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Zusammenfassung 

Implizites Lernen kann als unbewusster Lernprozess betrachtet werden, der ohne Intention 

stattfindet und es dem Lernenden ermöglicht, sich an Regularien in der Umwelt flexibel 

anzupassen. Implizite Lernprozesse wurden in der Forschung bereits intensiv untersucht, 

unter anderem unter der Verwendung der seriellen Wahlreaktionsaufgabe (SRTT; Nissen & 

Bullemer, 1987). Mit der SRTT können Versuchsteilnehmer eine sequenzielle Struktur lernen, 

über die sie vorher jedoch nicht informiert wurden. Anhand von Reaktionszeit-Daten lässt 

sich erkennen, dass die Versuchsteilnehmer die Sequenz tatsächlich oft implizit lernen, ohne 

sie jedoch hinterher explizit benennen zu können. 

Die Betrachtung der Bedingungen und Prozesse, unter denen Wissen in impliziten 

Lernsituationen bewusst wird, ist ein Bereich, zu dem nach wie vor intensiv geforscht wird 

und in dem es bislang keine einheitliche Theorie gibt. Vielmehr gibt es eine Reihe 

unterschiedlicher Sichtweisen über die Entstehung expliziten Wissens in einer impliziten 

Lernsituation. Außerdem wurden klassische Bewusstseinstheorien bislang wenig zur 

Erklärung bewusster Gewahrwerdung beim impliziten Lernen herangezogen (Cleeremans & 

Jimenéz, 2002) 

Das Ziel dieser Arbeit lag darin, genauer zu untersuchen, unter welchen Bedingungen Wissen 

in einer impliziten Lernsituation bewusst wird, sowie die zugrunde liegenden Prozesse 

genauer zu verstehen. Zur Beantwortung der Fragestellung wurden die relevanten Theorien 

diskutiert sowie zwei Studien durchgeführt. In der Überblicksarbeit wurden zwei theoretische 

Sichtweisen im impliziten Lernen, die Unexpected Event Hypothesis (UEH; Frensch et al., 

2003) sowie die Stärkeannahme (Cleeremans & Jimenéz, 2002), in Zusammenhang mit zwei 

klassischen Bewusstseinstheorien, der Global Workspace Theory (GWT; Baars, 1997) sowie 

den Higher Order Thought Theorien (Lau & Rosenthal, 2011) betrachtet. Im Ergebnis scheint 

die UEH in Kombination mit beiden Bewusstseinstheorien vielversprechend zu sein, eine 

Vielzahl der Befunde im impliziten Lernen, die sich auf die Entstehung expliziten Wissens 

beziehen, zu erklären. 

In Studie 1 wurde die Rolle unerwarteter Ereignisse für die Entstehung expliziten Wissens 

untersucht. Ein Befund dieser Studie ist, dass sich das Erleben eines unterwarteten Ereignisses 

vor allem auf die Entstehung expliziten Wissens auswirkt. Implizites Wissen scheint von dem 

Erleben unerwarteter Ereignisse hingegen nicht beeinflusst zu werden.  

In der zweiten Studie wurde das Verhalten der Versuchsteilnehmer bei der Entwicklung 

expliziten Wissens untersucht. Konkret wurde der Grund für den starken Abfall in den 

Reaktionszeiten (RT-drop; Haider & Frensch, 2005, 2009), der oft mit dem Entstehen 



 

4 

 

expliziten Wissens auftritt, genauer betrachtet. Es hat sich gezeigt, dass der RT-drop eine 

Verhaltenskonsequenz und nicht ein Vorbote für die Entwicklung expliziten Wissens ist. 

Sobald das Wissen bewusst ist, kann die Bearbeitungsstrategie in der Aufgabe von einer 

stimulusbasierten zu einer wissensbasierten werden. Sind die Bedingungen jedoch ungünstig 

für eine wissensbasierte Strategie, wird die stimulusbasierte Strategie beibehalten. 

Insgesamt liefern die Überblicksarbeit und die zwei Studien eine gute Basis für weitergehende 

Forschungsfragen durch die Untersuchung einzelner Aspekte der UEH. Sowohl die 

theoretische Verknüpfung mit den Bewusstseinstheorien als auch die Erkenntnisse zu den 

Prozessen unerwarteter Ereignisse könnten dabei helfen, Forschungsfragen präziser zu 

formulieren und experimentelle Manipulationen gezielter zu gestalten. 

 

  



 

5 

 

Abstract 

Implicit learning can be seen as unconscious learning process that takes place without the 

intention to learn and that allows to adapt to regularities in the environment. Implicit learning 

processes have been broadly investigated, amongst others by using the Serial Reaction Time 

task (SRTT; Nissen & Bullemer, 1987). With the SRTT, participants can learn a sequential 

structure without being informed about this structure. By means of the behavioral data as for 

instance reaction times one can see that the participants can learn the sequence implicitly but 

often do not show any explicit knowledge.  

The conditions and processes, under which explicit knowledge occurs in implicit learning, 

belong still to the contents of current research and there still does not exist any theoretical 

consensus among the researchers. Rather, different viewpoints about the development of 

explicit knowledge had been established. Furthermore, classical theories of consciousness had 

rarely been used to explain awareness in implicit learning (Cleeremans & Jimenéz, 2002). 

The goal of the current work was to investigate under which conditions explicit knowledge 

arises in implicit learning and to better understand the underlying processes.  

To answer these questions, the relevant theories had been reviewed. Furthermore, two studies 

had been conducted. In the review, two theoretical points of view in implicit learning, the 

Unexpected Event Hypothesis (UEH; Frensch et al., 2003) and the strengthening account 

(Cleeremans & Jimenéz, 2002), had been discussed in the context of two classical theories of 

consciousness, the Global Workspace Theory (GWT; Baars, 1997) and the Higher Order 

Thought Theories (Lau & Rosenthal, 2011). As a result, the UEH in combination with both 

theories of consciousness seems to be promising in explaining a multitude of findings 

regarding to the development of explicit knowledge in implicit learning.  

In Study 1, the role of unexpected events for the development of explicit knowledge was 

investigated. We found that the experience of an unexpected event influences the 

development of explicit knowledge. In contrast, implicit knowledge remains rather unaffected 

from unexpected events. 

In the second study, the behavioral components of awareness in implicit learning had been 

investigated. Here, the role of the strong decrease of reaction times (RT-drop; Haider & 

Frensch, 2005, 2009) that often accompanies the occurrence of explicit knowledge was 

examined. It has been shown that the RT-drop might be a behavioral consequence of rather 

than a precursor for the development of explicit knowledge. As soon as explicit knowledge 

arises, the strategy might shift from a stimulus-based to a knowledge-based task performance. 

If the conditions are inappropriate for a strategy shift, the old strategy may be maintained. 
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In sum, the review and the two studies provide a good base for further research by 

investigating single aspects of the UEH. Both, the theoretical connection of the UEH with 

theories of consciousness, as well as the findings about the processes of unexpected events 

can help to formulate precise research questions and to systematically design future 

experiments. 
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1. Introduction 

Implicit learning is an unconscious learning mechanism that can take place without the 

learners’ intention to learn. Learning the mother tongue or social behavior in children are 

frequently used examples to illustrate unintentional learning as it occurs incidentally and 

without any cognitive effort. A further example from everyday life could be cooking. While 

some persons learn cooking explicitly by following the instructions in a recipe, others may 

learn it incidentally by observing or helping other people. More globally, implicit learning 

fulfills an important function as it enables the learner to adapt to the regularities in the 

environment.  

To investigate implicit learning scientifically, paradigms as, for instance, the Serial Reaction 

Time Task (SRTT; Nissen & Bullemer, 1987) are used. In the SRTT, a sequential structure is 

built into the task that the participants are not informed about. Nevertheless, the behavioral 

data show that the participants can learn this sequential structure. However, the participants 

often do not even notice that they have learned something and thus, do not show any explicit 

sequence knowledge. Therefore, it is concluded that learning in this situation is implicit. 

Despite more than thirty years of research history, there seems to be little consensus regarding 

some of the core issues in implicit sequence learning. While researchers agree that implicit 

sequence learning takes place without a conscious intention to learn (Abrahamse et al., 2010), 

there is still disagreement on how knowledge becomes conscious aware in an implicit learning 

situation. There exist various viewpoints about how explicit knowledge arises in implicit 

learning, each of them with its strengths and weaknesses in explaining the underlying 

processes as well as the cognitive and behavioral phenomena that accompany awareness. 

Furthermore, although implicit learning can be seen as unconscious learning process, classical 

theories of consciousness are rarely used to explain implicit learning and awareness 

(Cleeremans & Jimenéz, 2002). 

The aim of the following thesis is to contribute to this debate about how and under which 

conditions knowledge can become conscious aware in implicit learning situations. In a review 

and two studies, we aimed to clarify how classical theories of consciousness fit with current 

viewpoints in implicit learning and thus, how they can contribute to explain awareness in 

implicit learning. Furthermore, single aspects about the reasons for the occurrence of explicit 

knowledge as well as the behavioral components of awareness were investigated in more 

detail. These investigations might help to better understand the underlying processes and to 

provide a good experimental basis for future research. 
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The structure of the thesis pursues the main goal to give an answer to these questions. First, 

two common theories about consciousness (Chapter 2) and two viewpoints about the 

development of explicit knowledge in implicit sequence learning (Chapter 3) are introduced. 

Then, a review as well as two studies are presented, each of them examined respectively one 

of the core aspects in more detail. In the review (Chapter 5) two different viewpoints of how 

explicit knowledge in implicit learning situations arises were discussed in the light of two 

prominent theories of consciousness. Furthermore, the review describes, why one of the two 

viewpoints, the Unexpected Event Hypothesis (UEH; Frensch et al., 2003) provides a good 

explanation for the development of explicit knowledge in implicit learning in combination 

with aspects of both theories of consciousness. Based on the assumptions of the UEH, the first 

study (Chapter 6) further investigated the role of unexpected events for the transition from 

implicit to explicit sequence knowledge while the strength of knowledge representations was 

kept constant. Here, response-effects as perceivable changes in the environment were used to 

create those unexpected events. The second study (Chapter 7) focused on specific aspects of 

the transition from implicit to explicit sequence knowledge and investigated the suddenness of 

insight in a given rule in implicit learning as well as the behavioral components of these 

insight processes. Here, the sudden decrease of reaction times (RT-drop; Haider & Frensch, 

2005, 2009) that often accompanies the development of explicit knowledge was investigated 

regarding to its functional role for awareness (precursor vs. consequence). Finally, the thesis 

closes with a discussion of the main findings of the review and the two studies particularly 

with regard to their respective contributions to answer the research question of this thesis 

(Chapter 8). Furthermore, the results might provide some implications for future directions of 

the implicit learning research.  
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2. Theories of consciousness 

The term consciousness is widely discussed and until now, after decades of research, there 

still exists no consistent definition of what consciousness is and how it arises (Cleeremans et 

al., 2020). For instance, consciousness may be the subjective experience or a mental state that 

one is aware of and can report. Mental states in this context might be sensory states, such as 

sensations or perceptions, or intentional states, as for example believes or preferences (Baars, 

2003; Baars et al., 2013; Lau & Rosenthal, 2011; Rosenthal, 1985).  

In this chapter, two prominent theories of consciousness, the global workspace theory (GTW; 

Baars, 1997), as well as the higher-order-thought theories (HOTTs; Rosenthal, 1985), are 

introduced. Both accounts use verbal report as precondition for conscious mental states. Thus, 

for the purpose of this thesis, no further definition of consciousness seems to be needed.  The 

theories are then used in the following chapters to be applied and challenged in the light of 

explaining the development of explicit knowledge in implicit sequence learning.  

 

Global Workspace Theory 

The Global Workspace Theory (GWT) was developed first by Baars (1997). The author 

compared consciousness metaphorically with a theater that contains a stage of fleeting 

working memory (Baddeley & Hitch, 1974) capacity. This stage receives sensory and abstract 

information from widespread specialized networks in the brain (Baars & Franklin, 2003). But 

only the information that enters in the spotlight of attention will become completely 

conscious. The “stage” or Global Workspace (GWS) is expected to be a neuronal system with 

long-distance and widespread connections in the brain (Dehaene & Nacchache, 2001). 

Contents can become conscious aware only when they gain access to the GWS and are 

broadcasted to other cognitive systems. These contents are usually processed in encapsulated 

modules that are domain specific and specialized. The modules work unconsciously and are 

only locally connected (Dehaene & Nacchache, 2001). The specialization and encapsulation 

of modules allow that different contents can be processed in parallel (Baars, 1997). The 

contents compete with each other for the access to the GWS. Contents that win the 

competition and are thus accessed by the GWS are no longer processed in specializes systems 

but broadcasted to multiple unconscious subsystems (Baars, 1997).  

Selective attention might be a process that helps a content to win this competition in a winner-

takes-it-all manner. According to the GWT, every experience is shaped by unconscious 

contexts (or frames; Baars et al., 2013) as for instance motives, emotions, or executive 
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functions (Baars & Franklin, 2003) that might guide selective attention (Baars, 1997). 

Because of the winner-takes-it-all principle, the flow of conscious moments (James, 1890) is 

always changing depending on the competing contents (Baars et al., 2013). Due to these 

dynamics, it is, for instance, needed that a stimulus is presented a certain time to be processed 

consciously (Dehaene & Naccache, 2001). 

The GWT has been implemented in different computational and neuronal network models 

(e.g., Franklin, 2001; IDA, Baars & Franklin, 2003) and received support from various 

neuronal brain imaging studies. Neuronal areas that are related to consciousness seem to be 

the frontal cortex as well as the parietal cortex (Baars, 2003). Furthermore, neuronal 

amplifications of the GWT focus not only on the role of the cortex but also on the role of the 

thalamus for consciousness (e.g., neuronal GWT, Dehaene & Nacchache, 2001). However, 

there does not exist only one single area in the brain where one can find the GWS. Rather, the 

GWS seems to be based on multiple cortical processors that are hierarchically organized 

(Dehaene & Naccache, 2001; Dehaene et al., 2011). According to Dehaene and colleagues 

(2011), a stimulus can become conscious in two phases. First, the stimulus enters the 

hierarchy of processors bottom-up and unconsciously. Once selected for the actual goals, it is 

processed in a top-down manner by neurons of the GWS. Only one content can become 

conscious to the same time, whereas all other contents are inhibited. This is assumed to occur 

in an all-or-none manner and expressed by ignition, a sudden firing of the neurons in the 

different cortical and subcortical areas (Dehaene et al., 2003). 

The function of consciousness sees Baars (1997, 2003) in access that then enables adaption, 

error detection and control of behavior. Furthermore, consciousness allows optimizing the 

balance between organization and flexibility.  

 

Higher-order thought theories 

Higher-order thought theories (HOTTs) sum up a group of theories instead of one single 

theory (Lau & Rosenthal, 2011). In contrast to first-order theories (FOTTs), which assume 

that for a mental state to be conscious the (neuronal) representation of this mental state is 

sufficient (e.g., Block, 2007) or has to be strengthened (GWT; Brown et al., 2019), the core 

assumption of all HOTTs is that besides this first-order (FO) representation about a mental 

state (e.g., “the green grass”), a higher-order (HO) or meta-representation about oneself to be 

in this mental state (e.g., “it’s me that sees the green grass”) is needed (Lau & Rosenthal, 

2011). According to Rosenthal (1985, 2002), this higher-order thought (or higher-order 
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awareness; Rosenthal, 2012) itself does not need to be conscious. So that the higher-order 

thought or second-order thought becomes conscious, a third-order thought about this higher-

order thought, and thus, a thought about the thought would be needed. However, this is 

supposed to be seldom as one usually does not think about one’s own thoughts (Lau & 

Rosenthal, 2011; Rosenthal, 1985).The various HOTTs differ in their concrete definition of 

HO mechanisms (Brown et al., 2019). But all these theories have the assumption in common 

that even if a FO representation remains constant, a change in HO representations is sufficient 

for a change in subjective awareness (Lau & Rosenthal, 2011). 

As the GWT, HOTTs are supported by evidence of neurophysiological studies. While FO 

representations depend on neuronal activity in early sensory areas, HO representations are 

accompanied by activation in the prefrontal and parietal cortex (Lau & Rosenthal, 2011). As 

described above, in the GWT it is also assumed that consciousness is based on prefrontal and 

parietal activation (Baars, 2003). However, Lau and Rosenthal (2011; Rosenthal, 2012) 

suppose that the GWT and HOTT can be distinguished by studies that show consistent task 

performance with different levels of awareness and thus, a respective activation in the 

different neuronal areas (e.g., Lau & Passingham, 2006). The GWT supposes that the 

prefrontal and parietal activity represents both consciousness and task performance. 

According to the HOTTs, task performance depends on FO instead of HO representation and 

therefore, on the activation of early sensory areas. Thus, a change in awareness by constant 

task performance and the activation of the respective brain areas might support these 

differences in FO and HO representations and thus speak in favor for the HOTTs.  

Regarding to the functional role of consciousness, the HOTTs also differ from the GWT that 

supposes the function of consciousness in behavioral components as action control and 

optimizing of task performance. In contrast, no special function or utility of consciousness is 

assumed according to the HOTTs (Lau & Rosenthal, 2011).  

Finally, the HOTTs have been criticized because a creature has to be cognitively able to build 

higher-order thoughts. However, animals and children whose cerebral cortex is not yet fully 

developed are also conscious aware of their mental states (e.g., Seager, 2004). The different 

HOTTs give different answers to this point (Brown et al., 2019). Rosenthal (2002; Lau & 

Rosenthal, 2011) argued, for instance, that the conscious awareness of human adults might be 

finer graded than that of children or animals. Furthermore, contemporary theories of 

consciousness aim to integrate classical theories as the GWT and HOTTs to use the 

advantages of each theory and to encounter possible problems and critics in a combined 

concept (e.g., Cleeremans et al., 2020; Shea & Frith, 2019).   
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3. Implicit learning and the development of explicit knowledge  

As described before in the introduction section, implicit learning refers to unintentional 

learning. Furthermore, the content of what has been learnt often remains unconscious. There 

exist various paradigms to investigate different forms of implicit learning as well as their 

cognitive mechanisms. For instance, in Artificial Grammar Learning (AGL; Reber, 1967), 

letter strings that follow a certain grammar are presented to the participants. Only after the 

training phase, the participants are informed about the existence of the grammar. In a 

following test phase, the participants are asked to classify letter strings as grammatical or not 

grammatical. The common finding in the AGL is that participants classify the letter strings 

correctly as grammatical or not grammatical without being able to name the underlying 

grammar. Thus, participants seem to have learned implicitly something about the statistical 

structure of the grammar and about the likelihood that a given string belongs to this structure.  

A somewhat different paradigm for the investigation of implicit learning is the Serial Reaction 

Time Task (SRTT; Nissen & Bullemer, 1987). Within this task, participants usually learn a 

sequential structure, rather than a statistical structure. In a typical SRTT, squares are 

presented horizontally on the computer screen. These squares are mapped to keys on a 

keyboard. In each trial, an asterisk appears as target in one of the squares and the participants’ 

task is to press the corresponding key. Unbeknownst to the participants, the order of the target 

positions and thus, of the to-be-pressed keys, follows a repeated sequence. A general finding 

of the SRTT is that most participants show learning during training but are often not able to 

verbalize their knowledge or do not even notice the existence of a repeated sequence. Thus, 

learning in this task is assumed to be implicit. Furthermore, amnestic patients often show 

similar implicit learning effects but fail to report explicit sequence knowledge. This finding 

usually serves as evidence that the performance of direct (e.g. verbal report) and indirect tasks 

(e.g. task performance in a SRTT) reflects different memory systems, namely the declarative 

(explicit) and non-declarative (implicit) memory system (Nissen & Bullemer, 1987; Reber & 

Squire, 1994, 1998; Keane et al., 1995). 

Using different variants of the SRTT as the implicit learning paradigm, the investigated topics 

are manifold and range from the question of whether attention is needed for implicit learning 

(Jiménez & Mendez, 1999) to the content of the acquired sequence representations as, for 

instance, stimulus-stimulus or response-response associations (Abrahamse et al., 2010). 

Relating to the observation that some participants develop explicit knowledge in implicit 

sequence learning while others do not, some of the important questions in implicit learning 
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research refer to the conditions for the development of explicit knowledge as well as the 

underlying cognitive mechanisms. Based on the findings of this research, there exist now 

various theories about the development of implicit and explicit knowledge in implicit learning 

that differ particularly in their assumptions about the involved learning systems and the 

characteristics of implicit and explicit knowledge representations. These theories can be 

broadly subsumed in single and multiple system views that will be discussed in the following 

sections (for an overview, see, Frensch et al., 2003).  

 

Single system views 

Within the single system account, the existence of only one single learning system is 

supposed by the different theories. For instance, Shanks and colleagues (Shanks & Johnstone, 

1999; Shanks & St. John, 1994) deny that the evidences in the implicit learning research 

demonstrate the existence of unconscious knowledge in implicit learning situations and 

attribute the often found lack of verbal report to methodological problems. According to the 

authors, differences in task performance and awareness, which are often reported as evidence 

for unconscious knowledge as a result of implicit learning, are grounded in the different 

sensitivities of the respective measures. Thus, while task performance measures primarily 

skill acquisition, awareness is assessed by tests like for instance generation tasks (Dienes & 

Seth, 2010; Haider et al., 2011; Shanks & Johnston, 1999) or verbal report (Rünger & 

Frensch, 2010). These differences in the sensitivity of the measures might also explain the 

finding that amnestic patients perform well in implicit memory tests but fail in explicit 

memory tests. Shanks and St. John (1994) argue that the implicit memory tests might be less 

sensitive for differences between amnestic patients and healthy control participants than 

explicit memory tests. If this were the case, amnestic patients might have learned overall less 

than healthy control participants but only the explicit memory tests are be sensitive enough to 

register these group differences. Support for this argumentation stem, for example, from 

simulation studies with the simple recurrent network model (SRN; Kinder & Shanks, 2001, 

2003). Kinder and Shanks (2003) investigated whether the SRN, which is based on a single 

system account, can explain the differences between amnestic patients and healthy control 

participants. They successfully replicated a study from Keane and colleagues (1995) who 

showed that amnestic patients are impaired in recollection or recognition tasks but show 

normal performance in indirect tasks such as priming tasks. Based on the simulations with the 

SRN, Kinder and Shanks (2003) concluded that direct and indirect memory tasks can be based 
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on a single mechanism and that amnestic patients might suffer from general memory 

impairment. 

Besides the varying sensitivity of different measures in implicit learning, a second 

methodological problem might be the lacking process purity of awareness tests. Process purity 

in this case means that explicit awareness tests should not be influenced by implicit 

knowledge (Curran, 2001; Wilkinson & Shanks, 2004). Destrebecqz and Cleeremans (2001) 

tried to solve this problem by using the Process Dissociation Procedure (PDP; Jacobi, 1991), 

for the implicit-explicit differentiation measure in a SRTT. The rationale behind the PDP is 

that only knowledge that is explicit should be under intentional control and thus suppressible 

if asked for. Thus, subsequent to the SRTT training, participants were informed about the 

existence of a sequence in the training phase and asked to generate strings of SRTT elements 

under either an inclusion or exclusion condition. In the inclusion condition, these strings 

should contain the training sequence. In contrast, in the exclusion condition, participants 

should avoid using parts of the trained sequence to generate their strings.  

A general finding is that participants, who reported explicit sequence knowledge, were able to 

suppress their knowledge to generate own strings without parts of the trained sequence in the 

exclusion condition. In contrast, participants with rather implicit knowledge generated more 

strings with parts of the trained sequence in the exclusion condition. These participants had 

little control about their implicitly acquired knowledge and failed to suppress this knowledge 

in generating the strings. In the inclusion condition, all participants generated a comparable 

amount of own strings that contained parts of the trained sequence. These findings support the 

assumption that the PDP is process pure and can distinguish between implicit an explicit 

knowledge in implicit sequence learning. However, Wilkinson and Shanks (2004) replicated 

the study of Destrebecqz and Cleeremans (2001) and found knowledge control in form of the 

suppression of implicit acquired knowledge to generate test strings under the exclusion 

condition in all experimental conditions. They claimed that the difference to the results of 

Destrebecqz and Cleeremans (2001) might be explained by a lack of power in the original 

study and concluded that knowledge that is acquired in implicit learning situations is 

accessible for control and thus explicit.  

Similar to Shanks and colleagues, Perruchet and Vinter (2002) assume that a concept of 

unconscious knowledge representations is not needed. Instead, conscious mental live is 

sufficient to explain behavior. The authors propose a mentalistic framework as alternative for 

computational information processing models that are often based on unconscious processes 
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and that consider consciousness as access to the output of cognitive processes. In contrast, the 

mentalistic framework denies the existence of unconscious representations. Only the neural 

processes that form representations are unconscious. The representations themselves are 

embedded in the phenomenal experience and as such, are conscious. Perruchet and Vinter 

(2002) tested their assumptions with a computational model (SOC; self-organizing 

consciousness) and conducted simulations that support the idea that unconscious 

representations are not needed and that complex conscious representations cause behavior.  

Implications of the SOC model for implicit learning are based on the formations of chunks or 

units (Perruchet & Vinter, 2002). In AGL, the general finding is that participants perform 

grammatically without being able to name the rules. This finding is usually interpreted in the 

sense that participants have learnt the rule implicitly and perform well based on their acquired 

implicit knowledge. However, they are not able to explicitly name the grammar (Reber, 

1967). The reinterpretation of this finding in sense of the SOC is that the training modifies 

how the data are consciously coded and perceived (Perruchet & Vinter, 1998). Conscious 

units or chunks are formed during training and when these chunks are experienced as being 

familiar and thus processed fluently, they are interpreted as grammatically. A similar process 

is assumed for implicit sequence learning. In the SRTT training, also chunks or sequence 

units might be formed, here in form of, for instance, movement patterns (Perruchet et al., 

1990).  

A slightly different view stem from Cleeremans and Jiménez (2002; Cleeremans, 2006) who 

do not question the existence of implicit knowledge representations per se. Rather, they deny 

in their early work that implicit and explicit learning are based on different learning systems. 

The authors assume that the cognitive system comprises information processing modules that 

are interconnected and hierarchically organized. Learning, as a consequence of information 

processing, changes the pattern of connectivity and of connection weights between these 

processing modules. These connectivity patterns characterize knowledge representations 

whose quality is improved during learning. The quality of such a knowledge representation is 

characterized by the dimensions strength, stability in time and distinctiveness. Strength 

defines how many processing units are involved to generate a representation and how strong 

these modules are activated, stability in time depends on how long the representations can be 

hold active and distinctiveness refers to the overlap of representations. During implicit 

learning, knowledge representations are acquired. At the beginning of the implicit learning 

process, the quality of the acquired knowledge representations is low. Nevertheless, these 
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representations can yet affect behaviour, even in the absence of awareness. During learning, 

the quality of the knowledge representations increases gradually. This increase of quality is 

necessary for explicit representations. The change from implicit to explicit knowledge 

representations does not occur in an all-or-none principle, but rather graded. The function of 

explicit knowledge representations is then the flexible and adaptive control over behaviour 

(Cleeremans & Jiménez, 2002; Cleeremans, 2006). 

The findings of Destrebecqz and Cleeremans (2001) support the assumption of the view that 

increasing the quality of knowledge representations leads to the development of explicit 

knowledge in implicit sequence learning. The authors found that participants who received a 

response stimulus interval (RSI) of 250 ms developed more explicit sequence knowledge than 

participants who did not receive any RSI. The amount of implicit knowledge was equal for 

the two conditions. The authors concluded that the knowledge representations can affect 

behaviour independently of their quality. Furthermore, explicit knowledge is based on high-

quality representations. Third, the development of these high-quality representations needs 

time. Thus, participants who received an RSI of 250 ms had more time to increase the quality 

of the representations and thus, to develop explicit knowledge. 

In sum, representatives of the single system view either deny the existence or the need of 

unconscious knowledge as a result of implicit learning processes (Shanks & St. John, 1994; 

Perruchet & Vinter, 2002) or suggest a gradual change from implicit to explicit knowledge 

representations (Cleeremans & Jimenez, 2002). Furthermore, the single system view is 

supported by empirical evidence from behavioral experiments as well as simulation studies. 

However, there are some findings that cannot be explained by single system views. These 

aspects will be discussed in the following section where the multiple system view is 

introduced. 

 

Multiple system views 

In contrast to the single system view, the multiple system view supposes the existence of at 

least two independent learning systems that work in parallel. These learning systems differ for 

example in their processing modes as well as in their representational formats (e.g., 

Willingham, 1998).  
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For instance, Willingham (1998) claimed in his control-based learning theory (COBALT) two 

learning systems that operate in parallel and independently from each other. Of these two 

learning systems, the ventral system needs attention and is responsible for explicit learning. In 

contrast, the dorsal system is responsible for implicit learning. However, despite this 

independence, the two learning systems interact, and this interaction is unilateral. That means 

that the explicit system can control the implicit system but not the other way around. The 

implication of COBALT for implicit sequence learning is that sequence learning without 

awareness is possible.  

Keele and colleagues (2003) used the same systems (ventral/dorsal) in their dual-system 

model. However, as an important difference, the dual-system model supposes that the dorsal 

system is responsible for implicit learning whereas the ventral system is responsible for 

implicit learning from which explicit knowledge can arise. Thus, in contrast to COBALT 

(Willingham, 1998), the dual-system model supports both, the multiple-system view and the 

single-system view, as implicit and explicit knowledge might occur within the same system 

(the ventral system). 

Supporting empirical evidence for the assumption that the implicit and explicit learning 

system operate independently from each other stem, for instance, from Reber and Squire 

(1998) who conducted studies with amnestic patients. They responded on the critic of Shanks 

and St. John (1994), namely that implicit learning in amnestic patients might also be impaired 

and that only explicit knowledge tests are sensitive enough to identify these differences, by 

using a crossover method. They conducted a SRTT where amnestic patients were able to 

develop more implicit knowledge by practicing the task during training and healthy control 

participants were able to generate more explicit knowledge by observing and reminding the 

sequence during training. After training, for amnestic patients and healthy control participants 

the same tests were used that measured either explicit (recognition tests) or implicit (task 

performance) knowledge. As a result of this crossover comparison, the amnestic patients had 

more implicit and less explicit knowledge than the control participants. Reber and Squire 

(1998) concluded from this crossover results that the performance of the participants in the 

explicit or implicit tests cannot stem from the same source in the brain. Thus, at least two 

learning systems might be involved in implicit learning. 

Assumptions about the nature of implicit and explicit knowledge representations are 

formulated in the representational theory of knowledge (Dienes and Perner, 1999). Within this 

theory, knowledge means to have a representation and can vary in what is represented 
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explicitly and which components are implicit. Three components for knowledge are defined in 

the representational theory of knowledge, namely the content, the attitude about the content 

and the person itself that has the knowledge and the attitude. The content is explicitly 

represented but can have parts that remain implicit. A person has an attitude about the verity 

of the content. This allows the person to make judgements about it. The content, the attitude 

and the fact that it is oneself who has the knowledge and the attitude about the content are 

related. Dienes and Perner (1999) applied their representational theory of knowledge to 

various research areas, including the AGL task (AGL; Reber, 1967) as implicit learning 

paradigm. They differentiate between voluntary control about knowledge and the attitude that 

a person has about the knowledge. For voluntary control that allows the application of the 

acquired knowledge, the rules of the artificial grammar have to be represented explicitly. 

However, participants can have indirect control without any explicit knowledge 

representation. In the case of AGL, this indirect control allows participants to give correct 

grammatical judgments without knowing the grammatical rule. The attitude that a person has 

about the knowledge refers to the question how explicit this person can reflect about this 

knowledge. The explicitness of the attitude in AGL can be measured with confidence 

judgements about the grammatical judgements as, for example, knowing versus guessing. If 

the confidence judgements correlate with the amount of correct grammatical judgements, the 

state of the knowledge is represented explicitly. If, however, the confidence judgements do 

not correlated with the amount of correct responses, the state of the knowledge is represented 

implicitly.  

In their theory, Dienes and Perner (1999) defined the nature of representations as well as 

explicit and implicit components. However, they did not make any assumptions, about how 

exactly explicit knowledge is developed in an implicit learning situation.  

To explain the transition from implicit to explicit knowledge representations, Cleeremans 

(2008, 2011, 2014, 2020) amplified the account of Cleeremans and Jiménez (2002; 

Cleeremans, 2006) by separating the unconscious and conscious systems in the radical 

plasticity thesis. The radical plasticity thesis picks up the idea that representations differ in 

their quality and thus, on the dimensions strength, stability in time and distinctness. 

Furthermore, during the learning processes, the quality of knowledge representations 

increases in a continuous, graded manner. In addition, Cleeremans (2008, 2011, 2014, 2020) 

assumes that such a FO-representation itself can never become conscious. For the 

development of conscious knowledge, a higher-order representation (Rosenthal, 1985) or 
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meta-representation is needed. These meta-representations build the basis for verbal report.  

They are formed through the interaction with the environment, other individuals and oneself. 

During this interaction, internal representations about the environment, other individuals and 

oneself are re-described. In addition, the quality of meta-representations improves in the same 

way as that of FO-representations, that is, gradually on the dimensions strength, stability in 

time and distinctness (Cleeremans, 2011). Evidence for this assumption is provided, for 

example, by connectionist networks. Cleeremans and colleagues (2007) computed, for 

instance, a wagering network that is based on the findings of the Post-Decision Wagering 

Task (PWDT; Persaud et al., 2007). In the PDWT, the participants are asked to place a high or 

low wager on their decisions within a task. As a result, only participants with explicit 

knowledge representations and thus, with conscious knowledge about the reasons for their 

decisions, place high wagers for correct responses. Participants who developed only implicit 

knowledge representations place rather low wagers on their (even correct) decisions. The 

wagering network of Cleeremans and colleagues (2007) contains a FO-network, whose task it 

is to identify digits from zero to nine, and a HO-network, whose task it is to place high or low 

wagers dependent on the decision about the correctness of the answers of the FO-network. 

Simulations studies showed that the FO-network gradually learned to improve performance. 

In contrast, the HO-network performs initially well as it learns that the FO-network is 

incorrect in classifying the digits. Then, the performance of the HO-network decreased with 

the increasing performance of the FO-network. At this point in time, the performance of the 

whole system seems to be based on unconscious knowledge. Finally, the HO-network 

increased the performance parallel with the performance of the FO-network. In this phase, the 

performance is supposed to shift from unconscious to conscious processing (Cleeremans et 

al., 2007). 

In contrast to Cleeremans (2011), who assumes the graded development of explicit knowledge 

representations, Frensch and colleagues (2003) suppose with the Unexpected Event 

Hypothesis (UEH) that explicit knowledge arises suddenly in an all-or-none manner. An 

unexpected change in the own behaviour can trigger searching processes to find an 

explanation for this unexpected event. Such unexpected events in the SRTT are for example 

premature responses (Haider & Frensch, 2005, 2009; Haider et al., 2011). The result of the 

search processes is what becomes conscious aware. However, the search processes do not 

mandatorily cause the detection of a sequence or other regularity that is embedded in the task. 

If another explanation for the unexpected change in the own behaviour seems to be more 

plausible, as for example the instruction that premature responses might occur due to a lack of 
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attention, the regularity remains undetected (Haider & Frensch, 2005). As in other theories 

within the multiple system view, it is not the implicit knowledge that becomes conscious as 

supposed by single system theorists. Rather, a second explicit representation is developed.  

Evidences for the existence of two independent learning systems, and the sudden development 

of explicit knowledge representations due to the experience of an unexpected event, stem 

from the research of Haider and colleagues (e.g., Haider & Frensch, 2005, 2009). In various 

experiments, the graded strengthening of knowledge representations (Cleeremans & Jiménez, 

2002; Cleeremans, 2006, 2008, 2011, 2014, 2020) was tested against the UEH (Frensch et al., 

2003). In sum, two general findings of these experiments provide support for the UEH. First, 

more explicit knowledge was found in conditions in which the participants experienced an 

unexpected event compared to conditions in which the participants did not. The strengthening 

of knowledge representations was held constant in these experiments. Haider and Frensch 

(2005, 2009) tested for example the role of premature and correct responses (responses that 

are given before stimulus presentation) as unexpected events. They found that increasing the 

probability of premature responses led to more explicit sequence knowledge compared to a 

smaller probability of premature responses. In another study, Esser and Haider (2017b) 

manipulated the experienced fluency of performing a SRTT by using deviants. These deviants 

were presented either in a blocked (blocked order condition) or a random order (random order 

condition). The total amount of deviant trials was identical in both conditions. Thus, while 

strengthening of knowledge representations was held constant in the two conditions, only the 

participants in the blocked order condition experienced an unexpected variation in the task 

fluency that triggered searching processes and thus, the development of explicit sequence 

knowledge. In contrast, the participants in the random order condition did not experience the 

unexpected variation in the fluency and therefore, did not start search processes. As a result, 

the participants in the blocked order condition developed more explicit knowledge than 

participants in the random order condition.  

A second empirical finding supporting the assumptions of the UEH is that participants who 

develop explicit sequence knowledge often express a sudden decrease of reaction times 

(Haider & Frensch, 2005, 2009; see also, Willingham, 1998). This sudden decrease of 

reaction times that accompany awareness, the so-called RT-drop, might be the point in time 

when participants change their responding strategy from stimulus-driven to top-down 

performance due to the acquired explicit knowledge representations (Haider & Frensch, 2005; 

Haider et al., 2005; Haider et al., 2011; Rose, et al., 2010; Wessel et al., 2012).  
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In sum, there exists widespread evidence for different theories that suppose independent 

implicit and explicit learning systems. The following sections focus on the assumptions and 

predictions of the strengthening account from Cleeremans (Cleeremans & Jiménez, 2002; 

Cleeremans, 2006, 2008, 2011, 2014, 2020) as well as the UEH (Frensch et al., 2003) as two 

viewpoints that deal particularly with the transition from unconscious to conscious knowledge 

representations.  
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4. Overview of the studies 

In order to investigate the main question of this thesis, namely how and under which 

conditions awareness arises in implicit sequence learning, the following review and two 

experimental studies considered three different core aspects. These aspects reach from a 

global review of selected theories to a more detailed investigation of single predictions of the 

UEH as one of the theories in implicit learning. The review aimed to embed the current 

theories and research in implicit learning in a broader theoretical context of two classical 

theories of consciousness. Here, the strengthening account (Cleeremans & Jiménez, 2002; 

Cleeremans, 2006, 2008, 2011, 2014, 2020) as well as the UEH (Frensch et al., 2003) as two 

prominent views in implicit learning were reviewed with its strengths and weaknesses in the 

application of the GWT (Baars, 1997, 2003) or the HOTTs (Lau & Rosenthal, 2011; 

Rosenthal, 1985). As a result of this review, the application of only the GWT or the HOTTs in 

implicit learning requires additional clarifications. Therefore, we furthermore discussed the 

advantages of linking the UEH with a combination of the GWT and the HOTTs in order to 

explain how explicit conscious knowledge arises in implicit sequence learning. 

Due to the existing supporting empirical evidence for the UEH (see, chapter 3), the 

assumptions and predictions of the UEH were pursued as basis for the following two 

empirical studies. In Study 1, a SRTT was conducted to investigate the role of specific 

unexpected events, here the role of response-effects, for the development of explicit 

knowledge in implicit sequence learning when strengthening of knowledge representations 

was held constant. 

Finally, Study 2 aimed to further investigate a single prediction of the UEH, namely the 

suddenness of conscious insight in an existing rule once an unexpected event had been 

experienced. Practically, the behavioral components were investigated that accompany these 

insight processes, i.e. the sudden decrease of RTs. Here, the concrete research question 

concerned the role of these so called RT-drops and thus, whether an RT-drop is a precursor 

for the development of explicit knowledge representations or whether it is a behavioral 

consequence of conscious awareness. 

As described in Chapter 3, the detection of unconscious knowledge in implicit learning might 

also depend on the sensitivity and process purity of the respective measure (Shanks and St. 

John, 1994) and on the respective definition of consciousness (e.g., Frensch & Rünger, 2003). 

To take the methodological problems of explicit measures into account, in Study 1 and Study 

2 the Post-Decision Wagering Task (PDWT; Persaud et al., 2007) was used in addition to 

verbal reports to assess explicit sequence knowledge after the SRTT training. The PDWT is 
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similar to the training SRTT task. But in some trials, a question mark is presented instead of 

the target and the participants have to guess the next response. In addition, they have to place 

a high or low wager depending on their confidence in the correctness of their response. The 

rationale behind the task is that participants with implicit knowledge give more correct 

responses than it is expected by guessing but do not show any correlation between the 

correctness of their response and their wagers (zero correlation criterion; Dienes et al., 1995). 

However, participants with explicit knowledge place high wagers for correct and low wagers 

for incorrect responses. Thus, the PDWT seems so be a measure that is sensitive enough to 

investigate whether a participant had developed primarily implicit or explicit knowledge (e.g., 

Dienes & Seth, 2010). 
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5. Review: What triggers explicit awareness in an implicit sequence 

learning situation? Implications from theories of consciousness. 

 

Abstract 

This article aims to continue the debate how explicit, conscious knowledge can arise in an implicit learning 

situation. We review hitherto existing theoretical views and evaluate their compatibility with two current, 

successful scientific concepts of consciousness: The Global Workspace Theory and Higher Order Thought 

Theories. In this context, we introduce the Unexpected Event Hypothesis (Frensch et al., 2003) in an elaborated 

form and discuss its advantage in explaining the emergence of conscious knowledge in an implicit learning 

situation. 

 

 

Implicit learning research is concerned with situations in which individuals learn sequential 

deterministic or probabilistic contingencies, but lack the intention to learn about these 

contingencies. Such sequential contingencies might comprise sequential actions (such as 

learning to blindly type on a keyboard), perceptual events (e.g. learning the sequence of notes 

in a melody or of visual regularities when driving the same route repeatedly) or complex 

regularities (e.g. arithmetic principles, Prather, 2012). Empirically, two different tasks are 

common to investigate implicit learning: The Serial Reaction Time Task (SRTT; Nissen & 

Bullemer, 1987) and the Artificial Grammar Learning Task (AGL; Reber, 1967). In the 

SRTT, participants typically respond to sequential stimuli with sequential responses. In 

general, learning of the underlying sequence is most commonly shown by comparing the 

reaction times of sequential trials with trials containing a new, unknown sequence. In the 

AGL, participants learn by observing probabilistic contingencies between strings of, for 

example, letters or other visual stimuli. Here, learning can, for example, be inferred by 

showing that participants are able to discriminate strings that follow either the old or a new 

grammar. The hidden regularities in the SRTT and the AGL are usually not mentioned to the 

participants.  

Interestingly, on a subjective level, participants in these paradigms often seem to lack 

conscious insight that they have learned something. In these cases, it is often presumed that 

participants acquired unconscious or implicit knowledge. In the simplest sense, when a 

participant is asked to report the learned sequence at a later time and is unable to do so, is said 

to have “implicit knowledge”. Participants who can report their knowledge are said to possess 

“explicit knowledge”. Of course, a large debate is centered around the question how to 
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determine whether the acquired knowledge in implicit learning paradigms is in fact 

unconscious (see e.g., Newell & Shanks, 2014; Peters & Lau, 2015).  

Various objective or subjective measures to determine the conscious or unconscious status of 

the developed knowledge have been suggested over the years. Objective measures aim to 

show a performance-based difference between conscious and unconscious knowledge. For 

instance, process dissociation tasks have been suggested as objective measures (Destrebecqz 

& Cleeremans, 2001; for critical points see Stahl et al., 2015). These tasks aim to show that 

unconscious (implicit) knowledge leads to correct responses when the participants are asked 

to generate the learned sequence on their own (inclusion condition), but also fail to inhibit 

their acquired sequence knowledge when asked to generate new sequences (exclusion 

condition). Quite different, subjective measures emphasize the lack of metacognitive 

knowledge or subjective awareness. While participants with implicit knowledge are often able 

to predict the next correct response or stimulus, they express subjective uncertainty. For 

example, they put low instead of high wagers on the correctness of their responses. By 

contrast, participants with conscious (explicit) knowledge express high certainty on correct 

responses but low certainty on wrong responses (Dienes & Seth, 2010; Haider et al., 2011; 

Persaud et al., 2007). Thus, there are conceptual differences when assessing the status of 

knowledge acquired in an implicit learning situation. Furthermore, presupposed that implicit 

learning tasks can lead to implicit, unconscious knowledge, there usually are participants who 

develop explicit, consciously accessible knowledge. Based on these findings, we will adapt 

the term “implicit knowledge” for subjectively and behaviorally unconscious knowledge and 

“explicit knowledge” for conscious knowledge. 

This difference in conscious availability of the acquired knowledge suggests that implicit 

learning settings could provide a promising opportunity to investigate how implicit or explicit 

knowledge is related to the representational status of the acquired knowledge and which 

mechanism mediates between implicit and explicit knowledge. Is explicit knowledge based on 

the same acquired representation as implicit knowledge? If so, does the same learning 

mechanism change the representational quality (e.g. its strength is increased over the learning 

period) which is then accompanied by a gradual change in conscious accessibility? Or does 

the conscious status depend on a different access to that representation?  A different 

possibility would be that implicit knowledge is based on different representations than explicit 

knowledge. These latter two options would imply that an “implicit learning” process leads to 

strictly implicit knowledge, while explicit knowledge requires an additional process that 

grants conscious accessibility.   
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This leads to a close connection between implicit learning research and general theories of 

consciousness which aim to explain how consciousness originates from unconscious 

processes. This way, implicit sequence learning can enrich theoretical views on consciousness 

with new experimental approaches and help to test predictions, thereby, improving current 

weaknesses or identifying unexpected problems of the respective theories. Likewise, the 

question how explicit knowledge arises from an implicit learning situation can profit from 

testing predictions from general theories of consciousness.  

The central aim of this article is thus to discuss two current models in implicit learning 

research that aim to explain how consciously accessible, explicit knowledge can develop from 

implicit learning situations and to assess their correspondence with current theories on 

consciousness. One of these views proposes that explicit knowledge depends on the 

strengthening of associative links (i.e., the representational quality). In this case, it is assumed 

that conscious knowledge will develop gradually, either by strengthening single transitions 

(Cleeremans, 2008, 2011; Cleeremans & Jiménez, 2002) or by integrating single elements 

into sequence chunks (Perruchet & Vinter, 2002; Perruchet, 2002). On the other hand, there 

are theories that propose an indirect link between implicit and explicit knowledge. One of 

these theories is called the Unexpected Event Hypothesis (Frensch et al., 2003). From this 

theoretical viewpoint, unconscious (implicit) knowledge and conscious (explicit) knowledge 

are based on different representations. Implicit knowledge relies on representations acquired 

during learning that lead to behavioral changes (e.g. faster RTs). Explicit knowledge develops 

by detecting mismatches between expected and experienced behavior. If such a mismatch is 

detected a second (and subjectively explicit) inferential process is triggered that can lead to 

the discovery of sequential contingencies inherent in the task. In this case, a new 

representation of the sequential contingencies is acquired, which is independent from the 

implicitly learned representation. This new representation is explicitly accessible. Thus, 

explicit knowledge is not assumed to develop gradually from implicit knowledge, as is 

presumed by strengthening theories, but instead in an abrupt change from an unconscious into 

a conscious knowledge state. 

We will review current evidence for each of these theoretical classes. Furthermore, these two 

viewpoints and their empirical evidence will be reconciled with two prominent theories of 

consciousness: One is the Global Workspace Theory (Baars, 1997, 2005), the other is the 

Higher Order Thought Theory (Lau, 2008; Rosenthal, 1997, 2012). We will discuss the 

advantages and disadvantages of each perspective and their implications for the development 

of explicit knowledge in implicit learning situations.  
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The Serial Reaction Time Task (SRTT) and its Relevance for Consciousness Research 

In this section, we will briefly outline how implicit learning paradigms can provide an 

important opportunity to investigate the connection between unconscious and conscious 

processes. As we have briefly stated in the introduction, there are various implicit learning 

paradigms which all have in common that a sequence of responses or stimuli is learned 

without the intention to do so. Here, we will mainly focus on the SRTT, as we believe that its 

simple, yet flexible structure makes it a particular interesting instrument to investigate how 

implicitly acquired representations can become consciously accessible.  

The SRTT has the potential to provide both, online and offline measures of learning. During 

the training part, in which participants are trained with a sequence of stimuli or responses, 

error rates and reaction times can be utilized to assess learning. Subsequent tests, such as the 

previously described Inclusion/ Exclusion Task or the Wagering Task, are usually employed 

to determine whether or to what extent the acquired knowledge is implicit or explicit. 

However, the training part of the task can also have the potential to detect whether knowledge 

is explicit. Moreover, it might also have the potential to confine the time frame in which a 

qualitative change from an implicit to an explicit representation of the learned sequence 

occurs. It has been found that participants who develop explicit knowledge in a SRTT often 

show a sudden decrease of reaction times in the training phase. This so-called RT-drop 

indicates that participants change their behavior qualitatively (Haider & Frensch, 2005; 

Haider et al., 2005; Lustig et al., 2021, Rose, et al., 2010; Wessel et al., 2012) and do not 

mandatorily need to process the stimulus anymore to perform the task. This stimulus-

independency of explicit sequence knowledge is further supported by studies that show that 

participants are no longer affected by incongruent stimulus-response characteristics, such as 

the Stroop Effect (Haider et al., 2011) and the Simon Effect (Koch, 2007), or by a frequency-

induced response bias (Tubau et al., 2007). Thus, analyzing reaction times in a SRTT has the 

potential to classify participants with explicit sequence knowledge online during training, as 

well as potentially grasping the point in time when explicit knowledge occurs (Rose et al., 

2010).  

From this perspective, the SRTT is a useful addition to the investigation of qualitative 

differences between unconsciously and consciously accessible representations, as well as the 

mechanisms that mediate between them. Mostly, such questions are approached by priming 

studies (e.g., Del Cul et al., 2009; Kouider & Faivre, 2017; Kouider et al., 2010; Lau & 

Rosenthal, 2011; Overgaard, 2003). Priming studies provide a well-controlled opportunity to 
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study the differences between conscious and unconscious processing on a trial-by-trial basis. 

In priming studies, unconscious processing is operationalized either by weak signal strength 

or by inattention towards the critical stimuli or stimuli features (Dehaene et al., 2006). The 

advantage of implicit learning paradigms, however, is that they provide an opportunity to 

create situations where signal strength can be controlled in a wider range (e.g., by controlling 

training duration or sequence complexity) while the resulting representations have a high 

temporal stability (Tamayo & Frensch, 2015). At the same time the role of attention towards 

the sequence can be investigated, with evidence so far suggesting that selective attention (i.e., 

having participants respond to the sequential feature vs. responding to a sequence-irrelevant 

feature) towards the sequence does not lead to more conscious knowledge but might be a 

prerequisite for implicit learning (Jiménez & Méndez, 1999; Turk-Browne et al., 2005). A 

further difference between priming and implicit learning paradigms is that the former can 

provide insight how certain singular simple or complex (most often visual) percepts which 

already have an existing entry in long-term memory can become conscious. By contrast, 

implicit learning studies can investigate how whole newly acquired knowledge structures 

about relations between clearly perceivable events in the environment can become conscious. 

Implicit learning can hereby help to investigate how the cognitive system can learn about its 

own internal states; how the system changes from a state of not knowing that the internal 

knowledge base has changed, to knowing that new knowledge has been developed and that 

current consciously accessible believes about states in the world need to be adjusted or 

replaced. Thus, implicit learning research could also be seen as an interesting link to research 

on insight and creativity in which it is often proposed that creative ideas result from or, at 

least, are largely supported by consciously inaccessible processes (Dietrich & Haider, 2015; 

Fedor et al., 2017).   

The term creative “insight” implies that there is a very brief moment in time in which the 

cognitive system changes its state from consciously not knowing to knowing.  Nevertheless, it 

is important to see that research on insight and creativity often stresses that such apparently 

sudden “insight” moments are preceded by other events, including the moment of noticing 

that there is a problem that needs to be solved over an incubation period (spanning from years 

to minutes) until finally coming up with a new idea (Cosmelli & Preiss, 2014; Dietrich & 

Haider, 2015; Hélie & Sun, 2010). Thus, there might be different, hierarchical 

representational contents an individual can become aware of (Kouider et al., 2010). In an 

implicit learning task this can encompass consciously noticing that that there is something 

about the task that has not yet been recognized before, noticing that certain events (finger 
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movements, stimuli, etc.) appear systematically, to lastly discovering the actual sequence that 

governs the task. However, regardless of the specific content, these changes in awareness 

could result from a sudden or a gradual change in the underlying representations. While the 

SRTT has the potential to explore various aspects of these insight stages, what might be of 

particular interest in the light of the Unexpected Event Hypothesis is the moment where an 

individual notices that their consciously held beliefs about the task do not match their 

perceived experiences, which could trigger an inferential process that finally leads to 

recognizing the sequence in the task.  

 

How to Conceptualize the Transition from Implicit to Explicit Sequence 

Knowledge 

In the following, we will briefly outline two theoretical viewpoints about the development of 

explicit knowledge in an implicit learning situation. Afterwards, two prominent theoretical 

perspectives on consciousness will be introduced. These are the Global Workspace Theory 

(Baars, 1997; Baars & Franklin, 2003; Dehaene & Changeux, 2011; Dehaene & Naccache, 

2001) and the Higher Order Thought Theory (Dienes & Perner, 1999; Lau & Rosenthal, 2011; 

Rosenthal, 2012; see Deheane et al., 2017, or Shea & Frith, 2019, for an argument why both, 

the Global Workspace Theory and the Higher-Order Thought Theory, are important for 

consciousness studies). We will elaborate how both theoretical views have already been 

applied in the field of implicit learning and how they fit the current theoretical views and 

empirical data on the transition from implicit to explicit knowledge. We will try to illustrate 

which problems both perspectives have, when they are used to explain how explicit 

knowledge arises from an implicit learning situation. Lastly, we aim to discuss in which 

direction future research could go in order to tackle these issues.  

 

Theoretical Views on the Development of Conscious Knowledge in Implicit 

Learning Situations 

As briefly stated in the introduction, there are two distinct theoretical perspectives on how 

explicit knowledge can develop in an implicit learning situation. One proposes that there is a 

continuous transition from an unconscious to a conscious state, while the other assumes that 

knowledge is either implicit or explicit and that the transition happens in a sudden 

representational change.  

The idea of a gradual change in representational quality goes back to Cleeremans and Jiménez 

(2002). They proposed three different factors which influence the quality of a representation: 
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(1) Stability, i.e., the time a certain activation pattern can be maintained, (2) strength, i.e., the 

number of modules involved and their respective activation strength, and (3) distinctiveness, 

i.e., the extent of overlap between representations within a functional network (see 

Kinsbourne, 1996, for a similar position). While implicit learning first leads to very weak 

representations, with practice these representations gradually gain quality and can result in 

explicit knowledge. This proposal has later been elaborated further in the Radical Plasticity 

Hypothesis by Cleeremans (2008, 2011, 2014) by adding a hierarchically higher, second-

order learning system. The lower-order or first-order learning system develops implicit 

knowledge through interaction with the environment. This knowledge is never conscious; it is 

labeled as knowledge within the system. For consciousness to arise, the first-order 

information needs to be redescribed as a meta-representation; that is, knowledge for the 

system (Clark & Karmiloff-Smith, 1993). The first-order representation itself becomes an 

object of a representation for higher-order systems. This higher-order system receives input 

from the first-order systems and learns that the state of the first-order system has changed as it 

becomes more accurate and thereby develops a higher-order attitude towards the first-order 

knowledge (e.g. “knowing that …”, “hoping that …”, “believing that …”). This higher-order 

representation is assumed to be a new representation involving a broad pattern of activation 

over different processing units which is only indirectly shaped by the changes of the 

connection-weights within the first-order system. The proposed learning mechanism behind 

the first- and the higher order learning system is the same; both systems gradually improve the 

quality of a representation with each learning trial. Thus, the higher-order representation 

gradually becomes more consciously accessible, as it changes from “not knowing” to 

“knowing”.  

The other theoretical account, the Unexpected-Event Hypothesis, agrees that it is not the 

implicit knowledge that becomes conscious itself. Rather, a second learning mechanism leads 

to the acquisition of explicitly accessible knowledge. However, this second mechanism does 

not lead to a gradual development of conscious access. The crucial idea of the Unexpected 

Event Theory is that explicit sequence knowledge can only develop when an individual 

unexpectedly notices a change in their own behavior. In an implicit learning situation, the 

interaction with the task leads to a continuous improvement of the responses to the stimuli; 

they become more accurate and faster. It can be this improvement or, for example, the feeling 

that the task becomes more fluent or easy, that there is a certain rhythm in one’s own 

responses, or an external event that can trigger an intentional search for the sequence. 

Generally speaking, the Unexpected Event Theory involves a monitoring process which 
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constantly compares observable expected and actual behavior. This comprises internal, 

subjectively experienced, as well as externally observable behavioral deviations from one’s 

expectations.  

For example, giving the (correct) response before the stimulus was shown could clearly be a 

surprising event for the participant. Haider and Frensch (2009) varied the RSI to manipulate 

the opportunity for participants to emit a response before the next stimulus occurred. They 

found more explicit sequence knowledge when the task allowed participants to emit 

premature responses. Likewise, Rünger and Frensch (2008) demonstrated that exchanging the 

trained sequence with a new sequence led to more explicit knowledge, than the same amount 

of training with only one sequence. The authors attributed this effect to the participants 

noticing surprisingly slower responses and attributing them to a change in the structure of the 

task. Controlling for the number of sequential and non-sequential trials, Esser and Haider 

(2017) showed that arranging regular, sequential and irregular, random trials in mini-blocks 

led to more explicit sequence knowledge, compared to a condition where regular and irregular 

trials were mixed randomly. In this case, the authors attributed this effect to providing the 

participants the opportunity to experience systematic differences in the fluency of the task.  

Under the Unexpected Event Hypothesis, these consciously perceivable differences in the 

expected and observed behavior are critical for recognizing that the own knowledge is 

different from the expected knowledge. This does not imply that the individual instantly also 

gains insight into the exact sequence structure. Instead, the detected conflict triggers an 

attributional process in order to adjust its predictions and reestablish coherence between the 

distal environment and one’s proximal model of it. Comparable monitoring-models have been 

established in neurocognitive models of conflict-detection and adaption (Botvinick, 2007; 

Botvinick et al., 2001), metacognitive control (Koriat, 2000, 2012, 2015), or memory 

(Whittlesea, 2002; Whittlesea & Williams, 2000). Thus, the triggered attributional processes 

do not necessarily lead to explicit sequence knowledge, if another explanation seems more 

likely to account for the unexpected experience (see also Reisenzein et al., 2017). Haider and 

Frensch (2005) have shown that premature responses in an implicit learning task did not result 

in more explicit knowledge if another, simpler explanation for these responses was provided 

(e.g. “attentional lapses”). Importantly, the secondary explicit learning process is not assumed 

to directly have access to the implicit knowledge. Instead, the explicit learning process will 

result in a new representation based on the available information. In this context, Schwager et 

al. (2012) have shown that after perceiving an unexpected event, participants will learn a new 

sequence just as well as the sequence they were trained with.  
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A suggestion that comprises aspects of both perspectives, the Radical Plasticity and the 

Unexpected Event Hypothesis, has been made by Scott and Dienes (2008; 2010). They 

suggested that implicit learning influences familiarity judgements, which enable individuals to 

correctly distinguish strings that follow the implicitly learned structure from those that do not. 

With repeated familiarity judgements, the individual will learn that their judgements are 

correct and thus explicit judgmental knowledge (knowing that one knows) develops 

gradually. However, in order to acquire explicit structural knowledge (knowing the exact 

structure of the implicitly learned information), a second explicit learning mechanism is 

required that tests different hypothesis about the reason for the correct judgements. When and 

how this explicit learning mechanism is triggered remains unclear.  

In the following sections, we briefly describe the main aspects of the Global Workspace 

Theory and The Higher-Order Thought Theory as well as their relation to both, the Radical 

Plasticity and the Unexpected Event Hypothesis.  

 

Global Workspace Theory 

The Global Workspace Theory is a prominent functional and neuroscientific theory of 

consciousness. The basic assumption of the Global Workspace Theory is that the brain 

contains a multitude of functionally highly specialized subsystems working in parallel. 

Information in these subsystems is unconscious, there is no phenomenal- (Chalmers, 1995; 

Block; 2007), micro-consciousness (Lamme, 2006), or anything alike associated with 

information processing in these networks. Per se, these networks work encapsulated, that 

means they exchange information only within hard-wired or acquired pathways to fulfill their 

specialized task. This encapsulation enables the brain to handle a massive amount of input in 

parallel (Baars, 1997). Nevertheless, coherent interaction with the environment requires serial 

output and therefore a mechanism is needed that selects the most relevant information. Here, 

the theory postulates a global workspace mechanism which provides the necessary 

infrastructure, neurologically mainly realized by thalamo-cortical long-distance neurons of the 

prefrontal and the anterior cingular cortices (see Baars et al.,2013 for a detailed elaboration of 

the neuronal architecture). The global workspace is able to select relevant information, to 

prevent interference, to allow the encapsulated modules to exchange information, and to 

flexibly establish temporary networks between these modules (Dehaene & Naccache, 2001).  

The Global Workspace Theory uses a blackboard metaphor for describing how the global 

workspace works. When a module gets selected to enter the global workspace, it can 

broadcast its content to any other network in the brain. Other modules can access the 
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information on the blackboard and process it in their specified function. The information from 

the broadcasted module is no longer encapsulated. It is now said to be amodal, because it is no 

longer bound to the specialized processes of the module it originated from. Instead, it is now 

processed in a broad context of unconscious subsystems. These subsystems include, for 

example, perception, language, intentions, self-concepts, expectations, memory, and exclusive 

access to working-memory functions (Baars, 1997, 2005; Baars et al., 2013; Baars & 

Franklin, 2003; Cowan, 2010; Persuh et al.,2018; Schwager & Hagendorf, 2009). Thus, the 

Global Workspace Theory avoids the assumption that there is a certain instance where 

consciousness is “created” or that consciousness is an additional phenomenal quality that 

accompanies certain processes. Instead, consciousness is functionally defined by the global 

accessibility of representations and the resulting enabling of behavioral consequences. 

Crucial to the Global Workspace Theory as a functionalist theory of consciousness is that 

conscious processing is equalized with the global accessibility of information and the thereby 

enabled options of processing this information. Neuroimaging shows that this de-capsulation 

of information is accompanied by a neurological “ignition”, a sudden, strong activation of a 

vast variety of cortical and subcortical regions (Dehaene & Changeux, 2011; Dehaene & 

Naccache, 2001; Del Cul et al., 2009; Rose et al., 2010; Schuck et al., 2015; Wessel et al., 

2012). Hence, in the Global Workspace Theory the transition from unconscious to conscious 

processing is seen as an all-or-none phenomenon; there is no gradual consciousness. What 

may differ, however, is the level of representation that gains access to the global workspace. 

The levels of representation can vary from low (e.g. simple shapes or levels of intensity) to 

high (e.g. whole object, words, meaning), which all can be accessed independently and thus 

account for varying levels of the quality of conscious representations (Kouider et al., 2010).   

To explain how a representation can change from an unconscious to a conscious state, while 

at the same time avoiding to assume that some instance “knows” (i.e., a homunculus) which 

information to select, the Global Workspace Theory suggests a stochastic bottom-up 

variation-selection mechanism for explaining how the most relevant information is selected 

from the enormous amount of unconscious information (“Neural Darwinism”, Changeux & 

Dehaene, 1989). Every unconscious module constantly competes for access to the global 

workspace (variation component), while the global workspace sets a selection function 

depending on current goal states. Only one module or coalition of modules will show the 

strongest activation in the context of the current goal-state-dependent content of the global 

workspace and will therefore win the competition for global broadcasting (“winner-takes-it 

all”, Shanahan & Baars, 2005). If a bottom-up signal surpasses a certain threshold, it is 
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assumed to receive top-down amplification to remain maintained (it is said to receive 

“attentional amplification”). Thus, Dehaene and colleagues (2006) propose a 2x2 taxonomy in 

which an unconscious representation can have (a) strong or weak signal strength and, 

independent from signal strength, (b) can or cannot be amplified by top-down attention. Only 

when both criteria are given, signal strength is high and top-down attention towards the 

unconscious content is provided, the sufficient conditions for consciousness are met.  

 

Global Workspace Theory and the Emergence of Conscious Knowledge in 

Implicit Learning 

What are the implications of the Global Workspace Theory for implicit learning research and 

the explanation how explicit knowledge develops in an implicit learning situation? A first 

prediction is that the change from an unconscious to a conscious state happens in a sudden 

“insight” that a sequence has been learned, instead of a gradual change towards consciously 

accessible knowledge (Marti & Dehaene, 2017). There is some empirical evidence that in fact 

the transition from implicit to explicit knowledge is reflected in a sudden representational 

change. These studies aim to examine the point in time where an individual becomes able to 

verbalize their acquired knowledge or use it strategically. For example, Haider et al. (2011) 

provided evidence that most of the participants who showed a sudden drop in their RT during 

learning were able to verbalize their knowledge by the end of training. The RT-drop 

seemingly reflects the moment where participants switched from stimulus- to plan-driven 

control (Tubau et al., 2007). Moreover, neuroimaging data showed that a sudden coupling of 

gamma-band activity and increases of the BOLD-signal in the ventrolateral prefrontal cortex, 

the medial and ventrolateral prefrontal cortex and the ventral striatum preceded such an RT-

drop, respectively strategy change (Lawson et al., 2017, Rose et al., 2010; Schuck et al., 2015; 

Wessel et al., 2012). These changes might reflect the sudden “ignition” of cortical activity 

which, as postulated by the Global Workspace Theory, accompanies the transition from an 

unconscious to a conscious state (Dehaene & Changeux, 2011; Dehaene & Naccache, 2001). 

 While such results implicate that conscious insight into implicitly learned 

representations seem to happen rather sudden instead of gradually, they do not provide 

information about how and why these transitions occur. A non-linear transition can occur due 

to an underlying slow gradual learning processes as well as through a spontaneously 

triggered, inferential explicit learning process. In order to explain how an unconscious, 

implicit representation can become consciously accessible under the Global Workspace 

Theory, two essential aspects need to be clarified: First, it needs to be explained how implicit, 
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encapsulated information can reach a representational strength high enough to win the 

competition for access to the global workspace. Second, it needs to be explained how a goal 

state arises that provides the necessary top-down amplification for the implicit information.  

 Certainly, with ongoing practice in an SRTT, the representational strength or quality 

will gradually increase. The Global Workspace Theory allows the proposal that with enough 

practice, the representational strength or quality could be high enough by itself to win the 

competition and enter the global workspace (Cleeremans & Jiménez, 2002). This is what 

happens, when a signal with very high bottom-up strength is presented (e.g. a loud noise). 

However, it seems rather unlikely that an implicit learning process results in a signal that is 

strong enough by itself to win this competition without any additional top-down 

amplification. Likewise, a gradual higher-order learning process, as it is suggested by 

Cleeremans (2008, 2011), would, in the light of the Global Workspace Theory, require an 

additional explanation when and how the higher-order learning process changes from a 

gradual increase in representational quality to a non-linear increase in activation that 

corresponds with the sudden ignition proposed by the Global Workspace Theory. Rather, it 

seems that an explanation is needed how the system gets into a state in which the 

encapsulated module containing implicit information provides the fitting information to the 

selection function set by the global workspace and thus will receive additional top-down 

amplification.  

Here, the Unexpected Event Theory provides a simple explanation: A monitoring process can 

detect a mismatch between expected and experienced performance. Because the mismatch is 

subjectively perceivable in one’s own behavioral output or in internally perceived aspects of 

the task, this mismatch results in a new state of the global workspace that sets a fitting 

selective function for the implicitly learned representation.  

 Whatever the mechanism is that triggers the global workspace to allocate top-down 

amplification to the implicitly learned representation, it is furthermore important to ask, 

whether it is the implicit representation itself that will become a conscious representation or 

whether a new explicit representation will develop.  

The Unexpected Event Theory suggests that the latter is the case; a detected mismatch only 

triggers a conscious attributional process with the purpose of finding any explanation for this 

mismatch. If an explanation different from an underlying sequence is more likely to the 

participant, the (sequence) knowledge remains implicit (Haider & Frensch, 2005; Wilbert & 

Haider, 2012). If, however, it seems likely to the participant that an underlying sequence is the 
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reason for their behavior, a new, explicit learning process will learn the sequence, fully 

independent of the implicitly learned representation (see Schwager et al., 2012).  

 To sum up, when the Global Workspace Theory should be applied to explaining a 

transition from implicit to explicit knowledge two questions need more investigation in the 

future: First, how does the global workspace get into a state that can provide top-down 

amplification to the implicitly learned representation? Second, is it the implicit information 

that becomes conscious itself once it is selected or does the content of the global workspace 

only mobilize a second, explicit learning process?   

 

 

Higher-Order Thought Theory 

While the Global Workspace Theory is a specific theory of consciousness, Higher-Order 

Thought Theories are an umbrella term for a wider range of theories, which are concerned 

with the metacognitive aspects of consciousness (Lau & Rosenthal, 2011). Here, we focus on 

a Higher-Order Thought Theory that goes back to the work of Rosenthal (1997; Dienes & 

Perner, 1999). In its core, it differentiates between first-order and second-order (or higher-

order) states. First-order states refer to simple input-output rules of any sensory or motor 

system. This can be understood in analogy to the parallel working modules in the Global 

Workspace Theory. Encapsulated, respectively implicitly learned information can be seen as a 

first-order state which is unconscious. Not only the human brain, but any simple or complex 

machine, which shows discriminatory performance, has first-order states (e.g. perceiving light 

of a certain wavelength results in the output of detecting red).  

Consciousness, according to Higher-Order Thought Theories, crucially depends on 

developing higher-order knowledge about this first-order knowledge. Put simply, 

consciousness means knowing that one knows. This comprises the ability for self-reflection, 

self-reference and a propositional attitude (e.g. “I know/believe/guess that it is red that I see”, 

“It is I, who sees red”, “it is red that I see”, Dienes & Perner, 1999). What is needed for 

consciousness is a mechanism that allows the brain to draw inferences about its own internal 

first-order states and about how these relate to states in the environment. Different theoretical 

suggestions and models have been put forward to describe the learning process behind the 

acquisition of higher-order knowledge about first-order states (Fleming & Daw, 2017; Lau, 

2008; Lau & Rosenthal, 2011).  
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Higher-Order Thought Theory and the Emergence of Conscious Knowledge in 

Implicit Learning 

The theoretical view put forward by Cleeremans (2008, 2011, 2014) clearly applies Higher-

Order Thought Theories to the question how explicit knowledge develops in an implicit 

learning situation: Through interaction with the environment, a first-order representation is 

developed and is gradually improving in quality. The higher-order system receives input from 

the first-order systems and learns that the state in the first-order system has changed and 

thereby develops a higher-order attitude towards the first-order knowledge (e.g. “knowing that 

…”, “hoping that …”, “seeing that …”). This higher-order knowledge is not per se conscious, 

but can become conscious, once its representational quality is strong enough. A very valuable 

aspect of this theory is that it connects well established connectionist learning theories with 

the development of consciousness.  

Pasquali et al. (2010) have investigated the relation between first-order sensitivity and higher-

order awareness in simulations of neural networks within different paradigms (i.e. Blindsight, 

Iowa Gabling Task, and an AGL Task). These results supported the assumption that the 

higher-order representations gradually improve with the learning progress of the first-order 

system. Using the Post-Decision Wagering Task (Persaud et al., 2007), the authors showed 

that the higher-order networks gradually changed from classifying random answers as being 

correct to classifying only correct responses as being correct (by giving high wagers on 

correct responses).    

There are debates how exactly the relation between first-order knowledge and a meta-

cognitive learning mechanism should be modeled, with most of the suggested models being 

based on bottom-up signal-detection theories (Barrett et al.,2013; Fleming & Lau, 2014; 

Maniscalco & Lau, 2012, 2016). What these models have in common is the gradual 

development of higher-order knowledge. The conscious state of a representation changes 

from guessing, which represents being unconscious about a first-order representation, to 

knowing, which represents being conscious about a first-order representation (Dienes & Scott, 

2005; Sandberg et al., 2010).  

A rather simple higher-order learning mechanism, as proposed by Cleeremans (2014), might 

indeed provide an important basis for a cognitive system to determine what first order state it 

currently is in. The assumption that a meta-cognitive learning mechanism plays a significant 

role in gaining conscious insight into otherwise unconscious information processing is very 

promising, as it describes the brain’s ability to learn not only about external information, but 

also about its internal states. However, there are a few open points that should be considered 

in future research.  
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The higher-order learning process informs the system that knowledge has been acquired, but 

knowing that one knows (instead of guessing) the correct response is not equal to knowing 

that there is an underlying sequence or even knowing what exact rules constitute this 

sequence (Scott & Dienes, 2010). It could be argued that under Higher-Order Thought 

Theories this aspect is less important than under the Global Workspace Theory, because 

consciousness is defined as possessing a higher order representation of the first-order 

contents. Further functional properties, such as being able to verbalize the sequence, or being 

able to flexibly transfer this knowledge to new, different situations are of less importance. 

However, the question remains: Even if consciousness relies on gradual metacognitive 

learning processes, how is that learning mechanism connected to explicit knowledge of the 

underlying sequence? 

Another question to ask is if correctness of the first-order performance is the only or most 

important target of higher-order learning systems. Knowing that one knows might not only 

rely on assessing the correctness of the behavioral output. For example, noticing premature 

responses before the next stimulus occurs (Haider & Frensch, 2009), sudden changes in the 

sequential structure which lead to slower reaction times (Rünger & Frensch, 2008), or 

changes in the perceived fluency of the task performance (Esser & Haider, 2017) also could 

be the target of metacognitive learning processes. Thus, it is open to further investigation 

whether such a higher-order process would also be able to learn about different metacognitive 

judgements (e.g. fluency). The mechanism described by Cleeremans and colleagues (Pasquali 

et al., 2010) has so far only been tested in situations where a person is directly asked to 

evaluate the correctness of their responses. This leads to the question whether metacognitive 

learning only occurs for intentionally attended dimensions (e.g. correctness), or whether 

learning about first-order performance is automatic and can happen in parallel for multiple 

dimensions (e.g. correctness, fluency, speed, etc.) when there is no external instruction to do 

so (as there is by subsequently presenting the post-decision wagering task).  

Research on implicit learning implies that implicit learning processes can occur in parallel 

(Goschke & Bolte, 2012; Haider et al.2012; Haider et al., 2014, Haider et al., 2018; Mayr, 

1996). Yet, it is not granted that higher-order learning processes can happen in parallel for all 

implicit learning processes. It might be that higher-order learning processes rely on intention, 

respectively selective attention, to evaluate one specific behavioral output (correctness, speed, 

fluency, etc.). If this were the case, it needed to be explained how the system decides which 

first-order representations are accessed to develop a higher-order representation. Moreover, a 

large number of the implicit learning studies cited here, imply sensitivity for sudden changes, 
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which so far have not been addressed by theories suggesting gradual metacognitive learning 

processes.  

Therefore, a learning process involving expectations, predictions, and violations thereof 

should be considered rather than gradual associative strengthening. On an empirical side, this 

is supported by the above-mentioned studies, which used different manipulations for 

balancing the associative strength between conditions but manipulated whether small or large 

violations of expectations occurred. For example, Esser and Haider (2017) showed differences 

in the emergence of explicit knowledge when the structure of the task led to noticeable 

differences in the fluency of processing the task material. Noticeably, the number of regular 

and irregular sequential trials was equal for both groups. Therefore, it needs to be addressed 

how a metacognitive mechanism that gradually learns to evaluate first-order performance 

would detect the differences between both learning conditions, even though the first-order 

signal strength is matched. A gradual bottom-up higher-order learning mechanism does not 

include the size of prediction errors (here, the sudden changes in fluency) as a signal. In the 

following section, we will propose a tentative model which includes ideas of the Higher-

Order Thought Theories and the Global Workspace Theory in order to respond to the 

formerly described problems.  

 

Metacognitive Learning Mechanisms and Unexpected Events 

We have reviewed two different views on the development of explicit knowledge in an 

implicit learning situation: The Unexpected Event Hypothesis (Frensch et al., 2003; Haider & 

Frensch, 2005) and the metacognitive Radical Plasticity Hypothesis from Cleeremans (2008, 

2011). We have argued why the Unexpected Event Theory makes assumptions and provides 

empirical evidence that fits with a Global Workspace Theory of consciousness, while the 

Radical Plasticity account of Cleeremans theoretically and empirically fits well with Higher-

Order Thought Theories (see Figure 1).  
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Fig. 1. Implicit and Explicit Learning Viewed under the Global Workspace and the Higher-Order Thought 

Theory 

 

 

First, both theoretical viewpoints do not differ in the conceptualization of the process of 

implicit learning itself. Implicit learning is viewed as a first-order learning mechanism (as it 

might be called under a Higher-Order Thought Theory viewpoint), that creates localized, 

encapsulated representations (as the Global Workspace Theory would put it). These first-

order learning processes can be described as internal perception-action loops that use 

prediction errors to enable learning. In such models, learning of actions or action-sequences is 

controlled by an interaction of feedback and feedforward loops (McNamee, & Wolpert, 2019; 

Wolpert & Ghahramani, 2000). A forward model predicts, given a specific motor command, 

sensory or proprioceptive consequences of an action. The predictive forward model can be 

trained by comparing predicted and actual sensory feedback and using the resulting error 
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signal to make increasingly more accurate predictions. It has been demonstrated that such 

internal perception-action loops are relevant for implicit motor and perceptual sequence 

learning (Janacsek et al., 2020; Lutz et al., 2018; Ruttle et al., 2021; Ziessler & Nattkemper, 

2001).  

Both theoretical viewpoints, the Unexpected Event Hypothesis and the Radical Plasticity 

Hypothesis state that it is not these implicit internal models themselves that are consciously 

accessible. Instead, both theoretical approaches raise the question how a secondary explicit or 

higher-order learning mechanism represents that the contents of the first-order models have 

changed and, finally, how consciousness about unconsciously learned sequences arises.  

Both viewpoints have their strengths and weaknesses. The metacognitive Radical Plasticity 

account has the strength of explaining conscious access by clearly definable connectionist 

learning mechanisms that rely on the same predictive learning principles as the first-order 

system does. However, this does not readily explain how structural explicit knowledge 

develops (knowing what exactly the sequence is; Dienes & Scott, 2005). Furthermore, it does 

not account for the role of expectancy violations from several distinct metacognitive sources 

(accuracy, speed, fluency, conflict, etc.). 

The seemingly biggest difference between the Radical Plasticity account and the Unexpected 

Event Hypothesis is that the former assumes that consciousness develops gradually along with 

lowering the prediction error of the second-order system; when there is no surprise about the 

ongoings in the first-order system left, one knows that one knows. The Unexpected Event 

Hypothesis instead proposes that conscious awareness is triggered by large prediction errors; 

when an individual thought they did not know but apparently know. The Unexpected Event 

Theory captures the important aspect of violations of consciously accessible expectations and 

explains why a rather sudden insight (comprising the time span from a consciously accessible 

surprise to explicit structural knowledge) into the implicitly learned representations seems to 

develop. Its weakness is that, so far, it did not take metacognitive learning mechanisms into 

account that could provide a clearer prediction when expectancies will be violated or how 

these expectancies arise in the first place.  

Thus, we aim to elaborate the processes behind the original proposal of the Unexpected Event 

Theory and to point to open questions which should be addressed by future research. Even 

though the Unexpected Event Hypothesis generally follows the Global Workspace Theory, 

we assume that higher-order learning is an important mechanism to consider, when trying to 

explain how an unexpected event can become consciously accessible. What is needed is a 

mechanism which allows a comparison between the expected metacognition (e.g., “How 
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correct, fast, fluent should my response be?”) an individual has in a given situation and the 

experienced metacognition (“How correct, fast, fluent was my response?”). Important 

questions in this regard are: What is the relation between the first-order internal perception-

action models and the second-order or metacognitive model? How could a metacognitive 

learning process explain how a consciously accessible surprise occurs? Currently, there are 

several different models aiming to explain the relation between the first-order signal (here, 

implicit knowledge) and the second-order metacognitive evaluation of these signals. Mostly, 

these models rely on signal-detection theory (Galvin et al., 2003; Lau & Rosenthal, 2011; Del 

Cul et al., 2009). The problem with these models is that they are often pure bottom-up models 

that do not take important top-down factors into account which have shown to influence 

metacognitive decisions. This includes, for example, the use of heuristic cues (e.g. fluency, 

luminance), which have no direct relation to the first-order signal the metacognitive 

judgement is relating to (Hoyndorf & Haider, 2009; Koriat, 2007; Wilbert & Haider, 2012). It 

further includes the role of previous metacognitive experiences, with similar situations, 

successes and failures, or general knowledge about one’s own performance capacities.  

There are, however, theories that model the relationship between first-order knowledge and 

metacognitive judgements with Bayesian learning (Fleming & Daw, 2017; Sherman et 

al.,2015). One advantage is that Bayesian models allow metacognitive learning via predictive 

coding (Clark, 2013; Friston, 2010). The evaluation of one’s own behavior, respectively 

knowledge leads to a first hypothesis of what metacognitive experience is expected in the 

next, similar situation. This prediction is compared with the current experienced 

metacognitive judgement and, in turn, the resulting error-signal is used as a bottom-up 

learning signal for the next, more precise metacognitive prediction.  

For implicit learning and the development of explicit knowledge, this means that any 

individual has a certain expectation about their own performance in an SRTT, based on 

previous experiences with similar situations. Thus, in the beginning an individual has a certain 

metacognitive model how fast, fluent, correct, etc. their behavior should be when responding 

to stimuli that appear seemingly randomly on a computer screen. The sequential material 

inherent in the task can lead to behavior different from the expected behavior. These 

deviations from the expected performance will be used to adjust the metacognitive model. In 

order to develop explicit knowledge, the participant has to recognize that their performance 

does not match their expectations to an extent that is not compatible with their model of the 

current situation. We assume that what is important for a change of the metacognitive model 
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and thereby the development of explicit knowledge, is the size of the metacognitive prediction 

error and the strength of the a-priori hypothesis.  

Smaller deviations from the expected metacognitive judgement of the situation can easily be 

used to adjust the model via this bottom-up error signal. For example, faster responses, fewer 

errors, and increasing fluency are compatible with mere practice effects and only slight, 

gradual adjustments of the metacognitive models are the result. However, large prediction 

errors would more likely lead to a stronger change of the metacognitive model. In this case, it 

might be functional to evaluate whether a new, different model should be applied to the 

situation, instead of making rather drastic changes to the current model. The strength of the a-

priori hypothesis could also play a significant role. If there is a very strong a-priori hypothesis 

and the current data strongly contradict this model, it might be less functional to make drastic 

changes to the current, well-established model. Instead, it might be more advisable to test 

whether a different model should be applied, respectively built for the new situation. During 

an SRTT-training, a large deviation might occur, if the well-practiced sequence is suddenly 

removed and replaced by random responses. In this case, it might be less functional to assume 

that the own performance capacity has declined and instead it might be useful to check 

whether the task has properties that were not considered before (e.g. that there used to be a 

sequence, which is now missing). If, however large metacognitive prediction errors are 

encountered while the participant only has a rather weak a-priori hypothesis, there is no need 

to replace the current metacognitive model with a new one. Instead, the participant will make 

adjustments to their expectations, without developing explicit sequence knowledge. Taken 

together, we propose that both factors, metacognitive prediction error and strength of the 

metacognitive a-priori hypothesis determine whether an individual will change their 

metacognitive model and thus enable explicit sequence learning.    

As mentioned before, there are models for metacognitive learning that support our notion that 

metacognitive evaluations not only rely on current first-order performance signals, but also on 

earlier metacognitive judgements (e.g. Fleming & Daw, 2017). So far, there is not much 

research on how metacognitive models are selected in a given situation and under which 

circumstances a model is replaced with a new or different one or when instead the current 

model will be adjusted. Collins and Frank (2013) suggested a Bayesian “context-task set” 

model. In this model, an inference is made in every single learning trial about whether the 

current task-set is still applicable to the current situation or whether there are yet unknown 

rules that should influence the task-set and therefore, a new model should be applied. This 

model also uses arbitrary context cues to determine whether the current situation is indicating 
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a new, unknown task context or whether previously acquired metacognitive models should be 

used and adjusted.  

Importantly, with regard to the Global Workspace Theory, we do not assume that such 

metacognitive representations are per se conscious or that their strength has any relation to a 

gradual change in consciousness. Instead, we propose that metacognitive representations are 

generally good candidates for being accessed by the global workspace (see Shea & Frith, 

2019, for an opinion why metacognitive learning is important to the Global Workspace 

Theory).  Assuming that there are multiple parallel higher-order learning processes, their 

content might be entirely implicit as well. They send and receive information from the global 

workspace, just like implicit first-order information could. In the global workspace multiple 

meta-cognitive representations could be integrated into a hierarchically higher metacognitive 

representation of the current situation. This integrated information could for example involve 

metacognitive knowledge about one’s own performance like fluency, accuracy of processing, 

precision or confidence. In addition, different weights to the underlying metacognitive 

representations are assigned, according to their current relevance.  

These original assumptions of the Unexpected Event Theory and the additional assumptions 

about a predictive metacognitive learning processes proposed here, could solve some of the 

formerly described problems behind the explanations based solely on the Global Workspace 

Theory or Higher-Order Thought Theories. Concerning the Global Workspace Theory, the 

Unexpected Event Theory does not need to explain how an implicitly acquired first-order 

representation can gain a signal-strength strong enough to win the competition against all 

other unconscious modules or how top-down amplification can be directed to this 

encapsulated knowledge. This problem is solved because it is the conflict between the 

expected and the experienced metacognitive judgements which gains access to the global 

workspace. It is the representation of this conflict (or surprise) which has a high likelihood of 

winning the competition against other parallel processes for entering the global workspace.  

Concerning the Higher-Order Thought Theory based explanation of the emergence of explicit 

from implicit knowledge, the here proposed addition to the Unexpected Event Theory account 

lies in the assumption how implicit, first-order knowledge and higher-order knowledge are 

related. An account where metacognitive judgements depend on a predictive learning process 

which does not only base its predictions on the first-order bottom-up signal, but also on 

heuristic cues, previous knowledge, and experiences with similar situations, can help to 

explain different empirical findings. This includes, for example, premature responses (Haider 

& Frensch, 2009), changes in the underlying sequence (Schwager et al., 2012) and changes in 
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the experienced fluency (Esser & Haider, 2017; Rünger & Frensch, 2008). All these results 

are difficult to explain with a pure bottom-up mechanism relying on gradual strengthening of 

the first-order learning signal. Furthermore, large prediction errors and the processes, they are 

assumed to trigger, fit the data suggesting that explicit knowledge seems to develop in a 

sudden moment of insight (Haider et al., 2011; Rose et al., 2010; Schwager et al. 2012; 

Wessel et al., 2012), rather than developing gradually.  

 

Conclusion and Future Directions 

We assume that the predictive metacognitive model a person has about their own behavior in 

a given situation (e.g. how fast, how precise, how difficult or fluent a task should be) adapts to 

the task by comparing the predicted and the experienced metacognitive judgement in any 

given situation. The behavioral changes resulting from implicit learning may not fit the 

current metacognitive model (i.e. responses might suddenly be much slower than expected 

when the sequence is exchanged with new, random material). If so, this violation has a high 

chance to enter the Global Workspace and serve as a trigger to evaluate whether a new 

metacognitive model of the situation should be applied.  

Nevertheless, there are questions that should be addressed by future considerations. This 

relates to theoretical assumptions in need of further elaboration: Are all implicit learning 

processes continuously monitored by parallel metacognitive learning processes? How can 

previous knowledge and external cues, like task fluency, influence these metacognitive 

processes? Is metacognitive learning a pure bottom-up process? Does the metacognitive 

prediction error play a role in the emergence of explicit knowledge? Furthermore, there is 

need for a model that can account for current empirical findings:  Why does explicit 

knowledge seem to emerge in a sudden insight process? Why do alternative explanations for 

the behavioral change prevent such insight? 

We assume that the Unexpected Event Theory and the here proposed extensions about 

expectancy violations resulting from Bayesian metacognitive learning processes can provide a 

promising step into answering these questions. The prediction of a metacognitive judgement 

is compared to the currently experienced metacognitive judgement about one’s own behavior. 

Its prediction-error signal is then used as a learning signal for developing a more accurate 

metacognitive model of the current situation. Small prediction errors might lead to a gradual 

change of the model. Yet, large prediction errors in combination with strong a-priori 

hypotheses can serve as a signal that the current model is not suitable for the given situation 

and a different model should be applied. Within such a framework, it can be modelled that not 



 

49 

 

only the current bottom-up first-order signal but also top-down factors, such as heuristic cues 

and previous experiences with similar situations, are the basis for a prediction of the 

metacognitive judgement in a given situation.  

Our proposal of integrating the role of metacognitive learning processes in the Unexpected 

Event Theory needs further experimental investigation: First, it should be tested whether the 

predicted metacognitive judgements can be manipulated not only by the strength of the first-

order signal, but also by differences between the expected and the actual experienced 

metacognitive judgment. Second, the size of the prediction error of metacognitive judgements 

as well as the strength of the a-priori hypothesis should be manipulated to test its relation to 

the emergence of explicit knowledge. Third, we proposed that large prediction errors serve as 

a consciously accessible signal to trigger explicit search processes. These search processes are 

assumed to lead to a new explicit representation, independent of the implicit representation.  

A better understanding of the transition from implicit to explicit sequence knowledge can 

provide interesting contributions to the broad and difficult field of consciousness theories 

itself. Implicit learning paradigms create the unique experimental situation where unconscious 

knowledge does not need to be induced by week signal strength or inattention. The 

development of metacognitive knowledge is a concern of many different and often separated 

research fields which all provide different contributions. For example, research on decision-

making or on perception is governed by bottom-up signal-detection models (Galvin et al., 

2003; Pleskac & Busemeyer, 2010), cue-utilization is prominent in memory research (Koriat, 

2000, 2012, 2015) and models of evidence accumulation are often found in research on error-

monitoring (Yeung & Summerfield, 2012). Implicit sequence learning paradigms can 

augment this research by providing additional opportunities (to the predominant priming 

paradigms) to manipulate the first-order signal strength, external cues, as well as the role of 

prior expectations and how these expectations develop over the course of learning.  
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6. Study 1: Response-Effects trigger the development of explicit knowledge 

Abstract 

In implicit learning, task-redundant response-effects can enhance the development of explicit knowledge. Here, 

we investigated whether learning a fixed sequence of effects (stimuli occurring immediately after the 

participant’s keypress, but are not mapped to the identity of the respective response) influence the development 

of explicit rather than implicit knowledge when these effects are afterwards mapped to the identity of the 

responses. We tested first, whether participants would learn a fixed sequence of effects in a serial reaction time 

task when these effects were not mapped to the identity of the responses. Next, we tested whether learning this 

effect sequence in advance would facilitate the development of explicit knowledge about a contingently mapped 

sequence of responses.  

The results showed that participants acquired implicit knowledge when confronted with only the effect sequence. 

Moreover, the further findings suggest that learning the effect sequence in advance led to the development of 

primarily explicit knowledge about a subsequently added response-location sequence. We interpret these results 

in light of the Unexpected-Event hypothesis: A sudden feeling of sense of agency is unexpected and triggers 

inference processes. 

 

Introduction
1
 

General Findings in implicit learning 

Implicit learning is assumed to be one fundamental learning process enabling humans to 

exploit sequential structures inherent in the environment. It is assumed to take place without 

any intention or additional effort and even without the learner’s conscious awareness about 

that they learn or what they actually learn.  

One of the most frequently utilized paradigms in the field of implicit learning is the Serial 

Reaction Time Task (SRTT; Nissen & Bullemer, 1987). In this standard SRTT, participants 

see four horizontally marked locations on the screen, which are mapped to spatially 

corresponding keys. Participants are instructed to press the appropriate response key 

whenever an asterisk occurs at a certain location. Unbeknownst to the participants, the 

locations of the asterisk follow a regular sequence. After several blocks of practice, the 

regular sequence is replaced by a random sequence. This leads to a performance decrement 

that disappears almost immediately when the original sequence is reintroduced. At the same 

time, direct tests like, for instance, verbal report (Eriksen, 1960; Rünger & Frensch, 2010), or 

                                                           
1
 In the original manuscript, the headings are numbered. To avoid confusions, the numbering was taken within 

this thesis. 
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the generation tasks (Dienes & Seth, 2010; Haider, Eichler & Lange, 2011; Shanks & 

Johnston, 1999; Wilkinson & Shanks, 2004) suggest that the participants are not able to 

explicate their acquired knowledge when asked to do so. This latter finding, albeit hotly 

debated (e.g., Shanks & St. John, 1994), is interpreted as a hint that the participants are not 

aware of having acquired knowledge about the experienced sequence (see, Frensch & Rünger, 

2003). 

Beside other important results, several authors in this field have provided evidence that 

implicit learning is enhanced when response-effect contingencies are realized within the 

SRTT (Esser & Haider, 2017a; Haider, Eberhardt, Esser & Rose, 2014; Hoffmann, Stöcker & 

Sebald, 2001; Stöcker, Sebald & Hoffmann, 2003; Stöcker & Hoffmann, 2004; Tubau, Lopéz-

Moliner & Hommel, 2007; Ziessler, 1998; Ziessler & Nattkemper, 2001; Zirngibl & Koch, 

2002). However, the debate how and why response-effects may amplify implicit learning is 

still going on. Furthermore, some recent findings suggest that response-effects not only 

enhance implicit learning, but, in particular, foster the development of explicit knowledge 

(Esser & Haider, 2017a; Haider, Eberhardt, Kunde & Rose, 2012; Haider et al., 2014; 

Zirngibl & Koch, 2002). The goal of the current study was to further contribute to the 

question whether response-effect learning (R-E learning) affects implicit or explicit 

knowledge. 

 

Response-Effect Learning in the Serial Reaction Time Task 

Basically, response-effect learning
2
 has its root in the field of voluntary actions and control. 

The central assumption, the ideomotor principle (Greenwald, 1970; James, 1890; Prinz, 1992, 

1997; Shin, Proctor & Capaldi, 2010), states that voluntary actions are initiated by 

anticipating its action-effect (its perceivable change in the environment). Learning to know 

which effect in the environment is provoked by which action is thus crucial for voluntary 

actions (Kunde, 2001). In their two-stage model, Elsner and Hommel (2001) proposed that 

one first learns to associate actions with their effects. These action-effect relations can then be 

used bidirectional. This means that the activation of these effects, be it by intentionally 

                                                           
2
 For the purpose of our investigations, we understand the term response-effect as synonymously with action-

effect. The term action-effect stems from the research on voluntary actions and control and refers to an action 

and its perceivable change in the environment (its action-effect; e.g. Elsner & Hommel, 2001; Greenwald, 1970; 

Hommel et al., 2001). In contrast, researchers in the implicit sequence-learning literature prefer the term 

response-effect (e.g. Esser & Haider, 2017a; Haider et al., 2014; Hoffmann et al., 2001). As our focus is on 

implicit learning, we primarily use the term response-effect here.  
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imagining the effect of an action or by externally presenting the effect, facilitates the action-

selection process (Elsner & Hommel, 2001; Hommel, Müsseler, Aschersleben, & Prinz, 2001; 

Kunde, Schmidts, Wirth & Herbort, 2017). 

In the field of implicit learning, Ziessler (1998) and Ziessler and Nattkemper (2001) were 

among the first who focused on the role of response-effect (R-E) learning. They realized 

response-effect contingencies as response-stimulus relations because in their studies the 

response always predicted the imperative stimulus of the next trial. In their study, Ziessler and 

Nattkemper (2001) varied the complexity of either the R-E (R-S in their terminology) or the 

S-S relations. Their results showed that the manipulation of the R-E complexity had a much 

larger impact on the latencies, and thus on learning, than the S-S complexity. In addition, 

when inspecting their results of their post-experimental knowledge tests the data suggests that 

R-E learning seems to not only amplify implicit learning but also increased the rate of explicit 

knowledge.  

Slightly different, Hoffmann et al. (2001) as well as Stöcker, et al. (2003) introduced task-

redundant tones as response-effects. Task-redundancy in this context means that the effect-

tones themselves were not needed to perform the task. In their study, the participants 

responded to the location of an asterisk just as in the Nissen and Bullemer task. Subsequently, 

they heard one of four different tones. In the experimental condition, each response key was 

mapped to one single tone. In two further control conditions, the participants either did not 

hear any tone or the tones were not contingently mapped to the response keys (i.e. each of the 

four tones was mapped to the four asterisk locations depending on their serial position). Their 

results revealed that the effect tones facilitated implicit learning when they were contingently 

mapped to the responses, but not when the mapping between the response locations and the 

tones was arbitrary. Furthermore, the data from the knowledge test in their study also suggest 

that the contingent response-tone mapping led to more explicit sequence knowledge.  

Recently, Esser and Haider (2017a) built on these findings. In their study, the participants 

responded in three different conditions to the same response sequence and also heard the same 

sequence of task-redundant effect tones. The crucial manipulation concerned the response-

tone contingencies. The tones were either consistently mapped to the responses (Contingent-

Tone condition) or consistently mapped to only the repeating colors of the stimuli (No-

Contingent-Tone condition). Through the use of additional trials, the response and the color 

sequence were uncorrelated. Since this difference between the two conditions affects, as a 

side effect, the response-tone-stimulus contingencies, the authors introduced a third condition. 
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Basically, this condition was identical to the Contingent-Tone condition. The only difference 

was that, here, the tones sounded always concurrently with the appearance of the stimuli 

(Stimulus-Tone condition) rather than immediately after the participant’s responses. The 

results of this study showed that the participants in the Contingent-Tone condition had 

significantly more knowledge than the participants in the Stimulus-Tone condition, whereas 

the No-Contingent Tone condition and the Stimulus-Tone condition did not differ. This 

difference in the amount of knowledge almost entirely vanished after removing all 

participants with predominately explicit knowledge from the analyses. Thus, the findings 

clearly speak for an effect of response-effect learning on the generation of explicit knowledge 

within the SRTT (for similar findings see also Haider et al., 2012, 2014; Zirngibl & Koch, 

2002). 

Taken together, the reported results converge to two main findings regarding R-E learning: 

First, implicit R-E learning seems to progress faster than other forms of implicit learning, like, 

for instance stimulus-stimulus or stimulus-response learning. Second, R-E learning seems to 

foster the development of explicit knowledge. To account for these findings, at least, three 

different explanations within the field of implicit learning have been proposed. As we will 

show below, the accounts mainly differ in their assumptions whether R-E learning enhances 

implicit or explicit learning processes.  

 

Assumptions about the development of explicit knowledge in implicit R-E-

Learning 

A very famous model in the field of implicit learning is the Dual-System model proposed by 

Keele, Ivry, Mayr, Hazeltine, and Heuer (2003). The central assumption of this model is that 

implicit learning can rely on either the unidimensional or the multidimensional system. The 

former system comes into play when the to-be-learned sequence refers to only one single 

dimension, like, for instance, a sequence of response locations. The information of the single 

dimension is assumed to be processed in encapsulated modules, which are not accessible for 

the information processing of other dimensions. Furthermore, learning is thought to be 

independent of selective attention and leads to implicit knowledge because the single 

dimension is already sufficient to select the information. If, however, the sequence requires 

integrating information across different dimensions, learning is assumed to be based on the 

multidimensional system. According to Keele et al., only in the multidimensional system 
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learning needs selective attention and also can contribute to the development of explicit 

knowledge. Thus, a plausible explanation for the increased rate of explicit knowledge in 

experiments based on R-E learning is that, in contrast to, for instance, a response location 

sequence, learning of an R-E sequence requires integrating the response location information 

and the perceptual information of the effects. Probably therefore, the learning process 

underlying R-E learning relies on the multidimensional rather than on the unidimensional 

system (Abrahamse, Jimenéz, Vervey & Clegg, 2010). However, an important objection 

concerning this assumption is that some empirical results suggest that the increased rate of 

explicit knowledge is specific for R-E learning. It is not found when only the imperative 

stimulus is enriched by other redundant information (Abrahamse, van der Lubbe, Verwey, 

Szumska, & Jaskowski, 2012; Esser & Haider, 2017a).    

A second explanation, proposed by, for instance, Stöcker and Hoffmann (2004) is that 

response-effects facilitate the chunking processes (see, Hoffmann & Koch, 1997; Koch & 

Hoffmann, 2000). Based on the ideomotor principle (Greenwald, 1970; Prinz, 1992), these 

authors assume that the response selection process in R-E learning is facilitated. This, in turn, 

amplifies the chaining of succeeding responses and their effects resulting in longer 

subsequences (or chunks) of key-presses.  

This assumption is consistent with the finding of increased implicit learning effects. However, 

it does not explain why the response-effects seem to boost primarily the development of 

explicit knowledge. To additionally account for the increased rate of explicit knowledge (see, 

Zirngibl & Koch, 2002), it needs the extra assumption that the longer the chunks the higher 

the probability that these chunks are explicitly represented. This, however, might be arguable 

given the empirical findings in the field of skill acquisition. These findings suggest that over 

the course of practice chunking occurs. However, the accessibility of these acquired chunks 

underlying such skills decreases rather than increases (Anderson, 1993; Logan, 1988; Newell 

& Rosenbloom, 1981). One solution to this problem is the assumption that the development of 

explicit knowledge is characterized by a shift from stimulus-based to plan-based action 

control (e.g. Tubau et al., 2007). Furthermore, for instance, Tubau et al. (2007) propose that 

phonetically coded stimuli as such enable plan-based action control. For phonetically coded 

response-effects, like, for instance, auditory effects (e.g., Esser & Haider, 2017a; Hoffmann et 

al., 2001), or symbolic visual effects (e.g. letters; Ziessler & Nattkemper, 2001), this account 

might explain why R-E learning fosters plan-based performance, hereby leading to a higher 

rate of explicit knowledge. However, as a necessary precondition for such a plan-based 
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performance the underlying sequence needs to be integrated in its entirety (e.g., Haider et al. 

2011; Rose, Haider & Büchel, 2010). 

The third explanation is based on the Unexpected Event Hypothesis (UEH; Frensch et al., 

2003). The UEH deviates from the former explanations in that it is based on the premise that 

implicit and explicit knowledge crucially differ with respect to their representational format. 

Like Keele et al. (2003), implicitly acquired knowledge is thought to be represented in 

encapsulated modules of the unidimensional system (Dehaene & Naccache, 2001; Eberhardt, 

Esser & Haider, 2017). Due to this encapsulated nature of such representations this 

knowledge is not consciously accessible.  

The crucial difference between the UEH and the Dual-System model of Keele concerns the 

way how such implicitly acquired knowledge can become conscious. According to the UEH, 

the multidimensional nature of an R-E sequence is not sufficient. Rather, it is assumed that an 

independent explicit inference mechanism is needed. It is, for instance, triggered when a 

person recognizes an unexpected event; when, for example, in an implicit learning experiment 

the participant realizes that she responded correctly without already having seen the stimulus 

(e.g., Haider & Frensch, 2005, 2009). This, in turn, activates explicit inference processes to 

figure out why it should be possible to produce such premature responses in the given 

situation. The result of this inference process is it what then becomes consciously represented 

(Esser & Haider, 2017b; Scott & Dienes, 2008; Whittlesea, 2002, 2004).  

According to this account, R-E learning may not alter the implicit learning processes that 

much. Rather it may primarily foster the development of explicit knowledge (Esser & Haider, 

2017a; Haider et al., 2012, 2014). By definition, R-E learning leads to observable changes in 

the environment as a consequence of one’s own actions (Elsner & Hommel, 2001; Hommel et 

al., 2001; Nattkemper, Ziessler & Frensch, 2010). On the one hand, this should increase the 

likelihood that participants encounter an unexpected event during the course of learning. In R-

E learning not only the observation of the characteristics of one’s own performance could 

violate the participants’ expectations, but also the produced changes in the environment. For 

instance, the participants may not only notice that their performance feels more fluent than 

expected, but also that they have a hunch what the next response-effect will be already before 

it occurs. On the other hand, it is also conceivable that the effects of one’s own actions, 

because they appear as consciously perceivable changes in the environment, are rather salient 

and as such direct the explicit inference processes towards the sequence built into the task.  
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Taken together, the aforementioned empirical findings show that implicit R-E learning leads 

to stronger learning effects and often also to more explicit knowledge about the underlying 

sequence than other implicit learning processes. Even though these findings seem to be rather 

robust, they are based on only a few studies. Furthermore, no conclusive explanation exists 

yet. While the first explanation mainly addresses the multidimensional characteristic of R-E 

learning, the latter two explanations build on the ideomotor principle of intentional action and 

control. In addition, the three explanations differ with regard to one core assumption of 

implicit learning namely that practicing a sequence strengthens the associations between the 

elements of the sequence. This then causes larger implicit learning effects on the one hand 

and more explicit knowledge on the other hand. In particular, the second explanation seems to 

be rooted in this tradition of thinking. By contrast, the UEH explicitly states that implicit 

knowledge is never consciously accessible. Rather, the explicit insight that a sequence is built 

into the implicit learning task needs the generation of new consciously accessible 

representations. Such representations result from additional explicit search processes which 

are triggered by the experience of an unexpected event.  

 

Goal of the Current Study 

The current study aimed at investigating the assumption derived from the UEH that response-

effect contingencies may boost the development of explicit knowledge within an implicit 

learning situation. In extending the study of Esser and Haider (2017a), we focused more on 

the role of unexpected events in the context of R-E learning.  

Several findings from our lab (Eberhardt et al., 2017; Haider et al., 2012, 2014; Haider, Esser 

& Eberhardt, 2018) suggest that participants are able to implicitly learn sequences of events 

even when these are not mapped to responses like, for instance, a visual sequence of colors or 

a visual-spatial sequence presented only in the stimuli. Therefore, we assumed that 

participants may also learn a fixed sequence of effects when these effects are not bound to the 

identity of the responses; that is, when the effects follow a sequence (e.g. A-B-C-D-E-F), but 

the responses producing them are random. We use the term effect sequence because pressing 

a response key consistently produced an event (the effect: tones in Experiment 1 and visual 

shapes in Experiment 2).  

On the empirical side, the findings of Lepper, Massen and Prinz (2008) already support that 

learning of such an effect sequence is indeed possible. They showed that participants are able 
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to separately learn a sequence of either transformation rules (S-R-E rules) or of effects that 

were not consistently mapped to the responses. When replacing the fixed effect sequence by a 

random sequence, participants showed a small, but significant deceleration of 12ms in 

Experiment 1 and 28ms in Experiment 2.  

Thus, if participants were able to learn such a fixed sequence of effects without knowing how 

to produce them, they should experience a surprising sense of agency when, without further 

instruction, the responses are later mapped to these effects (Beck, Di Costa & Haggard, 2017; 

Haggard, Clark & Kalogeras, 2002; Moore, Lagnado, Deal & Haggard, 2009). This 

unexpected feeling of a sense of agency then should, according to the UEH, trigger explicit 

inference processes and as such should boost the development of explicit knowledge about the 

response-location sequence. 

In order to test these assumptions, we first investigated in Experiment 1a whether participants 

would implicitly learn a fixed sequence of task-redundant effects without knowing how to 

produce them because these effects were not contingently mapped to the identity of either the 

stimuli or the responses. The only additional contingency here was the timing between the 

responses and the effects. Whenever the participant had pressed a key, the effect appeared 

immediately. In order to assess implicit learning, the fixed effect sequence was replaced in the 

second to last block and was reintroduced in the last block (Lepper et al., 2008). 

To foreshadow our findings of Experiment 1a, the participants indeed learned the fixed 

sequence of effects. This allowed us to test our main question if experiencing such an effect 

sequence in advance will enhance the acquisition of explicit knowledge about a response-

location sequence. Accordingly, in Experiment 1b, we trained the participants either with or 

without a fixed auditory effect sequence in the first half of the training. The presentation of 

this effect sequence was the only difference between the two conditions. Without any further 

instruction, all participants were then transferred to a test phase. Here, they received the fixed 

effect sequence together with a correlated response-location sequence, meaning that the 

participants now could learn how to generate the response-effects. Immediately after this test-

phase, the participants’ knowledge about the response-location sequence was assessed. In 

order to additionally test whether learning a sequence in advance generally facilitates the 

learning of a response-location sequence, we introduced a third condition. Instead of 

presenting a fixed effect sequence, the sequence here was built into the imperative visual 

color stimuli in the first half of the training. In the second half, this stimulus sequence was 

then mapped contingently to the response locations. 
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If our considerations were true, we should find more explicit knowledge in only that condition 

in which the participants already received the fixed effect sequence in the first phase. The 

goal of Experiments 2a and 2b then was to replicate these findings with visual (response-) 

effects instead of auditory effects in order to test whether these findings are specific for the 

auditory modality.  

 

Experiment 1a 

As already said, the goal of the first experiment was to test whether the participants would 

learn a fixed auditory effect sequence, even when (a) they were not informed about the 

existence of such a sequence, (b) the effects were not contingently mapped to the responses or 

stimuli, and (c) the effect tones were redundant for fulfilling the task. The participants were 

only told that they will hear a tone after each response.  

Implicit learning of the effect sequence was assessed by replacing the sequence in Block 5 by 

a pseudo-random sequence and reintroducing it in Block 6. Based on the findings of Lepper et 

al. (2008), we expected that the participants will implicitly learn such an effect sequence even 

though they do not know how to produce it. If the participants interpret the effects as 

response-effects, they should anticipate them which in turn should facilitate the initiation of 

the responses (Kunde, Koch & Hoffmann, 2004; Pfordresher, 2003, 2005). Thus, removing 

the effect sequence should lead to an increase of latencies.  

Methods 

Participants 

Forty students (4 men) of the University of Cologne with a mean age of 22.40 years 

(SD=2.77) participated the experiment either for course credit or for payment (3€). 

In all experiments, we replaced the data of participants when, first, we could not ensure that 

they already had taken part in former SRTT-experiments or, second, when their mean error 

rate was higher than 15% errors over all blocks. In Experiment 1a, two participants reached 

this error criterion. 

Apparatus and Stimuli 

We used the version of the SRTT, originated by Haider et al. (2012). In this version, a target 

square (3 x 3 cm) appeared in the upper third of the 17-inch screen. It contained one of six 
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colors (green, yellow, cyan, pink, blue, or red). In the lower two thirds of the screen, six 

response squares (3 x 3cm) were presented in a triangular space. They contained the six 

possible target colors. The arrangement of the six colors of the response squares changed from 

trial to trial (see, Figure 2). 

 

 

Fig. 2
3
. Succession of the events within one SRTT-trial. The numbers represent the different colors of the 

stimuli. 1=yellow, 2=red, 3=pink, 4=cyan, 5=blue, 6=green. 

 

The locations of the response squares were spatially mapped to the response keys Y, X, C, B, 

N and M keys on a German QWERTZ-keyboard. The participants were instructed to let their 

index-, ring-, and middle-fingers rest on the six response keys for the entire experiment and to 

press the key spatially corresponding to the location of the response square containing the 

target color. Independent of the correctness of the response, every key press produced a sine 

tone of 400 Hz, 600Hz, 800Hz, 1000Hz, 1200Hz, or 1400 Hz. Only these effect tones 

followed a first order 6-elements sequence (1200Hz, 600 Hz, 1400 Hz, 800 Hz, 1000 Hz, 

                                                           
3
 In the original manuscript, the figures are numbered differently. To avoid confusions, the numbering is adapted 

to the consecutive numbering of this thesis. 
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400Hz). In Block 5, the tone sequence was replaced by a pseudo-random sequence. The only 

constraint of this pseudo-random sequence was that it did not contain immediate repetitions of 

tones. 

Procedure 

The experiment started with computer-based instructions. The participants were informed 

what their task was. In particular, they were told that after each keypress they will hear a tone 

which should help them to keep concentrated. Since the tones were task-redundant, we used 

this cover story to ensure that the participants would attend to the tones as part of the task-set 

(e.g., Dreisbach & Haider, 2009; Eberhardt et al., 2017). Afterwards, all participants 

performed six blocks of the SRTT, with 90 trials each. They were allowed to make a short 

break of a freely chosen length after each block. 

Each trial started with the presentation of the six colored response squares. After 100ms the 

target was displayed in the upper third of the screen for 150ms. The participants had to find as 

quickly as possible the response square containing the target’s color and to press the 

corresponding key. Immediately after the keypress, one of the six sinus-waved tones sounded 

as the response-effect for 200ms and the response squares disappeared. The next trial started 

after a response stimulus interval (RSI) of 500ms.  

After having finished the last block of the SRTT, the participants were asked about their 

knowledge about the fixed effect sequence in a post-experimental interview and were then 

debriefed about the experiment. 

Results and Discussion 

Mean error rates and mean RTs in the SRTT were computed separately for each participant 

and each block. For the mean RTs, erroneous trials (5.32% of all data) were excluded. 

Furthermore, negative RTs and RTs one standard-deviation above the mean RTs (6.82% 

correct trials)
4
 were excluded. We used such an unusual strict exclusion criterion because we 

assumed that the presentation of the pure tone-sequence will affect only the response-

initiation processes (Kunde et al., 2004), and thus will lead to very small RT-increases when 

replacing the effect-tone sequence in the random block. Lepper et al., (2008) found a 12ms 

difference between the sequenced and the random response-effect trials. To ensure that the 

                                                           
4
 Since the single RTs were not normally distributed, the amount of excluded trials is lesser than 16%.  
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expected small effects were not overshadowed by random RT fluctuations, we decided to 

reduce the noisy influence of outliers.  

In all experiments, we adopted an α-level of 5%. If Mauchly’s test of sphericity reached 

significance, we report Greenhouse Geisser corrected p-values together with the original 

degrees of freedom. 

Error rates and latencies in the SRTT 

An one-way repeated measures ANOVA with Block as independent variable and mean error-

rates as dependent variable just failed to reach the level of significance (F(5,195) = 2.43, p = 

.056, ηp
2 

= 0.06). As can be seen from Table 1, the participants made only few errors (M = 

.053; SD = .031). 

The analogous ANOVA with mean RTs as dependent variable revealed a significant effect of 

Block (F(5,195) = 10.34, p <.001, ηp
2 

= 0.21). As shown in Table 1, mean RTs decreased over 

time.  

 

Table 1. Mean percent error rates and RTs per block in Experiment 1a. The respective standard deviations are 

presented in brackets. 

Block Mean Error rates Mean RTs 

Block 1 .053(.041) 699.55(70.32) 

Block 2 .043(.026) 676.06(71.95) 

Block 3 .052(.039) 679.61(74.71) 

Block 4 .055(.045) 671.11(70.64) 

Block 5 (random) .056(.031) 677.67(74.22) 

Block 6 .060(.045) 663.79(70.97) 

 

Test-block 

To investigate our main hypothesis, we compared the mean RTs in the random Block 5 with 

the mean RTs of the two adjacent sequential Blocks 4 and 6. The replacement of the fixed 

effect sequence led to an RT-increase of 10ms (Figure 3). A t-test revealed a significant effect 
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(t(39)=3.42, p=.001, d=0.55)
 5

. As can be seen in Figure 3, RTs were slower in the random 

than in the sequential blocks.  

 

Fig. 3. Mean RTs for Bock 5 and the means of Block 4 and 6 in Experiment 1a. Error bars reflect the standard 

errors of the means. 

The participants’ sequence knowledge was assessed in a post-experimental interview. In this 

post-experimental interview only twelve of the forty participants (30%) reported to have 

noticed any system in the tone effects, but were not able to describe the sequence.  

Thus, we found a significant increase of 10ms in the random block likely indicating implicit 

learning of the fixed effect sequence. However, since this learning effect was so small one 

might suspect that it simply resulted from accidental fluctuations in the RTs. This is further 

supported when one carefully inspects the mean RTs in Table 1. As can be seen, the mean 

RTs slightly decelerate from Block 2 to Block 3. However, when conducting the analogous t-

test between Block 3 and the two adjacent blocks, this increase just failed the level of 

significance (t(39)=2.01, p=.051, d=0.32)
6
. Thus, albeit this weakness of Experiment 1a, we 

used the findings as a basis for now asking whether the implicitly learned effect sequence 

                                                           
5
 Note that the same pattern of RTs over the six blocks was found when no errorless RTs were excluded as 

outlier. The difference between the random Block 5 and the mean of the two adjacent Blocks 4 and 6 just failed 

to reach significance (t(39)=1.79, p=.081, d=0.29). 

 
6
 The comparison between Block 3 and the adjacent Blocks 2 and 4 reached significance when no errorless RTs 

were excluded as outlier. Thus, one can say that the difference between the Block 5 and the adjacent Blocks 

reached significance by excluding extreme RTs as outlier whereas the significant difference between Block 3 

and the mean of Blocks 2 and 4 disappeared. 



 

63 

 

would amplify the development of explicit knowledge about a response-location sequence. 

Furthermore, we replicated the findings in Experiment 2a. 

 

Experiment 1b 

Based on these findings, we turned to our main question whether implicitly learning an 

auditory effect sequence in advance would facilitate the (explicit) acquisition of a later 

presented response-location sequence. In addition, we also tested if such a facilitation effect is 

unique for an effect sequence.  

For this purpose, the experiment comprised three conditions: The participants in the Tone-

Effect condition received in the acquisition phase (3 blocks) the fixed sequence of effect tones 

while the response locations and the stimuli were randomly presented. In the No-Tone 

Control condition, the participants did not hear the effect-tones during the acquisition phase. 

In an immediately following test phase (3 blocks, without any further instruction), both 

conditions then received the effect tones which now were consistently mapped to the response 

locations. The additional Stimulus-Color condition was in principal identical to the Tone-

Effect condition. However, here the colors of the imperative target stimulus followed a fixed 

sequence during the acquisition phase while the effect-tones and the response locations were 

random. In the test-phase the visual stimulus sequence was then mapped to the response 

locations and the effect tones were randomly presented. Thus, in all three conditions the tone-

effect and the following next stimulus were always randomly associated (Ziessler & 

Nattkemper, 2001). 

In order to assess the participants’ knowledge about the response-location sequence, all 

participants received the post-decision wagering-task (PDWT, Persaud, McLeod & Covey, 

2007) immediately after having finished the last block of the test phase (see, Haider et al., 

2011, 2012, 2014). The PDWT resembles the generation task (Shanks & Johnston, 1999; 

Wilkinson & Shanks, 2004). In certain trials, the participants receive no target stimulus and 

are asked to guess the next response by themselves. Additionally, they have to put a high or 

low wager on their response, reflecting their confidence in the correctness of their answer. 

According to the zero correlation criterion (Dienes, Altmann, Kwan & Goode, 1995), 

participants with implicit knowledge are assumed to give more correct responses than to be 

expected by mere guessing while concurrently showing no correlation between the 

correctness of their response and their confidence-ratings. By contrast, participants with 
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explicit knowledge should rate their correct responses with high certainty and their incorrect 

responses with low certainty. Including the subjective metacognition about the correctness of 

one’s own responses allows to investigate whether a manipulation primarily influences 

implicit or explicit knowledge (Haider et al., 2012). 

If only learning the effect sequence in advance facilitates the acquisition of (explicit) 

knowledge about a later presented response-location sequence, we should find more 

knowledge about the response-location sequence in the Tone-Effect than in the No-Tone 

Control condition or the Stimulus-Color condition. If, however, this facilitation effect is true 

irrespectively of whether the in-advance learned sequence consists of stimuli or of effects, the 

participants in the Tone-Effect and the Stimulus-Color conditions should possess the same 

amount of knowledge about the response-location sequence.  

Method 

Participants 

Participants were 91 new students (17 male) of the University of Cologne with a mean age of 

23.33 years (SD=3.55). Thirty participants were assigned to the Tone-Effect condition, 30 to 

the No-Tone Control condition and 31 to the Stimulus-Color condition. All participants again 

received either course credit or payment (3€) for their participation.  

According to our exclusion criteria (see Experiment 1a), the data of two participants (1 in the 

Tone-Effect condition, 1 in the Stimulus-Color condition) were replaced because they did not 

reach our accuracy criterion. In addition, the data of 14 participants (7 in the Tone-Effect 

condition, 2 in the No-Tone Control condition, 5 in the Stimulus-Color condition) were 

replaced due to technical problems or because they already had participated in a former 

SRTT-experiment. 

Apparatus and Stimuli 

Apart from the introduction of the response-location sequence (described below), the 

materials were the same as in Experiment 1a. 

Procedure 

The experiment started for all participants with the computer-based instructions. Stimulus-

presentation was as in Experiment 1a. The SRTT training was divided in an acquisition phase 

(3 blocks) and a test phase (3 blocks). For the Tone-Effect condition, the acquisition phase 
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was identical to the procedure of Experiment 1a. The No-Tone Control condition did not 

receive the auditory effect sequence. The participants in the Stimulus-Color condition 

received a repeated six-elements first-order sequence of the color targets (red, cyan, yellow, 

green, pink, blue), whereas the tones and the response locations were presented randomly. For 

all participants, the test phase started after the third block without any further announcement. 

Here, they all received a six-elements first-order response-location sequence which was 

perfectly correlated with either the auditory effect sequence (Tone-Effect condition, No-Tone 

Control condition; response-location effect-tone mapping was: 5-1200Hz, 2-600Hz, 6-

1400Hz, 3-800Hz, 4-1000Hz, 1-400Hz) or the visual stimulus sequence (Stimulus-Color 

condition; response location stimulus color mapping was: 5-red, 2-cyan, 6-yellow, 3-green, 4-

pink, 1-blue combined with randomly presented effect tones).  

After completing the SRTT, all participants were administered to the PDWT (Persaud et al., 

2007) to assess their knowledge about the response-location sequence. With three exceptions, 

this task was identical to the SRTT training. The participants responded again to the location 

of the response square containing the target’s color. However, they received (a) no effect 

tones (b) target colors were randomly presented for all participants, and (c) 36 trials of the 

overall 150 trials were so-called wager trials. In these trials, instead of the target stimulus a 

question mark occurred at the target position. Participants then had to guess the next response 

location by pressing the respective response key. Subsequently, two wager options (1 Cent vs. 

50 Cents) appeared on the screen and the participants had to indicate by pressing either the 

“a”-key (1 Cent) or the “l”-key (50 Cents) how certain they were that their answer was 

correct. If the entered response location was correct according to the sequence, the 

participants won the amount of the wager. If it was incorrect, they lost it. Importantly, the 

participants received no immediate feedback about the correctness of their responses. After 18 

and 36 wagering trials, they only were informed about their gains.  

Based on former experiments, we terminated the wager-task when a participant had reached a 

maximum of 8€ extra money. The earliest point to reach this criterion was after 16 correct 

wager trials if the participant always wagered 50 Cent. This procedure helps identifying 

participants with predominantly explicit knowledge. An early termination of the wager task 

highly correlates with the ability to verbally reproduce the sequence (Haider et al., 2011).The 

experiment ended again with the post-experimental interview and the debriefing of the 

participants. 
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Results and Discussion 

Again, we computed mean error rates and RTs separately for each participant and each block. 

For the analysis of mean RTs, we also excluded erroneous trials (4.83% of all data) and RTs 

one standard deviation above the mean of correct trials as outliner (7.68% of correct trials). 

Our report of the results is divided into three parts. We first describe the findings concerning 

the acquisition and the test phases and then report the findings of the wagering-task. 

Error rates and latencies in the SRTT 

Mean error rates and mean RTs are presented in Table 2. For the mean error rates as 

dependent variable, the 3 (Condition: Tone-Effect, No-Tone Control, Stimulus-Color) x 6 

(Block) ANOVA did not show any significant effect (Block: F(5,440)=2.28, p=.080, 

ηp
2
=0.03; Condition: F(2,88)=.36, p=.696, ηp

2
=0.01; Interaction: F(10,440)=1.16, p=.326, 

ηp
2
=0.03). As in Experiment 1a, the participants made overall only few errors (M=.048, 

SD=.033; see Table 2). 

The analogous ANOVA with mean RTs as dependent variable revealed a significant main 

effect of Block (F(5,440)=72.04, p<.001, ηp
2
=0.45). The main effect of condition (F<1) as 

well as the interaction between Condition and Block (F(10,440)=1.96, p=.104, ηp
2
=0.04) were 

not significant
7
. As can be seen from Table 2, the participants became faster over training.  

In order to test more precisely our main question whether learning the effect sequence, but not 

a visual stimulus sequence in advance fosters the acquisition of the response location 

sequence, we conducted planned interaction contrasts between Blocks 3 vs. 6 X Condition. 

We focused on the comparison between the Tone-Effect versus the No-Tone Control 

conditions and the Tone-Effect versus the Stimulus-Color conditions. The first planned 

interaction contrast reached our level of significance (F(1,88)=4.14, p=.044, ηp
2
=0.04) 

whereas the second did not (F<1). In addition, we computed Bayes-Analyses with JASP 

(JASP Team, 2018; Morey & Rouder, 2015) for ANOVA designs (Rouder, Morey, 

Speckmann & Province, 2012) to test the plausibility that the participants in the Tone-Effect 

condition did not differ significantly from participants in the Stimulus-Color condition. As we 

originally expected a difference in RTs between these two conditions, we calculated a Bayes-

Factor BF10 to test the alternative hypothesis (H1) to be favored over the null hypothesis (H0). 

This Bayes-Factor was BF10 = 0.325. According to Jeffreys (1939/1961), a Bayes-Factor < 

0.33 indicates that the alternative hypothesis cannot be favored over the null hypothesis.  
                                                           
7
 Note that we found rather the same pattern of results when no errorless RTs were excluded as outlier. The main 

difference was that the Block X condition interaction was significant. 
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In sum, after introducing the response-location sequence the mean RTs in the Tone-Effect 

condition accelerated significantly quicker than in the No-Tone Control condition. The 

Stimulus-Color condition did not differ significantly from the Tone-Effect condition.  

Table 2. Mean percent error rates and RTs per block in Experiment 1b. The respective standard deviations are 

presented in brackets. 

Condition 

 Tone-Effect No-Tone Control Stimulus-Color 

Block Error rates RTs Error rates RTs Error rates RTs 

Block 1 .049(.050) 686.37(58.02) .042(.034) 686.17(56.09) .042(.032) 691.41(76.70) 

Block 2 .044(.040) 663.74(59.19) .044(.034) 667.28(65.59) .044(.029) 664.65(78.33) 

Block 3 .045(.034) 660.88(51.62) .041(.033) 669.30(64.11) .046(.032) 664.12(76.20) 

Block 4 .048(.038) 638.32(73.03) .059(.041) 646.52(65.84) .047(.047) 632.75(91.93) 

Block 5 .051(.044) 594.46(117.78) .067(.044) 630.66(66.33) .048(.050) 603.16(97.53) 

Block 6 .056(.090) 552.65(137.92) .058(.038) 609.57(82.12) .041(.038) 571.35(115.87) 

 

Post-Decision Wagering Task  

With regard to the wagering trials of the PDWT, we computed for each participant the percent 

correct responses and the participants’ certainty judgment given by the percent high wagers 

under the condition of a participant’s correct (high|correct) versus incorrect responses 

(high|incorrect; see Table 3). Concerning the mean percent correct responses, the participants 

in all conditions had significantly more knowledge about the response-location sequence than 

expected by chance (chance level = 20% correct responses; Tone-Effect condition: t(29)=5.09, 

p<.001; No-Tone Control condition: t(29)=4.00, p<.001, Stimulus-Color condition: 

t(30)=4.23, p<.001). In addition, a one-way ANOVA with Condition as independent and 

percent correct responses as dependent variables yielded a significant effect (F(2,88)=4.78, 

p=.010, ηp
2
=0.10). The planned contrasts showed that the participants in the Tone-Effect 

condition possessed significantly more knowledge about the response-location sequence than 

the participants in the No-Tone Control condition (F(1,88)=6.41, p=.013, ηp
2
=0.07) and in the 

Stimulus-Color condition (F(1,88)=7.90, p=.006, ηp
2
=0.08).  

To test if learning the effect sequence in advance influenced the acquisition of implicit and/or 

explicit knowledge, we analyzed the participants’ certainty judgments. A 3 (Condition: Tone-

Effect, No-Tone Control, Stimulus-Color) x 2 (Certainty Judgment: high|correct, 

high|incorrect) ANOVA with percent high wagers as dependent variable revealed a significant 
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main effect of Certainty Judgment (F(1,88)=9.41, p=.002, ηp
2
=0.10). The main effect of 

Condition (F(2,88)=1.48, p=.232, ηp
2
=0.03) and the interaction were (F(2,88)=1.04, p=.358, 

ηp
2
=0.02) insignificant. Table 3 shows that the participants in the Tone-Effect condition 

tended to place more high wagers when they responded correctly than when they responded 

incorrectly as compared to the No-Tone Control condition and the Stimulus-Color condition. 

However, this was only a trend. 

Table 3. Means and standard deviations of percent correct responses and high wagers for correct vs. incorrect 

responses for Experiment 1b.  

Condition Correct responses High|Correct High|Incorrect N 

Tone-Effect Condition 49.43(30.71) 57.13(34.32) 42.36(30.87) 30 

No-Tone Control Condition 34.33(19.63) 40.72(34.87) 33.72(27.72) 30 

Stimulus-Color Condition 37.80(16.81) 44.04(34.02) 38.33(29.00) 31 

Without participants with predominantly explicit knowledge  

Tone-Effect Condition 30.78(11.87) 41.55(29.12) 40.68(27.19) 21 

No-Tone Control Condition 30.26(12.27) 36.49(32.05) 34.34(27.48) 28 

Stimulus-Color Condition 30.56(11.46) 42.54(33.55) 40.30(28.57) 30 

 

 

As mentioned before, the PDWT allows identifying those participants who had acquired 

predominantly explicit knowledge about the response location sequence (Haider et al., 2011). 

These participants gain the maximum of wagers (8€) and are terminated before the end of the 

wagering task. In the Tone-Effect condition, nine out of 30 participants (30%) were classified 

as possessing predominantly explicit knowledge. By contrast, we found only 2 such 

participants (6.7%) in the No-Tone Control condition and one in the Stimulus-Color condition 

1 (3.2%). A chi-square confirmed that the three conditions differed significantly (χ² 

(2)=11.21; p=.003, φ=0.35).  

Taken together, the findings of the PDWT revealed that the participants in the Tone-Effect 

condition had more knowledge about the response-location sequence than the participants in 

the No-Tone Control and the Stimulus-Color conditions. In addition, it seems that this was 

true particularly for explicit sequence knowledge.  

Since our main question was whether the effect tones fostered the development of only the 

explicit knowledge, we reanalyzed the data without the twelve participants showing 

predominantly explicit knowledge in the PDWT. The results are shown in the lower part of 
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Table 3. As can be seen from Table 3, the numerical difference between the conditions almost 

entirely vanished and also the higher amount of high wagers under the condition of correct 

responses disappeared. We computed a Bayes-analysis for ANOVA designs (Rouder et al., 

2012) to test whether the participants with predominantly implicit knowledge did not differ in 

placing high wagers for correct vs. incorrect responses. We calculated a Bayes-Factor BF01 to 

test the plausibility of the null hypothesis (H0; Certainty Judgement does not differ for correct 

vs incorrect responses) to be favored over the alternative hypothesis (H1; Certainty Judgement 

differs). The Bayes factor was BF01 = 3.832 and thus larger than 3, which supports according 

to Jeffreys (1939/1961) the here tested null hypothesis. 

For means of illustration, Figure 4 also depicts the mean RTs of the acquisition and the test 

phases separately for the participants with predominantly explicit knowledge versus those 

with predominantly implicit knowledge. Three findings are noteworthy: First, only the 

participants with predominantly explicit knowledge exhibit a steep decrease of the mean RTs 

after the response-location sequence had been added in the test phase. In contrast, the 

participants with mostly implicit knowledge do not show such a strong decrease of RTs. 

Second, on the descriptive level, the decrease was strongest for the explicit participants in the 

Tone-Effect condition and already appeared in Block 4. In the No-Tone Control condition the 

strongest decrease of RTs is found from Blocks 5 to 6. Third, when looking on only those 

participants with predominantly implicit knowledge (left panel), one can see that the 

advantage of the Tone-Effect condition almost completely vanished. If at all, the fastest 

condition here is the Stimulus-Color condition.  

In addition, we computed a Bayes-Factor BF10 for ANOVA designs (Rouder et al., 2012) for 

the formerly significant interaction contrast (Block 3 vs. 6 X Effect-Tone vs. No-Tone 

Control conditions). We tested the plausibility of the H1 hypothesis that there is a significant 

interaction contrast for the Tone-Effect versus No-Tone Control condition. We found a 

Bayes-Factor of BF10= 0.29, which speaks against the tested alternative hypothesis (Jeffreys, 

1939/1961).  

Thus, the above reported difference between the conditions was almost entirely driven by the 

participants with explicit knowledge. This further supports our former findings that R-E 

learning in an SRTT is more likely to influence the development of explicit rather than 

implicit knowledge (Esser & Haider, 2017a; Haider et al., 2014).   
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Fig. 4. Mean RTs for each block for the participants with predominantly implicit (left panel) and predominantly 

explicit knowledge (right panel) in Experiment 1b. Error bars reflect the standard errors of the means.  

 

In combination, the findings of Experiments 1a and 1b suggest that a sequence of task-

redundant auditory effects can be learned implicitly even if it is not mapped to either stimuli 

or response locations (Lepper et al., 2008). When, after a learning phase this learned effect 

sequence becomes contingently mapped to the response locations, it amplifies the acquisition 

of mainly explicit rather than implicit knowledge about this new sequence. In contrast, 

learning a visual stimulus sequence in advance does not yield such an advantage of learning a 

response-location sequence. This is in line with the assumptions that response-effects in the 

SRTT might influence primarily explicit rather than implicit learning processes (see, Esser & 

Haider, 2017a). Two not mutually exclusive arguments against this interpretation should be 

considered. First, one might argue that the participants had not learned the visual stimulus 

sequence during the acquisition phase when it was not contingently mapped to the responses. 

However, Haider et al. (2012, 2014) and also Eberhardt et al. (2017) already showed that 

participants do learn such a sequence of stimuli. Second, the effect tones might have been 

more salient than the visual stimuli leading participants to attend more to the response-

location sequence. Also this argument is less likely because the effect tones were irrelevant 

for performing the main task whereas the visual stimuli were needed in order to respond 

correctly. 
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In Experiments 2a and 2b, we replaced the auditory effects by visual effects in order to 

replicate and generalize the current findings. For instance, Ziessler and Nattkemper (2002) 

pointed out that auditory stimuli may be more salient than other stimuli. Therefore, an open 

question is whether the participants will learn a fixed sequence of task-redundant visual 

effects when these effects are not mapped to specific responses. 

 

Experiment 2a 

The main goal of Experiment 2a was to replicate the findings of Experiment 1a with a fixed 

sequence of visual effects and thus, to test the generalizability of the current results. We used 

a slightly different variant of the SRTT. The main difference was that instead of presenting 

the target stimulus above the response stimuli, the target position in each trial was announced 

by changing the color of one single response stimulus. After each response all six response 

squares changed into another shape as the visual effects. As we did in Experiment 1a, we 

replaced the fixed effect sequence in Block 5 and re-introduced it in Block 6. In addition, 

subsequently after training the participants were administered to the PDWT to assess their 

knowledge about the fixed effect sequence.  

 

Methods 

Participants 

Thirty new students (8 male) of the University of Cologne with a mean age of 23.57 years 

(SD=6.34) served as participants in Experiment 2a. They either received course credit or 

payment (3€).  

Apparatus and Stimuli 

Six white response squares with black frames appeared in a triangular space in the lower two 

thirds of the screen. Instead of presenting the target square above the response squares, the 

target location here was announced by changing the color of one response square from white 

to gray. Immediately after the participants’ response, the shapes of all six response squares 

changed into triangles, stars, circles, hearts, moons, or clouds as the visual effect. Only these 

shapes followed a six-elements first-order sequence (moon, star, heart, circle, cloud, triangle), 
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In Block 5, this sequence was replaced by a pseudo-random sequence and was re-introduced 

in Block 6. No other sequence was implemented into the task.   

Procedure 

With the two exceptions just described, the procedure of the SRTT training was identical to 

that of Experiment 1a. Subsequently after the last block of the SRTT, the participants were 

administered to a short version of the PDWT to assess their knowledge about the fixed shape-

effect sequence (see Experiment 1b). Testing this knowledge required to slightly change the 

design of training task. The response squares were replaced by the six different shapes, 

presented in the same triangular space. Furthermore, here one shape served as the target 

shape. It appeared in the upper third of the screen 100ms after the response shapes and 

disappeared after 150ms. The participant’s task was to find the target shape among the six 

shapes of the response squares and to press the spatially corresponding response key.  

In the wager trials, a question mark occurred instead of the target shape. Participants then had 

to guess the shape they believed would occur next by pressing the respective key mapped to 

the predicted shape. Subsequently, they were asked again to indicate how certain they were 

about the correctness of their response by placing a wager of either 1 Cent or 50 Cent. The 

PDWT contained only 55 trials with overall 13 wager trials. The participants could earn 5€ 

when they were able to maximize their wagers. The experiment ended again with the post-

experimental interview concerning the participant’s knowledge about the visual shape-effect 

sequence followed by a short debriefing.  

Results and Discussion 

First, we calculated the mean error rates and mean RTs separately for each block and each 

participant. According to our exclusion criteria, erroneous trials (3.70% of all trials) and RT-

outliers were excluded from the analysis of RTs (8.76% of correct trials). We first report the 

SRTT results followed by the findings of the PDWT. 

Error rates and latencies in the SRTT 

The mean error-rates and mean RTs are listed in Table 4. Table 4 shows that the error rates 

are rather low (M = .037; SD=.018) and slightly increase over the course of training. A one-

way repeated measures ANOVA with mean error-rates as dependent variable revealed a 

significant effect of block (F(5,145)=4.02, p=.004, ηp
2
=0.12).  
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Table 4. Mean percent error rates and RTs per block in Experiment 2a. The respective standard deviations are 

presented in brackets. 

Block Error rates RTs 

Block 1 .036(.023) 526.45(63.89) 

Block 2 .024(.018) 510.16(65.57) 

Block 3 .034(.025) 509.36(58.15) 

Block 4 .039(.027) 502.79(51.29) 

Block 5 .045(.031) 504.46(52.17) 

Block 6 .044(.031) 494.24(55.03) 

 

The analogous ANOVA for mean RTs as dependent variable yielded a significant main effect 

of Block (F(5,145)=10.65, p<.001, ηp
2
=0.27). RTs decreased over time, but slightly increase 

in the Test Block 5 (see, Table 4).  

Test-block 

As in Experiment 1a, we compared the mean RTs of the random Block 5 with the mean RTs 

of the two adjacent sequence Blocks 4 and 6 (Figure 5). A t-test revealed that the RT-increase 

of 6ms in Block 5, albeit small, is significant (t(29)=2.20, p=.035, d=0.41)
8
. Thus, the 

removal of the effect sequence led to an increase in mean RTs. However, the effect was 

weaker than that of Experiment 1a (d = 0.55 in Experiment 1a). 

 

                                                           
8
 In contrast to Experiment 1a, we did not find an almost significant increase of RTs in Block 5, when no correct 

RTs were excluded as outlier from further analysis.  
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Fig. 5. Mean RT for Bock 5 and the means of Block 4 and 6 in Experiment 2a. Error bars reflect the standard 

errors of the means. 

 

Post-Decision Wagering Task 

In the PDWT, the participants responded correctly in 25.13% (SD=10.29%) of all wagering 

trials. This amount of knowledge is significantly above the chance level (t(29)=2.73, p=.011). 

To assess the extent of explicit knowledge, we also analyzed the Certainty judgments of the 

PDWT. The percentages of high wagers under the condition of correct responses 

(MW=33.29%; SD=35.59%) were numerically smaller than that under the condition of 

incorrect responses (MW=37.07%; SD=27.86%). A t-test indicated no significant difference 

(|t|< 1). We additionally computed a Bayes-Factor for t-tests (Rouder, Speckmann, Sun, 

Morey & Iverson, 2009) BF01 to test the plausibility of the null hypothesis to be favored over 

the H1. For the calculation of Bayes-Factors for t-tests with JASP (JASP Team, 2018), we 

used the Cauchy distribution as prior distribution with a Cauchy-scale of .0707. We found a 

Bayes factor of BF01 = 3.78, which according to Jeffreys (1939/1961) speaks for the here 

tested null hypothesis. Thus, the lacking difference between the Certainty judgements of the 

PDWT indicates that the acquired knowledge, albeit above the chance level, seems to be 

unconscious. There also was no participant with primarily explicit knowledge.  

In sum, the findings of Experiment 2a replicated the findings of Experiment 1a with a visual 

shape-effect sequence. The influence of the shape-effects on performance was weaker than 

that of the auditory tone-effects in Experiment 1a. Nevertheless, the performance in the 
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training and the PDWT converge to the point that the participants had acquired some 

knowledge about the fixed effect sequence. Importantly, this knowledge seems to be entirely 

implicit. 

 

Experiment 2b 

After having shown that the participants could learn the fixed shape-effect sequence, we 

tested whether we could replicate also the findings of Experiment 1b. Again, we focused on 

the question of whether learning the fixed effect sequence in advance would facilitate the 

acquisition of knowledge about the response-location sequence when the responses were 

contingently mapped to the shape-effects. For this purpose, we compared the visual Shape-

Effect condition, in which the participants received the fixed effect sequence already during 

the acquisition phase, with a Control condition in which the participants did not receive the 

shape effects in the acquisition phase.  

Method 

Participants 

Sixty new students (7 male) of the University of Cologne participated in Experiment 2b, 

respectively 30 in the Shape-Effect and the Control conditions. Their mean age was 22.65 

years (SD=4.39). Participants again received either course credit or payment (3€).  

Three participants (one in the Shape-Effect condition; two in the Control condition) were 

replaced by new participants because their error rates exceeded our error criterion.  

Apparatus and Stimuli 

The materials were the same as in Experiment 2a. 

Procedure 

The training procedure was the same as in Experiment 2a, except that the contingently 

mapped response-location sequence was introduced in Blocks 4 to 6. The PDWT was almost 

identical to that described for Experiment 2a but consisted of 150 trials and 36 wager trials. 

The second difference of the here used PDWT was that we tested the response-location 

sequence instead of the shape-effect sequence. Thus as in the SRTT, participants had to 

respond to the marked stimulus positions instead of to the target-shape. 
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Results and discussion 

Again, we first computed mean error rates and mean RTs separately for each block and each 

participant. For the analysis of mean RTs in the SRTT, erroneous trials (4.55% of all data) 

and RTs with more than one standard deviation over the mean RTs were excluded (5.17% of 

correct trials).  

Error rates and latencies in the SRTT 

Table 5 shows the mean error rates and the mean RTs. A 2 (Condition: Shape-Effect vs. 

Control) x 6 (Block) ANOVA with error rates as dependent variable did not reveal any 

significant effect (Condition: F(1,58)=2.43, p=.124, ηp
2
=0.29; Block: F(5,290)=.79, p=.495, 

ηp
2
=0.12; interaction: F(5,290)=1.28, p=.282, ηp

2
=0.02).  

The same ANOVA conducted for the mean RTs as dependent variable showed a significant 

main effect of Block (F(5,290)=73.90, p<.001, ηp
2
=0.56) and a significant Condition x Block 

interaction (F(5,290)=7.01, p=.001, ηp
2
=0.11). The main effect of Condition was not 

significant (F(1,58)=1.02, p=.317, ηp
2
=0.02).  

As Table 5 shows, the participants in both conditions became faster over time. More 

important, though, in comparison to the Control condition, the participants in the Shape-Effect 

condition exhibited again a steeper decrease in RTs in the test phase. This was confirmed by a 

significant planned interaction contrast (Block 3 vs. 6 X Condition: F(1,58)=8.08, p=.006, 

ηp
2
=0.12)

9
.  

However and against our expectation, Table 5 also reveals that the mean RTs in Blocks 1 to 3 

largely differ between the two conditions. The participants in the Shape-Effect condition 

responded approximately 45ms slower than the participants in the Control condition. This 

suggests that the shape effects, as long as they were not contingently mapped to the responses, 

may have impaired the performance in the SRTT. Yet, as soon as the participants experienced 

the consistent relation between their responses and the appearance of the respective shape 

effect, they seem to overcome this potential interference and, as in Experiment 1b, stronger 

speed-up responding than the participants in the Control condition. Thus, despite this 

unexpected difference between the two conditions in the acquisition phase, the pattern of the 

performance data resembles that of Experiment 1b.  

                                                           
9
 Note that we found the same results when no correct RTs were excluded as outlier from further analysis.  
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Table 5. Mean percent error rates and mean RTs per block for the Shape-Effect and the Control conditions of 

Experiment 2b. The respective standard deviations are presented in brackets. 

 Shape-Effect Condition Control Condition 

Block Error rates RTs Error rates RTs 

Block 1 .042(.034) 535.24(67.15) .046(.033) 490.86(37.93) 

Block 2 .044(.034) 524.63(65.35) .051(.040) 479.61(39.42) 

Block 3 .041(.033) 519.55(59.36) .058(.051) 482.41(36.35) 

Block 4 .059(.041) 487.75(83.62) .059(.040) 480.18(63.30) 

Block 5 .067(.044) 426.13(103.52) .047(.032) 439.31(70.85) 

Block 6 .058(.038) 370.50(117.45) .044(.034) 397.51(84.43) 

 

Post-Decision Wagering Task 

Table 6 shows the mean percent correct responses and the mean percent high wagers for the 

high|correct and high|incorrect categories of the Certainty Judgment. Concerning the mean 

percent correct responses, the participants in both conditions had significantly more 

knowledge about the response-location sequence than expected by mere guessing (Shape-

Effect: t(29)=4.25, p<.001; Control: t(29)=3.44, p<.001). However and in contrast to 

Experiment 1b, the amount of knowledge did not differ significantly between the two 

conditions (t(58)=1.47, p=.147, d=0.19). As this finding was against our hypothesis, we 

calculated a Bayes-Factor BF10 for t-tests (Rouder et al., 2009) to test the plausibility of 

favoring the alternative hypothesis (H1) over the Null Hypothesis. The resulting Bayes factor 

of BF10 = 0.63 indicates insensitivity (Jeffreys, 1939/1961). Thus, the insignificant t-test was 

due to the insensitive data rather than to a plausible lacking difference between the two 

conditions. The comparison of the mean percent high wagers under the condition of correct 

versus incorrect responses also did not indicate any significant difference between the two 

conditions. The 2 (Condition: Shape-Effect, Control) x 2 (Certainty Judgement) ANOVA with 

percent high wagers as independent variable revealed only a significant main effect of 

Certainty Judgment (F(1,58)=10.19, p=.002, ηp
2
=0.15). Neither the main effect of Condition 

nor the interaction was significant (both Fs<1). As in Experiment 1b, the participants in the 

two conditions differed only on a numerical level in their way of placing high wagers (see, 

Table 6).  

Table 6. Means and standard deviations of percent correct responses and high vs. low wagers for correct 

responses for Experiment 2b. 
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Condition Correct responses High|Correct High|Incorrect N 

Shape-Effect Condition 56.94(28.47) 56.00(36.47) 34.68(31.29) 30 

Control Condition 46.98(23.93) 55.32(28.78) 44.17(30.74) 30 

Without participants with predominantly explicit knowledge  

Shape-Effect Condition 41.27(16.93) 40.37(31.68) 38.51(28.13) 21 

Control Condition 37.38(14.24) 47.38(25.28) 48.27(26.03) 25 

 

Using the same criterion as in Experiment 1b, we additionally tested whether the amount of 

participants who possessed predominantly explicit knowledge (explicit subgroup) differed 

between the two conditions. We identified nine such participants in the Shape-Effect condition 

(30%) and six in the Control condition (20%). Against our hypothesis, also this difference 

was not significance (χ²(1)=1.87; p=.380, φ=.158, Fishers exact p is reported). Compared to 

Experiment 1b, the explicit subgroup in the Control condition was much larger (6.7% in 

Experiment 1b versus 20% in the current experiment).  

The reanalyses conducted in Experiment 1b have shown that the overall observed differences 

between the two conditions were almost entirely driven by the explicit subgroup. This implies 

that finding significant differences in the PDWT primarily depend on the amount of 

participants with explicit knowledge and how they are distributed across the two conditions. 

In the lower part of Table 6, the wagering results are shown again without the participants 

with primarily explicit knowledge. Also here, this eliminates the former effect of the Certainty 

Judgment. We also computed a Bayes-Factor BF01 for ANOVA designs (Rouder et al., 2012) 

to test the null hypothesis that there is no significant effect for Certainty Judgement. The 

Bayes factor of BF01 = 4.53 confirms the plausibility of the tested null hypothesis. In addition, 

Table 6 also shows that the numerical difference between the two conditions decreased after 

excluding the explicit subgroup. Thus, even in the current experiment, the observable 

differences between the conditions were almost entirely due to the explicit subgroup. 

As shown in Figure 6, this was also true for the performance differences in the SRTT. Figure 

5 depicts the mean RTs of the acquisition and the test phases separately for the implicit and 

explicit subgroups. As in Experiment 1b, primarily the participants with predominantly 

explicit knowledge showed a stronger decrease of RTs when the response-location sequence 

was added. And again, the explicit participants of the Shape-Effect condition showed this 

decrease already from Blocks 3 to 4 while the Control condition showed it from Blocks 4 to 5.  
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The 2 (Condition: Shape-Effect, Control) x 6 (Block) ANOVA for only participants with 

predominantly implicit knowledge revealed a significant main effect of Block 

(F(5,220)=47.61, p<.001, ηp
2
=0.52) and a significant interaction (F(5,220)=4.08, p=.020, 

ηp
2
=0.08). The main effect for condition was insignificant (F(1,44)=2.92, p=.948, ηp

2
=0.06)

10
. 

The planned interaction contrast between Block 3 versus Block 6 X Condition reached 

significance (F(1,44)=4.78, p=.035, ηp
2
=0.10). However, these differences between the two 

conditions for participants with predominantly implicit knowledge seem to be caused by the 

overall longer mean RTs in the experimental condition in the acquisition phase of Experiment 

2b. 

 

Fig. 6. Mean RT for each block separated for the participants with predominantly implicit and predominantly 

explicit knowledge in Experiment 2b. Error bars reflect the standard errors of the means. 

 

Overall, the findings of Experiments 2a and 2b suggest that the visual shapes as effects are 

less effective than the auditory effects in Experiment 1. We could replicate the results of 

Experiment 1a by showing that the participants implicitly learned the fixed effect sequence 

even when they did not know how to produce these effects.  

The findings of Experiment 2b are less clear. We could replicate the steeper RT-decrease in 

the Shape-Effect condition after introducing the response sequence in the test phase. 

However, due to the higher rate of the participants with explicit knowledge in the Control 

condition, our manipulation was not successful with regard to the acquired knowledge about 

                                                           
10

 Note that the main effect for condition reached significance even when no correct RTs were excluded as 

outlier from the analysis.  In addition, the planned interaction contrast just failed to reach significance. 
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the response-location sequence. Nevertheless, the results and, in particular, the separate 

analysis of the two subgroups, suggest again that R-E learning in the SRTT seems to 

specifically affect the development of explicit knowledge (Esser & Haider, 2017a; Haider et 

al., 2014). 

 

General Discussion 

The main goal of the current study was to better understand why R-E associations amplify 

learning within an SRTT paradigm. As shown in the introduction, the theoretical explanation 

mainly differs with regard to the question of whether response-effects influence implicit or 

explicit learning processes and how. In particular, we focused on the assumption derived from 

the UEH that response-effect contingencies may boost mainly the development of explicit 

knowledge within an implicit learning situation (Esser & Haider, 2017a). The current study 

extends the findings of Esser and Haider in two points. First, we manipulated here the 

likelihood of experiencing an unexpected event (an unexpected feeling of sense of agency). 

Second, we also investigated whether the influence of the effect sequence learning applies for 

other than the auditory modality. 

As a requirement to test this question, we first showed that participants could learn a fixed 

sequence of effects without knowing how to produce them. In line with the findings of Lepper 

et al. (2008) this was true for the auditory effects (Experiment 1a) and, to a lesser degree, also 

for the visual shape effects (Experiment 2a). The post-experimental interviews as well as the 

findings of the PDWT additionally confirmed that the acquired knowledge was predominantly 

implicit (for similar findings, see Eberhardt et al., 2017).  

With regard to our main question, our findings are less clear. Experiment 1b showed that the 

participants in the Tone-Effect condition expressed more knowledge about the response 

location sequence than the participants in the No-Tone Control condition or the Stimulus-

Color condition. This difference in the amount of knowledge was mostly driven by 

participants with predominantly explicit knowledge about the response-location condition. 

After excluding this explicit subgroup, the three conditions possessed rather the same amount 

of knowledge. With the visual effects in Experiment 2b, the qualitative pattern of results was 

similar. However, the amount of knowledge assessed in the PDWT did not differ between the 

two conditions, neither in terms of correct responses nor in terms of the Certainty Judgment.  
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Probably, three difficulties of Experiment 2b might have contributed to the insignificant 

difference between the experimental and control condition. First, the visual shape effects were 

presented within the same modality as the stimuli of the SRTT and therefore might have 

interfered with the main task of searching for the announced location in the SRTT. The longer 

mean RTs in the experimental condition of Experiment 2b are in line with this interference 

account. Second, we slightly changed the design of the SRTT in Experiments 2a and 2b. 

Instead of presenting the target stimulus above the response stimuli (as was the case in 

Experiment 1a and 1b), the target position here was announced by changing the color of one 

of the response squares. In the test phase of Experiment 2b, the participants thus saw a rather 

salient location sequence on the screen which was mapped to the response-keys on the one 

hand and to the visual response-effects on the other hand. This might have facilitated the 

detection of the response-location sequence in both conditions. Third, the fixed shape-effect 

sequence was learned to a lesser degree than the tone-effect sequence (see the comparison of 

Experiments 1a and 2a) presumably because the task-redundant visual effects are less salient 

(Ziessler & Nattkemper, 2002). This lesser learning of the fixed visual shape-effect sequence 

might have reduced the felt surprise when, through the introduction of the response-location 

sequence, the participants suddenly experienced how they could produce the shape effects. 

Given these weaknesses, the question remains open for further research whether only tone-

effects play a special role in the development of explicit knowledge (Tubau et al., 2007). 

Nevertheless, the results of Experiments 1b and 2b clearly suggest that the sudden 

introduction of the response-location sequence that was correlated to the effect sequence 

amplified the acquisition of primarily explicit knowledge. This finding nicely fit with the 

former findings of Esser and Haider (2017a) as well as Hoffmann et al. (2001), Haider et al. 

(2014), or Zirngibl and Koch (2002). In addition, our results suggest that this seems to occur 

in an all-or-none fashion. After excluding the participants with primarily explicit knowledge, 

the differences between the experimental and the control conditions almost entirely 

disappeared. 

In the first part of this article, we had proposed three different accounts able to explain why 

response-effects might increase sequence learning. The first account of Keele et al. (2003) 

assumes that implicit learning is based on either the unidimensional or the multidimensional 

system. According to the Dual-System account, only knowledge acquired in the 

multidimensional system can become consciously accessible as it integrates information 

across different dimensions and requires selective attention. Thus, learning in our experiments 
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should have involved the multidimensional system, at least in the test-phase of Experiments 

1b and 2b. However, the finding that the participants in the Stimulus-Color condition of 

Experiment 1b did not possess more explicit knowledge seems to be at odds with this 

assumption because here a formerly learned visual stimulus sequence was mapped to a 

response-location sequence. Thus, also learning within this condition should have involved 

the multidimensional system. One way to incorporate this finding is to assume that the visual 

stimulus sequence was less salient than the tone-effect sequence. This then led to slower 

learning of the response-location sequence when the responses were mapped to either the 

visual stimuli or the tone-effects. This might have been the case given the findings of 

Experiment 2b. Yet, in Experiment 1b, the visual stimuli were task relevant whereas they 

were task-redundant when presented as response-effects in Experiment 2b. Therefore, it is not 

very likely that a difference in the salience might have moderated the higher amount of 

explicit knowledge in the Tone-Effect than in the Stimulus-Color conditions of Experiment 

1b.   

The second account, we introduced above, is the chunking assumption proposed by, for 

instance, Hoffmann and Stoecker (2004). According to this assumption, response-effects 

facilitate the chunking process of responses leading to longer subsequences (e.g. Stöcker & 

Hoffmann, 2004). As already stated, this assumption fits with the findings of increased 

implicit learning effects. In combination with the assumptions of Tubau et al. (2007), one 

could argue that the response-effect sequence enhanced the shift from stimulus-based to plan-

based performance (Tubau et al., 2007). This assumption might be in line with our findings of 

Experiment 2b that the introduction of the response-effect sequence increased the acquisition 

of explicit knowledge in both conditions. However, it does not explain why, in Experiment 

1b, learning the tone-effect sequence in advance facilitated the shift to plan-based 

performance.  

Thus, at least the findings of Experiment 1b seem to best fit with the assumptions of the UEH 

(Frensch et al., 2003). According to this account, the sudden emergence of the response-

location sequence might have led the participants to experience a strange feeling of sense of 

agency as they now could (voluntarily) produce the formerly perceived effects by their 

responses. This unexpected feeling triggers searching processes, whose content then becomes 

consciously available (Esser & Haider, 2017b; Haider & Frensch, 2005, 2009; Scott & 

Dienes, 2008; Whittlesea, 2002, 2004). This might explain why only the participants with 

predominantly explicit knowledge in the experimental conditions of Experiment 1b and 2b 
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showed a steep decrease of RTs in the test-phase. As soon as they became aware of the 

response- location sequence they could speed-up their responding (e.g., Haider et al., 2011). It 

is conceivable that also in the control conditions the sudden emergence of the response-effect 

sequence might have surprised the participants which, in turn, had triggered search processes. 

Yet, the descriptive separate analyses of the implicit and explicit subgroups suggest that the 

participants in the control group might have needed some extra time to recognize the 

response-effect sequence. Overall, our results are in accord with the findings of Esser and 

Haider (2017a), as they once again showed that the response-effects boosted primarily the 

development of explicit knowledge. 

As also mentioned in the introduction section, R-E-sequence learning is closely linked to the 

assumptions that response or action-effects play an important role for voluntary actions, as for 

instance the ideomotor principle (Greenwald, 1970; James, 1890; Prinz, 1992, 1997; Shin et 

al., 2010). According to the two-stage model proposed by Elsner and Hommel (2001), bi-

directional associations between actions and their effects are built at a first stage when 

randomly executed actions lead to sensory perceivable changes in the environment. At the 

second stage, these associations can be used then for goal-directed behavior. Taken this fixed 

order of the formation of bidirectional associations between actions and effects for granted, 

this model does not seem suitable to explain our findings in its entirety. However, it seems 

reasonable to argue that the two stages overlap in processing (e.g., Drost, Rieger, Brass, 

Gunter & Prinz, 2005). Considering this assumption, the model could explain our finding that 

a fixed sequence of effects can be learned in advance. The implicitly acquired knowledge 

about this sequence then allows anticipating of the following effects. When a contingent 

motor sequence is added, the respective response- or action-effect associations are formed. 

These associations in turn facilitate learning the sequence of response-locations.  

An alternative model for the building of response- or action-effect associations is proposed by 

Ziessler and Nattkemper (2002; Nattkemper et al., 2010; Ziessler et al., 2004). In this model, 

goals are cognitively represented in form of desired effects, which can activate a suitable 

motor program to achieve the respective goal. Anticipated effects are initially abstract and 

become stepwise specified with practice. If the desired and the anticipated effect differ, the 

motor program is modified. In sum, Ziessler and colleagues (Nattkemper et al., 2010; Ziessler 

& Nattkemper, 2002; Ziessler et al., 2004) suppose that effect-anticipation and action-

planning occur in parallel. To account for our results of Experiment 1b and 2b, one could 

assume that during the acquisition phase the implicitly learned fixed effect sequence should 



 

84 

 

lead to an anticipation of subsequent effects. Yet, as long as the responses were randomly 

mapped to the effects, no suitable motor program could be activated. Since effect-anticipation 

and action-planning occur in parallel, anticipation of subsequent effects might be 

accompanied by a permanent testing of a suitable motor program. If then the response 

sequence is mapped to the sequence of effects, the system might very fast learn which action 

fits the desired goal. This in turn, might have fostered the learning of the response sequence.  

Taken together, in addition to the findings of Esser and Haider (2017a), the findings of our 

experiments provide evidence that response-effects facilitate the development of explicit 

knowledge about a response-location sequence in a SRTT. Moreover, this is also true for 

effects that were initially not contingently mapped to the responses. A sudden sense of 

agency, which is generated by the introduction of a correlated response-sequence, seems to be 

a suitable manipulation to provoke the experience of an unexpected event and, in turn, to 

trigger searching processes. However, this sense of agency seems to be stronger in case of 

salient effects, like, for instance, tones. Thus, the relation between salience and effectiveness 

of response-effects for the development of explicit knowledge in an implicit learning task 

seems to be a crucial subject for further research. 
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7. Study 2: The interplay between unexpected events and behavior in the 

development of explicit knowledge in implicit sequence learning 

Abstract 

Some studies in implicit learning investigate the mechanisms by which implicitly acquired knowledge (e.g. 

learning a sequence of responses) becomes consciously aware. It has been suggested that unexpected changes in 

the own behavior can trigger search processes, of which the outcome then becomes aware. A consistent 

empirical finding is that participants who develop explicit knowledge show a sudden decrease in reaction times, 

when responding to sequential events. This so called RT-drop might indicate the point of time when explicit 

knowledge occurs. 

We investigated whether an RT-drop is a precursor for the development of explicit knowledge or the 

consequence of explicit knowledge. To answer this question, we manipulated in a serial reaction time task 

(SRTT) the timing of long and short stimulus onset asynchronies (SOA). For some participants the different 

SOAs were presented in blocks of either long or short SOAs, while for others the SOAs changed randomly. We 

expected the participants who were given a blocked presentation to express an RT-drop because of the 

predictable timing. In contrast, randomly changing SOAs should hamper the expression of an RT-drop.  

We found that more participants in the blocked-SOA condition than in the random-SOA condition showed an 

RT-drop. Furthermore, the amount of explicit knowledge did not differ between the two conditions. The findings 

suggest that the RT-drop does not seem to be a presupposition to develop explicit knowledge. Rather, it seems 

that the RT-drop indicates a behavioral strategy-shift as a consequence of explicit knowledge. 

 

Introduction 

Implicit learning is a fundamental process in humans. It is said to occur without any intention 

to learn and, albeit debatable (Shanks, 2006), to lead to knowledge usually not consciously 

accessible. It enables humans to adapt to regularities inherent in the environment. Examples 

of implicit learning processes are learning the mother tongue or social behavior in children 

(Cleeremans, 2008, 2011). 

One frequently used paradigm to investigate implicit learning is the Serial Reaction Time 

Task (SRTT; Nissen & Bullemer, 1987). In this task, the participants see a number of marked 

locations on the screen (often four or six locations) which are mapped to spatially 

corresponding keys. In every trial, an asterisk appears at one of the locations and the 

participants’ task is to press the corresponding key as fast as possible. Unbeknownst to the 

participants, the positions of the asterisk and thus the to-be-pressed keys follow a regular 

sequence. To assess implicit learning, the regular sequence is replaced by a random sequence 

after several blocks of training and is re-introduced thereafter. The usual finding is that the 
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reaction times (RTs) increase when the regular sequence is replaced by a random sequence 

and decrease when the regular sequence is re-introduced. Despite of this performance 

decrement, the participants are often unable to name the sequence. This led many researchers 

to conclude that learning in the SRTT is implicit and does not necessarily lead to explicit 

knowledge (Nissen & Bullemer, 1987). A common finding is, however, that a few 

participants indeed show at least some explicit knowledge about the practised sequence.  

Given that there are participants who acquire explicit knowledge in an implicit learning 

situation, an important question arises: Which cognitive mechanisms underlie this interplay 

between implicit and explicit knowledge. One possibility to account for the acquisition of 

conscious knowledge in an implicit learning situation is to assume that learning leads to a 

gradual strengthening of the acquired representations (Cleeremans & Jiménez, 2002).  

A different proposal is made by the Unexpected-Event Hypothesis (UEH; Frensch et al., 

2003; Esser et al., 2021). The central assumption of the UEH is that, during SRTT training, 

participants acquire unconscious knowledge about the sequence inherent in the task. This 

unconscious knowledge is not assumed to become conscious by mere strengthening of the 

underlying representation. Rather, implicit knowledge is assumed to lead to consciously 

perceivable behavioral changes, such as the feeling of fluency or the urge to respond even 

though the stimulus is not entirely processed. Since implicit knowledge is unconscious, such 

changes are likely to be unexpected and might violate participants’ expectations about their 

task performance (Koriat, 2012; Whittlesea, 2004). Therefore, if a participant detects such an 

unexpected behavioral change, it will likely trigger an explicit search process for the causes of 

this experienced change. This search processes in turn might lead to the detection of the 

regular sequence and thus to conscious sequence knowledge. Thus, the central assumption of 

the UEH is that an explicit representation of the sequence results from a second inferential 

process, rather than only from strengthening the unconscious representation. A second 

assumption of the UEH is derived from the Global Workspace theory (Dehaene & Nacchache, 

2001; Marti & Dehaene, 2017). According to the Global Workspace theory, a conscious 

representation results from bottom-up strengthening, on the one hand, and, on the other hand, 

from a neurological “ignition”, a sudden, strong top-down activation of a vast variety of 

cortical and subcortical regions (Dehaene & Naccache, 2001; Del Cul et al., 2009). Taking 

this into account, it is assumed in the UEH that the insight into the sequence occurs abruptly 

in an all-or-none manner (Esser et al., 2021).  
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The assumptions of the UEH fit well with similar assumptions that are proposed by the Event 

Segmentation Theory (EST; Zacks et al., 2007) about the human experience of events. 

According to the EST, active neuronal processing causes memory representations of events 

that lead to a sense of the current moment and in sum build the content of working memory 

(the event model). These memory representations enhance perception as well as prediction of 

future events. Analogous to the UEH, Zacks et al. assume that processing is always monitored 

by error detection processes. If an unexpected event occurs that does not fit with the 

predictions, a prediction error is detected. Different to the UEH, the EST does not assume that 

search processes are started as a consequence of the detected prediction error. In contrast, the 

EST assumes that the current event model will be updated by building a new set of memory 

representations. Thus, the EST describes more globally how changes in the perception of 

events might occur, whereas the UEH focuses more on the special situation of insight 

processes in implicit learning.  

In the last years, the UEH gained support from various studies. For example, Haider and 

Frensch (2005, 2009) tested the role of premature responses (responses that are entered before 

the stimulus is entirely encoded) as an instantiation of unexpected events. Their findings 

suggest that increasing the probability of such premature responses either through long RSIs 

or through computer-generated premature responses led to more explicit knowledge. 

Rünger and Frensch (2008) generated unexpected events by disrupting the sequence within an 

SRTT experiment. After some training blocks, the participants were transferred to either a 

different sequence, a random sequence, or a dual task situation. The findings revealed that 

only the interruption through a different sequence led to increased amounts of explicit 

knowledge. They concluded that merely interrupting the participants, as was the case when a 

dual task situation was introduced, was not sufficient to increase the amount of explicit 

knowledge. Instead, only interruptions that do not disrupt search processes lead to higher 

amounts of reportable knowledge. 

Recently, Esser and Haider (2017) provided further evidence that mere strengthening of the 

underlying sequence representation is not sufficient to explain the emergence of explicit 

sequence knowledge. They trained participants with a sequence interspersed with deviants. 

These deviants were either presented in a blocked or a random order. Even though the number 

of sequence trials was identical in both conditions, the participants in the blocked order 

condition developed more explicit knowledge than the participants in the random order 

condition. According to the UEH, the participants in the blocked order condition could 
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experience an unexpected variation in fluency while performing the task. This violation of 

expectancies led to attribution processes and thus to the development of explicit knowledge. 

By contrast, the participants in the random order condition might have experienced the task as 

constantly fluent and therefore might not have experienced a violation of their expectations.  

In sum, these studies fit with the UEH by showing that introducing discrepancies between the 

expected and the actual behaviour increases the amount of explicit knowledge. Furthermore, 

most of these findings cannot be explained by mere strengthening of the implicit knowledge 

because the amount of training was kept constant in all mentioned studies. 

Another line of empirical studies focuses on the second assumption of the UEH that explicit 

knowledge occurs abruptly in an all-or-none manner. These studies found high correlations 

between the ability to report the entire sequence in a post-experimental knowledge test, and an 

abruptly occurring decrease in RTs during the training phase (Frensch et al., 2003; Haider & 

Rose, 2007). This sudden decrease of RTs, the so called RT-drop, is thought to indicate a 

qualitative shift of the processing strategy from stimulus-driven to top-down driven 

processing (Haider & Frensch, 2005; Haider et al., 2005; Haider et al., 2011; Rose, et al., 

2010; Wessel et al., 2012). If participants explicitly know the entire sequence, they do not 

need to process the imperative stimulus in order to produce the required response (Haider et 

al., 2011; Koch, 2007; Tubau & López-Moliner, 2004; Tubau et al., 2007). 

Going beyond the findings of behavioural experiments, Rose et al. (2010) as well as Wessel et 

al. (2012) conducted fMRI and EEG studies within a sequence learning paradigm. They 

analysed the data time locked to the individual appearance of the RT-drop. The findings 

revealed that the RT-drop was accompanied by a strong increase in neuronal activity (fMRI) 

and in high-frequency coupling (EEG) between distant brain areas (prefrontal, parietal, and 

occipital). Similar results came from Schuck and colleagues (2015), who investigated 

strategy-shifts in a rather simple task and found also that the participants abruptly speeded up 

responding when they became aware of a more efficient strategy than that they had used 

before. Right before this changing point, Rose et al. (2010) as well as Schuck et al. (2015) 

found increased activity in the medial prefrontal cortex (for similar results see Lawson et al., 

2017). These activation patterns are associated with the transition from unconscious to 

conscious representations (Del Cul et al., 2009). 

Given the results from the neurophysiological studies as well as the high correlations between 

the occurrence of RT-drops and verbal reports, it seems a reasonable conclusion that the RT-
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drop might define the point in time when explicit knowledge occurs. The findings suggest 

that, at this point in time, the participants change their processing strategy from stimulus-

driven to top-down (Haider et al., 2011; Schuck et al., 2015; Tubau & López-Moliner, 2004; 

Tubau et al., 2007; Wessel et al., 2012).  

However, the exact role of the RT-drop for the development of conscious knowledge about 

the sequence has been unclear, yet. On the one hand, the RT-drops may occur as a side-effect 

of having developed a consciously accessible representation of the sequence. On the other 

hand, they might be a precursor for conscious awareness about the sequence. Shedding light 

on this issue will help to better understand how explicit knowledge and performance are 

linked. Furthermore, knowing about the exact role of RT-drops might provide some 

methodological implications for further investigations.  

 

Overview of the Current Study 

The goal of the current study was to investigate the specific role of RT-drops for the 

development of explicit knowledge. In the above mentioned studies, the occurrence of the 

RT-drop was highly correlated with the ability to verbally report the entire sequence (Haider 

& Frensch, 2005; Haider et al., 2011; Haider & Rose, 2007; Wessel et al., 2012). Together 

with the neuroimaging studies, this suggests that the RT-drop might indicate the point in time 

when an explicit representation of a given rule in an implicit learning paradigm arises. 

However, it has never been tested experimentally, whether the RT-drop really indicates the 

transition from implicit to explicit knowledge or whether it only indicates the strategy-change 

that results from having acquired explicit knowledge.  

If the RT-drop were a precursor for the development of a conscious representation of the 

sequence, preventing the participants from changing their strategy should reduce the amount 

of verbally reportable knowledge (Cleeremans, 2006; Haider & Frensch, 2009). By contrast, 

if an RT drop indicates the translation of an otherwise acquired explicit representation into 

performance, preventing participants from changing their strategy should not have any effect 

on the development of explicit knowledge per se but only on the behavioural expression of 

what has been learned explicitly.  

For this purpose, we conducted an SRTT with a first-order 6-elements motor sequence and 

manipulated the likelihood that an RT-drop would occur. This was done in two ways: First, 

we used two different stimulus onset asynchronies (SOAs) between the presented locations on 
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the screen (the trial onset) and the appearance of the target stimulus, a short (200ms) and a 

long (800ms) one. These two SOAs were presented in either a blocked order (a series of 60 

trials of each of the respective SOAs in each training block; blocked-SOA condition), or 

randomly (random-SOA condition). Second, responses were only valid if they were entered 

after the target onset to hinder participants from responding prematurely (Haider & Frensch, 

2009). Furthermore, we used a rather short response window of 500ms starting with the target 

onset. This was done to force the participants to wait – in particular, when the SOA was long 

– for the appearance of the target and then to immediately enter their response. Consequently, 

with increasing practice, these long SOAs should lead to a strong urge to respond right before 

the stimulus appears (see, e.g., Grosjean et al., 2001). If the stimulus then occurs and 

corresponds to the anticipated response, this should come along with a surprise. In an implicit 

learning situation, the participants are not informed about the existence of a sequence. Thus, 

knowing the response in advance to the presentation of a target should likely violate the 

participants’ expectations. This surprising experience together with not being aware about the 

cause (the sequence), should, in turn, trigger explicit search processes in both conditions.  

Therefore, our manipulations should not affect the experience of an unexpected event per se 

because all participants should experience a possibly surprising urge to respond after a long 

SOA. Rather, the manipulation of the SOA-order should affect the likelihood that the 

participants will detach their responding from the appearance of the target and thus will rely 

their performance on only the explicit sequence representation (Gaschler et al., 2019; Shin, 

2008; Willingham et al., 1997). In the blocked-SOA condition, the two different SOAs are 

predictable such that the participants could anticipate the point in time when the target will 

occur. In contrast, the SOAs in the random-SOA condition vary accidentally making it rather 

impossible to anticipate the exact stimulus onset in a given trial (e.g., Niemi & Näätänen, 

1981). Therefore, the participants in this latter condition are forced to respond after the target 

has been presented. This should reduce the likelihood that the participants will rely their 

performance on their explicit representation of the sequence, and thus, will not show an RT-

drop (the switch from a data-driven to a top-down processing strategy). If the RT-drop were a 

precursor for conscious awareness about the sequence to develop, the amount of explicit 

knowledge within this condition should be reduced.  
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Methods 

Participants 

One-hundred forty-one volunteers (81 men) with a mean age of 28.29 years (SD = 9.74) 

participated in the experiment either for course credit or for payment (4€ respectively 3.75£). 

These volunteers were acquired online among students from the University of Cologne (N = 

23) as well as German participants recruited on the online platform Prolific Academic 

(https://www.prolific.co; N = 118). The participants were randomly assigned to the blocked-

SOA (N = 67) and random-SOA (N = 74) conditions. 

The data from participants were excluded if their mean accuracy rate was lower than 60%. 

We used a liberal accuracy criterion because the fixed response window had increased the 

likelihood to miss a response. Thirteen participants in the blocked-SOA (with M = 34% 

misses (SD = 18%) and M = 30% errors (SD = 12%)) and twelve participants in the random-

SOA conditions (with M = 24% misses (SD = 19%) and M = 36% errors (SD = 20%)) were 

excluded
11

. 

 

Materials 

The experiment was programmed with Psychopy and uploaded as JavaScript in Pavlovia 

(https://pavlovia.org/). We used a variation of the standard SRTT from Nissen and Bullemer 

(1987). In our version of the SRTT, six black response squares (2 x 2 cm) appeared on a 

horizontal line in the middle of the screen. The response squares were spatially mapped to the 

six response keys Y, X, C, B, N, and M on a German QWERTZ-keyboard. In every trial, the 

picture of a mouse appeared as the target in one of the response squares and the participants 

were instructed to press the corresponding key as fast as possible to catch the mouse. The 

locations of the target and thus of the response keys followed a repeated 6-elements first order 

sequence (526341)
12

. After each trial, the participants were informed whether they responded 

too early or too late (“fail!”), whether their response was incorrect (“error!”) or whether they 

responded correctly and in the accurate timing (“correct!”). At the end of the experiment, the 

                                                           
11

 Of the remaining participants, four participants in the blocked-SOA condition and five participants in the 

random-SOA condition missed more than 15% of the responses. Furthermore, six participants in the blocked-

SOA condition and four participants in the random-SOA condition responded incorrectly in more than 15% of 

all trials. Due to our liberal exclusion criteria, these participants were not excluded. 
12

 For the purpose of our study, we decided to use this short first-order sequence. Using a more complex 

sequence, like, for instance, a second order sequence with more than six positions might reduce the likelihood 

that the participants acquire explicit knowledge about the entire sequence since the number of elements cannot 

be held concurrently in working memory increasing the difficulty to integrate the sequence. 
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participants were interviewed via socscisurvey (SoSci Survey GmbH. 

https://www.soscisurvey.de). 

 

Procedure 

The experiment started with computer-based instructions. Then, the participants in both 

conditions completed the SRTT that consisted of six blocks with 120 trials, each. After each 

block, the participants were allowed to take a short break.  

Each trial started with the presentation of the six response squares on the screen. After either a 

short (200ms) or a long SOA (800ms), the target stimulus appeared at one of the six positions 

for 150ms. Starting with the target-onset, the participants had a response window of 500ms to 

press the respective key. Each trial ended with the feedback about the actual performance 

(fail, error, or correct), which was displayed for 300ms. After the feedback, the next trial 

started immediately with the presentation of the six response squares.  

The participants in both conditions received 60 short and 60 long SOAs in each block. In the 

blocked-SOA condition, the participants started with the 60 short SOAs followed by the 60 

long SOAs. For the participants in the random-SOA condition, the SOAs changed 

unpredictably from trial to trial. 

After having finished the SRTT training, the participants completed 150 trials of a post-

decision wagering task (Persaud et al., 2007) to assess their sequence knowledge. The 

wagering task is identical to the SRTT with the only exception that in 36 trials a question 

mark appears at one of the six positions instead of the target. In these trials, the participants 

had to guess the position of the next target by pressing the corresponding key. Afterwards, 

they were asked to place a high (50 Cent/Pence) or low (1 Cent/Penny) wager, depending on 

their confidence in the correctness of their response. The rationale behind this task is that the 

participants with predominantly implicit sequence knowledge should not be able to maximize 

their gains and, therefore, the correctness of their responses should not correlate with their 

wagers (Dienes & Seth, 2010). However, the participants with predominantly explicit 

knowledge are highly confident in the correctness of their responses and should place more 

high wagers when responding correctly. In the current experiment, the participants could win 

a maximum of 3€/2.5£. The task did not have any time restrictions and had a fixed SOA of 

400ms. The participants were informed about the changes in this part of the experiment and 

about the possibility of the bonus payment. However, they were not informed about the 
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existence of a motor sequence and did not receive any feedback about the correctness of their 

responses. 

Finally, the participants were forwarded to an online-survey. Participants were asked whether 

they had noticed any sequence or whether they thought that there was no system at all. 

Afterwards, the participants were informed that a motor sequence has been built into the task 

and were asked to reproduce the complete sequence as best as they could. 

RT-drop Analysis 

The procedure for determining the RT-drop was similar to that of Haider and colleagues 

(2011; see, also, Wessel et al., 2012). The authors adapted the method from Haider and Rose 

(2007; Rose et al., 2010), which was developed to detect the RT-drop in a slightly different 

task, the number reduction task. The procedure is based on the assumption that sequential 

knowledge in a SRTT is formed in chunks (Schlaghecken et al., 2000). This means that not all 

transitions between two succeeding sequence elements drop at the same time. Rather, they 

may drop one after the other with an individual time delay. Based on this rationale, we 

initially calculated the RT-drop for each single transition of the sequence.  

Calculation of the RT-drops of each single transition was as follows: First, we removed all 

erroneous and missing responses and replaced them by the mean of the preceding and the 

subsequent trials. Second, we computed a median filter per transition with a lag of 3 

subsequent repetitions to reduce noise in the data. Third, a minimum function was computed 

(Haider & Rose, 2007). That is, the value of this function changed only when the current 

median RT was shorter than the previous one. In all other cases, the value of this function 

remained unchanged. This produces a monotonously decreasing RT-function for each 

sequence transition. Fourth, to define the RT-drop for each single SRTT transition, we 

computed confidence intervals including all remaining transitions (as long as they have no 

diagnosed RT-drop). For each transition, we defined the point in time when the minimum 

function of this respective transition dropped below the confidence interval of the combined 

minimum function of the remaining transitions. If an RT-drop was detected for one transition, 

no further RT-drop was searched for this single transition. In addition, the RT of the minimum 

function in the trial immediately before the diagnosed drop of this transition was used to 

compute the combined minimum functions for the RT-drop detection of the remaining 

transitions. Fifth, to avoid the detection of too early pseudo-RT decreases due to 

familiarization with the task, we defined a threshold of 200ms. Only if the minimum function 

of one transition fell below the confidence interval of the combined minimum functions of the 
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remaining transitions and below the threshold of 200 ms, it was defined as an RT-drop. 

Finally, the overall RT-drop for one individual participant was defined as that point in time 

when at least 4 out of 6 sequence transitions had dropped (Haider et al., 2011). Figure 7 

shows an example for the RT-drop detections for the six transitions for one participant. 

It is important to note, that using the minimum function to determine the RT-drops within 

participants should reduce the likelihood that the probably more varying RTs in the random-

RSI-order condition affect the detection of RT-drops. 

 

Fig. 7. Minimum functions per transition (lines) and raw RTs (dots) as illustration for the RT-drop detection. The 

detected RT-drop for Transition 1 is marked as an example. 

 

Results 

For each participant and each block, median RTs and mean error rates were computed 

separately. For the RTs, erroneous trials (7.5% of all data) and missings (8.85% of all data) 

were excluded. As the response window was restricted, there were no RT-outliers to exclude. 

For all statistical analyses, an α-level of 5% was adopted. If Mauchly's test of sphericity 

reached significance, Greenhouse Geisser corrected p-values are reported together with the 

original degrees of freedom. 
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Error rates and latencies in the SRTT 

Figure 8 shows the mean error rates per block and condition separately for long and short 

SOAs. For the mean error rates as dependent variable, a 2 (SOA-condition: blocked-SOA, 

random-SOA) x 2 (SOA-length: short, long) x 6 (Block) ANOVA with repeated measures for 

the last two factors revealed a significant main effect of Block (F(5,570) = 73.39, p < .001, ηp
2 

= 0.39). As can be seen from Figure 2, the error rates in both SOA-conditions decreased over 

time. The main effect of SOA-condition (F(1,114) = 1.15, p = .285, ηp
2 

= 0.00) as well as the 

interaction between SOA-condition and Block (F(5,570) = 1.17, p = .319, ηp
2 

= 0.01) were not 

significant. The main effect of SOA-length (F(1,114) = 26.59, p < .001, ηp
2 

= 0.18) and also 

the two-way interactions between SOA-condition and SOA-length (F(1,114) = 17.93, p < 

.001, ηp
2 

= 0.13), between SOA-length and Block (F(5,570) = 3.15, p = .014, ηp
2 

= 0.02), as 

well as the triple interaction (F(5,570) = 7.94, p < .001, ηp
2 

= 0.06) were significant. Figure 2 

shows that the participants made more errors when the SOA was short than when it was long. 

This difference was more pronounced for the participants in the blocked-SOA condition. 

Separate post-hoc tests for each SOA-condition show that the difference in error rates for long 

and short SOAs was significant for the participants in the blocked-SOA condition (short SOA: 

M = 9.59%; SD = 6.49%; long SOA: M = 6.67%; SD = 5.40%; t(53) = 6.36, p < .001), but 

not for the participants in the random-SOA condition (short SOA: M = 7.28%; SD = 4.02%; 

long SOA: M = 6.99%; SD = 5.10%; t(61) = 0.68, p = 0.498). Furthermore, the two SOA-

conditions did not differ with regard to the long SOAs (t(114) = 0.32, p = 0.746). However, 

considering only the short SOAs, the error rates were significantly higher in the blocked-SOA 

condition than in the random-SOA condition (t(114) = 2.34, p = 0.020). This was particularly 

the case at the beginning of training.  
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Fig. 8. Mean percent error rates per block and SOA. Error bars reflect the standard errors of the means. 

 

The mean RTs are shown in Figure 9
13

. The 2 (SOA-condition: blocked-SOA, random-SOA) 

x 2 (SOA-length: short, long) x 6 (Block) ANOVA with RT as dependent variable showed a 

significant main effect of Block (F(5,570) = 164.34, p < .001, ηp
2 

= 0.59). Here, the main 

effect of SOA-condition (F(1,114) = 5.61, p = .019, ηp
2 

= 0.04) as well as the SOA-condition 

x Block interaction (F(5,570) = 7.85, p < .001, ηp
2 

= 0.06) were significant. As can be seen 

from Figure 3, the RTs of the participants in both SOA-conditions decreased over time. 

Furthermore, the participants in the blocked-SOA condition responded overall faster than the 

participants in the random-SOA condition. This RT-difference increased with training. In 

addition, the main effect of SOA-length (F(1,114) = 24.15, p < .001, ηp
2 

= 0.17), the two-way 

interactions between SOA-condition and SOA-length (F(1,114) = 20.42, p = .012, ηp
2 

= 0.15), 

                                                           
13 We additionally analyzed if the RT data in the random-SOA condition differ for trials in which the SOA 

repeated versus changed. We found slightly longer RTs in short SOA trials when these followed a long 

compared to following a short SOA-trial. However, for two reasons it is rather unlikely that these slower RTs in 

the random-SOA condition should have affected our following RT-drop analysis. First, we median filtered the 

RTs in both SOA-conditions with a lag of 3 subsequent trials. This median filter cancels RT-outliers and reduces 

noise in the data. Second, on the basis of this median filtered data, we computed the minimum functions. This 

implies that the values of this function changed only when the current median RT was shorter than the previous 

one. This minimum function then built the basis for the RT-drop analysis. Thus, the 25% of potentially slower 

RTs due to the long-short SOA sequences likely should not have affected the minimum functions.  
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and between SOA-length and Block (F(5,570) = 3.10, p = .008, ηp
2 

= 0.02), as well as a the 

triple-interaction (F(5,570) = 3.64, p = .002, ηp
2 

= 0.03) were significant. As the data in Figure 

9 suggest, the participants in the blocked-SOA condition did not show any systematic 

difference between long and short SOAs. However, the participants in the random-SOA 

condition were significantly faster with the long than with the short SOAs. The interaction 

between SOA-length and block and the triple interaction did not indicate a clear trend. 

To further investigate the differences between the SOA-conditions, we also conducted 

separate 2 (SOA-length: short, long) x 6 (Block) ANOVA for the two SOA-conditions. For 

the blocked-SOA condition, the main effect of Block (F(5,265) = 87.17, p < .001, ηp
2 

= 0.62) 

as well the interaction between SOA and Block (F(5,265) = 3.31, p = .010, ηp
2 

= 0.05) reached 

significance (for SOA (F(1,53) < 1). For the random-SOA condition, the main effect of SOA-

length (F(1,61) = 104.45, p < .001, ηp
2 

= 0.63) and for Block (F(5,305) = 74.57, p < .001, ηp
2 

= 0.55) were significant, while the SOA-length x Block interaction was not (F(5,305) < 1). 

The data in Figure 3 shows that, for the random-SOA condition, the difference between the 

long and short RSI-lengths remain rather constant over all blocks. 
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Fig. 9. Mean RTs per block and SOA. Error bars reflect the standard errors of the means.  
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To sum up, our manipulation of the order of the SOAs affected both, the error rates and the 

RTs. In the blocked-SOA condition, the participants reacted faster than the participants in the 

random-SOA condition. However, optimizing response speed seems to come at costs, since 

error rates for the short SOA trials were higher in the blocked-SOA condition.  

In contrast, in the random-SOA condition, the pattern of results suggests slower responses for 

short than for long SOA trials. Whether this was accompanied by an increased accuracy is 

ambiguous. On the one hand, the error rates did not systematically differ between the two 

SOA-types. On the other hand, the participants in the random-SOA condition made fewer 

errors than the participants in the blocked-SOA condition. Since a baseline is missing, it 

remains unclear whether the error rate was increased in the blocked-SOA condition or 

reduced in the random-SOA condition.  

Overall, the error rates and the RT findings together suggest that our SOA-manipulation was 

successful. The slower responses in the random-SOA compared to the blocked-SOA 

condition suggest that the exact timing of the responses was more difficult in the former SOA-

condition. However, a not mutually exclusive explanation for the overall shorter RTs in the 

blocked-SOA condition might be that more participants exhibited an RT-drop in this 

condition than in the random-SOA condition, since these participants were better able to adapt 

and optimize their performance according to the respective SOAs. Thus, the next important 

question concerns the effect of our SOA manipulation on the rate of RT-drops.  

 

RT-drop  

Based on the procedure described in the methods section, we conducted the RT-drop analyses 

for each individual participant. In the blocked-SOA condition, 39 participants (72%) showed 

an RT-drop as defined above, whereas only 26 participants (41%) in the random-SOA 

condition did so. This difference between the two conditions was significant (χ2
(1) = 10.75; 

p = .001, φ= 0.30). Thus, our manipulation of the SOA arrangement not only affected RTs 

and error rates, but also the probability that the participants in the random-SOA condition 

exhibited an RT-drop. On the basis of these findings we investigated our main hypothesis 

concerning the relationship between RT-drops and explicit knowledge.  
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Post-Decision Wagering Task (PDWT) 

In the PDWT, as the main test for explicit knowledge, only the wagering trials were 

considered. For these trials, we computed percent correct responses as a measurement of 

overall acquired sequence knowledge. In addition, we also computed the percent correct 

responses under high (correct|high) versus low wagers (correct|low) as a measurement of the 

subjective certainty to have responded correctly and thus as a measure of explicit knowledge. 

The results are presented in Table 7. 

 

Table 7. Percent correct responses and certainty judgements for the blocked-SOA and random-SOA condition. 

The respective standard deviations are presented in brackets (C|H refers to correct| high; C|L to correct |low). 

SOA-Condition correct (%) C|H C|L N total N explicit 

(%) 

Blocked-SOA 76.28(24.19) 79.30(28.00) 49.02(33.09) 54 37(68.51) 

Random-SOA 75.31(25.97) 77.49(28.97) 46.41(35.86) 62 38(61.29) 

 

Concerning the percent correct responses, the participants in both SOA-conditions had more 

sequence knowledge than expected by chance (chance level: 20%; blocked-SOA condition: 

t(53) = 7.21, p  <  .001; random-SOA condition: t(61) = 7.03, p < .001). More important, the 

two SOA-conditions did not differ with regard to their amount of correct responses (t(114) = 

0.20, p = .835). To further bolster this insignificant difference between the two SOA-

conditions, we computed a Bayes-Analysis with JASP (JASP Team, 2018; Morey & Rouder, 

2015) for t-tests (Rouder et al., 2009). We calculated a Bayes-Factor BF01 to test the null 

hypothesis (H0) to be favored over the alternative hypothesis (H1). We used the Cauchy 

distribution as prior distribution with a Cauchy-scale of .0707 for the calculation of Bayes-

Factors for t-tests with JASP (JASP Team, 2018). Our Bayes factor was BF01 = 4.96, which, 

according to Jeffreys (1939/1961), provides evidence for the null hypothesis. 

The certainty judgements served to test the amount of explicit sequence knowledge. A 2 

(SOA-condition: blocked-SOA, random-SOA) x 2 (Certainty Judgment: correct|high, 

correct|low) ANOVA with percent correct responses as dependent variable was conducted. A 

significant main effect of Certainty Judgment (F(1,114) = 61.40, p < .001, ηp
2 

= 0.35) was 

found. As can be seen in Table 1, the participants in both SOA-conditions placed more high 

than low wagers for correct responses. Importantly, there was again no main effect of SOA-
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condition (F(1,114) = 0.25, p = .617, ηp
2 

= 0.00) and no SOA-condition x Certainty 

Judgement interaction (F(1,114) = 0.01, p = .919, ηp
2 

= 0.00). Thus, the two SOA-conditions 

did not differ regarding their confidence in the correctness of their responses and therefore in 

their amount of explicit knowledge. Additionally, we computed a Bayes-Analysis for 

ANOVA designs (Rouder et al., 2012) to validate the finding that the two SOA-conditions did 

not differ in the amount of their explicit knowledge. The calculated Bayes-Factor was BF01 = 

5.72 indicating that the null hypothesis can be favored over the alternative hypothesis.  

In addition, we identified those participants who had acquired predominantly explicit 

sequence knowledge. The participants were classified as possessing predominantly explicit 

knowledge when they responded correctly in at least 70% of all wagering trials and placed 

primarily high wagers for correct answers. The number of participants with explicit 

knowledge in each SOA-condition is shown in Table 7. Again, the two SOA-conditions did 

not differ (χ2
(1) = 0.66; p = .416, φ= 0.075). 

In sum, the results of the PDWT show that the participants in both conditions had acquired a 

comparable amount of sequence knowledge. Furthermore, this knowledge seems to be 

primarily explicit as the participants placed high wagers on their correct responses and thus, 

showed a high confidence in the correctness of their responses. Approximately 70% of the 

participants in each condition were classified as having full explicit knowledge about the 

motor sequence. Thus, even though there were fewer RT-drops in the random-SOA condition, 

the amount of explicit knowledge about the sequence did not differ from that of the blocked-

SOA condition.  

However, two alternative explanations concerning the discrepancy between the amount of 

explicit knowledge and the occurrence of an RT-drop in the random-SOA condition need to 

be discussed. First, it might be that our procedure used to diagnose the RT-drops was not a 

valid method. Second, it is conceivable that the PDWT did not validly assess what the 

participants knew about the sequence. To handle these considerations, we conducted two post 

hoc analyses. 

 

Post-hoc Analyses 

In order to validate our RT-drop analysis, we divided both SOA-conditions into two 

subgroups, one with the participants with (drop-subgroup) and one with the participants 

without an RT-drop (no-drop subgroup). In addition, we tested whether the RT-drops were 
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indicative for the amount of explicit knowledge. If our procedure to diagnose the RT-drops 

was valid, we should find a stronger RT-decrease in both drop subgroups. Furthermore, the 

drop subgroups should show more explicit knowledge about the sequence. The mean RTs for 

the first analysis are shown in Figure 10.  

We conducted a 2 (SOA-condition: blocked-SOA, random-SOA) x 2 (Subgroup: RT-drop, 

no-drop) x 6 (Block) ANOVA with RT as dependent variable and found a significant main 

effect of Block (F(5,560) = 136.31, p < .001, ηp
2 

= 0.54) and of Subgroup (F(1,112) = 54.95, 

p < .000, ηp
2 

= 0.32). The main effect of SOA-condition (F < 1) as well as the SOA-condition 

x Block interaction (F(5,560) = 1.91, p = .090, ηp 
2
= 0.01) were not significant. The 

interaction between Subgroup and Block (F(5,560) = 23.46, p < .001, ηp
2 

= 0.17) the 

interaction between SOA-condition and Subgroup (F(1,112) = 5.86, p = .017, ηp
2 

= 0.04) as 

well as triple-interaction (F(5,560) = 2.30, p = .043, ηp
2 

= 0.02) were significant. Figure 4 

shows that within both SOA-conditions the RTs of the participants in the drop subgroup 

decreased faster with practice than in the non-drop subgroup. This difference was greater in 

the blocked-SOA condition than in the random-SOA condition. However, the qualitative 

picture was rather similar in both SOA-conditions. This suggests that the RT-drop analysis 

reliably identified the participants with an RT-drop in both SOA-conditions. It is rather 

unlikely, that the rate of miss-classified participants in the random-SOA condition is much 

higher than that in the blocked-SOA condition. If this had been the case, we should have 

found no significant RT-differences between the two subgroups within the random-SOA 

condition. 
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Fig. 10. Mean RTs per block for the participants with and without RT-drop. Error bars reflect the standard errors 

of the means.  

 

To test whether the RT-drops are indicative for explicit sequence knowledge (Haider & Rose, 

2007), we also analyzed, how many participants in the two subgroups (drop, no-drop) within 

both SOA-conditions (blocked-SOA and random-SOA) showed predominantly explicit 

knowledge. The results are shown in Table 8. In both SOA-conditions, approximately 80% of 

the participants in the drop subgroup possessed predominantly explicit knowledge. A chi²-test 

conducted separately for the two SOA-conditions confirmed that this rate was significantly 

higher than that in the two non-drop subgroups (blocked-SOA condition: χ2
(1) = 11.92; p = 

.006, φ= 0.46; random-SOA condition: χ2
(1) = 7.16; p = .007, φ= 0.33). Only the effect 

size in the random-SOA condition was smaller than that in the blocked-SOA condition. Thus, 

in both SOA-conditions the RT-drop seems to be indicative for explicit knowledge to occur.  

Despite of this difference between the two subgroups, the number of participants with 

predominantly explicit knowledge in the no-drop subgroup of the random-SOA condition is 

higher than that in the blocked-SOA condition. This latter finding is in line with our 

assumption that the SOA manipulation affected the RT- drop rate in the random-SOA 

condition, but not the development of explicit knowledge. 
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Table 8. Participants with predominantly explicit knowledge in the blocked-SOA and random-SOA condition 

 SOA-Condition 

 Blocked-SOA Random-SOA  

Subgroup N total N explicit (%) N total N explicit (%) 

Drop 39 32(82.05) 26 21(80.77) 

No-drop 15 5(33.33) 36 17(47.22) 

 

Taken together, the two post-hoc analyses that we conducted to verify our RT-drop analysis 

revealed that the behavioural patterns of the two subgroups (drop, no-drop) were qualitatively 

similar within both SOA-conditions (blocked-SOA, random-SOA). The main difference 

between the two SOA-conditions was that, probably due to the higher number of participants 

with RT-drops in the blocked-SOA condition, the performance differences between the two 

subgroups were more pronounced within this condition. Given these results, it seems justified 

to assume that our main finding of more RT-drops in the blocked-SOA condition and 

comparable explicit knowledge in both SOA-conditions, was not due to a lesser likelihood to 

correctly diagnose the RT-drops in the random-SOA condition.  

 

Post experimental Interview  

For our second question, whether the PDWT validly assessed participants’ explicit 

knowledge, we analyzed the data of our post experimental interview. For each participant, we 

counted how many transitions of the sequence were reproduced correctly. We then used the 

method from Rünger and Frensch (2008) to compute individual knowledge scores. The 

calculation of these scores takes into account how likely it is to report a certain number of 

transitions by mere guessing. The individual knowledge score is calculated from 100 minus 

the guessing probability. The score is thus adjusted for the guessing probability and shows 

how much the participant knows about the sequence. The participants in the blocked-SOA 

condition had a mean score of 92.22 (SD = 13.02). In the random-SOA condition, one 

participant did not complete our online survey. From the remaining 61 participants, the mean 

score was 90.37 (SD = 13.33). Comparably to the results from the PDWT, there was no 

difference between the two SOA-conditions (t(113) = 0.74, p = .456). In addition, the Bayes-

Analyses for t-tests confirmed the plausibility of the Null-hypothesis (BF01 = 3.93). 
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To sum up, the data of the post experimental interview revealed a similar picture as the data 

of the PDWT: The participants in the two conditions did not differ concerning their amount of 

explicit sequence knowledge. 

 

Discussion 

The goal of our study was to better understand the concrete role of RT-drops for the 

development of explicit knowledge in implicit sequence leaning. The initial point of the study 

was twofold: First, former findings have shown high correlations between RT-drop and verbal 

report (Haider & Rose, 2007; Haider & Frensch, 2009; Haider et al., 2011; Schwager et al., 

2012). Second, the neuroimaging studies (Rose et al., 2010; Schuck et al., 2015; Wessel et al., 

2012) revealed that the RT-drops were accompanied by a strong increase in neuronal activity 

in certain brain areas. These two findings led to the reasonable conclusion that the RT-drop 

reflects the point in time when a person gains explicit sequence knowledge. However, based 

on these correlations, it remains open whether RT-drops are a precursor for or a consequence 

of the generation of explicit sequence knowledge. 

In the current study, we therefore focused on the manipulation of the ease of producing such 

an RT-drop during the SRTT training. If the RT-drop were a precursor for sequence 

awareness, increasing the difficulty to exhibit such an RT-drop should reduce the 

development of explicit knowledge. If, however, the RT-drop were a behavioral consequence 

of awareness, the manipulation should affect the probability of RT-drops but not the amount 

of explicit knowledge.  

The study yielded three main results: First, task performance was affected by our 

manipulation. While the blocked order of the SOAs led to overall shorter RTs as well as 

higher error rates for the short than for the long SOAs, the random order of SOAs led to 

shorter reaction times with long SOAs than with short SOAs. This pattern of results is in line 

with the assumption that the participants in the blocked-SOA condition were better able to 

anticipate the onset of the next target and thus could optimize their speed of responding easier 

than the participants in the random-SOA condition. Second, significantly more participants in 

the blocked-SOA condition than in the random-SOA condition showed an RT-drop. Both 

findings together confirm the success of our SOA manipulation since it suggests that the 

participants in the random-SOA condition were less able to predict the onset of the target and, 

probably due to this uncertainty, showed less RT-drops. Third, despite of the finding that the 
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two conditions differed in the number of participants who showed an RT-drop, the amount of 

explicit sequence knowledge was comparable in both conditions. This was also confirmed by 

the verbal knowledge assessed in the post-experimental interviews. Thus, our SOA-

manipulation did not affect the acquisition of (explicit) sequence knowledge. 

Taken together, these findings complement the previous studies on RT-drops in one important 

point. Up to now, the high correlations between RT-drops and the amount of explicit 

knowledge suggested, together with the neuroimaging findings, that the RT-drop might 

indicate the occurrence of conscious sequence representations. Yet, since brain activity was 

analyzed depending on the point in time when the RT-drops appeared, it was only possible to 

analyze the brain activity of the participants with an RT-drop. These analyses could therefore 

not answer the question whether the RT-drop is the point in time when awareness occurs (as a 

precursor of the development of explicit knowledge) or whether it is the point in time when 

the participants decide to use this knowledge (as a consequence of the development of explicit 

knowledge). The results only showed that the brain activity was increased right before an RT-

drop occurred and that the participants with an RT-drop had more explicit sequence 

knowledge than those without an RT-drop.  

In the current study, we also found such a difference in the amount of explicit knowledge. In 

both conditions, more participants who showed an RT-drop developed predominantly explicit 

sequence knowledge than those who did not show an RT-drop. However, this correspondence 

was larger for the participants in the blocked-SOA condition than for those in the random-

SOA condition. Thus, the current comparison of the blocked and the random-SOA conditions 

suggest that the emergence of a conscious representation of the sequence is, at least, partly 

independent of RT-drops. This independence between conscious sequence knowledge and its 

usage in performance allows for two alternative conclusions: First, it is conceivable that the 

randomly presented SOAs in the random-SOA condition increased the variability of the RTs 

making it harder to detect an RT-drop with our RT drop analysis. This would be a 

methodological problem and would confound our results. Second, the difference in the 

number of participants with an RT-drop between the two conditions is reliable and reflects a 

result of our manipulation.  

Our post-hoc analyses seem to support the second conclusion. The results show that the 

behavioral pattern of the participants with and without RT-drop was rather similar for the two 

conditions. In the blocked-SOA condition as well as in the random-SOA condition, the 

participants who showed an RT-drop responded faster than the participants who did not. This 



 

106 

 

difference increased over practice, albeit this increase was stronger in the blocked-SOA than 

in the random-SOA condition. However, if the varying SOAs had reduced the probability to 

detect an RT-drop in the random-SOA condition, we should have found a small or even no 

difference between these two subgroups. Thus, the results seem to be better in line with the 

assumption that the difference between the two conditions in the number of participants with 

an RT-drop is a result of our manipulation.  

Regarding our main question, namely whether the RT-drop is a precursor for or a 

consequence of the development of explicit knowledge, our findings indicate that the RT-

drops are a consequence of the development of explicit knowledge rather than a precursor. 

Our findings suggest that an RT-drop marks the point in time when participants rely on their 

explicit sequence representation and shift from stimulus-driven to plan-based performance 

(Haider & Rose, 2007; Hoffmann & Koch, 1997; Nattkemper & Prinz, 1997; Tubau & López-

Moliner, 2004; Tubau et al., 2007). It does not seem to indicate the development of an explicit 

representation itself. Once developed, most of the participants in the blocked-SOA condition 

relied on this knowledge and used it to optimize their performance producing the sudden 

decrease of reaction times. In the random-SOA condition, by contrast, far lesser participants 

showed this sudden decrease despite having developed explicit knowledge. A possible 

explanation is that these participants may have gained awareness in the same manner as the 

participants in the blocked-SOA condition. They just were not willing or were not able to rely 

on this newly generated representation because the unpredictable order of the SOAs together 

with the short response window made this strategy rather error-prone. This might have 

prevented them to change the strategy from stimulus-driven to plan-based performance 

(Tubau & López-Moliner, 2004; Tubau et al., 2007).  

This explanation seems plausible in the light of other studies that investigated voluntary 

strategy shifts. Haider and colleagues (2005) showed that a switch to a new strategy is not an 

automatic consequence of task processing. Rather, a strategy shift occurs voluntary and 

controlled when the new strategy is efficient for further task performance (Gaschler et al., 

2019). Further studies have shown that interfering manipulations in learning tasks often do 

not impair learning per se but the expression of what has been learned. In particular, impaired 

timing in form of, for instance, changed RSI patterns (Miyawaki, 2006; Willingham et al., 

1997) or uncertainty due to random RSIs (Tubau et al., 2007), seem to influence task 

performance although the learning process itself seemed unaffected. 
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Our findings also fit well with the assumptions of the UEH (Frensch et al., 2003). According 

to the first assumption, we assume that in both conditions, a strong urge to respond due to the 

locked response window might have triggered search processes that led to the development of 

explicit sequence knowledge. Furthermore, the sudden decrease of reaction times, which was 

found in our study, is in line with the notion that sequence awareness occurs abruptly in an 

all-or-nothing manner. The former interpretation of the RT-drop was that it shows the point in 

time when explicit knowledge occurs (e.g., Rose et al., 2010). We assume that this 

interpretation is still correct. However, due to our results, it has to be refined by the 

assumption that the usage of the newly generated explicit sequence representation for 

performance seems to underlie voluntary control.   

Despite the promising results, two limitation of our study are noteworthy. First, it was 

conducted online and, thus, we could not control for all confounding factors in the same 

manner as in lab-studies. Furthermore, it was impossible for the participants to contact the 

investigator in the case that they did not understand the instructions. However, the wordings 

in our instructions have been adapted to the situation. Moreover, neither the data nor the post 

experimental questionnaires gave any hints that the participants had problems to correctly 

perform the task. Furthermore, there already are studies in implicit sequence learning that 

were conducted online (e.g., Sævland & Norman, 2016) and which results were comparable to 

lab experiments. Lastly, potential confounding variables should have affected both the 

blocked-SOA and random-SOA condition. 

Another limitation might be that we did not include a random block at the end of the training 

to assess sequence learning. Consequently, we could not distinguish sequence learning from 

pure practice effects on the basis of our training results. We decided not to use a random 

block since we were particularly interested in the relation between the expression of RT-drops 

and the development of explicit sequence knowledge. Such an interspersed random block 

bears the danger to attenuate this relation because it might hinder the participants to shift their 

strategy late in practice. Furthermore, the sudden decrease of RTs and the explicit sequence 

knowledge expressed in the PDWT cannot be explained by pure practice effects.  

Finally, explicit sequence knowledge was assessed only after the training phase and we did 

not measure the exact point in time when the participants became aware of the sequence. 

Thus, it is conceivable that the RT-drop and sequence awareness developed independently. In 

this case, our conclusion that the RT-drop is a behavioral consequence of explicit knowledge 

might have been incorrect. However, Rose and colleagues (2010) had assessed explicit 
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knowledge online during training. The participants were interrupted after the expression of 

fast responses and were asked about the reasons for these fast responses. Their findings 

suggest that three fast responses indicate explicit knowledge and are expressed right before an 

RT-drop. Taken these finding of Rose and colleagues (2010) into account, the conclusion, that 

the RT-drop is a behavioral consequence of awareness, is reasonable. 

In sum, we conclude that the focus of our study on the functional role of RT-drops in implicit 

sequence learning and the results of the manipulation in our experiment allows the 

interpretation of the RT-drop as indicative for a strategy shift from stimulus-based to plan-

based responding rather than the generation of an explicit knowledge representation, per se. 

This explicit representation comes along with the possibility to control whether one will or 

will not use this explicit knowledge to optimize performance.  
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8. General Discussion  

The term implicit learning refers to an unconscious learning process that takes place without 

any intention to learn. In implicit learning paradigms as, for instance, the SRTT participants 

show behavioral learning effects but often do not express any explicit knowledge about what 

has been learnt. This empirical finding led to the conclusion that learning in this case might 

have resulted in implicit knowledge (e.g., Nissen & Bullemer, 1987). 

Research in implicit learning led furthermore to the development of various theories about 

how explicit knowledge arises in implicit learning situations and paradigms such as the 

SRTT. There exists supporting evidence for both, the single system as well as the multiple 

system theories as two classes of theories. Thus, among the scientists who deal with this topic 

in their research, there is still little consensus about the underlying processes and the 

characteristics of implicit and explicit knowledge representations. 

The aim of this thesis was contribute to this debate about how explicit knowledge develops in 

implicit learning. After the introduction of the important theories of consciousness and 

implicit learning, a review and two empirical studies were presented, that shed light on 

different core aspects of the main research question. 

The review focused on the theoretical view of how conscious representations are developed in 

an implicit learning situation. The goal of this review was to introduce and to discuss two 

different points of views on how conscious knowledge arises, namely the strengthening 

account (Cleeremans & Jiménez, 2002; Cleeremans, 2006, 2008, 2011, 2014, 2020) as well as 

the UEH (Frensch et al., 2003).Furthermore, these two viewpoints were related to two 

classical theories of consciousness, the GWT (Baars, 1997, 2003) and the HOTTs (Lau & 

Rosenthal, 2011; Rosenthal, 1985). 

As a result of this discussion, both theories of consciousness have advantages and 

disadvantages in explaining how explicit knowledge arises in implicit learning. Furthermore, 

the assumptions of the UEH (Frensch et al., 2003) fit well with the GWT (Baars, 1997, 2003). 

In contrast, the strengthening account (Cleeremans, 2008, 2011) rather fits with the 

assumptions of the HOTTs (Lau & Rosenthal, 2011; Rosenthal, 1985). Finally, the review 

concluded with a suggestion of using aspects of the GWT and the HOTT to consider the 

advantages and disadvantages of both theories of consciousness in explaining how explicit 

knowledge in implicit learning arises. In combination with the UEH, problems might be 

solved that arise when only the GWT or HOTTs are applied. A metacognitive model about 

the own behavior in a given situation is assumed that is always adapted to the current task 

through the comparison of the expected and experienced behavior. As in implicit learning the 



 

110 

 

behavioral changes are based on FO-performance, they might not fit the current model and 

violate the expectations one has about the behavior. This then might trigger an evaluation 

process whether a new mental model is needed for the current situation. 

The first empirical study was conducted to investigate single assumptions of the UEH in 

further detail. According to the UEH implicit knowledge representations never can become 

consciously aware. Rather, a secondary explicit search process is needed, which is triggered 

by an unexpected change in one’s own behavior, which in turn leads to the generation of 

explicit knowledge representations. Here, the role of response-effects as unexpected events 

and thus, for triggering the development of explicit sequence knowledge in implicit sequence 

learning was examined while the strengthening of knowledge representations was held 

constant. We investigated in four experiments whether participants can learn a pure effect 

sequence implicitly when the effects are not mapped to any responses and whether the 

development of explicit sequence knowledge is triggered when afterwards a contingent 

response-effect sequence is introduced that should lead to an experience of an unexpected 

sense of agency (Beck, et al., 2017; Haggard et al., 2002; Moore et al., 2009) and thus to 

searching processes. 

The main results of Study 1 can be summarized as followed. First, we were able to show that 

participants can learn a pure sequence of task-irrelevant auditory or visual effects even when 

the effects are not contingently mapped to any responses. Second, learning such an effect 

sequence in advance and the experience of a sudden sense of unexpected agency and the 

possibility to produce this effect-sequence can trigger the development of explicit knowledge 

about a later introduced contingent response-location sequence. In contrast, the implicit 

learning system seems to be unaffected by the effect sequence. Furthermore, the results of 

Study 1 indicate that the development of explicit knowledge occurred in an all-or-none 

manner. After excluding the participants with predominantly explicit knowledge, the 

differences between the experimental and the control conditions almost entirely disappeared. 

This was true particularly for salient auditory effects. The visual effects led to weaker results. 

Third, only participants with predominantly explicit knowledge who experienced the 

unexpected sense of agency showed a strong decrease of reaction times when the response-

location sequence was introduced. In sum, our results provide evidence that the manipulation 

of unexpected events with response-effects foster the development of explicit knowledge 

about a response-location sequence in a SRTT while the implicit learning system remains 

unaffected. The findings of the first study fit well with the assumptions of the UEH (Frensch 

et al., 2003) whereas other accounts, as for instance the strengthening account by Cleeremans 
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(2006, 2008) fail to explain the results in whole. According to the UEH, the sudden sense of 

agency of the effect-sequence, triggered by the sudden emergence of the contingent response-

location sequence, might have triggered searching processes whose content became aware 

(Esser & Haider, 2017b; Haider & Frensch, 2005, 2009; Scott & Dienes, 2008; Whittlesea, 

2002, 2004). The steep decrease of reaction times for those participants who experienced the 

sudden sense of agency as an unexpected event and developed explicit sequence knowledge is 

in line with the assumption of the UEH that explicit knowledge arises suddenly in an all-or-

nothing manner. The strengthening account (Cleeremans, 2006, 2008) cannot explain these 

results, as this account postulates a graded transition from implicit to explicit knowledge. The 

further investigation of the so called RT-drop (e.g., Haider et al., 2011) was the purpose of 

Study 2. 

Particularly, Study 2 focused on the suddenness of insight processes that is behaviorally often 

characterized by a sudden decrease of RTs (RT-drop; Haider & Frensch, 2005, 2009). Here, 

the functional role of such an RT-drop was investigated and thus, the question whether the 

RT-drop is a precursor for the development of explicit sequence knowledge or whether it is a 

behavioral consequence of awareness. To investigate this question, we conducted a SRTT 

with a repeated response-location sequence and realized two conditions. For participants in 

the blocked-SOA condition, the timing in the SRTT and the occurrence of succeeding targets 

was predictable. In contrast, the timing was unpredictable for participants in the random-SOA 

condition who were therefore not able to anticipate the occurrence of the succeeding targets 

(e.g., Niemi & Näätänen, 1981). The creation of an unexpected event was equal for the 

participants of the two conditions. As part of the analysis of reaction times, RT-drops were 

determined separately for each participant of both conditions. 

Our study led to two main results. We found that, first, the two conditions differed in their 

number of participants who showed an RT-drop, as more participants in the blocked-SOA 

condition compared to the random-SOA condition showed an RT-drop. Second, the amount 

of explicit sequence knowledge was equal for the two conditions. Thus, in the blocked-SOA 

condition, those participants who developed explicit sequence knowledge seem to have used 

this knowledge for the performance in the SRTT. In contrast, in the random-SOA condition, a 

comparatively larger proportion of participants without RT-drop nevertheless developed 

explicit sequence knowledge. These results led us conclude that the development of explicit 

knowledge in implicit learning seems to be independent of the expression of an RT-drop. 

Rather, the RT-drop seems to be a behavioural consequence of explicit knowledge. Thus, 

participants who develop explicit knowledge may be able to decide whether they change their 
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strategy from stimulus-driven to top down (Haider & Rose, 2007; Hoffmann & Koch, 1997; 

Nattkemper & Prinz, 1997; Tubau & López-Moliner, 2004; Tubau et al., 2007), given that a 

strategy shift is conductive for the performance of the actual task (e.g., Gaschler et al., 2019). 

The interpretations of the RT-drop as precursor as well as behavioral consequence of explicit 

sequence knowledge fit both with the assumption of the UEH (Frensch et al., 2003), because 

both interpretations do not contradict the suddenness of the occurrence of explicit knowledge 

representations. For our interpretation of the RT-drop as behavioral consequence of explicit 

sequence knowledge, one can assume that once explicit knowledge is developed, the RT-drop 

defines the point in time when this explicit knowledge is used for a voluntary strategy shift. 

This strategy shift occurs only when the new strategy is efficient for the task performance. 

In sum, the results of the review and the two empirical studies support the assumptions of the 

UEH (Frensch et al., 2003) in different aspects from a pure theoretical view to the more 

detailed investigations of single predictions. In doing so, the review and the two studies 

contribute to the research question about the development of explicit knowledge in implicit 

learning. 

The review discussed two prominent views in implicit learning with the result that the UEH 

seems to be a promising theory in explaining a broad variety of results, particularly in 

combination with the GWT and HOTT as two classical theories of consciousness. This new 

theoretical framework might build a good starting point for the reconsideration of former 

particularly inconsistent results as well as for further research questions. 

The first study focused on the empirical investigation of the trigger for the transition from 

unconscious to conscious knowledge representations and the second study the behavioral 

consequences. The findings of these two empirical studies indicate that explicit knowledge is 

based on a learning system that differs from the implicit learning system and that explicit 

knowledge arises suddenly in an all-or-none manner. 

The assumption of one single learning system, as proposed by, for instance, Shanks and 

colleagues (Shanks & Johnstone, 1999; Shanks & St. John, 1994) or Perruchet and Vinter 

(2002) seems to be inadequate to explain the results of the two empirical studies. The multiple 

system view that supposes the existence of at least two different learning systems that work 

independently from each other seems to provide a more plausible explanation. 

The radical plasticity hypothesis (Cleeremans, 2011), as one of the accounts that pursue the 

idea that the implicit and explicit learning system differ from each other, takes the perspective 

that explicit meta-representations develop similar to implicit FO-representations and thus, 

gradually through an increase of representational quality (strength, stability in time, and 
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distinctness) during learning. However, the results of Study 1 and Study 2 show that explicit 

knowledge arises in an all-or nothing manner rather than graded. Furthermore, in Study 1, 

knowledge differences of the respective conditions completely vanished after excluding 

participants with full explicit knowledge. In addition, in the first study, the strengthening of 

knowledge representations was held constant, while only the experience of an unexpected 

event was manipulated. This manipulation affected only the amount of participants with full 

explicit knowledge, while the implicit learning system was unaffected. Furthermore, both 

studies showed that participants who develop explicit knowledge show a steep decrease of 

reaction times. This suddenness, which was investigated in more detail in Study 2, also speaks 

against a gradual development of explicit knowledge representations. 

The UEH (Frensch et al., 2003) can explain both aspects of the results, as its assumptions 

predict both, the suddenness and the all-or-non principle of explicit knowledge. In both 

studies, an unexpected event (either the unexpected sense of agency or the unexpected urge to 

respond) might have triggered searching processes that led to the development of explicit 

knowledge. The implicit learning system remained respectively unaffected. The development 

of explicit knowledge was further accompanied by a strong decrease of reaction times. 

As a result of the review, the UEH in combination with aspects of the GWT (Baars, 1997, 

2003) and HOTT (Lau, 2008; Lau & Rosenthal, 2011) might be promising in explaining the 

development of explicit knowledge in implicit sequence learning. The results of Study 1 and 

Study 2 can also be discussed in the context of the theories of consciousness. Regarding the 

GWT, the unexpected event in both studies might have gained access to the GWS and 

triggered searching processes that led to sudden insight, similar to the sudden ignition that is 

proposed by the GWT. Regarding the HOTTs, one may assume that during implicit learning, 

FO-knowledge is built that affects task performance. Furthermore, the task performance is 

constantly monitored by the explicit system. If the actual task performance, that is affected 

due to implicit learning processes, does not fit with the expected task performance, searching 

processes are triggered that lead to the development of explicit knowledge. 

In sum, the review and the two empirical studies contributed on different levels, from a 

theoretical view to the detailed investigation of single predictions, to the debate how explicit 

knowledge arises in implicit learning and to what extend the UEH (Frensch et al., 2003) 

provides a reasonable explanation for this question. 

Two points seem to be promising for further investigations in upcoming studies. First, it 

seems worthwhile to take a closer look on the unexpected events. In both experimental studies 

(Study 1 and Study 2), some of the participants in the respective conditions did not develop 
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explicit knowledge even though the task in the respective condition was manipulated to create 

an unexpected event. Furthermore, in Study 1, participants in the control conditions should 

not have experienced an unexpected event but some of them showed explicit knowledge. 

Here, it could be conceivable that the occurrence of unexpected events might be individually 

experienced by the participants and somewhat lesser controllable as desired by the 

experimenter. Thus, every participant might have an individual reason to experience an 

unexpected event. If this were the case, such unexpected events should be difficult to 

manipulate in order to draw reliable conclusions from this manipulation. Here, research 

should focus on the understanding of the formation of such unexpected events, whether the 

unexpected events are equal for every individual and how it is possible to deliberately create 

unexpected events for the tested participants to draw reliable conclusions. 

A second research field might contain the voluntary shift in performance after the 

development of explicit sequence knowledge. Here, it could be further investigated, when and 

how participants who have developed explicit sequence knowledge decide to use the acquired 

knowledge or under which conditions it is more efficient to maintain the old strategy (e.g., 

Gaschler et al., 2019). 
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