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Abstract

AGN (Active Galactic Nuclei) and in particular their subclass blazars, are among the most
energetic objects observed in the universe, featuring extreme phenomenological character-
istics such as rapid broadband flux density and polarization variability, fast super-luminal
motion, high degree of polarization and a broadband, double-humped spectral energy dis-
tribution (SED). The details of the emission processes and violent variability of blazars are
still poorly understood. Variability studies give important clues about the size, structure,
physics and dynamics of the emitting region making AGN/blazar monitoring programs of
uttermost importance in providing the necessary constraints for understanding the origin
of energy production.

In this framework the FF-GAMMA program was initiated, monitoring monthly ~60
Fermi-GST detected AGN/blazars at 12 frequencies between 2.6 and 345 GHz since 2007.
For the thesis in hand observations and data analysis were performed within the realms
of the FGAMMA program, using the Effelsberg (EB) 100m and Pico Veleta (PV) 30m
telescopes at 10 frequency bands ranging from 2.64 to 142GHz. The cm to short-—mm
variability /spectral characteristics are monitored for a sample of 59 sources for a period
of five years enabling for the first time a detailed study of the observed flaring activity in
both the light curve and spectral domains for such a large number of sources and such
high cadence. Also the observing systems and methods are introduced as well as the data
reduction techniques. The thesis at hand is structured as follows:

Chapter 3 presents the reduction methods and post measurement corrections applied
to the data such as pointing offsets, gain—elevation and sensitivity corrections as well as
specific corrections applied for each of the EB and PV observing systems respectively.

Chapter 4 presents the analysis tools and methods that were used such as: variability
characteristics, flare amplitudes with a new method for estimating the intrinsic standard
deviation, flare time scales using Structure Function analysis, spectral indices and spectral
peak estimations.

Chapter 5 presents the results of the analysis performed upon the five year light curves.
The significance of variability through a x? test is estimated as well as the flare amplitudes
using the intrinsic variability of the light curves along with a new proposed k-index. The
introduction of the k-index enables the characterization of the observed variability ampli-
tudes across frequency, thus permitting us to limit the parameter space of various physical
models. Also flare time scales, brightness temperatures and Doppler factors are reported.

Chapter 6 presents the corresponding analysis in the spectral domain, including results
for spectral indices and an Smax — Vmax analysis. By determining the spectral peak of every
spectra for a selected number of sources, it is possible to track the evolution of the flaring
activity in the Smax — Vmax plane, enabling us to discriminate between different underlying
physical mechanisms that are in action. Finally Chapter 7 includes the overall discussion

and a summary of results obtained.



Zusammenfassung

Aktive Galaxienkerne (engl. AGN), insbesondere die Unterklasse der Blazare, zdhlen zu
den energetischsten Objekten des beobachtbaren Universums. Sie zeigen extreme phano-
menologische Charakteristika wie rapide Variation der Flussdichte und der Polarisation
iiber den gesamten Spektralbereich, Bewegung mit scheinbarer Uberlichtgeschwindigkeit,
hohe Polarisation und eine spektrale Energieverteilung, die das gesamte Spektrum ab-
deckt, mit einem typischem Verlauf, der zwei Maxima im niedrigen und hohen Energiebe-
reich zeigt. Die Details der Emissionsprozesse und der drastischen Variabilitdt sind bislang
nicht vollstindig verstanden. Untersuchungen der Variabilitit geben Hinweise auf die
Grofse, Struktur, Physik und Dynamik der strahlungsemittierenden Region. Daher sind
kontinuierliche AGN/Blazar-Beobachtungskampagnen von hochster Bedeutung, um den
Ursprung der Energieproduktion zu verstehen.

In diesem Rahmen wurde das FF-GAMMA Programm initialisiert, in welchem seit 2007
monatlich etwa 60 von Fermi-GST identifizierte AGNs/Blazare in 12 Frequenzen zwis-
chen 2.6 und 345 GHz beobachtet werden. Fiir diese Doktorarbeit wurden Beobachtun-
gen am Effelsberg-100 m-Teleskop (EB) und am Pico Valeta-30 m-Teleskop (PV) in 10 Fre-
quenzbédndern von 2.64 bis 142 GHz durchgefiihrt sowie die zugehorige Datenanalyse. Die
Beobachtung von 59 Objekten in verschiedenen Frequenzen tiber einen Zeitraum von fiinf
Jahren erlaubt zum ersten Mal das detaillierte Untersuchen von Intensitdtsausbriichen
(Flares) sowohl in den Lichtkurven als auch in den Spektren fiir eine grofse Anzahl von
Objekten bei so hoher Zeitauflosung. Die Beobachtungssysteme und -methoden werden
in dieser Arbeit vorgestellt, ebenso wie die Methoden der Datenreduktion. Die Arbeit ist
in nachfolgende Kapitel unterteilt.

In Kapitel 3 werden die Methoden der Datenreduktion vorgestellt, die nach der Beoba-
chtung angewendeten Korrekturen, darunter Offsets der Teleskopausrichtung, Signalve-
rstarkung, Sensitivitdts und spezifische weitere Korrekturen, die auf die Daten der EB und
PV Systeme angewendet wurden.

In Kapitel 4 werden die Methoden der Datenanalyse dargestellt, darunter die Charak-
terisierung der Variabilitdt, der Flare—Amplituden mit einer neuen Methode zur Einschit-
zung der intrinsischen Standardabweichung, der typischen Flare-Zeitskalen mittels An-
wendung der Strkturfunktion sowie Abschdtzung der spektralen Indizes und der Maxima
der spektralen Energieverteilung.

In Kapitel 5 werden die Ergebnisse prasentiert, die auf der Untersuchung der 5-Jahres-
Lichtkurven basieren. Die Signifikanz der Variabilitit wird mittels eines y>~Testes abgesch-
atzt sowie die Amplituden der Flares unter Verwendung der intrinsischen Variabilitat der
Lichtkurven und dem hier neu eingefithrtem k-Index. Der k-Index erlaubt die Charak-
terisierung der beobachteten Variabilitdtsamplituden tiber den gesamten Frequenzbereich
und ermoglicht es somit Schranken fiir die Parameter verschiedener physikalischer Mod-
elle zu finden. Des Weiteren werden Flare-Zeitskalen, Strahlungstemperatur und Doppler-
Faktoren diskutiert.

In Kapitel 6 werden entsprechend die Ergebnisse der Spektralanalyse dargestellt, daru-



iii

nter die Spektral-Indizes und die Smax — Vmax Analyse. Indem das Maximum jeder spek-
tralen Energiedichte verschiedener Objekte ermittelt wird, ist es moglich die Entwick-
lung eines Intensitdtsausbruches in der Smax — Vmax Ebene zu verfolgen. Dies erlaubt ver-
schiedene physikalische Prozesse zu unterscheiden, die Ursache fiir dieses Verhalten sind.

In Kapitel 7 werden die Ergebnisse dieser Doktorarbeit und deren Interpretation zusa-
mmengefasst.
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Introduction

With the opening of the radio window in the 60’s many great discoveries were made.
The discovery of the microwave background, pulsars and quasars are among the most
important. The term “quasar” originally stood for “quasi-stellar radio source”, and refers
to the fact that these type of objects are point like and appear very similar to stars when
are observed in the optical. These sources belong to a class of objects called AGN, which
stands for “Active Galactic Nuclei”. In the following a brief introduction to this type of
objects and to their different observed flavours is given.

1.1 Historical background

In the beginning of the twentieth century, Fath (1909) made the first observations in order
to clarify the nature of the “spiral nebulae”. The question back then was if these nebulae
are similar to other well known objects as the Orion nebulae or a collection of unresolved
stars. Seyfert (1943) began observations systematically of galaxies with emission lines. He
obtained spectrograms of 6 galaxies with nearly stellar nuclei showing emission lines su-
perimposed on a normal G-type star spectrum. These type of galaxies today are called
Seyfert galaxies in honour of the work of Carl Seyfert. The next leap came with the de-
velopment of radio astronomy in the 60’s. In 1963 the first quasars where discovered by
Schmidt (1963) with the observations of 3C273. These first results were also published
in papers by Hazard et al. (1963); Schmidt (1963); Oke (1963); Greenstein and Matthews
(1963) and their most reasonable explanation was that these objects were extragalactic in
nature with redshifts that according to Hubble expansion where placing them far beyond
our own galaxy. In particular 3C 48 was identified also in the optical as a variable source
(Matthews and Sandage 1963), with strong emission lines in its spectrum. An example of
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a quasar imaged in different wavelengths is shown in Fig. 1.1.

CHANDRA X-RA DSS OPTICAL NRAD RAD I:' NRAD RAD\D

Figure 1.1: A typical case of a quasar. Cen A at different wavelengths demonstrating the different
morphologies observed in AGN.

Today we know that these objects exhibit a compact core at the center and extended
radio structures and are the largest single known astronomical sources in the universe.
Their energy content is very large up to 10* erg/s. The origin of this energy and the way
it is converted into relativistic particles and magnetic fields is one of the most challenging
problems of modern astrophysics. Several properties of this new class of objects emerged:

e star like objects identified with radio sources

e time variable flux density

large UV flux

broad emission lines

large redshifts
e compact nucleus and jet structures in the radio bands

Today these galaxies are part of what we call an AGN. So, at a basic level, AGN are simply
the cores of galaxies that are in contrast to “normal galaxies” active. Not all AGN share all
of the above properties.

One of the defining characteristics of quasars and AGN is their broad spectral energy
distribution (SED). An example of an SED of the powerful blazar 3C 454.3 can be seen in
Fig. 1.2. Typically AGN are among the brightest objects in the sky at every observable
frequency. AGN spectra can not be described simply in terms of black body emission like
in the case of stars. Non-thermal processes are needed to explain the observed shape of
their spectra. The primary process is incoherent synchrotron radiation for the low SED
bump (see Sect. 1.4).

The radio morphology of AGN is described by extended structures that are resolved
by modern imaging techniques. VLBI radio images show a very compact feature which is
thought to be close to the “central engine” of the AGN producing the energy needed. The
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Figure 1.2: Example of the Spectral Energy distribution of 3C 454.3 Two distinct peaks are clearly

visible.

resolved features include long thin jets that extend away from the central core towards the

outer radio lobes and transfers energy from the central engine to the outer lobes in a highly

collimated beam of relativistic particles. Example of these features are seen in Fig. 1.1.

1.2 AGN structure

The amount of energy that is produced by the central source is enormous

usually exceeding the amount of energy
output of its host galaxy. Several the-
ories tried to explain this energy pro-
duction. Hoyle and Fowler (1963b) dis-
cussed the idea of a super massive star
of up to ~ 10® M, as an energy source.
Hoyle and Fowler (1963b) suggested
that a magnetic field could store a large
amount of energy, leading to explosions
and jets. Hoyle and Fowler (1963a) sug-
gested that the observed energies can
only be observed by the the contraction
of a mass of 107 - 108 M, to the relativis-
tic limit. The process that powers the
stars though , thermonuclear reactions,
is not enough to power quasars. This
was realized quite soon with the work
of Salpeter (1964); Lynden-Bell (1969);
Shakura and Sunyaev (1973).

Figure 1.3: Artistic representation of an AGN. Jets are de-
picted with yellow, acretion disk is the inner
yellow disk and a dust torus in purple around
the central engine. (Image courtesy of V. Kara-
manavis)

Salpeter (1964) and Zel’dovich (1964) proposed the idea of accretion onto a super-
massive black hole (SMBH). The black hole model received limited attention until Lynden-
Bell (1969) argued that black holes should be common in galactic nuclei.

Our current understanding of the AGN phenomenon includes as the central energy
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production region a black hole fed by an accretion disk of falling material and launching
relativistic jets alongside magnetic field lines. This AGN paradigm is graphically illus-
trated in Fig. 1.3. Broad emission lines are produced in clouds orbiting near the black hole.
A thick dusty torus obscures the broad-line region from transverse lines of sight. A hot
corona above the accretion disk plays a role in producing the X-ray continuum. Narrow
lines are produced in clouds farther away from the central engine. In summary the basic
structure of an AGN includes:

e A black hole, acting as the central engine of the AGN, with a mass range of 10°M, <
M < 10" M,

e An accretion disk, matter with angular momentum, spirals into the black hole and
forms a disk.

e An X-ray corona, surrounding the accretion disk. The X-ray emission is variable on
short time scales implying a very compact region. Its luminosity is is linked to opti-
cal/UV emission from the accretion disk.

e An obscuring torus, surrounding the black hole and accretion disk on parsec scales,
absorbing some part of the radiation and re-emitting it in the infrared.

o Broad Line Region (BLR), a region of small fast moving clouds close to the black hole at
a distance of ~ 1017-10'8 cm and displaying spectral lines with large velocity widths.
They absorb ~10% of radiation of the accretion disk, and re emit it in the form of
lines.

e Narrow Line Region (NLR), similar to the BLR region but at larger distances of the
order of 100 pc with less dense clouds that are moving with smaller speeds.

e Jets, about 10% of AGN exhibits two oppositely directed jets. The material inside the
jets is moving at relativistic speeds causing relativistic effects. As it will be discussed
later jets are the key ingredient for the range of phenomena observed.

1.3 AGN Classification & Unification

AGN exhibit a wide variety of different observational signatures. Some AGN produce
powerful radio jets while others do not, some produce powerful X-ray and y-ray emission
as well as broad optical emission lines and are highly optical polarized and others are not,
some are strongly variable while others are not. The main host galaxies of radio-quiet
AGN seem to be spirals in contrast to powerful radio loud AGNs that are usually found
only in ellipticals. Complicated at first glance a classification of all this phenomenology
exists, as shown at Fig. 1.4. The causes of these diverse characteristics can be traced down
to the combination of the AGN structure and the angle of the jet towards earth i.e. the line
of sight.
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Figure 1.4: Schematic view of the AGN classification with different types and sub-types according
to our current understanding.

Two major sub-divisions exist, radio-loud and radio quiet AGN. The first quasars ever
discovered were radio loud, but we now know that the majority is radio quiet and that
radio loud AGN are only ~10% of all AGN population. The separation in terms of radio
loud and radio quiet is based on the flux density ratio at 5 GHz to optical flux in the B-
band, with radio loud AGN having ratios of F,yio/Fopticar > 10 (Kellermann 1989). Radio
loud AGN are further sub-divided into the classes of blazars, Broad Line Radio Galaxies
(BLRG) and Narrow Line Radio Galaxies (NLRG). Radio-quiet AGN are sub-divided into
radio quiet quasars, Low luminocity AGN (LLAGN) and Seyfert galaxies.

These classifications are based upon the observed characteristics that include spectral
properties, structure at radio and other wavelengths. Blazars are furthermore divided into
Flat Spectrum Radio Quasars (FSRQ) and BL Lac objects, NLRG are divided to FR I and
IT types, BLRG into GPS (GHz Peaked Sources), CSO (Compact Symmetric Objects) and
CSS (Compact Steep Source) sources. Seyfert galaxies are further sub-divided into Type I
and IT and NLSY1 sources. The vast array of different phenomena and types can be unified
under a relative simple model. This unified scheme is graphically demonstrated in Fig. 1.5.
The main idea is that the type and thus the phenomena we observe from an AGN largely
depend on the line of sight towards the observer. In principle all AGN have the same basic
structure but their appearance changes with the angle that we look upon them. Below a
brief explanation of the most important AGN sub-types is given :

e Blazars

An AGN is called a blazar in the case that the line of sight is aligned with the jet and
thus the observer looks directly into the jet. This type of objects are the most variable
and belong to the radio loud category of AGN. Relativistic boosting of the radiation
along the direction of motion takes place in blazars and leads to the extreme apparent
luminosity at all wavelengths. Other characteristics of blazars include powerful y—
ray emission, high and rapid optical polarization. Two main type of blazars exist,
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Figure 1.5: Schematic representing our current understanding of the the AGN phenomenon accord-
ing to the unified scheme. The type of object we observe depends on the viewing angle
to the AGN. (graphic from Beckmann and Shrader 2013)

namely FSRQs and BL Lacs. These two classes have many common features but also
some differences that are summarized in Table 1.1. The main differences are their
optical features, the integrated power and spectral energies.

Table 1.1: Main differences between the FSRQ and BL Lac radio-loud AGN classes.

FSRQs BL lacs
Optical features | Em. Lines & Th. Bump | NO Em. Lines & NO Th. Bump
Top energy L~ 10% L~ 10%
Integrated power 10GeV 10 TeV

Unlike other AGNs, they do not emit much power in the broad emission lines. There
are two general classes of BL Lacs: High-Frequency Peaked BL Lacs (HBL) and Low-
Frequency Peaked BL Lacs (LBL). The LBL class have their low frequency SED peak
in the IR/optical, while the HBLs have their spectral break at UV /X-ray. Blazars and
their sub-types are the focus of the current thesis.

¢ BLRG

Broad line region galaxies are divided into GPS, CSO and CSS sources. GPS sources
emit in radio and have convex spectra peaking at GHz frequencies. The current
view for these sources is that they are young, compact, and powerful AGN that have
a large amount of gas in their central cores (Fanti et al. 1995). CSS source are quite
similar to GPS sources, but with a spectral peak turnover at a few hundred GHz.
CSO sources are practically a GPS source but with a two-sided morphology. Also
they are not so compact as CSS sources.
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e NRLG

NLRG class is sub-divided into FR I and FR II type of objects. FR I sources are best
known for their distorted jets. Originally, the FR classification is based on the ratio
between the distance from the core of the highest radio surface brightness to the
distance of the low-power radio width. Sources are classified as a FR I if the ratio is
< 0.5. FRII galaxies are those radio galaxies with large extended radio lobes farther
away from the central core. They typically have jets that appear undistorted.

e Seyfert galaxies

Different types of Seyfert galaxies were recognised by Khachikyan and Weedman
(1971), based on the widths of their emission lines. Both types show powerful narrow
forbidden lines from high excitation species. Some Seyfert galaxies also show broad
(~ 10000 km-s~!) Balmer lines, while in others these lines are much more narrow
(250 to 1000 km-s—1)

e NLSyl

Narrow-line Seyfert 1 (NLSy1) share the same properties as Seyfert type 1 galaxies
but with narrower Balmer lines (FWHM < 2000 km-s~!) and strong optical emis-
sion. They are peculiar because of their soft X-ray excess and rapid X-ray variability.
Recently it was also found that the are strong y-rays emitters.

1.4 Physical processes in Blazars

Several processes are actively producing the diversity of the observed phenomena in AGN
and particularly in blazars. In this section these processes are presented in more detail,
always from the perspective of the blazar subclass.

1.4.1 Relativistic beaming & Superluminal motion

One of the basic observational characteristics of blazars is relativistic beaming and super-
luminal motion. Relativistic beaming is referred to the process of modifying the emission
characteristics of emitting matter that is moving close to our line of sight at high relativistic
speeds. It can be shown (see Ghisellini 2012) that for instance the intensity of an emitting
region is modified due to relativistic effects according to I, = 53te . I, where I, is the ap-
parent intensity as received by the observer, I is the intensity actually emitted and ¢ is the
relativistic Doppler factor:

1

0= I'(1-p-cosb)

(1.1)
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where:

I' :isthe Lorentz factor

6 :is the angle between the line of sight and the direction of movement

B : equals v/c where v is the intrinsic linear velocity and c the speed of
light.

Another effect for an emission element moving near the speed of light and close to the
line of sight, is the illusion of apparent transverse motion which is greater than that of the
speed of light i.e. superluminal motion. Relativistic beaming (Blandford et al. 1977; Bland-
ford and Konigl 1979) is widely accepted as the simplest way in explaining the observed
phenomena. This effect occurs for emitting regions moving at actual speeds lower than
the speed of light and with small angles to the line of sight (Rees 1966). Lets assume that
a radiating feature is ejected from an AGN, with a velocity v and an angle 8 with respect
to the line of sight. After time t, the feature has moved a distance v - t. This motion is
projected along the line of sight and is vtcosf) and perpendicularly vt - sinf. An observer
in earth sees this emission delayed by At when compared to the time the feature was at the
AGN source, according to:

At = ct(1 — cos0) (1.2)
Then the apparent transverse velocity seen by the observer is :

vsin @

" 1—Bcosh (1.3)

Va
Typical proper motions observed with Very Long Baseline Interferometry (VLBI) are in
the range of 0.1 to 1 milliarcsecond per year. These motions are corresponding to apparent

velocities of up to ~ 30 times the light speed (e.g. Vermeulen and Cohen 1994). Relativistic
effects are of profound importance for our understanding of quasars and AGNs.

1.4.2 Synchrotron emission & absorption

The electromagnetic radiation emitted when charged relativistic particles are accelerated
radially is called synchrotron radiation. Usually the Lorentz force is responsible for the
resulting radiation by means of gyrating particles around magnetic field lines. Our goal
and what we need to know is the shape and characteristics of an ensemble of electrons that

emit synchrotron radiation.

Two processes take place, synchrotron emission and absorption. What makes syn-
chrotron radiation special is the fact that relativistic particles are the source of the radia-
tion and that their energy distribution is not Maxwellian. Considering the emission part
first, it is shown that the synchrotron flux received from a homogeneous and thin source
of volume VocR3 and at a luminosity distance dy, is given by :
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14
Fs=¢6(v)- 7 (1.4)
L
and if we replace the emissivity then we have :
F;=6%-R-K-B'f*.y=® (1.5)

where:

€s (V) :is the frequency depended emissivity
o : is the spectral index
B : is the magnetic field

Considering the absorption part as well, for an absorbed source the brightness temper-
ature, that is defined by Eq. 5.1, must be equal to the kinetic energy of the electrons. It can
be proven that for the absorption from photons, the following relation holds :

V512
I (V)OCW (1.6)
To have the final expression for the flux we must integrate over 6s. We obtain :
V5/2
F(v)oct; 277 (1.7)

The final spectrum emitted by a collection of electrons is shown in Fig. 1.6

P IR BTN RN

Log F(v) [arbitrary units]

10 v, 12 14 16 18
Log v [Hz]

Figure 1.6: Spectrum of an ensemble of electrons from a partially self absorbed source. (Ghisellini
2012)

A very important point is the transition between the self-absorbed part to the optically
thin part. This transition happens at the self-absorption frequency v;. It can be shown that
this frequency is given by:
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2/(p+4
Vot [R K- BWZW] [ (1.8)

the quantity p is one of the indices of the original power law distribution: (p = 2-a +
1). The self-absorption frequency is a crucial quantity for studying astronomical sources
exhibiting synchrotron radiation because the synchrotron spectrum peaks very close at the
frequency of v;. For a more detailed derivation see Ghisellini (2012).

1.4.3 Inverse Compton Scattering: SSC & EC

The mechanisms producing the high energy y-ray peak in blazar SED is believed to be: (i)
inverse Compton up-scattering of photons to high energies or (ii) proton induced cascades
in hadronic models (Mannheim 1993). Inverse Compton scattering involves the scattering
of photons from low to high energies by ultra-relativistic electrons whereas the photons
gain and the electrons lose energy. In the framework these leptonic models target pho-
ton fields for inverse Compton up-scattering are required(e.g Bottcher 2007; Krawczynski
2004; Sikora and Madejski 2001). There are three main sources of target photons namely:
(a) the synchrotron photons themselves (Synchrotron Self-Compton, SSC), (b) external
photons from the accretion disk (External Comptonization of Disk photons, ECD) (Sikora
et al. 1994; Dermer and Schlickeiser 1993), (c) external photons from the BLR (Sikora et al.
1994) or the dusty torus (Bfazejowski et al. 2000).

1.5 Variability of Blazars

Up to now we have seen the various types of AGN observed and the various processes
that produce the observed spectra in a specific time. Variability though have been ob-
served from the early observations of AGNs with observed time scales of months, years or
even minutes are frequently observed. The rapid blazar variability, probes spatial scales
inaccessible even to interferometric imaging and has been explained in terms of e.g. rel-
ativistic shock-in-jet models (e.g Marscher and Gear 1985; Valtaoja et al. 1992a,b; Stevens
etal. 1994; Tiirler 2011) or colliding relativistic plasma shells (e.g. Spada et al. 2001; Guetta
et al. 2004). Quasi—periodicities seen in the long term variability curves on time scales of
months to years, may indicate systematic changes in the beam orientation (Camenzind
and Krockenberger 1992), possibly related to binary black hole systems, MHD instabili-
ties in the accretion disks and/or helical /precessing jets (e.g. Begelman et al. 1980; Villata
and Raiteri 1999; Chen et al. 2013). Bellow a short description of the shock in jet model is
presented.

1.5.1 Shock-in-Jet model

The classical shock in a jet model of Marscher and Gear (1985); Valtaoja et al. (1992a,b);
Stevens et al. (1994); Tiirler (2011) assumes a shock wave propagating through a conical
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jet accelerating relativistic particles at the shock front (Fig. 1.7), while travelling behind
the shock front these particles loose energy due to different mechanisms i.e. Compton
synchrotron and adiabatic losses. The three distinct evolutionary stages can be described

as follows:

black hole synchrotron
— Vs emission

propagating
shock front

Figure 1.7: Representation of a the shock in jet model. (image from: Ttirler (2011))

the growth stage: The first is called the Compton stage due the dominant energy losses
by Compton scattering. It is characterised by the increase of the observed turnover flux
density and the decrease of the turnover frequency. This stage can be described by the
following relations :

S, ey (11-0/12(+ )] (1.82)

Umoc R~ (@ +D/4 (1.8b)

Sm :is the flux density at the turnover frequency
Vm :is the self absorbed turnover frequency

«  :is the spectral index

R :is the distance from the vertex of the cone

the plateau stage: The second is called the synchrotron stage were energy losses are dom-
inated by synchrotron losses of the electrons. It is characterized by and almost constant
value of the turnover flux density and the decay of the turnover frequency. The behaviour
of the turnover flux density and frequency can then be described by :

Smocvr[rgzs—S)-(2+3a)]/[4(s+2)+3o¢(s—1)] (1.8C)

Vo R AG+2)+3u(—1))/[3(s+5)] (1.8d)
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where s is the slope of the spectral energy distribution.

the decay stage: The third and last is called the adiabatic stage and refers to energy losses
due to adiabatic expansion. It is characterized by the decrease of both the turnover fre-
quency and flux. In that case the above relations become :

DECAY PLATEAU GROWTH

n KRo™-

1 2 3 4 5 6
| B I | | |
observing frequencies log y

Figure 1.8: Prototype behaviour according to the generalized shock—in jet model of Valtaoja et al.
(1992b)

Smocy - D/(7548) (1.8¢)

Vo R 5+ B+4)] (1.89)

These three stages are demonstrated in Fig. 1.8, tracing the self-absorbed turnover fre-
quency of the shock spectrum as it evolves in the frequency-flux space. The standard
Marscher and Gear (1985) model assumes a constant Doppler factor whereas the latter can
strongly influence the slopes of the different evolution stages in the Smax — Vmax plane. This
model is the basis that the generalized shock in jet model of Valtaoja et al. (1992b) is based
upon.

1.5.2 Geometrical models

Apart from shock in jet model described above also geometrical effects can modulate the
observed emission and can introduce variations in flux density on different long term time
scales. One possible explanation is the emission regions moving alongside bend radio
structures. Such bend jets are frequently found (e.g Agudo et al. 2012; Lobanov and Zen-
sus 2001; Ly et al. 2007; Piner et al. 2009; Camenzind and Krockenberger 1992). Several the-
oretical models exist i.e. oscillating bent jets, helical modes in hydrodynamic jets (Hardee
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1987) or in magnetized jets (Konigl and Choudhuri 1985). The basic idea is that when-
ever an emission feature moves along alongside the helical or bend structures differential
Doppler boosting occurs producing the observed variability.

1.6 F-GAMMA Program description

F-GAMMA stands for Fermi Gamma-ray Space Telescope AGN Multi-frequency Moni-
toring Alliance and comprises the coordinated efforts of a broad consortium of scientific
groups and observatories with the aim to collect (quasi-) simultaneous and high—precision
broadband monitoring data (total intensity and polarization) for a large number of y-ray
sources in the “low-energy” synchrotron part of blazar SEDs. Monthly monitoring obser-
vations are performed for about 60 sources at frequencies between 2.6 and 345 GHz with
the Effelsberg 100-m (EB), Pico Veleta 30-m (PV) and APEX 12-m telescopes including
polarization at several bands.

Scientific motivation and goals of the program

As already mentioned Blazars (FSRQs and
BL Lacs) as AGN sub—class exhibit extreme
phenomenological characteristics such as
rapid broadband flux density and polariza-
tion variability, high degree of polarization
and a broadband, double-humped spectral

FERMI-GST

energy distribution (SED) (e.g. Urry 1999). PN
. MULTI-FREQU|ENCY]
The recent discovery of blazars as a group MONITORING

ALLIANCE

of bright and highly variable high energy
y-ray sources (Hartman et al. 1992) ex- Figure 1.9: The F-GAMMA program logo.
panded our knowledge but many questions remain unanswered. Is the jet composition
leptonic or hadronic and which are the emission processes? What is the origin of their
often violent broadband variability? Where in the jet are the high energy y-ray photons
produced? Is the production region located at the jet—foot point close to the SMBH or at
several parsecs downstream?

The launch of the Fermi Gamma-ray Space Telescope ((Fermi—GST Michelson 2008) in
June 2008, along with the Large Area Telescope detector (LAT, Atwood et al. 2009) on board
Fermi and its dramatically improved capabilities compared to its predecessor EGRET, is
providing spectacular y-ray light curves and spectra resolved at a variety of time scales
for a large number of AGN during the first years of operation (Abdo et al. 2009a, 2010b;
Ackermann et al. 2011).

The new era in AGN astrophysics introduced by Fermi-GST will help answer still
open questions, in particular the production and location of the y—ray emission as well
as the origin of the rapid (time scales of days to months/years) variability of the syn-
chrotron and IC branch. The observed rapid blazar variability as already mentioned is
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attributed to either intrinsic variability or geometrical models. Variability studies give
important clues about the size, structure, physics and dynamics of the emitting region
making AGN/blazar monitoring programs of uttermost importance in providing the nec-
essary constraints for understanding the origin of energy production.

Detailed long term monitoring data sets of large source samples are rare at cm and
short-mm bands. In this framework, and in order to fully explore the opportunities opened
up by Fermi-LAT, the FFGAMMA monitoring program (Fuhrmann et al. 2007; Angelakis
et al. 2010b; Fuhrmann et al. 2014; Angelakis et al. 2015) was initiated in 2007, monitoring
the variability and spectral evolution of ~ 60 Fermi bright sources at frequencies between
2.6 and 345GHz. It is the first AGN radio monitoring program that covers such a large
frequency range in a highly homogeneous and coordinated manner.

Participating facilities and groups

The core facilities of the FGAMMA program are the EB and the PV telescopes. A full
and detailed description of the observations performed in these two telescopes is given in
Sect. 2, Sect. 3.1.1 and Sect. 3.3.1.

The F-GAMMA program is closely collaborating with a large number of other obser-
vatories, programs and teams in the AGN community. A summary of all the participating
facilities is shown at Table 1.2. More specifically :

o the APEX 12-m telescope

Since 2008, the bolometer array LABOCA (Siringo et al. 2008) of the APEX 12-m
telescope to obtain complementary observations at a frequency of 345 GHz. Quasi-
regular flux density measurements are performed during several dedicated APEX
LABOCA time-blocks per year. These, however, are not coordinated with the EB and
PV measurements and instead depend on the scheduling of the regular LABOCA
sessions. At APEX, a sub-sample of 25 y-ray blazars of the F-GAMMA sample are
observed together with a sample of 14 southern hemisphere y-ray AGN. Details in-
cluding the first five years of data will be presented in Fuhrmann et al. (in prep). (see
also Larsson et al. 2012).

o the Caltech/OVRO 40-m monitoring program

In 2007 a program complementary to F-GAMMA was commenced at the OVRO 40-m
telescope. It is monitoring a statistically complete sample of about 1200 blazars. This
sample also includes all the sources that are monitored by the FGAMMA program.
The observations are performed at least twice a week making it a perfect companion
to the monthly observations of the FFGAMMA program. For more details see also
Richards et al. (2011)

o Abastomani Observatory optical monitoring program

Abastomani Observatory observes a large sample of AGN since 1997 at the optical R
band using the 70-cm and 125-cm telescopes (Kurtanidze et al. 2009). There is a large
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overlap in monitored sources with the F-GAMMA sources.

e Korea Astronomy and Space Science Institute: monitoring program with the KVN

An F-GAMMA collaboration has been established with the Korean VLBI Network
(KVN) team using the KVN antennas for single-dish monitoring of y-ray loud blazars
at 22 and 42 GHz in total intensity and polarisation. The program started in 2010 and
is performed monthly including most of the F-GAMMA sources.

Table 1.2: List of participating telescopes and projects in the F-GAMMA program.

Telescope Band Frequencies Diameter Remarks
[GHz] [m]
EB cm/mm  2.64,4.85,8.35,10.45,14.6, 100 Total int. & polarization
14.6,23.02,32.0,43.0
PV mm 86.24,142.33,228.24 30 Total int. & polarization
APEX sub-mm 345 12 Quasi regular since 2007
OVRO cm 15 40 bi-weekly
KVN cm/mm  21.7 & 424 21 monthly since 2010
Abastomani  optical R band 0.4 —

1.7 Scope of current thesis

The lack of continuous observations at a wide range of spectral bands and the lack of suf-
ficiently dense sampled and long—-term monitoring data prevented the detailed study of
the broadband jet emission in the past. The analysis performed for the thesis in hand is ac-
complished within the framework of the F-GAMMA program, analysing the variability of
light curves and quasi-simultaneous spectra of the first five years of F-GAMMA observa-
tions, allowing a detailed study of the broadband emission characteristics and variability
scenarios.

While cm variability is believed to originate mainly at the outer parsec scales of jets,
at higher frequencies the lower source intrinsic opacity allows a deeper and less obscured
look into the central engine. Consequently, the variability in the mm bands probes the pro-
cesses in the ultimate vicinity of the core and allows a far more direct study of the physics
of the central engine than possible at cm bands. In the current thesis cm and short-mm
variability is studied as a whole allowing for the first time to study the evolutionary paths
of flares from frequencies as high as 142 GHz down to 2.6 GHz for such a large number of
sources. Variability characteristics (amplitudes and time scales) and spectral characteris-
tics (spectral indices, Smax — Vmax flare peak analysis ) are presented along with estimations
of brightness temperatures and Doppler factors. The thesis is organized as follows:

Chapter 2 provides general information of the source sample characteristics and the
dataset that is used for the analysis. The observing methods utilized for observations
performed at EB and PV, as well as a cross calibration study of the two aforementioned
telescopes. Finally information the observing logistics is provided.
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Chapter 3 presents the data reduction methods and post measurement corrections ap-
plied to the data acquired with EB and PV alongside with a detailed error budget analysis
and a detailed study of the PV telescope system.

Chapter 4 describes the analysis tools and methods that are applied to the light curves
and broadband spectra to obtain information such as: variability characteristics, flare am-
plitudes, flare time scales, spectral indices and spectral peak estimations.

Chapter 5 presents the results in the time domain of the analysis performed upon the
five year of EB and PV combined light curves. The significance of variability through
a x? test is estimated as well as the flare amplitudes using a new analysis method for
the estimation of the intrinsic variability of the light curves along with a new proposed
k-index to quantify the variability across frequency. Finally flare time scales, brightness
temperatures and Doppler factors are reported.

Chapter 6 presents the corresponding analysis in the spectral domain, including results
for spectral indices and an Smax — Vmax analysis.

Finally Chapter 7 provides the overall discussion and summary of the obtained results
and the contribution of the thesis at hand. Finally a short description of future studies that
can be based on the results obtained here is provided.



Observations

2.1 The Source sample

Since January 2007 the F-GAMMA program has been monitoring about 60 sources on a
monthly basis, consisting of the most prominent, famous, frequently active, and usually
strong blazars. In June 2009 a revision of the sample took place making the total number
of sources that were ever observed within the program ~90. The source sample that is
used for the analysis presented here consists of the 59 sources of the revised F-GAMMA
sample. The selection criteria of the original and the revised samples can be summarized
as follows:

The original F-GAMMA sample: The F-GAMMA source sample observed between
January 2007 and June 2009 consisted of 69 sources with a declination limit of § > —30°.
A large fraction of these sources were selected on the basis of their previous y—ray detec-
tion with the EGRET detector on board the Compton Gamma Ray Observatory (CGRO)
and their presence in the “high priority” AGN/blazar list announced by the Fermi-LAT
AGN group (Fuhrmann et al. 2007). Furthermore, the source selection was done so that
a maximum overlap with existing cm and mm VLBI and other programs of similar kind
is achieved. Of the 61 original sources monitored at PV, 35 sources were also part of the
more general monitoring conducted by IRAM.

The revised F-GAMMA sample: After the launch and the first year of Fermi-GST oper-
ations a revision of the original sample was performed in June 2009 to exclusively include
Fermi-GST detected sources. Specifically, 38 sources of the revised sample have already
been in the original sample, while 31 have been replaced by new Fermi -y-ray sources. 34
sources are part of the more general monitoring conducted by IRAM. Furthermore, some
of the new sources have data prior to June 2009, thanks to the IRAM program. The original
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and revised samples are presented in Tables A.1 and A.2 along with some basic informa-
tion.

It must be noted that the described F-GAMMA samples are not constructed accord-
ing to strict selection criteria and are thus statistically incomplete. Generalizations of any
findings must be made with caution. To address the incompleteness of the source sam-
ple and to enable statistically robust population studies of the variability properties of
blazars, a statistically complete parent sample is needed. For this purpose sources located
at 6 > —20° where selected from CGRaBS (Healey et al. 2008) and are observed about twice
each week at 15 GHz within the OVRO 40 m monitoring program (Richards et al. 2009).

2.1.1 Redshift distribution of FF-GAMMA Blazars

For several studies that follow (Chapters 6 and 5) the knowledge of redshift (z) for mon-
itored sources is important. The distribution of z for the revised sample for the FSRQs
and BL Lacs is presented in Fig. 2.1. It is clear that FSRQs are systematically farther away
compared to BL Lacs as expected. The mean value of z for all the sources in the sample is
0.77 with a median of 0.66 , while FSRQs exhibit a mean value of 1.18 and median of 1.14
and BL Lacs a mean value of 0.29 and median of 0.19.
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Figure 2.1: Redshift distribution of FFGAMMA blazars. All sources in Grey, BL Lacs in Red, FSRQs
in Black and other types in Green.

For any physical quantities that are estimated from the analysis done for the current
thesis (e.g brightness temperatures, Doppler factors, k-index), the redshift distribution is
taken into account.

2.1.2 The Dataset

The dataset used for the following analysis covers the period from January 2007 to January
2012 i.e. the first five years of F-GAMMA observations. All sources in the revised sample
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are utilized and given the limited sampling and time coverage of APEX, the analysed
dataset is based on 10 different bands provided by EB and PV (i.e. 2.64, 4.85, 8.35, 10.45,
14.6, 23.05, 32, 42, 86 and 142 GHz, Table 1.2). Details for each source including J2000
coordinates, number of observations, redshift and source class are given in Table A.2.

Based on the BZCAT catalogue (Massaro et al. 2009) the optical classification of the
revised sample is presented in Table 2.1 demonstrating that about 54 % of the sources are
FSRQs and about 25 % are BL Lac objects. 7 sources, however, lack a detailed classification
and are denoted simply as “Blazars”.

Table 2.1: Summary of the optical classifications for the sources in the original and revised F-
GAMMA samples.

- FSRQs BL Lacs Blazar Other

Orig.: 30(49.1%) 23(37.7%) 4(6.6%)  4(6.6%)
Curr.: 32(54.2%) 15(254%) 7(11.9%) 5(8.5%)

The number of sources of the original sample detected by Fermi-GST after the first 11
months of operation (Abdo et al. 2010b) is given in Table 2.2 demonstrating the high y-ray
detection rate for the original sample (81 %). Table 2.2 shows that BL Lac objects of the
F-GAMMA sample have a higher detection rate than FSRQs. However the Large Area

Table 2.2: Fermi-GST detections for the different source classes of the original sample with respect
to the 11-month source list (Abdo et al. 2010b).

Class Sample fraction Fermi-GST

(%) detected non-detected
FSRQs 32 (51.6%) 26 (81.3%) 6 (18.7%)
BLLacs 23(37.0%) 21 (91.3%) 2(8.7%)
Blazar 3(4.8%) 1 (33.3%) 2 (66.6%)
Other 4 (6.5%) 2 (50.0%) 2(50.0%)
Total 62 (100%) 50 (80.6%) 12(19.4%)

Telescope (LAT) aboard Fermi-GST is a pair conversion telescope and source detection is
biased towards the detection of “hard” spectrum sources owing to the strong energy de-
pendence of the Point Spread Function (PSF) of the telescope (Abdo et al. 2009b). The
detected BL Lac objects amount to half of the total detected sources by Fermi-GST . This
explains the higher relative number of detected BL Lac objects compared to FSRQs in the
F-GAMMA sample considering the selection criteria.

2.2 Observing methods

F-GAMMA as a monitoring program covers many years of observations. It is essential to
conduct observations and reduce the acquired data continuously in a self-consistent way.
This enables comparison of the results over the entire length of the program. The reduction
techniques are described in Sections 3.3.3 and 3.1.2, for EB and PV data, respectively.
Inevitably throughout the years some changes occurred as for instance with the up-
grade to the new EMIR receivers (see Sect. 3.1.1) or the change of the secondary mirror
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at EB . In any case continuity and backwards compatibility was always insured with any
previous status. In the case of the new EMIR receivers, possible cross—calibration differ-
ences between the two different receiver systems was investigated as well as other details
of the EMIR receivers (see Sect. 3.1.3). All other details concerning the actual observations
remained the same for both EB and PV during the F-GAMMA observations.

221 Observing modes

The notion ‘observing mode’ refers here to the method used to obtain an estimate of the
flux density of a source (see also Wilson et al. 2009, for more details). There are two ob-
serving modes that can be combined with a switching mode (Sect. 2.2.2) to realize the
observing method.

On-Off method

A ‘On-Oft’ scan is defined by two distinct states of the telescope. The first one with the
telescope pointing on the source for the required integration time and the second one with
the telescope pointing off the source in a preferably empty portion of the sky for the sub-
traction of atmospheric effects. This method is highly time efficient and suitable for the
detection of weak sources. For reasons that will be apparent bellow it was not chosen as
the standard observing method for observations within the F-GAMMA program.

Cross—scans method

A ‘cross-scan’ is defined by the slew (scan) of the telescope over the target position (ob-
served source) with a length of about 3-4 times the telescope beam width, producing a
Gaussian profile as the result of the convolution of the source brightness distribution on
the sky with the response pattern of the telescope. Examples of cross—scans are shown in
Figs. 2.3 and 2.2 for PV and EB respectively. A typical cross scan made with EB consists of
four sub—scans' as shown, two in each driving direction (Azimuth/Elevation). In Fig. 2.3
a typical example of a cross—scan with at PV is presented. Here again the scan is com-
posed of four sub—scans two in each driving direction. whereas the azimuthal sub-scans
are utilized with the double-beam technique.

There are several advantages of the cross—scans method: (a) it provides a very good
estimate of the baseline, enabling us to easily subtract it, (b) it provides an excellent es-
timate of the instantaneous pointing error of the telescope (see Fig. 3.2). By having two
consecutive cross—scans we can minimize the pointing offset of the second cross—-scan by
measuring the first one?, (c) provides immediate information of confusing sources in the
field near the studied source by examining the profile of the cross—scan, (d) provides im-
mediate information if the source is point like or extended with respect to the telescope
beam size. Confusion is especially important for lower frequencies where the telescope

IEvery sub-scan is a cross-scan in a specific direction.
2See section 3.1.3 on how a pointing correction is done.
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Figure 2.2: Example of a cross scan as it is taken with the EB 100m telescope. This particular scan
has four individual sub-scans. Two in each driving direction (AZI, ELV)

beam becomes large and thus the probability of having two or more sources in the field of
view increases. For all the above reasons the cross—scan method is widely used at the EB
for flux density measurements.

There are also some disadvantages of the method that should be taken into account: (a)
cross—scans are less suitable for very weak sources. A considerable amount of integration
time is spent slewing over the source, thus the actual time on source is small. (b) In conse-
quence with the previous, in order to reach a usable flux density limit a cross-scan requires
more observing time compared to the ‘on-off” method. Thus when very low flux density
levels are required the ‘on-off” method is more suitable. For the FF-GAMMA program all
the sources were bright enough (> 0.3 Jy) and the aforementioned advantages of the cross
scans method enabled a high accuracy in the determination of the flux density.

Measuring the flux density from cross scans As it can be seen in Fig. 2.2 the resulting
response pattern of a cross—scan has a Gaussian shape. It is the convolution of the beam
pattern and the brightness distribution of the source at the sky. The general method to
calculate the flux density of a source observed with a cross—scan, is to calculate the area
bellow the Gaussian profile which is represented by the integral of the Gaussian. Assum-
ing that the source is point like and thus not resolved by the telescope, it can be proven
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Figure 2.3:
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Example of a cross scan as it is taken with the PV 30m telescope. This particular scan

has four individual sub-scans, two in Azimuth and two in Elevation. The azimuthal
sub-scans are with the double-beam technique.

that the integral is equivalent to the height of the peak of the Gaussian profile. The antenna
temperature of a source is given by the peak of the Gaussian after the subtraction of it’s

baseline (see also Sect. 3.1.2).

2.2.2 Switching Modes

The notion ‘switching mode” refers to the method used at a radio telescope to obtain an
estimate of the observing system instabilities and noise. By ‘observing system” the contri-
bution of the telescope and the atmosphere is inferred. The goal of any switching method
is to remove these effects and also the tropospheric perturbations that highly affect the
quality of the data.

Beam Switching

Beam switching or else multi-beam observation, is a general method in which the signals
from two different areas on the sky are subtracted from each other to remove atmospheric
effects. For the PV 30 m telescope beam switching is realized through a rotating chopper
wheel in the receiver cabin or by using the wobbler technique (see bellow). The use of
chopper wheel dictates that in each rotation two reflecting blades are moved into the beam
path for a total of four phases: (1) direct beam path to the source, (2) beam path offset by
first blade, (3) direct beam path, (4) beam path offset by the second blade of the chopper
wheel. The source signal is calculated as the difference between direct and offset phases.
This ‘chopper wheel” method should not be confused with the ‘chopper wheel calibration’
which is a different concept (see Sect. 3.1.1 for details on the latter).

For EB the beam switching method is utilized with physically different feeds placed at
adjacent positions in the (primary or secondary) focus. One feed is pointing the source and
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at the same time the other on an adjacent and empty position of the sky. This capability
is not present for all the secondary focus receivers that are used by the F-GAMMA obser-
vations (see also Sect. 3.3.1). Software beam switching is the preferred method during the
observations of the FF-GAMMA program with the EB telescope.

Frequency Switching

Frequency Switching is usually used for observations of spectral lines. This mode switches
the observing frequency between the desired frequency and one that is very different. So
there are two phases, the final signal is calculated as the difference between these two
phases. This method requires careful calibration as it requires that the receiver character-
istics do not change over the phases.

Wobbler Switching

During wobbler switching the secondary mirror changes its position relative to the op-
tical axis and thus changing the path of the beam and equivalently the position that the
telescope is pointing on the sky is changing. The wobbling secondary mirror is switched
between two positions, which are offset by a fixed amount. The first position being the
‘source” and the second being the “sky’, thus there are two phases, and the signal is cal-
culated as the difference between these two phases. Wobbler switching was used with
the new EMIR system using a Wobbler throw of 240”and a frequency of 0.25Hz. This
‘wobbling” procedure offers several advantages for observations, in particular improved
baseline quality. Currently the Wobbler only works in the azimuth direction for the PV
30 m telescope. Wobbling capability does not exist for the EB 100 m telescope.

In particular for the PV telescope if wobbler switching and the on—off method are com-
bined, the effectively data are collected at three positions: (1) the source position, (2) the
source position plus the throw from the wobbler, (3) the source position minus the wobbler
throw. Data taken from the first phase are treated as source signal, data from phase two
and three as the off-source reference signal.

2.2.3 Focus & Calibration

“Focus” refers to the procedure of maximizing the response of the telescope to the incom-
ing radiation. This is done by moving the receiver to the focal point of the telescope or
equivalently the focal point to the receiver. The latter can be achieved by changing the
distance of the secondary mirror to the primary mirror. This technique is implemented in
EB for practical reasons.

A typical FFGAMMA observing session lasts several hours. During this time, tem-
perature changes periodically from day to night and also randomly due to fast changing
weather conditions. Temperature can lead to expansion and contraction of the telescope
structure which affects the position of the focal point thus it is of uttermost importance to
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focus regularly. The strategy that is implemented for a typical F-GAMMA observing run
is the following;:

e focus the telescope when the observing session starts

e focus always after a large change in temperature and always when the temperature
is stabilized. This usually is the case during day—night changes

e focus the telescope again, always when there are large gaps during the observing
session

“Calibration” refers to the procedure of observing a source with known flux density
that is stable over time. The goal is during the reduction of data to relate the system
temperature of the telescope to the physical value of Jy (Sect. 3.3.4). It is important to
calibrate as often as possible and with different calibrator sources, in order to detect and
later correct any systematic deviations of focus or any other problems that could occur.

Using several calibrators sources (Table 3.8), the calibration strategy that is followed
during observations is the following:

e calibrate at the beginning of the observing session before the first target source is
observed

e calibrate every 3—4 hours

e when there is a large gap of time between sessions then always start with a calibra-

tion
e calibrate always at the end of the observing session

Usually focus and calibration is performed at the same time using the same calibrator
for both procedures. This tactic saves time and increases the number of calibration mea-
surements taken. In the case a calibrator is not high in the sky to perform a focus, then a
target source is used that has high flux density and is unresolved by the telescope in all the
frequencies that the focus is performed.

2.3 EB - PV cross calibration

In this section the accuracy of the relative calibration between the EB and PV stations
is discussed. Because the two telescopes observe at very different frequencies (EB: v <
43GHz and PV: v > 86 GHz), one must rely on the spectral properties of a calibrator
source.

NGC 7027 has a well defined as well as stable spectrum and is being observed by both
telescopes. Its spectrum is mildly convex and follows a power law of the form S = k- v %1
at frequencies above 10 GHz. In Fig. 2.4 is shown: (a) the observed mean spectrum (yellow
curve), (b) the theoretical spectrum (Zijlstra et al. 2008) (green curve). In black is shown
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the power law S = k-v~%! as determined by the theoretical spectrum in the range 15 to
43 GHz and extrapolated to the PV frequencies.

It is apparent that the observed EB spectrum agrees well with the theoretically expected
one. These divergences are calculated for every frequency and the results are presented
at Table 2.3. It is clear that the mean divergence for most of the frequencies is better than
~ 2%. The highest divergence is observed at 228 GHz. This is not due to the influence of
weather, which would cause only a scatter and not a systematic divergence but mainly due
to an imperfect beam correction factor at this frequency. NGC 7027 at these high frequen-
cies is not point like and furthermore is expanding with time (Zijlstra et al. 2008) making
it more difficult to estimate a proper correction. It should be noted though that this affects
nothing in terms of analysis and conclusions in this thesis, since 228 GHz data are note

used.
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Figure 2.4: The radio spectrum of NGC 7027 as observed with EB at 2 to 43 GHz and with PV at 86
to 230GHz. A very good agreement with the theoretical spectrum is indicative of the
good cross-calibration between both telescopes.

Table 2.3: Observed and theoretical spectrum divergence of NGC 7027. For every frequency in the
first row the percentage divergence is given in the second row.

Freq (GHz) 264 485 836 1045 146 2305 32.0 420 86.24 14233 22824
Percentage (%) 3.0 147 0.1 0.12 118 0.12 122 038 196 0.61 5.6

2.4 Observing logistics

2.4.1 Time allocation

Since June 2007, the monthly FFGAMMA EB observations are complemented by PV obser-
vations at 3, 2 and 1 mm wavelength (86270 GHz) in order to increase the spectral cov-
erage from the longer cm/mm bands observed at EB to the important short-mm bands.
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Similar to EB, the flux density monitoring at PV is performed in monthly scheduled ob-
serving blocks. Given the demand for quasi-simultaneity of the flux measurements at
EB and PV due to the extreme inherent variability of the observed source sample, a high
degree of synchronization (typically days up to about one week) between the EB/PV ob-
serving blocks is achieved with a mean coherence time of 2.26 days during the first five
years of observations (see Table 2.4).

Furthermore, the PV monitoring is performed in close collaboration and coordination
with the existing ‘classical” flux density monitoring program at PV (Steppe et al. 1988,
1992, 1993; Reuter et al. 1997; Ungerechts et al. 1998) due to a large overlap of monitored
sources. As a result, (i) the overall sampling for many sources could be improved and any
observing time losses (e.g. due to weather) during the regular blocks could be significantly
compensated through the adjacent observing blocks of the ‘classical’ monitoring program,
(ii) common observing, data reduction and analysis procedures have been implemented
as well as an optimization of the observing strategy and data archiving could be achieved,
(iii) the available FFGAMMA data sets could be extended to January 2007 for overlapping
sources of the two programs.

2.4.2 Coherence time and Sampling

The sampling of an observing session is defined as the number of measurements® divided
by the time span of this session. The effective sampling achieved in real observing condi-
tions is always lower than the ideal sampling, which is the sampling that theoretically can
be achieved according to the observing time allocated at each telescope. The effective sam-
pling is lower because of (a) sometimes poor weather conditions resulting to bad data that
are eventually flagged (b) telescope and general hardware problems resulting in telescope
down times.

Due to the design of the observing system and receivers used at PV (see Sect. 3.1.1), the
obtained flux densities are truly simultaneous for each source and epoch, in contrast to EB,
where practically a full cm/mm spectrum requires about 3540 minutes. The reason being
that a successive scanning through all secondary focus receivers is required. In order to
finally obtain broadband cm/mm spectra demanding the best possible quasi-simultaneity,
the individual EB/PV data sets are combined allowing a maximum coherency time of + 10
days as a compromise between minimum simultaneity and maximum number of com-
bined EB/PV spectra. Consequently, the mean effective coherency time of a full broad-
band spectrum is 2.26 days for the first five years of observations. Table 2.4 summarizes
the effective spectral coherency times obtained individually at EB and PV, as well as the
combination of both.

The effective sampling reached at PV is lower compared to the nominal of one mea-
surement per month per source due to uncontrollable effects. Periods of bad weather
conditions, in particular high wind speeds and snow during the winter periods, as well
as (minor) technical issues cause telescope downtime, influencing the overall observing

30ne measurement is defined by a coherent spectrum.
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Table 2.4: Mean spectrum coherency and mean effective sampling for PV and for the combination

of the PV and EB .
Eff. Sampling o  Spect. Coher. ¢
(Months) (Days)
PV 1.41 0.61 0 0
EFF 1.45 0.58 0.11 0.15
EFF+PV 1.21 0.39 2.26 1.41

efficiency and therewith the sampling of each individual source. In the latter case, for ex-
ample, the PV receiver upgrades in 2009 (see Sect.3.1.1) and the secondary mirror change

in EB resulted in a telescope downtime. Higher wind speeds > 10ms~!

cause tracking
errors and dish deformations and consequently, increasing pointing errors (see Sect. 3.1.3
and Table 3.1) which limits telescope operation. The resulting mean effective sampling
rate is 1.41 months for the first five years of observations at PV. At EB effectively due to the
reasons mentioned above this value is a bit larger at 1.45 months. The combination of the

two though results in a mean sampling of 1.21 months.
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Pico Veleta & Effelsberg data

3.1 The IRAM 30-m telescope

One of the largest and most sensitive single dish telescopes at short-mm bands is the IRAM
30m, equipped with heterodyne receivers operating at 3, 2, 1, and 0.9 mm wavelengths. It
is located on Pico Veleta in the Spanish Sierra Nevada, at an altitude of 2850 m. The tele-
scope design is a single dish antenna with a parabolic surface adjusted to a precision of 55
micrometers, corresponding to the width of a human hair. In this section a description of
the receivers, the overall observing system
and the reduction methods used within the
F-GAMMA program is given.

3.1.1 PV System Description
The ABCD & EMIR receivers

Until mid-March 2009, the observations
were conducted using the “ABCD’ SIS het-
erodyne receivers mounted in the receiver
cabin of the 30-m telescope (Baars et al.

1987). Nasmyth mirrors, a splitter box and

Figure 3.1: The PV 30 m radio telescope.

a set of Martin-Publett Interferometers fed
the signal from the subreflector into the eight single pixel, dual (V/H) polarization re-
ceivers (A/B100, C/D150, A/B230, C/D270). Only four out of the eight channels could
be used simultaneously, resulting in a truly instantaneous spectrum. The ‘BC’ combination
was used as the standard configuration providing single polarization channels B 100, B230,
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C 150, C270 (each with a bandwidth of 1 GHz) tuned to 86.2, 142.3, 228.9 and 261.0 GHz,
respectively, and with a continuum backend attached. The latter provides a bandwidth of
0.5 GHz for the B100 and 1 GHz for the rest of the receivers.

During a major receiver upgrade in March 2009, the old "ABCD’ system was replaced
by the Eight MIxer Receiver (EMIR, Carter et al. 2012) and after its commissioning at the
end of April 2009 is used as the new standard system for continuum measurements within
the FFGAMMA program and the monitoring by IRAM. EMIR offers four bands that cover
four atmospheric windows around 3, 2, 1.3, and 0.9 mm wavelength, each in 2 linear po-
larizations (horizontal and vertical); however, only two bands can be used simultaneously.
For the observations undertaken for this thesis within the F-GAMMA program, only 3 mm
and 2 mm bands tuned to the same frequencies as previously the ‘B” and ‘C’ receivers were
used. For the current analysis data from the narrow band continuum backends (NBC) were
used, which limit the bandwidth to 1 GHz. With these backends the data are also restricted
to a single sideband.

Table 3.1: System characteristics of the ABCD and EMIR receivers including bandwidth (BW) and

typical values of receiver temperature (Trec), Jy/Kelvin conversion factor (I'), Full Width
Half Maximum (FWHM) and pointing offset.

Receiver  Freq. BW  Polarization = Trec I' factor FWHM Pointing offset

(GHz) (GHz) (K) (y-K™hH @) ")
B 100 86.24 0.5 Linear ~ 75 ~ 6.2 29.0 ~ 0.5
C150 142.33 1.0 Linear ~ 100 ~78 16.0 ~1.0
B230 228.93 1.0 Linear ~ 220 ~ 89 10.5 ~ 0.8
C270 261.0 1 Linear ~ 250 — 9.5 —
E 090 86.24 8 H/V ~ 65 ~59 29 ~ 0.7
E 150 142.33 4 H/V ~ 65 ~70 16 ~ 0.5

As it will be discussed in Sect. 3.2, a significant improvement in data quality is evident
after the change to the EMIR receivers. In Fig. 3.5 the secondary calibrator NGC 7027 and
the target source J0238+1636 are shown demonstrating this effect, which is mainly due
to better receiver temperature. Table 3.1 provides a summary of the main EMIR system
parameters, whereas Table 3.4 provides the mean fractional errors before and after the

change of the receivers.

The ‘Chopper wheel calibration’

The traditional calibration method applied at the PV telescope is called “chopper wheel
method” (Ulich 1980; Mauersberger et al. 1989) and a short overview is given bellow. The
goal of the calibration method is to relate backend counts to antenna temperatures. This
method should not be confused with the physical ‘chopper wheel” used during beam
switching (see Sect. 2.2.2) In order to relate these two quantities two sources with known
temperature are needed.

The receiver temperature (Tr.c) The first of these sources is the “chopper” which is the
hot load at approximately room temperature. The second source is called the cold load
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and it is at the temperature of liquid nitrogen. In both of these two sources, the counts that
a specific channel and backend is getting, are measured and averaged. Assuming a linear
detector the counts that are measured are proportional to the temperature of the source. In

this way we can measure in a general way the receiver temperature. Thus is given by:

Tchop =Y Teod

Trec = Y —1

(3.1)

where Y is given by:
_ <Cchop> B <Coff>

- <Ccold>> - <Coff>
In the above equations (3.1) and (3.2) the symbols Ty and Cyx denote temperature and

Y

(3.2)

counts respectively. In eq. (3.2) the {c,¢s) term is called “Dark counts” and it is a constant
that must be subtracted. It represents the counts that arise in a backend even if no signal
is coming from the frontend. {Ceyop) and (Cy4) are defined by:

<Cchop> = <Coff> + (Tchop + Trec) '8
(Ceota) = {coff) + (Teotd + Trec) * 8

where g is the varying gain factor to be calibrated out.

The receiver temperature given by Eq. 3.1 can be used to evaluate the performance of
the receiver including the optics and the backend but with the advantage that we don’t
have to consider atmospheric fluctuations.

The system temperature (Tsys) Our final goal is to evaluate the receiver noise tempera-
ture plus the contribution of the atmosphere, i.e. the system temperature (Tsys) . This is
the value that later all the corrections will be made upon. In order to calculate this we
need to find the relation that gives us the temperature of the calibration signal (T.,;). Es-
sentially what it is done is to relate the difference of counts between the source and the
blank sky (Csource) — {Catm, to the difference of counts between the hot load and the blank
sky (Csource) — {Catm). It can be proven that the calibration signal is given by:

ACcul
ACsource

where T} is the antenna temperature corrected for the attenuation of the atmosphere. Fi-

Tcul = ' TZ (33)

nally the system temperature it will be given by:

. <Cutm>
! <Cch0p> - <C11tm>

Tsys = T¢ (3.4)

Table (3.1) and (3.1) shows typical values of system temperature for the various receivers
used during the FF-GAMMA program.
The above calibration procedure has some assumptions that should be taken into ac-

count.
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o All of the above loads are considered to be black bodies with their physical temper-
ature being equivalent to their Rayleigh—Jeans radiation temperatures (i.e. hv « kt)

e The temperature conductance of the external cold load is high enough, that the cold
load has a physical temperature at its entire radiating surface

e The ambient temperature measured within the receiver cabin is the same as that of
the hot load

e Counts are directly proportional to the incoming power

e The amplification of the system does not change on time scales smaller than the time
required for the calibration procedure to finish.

Observing technique

Since all target sources are point like for PV and sufficiently bright at mm-bands, the mon-
itoring observations at PV are performed with “pointing” scans across the source in az-
imuth and elevation direction (cross-scans), using a larger number of sub-scans for weaker
sources. For the given flux density range covered by the monitored sources (~ 0.3-19]y),
typically 2 to 4 sub-scans per direction (each of about 30 to 45 seconds) provide sufficiently
high Signal-to-Noise (SNR). The pointing off-sets are typically less than 2”(see Table 3.4).

The cross-scans are usually preceded by a calibration scan to obtain instantaneous
opacity information and to relate the backend counts to the antenna temperature scale T}
corrected for atmospheric attenuation (see below). Furthermore, with the ‘BC’ receivers
beam switching is used with a frequency of about 5Hz. Since the change to EMIR, wob-
bler switching is used for the pointing scans, during which the secondary (sub-reflector)
is switched by + 33”along azimuth with a frequency near 2Hz. This change of switch-
ing mode contributes to an improvement of the data quality, particularly during not ideal
weather conditions.

3.1.2 Data reduction

In this section the details of the data reduction process, are described. In summary, the
necessary steps for extracting finally calibrated flux densities from raw measurements,

are:

e Measuring the antenna temperature from the telescope response pattern for every
sub-scan (Sect. 3.1.2).

e Data quality control and consequent filtering out of bad measurements. This “flag-
ging” is done on a sub-scan level (Sect. 3.1.2).

e Averaging the remaining sub-scans in each scanning direction(Azimuth/Elevation)
separately and measuring the resulted antenna temperature (Sect. 3.1.2)
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e Remove possible residuals by filtering out bad measurements using the same criteria
as before (Sect. 3.1.2)

e Applying post-measurement corrections (Sect. 3.1.3) to account for: pointing offsets,
gain variations caused by the elevation dependence of the telescope

e Perform absolute calibration to obtain final values in [y, or as usually called “sensi-
tivity” correction (Sect. 3.1.3).

For all these steps the standard installation of Mira at Pico Veleta has been used along with
IDL routines developed at MPIfR.

Reduction of cross-scans with Mira

This is the first step of the reduction and its objective is to measure the observed antenna
temperature from the telescope response pattern. Specifically, the parameters of the Gaus-
sian profile fitted to the observed response pattern for each sub-scan, are: (a) the amplitude,
which corresponds to the measured antenna temperature, (b) the Full Width at Half Maximum
(FWHM), corresponding to the telescope’s beam size and (c) the offset, corresponding to the
true, as opposed to the assumed position of the targeted source, thus giving the pointing
offset.

This step is processed entirely by the default reduction software of the PV 30m tele-
scope, called Mira, which also performs atmospheric opacity corrections. The result is the
raw determination of:

o T,ps: measured antenna temperature (equal to the amplitude of the fitted Gaussian)

e Ap: the measured pointing offset (the distance of the ideal telescope position com-
pared with the measured one)

e FWHM: the full width at half maximum of the telescope beam (assuming a point-
like source)

Data quality checks and sub-scan flagging

In order to ensure the quality of the final dataset, the measurements (on the sub-scan level)
must fulfil some minimum quality criteria in the same manner as followed with EB data
(see Sect. 3.3.3). Sub-scans that fail to pass those are flagged out of the consequent data
reduction procedure. With the following set of criteria it is found that high data quality
with minimum data loss can be obtained:

1. Non-converging fits: Bad weather conditions characterized by non linear tropospheric
fluctuations lead to poor data quality (e.g. low signal-to-noise ratios, SNR). Here,
often the fluctuations in the telescope response pattern are so large that the Gaus-
sian fitting algorithm does not converge. Clearly, such sub-scans are excluded i.e.
flagged out. An exception to this procedure is applied for the weakest sources in the
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monitored sample, i.e. sources with flux densities <0.3]y. In order to increase their
SNR no sub-scan flagging is performed and the method described in Sect. 3.1.2 is
followed.

2. FWHM criterion: Bad weather conditions also affect the fitted FWHM. The result
is an either overestimated or underestimated measurement. For that matter, the ob-
served FWHM, at any given frequency v [GHz], is required to agree with the known
value of the FWHM of the main telescope beam, given by 2390” /v [GHz] within 45 %.
For calibrator sources that are not point-like with respect to the telescope beam size
(e.g. NGC7027), this criterion is not applied (see also Sect. 3.1.3).

3. Pointing offset criterion: A number of factors such as low SNR, imperfect pointing
model, temperature gradients in the telescope structure, induce high pointing off-
sets resulting in a power loss which may be significant. In cases of relatively small
offsets the “real” antenna temperature (which should be recorded if the telescope
was exactly on source) can be recovered as described in Sect. 3.1.3. In extreme cases
however the measurement is irrecoverable. To avoid such cases the pointing offset
Ap is required to be less than 35 % of the FWHM,.

Averaging over sub-scans

At this step, all the sub-scans that have passed the quality checks mentioned (Sect. 3.1.2)
earlier are averaged to extract a reliable estimate of the measured antenna temperature.
The averaging is done for the sub-scans in each direction separately thus producing one
average sub-scan per scanning direction (AZI/ELV). After fitting a final Gaussian to ex-
tract the observables as already discussed, the same flagging criteria described in Sect.
3.1.2 are applied to the two (AZI/ELV) scan directions. This ensures that only those scans
are further processed which show good agreement between AZI and ELV results. The
calculated parameters are then further corrected as it is described in Sect. 3.1.3.

The procedure of first calculating the average in a specific direction and then fitting
a Gaussian, is chosen over the reverse operation of fitting the sub-scans with a Gaussian
and then averaging the resulting parameters. The result is an increase in the SNR (signal to
noise ratio) which greatly helps the fitting algorithms to determine the various parameters.

Primary & Secondary calibrators

Frequent observations of the primary calibrators, Mars and Uranus, or the secondary cal-
ibrators, W3(OH), K3-50A and NGC 7027 (HII regions/planetary nebulae), provide for
each session conversion factors that relate the antenna temperature to the standard flux
density scale (see Sect. 3.1.3). For the calibrators the same observing modes are used as for
the targets. Their flux densities are summarized in Table 3.2.

Mars measurements indicate that is approximately a black body in the frequencies ob-
served at PV because of its solid and tenuous atmosphere (Griffin et al. 1986). Is very
bright making it very useful for focusing and calibrating under bad weather conditions.
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Table 3.2: Calibrators at the PV -30 m telescope.

Calibrator 86GHz 142GHz 228 GHz
Jy) dy) dy)

NGC70271  4.84 458 435
K3-50A2 6.28 6.20 6.91
W30H? 395 4.30 6.31

Values are taken from : ! Zijlstra et al. (2008)
2 Reuter et al. (1997)

Uranus on the other hand is much weaker than Mars its brightness temperature is also
well known. Also due to its larger distance from the sun its brightness varies much slower.
This fact makes it easier to predict its brightness temperature and thus making Uranus also
a good calibrator.

3.1.3 Post-measurement corrections
Pointing offsets correction

Due to residual errors of the pointing model, the telescope is not pointed exactly on source
resulting in pointing offsets in one or both directions (ELV/AZI). For observations per-
formed with the PV telescope, the strategy followed is the minimization of the slewing
distance by observing sources consecutive that are close to each other in the sky. In this
way the pointing corrections of the first source are used as input for the next one. The

Figure 3.2: Representation of the principal behind the pointing error and it’s correction. Source is on
axis for the direction of elevation but is of axis for the Azimuth (Figure: Nicola Marchili).

mean pointing offset achieved within the FF-GAMMA observations, for every receiver can
be seen in Table 3.1. As it can be seen in Fig. 3.2 a large offset in the Azimuth axis will
cause an underestimation of the flux density in the Elevation axis and vice versa. From
the residual pointing offsets the result is an underestimation of the received flux density.
After averaging the sub-scans in each direction, the parameters of the fitted Gaussian pro-
files allow correcting for these pointing offsets. Assuming that the telescope beam pattern
is approximated sufficiently well by a circular Gaussian, the pointing offset in one scan-
ning direction is used for correcting the power measured in the other direction. On the
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basis of this assumption, the pointing-offset corrected antenna temperature in direction i,
T; poi will be a function of the pointing offset measured in the direction j and vice versa:

Ap] 2
Ti,poi = Ti,obs - eXp 4-In2- FWHiMV (35)
where :
ij the scanning direction indices with i : ELV, AZI and j : AZI, ELV
Tipoi the antenna temperature in the direction 7 after the pointing correction
T obs the observed antenna temperature in the direction i before the pointing
correction
Ap; the pointing offset, calculated from Gaussian fitting, in j direction

FWHM, the reference FWHM for the observing frequency v.

Assuming that the uncertainty e; ;i in T; 501, is depended on (a) the scatter of the power
received in the corresponding sub-scans (see also Sect. 3.1.4) and (b) the uncertainty in the
computation of the pointing offset, the formal error in a specific direction will be given by:

Ap? 2
eiz,poi = [eXp (4 . 11’12 . FWH]M2> . eTi,obs] +
1%

Ap? 2
Ti,ObS . eXp (4: -In2- IW\/IZ]]\/IIZ,> .8.In2- Ap] . eAP,‘
3.6
" FWHM2 (3.6)
where :
€T, 1S the error in the determination of the antenna temperature by the fitting

algorithm in the 7 direction. It is the scatter of the power received from
the averaged sub-scans

eap; s the error in the calculation of the pointing offset by the fitting algo-
rithm in the j direction.

The derivation of Eq. 3.6 is described in section (3.1.4).

In the case that the method of first fitting the sub-scans and then averaging the resulted
parameters (Sect. 3.1.2) is chosen, then the error er,

i,0bs

will be replaced by the scatter ¢
(i.e. rms) of the averaging parameters and Eq. 3.6 will have an approximate rather than a
definite form. The reason to use ¢ rather than the error in the mean, is because the scatter

is a more conservative estimate.
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Gain-elevation correction

The next correction that must be applied to the data is meant to correct for elevation-
dependent gain variations. For the estimation of the gain curve of the telescope, archival
data were used (Greve et al. 1998). There, the On-axis gain-elevation dependence (Gy(e, £9))!
was measured in 10 degree steps of elevation angle. Taking these values and performing
a second order polynomial fit the detailed behaviour of the telescope across all the usable
elevation angles is obtained (Eq. 3.7). In Fig. 3.3 a graphical depiction of this behaviour is

shown.
G(x) =a2+al-x+a0-x° (3.7)

were X is elevation and a0, al, a2 are the parameters of the polynomial. The fitted values
can be seen in Table 3.3 for the frequencies utilized at the PV telescope.

Table 3.3: Fitted gain curve values for 86, 142 and 228 GHz.

Freq. ag a1 ap
(GHz)
86 —2.67-107°5 0.0023 0.948

142 —591-107° 0.0053 0.876
228 —1.19-10~%* 0.0103 0.766

According to the elevation of every scan during the observations, the following for-
mula is used for correction along with the corresponding error:

T
poi
Tyain = —5 (3.72)
€poi
in = 3.7b
€gain G ( )

where :

Tpoi the antenna temperature (K) after the pointing correction, to be corrected
for elevation-dependent gain losses

Tgain the antenna temperature (K) after the elevation-dependent gain correc-
tion

epoi  the error in T, as derived from Eq. 3.6

€gain  the formal error in Tgain

G the fractional gain loss normalized at unity as given by Eq. 3.7

Iwhere ¢ is the elevation angle and ¢ is the angle at which the reflector is free of gravity deformations.
This angle for the PV 30 m telescope is gy = 43° (Greve et al. 1998)
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Figure 3.3: Normalized gain curves for 86, 142 and 228 GHz (see also Table 3.3)

Absolute Calibration

Throughout the previous discussion the observable has been the antenna temperature in
units of K. Its conversion to flux density S in units of Jy, is the last step of the data reduc-
tion (sensitivity correction). It is done by comparing the antenna temperature of sources
with their flux density known (calibrators). The used calibrators along with their assumed
flux density can be seen in Table 3.2. The values of NGC 7027 are the extrapolated values
of a theoretical model as discussed in Sect. 2.3. For the planets on the other hand a semi-
analytical model is used to calculate the expected flux density as a function of epoch. The
uncertainty in this model is better than 5% (Reuter and Kramer 1998; Ulich 1981; Ulich
et al. 1980) For every scan of a calibrator a calibration factor I' has been calculated. Con-
sequently an average value (I') for the whole observing session has been computed. The
flux density and the associated error of a scan, is then:

Ssens = <r> . Tgain (3.7C)

Egens = (<r> ) egain)2 + (Tgain : €<1~>)2 (3.7d)
where :

Tgain the antenna temperature to be converted to flux density, after all other
corrections are applied

(') the mean calibration factor in Jy /K

€gain the error in Tgain (Eq. 3.8)

ey  the formal error in the derivation of (I')

Mean values of T factors are shown in Table 3.1.
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EMIR related corrections

The steps described in Sect. 3.1.3 are applied to all observed data independently of the
receiver used. However, the two polarization channels of the new EMIR receivers, are two
independent systems with same characteristics but non-identical behaviour and thus the
receiver gain differs mildly between the two polarizations. By examining all available data
from calibrators acquired with the EMIR receivers, it has been found that this difference is
of the order of ~ 2%.

The gain ratio between the two polarizations, was found to be H/V = 0.98% at 86 GHz.
To correct for this, the Vertical channel was taken as a reference and the Horizontal was
scaled accordingly. After this correction the final flux densities are calculated by averag-
ing the two polarizations (Horizontal and Vertical). As seen from Fig. 3.4 no significant
difference is found at 142 GHz.
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Figure 3.4: Gain ratio between the Horizontal and Vertical polarization channels of the EMIR re-
ceivers at 86 GHz (left panel) and 142 GHz (right panel). Data for the main calibrators
Mars and Uranus are shown. Red lines represent the mean ratio at each frequency. The
grey dashed line on the left panel represents the expected ratio. While both calibrators
behave similarly, a significant offset from unity is evident only at 86 GHz.

3.1.4 Error estimates

The uncertainty in any of the observables discussed here is the result of several factors. In
order to realistically estimate the errors on every step of the data reduction, two general
rules have been applied:

1. For every operation that is performed to any observable, the formally propagated
error that the particular operation is introducing to the observable, is computed. The
general Eq. 3.8 is applied:

ox 2 ox 2
2 _ 2 2
eX_((’}a ea> +<0b eb) +... (3.8)

2(V) for Vertical and (H) for Horizontal polarization.
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where :

ey is the propagated error of an observable
x(a,b,...) isthe observable that is depended on the quantities a,b,. ..
€a, €p are the coresponding errors of the quantities a,b,. ..

2. Inany averaging operation apart from the formally propagated error, also the scatter
of the elements over which the averaging is performed is taken into account. Eq. 3.9

2
N
2 — & + 02 (3.9)

N;

is applied in this case:

e

where :

ex is the error in the average
e; are the individual errors of the elements that are being averaged
o is the standard deviation of those elements.

Equations 3.6, 3.8 and 3.8 are worked out on the basis of these rules.

Pre—correction error estimates

Bellow there will be a description of the error estimates before all the corrections (described
bellow) are applied to the data. As described at Sect. 3.1.2 the products of the fitting pro-
cedure with MIRA are:

Tobs the observed antenna temperature

er,, theerrorin the determination of that temperature.

Ap  the pointing offset calculated from the fitted Gaussian
eap  the error in that offset.

For the example here, the data are assumed to be in the sub-scan level. If not then the step
of averaging over the sub-scans (Eq. 3.10) is skipped. The above initial values can be thus
either in the scan or sub—scan level.

Averaging over sub-scan parameters In the case that the method of first fitting the sub-
scans and then averaging the resulted parameters is chosen then the corresponding errors
must be taken into account in the chain of propagation. The operations for each direction

are:
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azi Y T]?‘Z)és
<Tobs> = Z N, (393)
N=1
<Telv> _ i TJ%IZJS (3.9b)
obs / — & N.o :

where:

Tiops is the antenna temperature of every sub-scan and direction respectively
N is the number of sub-scans in the two directions respectively.

The error per direction after the averaging of the sub-scans parameters and taking into
account (Eq. 3.8 & 3.9) will be :

>
ele_ohs = T]'ohs + 0’2 (310)

where (i) denotes the different direction and (j) denotes the different sub—scans. The values
of {T,ps) and er, . are the ones used in Eq. 3.5 & 3.6. The same procedure is followed for
the parameter of pointing offset Ap and the corresponding error epp.

The EMIR case

Since the EMIR system records separately two orthogonal linear components, the total
power will come as the average of H and V. In terms of flux density the Stokes-I will be:
Su) +<(§
(spy = S TE) . $Sv) 3.11)

where (Sy1) and (Sy) are the averages of the available scans for a specific source for H and
V polarizations, respectively. The corresponding error will be:

2
2 2
2 _ (VTS 2 (3.12)

q=|"—F5—|+c

Where ey and ey are the formal errors of the averages for every polarization respectively
and o is the scatter of the scans used. This will be the final error in the case data from the
EMIR receiver system are used.

Calibration error

In Eq. 3.8 the terms (T') and ey appear. The first is the calibration factor applied to the data
and the second is its error. These values are computed with the same principal technique
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but with the addition of an error in the computation of the reference flux used for the main
calibrators as well as the scatter of the calibration factors obtained from a unique observing
session. The calibration factor is defined as:

S ref

r =
Tcal

(3.13)

where:

Sret is the reference flux density (Jy) of the calibrator.
Teal is the measured antenna temperature (K) for the same calibrator.

The error e, in the antenna temperature of the calibrators is described by Eq. 3.6. So the
error in the calibration factor I' is given by:

5 o 2

2 ref

er= | —=-e + | ="-¢ 3.14
T < Tczal cal) ( Tcal ref) ( )

where:

eref is the error in the reference flux used for the derivation of the calibration
factor.

ecal is the observational error in the derivation of the antenna temperature
as described by Eq. 3.6

The final calibration factor (I') is the average of all the calibration factors observed in a
specific session. The corresponding final error e(ry as used also in Eq. 3.8 will be:

2
2 V 2 e%i 2
€<r> = N + 0—1" (3.15)

where:

or is the standard deviation of the calibration factors.
N is the number of calibration factors used.
er, are the errors of the individual I'-factors as computed in Eq. 3.14

The error e as already mentioned is the error in the reference flux of a calibrator. In
the case that a secondary calibrator is used then it is taken every time from the literature
(Table 3.2). For the main calibrators a planetary model is used for the calculation of S, in
that case e is representing the uncertainty in the used model.
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3.2 PV system studies

Many factors contribute to the final measurement uncertainties. Equation 3.8 gives the
uncertainty of a measurement esens, Which results from the formal error propagation over
all reduction steps, assuming a Gaussian error distribution. One source of uncertainty in
the calculated absolute flux densities, is the uncertainty in the flux density values assumed
for the calibrators (e, in Eq. 3.14). For the main calibrators used in the current analysis,
namely the planets Mars and Uranus, this uncertainty is of the order of 5% (Reuter and
Kramer 1998; Ulich 1981; Ulich et al. 1980). For the secondary calibrators the correspond-
ing uncertainties can be seen in Table 3.2 (See also Sect. 3.1.3). It should be noted that these
uncertainties only add an overall offset to the absolute flux density scale and do not affect
the observed relative flux density variations in a given light curve. In Table 3.4 the mean
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Figure 3.5: Comparison of the data quality before and after the change to the new EMIR receivers.
The light curves of the secondary calibrator NGC 7027 (left ) and the target source
J02384-1636 (right) at 86 and 142 GHz are shown. The dashed line in each plot repre-
sents the time of the change to the new EMIR receiver system. The mean fractional error
was reduced from 16.7 % to 11.2 % for 2 mm data (see also Sect. 3.2).

fractional flux density errors and mean pointing offsets for all frequencies and receivers
are given. Those have been calculated using all available measurements of the 5 year ob-
serving period. At 142 GHz a significant decrease of the fractional flux density error is
noticed after the change to the EMIR system in 2009 (see also Fig. 3.5). This demonstrates
the gain in overall performance which is due to lower receiver temperatures, bandwidth
improvements and, most importantly, the use of whobbler switching. At 86 GHz no sig-
nificant difference is seen. The mean pointing errors are small and comparable for both
systems. One way to quantify the repeatability of an observing system is by means of the
modulation index m (m = /S, see also Sect. 4.1) calculated over an extended period of
time. The calculated values of m over the 5 year observing period are shown in Table 3.5
using the secondary calibrators. It can easily be seen that weather has a much larger effect
at higher observing frequencies.

To further quantify the performance of the observing system the errors for each indi-
vidual flux density measurement (with typical integration times of 2—4 minutes) obtained
at a given time and after all post-measurement corrections of systematics have been ap-
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Table 3.4: Mean fractional flux density errors, pointing offsets and the corresponding errors in the
mean for all frequencies of the old ABCD and new EMIR receivers.

ABCD EMIR
Freq. Frac. Err. Poi. Offset | Frac. Err. Poi. Offset
(GHz) (%) ") (%) ")

86.24 8.64+029 1.82+0.02 853+0.15 1.90+0.01
14233 16.74+043 1.81+0.02 | 11.18£0.21 1.68£0.01
22824 19.86+052 1.44+0.02 | - -

Table 3.5: Modulation indices per frequency for the secondary calibrators and mean value over all
these calibrators.

Secondary Calibrators Mean
Freq. NGC7027 K3-50A W30H
(GHz) (%) (%)
86.24 292 3.23 2.19 2.78
14233 4.16 3.85 4.32 411
22824 791 7.52 11.96 9.13

plied are investigated. As shown in Fig. 3.6 an inherent dependence of the fractional error
of a measurement and its flux density at each frequency is evident. Empirically this de-
pendence can be described by:

Perr(S) =09 +m-S™* (3.16)
where:

S is the flux density of a measurment

0p is the constant offset in the equation, defining the plateau in Fig. 3.6
m is the parameter for the flux depended part of the plot.

a  is a unitless parameter defining the slope of the flux depented part.

The solid lines in Fig. 3.6 represent fits of lower envelopes to the data using Eq. 3.16.
The fit parameters can be seen in Table 3.6. All plots are characterized by a plateau at
higher flux density levels and a flux dependent part at lower levels. The relative large
scatter of the data points in the Y-axis is due to weather effects. The continuous distri-
bution of data points in the X-axis is due to the intrinsic variability of the sources. For
the secondary calibrators that have a non—-variable flux density, they cover only a stripe in
these plots and only the effect of weather is clearly seen as the scatter in the Y-axis. The
lower envelope is only telescope dependent and represents the error in ideal weather con-
ditions and thus this is what is used for the fit. As frequency increases, the influence of
weather gets crucial making the flux density dependent part of Eq. 3.16 difficult to discern
(e.g. 228 GHz).
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Figure 3.6: Dependency of the fractional error of each single measurement on flux density for
86 GHz (top left), 142 GHz (top right) and 228 GHz (bottom). The solid lines represent
the fitted lower envelope for each frequency whereas as green lines are shown averages
binned in flux density together with their 1 sigma scatter (see text).

Table 3.6: Fitted values for the lower envelope at 86, 142 and 228 GHz of Eq. 3.16 to the data of
Fig. 3.6.

Freq. 0o m o
(GHz) (%)

86 0.67+025 1.13+0.10 1.82+£0.16
142 1.29+£0.27 1.21%0.16 1444015
228 415+080 15.05+0.04 1.15+0.16

The two distinct parts in Fig. 3.6 can be interpreted in a similar way as in Angelakis
et al. (2009): (a) the constant part oy can be attributed to the inherent thermal noise of the
system and the absorption of the atmosphere, (b) the flux depended part (m) can be at-
tributed to pointing errors and the emission of the atmosphere that becomes more evident
at low flux density levels. The lower envelope of these plots represents the minimum er-
ror one can expect, for a specific flux density level during good weather conditions. The
position of a measurement in one of these plots is a direct measure of the performance of
the observing system, at the specific time of observation.

The performance of the system in real life conditions can be characterised by the mean
dependence of the fractional error with flux density and is shown by the green curve in
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each plot of Fig. 3.6. The fractional error drops from a value of ~ 20 % to ~ 5% for 86 GHz
and ~ 24 % to ~ 7 % for 142 GHz. The error bar represents the 1¢ scatter around the mean
value. Unfortunately due to small number statistics this value is over estimated at higher
flux density levels. It is worthwhile noting that 90 % of the sources at 86 GHz and 142 GHz
have a fractional error of 15 % and 20 % respectively.
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3.3 The Effelsberg 100-m telescope

3.3.1 System Description

The 100-m radio telescope of the Max-Planck-Institut fiir Radioastronomie (MPIfR) in Ef-
felsberg is located in a valley near Bad Miinstereifel, Germany. It is one of the largest
fully steerable radio telescopes in the world. It is used for various observations of ce-
lestial objects at frequencies ranging from 300 MHz to 90 GHz. The telescope is of Gre-
gorian design with a 100 m primary and 6.5m secondary mirror. The primary mirror is
constructed according to the homology
principle, meaning that the shape of the
dish closely retains a parabolic shape in-
dependent of the elevation an observation
is performed. Holographic measurements
showed a mean deviation from the ideal
parabolic form in the order of 0.55 mm. The
secondary mirror which was replaced in
2006, has a surface error of only 60 pum.

This new secondary is equipped with 96
actuators and compensates incomplete ho- Figure 3.7: The EB 100 m radio telescope.
mologous structures of the main dish.

The mechanical elevation limit of the telescope is ~ 8°. The telescope is located in a
valley, limiting real visibility to ~ 20° depending on Azimuth. The horizon as seen from
the lower edge of the telescope can be seen at Fig. 3.8 The combination of all these advan-
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Figure 3.8: EB visibility as seen from the lower edge of the telescope.

tages, enables EB to conduct very sensitive observations at all the operating frequencies,
making it ideal for the F-GAMMA program.

3.3.2 The receivers

Various receivers are mounted in both the secondary and primary cabins of EB ranging
from 300 MHz to 86 GHz. For the observations of the F-GAMMA program receivers of the
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secondary cabin were utilized ranging from 2.64 GHz up to 42 GHz. Table 3.7 presents the
main characteristics of the used receivers. The main reasons for the choice of the secondary
cabin receivers is the large variety of different frequency bands and the fast (~ 30 sec)
switching time from one receiver to another. This allows spectrum coherency time to be
of the order of ~ 40 min (see also Sect 2.4.2). All the receivers that have been used are of
heterodyne type, mixing the incoming signal with a pure, monochromatic frequency tone,
known as a Local Oscillator (or LO). Fig. 3.9 depicts the signal path of a prototype het-
erodyne receiver including several steps of amplification, mixing, signal integration and
finally recording. All the used recievers are capable of recording polarization information
as seen in Table 3.7. The receivers at 4.85, 10.45 and 32 GHz are equipped with multiple
feeds for the subtraction of atmospheric effects.

Table 3.7: EB secondary focus receiver characteristics.

Freq. BW Pol. Tsys r FWHM Poi. Off. No. Feeds Aperture efficiency
[GHz] [GHz] - Kl Kyl (") @) - (%)

2.64 0.1 LCPRCP ~17 ~15 260 13.6 1 53

4.85 0.5 LCPRCP ~27 ~155 146 72 2 53

8.35 1.2 LCPRCP ~22 ~1.35 82 23 1 45

10.45 0.3 LCPRCP ~52 ~1.35 68 1.8 4 50

14.6 2.0 LCPRCP ~50 ~1.14 50 25 1 43

23.05 2.7 LCPRCP ~77 ~ 09 36 1.6 1 30

32.0 4.0 LCPH/V ~64 ~0.75 25 1.3 7 32

42.0 2.8 LCPRCP ~120 ~0.53 20 1.0 1 19

pre-

_a_mf)}l_ﬁ?r_ mixer  amplifier ZF-Filter amplifier detector Integr. ;;C;;il]ﬂg
o {__HF ZF oy
EE 1 I | ST < - s
hom>_?—’l>;’{§z) P> H—x > —IZ » L .{( }
| |
“eooled
LO

Figure 3.9: Block diagram of a prototype heterodyne receiver (image thanks to Hans-Rainer
Klockner).

The 2.64 GHz receiver This is the lowest frequency observed by the F-GAMMA pro-
gram. The receiver is cooled with typical noise temperature in the order of ~ 4K and has
two channels. It can be tuned in the range of 2599.5 MHz — 2679.5 MHz and it’s calibration
is accomplished with a noise diode. The frequencies utilized are quite often contaminated
by interference of various sources, mainly mobile telecommunications and wireless net-
works that work in this frequency range.

The 4.85 GHz receiver The 6 cm receiver is a four channel system with cooled HEMT
pre—amplifiers, with typical noise temperatures of ~ 9K. The calibration is done via a
noise diode.

The 8.35 GHz receiver This system is a secondary focus receiver with cooled HEMT
amplifiers and a cooled polarization transducer. The calibration signal is injected with a
noise diode also. Typical noise temperatures for this receiver are ~ 4K.
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The 10.45 GHz receiver This system has 4 feeds, 8 channels and 4 Broadband Polarime-
ters. In total 16 data channels exist and 2 total power and 2 polarization signals per feed
are recorded. This receiver is being used in a software beam—-switching mode and has typ-
ical noise temperatures of ~ 50 K. The calibration is done with a noise diode. The feeds are
mounted in a row in azimuth direction, having distances of 3, 9 and 5 arcmin.

The 14.6, 23.05 and 42.0 GHz receivers This system comprises 3 dual channel frontends
at the frequencies of 14.6, 23.05 and 42.0 GHz. The three feeds are placed in a row at the
elevation axes, but offset in azimuth. The 14.6 and 23.05 GHz frontends share a common
dewar in contrast to the 42.0 GHz frontend that is contained in a separate one. Observa-
tions are possible only at one frequency at a time due to common use of parts of the IF
and Oscillator Systems. Switching between these frequencies is however possible within
seconds. The calibration is accomplished with noise diodes and the receiver noise temper-
ature is ~ 30K for the 14.6 anf 23.05 GHz receivers and ~ 73K for the 42.0 GHz.

The 32.0 GHz receiver This receiver is a pseudo—correlation design. Seven corrugated
horns exist, with beam switching implemented in hardware with horns 3 and 4 differ-
enced by means of a wave—guide magic tee. Calibration is performed with a noise diode
transmitter that is optically coupled. The receiver noise temperature performance is 18K
-24K.

3.3.3 Data reduction and calibration
Overview

All post-measurement reduction steps and corrections applied to EB data of all the observ-
ing sessions are described in the following. The reduction steps were performed by semi-
automated python routines (Angelakis et al. 2015) that allowed the data to be reduced and
calibrated in a matter of a few hours after each observing session. The reduction process
for EB data includes: (a) Gauss fitting of raw data to estimate the antenna temperature, (b)
data quality checks and flagging of bad data, (c) post-measurements corrections involv-
ing opacity, pointing, gain—elevation and sensitivity corrections, described in more detail
bellow. The data products of this process are stored in a database for later reference. The
combination of all the different sessions as well as the combination with data acquired
with the PV telescope is subsequently performed by another python routine included in
the same software package.

Data quality checks

To ensure the quality of the final data products, every scan must fulfil some criteria. Not
passing one of these criteria or a combination of them, means that the corresponding scan
is flagged and not taken into account in the following reduction and analysis. The criteria
are similar to the criteria used for the reduction of PV data (Sect. 3.1.2).

e Non—converging fits. The algorithm that performs the Gaussian fitting fails to con-
verge and produces no physical parameter values for the profile. In this case the
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corresponding scans and sub—scans are flagged.

Pointing offsets. In EB the pointing to a target source is performed through a pointing
model. This model of course is not perfect especially if the weather conditions are
not ideal and for higher frequencies, leading to poor pointing. For this reason during
the F-GAMMA observations for higher frequencies a second scan is performed to
validate and ensure the pointing of the telescope. If the resulting scan has a pointing
offset that is larger than 20 % of the beam size (FWHM) at the observed frequency,
then this scan will be flagged.

FWHM criterion. For a specific observing session if the FWHM of a scan is larger by
30 % of the mean FWHM of that session, then it is flagged. Special care must be taken
for sources that are extended and thus inherently have larger FWHM.

Amplitude criterion. Due to the aforementioned effects the relative amplitude of the
Gaussian profiles between two scanning directions (AZI/ELV) is changed. In the
case that the difference is larger than 20 % of the mean amplitude of the observing
session then the scan is flagged. Care must be taken in cases that the weather is
highly variable within the observing session, resulting in non-natural mean values
of the amplitude. In such cases this criterion is not applied and a manual check is
performed.

Calibrators

The various calibrators used for final flux density calibration at the EB telescope are shown

in Table 3.8 along with their main characteristics. All source are point-like for the beam size

of the EB dish in all of the observed frequencies. The specific characteristics for each cali-

brator are described in the following. Table 3.9 presents the modulation indices of all the

used calibrators and its mean values per frequency over the five years of F-GAMMA ob-

servations, demonstrating their low scatter. The light curves and spectra of the calibrators

can be seen in Appendix A.3 and A.2.1 respectively.

Table 3.8: Flux Densities of the calibrators used at the Effelsberg 100 m telescope.

Frequency Calibrator [Jy]'

[GHz] |/ 3C48 3C161 3C286 3C295 NGC 70277
2.64 9.51 11.35 10.69 12.46 3.75
4.85 5.48 6.62 7.48 6.56 5.48
8.35 3.25 3.88 522 3.47 5.92

10.45 2.60 3.06 4.45 2.62 592
14.60 1.85 212 3.47 1.69 5.85

23.05 1.14 1.25 2.40 0.89 5.65
32.0 0.80 0.83 1.82 0.55 5.49
42.0 0.57 0.57 1.4 0.35 5.34

1 Flux densities of the calibrators were taken from Ott et al. (1994)
and Baars et al. (1977).

2 The flux density of NGC 7027 is corrected for beam extension
above 10.45 GHz.
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Table 3.9: Modulation indices () for the calibrators at each observing frequency together with
their mean values.

Frequency Calibrator — modulation index [%]

[GHz] 3C48 3C161 3C286 3C295 NGC7027 K3-50A W3(OH) | Mean
2.64 0.61 0.80 0.78 0.95 0.94 - - 0.82
4.85 0.60 0.63 0.47 0.88 0.41 - - 0.60
8.35 0.88 1.08 0.73 1.48 0.84 - - 1.00

10.45 1.14 1.32 1.14 1.16 1.19 - - 1.19
14.60 1.63 2.18 1.69 1.50 1.14 - - 1.63
23.05 2.46 2.29 1.99 2.03 1.62 - - 2.08
32.00 2.94 2.99 222 3.54 3.07 - - 2.95
42.00 3.39 1.91 2.68 - 2.61 - - 2.65
86.24 - - - - 292 3.23 2.19 2.78
142.33 - - - - 4.16 3.85 4.32 4.11

e 3C48: Is a steep—spectrum quasar at redshift z = 0.367. Its radio structure is quite
compact making it a good source to focus the telescope for frequencies bellow 10 GHz.
3C48 is not entirely stable and undergoes slow variations in flux density over the
past 30 years (Perley and Butler 2012). From the light curves and spectra (see Ap-
pendix A.3 and A.2.1) is shown that for the time scales the FGAMMA program is
active 3C 48 can be considered as a constant source and used safely as a calibrator.
Its mean mg ranges from 0.61 % at 2.64 GHz to 3.4 % at 42 GHz.

e 3C161: Is a compact radio source with observed structure on arc-second scale(Goss
et al. 2008). Is very stable within the F-GAMMA time scales and can be even be used
for focusing in higher frequencies if the weather is good enough. Its mean m( ranges
from 0.8 % at 2.64 GHz to 1.9 % at 42 GHz.

e 3C286: Is a compact steep—spectrum quasar at redshift z = 0.846. Without optically
thick central nuclear emission, VLBA imaging shows that it is uniformly polarized
(Perley and Butler 2012). This makes 3C286 an extraordinarily stable and useful
calibrator. It is one of the most frequently observed calibrators within the F-GAMMA
program. From the light curves and spectra (see Appendix A.3 and A.2.1), apart
from some small outliers, the lack of variations is apparent. Its mean mg ranges from
0.78 % at 2.64 GHz to 2.7 % at 42 GHz.

e 3C295: Is a radio galaxy at a redshift z = 0.464, and exhibits a very weak central
nucleus that contributes to less than 1% in the total flux density at 15 GHz (Taylor
and Perley 1992). This fact implies that the source could have constant flux density
over time and thus be a good calibrator. Light curves and spectra (see Appendix A.3
and A.2.1) are shown demonstrating it’s stable character. Its mean mg ranges from
0.95% at 2.64 GHz to 3.5 % at 32 GHz.

e NGC7027: Is a bright nearby planetary nebula. Its spectrum is mildly convex and
follows a power law of the form S = k-v %! at frequencies above 10GHz. It is
known that its flux density is increasing with time, at frequencies where it is optically
thick and to be decreasing in frequencies that is optically thin (Zijlstra et al. 2008).
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For time scales the FGAMMA program is active, these variations are negligible.
It has a relative high angular size making it not suitable for focus operations. A
beam correction due to it’s size is needed especially at higher frequencies (Sect. 3.3.4).
NGC 7027 is also very important because it is used as a cross calibration source for
the EB and PV telescopes (see Sect. 2.3). Its mean mg ranges from 0.94 % at 2.64 GHz
to 2.6 % at 42 GHz.

It should be noted that on average the scatter of the calibrators is very low overall ranging
from 0.8% at 2.64 GHz to 2.65% at 42 GHz.

3.3.4 Post-measurement corrections

What is actually measured from the receivers is counts. To convert the measured signal
from counts into temperatures the value of the noise diode in k is required. This is done
automatically by the used software (Toolbox) and it is done by multiplying a given value
(Tcan) to the data. The measured product of the astronomical observations after the conver-
sion to kelvins is the system temperature Tsys. In general is given by:

Toys = Tr + Ts + Tatm + Ty (3.17)

where :

T is the receiver temperature

Ts  is the source brightness temperature
Tatm  is the atmospheric temperature

Ty  is the ground spillover temperature

The ground, atmospheric and source temperatures constitute the antenna temperature
Ta. The final goal of every observation is to estimate the source brightness temperature,
thus all other contributions must be accounted for. The receiver and ground temperatures
are usually small and especially for the former also stable, leaving as the main contributor
the atmosphere.

Opacity

The atmosphere influences the incoming radio signal not only by means of absorption
but also by introducing noise with atmospheric emission. The latter can be removed by
performing differential observations (Sect. 2.2.1), but the attenuation of the signal must
be corrected with a process called “opacity correction”. The atmospheric temperature de-
pends on the total column of water vapour that the beam of the telescope “sees” and thus
depends on the elevation the observation is made. The attenuation of the observed signal
because of the atmosphere is by a factor e™*M. The correction that must be applied to the
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data is:
T = Tp -e™AM (3.18)

where :

TX isthe antenna temperature after the correction
AM is the airmass, given by AM = 1/sin(Elv), where Elv is the elevation
T is the zenith opacity

The zenith opacity is depended on the observed frequency. For this reason this correction
must be applied to all the different frequencies separately. In order to derive the instanta-
neous opacity at the given time of observation the relation :

Tays = To + Tatm - T - AM (3.19)

can be used. Tsys can be easily determined with the methods described in Sect. 2.2.1 for
every individual measurement, also the airmass is known. The atmospheric temperature

can be approximated by :

Totm = 1.12- T, — 50K (3.20)

For each session usually there is a significant number of Tsys measurements enabling the
estimation of Ty and 7 by a least-square fit, as shown in Fig. 3.10.
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Figure 3.10: Example of airmass versus system temperature for a typical observing session. The
green dotted line is the lower envelope least-square fit to the data.

Because weather is a dynamical phenomenon and atmosphere is not only absorbing
radiation but also emits, the system temperature is exhibiting variations as seen from
Fig. 3.10. The best way to derive the desired quantities, is to fit the lower envelope of the
data, enabling to accurately determine Tj as the point where the fit crosses the Y-axis. The
zenith opacity T is given by the slope of the resulting fit. For each individual observation
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the corresponding opacity can then be calculated as:

1 Ts s_TO
- _ In(1-=22_ "7 21
TS TAM “( Torm > (3.21)

An example of a least-square fit, is presented in Fig. 3.10.

NGC 7027 beam correction

NGC7027 is a regularly used calibrator during the F-GAMMA observations. It has a rela-
tively flat spectrum (see Fig. 2.4) making it an important calibrator at the higher frequen-
cies. Moreover as described in Sect. 2.3 it is a very important source for cross calibration
studies between EB and PV telescopes.

The angular size of NGC7027 on the sky is comparable to the beam size of the EB
telescope, especially at frequencies above 10.45GHz. Consequently the flux density of
NGC 7027 is underestimated and thus also the conversion factor I' (see also Sect. 3.3.4),
which eventually affects the whole dataset of a given observing session. A correction factor
bm is applied only to NGC 7027 data to compensate, according to Eq. 3.22. The correction
factors applied at each frequency are shown in Table 3.10.

Tom = Ta - bm (322)

where Ty, is the system temperature of NGC 7027 data after the correction and bm is the
correction factor. This effect is important for frequencies higher than 10.45 GHz and thus a
correction is applied only to those.

Table 3.10: NGC 7027 beam size correction factors. (E. Angelakis, priv. comm.)

Freq (GHz) || 264 485 836 1045 14.6 23.05 32.0 42.0

bm 1.0 1.0 1.0 1.0082 1.0145 1.0287 1.0551 1.089

Pointing correction

The process of pointing correction is described in Sect. 3.1.3 and as a generic procedure
is the same for both EB and PV telescopes. The mean values of pointing offsets achieved
with the EB telescope as seen in Table 3.7 are small comparable to the beam size at each
frequency, ranging from 13.6"at 2.64 GHz to 1”at 42 GHz.

Gain—-elevation correction

Because of the homology principle that the construction of the telescope is based upon,
most of the effects are corrected. Some residual deviations from a flat curve in the gain
that are depended on the elevation of the observation are left. The gain-curve correction
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is applied in the same manner as done in Sect. 3.1.3 for PV The obtained parameters used
for each observing frequency are given in Table 3.11 whereas the gain-elevation curves are
shown in Fig. 3.11 and 3.12.

Table 3.11: Normalized gain curve parameters for frequencies used at EB , according to Eq. 3.7

Freq.
(GHz) Ay Aq Ap Date
2.64 1.0 0.0 0.0 Feb. 2007

485 099 520-10~* —1.28-10"° Feb. 2008
8.35 099 434-107% —1.06-10"° Feb. 2007
1045 || 099 825-10% —1.74-105 Feb. 2007
14.6 097 1.83-10~% —2.87-10~° Feb. 2007
23.05 || 091 476-107% —6.29-10"5 Feb. 2007
32.0 092 4.95.-10~°% —7.13-10"° Feb. 2007
420 0.88 5.87-10~° —7.12-10~° Dec. 2007
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Figure 3.11: Gain-Elevation curves for the low frequencies. Clockwise are shown 2.64, 4.85, 8.35
and 10.45 GHz respectively (see also Table 3.11). For 2.64 GHz no significant deviation
from a flat curve exists.

The correction applied to the data is :

po (3.23)

where :

Tpoi is the antenna temperature after the pointing correction
T  is the corrected antenna temperature for the gain—elevation effect
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Figure 3.12: Gain—Elevation curves for the high frequencies. Clockwise are shown 14.6, 23.05, 32.0
and 42.0 GHz respectively (see also Table 3.11).

Sensitivity correction

Throughout the previous steps antenna temperatures where given in units of K. Its con-
version to flux density S in units of Jy is done by comparing the antenna temperature
of the calibrators with their known flux densities (Table 3.8). For every observation of a
calibrator a calibration factor I' is calculated. Then an average value (I') for the whole
observing session can be computed using all the available calibrators measurements. The
final sensitivity correction is the applied according to:

Ssens = I') - Tg (3.24)
where :

Tc the antenna temperature after all other corrections are applied
(I') the mean calibration factor in Jy /K

3.3.5 Error estimates

The final errors reported for every observation is the result of the cumulative factors al-
ready discussed in previous sections. For a more realistic estimation of the uncertainties,
several different errors have been calculated and the error with the largest value is used as

the most conservative uncertainty. In more detail:
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The scatter of (S). In a particular observing session it is common that not only one mea-
surement is obtained per source. Ideally every measurement should have the same value,
but because of reasons like the weather or hardware imperfections this is not true. The
scatter of these measurements over the mean is an indication of how well the system®

repeats a measurement. This scatter is denoted as sigma ().

Error in the mean. Whenever an averaging operation is performed the respective error
can be defined in the mean as eémean = 0/v'N where N is the number of measurements.
This error is always equal or smaller than the aforementioned c.

Formal Gaussian error. If several measurements S; exists with an error of ¢; in each one
of them, then we can define the formal Gaussian error as:

/2
Se = (3.25)

where:

S is the mean value of the measurements, S = (S;)
N the number of measurements

Repeatability error. The previous error estimations are relatively straightforward. A
more sophisticated estimation of the system behaviour can be obtained using the ‘repeata-
bility” curves. For the construction of those all the calibrator measurements over the five
years of observations have been used. Plotting the uncertainty in the determination of the
flux density versus the flux density a clear dependence is observed. This dependence can
be modelled by the following equation:

es = 4/02 + (m-9)* (3.26)

where :

S  is the flux density of the measurements

es is the uncertainty in a measurement

m  is the modulation index due to the calibration errors
0p is the offset in the equation

This error can be thus divided into two distinctive parts. The first part is flux density
independent (07) and the second part is flux density depended (( - S)?). The constant part
can be attributed to the following:

3the notion system refers to the combination of the weather and the telescope as a whole.
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o thermal noise. Is derived from the radiometer formula and it is the lowest limit in the

detection of a flux density level.

e confusion error. Is the error in the determination of the flux density of the target source

due to the cumulative contribution of background sources.

e atmospheric emission error. Ideally by performing differential observations we can

completely subtract the contribution of the atmosphere to our signal. This error is

any residuals left from imperfect subtraction of this term.

The flux depended part can be attributed to:

e pointing errors. The pointing errors are already discussed (Sect. 3.3.4).

e noise diode error. This error is introduced by the instability of the noise diode that is

used for the calibration of the receiver signal.

e atmospheric absorption error. This error is introduced by the variable atmosphere, caus-

ing changes in the opacity. See also Sect. 3.3.4 for opacity corrections.

Table 3.12: Repeatability curve parameters

Freq.

(GHz) 00 m
2.64 || 0.001 0.0080
4.85 || 0.001 0.0077
835 || 0.001 0.0112

1045 || 0.001 0.0125
14.60 || 0.001 0.0187

23.05 || 0.001 0.0281

32.00 || 0.001 0.0306

42.00 || 0.001 0.0346

The values of 0y and m that have been calculated for all the different frequencies are

shown in Table 3.12. From all the different error estimations described above, as the final

error of a given measurement the maximum error is used as the most conservative ap-

proach. This work was first done by E. Angelakis in his PhD thesis, but the numbers here

are updated to the current values. For the actual plots and more details please refer to that

thesis.



Analysis tools and methods

The following chapter presents an introduction to the analysis tools and methods that are
applied to the FF-GAMMA datasets. The period of focus for all the subsequent analysis
is January 2007 to January 2012 i.e. the first five years of FF-GAMMA observations of the
revised source sample (see also Sect. 2.1). The aim is to characterize the extreme variability
and spectral properties of blazars. The used tools and methods are :

e Variability characterization x*— Analysis
To test the existence and significance of variability in the observed light curves a
x>-test is performed. Sect. 4.1 presents the details of this method.

e Variability / flare amplitudes — Intrinsic standard deviation (;;)

The strength of the observed flares in the light curves can be quantified by the vari-
ability amplitudes. A likelihood method estimating the ¢;,; of a given light curve
(i.e. amplitude) is used. Sect. 4.2 presents this method.

e Flare time scales

Very important is to quantify the time scales of the occurring flares. The estimated
values were computed by means of a structure function (SF) and wavelet analysis.
Sect. 4.3 presents these methods.

e Spectral indices

A way to quantify the spectral behaviour of an observed source is by means of the
spectral index at various frequency bands. Sect. 4.4 presents the details of the used
method.
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e Spectral peak estimation

A more detailed approach to characterize the behaviour in the spectral domain is by
means of estimating and studying the properties of the spectral peak (peak frequency
and peak flux density) of the observed broadband spectra. Sect. 4.5 presents the
details of the used method.

4.1 Significance of variability: the x>—test

The x-test is a statistical method applied to the data in order to evaluate the possibility
that any observed difference between the dataset in question and an expected dataset is
random or not, i.e. if the sampling distribution is a x? distribution when the null hypothe-
sis is true. In particular for the current analysis, the dataset is tested against the hypothesis
of a constant function i.e. a non-variable source. This means that the x? statistic is a way to
quantify if an observed variation is statistically important or not (Bevington and Robinson
1992).
The x? statistic is given by :

N
X =

i=1

(5= a

i

S;  is the observed flux density

(S) is the average flux density of the light curve

o;  is the uncertainty of the S; measurement

N is the number of observations in the light curve

and the reduced x? statistic is simply Eq. 4.1 divided by the degrees of freedom (df =
N-—-1):

XZ

X%ed: N-—1

The value of the reduced x? statistic is then compared to the x? distribution according
to the degrees of freedom and evaluated to calculate the probability P that the observed
variation in the light curve is significant or not. A source is considered to be variable only if
the probability of constant flux density is < 0.1 % (99.9 % significance level for variability).

There are some assumptions for the above calculations of the x? statistic to be applica-
ble, namely:

e Random sample
o Large sample size

o Independent data points
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All these requirements are met in the current study, making the y?-test a very good method
to quantify the variability behaviour of the observed source sample. The results of this
study are presented in Sect. 5.2.

Due to the fact that the measurement errors are taken into account by the y>-test al-
gorithm, means that for sources that are weak or for any reason have high errors then the
characterization of variability is compromised. This means that sources that are flagged
as non-variables in the current study could be variables if observed under different con-
ditions (e.g different telescopes) and or with different time spans. This is an important
consequence of the use of the x*>~test leading to the conclusion that the acceptance of the
null hypothesis can not be proven, meaning that with this test we can not conclude for the
actual variability or not for sources that are marked as non—variables. On the other hand
for sources that are marked as variables is a proof of their actual variable character. For
the aforementioned reasons only those sources with light curves which showed significant
variability according to the y?~test are considered in the analysis presented in this thesis.

To further quantify the observed variability, the modulation index m can be used. It is
defined as the percentage ratio of the rms- variations op of the light curve and the average
flux density (S):

4
m[%] =100 - —
S
It provides a measure of the strength of the observed variations and it is also used in the
subsequent analysis of j,,; (Sect. 4.2).

4.2 Intrinsic standard deviation

Many different approaches can be followed to quantify the variability amplitudes of the
observed flares e.g. Ciaramella et al. (2004) makes a probability distribution of log(5/S)
(where S is the instantaneous flux density at a specific frequency and S is its average). To
study the variability amplitude and it’s dependence on frequency, possible biases must be
taken into account such as (a) redshift and (b) measurement uncertainties of the traditional
determination of the variability amplitude.

To address the effects of redshift all calculations are done in the rest frame of every
source. To address the second effect of measurement uncertainties in the determination of
variability amplitudes a new method is applied. In particular, the intrinsic values for the
standard deviation of the fluxes for each light curve using a maximum likelihood analysis
are computed. In this computation the different measurement uncertainties o; at each
flux density measurement S; and the different number of flux density measurements for
different light curves are taken into account, making this way of quantifying the variability
amplitudes more robust. This method was introduced by V. Pavlidou (Pavlidou et al. 2012;
Richards et al. 2011) and is applied here. The results from the application of this method
are presented in Sect. 5.3 whereas a summary of the method is provided bellow.

The goal of the method is to compute the intrinsic standard deviation ¢p and thus
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characterize the intrinsic variability amplitude of the observed flares. For the analysis
that follows a source is assumed to have some intrinsic variability. Moreover the true
flux densities under consideration (S;) due to the intrinsic variability are assumed that are
normally distributed with a mean value of Sy, a standard deviation of ¢y and a modulation
index of m = 07y/Sp. Due to observational uncertainties the measured flux is not S; but S i
with an uncertainty of ;. Also N measurements of S; each with its own uncertainty o; are
assumed. This method has some inherent disadvantages because of these assumptions.

Model dependence For the derivation of the intrinsic standard deviation a functional
form of the distribution of flux densities must be assumed. In this case it is assumed that
this distribution is Gaussian. This leads to a loss of generality. Three different methods
can be used to test the effect of this assumption :

e (a) The first method is to compare the maximum-likelihood (max-£) intrinsic flux
distribution with the distribution of the measured fluxes. In this way the assumed
model can be evaluated if it is a reasonable fit to the real data.

e (b) The second method is to compare the max—L value of oy and the value of oy
obtained from the sample of Sp and m. If these two differ significantly then the used
model probably does not describe properly the distribution of fluxes. The latter value
of m is contaminated by uncertainties but is model independent and thus it allows
this comparison. This test can be done only for well sampled objects with relative
small observational uncertainties.

¢ (c) The third test is to compare max—L values derived from different models. This
allows to see how large the effect of the model is compared to the values of 0y.

Assumption of unbiased sampling Compared to ideal light curves with infinite sam-
pling, real world light curves have finite sampling. Thus it is assumed that the sampling is
uniform and that we have sampled all the variability of the observed source. In cases that
lengthy gaps exist in the data or increased sampling in a single epoch then this assumption
is poor and Monte—Carlo simulations are needed to quantify how much the max-L value
of m is affected.

Leakage of power There is leakage to the non—physical domain of negative true fluxes
because of integrations starting from —oo. This is expected to be a problem only for very
dim or very variable AGN. In the latter case, the problem is usually the bi-modality of the
flux distribution. This is discussed in Sect. 4.2.2. Thus two cases for the flux distribution of
an AGN are taken into account, a Gaussian and a bi-modal, with the latter constituted by
the sum of two Gaussian. It should be noted that the simpler Gaussian flux distribution
method is applied to the data for the study of the current thesis.
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4.2.1 Gaussian flux distribution

At the moment of observation a source has a true flux density of S;. If the observational
uncertainty is 0}, the probability of the observed flux density §; is:

1 (St —5)°
LO) = ——— . 42
p(SuSivo) = fznexp[ 207 (42)

If the true fluxes of the source due to intrinsic variability are distributed normally with a
mean of Sy and standard deviation of 0y, the probability that the source at the moment of
observation has a true flux density of S; is:

2
<5t—50)] _ (4.3)

1
$1,50,00) = ——exp | -
p (St S0, 00) ooV27T exp[ 203

Hence the likelihood of observing a flux density S; with an uncertainty ¢; from the source

is:

[ce] 2
1 (S —S)) 1 (St — S0)?
0. = _ . — ds 4.4
J J:OO ojv2m P [ 2(7].2 ] ooV27T =P [ 203 ! (44)

¢j represents the probability to observe S; through any possible true flux S;. Eq. 4.4 has an
analytical solution:

2
l = ! - exp [(S]SO)] . (4.5)

2, 2
27 (ag + (7]2) 2 (‘Tj + ‘70)

Consequently for N observations of S;, 0; with j = 1,... N the likelihood will be:

N
5(50,0'0) = ng =
j=1

N N S5.—§ 2
L(So,00) = (H 1)) X exp [; M] . (4.6)
]

; 2., 2 ;
=1 4/27(0% +0; =1

It is apparent that the likelihood is symmetric about 0p = 0, leading to the conclusion
that for the calculations of the uncertainties the lower limit for the integration can be zero
without any loss of information or introduction of biases. With this formalism negative
intrinsic standard deviation values are not possible.

By maximizing Eq. 4.6 an estimation of the maximum-likelihood values for Sp and
0p can be made. For the purposes of this thesis the intrinsic standard deviation oy and
the associated uncertainties are only needed, without the true value of Sg. To do that we
marginalize Eq. 4.6 taking out the mean and then obtain the marginalized likelihood as a
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function of only oy:

N 2

L(oy) = l || 1 1« (Si—So)
(c0) ———|xexp | -5 > ~L——|dSo (4.7)

=1 4/ 27(08 + (7].2) 2 - (7].2 + 0}

The value of 0y that maximizes Eq. 4.7 is the best guess for the intrinsic standard deviation
(hereafter 0;,,;) and is used as a measure of the variability amplitude in the following analy-
sis of this thesis. The 1-sigma uncertainty of oy can be found by locating the iso-likelihood
op—values 01 and 0, (£ (01) = L (07)) for which:

72 [ (0p)doy
—S;gl @04 6
S—oo [,(0'0)(.‘10'0

4.2.2 Bi-modal flux distribution

The initial approach of assuming a single Gaussian distribution for the intrinsic fluxes
(Sect. 4.2.1) of a source is not always true in general. A more appropriate model would be
then the sum of two Gaussian weighted by a duty cycle f. The two Gaussian represent
two different states of the source i.e. ‘on” and ‘“off” state, where their fluxes are normally
distributed with a mean value of Sy, and S, ¢ and standard deviation of oy, and o re-
spectively. The duty cycle is defined as the time spent in the on-state.

Following the same logic as in the case of a single Gaussian distribution, the likelihood
of a single observation for a bi-modal distribution is:

['e} 2 2
f (5:—5)) 1 (St = Son)
= - : _2t o) 14s
: J jV 27 oF 20]2 TonV27T =P 203, t

o0
0 2
1-f (St —5)) 1 (St — Soff)’
+ - . ———|dS 4.8
J_ o TiV21T &P [ 2(7].2 ToffV/ 27T &P 202 ! (4.8)

Eq. 4.8 in the same manner as Eq. 4.4, represents the probability of observing S; through
any possible true flux S;. The analytic solution to this equation is:

(5~ Son)° 1 g

o f _ _ _ B (Sj— Soff)2 '
" 27 (agn +a].2) o [ 2 (‘7]2 +‘7§n)] : 27 (crgff +(7],2) o { 2 (‘7]'2 "HTgffS }9)

The likelihood then of N observations will be:

N
['(Son/ Soffr Oons Ooff, f) = H gj(son/ Soff/ Oon/ Ooff, f) (410)
j=1
4.3 Flare time scales

In order to estimate the duration of the observed flares in the light curves, time scales have
been estimated by means of two independent methods of time series analysis, a first-order
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structure function (Simonetti et al. 1985) and a wavelet analysis, based on the Ricker ("‘Mex-
ican hat’) mother wavelet (Marchili et al. 2012). The wavelet method works by associating
a variability amplitude to each time scale, in this way the dominant time scale is selected
unambiguously. It is defined by :

Y(t)=C(1-t)exp (—i) (4.11)

where C is the normalization factor and t is the time parameter.

The structure function instead is calculated for a time series {f;}; according to :
1 2
SF(1) = 5 X, [f (t) = £ ()] (4.12)
ij

where the sum is extended to the N pairs (t;, t;) for which ¢; # t; and T — AT <t - t||<
T + 5F. At is generally of the order of the data sampling; the SFis calculated over a discrete
set of T values, multiples of AT.
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Figure 4.1: Example of the Structure function analysis output for source J2253+1608. The existence
of two bumps is a signature of two distinct variability components in the dataset.

When a structure function is applied to a red-noise signal, the result is a monotonic
increase that can be described by a power law. At a specific time lag the structure function
shows a plateau, corresponding to the maximum coherency time of the signal. The time
scale is identified then by the T value for which the structure function shows this plateau.
An example of the results of a structure function is depicted in Fig. 4.1 for J2253+1608. The
existence of two bumps is a signature of two distinct variability components in the dataset
and it nicely depicts that there is some degree of arbitrariness to the results of SF analysis.
In this case more than one plateaus can detected, for instance at time-lags 7j, 7, ..., Ty, and
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can not easily identify the most significant. In order to overcome this problem, the time
scale is then defined as the 7 for which SF(1) ~ SFy;e,, where SFy;g, is the average value
of the structure function calculated for T > 7. The advantage of such a definition is that
it allows the automation of the calculations given the large number of light curves for the
F-GAMMA sample that need to be analysed.

The comparison of the values that are returned by the SF analysis and the independent
wavelet method (Marchili et al. 2012), indicates the consistence of each value. A linear
regression of the structure function time scales versus the wavelet ones for the whole sam-
ple, returns a correlation coefficient of 0.83, with a slope of 1.0, showing that the definitions
of the time scales are consistent among each other. More details of the methods described
here are given in Marchili et al. (2012). For the analysis performed in the current thesis
values of the SF method are actually used.

4.4 Spectral indices

The spectral index « of a source can provide information about the nature of the observed
emission and behaviour. Spectral index depicts the dependence of flux density on fre-
quency and is defined by S = k- v*, where v is the frequency S is the flux density and
k is a constant. To calculate the spectral index of a spectrum a least square fit using the
Levenberg-Marquant numerical method is made according to equation :

_ log (S) —log (k)
- g0 (4.13)

where S is flux density, v is frequency and k is a fitting parameter. S is a straight line when
depicted in a log-log space and « is the slope of that line. Three point spectral indices are
calculated based on every spectrum of each source for two different set of wavelengths,
namely a4 (60, 36, 20mm) and apig (9, 3, 2mm). Instead of using one single spectral in-
dex for the full spectrum the approach of using two sub-band spectral indices was chosen
to also study the shape and evolution of the observed spectra in greater detail. The results
for the sources of the revised sample for both the calculated spectral indices are presented
in Sect. 6.2.

We can discern three different cases of spectra depending on the value of the calculated

e Flat spectra with a = 0
e Inverted spectra with « > 0
e Steep spectra witha < 0

An example of the the aforementioned a definitions are shown in Fig. 4.2. Asitis shown in
Sect. 6.2, all of these three cases can be seen for the computed spectral indices of «;,,, and
anigh for the observed spectra. Traditionally in AGN studies a spectral index is assumed
flat when it is smaller than ~ 0.5.
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Figure 4.2: Example of three different spectral indices i.e. flat (blue), inverted (green) and steep (red)
slopes.

4.5 Spectral peak analysis

The goal of the spectral analysis is to characterize the spectral behaviour of the observed
sources and discriminate between possible different behaviours. For this purpose an anal-
ysis of isolated flares is performed aiming to characterize the temporal evolution and be-
haviour of selected flares in the S;;x—Vmax plane. To find the Sy and vyay, for every
spectrum that was chosen for this analysis (see also Table 6.2), a power law with a break
in the log space was used and least square fit using the numerical method of Levenberg-
Marquardt. The broken power law is of the form :

log(S) =k — \/12 + (m -log(v) — n)? (4.14)

where S is the flux density in Jy, v is the frequency in GHz and k, 1, m, n are the fitted
parameters. The corresponding frequency of the peak is given by:

Vinax = 1007/ (4.15)
and the flux density at this frequency is given by:
Spax = 1061 (4.16)

where S, and vy, are the flux density and frequency at the spectral peak respectively.
As it can be seen for the spectra of the observed sources, the flaring activity is often su-
perimposed to a steady optically thin quiescent spectrum. For the current analysis this
quiescent spectrum is first subtracted before any fitting is done using Eq. 4.14. The steep
quiescent spectrum can be modelled in the same manner as in Sect. 4.4, by a power law of
the form :

S =k-1* (4.17)
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where v is the frequency and S is the flux density and k is a normalization parameter that
is calculated using the lowest frequency of the studied spectrum.

Ideally a source specific value of a should be used but it is not always possible to
calculate such a value. The activity of the observed sources prohibits this, since flaring
activity reaches the lowest observed frequencies at EB and thus is obscuring the steady
and underlying quiescent spectrum. Thus for uniformity a universal and fixed value of
« = —0.7 was used as a reference for the spectral analysis performed in this thesis. Results
from the spectral peak analysis are presented in Sect. 6.3.



Light Curve analysis

In this chapter the analysis and results of the combined 5-year F-GAMMA light curves
obtained at EB and PV are presented using the tools and methods described in Chapter 4.
The analysis here covers a frequency range of 2.6 GHz up to 142 GHz. In order to study
the variability characteristics of the monitored sources in the time domain, a detailed light
curve analysis is performed. The analysis is based on the following steps:

e Test for the existence and significance of variability (x*-test) (Sect. 4.1)
e Determination of the variability /flare amplitudes (see Sect. 4.2) and k-index
e Estimation of the observed flare time scales (see Sect. 4.3)

e Estimation of variability brightness temperatures and Doppler factors (see Sect. 5.5)

5.1 Observed light curves

Examples of light curves of prominent and particularly active y-ray sources are shown in
Fig. 5.1 demonstrating the extreme variability seen at all bands. The full set of light curves
for the revised sample are presented in Appendix A.3.

All sources show extreme variability at all of the observed wavelengths. Dramatic flux
density changes of up to a factor of 5 or more during the observed period are observed.
The large outbursts and extended activity periods often last for years, however, consid-
erable sub—structure is seen with smaller amplitude and more rapid (weeks to months)
“sub-flares” are often superimposed. As it is seen from Fig. 5.1, variability at higher fre-
quencies is often observed to be faster when compared to lower frequencies for most of
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the cases. Delays are also evident for many cases, often variability first appears at mm-
bands and then subsequently at cm-bands. The delay between mm and cm-bands is not
always apparent with several sources showing simultaneous variability at all observed fre-
quencies. This behaviour is fundamentally different from sources that show delays across
frequencies.
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Figure 5.1: Example of light curves for selected, active y-ray sources demonstrating the extreme
variability observed at cm to short-mm wavelengths. From top to bottom are shown:
J0238+1636, J0854+2006, J2202+4216 and J2253+1608. From left to right column are: Low
(2,4, 8 GHz), Medium (10, 14, 23 GHz) and High (32, 42, 86, 142 GHz) frequencies.

5.2 Variability test

The presence of significant variability in the light curves of a certain source has been eval-
uated through a x?-test as presented in detail in Sect. 4.1. A source is considered to have
significant variability if the probability of constant flux density is < 0.1% (99.9% signif-
icance level). As expected, the x>—test results show that the calibrators used within the
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F-GAMMA program are non-variable. Table 3.9 presents the calculated modulation in-
dices of all the calibrators at all the observed frequencies.

The accuracy of determining the absolute flux density of a source is limited by the ob-
servational uncertainty the calibrators exhibit. From Table 3.9 is apparent that this uncer-
tainty increases with frequency due to increased influence of weather at higher frequen-
cies. Nevertheless the mean accuracy is always better than 5% reaching less than 1% at
lower frequencies, demonstrating the high quality of the F-GAMMA data.

Table 5.1 presents the percentages of variable/non—variable sources in the original and
revised samples for all observed frequencies. The percentage of variable sources for the
revised sample is high at all frequencies with a minimum of about 90 % at 86 GHz and a
maximum of 100% at many other frequencies. This shows the highly variable character of
the observed source sample at all frequencies within the 5-year monitoring period.

Table 5.1: Variability as a function of observing frequency for both the original and the revised
source samples and for frequencies of 2.64, 4.85, 8.35, 10.45, 14.6, 23.05, 32, 42, 86 and

142 GHz.
2.64 GHz 4.85GHz 8.35 GHz 10.45GHz
Orig. Cur. Orig. Cur. Orig. Cur. Orig. Cur.
Variable 59 (96.7%) 58(98.3%) | 59(96.7%) 59 (100%) 58(95.1%) 59 (100%) 57(93.4%) 59 (100%)
non-Var. 2 (33(70) 1 (170/0) 2 (330/0) 0 (00/0) 3 (490/0) 0 (0(70) 4 (650/0) 0 (0(70)
14.6 GHz 23.05 GHz 32GHz 42 GHz
Orig. Cur. Orig. Cur. Orig. Cur. Orig. Cur.
Variable  57(98.3%) 59 (100%) 53(98.1%) 54(91.5%) | 54(98.1%) 58(98.3%) | 49 (942%) 47(96.0%)
non-Var. 1(1.7%) 0(0%) 1(1.9%) 4(8.5%) 1(1.8%) 1(1.7%) 3(5.8%) 3(4.0%)
86 GHz 142 GHz
Orig. Cur. Orig. Cur.

Variable ~ 47 (77.1%)  53(89.8%) | 49 (80.3%) 55 (93.2%)
non-Var. 14(229%)  6(102%) | 12(19.7%)  4(6.8%)

Table 5.2: Object classes of variable sources in the sample divided per frequency for both the orig-
inal and the revised samples and for frequencies of 2.64, 4.85, 8.35, 10.45, 14.6, 23.05, 32,
42, 86 and 142 GHz. Reported percentages refer to variable sources only.

2.64 GHz 4.85GHz 8.35GHz 10.45 GHz
Orig. Cur. Orig. Cur. Orig. Cur. Orig. Cur.
FSRQs  30(50.8%) 32(55.2%) | 30(50.8%) 32(54.2%) | 30(51.7%) 32(54.2%) | 30(52.6%) 32(54.2%)
BLLacs 22(37.3%) 15(25.9%) | 22(37.3%) 15(254%) | 21(36.2%) 15(25.4%) | 20(35.1%) 15(25.4%)
Blazar 4(6.8%) 6(10.3%) 4(6.8%) 7(11.9%) 4(6.9%) 7(11.9%) 4(7.0%) 7(11.9%)
Other 3(5.1%) 5(8.6%) 3(5.1%) 5(8.5%) 3(5.2%) 5(8.5%) 3(5.3%) 5(8.5%)
14.6 GHz 23.05 GHz 32GHz 42GHz
Orig. Cur. Orig. Cur. Orig. Cur. Orig. Cur.
FSRQs  30(52.3%) 32(55.2%) | 30(56.6%) 31(57.4%) | 27(50.0%) 31(53.4%) | 29(59.2%) 27(56.3%)
BLLacs 20(35.1%) 15(25.4%) | 16(30.2%) 14(25.9%) | 20(37.0%) 15(25.9%) | 13(26.5%) 12(25.0%)
Blazar 4(7.0%) 7(11.9%) 4(7.6%) 5(9.3%) 4(7.4%) 7(12.1%) 4(8.2%) 4(8.3%)
Other 3(8.5%) 5(8.5%) 3(5.7%) 4(7.4%) 3(5.6%) 5(8.6%) 3(6.1%) 4(8.3%)
86 GHz 142GHz
Orig. Cur. Orig. Cur.

FSRQs  26(55.4%) 30(56.6%) | 22
BLLacs 13(27.6%) 13(24.5%) | 19
Blazar 4(8.5%) 6(11.4%) 4
Other 4(85%)  4(75%) | 4

449%)  31(56.4%)
38.8%)  14(25.4%)
82%)  6(10.9%)
82%)  4(7.3%)

o~~~ o~

An observed effect is the apparent decrease of variable sources from a value of 100%
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at lower frequencies to a value of 93% at 142 GHz. This is attributed to the combined
effect of weather influence, that is increasing the measurement errors (Table 3.9) at higher
frequencies and the use the x*-test as already explained in Sect. 4.1.

The percentages of variable sources separated by source class of both the revised and
original samples are presented in Table 5.2. For the revised sample the number of FSRQs is
about 55% of the overall variable sources and 25% for BL Lac objects. This fraction remains
constant throughout all the observed frequencies. This result is important as it allows to
perform statistical comparisons across frequencies between FSRQs and BL Lac’s in later

analysis.

5.3 Variability amplitudes & k—-index

One aspect of the encoded information in the light curves is the amplitude of the observed
flares/variability. A measure of this is the intrinsic standard deviation (cint) as described
in Sect. 4.2. In this section the results of the computed cin; values are presented. A study
of oint versus rest frame frequency is also performed.

T T T T LI | T T T T LI T T T T LI
|  —— FSRQs —
10 F —— BL Lacs E
- L |
.S

.§ 1 —
= = =
() C .
& - : ]
b= B - 7
S T S i
g B AV = 7
5 0lE E
g C .
CHE ]
0,01} -
i 1 1 1 1 | I | | 1 1 1 1 | I | | 1 1 1 1 | I | I_

1 10 100 1000

Rest Freq. [GHz]

Figure 5.2: 0;,; versus rest frequency for x2 variable sources. Each line represents one source, black
lines are for FSRQs, red lines for BL Lac objects. BL Lac objects seem to be less variable
compared to FSRQ'’s.

It should be noted that because the analysis is performed in the rest frequency domain,
the x—axis of Figs. 5.2 and 5.3 have a range far larger than the actual observing bandpass.
The dependence of oin: with rest frequency for each source is presented in Fig. 5.2. A gen-
eral trend is apparent with the iy for most of the sources increasing monotonously from
lower towards higher frequencies reaching a maximum and then dropping again. The av-
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erage Oin after binning in frequency is presented in Fig. 5.3. The aforementioned trend is
better seen now, with the maximum cjn; occurring at a rest frequency of ~ 70 GHz. Some
sources though do not show this behaviour. A relative constant value of it is observed
across all frequencies for these cases. This behaviour is indicative of a source that changes
its flux density in the same relative amount across all frequencies. The observed spectra
of such sources are expected to change in a self-similar manner, retaining their shape as
indeed observed (see also Chapter 6).
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Figure 5.3: Logarithm of average oin; versus rest frequency for x? variable sources. Black line is for
FSRQs and red line for BL Lac objects. The average is done in frequency bins, the width
of each bin is represented by the bar lines in the x—axis.

The overall trend is also evident for the populations of FSRQs and BL Lacs. FSRQs
exhibit much higher iy (by a factor of 2) across all frequencies when compared to BL Lac
objects. An interesting feature is prominent for BL Lacs at the lowest end of the frequency
range, a plateau emerges from 5GHz to 3 GHz. This is not observed for FSRQs indicating
that flare variability of BL Lacs barely reaches the lower end of the sampled frequencies, in
contrast to FSRQs that the opposite behaviour is evident.

It should be noted that the decreasing trend of ointvariability amplitudes at frequencies
higher than ~70GHz is not clearly seen in Fig. 5.3. This is due to a significantly lower
number of sources in the particular frequency bin smearing out possible trend. The his-
togram of all the available measurements of the ciy is presented in Fig. 5.4. BL Lacs show
a clear trend towards lower values of intrinsic variability. Also a much wider distribution
is evident with 95% of the sources having a range of 2.8, compared to a range of 1.8 for
FSRQs. A Kolmogorov-Smirnov (K-S) test (Smirnov 1948; Press et al. 1992)! performed
on the populations of FSRQs and BL Lacs gives a significance level of P = 99.9% for the
two populations to have intrinsically different statistical characteristics in producing the
observed variability, indicating that BL Lacs are intrinsically less variable compared to FS-
RQs.

To visualize and quantify the results of oin, a new index is proposed i.e. the k-index.

A power law of the form oy ~ vk

rest has been fitted to the iy data of each source in four

1Appendix A.5 provides information on the K-S test
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Figure 5.4: Histogram of all intrinsic variability amplitude measurements of x? variable sources,
black is for FSRQs and red for BL Lac objects. K-S test indicates a clear statistical differ-
ence between the aforementioned classes. Variability of BL lac objects is less powerful
and with a wider distribution compared to FSRQs.

different rest frequency bands, low (2.64, 4.85, 8.35 GHz), medium (10.45, 14.6, 23.05 GHz),
high (32, 42, 86 GHz) and super high (86, 142 GHz), with the k-index being the slope of the
corresponding segments in Fig. 5.2.
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Figure 5.5: Histogram of the computed k—index (o ~ vfest) for all the four frequency bands. A clear
trend towards steep slopes is seen as the frequency increases. K-S test for the all the
different bands, gives a significance level of P = 99.9 % of having different statistical

properties.
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The distribution of the computed k—indices for all the four different bands is shown at
Fig. 5.5 clearly reflecting the aforementioned behaviour and overall convex shape of the
ot curves. The average values of k-index from low to S. high are initially inverted with a
value of 0.51 then becomes flat (i.e. close to zero) with a value of —0.08 and finally becomes
steep with a value of —0.44 (see Table 5.3). This is expected from the overall trend seen at
Fig. 5.2 and Fig. 5.3. The overall convex shape of the oi,; curves as seen in Fig. 5.2 with
a peak value at ~ 70 GHz, indicates that many flares evolve towards lower frequencies
within the observed bandpass. The different values of k-index at various frequencies for
a specific source characterizes the evolution of a flare in the Syax — Vmax space as it will be
shown in Chapter 6.

Table 5.3: Average values of the computed k-index for different object class.

k—-index all sources FSRQs BL Lacs

Low 0.51 062 022
Medium  0.25 030 014
High —0.08 —001 —0.33
S.High —0.44 —039 —0.32

A K-S test of all the different distributions i.e. low to S.high of k—indices, give a signif-
icance level of P = 99.9 % of having different statistical properties indicating the different
variability amplitudes that are observed throughout the frequency band.

It should be also mentioned that sources having a flat k-index across all frequencies
do exist, suggesting a bi-modal nature of the observed sources, with one type of sources
showing dynamically changing variability that has different strength at different parts of
the spectrum and another type showing variability that changes their flux density in the
same amount across all frequencies. As it will be discussed in Chapter 6 there are some
exceptions to the above scheme, i.e. sources with flat k-index but with evolving spectral
characteristics.

5.4 Observed time scales

As described in detail in Sect. 4.3 an SF method was employed to estimate the observed
flare time scales of sources that were considered as variable by the y>test. Tables 5.4 and
5.5 present the mean and median values of the estimated time scales. A trend is visible as
observing frequency increases the estimated time scales are decreasing with mean values
of 590days (median 480days) at 2.64 GHz to values of 320days (median 300 days) at
142 GHz.

Table 5.4: Estimated mean and median variability time scales per frequency, for the revised sample
and for frequencies of 2.64, 4.85, 8.36, 10.45 and 14.6 GHz.

2.64 GHz 4.85GHz 8.36 GHz 10.45GHz 14.6 GHz
mean median | mean median | mean median | mean median | mean median
592 480 555 540 494 420 475 420 480 377
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Table 5.5: Estimated mean and median variability time scales per frequency, for the revised sample
and for frequencies of 23.05, 32, 42, 86 and 142 GHz.

23.05 GHz 32GHz 42 GHz 86 GHz 142 GHz
mean median | mean median | mean median | mean median | mean median
472 450 458 375 505 495 317 280 326 300

The estimated flare time scales range from ~ 60-80 to a maximum of ~ 1400 days
whereas it is worth noting that 85 % of the sources at 86 GHz and 81 % at 142 GHz exhibit
observed time scales shorter than 450 days. These findings are consistent with previous
studies and results. For instance Hovatta et al. (2008, 2007) report variability time scales
of 2.5 years and Trippe et al. (2011) deduced time scales ranging between 2 and 8 years at
90 GHz for a sample of 6 sources.

5.5 Brightness temperatures & Doppler factors

The brightness temperature of a celestial object observed at a frequency v, is defined as the
equivalent temperature of a black body in thermal equilibrium with its surroundings It is
given by:

_ A-F(A)
B o k62

assuming that the received flux density is F (1) and that the apparent angular source size is

(5.1)

6. There are two main ways of measuring the source size and hence estimate the brightness
temperature:

e VLBI observations

e from variability and causality arguments. The brightness temperature that is esti-
mated with this method is called variability brightness temperature.

With VLBI observations a direct measurement of the source size and the flux density of
the emitting region is possible and hence directly estimate its brightness temperature. By
observing flux density variations in a specific time period ¢ the source size of the emitting
region can be inferred using causality arguments i.e. requiring that the size of the emitting
region R can not be larger than the distance light can travel within the given time ét:

ot
1+2z

R<c-dt=c- (5.2)

where

ot :is the time scale of the observed flux density variations
z :is the redshift

Assuming that the emitting feature is moving with some velocity in the co-moving frame
of the observed source and with an angle to our line of sight, then the rest frame variability
brightness temperature is given by the relation :
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2
Tp=45-100. A5, [~ PL (5.3)
Oty - (1 + Z)

where:

AS, :is the observed variability amplitude at A
Dy :is the Luminosity distance in Mpc.

Kellermann and Pauliny-Toth (1969) suggested that there is an upper limit on the bright-
ness temperatures of compact self-absorbed radio sources. At a brightness temperature of
~ 102K the energy losses imposed by inverse Compton processes of radiating electrons,
become so large that rapid cooling of the system takes place, bringing the synchrotron
brightness temperature below this limit. Readhead (1994) showed that for the inverse
Compton catastrophe to occur, a very large divergence from the equipartition and min-
imum energy condition is required. Assuming equipartition between the particles radi-
ating and the magnetic field (Scott and Readhead 1977) and combing this with an upper
limit to the magnetic field, an equipartition brightness temperature limit of 5 - 10!1°K can
be defined. For the estimations performed in the following, an equipartition brightness
temperature limit of 5 - 10!°K is assumed.

It is very common to observe brightness temperatures in excess of the equipartition
limit. This excessive and over the theoretical limits temperatures can be explained in terms
of relativistic boosting of the emission region allowing to obtain estimates of the Doppler
boosting factors. The equation relating the brightness temperature to the Doppler factor

5var,IC = (1 + Z) 3+\a/ TB/5 -1010 (5.4)

where z is the redshift. It should be reminded that a value of « = —0.7 is used for the

is:

current analysis.

Having estimated the observed flare amplitudes (Sect. 5.3) and time scales (Sect. 5.4)
the observed flare brightness temperatures and Doppler factors can now be estimated for
each source and frequency. This enables us to quantify and probe the physical condi-
tions of the observed variable emitting regions of the monitored sources across the whole
frequency band. Fig. 5.6, 5.7 and 5.8 present the histograms of the computed brightness
temperature values from Eq. 5.3 for all frequencies. The mean brightness temperature is
decreasing towards higher frequencies ranging between a value of 6.9 - 10'2K at 2.6 GHz
t07.5-10'K at 142 GHz.

A similar trend is also observed when the populations of FSRQ and BL Lacs are in-
spected separately with values of 1.7 - 103K at 2.6 GHz to 9.6 - 10'° K at 142 GHz for FS-
RQs and values of 2.7 - 1012 K at 2.6 GHz to 5.3 - 10'° K at 142 GHz for BL Lacs. The obtained
mean and median values for every frequency are given in Table 5.6.
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Table 5.6: Mean and median values of estimated brightness temperatures (in K) of Eq. 5.3 for the
various classes of sources and frequencies. See also Figs. 5.6, 5.7 and 5.8.

Freq. all sources FSRQs BL Lacs
(GHz) mean[k] median[k] | mean [k] median [k] | mean [k] median [Kk]
2.64 69-102 1.3-10 1.7-1018 15-108 2.7-102 23-10%2
4.85 40-102  6.2-10'2 1.1-101  1.3-1013 1.2-102  7.2-101
8.35 2.7-1012  5.1-10!2 72-1012  6.5-1012 9.8-101 1.7-10'2
1045 2.0-102 3.9-1012 5.6-102 55-10!2 50-101  59.101
14.6 1.1-102  2.4-1012 3.3-1012 3.8-10!2 3.1-101"  34-10M
23.05 6.8-101 1.2-10'2 20-102 23-.10!2 1.6-10"1  3.3.101!
32.0 35-101  52.10M 1.1-102  1.2-102 7.8-1010 1.3.101
420 3.0-101"  3.1.10M 79-1011  1.0-1012 6.9-1010 7.7.1010
8624 24-101 6.6-10%0 3.0-10" 8.0-10%0 1.9-1011  23.1010
14233 75-1019 29.1010 9.6-1010 4.0-10%0 5.3-1010 4.8-10°
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Figure 5.6: Distributions of estimated brightness temperatures at 2.64, 4.85, 8.35 and 10.45 GHz. All
sources (grey) are shown with FSRQs (black) and BL Lacs (green) superimposed.

Figs. 5.6, 5.7 and 5.8 present the histograms for the distributions of FSRQs and BL Lacs
for all the observed frequencies. A K-S statistical test was performed on the distributions
of FSRQ and BL Lac populations, to investigate the possibility of significant differences
between the two samples. The K-S tests indicate that there is a statistical difference at a
significance level of P = 99.5% between FSRQs and BL Lacs population in the observed
sample for all frequencies except 86 GHz. At 86 GHz the significance level for the samples
to have different statistical properties is P = 92.7 %
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Figure 5.7: Distributions of estimated brightness temperatures at 14.6, 23.05, 32 and 42GHz. All
sources (grey) are shown with FSRQs (black) and BL Lacs (green) superimposed.
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Figure 5.8: Distributions of estimated brightness temperatures at 86 and 142 GHz. All sources (grey)
are shown with FSRQs (black) and BL Lacs (green) superimposed.

From the previous results it is obvious that in most of the cases estimated values of
variability brightness temperatures are in excess of 5 - 10!°K. This excess can be attributed
to relativistic Doppler boosting of the emitting region. Fig. 5.9, 5.10 and 5.11 present the
histograms of the estimated Doppler factors for all the observed frequencies in the same
manner as it was done with for variability brightness temperatures.
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Table 5.7: Mean and median values of Doppler factors for the various classes of sources and fre-
quencies. Doppler factors were calculated from eq. 5.4 and for a maximum Tg of 5- 10'.

Freq. all sources FSRQs BL Lacs
(GHz) mean median | mean median | mean median
2.64 9.6 8.11 13.0 10.7 5.5 3.2
4.85 8.0 7.0 10.6 9.8 45 25
8.64 6.9 6.3 9.4 8.0 4.1 3.8
10.5 6.4 6.1 8.7 74 34 2.1
14.6 5.7 5.1 7.6 6.7 3.1 2.6
23.05 49 4.5 6.5 6.5 2.5 24
32.00 4.1 3.8 5.7 5.6 1.8 1.7
42.00 3.6 32 4.7 45 2.0 2.1
86.24 2.3 2.1 29 2.6 1.4 1.2
142.33 1.7 1.7 22 2.0 0.9 0.7

As expected from the behaviour of T;, the Doppler factors decrease towards higher
frequencies. The corresponding average and median values are presented in Table 5.7.
The Doppler factors are observed to decrease from values of ~9.6 at 2.64 GHz to values
of ~1.7 at 142GHz. The same behaviour is also evident for the populations of FSRQs
and BL Lac in the sample with values ranging from ~13 at 2.64 GHz to values of ~2.2 at
142 GHz for FSRQs and ~5.5 at 2.64 GHz to values of ~0.9 at 142 GHz for BL Lacs. It should
be noted that FSRQs show on average higher values of Doppler factors than BL Lacs at all
frequencies.
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Figure 5.9: Distributions of estimated variability Doppler factors at 2.64, 4.85, 8.35 and 10.45 GHz.
All sources (grey) are shown with FSRQs (black) and BL Lacs (green) superimposed. A
brightness temperature limit of 5 - 10'°K was assumed.
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Figure 5.10: Distributions of estimated variability Doppler factors at 14.6, 23.05, 32 and 42 GHz. All
sources (grey) are shown with FSRQs (black) and BL Lacs (green) superimposed. A
brightness temperature limit of 5 - 109K was assumed.
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Figure 5.11: Distributions of estimated variability Doppler factors at 86 and 142 GHz. All sources
(grey) are shown with FSRQs (black) and BL Lacs (green) superimposed. A brightness
temperature limit of 5 - 101K was assumed.

A K-S test was performed and indeed demonstrated that there is significant statis-
tical difference between the populations of FSRQs and BL Lacs at a significance level of
P = 99.8% for all the observed frequencies. Furthermore as seen from Table 5.7 FSRQs
show on average higher values of Doppler factors than BL Lacs at all frequencies. This
difference is larger at lower frequencies, in accordance with the findings of the k-index
and o;,; presented in Sect. 5.3.
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Spectral analysis

In this chapter spectra are combined using multi-frequency data gathered at EB and PV
with the techniques described in previous chapters. The resulting broadband spectra are
presented and analysed aiming at a qualitative description of the observed phenomeno-
logical characteristics. A detailed study of the spectral properties of the revised sample is
performed with longer data trains than previous studies. Also the evolution of flares in
the Syuux — Vimax plane is investigated enabling the qualitative comparison of the different
variability mechanisms that are observed. The methods used for this analysis have been
presented in Sect. 4.5.

6.1 Observed spectra

Typical examples of spectra observed within the F-GAMMA program are presented in
Fig 6.1. Each curve depicts a quasi-simultaneous spectrum these plots is a spectrum of
a specific observing epoch with measurements of up to 10 different frequencies and a co-
herency time of ~ 2.26 days. Several characteristics of the observed spectra are evident.
The overall spectral shape of the vast majority of sources is a convex one. More specifically
a steep quiescent spectrum is seen at lower frequencies with superimposing and evolving
flares having the shape of an SSA spectrum (e.g J2253+1608). In other cases only flares are
evident showing no apparent quiescent spectrum (QS—spectrum) (e.g J0238+1608) or cases
where the QS-spectrum is dominating (e.g J0418+3801) especially at lower frequencies.
The temporal behaviour of the observed spectra show extreme variability at all fre-
quencies in accordance with the findings of the light curve analysis. As expected from
findings of the k-index, most of the sources show more extreme variability towards higher
frequencies. Most of the observed flares evolve from higher to lower frequencies pro-
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ducing the observed delays of variability seen across frequencies (e.g J2253+1608). Other
sources show variability that is correlated across the bandpass with a convex spectrum
changing in a self-similar way with no apparent evolution of their flares (e.g J0730-1141
and J0750+1231).
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Figure 6.1: Example of spectral variability for selected, active 7y-ray sources demonstrating the
extreme behaviours observed at cm to short-mm wavelengths. From top to bottom
are shown: J0238+1636, J0854+2006, J2202+4216, J2253+1608, J0730-1141, J0750+1231.
Each curve represents a spectrum of a specific observing epoch combining quasi-
simultaneous and multi-frequency data obtained at EB and PV .

All of the aforementioned characteristics confirm the large multitude of phenomeno-
logical behaviours that are seen in the observed sample. Closer inspection of the ob-
served phenomenology reveals two major categories of behaviours that differ in a fun-
damental way: (a) sources that exhibit flaring events that evolve from higher to lower
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frequencies (hereafter Type I sources) significantly changing the peak position of the con-
vex SSA spectrum across frequency and (b) sources that change their convex spectrum in
an “up/down” manner without changing largely their overall spectral shape and peak
position (hereafter Type II sources). These fundamental differences indicate intrinsically
different underlying physical mechanisms producing the observed behaviours. For a more
limited data set Angelakis et al. (2012a) showed that Type I sources can be even further cat-
egorized in four phenomenological types of observed spectral behaviours with their own
sub—categories. According to the analysis performed here and to the above definitions of
Type I and 1II, of the 59 sources of the revised sample, 37 are categorized as Type I, 16 as
Type I and 6 are not defined at all due to lack of data. The Type of each source as defined
above and for the revised sample is presented in Table A.2.

As shown in Sect. 5.3 several sources exhibit a flat k-index in all bands. Now it becomes
clear that this fact can be attributed to two different spectral behaviours of the observed
sources: (a) sources that are of Type II and (b) sources that are of Type I but show continu-
ously extreme variability at all frequencies thus producing a flat k-index (e.g. J0238+1636
at Fig. 6.1). It is interesting to note that all Type II sources have a flat k-index but not all
sources with flat k-index are of Type II. Thus the k-index alone is not enough to discrimi-
nate between Type I and II sources and should only be used to point out Type II sources.

The examples presented in Fig 6.1 show typical cases of the two aforementioned type
of sources. The top four sources represent typical examples of Type I behaviour and the
lower two represent Type I behaviour. All observed spectra for the sources of the revised
sample are presented in Appendix A.3.
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6.2 Spectral indices

As already introduced in Sect. 4.4, F-GAMMA broadband spectra are analysed by calcu-

lating spectral indices in two different spectral bands: low, («1oy) (60, 36, 20 mm) and high,

(#high) (9, 3, 2mm). This approach is followed in order to better sample the wide bandpass

of the observations.
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Figure 6.2: Histogram of all individual spectral indices «y,,, and Xhigh of the revised sample. The
pigh Spectral index shows a tendency of having steeper characteristics that o, (see also

Table 6.1 & A.3).

These spectral indices are calculated for every spectrum of a source for the revised

sample allowing the study of spectral changes over five years of observations (Fig. 6.4).

Fig. 6.2 presents the histogram of all the computed spectral indices. Table 6.1 presents the

average values of a1y, and apigh-

Table 6.1: Average values of spectral indices a5, and apjgp, for the various types of sources in the

F-GAMMA revised sample (see also Fig. 6.2 and 6.3).

Sp. Index all sources FSRQs BL Lacs
mean median | mean median | mean median

Klow 0.02 0.0 0.05 0.0 0.0 —0.04

Xhigh -020 —-020 | —-025 —-025 | —0.12 —0.12

A tendency is revealed in Fig. 6.2, the ap;g, spectral index has a mean value of —0.2 and

median of —0.2, steeper than aj,,, with a mean value of 0.02 and median of 0.0. A K-S test

gives a significance level of P = 99.9 % for the two distributions of spectral indices to have

different statistical properties. This is in accordance to the aforementioned scheme of flares

evolving from higher to the lowest observed frequencies, i.e. as a flare enters the bandpass

the observer first detects the inverted leading part of the flare and then the steep part, thus

an excess of steep spectra in the api, band exist in contrast to the ay,,, band producing
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the difference in the distributions. In addition it must be noted that the differences seen
between the overall a4, and apig, distributions would be larger if all the observed sources
exhibited flares in the same evolutionary phase and thus not averaging out the observed
behaviours. Consequently Fig. 6.2 is a direct representation of the overall convex spectral
shape in conjunction to evolving flares, over the five years of observations of the observed
sample. The individual spectral indices for all sources of the revised sample are presented
in Table A.3.
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Figure 6.3: Histogram of all individual spectral indices ajoy, and apjgn for FSRQs (black), BL Lacs
(green) and all sources (grey) for the revised sample. It is obvious that FSRQs on average
have steeper spectra than BL Lacs for the ay;gp, spectral index (see also Table 6.1 & A.3).

The histograms of a1y and apig for the populations of FSRQs and BL Lacs are pre-
sented respectively in Fig. 6.3 with differences evident for the individual populations of
each spectral index. aj,,, spectral index of FSRQs and BL Lacs have similar values with
a mean of 0.05 (median 0.0) and 0 (median —0.04) respectively (Table 6.1). A K-S test re-
ports a significance level of P = 99.9 % of the two datasets to statistically differ indicating
that BL Lacs have a tendency to show on average a steeper aj,,, index. In contrast and for
the Xhigh spectral index a K-S test reports that the significance level for the distributions
of FSRQs and BL Lacs to have different statistical properties is also P = 99.9 % but with
different mean values of —0.25 (median —0.25) and —0.12 (median —0.12) respectively, con-
firming the visual seen difference. Therefore FSRQs on average have steeper spectra than
BL Lac objects for the ay;gn spectral index and BL Lacs tend to be steeper for the a4y, in-
dex. According to the aforementioned scheme of flare evolution, the observed differences
between FSRQs and BL Lacs, lead to the conclusion that flares occurring in FSRQs reach
lower frequencies as compared to those occurring in BL Lac objects.

Examples of the aj,,, and ayign spectral indices in comparison with multi~frequency
flux density co-evolution are presented in Fig. 6.4. The corresponding evolution plots of
all sources are presented in Appendix A.2. The two spectral indices are often observed
to be anti—correlated, meaning that in the existence of a convex spectrum ay;g, will be
negative (steep) and «),, Will be positive (inverted). As seen in Fig. 6.4 the activity in the
light curve of a source always relates to changes of the &}, and ap;g, spectral indices in two
distinct ways corresponding to Type I and II sources. For Type I sources as a flare enters
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the observed bandpass (e.g J2253+1608 in Fig. 6.4) ap;gn becomes flatter or even inverted
and then again steeper as the flare progresses to lower frequencies. aj,, exhibits similar
behaviour but with a delay that corresponds to the individual characteristics of the flare.
The two indices are observed to match and cross each other many times due to this effect.
This behaviour is expected for Type I sources that produce evolving flares from higher to

lower frequencies.
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Figure 6.4: Examples of spectral index evolution. From top left and clockwise are shown
J0238+1636, J0359+5059, J2202+4216 and ]J2253+1608. For each source the top panel
presents the «y,, and Xhigh- The lower panel presents the light curves for the same time
period for 4.85, 8.35, 32 and 86 GHz. It is clear that there is a correlation of the behaviour
of the spectral indices with the observed flares in the light curves.

In contrast flaring activity in Type II sources (e.g J0359+5057 in Fig. 6.4) produces a
different behaviour of the spectral indices. As the flare evolves ao,, and apig, remain anti-
correlated with the former always being flat or inverted and the latter always being flat or
steep. In some cases also aypg, is observed to become more steep and a4, to become more
inverted. This is expected for Type II sources that have self-similar changing spectra and
thus the spectral index values of high and low bands always sample the constant shape of
a convex spectrum.

As it will be discussed in Chapter 7, this complex phenomenology of Type I sources
as observed in Fig. 6.4, can be attributed to the same underlying physical mechanism as
proposed in Angelakis et al. (2012a) with the modulus of redshift and observing bandpass
playing a significant role.



6.3 Smax— Vmax analysis 89

6.3 Smax— Vmax analysis

As shown two fundamentally different types of spectral behaviour are observed, i.e. Type
I and Type II sources. To quantify and characterize the individual spectral characteristics
of each type an Smax — Vmax analysis is performed. Individual flare evolution and charac-
teristics are studied according to the methods presented in Sect. 4.5. The spectral peak for
each spectrum of the studied flares is estimated allowing to trace the evolution of the flare
in the Smax— Vmax plane.

6.3.1 Flare sample

The observations of the FFGAMMA program provide a large number of spectra for all
the sources of the revised sample. Some strict criteria though have to be applied in order
to isolate simple flares and events that are suitable for the current analysis. The applied

criteria for constructing the flare sample are as follows:

o Well defined start and end time of a flare

The Start Time of a flare is defined as the time of the flux density local minimum
before the flare starts at the highest observed frequency.

The End Time of a flare defined as the time of the flux density local minimum after
the flare decayed at the lowest observed frequency. With these definitions a flare can
be observed throughout all its evolutionary phases.

e No superimposing flares or part of a larger flare

Any flare should not be a superimposition of other several minor flares. From a
physical point of view the case of a flare that is a composite of two or more sub-
flares, indicates the superimposition of several independent events not correlated to
each other. In order to avoid any influence of the resulting spectral peak path in the
Smax— Vmax plane only flares showing no secondary activity are selected.

e Sufficient spectral coverage and data

The fitting algorithm requires a minimum number of data points to estimate the
spectral peak correctly. The minimum number of points is four and ideally equally
spaced around the spectral peak. To sufficiently trace the evolutionary path of a
spectral peak in the Spax— Vmax plane a minimum number of 6 spectra is required.

Table 6.2: Basic information for the 24 flares that fulfilled the criteria and were used for the analysis.
Each line presents information for a separate flare.

No. Source MJD  MJD  Duration #Epochs Sampl. z AS Av Class  Type
Start End [days] [mon/spec] [yl [GHZz]

1 J0102+5824 54500 55200 700 21 1.07 0.644 2.6 96.8 Blazar I

2 J0217+0144 54300 54950 650 24 0.87 1715 08 30.1 FSRQ I

3 " 55100 55550 450 20 0.72 1.715 15 21.2 FSRQ I

4 J0237+2848 54300 55200 900 33 0.88 1.213 13 20.2 FSRQ I
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Table 6.2: continued.

Flux Density [Jy]

No. Source MJD  MJD  Duration # Epochs Sampl. z AS Av Class  Type
Start End [days] month/spec. [Jyl [GHz]
5 J0238+1636 54100 54500 400 16 0.80 0.940 3.9 1029  BLLac I
6 " 54500 55100 600 19 1.02 " 5.1 136.0 " I
7 J0359+5057 54200 55800 1600 56 0.92 1520 104 17.3 Blazar I
8 J0418+3801 54100 54800 700 24 0.94 0.049 838 66.2 RG I
9 J0423-0120 54750 55600 850 32 0.85 0.914 5.0 45.0 FSRQ I
10 J0730-1141 54600 56000 1400 43 1.05 1.589 6.0 8.3 FSRQ II
11 J0818+4222 54750 55600 850 28 0.98 0530 1.0 150  BLLac I
12 J0854+2006 54700 55450 750 26 0.93 0306 11.63 339  BLLac I
13 J1130-1449 54800 55650 850 25 1.10 1.184 29 70.9 FSRQ I
14 J1159+2914 54300 55100 800 27 0.95 0.729 3.6 126.4 FSRQ I
15 55150 56000 850 27 1.01 2.4 415 I
16 J1256-0547 54300 55100 800 31 0.83 0536 117 38.7 FSRQ I
17 J1504+1029 54600 55400 800 32 0.80 1.839 3.8 28.1 FSRQ I
18 J1512-0905 54400 54900 500 21 0.77 0.360 1.7 422 FSRQ I
19 J1642+3948 54550 55600 1050 36 0.94 0593 4.6 28.0 Blazar I
20 J1751+0939 55400 56000 600 23 0.84 0322 51 65.5 Blazar I
21 J2025-0735 55250 55700 450 14 1.03 1.388 15 89.8 FSRQ I
22 J2232+1143 54850 55400 550 20 0.88 1.037 4.2 77 .4 FSRQ I
23 J2253+1608 54400 55000 600 24 0.80 0.859 236 111.1  FSRQ I
24 55000 56000 1000 48 0.67 " 30.1 135.9 I

Even with the large FGAMMA database in hand, after the application of the above
criteria only 24 flares could be isolated for further analysis. This is indicative of blazars,

being highly active at all wavelengths and time scales with flares frequently blending with

each other. Table 6.2 presents these 24 flares that are finally selected along with their indi-

vidual characteristics, in Appendix A.4 all the obtained S,,x — Vinax plots for all the studied

flares.
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Figure 6.5: Evolution of the spectral peak in the Smax— Vmax plane for Type I flares. Left panel is
J0238+1636, right panel is J2253+1608. The size of the symbols represents the time evo-

lution. Time flows forward from smaller to larger points.

Typical examples of the observed behaviour for the selected flares in the Spax — Vmax
plane are presented in Fig. 6.5 for J0238+1636 and J2253+1608 and in Fig. 6.6 for J0730-1141
and J0359+5057. Two categories of evolutionary paths are evident: (a) 17 flares show a sys-

tematic evolutionary path starting at higher frequencies with low flux density, a plateau

at high flux density levels and subsequently a decay towards lower frequencies. This be-
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Figure 6.6: Evolution of the spectral peak in the Smax— Vmax plane for Type I flares. Left panel is
J0730+1141, right panel is J0359+5057. The size of the symbols represents the time evo-
lution. Time flows forward from smaller to larger points.

haviour is in accordance with the spectral evolution of Type I sources. The observed path
closely resembles the three evolutionary stages of shocks (Valtaoja et al. 1992b) as seen in
Fig. 1.8 and discussed in Sect. 7.1 (b) 7 flares show a more chaotic and much less system-
atic path of evolution with flux density mostly changing only in an “up/down manner”
in accordance with behaviour observed to Type II sources and in disagreement with the
standard shock in jet models.

As seen in Table 6.2, is interesting that both FSRQs and BL Lacs show Type I and 1I
characteristics indicating that both are capable of producing variability with intrinsically
different physical mechanisms. It is worthwhile noting that from the 7 flares correspond-
ing to Type II sources only one source is of the BL Lac class. No conclusions can be made
for the parent populations due to low number statistics and biases inherent to the flare
selection process performed here.

The number of FSRQ flares is much larger than BL Lac flares is such a bias. The se-
lection of flares reaching much lower frequencies is favoured over flares that their whole
evolution is not visible within the observed frequency bandpass due to the fact that they
do not reach low enough frequencies. Since FSRQ flares reach lower frequencies it is more
probable to observe their flares in contrast to BL Lac flares.

In summary in order to discriminate between Type I and II sources only three basic
factors are needed:

o Flux density range — A (Syax)
The range of values in the y—axis, defined as the difference between maximum and
minimum observed Syax values.

o Frequency range — A (Vyax)
The range of values in the x—axis, defined as the difference between the highest and

lowest vmax values a spectral peak is observed.

e Evolutionary path
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The existence or not of a systematic evolutionary path in the Syax — Vmax plane. Time
evolution in the Smax — Vmax plots is indicated by the size of the points. Time flows
forward from smaller to larger symbol size, indicating the path that is followed by

the spectral peak.

In order to further quantify the observed characteristics of the selected flare sample in the
Smax— Vmax plane, the calculated values of A (Syax) and A (V) for each flare are plotted
against each other in Fig. 6.7, the individual calculated values are shown in Table 6.2.
Flares that correspond to Type I sources show a large scatter in both frequency and
flux density, with mean values of A (Smax) = 7.5]y and A (Vjax) = 76.9 GHz respectively
(e.g Fig. 6.5. Often not all phases are seen and no plateau is visible. This indicates that
all Type I sources have similar phenomenology but the detailed behaviour of a particular
source is governed by it’s individual physical parameters. Flares corresponding to Type
IT sources show in contrast much smaller scatter in both frequency and flux density with
a mean value of A (Vyay) = 20.0 GHz and a mean value of A (Smax) = 3.5]y (e.g Fig. 6.6).
The key element that differentiates Type I and II flares apart from the different scatter in
frequency is the distinct evolutionary path that the former follow in the Spax— Vmax plane.
It is interesting to note that a source exhibiting a particular type of flare never exhibited
flares of the other type. This indicates that the underlying physical mechanism in a given
source remained the same over the whole 5 years period of F-GAMMA observations.
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Figure 6.7: Type I and Type 1II flares in a A (Syax)—A (Vmax) plane, showing a clear distinction be-
tween them.

The difference between Type I and II flares is graphically depicted in Fig.6.7, with the
two populations occupying a distinct space in the A (S;;ax) — A (Vmax) plane. Type I flares
shown in black are located in the upper right corner in contrast to the Type II flares that
occupy the lower left area of the plot. As it will be discussed in Chapter 7, these two sepa-
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rate populations support a scenario of two intrinsically different mechanisms that governs
their behaviour.



94

6.3 Smax— Vmax analysis




Discussion and Summary

7.1 Discussion

For the first time a large sample of blazars is systematically monitored at cm to short-mm
bands during an extended period of 5 years and at a mean cadence of 1.2 months and
spectral coherency of 2.2 days. In order to study and establish the detailed cm to mm-
variability and spectral characteristics of the monitored sources, precise flux density mea-
surements are required including a detailed understanding of the inherent measurement
uncertainties. A rigorous error analysis has been developed which accounts for all possible
uncertainties of the observables for data acquired with the Pico Veleta 30 m telescope. For
this reason new semi-automated routines in IDL were written that accommodate all of the
above. A careful system study has been carried out in order to estimate the contribution
of each element and reduction step to the final error propagation.

As shown in Sect. 5, the observed sources have mean total flux densities in the range of
~ 0.3 -40]y at all observed frequencies and overall fractional flux density uncertainties of
~ 1% at2.64 GHz and ~ 12 % at 142 GHz. However these numbers are mean values over
5 years, i.e. averaged over all possible system and weather conditions. For instance, dur-
ing excellent atmospheric conditions the single flux density uncertainty values are signif-
icantly lower. Furthermore, the system repeatability and overall calibration/gain stability
is demonstrated by the small residual mean scatter (my) in the calibrator light curves with
values ranging between ~ 0.6 % at 4.85 GHz and ~ 4 % at 142 GHz (Table 3.9).

The overall system behaviour of the PV telescope is summarized in Fig. 3.6 and allows
the estimation of the expected uncertainty at a certain flux density level, given the typi-
cal integration times used in the current monitoring program (2 — 4 minutes). Those un-
certainties which are dominated by the telescope characteristics (rather than atmospheric
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conditions) can be described by fitting lower envelopes like presented in Fig. 3.6. At flux
density levels between =z 100m]y to about 4]y the maximum fractional error (~ 25 %)
drops and reaches a plateau. Here, at flux density values Z 4]y, the minimum fractional
error is ~ 0.7 % at 86 GHz and ~ 1.3 % at 142 GHz. The averaged behaviour (green curve
in Fig. 3.6) represents the typical performance at average atmospheric conditions. Here,
the fractional error at 86 GHz drops with increasing flux density from a value of ~ 20 %
(at ~0.3Jy) to ~ 5% towards larger flux densities. At 142 GHz the corresponding values
drop from ~ 24% to ~ 7% (see also Sect. 3.2). Finally it is found that the relative gain
between the two orthogonal polarizations of the EMIR system at 86 GHz is of the order
of 2% and that the achieved cross-calibration between the EB and PV telescopes is better
than 2 % up to 142 GHz.

Based on a x? test and for a 99.9 % significance level it is found that a minimum of about
90 % of the 59 target sources at 86 GHz of the revised FF-GAMMA sample are variable. For
lower frequencies this percentage is 100% showing the highly variable character of the
observed sample. An observed effect is the apparent decrease of variable sources from a
value of 100% at lower frequencies to a value of 90% at 86 GHz. This is attributed to the
combined effect of weather influence, that increases the measurement errors (Table 3.9)
at higher frequencies and the use of the x?-test that is not sensitive enough under those
conditions, as explained in Sect. 4.1. For the revised sample the number of FSRQs sources
is about 55% of the overall variable sources and 25% for BL Lac objects. This fraction
remains constant throughout all the observed frequencies enabling statistical comparisons
between the populations of FSRQs and BL Lacs.

A visual inspection of the cm/mm band light curves often shows extended activity pe-
riods typically lasting for years whereas considerable sub-structure and more rapid (sin-
gle) flares (weeks/months to < 1-2 years) are observed. The estimated time scales of flares
in the five year light curves using SF analysis range from ~ 60-80 to a maximum of ~ 1400
days whereas 85 % of the sources at 86 GHz and 81 % at 142 GHz exhibit observed time
scales shorter than 450 days (Sect. 5.4). A trend is visible as observing frequency increases,
the estimated time scales are decreasing with mean values of 590 days (median 480 days)
at 2.64 GHz to values of 320days (median 300 days) at 142 GHz. These findings are con-
sistent with previous short-mm band studies and results, reporting variability time scales
of ~ years (long-term trends/activity) and (single) flares occurring on shorter time scales.
Hovatta et al. (2008, 2007) report variability time scales in the order of 2.5 years for a sam-
ple of 55 sources and Trippe et al. (2011) found time scales ranging from 2 to 8 years at
90 GHz for a sample of 6 sources. At cm-bands the corresponding time scales are found
to be of the order ~ 500 days in accordance with previous findings. Hovatta et al. (2008,
2007) reports time scales of ~ 3 years which are considerably longer. This difference can be
explained by the stochastic nature of variability and the limited observing period of five
years in the current analysis, limiting the sensitivity of detecting long-term variations and
trends. Furthermore, the monthly cadence limits the detection of variability on time scales
shorter than a few months.

The amplitudes of the observed flare activity has been estimated using a likelihood
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analysis allowing for an accurate determination of the observed intrinsic light curve stan-
dard deviations (cint). The vast majority of sources show an increasing intrinsic standard
deviation as rest frequency increases (Fig. 5.3), reaching a plateau at ~ 60-70 GHz. This
shows that peak amplitudes occur at rest frequencies ~ 70 GHz confirming previous stud-
ies (Valtaoja et al. 1992b; Stevens et al. 1994; Hovatta et al. 2008). FSRQ and BL Lac popu-
lations show a similar behaviour but with BL Lacs showing a clear trend with significant
lower values of iy (Table 5.3 and Fig. 5.4). An interesting feature is evident for BL Lacs at
the lowest end of the frequency range, a plateau emerges from 5GHz to 3 GHz in contrast
to FSRQs, indicating that flare variability for BL Lacs rarely reaches the lowest observed
frequencies. The corresponding slope (k-index) of ojn was calculated to quantify the be-
haviour across rest frame frequency (Fig. 5.2). The k-index was calculated at four different
frequency bands namely Low, Medium, High and S. High with calculated values ranging
from an inverted slope of 0.51 in the Low band to a steep slope of —0.44 in S. High, revealing
a clear trend: the k-index shows steeper values as frequency increases. This is expected
from the overall trend seen at Fig. 5.2 and Fig. 5.3. The overall convex shape of the iy
curve as shown at Fig. 5.2 with a peak value of ~ 70 GHz, indicating that many flares start
evolving towards lower frequencies within the observed bandpass. Valtaoja et al. (1992b);
Hovatta et al. (2008) typically obtain high frequency slopes of —0.2 to —0.3 using (single)
flare amplitudes and frequencies scaled to the frequency where the maximum occurs, in
very good agreement with currently reported values (Table 5.3). This behaviour is in ac-
cordance to physical models with the hypothesis of flares produced by shocks in jets (see
bellow). Sources with flat k-index values across all the observed frequencies are also found
to exist, showing inherently different behaviour from the previous described sources. This
behaviour consists of sources that show similar values of iyt across the spectrum indicat-
ing that a different physical mechanism is at work.

For the first time variability brightness temperatures are presented for a large number
of sources at cm to short mm-bands. The estimated flare time scales and flare ampli-
tudes correspond to mean variability brightness temperatures decreasing from 6.9 - 102 K
at 2.64GHz to 7.5 - 101° K at 142 GHz, which are above the theoretically allowed equipar-
tition limit of 5 - 10'°K (see also Sect 5.5) thus requiring Doppler boosting to account for
the difference. It is also found that there is a statistically significant difference between the
Tg distributions of FSRQs and BL Lacs. The corresponding Doppler factors (see Sect. 5.5)
show a drop as frequency increases with FSRQs having higher Doppler factors when com-
pared to BL Lacs. Mean values ranging form 9.6 to 1.7 for 2.64 and 142 GHz are obtained
respectively. Hovatta et al. (2009) has calculated Doppler factors at 22 and 37 GHz using
the same limit of Tg = 5 - 10! K and reports that at 22 GHz the Doppler factors are slightly
higher than at 37 GHz. This is in agreement with the current findings and with the trend
of increasing Doppler factors towards lower frequencies suggesting that Doppler factors
of blazars at cm and mm wavelengths are generally different. Looking deeper into the jet
towards higher frequencies, decreasing Doppler boosting would then indicate either jet-
acceleration (changes of the Lorenz factor along the jet) and/or jet bending (with changes
in the viewing angle) for outward motion. An interpretation of these results as a geomet-
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rical effect, however, is less likely given it’s statistical nature. Consequently, these findings
can be interpreted as evidence for jet-acceleration on pc-scales. The reported trend of FS-
RQs exhibiting stronger Doppler boosting compared to BL Lacs, is in good agreement with
BL Lacs typically showing slower VLBI apparent jet speeds and Lorentz factors compared
to FSRQs (e.g Piner et al. 2010). However the influence of effects due to specific shock in
jet model parameters on the currently obtained results, can not be ruled out and needs
further investigation in future studies.

A wealth of different spectral characteristics are observed for the source sample, that at
a first glance seem diverse and uncorrelated to each other. A closer inspection reveals that
all this behaviours can be reduced to two major categories: Type I source: corresponding to
behaviour that exhibits spectra typically consisting of two components (a) a steep quies-
cent spectrum and (b) a Synchrotron Self-Absorbed (SSA) convex spectrum, with the latter
evolving from higher to lower frequencies. Depending on the source-specific character-
istics and redshift (see bellow) and also (Angelakis et al. 2012a) their flares are observed
either throughout all of their evolution or only during a specific part. Type II sources: cor-
responding to behaviour that shows “achromatic” variability, meaning that their spectra
change in a self-similar manner mostly retaining their shape in contrast to Type I sources.
This type of sources also shows a flat k-index as already mentioned, showing relatively
constant variability amplitudes across the observed spectrum.

Further analysis of the spectral characteristics included the estimation of spectral in-
dices at two different bands i.e. a1y, and apign. Estimated mean values of 0.02 for a4, and
—0.2 for apgn (Fig. 6.2) show that at higher frequencies spectra are on average steeper.
Mean values for FSRQs and BL Lacs (Table 6.1) reveal that at lower frequencies («},) both
populations have flat spectra but BL Lac objects tend to have slightly steeper spectra with
a mean value of 0.0 in comparison to FSRQs with mean values of 0.05 (Fig. 6.3). At higher
frequencies (anign) FSRQs are found to have steeper spectra with a mean value of —0.25
in comparison to BL Lacs with a mean value of —0.12. The overall spectral flatness that is
observed, especially for aj,y, is the result of averaging over different spectral components
and states (optically thin, steep spectrum quiescent jet and evolving SSA components).
Trippe et al. (2011) finds variable spectral indices ranging between —0.5 to —1 for their 6
sources studied at short-mm bands. These results are in good agreement with the 86/142
GHz spectral indices obtained for FSRQs in the current analysis. The observed difference
between FSRQs and BL Lacs could be interpreted by assuming that BL Lacs show turnover
frequencies at systematically higher frequencies and that their flares systematically do not
reach the lowest frequencies when compared to FSRQs.

In order to quantify and characterise the phenomenological behaviour of Type I and
IT sources an analysis of 24 individually selected flares has been performed. The spectral
peak position and evolution in the Syax — Vmax plane is studied (Sect. 6.3) showing that
flares of Type I sources exhibit a clear evolutionary path in the Smax — Vmax plane with large
scatter in both frequency (Vmax) and flux density (Smax). Mean values of A (Smax) = 7.5y
and A (Vmax) = 76.9 GHz are found for Type I flares. In contrast Type II sources exhibit
flares that show no clear evolutionary path in the Smax — Vmax plane but rather show an
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“up/down” pattern as expected from the self-similar changing spectrum of these sources.
Here, mean values of A (Smax) = 3.5]y and A (Vmax) = 20 GHz are found for Type II flares
significantly different compared to Type I sources. It should also be noted that in the light
curves of Type II sources mostly no time delays are evident between flares at different fre-
quencies in complete contrast to the large time delays of Type I sources. These differences
are clearly depicted in the A (Smax) — A (Vmax) plane (Fig. 6.7) showing that the populations
of Type I an 1II flares occupy a different and distinct space in the aforementioned plane.
Type I flares occupy the upper right corner and Type II flares the lower left corner sup-
porting the scenario of two intrinsically different physical mechanisms are in action for
Type I and I sources respectively.

Throughout the current analysis it became clear that sources that exhibit a flat k-index
across all frequencies are mainly of Type II. It should be noted though that cases of Type I
sources exist (e.g J0238+1636) that have a flat k-index. These cases are similarly variable
across the spectrum producing a flat k-index but exhibit all the typical characteristics of
Type I sources. Thus the k-index can not be used ad-hoc to discriminate between Type
I and II sources. All Type II sources exhibit flat k—-indices but not all flat k-index sources
are of Type II. Thus k-index can only be used to point out Type II sources. It should
also be mentioned that a source exhibiting a particular type of flare (Type I or II) never
exhibited flares of the other type within the time span of the five years of monitoring. This
indicates that the underlying physical mechanism remained unchanged over the whole 5
years period of F-GAMMA observations for all the observed sources (Type I and II).

The observed phenomenological characteristics of Type I sources can qualitatively be
explained by the modulation of the combined attributes of (a) redshift and (b) intrinsic
source properties (Angelakis et al. 2012a). The source redshift constrains the part of the
rest frame spectrum we can sample within our observing bandpass. The different intrin-
sic source characteristics change the observed spectra in terms of peak frequency and flux
density as well as the observed time scales of these events producing the observed flares,
making each event even in the same source unique. As shown in Angelakis et al. (2012a)
Type I sources can be further sub—categorized into four types of sources. The key differ-
ences between these types are due to the combined modulus of redshift and source specific
characteristics. Thus the observed phenomenological multitude of observed behaviours
within the Type I sources can be reduced to a single physical mechanism. Type I sources
and flares seem to be in accordance with expectations from models of shocks evolving in
jets (Marscher and Gear 1985; Valtaoja et al. 1992b, see bellow).

In contrast Type II sources and flares show fundamentally different characteristics al-
lowing us to assume that the underlying physical mechanism is different. Flux density
variations and the observed amplitudes are modulated in a different way. One possible
explanation is the moving emission regions alongside bend radio structures. Such bend
jets (e.g Agudo et al. 2012; Lobanov and Zensus 2001; Ly et al. 2007; Piner et al. 2009) are
not rare. Several models of oscillating bent jets exist. Helical modes in hydrodynamic jets
(Hardee 1987) or in magnetized jets (Konigl and Choudhuri 1985) predict that whenever
a shock moves alongside the helical structure, each time the shock meets the twist of the
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helical structure that is closest to the line of sight towards earth then Doppler boosting oc-
curs, producing variability in the observed flux density. Conical jets can produce a quasi-
periodic oscillation (Camenzind and Krockenberger 1992) that is believed to be connected
to perturbations of the relativistic flow. The observed phenomenology can be explained at
least qualitatively in a better way by models introducing geometrical parameters (Villata
and Raiteri 1999). Further analysis is required to compare the specific physical parameters
of such models to the observed behaviour of Type II sources.

Comparison with shock—induced variability for Type I sources/flares. Shock-in-jet mod-
els (e.g. Marscher and Gear 1985; Valtaoja et al. 1992b; Stevens et al. 1994; Tiirler et al. 2000;
Fromm et al. 2011) predict a certain spectral evolutionary path for flares in the Spax — Vmax
domain according to their Compton, synchrotron and adiabatic dominated energy loss
phases. While the turnover frequency vmax of the synchrotron self-absorbed flare spec-
trum evolves continuously from higher to lower frequencies, the spectral peak Smax first
raises at high frequencies (Compton phase), reaches a plateau (synchrotron phase) at v;
and subsequently decays towards lower frequencies (adiabatic phase) at frequencies > v.
As shown in the generalized shock model of Valtaoja et al. (1992b), this evolution implies a
certain frequency dependence of light curve parameters, such as the amplitude of the ob-
served flares. According to the different energy loss stages, the flare amplitude is expected
to first increase at high frequencies (v > v,) and subsequently decrease at frequencies < v.
As already mentioned the observed variability amplitudes (cint) increase towards higher
frequencies reaching a plateau at ~ 70 GHz and then decreasing again towards even higher
frequencies. The observed evolutionary path of Type I sources in the Smax — Vmax plane, fits
well into this scheme for shocks being first in the Compton—dominated growth phase then
in the synchrotron plateau phase and last at the decaying adiabatic phase (Fig. 1.8). Thus
the transition between Compton and synchrotron stage, i.e. maximum flare amplitudes,
occur at rest frame frequencies of ~70GHz. At higher frequencies the k-index will de-
pend on the optically thin spectral index, whereas the model of Marscher and Gear (1985)
requires ayin, < —0.5 for shocks to persist non—radiative, the obtained distribution of k-
indices at the S. High band are in agreement with a mean value of —0.44 (Table 5.3). How-
ever the latter values represent an average behaviour over 5 years and is not obtained for
single spectral (flare) components. Similarly, the k-indices, as obtained here, represent the
average behaviour of different flares likely being also at different evolutionary stages.

7.2 Summary of Results

A large sample of blazars is systematically monitored at cm to short-mm bands during
a period of 5 years within the F-GAMMA program, using the Effelsberg 100 m and Pico
Veleta 30 m radio telescopes. Details of the Effelsberg and Pico Veleta observing systems
and schemes as well as the observations and data reduction process have been presented
including: (i) light curves and spectra for all sources of the revised FGAMMA sample
at 2.64, 4.85, 8.35, 10.45, 14.6, 23.05, 32, 42, 86 and 142 GHz, (ii) a variability and spectral
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analysis of 59 sources of the revised sample. The analysis and results presented in the
current thesis can be summarized as follows:

1. A detailed system study for the Pico Veleta 30 m telescope has been carried out in-
cluding an analysis of the inherent measurement uncertainties given the typical flux
density levels (~ 0.3-19 Jy) and cross—scan integration times (2—4 minutes) of the pro-
gram. At average atmospheric conditions, the fractional flux density error at 86 GHz
is found to drop with increasing flux density from a value of ~ 20% (at ~0.3]y) to
~ 5% towards larger flux densities. At 142 GHz the corresponding values drop from
~ 24 % to ~ 7 % (Sect. 3.2).

2. Therelative calibration accuracy between Effelsberg and Pico Veleta as deduced from
the spectral properties of the secondary calibrator NGC 7027 is shown to be better
than 2 % for most of the observing frequencies (Sect. 2.3).

3. New semi-automated IDL software has been written for the reduction of Pico Veleta
data at 86 and 142 GHz, including a comprehensive error analysis and data correc-

tion options (Sect. 3.1.2).

4. The relative gain between the two orthogonal polarizations of the new EMIR system
at 86 GHz is found to be of the order of 2%. At 142 GHz no significant difference is
found (Sect. 3.1.3).

5. The overall system repeatability and calibration/gain stability for both Effelsberg
and Pico Veleta is demonstrated by the small residual mean scatter (my) in the cali-
brator light curves with values ranging between ~ 0.6 % at 4.85GHz and ~ 4% at
142 GHz (Table 3.9).

6. Based on a x? test criterion the percentage of variable sources is found to be high for
all frequencies with a minimum of about 90 % at 86 GHz and a maximum of 100% at

lower frequencies (Sect. 5.2).

7. Using a structure function analysis, the flare time scales in the light curves were
estimated with values ranging from ~ 60-80 to a maximum of ~ 1400 days. Also 85 %
of the sources at 86 GHz and 81 % at 142 GHz exhibit observed time scales shorter
than 450 days (Sect. 5.4).

8. Mean variability brightness temperatures are calculated from the corresponding flare
time scales and amplitudes with values decreasing from 6.9 - 101> K at 2.64 GHz to
7.5-10'°K at 142 GHz, showing a continuous decrease as frequency increases. All
calculated values are found to be above theoretical limits thus relativistic Doppler
boosting is needed to explain the excess. Doppler factors are estimated revealing
mean values ranging from 9.6 and 1.7 at 2.64 and 142 GHz respectively. The calcu-
lated values follow an increasing trend towards lower frequencies likely due to to
jet acceleration, whereas other intrinsically and model depended effects can not be
ruled out and need further study (Sect. 5.5).
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7.2 Summary of Results

9.

10.

11.

12.

A likelihood analysis to compute intrinsic light curve standard deviations, reveals
that most of the observed sources show extreme and increasing variability towards
higher frequencies reaching a plateau at a rest-frame frequency of ~ 70 GHz (Fig. 5.3)
and a subsequent decreasing trend. k-index is calculated at four different frequency
bands showing a decreasing slope from lower to higher frequencies (Table 5.3). A
difference between flares observed for FSRQ and BL Lac sources is found, with flares
of FSRQs reaching lower frequencies. FSRQs also show mean variability amplitudes
higher than those of BL Lacs, in all observed frequencies. These results are consis-
tent with model predictions for shocks in jets. The existence of sources with flat
k-index across the observed frequencies is confirmed, indicating an intrinsically dif-
ferent physical mechanism producing the observed flares (Sect. 5.3).

Quasi-simultaneous spectra combined from multi-frequency data of Effelsberg and
Pico Veleta show two distinct type of source variability, i.e. Type I and Type II
sources. The former sources usually show a quiescent spectrum superimposed by
an SSA spectrum that evolves from higher to lower frequencies. In contrast the lat-
ter shows variability characterized by a self-similar changing spectrum. Of the 59
sources in the revised sample , 37 sources are found to be Type I, 16 are Type II and
6 are undefined. These two fundamentally different phenomenological behaviours
indicate an intrinsically different underlying physical mechanism (Sect. 6.1).

Spectral indices (S ~ v*) at two different bands (a5, and apgh) are calculated, with
mean values of 0.02 and —0.2 respectively (Fig. 6.2), showing that at higher frequen-
cies observed spectra are slightly steeper. Mean values for FSRQs and BL Lac objects
(Table 6.1) of iy and apign show that at lower frequencies BL Lac objects tend to
have steeper spectra in contrast to FSRQs that have steeper spectra at higher frequen-
cies. These results are in accordance with findings of the k-index and the observed
spectral phenomenology, indicating flares evolving from higher to lower frequencies
in many cases. finally FSRQ flares are found to reach lower frequencies compared to
BL Lac flares (Sect. 6.2).

An Siax— Vmax analysis of 24 individual flares was performed to quantify and charac-
terize the phenomenological behaviour of Type I and Type II sources. Correspond-
ing Type I and II flares are found to exist. A clear evolutionary path is seen in the
Smax— Vmax plane for Type I flares in contrast to Type II flares showing an “up/down”
behaviour, as expected from the self-similar spectral changes observed for Type II
sources. Calculated values of A (Smax) and A (Vmax) characterizing the flares, showed
that Type I and II flares occupy a different and distinct space in the A (Smax) — A (Vmax)
plane (Fig. 6.7) indicating different underlying physical mechanisms. Type I sources
seem to be in agreement with evolving shocks in jets according to well established
models, in contrast to Type II sources where geometrical models could likely explain
the observed phenomenology (Sect. 6.3).
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7.3 Future work

Here a short summary is presented with possible future studies that can be performed
based on the work presented in the current thesis.

e Include all the available datasets of the FF-GAMMA program spanning ~8 years. This
will allow the isolation of more individual flares increasing the statistical significance
of all the conclusions made so far.

e Polarization information is recorded for most of the receivers mounted in the Effels-
berg 100m telescope. Reducing and analysing these information will give a new
perspective on the intrinsic differences between Type I and II sources.

e Investigate if there are any other differences between Type I and II sources in bright-

ness temperatures, Doppler factors and spectral indices in the same manner as it is
done with FSRQ and BL Lac sources.

e Perform analytical simulations of geometrical models and constrain their parameter
space by comparing them with the observed behaviour of Type II sources. This will
allow us to clarify and conclude if and how these models describe Type II sources
giving an better insight of the physical processes in action.

e Define the quiescent spectrum slope («) for each source independently, allowing a
better subtraction (see Sect. 4.5) of it and thus a better estimation of the spectral peak.
The determination of the quiescent spectrum can be done by gathering data from
frequencies lower than < 2 GHz, were it should be dominant and unaffected by the
flaring activity in higher frequencies.

e Use an SSA model to fit the observed flares instead of a broken power law. A far
better determination of the spectral peak in both frequency and flux density domains
(Smax and vmayx) is possible in this way, allowing to track the evolution of the spectral

peaks in more detail in the Syax — Vmax plane.

e There are several predictions from shock in jet models about behaviour of the flaring
activity in Type I sources. A first theoretical study was made by Fromm et al. (2014)
using synthetic light curves to reconstruct qualitatively the observed behaviour of
flares in blazars. By comparing the findings of the current thesis of broadband light
curves and spectra with simulations of these analytical models a constrain of their
parameter space is possible allowing to constrain the physical properties of flares
seen in Type I sources. In more detail exact comparisons for each source can be made
about the dependence of iy to frequency as well as the observed slopes of each

evolutionary phase in the Spax — Vmax plane .
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Table A.3: Average «j,,, and Xhigh spectral indices over the five year observing period for the
sources of the revised sample. See also Sect. 4.4 and 6.2

Source Name Now Xhigh  Source name Now Qnigh  Source name Now Ohigh
J0050-0929 —0.03 —0.09 ]J0808-0751 +0.12  —0.36  J1553+1256 —-0.09 —0.37
J0102+5824 +026 —0.16 ]J0818+4222 —0.01 —0.25 ]J1635+3808 —-0.00 —0.12
J0136+4751 +0.19 —0.30 J0824+5552 —031 —049 ]J1642+3948 —-0.06 —0.30
J0217+0144 +0.15 —0.10 J0841+7053 —0.08 —0.39 J1653+3945 —-020 —0.23
J0221+3556 —0.19 —041 ]J0854+2006 +042 —0.08 ]J1733-1304 —-0.05 —0.22
J0222+4302 —-0.32 —0.15 ]J0920+4441 +048 —0.33 J1751+0939 +023 —0.34
J0237+2848 —0.03 —0.30 ]J0948+0022 +049 +0.06 J1800+7828 +0.11 —-0.22
J0238+1636 +0.02 —0.11 J0958+6533 +0.10 —0.11 J1848+3219 —0.00 —0.10
J0241-0815 +0.17  —0.13  J1104+3812 —0.28 —0.13  J1849+6705 +0.50 —0.17
J0319+4130 +035 —0.50 J1130-1449 —-0.32 —035 ]J2025-0735 +0.00 —0.12
J0324+3410 —-0.12 —0.16 J1159+2914 —0.03 —0.18 ]2143+1743 —0.06 —0.40
J0359+5057 +055 —0.50 J1217+3007 —0.16 —0.22 ]J2147+0929 —-0.05 —0.31
J0418+3801 —0.38 —0.31 J1221+2813 —0.14 —0.09 ]J2158-3013 —-0.14 —0.19
J0423-0120 +0.30 —0.30 J1229+0203 —0.30 —043 ]J2202+4216 +0.11  —0.05
J0530+1331 —0.24 —025 J1256-0547 +0.33 —021 J2203+1725 +0.14 —-0.34
J0654+4514 +0.09 —0.15 J1310+3220 +0.31 —0.06 ]J2229-0832 +0.09 —0.31
J0719+3307 +0.06 —0.20 J1332-0509 +0.64 —0.08 ]J2232+1143 —-021 —-0.37
J0721+7120 +0.31 +0.04 J1504+1029 +0.17 —021 ]J2253+1608 +0.03 —0.02
J0730-1141 +0.18 —0.50 J1512-0905 +0.18 —0.13  J2327+0940 +0.10 —0.28

J0738+1742 —020 —0.14 J1522+3144 —-0.14 —-0.30
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A.2.1 Spectral plots

T 2007.55 HH T 2007.15 HH  2009.74 hei
bl 2 e
J0050-0929 (FBQSJ0050-0929) 505808 et J0102+5824 (87GB0059+5808) 500753 et 00001 e
200855 151 500736 151 201008 bl
2008.60 1 200748 11 201016 It
200933 11 200755 151 201020 ta!
200048 11 200771 o1 2010
200858 o1 200777 bad 2010,
200966 1 200788 1 201039 i
200874 1+ 200796 |+ 201048 ot
2009. 2008.05 2010.58 =
2008 200813 1+ 201062 i
200991 o1 200834 ko4 2010
200095 11 200841 1o1 201079 ot
2010.01 = 2008.49 r+i 2011
w0l B 201008 104 | 200857 i 20117 1+
2010 200864 | 201121 kot
201033 1 500871 Fet 201133 b
2010 2008 201143 1
201048 12 200885 11 2011
— 201056 101 200893 101 201159 bt
> 201058 e = 2009.02 1+ 201167 ro4
32 201062 4 2009.13 41 201175 o1
> 2010 > 2009 201175 rad
» 20079 1+t ¢y 200028 v 201184 ot
201095 200033 i 201192 ot
201102 1! 200041 12 201201 i
201121 o1 200058 ko Ex04 ot
201133 o1 200086 1=
201152 ot
= 4 2011589 F1 s i
201167 e
201175 bxd
201175 11
201184 1o
201192
201201
Ex04
01 o1 L L
1 10 100 T 10 100
Frequency (GHz) Frequency (GHz)
100 T %7 5 HH 100 T gg? H 2009. 5+
768 1l 723 ) 7
J0136+4751 (0133+476) 208,08 11 J0217+0144 (0215+015) 200723 1 )
2008.17 151 2007.48 151 o
200857 bt 200755 =1
200880 11 200763 o1 oy
200864 o1 2007.71 to!
200871 bt 2007.77 o ol
200933 Fot 200786 1+1 o
200048 1+ 200768 1+ el
20005 2007 o
2009.6¢ 2008
2009.79 1+1 2008.13 o1 =
201001 o1 200817 o1 roi
201008 -1 200822 I+ el
10 = | 2010.16 -+ 0= ] 200834 ]
2010 2008.41 o
201028 2008.49 -
2010 200857 17
201039 11 200604 121 201121 rod
= Bose = 500875 11 S0114a 1ot
el el e
3 00070 1 S 200885 144 201152 o1
> e o E
-l -l
» 2011 [aal ”n 2009.06 .75 b
201152 2! 2009.18 1+ i
201167 bt 200928 1ot e
2011.75 o1 200033 o1 2 o1
201178 bt 200041 toi 201201 10!
s 4 201184 1 s | 200948 (1 Ex0d 1
201182 bl 200058 el EA06 -
201201 b 20006 i EAO7 bt
B4 15 200074 151 EX09
200084 1= Exi0 o1
20008 X2 bl
200991 X4 1ot
0.1 L L 0.1 L L
T 10 100 1 10 100
Frequency (GHz) Frequency (GHz)
100 T 2010.01 4 100 T 2007.15 HH  2009.91 b
J0221+3556 (B20218+35) S0t J0222+4302 (3CO66A) So0753 1 S0i0cn o
201020 12, 2007.48 15, e
201025 bt 200765 =1
201033 11 2007.71 11
201039 o1 2007.77 to1 oy
2010.48 1ot 200786 a1 Joul
201058 hat 200788 +1 o
201079 1+ 200796 1+ =
201121 2008.05
201133 2008.13 oey
201189 o1 200834 o1
201167 o1 200841 o1 o
201175 o1 200849 +1 o
10 = | 2011.78 -+ 0= ] 200857 1.08 14
i1 2008 84 117
201201 b 200871 el 2011
20087 133 b
20085 1= 201143 bt
= _ 2008.93 +o4 1.52 1o
200902 o1 20119
3 2 200006 1+ 201167 !
2 2 &0 -
-l jast
» ”n 2009.41 b+l .78 Fo
200948 1+ 4 ot
200956 r+1 2 1ot
200986 1+ e
)09.74 a4 Ex04
= 4 = | 200984 1+
1 1 01 1

F;%quency (GHz) F‘raequency (GHz)

Figure A.1: From top to bottom are shown: J0050-0929, J0102+5824, J0136+4751, ]J0217+0144,
J0221+3556, J0222+4302. Each curve is a spectra of a specific observing epoch combining
quasi-simultaneous multi-frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.2: From top to bottom are shown: J]J0237+2848, ]J0238+1636, J0241-0815, J0319+4130,
J0324+3410, J0359+5057. Each curve is a spectra of a specific observing epoch combining
quasi-simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.



A.2 Spectra 115

‘ g e ‘ e g
J0418+3801 (3C111) 200723 b 200084 J0423-0120 (0420-014) 2007.55 bt
200732 151 200987 1 200763 151 o
200745 =i 200991 1t 200765 b1 oy
200758 5 2010.01 vt 200773 151 =
20073 o1 201008 it 200777 b1 o4
200765 141 2010. 200788 11
200771 1o 201025 1ot 20076 1 oy
200777 1+ 2010, 200808 1+
2007 1039 1 2008.13 el
2007 1048 H 2008.17 s
200805 i 201058 I 200822 o1 b
200813 o1 201062 i 200834 11 o
200817 1+ 2010 2008.41 o1 5
10 = ] 2008.22 H- 10.87 +a- 10— ] 2008.49 H+ 2 Hed
200834 10.95 rot 200857 ot
200841 i 201102 1! 200864 Hei 7 lof
2008 1117 1t 2008 o
200857 1= 201121 1~ 200879 1= oo
— 200880 1o 201133 et 200885 to1 ot
= 200871 o1 2011431 200893 1o by
3 200878 i 201182 ol > 200902 1+1 by
> 2008 201150 10 > 2000, o
» 200893 1w 201167 1o ¢ 200018 11 201178 fot
200002 bt 201178 14 200028 4 64 1+
200906 o 201 200033 11 2
200018 ke 201 200048 F+1 1
200028 o1 201192 bt 200058 (o Ex04 bei
200033 r+1 201201 134 200086 1ot BAO7 1t
. 200036 1+ Ex02and0d e s | 2000741 Exco rel
200041 el Ex04 rod 200084 bt EXI0 bt
200048 i ExI0 1ot 200087 bt Bxi2 1ot
200958 i3 Exi2 e 200061 151
[ L L o1 L L
1 10 100 1 10 100
Frequency (GHz) Frequency (GHz)
100 T 2007.03 HH 2009, 100 T 2009.06 HH
2007.15 1| 2009.74 200033 1
J0530+1331 (PKS0528+134) 200723 ket 20094 J0654+4514 (B30650+453) 200048 et
200755 15 200087 ot 200058 151
200763 @1 200091 ot 200066 11
200765 11 el 2000.74 151
200771 ro1 & 200084 11
200777 1 200091 a1
200788 11 o4 2010,08 1
200796 1+ 201020 1+
2008 e 20
2008 o 20
200817 o1 e 201039 o1
200822 101 o) 201048 11
2008.34 1o 20 -
o —] 200841 - - 10 |- - 201 joey
2008.49 ot 2010
200857 1 el 201087 b1
200860 2 bt 2011
200864 11 7 [l 201108 12
= maTaaT s mae
rei oy roi
> 200885 1+ =2 201133 a1
> = Y 3
- roi 152 et
« 2009.06 +~4 el 2 2011, [aal
200012 10| 201187 1!
200913 o1 201175 b4
200018 11 64 1 201178 1!
200028 o1 2 o 201184 to1
e | 200033 11 1 1a b N 201192 1
200041 et Ex04 1ot 201201 bl
200048 i Ex06 o' £x04 1xi
200050 151 Exiz bt
0.1 L L 0.1
1 10 100 1 10 100
Frequency (GHz) Frequency (GHz)
100 T 201008 HH 100 T 2007.03 HH  2009.84
201020 - 200707 . 200991 Fod
J0719+3307 (B20716+33) 201028 et J0721+7120 (0716+714) 200795 i 050
201033 121 200723 15 o
201039 o4 200732 4 e
201048 15t 2007.38 o1 el
201058 ro! 200742 o1 et
201062 =1 200748 11
201079 ~1 200755 +1 39 1ac
201087 vt 200765 1+t 44 1ot
201117 2007 8 o
201121 20077 6 rart
201133 ot 200788 ot 58 1t
201143 o1 200796 1ot 62 1t
201159 o1 200808 1+ e
0 B 201187 0f — 2008.13 79 1ot
o penl mems
1178 el el ol
201184 ] 2008.41 2 i+
1 = - 2ol et 08
- 1201 1ol — o1 97
B B04 1o N = 200857 e o
=3 Exid e S —— 200860 a1 ey
2 2 ——1 2008 =
%] %) —— 2008.71 tol
—_— 2008.79 kv 1. el
= 200885 (o1 167 Fad
74 200893 t+1 17
200902 o1 178 tei
L 200913 o1 184 1o
b i . | 200918 1 192 o1
200928 bt 201 o1
200933 bxi Ex02ando3 1ot
2009.41 121 0t 1!
200948 1! 08
2009. x07
2000 100 b
200966 1t X10 151
200874 o4 iz ta
200978 1! 04 1ol
200979 1+
01 04 L L
1 100 1 100

Frequency (GHz) Frequency (GHz)

Figure A.3: From top to bottom are shown: J0418+3801, J0423-0120, J0530+1331, J0654+4514,
J0719+3307, J0721+7120. Each curve is a spectra of a specific observing epoch combining
quasi-simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.4: From top to bottom are shown: ]0730-1141, J0738+1742, J0808-0751, J0818+4222,
J0824+5552, J0841+7053. Each curve is a spectra of a specific observing epoch combining
quasi-simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.5: From top to bottom are shown: ]J0854+2006, J0920+4441, J0948+0022, J0958+6533,
J1104+3812, J1130-1449. Each curve is a spectra of a specific observing epoch combining

quasi-simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.6: From top to bottom are shown: J1159+2914, J1217+3007, J1221+2813, J1229+0203, J1256-
0547, J1310+3220. Each curve is a spectra of a specific observing epoch combining quasi-
simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.7: From top to bottom are shown: J]1332-0509, J1504+1029, J1512-0905, J1522+3144,
J1553+1256, J1635+3808. Each curve is a spectra of a specific observing epoch combining
quasi-simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.8: From top to bottom are shown: J1642+3948, J1653+3945, J1733-1304, J1751+0939,
J1800+7828, J1848+3219. Each curve is a spectra of a specific observing epoch combining
quasi-simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.9: From top to bottom are shown: J1849+6705, J2025-0735, J2143+1743, J2147+0929, ]J2158-
3013, J2202+4216. Each curve is a spectra of a specific observing epoch combining quasi-

simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.10: From top to bottom are shown: ]2203+1725, ]J2229-0832, J2232+1143, J2253+1608,
J2327+0940. Each curve is a spectra of a specific observing epoch combining quasi-
simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.11: Calibrator sources. From top to bottom are shown: 3C286, 3C48, 3C295, 3C161,
NGC7027. Each curve is a spectra of a specific observing epoch combining quasi-
simultaneous multi—frequency data obtained at Effelsberg and Pico Veleta.
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Figure A.12: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: J0050-0929, J0102+5824, J0136+4751, J0217+0144, J0221+3556,
J0222+4302, J0237+2848, ]0238+1636
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Figure A.13: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: ]0241-0815, J0319+4130, J0324+3410, J0359+5057, J0418+1801,
J0423-0120, J0530+1331, J0654+4514
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Figure A.14: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: J0719+3307, J0721+7120, J0730-1141, J0738+1742, J0808-0751,

J0818+4222, J0824+5552, J0841+7053
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Figure A.15: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: J0854+2006, J0920+4441, J0948+0022, J0958+6533, J1104+3812,
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Figure A.16: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: J1221+2813, J1229+0203, J1256-0547, J1310+3220, J1332-0509,
J1504+1029, J1512-0905, J1522+3144
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Figure A.17: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources

from top to bottom: J1553+1256, J1635+3808, J1642+3948, J1653+3945, J1733-1304,
J1751+0939, J1800+7828, J1848+3219
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Figure A.18: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: J1849+6705, J2025-0735, J2143+1743, ]J2147+0929, J2158-3013,
J2202+4216, J2203+1725, ]2229-0832
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Figure A.19: Spectral indices plots (upper) Light curves for 4.85, 8.35, 32, 86 GHZ (lower). Sources
from top to bottom: J2232+1143, J2253+1608, J2327+0940
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Figure A.20: Light curves of sources from top to bottom: J0050-0929, J0102+5824, J0136+4751,
J0217+0144, J0221+3556. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.21: Light curves of sources from top to bottom: J0222+4302, J0237+2848, ]J0238+1636, J0241-
0815, J0319+4130. From left to right low (2.64, 4.85, 8.35GHz), medium (10.45, 14.6,
23.05GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.22: Light curves of sources from top to bottom: J0324+3410, J0359+5057, J0418+1801, J0423-
0120, J0530+1331. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45, 14.6,
23.05GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.23: Light curves of sources from top to bottom: J0654+4514, J0719+3307, J0721+7120, J0730-
1141, J0738+1742. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45, 14.6,
23.05GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.24: Light curves of sources from top to bottom: J0808-0751, J0818+4222, J0824+5552,
J0841+7053, J0854+2006. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.25: Light curves of sources from top to bottom: ]J0920+4441, J0948+0022, J0958+6533,
J1104+3812, J1130-1449. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.26: Light curves of sources from top to bottom: ]J1159+2914, J1217+3007, J1221+2813,
J1229+0203, J1256-054. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.27: Light curves of sources from top to bottom: J1310+3220, J1332-0509, J1504+1029, J1512-
0905, J1522+3144. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45, 14.6,
23.05GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.28: Light curves of sources from top to bottom: J1553+1256, J1635+3808, J1642+3948,
J1653+3945, J1733-1304. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.29: Light

55000.0
MJD

curves of sources from top to bottom:

55000.0
MJD

J1751+0939, J1800+7828, J1848+3219,
J1849+6705, J2025-0735. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.30: Light curves of sources from top to bottom: ]J2143+1743, J2147+0929, J2158-3013,
J2202+4216, J2203+1725. From left to right low (2.64, 4.85, 8.35 GHz), medium (10.45,
14.6, 23.05 GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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Figure A.31: Light curves of sources from top to bottom: ]J2229-0832, J2232+1143, J2253+1608,
J2327+0940. From left to right low (2.64, 4.85, 8.35GHz), medium (10.45, 14.6,
23.05GHz) and high (32, 42, 86.24, 142.32) GHz frequencies.
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A4 Spax — Vmax plots
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Figure A.32: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J0102+5824, right
panel is J0217+0144. The size of symbols represents the time evolution. Time flows

forward from smaller to larger symbols.
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Figure A.33: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J0217+0144, right
panel is J0237+2848. The size of symbols represents the time evolution. Time flows

forward from smaller to larger symbols.
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Figure A.34: Evolution of the spectral peak in the Smax — Vmax plane. Left and right panel is
J0238+1636. The size of symbols represents the time evolution. Time flows forward

from smaller to larger symbols.
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Figure A.35: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J0359+5057, right
panel is J0418+3801. The size of symbols represents the time evolution. Time flows
forward from smaller to larger symbols.
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Figure A.36: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J0423-0120, right
panel is J0730-1141. The size of symbols represents the time evolution. Time flows
forward from smaller to larger symbols.
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Figure A.37: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J0818+4222, right
panel is J0854+2006. The size of symbols represents the time evolution. Time flows
forward from smaller to larger symbols.
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Figure A.38: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J1130-1449, right
panel is J1159+2914. The size of symbols represents the time evolution. Time flows
forward from smaller to larger symbols.
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Figure A.39: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J1159+2914, right
panel is J1256-0547. The size of symbols represents the time evolution. Time flows
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Figure A.40: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J1504+1029, right
panel is J1512-0905. The size of symbols represents the time evolution. Time flows

forward from smaller to larger symbols.
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Figure A.41: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J1642+3948, right
panel is J1751+0939. The size of symbols represents the time evolution. Time flows
forward from smaller to larger symbols.

100 £

Flux Density [Jy]
S
m‘

e 12025.0735

=

Oba

10 100 1000
Frequency [GHz]

Flux Density [Jy]

100

=5
aa

T T

e 1223241143

.:f;

Oba

10
Frequency [GHz]

Figure A.42: Evolution of the spectral peak in the Smax — Vmax plane. Left panel is J2025-0735, right
panel is J2232+1143. The size of symbols represents the time evolution. Time flows

forward from smaller to larger symbols.

1000

2
3
T

Flux Density [Jy]

e 1225341608

1
0.1

Figure A.43: Evolution of the spectral peak in the Smax —

10 100 1000
Frequency [GHz]

Flux Density [Jy]

1000

100 =

10

T T

o 1225341608

1
0.1

Vmax plane.

10
Frequency [GHz]

Left and right panel is

J2253+1608. The size of symbols represents the time evolution. Time flows forward

from smaller to larger symbols.



148 A.5 Kolmogorov-Smirnov Test

A.5 Kolmogorov-Smirnov Test

The Kolmogorov—Smirnov test (K-S test) (Smirnov 1948; Press et al. 1992) is a non—
parametric test i.e. makes no assumptions about the underlying distribution of data. The
test is based on the K-S statistics that measures the supremum (greatest) distance between
the empirical distribution function (EDF) of a univariate dataset and the comparison step
function of a second dataset or it’s cumulative distribution function (CDF). It can be used
to compare a sample with a reference probability distribution (1-sample K-S test), or to
compare if two underlying one dimensional probability distributions are sampled from
the same parent population (2—sample K-S test). In both cases, the underlying population
distribution is assumed to be continuous. The tests distribution-free character means that it
can give valid probabilities for any underlying distribution of the original and comparison
datasets. This is particularly valuable for astronomy, as the mathematical distributions of
observed properties of astronomical phenomena are usually unknown. For the purposes
of testing if various distributions differ in the current thesis, the 2-sample K-S test is used.

The Kolmogorov-Smirnov statistic is:
Dn,n’ = sup | Fl,n (JC) — F2,n’ (JC) | (Al)
X

where F;, and F,, are the empirical distribution functions of the first and the second
sample respectively and sup is the supremum function. The K-S statistic can be seen
graphically in Fig. A.44.
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Figure A.44: Red and blue lines each correspond to an empirical distribution function, and the black
arrow is the two-sample K-S statistic (image: Wikipedia).

The null and the alternative hypotheses are
o the two tested distributions are sampled from the same parent population
o the two tested distributions are not sampled from the same parent population.

The null hypothesis can be rejected at a “user” chosen significance level of « if the test
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statistic D, ,/ is greater than the critical value:

n+n
n-n

Dy > c(a) (A.2)

The value of c(«) for each level of « is given in Table A.4 (Smirnov 1948; Stephens 1974).

Table A.4: Values of c(«) for each significance level of «.

« 0.0 (90%) 0.05(95%) 0.025(97.5%) 0.01(99%) 0.005(99.5%) 0.001 (99.9%)
@) 1.22 1.36 1.48 1.63 1.73 1.95

Throughout the current thesis the P—value is used. In contrast to comparing the K-S
statistic with fixed values of «, the P-value is a probability and is calculated based on the
D, statistic. It denotes the threshold value of the significance level that the null hypoth-
esis will be accepted for all values of « less than the calculated P-value. For example, if
P = 0.025, the null hypothesis will be accepted for all significance levels of a less than P
such as 0.01 (99%), and rejected at higher levels such as 0.05 and 0.1.
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A.6 IDL Software description

The procedures for the reduction of PV data at the MPIFR institute that I developed are de-
scribed. They were developed in the programming language of IDL, for its speed, ease of
use with large tables and numerical accuracy. Bellow a short description is given alongside
with the accepted parameters for each procedure.

Final calibration procedure This procedure is the center point of all the data reduction
for the Pico Veleta telescope. It takes as input standard Mira files with lists of scans and cal-
culated Gaussian peak values, pointing offsets and other information and performs all the
corrections and error analysis described in Sect. 3.1.3. It outputs files with fully corrected
values for all the scans and sources in the input along with control files for bad scans, cal-
ibration files etc. Bellow is a list with a short description of all the available options that
can be called upon running the procedure.

° Source:[’***’,’****’,’****’/ .. ]

Defines the sources to be processed. Accepts an array of strings. If not defined then
all the default sources for the monitoring program will be selected (original & revised
samples).

° Cﬂlb:[***, >(->6>(-, >(->(->F, >H(->(-]

Defines the calibrations factors for each of the four receivers. Accepts a 4-element
array representing the factors. If not defined then all factors are set to unity (1) and
then are computed by the available calibrators and only if the /nocal keyword is not
set.

° ﬁle:[/ﬂ-ﬂ-**’/’>(->(->%>(-’/’>%>{->(—>H, . ]

Defines an array of strings representing the input files to be processed. If it is not de-
fined then all files in the working directory will be processed. Files that are accepted
and that are found automatically are of type: “point_*-EDT.dat”. The use of willcard
characters is also possible and can be supplied like this: file=["*dat’]

Rk e S Nk NN AN
O flyop= [ ok ok K sk ek |

Defines arbitrary reference flux densities to be used for the calibration of the data.
Accepts a maximum of a 6—element array in Jy, with each entry being for the cor-
responding receiver that is to be reduced. Caution is necessary with this option if
in the dataset are more than one calibrators. If a flux density is set to zero then the
output of the corresponding frequencies will be ****** meaning that data existed
but no calibration is found and performed on them.

° wdir:[’*******/’]

Defines the top directory that the output directory structure and files should be writ-
ten. Accepts also a relative path. If not defined then the current directory is taken as
the output directory.
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o dir_bin=["*****/]

Defines the directory with all the procedures and functions needed for the proper re-
duction of IRAM-PV data. If not defined then a default directory is taken. A relative
path can also be entered. This default directory is: “/aux/zeall/lfuhrmann/GAMMA.-
project/IRAM/bin_idl/”

e /nocal

If the procedure is called with the /nocal keyword then no sensitivity correction will
be performed and the output will be in Kelvins and not in Jy. If /nocal is called at
the same time with calb or flux keywords then the last two are ignored. Default is to
always perform the sensitivity correction.

e /nopc
If the procedure is called with the /nopc keyword, then no pointing correction will
be performed. Default is to always perform pointing corrections.

e /nogain
If the procedure is called with the /nogain keyword then no gain correction is per-
formed to the data. Default is to always perform gain-Elv corrections.

o /notau
If defined then the procedure does not perform a tau correction. Default is to always
perform tau correction.

e /emir01 or /emir02

If defined then it is assumed that the data are in the standard emir format and contain
two polarizations per scan. /emir01 is for 86 and 142 GHz set-up and /emir(2 is for
86 and 230 GHz set-up. If not defined then it is assumed that the data are taken with
the older ABCD receivers.

o /subscan

If defined then it is assumed that the structure of the input files are on the sub—scan
level containing all the sub—scans of every scan.

° gainmtio=[**, *x—/x—x-/*x—]

Defines an array of four numbers that represent the ratio between horizontal and
vertical polarizations at 86, 142, 228 and 261 GHz respectively. In order for this to
take effect on of the two emir set-ups must be also selected otherwise is ignored. This
option corrects for any difference in the gain of the two polarizations. It is assumed
that the gain ratio given here is Vertical /Horizontal with a default value for 86 GHz
of V/H=1.02
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e /nogratio

If defined then the default values for the ratio between the two polarizations are set
to unity(1). So the effective gain ratio for 86 GHz will be in this case V/H=1.0 This
option has effect only in the presence of EMIR data. It is a default option when the
BBC backend is selected.

o /kalldir

If defined then no questions will be asked if an individual direction of Azi or Elv is
found and any occurrence will be kept but with no pointing correction. Only valid
when the input files is in the scan level and not in the sub—scan level.

o /skalldir

If defined then no questions will be asked if an individual direction of Azi or Elv
is found and any occurrence will be skipped and logged in the file “bad_scans.dat”.
After that the user could flag the corresponding scans in order to re-run and finish
the reduction. Only valid for input files that are in the scan level and not in the
sub-scan level. /kalldir and /skalldir can not be called at the same time.

o /kcalibdir

By default if a measurement is from a calibrator (W30OH,K3-50A, MARS, URANUS,
NGC7027) and has only one direction recorded then it is skipped independent of
what the user has chosen (y/n/yall/nall /kalldir /skalldir). To keep these measure-
ments but with no pointing corrections set this keyword so the choice is done by
what the user has selected.

o /ngc_time

If defined then a time depended correction for NGC 7027 calibrator scans is per-
formed. The default is to make no such corrections. Such correction is only valid
for 2mm data currently. The correction applied is of the form f(x) = a + bx where
x =JD —2439999.5, a = —29.821 and b = 0.0023408.

e /delepochs

If defined then it deletes any epoch directories (Not the multiepoch directory) exist-
ing from previous runs. It deletes directories named EP* that they are in the current
selected output directory.

o /effcomb

If defined then the directory structure in the output directory will be matched to the
folder names of Effelsberg Epochs according to the database predefined in the code.
If not defined then the folder names will be of type EP—**** according to the date of
the observation of the input file.

o Jallsource
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If defined then it processes all the available sources of the input files. If specific
sources were selected with the “source” keyword then that selection is ignored.

e /no_astro_calib

If defined then the reference flux densities of the planets will be calculated with an
older Fortran program. If there is already a file with predefined planet flux densities
in the output directory then this has no effect. The default is to use the ASTRO
program. The use of the default is recommended.

e /nbc or /bbc

If defined then it selects the proper receiver list in each case correspondingly. If not
defined then the default backend is “nbc”. This is applicable only if one of the two
emir set-ups are selected. When the bbc backend is selected then the list is: “re-
ciever_list=[10,11,12,13,6,7]” When the nbc backend is selected then the list is: “re-

ciever_list=[4,5,6,7]"
o rxs list=[*""*""]

If defined it selects the receivers to be used. Any receiver can be entered. Max num-
ber of rxs accepted is six. The input is selected by a number code. Possible inputs
are: 0=B100, 1=C150, 2=B230, 3=C270, 4=EOHL, 5=E0VL, 6=E1HL, 7=E1VL, 8=E2HL,
9=E2VL. For the bbc backend the receivers for the 3 mm band are: 10=EOHL, 11=E0VL,
12=EO0HU, 13=E0VU. If not defined then the list of receivers is automatically selected
according to other options (EMIR or ABC set-ups and backend combinations) It over-

rides the options /emir01 and /emir02 and the automatic selection of the parameter
beam_off and gain ratio.

o beam_off=[**]

It selects a beam offset value to be used when reducing data in the sub-scan level.
Usually this value should be 0”but when the data are observed with the double beam
technique this value becomes 30”. The selection of this value is done automatically
according to the selection of receivers and backends. If a manual selection of re-
ceivers is done then the parameter beam_off must also be entered.

o jd_offset=[*]

Accepts a floating number that is subtracted from the Julian date in order for exam-
ple to convert it to MJD (Assuming the input date is JD). It does the operation “fi-
nal_Date=input_Date - jd_offset”. The default is to use a value of jd_ offset=2440000.0
to convert JD to (Alex) Julian Date (AJD = JD — 2440000.0). It should be noted that
the actual used default is A]D = JD — 2439999.5 because the date of the output files
from MIRA is actually JD — 0.5 instead of JD.

o calibrator=["*** /*x*# rxextr ]
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Defines the list of calibrators to be processed. Accepts an array of strings. If not
defined then all the default calibrators for the IRAM monitoring program will be
selected (NGC 7027, W3(OH), K3-50A, MARS and URANUS).

Flagging procedure This procedure edits the output files of MIRA and writes a new file
with automatically flagged scans and sub—scans according to the criteria of Sect. 3.1.2. The
output file is in the proper format that the final calibration procedure can read and perform
the post-measurement corrections. Bellow a short description of the available options is
presented.

o Jemir_sub

If defined then it is assumed that the input file contains data taken with the EMIR
receivers and are in the sub-scan level and sets a value of point_val=30 in order to
compensate for the double beam offset. If not defined then it is assumed that the
input files do not have this offset.

o /ulbi

If defined then a center frequency of ~ 85 GHz for the E0 band is assumed and not
the usual ~ 86 GHz. The default is 86 GHz

° ﬁl€=[/>(->(->e>(-f,f>e>(->e>(-','>e>(->(->e/, _____ ]

Defines an array of strings representing the files to be processed. If it is not defined
then all files in working directory will be processed and selected automatically. Files
that are automatically selected are of type: “point_*-EDT.dat”. Also wildcard charac-
ters can be entered like this: file=["*dat’]

Sub-Flagging procedure This procedure takes as input already flagged files created by
the previous described flagging procedure and outputs a script file that can be run in Mira
to flag subs—cans before fitting them. The available options are presented bellow.

° ﬁle:['****’/'****’,'****’, ''''' ]

Defines an array of strings representing the files to be processed. If it is not defined
then all files in the working directory will be processed and are found automatically.
Files that are found is of type: “point_*-EDT.dat”. Also wildcard characters can be
entered like this: file=["*dat’]

o source=["**** ** ]
Defines an array of strings that specifies the source names to be processed. If nothing
is given then all the available sources in the input file are processed.

° Out:[’******’]

Defines the output file that should be used. Accepts a string name.
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e /emir01 or /emir(02

If defined then it is assumed that the data are in the standard EMIR format and
contain two polarizations per scan. /emir01 is for the 86 and 142 GHz set-up and
/emir02 is for the 86 and 230 GHz set-up. If not defined then it is assumed that the
data are taken with the older ABCD receivers.

o /subscan

If defined then the output format in Mira will be set to be in the sub—scan level.

o mira_dir=["****/']

Defines the output directory that will be used in the Granada computer. The final
directory with the averaged data after the run of Mira will be “ /Mira/****/”. The
default directory is : “averaged_flagged/”.

) /an
If defined then only scans from the NBC backend are selected.

e /bbc
If defined then only scans from the BBC backend are selected.

e /harcopy

If defined then Mira will produce postscript files. These files will be in the scan level.

The result will be one file per input file.
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