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Abstract. Domain decomposition methods are successful and highly parallel scalable itera-

tive solution methods for discretized partial differential equations. Nevertheless, for many classes of
problems, for example, elliptic partial differential equations with arbitrary coefficient distributions,
adaptive coarse spaces are necessary to obtain robustness or, in other words, to guarantee a reli-
able and fast convergence. Adaptive coarse spaces are usually computed by solving many localized
eigenvalue problems related to edges or faces of the domain decomposition. This results in a compu-
tationally expensive setup of the domain decomposition preconditioner or system operator. In this
paper, we suggest to directly learn the adaptive constraints using a deep feedforward neural network
and thus completely skip the computationally most expensive part of the setup, i.e., the solution of
local eigenvalue problems. We consider a specific adaptive FETI-DP (Finite Tearing and Intercon-
necting - Dual Primal) approach and concentrate on stationary diffusion problems in two dimensions
with arbitrary coefficient functions with large jumps. As an input for the neural network, we use
an image representation of the coefficient function which resolves the structure of the coefficient
distribution but is not necessarily identical to the discretization of the partial differential equation.
Therefore, our approach is independent of the finite element mesh and can, in principle, be easily
extended to other adaptive coarse spaces, problems, and domain decomposition methods. We show
the robustness of our method for different problems and the generalization property of our trained
neural networks by considering different coefficient distributions not contained in the training set.
We also combine the learned constraints with computationally cheap frugal constraints to further
improve our approach.

Key words. Machine Learning, Domain Decomposition, FETI-DP, BDDC, Adaptive Coarse
Spaces, Scientific Machine Learning

AMS subject classifications. 65F10, 65N30, 65N55, 68T05

1. Introduction. Recently, the relatively new research area of scientific ma-
chine learning has drawn increasing attention in various applications. Its growing
importance was also emphasized in [2] by characterizing scientific machine learning
as “a core component of artificial intelligence” and by attributing the “potential to
transform science and energy research” to scientific machine learning. The main idea
of this field is to combine existing methods from supervised or unsupervised machine
learning and different research areas as numerical simulations or iterative solvers to
develop new, hybrid methods which benefit from the expertise and experience in
both areas. Also within the area of domain decomposition methods and multilevel
methods, the most successful types of preconditioned iterative solution methods for
solving discretized partial differential equations, recently, different approaches have
been developed which use machine learning algorithms to accelerate the convergence
and/or robustness of the iterative solvers and vice versa; see, e.g., [7, 14, 28] and the
references therein. An overview of different approaches considering the combination
of domain decomposition methods and machine learning can be found in the recent
review article [14]. Let us note that the robustness of the convergence of a domain
decomposition method with respect to arbitrary coefficient jumps depends on the
correct choice of the coarse space. In our previous works [9, 10, 13], we have used
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deep feedforward neural networks to define a robust and efficient coarse space for the
FETI-DP (Finite Tearing and Interconnecting - Dual Primal) domain decomposition
method which resulted in a robust convergence behavior for different realistic test
problems. The coarse space consists of adaptive constraints, which are computed by
solving localized eigenvalue problems on edges and/or faces of the interface of the do-
main decomposition. In general, adaptive coarse spaces guarantee a small condition
number bound of the preconditioned system for a broad range of discretized partial
differential equations with arbitrary jumps in certain coefficient functions. However,
the solution of many localized eigenvalue problems tends to be expensive and time
consuming. Moreover, for many edges and/or faces, the solution of the eigenvalue
problem often turns out to be unnecessary afterwards since no coefficient jumps exist
on those edges and/or faces. In [9,10,13], we therefore have trained a neural network
to predict the geometric location of critical edges and/or faces, where we have to solve
the eigenvalue problem and uncritical ones, where we can omit the eigenvalue problem
completely. This has reduced the amount of necessary eigenvalue solves drastically
and thus has increased the efficiency of the resulting domain decomposition approach.

In this work, we significantly extend our results from [9,10,13]
• by directly learning the adaptive edge constraints in 2D, which reduces the

number of necessary eigenvalue problems to zero,
• by applying the new method to stationary diffusion problems with compli-

cated coefficient distributions based on a microsection of a dual-phase steel,
• by showing numerically that the new approach results in a robust FETI-DP

method for problems with arbitrary coefficient jumps,
• and by combining the learned constraints with the simple frugal approach

(see [11]), which finally leads to our favored method.
So far, we restrict ourselves to regular domain decompositions in two spatial

dimensions and the same adaptive FETI-DP coarse space as in [10]. We train k
separate regression neural networks for the prediction of the first k constraints on an
edge and make sure that our approach is independent of the resolution of the finite
element mesh by exclusively relying on an image representation of the coefficient
distribution instead of including explicit information on the finite element mesh.

Let us remark that in [4], a different approach to learn adaptive constraints was
suggested, which is restricted to the case of stochastic elliptic partial differential equa-
tions. In contrast to our method, it is not independent of the discretization and uses
a truncation of the Karhunen-Loève expansion as an input for neural networks with
a single hidden layer.

The remainder of this paper is organized as follows. In the next chapter, we briefly
introduce our model problem in form of a stationary diffusion equation and provide
a brief algorithmic introduction of the classic FETI-DP method. Subsequently, we
present a very specific adaptive FETI-DP coarse space as introduced in [29,36] for two
spatial dimensions which relies on the solution of local eigenvalue problems based on
local Schur complement matrices and local jump operators. In section 3, we provide a
detailed description of our machine learning approach to learn the coarse basis function
for a problem-dependent FETI-DP coarse space and present first results with respect
to our training and validation data. Finally, in section 4, we use the trained regression
networks to provide numerical results for different realistic test problems and discuss
the robustness of our proposed approach.

2. Classic and adaptive FETI-DP coarse spaces for stationary diffusion
problems. In this chapter, we give a brief algorithmic description of the FETI-DP [5,
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25,37] method and the considered model problem, i.e., a stationary diffusion problem.
It is known that the classic condition number bounds for FETI-DP only guarantee
robustness of the iterative solver under fairly restrictive assumptions on the underlying
coefficient distribution of the considered problem. Hence, we introduce a very specific
adaptive coarse space for the FETI-DP method, which relies on the solution of local
eigenvalue problems based on a local jump operator and which guarantees a robust
convergence behavior for completely arbitrary coefficient distributions; see, e.g., [18–
21,27,29,30,34].

2.1. Model problem. As the model problem for the following numerical exper-
iments in this paper, we consider the following scalar elliptic boundary value problem,
commonly known as stationary diffusion,

(2.1)
−∇ · (ρ∇u) = f in Ω

u = 0 on ∂ΩD

ρ∇u · n = g on ∂ΩN .

Here, ρ : Ω ⊂ R2 → R is a sufficiently smooth coefficient function, f : Ω → R and
g : ∂ΩN → R are appropriate right-hand sides, and n denotes the outer unit normal
on ∂ΩN . For the remainder of this paper, we exclusively consider a homogeneous flow
g = 0. We define the Sobolev space V := H1

0 (Ω, ∂ΩD) := {v ∈ H1(Ω) : v|∂ΩD
= 0}.

Thus, for a piecewise constant parameter distribution ρ ∈ L∞(Ω) with ρ ≥ ρmin > 0
and f ∈ L2(Ω), we obtain the weak formulation: Find u ∈ V such that

(2.2) a(u, v) = F (v) ∀v ∈ V,

where

(2.3) a(u, v) :=

∫
Ω

ρ∇u · ∇v dx and F (v) :=

∫
Ω

fv dx.

To compute a numerical solution of the given stationary diffusion problem, we dis-
cretize (2.2) with finite elements and denote the respective finite element space by
V h. We thus obtain the linear system of equations

(2.4) Kgug = fg.

with ug, fg ∈ V h.

2.2. Classic FETI-DP. Let us now give a short algorithmic description of the
FETI-DP method as first introduced in [5]. The following presentation follows the
descriptions in [10,21,38].

The FETI-DP method is a nonoverlapping domain decomposition method and
relies on a divide-and-conquer strategy which is based on a geometric decomposi-
tion of the domain Ω ⊂ R2 into a finite number of nonoverlapping subdomains
Ωi, i = 1, . . . , N, N ∈ N such that Ω =

⋃N
i=1 Ωi. We further assume that each of

the subdomains Ωi is the union of finite elements with matching finite element nodes
on the interface

Γ :=

(
N⋃
i=1

∂Ωi

)
\ ∂ΩD.

In our case, each subdomain is the union of shape regular elements of diameter O(h).
The diameter of a subdomain Ωi is denoted by Hi or, generically, by H = maxi(Hi).
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Additionally, we denote by Wi the local finite element space associated with a sub-
domain Ωi. Since, in this paper, we exclusively consider two-dimensional domains
Ω ⊂ R2, the finite element nodes on the interface Γ are either vertex nodes, belong-
ing to the boundary of more than two subdomains, or edge nodes, belonging to the
boundary of exactly two subdomains; see, e.g., [25, Def. 3.1]. For the remainder of
this paper, we denote by Eij an edge between two subdomains Ωi and Ωj .

2.2.1. The FETI-DP preconditioner. In the first step of the FETI-DP al-
gorithm, we compute local stiffness matrices K(i) and local right-hand sides f (i) for
each subdomain Ωi, i = 1, . . . , N . These local problems are completely decoupled and
the matrices K(i) are, in general, not invertible for subdomains without contact to the
Dirichlet boundary ∂ΩD. We refer to these subdomains also as floating subdomains.
For floating subdomains, the local solution is, in general, not unique and thus, usu-
ally, the local stiffness matrices of floating subdomains have a non-trivial null space.
In particular, for stationary diffusion problems, the non-trivial null space consists of
the constant functions. The FETI-DP method controls this non-trivial null space by
sub-assembling the decoupled system K = diag

(
K(1), ...,K(N)

)
in selected primal

variables Π to obtain a continuous global solution.
For a detailed description of this sub-assembly process, we first define local restric-

tion operators Ri : V h → Wi, i = 1, ..., N , the block vectors uT :=
(
u(1)T , ..., u(N)T

)
and fT :=

(
f (1)T , ..., f (N)T

)
, and the block matrix RT :=

(
RT

1 , ..., R
T
N

)
. The fully

assembled system matrix can then be written as

(2.5) Kg = RTKR

and the fully assembled right-hand side as

(2.6) fg = RT f.

Let us note again that the block matrix K is not invertible as long as a single subdo-
main has no contact to the Dirichlet boundary and thus, a solution u of the system

Ku = f

might be discontinuous on the interface.
To describe how the continuity of u ∈ W := W1 × ... ×WN on the interface is

enforced using FETI-DP, we introduce a partitioning of the local stiffness matrices
K(i), the local load vectors f (i), and the local solutions u(i) using a subdivision of the
degrees of freedom into interior (I), primal (Π), and dual (∆) variables:

K(i) =

K
(i)
II K

(i)T
∆I K

(i)T
ΠI

K
(i)
∆I K

(i)
∆∆ K

(i)T
Π∆

K
(i)
ΠI K

(i)
Π∆ K

(i)
ΠΠ

 , u(i) =

u
(i)
I

u
(i)
∆

u
(i)
Π

 , and f (i) =

f
(i)
I

f
(i)
∆

f
(i)
Π

 .
Throughout this paper, we always choose - at least - the vertices shared by different
subdomains as the primal variables Π. Thus, in this case, ∆ consists of all remaining
variables on the interface, i.e., all edge nodes in case of a domain decomposition in two
spatial dimensions. Additionally, we will also implement a coarse space that integrates
additional edge constraints as primal variables to further increase the robustness of
the FETI-DP preconditioner; see also subsection 2.3. To obtain a more compact
notation of the FETI-DP algorithm, we additionally introduce the index B as the
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union of interior and dual degrees of freedom leading to the definition of the following
matrices and vectors

K
(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
, K

(i)
ΠB =

[
K

(i)
ΠI K

(i)
Π∆

]
, and f (i)

B =
[
f

(i)T
I f

(i)T
∆

]T
,

and the corresponding block diagonal matrices

(2.7)

KBB = diagN
i=1K

(i)
BB ,

KII = diagN
i=1K

(i)
II ,

K∆∆ = diagN
i=1K

(i)
∆∆,

and KΠΠ = diagN
i=1K

(i)
ΠΠ.

Analogously, we obtain the corresponding block vector uB = [u
(1)T
B , . . . , u

(N)T
B ]T and

the corresponding block right-hand side fB =
[
f

(1)T
B , . . . , f

(N)T
B

]T
, respectively, which

can be partitioned accordingly.
For the FETI-DP algorithm, continuity in the primal variables Π is enforced by

a finite element assembly process, while continuity in the dual variables ∆ is enforced
iteratively by Lagrangian multipliers λ. For an algorithmic description of the primal
assembly process, we introduce the primal assembly operators R(i)T

Π , i = 1, . . . , N ,
which consist of values in {0, 1}. We can then obtain the primally assembled matrices
by

(2.8) K̃ΠΠ =

N∑
i=1

R
(i)T
Π K

(i)
ΠΠR

(i)
Π and K̃ΠB =

[
R

(1)T
Π K

(1)
ΠB , . . . , R

(N)T
Π K

(N)
ΠB

]
,

as well as the corresponding right-hand side as

f̃ =

[
fTB ,

(∑N
i=1R

(i)T
Π f

(i)
Π

)T]T
.

To further enforce continuity in the dual degrees of freedom, in a second step, we
introduce Lagrange multipliers λ which act between two degrees of freedom each. Ad-
ditionally, we define a corresponding jump operator BB = [B

(1)
B , . . . , B

(N)
B ]. Each row

of BB enforces equality of two variables associated with the same physical point but
two different subdomains and thus each row corresponds to one Lagrange multiplier.
In particular, the entries of the local matrices B(i)

B , i = 1, . . . , N have zero entries for
the interior degrees of freedom and, for the dual degrees of freedom, exactly one +1
and one −1 for each row such that BBuB = 0 holds if and only if uB is continuous on
the interface. By integrating the continuity constraint BBuB = 0 into our FETI-DP
system, we obtain the FETI-DP master system given by

(2.9)

 KBB K̃T
ΠB BT

B

K̃ΠB K̃ΠΠ O
BB O O

 uB
ũΠ

λ

 =

 fB
f̃Π

0

 .

In a preliminary step, we eliminate the variables uB and ũΠ in (2.9) and obtain a linear
system in the Lagrange multipliers λ. As a result, we obtain the (unpreconditioned)
classic FETI-DP system

(2.10) Fλ = d,
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where

(2.11)

F = BBK
−1
BBB

T
B +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠK̃ΠBK

−1
BBB

T
B and

d = BBK
−1
BBfB +BBK

−1
BBK̃

T
ΠBS̃

−1
ΠΠ

((
N∑
i=1

R
(i)T
Π f

(i)
Π

)
− K̃ΠBK

−1
BBfB

)
.

In (2.11), the Schur complement S̃ΠΠ for the primal variables is defined as

(2.12) S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T
ΠB .

Let us note that the application of F in (2.11) can be split into two additive parts.
Due to its block structure, the first part requires only local operations and can be
executed completely in parallel. The second part, however, requires the solution of a
coupled coarse problem in form of the application of S̃−1

ΠΠ. The exact solution of the
coarse problem, in general, requires a serial solver and can become a scaling bottleneck
in a parallel implementation. Therefore, we are usually interested in a coarse space
which is preferably small but, at the same time, robust for heterogeneous coefficient
or material distributions.

The system of equations (2.10) in the Lagrange multipliers is then solved by a
Krylov subspace method, such as the PCG [35] or the GMRES method [35]. Hence,
the FETI-DP method is the iterative solution of the preconditioned system

(2.13) M−1Fλ = M−1d.

For our numerical experiments in section 4, we always use the PCG method and the
standard Dirichlet preconditioner M−1

D =: M−1 given by

M−1
D = BB,D [0 I∆]

T (
K∆∆ −K∆IK

−1
II K

T
∆I

)
[0 I∆]BT

B,D = BDS̃B
T
D;

see, e.g., [5], where I∆ is the identity matrix on the dual degrees of freedom and
the matrices BB,D and BD are scaled variants of the jump operators BB and B,
respectively. As the scaling procedure for the scaled matrices BB,D and BD, in this
paper, we exclusively consider the ρ-scaling approach; see, e.g., [22, 27, 34, 37] for a
mathematical description of this approach in two and three dimensions.

2.2.2. Condition number bound. As briefly mentioned in the introduction,
the convergence rate and the condition number estimate for the FETI-DP method
depend strongly on the chosen primal constraints Π, i.e., the coarse space and the
induced scaling matrices for the preconditioner of the FETI-DP system. Without re-
capitulating all the technical details, let us recall from the literature that the estimate
of the spectral condition number κ(M−1

D F ) of the preconditioned FETI-DP system is
strongly connected to an estimate of the operator

(2.14) PD := BT
DB;

see also [24,26] for a first use of the PD operator in this context.
In two dimensions, we can derive a polylogarithmic upper bound for |PDw|S̃ with

w ∈ W̃ and W̃ ⊂ W the primally assembled subspace of W . This results in the
following polylogarithmic condition number bound for the preconditioned FETI-DP
method with a standard vertex coarse space

(2.15) κ(M−1
D F ) ≤ C̃

(
1 + log

(H
h

))2
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with the constant C̃ independent of H, h, and jumps in the PDE coefficients; see [23,
25, 26]. However, the independence of this condition number bound on the coeffi-
cient contrast does only hold under certain assumptions on the coefficient function
or the material distribution, e.g., for constant or slowly varying coefficients within
each subdomain; see, e.g., [31, 37]. For a detailed and technical proof of the cited
condition number estimates based on an upper and a lower bound of the Rayleigh
quotient of the preconditioned FETI-DP system and Poincaré inequalities, we refer
to, e.g., [23,31] for two-dimensional model problems and [25,26] for three dimensions.

2.3. Adaptive FETI-DP based on a local jump operator. For completely
arbitrary coefficient distributions, the constant C̃ in (2.15) usually depends on the con-
trast of the coefficient function and we thus experience a deteriorating convergence
behavior of the classic methods. A remedy is obtained by adaptive coarse spaces,
which have been proposed by several authors for both overlapping and nonoverlap-
ping domain decomposition methods; see, for example, [14, Section 2.2] for a recent
list of references. These methods enhance the coarse space with selected eigenvectors
or coarse modes and are thus problem-dependent and robust for arbitrary hetero-
geneities. In general, most of these adaptive methods rely on the solution of local
eigenvalue problems on edges, local interfaces, or subdomains of the domain decom-
position. Thus, most adaptive coarse spaces are built in a local fashion and exploit the
parallel structure of the underlying domain decomposition algorithm. In this paper,
we focus on a very specific adaptive coarse space for the FETI-DP method, which has
also successfully been applied to the BDDC method [18,20,21,27,29,30,34].

2.3.1. Adaptive constraints based on local generalized edge eigenvalue
problems. To motivate the approach first introduced in [29, 30], let us briefly recall
that we can establish an algebraic relation between the Rayleigh quotient of the
preconditioned FETI-DP system and the operator PD, i.e., |PDw|S̃ as introduced
in subsection 2.2.2. Using this relation, the following adaptive coarse space relies
on the solution of local eigenvalue problems which are directly connected to the PD

operator and local Schur complement matrices. To provide a mathematical description
of the cited adaptive coarse space, let us now introduce some basic notation. Note that
we always assume the existence of an a priori nonadaptive coarse space that ensures
the invertibility of the local problems of each subdomain. In this article, we therefore
assume that all vertices are chosen as primal variables. The following description is
roughly based on [11] and [27,34,38].

In two dimensions, for each edge Eij between two neighboring subdomains Ωi and
Ωj , a single eigenvalue problem has to be solved. To give a mathematical formulation
of the respective local eigenvalue problem, we first introduce the local restriction of
the jump matrix B to the edge Eij . We thus define

BEij :=
(
B

(i)
Eij , B

(j)
Eij

)
as the submatrix of

(
B(i), B(j)

)
with consisting of exactly one 1 and one −1 for each

row and being zero elsewhere. Analogously, we denote by

BD,Eij :=
(
B

(i)
D,Eij , B

(j)
D,Eij

)
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the corresponding scaled submatrix of
(
B

(i)
D , B

(j)
D

)
, i.e., the scaled variant of BEij .

We then define the block-diagonal Schur complement matrix

(2.16) Sij :=

(
S(i) 0

0 S(j)

)
∈ R(ni+nj)×(ni+nj)

with S(i) and S(j) being the local Schur complements of the local stiffness matrices
K(i) and K(j), respectively, with respect to the interface variables and nl, l ∈ {i, j},
the number of degrees of freedom on the local part of the interface. We further define
a local version of the jump operator PD = BT

DB as

PDij := BT
D,EijBEij .

Then, according to [21,29,30,34], one has to solve the following generalized eigenvalue
problem for each edge Eij : Find wij ∈ (ker Sij)

⊥ such that

〈PDij
vij , SijPDij

wij〉 = µij〈vij , Sijwij〉 ∀vij ∈ (ker Sij)
⊥
.(2.17)

To finally compute the adaptive constraints to enhance the a priori coarse space, we
then select all eigenvectors wl

ij , l = 1, . . . , L belonging to eigenvalues µl
ij , l = 1, . . . , L,

which are larger than or equal to a user-defined tolerance TOL. Next, we enforce the
constraints

(2.18) wlT
ij P

T
Dij

SijPDijwij = clTij BEijwij = 0,

for given constraint vectors

(2.19) clij := BD,EijSijPDij
wl

ij , l = 1, . . . , L,

for example, with a projector preconditioning/deflation or a transformation-of-basis
approach.

2.3.2. Condition number bound. As for the classic FETI-DP and BDDC
methods, the spectral condition number for the adaptive FETI-DP method presented
in subsection 2.3.1 is also closely related to an estimate of the PD operator. For the
sake of completeness, let us briefly cite the respective condition number bound for
two-dimensional problems which is valid for arbitrary coefficient distributions.

For a two-dimensional domain Ω, enhancing the FETI-DP and BDDC coarse
space with the adaptive coarse constraints from (2.18), a condition number bound of
the form

(2.20) κ(M̃−1F ) ≤ N2
E · TOL

has been derived in [21]. Here, M̃−1 is either the projector or the balancing precon-
ditioner and with NE denoting the maximum number of edges of a subdomain. In
particular, the constant in (2.20) does only depend on geometric constants of the do-
main decomposition and not on the contrast of the underlying coefficient distribution.
For a detailed proof of the condition number bound (2.20) in two dimensions, we refer
to [34, Theorem 3.3.1] and [21, Theorem 5.1].
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Ωi Ωj

Eij

...

...

...
...

...

...

Input
layer

Hidden
layers

Output
layer

Learned
constraint

ρ(x1)

ρ(x2)

ρ(xk)

ρ(xM )

Figure 1. Visualization of our network models Nl and Ñl, l ≤ k. As input data for the neural
network, we use samples of the coefficent function for the two neighboring subdomains of an edge
(left). Here, dark red corresponds to a high coefficient and white corresponds to a low coefficient.
In this representation, the samples are used as input data for a feedforward neural network with two
hidden layers (middle). The output of the network is a discretized egde constraint (right).

3. Learning adaptive constraints using supervised regression neural
network models. The aim of this work is to compute a discrete approximation
of adaptive edge constraints resulting from the local eigenvalue problem (2.17) by
training a supervised regression machine learning model. The set-up and the solution
of the eigenvalue problem (2.17) is, especially for three-dimensional domains, usually
computationally relative expensive whereas the evaluation of a trained and saved net-
work model is typically cheap. In subsection 3.1, we introduce our machine learning
approach in more detail by providing a concrete description of our mesh-independent
regression neural networks. In subsection 3.2, we describe the training and validation
data and present first results of the trained models with respect to the training data.

3.1. Defining a mesh-independent neural network model. We extend our
approach from [10] and [13] by directly learning a discretized approximation of the
adaptive FETI-DP constraints for the coarse space described in subsection 2.2. In [10,
13], we have successfully developed a supervised machine learning approach which
uses a carefully designed representation of the coefficient or material distribution,
respectively, of the underlying model problem as input data for a neural network in
order to predict the geometric location of additional coarse basis functions which
are necessary to obtain a robust algorithm. As an effect, a high amount of the
eigenvalue problems on edges or faces do not need to be setup and solved and thus the
computational effort of the underlying adaptive FETI-DP method can be reduced. In
partciular, we were able to save up to 94% of the eigenvalue problems for irregular
decompositions in two spatial dimensions; see, e.g., [10] for more details.

Here, we go one step further and train a supervised regression model which is
able to compute an approximation of the first k adaptive constraints themselves. In
contrast to our approach presented in [10, 13], this does not require the setup and
solution of any local eigenvalue problems at all. Let us mention that, in principle,
both concepts can be combined with each other as follows. One could first use the
framework described in [10] to obtain an a priori prediction of the critical edges where
adaptive constraints are necessary and afterwards apply the procedure as described
below to replace them by those predicted by the trained neural network. In fact, since
the frugal constraints are often a good approximation of the first adaptive constraint,
the constraints predicted by the neural network are only needed on those critical
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N1

Ñ1

N2

Ñ2

N3

Ñ3

Ωi Ωj

Eij

Figure 2. Visualization of the different network models for the computation of approximated
edge constraints. We train three network models Nl, l ≤ k = 3 for pairs of floating subdomains
and three network models Ñl, l ≤ k = 3 for pairs of subdomains that share an edge Eij with direct
contact to the Dirichlet boundary ΩD. For each network model, we use the same input data, i.e.,
sampling points as shown on the left, but a different ground truth, i.e., different approximated edge
constraints as shown on the right. See also Figure 1 for more details on the input and output data.

edges, where at least two constraints have to be used.
The core idea of our concept is to train k ∈ {1, . . . , nEij} separate modelsNl, l ≤ k

for the prediction of the first k edge constraints resulting from the generalized edge
eigenvalue problem (2.17), where nEij is the number of the degrees of freedom of the
edge Eij between two subdomains Ωi and Ωj . For each of the models Nl, l ≤ k, we
train a dense feedforward regression neural network [3,6] with the hyperparameters as
given in Table 1. An exemplary dense feedforward neural network model Nl is shown
in Figure 1. The reported choice of the hyperparameters in Table 1 has been optimized
by a grid search and using cross validation on the training and validation data; see also
the related discussion in subsection 3.2. As listed in Table 1, we use the MSE (mean
squared error) as the loss function to evaluate the training and validation accuracy
of the trained networks and we train the networks by using a stochastic gradient
descent (SGD) method with a batch size of 32 and using the Adam optimizer [17]
with its default parameters {β1 = 0.9, β2 = 0.999}. We have trained the network
for 600 epochs while using an early stopping criterion ( [33] or [6, Sect. 7.8]) with a
patience of 10 epochs. Let us note that, for the numerical experiments in section 4, we
exclusively choose k ≤ 3, computing an approximation for at most three constraints
for each edge.

As input for the neural network models Nl, l ≤ k, we use a mesh-independent
image representation of the coefficient function ρ of the two subdomains Ωi and Ωj

sharing the edge Eij . Here, we use the same sampling procedure as described in detail
in [10] to compute function evaluations of the coefficient function with a consistent or-
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dering and a fixed length as input data for the neural networks. Basically, we compute
a geometric grid of points which covers the coefficient function in the two neighboring
subdomains of an edge. This grid is independent of the finite element mesh and the
only assumption we make is that the grid is fine enough to capture all jumps and
geometric details in the coefficient function. We then evaluate the coefficient function
ρ in all computed grid points and use dummy values of −1 for sampling points which
lay outside the two subdomains. A consistent ordering of the regular grid of sampling
points is then given by the increasing Euclidean distance of the sampling points to
the edge Eij . Let us note that our approach, as first proposed in [10], is independent
of the finite element discretization and can be used for both, regular and irregular
domain decompositions as obtained by METIS [16]. Furthermore, the described sam-
pling approach can be extended to three-dimensional domains; see [13, 14]. However,
we restrict ourselves to regular, two-dimensional domains for the remainder of this
paper.

As output for the different network models we use discrete values of the adaptive
edge constraints obtained by the solution of the local edge eigenvalue problem (2.17).
For the training of the l-th network Nl, we use the respective constraint as output
data which results from the eigenvector wl

ij belonging to the eigenvalue µl
ij . Thus, the

different network models Nl, l ≤ k, in principle, only differ by their respective output
data but are trained with the same input data to approximate nonlinear functions
Fl : Il → Ol, l ≤ k, where Il is the input space and Ol is the output space, respectively,
of the network model Nl. For the implementation and training of the different network
models we use TensorFlow [1] as well as Scikit-learn [32] for the preprocessing of the
data. Based on the above descriptions, we use the following input and output spaces
Il and Ol, l ≤ k, respectively, for the different network models:

• Il ∈ R3200, i.e., we use 3 200 sampling points as input data for the neural
networks. Generically, this corresponds to a mesh discretization defined by
H/h = 40.

• Ol ∈ R19, i.e., we evaluate the different edge constraints in 19 degrees of
freedom to obtain the output data for the neural network models.

Let us note that, in principle, one has to decide for a fixed number of output
nodes of the neural network models Nl, l ≤ k, and thus for a fixed number of degrees
of freedom for the discretized representation of the adaptive edge constraints. How-
ever, in order to provide an approach which is applicable for different finite element
discretizations, we set a fixed number of degrees of freedom per edge as a basis which
determines the number of output nodes for our neural networks and use an inter-
polation technique to generalize our approach to more general mesh discretizations.
For the numerical experiments presented in section 4, we choose a mesh discretiza-
tion defined by H/h = 20 as a basis and thus have 19 output nodes for each of our
regression networks Nl, l ≤ k. In order to obtain an approximation of the adaptive
edge constraints for different, that is, finer mesh discretizations, we compute a linear
interpolation of the discretized output of the respective neural network Nl using the
finite element mesh points as interpolation points and the finite element basis func-
tions as the basis. Let us note that, in principle, also a polynomial interpolation with
polynomial basis functions of a higher order could be used.

Besides using different networks Nl, l ≤ k, k ∈ {1, . . . , nEij}, for the approxima-
tion of the first k adaptive constraints, we additionally train separate neural networks
for edges which are directly connected to the Dirichlet boundary ∂ΩD of our domain
Ω. In general, the resulting adaptive edge constraints (2.18) are different for edges
with direct contact to the Dirichlet boundary ∂ΩD than for edges between two float-
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Hyperparameter Optimal choice
# Hidden layers 4
# Neurons per hidden layer 50
Dropout per hidden layer 20%
Activation function ReLU
Optimizer Adam
Initial learning rate 0.001
Loss function MSE

Table 1
Hyperparameters for the regression neural networks obtained by a grid search.

ing subdomains due to the direct influence of the Dirichlet boundary condition on
the local Schur complement matrices Sij of the local edge eigenvalue problem (2.17).
This observation is also illustrated by the exemplary constraints for the coefficient
function ρ visualized in Figure 4 (top row, left) with three straight channels of a high
coefficient horizontally crossing each subdomain. In Figure 3 (top row), we show the
adaptive constraints resulting from the edge eigenvalue problem (2.17) and the toler-
ance TOL = 100 for an edge Eij shared by two floating subdomains. In particular,
the selected tolerance TOL = 100 results in three adaptive constraints for the given
coefficient distribution. For a direct comparison, in Figure 3 (bottom row), we show
the respective constraints for the edge E12 between the subdomains Ω1 and Ω2 which
has a direct contact to the Dirichlet boundary ∂ΩD := ∂Ω. As we can observe from
directly comparing the respective edge constraints in Figure 3, we obtain different
edge constraints in both cases. Therefore, we have decided to train and evaluate
separate neural networks Ñl, l ≤ k, k ∈ {1, . . . , nEij}, for edges which are directly
connected to ∂ΩD in order to improve the accuracy and thus the robustness of our
proposed approach; see also Figure 2 for an overview of the different trained networks.
Finally, to further increase the training and generalization properties of all networks,
we scale both the input and output data of the networks by using a min-max-scaling
as implemented in Scikit-learn [32]. As a result, both the input and the output data
range between values of 0 and 1 after the scaling procedure.

Let us note that the training of all networks, that is, the networks for the different
k adaptive constraints consisting of those for floating pairs of subdomains and for
subdomains sharing an edge connected to the Dirichlet boundary, can be executed
completely in parallel since the different networks are completely independent of each
other. This makes our approach well suited for the application on parallel computers
in general and especially on GPU clusters.

3.2. Results on training and validation data. Let us now describe the data
used for the training and validation of the networks in more detail and summarize the
results of our trained networks with respect to the training and validation data. For
the generation of the input data of the neural networks, we use the same sampling
approach as described in detail in [10, 14]. To generate the training and validation
data, we compute sampling points, that is, function evaluations of the diffusion coef-
ficient function ρ for two neighboring subdomains Ωi and Ωj sharing an edge Eij . In
particular, this means that the training of the neural networks is completely based
on local information of the domain decomposition. As explained in subsection 3.1,
we train different neural networks Nl and Ñl, respectively, for edges between two
floating subdomains and pairs of subdomains which share an edge with direct contact
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Figure 3. Exemplary adaptive constraints for a stationary diffusion problem and the coeffi-
cient distribution as in Figure 4 (top row, right) and TOL = 100. Top row: Edge constraints for
two floating subdomains. Bottom row: Edge constraints for two subdomains where the adjacent
edge has direct contact to the Dirichlet boundary ∂ΩD. In both cases, the pair of subdomains is
extracted from a decomposition of the unit square into 4× 4 subdomains and H/h = 14. Coefficient
contrast 1e6.

to the Dirichlet boundary ∂ΩD. To generate an appropriate amount of training and
validation data, we use a set of carefully constructed coefficient distributions which
are exemplarily visualized in Figure 4. The coefficient distributions shown in Figure 4
are mirrored and varied in their size and position to obtain a total of 4 500 coefficient
distributions used for the training and validation of the neural networks. In analogy
to [10, 12, 14], we denote the resulting training data set by smart data. Let us note
that we have shown in [12] and [13] that it is also possible to train the classification
neural networks used there with randomized training data both in two and three di-
mensions. However, we restrict ourselves to the use of the smart training data for the
remainder of this paper since this training data set provided the best results in [12].
For all training data configurations, we always set the high coefficient to ρ1 = 1e6 in
the dark blue pixels and ρ2 = 1 otherwise.

For each configuration in the training and validation data, we solve the local
eigenvalue problem (2.17) and use the tolerance value TOL = 100 to determine the
eigenvectors for the computation of the respective adaptive constraints which are
necessary to obtain a robust coarse space. Since our aim is to train k regression neural
network models with a fixed number of output nodes, we always save a discretized
representation, that is, a fixed number of values of the l-th adaptive edge constraint
as output data for the network Nl or Ñl, respectively. To generate the input and
output data for the training and validation of the different network models Nl and
Ñl, l ≤ k, we have used a decomposition of the unit square into 4 × 4 subdomains
and a mesh size defined by H/h = 20.
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Figure 4. Nine different types of coefficient functions used for the training and validation of
the neural network models. The inclusions, channels, boxes, and combs with high coefficient are
displaced, modified in sized, and mirrored with respect to the edge in order to generate the complete
training data set. We refer to the resulting data set as smart data. Taken from [10].

The hyperparameters and details of the training process of the optimized regres-
sion networks are summarized in Table 1 and have already been described in detail
in subsection 3.1. Let us mention that we have also included neural network models in
our grid search that did not use any dropout within the hidden layers. In particular,
we have considered the same network as defined by the hyperparameters in Table 1
but without using dropout. Even though this resulted in a regression model with a
slightly lower MSE with respect to the training data, the model resulted in a higher
MSE loss on the validation data and especially a worse performance with respect to
our test data; cf. the related comparison in section 4 with respect to our test data.
In Table 2, we provide the MSE loss values for both models, that is, the neural net-
work defined in Table 1 with and without dropout for the training and validation
data. Due to the better generalization properties, especially with respect to previ-
ously unseen test data, we decided to use the model with dropout as the final model
for our experiments in section 4.

In Figure 5, we present exemplary comparison results for a specific training data
configuration obtained by the networks N1 and N2 for an edge between two floating
subdomains. In the top row (in green), we show the ground truth, that is, the adaptive
constraints resulting from the first and second eigenmodes of the local edge eigenvalue
problem (2.17) for a given coefficient distribution. In the bottom row (in blue), we
show the respective discrete approximations obtained by the trained networks N1

and N2, respectively. We can observe that the approximated constraints show a very
similar qualitative behavior as the true adaptive constraints, that is, the peaks and
plateaus occur at approximately the same edge degrees of freedom. From our previous
experiments with different adaptive and heuristic coarse spaces (e.g., [8,11,18,20–22])
we know that the location of peaks and plateaus of the respective constraints is usually
more important to provide a robust preconditioner than the exact absolute value of
the function at these degrees of freedom. Thus, the shown output by the regression
networks serves as a good approximation of the adaptive constraints for the given
coefficient function. This is also confirmed by our numerical results for the unseen
test data.

4. Numerical results. In this chapter, we provide numerical results for differ-
ent stationary diffusion problems using our supervised machine learning approach as
described in section 3. As different test problems for our trained regression models
we consider various heterogeneous coefficient functions ρ which are explicitly not in-
cluded in our training and validation data set. As iterative solver to solve the resulting
preconditioned FETI-DP systems, we always use the PCG (preconditioned conjugate
gradient) method with a relative reduction of the residuum of 1e-8 as the stopping
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Figure 5. Results on exemplary training and validation data. Here, we consider a coefficient
distribution for two neighboring subdomains sharing an edge which is defined by two channels of a
high coefficient. Coefficient contrast 1e6. Green: ground truth, blue: prediction as obtained by the
neural networks.

Evaluated data Neural network model
With dropout Without dropout

Training data 1.27e-03 6.24e-04
Validation data 2.01e-03 9.53e-03

Table 2
MSE loss values for the training and validation data for the neural network model defined by

the hyperparameters in Table 1 with and without using dropout within the hidden layers.

criterion.
As a first test problem, we consider a heterogeneous stationary diffusion problem

with a coefficient distribution as defined in Figure 6. For this test problem, we decom-
pose our domain Ω = [0, 1]2 into 4× 4 subdomains and we use a mesh discretization
defined by H/h = 10. We choose all vertices as primal variables and set ρ1 = 1e6 in
the dark blue pixels in Figure 6 and ρ2 = 1 otherwise. Let us note again that this
specific combination of U-shaped and straight channels with a high coefficient is not
included in our training and validation data set. Thus, this problem serves as a first
sanity check whether the trained regression models are able to generalize to different
coefficient distributions. In Figure 7 (upper row), we show the adaptive constraints
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which result from the local edge eigenvalue problem (2.17) when using the tolerance
TOL = 100 for the selection of the respective eigenvectors for an edge between two
floating subdomains. As we can observe from Figure 7, the selected tolerance leads
to two additional adaptive constraints for each horizontal edge. In Figure 8 (left),
we have visualized the eigenvalues of the resulting preconditioned FETI-DP system
M−1F , that is, after the implementation of the computed adaptive edge constraints.
As we can see in Figure 8, the highest eigenvalue of the global systemM−1F is around
2.8 which also results in a condition number estimate of 2.8 and an iteration number
of 10. Hence, the condition number of the preconditioned system is clearly indepen-
dent of the coeffcient contrast as we are expecting from the implemented adaptive
coarse space. For a direct comparison, in Figure 7 (bottom row), we show the ap-
proximated constraints as obtained by our neural networks N1 and N2 for the first
and second edge constraints. Obviously, both, the qualitative as well as quantita-
tive behavior of the approximated constraints is very similar to the exact adaptive
edge constraints in Figure 7 (top row). Additionally, we also show the eigenvalues
of the preconditioned FETI-DP system M−1F when implementing the approximated
adaptive constraints in Figure 8 (right). Here, we obtain the largest eigenvalue of
approximately 35.5 which results in a condition number estimate of about the same
value and an iteration number of 14. Thus, we also obtain a condition number which
is independent of the coefficient contrast when using the predictions of the regression
neural network models and an iteration number which is very close to the iteration
count of the adaptive FETI-DP coarse space indicating that our machine learning
model works fairly well for this synthetic coefficient distribution.

As a second and more realistic test problem, we consider a subsection of a mi-
crosection of a dual-phase steel. The complete microsection is shown in Figure 9
(left) and the subsection which is used in our numerical experiments is shown in Fig-
ure 9 (middle and right). We use this microsection subsection for a stationary diffusion
problem in the unit square which is decomposed into 4×4 subdomains and discretized
with a mesh defined by H/h = 20. To obtain a binary coefficient distribution, we set
ρ1 = 1e6 in the black part of the microsection and ρ2 = 1 elsewhere. In Table 3, we
provide comparison results for the defined microsection problem for different adap-
tive and approximate FETI-DP coarse spaces. First, we show the condition number
(cond) and iteration number (iter) for the adaptive FETI-DP coarse space (coarse
space i)) as introduced in subsection 2.3. In particular, in this case, we setup and
solve the eigenvalue problem (2.17) for each edge of the domain decomposition. As
shown in Table 3, the corresponding adaptive FETI-DP coarse space results in a con-
dition number estimate of 9.42 which is clearly independent of the coefficient contrast
1e6. Furthermore, we obtain an iteration number of 24. We also show the corre-
sponding spectrum of the global preconditioned FETI-DP system in Figure 10 (left).
As second coarse space, we consider the frugal coarse space introduced in [11] (coarse
space ii)). Here, we use generalized weighted averages which are strongly motivated
by the adaptive constraints in subsection 2.3 for each edge shared by two subdomains.
Note that the frugal coarse space is smaller than the adaptive coarse space since we
exclusively implement one frugal constraint for each edge. Even though, to the best of
our knowledge, no theoretical condition number bound exists for this heuristic coarse
space, the frugal coarse space shows a robust convergence behavior for many heteroge-
neous coefficient or material distributions; see also [11]. For the microsection problem,
however, the obtained condition number is of the order of the coefficient contrast even
though the iteration number is still satisfactory; cf. Table 3. The discussed results
for the frugal coarse space can be further improved by expanding the frugal edge
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constraints by a second and a third, at maximum, adaptive edge constraint which are
obtained by the edge eigenvalue problem (2.17) (coarse space iii)). As we can observe
from Table 3 this leads to a condition number and iteration count which is very close
to the values obtained by the adaptive coarse space. This confirms our experience
from [11] that the computed frugal constraint serves as a good approximation of the
adaptive constraint resulting from the first eigenmode or, more general, as a good
low-dimensional approximation of the respective adaptive coarse space [29,30].

Eventually, we present results for an approximate FETI-DP coarse space us-
ing approximated constraints as obtained by the trained regression networks Nl and
Ñl, l ≤ k = 3, respectively, for the given microsection problem. In particular, we do
not solve any edge eigenvalue problems but compute sampling points for the given
coefficient distribution for each pair of neighboring subdomains as described in subsec-
tion 3.1 and evaluate the trained network for these input data (coarse space v)). Imple-
menting the obtained discrete approximations of the first three coarse constraints leads
to a condition number of 342.09 and an iteration number of 28. Hence, we clearly ob-
tain a condition number estimate that is independent of the coefficient contrast which
ensures a robust convergence behavior. The robustness of the machine learning-based
approach is also indicated by the iteration number similar to the adaptive coarse space.
Let us also note that when comparing the (min-max-scaled) approximated edge con-
straints for the microsection problem with the (min-max-scaled) ground truth, i.e.,
the adaptive constraints resulting from the eigenvalue problem (2.17), we obtain an
MSE loss value of 0.0051 for the neural network models with the hyperparameters as
in Table 1. As a comparison, when using the same neural network models but without
dropout, we obtain an MSE of 0.27. This indicates that sparsification of the neural
network by integrating dropout into our regression model indeed helps to increase the
generalization properties of the trained neural networks; cf. also the related discussion
with respect to the loss values in Table 2 for the training and validation data. Ad-
ditionally, we propose a hybrid coarse space (coarse space iv)) which always imposes
a frugal edge constraint [11] for each edge of the domain decomposition and uses the
neural networks N2 and N3 or Ñ2 and Ñ3 to obtain an approximation of the con-
straints obtained from second and third eigenmodes. The respective results are also
reported in Table 3 and we can see that this hybrid approach can further reduce both
the condition number as well as the required number of CG iterations for the solution
of the corresponding preconditioned FETI-DP system. For a direct comparison with
the adaptive coarse space as presented in subsection 2.3, we also show the spectrum
of the global preconditioned FETI-DP system in Figure 10 (right). Obviously, the
reported condition number of 156.16 is caused by only one outlier of the spectrum
whereas the other eigenvalues have a value lower than 10. Since, as already discussed
in detail in [11], the construction of frugal edge constraints has only low computational
cost and only a slightly higher computational effort than classic edge constraints [22]
we propose the combination of frugal constraints and approximated constraints by a
neural network as the favored variant for practical experiments. Let us note that the
coarse spaces iv) and i) are of a larger size than the adaptive coarse space i). This is
due the fact that we always integrate three learned constraints for each edge of the
domain decomposition. The coarse space size can be reduced by only enforcing the
learned constraints on edges labeled as critical by the classification neural network de-
fined in [10,12,15]. This only requires, as already mentioned, the additional evaluation
of one further neural network. Another possible approach to further reduce the size
of the coarse space could be the following: Instead of training the networks to directly
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Figure 6. First test problem: combination of channels and U-shaped structures of a high
coefficient. Stationary diffusion problem, decomposition of Ω = [0, 1]2 into 4× 4 subdomains, mesh
size defined by H/h = 10. Coefficient contrast 1e6.

Coarse space cond iter # c.
i) Adaptive 9.42 24 21
ii) Frugal 168,790 76 13
iii) Frugal + adaptive 23.78 23 21
iv) Frugal + learned 156.16 27 72
v) Learned 342.09 28 72

Table 3
Comparison of different adaptive, heuristic and approximate coarse spaces for FETI-DP for the

microsection problem in Figure 9 (right). Decomposition of the unit square into 4 × 4 subdomains
and a mesh size defined by H/h = 20. Coefficient contrast 1e6. We denote by cond the condition
number estimate of the global preconditioned FETI-DP system , by iter the number of CG iterations
for the iterative solution of the system, and by # c. the size of the FETI-DP coarse space.

predict the edge constraints one could also train different networks to approximate
the eigenvectors of the local eigenvalue problem (2.17). Then, one could implement
an energy check as proposed in [11] to discard eigenvectors which are not necessary
for the robustness of the coarse space. However, in contrast to the approach presented
in this paper, the described procedure does still require additional computations and
communication in the set-up of the FETI-DP coarse problem. We leave an evaluation
of this approach and a comparison to our present method for future research.

Furthermore, to prove that our proposed machine learning algorithm is robust for
different microsection problems, we provide average condition numbers and iteration
counts for ten different subsection of the dual-phase steel microsection in Table 4. The
different subsections used for the numerical computations are shown in Figure 11. As
we can observe from Table 4, using the hybrid coarse space iv), i.e., implementing a
frugal constraint for each edge and two additional constraints approximated by the
trained neural network models, provides robust condition numbers independent of the
coefficient contrast as well as iteration numbers which are very close to the adaptive
coarse space which is used as the ground truth for the training of the networks (coarse
space i)).
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Figure 11. Ten different subsections of the microsection of a dual-phase steel in Figure 9 (left)
suitable for our MATLAB computations to prove the robustness of our machine learning approach.
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