Z—bases and Hilbert—Poincaré
polynomials related to PBW
filtrations

INAUGURAL — DISSERTATION

zur

Erlangung des Doktorgrades

der Mathematisch—Naturwissenschaftlichen Fakultat

der Universitat zu Koln

vorgelegt von
CHRISTIAN RUDOLF DESCZYK

aus Guttentag

Kéln, 2015






1.Berichterstatter: Prof. Dr. Peter Littelmann
2.Berichterstatter: Prof. Dr. Igor Burban

Tag der miindlichen Priifung: 19. Juni 2015






Meiner Familie gewidmet.






Zusammenfassung

In dieser Arbeit untersuchen wir irreduzible endlich dimensionale PBW graduierte
Hochstgewichtsdarstellungen fiir komplexe endlich dimensionale einfache Lie Al-
gebren. Dabei ist diese Arbeit in drei Teile gegliedert.

Im ersten Teil konstruieren wir fiir ausgewahlte fundamentale Gewichte und deren
Vielfache FFL Basen fiir die entsprechenden oben genannten Moduln. Zudem
geben wir eine explizite Beschreibung fiir die definierenden Ideale dieser Moduln
an. Dabei iibertragen wir das Vorgehen von Feigin, Fourier und Littelmann auf
die von uns betrachteten Falle.

Der zweite Teil beinhaltet keine Voraussetzungen an das dominant integrale
Hochstgewicht. Wir betrachten monomiale Basen fiir die oben gennanten Mod-
uln, welche unter Benutzung von bestimmten Differentialoperatoren beschrieben
werden konnen. Ferner stellen wir ein Kriterium fiir solche Basen zur Verfiigung,
welches unter anderem auch auf die FFL Basen aus dem ersten Teil dieser Arbeit
anwendbar ist. Anhand dieses Kriteriums ldsst sich entscheiden, ob die gegebene
Basis ebenso eine monomiale Basis liefert, falls der Modul iiber einen Kérper mit
beliebiger Charakteristik betrachtet wird.

Im dritten und letzen Teil stellen wir eine allgemeine Formel fiir den Grad des
Hilbert—Poincaré—Polynoms fiir PBW graduierte Hochstgewichtdarstellungen zur
Verfiigung. Dabei reicht es den Grad fiir jedes fundamentale Gewicht zu berech-
nen, was wir explizit ausfiihren.

Mit den Resultaten dieser Arbeit verbessern wir in einigen Fallen das Versténdnis
der Theorie der PBW graduierten Hochstgewichtdarstellungen.

Abstract

We investigate in this thesis irreducible finite-dimensional PBW graded highest
weight representations for complex finite—dimensional simple Lie algebras. The
thesis is divided into three parts.

In the first part we construct for several fundamental weights and their multiples
FFL bases of the corresponding modules mentioned above. Furthermore, we
provide an explicit description of the defining ideals of these modules. We transfer
the procedure of Feigin, Fourier and Littelmann to the cases considered by us.
The second part does not contain any assumptions on the dominant integral
highest weight. We consider monomial bases for the highest weight representation
mentioned above, which can be described by using certain differential operators.
Further we provide a criteria for such bases, which can be also applied to the FFL
bases from the first part of this thesis. On the basis of this criteria it is possible
to decide whether the given basis provides again a monomial basis, if the module
is considered over a field of arbitrary characteristic.

In the third and last part we provide a general formula for the degree of the
Hilbert—Poincaré polynomials of PBW graded highest weight representations. It
is sufficient to calculate the degree for every fundamental, what we do explicitly.
The results of this thesis improve in several cases the understanding of the theory
of PBW graded highest weight representations.
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Introduction

One important tool for the investigation of the representation theory of Lie al-
gebras is the Poincaré—Birkhoff-Witt Theorem, also called PBW Theorem. For
a Lie algebra g this theorem provides an explicit construction for a basis of the
universal enveloping algebra U(g).

The classical idea to understand the representations of a Lie algebra g is to inves-
tigate the representations of U(g), because they are the same. In this thesis we
consider modules for the associated graded algebra U®(g), since it seems likely
that there is a strong connection between these modules and the modules for g.
The investigation of these PBW filtered and graded modules for simple finite—
dimensional Lie algebras has started in recent years only.

Let us briefly recall the construction of the PBW filtration, which is necessary to
understand the resulting PBW graduation. Let us fix a simple complex finite—
dimensional Lie algebra g and a triangular decomposition g =n™ & h S n~. The
degree filtration U(n~)s on the universal enveloping algebra U(n~) over n~ is
defined by:

Umn™)s=span{zy -z |z; en, | < s}

The associated graded space of U(g) is given by

U'(n”) = €D U )e/Um )smr, Un)or = {0},

SEZZO

The definition of U(g) as quotient of the tensor algebra T'(g) and the ideal

J=(x®y—y®z—|z,y] | z,y €g), implies that U*(n™) = S(n"~), since

xRy, y@x e UM ) and [z,y] € U(n™); for z,y € g.

Let us now consider the irreducible finite-dimensional g-module V' (\) of high-
est weight A and denote by vy the highest weight vector. Therefore we consider
V(A) = U(n")vy and the PBW filtration on U(n~) induces the PBW filtration
on V' (\), where the s—th filtration component is given by V(\)s = U(n™)svy. The
associated graded space

Vi) = @ VNV Va1, V(N1 = {0},

56220

is a cyclic S(n™)-module, which is called PBW graded module. Thus there is a
ideal I(A\) C S(n™), the annihilator of the generating element vy, such that:

VO = S(n Yoy = S(n7)/I(N).

Note that V(\)s is a U(n")-module for all s € Z>o. This induces a U(n*)-
module structure on V(\).



In 2009, E. Feigin started the investigation of PBW graded modules (see [Fei09]),
where he defined the PBW filtration for arbitrary Kac-Moody abgebras of finite
and affine type. In 2011/12 E. Feigin, G. Fourier and P. Littelmann provided
an explicit description of the annihilating ideals I()), in terms of generators and
relations, for the Lie algebras sl,, sp,, and arbitrary dominant integral weights
A (see [FFL1la, FFL11b]). For certain Demazure modules in the sl,—case the
explicit descriptions are given in [Foulda, BF14].

In the first part of this thesis (see Chapter 1), we provide an explicit description
of I(\) for PBW graded g—modules corresponding to special fundamental weights
w and their multiples (see Table 0.1). Further we provide for these PBW graded
modules monomial bases, analogue to [FFL1la, FFL11b, Foulda, BF14] and
[Gorl1], where a monomial basis is provided for type Go. Note that Chapter 1 is
a modified version of [BD15] and motivated by [FFL11a] and [FFL11b].

For an arbitrary dominant integral weight we call such a basis a Feigin—Fourier—
Littelmann or just FFL basis and V*(\) a FFL module, if the basis of V*(m\),
m € Z>o is parametrized by the integer points of a normal polytope P(m) (see
Section 1.1). We prove the following result:

Theorem A (Backhaus, D.). Let g be a simple complex finite—dimensional Lie
algebra and A = mw;, m € Z>q be a rectangular weight, where g is of type X, and
w; is a corresponding admissible weight (see Table 0.1). Further let

V&(A) =2 S(n™)/I(N). Then we have:

o I()\) = S(n) (U(n+) ospan{ 37 | g € A+}> .
e V%) is a FFL module.

Here we denote by Ay the set of positive roots of g.

’ Type of g ‘ weight w H Type of g ‘ weight w

A, wi, 1<k<n Eg w1, We
By w1, Wy E7 wr
Cun w1 Fy Wy
Dn W1, Wpn—1, Wn Go w1

Table 0.1: Admissible weights

Remark. The theorem above implies the existence of a normal polytope P(mw;),
such that the integer points S(mw;) parametrize a basis of V(mw;). This polytope
is the m—th Minkowski sum of the polytope P(w;) corresponding to V(w;). In
general this is not true for different fundamental weights, so for w; # w; we have
[(P(w;) + P(w;)) NZY,| # dim V(w; + w;), because the number of integer points
in the Minkowski sum is in general too small. For example in the case of g = sls,
we have |(P(w1) + P(ws2) + P(ws) + P(ws)) N ZY,| = 1023 and

dim V(w1 + wo + w3 + wyg) = 1024. -

Remark. In the (Cp,wi) case our bases coincide with the bases obtained in
[FFL11b], tough in the (Ay,wy) case they are different from the bases obtained
in [FFL11a], which were conjectured by Vinberg (see [Vin05]). This is due to



a different choice of the total order on the monomials in S(n~). Nevertheless
the induced normal polytopes are isomorphic to the corresponding normal poly-
topes constructed in [FFL11a, FFL11b]. As consequence in the cases (Ap,wg)
and (Cy,w1) the corresponding projective toric varieties are isomorphic. In con-
trast, these are in general not isomorphic to the toric varieties corresponding to
Gelfand-Tsetlin polytopes investigated in [GLI7] and [KMO5].

Let us briefly explain the methods we used to prove Theorem A. Our main tool
is the Hasse diagram H(n) )y of g given by the standard partial order on the
positive roots of g (see Section 1.1). To be more precise H(n )y := (A}, E) is
a directed labeled graph, where the set of vertices is indexed by A%, a subset of
A corresponding to a Lie subalgebra n, C n™, and the set of edges E is given
as follows:

VI<ij<N: B5B)eEoTa,ed,: Bi—p=a,
where @ is the set of simple roots.

Example. The Hasse diagram H(ng, )s,; and the set A%

B B =

7 N B2 =

62 63 63 17171>1>O ’
y ﬁ ’y Y‘ 64 0 071>1>1 ’

(1,1,1,1,1),
( )
( )
( )
54 65 /86 65 (07 L1, 1>O):
( )
( )
= ( )
( )

0,1,1,1,1),

Q y Y y 66 1717170707

57 58 57 =(0 0717170 ’
0,1,1,0,0),
59 69_ 00717070'

For more examples of Hasse diagrams we refer to the Appendiz.

We associate to this directed graph a polytope P(\) = P(mw;) C RY, via the
directed paths in the diagram and show in Section 1.2 that these polytopes are
normal. Further we show in Section 1.3 if given the case the Hasse diagram sat-
isfies certain properties, the set of integer points S(A) = P(A)NZY, parametrizes
a spanning set of V¢(\). In fact we will show via induction on m € Zxq, that
this spanning set is a FFL basis of V%()) (see 1.4 and Section 1.5).

Note that in the cases (Bp,w1), (Fa,ws) and (Gg,w;) we have to change the Hasse
diagram slightly, to be able to apply our procedure. Except for the known
cases (An, Cn, G and Table 0.1) it is not clear if there exists a polytope which
parametrizes a FFL basis.

Let us denote by g* the degenerated Lie algebra g* = b @& n™%, where n™% is n~
endowed with the trivial lie bracket. Further there is a vector space isomorphism
between the quotient module g/b, which is a b-module via the adjoint action, and
n"% which induces a b—action on n™%. Let G*, B and N % be the corresponding
algebraic groups of g%, b and n™%. Then we have G* = B x N 7% and we define
for the g—module V*(\) = S(n™)vy the closure of the orbit G%.[vy] C P(V*(\))




to be the degenerated flag variety FY.

The authors of [FFL13a] showed that F§ has a lot of nice properties if V() is a
FFL module, e. g. ¥ is normal and Cohen-Macaulay. Furthermore, there is an
explicit representation theoretical description of the corresponding homogeneous
coordinate rings. In addition in recent years it turned out that the PBW the-
ory has many connections to geometric representation theory: Schubert varieties
([CIL14], [CILL15]), degenerated flag varieties ([FFL14], [Feill], [Feil2],[Hagl4])
and quiver Grassmannians [CIFR12].

The work of Feigin, Fourier and Littelmann (see[FFL13b]) also motivated the
second part of this thesis (see Chapter 2). We fix an arbitrary simple complex
finite-dimensional Lie algebra and choose a Chevalley basis B¢y, (g) of g, then we
consider the Z—analogue of our setup.

Let gz C g be the Z-span of Bcy(g), which is a Lie subalgebra of g. Ana-
logue we define n, C n~. Furthermore, let the Kostant lattice Uz(g) be a Z—
subalgebra of U(g) (see for details Section 2.1), with these constructions we define
Vz(X) = Uz(n™)vy. The PBW filtration Uz(n™)s, s € Z>( on the Kostant lattice
induces the PBW filtration Vz(\)s = Uz(n~)svy. The Z-analogue of the PBW
graded module V#(X) is defined by

VE(N) = D Va(Ns1/Va(N)s, Va(N)-1 =0,

SEZZO

Vi (A) & Sz(n™%)ux = Sz(n™%) /Iz(N),

where Sz(n™%) is a divided power analogue of the symmetric algebra over n, ",
the Lie subalgebra n, endowed with the trivial Lie bracket.

Similar to the complex case the ideal Iz()\) is stable under the action of Uz(n™),
which is induced by the adjoint action. In fact one can see, that these operators
in Uz(n™) are derivations on Sz(n~%). These differential operators

0y = ad(ey) € Der(Sz(n™%)), v € A4 can be used to obtain relations in the
associated graded module (see [FFL11a, FFL11b, FFL13b] and Chapter 1).

Let B(V*(\)) be a monomial basis of V*(\) and < a homogenous total order on
the monomial in Sz(n™"%). We investigate under which assumptions on B(V*())),
the Z-analogue of this basis provides a monomial basis of Vi}(\) (see for more
details Section 2.3):

(i) There is a non—empty subset P of the power set of the positive roots P(A)

and each element p € P contains a root 8, € p, such that for all multi-
exponents m € Z|>AO+|, which are supported on p, with

m| = ‘é*' m; > A(BY) + 1 we have a straightening law
=1 P

emf™+ ) eft €Iz(N), et €C, em €T, (0.0.1)
t<m
where (0.0.1) is obtained by the action of a sequence of differential opera-

tors: 3(fg;|) = H§:1 asj(flr:b'

(ii) All differential operators @ considered in (i) respect the total order <.



(iii) The basis B(V*(\)) is given by

B(Ve(\) = {fur|s ezl vpeP: S s5 <ABY)),

Bep

so B(V*(\)) is parametrized by the integer points of a polytope
P(P) C RleO*‘, which depends on the set P C P(AL).

Furthermore, we define a certain type of elements in I7(\), Z—admissible elements
(see Definition 2.2.9).

Theorem B. Let g be an arbitrary simple complex finite—dimensional Lie algebra
and A an arbitrary dominant integral weight. Further let B(V®(X)) be a basis of
V&(\) satisfying Property (i), (ii) and (iii) and let the elements B(flm‘) be Z—
admissible for all p € P and multi—exponents m described in (i), then

B(VE(N) = {f®. |s € S(P) = P(P)NZ5 )

is a basis of Vi (A\) and the ideal I7(\) is generated by the subspace

(Us(n*) o span{ f Y|

p € P}).

Let us now explain in short words the proof of Theorem B. Let 9(f lm') € Iz(N)
be an arbitrary Z-admissible element considered in (i) with max1mal monomial
c¢mf™, ¢m € Z. The crucial point is to show that ¢y, = £1 (see Section 2.2,
in particular Lemma 2.2.14). In other words ¢y, has to be a unit in Z for all
Z—-admissible elements considered in (i) to guarantee, in line with the assumed
straightening law, that Bz(V%())) is a spanning set of V(X). The linear inde-
pendence of Bz(V*(\)) is a direct implication of the fact that B(V*(\)) is a basis
of V4(A).

In Section 2.4 we give some applications of Theorem B. Here we explain that
our result is an alternative proof of the main result of [FFL13b] and show that
all FFL bases constructed in Chapter 1 provide also bases for the corresponding
modules over Z.

There are a lot of connections between the PBW theory and combinatorial rep-
resentation theory. In fact, if we consider again FFL modules, in [FFL13a] is
shown, that the describing polytopes can be identified as Newton—Okounkov bod-
ies (see for more details on Newton—Okounkov bodies see [KK12] and [HK13]).
A purely combinatorial research on the FFL polytopes can be found in [ABS11].
Furthermore, there are for example connections to Schur functions ([Foul4b]),
combinatorics of crystal bases ([Kusl3al, [Kus13b]) and Macdonald polynomials
([CF13], [FM14])

Especially we are interested in the Hilbert—Poincaré series of the PBW graded
module, often referred to as the g—dimension of the module, and denoted by

=> (dmV(A)s/V(N)s-1) "
s=0



Since V'(A) is finite-dimensional, this is obviously a polynomial in g. Our main
goal, in the third part of this thesis, is to compute the degree of py(q). The first
step is the following reduction (see [CF13, Theorem 5.3 ii)]).

Let Aq,..., \s be dominant integral weights and set A = Ay + ...+ Ag, then

degpx(q) = degpx,(q) + ...+ degpy,(q).

Our third main result is the computation of the degree of py(q), where X is a
fundamental weight. With these degrees it is possible to provide a general formula
for the maximal degree of Hilbert—Poincaré polynomial of V¢(\) for arbitrary
dominant integral weights A of an arbitrary simple complex finite-dimensional
Lie algebra g (see Chapter 3):

Theorem C (Backhaus, Bossinger, D., Fourier). The degree of p.,(q) is equal to
the label of the i—th node in the following diagrams:

1 2 3 3 2 1 2 2 4 4 6 51
An o [ o---o0 o [ Bn o [ o [ o———o#o
—1
2[25=1
rez4
1 2 n-2 n-1 2 2 4 4 6 oz
Cn o 0o---0 (-] o Dn o (-] o (-] O———O\
—2 —1
2[25=1 Torag=]
o o
2 5
2 4 4 2 2 6 7 4 3
E6 o [ o [ o E7 0——0——0——0——0——0
6 8
o
8
4 8 11 8 6 2 2 6 4 2 2
E 0—0——0——0——0——0——0 F o [ o [ G [ o
8 4 2

Remark. Note, that Chapter 3 is a modified version of [BBDF1/].

We provide in Section 3.2 for every fundamental weight a monomial v € S(n™) of
the predicted degree mapping the highest to the lowest weight vector and show
that there is no polynomial of smaller degree satisfying this.

In order to prove Theorem C we use the relation between the Hilbert—Poincaré
polynomial and the graded Kostant partition function (see Section 3.1) and more-
over downward induction on the power of special root vectors contained in the
monomials u € S(n7).



Preliminaries

Throughout this thesis, unless otherwise stated, we denote by g a simple complex
finite-dimensional Lie algebra of rank n. We provide in the present chapter the
necessary notation and recall briefly basic constructions, which are important for
this thesis. Note that the details, proofs and precise statements can be found in
[Car05] and [Hum72].

We fix a Cartan subalgebra b = (hy, ..., hy)c of g and a triangular decomposition
g=n"@®Hh@n". The set of roots, resp. positive roots of g, is denoted by A C h*,
resp. by AL = {p1,...,06n} C bh*, we denote by N € Z>( the cardinality of Ay.
For the set of negative roots we have A_ = —A, and denote by 6 the highest
root of g. Let &4 = {aq...,a,} C Ay, w; € b%, i =1,...,n be the simple roots
and the corresponding fundamental weights.

Let W be the Weyl group associated to the simple roots and wg € W the longest
element. For € A4 we fix a sly triple {eg, f3,hg = les, fg]}. The integral
weights and the dominant integral weights are denoted P and P+.

Let us denote by U(g) the universal enveloping algebra of g. This is an associative
algebra over C with 1, since U(g) is the quotient of T'(g), the Tensor algebra of
g, and the 2-sided ideal J C T'(g), which is generated by the set:

{z@y—y@x—[z,9] |2,y € g}.

Note that we have a natural linear embedding g < U(g). Let
B(g) = {z; | 1 <i < D}, with D = dimg, be a ordered basis of g, then we know
from the PBW Theorem, that

D
B(U(g)) = {Hw?\rizo, v1§i§D}

=1

forms a basis of U(g). In addition we deal with the following construction. Let
K C T(g) be the 2-sided ideal generated by the set:

{z@y-yor|rycg}

and set S(g) := T'(g)/K, then S(g) is isomorphic to the the polynomial algebra
Clzi | 1 <i < n], where n = rg(g). We call S(g) the symmetric algebra of g.

Modules. For A € P™ we consider the irreducible finite-dimensional g-module
V(A) with highest weight A. Then V(\) admits a decomposition into h—weight
spaces:

VI =DV,

TEP



with V/(A)x and V(A)y,(n), the highest and lowest weight spaces, being one-
dimensional. Let us fix a highest weight vector v) and a lowest weight vector
V() Satistying
eguy = 0, fngO()\) =0 VpBeA,,
where eg € n™ and fg € n~. Therefore we obtain the following vector space
isomorphisms:
U™ )ox = V(A) Z U0 )y

Let A\, € P and consider the tensor product of the corresponding highest
weight g—modules V(A\) ® V(u). The comultiplication (x — z® 1+ 1 ® x)
provides a g—module structure on V(A) ® V(u). This module decomposes into
irreducible components, where the Cartan component generated by the highest
weight vector vy ® v, is isomorphic to V(A + p), this fact is important for the

application of the main theorem of Chapter 1 and crucial for our procedure in
Chapter 3.

PBW filtration. Now we introduce the main object that we investigate in this
thesis. For A € P we have V(\) = U(n~)vy, further there is a degree filtration
U(n™)s on the universal enveloping algebra of n~, defined by:

Um™)s =span{zy -2 |z; €n”, [ < s} (0.0.2)

In particular, U(n™ )y = C1. Thus we have an increasing chain of subspaces:
Un ) CUMm ) CU(n )y C.... The filtration (0.0.2) induces a filtration on
V(A), V(A)s = U(n")svy. This filtration is called the PBW filtration on V().
We consider the associated graded space V() of V(A) defined by:

Vi) = @ V(N/V( Vo1, V(N1 = {0}.

SEZzo

From the PBW Theorem we obtain
Ul(n™) = S(n) = (C[fﬁj |1<j <N

Hence V() is a cyclic S(n~)-module generated by vy, thus there is an ideal
I(\) € S(n7), the annihilator of the generating element, such that:

VAN Z ST )uy 2 S(n7)/I(N). (0.0.3)
Remark 0.0.1. We emphasize that:
R eI, v B eA..

This is a very important fact, which we use in Chapter 1 and Chapter 2 for all
calculations corresponding to I(\).

We associate to the multi-exponent t = (t;)IL; € Z% the element
N
fr=1115 €s@),
i=1

and define the degree of ftvy # 0 in V¢()\) by deg(ftvy) = deg(f*) = Zf;l t;, or
deg(ftvy) = 0 if ftvy = 0.



Definition 0.0.2. Let B(V(\)) respectively B(V* (X)) be a basis of V(\) respec-
tiely VE(X). We call B(V (X)) respectively B(V*(X\)) monomial, if there is a finite
subset of multi—exponents T € ijvo, such that
B(V(\) = {ffvx |t € T} CU(n vy, resp. B(VE(N)) = {ftvr |t € T} C S(n")v,.
Throughout this thesis we are only interested in this kind of basis.
Remark 0.0.3. Because the action of w" on V(X) is induced by the adjoint

action, we know that V(X)s, s € Z>q is stable under the action of w™. Thus for
een® and [[7_; zv\ € V(X)s we have

S

s Jj—1 s
e. H%’UA = Z Hz‘l ad(e)(z;) H vy € V(N)s.
i=1

j=1 i=1 i=j+1
Hence V(\)s is a U(n")-module, this implies also a U(n")-module structure on
Va(X). So for ftuy € V4(N) we have
deg(uftoy) € {0, deg(fton)}, ¥ u € U(n®).

Remark 0.0.4. Let o be the action of U(n™) on S(g) induced by the adjoint
action of wt on g. Via the vector space isomorphism

S(n™) = S(g)/S(g)(ST(n" & 1))

we obtain an action on S(n~), where ST(nT@® h) C S(nt® b) be the mazimal
homogeneous ideal of polynomials without constant term, the augmentation ideal.
We denote this action again by o. Since the action of U(nt) on V(\) is induced
by the action of U(n") on V(N) (which is again induced by the adjoint action),
we obtain for alle € U(n™), f € S(n™)

e(fun) = (eo f)uy.

Hence S(n™) is a U(n")-module.
This fact implies in line with the fundamental Theorem for modules, that the ideal
I(N\) (see (0.0.3)) carries a U(n")-module structure.

The next Lemma is devoted to get a better understanding of the module V%(\),
but we do not need it to prove our main statements.

Lemma 0.0.5. Let f™ € S(n™) with f™vy # 0 in V(X)) and weight wt(f™) =
A —wo(N). Then

deg(f™) < deg(f™), V™ox # 0 € V().
Proof. Let vy,,(\) be a lowest weight vector such that:
V()\) = U(n+)vw0(,\).

Hence we can interpret V' (\) as a lowest weight module. The lowest weight wp(\)
is in the Weyl group orbit of A, thus dim V() () = 1 = dim V(\)x. Thus there
is a minimal s € Z>o, such that: V(X)) € V(A)s. Furthermore, there exists a
scalar ¢ € C with f™uvy = cvy,(n)-

For an arbitrary element fPvy # 0 € V%)) we fix the order of the factors
to obtain fv), € V(A\). Then there exists an element z € U(n*) such that:
[y = z(f™wy). This implies with Remark 0.0.3: deg(f™) < deg(f™). O



In the following we define two important tools for the considerations in this the-
sis.

Differential operators. Let ;,3; € Ay and eg, € n™, fp; € n~ be correspond-
ing root vectors. Then we define the differential operator

s, (f5;) = {fﬁj_ﬁ“ W05 i€ B (0.0.4)

0, otherwise.

The differential operator satisfies

aﬁi (fﬂj) = (Cﬂiu_ﬂj)_l ad(eﬁi) (fﬂj) )

where cg, g, € C* is the corresponding structure constant. Thus, if §; = §; or if
the root vectors commute, then g, (f3;) = 0.

Since the adjoint action satisfies the properties of a derivation and the U(n*)—
module structure on S(n~) is induced by the adjoint action (see Remark 0.0.4),
we define differential operators on S(n™): Let k,m € Z>(:

a]ﬁci (f,g?) = 0, -+ O, (fg:) ) (0.0.5)

k—times
and Jg, <fg;) = Zfé;laﬁz (fﬁj) fg;*e = mdg, (fﬁj) fn;hl'
/=1

Remark 0.0.6. Remark 0.0.4 implies that the ideal I(\) is stable under the
U(n)—action on S(n™). Thus, for an arbitrary sequence of differential operators
and an arbitrary element v € I(\) we have

105 (v) € 1),
=1

where k; € Z>o and i, € Ay. Especially in Chapter 1 and Chapter 2 we use this
fact in order to obtain relations in V*(X\) and with these we are able to describe
the ideal I(\) explicitly.

Abstract paths. Let p, be an element of the power set of the positive roots
P(A4). We call such an element an abstract path in A. In addition we say that
a multi—exponent t € Z]>VO is supported on the abstract path p, if

Furthermore, we call a subset P of P(AL) a set of abstract paths in A. Notice
that the elements in P do not have to have the same cardinality.

Remark. We use in this thesis abstract paths to translate our representation
theoretical questions into combinatorial problems. Note, that in Chapter 1 we call
the abstract paths Dyck paths, in order to be consistent with [FFL11a, FFL11b].
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1 Feigin-Fourier-Littelmann modules via
Hasse diagrams

We emphasize that the present chapter is a modified version of [BD15]. Through-
out this chapter we focus on selected rectangular weights A = mw;, m € Z>q (see
Table 1.1). Moreover we provide special monomial bases, so called FFL bases,
for the corresponding irreducible finite-dimensional PBW graded highest weight
representation V*(\). Furthermore, we assume the notation of the Preliminaries.

1.1 Hasse diagrams and Dyck paths

In this section we define and consider the Hasse diagram H(n) )y, which is the
most important combinatorial tool for the procedure of this chapter. To do so we
introduce the Lie subalgebra ny of n™ and provide, analogue to the Preliminaries,
definitions and facts in order to work with this Lie subalgebra.

Let g be as usual and fix a rectangular weight A = mw;, with m € Z>¢ and
1 < i < n, further let A(B8Y) = 2(%\’6'8)), where 8V = (55) is the coroot of 5 and
(+,-) is the Killing form. Then we define

ny :=span{fs | A(8Y) > 1} Cn".

Let 5 = 2?21 njaj, n; € Z>o be a positive root with n; > 1. Then we have
for the coroot 8 = 7% nfaY: ny > 1. Conversely starting with a coroot

J g
BY, with nY > 1 we have for the corresponding positive root 8: n; > 1. Hence,
independent of the choice of m > 1: n, = n, . C n~ is the Lie subalgebra

spanned by those root vectors fg, where o; is a summand of 3.
From the PBW-Theorem we get

U(ny) = S(ny) = Clfs [ ABY) 2 1, B eAy],
where S(n)) is the symmetric algebra over n} .

Remark 1.1.1. (i) We have V(X)) = U(n; )vx. The action of U(n, ) on V()
induces the structure of a S(n, )-module on V() and

V(A) 2 S(n ")y 2 S(n} v (1.1.1)

(it) The action of U(n™) on V(A) induces the structure of a U(nt)-module on
V(A). Note for eq € 0t — U(n'), fg € ny — S(n}), [ea, f3] is not in general
an element of S(n, ), but for f, € S(n™)\ S(ny) we have f vy = 0. That follows
from the well known description (see [Hum72]) of V(\):

V) =U@) /(BP0 se ). (1.1.2)

11



Equation (1.1.1) shows that V*()) is a cyclic S(n) )-module and hence there is
an ideal Iy C S(n,) such that V*(X) ~ S(n})/I), where I, is the annihilating
ideal of vy. We have therefore the following projections:

Sm™) = S7)/ (fa | A(BY) = 0) = S(ny) — S(ny)/ L.

Hence, although we work with n,’, we actually consider n~—modules. Therefore,
our aims in this chapter are

e To describe V%(X) as a S(n) )-module, i. e. describe explicitly generators
of the ideal I.

e To find a basis of V*(\) parametrized by integer points of a normal polytope
P(X) (see (1.1.6)).

To achieve these goals we have to introduce further terminology. We denote the
set of positive roots associated to n, by

AL ={BeANBY) =1} = {Bi,-., Bin,} C A1, [AL] =Ny < N.

Since we deal in the present chapter only with ny” we denote, by abuse of notation,
for 1 < j < Ny i; = j and Ny = N. Therefore, we have Ai = {f1,...,0n},
|A3‘|_| =N € Zzo.

Example 1.1.2. We write (r1,72,...,ry) for the sum: >, rpay. Let g be of
type Ay and A = ws, the third fundamental weight. Then we have:

Ai& - {/Bl - (]-7 ]-a ]-a ]-)7/82 - (O) 17 ]-a ]-)7/85 - (1) 1) 170)7
/64 == (0707 ]-7 1)7/85 - (O) ]-) 150)7/66 - (070) 1>O)} C A-i-'

We choose a total order < on Ai:
B1=Ba < <BN-1< BN (1.1.3)
We assume that this order satisfies the following conditions:

(i) Let > be the standard partial order on the positive roots, then
Bi > B = Bi < B

(ii) Let g = (r1,...,m0),B8j = (t1,...,tn) and we define the height as the sum
over these entries: ht(8;) = Y i, 75, ht(8;) = > ;" ; t;. Then

ht(8;) > ht(8;) = B8i < B;.

(iii) If B; and B; are not comparable in the sense of (i) and (i), then
Bi = Bj < B is greater than (3; lexicographically, i.e. there exists 1 <k < n,
such that rp >t and r; = ¢t; for 1 <1 < k.

Remark 1.1.3. The explicit order of the roots depends on the Lie algebra and
the chosen weight, see Section 1.4. But in all cases considered in this chapter we
have B1 = 0, the highest root of g and By is the simple root «;.

12



In order to make our equations more readable we write for 1 <i < N: f; = f3,
and s; = s,. We associate to the multi-exponent s = (s;)Y; € ZY, the element

N
=11 €s5my),
=1

and define the degree of fSvy # 0 in V*(\) by deg(fSvy) = deg(f®) = Zf\il Si,
or deg(fSvy) = 0 if fSvy = 0. We extend < to the homogeneous lexicographical
total order on the monomials of S(n)’) (resp. multi-exponents).

Let s, t € Z]>V0 be two multi-exponents. We say f5 = ft or s > t if

o deg(f®) > deg(f*) or
o deg(f%) =deg(f*) and 31 <k < N: (s >tp) AVE<j<N:(sj=t).

For example: fi f3f5 < f{f3fs < f1f3f3.

Associated to n, we define a directed graph H(n} )y := (A}, E). The set of
vertices is given by Aﬁ‘r and the set of edges F' is constructed as follows:

We call this directed graph Hasse diagram of g associated to A. For the consid-
erations in this chapter will H(n) )y be the most important tool.

Example 1.1.4. The Hasse diagram H(ng,)s, is given by:

g
AN Br=(1,1,1,1)
ﬁQ B3 52 = (0717171)
y & ly ﬁ3 - (1717170)
64 /35 ﬂ4 = (0707171)
& 7 /85:(0717170)
B Bs = (0,0,1,0)
We define an ordered sequence of roots in Aﬁ‘r: (Biys - -+, Bi) with B, < By, to

be a directed path from [3;, to B, .

Remark 1.1.5. For our purposes we allow the trivial path (0) and any ordered
subsequence of a directed path to be a directed path again. Therefore, in Example
1.1.4 (B1, P2, Ba, Bs) and (1, B2, Bs) are two possible directed paths.

In general it is possible that two edges in H(n) )4, one ending in a root 5 and
one starting in 3, have the same label:

LAY LAY}

We call this construction a k—chain (of length 2).

13



Associated to H(n} )y we construct two subsets Dy, Dy C P(A?}) of the power
set of A}: For p € P(A?}) we define

p € Dy 5<:>p:{/8i17~~7/8ir}7 (1.1.4)
for a directed path (3;,,...,03;,) in H(n) )g. Therefore, from now on by (1.1.4)
we interpret p € D) as a directed path in H(n)),.
Remark 1.1.6. Let 3;,3; € Aﬁ\r be arbitrary. Then there exist a p € Dy with
Bi, B; € p if and only if B; — B or B; — Bi is a non-negative linear combination
of simple roots.
Remark 1.1.7. A staircase walk from (0,0) to (n,n) beyond the diagonal in
a n X n-lattice is a called Dyck path. In the general Ay—case ([FFL11aj) the

constructed directed paths are Dyck paths in this sense. To be consistent with
their notation we call our directed paths Dy also Dyck paths.

Further we define the set of co-chains by

Dy:={peP(AY)|Pnp|<1,Vpe Dy} (1.1.5)
If necessary we use an additional index E;\yp e of ! to distinguish which type of g

we consider. We consider the integral points of a polytope which is connected to
D) in a very natural way. Fix A\ = mw;, with m € Z>¢. Let

P(mw;) ={x € RJZVO | Z zj <m, VpeD,}, (1.1.6)
Biep

be the associated polytope to D,,. Denote by S(mw;) the integer points in
P(mw;): S(mw;) = P(mw;) N Zgo. We define the map

supp; : S(wi) = P(AL), suppy(s) = {B; | s; > 0}.

For s € S(w;) we have with (1.1.5) immediately supp,(s) € D,,. Conversely

every p € D,,, has a non—empty pre-image. With s € {0,1}" we conclude that
supp; is injective and that we have the immediate proposition:

Proposition 1.1.8. The map supp; : S(w;) — ﬁwi s a bijection. [l

Hence in Section 1.4 it is sufficient to determine the co—chains in H(n} ), to find
the elements in S(w;). Now we are able to formulate our main statements.

Main statements. Let g be a simple complex finite-dimensional Lie algebra
and A = mw; be a rectangular weight, with w;(#¥) = 1 and m € Z>, where
6 is the highest root of g. Further we assume that H(n, ) has no k-chains of
length 2. In the following table we list up all cases where these assumptions are
satisfied. Additionally in the cases (Bp,w1), (Fa,ws) and (Gg,w;), we can rewrite
H(n, )g in a diagram without k-chains of length 2:

’ Type of g weight w; H Type of g ‘ weight w; ‘

A, wr, 1<k<n Eg w1, We
B, w1, Wp E7 wr
Cn w1 Fa Wy
D, W1, Wp—1, Wn Go w1

Table 1.1: Admissible weights
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Let I(mw;) C S(n™) be the ideal such that V*(mw;) = S(n™)/I(mw;).
Theorem 1.1.9.

I(mw;) = S(n") (U(n+) o span{ /7 P | g A+}> .
Proof. This statement follows by Theorem 1.5.4. O
Theorem 1.1.10. By, = {f%vmw, | s € S(mw;)} is a FFL basis of V(muw;).

Proof. In Section 1.2 we show that the polytope P(mwj;) is normal. By Theorem
1.3.4 we conclude that B,,., is a spanning set for V*(mw;). After fixing the order
of the factors, with Theorem 1.5.2 we have a FFL basis of V (mw;). Because this
basis is monomial and V(mw;) = V% (mw;) as vector spaces, we conclude that
B, is a FFL basis of V¢(muw;). O

Applications.To state an important consequence of Theorem A and Theorem
B we give the definitions ofessential monomials due to Vinberg (see [Vin05],
[Gorll]) and Feigin—Fourier—Littelmann (FFL) modules due to [FFL13a]. Let
A be a dominant integral weight. Recall that we have a homogeneous lexico-
graphical total order < on the set of multi-exponents induced by the order on
Aj‘_:

p1 < P2 < <BN.

In the following we fix a ordering on the factors in a vector

fPuy = fRN RN Ty (1.1.7)
Definition 1.1.11. (i) We call a multi-ezponent p € ijvo essential if

fPux & span{fivy [ q < p}.
(i) Define es(V (X)) C Zgo to be the set of essential multi—exponents.

By [FFL13a, Section 1] {fPvy | p € es(V(N))} is a basis of V¢(\) and of V().

Let M = U(n")up and M = U(n")v,, be two cyclic modules. Then we denote
with M & M == Un™)(vy @ vy) CM® M’ the Cartan component and we
write M®" := M ®---® M (n-times).

Definition 1.1.12. We call a cyclic module M o FFL module if:

(i) There exists a normal polytope P(M) such that es(M) = S(M), where
S(M) is the set of lattice points in P(M).

(ii) Vn € N : dim M®" = |nS(M)|, where nS(M) is the n-fold Minkowski sum
of S(M).

Corollary 1.1.13. For the cases of Table 1.1 V(mw;) is a FFL module.
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Proof. Proposition 1.2.8 shows that P(mw;) is a normal polytope. By Theorem
B a basis of V(mw;) is given by By, hence with Lemma 1.5.1 we have S(mw;) =
es(V (mw;)).

Let n € N be arbitrary, then dim V (mw;)®" = dim V (nmw;). Again by Theorem
B we have dim V (nmw;)) = |S(nmw;))|. Because P(nmw;)) is a normal polytope
and therefore satisfies the Minkowski sum property, we conclude |S(nmw;))| =
[nS (mw;))|. O

Remark 1.1.14. Note that in [FFL13a] the FFL modules are called favourable
modules.

1.2 Normal polytopes

Our goal in this section is to show, that the polytopes defined in (1.1.6) are
normal. A convex lattice polytope P C RE | K € Z>q, i.e. P is the convex hull of
finitely many integer points, is called normal, if the set of integer points in the
m-th dilation mP is the m-fold Minkowski sum of the integer points in P.

To achieve our goal we prove the normality condition for a larger class of polytopes
in a more abstract setting than in Section 1.1.

General setting. Let A = {z1,29,...,2x} be a finite, non-empty set with
a total order: z; = 29 > .-+ > zg. We extend > to the (non-homogeneous)
lexicographic order on P(A), the power set of A. Let D = {p1,...,p:} C P(A)
be an arbitrary subset.

Remark 1.2.1. (i) To illustrate this non-homogeneous lexicographical order we
give for K > 3 an example:

{2’1,22} - {2’1} - {2’2,2’3}

(ii) Let p = {zi,, ..., 2.} € P(A) be an arbitrary set. We always assume without
loss of generality (wlog): ziy = -+ = z,..

We can associate a collection of polytopes to D in a natural way:

P(m) ={x¢€ ]R[Z(O | Z zj <m, Vp € D}, m € Z>. (1.2.1)

Z; EP

To work with these polytope, in particular with the elements in D, we define the
following.

Definition 1.2.2.

(1) Forp € P(A) define pmin = min{z € p} and pmax analogously.

(2) Let P:q S P(A)7 P = {Z’i17 v 7Zi7»}7 q = {Zj17 .. ‘7st} thh Pmin = 9max-
Then we define the concatenation of p and q by

puUuq= {Z’ilyzig"'7Zir:'zj17zj23""zjs} S P(A)
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Normality condition.
Definition 1.2.3. Assume D C P(A) has the following properties:

1. Subsets of elements in D are again in D:
VACpeD:AeD.

2. Every z € A lies at least in one element of D:

Up=A

peD

3. The concatenation of two elements in D, if possible, lies again in D:
Vp,q € D with Pmin = Qmax: PUQ € D.

Then we call D C P(A) a set of Dyck paths.
We define for m € Z>g, suppy, : S(m) — P(A), by
t = (2)zea — suppy(t) = {z € A | ¢, > 0}.
Note that the map suppy, is in general not injective. Furthermore, we have
supp; (S(1)) € suppm(S(m)), because of S(1) C S(m) and suppm|g(1) = supp;-

Remark 1.2.4. Let D C P(A) be a set of Dyck paths, then P(m) defined in
(1.2.1) is a bounded convex polytope for all m € Z>.

By the definition of P(m) and the second property of D, which guarantees that
each z € A lies in at least one Dyck path, we have t, € {0,1},Vz € A, fort €
S(1). Hence supp; is an injective map and we get an induced (non-homogeneous)
total order on S(1).

Now we give a characterization of the image of supp;.
Remark 1.2.5. Let D C P(A) be a set of Dyck paths, then
supp; (S(1)) ={A € P(A) [|[Anp| <1,vp € D} = T.

"C”: Assume there is an element t € S(1) with supp;(t) = A € P(A) and
|ANp| > 1 for some p € D. Then we have ZzeAﬂp t, > 1, sincet, >0, Vz € A.
And so we have: Y __t, > 1. But this is a contradiction to the assumption
te S(1).

zZEp

»>7: Let B € T be arbitrary. Associated to B we define q° € Zgo by ¢ =1
if z € B and q¢¥ = 0 else. By the definition of T' we have for every Dyck path
peD: ) o, qZ < 1. Hence q® € S(1) with supp,(q®) = B.

Let s € S(m),m € Z>o,s # 0 be an arbitrary non-zero element. Consider

suppm(s) € P(A), we have P(suppm(s)) € P(A). Let
V = (supp1 (S(1)) N P(suppa(s)) € P(A). (1.2.2)

Note that V is a total ordered, non-empty set, because S(1) contains all unit
vectors and s # 0 by assumption. Therefore, there is a unique maximal element
(with respect to >), denoted by Mg € V.
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Lemma 1.2.6. Let D be a set of Dyck paths, s € S(m) non-zero and p € Ms.
Then we have s, =0 for all v € A such that (v > p and 3q € D: v, € q).

Proof. We assume the contrary. That implies there exists v € A with v > u,
sy # 0 and a Dyck path p € D such that v, u € p. Define

Vi={reMs|3qeD:v,Teqv =1} C Ms

and M/ := ({v}UDM;)\ V. By assumption we have ;. € V and so |V| > 1. Further
we have M. € P(supp,,(s)) and we show that M. € supp,(S(1)).

We assume that this is not the case. Therefore, there exists some b € D such
that |M, Nb| > 1. By the definition of V this can only happen, if there exists
a a € Mg with a > v and a,v € b. The following picture is intended to give a
better understanding of the foregoing situation.

71

a—  — - p)

We can assume wlog that by, = v and pmax = v, because subsets of Dyck paths
are again Dyck paths. Therefore, the concatenation bUp € D is defined and we
have a,v € b U p. But then, because of o,v € Mg: |MgNb| > 1, which is a
contradiction to Mg € supp;(S(1)).

Therefore, for all q € D we have |M) N q|] < 1. By that and with M. € P(A)
we conclude M. € supp;(S(1)). Therefore M, € V and by construction, because
> is a lexicographic order, M. > Mg, which is a contradiction to the maximality
of M. Therefore, the assumption on the existence of v was wrong, which proves
the Lemma. ]

Proposition 1.2.7. Let D C P(A) be a set of Dyck paths, then we have for the
integer points S(m) of the polytopes P(m) associated to D:

S(m—1)+S(1) = S(m), Ym € Z>1, (1.2.3)

where the left-hand side (lhs) of (1.2.3) is the Minkowski sum of S(m — 1) and
S(1).

Proof. Let m > 1. From the definition of P(m) and of the Minkowski sum follows
S(m — 1)+ S(1) € S(m). Therefore, it is sufficient to show that

S(m —1) +8(1) > S(m)

holds. For that let s = (s;).ea € S(m) \ S(m — 1) be an arbitrary element. We
show that there exists an integer point t! € S(1)\{0} such that: s—t! € S(m—1).
We define for Mg defined as in (1.2.2):

t! = supp; 1 (Ms) € S(1) \ {0}.

This element is unique because of the injectivity of supp;. Now we consider the
integer point s — t'. We know that there are no negative entries, because s, = 0
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implies for all A € V: 2 ¢ A and so t = 0. Hence s — t! € S(m) and so the
second step is to show that s — t! lies already in S(m — 1).

To achieve that we assume contrary s —t! € S(m)\ S(m — 1), i.e. that there is
a Dyck path p € D such that:

Since s € S(m) we have:

m:Z(sz—ti):ZSZ—ZtiiZszzmand ZtizO.

ZEP ZEP ZEP ZEP EAS o
——— N~
<m >0

We construct another Dyck path p € D such that ) sep Sz > M.
Let 5 € A be maximal with the property 8 € p A sg > 0. In particular, since
> replsz — t!) = m we have pN Mg = () and so 3 ¢ Ms. We define

P =p\{vep|y> B}

which is an element of D since subsets of Dyck paths are again Dyck paths. By

construction we have
g S, =m = E Ss.
zep’ zZEp

There are two possibilities to extend the path p’ with a further Dyck path p” € D:
(l) pﬁlin = B or (”) pglax = Pmin-

To obtain a path p = p” Up’ (respectively p = p’ U p”) with = S, >m, the
ZEP

extension p” has to satisfy the following condition: p” N Mg # (.

Assume we are in the case (i¢). Then there exists 7 € p” N Mg with s, > 0.
Further we have sg > 0 and 7,8 € p’ Up” =P € D. By construction we have
B < 7 and so Lemma 1.2.6 implies that sg = 0. This is a contradiction to sg > 0.

Therefore, we show the existence of a path p” € D with condition (i) and p” N
My # (). We assume contrary there is no such Dyck path p”:

Vq € D with qmin = 3: qN Mg = 0. (1.2.4)
Under this assumption and by using Lemma 1.2.6 we show:
Vq € D with B € q:qN Mg = 0. (1.2.5)

Assume (1.2.5) is not true, so there is some 5 # 7 € qNM; for q € D with § € g.
Then we have two cases.

Let 7 > 3, then 7 and  lie in q. Now the path from 7 to S is again a Dyck path.
But this is a contradiction to Assumption (1.2.4).

Let B = 7, by 7 € @ N Mg we have t- # 0. Then Lemma 1.2.6 implies sg = 0,
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which is a contradiction to the choice of 5.
Therefore (1.2.5) holds. Recall the properties of Ms. We have

My = supp, (t!) € P(A) with |[MsNq| <1, Vq € D.

Now consider M/ := Mg U {8} € P(suppm(s)). We show that M/ € supp,(S(1)).
For q € D with 8 € q we have |[M,Nq| =1 by (1.2.5).

For q € D with 8 ¢ q we have |[M,Nq| <1by |MsNq|<1.

We conclude M € supp,(S(1)) and so

Mg € V = supp; (S(1)) N P(suppm(s))-

But with M/ > Mg we get a contradiction to the maximality of Ms.
Therefore, Assumption (1.2.4) was wrong and there exists

p” € D with p”. . = B:p" N Mg # 0.

min

We recall that 8 ¢ Mg and therefore p # {(}. Define the concatenation of p” and
p’ in § as p := p” Up’ € D which is indeed defined because p//. = 8 = Plax-
From Definition 1.2.3(3) we know that p is a Dyck path. Now by construction

we conclude
ZSZ: Z sz+232>m.

ZEDP zep” zep’
——
>0 =m

But this is a contradiction to the choice of s € S(m) and the assumption
Zzep(sz—ti) = m was wrong. We conclude s—t! € S(m—1) and with t* € S(1)
we have s € S(m — 1) + S(1). Finally we get S(m) C S(m — 1) + S(1). O

Consequences. We recall the construction of the Hasse diagram and the Dyck
paths from Section 1.1 and show that we can apply Proposition 1.2.7 to this
setup. Let A = mw; as before and we set A = A‘f, D = D,,. Then we have for
the associated polytopes:

P(m) = P(muw;).

For Ai = {B1,...,0n} we chose in Section 1.1 the order 51 < - -+ < Sn. To apply
Proposition 1.2.7 we can use the same order on the positive roots and extend this
order to the (non-homogeneous) lexicographical order on P(A%") as before. We
show that the Dyck paths defined in Section 1.1 are Dyck paths in the sense of
Definition 1.2.3.

(1) Every p’ C p € D,, is again a Dyck path: We saw that any ordered subset
of a directed path in H(n) )4 is again a Dyck path.

(2) For each B € AY' there is at least one p € D,, such that § € p: The set of
vertices in H(n) ),y is exactly AY*. By construction we allow paths of cardinality
one, so for example the path (/) contains S.

(3) Let p,p’ € D, be two Dyck paths, such that pmin = Piax- Then there are
directed paths W, W' in H(n) )4 realizing p and p’ such that the end point of W
is equal to the starting point of W’. We consider the directed path, which we
obtain by the concatenation of the directed paths W and W’. This directed path
realizes p U p’. Hence p U p’ lies in D,,,,.

With Proposition 1.2.7 we get immediately for S(mw;) = P(mw;)NZY,,m € Z> :
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Proposition 1.2.8. S(mw;) = S((m — 1)w;) + S(w;), m € Z>;. O

Finally we conclude that the polytopes constructed in (1.1.6) are normal convex
lattice polytopes.

1.3 Spanning Property

Let g be a simple complex finite-dimensional Lie algebra, A = mw, with m € Z>,
be a rectangular dominant integral weight such that w(#¥) = 1. In this section
we show that By = {f%v) | s € S(\)} is a spanning set for V¢(\). Recall that we
have

V(X)) =2 S(ny)/1,

where I is the annihilating ideal of vy. We know that fé(av)ﬂv)\ is zero in V()

(see (1.1.2)). Hence fc)y‘(av)ﬂv,\ =0 in V*()\). By the action of U(n") on V%())
we obtain further relations. We will see that these relations are enough to rewrite
every element as a linear combination of fSvy,s € S(\).

In our proof it is essential to have a Hasse diagram H(n) )y without k—chains. A
Dyck path is defined as before to be the set of roots corresponding to a directed
path in H(n) ).

Analogue to Remark 0.0.4 we explain the U(n™)—module structure on S(n}).
Let o be the action of U(n") on S(g) induced by the adjoint action of n™ on
g. Via the isomorphism S(n™) = S(g)/S(g)(S+(n* @ b)) we obtain an action on
S(n~), where ST(nt @ h) C S(n"@ bh) is the augmentation ideal. By

S(ny) = S(n7)/S(n”)(span{fs | B € Ay \ AL}
we get an action on S(n, ). We denote this action again by o. Since the action
of U(n™) on V%)) is induced by the action of U(n") on V(X\) (which is again
induced by the adjoint action), we obtain that for all e € U(n™), f € S(n})

e(fox) = (eo fluy, (1.3.1)
holds. Therefore we can restrict our further discussion on the U(n™)-module
S(ny). Equation (1.3.1) and U(n*)(fvy) = U(n™)(0) = {0} for all f € I imply
that I, is stable under o. Furthermore, by Remark 0.0.3 the total degree of
a monomial in S(n})/Iy is invariant or it is zero under o. We denote as before
Ai‘_ = {p1,...,0n} and use the same total order < on the multi-exponents (resp.
monomials) as defined in Section 1.1, which is induced by ;1 < 82 < -+ < Bn.

Analogue to (0.0.4) we define differential operators; for «, 5 € Ay let
fo—q, iff—ac Al
aafﬂ ::{ B—a +

0, else.

The operators satisfy
o f5 = (ca,)”" ad(ea)(f5),

for the structure constants c, g € C*. Therefore, instead of using o we can work
with these differential operators. We point out that we need the differential
operators for arbitrary roots in Aj.
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Remark 1.3.1. Here we illustrate the problem which occurs if we allow k—chains

in our Hasse diagram. Let v < 8 < § the roots of a k—chain 7 LA I53 5 5 and
consider for £ > 2:

RSy = Ou(L5f) = ol fR17 + el =D I3 (1.3.2)
N’

mazimal monomial

~ — — 2
with ¢g = Cy,0,C3,0p, aNd €1 = €5, Where Cy oy, Coa, are the structure constants

corresponding to eq,, f3] and |eq,, f] respectively. Therefore, it is more involved
to find a relation which contains 8 and ¢.

The next Lemma describes the action of the differential operators and gives an
explicit characterization of the maximal monomial of J, f® for certain v € Ay
and s € Z4,,.

Lemma 1.3.2. Assume H(n, )q has no k—chains.
(i) Let p = {Bi,,...,Bi.} € Dx with B, < --- < B;, and v € Ay. Further let
Bin. k < r be mazimal such that 8fo8ik # 0. Lets € ZJEVO be a multi—exponent

supported on p, i.e. s3 =0 for B ¢ p. Then the maximal monomial in olfs =
a]ﬁ(fzsll . _fi"r)} l S Sk‘; Z.s given by

S l —1 S -
TR ol /T A N AR i

Tk+1

(ii) Let ZueZQ’O cuf*€S(n7) andv € Ay. Leth = m<ax{u | Oy f* #0,cy # 0}.
Further let B, = mjx{ﬁ | fgis a factor of f*,0,fs # 0,cu # 0} and assume

hg, > 0. Then for I < hg, the marimal monomial in

o) Z cuft = Z caOlf®

uezl; uezl,

appears in OLfH.

Proof. (i) Assume we have two roots f;, 8; € Ai with 8; < ; and 3; — v and
Bj — v are again roots in Aﬁ‘r. For B;, —v ¢ Aﬁ‘r we have al,f,gil = 0, so we do
not need to consider such roots 3;, € Aﬁ‘r. So in order to prove (i), because our
monomial order is lexicographic, it is sufficient to show that

,Bi -<5j :>BZ‘—V—<5]‘—V. (1.3.3)

If B; > B; with respect to the standard partial order we have 3; —v > 3; —v and
therefore 8; — v < 8 — v, by the choice of the total order (1.1.3) on Aj‘_.

If the roots are not comparable with respect to the standard partial order, the
second step is to compare the heights of the roots. Thus if ht(5;) > ht(3;) then
ht(8; — v) > ht(f; — v) and again ; — v < f5; — v.

If ht(B;) = ht(5;), we have to consider f; = (s1,...,s,) and B = (t1,...,t,) in
terms of the fixed basis of the simple roots (see Remark 1.1.3). Then there is a
1 <k < n, such that s >t and s; =¢; for all 1 <7 < k. Let v = (ug,...,up),
then f; —v = (s1 — u1,...,8, — uy) is lexicographically greater than 8; — v =
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(t1 —u1,...,ty —up). Thus f; — v < B; — v and (1.3.3) holds.

(71) We only have to consider the multi-exponents s € Zgo such that 9, f% # 0.
Now let t be the maximal multi-exponent with this property and let [ < g, .
Then we have 9! f* # 0 and by (i) the maximal monomial appearing in 9. f* is

tg, —1 t
R | e (13.4)
B#Br—v

The observation (1.3.3) tells us that fg, —, = max{fz_, | 9, f3 # 0,s3 > 0}. Thus
by the choice of t and because our order is lexicographic, the element (1.3.4) is
the maximal monomial in ) zZy, csOLf5. O

Proposition 1.3.3. Assume H(n) )y has no k—chains and let p € Dy be a Dyck
path, s € Zgo be a multi-exponent supported on p. Suppose further (\,0V) =m

and Y s > m. Then there exist constants ¢y € C, t € ZY) such that:
aEp -

fs+ thft e Iy.

t<s

We follow an idea of [FFL11la, FFL11b] who showed a similar statement in the
cases sl, and sp,, for arbitrary dominant integral weights.

Proof. Let p = {79, 71,...,7-} € D) be an arbitrary Dyck path. By construction
we have for 1 <i¢ <r: 7;,_1 < 7;. Because Z;-"ZO 57, > m we have

Sro o 7,
f9° € Iy.

By the construction of the Hasse diagram there is a Dyck path p’ € D, with
p C p’, such that there is no path p” with p’ C p”. Hence we can assume wlog

P = {T() :9,7'1,...,7',«_1,7} :ﬁN}.

Let vy,...,v, € Ay, with v; # v;11 be the labels at the edges of p. We consider

f;m Tt I,. Because I is stable under o, we have for arbitrary 1, ..., ; €
Ay and ft € Iy:
axl .. -8$lft e I,.

We define

ST,

Srg + -+ 81,

f‘9 € I.

A=0 gyt e

vp vg 1

Claim: There exist constants ¢g # 0,¢; € C,t € ZJEVO with t < s, such that:
A= Csfs+ thft el
t<s

If the claim holds the Proposition is proven.

Proof of the claim. Now we need the explicit description of the Dyck paths
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given by the Hasse diagram. Above we defined v; to be the label at the edge
0 % 71 in H(n} )g. Because we assumed that H(n} )y has no v;—chains of length
2, there is no edge labeled by 1 starting in the vertex § — v; = 7;. That implies
a2, f,_,, = 0. Therefore we obtain

Sty + -+ Sr, 57’0"!‘""‘!‘57@

o f, ao £ 0"

'+87'r
SN

for some constant ag € C\ {0}. Now vy is the label at the edge between the
vertices 7; and 73. Again there is no vp—chain in H(n) )q, so 0,, L]‘“@ﬂlil’2 =0 and
Oy fy_,, = 0, so we have for k = min {s5,,s7, + -+ s}, by € C\ {0}:

ot g e
1.3.5)
Stg pST1 Sty F+ 0+ 81, 87—1+q Sty + -+ Sr.—q .q (
bof, " f,0 1,0 +be AR A Foo

For our purposes, we do not need to pay attention to the scalars unless they are
zero. We also notice that the terms of the sum are only non-zero, if § — 15 € Ai.

The first part of Lemma 1.3.2 implies, that the monomial f, o0 fsT1 f;zjl% o
is the largest (with respect to <) in (1.3.5), because 6 < 6 — 1y < 6 — v — 1y
By construction 0y, , fo—1,—vy—-.m; # 0, because 0 — vy —vg — -+ —v; — vy s

an element of A;\L, for ¢ < r. Thus the second statement of Lemma 1.3.2 implies
that the largest element is obtained by acting in each step on the largest root
vector. To be more precise, we consider the following equations:

S,

"0 gt

Sto +“'+ST7‘687’1 +-+ s,
vr vy vy 0

0

St Sty + -+ Sr. St pST F o+ St
a 8UT PN 6,/2 f fg " =
Sty Sty + 0+ Sr. L Srg ST ST+t ST, .
bod, " ... 8y3 I, J, " fo_ vy + E smaller monomials =
0/, . fo o f £ —I— E smaller monomials € I
0—vi—vg YO —vg——up A

for some b, € C\ {0}. But the last term is exactly what we wanted to obtain, so
for constants ¢y € C, ¢s € C\ {0} we have by assumption that s, = 0 if o ¢ p:

St Srg + + S STt + S S+ Sy,
o ... o f =
S10 571 STo St t
L P LT Y et =
t<s
t
Csfs+ E et fb € I
t<s

Theorem 1.3.4. The set {f5vy | s € S(A\)} spans the module V (\)®.
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Proof. Let m € Z>p and t € Zgo with t ¢ S(\). Therefore, there exists a Dyck

path p € Dy such that ) tg > m. Define a new multi-exponent t" by
Bep

- t,@a if g € p,
A 0, else.

Because of ) t; = 3 tg > m we can apply Proposition 1.3.3 to t’ and get
Bep Bep

=" cof € Sty)/ 1,

s’ <t/

for some ¢y € C. Because the order of the factors of f* € S (n}) is arbitrary and
since we have a monomial order, we get

=T =D st € Sty)/In, (1.3.6)

ﬂgp s<t

where ¢g = ¢y and f5 = f¥ Hﬁgép f;ﬁ. Equation (1.3.6) shows that we can express
an arbitrary multi-exponent as a sum of strictly smaller multi-exponents. We
repeat this procedure until all multi-exponents in the sum lie in S(\). There are
only finitely many multi-exponents of a fixed degree and the degree is invariant
or zero under the action o. So after a finite number of steps, we can express t in
terms of r € S(\) for some ¢, € C:

ff= > afreShny)/I

reS(\)

O]

Corollary 1.3.5. Fiz for every s € S(\) an arbitrary ordering of the factors fg
in the product [[5 f;ﬁ € S(ny). Let f5 = Hﬁ>0f;5 € U(n™) be the ordered
product. Then the elements fSv,,s € S(\) span the module V().

Proof. Let ftvy € V(X)) with t € Zg arbitrary. We consider f'v) as an element
in V*(\). By Theorem 1.3.4 we get

flon= D" csfSurin V().

seS(N)

The ordering of the factors in a product in S(n ) is irrelevant, so we can adjust the
ordering of the factors to the fixed ordering and get an induced linear combination:

ftuy = Z csfuy in V().

seS(A)
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1.4 FFL Basis of V(w)

Throughout this section we refer to the definitions in Section 1.1. In this section
we calculate explicit FFL bases of the highest weight modules V(w), where w
occurs in Table 1.1. We do this by giving characterizations of the co—chains
p € D, (see (1.1.5)) and using the one-to-one correspondence between D, and
S(w) (see Proposition 1.1.8).

The results of this section, i.e. B, = {f%v, | s € S(w)} is a FFL basis of V(w),
provide the start of an inductive procedure in the proof of Theorem 1.5.2. With
Proposition 1.2.7 we will be able to give an explicit basis of V(mw), m € Z>o,
parametrized by the m-th Minkowski sum of S(w).

Type A,. Let g be a simple Lie algebra of type A, with n > 1 and the associated
Dynkin diagram

[ o---0
1 2 3 4 n

The highest root is of the form § = """ | a;. Since a Lie algebra g of type Ay is
simply laced we have ¥ =" o and sow(8¥) =1 w e {w, | 1 <k <n}.
The positive roots of g are described by: Ay ={a;; => ], |1<i<j<n}

Therefore, for the roots corresponding to n,, we have:

Before we define the total order on A%*, we define a total order on A:

51 = Q1,n,
fo = agpn, B3 =a1n-1,
Bs=azn, Bs =azn-1, Be = 12,
/Bn(nfl)/QJrl = Qp, 5n(n71)/2+2 = Qn—1, """, 5n(n+1)/2 = aq.
Now we delete every root 3; € A} \ AY* and relabel the remaining roots. For an
example of this procedure see Appendix, Figure 3.2 and Example 1.1.4. In the

following it is more convenient to use the description «; ; instead of 8. First we
give a characterization of the co—chains p € D,,, C P(AY*).

Proposition 1.4.1. Let be p = {c, j,, ..., i, j, } € P(AYF) arbitrary, then:
D € Dy, & Vi, jis Qips i €Dy 6 < i i < im < k < Ji < fm. (1.4.2)
Further we have: p € D, = s < min{k,n+ 1 — k}.

Proof. First we prove (1.4.2): “<”: Let p = {o, j,---, i, .} € P(AYF) be
an element with the properties of the right-hand side (rhs) of (1.4.2). Let
iy s iy jm € P, With 4 < ip,. Consider now:

jl jm im—1 jm
Qig,gi = X jm. = ZO‘T - Z Qr = Z Qp — Z Q.
r:il r=1m T:’il T:jl+1
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Since j; < jm holds, Remark 1.1.6 implies that there is no Dyck path q € D,
such that «;,, j,, and o, j are contained in q.

“=": Let be p € Ewk and o, j,, &, i € P With oy, j, # @i, ., Further we have
i < J1,tm < Jm. Assume wlog i, = jim, then «;,, j,, = o and 7; < j;. Hence

k—1 Ji
Qg 5, — O = g Qy + g Qr,
r=1 r=k+1

which is a contradiction to p € ﬁwk by Remark 1.1.6. Therefore, i; < ji, im < jm
and we assume wlog i; < iyy,.

1. Step: i; = i, =: y. Set x = min{j;, jm } and T = max{ji, jm }:
T x T
r=y r=y r=z+1

Again this contradicts to p € ﬁwk. Hence we have: i; < ip,.

2. Step: (i) < im) A (Ji = jm =: T):

T x im—1
Qjy oz — QU x = § Qp — g Qp = E Q.
r=f T=%m r=i;

We conclude: j; # jm.
3. Step: (i; < im < jm) A (it < j;). Therefore, there are three possible cases:
(a) 1 < 71 <tm < JIm, (b) 1 < tm < J1 < Jm and (C) 1 <im < Jm <Ji-

The case (a) can not occur because k < j; < i, < k is a contradiction. Therefore,
let us assume «y, j,, @, j,. satisfy the case (c), then we have:

jl jm im—1 jl
Qi g — Xy iy = E Oy — E Oy = E Qy + § Q.
r=i; r=im r=i; T=jm

Finally we conclude that for two arbitrary roots a;, j,, @i, j,. € P € D, with
1 < iy we have: 1) < i < 51 < Jm.

It remains to show that the cardinality s of p is bounded by min{k,n + 1 — k}:

1. Case: min{k,n+ 1 — k} = k. Let a;,j € P be an arbitrary root in p.
Then we know from (1.4.1) 1 <4, < k. But we also know that for any two roots
G, gy s Qi i € P We have 7 # 4p,. Therefore, there are at most k different roots
in p.

2. Case: min{k,n +1—k} =n+1— k. For two roots «, j,,,, . €P We
have j; # jm and k < j;, jm < n. Therefore, the number of different roots in p is
bounded by n + 1 — k.

Finally we conclude: |p| = s < min{k,n + 1 — k}. O
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Remark 1.4.2. Let p = {aj, j,»---,Q, .} € Duw, then (1.4.2) implies
1 <ig < <ig < k< g <o << Js.

Assume wlog k = j1 = ja, then there is Dyck path containing oy, j, and o, j,,
because v, j, — Qg jo = Qi in—1 € Ay

Because of Corollary 1.3.5 we know that the elements {f%v,, |s € S(wg)} span
V(wk) and by Proposition 1.1.8 there is a bijection between S(wy) and Dy, . We
show that these elements are linear independent. To achieve that we show that
|Dy,, | = dim V' (wg). To be more explicit:

Proposition 1.4.3. For all 1 < k < n we have: |D,, | = dim V (wy) = (”Zl)

Proof. Let V(w1) be the vector representation with basis {e1, e2,...,e,+1}. Then
A"V (w1) is a U(g)-representation with Uy, =€1ANE2NA - Neg:
fo‘ilah U = €1 N~ Nej—1 Nejr1 Nejp1 Ao Neg, (1.4.3)

and we have A*V (w1) 2 V(wy). WE define fpvu, = foi, ;, fou, "'faz'm,jﬂvwk
for b = {@, j1s Qig jor - -+ > Wiy jim } € Do, and claim that the set { fpvw, | P € Dy }
is linear independent in AFV (w). If the claim holds we have Dy, | < dim V (wy,)
and with Corollary 1.3.5 we conclude that [D,,, | = dim V (wy) = (”H).

k
Proof of the claim. Assume we have Py = {Qy ji, Qg jos - - + s Qi ji  A0d Py =
{s) b1 Qs tys - - - Qs 1, b In Dy, with linear dependent images under the action

(1.4.3), i. e. fp,V, = £fp,V0,- Then we have m = ¢, {j1,...,jm} = {t1,..., ¢}
and we can assume wlog: m = k = £. Hence: f5 vy, =ej A+ Aej,, = T fp, 00,
with Remark 1.4.2 we conclude p; = p,. O

Example 1.4.4. The non-redundant inequalities of the polytope P(mws) in the
case g = sls are:

T+ T2+ 24 +26 <M
P(mws) = XERGZO | ©1+x2+ 25 + 26 <M
T+ r3+x5+x6 <M
Example 1.1.4 shows the corresponding Hasse diagram H(ng, )s(;.
Proposition 1.4.3 implies immediately for 1 < k£ < n:
Proposition 1.4.5. The vectors fSv,,,s € S(wg) are a FFL basis of V(wg). O

Type B,. Let g be a simple Lie algebra of type By, n > 2 with associated Dynkin
diagram

B ) o---o0
n 1 2 n-2 n-1 n

The highest root for a Lie algebra of type By is of the form 6 = a3 + 231" , ;.
Thus we have 8 = o) + 237 oY + o) and w(8Y) =1 & w € {w1,wn}
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First we consider the case w = w;. We consider the case By, w; separately. Be-
cause there are not enough roots, this case does not fit in our general description
of By, wi;. We claim that the following polytope parametrizes a FFL basis of
V(mwi),m € Z>o:
Tot+x1 <m
P(mwy) = {X eRY, | } :

To+x3<m

We fix 81 = (2,1), 82 = (1,1), 3 = (1,0) and the order S < 1 < f3. Then with
Proposition 1.2.7 it is immediate that this polytope is normal. The following
actions of the differential operators imply the spanning property in the sense of
Section 1.3 Proposition 1.3.3.

L2 = o f1 f5? + smaller terms € I

Q52 t2ss po2tss — ¢ f92 £53 4 smaller terms € Iy, ¢; € C\ {0}.
We conclude that {fsvwl | s € S(mw1>} = {’le, flle ’ fZUUA ’ f3vw1 ’ flvawu } is
a spanning set of V(wy).

Now we consider the case n > 3. If we construct H(ng, )y as in Section 1.1 we get
a n—chain of length 2. Therefore we choose a new order on the roots and change
our Hasse diagram slightly to obtain a diagram without k—chains of length 2. We
illustrate this procedure for g of type Bsz. Then the roots A" are given by

’ p1 = (17232) ‘ B2 = (1a1a2) ‘ B3 = (Llal) ‘ By = (17170) ‘ Bs = (170’0) ‘

We choose a new order

B1 < B2 < B4 < B5 < B3,

and change the Hasse diagram

B2
2 3 3 2 011 A &12
Pr—— B2 — B3 — s — B5 ~ Br — B3 Bs.
N2 4
B4

First we check, if the new diagram has no k—chains. The first edge is labeled
by as + az = 011 and we have 3 — (ag + a3) = f5. If we have a monomial
h 52 € S(ng,), k1, k2 > 1 and we act by Oa,1a; We get:
cof T T e f AT s, e e C

By the change of order 3 is larger than (5 and so ffl_lfécﬁl - ffl ;frlfg).
Therefore we can neglect the edge between f3 and [Ss.

Now we consider 8,’;3 ffl 52. Because of Oy, f3,04,f2 = 0 we get ffl_k"’ f;z ;3,
for k3 < k1. Thus instead of drawing an edge directly from (51 to B2, we can draw
an edge, labeled by 2, from (3 to fBs. Similar, because of 81 — as — 2a3 = B4, we
can draw an edge labeled by 012 from (3 to 84. The other edges do not cause
any problems.
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The second step is to show that the paths in the new diagram, define the actions
by differential operators and the corresponding maximal elements like in Section
1.3 Proposition 1.3.3. By the choice of order we get the following equalities:

2524-2043 252 ;9;+a3 1sl+53+52+55 =y f1f§3 5‘2 §5 + smaller terms € I
S5 S S sl+s3+s4+s5 S1 £83 £S4 £S
oy Oy 1905 Ocvp s J1 =c1f1 f3° fi* f5° + smaller terms € Iy,

with ¢; € C\ {0}. In the general case, for arbitrary n > 3, we have N = 2n — 1.
Let r := [N/2], then A% is given by:

Bi=(1,22....21 B =(,1,2,....2.2) | ... [Br1=(1,1,...,1,2)
By =11, )| Ba=1,1,1,...,1,00 | ... | By =(1,0,...,0,0)

Then the only n-chain has the following form £,_1 — B, — (,+1 We change
the order from 1 < B2 < --- < By to

Br =P < < Bro1 =< Prp2 =2 2 Br-1 2 By < BN < B

The modifications of the diagram are similar to them in the case of Bz, so the
Hasse diagram for a Lie algebra of type B, has the following shape

B

9
2 012...2
0110...0 4 5 n 001...12 n-1 n-2 4 / \
B ——= B3 — Pas— - — B —— Bry1 — Bry2 — - — Br_2 BN-
012...2\ /2‘
BN-1

Associated to the diagrams we get the following polytope for m € Zx:

x1+xo+ - -+xTny_—ot+Tn <m
P(mw) = { x € RY, e N=2 e :
- rntrzt+-oo-tzygtay<m

By Section 1.3, Corollary 1.3.5 the elements

Vuy s [1Vw15 f2Vwys + - 5 [NVwy s f2f N1V,
span V(w) and with [Car05, p. 276] we have dim V' (w;) = 2n + 1.
Proposition 1.4.6. The vectors fSv,,,s € S(w1) are a FFL basis of V(wy). O

Proof. The previous observations imply that {fSv.,,s € S(w1)} is a basis of
V(wi). Thus it remains to show that P(w;) is a normal polytope.

Because we changed the Hasse diagram we have to change the order of the roots
to apply Section 1.2. One possible new order is given by:

B1 <Pz <Ps<-<PBNn_2=<P2=<PBn-1=PBN.

Using this order we see immediately that P(w;) is a normal polytope. ]
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Now we consider the case w = wy,. In the following it will be again convenient
to describe the roots and fundamental weights of B, in terms of an orthogonal
basis:

A:)_"Z{é‘i’j:&—i-ﬁj|1§Z'<j§n}U{€k‘1§k§n}. (1.4.4)

The total order on A" is obtained by considering the Hasse diagram. We begin
with 81 = 6 on the top and then labeling from left to right with increasing label
on each level of the Hasse diagram, which correspond to the height of the roots in
A%, For a concrete example see Figure 3.3 in the Appendix. The corresponding
polytope is defined as usual, see Table 3.1 for an example. The elements of
AL correspond to g ; = Zi;i oy + 22:”:]. ar and € = >, . The highest
weight of V' (w,,) has the description w,, = %Zle gr. Further the lowest weight
is —w, = —% Zle e,. With this observation, the fact that w, is minuscule and
(1.4.4) we see that

1 n
By (w,) = {favwn | = 3 ersr,lr e{-1,1}, Vi<r < n} C V(wn)

r=1
is a basis. We note that [By(,,,)| = 2" = dim V (wy).

Remark 1.4.7. For an arbitrary element p € Efj; we have at most one root

of the form e, € P, because if there are €, , €k, € P (wlog k1 < kz) we have:

€k —Eky = Z}:"’:ﬁ op. Thus with Remark 1.1.6 we know that there is a Dyck path

p € D, with €x,,€k, € P. This observation implies that the elements p € ﬁffn
have two possible forms:

(Bl) P= {Eka Eig,jay -+ - agir,jr} or (32) P= {’Sil,jlv s 75iz,jt}'
Thus we can characterize the elements p € 55;; as follows.

Proposition 1.4.8. For p € P(AY") arbitrary we have:

5 Ein o ? z:s of the form (By), wz:th (a) and (b), (1.4.5)
" p is of the form (Bs), with (b).
— <[2], pi th B
In addition: P € ij; 1= [fﬂ’ 8 Z_S of the form (B1),
s < |5], P is of the form (Ba),
with s = |p|. The properties (a) and (b) are defined by
(a) V1<I<s: k<i <j,
(b) Vail,jl,aimdm EP i <im i <tm < Jm <Ji-
Proof. First we prove (1.4.5): “<": Let p = {€k, €y jo,- - -, Eis,js } D€ an element

of form (B;) with the properties (a) and (b). Assume there are two roots x,y € p
such that there exists a Dyck path q € D,,,, containing them.
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1. Case: z = ¢} and y = €;,, j,,, for 1 <m < s. Then we have

]m_l Im—1 n
Eimyjm — €k = E o + 2 E ay — E Qp = — E oy + E Q.
r=im T=Jm r=k T=%m

Hence there is no Dyck path q € D,,, such that z and y are contained in q. This
is a contradiction to the assumption.

2. Case: v =¢;,, j,, and y = ¢, j,, wlog 9 < i,,. Then we have

Ji—1 Jm—1 im—1 Gi—1
6ilv.jl - €im7jm § Qy + 2 E Qy — E Ay — 2 E oy = g ap — E Q.
r=i r=Ji T=im T=Jm r=1 r=Jm

. . . . . —-~Bn
This is a contradiction to our assumption and hence: p € D,

Let p be of form (Bs) with property (b), and assume there are two roots z,y € p
such that there exists a Dyck path q € D,,, containing them. Like in the second

. . . . —B
case of our previous consideration the assumption is false and therefore: p € D

“=7": Let p € EZ’; Then we know from Remark 1.4.7 that p is of the form
(B1) or (Bs). Let p = {ek,€i1 jis---€is,j, } be of form (By), with i; < j; for all
1< <s.

1. Step: Assume 31 <m < s: k > iy. Then we have:

Jm—1 k—1 n
€imjm — €k = E oy + 2 g oy — g oy = g o + g Q.
r=tlm, T=Jm T=lm T=Jm

Thus by Remark 1.1.6 this contradicts p € ﬁi"n. Hence: k < i, foralll < m < s.

Let €4, 5,5 €irn i € P be two roots with €;, j, # €5 - We assume wlog 7 < iyy,.

2. Step: Assume i; = iy, =: y. Set z = min{j;, jm} and T = max{j, jm }:
z—1 n z—1 n T
Eyx — Eyx = Z@r +2204r - ZO&T - QZQT = Zar.
=Y r=x r=y r==x r=x

Again by Remark 1.1.6 this contradicts p € Ef; and we have: i; < ip,.

3. Step: Let i; < i, and assume j; = j,,, =: x, we consider:

im—1
Eipg = Eipy,p = E o+ 2 E oy — E oy — 2 E oy = E fo 7
r=i r=im r=i

This contradicts p € ﬁi‘; by Remark 1.1.6, so: j; # jm.
4. Step: (i < im < Jm) A (4 < j;). Thus there are three possible cases:

(a) i < 51 <'im < Jm, (b) ig < i < 51 < Jm and (¢) 4 < iy < Jm < Ji-
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Let us assume ¢, j, and &;,, ;,, have the property of case (a):

Ji—1 Jm—1 Jm—1 im—1 Jm—1
iyt —Cimyjim = E a,+2 E ayp— E ap—2 E Qp = E a2 E o E Q.
r=1; r=j r=1%m T=Jm r=1] r=j T=lm

This contradicts p € Efj; by Remark 1.1.6. We assume now that ¢;, j, and €;,, j,.
have the property of case (b):

J1—1 Jm—1 im—1 Jm—1
Cipgi — Cimdm = E ar +2 E O — E ap —2 E Oy = E oy + E Q.
r=i r=J T=im r=jm r=i; r=j;

Again by Remark 1.1.6 this contradicts p € Ei‘;. Finally we conclude that two
r00ts €, j;, €im.jm € P, With 4 < 4j, satisfy (¢): 4 < im < jm < ji. To prove this
statement for a p € ﬁi"n of form (B3) we only have to restrict our consideration
to the second, third and fourth step.

It remains to show that the cardinality s of p is bounded by [§] respectively
|5]. Again we consider the two possible cases:

1. Case: p = {ck, iy jo, - - -, Eiy,js ) is Of the form (Bp) and we assume |p| = s >
n

[5]. Then we know from our previous consideration that after reordering the
roots in p we have a strictly increasing chain of integers:

Cp: k<iag<izg: - <ig<js<Js—1<-<J3<Jo. (1.4.6)
Thus there are 2s — 1 different integers, where each of these correspond to a ¢;
for 1 <i < n. By assumption we know 25 —1 > 2([5]|+1) —1 > n+1, but there
are only n different elements in {e, | 1 < r < n}. Thus this is a contradiction
and hence: |p| =s < [5].

2. Case: p = {¢€i, j;;---,Ei,,j, ) is of the form (Bz) and we assume |p| = s > [5].
As in the first case we have a strictly increasing chain of integers:

Cp: i <idgr - <ig < Js < Js—1<---<Jj2a<J1. (1.4.7)

Therefore, we have 2s different integers corresponding to at most n different
elements in {e, | 1 <7 < n}, but by assumption we have 2s > 2(| 5] +1) > n+1.
Again we have a contradiction and therefore: |p| =s < [§]. O

Because of Corollary 1.3.5 we know that the elements { f%v,,, | s € S(wy)} span

V(wy) and by Proposition 1.1.8 there is a bijection between S(wy,) and Ei‘;. We
Sh(])3W that these elements are linear independent. To achieve that we show that
|D,. | = dim V(wy). To be more explicit:

Proposition 1.4.9. |EB“ = dim V' (wy,) = 2™

Proof. We know from (1.4.5) that for an arbitrary element p € D the number
of roots s in P is bounded by [%] respective by [5]. Therefore, the number of
integers occurring in Cg (see (1.4.6) and (1.4.7)) is also bounded:

2s —1 < 2[2
Ol =147 - 5
2s <2[3] <mn,

P is of the form (By),

3_1
|

—_

N

S

P is of the form (Bs).
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In order to simplify our notation, we define [ := |Cg|, so we have for an arbitrary

pe ﬁi’;: 0 <! < n. Further we define the subsets 52’; (1) C Ei';:
Dy

Wn,

():={peD> ||Csl =1}, VO<I<n.

Therefore, the elements in Ei“n(l) are parametrized by [ totally ordered integers
w;in{r |1 <r<n},V1<i<I Hencewe conclude: ]Ei’;(l)\ <(}),V1<i<n

and so . . i
7B <5Bn —=Bn n n
EARIVEAUES SiHUED S (R

=1 =0 1=0

We also know from Corollary 1.3.5 that we have |Ei’;| > dim V(wy,) = () = 2".

Finally we conclude: |Eir;| =2" O

Example 1.4.10. The polytope P(mws) in the case g = s0;7 has the following
shape.

P(mws) = x € RS
( ) { 20’x1+x2+x4+w5+x6§m

r1+ 1z + a3+ x5 + Te Sm}
Proposition 1.4.9 implies immediately:
Proposition 1.4.11. The vectors fSv,,,,s € S(wy) are a FFL basis of V (wy,). O

Type Cy. Let g be a simple Lie algebra of type C, for n > 3 with the associated
Dynkin diagram

I e B
For all fundamental weights wy we have wg(0Y) = 1, where 6 = (2,2,...,2,1) is
the highest root and 8V = (1,1,...,1) the corresponding coroot. But only for w;
the associated Hasse diagram H(n )g has no i—chains. In fact for 1 < k < n,
H(ng, ) has k — 1 different i—chains, with 1 <4 <k — 1. The following example
explains, why we are not able to rewrite the diagram in these cases, with our
approach.
For all w; with k # 1 we have the following 1-chain.

81— B2 = Bs.

Here 81 = 214 - -+2a,— 1+, is the highest root, fo = a1 +2as+- - - +20,_14a,
and B3 = 2a9 + - - - + 2,1 + oy, Note that 87 — B3 = 2a1, which is not a root.
Further, because £ is the highest root, there are no roots v € A, v € Aﬁk with
Oy fu = f3, except for v = B2. Hence it is more involved to rewrite the diagram
into a diagram without k—chains such that there is a path connecting 1 and fs.
Nevertheless, in [FFL11b] similar statements to Theorem A and Theorem B were
proven for arbitrary dominant integral weights.

Now we consider w = w;. Then we have 2n — 1 = N and AY is given by

B =(2,2,..,21) | B2 =(1,2,...,2,1) | ... [Bn =(1,1,...,1,1)
Bpsr=(1,1,...,1,0) | Bpro = (1,...,1,0,0) | ... | By =(1,0,...,0,0)
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The diagram H (n}, )y has the following form.

n-2 n-1 n-1

Bi—= B2 = B3 = 55 Pt D B Bt - > B
There are no k—chains and the associated polytope is given by
P(mw) = {XERJEVO | 1 + 20+ -+ 2y <m}.

By Corollary 1.3.5 the elements v, fiv,, favy, ..., fNv, span V(w) and with
[Car05, p295] we know dim V' (w) = 2n. From these observations we get immedi-
ately:

Proposition 1.4.12. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w).O]

Type D,. Let g be a simple Lie algebra of type D, with associated Dynkin
diagram

(-]

D, o o---0 0 n-1
1 2 n3 2 S~

n

The highest root in type D, is of the form 60 = a7 + 22?:_22 o + a1 + .
Since g is simply-laced we have 0V = o) + 22?:_22 o/ + oy + a. Hence

Y.
wB) =1 w e {w,wn_1,wn}

First we consider the case w = wy. Then we have 2n — 2 = N and A‘f has the
following form:

Bi=1,22...,21,1) 3 =01,1,2,....2,1,1) .. [Bpa =(1,1,1...,1,1,1)
Bp1=1,1,1...,1,0,1) B, =(1,1,1,...,1,1,0)|...| Bnx =(1,0,0...,0,0,0)

The Hasse diagram has no k—chain. In addition in D, there are only co—chains
of cardinality at most 1, except for one with cardinality 2.

571—1
2 3 4 -2 n-l/ n\ -2 -3 2
B1— P2 — 3 — - — Bpo Brn+1 — Bnt2 — - = BN
N m/
Bn

Associated to this diagram we get the following polytope for m € Zx>:

1t F+ T2+ Tp1+Tpp1+ TN <M
P(mw) _ XER]>VO 1 n—2 n—1 n+1 N .
= mt Ao+ +Tep A+ +ay<m

By Corollary 1.3.5 the elements By, = {vw;, f10uw;s f2Vwrs -« s fNVwrs o1 fnUw, }
span V(wp) and with [Car05, p. 280] we have dim V(w;) = 2n. From these
observations we get immediately.

Proposition 1.4.13. The vectors fSv,,,s € S(w1) are a FFL basis of V(wy). O
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For most of the proofs of the statements in the case w = wy,_1,w, we refer to the
proofs of the corresponding statements for type Bj.

Now we consider the case w = w,,_1. For further considerations it will be conve-
nient to describe the roots and fundamental weights of g in terms of an orthogonal
basis {¢; | 1 <i < n}. Then Aﬁ”‘l is given by

{eij=citej|1<i<j<n—1}U{epm=cr—en|1<k<n-—1}. (1.4.8)

The total order on AJ""" is defined like in the By, wy-case (see Figure 3.3). The

i1 )
' correspond to g;; = > I ay + 2 Zf:j o + ap_1 + oy, and

elements of Ai”‘
Ekm = Zf;,i a,. The highest weight of V(w,—_1) has the description wy,_; =
% (Z;L;l Ep — 5n). Further the lowest weight is —w,_1 = —% (Z:f;ll Ep — €n>.

With this observation, the fact that w,—; is minuscule and (1.4.8) we see that

1 n
By (w, 1) = {favwn_l | o = 521,@,17” =41, V1<r<n, 2t#{, |1, = —1}}

r=1
is a basis of V(wp—1). We note that [By(,,, )| =2""! = dim V(w,1).

Rema})rk 1.4.14. Similar arguments as in Remark 1.4.7 show that the elements
p € D, _, have two possible forms:

(D1) P = {ekm €ingar -+ +»Cirgny OF (D2) P={Eiy gy Cir i)

We denote with 1y, : Z>o — {0,1} (respective 1,) the Indicator function
for the odd (respective even) integers, which is defined by 1y,(n) = 1if 2t n
(respective 15),(n) = 1 if 2 | n) and 0 otherwise. Therefore, we can characterize

the elements p € ﬁoDj:P , as follows

Proposition 1.4.15. For p € P(AY"™") arbitrary we have:

AN {P is of the form (D1), with (a) and (b), (1.4.9)

p is of the form (D3), with (b).

o <[g]—1 p is of th D
In addition: peD” = ° =21~ L), B is of the form (D),
" s < 5] — 1yn(n), P is of the form (Da),
with s = |p|. The properties (a) and (b) are defined by

(a) V1<I<s: k<i<j,
(b) Vaihjl,aimjm EP, U S im i <im < Jm <Ji-

Proof. To prove this statement we adapt the idea of Proposition 1.4.8. We use
exactly the same approach but we consider Ai"’l of type Dy. .

To check that that the cardinality s of an arbitrary element p € D . is bounded,
like we claim on the rhs of (1.4.9), we use only fundamental combinatorics, again
analogue to the idea of the proof of Proposition 1.4.8. O
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Because of Corollary 1.3.5 we know that the elements {f5v,, , | s € S(wn-1)}
span V(wy,—1) and by Proposition 1.1.8 there is a bijection between S(w,—1) and

ﬁw’;_l. We show that these elements are linear independent. To achieve that we
show that |EZ’;_ .| =dim V(w,—1). To be more explicit:

Proposition 1.4.16. [D." | = dimV(w, ;) = 2",

Proof. This is a direct consequence of Lemma 1.4.22 and Proposition 1.4.9. [
Proposition 1.4.16 implies immediately

Proposition 1.4.17. B, |, = {fv,,_, | s € S(wn—-1)} is a basis for V(w,—1).00
Finally we consider the case w = w,. For the proofs of the statements in this case
we refer to the proofs of the analogous statements in the previous case w = w,_1

and the By, w,-case.
The set of roots Aﬁ", where o, = €,_1 + &, is a summand, is given by:

{€i,j:€i+5j|1§i<j§n—l}U{€k,n=Ek+€n‘1§k§n—1}.

Again the total order on AY" is defined like in the By,wy-case (see Figure 3.3),
where the elements of AY™ correspond to ; ; = Zf;ll o+ 2 ZZ}:—]Q o+ 01+ o,
and g = 30 ;4,1 @ The highest weight of V(wy) has the description
wyp = & (3", &r). Further the lowest weight is —w, = —% (31_; ;). As before
we see that

By () = {favwn | o= %ergr,zr{—L 1}, V1<r<n, 2|#{, |1l = —1}}

r=1
is a basis of V(w,). We note that [B,, | = 2" = dim V(w,).

Rema})rk 1.4.18. Similar arguments as in Remark 1.4.7 show that the elements
P € D, have two possible forms:

(D7) p= {5/€,m Eig,gas - -+ ’52'5,]'5} and (D3) p= {51'1,]'1’ S 752'5,]'5}'
Therefore, we can characterize the elements p € EB}; as follows:

Proposition 1.4.19. For p € P(AY") arbitrary we have:

S o p is of the form (D7), with (a) and (b),
p is of the form (D3), with (b).

s <[5] - 12Jm(n), p is of the form (D7),
s < |5] = Iyn(n), P is of the form (D3),
with s = |p|. The properties (a) and (b) are defined by

In addition: P € EE;; =

(a) V1i<I<s: k< <y,

(b) Y, js Qi g € Pyl < i 8 < Uy < Jm < JiI-
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Proof. To prove this statement we refer to the proof of Proposition 1.4.15. [

Because of Corollary 1.3.5 we know that the elements of EZ’; span the highest
weight module V(w,). But we still have to show that these elements are linear
independent. To achieve that we show:

Proposition 1.4.20. |ﬁ2’;| = dim V(w,) =21

Proof. This is a direct consequence of Lemma 1.4.22 and Proposition 1.4.9. [
Proposition 1.4.20 implies immediately

Proposition 1.4.21. The set B,,, = {fv,, | s € S(wp)} is a basis for V(wy,).0

The following Lemma gives us a very useful connection between the co—chains of
g of type B,—1 and Dy:

Lemma 1.4.22. We have: D, | = D" | and (Dot | = D2 |.

Wn—1

Proof. We only use basic combinatorics to prove this statement. ]

Type E¢. Let g be a simple Lie algebra of type Eg with associated Dynkin
diagram

Eg o

1

wo
wto
>0

We have w(#Y) = 1 & w = wi,ws and first we fix w to be ws. The set is AL
given as follows:

HH.—!HI—!HHL\D
=N NN N
DN NN N W W
HH[\’)H\_[\DNJ[\DN)

oS o oo oo
oo -
OO0 o ===
So R HEREHRE=
R e e el el
eresZzZzEeEZsr

@D ™
w N =
I

Bra =
P15
Bi6 =

O O K R BB =
e e e e i
S’ S S e e e e

sy

e

w

@
[
e e e N e R R R

o ™
[N Rl T
Il

The Hasse diagram H (nj, )e, has no k—chains and the maximal cardinality of a
co—chain of H(ng)g, is two (see Appendix, Figure 3.4). The associated polytope
is given for m € Zx>¢ by:

P(mwg) = {x € ]RIZGO \ Z zj <m, Vp € Dy},
Bj €EP

in particular see Appendix, Table 3.2 for the non-redundant inequalities.

Proposition 1.4.23. The set B,,; = {f5vy, | s € S(ws)} is a FLL basis of V (ws).
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Proof. The co—chains of the Hasse diagram give us immediately:

Bes = {Vus» f1Vwss f2Vugs - - - » F16Vwss fa 50065 5 f60wss f6 10065 f6 foUus
f8foVus, 3100w f3f110wss F10f110ws» f11f13Vwg, f12.13Vwg }-

Note that there are 27 elements in B,,. By Corollary 1.3.5, we get that B, is a
spanning set of V(wg). By [Car05, p. 303] we have dim V' (wg) = 27 and therefore
the claim holds. O

It is shown in Figure 3.4 that the Hasse diagrams H (n, )gs and H (n, )g, have a
very similar shape. Therefore, with same arguments as above we conclude

Proposition 1.4.24. The vectors fSuv,,, s € S(wi1) are a FLL basis of V(wq).O

Type E;. Let g be the simple Lie algebra of type E; with associated Dynkin
diagram

L -
In this case w = wy is the only fundamental weight satisfying w(0Y) = 1.
51 (2,2,3,4,3,2,1) | Bio=(1,1,2,3,2,1,1) | 1o =(1,1,1,1,1,1,1)
=(1,2,3,4,3,2,1) 511_(1,1,1,2 2,2,1) | Boo = (0,1,1,1,1,1,1)
,83:( 2,2,4,3,2,1) | 12 = (1,1,2,2, 2,1,1) P21 = (1,0,1,1,1,1,1)
54:(1,2 2,3,3,2,1) | B13 = (0,1,1,2,2,2,1) | oz = (0,0,1,1,1,1,1)
Bs=(1,1,2,3,3,2,1) | B4 = (1,1,1,2,2,1,1) Boz = (0,1,0,1,1,1,1)
56: (1,2,2,3,2,2,1) | B15 = (1,1,2,2,1,1,1) | Boy = (0,0,0,1,1,1,1)
=(1,1,2 3,2,2,1) Bie =(0,1,1,2,2,1,1) | B25 = (0,0,0,0,1,1,1)
=(1,2,2,3,2,1,1) 517_(1,1,1,2,1,1,1) Bag = (0,0,0,0,0,1,1)
Bg (1,1,2,2,2,2,1) | f1s = (0,1,1,2,1,1,1) | B27 = (0,0,0,0,0,0,1)

As in the Eg-case the Hasse diagram has no k—chains. In addition there are
only co—chains of cardinality at most 2, except for one with cardinality 3 (see
Appendix, Figure 3.5). As before the polytope is defined by the paths in the
Hasse diagram. For m € Z>q we have:

P(mw)—{XER ] ijgm Vp € D, }.
Biep

Because the polytope is defined by 77 non-redundant inequalities we will not
state it explicitly.

Proposition 1.4.25. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w).
Proof. The co—chains of the Hasse diagram give us immediately:
Bw - {Uwv flvuw f?vwa veey f27’0w, f5f6vwa f5f81)w7 f7f8?}w7 fonga
Jof10Vw, ff110w, f1of110w, f11 f12vw, fs f13vw, flofi13ve,
J12./13Vw, [13[14V0, f11S15V0, [13[15V0, f14S15V0, f1516Vw,

f13f17v0, f16 f170w, f13f19Vw, f16f19v0, f18 1900, f13f210w,

f16 2100, f18 f210w, f20 f210w, f21 f2300, f22f230w, f13 f14 fi500 }-
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Note that there are 56 elements in B,,. By Corollary 1.3.5, we get that this is a
spanning set of V(w). By [Car05, p. 303] we have dim V' (w) = 56 and therefore
that B, is a basis. ]

Type F4. Let g be the simple Lie algebra of type Fq with associated Dynkin
diagram

Fq

o—=Z—o o

o
1 2 3 4

The highest root is of the form 6 = 2a; 4+ 3as + 4ay4 + 2c4. And we have
0Y = 2a) + 3ay 4+ 20 + . Thus w(#Y) = 1 < w = wy, so we consider the case
w = wy. If we construct H(ng)r, as in Section 1.1 we get a 3—chain of length 2,
but here we are able to solve this problem. Therefore, we change the order of the
roots such that we can draw a new diagram without any k—chains. As usual we
start with the set of roots AY:

b1 =1(2,3,4,2) | Bg =(1,2,3,1) | f11 = (0,1,2,1)
B2 =(1,3,4,2) | Br =(1,1,2,2) | B2 =(1,1,1,1)
B3 =(1,2,4,2) | g = (1,2,2,1) | B3 =(0,1,1,1)
Bs=1(1,2,3,2) | B9 =(0,1,2,2) | 14 =(0,0,1,1)
65 = (1727272) 510 = (17 ) 71) 515 = (0’0707 1)

Here we have 3; = 8; < i > j. With this order we are not able to find relations
derived from differential operators (see Section 1.3), which include the root vector
fa (see (1.3.2)). In order to find relations including f; we adjust the order on the
roots in this case as follows:

Br = P2 <PB3=<Ps<Ps=PBs<PBr=<-=<Pis.

Thus we just switched the positions of 84 and (5. Now we consider our Hasse
diagram constructed as in Section 1.1 and the diagram we obtain by changing the
order of the roots and by using differential operators corresponding to non-simple
roots, see Figure 1.1.

The idea of this adjustment is that we split up the 3—chain by using the non-
simple differential operators mentioned above. After this we still want to get as
many roots as possible on each path. To do so we use two non-simple differential
operators: Jp110 = Oagtas and 0po11 = Oaztay- In the adjusted diagram also
occurs a directed edge labeled by a from (2 to 5 and a second labeled by b
from f5 to B4. We cannot label the second edge with a differential operator,
because there is no element v € A satisfying: 85 —~v = 4. We use the following
observation to explain the existence of these edges and labels. For ag, by € C\ {0}
we have:

3:7))13 ag2+n3 3gz+n3 3?1 f1m+1 _ agzs 6g2+n3 (a0f§12+n3 fgllfnzfng flerlfm)
= bof3 f2 farmm2mms gt 4 amaller terms.
Therefore, we can replace in the path consisting of 81, 82, 83 and 84 the root 83 by

Bs. Furthermore the differential operators dny4as and Oas+a, have no influence
on fB5. That is the reason for the directed edge labeled by b from 85 to B4. The
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reason for the edge between (o and (5 is that we want to visualize the co—chain
which we construct at this point. We label this edge with a to prevent confusions
about the applied differential operators, where a corresponds to 6;)"2”"3. We note
that the changed Hasse diagram gives us directly the inequalities of P(\), but in
this case it does not describe in general the action of the differential operators.
If we now follow our standard procedure with the adjusted Hasse diagram the
next step is to define the polytope associated to the set of Dyck paths D, and
m Zzo:

P(mw) ={x eRY | Y 2; <m, Vp € D,}.

BiEP

More explicitly: P(mw) is the set of all elements x € R such that the 12
inequalities, which can be found in the Appendix, Figure 3.3, are satisfied.
The set B, = {f%v, | s € S(w)} C V(w) is given by:

Bo, ={vw, f10w, f2vw, - -5 fi50w, [3f500; fafovu, f5.fevu, fo.frv0,
f1fsve, fo fovws fsfovw, fo frovw, fofiave, firfrave}-
Proposition 1.4.26. The set B, = {f%v, | s € S(w)} is a FFL basis of V(w).

Proof. By Corollary 1.3.5 we conclude that B, spans the vector space V(w). In
addition we know by [Car05, p. 303] that dim V(w) = 26 = |B,,|. Hence the set

B,, is a basis. ]
B —— Ba
1 2 3 7 Y
pr— B2 — B3 — P B3 Bs
N N Y
Bs Bs Bs B4
s N Y N, N
B7 Bs ~ Bs B7
SN Y NN
Bo B1o B1o B
N N s N
P11 P12 P12 B11
~ g Ny
P13 — Pra — Bis B13 — Bra — Pis

Figure 1.1: H(n}))F,

Type G,. Let g be the simple Lie algebra of type G, with associated Dynkin
diagram

Go o====o0

1 2

For the highest root § = 3a; + 2a2 we have ¥ = o) + 2ay. Thus we consider
w = wi. In this case the Hasse diagram has one 1-chain. We rewrite H(n})q,
into a diagram without any k-chains. Consider the following order on A¥:

B1 < B2 < Ba < Bs < Bs,
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where

151=03.2)B=03,1)[B=21)]8=(1,1)]B=(10) |

Thus we obtain the following diagrams:

p

2
2 1 1 2 11 A‘ Y‘l
B1 —— B — B3 — By — PBs ~ B1 — PB3 Bs,
N4
Ba

Very similar arguments as in the case of Bz, w; show that we can apply the results
of section 1.3 to the rewritten diagram. We consider the polytope associated to
the new diagram for m € Z>q:

r1+xo+x3+25 <m
P(mw) = { x € RY, R :
- x1+$3+$4+$5§m

By Section 1.3 the elements vy, fivw, fotw, f30w, f1Vw, [50w, f2fave span V(w)
and with [Car05, p. 316] we know dim V' (w) = 7.

Proposition 1.4.27. The set B, = {f5v, | s € S(w)} is a FFL basis of V(w).OI

Proof. The previous observations imply that { fSv,, | s € S(w)} is a basis of V' (w).
It remains to show that P(w) is a normal polytope.

Like in the case of (Bp,w1) we have to change the order of the roots to apply
Section 1.2. One possible order is 51 < 83 < 84 < B2 < B5. Using this order we
conclude that P(w) is a normal polytope. O

1.5 Linear Independence

We refer to the notation of Section 1.1, especially to the definition of essential
monomials. Throughout the Section we assume the vectors fPvy € V(\) to be
ordered as in (1.1.7) and we fix A\ = mw where w appears in Table 1.1.

We investigate the connection between our polytope P()\) and the essential multi—
exponents. Via this connection and with the results from Section 1.3 we prove
that {fSvy | s € S(\)} provides a FFL basis of V(\).

Note that one can define essential monomials for an arbitrary total order on Ai.
Hence for the following statements it is very important that we kept in the whole
Section 1.1 the same total order.

Lemma 1.5.1. If {f5vy | s € S(\)} is linear independent in V(X), then
S(A) =es(V(N).

Proof. Let s € es(V(X)) = {p € Z%; | fPuvy ¢ span{f9v) | q < p}} and assume
s ¢ S(A\). By Proposition 1.3.3 we can rewrite f* such that

fooa=> ceffor e €C

t<s
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and we get immediately a contradiction, so s € S(\).
Now let s € S(A) and s ¢ es(V(A)). Then fSvy € span{f9v, | q < s} and so

fsvk = Zcqfqv/\,

q=<s

for some c¢q € C. We rewrite each f%v, in terms of basis elements fvy,t € S()).
Because of the linear independence all coefficients are zero, meaning that s = 0.
But this is a contradiction to s ¢ esV(\). O

Theorem 1.5.2. The elements {f5(vy—, ®vy) |8 € S(A)} CV(A—w) O V(w)
are linearly independent and By = {fvy | s € S(\)} is a FFL basis of V(A).

Proof. We prove this statement by induction on m € Z>;. For m = 1 we saw in
Section 1.4 that B, = {fSv, | s € S(w)} is a basis for V(w) in each type.
Thus let m € Z>2 be arbitrary and we assume that the claim holds for all m’ < m.
By induction the set By_, = {f5va_o, | s € S(A —w)} is a basis of V(A — w).
Thus we have by Lemma 1.5.1

es(VIA —w) = (A —w) and es(V(w)) = S(w). (1.5.1)
But then with [FFL13a, Prop. 1.11]:

es(VIN—w) +es(V(w)) Ces(VIA—w) ©V(w))
and so we get the linearly independence of

{fP(vacw ®vy) |s€es(VIA—w)+es(V(w)} CV(A—w) ©V(w)

With the equalities in (1.5.1) and Section 1.2 where we proved S(A —w)+S(w) =
S(A), we conclude that the set

{fPfvacw ®vy) |8 €SN} CVAN—w) OV (w)

is linearly independent. Thus we get dim V(A) > |S())| and with the spanning
property Corollary 1.3.5 we have [S(A)| > dim V' (\). Finally we get

|S(A)| = dim V' (A)
and that B) is a FFL basis of V(\) as claimed. O

Remark 1.5.3. The basis By is a monomial basis, so we get an induced FFL
basis of V2(A).

Theorem 1.5.4. Let V(X)) = S(n™)/I(N). Then the ideal I(\) is generated by
Umnt)o span{fg‘(ﬁv)H | B e At}

as S(n™) ideal.
In particular we have that I(\) = S(n™)(U(n*) ospan{ fs, fi"™ | B € AL\ AY}).
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Proof. Let I be an Ideal generated by U(nt) ospaua{fg‘(ﬁv)Jr1 | € Ar}asSnT)
ideal. By Ivy = {0} we have I C I()), so there is a canonical projection:

¢:Sn7)/IT— Sn™)/I(N) =2 VYN

Let f* =0in S(n™)/I()\). Because we have a basis of V?()\) we can rewrite f*
as follows:

=Y affeSm)/IN (1.5.2)
seS\)
for some ¢g € C. In the proof of Theorem 1.3.4 we already saw that the relations
obtained by I are sufficient to achieve (1.5.2). Thus 0 = f* = > cf® €
seS(N)

S(n™)/1. Therefore ¢ is injective.
In the proof of Proposition 1.3.3 we do not need powers fz for 3 € Aﬁ‘r \{6}. O
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2 Monomial bases over 7Z

Let B(V*(\)) be a monomial basis of the associated graded space V*(\). In this
chapter we explain under which assumptions the set B(V*(\)) is also a monomial
basis of Vf'(\), the Z—analogue of V*(\) (for a precise definition see Section 2.1).
As a consequence we also obtain a monomial basis of Vi () = Vz(\) ®z k, where
k is a field of arbitrary characteristic.

2.1 The Kostant Lattice

In the present chapter it is necessary to work with a Chevalley basis of g. To give
the definition of those we need the following general statement for semisimple Lie
algebras.

Proposition 2.1.1. Let g be a semisimple complex Lie algebra and
g=be> gs
BeEA

be a Cartan decomposition of g, where A C h* is the corresponding root system.
Let hg € b be the co—root corresponding to the root 5 € A. Then is it possible to
choose root vectors xg € gg satisfying:

(a) [zg,2-p] = hg.
(b) If B,v, 8+~ €A and [xg, 1] = cg~Tp4~y, then cgy = —c_g .
Proof. See for the proof [Hum72, Proposition 25.2]. O

The constants cg, from Proposition 2.1.1 are called the structure constants.

A basis B(g) = {zg,h; | B € A, 1 < j <n} of g for which x5, § € A satisfy (a)
and (b) from Proposition 2.1.1 is called a Chevalley basis.

The following theorem is of significant importance for our further considerations.

Theorem 2.1.2 (Chevalley). Let g be a semisimple complex Lie algebra and
B(g) = {xp,hj | B € A, 1 <j<n} be a Chevalley basis of g. Then the resulting
structure constants are in Z. More precisely:

(a) [hi,hj] =0, for1 <i,j <n.
(b) [hi,z8) = o, p23 = 0i(BY)xg, for 1 <i<n and p € A.
(¢c) [xg,x_g] = hg is a Z-linear combination of hi,. .., hy.

(d) For B,y € A, [xg, 2] = £(p+ 1)xgey, if B+7 € A and 0 otherwise, where
D € Z>q is the greatest integer for which v — pf € A.
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Proof. See for a proof [Hum?72, Theorem 25.2]. O

Let us now consider our previous setup. Again g is simple, complex and finite—
dimensional Lie algebra. In order to construct irreducible representations of g
“over Z” we have to introduce the Lie algebra gz.

Let us fix a Chevalley basis of g

Ben(g) = {x; | 1 <i < D}, with D =dimg.
We define
gz:=(v;|1<i< D)z Cyg.

Thus gz is a free Z—module. Chevalley’s Theorem (see Theorem 2.1.2) implies
that gz is in addition a Lie subalgebra of g, since all structure constants are in
Z. Analogously we define the Lie subalgebras nZ cnt, bz Ch, n, C n~ and
by = hz@nz Cb="bhdn". Note that we have g = g7 ®7 C, n* %ng ®z C etc.

Furthermore let n, “ be the abelian Lie algebra, which is as vector space equal
to n;, endowed with the trivial Lie bracket. Note that n, * carries the structure
of a bz—module by using the vector space isomorphism ¥ between the quotient
module gz/bz, which is a bz—module via the adjoint action, and ni’a. To be
more explicit we define for b € bz and n € n;*": b.on = ¥ (b. U (n)).

Let us define the basis B(gz) of gz, which is as set equal to By (g), more explicit
B(gz) = {eg. fo. hj | BEAL, 1<j<n}Caz=bz® Y _ gpz,
BeEA

where the root vector eg € ng (respectively fg € n;) is an element of the root
space gg,z (respectively g_g7).
We write egm), fém) for the divided powers -~ ei and f—ﬁ, in the universal enveloping

algebra U(g). Further we denote by ( ) the following element in U(g):

(hi> I (i — k)

m m)!

These notations allow us to define the main object in this section

Uy (g) = <eg L, <m> |m e Z>0> c U(g),
Z

we remark that Uz(g) is a Z-subalgebra generated as above, called the Kostant
lattice in U(g). Let Ay = {B1,...,0n}. For a given multi-exponent m € Z]ZVO
and a n—tuple b € Z%, we define

(m) ._ Al (mz (me b) ._ hy
e = €3, H and h! H b, )
(4

=1 =1
Theorem 2.1.3 (Kostant). Let Uz(g) be the Kostant lattice in U(g). Then

B(Uz(g)) := {f™h®e® | m k € 2Y, be 22}

forms a Z-basis of Uz(g) as free Z—module.
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Proof. See for a proof [Hum72, Section 26.4.]. O

Corollary 2.1.4. The Z-subalgebra Uz(n") respectively Uz(n™) admits the or-
dered monomials

B(Uz(nh)) := {e® | k € ZY} resp. B(Uz(n")) := {f™ | m € 2%,
as Z—basis.
Proof. This is a direct conclusion from Kostant’s Theorem. O

Let Uz(n™)s be the Z-span of the monomials of degree at most s:

Uz(n™)s = (Fm) L fmo fmy + . 4 my < sy, € AL) . (2.11)

Since changing the ordering is commutative up to terms of smaller degree, the
subspaces Uz(n™)s define a filtration of the algebra Uz(n™). By abuse of notation
we denote by Sz(n™*) the associated graded algebra of n,"* with respect to the
filtration (2.1.1). Note that n,"* C Sz(n™%). In fact, Sz(n™%) is a divided power
analogue of the symmetric algebra over n,**. This algebra can be described as
the quotient of a polynomial algebra in infinitely many generators, the “symbols”
f(ﬂm), modulo the ideal generated by the identities

f(ﬁm)f(ﬁk) _ ( m+k >f(ﬁm+k)' (21.2)

m

Thus we have:

m

Sa(n™) ~ 2[5 | m € Zso, 8 € AL/4EVTG - < e > flmey.

Analogue to Remark 0.0.4, let U (h & n™) C Uz(g) be the span of the monomi-
als h9e® such that Yol + Eé\le k; > 0. The natural map which sends a
monomial to its class in the quotient:

Uz(n™) = Uz(g)/Uz(g)Us (h@nt), f0m) — flm),

is an isomorphism of free Z-modules. Recall that Uz(g) is naturally a bz—module
and a Uz(n™)-module via the adjoint action, and Uz(g)U/ (h & n') is a proper
submodule. Via the identification above, we obtain an induced structure on
Uz(n™) as a bz—module and as a Uz(n™)-module. The filtration of Uz(n™) by
the Uz(n™); is stable under this bz— and Uz(n™)s—action and hence:

Lemma 2.1.5. The bz-module structure respectively the Uz(n™)-module struc-
ture on Uz(n™) induce a bz—module structure respectively a Uz (n™)-module struc-
ture on Sz(n™%).

For a dominant integral weight A we fix a highest weight vector vy and let Vz(\) =
Uz(g)ux C V(A) be the corresponding lattice in V/(X). Since Vz(A) = Uz(n™)vy,
the filtration (2.1.1) induces an increasing degree filtration Vz(\)s on Vz(A):

VZ()‘)S = UZ(n_)s'UA-
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We denote the associated graded space by Vj'(A). Since bzVz(A)s C Vz(N)s,
V4 (X) becomes naturally a bz—module. The application by an element

f[gm) € Uz(n™) provides linear maps for all s:

70 VaWs = Va(Wagm
U U

VZ()\)S—]. — VZ()\)s+m—1
and we obtain an induced endomorphism %( fém)) : VA(A) = V() such that
Qj)a(fém))w“(fy)) = ¢a(f§£))wa(fém)), and hence we obtain an induced represen-
tation of the abelian Lie algebra n,"* respectively of the algebra Sz(n™%). Note
that V' (X) is a cyclic Sz(n™%)-module:

Vza()\) = Sz(t‘lf’aﬁ),\.
Thus there is an ideal Iz(\) C Sz(n™?) such that: V() =2 Sz(n™?)/Iz(A). In
analogy to the complex case we have: {fé;\(ﬁi J+) |1<i< N} C Iz()N).
The action of Sz(n™%) on V'()) is compatible with the bz—action on Sz(n™%) and
on V*(\), i. e. for arbitrary b € by, s € Sz(n™%) is the identity b.(s.vy) = (b.s).v
true. Summarizing we have:
Proposition 2.1.6. V}()\) is a cyclic Sz(n™%)-module and a bz—module. The
bz —action on Sz(n™) is compatible with the bz —action on Vi (\) = Sz(n™%)vy.

2.2 Differential operators for g; and Z—admissible
elements in Sz(n™%)

Let gz = n, @ bz & n, be a Cartan decomposition. Further we fix a basis B(gz)
of gz, which is by definition a Chevalley basis of g. In the following we provide
an analogue of the differential operators defined in (0.0.4) for the Lie algebra gz.
Let 8,7 € A4, then we define the differential operator

Oy (fp) = {'C”’ﬁ‘fﬁw £ h=7eiy (2.2.1)

0, otherwise,

where ¢, _g € Zis the corresponding structure constant. The differential operator
satisfies

9y (f) = £ad(ey) (f5)-
Note, that it is no longer possible to multiply by (cg_-) 7!, if cg— # £1, since
these scalars are not in Z.

Lemma 2.1.5 implies that Sz(n™®) carries a Uz(n™)-module structure. Thus we
define analogue to (0.0.5) differential operators on Sz(n™%). For m,k € Z>q we

define:
m\ _ 1 my 1 m
a’(yk) (ff’ >_ma’l§ (fﬁ)_maw'”av(fﬁ) (2.2.2)
k—times

and 9, (f5') =m, (fs) f§~" =mley plfaf5 "
)
(2.2.1
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We set 8 ( f ) =0, if 8 = v or if the root vectors commute. In the following

we describe the differential operator &(Yk)( f/g,m)) more explicit:

If 8,7 and B + v span a subsystem of type Ao, then

o (1) = {fﬁ B ik

0, otherwise.

If 8,v,8+ 7,8+ 2y € A; span a subsystem of type By = Cy, then

(k) p(m—k) .
k) f(m) _ ) fop, s ik <m,
B+ 0 ;

) otherwise
and Y
a(k) (f(m) ) — f’Y fg.,.g’y ) if k <m,
o 0, otherwise
and
o () =[2G k<
. 0, otherwise
and

(a) .
f — ZX(k m) Tz fB"F’Yf/B-i-?’W if £ <2m,
B+2'y

0, otherwise

(2.2.3)

(2.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

where X (k,m) = {z = (a,b,¢c) € Z3 | a+b+c=m, 2a+ b=k} and r, € Z.

If 8,v,64+,0+2y,8+ 37,28+ 3y € At span a subsystem of type Go, then

(k) )
(k) (m) f f , if k<m,
aﬁ+3‘y (f 2,3+3’y> = { g 25+37

0 otherwise
and (i)
H® ( fm) ) LR tk<m,
Aty \726+3 0, otherwise
and ( "
’8 +37 , otherwise
and
a(lc) <f(m) ) _ Zx(k,m) Tva fﬂ+27f25+377 if k <2m,
Pty \725+3 0, otherwise
and

otherwise

8B+2v (f,8+37> B !
0, i

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)
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and

(@) £(b) £(c)  £(d) if k<
ok) (f(m) ) - {ZY(kvm) "yl foinfprayforay it K< 3m, (2.2.13)

! P 0, otherwise
and Y
ok (k) p(m it k<m
9% < ) =4 e = 2.2.14
. f6+27 0, otherwise ( )
and
Sy 3927 SV £ 1Y), i k< 2m,
= " 2.2.15
<f5+27> {0 ) otherwise ( )
and -
Skf ) plm= it k<m
= By = 2.2.16
<fﬁ+7) {0 5 otherwise ( )
and (k) p(m—k)
o5 (£52) = S RS (2.2.17)
i 0, otherwise,

where r,, 7y, 7, € Z and

X(k,m)={x = (a,b,c) € Z%O la+b+c=m, 2a+b=k},

Y(k,m)={y = (a,b,c,d) €Z|a+b+c+d=m, 3a+2b+c=k}.
Remark 2.2.1. Note that in the Ap— and Ca—case, (2.2.3)—(2.2.7), the coefficient
of the rhs can be easily checked by applying Chevalley’s Theorem (see Theorem

2.1.2). In the Gy—case,(2.2.8)—(2.2.17), it is also possible to consider the multipli-
cation table of Gy (see [FHI1, Table 22.1]).

In fact the constants r, and 7, occurring in (2.2.7), (2.2.11) and (2.2.13) are
equal to 1. But before we are able to prove this, we have to introduce another
combinatorial tool: The coefficient graph.

The coefficient graph. We distinguish two types of coefficient graphs: Cs(m)
and C4(m) for m € Z>p. In order to consider these directed graphs we have to
define first:

= U X (k,m) = {2’ = (a,b,c) €Z320 |a+b+c=m},
k=1
= U Y(k,m)={y = (a,b,c,d) € ZLy | a+b+c+d=m}.
Let C3(m) = (X (m), E) be the directed labeled graph, where the set of vertices

is indexed by the set X (m) (defined above) and the set of edges E is given by
the following rule: For 2’ = (a,b,c¢) € X(m), we have

((a,b,¢) 2 (a+1,b—1,¢) € E:& b>0,
N

((a,b,¢) = (a,b+1,¢c—1)) € E:& ¢ > 0.
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The second type is given as follows. Let C4(m) = (Y (m), F) be the directed
labeled graph, where the set of vertices is indexed by the set Y( ) (defined above)
and the set of edges F' is given by the following rule: For ¢/ = (a,b,¢,d) € Y(m),

we have
((a,b,e,d) 2 (a+1,b—1,¢,d) € F e b>0,
2c

((a,b,c,d) = (a,b+1,c—1,d)) € F:& ¢ >0,
((a,b,c,d) S (a,b,c+1,d— 1)) € F i d > 0.

Example 2.2.2. We consider C3(3) and C4(2):

(0,0,3)

(0, 132) 2, (1,0,2)

(0, 221) 221, 121) 2, (2,0,1)

(0, 310) 22, 210) (2,J1,10) 22, (3,0,0)

Figure 2.1: The coefficient graph Cs3(3).

(07 0? 0? 2)

-

(0,0,1,1) —*—(0,1,0, 1)

1
3-1

(0,0,2,0) —=2—(0,1,1,0) ——- (0,2,0,0)

3-1 3-2
1

(17 07 17 O) L) (17 17 07 O)

(27 07 07 O)

Figure 2.2: The coefficient graph Cy(2).
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Remark 2.2.3. The connection between (2.2.7) respectively (2.2.11) and the co-
efficient graph C3(m) can be described as follows:

(i) The monomial fﬁ fﬁ+7f6+27, respectively f,y f,8+27f25+37, corresponds to
the vertex (a, b, c).

(ii) The actions on a monomial in (i):
157150, (20 (1522,) ) and 157 (95 (465,)) S5,
resp. £ f6+27 (aﬁﬂ (f 2(Z’)+3v>) and f{") (‘%ﬂ (fﬁ+27)> f2ﬂ+3~w

correspond to the vertical and horizontal edges.

(iii) The labels correspond to the products of the structure constant and the ex-
ponent of the related root vector:

Cyp42y - € and ¢y g1~ b, TESp. Cgyy 2843y C and cgy gioy - b.

The connection between (2.2.13) and the coefficient graph C4(m) can be described
analogously.

Let q be a directed path in C3(m) (respectively C4(m)) from (0,0, m) to

' = (a,b,c) € X(m) (respectively from (0,0,0,m) to v = (a,b,c,d) € Y(m)).
We define c¢q € Z>( to be the product of the labels on the path q and call cq the
coefficient of q.

For an arbitrary vertex ' € X (m) (respectively ' € Y (m)) we consider

Q(z") C C3(m) (respectively Q(y') C C4(m)) the set of all directed paths from
(0,0,m) to 2’ in C3(m) (respectively the set of directed paths from (0,0,0,m) to
y' in C4(m)).

Remark 2.2.3 implies that each path q € Q(a) (respectively q € Q(y')) corre-
sponds to exactly one possibility to generate the monomials

fﬂ f6+7fﬁ+27 and f{" fﬁ+27f25+3'y (reSp- fﬁ f6+vfﬁ+2vf6+3v>
n (2.2.7) and (2.2.11) (resp. in (2.2.13)).

Let us consider exemplary (2.2.7) for k& < 2m in more detail. The definition of
the Kostant lattice and (2.2. 2) imply:

O (£55,) = s (£,
1 .+ ra ¢ 2
= i X%n) Pef§ I35y | T2 €7

1 _alble!
= Elm) Z AT |fﬂfﬂ+vf6+27
X(k,m)

~ a‘b‘c'
=2 fﬁ f,8+vfﬂ+2v

X(k,m)

_ (a) ¢(b) ()
= 2 mfi foi Sy

X (k,m)
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The combination of the above considerations and Remark 2.2.3 let us for
x € X(m)\{(0,0,m)} and y € Y(m) \ {(0,0,0,m)} conclude:

_alble! alblc! _albleld! albleld!
=gt = | 2o | T Py =P = | 2 Ca| T
qeQ(w) a€Q(y)

Tz

where k = 2a + b, respectively k = 3a + 2b + c.

Remark 2.2.4. The construction of the coefficient graphs Cs(m) and C4(m) im-
plies the following recursive definition for the constants 7y, 7, € Z:

70,0,m = 70,0,0,m = 1
o = Fape =20+ Va1 py1,e + (¢ + Dfap1.ct1,

A~

Ty = Taped = 30+ 1)Tq_1pt1.cd+2(c+ D)Tgp1cr1,d + (d+ 1)ape—1dr1-

Set 1, := 0 respectively 7, := 0, if at least one of the entries of x, respectively y,
s a negative integer. The following diagrams visualize the recursive definition:

(a,b—1,c+1)
c+1
2(b+1
(af]-ab‘k]-vc) AR (a,bvc)

Figure 2.3: Recursion for 7,

(a—1,b+1,¢,d)

(a,b,c—1,d+1)

3(b+1) d+1

2(c+1)

(a,b—1,c+1,d) (a,b,c,d)

Figure 2.4: Recursion for 7,

Lemma 2.2.5. Let ry, 17y € Z be the coefficients occurring in (2.2.7), (2.2.11)
and (2.2.13). Then we have for all x € X(m) andy € Y(m): rp =1 =ry,.

Proof. In order to use induction on k we define a partial order on the set X (m)

respectively Y (m) and apply Remark 2.2.4 in the induction step. We split the
proof into two parts

L 1 klm! e 1 klm!
(i) 7r = gq( )cq = and (i) 7y = GZQ( )Cq ~ abled!”
1eQ(x acQ(y
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To (i): We recall:

X(k,m) ={z=(a,b,c) €Z3 |a+b+c=m, 2a+b=k},
2m

X(m): UX(k‘,m):{x:(a,b,c) EZ%o|a+b+c=m}.
k=1

We define the partial order < on X (m) via the following rule:
Let (al, b1, Cl), (ag, ba, 62) S X(m)

(a1,b1,c1) > (az,b2,c2) & 2a1 + by := k1 > ko 1= 2ay + bo. (2.2.18)

Hence in this order (0,0,m) € X (0,m) is the minimal and (m,0,0) € X (2m,m)
the maximal element. We use Remark 2.2.4 to verify our claim for z = (0,0, m):

0lm!
~0l0bm!”
Let us fix 1 < k < 2m — 1 and assume that the claim holds for all
T € Uf;ll X (j,m). Our aim is to prove that the claim also holds for a arbitrary

but fixed element & € X (k, m). Note that (2.2.18) implies x < & for all
x € Uf;ll X (j,m). We consider the following case analysis:

Ty = 7T0,00m =

Case 1: & = (a,0,c¢), k = 2a. Then Remark 2.2.4 and the induction assumption

imply:
(2(a—1)+1)!m!  (2a)!m!

(a—D!le!  alOle!
Case 2: & = (0,b,¢), k = b. Then Remark 2.2.4 and the induction assumption
imply:

Ty = Ta,0,c = 2"”a—l,l,c =2

(b—1)!m!  blm!
0l(b—1)!(c+1)!  olble!

T =Tope = (c+ 1)Top—1,c+1 = (c+1)

Case 3: & = (a,b,¢), k = 2a+b. Then Remark 2.2.4 and the induction assump-
tion imply:

f:?: = fa,b,c = 2(b + 1)72a—1,b+1,c + (C + 1)fa,b—1,c+1

(2(a—=1)+ b+ 1)!m! (2a+b—1)Im!

=) e e TV e s
_ (2a+b)!m!

alblc!

k!m!

Hence we have 7, = -7 and therefore 7, = 1 for all z € X (m).

The proof of part (ii) proceeds similarly by using Remark 2.2.4. O

Z—admissible elements. Let k; € Z>g and 3;, € Ay for 1 <[ < r € Z>g.
Further we consider the differential operator

1T A0k a
a_lHl%l € Der(Sz(n™%)).
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In the following we consider for b € Z>g and 8 € Ay:

o(1") = Hakl)< M= ar®. (2.2.19)

N
tezy,

We fix a total order < on the positive roots Ay and in addition an induced
homogeneous total order on the monomials in Sz(n™%) (by abuse of notation we
denote the latter total order also by <). For an element of the form (2.2.19) we
define:

max (8 (féb))) = f™ m.= m_zjx{t € ZJZVO | ct # 0}.

Further is an element of the form (2.2.19) said to satisfy the mazimality condition,
ifforall 1 <o <r:

oo ) = ( Ha(’”)( )) (2.2.20)

e oo ()

Remark 2.2.6. Note that the maximality condition (2.2.20)implies that the maz-

imal monomial in [];_, 8(kl)(féb)) is a summand of agj”) applied to the mazximal

monomial of T[}= 8(’”)(]‘ ).

In the following we verify the Leibniz rule for the divided power analogue of
8’7‘3(1‘"“‘), m = (ml, .. .,mN), ke Zzo:

o) (£m) = off Hf

khnl Comy! 7 II~f

-t 2 )T (1)

J=1

= H alrs) (f(;”j)) : (2.2.21)

Xy j=1

where Xi = {(k1,...,kN) € Zgo | Zévzl kj = k} is the set of all partitions of
k € Z>q of length N and (K1 k HN) is the multimonomialcoefficient defined by:

N
k k!
</€1,...,/{N> :ﬁ for k:Z/{ia K/iGZZO.

EN!
N i—1
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Remark 2.2.7. Note that a summand of (2.2.21) is equal to 0, if at least one of
the factors in the product is equal to 0. More explicit: HN 8(N7)(f(mj ) =0, if
one of the following statements is true: There is 1 < j' < N, such that

) (K,j/ > 0) AN (m]/ = O)

o (ky > 0)A(my >0) A (B +7 ¢ Ay).

e k. 1s greater, than the corresponding bound, given in (2.2.3)—(2.2.17).
g g ) 4 g , g

Thereby we describe the action of the differential operator ﬁ(k v)
v— k b
monomial more explicit: Let ¢yt f0 ) = = max Izt 8( : (f[g ))), then:

on the maximal

o (cmvflf(m” ) = Coo- 121_[8(”7) ( )> — e ™+ aft,

X, J=1 t<mv
where Xj, C Zgo is the set of all partitions of k, € Z>¢ of length V.

Remark 2.2.8. For simplicity we make the following convention. If agk)(fém)) 18
of the form (2.2.3)(2.2.5), (2.2.7)~(2.2.13) or (2.2.16)—(2.2.17), then we simply
write 8§k)(fém)) € D. Lemma 2.2.5 and Remark 2.2.1 imply, that D contains
exclusively differential operations, which produce only coefficients equal to 1.

Fix a positive root v and let 3; € Ay be such that v and 3; are linearly indepen-
dent roots. We consider the y—string through 3;, to be more precise, we consider
for ¢,p € Z>¢ the following subset of A :

{Bee=Bj+sv| <5< qt={Be_, =B =0V, Bay, = Bi + a7} (2:2.22)

Note, that A; decomposes in a disjoint union of ~-strings (see (2.2.26) and
(2.2.27)). The next definition is essential for the main statement of the present
chapter.

kl

Definition 2.2.9. Let 8 = [[;_,; 95" € Der(Sz(n™%)) be a sequence of dif-

ferential operators and assume that B(fﬁ )) in Sz(n™®) satisfies the mazimality
condition (2.2.20). For v =0, respectively for 1 < v < r we set

Con0 f) = féb), resp. cpo f0) = = max (H Bﬁljll) ( )) , (2.2.23)

with m® = (m3,...,mY,) € Z5,,.
We call B(féb)) Z-admissible, if for all 1 < v < r, m*"! satisfies the following
assumption:

Fiz an arbitrary B, —string {Bz_,, ..., Bz, } in Ay (see (2.2.22)).
Then we have either

mé =mi VvV —p<s<gq, (2.2.24)

Ts Ts
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where my_ is the entry of m” corresponding to the positive root (B, .

Or there is a integer —p < s < q minimal with the property: mj_# mgs_l and

moreover: = =
myt =0, Vs<s<gq. (2.2.25)

Ts

Remark 2.2.10. Let us explain the assumptions (2.2.24) and (2.2.25):

(ko)

In the v—th step of the sequence @ we apply 8/31_ to the mazimal monomial of the

(v—1)-th step: cpo—1 fmeY (see 2.2.23). In order to describe our assumptions
on this action, it is enough to consider the (3;, —strings in Ay. Let us fix now a
Bi, —string (we refer to (2.2.22), if we consider a fized [3;,—string in Ay ):

Case 1. All exponents of the 7‘0015 vectors corresponding to the fized B;, —string

are not affected by the operator (9 (see (2.2.24)). In that case we have no
further assumptions on the correspondmg exponents.

Case 2. The exponents of the root vectors corresponding to the fized (;, —string
are affected by the operator 8 (see (2.2.24)). In that case there is a integer

—p < s < q, minimal with the property, that the corresponding exponent m“ 1

has been changed by the action of (‘3 . Further the exponents corresponding to
the fized B;,—string have the followmg form (see (2.2.25)):

v 1 v—l)

f 2_p) f( g 1 f(mmp f(mzfp ”.f(m;é_fll)f(o) __.f(()
Ba_, By Ba_,, Bay_y s B

Zp

mzp
S8,

The second case tmplies m;q_l > 0, further note that these assumptions have to
be satisfied for all 1 < v <.

Example 2.2.11. Let Ay = {p1 := 5,02 := 7,03 := B+, B4 := [+ 27} be the
Co—root system. Further we choose the following total order on Ay : By < [3 <
B2 < B1 and choose in addition the induced homogenous lexicographic total order
on the monomials.

In the following we consider the elements

01 (fl(?i)%) o (8&278 ) (f6+2v) € Sz(n™),
92 (féiz%) (853)(32%7) (f5+27) € Sz(n™7).

and check if these two elements are Z—admissible. For that we use the definition
of the Cy differential operators (2.2.4)—(2.2.7), the statement of (2.1.2) and the

Definition 2.2.9. Further we need the description of Ay as union of y—strings
and as union of (8 + 7)—strings:

Ay = {7} U{B,B+7,8+27). (2.2.26)
Ay = {BYU{B+7}U {7, 8+ 27} (2.2.27)

The definition of the differential operators (2.2.1) implies:
87(f7) = 86+'y(f6) = 8B+'y(f,3+’y) = 0.
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Let us consider Bl(fé?%). First we calculate 81(-](.,((3?27) explicitly:

(fﬁ+27> - (aéz ) (féiz?v) - [(32-27 ( %3) <fé?2v>)
(Z 5 fﬁ+’7ff3+27)

X(3,4)
PIb)

(1) 1)
o5, (fﬁ o ke, + 1 f6+'yfﬁ+2'y>
_ (D)
_fﬂ fv f6+7'

From the above calculation we conclude that 81(f5+2v) satisfies the maximality
condition (2.2.20) and deduce the mazimal monomials:

mO
cmof = ffy fﬁ+ryfﬁ+2,ya
m! 1 2
Cmt | fé 1 fﬁﬂféﬁw
Cm?2 fm = f f,3+»yfg+27

It is easy to verify that the maximal monomials fm1 and fm2 satisfy (2.2.24) and
(2.2.25) for all y—strings in Ay (see (2.2.26) ), respectively for all (B + y)-strings

in Ay (see (2.2.27)). Thus, 81(fréi)2,y) is a Z-admissible element.

Now we perform the same procedure with 82(fgi)2,y):
92 (f,é??y) - (053) é%z'y) ( /£’4+27) o ( gjv (fﬁ+27>)
> s

Ay

_ 5@ (a)

- 8"(1) (f( 'f B+2’y = ( 5+27)
X(3,2)

_ £(2 1 (1)
@ (A055)) =30 151

Again from the explicit calculation we conclude that aQ(fﬁ(ﬁ?y) satisfies the max-
imality condition (2.2.20) and deduce the mazimal monomials:

m9 0 0 4
o ™ = 1 1O 1) 15

m! 0 0 2
et ™ = £ F £ 1D
e ™ = 370 £ Y 1R,

Again the mazimal monomial f™ satisfies (2.2.24) and (2.2.25) for all (8 + )~
strings in (2.2.27). However the mazimal monomial f™ violates (2.2.25). Thus,

Bg(fé?%) is not a Z-admissible element.

Let us now investigate the properties of Z—admissible elements.
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Corollary 2.2.12. Let a(féb)) =1I-, agl)(féb)) be a Z—-admissible element in
Y
Sz(n™%). Then there is for all 1 < v < r a unique partition & € Xy, , such that:

cme f™) s a summand of et H 8 fﬁ] )). (2.2.28)
Proof. Assume there are &,k € X, such that
ST ) pmE ) »
(my) - R m;
Cm, | is a summand of 1_11 0g, (fﬁj ) and also of 1_[1 o fB] ).
j= J

For all 1 < j < N with m;?_l =0or B — B, ¢ Ay we have: ij =0 = R;.

Hence it is enough to consider only (; —strings. For all j; —strings through in
Ay, where my = mgj for all —r < s < ¢ we have again &; = 0 = K;, because
there is no influence via differential operators from inside of the 3;, —string and
there is no possibility to change the exponent from outside of the corresponding
string.

Let us now consider a (;, —string, which is affected by differential operators, then
we know from (2.2.25), that every change of the exponents of root vectors cor-
responding to this string is the result of one single differential operation g,
to a certain power £ < k, applied to the root vector corresponding to £, (see
(2.2.22)).

From this we conclude that there is only one possible choice for the entries of &
(respectively of k) corresponding to this §;, —string and thus we have for these
entries: iy, = Ry, for all —r < s < ¢. This is true for all 3; —strings affected by
R (respectively by &), hence: & = R. O

Remark 2.2.13. As direct consequence from the assumption (2.2.25), we con-
clude for the unique partition & € Xy, (see (2.2.28)) that for all k; # 0:

’Ul)
ﬁm<% >€D

See Remark 2.2.8 for the definition of D.

Now we are able to state the main advantage of Z—admissible elements.

Lemma 2.2.14. Let 8(f ) £ 0 be Z-admissible and let cop f™ = max (8(féb))).

Then we have: ¢y = 1.

Proof. Let 9( f[gb )= (1., 9 )( (b)) In order to prove the statement we prove
by induction for all 1 <v <r that the coefficient ¢pv of

s e (T () )

is equal to 1. Therefore, let v = 1. Then we know from the Remark 2.2.13, that
the differential operation of f(ml) is in D and thus ¢,;1 = 1.
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Assume the statement holds for a fixed 9 <r—1andall1 < ¢ < . We consider

v = 9+ 1. The induction assumption implies that the coefficient of f(™°) is equal
to 1, hence
(Kv) : (k) ¢ £(b) (kv) (k) ([ ¢(m3)
05, (mﬁx (Ha . (3 )>> g, ( ) ZH%j (fﬁj ’ )
=1 X, 7=1

From Corollary 2.2.12 we know that the multi-exponent & € X}, , where cmv f (m”)
occurs as summand in the corresponding product of operators, is unique. Remark
2.2.13 implies that for all #; # 0 we have 8;’:5)(fgn])) eD.

Therefore, the coefficients of these operations are all equal to 1. Hence there is
only one other possibility left to influence the coefficient cpyo:

Fix a root f3;,, —p < i < ¢ in a f;, —string and assume m;’l > (0. Assume further,

that the exponent of the corresponding root vector in f (m?) s not affected by
a differential operator. If in addition the action on fg"‘u generates a non-trivial
Tp

factor f (i)., then the multiplication rule (2.1.2) says, that

(m%)) m +l mZ +1) . mg._kl
fﬁmizﬂ?i:( )fﬁ i 7W1th< i >21,

i
However (2.2.25) implies, that this situation cannot occur. Therefore, is cpyr = 1
and we conclude ¢, = 1. ]

2.3 Bases for V()

Let A be a dominant integral weight and V%(\) be the associated graded space
of the corresponding highest weight g-module V' (\). Further let B(V*(\)) be a
basis of V%(\) with the following properties:

Property (1). There is a set of abstract paths P = {p1,...,pyw} C P(A}) and
each abstract path py, 1 < ¢ < w, contains a root 3;, € Ay such that for every
multi-exponent m € Z];/O with |m| > /\(ﬁjvq) +1, which is supported on pg, there
is a differential operator 8(m, p,) depending on m and p, with

8(m, p,) ( '““) Ha’“ ( }3’2') = /™4 Y aft, an#£0. (231
t<m

We call §;, the base root of p; and remark that the operators 8ﬁil, 1<i<rin
(2.3.1) depend on the support of p, but they are independent of |m/| different to
the exponents k; € Z>g.

Property (2). For all 1 < ¢ < w and 1 < v < r the element d(m, pq)(f‘m‘)
satisfies the complex analogue of the maximality condition (2.2.20):

v—1

s < (o T1 %, (1))

e (o, (s (T02%, (1)) ) )
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Property (3). The basis B(V*(\)) is parametrized by the integer points S(P)
of the polytope

PP):={xecRY, | >z, <\@B}), Vp, P}, (2.3.2)
Bi€Pq

where 3;, € Ay is the base root of p,. This implies that B(V*()\)) admits the
following description:

B(V*(\) = {f%» | s € S(P)}, where S(P) := P(P)nZzY,

Remark 2.3.1. We note that the assumption in Property (1) on the multi—
exponent m € Z>0; |m| > )\(BV) + 1, guarantees that the element f| s n
the ideal I(\) (see (1.1.2)). Further we know from Remark 0.0.6 that I()\)

invariant under the action of U(n™), so I()\) is also invariant under sequences

of differential operators. Hence we conclude that &(m, pq)(fg]_n‘) is an element of
q

I(N).

In this section we consider the Z-analogue of the basis B(V*(\))

B(VZ(N) = {f®ux |s € S(P)}

and show that under an additional assumption B(V}())) is a basis of V().
Denote by P the set of abstract paths corresponding to B(V*(\)) (see Property
(1)) and by

a((m),p,) (15 : Ha““” (790 € Sa(a=) (2:3.3)

the element corresponding to the differential operator

9((m),py) € Der(Sz(n™%)). As above the operator depends on the multi-
exponent m € Z]>VO and on the abstract path p, € P, where 3;, € A, is the
base root of py.

In the following we show, that if the elements (2.3.3) are Z-admissible, then
they satisfy the Z-analogue of (2.3.1). This leads to the fact, that B(V}())) is a
spanning set of Vi*(\).

Proposition 2.3.2. Let p, € P be an abstract path and let m € Z>0 be a
multi—exponent supported in py, with jm| > )\(ﬁv)—i—l Further let 8((m), p,) €

Der(Sz(n™%)) satisfy Property (1). Assume that 6(( ), Pgq) is Z—admissible, then
there exist some constants ¢y € Z, such that

((m), po)(F4™) = £ + 3~ et € I(N). (2.3.4)
t<m
Remark 2.3.3. We refer to (2.3.4) as a straightening law, because it implies
Fo = =37 f® in Su(n)/I(N) = VE(N).
t<m

The assumption |m| > )‘(5]\2) + 1 guarantees, that we consider elements of the

ideal Iz(N).
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Proof. Let pg, m and 8((m), p,) be as assumed above. From the definition of
the Kostant lattice we know, that (2.3.3) differs from (2.3.1) only by the constant
c= (k1! - k.!lm|")~! € Q, hence

9((m), pg) (fél;l\)) = cO(m, p,) (fh;:I) =c (cmfm + Z tht>

t<m
= A f™ + > 4 fW,

t<m

where ¢m, ¢, chy,¢¢ € Z. Therefore, it is enough to show that: ¢, = 1, but
from Lemma 2.2.14 we know that the coefficient of the maximal monomial of a
Z—admissible element is always equal to 1. This proves the claim. ]

Theorem 2.3.4. B(VZ(\)) = {f®vy | s € S(P)} spans the module V().

Proof. The idea of the proof is to use the equation (2.3.4) as a straightening
algorithm to express f™yy, m € Z];[O arbitrary, as a Z-linear combination of
elements in B(V}(X)). -

Let m be a multi-exponent and suppose m ¢ S(P), then there is an abstract
path p, € P such that |m| > )\(ijq) + 1, where 3;, is the base root of p,. We
define a new multi-exponent m’ by setting

/ — {mj, if ﬁ] € pq,

0, otherwise.

This new multi-exponent is supported on p, and we have |m’| > )\(Bj\;) + 1.
Therefore, we can apply Proposition 2.3.2 to m’ and conclude

f(m/) — Z Ct/f(t/) in SZ(n—’a)/IZ()\)v

t/'<m’

where ¢y € Z. We get f0™ back as f(m) = f(m’) H,Bj¢pq fﬁ(,mj). For a multi—
exponent t’ occurring in the sum with ¢y # 0 let the multi-exponent t and ¢y € Z
be such that ¢y f) Hﬁj ¢pq fémj ) = et f®). Since we have a monomial order it
follows:

o = 50 T 5™ = 3 ef® in Sp(0=)/Iz(M). (2.3.5)

Bi¢Pq t<m

The equation (2.3.5) provides an algorithm to express f™) in Sz(n™%)/Iz()\) as
a sum of elements of the desired form: If some of the t are not elements of S(P),
then we can repeat the procedure and express the f(®) in S;(n=%)/Iz(\) as a
sum of f) with r < t. For the chosen ordering any strictly decreasing sequence
of multi-exponents (all of the same total degree) is finite, so after a finite number
of steps one obtains an expression of the form f™ = 3" ¢, f(8) in Sy (n=%)/Iz(\)
such that s € S(P) and ¢s € Z for all s. O

Now we are able to state the main result of the present chapter:
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Theorem 2.3.5. Let B(V%(X)) be a basis of V() satisfying Property (1), (2)
and (3). Further let 8((m),p,) be Z-admissible for all m € ZY, and p, € P
given as in Property (1), then is B(VE(\) = {f® .y | s € S(P)} a basis of
V#(X) and the ideal Iz(X) is generated by the subspace

(B )+
({Uz(n") o Span{fﬁjq " | pg € P}). (2.3.6)
Proof. We know from Theorem 2.3.4 that the set B(V}'(\)) spans V}(A\). By
assumption, the number [S(P)| is equal to dim V' ()\), which implies the linear
independence of B(V}(\)). By lifting the elements to V() we obtain a basis of

Vz(A) which is (by construction) compatible with the PBW filtration: Set
N
S(P), :={s € S(P)|> s;<r},
j=1

then the elements f() with s € S(P), span Vz(\),.

Let I C Sz(n™®) be the ideal generated by (2.3.6). By construction we know
I C Iz(\). But we also know that the relations in I are sufficient to rewrite every
element in V() in terms of the basis elements f®), s € S(P), which implies that
the canonical surjective map Sz(n~)/I — Sz(n~)/Iz(\) = Vz()\) is injective. [

As an immediate consequence we see:
Corollary 2.3.6.
(1) V#(A) is a free Z-module.

(ii) For every s € S(\) fix a total order on the set of positive roots and denote
by abuse of notation by f©) € Uz(n™) also the corresponding product of
divided powers. The set B(V} (X)) forms a basis for the module Vz(X\) and
for all s < s" we have Vz(\)s is a direct summand of Vz(\)s as a Z-module.

(iii) With the notation above: Let k be a field and denote by Vi,(A) = Vz(N\) @z k,
Ur(g) = Uz(g) @z k, Ux(n™) = Uz(n") ®z k ect. the objects obtained by
base change. The set B(V} (X)) forms a basis for the module Vi (X).

2.4 Applications

Application (1): Let g be of type A, or C,. The authors of [FFL13b] provide for
an arbitrary A € P a monomial basis of V,#()\) coming from a monomial basis
of V4(A). In fact, this chapter is motivated by the procedure given in [FFL13b].
The authors define also differential operators (see [FFL13b, Section 4 and 7]) for
gz and consider special abstract paths, called Dyck paths (see [FFL11a, FFL11b]
and Chapter 1). Furthermore, they also prove that their bases of V*(\) obtained
in [FFL11a] respectively [FFL11b] satisfy Property (1), (2) and (3) given in Sec-
tion 2.3. Finally, if we consider the proof of the spanning property (see [FFL13b,
Section 4 and 7]) carefully, we see, that they use Z—admissible elements only.

Thus our proceed provides an alternative proof of the main statement of [FFL13b].
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Application (2): Let g be of type Go. Let a1, a0 € &, be the simple roots.
Then the six positive roots are:

B1 = 3a1+2as, P2 =3a1+ a2, B3 =201+, Bs=01+a2, B5=a2, Bs=ai.

For A = mjw; + mawa with my,ma € Z>( define the polytope P(\)g, C Rgo
given by the inequalities

$5§m2=>\(55v)
z6 < m1 = A(By)

To + 3+ 16 < my + ma = A(By)

x3+x4+x6§m1+m2:)\(5§/) (2.

x4+m5+x6§m1+m2:)\(@/) (24
w1+x2+x3+x4+w5§m1+2m2:)\(ﬁlv)
To+x3+ x4+ 5 + 16 < M1 + 22 Z)\(ﬁi/) (2.4.3)

Theorem (Gornitzki). The set B(V*(\)) = {f%0x | s € S(N)a, :== P(N)e, NZ%4}
forms a basis of V*(\).

Proof. See for a proof [Gorll]. O

Note that this statement provides just a basis, but not the generators of the ideal
I(\). In the following we prove, that B(VZ(\)) = {f®vy | fSvx € B(VE(N))} is
a basis of V/(\). Thus we have to show that B(V*()\)) satisfies Property (1), (2)
and (3). Moreover, we have to prove that the elements in Sz(n™%) corresponding
to Property (1) are Z-admissible. We use the statement of Gornitzki and the
following, in order to prove our claim.

Theorem (Backhaus, Kus). There is a total order < on the positive roots of Go
and an induced monomial order on S(n~), such that for an arbitrary dominant
integral weight X the ideal I(\) C S(n™), where V() = S(n™)/I(N), is generated
by the subspace:

1 =1,256). (2.4.4)

(U(n*) o span{f, "’
Proof. See for the proof [BK15]. O

The total order on A, considered in the proof the statement above is the follow-
ing: By = PBs > B3 = B4 > B5 = Bg. Furthermore, the authors extend this order
to the induced reverse lexicographic total order on the monomials in Sz(n™%):
Let a,b € Z6>0, then

a-b & 3d1<5<6: (aj<bj)/\(ai:bi, V1<i<yj).
We consider the subset Pg, of P(A):

PG2 = {{55}7 {56}7 {B?a 637 /Bﬁ}a {ﬁQa 537 647 /85}a {/327 637 647 /857 66}7
{517 627 ﬁ37 547 65}7 {617 627 537 B4> 651 66}}
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The set of abstract paths Pg, provides the connection between the calculations
in [BK15, Section 7.1] and our general procedure.

The authors obtain in [BK15, Section 7.1], analogue to Proposition 1.3.3, a
straightening law for Go. Moreover they obtain, analogue to Theorem 1.3.4, that
the relations in the subspace (2.4.4) of S(n~) are sufficient to rewrite every el-
ement in V*(\) in terms of the elements in B(V*()\)). Hence with the same
argumentation as in the proof of Theorem 1.5.4 they conclude the claim.

These two theorems let us conclude, that the basis of Gornitzki satisfies Property
(1) and (3) of Section 2.3. From the proof of the latter theorem it is easy to see
that this basis also satisfies Property (2).

Moreover, if we consider the elements 9(m, pg)( fg;;l) from the calculations in

[BK15, Section 7.1] it is easy to verify, that these elements are Z-admissible.
Hence we can apply Theorem 2.3.5 to the general Gy—case.

Remark. Note that P(\)g,, contradicts our definition of P(P)

(see (2.3.2), (2.4.1), (2.4.2) and (2.4.3)), if we set P := Pg,. Nevertheless the
polytope P(N)g, does satisfy our assumptions. Let us exemplary consider the
calculation corresponding (2.4.3):

6
ag;e ag;z ag38g4+m662125 (fg2+m3+m4+m5+m6) — fgl H f,gjl + Z tht‘
1=2

t<m

Hence we have for every multi—exponent m € ZG>O described by the operation above
my = 0, although B is the base root for the abstract path {B1, B2, B3, B, Bs, Be}-
Thus in the corresponding inequality in P(P) = P(\)g, we do not sum over the
first entry. The analogue calculations for (2.4.1) and (2.4.2) cancel the contra-
diction to (2.3.2).

Application (3): Let (Type of g, A = w;) be listed in Table 1.1. We provide in
Chapter 1 for A = mw;, m € Z>o, the set By (see Section 1.4 and 1.5),which is a
monomial basis of V*(\).

The straightening law, Proposition 1.3.3 implies, that these basis satisfy Property
(1) of Section 2.3. Note, that in order to be consistent with [FFL13a, FFL13b],
we call in Chapter 1 the abstract paths, Dyck paths.

Lemma 1.3.2 implies, that the bases B, satisfy in addition Property (2). More-
over, the main result of Chapter 1, Theorem 1.5.2, let us conclude, that B)
satisfies also Property (3).

To be precise: Proposition 1.3.3 and Lemma 1.3.2 imply Property (1) and (2) for
all cases listed in Table 1.1, except for the cases (By,w1) and (Gg,w;). Tough the
explicit calculation in these cases (see Section 1.4) show, that Property (1) and
(2) is also satisfied in these cases.

Thus it remains to check if the elements corresponding to Property (1) are Z—
admissible. For the A,—,D,— and Eg 7—cases contained in Table 1.1 there is nothing
to show, since all structure constants are equal to +1 in these cases. Thus the as-
sumptions (2.2.24) and (2.2.25) of Definition 2.2.9 are satisfied trivially, because
there are only strings of length at most 2.

65



In the cases (By,w1), (Bn,wn), (Cn,wi) and (Go,w;1) we have to verify the Z-
admissibility by the explicit calculations given in Section 1.4. The only case
which provides no monomial basis for V/'()) is (Fa,ws). Summarizing we have:

’ Type of g ‘ weight w; H Type of g ‘ weight w;

A, wi, 1<k<n Dn W1, Wn—1, Wn
Bn W1, Wn E6 w1, We
Cn, G2 w1 E7 wr

Table 2.1: Admissible weights over Z

Let us explain, why the Z-admissibility is violated in the (F4,ws)—case. Note,
that there are Dyck paths in the Hasse diagram corresponding to this case (see
Figure 1.1), such that 54 = (1,2,3,2) and fB7 = (1,1,2,2) are contained (see
(3.2.2)-(3.2.7)). In fact, we have

08as (15) £ D,

since this operation is of the form (2.2.6) (see Remark 2.2.8 for the definition of
D). Thus all elements corresponding to these Dyck paths are not Z—-admissible.
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3 The degree of the Hilbert—Poincaré
polynomial of PBW graded modaules

We emphasize that the present chapter is a modified version of [BBDF14]. All
notations and definitions we are using in this chapter, unless they are defined
here, can be found in the Preliminaries.

3.1 The Hilbert—Poincaré polynomial

In the present chapter we compute the maximal degree of PBW graded modules,
i. e. modules which have a grading coming from the PBW filtration, in full
generality (for all simple complex Lie algebras), where there have been partial
answers in [FFL11a, FFL11b, FFL13b] and Chapter 1 for certain cases (see Table
1.1).

We denote the Hilbert—Poincaré series of the PBW graded module, often referred
to as the g—dimension of the module, by

o0

oa(q) = (dim V' (A)s/V(N)s—1) ¢°.
s=0

Since V() is finite-dimensional, this is obviously a polynomial in ¢. In the follow-
ing we want to study further properties of this polynomial. We see immediately
that the constant term of py(¢) is always 1 and the linear term is equal to

dim(n™) — dimKer (n™ — End(V(}))) .

Our main goal is to compute the degree of py(¢) and the first step is the following
reduction [CF13, Theorem 5.3 ii)]:

Theorem. Let \i,...,A\s € PT and set \= X + ...+ \s. Then

degpx(q) = degpa, (q) + ...+ degpx,(q).

It remains to compute the degree of py(¢q), where A is a fundamental weight. We
will do this for all fundamental weights of simple complex finite-dimensional Lie
algebras (see Theorem 3.2.1).

Hilbert—Poincaré series and graded weight spaces. Let g, V' (\) and V*(\)
be defined as usual in this thesis (see the Preliminaries). The Hilbert—Poincaré
series of the PBW graded module V¢(A) := @,~( V(A\)s/V(A)s—1 is the polyno-
mial -

@) = Y dm(VO/V()s1)d’
= 1 dim(V(0)1/V(No)g + dim(V(N)o/V (N1 + .
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and we define the PBW degree of V() to be deg(px(q)).

Note that we already know from Remark 0.0.3, that the graduation components
V(A)s are U(n")-modules for all s € Z>(. Let s\ be minimal, such that

Vio(n) € V(A)sy- Then V(X) = U(nt)v,,n) € V(N)s, and hence

Corollary 3.1.1. s) = deg(pa(q)) and

V(A) =V (N)s,-
The PBW filtration is compatible with the decomposition into h—weight spaces:

dm V(N = 3 dim (V(A)s/V(N)se1) N VA,

s>0

Therefore we can define for every weight 7 the Hilbert—Poincaré polynomial:
par(@) =) dim (V(A)o/V(N)s1), ¢°
s>0

and with this definition
pa(g) = pas(9)-
TEP

A natural question is, if we can extend our results to these polynomials? If the
weight space V(\), is one-dimensional, then p) r(¢) is a power of ¢. For 7 = A
this is constant 1, for 7 = wg()), the lowest weight, this is ¢1°8P2(9) as we have
seen in Corollary 3.1.1. A first approach to study these polynomials was taken
in [CF13].

Graded Kostant partition function. For the readers convenience we recall
here the graded Kostant partition function (see [Kos59]), which counts the number
of decompositions of a fixed weight into a sum of positive roots, and how it is
related to our study. We consider the power series

1
11 (1 —geP)

BeA

Z P,(q)e".

veP

and its expansion

We have immediately
char S(n") = Z P,(q)e™".
veP
Remark 3.1.2. Can we relate the Hilbert—Poincaré polynomial py ,(q) with the
graded Kostant partition function Px_,(q)? For a polynomial p(q) = > 1y a:iq’,
we denote mindeg p(q) the minimal j such that a; # 0. Then we have obviously

mindeg py ,,(¢) > mindeg Py_,(q). (3.1.1)

We use this inequality for the very special case v = wp(A) in the proof of Theo-
rem 3.2.1.

It is shown in [CF13] that apart from the types A, and C, this inequality might
be strict, e.g. g of type B3, A = wj +ws and v = —wj —ws. We see from Theorem
3.2.1 that this also happens for D, and for all exceptional types.
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3.2 The degree of p, (q)

In this section we provide a proof of the main statement of this chapter: Theorem
3.2.1. We provide a monomial u € S(n~) of the predicted degree mapping the
highest to the lowest weight vector and show that there is no polynomial of smaller
degree satisfying this. To write down these monomials explicitly, let us denote
fx, the highest root of a Lie algebra of type X,. Further X,_; denotes the Lie
subalgebra generated by the simple roots {a1,...,an} \ {ar}, where Oy, = apwy
or in the Ap—case, X, is generated by the simple roots {aa, ..., a,—1} (we use
the indexing from [Hum?72]).

Theorem 3.2.1. The degree of p,,,(q) is equal to the label of the i—th node in the
following diagrams:

1 2 3 3 2 1 2 2 4 4 6 51
An o o o---0 o [ Bn o [ o [ o---o0==o
-1
2[5=1
M5+
1 2 n—2 n—1 n 2 2 4 4 6 /O 2
Cn o 0o---0 ° o Dy o ° o ° o-=--0__
—2 -1
2[25=1 Torag=]
o o
2 5
2 4 4 2 2 6 7 4 3
Eg o ° o ° o E7 0——0——0——0——0——0
6 8
o
8
4 8 11 8 6 2 2 6 4 2 2
E 0——0——0——0——0——0——0 F o ° o ° G ° o
8 4 2

Proof. Let uw € S(n™) be one of the monomial in Figure 3.1. These monomials
give certainly upper estimates for the degrees since (as they are in fact obtained
through the action of the Weyl group):

UV, = Vg (w;) € V(wl)

In general the degree of u is bigger than the minimal degree coming from Kostant’s
graded partition function (3.1.1). For Aj,C, and the even fundamental weights
for orthogonal Lie algebras the degrees coincide and hence we are done in these
cases.

We prove Theorem 3.2.1 for the remaining cases X, by downward induction on the
power of fg, . The maximal non—vanishing power of fg, is certainly a), where
hg =Y a)h;, further w; — wo(w;) — a)fy, is in the root lattice of a Lie algebra
of smaller rank, and we use induction on the rank of g. Thus it remains to show
that if

PE SN ) —wo(w,), degp < degu,p = fgxnpl with ¢ < a, (3.2.1)

then p.v,, =0 € V¥(w;).
Let X, be of type By, Dy or exceptional, then 0y, = w; and we denote

Af = {p € Ay fwj(ha) =k},
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Then A% = {0x,} and if 3 € AL then by, — 8 € A4. Thersfore, let p e S(n7)
satisfy (3.2.1), then we have by weight considerations p = fgx" 7kf/31 -+« 3,01 for

some f1,..., B € AL ,p1 € S(n7). We have to show that p.v,, =0 € V%(w;)
and we use induction on k for that:

ay +k ay+k
0= plfexn .vwi - (eexniﬁl) T (eaxnf/BQk)plfeXn .,Uwi
ay —k ay —k+¢
= cloy Tor o FouPr Ve + 2o foy, a0t

for some ¢ € C*, g, € S(n™). By induction the latter terms are equal to zero and

V_
SO fgxi kf51 <+ [y P10, is also zero.
This proves also that for all u from the list above we have u.v,, # 0in V*(w;). O
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Appendix

Here we present the Hasse diagrams H(ng )e, and H(n;_)g, for a better under-
standing of our work. In addition to convey the ordering of the roots for the
classical types A,, By and D, we provide in Figure 3.2 the complete Hasse dia-
gram of sly and in Figure 3.3 a concrete example of the Hasse diagram in the
(Dp, wp)—case, for n = 5,6. We remark that the shape of the Hasse diagram
H(ng s, and H(ng )so,, is equal to the shape of H(n; _ )soy, )., There-
fore, Figure 3.3 shows also the shape of the Hasse diagrams H(ng, )so,o, H (1 )s010
and H (N )soi,, H(N,,)s01,- Furthermore, we state the explicit polytopes for Eg
(Table 3.2), F4 (Table 3.3) and for the special cases: (Ba, wy), (Ds, ws) and (Ds,

ws) (Table 3.1).

A1
N
p

2 3
7N VN
B4 Bs Be
N N N
B Bs Bo B1o

p

Figure 3.2: Complete Hasse diagram of g = sl5.

B1
N
b1 B2
N N
B2 B3 Ba
N NN
B3 B4 Bs Be
NN NN
Bs Bs Br Bs Bo
YNV NN S
Br Bs B1o P11
N Y Y N Y
Bo P12 P13
4 NV
B1o P14
v
P15

Figure 3.3: H(ng, )soq, H (0, )sor,
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1 tax2taxs+as+axr+xgt+To<m
L1+ X2+ 23+ Ts +2x8+T9+T10 <M
L1+ X2+ Ta+T5+2x7+T9+T10 <M
L1+ X2+ T4+ T5+2x8+T9g+T10 <M
L1+ X2+ T4+ Te+2xg+Tg+T10 <M

Table 3.1: Polytope P(mwy) corresponding to g = sog and P(mwy), P(mws)
corresponding to g = s01g.

B> Ba 5 Bs

RN

By  Bs

N s

Bs  Br

s| 1|

Bs Do

al A2

B0 Bu
/3 2 N
B3 B2
ACRE
Bie < P15 < Pa

Figure 3.4: H(n_, )k,

T1+ a2 +23+ 24 +26+ 28+ 210+ 213 + 214 + 215 +T16 <M
X1+ T2+ X3+ 24+ T+ X3+ 10+ T12 + T4+ T15 + X6 S M
X1+ T2+ x3+ x4+ 27+ 23+ 210+ 213+ 214+ T15 + 16 S M
x1+x2+x3+ x4+ 27+ 28+ T10 + T12 + T1a + T15 + T16 S M
x1+x2 + X3+ x4+ 27+ 29 + T10 + T13 + T14 + T15 + T1g <M
1+ x2 + X3+ x4+ 27 + X9 + T10 + T12 + T14 + T15 + T1g <M
1+ x2+ 23+ x4+ 27+ 29+ T11 + T12 + T1a + T15 + Tig <M
x1+x2+ 23+ x5 + 27+ 28 + T10 + T13 + T1a + T15 + Tig <M
1+ T2 +x3+ 25 + 27+ a8+ T10 + 212 + T4 + 215 + 16 <M
1+ r2+x3+ x5 + 27 + X9 + T10 + 213 + T14 + 215 + 16 <M
x1+x2+x3+ x5 + 27 + 29 + 210 + T12 + T14 + T15 + 16 <M
r1+x2+x3+ 25 + 27+ T9+ 211+ T12 + T1a + 15 + Tig <M

Table 3.2: Polytope P(m) corresponding to Eg
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B B2 B3 Ba
2| N\
Bs  Bs
DNIERN
Br B
sl e |2
Bo  Bio
s] N |4
Bi1 P2
ARNRERN
P13 B Bis
ol 1/ |55
Bis  Bir
5|/ |a
Bis Pio
al /e
P20 Ba1
Vol A
Bz Po2
2|

Par < Pag ¢ PBas B

Figure 3.5: H(n_ )k,

1+ X2+ T3+ T4+ T8+ T10+ T11 + T13 + T4+ T15
1+ X2+ T3+ T4+ T8+ T10+ T12 + T13 + T4 + T15
1+ T2+ X3+ Tg + 27+ 29 + T11 + 213 + Tia + T15
1+ T2+ 23+ 24+ 27+ 210+ 211+ T13 + T4 + T15
1+ 22+ 23+ T4+ 27+ 210+ T12 + 213 + T1a + X315
1+ T2+ x4+ T5 + 28 +T10 + 11 + T13 + T14 + T15
1+ X2+ T4+ x5 +28+ T10+ T12 + T13 + T14 + T15
T1+ X9+ Ta+ x5 +T7+ X9+ T11 +T13 + T14a + T15
1+ X2+ Tq4+ x5 +2T7+ 210+ 211+ 213+ T4+ T15
1+ X2 +Tg+ x5 +2T7+ 210+ T12 + 213 + T4 + T15
1+ X2+ T3+ T+ T8+ T1o+ T11 + T13 + T4 + T15
1+ X2+ T3+ T+ Tg+ T1o+ T12 + T13 + T4 + T15

Table 3.3: Polytope P(w4) corresponding to Fyg

<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1
<1

(3.2.2)
(3.2.3)
(3.2.4)

(3.2.5)
(3.2.6)
(3.2.7)
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