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Abstract

In engineering applications, discontinuous Galerkin methods (DG) have been proven to
be a powerful and flexible class of high order methods for problems in computational
fluid dynamics. However, the potential benefits of DG for applications in astrophysical
contexts is still relatively unexplored in its entirety. To this day, a decent number of
studies surveying DG for astrophysical flows have been conducted. But the adoption of
DG by the astrophysics community is just beginning to gain traction and integration of
DG into established, multi-physics simulation frameworks for comprehensive astrophysical
modeling is still lacking. It is our firm believe, that the full potential of novel approaches
for numerically solving the fluid equations only shows under the pressure of real-world
simulations with all aspects of multi-physics, challenging flow configurations, resolution
and runtime constraints, and efficiency metrics on high-performance systems involved.
Thus, we see the pressing need to propel DG from the well-trodden path of cataloguing
test results under “optimal” laboratory conditions towards the harsh and unforgiving
environment of large-scale astrophysics simulations.

Consequently, the core of this work is the development and deployment of a robust DG
scheme solving the ideal magneto-hydrodynamics equations with multiple species on three-
dimensional Cartesian grids with adaptive mesh refinement. We chose to implement DG
within the venerable simulation framework FLASH, with a specific focus on multi-physics
problems in astrophysics. This entails modifications of the vanilla DG scheme to make
it fit seamlessly within FLASH in such a way that all other physics modules can be
naturally coupled without additional implementation overhead. A key ingredient is that
our DG scheme uses mean value data organized into blocks - the central data structure in
FLASH. Having the opportunity to work on mean values, allows us to rely on a rock-solid,
monotone Finite Volume (FV) scheme as “backup” whenever the high order DG method
fails in cases when the flow gets too harsh. Finding ways to combine the two schemes in a
fail-safe manner without loosing primary conservation while still maintaining high order
accuracy for smooth, well-resolved flows involves a series of careful considerations, which
we document in this thesis. The result of our work is a novel shock capturing scheme - a
hybrid between FV and DG - with smooth transitions between low and high order fluxes
according to solution smoothness estimators.

We present extensive validations and test cases, specifically its interaction with multi-
physics modules in FLASH such as (self-)gravity and radiative transfer. We also in-



vestigate the benefits and pitfalls of integrating end-to-end entropy stability into our
numerical scheme, with special focus on highly compressible turbulent flows and shocks.
Our implementation of DG in FLASH allows us to conduct preliminary yet comprehen-
sive astrophysics simulations proving that our new solver is ready for assessments and
investigations by the astrophysics community.
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Chapter 1

Introduction

1.1 Background

Computational fluid dynamics (CFD) is defined as a branch of fluid mechanics that uses
numerical analysis and computer programs to analyze and solve problems that involve
fluid and gas flows. Before the era of computer-assisted research, basic formation mech-
anisms and processes of cosmic objects, such as galaxies, black holes, stars, and planets
were only qualitatively understood at the level of coarse theoretical ideas. In the past,
theoretical astronomy was the application of only analytical models based on principles
from physics and chemistry to describe and explain astronomical objects and astronom-
ical phenomena. Observations of a phenomenon predicted by a theoretical model then
allowed astronomers to select between several alternate or conflicting theories as the one
most suitable to describe the process. However, due to the high nonlinearity and huge
complexity of physical processes observed in the Universe, pure analytical modeling is
quickly stretched to its limits. With the advent of computer systems the complexity and
predictive power of models grew along with available automated data processing capac-
ity. Nowadays, CFD is standard in astrophysics and has proven to be a crucial tool for
researchers in extending, refining and validating theoretical models for a wide range of
cosmic phenomena.

On average, the space between stars is basically empty. The density of the most abundant
constituents in the Universe by far, hydrogen and helium, is only a couple of particles per
cubic meter. Still, the shear distances between stars add up to vast amounts of interstellar
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matter (ISM), where the mean free path between particle collisions is much smaller than
the characteristic size of the system on galactic scales. This fact allows us to adequately
approximate the dynamics of interstellar gases as fluids. Simulation of astrophysical flows
is of particular importance, since many objects and processes of astronomical interest such
as stars and molecular clouds (MC) involve gases. In order to obtain a comprehensive
picture of the dynamics, it is essential to take all the physics in the system into account.
Besides gravity, nuclear physics, radiative transfer and chemistry, particle interactions are
also strongly influenced by magnetic fields, which are omnipresent in the Universe. Hence,
hydrodynamics alone does not suffice and must be extended to magneto-hydrodynamics
(MHD).

The dynamics of fluids are physically described by nonlinear systems of hyperbolic con-
servation laws. Conservation laws consist of partial differential equations (PDE) tracking
the fluid behavior and evolution over time on a given spatial domain. Their solutions are
conserved quantities such as density, momentum and energy. Conserved quantities can
only change in time depending on the fluid flux in or out of a system. This is referred to
as primary conservative. Due to the nonlinearity of most hyperbolic systems, irregular
solutions in form of discontinuities (shocks) can develop, even when the flow was initially
smooth. Hence, any numerical scheme for solving fluid equations has not only to be cor-
rect but must also be robust. Robust schemes do not produce wildly different or even
nonsensical results under small changes in the input data - that is to say, their behavior
is verifiable and predictable. Furthermore, algorithms that can be proven not to magnify
approximation errors are called numerically stable.

With high-speed supercomputers, better solutions can be achieved, and are often required
to solve the largest and most complex problems. Ongoing research is directed towards
algorithms and software that improves the accuracy and speed of complex simulation
scenarios such turbulent flows. Besides astrophysics, CFD is applied to a wide range of
research and engineering problems in many fields of study and industries, including aero-
dynamics and aerospace analysis, weather simulation, natural science and environmental
engineering, industrial system design and analysis, biological engineering, fluid flows and
heat transfer, and engine and combustion analysis. Since CFD is so universal, advances
in one research discipline will directly benefit the progress in other fields.

For approximating the solution of partial differential equations there is a huge variety of
numerical methods available and the amount of literature about this broad and actively
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1.1. Background

researched topic is enormous. Among many, introductory text books into practical numer-
ical analysis and methods from the last thirty years are given by LeVeque (1992); Versteeg
and Malalasekera (1995); Toro (1999); LeVeque et al. (2002); Ferziger et al. (2002); Knight
(2006); LeVeque (2007); Wesseling (2009); Durran (2010); Dziuk (2010); Lapidus and Pin-
der (2011); Sastry (2012); Cockburn et al. (2012); Segal (2013); Godlewski and Raviart
(2013); Pinder (2018).

Extracting the gist in the literature given above, the most popular grid-based numerical
methods for PDEs can be categorized into the following three classes: finite volume (FV),
finite difference (FD) and finite element (FE) methods. There are also spectral methods,
being a class of their own (Canuto et al. 2007; Shen et al. 2011; Canuto et al. 2012).
Classical spectral methods have excellent convergent properties with minimal dissipation
and dispersion errors, but only perform well for regularized problems and their computa-
tions depend on information from the whole domain. Nevertheless, the dream to leverage
the accuracy of spectral methods has led to the construction of high order variants of
FV, FD and FE methods with spectral-like properties. High order extensions for FD are
straightforward, robust and go along naturally with the ansatz of exact solution points,
however, at the price of extensive reconstruction stencils reaching far into the surround-
ing domain. A very popular and actively researched family of robust, high order FD
schemes are the so-called WENO-type (weighted essentially non-oscillatory) FD methods
devised by Liu et al. (1994) and Shu and Osher (1988). The adaption of the WENO-
mechanism for high order FV schemes, e.g., Zanotti et al. (2014); Núnez-De La Rosa and
Munz (2016); Núñez-de la Rosa and Munz (2016), is considered a promising path towards
higher accuracy in astrophysics simulations. However, schemes with large stencils are at
disadvantage with regards to curved, unstructured meshes and complicate parallel pro-
cessing due to increased data dependencies. A proper implementation of high order FV
schemes can become quite intricate considering the need for appropriate quadrature rules
(multiple reconstructed solution points) at volume surfaces. These drawbacks might be
the reason why widely used FV implementations for large-scale simulations settle for less
accuracy, but in turn are widely appreciated for their simplicity, versatility, and rugged-
ness. Hence, low order FV schemes, today, are the de facto standard solver class for most
CFD frameworks in science and engineering.

A nascent and promising sub-class of FE methods with aspects of FD and FV are so-called
discontinuous Galerkin (DG) methods. DG schemes can be interpreted as a mixture of
high order FE methods with local polynomial basis functions pinned on high order solution

3
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points and FV methods in the sense that the ansatz space is discontinuous across mesh
element interfaces enabling the use of Riemann solvers based numerical surface fluxes.
Introductory texts about DG schemes are given, for example, by Karniadakis et al. (2005);
Hesthaven and Warburton (2007); Kopriva (2009a). DG offers spectral-like properties
(Ainsworth 2004; Gassner and Kopriva 2011; Dobrev et al. 2012; He et al. 2020) while
keeping solution data compact with minimal information transfer between neighbors.
Their potential for vectorized computing and parallel processing are excellent allowing for
very performant CFD codes, e.g., flexi (Hindenlang et al. 2012; Krais et al. 2020), fluxo
(Gassner et al. 2016c; Rueda-Ramírez et al. 2021), trixi.jl (Schlottke-Lakemper et al.
2021; Ranocha et al. 2022), Horses3D (Manzanero et al. 2019), and ExaHyPe (Reinarz
et al. 2020). However, DG methods are not renowned for their robustness (Kirby and
Sherwin 2006; Manzanero et al. 2018b). Making DG stable for under-resolved solutions
without compromising the spectral-like properties or losing data locality is subject of
current research and no “golden” way has been found so far.

It is hoped that the key to universally robust high order methods are so-called entropy
stable (ES) schemes (Fjordholm et al. 2012) faithfully obeying the second law of thermo-
dynamics on a discrete level. High order split-form DG schemes based on summation-by-
part operators and the simultaneous-approximation-terms technique (Fisher and Carpen-
ter 2013; Chen and Shu 2017; Gassner et al. 2016d, 2018) already showed their stabilizing
potential in successfully and reliably carrying out unsteady flow simulations in engineering
applications. Stabilized high order DG schemes are capable of directly simulating viscid,
weakly compressible turbulence models with considerably elevated accuracy, at lower res-
olution and with better performance compared to traditional fluid solvers (Gassner and
Beck 2013; Beck et al. 2014; Garai et al. 2015; Flad and Gassner 2017). A review on
the state of the art of entropy stable DG methods is given, for example, by Gassner and
Winters (2021).

To recap, we characterize the three major classes of numerical schemes, namely FV,
FD and DG, by the following three broadly defined properties we want from a scheme:
accuracy, robustness, and speed. In Figure 1.1 we show a Venn diagram with three filled
circles representing the mentioned properties. Their overlapping regions can be associated
with our three classes of numerical schemes. We consider high order FD schemes as
very accurate and robust, since there are precise shock capturing methods available by
selectively switching between different reconstruction polynomials (Engquist et al. 1987;
Liu et al. 1994). Their large stencils, however, lessens their potential for highly scalable
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1.1. Background

codes. Low order FV methods, on the other hand, have moderate data dependency with
neighbors and are very robust. Factoring in their comparably relaxed timestep constraints,
we deem FV methods as fast albeit not highly accurate. Finally, DG are very accurate
and have great performance properties, but, as already discussed, robustness is their weak
spot. Of course, this classification is rather crude and can be debated. But at the core,
we see it justified to make our point.

speed

accuracy robust-
ness

?

DG FV

FD

Figure 1.1: Venn diagram with the three properties expected from any numerical scheme.
Overlapping regions are associated to the three classes of schemes according to their

characteristics in accuracy, robustness and speed.

There is a notable region at the center of Figure 1.1 labeled with a question mark. The
naïve reader might be tempted to fantasize about a scheme uniting all three of the fine
properties. A scheme that is of high-precision, rock-solid and blazingly fast - the Holy
Grail of computational fluid dynamics! Unfortunately, this might be a completely wrong
interpretation of the diagram. Instead, it represents a scheme that is neither good at any
of the three properties. Mixing all colors never gives you bright shiny gold, but in reality
what you get is a faint gray. Consequently, a seasoned designer of novel fluid solvers
should be guided by the wisdom from Figure 1.1. There ain’t no such thing as a triune
scheme, choose two!

Besides purely grid-based techniques for CFD, there are also grid-less approaches available
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of which the most widely used method is smoothed-particle hydrodynamics (SPH). An
introduction about SPH is given, for example, by Violeau (2012). SPH’s inherent adaptive
resolution, natural angular momentum conservation, and its ability to simulate phenom-
ena covering a large dynamic range in density makes it very popular for applications in
theoretical astrophysics (Springel 2010b). However, comparative studies showed that SPH
is not as accurate as grid-based schemes for astrophysical turbulence models since they
can become quite diffusive (Agertz et al. 2007). Moreover, the integration of the complex
multi-physics aspects in comprehensive astrophysics simulations is still an open research
question (Vacondio et al. 2021). The wish to leverage the best of both worlds, namely
hybrid methods combining aspects of particles and grids, has led to the construction of
moving mesh schemes. For example, Springel (2010a) developed a successful framework
for applications in cosmology. However, the implementation of such schemes is generally
quite complex and reliable high order accuracy has not yet been achieved (Pakmor et al.
2016).

1.2 State of DG in Astrophysics

Star formation simulations, in particular, are faced with the challenge of accounting for
ever expanding models of the physics, while requiring increasingly accurate numerical
methods and scalable high-performance implementations. Among a multitude of physical
processes, such as highly compressible fluid dynamics with strong shocks, self-gravity of
the gas, heating and cooling, multi-component chemistry, and radiation feedback (Walch
et al. 2015), magnetic fields are recognized as playing a key role in star formation in the
interstellar medium, and possibly impacting the dynamics of the highly turbulent gas in
galaxies at larger scales as they get amplified by multiple dynamos.

There are many (open source) simulation frameworks in the astrophysics community
that include (a subset of) the aforementioned physical models with different fidelity lev-
els. A few examples are AREPO (Springel 2010a), RAMSES (Fromang et al. 2006),
ENZO (Collins et al. 2010), Dedalus (Burns et al. 2020), ATHENA (Stone et al. 2008),
ATHENA++ (Stone et al. 2020), ORION2 (Li et al. 2021), and the FLASH code (Fryx-
ell et al. 2000). Here, we list code frameworks that are based on discretizations with
meshes, as this strategy is also the focus of this thesis. Most of these codes feature adap-
tive mesh refinement (AMR), which is crucial to resolve the vastly different spatial scales
in complex astrophysical examples. Furthermore, most of these codes are based on FV
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type discretization of the fluid/plasma dynamics with numerical fluxes based on Riemann
solvers at the interface and second order reconstructions with slope limiting to increase
accuracy by decreasing artificial dissipation. FV methods have proven to be versatile,
robust and capable to handle strong shocks. Thus, they are currently the state-of-the-
art in almost all grid-based multi-physics astrophysical simulation codes. While second
order FV methods have proven to be generally very effective, they are hitting a wall in
achieving better fidelity and precision while serving the necessity for high efficiency in the
upcoming era of exascale computing. The ever-increasing supply of parallel processing
power motivates the search for alternative techniques for CFD in astrophysics. A review
of the potential for higher order methods in astrophysics is given, for example, by Balsara
(2017).

A promising candidate for paving the way towards exascale computing in astrophysical
simulations is DG. As already mentioned before, DG methods can be naturally extended
to arbitrarily high order of accuracy while keeping the local compute kernels very dense.
Furthermore, at least for subsonic turbulence, high order DG offers significant benefits
in computational efficiency for reaching a desired target accuracy, due to their spectral-
like very low dispersion and dissipation errors. Low numerical dissipation is important
to reduce artificial damping and heating. In addition, low dispersion errors are equally
important as it guarantees high accuracy for wave propagation and interaction. On top,
DG methods intrinsically conserve angular momentum for approximation orders three and
higher (Després and Labourasse 2015). These beneficial properties of DG are the reason
why applications in engineering are very successful (Bassi et al. 2005; Zhang and Stanescu
2010; Moura et al. 2017; Manzanero et al. 2018a), where mainly weakly compressible
turbulent flows in complex geometries are simulated.

Inspired by the success of DG in the engineering disciplines, astrophysicists are eager
to apply DG to their problems. DG implementations with focus on astrophysical fluid
dynamics and related applications are for instance presented in Mocz et al. (2014); Schaal
et al. (2015); Zanotti et al. (2015); Teukolsky (2016); Guillet et al. (2019); Bauer et al.
(2016); Kidder et al. (2017); Lombart and Laibe (2020). For example, Bauer et al. (2016)
reports that a third order DG method requires significantly less grid resolution than a
second order FV scheme to get comparable results in weakly compressible turbulence
simulations. This corroborates the superior performance of DG in subsonic turbulence
simulations. Moreover, Schaal (2016) showed that higher order DG can evolve ultra cold
Keplerian discs on stable orbits over very long time periods, featuring the near zero angular
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momentum dissipation. Zanotti et al. (2015) and Guillet et al. (2019) demonstrate that
with proper shock capturing DG is capable to carry out a wide range of astrophysical test
cases in magneto-hydrodynamical regimes.

However, the successful application of DG for highly compressible, supersonic turbulence
is still in an early stage. Supersonic collisions of fluid streams produce shocks observable
as sharp solution gradients demanding for very robust numerical schemes, hence the long
history of FV schemes in the astrophysics community. While isolated very strong shocks
can already be resolved with high acuity for DG, e.g., Zhang and Shu (2010, 2012);
Dumbser et al. (2018), finding a high fidelity DG method for turbulent flow regimes
teeming with shocks is still an open research question.

To our best knowledge, up to now no DG method has been implemented yet in a full-stack
multi-physics framework and applied to full-scale astrophysics simulations.

1.3 Research Mission & Structure of the Thesis

Guided by the current state-of-the-art, we formulate specific research objectives with the
principle mission to push forward the utilization of DG in astrophysics.

In Chapter 2 we introduce the basic aspects for hyperbolic systems of nonlinear con-
servation laws with special focus on the entropy principle. Chapter 3 offers background
information about our astrophysical model and justifies our adaption of the ideal magneto-
hydrodynamics equations. Included are discussions about the multi-physics aspects we
encounter in our envisaged astrophysics simulations. In Chapter 4, we gradually proceed
towards our final numerical scheme based on the insights from the first two chapters. First,
the basic concepts of FV and DG methods are described while special attention is given
to state-of-the-art shock capturing methods and entropy-based stabilization techniques
for DG. Additionally, we already interweave numerical results with the aim to answer our
first research objective.

1.) Can we successfully run a high order DG method in transonic compressible
inviscid flow regimes?

The numerical setup, which we are using to push the several variants of DG methods to
their limits, is adjusted such that it starts in a smooth, subsonic state, but can locally
develop to challenging transonic flow configurations bringing most DG variants to a crash.
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Based on those results, we propose a convex blending scheme and try to answer our second
objective.

2.) Can we devise a shock-capturing scheme for high order DG, which is capa-
ble of resolving strong shocks in a robust and sharp manner while preserving
high order accuracy in smooth, well-resolved flows?

This objective also involves the following questions. How can we ensure positivity of
density or pressure and adhere to the divergence constraint in case of the MHD equations?

After we detailed our novel convex blending scheme, we introduce in Chapter 5 our pro-
totype code nemo and give an overview of technical aspects a typical CFD code entails.
Taking a closer look at runtime behavior and scalability helps to assess the overall per-
formance our implementations achieve compared to other codes.

The next step is to expose our DG scheme to multi-physics applications.

3.) Can we fully integrate a “hardened” DG method into a popular, actively
maintained multi-physics framework for large-scale astrophysics applications,
such as FLASH?

In Chapter 6, we present details of our implementation of the convex blending DG scheme
in FLASH. After a solid range of stringent test cases, in which we show that our solver
fully connects to all multi-physics aspects of the framework, we are finally ready for the
last objective.

4.) Is our new DG method capable of successfully carrying out comprehensive
multi-physics simulations?

Chapter 7 presents five exemplary astrophysics applications each with different multi-
physics aspects and varying demands on the fluid solver. We also evaluate, which benefits
we achieve compared to other long-established fluid solvers readily available in FLASH.

Finally, in Chapter 8 we summarize our findings and contemplate about promising direc-
tions follow-up research could aim at in the future.
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1.4 Peer-reviewed Publications

Over the course of this research project the following two publications have been accepted
in peer-reviewed journals with major recognition in the fields of CFD and astrophysics.

Johannes Markert, Gregor Gassner, and Stefanie Walch. (2020).
A Sub-Element Adaptive Shock Capturing Approach for Discontinuous
Galerkin Methods. Communications on Applied Mathematics and Computation:

In this paper, a new strategy for a sub-element based shock capturing for
discontinuous Galerkin (DG) approximations is presented. The idea is to in-
terpret a DG element as a collection of data and construct a hierarchy of low to
high order discretizations on this set of data, including a first order finite vol-
ume scheme up to the full order DG scheme. The different DG discretizations
are then blended according to sub-element troubled cell indicators, resulting
in a final discretization that adaptively blends from low to high order within
a single DG element. The goal is to retain as much high order accuracy as
possible, even in simulations with very strong shocks, as e.g. presented in the
Sedov test. The framework retains the locality of the standard DG scheme and
is hence well suited for a combination with adaptive mesh refinement and par-
allel computing. The numerical tests demonstrate the sub-element adaptive
behavior of the new shock capturing approach and its high accuracy.

Johannes Markert, Stefanie Walch, and Gregor Gassner. (2021).
A Discontinuous Galerkin Solver in the FLASH Multi-Physics Framework.
Monthly Notices of the Royal Astronomical Society, vol. 511, issue 3, pp. 4179-4200 :

In this paper, we present a discontinuous Galerkin solver based on previ-
ous work by the authors for magneto-hydrodynamics in form of a new fluid
solver module integrated into the established and well-known multi-physics
simulation code FLASH. Our goal is to enable future research on the capabil-
ities and potential advantages of discontinuous Galerkin methods for complex
multi-physics simulations in astrophysical settings. We give specific details
and adjustments of our implementation within the FLASH framework and
present extensive validations and test cases, specifically its interaction with
several other physics modules such as (self-)gravity and radiative transfer.
We conclude that the new DG solver module in FLASH is ready for use in
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astrophysics simulations and thus ready for assessments and investigations.

1.5 Open Source Codes

Over the course of this research project the following two open source codes have been
developed. They are publicly accessible and free to use, modify and redistribute.

Johannes Markert.
Nemo - a modular CFD code for rapid prototyping.
github.com/jmark/nemo:

nemo is a lightweight, easy to understand (magneto)-hydrodynamics code
in 2D/3D leveraging the robustness of ’Finite Volume’ (FV) methods and
the efficiency of nodal ’Discontinuous Galerkin Spectral Element Methods’
(DGSEM). The code is open source, written in modern Fortran and specif-
ically aimed at providing a modular and performant development platform
for rapid prototyping new solvers for computational fluid dynamics. nemo
is capable of hybrid parallelization via OpenMP+MPI and supports adaptive
mesh refinement on Cartesian grids via the open source library p4est. nemo
served as the workhorse for all numerical results presented in Markert et al.
(2021).

Johannes Markert.
DG for FLASH.
github.com/jmark/DG-for-FLASH:

Implementation of the Discontinuous-Galerkin-Finite-Volume (DGFV) convex
blending scheme for (ideal) magneto-hydrodynamics. The DGFV solver is
provided as a FLASH module. In order to use the solver, its source files
must be copied to physics/Hydro/HydroMain/split/DGFV inside the source
tree of your own copy of FLASH. The details about the implementation and
numerical validation of this solver module are documented in Markert et al.
(2022).
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Chapter 2

Hyperbolic Conservation Laws

2.1 Introduction

Continuum mechanics is a branch of physics that deals with the mechanical behavior
of materials modeled as a continuous mass rather than as discrete particles. Instead of
dealing with the physical properties of solids we focus on the modeling of fluids and gases.
As a matter of fact, there are models combining both, solids and fluids, into one system of
equations. One example is a first order hyperbolic formulation of continuum mechanics,
called HPR model, proposed by Peshkov and Romenski (2016).

Generally, the continuum approach assumes that the investigated medium completely fills
the space it occupies and is independent of any particular coordinate system in which it is
observed. Modeling fluids in this way ignores the fact that in reality the material is made
of atoms or molecules, and so is not continuous on micro-scales. However, on length scales
much greater than that of inter-atomic distances, such models are in general sufficiently
accurate. The domain - the space filled by the bulk material - is the continuum that can
be continually sub-divided into infinitesimal volumes with properties being those of the
investigated fluid.

Fundamental physical laws such as the conservation of mass, the conservation of momen-
tum, both linear and angular, and the conservation of energy can be conveniently applied
to such models paving the way to derive differential equations, which describe the physical
behavior of such objects. The physical properties, e.g., density, pressure or velocity, are
represented by continuous fields, which are mathematical objects that have the required
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property of being independent of any coordinate system. These fields are transformed to
specific coordinates as part of the discretization process.

There are two classical techniques describing the motion of material in the fluid. In the
Lagrangian formulation the coordinates are pinned to fluid parcels co-moving through
space and time. Therefore, the coordinates of both the fluid parcel and the attached fields
do not change along their trajectory; they are time invariant. Movement is expressed by
the spatial and temporal continuity between the starting position of the parcel and its
position at the considered instant. However, since the reference points move with the
fluid flow, it is difficult to know the state of the fluid at a given point in space and
time. By contrast, in Eulerian formulation we fixate the coordinate system to a grid
(or mesh) through which the material moves as time passes. This temporal change in
the field variables can be described by partial derivatives. The velocity of all parcels
at each point and instant defines the flow. Both Lagrangian and Eulerian approaches
yield mathematically the same result, but the Eulerian formulation is often found more
practical.

External forces are forces originating from sources outside of the domain acting on the
body of the fluid. These forces arise from the presence of force fields, e.g., gravitational
field or electromagnetic field, or from inertial forces when the whole body is in motion.
Forces are specified by vector fields, which are assumed to act continuously over the entire
domain. Since internal forces from the conservation laws and the external forces from the
sources seek to balance each other, the combined model is called a balance law.

Considering the object of study as a closed system, the application of continuum mechanics
requires respecting three fundamental physical principles: conservation of total mass,
conservation of total momentum and conservation of total energy. This property is called
primary conservation. However, most fluid models derived from the real world need
additional information about the material under investigation. These material specific
properties enter the model as constitutive relations. They connect, for example, the
pressure with the density and energy via so-called equations-of-state (EOS). Constitutive
relations generally give rise to further conserved quantities; summarized under the term
secondary conservation.

Such a quantity from the realm of thermodynamics (the theory of non-equilibrium pro-
cesses) is the entropy. The concept of entropy first originated in the 1850s in the works
of the German physicist and mathematician Rudolf Clausius, where he introduced the
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entropy principle characterizing the irreversibility of physical processes, giving the time
a steadfast direction, i.e. the arrow of time. This principle is quantitatively described by
the second law of thermodynamics. It states that the total entropy in a closed system
only stays constant or increases (and never decreases) by any physical process happening
within the boundaries of the system. Only exchange of heat and work with the exterior
of the system might cause a decrease of entropy within the system, but at the expense of
the outside environment.

Clausius (1856a) expanded on his previous work (Clausius 1856b) on the concept of un-
compensated transformations (unkompensierte Verwandlungen), which, in our modern
nomenclature, would be called the entropy production. He presented an expression for
the entropy production ∆Sphys. = 0 (for a closed system) which reads

∆Sphys. =
∫

dS −
∫ dQ

T
≥ 0. (2.1)

If the process is reversible (∆Sphys. = 0), the total change in entropy becomes
∫

dS =∫
dQ/T , where T is the temperature and Q is the added heat. Hence,

∫
dQ/T is called

the entropy flux from the outside into the system. If the process is irreversible,
∫

dS >∫
dQ/T , the positive difference is then the entropy added to the system. Division by ∆t

of (2.1) becomes in the infinitesimal limit

d
dt ∆Sphys. =

∫ d
dt dS −

∫ d
dt

dQ
T

≥ 0 (2.2)

the non-negative entropy production rate. Again, the concept of entropy in thermo-
dynamics as a quantity that can either stay constant or increases in isolated systems.
However, in the numerics community, as a branch of applied mathematics, it is common
practice to define the instant entropy in a system as the upper bound and let the entropy
monotonically decrease while evolving in time. The physics does not change; the result is
a mere change of signs in the entropy production rate (2.2). The “mathematical” entropy
production rate d

dt
∆S is then always non-positive:

d
dt ∆S =

∫
dS −

∫ dQ
T

≤ 0. (2.3)

From here on, we only refer to the mathematical convention of the entropy.

For the rest of this chapter, we give a brief overview of hyperbolic systems of conservation
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laws. We first introduce the basic notations to describe the Cauchy problem for the generic
system, define what hyperbolicity means and briefly sketch the connection of the weak
formulation of first order hyperbolic partial differential equations (PDE) with the concept
of entropy. The last section discusses Riemann problems, which are an indispensable
building block for our numerical schemes.

2.2 Systems of Conservation Laws

In this section, we briefly introduce elementary properties of the class of first order hy-
perbolic PDEs. The selected aspects of these equations are essential for the investigation
of the fluid flow and the implementation of numerical methods. The discretization tech-
niques presented are strongly based on the underlying physics and mathematical proper-
ties of PDEs. In this thesis, we deal exclusively with hyperbolic PDEs, where hyperbolic
conservation laws are a subset of.

In a sense, solutions of hyperbolic equations behave like waves. A disturbance in the
initial data is not felt by every point in space at once. Relative to a fixed time coordinate,
disturbances have a finite propagation speed. They travel along the characteristics of
the equations. This feature qualitatively distinguishes hyperbolic equations from elliptic
PDEs and parabolic PDEs. A perturbation in the solution of elliptic or parabolic equa-
tions is felt at once by all points in the domain. Heat conduction, for example, is modeled
by parabolic PDEs and Newtonian gravity by elliptic PDEs. The equations describing the
mechanics of compressible fluids reduce to hyperbolic systems, namely the Euler equa-
tions, when any effects of viscosity and heat conduction are neglected. In fact, the Euler
equations or rather their extension to the ideal magneto-hydrodynamic equations is, what
we are interested in as we discuss in Section 3.4.

Here, we restrict ourselves to some of the basics on hyperbolic PDEs and choose an
rather informal way of presentation. The actual derivation of the governing equations is
based on integral relations on control volumes (fluid parcels) and their boundaries. Let
u : Ω×R+ 7→ Rm be a multi-variate function assigning to each point x⃗ = (x, y, z)T ∈ Ω in
the Cartesian domain Ω ⊆ R3 and to each point in time t ∈ R+ m conserved quantities.
The rate of change of u in any control volume Ωq ⊆ Ω depends on the flux through the
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boundary ∂Ωq given by the conservation law in integral form

∫
Ωq

∂tu(x⃗, t) dx⃗+
∫

∂Ωq

3∑
d=1

fd(u(x⃗, t))nd d(∂Ωq) = 0 (2.4)

where
fd : Rm 7→ Rm, d = 1, 2, 3, (2.5)

are the smooth multi-variate flux functions for the Cartesian components x, y, z, respec-
tively, and n⃗ = (n1, n2, n3)T is the outward normal unit vector at the boundary. If we
assume u to be sufficiently smooth, we can apply the divergence theorem (2.4) to obtain
the differential formulation

∂tu(x⃗, t) +
3∑
d

∂xd
fd(u(x⃗, t)) = 0, ∀ Ωq. (2.6)

The flux functions fd depend only on the conserved variable u which is the case for most
physical fluid phenomena governed by hyperbolic conservation laws. The Cauchy problem
for the system (2.6) requires the prescription of initial conditions

u(x⃗, t = 0) = u0(x⃗). (2.7)

Next, we define the three flux Jacobians as

Jd(u) = ∂u fd(u) ∈ Rm×m (2.8)

and say that the system (2.6) is hyperbolic if, for any u ∈ Π ⊂ Rm and any αd ∈ R,
the linear combination ∑3

d=1 αd Jd(u) has m real eigenvalues λm(u) ∈ R and m linearly
independent eigenvectors r1(u), . . . , rm(u). Π corresponds to an admissible set dictated
by constraints on u, for example the positivity of certain quantities like density, pressure
or energy. If, in addition, these eigenvalues are distinct, viz. λ1(u) < . . . < λm(u), then
the system is said to be strictly hyperbolic.

2.3 Weak Formulation

The strong nonlinearity of the equations and the lack of regularity of solutions, especially
due to the absence of second order (parabolic) terms providing a smoothing effect, account
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for most of the difficulties encountered in a rigorous mathematical analysis of such systems.
Hyperbolic systems of conservation laws can develop discontinuities in finite time, even
when the initial condition of the Cauchy problem is smooth. Thus, we can no longer
talk about classical smooth solutions in space and must interpret the solutions for (2.6)
in a weak sense. By integrating the inner product of the terms in (2.6) and a smooth
test function ϕ ∈ (C∞

compact(R3))m of compact support in space, we transfer the spatial
derivatives to the test function and get a weak form

∫
R3

(
∂tu(x⃗, t)

)
ϕ(x⃗) dx⃗+

∫
R3

3∑
d

fd(u(x⃗, t)) ∂xϕ(x⃗) dx⃗ = 0. (2.9)

The function u now only needs to be locally compact and is allowed to have discontinuities.
In other words, we relaxed the smoothness conditions on the solution. We call u the weak
solution (in space) to (2.6). As a matter of fact, we returned to the more fundamental
integral form (2.4) involving integrals over control volumes and their boundaries. From a
computational point of view there is another good reason for returning to the integral form.
Discretized domains result in finite control volumes or computational cells or elements.
Local application of the fundamental equations in these volumes naturally lead to FV
schemes and discontinuous Galerkin methods which we introduce in Chapter 4.

Rankine-Hugoniot Jump Condition

By definition, every smooth (or classical) solution is a weak solution. However, not every
discontinuity is physically admissible. Consider the surface of a discontinuity Γ moving
with speed λ in the x⃗ − t space, and n⃗ ̸= 0⃗ be its normal vector. When we denote by
u±(u, t) = limϵ↓0 u(x⃗ ± ϵ n⃗, t) the limits of u on either side of Γ then the weak solution
u must satisfy the following relations

λ (u+ − u−) =
3∑
d

(
fd(u+) − fd(u−)

)
nd. (2.10)

The above relation, connecting the speed λ of propagation of the discontinuity and the
limiting values u+ and u− on the two sides of the discontinuity, is called Rankine-Hugoniot
(RH) jump condition. In general, it is not possible to solve for the propagation speed λ

besides smaller linearized systems of equations. Nevertheless, the jump relations are an
extremely useful tool in the analysis of shocks which we further investigate in Section 3.5
about shocks in astrophysical settings.
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2.4 Entropy Condition

Resorting to the large space of weak solutions, however, comes at the cost of non-
uniqueness. In general a weak solution is not unique, and in many cases there is an
infinite number of solutions. Hence, additional selection rules are necessary to pick a
unique solution subjected to the laws of physics. Two important theorems lay the ba-
sis for the proper convergence of a numerical scheme to the correct physical solution of
well-posed, linear hyperbolic conservation laws.

The equivalence theorem by Lax and Richtmyer (1956) is a fundamental theorem in the
analysis of numerical solution of well-posed, linear initial value problems. A consistent
numerical scheme is called convergent, if in the limit of infinitesimal discretization, the
bounds on the discretization error is also infinitesimally small. Or in other words, a
consistent numerical method converges to the “true solution” if and only if it is Lax-
Richtmeyer stable (Richtmyer and Morton 1994). Stability in this context means that
the norm of the matrix used in the recurrence relation of the numerical scheme is at most
unity guaranteeing a decay of instabilities due to truncation errors of the discretization
(LeVeque 2007, Chap. 9).

The second important theorem proven by Lax and Wendroff (1959) states that if the
sequence of approximate solutions to a system of hyperbolic conservation laws generated
by a conservative and consistent numerical scheme converges as the mesh parameter goes
to zero, then the limit is a weak solution of the system. Furthermore, if the scheme
satisfies a discrete entropy inequality, the limit is an entropy solution.

From the introduction of this chapter we know, that the concept of entropy was originally
derived from the second law of thermodynamics. According to Harten (1983) the entropy
principle can be generalized to any arbitrary system of hyperbolic conservation laws and
is a selection rule for weak solutions modeling real physical processes.

We assume that the inviscid equations (2.6) are equipped with a strictly convex entropy
function

S : Rm 7→ R (2.11)

mapping m conservative variables to a real scalar and associated entropy fluxes

Fd : Rm 7→ R (2.12)
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such that
(∂u Fd(u))T = wT∂ufd(u) (2.13)

where w = ∂uS(u) is the vector of m entropy variables. Taking the scalar product of
(2.6) with w results in the following additional conservation law

∂t S(u(x⃗, t)) +
3∑

d=1
∂xd

Fd(u(x⃗, t)) = 0 (2.14)

which is satisfied for smooth solutions. The entropy condition states that weak solutions
should satisfy the entropy inequality

∂t S(u(x⃗, t)) +
3∑

d=1
∂xd

Fd(u(x⃗, t)) ≤ 0 (2.15)

which we again understand in a weak sense

∫
R3

(
∂t S(u(x⃗, t))

)
ϕ(x⃗) +

3∑
d=1

Fd(u(x⃗, t)) ∂xd
ϕ(x⃗) dx⃗ ≤ 0 (2.16)

for all ϕ ∈ C∞
compact(R3), with ϕ > 0. The solution u is called an entropy solution if it

satisfies (2.16) for every convex entropy S.

Since S is strictly convex, there exists a one-to-one mapping between u and w, which
allows the change of variables u = u(w). Godunov (1961) and Mock (1980) proved a
theorem which links the existence of convex entropy functions for the system (2.6) with
the symmetrization of the system under the change of variable. The transformed system

(∂wu) ∂tw +
3∑

d=1

(
∂wfd(w)

)(
∂xd

w
)

= 0 (2.17)

is said to be symmetrized by the change of variable u = u(w), if the Jacobian ∂wu is
symmetric positive definite and ∂wfd are symmetric.

Furthermore, we define the entropy flux potentials θd(w) which are the duals of the
entropy fluxes Fd(u) obtained by their Legendre transforms

θd(w) = w · fd(u(w)) − Fd(u(w)). (2.18)
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Rearranging (2.18) gives explicit expressions for the entropy fluxes

Fd : w 7→ w · fd(u(w)) − θd(u(w)) (2.19)

where the entropy fluxes Fd are functions of the entropy variables w.

Vanishing Viscosity Solution

The inequality (2.15) with the entropy flux pairs in the definition of entropic solution
can be understood as the time-arrow information that should be retained from the micro-
scopic dissipative mechanisms that are neglected on the macroscopic level in our inviscid,
hyperbolic system of conservation law (2.6). Since thermodynamics shows that entropy is
produced by dissipative processes, we introduce a small dissipative term in the equations
(2.6) and analyze the behavior of the limit of a sequence of solutions to these new set
equations.

For the case of scalar conservation laws (m = 1), every strictly convex function can serve
as an entropy function. The idea (Kružkov 1970) is to prove the existence and uniqueness
of entropy solutions in the class of functions of bounded variation. The existence is shown
by considering the solution uϵ of the parabolic problem

∂t uϵ + ∂x f(uϵ) = ϵ ∂2
x uϵ, ϵ > 0. (2.20)

The limit ϵ → 0 then converges to an entropy solution u of the original (inviscid) con-
servation law (Lu 2002). However, the proof relies heavily on local bounds on the total
variation of the solution uϵ. A condition which is difficult to come by, especially for poly-
nomial approximations of higher order as is done for DG methods. An alternative to the
vanishing viscosity approach can be obtained by relaxing the bounded variation condi-
tions on the perturbed solutions uϵ and using the method of compensated compactness
(Murat 1978; Tartar 1979; Lu 2002), which expands the proof of entropy solutions to
specialized, small systems of conservation laws (Lu 2002). Unfortunately, for larger sys-
tems of conservation laws, the situation is rather bleak. Apart from some partial results
for one-dimensional systems (Bressan et al. 1997; Bianchini and Bressan 2005), no direct
path to well-posedness for general systems have been found.

Nevertheless, entropy conditions do play an important role in providing global stability
estimates. Formally integrating (2.15) in space and time and assuming suitable decay
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conditions at the boundaries (or periodic boundary conditions), we recover an analog to
(2.3) ∫

Ω
S(u, t) dx⃗ ≤

∫
Ω

S0(u) dx⃗. (2.21)

The above bound on total entropy along with the convexity of S gives rise to a-priori
estimates on the solution of (2.6) in suitable spaces of Lebesque-integrable functions
(Dafermos 2005, Chap. 6) which is the only generic nonlinear estimate for systems of
conservation laws available at present. There are no well-posedness results available for
general multi-dimensional systems of conservation laws. Recently, Chiodaroli et al. (2015)
investigated the non-uniqueness of entropy solutions for the isentropic, compressible Euler
equations equipped with a very simple pressure law. They showed that in more than one
space dimension, the current concepts of an admissible solution fail to yield uniqueness
even under very strong assumptions on the initial data. This suggests that the classical
notion of entropy solutions may not be the final answer to establish the existence and
uniqueness of solutions for general systems.

Entropy Production Rate

In physics, entropy production arises from processes within the system, including chemical
reactions, internal matter diffusion, internal heat transfer, and frictional effects such as
viscosity occurring within the system from mechanical work transfer to or from the system.
But also numerical schemes produce entropy via their inherent numerical diffusion.

Suppose we have a discretization of our conservation law (2.6) denoted by the RHS u̇ and
by the same discretization mechanism we also get the residual Ṡ as the entropy exchange
over the boundaries of the sub-domain Ωq, then we define the local entropy production
rate ∆̇S of the discretization as

∆̇Sq(t) = w(t) · u̇(t)
∣∣∣∣
Ωq

− Ṡ(t)
∣∣∣∣
∂Ωq

. (2.22)

With (2.22) we measure the entropy production rate caused by the discretization. From
this expression we cannot, however, learn if the produced amount of entropy is physically
adequate. Only one strict rule applies. The entropy production rate (2.22) shall never
become positive. We revisit this issue in Chapter 4.
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2.5. Riemann Problem

2.5 Riemann Problem

The Riemann problem (Toro 1999; LeVeque 2002), named after German mathematician
Bernhard Riemann, is a specific initial value problem composed of a system of conservation
laws together with piecewise constant initial data containing a single discontinuity, or
jump, in the domain of interest. The Riemann problem is very useful for the analysis
of hyperbolic PDEs and is an import building block in the construction of numerical
schemes.

x

u

left state u+

right state u−

interface
Figure 2.1: Schematic of the Riemann problem (2.23) in 1D with left u+ and right states u−

touching at the interface with the jump u− − u+.

We consider the following special type of Cauchy problem for a one-dimensional system
of hyperbolic conservation laws

∂tu + ∂xf(u) = 0 and u0(x) =
 u+, x ≤ 0

u−, x > 0
(2.23)

where u+ and u− are constant states respectively left and right of the interface. The
setup is also depicted in Figure 2.1. As shown in Figure 2.2, the solution to this problem
consists of m waves emanating from the origin, corresponding to one of the real eigenvalues
(characteristics) λl of the flux Jacobian ∂uf(u). The solutions to (2.23) are self-similar
and are of the form u(x, t) = u(x/t) in the x− t plane.
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x

t

λ1 λ2

· · ·

λm−1 λm

interface
Figure 2.2: Riemann fan of the linearized version of the Cauchy problem (2.23) consisting of

m characteristics spreading out into the domain at different speeds λi. For the nonlinear
equations the characteristics generally show more complex patterns, which are difficult to

visualize schematically. The characteristics can be curved, hence they can diverge away from
or converge towards each other leading to the versatile flow dynamics discussed in the text.

In the following we consider that ∂uλl(u) is the gradient of the scalar function u 7→ λl(u)
living in the m-dimensional phase space spanned by all possible vectors u = (u1, . . . , um)T .
Thus, ∂uλl(u) · rl(u) is the directional derivative of eigenvalue λl in the direction of the
eigenvector rl. Each pair

(
λl(u), rl(u)

)
defines a characteristic field or λl-field. Such

fields are linearly degenerate if ∂uλl(u) · rl(u) = 0 for all u ∈ Π which means that
the l-th eigenvalue λl is constant along each integral curve of the corresponding field of
eigenvectors rl. If ∂uλl(u) ·rl(u) > 0 for all u ∈ Π then the system is genuinely nonlinear.
Then the eigenvalue λl is strictly increasing along each such curve. In general, we will
only consider hyperbolic conservation laws which have linearly degenerate or genuinely
nonlinear characteristic fields.

With the above assumptions we are ruling out the possibility that along some integral
curve of an eigenvector rl, the corresponding eigenvalue λl may partly increase and partly
decrease, having several local maxima and minima. The solution of the Riemann problem
then has a simple structure consisting of superpositions of m elementary waves: shocks,
contact discontinuities and rarefactions (Lax 1973). This considerably simplifies the anal-
ysis and the construction of approximate Riemann solvers. In the following we briefly
describe the three different forms of elementary waves.

The λl-wave encodes a shock wave if it corresponds to a genuinely nonlinear field and
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connects two states u+ and u− through a single jump discontinuity. The discontinuity
moves with a speed vl given by the RH condition (2.10). Furthermore, the Lax (1973)
entropy condition holds, i.e.,

λl(u+) > vl > λl(u−), (2.24)

which is a result from the entropy condition (2.15). The characteristic lines dx/dt = λl

on both sides of the shock line dx/dt = vl run into the shock wave by crossing each other
and causing a singularity in the solution. Nature resolves this contradiction by dissipation
mechanisms and associated entropy production. Any proper numerical solver must mimic
this dissipation mechanism in an entropy consistent way.

If λl corresponds to a linearly degenerate field, then a contact wave connects two states
u+ and u− through a single jump discontinuity. As in the case of the shock wave, the
discontinuity moves with speed vl given by the RH condition (2.10). It additionally
satisfies the parallel characteristic condition

λl(u+) = vl = λl(u−). (2.25)

The characteristic lines on either side of the contact line dx/dt = vl run parallel to the
jump moving unimpeded through phase space. In the case of the Euler equations, contact
discontinuities are usually observed by a density jump moving slowly through the domain
while the pressure is continuous.

The λl-wave corresponds to a rarefaction wave, if it connects the two states u+ and u−

through a smooth transition in a genuinely nonlinear field. The characteristics diverge
from each other since

λl(u+) < λl(u−). (2.26)

Using the knowledge of breaking down the rather complex dynamics at discontinuous
interfaces into a spreading fan of characteristics allows to devise algorithms to numerically
solve the Riemann problem (2.23).

Approximate Riemann Solvers

The exact solution of the Riemann problem (2.23) for nonlinear hyperbolic systems of
conservation laws is generally very complex and can become computationally expensive.
Godunov (1959) laid the foundation for a numerical scheme, called Godunov-type method,
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to solve the Riemann problem (2.23) via so-called approximate Riemann solvers. This
approach is computationally viable and if combined with proper reconstruction methods
can be very robust, yield good numerical results, and has tolerable timestep restrictions.
Section 4.5 about FV schemes elaborates on this idea.

If we recall that the entropy solution is the limit of viscous solutions to (2.21) and take a
centered flux to which some viscosity (with the right sign) is added, we get a very simple
expression of such a flux. It is given by

f ∗ = {{f}} − λmax

2 [[u]] (2.27)

with
λmax = max

{
mmax
l

∣∣∣λl(u+)
∣∣∣, mmax

l

∣∣∣λl(u−)
∣∣∣}

being the maximum characteristic wave speed of the Riemann fan at the interface. Here,
we introduce the notation of mean and jump operators at interfaces between the left (·)+

and right (·)−:
{{(·)}} = 1

2
(
(·)+ + (·)−

)
and [[(·)]] = (·)− − (·)+. (2.28)

The so-called Rusanov (1961) flux (2.27), alternatively called Local Lax-Friedrichs flux
(Lax 1954), is considered to be computationally cheap and very robust. Taking the
viscosity parameter λmax as the largest wave speed at the interface guarantees the stability
of the scheme since it covers the whole Riemann fan depicted in Figure 2.2. Of course,
this kind of stabilization can be very dissipative, excessively smearing out the numerical
solution over time; especially when the jumps tend to be very high. FV schemes strongly
depend on the effectiveness and efficiency of Riemann solvers to handle the jumps at cell
edges, hence a strong development in this area began as these schemes became popular.
More sophisticated approximate Riemann solvers for all kind of equation systems with
different special features were developed by taking more information readily available from
the Riemann fan into account: Osher (Engquist and Osher 1981), Roe (1981), Harten-
Lax-van-Leer (Harten et al. 1983), to name a few.

Affordable Entropy Stable Riemann Solvers

Tadmor (1984) introduced the idea of an entropy conservative numerical flux f#, which
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satisfies the following shuffle condition

[[w]] · f# = [[θ]] . (2.29)

An algorithm to compute such an entropy conservative flux exactly was given by Tadmor
(1987) as

f# =
∫ 1

0
f
(
w+ + α [[w]]

)
dα (2.30)

which is however cumbersome and too expensive for practical applications. Hence, a lot
of effort has been put into the construction of affordable entropy conservative Riemann
solvers by properly evaluating the jump conditions (2.10) such that they become entropy
consistent. Generally, this way of deriving entropy conservative schemes is not unique
and it is up to the skills of the inventor to find a good balance between complexity and
affordability. In Section 3.4 we give the entropy conservative fluxes f# for the ideal MHD
equations.

The entropy consistent fluxes have a central character and analogously to (2.27) an arti-
ficial dissipation term is added to get a guaranteed entropy stable numerical flux

f ∗ = f# − 1
2 λ

max RSRT [[w]] (2.31)

where RSRT is a positive definite matrix that is guaranteed to cause a negative con-
tribution to the entropy inequality. R is the matrix of characteristic right eigenvectors
rl and S is a diagonal scaling matrix specific to the PDE at hand. Derigs et al. (2017),
for example, derives an entropy consistent dissipation operator for the ideal MHD equa-
tions. The operator is quite complex and computationally expensive. For our purposes
we instead use the following Riemann solver:

f ∗ = f# − λmax

2 [[u]] . (2.32)

The numerical flux (2.32) has a very similar structure compared to the Rusanov flux
(2.27) and is also robust and reasonably cheap. Even though it is not guaranteed entropy
stable, the amount of dissipation produced by the jump operator is usually more than
enough to practically provide entropy consistency. The price, of course, is high diffusion
at steep gradients in the solution. However, we are interested in high order DG schemes.
Such schemes tend to diminish jumps at element interfaces, the higher the polynomial
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order is chosen. After all, with the exception of shocks, a fully resolved flow field should
be nearly continuous. Consequently, the importance of the Riemann solver decreases with
the scheme’s increasing order. This was for example investigated by Rider and Lowrie
(2002), Qiu et al. (2006) and Wheatley et al. (2010). We are therefore only interested
in a simple, robust and computationally cheap Riemann solver that captures the physics
reasonably well.
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Chapter 3

Astrophysical Model

3.1 Introduction

The interstellar cycle, which takes place within galaxies, is fundamental for our Universe
as it controls the formation of stars and therefore the evolution of galaxies. Yet given
the broad range of scales in space and time as well as the plethora of physical processes
involved, our understanding is still considered to be very incomplete.

Amongst many other physical phenomena, namely gravity, highly compressible turbu-
lence, radiation, cosmic rays, and stellar feedback, magnetic fields are also contributing
significantly to the evolution of the interstellar medium (ISM) and more specifically to
the formation of stars. In fact, the magnetic energy in the ISM is of comparable order to
other energies such as for example the kinetic energy.

Hence, a lot of research in computational astrophysics is dedicated to the role magnetic
fields are playing in the formation and evolution of molecular clouds (MC). Within such
clouds the formation of molecules (most commonly molecular hydrogen and to a minor
extend helium) takes place. MCs are considered to be a major birth place of stars (stellar
nursery).

MCs are usually embedded within larger cosmic objects such as galaxies and are heavily
affected by their hosts via gravitational pull or cosmic winds. In order to get an idea of
the typical size of MCs we take a look at Figure 3.1 which shows Gaia’s all-sky view of
our Galaxy, the Milky Way. Gaia is a space observatory of the European Space Agency
(ESA), launched in 2013. The map shows a false color image of the stars and nebulae
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seen by the observatory in each portion of the celestial sphere at around 2015 and then
projected onto a rectangle.

Figure 3.1: Lateral view of our Galaxy, the Milky Way, taken by Gaia, a space observatory of
the ESA. The two bright objects in the lower right of the image are the Large and Small
Magellanic Clouds, two dwarf galaxies orbiting the Galaxy. Image source: Moitinho et al.

(2018).

The bright horizontal structure that dominates the image is called the galactic plane. It
is a flattened, rotating disc that hosts most of the stars in our home galaxy. The bright
center of the image, the galactic center, is very vivid and teeming with stars.

The darker, frayed regions visible all over the image correspond to foreground clouds of
interstellar gas and dust. The light of stars located further away, behind the clouds, gets
absorbed casting distinct shadows. These are the objects, which are considered stellar
nurseries where new generations of stars are being born. However, the impression of the
real size of these clouds is skewed since the observation was done within our Galaxy and
not from afar as the image spuriously suggests. The clouds appear larger than the disk,
because they are close (on galactic scales) to our solar system.

The diameter of our Galaxy is estimated to be around 100,000 light-years and has a
thickness of around 1,000 light-years. MCs range from several hundred to thousands
of light-years in diameter and really are objects of galactic proportions. Hence, they
fit well within a galaxy, but are large enough to become the sole focus in the study of
their inner dynamics. A light-year (ly) is a unit of length and is defined by the distance
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light travels in one (Earth) year in empty space. It amounts to ≈ 9.45 × 1012 km. For
reference, the gravity well (Hill sphere) of our solar system is considered to be between
1 to 3 ly. More usually, the unit commonly used in professional astronomy is the parsec
(pc), a portmanteau of “parallax of one second”, which is about 3.26 ly. A pc is fixed by
the distance at which one astronomical unit (average distance between Sun and Earth)
subtends an angle of one second of arc in relation to a distant cosmic object visible in
the sky. Or in other words, one pc amounts to 3.086 × 1013 km. That is roughly 206, 286
astronomical units, coincidentally the same size as the aforementioned Hill sphere of our
solar system.

Turbulence is an ubiquitous phenomenon in astrophysics and many astronomical obser-
vations suggest that MCs are highly turbulent (Elmegreen and Scalo 2004; Scalo and
Elmegreen 2004; Hennebelle and Falgarone 2012). Theoretical models suggest that to-
gether with gravity, supersonic turbulence is playing a major role in the evolution of MCs
for example by creating strong density fluctuations, that in turn may serve as seed for
the mass reservoir of future stars. Stellar winds from young clusters of stars and shock
waves created by supernovae inject enormous amounts of energy into their surroundings
and are considered to be the driving energy source for the observed turbulent motion in
MCs.

A galactic year (also called cosmic year) is the duration of time required for our solar
system to orbit once around the center of our Galaxy. That is about 230 million years.
Turbulent dynamics in MCs, such as the turnover time, are clocked in tenths of millions
of years, hence happen on similar time scale as the dynamics of their host galaxy.

Unthreading the different roles magnetic fields are playing is however quite difficult, since
directly measuring them in astronomical observations remains a challenge. Magnetic
fields behave not like a mere pressure and are highly non-isotropic in nature, and because
observations do not allow us to easily vary the parameters as it is possible to do so
in experiments on Earth. This however can be done in numerical simulations, where the
influence of a specific parameter, like the magnetic intensity, can be modified and studied.
The exact understanding on how magnetic fields affect turbulence in MCs is still an open
research question.

The long, stringy structures in the aforementioned darker, frayed regions in Figure 3.1
indicate patches of large negative velocity divergence, marking zones of strong compres-
sion. Such shockwaves, or sometimes called shocklets within the context of supersonic
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turbulence, are discontinuities in the flow moving at supersonic speed and rapidly com-
pressing and heating up the colder ambient gas. The presence of shocklets is extremely
challenging for computational models of compressible turbulent flows.

Since the majority of astrophysical models are set in empty space there is no demand
for unstructured meshes describing complex geometries as it is common for example in
industrial applications. Simple Cartesian boxes, or cubes, with outflow boundaries suffice
in almost all cases. There is, however, a huge demand for resolution. Hence, adaptive
mesh refinement strategies are absolute essential in order to cover the vast range of scales
from whole galaxies sometimes even down to individual star systems.

In this chapter we introduce the interstellar medium, the substance our fluid model (con-
tinuum) is made of, discuss the gigantic scales in space and time we encounter, investigate
the governing equations we are solving, analyze the role of shocks and give a brief overview
on the role of chemistry, gravity and radiation physics in our simulations.

3.2 Interstellar Medium

In astrophysics, the ISM is the material and radiation that exist in the space between
the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular
form, as well as dust and cosmic rays. It permeates the entire interstellar space and its
energy that occupies the same volume, in the form of electromagnetic radiation, is the
interstellar radiation field.

The ISM is composed of multiple phases distinguished by whether components are ionic,
atomic, or molecular as well as the temperature and density of the material. Specifi-
cally it consists, primarily, of hydrogen (≈ 75%), followed by helium (≈ 25%) with trace
amounts of carbon, oxygen, and nitrogen. The hydrogen and helium are primarily a re-
sult of primordial nucleosynthesis, while the heavier elements in the ISM are mostly a
result of enrichment in the process of stellar life cycles. The thermal pressures of the gas
components are in rough equilibrium with one another. It is believed that most of the
volume in the thin (∼ 102 pc) disk of our own Galaxy is filled by warm neutral medium
and warm or hot ionized medium (Ferriere 2001) with typical temperatures up to 104 K.

The interstellar gas is extremely dilute, with an average density of about 1 atom per cubic
centimeter. For comparison, the air in Earth’s atmosphere has a density of approximately
3 × 1019 molecules per cubic centimeter. Nonetheless, the mean free paths of the particles
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are still short compared to the huge sizes of the regions occupied. The particles undergo
many collisions before traversing a significant fraction of the region. The particle velocity
distributions can be therefore considered Maxwellian and we can describe them by a gas
kinetic temperature, which is usually assumed to be the same for all species of particles
present. Even though the interstellar gas is very dilute, the amount of matter adds up
over the vast distances on galactic scales.

Magnetic fields and turbulent motions also induce pressure into the ISM, and are typically
more important, dynamically, than the thermal pressure. The quantity which character-
izes this relationship is the so-called plasma-beta

β = p

pmag
(3.1)

which is the ratio of thermal (resp. hydrodynamical) pressure p to magnetic pressure
pmag. Hence, a low β-flow is said to be dominated by magnetic forces. Since electrical
conductivity in the ISM is extremely high, any resistive effects can be neglected.

A good understanding of ISM is of crucial importance in astrophysics precisely because
of its intermediate role between stellar and galactic scales. Stars form within the densest
regions of the ISM, which ultimately contribute to MCs and in turn replenish the ISM
with matter and energy through proto-planetary nebulae, stellar winds, and supernovae.
This interplay between stars and the ISM helps to determine the rate at which a galaxy
depletes its gaseous content, and therefore its burning rate by forming stars.

Detailed descriptions of the ISM’s properties can be found for example in Boyd et al.
(2003) or Dyson and Williams (2020).

3.3 Compressible Euler Equations

We begin by considering the compressible Euler equations, which describe the fluid me-
chanics in the absence of any viscous forces. The equations are formulated based on fun-
damental principles of conservation of mass, momentum and energy, and can be shown
to be hyperbolic in nature. We also discuss the entropy framework for this system, which
will play a crucial role in constructing suitable entropy consistent numerical schemes. As a
matter of fact, the compressible Euler equations are the hydrodynamical limit of the ideal
MHD equations for zero magnetic fields |B⃗| → 0. Hence, a proper understanding of the
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Euler equations and their fluid dynamics forms a good basis for investigations of the com-
plex dynamics the complete magneto-hydrodynamical regime reveals. The compressible
Euler equations in 3D are defined as

∂t


ρ

ρv⃗

E

+ ∇ ·


ρv⃗

ρ v⃗ ⊗ v⃗ + p1

(E + p) v⃗

 = 0, (3.2)

with the vector of conserved quantities u = (ρ, ρ v⃗, E)T , where ρ denotes the density,
v⃗ = (v1, v2, v3)T the velocity, and quantity E is the total energy per unit volume

E = ρ
(
e+ 1

2 v⃗
2
)
. (3.3)

The specific internal energy e is given by a caloric equation-of-state, e = e(ρ, p). We
choose the equation-of-state to be that of the ideal gas. Pressure, density and internal
energy are related by

p = (γ − 1) ρ e (3.4)

where γ = cp/cv is the ratio of specific heats of the gas model for constant pressure cp

and constant volume cv. Usually, we choose γ = 5/3 accounting for the mostly mono-
atomic components (protons) of the ISM. The gas temperature T is related to density
and pressure by

p = Rspecific ρ T (3.5)

with Rspecific = cp − cv being the specific gas constant. The set of physically permissible
states is given by

Π =
{
permissible states

}
=
{
∀u

∣∣∣ ρ > 0 ∧ p(u) > 0
}
. (3.6)

The first equation in (3.2) describes the conservation of mass, followed by three equations
ensuring the conservation of the spatial components of momentum, while the final equation
describes the conservation of total energy. If we bring the (3.2) into the form (2.6) we
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succinctly write

u =



ρ

ρ v1

ρ v2

ρ v3

E


and fd(u)



ρ vd

ρ vd v1 + p δd,1

ρ vd v2 + p δd,2

ρ vd v3 + p δd,3

(E + p) vd


, (3.7)

where we introduce the Kronecker delta

δi,j =
 1, i = j

0, otherwise.
(3.8)

Eigenvalues

The five eigenvalues of the flux Jacobian (2.8) for the compressible Euler equations (3.2)
in direction d are given by

λ
(d)
1 = vd − c, λ

(d)
2 = λ

(d)
3 = λ

(d)
4 = vd, λ

(d)
5 = vd + c (3.9)

with sonic signal speed c of the medium given by

c =
√
γ T . (3.10)

For water or air one usually calls it the speed of sound. Assuming the positivity of
density and pressure, the eigenvalues are real and the corresponding eigenvectors are
linearly-independent, thus making the system hyperbolic.

Sonic & Turbulent Mach number

We define the unitless sonic Mach number M of the flow as

M = |v⃗|
c

(3.11)

named after the Austro-Czech physicists Ernst Mach. The sonic Mach number is used to
distinguish various flow regimes: the flow is subsonic for M < 1, supersonic for M > 1
and transonic if the flow has both supersonic and subsonic regions. For M > 5 the flow
is under hypersonic regime. At very slow flow speeds the speed of sound is so much faster
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that it plays a negligible role in the flow dynamics. Once the speed of the flow approaches
the speed of sound, however, the sonic Mach number becomes all-important, and shock
waves begin to emerge.

If we would characterize the local structure of the flow simply by computing a mean
sonic Mach number M, one might merely measure the bulk velocity of a fluid parcel
moving unimpeded through the domain. In contrast to engineering applications, there
are no obstacles the fluid can interact with since our astrophysics models are set in open
space. Consequently, structures in the fluid can only emerge via self-interaction, which
we identify as turbulence. In order to quantify the local “strength” of the turbulence, we
compute the turbulent Mach number Tq within fluid parcel Ωq as

Tq =

√
|Ωq|−1 ∫

Ωq
(v⃗(x⃗) − ⟨v⃗⟩q)2 dx⃗
⟨c⟩q

, (3.12)

where ⟨u⟩q is the average value of quantity u in the sub-domain Ωq, i.e.

⟨u⟩q = |Ωq|−1
∫

Ωq

u(x⃗) dx⃗.

The turbulent Mach number T is a measure of the compressibility of the turbulent flow
and in the CFD community it is common to characterize subsonic flows of T < 0.3
as weakly compressible (or even incompressible). For example in Anderson Jr (2010),
a relation for a calorically perfect gas between the Mach number M and the ratio of
stagnant 1 density ρstag. to static density ρstat. is derived. We adapt the relation to the
notion of turbulent Mach numbers and define(

ρstag.

ρstat.

)
q

=
(

1 + γ − 1
2 T 2

q

)1/(γ−1)
. (3.13)

It basically computes the change in density if a turbulent fluid parcel Ωq would have been
adiabatically put to rest. The kinetic energy would have been completely transformed
into thermal energy entailing a change in temperature, pressure and density of the parcel.
In Figure 3.2 equation (3.13) is plotted in relation to the turbulent Mach number T and
various heat capacity ratios γ. As a rule of thumb, a fluid is deemed compressible for

1In aerodynamics, the terms “total pressure” and “total density” of a gas are commonly used when
the flow is brought to rest isentropically. Since “total density” is already occupied in the context of
multi-component fluids, we use the term “stagnant density” instead.
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a density variation of more than 5 % demarked by the dashed gray line. As seen in
Figure 3.2 all plotted curves cross this threshold at T ≈ 0.3.
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Figure 3.2: Ratio of stagnant density vs static density (3.13) plotted over turbulent Mach
number T for different heat capacity ratios γ. A flow is considered compressible when the

variation in density is above 5 % (gray dashed line).

Due to the nonlinearity of relation (3.13), the turbulent Mach numbers grows very fast
beyond the threshold and quickly enters the regime of highly compressible turbulence.
This regime already puts a lot of strain on numerical schemes even if the flow is still
globally subsonic. Clearly, compressibility in the gas allows phenomena not observed in
strictly incompressible turbulence, namely the production of random shocklets. They can
form when turbulent fluctuations of large magnitude reinforce local conditions such that
compression waves perpetually steepen the flow (Samtaney et al. 2001).

Entropy Variables

Harten et al. (1998) has shown that the compressible Euler equations (3.2) are equipped
with a family of entropy-entropy flux pairs (2.11,2.12) of the form

S(u) = − ρ s

γ − 1 and Fd(u) = S(u) vd (3.14)

36



3.4. Ideal Magneto-hydrodynamic Equations

with physical entropy
s = log(p) − γ log(ρ). (3.15)

The corresponding entropy variables w are given by

w(u) =



γ−s
γ−1 − β̂ v⃗ 2

2 β̂ v1

2 β̂ v2

2 β̂ v3

−2 β̂


with β̂ = ρ

2 p. (3.16)

The entropy potential is given by
θd = ρ vd. (3.17)

For reference, we also list the inverse of (3.16) mapping the entropy variables back to
conservative variables.

u(w) =



ρ̂

−ρ̂ w2/w5

−ρ̂ w3/w5

−ρ̂ w4/w5

ρ̂ ê


with

ŝ = γ − (γ − 1)
(
w1 − w2

2+w2
3+w2

4
w5

)
,

ρ̂ =
(
− exp(−ŝ)

w5

)1/(γ−1)

and

ê = − 1
(γ−1) w5

+ 1
2

w2
2+w2

3+w2
4

w2
5

.

(3.18)

3.4 Ideal Magneto-hydrodynamic Equations

Magneto-hydrodynamics (MHD) is the study of the magnetic properties and behavior
of electrically conducting fluids and was initiated by Swedish physicist Hannes Alfvén.
Examples of such magnetized fluids include plasmas, liquid metals, salt water, and elec-
trolytes. The word MHD is derived from magneto - meaning magnetic field, hydro -
meaning water, and dynamics - meaning movement. Ideal MHD is the most basic single-
fluid model for determining the macroscopic equilibrium and stability properties of an
inviscid and perfectly conducting fluid. In this thesis, we interchangeably use the terms
plasma, fluid, gas, and medium for any kind of such a perfectly conducting matter.

The fundamental concept behind MHD is that magnetic fields can induce currents in mov-
ing plasmas, which in turn polarize the plasma and reciprocally change the magnetic field
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topology themselves. The set of equations that describe ideal MHD are a combination
of the compressible Euler equations (3.2) and Maxwell’s equations of electromagnetism.
These differential equations must be solved simultaneously, either analytically or numer-
ically.

The basic requirement for the validity of ideal MHD is that plasma particles are collision
dominated. This is the general principle for any fluid model (continuum assumption). If
there are sufficient collisions, a given particle remains reasonably close to its neighboring
particles during the time scales of interest. In this case the division of the plasma into
small identifiable fluid parcels provides a good description of the physics. The particle
distribution is therefore close to Maxwellian, that is an ideal gas (particle interaction
only via elastic collisions) in thermodynamic equilibrium. The resistivity due to these
collisions is also considered small. In particular, the typical magnetic diffusion times
over any length and time scale is much larger than at microscopic levels. Clearly, ISM
satisfies these requirements nicely, being an extremely thin, (nearly) perfectly conducting
gas moving in cosmic length and time scales.

Considering the MHD of a compressible, non-viscous and perfectly conducting fluid it is
our goal to numerically solve the ideal MHD equations in their conserved formulation:

∂t


ρ

ρ v⃗

E

B⃗

+ ∇ ·


ρ v⃗

ρ v⃗ ⊗ v⃗ + P 1 − B⃗ ⊗ B⃗

(E + P )v⃗ − (v⃗ · B⃗)B⃗
B⃗ ⊗ v⃗ − v⃗ ⊗ B⃗

 = 0, (3.19)

where ρ is the density, v⃗ = (v1, v2, v3)T is the velocity, E is the total energy and B⃗ =
(B1, B2, B3)T is the magnetic field vector. For the sake of brevity, we assumed the mag-
netic permeability to be µ0 := 1 and dropped any factors from the equations. 1 represents
the 3 × 3 identity matrix and the total pressure P is the sum of thermal and magnetic
pressure:

P = p+ 1
2B⃗

2. (3.20)

The total energy E is related to the thermal pressure p via the equation-of-state

p = (γ − 1)
(
E − ρ

2 v⃗
2 − 1

2B⃗
2
)
, (3.21)

where γ as the ratio of heat capacities for constant volume and pressure. For ISM one
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usually sets γ = 5/3 modeling a mono-atomic, ideal gas.

Additionally, Maxwell’s equations impose ∇ · B⃗ = 0 on all physical realizations of
the magnetic field, throughout the physical domain Ω and at all times t. While the
induction equation guarantees that an initially divergence-free magnetic field will remain
so in time, truncation errors in numerical schemes can lead to generation of nonzero
numerical divergence and accumulation over time. These errors can trigger a nonlinear
instability in the MHD equations and cause blowup of the numerical solution (Brackbill
and Barnes 1980; Tóth 2000; Kemm 2013). In addition, even if the numerical divergence
stays bounded, divergence errors can still result in spurious perturbations to the flow,
such as acceleration of the fluid along the magnetic field lines.

Divergence Control

The issue of divergence control has received a lot of attention in the context of FD and
FV MHD codes, resulting in the development of multiple techniques. Projection methods
(Brackbill and Barnes 1980) project the magnetic field onto a globally divergence-free
representation after each evolution step. The main drawback of this technique is that it
requires solving a global elliptic Poisson problem at each projection operation, which is ex-
pensive and less scalable for distributed computing. Constrained transport (CT), another
family of methods, keeps the magnetic field divergence-free up to machine precision via a
careful numerical discretization and update scheme for the induction equation (Evans and
Hawley 1988; Ryu et al. 1998; Balsara and Spicer 1999; Gardiner and Stone 2005). The
method has been very popular with FD and FV grid codes in astrophysics such as Zeus-2D
(Stone and Norman 1992), RAMSES (Fromang et al. 2006), ENZO (Collins et al. 2010)
and FLASH (Lee 2013). The advantage is its suitability for second order mesh methods,
exact divergence control, and lack of any tunable parameter in the scheme. CT has also
been extended to higher order methods such as WENO (Balsara et al. 2009) and also DG,
involving either dual discretizations (Li et al. 2011; Balsara and Käppeli 2017; Zhao and
Tang 2017) or updating a vector potential with its own higher order DG discretization
(Rossmanith 2013). The main drawback of CT for DG is its implementation complexity
and cost, requiring significantly more operations and storage to update the magnetic field
in a divergence-free way.

For this work, we adopt two established divergence control techniques, which allow work-
ing with cell-centered discretizations while preserving the hyperbolic character of the
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equations: the Powell scheme, based on the addition of a non-conservative source term
to the ideal MHD equations, and hyperbolic divergence cleaning, which dynamically dis-
perses the numerical divergence at speed cH using an additional scalar field Ψ. The
extended ideal MHD equations (Derigs et al. 2018) then read

∂t



ρ

ρ v⃗

E

B⃗

Ψ


+ ∇ ·



ρ v⃗

ρ v⃗ ⊗ v⃗ + P 1 − B⃗ ⊗ B⃗

(E + P )v⃗ − (v⃗ · B⃗ − cH Ψ)B⃗
B⃗ ⊗ v⃗ − v⃗ ⊗ B⃗ + cH ψ 1

cH B⃗


= − (∇ · B⃗)



0
B⃗

v⃗ · B⃗
v⃗

0


︸ ︷︷ ︸

ΥPowell

− (∇Ψ) ·



0⃗
0
v⃗Ψ
0
v⃗


︸ ︷︷ ︸

ΥGLM

(3.22)

Powell Source Term

Following the theoretical groundwork by Godunov (1972), Powell et al. (1999) pointed out
that the system (3.19) is not Galilean invariant and does not formally conserve entropy.
He proposed to add a specific source term proportional to ∇ · B in order to symmetrize
the hyperbolic system. The so-called Powell term can be obtained from deriving the local
form of the system (3.19) based on integral conservation laws (Powell et al. 1999) or
from requiring entropy stability (Godunov 1972; Chandrashekar and Klingenberg 2016;
Winters and Gassner 2016; Derigs et al. 2018).

We write the Powell source terms in (3.22) as

ΥPowell =
(
∂xB1 + ∂yB2 + ∂zB3

)
ΦPowell with (3.23)

ΦPowell =
(
0, B1, B2, B3, v⃗ · B⃗, v1, v2, v3, 0

)T
. (3.24)

The Powell method can be easily adapted to Eulerian grid codes without setting or tuning
any free parameters. It has been successfully implemented and tested in astrophysical
MHD codes equipped with a FV scheme and adaptive mesh refinement (AMR) (Derigs
et al. 2016). For DG it was adopted by Warburton and Karniadakis (1999); Bohm et al.
(2018) for viscous and resistive MHD flows.

However, the Powell method has two limitations. Firstly, it does not fully eliminate

40



3.4. Ideal Magneto-hydrodynamic Equations

the divergence error, as it advects it away with the flow. Consequently, it can result in
local accumulation of numerical divergence in the case of standing shocks (Balsara and
Spicer 1999; Tóth 2000). Secondly, the source term is not strictly conservative anymore
since it will locally inject conserved quantities in the presence of numerical divergence
errors causing deviations in the jump conditions across shock fronts. We investigate these
issues in the numerical results sections and argue that the combination with hyperbolic
divergence cleaning, discussed in the next paragraph, remedies these issues and leads to
acceptable results.

Hyperbolic Divergence Cleaning

Munz et al. (2007) coupled the divergence constraint for the electric field with the in-
duction equation by introducing a generalized Lagrangian multiplier (GLM) Ψ as an
additional field. As in Dedner et al. (2002) we apply this technique to ideal MHD in order
to account for the divergence-free condition ∇ · B⃗ = 0 by adding the GLM Ψ as another
conservative state variable, which we call hyperbolic divergence correction field. This new
field couples to the divergence of the magnetic field through a modified induction equation
(Derigs et al. 2018):

∂tB⃗ + ∇ · (B⃗ ⊗ v⃗ − v⃗ ⊗ B⃗) + ∇Ψ = 0.

The field Ψ evolves via the dynamical equation

∂tΨ + cH∇ · B⃗ + v⃗∇Ψ + Ψ = 0

resulting into a coupled GLM-MHD system which makes the fluctuations of Ψ propagate
away from their sources at speed cH > 0 while damping them with the damping speed
cp > 0 at time-scales ∝ c−1

H .

We write the GLM source terms in (3.22) as

ΥGLM =
(
v1 ∂xΨ + v2 ∂yΨ + v3 ∂zΨ

)
· ΦGLM + cp Φ

damp (3.25)

with GLM vectors

ΦGLM =
(
0, 0⃗, Ψ, 0⃗, 1

)T
and (3.26)

Φdamp =
(
0, 0⃗, 0, 0⃗, Ψ

)T
. (3.27)
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For disappearing divergence errors the correction field Ψ → 0 and the GLM contributions
vanish. Thus, the GLM modifications to the ideal MHD model are consistent and restore
the continuous limit.

For efficient divergence propagation without compromising stability we set cH to be the
maximum magneto-sonic wave speed (3.35) (defined further down below) which is present
in the entire physical domain Ω:

cH = max
Ω

λmax. (3.28)

According to Dedner et al. (2002) a good choice for the damping speed, cp, is given by

cp = cH

0.18 .

The GLM method is straightforward to implement in existing schemes and it has also
been adopted by a number of MHD codes, e.g., Gaburov and Nitadori (2011); Mignone
et al. (2012); Dumbser and Loubère (2016); Bohm et al. (2018); Rueda-Ramírez et al.
(2021).

Ideal GLM-MHD Equations

To summarize, we want to numerically solve a three-dimensional, hyperbolic balance
law describing the ideal generalized Lagrange multiplier magneto-hydrodynamics (iGLM-
MHD), i.e.

∂tu +
3∑
d

∂xd
fd(u) = −

(
ΥPowell + ΥGLM

)
. (3.29)
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The vector of conservative state variables and the flux in direction d read as

u =



ρ

ρ v1

ρ v2

ρ v3

E

B1

B2

B3

Ψ



and fd(u) =



ρ vd

ρ vd v1 −Bd B1 + P δd,1

ρ vd v2 −Bd B2 + P δd,2

ρ vd v3 −Bd B3 + P δd,3(
ρ
2 v⃗

2 + γ p
γ−1 + B⃗ 2

)
vd −

(
v⃗ · B⃗ − cHΨ

)
Bd

vd B1 − v1 Bd + cH Ψ δd,1

vd B2 − v2 Bd + cH Ψ δd,2

vd B3 − v3 Bd + cH Ψ δd,3

cH Bd



(3.30)

with state variables density ρ, velocity v⃗ = (v1, v2, v3)T , magnetic field vector B⃗ =
(B1, B2, B3)T , and hyperbolic divergence correction field Ψ. The total energy E is re-
lated to the thermal pressure p via the equation of state

p = (γ − 1)
(
E − ρ

2 v⃗
2 − 1

2B⃗
2 − 1

2Ψ2
)
, (3.31)

where γ is the ratio of heat capacities for constant volume and pressure. For ISM one
usually sets γ = 5/3 modeling a mono-atomic, ideal gas.

The set of permissible states is defined by

Π =
{
permissible states

}
=
{
∀u

∣∣∣ ρ > 0 ∧ p(u) > 0
}
. (3.32)

In simulations, we strictly enforce positive densities and positive thermal pressures through-
out the whole domain and at all times.

Eigenvalues

The nine eigenvalues of the system in direction d are

λ
(d)
±fast = vd ± c

(d)
fast, λ

(d)
±slow = vd ± c

(d)
slow, λ

(d)
±A = vd ± c

(d)
A , λ

(d)
±H = vd ± cH, λ

(d)
E = vd (3.33)
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with

c
(d)
A = |bd|, c

(d)
fast,slow =

√
1
2

(
c2 + b⃗ 2 ±

√
(c2 + b⃗ 2)2 − (2 c bd)2

)
, b⃗ = B⃗

√
ρ

(3.34)

and c being the sonic signal speed (3.10). cfast and cslow are called fast and slow magneto-
sonic wave speeds, respectively, and cA is the signal speed of the three Alfvén waves
b⃗ = (b1, b2, b3)T . The full eigensystem of the system (3.29) as well as its detailed derivation
is documented in Derigs et al. (2018).

A crucial step part of our numerical treatment of iGLM-MHD is to compute the maximum
eigenvalue of the system. It encodes the maximum wave speed involved in the solution
and helps to find a good estimation for an acceptable timestep in case of explicit time
integration. It is calculated by the upper bound of all involved fast magneto-sonic wave
speeds (3.34) in all directions d:

λmax = 3max
d=1

|vd| + c
(d)
fast. (3.35)

Note, in the hydrodynamic limit, |B⃗| → 0, equation (3.35) reduces to

λmax = 3max
d=1

|vd| + c.

which is the maximum wave speed estimate for the compressible Euler equations (3.2).

Alfvén Mach Number

The unitless Alfvén Mach number A is analogously to the sonic Mach number M defined
as the ratio of the plasma speed to the speed of Alfvén waves:

A = |v⃗|
|⃗b|
. (3.36)

The Alfvén Mach number is an important quantity in characterizing shock waves under
the MHD flow regime, which we investigate further in Section 3.5.
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Entropy Variables

According to Derigs et al. (2018), the ideal GLM-MHD equations are equipped with a
family of entropy-entropy flux pairs (2.11,2.12) of the form

S(u) = − ρ s

γ − 1 and Fd(u) = S(u) vd with s = log(p) − γ log(ρ). (3.37)

The corresponding entropy variables v are given by

w(u) =



γ−s
γ−1 − β̂ v⃗ 2

2 β̂ v1

2 β̂ v2

2 β̂ v3

−2 β̂
2 β̂ B1

2 β̂ B2

2 β̂ B3

2 β̂Ψ



with β̂ = ρ

2 p. (3.38)

Note, that β̂ is not be confused with the plasma-beta β in (3.1). The entropy potential
is given by

θd = ρ vd + β̂ vd B⃗
2 + 2 β̂ cH ΨBd. (3.39)

For completeness, we list the inverse of (3.16) mapping the entropy variables back to
conservative variables.

u(w) =



ρ̂

−ρ̂ w2/w5

−ρ̂ w3/w5

−ρ̂ w4/w5

ρ̂ ê

−ρ̂ w6/w5

−ρ̂ w7/w5

−ρ̂ w8/w5

−ρ̂ w9/w5



with

ŝ = γ − (γ − 1)
(
w1 − w2

2+w2
3+w2

4
w5

)
,

ρ̂ =
(
− exp(−ŝ)

w5

)1/(γ−1)

and

ê = − 1
(γ−1) w5

+ 1
2

w2
2+w2

3+w2
4

w2
5

+ 1
2

w2
6+w2

7+w2
8+w2

9
ρ̂ w2

5
.

(3.40)
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Affordable Entropy Conservative Riemann Solver

In Section 2.5 we introduce the concept of affordable Riemann solvers. Derigs et al. (2018)
devised an kinetic energy preserving and entropy conservative (KEPEC) Riemann solver
for the ideal GLM-MHD equations. It reads

f#
d (u+,u−) =



{{ρ}}ln {{vd}}

{{ρ}}ln {{vd}} {{v1}} − {{Bd}} {{B1}} + P# δd,1

{{ρ}}ln {{vd}} {{v2}} − {{Bd}} {{B2}} + P# δd,2

{{ρ}}ln {{vd}} {{v3}} − {{Bd}} {{B3}} + P# δd,3

(f#
5 )d

{{vd}} {{B1}} − {{v1}} {{Bd}} + cH {{Ψ}} δd,1

{{vd}} {{B2}} − {{v2}} {{Bd}} + cH {{Ψ}} δd,2

{{vd}} {{B3}} − {{v3}} {{Bd}} + cH {{Ψ}} δd,3

cH {{Bd}}



(3.41)

with
P# = {{ρ}}

2
{{
β̂
}} + 1

2

3∑
d=1

{{
B2

d

}}
and

(f#
5 )d = (f#

1 )d

((
2 (γ − 1)

{{
β̂
}}

ln

)−1
− 1

2

3∑
e=1

{{
v2

e

}})
+

3∑
e=1

(f#
e+1)d {{vd}} +

3∑
e=1

(f#
e+5)d {{Be}} + (f#

9 )d {{Ψ}} + 1
2

3∑
e=1

{{
vd B

2
e

}}
+ {{Bd}}

( 3∑
e=1

{{ve Be}}
)

− cH {{Bd Ψ}} .

{{(·)}}ln = [[(·)]]
[[ln(·)]] is the logarithmic mean. A numerically stable procedure to compute the

logarithmic mean is for example described by Ismail and Roe (2009). The numerical,
central-like flux f# is consistent with the physical flux, that is f ∗

d (u,u) = fd, and,
together with the discretization of the non-conservative terms in (3.29), conserves the
discrete entropy by construction. The discretization of (3.23) and (3.25) are given by
(4.20) and (4.21) in Section 4.5. Note, that the non-conservative terms vanish when the
left/right states are identical, reflecting convergence to the continuous case, where the
divergence of the magnetic field vanishes. In the hydrodynamical limit, |B⃗| → 0, the
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numerical flux (3.41) reduces to the KEPEC flux for the compressible Euler equations
first described by Chandrashekar (2013).

3.5 Shocks

From a theoretical point of view, (magneto-)hydrodynamic shocks are a manifestation of
the nonlinearity of the plasma evolution equations (3.19), hence giving rise to nonlinear
waves and discontinuities. Most importantly, supersonic waves can steepen into shock
waves. That is, sound waves are unable to propagate ahead of the disturbance rapidly
accumulating to a highly compressed, hot, and very narrow transition layer separating
the heated post-shock region in fluid state u+ from the cooler pre-shock region in fluid
state u−. From the perspective of the co-moving rest frame, colder fluid particles stream
in at supersonic speed v− from the right and get abruptly decelerated by colliding with
the slower gas particles within the shock. During the collision the incoming gas gets
compressed and heated, thereby maintaining a discontinuous shock surface. This surface,
or shock front, separates two distinct hydrodynamic states. Figure 3.3 shows a sketch of
such a shockwave in the co-moving rest frame moving alongside the shock front.

x

u

post-shock region u+ pre-shock region u−

idle, hot medium
(high density & pressure)

inbound, cool medium
(low density & pressure)

supersonic
inbound velocity v−

shock front
Figure 3.3: Sketch of a shockwave in the co-moving reference frame moving at same speed as
the shock front. On the right side is the untouched cool medium in pre-shock state u− and on
the left side is the heated medium in post-shock state u+. Due to cooling effects, the heated

fluid quickly cools shortly after the shock has swept through as is indicated by the tilted state
profile in the post-shock region.

We indicate the pre-shock fluid properties with the minus sign (−), and post-shock prop-
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erties with the plus sign (+). Behind the shock, the gas has raised density (ρ+ > ρ−)
and pressure (p+ > p−) and is slowed down to subsonic speeds (v+ < v−). Moreover,
the shock irreversibly converts kinetic energy of the pre-shock fluid into thermal energy,
and massively increases the entropy of the gas. In other words, energy gets dissipated at
high rates throughout the process. Together with the pre-shock sound speed, we know
the Mach number of the shock M = |v−|/c−. Since the inflowing fluid stream moves
supersonically and information propagates in the gas at the speed of sound, it implies
that, until the moment of collision, the pre-shock gas is not affected by the shock.

So far, we ignored any implications on the shock in the presence of magnetic fields. There
is a class of shocks in the MHD regime, which differs significantly from the “classical”
hydrodynamical shocks, where magnetic fields are weak or even absent. In many astro-
physical environments the mean free path of the particles is larger than the transition
layer of the shock. Consequently, any abrupt deceleration of particles do not originate
from particle collisions. Instead, the presence of magnetic fields causes the rapid plasma
deceleration by means of electromagnetic resistivity. This type of shock is called colli-
sionless shock and is solely governed by magnetic forces. To complicate matters even
further, we recall that information in plasmas is carried via three different waves, namely,
fast (or compressional) Alfvén waves, intermediate (or shear) Alfvén waves, and slow (or
magneto-sonic) waves. Hence, plasmas governed by MHD equations support a multitude
of different types of shocks, corresponding to the huge configuration space of disturbances
each traveling faster than one of the aforementioned waves. We have already mentioned
the two extreme cases.

For our following investigations, we simplify our perspective on MHD shocks and state
that a shock propagating through a MHD fluid produces a significant alteration in plasma
properties after going through the shock. In nature, shocks are not perfectly narrow
discontinuities and their thickness of the front is determined by the balance between
convective and dissipative effects. Hence, they rather consist of broadened transition
layers with a scale of the order of the mean free path of the gas particles. Which is in
most cases still very narrow compared to the feasible resolution capacities of the simulation
code. In such layers, the energy dissipation occurs by means of viscous effects and heat
conduction, which are, however, absent in our chosen fluid model of ideal MHD equations
(3.19). Basically, the actual physics inside the shock transition layer is not covered in
the model. Nonetheless, the effect on the gas by the shock and any associated energy
dissipation can be uniquely characterized by the Rankine-Hugoniot jump conditions (2.10)
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and by the magneto-hydrodynamic quantities of the pre- and post-shock states. Since the
shock is assumed to be sufficiently narrow, these relations become independent of any
detailed structure in the transition layer. In this sense, a quantitatively correct treatment
of shocks can be achieved even with our idealized fluid model.

Our primary goal is to devise proper shock capturing methods for high order DG schemes.
In the following, we derive the jump relations for a strong (M ≫ 1), narrow, planar MHD
shock in co-moving rest frame (steady-state) and, by that, get insights into which flow
parameters are good candidates for indicating a shock. With these assumptions, the
Rankine-Hugoniot jump relations (2.10) for the ideal MHD equations (3.19) are

[[ρ v⃗ · n⃗]] = 0[[
ρ v⃗(v⃗ · n⃗) + (p+ B⃗2/2)n⃗− (B⃗ · n⃗)B⃗

]]
= 0[[(

ρ e+ ρ v⃗2/2 + B⃗2/2 + p+ B⃗2/2
)
(v⃗ · n⃗) − (B⃗ · n⃗)(B⃗ · v⃗)

]]
= 0 (3.42)[[

n⃗× (v⃗ × B⃗)
]]

= 0[[
B⃗ · n⃗

]]
= 0

using the succinct bracket notation (2.28) for the fluid state jumps at discontinuities.

Our very fast moving shock, moving faster than the speed of sound c and any of the
Alfvén waves cA, is characterized by the following flow parameters

v⃗+ = (v+, 0, 0)T , B⃗ + = (0, B+, 0) and v⃗− = (v−, 0, 0)T , B⃗ − = (0, B−, 0). (3.43)

Inserting into the jump conditions (3.42) gives the following relations (Draine and McKee
1993)

ρ+

ρ− = 2 (γ + 1)
D + (D2 + 4(γ − 1)(2 − γ)A−2)1/2 , (3.44)

B+

B− = ρ+

ρ− ,
v+

v− = ρ−

ρ+ (3.45)

p+

p− = 1 + γM2
(

1 − ρ−

ρ+

)
+ β−1

1 −
(
ρ+

ρ−

)2
 (3.46)

with D = (γ − 1) + 2 M−2 + γA−2. Above relations depend on three parameters: sonic
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Mach number M, Alfvén Mach number A and plasma-beta β. We can eliminate one
parameter by expressing the Alfvén Mach number with the other two, i.e.

A = M
(

2
γ β

)−1/2

. (3.47)

When we eliminate the magnetic field by letting |B⃗| → 0 we get the relations for a purely
hydrodynamic shock, since β−1 → 0. The jump ratio for density then reads

lim
|B⃗|→0

ρ−

ρ+ = γ + 1
γ − 1 + 2 M−2 . (3.48)

leading to the well known insight that the maximum density jump ratio for very strong
shocks (M ≫ 1) is bounded and only depends on γ:

lim
M→∞

ρ−

ρ+ = γ + 1
γ − 1 . (3.49)

For γ = 5/3 the maximum density jump ratio is 4 and for γ = 1.4 we get a ratio of 6.
In the isothermal limit γ → 1 the ratio goes to infinity, which implies that in isothermal
regimes the proper handling of shocks by a numerical scheme can become extremely tricky.

In Figure 3.4 we plot the jump ratios for γ = 5/3 over the sonic Mach number M for the
physical quantities density, pressure, temperature and entropy. We compare the behavior
in the hydrodynamic limit β → ∞ with an exemplary magnetic pressure dominated
regime of β = 2/5. The jumps for temperature and entropy are calculated from (3.44),
(3.5) and (3.15). They read

T+

T− = γ
p+

p−
ρ−

ρ+ and s+

s− = p+

p−

(
ρ−

ρ+

)γ

.

The second law of thermodynamics requires shocks to be compressive: ρ+

ρ− > 1. As a
matter of fact, this is a general rule, which applies to all types of MHD shocks (Boyd
et al. 2003). This constraint is observable in Figure 3.4 for the density jump in the
magnetic regime (β = 2/5, blue dashed line). The physically permissible shock regime
starts not until sonic Mach number M > 2 when the density jump ratio gets larger than
one. Apparently, for weaker shocks, we get less compression for strong magnetic fields,
which in turn is a consequence of the additional resistance to compression provided by
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3.5. Shocks

the magnetic pressure. In other words, magnetically dominated shocks are somewhat
mitigated. Hence, shock capturing schemes that work well for hydrodynamical regimes
can be expected to also work well for MHD flows.
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Figure 3.4: Rankine-Hugoniot jump ratios subject to the Mach number for the sonic regime
(β → ∞, solid lines) and a magnetic pressure dominated regime (β = 2/5, dashed lines) for

various physical quantities and γ = 5/3. For the latter regime the physically feasible domain
begins at Mach numbers M > 2 (demarked by the dotted, gray vertical line).

We can also derive an explicit formula by inserting (3.47) into the density jump relation
in (3.42) and setting ρ+

ρ− = 1. We get a “critical” sonic Mach number

Mcrit. =
√

2
γ β

+ 1 (3.50)

which distinguishes the subsonic regime (M < Mcrit.) from the supersonic regime (M >

Mcrit.) in strongly magnetized plasmas (β ≪ 1).

In this work, we are interested in detecting shocks in astrophysical settings. Hence, we
have to develop algorithms that can specifically detect strong shocks. Figure 3.4 indicates
which hydrodynamic quantities might be useful for achieving our goal. Clearly, the density
jump flattens for high Mach numbers and is therefore not sensitive in the regime of strong
shocks. Moreover, the entropy jump is also not suitable, since it is flat for lower Mach
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numbers (M < 5), especially in the hydrodynamic limit. On the other hand, the pressure
and the temperature jumps are sensitive over the whole Mach number range, and represent
good candidates for measuring the Mach number in simulations. For our shock capturing
schemes, we rely on the pressure jumps being the most sensitive shock indicator for both,
Euler and MHD regimes.

3.6 Multi-species Fluids

The ability to track the exact composition of a fluid or gas is of central importance
in astrophysical simulations as they include detailed chemical reaction chains (chemical
networks) to treat heating, cooling, as well as the formation and destruction of chemical
compounds in order to mimic the behavior of ISM (Walch et al. 2015; Gatto et al. 2015;
Glover and Clark 2014). In our model, the individual species or mass fractions σs ∈ [0, 1]
move with the same velocity v⃗ as the total, or sometimes called mixture, density ρ. The
sum of all nspec mass fractions maintains the total density at all times, i.e. ∑nspec

s ρ σs = ρ.

The chemical evolution of the gas consists of simplified chemical reaction networks that
track the fraction of the gas, and the formation and destruction of, for example, H2 and
CO due to ionization and re-combination processes. Another commonly used chemical
reaction network for modeling ISM, called NL97 (Nelson and Langer 1997), comprises of
five different species: H,H+,H2,CO, and C+. Clearly, NL97 models a partially charged fluid
and magnetic forces act only on the charged particles and not on the neutral particles. An
aspect, we do not account for in our fluid model of ideal MHD equations (3.22). However,
if collisions between charged and neutral particles occur frequently, then we still have a
good approximation. In this case, collisions will rapidly redistribute momentum between
the charged and the neutral components of the plasma, and the end result is the same as
if the magnetic forces acted on both types of fluids.

Species Evolution Equations

The chemical species are generally not in chemical equilibrium and therefore have to be
solved by continuity equations of the form (Glover and Mac Low 2007; Micic et al. 2012)

∂t(ρ σs) + ∇ · (ρ v⃗ σs) = Cs(ρ, T, . . .) − Ds(ρ, T, . . .), s = 1, . . . , nspec
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with Cs and Ds representing the creation and destruction of species s due to chemical
reactions. The conversion of a species generally depends on the density, temperature
and on the abundances of the other chemical species. Therefore, a set of coupled PDEs
for the mass densities of the different chemical species have to be solved. In practice,
the problem can be made substantially easier to handle by splitting the chemical source
and sink terms from the advection terms (operator splitting). With this approach, the
continuity equations simplify to

∂t(ρ σs) + ∇ · (ρ v⃗ σs) = 0, s = 1, . . . , nspec. (3.51)

Changes in the chemical composition of the gas resulting from chemical reactions are then
computed in a separate chemistry step, during which the following set of coupled ordinary
differential equations (ODEs) are solved:

d
dt(ρ σs) = Cs(ρ, T, . . .) − Ds(ρ, T, . . .), s = 1, . . . , nspec.

If the ODEs above require of much shorter timesteps than the (magneto-)hydrodynamical
timestep, then sub-cycling is used within the chemistry step, hence avoiding the need to
constrain the global timestep.

Multi-species Equations-of-state

The multi-species fluid model is usually generalized with a variable heat capacity ratio γ
by adopting a weighted mean over all species (Murawski 2002):

γ =
∑n

s c
pres.
s σs∑n

s c
vol.
s σs

(3.52)

with the heat capacities for constant pressure cpres.
s and constant volume cvol.

s of each
individual species. Gouasmi et al. (2020) derived an entropy consistent numerical flux for
such a multi-species fluid modeled by weighted heat capacity ratios as in (3.52). The flux
has a very similar structure to (3.41) and uses proper averaging of left and right states in
order to ensure entropy consistency.

In this work, we neither construct nor implement any chemistry related numerical solvers.
Hence, we rely on external software or modules, as part of the simulation framework
FLASH, to handle this specific aspect of the simulation and we consider it as a “black
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box”. In our case, the standard FLASH framework readily offers inbuilt multi-species
support with units taking care of the correct equation-of-state calculations (3.52). Our
responsibility is to properly solve the advection PDEs (3.51) and to offer the total density,
temperature and the vector of abundances to the chemistry code and get back a new
temperature and a set of new abundances. In other words, the chemistry step is in full
control of the EOS (3.4) and oblique to the hydrodynamics scheme. Consequently, any
global entropy balancing via careful construction of entropy consistent numerical fluxes
as done by Gouasmi et al. (2020) turns untenable. The only clear insight we can have is
the entropy contribution by the hydrodynamics scheme, which we focus on in this thesis.

Numerical Flux

The simplest and most direct way of solving (3.51) is to make the Rusanov flux (2.27)
ansatz

f ∗,spec = {{ρvσ}} − 1
2λ

max [[ρσ]] . (3.53)

However, we have observed in our simulations, that chemical reaction networks can deplete
a species to zero abundance at any point in time. Hence, numerical species fluxes with a
structure similar to (3.53) break down for zero species densities and are also not suitable
for our envisaged simulations. Furthermore, it is very important to avoid any negative
abundances and at the same time to maintain the total density balance. One solution to
these tricky constraints is to resort to a robust, fail-safe mass tracer approach. It reads

f ∗,trace =


{{ρv}} σ+, {{ρv}} > 0

{{ρv}} σ−, {{ρv}} < 0

0, otherwise,

(3.54)

which we adopt in our implementation.

Mass Tracer Fields

Next to multi-component fluids, we also support mass tracer fields (also called mass
scalars), which are advected analogously to (3.51). The implementation of mass tracer
fields allows the use of any number of such fields, which makes it a flexible tool for tracing
different mass quantities according to individual requirements. For example, a mass
tracer field could be used to follow the distribution of metals in the ISM with virtually
no additional costs.

54



3.7. Gravity

An interesting simulation involving the modeling of a NL97 chemical network is presented
in Section 7.5. A magnetized, turbulent molecular cloud gets shredded by a hot, supersonic
galactic wind triggering the production of molecular hydrogen and carbon-monoxide.

3.7 Gravity

Next to turbulence, magnetic fields, and feedback from supernovae, molecular clouds are
also shaped by gravitational forces. Over time an initial, relatively smooth distribution
of matter, for example ISM, will collapse to form clumps of higher density, creating a
hierarchy of condensed structures such as clusters of galaxies, stellar groups, stars and
planets. Stars form when filaments and clumps inside MCs collapse under their own grav-
ity. The compression caused by the collapse raises the temperature until thermonuclear
fusion kick-starts, at which point the collapse gradually comes to a halt as the outward
pushing thermal pressure counteracts the inward pulling gravitational force. The new-
born star then exists in a state of dynamic equilibrium. Once all its energy sources are
exhausted, the aged star will, depending on its size, collapse further until it reaches a new
equilibrium state or explodes as a supernova.

The densest parts of the filaments or clumps are called molecular cores and their massive
cores (dense molecular cores) can accumulate densities up to 106 particles per cubic cen-
timeters. Astronomers can observe such cores by tracing the content of carbon monoxide
(CO) while dense molecular cores are rich in ammonia (NH3). Since the concentration of
dust within molecular cores is sufficient to block light from background stars, they appear
as dark nebulae. It is important to note, that MCs embedded in galaxies are not only
molded by internal gravitational interactions, but also by the ambient gravitational field
imposed on by the encompassing galaxy (Zuckerman and Evans 1974; Falgarone et al.
1991, 2008).

Gravity Source Term

The inclusion of gravity in the governing equations introduces a force into the right-hand-
side (RHS) of the momentum equations

∂t(ρv⃗) + ρ∇ϕ = 0, (3.55)

55



3.7. Gravity

and the energy equation
∂t E + ρv⃗ · ∇ϕ = 0. (3.56)

The gravitational potential ϕ satisfies the Poisson’s equation

∇2ϕ = 2π Gρ

with gravitational constant G and mass distribution ρ in the computational domain Ω.
The gradient of ϕ is then the gravitational acceleration ∇ϕ = g⃗ = (g1, g2, g3)T at each
point in Ω. In this work, we do not solve the Poisson’s equation ourselves and resort
to external software or solver modules as part of the simulation framework FLASH. We
expand on available gravity solvers in Section 6.3.4. External gravitational fields are
usually given by explicitly defining an acceleration vector g⃗ext.

Hydrostatic Balance

There is a class of problems, e.g., atmospheric flows and stellar structure simulations,
where steady-state solution to systems of stratified objects in hydrostatic balance are
important. The flow is static and the gravitational force is balanced by the pressure
forces, i.e.

∇p = −ρ∇ϕ and v⃗ = 0⃗. (3.57)

Above ODE possesses non-trivial stationary solutions, which its precise balancing is not
easy to achieve by numerical schemes. Conventional numerical schemes in which the grav-
itational source term may be discretized in a consistent manner are not able to preserve
such stationary solutions especially on coarse meshes. This leads to erroneous numerical
solutions especially when trying to compute small perturbations around the stationary
solution necessitating the need for very fine meshes. However, in practical 3D simulations
it may not be feasible to use very fine meshes. Moreover, even a very high order accurate
scheme can lead to wrong prediction of small perturbations or even becomes unstable and
crashes if the scheme is not well-balanced (Xing and Shu 2013). Hence, the balancing has
to be achieved at the numerical level instead in order to maintain the stationary solution.

By contrast, simulations of turbulent MCs are highly un-steady and dynamic and do
not resolve the internal structure of newly formed stars. Hence, well-balancedness of
the numerical scheme is not a crucial requirement. In our implementation, we do not
account for exact well-balancedness on numerical level. Nonetheless, Section 7.3 shows
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that our code is capable of simulating a differentially rotating disk in initially hydrostatic
equilibrium threaded with a toroidal magnetic field. Due to magneto-rotationally driven
instabilities disk material gets ejected into the surrounding space similar to the solar flares
emerging at the surface of our Sun.

Entropy Consistency

Recent findings by Waruszewski et al. (2021) have led to DG methods, which couple the
gravity source terms in an entropy consistent manner. They recast the Euler equations
with gravity in a more general, non-conservative balance law and construct arbitrary order
flux differencing DG schemes. They also present an entropy conserving numerical flux for
the Euler equations with gravity and also show how to extend the numerical flux in order
to ensure entropy stability. Since the findings just came out at the time of writing, they
could not enter in our research efforts and are left for future work.

Free-fall Time

Gravitational collapse is the contraction of an astronomical object under the influence of
its own gravity (self-gravity). More and more matter is drawn inward towards the gravi-
tational center till a hydrostatic balance is reached. Gravitational collapse is considered
to be a fundamental mechanism for structure formation in our Universe. The free-fall
time is the characteristic time that would take a body to collapse under its own gravi-
tational attraction if no other forces existed to oppose the collapse. As such, it plays a
fundamental role in setting the timescale for a wide variety of astrophysical processes in
MCs. If we consider the infall of a spherically-symmetric, uniform distribution of mass
M and radius R we get a density ρ of

ρ = 3M
4 π R3 .

According to Newton’s law of gravity, the acceleration of gravity at any given distance R
from the sphere’s center depends only upon the total mass contained within R. Conse-
quently, the free-fall time of a massless particle at R can be expressed solely in terms of
the total mass M interior to it. In terms of the average density of the shell, the free-fall
time tff then reads

tff =
√

3 π
32Gρ ∝ 1

√
ρ
. (3.58)
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In Figure 3.5 we show a log-log plot of the free-fall time (3.58) highlighting the huge range
of density and timescales involved in molecular cloud models. Note that, still today no
numerical code provides enough resolution in order to reach hydrostatic equilibrium (stars
and planets), which is even far off the ranges shown in Figure 3.5. When there are no
counteracting forces in such simulations once the gravitational collapse has begun, at some
point in time a crash of the simulation due to insurmountable high densities and pressures
is inevitable. There are two choices to tackle this issue. Either, one is only interested
in the evolution close to the gravitational collapse and then stops the simulation at the
right time or one resorts to so called sink-particle methods (Bate et al. 1995; Krumholz
et al. 2004; Hubber et al. 2013; Bleuler and Teyssier 2014), which remove the excess
mass at gravitational cores and inserts proxies respectively sink particles instead. In our
simulations, we adopt the first approach.
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Figure 3.5: Free fall time tff of a molecular cloud at density ρ according to (3.58). We
consider a range from 1 particle per ccm (ISM) to extremely dense molecular cores of over 109

particles per ccm. The free fall time ranges from tenths of millions of years (galactic timescales)
down to extremely short period of a several thousand years. Structures with densities above

107 particles per ccm (dashed, vertical line) are considered not resolvable by our codes.
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3.8 Radiative Transfer

MCs cool mainly by emitting electromagnetic radiation (photons), since they do not
usually conduct or convect heat very efficiently. The mechanism by which this radiation
occurs is mostly initiated by an excitation of an atomic, ionic, or molecular transition
during a collision. In this excitation, gas particles gain their energy from the kinetic
energy of the collision processes, and after some time, the excited system radiates this
energy away in form of a photon escaping from the cloud. The gas loses kinetic energy,
and thus it cools.

Since atomic hydrogen is the most abundant element in ISM, excitation of transitions in
atomic hydrogen should be an efficient cooling mechanism. However, the transitions are
so energetic (more than 10 eV above the ground state) that only at high temperatures
(above 104 K) this mechanism starts to become effective. In other words, warm neutral
media (WNM) is unable to cool efficiently below 104 K and stay warm over long time
periods in the absence of other cooling mechanisms. An interesting consequence of this
fact is, that ISM, which primarily consists of WNM, is in hydrostatic equilibrium and
does not collapse under its own weight.

Jean’s Criterion

Warm gas prevents clouds from collapsing since its internal pressure, or thermal energy,
is strong enough to balance the gravitational forces. The cloud is in hydrostatic balance
(3.57) and does not collapse, and thus does not form stars for temperatures above 104

K. However, if the gas is dense enough or cool enough, the cloud collapses under its own
weight. This relation is quantified by the Jeans instability, which formulates the criterion
for a cloud of gas to collapse through equating pressure forces to gravity:

LJ =
√√√√ 15 kB T

4π Gµmp ρ
∝
√
T

ρ
. (3.59)

Here, kB, µ, and mp are Boltzmannn’s constant, the mean molecular weight and the
proton mass. The so-called Jeans’ length LJ is the critical length scale of the cloud below
which it collapses under given temperature T and density ρ.

Note the similarity of formula (3.59) with the one for the free-fall time (3.58) consid-
ering that for the latter we assumed no counteracting forces to gravity. If we plot the
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Jeans’ length over the cloud density for a constant temperature T = 104 K, as we did in
Figure 3.6, we get an estimate for the expected length scales a typical molecular cloud
simulation has to cover. The y-axis in Figure 3.6 is scaled in powers of two, which allows
to directly infer the necessary levels of refinement (in case of octree-based meshes) in
order to properly resolve the small-scale structures in the simulation. This plot makes
very clear why resolution requirements for typical molecular cloud simulations span ten
refinement levels or even more.
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Figure 3.6: Jeans’ length LJ of a molecular cloud at density ρ and constant temperature
T = 104 K according to (3.59). We consider a range from 1 particle per ccm (ISM) to very

dense molecular cores of over 109 particles per ccm. The Jeans’ length is plotted in log2-scale
and ranges from 210 pc = 1024 pc down to 2−4 pc = 0.0625 pc. Structures with densities above

107 particles per ccm (dashed, vertical line) are considered not resolvable by our codes.

Stellar Feedback

There are various processes that heat the ISM to even millions of degrees. Cosmic rays
are an efficient heating source able to penetrate in the depths of MC. They transfer energy
to gas through both ionization and excitation. Ultraviolet radiation emitted by hot stars
can remove electrons from dust grains. The photon is absorbed by the dust grain, and
some of its energy kicks out an electron from the grain’s surface. The remainder of the
photon’s energy gives the ejected electron kinetic energy which in turn heats the gas
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through collisions with other particles. Molecular hydrogen (H2) forms on the surface
of dust grains, where the surface acts as a catalyst. This process is exothermal, heating
the dust grain and surrounding gas. Moreover, transient events such as stellar winds,
explosions of supernovae, and compressional and frictional heating (shocks) substantially
increase the temperature of the gas. Obviously, perpetual heating prevents the ISM from
cooling and disrupts the formation of stars. Hence, a good understanding of all heating
mechanisms present in MCs is a crucial cornerstone towards a complete theory of star
formation. In this work, we particularly focus on two feedback mechanisms influencing
the dynamics in their host clouds: expanding HII-regions and supernovae.

Expanding HII Regions

If a massive (> 10 solar mass) star is created in a molecular cloud, it radiates intense
ultraviolet radiation into the cloud resulting in the creation of an expanding photo-ionized
region, called an HII region. Such regions absorb all photons with energies larger than 13.6
eV which is exactly the ionization potential of hydrogen atoms. The photo-ionized HII
region is bounded by an ionization front, which separates the ionized from the neutral gas
driving a strong shock into the surrounding, neutral ISM. The supersonically expanding
HII regions not only inhibit further star formation, but can also even destroy the host
cloud (Dale and Bonnell 2011; Walch et al. 2012; Geen et al. 2015). Since it is assumed
that our Milky Way Galaxy maintains a steady number of stars over galactic timescales
(∝ 100 Myr), MCs must be perpetually created at a rate that compensates the destruction
by such massive stars.

For simulation codes, the simulation of expanding HII regions driven by stellar radiation
involves a challenging combination of fluid dynamics, radiative transfer, micro-physical
heating, cooling, ionization and recombination. In Section 7.4 we present the results of
a simulation involving the growth of a HII bubble into turbulent ISM due to radiative
feedback from a massive star.

Supernovae

A supernova (SN) is a powerful and bright stellar explosion. This transient astronomical
event occurs during the last evolutionary stages of a massive star. The original object,
called the progenitor, either collapses to a neutron star or black hole, or is completely
destroyed. The optical luminosity (brightness) of a SN at its peak can be comparable to
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that of an entire galaxy before fading over several weeks or months.

SN can expel several solar masses of material at speeds up to several percent of the speed
of light. This drives an expanding shock wave into the surrounding ISM, sweeping up an
expanding shell of gas and dust observed as a supernova remnant (SNR). These events are
a major source of heavier elements in the ISM such as oxygen and iron. The expanding
shock waves of SN can either trigger or inhibit the formation of a new generation of stars.

So-called type Ia category SN produce fairly consistent peak luminosities because of fixed
critical masses at which white dwarfs will explode. Their consistent peak luminosities
allow them to be used as standard candles in order to estimate the distance between
Earth and their host galaxies. In Section 7.2 we simulate a specific specimen of an Ia SN
identified as SN 1572. It became visible in the night sky in the year 1572 and was first
described by Tycho Brahe a renowned Danish astronomer.

3.9 Final Remarks

In this chapter, we gave a brief overview of the astrophysical model we are employing in
the simulations shown in this work. We introduced the governing equations, investigated
the underlying fluid model, discussed multi-physics aspects like multi-component fluids,
gravity, radiative transfer and derived the scales in space and time characteristic for state-
of-the-art molecular cloud simulations.

Guided by our investigations about the employed astrophysical model, we deduce the
following bucket list of numerical ingredients a “perfect” fluid solver optimally would
provide to deliver an accurate and physically faithful approximation of the model.

• High (order) accuracy in smooth, well-resolved flow regions.

• Robust and non-oscillatory (monotone) handling of (very) strong shocks.

• Stable computation of under-resolved flow conditions, especially under near-vacuum
conditions.

• Besides conservation of primary quantities (mass, linear momentum, energy), con-
servation of derived (secondary) properties such as kinetic energy, entropy, and
vorticity.

• Adherence to additional constraints specified by the model, e.g. zero divergence in
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the magnetic field.

• Solid entropy stability under all possible low and high Mach flow states. Clean and
rigorous consideration of a wide range of EOS (isothermal, polytropic, barotropic,
etc.), multi-species models, chemical networks, and source terms, e.g., gravity and
radiation pressure.

• Conservative and positivity-preserving advection of multi-species flows. Some abun-
dances can be zero.

• Maintaining flow configurations in hydrostatic balance, i.e. well-balancedness.

• Performant and scalable implementations allowing simulations with large dynamical
ranges in space and time.

Clearly, the amalgamation of above specifications is a tough challenge considering the
extremely wide range of claimed properties to consider. Moreover, some properties are
actually mutually exclusive; for example, high order accuracy and monotone resolution
of flow discontinuities. Zero abundances and proper entropy consistency are problematic
considering, for example, that logarithmic means of the left and right densities are a crucial
building blocks in entropy consistent numerical fluxes (Gouasmi et al. 2020). Furthermore,
fixation on a special EOS for the entropy analysis or the choice of a specific gravitational
field configuration for hydrostatic balance inhibits the versatility of any fluid solver; one
of the design premises in our research efforts.

Throughout this thesis, we devise and discuss our own solutions and reference to existing
approaches in the literature individually addressing every aspect in the list. However, a
“clean” and rigorous incorporation of all the aspects into one solver framework is far be-
yond the scope of this thesis. Instead, we relax our requirements and take “compromises”,
which we document and discuss in this work.
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Chapter 4

Numerical Scheme

4.1 Introduction

In this chapter, we provide the formulation of Finite Volume (FV) schemes and discon-
tinuous Galerkin (DG) methods for systems of conservation laws (2.6) on Cartesian grids.
Based on both schemes, we then devise a convex blending scheme which aims to combine
the robustness of FV with the accuracy of DG.

The computational domain Ω ∈ R3 is discretized using Q ∈ N non-overlapping control
volumes Ωq ⊂ Ω on which we impose a discrete version of the conservation law at hand.
In this thesis, we use the following notation interchangeably.

x⃗ = (x1, x2, x3)T = (x, y, z)T .

When we assume a Cartesian grid and subdivide the physical domain Ω into Q blocks of
size

∆x⃗q = (∆xq,∆yq,∆zq)T .

The FV method is a classical scheme for solving the hydrodynamic equations of fluid
dynamics with the reputation of being robust and easy to implement while achieving at
least second order accuracy. FV methods represent the solution u(x⃗, t) as mean values in
space

ui(t) = 1
|Vi|

∫
Vi

u(x⃗, t) dx⃗ (4.1)
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pinned at the center µ⃗i ∈ Ω of delimited (finite), non-overlapping volumes Vi ⊂ Ω which
we name cells. Each quantity that represents a cell-averaged (or face-averaged) mean
value is written with a bar on top. The mean fluid values are evolved by solving the fluid
dynamics equations in an integral, or weak, form. The strength of this method lies in the
capability of capturing shocks and discontinuities and their strict conservation of mass,
linear momentum, and total energy within the computational domain.

On the other hand, DG methods approximate their solution as piecewise-continuous poly-
nomials living within non-overlapping adjacent elements Ωq

u(x⃗, t) ≈ pq(x⃗, t) =
n−1∑

ijk=0
c̃q,ijk(t)xi yj zk (4.2)

with n3 time-dependent polynomial coefficients c̃q,ijk(t) per element. Finding the right
polynomial coefficients to the exact solution u(x⃗, t) is called interpolation problem and
always has a unique solution according to the interpolation theorem provided the input
data sits on pairwise distinct points, called interpolation nodes, in space. The polyno-
mial approximation of the exact solution has a couple of advantages. First, one can
easily differentiate and integrate in space within the boundaries of element Ωq with high
accuracy:

∂x u(x⃗, t) ≈ ∂xpq(x⃗, t) =
n−1∑

i=1,jk=0
c̃q,ijk(t)xi−1 yj zk (4.3)

and
|Ωq| uq(t) ≈

∫
Ωq

pq(x⃗, t) dx⃗ =
n−1∑

ijk=0
c̃q,ijk(t)

∫
Ωq

xi yj zk dx⃗. (4.4)

Obviously, the derivatives resp. integrals of the monomials in (4.3) and (4.4) are easy
to evaluate. However, in cases where the exact solution is highly irregular, for example
it contains jump discontinuities or is very erratic, then the polynomial approximation of
the data can turn out to be very problematic. The polynomial turns very oscillatory
and may over- or undershoot (over- or underestimate) the input data considerably. This
problem is called Gibbs phenomenon. It reflects the difficulty inherent in approximating
a discontinuous function by a finite series of continuous polynomials.

The rest of this chapter is structured as follows. We first discuss the two main sources of
numerical instabilities, shocks and aliasing. After introducing the basics of our employed
time integration methods, we detail the building blocks of FV and DG schemes. The
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last part of the chapter is devoted to our newly developed convex blending scheme. A
common theme threading throughout this chapter is the special focus on different entropy
consistency/stability approaches and their influence on the robustness of the numerical
scheme. After a method has been introduced we immediately present some numerical
results and assess their “performance”. This, so we hope, gives a comprehensible chain
of reasoning about our final choice of our employed numerical scheme. The numerical
results shown in this chapter have been obtained with our prototyping code Nemo, which
we discuss in the subsequent Chapter 5.

4.2 Shock Capturing

We know that for general nonlinear systems of hyperbolic conservation laws, discontinu-
ities in terms of shocks may develop in finite time regardless on the smoothness of the
initial data, as already investigated in Section 3.5. Godunov (1959)’s famous theorem
states that numerical schemes with formal accuracy higher than first order exhibit large
spurious oscillations near discontinuities in the solution (Wesseling 2009). Consequently,
the absence of monotonicity preservation in the evolving solution might lead to catas-
trophic numerical instabilities or even nonphysical solution states, e.g. negative density
or pressure.

Oscillations in the numerical solution u at a point in time tn can be measured by the
total variation, which is given by

TV(u(tn)) =
∑

i

|ui+1(tn) − ui(tn)|. (4.5)

For second order schemes, like FV with appropriate reconstruction, several techniques
have been developed to alleviate the oscillations in the numerical solution near disconti-
nuities. The class of total variation diminishing (TVD) limiters have proven to be very
robust without overly compromising the accuracy in smooth flow regions. Harten (1997)
showed that a numerical scheme, which is TVD, is also monotonicity preserving - a key
feature to properly handle discontinuities. A numerical scheme is said to be TVD if the
total variation does not increase with time:

TV(u(tn+1)) ≤ TV(u(tn)). (4.6)
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The most popular TVD limiter for FV schemes is the minmod limiter (Roe 1986) which
we further discuss in Section 4.5.6.

Stabilizing high order DG methods at shock-driven discontinuities, on the other hand, is
a tricky problem and up-to-now no perfect method has been found. Methods for high
order numerical schemes that intervene at shocks and regularize the numerical solution
are called shock capturing methods. A shock capturing method for DG usually consists
of two main parts. In the first part, elements that contain oscillating polynomials have
to be identified and then be treated in the second part to reduce the oscillations or even,
as a last resort, completely replace the solution with an oscillation-free solution coming,
for example, from a second order TVD scheme. Clearly, the shock detection step is most
crucial for the accuracy of the scheme, as well as the computational efficiency.

In general, there is no golden rule for shock capturing in a high order context. In the nu-
merics community many ideas and approaches have been developed for oscillation control
since interest in these methods emerged. What follows is a brief discussion of the most
popular shock capturing approaches for DG schemes.

Slope Limiting / Low-Pass Filtering

For a high order scheme, the higher frequency modes of the solution polynomial can
be limited directly, as was done by Biswas et al. (1994); Krivodonova (2007); Cockburn
and Shu (1998); Cockburn et al. (1990); Kuzmin (2012). The approach can be seen
as a generalization of the minmod limiter, sequentially applied to the higher modes or
moments. Moe et al. (2015) devised a limiter based on ideas by Barth and Jespersen
(1989) and the maximum principle preserving (MPP) framework Zhang and Shu (2011).
All higher modes of the polynomial are reduced such that the limited solution fits within
the minimum and maximum bounds of the solutions in the direct neighborhood of the
troubled element. The well-known positivity preserving (or rather restoring) limiter for
DG by Zhang and Shu (2012) limits the moments such, that the solution is lifted into the
convex set of physically permissible states.

Filtering, on the other hand, is inspired by methods in signal processing, in which noisy
data and ringing are smoothed a posteriori. Panourgias and Ekaterinaris (2015) applied
nonlinear filters locally within the DG elements based on previous work by Yee and
Sjögreen (2006, 2007) for finite differences schemes in MHD flow regimes. Similar to mode
limiters, filters directly modify selective DOF and provide some sort of shock capturing
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by removing or damping the oscillating solution polynomial. The filter framework by
Hesthaven and Kirby (2008) can also be utilized for shock capturing purposes. More
recent developments in the area of solution filters for DG are presented for example in
Bohm et al. (2019) and Zala et al. (2021) where, unfortunately, mass conservation is not
naturally assured.

Slope limiting and filtering within the DG context have limitations, especially when it
comes to strong shocks, as they arise in astrophysical applications. Such methods eventu-
ally reduce the solution to first order, destroying the accuracy of the overall computation.
The shock resolution capability is not based on the nth order polynomial resolution ∼ ∆x

n
,

but only on the whole element size ∆x which gets larger and larger with higher polynomial
degree n−1. Considering that a FV discretization with adequate reconstruction typically
resolves a shock within about 2-3 cells, the shock width for high order DG schemes with
large elements can become very wide. Numerical experiments with some of these limiters
and for very strong shock simulations led to severe numerical artifacts in the solution. For
example, the shock front was resolved by a checkerboard like pattern due to completely
flattened DG elements. Tedious parameter-tuning sometimes could alleviate the issue for
specific setups, but did not generalize to a broad range of simulations.

Artificial Viscosity / Artificial Diffusion

Sub-element resolution of a shock that scales proportional to ∆ x
n

can be achieved with
artificial viscosity. The idea is to locally add viscosity scaled by the resolution length
as well as the polynomial degree, such that shocks can be captured locally in single DG
elements. The discontinuity is ground into a sharp, but smooth profile such that high
order polynomials can resolve it. Using explicit artificial viscosity for shock capturing
dates back to VonNeumann and Richtmyer (1950) and is now a popular approach for DG
methods (Persson and Peraire 2006; Yu and Yan 2013; Zingan et al. 2013; Abbassi et al.
2014). Some form of troubled cell indicator is introduced to not only flag the troubled
element that contains the shock but also to determine the amount of necessary viscosity,
e.g., based on the amount of energy in the highest polynomial modes (Persson and Peraire
2006) or the local entropy production (Zingan et al. 2013). Counterintuitively, shocks
can be more effectively captured within a single DG element if the polynomial order is
sufficiently high enough. Persson and Peraire (2006) showed that less viscosity is needed
the higher the polynomial degree of the DG discretization, which in turn leads to sharper
shock profiles. In general, the method is completely local in case the oscillation detection
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process only uses local data within the DG element. This approach is not only well-suited
for DG, but has also proven to give reasonable results for a broad variety of shock tests.

A pressing issue of artificial viscosity, however, is that a high amount of artificial viscosity
is needed for very strong shocks. This makes the overall discretization very stiff with
a very small explicit time step restriction. Local time stepping (Gassner et al. 2015),
specialized many stage Runge-Kutta schemes with optimized coefficients for strongly dis-
sipative operators (Klöckner et al. 2011) or implicit-explicit Runge-Kutta schemes for stiff
relaxation problems (Jin 1995) might be useful in order to solve this problem. Moreover,
the absence of any explicit dissipation mechanism in our fluid model (3.29), which we
could utilize to induce artificial diffusion. The aforementioned issues would introduce a
layer of complexity into the scheme, which we did not deem feasible for our project.

Substitution / Switching

Shock capturing approaches such as the (Hermite) Weighted Essentially Non-Oscillating
((H)WENO) limiters (Zhu and Qiu 2009; Qiu and Zhu 2010; Guo et al. 2015) replace the
DG polynomial by an oscillation free reconstruction using data from neighboring elements.
These WENO-type (Liu et al. 1994) limiters use the ideas of the Lagrangian (WENO)
and Hermitian (Hermite WENO) interpolation, as well as the construction of interpolants
via linear combination of a selection of the smoothest solution reconstructions. Similar to
the element based slope limiters above, (H)WENO limiters are effective for low order DG
discretizations only, as its accuracy strongly degrades with increasing polynomial order n,
Despite, using a formally high order reconstruction, its leading discretization parameter
is still ∆x and not ∆x

n
and hence the shock width still scales with ∆x.

An alternative switching approach that achieves sub-element resolution at shocks is to
replace the flagged DG elements by FV subcells. When switching to a FV method, it
is assumed that the inherent numerical dissipation of the FV scheme is enough to clear
all oscillations at even the strongest shocks. Second order TVD (Sonntag and Munz
2014; Vilar 2019) or appropriate high order reconstructions (Zanotti et al. 2015) allow
a sharp shock resolution while keeping the DOF in switched DG elements constant. In
Dumbser et al. (2014); Dumbser and Loubere (2016), the accuracy of the FV method is
further enhanced via a respective increase in local grid resolution by increasing the DOF
in troubled DG elements.

If, however, the whole high order DG element accidentally switches to the subcell FV
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scheme in smooth parts of the solution, accuracy might strongly degrade. The FV scheme,
even on the fine subcell grid, might wash away any fine structure details that the high
order DG method simulated. From this point of view, a high order subcell FV scheme
is highly desired in this context. A downside of any high order FV scheme is the non-
locality of the data dependence due to the wide reconstruction stencils. This is especially
cumbersome close to other high order DG elements, where the reconstruction stencils
reach into neighboring elements and thus fundamentally change the data dependency
footprint of the resulting implementation. This, consequently has a derogatory impact on
the implementation complexity and the parallelization of the code.

Smooth Transition / Convex Blending

Instead of hard switching between different schemes, a smooth linear combination, which
we coin “blending”, aims to achieve the highest possible accuracy in every DG element.
Assuming that the subcell low order FV approximation has enough inherent dissipation
to capture shocks in an oscillation free manner, the goal is to give the FV discretization
sufficient weight near shocks while smoothly transition back to higher order DG away
from the shock. Hennemann et al. (2021); Rueda-Ramírez et al. (2021, 2022b) constructed
entropy stable, convex blending FV-DG methods for compressible Euler and MHD.

In contrast to most shock capturing approaches for DG, where one indicator is used for
the whole DG element, Markert et al. (2021) introduces multiple sub-element indicators
that are adaptively adjusted inside the DG element. Similar to WENO schemes, where
adaptive stencils are applied in order to adjust the smoothness of the approximation,
“multi-level blending” aims to convex combine multiple orders of sub-element DG schemes
within a top-level element according to smoothness selection rules. To achieve this, the
DG element is firstly interpreted as a collection of available mean value data. Local
reconstructions allows to define a hierarchy of approximation spaces, from pure piecewise
constant approximations (subcell FV) up to a smooth global high order polynomial (DG
element), with all piecewise polynomial combinations (sub-element DG) in between.

This shock capturing approach for high order DG has shown to be robust under very
strong astrophysical shock conditions, while retaining the beneficial properties of DG
as much as possible and keeping physical quantities, like density and pressure, positive.
Most importantly, however, the method of Markert et al. (2021) is directly compatible
with FLASH’s block-based datastructure, and serves as a baseline approach for our choice
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of shock capturing scheme described in Section 4.7.

4.3 Anti-Aliasing

High order DG methods are appreciated for their spectral like properties and their very
low dispersion and dissipation errors (e.g. Ainsworth 2004; Gassner and Kopriva 2011;
Dobrev et al. 2012; He et al. 2020). Low numerical dissipation is important to reduce
artificial damping and heating, in addition, low dispersion errors are equally important
as it guarantees high accuracy for wave propagation and interaction.

But these beneficial properties come at the cost of being prone to another source of numer-
ical instabilities, namely aliasing. Aliasing is caused by under-resolution of e.g. turbulent
vortical structures and can lead to instabilities that may even crash the code. As a cure,
de-aliasing mechanisms are introduced in the DG methodology based on e.g. filtering
(Kenevsky 2006; Hesthaven and Warburton 2008), polynomial de-aliasing (Kopriva 2017;
Spiegel et al. 2015; Kopriva et al. 2019) or analytical integration (Kirby and Karniadakis
2003; Gassner and Beck 2013), split forms of the nonlinear terms that for instance pre-
serve kinetic energy (Winters et al. 2018; Gassner et al. 2016a; Gassner 2014; Flad and
Gassner 2017), and entropy (Carpenter et al. 2014; Wintermeyer et al. 2018; Pazner and
Persson 2019; Chen and Shu 2017; Parsani et al. 2016; Murman et al. 2016; Chan 2018;
Parsani et al. 2015; Liu et al. 2018a; Bohm et al. 2018; Gassner et al. 2018; Gassner 2013;
Friedrich et al. 2018).

Abgrall (2018) develops a general framework to construct numerical schemes satisfying ad-
ditional conservation relations, such as entropy conservation. Algebraic (anti-) diffusion-
like terms correct the entropy error erroneously produced by the numerical scheme at each
timestep, making it another interesting approach to achieve entropy stability for DG.

Entropy stable DG methods aim to produce physically meaningful approximations, which
is especially desired in the presence of turbulence and near shocks. Entropy stability is
seen as a promising candidate to cope with the instability issues of high order DG methods
due to under-resolved sub-sonic flow structures without ruining the low dispersion and
dissipation properties of DG. Second order TVD FV schemes, on the other hand, induce
generally enough dissipation to overcome instabilities from under-resolved flow structures;
however at the price of smearing out the numerical solution over time.

In astrophysical simulations, irregular solutions are a common issue, since by today’s stan-
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dards most numerical models are gravely under-resolved considering the vast amount of
scales. Hence, our numerical scheme must handle under-resolvment well for our envisaged
applications.

4.4 Time Integration

To evolve the fluid dynamics equations in time t and inside spatial sub-domain Ωq, we
integrate (2.6) from one point in time t0 to another point in time t1

∫ t1

t0

∫
Ωq

∂tu(x⃗, t) dx⃗ dt = −
∫ t1

t0

∫
Ωq

3∑
d

∂xd
fd(u(x⃗, t)) dx⃗ dt, (4.7)

and evaluate the left-hand-side of above equation exactly. We write

u(t1)
∣∣∣
Ωq

= u(t0)
∣∣∣
Ωq

+
∫ t1

t0
u̇(t)

∣∣∣
Ωq

dt (4.8)

where
u̇(t)

∣∣∣
Ωq

= −
∫

Ωq

3∑
d

∂xd
fd(u(x⃗, t)) dx⃗ (4.9)

is the solution of the spatial fluxes, the right-hand-side, within sub-domain Ωq. The
numerical integration of the right-hand-side is covered in Section 4.5 and following. The
numerical solution of the time integral in (4.8) is done with appropriate time integration
methods.

For this purpose, there are many numerical procedures available in the literature like
explicit, implicit or implicit-explicit time integrators. Whereas the latter two are well-
suited for steady problems with possibly larger time steps (Kopriva and Jimenez 2013),
an explicit solver is a more preferable choice for our applications, since the solutions of
our ideal GLM-MHD equations (3.22) are compressible and advection dominated. Addi-
tionally, explicit timestepping methods are straightforward to implement and data-local
in nature aiding the development of efficient codes for highly parallelized computing. We
note, that investigations on other suitable time integrators for DG methods is ongoing
research such as local time stepping methods (Gassner et al. 2011; Winters and Kopriva
2014) or stable space-time DG methods (Friedrich et al. 2019).

The simplest and most straightforward method to numerically integrate (4.8) is the ex-
plicit, first order Euler method. Given a timestep ∆t = t1 − t0, the solution is evolved
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from t0 to t1 by
u(t1) = E(u, t0) (4.10)

with
E(u, t) = u + ∆t u̇(t). (4.11)

Euler timestepping however has very poor accuracy and is not stable for higher order DG
methods, since the spatial operator spectra of DG (Krivodonova and Qin 2013) lie not
entirely within the stability region of the explicit Euler method.

In our work, we use the third order, four stages, low-storage and strong-stability preserving
Runge-Kutta scheme (SSP-RK(4,3)) devised by Spiteri and Ruuth (2002). Runge-Kutta
schemes with strong-stability preserving property are composed of linear combinations
of first order Euler steps. It enhances stability by better suppressing oscillations in the
solution (Gottlieb et al. 2001) and ensures positivity of the solution provided the spatial
discretization is also constructed to preserve positivity. For reference, we will list the
SSP-RK(4,3) scheme, which has proven to be a very good compromise between accuracy,
stability and performance:

u(1) = 1
2 un + 1

2 E(un, tn)

u(2) = 1
2 u(1) + 1

2 E(u(1), tn + ∆t/2)

u(3) = 2
3 un + 1

6 u(2) + 1
6 E(u(2), tn + ∆t)

un+1 = 1
2 u(3) + 1

2 E(u(3), tn + ∆t/2). (4.12)

For the convergence tests, we resort to the very accurate fourth order, five stages and low-
storage LS-RK(5,4) by Carpenter and Kennedy (2000) in order to rule out any significant
error contributions by the time discretization.

A numerical scheme converges if it is stable and consistent. Consistency means that the
local approximation of the solution is correct up to the targeted approximation order,
and stability indicates that the error made in an individual timestep does not grow expo-
nentially fast. A necessary condition for stability of an explicit scheme is the limitation
of oscillations, which we already discussed in the previous section, another one is the
Courant-Friedrichs-Lewy (CFL) timestep condition (Courant et al. 1928).
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From Section 2.5 we know that hyperbolic conservations laws have a finite speed of signal
propagation, and thus the solution at a point (x⃗, t) has a finite domain of dependence
obtained by back-tracing the characteristic lines passing through this point. The CFL
condition ensures that the numerical domain of dependence contains the true domain of
dependence. This is a crucial (necessary) condition used to prove the stability of numerical
schemes. Rigorous estimates of CFL conditions are generally proved for the linearized
problem, which act as guiding principles to choose the timestep for the nonlinear problem
(Warburton and Hagstrom 2008; Toulorge and Desmet 2011; Chalmers et al. 2014).

To calculate a stable timestep an estimate of the maximum eigenvalue λmax and an associ-
ated minimum distance measure |∆x⃗| in the whole domain is applied. Then the maximal
timestep is estimated by the CFL condition

∆t := CFL

d
min

Ω

|∆x⃗|
λmax , (4.13)

where dimension d = 3 and the Courant-Friedrichs-Lewy constant CFL ∈ (0, 1).

4.5 Finite Volume Scheme

In this section we describe the details about the formulation of finite volume schemes for
systems of hyperbolic equation laws. For such methods, the computational domain Ω is
discretized using non-overlapping control volumes, or cells, on which a discrete version
of the conservation law is posed on each cell. For two and higher dimensional prob-
lems, the integral of the flux on the boundary of the cells also needs to be approximated
using suitable quadrature rules. High order FV methods are obtained by using a high
order quadrature formula and by appropriate reconstruction, e.g., the piece-wise parabolic
method (PPM) (Colella and Woodward 1984), of solution values at the boundary quadra-
ture points using neighboring cell-average values. In this thesis, we want to construct ro-
bust second order TVD FV schemes on Cartesian meshes, hence the midpoint rule applied
at cell faces is sufficient.

Godunov proposed a method for constructing FV schemes, which are entropy stable, where
at each interface between two adjacent cells, a local Riemann problem is formulated and
solved exactly with the left and right states given by the cell average values ui and ui+1

respectively. For the Godunov scheme, the flux integrals are evaluated exactly by using
the solution to the local Riemann problem (2.23) centered at the interface i + 1

2 . From
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Section 2.5 we know that the solution to our Riemann problems have self-similar structures
allowing the interface fluxes to be calculated with approximate Riemann solvers. Such
Riemann solvers efficiently compute an approximate solution for the Riemann problem,
which is preferred to the expensive evaluation of the exact fluxes.

A second order FV scheme can be obtained by calculating a slope for every fluid quantity
and every cell, based on the fluid states of neighboring cells. With this information one
obtains a linear reconstruction of the solution inside the cell, and most importantly, at
the cell boundaries. If these improved solutions at the cell boundaries enter the Riemann
solver, a scheme with quadratic convergence in space is achieved. That is, the global error
of the solution decreases quadratically with decreasing cell size.

After the reconstruction step, the numerical solution is evolved by calculating the fluxes
and updating the mean conserved quantities. The last step is also known as averag-
ing, since the reconstructed solution is not further taken into account and we are only
interested in the new means at the new timestep. The steps discussed above can be sum-
marized as a Reconstruct-Evolve-Average (REA) scheme. The hydrodynamical system
is continuously evolved in time by consecutive REA steps. The generalization to two or
three spatial dimensions can be accomplished straight-forwardly, either by a dimensional
splitting, e.g., Strang (1968) splitting, or by applying the fluxes in the different directions
simultaneously. The latter are called unsplit methods.

4.5.1 Building Blocks

For our convex blending scheme, described later in Section 4.7, it is convenient to group
the cells into collective datastructures called blocks each containing N ×N ×N cells. We
associate these blocks with our control volumes Ωq ∈ Ω introduced at the beginning of this
chapter. Each block Ωq with midpoint x⃗q = (xq, yq, zq)T and size ∆x⃗q = (∆xq,∆yq,∆zq)T

is mapped to the reference space [−1/2, 1/2] as

x⃗(χ) = x⃗q + χ⃗ ∆x⃗q , χ⃗ ∈
[
−1

2 ,
1
2

]3
. (4.14)

The N ×N ×N regular subcells in block Ωq have a size of

(
∆xq

N
,
∆yq

N
,
∆zq

N

)T

=: ∆x⃗q

N
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and bundle the cell-averaged fluid states u(x⃗, t) at subcells Vq,⃗i with centers µ⃗q,⃗i and
corners µ⃗⃗i± 1

2
in reference space given by

µ⃗q,⃗i = −1
2 + i⃗

N
− 1

2N and µ⃗⃗i± 1
2

= µ⃗⃗i ± 1
2N . (4.15)

Here, we use the multi-index notation

i⃗ = (i, j, k)T , i, j, k = 1, . . . , N. (4.16)

For the sake of brevity, we do not declare the range of indices i, j, k in each equation from
here on. When we translate (4.1) into our new notation for block-structured FV we get

uq,⃗i (t) = N3

∆xq ∆yq ∆zq

∫ µ⃗⃗
i+ 1

2

µ⃗⃗
i− 1

2

u(x⃗, t) dx dy dz, (4.17)

which denotes the cell-averaged fluid states of cell Vq,⃗i within block Ωq at time t.

Semi-discrete Form

We extend the general hyperbolic conversation law (2.6) in differential form with a source
term Υ(x⃗, t) as

∂t u(x⃗, t) = −
3∑
d

∂xd
fd(u(x⃗, t)) − Υ(x⃗, t).

and apply the usual FV machinery in order get to a semi-discrete form, which can be
integrated in time. First, we apply the mean value operation (4.1) and use the divergence
theorem in order to express the fluid dynamics as a balance between influx and outflux
through the closed surface ∂Vq,⃗i of cell Vq,⃗i, i.e.

|Vq,⃗i| u̇q,⃗i (t) = −
∫

Vq,⃗i

3∑
d

∂xd
fd(u(x⃗, t)) dx⃗−

∫
Vq,⃗i

Υ(x⃗, t) dx⃗

= −
∮

∂Vq,⃗i

3∑
d

fd(u(x⃗, t)) (n⃗q,⃗i)d d(∂Vq,⃗i) −
∫

Vq,⃗i

Υ(x⃗, t) dx⃗

with n⃗q,⃗i = (n1, n2, n3)T being the outward facing unit normal of the cell’s surface. Fol-
lowing standard procedure (Toro 1999), we discretize above surface integral and get for a
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cell Vq,⃗i in block Ωq

u̇q,⃗i = − N

∆xq

(
(f ∗

1)q,i+ 1
2 jk − (f ∗

1)q,i− 1
2 jk

)
− N

∆yq

(
(f ∗

2)q,ij+ 1
2 k − (f ∗

2)q,ij− 1
2 k

)
(4.18)

− N

∆zq

(
(f ∗

3)q,ijk+ 1
2

− (f ∗
3)q,ijk− 1

2

)
+ Υ̇q,⃗i

where

(f ∗
1)q,i+ 1

2 jk = N2

∆yq ∆zq

f ∗
1

(
u+

q,i+1jk,u
−
q,ijk

)
,

(f ∗
2)q,ij+ 1

2 k = N2

∆zq ∆xq

f ∗
2

(
u+

q,ij+1k,u
−
q,ijk

)
and (4.19)

(f ∗
3)q,ijk+ 1

2
= N2

∆xq ∆yq

f ∗
3

(
u+

q,ijk+1,u
−
q,ijk

)

denote the face-averaged (midpoint rule), consistent numerical two point fluxes solving
the Riemann problem at the discontinuous interfaces between adjacent cells in x-, y-
and z-direction, respectively. Note, that the FV scheme (4.18) was derived without any
reconstruction step at the boundaries. Nevertheless, if we use the affordable, entropy
conservative Riemann solver (3.41) we already have a second order scheme suitable for
smooth flows (Chandrashekar 2013).

Non-conservative Soure Terms

Since we are solving the ideal GLM-MHD equations (3.29), we also have to consider the
non-conservative source terms. Here, we briefly introduce the discretization of the source
terms according to the FV machinery we applied above. We have to discetrize the Powell
term Υ

Powell
q,⃗i and the GLM term Υ

GLM
q,⃗i . The gradients in the Powell term (3.23) are

approximated with central finite differencing over cell Vq,⃗i. The Powell term reads

Υ̇
Powell
q,⃗i =

3∑
d

N

(∆xd)q

(
{{Bd}}q,⃗i+o⃗d

− {{Bd}}q,⃗i−o⃗d

)
ΦPowell

(
uq,⃗i

)
, (4.20)

where the source vector is calculated by inserting the mean values into expression (3.24).
We introduce o⃗d = 1

2(δd,1, δd,2, δd,3)T to be the offset index vector, which allows for a
succinct notation. The discretization of the GLM term (3.25) is done analogously and
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reads

Υ̇
GLM
q,⃗i =

3∑
d

vd
N

(∆xd)q

(
{{Ψ}}q,⃗i+o⃗d

− {{Ψ}}q,⃗i−o⃗d

)
ΦGLM

(
uq,⃗i

)
+ cp Φ

damp
(
uq,⃗i

)
. (4.21)

4.5.2 CFL Condition

If we recall that in the evolve step of the FV method a time-independent flux is calculated
for every interface, it is clear that the timestep size of the scheme has to be restricted
in order to achieve stability. Every flux is computed by solving the Riemann problem
across the corresponding interface, and the timestep ∆t has to be chosen small enough,
such that the solutions of the Riemann problems at opposing interfaces do not interact.
The Riemann problem gives rise to different waves and the appropriate timestep can be
expressed in terms of the CFL condition. The condition ensures that the distance traveled
by the fastest wave of the Riemann solution in time ∆t is less than width of the cell.

To calculate a stable timestep the maximum eigenvalue estimate (3.35) for ideal GLM-
MHD is evaluated on all mean values uq,⃗i in each block Ωq. In three dimensions it reads
as

λ
max
q = Nmax

ijk=1
λmax

(
uq,ijk

)
. (4.22)

Then the maximal timestep is estimated by the CFL condition (4.13) as

∆t := CFL

d
min

q

min(∆xq,∆yq,∆zq)
N λ

max
q

, (4.23)

where d = 3, CFL ∈ (0, 1) and N is the number of mean values in each direction of the
block q. Furthermore, we calculate the global hyperbolic correction speed (3.28) as

cH = max
q

3max
d=1

Nmax
ijk=1

cd

(
uq,ijk

)
. (4.24)

If the CFL number is set to CFL = 0.5, the maximum distance the fastest wave can
travel is halfway through the cell, and an interaction between two approaching waves is
effectively prevented. However, one can also choose a slightly larger value, since the fluxes
in the FV method are independent of time over one timestep, and the fastest wave can
possibly reach and influence the opposing interface only for CFL = 1. If not otherwise
specified, we set CFL = 0.8 for all simulations presented here.
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4.5.3 Experimental Order of Convergence

To study the convergence properties of the FV implementation, we compute the numerical
errors, that is the norm of the difference of the numerical solution unum from the reference
solution uref with mean values. In this work, we look at the ∞-norm, i.e.

∣∣∣∣∣∣unum − uref

∣∣∣∣∣∣
∞

= Qmax
q=1

Nmax
ijk=1

∣∣∣∣unum,q,ijk − uref,q,ijk

∣∣∣∣ (4.25)

and the 2-norm, i.e.

∣∣∣∣∣∣unum − uref

∣∣∣∣∣∣
2

=
|Ω|−1

Q∑
q=1

N∑
ijk=1

Vq

N3

∣∣∣∣unum,q,ijk − uref,q,ijk

∣∣∣∣2
 1

2

, (4.26)

where Vq = ∆xq ∆yq ∆zq is the volume of block q and |Ω| is the volume of the computa-
tional domain.

For the exact solution, we use the MHD vortex problem derived in Balsara (2004). It is
suitable for accuracy testing, because it consists of a smoothly varying and dynamically
stable flow configuration that carries out nontrivial motion in the computational domain.
The problem is set up on a two-dimensional domain given by Ω = [−10, 10]2. with
periodic boundaries. An unperturbed MHD flow with ρ, v1, v2, p = 1 is initialized on the
computational domain while the other state variables are set to zero. The ratio of specific
heats is given by γ = 5/3. The vortex is initialized at the center of the computational
domain by way of fluctuations in the velocity and magnetic fields given by

(δv1, δv2) = 5
2π e

(1−r2)/2 (−y, x)

(δB1, δB2) = 1
2π e

(1−r2)/2 (−y, x) (4.27)

δp =
(( 5

2 π

)2
(1 − r2) − 1

2

( 1
2π

)2)
e1−r2 (−y, x)

with radius r2 = x2 + y2.

Prior to the subsequent discussions, we first verify the experimental order of convergence
(EOC) of our implementation of the 2D version (4.18) and the Riemann solver (3.41) (EC
FV). For time integration we use the LS-RK(5,4) scheme. We look at the total pressure
(3.20) and calculate the ∞-norm and 2-norm according to (4.25) and (4.26). Since the
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total pressure involves all state variables it is a good quantity to measure the overall
convergence of the code. The results in Table 4.1 confirm the expected EOC of 2.

Table 4.1: EOC of total pressure P of the MHD vortex problem (4.27) run by the second
order EC FV scheme.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.379e-00 3.241e-00 n/a n/a
322 1.356e-00 1.658e-00 0.02 0.97
642 4.023e-01 3.599e-01 1.75 2.20

1282 9.434e-02 8.888e-02 2.09 2.02
2562 2.364e-02 2.183e-02 2.00 2.03
5122 5.962e-03 5.453e-03 1.99 2.00

10242 1.488e-03 1.363e-03 2.00 2.00

4.5.4 Entropy Conservation

The EC Riemann solver for MHD (3.41) promises to conserve entropy up to machine
precision. For our stress test of the entropy conservation property we devised our own 2D
MHD Kelvin-Helmholtz (KHI) instability simulation. This setup has proven to be useful
for our purposes since it starts with a smooth well resolved initial state and gradually
develops vortical, turbulent-like structure with increasingly smaller scales. Although, the
setup is subsonic, it locally develops transonic regions, which are very challenging for most
schemes in our investigation.

The weakly-magnetized 2D MHD KHI setup is initialized in a squared and periodic do-
main Ω = [−1, 1]2 and reads

ρ0(x⃗) = 1
2 + 3

4
(

tanh(15 (y + 1
2)) − tanh(15 (y − 1

2))
)

(v1)0(x⃗) = 1
2
(

tanh(15 (y + 1
2)) − tanh(15 (y − 1

2)) + 1
)

(v2)0(x⃗) = 1
10 sin(2π x) (4.28)

(v3)0 = 0, p0 = 1, B⃗0 = (10−2, 0, 0)T ,Ψ0 = 0.

The initial conditions of the setup are also plotted in Figure 4.1.
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Figure 4.1: Initial density of the 2D MHD KHI simulation with a weak constant magnetic
field B1 = 10−2 in x-direction.

We compute the setup (4.28) with the second order EC FV scheme and with two different
timestepping schemes, the third order SSP-RK(4,3) and the fourth order LS-RK(5,4)
method. The damping terms are inactivated (cp = 0). We let the simulations run on a
uniform grid of 5122 cells until the point t ≈ 3.7, when the code crashes due to negative
densities and pressures. This happens with both time integration methods and at the
same point in the simulation. The density contours close before the crash are shown in
Figure 4.2.

81



4.5. Finite Volume Scheme

Figure 4.2: Contour plot of the density of the weakly magnetized 2D MHD KHI setup run by
EC FV and SSP-RK(4,3) close before the crash. The result with LS-RK(5,4) looks the same.

In the lower half, the streamlines (white) of the velocity field are overlayed.

The setup starts with perfectly smooth initial conditions, but quickly develops pronounced
density gradients, while small scale structures inside the main vortices start to emerge.
Moreover, lots of acoustics (spurious density oscillations) are observable. The formerly
constant magnet field has curled up, which increases the magnetic pressure alongside the
density slopes visible in Figure 4.3. Shown there are the contours of the inverse plasma-
beta β−1 with overlayed magnetic field lines in white. The distinct red areas are regions of
increased magnetic pressure counteracting the still dominating hydrodynamical pressure.
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Figure 4.3: Contour plots the inverse plasma-beta β−1 of the weakly magnetized MHD KHI
setup run by the entropy conservative FV and SSP-RK(4,3) close before the crash. The result
with LS-RK(5,4) looks the same. The streamlines (white) of the magnetic field are overlayed.

The setup consists of four stagnation points, for example at (x, y) ≈ (0.125, 0.5), which are
clearly recognizable by the tightly squeezed and lengthened magnetic field lines and the
buildup of magnetic pressure. Stagnation points pose a challenge for numerical schemes,
since they are considered to be a strong source of numerical instabilities. Numerical
schemes have to inject the right amount of dissipation in order to stabilize the simulation
and “survive” this stressing period long enough till the critical point has been dissolved.
Another source of instability are highly compressive, transonic regions. In the upper half
in Figure 4.4 we plot the sonic Mach number (3.11) and in the lower half we plot the
turbulent Mach number (3.12). Clearly, at (x, y) ≈ (0.6, 0.4) there is a transonic region
(dark red dot) of high compression indicated by the mirrored turbulent Mach number
plot. Since the EC FV scheme has no mechanism to induce enough numerical dissipation,
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it cannot handle these situations and eventually crashes.

Figure 4.4: Contour plots the Mach number of the weakly magnetized MHD-KHI setup run
by the EC FV and SSP-RK(4,3) close before the crash. The upper half depicts the sonic Mach
number M according to (3.11) and the lower half depicts the turbulent Mach number Tq per

block Ωq according (3.12). The turbulent Mach number Tq is amplified by a factor of 3 in
order to match the color range of the upper half. The bright red blocks in the lower half

correspond to Tq ≈ 0.3 and the blocks in shades of cyan correspond to Tq ≈ 0.15.

In Figure 4.5 we show how the total entropy (integrated over the whole computational
domain Ω) of the EC FV develops over time. Instead of the total entropy we plot the
relative entropy drift over time, which we define as

Sdrift(t) =
∫

Ω S(x⃗, t) dx⃗−
∫

Ω S(x⃗, 0) dx⃗∫
Ω S(x⃗, 0) dx⃗ . (4.29)

It seems the (numerically) exact conservation of the total entropy is not confirmed in
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Figure 4.5. Both timestepping schemes considerably drift away from zero at some point.
The entropy error even seems to explode till the code crashes at t ≈ 3.7 for both RK
methods. In order to rule out bugs in the RK implementations we also plotted the
relative mass drift in the same plot (scale is on the right y-axis), computed analogously
to (4.29). The fourth order RK scheme conserves the mass perfectly, while there is still a
mass drift for the third order RK scheme.
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Figure 4.5: Evolution of the global entropy drift (4.29) and mass drift of the weakly
magnetized MHD-KHI setup run by the EC FV method with the third order SSP RK scheme
and the fourth order Low-Storage RK scheme. Both simulations crash at t ≈ 3.7 visible by a
rapid surge of entropy drift caused by a breakdown of the numerics. Apparently, the SSP RK
scheme has a noticeably linear mass drift losing mass at a rate of ∆mass/∆t ≈ −1.3 × 10−10.

We want to note, that we specifically chose this setup since it pushes the numerical schemes
to their limits; even break the numerics at some point in order to investigate their stability
properties. We interpret volatile entropy production as a sign of instability, followed
by a loss of convergence to any sensible solution. Since, the derivations about entropy
conservation has been done on semi-discrete level only, any time integration related errors
are not taking into account. Entropy conservative schemes for the full discretization, both
in space and time, e.g. Friedrich et al. (2019), are implicit in time and not suitable for our
simulations. Nevertheless, the entropy error introduced through explicit time integration
should be negligible compared to the entropy production by any numerical or physical
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dissipation mechanism present in our simulations.

4.5.5 Cell Entropy Production Rate

In Figure 4.5 we see that timestepping methods introduce errors in the total entropy,
which accumulate over time. However, we are specifically interested in reliably measuring
the entropy contribution by the spatial discretization, preferably even on a local level.

We discretize the conservation law of the entropy (2.14) by the FV machinery and get

Ṡq,⃗i = −
3∑
d

N

(∆xd)q

(
(F∗

d)q,⃗i+o⃗d
− (F∗

d)q,⃗i−o⃗d

)
. (4.30)

The surface entropy flux Fd is constructed from expression (2.19) and reads

(F∗
d)q,⃗i+o⃗d

=
(

{{w}} · f ∗
d − {{θd}} +

{{
w · ΥMHD

d

}}† )
q,⃗i+o⃗d

(4.31)

Note that, we already incorporated the peculiarity of the non-conservative source terms
ΥMHD

d introduced by the ideal GLM-MHD equations (3.29) in the cell entropy surface
flux (4.31). The entropy flux of the non-conservative source terms across the cell interface
is evaluated as follows

{{
w · ΥMHD

d

}}†
= 1

2

(
w+ · Υ∗,MHD

d (u+,u−) + w− · Υ∗,MHD
d (u−,u+)

)
(4.32)

with the two-point MHD source term

Υ∗,MHD
d (u+,u−) = Υ∗,Powell

d (u+,u−) + Υ∗,GLM
d (u+,u−). (4.33)

The two-point Powell (3.23) and GLM (3.25) terms read

Υ∗,Powell
d (u+,u−) = 1

2
(
B+

d +B−
d

)
ΦPowell

(
u+
)

(4.34)

and
Υ∗,GLM

d (u+,u−) = v+
d

2

(
Ψ+ + Ψ−

)
ΦGLM

(
u+
)
. (4.35)

Next, we take the dot product of the cell’s entropy vector wq,⃗i with the RHS (4.18) and
subtract the scheme (4.30), and finally, get a measure for the entropy production rate
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∆̇Sq,⃗i in cell Vq,⃗i as
∆̇Sq,⃗i = wq,⃗i · u̇q,⃗i − Ṡq,⃗i, (4.36)

which is analog to expression (2.22). The entropy production rate must always be zero
(or negative) in order to fulfill the entropy condition (2.15). Detailed proofs are presented
in Derigs et al. (2018) and Rueda-Ramírez et al. (2022a).

For our EC FV scheme this is indeed the case as we show numerically with a snapshot
of local cell entropy production rates in Figure 4.6 at t = 2.5 for the weakly magnetized
KHI setup (4.28). The local entropy production is zero except for truncation errors due
to double precision (64 bit) floating point arithmetic, i.e. of the order 10−13, in each
cell in the whole computational domain. In Figure 4.7 we further corroborate that the
EC FV scheme conserves the entropy even with the timestepping method SSP-RK(4,3)
by plotting the minimum and maximum cell entropy production rates measured in the
whole domain at every timestep till the point of crash after 3180 timesteps respectively
at simulation time t = 3.727675.

Figure 4.6: Cell entropy production rates (4.36) of the weakly magnetized KHI setup (4.28)
at t = 2.5 computed with the EC FV scheme and timestepping method SSP-RK(4,3).
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Figure 4.7: Evolution of the maximum and minimum cell entropy production rate (4.36) in
the whole computational domain computed with the EC FV scheme and timestepping method
SSP-RK(4,3). The simulation crashes (negative densities and pressures) after 3180 timesteps

respectively at simulation time t = 3.727675.

4.5.6 Satisfying the Cell Entropy Inequality

An important and desirable property of robust numerical schemes for hyperbolic problems
is that they should yield monotone solutions at discontinuities. Central schemes like
our EC FV scheme give highly oscillatory solutions near shocks and other troublesome
flow features, which are physically wrong and eventually lead to negative densities and
pressures as we have seen in the previous two sections.

Generally, central schemes with appropriately added dissipation are able to compute non-
oscillatory solutions. For scalar conservation laws, the TVD condition (4.6) allows the
well-founded design of accurate, non-oscillatory schemes. A widely used and time proven
TVD limiter is the minmod limiter, for which the gradient σi of the linear interface
reconstruction

u±
i± 1

2
= ui ± σi

2 , (4.37)

is calculated as
σi = minmod(ui − ui−1,ui+1 − ui), (4.38)
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where

minmod(a, b) =
 s min(|a|, |b|) if sign(a) = sign(b)

0 otherwise.
(4.39)

Both one-sided slopes are computed and compared, and the slope with smaller absolute
value wins. However, if the two slopes point in different directions, the gradient is set to
zero. In cells where the slope limiter is active, the scheme reduces to first order. Hence, the
limiter should only be applied to problematic locations, such that the solution in smooth
regions remains unaffected and converges with the maximum order. This can be achieved
by, for example, relaxing the TVD condition and devising limiters who are total variation
bounded (Shu 1987) at the price of surrendering some robustness, especially at strong
shocks. Isolating discontinuities, and confining the limiter to these locations, proves to
be difficult. The choice of the slope limiter is therefore in many cases a tradeoff between
avoiding spurious oscillations and avoiding the clipping of smooth extrema. Since our final
goal is to combine the FV scheme with DG anyway, the robustness of FV is our primary
target. Hence, we deem the minmod limiter as our best option. For more details about
the minmod limiter and other suitable reconstruction approaches, we refer to LeVeque
(2002) or Godlewski and Raviart (2013).

Unfortunately, TVD does not simply carry over to nonlinear, hyperbolic systems like the
compressible Euler equations or ideal MHD. There is still a lack of theoretical basis for
the design of non-oscillatory schemes for systems of conservation laws, especially in two
and three dimensions. The assumption is that the entropy condition (2.15) can be a
useful criterion for the design of non-oscillatory schemes (Ismail and Roe 2009). However,
this condition only specifies that there must be non-zero dissipation, which leads to some
entropy production, but does not say how much entropy generation is necessary to yield
monotone solutions. Nonetheless, we devise a Rusanov-type interface flux

f ∗,minmod
i± 1

2
= f#(ui,ui±1) −

λmax
i± 1

2

2
(
u−

i±1/2 − u+
i±1/2

)
(4.40)

and assume that the linear interface reconstruction (4.37) injects enough numerical dissi-
pation at the right places to become TVD for our nonlinear systems. f# is the symmetric,
entropy conservative Riemann solver (3.41) and

λmax
i± 1

2
= max {|λmax(ui)| , |λmax(ui±1)|}
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is the maximum characteristic wave speed estimate for, e.g., (3.35) of the ideal GLM-MHD
equations at the interface.

Remark. Fjordholm et al. (2012) showed that the minmod limiter is sign preserving
if the linear interface reconstruction (4.37) is applied on the entropy variables. The
sign property is an important feature in order to perfectly ensure the correct “direction”
of entropy dissipation. However, in our numerical tests we observed positivity issues
(negative density and pressure) in very strong shock setups. Thus, we prefer to reconstruct
on primitive variables instead, which has proven to be much more robust and is also much
faster in terms of runtime performance.

We want to make sure that our devised Minmod FV scheme (4.40) with minmod interface
dissipation does not overly compromise the targeted convergence order of two. We look
at the total pressure (3.20) and calculate the ∞-norm (4.25)and 2-norm (4.26) for the 2D
MHD vortex problem (4.27). For time integration we use the LS-RK(5,4) scheme even
though a second order RK scheme would do as well. The results in Table 4.2 confirm the
expected EOC of two.

Table 4.2: EOC of total pressure P of the MHD vortex problem (4.27) run by the second
order Minmod FV scheme (4.40).

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.487e-00 2.103e-00 n/a n/a
322 9.390e-01 1.080e-00 0.66 0.96
642 2.078e-01 2.451e-01 2.18 2.14

1282 4.559e-02 4.871e-02 2.19 2.33
2562 1.366e-02 1.212e-02 1.74 2.01
5122 3.618e-03 2.971e-03 1.92 2.03

10242 9.738e-04 7.287e-04 1.89 2.03

Figure 4.8 shows the results of a simulation of the weakly magnetized MHD KHI setup
(4.28) computed with the Minmod FV till final simulation time T = 10. Clearly, the
density (left in Figure 4.8) is smeared out compared to the results with the EC FV
scheme (cf. Figure 4.2). But now, the simulation runs stably due to the regularizing
numerical dissipation injected at steep solution gradients as is clearly visible in the cell
entropy production rate snapshot (right plot in Figure 4.8). The entropy production rate
(EPR) is zero or negative in the whole domain as is demanded by the entropy condition
(2.15). In Figure 4.9 we also plot the minimum and maximum cell EPR at each timestep
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and in the whole domain over the course of the simulation. The maximum EPR is kept
at zero, while the minimum EPR intriguingly spikes at t ≈ 3.7 matching nicely with the
point of crash of the EC FV scheme. Apparently, a jump in the EPR evolution signifies a
troubling time period when the scheme has to inject enough numerical dissipation at the
right places in order to “survive” and not crash.

Figure 4.8: Contour plots of the density (left) and of cell entropy production rate (4.36)
(right) of the weakly magnetized MHD KHI setup (4.28) run by the Minmod FV.
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Figure 4.9: Evolution of the measured minimum and maximum entropy production rates at
each timestep and in the whole domain of weakly magnetized MHD KHI setup (4.28) run by

the Minmod FV till final simulation time T = 10.

We stress that we only consider the EPR as a qualitative tool to gain insights into
the scheme’s numerical dissipation mechanics, because a well-founded judgment on the
amount (quantity) of the locally produced entropy is beyond the scope of this work and
subject to future investigations.

4.6 Discontinuous Galerkin Spectral Element Method

Discontinuous Galerkin (DG) methods belong to the class of Finite Element (FE) methods
(Reddy 2004), which are used for solving a vast range of partial differential equations. In
these methods a mesh is generated by subdividing space into individual, non-overlapping
elements, and basis functions defined on a reference element are used for representing
the solution. FE methods are closely related to spectral methods (Canuto et al. 2012)
and built on similar ideas. Spectral methods use basis functions that are nonzero and
bounded over the whole domain, while FE methods use basis functions that are nonzero
and bounded only within their respective elements. In other words, spectral methods
take on a global approach while FE methods use a local approach. Spectral methods
are appreciated for their excellent error properties, with the fastest possible (“exponen-
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tial”) convergence speed for sufficiently smooth solutions. Single domain spectral shock
capturing methods in multi-dimensions, however, are still an open research question.

In the FE community, a method where the degree of the elements is very high or increases
as the grid parameter ∆x

n
decreases to zero for n → ∞ is occasionally called a spectral

element method. The idea of so-called Discontinuous Galerkin Spectral Element Methods
(Black 1999) is to choose a finite dimensional space of candidate solutions, namely poly-
nomials of degree n − 1 pinned at n collocation points in the reference element, and to
select the solution such that it satisfies the given equation at the collocation points. The
hyperbolic fluid equations are solved in a weak formulation with respect to the basis func-
tions and in contrast to continuous Galerkin methods, the solution in DG is discontinuous
across element interfaces. Elements exchange information with their direct neighbors via
Riemann solvers analogous to FV methods.

The discontinuous nature of DG gives rise to a couple of advantages. Unlike in FV meth-
ods, the high order stencil of DG is local and only information from touching surfaces of
neighboring elements is required. This feature is of great value for unstructured meshes
in complex geometries and for distributed high performance computing, since less time is
spent on data communication and more time can be devoted to calculating the solution.
Of course, for our envisaged astrophysics applications modeled in Cartesian geometry, the
first advantage is of minor importance. Moreover, for hydrodynamic applications a dis-
continuous solution representation can potentially capture shocks very well. At locations
near discontinuities in the flow troubled elements can be individually limited such that
an oscillation-free representation can be achieved.

In the following, we outline the basic building blocks of DG, describe strategies to satisfy
the entropy condition (2.15), and investigate the robustness and accuracy of several DG
variants by the example of the weakly magnetized MHD-KHI setup (4.28).

4.6.1 Building Blocks

In this section, we briefly outline the construction of the Discontinuous Galerkin Spectral
Element Method (DGSEM). A very detailed account can be found for example in Kopriva
(2009b). From now on, we use DG and DGSEM synonymously. To derive the nth order
DG scheme in element Ωq and within the Cartesian domain Ω ⊂ R3, we start with the
general conservation law (2.6) in variational form (2.9) and apply integration-by-parts in
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space to the flux divergence. We get

∫
Ωq

(
∂tu(x⃗, t)

)
ϕ(x⃗) dx⃗ =

3∑
d=1

∫
Ωq

fd(u(x⃗, t)) ∂xd
ϕ(x⃗) dx⃗

−
3∑

d=1

∮
∂Ωq

fd(u(x⃗, t))ϕ(x⃗)nd(x⃗) d(∂Ωq) (4.41)

with the outward facing normal vector nd(χ⃗) =
(
n1(χ⃗), n2(χ⃗), n3(χ⃗)

)T
.

Reference Element

For practical reasons, we transform above expression into the unit reference space

I =
[
−1

2 ,
1
2

]
(4.42)

and each element Ωq ⊂ Ω with midpoint µ⃗q ∈ Ω and size ∆x⃗q ∈ R3
+ is transformed to the

reference space I by the mapping

x⃗q(χ⃗) = µ⃗q + χ⃗ ∆x⃗q , χ⃗ ∈ I3. (4.43)

The variational form (4.41) then reads

|Ωq|
∫

I3

(
∂tu(χ⃗, t)

)
ϕ(χ⃗) dχ⃗ =

3∑
d=1

∫
I3

fd(u(χ⃗, t)) ∂χd
ϕ(χ⃗) dχ⃗

−
3∑

d=1

∮
∂I3

fd(u(χ⃗, t))ϕ(χ⃗)nd(χ⃗) d(∂I3) (4.44)

with the volume of the element |Ωq| given by

|Ωq| =
3∏

d=1
∆xd = ∆x∆y∆z. (4.45)

Lagrange Polynomials

We choose the test function ϕ(χ⃗) to be the product of Lagrange polynomials ℓ

ϕ(χ) := ℓi(χ1) ℓj(χ2) ℓk(χ3), i, j, k = 1, . . . , n, (4.46)
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where
ℓi(χ) =

n∏
k=1,k ̸=i

χ− ξk

ξi − ξk

, i = 1, . . . , n, (4.47)

are constructed with n distinct interpolation nodes ξi ∈ I. Inside each element Ωq we
make a polynomial tensor product ansatz of degree n − 1 and approximate the exact
solution uq(x⃗, t) by

uq(χ⃗, t) ≈ pq(χ⃗, t) =
n∑

i,j,k=1
ũq,ijk(t) ℓi(χ1) ℓj(χ2) ℓk(χ3), (4.48)

where
ũq,ijk(t) = u

(
x⃗q(ξ⃗ijk), t

)
(4.49)

are the time-dependent polynomial coefficients of the tensor product ansatz evaluated on
the set of interpolation nodes

ξ⃗ijk = (ξi, ξj, ξk)T ∈ I3, i, j, k = 1, . . . , n. (4.50)

In this thesis, we call ũq,ijk(t) nodal values and tag them with a tilde sign on top. Note,
that (4.48) is equivalent to (4.2).

Remark. The Lagrange polynomials satisfy the Kronecker property, i.e.

ℓj(ξi) = δi,j. (4.51)

Analog to (4.3), we can easily calculate the spatial derivative of (4.48) as

∂χd
u(x⃗q(χ⃗), t) ≈ ∂χd

pq(χ⃗, t) =
n∑

i,j,k=1
ũq,ijk(t) ∂χd

ℓi(χ1) ℓj(χ2) ℓk(χ3). (4.52)

The derivatives of the Lagrange polynomials at nodes ξi can be precomputed and conve-
niently stored into a matrix

(D)ij = ∂χℓj(χ)
∣∣∣∣
ξi

, i, j = 1, . . . , n, (4.53)

which we coin the differentiation matrix D ∈ Rn×n. Integration over the reference element
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is done analogously to (4.4) by

uq(t) ≈
∫

I3
pq(χ⃗, t) dχ⃗ =

n∑
i,j,k=1

ũq,ijk(t)
∫

I3
ℓi(χ1) ℓj(χ2) ℓk(χ3) dχ⃗.︸ ︷︷ ︸

= ωi ωj ωk = const.

(4.54)

The integral over the Lagrange polynomials in reference space gives the so-called quadra-
ture weights and the sum of all weights is by construction one:

ωi =
∫

I
ℓi(χ) dχ and

n∑
i

ωi = 1. (4.55)

We collect the quadrature weights into a diagonal mass matrix M ∈ Rn×n

(M)ij = δij ωi, i, j = 1, . . . , n. (4.56)

Although the numerical quadrature (4.54) is easy to implement and very efficient, it
unfortunately introduces integration errors in case of highly nonlinear equations which
may accumulate over time and in the worst case causes a breakdown of the numerics.
This so-called aliasing is a well-understood problem in spectral-like schemes (Orszag 1971;
Kirby and Sherwin 2006), but is a deliberately accepted tradeoff for the gains in speed and
efficiency. In the FE community, this controversial topic is even condemned a variational
crime (Strang 1972).

In spite of that, a proper choice of “good” quadrature nodes ξi has a great impact on
the accuracy and stability of the DG scheme. In this work, we look at two choices of
nodes: the Legendre-Gauss, in short Gauss, nodes and the Legendre-Gauss-Lobatto, in
short Lobatto, nodes. These quadrature nodes are computed as roots of the Legendre
polynomials (Abramowitz and Stegun 1965) and are internally not uniformly distributed.
The Gauss quadrature rule is exact for polynomials of degree 2n − 1 and considered
“optimal”, while the Lobatto quadrature rule is only exact for polynomials of degree
2n− 3.
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Legendre-Gauss Quadrature

The one-dimensional nodes of the Gauss rule are given as the roots of the Legendre
polynomial Pk(ξ) which are solutions to Legendre’s differential equation. It reads

d
dξ
(
(1 − ξ2) d

dξPi(ξ)
)

+ i (i+ 1)Pi(ξ) = 0, i = N. (4.57)

Given the first two polynomials P0(ξ) = 1 and P1(ξ) = ξ, the higher order polynomials
can be computed with the recursion formula (Johansson and Mezzarobba 2018)

(i+ 1)Pi+1(ξ) − (2 i+ 1) ξ Pi(ξ) + i Pi−1(ξ) = 0. (4.58)

Above formula is solved numerically by means of the Newton-Raphson method (Kelley
2003). As starting values of the iterative root finding, approximate expressions for the
roots (Lether and Wenston 1995) can be used,

ξ̂i ≈ cos
(
π

2 i− 1
2n

)
, i = 1, . . . , n. (4.59)

The corresponding weights are calculated as (Abramowitz and Stegun 1965)

ω̂i = 2
(1 − ξ̂2

i )∂ξPn(ξ̂i)2
, i = 1, . . . , n. (4.60)

The quadrature nodes are only computed once and stored at the beginning of the simu-
lation. In fact, for our targeted order n = 4, analytical expressions (Beyer 1991) for the
quadrature nodes and weights are readily available:

ξ̂1,4 = ±

√√√√3
7 + 2

7

√
6
5 , ω̂1,4 = 18 −

√
30

36 ,

ξ̂2,3 = ±

√√√√3
7 − 2

7

√
6
5 , ω̂2,3 = 18 +

√
30

36 .

Note, that the above quadrature nodes and weights are usually defined for the interval
[−1, 1]. For our purposes, we transfer them to I beforehand, i.e.

ξi = 1
2 ξ̂i and ωi = 1

2 ω̂i.
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Legendre-Gauss-Lobatto Quadrature

The Lobatto quadrature is very similar to the Gauss quadrature rule, however, due to the
additional condition of including the integration boundaries, they lose in accuracy. The
nodes are the roots of the function (1 − ξ2)∂ξPn−1(ξ) with corresponding weights given
by Abramowitz and Stegun (1965)

ω̂i = 2
n (n− 1)Pn−1(ξ̂i)2

, i = 2, . . . , n− 1. (4.61)

As for the Gauss quadrature, for our targeted order of n = 4, there are analytical expres-
sions available for the quadrature nodes and weights (Beyer 1991):

ξ̂1,4 = ±1, ω̂1,4 = 5
6 ,

ξ̂2,3 = ±1
5

√
5, ω̂2,3 = 1

6 .

Note, that the above quadrature nodes and weights are defined for the interval [−1, 1]
and we transfer them to I by simple multiplication with 1/2.

Since Lobatto nodes include the end points in the approximation, the associated deriva-
tive operators have the so-called summation-by-parts property (SBP) which allows to
discretely mimic the integration-by-parts step (4.41) and paves the way for efficient en-
tropy stable DG schemes. Moreover, Lobatto-based DG schemes are generally easier to
implement, are algorithmically less complex and allow larger timesteps compared to the
Gauss quadrature rule (Parter 1999; Gassner and Kopriva 2011).

Collocation Scheme

We follow the standard procedure in Kopriva (2009b) and collocate the solution approx-
imation (4.48) with the numerical differentiation (4.52) and the numerical quadrature
(4.54). Inserting into the semi-discrete weak-form (4.44), our collocation scheme in semi-
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discrete weak form reads

˙̃uq,ijk = − 1
ωi ∆xq

(
B+

i (f̃ ∗
1 )q+ 1

2 ,jk − B−
i (f̃ ∗

1 )q− 1
2 ,jk −

n∑
l=1

ωl Dli (f̃1)q,ljk

)

− 1
ωj ∆yq

(
B+

j (f̃ ∗
2 )q+ 1

2 ,ik − B−
j (f̃ ∗

2 )q− 1
2 ,ik −

n∑
l=1

ωl Dlj (f̃2)q,ilk

)
(4.62)

− 1
ωk ∆zq

(
B+

k (f̃ ∗
3 )q+ 1

2 ,ij − B−
k (f̃ ∗

3 )q− 1
2 ,ij −

n∑
l=1

ωl Dlk (f̃3)q,ijl

)
+ Υ̃q,ijk.

Note, that we added the non-conservative source terms ˙̃
Υq,ijk which we omitted in (4.44)

for reasons of clarity and brevity. The non-conservative source terms are discretized by
the DG machinery analogously to the fluxes and are discussed later in text.

The nodal volume flux
(f̃d)q,ijk = fd

(
ũq,ijk

)
(4.63)

is computed from the polynomial coefficients (4.49) and the boundary interpolation op-
erators read

B±
i = ℓi

(
±1

2

)
, i = 1, . . . , n. (4.64)

The surface fluxes in x-direction

(f̃ ∗
1 )q± 1

2 ,jk = f ∗
1

(
ũ+

q− 1
2 ± 1

2 ,jk
, ũ−

q+ 1
2 ± 1

2 ,jk

)
(4.65)

are calculated analogously to the FV scheme with the Rusanov flux (2.27). The interpo-
lated element boundary values in x-direction read

ũ±
q± 1

2 ,jk
=

N∑
i=1

B±
i ũq,ijk (4.66)

at the common interface q± 1
2 between neighboring elements q and q±1. The computations

in y- and z-direction are done analogously. Note that the notation for indexing the element
interfaces, i.e. q ± 1

2 , is to be understood in an abstract sense. Thus, (f̃ ∗
1 )q± 1

2
, (f̃ ∗

2 )q± 1
2

and (f̃ ∗
3 )q± 1

2
point to the faces in x-, y- and z-direction, respectively.
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Non-conservative Source Terms

We split the discretization of the Powell term (3.23) into a surface and volume part and
write

Υ̃Powell
q,ijk = − 1

ωi ∆xq

(
B+

i

{{
B̃1
}}

q+ 1
2 ,jk

− B−
i

{{
B̃1
}}

q− 1
2 ,jk

−
n∑

l=1
ωl Dli (B̃1)q,ljk

)
Φ̃Powell

q,ijk

− 1
ωj ∆yq

(
B+

j

{{
B̃2
}}

q+ 1
2 ,ik

− B−
j

{{
B̃2
}}

q− 1
2 ,ik

−
n∑

l=1
ωl Dlj (B̃2)q,ilk

)
Φ̃Powell

q,ijk

− 1
ωk ∆zq

(
B+

k

{{
B̃3
}}

q+ 1
2 ,ij

− B−
k

{{
B̃3
}}

q− 1
2 ,ij

−
n∑

l=1
ωl Dlk (B̃3)q,ijl

)
Φ̃Powell

q,ijk .

(4.67)

The source vector is calculated by inserting the nodal states into expression (3.24)

Φ̃Powell
q,ijk = ΦPowell

(
ũq,ijk

)
.

The element interface averages are calculated as

{{·}}q± 1
2 ,jk = 1

2

(
(·)+

q± 1
2 ,jk

+ (·)−
q± 1

2 ,jk

)
(4.68)

from the interpolated interface values (4.66). Analog to above, the GLM term (3.25) is
then

Υ̃GLM
q,ijk = − (ṽ1)q,ijk

ωi ∆xq

(
B+

i

{{
Ψ̃
}}

q+ 1
2 ,jk

− B−
i

{{
Ψ̃
}}

q− 1
2 ,jk

−
n∑

l=1
ωl Dli Ψ̃q,ljk

)
Φ̃GLM

q,ijk

− (ṽ2)q,ijk

ωj ∆yq

(
B+

j

{{
Ψ̃
}}

q+ 1
2 ,ik

− B−
j

{{
Ψ̃
}}

q− 1
2 ,ik

−
n∑

l=1
ωl Dlj Ψ̃q,ilk

)
Φ̃GLM

q,ijk (4.69)

− (ṽ3)q,ijk

ωk ∆zq

(
B+

k

{{
Ψ̃
}}

q+ 1
2 ,ij

− B−
k

{{
Ψ̃
}}

q− 1
2 ,ij

−
n∑

l=1
ωl Dlk Ψ̃q,ijl

)
Φ̃GLM

q,ijk

− Φdamp
(
ũq,ijk

)
.

The source vector is calculated by inserting the nodal states into expression (3.26)

Φ̃GLM
q,ijk = ΦGLM

(
ũq,ijk

)
.

Remark. The scheme (4.62) is conservative except for the contribution of the non-
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conservative source term

Q∑
q

|Ωq|
n∑

ijk=1

˙̃uq,ijk ωi ωj ωk =
Q∑
q

|Ωq|
n∑

ijk=1
Υ̃q,ijk ωi ωj ωk

∇·B⃗ → 0−→ 0. (4.70)

which vanishes when the divergence error goes to zero.

4.6.2 CFL Condition

As for the FV method the timestep size of the scheme has to be restricted in order to
maintain stability. The DG’s spatial operator spectra are stiffer then FV methods, thus
require smaller timesteps and also need more stable time integration methods, such as
high order RK methods (Warburton and Hagstrom 2008; Toulorge and Desmet 2011;
Chalmers et al. 2014).

To calculate a stable timestep for DG the maximum eigenvalue estimate (3.35) for ideal
GLM-MHD is evaluated on all node values ũq,⃗i in each element Ωq. In three dimensions
it reads as

λ̃max
q = nmax

ijk=1
λmax

(
ũq,ijk

)
. (4.71)

Then the maximal timestep is estimated by the CFL condition (4.13) as

∆t := CFL

d
min

q

min(∆xq,∆yq,∆zq)
n λ̃max

q

, (4.72)

where d = 3, CFL ∈ (0, 1) and n is the number of nodes in each direction of the element
Ωq. Furthermore, we calculate the global hyperbolic correction speed (3.28) as

c̃H = max
q

3max
d=1

Nmax
ijk=1

cd

(
ũq,ijk

)
. (4.73)

Compared to our discussion of the timestep estimate for FV methods in Section 4.5.2, the
CFL condition is stricter (Warburton and Hagstrom 2008), hence we take half of before,
i.e. CFL = 0.4.

4.6.3 Experimental Order of Convergence

To study the convergence properties of our DG implementation, we compute the numerical
errors, that is the norm of the difference of the numerical solution unum from the reference
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solution uref with node values. As for FV schemes, we look at the ∞-norm, i.e.

∣∣∣∣∣∣ũnum − ũref

∣∣∣∣∣∣
∞

= Qmax
q=1

nmax
ijk=1

∣∣∣∣ũnum,q,ijk − ũref,q,ijk

∣∣∣∣ (4.74)

and the 2-norm, i.e.

∣∣∣∣∣∣ũnum − ũref

∣∣∣∣∣∣
2

=
|Ω|−1

Q∑
q=1

n∑
ijk=1

Vq ωi ωj ωk

∣∣∣∣ũnum,q,ijk − ũref,q,ijk

∣∣∣∣2
 1

2

, (4.75)

where Vq = ∆xq ∆yq ∆zq is the volume of element Ωq and |Ω| is the volume of the com-
putational domain.

For the exact solution, we again use the MHD vortex problem (4.27) and for time inte-
gration we use the LS-RK(5,4) scheme. We look at the total pressure (3.20) and calculate
the ∞-norm and 2-norm according to (4.74) and (4.75). The results for the fourth order
Standard Gauss DG and Standard Lobatto DG in Table 4.3 and Table 4.4 confirm the
expected EOCs of around four. For this test, Standard Gauss DG is more accurate and
more robust than Standard Lobatto DG, since the latter crashes at the lowest resolutions.

Table 4.3: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Standard DG with Gauss quadrature.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.398e-00 2.024e-00 n/a n/a
322 6.114e-01 7.630e-01 1.19 1.41
642 6.324e-02 1.046e-01 3.27 2.87

1282 7.886e-03 9.801e-03 3.00 3.42
2562 2.090e-04 1.903e-04 5.24 5.69
5122 1.048e-05 6.742e-06 4.32 4.82

10242 6.962e-07 3.815e-07 3.91 4.14
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Table 4.4: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Standard DG with Lobatto quadrature. The simulations crash for resolutions 162 and

322 DOF.
DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 n/a n/a n/a n/a
322 n/a n/a n/a n/a
642 2.354e-01 3.055e-01 n/a n/a

1282 5.534e-02 7.948e-02 2.09 1.94
2562 6.527e-03 4.000e-03 3.08 4.31
5122 2.552e-04 1.436e-04 4.68 4.80

10242 1.660e-05 8.150e-06 3.94 4.14

4.6.4 Element Entropy Production Rate

We discretize the conservation law of the cell entropy (2.14) by the DG machinery and
get

˙̃Sq,ijk = − 1
ωi ∆xq

(
B+

i (F̃∗
1 )q+ 1

2 ,jk − B−
i (F̃∗

1 )q− 1
2 ,jk −

n∑
l=1

ωl Dli (F̃1)q,ljk

)

− 1
ωj ∆yq

(
B+

j (F̃∗
2 )q+ 1

2 ,ik − B−
j (F̃∗

2 )q− 1
2 ,ik −

n∑
l=1

ωl Dlj (F̃2)q,ilk

)
(4.76)

− 1
ωk ∆zq

(
B+

k (F̃∗
3 )q+ 1

2 ,ij − B−
k (F̃∗

3 )q− 1
2 ,ij −

n∑
l=1

ωl Dlk (F̃3)q,ijl

)

The surface entropy fluxes F∗
d are equivalent to the FV surface fluxes (4.31) with

(F̃∗
d )q± 1

2 ,ij = F∗
(
ũ+

q± 1
2 ,ij
, ũ−

q± 1
2 ,ij

)
(4.77)

The computations in y- and z-direction are done analogously. The exact form of the
volume entropy fluxes F̃d is irrelevant, since they will cancel out in our next step. We
take the dot product of the entropy vector w with the weak-form DG scheme (4.62)
and subtract the scheme (4.76) to get a measure for the entropy production rate ∆̇Sq of
element Ωq by

∆̇Sq ≈
n∑

ijk=1

(
w̃q,ijk · ˙̃uq,ijk − ˙̃Sq,ijk

)
ωi ωj ωk. (4.78)

However, above formula is only exact for quadrature rules, where the outermost collocation
nodes lie on the element boundaries, e.g., the Lobatto quadrature. The reconstruction
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of boundary states in the standard DG scheme (4.62) is done on conservative variables
and is not consistent to the evaluation of the surface fluxes in entropy variable space
according to (2.19). This issue is fixed by replacing the numerical fluxes in (4.62) with
entropy projected fluxes (̃f ∗

d )q± 1
2 ,ij → ˜̃(f ∗

d )q± 1
2 ,ij, where

˜̃(f ∗
d )q± 1

2 ,ij = f ∗
(˜̃u+

q± 1
2 ,ij,

˜̃u−
q± 1

2 ,ij

)
(4.79)

and entropy projected states at element boundaries in x-direction

˜̃u±
q± 1

2 ,jk = u
(
w̃±

q± 1
2 ,jk

)
= u

(
N∑

i=1
B±

i w(ũq,ijk)
)
. (4.80)

Here, we introduce the double tilde sign above a symbol, which signifies an entropy
projected quantity. The computations in y- and z-direction are done analogously. We
finally write

∆̇Sq =
n∑

ijk=1

(
w̃q,ijk · ˙̃̃

uq,ijk −
˙̃̃
Sq,ijk

)
ωi ωj ωk, (4.81)

where the exact temporal change of entropy per element reads

˙̃̃
Sq,ijk = − 1

ωi ∆xq

(
B+

i (˜̃F∗
1 )q+ 1

2 ,jk − B−
i (˜̃F∗1)q− 1

2 ,jk

)
− 1
ωj ∆yq

(
B+

j (˜̃F∗
2 )q+ 1

2 ,ik − B−
j (˜̃F∗2)q− 1

2 ,ik

)
(4.82)

− 1
ωk ∆zq

(
B+

k (˜̃F∗
3 )q+ 1

2 ,ij − B−
k (˜̃F∗3)q− 1

2 ,ij

)

with entropy projected surface entropy fluxes F∗
d analogously to (4.79), i.e.

˜̃(F∗
d )q± 1

2 ,ij = F∗
(˜̃u+

q± 1
2 ,ij,

˜̃u−
q± 1

2 ,ij

)
. (4.83)

The computations in y- and z-direction are done analogously. Consequently, the element
entropy production rate (4.83) must always be zero or negative for the DG scheme in
order to fulfill the entropy inequality (2.15), i.e.

∆̇Sq ≤ 0. (4.84)

Clearly, expression (4.82) tells us, that the entropy balance of a DG element is only gov-
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erned by the surface fluxes. However, for the Standard DG (4.62) this is not naturally
the case. The volume fluxes are not perfectly entropy conservative and erroneously ma-
nipulate the balance by introducing entropy errors. This undesirable mechanism is also
linked to aliasing and its associated instability issues. Thus, it is hoped that eliminating
any entropy errors from the volume fluxes assists in stabilizing the DG scheme. Two
approaches for entropy stable DG schemes are discussed in the next section. But before
that, we want to assess the robustness of the Standard Gauss DG and Standard Lobatto
DG for the weakly magnetized MHD-KHI setup (4.28). Additionally, we investigate if
the entropy boundary projected (EBP) surface fluxes for Standard Gauss DG make any
difference in terms of robustness and entropy production. The convergence test results
for the EBP Standard Gauss DG are given in Table 4.5.

Table 4.5: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Standard DG with Gauss quadrature and EBP.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.445e-00 2.091e-00 n/a n/a
322 7.689e-01 9.941e-01 0.91 1.07
642 1.784e-01 1.959e-01 2.11 2.34

1282 6.831e-02 4.362e-02 1.38 2.17
2562 1.328e-02 4.956e-03 2.36 3.14
5122 5.366e-04 1.536e-04 4.63 5.01

10242 1.277e-05 3.768e-06 5.39 5.35

In Figure 4.10 we show the minimum and maximum element entropy production rates
(4.79) over simulation time for all three schemes. Clearly, Standard Lobatto DG is less
accurate compared to Standard Gauss DG and in terms of entropy error. It is the least
robust scheme and crashes first at around t ≈ 3.2. The entropy projection of Standard
Gauss DG shifts the entropy production a bit to the negative side (as desired) but still
crashes at t ≈ 2.25, shortly followed by Standard Gauss DG.
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Figure 4.10: Evolution of the entropy production rates for the weakly magnetized MHD-KHI
setup (4.28) and with the Standard DG schemes.

Compared to the EC FV scheme (without any explicit dissipation) Standard DG is less
robust and crashes earlier. Similar to Figure 4.5, a spike in entropy production indicates
an imminent break down of the numerics and a crash of the simulation.

4.6.5 Satisfying the Element Entropy Inequality

In the following, we introduce two approaches to achieve entropy stability for DG schemes.
The first approach is to correct any spurious entropy increase produced by the volume
term with an algebraic correction term by subtracting surplus entropy production in a
conservative and entropy consistent manner. We coin this approach Entropy Corrected
DG. The second approach is called Flux Differencing DG and builds on the (generalized)
summation-by-parts property of the DG differentiation operator. To reach entropy con-
servation, respectively guaranteed entropy dissipation, the key ingredient is an entropy
conserving numerical flux function.

Entropy Corrected DG

The entropy correction scheme was developed by Abgrall (2018). The idea is intuitive,
applicable for a broad range of equations, and is straightforward to implement. Key
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element is to find a correction term ˜̃rq,ijk if subtracted from the RHS

˙̃̃
u

′
q,ijk = ˙̃̃

uq,ijk − ˜̃rq,ijk, (4.85)

such that ˙̃̃
u

′
q,ijk satisfies the element entropy (in-)equality (4.84), but does not break

primary conservation. The two requirements define a linear system with always at least
two unknowns. The solution, according to Abgrall (2018), reads

˜̃rq,ijk = w̃q,ijk − wq∑n
ijk=1 (w̃q,ijk − wq)2 ωi ωj ωk

∆̇Sq (4.86)

with wq = ∑n
ijk=1 w̃q,ijk ωi ωj ωk and the element entropy production rate ∆̇Sq given by

(4.81). The correction term (4.86) is conservative, since

n∑
ijk=1

(w̃q,ijk − wq)ωi ωj ωk = 0 =⇒
n∑

ijk=1

˜̃rq,ijk ωi ωj ωk = 0 (4.87)

and indeed it does correct the scheme to satisfy equality (4.84), since

∆̇S
′
q =

n∑
ijk=1

(
w̃q,ijk · ˙̃̃u

′
q,ijk −

˙̃̃
Sq,ijk

)
ωi ωj ωk

=
n∑

ijk=1

(
w̃q,ijk ·

( ˙̃̃uq,ijk − ˜̃rq,ijk

)
−

˙̃̃
Sq,ijk

)
ωi ωj ωk

= ∆̇Sq −
n∑

ijk=1
w̃q,ijk · ˜̃rq,ijk ωi ωj ωk

= ∆̇Sq −
∑n

ijk=1 w̃q,ijk ·
(
w̃q,ijk − wq

)
ωi ωj ωk∑n

ijk=1 (w̃q,ijk − wq)2 ωi ωj ωk

∆̇Sq

= �
��∆̇Sq −�

��∆̇Sq = 0,
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where we use the fact that
n∑

ijk=1

(
w̃q,ijk − wq

)2
ωi ωj ωk

=
n∑

ijk=1

(
w̃q,ijk ·

(
w̃q,ijk − wq

)
−((((((((((

wq ·
(
w̃q,ijk − wq

))
ωi ωj ωk

=
n∑

ijk=1

(
w̃q,ijk ·

(
w̃q,ijk − wq

))
ωi ωj ωk.

We get an entropy stable scheme when we cut-off the entropy production rate (4.81) and
only trigger the correction whenever ∆̇Sq is positive. With

˜̃rq,ijk = w̃q,ijk − wq

ϵ+∑n
ijk=1 (w̃q,ijk − wq)2 ωi ωj ωk

max
(
0, ∆̇Sq

)
(4.88)

we ensure that
∆̇S

′
q ≤ 0. (4.89)

The parameter ϵ := 10−20 prevents division by zero in case of constant states. A disadvan-
tage of this method is that expression (4.88) can get arbitrarily large introducing stiffness
into the system. In some cases we observed positivity issues in density and pressure at
the level of element averages causing the simulation to crash.

Table 4.6, Table 4.7, and Table 4.8 document the EOCs of the MHD vortex problem (4.27).
In Figure 4.11 we plot the minimum and maximum entropy production rates (4.81) of the
three investigated DG variants and we see that entropy correction for Lobatto DG and
Gauss DG without EBP does not significantly increase robustness and they crash close
before t ≈ 3.5. Gauss DG with entropy correction and EBP, however, enjoys an increase
in stability and is capable to “survive” much longer, but crashes shortly after t ≈ 5.25.
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Table 4.6: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Entropy Corrected Gauss DG without EBP.
DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.385e-00 1.988e-00 n/a n/a
322 5.384e-01 7.158e-01 1.36 1.47
642 6.271e-02 1.046e-01 3.10 2.78

1282 8.338e-03 9.926e-03 2.91 3.40
2562 2.259e-04 1.914e-04 5.21 5.70
5122 1.064e-05 6.456e-06 4.41 4.89

10242 7.489e-07 9.734e-07 3.83 2.73

Table 4.7: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Entropy Corrected Gauss DG with EBP.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.445e-00 2.091e-00 n/a n/a
322 7.683e-01 9.911e-01 0.91 1.08
642 1.784e-01 1.958e-01 2.11 2.34

1282 6.831e-02 4.362e-02 1.38 2.17
2562 1.328e-02 4.956e-03 2.36 3.14
5122 5.367e-04 1.536e-04 4.63 5.01

10242 1.277e-05 3.776e-06 5.39 5.35

Table 4.8: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Entropy Corrected Lobatto DG.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.068e-00 2.125e-00 n/a n/a
322 6.666e-01 1.259e-00 0.68 0.76
642 2.081e-01 2.983e-01 1.68 2.08

1282 5.395e-02 7.830e-02 1.95 1.93
2562 6.495e-03 4.009e-03 3.05 4.29
5122 2.472e-04 1.439e-04 4.72 4.80

10242 1.658e-05 8.038e-06 3.90 4.16
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Figure 4.11: Evolution of the entropy production rates for the weakly magnetized MHD-KHI
setup (4.28) and with the Entropy Corrected DG schemes.

Flux Differencing DG

Fisher and Carpenter (2013); Fisher et al. (2013); Carpenter et al. (2014) laid the ground-
work for a popular class of entropy stable DG schemes by showing that the conditions to
develop entropy stable approximations at low order, as we have done for the FV scheme
in Section 4.5.5 and Section 4.5.6, immediately apply to high order methods provided the
derivative approximation satisfies the summation-by-parts (SBP) property. In the con-
text of entropy stable DG methods, this seminal insight was successfully applied for the
shallow water equations (Gassner et al. 2016b; Wintermeyer et al. 2018), compressible
Euler equations (Gassner et al. 2016d), compressible Navier-Stokes equations (Gassner
et al. 2018) as well as the ideal and resistive MHD equations (Rossmanith 2013; Chan-
drashekar et al. 2016; Gallego Valencia 2017; Liu et al. 2018b; Bohm 2018). However,
all entropy stable DG schemes constructed by the referenced authors rely on the Lobatto
quadrature rule (where boundary points are included) in order to construct diagonal norm
SBP operators, the key aspect to achieve entropy stability.

Chan (2018) introduced an efficient entropy stable DG scheme for the Gauss quadrature
rule based on the construction of general SBP operators. A detailed discussion about
general SBP operators in the context of hyperbolic conservation laws is provided, for
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example, by Ranocha (2018). The generalized SBP operator is constructed by

(DM) + (DM)T =
(
B−|B+

)−1 0
0 1

(B−|B+
)T

(4.90)

where (B−|B+) ∈ Rn×2 is the matrix of the two boundary interpolation operators (4.64).
Again, the SBP property is a direct restatement of the integration-by-parts in the contin-
uous case. Equipped with relation (4.90), we rearrange the semi-discrete, weak-form DG
(4.62) according to Chan (2018) and get

∂t
˜̃uq,ijk = − 1

ωi ∆xq

(
B+

i (
˜̃
f%

1 )q+ 1
2 ,jk − B−

i (
˜̃
f%

1 )q− 1
2 ,jk −

n∑
l=1

Sli (f̃#
1 )q,{l,i}jk

)

− 1
ωj ∆yq

(
B+

j (
˜̃
f%

2 )q+ 1
2 ,ik − B−

j (
˜̃
f%

2 )q− 1
2 ,ik −

n∑
l=1

Slj (f̃#
2 )q,i{l,j}k

)
(4.91)

− 1
ωk ∆zq

(
B+

k (
˜̃
f%

3 )q+ 1
2 ,ij − B−

k (
˜̃
f%

3 )q− 1
2 ,ij −

n∑
l=1

Slk (f̃#
3 )q,ij{l,k}

)

where S = DM − (DM)T is the skew-symmetric flux differencing matrix and the
volume flux operation is a telescopic sum defined by

n∑
l=1

Sli (f̃#
1 )q,{l,i}jk =

n∑
l=1

Sli f
#
1

(
ũq,ljk, ũq,ijk

)
. (4.92)

The special surface flux reads

(
˜̃
f %

1 )q± 1
2 ,jk = f ∗

1

(˜̃u+
q± 1

2 ,jk,
˜̃u−

q± 1
2 ,jk

)
+f#

1

(˜̃u±
q,jk, ũq,ijk

)
−

n∑
l=1

B±
l f#

1

(˜̃u±
q+ 1

2 ,jk, ũq,ljk

)
, (4.93)

where as before the terms are evaluated on entropy projected states given by (4.80). The
computations in y- and z-direction are done analogously.

Any combination of numerical surface, f ∗, and volume f# fluxes can be selected, in
order to fulfill primary and secondary conservation constraints. As a matter of fact, a
common practice to obtain a provably entropy stable scheme is to use the same entropy
conservative flux in the volume and the surface, and to add a dissipation term in the
surface flux. To get an entropy conservative scheme, the surface numerical flux f ∗ is
simply set equal to the volume numerical flux f#. For our case, we chose f ∗ to be the
Rusanov-type surface flux (2.32) and f# to the familiar consistent, affordable and entropy
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conservative Riemann solver (3.41) for the ideal GLM-MHD equations.

Rueda-Ramírez et al. (2022a) extended the work by Chan (2018), where he solved the
compressible Euler equations, to the ideal GLM-MHD equations (3.22). The integration
of the non-conservative source terms in Rueda-Ramírez et al. (2022a) is especially elegant
and straightforward. Simply add to every numerical volume flux f# the following two-
point source term function:

f
(
u+,u

)
→ f

(
u+,u

)
+ Φ

(
u+,u

)
. (4.94)

Moreover, Rueda-Ramírez et al. (2022a) also shows detailed proofs that the scheme (4.91)
is entropy stable for the ideal GLM-MHD equations if adequate numerical volume and
surface fluxes are chosen.

The “generalized” flux differencing scheme (4.91) is directly compatible for both quadra-
ture rules, Gauss and Lobatto. However, Rueda-Ramírez et al. (2022a) thoroughly dis-
cusses, that in case of Lobatto nodes, the scheme deflates to the version with a diagonal
norm SBP operator presented by, e.g., Bohm (2018) in the case of zero viscosity and zero
resistivity. Flux differencing schemes with diagonal norm SBP operators are less complex,
have much less computational overhead and, thus, are much more efficient. We compare
the runtime performance of both flux differencing variants later in Section 5.5. Here, we
are primarily interested in the robustness of both schemes with regard to our numerical
tests.

Table 4.9, Table 4.10 and Table 4.11 show the EOC for the MHD vortex (4.27).

Table 4.9: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Flux Diff. Gauss DG without EBP.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 n/a n/a n/a n/a
322 n/a n/a n/a n/a
642 7.653e-02 1.063e-01 n/a n/a

1282 1.134e-02 9.819e-03 2.75 3.44
2562 2.269e-04 1.894e-04 5.64 5.70
5122 1.074e-05 6.697e-06 4.40 4.82

10242 6.976e-07 3.810e-07 3.94 4.14
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Table 4.10: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Flux Diff. Gauss DG with EBP.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.454e-00 2.103e-00 n/a n/a
322 7.465e-01 9.574e-01 0.96 1.14
642 1.838e-01 1.960e-01 2.02 2.29

1282 7.274e-02 4.393e-02 1.34 2.16
2562 1.341e-02 4.975e-03 2.44 3.14
5122 5.298e-04 1.517e-04 4.66 5.04

10242 1.274e-05 3.764e-06 5.38 5.33

Table 4.11: EOC of total pressure P of the MHD vortex problem (4.27) run by the fourth
order Flux Diff. Lobatto DG.

DOF ||P ||∞ ||P ||2 EOC∞ EOC2

162 1.177e-00 2.090e-00 n/a n/a
322 7.397e-01 1.165e-00 0.67 0.84
642 1.862e-01 2.006e-01 1.99 2.54

1282 5.493e-02 3.310e-02 1.76 2.60
2562 7.675e-03 2.945e-03 2.84 3.49
5122 3.793e-04 1.256e-04 4.34 4.55

10242 2.606e-05 7.463e-06 3.86 4.07

In Figure 4.12 we plot the minimum and maximum entropy production rates (4.81) of
the three investigate schemes. While Flux Diff. Gauss (without EBP) and Flux Diff.
Lobatto crash early on, t ≈ 3.1 and t ≈ 3.7 respectively, the Flux Diff. Gauss with EBP
is robust enough to “survive” the critical phase at t ≈ 3.7, visible by a minimum peak in
the entropy production rate, and is even able to run till final simulation time T = 10. So
far, we can report that besides the Minmod FV scheme, only the genuinely entropy stable
Flux Diff. Gauss DG with EBP is capable to complete our test setup without crashing.
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Figure 4.12: Evolution of the entropy production rates for the weakly magnetized MHD-KHI
setup (4.28) and with the Flux Differencing DG schemes.

4.7 Convex Blending Scheme

One of the core contributions of this thesis is to augment a high order DG method with
sub-element shock capturing capabilities, which allows the robust simulation of highly su-
personic turbulent flows featuring strong shocks, as e.g. in astrophysics, without changing
the data dependency footprint. Instead of flagging a troubled element and completely
switching from the high order DG scheme to the subcell FV scheme, we aim to smoothly
transition between both schemes independently for each element. Our aim is to keep
the underlying data structures simple by maintaining the solution approximation space
and to confine the shock capturing to an element local technique instead of changing the
global mesh topology.

In the following, we briefly present the building blocks of our proposed convex blending
scheme, which is also documented in a peer-reviewed paper in Markert et al. (2022).
Again, the basic idea is to combine the robustness of FV and the accuracy of DG via
convex blending in the vicinity of discontinuous flow features. In Markert et al. (2021)
this scheme is also coined single-level blending scheme.
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4.7.1 Building Blocks

The computational domain Ω is divided into Q non-overlapping blocks and each block
holds N3 mean values. From the perspective of the FV method, the block is divided into
N3 regular subcells of size ∆x⃗q

N
defining the uniform grid (4.15) with midpoints µ⃗⃗i and

corners µ⃗⃗i± 1
2

in the reference space I3 = [−1
2 ,

1
2 ]3. Now, we overlay an N th order DG

element with N3 nodal values over the block of N3 mean values and get a new scheme
that is a hybrid between FV and DG. An illustration of this concept for a one-dimensional
fourth order DG element and four mean values (N = 4) is shown in Fig. 4.13.

0 χ

u(χ)

− 1
2 − 1

4
0 1

4
1
2

µ1 µ2 µ3 µ4

ξ1 ξ2 ξ3 ξ4

1st FV cell 2nd FV cell 3rd FV cell 4th FV cell

DG element

u1

u2

u3

u4
ũ1

ũ2

ũ3

ũ4

ũ−

ũ+

step function u(χ)

polynomial ũ(χ)

Figure 4.13: 1D schematic of four (N = 4) mean values ui and their reconstructed nodal
values (polynomial coefficients) ũi constituting a polynomial of degree 3 spanning over the

whole DG element.

Projection & Reconstruction

In order to make FV and DG compatible we construct projection and reconstruction
operators transforming between N3

µ mean values u⃗i and N3 nodal values ũ⃗i. We consider
a polynomial ũ(χ), χ ∈ I, of degree N − 1 in one dimension and want to project the
polynomial to Nµ mean values ui on Nµ regular subcells. We define the projection matrix
operator P (N→Nµ) ∈ RNµ×N component-wise via the mean values of the polynomial in the
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intervals of subcell midpoints µi. The ansatz thus is

ui = Nµ

∫ µ
i+ 1

2

µ
i− 1

2

ũ(χ) dχ =
N∑

j=1
ũj Nµ

∫ µ
i+ 1

2

µ
i− 1

2

ℓj(χ) dχ
︸ ︷︷ ︸

:= Pij

, (4.95)

The integration of the Lagrange polynomial in (4.95) is done exactly with an appropriate
quadrature rule.

Remark. Summing the projection operator P (N→Nµ) along each column gives

Nµ∑
i=1

Pij = Nµ ωj. (4.96)

Proof.

Nµ∑
i=1

Pij = Nµ

Nµ∑
i=1

∫ µ
i+ 1

2

µ
i− 1

2

ℓj(χ) dχ = Nµ

∫ µ
Nµ+ 1

2

µ1− 1
2

ℓj(χ) dξ = Nµ

∫ 1
2

− 1
2

ℓj(χ) dχ = Nµ ωj. (4.97)

In practice, we assign the DG polynomial and the FV grid equal amount of DOF, i.e.
N = Nµ. In this case, the projection matrix P (N → N) becomes quadratic. The operator
is non-singular by construction and we simply write P from here on. Moreover, another
side benefit is that the inverse R := P−1 reconstructs N nodal values from given N mean
values. For data blocks in 3D we compute

uijk =
N∑

c=1
Pkc

N∑
b=1

Pjb

N∑
a=1

Pia uabc := P
[abc]
ijk ũ[abc] and

ũijk =
N∑

c=1
Rkc

N∑
b=1

Rjb

N∑
a=1

Ria ũabc := R
[abc]
ijk u[abc], (4.98)

where we introduced a variant of the Einstein notation for brevity. That is, indices
enclosed in brackets are summed over.

Remark. The weighted sum of the reconstruction operator R along each column gives

N∑
i=1

ωi Rij = 1
N
. (4.99)
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Proof. This property can be shown more elegantly in operator notation. Using property
(4.96) and with 1⃗N = (1, . . . , 1)T ∈ RN being the vector of ones and ω⃗ = (ω1, . . . , ωN)T

being the vector of quadrature weights we write

1⃗ T P = N ω⃗ T

1⃗ T P P−1 = N ω⃗TP−1 = N ω⃗ TR

1
N

1⃗ T = ω⃗ TR.

It is important to note that depending on the block data the reconstruction (4.98) can give
a highly oscillatory polynomial with nonphysical node values such as negative densities
or negative pressures. Thus, all reconstructed node values are checked for their validity
and if a violation is detected, the DG solution is discarded and 100% of the FV solution
is evolved to the next time level.

Convex Blending

We aim to blend the RHS solution of a LOW and HIGH order scheme with a continuous
blending factor α ∈ [0, 1] in a convex manner:

u̇q = (1 − αq) u̇LOW
q + αq u̇

HIGH
q .

Note that we do not blend the solutions, but directly the discretizations themselves,
i.e. the RHS, which we denote by u̇q. If both schemes operate with different data
representations, appropriate transformations ensure compatibility during the blending
process. In our case we use the projection operator P (N→N), introduced in the previous
paragraph, in order to transfer the nodal output of the DG operator to subcell mean
values. The input for the DG scheme on the other hand, i.e. the nodal coefficients
ũq, are reconstructed from the given mean values uq. The specific convex blend of our
discretizations reads

u̇q,ijk = (1 − αq) u̇FV
q,ijk + αq P

[abc]
ijk

˙̃uDG
q,[abc]. (4.100)

We call αq the volume blending factor, which can be chosen to be unique for each element.
However, we have to carefully ensure the conservation property of the blending scheme
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by finding a common surface flux

(f ∗
1)q± 1

2 ,ij = (1 − αq± 1
2
) (f ∗FV

1 )q± 1
2 ,ij + αq± 1

2
P

[ab]
ij (f̃ ∗DG

1 )q± 1
2 ,[ab]. (4.101)

We call αq± 1
2

the surface blending factor, which is shared between neighboring elements
Ωq and Ωq+1. The outermost fluxes in (4.18) are replaced with expression (4.101):

(f ∗
1)q,1jk → (f ∗

1)q− 1
2 ,jk and (f ∗

1)q,Njk → (f ∗
1)q+ 1

2 ,jk.

Likewise, we replace the surface flux in (4.62) with the transformed flux (4.101):

(f̃ ∗
1 )q± 1

2 ,ij → R
[ab]
ij (f ∗

1)q± 1
2 ,[ab].

The surface fluxes in y- and z-direction are treated analogously.

Remark. It is easy to see that with αq = 0 and αq± 1
2

= 0 for all elements, the pure subcell
FV discretization is recovered and with αq = 1 and αq± 1

2
= 1 for all elements the blending

scheme recovers the underlying pure high order DG method.

Proposition. Given arbitrary blending factors αq ∈ R for each element Ωq the blending
scheme (4.100) is conservative. That is, we discretely integrate the blended discretization
over all elements Ωq with the total number Q and get

Q∑
q

|Ωq|
N3

N∑
ijk

u̇q,ijk = 0. (4.102)

The proof is given in Markert et al. (2021).

Calculation of the Blending Factor α

The surface blending factors αq± 1
2

are estimated from the relative differences in the jumps
of the element mean values uq,ijk and the reconstructed polynomial ũq,ijk at element
interfaces Ωq± 1

2
. We transform the interpolated nodal interface values to mean values

beforehand:
κDG

q± 1
2 ,jk = P [bc]

jk κ̃q± 1
2 ,[bc],
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where κ is a freely chosen indicator variable, such as density or pressure. Additionally,
we introduce the element interface jumps

[[·]]q± 1
2 ,jk = (·)−

q± 1
2 ,jk

− (·)+
q± 1

2 ,jk
(4.103)

illustrated in Figure 4.14. The blending factor in x-direction then reads

αq± 1
2 ,jk = 1 − T

([[
κFV

]]
q± 1

2 ,jk
,
[[
κDG

]]
q± 1

2 ,jk

)
(4.104)

with the transfer function

T
(
(·)FV, (·)DG

)
=


0

τA

∣∣∣ (·)FV − (·)DG
∣∣∣− τS

∣∣∣ (·)FV
∣∣∣

max
( ∣∣∣ (·)FV

∣∣∣, 1 )


1

(4.105)

mapping the two input arguments (·)FV, (·)DG ∈ R to the unit interval [0, 1] as is indicated
by the notation ⌈0 (·) ⌉1 trimming the input (·) for values below 0 and above 1. The
amplification parameter, τA := 20, and the shifting parameter, τS := 1.0, are fixed for all
numerical results shown in this work. Moreover, we choose the thermal pressure (3.31)
as the indicator variable, which we justified in Section 3.5 about shocks in astrophysical
settings.

For the common surface blending factor we pick the minimum result along the interface:

αq± 1
2

=
N

min
ij=1

αq± 1
2 ,jk. (4.106)

For the volume blending factor αq we calculate the averages of the surface blending factors
in each direction, for example in x-dimension

αx
q = 1

2
(
αx

q− 1
2

+ αx
q+ 1

2

)
,

and determine the minimum among all directions

αq = min
{
αx

q , α
y
q , α

z
q

}
. (4.107)

The idea of the proposed algorithm is to have a mechanism, which is designed such that
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Figure 4.14: 1D schematic of two neighboring elements q and q + 1 each with four (N = 4)
mean values of the indicator variable κi and their reconstructed polynomial coefficients κ̃i.

The relative difference of the jumps at an element interface is considered to be a measure of
the smoothness of the solution at hand.

for well resolved flows the solver yields the full DG solution and gradually shifts to the FV
solution in case of discontinuities or strong under-resolution. Additionally, the blending
factor is set to zero if the reconstructed polynomial coefficients yield unbound values,
such as negative densities or negative pressures. The result is then the 100% second order
slope limited FV solution in elements where the reconstruction of a DG polynomial failed.
Hence, in a sense, the proposed method with convex blending of a low and high order
operator guarantees that the discretization cannot be “worse” than the second order FV
method.

In fact, the idea to look at DG interface jumps is not new, e.g. Krivodonova et al. (2004);
Chandrashekar et al. (2016), and is based on the fact that for smooth regions high or-
der DG solutions show super-convergent approximation at the outflow boundaries of the
elements (Flaherty et al. 2002). Since the (super-)convergence at boundaries is very sen-
sitive to any disturbances, one can deduce that the DG element contains a discontinuous
solution whenever the polynomial is “troubled”.

120



4.7. Convex Blending Scheme

4.7.2 CFL Condition

The timestep restriction is computed analogously to the CLF condition for the FV scheme,
which we already detailed in Section 4.5.2. The only difference is the CFL constant being
the same as for the DG scheme, i.e. CFL = 0.4.

4.7.3 Experimental Order of Convergence

The experimental order of convergence is computed analogously to the FV scheme on
mean values, which we already detailed in Section 4.5.3. It is important, however, that
one has to compute the mean values of the reference solution with high accuracy as they
should formally be the exact mean values of the reference solution. Hence, we evaluate
the reference solution on quadrature nodes of the same order or higher as in (4.63) and
then project to mean values.

Corollary. Given all αq± 1
2

= 1 and αq = 1, the blending scheme (4.100) is equivalent to
the high order DG scheme.

Proof. Since time integration in explicit Runge Kutta methods is a linear superposition
of intermediate states at different time levels, the linear projection and reconstruction
operations cancel each other. This statement is easily shown with the Euler step (4.10)

uijk(t1) = uijk(t0) + ∆t P [abc]
ijk

˙̃uDG
q,[abc](t0).

and directly transfers to all RK schemes like, for example, the explicit SSP-RK(4,3)
method (4.12) or LS-RK(5,4). Application of the reconstruction operator (4.98) from left
yields

R
[abc]
ijk u[abc](t1) = R

[abc]
ijk u[abc](t0) + ∆t R[def ]

ijk P
[abc]
[def ]

˙̃uDG
q,[abc](t0)

ũijk(t1) = ũijk(t0) + ∆t ˙̃uDG
q,[ijk](t0).

The results in EOC for our convex blending scheme are documented and discussed in
Section 6.3.1.
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4.7.4 Element Entropy Production Rate

A straightforward calculation of the element entropy production rate ∆̇S
CB
q for the convex

blending scheme (4.100) is not available. While the entropy production of the FV scheme is
individually measured for each subcell, the entropy production of the DG scheme is defined
on the whole element. Moreover, the simultaneous calculation of the entropy production
with a common entropy vector w is not compatible with regards to the solution space. A
naïve application of the entropy vector w in mean value space on the RHS of the convex
blending scheme leads to dubious results due to the highly nonlinear dependency of the
entropy variables on the solution.

Alternatively, one might be tempted to measure the entropy production rates of both
schemes separately and convex blend (CB) the results in order to get an approximation
of the “real” entropy production rate:

∆̇S
CB
q ≈ (1 − αq) ∆̇S

FV
q + αq ∆̇S

DG
q , (4.108)

where ∆̇S
FV
q is the sum of the individual cell entropy production rates (4.30), i.e.

∆̇S
FV
q = 1

N3

N∑
ijk=1

∆̇S
FV
q,ijk. (4.109)

With the approximation in (4.108) we experimented with an entropy correction scheme
based on blending with the entropy dissipative Minmod FV scheme. A brief discussion
and some results can be found in Appendix A.1.

4.7.5 Satisfying the Element Entropy Inequality

We conjecture, when both schemes are entropy stable, i.e. ∆̇S
FV
q ≤ 0 and ∆̇S

DG
q ≤ 0, the

convex blend of both RHS is also entropy stable: ∆̇S
CB
q ≤ 0. Hennemann et al. (2021)

showed entropy stability for a variant of convex blending schemes, where the solution
space for FV is equal to the Lobatto DG scheme. The proof for entropy stability for their
blending operation is straightforward. However, a thorough investigation of the exact
influence of our proposed convex blending operation (4.100) on the entropy balance is not
available yet.

Nevertheless, we test the robustness of our blending scheme on the weakly magnetized
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4.7. Convex Blending Scheme

MHD-KHI setup (4.28) and with different combinations of Gauss DG methods. The
underlying FV scheme is always the robust, second order Minmod FV scheme. Especially,
we test if the indicator, discussed in Section 4.7.1, is sensitive enough to stabilize the DG
scheme in critical moments, but also does not excessively trigger the FV scheme smearing
out the solution.

In Figure 4.15 we plot the minimum and maximum entropy production rates of the differ-
ent variants of Gauss DG. Note, we plotted the element entropy production rate ∆̇S

DG
q ,

not the approximation (4.108) of the blended rates ∆̇S
CB
q . Considering the results in

Figure 4.15, we first observe that all schemes ran till final simulation time T = 10. Fur-
thermore, the entropy production rate seems to indicate when a scheme is under a lot of
“stress”. Clearly, the spikes in entropy production of the Standard Gauss DG scheme are
much more pronounced and the scheme is not capable to limit the entropy production to
negative values. The other schemes in this plot, on the other hand, run much “smoother”
where the EBP has a stronger influence in reducing the noise of the entropy produc-
tion than the entropy correction procedure. Conclusively, we can say that the blending
mechanism is capable to stabilize all investigated Gauss DG variants.
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Figure 4.15: Evolution of the entropy production rates for the weakly magnetized MHD-KHI
setup (4.28) and with the convex blended Gauss DG schemes.

We claimed that the entropy production rate can be interpreted as a kind of “stress”
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4.7. Convex Blending Scheme

indicator for a numerical scheme. To elucidate this insight, in Figure 4.16 we put together
the results of Gauss DG and blended Gauss DG each with entropy correction and EBP,
as well as the Flux Differencing Gauss DG with EBP. Clearly, the first scheme is under
a lot strain, observable by the strong spikes, and eventually breaks at t ≈ 5.3. The latter
two show a similar pattern in their entropy production evolution and are robust enough
to successfully finish the simulation.
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Figure 4.16: Evolution of the minimum entropy production rates for different DG variants.
A noisy course with lots of high spikes indicates a troubled numerical scheme as is visible by

the blue curve. The scheme eventually crashes at t ≈ 5.3.

In Figure 4.17 we show a montage of density contour plots at t = 7.5 for four Gauss DG
variants: Blend (Standard) Gauss DG and Blend Gauss DG with entropy correction (top
row), Blend Gauss DG with entropy correction and EBP and the Flux Differencing Gauss
DG with EBP (bottom row). We want to highlight two major insights coming from this
plot. The first observation we make is that the solution for the Blend Gauss DG without
any special entropy treatment is robust and yields acceptable results very similar to the
other Gauss DG variants. The second observation concerns the solution with the Blend
Gauss DG with EBP and entropy correction (bottom left). Clearly, the density solution
is more dissipative than the rest.

To investigate the reason behind this observation, we additionally compare in Figure 4.18
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4.7. Convex Blending Scheme

the element-wise blending factors at t = 7.5 for the two entropy corrected Blend Gauss
DG variants. The key difference between both schemes is the EBP, which is active only
in the right plot. EBP clearly has an influence on the sensitivity of the shock indicator.
Our explanation is as follows. Due to the highly nonlinear nature of the entropy variables,
the resulting entropy projected polynomial tends to oscillates more, especially when the
original solution is already under-resolved.

Figure 4.19 illustrates this phenomenon for a rather harmless density profile. While the
reconstructed polynomial in conservative variable space (we call it standard projection in
this context) is an acceptable approximation of the exact solution, the entropy projected
polynomial deviates significantly producing pronounced jumps at the element boundaries.
Not only do higher jumps cause an elevated blending, they can also enhance the stability
of the DG scheme itself. We know that the numerical dissipation in DG is introduced by
the jumps in the surface fluxes. This fact might also explain, why the Flux Differencing
Gauss DG with EBP is so robust.
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4.7. Convex Blending Scheme

Figure 4.17: Density contours of four Gauss DG variants at time t = 7.5. Blend (Standard)
Gauss DG and Blend Gauss DG with entropy correction (top row), Blend Gauss DG with
entropy correction and EBP and the Flux Differencing Gauss DG with EBP (bottom row).

The solution in the bottom left plot is a bit more dissipative than the rest. An explanation for
this observation is given in the text.
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4.7. Convex Blending Scheme

Figure 4.18: Blending factors of two DG schemes at later time t = 7.5. Blend Gauss DG
with entropy correction (left) and Blend Gauss DG with entropy correction and EBP (right).

Clearly, EBP increases the blending activity causing more smearing of the solution.
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Figure 4.19: Example of the density profile by the standard projection and the entropy
projection. The vertical, gray, dashed lines depict the four Gauss quadrature points (N = 4)

within the reference element.

The results for the Lobatto DG variants are not shown, since all Lobatto DG schemes
crashed at some point during the simulation due to negative densities or negative pres-
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sures, even with provable entropy stability via Entropy Correction or Flux Differencing
and even with the assistance of the blending mechanism. Of course, by tuning the indi-
cator parameters, we can enforce a stable simulation for Lobatto DG, but at the expense
of much diffuser results. We consider all Lobatto DG variants as not sufficiently robust
and not practicable for our envisaged applications.

4.7.6 Enforcing Density and Pressure Positivity

In the conserved variables formulation (3.29), the thermal pressure (3.31) is derived from
the total energy by subtracting the kinetic and magnetic energy terms. Hence, at strong
shocks or under near-vacuum conditions the scheme can produce non-physical states. To
alleviate this problem, we lift the troubled cells into positivity such that the permissibility
condition

Π =
{
permissible states

}
=
{
∀u

∣∣∣ ρ > 0 ∧ p(u) > 0
}
. (4.110)

is fulfilled for all cells in a block Ωq. First, we calculate the block average

uq = 1
N3

N∑
ijk=1

uq,ijk (4.111)

and then determine a ’squeezing’ parameter β ∈ [0, 1] which enforces physical states:

upermissible
q,ijk = (1 − β)uq + β uq,ijk ∈ Π. (4.112)

The algorithm to find a suitable β is straightforward. One starts with β := 1 and decre-
ments in steps of ∆β := 0.1 till the permissibility condition is fulfilled. The advantage of
this algorithm lies in its simplicity and it is conservative by construction. However, it fails
when the block average is not part of the permissible set after a time step respectively
Runge-Kutta stage. In this case the code crashes and the simulation stops.

4.8 Final Remarks

In this chapter, we introduced the numerical scheme we are going to apply for our sim-
ulations presented in this thesis. Firstly, we introduced the basic building blocks of FV
schemes, followed by describing the numerical ingredients for high order, nodal collocation
DG schemes. Special focus was put on satisfying the entropy condition via two popular
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approaches, namely Entropy Correction and Flux Differencing (via two-point entropy con-
servative flux functions in the volume terms), which we compared with respect to their
robustness in simulating a weakly magnetized KHI setup. The setup starts with subsonic
and smooth initial conditions, but gradually develops increasingly complex flow structures
with few local transonic, highly compressive flow regions and stagnation points.

Our goal was to trigger a number of numerical instabilities, such as transonic shocklets and
under-resolution (aliasing), purposely stressing our chosen DG variants. We investigated
the Standard DG variants with Gauss and Lobatto quadrature rules, as well as their
entropy stabilization with the two afforestation approaches. All DG variants were fixed
to fourth order in spatial accuracy, our targeted order, and not “repaired” by any limiters
such as lifting states a-posteriori into positivity. We observed that all DG variants with
Lobatto quadrature rule are unacceptably fragile for this kind of simulations. DG with
Gauss quadrature rules are noticeably more robust, but also need careful treatment to
stabilize the simulation of compressive turbulent flows.

The entropy stable Flux Differencing DG with Gauss quadrature and proper EBP is the
only unlimited DG variant capable to successfully finish our test simulation, which is
remarkable! The Entropy Correction Gauss DG with EBP is also provably entropy stable
and significantly increased the robustness in our tests. But it eventually crashed before
reaching the final simulation time. One possible explanation might be the unboundedness
of the algebraic correction terms adding stiff source terms to the RHS under certain flow
condition. This leads to a very stiff system, whose eigenvalues lie beyond the stability
region of our applied explicit Runge-Kutta schemes.

In a next step, we constructed a versatile blending scheme combining the robustness
of low order FV schemes with the accuracy of higher order DG methods. This novel
scheme is specifically designed for very challenging astrophysical simulations containing
supersonic turbulence and very strong shocks and aims to integrate well within the multi-
physics simulation framework FLASH. We also tested the robustness of our new limited
DG variant with the KHI test setup and concluded that with minimal amount of focused
blending any DG method with Gauss quadrature rule can be stabilized without intolerably
smearing out small scale structures in the solution.

Of course, we further investigated all Gauss DG variants with other, more challenging
tests such as the Sedov blast (see Section 6.3.3). We observed that the entropy consistent
projection to the boundaries is ill-conditioned near shocks and under near-vacuum con-
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ditions leading to severe numerical artifacts and loss of positivity in density and pressure
averaged over the element. A visual explanation is given in Figure 4.19. Eventually, we
conclude that the current state-of-the-art approaches in enforcing provable entropy con-
sistency in DG and, consequently, in our blending scheme do more harm than good for
our envisaged astrophysics simulation. Consequently, we rely on the Standard Gauss DG
as our baseline DG for our simulations.

In Chapter 6 and Chapter 7 we show that our blending based limiter is capable to reli-
ably stabilize the Standard DG with Gauss nodes both in strong shock conditions and
for transsonic turbulent flows without smearing out the solution. Nevertheless, we also
present in all honesty two simulations in Chapter 7, which push even our blending scheme
to its limits, degrading the scheme basically to second order FV everywhere in the com-
putational domain.

In the final remarks of the previous chapter (see Section 3.9) we gave a specification list a
“perfect” scheme would satisfy. In Chapter 6 we show that we check the following bullet
points from the list:

• High (order) accuracy in smooth, well-resolved flow regions.

• Robust and non-oscillatory handling of (very) strong shocks.

• Stable computation of under-resolved flow conditions, especially under near-vacuum
conditions.

• Conservation of primary quantities (mass, linear momentum, energy).

• Handling of divergence errors in the magnetic field.

• Conservative and positivity-preserving advection of multi-species flows. Some abun-
dances can be zero.

• In relation to a reference solver in FLASH: performant and scalable implementation
allowing simulations with large dynamical ranges in space and time.

A short note on the multi-species advection is in order. We adopt the mass tracer approach
given by (3.54) in Section 3.6, which we straightforwardly apply on the blended mass
flux in (4.100). This method preserves the summed total density in each cell and never
produces negative abundances by construction. Albeit very robust, it is, however, not
high order accurate.
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Chapter 5

Nemo - a modular fluid dynamics
code for prototyping

5.1 Introduction

nemo is a lightweight and modular open source simulation framework for computational
fluid application. The code is written primarily in modern Fortran and aims to be acces-
sible and encourages to tinker and add new features. nemo implements robust, second
order Finite Volume schemes and accurate, high order Discontinuous Galerkin Spectral
Element methods for compressible Euler equations and ideal magneto-hydrodynamics on
Cartesian meshes in 2D and 3D. Furthermore, the code offers a selection of different
shock capturing methods for DG and the user can choose from a plethora of different
Runge-Kutta schemes for explicit time integration.

For successful compilation a Fortran compiler, which implements the standard ISO/IEC
1539-1:2010 (informally known as Fortran 2008) or newer is necessary. A Python inter-
preter (version 2 or 3) and the venerable Make utility are useful for comfortably managing
the build process.

The complete fluid simulation framework is open source and freely accessible under https:
//github.com/jmark/nemo. As a matter of fact, nemo served as the workhorse for
producing all numerical results in Markert et al. (2021).

Note, that the code has as similar name to NEMO Ocean (Madec et al. 2017), a modeling
framework for research and forecasting in ocean and climate sciences, which is purely
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coincidental.

Going beyond serial prototyping codes, nemo utilizes two parallelization strategies, namely
OpenMP and MPI, which can run individually or cooperatively depending on the scaling
needs at hand. Furthermore, the framework has adaptive mesh refinement capabilities by
linking to the open source package p4est, a highly efficient and mature octree library for
unstructured, dynamic meshes of quadrilaterals or hexahedras developed by Burstedde
et al. (2011).

nemo was written from scratch by the thesis’ author as part of the research efforts in inves-
tigating and evaluating various stabilization strategies and shock capturing approaches
for high order DG, especially with regards to the envisaged astrophysics applications.
During the process of devising a robust shock capturing method for DG it was desired to
have a flexible, easily modifiable, yet scalable and performant development framework for
small to medium sized 2D and 3D simulations.

Checkpoints in nemo are written as HDF5 files, which are 100% compatible to the check-
point format used by the multi-physics framework FLASH, which enables direct transfer
of simulation data across code boundaries. Moreover, the access to the huge collection of
post-processing tools, established in innumerable man-years of research work, consider-
ably eases the collaboration with the astrophysics community.

nemo supports a number of strategies to organize the solution data, be it blocks of mean
values for FV, high order elements of node values for DG or hybrids of the two. This
flexibility allowed to gradually move towards a suitable scheme featuring the robustness
necessary for the targeted astrophysics applications. Mirroring the block-based datastruc-
tures in FLASH streamlined the transfer of the “hardened” DG scheme from nemo to
the versatile but heavyweight multi-physics framework.

The code is structured in swappable modules each adhering to the identical internal inter-
face guidelines. Adding new features or applying code modifications are straightforward
to do by simply “dropping” new Fortran source files somewhere in the source tree. Com-
pilation and linking is managed by lightweight Python scripts and is very fast. Even a
full, parallel build on a typical multi-core workstation or a modern laptop is a matter of
a few seconds. The build system is smart enough to only rebuild changed modules (and
dependencies) allowing for a tight and smooth edit-compile-run development cycle.

For the rest of this chapter, we present our hardware and software stack we employed
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for our simulations, discuss the most important aspects entailing a typical computational
fluid dynamics code, namely adaptive mesh refinement and parallel performance on com-
pute nodes respectively scalability in distributed computing environments and show some
results.

5.2 Hardware & Compiler Stack

For development and our simulations, we had access to a performant multi-core worksta-
tion and two HPC clusters.

The workstation consists of one hexa-core CPU (Intel® Core™ model i7-8700 (3.20 GHz)
with optional hyperthreading (12 threads). The workstation served as the primary de-
velopment environment, data analytics and plotting platform. The runtime performance
results on a single core shown in Table 5.1 have been retrieved on this machine. Gfortran
(GCC version 11.1.0) with OpenMPI (version 4.1.1-3) was the standard Fortran compiler
on the workstation.

The scaling tests and simulations were performed on the Cologne High Efficiency Operat-
ing Platform for Sciences (CHEOPS) cluster and on the group cluster ODIN, both hosted
by the Regionales Rechenzentrum Köln (RRZK).

CHEOPS consists of over 800 compute nodes interconnected via Infiniband Quadruple
Data Rate (QDR) network with a brutto bandwidth of 40 Gb/s according to the operator’s
specifications. We accessed a partition, which unites four compute nodes each equipped
with two Intel® Xeon™ processors model E5-2680 v3 (2.5 GHz) á 12 cores.

The ODIN cluster has over 500 compute nodes connected via an Infiniband network. The
partition, which we used for our runs, consists of 54 nodes each equipped with two Intel®

Xeon™ processors model E5-2670 (2.6 GHz) á 8 cores.

Among many other software packages, ifort (Intel® compiler suite 18.0) with Intel® MPI
(version 18.0) were installed on both clusters and it has proven to be the most reliable
compiler stack with regards to avoiding crashes due to non self-inflicted segmentation
faults or sudden interruptions of the MPI data exchange.

Remark. The same hardware and compiler details apply to the FLASH code results
discussed in Chapter 6 and in Chapter 7.
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5.3 Adaptive Mesh Refinement

In CFD, adaptive mesh refinement (AMR) is a popular and very successful method of
dynamically adapting the resolution, and thus the accuracy, of flows within certain sensi-
tive or turbulent regions. Uniform Cartesian grids are limited to a fixed precision and for
3D simulation a doubling in grid resolution would entail an eight-fold increase in memory
consumption. From Section 3.7 and Section 3.8 we learned that there a problems in as-
trophysics which require a level of resolution simply not feasible with uniform grids and
with today’s hardware. Fortunately, such simulations usually do not require a uniform
spatial precision and can profit from substantial speed gains and data storage savings if
only specific areas of the domain are fully refined.

Refinement & Coarsening

The design of “good” refinement rules on where to refine the solution for nonlinear hyper-
bolic systems is rather a form of art then hard science and is closely related to the issue of
shock capturing methods for high order methods. In this thesis, we rely on two methods.
The first approach is a solution-independent, “static” selection rule in cases where flow
regions of specific interest are already known beforehand. This method is very reliable
and gives predictable runtime and memory consumption estimates. It is, of course, not
generalizable to a broad range of problems. A plausible example for such a use case is
the young supernova remnant simulation described in detail in Section 7.2. The second
approach is to devise an estimator, which tries to assess if the solution is still properly
resolved by the given level of refinement and adjusts the grid resolution accordingly. A
robust and time-proven AMR indicator was invented by Löhner (1987). The estimator
was originally developed for finite element applications and has the advantage that it is
local. It is dimensionless, bounded between [0, 1], and can be applied with complete gen-
erality to FV and DG discretizations in multiple dimensions and on any arbitrary shaped
elements. The general, multi-dimensional form for element Ωq and variable u is given by

Lq(u) =


∑3

k,l=1

(∫
Ωq

(∂xl
∂xk

u(x⃗)) d|Ωq|
)2

∑3
k,l=1

(∫
Ωq
∂xl

(|∂xk
u(x⃗)| + ϵ ∂xk

|u(x⃗)|) d|Ωq|
)2


1
2

. (5.1)

The terms following ϵ function as a “noise” filter in order not to refine “wiggles” or
“ripples” in the solution, which may appear due to loss of monotonicity. This is an
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important feature, especially for high order methods. It is easy to see that with our
tensor product ansatz (4.48) for DG and collocation of interpolation and quadrature, a
construction of the estimator (5.1) for high order DG elements is straightforward. For FV
schemes, a simple yet robust second order Finite Difference method is usually the means
of choice. For example, given three discrete mean values ui−1, ui, ui+1, the specific 1D
version of the estimator reads

Li = |ui+1 − 2ui − ui−1|
|ui+1 − ui| + |ui − ui−1| + ϵ (|ui+1| + 2 |ui| + |ui−1|)

, (5.2)

which basically is a modified second derivative normalized by the average of the gradient
over one FV cell. Within a block Ωq of mean values the maximum value of Li over all
cells defines Lq. Since our convex blending scheme (4.100) is also constructed on mean
values, we prefer the second order Finite Difference ansatz over the construction of a high
order DG version. Moreover, the estimator on mean values (5.2) is the default AMR
refinement rule in FLASH and it is usually applied on the density and pressure variables.
Löhner (1987) suggests to refine, when Lq(u) > 0.3 and to coarsen when Lq(u) < 0.1.
The constant ϵ is usually chosen to be 0.2. In our tests, the proposed parameters work
just fine.

A detailed account on refinement and coarsening algorithms as well as surface flux ex-
change based on blocks of mean values at different resolution levels, which also maintain
mass and energy conservation and preserve high order of accuracy, is given in Markert
et al. (2021).

Octree-based Adaptive Meshes with p4est

nemo delegates the construction and management of the dynamic mesh to p4est, which
organizes the elements at different refinement levels into a logical, distributed octree.
p4est is designed to work in parallel and scales to hundreds of thousands, even millions,
of processor cores (Burstedde et al. 2011; Isaac et al. 2015). The library is actively main-
tained, supports dynamic load balancing (partitioning), is used already in many research
projects, e.g., Burstedde et al. (2014); Bangerth et al. (2011); Isaac and Knepley, and
extensions to general polyhedras exists (Burstedde and Holke 2016, 2017; Holke et al.
2021). For memory efficiency and compact data structuring, only the leaf nodes (ele-
ments containing the solution data) are strung together by a space filling curve in Morton
(1966) ordering, also known as Z-curve and linearly stored in memory. Morton ordering
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compactly maps multidimensional data to one dimension while preserving locality of the
data, i.e. neighboring elements are still positioned closely together. A 2D mesh with
different refinement levels and its overlayed Z-curve is shown in Figure 5.1.

Figure 5.1: Morton ordering, also known as Z-curve, of a 2D mesh with elements on different
refinement levels.

Since p4est is written in C, nemo must interface with the library via the ISO_C_BINDING
feature introduced in ISO/IEC 1539-1:2004 (Fortran 2003). p4est maintains its own pri-
vate data structures and information about the elements such as location, refinement level
and connectivity to neighboring elements must be queried through its public API. The
API also readily provides routines for data exchange at ghost layers in case of distributed
computing as well as balancing of computational load among MPI processes. nemo main-
tains its own copy of the connectivity data for efficiency and only retrieves an update after
refinements, coarsenings or repartitionings of the mesh. The solution data is not controlled
by p4est and selective access necessary for MPI data exchange is granted by passing C-
compatible pointers to separate pre-allocated data buffers. The interface between nemo
and p4est is developed and maintained by nemo’s authors as an independent package
and can be freely accessed under https://github.com/jmark/p4wrap.
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5.4 Hybrid Parallelization

Parallel computing is a type of computation in which many calculations or tasks are
carried out simultaneously. Large problems, as for example is often the case in CFD,
can often be divided into smaller ones, which can then be solved in parallel. Paralleliza-
tion of computing tasks has long been employed in high-performance computing, but has
gained broader interest due to the physical constraints preventing frequency scaling, i.e.
making processors run “faster”. Leveraging the performance benefits of multi-core proces-
sors and inter-connected clusters of computers, nemo supports two parallel programming
standards, OpenMP and MPI.

OpenMP stands for “Open Multi-Processing” and is an API that supports multi-platform,
shared-memory, multiprocessing programming in C, C++, and Fortran. The open source
specification is devised by the nonprofit OpenMP Architecture Review Board and devel-
oped and distributed as optional extension by all major compiler vendors. The specifica-
tion uses a portable, scalable model that gives programmers a simple and flexible interface
for developing parallel applications for computing platforms ranging from standard desk-
top computers to supercomputers. OpenMP-aware compilers offer convenient access to
multithreading, a method of parallelization whereby a primary thread forks a specified
number of sub-threads. In computing, a thread is defined to be a series of instructions
or tasks executed consecutively. Work load is then evenly distributed among the threads
running in parallel, with the runtime environment allocating threads to different cores in
case of multi-processor hardware. Since all threads share the same hardware memory, all
threads in the same thread pool have direct and fast read/write access to shared data.

MPI stands for “Message Passing Interface” and is a portable open source message-passing
standard designed to function on distributed computing architectures, such as HPC clus-
ters. The MPI standard defines the API exposing library routines that are useful for
writing portable programs in C, C++, and Fortran sharing arbitrary data over computer
networks. Both point-to-point and collective communication are supported. In contrast
to OpenMP, MPI implementations are usually standalone shared libraries, which are dy-
namically linked into the application. MPI is not specified by any major standards body;
nevertheless, it has become a de facto standard for message-based communication among
processes that model a parallel program running on a distributed collection of network-
connected compute nodes. In computing, a process is the instance of a computer program
that is being executed. For maximum performance, each processor (or core in a multi-core
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machine) will be assigned just a single process.

An application, such as nemo, built with a hybrid model of parallel programming can
run on a computer cluster using both OpenMP and MPI, such that OpenMP is used for
parallelism within a (multi-core) node while MPI is used for parallelism between nodes.
On each node runs one MPI process, which in turn manages a pool of OpenMP threads
matching the number of available cores. Figure 5.2 sketches a distributed, intra-node
shared memory configuration on a small model cluster with four connected compute nodes
each having four cores.

node0: shared memory node1: shared memory

node2: shared memory node3: shared memory

cpu0 cpu1 cpu2 cpu3cpu3cpu2cpu1cpu0

cpu3cpu2cpu1cpu0 cpu0 cpu1 cpu2 cpu3

thr0 thr1 thr2 thr3thr0thr1thr2thr3

thr0thr1thr2thr3 thr0 thr1 thr2 thr3

MPI
ne1ne0

ne2 ne3

Figure 5.2: Example of a small cluster with four compute nodes each equipped with four
cores. In computing, it is customary to count instances starting with 0. On each node one

MPI process respective nemo instance (nei) manages four OpenMP threads (thi) each alloted
to one core. Threads within a common thread pool can exchange data via shared memory,

while data exchange between nodes is managed by the nemo instances via the MPI message
bus (dashed rectangle in the center).

In CFD, the typical MPI parallelization approach is to decompose the computational
domain into non-overlapping MPI subdomains or zones matching the number of allotted
processing cores or compute nodes (in case of hybrid parallelization). Based on the con-
nectivity to neighboring zones each process allocates a ghost layer, which is then filled
with data from other processes. The data exchange is carried out exclusively over the
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MPI message bus. An example for the zoning of the computational domain is shown in
Figure 5.3. The figure shows a 2D simulation with nemo of two supersonic jets of gas
(left plot) moving in opposite directions and getting diverted by a fictional black hole at
the center. The setup is parallelized with six zones encoded as six different colors in the
right plot. Obviously, AMR was already triggered at this stage in the simulation since
the center and the infalling gas streams are finely resolved by the quadtree. Note, that
some zones cover smaller portions of the domain, while the number of elements is almost
equal among the zones. This is due to the load balancing feature provided by p4est,
which helps to keep the computational work balanced among all processors maximizing
the utilization of the full processing capacity.

Figure 5.3: 2D simulation with nemo of two supersonic jets of gas (left plot) moving in
opposite directions and getting diverted by a fictional black hole at the center. The right plot

visualizes the mesh with different resolution levels managed by the quadtree library p4est
with six color-encoded parallel zones. In MPI jargon, a rank is the number or identifier (id) of

a MPI process. The dark blue grid lines highlight the element boundaries. Not explicitly
shown are the ghost layers clinging along the fault lines of adjacent zones.

One might expect to get an S times speedup when running a program parallelized using
OpenMP on S processors or MPI on S nodes. However, this ideal case is almost never
achieved for computations with data dependency on other computing units. In general, a
thread or process must wait until the data it depends on is computed and made accessible.
This inevitable synchronization step prevents an application to become 100% parallelized,
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which means that the theoretical upper threshold of maximum speedup is limited. We will
revisit this aspect of parallelization again in the discussion about the scaling performance
of nemo.

5.5 Runtime Performance & Scaling Behavior

Performance of a program is not a clearly defined term and can be, among many oth-
ers, refer to aspects of accuracy, robustness (or fault tolerance), throughput, latency,
and efficiency. However, these aspects also have different meanings in different contexts.
Accuracy in CFD is mostly affected by the chosen numerical method and the maximal
achievable resolution limited by hardware constraints. Robustness could either refer to
the numerical scheme, being capable of dealing with challenging flow states, e.g. shocks,
or it could refer to a MPI-parallelized program dealing with, e.g., unresponsive compute
nodes or read/write errors in storage systems. Scientific simulation codes that are robust
(or fault tolerant) will get increasing attention in the advent of exascale computing with
millions of individual computing units where the chances of a malfunctioning node during
a large scale simulation is not unlikely due to the shear size of the cluster (Dongarra et al.
2015). Throughput, in general, is a measure of how many units of information a com-
puting system can process in a given amount of time, while latency represents the time
delay it takes for messages to get to its destination across, for example, a computer net-
work. The overall performance of a computing cluster is determined by both, throughput
and latency. Raw processing throughput can be directly doubled by simply doubling the
number of computing units. Latency, on the other hand, is a consequence of signal speed
limits in the transmission medium and of the inherently serial process of marshaling the
fragmentented data packages. Applications in HPC are considered efficient when they
exploit the maximum capacity of available processing throughput by avoiding idle peri-
ods due to time delays in the data transfer as much as possible. The process of offering
more and more processing power to simulation software, which is capable to leverage the
additional resources is called scaling. Note that the influence of latency is not limited
to computer networks but, also is (on a much smaller timescale) significant for shared
memory systems. Typical round trip delays of a (local) network are measured in ∼ 100µs
(10−4 s) while the access to main memory on modern hardware is of the order ∼ 100 ns
(10−7s).

By using the example of our prototype code nemo, we introduce two performance metrics
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to gain basic insights into how our implementations of the numerical schemes, discussed
in Section 4.6, perform in relation to each other.

Throughput on a Single Core

The first performance metric, we are interested in, is the aforementioned throughput (TP),
which quantifies how “fast” a specific implementation of a numerical scheme is. Here, we
define TP to be the amount of DOF a solver is capable to process within a given time on
one computing unit, resp. core. The formula of TP reads

TP = #steps × DOF
#cores × runtime . (5.3)

We measure the TP by letting the code run till a fixed final simulation time for a fixed
amount of DOF and a fixed number of computing units (#cores) alloted for the computa-
tion. Afterwards the total runtime is recorded, whereby contributions of code initialization
and read/write operations have to be factored in. The number #steps amounts to the
number of Runge-Kutta cycles times the number of Runge-Kutta stages.

Of course, TP does not only depend on the algorithmic efficiency of the numerical scheme,
but also on the utilized hardware and the compiler stack. A brand-new processor of latest
generation with high clock speeds and specialized instruction sets combined with highly
optimizing modern compilers easily outperform older machines with slower hardware and
antiquated software. The same applies to HPC clusters regarding the specifications of
deployed compute nodes and the data transfer characteristics of the network. As long as
we obtain TP results on the same machine, with the same compiler, and preferably with
the same simulation framework, comparative studies regarding the runtime performance
of various solver implementations can be considered accountable.

We want to stress that in this work we will not present full-blown benchmark analysis of
our codes backed by solid profiling statistics and obtained under a broad range of work load
scenarios. Instead, we focus on a couple of individual runtime performance results, which
collectively reveal a trend with regards to the overall runtime costs our implementation
of the proposed convex blending scheme, introduced in Section 4.7, entails.

Table 5.1 summarizes the TP results of the six fourth order DG variants, detailed in
Section 4.6 and implemented in nemo. The numerical setup was chosen to be the weakly
magnetized MHD-KHI setup (4.28) run on a uniform grid of 2562 DOF and on a single
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core of the workstation till final simulation time T = 2.5. All simulations consumed a
total number of 1263 RK cycles times 5 stages with the LS-RK(5,4) scheme.

Table 5.1: Runtimes of the six DG variants, detailed in Section 4.6, for the 2D MHD-KHI
setup till T = 2.5 and on a uniform grid of 2562 DOF run by nemo on a single core (#core =

1) of the workstation. All simulations had a total number of iteration steps of #steps =
1263 × 5 (LS-RK(5,4)).

scheme runtime [s] TP [106 DOF/s] slowdown
Std. DG (Lobatto) 72.652 5.696 1.00
Std. DG (Gauss) 74.240 5.574 1.02
Std. DG (Gauss + EBP) 100.143 4.132 1.38
Entr. Corr. DG (Lobatto) 108.929 3.799 1.50
Entr. Corr. DG (Gauss) 111.564 3.709 1.54
Entr. Corr. DG (Gauss + EBP) 131.164 3.155 1.80
Flux Diff. DG (Lobatto) 209.307 1.977 2.88
Flux Diff. DG (Gauss) 408.687 1.012 5.63
Flux Diff. DG (Gauss + EBP) 435.082 0.951 6.00

Our baseline in Table 5.1 is also the fastest scheme, namely the Standard DG with Lo-
batto quadrature, closely followed by the Standard DG with Gauss points. The costs
of Entropy Correction amounts to a reasonable increase of up to 80% in runtime while
Flux Differencing is a couple of times more expensive than the baseline scheme. The
biggest contribution to the runtime costs for the Flux Differencing schemes are the re-
peated evaluations of the rather expensive logarithmic means in the entropy conservative
Riemann flux, especially for the Gauss variants with its tight coupling of the surface
fluxes with the inner states. The results in Table 5.1 are not far off from observations
discussed in the literature. Chan (2018) gives a breakdown in algorithmic complexity
of the Flux Differencing schemes for Lobatto and Gauss quadratures and arrives at the
conclusion that for fourth order Flux Differencing DG, Gauss is roughly twice as expen-
sive as Lobatto. Ranocha et al. (2021) presents a multitude of optimizations in order to
bring down the costs of the expensive volume flux evaluations. Of course, low hanging
fruits, such as reducing the total number of flux computations by exploiting the symme-
tries in the evaluation of the volume terms, have already been realized. Moreover, we
note that volume flux evaluations impact the runtime costs differently depending on the
specific implementation and targeted computational architecture. For example, while flux
evaluations typically dominate runtimes for serial implementations targeting CPUs at all
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approximation orders, they do not contribute significantly to runtimes at orders one to
eight for implementations on Graphics Processing Units (GPUs) as was shown by Winter-
meyer et al. (2018). This effect can be expected to become increasingly pronounced in the
future due to the perpetually widening processor - memory performance gap (Mahapatra
and Venkatrao 1999; Kadaifçiler 2017; Efnusheva et al. 2017). In Figure 5.4 we see that
in the past decades CPU/GPU processing speeds grew by 50% to 60% each year while
memory access rates only improved 9% annually. Although processing speeds reached a
plateau from 2005 onward, upcoming innovations in tightly coupled, highly performant,
multi-purpose systems-on-chip platforms, such as the ARM-based M1 chip from Apple
Inc., might rekindle the speed race against shared memory data bus on multi-socket ma-
chines in the foreseeing future. Consequently, on such computing platforms costly but
CPU-bound numerical schemes, such as the entropy stable Flux Diff. Gauss DG, might
not be at disadvantage with regards to “raw” throughput anymore.
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Figure 5.4: Sketch of the processor - memory performance gap over the years since 1980.
Dashed lines are rough extrapolation of performance gains for upcoming next generation

hardware.

Scaling on a Single Compute Node

Scalability of a parallelized program is a direct consequence of the program’s efficiency.
An efficient program can in general profit from the multiplication in speed via parallel
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data processing on multi-core machines or clusters of compute nodes. In HPC, there
are two metrics to characterize the scalability of an application, namely weak and strong
scaling. The first metric quantifies how the total execution time varies with the number
of processing units for a fixed problem size per unit. The latter is defined as how the total
runtime changes with the number of processing units for a fixed total problem size. For
our fluid simulations, we mostly want to run a simulation at a preset maximum resolution
and want to know if we can speed up the simulation by “throwing” more hardware at the
problem. Hence, we focus on the strong scaling properties of our codes.

In computing, there are so-called compute bound and memory bound problems. The
completion time for compute bound tasks is determined principally by the speed of the
processor. The complete data set for purely compute bound algorithms fits within the
registers of the CPU and do not depend on the results from external sources. However,
most real-world programs do not completely fit inside a CPU and also must share data
with other computing resources. Data must be shoveled through the memory bus, which
is slow compared to the processing speeds of modern CPUs. Instructions on CPUs with
clock speeds of multiple GHz are processed in fractions of nanoseconds (10−10s). If,
however, the memory bus is saturated, the problem becomes memory bound. The CPU
must wait for fresh data to arrive and cannot run at full capacity. Simple bound and
bottleneck analysis is theoretically founded on the roofline model (Williams et al. 2009)
and is well understood. Nowadays, hierarchies of caches (L1, L2, L3, etc.) with much
faster access rates sit between CPU and main memory greatly improving the situation.
Still, the memory bottleneck cannot be completely eradicated and will always degrade
the scalability of programs on shared memory systems.

The theoretically expected speedup S of a parallelized program for fixed problem size can
be adequately modeled with the following law introduced by Amdahl (1967). It reads

S(#cores) = 1
(1 − p) + p/#cores (5.4)

with p ∈ [0, 1] being the portion of execution time that runs in parallel. Obviously, the
ideal case of a perfectly parallel application (p = 1) gives a linear relation between speedup
and number of cores.

In Figure 5.5 we show the strong scaling of nemo on a single compute node on cheops
tested with two DG variants, Standard DG and Flux Diff. DG in 2D and 3D (both
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with Gauss nodes). A compute node on cheops offers two processors each equipped
with 12 cores. The parallelization method is pure OpenMP. The bad scaling of the 2D
Standard DG scheme is not surprising, since the ratio of raw computation to data transfer
is biased towards the latter. Curiously, the 2D Flux Diff. DG has such high demands
on computation that it shows similar scaling to the 3D Standard DG scheme. The result
for 3D Flux Diff. DG nearly follows the ideal scaling in this specific performance test.
Standard DG and Flux Diff. DG transfer an equal amount of surface data, thus increased
demand on CPU bound computations improves scaling. The results of all schemes nicely
follow Ahmdal’s law (5.4) on the first CPU, but clearly break away as soon as the second
CPU is taking part in the computation. Apparently, the memory bus between CPU
sockets has a different scaling dynamic than the memory lanes between cores on the
same socket. For workloads with numerical data in 3D this effect is minor and still gives
satisfying scaling results on multi-socket machines.
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Figure 5.5: Speedup of nemo on a single compute node on CHEOPS equipped with two
CPUs á 12 cores. The parallelization method is pure OpenMP. Shown are the results (solid

lines) for Standard DG and Flux Diff. DG (Gauss nodes) in 2D and 3D. The fits (dashed lines)
with Ahmdal’s law (5.4) were calculated only with data points from the first CPU. The course

of the fits from 12 to 24 cores should be interpreted as extrapolations. The deviation of the
measured results from the model in the second half of the plot are discussed in the text.
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Scaling on Multiple Compute Nodes

Besides scaling on multi-core systems, nemo is also capable to leverage distributed com-
puting offered by HPC clusters. Information exchange between compute nodes is based
on MPI, while intra-node parallelization is realized with threads via OpenMP. The scaling
results with Standard DG (Gauss) in 3D for a fixed problem size of 2563 DOF and two
different clusters, namely cheops and odin, are shown in Figure 5.6. nemo scales better
on cheops than on odin. Clearly, running on cheops has the advantage of leveraging
bigger compute nodes with more cores. This works in favor for scaling. Curiously, on
odin the scaling performance slides away from the theoretical expectation (fitted curve)
for nodes 11, 13, 14, but comes back when the number of nodes is increased further. In
fact, this behavior on odin can be observed with other codes and scaling tests as well and
seems not related to nemo. It should be mentioned, that odin was decommissioned by
the first owners and got a “second” life as “playground” for code development and small
to middle sized simulations. Thus, not much effort has been recently invested into tuning
and maintaining the network infrastructure of the cluster.
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Figure 5.6: Speedup of nemo on multiple compute nodes on the clusters cheops and odin.
Shown are the results (solid lines) with Standard DG (Gauss nodes) in 3D on a uniform grid of

2563 DOF. The dashed lines are fits with Ahmdal’s law (5.4). The fits were calculated from
data points on cheops for compute nodes 1 to 4 and on odin for nodes 1 to 10. The course of
the fits beyond the fitting ranges should be interpreted as extrapolations. The dip in scaling

on odin for nodes 11, 13 and 14 is discussed in the text.
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Nevertheless, the scaling results show that nemo is suitable for small to medium size
simulations with reasonable speedup on multi-core machines and on small HPC clusters.
Again, we want to emphasize, that the codes produced over the course of this work are
still considered prototypes with lots of room for improvements regarding performance op-
timizations. Moreover, nemo’s ghost layer implementations is at disadvantage compared
to optimized DG codes like flexi (Hindenlang et al. 2012; Krais et al. 2020), fluxo
(Gassner et al. 2016c; Rueda-Ramírez et al. 2021) or trixi.jl (Schlottke-Lakemper et al.
2021; Ranocha et al. 2022). nemo offers access to the complete set of volume data for
ghost elements, and thus has the needed flexibility for rapid prototyping of numerical
schemes at the cost of transferring large chunks of volume data. Optimized DG codes, on
the other hand, only transfer surface data, drastically reducing the pressure on the MPI
message bus.
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Chapter 6

Implementing DG in FLASH

6.1 Introduction

In this chapter, we present some context, technical details, and numerical test cases of
our DG implementation in the astrophysics, multi-physics simulation framework FLASH.
A large share of the content in this chapter has also been published in Markert et al.
(2022). Here, we expand on the technical details and show more numerical results. The
new module for FLASH is open source and can be publicly accessed under
https://github.com/jmark/DG-for-FLASH.

The FLASH code is a modular, parallel multi-physics simulation code capable of handling
general compressible flow problems found in many astrophysical environments. It is a set
of independent code units put together with a versatile setup tool written in Python while
the code itself is written in Fortran90 and to minor extent in C. It uses the Message Passing
Interface (MPI) library for inter-processor communication and the HDF5 or Parallel-
NetCDF library for parallel I/O to achieve portability and scalability on a variety of
different parallel computing systems. The framework provides three interchangeable grid
modules: a block-structured Uniform Grid, a block-structured octree based adaptive grid
using the PARAMESH library (Olson et al. 1999) and a block-structured patch based
adaptive grid using Chombo (Colella et al. 2009). The architecture of the code is designed
to be flexible and easily extensible.

The standard solver in FLASH is based on an AMR enabled second order FV method,
where the fluid variables are stored in the form of mean values. FLASH organizes by
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default the FV mean values in blocks of specific sizes, e.g., of size 8 × 8 × 8. It is
important to note that all other physics modules of FLASH assume that the data is
organized in form of such blocks with mean values and hence that the interaction between
the additional physics modules and the FLASH fluid solvers is based on mean values. In
contrast, typically, in DG the fluid variables are stored in form of local polynomials with
either modal coefficients (Karniadakis and Sherwin 2005) or nodal values (Kopriva 2009b).
Depending on the polynomial degree N − 1 of the local ansatz, N3 unknowns per fluid
variable form a data package. Thus, the size of the blocks (or in DG jargon size of the
“elements”), varies with the choice of the polynomial degree.

This difference in the representation of the solutions and the interpretation of the solution
coefficients forms a tough challenge that needs to be overcome. Roughly, we have to
major choices: (i) We can implement the DG scheme in its typical/natural form based on
the polynomial representations. This means, however, that we than need to adjust the
whole FLASH code to cater to the piece-wise polynomial data. Thus, changes in the way
the grid is managed (not blocks of constant size, but smaller elements) and changes in
the way all other physics modules interact with the DG solver have to be changed and
implemented. (ii) We adapt the DG methodology and specifically design a variant that
directly operates with the block based mean value data structure of FLASH. The upside
is of course that in this case DG can with reasonable implementation effort directly access
all the functionality that the FLASH code offers. The downside is that this is not the
“natural” way one would implement the DG methodology and that there are thus some
disadvantages, such as additional transforms between ansatz spaces, that one needs to
accept.

In this work, we have decided in favor of option (ii), where we adjust the DG methodology
such that we can directly use the rich multi-physics framework that FLASH offers. In
previous work, we have presented a robust and accurate DG variant that uses blocks of
mean values as input (Markert et al. 2021), which serves as a starting reference for the
FLASH implementation. Besides option (ii) being presumably the only feasible approach
regarding the necessary amount of implementation, it further has beneficial effects such
as being able to directly use the post-processing tool chains for data organized in blocks
of mean values, which have been established in many years of research work.
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6.2 Implementation Details

The convex blending scheme described in Section 4.7 has been implemented within FLASH
as an independent solver module named DGFV under the hydro/HydroMain/split names-
pace. Although our numerical scheme is technically an unsplit solver it mimics the same
interface as the other directionally split solvers, since most physics modules necessary
for our envisaged astrophysics simulations only interface to directionally split schemes.
Contrary to the described 3D FV scheme in Section 4.5, we cannot split the 3D DGSEM
scheme from Section 4.6 into separate arrays of 1D data; at least not without compromis-
ing the accuracy. These so-called sweeps in spatial direction d are treated independently
by directionally split schemes and assembled to the new solution afterwards. Fortunately,
the split scheme interface is flexible enough to accommodate a high order (unsplit) DG
scheme.

We focus our solver implementation on the octree-based grid unit PARAMESH, which is
the default in FLASH. PARAMESH is built on the basic component of blocks consisting of
Nx×Ny×Nz regular cells extended with Ng layers of guard cells. The default configuration
is Nx = Ny = Nz := 8 and Ng := 4, which allows us to implement a fourth order DG
method (N = 4) with 23 elements embedded within a block. In Figure 6.1 one DG
element is highlighted in blue, where the blue dots represent the Gauss quadrature nodes
(4.50) at element boundaries. The red square represents a FV cell, or mean value, with
face-centered red dots at cell interfaces.
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block

FV cell DG element
Figure 6.1: Cutout of a PARAMESH grid with one block of 83 cells (shaded in yellow) and a

neighboring block (shaded in white) on top at a finer resolution level. One 4th order DG
element is highlighted in blue and the blue dots indicate the position of the Gauss quadrature
nodes (4.50) at element interfaces. The red square with its face-centered red boundary points

exemplifies one FV cell respectively mean value within the block.

For the sake of clarity, we change our perspective to a 2D crossection of our 3D PARAMESH
grid as shown in Figure 6.2. The block of interest is colored in yellow while the guard cells
are shaded in gray. The complete computational grid consists of a collection of such blocks
with different physical cell sizes. They are related to each other in a hierarchical fashion
using a tree data structure (octree), which evenly spreads over all parallel processors (MPI
ranks) in case of distributed computing. Blocks do not overlap and there are only 1:4
relations (one coarse block interfaces to 4 finer blocks) allowed between neighbors sharing
a common face. PARAMESH handles the filling of the guard cells with information from
neighboring blocks or at the boundaries of the physical domain. If the block’s neighbor
has the same level of refinement, PARAMESH fills the corresponding guard cells using
a direct copy from the neighbor’s interior cells. If the neighbor is at a higher refinement
level, the data is restricted via second order averaging. If the neighbor is at a lower re-
finement level, the data is prolongated via monotonic interpolation guaranteeing positive
densities and pressures.

What follows is a brief outline of the algorithm implemented within the DGFV solver mod-
ule. The module enters the Runge-Kutta cycle of m stages starting with the first stage. A
full timestep is completed after exiting the loop with the last stage where we compute the
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guard cells

FV cell

restricted
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Figure 6.2: Cross section of a PARAMESH grid with blocks of 83 cells at different refinement
levels (i.e. mesh resolution). The block of interest is shaded in yellow and its guard cell layer is
shaded in gray. One 4th order DG element with its adjacent elements is highlighted in blue and
the blue dots indicate the position of the Gauss quadrature nodes (4.50). The red square with

its red midpoint exemplifies one FV cell in the block.

global timestep of the next cycle according to the CFL condition specified in Section 4.7.2.
The updated states are returned back to FLASH, which in turn calls the other modules
handling different aspects of the simulation such as grid coarsening/refinement, load bal-
ancing, gravity, chemistry, etc. At the beginning of each Runge-Kutta stage the guard
cells of each block are filled by PARAMESH with the latest data from direct neighbors.
As already mentioned, the data transfer among MPI ranks, refinement and coarsening
as well as prolongation and restriction along non-conforming interfaces is managed by
PARAMESH and opaque to the solver. We reconstruct the nodal data of the DG ele-
ments via (4.98) and compute the blending factors according to Section 4.7.1. If any of the
calculated blending factors is less then one, indicating under-resolved flow features within
a DG element, the blending procedures are activated and we compute the standard FV
solution described in Section 4.5. Otherwise it suffices to just compute the DG solutions
from the reconstructed nodal values according to Section 4.6. If blending is active one
has to determine the common surface fluxes (4.101) at DG element interfaces in order to
maintain the conservation property. The final solution is then the convex blend (4.100)
of both solutions. Moreover, the (common) surface fluxes at block boundaries are handed
over to PARAMESH, which does a flux correction by replacing the coarse fluxes with
the restricted fine fluxes at non-conforming block interfaces. We retrieve the corrected
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fluxes and calculate the total surface flux error among all block boundaries. The error
is then evenly deducted from all cells restoring mass conservation. Finally, we calculate
the gravity source terms (3.55,3.56), which we add to the solution. The solver can now
proceed to the next Runge-Kutta stage. This completes the outline of the algorithm.

Three remarks are in order. Firstly, FLASH stores its fluid data in primitive state vari-
ables. For DG we need to reconstruct on conservative state variables in order to maintain
high order accuracy and stability. In other words, the conservative state variables are first
calculated from the primitive state variables in mean value space and then transformed to
nodal values. Secondly, the treatment at non-conforming block interfaces by PARAMESH
is at most second order accurate. For DG the standard approach is the so-called mortar
method (Kopriva et al. 2002), which matches the spatial order of the scheme if done cor-
rectly. However, we decided to stick with the default procedure provided by PARAMESH,
since it would otherwise lead to substantial restructuring of the internal workings of the
FLASH code. Furthermore, we observed that in practice the gain in accuracy by a higher
order mortar method is negligible in our simulations, neither do we have any troubles with
numerical artifacts or stability issues. Thirdly, physics and chemistry units in FLASH are
designed and implemented around mean values, i.e. they expect mean values as input,
do their calculations on mean values and produce mean values as output. This formally
reduces the convergence order to at most second order, however, provides the benefit of
directly using the rich collection of physics modules available in the FLASH framework.

6.3 Numerical Results

In this section, we present simulation results using our new fourth order (DGFV4) fluid
solver module in FLASH. All test problems shown are computed on 1D, 2D or 3D Carte-
sian grids, for which the refinement level l in accordance to the convention in FLASH
corresponds to 2l−1 × 8 grid points per dimension. We gradually increase the complexity
of the test cases, where the later test cases are multi-physics applications with multiple
physics modules working together.

6.3.1 Experimental Order of Convergence

First, we verify the experimental order of convergence (EOC) of our fourth order DGFV4
implementation. Measuring convergence of higher order MHD codes can be challenging
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since smooth MHD test problems present numerical subtleties that are potentially revealed
by the very low numerical dissipation of higher order methods. In this work we rely
on widely-used smooth MHD test problems for convergence assessment: the nonlinear
circularly polarized Alfvén waves in 2D and a manufactured solution setup for 3D. For
our convergence tests, we enabled any shock indicators and limiters on purpose in order to
confirm that the limiters do not interfere for smooth well resolved solutions. We verified
the EOC on conforming Cartesian grids, since the treatment at non-conforming block
interfaces is not high order as already discussed in the previous section.

Circularly polarized smooth Alfvén waves are exact analytic solutions of the MHD equa-
tions for arbitrary wave amplitude perturbations. Hence, they are suitable to study
the experimental convergence order of the scheme, as well as its amount of numerical
dispersion and dissipation errors. The solution consists of plane waves in which the
magnetic field and velocity oscillate in phase in a circular polarization perpendicular to
the propagation direction. We initialize the Alfvén waves within a periodic 2D domain
Ω = [0, 0] × [cos−1(α), sin−1(α)] at an angle of α = 45◦. The longitudinal Alfvén wave
speed is fixed at |vA| = B||/

√
ρ := 1 such that the wave returns to its initial state at inte-

ger times T ∈ N. For our test we let the wave turn around five times, i.e. T = 5. The heat
capacity ratio is γ = 5/3. With the rotated coordinate x̂ = x cos(α) + y sin(α), we define
B⊥ = 0.1 sin(2π x̂) and B3 = 0.1 cos(2π x̂). The initial state in primitive state variables
then reads (ρ, v⃗, p, B⃗,Ψ)T = (1.0, v⃗0, 0.1, B⃗0, 0)T with v⃗0 = (−B⊥ sin(α), B⊥ cos(α), B3)T

and B⃗0 = (cos(α), sin(α), 0)T + v⃗0. We look at the total pressure (3.20) and calculate
the ∞-norm and 2-norm according to (4.25) and (4.26). Since the total pressure involves
all state variables it is a good quantity to measure the overall convergence of the code.
Moreover, the reference solution has to be evaluated with high order accuracy as already
discussed in Section 4.7.3. The results are shown in Table 6.1. The formally fourth order
DGFV4 scheme in 2D yields the expected EOCs.

In order to verify the convergence order in 3D we construct a manufactured solution,
which reads in primitive state variables as

Φman =
(
h, 0.1, 0.2, 0.3, h, h,−h, 1, 0

)T
(6.1)

with h = h(t, x, y, z) = 0.5 sin(2π(x + y + z − t)). The domain is a cubic box Ω = [0, 1]3

and the heat capacity ration is set to γ = 2.0. At each Runge-Kutta stage we subtract
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Table 6.1: EOC of total pressure P of the smooth Alfvén wave problem in 2D run by the
fourth order DGFV4 scheme.

DOF
∣∣∣∣∣∣P ∣∣∣∣∣∣

∞

∣∣∣∣∣∣P ∣∣∣∣∣∣
2

EOC∞ EOC2

162 9.852e-05 4.951e-05 n/a n/a
322 6.086e-06 2.110e-06 4.016 4.552
642 3.634e-07 1.285e-07 4.065 4.036

1282 2.334e-08 8.002e-09 3.960 4.006
2562 1.461e-09 4.998e-10 3.997 4.000
5122 9.221e-11 3.423e-11 3.985 3.868

Table 6.2: EOC of total pressure P of the manufactured solution problem in 3D run by the
fourth order DGFV4 scheme.

DOF
∣∣∣∣∣∣P ∣∣∣∣∣∣

∞

∣∣∣∣∣∣P ∣∣∣∣∣∣
2

EOC∞ EOC2

163 1.259e-03 4.122e-04 n/a n/a
323 4.998e-05 1.773e-05 4.655 4.538
643 3.248e-06 1.015e-06 3.943 4.126

1283 1.962e-07 6.594e-08 4.048 3.944
2563 1.290e-08 4.141e-09 3.927 3.992
5123 7.963e-10 2.540e-10 4.018 4.027

the residual
Υman = ∂xF

∣∣∣
Φman

+ ∂yG
∣∣∣
Φman

+ ∂zH
∣∣∣
Φman

(6.2)

from the right-hand-side u̇ and advance in time. As before, the source term is evaluated
with an appropriate quadrature rule and projected to mean values. At final time T = 0.1
the convergence of the total pressure P is computed as previously described in the Alfvén
wave test. The results in Table 6.2 confirm the correct EOCs for the formally fourth order
DGFV4 scheme in 3D.

6.3.2 Divergence Control

We now turn to test problems more specifically aimed at evaluating the efficacy of the
hyperbolic divergence cleaning approach discussed in Section 3.4.

Magnetic Loop Advection

This test investigates the proper advection of a magnetic field loop (Gardiner and Stone
2005). On a periodic domain Ω = [−0.5, 0.5]2, the background medium has ρ = 1, p = 1,
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and a global advection velocity (v1v2) = (2, 1) so that the ambient flow is not aligned with
grid directions. Letting r =

√
x2 + y2 be the radial distance to the center of the domain,

the magnetic field is initialized from a vector potential A⃗ = (0, 0, A3(r)) with B⃗ = ∇ × A⃗.
To define a magnetic field loop of radius r0 = 0.3, we set A3(r) = max(0, 10−3(r0 −r)) and
obtain a very weakly magnetized configuration with a plasma β of order 106, in which the
magnetic field is essentially a passive scalar. For this field configuration, the MHD current
vanishes everywhere, except at r = 0, and r = r0 where the corresponding current line
and current tube become singular. Note, that we added a smoothing parameter δr = 0.05
to the radius r in order to avoid spurious ringing caused by the unresolved singularity of
the initial magnetic field at the domain center. The aim of the test is to verify that the
current loop is advected without deformation or noise.

Figure 6.3 shows the z-component of the current density j⃗ = ∇ × B⃗ at final time T = 1
corresponding to two horizontal domain crossings and at a uniform resolution of 1282 DOF.
The current density is a stringent diagnostic since, being a derivative of the magnetic field,
it is very sensitive to noise and local fluctuations. The scheme preserves the exact circular
shape of the current loop very well, with very little noise and oscillations in the current.

Figure 6.3: Shown is the z-component of the current density j⃗ = ∇ × B⃗ at final time T = 1.0
as calculated with the DGFV4 scheme.
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MHD Current Sheet

The two-dimensional current sheet problem in ideal MHD regimes has been extensively
studied before (see e.g. Gardiner and Stone 2005; Guillet et al. 2019; Rastätter et al.
1994; Rueda-Ramírez et al. 2021). Two magnetic currents are initialized in opposite
direction sharing a common interface and disturbed with a small velocity fluctuation,
which provokes magnetic reconnections. In the regions where the magnetic reconnection
takes place, the magnetic flux approaches very small values and the lost magnetic energy
is converted into internal energy. This phenomenon changes the overall topology of the
magnetic fields and consequently affects the global magnetic configuration.

The square computational domain is given as Ω = [−0.5, 0.5]2 with periodic boundary
conditions. We initialize the setup in primitive variables

(ρ, v⃗, p, B⃗,Ψ)T = (1.0, v1, 0, 0, 0.05B2
0 , 0, B2.0, 0)T (6.3)

with B0 = 1/
√

4π, v1 = 0.1 sin(2πy) and B2 = −B0 when −0.25 < x < 0.25 and B2 = B0

in the rest of the domain. The heat capacity ratio is set to γ = 5/3 and the final simulation
time is T = 10.

The changes in the magnetic field seed the magnetic reconnection and develop formations
of magnetic islands along the two current sheets. The small islands are then merged into
bigger islands by continuously shifting up and down along the current sheets until there is
one big island left in each current sheet. Technically, changes in the field topology are not
allowed in the ideal MHD regime due to the absence of any resistivity. Since high order
DG needs to be stabilized for this setup, our blending scheme injects enough numerical
resistivity through the FV scheme to allow for field reconnections. In Figure 6.4 we show
the magnetic pressure with overlayed field lines (left) and the blending factor (right) at an
earlier stage in the simulation. Evidently, at the shear layer between countering magnetic
field lines, where the reconnections take place, the blending activity is strongest.
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Figure 6.4: Magnetic pressure (left) with overlayed magnetic field lines (black) and blending
factors (right) with overlayed grid lines (white) for the MHD current sheet test at simulation

time t = 2.5.

The final result is shown in Figure 6.5, which depicts the z-component of the current
density with overlayed magnetic field lines.

Figure 6.5: Shown is the z-component of the current density j⃗ = ∇ × B⃗ with overlayed
magnetic field lines for the MHD current sheet test at final time T = 10.
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Figure 6.6 shows the domain-integrated divergence error over time for three different runs:
without any divergence cleaning (none; blue line), with just Powell source terms (Powell;
orange line) and with Powell source terms plus hyperbolic divergence cleaning (Powell
+ hyb. div. cleaning; green line) which is the default in our code. The first simulation
crashes early on due to the rapid surge of divergence error leading to the well known
instability issues of uncontrolled magnetic field divergence growth in MHD simulations
(Brackbill and Barnes 1980; Tóth 2000; Kemm 2013). The second run with Powell terms
does not crash and is at least able to keep the overall errors at bay over the course of
the simulation (see also Figure 6.7). As expected, the run with hyperbolic divergence
cleaning has the lowest divergence error at all times. This particular setup is insofar
challenging in that it perpetually prompts a significant production of divergence errors,
thus highlighting the importance of a proper and robust divergence cleaning technique.
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Figure 6.6: Evolution of the domain-integrated absolute magnetic field divergence∫
Ω |∇ · B⃗(t)|dΩ for the MHD current sheet test. Three runs with different flavors of divergence
cleaning are shown. The simulation without any divergence correction method ("none"; blue

line) crashed at around t = 2.5. The run where only the Powell source terms are used (orange
line) is stable but has a substantially larger divergence error than the full scheme with Powell
source terms and hyperbolic divergence cleaning (green line) which is the default setting in our

code.

Figure 6.7 shows the time evolution of the kinetic, internal, magnetic, and total energies
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of the current sheet problem with (solid lines) and without (dashed lines) hyperbolic
divergence cleaning activated. The decline of the magnetic energy is compensated by
the increase in internal energy due to the heating driven by the magnetic reconnection.
Furthermore, without divergence cleaning a significant total energy drift is introduced by
the non-conservative Powell terms and the accompanied high divergence errors, which are
not properly corrected for in this case. This energy drift also causes artificial cooling at
the reconnection points giving rise to a non-physical behavior. However, with hyperbolic
divergence cleaning the total energy is conserved.
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Figure 6.7: The percentage of total and individual energies as a function of time for the
MHD current sheet test. We compare the results with (solid lines) and without (dashed lines)

our hyperbolic divergence cleaning method. The results for the run without any divergence
treatment are not shown, since it crashed early on.

6.3.3 Shock Problems

In this section, we test the correct resolution of shock waves inherent to ideal MHD
regimes by our DGFV4 scheme in 1D, 2D and 3D. Furthermore, one shock tube problem
investigates the proper handling of waves in a multi-species setting and if applicable
we utilize adaptive mesh refinement for a further challenge. Note that we actually run
our 1D test problems in 2D, with perfectly y-independent initial conditions and periodic
boundaries. A correct implementation of our multidimensional scheme does not develop
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any y-dependence of the solution.

Briu-Wu Shock Tube

The established MHD shock tube problem introduced by Brio and Wu (1988) has now
become a classic shock test for MHD codes. For this test, we take the computational
domain to be [0, 1] with outflow boundaries left and right. In the whole domain, the flow
is initially at rest (v = 0) and (B1, B2) = (0.75, 0). The initial primitive variables are
discontinuous at x = 0.5, with the left and right states given by (ρ, p, B2)L = (1, 1, 1) and
(ρ, p, B2)R = (0.125, 0.1,−1), respectively. We set γ = 2, and run the simulation until the
final time T = 0.1.

Figure 6.8 presents the density, pressure, y-component of the magnetic field, and blending
factor of the Brio-Wu shock tube test problem at final time T = 0.1, using the DGFV4
scheme on an AMR grid with a minimum resolution of 32 cells and a maximum resolution
of 512 cells. The reference solution is obtained using the latest version of ATHENA (v4.2)
(Stone et al. 2008) with default settings on 2048 cells. Our DGFV4 scheme captures all
the MHD waves correctly, and the limiter sharply resolves the shocks and the contact
discontinuity within very few cells. The limiter sufficiently suppresses overshoots and
oscillations around shocks. Furthermore, our scheme cooperates well with the standard
AMR method provided by FLASH (not directly visible in Figure 6.8) and properly traces
the shock fronts at the highest resolution possible.
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Figure 6.8: Density, pressure, magnetic field, and blending profiles of the Briu-Wu shock
tube at final time T = 0.1 run by the DGFV4 scheme on an AMR grid with a minimum
resolution of 32 cells and a maximum resolution of 512 cells. We compute the reference

solution with the ATHENA code using a resolution of 2048 cells.
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MHD Shu-Osher Shock Tube

The MHD version of the 1D Shu-Osher shock tube test (Shu and Osher 1988) proposed
by Susanto (2014) becomes increasingly popular (Derigs et al. 2016; Guillet et al. 2019)
to test the scheme’s ability to resolve small-scale flow features in the presence of strong
shocks in ideal MHD regimes.

The setup follows the interaction of a supersonic shock wave with smooth density per-
turbations. The computational domain is Ω = [−5, 5] with outflow boundary conditions.
At t = 0, the shock interface is located at x0 = −4. In the region x ≤ x0, a smooth
supersonic flow is initialized with primitive states given by

(ρ, v⃗, p, B⃗,Ψ)L = (3.5, 5.8846, 1.1198, 0, 42.0267, 1, 3.6359, 0, 0). (6.4)

In the rest of the domain x > x0, smooth stationary density perturbations are setup in
primitive state as

(ρ, v⃗, p, B⃗,Ψ)R = (1 + 0.2 sin(5 x), 0, 0, 0, 1, 1, 1, 0, 0). (6.5)

The flow is evolved until the final time T = 0.7.

The resulting profiles in density, pressure, y-component of the magnetic field, and blending
factor at the final time T are shown in Figure 6.9, for two maximum resolution levels: 256
cells and 512 cells. As in the Briu-Wu shock tube, we employ AMR in order to confirm the
correct tracking of the small-scale flow features and the smooth interplay with our MHD
solver. The reference solution has been computed using ATHENA on 2048 grid cells. Our
scheme properly resolves all expected flow features for both levels of resolutions shown.
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Figure 6.9: MHD Shu-Osher shock tube test problem: The density, pressure, magnetic field,
and blending profiles are shown at final time T = 0.7. The reference solution has been

computed using ATHENA on 2048 grid cells.
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Two-component Sod Shock Tube

We simulate a Sod shock tube problem extended with two species as done for example in
Gouasmi et al. (2020). The computational domain is Ω = [0, 1] with outflow boundary
conditions. At t = 0, the shock interface is located at x0 = 0.5. In the region x ≤ x0, the
fluid is initialized with primitive states given by (ρ, v, p, σ1, σ2) = (1, 0, 1, 1, 0). In the rest
of the domain x > x0, we setup the primitive states (ρ, v, p, σ1, σ2) = (0.125, 0, 0.1, 0, 1).
The individual heat capacity ratios of the two fluid components are γ1 = 1.4 and γ2 = 1.6
with equal heat capacities for constant volume cvol.

1 = cvol.
2 = 1. The shock tube is evolved

until the final time T = 0.2 run by the DGFV4 scheme on an AMR grid with a minimum
resolution of 32 cells and a maximum resolution of 256 cells. Figure 6.10 shows the total
density, pressure, specific heat ratio profiles, and blending factor at the final time. There
is an excellent agreement with the exact solution provided by Karni (1994).
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Figure 6.10: Shown are the profiles of the numerical solution of the two-component Sod
shock tube problem computed with the DGFV4 scheme (on an AMR grid with a minimum

resolution of 32 cells and a maximum resolution of 256 cells) together with the exact solution
at final time T = 0.2. Apparently, the blending is triggered at the pressure jump as designed.
The contact discontinuity (density jump between x = 0.6 and x = 0.8) is sufficiently resolved

by DG without any need in stabilization via blending.
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Sedov Blast

The purely hydrodynamical Sedov blast problem (Zhang and Shu 2010, 2012; Dumbser
et al. 2018) describes the self-similar evolution of a radially symmetrical blast wave from an
initial pressure point (delta distribution) at the center into the surrounding, homogeneous
medium. The analytical solution is given by Sedov (1959); Korobeinikov (1991). In our
setup, we approximate the initial pressure point with a smooth Gaussian distribution

E0(x⃗) = p0

γ − 1 + E

(2 π σ2)d/2 exp
(

− 1
2
x⃗2

σ2

)
, (6.6)

with the spatial dimension d = 2, the blast energy E = 1 and the width σ such that
the initial Gaussian is reasonably resolved. The surrounding medium is initialized with
ρ0 = 1 and p0 = 10−14. From Section 3.5 we know that the analytical solution of the
density right at the shock front is determined by

ρshock = γ + 1
γ − 1 ρ0.

With the adiabatic coefficient γ = 1.4, we investigate how close the numerical results
match ρshock = 6. The Cartesian AMR mesh goes from minimum resolution of 322 to
maximum resolution of 5122 cells. The spatial domain is Ω = [−0.25, 0.25]2 with the
initial blast width σ = 5 × 10−3. Figure 6.11 shows the contour plots of density (left)
and pressure (right) at final time T = 0.05. The solution looks clean and sharp, without
visible noise or other numerical artifacts.

167



6.3. Numerical Results

Figure 6.11: Density (left) and pressure (right) contours of the 2D Sedov Blast setup
computed with the DGFV4 scheme at final simulation time T = 0.05.

In Figure 6.12 we take a sub-section in the first quadrant of Figure 6.11 and show zoom-ins
of density (top left) and pressure (bottom left) contours along with the blended element
entropy production rate (top right) given by (4.108) and blending factors (bottom left).
The grid lines are overlayed in black (left) and white (right), showing the proper tracing
of the shock front by the AMR procedure. The blending factor aligns perfectly with
the shock front as intended. In Section 3.5 we discussed that shocks produce immense
amounts of entropy through dissipative processes, despite the lack of viscosity in the
model of compressible Euler equations. The strong negative entropy production rates
shown in the top left plot in Figure 6.12 uncovers the indispensable injection of numerical
dissipation into the shocked solution in order to stabilize the computation.
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Figure 6.12: Zoom-in of Figure 6.12 together with blended element entropy production rates
(top right) given by (4.108) and blending factor (bottom right). The grid lines are overlayed in

black (left) and white (right).

In Figure 6.13 we show the shell-average profiles of normalized density (ρ/ρ0), normal-
ized pressure (p/p0), scaled entropy production rate (∆̇S/100), and blending factor (α)
combined into one plot. The numerical solution of density and pressure follow the exact
solution (dashed) nicely, confirming the correct modeling of the shock’s propagation speed.
The peak in entropy production is exactly at the height of the shock and the blending
factor wraps around the density and pressure jumps like a protective layer keeping DG
from polluting the solution.
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Figure 6.13: The profiles of shell-average profiles of normalized density (ρ/ρ0), normalized
pressure (p/p0), scaled entropy production rate (∆̇S/100), and blending factor (α) of the 2D
Sedov blast setup computed with the DGFV4. The exact solution for density and pressure is

shown as dashed lines.

Orszag-Tang Vortex

Now we look at the 2D Orszag–Tang vortex problem (Orszag and Tang 1979), a widely-
used test problem for ideal MHD. The vortex starts from a smooth initial field con-
figuration, and quickly forms shocks before transitioning into turbulent flow. For this
problem, our computational domain is Ω = [0, 1]2 and we use γ = 5/3. The initial
density and pressure are uniform, ρ = 1 and p = 1/γ. The initial fluid velocity is v⃗ =
(− sin(2π y), sin(2π x), 0)T , and the initial magnetic field is B⃗ = (− sin(2π y), sin(4π x), 0)T/γ.

The final solution at time T = 0.5 is shown in Figure 6.14. We employ an AMR grid with
resolution levels going from 642 cells to 10242 cells, which is highlighted as black lines on
the left half of the density plot. We recognize the well-known density distribution of the
Orszag–Tang vortex, which is commonly presented in MHD code papers. Note that we
obtain both sharp shocks and smooth, noise-free flow with resolved features between the
shocks.
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Figure 6.14: Density profile of the Orszag-Tang vortex at the final time T = 0.5 as calculated
with our DGFV4 scheme on an AMR mesh (shown as black lines in the left half of the plot)
with a maximum refinement level of l = 8, which is equivalent to a maximum resolution of

10242 cells.

In order to confirm the correct positioning of the shock waves, we computed a reference
solution on a finer grid of 20482 cells with the ATHENA code and overlay 1D cuts of
both pressure solutions in Figure 6.15. The resulting profile of our scheme matches the
reference very well and is very sharp and without spurious oscillations or overshoots.
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Figure 6.15: Numerical solution of the pressure profiles at y = 0.3125 and time T = 0.5 are
shown for the DGFV4 solver with AMR and a maximum resolution of 10242 DOF. The

reference solution was computed with the Athena code at a uniform resolution of 20482 DOF.

During our numerical experiments we found that without proper divergence cleaning,
distinctive grid artifacts appear, which considerably pollute the solution. Analog to Sec-
tion 6.3.2 we compared the time evolution of the divergence errors with and without
divergence control mechanisms. The results shown in Figure 6.16 clearly demonstrate
that the hyperbolic divergence cleaning method is effective in confining the divergence
errors ensuring a clean, unpolluted MHD flow.
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Figure 6.16: Domain-integrated divergence error
∫

Ω |∇ · B⃗|dΩ as a function of the simulation
time for the Orszag-Tang vortex setup. Three runs with the DGFV4 are shown, where the

Powell scheme and hyperbolic divergence cleaning are either on or off. The simulation without
any divergence correction method activated is labeled as “none”.

From Section 3.3 we know that the turbulent Mach number is a measure of flow com-
pression, and since shocks are highly compressive flow structures, a certain correlation
with the shock indicator respectively blending factor is expected. Figure 6.17 shows this
is indeed the case. Plotted are the turbulent Mach number (left) given by (3.12) and
the blending factor (right). Curiously, there is unusual blending activity in smooth flow
regions where resolution level changes. Presumably, the smoothness estimator based on
solution jumps at element boundaries, as discussed in Section 4.7.1, gets confused due to
artificial jumps in the solution introduced by the restriction and prolongation procedures
in the AMR routines of FLASH.
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Figure 6.17: Turbulent Mach number (left) given by (3.12) and the blending factor (right) of
the Orszag-Tang vortex setup computed with DGFV4 at final simulation time t = 0.5. The

white lines in the right plot denote the grid lines.

We want to investigate the runtime costs of our DG implementation for a 3D MHD
simulation in comparison to the reference solver Bouchut5, a well-tested, second order,
split solver for ideal MHD also readily available in FLASH. Our setup of choice is the
3D extension given in Helzel et al. (2011) of the 2D Orszag-Tang vortex. It is directly
attained by the following initial velocity:

v⃗ = (− sin(2π y) (1+0.2 sin(2 π z)), sin(2π x) (1+0.2 sin(2 π z)), 1+0.2 sin(2 π z))T . (6.7)

The rest of the initial parameters in the original 2D setup are copied along the z-axis.
We simulate to final simulation time T = 0.5 ensuring a reasonable mix of FV and DG
due to blending. We carry out four simulations in total comparing the single-core and
multi-core performance of the two solvers. The single-core runs are conducted on the
workstation (see Section 5.2) on a uniform grid with DOF of 643 ≈ 2.6 × 105. The multi-
core tests are carried out on CHEOPS (see Section 5.2) on a uniform grid with DOF of
1283 ≈ 2.1 × 106 and with 4 × 24 cores. The runtime results are given in Table 6.3 and
Table 6.4. Our DG solver is about five to six times slower than Bouchut5 in both scenarios.
Clearly, DGFV4 is at disadvantage with regards to completion times, since it consumes
two to three times more timesteps, times four calls considering the four stages of the SSP-
RK(4,3) scheme. If we take this into account and calculate the “raw” throughput of the
schemes according to (5.3), we see that our scheme is actually quite efficient compared to
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Bouchut5. This includes not only the computation of the fluxes and new solution states,
but also smoothness estimation and blending.

Table 6.3: Runtimes of Bouchut5 and DGFV4 in FLASH for the 3D Orszag-Tang Vortex
setup run with a single core on the workstation. The total amount of DOF is 643 ≈ 2.6 × 105.

scheme runtime [min] slowdown #steps slowdown TP [104 DOF/s] speedup

Bouchut5 3.58 1.00 126 × 1 1.0 15.36 1.00
DGFV4 22.70 6.33 322 × 4 10.2 24.79 1.61

Table 6.4: Runtimes of Bouchut5 and DGFV4 in FLASH for the 3D Orszag-Tang Vortex
setup run with 4 × 24 cores on CHEOPS. The total amount of DOF is 1283 ≈ 2.1 × 106.
scheme runtime [min] slowdown #steps slowdown TP [104 DOF/s] speedup

Bouchut5 3.71 1.00 250 × 1 1.0 2.45 1.00
DGFV4 18.88 5.09 656 × 4 10.5 5.06 2.07

The findings in Table 6.3 and Table 6.4 are also mirrored in scaling tests (see Section 5.4)
on ODIN (see Section 5.2) with Bouchut5 and DGFV4 in FLASH. We computed the 3D
Orszag-Tang Vortex till T = 0.05 with a fixed problem size of 2563 DOF. Figure 6.18
shows that DGFV4 is more efficient than Bouchut5. And as the single-core performance
results in Table 6.3 attest this efficiency gain is not manifestly rooted in excessive costs of
isolated computations inside the solver. Instead, we identified three facets of Bouchut5,
which makes it not so efficient. Firstly, the dimensional splitting of the blocks into sweeps
along x-, y-, and z-directions decompactifies the data causing much more costly traffic
in and out of CPUs. Secondly, every sweep in each of the three directions causes a full
round of guard cell data exchange over MPI. And thirdly, Bouchut5 resorts to a parabolic
diffusion method (Marder 1987) for divergence control entailing further data exchange
over MPI. In contrast, DGFV4 only needs to update the guard cell layer once at the
beginning of each RK stage and has then all the data it needs for computing the new
solution.
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Figure 6.18: Speedup of Bouchut5 and DGFV4 in FLASH on multiple compute nodes on
ODIN. The 3D Orszag-Tang Vortex was computed till T = 0.05 with a fixed problem size of
2563 DOF. The fits (dashed lines) are determined with Ahmdal’s law (5.4). The volatility of

the runtime measurements on ODIN is discussed in Section 5.4.

Magnetic Rotor

We now investigate the 2D MHD rotor problem introduced by Balsara and Spicer (1999).
In this setup, a dense disc of fluid rotates within a static fluid background, with a gradually
declining velocity layer between the disk edge and the ambient fluid. An initially uniform
magnetic field is present, winding up with the disc rotation and containing the dense
rotating region through magnetic field tension. The computational domain is set to
Ω = [0, 1]2. Initial pressure and magnetic fields are uniform in the whole domain, with
p = 1 and B⃗ = (5/4π, 0, 0)T . The central, rotating disc is defined by r < r0 where
r2 = (x − 0.5)2 + (y − 0.5)2, and r0 = 0.1. Inside the disc, ρ = 10, and the disc rotates
rigidly with v⃗ = (0.5 − y, x − 0.5)v0/r0 with v0 = 2. The background fluid has a density
of ρ = 1 and is at rest: v⃗ = 0⃗. In the annulus r0 ≤ r ≤ r1 = 0.115, the transition region
linearly interpolates between the disc and the background, with v⃗ = (0.5−y, x−0.5)v0f/r0

and ρ = 1 + 9f , where f = (r1 − r)/(r1 − r0) is the transition function. The simulation
runs until the final time T = 0.15. We use outflow boundary conditions.

We present the density contours at T = 0.15 in Figure 6.19. The black lines in the left
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half the plot highlight the AMR grid bounded between refinement levels of 642 cells to
10242 cells. The contours of the evolved disc show a sharp and almost noise-free picture
of the circular rotation pattern, which is in general a challenge for MHD codes.

Figure 6.19: Density contours in logarithmic scale of the magnetic rotor at final time
T = 0.15 calculated with DGFV4 on an dynamic AMR mesh (shown as black lines in the left

half of the plane) with a maximum refinement level of l = 8 which is equivalent to a maximum
resolution of 10242 cells.

In Figure 6.20, we plot the local magnetic field divergence error |∇·B⃗| of the DGFV4 solver
at the final simulation time. The error is mostly concentrated in regions around shocks
and radially propagates away in all directions (circular ripples) due to the hyperbolic
divergence advection mechanism. Preferably, the divergence error gets advected out of
the domain but, as clearly visible in the divergence plot, the errors can accumulate in
stagnant regions of the domain, which justifies the importance of the damping source term
(3.27) as an additional mechanism to dispose of any accrued magnetic field divergence
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errors.

Figure 6.20: Contours of the local divergence error |∇ · B⃗| in logarithmic scale of the
magnetic rotor run by the DGFV4 scheme at final time T = 0.15.

Analogously to the Orszag-Tang vortex setup above, we plot the turbulent Mach number
(left) and the blending factor (right) in Figure 6.21. Besides a few misfirings at non-
conforming interfaces, which we discussed above, the blending works as expected. The
spurious area of seemingly elevated compressive turbulence in the center (yellow “cross” in
the left plot) is a result of low resolution and a rapidly expanding flow causing an excess
of positive velocity divergence. We conclude that the way we measure the turbulent
Mach number according to (3.12) can yield fallacious results and does not necessarily
indicate flow structures, which are troubling for high order methods, like our DG scheme.
Nevertheless, we deem it as one useful part in the tool box to track down challenging flow
regions.
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Figure 6.21: Turbulent Mach number (left) given by (3.12) and the blending factor (right) of
the magnetic rotor setup computed with DGFV4 at final simulation time T = 0.15. The white

lines in the right plot denote the grid lines.

MHD Blast

In order to test the shock-capturing performance of our code for a very strong ideal
MHD shock problem in 3D, we utilize the 3D blast wave setup of Balsara et al. (2009).
The computational domain is set to Ω = [0, 1]3 with outflow boundary conditions. The
background fluid is initially at rest with respect to the grid, where v⃗ = 0⃗, ρ = 1, and
with a uniform magnetic field B⃗ = (100

√
3, 100

√
3, 0). The ambient pressure is set to

p = 10−1, and within a central sphere of radius r0 = 0.1, we set p = 103 to initialize
the blast. This creates an extreme initial shock strength with a pressure ratio of 104 in
a strongly magnetized background with a plasma-β of ≈ 10−5 . We take γ = 1.4, and
run the simulation until the final simulation time T = 0.01. The AMR grid is bounded
between refinement levels of 643 cells to 2563 cells.

In Figure 6.22, we show a slice at z = 0 of the magnetic pressure at the final time. The
black lines in the left half of the plot highlight the AMR grid, while the light gray arrows
trace the magnetic field lines of the solution. The originally spherical blast bubble gets
stretched along the magnet background field over the course of the simulation as is de-
scribed by Balsara et al. (2009). Our scheme is able to maintain positivity of the pressure
and density in the whole domain and correctly captures the very strong discontinuities,
while resolving the complex structures within the blast shell. Note that no oscillations
are visible around discontinuities. This test shows the robustness and shock-capturing
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performance of our blending scheme for three-dimensional problems involving very strong
magnetized shocks.

Figure 6.22: Slice of the magnetic pressure at z = 0 for the MHD blast wave test solved with
the DGFV4 scheme. The black lines on the left side highlight part of the AMR mesh and the
gray stream lines indicate the field spanned by the x and y component of the magnetic field.

In Figure 6.23 we plot the turbulent Mach number (left) and the blending factor (right)
and confirm the correct functioning of the blending for challenging 3D setups.
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Figure 6.23: Turbulent Mach number (left) given by (3.12) and the blending factor (right) of
the 3D MHD blast setup computed with DGFV4 at final simulation time T = 0.01. The white

lines denote the grid lines.

In Table 6.5 we report the total runtimes of the 3D blast setup simulated with Bouchut5
and DGFV4. The computations are conducted on CHEOPS with 4 × 24 cores and with
AMR. Thus, the problem size is not fixed throughout the simulation, but dynamically
grows in alignment with the expanding shock wave. The DOF in both runs increased at
equal rate. This allows us to compute an effective throughput TPeff. according to (5.3)
with an effective DOFeff. determined by the maximally allowed resolution level, which in
our case amounts to 2563 ≈ 16.8 × 106. From Table 6.5 we learn that DGFV4 is over two
times more efficient than Bouchut5 in terms of effective throughput. This is consistent
with the benchmark results presented in Table 6.3 and Table 6.4.

Table 6.5: Runtimes of Bouchut5 and DGFV4 in FLASH for the 3D MHD blast setup run
with 4 × 24 cores on CHEOPS. The computations are conducted with AMR and the effective

DOFeff. is 2563 ≈ 16.8 × 106. Details can be found in the text.
scheme runtime [min] slowdown #steps slowdown TPeff. [104 DOF/s] eff. speedup

Bouchut5 19.25 1.0 358 × 1 1.0 5.41 1.0
DGFV4 65.40 3.4 786 × 4 8.8 14.00 2.6

6.3.4 Coupling to Gravity

The FLASH framework provides specialized units for the employment of static gravita-
tional sources emminating from point masses distributed at arbitrary points within the
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computational domains or from external background fields. Furthermore, FLASH unites
a variety of solvers for the Poisson equations of gravity for mass distributions (self-gravity)
based on multipole expansions (Müller and Steinmetz 1995), tree-based Barnes-Hut algo-
rithms (BHTree) (Barnes and Hut 1986), multigrid methods (Ricker 2008) or hybridized
schemes (Pfft) (Daley et al. 2012).

In this work, we focus on a recent implementation of the Barnes-Hut algorithm in FLASH
for versions 4.0 or later (BHTree/Wunsch) developed and released by (Wünsch et al.
2018). The module utilizes a MPI-parallelized octtree algorithm placed on top of the
AMR PARAMESH library (Olson et al. 1999). Following the classical Barnes-Hut pro-
cedure, the algorithm computes the local multipole expansion coefficients encoding the
gravitational pull of a specific section of the computational domain and communicates to
the different processors only those parts of the tree that are needed to perform the tree
walk in accordance with the multipole acceptance criterion (MAC). The advantage of
this approach is a relatively low memory footprint and good scaling properties. Further-
more, this particular tree code features a general tree-based radiation transport algorithm
(TreeRay), which we discuss in the next section. Boundary conditions for gravity can be
either isolated or periodic, and they can be specified in each direction independently, using
a novel generalization of the Ewald method also introduced in Wünsch et al. (2018).

The Evrard test described by Evrard (1988) investigates the gravitational collapse and
subsequent re-bounce of an adiabatic, initially cold sphere. It is generally used to verify
energy conservation when hydrodynamics schemes are coupled to gravity (Springel et al.
2001; Wetzstein et al. 2009). The initial conditions consist of a gaseous sphere of mass
M , radius R and density profile

ρ(r) = M

2π R2 r
.

The uniform temperature is initialized so that the internal energy per unit mass is

Eint = 0.05 GM
R

where G is the gravitational constant. The standard values of the above parameters, used
also in this work, are M = R = G = 1. The Barnes-Hut MAC is set to θlim = 0.5 and
the AMR refinement levels range from 643 cells to 2563 cells. We computed the reference
solution on a uniform grid of 2563 cells with the PPM solver for hydrodynamics (Colella
and Woodward 1984) and the same tree solver for gravity with equal settings as presented
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in Wünsch et al. (2018).

Figure 6.24 presents the time evolution of the domain-integrated gravitational, kinetic,
internal, and the sum of the three energies. Our results match the reference very well,
which confirms the correct coupling to the gravity solver. Since the interface to the
gravitational source terms in FLASH is completely generic our findings transfer to any
other gravity solver module available in FLASH. Note that the reason for a deviation from
energy conservation has been discussed extensively in Wünsch et al. (2018). The source
of the inaccuracy is the finite grid resolution, which leads to an error at the point in time
where the sphere is most compressed (least resolved) and continues to bounce back.
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Figure 6.24: Domain-integrated energies over simulation time for the Evrard test run by our
DGFV4 solver. The dashed lines show the reference solution computed with PPM on a

uniform grid.

6.3.5 Coupling to TreeRay

Turbulent, multi-phase structures within the interstellar medium (ISM) is shaped by the
complex and nonlinear interplay between gravity, magnetic fields, heating and cooling,
and the radiation and momentum input from stars (Agertz et al. 2013; Walch et al. 2015;
Kim et al. 2017). However, treatment of radiative transfer with multiple radiation sources
is a critical challenge in moving towards a proper description of star formation and the
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complete modeling of interstellar media in general.

TreeRay (Wünsch et al. 2021) is a new radiation transport method combining an octree
(Wünsch et al. 2018) with reverse ray tracing implemented in FLASH. Sources of radiation
and radiation absorbing gas are mapped on to the tree encoded as emission and absorption
coefficients. The tree is traversed for each grid cell and tree nodes are mapped on to rays
going in all directions. Finally, a one-dimensional radiation transport equation is solved
along each ray. Several physical processes are implemented into the code by providing
prescriptions for the absorption and the emission coefficients.

In this work, we employ a simple on-the-spot approximation with only one source emitting
a constant number of extremely ultraviolet (EUV) photons per unit time. The Spitzer
sphere (Spitzer 1978) is a simple model regarding the interaction of ionizing radiation
with absorbing gases. In this model, the EUV radiation from a young, massive star
ionizes and heats the surrounding medium, creating a so-called HII region, that is an
over-pressured, expanding bubble of photo-ionized, hot gas bounded by a sharp ionization
front (Whitworth 1979; Deharveng et al. 2008). The expanding ionization front drives a
shock into the surrounding neutral, cold gas, sweeping it up into a dense, warm shell.

Codes of radiation transport methods use this spherical expansion of a HII region as a
standard test problem to validate their coupled photoionization and hydrodynamics algo-
rithms. Bisbas et al. (2015) introduced a standard benchmark test in 3D for early-time
(t ≤ 0.05 Myr) and late-time (t > 0.05 Myr) expansion phases of the process. In this
work, we test our code with the 3D late expansion phase simulation, which we name the
Starbench test. The problem is insofar challenging since it involves an intricate combina-
tion of fluid dynamics, radiative transfer, microphysical heating, cooling, ionization and
recombination.

An analytic approximation for the time evolution of the ionization front (IF) is given by
Spitzer (1978)

RSpitzer(t) = RS

(
1 + 7 cionized t

4RS

)4/7
, (6.8)

where

RS =
(

1 +
3 Ṅ m2

p

4π αB ρ2
0

)1/3

(6.9)

is the Strömgren radius (Strömgren 1939), cionized = 12.85 km s−1 is the sound speed in
the ionized gas inside the isothermal bubble of Tionized = 104 K. Ṅ = 1049 s−1 is the
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rate at which the source at the center emits hydrogen ionizing photons (Eν > 13.6eV),
mp = 1.67 × 1024 g is the proton mass, and αB = 2.7 × 10−13cm3s−1 is the recombination
coefficient. The density of the surrounding neutral cloud of only hydrogen gas (γ = 5/3)
is taken to be ρ0 = 5.21 × 10−21g cm−3 and has a temperature of Tneutral = 103 K. The
corresponding sound speed is then cneutral = 2.87 km s−1. If, during the simulation, the
temperature in the neutral gas exceeds Tshell = 300 K, it is instantaneously cooled to
Tshell. Consequently, the shell of shock-compressed neutral gas immediately ahead of the
expanding IF is effectively isothermal. The cooling limits the thickness of the shell and
makes it resolvable for the numerical hydrodynamics method. The given parameters result
in a Strömgren radius of RS = 0.3141 pc.

Since the Spitzer solution (6.8) is only valid for the very early expansion phase, Bisbas
et al. (2015) proposed a heuristic equation (equation (28) in Bisbas et al. (2015)) giving
a good approximation of the position of the ionization front at all times

RStarbench = RII +
(
1 − 0.733 exp(−t/Myr)

)
(RI −RII) (6.10)

where RI and RII are solutions to the ordinary differential equations (8) and (12) in Bisbas
et al. (2015). For brevity we omit the explicit definition of these and refer to the paper.

We run our simulation to final time T = 1.5 Myr and set the domain to Ω = [0, 3 pc]3,
which only represents one octant of the whole setup. Since the model is spherically
symmetric around the emitting radiation source situated at the x⃗ = (0, 0, 0)T , we can
speedup the simulation considerably. The resolution ranges from 323 cells to 1283 cells.
The boundaries of the domain touching the coordinate origin are reflecting walls while
the rest are set to outflow. The ionized bubble is expected to occupy most of the domain
by the end of the simulation.

Figure 6.25 is a snapshot of the expanding bubble at time t = 0.8 Myr showing a density
slice at constant z = 0. The dark violet region of lower density is completely filled with hot
gas, photo-ionized by the radiation emitting point source sitting in the lower left corner.
The dashed white circle demarks the ionization front separating the inner, ionized medium
from the surrounding, neutral medium of higher density. The dashed circle is computed
with the Starbench solution (6.10) confirming excellent agreement between theoretical
and numerical results.

185



6.3. Numerical Results

Figure 6.25: Density slice of the Starbench test setup at simulation time t = 0.8 Myr
computed with our DGFV4 solver and a maximum resolution of 2563 cells. The dashed circle

highlights the Starbench solution given by (6.10). The black lines depict the AMR grid.

Additionally, we plotted the position of the ionization front over the course of our simu-
lation, which we retrieved from snapshots taken at regular time intervals. The position
of the IF is determined by calculating the mean radius, where the shell-averaged ion-
ized medium drops to 50 %, signaling the rapid transition to the neutral medium. The
result is shown in Figure 6.26 together with the Starbench solution (6.10) (black solid
line) and the Spitzer solution (6.8) (gray dashed line). Clearly, our numerical solution
matches the Spitzer solution only at very early times, but there is good agreement to the
Starbench solution throughout the whole simulation. We ascribe the deviation observable
from t = 1.1 Myr on-wards to the bubble nearing the boundaries of the domain and the
still rather low resolution. Investigations with identical parameters but different solvers
in FLASH, such as PPM, revealed the exact same behavior, hence the phenomenon is not
rooted in our fluid solver.
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Figure 6.26: Ionization fronts over time computed with the DGFV4 solver. For reference the
Spitzer solution (6.8) and the Starbench solution (6.10) are given.

From a technical point of view, this particular test setup is remarkable, since it unites
a large number of numerical components into one simulation. The complex interplay of
physics and chemistry, especially the correct handling of a very sharp transition of a two-
component (ionized/neutral) medium intertwined with ionization, recombination, heating
and cooling is a major challenge for every fluid dynamics code.

6.4 Final Remarks

Considering the previous comments in this chapter, whenever we do multi-physics simu-
lation with AMR, gravity, chemistry, etc. in FLASH we are limited to at most formally
second order accuracy; even though our fluid solver in its own right defaults to fourth
order accuracy in space. In order to take full advantage of the potential benefits of higher
order methods in general, all steps in the simulation chain must be designed and executed
with high order in mind. According to the authors, this has been done, for example, in
the high order DG FLEXI code (Krais et al. 2020). However, as the saying goes “Rome
wasn’t built in a day”, our primary goal was to get DG up and running within a com-
prehensive astrophysics framework. After achieving the first milestone, a gradual shift
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towards “pure” high order simulations might be feasible. Clearly, this is only possible
with direct feedback by and in close collaboration with the astrophysics community.

188



Chapter 7

Simulations

7.1 Introduction

In this chapter, we present a number of interesting astrophysical applications, where we
investigate the strengths and weaknesses of our DGFV4 solver in FLASH. We seek to learn
under what conditions the DG scheme yields superior results and when it underperforms.
We show four exemplary astrophysics simulations each with different multi-physics aspects
and varying demands on the fluid solver.

Since the standard solver for MHD in FLASH, an unsplit, staggered mesh solver (Lee
2013), is not robust enough for these kind of simulations, we compare our results with the
seasoned fluid solvers Bouchut5 (Bouchut et al. 2010), a well-tested, second order, split
solver for ideal MHD also readily available in FLASH. For the sake of clarity and to keep
this chapter succinct and compact, the reference results are presented in the appendix of
this thesis. Respective pointers are given in the text accordingly. As time integrator in
DGFV4 we use the third order, four stages SSP-RK(4,3), the same as in the test cases in
the chapter before.

7.2 Young Supernova Remnant

The setup is borrowed from Markert et al. (2021), where a simplified model of the Tycho
supernova is described. The Type Ia stellar explosion is named after the famous Danish
astronomer Tycho Brahe, as he was first to officially report the supernova in the year 1572.
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Nowadays, we know that this object, identified as SN 1572, is located in our Galaxy, is
over 10,000 lyr away from Earth and has a diameter of 10 pc. Because of its proximity and
enormous luminosity, the supernova was so bright that it could be seen with the naked
eye at daytime (Rest et al. 2008). In addition to actual astronomical observations, the
results in Markert et al. (2021) serve as our reference, since the underlying physics and
the setup parameters discussed in this section are identical. In the following, we replicate
the setup description with minor adaptations related to our DG solver in FLASH.

Supernova models have been analyzed and discussed for many decades and since they unite
a broad range of features such as strong shocks, instabilities and turbulence, they resemble
a good test bed for our novel shock capturing approach in combination with AMR. The
general sequence of events of the presented supernova simulation is like this: We start
with a constant distribution of very low density resembling interstellar media (ISM) that
typically fills the space between stars. When a star explodes by turning into a supernova
it ejects its own mass at very high speeds into the ISM preceded by a strong shock front
heating up the ISM. The ejected mass is rapidly decelerated by the swept-up ISM giving
rise to a so-called reverse shock that travels backwards into the cool inner region. The
interface, or more precisely the contact discontinuity, between shocked ejecta and shocked
ISM is unstable and leads to a layer of slowly growing Rayleigh-Taylor instabilities. This
gradually expanding layer, called supernova remnant, is of special interest, since this is
where astronomical observations reveal a lot of ongoing physics and chemistry, especially
driven by mixing and turbulence.

We adapt the setup descriptions in Chevalier (1982); Fraschetti et al. (2010); Ferrand
et al. (2012), where we have the initial (internal) blast energy E and the ejecta mass M
given in cgs (centimeter-gram-seconds) units. It is beneficial to convert the given units
to convenient simulation units reflecting characteristic dimensions of the physical model
at hand. Table 7.1 lists the conversion between cgs and simulation units and table 7.2
lists the initial parameters used in this simulation. The ambient density ρa is related to

Table 7.1: Conversion from cgs units to simulation units.
quantity cgs units simulation units

mass g M⊙ = 1.989 × 1033 g
time s yr = 3.154 × 107 s

length cm pc = 3.086 × 1018 cm
temperature K K
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7.2. Young Supernova Remnant

Table 7.2: Hydrodynamical parameters in cgs units and simulation units.
description cgs units simulation units

domain size L = 1.543 × 1019 cm L = 5 pc
blast energy E = 1051erg E = 5.2516 × 10−5 M⊙

pc2

yr2

ejecta mass M = 2.7846 × 1033 g M = 1.4 M⊙
ambient density nH = 0.13 cm−3 ρa = 2.4539 × 10−3 M⊙

pc3

ambient temperature T = 104 K pa = 2.1309 × 10−13 M⊙
pc yr2

the mono-atomic particle (hydrogen) density nH via ρa = mu nH , where mu is 1
12 of the

mass of a carbon-12 atom. The ambient pressure pa is calculated from the ideal gas law,
i.e. pa = nH kB T with the Boltzmann constant kB. There is some ambiguity regarding
the ambient gas temperature T . The literature mentions a warm and neutral interstellar
medium which is attributed to temperatures between 6 × 103 K and 104 K. The heat
capacity ratio is fixed to γ = 5/3. The simulation time spans a period from t0 = 10 yr
to T = 500 yr. The expansion of the forward shock (eq. (7.3)) is then expected to
approximately reach RFS = 5 pc, which determines the size of the computational domain
L := 5 pc. Fig. 7.1 depicts a schematic of the simulation setup. Due to the rotational
symmetry of the setup it is sufficient to simulate just one octant of the supernova. The

0

x

z

y

L = 5 pc

blast center

slice for
visualization

Figure 7.1: Computational domain (cubic box) covering one octant of the supernova model.
The faces at the coordinate axes are set to reflecting walls while the opposite sides are set to

outflow.

following formulas have been derived in Chevalier (1982) and were adapted to the current
setup, i.e. power-law indices of (s, n) = (0, 7). The self-similar solution at initial time
t0 = 10 yr within the power law region, respectively the blast center, is given by

r(t) = t

√
5
3
E

M
and ρ(t) = 25

21π
E2

M
t4 r(t)−7. (7.1)
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We initialize the density as

ρ0(x⃗) = ρa + ρ(t0) ·


1, |x⃗| ≤ r(t0),(

|x⃗|
r(t0)

)−7

, |x⃗| > r(t0),
(7.2)

and the total energy with (6.6), where p0 = pa, d = 3 and σ = 3
4 r(t0). The initial

momentum is (ρ v⃗)0 = 0⃗. Since we are only interested in the evolution of the instability
layer of the supernova, we apply the following rules for mesh refinement and coarsening.
The expansion radius of the forward shock over time is given by

RFS(t) = 1.06
(
E2

M ρa

)1/7

t4/7. (7.3)

This allows us to assign an adaptive, high resolution shell of maximally refined elements
following the remnant as it expands into the computational domain. The inner and outer
radii of the shell are estimated as

Rinner(t) = 0.7RFS(t) and Router(t) = 1.15RFS(t), (7.4)

which have been found adequate via numerical experimentation. Moreover, up to t =
200 yr we enforce Rinner = 0, which ensures that the first phase of the explosion is well
resolved in any case. The refinement levels range from 3 to 7 (FLASH convention), which
translates to a FV equivalent resolution from 22 · 8 = 16 up to 26 · 8 = 512 cells in each
spatial direction.

We performed a purely hydrodynamical simulation with our 3D (single-level) blending
scheme DGFV4 in FLASH, which took 24.26 hours on ODIN with 12×16 cores. Figure 7.2
shows slices of the density (top) and the mass tracer field (or mass scalars) (bottom) at
final simulation time of T = 500 yr. Again, mass scalars are advected alongside the density
and are a versatile tool for tracing different mass quantities. For example, heavier elements
such as metals are usually swept up by supernova explosions and their distribution gives
insights into the intricate structure of supernova remnants. The exact position of the slices
shown here are also sketched in Figure 7.1. The shock front partially left the domain,
which is not considered a problem since the region of interest, namely the instability layer,
is still properly covered. The noise in the density near the plot axes is caused by the
“carbuncle” phenomenon, a well-known issue for many numerical schemes at grid-aligned
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shocks and discussed, e.g., in Quirk (1997); Pandolfi and D’Ambrosio (2001); Dumbser
et al. (2004). The areas of no interest, i.e. the hot outer region as well as the cold inner
region, are by default only coarsely resolved by the AMR mesh. Figure A.3 in the appendix
shows reference results by the blended multi-level DG schemes (Markert et al. 2021)
implemented in nemo with targeted maximum orders of two (DGFV2), four (DGFV4)
and eight (DGFV8). Clearly, an increase in accuracy order leads to a much more detailed
remnant structure emphasizing the advantage of higher order schemes in resolving small
scale turbulence driven by Rayleigh-Taylor instability. For the most part, the blended
fourth order DGFV4 implementations in nemo and in FLASH are very similar, hence they
achieve comparable ranges of scales in their respective solutions. Second order schemes
are at disadvantage for this kind of setups considering the smeared out results of DGFV2
in Figure A.3. We note that Bochut5’s solutions are very similar to DGFV2. We omitted
Bouchut5’s results, since they give no further insights.

The blending factor is shown in the top row of Figure 7.3. The band of highly refined
elements is clearly visible following the remnant as intended. Two distinctive lines of
blending activity trace the front and reverse shocks while there is only minor activity in
the remnant effectively stabilizing the DG scheme. The bottom plot in Figure 7.3 shows
the slice of the turbulent Mach number (3.12) justifying the correct blending activity of
our scheme. At shocks the velocity divergence is always very strong causing high turbulent
Mach numbers. The remnant, on the other hand, is dominated by subsonic turbulence
at the boundary between incompressible and compressible flow (T ≈ 0.3 according to
Section 3.3) with small patches of higher compressibility (T ≈ 0.5). The good performance
of higher order DG in these turbulent lower-mach regimes has already been extensively
discussed in the literature, e.g. Gassner and Beck (2013); Beck et al. (2014); Garai
et al. (2015); Bauer et al. (2016); Flad and Gassner (2017). We ascribe the spuriously
high values in turbulent Mach number and the intensified blending activity in the inner
regions to the extremely under-resolved solutions. Nevertheless, the under-resolution near
the center does not negatively impact the dynamics in the remnant. Hence, we see no
reason to increase the resolution there and sacrifice execution speed.

Figure 7.4 shows a section of an actual false color image (left) of the Tycho supernova
remnant shot by Eriksen (2011) and the Chandra X-ray Observatory operated by NASA.
Low-energy X-rays (red) in the image show expanding debris (remnant) from the explosion
and high energy X-rays (blue) show the forward shock. The right side in Figure 7.4
depicts the column sum of density Schlieren of our simulation with DGFV4 in FLASH.
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Considering that SN 1572 is roughly 450 yr old, we took the snapshot at respective
simulation time of 450 yr and montaged the astronomical observation side by side with
the density schlieren plot. The positions of the forward shocks match nicely, indicating
that the model despite its simplicity already describes the dynamical processes reasonably
well. The remnant of the SN 1572 seems to cover a much larger region; even penetrates
the forward shock. Presumably, the resolution in our simulation is not high enough to
allow for sufficient growth of the remnant.
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Figure 7.2: Slices of density (top) and mass scalars (bottom) at z = 1 pc and final simulation
time T = 500 yr of the young supernova remnant simulation carried out by the DGFV4

scheme in FLASH. The noise in the density near the plot axes are caused by the carbuncle
phenomenon, a well-known issue for many numerical schemes at grid-aligned shocks.

195



7.2. Young Supernova Remnant

Figure 7.3: Slices of blending factor (top) and turbulent Mach number (bottom) at z = 1 pc
and final simulation time T = 500 yr of the young supernova remnant simulation carried out

by the DGFV4 scheme in FLASH. The visible numerical artifacts in the inner region are
discussed in the text.
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Figure 7.4: Comparison of a false-color photo (left) of SN 1572 and a density schlieren
(column sum) plot (right) computed from our simulation data at time t = 450 yr. The photo

shown here is only segment of a much larger photo. Image source: Eriksen (2011).

7.3 Differentially Rotating MHD Torus

Here, we present results of a three-dimensional global MHD simulation of magneto-
rotationally instabilities (MRI) growing in a differentially rotating torus initially threaded
by a toroidal magnetic field (Okada et al. 1989). The setup description and some of the
results have also been published in Markert et al. (2022). Here, we replicate the setup
description, append additional plots and discuss further insights. After several rotation
periods the inner region of the torus becomes turbulent due to the growth of the MRI
fueling efficient angular momentum transport processes (Velikhov 1959; Chandrasekhar
1960; Balbus and Hawley 1990). Magnetic loops emerge by the buoyant rise of magnetic
flux sheets from the interior of the torus (Machida et al. 1999). Owing to this angular
momentum re-distribution, the torus becomes flattened to a disk, where interstellar ma-
terial gradually accretes to the massive source of gravity at the center. Consequently, this
process leads to various interesting phenomena such as X-ray flares and jet formation.

Such setups are usually modeled with the ideal MHD equations in cylindrical coordinates
(r, ϕ, z), but in this work we resort to the Cartesian coordinate system (x, y, z). Following
Machida et al. (1999), we adopt an equilibrium model of the magnetized torus in order to
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initialize the setup. The scales of the model are completely determined by the following
parameters: gravitational constant G, mass of the central object M , initial angular mo-
mentum of the torus L, median radius of the torus r0, characteristic density of the torus
ρ0, magnetic field strength of the initial toroidal magnetic field Bϕ and the initial ratio of
gas pressure to magnetic pressure β0. For convenience we set all aforementioned parame-
ters to unity: G = M = L = r0 = ρ0 = Bϕ = β0 = 1. We assume the polytropic equation
of state p = K ργ with constant K = 0.05 and γ = 5/3. The inviscid, non-resistive torus
is embedded in non-rotating, non-self-gravitating ambient gas (ρ = 10−5) and evolves
adiabatically. Radiative cooling effects are neglected. For the static gravitational field
caused by the central mass, we use the Newtonian potential provided by the PointMass
module. The Alfvén wave speed is calculated according to Okada et al. (1989) as

c2
Alfvén = 2K

β0

(
ρ r2

)γ−1
with r2 = x2 + y2 (7.5)

and the sound speed csound is defined by (3.10). We transform the equation of motion
(Machida et al. 1999) to the potential form

ψtorus = const. = −GM

r
+ L2

2 r2 + c2
sound
γ − 1 + γ c2

Alfvén
2 (γ − 1)

∣∣∣∣∣∣
r = r0

(7.6)

and obtain an expression for the density distribution of the initial torus

ρtorus =
max

(
0, ψtorus +GM/R − L2/(2 r2)

)
K γ/(γ − 1)

(
1 + r2 (γ−1)/β0

)
1/(γ−1)

. (7.7)

The torus rotates differentially according to the Keplerian velocity vϕ =
√
GM/r. The

computational domain is set to Ω = [−7, 7]3 with outflow boundary conditions at all faces.
The AMR grid is bounded between refinement levels of 643 cells to 2563 cells. The first
row in Figure 7.5 shows what the initial torus looks like in our setup.

After several periods, regions of dominating magnetic pressure (β < 1) emerge, where
magnetic flux buoyantly escapes from the disk leading to violent flaring activities. The
loop-like structures, similar to those in the solar corona, are also visible in our simulation
after eight rotation periods as shown in Figure 7.5 in the second and third row. This setup
shows that the DGFV4 solver is capable of simulating complex MHD flow configurations
under the influence of a static gravitational potential, giving rise to magnetically driven
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structures over several spatial scales.

Figure 7.6 depicts slices of the turbulent Mach number T (left) and the blending factor
(right). Evidently, the disk is only moderately compressible with low T in the outer
regions (r ≈ 5) and only needs minor blending. The compressibility increases considerably
towards the center and the outer boundary of the disk is clearly marked by a sharp
disruption of the velocity field in radial direction. This also visible in the left plot of
Figure 7.7, showing slices of the actual velocity field. Although, this region is not a
“classical” shock, blending is still heavily triggered to stabilize the computation.

Another interesting aspect of this simulation is observable in Figure 7.7 on the right
side showing the velocity field in the x-z plane. Magneto-rotational forces throw a jet of
material at high speed from the disk’s center in opposite directions. The flow at the center
is generally very challenging in such simulation, and our DG scheme is not robust enough,
and falls back to the low order FV scheme. The study of such jets is subject of active
research and even today not all processes involved in the complex dynamics in observed
jets are fully understood. Hence, there is an urgent need for very accurate, robust fluid
schemes, which preserve angular momentum and also ensure high fidelity in modeling
the intricate magneto-rotational dynamics at the center, where the speed of rotation is
enormous.
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Figure 7.5: MHD torus simulation at the initial time (top row) and after 8 periods carried
out by our DGFV4 solver in FLASH. Shown are slices of the density (middle row) and
magnetic field (bottom row) in x-y and x-z plane. Image source: Markert et al. (2022).
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Figure 7.6: Slices of turbulent Mach number and blending factor in the x-y plane for the
MHD torus simulation after 8 periods carried out by our DGFV4 solver in FLASH.

Figure 7.7: Slices of velocity field in x-y and x-z planes for the MHD torus simulation after 8
periods carried out by our DGFV4 solver in FLASH.

In the following, we present a small comparative study of this setup. We run a total of
six simulations: three different resolutions of 643, 1283, and 2563 cells each with the two
MHD solvers Bouchut5 and DGFV4 in FLASH. All runs are conducted on the ODIN
cluster with 16 á 16 cores. This gives a total cpu count (#cpus) of 256 cores.

The results at final simulation time are shown in Figure A.4 and Figure A.5 in appendix
A.4. The DGFV4 solver shows finer structures and more scales in the disk at every

201



7.4. Expansion of HII Region into Fractal Medium

resolution level compared to Bouchut5 and is capable to resolve magneto-rotationally
driven outflows at lowest resolution levels.

In Table 7.3 we list the runtimes of all six simulations. Bouchut5 is a split solver and
thus in general has a larger time step (about a factor of 2) compared to unsplit schemes.
Hence, the number of time steps (#steps) are lower for Bouchut5 compared to DGFV4,
which results in overall faster completion times for the same resolution. To further assess
our implementation, we also compute the throughput (TP) according to (5.3). Note, that
the MPI-parallelized code scales better with increasing resolution resulting in higher TP
for both schemes. A drawback of DG schemes compared to pure FV discretizations is that
the spatial operator spectra are more stiff and hence need more stable time integration
methods, such as the high-order RK method used in this comparison. This means, that
the DGFV4 discretization has to be called four times per time step, resulting in longer
runtimes. If we compare, however, the TP of both schemes, we see that our DGFV4
implementation is actually faster than the Bouchut5 implementation as we have already
seen in other runtime comparisons in this thesis.

Table 7.3: Runtimes of the MHD torus setup for the Bouchut5 and our DGFV4 solver
implemented in FLASH. All simulations ran on the cluster ODIN on 16 nodes á 16 cores. The

definition for the computational throughput (TP) is given by eqn. (5.3).
solver DOF runtime [h] slowdown #steps slowdown TP [104 DOF/s] speedup

Bouchut5
643 0.03 1.0 940 × 1 1.0 0.91 1.0
1283 0.41 1.0 3012 × 1 1.0 1.66 1.0
2563 6.14 1.0 8374 × 1 1.0 2.48 1.0

DGFV4
643 0.08 2.67 1736 × 4 7.4 2.56 2.8
1283 1.18 2.88 4808 × 4 6.4 3.71 2.2
2563 17.24 2.81 13898 × 4 6.6 5.87 2.4

7.4 Expansion of HII Region into Fractal Medium

Radiation driven feedback from massive stars is believed to be a key element in the
evolution of molecular clouds. In this work, we utilize our new DGFV4 solver to simulate
the dynamical effects of D-type expansion powered by a single O7 star emitting ionizing
photons at 1049 s−1 located at the center of a molecular cloud. The cloud consists of 104

solar masses and stretches over a region of 6.4 pc in each direction, so the volume-weighted
mean density of the cloud amounts to ρ0 = 0.62×10−21 g cm−3. The setup description and
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some of the results have also been published in Markert et al. (2022). Here, we replicate
the setup, append additional plots and expand on further insights.

It is a well established fact that molecular clouds are rich in internal structure proba-
bly driven by pure turbulence (Klessen 2011; Girichidis et al. 2011) and subscribe to a
statistically self-similar fractal structure (Stutzki et al. 1998). Our goal is to model the de-
velopment of a molecular cloud having initial fractal dimension of D = 2.6 with a standard
deviation of the approximately log-normal PDF of σSTD = 0.38. With these parameters
the cloud is initially dominated by small-scale structures, which are then quickly overrun
by the advancing ionization front, thereby producing neutral pillars protruding into the
HII region. The ionized gas within the expanding hot bubble blows out through a large
number of small holes between these pillars. These regions are termed pillar-dominated
(Walch et al. 2012). Fractals with mass-size relations similar to those observed by Lar-
son (1981) can be created in Fourier space (Shadmehri and Elmegreen 2011), so we can
freely configure the fractal dimension D of the initial cloud. A detailed account on how
to construct such a fractal density distribution is presented in Walch et al. (2012).

The aspects of radiation physics are handled by the TreeRay module in FLASH which
we described in Section 6.3.5. Besides minor changes in setup parameters given below,
this setup uses the same parameters as in Section 6.3.5. In contrast to Section 6.3.5, we
simulate the whole expanding bubble, but keep the same maximum resolution at 1283

cells. Hence, the radiation source is at the center of the cubic computational domain
Ω = [−6.4 pc, 6.4 pc]3 and all boundaries are set to outflow. Radiative cooling effects
of the molecular cloud itself are neglected. The result at final simulation time T =
1 Myr can be seen on the right in Figure 7.8. The plot shows the column density in z-
direction uncovering the aforementioned pillars as a product of the turbulent-like density
distribution tearing apart the shell structure. A comparable example in our Galaxy is
the Rosette nebula, which is an expanding HII region powered by a cluster of several O-
type stars located in the outer zones of a giant molecular cloud (Wang et al. 2008, 2009).
A false-color image of the nebula taken by Corban with the Hubble Space Telescope
(ESA/ESO/NASA) is shown in Figure 7.8 on the left side.

The simulation took 13.41 hours with 4 × 16 cores on ODIN and went through 1243
timesteps. It is important to note that the lion’s share of the total runtime was occupied by
the physics computations: 1.49 hours (11 %) were spend on the hydrodynamics (DGFV4
solver) and 11.74 hours (87.5 %) were consumed by physics, i.e. Gravity and TreeRay.
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thus, a fluid solver that needs less total timesteps for such simulations is at advantage
with regards to completion times. At each additional timestep the expensive physics
computation are fired up, eventually adding up to much longer runtimes. Bouchut5’s
computation took only 424 timesteps and finished in 4.42 hours. A remedy to this issue
could be to apply sub-cycling in the fluid solver and to just compute the expensive physics
every couple of timesteps.

Figure 7.8: Observed turbulent D-type expansion within the Rosette nebula (left, Image
source: Corban) and simulation within a fractal medium run by our DGFV4 solver. The

false-color image on the left shows only a section of the much larger nebula with a radius of 20
pc taken by the Hubble Space Telescope (ESA/ESO/NASA). The right side shows the column

density along the z-axis:
∫ zmax

zmin
ρ(x, y, z) dz. Image source: Markert et al. (2022).

The result of the reference simulation by Bouchut5 with identical setup parameters is
shown in Figure A.6 in appendix A.5. The density plots by our DGFV4 solver seems
a bit diffuser than with Bouchut5. This suggest that the simulation is dominated by
the FV method in our blending scheme. To investigate this further, we plot slices of
the density (top left), together with temperature (top right), turbulent Mach number
(bottom left) and blending factor (bottom right) shown in Figure 7.9. Evidently, the
most interesting flow structure, the expanding, turbulent shell, gets only resolved by
the dissipative FV scheme. The activated blending (wide red circle) directly correlates
with regions of supersonic turbulent Mach number. As discussed before, higher order
DG schemes are not robust enough to compute under this regime and cannot act out
their superior resolution capabilities. Even though this setup combines multi-species and
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radiation physics in a very tough shock-turbulence regime, this simulation nevertheless
shows that our new “hardened” DG implementation in FLASH is capable of running such
complex multi-physics applications in astrophysical settings.

Figure 7.9: Turbulent D-type expansion within a fractal medium simulated by our DGFV4
solver in FLASH. Shown are slices of density, temperature, turbulent Mach number and

blending factor along the x-y plane at t = 0.7 Myr.

On a final note, we also document the simulation results for an extension to this setup,
where in addition to the expanding HII region, the radiating O-type star emits strong
stellar winds blowing away all matter in its vicinity. The effect is a near-vacuum bubble
around the star, which is an additional challenge for our DGFV4 scheme. It should
come as no real surprise that this simulation is also dominated by the FV method in our
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blending scheme. The results in form of density slices are shown in Figure A.7 by our
scheme and Figure A.8 by Bouchut5 in appendix A.6. Nonetheless, we put on record
that our DG implementation in FLASH is able to correctly carry out such setups, albeit
yielding more diffusive results compared to the reference solver at this point.

7.5 Molecular Cloud in Hot Galactic Wind

Even though the physical origin of hot galactic outflows is still not exactly understood,
it is well established that they significantly contribute to the matter transfer cycle in
star forming molecular clouds within galaxies. Hence, modeling the physical dynamics
and chemical processes in galactic clouds under the impact of supersonic cosmic winds
is another cornerstone in a comprehensive theory of star formation. Based on previous
work by Girichidis et al. (2021), we aim to perform an idealized simulation of a wind
tunnel experiment simulating an in-situ molecular hydrogen formation scenario of a tur-
bulent, warm, self-gravitating cloud with a number density of 1 cm−3 of mainly atomic
hydrogen and exposed to a magnetized, ionized, supersonic, hot wind. Strong magnetic
fields influence the gas dynamics and can redirect the flow, where the orientation of the
field in relation to the prevailing wind direction plays a critical role. In our case, the
initial magnetic field is parallel to the wind direction. The setup involves non-equilibrium
chemistry via a chemical network, which includes the abundances of ionized (H+), atomic
(H) and molecular (H2) hydrogen, carbon monoxide (CO), singly ionized carbon (C+),
and free electrons. The aspect of background heating through UV radiation is locally
attenuated by TreeRay in optically thick regions. The exact details are documented in
Girichidis et al. (2021).

The outline of the setup is as follows. The computational domain is an elongated box with
dimensions [−100, 900] × [−100, 100] × [−100, 100] pc with maximum AMR resolution of
640×128×128 cells, in which a spherical cloud with a temperature of 700 K and radius 50
pc is placed at the origin of the domain. The hot, fully ionized, ambient gas surrounding
the cloud has a uniform total number density of 10−3 cm−3 and a temperature of 106 K.
The total mass of the background gas integrates to 870 solar masses. The cloud is initially
in pressure equilibrium with the ambient medium with all hydrogen in the neutral atomic
phase. The density of the cloud is close to uniform with a small asymmetric perturbation
to promote symmetry breaking. In addition to the density perturbation, a small turbulent
velocity field is applied in the cloud. The cloud is also initially permeated by a turbulent,
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divergence free magnetic field with a root-mean-square field strength of a 10−6 G, equal
to the magnetic background field.

Evidently, in this setup there are a lot of unmentioned, rather complex, astrophysical
technicalities involved; only fully comprehensible by experts in the field. Thankfully, the
simulations in Girichidis et al. (2021) were also conducted with FLASH and the main
author granted us free access to their complete set of original setup files, allowing us to
readily commence the simulations ourselves without further ado. We want to emphasize
again that our DG solver in FLASH is indeed “plug-and-play”, since we could carry out
this unfamiliar setup in a straightforward manner.

In Figure 7.10 we show the column sum of total density in log-scale of the churned up
cloud after 20 Myr together with column sums of the mass weighted abundances H+, H,
H2, and CO. The reference solution conducted with Bouchut5 is shown in Figure A.9 in
appendix A.7. On large scales, both solutions are comparable with similar amounts of
H2 and CO accumulated at identical simulation times. As observed before in Section 7.4,
the solution by DGFV4 is rather diffusive. In Figure 7.11 we plot slices of the turbulent
Mach number (top) and the blending factor (bottom) along the x-y plane, which confirms
the correlation of very compressive flows with excessive triggering of the blending. We
conclude that with our current state-of-the-art high order DG implementation in FLASH,
this setup will not profit with regards to getting a larger range of spatial scales with equal
DOF compared to established FV methods in FLASH.
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Figure 7.10: Molecular cloud within a jet of hot galactic outflow run by the DGFV4 solver.
Shown is the column density along the z-axis for the total mass and different species.
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Figure 7.11: Molecular cloud within a jet of hot galactic outflow run by the DGFV4 solver.
Shown are slices along the x-y plane of the turbulent Mach number and the blending factor at

t = 20 Myr.

On a final note, we present an example in our Universe with similar characteristics as the
shredded cloud setup shown here. The so-called Smith’s cloud in Figure 7.12, discovered
by Smith (1963), has dimensions of roughly 3 kpc by 1 kpc and contains over a million
of solar masses (Lockman et al. 2008). The cloud is moving towards the disk of our
Galaxy with high velocity hitting gas in our Galaxy’s outskirts, which gives it the shape
resembling a comet with a tail. The false-color image was taken by Saxton (2008) with
the Green Bank Telescope.

Figure 7.12: False-color image of Smith’s Cloud as an example of a high-velocity cloud
hitting gas in our Galaxy’s outskirts, which gives it the shape resembling a comet with a tail.
The image shown here was rotated and cut to size in order to fit the page formatting. Image

source: Saxton (2008).
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Chapter 8

Conclusion & Outlook

8.1 Recapitulation

In engineering applications, discontinuous Galerkin (DG) schemes have been proven to be
a powerful and flexible class of high order methods for solving differential equations such
as the hyperbolic conservation laws of hydrodynamics discussed Chapter 2. However,
the potential benefits of DG for applications in astrophysical contexts is still relatively
unexplored in its entirety. Of course, there have already been published several stud-
ies surveying DG for astrophysical flows in the past. But the adoption of DG by the
astrophysics community is just beginning to gain traction and integration of DG into
established, multi-physics simulation frameworks for comprehensive astrophysical model-
ing is still lacking. It is our firm believe, that the full potential of a novel fluid solver
only shows under the pressure of real-world simulations with all aspects of multi-physics,
challenging flow configurations, resolution and runtime constrains, and scalability on high-
performance clusters involved. Thus, we saw the pressing need to propel DG from the
well-trodden path of cataloguing test results under “optimal” laboratory conditions to the
harsh environment of large-scale astrophysics simulations. In Chapter 3 we outlined the
various aspects of our envisaged simulations and drew conclusions what a new DG solver
has to bring along to be useful.

Consequently, the core of this thesis is the development and deployment of a robust DG
scheme for the ideal MHD equations on 3D Cartesian grids with AMR for astrophysical
flows. We chose to implement our new scheme within the venerable simulation frame-
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work FLASH, with a specific focus on multi-physics problems in astrophysics. It entailed
modifications of the vanilla DG scheme to make it fit seamlessly within FLASH in such
a way, that all other physics modules can be naturally coupled without additional im-
plementation overhead. A key ingredient is that our DG scheme uses mean value data
organized into blocks - the central data structure in FLASH. Having the opportunity to
work on mean values, allowed us to rely on a rock-solid TVD FV scheme as “backup”
when our high order DG chocked in cases where the flow configuration got too fierce.
Finding ways to combine the two schemes in a fail-safe manner without loosing primary
conservation while still maintaining high order accuracy for smooth, well-resolved flows
involves a series of careful considerations, which we documented at length in Chapter 4.
The result of our work is a shock capturing scheme - a hybrid between FV and DG - with
smooth transitions between low and high order fluxes according to solution smoothness
estimators. Along the way, we also investigated the benefits and pitfalls of integrating
end-to-end entropy stability into our numerical schemes, especially with focus on highly
compressible turbulent flows.

In Chapter 5 we introduced our Fortran-based CFD code nemo specifically suited for
rapid prototyping numerical schemes. The code is capable of running small- to medium-
sized simulations leveraging hybrid parallelization with OpenMP and MPI, and supports
AMR powered by the p4est octree library. Moreover, nemo was an integral part in de-
signing and testing the aforementioned shock capturing scheme by filling the gap between
the rigidity of pre-existing DG codes and the overwhelming complexity of full-stack as-
trophysics frameworks. Tweaking our implementation for maximum execution speed and
near-perfect scalability were, however, not our main goal, even though DG has a huge
potential in this regard. First and foremost, we focused our efforts on robustness and
versatility.

After a long series of design iterations, fine-tuning and putting the scheme to the acid
test with nemo, we were finally confident enough to successfully transplant our scheme
into FLASH. In Chapter 6 we give implementation details and discussed a long range of
stringent test cases showing that the our DG scheme works properly and is fully connected
to all multi-physics modules. Step by step, the complexity of the test cases is increased
by using setups that require increasingly complex physical modules and features. Finally,
a fully coupled multi-physics simulation setup shows that the novel DG solver in FLASH
is ready for use in full-stack astrophysics simulations and thus ready for assessments and
investigations under real-world conditions.

211



8.2. Revisiting the Scientific Objectives

Finally, we ventured into a broad range of astrophysics applications each with different
multi-physics aspects and varying demands on the fluid solver. In Chapter 7 we show and
discuss our results of five exemplary setups, from the rapid expansion of a supernova to
chemical conversions in cosmic clouds under the impact of supersonic winds.

Based on the experience we gained from the simulations we can now answer our research
questions raised in the introduction of this thesis.

8.2 Revisiting the Scientific Objectives

Hinchliffe’s rule, named after particle physicist Ian Hinchliffe, states that if a research
paper’s title is in the form of a “yes-no” question, the answer to that question will most
likely be “no” (Peon 1988). Among journalists this adage is also commonly known as
Betteridge’s law of headlines. It is based on the assumption that if the authors were
confident that the answer was “yes”, they would have presented it as an assertion; by
presenting it as a question, they are not accountable for whether it is correct or not. Of
course, this polemic statement is controversially disputed (Shieber 2015) and should not
be taken too seriously. Nevertheless, in every banter there is a dash of truth.

In the context of this thesis, we formulated four basic questions serving as guard rails on
the way towards a robust and accurate DG scheme for challenging astrophysics applica-
tions. All in all, we can confidently answer all four questions with “yes” whilst taking
into account some compromises we accepted in order to reach our goals.

The first objective aims at the question if there are high order DG schemes which can
successfully carry out compressible turbulent flows.

1.) Can we successfully run a high order DG method in transonic compressible
inviscid flow regimes?

We can report that all standard and entropy stable fourth order DG methods eventually
crash for a specifically designed test case except for the entropy stable Flux Differenc-
ing DG variant with Gauss quadrature rule. The failure of the standard DG variants
was expected, since they are already known for their susceptibility to aliasing even in
weakly compressible turbulence simulations. The impracticalness of the entropy stable
DG variants with Lobatto quadrature for compressible flows is disappointing, since its
straightforward derivation, simple implementation and reasonable runtime performance
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are great arguments in its favor. Although the entropy stable Flux Differencing Gauss DG
is surprisingly robust, it has its drawbacks. The entropy boundary projection, necessary
for entropy consistency, is detrimental in the proximity of shocks, since it greatly ampli-
fies the oscillations of the already “troubled” solution polynomial. Moreover, benchmarks
reveals that the scheme is up to six times slower than the standard DG methods. Conse-
quently, we aim for the standard method with Gauss quadrature as baseline for our high
order DG scheme. Instabilities due to aliasing or general under-resolvement are effectively
handled by our convex blending scheme without unacceptably smearing out the solution.
We conclude that assuring entropy stability on a discrete level alone is not enough for high
order methods in tackling under-resolved, compressive flows and can be even detrimental.
Thus, we relaxed our insistence on perfect entropy consistency in our codes. We did not
observe any significant falsities in our numerical solutions due to excessive accumulation
of numerical entropy errors.

2.) Can we devise a shock-capturing scheme for high order DG, which is capa-
ble of resolving strong shocks in a robust and sharp manner while preserving
high order accuracy in smooth, well-resolved flows?

We devised a novel convex blending scheme combing the robustness of a second order
TVD FV scheme with the fidelity of a fourth order DG method. We show that our shock
capturing approach is capable of handling strong shocks in a robust manner and yields
sharp solution profiles. Furthermore, the blending scheme is high order in well-resolved
flows and effectively stabilizes the high order DG in under-resolved, compressive flows.
We assume that the dissipative contribution of the FV scheme is sufficient to compensate
for spurious entropy growth caused by the DG scheme. The divergence constraint by the
MHD equations is naturally been taken care of due to hyperbolic divergence cleaning.

3.) Can we fully integrate a “hardened” DG method into a popular, actively
maintained multi-physics framework for large-scale astrophysics applications,
such as FLASH?

We successfully integrated our convex blending scheme into the simulation framework
FLASH and verified the correct coupling with all aspects of multi-physics by a large range
of stringent test cases. Moreover, we showed that the runtime performance is reasonable.
That is, on average our solver is five times slower compared to other established fluid
solvers in FLASH. Even though our implementation is faster in terms of raw throughput,
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it is at disadvantage with regards to the tighter timestep constraints and the application
of multi-stage RK schemes.

4.) Is our new DG method capable of carrying out comprehensive multi-
physics simulations?

Our new solver module in FLASH is capable of running a broad range of astrophysics
simulations with different aspects of multi-physics and varying demands on the solver.
Even though our solver is able to robustly carry out simulations with predominantly
super- to hypersonic turbulent flows, it is not superior with regards to solution quality
or wider ranges of larger to smaller scales as is expected from high order DG schemes.
The high order component in our blending scheme is not robust enough to withstand
the pressure of such highly demanding flow configurations and the fallback FV method
completely takes over, which is by construction much more dissipative. This observation
is in line with similar studies, for example, conducted by Ma et al. (2015). The multi-
physics aspects in the expanding HII region, the stellar feedback simulation and the cloud
shredded by hot cosmic winds are modeled correctly by our solver as we confirmed by
comparing with solutions from another second order FV fluid solver available in FLASH.
However, our solutions are visibly smeared out compared to the other solver. Evidently,
the reference solver is more sophisticated than our FV scheme and was especially designed
for this kind of simulations. On the other hand, for simulations with significant portions
of sub- to transsonic flows, namely the supernova explosion and the rotating MHD torus,
our high order DG method gives considerably more scales in the solution compared to
second order schemes at the same level of resolution. Blending is only triggered when
really needed to stabilize DG; be it in the proximity of shocks or occasionally, when
under-resolved flow structures trip up DG.

We conclude that with our new convex blending scheme we can achieve superior results
with regards to the range of spatial scales for sub- to transsonic turbulent flows and with
isolated strong shocks. Multi-physics, such as gravity, radiative transfer and chemistry
networks function according to specification. Our implementation of a “hardened” DG
method in FLASH is ready for use and further assessment by astrophysicists.
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8.3 Follow-up Research

Guided by the answers to our research objectives, we propose three promising directions
for future research efforts that help to push forward the utilization of high order DG in
general and for astrophysics applications in particular.

1.) Augmenting the existing convex blending scheme

Evidently, there is a lot of room for improvement in our proposed blending scheme. At
first, a better FV scheme with more accurate reconstruction methods and more sophisti-
cated Riemann solvers will directly enhance resolution of flow structures in regions where
blending is frequently triggered. However, this measure might reduce the effectiveness in
stabilizing the DG scheme, since the fallback FV method becomes less dissipative. Sec-
ondly, smarter, physics-aware shock indicators might discern more precisely where and
when to activate blending. Better indicators in turn will pave the way for (re-)introducing
more sophisticated DG schemes such as the entropy stable Flux Differencing DG with
Gauss quadrature. More stable DG schemes allow to increase the accuracy order, which
in turn might benefit, for example, the supernova simulation and the rotating MHD torus
setup, presented in this thesis.

2.) Using invariant domain preserving DG schemes

Initiated by Guermond et al. (2018, 2019); Kuzmin (2020), recent developments in re-
searching robust DG schemes, called invariant domain preserving (IDP) DG, might be an
answer to supersonic turbulence simulations. IDP DG is based on the same fundamental
idea of blending a robust monotone scheme with an accurate high order method, but in-
fers the blending strength from positivity constraints and minimum-maximum principles,
for example, in density and pressure. Entropy consistency can be naturally guaranteed
(Kuzmin 2021) and limiting can be precisely adjusted on subcell level resulting in very
sharp shock fronts and detailed small scale flow structures even for challenging setups
(Pazner 2021; Rueda-Ramírez et al. 2022b).

Our solver module in FLASH is written in a modular fashion and offers a simple inter-
face, where a huge variety of DG implementations can potentially plug in. If IDP DG
turns out to significantly improve the solution quality of strongly compressible turbulence
simulation, our FLASH module can readily host such a new solver.

215



8.3. Follow-up Research

3.) Developing an efficient DG solver for a diffusive ISM model

A fundamental disadvantage of all proposed substitution and blending schemes in this
thesis and in the literature, is the inevitable loss of high order accuracy in the solution as
soon as the limiter is triggered. Additional conserved quantities, like angular momentum,
are generally not preserved by the monotone fallback method. Furthermore, it is question-
able if the simultaneous application of multiple fluid solvers within the same simulation
is a rigorous way to do numerics. Which weak solution does such a switching or blending
scheme converges to? Most certainly not to the superposition of the individual solutions
by both schemes, especially considering the high nonlinearity of the hyperbolic conserva-
tion laws in question. Frankly speaking, it is an open secret, and is has been mentioned in
several places throughout this thesis, that the actual purpose of such monotone fallback
schemes is to produce “dirty” but “cheap” dissipation in order to smoothen respectively
regularize the solution. In the spirit of artificial viscosity, it is more veracious to directly
include diffusion into the fluid model in the first place. These equations are then rig-
orously discretized by the high order DG machinery leading to a clean and performant
implementation, provided restrictive timestep constraints can be efficiently handled by
appropriate timestepping approaches, e.g., Dumbser et al. (2008); Gassner et al. (2008);
Lörcher et al. (2008); Hidalgo and Dumbser (2011). The idea of operating high order
schemes at the resolution limit, as we have done in this thesis, is probably ill-fated and
disregards the true power of high order DG schemes with spectral-like accuracy.

Diffusion in ISM models is not an unheard-of phenomenon in the astrophysics community,
e.g., Medvedev et al. (2017); Uchaikin and Sibatov (2019); Wang et al. (2021), but still
raises suspicion among many astrophysicists. But in fact, this is shortsighted since all
of their popular FV methods introduce dissipation through the back door anyway. Any
semi-discrete formulation of a robust FV scheme can be rearranged such that the evolution
equations split into convection and diffusion terms. Hence, in reality the purely inviscid
Euler equations are never solved, but a viscous approximation instead. Of course, for such
schemes the viscosity parameter ν scales with the grid parameter, ν ∝ ∆xk for k > 0, and
in the continuum limit, ∆x → 0, the vanishing viscosity solution of the original inviscid
equations is reached. As a matter of fact, Svärd (2018) argues in favor of a compressible
diffusive flow model and gives a couple of solid arguments based on physical deliberations.
Finally, we want to remind you that the very pioneers in CFD, VonNeumann and Richt-
myer (1950), already saw the necessity to stabilize their computations with the proper
amount of dissipation.
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Appendix

A.1 Satisfying the Element Entropy Condition via
Convex Blending (proof-of-concept)

Since we know that the FV scheme with appropriate interface fluxes satisfies the entropy
condition (2.15), we can utilize the blending scheme (4.100) in order to compensate for
spurious entropy growth induced by the DG scheme:

(1 − αq) ∆̇S
FV
q + αq ∆̇S

DG
q ≤ 0. (A.1)

Provided that ∆̇S
FV
q ≤ 0 we define αq to be

αq =
ϵ+

∣∣∣∆̇S
FV
q

∣∣∣
ϵ+

∣∣∣∆̇S
FV
q

∣∣∣+ τe max
(
0, ∆̇S

DG
q

) (A.2)

with a free parameter τe ∈ (1,∞), which amplifies the sensitivity of the indicator and a
compensation factor ϵ = 10−20 avoiding numerical problems in case

∣∣∣∆̇S
FV
q

∣∣∣ → 0. Fig-
ure A.1 shows the evolution of the entropy production rate for various DG variants sta-
bilized via the blending from above. The parameter τe had to be tuned individually for
each simulation in order to run till the final simulation time T = 10. The results shown
here are only a proof-of-concept and demand further investigations.
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A.1. Satisfying the Element Entropy Condition via Convex Blending
(proof-of-concept)
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Figure A.1: Evolution of the entropy production rates of MHD-KHI setup and various DG
variants stabilized via blending according to approximated entropy errors in each DG element.
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A.2. 3D MHD Blast run by Bouchut5

A.2 3D MHD Blast run by Bouchut5

Figure A.2: Slice of the magnetic pressure at constant z = 0 solved with the Bouchut5
scheme. The black lines on the left side highlight part of the AMR mesh and the gray stream

lines indicate the field spanned by the x- and y-component of the magnetic field. The
maximum resolution level is set to 2563 DOF.
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A.3 Young Supernova Remnant from Nemo

Figure A.3: left column: 2D density slice (see figure 7.1) showing the instability region
respectively remnant of the supernova at T = 500 yr simulated with the (from top to bottom)
DGFV2, DGFV4 and DGFV8 scheme. right column: 2D slice of the weighted blending factors
of the respective blending schemes at T = 500 yr. The black lines correspond to the element

boundaries of the Cartesian non-conforming mesh. Image source: Markert et al. (2021).
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A.4 Comparative Study for the MHD Torus Setup

Figure A.4: MHD torus after 8 periods run for max. resolutions (from left to right) 643,
1283, 2563 and two fluid solvers Bouchut5 (rows 1,3) and DGFV4 (rows 2,4). Shown are
log-scale density slices in the x-y plane (rows 1,2) and in the x-z plane (rows 3,4). Image

source: Markert et al. (2022).
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Figure A.5: MHD torus after 8 periods run for max. resolutions (from left to right) 643,
1283, 2563 and two fluid solvers Bouchut5 (rows 1,3) and DGFV4 (rows 2,4). Shown are

log-scale magnetic pressure slices in the x-y plane (rows 1,2) and in the x-z plane (rows 3,4).
The streamlines in white denote the magnetic field lines. Image source: Markert et al. (2022).
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A.5. Turbulent Expanding HII Region with Bouchut5

A.5 Turbulent Expanding HII Region with Bouchut5

Figure A.6: Turbulent D-type expansion into a fractal medium run by Bouchut5 solver at
final simulation time T = 1 Myr. Shown is the column density along the z-axis.
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A.6 Stellar Feedback into Turbulent ISM

Figure A.7: Stellar feedback simulation run by the DGFV4 solver. Shown is the density slice
along the x-y plane with annotations of the various flow features observable in the plot.

Figure A.8: Stellar feedback simulation run by the Bouchut5 solver. Shown is the density
slice along the x-y plane with annotations of the various flow features observable in the plot.
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A.7 Cloud in Hot Galactic Wind with Bouchut5

Figure A.9: Molecular cloud within a jet of hot galactic outflow run by the Bouchut5 solver.
Shown is the column density along the z-axis for the total mass and different species.
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