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Zusammenfassung

In dieser Arbeit untersuchen wir irreduzible endlich dimensionale PBW graduierte
Höchstgewichtsdarstellungen für komplexe endlich dimensionale einfache Lie Al-
gebren. Dabei ist diese Arbeit in drei Teile gegliedert.

Im ersten Teil konstruieren wir für ausgewählte fundamentale Gewichte und deren
Vielfache FFL Basen für die entsprechenden oben genannten Moduln. Zudem
geben wir eine explizite Beschreibung für die definierenden Ideale dieser Moduln
an. Dabei übertragen wir das Vorgehen von Feigin, Fourier und Littelmann auf
die von uns betrachteten Fälle.
Der zweite Teil beinhaltet keine Voraussetzungen an das dominant integrale
Höchstgewicht. Wir betrachten monomiale Basen für die oben gennanten Mod-
uln, welche unter Benutzung von bestimmten Differentialoperatoren beschrieben
werden können. Ferner stellen wir ein Kriterium für solche Basen zur Verfügung,
welches unter anderem auch auf die FFL Basen aus dem ersten Teil dieser Arbeit
anwendbar ist. Anhand dieses Kriteriums lässt sich entscheiden, ob die gegebene
Basis ebenso eine monomiale Basis liefert, falls der Modul über einen Körper mit
beliebiger Charakteristik betrachtet wird.
Im dritten und letzen Teil stellen wir eine allgemeine Formel für den Grad des
Hilbert–Poincaré–Polynoms für PBW graduierte Höchstgewichtdarstellungen zur
Verfügung. Dabei reicht es den Grad für jedes fundamentale Gewicht zu berech-
nen, was wir explizit ausführen.
Mit den Resultaten dieser Arbeit verbessern wir in einigen Fällen das Verständnis
der Theorie der PBW graduierten Höchstgewichtdarstellungen.

Abstract

We investigate in this thesis irreducible finite–dimensional PBW graded highest
weight representations for complex finite–dimensional simple Lie algebras. The
thesis is divided into three parts.

In the first part we construct for several fundamental weights and their multiples
FFL bases of the corresponding modules mentioned above. Furthermore, we
provide an explicit description of the defining ideals of these modules. We transfer
the procedure of Feigin, Fourier and Littelmann to the cases considered by us.
The second part does not contain any assumptions on the dominant integral
highest weight. We consider monomial bases for the highest weight representation
mentioned above, which can be described by using certain differential operators.
Further we provide a criteria for such bases, which can be also applied to the FFL
bases from the first part of this thesis. On the basis of this criteria it is possible
to decide whether the given basis provides again a monomial basis, if the module
is considered over a field of arbitrary characteristic.
In the third and last part we provide a general formula for the degree of the
Hilbert–Poincaré polynomials of PBW graded highest weight representations. It
is sufficient to calculate the degree for every fundamental, what we do explicitly.
The results of this thesis improve in several cases the understanding of the theory
of PBW graded highest weight representations.
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Introduction

One important tool for the investigation of the representation theory of Lie al-
gebras is the Poincaré–Birkhoff–Witt Theorem, also called PBW Theorem. For
a Lie algebra g this theorem provides an explicit construction for a basis of the
universal enveloping algebra U(g).
The classical idea to understand the representations of a Lie algebra g is to inves-
tigate the representations of U(g), because they are the same. In this thesis we
consider modules for the associated graded algebra Ua(g), since it seems likely
that there is a strong connection between these modules and the modules for g.
The investigation of these PBW filtered and graded modules for simple finite–
dimensional Lie algebras has started in recent years only.

Let us briefly recall the construction of the PBW filtration, which is necessary to
understand the resulting PBW graduation. Let us fix a simple complex finite–
dimensional Lie algebra g and a triangular decomposition g = n+ ⊕ h⊕ n−. The
degree filtration U(n−)s on the universal enveloping algebra U(n−) over n− is
defined by:

U(n−)s = span{x1 · · ·xl | xi ∈ n−, l ≤ s}.

The associated graded space of U(g) is given by

Ua(n−) =
⊕

s∈Z≥0

U(n−)s/U(n−)s−1, U(n−)−1 = {0}.

The definition of U(g) as quotient of the tensor algebra T (g) and the ideal
J = 〈x⊗ y − y ⊗ x− [x, y] | x, y ∈ g〉, implies that Ua(n−) ∼= S(n−), since
x⊗ y, y ⊗ x ∈ U(n−)2 and [x, y] ∈ U(n−)1 for x, y ∈ g.

Let us now consider the irreducible finite–dimensional g–module V (λ) of high-
est weight λ and denote by vλ the highest weight vector. Therefore we consider
V (λ) = U(n−)vλ and the PBW filtration on U(n−) induces the PBW filtration
on V (λ), where the s–th filtration component is given by V (λ)s = U(n−)svλ. The
associated graded space

V a(λ) =
⊕

s∈Z≥0

V (λ)s/V (λ)s−1, V (λ)−1 = {0},

is a cyclic S(n−)–module, which is called PBW graded module. Thus there is a
ideal I(λ) ⊆ S(n−), the annihilator of the generating element vλ, such that:

V a(λ) ∼= S(n−)vλ ∼= S(n−)/I(λ).

Note that V (λ)s is a U(n+)–module for all s ∈ Z≥0. This induces a U(n+)–
module structure on V a(λ).
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In 2009, E. Feigin started the investigation of PBW graded modules (see [Fei09]),
where he defined the PBW filtration for arbitrary Kac–Moody abgebras of finite
and affine type. In 2011/12 E. Feigin, G. Fourier and P. Littelmann provided
an explicit description of the annihilating ideals I(λ), in terms of generators and
relations, for the Lie algebras sln, spn and arbitrary dominant integral weights
λ (see [FFL11a, FFL11b]). For certain Demazure modules in the sln–case the
explicit descriptions are given in [Fou14a, BF14].

In the first part of this thesis (see Chapter 1), we provide an explicit description
of I(λ) for PBW graded g–modules corresponding to special fundamental weights
ω and their multiples (see Table 0.1). Further we provide for these PBW graded
modules monomial bases, analogue to [FFL11a, FFL11b, Fou14a, BF14] and
[Gor11], where a monomial basis is provided for type G2. Note that Chapter 1 is
a modified version of [BD15] and motivated by [FFL11a] and [FFL11b].
For an arbitrary dominant integral weight we call such a basis a Feigin–Fourier–
Littelmann or just FFL basis and V a(λ) a FFL module, if the basis of V a(mλ),
m ∈ Z≥0 is parametrized by the integer points of a normal polytope P (m) (see
Section 1.1). We prove the following result:

Theorem A (Backhaus, D.). Let g be a simple complex finite–dimensional Lie
algebra and λ = mωi, m ∈ Z≥0 be a rectangular weight, where g is of type Xn and
ωi is a corresponding admissible weight (see Table 0.1). Further let
V a(λ) ∼= S(n−)/I(λ). Then we have:

• I(λ) = S(n−)
(
U(n+) ◦ span{fλ(β∨)+1

β | β ∈ ∆+}
)
.

• V a(λ) is a FFL module.

Here we denote by ∆+ the set of positive roots of g.

Type of g weight ω Type of g weight ω

An ωk, 1 ≤ k ≤ n E6 ω1, ω6

Bn ω1, ωn E7 ω7

Cn ω1 F4 ω4

Dn ω1, ωn−1, ωn G2 ω1

Table 0.1: Admissible weights

Remark. The theorem above implies the existence of a normal polytope P (mωi),
such that the integer points S(mωi) parametrize a basis of V (mωi). This polytope
is the m–th Minkowski sum of the polytope P (ωi) corresponding to V (ωi). In
general this is not true for different fundamental weights, so for ωi 6= ωj we have
|(P (ωi) + P (ωj)) ∩ ZN≥0| 6= dimV (ωi + ωj), because the number of integer points
in the Minkowski sum is in general too small. For example in the case of g = sl5,
we have |(P (ω1) + P (w2) + P (ω3) + P (ω4)) ∩ ZN≥0| = 1023 and
dimV (ω1 + ω2 + ω3 + ω4) = 1024.

Remark. In the (Cn, ω1) case our bases coincide with the bases obtained in
[FFL11b], tough in the (An, ωk) case they are different from the bases obtained
in [FFL11a], which were conjectured by Vinberg (see [Vin05]). This is due to
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a different choice of the total order on the monomials in S(n−). Nevertheless
the induced normal polytopes are isomorphic to the corresponding normal poly-
topes constructed in [FFL11a, FFL11b]. As consequence in the cases (An, ωk)
and (Cn, ω1) the corresponding projective toric varieties are isomorphic. In con-
trast, these are in general not isomorphic to the toric varieties corresponding to
Gelfand–Tsetlin polytopes investigated in [GL97] and [KM05].

Let us briefly explain the methods we used to prove Theorem A. Our main tool
is the Hasse diagram H(n−λ )g of g given by the standard partial order on the
positive roots of g (see Section 1.1). To be more precise H(n−λ )g := (∆λ

+, E) is
a directed labeled graph, where the set of vertices is indexed by ∆λ

+, a subset of
∆+ corresponding to a Lie subalgebra n−λ ⊂ n−, and the set of edges E is given
as follows:

∀ 1 ≤ i, j ≤ N : (βi
k−→ βj) ∈ E ⇔ ∃ αk ∈ Φ+ : βi − βj = αk,

where Φ+ is the set of simple roots.

Example. The Hasse diagram H(n−ω3
)sl6 and the set ∆ω3

+ :

β1

β2 β3

β4 β5 β6

β7 β8

β9

β1 = (1, 1, 1, 1, 1),

β2 = (0, 1, 1, 1, 1),

β3 = (1, 1, 1, 1, 0),

β4 = (0, 0, 1, 1, 1),

β5 = (0, 1, 1, 1, 0),

β6 = (1, 1, 1, 0, 0),

β7 = (0, 0, 1, 1, 0),

β8 = (0, 1, 1, 0, 0),

β9 = (0, 0, 1, 0, 0).

1 5

2 5 1 4

5 2 4 1

4 2

For more examples of Hasse diagrams we refer to the Appendix.

We associate to this directed graph a polytope P (λ) = P (mωi) ⊂ RN≥0 via the
directed paths in the diagram and show in Section 1.2 that these polytopes are
normal. Further we show in Section 1.3 if given the case the Hasse diagram sat-
isfies certain properties, the set of integer points S(λ) = P (λ)∩ZN≥0 parametrizes
a spanning set of V a(λ). In fact we will show via induction on m ∈ Z≥0, that
this spanning set is a FFL basis of V a(λ) (see 1.4 and Section 1.5).
Note that in the cases (Bn, ω1), (F4, ω4) and (G2, ω1) we have to change the Hasse
diagram slightly, to be able to apply our procedure. Except for the known
cases (An, Cn, G2 and Table 0.1) it is not clear if there exists a polytope which
parametrizes a FFL basis.

Let us denote by ga the degenerated Lie algebra ga = b⊕ n−,a, where n−,a is n−

endowed with the trivial lie bracket. Further there is a vector space isomorphism
between the quotient module g/b, which is a b–module via the adjoint action, and
n−,a, which induces a b–action on n−,a. Let Ga, B and N−,a be the corresponding
algebraic groups of ga, b and n−,a. Then we have Ga ∼= B nN−,a and we define
for the g–module V a(λ) ∼= S(n−)vλ the closure of the orbit Ga.[vλ] ⊂ P(V a(λ))
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to be the degenerated flag variety Faλ .
The authors of [FFL13a] showed that Faλ has a lot of nice properties if V a(λ) is a
FFL module, e. g. Faλ is normal and Cohen–Macaulay. Furthermore, there is an
explicit representation theoretical description of the corresponding homogeneous
coordinate rings. In addition in recent years it turned out that the PBW the-
ory has many connections to geometric representation theory: Schubert varieties
([CIL14], [CILL15]), degenerated flag varieties ([FFL14], [Fei11], [Fei12],[Hag14])
and quiver Grassmannians [CIFR12].

The work of Feigin, Fourier and Littelmann (see[FFL13b]) also motivated the
second part of this thesis (see Chapter 2). We fix an arbitrary simple complex
finite–dimensional Lie algebra and choose a Chevalley basis BCh(g) of g, then we
consider the Z–analogue of our setup.
Let gZ ⊂ g be the Z–span of BCh(g), which is a Lie subalgebra of g. Ana-
logue we define n−Z ⊂ n−. Furthermore, let the Kostant lattice UZ(g) be a Z–
subalgebra of U(g) (see for details Section 2.1), with these constructions we define
VZ(λ) = UZ(n−)vλ. The PBW filtration UZ(n−)s, s ∈ Z≥0 on the Kostant lattice
induces the PBW filtration VZ(λ)s = UZ(n−)svλ. The Z–analogue of the PBW
graded module V a

Z (λ) is defined by

V a
Z (λ) =

⊕
s∈Z≥0

VZ(λ)s+1/VZ(λ)s, VZ(λ)−1 = 0,

V a
Z (λ) ∼= SZ(n−,a)vλ ∼= SZ(n−,a)/IZ(λ),

where SZ(n−,a) is a divided power analogue of the symmetric algebra over n−,aZ ,
the Lie subalgebra n−Z endowed with the trivial Lie bracket.
Similar to the complex case the ideal IZ(λ) is stable under the action of UZ(n+),
which is induced by the adjoint action. In fact one can see, that these operators
in UZ(n+) are derivations on SZ(n−,a). These differential operators
∂γ = ad(eγ) ∈ Der(SZ(n−,a)), γ ∈ ∆+ can be used to obtain relations in the
associated graded module (see [FFL11a, FFL11b, FFL13b] and Chapter 1).
Let B(V a(λ)) be a monomial basis of V a(λ) and ≺ a homogenous total order on
the monomial in SZ(n−,a). We investigate under which assumptions on B(V a(λ)),
the Z–analogue of this basis provides a monomial basis of V a

Z (λ) (see for more
details Section 2.3):

(i) There is a non–empty subset P of the power set of the positive roots P(∆+)
and each element p ∈ P contains a root βp ∈ p, such that for all multi–

exponents m ∈ Z|∆+|
≥0 , which are supported on p, with

|m| =
∑|∆+|

i=1 mi ≥ λ(β∨p ) + 1 we have a straightening law

cmf
m +

∑
t≺m

ctf
t ∈ IZ(λ), ct ∈ C, cm ∈ C∗, (0.0.1)

where (0.0.1) is obtained by the action of a sequence of differential opera-

tors: ∂(f
|m|
βp

) =
∏r
j=1 ∂

kj
γj (f

|m|
βp

).

(ii) All differential operators ∂ considered in (i) respect the total order ≺.
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(iii) The basis B(V a(λ)) is given by

B(V a(λ)) = {f svλ | s ∈ Z|∆+|
≥0 , ∀ p ∈ P :

∑
β∈p

sβ ≤ λ(β∨p )},

so B(V a(λ)) is parametrized by the integer points of a polytope

P (P) ⊂ R|∆+|
≥0 , which depends on the set P ⊂ P(∆+).

Furthermore, we define a certain type of elements in IZ(λ), Z–admissible elements
(see Definition 2.2.9).

Theorem B. Let g be an arbitrary simple complex finite–dimensional Lie algebra
and λ an arbitrary dominant integral weight. Further let B(V a(λ)) be a basis of

V a(λ) satisfying Property (i), (ii) and (iii) and let the elements ∂(f
|m|
βp

) be Z–

admissible for all p ∈ P and multi–exponents m described in (i), then

B(V a
Z (λ)) = {f (s).vλ | s ∈ S(P) = P (P) ∩ Z|∆+|

≥0 }

is a basis of V a
Z (λ) and the ideal IZ(λ) is generated by the subspace

〈UZ(n+) ◦ span{f (λ(β∨p )+1)

βp
| p ∈ P}〉.

Let us now explain in short words the proof of Theorem B. Let ∂(f
|m|
βp

) ∈ IZ(λ)

be an arbitrary Z–admissible element considered in (i) with maximal monomial
cmf

m, cm ∈ Z. The crucial point is to show that cm = ±1 (see Section 2.2,
in particular Lemma 2.2.14). In other words cm has to be a unit in Z for all
Z–admissible elements considered in (i) to guarantee, in line with the assumed
straightening law, that BZ(V a(λ)) is a spanning set of V a

Z (λ). The linear inde-
pendence of BZ(V a(λ)) is a direct implication of the fact that B(V a(λ)) is a basis
of V a(λ).

In Section 2.4 we give some applications of Theorem B. Here we explain that
our result is an alternative proof of the main result of [FFL13b] and show that
all FFL bases constructed in Chapter 1 provide also bases for the corresponding
modules over Z.

There are a lot of connections between the PBW theory and combinatorial rep-
resentation theory. In fact, if we consider again FFL modules, in [FFL13a] is
shown, that the describing polytopes can be identified as Newton–Okounkov bod-
ies (see for more details on Newton–Okounkov bodies see [KK12] and [HK13]).
A purely combinatorial research on the FFL polytopes can be found in [ABS11].
Furthermore, there are for example connections to Schur functions ([Fou14b]),
combinatorics of crystal bases ([Kus13a], [Kus13b]) and Macdonald polynomials
([CF13], [FM14])
Especially we are interested in the Hilbert–Poincaré series of the PBW graded
module, often referred to as the q–dimension of the module, and denoted by

pλ(q) =
∞∑
s=0

(dimV (λ)s/V (λ)s−1) qs.
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Since V (λ) is finite–dimensional, this is obviously a polynomial in q. Our main
goal, in the third part of this thesis, is to compute the degree of pλ(q). The first
step is the following reduction (see [CF13, Theorem 5.3 ii)]).
Let λ1, . . . , λs be dominant integral weights and set λ = λ1 + . . .+ λs, then

deg pλ(q) = deg pλ1(q) + . . .+ deg pλs(q).

Our third main result is the computation of the degree of pλ(q), where λ is a
fundamental weight. With these degrees it is possible to provide a general formula
for the maximal degree of Hilbert–Poincaré polynomial of V a(λ) for arbitrary
dominant integral weights λ of an arbitrary simple complex finite–dimensional
Lie algebra g (see Chapter 3):

Theorem C (Backhaus, Bossinger, D., Fourier). The degree of pωi(q) is equal to
the label of the i–th node in the following diagrams:

An
1 2 3 3 2 1

Bn >
2 2 4 4 6

2d n−1
2

e

d n
2
e

Cn <
1 2 n− 2 n− 1 n

Dn
2 2 4 4 6

2d n−2
2

e

d n−1
2

e

d n−1
2

e

E6
2 4

6

4 2

2

E7
2 6

8

7 4 3

5

E8
4 8

14

11 8 6 2

8

F4 >
2 6 4 2

G2 <
2 2

Remark. Note, that Chapter 3 is a modified version of [BBDF14].

We provide in Section 3.2 for every fundamental weight a monomial u ∈ S(n−) of
the predicted degree mapping the highest to the lowest weight vector and show
that there is no polynomial of smaller degree satisfying this.
In order to prove Theorem C we use the relation between the Hilbert–Poincaré
polynomial and the graded Kostant partition function (see Section 3.1) and more-
over downward induction on the power of special root vectors contained in the
monomials u ∈ S(n−).
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Preliminaries

Throughout this thesis, unless otherwise stated, we denote by g a simple complex
finite–dimensional Lie algebra of rank n. We provide in the present chapter the
necessary notation and recall briefly basic constructions, which are important for
this thesis. Note that the details, proofs and precise statements can be found in
[Car05] and [Hum72].

We fix a Cartan subalgebra h = 〈h1, . . . , hn〉C of g and a triangular decomposition
g = n+⊕h⊕n−. The set of roots, resp. positive roots of g, is denoted by ∆ ⊂ h∗,
resp. by ∆+ = {β1, . . . , βN} ⊂ h∗, we denote by N ∈ Z≥0 the cardinality of ∆+.
For the set of negative roots we have ∆− = −∆+ and denote by θ the highest
root of g. Let Φ+ = {α1 . . . , αn} ⊂ ∆+, ωi ∈ h∗, i = 1, ..., n be the simple roots
and the corresponding fundamental weights.
Let W be the Weyl group associated to the simple roots and w0 ∈W the longest
element. For β ∈ ∆+ we fix a sl2 triple {eβ, fβ, hβ = [eβ, fβ]}. The integral
weights and the dominant integral weights are denoted P and P+.

Let us denote by U(g) the universal enveloping algebra of g. This is an associative
algebra over C with 1, since U(g) is the quotient of T (g), the Tensor algebra of
g, and the 2–sided ideal J ⊂ T (g), which is generated by the set:

{x⊗ y − y ⊗ x− [x, y] | x, y ∈ g}.

Note that we have a natural linear embedding g ↪→ U(g). Let
B(g) = {xi | 1 ≤ i ≤ D}, with D = dim g, be a ordered basis of g, then we know
from the PBW Theorem, that

B(U(g)) =

{
D∏
i=1

xrii | ri ≥ 0, ∀ 1 ≤ i ≤ D

}

forms a basis of U(g). In addition we deal with the following construction. Let
K ⊂ T (g) be the 2–sided ideal generated by the set:

{x⊗ y − y ⊗ x | x, y ∈ g}

and set S(g) := T (g)/K, then S(g) is isomorphic to the the polynomial algebra
C[zi | 1 ≤ i ≤ n], where n = rg(g). We call S(g) the symmetric algebra of g.

Modules. For λ ∈ P+ we consider the irreducible finite–dimensional g–module
V (λ) with highest weight λ. Then V (λ) admits a decomposition into h–weight
spaces:

V (λ) =
⊕
τ∈P

V (λ)τ ,
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with V (λ)λ and V (λ)w0(λ), the highest and lowest weight spaces, being one–
dimensional. Let us fix a highest weight vector vλ and a lowest weight vector
vw0(λ) satisfying

eβvλ = 0, fβvw0(λ) = 0 ∀β ∈ ∆+,

where eβ ∈ n+ and fβ ∈ n−. Therefore we obtain the following vector space
isomorphisms:

U(n−)vλ ∼= V (λ) ∼= U(n+)vw0(λ).

Let λ, µ ∈ P+ and consider the tensor product of the corresponding highest
weight g–modules V (λ) ⊗ V (µ). The comultiplication (x 7→ x ⊗ 1 + 1 ⊗ x)
provides a g–module structure on V (λ) ⊗ V (µ). This module decomposes into
irreducible components, where the Cartan component generated by the highest
weight vector vλ ⊗ vµ is isomorphic to V (λ + µ), this fact is important for the
application of the main theorem of Chapter 1 and crucial for our procedure in
Chapter 3.

PBW filtration. Now we introduce the main object that we investigate in this
thesis. For λ ∈ P+ we have V (λ) = U(n−)vλ, further there is a degree filtration
U(n−)s on the universal enveloping algebra of n−, defined by:

U(n−)s = span{x1 · · ·xl | xi ∈ n−, l ≤ s}. (0.0.2)

In particular, U(n−)0 = C1. Thus we have an increasing chain of subspaces:
U(n−)0 ⊆ U(n−)1 ⊆ U(n−)2 ⊆ . . . . The filtration (0.0.2) induces a filtration on
V (λ), V (λ)s = U(n−)svλ. This filtration is called the PBW filtration on V (λ).
We consider the associated graded space V a(λ) of V (λ) defined by:

V a(λ) =
⊕

s∈Z≥0

V (λ)s/V (λ)s−1, V (λ)−1 = {0}.

From the PBW Theorem we obtain

Ua(n−) ∼= S(n−) ∼= C[fβj | 1 ≤ j ≤ N ].

Hence V a(λ) is a cyclic S(n−)–module generated by vλ, thus there is an ideal
I(λ) ⊆ S(n−), the annihilator of the generating element, such that:

V a(λ) ∼= S(n−)vλ ∼= S(n−)/I(λ). (0.0.3)

Remark 0.0.1. We emphasize that:

f
λ(β∨)+1
β ∈ I(λ), ∀ β ∈ ∆+.

This is a very important fact, which we use in Chapter 1 and Chapter 2 for all
calculations corresponding to I(λ).

We associate to the multi–exponent t = (ti)
N
i=1 ∈ ZN≥0 the element

f t =

N∏
i=1

f tiβi ∈ S(n−),

and define the degree of f tvλ 6= 0 in V a(λ) by deg(f tvλ) = deg(f t) =
∑N

i=1 ti, or
deg(f tvλ) = 0 if f tvλ = 0.
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Definition 0.0.2. Let B(V (λ)) respectively B(V a(λ)) be a basis of V (λ) respec-
tively V a(λ). We call B(V (λ)) respectively B(V a(λ)) monomial, if there is a finite
subset of multi–exponents T ∈ ZN≥0, such that

B(V (λ)) = {f tvλ | t ∈ T} ⊂ U(n−)vλ, resp. B(V a(λ)) = {f tvλ | t ∈ T} ⊂ S(n−)vλ.

Throughout this thesis we are only interested in this kind of basis.

Remark 0.0.3. Because the action of n+ on V (λ) is induced by the adjoint
action, we know that V (λ)s, s ∈ Z≥0 is stable under the action of n+. Thus for
e ∈ n+ and

∏s
i=1 xivλ ∈ V (λ)s we have

e.

s∏
i=1

xivλ =

s∑
j= 1

j−1∏
i=1

xi ad(e)(xj)

s∏
i=j+1

xivλ ∈ V (λ)s.

Hence V (λ)s is a U(n+)–module, this implies also a U(n+)–module structure on
V a(λ). So for f tvλ ∈ V a(λ) we have

deg(uf tvλ) ∈ {0,deg(f tvλ)}, ∀ u ∈ U(n+).

Remark 0.0.4. Let ◦ be the action of U(n+) on S(g) induced by the adjoint
action of n+ on g. Via the vector space isomorphism

S(n−) ∼= S(g)/S(g)(S+(n+⊕ h))

we obtain an action on S(n−), where S+(n+⊕ h) ⊂ S(n+⊕ h) be the maximal
homogeneous ideal of polynomials without constant term, the augmentation ideal.
We denote this action again by ◦. Since the action of U(n+) on V a(λ) is induced
by the action of U(n+) on V (λ) (which is again induced by the adjoint action),
we obtain for all e ∈ U(n+), f ∈ S(n−)

e(fvλ) = (e ◦ f)vλ.

Hence S(n−) is a U(n+)–module.
This fact implies in line with the fundamental Theorem for modules, that the ideal
I(λ) (see (0.0.3)) carries a U(n+)–module structure.

The next Lemma is devoted to get a better understanding of the module V a(λ),
but we do not need it to prove our main statements.

Lemma 0.0.5. Let fm ∈ S(n−) with fmvλ 6= 0 in V a(λ) and weight wt(fm) =
λ− w0(λ). Then

deg(fn) ≤ deg(fm), ∀fnvλ 6= 0 ∈ V a(λ).

Proof. Let vw0(λ) be a lowest weight vector such that:

V (λ) = U(n+)vw0(λ).

Hence we can interpret V (λ) as a lowest weight module. The lowest weight ω0(λ)
is in the Weyl group orbit of λ, thus dimV (λ)w0(λ) = 1 = dimV (λ)λ. Thus there
is a minimal s ∈ Z≥0, such that: V (λ)w0(λ) ⊆ V (λ)s. Furthermore, there exists a
scalar c ∈ C with fmvλ = cvw0(λ).
For an arbitrary element fnvλ 6= 0 ∈ V a(λ) we fix the order of the factors
to obtain fnvλ ∈ V (λ). Then there exists an element x ∈ U(n+) such that:
fnvλ = x(fmvλ). This implies with Remark 0.0.3: deg(fn) ≤ deg(fm).
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In the following we define two important tools for the considerations in this the-
sis.

Differential operators. Let βj , βi ∈ ∆+ and eβi ∈ n+, fβj ∈ n− be correspond-
ing root vectors. Then we define the differential operator

∂βi
(
fβj
)

:=

{
fβj−βi , if βj − βi ∈ ∆+,

0, otherwise.
(0.0.4)

The differential operator satisfies

∂βi
(
fβj
)

= (cβi,−βj )
−1 ad(eβi)

(
fβj
)
,

where cβi,−βj ∈ C∗ is the corresponding structure constant. Thus, if βj = βi or if
the root vectors commute, then ∂βi(fβj ) = 0.
Since the adjoint action satisfies the properties of a derivation and the U(n+)–
module structure on S(n−) is induced by the adjoint action (see Remark 0.0.4),
we define differential operators on S(n−): Let k,m ∈ Z≥0:

∂kβi

(
fmβj

)
= ∂βi · · · ∂βi︸ ︷︷ ︸

k–times

(
fmβj

)
, (0.0.5)

and ∂βi

(
fmβj

)
=

m∑
`=1

f `−1
βj

∂βi
(
fβj
)
fm−`βj

= m∂βi
(
fβj
)
fm−1
βj

.

Remark 0.0.6. Remark 0.0.4 implies that the ideal I(λ) is stable under the
U(n+)–action on S(n−). Thus, for an arbitrary sequence of differential operators
and an arbitrary element v ∈ I(λ) we have

r∏
l=1

∂klβil
(v) ∈ I(λ),

where kl ∈ Z≥0 and βil ∈ ∆+. Especially in Chapter 1 and Chapter 2 we use this
fact in order to obtain relations in V a(λ) and with these we are able to describe
the ideal I(λ) explicitly.

Abstract paths. Let p, be an element of the power set of the positive roots
P(∆+). We call such an element an abstract path in ∆+. In addition we say that
a multi–exponent t ∈ ZN≥0 is supported on the abstract path p, if

ti = 0, ∀ βi /∈ p.

Furthermore, we call a subset P of P(∆+) a set of abstract paths in ∆+. Notice
that the elements in P do not have to have the same cardinality.

Remark. We use in this thesis abstract paths to translate our representation
theoretical questions into combinatorial problems. Note, that in Chapter 1 we call
the abstract paths Dyck paths, in order to be consistent with [FFL11a, FFL11b].
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1 Feigin-Fourier-Littelmann modules via
Hasse diagrams

We emphasize that the present chapter is a modified version of [BD15]. Through-
out this chapter we focus on selected rectangular weights λ = mωi, m ∈ Z≥0 (see
Table 1.1). Moreover we provide special monomial bases, so called FFL bases,
for the corresponding irreducible finite–dimensional PBW graded highest weight
representation V a(λ). Furthermore, we assume the notation of the Preliminaries.

1.1 Hasse diagrams and Dyck paths

In this section we define and consider the Hasse diagram H(n−λ )g, which is the
most important combinatorial tool for the procedure of this chapter. To do so we
introduce the Lie subalgebra n−λ of n− and provide, analogue to the Preliminaries,
definitions and facts in order to work with this Lie subalgebra.

Let g be as usual and fix a rectangular weight λ = mωi, with m ∈ Z≥0 and

1 ≤ i ≤ n, further let λ(β∨) = 2(λ,β)
(β,β) , where β∨ = 2β

(β,β) is the coroot of β and

(·, ·) is the Killing form. Then we define

n−λ := span{fβ | λ(β∨) ≥ 1} ⊂ n−.

Let β =
∑n

j=1 njαj , nj ∈ Z≥0 be a positive root with ni ≥ 1. Then we have
for the coroot β∨ =

∑n
j=1 n

∨
j α
∨
j : n∨i ≥ 1. Conversely starting with a coroot

β∨, with n∨i ≥ 1 we have for the corresponding positive root β: ni ≥ 1. Hence,
independent of the choice of m ≥ 1: n−ωi = n−mωi ⊂ n− is the Lie subalgebra
spanned by those root vectors fβ, where αi is a summand of β.
From the PBW–Theorem we get

Ua(n−λ ) ∼= S(n−λ ) ∼= C[fβ | λ(β∨) ≥ 1, β ∈ ∆+],

where S(n−λ ) is the symmetric algebra over n−λ .

Remark 1.1.1. (i) We have V (λ) = U(n−λ )vλ. The action of U(n−λ ) on V (λ)
induces the structure of a S(n−λ )–module on V a(λ) and

V a(λ) ∼= S(n−)vλ ∼= S(n−λ )vλ. (1.1.1)

(ii) The action of U(n+) on V (λ) induces the structure of a U(n+)–module on
V a(λ). Note for eα ∈ n+ ↪→ U(n+), fβ ∈ n−λ ↪→ S(n−λ ), [eα, fβ] is not in general
an element of S(n−λ ), but for fν ∈ S(n−) \S(n−λ ) we have fνvλ = 0. That follows
from the well known description (see [Hum72]) of V (λ):

V (λ) = U(n−)/〈fλ(β∨)+1
β | β ∈ ∆+〉. (1.1.2)
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Equation (1.1.1) shows that V a(λ) is a cyclic S(n−λ )–module and hence there is
an ideal Iλ ⊆ S(n−λ ) such that V a(λ) ' S(n−λ )/Iλ, where Iλ is the annihilating
ideal of vλ. We have therefore the following projections:

S(n−)→ S(n−)/
〈
fβ | λ(β∨) = 0

〉
= S(n−λ )→ S(n−λ )/Iλ.

Hence, although we work with n−λ , we actually consider n−–modules. Therefore,
our aims in this chapter are

• To describe V a(λ) as a S(n−λ )–module, i. e. describe explicitly generators
of the ideal Iλ.

• To find a basis of V a(λ) parametrized by integer points of a normal polytope
P (λ) (see (1.1.6)).

To achieve these goals we have to introduce further terminology. We denote the
set of positive roots associated to n−λ by

∆λ
+ = {β ∈ ∆+| λ(β∨) ≥ 1} =: {βi1 , . . . , βiNλ} ⊆ ∆+, |∆λ

+| = Nλ ≤ N.

Since we deal in the present chapter only with n−λ we denote, by abuse of notation,
for 1 ≤ j ≤ Nλ ij = j and Nλ = N . Therefore, we have ∆λ

+ = {β1, . . . , βN},
|∆λ

+| = N ∈ Z≥0.

Example 1.1.2. We write (r1, r2, . . . , rn) for the sum:
∑n

k=1 rkαk. Let g be of
type A4 and λ = ω3, the third fundamental weight. Then we have:

∆ω3
+ = {β1 = (1, 1, 1, 1), β2 = (0, 1, 1, 1), β3 = (1, 1, 1, 0),

β4 = (0, 0, 1, 1), β5 = (0, 1, 1, 0), β6 = (0, 0, 1, 0)} ⊂ ∆+.

We choose a total order ≺ on ∆λ
+:

β1 ≺ β2 ≺ · · · ≺ βN−1 ≺ βN . (1.1.3)

We assume that this order satisfies the following conditions:

(i) Let ≥ be the standard partial order on the positive roots, then

βi > βj ⇒ βi ≺ βj .

(ii) Let βi = (r1, . . . , rn), βj = (t1, . . . , tn) and we define the height as the sum
over these entries: ht(βi) =

∑n
i=1 ri, ht(βj) =

∑n
i=1 ti. Then

ht(βi) > ht(βj)⇒ βi ≺ βj .

(iii) If βi and βj are not comparable in the sense of (i) and (ii), then
βi ≺ βj ⇔ βi is greater than βj lexicographically, i.e. there exists 1 ≤ k ≤ n,
such that rk > tk and ri = ti for 1 ≤ i < k.

Remark 1.1.3. The explicit order of the roots depends on the Lie algebra and
the chosen weight, see Section 1.4. But in all cases considered in this chapter we
have β1 = θ, the highest root of g and βN is the simple root αi.
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In order to make our equations more readable we write for 1 ≤ i ≤ N : fi = fβi
and si = sβi . We associate to the multi–exponent s = (si)

N
i=1 ∈ ZN≥0 the element

f s =
N∏
i=1

fsii ∈ S(n−λ ),

and define the degree of f svλ 6= 0 in V a(λ) by deg(f svλ) = deg(f s) =
∑N

i=1 si,
or deg(f svλ) = 0 if f svλ = 0. We extend ≺ to the homogeneous lexicographical
total order on the monomials of S(n−λ ) (resp. multi–exponents).
Let s, t ∈ ZN≥0 be two multi–exponents. We say f s � f t or s � t if

• deg(f s) > deg(f t) or

• deg(f s) = deg(f t) and ∃ 1 ≤ k ≤ N : (sk > tk) ∧ ∀ k < j ≤ N : (sj = tj).

For example: f1
1 f

2
2 f

0
3 ≺ f2

1 f
0
2 f

1
3 ≺ f1

1 f
0
2 f

2
3 .

Associated to n−λ we define a directed graph H(n−λ )g := (∆λ
+, E). The set of

vertices is given by ∆λ
+ and the set of edges E is constructed as follows:

∀ 1 ≤ i, j ≤ N : (βi
k−→ βj) ∈ E ⇔ ∃ αk ∈ Φ+ : βi − βj = αk.

We call this directed graph Hasse diagram of g associated to λ. For the consid-
erations in this chapter will H(n−λ )g be the most important tool.

Example 1.1.4. The Hasse diagram H(n−ω3
)sl5 is given by:

β1

β2 β3

β4 β5

β6

β1
β1 = (1, 1, 1, 1)

β2 = (0, 1, 1, 1)

β3 = (1, 1, 1, 0)

β4 = (0, 0, 1, 1)

β5 = (0, 1, 1, 0)

β6 = (0, 0, 1, 0)

1 4

2 14

4 2

We define an ordered sequence of roots in ∆λ
+: (βi1 , . . . , βir) with βij ≺ βij+1 to

be a directed path from βi1 to βir .

Remark 1.1.5. For our purposes we allow the trivial path (∅) and any ordered
subsequence of a directed path to be a directed path again. Therefore, in Example
1.1.4 (β1, β2, β4, β6) and (β1, β2, β6) are two possible directed paths.

In general it is possible that two edges in H(n−λ )g, one ending in a root β and
one starting in β, have the same label:

γ
k−→ β

k−→ δ.

We call this construction a k–chain (of length 2).
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Associated to H(n−λ )g we construct two subsets Dλ, Dλ ⊂ P(∆λ
+) of the power

set of ∆λ
+: For p ∈ P(∆λ

+) we define

p ∈ Dλ :⇔ p = {βi1 , . . . , βir}, (1.1.4)

for a directed path (βi1 , . . . , βir) in H(n−λ )g. Therefore, from now on by (1.1.4)
we interpret p ∈ Dλ as a directed path in H(n−λ )g.

Remark 1.1.6. Let βi, βj ∈ ∆λ
+ be arbitrary. Then there exist a p ∈ Dλ with

βi, βj ∈ p if and only if βi − βj or βj − βi is a non–negative linear combination
of simple roots.

Remark 1.1.7. A staircase walk from (0,0) to (n,n) beyond the diagonal in
a n × n–lattice is a called Dyck path. In the general An–case ([FFL11a]) the
constructed directed paths are Dyck paths in this sense. To be consistent with
their notation we call our directed paths Dλ also Dyck paths.

Further we define the set of co-chains by

Dλ := {p ∈ P(∆λ
+) | |p ∩ p| ≤ 1, ∀ p ∈ Dλ}. (1.1.5)

If necessary we use an additional index D
type of g
λ , to distinguish which type of g

we consider. We consider the integral points of a polytope which is connected to
Dλ in a very natural way. Fix λ = mωi, with m ∈ Z≥0. Let

P (mωi) = {x ∈ RN≥0 |
∑
βj ∈p

xj ≤ m, ∀ p ∈ Dωi}, (1.1.6)

be the associated polytope to Dωi . Denote by S(mωi) the integer points in
P (mωi): S(mωi) = P (mωi) ∩ ZN≥0. We define the map

supp1 : S(ωi)→ P(∆ωi
+ ), supp1(s) = {βj | sj > 0}.

For s ∈ S(ωi) we have with (1.1.5) immediately supp1(s) ∈ Dωi . Conversely
every p ∈ Dωi has a non–empty pre–image. With s ∈ {0, 1}N we conclude that
supp1 is injective and that we have the immediate proposition:

Proposition 1.1.8. The map supp1 : S(ωi)→ Dωi is a bijection.

Hence in Section 1.4 it is sufficient to determine the co–chains in H(n−λ )g to find
the elements in S(ωi). Now we are able to formulate our main statements.

Main statements. Let g be a simple complex finite-dimensional Lie algebra
and λ = mωi be a rectangular weight, with ωi(θ

∨) = 1 and m ∈ Z≥0, where
θ is the highest root of g. Further we assume that H(n−λ )g has no k–chains of
length 2. In the following table we list up all cases where these assumptions are
satisfied. Additionally in the cases (Bn, ω1), (F4, ω4) and (G2, ω1), we can rewrite
H(n−λ )g in a diagram without k–chains of length 2:

Type of g weight ωi Type of g weight ωi

An ωk, 1 ≤ k ≤ n E6 ω1, ω6

Bn ω1, ωn E7 ω7

Cn ω1 F4 ω4

Dn ω1, ωn−1, ωn G2 ω1

Table 1.1: Admissible weights
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Let I(mωi) ⊂ S(n−) be the ideal such that V a(mωi) = S(n−)/I(mωi).

Theorem 1.1.9.

I(mωi) = S(n−)
(
U(n+) ◦ span{fmωi(β

∨)+1
β | β ∈ ∆+}

)
.

Proof. This statement follows by Theorem 1.5.4.

Theorem 1.1.10. Bmωi = {f svmωi | s ∈ S(mωi)} is a FFL basis of V a(mωi).

Proof. In Section 1.2 we show that the polytope P (mωi) is normal. By Theorem
1.3.4 we conclude that Bmωi is a spanning set for V a(mωi). After fixing the order
of the factors, with Theorem 1.5.2 we have a FFL basis of V (mωi). Because this
basis is monomial and V (mωi) ∼= V a(mωi) as vector spaces, we conclude that
Bmωi is a FFL basis of V a(mωi).

Applications.To state an important consequence of Theorem A and Theorem
B we give the definitions ofessential monomials due to Vinberg (see [Vin05],
[Gor11]) and Feigin–Fourier–Littelmann (FFL) modules due to [FFL13a]. Let
λ be a dominant integral weight. Recall that we have a homogeneous lexico-
graphical total order ≺ on the set of multi–exponents induced by the order on
∆λ

+:

β1 ≺ β2 ≺ · · · ≺ βN .

In the following we fix a ordering on the factors in a vector

fpvλ = fpNN f
pN−1

N−1 . . . fp1
1 vλ. (1.1.7)

Definition 1.1.11. (i) We call a multi–exponent p ∈ ZN≥0 essential if

fpvλ /∈ span{fqvλ | q ≺ p}.

(ii) Define es(V (λ)) ⊂ ZN≥0 to be the set of essential multi–exponents.

By [FFL13a, Section 1] {fpvλ | p ∈ es(V (λ))} is a basis of V a(λ) and of V (λ).

Let M = U(n−)vM and M
′

= U(n−)vM ′ be two cyclic modules. Then we denote

with M �M ′
:= U(n−)(vM ⊗ vM ′ ) ⊂ M ⊗M ′

the Cartan component and we
write M�n := M � · · · �M (n-times).

Definition 1.1.12. We call a cyclic module M a FFL module if:

(i) There exists a normal polytope P (M) such that es(M) = S(M), where
S(M) is the set of lattice points in P (M).

(ii) ∀n ∈ N : dimM�n = |nS(M)|, where nS(M) is the n-fold Minkowski sum
of S(M).

Corollary 1.1.13. For the cases of Table 1.1 V (mωi) is a FFL module.
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Proof. Proposition 1.2.8 shows that P (mωi) is a normal polytope. By Theorem
B a basis of V (mωi) is given by Bmωi , hence with Lemma 1.5.1 we have S(mωi) =
es(V (mωi)).
Let n ∈ N be arbitrary, then dimV (mωi)

�n = dimV (nmωi). Again by Theorem
B we have dimV (nmωi)) = |S(nmωi))|. Because P (nmωi)) is a normal polytope
and therefore satisfies the Minkowski sum property, we conclude |S(nmωi))| =
|nS(mωi))|.

Remark 1.1.14. Note that in [FFL13a] the FFL modules are called favourable
modules.

1.2 Normal polytopes

Our goal in this section is to show, that the polytopes defined in (1.1.6) are
normal. A convex lattice polytope P ⊂ RK ,K ∈ Z≥0, i.e. P is the convex hull of
finitely many integer points, is called normal, if the set of integer points in the
m-th dilation mP is the m-fold Minkowski sum of the integer points in P .
To achieve our goal we prove the normality condition for a larger class of polytopes
in a more abstract setting than in Section 1.1.

General setting. Let ∆ = {z1, z2, . . . , zK} be a finite, non-empty set with
a total order: z1 � z2 � · · · � zK . We extend � to the (non-homogeneous)
lexicographic order on P(∆), the power set of ∆. Let D = {p1, . . . ,pt} ⊂ P(∆)
be an arbitrary subset.

Remark 1.2.1. (i) To illustrate this non-homogeneous lexicographical order we
give for K ≥ 3 an example:

{z1, z2} � {z1} � {z2, z3}

(ii) Let p = {zi1 , . . . , zir} ∈ P(∆) be an arbitrary set. We always assume without
loss of generality (wlog): zi1 � · · · � zir .

We can associate a collection of polytopes to D in a natural way:

P (m) = {x ∈ RK≥0 |
∑
zj ∈p

xj ≤ m, ∀p ∈ D}, m ∈ Z≥0. (1.2.1)

To work with these polytope, in particular with the elements in D, we define the
following.

Definition 1.2.2.

(1) For p ∈ P(∆) define pmin = min
�
{z ∈ p} and pmax analogously.

(2) Let p,q ∈ P(∆), p = {zi1 , . . . , zir}, q = {zj1 , . . . , zjs} with pmin = qmax.
Then we define the concatenation of p and q by

p ∪ q = {zi1 , zi2 . . . , zir =zj1 , zj2 , . . . , zjs} ∈ P(∆).
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Normality condition.

Definition 1.2.3. Assume D ⊂ P(∆) has the following properties:

1. Subsets of elements in D are again in D:

∀A ⊂ p ∈ D : A ∈ D.

2. Every z ∈ ∆ lies at least in one element of D:⋃
p∈D

p = ∆

3. The concatenation of two elements in D, if possible, lies again in D:

∀p,q ∈ D with pmin = qmax: p ∪ q ∈ D.

Then we call D ⊂ P(∆) a set of Dyck paths.

We define for m ∈ Z≥0, suppm : S(m)→ P(∆), by

t = (tz)z∈∆ 7→ suppm(t) = {z ∈ ∆ | tz > 0}.

Note that the map suppm is in general not injective. Furthermore, we have
supp1(S(1)) ⊆ suppm(S(m)), because of S(1) ⊆ S(m) and suppm|S(1) = supp1.

Remark 1.2.4. Let D ⊂ P(∆) be a set of Dyck paths, then P (m) defined in
(1.2.1) is a bounded convex polytope for all m ∈ Z≥0.
By the definition of P (m) and the second property of D, which guarantees that
each z ∈ ∆ lies in at least one Dyck path, we have tz ∈ {0, 1}, ∀z ∈ ∆, for t ∈
S(1). Hence supp1 is an injective map and we get an induced (non-homogeneous)
total order on S(1).

Now we give a characterization of the image of supp1.

Remark 1.2.5. Let D ⊂ P(∆) be a set of Dyck paths, then

supp1(S(1)) = {A ∈ P(∆) | |A ∩ p| ≤ 1, ∀p ∈ D} =: Γ.

”⊆”: Assume there is an element t ∈ S(1) with supp1(t) = A ∈ P(∆) and
|A∩p| > 1 for some p ∈ D. Then we have

∑
z∈A∩p tz > 1, since tz > 0, ∀z ∈ A.

And so we have:
∑

z∈p tz > 1. But this is a contradiction to the assumption
t ∈ S(1).

”⊇”: Let B ∈ Γ be arbitrary. Associated to B we define qB ∈ ZK≥0 by qBz = 1

if z ∈ B and qBz = 0 else. By the definition of Γ we have for every Dyck path
p ∈ D:

∑
z∈p q

B
z ≤ 1. Hence qB ∈ S(1) with supp1(qB) = B.

Let s ∈ S(m),m ∈ Z≥0, s 6= 0 be an arbitrary non-zero element. Consider
suppm(s) ∈ P(∆), we have P(suppm(s)) ⊆ P(∆). Let

∇ = (supp1(S(1)) ∩ P(suppm(s)) ⊆ P(∆). (1.2.2)

Note that ∇ is a total ordered, non-empty set, because S(1) contains all unit
vectors and s 6= 0 by assumption. Therefore, there is a unique maximal element
(with respect to �), denoted by Ms ∈ ∇.
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Lemma 1.2.6. Let D be a set of Dyck paths, s ∈ S(m) non-zero and µ ∈ Ms.
Then we have sν = 0 for all ν ∈ ∆ such that (ν � µ and ∃q ∈ D : ν, µ ∈ q).

Proof. We assume the contrary. That implies there exists ν ∈ ∆ with ν � µ,
sν 6= 0 and a Dyck path p ∈ D such that ν, µ ∈ p. Define

V := {τ ∈Ms | ∃q ∈ D : ν, τ ∈ q, ν � τ} ⊂Ms

and M ′s := ({ν}∪Ms)\V. By assumption we have µ ∈ V and so |V | ≥ 1. Further
we have M ′s ∈ P(suppm(s)) and we show that M ′s ∈ supp1(S(1)).
We assume that this is not the case. Therefore, there exists some b ∈ D such
that |M ′s ∩ b| > 1. By the definition of V this can only happen, if there exists
a α ∈ Ms with α � ν and α, ν ∈ b. The following picture is intended to give a
better understanding of the foregoing situation.

ν ..

τ1

.

.

τ2.α

µ , τ1, τ2 ∈ V.
b

p

We can assume wlog that bmin = ν and pmax = ν, because subsets of Dyck paths
are again Dyck paths. Therefore, the concatenation b∪ p ∈ D is defined and we
have α, ν ∈ b ∪ p. But then, because of α, ν ∈ Ms: |Ms ∩ b| > 1, which is a
contradiction to Ms ∈ supp1(S(1)).
Therefore, for all q ∈ D we have |M ′s ∩ q| ≤ 1. By that and with M ′s ∈ P(∆)
we conclude M ′s ∈ supp1(S(1)). Therefore M ′s ∈ ∇ and by construction, because
� is a lexicographic order, M ′s �Ms, which is a contradiction to the maximality
of Ms. Therefore, the assumption on the existence of ν was wrong, which proves
the Lemma.

Proposition 1.2.7. Let D ⊂ P(∆) be a set of Dyck paths, then we have for the
integer points S(m) of the polytopes P (m) associated to D:

S(m− 1) + S(1) = S(m), ∀m ∈ Z≥1, (1.2.3)

where the left-hand side (lhs) of (1.2.3) is the Minkowski sum of S(m − 1) and
S(1).

Proof. Let m ≥ 1. From the definition of P (m) and of the Minkowski sum follows
S(m− 1) + S(1) ⊂ S(m). Therefore, it is sufficient to show that

S(m− 1) + S(1) ⊃ S(m)

holds. For that let s = (sz)z∈∆ ∈ S(m) \ S(m− 1) be an arbitrary element. We
show that there exists an integer point t1 ∈ S(1)\{0} such that: s−t1 ∈ S(m−1).
We define for Ms defined as in (1.2.2):

t1 := supp−1
1 (Ms) ∈ S(1) \ {0}.

This element is unique because of the injectivity of supp1. Now we consider the
integer point s− t1. We know that there are no negative entries, because sz = 0
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implies for all A ∈ ∇ : z /∈ A and so t1z = 0. Hence s − t1 ∈ S(m) and so the
second step is to show that s− t1 lies already in S(m− 1).
To achieve that we assume contrary s− t1 ∈ S(m) \ S(m− 1), i.e. that there is
a Dyck path p ∈ D such that: ∑

z∈p
(sz − t1z) = m.

Since s ∈ S(m) we have:

m =
∑
z ∈p

(sz − t1z) =
∑
z ∈p

sz︸ ︷︷ ︸
≤m

−
∑
z ∈p

t1z︸ ︷︷ ︸
≥ 0

⇒
∑
z ∈p

sz = m and
∑
z ∈p

t1z = 0.

We construct another Dyck path p ∈ D such that
∑

z∈p sz > m.
Let β ∈ ∆ be maximal with the property β ∈ p ∧ sβ > 0. In particular, since∑

z∈p(sz − t1z) = m we have p ∩Ms = ∅ and so β /∈Ms. We define

p′ = p \ {γ ∈ p | γ � β},

which is an element of D since subsets of Dyck paths are again Dyck paths. By
construction we have ∑

z ∈p′
sz = m =

∑
z ∈p

sz.

There are two possibilities to extend the path p′ with a further Dyck path p′′ ∈ D:

(i) p′′min = β or (ii) p′′max = pmin.

To obtain a path p = p′′ ∪ p′ (respectively p = p′ ∪ p′′) with
∑

z∈p sz > m, the
extension p′′ has to satisfy the following condition: p′′ ∩Ms 6= ∅.

Assume we are in the case (ii). Then there exists τ ∈ p′′ ∩Ms with sτ > 0.
Further we have sβ > 0 and τ, β ∈ p′ ∪ p′′ = p ∈ D. By construction we have
β ≺ τ and so Lemma 1.2.6 implies that sβ = 0. This is a contradiction to sβ > 0.

Therefore, we show the existence of a path p′′ ∈ D with condition (i) and p′′ ∩
Ms 6= ∅. We assume contrary there is no such Dyck path p′′:

∀q ∈ D with qmin = β : q ∩Ms = ∅. (1.2.4)

Under this assumption and by using Lemma 1.2.6 we show:

∀q ∈ D with β ∈ q : q ∩Ms = ∅. (1.2.5)

Assume (1.2.5) is not true, so there is some β 6= τ ∈ q∩Ms for q ∈ D with β ∈ q.
Then we have two cases.
Let τ � β, then τ and β lie in q. Now the path from τ to β is again a Dyck path.
But this is a contradiction to Assumption (1.2.4).
Let β � τ , by τ ∈ q ∩Ms we have t1τ 6= 0. Then Lemma 1.2.6 implies sβ = 0,
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which is a contradiction to the choice of β.
Therefore (1.2.5) holds. Recall the properties of Ms. We have

Ms = supp1(t1) ∈ P(∆) with |Ms ∩ q| ≤ 1, ∀q ∈ D.

Now consider M ′s := Ms ∪ {β} ∈ P(suppm(s)). We show that M ′s ∈ supp1(S(1)).
For q ∈ D with β ∈ q we have |M ′s ∩ q| = 1 by (1.2.5).
For q ∈ D with β /∈ q we have |M ′s ∩ q| ≤ 1 by |Ms ∩ q| ≤ 1.
We conclude M ′s ∈ supp1(S(1)) and so

M ′s ∈ ∇ = supp1(S(1)) ∩ P(suppm(s)).

But with M ′s �Ms we get a contradiction to the maximality of Ms.
Therefore, Assumption (1.2.4) was wrong and there exists

p′′ ∈ D with p′′min = β : p′′ ∩Ms 6= ∅.

We recall that β /∈Ms and therefore p̃ 6= {β}. Define the concatenation of p′′ and
p′ in β as p := p′′ ∪ p′ ∈ D which is indeed defined because p′′min = β = p′max.
From Definition 1.2.3(3) we know that p is a Dyck path. Now by construction
we conclude ∑

z ∈p
sz =

∑
z ∈p′′

sz︸ ︷︷ ︸
> 0

+
∑

sz
z ∈p′︸ ︷︷ ︸
=m

> m.

But this is a contradiction to the choice of s ∈ S(m) and the assumption∑
z∈p(sz−t1z) = m was wrong. We conclude s−t1 ∈ S(m−1) and with t1 ∈ S(1)

we have s ∈ S(m− 1) + S(1). Finally we get S(m) ⊂ S(m− 1) + S(1).

Consequences. We recall the construction of the Hasse diagram and the Dyck
paths from Section 1.1 and show that we can apply Proposition 1.2.7 to this
setup. Let λ = mωi as before and we set ∆ = ∆ωi

+ , D = Dωi . Then we have for
the associated polytopes:

P (m) = P (mωi).

For ∆λ
+ = {β1, . . . , βN} we chose in Section 1.1 the order β1 ≺ · · · ≺ βN . To apply

Proposition 1.2.7 we can use the same order on the positive roots and extend this
order to the (non-homogeneous) lexicographical order on P(∆ωi

+ ) as before. We
show that the Dyck paths defined in Section 1.1 are Dyck paths in the sense of
Definition 1.2.3.
(1) Every p′ ⊂ p ∈ Dωi is again a Dyck path: We saw that any ordered subset
of a directed path in H(n−λ )g is again a Dyck path.
(2) For each β ∈ ∆ωi

+ there is at least one p ∈ Dωi such that β ∈ p: The set of
vertices in H(n−λ )g is exactly ∆ωi

+ . By construction we allow paths of cardinality
one, so for example the path (β) contains β.
(3) Let p,p′ ∈ Dωi be two Dyck paths, such that pmin = p′max. Then there are
directed paths W,W ′ in H(n−λ )g realizing p and p′ such that the end point of W
is equal to the starting point of W ′. We consider the directed path, which we
obtain by the concatenation of the directed paths W and W ′. This directed path
realizes p ∪ p′. Hence p ∪ p′ lies in Dωi .
With Proposition 1.2.7 we get immediately for S(mωi) = P (mωi)∩ZN≥0,m ∈ Z≥0 :
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Proposition 1.2.8. S(mωi) = S((m− 1)ωi) + S(ωi),m ∈ Z≥1.

Finally we conclude that the polytopes constructed in (1.1.6) are normal convex
lattice polytopes.

1.3 Spanning Property

Let g be a simple complex finite-dimensional Lie algebra, λ = mω, with m ∈ Z≥0,
be a rectangular dominant integral weight such that ω(θ∨) = 1. In this section
we show that Bλ = {f svλ | s ∈ S(λ)} is a spanning set for V a(λ). Recall that we
have

V a(λ) ∼= S(n−λ )/Iλ,

where Iλ is the annihilating ideal of vλ. We know that f
λ(α∨)+1
α vλ is zero in V (λ)

(see (1.1.2)). Hence f
λ(α∨)+1
α vλ = 0 in V a(λ). By the action of U(n+) on V a(λ)

we obtain further relations. We will see that these relations are enough to rewrite
every element as a linear combination of f svλ, s ∈ S(λ).
In our proof it is essential to have a Hasse diagram H(n−λ )g without k–chains. A
Dyck path is defined as before to be the set of roots corresponding to a directed
path in H(n−λ )g.
Analogue to Remark 0.0.4 we explain the U(n+)—module structure on S(n−λ ).
Let ◦ be the action of U(n+) on S(g) induced by the adjoint action of n+ on
g. Via the isomorphism S(n−) ∼= S(g)/S(g)(S+(n+⊕ h)) we obtain an action on
S(n−), where S+(n+⊕ h) ⊂ S(n+⊕ h) is the augmentation ideal. By

S(n−λ ) ∼= S(n−)/S(n−)(span{fβ | β ∈ ∆+ \∆λ
+})

we get an action on S(n−λ ). We denote this action again by ◦. Since the action
of U(n+) on V a(λ) is induced by the action of U(n+) on V (λ) (which is again
induced by the adjoint action), we obtain that for all e ∈ U(n+), f ∈ S(n−λ )

e(fvλ) = (e ◦ f)vλ, (1.3.1)

holds. Therefore we can restrict our further discussion on the U(n+)–module
S(n−λ ). Equation (1.3.1) and U(n+)(fvλ) = U(n+)(0) = {0} for all f ∈ Iλ imply
that Iλ is stable under ◦. Furthermore, by Remark 0.0.3 the total degree of
a monomial in S(n−λ )/Iλ is invariant or it is zero under ◦. We denote as before
∆λ

+ = {β1, . . . , βN} and use the same total order ≺ on the multi–exponents (resp.
monomials) as defined in Section 1.1, which is induced by β1 ≺ β2 ≺ · · · ≺ βN .

Analogue to (0.0.4) we define differential operators; for α, β ∈ ∆+ let

∂αfβ :=

{
fβ−α, ifβ − α ∈ ∆λ

+

0, else.

The operators satisfy
∂αfβ = (cα,β)−1 ad(eα)(fβ),

for the structure constants cα,β ∈ C∗. Therefore, instead of using ◦ we can work
with these differential operators. We point out that we need the differential
operators for arbitrary roots in ∆+.
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Remark 1.3.1. Here we illustrate the problem which occurs if we allow k–chains

in our Hasse diagram. Let γ ≺ β ≺ δ the roots of a k–chain γ
k−→ β

k−→ δ and
consider for ` ≥ 2:

∂2
kf

`
γ = ∂k(`f

1
βf

`−1
γ ) = c0`f

1
δ f

0
βf

`−1
γ︸ ︷︷ ︸

maximal monomial

+ c1`(`− 1)f2
βf

`−2
γ , (1.3.2)

with c0 = cγ,αkcβ,αk and c1 = c2
γ,αk

where cγ,αk , cβ,αk are the structure constants
corresponding to [eαk , fβ] and [eαk , fγ ] respectively. Therefore, it is more involved
to find a relation which contains β and δ.

The next Lemma describes the action of the differential operators and gives an
explicit characterization of the maximal monomial of ∂νf

s for certain ν ∈ ∆+

and s ∈ ZN≥0.

Lemma 1.3.2. Assume H(n−λ )g has no k–chains.
(i) Let p = {βi1 , . . . , βir} ∈ Dλ with βi1 ≺ · · · ≺ βir and ν ∈ ∆+. Further let
βik , k ≤ r be maximal such that ∂νfβik 6= 0. Let s ∈ ZN≥0 be a multi–exponent

supported on p, i.e. sβ = 0 for β /∈ p. Then the maximal monomial in ∂ lνf
s =

∂ lν(fs1i1 . . . f
sr
ir

), l ≤ sk, is given by

fs1i1 . . . f
sk−1

ik−1
(f lik−νf

sk−l
ik

)f
sk+1

ik+1
. . . fsrir .

(ii) Let
∑

u∈ZN≥0
cuf

u ∈ S(n−) and ν ∈ ∆+. Let h = max
≺
{u | ∂νfu 6= 0, cu 6= 0}.

Further let βk = max
≺
{β | fβ is a factor of fu, ∂νfβ 6= 0, cu 6= 0} and assume

hβk > 0. Then for l ≤ hβk the maximal monomial in

∂ lν
∑

u∈ZN≥0

cuf
u =

∑
u∈ZN≥0

cu∂
l
νf

u

appears in ∂ lνf
h.

Proof. (i) Assume we have two roots βi, βj ∈ ∆λ
+ with βi ≺ βj and βi − ν and

βj − ν are again roots in ∆λ
+. For βil − ν /∈ ∆λ

+ we have ∂νfβil = 0, so we do

not need to consider such roots βil ∈ ∆λ
+. So in order to prove (i), because our

monomial order is lexicographic, it is sufficient to show that

βi ≺ βj ⇒ βi − ν ≺ βj − ν. (1.3.3)

If βi > βj with respect to the standard partial order we have βi− ν > βj − ν and
therefore βi − ν ≺ βj − ν, by the choice of the total order (1.1.3) on ∆λ

+.
If the roots are not comparable with respect to the standard partial order, the
second step is to compare the heights of the roots. Thus if ht(βi) > ht(βj) then
ht(βi − ν) > ht(βj − ν) and again βi − ν ≺ βj − ν.
If ht(βi) = ht(βj), we have to consider βi = (s1, . . . , sn) and βj = (t1, . . . , tn) in
terms of the fixed basis of the simple roots (see Remark 1.1.3). Then there is a
1 ≤ k ≤ n, such that sk > tk and si = ti for all 1 ≤ i < k. Let ν = (u1, . . . , un),
then βi − ν = (s1 − u1, . . . , sn − un) is lexicographically greater than βj − ν =
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(t1 − u1, . . . , tn − un). Thus βi − ν ≺ βj − ν and (1.3.3) holds.

(ii) We only have to consider the multi–exponents s ∈ ZN≥0 such that ∂νf
s 6= 0.

Now let t be the maximal multi–exponent with this property and let l ≤ tβk .
Then we have ∂ lνf

t 6= 0 and by (i) the maximal monomial appearing in ∂ lνf
t is

f lβk−νf
tβk− l
βk

∏
β∈∆λ

+,β 6=βk
β 6=βk−ν

f
tβ
β . (1.3.4)

The observation (1.3.3) tells us that fβk−ν = max{fβ−ν | ∂νfβ 6= 0, sβ > 0}. Thus
by the choice of t and because our order is lexicographic, the element (1.3.4) is
the maximal monomial in

∑
s∈ZN≥0

cs∂
l
νf

s.

Proposition 1.3.3. Assume H(n−λ )g has no k–chains and let p ∈ Dλ be a Dyck
path, s ∈ ZN≥0 be a multi–exponent supported on p. Suppose further 〈λ, θ∨〉 = m

and
∑
α∈p

sα > m. Then there exist constants ct ∈ C, t ∈ ZN≥0 such that:

f s +
∑
t≺ s

ctf
t ∈ Iλ.

We follow an idea of [FFL11a, FFL11b] who showed a similar statement in the
cases sln and spn for arbitrary dominant integral weights.

Proof. Let p = {τ0, τ1, . . . , τr} ∈ Dλ be an arbitrary Dyck path. By construction
we have for 1 ≤ i ≤ r: τi−1 ≺ τi. Because

∑r
i=0 sτi > m we have

fsτ0 + · · ·+ sτr
θ

∈ Iλ.

By the construction of the Hasse diagram there is a Dyck path p′ ∈ Dλ with
p ⊂ p′, such that there is no path p′′ with p′ ( p′′. Hence we can assume wlog

p = {τ0 = θ, τ1, . . . , τr−1, τr = βN}.

Let ν1, . . . , νr ∈ ∆+, with νi 6= νi+1 be the labels at the edges of p. We consider

f
sτ0 + · · ·+ sτr
θ

∈ Iλ. Because Iλ is stable under ◦, we have for arbitrary x1, . . . , xl ∈
∆+ and f t ∈ Iλ:

∂x1 . . . ∂xlf
t ∈ Iλ.

We define

A := ∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

∈ Iλ.

Claim: There exist constants cs 6= 0, ct ∈ C, t ∈ ZN≥0 with t ≺ s, such that:

A = csf
s +

∑
t≺ s

ctf
t ∈ Iλ

If the claim holds the Proposition is proven.

Proof of the claim. Now we need the explicit description of the Dyck paths
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given by the Hasse diagram. Above we defined ν1 to be the label at the edge
θ

ν1−→ τ1 in H(n−λ )g. Because we assumed that H(n−λ )g has no ν1–chains of length
2, there is no edge labeled by ν1 starting in the vertex θ − ν1 = τ1. That implies
∂
ν1
f
θ−ν1

= 0. Therefore we obtain

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

= a0 f
sτ0
θ
f
sτ1 + · · ·+ sτr
θ−ν1

∈ Iλ

for some constant a0 ∈ C \ {0}. Now ν2 is the label at the edge between the
vertices τ1 and τ2. Again there is no ν2–chain in H(n−λ )g, so ∂ν2fθ−ν1−ν2 = 0 and
∂ν2fθ−ν2 = 0, so we have for k = min {sτ0 , sτ2 + · · ·+ sτr}, bq ∈ C \ {0}:

∂
sτ2 + · · ·+ sτr
ν2

a0f
sτ0
θ
f
sτ1 + · · ·+ sτr
θ−ν1

=

b0 f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2 + · · ·+ sτr
θ−ν1−ν2

+
k∑

q= 1

bqf
sτ0− q
θ

f
sτ1 + q

θ−ν1
f
sτ2 + · · ·+ sτr−q
θ−ν1−ν2

f
q

θ−ν2
.

(1.3.5)

For our purposes, we do not need to pay attention to the scalars unless they are
zero. We also notice that the terms of the sum are only non-zero, if θ− ν2 ∈ ∆λ

+.

The first part of Lemma 1.3.2 implies, that the monomial f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2+ . . . +sτr
θ−ν1−ν2

is the largest (with respect to ≺) in (1.3.5), because θ ≺ θ − ν1 ≺ θ − ν1 − ν2.
By construction ∂νi+1fθ−ν1−ν2−···−νi 6= 0, because θ − ν1 − ν2 − · · · − νi − νi+1 is
an element of ∆λ

+, for i < r. Thus the second statement of Lemma 1.3.2 implies
that the largest element is obtained by acting in each step on the largest root
vector. To be more precise, we consider the following equations:

∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

=

a0 ∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

f
sτ0
θ
f
sτ1 + · · ·+ sτr
θ−ν1

=

b0 ∂
sτr
νr

. . . ∂
sτ3 + · · ·+ sτr
ν3

f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2 + · · ·+ sτr
θ−ν1−ν2

+
∑

smaller monomials =
.
.
.

b′0 f
sτ0
θ
f
sτ1
θ−ν1

f
sτ2
θ−ν1−ν2

. . . f
sτr
θ−ν1−ν2−···−νr

+
∑

smaller monomials ∈ Iλ.

for some b′0 ∈ C \ {0}. But the last term is exactly what we wanted to obtain, so
for constants ct ∈ C, cs ∈ C \ {0} we have by assumption that sα = 0 if α /∈ p:

∂
sτr
νr

. . . ∂
sτ2 + · · ·+ sτr
ν2

∂
sτ1 + · · ·+ sτr
ν1

f
sτ0 + · · ·+ sτr
θ

=

csf
sτ0
θ
f
sτ1
τ1
f
sτ2
τ2

. . . f
sτr
τr

+
∑
t≺ s

ctf
t =

csf
s +

∑
t≺ s

ctf
t ∈ Iλ.

Theorem 1.3.4. The set {f svλ | s ∈ S(λ)} spans the module V (λ)a.
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Proof. Let m ∈ Z≥0 and t ∈ ZN≥0 with t /∈ S(λ). Therefore, there exists a Dyck
path p ∈ Dλ such that

∑
β ∈p

tβ > m. Define a new multi–exponent t′ by

t′β :=

{
tβ, ifβ ∈ p,

0, else.

Because of
∑
β ∈p

t′β =
∑
β ∈p

tβ > m we can apply Proposition 1.3.3 to t′ and get

f t
′

=
∑
s′≺ t′

cs′f
s′ ∈ S(n−λ )/Iλ,

for some cs′ ∈ C. Because the order of the factors of f t ∈ S(n−λ ) is arbitrary and
since we have a monomial order, we get

f t = f t
′∏
β /∈p

f
tβ
β =

∑
s≺ t

csf
s ∈ S(n−λ )/Iλ, (1.3.6)

where cs = cs′ and f s = f s
′∏

β /∈p f
sβ
β . Equation (1.3.6) shows that we can express

an arbitrary multi–exponent as a sum of strictly smaller multi–exponents. We
repeat this procedure until all multi–exponents in the sum lie in S(λ). There are
only finitely many multi–exponents of a fixed degree and the degree is invariant
or zero under the action ◦. So after a finite number of steps, we can express t in
terms of r ∈ S(λ) for some cr ∈ C:

f t =
∑

r∈S(λ)

crf
r ∈ S(n−λ )/Iλ.

Corollary 1.3.5. Fix for every s ∈ S(λ) an arbitrary ordering of the factors fβ
in the product

∏
β > 0 f

sβ
β ∈ S(n−λ ). Let f s =

∏
β > 0 f

sβ
β ∈ U(n−) be the ordered

product. Then the elements f svω, s ∈ S(λ) span the module V (λ).

Proof. Let f tvλ ∈ V (λ) with t ∈ ZN≥ arbitrary. We consider f tvλ as an element
in V a(λ). By Theorem 1.3.4 we get

f tvλ =
∑

s∈S(λ)

csf
svλ in V a(λ).

The ordering of the factors in a product in S(n−λ ) is irrelevant, so we can adjust the
ordering of the factors to the fixed ordering and get an induced linear combination:

f tvλ =
∑

s∈S(λ)

csf
svλ in V (λ).
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1.4 FFL Basis of V (ω)

Throughout this section we refer to the definitions in Section 1.1. In this section
we calculate explicit FFL bases of the highest weight modules V (ω), where ω
occurs in Table 1.1. We do this by giving characterizations of the co–chains
p ∈ Dω (see (1.1.5)) and using the one-to-one correspondence between Dω and
S(ω) (see Proposition 1.1.8).
The results of this section, i.e. Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω),
provide the start of an inductive procedure in the proof of Theorem 1.5.2. With
Proposition 1.2.7 we will be able to give an explicit basis of V (mω), m ∈ Z≥0,
parametrized by the m-th Minkowski sum of S(ω).

Type An. Let g be a simple Lie algebra of type An with n ≥ 1 and the associated
Dynkin diagram

An
1 2 3 4 n

The highest root is of the form θ =
∑n

i=1 αi. Since a Lie algebra g of type An is
simply laced we have θ∨ =

∑n
i=1 α

∨
i and so ω(θ∨) = 1⇔ ω ∈ {ωk | 1 ≤ k ≤ n}.

The positive roots of g are described by: ∆+ = {αi,j =
∑j

l=i αl | 1 ≤ i ≤ j ≤ n}.
Therefore, for the roots corresponding to n−ωk we have:

∆ωk
+ = {αi,j ∈ ∆+| 1 ≤ i ≤ k ≤ j ≤ n} ⊂ ∆+. (1.4.1)

Before we define the total order on ∆ωk
+ , we define a total order on ∆+:

β1 = α1,n,

β2 = α2,n, β3 = α1,n−1,

β4 = α3,n, β5 = α2,n−1, β6 = α1,n−2,

· · · ,
βn(n−1)/2+1 = αn, βn(n−1)/2+2 = αn−1, · · · , βn(n+1)/2 = α1.

Now we delete every root βi ∈ ∆+ \∆ωk
+ and relabel the remaining roots. For an

example of this procedure see Appendix, Figure 3.2 and Example 1.1.4. In the
following it is more convenient to use the description αi,j instead of βk. First we
give a characterization of the co–chains p ∈ Dωk ⊂ P(∆ωk

+ ).

Proposition 1.4.1. Let be p = {αi1,j1 , . . . , αis,js} ∈ P(∆ωk
+ ) arbitrary, then:

p ∈ Dωk ⇔ ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im ≤ k ≤ jl < jm. (1.4.2)

Further we have: p ∈ Dωk ⇒ s ≤ min{k, n+ 1− k}.

Proof. First we prove (1.4.2): “⇐”: Let p = {αi1,j1 , . . . , αis,js} ∈ P(∆ωk
+ ) be

an element with the properties of the right-hand side (rhs) of (1.4.2). Let
αil,jl , αim,jm ∈ p, with il < im. Consider now:

αil,jl − αim,jm =

jl∑
r=il

αr −
jm∑
r=im

αr =

im−1∑
r=il

αr −
jm∑

r=jl+1

αr.
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Since jl < jm holds, Remark 1.1.6 implies that there is no Dyck path q ∈ Dωk

such that αim,jm and αil,jl are contained in q.

“⇒”: Let be p ∈ Dωk and αil,jl , αim,jm ∈ p with αil,jl 6= αim,jm . Further we have
il ≤ jl, im ≤ jm. Assume wlog im = jm, then αim,jm = αk and il < jl. Hence

αil,jl − αk =

k−1∑
r=il

αr +

jl∑
r=k+1

αr,

which is a contradiction to p ∈ Dωk by Remark 1.1.6. Therefore, il < jl, im < jm
and we assume wlog il ≤ im.

1. Step: il = im =: y. Set x = min{jl, jm} and x = max{jl, jm}:

αy,x − αy,x =
x∑
r=y

αr −
x∑
r=y

αr =
x∑

r=x+1

αr.

Again this contradicts to p ∈ Dωk . Hence we have: il < im.

2. Step: (il < im) ∧ (jl = jm =: x):

αil,x − αim,x =
x∑

r=il

αr −
x∑

r=im

αr =

im−1∑
r=il

αr.

We conclude: jl 6= jm.

3. Step: (il < im < jm) ∧ (il < jl). Therefore, there are three possible cases:

(a) il < jl < im < jm, (b) il < im < jl < jm and (c) il < im < jm < jl.

The case (a) can not occur because k ≤ jl < im ≤ k is a contradiction. Therefore,
let us assume αil,jl , αim,jm satisfy the case (c), then we have:

αil,jl − αim,jm =

jl∑
r=il

αr −
jm∑
r=im

αr =

im−1∑
r=il

αr +

jl∑
r=jm

αr.

Finally we conclude that for two arbitrary roots αil,jl , αim,jm ∈ p ∈ Dωk with
il ≤ im we have: il < im < jl < jm.

It remains to show that the cardinality s of p is bounded by min{k, n+ 1− k}:

1. Case: min{k, n + 1 − k} = k. Let αir,jr ∈ p be an arbitrary root in p.
Then we know from (1.4.1) 1 ≤ ir ≤ k. But we also know that for any two roots
αil,jl , αim,jm ∈ p we have il 6= im. Therefore, there are at most k different roots
in p.

2. Case: min{k, n + 1 − k} = n + 1 − k. For two roots αil,jl , αim,jm ∈ p we
have jl 6= jm and k ≤ jl, jm ≤ n. Therefore, the number of different roots in p is
bounded by n+ 1− k.

Finally we conclude: |p| = s ≤ min{k, n+ 1− k}.
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Remark 1.4.2. Let p = {αi1,j1 , . . . , αis,js} ∈ Dωk then (1.4.2) implies

i1 < i2 < · · · < is ≤ k ≤ j1 < j2 < · · · < js.

Assume wlog k = j1 = j2, then there is Dyck path containing αi1,j1 and αi2,j2,
because αi1,j1 − αi2,j2 = αi1,i2−1 ∈ ∆+.

Because of Corollary 1.3.5 we know that the elements {f svωk | s ∈ S(ωk)} span
V (ωk) and by Proposition 1.1.8 there is a bijection between S(ωk) and Dωk . We
show that these elements are linear independent. To achieve that we show that
|Dωk | = dimV (ωk). To be more explicit:

Proposition 1.4.3. For all 1 ≤ k ≤ n we have: |Dωk | = dimV (ωk) =
(
n+1
k

)
.

Proof. Let V (ω1) be the vector representation with basis {e1, e2, . . . , en+1}. Then∧kV (ω1) is a U(g)-representation with vωk = e1 ∧ e2 ∧ · · · ∧ ek:

fαi1,j1vωk = e1 ∧ · · · ∧ ei1−1 ∧ ej1+1 ∧ ei1+1 ∧ · · · ∧ ek, (1.4.3)

and we have
∧kV (ω1) ∼= V (ωk). We define fpvωk := fαi1,j1fαi2,j2 . . . fαim,jmvωk

for p = {αi1,j1 , αi2,j2 , . . . , αim,jm} ∈ Dωk and claim that the set {fpvωk | p ∈ Dωk}
is linear independent in

∧kV (ω1). If the claim holds we have |Dωk | ≤ dimV (ωk)
and with Corollary 1.3.5 we conclude that |Dωk | = dimV (ωk) =

(
n+1
k

)
.

Proof of the claim. Assume we have p1 = {αi1,j1 , αi2,j2 , . . . , αim,jm} and p2 =
{αs1,t1 , αs2,t2 , . . . , αs`,t`} in Dωk with linear dependent images under the action
(1.4.3), i. e. fp1

vωk = ±fp2
vωk . Then we have m = `, {j1, . . . , jm} = {t1, . . . , t`}

and we can assume wlog: m = k = `. Hence: fp1
vωk = ej1 ∧ · · · ∧ ejm = ±fp2

vωk ,
with Remark 1.4.2 we conclude p1 = p2.

Example 1.4.4. The non-redundant inequalities of the polytope P (mω3) in the
case g = sl5 are:

P (mω3) =

x ∈ R6
≥0 |

x1 + x2 + x4 + x6 ≤ m
x1 + x2 + x5 + x6 ≤ m
x1 + x3 + x5 + x6 ≤ m

 .

Example 1.1.4 shows the corresponding Hasse diagram H(n−ω3
)sl5.

Proposition 1.4.3 implies immediately for 1 ≤ k ≤ n:

Proposition 1.4.5. The vectors f svωk , s ∈ S(ωk) are a FFL basis of V (ωk).

Type Bn. Let g be a simple Lie algebra of type Bn, n ≥ 2 with associated Dynkin
diagram

Bn >
1 2 n-2 n-1 n

The highest root for a Lie algebra of type Bn is of the form θ = α1 + 2
∑n

i=2 αi.
Thus we have θ∨ = α∨1 + 2

∑n−1
i=2 α

∨
i + α∨n and ω(θ∨) = 1⇔ ω ∈ {ω1, ωn}.
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First we consider the case ω = ω1. We consider the case B2, w1 separately. Be-
cause there are not enough roots, this case does not fit in our general description
of Bn, w1. We claim that the following polytope parametrizes a FFL basis of
V (mω1),m ∈ Z≥0:

P (mω1) =

{
x ∈ R3

≥0 |
x2 + x1 ≤ m
x2 + x3 ≤ m

}
.

We fix β1 = (2, 1), β2 = (1, 1), β3 = (1, 0) and the order β2 ≺ β1 ≺ β3. Then with
Proposition 1.2.7 it is immediate that this polytope is normal. The following
actions of the differential operators imply the spanning property in the sense of
Section 1.3 Proposition 1.3.3.

∂s1α2
fs1+s2

1 = c0f
s1
1 f s22 + smaller terms ∈ Iλ

∂s2+2s3
α1

fs2+s3
1 = c1f

s2
2 f s33 + smaller terms ∈ Iλ, ci ∈ C \ {0}.

We conclude that {f svω1 | s ∈ S(mω1)} = {vω1 , f1vω1 , f2vω1 , f3vω1 , f1f3vω1 , } is
a spanning set of V (ω1).

Now we consider the case n ≥ 3. If we construct H(n−ω1
)g as in Section 1.1 we get

a n–chain of length 2. Therefore we choose a new order on the roots and change
our Hasse diagram slightly to obtain a diagram without k–chains of length 2. We
illustrate this procedure for g of type B3. Then the roots ∆ω1

+ are given by

β1 = (1, 2, 2) β2 = (1, 1, 2) β3 = (1, 1, 1) β4 = (1, 1, 0) β5 = (1, 0, 0)

We choose a new order
β1 ≺ β2 ≺ β4 ≺ β5 ≺ β3,

and change the Hasse diagram

β1 β2 β3 β4 β5  β1 β3

β2

β4

β5.
2 3 23 011

012
2

2
012

First we check, if the new diagram has no k–chains. The first edge is labeled
by α2 + α3 = 011 and we have β3 − (α2 + α3) = β5. If we have a monomial
fk1

1 fk2
3 ∈ S(n−ω1

), k1, k2 ≥ 1 and we act by ∂α2+α3 we get:

c0f
k1−1
1 fk2+1

3 + c1f
k1
1 fk2−1

3 f5, ci ∈ C.

By the change of order β3 is larger than β5 and so fk1−1
1 fk2+1

3 � fk1
1 fk2−1

3 f5.
Therefore we can neglect the edge between β3 and β5.
Now we consider ∂k3

α2
fk1

1 fk2
3 . Because of ∂α2f3, ∂α2f2 = 0 we get fk1−k3

1 fk2
3 fk3

2 ,
for k3 ≤ k1. Thus instead of drawing an edge directly from β1 to β2, we can draw
an edge, labeled by 2, from β3 to β2. Similar, because of β1 − α2 − 2α3 = β4, we
can draw an edge labeled by 012 from β3 to β4. The other edges do not cause
any problems.
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The second step is to show that the paths in the new diagram, define the actions
by differential operators and the corresponding maximal elements like in Section
1.3 Proposition 1.3.3. By the choice of order we get the following equalities:

∂s5α2+2α3
∂s22 ∂

s3
α2+α3

fs1+s3+s2+s5
1 = c0f

s1
1 fs33 fs22 f s55 + smaller terms ∈ Iλ

∂s5α2
∂s4α2+2α3

∂s3α2+α3
fs1+s3+s4+s5

1 = c1f
s1
1 fs33 fs44 f s55 + smaller terms ∈ Iλ,

with ci ∈ C \ {0}. In the general case, for arbitrary n > 3, we have N = 2n− 1.
Let r := dN/2e, then ∆ω1

+ is given by:

β1 = (1, 2, 2, . . . , 2) β2 = (1, 1, 2, . . . , 2, 2) . . . βr−1 = (1, 1, . . . , 1, 2)

βr = (1, 1, 1, . . . , 1) βr+1 = (1, 1, 1, . . . , 1, 0) . . . βN = (1, 0, . . . , 0, 0)

Then the only n–chain has the following form βr−1
n−→ βr

n−→ βr+1 We change
the order from β1 ≺ β2 ≺ · · · ≺ βN to

β1 ≺ β2 ≺ · · · ≺ βr−1 ≺ βr+2 � · · · � βN−1 � βr+1 ≺ βN ≺ βr.

The modifications of the diagram are similar to them in the case of B3, so the
Hasse diagram for a Lie algebra of type Bn has the following shape

β1 β3 β4 ... βr βr+1 βr+2 ... βN−2

β2

βN−1

βN .
0110...0 4 5 n 001...12 n-1 n-2 4

2

012...2

012...2

2

Associated to the diagrams we get the following polytope for m ∈ Z≥0:

P (mω1) =

{
x ∈ RN≥0 |

x1 + x2 + · · ·+ xN−2 + xN ≤ m
x1 + x3 + · · ·+ xN−1 + xN ≤ m

}
.

By Section 1.3, Corollary 1.3.5 the elements

vω1 , f1vω1 , f2vω1 , . . . , fNvω1 , f2fN−1vω1

span V (ω) and with [Car05, p. 276] we have dimV (ω1) = 2n+ 1.

Proposition 1.4.6. The vectors f svω1 , s ∈ S(ω1) are a FFL basis of V (ω1).

Proof. The previous observations imply that {f svω1 , s ∈ S(ω1)} is a basis of
V (ω1). Thus it remains to show that P (ω1) is a normal polytope.
Because we changed the Hasse diagram we have to change the order of the roots
to apply Section 1.2. One possible new order is given by:

β1 ≺ β3 ≺ β4 ≺ · · · ≺ βN−2 ≺ β2 ≺ βN−1 ≺ βN .

Using this order we see immediately that P (ω1) is a normal polytope.
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Now we consider the case ω = ωn. In the following it will be again convenient
to describe the roots and fundamental weights of Bn in terms of an orthogonal
basis:

∆ωn
+ = {εi,j = εi + εj | 1 ≤ i < j ≤ n} ∪ {εk | 1 ≤ k ≤ n}. (1.4.4)

The total order on ∆ωn
+ is obtained by considering the Hasse diagram. We begin

with β1 = θ on the top and then labeling from left to right with increasing label
on each level of the Hasse diagram, which correspond to the height of the roots in
∆ωn

+ . For a concrete example see Figure 3.3 in the Appendix. The corresponding
polytope is defined as usual, see Table 3.1 for an example. The elements of
∆ωn

+ correspond to εi,j =
∑j−1

r=i αr + 2
∑n

r=j αr and εk =
∑n

r=k αr. The highest

weight of V (ωn) has the description ωn = 1
2

∑n
r=1 εr. Further the lowest weight

is −ωn = −1
2

∑n
r=1 εr. With this observation, the fact that ωn is minuscule and

(1.4.4) we see that

BV (ωn) =

{
fαvωn | α =

1

2

n∑
r=1

lrεr, lr ∈ {−1, 1}, ∀1 ≤ r ≤ n

}
⊂ V (ωn)

is a basis. We note that |BV (ωn)| = 2n = dimV (ωn).

Remark 1.4.7. For an arbitrary element p ∈ D
Bn
ωn we have at most one root

of the form εk ∈ p, because if there are εk1 , εk2 ∈ p (wlog k1 < k2) we have:
εk1−εk2 =

∑k2−1
r=k1

αr. Thus with Remark 1.1.6 we know that there is a Dyck path

p ∈ Dωn with εk1 , εk2 ∈ p. This observation implies that the elements p ∈ DBn
ωn

have two possible forms:

(B1) p = {εk, εi2,j2 , . . . , εir,jr} or (B2) p = {εi1,j1 , . . . , εit,jt}.

Thus we can characterize the elements p ∈ DBn
ωn as follows.

Proposition 1.4.8. For p ∈ P(∆ωn
+ ) arbitrary we have:

p ∈ DBn
ωn ⇔

{
p is of the form (B1), with (a) and (b),

p is of the form (B2), with (b).
(1.4.5)

In addition: p ∈ DBn
ωn ⇒

{
s ≤ dn2 e, p is of the form (B1),

s ≤ bn2 c, p is of the form (B2),

with s = |p|. The properties (a) and (b) are defined by

(a) ∀ 1 ≤ l ≤ s : k < il < jl,

(b) ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im < jm < jl.

Proof. First we prove (1.4.5): “⇐”: Let p = {εk, εi2,j2 , . . . , εis,js} be an element
of form (B1) with the properties (a) and (b). Assume there are two roots x, y ∈ p
such that there exists a Dyck path q ∈ Dωn containing them.
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1. Case: x = εk and y = εim,jm , for 1 ≤ m ≤ s. Then we have

εim,jm − εk =

jm−1∑
r=im

αr + 2
n∑

r=jm

αr −
n∑
r=k

αr = −
im−1∑
r=k

αr +
n∑

r=jm

αr.

Hence there is no Dyck path q ∈ Dωn such that x and y are contained in q. This
is a contradiction to the assumption.

2. Case: x = εim,jm and y = εil,jl , wlog il < im. Then we have

εil,jl − εim,jm =

jl−1∑
r=il

αr + 2
n∑

r=jl

αr −
jm−1∑
r=im

αr − 2
n∑

r=jm

αr =

im−1∑
r=il

αr −
jl−1∑
r=jm

αr.

This is a contradiction to our assumption and hence: p ∈ DBn
ωn .

Let p be of form (B2) with property (b), and assume there are two roots x, y ∈ p
such that there exists a Dyck path q ∈ Dωn containing them. Like in the second

case of our previous consideration the assumption is false and therefore: p ∈ DBn
ωn .

“⇒”: Let p ∈ D
Bn
ωn . Then we know from Remark 1.4.7 that p is of the form

(B1) or (B2). Let p = {εk, εi1,j1 , . . . , εis,js} be of form (B1), with il < jl for all
1 ≤ l ≤ s.

1. Step: Assume ∃ 1 ≤ m ≤ s : k > im. Then we have:

εim,jm − εk =

jm−1∑
r=im

αr + 2
n∑

r=jm

αr −
n∑
r=k

αr =
k−1∑
r=im

αr +
n∑

r=jm

αr.

Thus by Remark 1.1.6 this contradicts p ∈ DBn
ωn . Hence: k < im for all 1 ≤ m ≤ s.

Let εil,jl , εim,jm ∈ p be two roots with εil,jl 6= εim,jm . We assume wlog il ≤ im.

2. Step: Assume il = im =: y. Set x = min{jl, jm} and x̄ = max{jl, jm}:

εy,x − εy,x̄ =
x−1∑
r=y

αr + 2
n∑
r=x

αr −
x̄−1∑
r=y

αr − 2
n∑
r=x̄

αr =
x̄∑
r=x

αr.

Again by Remark 1.1.6 this contradicts p ∈ DBn
ωn and we have: il < im.

3. Step: Let il < im and assume jl = jm =: x, we consider:

εil,x − εim,x =

x∑
r=il

αr + 2

n∑
r=x

αr −
x∑

r=im

αr − 2

n∑
r=x

αr =

im−1∑
r=il

αr.

This contradicts p ∈ DBn
ωn by Remark 1.1.6, so: jl 6= jm.

4. Step: (il < im < jm) ∧ (il < jl). Thus there are three possible cases:

(a) il < jl < im < jm, (b) il < im < jl < jm and (c) il < im < jm < jl.
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Let us assume εil,jl and εim,jm have the property of case (a):

εil,jl−εim,jm =

jl−1∑
r=il

αr+2
n∑

r=jl

αr−
jm−1∑
r=im

αr−2
n∑

r=jm

αr =

jm−1∑
r=il

αr+2

im−1∑
r=jl

αr+

jm−1∑
r=im

αr.

This contradicts p ∈ DBn
ωn by Remark 1.1.6. We assume now that εil,jl and εim,jm

have the property of case (b):

εil,jl − εim,jm =

jl−1∑
r=il

αr + 2

n∑
r=jl

αr −
jm−1∑
r=im

αr − 2

n∑
r=jm

αr =

im−1∑
r=il

αr +

jm−1∑
r=jl

αr.

Again by Remark 1.1.6 this contradicts p ∈ DBn
ωn . Finally we conclude that two

roots εil,jl , εim,jm ∈ p, with il ≤ il, satisfy (c): il < im < jm < jl. To prove this

statement for a p ∈ DBn
ωn of form (B2) we only have to restrict our consideration

to the second, third and fourth step.

It remains to show that the cardinality s of p is bounded by dn2 e respectively
bn2 c. Again we consider the two possible cases:

1. Case: p = {εk, εi2,j2 , . . . , εis,js} is of the form (B1) and we assume |p| = s >
dn2 e. Then we know from our previous consideration that after reordering the
roots in p we have a strictly increasing chain of integers:

Cp : k < i2 < i3 · · · < is < js < js−1 < · · · < j3 < j2. (1.4.6)

Thus there are 2s − 1 different integers, where each of these correspond to a εi
for 1 ≤ i ≤ n. By assumption we know 2s−1 ≥ 2(dn2 e+ 1)−1 ≥ n+ 1, but there
are only n different elements in {εr | 1 ≤ r ≤ n}. Thus this is a contradiction
and hence: |p| = s ≤ dn2 e.

2. Case: p = {εi1,j1 , . . . , εis,js} is of the form (B2) and we assume |p| = s > bn2 c.
As in the first case we have a strictly increasing chain of integers:

Cp : i1 < i2 · · · < is < js < js−1 < · · · < j2 < j1. (1.4.7)

Therefore, we have 2s different integers corresponding to at most n different
elements in {εr | 1 ≤ r ≤ n}, but by assumption we have 2s ≥ 2(bn2 c+1) ≥ n+1.
Again we have a contradiction and therefore: |p| = s ≤ bn2 c.

Because of Corollary 1.3.5 we know that the elements {f svωn | s ∈ S(ωn)} span

V (ωn) and by Proposition 1.1.8 there is a bijection between S(ωn) and D
Bn
ωn . We

show that these elements are linear independent. To achieve that we show that
|DBn

ωn | = dimV (ωn). To be more explicit:

Proposition 1.4.9. |DBn
ωn | = dimV (ωn) = 2n.

Proof. We know from (1.4.5) that for an arbitrary element p ∈ DBn
ωn the number

of roots s in p is bounded by dn2 e respective by bn2 c. Therefore, the number of
integers occurring in Cp (see (1.4.6) and (1.4.7)) is also bounded:

|Cp| =

{
2s− 1 ≤ 2dn2 e − 1 ≤ n, p is of the form (B1),

2s ≤ 2bn2 c ≤ n, p is of the form (B2).
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In order to simplify our notation, we define l := |Cp|, so we have for an arbitrary

p ∈ DBn
ωn : 0 ≤ l ≤ n. Further we define the subsets D

Bn
ωn(l) ⊂ DBn

ωn :

D
Bn
ωn(l) := {p ∈ DBn

ωn | |Cp| = l}, ∀ 0 ≤ l ≤ n.

Therefore, the elements in D
Bn
ωn(l) are parametrized by l totally ordered integers

ui in {r | 1 ≤ r ≤ n}, ∀ 1 ≤ i ≤ l. Hence we conclude: |DBn
ωn(l)| ≤

(
n
l

)
, ∀ 1 ≤ l ≤ n

and so

|DBn
ωn | = |

n⋃
l=1

D
Bn
ωn(l)| =

n∑
l=0

|DBn
ωn(l)| ≤

n∑
l=0

(
n

l

)
= 2n.

We also know from Corollary 1.3.5 that we have |DBn
ωn | ≥ dimV (ωn) =

(
n
l

)
= 2n.

Finally we conclude: |DBn
ωn | = 2n.

Example 1.4.10. The polytope P (mω3) in the case g = so7 has the following
shape.

P (mω3) =

{
x ∈ R6

≥0 |
x1 + x2 + x3 + x5 + x6 ≤ m
x1 + x2 + x4 + x5 + x6 ≤ m

}
.

Proposition 1.4.9 implies immediately:

Proposition 1.4.11. The vectors f svωn , s ∈ S(ωn) are a FFL basis of V (ωn).

Type Cn. Let g be a simple Lie algebra of type Cn for n ≥ 3 with the associated
Dynkin diagram

Cn <
1 2 n-2 n-1 n

For all fundamental weights ωk we have ωk(θ
∨) = 1, where θ = (2, 2, . . . , 2, 1) is

the highest root and θ∨ = (1, 1, . . . , 1) the corresponding coroot. But only for ω1

the associated Hasse diagram H(n−ω1
)g has no i–chains. In fact for 1 ≤ k ≤ n,

H(n−ωk)g has k − 1 different i–chains, with 1 ≤ i ≤ k − 1. The following example
explains, why we are not able to rewrite the diagram in these cases, with our
approach.
For all ωk with k 6= 1 we have the following 1–chain.

β1 β2 β3.
1 1

Here β1 = 2α1+· · ·+2αn−1+αn is the highest root, β2 = α1+2α2+· · ·+2αn−1+αn
and β3 = 2α2 + · · ·+ 2αn−1 + αn. Note that β1 − β3 = 2α1, which is not a root.
Further, because β1 is the highest root, there are no roots γ ∈ ∆+, ν ∈ ∆ωk

+ with
∂γfν = f3, except for ν = β2. Hence it is more involved to rewrite the diagram
into a diagram without k–chains such that there is a path connecting β1 and β3.
Nevertheless, in [FFL11b] similar statements to Theorem A and Theorem B were
proven for arbitrary dominant integral weights.

Now we consider ω = ω1. Then we have 2n− 1 = N and ∆ω
+ is given by

β1 = (2, 2, . . . , 2, 1) β2 = (1, 2, . . . , 2, 1) . . . βn = (1, 1, . . . , 1, 1)

βn+1 = (1, 1, . . . , 1, 0) βn+2 = (1, . . . , 1, 0, 0) . . . βN = (1, 0, . . . , 0, 0)
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The diagram H(n−ω )g has the following form.

β1 β2 β3 ... βn−1 βn βn+1 ... βN .
1 2 3 n-2 n-1 n n-1 2

There are no k–chains and the associated polytope is given by

P (mω) = {x ∈ RN≥0 | x1 + x2 + · · ·+ xN ≤ m}.

By Corollary 1.3.5 the elements vω, f1vω, f2vω, . . . , fNvω span V (ω) and with
[Car05, p295] we know dimV (ω) = 2n. From these observations we get immedi-
ately:

Proposition 1.4.12. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω).

Type Dn. Let g be a simple Lie algebra of type Dn with associated Dynkin
diagram

Dn
1 2 n-3 n-2

n-1

n

The highest root in type Dn is of the form θ = α1 + 2
∑n−2

i=2 αi + αn−1 + αn.
Since g is simply-laced we have θ∨ = α∨1 + 2

∑n−2
i=2 α

∨
i + α∨n−1 + α∨n . Hence

ω(θ∨) = 1⇔ ω ∈ {ω1, ωn−1, ωn}.

First we consider the case ω = ω1. Then we have 2n − 2 = N and ∆ω1
+ has the

following form:

β1 =(1, 2, 2 . . . , 2, 1, 1) β2 =(1, 1, 2, . . . , 2, 1, 1) . . . βn−2 =(1, 1, 1 . . . , 1, 1, 1)

βn−1 =(1, 1, 1 . . . , 1, 0, 1) βn =(1, 1, 1, . . . , 1, 1, 0) . . . βN =(1, 0, 0 . . . , 0, 0, 0)

The Hasse diagram has no k–chain. In addition in Dω1 there are only co–chains
of cardinality at most 1, except for one with cardinality 2.

β1 β2 β3 ... βn−2

βn−1

βn

βn+1 βn+2 ... βN .
2 3 4 n-2

n-1

n

n

n-1

n-2 n-3 2

Associated to this diagram we get the following polytope for m ∈ Z≥0:

P (mω) =

{
x ∈ RN≥0 |

x1 + · · ·+ xn−2 + xn−1 +xn+1 + · · ·+ xN ≤ m
x1 + · · ·+ xn−2 + xn +xn+1 + · · ·+ xN ≤ m

}
.

By Corollary 1.3.5 the elements Bω1 = {vω1 , f1vω1 , f2vω1 , . . . , fNvω1 , fn−1fnvω1}
span V (ω1) and with [Car05, p. 280] we have dimV (ω1) = 2n. From these
observations we get immediately.

Proposition 1.4.13. The vectors f svω1 , s ∈ S(ω1) are a FFL basis of V (ω1).
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For most of the proofs of the statements in the case ω = ωn−1, ωn we refer to the
proofs of the corresponding statements for type Bn.

Now we consider the case ω = ωn−1. For further considerations it will be conve-
nient to describe the roots and fundamental weights of g in terms of an orthogonal
basis {εi | 1 ≤ i ≤ n}. Then ∆

ωn−1
+ is given by

{εi,j = εi + εj | 1 ≤ i < j ≤ n− 1} ∪ {εk,n = εk − εn | 1 ≤ k ≤ n− 1}. (1.4.8)

The total order on ∆
ωn−1
+ is defined like in the Bn, ωn-case (see Figure 3.3). The

elements of ∆
ωn−1
+ correspond to εi,j =

∑j−1
r=i αr + 2

∑n−2
r=j αr + αn−1 + αn and

εk,n =
∑n−1

r=k, αr. The highest weight of V (ωn−1) has the description ωn−1 =

1
2

(∑n−1
r=1 εr − εn

)
. Further the lowest weight is −ωn−1 = −1

2

(∑n−1
r=1 εr − εn

)
.

With this observation, the fact that ωn−1 is minuscule and (1.4.8) we see that

BV (ωn−1) =

{
fαvωn−1 | α =

1

2

n∑
r=1

lrεr, lr = ±1, ∀1 ≤ r ≤ n, 2 - #{lr | lr = −1}

}

is a basis of V (ωn−1). We note that |BV (ωn−1)| = 2n−1 = dimV (ωn−1).

Remark 1.4.14. Similar arguments as in Remark 1.4.7 show that the elements
p ∈ DDn

ωn−1
have two possible forms:

(D1) p = {εk,n, εi2,j2 , . . . , εir,jr} or (D2) p = {εi1,j1 , . . . , εit,jt}.

We denote with 12-n : Z≥0 → {0, 1} (respective 12|n) the Indicator function
for the odd (respective even) integers, which is defined by 12-n(n) = 1 if 2 - n
(respective 12|n(n) = 1 if 2 | n) and 0 otherwise. Therefore, we can characterize

the elements p ∈ DDn
ωn−1

as follows

Proposition 1.4.15. For p ∈ P(∆
ωn−1
+ ) arbitrary we have:

p ∈ DDn
ωn−1

⇔

{
p is of the form (D1), with (a) and (b),

p is of the form (D2), with (b).
(1.4.9)

In addition: p ∈ DDn
ωn−1

⇒

{
s ≤ dn2 e − 12-n(n), p is of the form (D1),

s ≤ bn2 c − 12|n(n), p is of the form (D2),

with s = |p|. The properties (a) and (b) are defined by

(a) ∀ 1 ≤ l ≤ s : k < il < jl,

(b) ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im < jm < jl.

Proof. To prove this statement we adapt the idea of Proposition 1.4.8. We use
exactly the same approach but we consider ∆

ωn−1
+ of type Dn.

To check that that the cardinality s of an arbitrary element p ∈ DDn
ωn−1

is bounded,
like we claim on the rhs of (1.4.9), we use only fundamental combinatorics, again
analogue to the idea of the proof of Proposition 1.4.8.
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Because of Corollary 1.3.5 we know that the elements {f svωn−1 | s ∈ S(ωn−1)}
span V (ωn−1) and by Proposition 1.1.8 there is a bijection between S(ωn−1) and

D
Dn
ωn−1

. We show that these elements are linear independent. To achieve that we

show that |DDn
ωn−1
| = dimV (ωn−1). To be more explicit:

Proposition 1.4.16. |DDn
ωn−1
| = dimV (ωn−1) = 2n−1.

Proof. This is a direct consequence of Lemma 1.4.22 and Proposition 1.4.9.

Proposition 1.4.16 implies immediately

Proposition 1.4.17. Bωn−1 = {f svωn−1 | s ∈ S(ωn−1)} is a basis for V (ωn−1).

Finally we consider the case ω = ωn. For the proofs of the statements in this case
we refer to the proofs of the analogous statements in the previous case ω = ωn−1

and the Bn, ωn-case.
The set of roots ∆ωn

+ , where αn = εn−1 + εn is a summand, is given by:

{εi,j = εi + εj | 1 ≤ i < j ≤ n− 1} ∪ {εk,n = εk + εn | 1 ≤ k ≤ n− 1}.

Again the total order on ∆ωn
+ is defined like in the Bn, ωn-case (see Figure 3.3),

where the elements of ∆ωn
+ correspond to εi,j =

∑j−1
r=i αr+2

∑n−2
r=j αr+αn−1 +αn

and εk,n =
∑n

r=k, r 6=n−1 αr. The highest weight of V (ωn) has the description

ωn = 1
2 (
∑n

r=1 εr). Further the lowest weight is −ωn = −1
2 (
∑n

r=1 εr). As before
we see that

BV (ωn) =

{
fαvωn | α =

1

2

n∑
r=1

lrεr, lr{−1, 1}, ∀1 ≤ r ≤ n, 2 | #{lr | lr = −1}

}

is a basis of V (ωn). We note that |Bωn | = 2n−1 = dimV (ωn).

Remark 1.4.18. Similar arguments as in Remark 1.4.7 show that the elements
p ∈ DDn

ωn have two possible forms:

(D∗1) p = {εk,n, εi2,j2 , . . . , εis,js} and (D∗2) p = {εi1,j1 , . . . , εis,js}.

Therefore, we can characterize the elements p ∈ DDn
ωn as follows:

Proposition 1.4.19. For p ∈ P(∆ωn
+ ) arbitrary we have:

p ∈ DDn
ωn ⇔

{
p is of the form (D∗1), with (a) and (b),

p is of the form (D∗2), with (b).

In addition: p ∈ DDn
ωn ⇒

{
s ≤ dn2 e − 12-n(n), p is of the form (D∗1),

s ≤ bn2 c − 12|n(n), p is of the form (D∗2),

with s = |p|. The properties (a) and (b) are defined by

(a) ∀ 1 ≤ l ≤ s : k < il < jl,

(b) ∀αil,jl , αim,jm ∈ p, il ≤ im : il < im < jm < jl.
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Proof. To prove this statement we refer to the proof of Proposition 1.4.15.

Because of Corollary 1.3.5 we know that the elements of D
Dn
ωn span the highest

weight module V (ωn). But we still have to show that these elements are linear
independent. To achieve that we show:

Proposition 1.4.20. |DDn
ωn | = dimV (ωn) = 2n−1.

Proof. This is a direct consequence of Lemma 1.4.22 and Proposition 1.4.9.

Proposition 1.4.20 implies immediately

Proposition 1.4.21. The set Bωn = {f svωn | s ∈ S(ωn)} is a basis for V (ωn).

The following Lemma gives us a very useful connection between the co–chains of
g of type Bn−1 and Dn:

Lemma 1.4.22. We have: |DDn
ωn−1
| = |DBn−1

ωn−1
| and |DDn

ωn | = |D
Bn−1
ωn−1
|.

Proof. We only use basic combinatorics to prove this statement.

Type E6. Let g be a simple Lie algebra of type E6 with associated Dynkin
diagram

E6
1 3 4 5 6

2

We have ω(θ∨) = 1 ⇔ ω = ω1, ω6 and first we fix ω to be ω6. The set is ∆ω6
+

given as follows:

β1 = (1, 2, 2, 3, 2, 1) β9 = (1, 1, 1, 1, 1, 1)
β2 = (1, 1, 2, 3, 2, 1) β10 = (0, 1, 1, 1, 1, 1)
β3 = (1, 1, 2, 2, 2, 1) β11 = (1, 0, 1, 1, 1, 1)
β4 = (1, 1, 1, 2, 2, 1) β12 = (0, 0, 1, 1, 1, 1)
β5 = (1, 1, 2, 2, 1, 1) β13 = (0, 1, 0, 1, 1, 1)
β6 = (0, 1, 1, 2, 2, 1) β14 = (0, 0, 0, 1, 1, 1)
β7 = (1, 1, 1, 2, 1, 1) β15 = (0, 0, 0, 0, 1, 1)
β8 = (0, 1, 1, 2, 1, 1) β16 = (0, 0, 0, 0, 0, 1)

The Hasse diagram H(n−ω6
)E6 has no k–chains and the maximal cardinality of a

co–chain of H(n−ω6
)E6 is two (see Appendix, Figure 3.4). The associated polytope

is given for m ∈ Z≥0 by:

P (mω6) = {x ∈ R16
≥0 |

∑
βj ∈p

xj ≤ m, ∀p ∈ Dω6},

in particular see Appendix, Table 3.2 for the non-redundant inequalities.

Proposition 1.4.23. The set Bω6 = {f svω6 | s ∈ S(ω6)} is a FLL basis of V (ω6).
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Proof. The co–chains of the Hasse diagram give us immediately:

Bω6 = {vω6 , f1vω6 , f2vω6 , . . . , f16vω6 , f4f5vω6 , f5f6vω6 , f6f7vω6 , f6f9vω6 ,

f8f9vω6 , f8f10vω6 , f8f11vω6 , f10f11vω6 , f11f13vω6 , f12f13vω6}.

Note that there are 27 elements in Bω6 . By Corollary 1.3.5, we get that Bω6 is a
spanning set of V (ω6). By [Car05, p. 303] we have dimV (ω6) = 27 and therefore
the claim holds.

It is shown in Figure 3.4 that the Hasse diagrams H(n−ω1
)E6 and H(n−ω6

)E6 have a
very similar shape. Therefore, with same arguments as above we conclude:

Proposition 1.4.24. The vectors f svω1, s ∈ S(ω1) are a FLL basis of V (ω1).

Type E7. Let g be the simple Lie algebra of type E7 with associated Dynkin
diagram

E7
1 3 4 5 6 7

2

In this case ω = ω7 is the only fundamental weight satisfying ω(θ∨) = 1.

β1 = (2, 2, 3, 4, 3, 2, 1) β10 = (1, 1, 2, 3, 2, 1, 1) β19 = (1, 1, 1, 1, 1, 1, 1)
β2 = (1, 2, 3, 4, 3, 2, 1) β11 = (1, 1, 1, 2, 2, 2, 1) β20 = (0, 1, 1, 1, 1, 1, 1)
β3 = (1, 2, 2, 4, 3, 2, 1) β12 = (1, 1, 2, 2, 2, 1, 1) β21 = (1, 0, 1, 1, 1, 1, 1)
β4 = (1, 2, 2, 3, 3, 2, 1) β13 = (0, 1, 1, 2, 2, 2, 1) β22 = (0, 0, 1, 1, 1, 1, 1)
β5 = (1, 1, 2, 3, 3, 2, 1) β14 = (1, 1, 1, 2, 2, 1, 1) β23 = (0, 1, 0, 1, 1, 1, 1)
β6 = (1, 2, 2, 3, 2, 2, 1) β15 = (1, 1, 2, 2, 1, 1, 1) β24 = (0, 0, 0, 1, 1, 1, 1)
β7 = (1, 1, 2, 3, 2, 2, 1) β16 = (0, 1, 1, 2, 2, 1, 1) β25 = (0, 0, 0, 0, 1, 1, 1)
β8 = (1, 2, 2, 3, 2, 1, 1) β17 = (1, 1, 1, 2, 1, 1, 1) β26 = (0, 0, 0, 0, 0, 1, 1)
β9 = (1, 1, 2, 2, 2, 2, 1) β18 = (0, 1, 1, 2, 1, 1, 1) β27 = (0, 0, 0, 0, 0, 0, 1)

As in the E6-case the Hasse diagram has no k–chains. In addition there are
only co–chains of cardinality at most 2, except for one with cardinality 3 (see
Appendix, Figure 3.5). As before the polytope is defined by the paths in the
Hasse diagram. For m ∈ Z≥0 we have:

P (mω) = {x ∈ R27
≥0 |

∑
βj ∈p

xj ≤ m, ∀p ∈ Dω}.

Because the polytope is defined by 77 non-redundant inequalities we will not
state it explicitly.

Proposition 1.4.25. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω).

Proof. The co–chains of the Hasse diagram give us immediately:

Bω = {vω, f1vω, f2vω, . . . , f27vω, f5f6vω, f5f8vω, f7f8vω, f8f9vω,

f9f10vω, f8f11vω, f10f11vω, f11f12vω, f8f13vω, f10f13vω,

f12f13vω, f13f14vω, f11f15vω, f13f15vω, f14f15vω, f15f16vω,

f13f17vω, f16f17vω, f13f19vω, f16f19vω, f18f19vω, f13f21vω,

f16f21vω, f18f21vω, f20f21vω, f21f23vω, f22f23vω, f13f14f15vω}.
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Note that there are 56 elements in Bω. By Corollary 1.3.5, we get that this is a
spanning set of V (ω). By [Car05, p. 303] we have dimV (ω) = 56 and therefore
that Bω is a basis.

Type F4. Let g be the simple Lie algebra of type F4 with associated Dynkin
diagram

F4 <
1 2 3 4

The highest root is of the form θ = 2α1 + 3α2 + 4α4 + 2α4. And we have
θ∨ = 2α∨1 + 3α∨2 + 2α∨3 + α∨4 . Thus ω(θ∨) = 1⇔ ω = ω4, so we consider the case
ω = ω4. If we construct H(n−ω )F4 as in Section 1.1 we get a 3–chain of length 2,
but here we are able to solve this problem. Therefore, we change the order of the
roots such that we can draw a new diagram without any k–chains. As usual we
start with the set of roots ∆ω

+:

β1 = (2, 3, 4, 2) β6 = (1, 2, 3, 1) β11 = (0, 1, 2, 1)
β2 = (1, 3, 4, 2) β7 = (1, 1, 2, 2) β12 = (1, 1, 1, 1)
β3 = (1, 2, 4, 2) β8 = (1, 2, 2, 1) β13 = (0, 1, 1, 1)
β4 = (1, 2, 3, 2) β9 = (0, 1, 2, 2) β14 = (0, 0, 1, 1)
β5 = (1, 2, 2, 2) β10 = (1, 1, 2, 1) β15 = (0, 0, 0, 1)

Here we have βi � βj ⇔ i > j. With this order we are not able to find relations
derived from differential operators (see Section 1.3), which include the root vector
f4 (see (1.3.2)). In order to find relations including f4 we adjust the order on the
roots in this case as follows:

β1 ≺ β2 ≺ β3 ≺ β5 ≺ β4 ≺ β6 ≺ β7 ≺ · · · ≺ β15.

Thus we just switched the positions of β4 and β5. Now we consider our Hasse
diagram constructed as in Section 1.1 and the diagram we obtain by changing the
order of the roots and by using differential operators corresponding to non-simple
roots, see Figure 1.1.
The idea of this adjustment is that we split up the 3–chain by using the non-
simple differential operators mentioned above. After this we still want to get as
many roots as possible on each path. To do so we use two non-simple differential
operators: ∂0110 = ∂α2+α3 and ∂0011 = ∂α3+α4 . In the adjusted diagram also
occurs a directed edge labeled by a from β2 to β5 and a second labeled by b
from β5 to β4. We cannot label the second edge with a differential operator,
because there is no element γ ∈ ∆+ satisfying: β5−γ = β4. We use the following
observation to explain the existence of these edges and labels. For a0, b0 ∈ C\{0}
we have:

∂n3
3 ∂n2+n3

3 ∂n2+n3
2 ∂n1

1 fm+1
1 = ∂n3

3 ∂n2+n3
3 (a0f

n2+n3
3 fn1−n2−n3

2 fm+1−n1
1 )

= b0f
n3
5 fn2

4 fn1−n2−n3
2 fm+1−n1

1 + smaller terms.

Therefore, we can replace in the path consisting of β1, β2, β3 and β4 the root β3 by
β5. Furthermore the differential operators ∂α2+α3 and ∂α3+α4 have no influence
on β5. That is the reason for the directed edge labeled by b from β5 to β4. The
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reason for the edge between β2 and β5 is that we want to visualize the co–chain
which we construct at this point. We label this edge with a to prevent confusions
about the applied differential operators, where a corresponds to ∂n2+2n3

3 . We note
that the changed Hasse diagram gives us directly the inequalities of P (λ), but in
this case it does not describe in general the action of the differential operators.
If we now follow our standard procedure with the adjusted Hasse diagram the
next step is to define the polytope associated to the set of Dyck paths Dω and
m ∈ Z≥0:

P (mω) = {x ∈ R15
≥0 |

∑
βj∈p

xj ≤ m, ∀p ∈ Dω}.

More explicitly: P (mω) is the set of all elements x ∈ R15
≥0 such that the 12

inequalities, which can be found in the Appendix, Figure 3.3, are satisfied.
The set Bω = {f svω | s ∈ S(ω)} ⊂ V (ω) is given by:

Bω ={vω, f1vω, f2vω, . . . , f15vω, f3f5vω, f4f6vω, f5f6vω, f6f7vω,

f7f8vω, f6f9vω, f8f9vω, f9f10vω, f9f12vω, f11f12vω}.

Proposition 1.4.26. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω).

Proof. By Corollary 1.3.5 we conclude that Bω spans the vector space V (ω). In
addition we know by [Car05, p. 303] that dimV (ω) = 26 = |Bω|. Hence the set
Bω is a basis.

β1 β2 β3 β4

β5 β6

β7 β8

β9 β10

β11 β12

β13 β14 β15

 

β1 β2

β3 β5

β6 β4

β8 β7

β10 β9

β12 β11

β13 β14 β15

1 2 3

3 4

2 4 3

1 4 2

4 1 3

3 1

2 3

1

2 a

0011 3 b

3 0011 0110

2 4 1

3 1 4

1 3

2 3

Figure 1.1: H(n−ω )F4

Type G2. Let g be the simple Lie algebra of type G2 with associated Dynkin
diagram

G2 <
1 2

For the highest root θ = 3α1 + 2α2 we have θ∨ = α∨1 + 2α∨2 . Thus we consider
ω = ω1. In this case the Hasse diagram has one 1–chain. We rewrite H(n−ω )G2
into a diagram without any k–chains. Consider the following order on ∆ω

+:

β1 ≺ β2 ≺ β4 ≺ β5 ≺ β3,
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where

β1 = (3, 2) β2 = (3, 1) β3 = (2, 1) β4 = (1, 1) β5 = (1, 0)

Thus we obtain the following diagrams:

β1 β2 β3 β4 β5  β1 β3

β2

β4

β5,
2 1 21 11

21
2

2
21

Very similar arguments as in the case of B3, ω1 show that we can apply the results
of section 1.3 to the rewritten diagram. We consider the polytope associated to
the new diagram for m ∈ Z≥0:

P (mω) =

{
x ∈ RN≥0 |

x1 + x2 + x3 + x5 ≤ m
x1 + x3 + x4 + x5 ≤ m

}
.

By Section 1.3 the elements vω, f1vω, f2vω, f3vω, f4vω, f5vω, f2f4vω span V (ω)
and with [Car05, p. 316] we know dimV (ω) = 7.

Proposition 1.4.27. The set Bω = {f svω | s ∈ S(ω)} is a FFL basis of V (ω).

Proof. The previous observations imply that {f svω | s ∈ S(ω)} is a basis of V (ω).
It remains to show that P (ω) is a normal polytope.
Like in the case of (Bn, ω1) we have to change the order of the roots to apply
Section 1.2. One possible order is β1 ≺ β3 ≺ β4 ≺ β2 ≺ β5. Using this order we
conclude that P (ω) is a normal polytope.

1.5 Linear Independence

We refer to the notation of Section 1.1, especially to the definition of essential
monomials. Throughout the Section we assume the vectors fpvλ ∈ V (λ) to be
ordered as in (1.1.7) and we fix λ = mω where ω appears in Table 1.1.
We investigate the connection between our polytope P (λ) and the essential multi–
exponents. Via this connection and with the results from Section 1.3 we prove
that {f svλ | s ∈ S(λ)} provides a FFL basis of V (λ).
Note that one can define essential monomials for an arbitrary total order on ∆λ

+.
Hence for the following statements it is very important that we kept in the whole
Section 1.1 the same total order.

Lemma 1.5.1. If {f svλ | s ∈ S(λ)} is linear independent in V (λ), then

S(λ) = es(V (λ)).

Proof. Let s ∈ es(V (λ)) = {p ∈ ZN≥0 | fpvλ /∈ span{fqvλ | q ≺ p}} and assume
s /∈ S(λ). By Proposition 1.3.3 we can rewrite f s such that

f svλ =
∑
t≺ s

ctf
tvλ, ct ∈ C
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and we get immediately a contradiction, so s ∈ S(λ).
Now let s ∈ S(λ) and s /∈ es(V (λ)). Then f svλ ∈ span{fqvλ | q ≺ s} and so

f svλ =
∑
q≺ s

cqf
qvλ,

for some cq ∈ C. We rewrite each fqvλ in terms of basis elements f tvλ, t ∈ S(λ).
Because of the linear independence all coefficients are zero, meaning that s = 0.
But this is a contradiction to s /∈ esV (λ).

Theorem 1.5.2. The elements {f s(vλ−ω ⊗ vω) | s ∈ S(λ)} ⊂ V (λ− ω)� V (ω)
are linearly independent and Bλ = {f svλ | s ∈ S(λ)} is a FFL basis of V (λ).

Proof. We prove this statement by induction on m ∈ Z≥1. For m = 1 we saw in
Section 1.4 that Bω = {f svω | s ∈ S(ω)} is a basis for V (ω) in each type.
Thus let m ∈ Z≥2 be arbitrary and we assume that the claim holds for all m′ < m.
By induction the set Bλ−ω = {f svλ−ω | s ∈ S(λ − ω)} is a basis of V (λ − ω).
Thus we have by Lemma 1.5.1

es(V (λ− ω) = S(λ− ω) and es(V (ω)) = S(ω). (1.5.1)

But then with [FFL13a, Prop. 1.11]:

es(V (λ− ω) + es(V (ω)) ⊂ es(V (λ− ω)� V (ω))

and so we get the linearly independence of

{f s(vλ−ω ⊗ vω) | s ∈ es(V (λ− ω) + es(V (ω))} ⊂ V (λ− ω)� V (ω)

With the equalities in (1.5.1) and Section 1.2 where we proved S(λ−ω)+S(ω) =
S(λ), we conclude that the set

{f s(vλ−ω ⊗ vω) | s ∈ S(λ)} ⊂ V (λ− ω)� V (ω)

is linearly independent. Thus we get dimV (λ) ≥ |S(λ)| and with the spanning
property Corollary 1.3.5 we have |S(λ)| ≥ dimV (λ). Finally we get

|S(λ)| = dimV (λ)

and that Bλ is a FFL basis of V (λ) as claimed.

Remark 1.5.3. The basis Bλ is a monomial basis, so we get an induced FFL
basis of V a(λ).

Theorem 1.5.4. Let V a(λ) ∼= S(n−)/I(λ). Then the ideal I(λ) is generated by

U(n+) ◦ span{fλ(β∨)+1
β | β ∈ ∆+}

as S(n−) ideal.
In particular we have that I(λ) = S(n−)(U(n+) ◦ span{fβ, fm+1

θ | β ∈ ∆+\∆λ
+}).
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Proof. Let I be an Ideal generated by U(n+)◦ span{fλ(β∨)+1
β | β ∈ ∆+} as S(n−)

ideal. By Ivλ = {0} we have I ⊂ I(λ), so there is a canonical projection:

φ : S(n−)/I → S(n−)/I(λ) ∼= V a(λ)

Let f t = 0 in S(n−)/I(λ). Because we have a basis of V a(λ) we can rewrite f t

as follows:
f t =

∑
s∈S(λ)

csf
s ∈ S(n−)/I(λ) (1.5.2)

for some cs ∈ C. In the proof of Theorem 1.3.4 we already saw that the relations
obtained by I are sufficient to achieve (1.5.2). Thus 0 = f t =

∑
s∈S(λ)

csf
s ∈

S(n−)/I. Therefore φ is injective.
In the proof of Proposition 1.3.3 we do not need powers fβ for β ∈ ∆λ

+ \ {θ}.
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2 Monomial bases over Z

Let B(V a(λ)) be a monomial basis of the associated graded space V a(λ). In this
chapter we explain under which assumptions the set B(V a(λ)) is also a monomial
basis of V a

Z (λ), the Z–analogue of V a(λ) (for a precise definition see Section 2.1).
As a consequence we also obtain a monomial basis of Vk(λ) ∼= VZ(λ)⊗Z k, where
k is a field of arbitrary characteristic.

2.1 The Kostant Lattice

In the present chapter it is necessary to work with a Chevalley basis of g. To give
the definition of those we need the following general statement for semisimple Lie
algebras.

Proposition 2.1.1. Let g be a semisimple complex Lie algebra and

g = h⊕
∑
β∈∆

gβ

be a Cartan decomposition of g, where ∆ ⊂ h∗ is the corresponding root system.
Let hβ ∈ h be the co–root corresponding to the root β ∈ ∆. Then is it possible to
choose root vectors xβ ∈ gβ satisfying:

(a) [xβ, x−β] = hβ.

(b) If β, γ, β + γ ∈ ∆ and [xβ, xγ ] = cβ,γxβ+γ, then cβ,γ = −c−β,−γ.

Proof. See for the proof [Hum72, Proposition 25.2].

The constants cβ,γ from Proposition 2.1.1 are called the structure constants.
A basis B(g) = {xβ, hj | β ∈ ∆, 1 ≤ j ≤ n} of g for which xβ, β ∈ ∆ satisfy (a)
and (b) from Proposition 2.1.1 is called a Chevalley basis.
The following theorem is of significant importance for our further considerations.

Theorem 2.1.2 (Chevalley). Let g be a semisimple complex Lie algebra and
B(g) = {xβ, hj | β ∈ ∆, 1 ≤ j ≤ n} be a Chevalley basis of g. Then the resulting
structure constants are in Z. More precisely:

(a) [hi, hj ] = 0, for 1 ≤ i, j ≤ n.

(b) [hi, xβ] = cαi,βxβ = αi(β
∨)xβ, for 1 ≤ i ≤ n and β ∈ ∆.

(c) [xβ, x−β] = hβ is a Z–linear combination of h1, . . . , hn.

(d) For β, γ ∈ ∆, [xβ, xγ ] = ±(p+ 1)xβ+γ, if β+γ ∈ ∆ and 0 otherwise, where
p ∈ Z≥0 is the greatest integer for which γ − pβ ∈ ∆.
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Proof. See for a proof [Hum72, Theorem 25.2].

Let us now consider our previous setup. Again g is simple, complex and finite–
dimensional Lie algebra. In order to construct irreducible representations of g
“over Z” we have to introduce the Lie algebra gZ.
Let us fix a Chevalley basis of g

BCh(g) = {xi | 1 ≤ i ≤ D}, with D = dim g.

We define
gZ := 〈xi | 1 ≤ i ≤ D〉Z ⊂ g.

Thus gZ is a free Z–module. Chevalley’s Theorem (see Theorem 2.1.2) implies
that gZ is in addition a Lie subalgebra of g, since all structure constants are in
Z. Analogously we define the Lie subalgebras n+

Z ⊂ n+, hZ ⊂ h, n−Z ⊂ n− and
bZ = hZ ⊕ n+

Z ⊂ b = h⊕ n+. Note that we have g ∼= gZ ⊗Z C, n+ ∼= n+
Z ⊗Z C etc.

Furthermore let n−,aZ be the abelian Lie algebra, which is as vector space equal

to n−Z endowed with the trivial Lie bracket. Note that n−,aZ carries the structure
of a bZ–module by using the vector space isomorphism Ψ between the quotient
module gZ/bZ, which is a bZ–module via the adjoint action, and n−,aZ . To be

more explicit we define for b ∈ bZ and n ∈ n−,aZ : b.n = Ψ(b.Ψ−1(n)).

Let us define the basis B(gZ) of gZ, which is as set equal to BCh(g), more explicit

B(gZ) = {eβ, fβ, hj | β ∈ ∆+, 1 ≤ j ≤ n} ⊂ gZ = hZ ⊕
∑
β∈∆

gβ,Z,

where the root vector eβ ∈ n+
Z (respectively fβ ∈ n−Z ) is an element of the root

space gβ,Z (respectively g−β,Z).

We write e
(m)
β , f

(m)
β for the divided powers

emβ
m! and

fmβ
m! in the universal enveloping

algebra U(g). Further we denote by
(
hi
m

)
the following element in U(g):(

hi
m

)
=

∏m+1
k=0 (hi − k)

m!
.

These notations allow us to define the main object in this section

UZ(g) :=

〈
e

(m)
βi

, f
(m)
βi

,

(
hi
m

)
| m ∈ Z≥0

〉
Z
⊂ U(g),

we remark that UZ(g) is a Z–subalgebra generated as above, called the Kostant
lattice in U(g). Let ∆+ = {β1, . . . , βN}. For a given multi–exponent m ∈ ZN≥0

and a n–tuple b ∈ Zn≥0 we define

e(m) :=
N∏
`=1

e
(m`)
β`

, f (m) :=
N∏
`=1

f
(m`)
β`

and h(b) :=
n∏
`=1

(
h`
b`

)
.

Theorem 2.1.3 (Kostant). Let UZ(g) be the Kostant lattice in U(g). Then

B(UZ(g)) :=
{
f (m)h(b)e(k) |m,k ∈ ZN≥0, b ∈ Zn≥0

}
forms a Z–basis of UZ(g) as free Z–module.
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Proof. See for a proof [Hum72, Section 26.4.].

Corollary 2.1.4. The Z–subalgebra UZ(n+) respectively UZ(n−) admits the or-
dered monomials

B(UZ(n+)) := {e(k) | k ∈ ZN≥0} resp. B(UZ(n−)) := {f (m) |m ∈ ZN≥0}

as Z–basis.

Proof. This is a direct conclusion from Kostant’s Theorem.

Let UZ(n−)s be the Z–span of the monomials of degree at most s:

UZ(n−)s =
〈
f (m1)
γ1

. . . f (m`)
γ`

| m1 + . . .+m` ≤ s, γ1, . . . , γ` ∈ ∆+

〉
Z. (2.1.1)

Since changing the ordering is commutative up to terms of smaller degree, the
subspaces UZ(n−)s define a filtration of the algebra UZ(n−). By abuse of notation
we denote by SZ(n−,a) the associated graded algebra of n−,aZ with respect to the

filtration (2.1.1). Note that n−,aZ ⊂ SZ(n−,a). In fact, SZ(n−,a) is a divided power

analogue of the symmetric algebra over n−,aZ . This algebra can be described as
the quotient of a polynomial algebra in infinitely many generators, the “symbols”

f
(m)
β , modulo the ideal generated by the identities

f
(m)
β f

(k)
β =

(
m+ k
m

)
f
(m+k)
β . (2.1.2)

Thus we have:

SZ(n−,a) ' Z[f
(m)
β | m ∈ Z≥0, β ∈ ∆+]/〈f(m)

β f
(k)
β −

(
m+ k
m

)
f
(m+k)
β 〉.

Analogue to Remark 0.0.4, let U+
Z (h⊕ n+) ⊂ UZ(g) be the span of the monomi-

als h(`)e(k) such that
∑n

i=1 `i +
∑N

j=1 kj > 0. The natural map which sends a
monomial to its class in the quotient:

UZ(n−)→ UZ(g)/UZ(g)U+
Z (h⊕ n+), f (m) → f (m),

is an isomorphism of free Z–modules. Recall that UZ(g) is naturally a bZ–module
and a UZ(n+)–module via the adjoint action, and UZ(g)U+

Z (h ⊕ n+) is a proper
submodule. Via the identification above, we obtain an induced structure on
UZ(n−) as a bZ–module and as a UZ(n+)–module. The filtration of UZ(n−) by
the UZ(n−)s is stable under this bZ– and UZ(n−)s–action and hence:

Lemma 2.1.5. The bZ–module structure respectively the UZ(n+)–module struc-
ture on UZ(n−) induce a bZ–module structure respectively a UZ(n+)–module struc-
ture on SZ(n−,a).

For a dominant integral weight λ we fix a highest weight vector vλ and let VZ(λ) =
UZ(g)vλ ⊂ V (λ) be the corresponding lattice in V (λ). Since VZ(λ) = UZ(n−)vλ,
the filtration (2.1.1) induces an increasing degree filtration VZ(λ)s on VZ(λ):

VZ(λ)s = UZ(n−)svλ.

47



We denote the associated graded space by V a
Z (λ). Since bZVZ(λ)s ⊂ VZ(λ)s,

V a
Z (λ) becomes naturally a bZ–module. The application by an element

f
(m)
β ∈ UZ(n−) provides linear maps for all s:

f
(m)
β : VZ(λ)s → VZ(λ)s+m

∪ ∪
VZ(λ)s−1 → VZ(λ)s+m−1

and we obtain an induced endomorphism ψa(f
(m)
β ) : V a

Z (λ) → V a
Z (λ) such that

ψa(f
(m)
β )ψa(f

(`)
γ ) = ψa(f

(`)
γ )ψa(f

(m)
β ), and hence we obtain an induced represen-

tation of the abelian Lie algebra n−,aZ respectively of the algebra SZ(n−,a). Note
that V a

Z (λ) is a cyclic SZ(n−,a)–module:

V a
Z (λ) = SZ(n−,a)vλ.

Thus there is an ideal IZ(λ) ⊂ SZ(n−,a) such that: V a
Z (λ) ∼= SZ(n−,a)/IZ(λ). In

analogy to the complex case we have:
{
f

(λ(β∨i )+1)
βi

| 1 ≤ i ≤ N
}
⊂ IZ(λ).

The action of SZ(n−,a) on V a
Z (λ) is compatible with the bZ–action on SZ(n−,a) and

on V a(λ), i. e. for arbitrary b ∈ bZ, s ∈ SZ(n−,a) is the identity b.(s.vλ) = (b.s).vλ
true. Summarizing we have:

Proposition 2.1.6. V a
Z (λ) is a cyclic SZ(n−,a)–module and a bZ–module. The

bZ–action on SZ(n−,a) is compatible with the bZ–action on V a
Z (λ) = SZ(n−,a)vλ.

2.2 Differential operators for gZ and Z–admissible
elements in SZ(n

−,a)

Let gZ = n+
Z ⊕ hZ ⊕ n−Z be a Cartan decomposition. Further we fix a basis B(gZ)

of gZ, which is by definition a Chevalley basis of g. In the following we provide
an analogue of the differential operators defined in (0.0.4) for the Lie algebra gZ.
Let β, γ ∈ ∆+, then we define the differential operator

∂γ (fβ) :=

{
|cγ,−β|fβ−γ , if β − γ ∈ ∆+,

0, otherwise,
(2.2.1)

where cγ,−β ∈ Z is the corresponding structure constant. The differential operator
satisfies

∂γ (fβ) = ± ad(eγ) (fβ) .

Note, that it is no longer possible to multiply by (cβ,−γ)−1, if cβ,−γ 6= ±1, since
these scalars are not in Z.

Lemma 2.1.5 implies that SZ(n−,a) carries a UZ(n+)–module structure. Thus we
define analogue to (0.0.5) differential operators on SZ(n−,a). For m, k ∈ Z≥0 we
define:

∂(k)
γ

(
f

(m)
β

)
=

1

k!m!
∂kγ
(
fmβ
)

=
1

k!m!
∂γ · · · ∂γ︸ ︷︷ ︸
k–times

(
fmβ
)

(2.2.2)

and ∂γ
(
fmβ
)

= m∂γ (fβ)︸ ︷︷ ︸
(2.2.1)

fm−1
β = m|cγ,−β|fβ−γfm−1

β .
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We set ∂
(k)
γ (f

(m)
β ) = 0, if β = γ or if the root vectors commute. In the following

we describe the differential operator ∂
(k)
γ (f

(m)
β ) more explicit:

If β, γ and β + γ span a subsystem of type A2, then

∂(k)
γ

(
f

(m)
β+γ

)
=

{
f

(k)
β f

(m−k)
β+γ , if k ≤ m,

0 , otherwise.
(2.2.3)

If β, γ, β + γ, β + 2γ ∈ ∆+ span a subsystem of type B2 = C2, then

∂
(k)
β

(
f

(m)
β+γ

)
=

{
f

(k)
γ f

(m−k)
β+γ , if k ≤ m,

0 , otherwise
(2.2.4)

and

∂
(k)
β+γ

(
f

(m)
β+2γ

)
=

{
f

(k)
γ f

(m−k)
β+2γ , if k ≤ m,

0 , otherwise
(2.2.5)

and

∂(k)
γ

(
f

(m)
β+γ

)
=

{
2kf

(k)
β f

(m−k)
β+γ , if k ≤ m,

0 , otherwise
(2.2.6)

and

∂(k)
γ

(
f

(m)
β+2γ

)
=

{∑
X(k,m) rxf

(a)
β f

(b)
β+γf

(c)
β+2γ , if k ≤ 2m,

0 , otherwise
(2.2.7)

where X(k,m) = {x = (a, b, c) ∈ Z3
≥0 | a+ b+ c = m, 2a+ b = k} and rx ∈ Z.

If β, γ, β + γ, β + 2γ, β + 3γ, 2β + 3γ ∈ ∆+ span a subsystem of type G2, then

∂
(k)
β+3γ

(
f

(m)
2β+3γ

)
=

{
f

(k)
β f

(m−k)
2β+3γ , if k ≤ m,

0 , otherwise
(2.2.8)

and

∂
(k)
β+2γ

(
f

(m)
2β+3γ

)
=

{
f

(k)
β+γf

(m−k)
2β+3γ , if k ≤ m,

0 , otherwise
(2.2.9)

and

∂
(k)
β

(
f

(m)
2β+3γ

)
=

{
f

(k)
β+3γf

(m−k)
2β+3γ , if k ≤ m,

0 , otherwise
(2.2.10)

and

∂
(k)
β+γ

(
f

(m)
2β+3γ

)
=

{∑
X(k,m) rxf

(a)
γ f

(b)
β+2γf

(c)
2β+3γ , if k ≤ 2m,

0 , otherwise
(2.2.11)

and

∂
(k)
β+2γ

(
f

(m)
β+3γ

)
=

{
f

(k)
γ f

(m−k)
β+3γ , if k ≤ m,

0 , otherwise
(2.2.12)
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and

∂(k)
γ

(
f

(m)
β+3γ

)
=

{∑
Y (k,m) ryf

(a)
β f

(b)
β+γf

(c)
β+2γf

(d)
β+3γ , if k ≤ 3m,

0 , otherwise
(2.2.13)

and

∂
(k)
β+γ

(
f

(m)
β+2γ

)
=

{
2kf

(k)
γ f

(m−k)
β+2γ , if k ≤ m,

0 , otherwise
(2.2.14)

and

∂(k)
γ

(
f

(m)
β+2γ

)
=

{∑
X(k,m) 3a2br̃xf

(a)
β f

(b)
β+γf

(c)
β+2γ , if k ≤ 2m,

0 , otherwise
(2.2.15)

and

∂(k)
γ

(
f

(m)
β+γ

)
=

{
3kf

(k)
β f

(m−k)
β+γ , if k ≤ m,

0 , otherwise
(2.2.16)

and

∂
(k)
β

(
f

(m)
β+γ

)
=

{
f

(k)
γ f

(m−k)
β+γ , if k ≤ m,

0 , otherwise,
(2.2.17)

where rx, ry, r̃x ∈ Z and

X(k,m) = {x = (a, b, c) ∈ Z3
≥0 | a+ b+ c = m, 2a+ b = k},

Y (k,m) = {y = (a, b, c, d) ∈ Z4
≥0 | a+ b+ c+ d = m, 3a+ 2b+ c = k}.

Remark 2.2.1. Note that in the A2– and C2–case, (2.2.3)–(2.2.7), the coefficient
of the rhs can be easily checked by applying Chevalley’s Theorem (see Theorem
2.1.2). In the G2–case,(2.2.8)–(2.2.17), it is also possible to consider the multipli-
cation table of G2 (see [FH91, Table 22.1]).

In fact the constants rx and ry occurring in (2.2.7), (2.2.11) and (2.2.13) are
equal to 1. But before we are able to prove this, we have to introduce another
combinatorial tool: The coefficient graph.

The coefficient graph. We distinguish two types of coefficient graphs: C3(m)
and C4(m) for m ∈ Z≥0. In order to consider these directed graphs we have to
define first:

X(m) :=

2m⋃
k=1

X(k,m) = {x′ = (a, b, c) ∈ Z3
≥0 | a+ b+ c = m},

Y (m) :=

3m⋃
k=1

Y (k,m) = {y′ = (a, b, c, d) ∈ Z4
≥0 | a+ b+ c+ d = m}.

Let C3(m) = (X(m), E) be the directed labeled graph, where the set of vertices
is indexed by the set X(m) (defined above) and the set of edges E is given by
the following rule: For x′ = (a, b, c) ∈ X(m), we have

((a, b, c)
2b−→ (a+ 1, b− 1, c)) ∈ E :⇔ b > 0,

((a, b, c)
c−→ (a, b+ 1, c− 1)) ∈ E :⇔ c > 0.
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The second type is given as follows. Let C4(m) = (Y (m), F ) be the directed
labeled graph, where the set of vertices is indexed by the set Y (m) (defined above)
and the set of edges F is given by the following rule: For y′ = (a, b, c, d) ∈ Y (m),
we have

((a, b, c, d)
3b−→ (a+ 1, b− 1, c, d)) ∈ F :⇔ b > 0,

((a, b, c, d)
2c−→ (a, b+ 1, c− 1, d)) ∈ F :⇔ c > 0,

((a, b, c, d)
d−→ (a, b, c+ 1, d− 1)) ∈ F :⇔ d > 0.

Example 2.2.2. We consider C3(3) and C4(2):

(0, 0, 3)

(0, 1, 2)

(0, 2, 1)

(0, 3, 0)

(1, 0, 2)

(1, 1, 1)

(1, 2, 0)

(2, 0, 1)

(2, 1, 0) (3, 0, 0)

3

2

2 · 1

1

2 · 2

2 · 3

2

1

2 · 1

2 · 2

1

2 · 1

Figure 2.1: The coefficient graph C3(3).

(0, 0, 0, 2)

(0, 0, 1, 1)

(0, 0, 2, 0)

(0, 1, 0, 1)

(0, 1, 1, 0) (0, 2, 0, 0)

(1, 0, 0, 1)

(1, 0, 1, 0) (1, 1, 0, 0)

(2, 0, 0, 0)

2

1

2 · 1

2 · 2

1
3 · 1

2 · 1

3 · 1 3 · 2

1

2 · 1

3 · 1

Figure 2.2: The coefficient graph C4(2).
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Remark 2.2.3. The connection between (2.2.7) respectively (2.2.11) and the co-
efficient graph C3(m) can be described as follows:

(i) The monomial f
(a)
β f

(b)
β+γf

(c)
β+2γ, respectively f

(a)
γ f

(b)
β+2γf

(c)
2β+3γ, corresponds to

the vertex (a, b, c).

(ii) The actions on a monomial in (i):

f
(a)
β f

(b)
β+γ

(
∂γ

(
f

(c)
β+2γ

))
and f

(a)
β

(
∂γ

(
f

(b)
β+γ

))
f

(c)
β+2γ ,

resp. f (a)
γ f

(b)
β+2γ

(
∂β+γ

(
f

(c)
2β+3γ

))
and f (a)

γ

(
∂β+γ

(
f

(b)
β+2γ

))
f

(c)
2β+3γ ,

correspond to the vertical and horizontal edges.

(iii) The labels correspond to the products of the structure constant and the ex-
ponent of the related root vector:

cγ,β+2γ · c and cγ,β+γ · b, resp. cβ+γ,2β+3γ · c and cβ+γ,β+2γ · b.

The connection between (2.2.13) and the coefficient graph C4(m) can be described
analogously.

Let q be a directed path in C3(m) (respectively C4(m)) from (0, 0,m) to
x′ = (a, b, c) ∈ X(m) (respectively from (0, 0, 0,m) to y′ = (a, b, c, d) ∈ Y (m)).
We define cq ∈ Z≥0 to be the product of the labels on the path q and call cq the
coefficient of q.
For an arbitrary vertex x′ ∈ X(m) (respectively y′ ∈ Y (m)) we consider
Q(x′) ⊆ C3(m) (respectively Q(y′) ⊆ C4(m)) the set of all directed paths from
(0, 0,m) to x′ in C3(m) (respectively the set of directed paths from (0, 0, 0,m) to
y′ in C4(m)).

Remark 2.2.3 implies that each path q ∈ Q(x′) (respectively q ∈ Q(y′)) corre-
sponds to exactly one possibility to generate the monomials

f
(a)
β f

(b)
β+γf

(c)
β+2γ and f (a)

γ f
(b)
β+2γf

(c)
2β+3γ

(
resp. f

(a)
β f

(b)
β+γf

(c)
β+2γf

(d)
β+3γ

)
in (2.2.7) and (2.2.11) (resp. in (2.2.13)).

Let us consider exemplary (2.2.7) for k ≤ 2m in more detail. The definition of
the Kostant lattice and (2.2.2) imply:

∂(k)
γ

(
f

(m)
β+2γ

)
=

1

k!m!
∂kγ

(
f

(m)
β+2γ

)
=

1

k!m!

 ∑
X(k,m)

r̂xf
a
βf

b
β+γf

c
β+2γ

 , r̂x ∈ Z

=
1

k!m!

 ∑
X(k,m)

r̂x
a!b!c!

a!b!c!
faβf

b
β+γf

c
β+2γ


=

∑
X(k,m)

r̂x
a!b!c!

k!m!
f

(a)
β f

(b)
β+γf

(c)
β+2γ

=
∑

X(k,m)

rxf
(a)
β f

(b)
β+γf

(c)
β+2γ .
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The combination of the above considerations and Remark 2.2.3 let us for
x ∈ X(m) \ {(0, 0,m)} and y ∈ Y (m) \ {(0, 0, 0,m)} conclude:

rx = r̂x
a!b!c!

k!m!
=

 ∑
q∈Q(x)

cq

 a!b!c!

k!m!
resp. ry = r̂y

a!b!c!d!

k!m!
=

 ∑
q∈Q(y)

cq

 a!b!c!d!

k!m!
,

where k = 2a+ b, respectively k = 3a+ 2b+ c.

Remark 2.2.4. The construction of the coefficient graphs C3(m) and C4(m) im-
plies the following recursive definition for the constants r̂x, r̂y ∈ Z:

r̂0,0,m = r̂0,0,0,m = 1

r̂x = r̂a,b,c = 2(b+ 1)r̂a−1,b+1,c + (c+ 1)r̂a,b−1,c+1,

r̂y = r̂a,b,c,d = 3(b+ 1)r̂a−1,b+1,c,d + 2(c+ 1)r̂a,b−1,c+1,d + (d+ 1)r̂a,b,c−1,d+1.

Set r̂x := 0 respectively r̂y := 0, if at least one of the entries of x, respectively y,
is a negative integer. The following diagrams visualize the recursive definition:

(a, b, c)

(a, b− 1, c+ 1)

(a− 1, b+ 1, c)

c + 1

2(b + 1)

Figure 2.3: Recursion for r̂x

(a, b, c, d)

(a− 1, b+ 1, c, d)

(a, b− 1, c+ 1, d)

(a, b, c− 1, d+ 1)

3(b + 1)

2(c + 1)

d + 1

Figure 2.4: Recursion for r̂y

Lemma 2.2.5. Let rx, ry ∈ Z be the coefficients occurring in (2.2.7), (2.2.11)
and (2.2.13). Then we have for all x ∈ X(m) and y ∈ Y (m): rx = 1 = ry.

Proof. In order to use induction on k we define a partial order on the set X(m)
respectively Y (m) and apply Remark 2.2.4 in the induction step. We split the
proof into two parts

(i) r̂x =
∑

q∈Q(x)

cq
!

=
k!m!

a!b!c!
and (ii) r̂y =

∑
q∈Q(y)

cq
!

=
k!m!

a!b!c!d!
.
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To (i): We recall:

X(k,m) = {x = (a, b, c) ∈ Z3
≥0 | a+ b+ c = m, 2a+ b = k},

X(m) =

2m⋃
k=1

X(k,m) = {x = (a, b, c) ∈ Z3
≥0 | a+ b+ c = m}.

We define the partial order < on X(m) via the following rule:
Let (a1, b1, c1), (a2, b2, c2) ∈ X(m):

(a1, b1, c1) > (a2, b2, c2) :⇔ 2a1 + b1 := k1 > k2 := 2a2 + b2. (2.2.18)

Hence in this order (0, 0,m) ∈ X(0,m) is the minimal and (m, 0, 0) ∈ X(2m,m)
the maximal element. We use Remark 2.2.4 to verify our claim for x = (0, 0,m):

r̂x = r̂0,0,m = 1 =
0!m!

0!0!m!
.

Let us fix 1 ≤ k ≤ 2m− 1 and assume that the claim holds for all
x ∈

⋃k−1
j=1 X(j,m). Our aim is to prove that the claim also holds for a arbitrary

but fixed element x̆ ∈ X(k,m). Note that (2.2.18) implies x < x̆ for all
x ∈

⋃k−1
j=1 X(j,m). We consider the following case analysis:

Case 1: x̆ = (a, 0, c), k = 2a. Then Remark 2.2.4 and the induction assumption
imply:

r̂x̆ = r̂a,0,c = 2r̂a−1,1,c = 2
(2(a− 1) + 1)!m!

(a− 1)!1!c!
=

(2a)!m!

a!0!c!
.

Case 2: x̆ = (0, b, c), k = b. Then Remark 2.2.4 and the induction assumption
imply:

r̂x̆ = r̂0,b,c = (c+ 1)r̂0,b−1,c+1 = (c+ 1)
(b− 1)!m!

0!(b− 1)!(c+ 1)!
=

b!m!

0!b!c!
.

Case 3: x̆ = (a, b, c), k = 2a+ b. Then Remark 2.2.4 and the induction assump-
tion imply:

r̂x̆ = r̂a,b,c = 2(b+ 1)r̂a−1,b+1,c + (c+ 1)r̂a,b−1,c+1

= 2(b+ 1)
(2(a− 1) + b+ 1)!m!

(a− 1)!(b+ 1)!c!
+ (c+ 1)

(2a+ b− 1)!m!

a!(b− 1)!(c+ 1)!
.

=
(2a+ b)!m!

a!b!c!
.

Hence we have r̂x = k!m!
a!b!c! and therefore rx = 1 for all x ∈ X(m).

The proof of part (ii) proceeds similarly by using Remark 2.2.4.

Z–admissible elements. Let kl ∈ Z≥0 and βil ∈ ∆+ for 1 ≤ l ≤ r ∈ Z≥0.
Further we consider the differential operator

∂ =

r∏
l=1

∂
(kl)
βil
∈ Der(SZ(n−,a)).
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In the following we consider for b ∈ Z≥0 and β ∈ ∆+:

∂
(
f

(b)
β

)
=

r∏
l=1

∂
(kl)
βil

(
f

(b)
β

)
=
∑

t∈ZN≥0

ctf
(t). (2.2.19)

We fix a total order ≺ on the positive roots ∆+ and in addition an induced
homogeneous total order on the monomials in SZ(n−,a) (by abuse of notation we
denote the latter total order also by ≺). For an element of the form (2.2.19) we
define:

max
≺

(
∂
(
f

(b)
β

))
= f (m), m := max

≺
{t ∈ ZN≥0 | ct 6= 0}.

Further is an element of the form (2.2.19) said to satisfy the maximality condition,
if for all 1 ≤ v ≤ r:

cmvf (mv) = max
≺

(
∂

(kv)
βiv

v−1∏
l=1

∂
(kl)
βil

(
f

(b)
β

))
(2.2.20)

= max
≺

(
∂

(kv)
βiv

(
max
≺

(
v−1∏
l=1

∂
(kl)
βil

(
f

(b)
β

))))
.

Remark 2.2.6. Note that the maximality condition (2.2.20)implies that the max-

imal monomial in
∏v
l=1 ∂

(kl)
βil

(f
(b)
β ) is a summand of ∂

(kv)
βiv

applied to the maximal

monomial of
∏v−1
l=1 ∂

(kl)
βil

(f
(b)
β ).

In the following we verify the Leibniz rule for the divided power analogue of
∂kγ (fm), m = (m1, . . . ,mN ), k ∈ Z≥0:

∂(k)
γ

(
f (m)

)
= ∂(k)

γ

 N∏
j=1

f
(mj)
βj


=

1

k!m1! · · ·mN !
∂kγ

 N∏
j=1

f
mj
βj


=

1

k!m1! · · ·mN !

∑
Xk

(
k

κ1, . . . , κN

) N∏
j=1

∂
κj
γ

(
f
mj
βj

)

=
∑
Xk

N∏
j=1

∂
(κj)
γ

(
f

(mj)
βj

)
, (2.2.21)

where Xk = {(κ1, . . . , κN ) ∈ ZN≥0 |
∑N

j=1 κj = k} is the set of all partitions of

k ∈ Z≥0 of length N and
(

k
κ1,...,κN

)
is the multimonomialcoefficient defined by:

(
k

κ1, . . . , κN

)
:=

k!

κ1! · · ·κN !
for k =

N∑
i=1

κi, κi ∈ Z≥0.
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Remark 2.2.7. Note that a summand of (2.2.21) is equal to 0, if at least one of

the factors in the product is equal to 0. More explicit:
∏N
j=1 ∂

(κj)
γ (f

(mj)
βj

) = 0, if

one of the following statements is true: There is 1 ≤ j′ ≤ N , such that

• (κj′ > 0) ∧ (mj′ = 0).

• (κj′ > 0) ∧ (mj′ > 0) ∧ (βj′ + γ /∈ ∆+).

• κj′ is greater, than the corresponding bound, given in (2.2.3)–(2.2.17).

Thereby we describe the action of the differential operator ∂
(kv)
γ on the maximal

monomial more explicit: Let cmv−1f (mv−1) = max
≺

(
∏v−1
l=1 ∂

(kl)
βil

(f
(b)
β )), then:

∂
(kv)
βiv

(
cmv−1f(mv−1)

)
= cmv−1

∑
Xkv

N∏
j=1

∂
(κj)
βiv

(
f

(mv−1
j )

βj

)
= cmvfm

v
+
∑
t≺mv

ctf
t,

where Xkv ⊂ ZN≥0 is the set of all partitions of kv ∈ Z≥0 of length N .

Remark 2.2.8. For simplicity we make the following convention. If ∂
(k)
γ (f

(m)
β ) is

of the form (2.2.3)–(2.2.5), (2.2.7)–(2.2.13) or (2.2.16)–(2.2.17), then we simply

write ∂
(k)
γ (f

(m)
β ) ∈ D. Lemma 2.2.5 and Remark 2.2.1 imply, that D contains

exclusively differential operations, which produce only coefficients equal to 1.

Fix a positive root γ and let βj ∈ ∆+ be such that γ and βj are linearly indepen-
dent roots. We consider the γ–string through βj , to be more precise, we consider
for q, p ∈ Z≥0 the following subset of ∆+:

{βxs = βj + sγ | −p ≤ s ≤ q} = {βx−p = βj − pγ, . . . , βxq = βj + qγ}. (2.2.22)

Note, that ∆+ decomposes in a disjoint union of γ–strings (see (2.2.26) and
(2.2.27)). The next definition is essential for the main statement of the present
chapter.

Definition 2.2.9. Let ∂ =
∏r
l=1 ∂

(kl)
βil
∈ Der(SZ(n−,a)) be a sequence of dif-

ferential operators and assume that ∂(f
(b)
β ) in SZ(n−,a) satisfies the maximality

condition (2.2.20). For v = 0, respectively for 1 ≤ v ≤ r we set

cm0f (m0) := f
(b)
β , resp. cmvf (mv) := max

≺

(
v∏
l=1

∂
(kl)
βil

(
f

(b)
β

))
, (2.2.23)

with mv = (mv
1, . . . ,m

v
N ) ∈ ZN≥0.

We call ∂(f
(b)
β ) Z–admissible, if for all 1 ≤ v ≤ r, mv−1 satisfies the following

assumption:

Fix an arbitrary βiv–string {βx−p , . . . , βxq} in ∆+ (see (2.2.22)).
Then we have either

mv
xs = mv−1

xs , ∀ − p ≤ s ≤ q, (2.2.24)
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where mv
xs is the entry of mv corresponding to the positive root βxs.

Or there is a integer −p ≤ s < q minimal with the property: mv
xs 6= mv−1

xs and
moreover:

mv−1
xs = 0, ∀ s ≤ s < q. (2.2.25)

Remark 2.2.10. Let us explain the assumptions (2.2.24) and (2.2.25):

In the v–th step of the sequence ∂ we apply ∂
(kv)
βiv

to the maximal monomial of the

(v − 1)–th step: cmv−1fm
(v−1)

(see 2.2.23). In order to describe our assumptions
on this action, it is enough to consider the βiv–strings in ∆+. Let us fix now a
βiv–string (we refer to (2.2.22), if we consider a fixed βiv–string in ∆+):

Case 1. All exponents of the root vectors corresponding to the fixed βiv–string

are not affected by the operator ∂
(kv)
βiv

(see (2.2.24)). In that case we have no
further assumptions on the corresponding exponents.

Case 2. The exponents of the root vectors corresponding to the fixed βiv–string

are affected by the operator ∂
(kv)
βiv

(see (2.2.24)). In that case there is a integer

−p ≤ s ≤ q, minimal with the property, that the corresponding exponent mv−1
xs

has been changed by the action of ∂
(kv)
βiv

. Further the exponents corresponding to

the fixed βiv–string have the following form (see (2.2.25)):

f
(mv−1

x−p )

βx−p
· · · f

(mv−1
xs−1

)

βxs−1
f

(mv−1
xp )

βxp
= f

(mv−1
x−p )

βx−p
· · · f

(mv−1
xs−1

)

βxs−1
f

(0)
βxs
· · · f (0)

βxp−1
f

(mv−1
xp )

βxp
.

The second case implies mv−1
xq > 0, further note that these assumptions have to

be satisfied for all 1 ≤ v ≤ r.

Example 2.2.11. Let ∆+ = {β1 := β, β2 := γ, β3 := β + γ, β4 := β + 2γ} be the
C2–root system. Further we choose the following total order on ∆+: β4 ≺ β3 ≺
β2 ≺ β1 and choose in addition the induced homogenous lexicographic total order
on the monomials.
In the following we consider the elements

∂1

(
f

(4)
β+2γ

)
=
(
∂

(2)
β+γ∂

(3)
γ

)(
f

(4)
β+2γ

)
∈ SZ(n−,a),

∂2

(
f

(4)
β+2γ

)
=
(
∂(3)
γ ∂

(2)
β+γ

)(
f

(4)
β+2γ

)
∈ SZ(n−,a).

and check if these two elements are Z–admissible. For that we use the definition
of the C2 differential operators (2.2.4)–(2.2.7), the statement of (2.1.2) and the
Definition 2.2.9. Further we need the description of ∆+ as union of γ–strings
and as union of (β + γ)–strings:

∆+ = {γ} ∪ {β, β + γ, β + 2γ}. (2.2.26)

∆+ = {β} ∪ {β + γ} ∪ {γ, β + 2γ}. (2.2.27)

The definition of the differential operators (2.2.1) implies:
∂γ(fγ) = ∂β+γ(fβ) = ∂β+γ(fβ+γ) = 0.
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Let us consider ∂1(f
(4)
β+2γ). First we calculate ∂1(f

(4)
β+2γ) explicitly:

∂1

(
f

(4)
β+2γ

)
=
(
∂

(2)
β+γ∂

(3)
γ

)(
f

(4)
β+2γ

)
= ∂

(2)
β+γ

(
∂(3)
γ

(
f

(4)
β+2γ

))
= ∂

(2)
β+γ

 ∑
X(3,4)

f
(a)
β f

(b)
β+γf

(c)
β+2γ


= ∂

(2)
β+γ

(
f

(1)
β f

(1)
β+γf

(2)
β+2γ + f

(0)
β f

(3)
β+γf

(1)
β+2γ

)
= f

(1)
β f (2)

γ f
(1)
β+γ .

From the above calculation we conclude that ∂1(f
(4)
β+2γ) satisfies the maximality

condition (2.2.20) and deduce the maximal monomials:

cm0fm
0

= f
(0)
β f (0)

γ f
(0)
β+γf

(4)
β+2γ ,

cm1fm
1

= f
(1)
β f (0)

γ f
(1)
β+γf

(2)
β+2γ ,

cm2fm
2

= f
(1)
β f (2)

γ f
(1)
β+γf

(0)
β+2γ .

It is easy to verify that the maximal monomials fm
1

and fm
2

satisfy (2.2.24) and
(2.2.25) for all γ–strings in ∆+ (see (2.2.26)), respectively for all (β+ γ)–strings

in ∆+ (see (2.2.27)). Thus, ∂1(f
(4)
β+2γ) is a Z–admissible element.

Now we perform the same procedure with ∂2(f
(4)
β+2γ):

∂2

(
f

(4)
β+2γ

)
=
(
∂(3)
γ ∂

(2)
β+γ

)(
f

(4)
β+2γ

)
= ∂(3)

γ

(
∂

(2)
β+γ

(
f

(4)
β+2γ

))
= ∂(3)

γ

(
f (2)
γ f

(2)
β+2γ

)
= f (2)

γ

 ∑
X(3,2)

f
(a)
β f

(b)
β+γf

(c)
β+2γ


= f (2)

γ

(
f (1)
γ f

(1)
β+γ

)
= 3f (3)

γ f
(1)
β+γ .

Again from the explicit calculation we conclude that ∂2(f
(4)
β+2γ) satisfies the max-

imality condition (2.2.20) and deduce the maximal monomials:

cm0fm
0

= f
(0)
β f (0)

γ f
(0)
β+γf

(4)
β+2γ ,

cm1fm
1

= f
(0)
β f (2)

γ f
(0)
β+γf

(2)
β+2γ ,

cm2fm
2

= 3f
(0)
β f (3)

γ f
(1)
β+γf

(0)
β+2γ .

Again the maximal monomial fm
1

satisfies (2.2.24) and (2.2.25) for all (β + γ)–
strings in (2.2.27). However the maximal monomial fm

2
violates (2.2.25). Thus,

∂2(f
(4)
β+2γ) is not a Z–admissible element.

Let us now investigate the properties of Z–admissible elements.
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Corollary 2.2.12. Let ∂(f
(b)
β ) =

∏r
l=1 ∂

(kl)
βil

(f
(b)
β ) be a Z–admissible element in

SZ(n−,a). Then there is for all 1 ≤ v ≤ r a unique partition κ̂ ∈ Xkv , such that:

cmvf (mv) is a summand of cmv−1

N∏
j=1

∂
(κ̂j)
βiv

(f
(mv−1

j )

βj
). (2.2.28)

Proof. Assume there are κ̂, κ̄ ∈ Xkv such that

cmvf
(mv) is a summand of

N∏
j=1

∂
(κ̂j)
βiv

(f
(mv−1

j )

βj
) and also of

N∏
j=1

∂
(κ̄j)
βiv

(f
(mv−1

j )

βj
).

For all 1 ≤ j ≤ N with mv−1
j = 0 or βj − βiv /∈ ∆+ we have: κ̂j = 0 = κ̄j .

Hence it is enough to consider only βiv–strings. For all βiv–strings through in
∆+, where mv

xs = mv−1
xs for all −r ≤ s ≤ q we have again κ̂j = 0 = κ̄j , because

there is no influence via differential operators from inside of the βiv–string and
there is no possibility to change the exponent from outside of the corresponding
string.
Let us now consider a βiv–string, which is affected by differential operators, then
we know from (2.2.25), that every change of the exponents of root vectors cor-
responding to this string is the result of one single differential operation ∂βiv
to a certain power κ ≤ kv applied to the root vector corresponding to βxp (see
(2.2.22)).
From this we conclude that there is only one possible choice for the entries of κ̂
(respectively of κ̄) corresponding to this βiv–string and thus we have for these
entries: κ̂xs = κ̄xs for all −r ≤ s ≤ q. This is true for all βiv–strings affected by
κ̂ (respectively by κ̄), hence: κ̂ = κ̄.

Remark 2.2.13. As direct consequence from the assumption (2.2.25), we con-
clude for the unique partition κ̂ ∈ Xkv (see (2.2.28)) that for all κ̂j 6= 0:

∂
(κ̂j)
βiv

(
f

(mv−1
j )

βj

)
∈ D.

See Remark 2.2.8 for the definition of D.

Now we are able to state the main advantage of Z–admissible elements.

Lemma 2.2.14. Let ∂(f
(b)
β ) 6= 0 be Z–admissible and let cmf (m) = max

≺
(∂(f

(b)
β )).

Then we have: cm = 1.

Proof. Let ∂(f
(b)
β ) = (

∏r
l=1 ∂

(kl)
βil

)(f
(b)
β ). In order to prove the statement we prove

by induction for all 1 ≤ v ≤ r that the coefficient cmv of

f (mv) = max
≺

(
v∏
l=1

∂
(kl)
βil

(
f

(b)
β

))

is equal to 1. Therefore, let v = 1. Then we know from the Remark 2.2.13, that
the differential operation of f (m1) is in D and thus cm1 = 1.
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Assume the statement holds for a fixed v̄ ≤ r−1 and all 1 ≤ v′ ≤ v̄. We consider
v = v̄+1. The induction assumption implies that the coefficient of f (mv̄) is equal
to 1, hence

∂
(kv)
βiv

(
max
≺

(
v̄∏
l=1

∂
(kl)
βil

(f
(b)
β )

))
= ∂

(kv)
βiv

(
f (mv̄)

)
=
∑
Xkv

N∏
j=1

∂
(κj)
βiv

(
f

(mv̄j )

βj

)
.

From Corollary 2.2.12 we know that the multi–exponent κ̂ ∈ Xkv , where cmvf (mv)

occurs as summand in the corresponding product of operators, is unique. Remark

2.2.13 implies that for all κ̂j 6= 0 we have ∂
(κ̂j)
βiv

(f
(mv̄j )

βj
) ∈ D.

Therefore, the coefficients of these operations are all equal to 1. Hence there is
only one other possibility left to influence the coefficient cmv :
Fix a root βxi , −p ≤ i < q in a βiv–string and assume mv̄

xi > 0. Assume further,

that the exponent of the corresponding root vector in f (mv̄) is not affected by
a differential operator. If in addition the action on fm

v̄

βxp
generates a non–trivial

factor f
(l)
βxi

, then the multiplication rule (2.1.2) says, that

f
(mv̄xi )

βxi
f

(l)
βxi

=

(
mv̄
xi + l

mv̄
xi

)
f

(mv̄xi+l)

βxi
, with

(
mv̄
xi + l

mv̄
xi

)
≥ 1.

However (2.2.25) implies, that this situation cannot occur. Therefore, is cmv = 1
and we conclude cm = 1.

2.3 Bases for V a
Z (λ)

Let λ be a dominant integral weight and V a(λ) be the associated graded space
of the corresponding highest weight g–module V (λ). Further let B(V a(λ)) be a
basis of V a(λ) with the following properties:

Property (1). There is a set of abstract paths P = {p1, . . . ,pw} ⊂ P(∆+) and
each abstract path pq, 1 ≤ q ≤ w, contains a root βjq ∈ ∆+ such that for every
multi–exponent m ∈ ZN≥0 with |m| ≥ λ(β∨jq) + 1, which is supported on pq, there
is a differential operator ∂(m,pq) depending on m and pq with

∂(m,pq)
(
f
|m|
βjq

)
=

r∏
l=1

∂klβil

(
f
|m|
βjq

)
= cmf

m +
∑
t≺m

ctf
t, cm 6= 0. (2.3.1)

We call βjq the base root of pq and remark that the operators ∂βil , 1 ≤ l ≤ r in
(2.3.1) depend on the support of pq but they are independent of |m| different to
the exponents kl ∈ Z≥0.

Property (2). For all 1 ≤ q ≤ w and 1 ≤ v ≤ r the element ∂(m,pq)(f
|m|
βjq

)

satisfies the complex analogue of the maximality condition (2.2.20):

cmvfm
v

= max
≺

(
∂kvβiv

v−1∏
l=1

∂klβil

(
f bβ

))

= max
≺

(
∂kvβiv

(
max
≺

(
v−1∏
l=1

∂klβil

(
f bβ

))))
.
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Property (3). The basis B(V a(λ)) is parametrized by the integer points S(P)
of the polytope

P (P) := {x ∈ RN≥0 |
∑
βi∈pq

xi ≤ λ(β∨jq), ∀ pq ∈ P}, (2.3.2)

where βjq ∈ ∆+ is the base root of pq. This implies that B(V a(λ)) admits the
following description:

B(V a(λ)) = {f svλ | s ∈ S(P)}, where S(P) := P (P) ∩ ZN≥0.

Remark 2.3.1. We note that the assumption in Property (1) on the multi–

exponent m ∈ ZN≥0, |m| ≥ λ(β∨jq) + 1, guarantees that the element f
|m|
βjq

is in

the ideal I(λ) (see (1.1.2)). Further we know from Remark 0.0.6 that I(λ) is
invariant under the action of U(n+), so I(λ) is also invariant under sequences

of differential operators. Hence we conclude that ∂(m,pq)(f
|m|
βjq

) is an element of

I(λ).

In this section we consider the Z–analogue of the basis B(V a(λ))

B(V a
Z (λ)) := {f (s)vλ | s ∈ S(P)}

and show that under an additional assumption B(V a
Z (λ)) is a basis of V a

Z (λ).
Denote by P the set of abstract paths corresponding to B(V a(λ)) (see Property
(1)) and by

∂((m),pq)
(
f

(|m|)
βjq

)
:=

r∏
l=1

∂
(kl)
βil

(
f

(|m|)
βjq

)
∈ SZ(n−,a) (2.3.3)

the element corresponding to the differential operator
∂((m),pq) ∈ Der(SZ(n−,a)). As above the operator depends on the multi–
exponent m ∈ ZN≥0 and on the abstract path pq ∈ P, where βjq ∈ ∆+ is the
base root of pq.

In the following we show, that if the elements (2.3.3) are Z–admissible, then
they satisfy the Z–analogue of (2.3.1). This leads to the fact, that B(V a

Z (λ)) is a
spanning set of V a

Z (λ).

Proposition 2.3.2. Let pq ∈ P be an abstract path and let m ∈ ZN≥0 be a
multi–exponent supported in pq, with |m| ≥ λ(β∨jq) + 1. Further let ∂((m),pq) ∈
Der(SZ(n−,a)) satisfy Property (1). Assume that ∂((m),pq) is Z–admissible, then
there exist some constants c′t ∈ Z, such that

∂((m),pq)(f
(|m|)
βjq

) = f (m) +
∑
t≺m

c′tf
(t) ∈ IZ(λ). (2.3.4)

Remark 2.3.3. We refer to (2.3.4) as a straightening law, because it implies

f (m) = −
∑
t≺m

c′tf
(t) in SZ(n−,a)/IZ(λ) ∼= V a

Z (λ).

The assumption |m| ≥ λ(β∨jq) + 1 guarantees, that we consider elements of the
ideal IZ(λ).

61



Proof. Let pq, m and ∂((m),pq) be as assumed above. From the definition of
the Kostant lattice we know, that (2.3.3) differs from (2.3.1) only by the constant
c = (k1! · · · kr!|m|!)−1 ∈ Q, hence

∂((m),pq)
(
f

(|m|)
βjq

)
= c∂(m,pq)

(
f
|m|
βjq

)
= c

(
cmf

m +
∑
t≺m

ctf
t

)
= c′mf

(m) +
∑
t≺m

c′tf
(t),

where cm, ct, c
′
m, c

′
t ∈ Z. Therefore, it is enough to show that: c′m = 1, but

from Lemma 2.2.14 we know that the coefficient of the maximal monomial of a
Z–admissible element is always equal to 1. This proves the claim.

Theorem 2.3.4. B(V a
Z (λ)) = {f (s)vλ | s ∈ S(P)} spans the module V a

Z (λ).

Proof. The idea of the proof is to use the equation (2.3.4) as a straightening
algorithm to express f (m)vλ, m ∈ ZN≥0 arbitrary, as a Z–linear combination of
elements in B(V a

Z (λ)).
Let m be a multi–exponent and suppose m /∈ S(P), then there is an abstract
path pq ∈ P such that |m| ≥ λ(β∨jq) + 1, where βjq is the base root of pq. We

define a new multi–exponent m′ by setting

m′j :=

{
mj , if βj ∈ pq,

0, otherwise.

This new multi–exponent is supported on pq and we have |m′| ≥ λ(β∨jq) + 1.

Therefore, we can apply Proposition 2.3.2 to m′ and conclude

f (m′) =
∑

t′≺m′
ct′f

(t′) in SZ(n−,a)/IZ(λ),

where ct′ ∈ Z. We get f (m) back as f (m) = f (m′)
∏
βj /∈pq f

(mj)
β . For a multi–

exponent t′ occurring in the sum with ct′ 6= 0 let the multi–exponent t and ct ∈ Z
be such that ct′f

(t′)
∏
βj /∈pq f

(mj)
β = ctf

(t). Since we have a monomial order it
follows:

f (m) = f (m′)
∏
βj /∈pq

f
(mj)
β =

∑
t≺m

ctf
(t) in SZ(n−,a)/IZ(λ). (2.3.5)

The equation (2.3.5) provides an algorithm to express f (m) in SZ(n−,a)/IZ(λ) as
a sum of elements of the desired form: If some of the t are not elements of S(P),
then we can repeat the procedure and express the f (t) in SZ(n−,a)/IZ(λ) as a
sum of f (r) with r ≺ t. For the chosen ordering any strictly decreasing sequence
of multi–exponents (all of the same total degree) is finite, so after a finite number
of steps one obtains an expression of the form f (m) =

∑
csf

(s) in SZ(n−,a)/IZ(λ)
such that s ∈ S(P) and cs ∈ Z for all s.

Now we are able to state the main result of the present chapter:
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Theorem 2.3.5. Let B(V a(λ)) be a basis of V a(λ) satisfying Property (1), (2)
and (3). Further let ∂((m),pq) be Z–admissible for all m ∈ ZN≥0 and pq ∈ P

given as in Property (1), then is B(V a
Z (λ)) = {f (s).vλ | s ∈ S(P)} a basis of

V a
Z (λ) and the ideal IZ(λ) is generated by the subspace

〈UZ(n+) ◦ span{f
(λ(β∨jq )+1)

βjq
| pq ∈ P}〉. (2.3.6)

Proof. We know from Theorem 2.3.4 that the set B(V a
Z (λ)) spans V a

Z (λ). By
assumption, the number |S(P)| is equal to dimV (λ), which implies the linear
independence of B(V a

Z (λ)). By lifting the elements to VZ(λ) we obtain a basis of
VZ(λ) which is (by construction) compatible with the PBW filtration: Set

S(P)r := {s ∈ S(P) |
N∑
j=1

sj ≤ r},

then the elements f (s) with s ∈ S(P)r span VZ(λ)r.
Let I ⊂ SZ(n−,a) be the ideal generated by (2.3.6). By construction we know
I ⊆ IZ(λ). But we also know that the relations in I are sufficient to rewrite every
element in V a

Z (λ) in terms of the basis elements f (s), s ∈ S(P), which implies that
the canonical surjective map SZ(n−)/I → SZ(n−)/IZ(λ) ∼= VZ(λ) is injective.

As an immediate consequence we see:

Corollary 2.3.6.

(i) V a
Z (λ) is a free Z–module.

(ii) For every s ∈ S(λ) fix a total order on the set of positive roots and denote
by abuse of notation by f (s) ∈ UZ(n−) also the corresponding product of
divided powers. The set B(V a

Z (λ)) forms a basis for the module VZ(λ) and
for all s < s′ we have VZ(λ)s is a direct summand of VZ(λ)s′ as a Z–module.

(iii) With the notation above: Let k be a field and denote by Vk(λ) = VZ(λ)⊗Zk,
Uk(g) = UZ(g) ⊗Z k, Uk(n

−) = UZ(n−) ⊗Z k ect. the objects obtained by
base change. The set B(V a

Z (λ)) forms a basis for the module Vk(λ).

2.4 Applications

Application (1): Let g be of type An or Cn. The authors of [FFL13b] provide for
an arbitrary λ ∈ P+ a monomial basis of V a

Z (λ) coming from a monomial basis
of V a(λ). In fact, this chapter is motivated by the procedure given in [FFL13b].
The authors define also differential operators (see [FFL13b, Section 4 and 7]) for
gZ and consider special abstract paths, called Dyck paths (see [FFL11a, FFL11b]
and Chapter 1). Furthermore, they also prove that their bases of V a(λ) obtained
in [FFL11a] respectively [FFL11b] satisfy Property (1), (2) and (3) given in Sec-
tion 2.3. Finally, if we consider the proof of the spanning property (see [FFL13b,
Section 4 and 7]) carefully, we see, that they use Z–admissible elements only.
Thus our proceed provides an alternative proof of the main statement of [FFL13b].
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Application (2): Let g be of type G2. Let α1, α2 ∈ Φ+ be the simple roots.
Then the six positive roots are:

β1 = 3α1 + 2α2, β2 = 3α1 +α2, β3 = 2α1 +α2, β4 = α1 +α2, β5 = α2, β6 = α1.

For λ = m1ω1 + m2ω2 with m1,m2 ∈ Z≥0 define the polytope P (λ)G2 ⊂ R6
≥0

given by the inequalities

x5 ≤ m2 = λ(β∨5 )

x6 ≤ m1 = λ(β∨6 )

x2 + x3 + x6 ≤ m1 +m2 = λ(β∨2 )

x3 + x4 + x6 ≤ m1 +m2 = λ(β∨2 ) (2.4.1)

x4 + x5 + x6 ≤ m1 +m2 = λ(β∨2 ) (2.4.2)

x1 + x2 + x3 + x4 + x5 ≤ m1 + 2m2 = λ(β∨1 )

x2 + x3 + x4 + x5 + x6 ≤ m1 + 2m2 = λ(β∨1 ). (2.4.3)

Theorem (Gornitzki). The set B(V a(λ)) = {f svλ | s ∈ S(λ)G2 := P (λ)G2 ∩Z6
≥0}

forms a basis of V a(λ).

Proof. See for a proof [Gor11].

Note that this statement provides just a basis, but not the generators of the ideal
I(λ). In the following we prove, that B(V a

Z (λ)) = {f (s)vλ | f svλ ∈ B(V a(λ))} is
a basis of V a

Z (λ). Thus we have to show that B(V a(λ)) satisfies Property (1), (2)
and (3). Moreover, we have to prove that the elements in SZ(n−,a) corresponding
to Property (1) are Z–admissible. We use the statement of Gornitzki and the
following, in order to prove our claim.

Theorem (Backhaus, Kus). There is a total order ≺ on the positive roots of G2
and an induced monomial order on S(n−), such that for an arbitrary dominant
integral weight λ the ideal I(λ) ⊂ S(n−), where V a(λ) ∼= S(n−)/I(λ), is generated
by the subspace:

〈U(n+) ◦ span{f
λ(β∨j )+1

βj
| j = 1, 2, 5, 6}〉. (2.4.4)

Proof. See for the proof [BK15].

The total order on ∆+ considered in the proof the statement above is the follow-
ing: β1 � β2 � β3 � β4 � β5 � β6. Furthermore, the authors extend this order
to the induced reverse lexicographic total order on the monomials in SZ(n−,a):
Let a,b ∈ Z6

≥0, then

a � b :⇔ ∃ 1 ≤ j ≤ 6 : (aj < bj) ∧ (ai = bi, ∀ 1 ≤ i < j).

We consider the subset PG2 of P(∆)+:

PG2 := {{β5}, {β6}, {β2, β3, β6}, {β2, β3, β4, β5}, {β2, β3, β4, β5, β6},
{β1, β2, β3, β4, β5}, {β1, β2, β3, β4, β5, β6}}.
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The set of abstract paths PG2 provides the connection between the calculations
in [BK15, Section 7.1] and our general procedure.
The authors obtain in [BK15, Section 7.1], analogue to Proposition 1.3.3, a
straightening law for G2. Moreover they obtain, analogue to Theorem 1.3.4, that
the relations in the subspace (2.4.4) of S(n−) are sufficient to rewrite every el-
ement in V a(λ) in terms of the elements in B(V a(λ)). Hence with the same
argumentation as in the proof of Theorem 1.5.4 they conclude the claim.

These two theorems let us conclude, that the basis of Gornitzki satisfies Property
(1) and (3) of Section 2.3. From the proof of the latter theorem it is easy to see
that this basis also satisfies Property (2).

Moreover, if we consider the elements ∂(m,pq)(f
|m|
βjq

) from the calculations in

[BK15, Section 7.1] it is easy to verify, that these elements are Z–admissible.
Hence we can apply Theorem 2.3.5 to the general G2–case.

Remark. Note that P (λ)G2, contradicts our definition of P (P)
(see (2.3.2), (2.4.1), (2.4.2) and (2.4.3)), if we set P := PG2. Nevertheless the
polytope P (λ)G2 does satisfy our assumptions. Let us exemplary consider the
calculation corresponding (2.4.3):

∂m6
β5
∂m2
β5
∂m3
β4
∂m4+m6
β3

∂m5
β2

(
fm2+m3+m4+m5+m6
β1

)
= f0

β1

6∏
i=2

fmiβi
+
∑
t≺m

ctf
t.

Hence we have for every multi–exponent m ∈ Z6
≥0 described by the operation above

m1 = 0, although β1 is the base root for the abstract path {β1, β2, β3, β4, β5, β6}.
Thus in the corresponding inequality in P (P) = P (λ)G2 we do not sum over the
first entry. The analogue calculations for (2.4.1) and (2.4.2) cancel the contra-
diction to (2.3.2).

Application (3): Let (Type of g, λ = ωi) be listed in Table 1.1. We provide in
Chapter 1 for λ = mωi, m ∈ Z≥0, the set Bλ (see Section 1.4 and 1.5),which is a
monomial basis of V a(λ).
The straightening law, Proposition 1.3.3 implies, that these basis satisfy Property
(1) of Section 2.3. Note, that in order to be consistent with [FFL13a, FFL13b],
we call in Chapter 1 the abstract paths, Dyck paths.
Lemma 1.3.2 implies, that the bases Bλ satisfy in addition Property (2). More-
over, the main result of Chapter 1, Theorem 1.5.2, let us conclude, that Bλ
satisfies also Property (3).
To be precise: Proposition 1.3.3 and Lemma 1.3.2 imply Property (1) and (2) for
all cases listed in Table 1.1, except for the cases (Bn, ω1) and (G2, ω1). Tough the
explicit calculation in these cases (see Section 1.4) show, that Property (1) and
(2) is also satisfied in these cases.

Thus it remains to check if the elements corresponding to Property (1) are Z–
admissible. For the An–,Dn– and E6,7–cases contained in Table 1.1 there is nothing
to show, since all structure constants are equal to ±1 in these cases. Thus the as-
sumptions (2.2.24) and (2.2.25) of Definition 2.2.9 are satisfied trivially, because
there are only strings of length at most 2.
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In the cases (Bn, ω1), (Bn, ωn), (Cn, ω1) and (G2, ω1) we have to verify the Z–
admissibility by the explicit calculations given in Section 1.4. The only case
which provides no monomial basis for V a

Z (λ) is (F4, ω4). Summarizing we have:

Type of g weight ωi Type of g weight ωi

An ωk, 1 ≤ k ≤ n Dn ω1, ωn−1, ωn
Bn ω1, ωn E6 ω1, ω6

Cn, G2 ω1 E7 ω7

Table 2.1: Admissible weights over Z

Let us explain, why the Z–admissibility is violated in the (F4, ω4)–case. Note,
that there are Dyck paths in the Hasse diagram corresponding to this case (see
Figure 1.1), such that β4 = (1, 2, 3, 2) and β7 = (1, 1, 2, 2) are contained (see
(3.2.2)–(3.2.7)). In fact, we have

∂
(k)
α2+α3

(
f

(m)
β4

)
/∈ D,

since this operation is of the form (2.2.6) (see Remark 2.2.8 for the definition of
D). Thus all elements corresponding to these Dyck paths are not Z–admissible.
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3 The degree of the Hilbert–Poincaré
polynomial of PBW graded modules

We emphasize that the present chapter is a modified version of [BBDF14]. All
notations and definitions we are using in this chapter, unless they are defined
here, can be found in the Preliminaries.

3.1 The Hilbert–Poincaré polynomial

In the present chapter we compute the maximal degree of PBW graded modules,
i. e. modules which have a grading coming from the PBW filtration, in full
generality (for all simple complex Lie algebras), where there have been partial
answers in [FFL11a, FFL11b, FFL13b] and Chapter 1 for certain cases (see Table
1.1).
We denote the Hilbert–Poincaré series of the PBW graded module, often referred
to as the q–dimension of the module, by

pλ(q) =

∞∑
s=0

(dimV (λ)s/V (λ)s−1) qs.

Since V (λ) is finite–dimensional, this is obviously a polynomial in q. In the follow-
ing we want to study further properties of this polynomial. We see immediately
that the constant term of pλ(q) is always 1 and the linear term is equal to

dim(n−)− dim Ker
(
n− −→ End(V (λ))

)
.

Our main goal is to compute the degree of pλ(q) and the first step is the following
reduction [CF13, Theorem 5.3 ii)]:

Theorem. Let λ1, . . . , λs ∈ P+ and set λ = λ1 + . . .+ λs. Then

deg pλ(q) = deg pλ1(q) + . . .+ deg pλs(q).

It remains to compute the degree of pλ(q), where λ is a fundamental weight. We
will do this for all fundamental weights of simple complex finite–dimensional Lie
algebras (see Theorem 3.2.1).

Hilbert–Poincaré series and graded weight spaces. Let g, V (λ) and V a(λ)
be defined as usual in this thesis (see the Preliminaries). The Hilbert–Poincaré
series of the PBW graded module V a(λ) :=

⊕
s≥0 V (λ)s/V (λ)s−1 is the polyno-

mial

pλ(q) =
∑

s≥0
dim(V (λ)s/V (λ)s−1)qs

= 1 + dim(V (λ)1/V (λ)0)q + dim(V (λ)2/V (λ)1)q2 + ...
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and we define the PBW degree of V (λ) to be deg(pλ(q)).
Note that we already know from Remark 0.0.3, that the graduation components
V (λ)s are U(n+)–modules for all s ∈ Z≥0. Let sλ be minimal, such that
vw0(λ) ∈ V (λ)sλ . Then V (λ) = U(n+)vw0(λ) ⊆ V (λ)sλ and hence

Corollary 3.1.1. sλ = deg(pλ(q)) and

V (λ) = V (λ)sλ .

The PBW filtration is compatible with the decomposition into h–weight spaces:

dimV (λ)τ =
∑
s≥0

dim (V (λ)s/V (λ)s−1) ∩ V (λ)τ .

Therefore we can define for every weight τ the Hilbert–Poincaré polynomial:

pλ,τ (q) =
∑
s≥0

dim (V (λ)s/V (λ)s−1)τ q
s

and with this definition
pλ(q) =

∑
τ∈P

pλ,τ (q).

A natural question is, if we can extend our results to these polynomials? If the
weight space V (λ)τ is one–dimensional, then pλ,τ (q) is a power of q. For τ = λ
this is constant 1, for τ = w0(λ), the lowest weight, this is qdeg pλ(q) as we have
seen in Corollary 3.1.1. A first approach to study these polynomials was taken
in [CF13].

Graded Kostant partition function. For the readers convenience we recall
here the graded Kostant partition function (see [Kos59]), which counts the number
of decompositions of a fixed weight into a sum of positive roots, and how it is
related to our study. We consider the power series∏

β∈∆+

1

(1− qeβ)

and its expansion ∑
ν∈P

Pν(q)eν .

We have immediately

charS(n−) =
∑
ν∈P

Pν(q)e−ν .

Remark 3.1.2. Can we relate the Hilbert–Poincaré polynomial pλ,ν(q) with the
graded Kostant partition function Pλ−ν(q)? For a polynomial p(q) =

∑n
i=0 aiq

i,
we denote mindeg p(q) the minimal j such that aj 6= 0. Then we have obviously

mindeg pλ,ν(q) ≥ mindegPλ−ν(q). (3.1.1)

We use this inequality for the very special case ν = w0(λ) in the proof of Theo-
rem 3.2.1.
It is shown in [CF13] that apart from the types An and Cn this inequality might
be strict, e.g. g of type B3, λ = ω1 +ω3 and ν = −ω1−ω3. We see from Theorem
3.2.1 that this also happens for Dn and for all exceptional types.
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3.2 The degree of pωi(q)

In this section we provide a proof of the main statement of this chapter: Theorem
3.2.1. We provide a monomial u ∈ S(n−) of the predicted degree mapping the
highest to the lowest weight vector and show that there is no polynomial of smaller
degree satisfying this. To write down these monomials explicitly, let us denote
θXn the highest root of a Lie algebra of type Xn. Further Xn−1 denotes the Lie
subalgebra generated by the simple roots {α1, . . . , αn} \ {αk}, where θXn = akωk
or in the An–case, Xn−2 is generated by the simple roots {α2, . . . , αn−1} (we use
the indexing from [Hum72]).

Theorem 3.2.1. The degree of pωi(q) is equal to the label of the i–th node in the
following diagrams:

An
1 2 3 3 2 1

Bn >
2 2 4 4 6

2d n−1
2

e

d n
2
e

Cn <
1 2 n− 2 n− 1 n

Dn
2 2 4 4 6

2d n−2
2

e

d n−1
2

e

d n−1
2

e

E6
2 4

6

4 2

2

E7
2 6

8

7 4 3

5

E8
4 8

14

11 8 6 2

8

F4 >
2 6 4 2

G2 <
2 2

Proof. Let u ∈ S(n−) be one of the monomial in Figure 3.1. These monomials
give certainly upper estimates for the degrees since (as they are in fact obtained
through the action of the Weyl group):

u.vωi = vw0(ωi) ∈ V (ωi).

In general the degree of u is bigger than the minimal degree coming from Kostant’s
graded partition function (3.1.1). For An, Cn and the even fundamental weights
for orthogonal Lie algebras the degrees coincide and hence we are done in these
cases.
We prove Theorem 3.2.1 for the remaining cases Xn by downward induction on the
power of fθXn . The maximal non–vanishing power of fθXn is certainly a∨i , where
hθ =

∑
a∨i hi, further ωi − w0(ωi) − a∨i θXn is in the root lattice of a Lie algebra

of smaller rank, and we use induction on the rank of g. Thus it remains to show
that if

p ∈ S(n−)ωi−w0(ωi), deg p < deg u, p = f `θXnp1 with ` < a∨i , (3.2.1)

then p.vωi = 0 ∈ V a(ωi).
Let Xn be of type Bn, Dn or exceptional, then θXn = ωj and we denote

∆k
+ = {β ∈ ∆+ |wj(hα) = k},
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Xn ωi = θXn f2
θXn

An ωi fθAnfθAn−2 · · · fθAn+2−2min{i,n−i}

Cn ωi fθCnfθCn−1 · · · fθCn+1−i

Bn ω2i fθBnfθBn−1 · · · fθBn+1−2i

Bn ω2i+1 fθBnfθBn−1 · · · fθBn+1−2i
fα2i−1

Bn n even, ωn fθBn · · · fθB2
Bn n odd, ωn fθBn · · · fθB2fαn
Dn ω2i fθDnfθDn−1 · · · fθDn+1−2i

Dn ω2i+1 fθDnfθDn−1 · · · fθDn+1−2i
fα2i−1

Dn n even, ωn−1, ωn fθDnfθDn−2 · · · fθD4fαn−1

Dn n odd, ωn−1, ωn fθDnfθDn−2 · · · fθD4
E6 ω1, ω6 fθE6fα2

E6 ω3, ω5 f2
θE6
fθA5fθA3

E6 ω4 f3
θE6
fθA5fθA3fα4

E7 ω2 f2
θE7
fθD6fθA4fα2

E7 ω3 f3
θE7
fθD6fθA3fα3

E7 ω4 f4
θE7
f2
θD6
f2
θD4

E7 ω5 f3
θE7
f2
θD6
fθD4fα5

E7 ω6 f2
θE7
f2
θD6

E7 ω7 fθE7fθD6fα7

E8 ω1 f2
θE8
f2
θE7

E8 ω2 f3
θE8
f2
θE7
fθD6fθA4fα2

E8 ω3 f4
θE8
f3
θE7
fθD6fθA3fα3

E8 ω4 f6
θE8
f4
θE7
f2
θD6
f2
θD4

E8 ω5 f5
θE8
f3
θE7
f2
θD6
fθD4fα5

E8 ω6 f4
θE8
f2
θE7
f2
θD6

E8 ω7 f3
θE8
fθE7fθD6fα7

F4 ω2 f3
θF4
fθC3fθA2fα2

F4 ω3 f2
θF4
f2
θC3

F4 ω4 fθF4fθC3
G2 ω1 fθG2fα1

Figure 3.1
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Then ∆2
+ = {θXn} and if β ∈ ∆1

+ then θXn − β ∈ ∆+. Therefore, let p ∈ S(n−)

satisfy (3.2.1), then we have by weight considerations p = f
a∨i −k
θXn

fβ1 · · · fβ2k
p1 for

some β1, . . . , β2k ∈ ∆1
+, p1 ∈ S(n−). We have to show that p.vωi = 0 ∈ V a(ωi)

and we use induction on k for that:

0 = p1f
a∨i +k
θXn

.vωi = (eθXn−β1) · · · (eθXn−β2k
)p1f

a∨i +k
θXn

.vωi

= cf
a∨i −k
θXn

fβ1 · · · fβ2k
p1.vωi +

∑
`>0 f

a∨i −k+`
θXn

q`.vωi

for some c ∈ C∗, q` ∈ S(n−). By induction the latter terms are equal to zero and

so f
a∨i −k
θXn

fβ1 · · · fβ2k
p1.vωi is also zero.

This proves also that for all u from the list above we have u.vωi 6= 0 in V a(ωi).
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Appendix

Here we present the Hasse diagrams H(n−ω6
)E6 and H(n−ω7

)E7 for a better under-
standing of our work. In addition to convey the ordering of the roots for the
classical types An, Bn and Dn we provide in Figure 3.2 the complete Hasse dia-
gram of sl4 and in Figure 3.3 a concrete example of the Hasse diagram in the
(Dn, ωn)–case, for n = 5, 6. We remark that the shape of the Hasse diagram
H(n−ωn−1

)so2n and H(n−ωn)so2n is equal to the shape of H(n−ωn−1
)so2(n−1)+1

. There-

fore, Figure 3.3 shows also the shape of the Hasse diagrams H(n−ω4
)so10 , H(n−ω5

)so10

and H(n−ω5
)so12 , H(n−ω6

)so12 . Furthermore, we state the explicit polytopes for E6
(Table 3.2), F4 (Table 3.3) and for the special cases: (B4, ω4), (D5, ω4) and (D5,
ω5) (Table 3.1).

β1

β2 β3

β4 β5 β6

β7 β8 β9 β10

1 4

2 4 1 3

3 4 2 3 1 2

Figure 3.2: Complete Hasse diagram of g = sl5.

β1

β2

β3 β4

β5 β6

β7 β8

β9

β10

β1

β2

β3 β4

β5 β6

β7 β8 β9

β10 β11

β12 β13

β14

β15

2

1 3

3 1 4

2 4 1

4 2

3

2

1 3

3 1 4

2 4 1 5

4 2 5 1

3 5 2

5 3

4

Figure 3.3: H(n−ω4
)so9 , H(n−ω5

)so11
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x1 + x2 + x3 + x5 + x7 + x9 + x10 ≤ m
x1 + x2 + x3 + x5 + x8 + x9 + x10 ≤ m
x1 + x2 + x4 + x5 + x7 + x9 + x10 ≤ m
x1 + x2 + x4 + x5 + x8 + x9 + x10 ≤ m
x1 + x2 + x4 + x6 + x8 + x9 + x10 ≤ m

Table 3.1: Polytope P (mω4) corresponding to g = so9 and P (mω4), P (mω5)
corresponding to g = so10.

β1 β2 β3

β4 β5

β6 β7

β8 β9

β10 β11

β12β13

β14β15β16

2 4

3 5

1 35

5 41

4 21

23 1

32

45

Figure 3.4: H(n−ω6
)E6

x1 + x2 + x3 + x4 + x6 + x8 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x6 + x8 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x8 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x8 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x4 + x7 + x9 + x11 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x8 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x8 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x9 + x10 + x13 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x9 + x10 + x12 + x14 + x15 + x16 ≤ m
x1 + x2 + x3 + x5 + x7 + x9 + x11 + x12 + x14 + x15 + x16 ≤ m

Table 3.2: Polytope P (m) corresponding to E6
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β1 β2 β3 β4

β5 β6

β7 β8

β9 β10

β11 β12

β13 β14 β15

β16 β17

β18 β19

β20 β21

β22β23

β24β25β26β27

1 3 4

2 5

5 62

4 26

3 46

1 36 5

6 51 3

5 41

4 21

2 13

2 3

456

Figure 3.5: H(n−ω7
)E7

x1 + x2 + x3 + x4 + x8 + x10 + x11 + x13 + x14 + x15 ≤ 1

x1 + x2 + x3 + x4 + x8 + x10 + x12 + x13 + x14 + x15 ≤ 1

x1 + x2 + x3 + x4 + x7 + x9 + x11 + x13 + x14 + x15 ≤ 1 (3.2.2)

x1 + x2 + x3 + x4 + x7 + x10 + x11 + x13 + x14 + x15 ≤ 1 (3.2.3)

x1 + x2 + x3 + x4 + x7 + x10 + x12 + x13 + x14 + x15 ≤ 1 (3.2.4)

x1 + x2 + x4 + x5 + x8 + x10 + x11 + x13 + x14 + x15 ≤ 1

x1 + x2 + x4 + x5 + x8 + x10 + x12 + x13 + x14 + x15 ≤ 1

x1 + x2 + x4 + x5 + x7 + x9 + x11 + x13 + x14 + x15 ≤ 1 (3.2.5)

x1 + x2 + x4 + x5 + x7 + x10 + x11 + x13 + x14 + x15 ≤ 1 (3.2.6)

x1 + x2 + x4 + x5 + x7 + x10 + x12 + x13 + x14 + x15 ≤ 1 (3.2.7)

x1 + x2 + x3 + x6 + x8 + x10 + x11 + x13 + x14 + x15 ≤ 1

x1 + x2 + x3 + x6 + x8 + x10 + x12 + x13 + x14 + x15 ≤ 1

Table 3.3: Polytope P (ω4) corresponding to F4
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