parabolicity of the multifractal
spectrum obtained from the numerical exponents ∆q,n. Recall from section 2.3 that
the only terms allowed to appear here are eigenvalues of gl2n|2n Casimir invariants
evaluated on the irreducible representation to which ϕq belongs. The expression
(2.182) can be specified to this case to give

C2(q, n) = nq(n− q) C4(q, n) = −n(q(n− q))2 + n(n2 − 1/2)q(n− q) . (3.8)

Up to quartic terms, the scaling dimensions then have the form

∆q,n = a0C2(q, n) + a1C2(q, n)2 + a2C4(q, n) . (3.9)

On a microscopic level the theory should be described by a gl2|2-invariant Hamil-
tonian, so the parameters are independent of q and n and a fit of this ansatz to
the numerical data has to explain all numerical exponents at once. To compare the
results for n = 1 directly with the literature, we can convert this expression to the
form

2∆q,1 = q(1− q)(b0 + b1(q − 1/2))2 , (3.10)

which has been used by Evers et al. [EMM08] and Obuse et al. [OSF+08]. Only
two parameters b0, b1 appear here, because for n = 1 the eigenvalues C4(q, n) are
not algebraically independent of C2(q, n) and C2(q, n)2. Recall from section 1.5
that the first set of authors found b0 = 0.1291(2), b1 = 0.0029(3) by a finite size
scaling analysis of moments of the local density of states on squares of dimension
up to 1000 × 1000, while Obuse et al. found b0 = 0.1300, b1 = 0.0032 for the same
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observable in cylindrical geometry without giving error bars. From our data we
arrive at b0 = 0.1327(1), b1 = 0.0036(1) at χ2

red = 0.7. Keeping in mind that we
could not employ finite size scaling for our data and we are thus missing at least one
type of systematic errors, these results are in reasonable accordance. Fitting our data
sets for n = 1 and n = 2 simultaneously, we find a0 = 0.2637(2), a1 = 0.0028(1)
and a2 = 0.0075(1) at χ2

red = 1.17 < 1.25 = χ2
ν,0.05/ν. A comparison between

data and fit is shown in figure 3.9. This fit is stable under restriction of the data
set: If we discard, e.g., half of the data points by restricting to |q| < 0.35, this
leaves the parameters unchanged while only increasing the statistical error in the
last significant digit of a1 by one, meaning that we can perfectly extrapolate to the
rest of our data set. At the same time, we find it impossible to explain our data by
a strictly parabolic spectrum, as the simultaneous fit shown in figure 3.10 reveals
(χ2

red = 228). Notice in particular that the finite size scaling results in [EMM08]
imply that the exponents (for positive q) should decrease with system size, while
improving the parabolic fit would require increasing exponents.

q
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Figure 3.9: Simultaneous fit of ∆q,n for n = 1 (left) and n = 2 (right) using the full
ansatz (3.9)
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Figure 3.10: Simultaneous fit of ∆q,n for n = 1 (left) and n = 2 (right), including
only the quadratic term C2(q, n) in (3.9)

Although our discussion of the observable Aq3 indicates that our numerical exponents
∆q,3 should be taken with caution, the author was tempted to present a simultaneous
fit of (3.9) for n = 1, 2, 3 in [BWZ14] which he wants to revise at this point. The
plot presented there might give the visual impression that the fit is accurate, but
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a reinvestigation shows that this is not the case at all (χ2
red = 110). In fact, we

cannot find an acceptable fit for this situation if we include only quartic terms. We
thus take the stability of the fitting parameters for n = 1 under inclusion of n = 2
as a further indication for the fact that the results for A3 should be regarded only
as qualitative evidence for the pure scaling nature of the observables. Notice that
this does not change the conclusion drawn in our letter: We still find it necessary to
include quartic terms into the scaling dimension in order to explain the numerical
data, but our closer look now reveals that the ansatz (3.9) gives a stable simultaneous
fit for A1 and A2 in the range |q| ≤ 0.7.

3.2.3 2+1-point functions

As a further test for conformal invariance, we checked in [BWZ14] whether the
nontrivial prediction for the decay of the 2+1-point function (1.61), which we recall
here for convenience,

〈φ1(z1, z
∗
1)φ2(z2, z

∗
2)φ3(z3, z

∗
3)〉 =

C123

z∆1+∆2−∆3
12 z∆1+∆3−∆2

13 z∆2+∆3−∆1
23

(3.11)

matches with numerical results. On the cylinder, the infinite-plane distances zij
have to be replaced by the fitting function (3.7) evaluated at the appropriate points.
Recall further that the term ”2+1-point function“ originates from the vertex model
observables (2.121), where two highest weight operators are paired with one point
contact.
We chose the setup displayed in figure 3.11. On a cylinder of length L = 400 and
circumference W = 50 we fixed the contact at the center (0|0). One observation
point lies at r1 = (τ1|0), the second one moves around the cylinder at the same
horizontal distance r2 = (τ1|σ2), where we chose τ1 = 10, 20, . . . , 60. The observable
we considered is E{|ψ(r1)|0.5|ψ(r2)|0.5}, i.e. we chose q1 = q2 = 1

4 . The average
was taken over N = 106 realizations of disorder. Since we multiplied two strongly
fluctuating numbers at distant positions before carrying out the ensemble average,
it is no surprise that the observable also suffers from large fluctuations if we choose
larger values of qi, but it turned out that our intermediate choice gives good results.
Figure 3.12 shows a comparison between the numerical data and the prediction
(1.61). We emphasize that the only fit parameter involved here is the non-universal
lattice constant a (in which the constant C123 is absorbed), while we used the scaling
dimensions determined in the previous section. Nevertheless, we get an impressive
match (χ2

red = 0.8), which provides further strong evidence for the pure scaling
nature of the observables.

σ

τ
c

1

Figure 3.11: Numerical setup for the three-point function.
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Figure 3.12: Match between numerical results and theoretical prediction for the
2 + 1-point function. Figure taken from [BWZ14].

3.2.4 An attempt at finite size scaling for A1

In an attempt to improve the results presented in section 3.2.2, we change some
aspects of the numerical simulation: The ensemble size is increased by one or-
der of magnitude to N = 107 and we consider cylinders of size 15W × W for
W = 5, 10, 20, 30, 40, 50, 60, 80, 100. The contact is placed at distance 2W from
the boundary, and we restrict the observation region to aW ≤ τ ≤ bW . The reason
for this choice are twofold. On one hand, the whole setup is just scaled up with the
circumference, so that we always probe the same region of the fitting function’s ar-
gument. On the other hand, placing the contact near the boundary is not expected
to change the results, since amplitude reflected at the boundary might exit through
the contact; only the observation region we still keep far from the boundary. We
checked that for positive q different choices for a < b give compatible results for the
exponents within error bars, but the growth of the observable renders fluctuations in
the data far away from the contact large for negative q, so that in these cases no fit
is possible. This especially happens for the larger circumferences. We thus restrict
the fits to the region 2W ≤ τ ≤ 5W , which captures sufficiently many points for
the small circumferences but avoids large fluctuations at remote distances from the
contact. The scaling dimensions ∆q,1(W ) are extracted as described in section 3.2.2.
We then tried to fit them using the usual finite size scaling size with one irrelevant
exponent

∆q,1(W ) = ∆q,∞ +
aq
W y

. (3.12)

The results turn out to be discouraging: Only for 0 < q ≤ 0.4 is it possible to do
such a fit at all. For smaller or larger q the fitting routine produces nonsensical
irrelevant exponents less than 10−6 combined with asymptotic scaling dimensions
∆q,1,∞ < −103. The results for the former range are displayed in figure 3.13. The
irrelevant exponents are clearly not constant within error bars, although there should
be only one universal y independent of q. Dividing the asymptotic dimensions by
the functional dependence q(1− q) of the quadratic Casimir eigenvalue, parabolicity
of the spectrum corresponds to a constant result which we do not find here; in fact
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not even the symmetry of this reduced asymptotic dimension around q = 1/2 is
recovered. We take these findings as an indication that the finite size scaling study
of A1 (and thus also for n > 1), at least using this approach, should be postponed
until more computing power is available.
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Figure 3.13: Finite size scaling analysis: Goodness of fit (left), Asymptotic exponents
∆q,1,∞ (center), irrelevant exponents (right).

3.3 Results on the rectangle

As we mentioned in section 1.5, more pronounced fluctuations as well as a new set
of multifractal dimensions arise near the surface of a critical system. If deviations
from parabolicity are present in the spectrum, they are expected to be stronger near
the surface. We take this as motivation to study the observable A1 in rectangular
geometry. More specifically, we consider a rectangle R with corners in ±L

2 , ±L
2 +iW

shown in figure 3.14 as well as the rectangle R′ with L and W interchanged.

ℑ(z)

ℜ(z)−L
2

L
2
+ iW−L

2
+ iW

L
2

Figure 3.14: A rectangle in the upper half plane used for our simulations.

In terms of corner primary fields Ψc, we consider the ratio

Z(τ) =

〈
Ψc
(
−L

2

)
Ψc
(
L
2

)〉
R〈

Ψc
(
−W

2

)
Ψc
(
W
2

)〉
R′

(3.13)

with τ = iWL . By the calculation presented in appendix A we expect it to scale with
the aspect ratio as

Z(τ) = 2−8∆c

(
η
(
τ
2

)
η(2τ)

)16∆c

, (3.14)
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where c indicates that we study a corner exponent. In our simulations we replace
one field by a point contact sitting at the lower left corner of the network and the
other by an observation link at the lower right corner. For R we have c = −L

2 and
r = L

2 , i.e. the numerator of Z(τ) corresponds to E{ψ(r)}, evaluated in a network
of size L×W .
To the best of our knowledge, a ratio of two-point functions in the corners of a
rectangle has not been put on numerical trial in the literature so far. Obuse et al.
[OSF+07b] considered the scaling of the local density of states near corners with
different angles θ to provide numerical evidence for the relation

∆θ
q =

π

θ
∆s
q (3.15)

predicted by conformal field theory. The exponent on the right-hand side refers to
a straight edge and was studied in [OSF+08].
We first establish that the scaling behavior in (3.14) holds and then consider the
finite size scaling of this observable on rectangles of fixed aspect ratio L = 2W .
Since we work in a situation where θ = π

2 , we expect the exponent hq := 2∆c
q to

coincide with previous results on ∆s
q.

3.3.1 Establishing the scaling behavior of Z(τ)

Expecting large fluctuations, we are particularly careful in our try to establish the
so-far unknown scaling behavior (3.14). Firstly, we choose a large nontrivial system,
i.e. aspect ratio different from one, so that the observable is non-constant. As we
discussed in section 1.7, scattering states obey the symmetry relation

〈|ψ(r)|2q〉 = 〈|ψ(r)|2(1−q)〉 . (3.16)

We use the restoration of this symmetry for 0 ≤ q ≤ 1 in the numerical data as a
criterion for an appropriate ensemble size. After checking on a very small system
that this is possible at all, we went to a rather large network of size 200× 100. The
results for ensemble sizes between 104 and 108 are shown in figure 3.15, from which
we conclude that only the largest one is sufficient for our purposes. As a comparison,
the symmetry in the bulk observable Aq1 on long cylinders is already restored at two
orders of magnitude less.
Now, we consider networks of widthW = 100 and varying length L = 150, 175, . . . , 300.
The intention behind these large rectangles is that it lies in the very nature of the
observable (3.14) to be studied on systems of different aspect ratios, so we want to
keep possible changes in the exponent h due to finite size scaling with L as small as
possible. Occupying 1500 CPU cores in parallel, the simulation of the largest system
took ten days on CHEOPS. The comparison between the numerical data for q = 0.5
and the fitting function Z0.5(τ) is shown in figure 3.17. The inset of this figure
displays the goodness of fit in the range 0 ≤ q ≤ 0.5. To get a comparable χ2

red by a
generic fitting function one has to use a polynomial of degree 5–i.e. six parameters
for seven data points–an ansatz which does not only overfit the data, but is also not
capable of reproducing the trivial value Z(i) = 1 for L = W as an extrapolation.
The results thus clearly imply that our one-parameter fitting function (3.14) does
indeed describe the observable correctly.
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Figure 3.15: Comparison of different ensemble sizes, from 104 (bottom) to 108 (top).
Solid lines are meant as a guide to the eye.
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Figure 3.16: Numerical data and fit for Z0.5(τ). Inset: χ2
red in the range 0 ≤ q ≤ 0.5.

3.3.2 Finite size scaling on the rectangle

Now that we have numerically established (3.14) as the correct decay behavior of
the observable Z(τ), we address the question of finite size scaling on the rectangle.
In view of the large ensemble sizes needed and the desire to study at least one order
of magnitude both in length and width of the rectangles under consideration, we
decided to investigate the aspect ratio 1

2 at an ensemble size of N = 108. The
system widths we consider are W = 5, 7, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100. Since
τ = i

2 is fixed, we can invert (3.14) for given q and W to extract the exponent hq,W .
For fixed q these data points are then fitted against the usual finite size scaling
ansatz

hq(W ) = hq,∞ +
aq
W 2y

. (3.17)

Notice that aq is a non-universal parameter which may depend on q and we are only
interested in the asymptotic exponents hq,∞ as well as the most important irrelevant
exponent y. Both length and width are scaled up at constant ratio, thus a factor
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of 2 appears in front of y. The goodness of fit of hq(W ) for |q| ≤ 0.5 lies between
0.8 ≤ χ2

red ≤ 4.0. Figure 3.17 shows a comparison between the numerical data
hq,W and the fitted function, which indicates that the larger values of χ2

red are most
likely due to underestimated statistical errors. However, from its definition (3.1)
one immediately sees that switching from a 68% confidence interval [yi− σi, yi + σi]
to a 95% interval [yi − 2σi, yi + 2σi] reduces χ2

red by a factor of 4. Another way for
improving the goodness of fit would be to discard the data points for W = 15 and
W = 100 as outliers, but this method is less controlled and also decreases the error
bars on the parameters of interest. From a statistical viewpoint a goodness of fit
measure up to 2 is still acceptable at α = 0.05, the large value coming from the
fact that less degrees of freedom are involved. But as we will see, even if we would
declare this criterion as our impeccable source of truth and discard all asymptotic
exponents outside −0.05 ≤ q ≤ 0.3, the statement on the form of the spectrum
would remain unchanged.
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Figure 3.17: Comparison between numerical data and fit for Z0.5(τ) (left), goodness
of fit for the finite scaling ansatz (3.17) (right).

Although we cannot improve on the size of the error bars, our result y ≈ 0.6 for the
irrelevant exponent shown in figure 3.18 is compatible with the ones recently found
[OBL+13]. This is quite remarkable, because there is no a priori reason why the
leading irrelevant exponent in a corner should coincide with its bulk counterpart.
Furthermore, in view of the problems discussed in section 3.2.4 it is also remarkable
that we are able to get meaningful results in a finite size scaling analysis in the
rectangular geometry. Here, the exponent in a system of dimension 100× 50 differs
by less than 1% from the fitted asymptotic one. We can only speculate that this
may be related to the fact that the rectangular geometry could be studied exactly
in a numerical simulation. This has to be seen in contrast to the infinite cylinder,
for which we had to choose artificial reflecting boundaries.

Finally, we turn to the corner multifractal spectrum. Since we are interested in
particular in the (non-)parabolicity of hq,∞ as a function of q, we divide by the
functional dependence q(1− q) of the quadratic term and consider

h̃(q) =
hq,∞

q(1− q) = c0 + c1

(
q − 1

2

)2

+ c2

(
q − 1

2

)4

+ · · · , (3.18)

where the expansion matches the symmetry of the spectrum.
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Figure 3.18: Irrelevant exponents obtained from fitting hq(W ) (left), numerical data
for h̃(q) together with fit 0.37986 + 0.0481(q − 1

2)2) (right).

Firstly, parabolicity of the corner spectrum is clearly not in accordance with the
numerical data shown in figure 3.18.

A two-parameter fit with c0 = 0.37986(4), c1 = 0.0481(1) gives a perfect expla-
nation of the numerical data (χ2

red = 0.08). Inclusion of the next order gives
c0 = 0.37955(2), c1 = 0.0507(1) and c2 = −0.0035(1), but comes at the price of
overfitting the data (χ2

red = 0.004). Therefore, we accept the two-parameter fit.
These results are in reasonable accordance with the ones found in [OSF+08], where
the scaling of the local density of states, coarse-grained over strips of unit width
along the boundaries, was investigated. In this case c0 = 0.370 and c1 = 0.042 was
found without giving error bars. We interpret the plot shown in figure 3.19 as an
indication that the ensemble size used by these authors was not sufficient to restore
the symmetry of the spectrum. Our own results in figure 3.15 strongly imply that
exponents for q < 1

2 are far more trustworthy than the ones for q > 1
2 when one

employs a comparably small ensemble. Taking this into account the exponents show
stronger deviations from parabolicity than the plotted solid curve implies. Recall
that we consider reduced scaling dimensions, so a parabolic spectrum would corre-
spond to a constant plot. The difference in the constant c0 could come from the fact
that a coarse-graining procedure of the local density of states along narrow strips
along the boundary of the system was used, while in our case the contact and the
observation links sit right at the corner of the system.

Figure 3.19: Surface exponents γsq = ∆s
q/(q(1 − q)), taken from [OSF+08]. Filled

symbols represents numerical data, open symbols are reflected at the axis q = 1/2.

In conclusion, if we accept the extrapolation of the data to the continuum limit
using the finite size scaling ansatz (3.17) we must infer that the corner multifractal
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spectrum is not parabolic. Although no strong statement could be made about
the connection between bulk and surface exponents for an arbitrary conformal field
theory, deviations from parabolicity at the boundary at least rule out Wess-Zumino-
Witten models for the bulk and the boundary at the same time [OSF+08].



Chapter 4

Summary and outlook

Erstens kommt es anders,
und zweitens als man denkt.
Wilhelm Busch

In this thesis we introduced a broad class of highest weight operators ϕq in the super-
symmetric gl2n|2n vertex model and related their vertex model averages in the pres-
ence of vacuum projectors to open-network observables in the Chalker-Coddington
model. Each individual constituent of the vertex model, called vertex model module,
corresponds to a link in the network. The observables are built of local intensities
of a basis of stationary scattering states, where the observation points correspond
to the modules where the operators act and the point contacts correspond to the
vacuum projectors.
Based on symmetry arguments, it was then natural to conjecture that our operators
constitute lattice discretizations of a conformal field theory which emerges as the
continuum limit of the network model. We thus expected the observables to feature
pure scaling behavior with the distance between the region C of point contacts and
the region R of observation links. If the model indeed describes the universal fea-
tures of the integer quantum Hall plateau transition–at least it has been introduced
with this intention and, apart from a comment in [NKS14], we are not aware of
any serious doubts at this point–then our statements also hold true in this physical
situation.
We presented strong numerical evidence in favor of the expected behavior by investi-
gating the decay of the observables An in the presence of up to n = 3 point contacts
in cylindrical geometry. Moreover, we found that the data for a 2+1-point function
(two observation links and one contact) is in perfect agreement with predictions from
conformal field theory. Due to limited computational resources we did not succeed
in determining the asymptotic values of the multifractal exponents extracted from
these simulations by finite size scaling. Nevertheless, we tried to use a fitting ansatz
for the spectrum which included the three lowest order terms compatible with the
symmetry. Fitting the results for n = 1 and n = 2 simultaneously, it is impossible
to explain these numerical exponents using only a parabolic spectrum which is in
accordance with previous results [EMM08][OSF+08].
Furthermore, we considered a rectangle of length L and width W with a point con-
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tact in the lower left corner and observed A1 in the lower right corner. The ratio
of this observable and its counterpart for a rectangle with L and W interchanged is
predicted by conformal field theory to be a ratio of Dedekind eta functions which
depends only on the aspect ratio of the system. We established this scaling behavior
numerically, which provides further strong evidence for the pure scaling nature of
the observable A1. Finally, we used this result in order to study the finite size scaling
of moments of A1 on rectangles of constant aspect ratio L = 2W up to W = 100
at an ensemble size of 108. If the extrapolation of the numerical exponents to the
continuum limit is accepted, it is neccessary to include a non-parabolic term in the
spectrum. This agrees with the results in [OSF+08].
We close this section by offering some directions for future work: The story we told
in chapter 2 can be repeated for the network model in class C [KHA+99] which
describes the spin quantum Hall transition. This model has link space C2, i.e. two
separate channels for each spin orientation. The deterministic part of the unitary
time evolution is the same as in class A, independently for each channel, and ad-
ditionally there is USp2-disorder mixing the channels. After disorder averaging one
arrives at a sl2|1-vertex model.
From the perspective of mathematics it is desirable to gain a better understand-
ing of the eigenspace representations to which the operators ϕq belong. Up to now
nothing is known about reducibility or if these representations are related to a super
generalization of conical distributions [H09].
The pure scaling nature of our observables in combination with our results on the
spectrum raises the question of the corresponding continuum limit of the Chalker-
Coddington network model. A first (numerical) step towards this goal could be made
by calculating the operator product expansion coefficients from three- and four-point
functions numerically. As these observables generally suffer from the large fluctua-
tions of the scattering states, we were not able to carry out this program.
In a recent preprint [S14], Suslov showed that a set of consistency equations for the
multifractal dimensions which follow from the heuristic reasoning presented in sec-
tion 1.5 imply a strictly parabolic spectrum. The assumption that the moments of
critical wavefunctions become essentially uncorrelated once the distance between the
points is of order of the system size is wrong for our scattering states. Nevertheless,
we will show how to arrive at the same set of consistency equations in [BWZ15].
Arguing along Suslov’s lines then implies a strictly parabolic spectrum. However, the
systems considered in simulations or in actual experiments are obviously different
from the infinite plane: Our cylindrical geometries correspond to an annulus with
reflecting boundaries, whereas the rectangle corresponds to the upper half plane.
Although much work has been done to arrive at a conclusive answer, it remains
unclear if ”the observed deviations [from parabolicity] can be related with slow con-
vergence to the thermodynamic limit“ [S14] as Suslov claims to show in a preprint
not published to date or if they are due to the very presence of boundaries. In view
of the results on the boundary exponents, the author currently favors the latter
interpretation.



Appendix A

Two-point function on the
rectangle

In this appendix we relate the two-point function of two boundary conformal fields
sitting on the real line, which is in this case regarded as the boundary of the up-
per half plane, to the two-point function of two primary fields in the corners of a
rectangle. That the notions of conformal field theory generalize to this situation is
not entirely obvious, but a detailed discussion of this fact does not contribute to the
understanding of the following calculation. The interested reader is thus referred to
the introductory article [C04].
The upper half plane H (coordinate w) can be mapped conformally to a rectangle
R (coordinate z) by the Schwarz-Cristoffel-transformation

z = f(w) = α

∫ w

0

1√
(1− t2)(1− k2t2)

dt, α ∈ R . (A.1)

Specifically, the points ± 1
k , ±1 on the real axis are mapped to the corners according

to

f

(
±1

k

)
= α(±K + iK ′) f(±1) = ±αK , (A.2)

where K := K(k2) = 1
αf(1) is the complete elliptic integral of first kind and K ′ :=

K(1−k2). By an appropriate choice of α and k we can arrange the length L = 2αK
and width W = αK ′ to match prescribed values, see also figure A.1.

This goes as follows: Using q := e2πiτ , the Jacobi theta functions θi are defined as

θ2(τ) =
∑
n∈Z

q
1
2(n+ 1

2)
2

(A.3)

θ3(τ) =
∑
n∈Z

q
1
2
n2

(A.4)

θ4(τ) =
∑
n∈Z

(−1)nq
1
2
n2
. (A.5)

From the theory of special functions [AS72] it is known that for the special choice

k =
θ22(2τ)

θ23(2τ)
one has K(k) = 1

2πθ
2
3(2τ) and K ′(k) = −2iτK(k), i.e. τ = iK′

2K . Thus,
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Figure A.1: The Schwarz-Cristoffel transformation from the upper half plane to a
rectangle. Different line styles indicate which part of the real axis is mapped to
which edge of the rectangle.

for τ = iWL and α = L
2K we arrive at

f

(
±1

k

)
= ±L

2
+ iW f(±1) = ±L

2
. (A.6)

The inverse transformation of (A.1) is given by the Jacobi elliptic function

w = sn(
z

α
, k2) . (A.7)

For x ∈
(
−L

2 ,
L
2

)
, the derivative needed to transform correlators of boundary primary

field from H to R is

(f ′(w(x)))−h = α−h
(

(1− sn(
x

α
, k2))2(1− k2 sn(

x

α
, k2))2

)h
2

(A.8)

This expression vanishes as we approach the corners. More specifically, if we expand
around x = ±L

2 we find

(f ′(w(x))−h = α−2h(1− k2)h
(
z ± L

2

)
+O

(
(z ± L

2
)2

)
. (A.9)

Since the primaries in the upper half plane are not supposed to vanish w → ±1, one
defines the corner primary fields to behave as (z − zc)Ψc(zc), where the subscript
stands for ’corner’. Using this definition the singularity of the Jacobian is canceled.
In order to give a streamlined answer for the two-point function between two corners
of R we remind ourselves of the Dedekind eta function and its relation to Jacobi
theta functions,

η(τ) = q
1
24

∞∏
n=1

(1− qn) =

(
θ2(τ)θ3(τ)θ4(τ)

2

) 1
3

. (A.10)

Combining this with the transformation law for primaries (1.55), (A.8) and the
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relation K = π
4 (θ2

3(τ) + θ2
4(τ)) we arrive at〈

Ψc

(
−L

2

)
Ψc

(
L

2

)〉
R

= α−4h(1− k2)2h

∣∣∣∣L2 −
(
−L

2

)∣∣∣∣−2h

= 2−2hL−4h(2K)4h(1− k2)2h

= 2−2hL−4h24h

(
(
π

4
(θ2

3(τ) + θ2
4(τ)2))2 θ

4
4(2τ)

θ4
3(2τ)

)2h

=

(
π2

2

)4h

L−4hη16h(τ)η−8h(2τ) . (A.11)

Notice that the appearance of the factor L−4h is related to log-contributions to the
free energy at the corners [CP88]. Again, as in the case of the cylinder, the presence
of L introduced a non-universal lattice constant in the discretized setup we study
using the network model. It is preferable to introduce a rectangle R′ which results
from a rotation of R by π

2 and to consider the ratio

Z(τ) =

〈
Ψc
(
−L

2

)
Ψc
(
L
2

)〉
R〈

Ψc
(
−W

2

)
Ψc
(
W
2

)〉
R′

. (A.12)

The denominator is obtained from (A.11) by interchanging L and W :〈
Ψc

(
−W

2

)
Ψc

(
W

2

)〉
R′

=

(
π2

2

)4h

W−4hη16h

(
−1

τ

)
η−8h

(
−2

τ

)
=

(
π2

2

)4h

W−4h(−iτ)4h24hη16h(τ)η−8h
(τ

2

)
=

(
π2

2

)4h(
L

2

)4h

η16h(τ)η−8h
(τ

2

)
(A.13)

where the modular property η
(
− 1
τ

)
=
√
−iτη(τ) was used. We thus arrive at the

result

Z(τ) = 2−4h

(
η
(
τ
2

)
η(2τ)

)8h

. (A.14)

Notice that we concentrated on the holomorphic sector, so in order to relate h to
known results of boundary or corner spectra a factor of 2 has to be taken into
account.
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Appendix B

Program code

/* wfamp.cpp
compile using ’icpc wfamp.cpp solver.cpp generate_coefficient_matrix.cpp
bubblesort.cpp mtrand.cpp complex_functions.cpp getMilliCount.cpp
-lmkl_intel_lp64 -lmkl_core -lmkl_sequential -lpthread -O3 -o wfamp.out’

./wfamp.out L W N nc bc does the following for N disorder realizations:

- set up the (random phase) unitary time evolution operator U for a
Chalker-Coddington network with boundary conditions bc
(0:cylinder, 1:rectangle, 2:torus)
consisting of L*W plaquettes as a sparse matrix and calculate QU-1,
where Q is the projector
1-\sum_iˆ{nc}|m_i><m_i| and m_i are the positions
of nc point contacts
(this is done by generate_coefficient_matrix)

- solve the linear system (QU-1)|\Psi_i>=|m_i> for the scattering wavefunction |\
Psi_i>

(Notice that the results do not change by considering QU-1 instead of 1-QU,
since the are related by a global phase factor exp(i\pi). This way,
many minus signs are avoided in the code.)
(this is done by solve_unsym_complex)

- generate and print the absolute value squared of the desired wave function
amplitudes,

here for plaquettes with horizontal separation between 1 and 100 from m

A C++-port by Bedaux (http://www.bedaux.net/mtrand/mtrand.zip,
retrieved 13/10/02) of the original Mersenne Twister code by Matsumoto
and Nishimura (ACM Transactions on Modeling and Computer Simulation,
Vol. 8, No. 1, January 1998, pp. 3-30) is used for random number generation.

The MKL solver PARDISO is used to solve the linear system, initialization
and calls are adapted from the PARDISO project manual
(http://www.pardiso-project.org/manual/pardiso_unsym_complex.cpp, retrieved

13/09/20)

*/

#include <iostream>
#include <mkl_types.h>
#include <mkl.h>
#include <mkl_spblas.h>
#include "mtrand.h"
#include "generate_coefficient_matrix.h"
#include "generate_observable.h"
#include "solver.h"
#include "getMilliCount.h"
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using namespace std;

int main(int argc, const char* argv[])
{

int i,bc(1),nc(1),ensemblesize(1),L(200),W(1),run(0),n(800);

switch (argc)
{

case 6:
// boundary conditions
bc=int(atof(argv[5]));
// number of contacts, has to be smaller than 4.
nc=int(atof(argv[4]));
ensemblesize=int(atof(argv[3]));
W = int(atof(argv[2]));
L = int(atof(argv[1]));

break;
default:
cout << "usage: ./wfamp.out L W N nc bc" << endl;
cout << "L: system length (plaquette units)" << endl;
cout << "W: system width (plaquette units)" << endl;
cout << "N: ensemble size" << endl;
cout << "nc: number of contact (1,2,3)" << endl;
cout << "bc: boundary conditions (0:cylinder, 1:rectangle, 2:torus)" << endl;
return 0;

}

if(bc>2)
{

cout << "invalid boundary conditions" << endl;
return 0;

}
if(nc>3||nc==0)
{

cout << "use at least one and less than four contacts" << endl;
return 0;

}

int *m = new int[nc];

// Position of first point contact is m[0]. m[0]=2*L is the center of first row.
for(i=0;i<nc;i++)
{

m[i]=2*L+4*L*i;
}

n = 4*L*W; // number of links

// Number of nonzero entries in 1-QU.
// For n’ contacts this is 3*n-2*n’.
// (Every link scatters into (at most) two links,
// the diagonal has n entries, and 2*n’ are deleted
// to account for the presence of point contacts.
int nonzeroes=3*n-2*nc;

// initialization of MT19937 by system time in milliseconds
MTRand drand(getMilliCount());

while(run<ensemblesize)
{

// Solution vector psi and rhs of the system
// (QU-1)|\Psi>=|m>
// To calculate a basis of scattering states |\Psi_k>
// in presence of n’ contacts, n’ systems
// (QU-1)|\Psi_k>=|m_k>
// have to be solved; notice that the coefficient matrix
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// does not change. psi and rhs are
// vectors with nn’ entries and when PARDISO is finished
// |\Psi_k> is stored in psi[(k-1)n] ... psi[kn-1].
MKL_Complex16 *psi = new MKL_Complex16[n*nc]; // solution vector
MKL_Complex16 *rhs = new MKL_Complex16[n*nc]; // rhs of linear system

for(i=0;i<n*nc;i++)
{

psi[i].real=0;psi[i].imag=0;
rhs[i].real=0; rhs[i].imag=0;

}

for(i=0;i<nc;i++)
{
rhs[m[i]+n*i].real=1;

}

// Uscr,iU,jU stores QU-1 in compressed row storage form
MKL_Complex16 *Ucsr = new MKL_Complex16[nonzeroes];
int *jU = new int[nonzeroes];
int *iU = new int[n+1];

generate_coefficient_matrix(bc, n, nonzeroes, nc, m, L, W, iU, jU, Ucsr,
drand);

solve_unsym_complex(n,nc,Ucsr,iU,jU,rhs,psi);

int max_hdist = 100; // maximal horizontal distance between point contact
and observation

double *psi_abs2 = new double[max_hdist]; // stores |\Psi|ˆ2

generate_observable(n, nc, max_hdist, m, psi, psi_abs2);

// Output.

for(i=1;i<=max_hdist;i++)
{

cout << i << " " << psi_abs2[i] << endl;
}

run++;

delete [] rhs;
delete [] iU;
delete [] jU;
delete [] Ucsr;
delete [] psi;
delete [] psi_abs2;

} // end while

return 0;
}

// getMilliCount.cpp
#include <sys/timeb.h>

int getMilliCount(){
timeb tb;
ftime(&tb);
int nCount = tb.millitm + (tb.time & 0xfffff) * 1000;
return nCount;

}
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/* solver.cpp
The MKL solver PARDISO is used to solve the linear system, initialization
and calls are adapted from the PARDISO project manual
(http://www.pardiso-project.org/manual/pardiso_unsym_complex.cpp, retrieved

13/09/20)*/

#include <iostream>
#include "mkl_types.h"
#include <mkl.h>

using namespace std;

void solve_unsym_complex(int n, int nrhs, MKL_Complex16 *A, int *iA, int *jA,
MKL_Complex16 *rhs, MKL_Complex16 *solution){

// PARDISO variables
MKL_INT mtype = 13; /* Complex unsymmetric matrix */

/* Internal solver memory pointer pt, */
/* 32-bit: int pt[64]; 64-bit: long int pt[64] */
/* or void *pt[64] should be OK on both architectures */
void *pt[64];
/* Pardiso control parameters. */
MKL_INT iparm[64];
MKL_INT maxfct, mnum, phase, error, msglvl;

MKL_Complex16 ddum; /* Double dummy */
MKL_INT idum; /* Integer dummy. */

/* -------------------------------------------------------------------- */
/* .. Setup Pardiso control parameters. */
/* -------------------------------------------------------------------- */
for (int i = 0; i < 64; i++) {

iparm[i] = 0;
}
iparm[0] = 1; /* No solver default */
iparm[1] = 2; /* Fill-in reordering from METIS */
/* Numbers of processors, value of OMP_NUM_THREADS */
iparm[2] = 1;
iparm[3] = 0; /* No iterative-direct algorithm */
iparm[4] = 0; /* No user fill-in reducing permutation */
iparm[5] = 0; /* Write solution into x */
iparm[6] = 0; /* Not in use */
iparm[7] = 2; /* Max numbers of iterative refinement steps */
iparm[8] = 0; /* Not in use */
iparm[9] = 13; /* Perturb the pivot elements with 1E-13 */
iparm[10] = 1; /* Use nonsymmetric permutation and scaling MPS */
iparm[11] = 0; /* Not in use */
iparm[12] = 1; /* Maximum weighted matching algorithm is switched-on (

default for non-symmetric) */
iparm[13] = 0; /* Output: Number of perturbed pivots */
iparm[14] = 0; /* Not in use */
iparm[15] = 0; /* Not in use */
iparm[16] = 0; /* Not in use */
iparm[17] = -1; /* Output: Number of nonzeros in the factor LU */
iparm[18] = -1; /* Output: Mflops for LU factorization */
iparm[19] = 0; /* Output: Numbers of CG Iterations */

maxfct = 1; /* Maximum number of numerical factorizations. */
mnum = 1; /* Which factorization to use. */

msglvl = 0; /* Print statistical information */
error = 0; /* Initialize error flag */

/* -------------------------------------------------------------------- */
/* .. Initialize the internal solver memory pointer. This is only */
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/* necessary for the FIRST call of the PARDISO solver. */
/* -------------------------------------------------------------------- */
for (int i = 0; i < 64; i++) {

pt[i] = 0;
}

/* -------------------------------------------------------------------- */
/* .. Reordering and Symbolic Factorization. This step also allocates */
/* all memory that is necessary for the factorization. */
/* -------------------------------------------------------------------- */
phase = 11;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
&n, A, iA, jA, &idum, &nrhs,
iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {
cout << "ERROR during symbolic factorization: " << error << endl;
exit(1);

}

/* -------------------------------------------------------------------- */
/* .. Numerical factorization. */
/* -------------------------------------------------------------------- */
phase = 22;

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
&n, A, iA, jA, &idum, &nrhs,
iparm, &msglvl, &ddum, &ddum, &error);

if (error != 0) {
cout << "ERROR during numerical factorization: " << error << endl;
exit(2);

}

/* -------------------------------------------------------------------- */
/* .. Back substitution and iterative refinement. */
/* -------------------------------------------------------------------- */
phase = 33;

iparm[7] = 1; /* Max numbers of iterative refinement steps. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
&n, A, iA, jA, &idum, &nrhs,
iparm, &msglvl, rhs, solution, &error);

if (error != 0) {
cout << "ERROR during solution: " << error << endl;
exit(3);

}

/* -------------------------------------------------------------------- */
/* .. Termination and release of memory. */
/* -------------------------------------------------------------------- */
phase = -1; /* Release internal memory. */

PARDISO (pt, &maxfct, &mnum, &mtype, &phase,
&n, A, iA, jA, &idum, &nrhs,
iparm, &msglvl, &ddum, &ddum, &error);

}
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/* generate_observable.cpp
Generate |\Psi(x)|ˆ2 for horizontal distances
between x=1 and x=max_hdist from point contact region.
For more than one contact, LU decomposition is used
to calculate the determinants.*/

#include <mkl_types.h>
#include <mkl.h>
#include <mkl_spblas.h>
#include "complex_functions.h"

void generate_observable(int n, int nc, int max_hdist, int m[], MKL_Complex16 *psi
, double *psi_abs2)

{
int i;
switch(nc)
{
case 1:

for(i=1;i<=max_hdist;i++)
{

psi_abs2[i]=psi[m[0]+4*i].real*psi[m[0]+4*i].real+psi[m[0]+4*i].
imag*psi[m[0]+4*i].imag;

}
break;

case 2:
for(i=1;i<=max_hdist;i++)
{

MKL_Complex16 A[]={ psi[m[0]+4*i], psi[m[1]+4*i],
psi[m[0]+4*i+n], psi[m[1]+4*i+n]
};

int k=2;
int INFO;
int LWORK=10*k;
int *permutations = new int[2*k];
zgetrf_( &k, &k, A , &k, permutations , &INFO );
psi_abs2[i]=cabs2(cmult(A[0],A[3]));
delete [] permutations;

}
break;

case 3:
for(i=1;i<=max_hdist;i++)
{

MKL_Complex16 A[]={ psi[m[0]+4*i], psi[m[1]+4*i], psi[m[2]+4*i],
psi[m[0]+4*i+n], psi[m[1]+4*i+n], psi[m[2]+4*i+n],
psi[m[0]+4*i+2*n], psi[m[1]+4*i+2*n], psi[m[2]+4*i+2*n]
};

int k=3;
int INFO;
int LWORK=10*k;
int *permutations = new int[2*k];
zgetrf_( &k, &k, A , &k, permutations , &INFO );
psi_abs2[i]=cabs2(cmult(cmult(A[0],A[4]),A[8]));
delete [] permutations;

}
break;

}

}
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\* generate_coefficient_matrix.cpp
Generates the coefficient matrix of the linear system
of equations for different boundary conditions. *\
#include <iostream>
#include <mkl_types.h>
#include <mkl.h>
#include <math.h>
#include "mtrand.h"
#include "bubblesort.h"

void generate_coefficient_matrix(int bc, int n, int nonzeroes, int nc, int m[],
int L, int W, int *iU, int *jU, MKL_Complex16 *Ucsr, MTRand &drand){

int i,j,k,x,y;
MKL_Complex16 z1;
double randomphase(0);

// Ucoo,rowind,colind stores U in coordinate form
MKL_Complex16 *Ucoo = new MKL_Complex16[nonzeroes];
int *rowind = new int[nonzeroes];
int *colind = new int[nonzeroes];

// U2coo,rowind2,colind2 stores QU-1 in coordinate form
MKL_Complex16 *U2coo = new MKL_Complex16[nonzeroes];
int *rowind2 = new int[nonzeroes];
int *colind2 = new int[nonzeroes];

int count=0;

bool not_at_contact = true;

switch(bc)
{
case 0: //cylinder

for(y=0;y<W;y++)
{
for(x=0;x<L;x++)
{
for(k=0;k<4;k++)
{

i=4*L*y+4*x+k;
randomphase=2*M_PI*drand(); // random phase, distributed

uniformly on [0,2*pi)
z1.real = cos(randomphase)/sqrt(2);
z1.imag = sin(randomphase)/sqrt(2);
switch(k)
{
case 0: // scattering into upper right link on plaquette

at (x|y)

if(x!=L-1)
{
rowind[count]=i; colind[count]=i+1; Ucoo[count].real = -z1

.real; Ucoo[count].imag= -z1.imag; count++;
rowind[count]=i; colind[count]=i+7; Ucoo[count] = z1;

count++;
}
else // rightmost column
{
// Only link type 1 on plaquette (L-1|y) contributes (

reflecting bc)
rowind[count]=i; colind[count]=i+1; Ucoo[count].real = -

sqrt(2)*z1.real; Ucoo[count].imag= -sqrt(2)*z1.imag;
count++;

// No scattering from leftmost column
rowind[count]=i; colind[count]=i+7-4*L; Ucoo[count].real =

0; Ucoo[count].imag = 0;count++;
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}
break;

case 1: // lower right
rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;

count++;
if(y!=W-1)
{
rowind[count]=i; colind[count]=i-1+4*L; Ucoo[count] = z1;

count++;
}
else // last row receives contribution from first row (pbc

)
{
rowind[count]=i; colind[count]=i-1-4*L*(W-1); Ucoo[count]

= z1; count++;
}
break;

case 2: // lower left
if(x!=0)
{
rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;

count++;
rowind[count]=i; colind[count]=i-5; Ucoo[count] = z1;

count++;
}
else // Only link type 3 on plaquette (0|y+1) contributes
{
rowind[count]=i; colind[count]=i+1; Ucoo[count].real =

sqrt(2)*z1.real; Ucoo[count].imag = sqrt(2)*z1.imag;
count++;

rowind[count]=i; colind[count]=i-5+4*L; Ucoo[count].real =
0; Ucoo[count].imag = 0; count++;

}
break;

case 3: // upper left
rowind[count]=i; colind[count]=i-3; Ucoo[count] = z1;

count++;
if(y!=0)
{
rowind[count]=i; colind[count]=i-1-4*L; Ucoo[count].real =

-z1.real; Ucoo[count].imag= -z1.imag; count++;
}
else // first row receives contribution from last row
{
rowind[count]=i; colind[count]=i-1+4*L*(W-1); Ucoo[count].

real = -z1.real; Ucoo[count].imag=-z1.imag; count++;
}
break;

} // end switch(k)
} // end for(k)
} // end for(y)
} // end for(x)
break;

case 1: // rectangle
for(y=0;y<W;y++)
{
for(x=0;x<L;x++)
{
for(k=0;k<4;k++)
{

i=4*L*y+4*x+k;
randomphase=2*M_PI*drand(); // random phase, distributed

uniformly on [0,2*pi)
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z1.real = cos(randomphase)/sqrt(2);
z1.imag = sin(randomphase)/sqrt(2);
switch(k)
{
case 0:

if(x!=L-1)
{
rowind[count]=i; colind[count]=i+1; Ucoo[count].real = -z1

.real; Ucoo[count].imag= -z1.imag; count++;
rowind[count]=i; colind[count]=i+7; Ucoo[count] = z1;

count++;
}
else
{
rowind[count]=i; colind[count]=i+1; Ucoo[count].real = -

sqrt(2)*z1.real; Ucoo[count].imag= -sqrt(2)*z1.imag;
count++;

rowind[count]=i; colind[count]=i+7-4*L; Ucoo[count].real =
0; Ucoo[count].imag = 0;count++;

}
break;

case 1:

rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;
count++;

if(y!=W-1)
{
rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;

count++;
rowind[count]=i; colind[count]=i-1+4*L; Ucoo[count] = z1;

count++;
}
else
{
rowind[count]=i; colind[count]=i+1; Ucoo[count].real =

sqrt(2)*z1.real; Ucoo[count].imag = sqrt(2)*z1.imag;
count++;

rowind[count]=i; colind[count]=i-1-4*L*(W-1); Ucoo[count].
real = 0; Ucoo[count].imag=0; count++;

}
break;

case 2:

if(x!=0)
{
rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;

count++;
rowind[count]=i; colind[count]=i-5; Ucoo[count] = z1;

count++;
}
else
{
rowind[count]=i; colind[count]=i+1; Ucoo[count].real =

sqrt(2)*z1.real; Ucoo[count].imag = sqrt(2)*z1.imag;
count++;

rowind[count]=i; colind[count]=i-5+4*L; Ucoo[count].real =
0; Ucoo[count].imag = 0; count++;

}
break;

case 3:
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if(y!=0)
{
rowind[count]=i; colind[count]=i-3; Ucoo[count] = z1;

count++;
rowind[count]=i; colind[count]=i-1-4*L; Ucoo[count].real =

-z1.real; Ucoo[count].imag= -z1.imag; count++;
}
else
{
rowind[count]=i; colind[count]=i-3; Ucoo[count].real =

sqrt(2)*z1.real; Ucoo[count].imag = sqrt(2)*z1.imag;
count++;

rowind[count]=i; colind[count]=i-1+4*L*(W-1); Ucoo[count].
real = 0; Ucoo[count].imag=0; count++;

}
break;

} // end switch(k)
} // end for(k)
} // end for(y)
} // end for(x)
break;

case 2: //torus
for(y=0;y<W;y++)
{
for(x=0;x<L;x++)
{
for(k=0;k<4;k++)
{

i=4*L*y+4*x+k;
randomphase=2*M_PI*drand(); // random phase, distributed

uniformly on [0,2*pi)
z1.real = cos(randomphase)/sqrt(2);
z1.imag = sin(randomphase)/sqrt(2);
switch(k)
{
case 0:

rowind[count]=i; colind[count]=i+1; Ucoo[count].real = -z1
.real; Ucoo[count].imag= -z1.imag; count++;

if(x!=L-1)
{
rowind[count]=i; colind[count]=i+7; Ucoo[count] = z1;

count++;
}
else
{
rowind[count]=i; colind[count]=i+7-4*L; Ucoo[count] = z1;

count++;
}
break;

case 1:

rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;
count++;

if(y!=W-1)
{
rowind[count]=i; colind[count]=i-1+4*L; Ucoo[count] = z1;

count++;
}
else
{
rowind[count]=i; colind[count]=i-1-4*L*(W-1); Ucoo[count]

= z1; count++;
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}
break;

case 2:

rowind[count]=i; colind[count]=i+1; Ucoo[count] = z1;
count++;

if(x!=0)
{
rowind[count]=i; colind[count]=i-5; Ucoo[count] = z1;

count++;

}
else
{
rowind[count]=i; colind[count]=i-5+4*L; Ucoo[count] = z1;

count++;

}
break;

case 3:

rowind[count]=i; colind[count]=i-3; Ucoo[count] = z1;
count++;

if(y!=0)
{
rowind[count]=i; colind[count]=i-1-4*L; Ucoo[count].real =

-z1.real; Ucoo[count].imag= -z1.imag; count++;
}
else
{
rowind[count]=i; colind[count]=i-1+4*L*(W-1); Ucoo[count].

real = -z1.real; Ucoo[count].imag=-z1.imag; count++;
}
break;

} // end switch(k)
} // end for(k)
} // end for(y)
} // end for(x)
break;

}

// QU is calculated from U by deleting the rows corresponding to the
contacts

count=0;
for(i=0;i<2*n;i++)
{
for(j=0;j<nc;j++)
{
if(rowind[i]==m[j]){ not_at_contact=false; }

}
if(not_at_contact)
{
rowind2[count]=rowind[i]; colind2[count]=colind[i]; U2coo[count]=Ucoo[

i];
count++;

}
not_at_contact=true;

}

// fill in -1 on the diagonal
count=0;
for(i=nonzeroes-n;i<nonzeroes;i++)
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{
rowind2[i]=count; colind2[i]=count; U2coo[i].real=-1; U2coo[i].imag=0;

count++;
}

// Convert U2c00, rowind2, colind2 to column-compressed form Ucsr, jU, iU
// Notice that mkl_zcsrcoo does not care if the column indices
// are increasing for any given row, but this is required by the solver.
// For a description of the format see p.8 of the PARDISO manual
// http://www.pardiso-project.org/manual/manual.pdf
int *job= new int[6];
int *info = new int[1];
job[0]=1; job[1]=0; job[2]=0; job[3]=0; job[4]=nonzeroes; job[5]=3;
mkl_zcsrcoo(job, &n, Ucsr, jU, iU, &nonzeroes, U2coo, rowind2, colind2,

info);
delete [] job;
delete [] info;

// PARDISO routines require the column indices in jU to
// increase for any given row
for(i=0;i<n;i++)
{

bubblesort(jU,Ucsr,iU[i],iU[i+1]);
}
// Indices also have to start from 1 instead from 0
for(i=0;i<n+1;i++)
{

iU[i]++;
}
for(i=0;i<nonzeroes;i++)
{

jU[i]++;
}

delete [] Ucoo;
delete [] rowind;
delete [] colind;
delete [] U2coo;
delete [] rowind2;
delete [] colind2;

};

/* complex_functions.cpp
Apparently, no overloaded operators for MKL_Complex16 are available.*/

#include <iostream>
#include <mkl_types.h>

MKL_Complex16 cmult(MKL_Complex16 z1, MKL_Complex16 z2)
{

double a=z1.real;
double b=z1.imag;
double c=z2.real;
double d=z2.imag;
MKL_Complex16 z3;
z3.real = a*c-b*d; z3.imag=b*c+a*d;
return z3;

}

MKL_Complex16 csub(MKL_Complex16 z1, MKL_Complex16 z2)
{

double a=z1.real;
double b=z1.imag;
double c=z2.real;
double d=z2.imag;
MKL_Complex16 z3;
z3.real = a-c; z3.imag=b-d;
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return z3;
}

MKL_Complex16 cadd(MKL_Complex16 z1, MKL_Complex16 z2)
{

double a=z1.real;
double b=z1.imag;
double c=z2.real;
double d=z2.imag;
MKL_Complex16 z3;
z3.real = a+c; z3.imag=b+d;
return z3;

}

double cabs2(MKL_Complex16 z)
{

double abs;
abs=z.real*z.real+z.imag*z.imag;
return abs;

}

// bubblesort.cpp
// PARDISO demands the sparse array in column-compressed form
// with increasing column indices for each row of the matrix.
// Since there are only 3 entries per row, we use a trivial
// sorting algorithm.

#include "mkl_types.h"

void bubblesort(int *indexarray, MKL_Complex16 *valuearray, int startpos, int
endpos)

{
bool swapped = true;
int aux;
MKL_Complex16 aux2;
int n = endpos-startpos;
while(swapped==true)
{

swapped=false;
for(int i=startpos;i<startpos+n-1;i++)
{

if(indexarray[i] > index0array[i+1])
{

aux=indexarray[i];
aux2=valuearray[i];
indexarray[i]=indexarray[i+1];
valuearray[i]=valuearray[i+1];
indexarray[i+1]=aux;
valuearray[i+1]=aux2;
swapped = true;

}
}
n = n-1;

}
}
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Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen
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Köln, den 11. Mai 2015

Daniel Johann Wieczorek

Teilpublikationen:
R. Bondesan, D. Wieczorek and M.R. Zirnbauer, Pure Scaling Operators at the In-
teger Quantum Hall Plateau Transition, Phys. Rev. Lett. 112, 186803 (2014).

R. Bondesan, D. Wieczorek and M.R. Zirnbauer, in preparation.



Abschließende Worte

Dass Betreuer Interesse am Thema zeigen oder ihre Schützlinge gar betreuen, El-
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