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Abstract

Quantum technology is advancing from the lab into the commercial world. However, this
path from scientific discovery to revolutionising technology cannot be built without the
precise control of quantum systems. Quantum optimal control describes a family of tech-
niques that improve quantum operations by systematically shaping the control fields applied
to the system. The bespoke control strategies that optimisations can offer push quantum
hardware to realise its full potential. In this thesis, we apply optimal control to spin systems,
namely nitrogen-vacancy centres in diamond and pentacene-doped naphthalene, as well as
to trapped atoms, specifically Rydberg atoms, and ultracold atomic condensates. Gener-
ally, a well-modelled system with a clear objective corresponds to a well-defined control
problem approachable via open-loop optimisation, i.e. by using a model. However, when
unknown experimental or environmental factors have a strong influence, the complexity of
the control problem increases. Once any viable model diverges from reality, closed-loop,
i.e. feedback-based, control offers a solution. From the collection of quantum optimal
control methods, we focus on the dressed chopped random basis algorithm combined with
a gradient-free search. This pairing enables us to apply bandwidth restrictions and limit
the number of optimisation parameters, simplifying closed-loop applications. We introduce
several techniques and modifications, such as a novel basis approach, that allow efficient
closed-loop control using the “RedCRAB” software package. As a result, we optimise for
the following very distinct goals each on a different platform: sensitivity, hyperpolarisation,
number squeezing, and entangled state preparation. All four objectives directly or indirectly
improve sensing methods. Enhancing the sensitivity of shallow nitrogen-vacancy centres
presents an opportunity for improving diamond-based scanning probe magnetometers. Hyper-
polarisation of materials such as naphthalene crystals promises to enable more precise cancer
cell imaging. Atom interferometry is used to detect minimal changes in the gravitational
field. The number-squeezed states whose creation we explore could increase that sensitivity
further. Lastly, large entangled states are the key to exceeding the classical sensitivity limit.
We create a record-breaking 20-qubit entangled state via optimisation. Ultimately, these
results show how quantum optimal control interconnects and boosts the rise of quantum
technology across the platforms.





Kurzfassung

Die Quantentechnologie ist auf dem Weg aus dem Labor in die kommerzielle Welt. Allerd-
ings führt dieser nicht an der präzisen Kontrolle der Quantensysteme in ihrem Herzen
vorbei. Die optimale Quantenkontrolle besteht aus einer Familie von Algorithmen, die
Kontrollfelder systematisch verformen, um einen Quantenprozess zu verbessern. Die
maßgeschneiderten Kontrollstrategien, die mit Hilfe der optimalen Quantenkontrolle pro-
duziert werden, ermöglichen es, das volle Potential der Quantenhardware auszuschöpfen.
In dieser Dissertation wenden wir optimale Kontrolle auf Spinsysteme und gefangenen
Atome an. Im Allgemeinen entspricht ein gutmodeliertes System mit einem klaren Ziel
einem wohldefinierten Kontrollproblem. Dieses kann durch eine modellbasierte Optimierung
angegangen werden. Wenn das Experiment oder die Umgebung allerdings unbekannte Fak-
toren mit einem starken Einfluss aufweisen, erhöht sich die Komplexität des Kontrollprob-
lems. Sobald das Modell an seine Grenzen stößt und sich zu weit von der Realität entfernt,
bietet sich eine experimentbasierte Optimierung an. Wir fokussieren uns auf den sogenann-
ten dCRAB-Algorithmus kombiniert mit einer ableitungsfreien Suche. Diese Auswahl
erlaubt es uns, Bandbreitenbegrenzungen zu implementieren und die Anzahl der Opti-
mierungsparameter einzuschränken, was die experimentbasierte Optimierung erleichtert. Wir
führen verschiedene Techniken und Modifikationen ein, darunter einen neuen Basisansatz.
Diese Erweiterungen ermöglichen effizientere experimentbasierte Quantenkontrolle über
das Softwarepaket “RedCRAB”. Im Ergebnis optimieren wir Kontrollprobleme mit den
folgenden äußerst unterschiedlichen Zielstellungen: Das Verbessern der Sensitivität von
flachen Stickstoff-Fehlstellen-Zentren eröffnet die Möglichkeit diamantbasierte Rasterson-
denmagnetometer zu verbessern. Die Hyperpolarisierung von Stoffen, wie Naphthalenkristall,
verspricht eine präzisere Krebszellenerkennung zu ermöglichen. Atominterferometrie wird
verwendet um kleinste Veränderungen im Gravitationsfeld zu messen. Wir nehmen die
Erzeugung gequetschter Quantenzustände unter die Lupe, um die Sensitivität von atom-
basierten Interferometern zu verbessern. Schließlich erschaffen wir durch Optimierung mit
20 Rydbergatomen einen rekordbrechenden, verschränkten Schrödinger-Katzen-Zustand.
Zusammenfassend zeigen unsere Ergebnisse wie die optimale Quantenkontrolle auf ver-
schiedenen Plattformen basierende Quantentechnologien verbindet und verbessert.
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Introduction

The largest companies and countries worldwide are racing to build the first scalable, fault-
tolerant quantum computer [11]. However, while quantum computation certainly forms the
centre of public attention, other quantum technologies are already close to revolutionising
technology. Quantum sensors, for example, might support self-driving cars by making
them independent from GPS [12], while quantum cryptography will herald a new age
of cyber security [13]. What gives quantum systems the advantage is that they follow
different rules than classical objects. Generally, anything small enough, provided it is
effectively isolated from the environment, is a quantum object and inherits the properties
that distinguish the quantum from the classical. Three features define quantum systems
and consequently play crucial roles in many applications: Superposition, the uncertainty
principle, and entanglement.
Combining these properties leads to a wide selection of potential applications summarised
by the big four: Quantum simulation, quantum computing, quantum communication, and
quantum sensing. All of them include use cases that have already been commercialised. The
quantum sensor is a focus of this thesis and natural application as, by definition, quantum
systems are tiny and commonly evolve on fast time scales. Not only are quantum systems
able to break classical sensitivity limits, but their size also allows for nanoscale resolution.
Using their quantum properties enhances their ability to detect minor differences in, for
example, temperature [14], magnetic fields [15], and gravity [16]. However, this strong
reaction to their surroundings also hampers their controllability [17]. If the controllability
is insufficient, it is impossible to execute the delicate protocols that form the basis for
any advanced (sensing) operation. State-of-the-art quantum technology combats unwanted
influences through improvements in manufacturing and calibration. Nevertheless, to reveal
the hardware’s full potential, those approaches need to be complemented by control methods
that shape the fields guiding the quantum state’s evolution. These control fields commonly
form the bridge between the conceived concept of the quantum operation, like executing a
gate sequence or qubit preparation, and the actual implementation.
Quantum optimal control (QOC) describes a family of strategies designed to find the most
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effective shape of the control fields in pursuit of a specified goal [18]. Commonly, in
quantum mechanics, the controls are resonant magnetic fields [19], laser pulses [20], or trap
configurations [21] that are adjusted dynamically, i.e. as a function of time. The synergy of
QOC and an experiment or accurate model thereof allows for the development of advanced
manipulation protocols tailored to a specific system. The most common representatives of
QOC algorithms use iterative methods that allow a search outside of the obvious analytical
solution space. Here, the effectiveness, called the figure of merit, of the dynamical pulses
is assessed either in a simulation (open-loop) or directly on the experiment (closed-loop).
An updating algorithm picks new pulses in each iteration depending on the previous figure
of merit or its gradient/Hessian with respect to the control parameters. Different strategies
are available to translate dynamical pulses into control parameters, such as splitting the
pulse into time slices [22] or using a set of time-dependent basis functions like Fourier
components [23, 24]. In this thesis, we focus on methods tightly connected to experimental
hardware and broadening their scope.
Any quantum system presents a potential target for QOC and a multitude of them has already
been successfully improved: Nitrogen-vacancy (NV) centres in diamond, for example,
are a promising spin system that can be operated at room temperature and manipulated
with microwave pulses. QOC has enhanced NV-based protocols for different quantum
operations [25–27]. Technology based on superconducting qubits is also manipulated with
microwave signals and has benefited from QOC in many ways [28–30]. Other applications
include nuclear magnetic resonance techniques [31], the manipulation of Rydberg atoms [1],
operations with trapped ions [32], gates with quantum dots [33], the creation of Bose Einstein
condensates and generally the manipulation of ultracold atoms [34, 21, 6].
This manuscript comprises a description of different modelling techniques, the theoretical
background of QOC, and a range of applications that summarise the work carried out at the
Universities of Padua and Cologne, as well as the Jülich Research Centre. The manuscript is
structured as follows:

• Chapter 1 is devoted to a range of models representing the quantum systems and
processes that are optimised in Chapter 3. The fundamental dynamical equations
are introduced first, before going into a more detailed analysis. The first part is
focused on electron spins, such as NV centres, and pentacene molecules in naphthalene
crystals. Ultimately, it introduces a method used to model ultracold atoms, namely the
multi-configurational time-dependent Hartree approach for bosons.

• Chapter 2 describes the theoretical background of QOC. These concepts are the basis
for later applications. It starts with an introduction to QOC, followed by an overview
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of some of the most common algorithms. It concludes with the introduction of a new
basis approach developed by the doctoral candidate.

• Finally, Chapter 3 summarises the original work from the candidate’s doctoral studies
on the optimisation of a range of quantum systems. QOC is applied to electron
spin systems to enable the enhanced polarisation of a naphthalene crystal despite
experimental challenges, and to increase the sensing capability of NV centres close
to the diamond surface. Furthermore, spin squeezing is investigated considering a
realistic experimental model using ultracold atoms. Finally, we outline the role of
QOC in the creation of a record-breaking, maximally entangled superposition state
with twenty Rydberg atoms.





Chapter 1

Modelling Quantum Systems

In this chapter, we will introduce several concepts for modelling quantum systems. They are
split up into “Few Spin Systems” (Section 1.1), where we give a more general introduction,
and “Atomic Condensates” (Section 1.2), which is focused on condensates of ultracold atoms.
The first section contains examples focused on nitrogen-vacancy (NV) centres. Still, the
described methods can be applied to a wide range of quantum systems. The second part is
centred around a particular simulation method that found its application in one of the projects
described in Chapter 3.

1.1 Few Spin Systems

Before the year 1928, every physicist knew what we meant by an elementary particle. [...]
But then the discovery of [...] the electron spin changed this picture considerably [...] and
emphasized that perhaps such particles have more than one property, and that they are not
simple, not so elementary as we had thought before.

Werner Heisenberg [35]

Many interesting spin systems are being investigated in the field of quantum technologies.
In this chapter we focus on one of them: The negatively charged NV centre [36, 37] is a
point defect in diamond, specifically a place where two carbon atoms are replaced with one
nitrogen atom and an adjacent vacancy. When this system traps an additional electron, it
becomes simple to initialise and read out with a laser. It is furthermore manipulable with
microwaves, sensitive to magnetic fields, and bio-compatible. These features make it a
promising quantum sensor and candidate for a whole range of quantum applications. This
section introduces the basic concepts of modelling quantum systems with a focus on few
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spin systems like the NV centre. A thorough introduction and examples for the application
of quantum optimal control (QOC) to NV centres can be found in the review by Rembold et
al. [2].

1.1.1 Dynamical Equations

1.1.1.1 Schrödinger Equation

The Schrödinger equation (SE) governs the dynamics of any pure quantum system [38]. In
its most basic time-dependent form it reads

iℏ
∂

∂t
|ϕ⟩ = H |ϕ⟩ . (1.1)

The Hamiltonian operator (or just Hamiltonian) H is a Hermitian operator, which represents
the energy and dynamics of the system [39]. The wavefunction |ϕ⟩ is a mathematical
description of that quantum system’s state. It is a complex vector of probability amplitudes,
normalised such that ⟨ϕ|ϕ⟩= 1. The eigenvectors |ϕi⟩ of the Hamiltonian are time-independent
states.
Another form of the SE is the von Neumann equation

iℏ
∂

∂t
ρ = [H,ρ], (1.2)

where ρ = |ϕ⟩ ⟨ϕ| is the density function of the pure state |ϕ⟩. Density matrices can also
describe statistical mixtures of pure states, called mixed states, taking a form like

ρ =
∑

i

pi |ϕi⟩ ⟨ϕi| (1.3)

with probabilities pi to be in the state |ϕi⟩. On the Bloch sphere pure states lie at the surface
while mixed states lie inside the sphere.
The time evolution of a system is described by the propagator U(t)

|ϕ(t)⟩ = U(t) |ϕ(0)⟩ ,

ρ(t) = U(t)ρ(0)U†(t).
(1.4)

The propagator is unitary and its relationship to the Hamiltonian is defined by

iℏ
∂

∂t
U(t) = H(t)U(t). (1.5)
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If the Hamiltonian is time-independent the solution is

U(t) = e−iHt/ℏ, for U(0) = I. (1.6)

Please note that in this thesis, we omit the hat on a symbol when it is clearly defined as an
operator. This applies, for example, to Hamiltonians, propagators, and density functions.

Example: NV Centre Coupled to Nn Nuclear Spins The ground state of the NV centre
is a triplet, i.e. a spin one system. Let us consider the most basic Hamiltonian Hnv for an
NV centre coupled to Nn surrounding nuclei (also introduced in reference [2] and explained
in further detail in Section 1.1.2). It covers a Hilbert space of dimension 3× 2Nn . This
example shows one of the most common approximations made with regard to NV centres –
the two-level approximation – which reduces the dimension to 2×2Nn . Together with the
resonant frequency and gyromagnetic ratio of the NV centre, the two-level approximation is
responsible for the familiar electron spin representation.

Hnv/ℏ = Dg

[
Ŝ 2

z −
2
3
I

]
+Eg

(
Ŝ 2

x − Ŝ 2
y

)
+γnvB⃗ · ˆ⃗S +

Nn∑
i=1

(
ˆ⃗SAi ˆ⃗I i+γiB⃗ ·

ˆ⃗I i+
ˆ⃗I iQi ˆ⃗I i

)
. (1.7)

The spin operators ˆ⃗S =
(
Ŝ x, Ŝ y, Ŝ z

)⊺
correspond to the NV centre. The nuclear spins are

distinguished by the index i, each with spin operators ˆ⃗I i =
(
Îi
x, Î

i
y, Î

i
z

)⊺
. At room temperature

Dg ≈ 2.87 GHz represents the axial, and Eg ≈ 0 the non-axial zero field parameter [40]. The
magnetic field is given by B⃗ = (B⊥(t),0,B||)⊺, where the z-component, B||, is static and the
x-component, B⊥(t), is commonly applied with a microwave (MW) frequency that is resonant
with one of the NV spin transitions. γnv and γi are the gyromagnetic ratios of the NV centre
and the ith nuclear spin, respectively. The hyperfine coupling tensor is given byAi and the
quadrupolar interaction by Qi ≈ 0, thus we will neglect it hereafter.
As the NV spin state rapidly rotates around the z-axis (the frequency is dependent on Dg and

B||), we can assume that any perpendicular hyperfine coupling averages out ˆ⃗SAi ˆ⃗I i ≈ Ŝ zA⃗i ˆ⃗I i.
This is called the secular approximation [41]. By applying it, we disregard the transverse
components of the hyperfine tensor. In the following Hamiltonian, identity terms are also
neglected as they corresponds to constant energy shifts. Thus,

Hnv/ℏ ≈ DgŜ 2
z +γnv

(
B||Ŝ z+B⊥(t)Ŝ x

)
+

Nn∑
i=1

(
Ŝ zA⃗i ˆ⃗I i+γiB⃗ ·

ˆ⃗I i
)
. (1.8)
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Writing the NV spin components out as matrices, it becomes clear how to go from a three to
a two level system.

Hnv/ℏ ≈ Dg

1
2


1 0 0
0 −1 0
0 0 1

+ I2
+γnvB||

1
2


1 0 0
0 −1 0
0 0 −3

+ I2
+ γnvB⊥(t)

√
2


0 1 0
1 0 1
0 1 0


+

Nn∑
i=1


1 0 0
0 0 0
0 0 −1

 A⃗i ˆ⃗I i+ IγiB⃗ ·
ˆ⃗I i.

(1.9)

The term multiplied by B|| lifts the degeneracy between the ms = ±1 states inducing the
so-called Zeeman splitting. If the Zeeman splitting is large the +1↔ 0 -transition is far
detuned from the −1↔ 0 -transition. Hence, each of them can be addressed independently.
As the NV is initialised in ms = 0 no population is expected to leak into the ±1 -states in a
decoherence-free model unless it is specifically addressed by the drive field B⊥.
Let us consider the case, where the B⊥-field is resonant with the +1↔ 0 -transition and the
Zeeman splitting is sufficiently large. Now, the Hamiltonian can be simplified by abandoning
all constant terms and only keeping the ms = 0 and ms = +1 levels.

Hnv/ℏ ≈
(
Dg+γnvB||

) 1
2

 1 0
0 −1

+γnvB⊥(t)
1
√

2

 0 1
1 0

+ Nn∑
i=1

 1 0
0 0

 A⃗i ˆ⃗I i+ IγiB⃗ ·
ˆ⃗I i.

(1.10)
Replacing the matrices by Pauli spin operators leads to the full Hamiltonian for the two level
system of ms = 0 and ms = +1:

H+/ℏ =
Dg+γnvB||

2
σ̂z+

γnvB⊥(t)
√

2
σ̂x+

Nn∑
i=1

(
σ̂↑A⃗i ˆ⃗I i+γiB|| Îi

z+γiB⊥(t)Îi
x

)
,

with σ̂↑ =

 1 0
0 0

 ,
(1.11)

where ˆ⃗σ are the Pauli matrices [39].
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A similar approximation can be made for ms = −1, where the Hamiltonian equivalently reads

H−/ℏ =
Dg−γnvB||

2
σ̂z+

γnvB⊥(t)
√

2
σ̂x+

Nn∑
i=1

(
σ̂↓A⃗i ˆ⃗I i+γiB|| Îi

z+γiB⊥(t)Îi
x

)
,

with σ̂↓ =

 0 0
0 1

 .
(1.12)

1.1.1.2 Unitary frame transformations

Sometimes the description of a system is simplified by transforming to a different frame
of reference, e.g. the rotating frame, defined by the unitary operator V . If a qubit is
spinning around the z-axis with a frequency ω, the frame in which it stands still is defined by
V = exp(iωσ̂zt/2).
In general, we consider the transformed wavefunction

∣∣∣ϕ̃〉 = V |ϕ⟩. To derive the correct
transformation for the Hamiltonian, we multiply the SE (Eq. (1.1)) with V .

V
∣∣∣ϕ̇〉 = − i

ℏ
VH |ϕ⟩

= −
i
ℏ

VHV†V |ϕ⟩

= −
i
ℏ

H̃0
∣∣∣ϕ̃〉 ,

(1.13)

where H̃0 is the partially transformed Hamiltonian. To get the full expression, we have to
compute the derivative of the transformed wavefunction using the chain rule:∣∣∣∣ ˙̃ϕ〉 = V̇ |ϕ⟩+V

∣∣∣ϕ̇〉
= V̇V†V |ϕ⟩−

i
ℏ

H̃0
∣∣∣ϕ̃〉

=

(
V̇V†−

i
ℏ

H̃0

) ∣∣∣ϕ̃〉 .
(1.14)

The fully transformed Hamiltonian in the new frame is thus defined as

H̃ = VHV†+ iℏV̇V†

= VHV†− iℏVV̇†,
(1.15)

where the equivalence of the second line can be shown by doing the same derivation starting
from the Hermitian conjugate of the SE.
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1.1.1.3 Imaginary Hamiltonian

The energy E of a quantum state |ϕ⟩ is given by

E |ϕ⟩ = H |ϕ⟩ . (1.16)

As long as H is Hermitian, the Hamiltonian’s eigenvalues and hence the energy will always
be real. This property also means that a time-dependent wavefunction stays normalised when
it evolves according to the SE (Eq. (1.1)).
Let us consider what happens to the quantum state if a constant imaginary Hamiltonian
Hi = −iℏΓ2 I is applied according to Eq. (1.6).

|ϕ(t)⟩ = e−
Γ
2 t |ϕ(0)⟩ ,

⟨ϕ(t)|ϕ(t)⟩ = e−Γt < 1.
(1.17)

This clearly describes a decay process with a lifetime of 1
Γ

. Yet, the loss of normalisation [42]
makes this model unphysical. A better description of decay is the Lindblad master equation
(Section 1.1.1.4). It makes use of the density function (Eq. (1.3)), which allows the repre-
sentation of mixed states. However, it is also computationally more expensive. Considering
a system as in Eq. (1.11) with one NV and Nn nuclear spins, the number of entries in the
density matrix scales as υρ = υ2

|ϕ⟩
= 22(Nn+1), i.e. more steeply than the number of entries in a

state vector υ|ϕ⟩. As a result, a system with Nn = 4 nuclei, would need a density matrix with
υρ = 1024 entries to describe it, or a state vector with υ|ϕ⟩ = 32 entries. It becomes clear that,
for larger systems, the imaginary Hamiltonian method is significantly less costly. We tested
both for the project presented in Section 3.2.3. Ultimately, we chose the Lindblad master
equation, as we resorted to a smaller system (Nn = 3).

1.1.1.4 Lindblad Master Equation

The most common decay channels for spin systems are dephasing and depolarisation [43].
Depolarisation describes the general loss of coherence along all axes. For a quantum
system, this means that the state tends toward being completely mixed. In a Bloch sphere
representation (see Fig. 1.1) the state vector, initially with unit length, ends up in a single
point at the origin after the full decay. In solid state physics, this phenomenon is called
spin-lattice relaxation, as it describes how the state returns to its natural orientation. The
decay time is usually denoted as T1.
Dephasing describes a process in which the coherence is lost along the x- and y-axis, but the

z-axis component stays stable. The dynamics correspond to an ensemble of spins rotating
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Fig. 1.1 Decay processes on the Bloch sphere from initial state ρi to final state ρ f ; (left) de-
polarisation, (right) dephasing.

around the z-axis, all with slightly different frequencies. In the rotating frame, the spins
spread out over time. Consequently, the average state vector decreases further and further
along x and y but stays stable along z as shown in Fig. 1.1. Dephasing is also called spin-spin
relaxation when it is caused by surrounding spins influencing the local magnetic field along
the z-axis. A spatially inhomogeneous magnetic field that is applied to an ensemble along z
leads to a similar effect. The decay rate characterising the overall dephasing is denoted by
T ∗2 .
Dephasing and depolarisation, as well as other types of noise can be described using the
Lindblad master equation [39]:

ρ̇ = −
i
ℏ

[H,ρ]+
∑

i

Γi

2

(
2LiρL†i −L†i Liρ−ρL†i Li

)
. (1.18)

The first term resembles the von Neumann equation (Eq. (1.2)). The second term which
includes the Lindblad operators Li and decay rates Γi describes the decay of the system.
For a two-level system, the Lindblad operator for the dephasing is Lφ =

σ̂z
2 with the corre-

sponding rate Γφ = 1
T ∗2

[43]. In general, T ∗2 ≤ 2T1, as depolarisation inherently includes a
dephasing component. For the depolarisation, one needs to take into account two Lindblad
operators L± =

σ̂±
2 = (σ̂x± iσ̂y)/4, with equal decay rates Γ± = 1

T1
. An in depth calculation

for NV centres is given in reference [44]. Similarly, the exponential relaxation from one
state |ϕ1⟩ into another |ϕ0⟩ (f.e. the ground state, or due to thermal excitations) is expressed
through the Lindbladian Ls = |ϕ0⟩ ⟨ϕ1| [43]. This method is applied in the work presented in
Section 3.2.3.
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1.1.1.5 Rate Equations

One way to simplify the master equation is through rate equations. Here, off-diagonal
elements of the density matrix are ignored and we only consider the probabilities of being in
a specific state. Those correspond to the diagonal entries of the density function [45, 46].
As an example, we will go through the decay of a qubit from state |e⟩ to state |g⟩. The
corresponding Lindbladian is denoted by L = |g⟩ ⟨e| with decay rate Γs. The master equation
can be written as

ρ̇ = −
i
ℏ

[H,ρ]+L(L,Γs). (1.19)

We will write the density matrix in the following way.

ρ =

 pg ρeg

ρge pe

 , (1.20)

where the diagonal elements pg and pe give the probability of being in the respective state.
Now let us look at the effect of the Lindblad term of the master equation.

L(L,Γs) =
Γs

2
(2 |g⟩ ⟨e|ρ |e⟩ ⟨g| − |e⟩ ⟨g|g⟩ ⟨e|ρ−ρ |e⟩ ⟨g|g⟩ ⟨e|)

=
Γs

2

(
2pe |g⟩ ⟨g| − |e⟩ ⟨e|e⟩ρeg ⟨g| − |e⟩ ⟨e|e⟩ pe ⟨e| − |g⟩ρge ⟨e|e⟩ ⟨e| − |e⟩ pe ⟨e|e⟩ ⟨e|

)
=
Γs

2

(
2pe |g⟩ ⟨g| −ρeg |e⟩ ⟨g| −ρge |g⟩ ⟨e| −2pe |e⟩ ⟨e|

)
=

 Γs pe −
Γs
2 ρeg

−
Γs
2 ρge −Γs pe

 .
(1.21)

The evolution of the probabilities can now be written as rate equations

ṗg = Γs pe,

ṗe = −Γs pe
(1.22)

or more concisely as
dp
dt
= Γ ·p, (1.23)
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with

p =
 pg

pe

 ,
Γ =

 0 Γs

0 −Γs

 .
(1.24)

As this approximation only includes state populations, it completely disregards the coherence
of the system. Whether the system was in a pure or mixed state cannot be reconstructed. As
opposed to the Lindblad master equation, the rate equations do not preserve the phase of the
state. Hence, they cannot include the effects of dephasing: Dephasing does not change the
state population, it only destroys their coherence. We used this technique for preliminary
calculations in the project described in Section 3.1.3. A very similar model is presented in
the example below.
Rate equations can also be used to approximate the evolution of expectation values starting
from the Heisenberg picture [47, 48], where the evolution of an operator Ô is described by

dÔ
dt
=

i
ℏ

[H, Ô]+
∂Ô
∂t
. (1.25)

Applying this approach to a quantum system coupled to a resonant field, eventually leads
to the quantum-Langevin equation [49]. It models the system’s macroscopic properties
including the evolution of the field amplitude, i.e. the expectation value of the field’s creation
operator. The quantum-Langevin equation finds its application in Section 1.1.2.

Example: Optical Manipulation of NV centres Let us consider an NV centre, with seven
energy levels depicted in Fig. 1.2 [50]. The ground state triplet |g,0/±1⟩ and the excited
state triplet |e,0/±1⟩ each contain states with spin quantum numbers ms = 0/± 1. The
intermediate state singlet |m⟩ has zero spin ms = 0. When left to evolve freely the NV centre
will decay into a mixture of its ground states. This is described through the transition rates
Γnm from state n to state m and depolarisation with decay rate 1/T1. A laser is applied with
an amplitude A(t) and coupling k. Using the rate equations, we can find the occupation of the
different levels dependent on the time and strength of the laser. In the experiment such laser
pulses are used to initialise the population in the |g,0⟩-state.
The corresponding rate equation reads [51]

dp
dt
= Γ ·p, (1.26)
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Fig. 1.2 Decay channels in the NV centre energy level diagram. The energy levels labelled
|g,0/±1⟩ represent the ground state triplet, |e,0/±1⟩ the excited state triplet, and |m⟩ the
intermediate spin state singlet.

with

p =
(
pg,−1, pg,0, pg,+1, pe,−1, pe,0, pe,+1, pm

)⊺
,

Γ =



−A(t)k− 1
T1

1
2T1

1
2T1

Γ41 0 0 Γ71
1

2T1
−A(t)k− 1

T1
1

2T1
0 Γ52 0 Γ72

1
2T1

1
2T1

−A(t)k− 1
T1

0 0 Γ53 Γ73

A(t)k 0 0 −Γ41−Γ47 0 0 0
0 A(t)k 0 0 −Γ52−Γ57 0 0
0 0 A(t)k 0 0 −Γ63−Γ67 0
0 0 0 Γ47 Γ57 Γ67 −Γ71−Γ72−Γ73


.

(1.27)
Similar expressions have been used in reference [52] to determine the best laser pulse shapes
to initialise NV centres.
To also model the dynamics in the ground state triplet caused by the application of magnetic
fields, we can use p to create an initial state and continue the propagation with the von
Neumann equation (Eq. (1.2)). An appropriate Hamiltonian for this system would consist of
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a ground state Hamiltonian Hg and an excited state Hamiltonian He:

Hg = ℏDg

(
Ŝ 2

z −
2
3
I

)
+ℏγnvB⃗ · ˆ⃗S ,

He = ℏ∆eI+ℏDe

(
Ŝ 2

z −
2
3
I

)
+ℏγnvB⃗ · ˆ⃗S ,

B⃗ =


B⊥(t)

0
B||

 ,
(1.28)

where ˆ⃗S =
(
Ŝ x, Ŝ y, Ŝ z

)⊺
. Dg = 2.87 GHz and De = 1.42 GHz represent the ground and

excited state zero-field splittings respectively [40]. ∆e/m is the energy difference between
the ground state triplet and the excited state triplet/intermediate state. The static magnetic
field B|| is accompanied by an oscillating magnetic field B⊥(t) = 2AB cos(ωmwt+ϕB), with
an amplitude AB, phase ϕB, and frequency ωmw, usually at resonance with one of the ground
state transitions from 0 to ±1. The two Hamiltonians can then be combined into Hfull:

Hfull =



0 0 0 0
Hg 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 He 0
0 0 0 0
0 0 0 0 0 0 ℏ∆m


. (1.29)

For simplicity, one may only consider Hg or drop the dependence of the excited states on
the magnetic field, as those dynamics are not expected to play a role in the readout. Other
approaches to represent ODMR measurements using rate equations have been introduced in
references [53, 54].

1.1.1.6 Kraus Operators

Different techniques have been discussed to model a range of physical effects on the evolution
of quantum states. Kraus operators represent a mathematically rigorous way to describe
any quantum operation. They can be used to derive the Lindblad master equation but also
represent processes that go beyond what has been described so far in this thesis, such as
measurements [43].
We only give a brief introduction to Kraus operators with a definition and an example. Still,
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Kraus operators are covered because they present a suitable alternative for modelling instant
polarisation without loss of normalisation. For their broader field of application and more
details please refer to references [43, 55, 56].
The evolution of the density matrix ρ→ ρ′ is given by

ρ′ =
∑

j

K jρK†j , (1.30)

where K j is a set of Kraus operators which is normalised such that
∑

j K†j K j = I. Unitary
time evolution given in Eq. (1.2) according to the propagator U(t) is easily represented by the
single Kraus operator K = U(t). As a more elaborate example, let us consider the operators
for the polarisation of a single qubit.

Example: Qubit Polarisation The initial density matrix of the qubit is defined as

ρ =

 ρg ρeg

ρge ρe

 . (1.31)

During the polarisation process, all the population is transferred into the ground state. Hence,
we expect the density matrix to evolve into ρ′.

ρ′ =

 ρg+ρe 0
0 0

 . (1.32)

To achieve this we define the operators

K1 =

 1 0
0 0

 ,
K2 =

 0 1
0 0

 ,
K†1 K1+K†2 K2 =

 1 0
0 0

+  0 0
0 1

 =  1 0
0 1

 ,
(1.33)
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which satisfy the normalisation condition and lead to the expected result:

ρ′ = K1ρK†1 +K2ρK†2

=

 ρg 0
0 0

+  ρe 0
0 0

 . (1.34)

These operators can be extended to describe the polarisation of one qubit in an (Nn+1)-qubit
system such that KNn

j = K j ⊗ I
Nn
2 , while maintaining the coherence of the other Nn qubits.

Hence, these operators can be used to describe the initialisation of an NV centre in a quantum
register of nuclear spins used, for example, in quantum error correction protocols [57].

1.1.2 Electron Spin Inside a Cavity

The following model is used to describe the experiment in Section 3.2. It represents an
electron spin inside a MW cavity coupled to a number of nuclear spins. The derivation
starts by taking into account the quantum properties of the MW field. Similar models have
been used to described quantum electrodynamic systems [58], but also NV centres [59], and
electron spin resonance setups [60]. A schematic of the system is provided in Fig. 1.3.

𝛾Ω𝛼 𝛼 𝛽

𝜔0𝑆 = 𝛾𝑆𝐵‖

Ω ො𝑎† ො𝜎−

Ω ො𝑎 ො𝜎+

Full Electron System with Ω = 𝛾𝑆𝐵⟂

𝜔mw 𝜔d

ො𝜎+
ො𝜎−

Fig. 1.3 The setup consisting of an electron qubit inside a cavity and an external drive. We
start with the full electron system which is simplified later using a mean field approximation.
The symbols are introduced throughout the section.
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1.1.2.1 The Jaynes-Cummings Model

We start by considering a single electron spin in a magnetic field. The electron spin has a
magnetic moment that can be described through the operators ˆ⃗M.

ˆ⃗M = −
ℏ

2
γS

ˆ⃗σ, (1.35)

where ˆ⃗σ = (σ̂x, σ̂y, σ̂z)⊺ is the vector of Pauli matrices and γS the electron’s gyromagnetic
ratio.
The magnetic field is composed of two parts: The static component B|| points along z and
a microwave field with amplitude B⊥≪ B|| oscillating along x. The microwave field has a
frequency ωmw and is quantised through the creation and annihilation operators â† and â.1

The full magnetic field is given by

ˆ⃗B =
(

B⊥(â+â†)
0
B||

)
. (1.36)

The Hamiltonian of the microwave field HMW accounts for its energy and is given by

HMW/ℏ = ωmwâ†â. (1.37)

The interaction of the field with the electron spin is described by a second component of the
Hamiltonian He−B:

He−B = −
ˆ⃗M · ˆ⃗B

=
ℏ

2
γS

(
B⊥

(
â+ â†

)
σ̂x+B||σ̂z

)
.

(1.38)

We consider the rotating frame of the microwave given by Vr = exp
(
iωmw

(
â†â+ σ̂z

2

)
t
)

and define the electron spin resonance frequency ω0S = γS B||. The resulting Hamiltonian
components read:

H̃MW/ℏ = HMW/ℏ,

H̃e−B/ℏ =
1
2
γS B⊥

(
âe−iωmwt + â†e+iωmwt

)
·
(
σ̂+e+iωmwt + σ̂−e−iωmwt

)
+

1
2
ω0S σ̂z,

−iVrV̇
†
r = −ωmw

σ̂z

2
−ωmwâ†â,

(1.39)

1A full derivation of the quantised electromagnetic fields is given in reference [61].
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where σ̂± = 1
2 (σ̂x± iσ̂y) are the ladder operators. The full Hamiltonian in the rotating frame

becomes

H̃/ℏ = ωmwâ†â−ωmwâ†â+
1
2
ω0S σ̂z−

1
2
ωmwσ̂z

+
1
2
γS B⊥

(
â
(
σ̂+e−i(ωmw−ωmw)t + σ̂−e−i(ωmw+ωmw)t

)
+

â†
(
σ̂+e+i(ωmw+ωmw)t + σ̂−e+i(ωmw−ωmw)t

))
.

(1.40)

We now apply the rotating wave approximation (RWA), i.e. assume that terms with frequency
ω = 2ωmw are oscillating much more quickly than everything else and will average out [39].
After dropping these counter rotating terms, we get

H̃/ℏ =
γS B⊥

2

(
âσ̂++ â†σ̂−

)
+

1
2

(ω0S −ωmw)σ̂z. (1.41)

By introducing the detuning ∆ = ω0S −ωmw and the amplitude Ω = γS B⊥, we arrive at the
familiar form of the Jaynes-Cummings model

H̃/ℏ =
Ω

2

(
âσ̂++ â†σ̂−

)
+∆

σ̂z

2
. (1.42)

By transforming back into the lab frame using V†r , we get

H/ℏ = ωmwâ†â+ω0S
σ̂z

2
+
Ω

2

(
âσ̂++ â†σ̂−

)
. (1.43)

1.1.2.2 Including the Drive

Next we consider the electron spin to be inside a resonator. The MW field is coupled to
an external drive which acts like a strongly excited coherent state with a slowly varying
envelope β(t). As a result, the field of the drive can be treated as a classical component in the
Hamiltonian drive term Hd.

Hd/ℏ ≈
(
â+ â†

)
·
(
β(t)e+iωdt +β∗(t)e−iωdt

)
. (1.44)
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If we consider the rotating frame of the drive i.e. Vd = exp
(
iωd

(
â†â+ σ̂z

2

)
t
)
, we can make

the same case as before for another RWA.

H̃d/ℏ =
(
âe−iωdt + â†e+iωdt

)
·
(
β(t)e+iωdt +β∗(t)e−iωdt

)
= â

(
β∗(t)+β(t)e−2iωdt

)
+ â†

(
β∗(t)e+2iωdt +β(t)

)
≈ âβ∗(t)+ â†β(t),

−iVdV̇†d = −ωdâ†â−ωd
σ̂z

2
.

(1.45)

Defining the cavity detuning ∆mw = ωmw −ωd and the detuning from the electron spin’s
resonant frequency ∆es = ω0S −ωd, the full Hamiltonian (dropping the tilde) in the drive’s
rotating frame then reads

H/ℏ = ∆mwâ†â+∆es
σ̂z

2
+
Ω

2

(
âσ̂++ â†σ̂−

)
+ âβ∗(t)+ â†β(t). (1.46)

Please note that the term multiplied by Ω/2 stays the same in this frame, which is why we
have not shown the explicit transformation. This Hamiltonian now corresponds to the full
electron and cavity model shown in Fig. 1.3.

1.1.2.3 Connecting the Rabi Frequency and the Drive

To investigate the effect of the drive on the electron spin’s Rabi frequency, we first assume,
that the field inside the cavity can be described by a coherent bosonic mode of amplitude
α(t) = ⟨â⟩ (t). In principle, we could now apply a mean field approximation. However, first,
we need to established the connection between the field inside the cavity and the drive. Hence,
we only shift into the reference frame centred on the field amplitude i.e. displace the system by
−α(t). This frame is defined by the displacement operator D̂(−α) = exp

(
−
(
α(t)â†−α∗(t)â

))
.

Please note that the hatless D refers to D̂(−α) from now on for legibility.
The following relations are useful to reproduce the algebra below:

D̂†(−α) = D̂(α),

Dâ†âD† = â†â+ â†α(t)+ âα∗(t)+ |α(t)|2,

DâD† = â+α(t),

Dâ†D† = â†+α∗(t).

(1.47)
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The transformed Hamiltonian is given by

Hα/ℏ =DHD†/ℏ− iDḊ†

=∆mw
(
â†â+α(t)â†+α∗(t)â+ |α(t)|2

)
+
Ω

2

((
â+α(t)

)
σ̂++

(
â†+α∗(t)

)
σ̂−

)
+β∗(t)

(
â+α(t)

)
+β(t)

(
â†+α∗(t)

)
+∆es

σ̂z

2
− i

(
α̇(t)â†− α̇∗(t)â

)
.

(1.48)

Rearranging the terms shows that the original Hamiltonian is maintained but some additional
terms are introduced:

Hα/ℏ =∆mwâ†â+
Ω

2

(
âσ̂++ â†σ̂−

)
+∆es

σ̂z

2
+ â

(
∆mwα

∗(t)+β∗(t)+ iα̇∗(t)
)
+ â† (∆mwα(t)+β(t)− iα̇(t))

+
Ω

2
(
α(t)σ̂++α∗(t)σ̂−

)
+∆mw|α(t)|2+β∗(t)α(t)+βα∗(t).

(1.49)

The first line includes terms from the Hamiltonian’s original form in Eq. (1.46). The second
line represents the influence of the drive and detuning on the MW field. The third line
gives the mean field contribution of the MW field to the electron spin dynamics. The last
line, however, only contains terms which result in a global phase and disappear during
normalisation. Hence, they will be dropped in the next step.
To connect the field amplitude α(t) to the drive β(t), we introduce the quantum-Langevin
equation [49]. It represents the expectation value of the field α(t), showing that it behaves
like a simple harmonic oscillator α(t) which is damped and driven by the coupling to another
harmonic oscillator with amplitude β(t). The coupling is characterised by the loss rate γ
and detuning ∆mw. A full quantum-mechanical derivation starting from the Heisenberg
picture (see Eq. (1.25)) can be found in Chapter 11 of reference [48] or in Chapter 10 of
reference [47]2. The quantum-Langevin equation is given by

∆mwα(t)+β(t)− iα̇(t) = iγα(t). (1.50)

2Please note that the drive is defined differently here but the principles are the same.
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The terms in line two of Eq. (1.49) partially cancel according to Eq. (1.50) and the Hamilto-
nian becomes

Hα/ℏ = ∆mwâ†â+
Ω

2
(
âσ̂++ â†σ̂−

)
+∆es

σ̂z

2

+
Ω

2
(
α(t)σ̂++α∗(t)σ̂−

)
+ iγ(α(t)â†−α∗(t)â).

(1.51)

The second term shows how the energy of the system changes depending on the coupling
to the resonator Ω/2 for the few photon regime. However, we will now assume that the
field inside the cavity is strong enough to be treated classically. First, we transform back
into the drive frame using D†, then the operator â is replaced with its expectation value
â → ⟨â⟩+ (â− ⟨â⟩) = α+ δα ≈ α. As a result, all terms that only include creation and
annihilation operators of the MW field turn into energy offsets, leaving only

H/ℏ =
Ω

2
(
α(t)σ̂++α∗(t)σ̂−

)
+∆es

σ̂z

2
. (1.52)

Delaying the mean field approximation until now allowed us to established the connection to
the quantum-Langevin equation (Eq. (1.50)) and maintain the information about the coupling
between the drive and the field.
The goal of the next steps is to find an expression for the Rabi frequency components
along the x- and y-direction Ω⃗ = (Ωx,Ωy)⊺ dependent on α(t). We replace α(t) with α(t) =
Re[α]+ i Im[α] and substitute the ladder operators σ̂± with their definition in terms of Pauli
matrices, i.e. σ̂± = 1

2 (σ̂x± iσ̂y). The Hamiltonian becomes

H/ℏ =
Ω

2

(
Re[α]σ̂x− Im[α]σ̂y

)
+∆es

σ̂z

2

=
Ωx

2
σ̂x+

Ωy

2
σ̂y+

∆es

2
σ̂z,

(1.53)

clearly showing the directional Rabi frequency is given by (Ωx,Ωy)⊺ = Ω(Re[α],− Im[α])⊺.
To find its dependence on the drive, we rearrange Eq. (1.50) for α̇(t) obtaining

α̇(t) = −γ
(
iβ(t)
γ
+α(t)

)
− i∆mwα(t). (1.54)
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This form is split into a system of two equations, considering the real and imaginary part:

Re[α̇] =
d Re[α]

dt
= γ

(
Im[β]
γ
−Re[α]

)
+∆mw Im[α],

− Im[α̇] = −
d Im[α]

dt
= γ

(
Re[β]
γ
+ Im[α]

)
+∆mw Re[α].

(1.55)

Multiplying the above by the Rabi frequency and rewriting the drive as Ωβ/γ = d exp(iϕ) =
d(cosϕ+ isinϕ), this becomes

Ω̇x = γ(d sinϕ−Ωx)−∆mwΩy,

Ω̇y = γ(d cosϕ−Ωy)+∆mwΩx.
(1.56)

This system of equations represents a more practical form of Eq. (1.50). It shows how the
rescaled drive d with phase ϕ influences the Rabi frequency and how the x- and y-directions
become coupled in the presence of a drive detuning ∆mw. In combination with Eq. (1.53)
these equations provide a concise description of the system.

1.1.2.4 Coupling to Nuclear Spins

Nuclear spins interact with the magnetic field through their magnetic moment ˆ⃗MI as described
in Section 1.1.2.1. For a spin-half nuclear spin, the magnetic moment is given by

ˆ⃗MI = −
ℏ

2
γI

ˆ⃗I, (1.57)

where ˆ⃗I is the usual set of Pauli operators3 and γI the nuclear gyromagnetic ratio. As the
gyromagnetic ratio of the nuclear spin is a factor thousand smaller than that of an electron
spin, the coupling between the microwave field and the nucleus is negligible, leaving

HI/ℏ =
ωL

2
Îz+

ˆ⃗σA ˆ⃗I, (1.58)

where ωL = γI B|| is the nuclear Larmor frequency. The second term represents the hyperfine
coupling [62] caused by the interaction of the electron spin’s magnetic moment with the
magnetic field of the nuclear spin. A is the rank 2 hyperfine tensor. It can be calculated using
the dipolar interaction and hence depends on the magnetic moments of electron spin and
nucleus, and their respective position in the crystal. The hyperfine coupling could also be

3To describe a nuclear spin with a different spin quantum number, ℏ ˆ⃗I/2 should be replaced with the
respective spin operator.
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affected by the Fermi contact interaction, but this effect is negligible in the cases discussed in
this thesis [63].
As the nucleus rotates around B|| much more slowly than the electron spin, one can drop the
hyperfine components perpendicular to the electron spin’s axis as they will average out. This
assumption is known as the “secular” approximation [64] and explained in Section 1.1.1.1.
The updated Hamiltonian for the nucleus reads

HI/ℏ ≈
ωL

2
Îz+ σ̂z

(
Azx Îx+Azy Îy+Azz Îz

)
. (1.59)

Assuming the interaction between nuclei is negligible and they are of the same species, this
can be expanded to Nn nuclei:

Hn
I /ℏ =

ωL

2

Nn∑
i

Îi
z+ σ̂z

Nn∑
i

(
Ai

zx Îi
x+Ai

zy Îi
y+Ai

zz Î
i
z

)
, (1.60)

where the index i represents the different nuclei.
In the rotating frame of the drive all nuclear terms stay the same. Hence we can combine Hn

I
with Eq. (1.53) to give the full system Hamiltonian:

H/ℏ =
Ωx

2
σ̂x+

Ωy

2
σ̂y+

∆es

2
σ̂z+

ωL

2

Nn∑
i

Îi
z+ σ̂z

Nn∑
i

(
Ai

zx Îi
x+Ai

zy Îi
y+Ai

zz Î
i
z

)
. (1.61)

1.2 Atomic Condensates

1.2.1 Introduction

We can cool down [atoms] and when we reach the point where the de
Broglie waves overlap, [. . . ] they become a kind of quantum soup of
wave packets.

Wolfgang Ketterle

Wolfgang Ketterle described Bose Einstein Condensates (BECs) as a quantum soup to his
beginners class at MIT. To complete this image it should be noted that BECs are a state of
matter that is usually associated with a large number of indistinguishable bosons which are
trapped and cooled down far enough for all of them to occupy the same state. So it is really
more of a quantum gazpacho.
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1.2.2 Standard Approach to BEC Simulation

1.2.2.1 Setup

To understand the dynamics of a BEC we start with the basic inputs of the Schrödinger
equation: The Hamiltonian HBEC and the many-body wavefunction Ψ.
The Hamiltonian needs to characterise each boson’s kinetic and potential energy, as well as
the interaction between them.

HBEC =

N∑
i=1

−
ℏ2

2m
∂2

∂r2
i︸    ︷︷    ︸

kinetic

+ V(ri)︸︷︷︸
potential

+
∑
i< j

λδ(ri− r j)︸      ︷︷      ︸
interaction

. (1.62)

The total atom number is given by N and m is the mass of a single particle. The first term
of the Hamiltonian describes the kinetic energy of the ith boson, where ri gives its position.
V(r) is the potential4 usually formed by an electromagnetic trap. The last term represents the
inter particle interaction, where λ is the average energy exchanged during a scattering event
between two bosons.
In this Hamiltonian some approximations have been made: First, only two-particle interac-
tions are considered as it is unlikely that more than two scatter at a time. This assumption
is true for dilute gasses. Second, instead of considering every single scattering event, an
average potential λ is applied. This corresponds to a mean field approximation which is valid
as long as the inter particle distance is much larger than the scattering length.
The many-body wavefunction of a BEC can be described as a product of single-particle
states, also called the mean-field approach,

Ψ(r1,r2, . . . ,rN) =
N∏

i=1

ψ0(ri). (1.63)

This is valid for BECs as all atoms are indistinguishable and occupy the same single-particle
state ψ0(r) by definition.

1.2.2.2 Gross-Pitaevskii Equation

With the above assumptions, it is possible to derive an equation that guides the dynamics of
the many-body wavefunction. As many explanations of that derivation exist, we will only
outline the results here [65, 66]. The many-body Schrödinger equation is the Euler-Lagrange

4Not to be confused with the frame transformation operator V .
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equation of the many-body action functional [67]. The action functional can be constructed
from the Hamiltonian in Eq. (1.62). Using the variational principle to minimise it, then leads
to a solution for the mean field wavefunction ψ(r) =

√
Nψ0(r), namely the time-dependent

Gross-Pitaevskii Equation (GPE):

iℏ
∂ψ(r)
∂t
=

(
−
ℏ2

2m
∇2+V(r)+λ|ψ(r)|2

)
ψ(r). (1.64)

Unfortunately, there are limits to the applicability of the GPE in the modelling of many-body
dynamics. One limit comes up when some particles occupy a state different from ψ0. This
circumstance can be taken into account by considering more than one single-particle basis
function. These basis functions ψi are called orbitals, similar to the atomic orbitals described
in quantum chemistry. When some population N f of a condensate occupies different orbitals
than the other N −N f atoms, the condensate is called fragmented5 [68].
An example, illustrating the GPE’s limitations is the transition between superfluid and Mott
insulator [34] shown in Fig. 1.4. A superfluid can be represented with the GPE as all particles
are in the same single-particle state, equally occupying all lattice sites. In a Mott insulator,
however, all particles are localised, hence they all occupy their own single-particle state and
the condensate is maximally fragmented. In the following we discuss how to model such
fragmented states.

Fig. 1.4 Superfluid vs Mott insulator. The superfluid is defined by the atoms occupying
the same single-particle wavefunction with a coherent phase, while the atoms in the Mott
insulator all occupy different single-particle states.

5Throughout this text, we refer to condensates without fragmentation, i.e. where all population in a single
state, as a BEC. The term ”condensate“ is also used for fragmented atom clouds. This definition is specified in
reference [68].
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1.2.3 Multi-Configurational Time-Dependent Hartree Approach for
Bosons

The Multi-Configurational Time-Dependent Hartree approach for Bosons (MCTDHB) is a
many-body model relying on state representation via a linear combination of time-dependent
single-particle states [46, 69]. The approach has been successfully used to investigate con-
densates that cannot be described by one single-particle state such as fragmented condensates
which are capable of producing squeezing [70, 71].
Let us consider an example with two well-defined initial orbitals to understand the method
behind it. For the sake of the example they are considered to be static for now, although in
the model they are time-dependent. A well-separated double well has two almost degen-
erate, orthonormal single-particle ground states, the symmetric state ψ1 = (0, 1)⊺ and the
asymmetric state ψ2 = (1, 0)⊺. They will be our orbitals, hence the number of orbitals is
M = 2. Now we consider two atoms in the condensate such that the atom number is N = 2.
There are three different ways in which the atoms can be distributed over the orbitals. These
distributions are called the configurations n⃗:

|2,0; t⟩ =
1
√

2

(
2

0

)
,

|0,2; t⟩ =
1
√

2

(
0

2

)
,

|1,1; t⟩ =
1
√

2

(
1

1

)
.

(1.65)

In this example the first two configurations are not fragmented, while the last one is fully frag-
mented and could not be represented with the GPE. By making the orbitals time-dependent,
the wavefunction can adapt accordingly, if the condensate moves or the potential changes.
Next, to produce a linear combination of these configurations we introduce the prefactors
Cn⃗(t), which describe the distribution of the condensate over the configurations. Conse-
quently, the many-body wavefunction is given by:

|Ψ(t)⟩ =
∑

n⃗

Cn⃗(t)
∣∣∣⃗n; t

〉
. (1.66)

The above equation is valid, not only for this example but for MCTDHB in general. The
Hamiltonian from Eq. (1.62) can now be used with the one-dimensional variational principle
to find the dynamics of |Ψ(t)⟩ [46]. Initially, the functional action is defined, with the
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Lagrange multipliers µk j to ensure that the time-dependent orbitals remain orthonormal.

S [Cn⃗(t),ψk(r, t)] =
∫

dt

⟨Ψ|HBEC− iℏ
∂

∂t
|Ψ⟩−

M∑
k, j=1

µk j(t)
[〈
ψk

∣∣∣ψ j
〉
−δk j

] . (1.67)

To simplify notation, the single-particle Hamiltonian ĥ and the pairwise interaction operator
Ŵ are defined:

ĥ = −
ℏ2

2m
∂2

∂r2
i

+V(ri), (1.68)

Ŵ = λδ(ri− r j). (1.69)

The variation of the action with respect to Cn⃗ results in the equation of motion describing the
evolution of the orbitals.

iℏ
∣∣∣ψ̇ j

〉
=

1− M∑
j′=1

∣∣∣ψ j′
〉〈
ψ j′

∣∣∣
ĥ ∣∣∣ψ j

〉
+

M∑
k,s,q,l=1

{ρ}−1
jk ρksqlŴsl

∣∣∣ψq
〉 . (1.70)

More details of the derivation can be found in the review by Alon et al. [46]. The matrix
elements of the reduced one-body density matrix ρkq are expressed as ρ. Similarly, ρksql

represent the reduced two-body density matrix elements of the condensate and Ŵkq are the
local interaction potentials. Now, that we can calculate the evolution of the orbitals, we still
need to describe the occupation dynamics.
The second equation of motion is derived from the variation of the action with respect to an
incremental change in the orbitals:

iℏĊn⃗(t) =
∑
n⃗′

〈
n⃗, t

∣∣∣HBEC
∣∣∣⃗n′, t〉Cn⃗′(t) (1.71)

This equation ensures that any initially normalised state stays normalised.
The evolution of the condensate is contained in Eq. (1.70) and Eq. (1.71). Still, the structure
of these differential equations means there is no straight-forward analytical solution. Hence,
the numerical approach is to solve the two equations sequentially with incremental time
steps. First, Cn⃗(t) is propagated for one time step according to Eq. (1.71), then we let the
orbitals evolve following Eq. (1.70). This process repeats itself. Different methods have been
developed to minimise errors and adjust the time step accordingly [46].
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1. beam splitter

3. recombination

4. detector

1. splitting the well

3. recombination

4. detector
2. different 

paths 2. different 
paths

(a) Light interferometer (b) Atom interferometer

Fig. 1.5 Comparison between a light and an atom interferometer. Both including the splitting,
evolution, recombination, and detection steps.

1.2.4 Atom Interferometry

For many quantum sensing applications the targeted information is encoded in a phase. With
atomic condensates this can be done using the equivalent of a standard light interferome-
ter [72]. The process is described by the following steps shown in Fig. 1.5a:

1. An incoming beam is split into two identical beams via a beam splitter.

2. The two beams travel along different paths.

3. The beams are recombined.

4. Using the interference pattern, the phase difference is detected.

After the splitting, the phase of one beam might change with respect to the other because,
for example, the distance travelled was longer or it traversed a different medium. Said phase
difference can be read out using the interference pattern from the detector, giving the method
its name.
In atom interferometry, instead of an incoming beam, one considers a BEC in a single well
potential [73, 74] shown in Fig. 1.5b. The beam splitter is then replaced by a barrier in
said potential, splitting the BEC (single well) into two condensates (double well). If the
condensates are decoupled, they can evolve independently to pick up a phase, dependent
on environmental factors such as a magnetic field [75] or differences in the gravitational
field [76]. To obtain the interference pattern, the condensates are recombined and left to
evolved freely. The shift of the resulting pattern then encodes the phase difference. This
difference is referred to as the relative phase.
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Fig. 1.6 Two-mode representation. (left) Ground state ψg and first excited state ψe. (right) Left
mode ψℓ and right mode ψr.

1.2.5 Spin Squeezing

Let us consider a condensate inside a double well with a central barrier that clearly separates
the condensate into two parts [77]. The GPE of the resulting split BEC reveals that the
two lowest energy levels are the almost degenerate symmetric ground state ψg and the anti-
symmetric excited state ψe. By combining them, one can construct a left-localised mode
ψℓ and right-localised mode ψr, which are degenerate (see Fig. 1.6). The transformation
between the two representations is given by

ψℓ =
ψg+ψe
√

2
,

ψr =
ψg−ψe
√

2
.

(1.72)

If the condensate is unevenly distributed between these modes, the population oscillates
between them. The frequency of that oscillation depends on the tunnel coupling J and the
interaction strength λ.
Two conjugate properties connected to the left and right modes determine the sensitivity of
the interferometer: The relative phase φ̂ = φl−φr which is measured in the interferometer,
and the half number imbalance n̂ = (Nl−Nr)/2. Their variances are connected to each other
via the Heisenberg uncertainty principle:

∆φ̂∆n̂ ≥
1
2
. (1.73)

This relationship also implies the possibility of squeezing. An intuitive approach would be
to squeeze with respect to the relative phase to increase the sensitivity. However, taking
into account the variances’ evolution reveals that the phase diffusion rate (the rate at which
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Fig. 1.7 The number and phase distribution of a condensate can be plotted on a Bloch sphere,
where the z-axis corresponds to the imbalance and the angle around the z-axis to the relative
phase. On the left is an exemplary distribution of a coherent state. On the right is a squeezed
state. Both are displaced by a phase φ for illustrative reasons.

the phase variance broadens)6 increases with the imbalance variance. Hence, extended
measurements are actually improved by doing the opposite of phase squeezing: number
squeezing [79, 80].
The term spin squeezing comes from the representation of these quantum properties on the
Bloch sphere. In this picture |↑⟩ corresponds to all atoms being in ψℓ and |↓⟩ is equivalent
to a right-localised condensate, where all atoms occupy ψr. Consequently, the spin along z,
Ŝ z, corresponds to n̂ such that states on the equatorial plane give ⟨n̂⟩ = 0, and on the poles
⟨n̂⟩ = ±N/2. The angle around the z-axis corresponds to φ̂. Plotting the distribution of the
condensate on the Bloch sphere effectively represents the squeezing as shown in Fig. 1.7.
The spin model encapsulates the condensate’s collective imbalance and phase properties.

The relationship between the squeezing in either direction is defined through three quantities:
The phase squeezing factor ξφ, the number squeezing factor ξN (which should correctly be
called half number imbalance squeezing factor, but is abbreviated in the following), and the
useful squeezing factor ξS :

ξφ =
∆φ̂

1/
√

N
, (1.74)

ξN =
∆n̂
√

N/2
, (1.75)

ξS =
ξN

⟨ĉosφ⟩
. (1.76)

6A full discussion of this topic can be found in Julian Grond’s PhD thesis [78] pages 46ff.
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Fig. 1.8 Relationship between the length of the mean spin vector and the relative phase.

Please note that ĉosφ is an operator. For both, ξφ and ξN , the quantity’s variance is normalised
with the value of the coherent state. Hence they equal unity in the absence of squeezing and
can be used to reformulate the uncertainty relations in Eq. (1.73)

ξNξφ ≥
1
2
. (1.77)

The form of the useful squeezing factor is less self-explanatory. In general, it is defined by
the relationship between the length of the mean spin vector ⟨Ŝ ⟩ = N

2 ⟨ĉosφ⟩ and the smallest
transverse fluctuations ∆n̂ shown in Fig. 1.8 [81]. The cosine term derives from the fact, that
the spin commutation relations of the angular momentum (as commonly used with the Bloch
sphere representation) are not directly translatable into phase and amplitude relations. Still,
if the state is localised, the equivalent spin operators are given by

Ŝ x =
1
2

√
N2−4⟨n̂⟩2 ĉosφ,

Ŝ y =
1
2

√
N2−4⟨n̂⟩2 ŝinφ.

(1.78)

From here, one can derive the useful squeezing factor as presented in Eq. (1.76) [77]. A
coherent state corresponds to ξS = 1. The squeezing makes the interferometer more sensitive
as explained under Eq. (1.73) and is deemed “useful”, if ξS < 1.

1.2.6 Model

The condensate of 87Rb atoms is simulated with the MCTDHB-implementation “MCTDH-
X” [82–84, 69]. The system’s evolution is guided by a unitless Hamiltonian H̄ similar
to Eq. (1.62) with a similarly adapted potential V̄ and interaction strength λ̄ [85]. As
the computational complexity of the simulation increases with each extra dimension, the
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simulations are performed in one and two dimensions using the following Hamiltonians:

H̄1D =
H1D

ℏωsys
=

N∑
j=1

−1
2
∂2

∂x2
j

+ V̄(x j)

+ N∑
j<k

λ̄1Dδ(x j− xk),

H̄2D =
H2D

ℏωsys
=

N∑
j=1

−1
2

 ∂2

∂x2
j

+
∂2

∂z2
j

+ V̄(x j,z j)

+ N∑
j<k

λ̄2Dδ(x j− xk)δ(z j− zk).

(1.79)

All length scales are given in µm. The corresponding units for the propagation time becomes
t̄ = t/ωsys ≈ t×1.368ms−1. The other parameters are defined as

ωsys =
ℏ

mL2 ,

m = MRb87 = 1.44316060×10−25 kg (atom mass),

L = 10−6 m = 1µm (length scale)7,

ℏ = 1.054589×10−34 J s (reduced Planck constant),

a0 = 5.291771×10−11 m (Bohr radius),

as = 100.44×a0 (3D atom-atom scattering length).

(1.80)

An exemplary potential is shown in Fig. 1.9. It produces the characteristic cigar-shaped
condensate because the energy scales are of the same order of magnitude along the transverse
directions x and y (kHz), while the longitudinal potential along z is much more shallow (Hz).
In the experiment, the trap frequencies are measured to be

ω|| = ωz ≈ 2π15.0Hz,

ωx = 2π1.83×103 Hz (for the single well case),

ωy = 2π2.58×103 Hz,

ω⊥ =
√
ωyωx.

(1.81)

The corresponding oscillator lengths are given by ai =
√
ℏ/ωim, where i = {x,y,z, ||,⊥}.

To understand the relationship between the different directions we consider their respective
spectra. The energy scale of the potential along y is 0.75 kHz larger than that along x. As a
result the spacing between the eigenmodes is largest in the y-direction, i.e. ∆Ey >∆Ex≫∆Ez.
In the single well, the condensate is assumed to be in the ground state so none of the higher
modes play a role. However, during the splitting the added energy leads to the occupation
of higher modes. In the double well, the eigenmodes along x move closer together with

7Please note that in this section, we make no use of Lindblad operators and L always refers to scalars.
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Fig. 1.9 Illustration of the condensate and potential. In the x-direction the potential is given
by a double well, along z and y it corresponds to a harmonic well with an additional shift of
the x-component along z. The resulting condensate has the shape of two cigars.

respect to the y-modes. As a result we can assume that the energy levels along y are
well-separated and the condensate stays in the corresponding ground state. This type of
approximation is common for cigar-shaped condensates [86] and has been validated in
different experiments [77, 87] similar to the one considered here.
In contrast, the modes in the z-direction are tightly packed. However, as the energy difference
between them is very small, the transition time-scales are large compared to the evolution
time we consider in this work. Consequently, the mean-field condensate wavefunction is
expected to be separable into ψ(r) = ψ⊥(x,y)ψz(z) and stay in the ground state along z. The
dynamics during the splitting are more complex. As the two lowest x-modes of the double
well become degenerate, there are crossings between the z- and x-modes. These dynamics
will be explored further in Section 3.3.
We consider a harmonic potential in z- and y-directions and an adaptable profile, VRF(x;κ),
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going from a single to a double well in x-direction:

ℏωsysV̄(x,y,z;κ) = VRF(x;κ)+
1
2
ω2

yy2m+
1
2
ω2

z (z−χx)2m,

ℏωsysV̄(x,z) = VRF(x;κ)+
1
2
ω2

z (z−χx)2m,

ℏωsysV̄(x) = VRF(x;κ),

with χ =
δz

δx
.

(1.82)

The factor χ is a correction to account for a shift of the trap minima by δz, when the two
wells are separated by δx. An estimate from the experimental data suggests a maximum shift
of χ = 5µm/2µm. VRF(x;κ) corresponds to the experimental potential shown in Fig. 1.10.
The parameter κ stands for the voltage applied across the wires generating the trap. A single
well is described by κ = 0.3, while higher values create a double well. The potential is
calculated by fitting the electric potential of the wires with a sixth order polynomial8 (valid
for 0.3 ≤ κ ≤ 0.7):

VRF(x;κ) =2πℏ×103
(

f0(κ)+ f1(κ)x+ f2(κ)x2+ f3(κ)x3

+ f4(κ)x4+ f5(κ)x5+ f6(κ)x6
)

[in J]

with

f0(κ) =−190+3980κ−29710κ2+101460κ3

−168920κ4+137700κ5−44170κ6

f1(κ) =0

f2(κ) =88.7−402.5κ+422.5κ2+872.0κ3

−3093.6κ4+3224.8κ5−1203.1κ6

f3(κ) =0

f4(κ) =−9.8+209.2κ−690.2κ2+1090.8κ3

−958.3κ4+514.3κ5−139.1κ6

f5(κ) =0

f6(κ) =0.9877−31.6373κ+139.5386κ2−333.6785κ3

+512.4129κ4−457.9392κ5+171.6κ6

(1.83)

While the potential along x changes dynamically, it is static and harmonic along y. Assuming

8The fit was kindly provided by TianTian Zhang.
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Fig. 1.10 The transverse potential created by the RF wires in the experiment with factors
from κ = 0.3 up to κ = 0.7.

that the condensate stays in the ground state along y, the transverse mean-field condensate
wavefunction becomes separable, such that ψ⊥(x,y) = ψx(x)ψy(y). Each component is
normalised to unity. The ground state along y is considered to be in the single-particle ground
state

ψy(y) =
1√

ayπ1/2
e−y2/2a2

y . (1.84)

As the condensate along y is static and decoupled, the y-potential only affects the overall
condensate by changing the interaction strength via the average density. To model the
dynamics along x an z, the y-direction is integrated out giving the new 2D interaction strength

λ̄2D = Iyλ3D
1

ℏωsysL2 = 2
√

2π
as

ay
, where

λ3D =
4πℏ2as

m
,

Iy =

∫ ∞

−∞

|ψy(y)|4dy =
1

ay
√

2π
.

(1.85)

Similarly, the 1D interaction strength is obtained by integrating over z

λ̄1D = IyIzλ3D
1

ℏωsysL
, where

Iz =

∫ ∞

−∞

|ψz(z)|4dz =
∫ ∞

−∞

∣∣∣∣∣n1D(z)
N

∣∣∣∣∣2 dz.
(1.86)
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n1D(z) = N|ψz(z)|2 describes the one-dimensional atomic number density, where ψ(z) is the
longitudinal condensate wavefunction normalised to unity.
As described above, the connection between the x- and z-direction is more complex. If they
were perfectly decoupled, the condensate would be in the “1D Thomas Fermi regime” and
we could repeat the same mean-field approach as for y. This is only applicable, if the spacing
between the transverse energy levels is too large to overcome and hence it is transversely
frozen. The regime in which the directions cannot be separated is called the “3D Thomas
Fermi regime”. The fact that our condensate is located in between is taken into account
via a cross-over method [88], which is more accurate than the mean-field but still allows to
reduce the dimensionality of the problem [86, 89]. Such methods have been shown to agree
well with 3D simulations [90]. In the presented approach the density is considered to be
locally in equilibrium. The energy is minimised to find the shape of the longitudinal profile
considering a Gaussian ansatz. The resulting integral Iz is dependent on the factor9 α, which
is determined by the ODE below:

Iz =
Lcα

2(21+9α+α2)
315a2

s N2
,

α3(α+5)2 =

15N
a⊥as

a2
||

2

,

(1.87)

where Lc = a2
||

√
α/a⊥ is the condensate length. By combining the above equations, the full

1D interaction strength is given by

λ̄1D = 2
√

2π
LcL
asay

α2

315N2 (α2+9α+21). (1.88)

It should be noted that the different assumptions made above lead to the 1D interaction
strength being dependent on the atom number, while the 2D interaction is not. For an atom
number N = 1500 their values are different by two orders of magnitude:

λ̄1D = 2.85808×10−3,

λ̄2D = 0.137446.
(1.89)

9not to be confused with the cavity field α(t) from Section 1.1
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1.2.7 Data Analysis

1.2.7.1 The Single Shot Method

To calculate the number and phase squeezing we use the so-called single shot method [91].
It relies on taking snapshots of the atoms and results in data of a similar form as the
experimental output. Producing snapshots requires the full many-body probability density
p(r1, . . . ,rN) = |Ψ(r1, . . . ,rN)|2 of the system. Unfortunately, the functional form of the full
many-body wavefunction Ψ(r1, . . .rN) is not available to us. However, the probability density
can be represented as a product of conditional probabilities

p(r1, . . . ,rN) = p(r1) p(r2|r1)× · · ·× p(rN |rN−1, . . . ,r1). (1.90)

Here, p(r1|r2) is the conditional probability of finding an atom at position r2 after the previous
one was found at r1. This representation allows us to consider one atom after the other. We
sequentially select a random position from a probability distribution starting from the density.
Then, one atom at the selected position is removed from the probability distribution, the
result is used in the next step until all N atoms have been extracted.
The output of each single shot is used to calculate the number imbalance.10 Equivalently, we
use momentum space single shots to find the relative phase distribution.
The single shots are calculated with the analysis tools provided by MCTDH-X. An example
of a single shot image in 2D is shown in Fig. 1.11.

Fig. 1.11 Exemplary single shot image in momentum space in two dimensions with N = 200.

10The squeezing of the number imbalance could alternatively be calculated directly from the MCTDHB-
produced density matrix as shown in the Appendix of reference [70]. However, this technique does not provide
the phase squeezing of the system and is only applicable in 1D.
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1.2.7.2 Fitting Procedure

The number imbalance can be easily calculated by counting the atoms on the left or the right
side from the centre for each of the K single shots. The difference between the number of
atoms on the left, NL,i, and the number of atoms on the right, NR,i, gives the half number
imbalance ni = (NL,i − NR,i)/2 for the ith shot. A histogram of this imbalance reveals a
distribution around µn with standard deviation ∆n. An example can be seen in Fig. 1.12e.

µn =
1
K

K∑
i=1

ni (1.91)

∆n =

√√√
1
K

K∑
i=1

(ni−µn)2 (1.92)

To obtain the standard deviation of the relative phase ∆φ, the single shots are drawn from the
momentum space wavefunction. The contrast of each image is limited by the number of atoms
and the average of the images might, by definition, not enhance the signal. To overcome these
difficulties, we have concatenated different fitting steps. A version of the code provided by the
author of this thesis is published as rel_phase_package.py in the UNIQORN repository:
A. U. J. Lode, P. Molignini, R. Lin, M. Büttner, P. Rembold, C. Lévêque, M. C. Tsatsos,
and L. Papariello, UNIQORN: Universal Neural network Interface for Quantum Observable
Readout from N-body wavefunctions, https://gitlab.com/auj.lode/UNIQORN.git
(2020) [7]. The repository contains a software for the readout of observables from single
shot images using machine learning [92]. In this thesis, we analyse both 1D and 2D images.
In the latter case, the single shots are integrated over the longitudinal direction before the
analysis. The phase of each single shot image is determined following these steps:

1. The minimum requirement to obtain an interference pattern is that the position space
density contains more than one peak and a sufficient dip in between. If this condition
is not met, the phase variance calculation is aborted.

2. The mean of all single shots is used to find the average momentum space distribution.

3. The average distribution is Fourier transformed to extract the peak frequency ωα. This
gives a good estimate, if the phase distribution is narrow. However, for strongly number
squeezed condensates, the average distribution is a Gaussian.

https://gitlab.com/auj.lode/UNIQORN.git
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(b) Fitted Contrast and Relative Phase Distribution

Fig. 1.12 Single shot measurements (K = 100) of the ground state of a condensate with
N = 1500 atoms simulated with M = 2 orbitals. (a) Single shots represented in phase
space where the angle corresponds to the relative phase and the radius to the contrast. (b)
Fitted distribution of the single shots, defined by φ = −0.0558±0.6120 and C = 0.99±0.01
resulting in ξφ = 23.701. (c) Fitted average distribution in momentum space. (d) Transverse
trap potential with RF amplitude κ = 0.62. (e) Normalised histogram of the half number
imbalance with n = 0.2800±1.6253 resulting in ξN = 0.04197 and ξS = 0.05069. (f) Spatial
probability density of the condensate.

4. The average distribution is fitted to a Gaussian Gfit(kx; Aα,wα) to find the amplitude
Aα and spread wα:

Gfit(kx; A,w) = Ae−k2
xw. (1.93)

5. The average distribution is fitted to the full model Ffit(kx; Aβ,wβ,Cβ,ωβ,φβ). As initial
guess values we use (Aα,wα,0.9,ωα,0.0) to find the fit parameters (Aβ,wβ,Cβ,ωβ,φβ).
Cβ is the average’s contrast and φβ its phase.

Ffit(kx; A,w,C,ω,φ) = Ae−k2
xw︸ ︷︷ ︸

envelope

1+C cos(ωkx+φ)︸            ︷︷            ︸
interference

 , (1.94)

where the first term takes care of the envelope of the momentum space distribution,
while the cosine term describes the interference pattern [93]. The outcome of such a fit
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is shown in Fig. 1.12c. The average distribution has a low contrast if the condensate is
strongly squeezed or if the fringe pattern is not straight, i.e. χ≫ 0 in Eq. (1.82).

6. The fit quality is estimated using the R2-measure. If the fit of Ffit(kx; Aβ,wβ,Cβ,ωβ,φβ)
is better than the fit of Gfit(kx; Aα,wα) and Cβ ≥ 0.2, we define (Aγ,wγ,Cγ,ωγ,φγ) =
(Aβ,wβ,Cβ,ωβ,φβ) for future fits. Otherwise, the last two steps are repeated with a
number of random single shots instead of the average distribution. If none of them
have a contrast above 0.8, the evaluation of the phase variance is aborted. This might
be the case, if the longitudinal coherence is insufficient or the number of atoms is
too low. If they do have sufficient contrast, their fit values are averaged to produce
(Aγ,wγ,Cγ,ωγ,φγ) = (Aav,wav,Cav,ωav,φav).

7. Each single shot is fitted to Ffit(kx; Aγ,wγ,Ci,ωγ,φi), with fit parameters (Ci,φi) and
initial guesses (Cγ,φγ). To minimise the effect of the boundaries, we assume a phase
distribution around φγ and set the limits for the fits to [φγ−π,φγ+π]. An example is
shown in Fig. 1.12a.

8. The circular mean and standard deviation of the phase distribution are calculated [94].
As the distribution wraps around, its variance should be infinite for a perfectly uniform
distribution and otherwise approximate the local normal distribution. This cannot be
calculated in the same way as the variance of the number distribution as it would be
naturally limited by the circle’s circumference of 2π. To characterise the distribution
we first calculate a unit vector zi = eiφi for each single shot and then average them to
get the sample moment mφ:

mφ =
1
K

K∑
i=1

zi. (1.95)

The length of the sample moment corresponds to the spread of the distribution, i.e.,
if 1− |mφ| = 0 it is strongly localised and if 1− |mφ| = 1 it is uniform. 1− |mφ| is also
called the circular variance. However, it is not suitable for our purposes as it does not
describe the approximate normal distribution. Hence, we use the circular standard
distribution given by

∆φ =
√
−2ln |mφ|. (1.96)

The mean of the distribution is given by the direction of the sample moment,

µφ = arg(mφ). (1.97)
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9. The mean and standard deviation of the contrast are calculated to provide a full
description of the distribution. They are given by

µC =
1
K

K∑
i=1

Ci, (1.98)

∆C =

√√√
1
K

K∑
i=1

(Ci−µC)2. (1.99)

In the end, the fitting procedure provides an estimate for the distribution of the relative
phase shown in Fig. 1.12b similar to the one commonly produced with experimental data.
Consequently, it enables us to get a good estimate of the useful squeezing of the condensate.



Chapter 2

Quantum Optimal Control

2.1 Introduction

A problem well stated is a
problem half solved.

John Dewey

Almost any skill can be acquired with enough practice, including the control of quantum
systems. However, practice is expensive in terms of person-hours. Repeatedly testing out
different strategies to make the hardware comply with the goal simply takes very long, if
done by a human. Here, optimal control comes into play. It automates the testing procedure
by employing search algorithms that scout the possible solutions efficiently. There are many
different such strategies, and they have found even more applications. Some only require
minimal information about the system, while others are based on detailed models, still others
take a reinforcement learning approach borrowed from machine learning. This section will
introduce the theory behind optimal control and discuss a novel technique designed for
frequency-sensitive systems.

2.2 Optimal Control Theory

This section is reproduced from P. Rembold, N. Oshnik, M. M. Müller, T. Calarco, S.
Montangero, and E. Neu, Introduction to Quantum Optimal Control for Quantum Sensing
with Nitrogen-Vacancy Centers in Diamond, AVS Quantum Science 2, 024701 (2020) with
permission of AIP publishing and all co-authors. The author of this thesis was the first author
responsible for the content of Section III (Optimal Control Theory) and Appendix B (The
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Rotating Wave Approximation) as well as parts of Sections IV (QOC for NV Centers) and
V (Conclusion). She was furthermore involved in the planning an discussion of the general
contents. To ensure the flow of this manuscript, only section III is reprinted here:

Fig. 2.1 Schematic drawing of a generic QOC optimisation. The box on the left contains
the elements that define a basic QOC problem with blue solid arrows connecting them to
the algorithm. The grey box at the centre illustrates the optimisation algorithm itself, with
the dotted grey arrow indicating its iterative nature. The cost function J is calculated from
the controls ui(t) and used to update the controls. In parenthesis the relevant sections in the
review paper are indicated where applicable.

Without the ability to precisely manipulate quantum systems, researching their properties and
applying them for quantum technologies is almost impossible. Quantum Optimal Control
(QOC) theory [95, 18] improves the shape of dynamical controls (typically electromagnetic
field pulses) to achieve a certain goal to maximum precision. The section starts with the
details of defining a QOC problem in section 2.2.1 followed by a description of different
numerical optimisation tools in section 2.2.2 and concluded by a brief discussion of the limits
of QOC (section 2.2.3). The first part is structured according to the schematic in Fig. 2.1.
In the field of Nuclear Magnetic Resonance (NMR), pulse shaping is used since the 1980s[96]
and many of the arguments for pulse shape optimisation[19] equally apply to NV centers,
which we will focus on. In many cases, the time scales defining the decay of NV centers
are large compared to the control time. In that case, it is sufficient to study closed system
dynamics. Indeed, specific open system techniques such as population suppression and
the exploitation of useful dissipation processes are often not applicable to the problems
considered in this review [17]. Hence, we limit ourselves to a closed system description.
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2.2.1 Defining a Control Problem

The principles of QOC theory derive from early extremisation problems such as Johann
Bernoulli’s brachistochrone curve problem [97]. Similarly, QOC problems are formulated
through a system of equations, which broadly defines three things: First, the system dynam-
ics, i.e. the theoretically obtained description reflecting the system’s behaviour, for example
given by the Hamiltonian. Alternatively, this first equation might be replaced by a description
through the experiment itself. Second and third, the control objectives and control space
restrictions. The objectives on the one hand set the goal of the optimisation, like e.g. high
fidelity for the transfer to a target state. The control space restrictions on the other hand
limit the resources that may be used to reach the desired goal. Together, the three aspects are
combined into a so-called control landscape. Each set of controls will result in a different
value of the "cost function" J, a measure for how close the system is to reaching the objective.
In case of a minimisation (and throughout this review we will always assume minimisations,
unless stated otherwise), each valley corresponds to a locally optimal combination of controls.
The goal of the optimisation can now be easily defined as reaching the lowest point in the
landscape.
We will now discuss in more detail these three ingredients of QOC problems as well as the
initial guess, stopping criteria and robustness.

2.2.1.1 System Dynamics

One way to characterise the evolution of a closed quantum system with time dependent
controls is through Schr "o dinger’s equation. The system Hamiltonian is usually split into
two parts; the drift Hamiltonian Ĥd, which is constant and cannot be manipulated, and the
control Hamiltonians Ĥc

i which are multiplied with time-dependent coefficients ui(t) called
"control pulses". The full Hamiltonian then reads

Ĥ = Ĥd +
∑

i

ui(t)Ĥc
i . (2.1)

Please note that system dynamics for control problems may also be defined through Lindblad-
operators and even for non-Markovian dynamics (for a review on open systems QOC see
Koch[17]).
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Drift and Control Hamiltonian

As an example, let us consider a NV center, approximated as a qubit with the ground
state |0⟩ and excited state |1⟩. In this simple consideration the goal will be to create a
high-fidelity π

2 x-rotation similar to the system in Frank et al. [26].
A static magnetic field B∥ is applied in z-direction (the quantisation-/NV-axis) and a
circularly polarised microwave field B⃗⊥ with an amplitude B⊥(t), frequency ωmw and
phase φ is applied orthogonal to B∥. Let us define the gyromagnetic ratio of the NV
center as γnv. The rotating frame of B⃗⊥ then gives the Hamiltonian

ĤRWA/ℏ = ∆ŝssZ +Ω(t) (ŝssX cosφ(t)+ ŝssY sinφ(t))

= ∆ŝssZ +u1(t)ŝssX +u2(t)ŝssY ,
(2.2)

where ∆ = ωnv−ωmw is the detuning, ωnv = B∥γnv the NV’s resonant frequency, Ω(t) =
B⊥γnv is the Rabi frequency and ˆ⃗sss are the spin operators in the |0⟩ , |1⟩ basis. A
derivation of this Hamiltonian can be found in Appendix [B of the original publication].
We can easily identify the drift Hamiltonian Ĥd = ∆ŝssZ . Let us assume, that both the
Rabi frequency Ω(t) and the phase of the magnetic field φ(t) can be manipulated
dynamically. The control Hamiltonians may then be identified as Ĥc

1 = ŝssX and Ĥc
2 = ŝssY

and the control pulses as u1(t) = Ω(t)cosφ(t) and u2(t) = Ω(t) sinφ(t).

Once the system has evolved, it is time to test whether the goals have been reached by
checking the control objectives.
It should be noted at this point that the rotating wave approximation, as presented in Appendix
B of the original publication, is widely used to simplify the NV center’s Hamiltonian. While
it is useful, when the Rabi frequency is much lower than the NV center’s resonant frequency,
it can have a detrimental effect on a simulation’s accuracy, if the Rabi frequency is of a similar
scale as the qubit transition. In fact, Scheuer et al. [98] have shown how the inaccurate use of
the RWA can affect the outcomes of optimal control procedures designed for NV centers.

2.2.1.2 Control Objective(s)

The cost function (or figure of merit) J defines what is minimised in any QOC problem. This
way it describes the goal of the optimisation (terminal cost) and optionally the control limits
through penalty-terms (running costs). The terminal costs are determined at the final time of
the system’s evolution. They quantify for instance the distance between the final state and
the desired goal state in the relevant Hilbert space. The running costs are usually related to
the restrictions on the control pulses, for example the limited power of a microwave source.
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Fig. 2.2 Example of a QOC landscape. Considering two control parameters, we may represent
the cost function J as a surface dependent on the set of controls. The minima correspond to
locally optimal control coordinates. Each black path represents a local optimisation starting
from a different initial guess.

In this review, the cost function is defined to be zero, when all objectives are met and to be
greater than zero, when they are not met. Note that the running costs have a similar role as
the control space restrictions that will be discussed in section 2.2.1.3.
In the following, we will briefly describe some of the most relevant cost functions found in
relation to NV centers in the literature. For more examples of NV center applications, please
refer to sections II an IV of the original publication for examples specifically combining
them with QOC.

• State to state transfer (terminal cost)
State to state transfer is the most common optimisation objective and has been used in
many papers [25, 99, 26, 100]. The infidelity is a measure for the distance between
two states |ϕt⟩ and |ϕ(T )⟩: If they are equal, it gives zero, if they are orthogonal, it has
a value of one. The infidelity can be used directly to define the cost function Jstate

Jstate = 1− |⟨ϕt|ϕ(T )⟩ |2, (2.3)

describing the distance between |ϕ(T )⟩, the final state of the system at time T , and |ϕt⟩,
the target state. An alternative way to formulate the transfer is fixing the global phase
using Jstate = 1−Re{⟨ϕ(T )|ϕt⟩}.

• Unitary gate optimisation (terminal cost)
To measure the distance between the unitary U(T ) produced by the controls and the
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target gate Ut, we define the cost function

Jgate = 1−
1

N2
0

∣∣∣∣Tr
(
U†t U(T )

)∣∣∣∣2
= 1−

1
N2

0

∣∣∣∣∣∣∣
N0∑
i=1

⟨ζi|U
†
t |ϕi(T )⟩

∣∣∣∣∣∣∣
2

.

(2.4)

In the second line, the gate fidelity is defined through the N0 basis states |ζi⟩ of the
initial system and their propagated version |ϕi(T )⟩ = U(T ) |ζi⟩. Similarly to Jstate,
we can also define a global phase dependent version of this cost function, Jgate =

1− 1
N0

Re{Tr(U†t U(T ))}. Examples for its application can be found in references [101–
104].

• Sensitivity (terminal cost)
In contrast to the previous examples, the sensitivity does not directly contain infor-
mation about the system. Instead, it quantifies the amount of information about a
parameter θ (e.g. the magnetic field) that may be derived from a set of measurements.
The sensitivity may be defined as the variance (∆θ)2 of the parameter estimate θ0

obtained from NM measurements. Each measurement produces the expectation value
of some positive-operator-values measure (POVM)1 Θ. The probability to mea-
sure θ(|ϕ⟩) = x probing a wavefunction |ϕ⟩ is then given by the expectation value
p(x|θ) = ⟨ϕ|Θ |ϕ⟩ = Tr(ρΘ), with ρ = |ϕ⟩⟨ϕ|.
The cost function should, however, not contain information about the outcome of the
measurement, but rather about its precision. The lower bound of ∆θ is given by the
Cramér-Rao bound

(∆θ)2 ≥
1

NMF(θ0)
, (2.5)

a value which is inversely proportional to the Fisher information F(θ), calculated by

F(θ) =
∫

dx
1

p(x|θ)

(
∂p(x|θ)
∂θ

)2

=

Nx∑
i

1
p(xi|θ)

(
∂p(xi|θ)
∂θ

)2

,

(2.6)

where the second line is specifically related to a discrete number of possible measure-
ment outcomes Nx.

1A POVM is defined by a set of Hermitian operators which produce a positively-valued expectation values
with a normalised probability distribution [39].
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One may interpret the Fisher information as the curvature of the logarithmic probability
distribution: If it is completely flat, hence giving no information, F(θ0) = 0, if it is
strongly peaked, indicating a clear parameter estimate, F(θ0)≫ 0.
The corresponding cost function may be defined as

JFisher =
1

NMF(θ)
. (2.7)

Reviews introducing Fisher information in the context of quantum sensing and metrol-
ogy were written by Degen et al. [105] and Pezze et al. [72]. The original paper relating
Fisher information and quantum mechanics was published in 1994 by Braunstein and
Caves [106]. Applications of Fisher information as a part of optimal control can be
found in references [107, 108].

• Limited power (running cost)
The power of a control pulse is typically calculated as Pi =

∫ T
0 |ui(t)|2dt. To limit Pi to

a reasonable range Pi ∈ [0,Plim] a penalty term can be introduced which adds a high
cost to J, if a certain limit is crossed.

Jpower = κ(Pi) = κ
(∫ T

0
|ui(t)|2dt

)
. (2.8)

The function κ(Pi) should give very little to no penalty, if the power is within the
acceptable range κ(Pi ≪ Plim)→ 0 and a high penalty, if it is out of range κ(Pi ≫

Plim) → ∞. These criteria can be satisfied by a wide variety of functions and it
depends on the chosen system. Examples can be found in a number of references
[23, 19, 109, 110].

• Limited bandwidth (running cost)
There is a number of ways to limit the bandwidth of the controls. One solution is to
gently punish any quickly oscillating solutions through

Jbandw = ϵ

∫ T

0

(
∂u(t)
∂t

)2

dt, (2.9)

where ϵ is some small factor [111]. It should be noted that this expression, does not
give strict bounds in terms of bandwidth. An alternative, stricter approach is to punish
fast oscillations, only if they lie outside a pre-defined filter function as described by
Sch "afer et al. [112] and Kosloff’s group [113, 20]. A completely different approach
is to restrict the basis of the control pulses. This is possible with certain algorithms of
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the (d)CRAB family including GROUP, and GOAT and will be further discussed in
section 2.2.2.

There are many more possible terminal costs, each describing a different control problem
including partial state transfer, taking into account the full density function, maximising
entanglement [1], or adjusting a certain observable [114]. Similarly, equally many different
running costs exist e.g. to avoid populating fast decaying states [115].

Gate Optimisation

In the experiment by Frank et al. [26] the control objective was to optimise a unitary
defined as the Hadamard gate

Ut =
1
√

2

 1 −i
−i 1

 .
Hence the cost function may be defined as

J = Jgate = 1−
1
4

∣∣∣∣Tr
(
U†t U(T )

)∣∣∣∣2 . (2.10)

We can see that this is a good cost function as it is minimal when U(T ) =Ut at the final
time T (up to a global phase). If we were to also include a bandwidth limitation on the
two control pulses u1(t) and u2(t), we may simply sum up different cost terms. The
resulting cost function, where ϵi are some small factors, would be

J =Jgate+ Jbandw = 1−
1
4

∣∣∣∣Tr
(
U†t U(T )

)∣∣∣∣2
+ ϵ1

∫ T

0

(
∂u1(t)
∂t

)2

dt+ ϵ2

∫ T

0

(
∂u2(t)
∂t

)2

dt.
(2.11)

Running costs favour acceptable types of controls, as opposed to physically impossible ones,
but if stricter limits are required, control space restrictions might be the more suitable mean
of limitation.

2.2.1.3 Control Space Restrictions

While the running costs (see section 2.2.1.2) can only passively punish controls which lie
outside the achievable frame, control space restrictions actively change the controls to only
allow what is experimentally achievable. One might imagine them as a horizontal squeezing
and stretching of the control landscape or as the introduction of hard walls (see Fig. 2.2),
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opposed to a vertical distortion induced by running costs.

Restricting the Control Amplitude

As an example, let us consider the amplitude of a control pulse ui(t) that should
be restricted to umax

i . The pulse could be cut off at the beginning of each iteration
according to

ũi(t) =


ui(t), if −umax

i < ui(t) < umax
i

umax
i , if ui(t) ≥ umax

i

−umax
i , if ui(t) ≤ −umax

i .

This form ensures maximum exploitation of the amplitude space but is not differentiable,
hence it requires that the control pulse is cut off during an extra step (Fig. 2.1) before
the cost function and/or gradient is evaluated [116].
An alternative approach is mapping the control pulse to a restricted subspace using a
continuous function. For example by replacing it with ũi(t) = umax

i sin(ui(t)) [117].
Another common example for the application of mapping are shape functions. They
restrict the overall shape of the pulse, which is useful, if e.g. the experiment requires a
smoothly rising and falling control pulse with Γ(0)= Γ(T )= 0, such that u′i(t)= Γ(t)ui(t).

2.2.1.4 Initial Guess and Stopping Criterion

Numerical optimal control techniques are based on iterative algorithms, which require a
starting point (called "initial guess") and a clearly defined situation to stop at i.e. the stopping
criterion. The optimisation will in most cases find the the closest local minimum to the initial
guess (see examples in Fig. 2.2). Accordingly, it is often helpful to try a number of initial
guesses to find which one is closest to the global minimum.
The stopping criterion is simpler to define: It might be based on the maximum number of
iterations (limited computation time or experimental run time), a measure for convergence or
the clear definition of a goal.

2.2.1.5 Robustness

Usually, there is some discrepancy between the theoretical model and the experiment. In an
optimisation, this can be taken into account to ensure that the optimised pulses will work
in the presence of such a discrepancy by averaging over cost functions for slightly different
systems. Let us consider each system being described by the Hamiltonian Ĥi, then by taking
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into account Nrob different versions, the cost function becomes

Jrobust =
1

Nrob

Nrob∑
i=1

J(Hi). (2.12)

Robustness Against Detuning

The resonance line of the NV center has a finite width and can be described by the
normalised distribution f (ω). Off-center NV centers can however still be described
with the Hamiltonian Ĥ in Eq. (2.2) by adjusting the static magnetic field B|| and hence
the detuning ∆. One may average the cost over Ndet different detunings ∆i to get a
robust cost function

J =
1

Ndet

Ndet∑
i=1

J(Ĥ(∆i)) f (B||γnv−∆i). (2.13)

We can see that this cost function will only reach zero, if all J(Ĥ(∆i)) are zero, ensuring
robustness against the detuning. By including the probability distribution f (B||γnv), we
ensure that the optimisation favours solutions centered on the average detuning.
Due to field inhomogeneities in B⊥, the Rabi frequency can also have a finite distri-
bution when considering an ensemble of NV centers. In many optimisations, both
detuning and Rabi errors are accounted for simultaneously [118, 109].

2.2.2 Numerical QOC Algorithms

Once the problem has been defined, an algorithm is required to systematically test possible
solutions minimising the cost [18]. In this review, we will only describe numerical optimisa-
tion algorithms as they have produced promising results and a variety of packages exist to
implement them (see section 2.2.2.5 for more details).
There are, however, alternative strategies, such as geometrical optimal control [119, 120]
(GOC) and shortcuts to adiabaticity [121, 122] (STA). They usually rely on a deeper analyti-
cal analysis of the control problem and hence access a smaller solution space than QOC, but
can nevertheless be effective. One example is the direct application of Pontryagin’s minimum
principle (PMP) which falls under the category of GOC. It has been shown to provide time
optimal evolution for NV centers [123, 60]. Similarly, STA has been used to implement
specific gates on NV centers [124] and protect them from decoherence [125].
Section 2.2.1 started by mentioning the brachistochrone problem, whose solution is usually
obtained via an analytical variational approach. In the case of quantum mechanical problems
however, one would produce a set of nonlinear equations which, in most cases, cannot be
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solved analytically. Instead, a variational approach combined with numerical solving was
introduced by Konnov and Krotov [126], and Sklarz and Tannor [127] and further adapted
by Ohtsuki et al. [128]. Since then, different attempts have been made to numerically solve
this class of problems.
In general, two families of QOC algorithms can be identified: Gradient-free [129] and
gradient-based [19]. Gradient-based algorithms determine the derivatives of the cost function
with respect to the control pulses to find an improved solution. These methods are usually
efficient as they make use of all the available information. Gradient-free methods on the other
hand can be applied directly to experiments or to complicated problems, where the gradients
are not straightforwardly calculated. In this review, the direct experimental implementation is
referred to as closed-loop, while a purely simulation based optimisation is called open-loop.
We will start by looking at the working principle of gradient-based optimisation algorithms,
before exploring their gradient-free counterparts.

2.2.2.1 Gradient-based Optimisation

To understand how gradient-based algorithms work, let us first consider the effect of a small
change ∆u in some control u(t) on the cost function J(u(t)) (see section 2.2.1.2). If the change
∆u is small enough, we can approximate

J(u(t)+∆u) ≈ J(u(t))+∆u
∂J
∂u(t)

. (2.14)

We can now deduce the properties ∆u should have to decrease J. Indeed it enables us to
make small changes and update u(t) iteratively. Consider ∆u = −ϵ ∂J

∂u(t) , where ϵ is a small
positive factor. In this case, the new cost function becomes

J(u(t)+∆u) ≈ J(u(t))− ϵ
(
∂J
∂u(t)

)2

< J(u(t))

(2.15)

which is smaller than the previous value, implying an optimisation.
In order to avoid functional derivatives and iteratively improve the cost, the control function
u(t) needs to be split up into time independent control parameters u(k). According to the
simple updating algorithm above, the new control parameters u(k)′ become

u(k)′ = u(k)− ϵ
∂J
∂u(k) . (2.16)
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More advanced updating algorithms promise faster convergence. Eq. (2.14) could for example
be extended to second-order [126, 130]. A popular method approximating the second-order
term from the first-order term is the L-BFGS (limited-memory Broyden-Fletcher-Goldfarb-
Shanno) quasi-Newton method algorithm [131, 132].
In the following, we describe the working principles of the GRadient Ascent Pulse Engineer-
ing (GRAPE) algorithm as an example for the whole class of algorithms. It was originally
designed for Nuclear Magnetic Resonance (NMR) [19] but has since found various appli-
cations with NV centers. For another comprehensive explanation, we refer to Saywell et
al. [133].

Fig. 2.3 The principle of GRAPE optimisation. A state |ϕ(t)⟩ was propagated for a time
T = 1.5s according to the Hamiltonian in Eq. (2.2). The fidelity | ⟨ϕ(t)|ϕt⟩ |

2 is plotted as a
function of time. The upper panel (a) shows the fidelities resulting from the initial guess
for the control pulse of a quantum process. The large grey area indicates that the forward
propagated state (dashed orange) and the adjoint state (solid blue) do not match, i.e. the
target state is not reached. By calculating the derivatives w.r.t. the different time slices, an
updated control pulse was found using GRAPE producing the lower panel (b) with a clearly
improved fidelity.
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GRAPE Optimisation of a State Transfer

We start by defining an exemplary cost function J, where J = 0 implies the target state
ϕt is reached at a time T (also see section 2.2.1.2):

J = Jstate = 1− |⟨ϕt|ϕ(T )⟩ |2

= 1− |⟨ϕt|U(T ) |ϕ0⟩ |
2,

where U(T ) = T̂ exp
(∫ T

0
−

i
ℏ

Ĥ(t)dt
)
,

(2.17)

The initial state is defined as |ϕ(0)⟩ = |ϕ0⟩ and T̂ is the time ordering operator.
In order to take the derivatives of J, we choose the piece-wise constant control basis,
chopping up the control pulses into N small slices u(k)

i of width ∆t. This gives a new
way to formulate the propagator U(T ):

U(T ) = T̂
∏

k

exp

− i∆t
ℏ

(Ĥd +
∑

i

u(k)
i Ĥc

i )

 = T̂
∏

k

U(k) (2.18)

It should be noted that this basis is not the only possible choice but intrinsic to
GRAPE (as well as to other gradient based algorithms like Krotov [134]). We can now
reformulate the cost function as

J = 1− |⟨ϕt|U(N)U(N−1)...U(1)U(0) |ϕ0⟩ |
2. (2.19)

We start by calculating the derivatives of ⟨ϕt| T̂
∏

k U(k) |ϕ0⟩ w.r.t. the control parame-
ters.

∂

∂u(k)
i

⟨ϕt|U(N)U(N−1) . . . U(k) . . . U(1)U(0) |ϕ0⟩ (2.20)

= ⟨ϕt|U(N)U(N−1)...U(k+1)︸                         ︷︷                         ︸
⟨ξ(k)|

∂U(k)

∂u(k)
i

U(k−1)...U(1)U(0) |ϕ0⟩︸                     ︷︷                     ︸
|ϕ(k)⟩

(2.21)

=
〈
ξ(k)

∣∣∣ ∂U(k)

∂u(k)
i

∣∣∣ϕ(k)
〉
,

∂J

∂u(k)
i

= −2Re

〈ξ(k)
∣∣∣ ∂U(k)

∂u(k)
i

∣∣∣ϕ(k)
〉
⟨ϕ0|U†(T ) |ϕt⟩

 .
(2.22)

We have defined the forward propagated state
∣∣∣ϕ(k)

〉
and the backward propagated

state
〈
ξ(k)

∣∣∣, which is usually referred to as the adjoint state.a They can both be easily
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calculated by solving Schrödinger’s equation. A graphical representation is given in
Fig. 2.3. We applied the chain rule to find the gradient of J. In the case that the control
pulses are mapped to a restricted subspace (see section 2.2.1.3), the chain rule can be
used again.
The last thing left to evaluate are the following directional derivatives:

∂U(k)

∂u(k)
i

=
∂

∂u(k)
i

exp

− i∆t
ℏ

Ĥd +
∑

i

u(k)
i Ĥc

i

 . (2.23)

aDue to an error in the published version, Eq. (2.22) has been corrected in this thesis.

All in all, any gradient-based optimisation algorithm relies on calculating the first derivative
of the cost function with respect to the control parameters. On top of this specific example of
GRAPE, we list below the most commonly used gradient-based QOC algorithms and their
natural features (for an illustration of the terms "sequential" and "concurrent" see Fig. 2.4):

• GRAPE [19, 132]
GRadient Ascent Pulse Engineering concurrently optimises in the piece-wise constant
basis.

• Krotov [134, 126, 130, 135, 104, 127]
Krotov’s method sequentially optimises one control parameter after the other. It also
relies on the piece-wise constant basis.

• GROUP [136]
GRadient Optimisation Using Parametrisation is based on GRAPE combined with the
chain rule and optimises concurrently. Its chopped basis is flexible (also see "CRAB"
in section 2.2.2.3) but relies on an initial piece-wise constant basis.

• GOAT [117]
Gradient Optimisation of Analytic conTrols is based on a system of equations of motion
obtained by differentiating the full propagator with respect to the control parameters.
The parameters are optimised concurrently and its chopped basis is flexible (also see
"CRAB" in section 2.2.2.3).

2.2.2.2 Gradient-free Optimisation

In an experiment, the gradients described above cannot be calculated analytically. Certain
finite-difference methods help to find them regardless [137–139]. However, if the control
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Fig. 2.4 The difference between concurrent (a) and sequential (b) QOC algorithms is il-
lustrated. For concurrent algorithms, the update is calculated at once for the entire time
grid. For sequential algorithms, the pulse’s basis components i.e. time slices are updated
sequentially, meaning that in each iteration the forward propagated state is calculated with
the latest version of the pulse. Reprinted figure with permission from [22]. Copyright 2018
by the American Physical Society.

landscape is not smooth this method might prove inefficient or very costly in terms of
measurements. This is where gradient-free optimisation algorithms shine. Even for certain
open-loop optimisations they can offer an alternative, when their gradient-based counterparts
fail: If e.g. the dynamics of a system are significantly more complicated than described
in section 2.2.2.1, the gradient of the cost function might be hard or impossible to find
analytically. One example for such a case is the CRAB algorithm, described below, which
was initially introduced to optimise many-body problems using tensor networks to simulate
the time dynamics [129].
The first step then is to choose an optimisation basis. In the following, we will focus on
the CRAB algorithm (see section 2.2.2.3) and consider the basis of trigonometric functions
but it should be noted that we could also use Slepians, Chebyshev polynomials or indeed
piece-wise constant elements. Broadly following Caneva et al. [23] the expanded control
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pulses each take the form

un =

Nbe∑
ℓ=1

[An
ℓ sin(ωℓt)+Bn

ℓ cos(ωℓt)]. (2.24)

Each pulse is composed of a sum of Nbe basis elements. Each basis element is defined by
a frequency ωℓ and the control parameters [An

ℓ
,Bn

ℓ
]. The index n stands for the iteration

number.
If the number of available basis elements is restricted (i.e. only a certain region of frequency
space is accessible), this is called a chopped basis (CB). Especially in the case of bandwidth
limitations, only optimising in the accessible restricted control space can be a powerful tool
to avoid introducing distorting penalty terms (see section 2.2.1.2). Decreasing the number of
parameters, also shrinks the size of the search space, potentially making the optimisation a
lot more efficient.

2.2.2.3 CRAB

Fig. 2.5 Illustration of the chopped random basis. A frequency space is segmented into Nbe
parts. In each part ℓ, a frequency ωℓ is randomly selected according to Eq. (2.25). Two
corresponding parameters, Aℓ and Bℓ, are optimised. They are defined as in Eq. (2.24) and
represented in this plot by black and blue crosses.

The Chopped RAndom Basis algorithm (CRAB) [23, 129] is defined by the optimisation of
a random choice of basis elements taken from a truncated function space. Intuitively, one
might instead chose the basis elements to coincide with the principal harmonics of the pulse.
However, Caneva et al. [23] showed that randomness can be surprisingly effective, especially
if the energy scales of the system are not fully known. Indeed, a larger function space is
covered, if multiple optimisations are done with different randomised bases. The elements
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that make up the basis of our example in Eq. (2.24) are defined by the frequencies ωℓ and are
illustrated in Fig. 2.5. These frequencies are chosen according to

ωℓ =
ωmax

Nbe

(
ℓ+ rℓ −

1
2

)
, (2.25)

where ωmax is the maximum admissible frequency and ℓ = {1,2, ...,Nbe} is an index which
selects the chunk of the frequency space that ωℓ is chosen from. Let us further choose
the random numbers rℓ from an interval [−0.5,0.5]. Then the bandwidth of the control
pulses is automatically limited to [0,ωmax], where a typical choice is ωmax = 2πNbe/T (T
refers to the length of the pulse). By changing the ωmax, we can change the bandwidth.
Moreover, we can see that the available frequency space has been split into Nbe regions
permitting the optimisation to make use of the entire space. It also conditions the optimisation
problem to have clearly distinct control parameters. It should be noted that the number of
basis elements should be dependent on the number of degrees of freedom inherent to the
system [140, 141, 128, 142].
During the optimisation the 2Nbe-dimensional landscape will be followed using any updating
algorithm (it could even be gradient-based as in GOAT and GROUP). The most common
choice is the gradient-free Nelder-Mead algorithm [143] (hence the description of this algo-
rithm under gradient-free algorithms) but others such as CMA-ES [144], genetic algorithms
or reinforcement learning are possible.

2.2.2.4 dCRAB

In the basic version of CRAB, the basis elements are fixed and the local control landscape is
explored for all Nbe frequencies simultaneously. This leads to a restriction in the number of
frequencies that can efficiently be optimised. Using the dressed Chopped RAndom Basis
algorithm (dCRAB), much fewer basis elements with ωd,ℓ need to be optimised at a time
(Nbe(dCRAB) < Nbe(CRAB)). Instead, when one CRAB routine converges, we move on
to ωd+1,ℓ. This enables the method to include an arbitrarily large number of bases and to
derive the solutions without – whenever no other constraints are present – being trapped by
local optima. The extra iterations changing up the basis after each CRAB-run are called
superiterations and the index d refers to the dth superiteration. Their effect is illustrated in
Fig. 2.6. If their number is fixed to NSI, the full description of the pulse can be summed up at
the end of the optimisation uopt, with all optimised parameters Aopt

d,ℓ ,B
opt
d,ℓ as

uopt =

NSI∑
d=1

Nbe∑
ℓ=1

[Aopt
d,ℓ sin

(
ωd,ℓt

)
+Bopt

d,ℓ cos
(
ωd,ℓt

)
]. (2.26)
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basis   
change

Fig. 2.6 By changing the basis of the optimisation from (a) to (b) the landscape is transformed.
The prior minimum (red circle), is relocated, making it possible to escape local minima and
reduce the convergence time.

In each superiteration only the parameters with corresponding index d are optimised. By
repeatedly changing the basis, dCRAB does not get caught in local minima for most control
problems and thus allows to retain this advantageous property of unconstrained control
algorithms in a parametrised (e.g. bandwidth limited) setting. Rach et al. [140] explored
the improvement from CRAB to dCRAB in detail considering the random Ising model.
They found that convergence may be achieved by taking enough parameters to fix the
degrees of freedom present in the optimisation problem. The underlying algorithm used for
both CRAB and dCRAB performed best for a basis with 10-20 parameters. This allowed
dCRAB to outperform CRAB as it requires less optimisation parameters per optimisation
(i.e. superiteration).
All in all, dCRAB, promises faster convergence with respect to CRAB as fewer parameters
are optimised in parallel and instead, new basis elements are chosen sequentially. An example
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Table 2.1 Quantum Optimal Control Packages. In this table four widely-used Optimal
Control software packages are presented which implement some of the previously described
algorithms. Note that the list is not exhaustive.

Name
QOC

Algorithm
Gradient
required Access Specialty

RedCRABabc [6, 5] dCRAB no on request
allows connection

directly to experiment

DYNAMOa [22]
GRAPE,
Krotov yes github

many pre-programmed
optimisation options

QuTiPb [145, 146]
GRAPE,
CRAB

yes,
no pip, conda, etc.

all-round quantum
simulation

Krotov Packageb [147] Krotov yes pip, conda, etc.
Connects to QuTip,

many pre-programmed
optimisation options

Environment:
aMATLAB
bpython
ccommand line

for its experimental application to NV centers, among others, can be found in the work of
Frank et al. [26] where a Hadamard gate was optimised.

2.2.2.5 Optimal Control Packages

In the past years, a number of QOC algorithms were implemented in ready-to-use software
packages. In this section, we present four of these packages that we deem to be closest to
applications with NV centers. An overview over some of their distinguishing features is
given in Table 2.1. Nevertheless, more solutions exist.
RedCRAB [6, 5] is a python based programme, aiming to remotely optimise any experiment
or simulation with gradient-free methods. It can be linked to the experiment setup via
MATLAB, python, terminal or simple file transfer and is hence very versatile. RedCRAB
makes use of the dCRAB alogithm and provides pulse updates. As it does not require any
knowledge about the quantum system itself, it is compatible even with more complicated
many-body systems and tensor-network simulations. RedCRAB is available from the authors
on request.
DYNAMO [22] was originally developed as a GRAPE (and Krotov) implementation in

https://github.com/shaimach/Dynamo
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MATLAB. It allows the user to choose their own Hamiltonian and dissipator terms as well
as one of the available figures of merit. Hence, it combines simulation and optimisation for
certain problems dealing with small quantum systems. It allows for the optimisation of robust
pulses and includes a large number of examples. The full version is available on github.
QuTiP [145, 146] is an open source python library for simulating quantum systems. One of its
features is a quantum optimal control implementation. As such it offers limited optimisation
techniques with GRAPE and CRAB. Conveniently, the optimisation settings are defined with
the usual QuTiP structure. The library is available for example via pip or conda.2

The Krotov package [147] is an open source python library built on top of QuTiP. As such
it offers optimisation via Krotov’s method. It includes an extended range of settings in
comparison to QuTiP’s own QOC implementation. The library is available for example via
pip and conda.
Other QOC packages include Spinach [148] and SIMPSON [31], which focus on NMR
applications, as well as QEngine [136, 149] which includes a GROUP implementation
designed especially for ultra-cold atom physics. GRAPE was also recently implemented in
the GRAPE-Tensorflow python package [150], using methods known from machine learning
to calculate the gradients.

2.2.3 Limits of Control: Controllability, and the Quantum and Infor-
mation Speed Limits3

Whether or not a QOC problem is (approximately) solvable, is not always simple to answer.
However, by examining a number of characteristics of the Hamiltonian, some general
predictions can be made.
First of all, one may ask whether the control objective is in principle reachable. This can
be addressed by examining the controllability of the system [151]. The drift and control
Hamiltonians define a certain state (and also gate) space that is reachable. A system is
called controllable when all states (gates) in the Hilbert space are accessible in finite time.
It has been shown that, if the rank of the dynamical Lie algebra generated by the different
terms of the Hamiltonian corresponds to the rank of the control space (and fulfills certain
symmetry criteria), the system is fully controllable. Alternatively, the question of state-
controllability can be examined via a geometric approach based on graph theory, which can
be more convenient to check, especially for larger systems [152]. For more information on
controllability, please refer to the following books [151, 153]. For open quantum systems,

2Popular python package managers
3The title has been changed with respect to the publication to better reflect the content of the subsection.
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the deleterious effect of the environment usually can not be completely canceled and only a
subset of the whole set of states (gates) can be reached [17].
If the controllability criteria are fulfilled, the question remains whether the controls are
complex and energetic enough to navigate the Hilbert space to the specified target. In general,
the quantum speed limit (QSL), i.e. the smallest possible control time needed for a system to
reach its target, is influenced by two factors. First, the dynamical equation determines how
fast the system may change. This is usually quantified by the so-called Schatten p-norm of
the dynamical operator (see reference [154] for details). Second, the exact distance between
the initial system to the objective needs to be taken into account.

Quantum Speed Limit

The minimum time it takes to evolve a system into a target state is mostly dependent
on two things: The Hamiltonian Ĥ and the distance between the initial and the target
state ⟨ϕ0|ϕt⟩. For a time-independent Hamiltonian, we obtain the Bhattacharyya-
bound [155, 156]:

TQSL ≥ ∆E−1 arccos | ⟨ϕ0|ϕt⟩ | (2.27)

This time TQSL is called the quantum speed limit (QSL). It can be interpreted as
follows: If the Hamiltonian has a high energy variance calculated on the initial state

∆E =
√
⟨ϕ0| Ĥ2 |ϕ0⟩− ⟨ϕ0| Ĥ |ϕ0⟩

2, then any other state is reached more quickly. It
might be more intuitive to consider the case that ϕ0 is an eigenstate of Ĥ, hence it will
never change and as ∆E = 0, the speed limit will go towards infinity. The distance to
the target state finally determines the exact time scale.

For a more general and complete picture of the QSL the reader is advised to refer to the
following references [156, 154].
Similarly to the QSL, the information speed limit (ISL) can also restrict the minimum length
of the control pulse. Behind this is the idea that the information encoded in the control
pulse has to be sufficient to steer the system to the target. For example, in the noiseless
case the degrees of freedom in the control (the number of independent frequencies in a
bandwidth-limited control field or the number of kicks in a bang-bang control [157]) should
at least reflect the dimension of the system [141]. Note that in the presence of noise in the
system or in the controls, more degrees of freedom are required to transmit the same amount
of information.



64 Quantum Optimal Control

2.3 The Sigmoid Basis

The subsequent section is in preparation for publication [158].

2.3.1 Introduction

Finding an optimal pulse for a concrete application starts by imposing restrictions on the
pulse u(t) that are given by a corresponding experiment or the state of the art. Typically, one
can identify three major types:

R.1 Restriction in time (finite length): u(t) = 0, if 0 ≥ t or t ≥ T

R.2 Restriction in amplitude (finite strength): |u(t)| ≥ Amax

R.3 Restriction of the rise time (finite gradient): u′(t) ≤Gmax

or restriction of the spectrum (finite bandwidth envelope): F [u(t)] = Y(ω) ≤ Ymax(ω)

Several strategies have been developed to impose these conditions, some of which are de-
scribed in Section 2.2.1.3. For the Fourier basis, these restrictions are vital as, by nature, it
produces infinitely long pulses which are limited only in bandwidth. By clipping them in
either amplitude or time, they also lose their strict bandwidth properties. Shrinking the pulse
to fit inside the limits or applying a scaling function represent other solutions. Unfortunately,
they restrict access to maximum amplitude values (e.g. producing a square pulse is very
complex using only trigonometric elements). All in all, the example of the Fourier basis
shows two things: First, imposing restrictions also leads to a new set of basis properties.
Second, both the basis and the type of restrictions influence which shapes are complex or
simple to produce.
We have designed a basis that intrinsically contains the three limits described above. As a
result, its properties are well-defined. Its close relationship to the piece-wise constant basis
known from GRAPE [19] and Krotov [134, 126] optimisations (see Section 2.3.5.1) makes
it a potential connector between gradient-based and gradient-free algorithms. The design of
the basis results in amplitude-maximising shapes such as square pulses to be constructible
from a low number of basis elements.

2.3.2 Definition

We consider the pulse basis elements up(t) to be sigmoid functions. Sigmoids can in general
be defined as the integral of a function with a single maximum at the centre. For the
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G(2Amax,0,1; t)

S(2Amax,0,1; t) - Amax

-3 -2 -1 0 1 2 3

-Amax

0

Amax

time

2 trise

Fig. 2.7 Exemplary basis function S (Ap, τp,σ; t)−Amax and its derivative G(Ap, τp,σ; t) with
Ap = 2Amax, τp = 0, σ = 1. The dotted line represents a linear function with the maximum
gradient S ′(Ap, τp,σ;0) =G(Ap, τp,σ;0) = Amax/trise.

sake of simplicity, we only consider the sigmoid function that is defined by the integral of
the Gaussian G(Ap, τp,σ; t). Hence the sigmoid basis element can be defined through its
derivative:

u′p(t) =
Ap
√

2πσ
e−

1
2

( t−τp
σ

)2

=G(Ap, τp,σ; t).
(2.28)

Each element is characterised by the amplitude Ap, the centre time τp and the width σ.
Accordingly, the sigmoid function S (Ap, τp,σ; t) =

∫
G(Ap, τp,σ; t′)dt′ resembles a smooth

step function going from 0 to Ap at a time τp as shown in Fig. 2.7. The full basis element is
defined as

up(t) =
Ap
√

2πσ

∫ t

−∞

e
− 1

2

(
t′−τp
σ

)2

dt′

= Ap
1
2

(
1+ erf

(
t−τp
√

2σ

))
= S (Ap, τp,σ; t),

(2.29)

where erf(z) denotes the error function.
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Fig. 2.8 The effect of σ. From left to right, one can see a sigmoid basis control pulse, its
derivative, and its spectrum. The top row shows a pulse constructed from basis elements
with σt =

1
20 σb, i.e. a much lower sigmoid width than that of the bottom row σb. The

right collumn is plotted over the same frequency range but given in terms of the respective
σ to emphasise the effect. The dashed line shows the respective bandwidth envelope (see
Section 2.3.4).

2.3.3 Imposing Constraints

First, let us consider how to enforce the restriction of the rise time R.3 via the choice of σ.
To restrict the maximum derivative to that of a linear rise of length trise from 0 to Amax one
simply needs to choose

σ ≥

√
2
π

trise. (2.30)

The result of this constraint is a maximum derivative of Gmax =
Amax
trise

shown in Fig. 2.7. Its
connection to the bandwidth envelope can be seen in Fig. 2.8. Each control pulse is composed
of N basis elements4, each with two variable parameters, Ap and τp. In the following, it
is assumed that they are ordered in time, i.e. τ0 ≤ τ1 ≤ ... ≤ τN . We can show that, by
automatically adapting the parameters according to a set of rules, one can satisfy the other
two limits, R.1 and R.2 .

4Please note that N denotes the number of basis elements in this section, not the atom number.
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To stay within the limit of pulse length T (R.1), three conditions need to be met:

1. AN = −

N−1∑
p=0

Ap

2. τ0 ≥ σ
√
−2lnϵ, where ϵ ≪ 1

3. τN ≤ T −σ
√
−2lnϵ

(2.31)

The first condition ensures that after N basis elements, the amplitude returns to zero. The
second condition fixes the pulse amplitude to zero at t = 0. As Gaussians are infinite, this
is never fully satisfied but approximately true, as the first derivative of the pulse will obey
|u′(0)|
Gmax

≤ ϵ.5 Similarly, the third condition fixes the pulse amplitude to approximately zero at
t = T .
To constrain the control amplitude to ±Amax (R.2), the time ordering is exploited, resulting
in the following condition.

−Amax ≤

m∑
p=0

Ap ≤ Amax, where m ∈ {0,1, . . . ,N −1}. (2.32)

Starting from zero, each amplitude value Ap can be seen as a step. Thus, the sum of steps
gives the current height, which should never exceed the amplitude limits ±Amax. A single
step, however, could go from the minimum to the maximum, i.e. |Ap| ≤ 2Amax.
In conclusion, these restrictions do not change the properties of the basis as they simply
set limits inside the natural basis space. This is not a given for other bases, where the
constructed pulses are commonly restricted after the basis elements have been combined
into a (discretised) pulse function. The advantages of the resulting pulse properties are given
below.

2.3.4 Properties

The sigmoid basis is composed of spectrally narrow elements with a time-limited derivative.
As a result, even under amplitude and time restrictions, its bandwidth envelope is predictable.

5Please note that this will limit the pulse because the pulse converges to zero beyond the limits on either
side. For ϵ = 10−2, |u(0)| ≤ 1.2×10−3Amax and |u(T )| ≤ 1.2×10−3Amax.
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It is simple to analytically calculate the Fourier transform6 of the derivative of the single
basis element given in Eq. (2.28):

F [u′p(t)] = e−
1
2σ

2ω2
Apeiτpω. (2.33)

As the Fourier transform of a sum is equivalent to the sum of Fourier transforms [159], we
can write the transform for the full pulse’s derivative u′(t) as:

F [u′(t)] = X(ω) = e−
1
2σ

2ω2
N∑

p=0

Apeiτpω. (2.34)

The spectrum of the pulse u(t) follows from the Fourier identity for integrals [159], resulting
in

F [u(t)] =
X(ω)

iω
+X(0)δ(ω)

=
1
iω

e−
1
2σ

2ω2
N∑

p=0

Apeiτpω+

�
�
�

�
�
�>

0

δ(ω)
N∑

p=0

Ap.

(2.35)

The last term cancels due to R.2 implemented by the first condition in Eq. (2.31). From
this expression, one can derive a bandwidth envelope for any constructible pulse, which is
only dependent on σ, Amax, τ0, and τN . To do so, we consider the pulse with the highest
possible integral, i.e. a square pulse with amplitude Amax. As the integral corresponds to the
zero-frequency component of the spectrum and the pulse is symmetric, we can deduce the
amplitude of the bandwidth limiting envelope Y∞max shown in Fig. 2.9,

Y∞max(ω) = e−
1
2σ

2ω2
lim
ω→0

[Amax

iω
(1− ei(τN−τ0)ω)

]
= Amax(τN −τ0)e−

1
2σ

2ω2
.

(2.36)

6In this chapter, we use the following convention.

F [ f (t)] =
∫ ∞

−∞

f (t)e−iωtdt

F −1[ f̃ (ω)] =
1

2π

∫ ∞

−∞

f̃ (ω)eiωtdt
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Fig. 2.9 Control pulses composed according to Eq. (2.38) and their corresponding spectra.
The dashed lines represent YN

max, the solid line gives Y∞max.

Any pulse constructed from the sigmoid basis with the constraints described in Section 2.3.3
will be spectrally limited to Y∞max. This relation holds for infinitely many basis elements.7

However, we can be more specific. The limit for a pulse constructed from N basis elements
is given by

k =
(τN −τ0)ω

2N

YN
max = Y∞max


−1/k k ≤ −π2
sink/k −π2 < k < π

2
+1/k k ≥ π

2

,
(2.37)

where the piece-wise part is equivalent to the envelope of the function sinc(k). In fact, sinc(k)
represents the Fourier transform of a square pulse of length (τN − τ0)/N. The bandwidth
envelope YN

max is shown for different values of N in Fig. 2.9.
These limits can be checked empirically by assuming that the combination of basis elements

with the widest spectral envelope consists of evenly spaced sigmoids. The corresponding
pulse umax(N, t) exhibits the strongest possible high-frequency oscillation that is producible

7It should be noted that simply cutting the tails of the spectral distribution would lead to an infinitely long
pulse and violation of R.1.
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with N basis elements. umax(N, t) is described by the following conditions:

τp = τ0+ p
τN −τ0

N
A0 = Amax

AN = Amax(−1)N

Ap = 2Amax(−1)p

(2.38)

Considering the pulses to be centred on zero gives the following Fourier transform.

F [umax(N, t)] = Y∞max sinc(k)
N∑

p=1

F

[
(−1)p+2N

N
δ
(
t+ tp

)]
, (2.39)

where tp =
(
p− N+1

2

)
τN−τ0

N corresponds to the midpoint between the steps.
The first term of Eq. (2.39) corresponds to the Fourier transform of the error function, the
second to the Fourier transform of a single square pulse and the last part depends on the exact
positions of the sigmoids. The Fourier transforms of the delta functions result in oscillatory
terms which are normalised to one by the factor 1/N. As a result the last term has no effect
on the envelope given by the first two terms.

2.3.5 Connection to Other Optimisation Methods

2.3.5.1 Piece-wise Constant

Many algorithms commonly apply the piece-wise constant basis. Their most prominent
representatives are GRAPE [19] and Krotov’s method [126, 134], both of which are gradient-
based open-loop optimisation methods. Without the bandwidth-limitation, the sigmoid basis
represents the same function-space as the piece-wise constant basis. Equation 2.36 shows
that the bandwidth-envelope is equivalent to that of any time-limited function, if the sigmoid
width σpc≪ 1 creating genuine step functions. In general, all basis elements are considered
to be of the same length which is taken into consideration by

τp = τ0+ p∆τ, where ∆τ =
τN −τ0

N
. (2.40)

The parameter, scaling the pth sigmoid basis element is given by Ap. Similarly, the kth

piece-wise constant element is scaled by u(k) in analogy to Eq. (2.22), where u(0) = u(N+1) = 0.
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Assuming that σpc≪ ∆τ, they are connected by the following relationships:

Ap = u(p+1)−u(p),

u(k) =

k−1∑
p=0

Ap.
(2.41)

The two mentioned examples of gradient-based algorithms provide methods to efficiently
calculate the gradient for the piece-wise constant basis, hence we assume that ∂J/∂u(k) is
known. The transformation for an equivalent optimisation in the sigmoid basis then reads

∂J
∂Ap
=

N∑
k=1

∂J
∂u(k)

∂u(k)

∂Ap

=

N∑
k=p+1

∂J
∂u(k) .

(2.42)

This transformation is simple and holds for the above approximations. It could be used
to reduce the number of basis elements per optimisation by selecting only a certain set of
p-indices or rather distributing the cuts between piece-wise constant elements randomly.
Usually, gradient-based optimisations are over-parameterised to avoid local traps. However,
for computationally demanding optimisations, this might present an alternative to gradient-
free or stochastic gradient approaches [160]. By starting with a small set of τp and adding
more over a number of super iterations, the complexity of the pulse would slowly increase
together with the computational cost of the gradients. For such an optimisation, the condition
in Eq. (2.32) would need to be adjusted to take into account the shape of the pulse in between
steps but the rest of the constraints would stay the same.

2.3.5.2 dCRAB

The dCRAB algorithm [140] is designed to overcome local minima by changing its basis
after reaching convergence. The basis elements are defined by the superparameters which
are replaced after each convergence through random picks from a limited (chopped) set.
Commonly, these superparameters are represented by frequencies of the trigonometric
elements in the Fourier basis. Here, however, they are represented by the set of centre
times τp. The parameters, which are optimised, are the amplitudes of the respective basis
elements. As the bandwidth-limiting envelope is dependent on the number of basis elements,
the pulse properties evolve with each super iteration. We have included the sigmoid basis
in the software suites RedCRAB [5] and QuOCS [8]. A simplified version of the sigmoid
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basis is applied in the project described in Section 3.1. Here, it proves efficient in shaping the
spectral properties of the optimised pulses, despite different restriction approaches, and thus
enhances the sensitivity of the resulting sensing sequence. It remains to be benchmarked
against other bases to test its effect on the landscape for different QOC problems.

2.3.5.3 DRAG

Derivative Removal by Adiabatic Gate (DRAG) [28] aims to create pulses which methodically
avoid unwanted transitions in the quantum system at frequency ∆0. Zeroth order DRAG
pulses are described by the relationship between the in-phase I-component I(t) and quadrature
Q-component Q(t) of the pulse. The components are orthogonal to each other and equivalent
to the real and imaginary parts of the pulse u(t) = I(t)+ iQ(t).
First, let us consider a general pulse f (t) which is limited in time i.e. f (0) = f (T ) = 0. Its
Fourier transform is given by F [ f (t)] = Y(ω). The Fourier identity for the first derivative of
such a pulse [159] gives the following relationship.

F [ f ′(t)] = X(ω) = −iωY(ω)

0 = Y(ω)+ i
X(ω)
ω

.
(2.43)

To ensure that the spectrum of u(t) has a node at ∆0 (i.e. the frequency component at ∆0 is
set to zero), we define the pulse components as

I(t) = f (t) and

Q(t) = −
f ′(t)
∆0

,
(2.44)

such that its Fourier transform can be written as

F [u(t)] = F [I(t)]+F [iQ(t)]

= F [ f (t)]− iF
[
−

f ′(t)
∆0

]
= Y(ω)+ i

X(ω)
∆0

.

. (2.45)

Combining Eq. (2.43) and Eq. (2.45) shows that the Fourier transform is zero at ω = ∆0. The
effect of zeroth-order DRAG pulses is illustrated in Fig. 2.10.
DRAG pulses can be naturally constructed with the sigmoid basis resulting in I(t) being

made up of sigmoids and Q(t) of Gaussians, i.e. the sigmoids’ derivatives. After all, the
sigmoid basis already limits the first derivative in both amplitude and time. Still, in this case
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Fig. 2.10 DRAG control pulse constructed with the sigmoid basis. (left) I- and Q-component
calculated according to Eq. (2.44) with a detuning of ∆0. (right) Pulse spectrum with a
distinctive node at ∆0.8

the part constructed from Gaussians has to be properly amplitude-limited. The restrictions can
be implemented by adjusting the amplitude limits to Bmax = Amax

√
2πσ∆0, if Bmax > Amax.

For completeness, it should be mentioned that the first order of DRAG connects the detuning
of the applied control field δ to the control pulse by

δ(t) =

(
λ2

0−4
)
I2(t)

4∆0
. (2.46)

This relationship is derived by considering the first three levels of a driven slightly anharmonic
system with only nearest level coupling [28]. λ0 represents the relative strength of the
unwanted transition with respect to the targeted transition. As the detuning is not time-
limited and its amplitude-limits are usually very wide the condition in Eq. (2.46) can be
added to the system without any further limitations.

2.3.6 Outlook

The sigmoid basis has some useful properties that make it worth exploring in more detail:
First, the resulting pulses can be straight-forwardly restricted in time, amplitude, and rise
time without leaving the sigmoid basis function space. The resulting bandwidth envelope
makes its spectrum easily predictable. This provides an alternative to applying additional
cost-functions or post-processing the pulses. Second, the sigmoid basis makes it simple to
construct pulses with maximum amplitude without cut-offs that would induce high frequency
components. Third, it can be adapted to naturally construct DRAG pulses. The resulting

8The first derivatives (see restriction R.3) are limited to I′(t) ≤Gmax =
Amax√

2πσ
and Q′(t) ≤ 2 e−1/2

σ∆0
Gmax.
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optimisation always produces pulses with frequency-holes, again, without additional cost-
functions. This concept of automatic DRAG-elements could also be extended to other bases.
The sigmoid basis’ direct connection to the piece-wise constant basis atσpc≪ 1 and to CRAB-
like approaches opens a route to exploring the space between traditional GRAPE/Krotov
and dCRAB applications. Especially, when gradient-calculations are expensive but not
impossible, the sigmoid basis might provide an efficient alternative to traditional piece-wise
constant elements by gradually expanding the parameter space. Generally, many bases
exist that have not been explored in detail with respect to their applicability for QOC.
Three concepts that have been explored for certain examples and which show promising
results are the Slepian [161], the Walsh [162], and the B-spline basis [163, 164]. We
suggest benchmarking the sigmoid basis (and others) with different QOC problems to see
how the resulting landscape affects convergence [165, 166]. Another approach would be
characterising the complexity of known optimal pulses for specific problems with different
bases. The complexity could be defined by the minimum number of basis elements required
to achieve a threshold overlap between the ideal and constructed controls. The connection
between a problem’s complexity and the applied basis might point us towards a more efficient
use of bases in QOC in general.



Chapter 3

Controlling Quantum Systems

3.1 Magnetic Field Sensing with Shallow NV Centres

3.1.1 Magnetic Field Sensing

The review paper by Degen, Reinhard, and Cappellaro [105] provides three different defi-
nitions for quantum sensing. In this section, we focus on the first and second: “Quantum
sensing is typically used to describe [the u]se of [(I)] a quantum object [...] [or (II)] quantum
coherence (i.e., wavelike spatial or temporal superposition states) to measure a physical
quantity.”
NV centres have several qualities which make them good sensors [2]. The examples in
Chapter 1 illustrate most of them, so here we only give a brief summary: First, NV centres
are easily initialised into the ms = 0 ground state via a laser. Next, their state can be read out
directly by, again, the application of a laser. To access the NV centre’s superposition state
and apply elaborate sensing schemes, they can be manipulated via MW fields resonant with
either of the ms = 0↔±1 transitions. Furthermore, the quantum properties of NV centres are
accessible at cryogenic or room temperatures where the T1-times typically are in the tens of
milliseconds regime [50, 167]. Not only can they be used to sense magnetic fields [168, 169]
but also electric fields [170, 171], temperature [172], and strain [173]. Lastly, NV centres
are especially valued in the life sciences due to the bio-compatibility of their host material,
diamond [50].
The fields of Nuclear Magnetic Resonance (NMR) and Electron Paramagnetic Resonance
(EPR) have produced a plethora of pulsed sensing sequences [174–176]. Some of them are
analogously applicable to NV centres, which have the advantage of optical readout. Likely the
simplest one is the pulsed Optically Detected Magnetic Resonance (ODMR) sequence [177].
ODMR is a sensing technique, where the electronic spin state is addressed with different
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Fig. 3.1 The Ramsey protocol. The laser and MW pulses in the protocol are depicted in green
and dark blue, respectively. The last row shows the evolution of the NV centre on the Bloch
sphere during the first MW pulse, the free precession time, and the second MW pulse. The
green cross indicates the expectation value along z, measured by the read out laser pulse.

drive frequencies, hence scanning over the detuning. When the drive is on resonance with a
transition, the fluorescence rate of the NV centre drops. From the position of the resonances,
one can determine the Zeeman-splitting. In contrast, the Ramsey sequence [178, 179] shown
in Fig. 3.1 is the spin-equivalent of an optical interferometer. Here, the spin is first initialised
by a laser pulse. Then, a π

2 -pulse is applied to the initialised NV centre, bringing it into a
superposition state. An unknown constant magnetic field along the NV’s axis Bsens induces
a phase ϕram over the free precession time1 τ. Another π

2 -pulse translates the phase into a
spin z component, which is read out by a second laser pulse. Typically, this measurement is
carried out over a range of τ resulting in an interference pattern with a frequency ωram that is
directly proportional to the amplitude of Bsens.

ωram = ϕ̇ram =
∂

∂τ

[
τBsensγnv

]
∼ Bsens,

(3.1)

where γnv is the gyromagnetic ratio of the NV centre. A more detailed description of the
process is given in the review by Rembold et al. [2].

1Please note that the free precession time τ is different from the pulse element time τp for the sigmoid basis.
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3.1.2 Motivation

By repeating the measurement sequence at different positions with respect to a sample, one
can map out the sample’s magnetic field. This type of strategy finds its application in 2D
material development [180, 181], the life sciences [182] and many other fields [183, 184].
For maximum resolution, the NV centre should be as close as possible to the source. The
most straightforward way to achieve proximity is by placing the NV centre within a few
nanometers of the diamond’s surface (shallow NVs [185]). When the shallow NV centre
sits near the tip of a diamond pillar it can be used as a scanning probe [169]. It should be
noted, that we concentrate on setups with single NV centres, but similar approaches exist
with ensembles [183, 186].
While strategies with shallow NV centres show promising results [187], they suffer from
one major problem: surface-induced noise. Surface impurities and the dangling bonds of
the carbon atoms at the surface cause a background field that drastically reduces the T1-time
(see Section 1.1.1.4) and gives each NV centre slightly different properties [185, 188]. The
results presented hereafter improve sensing sequences for individual shallow NV centres. The
presented strategy is intended as a first step toward developing robust protocols for a scanning
probe setup currently being developed by the group of Elke Neu-Ruffing in Kaiserslautern.
Most scanning probe setups change the position of the sample with respect to the probe,
which is connected to the MW antenna [187, 181, 189].2 Instead, the planned experimental
configuration has a fully movable diamond needle while the MW antenna is static with
respect to the sample. This setup allows to attach the sample directly to the antenna. As
a result, the NV centre will experience different MW strengths depending on its relative
position with respect to the antenna, and hence to the sample. To compensate, the MW
field either needs to be homogeneous, or the MW pulses must be robust against amplitude
variations. Specialised MW antennas address the first solution [190]. The second solution is
approached by QOC strategies like the ones described below.

Robust Magnetometry with Single NV Centers via Two-Step
Optimization

The following article is reproduced from N. Oshnik, P. Rembold, M. M. Müller, T. Calarco,
S. Montangero, and E. Neu, Robust Magnetometry with Single NV Centers via Two-Step

2It should be noted that even in a setup where the probe is connected to the antenna, the distance between
probe and antenna will slightly vary. The probe usually sits on the tip of an atomic force microscope [169]
which oscillates and adjusts the height of the probe to keep the probe close to the sample’s surface.
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Optimization, in preparation for publication: arXiv:2111.12684 [quant-ph].
The author of this thesis contributed to the planning of the project and the writing of the
manuscript. She was responsible for refining and extending the applied control strategies, as
well as maintaining and adapting the control-software RedCRAB for this project. Addition-
ally, she was involved in the discussion of experimental results, analysis of resulting control
sequences, and the implementation of the closed-loop optimal control. She composed Fig-
ures 4 (Restriction approaches. . . ) and 7 (Comparison between two optimized spin inversion
pulses. . . ) and parts of Figure 3 (Initialization and readout of the NV spin state. . . ).

3.1.3 Abstract

Nitrogen-Vacancy (NV) centers in diamond are a widely-used platform in the rapidly growing
field of quantum sensing. NV centers near the diamond surface are of particular interest
as they can offer nanoscale resolution. However, these shallow NV centers experience
considerable noise from the surface, reducing their lifetimes and consequently their sensing
capabilities. This work demonstrates a two-step optimization approach to improve DC
magnetometry schemes with shallow single NV centers. Both spin readout and manipulation
processes are enhanced by designing laser pulses and microwave controls via closed-loop
optimal control. This type of optimization inherently takes experimental limitations and
unknown system parameters into consideration. In addition, the optimization objective
incorporates robustness against variations of the microwave control amplitude. For the pulsed
Optically Detected Magnetic Resonance (ODMR) measurements, we report sensitivities
below 1 µT Hz−

1
2 for an 83% decrease in control power, increasing the robustness by approx-

imately one third. Furthermore, the optimized Ramsey measurements result in sensitivities
below 100 nT Hz−

1
2 giving a two-fold sensitivity improvement. The obtained sensing schemes

are applicable for various magnetometry setups that benefit from robustness, such as ensem-
bles of NV centers and NV-based scanning probes. The robustness does not only protect
the protocol’s sensitivity from drifts, but also increases the available sensing/interrogation
volume.

3.1.4 Introduction

Quantum sensing with NV centers3 have evolved into a prominent branch of quantum
technologies in the last two decades [191, 37, 105, 192, 2]. NV centers serve as a multi-
purpose sensor for detecting magnetic [193, 168, 194, 15] and electric fields [171], tem-

3In this manuscript, the term NV center denotes the negatively charged state of the nitrogen-vacancy center
in diamond.

https://arxiv.org/abs/2111.12684
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perature [172, 25], and pressure [173, 195]. Additionally, NV centers find applications as
quantum memories [196], quantum registers [197], and in other areas of emerging quantum
technologies [2, 198, 199]. Rapid improvement in nano-fabrication methods [179, 200, 201],
material science research [202, 203], as well as control methodologies [105, 2, 176, 18, 24]
have led to a variety of NV-based quantum sensors with applications in the fields of life sci-
ences [50, 204], and material studies [205]. NV centers exhibit optical spin-state polarization
and spin-state dependent fluorescence [193, 191, 168]. Additionally, the NV spin-state can
be manipulated with resonant microwave (MW) control fields. Various sensing protocols are
available that use MW-based unitary gates under the two-level approximation [105]. How-
ever, state-of-the-art NV-based quantum sensors do not perform on par with their theoretical
potential. Because of the potential applications, further improvement of NV magnetometry
is a flourishing and multidisciplinary research topic [105, 192, 2]. While the NV centers
particularly close to the surface may offer high nanoscale resolution [208, 185], they also
exhibit especially short dephasing and decoherence times.
Likewise, limitations and errors related to the experimental setup, such as drift, finite
bandwidth, and transfer functions, restrict the performance of these sensing methods. For
example, to exploit the full potential of NV-based scanning probe applications, the MW
antenna has to be brought close to the cantilever [169, 209, 210], which can be experimentally
challenging given the microscopic scale of the scanning devices. If the distance between
antenna and cantilever is larger, it reduces the contrast and hence, the sensitivity of the
setup. Additionally, applications with NV-based scanning probes [211, 212] that move with
respect to the antenna experience variations in control power. The power variations, in
turn, lead to a correspondingly worsened sensitivity. Similarly, applications with single NV
centers [213, 214] or ensembles of NV centers [215, 192, 216] in bulk diamond are subject
to variation in control power depending on the distance from the MW antenna. In all these
cases, robustness against control power variation can simplify the experimental procedure
without the need for any modification to the setup or the control pulse itself.
One strategy to partially compensate for these limitations involves quantum optimal control
(QOC) [18, 2, 24]. QOC has previously been applied to optimize MW control pulses for
quantum sensing with NV centers in a variety of settings [2, 99, 98, 217, 26, 108, 218, 110,
186, 219]. Its common objective connects the diverse family of QOC algorithms: to iteratively
improve a time-dependent control pulse until a given goal has been reached. Some of these
algorithms rely on simulations (open-loop) to quantify the quality of the pulses. In contrast,
others achieve the same via direct interaction with the experiment (closed-loop, Fig. 3.2a-
c). Algorithms such as GRAPE [19, 220] (gradient ascent pulse engineering) or Krotov’s
method [126, 221] require the calculation of the derivative of the goal function (gradient-
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Fig. 3.2 (color online) Schematic for the closed-loop optimization with single NV centers in
diamond. The optimization algorithm suggests control pulses/parameters to the setup. The
resulting Figure of Merit (FoM) is calculated from the output and passed back to the optimizer.
This cycle repeats until the FoM converges. (a) An exemplary plot of the convergence of the
FoM with the number of algorithm iterations Ni; the algorithm suggests different controls to
find the global optimal solution. (b) The in-phase and quadrature components (I and Q) of a
typical guess for a MW control pulse suggested by the algorithm. (c) The confocal setup used
in combination with the RedCRAB optimization program; laser (green arrow) and MW (blue
arrow) pulses are used to control the NV spin state. The fluorescence (red arrow) is collected
with an optical fiber, P, connected to a single photon counter (APD), logged with a data
acquisition device (DAQ), and further processed on the local control system to pass the FoM
to the remote optimization server. (d) The two-step optimization strategy introduced in this
work. In step 1 the laser based spin state initialization and readout processes are optimized.
Step 2 creates robust MW control pulses for pulsed ODMR (p-ODMR) and Ramsey sensing
sequences via QOC. (e) Lattice structure of the NV center. The NV quantization axis is
shown as a dotted black line. The component of the external magnetic DC field along the NV
quantization axis is denoted as BNV and quantified via the sensing methods. The confocal
schematic in (c) is is drawn with parts adapted and modified from Ref. [206] and Ref. [207]
with permission under terms of reuse. For details on the setup see appendix 3.1.11.1.
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based). The dCRAB algorithm (dressed Chopped RAndom Basis) [129, 140, 24] can be
implemented under a gradient-free strategy. Additionally, the functional parametrization
approach of the dCRAB algorithm can be combined with gradient search methods via
algorithms like GROUP [149] (gradient optimization using parametrization) or GOAT [222]
(gradient optimization of analytic controls). Even with a moderate number of basis functions,
the control pulse can contain enough information to steer the system [141, 223].
With the ultimate goal of enhancing the sensitivity of the main DC magnetometry methods
with NV centers (section 3.1.5), this work presents a two-step strategy to exploit the full
potential of feedback-based optimization algorithms and QOC [224, 26, 6, 24] in connection
with shallow single NV centers in diamond (< 10 nm below the surface, Fig. 3.3a). At
the first step, the optical spin initialization/readout process is optimized via a gradient-free
Nelder-Mead search [143] in the parameter landscape corresponding to the properties of
the experimental system and setup (section 3.1.7.1). In the second step, we utilize the
gradient-free dCRAB algorithm to optimize the MW pulses for spin state manipulation. The
optimization routine is implemented via the QOC software package RedCRAB (Remote
dCRAB) [26, 6]. The optimized MW controls are developed for two DC magnetometry
methods (section 3.1.7.2), namely the pulsed ODMR sequence [53, 172] and the Ramsey
sensing protocol [168, 193]. Two optimization bases, Fourier [23] and sigmoid [158], (see
appendix 3.1.11.2) are compared to assess their suitability for the involved methods. All
optimizations include a Figure of Merit (FoM, see Fig. 3.2a) based on the optical readout
contrast. To include robustness against variation in MW drive strength, the FoMs are adapted
to scan over control amplitudes ranging from 100% to 20% of the maximum. Finally, the
optimized pulses are assessed for their enhancement of the average sensitivity and robustness
(section 3.1.8).

3.1.5 DC Magnetometry Methods

The transitions in the energy level structure of the NV center strongly influence its sensitivity
towards external magnetic fields (more details in section 3.1.7.1). The optical ground state
forms a spin one triplet system, with a Zero-Field Splitting (ZFS) of ≈ 2.871 GHz. In the
presence of an external magnetic field along the NV center’s axis (BNV), Zeeman splitting
lifts the degeneracy between the ms = ±1 states. This splitting provides a direct way to
quantify BNV. A pseudo two-level system can be constructed from the ms = 0 and one of
the ms = ±1 states. The two-level approximation forms the basis for various magnetometry
techniques with NV centers [191, 193, 15, 200].
The most straightforward procedure to detect DC magnetic fields is called continuous
wave optically detected magnetic resonance (cw-ODMR) [53, 225]. The method involves
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continuous polarization of the NV spin state with a green laser, while MW pulses with
different drive frequencies ωmw are applied sequentially to locate the resonance peaks. The
splitting between the resonance peaks is proportional to BNV. Cw-ODMR measurements
are less demanding in terms of practical resources and complexity than pulsed measurement
schemes, as they do not require pulsed controls. However, by nature, continuous-wave
measurements have a lower spin readout fidelity and suffer from optical and MW power
broadening [53].
The dephasing time T ∗2 sets a limit to the achievable sensitivities with different DC magne-
tometry methods (see appendix 3.1.11.3, Eq. (3.24)). Short laser and MW pulses help to
overcome the power broadening effect [53] and attain better sensitivities. Pulsed ODMR
involves pulsed optical excitations and spin state transfer using MW π-pulses. For shallow
NV centers, the spin states decay quickly. Hence, pulsed ODMR experiments with short,
high power control pulses can be advantageous. The short control pulses inherently result
in faster measurements, which lead to an improvement in the overall sensitivity (see ap-
pendix 3.1.11.3). The pulsed ODMR method also offers enhanced readout contrast, which
further improves the sensitivity. Note that the sensitivity is defined as the least detectable
magnetic field within a measurement time of one second [105, 226].
In general, the cw- and pulsed ODMR methods do not exploit the quantum property of
spin superposition, which provides a way to make the measurements more sensitive [105].
Conversely, the double-pulse-based Ramsey sequence does utilize spin superposition states
for sensing. It also has the advantage of avoiding the power broadening effects [227]. The
Ramsey method consists of two π

2 -pulses, with free precession time τ in between. The
optically initialized NV spin state is transferred into a superposition state by the first of
the two π

2 -pulses. This superposition state interacts with the external magnetic field for the
time τ, thus accumulating a phase. Eventually, the second π

2 -pulse converts the accumulated
phase into an optically measurable population difference. In contrast to the ODMR-based
frequency-sweep methods, the Ramsey sensing protocol is performed at a fixed ωmw. In
addition, τ can be varied to measure minimal fluctuations in external magnetic fields [105].
In general, the Ramsey method can be used to sense any magnetic fields that change slowly
enough, i.e., with frequencies less than 1

τ .

3.1.6 Sample and Experimental Setup

All experiments in this work involve an electronic-grade diamond sample (300µm ×100µm
×40µm) with implanted NV centers (Fig. 3.3).The nitrogen ion implantation was performed
with a fluence of 3×1011 cm−2 at 6 keV, which results in an average depth on around 9.3
± 3.6 nm [? ]. The implantation was followed by annealing (850◦C), which disperses the
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Fig. 3.3 (color online) Sample characterization; (a) Confocal scan of the diamond sample
with shallow single NV centers. (b) Count rate of a single NV vs. power of the excitation
laser. The saturation behavior can be studied to obtain the excitation power with the best
signal-to-background ratio for the experiments. Ideally, this lies below the saturating laser
power. (c) Typical emission spectra of the single NV centers in the sample. The NV charge
states have different spectral signatures, the given spectrum indicates negatively charged NV
state. (d) Exemplary second order correlation measurement, which is performed to identify
single NV centers in the sample. τc is the delay time in the photon antibunching measurement
with the NV (g2(0) ≈ 0.27).

defects, leading to a uniform NV center distribution in the sample. Afterward, a second
oxidation annealing at 400◦C was performed, followed by tri-acid cleaning. This process
removes the top layer of the dimaond, resulting in reduced the NV density and depth. The
average NV density is estimated via confocal fluorescence maps to be around 7×107 cm−2.
The value is obtained by analyzing confocal scans of the sample surface (see Fig. 3.3a).
For the experiment, the sample is mounted on an Ω-shaped strip-line MW antenna (Fig. 3.2c,
A) [190]. The antenna is mounted on a piezoelectric scanner to perform multi-axial scans.
The dichroic mirrors (Fig. 3.2c, D1, and D2) filter the excitation laser pulse and direct the
fluorescence along the collection arm of the confocal setup. Additionally, a 600 nm long-pass
filter (Fig. 3.2c, F) in the collection arm is used for spectral filtering. The optical initialization
and readout are assisted by an objective (Fig. 3.2c, O), which delivers and collects the
light to/from the in-focus diamond sample containing shallow single NV centers. Laser
pulsing is achieved with a digitally modulated diode laser (modulation bandwidth: 125
MHz). The MW control pulses are generated by mixing the in-phase (I) and quadrature (Q)
components (Fig. 3.2b) with a carrier signal. The resulting pulse is subsequently amplified
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and delivered to the confocal setup via the strip-line antenna. For more details on the setup,
see appendix 3.1.11.1.
In principle, the implementation of these magnetometry methods with NV centers is straight-
forward and well understood. In practice, however, various factors may affect the performance
of these sensing schemes. For example, custom-built MW antennas with unknown instrument
response functions are often used to deliver the control pulses. In such cases, the control
pulses delivered to the NV center may slightly defer from their actual design. Additionally,
for shallow NV centers it is difficult to model all surface effects with adequate precision.
This lack of information a priori makes it a challenge to accurately model the system. A
closed-loop optimization circumvents this issue.

3.1.7 Optimization Methods

The sensing protocols described in section 3.1.5 rely on the efficiency of two types of control:
Readout/initialization via the laser and spin manipulation via the MW field. Here, two
complementary optimization strategies are presented using the RedCRAB optimization suite.
The first adapts the laser pulse parameters (section 3.1.7.1) and the second the MW control
pulses (section 3.1.7.2). The software allows for smooth communication between the remote
experimental setup and the server-based optimizer. It also incorporates additional features
like amplitude limitation, bandwidth restriction, and several other parameters reflecting the
accuracy and limitations of the experimental setup. Thus, the essential requirements for both
optimizations are straightforwardly incorporated within RedCRAB.
In both optimization steps, we first quantify the goal with an FoM that can be measured
in the experiment. Subsequently, the controllable constant parameters and time-dependent
controls of the system are identified. The initialization/readout is optimized with a direct
search, while the MW pulses are optimized via the dCRAB algorithm [24, 129, 140, 6].

3.1.7.1 Parameter Optimization for Spin State Initialization and Readout

Strong spin polarization and spin state dependent fluorescence are fundamental to the readout
of single NV centers. These properties primarily originate from the transition rates of the
spin-preserving radiative and the non-radiative decay channels between the NV energy levels
(see Fig. 3.4a). The non-radiative inter-system crossing via the metastable state does not
preserve the spin state [228]. Figure 3.4a shows how an NV, which is originally in ms = 0
or ms = ±1, decays via Path I or II, respectively after being excited by a green laser pulse
(λ = 520−530 nm). The excited ms = 0 state decays radiatively to the ground state, while the
ms = ±1 state might take the non-radiative route via Path II. If the laser pulse is long enough,
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Fig. 3.4 (color online) Initialization and readout of the NV spin state. (a) The energy level
structure of the NV center within the diamond bandgap. The transitions of an NV initially in
the ms = 0 and ms = ±1 ground state are denoted as Path I and Path II, respectively. Note that
Path II includes a decay via the metastable state, making it slower. A resonant MW pulse,
may drive the ms = 0↔±1 ground state transition (Path III). (b) Spin state readout sequences.
By sweeping the MW frequency ωmw this corresponds to a pulsed ODMR sequence. (c)
The light curves with dots show a typical readout signal for a 1 µs laser pulse for different
initial spin states (blue: ms = 0, green: ms = ±1). The solid curves indicate the optimized
spin state readout (see section 3.1.7.1). The shaded areas give the readout contrast (Eq. (3.3))
obtained with the 1 µs laser pulse (Cinit, red) and the optimized laser pulse (Copt, striped).
Ropt and S opt indicate the optimized windows for the readout and saturation, respectively. (d)
Parameters for the optical readout optimization. Ri and S i correspond to the photon collection
windows described in Eq. (3.6). A spin inverting rectangular MW pulse (inv.) is used for the
parameter optimization. Readout 0 (1) corresponds to the readout of the ms = 0(±1) spin
states. After an initial laser pulse (init.), each measurement is repeated N times to enhance
the signal-to-noise ratio.
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all population ends up in the mS = 0 ground state.
Figure 3.4b shows the readout procedure. To obtain a contrast, a laser pulse first initializes
the system to the ground state ms = 0 via Paths I and II. In the top part of Fig. 3.4b no MW is
applied (ms = 0 readout) and a second laser pulse leads to a decay via Path I. An intermediate
MW pulse (ms = ±1 readout) can transfer the spin state to ms±1 via Path III. The subsequent
laser pulse induces a decay via Path II which leads to a drop in fluorescence (Fig. 3.4c)
because of the decay via the long-lived metastable state. Hence, the photon count allows to
differentiate the spin states during optical readout.
A simulation-based (open-loop) optimization for optical spin state initialization and readout
can be done considering the NV rate equations with experimentally obtained transition
rates [51]. Such methods may require specialized apparatus for optical pulse shaping [52], and
in general, do not account for experimental limitations. In comparison, closed-loop parameter
search offers straightforward enhancement. The photon shot noise is the primary limitation to
an efficient optical readout of the NV spin state. Consequently, the statistical determination
of the spin state requires an averaged readout over a large number of experimental repetitions.
The spin state readout fidelity F for such probabilistic measurements is expressed in terms
of the noise parameter σR [15, 229]:

1
F
= σR ≈

√
1+

2(R0+R1)

(R0−R1)2 , (3.2)

such that F = 1 at the spin projection noise limit of the sensitivity (see appendix 3.1.11.3).
R1 (R0) is the total number of collected photons from the readout of the spin state initialized
in ms = ±1 (ms = 0). Experimentally, the readout contrast C is given by

C =
R0−R1

R0+R1
. (3.3)

Its relation to F is given in appendix 3.1.11.3. Intrinsically, the contrast depends on several
system properties and experimental parameters,

C ≡C[γi j,Lp,Ld,Ωmax,B⊥,Exy,T....], (3.4)

where γi j is the transition rate between levels i↔ j, Lp is the laser pulse intensity, Ld is
the laser pulse duration, Ωmax corresponds to the maximum amplitude of the spin inversion
control pulse, B⊥ and Exy are off-axial magnetic and electric field components at the position
of the NV center respectively, and T is the ambient temperature. In addition, several other
factors, including crystal field strain and charge state stability, may affect the fluorescence of



3.1 Magnetic Field Sensing with Shallow NV Centres 87

the NV center and ultimately influence the readout contrast. The majority of the parameters
in Eq. (3.4) depend on the system properties, material characteristics, and ambient conditions
that are generally not fully controllable. In practice, some of the system properties can be
characterized before the optimization of the readout contrast. For example, the charge state of
the NV center can be determined from the emission spectrum (Fig. 3.3b). Similarly, external
factors such as crystal field strain and temperature directly influence the ZFS of the NV
center. In this regard, pre-characterized single NV centers (Fig. 3.3c) with ZFS ≈ 2.871 GHz,
and stable photoluminescence that do not exhibit charge state related blinking allow to
fully exploit the scope of laser pulse parameter optimization. Likewise, a well-aligned
static magnetic field BNV is a prerequisite for the optimizations performed in presence of a
magnetic bias field. It is noteworthy that photons originating from NV0 can be filtered from
the readout signal (Fig. 3.2a). As a result, charge state instability leads to blinking of the NV
fluorescence signal [45].
Other experimental parameters in Eq. (3.4) such as Lp and Ld, directly influence the
optically induced transitions, as well as the charge state stability [229, 45]. In contrast, the
effect of the wait time tw (see Fig. 3.4d) between the pulses is more indirect. Hence, it is
commonly set to ca. 300ns, which corresponds to the lifetime of the metastable state [230].
Similarly, the photon collection window Wro is often calculated in advance to obtain the best
SNR for every readout [37]. Consequently, Eq. (3.4) can be reduced to a simpler form based
on the variables that can be controlled experimentally,

C ∼C[Lp,Ld,Wro, tw,Ωmax]. (3.5)

Although it is not straightforward to find an analytical form to characterize the dependence
of C on these parameters, they can be directly adjusted in a closed-loop optimization on the
experiment. Figure 3.4 shows the two-shot scheme for the contrast measurement used in the
optimization routine. Each laser pulse (Readout 0 (1)) is divided into a spin readout window
R0 (R1), and a spin state saturation window S 0 (S 1). Their durations are determined by the
optimization parameters Ld and Wro. A spin inversion MW pulse flips the spin state between
the laser pulses. The FoM, which is minimized during the optimization, is given by

FoMRO = 1− C̄

1−var


∣∣∣∣∣∣∣S 0−S 1

S 0+S 1

∣∣∣∣∣∣∣
 . (3.6)

Here, C̄ is the readout contrast averaged over N experimental repetitions as shown in Fig. 3.4d.
In addition to maximizing the readout contrast in the spin readout windows, FoMRO also
ensures uniform spin state initialization, as the optimized value tends to minimize the variance
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in the photon counts from the two spin states in the saturation windows (Fig. 3.4). The closed-
loop optimization of readout parameters is generally relevant for a variety of methods, such
as readout based on spin-to-charge-state conversion [229] and photoelectric readout [231],
which inherently involves laser pulses. Furthermore, the optimized readout can be integrated
directly with MW-free, all-optical magnetometry methods [232].

3.1.7.2 Quantum Optimal Control for Spin State Manipulation

An optimally initialized spin state and its efficient readout are two of the essential criteria for
a practical quantum sensor [105]. In addition, the spin state has to be controlled accurately to
implement a sensing protocol. Following parts of the text describe the optimization of MW
control pulses for spin inversion and for a

(
π
2

)
x
-gate via the dCRAB algorithm [24, 129, 140,

6].
Before proceeding to the specifics of the optimization schemes, we discuss the dynamical
equations of the system to introduce the basic concept of QOC. The system is described by a
constant drift Hamiltonian Hd, and control Hamiltonians Hi

c, which are modulated by control
pulses ui(t):

H(t) = Hd +
∑

i

Hi
cui(t)

=
ℏ

2

(
∆σz+σxu1(t)+σyu2(t)

)
,

(3.7)

where the complete Hamiltonian H(t) is given in the rotating wave approximation (RWA)
with the detuning ∆ = ωmw−ωnv, the NV’s resonant frequency ωnv, the Pauli matrices σi,
and the controls u1(t) = Ω(t)cos(ϕ(t)) and u2(t) = Ω(t) sin(ϕ(t)). These controls correspond to
the in-phase and quadrature components of a MW drive, with Rabi frequency Ω(t) ∈ [0,Ωmax]
and phase ϕ(t) applied for the duration tp.
The control objective for the MW pulses is to efficiently transfer the initial spin state |Ψi⟩ to
the final state

∣∣∣Ψ f
〉
. Hence, the FoM is defined as the state fidelity,

Fp = |⟨Ψ f |U(t)|Ψi⟩|
2, (3.8)

where U(t) = T exp
[
−

i
ℏ

∫ tp

0
H(t)dt

]
, (3.9)

where T indicates a time-ordered exponential propagator. At this point, the FoM is a
functional of the control pulses. The controls are subsequently parametrized by a set of
Nset×M basis elements f i(ωn; t). Each element is defined by its superparameter ωn, which
is randomly selected from ωmin < ωn < ωmax, where ωmin and ωmax are the minimum and
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maximum allowed values. The number of basis functions M per superparameter depends on
the basis. These superparameters can be the frequencies of a set of trigonometric functions
(Fourier basis [140]; in this case ωmin and ωmax set the allowed bandwidth of the control
pulse) or the offsets for a set of step functions (sigmoid basis [158]). The resulting pulses
take the following form:

ui(t) = ui
0(t)+

Nset∑
n

M∑
i

An f i(ωn; t). (3.10)

Here, ui
0(t) represents the initial guess for the pulse.

Following the parametrization, the goal of the QOC routine is to find the optimal values for
the coefficients An, maximizing the FoM (Eq. (3.6)). Especially in closed-loop optimization,
only a limited number of parameters can be optimized at a given time. Therefore, additional
steps are required to avoid local optima. The dCRAB algorithm tackles this issue by
switching the set of basis elements every time the optimization has converged under the
given constraints [140]. Every new optimization (superiteration) is started with the previous
optimum as an initial guess, i.e. ui

0(t) = ui
opti(t).

The optimizations are performed with both, the Fourier and sigmoid basis separately. To
ensure the pulse amplitude and duration are limited, i.e., that the amplitude stays within an
upper and a lower limit and the pulse is zero at t = 0 and t = tp, two different strategies are
applied and illustrated in Fig. 3.5. In the cut-off approach, the pulses are cut off at t = 0 and
the t = tp to limit the duration. Similarly, they are cut off at the top and bottom to force the
amplitude limits.

0 tp

-Amax

Amax

0

Unconstrained pulse Cut-off approach

Bandwidth-limited approach

Fig. 3.5 (color online) Restriction approaches. The unconstrained pulse may either be cut
off at the amplitude {−Amax,Amax} and time {0, tp} limits ("cut-off approach") or shifted and
rescaled to fit within the available window ("bandwidth-limited approach").
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Instead, the bandwidth-limited approach involves re-scaling the pulse to fit within the
amplitude limits, followed by multiplication with a smooth window function like a flat-top
Gaussian to avoid discontinuities at initial and final time.
In the cut-off approach (see Fig. 3.5), the Fourier basis is expected to produce high-frequency
components when the optimization algorithm maximizes the pulse area. Conversely, in the
bandwidth-limited approach, the Fourier basis will have difficulties to significantly expand
the pulse area. At the same time, the sigmoid basis has the ability to exploit the pulse
area without producing high frequencies [158] when combined with the bandwidth-limited
approach. The inherent smoothness offered by the sigmoid basis (see appendix 3.1.11.2)
provides a particular advantage for frequency-sweep-based spectroscopic measurements,
where spurious harmonics are to be avoided.
The first MW optimization presented here concerns the spin-inversion pulse in the pulsed
ODMR sequence (see Fig. 3.4). The efficiency of the spin state transfer is estimated through
the optical readout contrast C (Eq. (3.4)). The previously obtained parameters for the laser-
based initialization/readout are used as the default for the MW control pulse optimization
experiments. To achieve robustness, the control field amplitude variation is incorporated in
the FoM by averaging the contrast over a range of Rabi frequencies Ωmax.

FoMpodmr = 1−
1

Np

Np∑
k

Rk
0−Rk

1

Rk
0+Rk

1

 , (3.11)

where Np is the total number of sampled Ωmax and Rk
i are the photon counts from the

corresponding spin state collected during Readout 0 (1) (see Fig. 3.4). The goal of the
optimization is to minimize FoMpodmr.
The Ramsey protocol does not involve spin inversion, but instead a

(
π
2

)
x
-gate. In the sensing

procedure, this pulse plays two roles: First, it maps the spin eigenstates to a superposition
state with a given phase. Second, it converts the phase back to a spin population. Gates
cannot be directly quantified using the contrast. Instead, their quality is commonly quantified
via gate tomography, which requires additional state preparations and related measurements.
We develop a protocol to translate the

(
π
2

)
x
-gate’s unitary properties into a readout contrast

that takes the same number of measurements as the evaluation of the spin state inversion.
Figure 3.6 shows the scheme connecting the pulse performance to the readout fluorescence
contrast C from two spin states. Similar to the case of pulsed ODMR, the FoM is defined as

FoMram = 1−
1

Np

Np∑
k

Pk
0−P

k
1

Pk
0+P

k
1

 , (3.12)
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where Pk
i is the photon count for the kth amplitude value after projection into spin state i. The

photon counts Pk
i are related to the spin transfer to the different states using the following

series of transformations,

U(tp) πx U(tp) 7−→ P0,

U(tp) U(tp) 7−→ P1,

where U(tp) is the parametrized unitary operator for the optimized control pulse of duration
tp, and πx denotes the unitary transformation for the rectangular π-pulse applied along the
x-axis. The maximization of the contrast ideally corresponds to the following conditions:

|⟨0|U(tp) πx U(tp)|0⟩|2 = 1, (3.13)

|⟨1|U(tp) U(tp)|0⟩|2 = 1. (3.14)

Here, |0⟩ and |1⟩ denote the two spin states of the system under the two-level approximation:
|0⟩ is given by the ms = 0 state and |1⟩ represents either ms = +1 or ms = −1 depending on
the corresponding experiment specified in section 3.1.8. We introduce the parametrization of
the unitary transformation generated by the control pulse as

U(tp) = exp

−i
∑

j

c jσ j

 , (3.15)

with coefficients c j for j = {x,y,z}, and ĉ j = c j/c, with c =
√

c2
x+ c2

y + c2
z . Then, Eq. (3.14)

implies

1 = sin2(2c)(ĉ2
x+ ĉ2

y) (3.16)

and thus c = 1
2

(
π
2 + kπ

)
, for integer k, and cz = 0. Substituting this into Eq. (3.13) gives

1 = 4ĉ2
x sin2 c

[
cos2 c+ ĉ2

z sin2 c
]
= ĉ2

x, (3.17)

finally indicating that cx = c = 1
2

(
π
2 + kπ

)
, and hence cy = 0. In other words, FoMram in

Eq. (3.12) is minimized for a π
2 rotation around the x-axis (in the positive or negative

direction):

Uopti(tp) = exp
[
−

i
2

(
π

2
+ kπ

)
σx

]
. (3.18)
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Fig. 3.6 (color online) Exemplary measurement protocol for the Ramsey sequence optimiza-
tion. The spin is projected into ms = 0 and ms = ±1, similarly to the spin state measurement
in Fig. 3.4b. (a) ms = 0 state (|0⟩) projection: A known refocusing πx-gate (solid) is applied
between two optimized pulses U(tp) (shaded). (b) Exemplary Bloch sphere representation
of the process in (a). Red arrows indicate the initial and final spin state, and dark blue lines
denote the path of the spin state. (c) In the absence of the intermediate πx-pulse, the spin state
is ideally transferred to the ms = ±1 state (|1⟩). (d) Exemplary Bloch sphere representation of
the scheme in (c).
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3.1.8 Experimental Results and Sensitivity Analysis

A straightforward way to test the general applicability of the optimization strategies discussed
in the preceding section is to apply them to different single NV centers and compare the
readout contrast enhancement on a case-specific basis. In addition, the average sensitivities
from the experiment quantify the optimization benefits. The optimization schemes from
section 3.1.7 are implemented and compared in the following section. First, we assess the
improvements resulting from optimized readout (OR) (section 3.1.8.1) and the additionally
optimized spin transfer pulses (section 3.1.8.2) for the pulsed ODMR method. Second, OR is
applied with optimized control pulses for the Ramsey protocol, and the results are discussed
in section 3.1.8.3. Finally, the robustness of the pulses is tested over a range varying from
100% to 10% of the maximum control power. This variation is artificially introduced in the
experiment by changing the power at the MW source.

3.1.8.1 Initialization and Readout

Experimental restrictions are directly included in the closed-loop optimization of the ini-
tialization and readout process by limiting the optimization parameters. The bounds on the
parameter set {Lp,Ld,Wro, tw} are given as:

Lp ∈ [2,40] (mW),

Ld ∈ [300,2000] (ns),

0.25Ld ≤Wro ≤ 0.75Ld (ns),

and tw ∈ [0,1000] (ns).

Limits on Lp correspond to the available source laser power. The initial guess for the
optimization is chosen to be {Lp ≤ Psat, 1000 ns, 450 ns, 300 ns}, where Psat is the saturation
laser power for the single emitter. In cases where the saturation limit cannot be reached with
the available laser intensity, the initial guess is obtained by considering the saturation curve
to identify the approximate laser intensity with the most favorable signal-to-background
ratio. Some of the readout optimization results are summarized in table 3.1. As a general
observation, the optimized laser pulses are shorter than the corresponding initial guesses,
while the tw values remain almost unchanged after the optimization. Moreover, reduction
of the measurement time improves the overall sensitivity of the NV center (Eq. (3.25)).
Figure 3.4c shows the photoluminescence behavior of one of the NV centers involved in the
experiment (table 3.1, NV3). The collected signal reflects the improvement in the average
readout contrast after the optimization.
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Fig. 3.7 (color online) Pulsed ODMR at ZFS with optimized parameters using a rectangular
MW π-pulse of the duration of 57 ns. The experiment with optimized laser parameters
exhibits an improved readout contrast C̄ of ca. 0.33 (blue) in comparison to the initial guess
with a contrast of ca. 0.25 (red).

Table 3.1 Optimized parameters for spin state readout contrast with single NV centers.
Experiments with NV1 are performed at the ZFS, whereas NV2 and NV3 related experiments
are performed with a bias field of 12 mT.

Identifier L opt
p L opt

d Wopt
ro topt

w Ref.
[mW] [ns] [ns] [ns]

NV1 21 585 260 470 Fig. 3.7
NV2 17 488 250 270 aFig. 3.8
NV3 16 552 385 260 bFig. 3.9,

3.10, 3.11, 3.12

aPulse optimization restriction via the cut-off approach.
bPulse optimization restriction via the bandwidth-limited approach.

The optimized laser parameters are tested by combining them with a standard pulsed ODMR
sequence with rectangular spin inversion pulses (pulse duration of 57 ns). Their readout
contrast is quantified as C̄ = 1−min[Nph], where Nph is the normalized photon count (see
appendix 3.1.11.3 for details). Figure 3.7 shows a comparison between the measurement
with and without optimized parameters (zero bias field, table 3.1, NV2). The optimized
parameters account for a 33% improvement in peak contrast. This result can be improved
even further by also optimizing the spin inversion pulses.
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Fig. 3.8 (color online) Comparison between two optimized spin inversion pulses in presence
of a bias field BNV = 12mT (table 3.1, NV2). The left (right) side shows the experimental
results from a pulse optimized with the sigmoid (Fourier) basis. (top) Normalized counts
Nph over a range of Ωmax and drive frequencies ωmw. (bottom) Average normalized count
N̄ph over all Ωmax for the optimized pulse (solid) and initial guess (blue, dotted). The spectra
of the pulses (dashed) are convoluted with the NV’s natural emission line and fitted to the
average counts.

3.1.8.2 Pulsed ODMR Measurements with Optimized MW Pulses

The spin inversion pulse that is part of the pulsed ODMR protocol provides a target for
further optimization on top of the optimized optical readout. In this regard, we investigate
the additional improvement by optimizing the pulses under a bias field BNV to emulate a spin
resonance sensing scenario. The FoM is calculated by averaging the contrast over a set of
Np = 5 measurements (see Eq. (3.11)) leading to control pulses in the range of 4% - 100% of
the maximum control power (or equivalently, 20% - 100% of the maximum control amplitude,
Ωmax).
Figure 3.8 shows two maps representing the normalized count obtained with two optimized
MW pulses. In this example, the laser pulses were pre-optimized according to the method
described in Section 3.1.8.1, and the ms = 0↔ +1 transition is used for the optimization
as well as the assessment via pulsed ODMR. The MW pulses are optimized according
to Eq. (3.11) at the center frequency of 3.22 GHz. The pulse corresponding to the left is
optimized with the Fourier basis, while the right pulse is optimized with the sigmoid basis,
both with a pulse duration of 200 ns. Both pulses exhibit robustness with respect to the
amplitude variations, improving the contrast compared to the initial guess. However, the
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Fig. 3.9 (color online) Pulsed ODMR in presence of a bias magnetic field (BNV ≈ 12 mT,
NV3 from table 3.1) with optimized laser parameters and MW pulses. Following the results
from Fig. 3.8 the optimization was done with the sigmoid basis, using the bandwidth-limited
restriction approach. The data shows the improvement in contrast with each step of the
optimization. The initial contrast for the resonance peaks is ca. 0.22 (initial guess, red),
which is further improved to ca. 0.24 with optimized laser parameters (blue). The MW pulse
optimized in the sigmoid basis on top improves the contrast to ca. 0.30 (green). the solid
lines show the Gaussian fits for the respective data (see appendix 3.1.11.3).

sigmoid basis pulse is spectrally narrow, while the Fourier pulse has a distinct sideband.
The spectral shape of the pulses can explain these features. The Fourier basis contains
high-frequency elements caused by the cut-off limitation (see Fig. 3.5), which the sigmoid
basis avoided. The small off-resonant area addressed by the sigmoid basis covers only a
fraction of the Fourier basis’ sideband and is significantly weaker. This is illustrated in the
average plot at the bottom.
To test the general applicability of this method for generating bandwidth-limited control
pulses, similar optimization and pulsed ODMR experiments are performed with a different
NV center (table 3.1, NV3), this time using the ms = 0↔ -1 transition, and the bandwidth-
limited approach (Fig. 3.5). The results are shown in Fig. 3.9. Here, a readout contrast of ca.
0.24 is obtained with optimized laser parameters (pulse duration of 130 ns). The sigmoid
pulse (pulse duration of 200 ns) enhances the readout contrast further to ca. 0.30. Pulsed
ODMR experiments with different peak control power are performed to test the robustness
of the control pulse. The readout contrast and Full Width Half Maximum (FWHM) of the
resonance profile are obtained by fitting the data with a Gaussian profile (see Eq. (3.26)).
Figure 3.10 shows the achievable average sensitivity η of the pulsed ODMR method. It
depends on the resonance profile, its FWHM, contrast, and the measurement time involved
in the experiment (see Eq. (3.25)). In addition, the spin-projection noise sets a lower limit
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Fig. 3.10 (color online) Comparison of pulsed ODMR measurements with optimized and
standard spin state inversion pulses (NV3 from table 3.1). Specifically, the robustness against
amplitude variation is shown for pulses optimized in the sigmoid basis. From top to bottom,
the contrast, and FWHM of the resonance peaks as well as the corresponding average
sensitivity η are shown. All results are obtained with different amplitude variations. The red
curves indicate the initial guess. Blue curves correspond to the experiments performed with
optimized spin readout parameters. The green curves show the results for the experiments
using optimized MW pulses. The dashed line in the bottom plot shows the ceiling for the η
of 1 µT Hz−

1
2 .

to η. The full optimization, including the laser parameters and the robust sigmoid pulse,
leads to a sub-µT Hz−

1
2 average sensitivity considering up to almost 83% variation in the

control power (see appendix 3.1.11.3 for details on the sensitivity calculation). Off-axial
magnetic field components lead to spin-mixing, reducing the readout contrast [232]. This
effect becomes apparent when comparing the contrast at ZFS (Fig. 3.7) and in presence of an
external magnetic field (Fig. 3.9). The degree of spin-mixing and its effects on the transition
rates cannot be straightforwardly simulated for the presented experiments. Using closed-loop
optimization of the laser pulse parameters allows to nevertheless incorporate such effects into
the FoM.
Up to this point, all three NV centers from table 3.1 were investigated. As the improvements
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are of the same order of magnitude, only NV3 is considered in the following without loss of
generality. The Ramsey sensing method, which is addressed next, fulfills a similar role to the
pulsed ODMR sequence and offers better sensitivities towards external DC magnetic fields.
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Fig. 3.11 (color online) Optimized Ramsey measurements. The top plot shows the mea-
surements performed at peak drive power with rectangular control pulses (blue) as well as
optimized pulses in the Fourier basis (black) and sigmoid basis (green). The optimized pulses
exhibit almost double the contrast in comparison to the rectangular control pulse. The length
of the rectangular π

2 -pulse is determined by performing Rabi measurements, and in this case
is 67 ns. The bottom plot shows the variation in readout contrast with respect to the change in
relative control power of the control pulse. The performance of the robust optimized pulses
surpasses the rectangular control pulse over the entire range of tested control power (90%
variation).

3.1.8.3 Ramsey Measurement

The Ramsey method is a type of interference measurement for DC magnetic fields. As
discussed in section 3.1.5 it consists of two π

2 -pulses and offers a higher sensitivity in
comparison to the ODMR methods. It should be noted that previous optimizations for
D-Ramsey pulse sequences with NV centers were performed in an open-loop scheme using a
cooperative design [25]. Our results are obtained through a closed-loop optimization and
directly quantified on the setup. The π

2 -pulses are optimized via assessment of the contrast
for a range of drive amplitudes (see Eq. (3.12)) via the bandwidth-limited approach discussed
in section 3.1.7.2 (see Fig. 3.5). The resulting interference fringes are shown in Fig. 3.11.
This optimization is carried out in presence of a bias external magnetic field (BNV = 12 mT)
and on-resonance with the ms = 0↔ -1 transition. The fringe visibility is enhanced from
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0.15 to ca. 0.24 with the Fourier basis pulse, and to ca. 0.25 with the sigmoid basis pulse
using the maximum control amplitude (pulse duration of 100 ns). The fringe visibility is
directly related to the readout contrast. An improvement in the readout contrast leads to a
proportional improvement in the sensitivity of the sensor (see Eq. (3.27)).
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Fig. 3.12 (color online) Comparison of Ramsey sequences with standard and optimized MW
π
2 -pulses. All measurements are performed with optimized laser pulses for the readout and
the optimizations were carried out with the amplitude-robust FoM from Eq. (3.12). The
performance of the pulses optimized with the Fourier (black) and sigmoid (green) basis is
compared to the rectangular control pulse (blue) over a range of drive detunings ∆. This
range is equivalent to a variation of 0.35 mT in the external magnetic field. The upper
panel shows the readout contrast C̄. The respective T ∗2 values are displayed in the middle
panel. The bottom panel shows the resulting η. The sensitivity calculation is discussed in
appendix 3.1.11.3.

The performance of the optimized pulses is further tested by performing Ramsey measure-
ments with different drive frequencies in the vicinity of the spin transition frequency. These
detunings correspond to a range of fields that could be measured in a sensing setup. The
resulting readout signal summed over repeated iterations of the experiment is assessed for av-
erage sensitivity [15] η of the NV center. The sensitivity of the Ramsey sequence depends on
the readout contrast and the dephasing time during the measurements (see appendix 3.1.11.3).
Figure 3.12 shows the readout contrasts, the T ∗2-times, and the average sensitivities obtained
by a series of Ramsey measurements. The Fourier pulse displays a constant readout contrast
in the frequency range of ±10MHz. This range in the frequency corresponds to around
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±0.35mT of variation in BNV. In comparison, the sigmoid pulse shows a marginally better C̄
around the resonance frequency but varies strongly for different detunings. The frequency
components of the pulse depend on the pulse shape (see appendix 3.1.11.2). Here, the
spectrum of the sigmoid pulse contains minima at a detuning of approximately ±5MHz
(Fig. 3.12). From a control perspective, such frequency selective applications are attractive
for spectral hole burning [233] and quantum logic gates for superconducting qubits [234].
The T ∗2-time is comparatively lower on resonance than off resonance for all pulses. This is
due to the destructive interference of the hyperfine transition associated with the spin reso-
nance [235]. Readout contrast enhancement inherently involves strong contributions from all
the hyperfine transitions, resulting in a trade-off between C̄ and T ∗2 . The measurements with
the Fourier pulse exhibit a robust η of less than 65 nT Hz−

1
2 . These levels of sensitivities are

on par with the ones reported for single NV-based diamond scanning probes [187, 181, 189].
The method from this section could be generalized to replace the spin-refocusing π-pulse in
other sensing methods. This would require applying the optimized π

2 -pulses twice, using a
strategy similar to the one discussed in section 3.1.7.2. Such refocusing pulses form the main
building block for AC magnetic field sensing [2].

3.1.9 Conclusion

The optimizations in this work focused on three essential parts of quantum sensing with
NV centers: optical spin state readout, population inversion, and π

2 -pulses. All three were
improved for sensing methods with single NV centers, considering control power variations
of up to 90%. Such robustness enables the sensing of larger microstructures by increasing
the explorable sample area and makes the pulses more robust against experimental drift over
time. The resulting protocols are realized by replacing the building blocks of common laser
and MW based schemes with optimized equivalents. The optimizations are based on a set
of figures of merit which are directly measurable via contrast using a varying MW power.
The feedback-based approach inherently takes experimental imperfections and unknown
system parameters into account. Initially, we optimized the optical readout/initialization
process, improving the spin readout contrast by 32% in comparison to the standard protocol.
Moreover, additionally optimizing the spin inversion pulse in a pulsed ODMR protocol
allowed for an overall contrast improvement by 36% leading to sub-µT Hz−

1
2 sensitivity

that is maintained over a large range of MW amplitudes. Such robust excitation pulses
lead to a large interrogation volume. Especially, for ensembles of NV centers this results in
improved readout counts for a larger area, and in turn, enhanced sensitivity [192]. To maintain
frequency sensitivity, different optimization bases were explored. The sigmoid basis leads
to spin transfer within a limited bandwidth envelope, reducing the off-resonant excitation.
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Additionally, we obtained an optimized π
2 -pulse for Ramsey measurements, enhancing the

fringe contrast by 67% with respect to the square pulse with pre-optimized optical readout
at maximum control power. Consequently, we obtained a two-fold enhancement in the
average sensitivities, ranging below 100 nT Hz−

1
2 over a set of induced bias field strengths.

While we applied the optimization to shallow NV centers, the approach is straightforwardly
applicable to other NV-based systems like diamond scanning probes and NV ensembles used
for wide-field imaging where similar control robustness features are required.
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3.1.11 Appendix

3.1.11.1 Experimental Setup

All the measurements were carried out on a custom-built confocal setup, with excitation
wavelength of 520 nm (Swabian instruments, DL nSec, PE 520) and objective numerical
aperture of 0.8 (Olympus, LMPLFLN100X). Rejection of the out-of-focus fluorescence
signal was achieved by using single mode optical fibers (Thorlabs, SM450 and SM600) at
the excitation and detection arm of the confocal microscope. Further, contributions from the
NV0 charge state were blocked with a spectral filter (Thorlabs, FEL0600, Longpass 600 nm)
in the detection arm. Fluorescence signal from the single NVs was detected with a single
photon counting module (APD, Excelitas, SPCM-AQRH-14, quantum efficiency ≈68%) and
the acquired data was logged with a data acquisition card (National Instruments, PCIe-6323).
Second order intensity correlation measurements were performed with a Hanbury-Brown
Twiss setup attached to a time resolved counting device (PicoQuant, PicoHarp 300). The
fluorescence signal was filtered and analyzed with a spectrometer (SP-2500, Princeton
Instruments) to ensure the charge state stability in the diamond sample. The MW control
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pulses were generated with IQ mixing with the MW signal generator source (Tektronix
4104A, IF bandwidth of 400 MHz). The in-phase and quadrature components were obtained
with an arbitrary waveform generator (AWG, Tabor 1204 A, 2.3 GSa s−1). Control pulses
were delivered to the diamond sample with a custom-built Ω-shaped antenna [190] after
amplification (ZHL-16W-43-S+, Mini-Circuits, typ. +45 dB). Channel synchronization was
ensured using a sync device (Swabian Instruments, Pulse Streamer 8/2) to trigger the diode
laser, AWG, MW source, APD count window and the data acquisition device. The sample
along with the MW-antenna was mounted onto a piezo-scanner (Physik Instrumente (PI),
P-611.3O) to perform the confocal scans and address individual NV centers. The remote
connection to the optimization server was obtained via a combination of MATLAB (remote
system) and Python (RedCRAB GUI) based control programs.

3.1.11.2 Random Bases for dCRAB Optimization

In the dCRAB algorithm, random bases are used whose elements can be defined through a
superparameter ω which stays constant throughout the optimization. In this work, we have
used two different bases, referred to as the Fourier and the sigmoid basis. They differ in their
shape and properties.
The Fourier basis is most commonly used with dCRAB. It consists of M = 2 out of phase
trigonometric elements with frequency 0 ≤ ω ≤ ωmax:

f 1
Fourier(ω; t) =sin(ωt)

f 2
Fourier(ω; t) =cos(ωt).

(3.19)

The sigmoid basis [158] consists of sigmoid functions (M = 1) with an offset of ϵσ ≤ ω ≤
tp− ϵσ. ϵ represents an offset factor. The basis always includes one element at ω = ϵσ which
is optimized in every superiteration to ensure the pulse length is constant (i.e. ui(t = 0) =
ui(t = tp) = 0). For the same reason, an element is added automatically with ω = tp− ϵσ and
amplitude A =

∑N
n An.

fsigmoid(ω; t) =
1
√

2πσ

∫ t

0
e−

1
2 ( τ−ωσ )2

dτ. (3.20)

They both have different properties. In general, the Fourier basis is bandwidth-limited
through the upper limit for ω. The sigmoid basis is bandwidth-limited due to the limited
rise time defined by σ. However, in both cases higher frequency terms may be introduced
through cut-offs (i.e., cut-offs in the time domain or amplitude domain).
It should also be noted that the basis choice determines which shapes are complex, and which
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are simple to produce. While the Fourier basis produces oscillations with few basis elements,
the sigmoid basis produces approximately square pulses, without cut-offs.

3.1.11.3 Sensitivity Calculation

NV center based sensing is fundamentally limited by the spin projection limit [226]. This
limit can be expressed as

ηsp =
ℏ

S geµB

1
√

tm
, (3.21)

where, ℏ is the reduced Plank’s constant, ge is the Landé factor, µB is the Bohr magneton, and
tm is the measurement time. In addition, optical readout processors are subjected to photon
shot noise that further adheres the sensitivity. For the averaged readout process discussed in
section 3.1.4, Eq. (3.2), the readout fidelity can be equivalently written as

F =

√
1+

1
C̄2R̄

. (3.22)

C̄ is the average readout contrast between the two spin states of the system and R̄ is the
average count rate. Further, an overhead cost is always involved in an experimental scenario.
Really long spin initialization and readout duration deteriorates the overall sensitivity of the
sensor, this can be expressed as a scaling factor for the sensitivity

κexp =

√
tm+2× ti

tm
, (3.23)

under the assumption that the initialization and readout duration are equal (ti). Finally, for
DC magnetometry methods, the dehpasing time T ∗2 further limits the sensitivity, this can be
expressed the decoherence function of the T ∗2-limited processes,

fd = e

(
tm
T∗2

)m

, (3.24)

where, m is the order of decoherence. For spectroscopic measurement around the NV
resonance peaks, the sensitivity depends on the resonance profile itself [192]. In case of
Gaussian resonance profiles for the pulsed ODMR measurements, the overall sensitivity can
be computed as

ηpo =P
1
γnv

σ f

C̄
√

R̄

√
Tπ+ tm. (3.25)

Here, f0 is the resonance peak, σ f is the resonance peak FWHM, γnv =
geµB
ℏ , is the gyro-

magnetic ratio of the NV spin, and Tπ is the pulse duration. The factor P relates to the
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shape of the resonance, for a Gaussian profile P =
√

e
8ln2 [53]. For shorthand notation, the

measurement time is assumed to involve the overhead experimental time tm = tw+2× ti. The
relevant parameters for the sensitivity calculation in section 3.1.8 were obtained by fitting
the normalized count with the following function:

Npo
ph ( f ) = R̄×

1− C̄× e
− 1

2

(
f− f0
∆ f

)2 , (3.26)

where the normalized counts are calculated by dividing the data with the baseline counts
(counts away from the resonance, where no spin transfer occurs). For a Gaussian profile,
σ f = 2

√
2ln2×∆ f . It is noteworthy that for pulsed ODMR measurements at low MW power,

T ∗2-limit becomes relevant and has to be considered for sensitivity calculations, the reader is
advised to refer to Ref. [53] for more details.
The average sensitivity for the Ramsey sequence based methods can be expressed under the
T ∗2-limit as,

ηRa =
1

C̄γnvτ
exp

[(
τ

T ∗2

)m]
√
τ+ tm. (3.27)

The free induction decay of the Ramsey fringes for single NV centers highlight the hyperfine
structure originating from the electron-nuclear spin coupling. Likewise, the related normal-
ized readout counts can be fitted with a sum of the three precessing hyperfine transitions,

NRa
ph (t) = R̄

1+
C̄× e−(τ/T ∗2 )m

3∑
i

Ai cos(2πνit+ϕi)


 , (3.28)

where, νi and ϕi are the precession frequency and phase corresponding to the hyperfine
transitions. The sensitivities in Fig. 3.12 are obtained at τ = 0.5×T ∗2 . The normalized readout
count in this case is obtained by dividing the data with the ms = 0 readout count.

3.1.12 Basic Scanning Probe Example

Considering the example of a simple wire antenna, we can demonstrate the increase in
accessible sensing radius gained through robustness. We use the experimental details from
Thiel et al. [236] to ensure a realistic model. For illustrative purposes let us assume that
a sensitivity of 1 µT Hz−

1
2 is required to resolve a sample’s features.4 To understand the

area of the sample over which the sensitivity stays below this threshold we calculate the
perpendicular magnetic field strength B⊥ around the antenna to represent the Rabi frequency

4This threshold is chosen arbitrarily but lies in the ballpark of achievable sensitivities.
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experienced by the NV. Any MW components parallel to the NV centre axis would induce a
quickly oscillating detuning and are assumed to average out. B⊥ is shown in the top plot of
Fig. 3.13. The bottom plot shows the maximum sensing distance from the wire inside the
1 µT Hz−

1
2 threshold for two pulses, one of which is optimised. We assume that the optimised

pulse’s robustness is given by the data from Section 3.1.3. In this theoretical example, the
optimisation increases the sensing distance by 53%. However, in the experiment we used an
Ω-shaped stripline antenna instead of a wire [190]. To ensure the accurate representation of
the magnetic field distribution in a future scanning probe setup, the concerned antenna will
have to be properly characterised. As indicated by the circles in Fig. 3.13, the model can also
predict the acceptable variation in z.

Fig. 3.13 Magnetic field around a current-carrying wire used as a MW antenna.
(left) Schematic of the underlying sensing setup. (top) Strength of the orthogonal mag-
netic field B⊥ as a function of the scanning distance x and scanning-plane-to-wire separation
z. The black dotted contour outlines the maximum magnetic field strength at z = 50 µm,
corresponding to the antenna setup described by Thiel et al. [236]. The scanning distance
up to which an ODMR-sequence reaches a sensitivity of at least 1 µT Hz−

1
2 depends the

robustness of the corresponding MW pulse. The grey and orange areas cover the accessible
area for a square and optimised pulse, respectively using the results from Section 3.1.3.
(bottom) Relative magnetic field amplitude at a separation of z = 50 µm. The robustness is
indicated by grey (square pulse) and orange (optimised pulse) areas.
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3.1.13 Pulse Spectra

Measurements via ODMR rely on the external magnetic field causing (additional) Zeeman
splitting and changing the resonance frequency of the NV transitions. Hence, frequency-
selective pulses are important to precisely estimate the change [237, 176]. The Fourier trans-
form of a pulse Z(ω) = |F [I(t)+ iQ(t)]| gives a lot of information about this selectivity and
we show that it predicts the sidebands observed in Section 3.1.3. In order to mimic a realistic
spectrum, we convolute the Fourier transform of the pulses with the experimentally-obtained
spectrum of the NV centre P(ω) [238]. The NV spectrum consists of three Lorentzian peaks
which are approximately 2.2 MHz apart due to the hyperfine splitting from the nitrogen
nucleus. It is obtained by Fourier transforming a Ramsey measurement.
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Fig. 3.14 Extended view of the pure and convoluted spectra, Z(ω) and Zc(ω), of the optimised
Fourier and sigmoid basis pulses. The lines indicate ωmin/max respectively and the area
between them corresponds to the part of the spectra fitted in Section 3.1.3.

To produce the fitted spectrum from Section 3.1.3, the centre of the convoluted spectrum
Zc(ω) is fitted to the average fluorescence with two parameters, z1 and z2, giving

Zfit(ω) = z1+ z2

∫ ∞

−∞

Z(x) ·P(x−ω)dx︸                      ︷︷                      ︸
Zc(ω)

. (3.29)

Z(ω) and Zc(ω) are shown in Fig. 3.14. The sigmoid and Fourier basis produce spectra with
a clear amplitude difference that is not visible in the fitted version Zfit(ω) from Section 3.1.3.
In the fit, the amplitude difference disappears due to the normalisation of the counts. The
normalisation procedure assumes that the fluorescence at ωmin = 3.20 GHz and ωmax =

3.24 GHz corresponds to the baseline, i.e. the fluorescence of the ms = 0 state.
Still, the full theoretical spectra in Fig. 3.14 confirm that the tails of the sigmoid basis
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spectrum are lower than those of the Fourier basis despite the cut-off restriction approach.5

This trend continues outside the displayed range. Furthermore, the central peak of the sigmoid
spectrum is confined to a more narrow frequency range, even though the sigmoid spectrum
is scaled to the same maximum amplitude as the Fourier spectrum. It should be noted
that, while the sigmoid basis still allows for the simple construction of frequency-limited,
high-amplitude pulses when combined with the cut-off restriction, the frequency-limitation
is not guaranteed with this approach. However, we could observe the exemplary features
shown here as a general trend.

3.1.14 Outlook

In the future, it would be interesting to further investigate how combinations of different
pulse bases and restrictions affect the spectrum and hence the sensitivity resulting from
an optimised pulse. The frequency-selectivity is an intuitive requirement for an accurate
peak to peak measurement.6 However, to measure small changes in the magnetic field,
the overall spectral shape is irrelevant, only the largest detectable slope will influence the
sensitivity [53]. In future investigations, we could extend the requirements on the basis to the
inherent production of pulses with a high maximum derivative at a specific frequency. This
could be achieved using a strategy similar to DRAG (see Section 2.3.5.3) or by engineering
an oscillatory spectrum. Similarly, the slope could be used directly as the figure of merit.
Another route to improvement would be to combine our methods with the simultaneous
driving of all three hyperfine couplings [219].
In summary, we have shown how the optimisation of both, laser and MW controls, can im-
prove the sensitivity of DC magnetometry with shallow NV centres. The ODMR contrast was
improved through optical optimisation, by 32%, and MW pulse shaping, by 36%. By taking
into account the robustness with respect to the drive amplitude, we have furthermore extended
the potential sensing volume. Additionally, the fringe contrast of Ramsey measurements was
improved through pulse-shaping by 67%. The portrayed techniques are translatable to many
other setups. We especially hope that they will find an application in the improvement of
NV-based scanning probe microscopes.

5The exact effect of the tails depends on the transfer function of the experiment, which has not been
considered here.

6The narrowness of the spectrum is reflected by assuming an approximately Gaussian spectral shape (see
Section 3.1.11.3).
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3.2 Hyperpolarisation of Pentacene-doped Naphthalene

3.2.1 Hyperpolarisation via the Integrated Solid Effect

The integrated solid effect (ISE) is an effective technique to transfer polarisation from
one central spin to many others surrounding it [239, 63]. This type of approach is called
dynamic nuclear polarisation (DNP), a form of hyperpolarisation, and has been applied
in a variety of magnetic resonance settings specifically to enhance NMR signals [240,
241]. As an example, 13C can be used to mark cancer cells, as it is more likely to be
absorbed by them than by healthy cells. Unfortunately, the NMR contrast is extremely low at
room temperature. Using hyperpolarisation enhances the contrast and consequently enables
imaging the cancer cells [242]. External hyperpolarisation, as recently demonstrated by
Eichhorn et al. [243] using the sequence developed in Section 3.2.3, marks a step towards
the widespread application of such techniques. In the following, we will give a qualitative
explanation of the ISE. Detailed derivations are available in references [244, 245].
Let us start by considering one electronic spin and one nuclear spin. The electronic spin can
be addressed easily, while we have no direct control of the nuclear spin. This is due to the
fact that we have no mechanism to efficiently initialise nuclear spins. In order to exploit the
coupling between the spins and polarise the nucleus, we should first consider the frequencies
that play a role in the system:

1. The electronic system’s resonant frequency ω0S : This frequency is defined by the
strength of the applied static magnetic field.

2. The Rabi frequency Ω and detuning ∆: Transitions between the electronic energy
levels are triggered by the application of a magnetic microwave field with amplitude
B⊥ and frequency ω = ω0S −∆. The speed of the resulting oscillations is then given by
the Rabi frequency Ω.

3. The nucleus’ resonant frequency ω0I: The static magnetic field also causes Zeeman
splitting for the nucleus. Its resonant frequency is the Larmor frequency ω0I .

4. The coupling A⃗z: The mostly dipolar, hyperfine coupling between the electronic
system and the nucleus. See Section 1.1.2.4 for more details.

In order to create polarisation, we aim to obtain a flip-flop Hamiltonian. This means that
the polarisation gets transferred back and forth between the electronic system and the
nucleus. The speed of these oscillations depends on the coupling A⃗z and power put into
the system (scaling with B2

⊥), while the amount of transferred polarisation is a question of



3.2 Hyperpolarisation of Pentacene-doped Naphthalene 109

-Δmax +Δmax
ω0 I-ω0 I

0

ω0 I

Δ

re
s
o

n
a

n
c
e

c
o

n
d

it
io

n

ΩISE

0

Ω

-Δmax

+Δmax

time

Δ

ΩISE

0

Ω

Fig. 3.15 The standard ISE sweep. (left) ISE sweep (blue) in comparison to the resonance
condition (orange). (right) Characteristic linear sweep of the detuning between ∓∆max and
constant Rabi frequency ΩISE.

timing. However, to achieve resonance the following condition, called the Hartmann-Hahn
resonance [246], has to be met:

∆2+Ω2 = ω2
0I (3.30)

The resonance condition forms a half circle with radius ω0I , when plotted as a function
of detuning (see the left plot of Fig. 3.15). The most straightforward answer on how to
reach the flip-flop Hamiltonian is to set the magnetic microwave field to almost any point on
this resonance line and simply wait. Indeed, this would polarise the nucleus, but not very
effectively for the following reasons:

• Not every point on the curve would be equally good. Choosing the centre, the powerful
magnetic microwave pulse would rotate the electronic spin very quickly, such that the
polarisation efficiency might become very sensitive to the correct timing and exact
Larmor frequency. On the flipside, by choosing Ω = 0 it is clear that no polarisation
will be transferred either.

• We need to consider what happens when more than one nucleus and more than one
electronic spin is addressed. The static magnetic field tends to not be perfectly constant
across the sample (whether it is due to experimental inhomogeneity or stray magnetic
fields from the environment). These inhomogeneities lead to a broadening of the
linewidths. Hence, picking a point on the resonance curve tends to only polarise a
fraction of the available nuclei.

Both these issues can be resolved by choosing a constant Rabi frequency ΩISE and sweeping
either the detuning or the strength of the constant magnetic field. This way, even far detuned
nuclei are addressed and the sweep speed can be adjusted to optimise the timing. This
strategy is usually referred to as the ISE and depicted in Fig. 3.15. In practice, the sequence
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is repeated many times and the electron spin is reinitialised at the start of each iteration.
In the setup considered in Section 3.2.3 the constant magnetic field cannot be changed
dynamically, hence we sweep the detuning. In the experiment the sample is placed inside a
cavity during the polarisation. Afterwards, it is shuttled up inside the apparatus until it reaches
the NMR coils, allowing for the direct readout of the nuclear polarisation. Unfortunately, the
cavity also modulates the Rabi frequency which means an external linear sweep does not
translate to an ISE protocol. Counteracting this effect by compensating for the cavity leads
to a very low Rabi frequency and less efficient transfer. Consequently, we use an external
linear sweep as a starting point and proceed to enhance the polarisation with optimal control.

3.2.2 Pentacene-doped Naphthalene

Naphthalene consists of two benzene rings forms a crystal lattice as shown on the right in
Fig. 3.16. Each naphthalene molecule hosts eight protons. These protons are the nuclear
spins we plan to polarise. The electronic spin we use for hyperpolarisation is part of the
energy level structure of a pentacene molecule that replaces two naphthalene molecules.
Pentacene consists of five linearly-fused benzene rings and is shown in Fig. 3.17. The energy
level structure of the pentacene molecule allows us to address it with a MW and initialise it
with a laser, similar to the NV centre.
The hyperfine coupling A⃗i

z =
(
Ai

xz, Ai
yz, Ai

zz

)⊺
of the proton spins to the electronic spin is

mostly given by the dipolar coupling [245] which can be calculated from each proton’s
position (ri, θi,ϕi) with respect to the centre of the pentacene molecule:

Ai
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3CA

r3
i

sin(θi)cos(θi)cos(ϕi),
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√
Ai

xz
2
+Ai

yz
2
,

(3.31)

where CA =
µ0
4πℏγIγS with the gyromagnetic ratios of the protons γI and the electronic spin

γS , as well as the vacuum permeability µ0. If we neglect the interaction between the protons,
the direction of the perpendicular coupling along x or y is only dependent on the frame of
reference. Hence, we are showing the absolute perpendicular coupling A⊥ in Fig. 3.16. The
distribution shows that the perpendicular couplings are widely distributed with the maximum
at a few MHz. The parallel coupling Azz has a similar distribution. When a hyperpolarisation
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Fig. 3.16 Distribution of protons around a pentacene molecule in a naphthalene lattice.
(left) The top plot shows the perpendicular dipolar coupling of the protons from a 3×××3×××3
cell around a pentacene molecule dependent on their distance. The bottom plot gives the same
couplings in a histogram, where Np is the number of protons with A⊥ in the corresponding
bin. (right) Naphthalene lattice with protons as small grey dots. The centre of the pentacene
molecule is represented as a large black dot with the closest twelve protons in red. The
vertical axis is aligned with the pentacene molecule. A full image of the pentacene molecule
is given in Section 3.2.3. The code producing these figures is derived from a version kindly
provided by Tim Eichhorn [247]. The structure of the naphthalene lattice is calculated
according to reference [248].

sequence is applied to the crystal, certain protons get polarised first and when the sequence is
repeated the polarisation is redistributed over a further range. To take this effect into account
we simulate a set of three protons with different couplings at a time and average over many
sets.
Initial tests with our model showed that enhancement of the linear sweep through QOC is
generally possible. To achieve the best results for the concerned setup, we apply a closed-loop
optimisation to improve the polarisation.

Macroscopic Hyperpolarization Enhanced with Quantum Optimal
Control

This section is reproduced from A. Marshall, T. Reisser, P. Rembold, C. Müller, J. Scheuer,
M. Gierse, T. Eichhorn, J. M. Steiner, P. Hautle, T. Calarco, F. Jelezko, M. B. Plenio, S.
Montangero, I. Schwartz, M. M. Müller, and P. Neumann, Macroscopic Hyperpolarization
Enhanced with Quantum Optimal Control, in preparation for publication: arXiv:2112.15021

https://arxiv.org/abs/2112.15021


112 Controlling Quantum Systems

[quant-ph].
The author of this thesis contributed to the planning of this project, the theory and the
simulations, as well as writing the manuscript. She was involved in the discussion and
analysis of experimental results, as well as parts of the characterisation of the setup and
the implementation of the closed-loop optimal control. She composed Figures 1b (Level
scheme of pentacene and naphthalene-based protons), 2 (Implementation of a selection of
polarization pulses. . . ), 3 (Comparing the polarization build-up. . . ), 4 (Comparison of the
ISE and the optimized pulse. . . ), and 5 (Heatmaps of the Fourier transform. . . ).

3.2.3 Abstract

Hyperpolarization of nuclear spins enhances nuclear magnetic resonance signals, which
play a key role for imaging and spectroscopy in the natural and life sciences. This signal
amplification unlocks previously inaccessible techniques, such as metabolic imaging of
cancer cells. In this work, electron spins from the photoexcited triplet state of pentacene-
doped naphthalene crystals are used to polarize surrounding protons. As existing strategies
are rendered less effective by experimental constraints, they are replaced with optimal control
pulses designed with RedCRAB. In contrast to previous optimal control approaches, which
consider one or two effective nuclei, this closed-loop optimization is macroscopic. A 28%
improvement in signal and 15% faster polarization rate is observed. Additionally, a strategy
called Autonomously-optimized Repeated LInear SwEep (ARISE) is introduced to efficiently
tailor existing hyperpolarization sequences in the presence of experimental uncertainty to
enhance their performance. ARISE is expected to be broadly applicable in many experimental
settings.

3.2.4 Introduction

Sensitive Nuclear Magnetic Resonance (NMR) spectroscopy and Magnetic Resonance Imag-
ing (MRI) applications are a key driver in research areas from life sciences through material
science to quantum computing. The feasibility and sensitivity of such experiments critically
depends on the polarization of the utilized spins. Dynamic Nuclear Polarization (DNP)
techniques have been shown to increase NMR signals by multiple orders of magnitude [240],
enabling previously inaccessible imaging techniques [249]. DNP transfers the polarization
from highly polarized electron spins to the target species of nuclear spins [250] used for
NMR protocols. Electron spins are polarized, for example, by thermalization at low tempera-
tures and high magnetic fields or by optical polarization of atoms and suitable molecules in
gases, liquids, and solids [251–258, 240]. In this work, the electron spins of photoexcited
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triplet states in pentacene-doped naphthalene are used as the source of polarization, and the
proton spins of naphthalene as the target. This system, shown in Fig. 3.17b, exhibits unique
properties. In its ground state, the electron spin is in a singlet state and therefore the host
crystal is free of paramagnetic defects. Consequently, proton relaxation times of 50 hours
and above have been demonstrated at 77 K and 0.5 T [259].
In its metastable triplet state, the pentacene molecule exhibits a highly polarized electron
spin with favorable lifetimes. Together with surrounding nuclear spins, this forms a central
spin system that resembles other well-known systems like NV centers in diamond or phos-
phorous in silicon. This quantum resource for DNP leads to record values of 80% proton
polarization [260], which amounts to a polarized proton concentration of 50 M. Exemplary
applications of these nuclear spin polarized crystals are portable neutron spin filters in neutron
scattering experiments [261, 259] and polarization agents for NMR spectroscopy [243, 262].
Under typical operating conditions (e.g., high magnetic field), electron and nuclear spins
are mutually off resonant, prohibiting direct polarization transfer. This is then achieved via
advanced spin control methods, like DNP. Real-world experimental constraints like material
quality, field inhomogeneities, and limited power and bandwidth usually impair the ideal
performance of existing DNP methods. Under such constraints, the maximum achievable
polarization is reduced and the time to reach a certain polarization increases.
The goal of this work is to optimize the DNP transfer process by maximizing the proton
polarization. Correspondingly, a new multi-step protocol is introduced called Autonomously-
optimized Repeated LInear SwEep (ARISE).
In the case where the heterogeneity among spins is sufficiently small, they are all equally
well controllable. As a result, techniques like nuclear orientation via electron-spin locking
(NOVEL) [264, 265] can be employed to transfer polarization. As the environmental com-
plexity and inhomogeneity increases, other techniques are needed. Transferring polarization
while counteracting a broad Electron Spin Resonance (ESR) is done with the so-called
“Integrated Solid Effect” (ISE) [239, 63]: After the electron spin initialization, either a linear
magnetic field sweep is performed while the sample is driven by a constant microwave (MW)
field B⊥, or a linear MW frequency sweep is performed at a static magnetic field. The ISE
method is notable for both its simplicity and robustness and has been shown to reach up to
80% total nuclear polarization in naphthalene under optimized conditions (e.g., liquid He
cooling, sample quality) [260]. It has also been applied to NV centers in diamond at room
temperature [266, 267, 244, 258]. While optimizing DNP sequences on a model, i.e. per-
forming open-loop Quantum Optimal Control (QOC), is one method to recover some of their
performance [268–270], another is to employ closed-loop QOC by allowing an algorithm to
directly control the experiment (shown in Fig. 3.17d) [95, 18, 17, 2, 24]. The latter approach
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Fig. 3.17 Experimental realization. a) Schematic of the in-house polarizer device. The
sample (red) is mounted on a sample stick, which allows moving it between a MW cavity and
an NMR coil inside a magnetic field at cryogenic temperatures. b) Level scheme of pentacene
(electron spin) and naphthalene-based protons (nuclear spins), including the effect of laser
excitation (green) and natural decay (blue). Spin diffusion to external nuclear spins [263]
is indicated. c) 30 s of hyperpolarization show a clear signal enhancement compared to a
1h thermal build-up, the thermal signal is scaled by a factor of 50 to emphasize its faint
polarization peaks. d) Schematic visualization of the pulse sequence, consisting of a laser
pulse for triplet state creation and a MW pulse (of variable frequency) for polarization transfer
to the nuclear spins. This basic block is repeated with a repetition rate of 1 kHz (i.e. 30,000
repetitions are performed in 30 s). After the polarization, the sample is shuttled into the NMR
coil, where the magnetization is measured. An integral over the detected proton polarization
is passed to RedCRAB, which provides the shape of the next MW pulse.

is particularly appealing when the experimental setting is very complex or impossible to
accurately model. This is the first time that closed-loop QOC has been applied to optimize
DNP sequences. Due to the complex molecular environment, coupled with experimental
constraints, the system’s true transfer function (i.e., from optically initialized pentacene
electron spins to macroscopic proton polarization throughout the naphthalene crystal) is
obscured, making accurate simulation difficult. The MW DNP sequence is improved via
closed-loop QOC to increase the macroscopic proton polarization.
Many advances in quantum technology were only possible due to the design of sophisticated
control strategies using methods of QOC [95, 18, 17, 2, 24]. Established methods of QOC
include gradient-based algorithms like GRAPE (gradient ascent pulse engineering) [271,
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272], the Krotov algorithm [126, 147] or gradient-based algorithms based on automatic
differentiation [273], as well as algorithms based on an expansion of the control pulse into
a truncated basis like the dressed Chopped RAndom Basis (dCRAB) algorithm [129, 140,
24], typically coupled with direct search maximization algorithms. This pulse expansion
ansatz can also be combined with the gradient approach [222, 161, 274]. The dCRAB
algorithm is readily applicable to closed-loop control as it can be integrated directly with
an experiment, allowing the user to treat the system as a black-box. For this purpose,
the dCRAB algorithm was implemented in the QOC software packages Remote-dCRAB
(RedCRAB) [5, 275, 26, 6] and its open-source version Quantum Optimal Control Suite
(QuOCS) [276]. Recently, RedCRAB enabled automatic calibration of quantum gates [26]
and robust sensing operations [3] with NV centers in diamond, optimization of BEC creation
in ultracold atoms [6] and the creation of a 20-atom Schrödinger cat state with Rydberg
atoms in an optical lattice [1].
In this work, the efficiency of the overall proton polarization process is increased by opti-
mizing the DNP transfer process using closed-loop QOC. To guide the algorithm towards
a solution which produces a strongly increased signal, it is helpful to provide a good ini-
tial guess. This is done through the application of the ARISE protocol introduced in this
work. It provides a systematic approach to the improvement of ISE-like linear sweep DNP
sequences in the presence of an unknown experimental transfer function. In Section 3.2.5
the experimental procedure is described (Section 3.2.5.1) and the polarization results and
pulses are introduced (Section 3.2.5.2). In Section 3.2.6 the results are discussed and put into
context. The measurement techniques are explained in more detail in Section 3.2.7.1 and a
short overview of the dCRAB method is given in Section 3.2.7.2. The theoretical model that
was developed and used for comparison is explained in Section 3.2.7.3.

3.2.5 Results

A pentacene-d14 naphthalene crystal is placed in a magnetic field of 230 mT at around 130 K,
chosen because this is the limit of the polarizer. A ∼ 500mW, 600ns laser pulses initializes
the pentacene molecules into their metastable spin-polarized triplet state T2 (see Fig. 3.17a)
via the singlet state S1 from which they decay to the lower T1 triplet via inter-system crossing
(ISC) [277]. The pulse repetition rate is fixed at 1 kHz. Depending on the occupation of the T1-
states, the pentacene returns to its ground state S0 after 80-180 µs. During this intermediate
time, a MW DNP sequence transfers electron spin polarization to the densely packed proximal
proton spins. Strong dipolar coupling among protons distributes polarization throughout the
entire crystal via spin diffusion. The macroscopic proton polarization is measured via NMR
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spectroscopy after a 30 s buildup (i.e., 30,000 cycles of electron spin initialization and DNP
transfer).
Starting from an external linear sweep (similar to ISE), and altering the amplitude and phase
of the MW pulse via the ARISE protocol, using RedCRAB, this polarization is optimized.
Closed-loop QOC implicitly accounts for all experimental conditions influencing the transfer
from optically initialized pentacene spins to macroscopic polarization.
These could be, for example, the different lifetimes in the metastable state for different
electron spin states or variations of the pentacence lifetimes throughout the crystal which
might impact the final polarization. Another potential source of uncertainty could be the
strong variation of couplings between the electron and surrounding proton spins or the
distribution of polarization via spin diffusion during and after the MW DNP sequence.
Fluctuations in the experimental setup might also play a role, as bandwidth limitations of
microwave equipment, spatial and spectral MW field variation inside the MW resonator,
and spatial variation of laser intensity can also impact the efficiency. Additionally, it is
challenging to control the amplitude of the MW field while its frequency is scanned across
the resonance. Black-box (closed-loop) QOC does not directly incorporate variations in these
parameters, whose role in polarization transfer is not understood, but if they play a role it can
be captured by such an optimization. Importantly, some of these influences are very hard to
predict theoretically. The ARISE protocol results in a 26% increase in the hyperpolarized
signal observed alongside a 15% higher polarization rate. As a result, the optimal sequence
reaches 98% of the maximum polarization achieved with the linear external sweep in just
3.36 hours, instead of 9 hours (see Fig. 3.19). This decrease by a factor of 2.6 enables
multiple follow-up experiments per day.
Additionally, by examining the shape of the optimized pulse and fitting its main features,
a simplified analytical function is obtained describing the pulse (shown in Section 3.2.9,
labelled “Fitted Optimal”). This retains most of the enhanced performance of the optimized
sweep.

3.2.5.1 Experimental Realization

The experimental results are obtained in an in-house polarizer device, shown in Fig. 3.17a,
consisting of an optically accessible MW cavity inside an electromagnet operating at fields
up to 800 mT. Within the MW cavity, photo-excited triplet states are created using a 556 nm
pulsed laser with a repetition rate of 1 kHz delivering 0.35 mJ optical power in a 588 ns laser
pulse every 1 ms and setting the timing of experiments. With the sample positioned inside
the MW cavity, the spin state is manipulated using a MW pulse in between laser pulses.
Sophisticated pulse shapes can be sampled and uploaded to an Arbitrary Waveform Generator
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(AWG) using the experimental control software Qudi [278]. The sample is attached to a
holder that allows it to be shuttled into an NMR coil, which is located next to the MW cavity.
Here, an NMR spectrometer (Magritek Kea2) is used to read out the polarization of the
proton spins using a 1Pulse measurement. This round-trip takes approximately 45 seconds
from the pulse engineered by the RedCRAB software to the NMR measurement.
An optional 532 nm continuous wave laser additionally allows the readout of the pentacene’s
electronic spin state optically; it is not used during closed-loop optimizations, but during the
pentacene spin characterization experiments. Cooling of the sample is provided by a nitrogen
gas flow system, which allows precise control of the temperature from 130 K to above room
temperature. The measurements are carried out at the lower limit of 130 K. A naphthalene
crystal doped with pentacene grown in-house provides the electron spin system used as the
polarization target.

3.2.5.2 Polarization Results

The optimization directly adjusts the pulse phase for experimental convenience, but as the
detuning modulation ∆ contains the same information and connects directly to the system
dynamics, it is displayed in Fig. 3.18 instead. The first row of Fig. 3.18 shows the detuning
modulation ∆ as a function of time during the pulse. In the second row, the y-axis shows
the amplitude Ω during the pulse for both the externally applied field and the internal cavity
field. The Hartmann-Hahn resonance [246], shown in orange, is calculated using the time-
dependent detuning assuming the target spin is a proton. In the third row of Fig. 3.18,
experimental data and simulation are compared, showing how the polarization builds up
during the pulse.
The first initial guess pulse is an ISE-like linear sweep whose parameters (amplitude, sweep
rate and duration) had already been manually tuned on the experimental setup. This pulse
serves as the benchmark against which the optimized pulses are compared both in the
experiment and in the simulation. The optimization of that guess results in the pulse labelled
“Optimal (Linear)” which shows a relative polarization improvement of approximately 19%.
The evolution of the Figure of Merit (FoM) during the search for an optimized pulse and the
comparison between the initial and the optimized version are shown in Fig. 3.20.
The “Optimal (Linear)” pulse transfers the majority of its polarization during the first 10 µs.
It is notable that the detuning is oscillating during that time, and it crosses the cavity
resonance several times. The algorithm slows the sweep down as the detuning approaches
the resonance. Both features appear in multiple optimization outcomes. Arguably, if some
electron population is left untransferred, subsequent sweeps through the resonance in both
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Fig. 3.18 Implementation of a selection of polarization pulses. From left to right, the
figure presents the following MW pulse schemes on the resonator: The externally applied
linear sweep, a linear sweep-based QOC-generated pulse, sinusoidal sweep of the detuning,
a corresponding QOC-generated pulse. The first row gives the detuning applied by the
drive with respect to time. The orange area comprises the window in which the Hartmann-
Hahn resonance condition lies (∆2 = ω2

0I −Ω
2). The second row shows the Rabi frequency

as applied externally (dashed), the field inside the cavity (solid blue), and the resonance
condition for the given detuning (thin, orange). The last row shows how the polarization
builds up over the course of the pulse. Experimental values (exp.) are shown in blue,
theoretical values (sim. for simulation) in gray. The solid black line indicates the final
polarization.

directions (from positive to negative detuning and back) can serve as additional opportunities
for the polarization of more weakly coupled nuclear spins.
After analyzing the effect of the amplitude and phase of the pulse independently (see sup-
plementary information for more details Section 3.2.9), the MW amplitude is kept constant
in later optimizations. To further explore the idea that repeated sweeps through the res-
onance are beneficial, pulses with phase oscillations that use a range of frequencies and
pulse durations are tested, see the supplementary material Section 3.2.9 for more details.
The “Sinusoidal” pulse shown in column three of Fig. 3.18 is guessed in this manner. It
outperforms the linear sweep by approximately 14%.
The “Sinusoidal” protocol in Fig. 3.18 then becomes the new guess pulse for the optimal
control algorithm. After adding more frequency components, RedCRAB obtains the “Optimal
(Sin.)” pulse. It outperforms all other pulses in both final polarization (approximately 28%
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Fig. 3.19 Long-term polarization build-up. Comparing the polarization build-up using the
optimal settings for the linear sweep and the RedCRAB optimized pulse, shown in Fig. 3.18.
Using closed-loop optimal control, we reach a higher final polarization in a shorter build-up
time before saturation. The vertical dashed lines mark the times at which the polarization
reaches 98% of the maximum polarization of the linear sweep pulse. This level is reached
in 3.35 h using the optimized pulse, in contrast to 9 h with the linear sweep. The formulas
placed in the figure correspond to the exponential fits, POpti and PLinear, of the polarization
build-up during the optimized pulse and the linear sweep, respectively.

higher with respect to the linear sweep for the short build-up measurement) and polarization
rate on our setup.
When the pulse is significantly detuned from the resonance, as in the first 5 µs, the energy
gap between the spins is large and so very little polarization can be transferred. As this
gap closes, the nuclei are more likely to be polarized and the pulse slows down to allow for
an extended transfer period. The detuning “slow down” was recreated with an analytical
polynomial function. (For details, see supplementary information in Section 3.2.9.) The
resulting “Fitted Optimal” pulse largely retains the polarization capability of the optimized
pulse. The comparable efficiency corroborates that the “slow down”-feature contributes to the
substantial polarization build-up during the first 30 µs. This behavior is reminiscent of optimal
adiabatic passages with Landau-Zener protocols and optimal controlled crossings of quantum
phase transitions. Both have been investigated in different theoretical and experimental
scenarios [279–283] providing a basis for further exploration.
The key result of the paper is shown in Fig. 3.19, where the RedCRAB-optimized “Optimal
(Sin.)” demonstrates two clear improvements over the linear sweep. Firstly, the magnitude
of polarization increases by 26% when using the optimized pulse. Secondly, the optimized
pulse reaches, in only 3.35 hours, the same polarization that the linear sweep approach
obtains after 9 hours of continuously repeating the protocol, making it a factor of 2.6 faster.
These times correspond to ∼98% of the maximum polarization of the linear sweep, which
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is within the error margin of the polarization measurements. This allows for more than
doubling the number of polarized crystals in a given time. Previously, crystals were left to
polarize overnight to reach sufficiently high polarization. Using the optimal protocol, it is now
possible, on the current experimental setup, to polarize several crystals per day. Due to its
increased performance, the “Optimal (Sin.)” pulse was also applied as the hyperpolarization
method of choice by Eichhorn et al. [243]. In that paper, a bulk crystal polarization of 25%
is achieved using the optimized pulse.
The saturation of the polarization at this higher level is likely due to an equilibrium being
reached between the polarizing sequence and the competing T1 decay process of the nuclear
spins [263]. The lifetime of the nuclear states is measured to be approximately 3-4 hours
under laser illumination, considering the specific values for the magnetic field B0 and
temperature. In this case, it is limited due to the laser illumination and MW fields causing,
for example, additional heating. While this is the limit for the lifetime during polarization
transfer, the polarization can be stored in the sample afterwards for much longer. Lifetimes
between 50 hours [243] and 800 hours [259] have been reported for similar crystals at
different temperatures and magnetic fields.

3.2.5.3 ARISE

Generalizing the steps taken to achieve the results of the previous section, the Autonomously-
optimized Repeated LInear SwEep (ARISE) procedure is introduced. Each step provides
a recipe for finding a good initial guess for the following optimization. While this should
be unimportant for an infinite-dimensionally parameterized optimization without limits and
infinite measurement precision, in practice those restrictions apply, leading the algorithm
to local instead of global optima. Despite the dCRAB algorithm’s approach allowing it to
escape local minima under certain circumstances, the optimization time is also drastically
reduced if the initial guess is chosen carefully [24]. The protocol consists of three steps:

1. Tune the linear sweep. Do a parameter search for the sweep range ∆max and duration
tLinear producing the most efficient polarization transfer.

2. Construct multi-sweep. Set up a protocol which sweeps the detuning repeatedly
between ±∆max for Nosc times with a period τ. Do a parameter search for Nosc and τ,
starting from τ = tLinear.

3. Apply quantum optimal control. Search the full function space of the detuning ∆(t)
using an optimal control algorithm. The initial guess is provided by the multi-sweep
protocol from the previous step.
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In this work, steps one and two are accomplished through a simple parameter sweep. During
the second step, the detuning is swept with the function −∆max cos(2πt/τ), however this could
be replaced by linear sweeps. As the setup requires the pulse phase φext(t) as an input, all
detunings are translated to phase modulations (see Section 3.2.7.3). In general, experimental
feedback determines the best solution for the respective step. Here, it took the form of the
proton NMR signal after 30,000 repetitions of the sequence. The third step is implemented
using the RedCRAB software, which suggests different shapes for the phase of the pulse (see
Section 3.2.7.2).

3.2.5.4 Comparison to Simulation

As shown in Fig. 3.17b the electron spin of the pentacene molecule is excited to the S1 state
with a short laser pulse. From there it decays to the triplet states T2 and subsequently T1 via
ISC [277]. T1 then couples to the nuclear spins in the vicinity of the molecule. The three
states of the triplet correspond to spin quantum numbers ms = 0 and ms = ±1. An external
magnetic field induces a Zeeman splitting of the ms = ±1 levels, allowing for a two-level
approximation. As the pentacene is deuterated, the resonances of the pentacene’s own nuclear
spins are shifted far enough from the other protons in the crystal that they can be neglected.
The electron spin is assumed to have its origin at the center of the pentacene molecule. To
extract the parallel and perpendicular dipolar coupling to the pentacene’s electron spin, 574
protons of the nearest naphthalene molecules contained in the 3×3×3 unit cells around the
pentacene molecule are modelled (for details, see Section 3.2.7.3).
The first column of Fig. 3.18 shows the external linear sweep approach. Here, the polarization
is transferred when the system is close to the fulfillment of the Hartmann-Hahn resonance
condition. The external amplitude is kept constant while the frequency is swept across
the resonance, allowing for polarization transfer. During the experiment, the polarization
plateaus at the center of the pulse before continuing to rise in the second half of the pulse.
The simulation results contain the same features, however the plateau is shorter and the
initial rise is slightly delayed compared to the experimental data. These differences might be
caused by the lack of a full analytical model that extends the existing description of the cavity
with distortions due to electronics and other components of the setup. It should be noted
that polarization plateaus occur in the simulated results across all pulses when the detuning
is above the resonance condition. The relative speed-up of the polarization transfer in the
“Optimal (Linear)” pulse is visible in both the simulation, and the experiment. However, a
divergence between the measurement and the simulation arises in the latter part of the pulse.
This could be explained by the very fast oscillations in cavity field amplitude, which are not
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captured in full detail in the simulation, due to the unknown transfer function of the setup’s
electronics.
The simulated polarization of both, the “Sinusoidal” and the “Optimal (Sin.)” pulse, match
the experimental data closely. Again, the initial step-plateau-step shape of the “Sinusoidal” is
reduced after optimization. Almost all the performance gained by optimizing the pulses arise
from the behavior during the first 40-50 µs of the pulse. This is on a similar timescale as the
electron’s decay to the singlet state. In the simulation, the polarization of the longer pulses
slowly decreases after ca. 80 µs. This was not seen in the experiment, most likely due to spin
diffusion: The large amount of weakly coupled nuclear spins leads to a slow distribution of
polarization away from the electron spin. Spin diffusion is expected on a timescale of ca.
100 µs according to calculations of the dipolar interaction strength between the protons [263].

3.2.6 Discussion

The use of closed-loop optimal control provides a strategy for improving hyperpolarized
NMR signals in complex experimental setups despite the unknown transfer function. A
concern often raised about numerically optimized sequences is that they lose generality
and only apply to a specific setup or sample. This is not the case for the “Optimal (Sin.)”
sequence which, due to its increased efficiency, has been successfully applied on different
crystals with varying spin relaxation times across an extended period of time [243]. This is
now the gold-standard pulse in the lab.
The combination of a 15% faster polarization rate and a 26% higher polarization level
provides a factor of 2.6 reduction in the time taken to polarize crystals to within the margin
of error of the previous method. This allows for multiple crystals to be polarized per day to
be used in external hyperpolarization experiments [243]. Furthermore, these improvements
lead to higher levels of polarization in a shorter time, resulting in an overall polarization
within the crystal of about 25% [243]. Such strongly polarized crystals are necessary to
transfer polarization to external nuclear spins. By operating under liquid Helium conditions
and with improved crystal quality, even higher values are anticipated [260]. Mimicking
the features of the optimized pulse by fitting an analytical function to it (as shown in the
supplementary material Section 3.2.9) retains almost all the improved performance. This is a
good starting point not only for future optimization, but also for further investigations of the
system dynamics.
A key feature of all the sequences that outperform the linear sweep is that they repeatedly
sweep through the cavity resonance. This gives the sequences an extra opportunity to transfer
polarization, suggesting that the first sweep leaves some electron polarization untransferred.
The simulation shows that the first sweep primarily transfers to one of the most strongly
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coupled nuclear spins, while subsequent sweeps redistribute the polarization to a wider range
of couplings. This type of dynamics can only be accounted for when multiple nuclear spins
are considered or the optimization is done on a macroscopic system.
The ARISE protocol offers a starting point for future optimizations of DNP sequences using
both open and closed-loop protocols. Inherently flexible, the protocol is easily customized
to fit any number of experiment setups, including the complex molecular environment seen
here.
In conclusion, the application of the ARISE protocol results in a 26% improvement of the
polarization level and 15% faster polarization rate. Consequently, crystals were efficiently
polarized to 25% bulk proton polarization. These crystals were then used as the polarization
source for an external hyperpolarization experiment [243] which demonstrated strong transfer
to external spins.

3.2.7 Materials and Methods

3.2.7.1 Measurement Technique

The crystal grown in-house is cleaved along the ab crystallographic plane, and it is mounted
into a sample holder oriented along the b crystallographic axis. The sample holder is then
attached to a motorized stage, enabling it to be shuttled into the MW cavity, where it is cooled
to 130 K. Optically Detected Magnetic Resonance (ODMR) can be observed in pentacene-
doped naphthalene crystals, where the triplet state is created using a 556nm laser pulse. By
observing the fluorescence of the crystal under constant MW illumination, while changing
the magnetic field, the electron spin resonance of pentacene can be found. The high-field
transition of the pentacene triplet is used for both alignment and polarization. The crystal
is then aligned by monitoring the ODMR spectrum while the sample is rotated, the best
alignment is found when the resonance field is maximized. Rabi oscillations are observed
with a maximum Rabi frequency of 19.3MHz, by varying the duration of a resonant MW
pulse.
The experimental sequence used to hyperpolarize the sample is shown in Fig. 3.17 (d).
Initially, the sample is shuttled into the MW cavity and a laser pulse is used to create a
photo-excited triplet state. A pre-sampled waveform is applied, which has been suggested by
the optimal control algorithm, and uploaded to the AWG. To measure the signal produced by
the suggested pulse, the sample is shuttled into an NMR coil. Using a Kea NMR spectrometer,
the proton polarization is then measured using a single pulse NMR experiment. Integrating
over the peak of the resulting NMR spectrum provides a relative estimate of the proton
polarization. The RedCRAB algorithm is fed with this integrated signal and its estimated
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Fig. 3.20 Optimization procedure. Comparison between the linear sweep pulse (top left)
and the pulse after optimization (top right). The MW amplitudes are shown in red and the
detuning from cavity resonance in blue. The bottom graph shows the change of the FoM over
different sub- and super-iterations during the optimization.

uncertainty to produce the next guess pulse. One experimental cycle lasted approximately 40
seconds, and the optimizations typically ran for 12 hours.

3.2.7.2 Optimal Control

As previously mentioned, methods based on optimal control theory aim to optimize a
functional f by modifying time-dependent control functions ui(t). This functional is the FoM,
it includes all the relevant information contributing to the quality of an operation. To simplify
the optimization problem, the controls can be parameterized in terms of Nbe basis functions
vℓ(t) with corresponding parameters cℓ

ui(t) =
Nbe∑
ℓ=1

cℓvℓ(t) . (3.32)

The FoM therefore depends on the coefficients of these basis functions

FoM(ui) = f (cℓ,vℓ, t) . (3.33)

The solution to the problem is found using an iterative optimization algorithm, which takes
in the FoM for a defined set of parameters and returns a new set of parameters. Closed-loop
control involves the algorithm directly interacting with the experimental setup. Hence, it
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automatically takes into account real-world imperfections. Specifics of the measurement
technique can be found in Section 3.2.7.1. The algorithm improves the FoM by comparing
the results from different iterations. It follows the direction of improvement, while exploring
the parameter landscape and exploiting its features. An optimal set of controls is eventually
obtained after a number of iterations and FoM evaluations.
Limiting the size of the parameter landscape reduces the number of experimental runs and
hence the total optimization time. The dCRAB algorithm [129, 140, 23, 24], in combination
with the Nelder-Mead [284, 143] simplex optimization algorithm, is a good choice for
this. A small parameter space is created by randomly picking a number of basis functions,
optimizing them, and then switching to a new parameter space. An optimization in a single
parameter space is called a super-iteration. This allows the optimization to start afresh and
continue, even if it temporarily gets stuck in a local optimum.
For the parameterization the Fourier basis is chosen, which provides a simple method to
restrict the bandwidth of the controls by limiting their maximum oscillation frequency
component through a capping of ωd,ℓ in

u(t) =
NSI∑
d=1

Nbe∑
ℓ=1

[Aopt
d,ℓ sin

(
ωd,ℓt

)
+Bopt

d,ℓ cos
(
ωd,ℓt

)
] . (3.34)

Nbe represents the number of basis elements (i.e., the size of the parameter space in each
super-iteration), while NSI corresponds to the number of super-iterations. The parameter
space of the optimization is spanned by cd,ℓ = {A

opt
d,ℓ ,B

opt
d,ℓ } while ωd,ℓ is randomly initialized

with frequencies within a pre-defined interval for each super-iteration defining the basis
functions vd,ℓ = {sin

(
ωd,ℓt

)
,cos

(
ωd,ℓt

)
}. Meanwhile, the length of the pulses is kept constant.

The combination of this limited search space for efficient closed-loop optimization together
with the three-step ARISE protocol (see Section 3.2.5.3) enables the encoding of a sufficient
amount of information in the control pulse to substantially increase its performance [285].

3.2.7.3 System Model

The model for the simulation consists of an electron spin coupled to three nuclear spins. Both
the electron and nuclear spins are considered to be spin-half particles. A strong, constant
magnetic field BBB0 = B0ẑ is aligned along the long axis of the pentacene molecule, representing
the z-axis. The total spin Hamiltonian of the electron can be written as,

Hel =
ℏ

2
ω0Sσz+

ℏ2

4

[
D

(
σ2

z −
1
3
σσσ(σσσ+1)

)
+E(σ2

x−σ
2
y)
]
, (3.35)
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where σσσ = {σx,σy,σz} are the Pauli matrices σk. The Zeeman interaction is described by
ω0S = −γS B0, where γS is the electron spin’s gyromagnetic ratio. The factors D and E
correspond to the zero-field splitting [277, 286]. The exact transition frequency is determined
experimentally, and the magnetic field is aligned such that the splitting is symmetric.
The driving field has a carrier frequency which is resonant with the electron spin ωres =

D−ω0S . Its amplitude Ωext(t) and phase φext(t) are modulated to control the system. It is
then transformed to the field inside the cavity Ωint using Eq. (3.40). Coupling between the
electron and nuclear spins is described by the hyperfine interaction tensor Ai with the nuclear
spin indices i = {1,2,3}. A detuning ∆es is introduced, describing the deviation of the field
inside the cavity from the electron resonance frequency. In the rotating frame of the MW,
applying the rotating wave approximation, the Hamiltonian is then given by [287]

H = ℏ
(
Re[Ωint(t)]S x+ Im[Ωint(t)]S y+∆esS z+ ωL

3∑
i=1

Ii
z+

3∑
i=1

S ·Ai · Ii
)
, (3.36)

where S = {S x,S y,S z} with S k =
1
2σk⊗ I⊗ I⊗ I, (k ∈ {x,y,z}) are the electron’s spin operators.

Ii and Ii
k are the equivalent operators for the nuclear spin with index i and Ωint is the complex,

time-dependent field inside the cavity ωL ≈ 9.2MHz corresponds to the Larmor frequency of
the nuclei. The voltage signal, which is fed into the AWG, is given by

Vext = V(t)cos
(
(ωres+∆cs) t+φext(t)

)
. (3.37)

The conversion between V(t) and Ωext(t) is determined directly from experimental data. The
phase modulation φext(t) can be translated into the drive detuning ∆(t) = φ̇ext(t).
In the secular approximation [64], only the dominant coupling terms along z are kept, giving

S ·Ai · Ii ≈ S z ·
(
Ai

zxIi
x+Ai

zyIi
y+Ai

zzI
i
z

)
. (3.38)

They are calculated for the respective position of the nucleus in the crystal structure by
considering a purely dipolar interaction [245].
The static detuning values ∆es for the Hamiltonian shown in Eq. (3.36) are drawn from a
normal distribution with a full width half maximum (FWHM) of 10 MHz to mimic additional
frequency shifts due to magnetic field inhomogeneities and other impurities.
The system description includes the dephasing of the electron spin via a Lindblad operator

R1 =

√
Γel
2 S z, where Γel is the dephasing rate [43]. The only electron states that interact with

surrounding nuclei are the |0⟩ and |1⟩ states in the T1 triplet (see Fig. 3.17). To account for
the decay from T1 to S0, the model includes a shelf state, which does not interact with the
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Fig. 3.21 Characterization of the set-up via response factor γ. The agreement between
experiment and simulation, ∆I, is calculated via the Fourier transform Ω of the driven Rabi
signal for varying cavity detunings (top). The integral indicates the overlap of measured
and simulated distribution, which is shown for different values of cavity response fed to the
simulation in the bottom plot. The black line indicates the minimum of the error in overlap
between simulation end experiment at γcav = 9.24 MHz (bottom).

drive. It is only coupled via the loss rates Γloss,0 and Γloss,1 from the respective triplet states.
The corresponding Lindbladians are given by R2 =

√
Γloss,0σ−,0 and R3 =

√
Γloss,1σ−,1 with

σ−,0 = |s⟩ ⟨0| and σ−,1 = |s⟩ ⟨1|.
The evolution of the density matrix is then solved using the Lindblad master equation

ρ̇ = −
i
ℏ

[
H,ρ

]
+

∑
j=1,2,3

(
R jρR†j −

1
2

R†jR jρ−
1
2
ρR†jR j

)
, (3.39)

where ρ is the density matrix of the system.
The effect of the cavity on the external driving field is characterized by the cavity response
factor γcav and given by the differential equation

∂

∂t
Ωint(t) = γcav

(
Ωext(t) · e−iφext(t)−Ωint(t)

)
− i∆csΩint, (3.40)

where ∆cs describes the constant detuning of the cavity from the resonance of the electron
spin transition frequency [288].
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The solutions to the differential equations in Eq. (3.39) and Eq. (3.40) are calculated nu-
merically using the DifferentialEquations.jl [289] and other Julia packages [290–304]. To
obtain a realistic polarization build-up in Fig. 3.19, Eq. (3.39) is solved for and averaged over
1000 instances. For each instance, three random but distinct nuclei are picked from the 30
most strongly coupled nuclei and the detuning ∆es is sampled from a Gaussian distribution.
This way, mechanisms which are neglected in the common weighted sum single nucleus
approximation are captured. Examples include the re-polarization of the electron spin through
partially polarized nuclei or the redistribution of polarization from one nucleus to another.
The mean over many runs with different coupling combinations takes into account the variety
of couplings in the system with reasonable computational resources.
The cavity response γcav is determined by repeatedly applying constant external drive fields
with different cavity detunings ∆cs, obtaining a photon count that corresponds to the electron
state. B0 is adjusted such that the spin always stays resonant with the drive frequency. Os-
cillations are recorded for times up to 0.6µs from the start of the drive pulse. The detuning
is swept through a range of ±25 MHz around the resonance. The maximum of the Fourier
transform of the photon count then corresponds to the Rabi frequency Ω for a detuning ∆cs.
The cavity dynamics are complex, leading to a response similar to the example shown at
the top right of Fig. 3.21. These measurements are modeled for an electron spin inside a
cavity with a response factor γcav between 5 and 14 MHz (range suggested by response time
based on the measured Q factor of the resonator using a spectrum analyzer). The resulting
Fourier transforms are compared to the experimental values. The comparison was done by
calculating the overlap of the normalized measurement and simulation grids as shown in
Fig. 3.21. The minimum of the sum of the absolute difference between each grid point of the
measurement and simulation data is obtained by a Gaussian fit resulting in γcav = 9.24 MHz.
The values for the decoherence rate, Γel, of the electron spin and the loss rates to the shelf state,
Γloss,0 and Γloss,−1, are found by performing a Hahn echo measurement and state-dependent
lifetime measurements. For the dephasing time of the electron we obtain 1/Γel = 10µs and
the triplet-state decay times are measured to be 1/Γloss,0 = 80µs and 1/Γloss,−1 = 180µs.
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3.2.9 Supplementary Material

3.2.9.1 Amplitude vs. Phase Variation

To separate the respective effects of amplitude and phase modulation these two parameters
are investigated independently (Fig. 3.22). We first ran the basic linear sweep and the Optimal
(Linear) pulse, where we saw that the optimized pulse leads to higher polarization. To test
only the optimized amplitude modulation the optimized phase is reset to the initial guess
while the phase modulation was kept (Optimal amplitude + Linear phase). Similarly, to test
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Fig. 3.22 Amplitude vs phase variations: Comparing the linear sweep (Linear) to the cor-
responding QOC-generated pulse (Optimal (Linear)), as well as combinations of both. In
the third and fourth column the amplitude array of one is combined with the phase array of
the other (Optimal amplitude + Linear phase and Linear amplitude + Optimal phase). The
increase in polarization over the optimization is caused solely by the changes in phase rather
than amplitude (compare highlighted plots).

the optimized phase modulation the amplitude is held constant, as in the linear sweep, and
the optimized phase is applied (Linear amplitude + Optimal phase).
By comparing those four pulses it becomes clear that the amplitude modulation plays no role
in the polarization transfer and only the pulses with optimally controlled phase modulation
lead to enhanced polarization (highlighted in Fig. 3.22) . Testing the phase of the optimized
pulses with different constant MW amplitudes shows that using a higher MW amplitude
always leads to better polarization transfer (see Fig. 3.24).

3.2.9.2 Sine Oscillation Frequency Tests

Following the idea that subsequent sweeps through the resonance in alternating directions
further enhance the polarization, we tried to polarize with a sinusoidal pulse. In order to find
the optimal pulse, we were varying both, the frequency of the oscillation and the number of
resonance passages. For better comparison we here use the lenght of a half oscillation as a
parameter instead of the frequency, which means passing through the resonance once, similar
to a basic ISE-like linear sweep (Fig. 3.23, upper left). The second parameter, that describes
the passages through the resonance is then given by the number of half oscillations (examples
given in Fig. 3.23, upper right).
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Fig. 3.23 Comparing different sinusoidal pulses. Upper left: Half oscillations width different
frequencies comparable to different speeds of the ISE-like linear sequences. Upper right:
Example pulses to visualize the idea of the measurement. Lower left: For all six frequencies
of the first plot we measure the polarization after up to eight half oscillations and compare it
to the polarization after the linear sweep (dashed line). Lower right: Sinusoidal pulse that
gave the highest polarization.

In (Fig. 3.23, lower left) we compare the polarization that we got for different parameter
sets (length and number of half oscillation) to the standard linear sweep (dashed line). We
find that increasing the number of resonance passages leads to an increase in polarization
for a lenghts. While most of the applied pulses are beating the standard linear pulse we
found maximum polarization for a length of 20 µs and 8 half oscillations (Fig. 3.23, lower
right). This pulse was characterized in the main text and used a a new starting point for the
sinusoidal based optimal control.

3.2.9.3 Fitted Optimal Pulse

The “Fitted Optimal” pulse shown on the right-hand side in Fig. 3.24 was designed by
modelling the shoulder feature of the sin.-based OC pulse resulting from closed-loop op-
timizations of the sinusoidally varying pulse in the detuning regime. Repeating mirrored
polynomial functions emulate the slow-down of the detuning sweep around resonance. A
variation of the externally applied voltage kept constant during the pulses displays an im-
provement of polarization transfer for higher external drive amplitude. Except for the highest
driving amplitudes, at the limit of the experimental capabilities, the fitted pulse is equal or
outperforms the pulse resulting from the closed-loop iterations. Therefore it serves as a
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Fig. 3.24 Polarization performance of the linear sweep (Linear), the QOC-pulse generated
from a sinusoidal initial guess (Optimal (Sin.)), and its fit (Fitted Optimal) for increasing
constant drive amplitudes. Guided by the outcome of the optimal control algorithm the
first ∼ 20 µs of the optimal (sin.) pulse are re-modelled analytically by tuning polynomial
functions to match the detuning’s shoulder feature. Even for lower Rabi frequencies the
optimized pulses outperform the initial ISE-like linear approach.

good starting point for the use in other, similar setups and further optimisations as well as
theoretical and analytical transfer calculations and numerical simulations.

3.2.9.4 Naïve Sweep Corrections

While we applied a linear sweep outside the cavity, the mentioned effects lead to a non-
linear sweep inside the cavity. However, the drive would be faster when passing the cavity
resonance, compared to the part of the sweep where we are outside of the cavity. Measuring
the cavity linewidth and Q-factor allows to calculate the expected deviation from the linear
sweep. Calculating an input function with modified amplitude that takes the cavity properties
into account would be the first naïve approach to overcome this issue. Trying this did however
not improve our polarisation values.
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3.2.9.5 Coherence Measurements

We measured the nuclear spin relaxation time T1 and the electron spin coherence time T2.
For the nuclear spins, we measured T1 under experimental conditions (e.g. temperature, laser
illumination) and got a value of around 223 min (Fig. 3.25 left). For the T2 coherence time
of the electron spin, a standard Hahn-Echo sequence [305] was used and a value of around
9 µs was obtained. (Fig. 3.25 right).

Fig. 3.25 Left: T1 measurement of the nuclear spins under experimental conditions. Right:
T2 measurement of the electron spin via Hahn-Echo.

3.2.9.6 Polarization Build-up

We can build up polarization p in the crystal iteratively by applying the basic polarization
sequence many times (see Fig. 3 in the main text). The final polarization will be given
at the equilibrium of two competing effects: each time we apply the basic sequence a
fraction α(1− p) of the remaining unpolarized nuclear spins will be polarized, where α is the
polarization power of the sequence. At the same time, the polarized nuclear spins decay at a
constant rate γ.

dp
dt
= α(1− p)−γp (3.41)

Solving leads to the equation
p(t) = pmax

(
1− e−γ̃t

)
, (3.42)

where pmax = α/(γ+α) and the parameter γ̃ = γ+α can be obtained from a fit to the data.
We obtain γ̃ ≈ 0.0061min−1 and pmax ≈ 14140a.u. from the polarization build up obtained
by the linear sweep and γ̃ ≈ 0.0071 and pmax ≈ 17850a.u. from the polarization build-up
obtained from the optimal sequence. An additional measurement T1 measurement gives
1/γ ≈ 223min (Fig. 3.25 left). This translates into estimates for the final polarization of
pmax ≈ 27.8±1.3% for the linear sweep and pmax ≈ 35.1±1.7% for the optimal sequence.
Note, that the true value of γ is probably slightly larger than in the T1 measurement due to
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the polarization pulse sequences. If we consider, e.g., 1/γ ≈ 200min (or 1/γ ≈ 180min), the
polarization for the optimal sequence drops to pmax ≈ 26.2±3.4% (or pmax ≈ 16.5±5.2%)
and similarly for the linear sweep.

3.2.9.7 Effect of the Number of Nuclei on the Model

Each electron spin is surrounded by a large number of protons forming the nuclear spin bath.
As only a limited amount can be simulated at a time, sub-groups of nuclei are considered and
averaged over. Fortunately, the molecular and crystallographic properties of the naphthalene-
h8 specimen doped with pentacene-d14 are well-known. Hence, the orthogonal (Ai

zx, Ai
zy) and

parallel (Ai
zz) parts of the hyperfine tensor can be directly calculated [245] for the surrounding

protons in the crystal. Instead of including the entire bath as a single effective nuclear
spin [287], several nuclei are considered individually in the polarization dynamics. This step
is necessary to reflect the effects caused by complex pulse shapes obtained by the optimization
as well as the distortion by the cavity. Since the pulses cross the resonance line multiple times
and are repeated successively for polarization build-up, strongly coupled nuclei are usually
polarized first but can be depolarized again so that excitation is transferred to other nuclear
spins. Because the electron spin is re-initialized before each pulse application, each iteration
can polarize different nuclei. Up to six nuclei were considered during the initial investigation.
However for the figures presented in this manuscript, the following combinations of spins
was used to keep computational resources within an acceptable range: The electron spin is
coupled to three nuclear spins where the hyperfine coupling values are randomly selected
from the top 30 most strongly coupled protons. This simulation is repeated and average for
1000 sets using three different random nuclei in each run. This captures the dynamics of
multiple protons coupling to the electron at the same time, as well as the repetition of the
transfer operation in the experiment.

3.2.10 Outlook

We have shown that our model can predict the general shape of a pulse’s polarisation pro-
file. However, the final polarisation could not be extracted reliably, ruling out open loop
optimisations. There are two clear ways to improve the model: First, by characterising
the cavity in more detail. This could, for example, be achieved by measuring the system
response function [306, 307]. Second, by including more spins in the model through ad-
vanced simulation techniques [308]. We have further shown that ARISE provides a way to
find good polarisation strategies where common linear sweeps underperform. Preliminary
tests indicate that a multi-sweep approach could also improve hyperpolarisation on certain
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NV-based setups. A natural next step would be to apply ARISE to other setups to further
explore its applicability.
In summary, this work presents the first time closed-loop QOC has been applied to hyperpo-
larisation. We have improved the overall polarisation by 26%, as well as the polarisation rate
by 15%. Additionally, we have introduced the ARISE protocol to translate our methodology
into a more general language.

3.3 Spin Squeezing with Atomic Condensates

3.3.1 Regimes of Squeezing

As described in Section 1.2.4, a condensate in a double well resembles a highly sensitive
system. It is crucial for the sensing sequence that the condensates on either side start with
the same phase. During the sensing period, they are then decoupled to evolve freely under
the respective conditions before being recombined. Hence it is important to understand at
what trap-generating voltage κ the condensates are decoupled. We can identify three regimes
of coupling:

1. The fully coherent regime: The phase is perfectly coherent across the transverse
direction of the condensate, as the tunnelling dominates over the interaction. Hence,
the condensates are fully coupled.

2. The fully incoherent regime: The two wells are perfectly decoupled, as the interaction
energy dominates over the tunnelling. The number variance is negligible.

3. The intermediate regime: In between is where the relationship between the number
and phase distributions are sensitive, i.e. easily manipulable, and hence where the
squeezing happens.

We estimate the regime through the squeezing of the ground state as shown in Fig. 3.26 for
N = 100. In the fully coherent regime, we cannot identify any fringes as the two condensates
are still connected. The fully incoherent regime, where the wells are decoupled, is marked
by strong number squeezing. Additionally, the decoupling can be estimated directly by
measuring the decoherence time of the phase. To do so, the barrier is ramped from a single
well up to a certain κ. In the fully coherent regime, the phase variance quickly diverges, while
the condensates stay coherent for an extended time in the intermediate regime.
Simulations have shown that for a higher atom number (N = 500) the regimes are distributed
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Fig. 3.26 The transitions between the regimes are shown with respect to ξN , ξφ, ξS , and the
fragmentation for N = 100 and M = 2 in one and two dimensions. When κ < 0.5 the two
wells are not separated enough to create an interference pattern, hence ξφ is cut off. Here, we
can assume that ξφ ≈ 0 and the condensate is in the fully coherent regime. Beyond κ = 0.65
the phase is widely distributed while the number imbalance distribution is point-like. Hence,
we can identify the fully incoherent regime.

differently for one and two dimensions.7 As the barrier is generally lower with respect to the
atom number, the point of decoupling moves towards higher κ for increased N. However, in
two dimensions the transitions are not as clear and the condensate does not reach complete
fragmentation. Similarly, the deviations are larger for the fully coherent regime. These
differences reflect that the longitudinal direction and hence two-dimensional calculations
uncover details that are not accessible in one dimension.

3.3.2 Josephson Oscillations

In the experiment, the coupling between the wells is measured through the Josephson
frequency ωJ , which is the frequency of oscillation between the wells in the presence of
an imbalance.8 This property can be well approximated with the GPE [311, 312], hence
we only use one orbital to calculate it. The Josephson frequency represents a good point of
comparison between the experiment and the simulation.
We can measureωJ in a number of ways [310]. Here, we choose to relax the condensate into a
tilted double well, before releasing it into an even well. The Josephson frequency is extracted
from the evolution of the condensate’s centre of mass shown in the first row of Fig. 3.27. To

7These calculations were done with both two and three orbitals delivering almost identical results.
8If the imbalance is too strong, the condensate experiences self-trapping and the oscillations are at a different

frequency [309] but we keep the imbalance sufficiently small.
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Fig. 3.27 Josephson oscillation in one and two dimensions simulated with M = 1.
(first row) Exemplary Josephson oscillations for different κ and N = 5336. CoM stands
for Centre of Mass, which oscillates about the centre of the well at zero which is indicated
by a grey line.a (second row) Fourier transform of the CoM oscillations for N = 5336. (third
row) Fitted Josephson frequency as a function of κ for different atom numbers. The dots
represent experimental datab, while the lines are produced by simulation. The frequency is
determined by fitting the function e1+ e2 cos(2πωJt+ e3) to the CoM oscillations using the
position of the highest frequency peak of the Fourier transform as an initial guess for ωJ . The
quality of the fit is depicted in the bottom panels such that a perfect fit would give 1−R2 = 0.

aWe have made sure that the initial imbalance does not put the condensate in the self-trapping regime [309,
310].

bThe data was provided by TianTian Zhang.
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extract ωJ we fit the function e1+ e2 cos(2πωJt+ e3) to the oscillations with the initial guess
(e1,e2,ωJ ,e3) = (0,nmax,ω0,0), where nmax represents the initial imbalance. The frequency
guess ω0 is obtained from the Fourier transform of the centre of mass motion. In one
dimension, this produces very clear results, indicated by the excellent fit (1−R2≪ 1). In two
dimensions, however, it does not. As one can see in the second row of Fig. 3.27, the Fourier
transform of the 2D data consists of multiple bands. We relate this behaviour to two factors:
First, due to the harmonic potential along z, the number density and hence the tunnel coupling
differs between the centre and the edges of the condensate, i.e. ωcentre

J > ω
edge
J [313]. Second,

the condensate is instantaneously released from the tilted well which may result in different
(longitudinal) energy modes contributing to the oscillations [309]. Future calculations
should include a ramp down of the tilt, to differentiate between those effects. Based on the
computation in 1D and keeping these circumstances in mind, we use the higher energy peaks
of the spectrum for the fit. The resulting frequencies and an estimate of the quality of the
fits are shown in the last row of Fig. 3.27. The comparison to experimental data shows a
noticeable offset in both cases.
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Fig. 3.28 Frequency and amplitude of the fragmentation oscillations after a 10 ms ramp to
a range of κ with N = 1158 and M = 2 in 1D. The oscillations were fitted with a function
A0+A f cos

(
2πω f t+ϕ f

)
.

In order to match the theoretical values of ωJ at a given κ with the experiment, one could
adjust the atom interaction λ. The matching is crucial as the coupling between the wells
has a strong effect on the dynamics of the fragmentation. We illustrate this connection by
ramping the potential up from κ = 0.3 over 10 ms. The fragmentation starts to oscillate
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with a frequency ω f ≈ 2ωJ . The κ-dependent frequencies are shown in Fig. 3.28. In
Section 1.2.3 we explained how squeezing can only be represented with multiple orbitals and
hence requires fragmentation. Indeed, the squeezing oscillates along with the fragmentation.
This phenomenon has been observed before [312] and can be explained by imagining the
distribution of a squeezed state on the Bloch sphere. Josephson oscillations rotate the
distribution about the x-axis. For a displaced state, it takes a full oscillation to return to its
original position. For a squeezed state centred on the x-axis, however, it only takes half a
rotation. These observations reinforce the statement that it is vital to match ωJ as closely as
possible to accurately represent the squeezing in the experiment.

𝜏𝑟1 𝜏ℎ 𝜏𝑟2

𝜅int

Fig. 3.29 The best double ramp from a direct search, where N = 1500 and (τr1, τh, τr2, κint) =
(15.8255ms,11.8519ms,14.1745ms,0.5776). The light grey lines indicate the fragmentation
for modified τh.

3.3.3 1D Optimisation

Previous results from Marine Pigneur indicate improved squeezing after splitting the conden-
sate via an easily implementable double ramp [312]. However, it was not clear, whether the
squeezing could be maintained afterwards. In the double-ramp protocol, κ is linearly raised
starting from 0.3, then held constant in the intermediate regime, and finally raised until the
split condensate is decoupled at κ = 0.7. We define the protocol in Fig. 3.29 such that the
duration of the first ramp is denoted as τr1 going up to κint, and the duration of the second
ramp is given by τr2 going up to κ = 0.7. The duration of the holding time is given by τh.
To apply experimentally realistic limits in the optimisation we re-parameterise the problem
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giving

2ms <ν1 = τr1+τr2 < 30ms,

0 ≤ν2 = ν1/τr1 ≤ 1,

0ms <ν3 = τh < 50ms,

0 ≤ν4 = (0.7−0.3)/κint ≤ 1.

(3.43)

The best ramp found during a direct search is shown together with the evolution of the
squeezing and the fragmentation in Fig. 3.29. It results in a useful squeezing factor of
ξS ≈ 0.067 which is an improvement by a factor of four compared to a linear ramp taking the
same time (ξS ≈ 0.280). Moreover, holding the potential steady at κ = 0.7 for >50 ms shows
that the squeezing is maintained in the split potential.
We assess the robustness of the ramp with respect to different parameters. Changes in the
ramp times, τr1 and τr2, have a small effect on the squeezing. Generally, the useful squeezing
stays below 0.1 for ramp times τr1/r2 between 8 ms and 40 ms. We observe, however, that τh

and κint are closely coupled to each other. In Fig. 3.29 the evolution of fragmentation with
a modified τh is indicated by grey lines forking off from the optimised fragmentation. The
rising and falling fragmentation belongs to ramps with 0.9τh and 1.1τh respectively. As the
fragmentation directly affects squeezing, this effect is mirrored in the squeezing and explored
in more detail in Fig. 3.30.
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Fig. 3.30 Dependence of the squeezing on the holding time. All calculations were done with
N = 1500 and M = 2. (left) Intermediate (orange) and final (blue) number squeezing as light
dots and phase squeezing as dark dots. The final useful squeezing is indicated by a black
dashed line. The intermediate squeezing is measured after τr1 + τh at κint, while the final
squeezing is calculated after the second ramp at κ = 0.7, when the wells are fully decoupled.
(right) The standard deviation of the relative phase and full number imbalance at the end of
the ramp (fin.) and for a ground state condensate (rel.).
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Figure 3.30 shows the squeezing of the imbalance and relative phase at the end of the
intermediate hold time and at the end of the second ramp (final), as well as the standard
deviations for the final and ground state (relaxed). The left plot shows that, while the number
squeezing is almost the same at the intermediate and final time, the phase squeezing changes
during the second ramp. It is raised or lowered depending on τh. The oscillatory behaviour
of the squeezing factors is modelled by |cos

(
2πω f t

)
|. The frequency of the fragmentation

oscillations is given by ω f
2 = 16.6 kHz≈ ωJ . The fact that the evolution of the squeezing

is directly dependent on ωJ shows once again, how important the role is that the tunnel
coupling plays.
The right plot of Fig. 3.30 shows the comparison between the final and relaxed values of 2∆n
and ∆φ. For the optimised holding time at 11.6 ms the squeezing hits the limit given by the
Heisenberg uncertainty relation in Eq. (1.73). For longer holding times (up to ca. 18 ms) it
stays close to the limit but is less squeezed. This behaviour can be explained by the shift of
the final with respect to the intermediate phase squeezing displayed on the left.
In general, we see that the squeezing dynamics are highly dependent on the fragmentation and
tunnel coupling. While ramp speeds have a very small influence on the squeezing dynamics,
the holding time τh and potential κint are crucial for multi-ramp protocols. By extending
these observations, it might be possible to create a simpler model to use for open-loop
optimisations, especially for the 2D case, or derive good initial guess pulses for a future
closed-loop optimisation.

3.3.4 Shifted Well

The longitudinal profiles of the left and right condensate are not perfectly aligned in the
experiment. To reflect this fact in the model, we introduced the shift χ in Eq. (1.82).
Figure 3.31a shows the transverse view of the shifted condensate which is unchanged with
respect to a non-shifted one. The effect is only visible in the longitudinal view shown in
Fig. 3.31b, where the centres of the left and right condensates are 6 µm apart. Please note,
that the condensates are comparatively short, as they only contain 100 atoms in total. For
higher atom numbers the same shift is less noticeable. A condensate with 1000 atoms, for
example, is approximately twice as long. Imagining transverse slices of the potential makes
it simpler to understand the consequences of the shift in momentum space. The centre slice
resembles a straight double well, while the edge-slices correspond to a well tilted in either
direction. As a result, the ground state’s relative phase changes along the condensate as
shown in Fig. 3.31c. As the relative phase is obtained by integrating the single shots of the
condensate longitudinally, the contrast of each single shot is reduced. The effect on the full
distribution is shown in Fig. 3.31d, where the left plot represents the ground state of a non-



142 Controlling Quantum Systems
in

te
gr

at
ed

 d
en

si
ty

in
te

gr
at

ed
 d

e
n

si
ty

x [µm]

z [µm]

kx [1/µm]

k z
[1

/µ
m

]

(a)

(b)

(c)

(d)

(e)

k z
[1

/µ
m

]

time [ms]

Fig. 3.31 The effect of shifted wells with χ = 2.5 and N = 100. To understand the con-
sequences of the shift, we first show the integrated density over the transverse (a) and
longitudinal (b) direction of the condensate with κ = 0.68. (c) The momentum space density
of the shifted ground state. (d) Comparison between the phase distribution of a non-shifted
(left) and a shifted (right) condensate. The distribution was simulated with κ = 0.60 and
M = 2. (e) Evolution of the integrated momentum space density of a condensate in a shifted
potential. The barrier was ramped up from 0.3 to 0.68 over 50 ms and then held constant. We
calculated the evolution with a single orbital.

shifted well and the right plot that of a shifted well. The evolution in a shifted potential as
shown in Fig. 3.31e starts like it would in an non-shifted well as the shift has no measurable
effect on the initial single well. However, it becomes stronger as the two wells move further
apart, leading to higher local phase changes resulting in lower contrast. We simulated the
evolution with one orbital to show that this loss of contrast is completely independent of
fragmentation and squeezing. It should be noted that the contrast sees a revival at a later
time.



3.3 Spin Squeezing with Atomic Condensates 143

-2 -1 0 1 2

x [µm]

κ = 0.3

-2 -1 0 1 2

x [µm]

κ = 0.55

-2 -1 0 1 2

x [µm]

κ = 0.68

0.3 0.4 0.5 0.6

0.01

0.10

1

10

100

κ

E
n
-
E

0
+

0
.0

1

even transverse mode

odd transverse mode

longitudinal mode

Fig. 3.32 Eigenmodes in two dimensions. The top row shows the transverse potential and
the first six eigenmodes of a single atom according to the Schrödinger equation with an
offset corresponding to their eigenenergies. Please note that the amplitude of the modes is
slightly exaggerated to provide a clearer picture. The thick lines in the main plot give the
eigenenergies of the first six transverse modes. The dotted lines represent the corresponding
longitudinal modes. For the sake of clarity only the first six longitudinal modes are plotted
per transverse mode.

3.3.5 1D vs 2D

Two-dimensional simulations provide more degrees of freedom. Figure 3.32 shows the
transverse and longitudinal eigenstates, which we call modes, going from a single to a
double well. The lowest energy levels in the 2D single well are given by the combination
of the transverse ground state and longitudinal modes. Raising the barrier leads to the
transverse first excited state to become degenerate with the transverse ground state. During
this transition, the longitudinal and transverse modes cross. As a result, the 2D double
well behaves similarly to the 1D double well, but the transition looks very different. In two
dimensions the first orbitals of low-κ states are all transversely symmetric (even), due to
the small energy gaps between the longitudinal eigenmodes. Squeezing cannot be captured
without transverse anti-symmetry (odd modes). Hence, we need to take into account many
more orbitals.
Previous work by Bhowmik et al. [71] has shown that for a condensate with N = 10 atoms, six
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Fig. 3.33 Contributions of different modes during and after a 5 ms ramp from κ = 0.3 to
κ = 0.6 with N = 2. (left) Normalised composition of the natural orbitals from the first 200
modes of the κ = 0.6 potential. As the single well’s modes are complex to represent in the
double well basis, the graph does not capture the composition at t = 0. (right) Spectra after the
ramp with different orbital numbers calculated from the autocorrelation function according
to reference [314]. The data in this figure was kindly provided by Camille Lévêque.

to ten orbitals are required to accurately capture the dynamics. The specific number depends
on the initial state. Considering that they kept the potential constant and their atom number
is drastically smaller, it is difficult to compare to our model. On the one hand, higher atom
numbers usually lead to better agreement with the GPE (i.e. fewer orbitals are required). On
the other hand, the dynamics are very different as the type of evolution as shown in Fig. 3.31e
is influenced by more factors than the ones provided by Bhowmik et al. Moreover, one might
argue that, in order to capture the squeezing behaviour, we do not have to represent the full
two-dimensional dynamics but only the fragmentation into transversely odd and even basis
states.
We have analysed the composition of the orbitals of two atoms after a simple ramp of duration
τr = 5 ms to understand the connection between orbital symmetry and fragmentation. To do
so, the natural orbitals9 are projected onto the first 200 modes of the final potential (κ = 0.6)
at each time step. The left side of Fig. 3.33 shows that the orbitals are almost exclusively
composed of even modes for the first 70 ms with M = 2. Once this changes, the condensate
starts to fragment. For M > 2, the fragmentation happens earlier indicating convergence at a
higher orbital number. While this type of analysis is very time consuming for more atoms,
we have observed a similar behaviour of the fragmentation for N = 20,50,100. Here, the
fragmentation also rises from 0 to 0.5 with occasional revivals. Moreover, these features are

9The natural orbitals are the diagonalised form of the orbitals, i.e. they are the eigenvectors of the density
matrix.
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also shifted to earlier times with increased M and the rise in fragmentation occurs after one
of the orbitals acquires a strong transversely anti-symmetric component.
Another type of analysis reveals the spectrum of the condensate after the ramp. It is obtained
by Fourier transforming the autocorrelation function a(t) = ⟨ψ(τr)|ψ(t−τr)⟩ [314]. The right
part of Fig. 3.33 shows the spectra of two atoms simulated with two and four orbitals. The
modes are indicated by the peaks marked with dotted lines. Both simulations produce the
same occupation of modes which is given by the amplitudes of the peaks. The same holds for
calculations with three and five orbitals not shown in this plot. The leftmost peak is actually a
double peak of the almost degenerate transverse ground states. Most of the population resides
in those two states. The rightmost and second highest peak belongs to the transverse first
excited state, while the peaks in between are highly excited longitudinal modes. It should
be noted, that their occupation is very low. The fact that the spectra are so similar shows
that the addition of orbitals does not lead to a higher number of modes being simulated.
This opens up the question of whether the dimensionality of the problem truly exceeds the
representation with few orbitals or whether the basis of the representation simply does not fit.
Other indicators supporting the latter hypothesis is that the longitudinal modes are barely
populated and that one-dimensional simulations with two orbitals result in similar dynamics
to two-dimensional simulations with many orbitals.
A potential way to simplify the two-dimensional method while representing the squeezing
dynamics is to impose an anti-symmetry condition on the transverse part of the second
orbital.10 As the single well ground state exhibits next to no fragmentation this condition
is expected to have no effect on it, especially for high atom numbers. It would, however,
provide a basis for representing squeezing in high-κ potentials with few orbitals and in two
dimensions.

3.3.6 Conclusion

We have examined the behaviour of a condensate in a potential derived from experimental
conditions to study squeezing. During our investigation, we explored the boundaries of our
main method of simulation, MCTDHB. We calculated the squeezing from single shots (see
Section 1.2.7.1) which allowed us insight, not only into the number but also into the phase
squeezing. We have shown that improvements are achievable with a simple optimisation using
a one-dimensional model. Next, we presented the connection between tunnel coupling and
squeezing dynamics. The strong effect of small changes indicates that matching model and
experiment is very important for a meaningful representation. Several matching indicators

10The symmetry of the orbitals is preserved, if the occupation of odd orbitals is always kept even [315, 70].
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were identified such as the Josephson frequency ωJ and the shift χ. Finally, we showed the
limits of few-orbital calculations in two dimensions and discussed a possible route for further
theoretical investigation.

3.4 Schrödinger Cat States with Rydberg Atoms

Rydberg atoms are an incredibly versatile platform [316]. They are formed when an atom is
excited such that the inner electrons shield the outermost electron from the nucleus’ electric
field resulting in a structure similar to a hydrogen atom [317]. As a consequence of this
specific excitation, Rydberg atoms have some unique properties such as a strong response
to electromagnetic fields and long decay times. These properties allow us to manipulate
them and their interaction, hence they find applications in many fields such as quantum
sensing [318], quantum computing [319], and quantum simulation [320]. To fully exploit
their quantum nature it once again comes down to state engineering. In this section, we will
present the goal of an optimisation which resulted in the following publication and involved
the author of this thesis: A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S.
Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold,
S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin, Generation
and manipulation of Schrödinger cat states in Rydberg atom arrays, Science, 365 (6453),
570–574 (2019) [1]. She was part of providing and maintaining the optimal control software
that enabled the necessary enhancements to build a 20 qubit Schrödinger cat state. At the
time of publication, this was the largest such cat state ever created.

3.4.1 Greenberger-Horne-Zeilinger states

The Greenberger-Horne-Zeilinger (GHZ) state is a genuinely entangled multipartite Schrödinger-
cat state, where each subsystem is in a superposition of orthogonal states [321]. It is created
from two states |AN⟩ and |ĀN⟩. One example for an N-dimensional GHZ state is the following:

|GHZN⟩ =
1
√

2

(
|0101 · · ·⟩+ |1010 · · ·⟩

)
. (3.44)

In this case |AN⟩ and |ĀN⟩ correspond to |0101 · · ·⟩ and |1010 · · ·⟩, respectively. Without
requiring full information about the system, GHZ states can be characterised through only
two diagonal terms (p|AN⟩, p|ĀN⟩

) and two off-diagonal terms (cN , c∗N) of the density matrix
ρ. The diagonal terms represent the probability to be in a certain state |ϕ⟩ and are given by
p|ϕ⟩ = ⟨ϕ|ρ |ϕ⟩, while the off-diagonal terms distinguish the cat-state from a statistical mixture
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and are given by cN = ⟨AN |ρ |ĀN⟩. Together, they form the GHZ-fidelity FGHZ :

FGHZ = ⟨GHZN |ρ |GHZN⟩ =
1
2

(
p|AN⟩+ p|ĀN⟩

+ cN + c∗N
)
. (3.45)

Quantifying entanglement is generally a complicated task. However, for these states, the
GHZ-fidelity is enough to determine whether a system is in a genuine N-particle entangled
state: It has been shown that, as long as FGHZ > 0.5, the state can be transformed into a
perfect cat-state [322]. This type of transformation is called entanglement purification and
only consists of local operations and classical communication, which means that operations
are only performed on parts of the system (locally) and then communicated classically to
possibly trigger other local operations [323].
GHZ states do not provide any squeezing and yet they can improve sensitivity through their
quantum properties [105, 72]. While N repeated measurements of a single system (or N
uncorrelated systems) enhance the measurement by N times, the signal will be subject to
shot noise N times more often. Shot noise refers to the variance in the signal that stems from
the quantised nature of the photons counted during the measurement. However, with a GHZ
state of N atoms, the signal is enhanced by a factor of N but only read out on a single atom.
The resulting sensitivity is called the Heisenberg limit. Here, the shot noise stays the same,
while the sensitivity is increased. It is clear that GHZ states consequently form an important
part of quantum sensing [72], but they also find applications in quantum computing [324], as
they are scalable and entanglement is key to many protocols.

3.4.2 Hamiltonian Design

The system is composed of a one-dimensional array of N atoms (87Rb) which are trapped
via optical tweezers. They are expected to behave like qubits, defined by the ground state |0⟩
and the excited Ryberg state |1⟩. When the tweezers are switched off the system corresponds
to the Hamiltonian Hryd, illustrated in Fig. 3.34A and defined as:

Hryd/ℏ =
Ω(t)

2

N∑
i=1

σ̂i
x−

N∑
i=1

(∆(t)+δi) n̂i+
∑
i< j

V
|i− j|6

n̂in̂ j. (3.46)

The Rydberg laser enables the transition between the ground and Rydberg state via two-
photon coupling. The strength of this coupling is given by the Rabi frequency Ω(t). The
lasers’ detuning ∆(t) determines how many Rydberg states are in the multi-particle ground
state. For large negative values, the amount is zero, while large positive values maximise it. δi

represents the static detuning for a specific site i. It is introduced to represent the edge lasers
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Fig. 3.34 Representation of the Rydberg atom array. (A) Schematic of the line of Rydberg
atoms. Rydberg lasers are applied with an amplitude proportional to Ω(t), and detuning ∆(t),
as well as edge lasers with detuning δe. The inset level diagram represents the states of a
single atom. (B) Energy level diagram for N = 8 atoms depending on the detuning ∆(t). This
figure was originally published as part of Fig. 1 in reference [1].

which result in an effective detuning for the outermost atoms. As shown in Fig. 3.34B, they
ensure that the multi-particle ground states for an even number of atoms are well-separated
from the states with two edge-excitations (faux ground states). The Rydberg blockade V
corresponds to the strong distance-dependent van der Waals coupling between neighbouring
atoms. As a result, there are no two adjacent atoms in the Rydberg state in the multi-particle
ground state. n̂i is the operator representing the number of Rydberg excitations on site i.
Ultimately, Hryd is designed to create a GHZ-state as in Eq. (3.44).
Fig. 3.34B shows an adiabatic route to obtaining the GHZ state. First, the detuning is strongly
negative and all atoms are prepared in the ground state, then the detuning is swept until it
is strongly positive. However, to stay adiabatic, the sweep needs to be slow enough not to
trigger excitations. Unfortunately, this is not possible while staying inside the decoherence
time of the system. To circumvent this speed restriction we applied QOC.

3.4.3 Optimisation

The optimisation is performed via open-loop on a model which exactly solves the Schrödinger
equation. The GHZ-fidelity is used as the FoM, while the dynamical control pulses are repre-
sented by the detuning ∆(t) and amplitude Ω(t). Previously, the potential of this optimisation
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Fig. 3.35 Optimised ramp for a 20 atom GHZ state. (A) The optimised pulses for the
amplitude Ω and the detuning ∆ of the Rydberg lasers. It is clear, that the slope of the
detuning correlates with the gap between the multi-particle ground and first excited state.
However, the panels below show, that this is not an adiabatic control. (B) The energy of the
lowest 100 energy levels relative to the ground state over the course of the pulse. (C) The
population of the energy levels. The population during the steep ramp-up of the detuning
(I) is mostly in the ground state. During the slow ramp in the middle (II), the population
gets transferred to two of the excited states, before being transferred back before and during
the last stage (III). The fact that the population does not remain in the ground state over the
entire pulse, illustrates the diabaticity of the control sequence. This figure is reprinted from
Fig. S4 of reference [1].

were explored with a tensor-network simulation [325]. The amplitude limitations are imple-
mented using a cut-off restriction. To ensure that the amplitude is zero at the initial and final
time, a shape function is used. The result of the optimisation can be seen in Fig. 3.35. The
optimised pulse clearly slows down at the centre, where the spectrum around the ground state
gets crowded. Still, some population is transferred to excited states confirming the diabaticity
of the protocol. The population is subsequently transferred back. To understand the gain
through the optimal control protocol, it is compared with an optimised adiabatic sequence
in Fig. 3.36. The optimised adiabatic protocol is constructed to minimise the probability
of exciting a diabatic transition. The sweep speed of the detuning and the amplitude are
adjusted accordingly. The result shows some improvement with respect to the linear ramp
but cannot compete with the optimal control pulse. Intrinsically, it is slower which would



150 Controlling Quantum Systems

0.1 10.2 0.5 2

Total time T (µs)

10-3

10-2

10-1

100

1
 -

 F
Linear
Optimized adiabatic
Optimal control

Fig. 3.36 The GHZ-infidelity is shown as a function of the pulse length T for N = 12. A linear
sweep of the detuning (blue) requires the longest time to produce sufficiently low infidelity.
The optimised adiabatic scheme (yellow) produces better results for shorter times. In red,
one can see the results from a QOC, i.e. diabatic, pulse with a total sweep time of T =1.1 µs.
This simulation shows that the optimised control pulses outperform both, the linear and the
optimised adiabatic control sequences. This figure is reprinted from Fig. S3 of reference [1].

cause the system in the experiment to decohere before the sequence is fully executed.
The first step to calculate the GHZ-fidelity from the experiment is measuring the state

fidelities, p|AN⟩, p|ĀN⟩. To do so, the trapping laser is switched on after the protocol. It
recaptured the atoms in the ground state, which can then be detected, and repels the atoms in
the Rydberg state. The off-diagonal terms are determined by applying a local light shift to
every second atom. This causes the GHZ states to develop a phase between |AN⟩ and

∣∣∣ĀN
〉
.

The lights are applied for different durations resulting in oscillations that can be transformed
into a measurable observable (the parity). The oscillation contrast is then used to infer the
lower limit of the off-diagonal elements, cN and c∗N . Finally, the GHZ-fidelity is found to be
FGHZ ≥ 0.542(18) > 0.5.

3.4.4 Derived Results

The constructed GHZ-state is subsequently transformed into a Bell-state of the edge-atoms.
First, the two atoms of interest are shifted from the resonance of the others, then the rest is
disentangled through a reverse detuning sweep resulting in the Bell state

∣∣∣Φ+〉 = |00⟩+ |11⟩
√

2
. (3.47)
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This protocol is performed with eight atoms. Generally, a Bell state between distant atoms
has many applications, for example, in quantum teleportation [326] as well as quantum
cryprography [327].
After QOC had provided a way to prepare GHZ and Bell states, our collaborators continued to
use our tool and showed the implementation of a three-atom CCZ gate using RedCRAB [328].
It was one of the building blocks used to build a Toffoli-gate; a three-qubit gate where two
qubits simultaneously restrain a third qubit. Such gates are important for quantum error
correction and form a step into the direction of a neutral atom quantum computer [329].





Conclusion

As quantum technologies evolve, so do the tools which explore and unlock their potential.
Quantum Optimal Control (QOC) produces tailored control strategies to improve quantum
technological applications. Our results showcase sensing-focused enhancements of quantum
processes enabled through QOC. We pushed quantum hardware to its limits on various
platforms: We amplified the sensitivity of single shallow nitrogen-vacancy (NV) centres,
which are promising high-resolution quantum magnetometers. The subsequent optimisation
with pentacene-doped naphthalene showed how an ensemble of spins in a complex setup can
effectively polarise a bulk crystal. Exploring the creation of number-squeezing with ultracold
atoms provided us with a deeper understanding of the considered atom interferometry experi-
ment. Lastly, QOC enabled the production of a record-breaking Schrödinger cat state with
Rydberg atoms in an optical lattice.
Two of the presented projects exploit the connection between electron spins and magnetic
fields. While one turned NV centres close to the diamond surface into robust quantum
sensors, the other used pentacene molecules buried throughout a naphthalene crystal as
polarising agents.
We approached the closed-loop optimisation of shallow-NV sensing through the basic build-
ing blocks of the underlying sensing sequences. The contrast improvements, ranging from
32% to 67% dependent on the method, led to better sensitivities for each addressed NV
centre [3]. By focusing on the robustness of the pulses, we increased the potential sensing
volume for future applications on scanning probes. To take these considerations one step
further, the optimisation should be done directly on a scanning probe setup taking into
account the specific magnetic field distribution of the microwave antenna. In our experiment,
one targeted sensing protocol required pulses with more frequency-selective properties than
the other. Consequently, we introduced a new basis, i.e. the sigmoid basis, that could
implement these constraints automatically. In the future, we plan further investigations of
the convergence properties and restrictions attached to the sigmoid basis in particular and a
wider variety of basis functions in general. While there are effort to change this, QOC bases
are commonly chosen according to the default of the applied algorithm. When the problem is
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over-parametrised, it becomes clear that any complete basis equally covers the full function
space [330]. However, a different basis, i.e. type of parametrisation, will naturally change the
landscape and possibly the landscape properties [165]. An investigation into the convergence
behaviour of optimisations with alternative bases might guide the way towards more efficient
QOC strategies.
The hyperpolarisation setup had many unknowns and some particular features that limited
the efficiency of our standard single-sweep polarisation method, namely the integrated solid
effect. Subsequently, the closed-loop optimised pulses not only increased the overall polari-
sation by almost one third, but also sped it up by 15% [4]. We generalised our findings by
introducing the ARISE strategy to efficiently tailor and enhance hyperpolarisation sequences
in the face of experimental uncertainty. ARISE is a multi-sweep strategy that allows an
increased polarisation transfer. Our model showed that ARISE redistributes the polarisation
between protons with different couplings, which could hint at the reason of its success. To
further explore the effectiveness of ARISE, one has to better understand the influence of
the setup on the pulse shapes. An in-depth characterisation of the cavity [306, 307] might
be able to mitigate the discrepancies between model and measurement. A natural next step
would be to apply ARISE to other systems to further explore its applicability both in theory
and experiment.
Atomic states come in many shapes and sizes. The platforms presented in this thesis include
an atomic condensate consisting of possibly thousands of atoms as well as twenty Rydberg
atoms trapped in an optical lattice and entangled with a laser.
Squeezed states in atomic condensates harness the quantum properties to improve the sen-
sitivity of atom interferometry measurements. After considering several criteria to model
the experiment, we showed the potential of optimal control by enhancing the squeezing by a
factor of four with an easily implementable pulse scheme. However, our results highlight
the importance of a detailed model and further investigations of appropriate, spatially two-
dimensional simulation techniques. The improvements we made in matching model and
setup, take us a step closer to representative open-loop optimisations of the system.
There are different definitions for quantum sensing, one of which includes explicitly non-
local interactions [105]. The Schrödinger cat state carries exactly those properties. With
20 Rydberg atoms we created the most extensive cat state to the date of its publication [1].
The increased amount of atoms also made its simulation a lot more complex, which is why
the RedCRAB software package was needed to provide a suitable gradient-free approach
for its optimisation. The resulting cat state does not only provide the basis for quantum-
computational applications, but also for sensors. This project showed how QOC could
decrease the preparation time by more than 50%, beating decoherence and thus enabling the
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state preparation. The responsible experimental group continued by optimising multi-qubit
gates with the same method [328], offering a glimpse of the possibilities that might lie in the
future.
Throughout these projects, we upgraded and improved the software suite RedCRAB. It
became clear that an intuitive and versatile interface is crucial to accommodate a swift con-
nection to experimental components. Accordingly, RedCRAB was turned into a convenient
tool with an easily accessible user interface and various features specifically designed to
simplify its integration with experiments. A new open-source version named QuOCS [276]
is currently under development, with a more flexible code structure. Among other features,
it includes a direct interface to specialised experimental software, i.e. Qudi [278], and
gradient-based methods. The experiences with closed-loop QOC problems have shown the
importance of shared terminology and understanding of effects outside of the usual theoretical
considerations. While we cannot incorporate these lessons directly into the software, they
have shaped our approach toward such projects.
Each optimisation tells a different story when the figure of merit converges. Over many
applications, we have developed an intuition to adapt the hyperparameters, i.e. the general
optimisation settings, accordingly. Let us consider an example: Choosing the initial step size
too small results in intermediate convergence to saddlepoints. When the step size is too large,
the convergence becomes unnecessarily slow. This process of adapting hyperparameters
could be automated [331] and extended to select the best search algorithm. Moreover, it
would allow us to extract information about the size of landscape features and the robustness
of optimised pulses with respect to the parameterisation. Could the analysis of convergence
data provide an opportunity to estimate the efficiency of different bases with respect to
a QOC problem? The elements of every basis possess an inherent set of properties. To
give an example, Fourier components are bandwidth-limited, while piece-wise constant
elements have limited temporal resolution. If the basis is complete, these properties are not
reconstructable from the composed pulse as the number of elements goes towards infinity.
However, incomplete bases with tailored properties can help to restrict the function space
to what is experimentally feasible or specifically desired. We could use this fact to encode
analytical conditions, like DRAG [28] or pulse criteria for dynamical decoupling [332], into
a basis that always stays in the selected function space.
In summary, this thesis involved theoretical studies of various quantum platforms. By im-
proving existing gradient-free QOC methods, we have reached four very distinct goals all
promising to advance sensing; sensitivity, hyperpolarisation, number squeezing, and entan-
gled state preparation. The wide scope of these enhancements shows how QOC can speed up
the quantum revolution.
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