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Chapter 1.

Introduction

This thesis addresses the modeling and prediction of portfolio weights in high-dimensional

applications to returns on a set of risky �nancial assets with a particular emphasis on Global

Minimum Variance Portfolio (GMVP) allocations. A key aspect of active portfolio manage-

ment is the projection of weights that optimize portfolio holdings with respect to a repre-

sentative measure of an investor's preferences. Since the seminal work of Markowitz (1952),

such projections of optimal portfolio weights have generally been derived from projections

of the �rst two moments of asset returns. The set of mean-variance e�cient portfolios con-

tains all allocations that a rational, risk-averse investor would choose. They provide the

highest expected portfolio return for a given level of risk chosen according to the investor's

risk preferences. This includes the global minimum variance portfolio, which is chosen for

the special case of an in�nitely risk-averse investor as well as under the assumption that

expected returns are the same for all assets.

The global minimum variance portfolio allocates a given budget to n �nancial assets

in such a way that the variance and thus the risk of the portfolio return is minimized.

Thus, opposite to all other mean-variance optimal strategies, the weights of the GMVP are

solely a function of the (co)variation among the asset returns and do not explicitly depend

on their expectations. These, otherwise, have a large impact on the allocation (Best and

Grauer, 1991), but are notoriously di�cult to predict (Welch and Goyal, 2008), which has

been shown to lead to high estimation errors associated with poor out-of-sample performance

(Jobson and Korkie, 1980, 1981). Several studies present evidence that the GMVP allocation

generally has better out-of-sample performance than other mean-variance e�cient strategies,

even when performance measures that depend on average returns are considered (see e.g.,

Jagannathan and Ma, 2003; DeMiguel et al., 2009). As a result, GMVP is one of the most

widely used investment strategies by both practitioners and researchers in �nance.

Due to better data availability and higher computational power, modern asset allocation

usually considers hundreds of �nancial assets. The econometric problem, especially when

following the GMVP strategy, is to model the covariation between asset returns. Speci�-

cally, classical approaches rely on a plug-in approach to calculate the portfolio weights for

a given estimate of the joint covariance matrix Σ of asset returns. However, the number

of elements in Σ increases quadratically with the number of assets. This leads to critical
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Chapter 1. Introduction

concentration ratios, i.e., situations where the number of cross-sectional units is high relative

to the number of estimation periods, which implies that these approaches are prone to the

curse of dimensionality. This problem, which makes inference of covariances di�cult both

numerically and statistically, a�ects estimates of portfolio weights as well. The challenges

are even more pronounced when using dynamic models that predict conditional covariances

while accounting for the potential conditional heteroscedasticity that �nancial time series

typically exhibit.

To avoid substantial estimation errors, it is helpful to constrain the covariance: in addition

to sparsity assumptions or imposing factor structures, shrinkage techniques (Ledoit and Wolf,

2003, 2004, 2012, 2015) have proven to be very e�ective in reducing estimation noise. A

simple way to incorporate shrinkage into dynamic modeling approaches was proposed by

Engle et al. (2019), who use shrinkage estimates of the unconditional correlation matrix

as the target matrix in the dynamic conditional correlation (DCC) model of Engle (2002).

However, models for covariance matrices � even when designed to prevent over�tting � are

not directly related to the weight allocation problem that is actually at hand. Hence, there

is a risk that the �tted (potentially regularized) model will fail to capture the economically

important properties of weights and their dynamics while capturing irrelevant ones. This

implies, for example, that even when regularized covariance estimates are used, undesirable

or economically implausible allocations cannot be directly prevented.

Based on the argument that the portfolio weights are a scaled linear combination of the

entries of the inverse covariance matrix rather than the covariance matrix itself, it is also

possible to build a parsimonious model for the precision matrix of the data in order to

establish a more direct relationship of the estimation problem to the allocation problem. A

recent example is the approach of Callot et al. (2019), which combines LASSO (least-absolute

shrinkage and selection operator) estimation with a nodewise regression representation for the

elements of the precision matrix. Alternatively, portfolio weights can be modeled directly

from return observations, e.g., based on linear regression representations (Britten-Jones,

1999; Kempf and Memmel, 2006), where the population regression coe�cients implicitly

capture the correlation structure between the returns.

This thesis contributes to the literature by proposing several approaches to dynamic port-

folio optimization that di�er in their methodological approaches but agree in addressing the

challenges discussed previously: All proposed models allow for dynamic evolution of port-

folio weights and are speci�ed to allow scalability in terms of the number of cross-sectional

units from both a statistical and computational perspective. The models are designed to

predict portfolio weights that represent the quantity of interest, resulting in particularly

good out-of-sample performance compared to existing benchmarks. The focus is hereby on

GMVP allocations. Speci�cally, the dissertation includes two regression-based approaches

to directly infer the weights of the global minimum variance portfolio. While the �rst ap-

proach is a semiparametric loss function-based method that does not rely on distributional

2



assumptions for the returns, the second de�nes GMVP regression in a state-space framework,

using Bayesian inference that allows for data-driven regularization through the speci�cation

of the priors. The third approach presents a time-varying Gaussian graphical model for

the precision matrix of the return data. Equipped with adaptive penalties for the graph

and its evolution tailored to the allocation problem at hand, the detour via the precision

is rewarded by straightforward applicability to a broader class of (potentially constrained)

allocation problems than the �rst two approaches. All of the proposed models are com-

putationally tractable and applicable in large dimensional environments as well as under

challenging concentration ratios, making them valuable to practitioners and researchers in

the �eld of �nance and �nancial econometrics.

In total, this thesis comprises three self-contained essays on modeling and predicting

dynamic portfolio weights for �nancial asset returns. The essay in Chapter 2 is a joint paper

with Prof. Dr. Roman Liesenfeld and Jun.-Prof. Dr. Fabian Krüger. The paper in Chapter

3 is a joint work with Prof. Dr. Roman Liesenfeld and Prof. Dr. Guilherme Valle Moura.

The essay in Chapter 4 is a single authored project. The essays and my contributions to

them are summarized below.

Chapter 2 corresponds to the paper `Predicting the Global Minimum Variance Portfolio'

(Reh et al., 2021) which is accepted in its current form for publication in the Journal of

Business & Economic Statistics. The paper proposes a direct modeling approach for the

global minimum variance portfolio (GMVP) weights, without a detour via the covariance

or its inverse. We develop a dynamic GMVP approach that accounts for the autoregressive

conditional heteroscedasticity of asset returns and aims to predict the conditional GMVP

weights, i.e., the weights that minimize the conditional variance of portfolio returns. The in-

ference of the weights is done by minimizing a consistent loss function (Gneiting, 2011) that

results from a representation of the GMVP weights as population coe�cients in an auxiliary

linear regression (Kempf and Memmel, 2006) of a benchmark return on a vector of return dif-

ferentials. The approach thus requires no distributional assumptions for the returns, which

makes it robust to misspeci�cation. In addition to this, we provide a detailed conceptual

motivation for a dynamic conditional approach based on this GMVP loss function. In par-

ticular, we show that the expected GMVP return that enters the GMVP loss function as a

nuisance parameter is unavoidable, i.e., there can be no loss function that uniquely identi�es

the GMVP weights alone. Moreover, we argue that the expected GMVP loss is usually

very similar to the unconditional portfolio variance, which is the key criterion for GMVP

portfolio evaluation in practice. At the same time, the use of a loss function (instead of the

unconditional variance) allows for tailored model development, parameter estimation, and

forecast evaluation using model con�dence sets (Hansen et al., 2011) and related tools. Our

approach combines a direct dynamic parameterization of the weights with a consistent loss

function to estimate the parameters and evaluate the resulting predictions. This consistent

setup contrasts with much existing work that uses di�erent loss functions to estimate and

3



Chapter 1. Introduction

evaluate an econometric model. Finally, motivated by theoretical results of Ferson and Siegel

(2001), we show through simulations of arti�cial data that in realistic scenarios for return

data at high sampling frequencies such as daily data with pronounced time variation in the

conditional covariance matrix of asset returns and much smaller variation in their condi-

tional expectations, dynamic conditional approaches can be expected to outperform static

strategies which do not explicitly account for conditional heteroscedasticity. We then use

the GMVP loss function to develop time series models for the conditional GMVP weights,

relying on recursive least squares (RLS) with forgetting (Ljung and Söderström, 1983) or

generalized autoregressive score (GAS; Creal et al., 2013) recursions. With a large number of

assets, a dynamic GMVP model requires parsimonious parameterization to be manageable

in practice. In addition, the model should not be in�uenced by the choice of the base asset

in the GMVP loss function. This choice, while necessary, is arbitrary and therefore should

not a�ect the predicted GMVP weights of the model. These two requirements motivate our

proposed dynamic GMVP models. Our RLS version of the GMVP model is parsimonious

by design, and in the GAS version, parsimony is achieved by specifying a sparse update

recursion that targets the equally weighted portfolio. We further show that these RLS and

GAS speci�cations are invariant with respect to the benchmark asset.

To investigate the performance of our proposed models, we �rst conduct a Monte Carlo

experiment, which shows that our proposed speci�cations are able to track the `true' condi-

tional GMVP weights and perform very well, especially in high concentration ratio situations.

Subsequently, in an empirical application to daily U.S. traded stock returns with a cross-

sectional dimension from n = 50 to n = 1000 and di�erent lengths of the estimation window,

we �nd that they perform very well in terms of both expected loss and unconditional port-

folio variance compared to existing static and dynamic approaches. In particular, by using a

regularized exponential forgetting version of recursive least-squares dynamics, we regularize

the dispersion of the eigenvalues of the RLS information matrix, which makes the model

robust to large concentration ratios, even for n > T . It is worth mentioning that in two ear-

lier versions of the paper we explored a much more extensive list of model speci�cations for

the weight dynamics, in particular higher parameterized and thus more �exible GAS struc-

tures, as well as GAS and RLS models in combination with nonlinear shrinkage estimates

of the unconditional GMVP weights. In particular, models with initialization based on non-

linear shrinkage were found to be well applicable for medium to large cross-sectional sizes

(n ≤ 200). In addition, we have shown in previous versions of the paper that our proposed

models also perform well relative to benchmark approaches when applied to monthly return

data such as industry portfolios or data sets composed based on Fama-French factors.1

My contributions to Chapter 2 are as follows: In addition to assisting the writing process

by constantly revising drafts of the paper, I contributed to the development of the dynamic

GAS and RLS model speci�cations and collaborated on the design of the simulation study

1Corresponding model descriptions, additional out-of-sample forecasting results for these models and further
notes on the M-estimator for the model parameters are provided in the Appendix for Chapter 2.
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and empirical application. I conducted all implementations for the simulations and empirical

application, which also includes the implementation of the benchmark models. Moreover,

I contributed to the derivations on (conditional) optimality as well as to the veri�cation of

the invariance assumption for the proposed model speci�cations. I also derived analytical

gradients, which are, however, no longer included in the current version of the paper, but

stated in the Appendix.

Chapter 3 corresponds to the working paper `A Time-Varying Parameter Model with

Bayesian Shrinkage for Global Minimum Variance Portfolio Prediction'. The paper proposes

a direct modeling approach for the global minimum variance portfolio (GMVP) weights in

the framework of a state-space model. We use Bayesian techniques for the inference of the

time-varying weights which allows to impose regularization in a data driven way via the

prior choice. An advantage of our approach is that the problem scales linearly, so it is easily

applicable to large dimensions and gives good results even if the concentration ratio exceeds

one. In particular, shrinkage-type speci�cations for the priors are very bene�cial in such

scenarios. Moreover, since we only work with the quantity of interest for portfolio allocation,

we can avoid direct estimation of large and often ill-conditioned covariance matrices. Unlike

plug-in approaches that use estimates of the covariance matrix to compute GMVP weights,

the proposed method allows for direct shrinkage of portfolio weights.

Similar to the approach in Chapter 2, the model is based on a representation of GMVP

weights via a linear regression of returns on a reference portfolio on a vector of return di�er-

entials, where the error variance equals the variance of the GMVP return, which represents

the systemic risk that cannot be further reduced by diversi�cation. The evolution of portfolio

weights is determined by the evolution of underlying latent state processes. The introduction

of Gaussian random walk dynamics for the parameters and a Gaussian assumption for the

error term in the measurement equation combined with stationary AR(1) dynamics for the

log volatility process leads to a linear Gaussian state space model with time-varying parame-

ters and stochastic volatility (SV), which can be easily treated using standard Markov Chain

Monte Carlo (MCMC) procedures. This speci�cation allows to account for both the time

variation in the assets' conditional covariance structure and the heteroscedasticity in the

market, which corresponds to the heteroscedasticity of the error term in the measurement

equation. In principle, it would be easy to account for potential heavy tails by replacing

the normal distribution for the error term in the measurement equation by a Student-t, but

preliminary results suggest that this changes the results only slightly.

In contrast to the auxiliary regression employed in Chapter 2, here we adopt the approach

of Frey and Pohlmeier (2016) and extend the asset space by one dimension by setting the

benchmark return to a linear combination of the returns such as the equally weighted portfo-

lio. In this way, the population regression coe�cients can be interpreted as deviations from

the considered benchmark portfolio. Imposing hierarchical Bayesian LASSO-type priors on

the regression coe�cients implies that the portfolio weights are shrunk in the direction of
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Chapter 1. Introduction

the reference portfolio, which is, when using the equally weighted portfolio as reference as

we propose for our primarily used speci�cations, equivalent to imposing norm constraints

on the portfolio weights. Unlike norm-regularized frequentist estimation, however, imposing

hierarchical priors corresponds to probabilistic shrinkage of the parameter space, so that no

hard constraints and virtually no calibrations need to be imposed a-priori. One contribu-

tion of the paper is that we extend the Bayesian shrinkage approach for portfolio weights

to a dynamic context. We formulate the dynamics for the time-varying parameters in so-

called non-centered form. This means that we have one additive parameter each for the

initial level, as well as one multiplicative parameter for the standard deviation, while the

latent state processes themselves are independent of any parameter. As prior distribution

for the standard deviation in the random walk dynamics, we choose the Bayesian LASSO

speci�cation of Belmonte et al. (2014), a hierarchical Gaussian prior which ensures that the

time variation is regularized for all portfolio weights. For the overall level of initial values

corresponding to the initial deviation from the reference portfolio, we assign the recently

proposed double Gamma prior (Bitto and Frühwirth-Schnatter, 2019), which compared to

the speci�cation of Belmonte et al. (2014) adds a hyperprior to the parameter determining

the variation in the shrinkage intensities along the parameters, and thus allows for greater

local �exibility at a global shrinkage level. Our Bayesian shrinkage priors for the dynamics

and initial level of portfolio weights in direction of the benchmark portfolio simultaneously

perform two tasks: First, they reduce estimation noise, allowing us to deal with di�cult

concentration ratios. Second, they regulate allocations, which, particularly when using the

naïve portfolio as benchmark, reduces short sales and exposures as well as the volatility of

weights, leading to a smoother evolution of weights associated with moderate turnover.

An advantage of the reference augmented formulation of the problem is that it circumvents

the choice of a benchmark among the returns considered and ensures that the approach is

invariant with respect to the ordering of assets, since all assets are � up to alternative

benchmark choices � treated symmetrically by construction. Adding one dimension to the

asset space implies that the regressors are collinear. However, the regression coe�cients

are still uniquely identi�ed up to an additive constant. Therefore, in the framework of our

Bayesian analysis, the problem can be cured by a unimodal prior distribution. In our analysis,

we ensure the existence of uniquely identi�ed posterior distributions via a normal distribution

with �nite variance (double Gamma prior) for the prior of the initial level parameters of the

regression coe�cients.

The applicability and robustness of the approach is demonstrated through extensive sim-

ulations and empirical analysis. In particular, a simulation study based on a DCC data

generation process shows that the proposed approach can perform better than the true

model when the number of observations is not much larger than the number of assets, for

both in- and out-of-sample comparisons. An application to daily �nancial returns for dimen-

sions up to n = 1600 also shows that the time-varying parameter GMVP model outperforms
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a wide range of existing approaches in terms of out-of-sample forecast accuracy. The appli-

cation of shrinkage priors is particularly important in scenarios with di�cult concentration

ratios. Further, it is shown that accounting for stochastic volatility improves the overall

results, likely due to the fact that any noise would otherwise be incorrectly accounted for

in the dynamics of the parameters and thus the portfolio weights. Remarkably, our GMVP

predictions are also found to be a strong competitor in terms of mean-variance e�ciency,

both without and with transaction costs taken into account. As an alternative to a sta-

tionary AR(1) process for the log-volatility dynamics, we initially have also run our model

with a random walk dynamics for the log-squared volatility as well as a Beta process for

the inverse volatility states following the approach of Uhlig (1994, 1997), which have also

yielded satisfactory results. Details on these alternative SV speci�cations and corresponding

out-of-sample results are given in the Appendix for Chapter 3.

My contributions to Chapter 3 are as follows: First, I have developed the idea of for-

mulating the dynamic GMVP problem in an augmented asset space as a linear state-space

model to apply Bayesian inference techniques that allow data-driven shrinkage through cer-

tain LASSO-type prior speci�cations. Second, I have collaborated on the selection of the

particular prior speci�cations and the selection of the stochastic volatility dynamics. Third,

I fully implemented in MATLAB the proposed MCMC scheme for parameter estimation and

prediction as well as the Rao-Blackwellized particle �lter that is applied in the in-sample

simulation study. The implementation also includes the benchmark models. Fourth, I added

the section on model extensions (Section 3.6.4). Finally, I authored a substantial part of the

paper and constantly revised the complete draft of the paper.

Chapter 4 corresponds to the working paper `Inferring dynamic �nancial networks via a

time-varying graphical LASSO approach with applications to portfolio selection', which is

currently under review at the International Journal of Forecasting. In this work, I propose

to use a time-varying graphical LASSO approach to model inverse covariance matrices in

a large-dimensional system of �nancial assets, with the goal of predicting optimal portfolio

allocations. In a Gaussian model, the precision matrix can be interpreted as an undirected

graph in which the edges correspond to pairwise partial correlations between two return se-

ries. By modeling �nancial precision matrices instead of the covariance, one can exploit that

mean-variance optimal portfolio weights are linked to the elements of the precision matrix via

scaled linear functions. This facilitates interpretation and allows speci�c requirements such

as regularizing the weights to reduce estimation noise to be addressed during the precision

estimation process.

The approach is motivated by comparisons of existing portfolio selection strategies which

have proven to feature components that are bene�cial for out-of-sample forecasting per-

formance. Through a `fair' comparison of popular benchmark approaches under realistic

scenarios, I additionally contribute to the �nancial portfolio modeling literature by showing

that relative predictive performances exhibit substantial temporal instabilities over long time
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Chapter 1. Introduction

horizons. In particular, I show that in rolling-window type experiments, a general superiority

of dynamic over static models cannot be empirically demonstrated, and that the length of the

estimation window, which is usually not a focus in econometric papers, should be carefully

chosen when estimating a covariance matrix. These insights are used for the development of

my proposed model and forecasting approach: First, compared to existing work on graph-

ical LASSO for precision matrices in �nancial applications, the model enables to account

for evolutionary patterns in the correlation structure over time. However, the model does

not represent a dynamic modeling approach for conditional (inverse) covariance matrices.

Rather, I improve upon unconditional covariance estimation by allowing more remote data

information to be considered, but without giving too much weight to the remote observations.

Instead, in the vein of Bodnar et al. (2021), only strong deviations from previous timestamps

are penalized. Therefore, I incorporate the �exibility of dynamic conditional estimates into

the robust estimation procedures for unconditional covariances. Second, motivated by the

result that relative forecasting performances appear to exhibit substantial time-instabilities,

I enable local adaption to the intensity and the type of regularization. As an alternative to

shrinkage, I employ a more �exible but equally parsimonious regularization that depends on

a small set of penalty parameters. Third, for answering the empirical question what level of

sparsity, temporal stability, and conditioning information is optimal for forecasting, I develop

a dynamic recalibration scheme for the penalty parameters that selects the best model in

terms of the most recent out-of-sample performance with regard to the evaluation criterion of

interest, say the unconditional variance. Hence, the proposed model which is equipped with

a problem-oriented dynamic calibration, selects the conditionally optimal parameterization

and thereby implicitly the degree of time stability and the weighting of the historical data

information. Monthly recalibration allows a fast adaptation to current economic conditions.

To solve the optimization problem, i.e., the minimization of the negative penalized log-

likelihood, in an e�cient manner, I use the Alternating Direction Method of Multipliers

(ADMM), which allows for the inclusion of customized constraints on the precision ma-

trices and their dynamic evolution that complement the L1-norm regularization induced

by LASSO. By the choice of the penalty functions, the augmented time-varying graphical

LASSO (ATVGL) is �exible to accommodate speci�c features of the problem, e.g., minimum

variance allocation predictions. Speci�c requirements can be easily incorporated. Particu-

larly, I show how to directly constrain the gross exposure of GMVP weights in the context

of the inverse covariance estimation process without imposing potentially economically un-

realistic sparsity on the graph.

In an empirical application to daily returns on U.S.-traded stocks, I show that the proposed

approach is able to outperform all considered static and dynamic benchmark models in terms

of minimum variance and mean-variance optimal portfolio forecasts over an out-of-sample

period from 1980 to 2019, both on average over the 40-year period and in individual 5-year

sub-periods.
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Chapter 2.

Predicting the Global Minimum Variance

Portfolio

2.1. Introduction

The global minimum variance portfolio (GMVP) allocates a given budget among n �nancial

assets such that the risk for the rate of expected portfolio return is minimized. In contrast to

the classical mean-variance optimal portfolio (Markowitz, 1952), the weights of the GMVP

do not depend on the assets' expected returns. These expected returns have a major impact

on the mean-variance optimal strategy (Best and Grauer, 1991) but are notoriously hard to

predict (Welch and Goyal, 2008). Studies like Jagannathan and Ma (2003) hence advocate

the use of the GMVP, which only depends on the covariance matrix of the asset returns.

In the present paper, we develop a dynamic GMVP approach which takes into account

the autoregressive conditional heteroscedasticity of asset returns and aims to predict the

conditional GMVP weights, i.e., the weights that minimize the conditional variance of the

portfolio returns. To that end, we build upon a consistent loss function (Gneiting, 2011)

that arises from a representation of the GMVP weights as population coe�cients in an

auxiliary linear regression problem (Kempf and Memmel, 2006). We provide a detailed

conceptual motivation for a dynamic conditional approach based on this GMVP loss function.

In particular, we show that the expected GMVP return entering the GMVP loss function

as a nuisance parameter is unavoidable, i.e., there can be no loss function that uniquely

identi�es the GMVP weights on their own. This result further justi�es the use of this

loss function. Furthermore, we argue that the expected GMVP loss will typically be very

similar to the unconditional portfolio variance, which is the key criterion for evaluating

GMVP portfolios in practice. At the same time, the use of a loss function (instead of

the unconditional variance) enables tailored model development, parameter estimation and

forecast evaluation via Diebold-Mariano tests and related tools. Finally, theoretical results

by Ferson and Siegel (2001) indicate that in realistic scenarios with pronounced temporal

variation of the conditional covariance matrix of the asset returns and signi�cantly lower

variation of their conditional expectations, it is to be expected that dynamic conditional

approaches outperform standard static strategies, i.e., approaches that do not explicitly
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Chapter 2. Predicting the Global Minimum Variance Portfolio

account for conditional heteroscedasticity.

We then use the GMVP loss function to develop time series models for the conditional

GMVP weights, relying on recursive least squares (RLS) with forgetting (Ljung and Söder-

ström, 1983) or generalized autoregressive score (GAS; Creal et al., 2013) recursions. Our

approach combines a direct dynamic parametrization of the weights with a consistent loss

function for estimating the parameters and evaluating the resulting predictions. This uni�ed

setup is in contrast to much existing work that uses di�erent loss functions for estimating

versus evaluating an econometric model. In combining a `non-standard' but consistent loss

function with GAS speci�cations we follow Patton et al. (2019) who consider dynamic models

for expected shortfall and value-at-risk.

When the number of assets is large a dynamic GMVP model requires a parsimonious

parametrization in order to be tractable in practice. Furthermore, the model should be

invariant to the choice of baseline asset in the GMVP loss function. While necessary, this

choice is arbitrary and hence should not a�ect the model's predicted GMVP weights. These

two requirements motivate our proposed dynamic GMVP models. Our RLS version of the

GMVP model is parsimonious by construction, and in the GAS version parsimony is achieved

by specifying a sparse updating recursion targeting the equally weighted portfolio. We show

that these RLS and GAS speci�cations are invariant w.r.t. the baseline asset.

We then present empirical out-of-sample results for various portfolio sizes n and lengths

of estimation windows T . In doing so, we cover various realistic setups regarding the ratio

n/T which represents the degree of estimation uncertainty for the portfolio weights. Our

dynamic GMVP approach, especially the RLS version, performs very well compared to a

wide range of benchmarks from the literature, including the dynamic conditional correlation

(DCC) model with nonlinear shrinkage estimation of the correlation-targeting matrix (Engle

et al., 2019). Furthermore, our proposed loss function is empirically very similar to the

empirical (unconditional) portfolio variance, i.e., the popular GMVP performance measure

in practice. Hence the bene�ts of using the loss function (in particular, the ability to use

tailored parameter estimation techniques and Diebold-Mariano type forecast evaluation)

pose little or no costs in terms of practical relevance.

Existing strategies for predicting GMVP weights can be classi�ed into three types. The

�rst type considers dynamic models for the conditional covariance matrix of the asset returns

and constructs a plug-in prediction of the conditional GMVP weights from a forecast of

the covariance matrix (see, e.g., Engle and Kelly 2012, Clements et al. 2015, Engle et al.

2019). This approach is designed to account for the time variation in the assets' covariance

structure. The covariance models are typically estimated using (quasi) maximum likelihood

(ML) or related techniques. Clearly, if the covariance model is correctly speci�ed, ML

asymptotically identi�es the correct model, which results in optimal forecasts of the GMVP

weights. However, this approach can be problematic if the model is misspeci�ed, such that

not all properties of the data-generating process (DGP) are correctly captured. Then the
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2.2. Consistent loss function for the GMVP

estimator resorts to minimizing a measure of discrepancy between the covariance model and

the data (such as the Kullback-Leibler divergence in the ML case). However, such measures

are not directly related to the economic problem at hand so that there is the risk that the

�tted mis-speci�ed model fails to capture the economically critically important properties of

the DGP while at the same time capturing irrelevant ones (Elliott et al., 2016).

The second type of strategies uses a static approach for the GMVP based on either the

sample covariance matrix of the asset returns or a shrinkage version thereof (see, e.g., Ledoit

and Wolf, 2003, 2004; DeMiguel et al., 2009; Candelon et al., 2012). As we detail further

below, such a static approach is implicitly based on the Kempf and Memmel (2006) loss

function for the GMVP weights, and thus relies on an estimation principle which under

mis-speci�cation appears to be advantageous compared to likelihood-based estimation that

is typically used for the plug-in strategies mentioned above. Of course, static approaches do

not take into account the conditional heteroscedasticity of asset returns. Therefore, they do

not explicitly use conditioning information about future returns, which, as we will discuss

below, could be useful for portfolio allocation.

A third group of studies models the portfolio weights as functions of potentially relevant

state variables such as �rm characteristics; see Brandt (2010, Section 4) for a review. The

optimal relation between the portfolio weights and the state variables are found by optimizing

a pre-speci�ed utility function. However, in this approach, dynamics in the portfolio weights

are accounted for only indirectly via time variation in the state variables.

Our proposed approach combines what we consider the strengths of those three groups of

studies: The time series dynamics featured by the �rst group, the loss function perspective

taken by the second and third group, and the third group's proposal to model the weights

directly. In contrast to the third group of studies, we construct dynamic models for the

conditional weights using pure autoregressive speci�cations (with current weights assumed

to depend on past weights). This modeling approach allows us to approximate key properties

of the conditional GMVP weights, such as their persistence or long-run average.

The remainder of this paper is organized as follows. Section 2.2 introduces the GMVP

loss function and provides theoretical results motivating our loss-function based dynamic ap-

proach. Section 2.3 introduces RLS and GAS models for forecasting the conditional GMVP

weights. Section 2.4 presents empirical results, and Section 2.5 concludes with some discus-

sion. Proofs and additional empirical results are deferred to the Appendix.

2.2. Consistent loss function for the GMVP

2.2.1. Setup

Let Rt = (R1t, ..., Rnt)
′ denote a vector of returns on n assets at period t. For ease of

exposition, we initially assume that Rt is independent across time with expectation E[Rt] = µ

and covariance matrix V[Rt] = Σ. The vector of weights representing the GMVP for the n
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assets is denoted by ω∗ = (ω∗
1, . . . , ω

∗
n)

′ and obtains as

ω∗ =
Σ−1ιn
ι′nΣ

−1ιn
, ι′nω

∗ = 1, (2.1)

where ιn is an n× 1 vector of ones. According to Kempf and Memmel (2006, Proposition 1)

the GMVP weights ω∗ can be represented using the following auxiliary linear regression:

Yt = X ′
tβ + εt, E[εt|Xt] = 0, (2.2)

where Yt = Rnt is the return of an (arbitrarily selected) baseline asset and the vector

Xt = (1, Rnt − R1t, . . . , Rnt − Rn−1t)
′ consists of the return di�erences. The correspond-

ing population regression coe�cients are β = (β0, . . . , βn−1)
′, and are de�ned by

β = arg min
b

E[L(b, Rt)], (2.3)

where L(b, Rt) = (Yt −X ′
tb)

2. (2.4)

The population coe�cients for the slopes in the auxiliary regression (2.2) coincide with the

true GMVP weights and the intercept with the expected GMVP return, in that

ω∗
i =

βi i = 1, . . . , n− 1

1− ι′n−1β1:n−1 i = n
, µ′ω∗ = β0, (2.5)

where β1:n−1 represents the subvector (β1, . . . , βn−1)
′ so that β = (β0, β

′
1:n−1)

′. In the termi-

nology of Gneiting (2011), L(b, Rt) as given by (2.4) is a strictly consistent scoring (or loss)

function for β, which implies that β is elicitable. (A functional of a probability distribution

is called elicitable if there exists a strictly consistent loss function for this functional.)

The intercept β0 is the only element of β that is not directly related to the GMVP weights.

It therefore appears tempting to formulate an alternative loss function that exclusively elicits

the GMVP weights β1:n−1. However, as we state in the following proposition such a loss

function does not exist. (For the proof, see Appendix A.1.)

Proposition 1. The sub-vector β1:n−1 is not elicitable. That is, there is no loss function

whose expected value is uniquely minimized by β1:n−1.

Clearly, a loss function that elicits β1:n−1 without β0 would be attractive in principle. By

stating that such a loss function does not exist, Proposition 1 motivates the use of Kempf

and Memmel's loss function as a feasible and (strictly) consistent choice. We also note that

the joint elicitability of β = (β0, β
′
1:n−1)

′ parallels the results on the joint elicitability of

value-at-risk and expected shortfall (Fissler and Ziegel, 2016): Just like the GMVP weights

β1:n−1 are not elicitable without β0, expected shortfall is not elicitable without value-at-risk.

So far, we have assumed that the returns Rt are temporally independent with a constant
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covariance matrix. However, it is well-known that �nancial returns are typically serially

dependent with autoregressive conditional heteroscedasticity. Let their corresponding con-

ditional mean and covariance matrix be denoted by µt = E[Rt|Ft−1] and Σt = V[Rt|Ft−1],

respectively, where Ft−1 is the information set known at time t−1. To account for conditional

heteroscedasticity, we can then replace the constant covariance matrix Σ in Equation (2.1)

by the conditional one Σt. Time variation in Σt typically implies time variation in the re-

sulting conditional GMVP weights. In this dynamic context, the time-dependent population

coe�cients of the GMVP regression (2.2) are de�ned by

βt = arg min
b

Et−1[L(b, Rt)],

where Et−1[·] = E[·|Ft−1]. Analogously to Equation (2.5), it follows that

ω∗
it =

βit i = 1, . . . , n− 1

1− ι′n−1β1:n−1t i = n
, ω∗

t
′µt = β0t,

where ω∗
t = (ω∗

1t, . . . , ω
∗
nt)

′ is the vector of portfolio weights,

ω∗
t =

Σt
−1ιn

ι′nΣt
−1ιn

, ι′nω
∗
t = 1, (2.6)

that minimize the conditional portfolio variance Vt−1[ω
′
tRt] = ω′

tΣtωt, and β0t represents the

conditional expectation of the corresponding GMVP return.

We use this dynamic GMVP framework based on the consistent loss function L(b, Rt) to

develop predictive models for the conditional GMVP weights ω∗
t , to estimate their parameters

and to evaluate their predictive performance. The models consist of parametric functions for

the weights β1:n−1t = ω∗
1:n−1t and expected GMVP return β0t. These functions are assumed

to be measurable w.r.t. the information set Ft−1, i.e.,

(β0t, β
′
1:n−1t)

′ = βt = β(Zt−1; θ), t = 1, . . . , T, (2.7)

where θ is a parameter vector indexing the model, T is the sample size, and Zt−1 ∈ Ft−1.

In the terminology of Patton et al. (2019) these GMVP models are semi-parametric as they

do not impose a parametric class of conditional distributions on the asset returns. For

estimating θ we follow Patton et al. (2019) and use an M-type estimator which minimizes

the average GMVP loss, so that

θ̂ = arg min
θ

1

T

∑T
t=1 L (β (Zt−1; θ) , Rt) . (2.8)

Given our choice of L (β (Zt−1; θ) , Rt) de�ned in Equation (2.4), θ̂ is a nonlinear least squares

(NLS) estimator.
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2.2.2. The unconditional portfolio variance for the conditional GMVP loss

approach

As described above, we use the consistent loss function L(b, Rt) in Equation (4) to develop

and evaluate predictive models for the weights w∗
t that minimize the conditional portfolio

variance. This approach reinterprets the standard static GMVP approach, assuming that

there is relevant conditioning information Ft−1 about future returns. In practice, however,

portfolio managers are typically evaluated on the basis of the unconditional portfolio vari-

ance. This unconditional variance is also commonly used to evaluate prediction rules for

the conditional GMVP weights (see DeMiguel et al., 2009 or Engle et al., 2019 for empirical

examples, and Voev, 2009 for a discussion in the context of realized volatility forecasting).

This raises two related questions. (i) How does the GMVP loss in Equation (4) compare

to the unconditional portfolio variance? (ii) How does our proposed conditional GMVP

approach perform in terms of the unconditional portfolio variance, as compared to the tradi-

tional static GMVP approach based on an estimate of the returns' unconditional covariance

matrix? We tackle these questions in the remainder of this section.

Expected GMVP loss versus unconditional portfolio variance

Let {bt} be a sequence of vectors with arbitrary period-t portfolio weights ω1:n−1t = b1:n−1t

and intercept parameters b0t. According to the law of total variance, the unconditional

portfolio variance can be represented as

V[ω′
tRt] = E

[
ω′
tΣtωt

]
+V[ω′

tµt]. (2.9)

The conditional expectation of the period-t GMVP loss can be written as Et−1[L(bt, Rt)] =

ω′
tΣtωt + (ω′

tµt − b0t)
2, which together with Equation (2.9) implies that

E [L(bt, Rt)] = V
[
ω′
tRt

]
−V

[
ω′
tµt
]
+ E

[
(ω′

tµt − b0t)
2
]
. (2.10)

Equation (2.10) states that this evaluation of ωt based on E [L(bt, Rt)] di�ers from that

using the unconditional portfolio variance V[ω′
tRt]. The following special cases are worth

mentioning here. First, if the conditional mean of the portfolio return is correctly speci�ed,

i.e., if b0t = ω′
tµt, then the expected loss simpli�es to E[L(bt, Rt)] = V[ω′

tRt] − V[ω′
tµt],

so that the di�erence between the two performance measures is reduced to the variation

in the conditional mean of the portfolio returns. Second, if b0t is constant over time, with

b0t = ω′
tµt = E[ω

′
tRt] ∀t, the di�erence between E [L(bt, Rt)] and V[ω′

tRt] collapses and both

measures are reduced to E[ω′
tΣtωt]. Since this is the case for b0t = 0, µt = 0 ∀t, we expect that

both performance measures will yield similar results if the signal-to-noise ratio in the return

process is small with large conditional variances in Σt and small conditional expectations

µt. In practice, this is the typical scenario, especially for stock returns at a comparatively
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high frequency (such as for daily or weekly returns). However, an important conceptual and

practical advantage of E [L(bt, Rt)] is that it corresponds to a standard loss function that can

be consistently estimated by the average loss over time. Therefore, it can directly be used

for estimating parameters of prediction models and for comparing forecasts in terms of their

average out-of-sample loss. The latter is of central importance for commonly used pairwise

(Diebold and Mariano, 1995; Giacomini and Rossi, 2010) and multiple (Hansen et al., 2011)

comparisons of predictive ability.

Conditional versus static GMVP approach

We next compare the dynamic conditional GMVP approach to the standard static one in

terms of their respective unconditional portfolio variance. While the conditional approach

exploits the conditioning information Ft−1 about future returns in its portfolio allocation,

it targets the `wrong' objective function (conditional instead of unconditional portfolio vari-

ance). In contrast, the static approach aims at the `correct' objective function, but � by

using the returns' unconditional covariance matrix � it does not take explicitly into account

the conditioning information. Ideally, one would thus aim for an approach that exploits con-

ditioning information and uses the `correct' objective function. Such an approach is found

in Ferson and Siegel (2001, Corollary to Theorem 3) who provide the portfolio allocation

rule ωFS

t = ω(Zt−1), Zt−1 ∈ Ft−1, which minimizes the unconditional portfolio variance in

Equation (2.9) with respect to the information set Ft−1. This rule is given by

ωFS

t =
Λ−1
t ιn

ι′nΛ
−1
t ιn

+
γ1

1− γ2

(
Λ−1
t − Λ−1

t ιnι
′
nΛ

−1
t

ι′nΛ
−1
t ιn

)
µt, (2.11)

with γ1 = E

[
ι′nΛ

−1
t µt

ι′nΛ
−1
t ιn

]
, γ2 = E

[
µ′t

(
Λ−1
t − Λ−1

t ιnι
′
nΛ

−1
t

ι′nΛ
−1
t ιn

)
µt

]
,

where Λt = Σt + µtµ
′
t, and the associated unconditional portfolio variance is

σ2
FS

= V[ω′
tRt]

∣∣∣∣
ωt=ωFSt

= E

[
1

ι′n(Σt + µtµ′t)
−1ιn

]
− γ21

1− γ2
.

While this allocation rule is theoretically appealing, it is not readily applicable in practice:

First, it is unclear which loss function could be used to develop predictive models for the

optimal weights ωFS

t and to identify the model parameters. Second, plug-in predictions

according to Equation (2.11) would require predictive models for µt and Σt as well as reliable

estimates for the moments γ1 and γ2 involving functions of µt and Σt. Such estimates can

be di�cult to obtain, especially in high dimensional settings (e.g., Ledoit and Wolf, 2003).

Importantly, however, the Ferson-Siegel (FS) allocation rule and its variance σ2
FS

provide an

infeasible gold standard against which we can compare the conditional and static GMVP

approaches.

Representing the returns' unconditional covariance matrix as Σ = E[Σt] +V[µt], the un-
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Chapter 2. Predicting the Global Minimum Variance Portfolio

conditional portfolio variance in Equation (2.9) for the weights of the static GMVP allocation

ω∗ in Equation (2.1) can be written as

σ2
S
= V[ω′

tRt]

∣∣∣∣
ωt=ω∗

=
1

ι′n(E[Σt] +V[µt])−1ιn
,

while for the conditional GMVP weights ω∗
t in Equation (2.6) we have

σ2
C
= V[ω′

tRt]

∣∣∣∣
ωt=ω∗

t

= E

[
1

ι′nΣ
−1
t ιn

]
+V

[
ι′nΣ

−1
t µt

ι′nΣ
−1
t ιn

]
.

The comparison of the static, conditional, and FS approaches in di�erent scenarios for the

conditional moments µt and Σt shows the following: (i) For the trivial case that there is no

conditional information about future returns so that µt = µ = E[Rt] and Σt = Σ = V[Rt],

the three approaches coincide and it holds that σ2
FS

= σ2
S
= σ2

C
= 1/(ι′nΣ

−1ιn). (ii) Assume

that there is time variation in Σt and µt = mtιn, where mt is a scalar so that the conditional

return expectation is the same for all assets. Then the conditional expectation of the portfolio

returns ω′
tµt is identical for all admissible weight vectors ωt (with ω′

tιn = 1). The Sherman-

Morrison formula then implies that

σ2
S
=

1

ι′nE[Σt]−1ιn
+V [mt] , σ2

C
= E

[
1

ι′nΣ
−1
t ιn

]
+V [mt] ,

so that σ2
FS

= σ2
C
< σ2

S
. By Jensen's inequality, the di�erence between σ2

C
and σ2

S
increases in

the variation of Σt. This scenario includes the case that mt = m̄ ∀t, with the further special

case that mt = 0 ∀t. (iii) If there is variation in µt but not in Σt such that Σt = Σ̄ ∀t, then

σ2
S
=

1

ι′nΣ
−1ιn

, σ2
C
=

ι′nΣ̄
−1

ι′nΣ̄
−1ιn

Σ
Σ̄−1ιn
ι′nΣ̄

−1ιn
,

with σ2
FS
< σ2

S
< σ2

C
, and a di�erence between σ2

C
and σ2

S
which is increasing in V[µt] = Σ−Σ̄.

These results reveal that the relative merits of the conditional and static GMVP ap-

proaches depend on whether time variation in Σt or variation in µt (either across time or

across its elements) is more pronounced. If the variation in Σt is more pronounced, as

represented by case (ii), the conditional approach performs better and approaches the FS

benchmark as the variation of Σt increases. If the variation in µt is more important, as in

case (iii), the static approach is preferable.

We next quantify these e�ects using a numerical example calibrated to empirical data.

Figure 2.1 plots the unconditional portfolio variance of the three GMVP approaches as a

function of the degree of variation in µt and Σt. The portfolio variances are computed from

sequences of conditional return expectations and covariance matrices, {µ∗t (k)}t and {Σ∗
t (ℓ)}t,
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2.2. Consistent loss function for the GMVP
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Figure 2.1.: Unconditional portfolio variance for the static, conditional and FS GMVP. Portfolio

variances are computed from simulated conditional return expectations µt(k) and co-

variance matrices Σt(ℓ) de�ned in Equations (2.12) and (2.13) for di�erent values of

k and ℓ. Portfolio variance for µt(k) and Σt(ℓ) with k = ℓ = 1 are those for µt and

Σt simulated from a �tted Gaussian DCC model with AR(1) recursions for µt (marked

by the bold vertical line). Simulation sample size for {µt(k),Σt(ℓ)}Ts
t=1 is Ts = 500, 000

after 50,000 burn-in periods.

which are simulated according to

µ∗t (k) = E[µt] + kδt, E[δt] = 0, k ∈ [0, 30], (2.12)

Σ∗
t (ℓ) = E[Σt]

1/2[ℓUt + (1− ℓ)In]E[Σt]
1/2′, E[Ut] = In, ℓ ∈ [0, 1], (2.13)

where In denotes the (n×n)-dimensional identity matrix and E[Σt]
1/2 is the lower triangular

Cholesky factor of E[Σt]. To simulate µ∗t (k) and Σ∗
t (ℓ) for given values of k and ℓ we use

sequences for the conditional moments {µt} and {Σt} which are simulated from a �tted

Gaussian DCC model (see Section 2.3.4 below) with independent AR(1) recursions for µt.

The data used are historical returns on n = 50 assets from the data set for our empirical

application discussed below. From those µt's and Σt's simulated from the �tted DCC we

computed the sample estimates for E[µt] and E[Σt] as well as the corresponding simulated

trajectories for δt = E[µt] − µt and Ut = E[Σt]
−1/2ΣtE[Σt]

−1/2′ so that µ∗t (k) and Σ∗
t (ℓ) in

Equations (2.12) and (2.13) for k = ℓ = 1 represent the actual empirical (µt,Σt)-scenario.

We then use these δt and Ut trajectories to simulate µ∗t (k) and Σ∗
t (ℓ) for other values of k

and ℓ. Values k > 1 (k < 1) correspond to more (less) temporal and cross-sectional variation

in the conditional mean vector, as compared to the empirical scenario, while values ℓ < 1

correspond to less time variation in the conditional covariance matrix, again as compared to

the empirical scenario.

The left panel of Figure 2.1 plots the portfolio variance as a function in k controlling the

variation in µ∗t (k) for a �xed variation in Σ∗
t (ℓ) at ℓ = 1. The �gure's right panel plots the

17



Chapter 2. Predicting the Global Minimum Variance Portfolio

portfolio variance as a function in ℓ controlling the variation in Σ∗
t (ℓ) for a �xed variation

in µ∗t (k) at k = 1. We �nd that for the empirical benchmark values µ∗t (1) and Σ∗
t (1), the

conditional GMVP improves substantially over the static GMVP with a variance reduction

of about 40% (from 0.405 to 0.235) and comes close to the FS lower bound. We also observe

that it requires extreme deviations from these empirical benchmark values (i.e., very large

values of k or very small values of ℓ) for the static GMVP to outperform the conditional

approach.

The lesson we can draw from this comparison is that, in empirically relevant scenarios, our

conditional GMVP approach can be expected to perform comparatively well in terms of the

unconditional portfolio variance, even though it targets the conditional portfolio variance.

It should be noted, however, that our comparison has ignored model misspeci�cations and

parameter estimation errors. While both issues are known to matter in practical forecasting

applications, they are hard to analyze via simulation. We therefore limit ourselves to an

implicit analysis of these issues in the empirical analysis discussed in Section 2.4 below.

2.3. Dynamic GMVP models

In this section we describe our proposed semi-parametric GMVP models. The �rst model is

based on RLS with forgetting while the second one belongs to the class of GAS models. In

both models, the M-estimator from Equation (2.8), together with the GMVP loss function,

allows for convenient parameter estimation. For the statistical properties of the M-estimator

in semi-parametric models like ours, see Patton et al. (2019).

2.3.1. Recursive least squares with forgetting

Classical exponential forgetting

RLS with forgetting is a popular approach used to track the parameters in linear regression

models when they are time-varying (Ljung and Söderström, 1983; Young, 2011). The RLS

estimates with classical exponential forgetting (RLS-EF) for the sequence of parameters {βt}
in the auxiliary regression (2.2) obtain from the recursion

β̂t = β̂t−1 +Ω−1
t Xt(Yt −X ′

tβ̂t−1), (2.14)

Ωt = XtX
′
t + λΩt−1, (2.15)

so that β̂1:n−1t and β̂0t are the estimates for the period-t GMVP weights and mean return.

Ωt is called the information matrix and λ ∈ (0, 1] is the forgetting factor which operates as

an exponential weight decreasing for more remote observations: Observations τ periods in

the past have weight λτ in the βt estimate. λ is typically set to a value slightly less than

one (Raftery et al., 2010). For the special case that λ = 1 with Ωt =
∑t

τ=1XτX
′
τ , the RLS
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2.3. Dynamic GMVP models

recursion in Equations (2.14) and (2.15) becomes

β̂t = β̂t−1 + [
∑t

τ=1XτX
′
τ ]

−1Xt(Yt −X ′
tβ̂t−1). (2.16)

This is the standard formula for updating the ordinary LS estimate β̂t−1 for the parameters in

regression (2.2) computed for the observations {Yτ , Xτ}t−1
τ=1, when a new pair of observation

(Yt, Xt) is added to the sample and the parameters are assumed to be time-invariant (Harvey,

1993, Section 4.5). Thus, β̂1:n−1t in Equation (2.16) corresponds to the estimates for the

portfolio weights of the standard static GMVP approach obtained by replacing the return

covariance Σ in the GMVP formula (2.1) with the sample covariance matrix obtained up

to period t. The computation of β̂t given β̂t−1 according to Equation (2.16) requires that

t ≥ n+ 1.

Another interpretation of RLS with forgetting emerges from the Kalman �lter with forget-

ting for a linear Gaussian state-space model (Kulhav�y and Zarrop, 1993; Raftery et al., 2010):

When taking regression (2.2) as a measurement equation for the time-varying parameters βt
with Gaussian measurement errors εt and assuming that βt follows a Gaussian random walk,

then β̂t as obtained from the RLS-EF recursion in Equations (2.14) and (2.15) is equivalent

to the expectation of βt under its �ltering distribution resulting from the Kalman �lter with

forgetting. In this context, the RLS information matrix Ωt plays the role of the precision

matrix of the �ltering distribution (Kulhav�y and Zarrop, 1993).

Our proposed dynamic semi-parametric GMVP model based on this RLS-EF approach

consists of the mapping βt+1 = β(Zt; θ) = β̂t, such that

βt+1 = βt +Ω−1
t Xt(Yt −X ′

tβt), t = 1, . . . , T, (2.17)

with Ωt as given by Equation (2.15) and initial conditions (β1,Ω0). Here we treat the

forgetting factor λ directing Ωt as an unknown parameter in θ that is to be estimated from

the data. Note that if a positive de�nite matrix is chosen for Ω0, then the information-

update equation (2.15) yields an invertible Ωt (t = 1, 2, ...) as needed for the uniqueness of

the RLS-EF recursion (2.17). Thus, our proposed dynamic RLS-EF model, in contrast to

the standard static GMVP approach according to Equation (2.16), can also be used for a

sample size T < n+ 1.

In order to capture the non-trivial dynamic behavior of the conditional GMVP variables

in βt that is to be expected for an autoregressive conditional return covariance matrix Σt,

the proposed GMVP model employs according to Equation (2.17) an autoregressive update

mechanism for βt. The vector Xt(Yt − X ′
tβt−1) that drives the updates is proportional to

the score of the period-t GMVP loss ∂L(βt, Rt)/∂βt in Equation (2.4). This vector thus

measures the steepest descent direction to improve the local forecast performance in terms

of the GMVP loss for the current value of GMVP variables βt. This direction vector is scaled

by the inverse of Ωt that measures the relative amount of locally available information in
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Chapter 2. Predicting the Global Minimum Variance Portfolio

period t with regard to the respective direction in the parameter space. The greater the

amount of information already available in one direction, the smaller the corresponding

update.

In our empirical applications below, the GMVP weights have very persistent time series

behavior to the e�ect that the estimates for λ are close to one. This implies that the selection

of the initial conditions (β1,Ω0) in the predictive equation (2.17) can become critical for the

out-of-sample forecast performance if the length of the estimation window is small. The

importance of the initial conditions can be seen in the following representation of βt+1

according to Equation (2.17) as a function of (β1,Ω0) (Ljung and Söderström, 1983, p. 21):

βt+1 =
(
λtΩ0 +

∑t
τ=1 λ

t−sXτX
′
τ

)−1 (
λtΩ0β1 +

∑t
τ=1 λ

t−sXτYτ
)
. (2.18)

It shows that βt+1 is all the more shrunk towards the prior β1 the closer λ is to one, the larger

Ω0 and the smaller t. Thus, it is advisable to select (β1,Ω0) based on reasonable a-priori

assumptions that at the same time guarantee scalability for high-dimensional applications.

Moreover, the selected (β1,Ω0) should ensure that the GMVP model is invariant w.r.t. the

choice of the baseline asset in the GMVP regression (2.2) - a quali�cation discussed in Section

2.3.3 below. (This excludes, for example, the use of a (scaled) identity matrix for Ω0, which

is a common initialization of RLS algorithms in practice, see Ljung and Söderström, 1983,

p. 20).

For such a selection of (β1,Ω0) we rely upon the prior assumptions, that the return vector

Rt has zero mean and a covariance matrix with equal pairwise correlation coe�cients denoted

by ρR and identical variances σ2R. Under these assumptions, the GMVP corresponds to the

equally weighted portfolio with weights given by 1/n, and the mean of its return is equal to

zero. Furthermore, the return di�erences in Xt have, like the returns, equal correlations and

identical variances with a covariation matrix given by

E0[XtX
′
t] =

(
1 0′n−1

0n−1 σ2R(1− ρR)C

)
, C = In−1 + ιn−1ι

′
n−1, (2.19)

where 0n−1 denotes the n− 1 dimensional Null vector. Based on these prior assumptions we

de�ne our initial conditions through:

β1 = (0, ι′n−1/n)
′, Ω0 = γ

(
1 0′n−1

0n−1 σ̂2R(1− ρ̂R)C

)
, γ > 0,

where ρ̂R and σ̂2R are the sample estimates for ρR and σ2R based on the data in the estimation

period. (For details on estimating ρR and σ2R, see e.g., Engle and Kelly, 2012 and De Nard,

2020.) The coe�cient γ controls the degree of shrinkage on βt+1 towards the portfolio weights

of the equally weighted portfolio de�ning β1 (see Equation 2.18). We treat this coe�cient γ

as an additional parameter to be estimated from the data. So the parameter vector of the
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2.3. Dynamic GMVP models

RLS-EF model to be estimated is θ = (λ, γ). The restriction γ > 0 (together with σ̂2R > 0

and ρ̂R ∈ (−1, 1)) guarantees that Ω0 is positive de�nite, which ensures the invertibility of

Ωt (t = 1, 2, ...) in the RLS-EF equation (2.17).

Our selection of (β1,Ω0) is in the spirit of the shrinkage approach of De Nard (2020) which

aims to reduce the errors in estimating high-dimensional covariance matrices of asset returns.

For this purpose, this approach shrinks the sample covariance matrix to a target that consists

of equal variances and covariances. Moreover, the resulting initial value β1 consisting of the

weights of the equally weighted portfolio represents a common benchmark portfolio used

by shrinkage approaches for GMVP weights (DeMiguel et al., 2009; Candelon et al., 2012;

Frey and Pohlmeier, 2016). Also, since our selection of (β1,Ω0) is derived from assumptions

for the returns Rt (and not for the return di�erences in Xt relative to the baseline asset), it

automatically satis�es the conditions for a dynamic GMVP model that is invariant w.r.t. the

choice of the baseline asset (see Section 2.3.3 below and Appendix A.2).

Regularized exponential forgetting

A critical condition for RLS to perform well in tracking time-varying parameters is the

existence of lower and upper bounds on the information matrix Ωt in the parameter update

equation (2.17) (Kulhav�y and Zarrop, 1993). When the smallest eigenvalues of Ωt get too

close to zero, the parameter tracking in the least excited directions of the n-dimensional

space of Ωt becomes very sensitive to noise, and when the largest eigenvalues rise too much,

the tracking ability in the most excited directions is lost. In order to achieve a balance

between the tracking ability and the robustness against noise when predicting the GMVP

weights, it is therefore necessary that the forgetting factor λ in the RLS-EF information

update equation (2.15) is neither too small nor too big. However, in our application of the

RLS-EF below, we �nd that quite often the λ estimate is very close to its upper bound of

one (see Appendix A.3). Although this avoids the tracking in the poorly excited directions

from becoming highly susceptible to noise, it can eventually lead to the loss of the tracking

capability in the strongly excited directions.

In order to improve the balance between the robustness w.r.t. to noise and the tracking

capability we follow Kulhav�y and Zarrop (1993) and consider as an alternative to the RLS-

EF model in Equations (2.15) and (2.17) an RLS with a regularized exponential forgetting

(RLS-REF). It adds the prior matrix Ω0 to the information update scheme for Ωt of the

RLS-EF (2.15), which then reads as follows:

Ωt = XtX
′
t + λΩt−1 + (1− λ)Ω0. (2.20)

The eigenvalues of this regularized Ωt are bounded from below for all t and for all λ ∈ (0, 1]

by the smallest eigenvalue of Ω0. Thus this regularization adds prior information, which

bounds Ωt from below regardless of the λ value. This gives more leeway when estimating

λ to prevent an excessive increase of Ωt (i.e., loss of tracking capability) in strongly excited
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directions. (In Appendix A.3.2 we provide the bounds for the regularized and non-regularized

Ωt. There we also illustrate the stabilizing e�ect of the regularization on the time series of

Ωt by providing time plots for the eigenvalues of Ωt that result from the implementation

of the RLS-EF and RLS-REF models.) The initial conditions (β1,Ω0) that we use for the

RLS-REF model in Equations (2.17) and (2.20) are the same as for the RLS-EF model so

that Equation (2.20) yields positive de�nite updates of Ωt for all t.

2.3.2. Generalized autoregressive score model

The proposed RLS GMVP models have only two parameters (λ, γ) which direct the joint

autoregressive updates of the weights and the mean return of the GMVP. This makes them

scalable w.r.t. the number of assets, but could be too restrictive. As an alternative we thus

consider a GAS approach which provides some more �exibility in capturing the dynamic

behavior of the GMVP variables. The GAS modeling approach as introduced by Creal

et al. (2013) assumes that the random variable to be modeled has a parametric conditional

distribution with parameters that follow an autoregression driven by the scaled score of the

log-likelihood. Following Patton et al. (2019), we adapt this parametric GAS approach to

our semi-parametric framework by replacing the log-likelihood score with the score of the

GMVP loss function (2.4). This results in a GMVP model that can be interpreted as a

parametric extension of the RLS models. The particular GAS recursion we consider for the

mapping βt+1 = β(Zt; θ) is

βt+1 = c+Bβt +AH−1
t ∇t, t = 1, . . . , T, (2.21)

where c denotes an (n× 1) parameter vector and A and B are (n× n) parameters matrices.

The vector ∇t is the score of the GMVP loss function given by ∇t = ∂L(βt, Rt)/∂βt =

−2Xt(Yt−X ′
tβt), and Ht is an (n×n) matrix scaling the score. Thus, for c = 0, B = A = In,

the GAS update equation (2.21) for βt has the same form as the update equation (2.17) for

the RLS models, subject to the speci�c form of the GAS-scaling matrix Ht discussed below.

In order to keep the model parsimoniously parameterized, but to allow the update intensity

for the GMVP mean return to di�er from that of the portfolio weights, we assume the

following diagonal form for the GAS matrices A and B:

B = diag(b0, b1, . . . , b1), A = diag(a0, a1, . . . , a1), (2.22)

where the parameters (a0, b0) direct the dynamics of the mean return and (a1, b1) the dy-

namics of the portfolio weights. For the intercept vector c we use the restrictions that the

long-run mean of the weights corresponds to that of the equally weighted portfolio and that

the mean of the portfolio returns is zero. Given that βt under the GAS recursion (2.21) is

covariance stationary, the long-run mean of βt is m = (In − B)−1c (see Creal et al., 2013).

Thus, our targeting restrictions imply that c = (In − B)m, with m = (0, ι′n−1/n)
′. This
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targeting restriction on c again follows the work of DeMiguel et al. (2009); Candelon et al.

(2012); Frey and Pohlmeier (2016), which we have already used to motivate the selection for

the initial conditions of the GMVP weights for the RLS approach in Section (2.3.1).

For the scaling matrix Ht, a common choice in parametric GAS models is to use a measure

for the predicted local curvature of the observation density based on Ft−1 (Creal et al., 2013).

Accordingly, we select Ht to be related to the curvature of the loss function w.r.t. βt as mea-

sured by its predicted Hessian, which is given by Et−1[∂
2L(βt, Rt)/∂βt∂β

′
t] = 2Et−1[XtX

′
t].

For Et−1[XtX
′
t] we use the predictions obtained from an exponential weighted moving average

(EWMA) so that our speci�cation for Ht is

Ht = 2Et−1[XtX
′
t], Et−1

[
XtX

′
t

]
= κEt−2

[
Xt−1X

′
t−1

]
+ (1− κ)Xt−1X

′
t−1, κ ∈ (0, 1].

(2.23)

We treat the smoothing coe�cient κ as an unknown parameter to be estimated jointly with

the parameters in the GAS recursion (2.21). This then gives a parameter vector, which

consists of θ = (a0, a1, b0, b1, κ). Our treatment of the initial conditions is essentially the

same as for the RLS models. So we use β1 = (0, ι′n−1/n)
′, and for E0[X1X

′
1], the estimate of

the equicovariation matrix E0[XtX
′
t] in Equation (2.19) obtained by replacing the parameters

ρR and σ2R by their sample estimates. This ensures that Ht (t = 1, 2, ...) in the GAS equation

(2.21) is invertible. Accordingly, the GAS version of the GMVP model, just like the RLS

versions, can be applied even if T < n + 1. Finally note that the GAS scaling matrix

Ht in Equation (2.23) is similar to the RLS-EF information matrix Ωt in Equation (2.15).

However, the period-t update of Ht is based on Ft−1, in accordance with the standard GAS

modeling approach, while Ωt uses Ft, which implies that the GAS and RLS-EF model are

not nested.

2.3.3. Invariance with respect to the selection of the baseline asset

The dynamic GMVP models as described above are speci�ed in terms of the variables (Yt, Xt)

which, in turn, are obtained using asset n as baseline asset (see Equation 2.2). As the

choice of the baseline asset is arbitrary, it is desirable for a GMVP model to be invariant

w.r.t. this choice. That is, if another asset, say asset k instead of asset n, is chosen as

the baseline asset, so that the variables in the GMVP regression (2.2) equal Ỹt = Rkt and

X̃t = (1, Rkt −R1t, . . . , Rkt −Rnt)
′, then the estimated model parameters for both baseline

assets n and k should be compatible with each other and lead to the same predictions for

the GMVP weights. In Appendix A.2 we show that the proposed RLS and GAS GMVP

models with their respective initial conditions exhibit this invariance property.
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Chapter 2. Predicting the Global Minimum Variance Portfolio

2.3.4. Ability to track the GMVP weights

In order to analyze the ability of the proposed GMVP models to track the `true' conditional

GMVP weights we conduct a Monte Carlo experiment. The true GMVP weights ω∗
t are

generated by simulating a Gaussian DCC model (Engle, 2002). It is given by

Rt|Ft−1 ∼ N(0,Σt), Σt = D
1/2
t CtD

1/2
t , (2.24)

where Ct is the conditional correlation matrix and Dt = diag(h1t, . . . , hnt) is a diagonal

matrix with the conditional return variances, each of which follows a univariate GARCH(1,1)

process. The return-speci�c GARCH(1,1) process is hit = φ0i + φ1iR
2
it−1 + φ2ihit−1. The

correlation matrix Ct is given by Ct = (Q∗
t )

−1/2Qt(Q
∗
t )

−1/2, with Qt = (1 − α − β)S +

αet−1e
′
t−1 + βQt−1, where et = D

−1/2
t Rt is the vector of standardized returns. The diagonal

matrix Q∗
t is composed of the diagonal elements of Qt, and S is the unconditional covariance

matrix of et. The simulated conditional DCC covariance matrices Σt are transformed into

the true GMVP weights ω∗
t according to Equation (2.6).

We simulate M = 500 multivariate series of n returns Rt each of length T . To each of

them, we �t the GMVP models so that we obtain M sequences of in-sample estimates for

the vector of GMVP weights. The parameters of the DCC model used as DGP are selected

as in the experiment of Engle et al. (2019): The correlation parameters are set to α = 0.05

and β = 0.93, the GARCH(1,1) parameters to φ1i = 0.05 and φ2i = 0.9 for all n return

variates, and the unconditional covariance matrix S is set equal to its sample estimate which

obtains for the n most liquid stocks of our data set using 10 years of daily data from 2007

though 2016 (see Section 2.4.2). We consider three portfolio sizes n ∈ {50, 200, 500} and two

lengths of the estimation window T ∈ {250, 1250} which corresponds approximately to one

and �ve years of daily return data. The resulting concentration ratio n/T , which captures

the degree of estimation uncertainty, varies from 0.04 to 2. For evaluating the accuracy of

the in-sample estimates of the conditional GMVP weights we use the Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE) of the estimates relative to the true values.

In Table 2.1, we report the MAE and RMSE results for our GMVP models. For com-

parison, it also provides the results for GMVP-weight estimates that result from �tting a

DCC model to the simulated data and plugging the resulting estimates for the covariance

matrix Σt into the GMVP formula (2.6). To implement correlation targeting in the DCC

matrix Qt for �tting the DCC model, we use the standard approach (DCC-s), which consists

of estimating the unconditional covariance matrix S by the sample covariance matrix of the

standardized returns et (Engle, 2002). But this is only feasible as long as n/T ≤ 1, since

for n/T > 1 the sample covariance matrix does not have full rank. As an alternative, we

consider the approach of Engle et al. (2019), who propose to use for the target matrix S the

nonlinear shrinkage (nl) estimator of Ledoit and Wolf (2012, 2015). The resulting DCC-nl

approach is also feasible for n/T > 1. Both DCC models are estimated by a composite
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2.3. Dynamic GMVP models

Table 2.1.: Simulation results

MAE T = 250 T = 1250

n 50 200 500 50 200 500

RLS-EF 2.420 4.712 6.965 2.701 5.018 6.744
RLS-REF 2.277 4.662 6.933+ 2.277+ 4.390+ 6.445+

GAS 2.252
+

4.634
+ 6.946 2.415 4.556 6.530

DCC-s 3.188 12.462 � 1.865 5.185 8.812
DCC-nl 2.565 4.684 6.589 1.760 4.352 6.093

RMSE T = 250 T = 1250

n 50 200 500 50 200 500

RLS-EF 0.450 0.457 0.445 0.502 0.474 0.418
RLS-REF 0.424

+
0.454

+
0.416

+ 0.419+ 0.416
+ 0.407+

GAS 0.426 0.458 0.447 0.450 0.437 0.416
DCC-s 0.608 1.187 � 0.354 0.499 0.537
DCC-nl 0.487 0.455 0.421 0.334 0.418 0.379

Note: Mean absolute error (MAE) and root mean squared error (RMSE)
of the estimated GMVP weights for M = 500 simulations. Bold �gures in-
dicate the smallest error across all models and �gures marked by + indicate
smallest error across models based on the GMVP loss. The MAE is com-
puted as

∑M
s=1[

∑T
t=1 dts/T ]/M with dts =

∑n
i=1 |ω

∗
its − ω̂its|, where ω̂its is

the estimate for the weight ω∗
its of asset i in period t for simulation run s.

The RMSE is computed analogously based on dts = [
∑n

i=1(ω
∗
its− ω̂its)

2]1/2.

likelihood approach as recommended by Engle et al. (2019).

The results in Table 2.1 show that among the proposed GMVP models, the RLS-REF

tends to perform best in tracking the GMVP weights. It dominates the RLS-EF across all

n/T scenarios and both performance measures. This suggests that the regularization of the

information matrix Ωt improves the balance between the sensitivity to changes in the GMVP

weights and the robustness w.r.t. noise. For the long estimation window, the RLS-REF also

dominates the GAS model. Only for the short window and portfolio sizes of n = 50 and

n = 200, the weight estimates of the GAS have lower MAE values. The RLS-REF also

performs well relative to the DCC that de�nes the DGP. Even if the RLS-REF for the

long estimation window is typically outperformed by the DCC-nl, it tends to provide more

accurate weight estimates than the DCC models for the short window. This can be explained

by the fact that the DCC, which has substantially more parameters than the RLS and GAS

models, su�ers from comparably large parameter estimation uncertainty with small sample

sizes, resulting in excess variation of the weight estimates. It is known that the DCC-nl,

especially for a large n/T , improves parameter estimation relative to the DCC-s (see Engle

et al., 2019), which explains why the DCC-nl performs better than the DCC-s in tracking

the weights.
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Chapter 2. Predicting the Global Minimum Variance Portfolio

2.4. Empirical application

In this section we apply our proposed GMVP prediction models to historical daily return

data, and compare them to a set of benchmark models in an out-of-sample forecasting

experiment.

2.4.1. Data and design of the experiment and benchmark models

We use the data set analyzed by Moura et al. (2020) which consists of the daily prices of all

NYSE, AMEX and NASDAQ stocks and update it to include price observations until the

end of the year 2019. The full sample covers the period from 01/02/2002 to 12/09/2019 for

a total of 4516 trading days. In our out-of-sample experiments we focus on one-day-ahead

forecasts obtained by re-estimating the model parameters every month on a rolling window

scheme, where we follow the convention that 21 consecutive days constitute one month. The

out-of-sample period starts on 01/03/2007 and ends on 12/09/2019 which results in a total

of 3257 point forecasts. We consider four portfolio sizes, n ∈ {50, 200, 500, 1000}, and two

lengths of the estimation window, T ∈ {250, 1250} (one and �ve year). We thus cover eight

practically relevant scenarios of n/T ranging from 0.04 to 4.

Following Engle et al. (2019), the n stocks included in a portfolio are re-determined before

re-estimating the parameters each (virtual) month. They are selected as follows: First, we

identify the stocks that have a complete series of reported returns over the most recent T

days and over the next 21 days. Then, we identify all pairs of stocks with a sample correlation

larger than 0.95 over the past T days and remove the respective stock with lower trading

volume observed at the time of re-estimation. Finally, we select the largest n stocks in terms

of market capitalization at the re-estimation period. A time plot of the returns for an equally

weighted portfolio including the 1000 largest stocks is provided in Appendix A.3.

As alternatives to our proposed GMVP models we use the following six static and dynamic

approaches from the literature: (i) The OLS estimator constructs the period-t prediction of

the GMVP weights by replacing the return covariance matrix Σ in the GMVP formula

(2.1) with the sample covariance matrix of the returns observed up to period t − 1. This

approach is equivalent to running Kempf and Memmel's (2006) static auxiliary regression

using OLS and corresponds to the RLS-EF with a forgetting factor λ = 1 (see Equation

2.16). (ii) The linear shrinkage (SHR-l) estimator modi�es the OLS estimator by estimating

Σ in Equation (2.1) via the linear shrinkage approach of Ledoit and Wolf (2004). (iii)

The nonlinear shrinkage (SHR-nl) estimator estimates Σ in formula (2.1) via the nonlinear

shrinkage procedure of Ledoit and Wolf (2012, 2015). While the linear shrinkage estimator

shrinks all sample eigenvalues towards the grand mean of the sample eigenvalues with the

same intensity, the nonlinear shrinkage approach uses an individualized intensity for each

eigenvalue. (iv) The naïve estimator sets the prediction of the GMVP weights equal to the

weights of the equally weighted portfolio. (v) The Gaussian DCC model in Equation (2.24)
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2.4. Empirical application

with correlation targeting based on the standard sample covariance matrix (DCC-s). (vi)

The Gaussian DCC model with correlation targeting based on nonlinear shrinkage estimates

(DCC-nl).

2.4.2. Results

Out-of-sample GMVP loss and portfolio variance

In Table 2.2 we report the average out-of-sample GMVP loss of the proposed GMVP models

as well as the benchmark models. (The NLS-estimates for the key parameters of the GMVP

models are provided in Appendix A.3.) For assessing the statistical signi�cance of di�erences

in the average out-of-sample GMVP loss across models, we use the model con�dence set

(MCS) approach of Hansen et al. (2011). The MCS is constructed to contain the best-

performing models at a given con�dence level, which we set equal to 90%. In the bootstrap

implementation of the MCS, we use a block bootstrap with block length ⌊T 1/3
eval⌋, where

Teval = 3257 is the size of the evaluation sample, and a bootstrap sample size of 10000.

We use the implementation of the MCS procedure in the Oxford MFE toolbox (https:

//www.kevinsheppard.com/code/matlab/mfe-toolbox). Results of a forecast comparison

based on the test for superior predictive ability (Hansen, 2005) are qualitatively very similar

and are available in Appendix A.3.

Table 2.2.: Average out-of-sample GMVP loss and variance

T = 250 T = 1250

n 50 200 500 1000 50 200 500 1000
n/T 0.20 0.80 2.00 4.00 0.04 0.16 0.40 0.80

RLS-EF Avg. loss 0.577 0.421 0.391 0.300 0.559 0.438 0.354 0.297
Portf. var. 0.574 0.420 0.390 0.297 0.558 0.438 0.354 0.296

RLS-REF Avg. loss 0.560 0.415 0.349 0.285 0.530 0.418 0.348 0.293
Portf. var. 0.558 0.414 0.348 0.285 0.528 0.418 0.348 0.294

GAS Avg. loss 0.688 0.548 0.496 0.418 0.587 0.485 0.375 0.333
Portf. var. 0.693 0.524 0.496 0.399 0.583 0.474 0.370 0.331

DCC-s Avg. loss 0.694 0.927 � � 0.635 0.501 0.389 0.395
Portf. var. 0.691 0.921 � � 0.631 0.500 0.386 0.392

DCC-nl Avg. loss 0.638 0.468 0.364 0.255 0.628 0.481 0.335 0.260

Portf. var. 0.635 0.465 0.362 0.253 0.624 0.478 0.332 0.258
OLS Avg. loss 0.701 1.483 � � 0.623 0.495 0.464 0.804

Portf. var. 0.696 1.471 � � 0.620 0.493 0.462 0.800
SHR-l Avg. loss 0.680 0.824 0.506 0.336 0.622 0.493 0.457 0.637

Portf. var. 0.676 0.817 0.501 0.333 0.618 0.490 0.454 0.633
SHR-nl Avg. loss 0.630 0.454 0.368 0.321 0.619 0.471 0.382 0.317

Portf. var. 0.625 0.450 0.365 0.319 0.615 0.468 0.379 0.315
naïve Avg. loss 1.373 1.538 1.690 1.847 1.366 1.535 1.666 1.851

Portf. var. 1.363 1.527 1.677 1.834 1.357 1.535 1.654 1.837

Note: Average out-of-sample GMVP loss (Avg. loss) and variance of the predicted GMVP portfolio
(Portf. var.) for portfolio sizes n ∈ {50, 200, 500, 1000}. Parameter estimation is based on a sample
of length T . Bold numbers indicate smallest average GMVP loss across all models and grey cells
indicate that the model belongs to the 90% MCS.

The results for the average out-of-sample GMVP loss in Table 2.2 can be summarized
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Chapter 2. Predicting the Global Minimum Variance Portfolio

as follows: For all eight (n, T )-scenarios, the RLS-REF attains the smallest average loss

among our proposed GMVP models. The fact that the RLS-REF outperforms RLS-EF is

fully in line with the results of the Monte Carlo experiment in Section 2.3.4, which indicate

that regularizing the exponential forgetting of RLS enhances the performance in tracking

the GMVP weights. Both RLS versions consistently achieve a smaller average loss than

the GAS model. The RLS approach thus seems to better capture the characteristics in the

dynamics of GMVP weights that are important for its predictions with a similarly small

number of parameters than the GAS model (2 in the RLS versus 5 in the GAS). The best

performing benchmark models for both estimation-window lengths T are the DCC-nl (for

n = 500 and n = 1000) and the SHR-nl (for n = 50 and n = 200). We also �nd that the

forecast improvements achieved when moving from the standard DCC-s to DCC-nl and from

the standard OLS estimator to SHR-nl consistently increase with n/T . This con�rms the

results of Engle et al. (2019) and Ledoit and Wolf (2012, 2015) which suggest that nonlinear

shrinkage is particularly bene�cial in large dimensional applications. The comparison of all

competing models reveals that the RLS-REF is the only model that belongs to the 90%

MCS for all (n, T )-scenarios. It also has the lowest average loss, except for the scenarios

(n, T ) = (500, 1250) and n = 1000, in which the loss of the DCC-nl is lower. A possible

explanation for the lower loss of the DCC-nl compared to the RLS-REF in those large-

n scenarios is that the greater �exibility of the highly parameterized DCC is better able

to cope with a large heterogeneity in the dynamic behavior of the returns across stocks.

Remember that we construct the asset universes for the portfolios based on the assets'

market capitalization, so that the additional stocks that are added when the universe is

expanded will gradually decrease in size. The fact that this increases the heterogeneity in

the behavior of the stock returns is shown by the signi�cant rise in the spread of the estimates

for the return-speci�c GARCH parameters (φ0i, φ1i, φ2i) (not reported here), that we �nd

for the DCC when �tted to an increasing number of stocks. Finally, for the short estimation

window, the static SHR-nl estimator performs quite well relative to the dynamic approaches.

This is to be expected, since the shorter the (rolling) estimation window, the easier it is for

static approaches to adapt to local parameter changes.

In addition to the average out-of-sample loss, we report in Table 2.2 the sample variance

of the predicted GMVP returns. The comparison of the values for the two performance

measures shows that they are very close to each other. The correlation coe�cient for their

values across the nine competing models and eight (n, T )-scenarios is equal to 0.99995. In

addition, the ranking of the models for the two measures is identical in six out of the eight

(n, T )-scenarios, and in the two scenarios with di�erent rankings we only see a swap of the

ranking for the GAS and the DCC-nl (n = 200, T = 1250) and for the GAS and the DCC-s

model (n = 50, T = 250). As discussed in Section 2.2.2, this close similarity between the

two performance measures is the result of very small signal-to-noise ratios in the process of

the stock returns.
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Table 2.3.: Average out-of-sample GMVP loss and variance one estimation

RLS-EF RLS-REF GAS DCC-s DCC-nl OLS SHR-l SHR-nl naïve

Avg. loss 0.564 0.565 0.675 0.682 0.679 0.995 0.992 0.946 1.363
Portf. var. 0.563 0.564 0.661 0.681 0.678 0.994 0.991 0.944 1.361

Note: Average out-of-sample GMVP loss (Avg. loss) and variance of the predicted GMVP portfolio
(Portf. var.) for portfolio size n = 50. For the predictions in the out-of-sample window, model
parameters are �xed to their estimated values from the initial estimation window (01/03/2007 �
12/09/2019 with T = 1250). Bold numbers indicate smallest average GMVP loss across all models
and grey cells indicate that the model belongs to the 90% MCS.

The results in Table 2.2 indicate that the best static GMVP approach, the SHR-nl, per-

forms quite well relative to the dynamic models, especially for the short estimation window.

This �nding seems to contradict the results of our calibration experiment in Section 2.2.2,

which point to clear performance gains of dynamic approaches over static ones. For a port-

folio size of n = 50, this experiment shows for the empirically relevant benchmark scenario

a reduction in the unconditional portfolio variance for the dynamic approach by approxi-

mately 40% compared to the static one. In contrast, the results in Table 2.3 for n = 50

show that the changes in the portfolio variance for the dynamic approaches compared to the

static SHR-nl are in a range from -14% (RLS-REF, T = 1250) to +11% (GAS, T = 250).

This apparent contradiction can be explained by the fact that in our forecast experiment

the static approaches sequentially revise their estimates for the covariance matrix Σ based

on the updated return history in the rolling estimation window scheme. These estimates

hence capture local trends in the conditional covariance matrix Σt, while in the calibration

experiment, the unconditional covariance matrix Σ used by the static approach is kept �xed

by de�nition. To provide evidence for this interpretation, we modify the out-of-sample ex-

periment by suppressing the revisions of the parameter estimates during the out-of-sample

period and �xing the parameters for the static and dynamic models to their estimates from

the initial estimation window. The out-of-sample period is the same as before and the length

of the initial estimation window is T = 1250. As in the calibration experiment, we use a

portfolio size of n = 50. Table 2.3 reports the results of this modi�ed experiment, showing

clear gains for the dynamic models over the SHR-nl and the other static approaches, in line

with the calibration experiment in Section 2.2.2. In fact, the reduction in the portfolio vari-

ance compared to the SHR-nl achieved by the dynamic models ranges from 28% (DCC-s) to

40% (RLS-EF, RLS-REF) and is thus of a similar magnitude as the reduction found in the

calibration experiment.

The out-of-sample GMVP loss and the portfolio variance as considered here are natural

performance measures for predictive models of the GMVP weights. In Appendix A.3.4 we

also provide the results for the out-of-sample Sharpe ratio. They show that the proposed

GMVP models also perform well with regard to this criterion compared to the competing
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benchmarks, with the largest Sharpe ratio for �ve of the eight (n, T )-scenarios considered.

However, as emphasized by Engle et al. (2019), this measure is only of secondary importance

for the evaluation of prediction models for the GMVP allocation, even if a large Sharp ratio

is generally desirable.

Local out-of-sample performance over time

For assessing the models' relative out-of-sample forecasting performance over time, we em-

ploy the �uctuation test of predictive ability in unstable environments proposed by Gia-

comini and Rossi (2010). We use this test to compare the GMVP-weight forecasts of our

best performing approach, the RLS-REF, with the best static benchmark model (SHR-nl)

and the best dynamic benchmark (DCC-nl). We implemented the �uctuation test using the

average out-of-sample GMVP loss within a rolling evaluation window of 328 observations

(10% of the full out-of-sample period). As in our main experiment, we obtain the fore-

casts by re-estimating the model parameters using a rolling window scheme. For each of

our (n, T )-combination, Figure 2.2 plots the Giacomini-Rossi (GR) �uctuation test statistic

and the 5% asymptotic critical value for the hypothesis that the forecasting performance

of the RLS-REF is equal or worse than the benchmark at each point in time, which is re-

jected if the critical value is crossed at least once. Negative values of the test statistic imply

that the RLS-REF forecasts better than the respective competing model. The plots show

gains in the out-of-sample performance of RLS-REF compared to the SHR-nl and DCC-

nl benchmarks particularly in the 2007-2008 �nancial crisis, indicating that this important

period contributes to the good overall performance of RLS-REF. Beyond the crisis period,

the models' relative performance is generally fairly stable, with one notable exception: For

(n, T ) = (200, 1250), the loss di�erential of RLS-REF and DCC-nl also exhibits a distinct

negative trend in the last years of our out-of-sample period, which indicates that the sparse

RLS model can outperform the highly-parameterized DCC also in tranquil economic periods.

2.5. Summary and discussion

In order to develop and evaluate predictive models for the weights of the global minimum

variance portfolio (GMVP) which minimize the conditional portfolio variance, we propose

to use the Kempf and Memmel (2006) loss function which is de�ned by an auxiliary linear

regression. We provide theoretical arguments to justify the use of this GMVP loss function.

The GMVP loss function is strictly consistent for the GMVP weights, and although this con-

sistency only applies in conjunction with the mean of the GMVP returns, we show that there

is no loss function that uniquely identi�es the GMVP weights on their own. Furthermore,

in empirically relevant scenarios the mean of the GMVP loss can be expected to be a very

close approximation of the unconditional portfolio variance, which in practice is the predom-

30



2.5. Summary and discussion

08 10 12 14 16 18

year

-6

-4

-2

0

2

G
R

 s
ta

ti
s
ti
c

n=50, T=250

08 10 12 14 16 18

year

-6

-4

-2

0

2

n=50, T=1250

08 10 12 14 16 18

year

-6

-4

-2

0

2

G
R

 s
ta

ti
s
ti
c

n=200, T=250

08 10 12 14 16 18

year

-6

-4

-2

0

2

n=200, T=1250

08 10 12 14 16 18

year

-6

-4

-2

0

2

G
R

 s
ta

ti
s
ti
c

n=500, T=250

08 10 12 14 16 18

year

-6

-4

-2

0

2

n=500, T=1250

08 10 12 14 16 18

year

-6

-4

-2

0

2

G
R

 s
ta

ti
s
ti
c

n=1000, T=250

08 10 12 14 16 18

year

-6

-4

-2

0

2

n=1000, T=1250

Figure 2.2.: GR �uctuation test statistic for the hypothesis that the RLS-REF is equal or worse

than the DCC-nl (bold dashed line) and the SHR-nl (bold solid line). Dashed-dotted

line marks the 5% critical value and dotted line the origin.

inant measure for evaluating portfolios targeting the GMVP. We then use the GMVP loss

to develop sparsely parameterized dynamic models for the conditional portfolio weights that

are easily scalable w.r.t. the size of the portfolio. The proposed models are semi-parametric

and based on recursive least squares (RLS) with standard exponential forgetting (EF) or

regularized exponential forgetting (REF) as well as generalized autoregressive score (GAS)

recursions. The parameters of those models can be easily estimated by standard nonlinear

least squares. Using daily stocks prices, we �nd that the RLS GMVP model with REF in
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particular performs very well compared to a wide range of relevant benchmark approaches

from the literature and across di�erent portfolio sizes ranging from 50 to 1000 stocks.

There are several avenues for future research. One would be to explore RLS algorithms

with alternative forgetting schemes that can improve the ability to track the GMVP weights

in scenarios with a very large heterogeneity in the dynamic behavior of asset returns, such

as in our applications for the large portfolios. In these cases, the degree of excitation in the

di�erent directions of the parameter space of the GMVP regression is typically very hetero-

geneous (see Appendix A.3.2) so that it could be useful to endow the RLS with a selective

directional forgetting (DF) scheme. Such RLS-DF algorithms, which admit a decrease of

accumulated information in the information matrix only in the currently excited direction,

are proposed by Bittanti et al. (1990) and Kulhav�y and Zarrop (1993), and further devel-

oped, e.g., in Goel and Bernstein (2018) and Shin and Lee (2020). In a preliminary pilot

application of RLS with one of the simplest DF schemes we have indeed found improvements

relative to the RLS-EF and RLS-REF for our portfolio with 1000 stocks, which con�rms our

intuition.

Another topic for future research is the treatment of constraints that portfolio managers

often have to consider in practice, such as restrictions on the gross exposure, turnover,

maximum (absolute) position or factor exposure. All these constraints can be fairly easily

incorporated in plug-in GMVP approaches based on predictions of the returns' conditional

covariance matrix, namely by solving standard convex optimization problems. To include

such constraints in the proposed GMVP models the autoregressive update mechanism for

the portfolio weights in the dynamic GMVP regression would need to be modi�ed so that

it meets the constraints period by period. An approach which accounts for gross-exposure

constraints within the static GMVP regression for a �xed (unconditional) covariance matrix

of the asset returns is found in Fan et al. (2012). It exploits the fact that such constraints

can be represented as an inequality restriction on the 1-norm of the vector with the portfolio

weights. With this 1-norm the GMVP regression can then be formulated as a LASSO-

regression problem (least-absolute shrinkage and selection operator) with a corresponding

LASSO-solution path for the range of gross-exposure ratios. So one possibility to adapt

our dynamic GMVP approach to account for gross-exposure constraints is to combine the

GMVP regression with an RLS algorithm with 1-norm constraints. Such regularized RLS

algorithms are developed, e.g., by Angelosante et al. (2010) and Nascimento and Zakharov

(2016). However, it is unclear how other practical restrictions can be taken into account

in addition to a gross-exposure constraint. This is a limitation of our proposed GMVP

approach compared to plug-in GMVP strategies.
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Chapter 3.

A Time-Varying Parameter Model with

Bayesian Shrinkage for Global Minimum

Variance Portfolio Prediction

3.1. Introduction

Modern asset allocation considers hundreds of �nancial assets, and its fundamental input

is an estimate of the covariances of returns. However, when the number of cross sectional

units n is large relative to the length of the time series T , the sample covariance matrix is

subject to signi�cant estimation error. Thus, estimating optimal portfolio weights becomes

challenging, both numerically and statistically, when the number of assets considered is large.

We propose a dynamic sparse model directly for the weights of the Global Minimum

Variance Portfolio (GMVP), which is particularly suited for situations where the length of

the time series of returns is not much larger than the number of assets considered. Operating

solely at the quantity of interest for portfolio allocation, we are able to sidestep the direct

estimation of large and often ill-conditioned covariance matrices. Exploiting that the GMVP

weights can be obtained as the population coe�cients of a linear regression allows us to deal

with estimation noise and regularization in a straightforward way. We set up a linear state

space model with time-varying parameters and stochastic volatility, which addresses both

the time variation in the assets' conditional covariance structure and the heteroscedasticity

in the market. Bayesian inference techniques with LASSO (least-absolute shrinkage and

selection operator) type priors provide data driven shrinkage mitigating the problems of

over�tting, large asset exposure, and high turnover.

Conceptually, employing a GMVP strategy is only optimal for an in�nitely risk averse

investor or under the assumption that the expected returns are equal across all assets. How-

ever, several studies present evidence that the GMVP often performs better out-of-sample

than other mean-variance portfolios even when performance measures that depend on aver-

age returns are considered (see, for example, DeMiguel et al., 2009). Since expected returns

have a major impact on the mean-variance optimal strategy (Best and Grauer, 1991), but

are notoriously hard to predict (Welch and Goyal, 2008), estimation error is so large that
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not much is lost in ignoring di�erences in expected returns (Jagannathan and Ma, 2003). In

addition, a recomposition of the portfolio based on updated estimates of the (conditional)

correlation structure typically takes place at regular intervals. Since any rebalancing in prac-

tice involves turnover costs, `stable' portfolios are to be preferred (see, e.g., Li, 2015 for a

discussion) so that a high sensitivity of portfolio weights to small changes in expected values

also for this reason is unfavourable.

However, when the number of assets is large relative to the number of observations, also

estimates of the second moments of asset returns are subject to considerable estimation

error, a�ecting the GMVP weights (Basak et al., 2009). One way to alleviate estimation

noise is to impose sparsity restrictions like diagonality (see, e.g., Kirby and Ostdiek, 2012)

or a factor structure on the covariance, but these ad hoc restrictions are often false and

cannot be revised by the data. In contrast to that, shrinkage of the unconditional covariance

or correlation matrices, as proposed in Ledoit and Wolf (2003, 2004, 2012, 2015), does not

force sparsity; nevertheless, it is able to reduce estimation noise very e�ectively. An easy way

to incorporate shrinkage procedures in dynamic modeling approaches has been proposed by

Engle et al. (2019), who use shrinkage estimates of the unconditional correlation matrix as

the targeting matrix in the dynamic conditional correlation (DCC) model of Engle (2002). A

third approach, building on the argument that the portfolio weights are a linear combination

of the entries of the inverse covariance rather than the covariance matrix itself, is to establish

a sparse model for the precision of the data. A prominent example is the approach of Callot

et al. (2019), who combine LASSO estimation with a nodewise regression representation for

the elements of the precision matrix.

Although the previously discussed approaches are developed to deal with the di�culties of

estimating covariances between a large number of cross sectional units, these regularizations

do not operate directly on the quantity of interest for portfolio selection. Regularizing

portfolio weights is a more direct way to avoid unreasonably high exposures to certain assets,

or a high degree of short-selling. In addition to linear shrinkage in which the resulting weights

estimates obtain as linear combination of the optimal portfolio rules with some reference

(DeMiguel et al., 2013; Tu and Zhou, 2011), and exponential smoothing (Golosnoy et al.,

2019), a popular regularization technique is to impose norm constraints on the portfolio

weights (see, e.g., Jagannathan and Ma, 2003; DeMiguel et al., 2009), typically L1 or L2

penalties or combinations thereof (Li, 2015; Yen, 2016). Both of them lead in the limit to

the equally weighted portfolio, but the path is di�erent: While under L1, or LASSO-type,

penalty, sparse portfolios are encouraged and the amount of short selling is particularly

penalized, L2 or ridge-type regularization leads to more uniform allocations punishing large

exposures (for a discussion see DeMiguel et al., 2009; Ait-Sahalia and Xiu, 2017). Frey and

Pohlmeier (2016) implement norm-constraints in a Bayesian setting with ridge and LASSO

type priors that shrink weights in direction of a reference portfolio like the equally weighted

portfolio. Imposing priors in a particular way corresponds to a probabilistic shrinkage of the
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parameter space such that no hard restrictions have to be made a-priori.

In the present paper, we extend the Bayesian shrinkage approach for the portfolio weights

to a dynamic context. This means not only that we allow for dynamics in the GMVP weights

to re�ect instabilities in the conditional correlation structure of the return series, but also

that we regulate them via the prior speci�cations, thus supporting stable portfolio allocation

more than other dynamic approaches. Building on an reference augmented linear regression

model in which the regression coe�cients correspond to the weights deviations of the GMVP

relative to some reference portfolio (Kempf and Memmel, 2006; Frey and Pohlmeier, 2016),

we set up a time-varying parameter model with stochastic volatility that captures also the

conditional heteroscedasticity in the market. An advantage of this approach is that the

problem scales linearly such that it is easily applicable to large dimensions and performs

well when n/T is large. The resulting linear Gaussian state-space model is easily tractable

via standard Bayesian MCMC procedures. Bayesian shrinkage type priors for the dynamics

and the overall level of the portfolio weights ful�ll two tasks at the same time: First, they

reduce estimation noise and thereby allow to cope also with settings under high concentration

ratios. Second they regularize the allocations; in particular, when using the time-invariant

1/n allocation rule benchmark, they explicitly reduce short selling and exposure as well as

the volatility of the weights leading to a smoother evolution of the weights associated with

moderate turnover.

The performance of our approach is demonstrated by simulation exercises based on DCC

dynamics for the covariance of the assets. Remarkably, the dynamic GMVP approach delivers

less risky portfolios and better weight forecasts than the true model when large concentration

ratios are considered. Moreover, we conduct an extensive empirical analysis based on a data

sets with up to 1600 daily asset returns, which con�rms the superior performance of the

proposed approach. Notably, although our model is designed to predict the weights of the

GMVP, it also delivers satisfying Sharpe ratios.

The remainder of this paper is organized as follows: Section 2 introduces the representation

of GMVP weights as time-varying parameters in a linear regression model. In Section 3

we present our proposed reference augmented speci�cation for the GMVP regression and

its formulation as a linear Gaussian state space model with time-varying parameters and

stochastic volatility. Section 4 describes the Bayesian shrinkage speci�cations, posterior

analysis and forecasting. In Sections 5 and 6 we present the results of our simulation studies

with arti�cial data and the empirical application, respectively. Section 7 concludes with

some discussion. Details of the MCMC sampling scheme and additional empirical results

can be found in the Appendix.
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3.2. Time-varying parameter approach for the GMVP

3.2.1. Setup

Let Rt = (R1,t, ..., Rn,t)
′ denote a vector of returns on n assets at period t with a covariance

matrix Σ. The vector of GMVP weights for the n assets (subject to the constraint that they

sum to one) is denoted by w = (w1, . . . , wn)
′ and is de�ned as

w = arg min
w̃: ι′nw̃=1

w̃′Σw̃ =
Σ−1ιn
ι′nΣ

−1ιn
, (3.1)

where ιn is a (n × 1) vector of ones. As shown by Kempf and Memmel (2006), the GMVP

weights can be represented in terms of the population coe�cients in an auxiliary regression

in which the return of an arbitrarily selected baseline asset is regressed on a constant and

the return di�erences between the baseline asset and the remaining n− 1 ones. If asset n is

the selected baseline asset, this auxiliary regression is

Rn,t = µ+ R̄′
tw1:n−1 + ϵt, E(ϵt|R̄t) = 0, (3.2)

with wn = 1− ι′n−1w1:n−1, (3.3)

where ϵt is the disturbance term and R̄t = (Rn,t − R1,t, . . . , Rn,t − Rn−1,t)
′, w1:n−1 =

(w1, . . . , wn−1)
′. The intercept is the expected return of the GMVP, i.e., µ = E(R′

tw).

The OLS estimates for w1:n−1 and wn in the auxiliary regression (3.2) based on a data series

{Rt}Tt=1 are equal to the `plug-in' estimates obtained by replacing in Equation (3.1) the

population covariance matrix Σ by the sample covariance matrix.

Such an approach to estimating the GMVP weights is known to be problematic for the

following reasons: First, when the number of assets n is large relative to the number of

observations T , the estimation of Σ by the sample covariance matrix is prone to over�tting

due to the excessive number of free parameters. Hence, for an increasing ratio n/T , the

accuracy of the sample covariance matrix deteriorates, leading to an increasing bias in the

resulting GMVP-weight estimates (see Section 3.1 for a discussion of possible approaches to

address this issue).

Second, the OLS approach (and corresponding regularized or shrinked versions thereof)

treat the (co)variation among the returns as constant over time. However, there is a plethora

of evidence that asset returns tend to exhibit conditional heteroscedasticity which typically

implies that also the conditional GMVP weights vary over time. Taking this time variation

into account can be expected to be important for GMVP predictions. It should be noted

that conditional dynamic approaches in general do not minimize the unconditional portfo-

lio variance, against which investment managers are typically evaluated, but the average

conditional variance (law of total variance; see Ferson and Siegel, 2001 for a more detailed

discussion). However, as illustrated, e.g., in Reh et al. (2021), since the variation in the

conditional covariance structure is typically much more pronounced than the variation in
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the conditional expected value in applications to daily stock returns, the optimization of the

`incorrect' target quantity plays a minor role in this case.

3.2.2. Standard GMVP regression with time-varying parameters

A natural way to deal with dynamic changes of GMVP weights while keeping the GMVP

analysis robust in high-dimensional applications against over�tting is to treat the GMVP

regression model (3.2) as a time-varying parameter (TVP) model and then to combine it

with Bayesian shrinkage priors leading to a sparse Bayesian TVP approach, as considered,

e.g., by Belmonte et al. (2014) and Bitto and Frühwirth-Schnatter (2019). Applied to the

GMVP auxiliary regression model (3.2) we assume for the regressions coe�cients random

walks of the following form:[
µt

w1:n−1,t

]
=

[
µt−1

w1:n−1,t−1

]
+

[
η0,t

η1:n−1,t

]
,

[
η0,t

η1:n−1,t

]
∼ N (0, V ), (3.4)

where the covariance matrix of the innovations ηt is restricted to be diagonal, i.e., V =

diag(v0, v1, . . . , vn−1).

In such a TVP-version of the GMVP regression model, Bayesian shrinkage approaches

can be used to shrink the GMVP weights w1:n,t to the weights of some �xed reference

portfolio denoted by w̄ = (w̄1, . . . , w̄n)
′. We speci�cally consider the hierarchical Bayesian

LASSO of Belmonte et al. (2014) as well as the related double Gamma prior speci�cation

proposed by Bitto and Frühwirth-Schnatter (2019) (which encourages more variation in

the shrinkage intensities among the parameters given some global level of shrinkage). If the

model is over�tting, these approaches enable an automatic reduction of time-varying weights

to constant ones (vi → 0) and an automatic shrinkage of the weights to those of the reference

portfolio (vi → 0 and wi,t → w̄i).

While this approach is a way to account for potential dynamic time-variation in the GMVP

weights which is robust against large dimensions it su�ers from a drawback in that it is not

invariant w.r.t. the arbitrary choice of the baseline asset when it is directly applied to the

standard GMVP-regression as given by Equation (3.2).

The reason for this lack of invariance is the adding-up constraint in Equation (3.3) leading

to an asymmetric treatment of the weights. So this constraint together with the diagonal

structure of the covariance matrix V in Equation (3.4), implies for the weight of the baseline

asset n a random walk of the form

wn,t = wn,t−1 + ηn,t, ηn,t = −ι′n−1η1:n−1,t,
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where

E(η2n,t) =
n−1∑
i=1

vi, E(ηn,tηi,t) = −vi, i = 1, . . . , n− 1.

Thus, while all the weights of the �rst n−1 assets are assumed to be mutually uncorrelated,

they are all correlated with the weight of the baseline asset n. As a consequence, the diagonal

parameterizations of the TVP-GMVP models under di�erent baseline assets are not one-to-

one transformations of one another. It follows that the estimation results obtained under

di�erent baseline assets are not mutually compatible and lead to di�erent predictions for the

GMVP weights.

As is easy to verify, invariance of the TVP-GMVP model w.r.t. the selection of the baseline

asset could be achieved by relaxing the restriction on V and allowing it to be an unrestricted

non-diagonal covariance matrix. But even in this case, the sparse Bayesian TVP approach

applied to the GMVP regression model (3.2) remains problematic. First, if the covariance

matrix V is a full matrix, the TVP model is far from being parsimonious from the start,

and it is unclear how to design Bayesian shrinkage priors for a full covariance matrix V

which could be used to distinguish which of the weights have signi�cant time variation and

which do not. Second, even if the TVP-GMVP model with an unrestricted V matrix itself

is invariant, the adding-up-constraint generates an invariance issue in the Bayesian analysis

of the model. This is because this constraint implies that the prior distribution selected for

the covariance matrix V fully determines the prior distribution for the variation parameters

of the weight for the baseline asset. So under standard prior assumptions for an unrestricted

covariance matrix V (such as a Wishart or Inverse-Wishart) the variation parameters for

the baseline asset, E(η2n,t) and E(ηn,tηi,t), will have prior distributions that di�er from the

corresponding prior distributions selected for E(η2i,t) and E(ηi,tηj,t) in V . As a consequence,
the resulting posterior distribution for the GMVP weights wt will depend on the choice of

the baseline asset.

3.3. Sparse invariant time-varying parameter model for the

GMVP

3.3.1. Augmented GMVP regression

In order to circumvent the invariance problem of the sparse TVP model when it is directly

applied to the standard GMVP regression model (3.2) we propose to utilize the GMVP

regression which obtains when reformulating the GMVP problem using an arti�cially aug-

mented asset space that contains a reference portfolio in addition to the n individual assets

(Frey and Pohlmeier, 2016). This leads to a reparameterization of the GMVP regression,

which enables a symmetric treatment of the GMVP-weights despite their adding-up con-

straint and thus avoids invariance issues.
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Let Ra
t = (R1,t, . . . , Rn,t, Rn+1,t)

′ denote the vector of returns in the augmented asset

space, where Rn+1,t = w̄′Rt is the return of the reference portfolio with �xed weights w̄ =

(w̄1, . . . , w̄n)
′ summing to one. The (n+1)-dimensional vector of the GMVP weights for this

augmented asset space is denoted as w̆ = (w̆1, . . . , w̆n, w̆n+1)
′ and is de�ned by

w̆ = arg min
w̃: ι′n+1w̃=1

w̃′Σaw̃,

where Σa is the covariance matrix of Ra
t . Since Rn+1,t is a linear combination of Rt, this

covariance matrix is singular with rank n, so that the GMVP vector w̆ is not unique (One of

its multiple solutions is w̃MP = Σ+
a ιn+1/(ι

′
n+1Σ

+
a ιn+1), where Σ+

a denotes the Moore-Penrose

pseudo-inverse of the covariance matrix Σa).

Since no further risk reduction can be achieved by expanding the asset space to include the

reference portfolio, the resulting variance minimum in the augmented asset space corresponds

to that in the regular n-dimensional space. This implies that the GMVP in the augmented

space must have the same allocation of the n individual assets as the GMVP in the regular

space. From this it follows that the relationship between the original n GMVP weights in

the regular space w and the weights for the augmented space w̆ is given by the following link

function:

w = w̆n+1w̄ + w̆1:n = (1− ι′nw̆1:n)w̄ + w̆1:n, (3.5)

where w̆1:n = (w̆1, . . . , w̆n)
′ (see Frey and Pohlmeier, 2016). Hence, the GMVP weights for

the n individual assets in the augmented space w̆1:n represent the (not unique) deviations of

their GMVP weights in the regular space w from the scaled weights of the reference portfolio

w̄. In the link function (3.5), the adding up constraint on w̆ and w̄ ensures that the GMVP

weights w also add up to one. In contrast to the original GMVP weights w, however, the

weight deviations for the n assets w̆1:n are not subject to an adding-up constraint. Because

of this property of w̆1:n we can treat them symmetrically in a predictive approach in order to

ensure a symmetric treatment of the original GMVP weights w via the link function (3.5).

This is key for a parametrization of the GMVP regression model for an invariant Bayesian

TVP prediction approach.

The optimal weight deviations w̆1:n written in terms of the population coe�cients in an

auxiliary regression obtain by applying the same regression algebra as Kempf and Memmel

(2006). If the reference portfolio is used as the baseline asset, this augmented auxiliary

GMVP regression is

Rn+1,t = µ+ (R̄a
t )

′w̆1:n + ϵt, (3.6)

where R̄a
t = (Rn+1,t − R1,t, . . . , Rn+1,t − Rn,t)

′. Here the regressors in R̄a
t are collinear so

that the regression coe�cients w̆1:n are not identi�ed which re�ects the non-uniqueness of
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w̆. However, this lack of identi�cation in the augmented GMVP regression does not cause

any di�culties in a Bayesian analysis as long as the priors are informative with a curvature

in all directions where the likelihood as a function in w̆1:n is �at (see, e.g., Bauwens et al.,

2000, Section 2.2.4). Rather, this augmented GMVP regression allows us to exploit that the

deviations from the GMVP weights w̆1:n for all n assets can be treated symmetrically; and

this, in combination with the link function (3.5), enables a Bayesian analysis of the GMVP

weights w, which is invariant with regard to the selection of a baseline asset. Moreover, by

using Bayesian shrinkage priors that pull the deviations w̆1:n in Equation (3.5) to zero, this

augmented approach facilitates an automatic shrinkage of the GMVP weights w to those of

the reference portfolio w̄, when the model is over�tting. In our primary application below

we use the naïve equally weighted portfolio with w̄i = 1/n as the reference portfolio. This

selection follows DeMiguel et al. (2009); Candelon et al. (2012); Frey and Pohlmeier (2016)

who consider shrinkage of the GMVP weights towards equality in a static framework.

3.3.2. Augmented GMVP regression with time-varying parameters

The dynamic TVP extension of the augmented auxiliary regression (3.6) we use for a sparse

Bayesian GMVP approach is the same TVP model as considered by Bitto and Frühwirth-

Schnatter (2019). It is given by

yt = x′tβt + ϵt, ϵt ∼ N (0, σ2t ), (3.7)

βt = βt−1 + ωt, ωt ∼ N (0, Q), (3.8)

where yt = Rn+1,t and xt = (1, (R̄a
t )

′)′ with the vector of regression coe�cients partitioned

as βt = (β0,t, β
′
1:n,t)

′ so that β0,t = µt and β1:n,t = w̆1:n,t. The unknown initial value β0
is assumed to be independent of the innovations {ϵt} and {ωt} and to have a normal prior

distribution,

β0 ∼ N (α, P0Q),

where α is an unknown �xed vector and P0 = diag(p0), p0 = (p0,0, p0,1, . . . , p0,n). For the

covariance matrix of the innovations ωt we use a parsimonious diagonal form with Q =

diag(q0, q1, . . . , qn), which implies according to Equation (3.8) that the mean GMVP return

µt and the weight deviations w̆1:n,t are independent random walks.

For given values for βt, the period-t GMVP weights obtain from the link function (3.5),

which can be rewritten as

wt = w̄ +Rβ1:n,t, R = In − w̄ι′n, (3.9)

where In denoted the n-dimensional identity matrix. The �rst derivatives of wt with respect
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to βit, given by

dwt

dβi,t
= (−w̄i, . . . ,−w̄i, (1− w̄i),−w̄i, . . . ,−w̄i)

′,

i = 1, . . . , n, indicate that an increase of the GMVP weight deviation βit for asset i increases

its GMVP weight wi,t by (1 − w̄i) and decreases the GMVP weights of all the other assets

wj,t, j ̸= i by w̄j , respectively. This represents the mechanics in the link function (3.9) which

ensures that the wi,t's obtained from the unrestricted βi,t's add up to one. Combining this

link function with the independent random walks for β1:n,t in Equation (3.8) yields for the

n GMVP weights correlated random walks of the form

wt = wt−1 + et, et ∼ N (0, RQ1:nR
′),

where Q1:n = diag(q1, . . . , qn). Thus, the correlation structure in the innovations et is fully

determined by the mechanics enforcing the adding-up constraint on wt.

Since the dependent variable of the GMVP regression in Equation (3.7) is the return on the

reference portfolio, it is to be expected that the disturbance term ϵt exhibits autoregressive

time-varying volatility typical of asset returns. The control for the potential time-variation

in the volatility of ϵt is of crucial importance, otherwise there is the risk of overestimating

the variation in the GMVP weights (Sims, 2001; Stock, 2001).

Although the GMV portfolio weights are chosen in such a way that the idiosyncratic risk of

the assets is optimally hedged, it is not possible to diversify away market risk which is faced

by the economy as a whole. In the present model, the variance of the error term corresponds

to the variance of the portfolio and hence, potential variation in the market risk is captured

by heteroscedasticity in the error term. Assuming that the volatility process σ2t , t = 1, . . . , T

evolves stochastically as dynamic process with idiosyncratic innovations leads to the class of

stochastic volatility models originally proposed by Taylor (1982). This simple and likewise

popular approach is to impose for the transition of the log squared volatilities ht = log(σ2t )

a stationary AR(1)-process1which reads as

ht = µh + ϕh(ht−1 − µh) + ηht , ηht
iid∼ N (0, σ2h), h0 ∼ N (µh, σ

2
h/(1− ϕ2h)). (3.10)

Given that �nancial data are generally leptokurtic, it might be sensible to impose a Student-t

process for the error term. Initial experiments, however, revealed that this leads to negligible

di�erences in the weight forecasts such that we maintain the Gaussian assumption for our

models.

1Initial experiments with alternative SV speci�cations also yielded satisfactory out-of-sample performance
in our empirical applications (see Appendix B.3), but overall no substantial improvements compared to
the considered model.
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3.4. Bayesian analysis and forecasting

3.4.1. Shrinkage prior speci�cations

We utilize MCMC methods for Bayesian posterior analysis and use the Gibbs approach

to simulate from the joint posterior of the parameters and the latent states. In order to

disentangle the initial level and the time-variation in βt, we rewrite the model in its non-

centered parametrization, that is, βt is decomposed into a constant part α and a time-varying

part γt:

βt = α+Q0.5γt, (3.11)

γt = γt−1 + ω̃t, ω̃t
iid∼ N (0, In+1), γ0 ∼ N (0, P0),

where Q0.5 = diag(
√
q
0
, . . . ,

√
q
n
), and the each

√
q
i
∈ R is de�ned as the positive and nega-

tive square root of qi. This representation facilitates shrinking qi towards 0, since the usual

Inverse-Gamma prior on qi is bounded away from zero (see, for example, Frühwirth-Schnatter

and Wagner, 2010). Here we can equip both, the elements of α and
√
q = (

√
q
0
, . . . ,

√
q
n
)

with hierarchical Gaussian priors. Under the double Gamma prior speci�cation of Bitto and

Frühwirth-Schnatter (2019) this reads as

αi ∼ N (0, τ2i ), τ2i | λ2 ∼ G(aτ , aτλ2), λ2 ∼ G(d01, d02), aτ ∼ G(bτ , cτ ),
√
qi ∼ N (0, ξ2i ), ξ2i | κ2 ∼ G(aξ, aξκ2), κ2 ∼ G(e01, e02), aξ ∼ G(bξ, cξ),

for all cross-sectional units i = 1, . . . , n. The hierarchical structure allows for an almost

complete data driven prior calibration which prevents from cumbrous tuning of the hyper-

parameters. In contrast to the hierarchical Bayesian LASSO of Belmonte et al. (2014) in

which aξ = aτ = 1, also these parameters is assigned a Gamma hyperprior such that for

some global level of shrinkage determined by the parameter λ2 (κ2), values of aτ (aξ) smaller

one increase the variance for τ2 (ξ2) leading to more local shrinkage �exibility.

Noteworthy, this increased �exibility comes with the drawback that (few) potentially

undesirably large parameter values become more probable. Therefore, we only consider the

double Gamma speci�cation for the elements of α and impose for the elements of
√
q the

original hierarchical Bayesian LASSO of Belmonte et al. (2014) �xing aξ = 1. This ensures

a signi�cant amount of shrinkage for the time variation along all cross sectional units, which

we �nd to generate less volatile and hence economically more plausible dynamics for the

portfolio weights. This hierarchical hybrid shrinkage prior is only imposed for the parameters

corresponding to the augmented portfolio weights, whereas we select a fairly uninformative

normal prior for the parameters α0 and
√
q
0
, associated to µt, the conditional expectation

of the GMVP.
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The joint posterior for our proposed TVP-GMVP-shr -SV model obtains as

π
(
γ0:T , h0:T , α,

√
q, τ2, ξ2, λ2, κ2, aτ , µh, ϕh, σ

2
h, p0 | y1:T

)
,

The list of parameters is given by θ = (α,
√
q, τ2, ξ2, λ2, κ2, aτ , µh, ϕh, σ

2
h, p0). Exploiting the

conjugacy to the Gaussian likelihood, conditional posteriors are mostly available in closed

form.

3.4.2. MCMC algorithm

To carry out Bayesian inference for the model de�ned in Equations (3.7), (3.10) and (3.11),

we mostly adapt the MCMC sampling scheme of Bitto and Frühwirth-Schnatter (2019) for

a sparse TVP model with hierarchical shrinkage priors, including an interweaving step to

improve the e�ciency of the sampler.2 For the stochastic volatility, we utilize the standard

approach of Kim et al. (1998) to draw the volatility states h and associated parameters.

As suggested by initial investigations, the hyperparameters for ϕh are adjusted to obtain

a highly informative prior enforcing high persistence of the volatility states for the sake

of out-of-sample forecasting performance. For our forecasting experiments, additional to

our shrinkage (shr) models we will present all results also for a no shrinkage (no shr)

speci�cation, in which the same single-layer Gaussian priors as for α0 and
√
q
0
are imposed

for all elements of α and
√
q. Moreover, we implement additional to the stochastic volatility

speci�cation (SV) also a homoscedastic variant of our model (no SV). In the no SV-model,

the states h and the associated parameters of the volatility process are replaced by a time-

invariant volatility parameter σ2, which is equipped with a hierarchical Gamma prior. For

all details on prior selection, see the Appendix B.1. For a detailed description of the MCMC

sampling scheme see Appendix B.2.1.

3.4.3. Forecasting

After dropping the draws from the �rst cycles as burn-in we use the draws from the next S

cycles for the purpose of approximating the joint augmented posterior π(θ, γ0:T , h0:T | y1:T ).
Bayesian point estimates (posterior means) of the model parameters are then obtained as

sample averages over the corresponding Gibbs draws.3 Forecasts for some period-t portfolio

weight wt are obtained as deterministic function of βt (see Equation (3.9)), which is itself

recovered from the parameters and latent states of the non-centered notation as βt = α +

Q0.5γt. For predictive performance comparisons with alternative non-Bayesian forecasting

approaches we rely on one-step-ahead point forecasts of the weights βT+1 for given values of

2The model is implemented in Matlab 2018a. To sample from the GIG distribution, we use a Matlab
implementation of the method proposed in by Hörmann and Leydold (2014), which is available on https:

//de.mathworks.com/matlabcentral/fileexchange/78805-gigrnd.
3In our simulations to arti�cial data (Section 3.5) as well as in the empirical application (Section 3.6) we run
the MCMC algorithm for parameter estimation for 15,000 iterations, where the �rst 5000 are discarded.
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the parameters θ, i.e., we use the conditional expected value as one-step-ahead point forecast

β̂T+1:

β̂T+1 := E(βT+1 | y1:T , θ) = E(α+Q0.5γT+1 | y1:T , θ).

This value is approximated by

̂E(βT+1 | y1:T , θ) = α+Q0.5 ̂E(γT+1 | y1:T , θ)

= α+Q0.5 1

S

(
S∑

i=1

γ̃
(i)
T+1

)
,

where in the SV speci�cations γ̃(i)T+1 is a draw from the one-step-ahead-predictive distribution

f(γT+1 | y1:T , h(i−1)
1:T , θ) from the Kalman �lter in the reduced Gibbs sampler for h and γ,

and θ is �xed at its posterior mean.4 In the homoscedastic speci�cations E(γT+1 | y1:T , θ)
obtains from the one-step-ahead-predictive distribution f(γT+1 | y1:T , θ) from the Kalman

�lter, where θ including the volatility σ2 is �xed at its posterior mean.

3.5. Monte Carlo simulations

In this section, we examine and compare the performance of our sparse TVP-GMVP re-

gression with that of various benchmark strategies in an in-sample and an out-of-sample

simulation exercise. A particular focus of this experiment is to analyze the ability of the

proposed GMVP models to track the `true' conditional GMVP weights. We follow the simu-

lation study of Engle et al. (2019) and sample from a DCC with realistic parameter settings

for daily returns.

3.5.1. Baseline scenario

The DGP reads as

Rt | Ft−1 ∼ N (0,Σt),

with Ft−1 denoting the information set up to period t−1. The conditional covariance matrix

Σt evolves according to the DCC-GARCH model of Engle (2002). It is decomposed into

Σt = D0.5
t CtD

0.5
t ,

where Ct is the conditional correlation matrix and Dt = diag(h1t, . . . , hnt) is a diagonal

matrix with the conditional return variances, each of which follows a univariate GARCH(1,1)

4In our out-of-sample experiments with arti�cial data (Section 3.5) as well as in the empirical application
(Section 3.6) we run the reduced Gibbs sampler for 4000 iterations, where the �rst 1500 are discarded.
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process. The correlation matrix Ct is given by

Ct = (Q∗
t )

−0.5Qt(Q
∗
t )

−0.5,

with Qt = (1−α̃−β̃)S+α̃et−1e
′
t−1+β̃Qt−1, where et = D−0.5

t Rt is the vector of standardized

returns. The diagonal matrix Q∗
t is composed of the diagonal elements of Qt, and S is

the unconditional covariance matrix of the standardized returns. In order to implement

correlation targeting, S is estimated by the sample covariance of the standardized returns et
that are based on univariate GARCH models. We set the correlation parameters to α̃ = 0.05,

β̃ = 0.93, the parameters for the univariate volatility dynamics to ai = 0.05, bi = 0.90 ∀i
and the unconditional population variance is set to the unconditional empirical covariance

matrix of the n most liquid stocks of our data set using 10 years of daily data from 2005 to

2014 (see Section 3.6.1, for details on the data set).

We construct portfolio weights by plugging the covariance Σt (computed in period t− 1)

into the GMVP formula given in Equation (3.1) which leads to the following true time t− 1

conditional GMVP weights:

w∗
t =

Σ−1
t ιn

ι′nΣ
−1
t ιn

,

such that the GMVP is given as Rpt := w∗
t
′Rt with conditional variance σ2pt := w∗′

t Σtw
∗
t .

3.5.2. Competing models

As alternatives to our proposed GMVP models we use several approaches that are motivated

by their popularity in the literature. In order to address the estimation noise associated

with the estimation of high-dimensional covariance matrices, whenever applicable, shrinkage

techniques are applied also to these benchmark models, which are brie�y described in the

following. For the approaches that predict (conditional) covariances Σ (Σt), we construct

the period-t prediction for the GMVP weights by plugging the covariance prediction Σ̂ (Σ̂t)

into the GMVP formula given in Equation (3.1).

(i) The standard DCC as outlined above as well as its nonlinear shrinkage version (DCC-

nl) which is developed and recommended by Engle et al. (2019) who consider it the

`new DCC standard in large dimensions'. The DCC-nl modi�es the original DCC

model by using the nonlinear shrinkage estimator of Ledoit and Wolf (2012, 2015) �

instead of the sample covariance matrix � for correlation targeting. Both DCC models

are implemented using the assumption of normally distributed errors and are estimated

by a composite likelihood approach as recommended by Engle et al. (2019).

(ii) A regularized exponential Recursive Least Squares with forgetting factor scheme (RLS-

REF) to directly infer the GMVP weights (Reh et al., 2021), based on a linear regres-

sion of a benchmark return on the return di�erences to this benchmark, in which the
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regression coe�cients represent the GMVP weights (Kempf and Memmel, 2006). The

forgetting factor λ ∈ (0, 1] operates as an exponential weight decreasing for more re-

mote observations. It is treated as an unknown parameter to be estimated consistently

by minimizing the expectation of the quadratic loss function

L(βt, Rt) = (Yt −X ′
tβt)

2,

whereby the sequence of parameters {βt} obtain from the recursion

β̂t = β̂t−1 +Ω−1
t Xt(Yt −X ′

tβ̂t−1), (3.12)

Ωt = XtX
′
t + λΩt−1 + (1− λ)Ω0, (3.13)

so that β̂1:n−1t and β̂0t are the estimates for the period-t GMVP weights and mean

return with some initial conditions (β1,Ω0). β1 is set equal to the vector (0, ιn−1/n)
′

implying a conditional portfolio mean of zero and portfolio weights all equal to 1/n.

The information matrix Ω0 is derived from an equicorrelation-equivariance matrix for

the return vector, which is scaled by an additional model parameter that determines

the degree of shrinkage towards the equally weighted portfolio de�ned by β1 and Ω0.

(iii) A Wishart multivariate stochastic volatility model (WSV) for the conditional precision

matrix denoted H−1
t . Following Uhlig (1994, 1997), the evolution of H−1

t is governed

by a singular multivariate Beta distribution shock as follows:

H−1
t =

d+ 1

d
U
(
H−1

t−1

)′
ΘtU

(
H−1

t−1

)
,

H−1
1 ∼ Wn

(
d, [dS0]

−1
)
,

where U
(
H−1

t

)
is the upper triangular matrix obtained from the Cholesky decomposi-

tion of H−1
t . The shocks Θt are iid draws from an n-dimensional singular multivariate

Beta distribution Bn

(
d
2 ,

1
2

)
as de�ned by Uhlig (1994), with d > n− 1 degrees of free-

dom, Wn denotes the n-dimensional Wishart distribution and the initial covariance

matrix is given as S−1
0 = E

[
H−1

1

]
.

Uhlig (1997) shows that the nonlinear �ltering of the latent precision matrices can be

computed analytically. The predictive density of the precision matrix is given by

p
(
H−1

t+1 | Rt

)
∼ Wn

(
d, [dSt+1]

−1
)

where St+1 evolves according to

St+1 =
d

d+ 1
St +

1

d+ 1
RtR

′
t. (3.14)

The dynamics of the precision matrix are governed by a unique parameter, d, that can
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be estimated by Maximum Likelihood. Substituting backwards in Equation (3.14) it

is possible to obtain the following expression for St:

St = λtS0 + (1− λ)
t−1∑
i=1

λi−1Rt−iR
′
t−i, (3.15)

where λ = d
d+1 < 1. Hence, given that d > n+ 1, large n implies λ ≈ 1 such that the

estimated conditional covariance matrices are shrunk towards S0. In this case, it is

crucial to chose an adequate initial covariance matrix. Following Moura et al. (2020),

we set the initial condition S0 in (3.15) to an equicorrelation covariance matrix in

which, as outlined in Engle and Kelly (2012), the correlation between any two returns

is equal to the average sample correlation between all returns in the portfolio. Further,

we denote as the Shrunk WSV (SWSV) a setting in which S0 is a diagonal matrix

whose diagonal elements are given by the in-sample variance of each return, which

implies that the one-step-ahead forecasts of the correlation are shrunk towards zero.

(iv) Several static plug-in approaches based on estimates of the unconditional covariance

matrix Σ. The OLS estimator constructs the period-t prediction of the GMVP weights

by replacing the return covariance matrix with the sample covariance matrix of the

returns observed up to period t−1. This approach is equivalent to running Kempf and

Memmel's (2006) static auxiliary regression using OLS. The linear shrinkage (SHR-l)

estimator modi�es the OLS estimator by estimating Σ via the linear shrinkage esti-

mator of Ledoit and Wolf (2004). This estimate shrinks the sample covariance matrix

towards the identity matrix. It minimizes the expected Frobenius norm of the dif-

ference between the shrinkage estimator and the true covariance matrix. Finally, the

nonlinear shrinkage (SHR-nl) estimator is based on the nonlinear shrinkage procedure

of Ledoit and Wolf (2012, 2015).

(v) The naïve estimator sets the prediction of the GMVP weights equal to the weights of

the equally weighted portfolio.

3.5.3. Evaluation

As our approach is tailored to make predictions for GMV portfolio weights, we directly

evaluate the forecasts ŵt as well as the estimated portfolio variance, instead of applying

covariance based loss function as suggested, e.g., in Engle et al. (2019):

� GMVP weight forecasts using L1 penalty (as suggested in Callot et al., 2019, Theorem

3):

L1,wt = ||ŵt − w∗
t ||1
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� GMVP weight forecasts using L2 penalty:

L2,wt = ||ŵt − w∗
t ||2

� Portfolio variance:

σ̂2pt = ŵ′
tΣtŵt.

As the simulation study is designed such that we sample from a (conditionally) mean zero

process, it holds that V(Rpt) = E[V(Rpt | Ft−1)], such that for an unconditional evaluation

we can compare average volatilities given by

σ2V =
1

T

T∑
t=1

σ2pt.

Furthermore, we de�ne the average losses for the weights as Li,w = 1
T

∑T
t=1 Li,wt , i = 1, 2.5

In order to compare the weight forecasts of our TVP-GMVP models to those obtained by

observation driven approaches like the DCC, we need a �ltration for the weights in our in-

sample experiment, i.e., ŵt | Ft−1, θ̂. In case σ2t follows itself some stochastic process {ht}, we
need to integrate out the volatility states numerically. For that we make use of a marginalized

bootstrap particle �lter (with 25,000 particles) for {ht} using Rao-Blackwellization based on

the Kalman �lter for {γt} (see Schön et al., 2005). For the speci�cations without SV,

ŵt | Ft−1, θ̂ is readily available by the Kalman �lter. Further details on the �ltration for the

portfolio weights are deferred to Appendix B.2.2.

3.5.4. Results

To evaluate the in-sample performance of our proposed models in comparison to the correctly

speci�ed DCC and the remaining benchmark approaches, we simulate nS = 500 data sets

and compute for all models the series of �ltered GMVP weights. We consider di�erent

number of assets n = {100, 200} and time series of di�erent length T = {250, 1250}. Table
3.1 reports the losses averaged over time and all data sets. For assessing the statistical

signi�cance of di�erences in losses, we apply the model con�dence set (MCS) approach of

Hansen et al. (2011) taking the time averaged values σ2V , L1,w and L2,w as loss series. Based

on the maximal t-statistic for the pairwise loss di�erentials of all models under consideration,

the MCS is constructed to contain the best-performing models at a given con�dence level, for

which we consider 75% and 90%.6 The results are extremely persistent from one simulation

5For the out-of-sample experiment T is replaced by the number of out-of-sample forecasts denoted Ts.
6In the bootstrap implementation of the MCS, we use a block bootstrap with block length ⌊T 1/3

eval⌋, where
Teval is equal to the size of the evaluation sample, and a bootstrap sample size of 10000. We use the
implementation of the MCS procedure in the Oxford MFE toolbox (https://www.kevinsheppard.com/
code/matlab/mfe-toolbox).
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to the next which is indicated by low variation in the losses across the data sets. Thence,

the MCS contain at most two model speci�cations although the relative di�erences in the

average losses are fairly small in several settings.

Among our proposed speci�cations, the models with hierarchical shrinkage priors outper-

form the no shr speci�cations in all settings and for all losses. Likewise, this holds among

the standard compared to the respective shrinkage speci�cations of the benchmark models.

Overall, this improvement is, as expected, more pronounced for higher concentration ratios

n/T . For none of the settings, static approaches are included in the MCS for any of the

losses.

Notably, although the data generating process is a DCC, our TVP-GMVP-shr models

signi�cantly outperform the DCC(-nl) for n = 100 and n = 200 under the shorter estimation

window. In the most challenging situation with n/T = 0.8, the lowest variance is generated

for the no SV-shr model whereas the average losses with respect to the weight predictions

are lowest for SV-shr indicating more regularization of the weight dynamics when accounting

for potential systematic heteroscedasticity. For n = 200, T = 1250, although the DCC-nl

generates the lowest average portfolio variance, the best weight predictions are again obtained

by the TVP-GMVP-SV-shr -model. Presumably, the �exible shrinkage priors regularize the

portfolio weights such that the model is less sensitive to outliers. This feature is even more

pronounced for the SV speci�cations in which is controlled for heteroscedasticity in the

market, which may otherwise be incorrectly re�ected in the weight dynamics. However, this

robustness is of minor relevance for in-sample evaluations and can be expected to improve

the forecasting performance more substantially in the out-of-sample exercise as well as in

our empirical application. Solely for the lowest concentration ratio, the DCC-nl outperforms

all other speci�cations signi�cantly.

In Table 3.2, we report the average losses of an out-of-sample simulation exercise. Here

we simulated nS = 100 data sets of length T + Ts, Ts = 100. All models are re-estimated

for all time periods in a rolling window scheme, such that in total, each Ts × nS = 10, 000

one-step ahead predictions are evaluated. Again, we rely on the MCS approach of Hansen

et al. (2011), taking the time averaged losses for all simulations as loss series. The results

are qualitatively fairly similar to the in-sample exercise and again, we observe substantial

improvements under the shrinkage models. Notably, out-of-sample the increased potential

regularization of the portfolio weights of the SV models in comparison to the homoscedastic

speci�cations indeed appears to become more bene�cial for GMVP prediction. Except for

σ̂2V for n = 100, T = 1250, the TVP-GMVP-SV-shr speci�cation is included in all 75% MCS

and leads to the lowest average loss in 8 out of 12 comparisons. Among the benchmarks,

additional to the DCC-nl, also the predictions generated from the static SHR-nl approach

as well as the (S)WSV model lead to low L1,w and L2,w losses, particularly for the short

estimation window. For the latter, the parameter estimates (not reported here) indicate a

high degree of smoothing of the conditional covariances. While this may be too restrictive
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Table 3.1.: In-sample simulation results

Model σ̂2
V L̂1,w L̂2,w σ̂2

V L̂1,w L̂2,w

n = 100, T = 250 n = 100, T = 1250

true DGP 0.114 0 0 0.115 0 0

TVP-GMVP-

SV-shr 0.172 2.986 0.390 0.168 3.086 0.396
SV-no shr 0.227 5.080 0.621 0.170 3.394 0.436
no SV-shr 0.167 2.939 0.387 0.169 3.035 0.387
no SV-no shr 0.230 5.083 0.617 0.168 3.299 0.424

DCC 0.237 5.398 0.797 0.153 3.188 0.398
DCC-nl 0.179 3.500 0.490 0.148 2.876 0.361

RLS-REF 0.189 3.157 0.405 0.170 3.113 0.398
WSV 0.275 3.296 0.438 0.201 3.343 0.432
SWSV 0.265 3.179 0.414 0.198 3.288 0.428
naïve ( 1n ) 0.998 3.996 0.529 1.000 4.001 0.528
OLS 0.248 5.379 0.671 0.251 3.631 0.443
SHR-l 0.225 4.603 0.583 0.250 3.606 0.440
SHR-nl 0.197 3.367 0.436 0.246 3.350 0.408

n = 200, T = 250 n = 200, T = 1250
true DGP 0.068 0 0 0.068 0 0

TVP-GMVP-

SV-shr 0.126 4.261 0.408 0.110 4.032 0.389

SV-no shr 0.212 6.858 0.624 0.116 4.698 0.440
no SV-shr 0.1207 4.314 0.413 0.127 4.326 0.405
no SV-no shr 0.194 6.696 0.610 0.127 4.642 0.434

DCC 0.335 12.021 1.120 0.110 4.943 0.464
DCC-nl 0.127 4.575 0.434 0.100 4.153 0.390
RLS-REF 0.151 4.599 0.439 0.119 4.195 0.391
WSV 0.293 4.827 0.479 0.153 4.271 0.408
SWSV 0.288 4.720 0.466 0.148 4.086 0.396
naïve ( 1n ) 1.061 5.311 0.519 1.059 5.306 0.519
OLS 0.365 13.101 1.219 0.157 5.063 0.469
SHR-l 0.167 6.626 0.602 0.156 4.980 0.461
SHR-nl 0.133 4.552 0.431 0.150 4.298 0.401

Note: Mean average loss Lw and mean average volatility σ2
V for nS = 500 simulations

(σ̂2
V = 1

nS

∑nS
k=1 σ

2(k)
V , L̂1,w = 1

nS

∑nS
k=1 L

(k)
1,w, L̂2,w = 1

nS

∑nS
k=1 L

(k)
2,w). Smallest value in

bold letters. Grey light (dark) shaded cells indicate that the model belongs to the 90

(75)% MCS, using σ
2(k)
V , L

(k)
1,w, L

(k)
2,w, s = 1, . . . 500 as loss series.

to capture relevant dynamics in the correlation structure and hence the GMVP weights

in-sample, the disadvantage of reduced �exibility appears to be outweighed by the noise

reduction in out-of-sample forecasting.
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Table 3.2.: Out-of-sample simulation results

Model σ̂2
V L̂1,w L̂2,w σ̂2

V L̂1,w L̂2,w

n = 100, T = 250 n = 100, T = 1250
true DGP 0.1149 0 0 0.115 0 0

TVP-GMVP-

SV-shr 0.160 2.958 0.390 0.165 2.996 0.394
SV-no shr 0.209 4.833 0.630 0.164 3.132 0.412
no SV-shr 0.176 3.610 0.475 0.240 3.513 0.459
no SV-no shr 0.207 4.823 0.630 0.254 3.611 0.471

DCC 0.238 5.392 0.718 0.161 3.283 0.432
DCC-nl 0.183 3.568 0.478 0.155 2.975 0.391

RLS-REF 0.169 3.220 0.409 0.170 3.199 0.407
WSV 0.204 3.053 0.399 0.193 3.783 0.493
SWSV 0.206 2.980 0.393 0.192 3.814 0.498
naïve ( 1n ) 1.014 3.998 0.532 1.003 4.011 0.538
OLS 0.244 5.395 0.704 0.275 3.747 0.489
SHR-l 0.221 4.611 0.594 0.275 3.721 0.485
SHR-nl 0.198 3.504 0.447 0.270 3.479 0.452

n = 200, T = 250 n = 200, T = 1250
true DGP 0.068 0 0 0.068 0 0

TVP-GMVP-

SV-shr 0.107 4.035 0.384 0.104 3.816 0.359

SV-no shr 0.674 15.281 1.289 0.108 4.211 0.395
no SV-shr 0.115 4.410 0.417 0.141 4.504 0.419
no SV-no shr 0.654 14.201 1.282 0.137 4.647 0.433

DCC 0.316 11.771 1.108 0.113 4.941 0.468
DCC-nl 0.126 4.556 0.439 0.103 4.159 0.394
RLS-REF 0.119 4.533 0.421 0.109 3.975 0.362
WSV 0.198 4.632 0.457 0.121 4.180 0.385
SWSV 0.211 4.512 0.441 0.118 4.137 0.384
naïve ( 1n ) 1.082 5.319 0.523 1.053 5.303 0.521
OLS 0.342 13.030 1.215 0.165 5.057 0.470
SHR-l 0.156 6.467 0.587 0.164 4.976 0.461
SHR-nl 0.126 4.595 0.425 0.159 4.374 0.403

Note: Mean average loss Lw and mean average volatility σ2
V for nS = 100 simulations

each with TS = 100 re-estimations in a rolling window scheme producing TS = 100 one-
step-ahead forecasts (σ̂2

V = 1
nS

∑nS
k=1 σ

2(k)
V , L̂1,w = 1

nS

∑nS
k=1 L

(k)
1,w, L̂2,w = 1

nS

∑nS
k=1 L

(k)
2,w).

Smallest value in bold letters. Grey light (dark) shaded cells indicate that the model

belongs to the 90 (75)% MCS, using σ
2(k)
V , L

(k)
1,w, L

(k)
2,w, s = 1, . . . 100 as loss series.

3.6. Empirical application

The goal of this section is to examine the out-of-sample properties of our newly suggested

approach for modeling portfolio weights using actual data. Additionally to out-of-sample
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variances, we present out-of-sample Sharpe ratios for these investment strategies under re-

alistic trading costs and compare it to full Markowitz portfolios based on the covariance

estimates of the benchmark models.

3.6.1. Data and set-up

The data base is the same as used in Moura et al. (2020) and consists of prices of all NYSE,

AMEX and NASDAQ stocks observed daily from 01/02/2002 to 11/21/2019. The models

are recursively estimated using a rolling window scheme based on investment universes with

n ∈ (100, 200, 400) assets each for a one year (T = 250) and a �ve year (T = 1250) esti-

mation period, which allows us to evaluate the performance of our suggested models from a

concentration ratio n/T = 0.08 up to a challenging ratio n/T = 1.6.7

The investment universe is obtained as follows: We �nd the set of stocks that have a

complete return history over the initial estimation period as well as the complete out-of-

sample window. We then look for possible pairs of highly correlated stocks, that is, pairs of

stocks with returns with a sample correlation exceeding 0.95 over the �rst estimation period.

With such pairs, if they should exist, we remove the stock with the lower volume on the last

year of the �rst estimation period denoted h. Of the remaining set of stocks, we then pick the

largest n stocks (as measured by their market capitalization on the investment date h) as our

investment universe. The parameters are re-estimated every month adopting the common

convention that 21 consecutive days constitute one month. Hence for each speci�cation we

perform a total of 155 rolling window estimations to obtain an out-of-sample period of 13

years starting from 12/18/2006 to 11/21/2019 with a total number of S = 3255 out-of-sample

periods. All portfolios are updated monthly to avoid an unreasonable amount of turnover

and thus transaction costs.

3.6.2. GMVP variance

In this section, we present the empirical out-of-sample portfolio variance σ̂2 of our dynamic

GMVP models as well as the dynamic and static benchmark approaches. For some sequence

of portfolio return Rps, s = 1, . . . , S, with empirical mean R̄p =
1
S

∑S
s=1Rps, it is computed

as

σ̂2 =
1

S

S∑
s=1

(Rps − R̄p)
2.

For the benchmark models for which we obtain point estimates for the (conditional) covari-

ance, the GMVP weights are obtained as plug-in estimates according to Equation (3.1). For

assessing the statistical signi�cance of di�erences in the empirical out-of-sample variance, we

7A typical setting for empirical analysis of daily �nancial asset returns is T = 1250 (see e.g., Engle et al.,
2019; Callot et al., 2019; Moura et al., 2020).
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Table 3.3.: Out-of-sample GMVP variance with T = 250

n = 100 n = 200 n = 400

TVP-GMVP-

SV-shr 0.523 0.485 0.405
SV-no shr 0.773 1.556 3.581

no SV-shr 0.591 0.552 0.387

no SV-no shr 0.802 1.152 4.583

DCC 0.756 1.156 �
DCC-nl 0.623 0.559 0.483
RLS-REF 0.548 0.492 0.428
WSV 0.535 0.516 0.515
SWSV 0.521 0.488 0.498
naïve ( 1n ) 1.411 1.450 1.669
OLS 0.687 1.436 �
SHR-l 0.645 0.867 0.624
SHR-nl 0.537 0.487 0.415

Note: Out-of-sample model comparison. Smallest value in bold
letters. Grey light (dark) shaded cells indicate that the model
belongs to the 90 (75)% MCS.

again apply the MCS approach of Hansen et al. (2011) (see Section 3.5.4), taking now the

demeaned squared returns as loss series.

Table 3.3 reports the results for an estimation window of one year (T = 250 observations)

where concentration ratios vary from 0.4 to 1.6, with more cross sectional units than time

periods for n = 400. We observe that the shrinkage speci�cations of our models overall

clearly outperform the speci�cations with standard non-hierarchical priors, although also

the no shr models have zero centered priors and therefore deliver moderate shrinkage in di-

rection of the (time-stable) equally weighted portfolio. Despite the short estimation period,

the speci�cation which takes into account potential heteroscedasticity in the market portfolio

leads to signi�cantly lower portfolio variance when compared to the homoscedastic speci�-

cation for n = 100 and n = 200. For the setting with n > T , the estimation uncertainty

due to the increased number of parameters appears to outweigh the bene�ts of accounting

for stochastic volatility. The best performance among the benchmark models in this set-

ting is observed for SHR-nl and the sparsely parameterized dynamic speci�cations, namely,

RLS-REF, WSV and particularly SWSV, which are the only competitors to be included in

the 90% model con�dence set for n = 100 and n = 200. However, in the most challenging

setting with n > T , only TVP-GMVP-no SV-shr is included in the 90% and 75% MCS and

all benchmarks perform substantially worse than our proposed shrinkage approaches. The

out-of-sample variance of SWSW is even larger than that of the portfolios generated from

the nonlinear shrinkage versions of DCC and the unconditional covariance estimate. This

leads to the conclusion that our dynamic GMVP shrinkage model, and in particular, the

stochastic volatility speci�cation thereof, is the most robust among all considered models.
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Table 3.4.: Out-of-sample GMVP variance with T = 1250

n = 100 n = 200 n = 400

TVP-GMVP-

SV-shr 0.520 0.463 0.394

SV-no shr 0.537 0.497 0.464

no SV-shr 0.554 0.488 0.412
no SV-no shr 0.584 0.517 0.469

DCC 0.611 0.540 0.507
DCC-nl 0.599 0.521 0.464
RLS-REF 0.534 0.485 0.409
WSV 0.541 0.465 0.408
SWSV 0.541 0.457 0.397
naïve ( 1n ) 1.350 1.417 1.587
OLS 0.556 0.500 0.479
SHR-l 0.555 0.499 0.474
SHR-nl 0.549 0.484 0.419

Note: Out-of-sample model comparison. Smallest value in bold
letters. Grey light (dark) shaded cells indicate that the model
belongs to the 90 (75)% MCS.

This �nding is con�rmed by the results of the �ve year estimation period, which we report

in Table 3.4. The TVP-GMVP-SV-shr is the only model to be included in the 90% MCS for

all cross sectional dimensions. Taking into account potential heteroscedasticity is here found

to be bene�cial overall. As expected, the advantage of the shrinkage speci�cations is less

pronounced in this setting, also among the benchmark models. Furthermore, the dynamic

models outperform the static approaches more clearly.

3.6.3. Mean-variance e�ciency

Now we turn to the classical analysis of mean-variance e�ciency of the portfolios generated by

our proposed models compared to those of the benchmarks. For evaluating the performance,

we use the empirical Sharpe ratio de�ned as

θ̂ =
R̄p√
σ̂2
,

with a superior forecasting performance indicated by larger values of the Sharpe ratio. In

order to take into account the costs of rebalancing, we additionally report the Sharpe ratio

net of transaction costs. Following e.g., Kirby and Ostdiek (2012) and Moura et al. (2020),

we compute the turnover adjusted portfolio return as

Radj.
ps = (1− c turnovers)(1 +Rps)− 1, turnovers =

n∑
i=1

(|wjs − w∗
js|),
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where w∗
s denotes the allocation vector at period s− 1 after taking into account the changes

in asset prices between periods s − 1 and s and c is the fee that must be paid for each

transaction, which is measured in terms of basis points (bp.). Referring to the discussion

in French (2008) who observed a 92% decrease in the costs of trading from the 1980's to

approximately 11 basis points in 2006, we set c = 10, taking into account that our out-of-

sample period comprises the time span 2006 � 2019.

Given that we forecast the GMVP weights directly, the allocations remain the same as in

the previous section for our proposed models and the RLS-REF, as well as trivially, also for

the naïve diversi�cation. For all other benchmarks, we consider a mean-variance portfolio

based on an investor who aims at minimizing the portfolio risk subject to a target portfolio

return. Hence, the weights are the solution on the following optimization problem for a given

covariance estimate Σ̂s

argmin
ws

w′
sΣ̂sws, s.t. w′

sιn = 1, w′
sm = µtarg. (3.16)

Various approaches exist to construct the signal m and to choose the target return µtarg. We

follow the same approach as Engle et al. (2019) and Moura et al. (2020) and construct the

signal using the momentum factor of Jegadeesh and Titman (1993). For each of the n stocks

the individual momentum is computed as the geometric average of the previous 252 returns,

but excluding the 21 most recent returns. Collecting all the momentums in a vector yields

the signal m. The target return is computed as the arithmetic average of the momentums

of those stocks that belong to the top-quintile stocks ranked according to momentum. The

analytical solution to (3.16) is given by

ws = Σ̂−1
s

m(Cb−D) + ιn(E −Db)

EC −D2
,

with C = ι′nΣ̂
−1
s ιn, D = m′Σ̂−1

s ιn and E = m′Σ̂−1
s m. One could argue that the insights

from a comparison of di�erent investment strategies (such as GMVP vs. mean-variance

with momentum optimization) are limited. However, what we want to illustrate here in

particular is that GMV portfolios perform well even when the optimization problem and

associated evaluation criterion deviates from variance minimization.

The results for T = 250 displayed in Table 3.5 are very similar to those obtained for the

GMVP variance estimation. Among our models, the shrinkage prior leads to substantially

larger Sharpe ratios and the stochastic volatility speci�cations are advantageous for all but

the setting with concentration ratio larger than one. Furthermore, we observe that along

with the static SHR-nl estimate, the RLS-REF and the (S)WSV models are again the best

competitors. Presumably, their particularly good performance for the short estimation win-

dow can be traced back to their sparsity (only one parameter is estimated in the (S)WSV

and two parameters are estimated in the RLS-REF model). Moreover, the estimates for d

(not reported here) in the S(WSV) speci�cations imply a smoothing parameter close to one
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Table 3.5.: Out-of-sample Sharpe ratio (×10) with T = 250

c = 0 bp. c = 10 bp.

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

TVP-GMVP-

SV-shr 0.605 0.611 0.686 0.530 0.494 0.570
SV-no shr 0.484 0.279 0.308 0.324 -0.072 -0.184

no SV-shr 0.647 0.586 0.710 0.0535 0.432 0.621

no SV-no shr 0.481 0.337 0.224 0.312 0.109 0.183

DCC 0.450 0.249 � 0.197 -0.220 �
DCC-nl 0.520 0.585 0.603 0.345 0.385 0.390
RLS-REF 0.647 0.608 0.649 0.587 0.561 0.539
WSV 0.682 0.605 0.487 0.622 0.559 0.438
SWSV 0.651 0.600 0.539 0.588 0.542 0.486
naïve ( 1n ) 0.490 0.462 0.450 0.482 0.451 0.442
OLS 0.521 0.337 � 0.367 -0.061 �
SHR-l 0.556 0.409 0.482 0.415 0.122 0.186
SHR-nl 0.655 0.576 0.526 0.563 0.474 0.413

Note: Mean-variance with a momentum signal weights for DCC(-nl) and static speci�cations,
GMVP weights for TVP regression and RLS-REF speci�cation. Largest value in bold letters.
Results are displayed for c = 0 and c = 10 basis points trading costs.

in all estimation windows (d̂ > 1000) imposing much weight on the starting value S0 as well

as a smooth evolution of the portfolio weights associated with moderate turnover.

Finally, in Table 3.6 we report the results for the �ve year estimation period. Our shrinkage

models lead to the highest Sharpe ratios for all n without transaction costs, and in 2/3

settings with transaction costs. The increased reduction of the Sharpe ratios after accounting

for turnover under no shr priors demonstrates the importance of dynamic sparsity induced by

the LASSO type priors for the elements of α and
√
q. Regularizing portfolio weights leads to

more stable allocations associated with lower transaction costs. Notably, the homoscedastic

shrinkage model is better than all competitor models except for the other direct dynamic

GMVP forecasting approach RLS-REF, which performs slightly better in two settings. This

suggests that, although the GMVP is conceptually not optimal in terms of Sharpe ratio

maximization, the noise reduction due to the direct targeting of the portfolio weights enables

a good overall performance.

Summing up, we advocate the use of the TVP-GMVP model with double Gamma and

Bayesian LASSO type priors for initial level and dynamics of the portfolio weights. It is the

only model that leads to good out-of-sample results for all considered (n, T )-speci�cations

providing allocations that lead to low variance and high Sharpe ratios. Its �exibility allows

to be competitive under a �ve year estimation window in which models that account for

the dynamic in the correlation structure of the data outperform static approaches, as well

as under the one year estimation window in which sparsity is most crucial to prevent from

the curse of dimensionality. Accounting for conditional heteroscedasticity in the market
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Table 3.6.: Out-of-sample Sharpe ratio (×10) with T = 1250

c = 0 bp. c = 10 bp.

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

TVP-GMVP-

SV-shr 0.589 0.614 0.716 0.516 0.519 0.580

SV-no shr 0.610 0.600 0.648 0.519 0.480 0.473

no SV-shr 0.618 0.666 0.705 0.533 0.566 0.558
no SV-no shr 0.616 0.657 0.685 0.515 0.0535 0.496

DCC 0.506 0.561 0.586 0.285 0.0276 0.203
DCC-nl 0.515 0.574 0.601 0.309 0.0325 0.303
RLS-REF 0.610 0.628 0.706 0.566 0.559 0.519
WSV 0.605 0.589 0.597 0.507 0.496 0.512
SWSV 0.611 0.604 0.631 0.511 0.511 0.542
naïve ( 1n ) 0.457 0.446 0.454 0.438 0.428 0.419
OLS 0.529 0.525 0.497 0.461 0.434 0.343
SHR-l 0.532 0.530 0.508 0.466 0.441 0.358
SHR-nl 0.538 0.565 0.575 0.475 0.491 0.486

Note: Mean-variance with a momentum signal weights for DCC(-nl) and static speci�cations,
GMVP weights for TVP regression and RLS-REF speci�cation. Largest value in bold letters.
Results are displayed for c = 0 and c = 10 basis points trading costs.

is particularly relevant when evaluating solely the GMVP variance, whereas for a mean-

variance optimizing investor, also the sparser speci�cation with homoscedastic errors is well

suitable.

3.6.4. Extensions

Dynamic benchmark allocations

So far, we have used the equally weighted portfolio composed from weights w̄i = 1/n as the

reference portfolio. This leads to the desired regularization by the Bayesian shrinkage priors

and, as shown, good out-of-sample performance. However, the equally weighted portfolio

performs as allocation rule signi�cantly worse than the other models in all our experiments,

raising the question of whether our TVP-GMVP model could also perform better under a

di�erent reference portfolio. One advantage of a more informative benchmark allocation

could be that a revision of the prior would only be necessary if the data show patterns in

the correlation structure that cannot be captured by the underlying benchmark model. As

this regards both the overall level as well as the dynamics in the implied GMVP weights,

in this section we analyze the performance of our models based on a dynamic benchmark

portfolio, that is, a benchmark return that results from an allocation that varies over time.

We model the deviations from this dynamic benchmark, where the shrinkage prior ensures

that there is only a deviation from this allocation if there is substantial evidence in the data.

The mostly data-driven calibration of the hyperparameters via hierarchical priors remains as
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in our original model speci�cation (see Section 3.4.1). To ensure that our prior continues to

provide regularization that prevents over�tting and counteracts large in-sample estimation

errors, only benchmark allocations that exhibit moderate volatility over time and do not have

extremely large exposures are sensible to use. Moreover, a dynamic benchmark as allocation

rule should itself deliver satisfactory results in GMVP comparisons.
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Figure 3.1.: In-sample GMVP weight estimates ŵt for �rst estimation period (time span 01/02/2002 �
12/15/2006) under (n, T ) = (100, 1250) compared to 1/n (black dotted line).

The GMVP allocations which are derived from the Wishart multivariate stochastic volatil-

ity models satisfy these requirements. Particularly, in our empirical analysis, we found that

the shrinkage version, SWSV, performed very well in terms of minimum variance alloca-

tions. Figure 3.1 shows exemplarily for three randomly selected stocks for our �rst esti-

mation period (time span 01/02/2002 � 12/15/2006) the evolution of the in-sample �tted

SWSV-implied GMVP weights compared to those implied by the DCC-nl model for the

speci�cation (n, T ) = (100, 1250). The evolution of the SWSV weights is much smoother

and tends to exhibits less gross exposure. Yet, all weight series have some time variation and

clearly deviate from the naïve allocation (here 1/n = 0.01, indicated by black dotted line).

This indicates that using the SWSV-implied GMVP weights instead of the naïve benchmark

will result in the shrinkage prior being less restrictive, which implies that less revision of the

prior assumptions is needed to broadly follow the trend of the GMV allocation. Although the
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SWSV model is clearly also unable to identify the true path of the desired portfolio weights,

the simulation and empirical results suggest that the model is closer to the GMVP than

the equally weighted allocation (likewise, the predicted conditional covariances are closer

to the true conditional covariance than those implying the equally weighted portfolio, like,

e.g., multiples of the identity matrix or equivariance-equicorrelation matrices). In situations

where the covariance estimates imply strong re-balancing, under this dynamic benchmark

allocation this would be automatically built in our TVP-GMVP model without the need for

the corresponding parameters to have high variation, i.e., the elements of
√
q to become very

large.

Table 3.7 shows the resulting empirical portfolio variances of the TVP-GMVP-shr spec-

i�cations for the out-of-sample forecasting experiment under a benchmark return Rn+1,t =

w̄′
tRt, where we set w̄t = ŵSWSV

t , t = 1, . . . , T , the in-sample predictions of the GMVP

weights resulting from the SWSV model and w̄T+1 = ŵSWSV
T+1 , the corresponding one-step-

ahead out-of-sample prediction. From this it follows that the relationship between the orig-

inal n GMVP weights in the regular space wt and the weights for the augmented space w̆t

at some period t is given by the following link function (see Equation (3.5)):

wt = w̆n+1,tŵ
SWSV
t + w̆1:n,t = (1− ι′nw̆1:n,t)ŵ

SWSV
t + w̆1:n,t.

Since the speci�cation with this dynamic benchmark is in some sense based on insights

from the out-of-sample experiment, we consider the results only complementary to our main

empirical analysis, not including them in the model con�dence set comparisons presented in

Section 3.6.2. In fact, the results reveal that the use of an informative benchmark is very

promising: The alternative speci�cations in 9/12 settings (along all n, T , and each with and

without stochastic volatility) lead to lower portfolio variances than the corresponding model

with the original benchmark 1/n. In particular, the results in the model without stochastic

volatility are substantially improved for all n and T except for (n, T ) = (400, 250). This

can be explained by the fact that in this scenario the SWSV model is itself not competitive,

exhibiting almost 30% higher estimated GMVP variance than the original TVP-GMVP-no

SV-shr model.

Extreme concentration ratios

Our empirical application has shown that the utility of shrinkage priors is high especially in

situations in which the number of cross sectional units is large compared to the sample size

with the prior contribution to the posterior comparably large. As a second complementary

analysis, we now present results for scenarios with even more challenging concentration ratios

in order to robustify our �ndings on the bene�ts of the shrinkage priors.

In doing so, we examine the performances of our shrinkage models compared to those of the

parsimonious or shrinkage variants of the benchmarks, both when T decreases and when n

increases. Particularly, we consider the scenarios (n, T ) = (800, 250) and (n, T ) = (400, 125)
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Table 3.7.: Out-of-sample GMVP variance with dynamic SWSV benchmark return

T = 250
n = 100 n = 200 n = 400

TVP-GMVP-

SV-SWSV-shr 0.536 0.483 0.407
no SV-SWSV-shr 0.563 0.545 0.389

T = 1250
n = 100 n = 200 n = 400

TVP-GMVP-

SV-SWSV-shr 0.516 0.460 0.392

no SV-SWSV-shr 0.535 0.474 0.404

Note: Out-of-sample model comparison. Bold value indicates
that the variance is lower than respective counterpart with the
naïve benchmark.

with concentration ratio n/T = 3.2, as well as (n, T ) = (1600, 250) and (n, T ) = (400, 63)

with concentration ratio n/T ≈ 6.4. The data base and selection of the asset universe is the

same as described in Section 3.6.1. Since situations with portfolios composed of more than

1000 stocks of individual companies or a database of only approximately three months of

daily data is rather arti�cial, we consider also this analysis only supplementary to our main

empirical application. Of course, it is worth mentioning that such settings may be realistic

for other types of assets.

Table 3.8 presents the resulting empirical portfolio variances for our TVP-GMVP-shr

speci�cations compared to the applying benchmarks. We observe that in these scenarios,

only our shrinkage TVP-GMVP models are included in 75% and 90% MCS. With increas-

ing concentration ratio, both induced by large n or small T , the relative performance of

our models, particularly the stochastic volatility speci�cations, compared to all benchmarks,

improves. Among these, the direct GMVP weight modeling approach RLS-REF is the only

dynamic speci�cation that tends to slightly outperform the extremely robust static SHR-nl

estimates in most scenarios. Interestingly, although the S(WSV) models are not competitive

here, the dynamic SWSV-benchmark (which is again not part of the MCS analysis) leads

to substantially lower empirical variances than the respective version with static benchmark

weights. This let assume that in situations with challenging concentration ratio informative

prior weights that capture at least the broad trend in the portfolio weights are particularly

useful. They help to control in-sample biases and avoid erroneous overestimation especially

for the parameters steering the time-variation in the latent state dynamics. Indeed, through-

out all (n, T ) speci�cations, the median and average posterior mean of
√
q along the cross

sectional units (not reported here) are larger under the static weight benchmark compared

to the dynamic SWSV benchmark, both for the models with and without heteroscedasticity

in the market explicitly taken into account.

The results in this section support our previous �nding that the prior-induced shrinkage
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Table 3.8.: Out-of-sample GMVP variance for extreme concentration ratios

n = 800 n = 1600 n = 400 n = 400
T = 250 T = 250 T = 125 T = 63

TVP-GMVP-

SV-shr 0.314 0.202 0.411 0.456

SV-SWSV-shr 0.300 0.202 0.405 0.432

no SV-shr 0.318 0.212 0.419 0.471
no SV-SWSV-shr 0.299 0.199 0.403 0.437

DCC-nl 0.416 0.227 0.517 0.517
RLS-REF 0.358 0.214 0.439 0.483
WSV 0.534 0.443 0.622 0.762
SWSV 0.500 0.357 0.575 0.660
naïve ( 1n ) 1.961 1.855 1.669 1.669
SHR-l 0.388 0.223 0.504 0.505
SHR-nl 0.352 0.219 0.445 0.488

Note: Out-of-sample model comparison. Smallest value in bold letters. Grey
light (dark) shaded cells indicate that the model belongs to the 90 (75)%
MCS (TVP-GMVP models with SWSW benchmark are not included in the
comparisons).

works particularly well in situations with critical concentration ratios. From a technical

perspective, it should be added that for our approach the sampling of the latent states γ

is the bottleneck in terms of computational e�ort.8 High concentration rates, i.e., large

n/T , in turn, are computationally not problematic in themselves. For example, for (n, T ) =

(800, 250), the computational e�ort is comparable to that for the (n, T ) = (200, 1250) sce-

nario which further strengthens the argument that our proposed approach is particularly

advantageous in scenarios with large n/T but moderate nT .

3.7. Summary and discussion

We use a time-varying parameter regression to estimate the weights of the Global Minimum

Variance Portfolio (GMVP). Di�erent from plug-in approaches which use estimates of the

covariance matrix to compute GMVP weights, the proposed method scales linearly and

allows to shrink portfolio weights directly, avoiding extreme allocations and encouraging

stable portfolios.

In a simulation study based on a DCC data generating process, we show that the TVP-

GMVP models lead to satisfactory results and deliver portfolios with smaller variance and

more accurate weight forecasts than the DCC as long as n/T > 0.4. These conclusions

hold for simulations made both in-sample and out-of-sample. The importance of shrinkage

8The required memory scales quadratically with the term nT when using AWOL or a precision sampler,
as here a matrix of dimension (n + 1)T × (n + 1)T is created. Using FFBS based on the Kalman �lter
requires less memory, but becomes very slow if the term nT gets large.
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is highlighted in the out-of-sample results of the challenging scenario (n, T ) = (200, 250), in

which the TVP-GMVP model with shrinkage delivers portfolios with one �fth of the risk of

the portfolios based on the TVP-GMVP without shrinkage.

In our main empirical exercise based on data sets with up to 400 assets and several compet-

ing models tailored for high-dimensional applications, the TVP-GMVP models con�rm the

results of the simulation study and are shown to deliver portfolios with the lowest variance

in 4 out of 6 scenarios, and are always included in the 90% model con�dence set. Similar

results are obtained when we evaluate Sharpe ratios of the resulting portfolios compared to

mean-variance optimal allocations for the considered benchmark models.

As indicated in the simulation study, also the empirical results con�rm that the shrinkage

priors are particularly useful under challenging concentration rates. To demonstrate the

robustness of this �nding, in an additional experiment we �t the model with estimation

window truncated down to T = 63 as well as with the cross-sectional dimension increased

up to n = 1600. Indeed, in both situations (T decrease or n increase) the performance

improvements become more evident compared to the benchmark models considered.

For future analysis, speci�cations with alternative, potentially dynamic, benchmark allo-

cations could be investigated in more detail which may lead to further improvements of the

predictive performance of the proposed TVP-GMVP approach, as indicated by the promising

results in Section 3.6.4.

It has to be acknowledged that although the shrinkage prior can be used to prevent ex-

treme allocations with high short-selling shares and large turnover, our model in its current

form is limited to the unrestricted GMVP, unlike conventional covariance-based plug-in ap-

proaches. However, in applications to daily returns, there is much evidence in the literature

(see, e.g., DeMiguel et al., 2009) that the GMVP can be superior to other mean-variance

optimal allocations in Sharpe ratio comparisons, which is also suggested by the results of

our empirical application in Section 3.6.3. Yet, the limitation to the unrestricted GMVP

also implies that explicit constraints, e.g., on large-exposure, cannot be taken into account.

In that regards, Zhao et al. (2021) have recently shown that gross-exposure constraints are

mathematically equivalent to the nonlinear shrinkage approach of Ledoit and Wolf (2012,

2015), which, however, has the advantage that instead of one exogenous penalty parame-

ter, it has n degrees of freedom that are inherently determined in the optimization. The

authors conclude that nonlinear shrinkage is superior to setting gross-exposure constraints

in out-of-sample experiments, which they further demonstrate in simulations and empirical

applications. Similarly, in our approach, it can be argued that the data-driven shrinkage

procedure induced solely via prior choice is superior to setting speci�c hard constraints, at

least in situations in which the restriction on allocations serves only as a means to the end of

risk reduction. In practice, however, there are also situations in which the asset manager is

subject to certain restrictions in her investment decisions. An approach to explicitly incor-

porate gross-exposure constraints or other restrictions on the weights could be the following:
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First, run the Gibbs sampler to simulate from the joint posterior of the parameters and

latent states determining the portfolio weights, potentially using special reference portfo-

lios (see Section 3.6.4) or tighter calibrations of the prior distributions than in our current

speci�cations. Second, for out-of-sample forecasting of portfolio weights satisfying a certain

restriction, simulate from the truncated predictive density satisfying the restriction at hand.

A second drawback of our model is the computational e�ort. For example, the MCMC

sampler to infer the parameters on a computer with Xeon 3.70 GHz processor with 10 cores

(Intel XeonW-2255) requires about 168 minutes in the setting (n, T ) = (100, 1250) and about

45 hours in the setting (n, T ) = (400, 1250) for 15, 000 iterations. For the stochastic volatility

speci�cations there comes added the computational time of the reduced Gibbs sampler to

integrate out the latent volatility states for generating out-of-sample weight predictions.

However, having the parameter re-estimation and portfolio reallocation occur only monthly,

as is typically done, this issue is not too problematic. For practicability, one might consider

having the re-estimation of parameters occur even less frequently.
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Chapter 4.

Inferring Dynamic Financial Networks via a

Time-Varying Graphical LASSO Approach

with Applications to Portfolio Selection

4.1. Introduction

Modeling of �nancial portfolio weights is based on the interdependencies among the return

data. Except for simple allocations such as the equally weighted portfolio, weights are usu-

ally selected as an optimal basket out of a set of assets based on how they are interrelated.

In particular, mean-variance optimal strategies as derived from Markowitz' (1952) portfolio

theory like the Sharpe ratio maximizing (maxSR) allocation and the global minimum vari-

ance portfolio (GMVP) for the special case of an in�nitely risk averse investor, are obtained

as scaled linear functions of the inverse of the joint covariance matrix of the asset returns,

the so-called precision matrix. In this work, I propose to model �nancial precision matrices

directly, without the detour on the covariance. I exploit the scaled linear linkage between

the elements of the precision matrix and portfolio weights, which facilitates interpretation

and allows speci�c requirements such as regularizing the weights to reduce estimation noise

to be addressed during the precision estimation process.

In the recent years, high dimensional portfolio selection based on �nancial asset returns

with hundred or more cross-sectional units has become increasingly popular due to higher

data availability and increased computational power. The major challenge of modeling the

covariation is that the number of elements in the covariance or its inverse increases quadrat-

ically in the number of assets which can lead to critical concentration ratios, i.e., situations

in which the number of cross-sectional units is high compared to the number of estimation

periods. This makes all approaches prone to the curse of dimensionality, including static

estimates of the unconditional covariance as well as dynamic approaches which take into

account potential heteroscedasticity in the data. Many strategies exist to address the high-

dimension problem, though each has limitations: First, with regard to the dynamic models,

sparse parameterizations like the scalar speci�cation for the correlation dynamics in the dy-

namic conditional correlation (DCC) model of Engle (2002) are essential to make estimation

65



Chapter 4. Inferring Dynamic Financial Networks via a TV Graphical LASSO

feasible in high dimensional applications. However, they may be too restrictive and fail to

describe the dynamics of the conditional covariances appropriately. Second, factor models

help to capture only relevant structures in the covariation (Ledoit and Wolf, 2003; Fan et al.,

2013; De Nard et al., 2021; Lee and Seregina, 2021), but it is not always clear what the factors

are, or factor data may not be available. Third, shrinkage approaches of the unconditional

covariance or correlation matrix are generally designed for improving the bias-variance trade-

o� of the estimation (Ledoit and Wolf, 2020): Under linear shrinkage techniques (Ledoit and

Wolf, 2003, 2004), the estimates obtain as a linear combination of the sample covariance and

a target matrix like a multiple of the identity matrix, a factor model or an equicorrelation co-

variance; under nonlinear shrinkage (Ledoit and Wolf, 2012, 2015), the regularization reduces

dispersion of the eigenvalues and assigns an individual shrinkage intensity to each eigenvalue

of the covariance estimate. Despite the advance of shrinkage techniques in the recent years,

these approaches remain to some extent suboptimal for portfolio allocations because the

determination of the optimal shrinkage intensities relies on minimizing certain loss functions

that are not directly related to optimal portfolio allocation. Alternatively to (regularized)

covariance or precision estimation, it is also possible to model portfolio weights directly from

the return observations, e.g., based on linear regression representations (Britten-Jones, 1999;

Kempf and Memmel, 2006). A drawback of these approaches is that they are limited to a

particular allocation rule, say GMVP predictions. However, recent results have proven that

they perform very well in applications tailored to their speci�c problem (Frey and Pohlmeier,

2016; Ao et al., 2019; Reh et al., 2021) suggesting that it may be advantageous to consider

the quantity to be optimized already when estimating or calibrating a model. For similar

reasons, Bodnar et al. (2021) recently proposed penalizing deviations from previous weight

forecasts in rolling window type out-of-sample experiments. This sparsity in dynamics is

aimed at the economically important turnover costs, on one hand, and is useful from a

statistical point of view to reduce estimation noise, on the other.

Precision matrix modeling allows to combine the advantages of �exibility with respect to

particular allocations, such as strategies with limited gross exposure, that covariance models

o�er, with the advantage of the targeted perspective of direct weight modeling. While exist-

ing work on precision modeling has particularly emphasized the advantages of avoiding the

inversion of potentially ill-conditioned covariance estimates in applications with high concen-

tration ratios (see, e.g., Callot et al., 2019; Caner et al., 2020), I focus on the scaled linear

association of the elements of the precision matrix with portfolio weights. Conceptually,

the precision matrix maps the conditional dependencies of the assets, suggesting an inter-

pretation as an undirected graph. To reduce estimation noise, an obvious assumption is to

impose sparsity constraints on the graph via LASSO (least-absolute shrinkage and selection

operator)-like penalty terms, which is potentially more plausible from an economic perspec-

tive for precision matrices than for covariances of �nancial asset returns: While a zero entry

in the covariance matrix, corresponding to a zero correlation between two assets, is very
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unlikely in highly interconnected �nancial systems typically analyzed in this context, a zero

entry in the precision in a Gaussian model requires conditional independence, which may be

plausible especially in the presence of highly correlated industries. However, under a factor

structure, for example, the conditional independence assumption may also be too harsh, so

this paper proposes to include penalty functions for the precision that allow regulation of

certain portfolio allocations without requiring a sparse structure of the graph.

Based on the time-varying graphical LASSO (TVGL) of Hallac et al. (2017), I develop

a sparse dynamic Gaussian graphical model for the precision matrix in which I assume a

piecewise constant joint distribution for the returns. Unlike previously developed graphical

models for precision matrices in �nancial applications (see, e.g., Janková and van de Geer,

2018; Callot et al., 2019; Lee and Seregina, 2021), the TVGL is not limited to a static

estimate of the unconditional inverse covariance. Moreover, it can be tailored to speci�c

problems, as I show using a newly introduced penalty function that regularizes the weights

of the global minimum variance portfolio. This penalty is designed to reduce the gross

exposure of GMVP weights without enforcing sparsity in covariance or precision, allowing,

for example, equicorrelation-like dependencies between assets that are exposed in classical

LASSO. Because of the combination of penalties on the precision matrix and its dynamics,

the augmented TVGL model (ATVGL) is a �exible mixture between a time-stable and

a dynamic model. It allows for temporal variations in the precision and the inclusion of

conditional information, but di�ers conceptually from other dynamic approaches that model

a sequence of conditional covariance matrices. In addition, the sliced interpretation of time

allows the optimization problem to be blocked, resulting in signi�cant computational savings

in the optimization procedure.

Via comparisons of existing portfolio selection strategies under realistic scenarios, the pa-

per additionally contributes to the �nancial portfolio modeling literature by showing that

relative predictive performances exhibit substantial temporal instabilities over long time

horizons, suggesting that it may be optimal to dynamically switch, for example, between

more robust and more �exible speci�cations to achieve uniformly good performance. In

particular, I show that based on a comparison of existing successful allocation strategies,

in a rolling-window forecasting setup, a general superiority of dynamic over static models

cannot be empirically demonstrated, and that the length of the estimation window, which

is usually not a focus in econometric papers, should be carefully chosen when estimating an

unconditional covariance matrix. These insights motivate the development of my proposed

forecasting approach: to answer the empirical question of what level of sparsity, temporal

stability, and conditioning information is optimal for forecasting, I develop a dynamic re-

calibration scheme for the penalty parameters that selects the best model in terms of its

predictive performance as a function of the current data set and the quantity to be opti-

mized. The ATVGL, which is equipped with a problem-oriented dynamic calibration, selects

the conditionally optimal parameterization and thereby implicitly the degree of time stability
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and the weighting of the historical data information. Moreover, it allows a fast adaptation to

current economic conditions. In an empirical application to daily U.S. traded stock returns,

I show that the proposed approach is able to outperform the static and dynamic benchmark

models with respect to minimum variance and mean-variance optimal predictions both on

average over the 40-year period considered and in each 5-year subperiod.

Recent work has considered applications with up to n = 2000 cross-sectional units (Wang

et al., 2020). Applications with a very limited number of observation periods T leading to

situations with n > T have also been analyzed (Callot et al., 2019; Caner et al., 2020). Al-

though theoretically appealing, from a practitioner's point of view, it is questionable whether

allocating among assets from thousands of individual stocks is desirable. To create realis-

tic scenarios, in my analysis I consider portfolio selection based on a large but not vast

cross-sectional dimension of the asset universe, i.e., n ∈ (100, 200). Moreover, since I work

with daily stock returns for which historical time series are usually readily available, I re-

frain from assuming particularly short estimation windows. It is worth mentioning that my

proposed approach is neither theoretically nor computationally constrained in terms of the

cross-sectional dimension or the concentration ratio.

The remainder of this paper is organized as follows: Based on theoretical and practical

insights, Section 2 analyzes the performance of static and dynamic approaches in mini-

mizing out-of-sample unconditional portfolio variance. Section 3 introduces the augmented

time-varying graphical LASSO problem and its optimization. Section 4 illustrates my dy-

namic recalibration scheme and presents empirical results, and Section 5 concludes. Detailed

derivations and additional empirical results are deferred to the Appendix.

4.2. Optimal portfolio allocations

4.2.1. Theoretical considerations

The idea of this paper is to develop, on the basis of a graphical model for precision matrices,

a model and an associated prediction procedure capable of forecasting portfolio weights that

compose optimal portfolios with respect to some evaluation criterion of interest. To this

end, in this section I brie�y summarize what the notion of optimality means in this context.

Let Rt = (R1t, . . . , Rnt)
′ denote a vector of n risky �nancial asset returns at period t. For

given joint unconditional covariance Σ = V[Rt] and unconditional mean return µ = E[Rt],

the vector of mean-variance e�cient portfolio weights w∗ is given as

w∗ = argmin
w

w′Σw, s.t. (4.1)

ι′w = 1, (4.2)

µ′w = µ∗, (4.3)
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where ι is an n×1 vector of ones and µ∗ is a target return chosen according to the investor's

risk preferences. This includes in�nite risk aversion which leads to the global minimum

variance portfolio for which condition (4.3) can be dropped such that the estimation of

the expected portfolio return is avoided. The well-known analytic `plug-in' solution for the

GMVP weights as a function of the (inverse) joint covariance matrix is

wGMV =
Σ−1ι

ι′Σ−1ι
. (4.4)

In practice, Σ and, if applicable, µ typically need to be estimated and µ∗ carefully calibrated.

To account for conditional heteroscedasticity which is a common feature in �nancial return

data, dynamic conditional approaches are used: They typically predict the conditional co-

variance Σt = V[Rt | Ft−1], where Ft−1 is the amount of information known at time t−1 and

the problem de�ned in Equations (4.1) � (4.3) is solved at each t for the Ft−1-conditionally

optimal portfolio weights w∗
t . However, since investors are usually evaluated on the basis

of the unconditional quantities, a trade-o� is created when comparing static unconditional

and dynamic conditional approaches by the fact that in the latter conditional information

is explicitly taken into account, which in principle can be assumed to be bene�cial for the

forecasts. On the other hand, a sequence of conditionally optimal forecasts is generated, the

average of which in general does not correspond to the actual target, unconditionally optimal

quantities.1 For example, for the unconditional variance, this can easily be illustrated by

the law of total variance:

Σ = E[Σt] + V[µt]. (4.5)

The potential superiority of dynamic conditional approaches over static ones for the uncon-

ditional covariance depends on whether the variation in Σt is substantially more pronounced

than the variation in the conditional mean return µt. As shown, e.g., by Reh et al. (2021),

this is typically the case for daily asset returns that are subject to a high degree of condi-

tional heteroscedasticity, near-zero expectations, and an overall poor signal-to-noise ratio.

What these theoretical considerations do not take into account, however, is that in practice

estimation uncertainty plays a major role. It is particularly pronounced in dynamic models,

which tend to be more �exible. This is only one reason why an evaluation of the two model

classes based only on the underlying data generating process of the returns is not su�cient.

Moreover, in out-of-sample forecasting experiments, re-estimation is typically performed at

regular intervals, for example monthly, with the data base evolving over a rolling window.

Especially when considering longer time periods, the resulting sequences of estimates for the

unconditional covariance show considerable di�erences, which means that the time windows

typically used (�ve years is fairly standard) are not su�cient to make reliable inference for

1Note that, as outlined in Ferson and Siegel (2001) models for such mean-variance optimal weights that
optimize the unconditional quantities while at the same time explicitly taking into account conditioning
information cannot be operationalized in general, and hence are not readily available in practice.
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the true underlying stationary covariance matrix � if it exists at all. However, this need not

be to the detriment of portfolio forecasting performance. In fact, another trade-o� arises

especially for the estimation of unconditional covariances: with shorter windows, the esti-

mates are more sensitive and can be interpreted as including time-conditional information,

while long estimation windows use a larger data base, which would be advantageous for the

inference of a stationary covariance and is associated with lower estimation noise. As ex-

treme example, consider a zero-mean process combined with a discrete Markov conditional

volatility process with two possible states (say, a crisis state and a non-crisis state), speci�ed

as follows:

V[Rt | Zt] = Zt with

P (Zt = ΣA | Zt−1 = ΣA) = 0.999, P (Zt = ΣB | Zt−1 = ΣA) = 0.001,

P (Zt = ΣA | Zt−1 = ΣB) = 0.001, P (Zt = ΣA | Zt−1 = ΣB) = 0.999.

For some sample Rt, t = 1, . . . TS su�ciently short, due to the high persistence in the process,

it is likely that Zt takes only one of the values ΣA or ΣB (e.g., for TS = 250, the probability

is approx. 78%) such that any conventional estimation of the unconditional covariance like

the sample covariance would be close to this value, although the unconditional variance of

Rt is given as V[Rt] = 0.5(ΣA+ΣB). For optimal portfolio forecasts, however, it might even

be advantageous in this example to choose rather short estimation windows in order to be

able to capture the `local stability' at hand.

In practice, the variation in forecasts and their dependence on the chosen time window

clearly depends on many factors. In order to empirically test the relevance of the discussed

trade-o�s for portfolio allocations based on daily stock returns and what implications for a

forecasting model can be drawn from them, I already present an excerpt from my empir-

ical application in the following section. Particularly, I investigate the long-term relative

forecasting ability of each one of the most widely used static and dynamic approaches to

covariance modeling in recent years.

4.2.2. Empirical out-of-sample comparison of static and dynamic approaches

As a starting point, I consider the work of Moura et al. (2020), which surveys an exten-

sive list of portfolio selection strategies over a time horizon of more than 40 years. For all

cross-sectional dimensions, the best average results were obtained with dynamic covariance

models. In particular, the DCC model with nonlinear shrinkage of the correlation matrix

(DCC-nl; Engle et al., 2019) performed best for the cross-sectional dimensions n = 100 and

n = 500. Among the static approaches for covariance estimation, the nonlinear shrinkage

estimation (SHR-nl) of Ledoit and Wolf (2012, 2015) resulted in the best overall out-of-

sample predictions for all evaluation criteria. Therefore, I choose these models as exemplary

representatives of the dynamic and static approaches to portfolio selection for illustrating
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various aspects of portfolio performance over time that are not revealed by the usual in-

spection of average quantities, which may be strongly in�uenced by outliers, for example. I

generate one-step-ahead covariance forecasts based on the n = 100 largest assets from my

data set, with assets selected from the same large pool of assets as in the paper by Moura

et al. (2020). Based on a rolling window of T = 1250 trading days, the model re-estimation

and reallocation takes place every 21 trading days, which corresponds to one month (see

Section 4.4.1 for details on the data set and the design of the forecasting experiment). In

addition, to examine the impact of the length of the estimation period on the inference of

the unconditional covariance, I generate forecasts based on SHR-nl using only one year of

historical data (T = 250) for estimation. I compute estimates of GMVP weights according

to the plug-in solution given in Equation (4.4) and the corresponding sequence of portfolio

returns, denoted Rpt, for a 40-year out-of-sample period spanning 1980 to 2019.

Figure 4.1 illustrates the relative predictive performance over time. I use the demeaned

squared portfolio returns as the loss series, where the average loss corresponds to the uncon-

ditional variance. The bottom panel shows the cumulative series of pairwise loss di�erences

for DCC-nl and SHR-nl based on T = 1250, as well as SHR-nl based on T = 250 (SHR-nl∗)

for the 1980 - 2019 out-of-sample period.2 In the top panel, the solid lines are moving aver-

ages of the standardized 20% loss di�erences for the out-of-sample period which correspond

to test statistics of a test for equal predictive power proposed by Giacomini and Rossi (2010).

The so-called �uctuation test rejects the null of equal performance at all time points if the

test statistic exceeds the critical value at least once (the dashed black lines represent critical

values of 5%). I note that for the DCC-nl vs. SHR-nl comparison, a rejection of a two-sided

�uctuation test at the 5% level occurs at the beginning of the out-of-sample period, where

the loss of the DCC-nl model is much smaller than that of the SHR-nl model. However,

the extreme di�erence between the performances decreases dramatically when October 19,

1987, known as Black Monday, falls outside the moving average window. As can be seen in

the �gure below, on this day there is an extreme shift in the cumulative loss series in favor

of the DCC-nl model compared to the static models. Presumably, the conditional dynamic

approach was more able to capture the emerging volatility in the market just before the

Black Monday stock market crash. At the onset of the �nancial crisis in 2008, in turn, the

static models improve over the dynamic DCC-nl. The null of equal predictive performance at

all points in time cannot be rejected at any conventional level for DCC-nl vs. SHR-nl∗, but

SHR-nl∗ tends to outperform the DCC-nl model on average, as indicated by a negative value

of the cumulative loss di�erence (red solid line in the bottom panel) at the end of the sample.

In fact, SHR-nl∗ appears to have consistently outperformed DCC-nl after October 19, 1987,

as indicated by an overall negative trend in the cumulative loss series and negative values of

2Although not the focus of the analysis, for completeness I also analyzed the results of a DCC-nl based on
T = 250 observations (DCC-nl∗). Since �uctuation test pairwise comparison of DCC-nl and DCC-nl∗ has
revealed that they do not perform signi�cantly di�erent at conventional levels, I omit results for DCC-nl∗

from the analysis.
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Figure 4.1.: Pairwise comparison of DCC-nl, SHR-nl and SHR-nl∗ with loss Lt := (Rpt − R̄pt)
2. Top: two-

sided GR �uctuation test statistics, black dashed line indicating 5% critical value (Giacomini
and Rossi, 2010). On the x-axis, the midpoint of the respective time period to compute the
current value of the test statistic is displayed. Bottom: cumulative loss di�erences.

the �uctuation test statistic. Comparing the two static models, the null of the �uctuation

test is clearly rejected, with the model with the shorter estimation window showing better

performance. Nevertheless, the �uctuation test statistic exhibits pronounced instabilities in

its slope, suggesting that relative predictive performance is not constant over time.

The lesson from this experiment is that the length of the estimation window, i.e., the

underlying amount of information, should be carefully chosen when estimating an `uncon-

ditional' covariance matrix and that, taking this into account, a general superiority of the

dynamic models cannot be assumed. The lack of temporal stability in relative predictive

capabilities suggests that an optimal forecasting model would have to be able to dynami-

cally adopt the characteristics of one or the other approach over time. Moreover, it should

be noted that it is di�cult to determine which model is best suited in which market situ-

ation, as shown, for example, by the di�erent relative performances around Black Monday

compared to the beginning of the �nancial crisis in 2008. From a theoretical perspective,

one could argue that in volatile periods, the conditional approaches and models with shorter

data histories are able to respond more quickly to changing economic conditions. In turn,

the static approaches tend to be more parsimonious, and a longer data history is associated
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with a lower concentration rate, so they can be expected to be more robust to estimation

noise. These �ndings motivate the development of my proposed model, which is described

in the following sections. The goal is to develop a predictive approach that incorporates the

following:

(i) Accommodating the advantages of �exibility of DCC-nl and robustness of SHR-nl. To

this end, I improve upon unconditional covariance estimation with a shortened esti-

mation window by incorporating more information about remote data, but without

giving too much weight to the remote observations. Instead, following the proposal of

Bodnar et al. (2021), only deviations from previous timestamps are penalized.

(ii) Local adaptation to intensity and type of regularization. As an alternative to shrinkage,

I employ a more �exible but equally parsimonious regularization that depends on a

small set of penalties that are recalibrated each month.

(iii) Data-driven and problem-oriented heuristics for this adaption. Calibration is based on

the most recent out-of-sample performance with respect to the evaluation criterion of

interest.

4.3. Sparse precision modeling

Among the e�cient portfolios de�ned in Equations (4.1) � (4.3), constructed for the returns

on a set of risky assets, the best known selection strategies are the variance-minimizing

GMVP and the Sharpe ratio-maximizing tangency portfolio. In this section, I begin by

considering the analytical solutions to these allocations in terms of the inverse covariance

matrix to motivate my precision modeling approach in general, and then illustrate the aug-

mented time-varying LASSO as an extension of the Gaussian graphical LASSO for precision

matrices.

Let Θ = Σ−1 be the unconditional precision of Rt. The weight vectors for the global

minimum variance portfolio and for the maximum Sharpe ratio portfolio obtain as a scaled

linear function of Θ:

wGMV =
Θι

ι′Θι
, wmaxSR =

Θµ

ι′Θµ
.

Most strikingly, the GMVP mapping corresponds to the row or column sums of Θ, scaled

by the sum over all its elements. The scaled linear linkage makes Θ much easier to interpret

compared to a covariance in the context of portfolio selection, or potentially subject to

limitations if the portfolio weights are to be regularized. For example, if one of the row

sums is negative, negative GMVP weights occur, which requires that the absolute sum of

the weights be greater than one (increased L1 norm of the weight vector). This holds true

because the term ι′Θι is always positive for positive de�nite Θ. Similarly, a large variation in
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the weights, i.e., a large deviation from the equally weighted portfolio, is represented by an

increased L2-norm of the weight vector, which corresponds to a large variance in the column

sums of Θ. In this paper, I denote by || · ||1 and || · ||2 element-wise L1 and L2 norms for

both vectors and matrices.

In high-dimensional applications, it is usually necessary to impose constraints to reduce

estimation noise, for example in the form of sparsity. However, even with hundreds of assets,

it is very unlikely that two return series will have zero correlation, especially in highly

interconnected �nancial systems that are typically analyzed in this context. In contrast, as

shown in the next subsection, zero entries in the precision matrix in a Gaussian model for

returns require conditional independence. Although this assumption may be more realistic,

for example, factor models commonly used for �nancial asset covariances and derived from

economic theory (e.g., capital asset pricing model developed by Sharpe, 1964 and Lintner,

1965; three-factor model of Fama and French, 1993) also rule out sparsity in the precision

matrix. Therefore, I develop a new penalty function that supports the regularization of

portfolio weights but removes the assumption of sparsity induced by the classical LASSO

L1-type regularization.

4.3.1. Gaussian graphical model for precision matrix estimation

In a Gaussian graphical model based on the assumption that the data is multivariate normal

distributed, the precision matrix Θ is visualized by an undirected graph. As the normal

distribution is fully speci�ed by its �rst two moments, the potentials, i.e., the values of the

edges of the graph corresponding to the entries of the precision matrix, capture all relevant

information regarding the relation between the variables. The partial correlations, i.e., the

correlation between any two elements i, j ∈ (1, . . . , n), i ̸= j of the return vector, conditional

on all other returns indexed by −(i, j), can be expressed as a function of the elements of the

precision:

ρi,j|−(i,j) =
−Θ[ij]√
Θ[ii]Θ[jj]

,

where the subscript [ij] denotes the entry in row i and column j of a matrix. Particularly, if

an entry Θ[ij] = 0, this implies conditional independence between this pair of returns, which

serves as an intuitive interpretation of a sparse graph (details on the derivation see Appendix

C.1).

For a sample of return observations Rt, t = 1, . . . , T independent across time, with each

Rt ∼ N(µ,Θ−1), one can replace µ by its Maximum Likelihood estimate R̄ = 1
T

∑T
t=1Rt

and write the likelihood function in terms of Θ:

L(Θ) =
1

(2π)T/2
det(Θ)T/2 exp

(
−1

2

T∑
t=1

(Rt − R̄)′Θ(Rt − R̄)

)
.
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This implies for the log-likelihood

logL(Θ) ∝ T/2 (log(det(Θ))− trace(SΘ)) , S =
1

T

T∑
t=1

(Rt − R̄t)(Rt − R̄t)
′,

which is clearly maximized at Θ̂ML = S−1, the inverse of the Maximum Likelihood estimate

of the covariance of the data. The sparsity enforcing LASSO regularization of the precision

matrix for high-dimensional settings is to add an element-wise L1-type penalty which implies

that some edges of Θ will be zero, which leads to the following solution Θ̂LASSO:

Θ̂LASSO = argmin
Θ∈S++

n

T/2 (trace(SΘ)− log(det(Θ))) + λ
∑
i,j

|Θi,j |, (4.6)

where S++
n ⊂ Rn×n denotes the subspace of positive de�nite matrices and λ ≥ 0 is a penalty

parameter steering the intensity of regularization. Noteworthy, Θ̂LASSO also exists for situa-

tions with n > T in which the empirical covariance S has reduced rank. Several approaches

have been proposed to solve this optimization problem, addressing the computational di�-

culties of maximization of the not continuously di�erentiable penalized log-likelihood. For

example, Meinshausen et al. (2006) proposed a decomposition into node-wise linear regres-

sion problems to save computation time. This approach was recently adapted by Callot

et al. (2019) in the context of high-dimensional �nancial precision matrix estimation. What

is widely known as graphical LASSO is the algorithm of Friedman et al. (2008), which is a

pathwise coordinate descent procedure that modi�es the node-wise regression to yield fast

convergence to the exact minimizer of the negative of the penalized log-likelihood. The basis

of this algorithm and similar approaches is the work of Banerjee et al. (2008), who has shown

that Equation (4.6) is indeed a convex optimization problem, which is also the essential con-

dition for determining the tractability of a more general class of penalty functions.

4.3.2. Augmented time-varying graphical LASSO

Although it is widely known that correlation structures between �nancial assets are typically

not stable over time, even recent graphical approaches to estimating the precision matrix

for the purpose of portfolio optimization are limited to a static setting (see, e.g., Janková

and van de Geer, 2018; Callot et al., 2019; Lee and Seregina, 2021). While it appears to be

a straightforward extension of graphical LASSO to account for potential heteroscedasticity

in the data, what degree of temporal stability is helpful or harmful for prediction remains

an empirical question (see Section 4.2.2). The starting point for my formulation of a time-

varying network for Θ is the time-varying Graphical LASSO (TVGL) approach of Hallac

et al. (2017), in which an sliced interpretation of time is considered. In particular, the joint

distribution of returns is assumed to remain stable for a given number of periods. In the

terminology of Dahlhaus (1996), the unrestricted model thus implies a locally stationary
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process with i.i.d. increments Rt within the slices. The temporal evolution, i.e., changes in

neighboring timestamps, can be regularized by penalty expressions in the same way as the

slice-individual estimates of the graph itself. The approach is very general and can be applied

in many disciplines to a variety of problems (e.g., Hallac et al., 2017 presents an application to

automobile sensors). I consider it particularly appropriate for the area of interest examined

in this paper, as it is designed to address several important challenges in high-dimensional

portfolio allocation problems caused by the bias-variance tradeo� in estimating on the base

of noisy �nancial return observations. The TVGL matches empirical observations by taking

into account both sparsity and temporal consistency following the idea that neighboring

timestamps should have very similar estimates of the network in most cases, leading to a fairly

moderate re-balancing. Moreover, the penalties on the dynamics also implicitly control the

degree of temporal stability and the weighting of historical data information, which proved

to be very in�uential for the predictions in the empirical investigation in Section 4.2.2. For

out-of-sample predictions, only the precision estimate for the last timestamp is relevant.

While this estimate with high values of the penalty parameters for the dynamics strongly

incorporates the precision estimates of the previous slices, with zero temporal regulation it

is based only on the data from the last slice.

For inferring a time-varying sequence of networks, I set up a sequence of graphical LASSO

problems for the precision which are coupled together in a chain to potentially penalize

deviations in the estimations. I aim to infer Θτ , τ = 1, . . . , Tτ , the inverse covariance

matrices which are assumed to remain stable for Nτ periods each. Precisely, I impose

for observations t = 1, . . . , T , with T =
∑Tτ

j=1Nj , that slice τ covers the periods Iτ =

{
∑τ−1

j=1 Nj + 1,
∑τ−1

j=1 Nj + 2, . . . ,
∑τ

j=1Nj} such that the precision at time t is equal to Θτ

for t ∈ Iτ , and denote by Sτ the corresponding empirical covariance in this period with

sample mean R̄τ . Conditional on R̄τ , the Gaussian log-likelihood for the full sample is, up

to an additive constant, given as

Tτ∑
τ=1

lτ (Θτ ), lτ (Θτ ) = Nτ (log(det(Θτ ))− trace(SτΘτ )).

The penalization for the graph itself and its evolution are governed by a set of J + M

convex penalty functions Ψj(·) and Ψ̃m(·) weighted with nonnegative parameters λj and

βm, respectively. This leads to the following optimization problem for a given set of pa-

rameters λ1, . . . , λJ , β1, . . . , βM , which I de�ne as augmented time-varying graphical LASSO

(ATVGL):

{Θ̂}Tτ
τ=1 = argmin

{Θ}Tττ=1∈S
++
n

Tτ∑
τ=1

−lτ (Θτ ) +

J∑
j=1

λjΨj(Θτ )

+

Tτ∑
t=2

(
M∑

m=1

βmΨ̃m(Θτ −Θτ−1)

)
.

(4.7)
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In principle this �exible structure allows to enforce virtually any structure for the sequence

of precision matrices. The challenging and, to some extent, limiting part here is to be able

to solve the problem, i.e., ensuring unique solutions and setting up some algorithm that is

ensured to converge to the global minimum (in �nite time).

4.3.3. ADMM solution

To this end, I again follow Hallac et al. (2017) and use the alternating direction method of

multipliers (ADMM) (Boyd et al., 2011), an iterative, Lagrange-type optimization scheme,

and apply it to the generalized problem stated in Equation (4.7). The idea here is to split up

the problem along the timestamps and the penalties, into a series of subproblems for which

analytical solutions are available. Particularly, for the ADMM the problem is re-formulated

such that it consists of two blocks of primal variables, namely, Θ̄ = (Θ1, . . . ,ΘTτ ) and the so

called consensus variable Z = {Z0, Z1, Z2} = {(Z1,0,1, . . . , ZTτ ,0,J), (Z1,1,1, . . . , ZTτ−1,1,M ),

(Z2,2,1, . . . , ZTτ ,2,M )}, where elements of Z0 are inserted into the penalty functions Ψj and

elements of the pairs in Z1, Z2 into the penalties Ψ̃m:

{Θ̂}Tτ
τ=1 = argmin

{Θ}Tττ=1∈S
++
n

Tτ∑
τ=1

−lτ (Θτ ) +

J∑
j=1

λjΨj(Zτ,0,j)


+

Tτ∑
t=2

(
M∑

m=1

βmΨ̃m(Zτ,2,m − Zτ−1,1,m)

)
,

(4.8)

s.t. Zτ,0,j = Θτ ∀j, τ = 1, . . . , Tτ ; (Zτ−1,1,j , Zτ,2,j) = (Θτ ,Θτ−1) ∀j, τ = 2, . . . , Tτ .

(4.9)

Incorporating the constraints of Equation (4.9) into Equation (4.8) leads to the uncon-

strained optimization of the augmented Lagrangian function

Lρ(Θ̄, Z, U) =

Tτ∑
τ=1

−lτ (Θτ ) +
J∑

j=1

λjΨj(Zτ,0,j)

+

Tτ∑
t=2

(
M∑

m=1

βmΨ̃m(Zτ,2,m − Zτ−1,1,m)

)

+ (ρ/2)
∑
j

(
Tτ∑
τ=1

(
||Θτ − Zτ,0,j + Uτ,0,j ||22 + ||Uτ,0,j ||22

))

+ (ρ/2)
∑
m

(
Tτ∑
τ=2

(
||Θτ−1 − Zτ−1,1,m + Uτ−1,1,m||22 + ||Uτ−1,1,m||22

+ ||Θτ − Zτ,2,m + Uτ,2,m||22 + ||Uτ,2,m||22
))
,

(4.10)

where U = {U0, U1, U2} = {(U1,0,1, . . . , UTτ ,0,J), (U1,1,1, . . . , UTτ−1,1,M ), (U2,2,1, . . . , UTτ ,2,M )}
is the scaled dual variable and ρ > 0 is the augmented Lagrangian parameter referred to

as ADMM penalty parameter. The optimization consists of the following updates, where
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k denotes the iteration number and the superscript denotes in which period the respective

matrices have been updated:

(a) Θ̄k+1 := argmin
{Θ}Tττ=1∈S

++
n

Lρ(Θ̄, Z
k, Uk)

(b) Zk+1 :=

Z
k+1
0

Zk+1
1

Zk+1
2

 := argmin
Z0,Z1,Z2

Lρ(Θ̄
k+1, Z, Uk)

(c) Uk+1 :=

U
k+1
0

Uk+1
1

Uk+1
2

 =

U
k
0

Uk
1

Uk
2

+



(Θk+1
{1:Tτ}, . . . ,Θ

k+1
{1:Tτ}︸ ︷︷ ︸

#J

)− Zk+1
0

(Θk+1
{1:Tτ−1}, . . . ,Θ

k+1
{1:Tτ−1}︸ ︷︷ ︸

#M

)− Zk+1
1

(Θk+1
{2:Tτ}, . . . ,Θ

k+1
{2:Tτ}︸ ︷︷ ︸

#M

)− Zk+1
2


.

I initialize Zk and Uk by appropriately stacked identity matrices of dimension n. Notably, all

solutions can be obtained separately for each Θτ , Zτ,0,j and (Zτ−1,1,m, Zτ,2,m). I speci�cally

make use of several proximal operators (Boyd et al., 2011), which de�ne a class of particular

optimization problems for which well-known closed form solutions exist. A proximal operator

considers a trade-o� between minimizing some convex function f with respect to a variable

X and minimizing the squared Euclidean distance of X to a target A (details are provided in

Appendix C.2). For solving (a), I apply a proximal operator for the negative log-likelihood

and the components in the second to fourth line of Equation (4.10) which depend on Θτ

(see Appendix C.3.1). The solution in (b) depends on the functional form of the particular

penalties Ψj and Ψ̃m and is described for the set of employed penalties in Section 4.3.4.

The two-block ADMM utilized here is guaranteed to converge to the global optimum

as long as the penalty functions Ψm and Ψ̃j are convex in Z, given that the negative log-

likelihood is clearly strictly convex in {Θ}Tτ
τ=1. The algorithm uses a stopping criterion based

on the primal and dual residuals being below speci�ed thresholds (Boyd et al., 2011) which

are set to very conservative values in my implementation (Matlab 2021a).

4.3.4. Penalty functions

The precision matrix estimates obtain as optimum in a trade-o� between �t and sparsity,

both with respect to the precision at each slice τ as well as its degree of time-variation.

The former is accounted for by the terms λjΨj(·) while the latter is accounted for by the

terms βmΨ̃m(·). Although in principle all convex functionals are possible, in practice, the

computing time is the bottleneck and needs to be carefully accounted for. As all subproblems

need to be solved for Tτ or Tτ − 1 times in every iteration, only functions with closed form

solutions can be used in practice and the number of penalties should be kept to a low number
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4.3. Sparse precision modeling

in order to alleviate convergence. Furthermore, the computational costs depend linearly on

the number of timestamps.

I set M = 1, imposing a simple element-wise L1 penalty, Ψ̃1(X) =
∑n

i=1

∑n
j=1 |X[ij]| =

||X||1, inserting for X the di�erence Zr−1,1,m−Zr,2,m to limit variation in subsequent times-

tamps. Initial experiments showed that L1 and L2 entrywise penalization lead to qualita-

tively similar results in my application. The a few edges at a time penalty, as phrased by

Hallac et al. (2017), can be solved by applying a soft-thresholding proximal operator that

particularly exploits the element-wise structure of Ψ̃1 (see Appendix C.3.2).

Regarding the estimation of the precision of the individual slices τ , I impose J = 2

penalties, which facilitates to relate the speci�cation to the application of interest, i.e.,

portfolio allocation. The �rst is again a standard element-wise LASSO penalty, in the ter-

minology of Hallac et al. (2017) the a few edges at a time omitting the diagonals penalty

Ψ1(X) =
∑n

i,i ̸=j

∑n
j=1 |X[ij]|, inserting for X the matrices Zτ,0,1. The diagonal elements of

the estimates for Θτ are not addressed here because it is not sensible to assume sparsity for

them: For λ1 = ∞, the penalty Ψ1 leads to a diagonal precision with all remaining edges

equal to zero, which corresponds to a diagonal covariance matrix leaving the variances unaf-

fected. The soft-thresholding proximal operator can directly be applied to solve the problem

(see Appendix C.3.2). With the second regularization, I intend to relate the problem to my

application of interest and propose a new penalty function that aims to lower economically

implausible allocations. Although conceptually not restricted to that, I focus here on the

minimum variance allocation that is exclusively determined by the covariation among the

data and avoids estimation of the mean return which is known to be hard to estimate from

return series at low sampling frequency like daily data with a typically low signal-to-noise

ratio. A penalty function of which the functional form or the shrinkage target is highly

dependent on a noisy estimation of the mean return cannot be assumed to work well in

out-of-sample predictions. Moreover, I desire a penalty which complements Ψ1 in reducing

estimation noise, but without demanding sparsity in Θτ , motivated by the fact that, e.g.,

with the presence of an underlying common market factor, the assumption of conditional

independence can be too rigid. As I particularly want to limit extreme portfolio weights

on particular stocks, I consider a squared euclidian distance of the GMVP weights from the

equally weighted portfolio which translates to L2-type regularization. Implicitly, this also

limits gross exposure and leads for in�nite penalization to the equally weighted portfolio. For

deriving such a penalty, my starting point are the GMVP weights in terms of the precision

matrix, i.e., wGMV = Θ′ι
ι′Θι . Conceptually, I could directly apply an L2 norm constraint on

these weights, or equivalently, on their deviations from the equally weighed portfolio ι/n.

The problem is that the metrics inducing Lp norms do not lead to a closed form solution for

Θ. To illustrate, note that for some matrix X representing a precision,

||wGMV − ι/n||22 = || 1

ι′Xι
(Xι− ι′Xι/n)||22,
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where, due to the factor (ι′Xι)−1, the �rst order condition is highly nonlinear in X, an ana-

lytical solution would be prohibited and computationally more costly numerical optimization

techniques would be required. Instead, I consider a scaled version, namely,

Ψ2(X) = ||(Xι− ι′Xι/n)||22,

which is a quadratic convex problem with linear �rst order conditions, minimized for all

symmetric generalized doubly stochastic matrices3, which imply an equally weighted GMVP

(for X, the matrices Zτ,0,2 are inserted). Particularly, this includes estimates for the preci-

sion which imply an equicorrelation covariance matrix for the joint return distribution. An

intuitive interpretation of the newly introduced penalty Ψ2 is that it is proportional to the

variance in the row and column sums of X:

Ψ2(X) = ||(Xι− ι′Xι/n)||22

=
∑
i

∑
j

X[i,j]

2

− 2
∑
j

X[i,j]

∑
i,j

X[i,j]/n

+

∑
i,j

X[i,j]/n

2
=
∑
i

∑
j

X[i,j]

2

− n

∑
i,j

X[i,j]/n

2

,

which is clearly minimized if all row and column sums are equal, but with no direct restriction

on the sum of the entries itself. It is therefore optimally suited to augment the LASSO

penalty Ψ1. For some component Zτ,0,2, the vectorized (vec) solution under parameters λ2
and ρ is given by

argmin
vec(Zτ,0,2)

Lρ(Θτ , Zτ,0,2, Uτ,0,2) = argmin
vec(Zτ,0,2)

λ2Ψ2(Zτ,0,2) + ρ/2|| (Zτ,0,2 − (Θτ + Uτ,0,2)) ||22

=

λ2[(1n×n ⊗ In)− (In ⊗ 1n×n)− 2/n1n2×n2 ] + ρIn2︸ ︷︷ ︸
:=JΨ2


−1

ρvec(Θτ + Uτ,0,2),

whereby the inversion of the n2×n2 matrix JΨ2 only needs to be performed once. In Appendix

C.3.3, I derive the analytical solution for J−1
Ψ2

by exploiting the particular structure of JΨ2 and

show that it only consists of three distinct entries as functionals of ρ, λ2 and n. Therefore, I

can circumvent the vast-dimensional matrix multiplication that has to be conducted to solve

for all Zτ,0,2 in each iteration k and replace it by computing appropriately weighted sums

of the elements of ρvec(Θτ + Uτ,0,2). This reduces computing time by more than 98% and

makes the penalty function Ψ2 scalable to large and vast dimensional applications.

Figure 4.2 illustrates the e�ects of the di�erent penalties that are being used in my ATVGL

3A doubly stochastic matrix (DSM) is a square matrix of nonnegative real numbers, each of whose rows
and columns sums to one. For generalized DSM, the nonnegativity condition is dropped.
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Figure 4.2.: In-sample comparison of penalty functions with slice length Nτ = 250, n = 100, based on time
period 2015 - 2019 (T = 1250). Left: GMVP weights for slices τ = 1, . . . , 5, right: eigenvalues
of Θτ , τ = 1, . . . , 5. From top to bottom: (λ1, λ2, β1) = (0, 0, 0), (λ1, λ2, β1) = (27, 0, 0),
(λ1, λ2, β1) = (0, 27, 0), (λ1, λ2, β1) = (0, 0, 27).

speci�cation, that is, λ1Ψ1(·), λ2Ψ2(·) and β1Ψ̃1(·). For return series of n = 100 assets from

the data set used in my empirical application, the penalized log-likelihood is maximized

for a sample of size T = 1250 in the period 2015 � 2019, divided in slices each of length

Nτ = 250, under di�erent constellations of the of the penalty parameters: an unrestricted

model with λ1 = λ2 = β1 = 0, as well as a model with each one of λ1, λ2 and β1 set to 27

with the remaining parameters equal to zero. The left panel displays the resulting GMVP

weight estimates and the right panel presents eigenvalues of the estimates for {Θ}Tτ
τ=1 on

each timestamp. In contrast to the unconstrained model, where {Θ̂}Tτ
τ=1 is identical to

the inverse of the empirical covariance of each slice, visual inspection shows that each of

the three penalties is able to regularize the portfolio weights. It is shown that taking into

account information from neighboring timestamps over Ψ̃1 leads to an `averaging' of the

precision estimates and hence the allocations, which also leads to a signi�cant decrease in

the dispersion of the eigenvalues of each Θ̂τ . Similarly, one can see that both Ψ1 and Ψ2

imply a shrinkage of portfolio weights towards the equally weighted portfolio. However, under

the standard element-wise LASSO-type penalty, the reduction is associated with an extreme

shrinkage of the eigenvalues of each Θ̂τ . The average L1 norm of the precision estimates
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(not reported here) is much smaller than under the two other regularizations implying that

it enforces sparsity in the network. In contrast, under Ψ2, the eigenvalues of {Θ̂}Tτ
τ=1 are

hardly a�ected, as the regularization of the weights is only driven by more homogeneity in

the row and column sums. Overall, this �gure shows that the three penalties leads to a

regularization of the portfolio weights associated with very di�erent e�ects on the precision

estimates. While Ψ1 and Ψ2 a�ect the structure of the networks on each slice, Ψ̃1 controls

the homogeneity along the slices and thus the amount of remote data information considered

for estimation.

4.4. Empirical application

4.4.1. Data and design of the experiment and benchmark models

I use the data set analyzed by Moura et al. (2020) which consists of the daily prices of all

NYSE, AMEX and NASDAQ stocks and update it to include price observations until the

end of the year 2019. The full sample covers the period from 12/28/1973 to 11/26/2019 for

a total of 11, 582 trading days. In my out-of-sample experiments I focus on one-day-ahead

forecasts obtained by re-estimating the model parameters every month on a rolling window

scheme, where I follow the convention that 21 consecutive days constitute one month. The

out-of-sample period starts on 12/07/1979 and ends on 11/26/2019 which results in a total

of 10,080 point forecasts, corresponding to 480 months or 40 years. I conduct an extensive

study of GMVP predictions with portfolio size n = 100 (Section 4.4.3), and additionally

provide an analysis of mean-variance optimal allocations as well as results for cross-sectional

dimension n = 200 to robustify my �ndings (Section 4.4.4). I �t the length of the estimation

window to �ve years (T = 1250) additional to one year (T = 252) for my suggested approach

due to the design of my parameter calibration scheme (see Section 4.4.2). This leads to an

e�ective information set of six years of past data for my ATVGL model in contrast to �ve

years for the benchmark approaches. However, a six year estimation period leads for none

of the benchmark models to an improved performance (not reported here). Therefore I rely

on the commonly used �ve year window width. Following Engle et al. (2019), the n stocks

included in a portfolio are re-determined before re-estimating the parameters each (virtual)

month. They are selected as follows: First, I identify the stocks that have a complete series

of reported returns over the most recent T days and over the next 21 days. Then, I identify

all pairs of stocks with a sample correlation larger than 0.95 over the past T days and remove

the respective stock with lower trading volume observed at the time of re-estimation. Finally,

I select the largest n stocks in terms of market capitalization at the re-estimation period.

As alternatives to my proposed GMVP models I use the following static and dynamic

approaches from the literature: (i) The plug-in estimator constructs the prediction of the

GMVP weights by estimating the return unconditional covariance matrix Σ with the sample

covariance matrix. (ii) The linear shrinkage (SHR-l) estimator modi�es the plug-in estima-
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tor by estimating Σ via the linear shrinkage approach of Ledoit and Wolf (2004). (iii) The

nonlinear shrinkage (SHR-nl) approach estimates Σ via the nonlinear shrinkage procedure

of Ledoit and Wolf (2012, 2015). While the linear shrinkage estimator shrinks all sample

eigenvalues towards toward the grand mean of the sample eigenvalues with the same inten-

sity, the nonlinear shrinkage approach uses an individualized intensity for each eigenvalue.

(iv) The linear shrinkage market factor (SHR-l-1f) estimator modi�es the plug-in estimator

by estimating Σ via the linear shrinkage approach in direction of a market factor covariance

matrix (Ledoit and Wolf, 2003) (v) The naïve estimator sets the prediction of the GMVP

weights equal to the weights of the equally weighted (naïve) portfolio. (vi) The Gaussian

DCC model of Engle (2002) with correlation targeting based on the standard sample co-

variance matrix (DCC-s). (vii) The Gaussian DCC model with correlation targeting based

on nonlinear shrinkage estimates (DCC-nl) (Engle et al., 2019). (viii) An approximate one-

factor model with residual covariance according to a Gaussian DCC model with correlation

targeting based on nonlinear shrinkage estimates (AFM-DCC-nl) (De Nard et al., 2021).

(iv) A regularized exponential Recursive Least Squares with forgetting factor scheme (RLS-

REF) to directly infer the GMVP weights (Reh et al., 2021), based on a linear regression

of a benchmark return on the return di�erences to this benchmark, in which the regression

coe�cients represent the GMVP weights (Kempf and Memmel, 2006).

4.4.2. Dynamic recalibration

An essential step in training a regularized model is the calibration of the hyper-parameters.

I want to determine the optimal trade-o� between �t and sparsity taking into account that

I am solely interested in out-of-sample performance, that data is in temporal order and

that it can be assumed that the optimal calibration is time-variant, such that it is sensible

to consider a rolling window scheme like for the estimation window. Moreover, I aim to

target the application of interest. In Figure 4.3, I graphically illustrate my calibration and

forecasting scheme, that I developed based on these considerations. On a log-scaled grid

of 15 × 15 × 15 values for the three penalty parameters, that is, (λ1, λ2, β1) ∈ {2k, k ∈
{−7, 7}}, I re-estimate the model every month, based on the current data set determined

as described in Section 4.4.1, and compute one month of out-of-sample returns with weights

according to the strategy of interest (like, e.g., the unrestricted GMVP, or some gross-

exposure constrained mean-variance optimal portfolio) based on the estimated precision of

the last slice in the sample. In the vein of Jegadeesh and Titman (1993), I aim to exploit

momentum performance and select in each month the set of parameters which yields the best

performance evaluated on the criterion of interest (e.g., unconditional variance) within the

most recent 12 months of pseudo-out-of-sample period. That is, I consider each the latest 12

evaluation windows as calibration period. Another degree of freedom is the slice length. For

the sake of practicability and computational cost, however, I restrict myself to two (�xed)

slice lengths: Nτ = 125 and Nτ = 250 ∀τ , corresponding to 10% and 20% of the estimation
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start of out-of-sample periodCalibration

Forecasting

rolling window 1 rolling window 2

evaluation window 1

evaluation window 2

calibration period to obtain θ∗1

calibration period to obtain θ∗2

forecast based on θ∗1

forecast based on θ∗2

Figure 4.3.: Dynamic calibration scheme for penalty parameters and slice length θ = (λ1, λ2, β1,Nτ ).
Blue sections: rolling windows for re-estimation (T = 1250), red sections: corresponding
evaluation windows (TE = 21), violet sections: calibration periods comprising 12 evaluation
windows (TC = 12TE = 252), gray sections: corresponding out-of-sample forecasting periods
(TF = 21).

window. Imposing time-stability for 125 or more trading days does not allow for precise

inference in the context of event detection for which the TVGL was originally invented, but

in order to obtain robust estimates for the inverse of the joint covariance matrix of noisy

daily return observations, it can be assumed that the use of large timestamps is bene�cial.

The choice of Nτ = 250 is motivated by the results in Section 4.2.2 which indicate that

even static models can compete with dynamic speci�cations when cutting their estimation

window to one year (for given cross-sectional dimension n = 100). For investigating the

bene�ts of increased �exibility, I additionally �t the model for Nτ = 125. In total, this leads

to 2× 153 = 6, 750 possible models that are re-estimated every month.

4.4.3. Results

In this section I present the forecasting performance for the ATVGL and its competitors

based on several variations of the GMVP with cross-sectional dimension n = 100. The

minimum variance allocation depends solely on the asset covariation and represents my

main analysis for evaluating the time-varying LASSO approach to inferring {Θ}Tτ
τ=1. For a

given asset (conditional) covariance estimate Σ̂, Σ̂T+1 or the respective precision estimate

Θ̂Tτ , the GMVP weight prediction is given by plugging into Equation (4.4). For the RLS-

REF approach the GMVP weight estimates obtain directly from the recursion. In large

scale applications as considered here, it might occur that covariance predictions are not

well conditioned possibly resulting in unrealistically volatile or economically implausible

allocations. Therefore I additionally consider short-selling constrained allocations. These

additional restrictions are imposed to the minimization problem stated in Equations (4.1) �

(4.2) by adding the following norm constraints:

||w||1 ≤ 1 + 2s, (4.11)
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Figure 4.4.: Out-of-sample time plots. Top: daily returns on equally weighted portfolio, bottom: pairwise
cumulative loss di�erences of ATVGL, DCC-nl and SHR-nl with loss Lt := (Rpt − R̄pt)

2.

where s ≥ 0 denotes the fraction that is allowed to be held short. In the present paper I

consider, besides the unrestricted GMVP, the commonly used 130/30-portfolio (s = 0.3) as

well as a long only 100/0-portfolio (s = 0.0). As the constrained minimization problem has

no closed-form solution, I rely on the CVX package in Matlab of Grant and Boyd (2014) to

solve for the constrained GMVP weights. The optimal calibrations of θ = (λ1, λ2, β1,Nτ )

for the ATVGL are selected according to the calibration scheme outlined in Section 4.4.2

each based on the respective allocation rule. I present the empirical out-of-sample portfolio

variance σ̂2 of ATVGL as well as the dynamic and static benchmark approaches. For some

sequence of portfolio returns Rps, s = 1, . . . S, with empirical mean R̄p = 1
S

∑S
s=1Rps, it is

computed as

σ̂2 =
1

S

S∑
s=1

(Rps − R̄p)
2.

For assessing the statistical signi�cance of di�erences in the empirical out-of-sample vari-

ance, I apply the model con�dence set (MCS) approach of Hansen et al. (2011), taking the

demeaned squared returns as loss series.

The top panel in Figure 4.4 plots the times series of the daily returns on the equally

weighted portfolio comprising all n = 100 assets over the complete out-of-sample period.

The bottom panel displays pairwise cumulative loss di�erences of ATVGL, DCC-nl and

SHR-nl. It reveals that except October 19, 1987, in which the DCC-nl allocation leads to a

substantially less negative return compared to the two other selection strategies, resulting in
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Table 4.1.: Out-of-sample empirical variance unrestricted GMVP for n = 100

model/time full '80-'84 '85-'89 '90-'94 '95-'99 '00-'04 '05-'09 '10-'14 '15-'19

ATVGL 0.504 0.389 0.744 0.281 0.548 0.661 0.659 0.321 0.424

DCC-nl 0.541 0.404 0.685 0.338 0.564 0.791 0.705 0.367 0.463

DCC 0.557 0.416 0.719 0.353 0.574 0.816 0.713 0.376 0.475

AFM-DCC-nl 0.553 0.409 0.795 0.376 0.582 0.756 0.690 0.355 0.451

SHR-nl 0.566 0.416 0.857 0.366 0.586 0.810 0.678 0.371 0.441

SHR-nl* 0.533 0.419 0.804 0.298 0.573 0.704 0.689 0.332 0.438

SHR-l 0.581 0.430 0.891 0.382 0.597 0.827 0.689 0.376 0.451

SHR-l-1f 0.568 0.419 0.847 0.379 0.589 0.813 0.675 0.368 0.446

plug-in 0.582 0.430 0.893 0.385 0.597 0.828 0.692 0.377 0.451

RLS-REF 0.529 0.418 0.800 0.326 0.572 0.722 0.644 0.326 0.416

naïve 1.209 0.984 1.433 0.598 1.079 1.643 2.185 1.028 0.710

Note: Grey shaded cells indicate that the model belongs to the 90 % MCS.

a shift in the cumulative loss di�erentials, the ATVGL virtually uniformly outperforms the

DCC-nl model, as indicated by an overall negative trend in the cumulative loss di�erential

(blue line). The strength of the approach, however, is that it also uniformly outperforms the

static SHR-nl (red line), whereas the relative performance of DCC-nl and SHR-nl doest not

appear to be stable over time (yellow line, see also the discussion in Section 4.2.2). In Table

4.1 I report the out of sample empirical variance of ATVGL and all considered benchmark

approaches over the full sample as well as for eight subsamples of �ve years each. With SHR-

nl∗ I denote again the SHR-nl estimate of the unconditional covariance based on a shortened

estimation window of the previous T ∗ = 250 trading days. Over the full sample, ATVGL

is the best performing approach and the only one to be included in the 90% MCS. Further,

it is the only approach to be included in the 90% MCS in all subsamples demonstrating

its robustness and �exibility which leads to this uniformly well performance. Among the

benchmark models, the overall lowest variance is generated by RLS-REF and SHR-nl∗, which

both cover distinct features which set them apart from the remaining approaches: RLS-REF

directly models the GMVP weights without detour on the covariance, hence it is explicitly

designed to optimize the quantity of interest, the unconditional variance. The SHR-nl∗

only takes into account the previous year of data for a `pseudo'-unconditional estimation

of the joint covariance which also proves to be bene�cial in terms of forecasting. However,

the results also indicate that it would be helpful to switch between the estimation window

lengths, as in three of the eight subsamples, SHR-nl leads to a lower variance than SHR-nl∗.
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Noteworthy, the comparably well performance of DCC-nl on average can be traced back to

the time period ′85−′ 89 including Black Monday, whereas it has no longer been competitive

(included in 90% MCS) in the last 20 years of the out-of-sample period.

Table 4.2.: Out-of-sample empirical variance exposure-constrained GMVP for n = 100

model/time full '80-'84 '85-'89 '90-'94 '95-'99 '00-'04 '05-'09 '10-'14 '15-'19

130/30 strategy

ATVGL 0.519 0.398 0.829 0.288 0.542 0.663 0.701 0.317 0.411

DCC-nl 0.535 0.418 0.720 0.325 0.568 0.739 0.699 0.363 0.440

DCC 0.540 0.422 0.740 0.330 0.570 0.751 0.698 0.364 0.440

AFM-DCC-nl 0.557 0.420 0.813 0.359 0.583 0.734 0.727 0.368 0.444

SHR-nl 0.567 0.422 0.856 0.364 0.578 0.794 0.708 0.375 0.437

SHR-nl* 0.525 0.411 0.854 0.296 0.560 0.677 0.669 0.322 0.408

SHR-l 0.572 0.425 0.873 0.370 0.580 0.798 0.711 0.374 0.439

SHR-l-1f 0.569 0.422 0.849 0.381 0.577 0.794 0.709 0.372 0.441

plug-in 0.572 0.425 0.872 0.372 0.580 0.798 0.710 0.374 0.439

naïve 1.209 0.984 1.433 0.598 1.079 1.643 2.185 1.028 0.710

100/0 strategy

ATVGL 0.596 0.466 0.929 0.328 0.606 0.732 0.895 0.399 0.412

DCC-nl 0.597 0.492 0.781 0.338 0.655 0.786 0.848 0.419 0.447

DCC 0.599 0.494 0.799 0.340 0.653 0.787 0.849 0.418 0.446

AFM-DCC-nl 0.624 0.499 0.877 0.379 0.643 0.793 0.895 0.431 0.467

SHR-nl 0.636 0.498 0.927 0.394 0.638 0.843 0.892 0.440 0.454

SHR-nl* 0.600 0.472 0.965 0.346 0.629 0.720 0.847 0.398 0.418

SHR-l 0.640 0.502 0.946 0.402 0.638 0.845 0.889 0.440 0.455

SHR-l-1f 0.637 0.500 0.923 0.407 0.637 0.841 0.888 0.438 0.456

plug-in 0.641 0.502 0.946 0.404 0.638 0.845 0.890 0.441 0.455

naïve 1.209 0.984 1.433 0.598 1.079 1.643 2.185 1.028 0.710

Note: Grey shaded cells indicate that the model belongs to the 90 % MCS.

The unconditional portfolio variances for allocations imposing gross exposure constraints

are collected in Table 4.2. Overall, the results are qualitatively similar to the unconditional

GMVP. On average, the allocation strategies become harder to be distinguished, e.g., in

the subsample ′05 − 09′, nine of the ten approaches are included in the 90% MCS for both

exposure constrained strategies. However, both for 130/30 and 100/0, the ATVGL is still
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the approach with the smallest unconditional variance over the full sample and the only one

to be included in the 90% MCS for all subsamples except for the period ′85−′ 89′. Notably,

the RLS-REF strategy can no longer be applied here as this direct modeling approach of

the portfolio weights comes with the disadvantage that it does not allow to impose norm

constraints on the weights ex-post.

Table 4.3.: ATVGL performance with restricted calibration

θ restriction σ̂2 rel. to none (in %) avg. ||Θ̂||1 avg. ||ŵ||2
none 0.0 0.249 0.338
λ1 = 0 +6.6 0.606 0.352
λ2 = 0 +1.5 0.222 0.343
β1 = 0 +1.5 0.368 0.327
Nτ = 125 only +1.2 0.222 0.328
Nτ = 250 only +0.5 0.249 0.334

Note: Out-of-sample model comparison under several parameter restrictions
on the calibration. Left column: empirical variance relative to unrestricted cal-
ibration, middle column; average element-wise L1 norm of precision estimates,
right column: average L2 norm of unrestricted GMVP weight estimates.

The ATVGL approach is driven by four parameters θ = (λ1, λ2, β1,Nτ ), for which I �t

the model on a grid of dimension 153 × 2 = 6, 750. In my forecasting experiment, the

average calibrations are given as λ̄1
∗
= 21.18 (standard deviation std = 29.88), λ̄2

∗
= 11.76

(std = 31.90), β̄1
∗
= 29.61 (std = 62.35), and in 40.74% (59.26%) slice length Nτ = 250

(Nτ = 125) is selected for the unrestricted model. For the gross-exposure constrained models,

average values of the penalty parameters and the preference for slice length Nτ = 125 tends

to increase slightly. Notably, a mere analysis of the absolute values of the parameters is

not su�cient as it does not account for potentially di�erent sensitivities of the penalized

log-likelihood with respect to the parameters. For practical purposes, however, it may be

desirable to analyze which of the penalties is most important, and which slice length leads to

the best performance. To this end, I show in Table 4.3 for the unconditional GMVP strategy,

how it alters the results if I restrict each one of the penalty parameters to zero or allow only

for one particular slice length. Restricting λ1 to zero clearly leads to the largest decrease in

performance (+6% unconditional variance compared to the unrestricted calibration setting),

whereas setting λ2 or β1 to zero only leads to a moderate decrease in performance of each

approximately 1.5%. Additional to the impact on conditional variance displayed in the �rst

column, the second and third column of Table 4.3 display the average element-wise L1 norm

of the precision (avg. ||Θ̂||1) and the average L2 norm of the selected out-of-sample GMVP

weights (avg. ||ŵ||2), respectively: They reveal that without the newly introduced penalty

Ψ2, the average dispersion of the weights is slightly larger (0.343 compared to 0.338), but at

the same time, substantially more sparsity in the precision is required (average element-wise
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L1 norm of 0.222 compared to 0.249). This again demonstrates the functioning of the newly

introduced penalty Ψ2 used to augment the LASSO caused by Ψ1: increased homogeneity in

the portfolio weights associated with less enforcement of potentially economically implausible

sparsity in the precision. Restricting the slice length to be �xed to Nτ = 250 only leads to a

0.5% increase in unconditional variance. At the same time, doubled number of slices (10×125

compared to 5 × 250) doubles the computing time such that the computational costs can

be cut by 75% when restricting the slice length to Nτ = 250. Hence, from a practitioner's

point of view, if a restriction shall be imposed to shrink the parameter space, considering

only slice length Nτ = 250 appears to be the most attractive one.

4.4.4. Robustness checks

As a second out-of-sample portfolio allocation exercise I consider a mean-variance portfolio

based on an investor who aims at minimizing the portfolio risk subject to a target portfolio

return µ∗. The solution to the problem de�ned in Equations (4.1) � (4.3) obtains as:

wMV = argmin
w

w′Σw, s.t. ι′w = 1, m′w = µ∗ (4.12)

= Σ−1m(Cb−D) + ι(E −Db)

EC −D2
, (4.13)

C = ι′Σ−1ι, D = m′Σ−1ι, E = m′Σ−1
s m. (4.14)

Various approaches exist to construct the signal m for the mean and to choose the target

return. Here, I follow Engle et al. (2019) and Moura et al. (2020) and construct m using the

momentum factor of Jegadeesh and Titman (1993). For each of the n stocks the individual

momentum mi, i = 1, . . . , n, is computed as the geometric average of the previous 252 re-

turns, but excluding the 21 most recent returns. Collecting all the momentum in a vector

yields the signal m. The target return is computed as the arithmetic average of the momen-

tums of those stocks that belong to the top-quintile stocks ranked according to momentum.

Also for these mean-variance with momentum strategies, I combine the problem with the

norm constraints de�ned in Equation (4.11), setting s = 0.3 and s = 0.0 to construct three

similar portfolios as in the GMVP exercise. The solutions on the exposure-constrained al-

locations are obtained by making use of the CVX toolbox of Grant and Boyd (2014). For

evaluating the performance, I use the empirical Sharpe ratio de�ned as

θ̂ =
R̄p√
σ̂2
,

with a superior forecasting performance indicated by larger values of the Sharpe ratio. The

Sharpe ratio is considered among the most important economic portfolio evaluation criteria

for not in�nitely risk averse investors. The results provided in Table C.1 in Appendix C.4 can

be summarized as follows: In the unrestricted allocation, the ATVGL again performs best
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among all considered approaches as indicated by the largest Sharpe ratio and is also the best

performing approach among all strategies based on the selection given in Equations (4.12) -

(4.14) in the restricted allocations. However, for the gross-exposure constrained portfolios,

the naïve allocation rule which does not depend on an estimation of the mean-return, leads

to the largest Sharpe ratios which demonstrates once again the poor signal-to-noise ratio for

daily return observations that make estimation of the mean return notoriously hard.

As a second robustness check, I conduct all analyses also for cross-sectional dimension

n = 200 and provide the results in Tables C.2 � C.4 in Appendix C.4. Along the unrestricted

GMVP predictions, ATVGL is again clearly the best performing approach: It is the only

model to be included in the 90% MCS for the full out-of-sample window and is also the only

one to be included in the model con�dence sets in all �ve-year subsamples. Although the

concentration ratio is two times as high as for the analysis with n = 100, the short window

estimation SHR-nl∗ leads again to overall lower variances compared to SHR-nl. However,

DCC-nl is in this setting the benchmark with the best performance on average as well as

in six out of the eight subsamples. It can be assumed that DCC can cope exceptionally

well with an extended asset universe as this leaves the estimation of the univariate volatility

dynamics una�ected. The exposure-constrained GMVP results are qualitatively broadly

similar compared to the setting with n = 100, but with DCC-nl also distinctly better than

the remaining benchmarks. In the long-only exercise it even leads to signi�cantly lower

variance than ATVGL. Turning to the mean-variance with momentum signal-portfolio, I

observe that in the restricted and unrestricted exercise, ATVGL leads to the highest Sharpe

ratio among all models except for the naïve allocation, which, however, outperforms the

proposed approach only in the 100/0-strategy. Summing up, the application to n = 200

con�rms that ATVGL is well applicable also to settings with larger asset universes and

is better able to cope with these than the static approaches. With exception of the very

rigid long-only strategies, it is again the best performing model compared to a long list of

very successful static and dynamic benchmarks, including simple selection strategies like

the equally weighted allocation, static and dynamic shrinkage approaches as well as models

incorporating factor structures (SHR-1f and AFM-DCC-nl).

4.5. Conclusion

In this paper, I propose to use a time-varying graphical LASSO approach using the al-

ternating direction method of multipliers to model inverse covariance matrices in a large-

dimensional system of �nancial assets. In particular, I consider daily returns on U.S.-traded

stocks. Empirical results show that the optimal degree of model �exibility is not stable

over time and that the estimates of unconditional covariance exhibit high sensitivity to the

length of the estimation window. My proposed approach, Augmented TVGL with dynamic

calibration, addresses these issues: it represents a new way to induce data-driven sparsity

in �nancial portfolio optimization. The adaptive calibration scheme delivers uniformly good
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performance over long time horizons and for di�erent cross-sectional dimensions. By choosing

particular penalty functions, the ATVGL is �exible to accommodate speci�c characteristics

of the problem, such as minimum variance allocation predictions. Speci�c requirements,

such as gross exposure constraints, can be easily incorporated. Notably, although clearly all

empirical analyses depend on the stocks considered, due to the large underlying data base

and the asset selection based on market capitalization, it can be assumed that the obtained

results are quite general and of interest for �nancial portfolio managers.

For future work, the approach could be extended in the context of portfolio optimization

by introducing alternative penalties that, for example, provide explicit turnover control, or

it could be applied to other sampling frequencies and other asset classes for which signals for

mean returns were easier to derive so that they could also be accommodated in the penalty

functions. Potentially, other �nancial problems could be addressed, e.g., modeling certain

risk metrics such as value-at-risk or expected shortfall, for which the tail behavior of the joint

distribution is very important. It can be assumed that for this purpose the abandonment of

the Gaussian assumption for the joint vector of returns would be useful.
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Appendix A.

Appendix for Chapter 2

A.1. Elicitability of GMVP weights

We begin with stating an auxiliary result. While the result is straightforward, we are not

aware of a reference and thus provide a proof.

Lemma 1. A mixture of two n−variate distributions with mean vectors µa, µb and covariance
matrices Σa,Σb has precision matrix

Σ−1
π =

π(1− π)

1 + π(1− π)d′V −1
π d

dd′V −1
π ,

where π ∈ [0, 1] is the mixture probability for the �rst component, and

d = (µa − µb),

Vπ = πΣa + (1− π)Σb.

Proof. The covariance matrix of the mixture is given by

Σπ = Vπ + (µa, µb)

(
π(1− π) −π(1− π)

−π(1− π) π(1− π)

)(
µ′a

µ′b

)
.

The result then follows from a variant of the Woodbury matrix identity (Petersen and Ped-

ersen, 2012, Equation 159).

To discuss elicitability, we next introduce some notation. Let G denote the family of n-

variate continuous distributions with �nite mean vector and covariance matrix. For a typical

member G of this family, we denote the covariance matrix associated with G by Σ(G). The

(n− 1)× 1 vector β1:n−1(G) contains the associated GMVP weights for the �rst n− 1 assets

(the remaining weight is implied by the constraint that the weights sum to unity). Moreover,

the n×1 vector β(G) is given by (β0(G), β1:n−1(G)
′)′, where the �rst element is the expected

GMVP return implied by G.

Proposition 2. β1:n−1 does not have convex level sets. That is, a convex combination Gπ
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of two distributions Ga, Gb ∈ G such that β1:n−1(Ga) = β1:n−1(Gb) = b1:n−1 generally has

β1:n−1(Gπ) ̸= b1:n−1.

Proof. Follows from Lemma 1. As a simple example, the violation can be checked for the

case n = 2, Σ(Ga) = Σ(Gb) = I2, µ(Ga) = (1, 1)′ and µ(Gb) = (2, 2)′.

Since β1:n−1 does not have convex level sets, it can not be elicitable. The necessity of

convex level sets for elicitability is formally stated for the case of a univariate predictand in

Gneiting (2011, Theorem 6). However, the condition is also necessary in the present case of

an n − 1 variate predictand, c.f. the proof of Lemma 1 in Lambert et al. (2008) as well as

the discussion by Fissler and Ziegel (2019, p. 1170).

Since β is elicitable, it must have convex level sets. For example, consider two distributions

Ga, Gb ∈ G such that Σ(Ga) ∝ Σ(Gb) and β0(Ga) = β0(Gb). This setup implies that

β(Ga) = β(Gb). Using Lemma 1 and the fact that(
µ(Ga)− µ(Gb)

)′
Σ(Ga)

−1ιn = 0,

it can be shown that Σ(Gπ)
−1ιn ∝ Σ(Ga)

−1ιn and hence β(Gπ) = β(Ga) = β(Gb), which

illustrates that β has convex level sets.

A.2. Invariance of the GMVP models

A.2.1. Preliminaries

In order discuss the invariance of the dynamic GMVP models based on the RLS recursion

(in Section 2.3.1) and the GAS speci�cations (in Section 2.3.2), we begin with stating the

relationship between the auxiliary regressions identifying the GMVP weights for di�erent

baseline assets.

When asset n is used as baseline asset, then the GMVP auxiliary regression (as reproduced

from Section 2.2.1) is

Yt = X ′
tβt + εt, (A.1)

Yt = Rnt, X ′
t = (1, Rnt −R1t, . . . , Rnt −Rn−1t),

with expected GMVP return β0t and GMVP weights

ω∗
it =

βit i = 1, . . . , n− 1,

1− ι′n−1β1:n−1t i = n.

Suppose we select a di�erent baseline asset, say asset k instead of asset n. Then the
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corresponding variables in the GMVP regression of the form (A.1) are given by

Ỹt = Rkt, X̃ ′
t = (1, Rkt −R1t, . . . , Rkt −Rk−1t, Rkt −Rnt,

Rkt −Rk+1t, . . . , Rkt −Rn−1t).

These regression variables associated with baseline asset k obtain from those for baseline

asset n according to the one-to-one transformation

Ỹt = d′kXt + Yt, X̃t = RkXt, (A.2)

where

d′k = (0,−e′k), Rk =

(
1 0′n−1

0n−1 Sk

)
,

Sk =

 Ik−1 −ιk−1 0k−1×n−k−1

0′k−1 −1 0′n−k−1

0n−k−1×k−1 −ιn−k−1 In−k−1

 .

Here we have used 0ℓ to denote the ℓ-dimensional Null vector, 0ℓ1×ℓ2 to denote the (ℓ1× ℓ2)-
dimensional Null matrix and ek to denote the k'th column of the (n−1)-dimensional identity

matrix In−1. For the permutation matrix Rk it holds that

Rk = R−1
k , R′

kdk = −dk. (A.3)

Using the equalities Yt = Ỹt + d′kX̃t and Xt = RkX̃t resulting from Equations (A.2) and

(A.3) in the GMVP regression (A.1) for baseline asset n, yields the following equivalent

GMVP regression for baseline asset k:

Ỹt = X̃ ′
tβ̃t + εt, (A.4)

with

β̃t = R′
kβt − dk, (A.5)

ω∗
it =


β̃it i = 1, . . . , k − 1, k + 1, . . . , n− 1

β̃kt i = n

1− ι′n−1β̃1:n−1t i = k,

and expected portfolio return β̃0t. An immediate implication of Equation (A.5) is that the

coe�cients βt in the GMVP regression used to identify the GMVP weights under baseline

asset n are in one-to-one correspondence to the coe�cients β̃t in the GMVP regression

associated with baseline asset k equivalently identifying the GMVP weights. Moreover,
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Equation (A.4) shows that the error terms of the GMVP regressions for both baseline assets

are the same. Whence the value of the loss function (2.4) computed for (Yt, Xt, βt) is the

same as that computed for (Ỹt, X̃t, β̃t).

With the one-to-one mapping between (Yt, Xt, βt) and (Ỹt, X̃t, β̃t) as given by Equations

(A.2) and (A.5) we can now discuss the invariance of our proposed dynamic GMVP models

w.r.t. the selection of the baseline asset. The following conditions are necessary and su�cient

for this invariance: First, there must be a parametrization (including initial conditions)

for the model associated with baseline asset k (for any k ̸= n) that leads to the same

predictions for the GMVP weights as the model associated with baseline asset n which

requires according to Equation (A.5) that the predictions satisfy β̃t+1 = R′
kβt+1 − dk ∀t;

second, this parametrization for baseline asset k must be in one-to-one correspondence with

that for baseline asset n. Since for β̃t = R′
kβt − dk the loss function for (Yt, Xt, βt) is

the same as for (Ỹt, X̃t, β̃t) it follows that under those two conditions the M-estimator as

de�ned in Equation (2.8) is invariant w.r.t. the choice of the baseline asset and leads to

the same estimates for the predicted GMVP weights. The one-to-one correspondence of the

parameterizations means, for example, that if the matrices A and B of the GAS recursion

(2.21) have a diagonal form for baseline asset n, then the reparametrization of those two

matrices, which gives the same predictions for the weights, must also be diagonal. The same

applies for the initial condition E0[X̃1X̃
′
1] (see Equation 2.23).

A.2.2. Invariance of the RLS models

In Lemma 2 we provide the parametrization for the RLS-EF model of Section 2.3.1 for

baseline asset k which leads to the same GMVP predictions as the RLS-EF model for baseline

asset n.

Lemma 2. Consider the RLS-EF model for baseline asset n given by

βt+1 = βt +Ω−1
t Xt(Yt −X ′

tβt), (A.6)

Ωt = XtX
′
t + λΩt−1, (A.7)

with initial conditions β1 and Ω0. This RLS-EF model is equivalent to the following RLS-EF

model for baseline asset k:

β̃t+1 = β̃t + Ω̃−1
t X̃t(Ỹt − X̃ ′

tβ̃t), (A.8)

Ω̃t = X̃tX̃
′
t + λ̃Ω̃t−1, (A.9)
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with

λ̃ = λ, (A.10)

β̃1 = R′
kβ1 − dk, (A.11)

Ω̃0 = RkΩ0R
′
k. (A.12)

Speci�cally, for the βt's obtained according to Equations (A.6) and (A.7) and the β̃t's obtained

according to Equations (A.8)-(A.12) it holds that β̃t = R′
kβt − dk for all t = 2, 3, . . ., as

desired.

Proof. From (A.9) with (A.10) and (A.12) it follows that

RkΩ̃tR
′
k = Ωt, t = 0, 1, 2, . . . . (A.13)

Using (A.2), (A.10) and (A.13) together with β̃t = R′
kβt− dk on the r.h.s. of Equation (A.8)

shows that if β̃t = R′
kβt − dk and βt+1 and β̃t+1 are generated according to Equations (A.6)

and (A.8), then it holds that β̃t+1 = R′
kβt+1 − dk. This combined with the initial condition

β̃1 = R′
kβ1 − dk in (A.11) completes the proof.

Equation (A.10) shows that the parameter λ associated with baseline asset n is in (trivial)

one-to-one correspondence with the parameter λ̃ associated with baseline asset k. So if the

initial conditions (β̃1, Ω̃0) for baseline asset k, as de�ned by (A.11) and (A.12), are also in a

one-to-one correspondence with the initial conditions (β1,Ω0) selected for the baseline asset

n, then Lemma 2 implies that the RLS-EF model is invariant w.r.t. the choice of the baseline

asset.

Our selection for β1 and Ω0 are (as reproduced from Section 2.3.1)

β1 = (0, ι′n−1/n)
′, Ω0 = γ

(
1 0′n−1

0n−1 σ̂2R(1− ρ̂R)C

)
, (A.14)

where C = In−1+ιn−1ι
′
n−1 and σ̂

2
R and ρ̂R are scalars that are independent from the selected

baseline asset. The transformation of those initial conditions according to the r.h.s. of (A.11)

and (A.12) yields

R′
kβ1 − dk = β1, RkΩ0R

′
k = Ω0,

for any γ, so that β̃1 = β1 and Ω̃0 = Ω0 with γ̃ = γ. This implies that there is a one-to-one

correspondence between the initial conditions for baseline asset k and those for baseline asset

n, as required for the invariance of the RLS-EF model.

This proof of invariance of the RLS-EF model in Section (2.3.1) can straightforwardly be

adapted to show the invariance of the RLS-REF model in Section (2.3.1).
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A.2.3. Invariance of the GAS model

Lemma 3 provides the parametrization for the GAS model of Section 2.3.2 for baseline asset

k which leads to the same GMVP predictions as the GAS model for baseline asset n.

Lemma 3. Consider the GAS model in Equations (2.21) and (2.23) for baseline asset n

written as

βt+1 = c+Bβt −A(Et−1[XtX
′
t])

−1Xt(Yt −X ′
tβt), (A.15)

Et[Xt+1X
′
t+1] = κEt−1[XtX

′
t] + (1− κ)XtX

′
t, (A.16)

with initial condition β1 and E0[X1X
′
1]. This GAS model is equivalent to the following GAS

model for baseline asset k:

β̃t+1 = c̃+ B̃β̃t − Ã(Et−1[X̃tX̃
′
t])

−1X̃t(Ỹt − X̃ ′
tβ̃t), (A.17)

Et[X̃t+1X̃
′
t+1] = κ̃Et−1[X̃tX̃

′
t] + (1− κ̃)X̃tX̃

′
t, (A.18)

with

κ̃ = κ (A.19)

c̃ = R′
k(c+ dk −Bdk), (A.20)

B̃ = R′
kBR

′
k, (A.21)

Ã = R′
kAR

′
k, (A.22)

β̃1 = R′
kβ1 − dk, (A.23)

E0[X̃1X̃
′
1] = RkE0[X1X

′
1]R

′
k. (A.24)

Speci�cally, for the βt's obtained according to Equations (A.15)-(A.16) and the β̃t's obtained

according to Equations (A.17)-(A.24) it holds that β̃t = R′
kβt − dk for all t = 2, 3, . . ., as

desired.

Proof. From Equations (A.18) with (A.19) and (A.24) it follows that

RkEt[X̃t+1X̃
′
t+1]R

′
k = Et[Xt+1X

′
t+1], t = 0, 1, 2, . . . . (A.25)

Using (A.2), (A.20)-(A.22) and (A.25) together with β̃t = R′
kβt−dk on the r.h.s. of Equation

(A.17) shows that if β̃t = R′
kβt−dk and βt+1 and β̃t+1 are generated according to Equations

(A.15) and (A.17), then it holds that β̃t+1 = R′
kβt+1 − dk. This combined with the initial

condition β̃1 = R′
kβ1 − dk in (A.23) completes the proof.

Our proposed GAS model imposes the parameter restrictions (reproduced from Section
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2.3.2)

c = (In −B)

(
0

ιn−1/n

)
, (A.26)

B =

(
b0 0′n−1

0n−1 b1In−1

)
, A =

(
a0 0′n−1

0n−1 a1In−1

)
, (A.27)

and uses the initial conditions

β1 = (0, ι′n−1/n)
′, E0[X1X

′
1] =

(
1 0′n−1

0n−1 σ̂2R(1− ρ̂R)C

)
, (A.28)

where C = In−1+ιn−1ι
′
n−1 and σ̂

2
R and ρ̂R are scalars that are independent from the selected

baseline asset. According to Lemma 3, its invariance w.r.t. the selection of the baseline

asset requires that c̃, B̃, Ã, β̃1, and E0[X̃1X̃
′
1], which result from the transformations (A.20)-

(A.24) from c, B, A, β1, and E0[X1X
′
1] given in (A.26)-(A.28), are each in a one-to-one

correspondence.

As it is easy to show, those transformations yield

R′
k(c+ dk −Bdk) = c, R′

kBR
′
k = B, R′

kAR
′
k = A,

for any (b0, b1, a0, a1), and

R′
kβ1 − dk = β1, RkE0[X1X

′
1]R

′
k = E0[X1X

′
1].

So this together with (A.19) implies that all parameters and initial conditions (κ, c,B,A, β1,

E0[X1X
′
1]) associated with baseline asset n are in one-to-one correspondence to the param-

eters and initial conditions (κ̃, c̃, B̃, Ã, β̃1,E0[X̃1X̃
′
1]) associated with baseline asset k, as

required for the invariance of the GAS model.

A.3. Data and additional results

A.3.1. Data

Figure A.1 plots the times series of the daily returns on the equally weighted portfolio

consisting of the 1000 largest stocks of our data set, which have a complete series of reported

returns over the full sample period (01/02/2002 to 12/09/2019). The size of the stocks are

measured in terms of market capitalization. The grey shaded area in Figure A.1 marks

the out-of-sample window used for our out-of-sample forecasting experiments in Section 2.4,

which ranges from 01/03/2007 to 12/09/2019.
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Figure A.1.: Time plot of the daily returns on the equally weighted portfolio including the 1000 largest

stocks.

A.3.2. RLS information matrix Ωt in the classical and regularized exponential

forgetting

Here we provide the bounds of the information matrix Ωt of the RLS-EF with classical ex-

ponential forgetting and the RLS-REF with regularized exponential forgetting. (For further

details, see Kulhav�y and Zarrop, 1993, Shin and Lee, 2020).

For this we use the notation V ≥ W (V > W ) to indicate that V − W is a positive

semi-de�nite (positive de�nite) matrix and 0 and ∞ stand for matrices with zero and in�nite

eigenvalues. Assuming that the return di�erences in Xt observed in a given empirical sample

are bounded such that 0 ≤ XtX
′
t ≤ C < ∞, t = 1, 2, . . ., then Ωt in the RLS-EF, given by

Ωt = XtX
′
t + λΩt−1, is bounded from below and above as

0 ≤ Ωt ≤ Ω0 +
1

1− λ
C, t = 1, 2, . . . . (A.29)

The regularized Ωt in the RLS-REF, given by Ωt = XtX
′
t + λΩt−1 + (1− λ)Ω0, is bounded

from below and above as

Ω0 ≤ Ωt ≤ Ω0 +
1

1− λ
C, t = 1, 2, . . . . (A.30)

In order to illustrate the e�ect of the regularization on the time series behavior of the

RLS information matrix Ωt, we provide in Figure A.2 time series plots of its logarithmic

eigenvalues that result from �tted RLS-EF and RLS-REF models for portfolio sizes n ∈
{50, 200, 500, 1000}. The data used are the same as those for the empirical application
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Figure A.2.: Time plot of the logarithmic eigenvalues of Ωt that result from �tted RLS-EF models (left

panels) and RLS-REF models (right panels) for portfolio sizes n ∈ {50, 200, 500, 1000}.
The NLS parameter estimates in the RLS-EF for the di�erent n's are (n, λ̂, γ̂) =

{(50, 0.9977, 77), (200, 0.9998, 105), (500, 1.0000, 166), (1000, 0.9998, 249)} and for the RLS-

REF (n, λ̂, γ̂) = {(50, 0.9692, 104), (200, 0.9954, 151), (500, 0.9802, 206), (1000, 0.9840, 246)}.

discussed in Section 2.4 and the estimation window ranges from 11/11/2004 to 10/23/2009

covering T = 1250 trading days.

The time plots show that the regularization of Ωt in the RLS-REF stabilizes the behavior

of its largest eigenvalues, although (for a given λ) the upper bound of Ωt in the RLS-REF

is the same as for the RLS-EF (see Equations A.29 and A.30). This stabilizing e�ect in the

most strongly excited directions is essentially achieved by the fact that the estimates for λ

in the RLS-REF are smaller than in the RLS-EF, while in the poorly exited directions the

eigenvalues of the RLS-REF are bounded by the prior lower bound. The parameter estimates

are provided in the caption of Figure A.2.

A.3.3. Superior predictive ability test results

As a robustness check for the MCS results presented in Section 2.4, Table A.1 reports p-

values of the test for superior predictive ability (SPA). The test's hypothesis is that a given
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Table A.1.: Hansen (2005) test for superior predictive ability results

T = 250 T = 1250

n 50 200 500 1000 50 200 500 1000
n/T 0.20 0.80 2.00 4.00 0.04 0.16 0.40 0.80

RLS-EF 0.40 0.65 0.00 0.00 0.04 0.01 0.47 0.06
RLS-REF 0.99 0.99 0.99 0.29 1.00 1.00 0.64 0.13
GAS 0.02 0.01 0.00 0.00 0.03 0.06 0.02 0.00
DCC-s 0.00 0.00 � � 0.00 0.00 0.00 0.00
DCC-nl 0.01 0.06 0.58 1.00 0.00 0.02 1.00 1.00
OLS 0.00 0.00 � � 0.00 0.00 0.00 0.00
SHR-l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SHR-nl 0.06 0.13 0.32 0.00 0.00 0.00 0.01 0.00
naïve 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note:p-values of the Hansen (2005) test for superior predictive ability.
Rows correspond to benchmark models, columns correspond to forecast
experiments. The one-sided hypothesis is that the benchmark is at least
as good as all competitors.

benchmark model is at least as good as all of its competitors. Hence a small p-value yields

evidence against the benchmark model. Our implementation is based on the stationary

bootstrap with a mean block length of ⌊T 1/3
eval⌋ = ⌊32571/3⌋ = 14, and we use the conservative

estimator µ̂u for the mean loss di�erential (Hansen, 2005, p. 372).

The results in Table A.1 are qualitatively very similar to the results based on the MCS

approach. In particular, successful models that are included in the MCS typically achieve

high SPA p-values when used as a benchmark model. Conversely, for poor performing models

that are not included in the MCS, the SPA p-value is typically very small. For example,

the RLS-REF model, which is contained in the MCS for all eight experiments, generally

achieves an SPA p-value exceeding ten percent. In this regard, RLS-REF outperforms all

other models, each of which in at least one of the empirical experiments has a SPA p-value

that is less than one percent. By contrast, the naïve model, which is not part of the MCS

for any of the eight forecast experiments, attains an SPA p-value of zero in each case.

A.3.4. Sharpe ratios

In this section we provide the out-of-sample Sharpe ratios of the predicted GMVP allocations

for our proposed GMVP models and the benchmark models used in Section 2.4. The Sharpe

ratio is de�ned as Ê[Rpt]/V̂[Rpt]
1/2, where Ê[Rpt] is the time average of the portfolio returns

for the predicted GMVP allocations and V̂[Rpt] the corresponding variance.

The results for the eight (n/T )-scenarios considered in Section 2.4 are reported in Table

A.2. They show that the ranking of the models for the various (n/T )-cases is quite di�erent.

However, the GAS model and the RLS-EF each perform best in two cases and the RLS-REF

in one case.
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Table A.2.: Out-of-sample GMVP Sharpe ratio (×10)

T = 250 T = 1250

n 50 200 500 1000 50 200 500 1000
n/T 0.20 0.80 2.00 4.00 0.04 0.16 0.40 0.80

RLS-EF 0.704 0.644 0.573 0.661 0.590 0.616 0.646 0.601
RLS-REF 0.688 0.627 0.711 0.651 0.549 0.544 0.614 0.627
GAS 0.424 0.308 0.512 0.919 0.428 0.485 0.840 0.599
DCC-s 0.629 0.466 � � 0.591 0.560 0.543 0.449
DCC-nl 0.650 0.650 0.636 0.544 0.588 0.602 0.670 0.680
OLS 0.655 0.418 � � 0.494 0.550 0.477 0.328
SHR-l 0.662 0.488 0.580 0.659 0.495 0.555 0.485 0.386
SHR-nl 0.659 0.600 0.615 0.621 0.492 0.596 0.640 0.682

naïve 0.345 0.352 0.338 0.328 0.345 0.357 0.345 0.328

Note: Sharpe ratio (multiplied by 10) of the predicted GMVP portfolios for portfolio
sizes n ∈ {50, 200, 500, 1000}. Parameter estimation is based on a sample of length
T . Bold numbers indicate largest Sharpe ratio across all models.

A.3.5. Parameter estimates

In Figures (A.3)-(A.5) we provide histograms of the NLS estimates for the parameters of the

proposed dynamic GMVP models, the RLS-EF (Figure A.3), the RLS-REF (Figure A.4),

and the GAS model (Figure A.5). These are the parameter estimates which are obtained

in our out-of-sample forecasting experiment in Section 2.4.2, where the parameters are re-

estimated every month on a rolling estimation window scheme with window lengths, T = 250

and T = 1250 days. The estimates presented in Figures (A.3)-(A.5) refer to the portfolio

sizes n = 200 and n = 1000.
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Figure A.3.: Histogram of the NLS-estimates for the RLS-EF model parameters λ (left panels) and γ

(right panels) for portfolio sizes n = 200 (upper four panels) and n = 1000 (lower four

panels); Estimation sample sizes are T = 250 and T = 1250.
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Figure A.4.: Histogram of the NLS-estimates for the RLS-REF model parameters λ (left panels) and γ

(right panels) for portfolio sizes n = 200 (upper four panels) and n = 1000 (lower four panels);

Estimation sample sizes are T = 250 and T = 1250.
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Figure A.5.: Histogram of the NLS-estimates for the GAS model parameters a1 (left panels), b1 (middle

panels) and κ (right panels) for portfolio sizes n = 200 (upper four panels) and n = 1000

(lower four panels); Estimation sample sizes are T = 250 and T = 1250.
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A.4. Statistical inference based on the M-estimator

For estimating the parameters θ of our proposed dynamic GMVP models specifying a func-

tion for βt = β(θ, Zt−1) = βt(θ) we use the NLS estimator as given in Equation (2.8),

repeated here for convenience:

θ̂ = arg min
θ

1

T

T∑
t=1

L (βt(θ), Rt) , L (βt(θ), Rt) = [Yt −X ′
tβt(θ)]

2. (A.31)

The nonlinear function βt(θ) depends on the corresponding model speci�cation. For solving

the minimization problem in Equation (A.31) we use the quasi-Newton Broyden-Fletcher-

Goldfarb-Shanno (BFGS) optimization algorithm.

Under standard regularity conditions for M-estimators such as those of Amemiya (1985,

Theorems 4.1.1 and 4.1.3), the NLS estimator θ̂ in Equation (A.31) is consistent and asymp-

totically normal with

√
T (θ̂ − θ)

d→ N (0, D−1WD−1), (A.32)

where

D = lim
T→∞

T−1
T∑
t=1

E
[
∂gt(θ)

∂θ′

]
, W = lim

T→∞
T−1

T∑
t=1

E
[
gt(θ)gt(θ)

′] , (A.33)

and gt(θ) = ∂L(βt(θ), Rt)/∂θ is the gradient of the loss function1.

The asymptotic covariance matrix of the M-estimator as given by Equations (A.32)-(A.33)

comprises the expected outer-product of the gradient of the loss function E[gt(θ)gt(θ)′] and
the expected Hessian E[∂gt(θ)/∂θ′].
The gradient of the GMVP loss function is given by

gt(θ) =
∂L(βt(θ), Rt)

∂θ
=
∂βt(θ)

′

∂θ

∂L(βt(θ), Rt)

∂βt
,

with

∂L(βt(θ), Rt)

∂βt
= ∇t = −2Xt[Yt −X ′

tβt(θ)],

so that its expected outer product obtains as

E
[
gt(θ)gt(θ)

′] = 4E
([
Yt −X ′

tβt(θ)
]2 ∂βt(θ)

′

∂θ
XtX

′
t

∂βt(θ)

∂θ′

)
.

1Patton et al. (2019) provide speci�c su�cient conditions for the consistency and asymptotic normality
(of the form as in Equation A.32) for an M-estimator similar to ours. As in their work, our estimator
minimizes a consistent loss function for dynamically evolving parameters (βt), which are given as functions
that are measurable in Ft−1 and continuous in the static parameters (θ).
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The Hessian of the GMVP loss function is given by

∂gt(θ)

∂θ′
=
∂βt(θ)

′

∂θ

∂∇t

∂θ′
+ (∇′

t ⊗ Im)
∂vec [∂βt(θ)′/∂θ]

∂θ′
,

where vec(·) denotes the operator which stacks the columns of a matrix into a vector, and

⊗ is the Kronecker matrix product. It follows that

E
[
∂gt(θ)

∂θ′

]
= E

(
Et−1

[
∂βt(θ)

′

∂θ

∂∇t

∂θ′
+ (∇′

t ⊗ Im)
∂vec [∂βt(θ)′/∂θ]

∂θ′

])
= E

(
∂βt(θ)

′

∂θ
Et−1

[
∂∇t

∂θ′

])
= 2E

(
∂βt(θ)

′

∂θ
XtX

′
t

∂βt(θ)

∂θ′

)
.

Assuming that

T−1
T∑
t=1

gt(θ)gt(θ)
′ − T−1

T∑
t=1

E
[
gt(θ)gt(θ)

′] p→ 0,

T−1
T∑
t=1

∂gt(θ)

∂θ′
− T−1

T∑
t=1

E
[
∂gt(θ)

∂θ′

]
p→ 0,

the components of the asymptotic covariance matrix of the M-estimator W and D in Equa-

tions (A.32) and (A.33) can be consistently estimated by

Ŵ = T−1
T∑
t=1

gt(θ̂)gt(θ̂)
′

= T−1
T∑
t=1

4
[
Yt −X ′

tβt(θ̂)
]2 ∂βt(θ̂)

′

∂θ
XtX

′
t

∂βt(θ̂)

∂θ′
,

and

D̂ = T−1
T∑
t=1

∂gt(θ)

∂θ′

= T−1
T∑
t=1

2
∂βt(θ̂)

′

∂θ
XtX

′
t

∂βt(θ̂)

∂θ′
.

These estimates require to compute the particular gradients ∂βt(θ̂)/∂θ.
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A.5. Alternative GAS speci�cations and RLS and GAS

combined with nonlinear shrinkage

In this section, several alternative speci�cations of the RLS- and GAS-GMVP models are

provided which we developed in the course of the work on this project. First, a set of in-

formative initializations for the recursions is presented which is based on estimates for the

unconditional covariance of the return data. Second, a more extensive list of GAS speci�ca-

tions with di�ering degree of sparsity is discussed, covering � except for small modi�cations �

the diagonal GAS employed in the �nal version of the paper as a particular case. Finally, we

illustrate the empirical performance of these models via in- and out-of-sample comparisons

to the benchmarks considered. Di�erences compared to the speci�cations in the �nal version

of the paper are pointed out at the appropriate place. Tables and Figures regarding these

alternative speci�cations are marked by the note `(alt)' in the captions.

A.5.1. Informative initializations

In our empirical applications, the GMVP weights have very persistent time series behavior.

Hence the selection of the initial conditions β1 and Ω0 in the predictive recursion can become

critical for the out-of-sample forecast performance when the length of the estimation window

T is small. Without taking shrinkage considerations into account, if an informative initial

value is to be used, a natural choice of β1 is the OLS estimate for β in the static auxiliary

regression (2.2) based on the data in the estimation period. For Ω0 in the RLS-GMVP

model we choose the corresponding sample average of XtX
′
t with the coe�cient γ which

steers the degree of shrinkage towards the initialization (see Section 2.3.1) �xed to one; we

here only consider RLS-EF. Analogously, we set E0[XtX
′
t] in the GMVP-GAS. We refer

to these simple choices by (the su�x) ols. However, if the number of assets n is large in

relation to T , the OLS estimate is known to be inaccurate, so that the OLS estimate provides

poor starting values. For high-dimensional applications, we therefore consider another set

of initial conditions indicated by (the su�x) shr that obtain from the nonlinear shrinkage

approach of Ledoit and Wolf (2012, 2015).

A.5.2. Restrictions for generalized autoregressive score models

When the number of assets is large a dynamic GMVP model requires a parsimonious pa-

rameterization in order to be tractable in practice. While the RLS models are parsimonious

by construction, the GAS version requires parameter restrictions in order to be applicable

in high dimensions. In this section, we present an extensive discussion of the GAS and

propose several speci�cations of the model with di�erent degrees of �exibility, starting from

an unrestricted version and covering also a diagonal GAS model similar to the speci�cation

employed in the �nal version of the paper (see Section (2.3.2)) as a special case representing

the most restrictive version. We only consider restrictions that do not violate the invariance
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property.

We employ the GAS recursion as de�ned in Equation (2.21) combined with the Hessian

evolving according to Equation (2.23), with smoothing parameter κ set equal to its typical

value 0.94 (Callot et al., 2017). Noteworthy, in an initial explorative analysis we also imple-

mented the GAS model using for Ht the Fisher information Et−1 [∇t∇′
t] (Creal et al., 2013)

and the outer product βtβ′t (similar to Opschoor et al. (2018)). However, these choices did not

improve upon the trade-o� between numerical stability and computational speed achieved

by using the Hessian predicted by the EWMA. For other common alternatives discussed in

Creal et al. (2013), including Ht = In and Ht = Et−1 [∇t∇′
t]
ν , ν ∈ (0, 1) the resulting GAS

model fails to be invariant w.r.t. the choice of the baseline asset (see Appendix A.2).

A necessary condition for covariance stationarity of βt under the GAS recursion (2.21) is

that the roots of B lie inside the unit circle, in which case the stationary mean of βt obtains

as

m ≡ E(βt) = (In −B)−1c. (A.34)

A reparametrization of the GAS recursion (2.21) in terms of this stationary mean will be

instrumental for imposing parameter restrictions and for parameter estimation subject to tar-

geting constraints. The GAS-GMVP model as given by Equations (2.21) and (2.23), when

used without any restrictions on the parameters (c,B,A), is invariant w.r.t. the choice of the

baseline asset, as by Lemma 3, it follows that the parameters (c,B,A, β1, E0[X1X
′
1]) associ-

ated with baseline asset n are in one-to-one correspondence to the parameters (c̃, B̃, Ã, β̃1,

E0[X̃1X̃
′
1])

2 associated with baseline asset k (see Equations (A.20)-(A.24)). However, re-

strictions on the GAS parameters can, depending on the form of the restriction, violate

the necessary one-to-one correspondence of the parameterizations. This is the case for the

natural restriction to assume that the matrices A = (aij) and/or B = (bij) are diagonal, say

A = diag(a00, a11, . . . , an−1n−1), B = diag(b00, b11, . . . , bn−1n−1).

Then it is easy to verify by using (A.21) and (A.22) that Ã and B̃ are in contrast to A and

B not diagonal, unless we restrict the diagonal elements such that

A = diag(a00, a11, . . . , a11), B = diag(b00, b11, . . . , b11), (A.35)

or

A = diag(a00, a00, . . . , a00), B = diag(b00, b00, . . . , b00).

The diagonal GAS models we use in our empirical applications are based on the restriction

given in Equation (A.35) and are therefore invariant w.r.t. choice of the baseline asset.

2The parameter κ = κ̃ is �xed in all considered speci�cations of this section.
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A key challenge in the GAS model is hence to derive restrictions on θ that are empirically

useful (that is, achieving a good trade-o� between parsimony and �exibility) without com-

promising the model's invariance properties. The vector of parameters in the unrestricted

GAS-GMVP speci�cation consists of n+2n2 parameters, making it di�cult to estimate and

prone to in-sample over�tting when the number of assets (n) is large. At the same time,

the optimal degree of model complexity (simplicity) is primarily an empirical question. We

therefore consider several restricted versions of the GAS model. For describing these restric-

tions we partition the vector of the scaled score st = H−1
t ∇t conformably with the vector of

the GMVP mean return and weights βt = (β0t, β
′
1:n−1t)

′ into st = (s0t, s
′
1:n−1t)

′, so that the

system of GAS Equation (2.21) can be written as(
β0t+1

β1:n−1t+1

)
=

(
c0

c1:n−1

)
+

(
b00 b01

b10 B11

)(
β0t

β1:n−1t

)
(A.36)

+

(
a00 a01

a10 A11

)(
s0t

s1:n−1t

)
.

First, we consider diagonal matrices A and B by imposing the following restrictions in

Equation (A.36):

b01 = 0, b10 = 0, B11 = b11In−1, a01 = 0, a10 = 0, A11 = a11In−1,

where b11 and a11 are scalar parameters so that the number of parameters in A and B is

reduced from 2n2 to 4. Under this diagonal restriction the dynamic structure of the GMVP

mean return β0,t+1 (directed by the parameters b00 and a00) is allowed to di�er from that of

the GMVP weights βi,t+1, i = 1, . . . , n− 1 (directed by the parameters b11 and a11), but the

dynamic structure for the weights is restricted to be the same across all assets. The latter is

needed to ensure that the restricted diagonal model remains to be invariant w.r.t. the choice

of baseline asset, which does not allow the elements in the diagonal matrices B11 and A11

to di�er (see Appendix A.2).

Second, we consider the restriction that the expected GMVP return β0,t+1 is constant

over time which obtains by using in Equation (A.36)

b00 = 0, b01 = 0, a00 = 0, a01 = 0,

so that the number of parameters is reduced by 2n. This restriction appears to be reasonable

since portfolio returns are typically di�cult to predict based on past information, at least at

the daily frequency (Cochrane, 2005, Chapter 20).

Third, we consider the restriction that the long-run mean of the portfolio weights corre-

spond to the equally weighted portfolio, so that E(βit) = 1/n for i = 1, . . . , n − 1. Using

Equation (A.34) and partitioning m = E(βt) conformably with the vector of intercepts
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c = (c0, c
′
1:n−1)

′, this restriction can be represented as(
c0

c1:n−1

)
=

[
In −

(
b00 b01

b10 B11

)](
m0

m1:n−1

)
, with m1:n−1 = ιn−1/n. (A.37)

By this restriction, �xing n−1 parameters, all GMVP weights are forced to �uctuate around

the benchmark value 1/n de�ned by the equally weighted portfolio. Our use of this bench-

mark follows DeMiguel et al. (2009); Candelon et al. (2012); Frey and Pohlmeier (2016)

who consider shrinkage of the GMVP weights towards equality in a static framework. More

broadly, the popularity of the equally weighted portfolio can perhaps be explained by its

simplicity and the fact that it avoids estimation errors (DeMiguel et al., 2007).

Finally, we consider a reduction of the number of parameters by using a targeting estima-

tion approach that replaces the long-run mean vector of the GMVP weights m in Equation

(A.37) by a sample estimate. A simple estimate obtains by running the static auxiliary re-

gression of Kempf and Memmel (2006) using OLS or, equivalently, by replacing in Equation

(2.1) the population covariance Σ by the sample covariance matrix. Moreover, to robustify

the targeting approach against large dimensions, we also consider a speci�cation using the

nonlinear shrinkage approach of Ledoit and Wolf (2012, 2015) to estimate Σ.

The GAS models we consider in our empirical work include the unrestricted model and

models with the four restrictions described above, as well as combinations thereof. Table A.3

lists the resulting model speci�cations: The (non-diagonal) model without any restriction

(unr.-GAS), the diagonal model (d-GAS), the diagonal model with constant mean return (d-

GAS-cβ0), equal long-run weights (d-GAS-ew), constant mean return combined with equal

long-run weights (d-GAS-cβ0-ew), constant mean return combined with targeting towards

the OLS estimates of the long-run weights (d-GAS-cβ0-ols-ta) and combined with targeting

towards the nonlinear shrinkage estimates of the long-run weights (d-GAS-cβ0-shr-ta). In

accordance with how its target is constructed, we use shr initial conditions for the d-GAS-

cβ0-shr-ta model. For all other GAS speci�cations, the ols initializations are used (see

Section A.5.1.

A.5.3. Analytical gradients

For inferring the asymptotic distribution for the parameter estimates under the NLS op-

timization (see Appendix A.4) and in order to alleviate the numerically challenging opti-

mization of the loss function, it can be helpful to provide the analytical solutions for the

gradients. They are given below for the RLS-EF and GAS models employed in this section,

i.e., with κ = 0.94 and γ = 1 �xed.
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Table A.3.: List of GAS model speci�cations (alt.)

Model Restriction # Params

unr.-GAS none 2n2 + n

d-GAS B11 = b11In−1, A11 = a11In−1, n+ 4
b01 = a01 = 0, b10 = a10 = 0

d-GAS-cβ0 & b00 = a00 = 0 n+ 2

d-GAS-ew & m1:n−1 = ιn−1/n 5

d-GAS-cβ0-ew & b00 = a00 = 0, m1:n−1 = ιn−1/n 3

d-GAS-cβ0-ols-ta & b00 = a00 = 0, m: OLS estimate 2

d-GAS-cβ0-shr-ta & b00 = a00 = 0, m: nonlinear shrinkage estimate 2

Note: List of GAS model speci�cations according to Equations (A.36) and (A.37); n is the
number of assets in the portfolio and m = E(βt). `# Params' indicates the number of model
parameters to be estimated by the M-estimator given in Equation (2.8).

For the RLS-EF model

βt = βt−1 +Ω−1
t−1Xt−1(Yt−1 −X ′

t−1βt−1)

= βt−1 +
Ω−1
t−2Xt−1

λ+X ′
t−1Ω

−1
t−2Xt−1

(Yt−1 −X ′
t−1βt−1),

with θ = λ the �rst derivative of βt(λ) obtains recursively as

∂βt(λ)
′

∂λ
=

∂βt−1(λ)
′

∂λ

+
{
(Ψt−2Xt−1)

′(λ+X ′
t−1Ω

−1
t−2Xt−1)

− (Ω−1
t−2Xt−1)

′(1 +X ′
t−1Ψt−2Xt−1)

}
×

Yt−1 −X ′
t−1βt−1(λ)

(λ+X ′
t−1Ω

−1
t−2Xt−1)2

−
X ′

t−1Ω
−1
t−2

λ+X ′
t−1Ω

−1
t−2Xt−1

∂βt−1(λ)
′

∂λ
Xt−1,

where

Ψt =
∂Ω−1

t

∂λ
= −Ω−1

t

∂Ωt

∂λ
Ω−1
t .

For the GAS model

βt = c+Bβt−1 +AH−1
t−1∇t−1,
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with θ = (c′, vec(B)′, vec(A)′)′, the corresponding recursion for the �rst derivative of βt(θ)

is

∂βt(θ)
′

∂θ
=

∂c′

∂θ
+
∂vec(B)′

∂θ
(βt−1(θ)⊗ In)

+
∂vec(A)′

∂θ

[
(H−1

t−1∇t−1)⊗ In
]

+
∂βt−1(θ)

′

∂θ

(
2Xt−1X

′
t−1H

−1
t−1A

′ +B′) .
A.5.4. Empirical results

In this section we apply our previously discussed GMVP prediction models to historical

return data, and compare them to the benchmark methods that are described in Section

2.4.1. We consider both daily data and monthly data. In doing so, we intend to cover

various practically relevant scenarios regarding the ratio n/T (number of assets divided by

length of the time series). For the experiments with daily returns we use the same data set

and design, as well as asset universe selection as employed in the �nal version of the paper,

under the restriction that the sample covers only the time span until 2016 and a maximum

of n = 200 cross-sectional units. Precisely, the sample covers the period from 01/02/2002 to

12/06/2016 for a total of T = 3759 trading days.

In-sample results for daily data

Estimating the heavily parameterized non-diagonal unrestricted GAS speci�cation is pro-

hibitively di�cult for a large number of stocks. In an initial experiment, we thus consider a

low-dimensional application of our proposed GMVP models to �ve of the 200 stocks. This

experiment allows us to compare the seven GAS speci�cations in Table A.3 and the RLS-EF

model and to investigate the impact of di�erent degrees of sparsity of the GAS parameter

matrices c, A and B. The �ve stocks we use for this experiment are those with the largest

market capitalization at the last trading day of the estimation period: Apple, Microsoft,

ExxonMobil, Amazon and Johnson & Johnson.

Table A.4.: Average in-sample GMVP loss and variance for n = 5 stocks (alt.)

unr.-GAS d-GAS d-GAS d-GAS d-GAS d-GAS d-GAS RLS-EF RLS-EF
-cβ0 -cβ0 -cβ0 -ew -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.928 1.029 1.055 1.055 1.055 1.050 1.071 1.067 1.067
Portf. var. 0.928 1.046 1.055 1.055 1.055 1.066 1.071 1.061 1.061

Note: Average in-sample GMVP loss (Avg. loss) and variance of the predicted GMVP portfolio
(Portf. var.) of the GAS and RLS-EF models for n = 5 stocks. The sample period ranges from
01/02/2002 to 12/06/2016 (T = 3759).
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Table A.4 reports the average in-sample GMVP loss for the seven GAS speci�cations and

the two versions of the RLS-EF model (initialized by the OLS and nonlinear shrinkage ap-

proaches). As expected, the lowest average loss is attained by the unrestricted (non-diagonal)

GAS speci�cation with 55 parameters, which allows for the largest degree of �exibility in

approximating the dynamic behavior of the GMVP weights. The models with the largest

average losses are the d-GAS-cβ0-ew (constant expected portfolio returns and equal long-

run means of the portfolio weights) with three parameters and the RLS-EF with only one

parameter. However, even for a dimension as low as in the present experiment (n = 5),

NLS based parameter estimation in the unrestricted GAS model turned out to be numeri-

cally challenging3. Moreover, the parameter estimates for the unrestricted GAS model (not

reported here) reveal that none of the model's 55 parameters is signi�cantly di�erent from

zero at the 10% level, indicating that the model is clearly over-parameterized. With regard

to out-of-sample forecast accuracy (analyzed below), these results suggest using restrictions

to eliminate many of the unnecessary parameters. By contrast, the estimates of the d-GAS

parameter b11 are highly signi�cant and exceed 0.98 for all diagonal GAS speci�cations, in-

dicating high temporal persistence of the GMVP weights. The estimates for a00 and b00 are

for all speci�cations insigni�cant at conventional levels, so that there is no evidence for pre-

dictable dynamics in the conditional mean of the daily GMVP return. The estimate for the

forgetting factor of the RLS-EF model λ is statistically highly signi�cant and its estimated

value is 0.988, which implies that observations from a year ago still have a weight of 5% in

the current GMVP prediction, whereas observations from two years ago have a weight of

0.2%.
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Figure A.6.: Estimated GMVP weights for the Johnson & Johnson stock in a portfolio of n = 5 assets, for

the (fully unrestricted) unr.-GAS (blue line) and the d-GAS-cβ0 model (red line).

In addition to these results we �nd that the predictions of the portfolio weights obtained

under the sparsely parameterized diagonal GAS speci�cations and the RLS-EF model are
3One reason of the numerical problems appears to be the large number of local minima of the average
GMVP loss function.
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less noisy than those for the unrestricted GAS model, so that the former ask for less portfolio

regrouping. This is illustrated in Figure A.6, which shows the time series plots of the portfolio

weights for the Johnson & Johnson stock predicted under the unrestricted GAS and the d-

GAS-cβ0. While the trends of the two series are very similar, the weight predictions of

d-GAS-cβ0 are less volatile than those of the unrestricted GAS. In particular, d-GAS-cβ0
does not feature the economically questionable jumps predicted by the unrestricted GAS.

In addition to the average GMVP loss, we report in Table A.4 the sample variance of the

predicted GMVP returns. The comparison of the values for the two performance measures

shows that they are typically close to each other. This suggests that the estimated GMVP

mean returns β0t are fairly stable over time, so that the observed small di�erences in the two

measures are in line with the assumption on the lack of predictability of GMVP returns.

Based on the results of our low-dimensional application, it seems empirically and prac-

tically reasonable to focus on the sparsely parameterized versions of our proposed GMVP

models, i.e., the diagonal GAS models and the RLS-EF model. The average in-sample loss

and sample variance of the portfolio returns for those models applied to all n = 200 stocks

in our daily data set are reported in Table A.5 which also provides results for the benchmark

models described in Section 2.4.1.

Table A.5.: Average in-sample GMVP loss and variance for n = 200 stocks (alt.)

d-GAS d-GAS d-GAS d-GAS d-GAS d-GAS RLS-EF RLS-EF
-cβ0 -cβ0 -cβ0 -ew -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.350 0.351 0.354 0.355 0.354 0.355 0.352 0.352
Portf. var. 0.350 0.351 0.354 0.355 0.355 0.355 0.352 0.352

DCC DCC-nl OLS SHR-l SHR-nl naïve

Avg. loss 0.425 0.425 0.355 0.356 0.357 1.603
Portf. var. 0.425 0.425 0.355 0.355 0.357 1.601

Note: Average in-sample GMVP loss (Avg. loss) and variance of the predicted GMVP portfolio
(Portf. var.) of the GAS and RLS-EF models and the benchmark models for n = 200 stocks.
The sample period ranges from 01/02/2002 to 12/06/2016 (T = 3759).

Table A.5 shows that the RLS-EF model and nearly all d-GAS models attain smaller in-

sample loss than the competing benchmark models. For example, the two-parameter d-GAS-

cβ0-ols-ta and d-GAS-cβ0-shr-ta model, and even the single parameter RLS-EF approach,

result in portfolio predictions with much lower in-sample losses than the portfolios predicted

by the highly parameterized DCC with 602 parameters. It is only the static OLS estimator

which is on par with the d-GAS-cβ0-shr-ta and the d-GAS-cβ0-eω model. Next, we �nd

that the increase in the average loss resulting from imposing the cβ0-restriction of constant

expected portfolio returns in the d-GAS model is negligible and is only about 0.3%. The loss

increase for the ew-restriction of equal long-run means of the portfolio weights is somewhat
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larger at 1%. This suggests that the stationary equilibrium di�ers from the naïve equally

weighted portfolio which is consistent with the result that the naïve portfolio model produces

by far the largest average loss among all models. It is also in line with our �nding that the

optimal degree of shrinkage towards the naïve portfolio for the shrinkage estimators is close

to zero, so that the weight predictions and the resulting average losses for the static OLS,

SHR-l and SHR-nl estimators are very close to each other.

As in the low-dimensional application, the parameter estimates of the GAS models (not

reported here) indicate high persistence of the GMVP portfolio weights with estimates for

b11 larger than 0.9 for all d-GAS speci�cations. The estimate for the forgetting factor λ in

the RLS-EF model is 0.999, which is also close to the value found in the low-dimensional

experiment.

All in all, the results of the in-sample experiment show that all considered loss function

based dynamic GMVP models perform broadly similar and exhibit a better in-sample �t

compared to the DCC model �tted by a likelihood based estimation technique and then

used within the common plug-in approach.

Out-of-sample results for daily data

The out-of-sample period starts on 01/03/2007 and ends on 12/06/2016 which results in a

total of 2,501 daily point forecasts. We consider estimation window lengths of T = 250 (one

year) and T = 1250 (�ve years) and portfolio sizes of n = 50 and n = 200.

Since the in-sample analysis yields virtually no evidence for temporal variation in the daily

expected portfolio returns, we focus on the d-GAS speci�cations with the cβ0-restriction in

our out-of-sample analysis. Table A.6 provides the average out-of-sample loss and portfolio

variance of these d-GAS-cβ0 models, the RLS-EF and the benchmark models. The top

panel reports the results for the portfolio size n = 50 based on the 1-year and the 5-year

estimation window with a ratio n/T of 0.2 and 0.04, respectively, and the bottom panel the

corresponding results for n = 200 with value for n/T of 0.8 and 0.16. For assessing the

statistical signi�cance of di�erences in the average out-of-sample loss across models, we use

the model con�dence set (MCS) approach of Hansen et al. (2011) (for details see Section

2.4.2).

Table A.6 reveals that, for all four n/T -scenarios, the two best performing speci�cations

within our proposed GMVP approach are the d-GAS-cβ0 model with targeting based on

the nonlinear shrinkage approach (d-GAS-cβ0-shr-ta) and RLS-EF initialized by the non-

linear shrinkage approach (RLS-EF-shr). We also see that their performance gains relative

to RLS-EF-ols and the other d-GAS-cβ0 models consistently increase with the ratio n/T .

This �nding indicates that a precise estimator of the long-run-weights (provided by nonlinear

shrinkage) is particularly valuable when the number of assets is large relative to the sample

size. The �nding is also fully in line with the forecast improvements we �nd when moving

from standard DCC with OLS targeting (DCC) to DCC with nonlinear shrinkage targeting
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Table A.6.: Average out-of-sample GMVP loss and variance (alt.)

n = 50
T = 1250 d-GAS d-GAS d-GAS d-GAS RLS-EF RLS-EF
n/T = 0.04 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.671 0.672 0.665 0.675 0.639 0.630

Portf. var. 0.671 0.672 0.665 0.675 0.638 0.630

DCC DCC-nl OLS SHR-l SHR-nl naïve

Avg. loss 0.654 0.647 0.669 0.667 0.665 1.574
Portf. var. 0.654 0.647 0.669 0.667 0.665 1.574

T = 250 d-GAS d-GAS d-GAS d-GAS RLS-EF RLS-EF
n/T = 0.20 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 1.778 0.832 0.696 0.833 0.751 0.654

Portf. var. 1.764 0.829 0.693 0.830 0.748 0.651

DCC DCC-nl OLS SHR-l SHR-nl naïve

Avg. loss 0.737 0.673 0.755 0.729 0.677 1.584
Portf. var. 0.736 0.672 0.752 0.729 0.677 1.585

n = 200
T = 1250 d-GAS d-GAS d-GAS d-GAS RLS-EF RLS-EF
n/T = 0.16 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 0.625 0.526 0.506 0.525 0.510 0.492
Portf. var. 0.622 0.526 0.506 0.525 0.510 0.491

DCC DCC-nl OLS SHR-l SHR-nl naïve

Avg. loss 0.493 0.474 0.524 0.521 0.504 1.808
Portf. var. 0.493 0.474 0.524 0.521 0.504 1.808

T = 250 d-GAS d-GAS d-GAS d-GAS RLS-EF RLS-EF
n/T = 0.80 -cβ0 -cβ0 -cβ0 -cβ0 -ols -shr

-ols-ta -shr-ta -ew

Avg. loss 1.767 2.666 0.513 4.387 1.543 0.486

Portf. var. 1.767 2.661 0.511 4.383 1.538 0.484

DCC DCC-nl OLS SHR-l SHR-nl naïve

Avg. loss 0.984 0.510 1.575 0.864 0.495 1.813
Portf. var. 0.984 0.510 1.571 0.864 0.495 1.813

Note: Average out-of-sample GMVP loss (Avg. loss) and variance of the predicted GMVP
portfolio (Portf. var.) of the GAS and RLS-EF models and the benchmark models. Pa-
rameter estimation is based on a sample of length T . The out-of-sample period ranges from
01/03/2007 to 12/06/2016 (2, 501 observations). Bold numbers indicate the smallest average
GMVP loss and grey cells indicate that the model belongs to the 90% Model Con�dence Set.

(DCC-nl) and from static OLS to the nonlinear shrinkage estimator (SHR-nl). The compar-

ison of all competing models shows that RLS-EF-shr belongs to the 90% MCS for all n/T
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ratios and also has the smallest average loss, except in the scenario with (n, T ) = (200, 1250),

where DCC-nl performs best. Finally, we �nd that the performance of the static SHR-nl es-

timator improves compared to the dynamic models when the sample size T decreases, which

is to be expected, since the shorter the (rolling) estimation window, the easier it is for a

static approach to adapt to local parameter change.

Out-of-sample results for monthly data

In this section, we analyze the robustness of our previous results to changes in the sampling

frequency by considering the out-of-sample forecasting performance of the GMVP models

when applied to monthly asset returns. For this experiment we rely upon four data sets

used by DeMiguel et al. (2009), which we have extended to cover the period from 07/1963

to 02/2019. They consist of returns for Fama-French portfolios sorted by size and book-

to-market ratio and industry portfolios representing the U.S. stock market: The �rst data

set contains six Fama-French portfolios (6-FF), the second one 25 Fama-French portfolios

(25-FF), the third one 10 industry portfolios (10-Ind), and the last one 48 industry portfolios

(48-Ind)4. As in our application to daily returns, we consider one-period-ahead forecasts and

use a rolling window for parameter estimation. The window length is set equal to T = 120

(10 years) and the out-of-sample period ranges from 07/1973 to 02/2019, which yields a total

of 548 monthly forecasts for each data set.

Table A.7 contains the resulting average out-of-sample GMVP loss of our proposed models

and the competing alternatives. They show that for all four portfolios, the best performing

model in the class of RLS-EF and d-GAS models attains smaller average loss than both

versions of the DCC approach. For the 6-FF, 25-FF and 10-Ind portfolios, for which the

n/T -ratio is at most 0.21, the static SHR-l estimator attains the smallest loss. However, the

RLS-EF-shr model is always contained in the 90% MCS, indicating that the loss di�erence

between RLS-EF-shr and SHR-l is not statistically signi�cant. As explained above, one

possible explanation for the relatively good performance of this static SHR estimator is that

the estimation window in this experiment is rather short (T = 120), much shorter than in

our previous experiments with daily data. For the 48-Ind portfolio for which we have the

most challenging scenario in terms of the n/T -ratio, the best model is the RLS-EF-shr with

a performance which is signi�cantly better than that for all competing models. Furthermore,

we observe that RLS-EF-shr belongs to the 90% MCS for all four portfolios, which is fully

in line with the results for the experiments based on daily data.

Superior Predictive Ability Test Results

As a robustness check for the MCS results for our out-of-sample forecasting experiments,

Table A.8 reports p-values of the test for Superior Predictive Ability (SPA) (see Section

4The data has been obtained from https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html.
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Table A.7.: Average out-of-sample GMVP loss for monthly portfolio returns (alt.)

6-FF 25-FF 10-Ind 48-Ind

n/T 0.05 0.21 0.08 0.49

d-GAS-cβ0 17.14 19.81 14.03 21.35

d-GAS-cβ0-ols-ta 16.41 15.90 13.69 19.79

d-GAS-cβ0-shr-ta 16.54 13.80 13.22 13.96

d-GAS-cβ0-ew 16.06 15.75 13.66 20.49

RLS-EF-ols 17.60 13.90 14.04 10.10

RLS-EF-shr 17.60 13.67 14.04 10.07

DCC 17.22 16.99 13.77 16.35

DCC-nl 17.16 16.16 13.45 13.22

OLS 15.72 14.83 12.86 17.30

SHR-l 15.54 13.27 12.63 14.84

SHR-nl 15.72 13.63 12.79 13.11

naïve 24.49 26.48 18.35 23.79

Note:Average out-of-sample GMVP loss of the diagonal GAS
models, the RLS-EF and the benchmark models for monthly
portfolio returns. The length of the estimation window is 10
years (T = 120), the out-of-sample forecasting period ranges
from 07/1973 to 02/2019 (548 observations). Bold numbers
indicate the smallest average GMVP loss and grey shaded cells
indicate that the model belongs to the 90% Model Con�dence
Set.

A.3.3). The results in Table A.8 are qualitatively very similar to the results based on the

MCS approach. In particular, successful models that are included in the MCS typically

achieve high SPA p-values when used as a benchmark model. Conversely, for poor performing

models that are not included in the MCS, the SPA p-value is typically very small.
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Table A.8.: Hansen (2005) test for superior predictive ability results (alt.)

Daily data Monthly data

6-FF 10-Ind 25-FF 48-Ind

n 50 50 200 200 6 10 25 48
T 250 1250 250 1250 120 120 120 120

d-GAS-cβ0 0.03 0.00 0.00 0.00 0.06 0.02 0.00 0.00
d-GAS-cβ0-ols-ta 0.00 0.00 0.00 0.00 0.19 0.02 0.00 0.00
d-GAS-cβ0-shr-ta 0.03 0.01 0.30 0.19 0.14 0.21 0.55 0.00
d-GAS-cβ0-ew 0.00 0.01 0.01 0.00 0.64 0.05 0.00 0.00
RLS-EF-ols 0.00 0.64 0.00 0.11 0.07 0.14 0.00 0.01
RLS-EF-shr 0.99 0.99 0.97 0.75 0.08 0.14 0.82 1.00
DCC 0.00 0.00 0.00 0.00 0.11 0.01 0.00 0.00
DCC-nl 0.75 0.70 0.80 0.98 0.11 0.35 0.02 0.00
OLS 0.00 0.00 0.00 0.00 0.89 0.54 0.00 0.00
SHR-l 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00
SHR-nl 0.62 0.01 0.96 0.40 0.79 0.11 0.24 0.00
naïve 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: p-values of the Hansen (2005) test for superior predictive ability. Rows cor-
respond to benchmark models, columns correspond to forecast experiments. The
one-sided Null hypothesis is that the benchmark is at least as good as all competi-
tors.
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B.1. Priors and hyperparameters

Following Bitto and Frühwirth-Schnatter (2019), we impose p0,i ∼ IG(νp, (νp−1)cp), νp = 20,

cp = 1, for i = 0, . . . , n and for the shrinkage priors d01 = d02 = e01 = e02 = 0.001, as well as

bτ = 1, cτ = 10 with the proposal for log(aτ ) ∼ N (0, 1), as this applies only for the double

Gamma prior. For the weights in the no shr speci�cation and for all speci�cations for the

conditional expectation, the priors of level and time-variation are set in an uninformative,

but also zero-centered way, i.e., N (0, 10). The volatility priors are given follows: σ2 | C0 ∼
IG(c0, C0), C0 ∼ G(g0, G0), where c0 = 2.5, g0 = 2.5, G0 = g0/

̂V(y −Xβ̂OLS)× (c0−1) for

the model with homoscedastic errors and in the SV model µh ∼ N (0, 1), σ2h ∼ IG(0.5, 0.5),
and (ϕh + 1)/2 ∼ B1(100, 4), which implies E(ϕh) = 0.992 and V(ϕh) = 0.0002.

B.2. Further derivations

B.2.1. MCMC sampling algorithm

We utilize MCMC methods for Bayesian posterior analysis and use the Gibbs approach to

simulate from the joint posterior of the parameters and the latent states given by

π(γ0:T ,h0:T , α,
√
q, τ2, ξ2, λ2, κ2, ϕh, µh, σ

2
h, a

τ , p0 | y1:T )

∝ fθ(y1:T | γ1:T , h1:T ) f(γ1:T ) fθ(h0:T ) p(γ0)

× p(α,
√
q | τ2, ξ2) p(τ2, ξ2 | λ2, κ2) p(λ2) p(κ2) p(aτ )

× p(µh, ϕh, σ
2
h)× p(p0)

for the TVP-GMVP-SV-shr model. In the alternative SV speci�cations with a random walk

for the log volatility process (see Appendix B.3.1), the volatility parameters (µh, σ
2
h, ϕh)

are replaced by R, and in the speci�cation with the Uhlig (1994, 1997) volatility process

(see Appendix B.3.2), they are replaced by νh and λh. In the model without stochastic

volatility, the states h and the associated parameters of the volatility process are replaced by

a time-constant volatility σ2 which is equipped with a hierarchical Gamma prior (see Section
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B.1). Exploiting the conjugacy to the Gaussian likelihood, conditional posteriors are mostly

available in closed form. In the no shr speci�cations as well as for the parameters associated

to the �rst element of βt corresponding to the conditional expectation of the GMVP, Steps

3) and 4) do not apply.

The implementation of the Gibbs sampler for the TVP-GMVP-SV-shr model is brie�y

described in the following. Note that Steps 1) � 4) and Step 6) of the algorithm are adapted

from Bitto and Frühwirth-Schnatter (2019), Algorithm 1.

1) Updating γ0:T :

Choosing a Gaussian prior f(γ1:T ) × p(γ0) yields a linear Gaussian SSM for γ0:T (for given

θ, h1:T ). To draw from full conditional posterior of γ0:T , that is,

π(γ0:T | θ, y1:T , h0:T ) ∝ fθ(y1:T | h1:T , γ1:T ) f(γ1:T ) p(γ0),

one can apply the method of Forward Filtering Backward Sampling (FFBS; Carter and

Kohn, 1994 and Frühwirth-Schnatter, 1994) or the computationally bene�cial all without a

loop sampler (AWOL; Rue, 2001 and McCausland et al., 2011). Depending on the RAM of

the computer, one may rather apply FFBS when the dimensions of the system (i.e., number

of time periods and number of parameters, i.e., assets here) are very large.

2) Updating α and
√
q

Using multivariate normal conjugate priors, i.e., for i = 0, . . . , n,

αi | τi2 ∼ N (0, τ2i ),
√
qi | ξ

2
i ∼ N (0, ξ2i ),

the full conditional posterior

π(α,
√
q | θ−(α,

√
q), γ0:T , y1:T , h0:T ) ∝ fθ(y1:T | h1:T , γ1:T ) p(α,

√
q | τ2, ξ2)

directly obtains.

In order to increase the sampling e�ciency, we apply the interweaving step from Bitto

and Frühwirth-Schnatter (2019) which builds on redrawing the parameters α and
√
q in

the centered parameterization of the model (see Equations (3.7) and (3.8)). Note that the

posterior density of the scale parameters
√
q is symmetric around zero by de�nition. Thus,

if for some cross-sectional unit i the variance
√
qi

2 is di�erent from zero, then the posterior

density of
√
qi is likely to be bimodal and if we �nd that the posterior density of

√
q is

unimodal, then the unknown variance is likely to be zero.

124



B.2. Further derivations

3) Updating τ2 and ξ2, and λ2 and κ2:

Based on the hierarchical structure of the priors, i.e., for i = 1, . . . , n:

τ2i | λ2 ∼ G(aτ , aτλ2), λ2 ∼ G(d01, d02),

ξ2i | κ2 ∼ G(aξ, aξκ2), κ2 ∼ G(e01, e02),

where d01, d02 and e01, e02 are �xed a-priori, we block the conditional posterior as follows

π(τ2, ξ2, λ2, κ2 |θ−(τ2,ξ2,λ2,κ2), γ0:T , y1:T , h0:T )

∝ p(τ2, ξ2, λ2, κ2 | α,√q) p(τ2, ξ2 | λ2, κ2) p(λ2, κ2 | τ2, ξ2).

This implies a Generalized inverse Gamma posterior distribution for τ2i , ξ
2
i , i = 1, . . . , n, and

the conditional posteriors for λ2 and κ2 directly obtain from the Gamma conjugate priors.

4) Updating aτ :

In the shrinkage speci�cation, we impose G(bτ , cτ ) distributions for aτ (aξ = 1 is �xed).

Draws from the conditional posterior

π(aτ | θ−(aτ ), γ0:T , y1:T , h0:T ) ∝ p(aτ | λ2, τ2)

are obtained by sampling aτ using a RW-MH step based on proposing

log(aτ,new) ∼ N (log aτ , 1).

5) Updating h0:T and (µh, σ
2
h, ϕh):

In order to draw the volatility states and parameters, we use the standard approach of

Kim et al. (1998), replacing the normal approximation by the 10-point mixture of Omori

et al. (2007), which yields a measurement equation that is approximately normal, and hence,

results in an approximately Gaussian state-space model for the volatility states. Therefore,

the derivation of the conditional posterior

π(h0:T , µh,σ
2
h, ϕh | θ−(µh,σ

2
h,ϕh)

, γ0:T , y1:T )

∝ fθ(y1:T | γ1:T , h1:T ) p(h0:T | µh, σ2h, ϕh) p(µh, σ2h, ϕh)

is analogue to Step 1) and h can be drawn using FFBS or the AWOL sampler. For

(µh, σ
2
h, ϕh), we impose p(µh, σ2h, ϕh) = p(µh)p(σ

2
h)p(ϕh). A rather uninformative Gaus-

sian prior is imposed for µh, a Beta prior for ((ϕ + 1)/2) and a conjugate inverse Gamma

prior for σ2h.
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Alternative (i): 5) �Random walk for log(σ2t )� Updating h0:T and R:

In order to draw the volatility states, we use the standard approach of Kim et al. (1998)1

which yields a measurement equation that is approximately normal, and hence, results in an

approximately Gaussian state-space model for the volatility states. Hence the derivation of

the conditional posterior

π
(
h0:T , R | θ−(R), γ0:T , y1:T

)
∝ fθ(y1:T | γ1:T , h1:T ) p(h1:T | R) p(R, h0)

is analogue to Step 1) and h can be drawn using FFBS or the AWOL sampler. For R, we

select an independent Inverse Gamma conjugate prior such that we can directly draw from

its conditional posterior (Inverse Gamma).

Alternative (ii): 5) �Beta process for 1/σ2t � Updating h1:T and νh (and λh):

For sampling h1:T and νh, λh from their joint conditional posterior

π(h1:T , νh, λh | θ−(νh,λh), γ0:T , y1:T ) ∝ fθ(y1:T | γ1:T , h1:T ) p(h1:T ) p(νh, λh),

νh and λh are simulated marginally of h1:T from

π(νh, λh |θ−(νh,λh), γ0:T , y1:T )

∝
[∫

fθ(y1:T | γ1:T , h1:T ) fθ (h1:T ) dh1:T
]
p(νh, λh)

= fθ(y1:T | γ1:T ) p(νh, λh).

Here, we make use of the closed-form available integrated likelihood fθ(y1:T | γ1:T ) to simulate
νh, λh jointly by a standard Gaussian RW-MH. Factorizing the integrated likelihood yields

fθ(y1:T | γ1:T ) =
T∏
t=1

fθ(yt | γ1:t, y0:t−1),

fθ(yt | γ1:t, y0:t−1) =

∫
fθ(yt | ht, γ1:t) fθ(ht | y0:t−1) dht,

1We again replace their normal approximation by the 10-point mixture of Omori et al. (2007).
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where fθ(yt | ht, γ1:t) = fθ(yt | ht, γt). Inserting (yt | ht, γt) ∼ N (x′tβt, 1/ht) and from

Windle and Carvalho (2014, Proposition 1), (ht | θ, y0:t−1) ∼ G(νh/2, σ2h,t−1λh/2), we obtain∫
fθ(yt | ht, γ1:t) fθ(ht | y0:t−1) dht

=

∫
h
1/2
t

(2π)1/2
exp

{
−1

2
ε2tht

}
(σ2h,t−1, λh)

νh/22−νh/2

Γ(νh/2)
h
νh/2−1
t exp

{
−1

2
(σ2h,t−1λh)ht

}
dht

=
2−

1+νh
2 (σ2h,t−1, λh)

νh/2

Γ(νh/2)π1/2

∫
h

νh−1

2
t exp

{
−1

2
(σ2h,t−1λh + ε2t )ht

}
dht, u :=

σ2h,t−1λh + ε2t

2

=
2−

1+νh
2 (σ2h,t−1λh)

νh/2

Γ(νh/2)π1/2

∫
h

νh−1

2
t 2/(σ2h,t−1λh + ε2t )e

−u du

=
2−

1+νh
2 (σ2h,t−1λh)

νh/2

Γ(νh/2)π1/2
Γ((νh + 1)/2)(σ2h,t−1λh + ε2t )

−(νh+1)/22(νh+1)/2

=
Γ((νh + 1)/2)

Γ(νh/2)π1/2
(σ2h,t−1λh)

νh/2(σ2h,t−1λh + ε2t )
−(νh+1)/2

=
Γ((νh + 1)/2)

Γ(νh/2)π1/2
(σ2h,t−1λh)

−1/2(1 + ε2t /(σ
2
h,t−1λh))

−(νh+1)/2,

which represents the density of a location-scale t-distribution with location x′tβt, scale σh,t−1

and νh degrees of freedom.

The volatility states h1:T which represent in this case the conditional precision matrices

of the error term (h0 = 1/σ20,h is �xed here) are sampled from their full conditional posterior

given by

π
(
h1:T | θ−(νh,λh), γ0:T , y1:T , νh

)
∝ fθ(y1:T | γ1:T , h1:T ) fθ(h1:T ). (B.1)

From Windle and Carvalho (2014, Propositions 1 and 2) it follows that the target den-

sity (B.1) can be easily simulated by backward sampling from the following Gamma distri-

bution

ht | (ht+1, y1:T ) = λhht+1 + Zt+1, Zt+1 ∼ G(1/2, σ2h,t+1/2),

after forward �ltering

σ2t,h = λhσ
2
t−1,h + ε2t .

6) Updating p0:

Using inverse Gamma priors, i.e., for i = 0, . . . , n,

p0,i ∼ IG(νp, (νp − 1)cp),
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draws from the conditional posterior obtain as

π(p0,i | θ−(p0), γ0:T , y1:T , h0:T ) ∝ p(p0,i | γ0,i),

with p0,i | γ0,i ∼ IG(νp + 1
2 , (νp − 1)cp +

1
2γ

2
0,i).

B.2.2. GMVP weight �ltration for the TVP regression model

We are interested in an estimate ŵt | Ft−1, θ̂ which we de�ne as E(wt | Ft−1, θ̂) setting

the elements of θ̂ to their posterior mean. As wt = βt,1:n + 1/n − 1/n
∑n

i=1 βt,1:n and

βt = α + Q0.5γt, we need to �nd f(γt | Ft−1, θ̂), and replace α and the elements of Q by

their estimates. In case the error variance σ2t = σ2, with σ2 ∈ θ, f(γt | Ft−1, θ̂) is normal

with mean µt|t−1 and covariance Vt|t−1 obtained by the prediction step of the Kalman �lter.

The Kalman �lter for γt is initialized by µ1|0 = 0 and V1|0 = P0 + In+1. Then, denoting

Zt = Q0.5Xt, the recursion is given as follows for t = 1, . . . , T :

Vt|t = Vt|t−1 − Vt|t−1Zt(Z
′
tVt|t−1Zt + σ2t )

−1Z ′
tVt|t−1

µt|t = µt|t−1 + Vt|t−1Zt(Z
′
tVt|t−1Zt + σ2t )

−1(yt −X ′
tα− Z ′

tµt|t−1)

Vt+1|t = Vt|t + In+1

µt+1|t = µt|t.

In case σ2t follows itself some stochastic process {ht}, we need to integrate out the volatility

states numerically. For that we make use of a marginalized bootstrap particle �lter for {ht}
using Rao-Blackwellization based on the Kalman �lter for {γt}. The following algorithm

is based on Schön et al. (2005). Conditioning on the parameters is omitted for notational

convenience:

Algorithm for Rao-Blackwellized particle �lter

t = 1

� for i = 1, . . . , S

� sample h(i)1 ∼ f(h1).

� obtain KF update V (i)
1|1 and µ

(i)
1|1 based on the respective draws for h(i)1 (σ2t =

exp(ht)).

� compute

p(y1 | h(i)1 ) =
p(y1 | γ1, h(i)1 ) p(γ1 | h(i)1 )

p(γ1 | h(i)1 , y1)
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with

y1 |γ1, h(i)1 ∼ N (X ′
1α+ Z ′

1γ, σ
2
1
(i)
),

γ1 | h(i)1 ∼ N (µ1|0, V1|0), γ1 | h(i)1 , y1 ∼ N (µ
(i)
1|1, V

(i)
1|1 ),

which leads to

p(y1 | h(i)1 ) =
1√

2πσ21
(i)

 |V (i)
1|1 |

|V1|0|

1/2

× exp

{
−1

2

(
(y1 −X ′

1α)
2

σ21
(i)

+ µ1|0
′V −1

1|0 µ1|0 − µ
(i)
1|1

′
V

(i)
1|1

−1
µ
(i)
1|1

)}
.

Rearranging reveals that this implies

y1 | h(i)1 ∼ N (µ
∗(i)
1 , σ21

∗(i)
),

with µ∗(i)1 = Z ′
1µ1|0 +X ′

1α, and σ
2
1
∗(i)

= Z ′
1V1|0Z1 + σ21

(i).

� obtain non-normalized weights w(i)
1 = p(y1 | h(i)1 ) and normalized weights w̃(i)

1 =
w

(i)
1∑S

i=1 w
(i)
1

.

� for i = 1, . . . , S: resample ji ∼ Multinomial(w̃(1)
1 , . . . , w̃

(S)
1 ) and set{

h
(i)
1 = h

(ji)
1 , µ

(i)
1|1 = µ

(ji)
1|1 , V

(i)
1|1 = V

(ji)
1|1

}S

i=1
.

t = 2, . . . , T

� for i = 1, . . . , S

� sample h(i)t ∼ f(ht | h(i)t−1) and obtain h(i)1:t = (h
(i)
1:t−1, h

(i)
t ).

� obtain KF prediction V (i)
t|t−1 and µ

(i)
t|t−1.

� obtain KF update V (i)
t|t and µ(i)t|t .

� compute

p(yt | h(i)1:t, y1:t−1) =
1√

2πσ2t
(i)

 |V (i)
t|t |

|Vt|t−1
(i)|

1/2

× exp

{
−1

2

(
(yt −X ′

tα)
2

σ2t
(i)

+ µ
(i)
t|t−1

′
V

(i)
t|t−1

−1
µ
(i)
t|t−1

′
− µ

(i)
t|tV

(i)
t|t

−1
µ
(i)
t|t

)}
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which implies

yt | h(i)1:t, y1:t−1 ∼ N (µ
∗(i)
t , σ2t

∗(i)
),

with µ∗(i)t = Z ′
tµ

(i)
t|t−1 +X ′

tα and σ2t
∗(i)

= Z ′
tV

(i)
t|t−1Zt + σ2t

(i).

� obtain non-normalized weights w(i)
t = p(yt | h(i)1:t, y1:t−1) and normalized weights w̃(i)

t =
w

(i)
t∑S

i=1 w
(i)
t

.

� for i = 1, . . . , S: resample ji ∼ Multinomial(w̃(1)
t , . . . , w̃

(S)
t ) and set{

h
(i)
t = h

(ji)
t , µ

(i)
t|t = µ

(ji)
t|t , V

(i)
t|t = V

(ji)
t|t

}S

i=1
.

After re-sampling, f(γt | y1:t) and f(γt+1 | y1:t) can be approximated for each point in time

as

f̂(γt | y1:t) =
1

S

S∑
i=1

f(γt | y1:t, h(i)1:t), f̂(γt+1 | y1:t) =
1

S

S∑
i=1

f(γt+1 | y1:t, h(i)1:t),

which leads to the following approximation:

̂E(γt+1 | Ft, θ̂) =
1

S

S∑
i=1

µ
(i)
t+1|t =

1

S

S∑
i=1

µ
(i)
t|t .

B.3. Alternative volatility speci�cations

In this section, alternative volatility speci�cations and corresponding out-of-sample results

are presented. Tables regarding these alternative speci�cations are marked by the note `(alt)'

in the captions.

B.3.1. Taylor (1982) model with random walk for log(σ2
t )

As alternative approach to incorporate stochastic volatility in our model, we impose for the

transition of the log squared volatilities a random walk, i.e., the persistence parameter ϕh in

(3.10) �xed to one and di�erent initial conditions:

ht = ht−1 + ηht , ηht
iid∼ N (0, R), h0 ∼ N (µh0 , V

h
0 ).

Particularly, we set µh0 = 0, V h
0 = 1.
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B.3.2. Beta process for 1/σ2
t (Uhlig, 1994, 1997)

As alternative approach to incorporate stochastic volatility in our model, we employ a uni-

variate version of the speci�cation of Windle and Carvalho (2014) which generalizes the

approach of Uhlig (1994) and Uhlig (1997). It speci�es the transition of the precision of the

errors, i.e., σ2t = 1/ht, imposing the following Beta process:

ht =
1

λh
ht−1ψt, ψt ∼ B1

(
nh
2
,
1

2

)
,

with parameters nh, λh > 0 and initial condition

h1 ∼ G
(
nh/2, λhσ

2
0,h/2

)
.

The parameter nh determines the conditional variation of ht | ht−1, i.e., a large value of nh
leads to a smaller variation in the innovation ψt for a given level λh. We use a �at prior

for λh, λh ∝ 1/λh and �x σ2h = 1. We sample λh, nh (jointly) by a standard Gaussian

RW-MH-step.

B.3.3. Empirical results

In Tables B.1 and B.2, we present out-of-sample forecasting results for the previously dis-

cussed alternative volatility speci�cations compared to the stationary AR(1) SV-model and

the speci�cation without stochastic volatility, that are employed in the main version of the

paper. For the experiments we use the same data set and design, as well as asset universe se-

lection as employed in the main paper, under the restriction that the sample covers only the

time span until 2016. Precisely, the sample covers the period from 01/07/2002 to 12/23/2016

for a total of T = 3770 trading days. The out-of-sample period spans the period 12/21/2006

to 12/23/2016 for a total of 21× 120 = 2520 trading days. We denote the SV speci�cation

outlined in Section B.3.1 as TA-RW and the speci�cation of Section B.3.2 as UH.
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Table B.1.: Out-of-sample GMVP variance (alt.)

T = 250
n = 100 n = 200 n = 400

TVP-GMVP-

TA-RW -SV-shr 0.617 0.525 0.462

TA-RW -SV-no shr 1.970 27.904 14.040

UH -SV-shr 0.593 0.523 0.511
UH -SV-no shr 2.301 22.120 3.810

SV-shr 0.648 0.577 0.487
SV-no shr 0.864 2.044 4.063

no SV-shr 0.624 0.538 0.484
no SV-no shr 2.402 23.204 1.499

T = 1250
n = 100 n = 200 n = 400

TVP-GMVP-

TA-RW -SV-shr 0.611 0.586 0.476

TA-RW -SV-no shr 0.580 0.667 0.588

UH -SV-shr 0.580 0.527 0.518
UH -SV-no shr 0.566 0.603 0.594

SV-shr 0.608 0.570 0.484
SV-no shr 0.631 0.607 0.560

no SV-shr 0.627 0.596 0.569
no SV-no shr 0.593 0.955 0.634

Note: Out-of-sample model comparison. Smallest value in bold
letters. Grey light (dark) shaded cells indicate that the model
belongs to the 90 (75)% MCS.
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Table B.2.: Out-of-sample Sharpe ratio (×10) (alt.)

T = 250
c = 0 bp. c = 10 bp.

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

TVP-GMVP-

TA-RW -SV-shr 0.606 0.509 0.390 0.532 0.429 0.312
TA-RW -SV-no shr 0.468 0.021 0.148 0.311 -0.284 -0.222

UH -SV-shr 0.538 0.466 0.345 0.486 0.408 0.221
UH -SV-no shr 0.433 0.085 0.331 0.186 -0.283 0.101

SV-shr 0.615 0.533 0.358 0.524 0.429 0.253
SV-no shr 0.639 0.324 0.179 0.492 0.026 -0.281

no SV-shr 0.629 0.518 0.406 0.548 0.432 0.324

no SV-no shr 0.282 0.184 0.068 0.071 -0.128 -0.088

T = 1250
c = 0 bp. c = 10 bp.

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

TVP-GMVP-

TA-RW -SV-shr 0.518 0.391 0.379 0.462 0.324 0.312

TA-RW -SV-no shr 0.535 0.412 0.299 0.489 0.229 0.080

UH -SV-shr 0.535 0.453 0.406 0.489 0.409 0.292
UH -SV-no shr 0.526 0.342 0.221 0.491 0.223 0.082

SV-shr 0.530 0.398 0.395 0.475 0.325 0.303
SV-no shr 0.560 0.389 0.275 0.490 0.297 0.151

no SV-shr 0.591 0.392 0.307 0.517 0.323 0.188
no SV-no shr 0.582 0.183 0.221 0.531 0.028 0.076

Note: GMVP weights for TVP regression speci�cations. Largest value in bold letters. Results
are displayed for c = 0 and c = 10 basis points trading costs.
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C.1. Precision matrix and conditional correlation

For showing that conditional correlations in a Gaussian model can be expressed by the

elements of the precision, I exploit the rules for block-wise matrix inversion and partition,

without loss of generality, the covariance matrix Σ of a set of variables X = (X1, . . . , Xn)
′

with X ∼ N(µ,Σ) as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

with Σ11 denoting V[X1, . . . , Xk] and Σ22 = V[Xk+1, . . . , Xn]. Then I can express the

analogously block-partitioned precision matrix Θ = Σ−1 as

Θ =

(
A−1 −A−1C

−BA−1 Σ−1
22 +BA−1C

)
,

A = Σ11 − Σ12Σ
−1
22 Σ21, B = Σ−1

22 Σ21, C = Σ12Σ
−1
22 .

Next, I denote that the conditional covariance V[X1, . . . , Xk | Xk+1, . . . Xn] under a multi-

variate normal distribution is given as Σ11−Σ12Σ
−1
22 Σ21 which corresponds exactly to A, the

inverse of the k × k block in Θ corresponding to entries 1, . . . , k. Setting, e.g., k = 2, the

conditional correlation of X1, X2 given X3, . . . , Xn is hence given by

ρ1,2|3,...,n =
A[12]√
A[11]A[22]

,

which simpli�es, by calculating the inverse of the 2× 2 matrix A, to

ρ1,2|3,...,n =
−Θ[12]√
Θ[11]Θ[22]

,

which holds true analogously for any other i, j ∈ (1, . . . , n), i ̸= j. Accordingly, i� some

element Θ[ij] is equal to zero, it follows that Xi is conditionally independent of Xj (see also
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Lauritzen, 1996, Hastie et al., 2009).

C.2. Proximal operator

Proximal operators (Parikh and Boyd, 2014) de�ne a class of particular optimization prob-

lems of the form

proxη,f(X)(A) = argmin
X∈Rm×n

(
f(X) + 1/(2η)||X −A||22

)
,

for some real matrix A ∈ Rm×n and a real-valued function f(X), which is proper, convex

and at least semi-continuous. They de�ne a trade-o� for X between minimizing f and being

close to A. In the ADMM algorithm applied for the ATVGL proposed in this paper, two

particular proximal operators with well-known closed form solutions are being used:

1.

proxη,− log(det(X))−trace(SX)((A+A′)/2) =
η

2
Q(D +

√
D2 + 4η−1ImQ

′, (C.1)

with diagonal D and orthonormal Q representing the components of the eigenvalue

decomposition A+A′

2η − S = QDQ′ (Witten et al., 2009).

2.

proxη,||X||1(A) = Y, with Y[ij] =

0, if |A[ij]| ≤ η

sign(A[ij])(|A[ij]| − η) else,
(C.2)

which is known as the element-wise soft thresholding operator (Parikh and Boyd, 2014,

Ch.6.5.2).

C.3. Optimization steps

C.3.1. Minimization of Lρ with respect to Θτ

Analogously to Boyd et al. (2011), I derive the solution for minimizing the negative of the

penalized log-likelihood Lρ with respect to Θ̄ individually for each Θτ :

argmin
Θτ∈S++

n

Lρ(Θ, Z, U) = argmin
Θτ∈S++

n

− log(det(Θτ ))− trace(SτΘτ ) +
ρk

2Nτ
|| (Θτ −Aτ )) ||22,

(C.3)
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where Aτ =
∑J

j=1 Z
k
τ,0,j+

∑M
m=1(Zτ,1,m+Zτ,2,m)−

∑J
j=1 U

k
τ,0,j−

∑M
m=1(Uτ,1,m+Uτ,2,m)

k and k = 2M + J .

Equation (C.3) has the form of a proximal operator with

f(Θτ ) := − log(det(Θτ ))− trace(SτΘτ ),

η :=
Nτ

ρk
,

A := Aτ .

Rewriting the symmetric matrix Aτ = Aτ+Aτ ′

2 with eigendecomposition 1
Nτ
ρk

(Aτ + Aτ ′)/2 −

Sτ = QτDτQτ ′, leads, according to Equation (C.1), to

argmin
Θτ∈S++

n

Lρ(Θ, Z, U) = proxNτ
ρk

,− log(det(Θτ ))+trace(SτΘτ )
(Aτ )

=
Nτ

ρk
Qτ

(
Dτ +

√
Dτ 2 + 4

1

2Nτ
ρk

In

)
Qτ ′.

C.3.2. Minimization of Lρ with respect to Zτ,0,1 and (Zτ−1,1,1, Zτ,2,1) (Ψ1, Ψ̃1)

In the following, I sketch the derivation of the solution for minimizing the augmented La-

grangian Lρ with respect to Zτ,0,1 as well as (Zτ−1,1,1, Zτ,2,1) as derived in Boyd et al. (2011).

The Zτ,0,1 update is given as

argmin
(Zτ,0,1)

Lρ(Θ̄, Z, U) = argmin
(Zτ,0,1)

λ1
∑
i ̸=j

∑
j

|(Zτ,0,1,[ij])|+ || (Zτ,0,1 − (Θτ + Uτ,0,1)) ||22,

which directly de�nes a proximal operator analogously to Equation (C.2) with

f(Zτ,0,1) := ||(Zτ,0,1)||1,odd

η :=
λ1
ρ
,

A := (Θτ + Uτ,0,1),

where || · ||1,odd denotes the element-wise L1 norm for a matrix omitting its diagonals. Hence,

the solution is given by the element-wise soft thresholding operator as:

argmin
(Zτ,0,1)

Lρ(Θ̄, Z, U) = proxλ1
ρ
,||(Zτ,0,1)||1,odd

(Θτ + Uτ,0,1) = Y τ , with

Y τ
[ij] =


(Θτ + Uτ,0,1)[ij] if i = j

0 if i ̸= j ∧ |Zτ,0,1,[ij]| ≤ λ1
ρ

sign((Θτ + Uτ,0,1)[ij])(|(Θτ + Uτ,0,1)[ij]| − η) if i ̸= j ∧ |(Θτ + Uτ,0,1)[ij]| > λ1
ρ .
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The (Zτ−1,1,1, Zτ,2,1) update is given as

argmin
vec(Zτ−1,1,m,Zτ,2,m)

Lρ(Θ̄, Z, U)

= argmin
vec(Zτ−1,1,m,Zτ,2,m)

β1
∑
i,j

|(Zτ−1,1,1,[ij] − Zτ,2,1,[ij])|

+ ρ/2(|| (Zτ−1,1,1 − (Θτ−1 + Uτ−1,1,1)) ||22 − || (Zτ,2,1 − (Θτ + Uτ,2,1)) ||22),

which de�nes a proximal operator of the form

proxβ1
ρ
,||(Zτ−1,1,m−Zτ,2,m)||1

([
Θτ−1 + Uτ−1,1,1

Θτ + Uτ,2,1

])
.

Exploiting functional properties of the element-wise norm, this can be converted into[
Zτ−1,1,1

Zτ,2,1

]
= 1/2

[
Θτ−1 + Uτ−1,1,1 −Θτ + Uτ,2,1

Θτ−1 + Uτ−1,1,1 −Θτ + Uτ,2,1

]
+ 1/2

[
−Eτ

+Eτ

]
,

with Eτ given as solution of the element-wise soft thresholding proximal operator with

f((Zτ−1,1,m, Zτ,2,m)) := ||((Zτ−1,1,m − Zτ,2,m))||1

η :=
2β1
ρ
,

A := Θτ−1 + Uτ−1,1,1 −Θτ + Uτ,2,1.

C.3.3. Minimization of Lρ with respect to Zτ,0,2 (Ψ2)

I now illustrate the solution for minimizing the augmented Lagrangian Lρ with respect to

Zτ,0,2. First I denote that

Ψ2(X) = ||(Xι− ι′Xι/n)||22,

after rearranging can be written as

Ψ2(X) = trace(X1n×nX)− trace(vec(X)′1n2×n2vec(X)/n).

This implies the following optimization problem of the augmented Lagrangian:

argmin
(Zτ,0,2)

Lρ(Θ̄, Zτ,0,2, U) = argmin
(Zτ,0,2)

λ2 (trace(Zτ,0,21n×nZτ,0,2)

−trace(vec(Zτ,0,2)
′1n2×n2vec(Zτ,0,2)/n

)
+ ρ/2|| (Zτ,0,2 − (Θτ + Uτ,0,2)) ||22.
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Taking �rst order conditions with respect to vec(Zτ,0,2) leads to

∂Lρ(Θ̄, Zτ,0,2, U)

∂vec(Zτ,0,2)

=

λ2[(1n×n ⊗ In)− (In ⊗ 1n×n)− 2/n1n2×n2 ] + ρIn2︸ ︷︷ ︸
:=JΨ2

 vec(Zτ,0,2)
!
= ρvec(Θτ + Uτ,0,2),

and hence the solution vec(Z∗
τ,0,2) is given by

vec(Z∗
τ,0,2) = (JΨ2)

−1 ρvec(Θτ + Uτ,0,2).

Notably, JΨ2 depends only on n, ρ and λ2 such that its inversion only needs to be performed

once for a parameter setting before starting the ADMM. However, the n2 × n2 matrix J−1
Ψ2

is not sparse such that the multiplication with the n2× 1 vector ρvec(Θτ +Uτ,0,2) which has

to be performed for all τ and all iterations k, can become very slow for large dimensions.

Moreover, the required memory for JΨ2 and its inverse grows at rate O(n4); for n = 100

it is equal to 1.6GB, and for n = 200, already 25.6GB are required. Hence, I exploit the

structure of JΨ2 to derive an analytical expression for its inverse:

JΨ2 =



A1 A2 A2 . . . A2

A2 A1 A2 . . . A2

. . .
. . .

A2 . . . A2 A1


,

where the n× n blocks A1 and A2 are given by

A1 =



a1 a2 a2 . . . a2

a2 a1 a2 . . . a2
. . .

. . .

a2 . . . a2 a1


, A2 =



a2 a3 a3 . . . a3

a3 a2 a3 . . . a3
. . .

. . .

a3 . . . a3 a2


,

with

a1 = (2− 2/n)λ2 + ρ,

a2 = (1− 2/n)λ2,

a3 = −2/nλ2.
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Hence JΨ2 consists of three distinct entries only. Likewise, J−1
Ψ2

has only three di�erent

elements. It is given by

J−1
Ψ2

=



B1 B2 B2 . . . B2

B2 B1 B2 . . . B2

. . .
. . .

B2 . . . B2 B1


,

where the n× n blocks B1 and B2 are given by

B1 =



b1 b2 b2 . . . b2

b2 b1 b2 . . . b2
. . .

. . .

b2 . . . b2 b1


, B2 =



b2 b3 b3 . . . b3

b3 b2 b3 . . . b3
. . .

. . .

b3 . . . b3 b2


,

with b1 b2 and b3 being the following functionals of ρ, λ2 and n:

b1 = 1/n((n2 − 2n+ 2)λ2 + nρ)/(ρ(nλ2 + ρ)),

b2 = −(n− 2)λ2/(nρ(nλ2 + ρ)),

b3 = (2λ2)/(nρ(nλ2 + ρ)).

Using this result, I can circumvent the vast-dimensional matrix multiplication and replace

it by computing appropriately weighted sums of the elements of ρvec(Θτ + Uτ,0,2), which

reduces computing time by more than 98% and makes the penalty function Ψ2 scalable to

large and vast dimensional applications.
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C.4. Additional empirical results

Table C.1.: Out-of-sample MVP Sharpe ratio (×10) for n = 100

model unrestricted 130/30 100/0

ATVGL 0.484 0.415 0.307

DCC-nl 0.435 0.380 0.280

DCC 0.433 0.376 0.282

AFM-DCC-nl 0.439 0.394 0.292

SHR-nl 0.423 0.363 0.287

SHR-nl* 0.417 0.330 0.285

SHR-l 0.423 0.337 0.282

SHR-l-1f 0.427 0.335 0.281

plug-in 0.423 0.335 0.282

naïve 0.444 0.444 0.444

Note: Out-of-sample model comparison MV-with
momentum signal portfolio. Largest value in bold
letters.
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Table C.2.: Out-of-sample empirical variance unrestricted GMVP for n = 200

model/time full '80-'84 '85-'89 '90-'94 '95-'99 '00-'04 '05-'09 '10-'14 '15-'19

ATVGL 0.393 0.272 0.535 0.196 0.358 0.577 0.567 0.293 0.347

DCC-nl 0.410 0.274 0.515 0.234 0.368 0.635 0.560 0.310 0.383

DCC 0.437 0.296 0.568 0.254 0.395 0.668 0.584 0.328 0.402

AFM-DCC-nl 0.424 0.275 0.553 0.247 0.377 0.641 0.581 0.318 0.395

SHR-nl 0.442 0.283 0.606 0.248 0.392 0.674 0.588 0.343 0.396

SHR-nl* 0.418 0.289 0.574 0.213 0.394 0.614 0.577 0.311 0.373

SHR-l 0.466 0.305 0.654 0.268 0.414 0.690 0.613 0.357 0.421

SHR-l-1f 0.444 0.284 0.599 0.257 0.395 0.679 0.590 0.339 0.402

plug-in 0.467 0.305 0.656 0.270 0.415 0.691 0.616 0.361 0.422

RLS-REF 0.424 0.293 0.587 0.229 0.387 0.611 0.599 0.314 0.365

naïve 1.157 0.826 1.312 0.570 0.925 1.541 2.321 1.055 0.699

Note: Grey shaded cells indicate that the model belongs to the 90 % MCS.
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Table C.3.: Out-of-sample empirical variance exposure-constrained GMVP for n = 200

model/time full '80-'84 '85-'89 '90-'94 '95-'99 '00-'04 '05-'09 '10-'14 '15-'19

130/30 strategy

ATVGL 0.402 0.288 0.563 0.199 0.365 0.582 0.560 0.296 0.363

DCC-nl 0.407 0.288 0.538 0.225 0.375 0.603 0.549 0.316 0.358

DCC 0.412 0.290 0.556 0.228 0.380 0.608 0.554 0.316 0.357

AFM-DCC-nl 0.442 0.281 0.588 0.251 0.386 0.635 0.630 0.349 0.408

SHR-nl 0.457 0.286 0.621 0.264 0.401 0.694 0.627 0.350 0.411

SHR-nl* 0.416 0.290 0.607 0.207 0.386 0.590 0.572 0.305 0.364

SHR-l 0.461 0.290 0.632 0.270 0.404 0.691 0.634 0.349 0.412

SHR-l-1f 0.457 0.287 0.607 0.276 0.400 0.691 0.629 0.346 0.415

plug-in 0.461 0.291 0.632 0.271 0.404 0.691 0.634 0.349 0.412

naïve 1.157 0.826 1.312 0.570 0.925 1.541 2.321 1.055 0.699

100/0 strategy

ATVGL 0.487 0.363 0.667 0.245 0.420 0.656 0.771 0.379 0.394

DCC-nl 0.459 0.369 0.601 0.246 0.430 0.651 0.636 0.373 0.360

DCC 0.460 0.367 0.609 0.247 0.435 0.652 0.638 0.373 0.359

AFM-DCC-nl 0.518 0.373 0.659 0.281 0.436 0.695 0.828 0.428 0.440

SHR-nl 0.536 0.384 0.690 0.301 0.450 0.766 0.831 0.434 0.431

SHR-nl* 0.490 0.370 0.679 0.248 0.431 0.651 0.766 0.389 0.385

SHR-l 0.539 0.384 0.699 0.309 0.453 0.760 0.837 0.436 0.434

SHR-l-1f 0.535 0.384 0.673 0.311 0.448 0.763 0.833 0.432 0.434

plug-in 0.539 0.384 0.698 0.309 0.453 0.760 0.838 0.436 0.434

naïve 1.157 0.826 1.312 0.570 0.925 1.541 2.321 1.055 0.699

Note: Grey shaded cells indicate that the model belongs to the 90 % MCS.
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Appendix C. Appendix for Chapter 4

Table C.4.: Out-of-sample MVP Sharpe ratio (×10) for n = 200

model unrestricted 130/30 100/0

ATVGL 0.644 0.487 0.370

DCC-nl 0.448 0.424 0.360

DCC 0.447 0.423 0.359

AFM-DCC-nl 0.457 0.427 0.378

SHR-nl 0.441 0.421 0.353

SHR-nl* 0.424 0.333 0.313

SHR-l 0.443 0.350 0.311

SHR-l-1f 0.448 0.349 0.311

plug-in 0.443 0.349 0.311

naïve 0.478 0.478 0.478

Note: Out-of-sample model comparison MV-with
momentum signal portfolio. Largest value in bold
letters.
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