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Abstract
In this cumulative dissertation, statistical models for regression
are discussed in light of high-dimensional, biological data. The
dissertation includes three publications:
RNA transcription and degradation of Alu retrotransposons de-
pends on sequence features and evolutionary history examines
Alu elements, RNA retrotransposons in the human genome. Their
RNA metabolism is poorly understood, and the source of Alu tran-
scripts is still unresolved. We have conducted a transcription
shutoff experiment and metabolic RNA labelling to shed further
light on the life cycle of Alu transcripts. We furthermore present
a novel statistical test for detecting expression quantitative trait
loci relying on k-mer sequence representation.
Endoscopic hemostasis makes the difference: Angiographic treat-
ment in patients with lower gastrointestinal bleeding uses ret-
rospective study data from patients receiving either endoscopic
or angiographic treatment for lower gastrointestinal bleeding.
While a majority of patients can be treated successfully with the
usually preferred endoscopic method, in some cases, angiography
is required to achieve hemostasis. Using conditional inference
trees, we construct a decision tree model predicting if a patient
should receive angiographic treatment.
Genetic instability and recurrent MYC amplification in ALK-
translocated NSCLC: a central role of TP53 mutations investigates
a molecular subtype of lung cancer exhibiting rearrangements of
the ALK gene. This cancer type often resists treatments, and no
reliable biomarker to identify patients at risk for relapse is known.
Analysing biopsy and cell culture data, we find that mutations
in the TP53 gene can lead to chromosomal instability and thus
the amplification of known cancer genes. This, in turn, grants
cancer cells a proliferative advantage compared to the wild-type,
providing a new approach for diagnosis and treatment.



Contents
1 Introduction 1

Regression and Classification . . . . . . . . . . . . . 5

Peculiarities of Biological Data . . . . . . . . . . . . 6

1.1 Method Overview . . . . . . . . . . . . . . . . . . . . 9

2 Evolution Shapes the Alu RNA Metabolism 12
Methodology . . . . . . . . . . . . . . . . . . . . . . . 14

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Angiography for Gastrointestinal Bleeding 20
Methodology . . . . . . . . . . . . . . . . . . . . . . . 21

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Theragnosis Biomarkers in Lung Cancer 25
Methodology . . . . . . . . . . . . . . . . . . . . . . . 26

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion 29

6 Appendix 32
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . 32

List of Figures . . . . . . . . . . . . . . . . . . . . . . . 49

Erklärung (Statement) . . . . . . . . . . . . . . . . . 50

Lebenslauf (Curriculum Vitae) . . . . . . . . . . . . 51

Acknowledgements . . . . . . . . . . . . . . . . . . . 52



1
Introduction

“The temptation to form premature theories upon insufficient
data is the bane of our profession.” [Sherlock Holmes, Doyle 2012].
This statement applies not only to fictional consulting detectives
but likewise to the field of science. One might even say that it is
an inherent tendency of the human mind to jump to conclusions
based on incomplete knowledge. Thus, it is the statistician’s task
to rigidify all conjectures made in the context of a scientific inves-
tigation and base them firmly on observations. This is, of course,
easier said than done.

In general, the art of the statistician, in contrast to purely
technical aspects, is to specify the model according to the data at
hand. Upon contact with data, every mathematical model suffers
from the bias-variance tradeoff [von Luxburg 2011], i.e., a model
needs to find the right balance between overfitting (high variance)
and underfitting (high bias). Bias, in this case, describes the differ-
ence between a model’s average predictions and the true values.
A model with high bias is oversimplified or even misspecified (i.e.,
it is inappropriate for describing the data). Variance refers to the
variability of a model’s predictions. A model with high variance
fails to generalise and cannot make accurate predictions.

Following an example by Hastie 2021, assume we wish to pre-
dict an outcome Y given observations X = {x1 . . . xn} with a
relationship of

Y = f(X) + ε

where ε describes a normally distributed error term with mean
0 and standard deviation σε. Further assuming a model f̂(X) of
f(X), the expected squared error for a point x becomes

E (x) = E
[(

Y − f̂(x)
)2
]

1



1.0 Introduction

with E denoting the expected value. This further decomposes
to

E (x) =
(
E
[
f̂(x)

]
− f(x)

)2

Bias2

+ E
[(

f̂(x) − E
[
f̂(x)

])2
]

Variance

+ σ2
ε

where σ2
ε is the irreducible error, i.e., the amount of inherent noise

in the data that cannot be removed.

In other words, a model that does not capture the pattern from
which the observations emerge is underfitted, usually exhibiting
high bias and low variance. Vice versa, a model that captures the
noisiness of the observations alongside the pattern is overfitted,
usually exhibiting low bias and high variance.

The bias-variance tradeoff is connected to the complexity
of a model. A model that is too simple and thus undercomplex for
the data will underfit. This is because it has too few parameters
to model the data adequately. Conversely, a model that is over-
complex will overfit, as it has too many parameters. Of course,
one would hope to optimally balance each model’s complexity,
bias, and variance so to never over- or underfit, or at least come
feasible close to this goal.

To approach the optimal model, commonly used meth-
ods are regularisation, boosting, and bagging.

RegularisationRegularisation aims to mitigate the problem of overfitting com-
mon to overcomplex models [Deisenroth 2020]. Assume again
a model that predicts f(X) and possesses many parameters
θ1 . . . θn. Its associated loss function V governs the training of the
model [Rosasco 2004]. Regularisation adds a regularisation term
or regulariser R to the loss function that penalises complexity of
the model. Thus, the expression to be minimised becomes

min
f̂

n∑
i=1

V
(
f̂(xi) , yi

)
+ λ R

(
f̂
)

with the parameter λ controlling the amount of regularisation
that is applied.

Two common applications of regularisation are the linear
regression techniques Ridge regression [Hoerl 1970] and Lasso
regression [Tibshirani 1996]. While these can be extended to other
statistical models, assume simple linear regression for the sake of
demonstration. Both techniques add a regularisation term to the
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1.0 Introduction

loss function that depends directly on the values of the model’s
parameters θi

R (θi) = λ
n∑

i=1
θ 2

i

Ridge regression

and R (θi) = λ
n∑

i=1
| θ i|

Lasso regression

thus shrinking all but the most influential parameters of the
model and thereby reducing model complexity and multicollinear-
ity [Herawati 2018]. The difference between Ridge and Lasso
regression lies in the calculation of the applied penalty. While
Ridge regression penalises the sum of the squared coefficients
(L2 penalty), Lasso regression penalises the sum of their abso-
lute values (L1 penalty). The ultimate consequence is that while
Lasso can shrink non-influential parameters to zero, Ridge cannot.
On the other hand, this can cause Lasso to eliminate important
parameters under multicollinearity, if predictor variables are cor-
related, as it tends to select one parameter from the correlated
group and ignore the rest.

To overcome these limitations, a combination of Ridge
and Lasso regression can be applied, elastic net [Zou 2005]. The
used regularisation technique combines an L1 and an L2 penalty
by using separate λ parameters for each, λ1 and λ2. If λ1 = 0, the
penalty equals Ridge regularisation; if λ2 = 0, the penalty equals
Lasso regularisation; and if λ1 > 0 and λ2 > 0, a combination of
both is applied.

While Boostingregularisation is a helpful method to deal with overcom-
plex models, boosting addresses the problem of poor models in
more general terms [Schapire 2009]; a 'poor model', in this case,
refers to a weak learner. Valiant [1984] formalised the concept of
learnability in the context of computational complexity theory
and introduced the probably approximately correct (PAC) model.
A problem is PAC- learnable if there exists a model that, with a
chance higher than a threshold δ, will arrive at a solution with
a generalisation error smaller than a threshold ϵ. Generalisation
error or out-of-sample error refers to a model’s predictive per-
formance on previously unseen data [Bousquet 2011]. A model
satisfying these conditions for any given problem is called a strong
learner, while a model that does not is a weak learner.

A problem can benefit from boosting if applying a strong
learner is either impossible, as no strong learner exists, or dis-
advantageous, for example, because the strong learner is pro-
hibitively complex and thus underperformant, or because the
available training data is insufficient to apply it. While current
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1.0 Introduction

machine learning research, especially in the field of deep learning
[LeCun 2015], mainly approaches the challenge of more complex
problems by fielding stronger algorithms, boosting seeks to im-
prove the results of weak learners.

While Kearns [1994] defined weak learners as models
that perform just slightly better than random guessing, Schapire
[1990] demonstrated their power if applied correctly, proving that
any problem solvable by a strong learner is equally solvable by a
collection of weak learners: the hypothesis boosting mechanism.
The term 'hypothesis' here describes the solution a model arrives
at after training, the model’s final parameters. Freund [1995] im-
proved this further, combining many weak learners and using
their combined results to arrive at a strong prediction, one weak
learner effectively compensating for the shortcomings of another.
The next step was AdaBoost, adaptive boosting, for which Fre-
und and Schapire were awarded the Gödel Prize in 2003 [Freund
1997]. This boosting variant scales each weak learner’s influence
on the final prediction depending on their own error. The current
state-of-the-art boosting technique is gradient boosting with its
predominant implementation XGBoost [Chen 2016]. In contrast
to AdaBoost, which always minimises the exponential loss func-
tion, gradient boosting can use any differentiable loss function,
which makes it adaptable to many classification and regression
tasks.

Following an example by Li [2015], assume again a model
f̂(X). The boosting model iterates over M stages, and each stage
m has an associated imperfect model f̂(X)m, so that at each
stage, a new 'hypothesis' is added, a new estimator ĝ (X)m.

f̂(X)m+1 = f̂(X)m + ĝ (X)m

As the model iterates over sets of training data Yi = {y1 . . . yn},
the new estimator is fit to the residual, the difference between the
values of the training data Yi and the estimation of the previous
model.

ĝ (X)m = Yi − f̂(X)m

In this fashion, each new stage m + 1 attempts to correct for the
errors made by the previous stage m.

WhileBagging boosting is an ensemble method that addresses short-
comings of the model, bagging can be regarded as addressing
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1.0 Introduction

shortcomings of the data [Breiman 1996]. The name 'bagging' de-
rives from bootstrap aggregating. Bootstrapping is a resampling
method that estimates statistics by sampling repeatedly from the
same data [Efron 1994]. This process makes it possible to assess
the accuracy of the estimated statistics, which can be assumed to
be an adequate approximation if the empirical distribution of the
data represents the true distribution reasonably well.

Bagging applies the principle of bootstrapping to model
training. Following an example by Aslam [2007], assume again
a set of training data Y. From this data set, new training sets
Yi are created by sampling uniformly from Y with replacement,
meaning that each individual entry in Y has the same probability
of being drawn and can be drawn again and again. Individual
models are then trained on the new training sets Yi, and their
predictions are combined, either by averaging for regression or
voting for classification (see Regression and Classification below).
Bagging is especially useful for unstable models that can react
drastically to small changes in the training data (see Decision
Trees and Random Forest on page 10 for an example).

Regression and Classification
While the variety of mathematical models seems almost endless,
the models employed in the publications that comprise this dis-
sertation belong predominantly to the field of machine learning.
These algorithms encompass models that use sample or train-
ing data to learn and make predictions [Mitchell 1997]. Machine
learning can be divided into three main approaches, unsupervised
and supervised learning, and reinforcement learning. This third
category covers the behaviour of intelligent agents that interact
with the environment and is of only marginal interest to the topics
at hand [Joshi 2021].

Unsupervised Supervised and
Unsupervised
Learning

learning differs from supervised learning
by the type of training data required [Hinton 1999]. Unsupervised
models are not reliant on labelled data, meaning data that has
been annotated by humans or other models. Instead, unsuper-
vised learning aims to build an internal representation of the space
it operates in and capture previously known patterns according
to that representation. Some prominent examples of unsuper-
vised learning include clustering [Rokach 2006], dimensionality
reduction [Van Der Maaten 2009], and outlier detection [Hawkins
1980]. Supervised learning, on the other hand, does require la-
belled data. Its goal is to find a function that maps input variables
to output variables as best as possible, or in other words, to train
a model so that it predicts an outcome as best as possible, given a
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1.0 Introduction

set of corresponding observations [Mohri 2018]. Some prominent
examples for supervised learning include Bayesian inference [Gel-
man 2014], decision trees [Kamiński 2018], and support vector
machines [Cortes 1995]. Most of the methods discussed in detail
prior to the included publications are supervised.

Supervised learning is commonly further subdivided into
two fields of application: regression and classification. While re-
gression predicts a numerical (i.e., continuous) outcome, classifi-
cation predicts discrete class labels [Hastie 2021].

Peculiarities of Biological Data
As an empirical and descriptive discipline, the life sciences, and
biology, in particular, are founded on data. The nature of this infor-
mation is thus vital to all scientific enquiries in the field. Following
the introductions by Jagadish [2003] and Wooley [2006], biologi-
cal data can be broadly classified into the following types.
BiologicalSpatial Data systems, from strands of DNA in the nucleus of a cell
to animal migrations taking place over thousands of kilometres,
are three-dimensional in nature and therefore carry spatial infor-
mation. Measuring and encoding the differences between one
region and another in machine-readable form is thus instrumen-
tal. Scalar and vector fields can be seen as an extension of this,
as they encode phenomena that are continuous in space, such as
biochemical properties like concentration gradients or population
densities.
Sequence dataSequence Data is currently one of the most abundant forms of bio-
logical information and arguable responsible for the vast majority
of progress in the field over the last decades. The amount of avail-
able DNA and RNA sequences is also increasing ever more quickly
with the development of novel technology, such as single-cell
sequencing [Wang 2015] and spatial genomics [Turczyk 2020].
While these two techniques further explore the genetic organi-
sation on the level of individual cells, another approach called
metagenomics analyses all sequences present in an ecosystem
[Venter 2004, Hugenholtz 2008]. Sequence data can be gener-
alised as strings representing the DNA or RNA bases, including
gaps.
WithinPatterns DNA and RNA sequences lie patterns that represent func-
tional units, such as genes in the genome, functional elements
like promoters and enhancers [Kim 2015], or restriction sites
[Smith 1976]. Patterns can be encoded as context-free grammars
[Hopcroft 2001], Hidden Markov Models (HMMs) [Stamp 2018],
or regular expressions [Wang 2019].
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1.0 Introduction

Another Modelstype of information that can be regarded as biological
data are the mathematical models created to analyse experimen-
tal measurements. With the increasing number of publications,
the models contained therein, their structure and parameters,
need to be machine- readable to facilitate comparisons.
Images Imagesoriginating from electron and optical microscopy, radiog-
raphy, and other methods, as well as videos, are another type of
data that is especially difficult to convert into a machine-readable
form. While storing the raw data digitally is trivial, extracting the
features contained in the recordings is not and has spawned the
interdisciplinary field of computer vision [Ballard 1982].
Relationships Graphssuch as biochemical and signalling pathways and
phylogenetic trees can be represented as graphs, along with gene
regulatory networks and laboratory workflows. Even sequence
data can be presented in a graph structure to efficiently encode
DNA and RNA sequences variability between individuals [Novak
2017]. Geometric arrangements such as the three-dimensional
shape of proteins that governs their docking behaviour can also
be rendered in graph-form.
Finally, Prosethe literature itself is a form of data, and the annotations,
hypotheses, and inferences stated in continuous text are difficult
to translate into machine-readable form, as well [Balyan 2017].

As should become clear from this diverse list, biological data can
be very heterogeneous, which can further complicate its analysis,
as models may need to be found which can integrate the differ-
ent data types. Epigenetic data, for example, combines spatial,
sequence, and pattern information in the form of genome archi-
tecture and nucleosome positioning, DNA and RNA sequences,
as well as the patterns of promoters and enhancers [Armstrong
2020]. Biological data also originates, in most cases, from labora-
tory experiments. This has the consequence that equipment- and
protocol-dependent biases are almost guaranteed to be present.
Even the person performing the experiment can be a confound-
ing factor. It is thus highly unusual that experimental results
from different laboratories agree. A promising remedy for this is
zero-sum regression by Altenbuchinger [2017], an extension to
conventional linear regression that has also been adapted to lo-
gistic regression [Kleinbaum 2002] and Cox proportional hazard
regression [Fox 2002]. Zero-sum regression, in its simplest from,
enforces the zero-sum constraint on a log-linear model, meaning
a linear model on log-transformed data where the choice of the
reference point can result in sample-wise shifts.
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1.0 Introduction

AssumeZero-Sum Regression again a model with many parameters θj that should pre-
dict an outcome yi from predictor xi with the form

ŷi =θ0 +
n∑

j=1
θj log(yi xij)

ŷi =θ0 +
n∑

j=1
θj log(yi) +

n∑
j=1

θj log(xij)

ŷi =θ0 + log(yi)
n∑

j=1
θj +

n∑
j=1

θj log(xij)

By restricting the sum of coefficients (marked in blue) to zero, the
linear model is made insensitive to the choice of the reference
point. Example reference points include the amount of DNA or
RNA included in an experiment or the number of cells. Zero-sum
regression assumes that any chosen reference point can be subop-
timal. Thus, a model and the resulting biological interpretation
should not rely on it, if possible. The systematic differences be-
tween experimental conditions are modelled separately and can
thus be removed. The intuition behind the method is that, in
high-dimensional space, a subspace is found that lies orthogonal
to the unwanted shift in the data. Thereby, the subspace becomes
invariant to the systematic differences.

Other pitfalls of biological data include its volume, vari-
ance, and range. Due to being measurements of inherently noisy
phenomena, biological data is usually generated in replicates.
This makes it possible to attribute parts of the observed variance
to experimental conditions, such as batch effects, while the re-
mainder derives from the phenomenon itself. However, this also
means that the data volume is multiplied by the number of repli-
cates. Because sets of raw data generated by modern methods
can easily reach several hundreds of gigabytes in size, these mea-
surements can become challenging to handle without appropri-
ate computational resources. Biological phenomena also tend
to span several orders of magnitude, for example, in the case of
transcript counts associated with individual genomic loci. This
complicates matters primarily due to the human factor involved
since humans are generally ill-equipped to think analytically in
logarithmic terms, even though our senses perceive stimuli on a
logarithmic scale [Sun 2012].

Finally,Curse of
Dimensionality

biological data also tends to suffer from the curse
of dimensionality, a term coined by Richard E. Bellman [Bellman
1957, 1961]. In machine learning, dimensions are synonymous
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1.1 Method Overview

with features, and the curse of dimensionality refers to the pros
and cons of a data set with many features; a high-dimensional
data set. On the one hand, having many features can be a bless-
ing when it comes to separating data into distinct classes, as
points that are difficult, if not impossible, to separate clearly in
low dimensions can become easy to separate in higher dimen-
sions. However, on the other hand, when the dimensionality of
Euclidean space increases, the distance between points in the
space increases, too, as it is proportional to the square root of the
number of dimensions [Tabak 2014]. This has the consequence
that, with increasing dimensions, Euclidean space becomes vast,
and the data becomes sparse. Dimensionality reductions methods
like PCA [Pearson 1901], t-SNE [Hinton 2003], UMAP [McInnes
2018], or Autoencoders [Kramer 1991] can serve as a remedy for
this problem.

1.1 Method Overview
As many statistical methods are used in more than one instance
in the included publications, the following section describes in
short the main methods of interest.

While Hypothesis Testingmore complex methods are essential to many findings in
the included publications, hypothesis testing is nonetheless a
vital foundation for any statistical analysis. In testing theory, a
statistical test describes a method used to judge the validity or
invalidity of a formal hypothesis [Teunissen 2006]. As sampled
data is subject to errors, it is not possible to definitely prove the
correctness of such a hypothesis; it is only possible to control the
probability of making the wrong decision. In general, a hypothesis
test defines two hypotheses, the null hypothesis H0 which is the
standard assumption and holds until it can be rejected with a
sufficiently high probability, and the alternative hypothesis H1
which only applies if H0 is rejected.

The three most used hypothesis tests in the three in-
cluded publications are the Brown-Forsythe test, Fisher’s exact
test, and the Mann-Whitney U test [Fisher 1922, Wilcoxon 1945,
Mann 1947, Brown 1974, Winters 2010]. The Brown- Forsythe test
assesses if the variances of two groups are equal (homoscedastic-
ity). Fisher’s exact test assesses if two or more groups differ with
regard to categorical data, while the Mann-Whitney U test, also
called the Wilcoxon rank-sum test, is a nonparametric test that
assesses if two groups differ with regard to continuous data.
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1.1 Method Overview

AnotherCorrelation basic method is correlation analysis. In the broadest
sense, correlation describes any relationship between two ran-
dom variables, or more specifically, the degree to which these
variables are linearly related [Mann 1947]. The two most common
measures are Pearson’s product-moment correlation coefficient
and Spearman’s rank correlation coefficient. Pearson correlation
represents a normalised covariance measure and can only report
linear relationships. Spearman correlation, on the other hand,
uses the rankings of each variable and can thus detect monotonic
relationships regardless if they are linear or not.

TheDecision Trees and
Random Forest

first more involved method used in the included publications
are decision trees [Wu 2008]. In general, a decision tree, which
can be used for classification or regression, splits the data set
first by the predictor variable that best differentiates between
the states the outcome variable can take. The resulting subsets
are then split again, each by the variable best suited to the sub-
set. This is repeated until an end condition is reached. Both the
definition of the best split and the end conditions vary between
methods. Decision trees, however, are not very robust and tend
to generalise poorly. Random Forest offers a remedy for this by
applying the principle of bagging (see page 4) to decision trees
[Ho 1995, Breiman 2001]. Not only is the training data subjected
to a bagging scheme, but feature bagging is also applied, mean-
ing that a random subset of predictors is considered in each tree
of the forest. While random forests thereby achieve greatly im-
proved generalisation compared to decision trees, they also lose
the intrinsic interpretability that makes decision trees compelling
machine learning models.

A methodGeneralised Linear
Models

focused on regression are generalised linear models
(GLMs) [Nelder 1972]. As the name suggests, GLMs generalise
linear models (LMs) by introducing a link function. The intuition
behind the link function is that it provides a relationship between
the linear combination of predictors in the underlying model and
another arbitrary distribution function that describes the observa-
tions. It converts the expected value of the observation to the scale
of the linear predictor. However, the link function is not a data
transformation, as it does no operate on individual observations
yi, but on the expectation E(Y ).

Standard LMs can be considered a subclass of GLMs,
where the link function is the identity. In nontrivial cases, an
exponential-family distribution can be modelled by selecting the
appropriate link function. For example, an LM cannot model ob-
servations following a binomial distribution in a meaningful way,

10



1.1 Method Overview

as it could theoretically predict an outcome above 100 %. Using
the appropriate link function rectifies this. Assume a linear pre-
dictor

η = θ0 + x1θ1 + x2θ2 + . . . + xnθn

with parameters θj and observations xj . The link function then
takes the form

g(µ) = η with µ = E(Y )
where the canonical parameter µ is one of the parameters in the
standard form of the distribution’s density function. For example,
in the case of a binomial distribution, the link function becomes

g(µ) = ln
(

µ

n − µ

)

Underlying Maximum Likelihood
Estimation

many statistical methods is maximum likelihood esti-
mation (MLE), which aims to fit a distribution to observed data by
estimating the distribution’s parameters Hastie 2021. Assume a
set of observations x1, x2, . . . , xn that are independent and iden-
tically distributed (iid) and come from an unknown distribution
function f with parameters ϑ. The density function of f can thus
be expressed as

f(x1, x2, . . . , xn; ϑ) =
n∏

i=1
f(xi; ϑ)

The density can now be reformulated as a function depending on
ϑ to arrive at the likelihood function

L(ϑ) =
n∏

i=1
fϑ(xi)

Maximising the likelihood function with respect to the distribu-
tion function parameters ϑ thus results in the maximum likeli-
hood estimates for ϑ. Alternatively, the logarithmic likelihood
function can be maximised instead, which is often an easier feat
and results in the same estimates for ϑ.

ℓ(ϑ) = log
(

n∏
i=1

fϑ(xi)
)

The main drawback of MLE is that the correction underlying dis-
tribution the data is sampled from must be used. Should the dis-
tribution be assumed wrongly, the results of the MLE will most
likely be inconsistent.
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2
Evolution Shapes the Alu

RNA Metabolism
In this explorative study, we looked into the lifecycle of Alu ele-
ments, retrotransposons in the human genome that copy them-
selves into new genomic positions. We wanted to answer four
questions concerning the transcription and degradation of Alu
RNAs and the sequence features that influence these processes.

Alu elements, named after a restriction endonuclease of
Athrobacter luteus which lead to their discovery, classified as short
interspersed nuclear elements (SINEs), are around 300 bp long
mobile DNA sequences found in the human genome and other
species [Schmid 1975, Quentin 1992, Lander 2001, Kriegs 2007,
Deininger 2011]. They are RNA retrotransposons, meaning that
they are capable of copying themselves into new positions in the
genome. Due to this multiplication, Alu elements make up 11 % of

Figure 1: Modification of figure 1a from Baar [2022], showing a schematic representation of Alu
retrotransposition (left to right): the Alu element is transcribed – the Alu RNA attaches itself to
the exit tunnel of the ribosome through its SRP sequence homolog – a LINE-1 RNA arrives at the
ribosome and its retrotransposase is translated – the Alu RNA hijacks the LINE-1 retrotransposase
– the LINE-1 retrotransposase reinserts the Alu element into a new genomic position.

12



2.0 Evolution Shapes the Alu RNA Metabolism

the human genome by length, with more than 1 million currently
annotated loci [Lander 2001].

The retrotransposition process of Alu elements shown
in figure 1, however, is error-prone and thus facilitates an Alu-
specific sequence evolution, giving rise to distinct Alu families
from the old AluJ family over AluS to the young AluY [Richard
Shen 1991, Deininger 1999, Batzer 1996]. In general, Alu elements
are composed of a left arm and a right arm separated by a vari-
able A-rich region [Evgen’ev 2007]. The left arm contains an RNA
Polymerase III (Pol-III) promoter, and the right arm holds the
UGU(NR) motif required for binding to the ribosome (see figure 1)
[Paolella 1983, Dagan 2004, Orioli 2012]. If Alu elements serve
a function is, so far, unknown. They can be harmful if a new in-
sertion disrupts a gene or other genomic region [Deininger 1999].
They have also been linked to changes in transcriptional activity
in general and under heat shock conditions in particular [Mariner
2008, Chen 2017, Zhang 2019].

We wanted to address four questions regarding Alu ele-
ments, their transcription, and their sequence features:

1. Are Alu RNAs stable or unstable?
Previous studies suggested that Alu RNAs should be less sta-
ble in the cell than regular mRNAs, meaning that they are
degraded quickly [An 2004]. However, these results were
obtained using only computational methods extrapolating
from Alu sequence features and were not backed up by ex-
perimental data.
We could show that the distribution of Alu RNA half-lives
predicted by our experimental approach is very similar to
that of mRNAs, suggesting that Alu transcripts are more
stable than previously thought.

2. Are Alu elements transcribed primarily by Pol-III or by RNA
Polymerase II (Pol-II), as well?
While Alu elements do contain a Pol-III promoter sequence
(see page 13), it is surmised that Alu elements are not only
transcribed by Pol-III but also, to a certain extent, by Pol-
II [Conti 2015, Zhang 2019]. The experimental evidence
for this is mostly indirect [Zhang 2019, Panning 1993, Ja-
gadeeswaran 1981]. We have therefore conducted a Pol-II
inhibition experiment and could show that Alu expression
does indeed decrease under Pol-II inhibition, suggesting
strongly that Alu transcripts arise, at least in part, directly
from Pol-II activity.
This finding carries implications for differential expression
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analyses of the past. Often, Alu elements were used as a
control group if Pol-II inhibition was performed, assuming
wrongly that Alu transcription should be completely depen-
dent on Pol-III [Cordaux 2009].

3. Is Alu transcription a side product of gene transcription?
If a fraction of Alu transcription depends on Pol-II activity,
a possible explanation could be that Alu elements are tran-
scribed alongside regular genes [Conti 2015, Zhang 2019].
The results of our analyses weaken this hypothesis. While
we cannot rule out that a fraction of Alu elements might be
transcribed alongside genes, it is unlikely that this process
contributes substantially to Alu expression.

4. Is Alu expression influenced by sequence features?
Previous studies unsuccessfully employed regular de novo
motif search to detect Alu sequence features that influence
their expression [Zhang 2019]. We used two less common
methods (see Analysis) and could uncover several influential
positions and motifs that appear linked to changes in Alu ex-
pression. Additionally, some of the motifs match transcrip-
tion factor binding profiles and may thus present promising
targets for future investigations.

Methodology
This study made use of bulk, whole-genome RNA-seq data, par-
tially generated specifically for our investigation and partially
repurposed from our earlier publication Schwalb [2016]. The
RNA was extracted from K562 cells, an immortalised human sus-
pension cell line of erythroleukemia cells [Andersson 1979]. The
sequencing data is noteworthy regarding two of its characteris-
tics:

Firstly, we used dynamic transcriptome analysis (DTA),
specifically the 4sUseq and the TT-seq methods [Schwalb 2012,
Gressel 2019]. DTA chemically labels newly created transcripts,
making them distinguishable from old RNAs still present from
before the labelling pulse. This allowed us to calculate the ra-
tio between old and new transcripts and thereby estimate these
transcripts’ half-life.

Secondly, we performed a Pol-II inhibition experiment
using α-amanitin, a toxic substance from the Amanita phalloides
fungus that blocks Pol-II activity [Lindell 1970, Kedinger 1970,
Stirpe 1967, Jacob 1970]. We treated K562 cells with α-amanitin
and compared their RNA-seq data with untreated samples. We
could thus observe the effect of Pol-II inhibition on different tran-
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script classes, including Alu elements, bona fide Pol-II genes, and
tRNAs, which are transcribed by the uninhibited Pol-III.

Analysis
Concerning Half-Life Estimationthe question, if Alu RNAs are stable or unstable, we re-
lied on the DTA data (see Methodology), giving us two read counts
for each Alu element or gene, one from the labelled fraction and
one from the total fraction. With time, new labelled transcripts
are created and old unlabelled transcripts decay, meaning that the
ratio of labelled RNAs increases until all transcripts are labelled.
Assuming exponential decay and steady-state conditions, this
ratio ra gives us the decay rate δa for any Alu element or gene a
by

ra = la/ta = 1 − exp(−δa∆t)
ln ra = ln (1 − exp(−δa∆t))

where la and ta are the numbers of labelled or total RNA molecules
and ∆t is the labelling pulse’s duration, meaning the time that
passed after the labelling agent was added and before the RNA
sequencing was performed. From the decay rate δa the half-life
t1/2,a is given by

t1/2,a = ln (2)
δa

To estimate the ratio between labelled and total RNA molecules
from the measured reads, we used maximum likelihood estima-
tion (MLE) [Rossi 2018] (see also Method Overview). We made
several assumptions to simplify the estimation, owing to the gen-
eral paucity of Alu read counts caused by their low expression.
We assume steady-state conditions, use a Poisson distribution to
model read counts instead of a zero-inflated negative binomial
distribution, and neglect non-constant labelling efficiencies for
short labelling periods. This means that our estimation can only
serve as an assessment to compare the relative half-life distribu-
tions of Alu elements and genes. Its predictions do not represent
explicit half-life values. Still, the very similar distribution of Alu
and gene half-lives suggests that the stability of Alu transcripts is
greater than would be expected from sequence features alone.

The α-amanitin Differential Expression
Analysis

Pol-II inhibition experiment was the key to inves-
tigating the origin of Alu transcripts. To analyse the RNAseq mea-
surements, we used the DESeq2 package for R [Love 2014]. The
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standard assumption of DESeq2’s internal normalisation strat-
egy is that there are no substantial, systematic global expression
changes between samples. Due to the inhibition of Pol-II, we
have to assume that this does not hold. We, therefore, used mi-
tochondrial transcripts (mtRNAs) for normalisation, which are
unaffected by the α-amanitin treatment. This is because the mito-
chondrial polymerase that transcribes mtRNAs is not inhibited by
α-amanitin [Menon 1971, Reid 1971, Saccone 1971]. The resulting
differential expression estimates of Alu elements, mRNAs, and tR-
NAs, which we used as a negative control as they are transcribed
by Pol-III, which is also unaffected byα-amanitin, are shown in fig-
ure 2 [White 1997]. As expected, tRNAs remain largely unaffected
by the α-amanitin treatment, while mRNAs exhibit downregula-
tion. Notably, Alu RNAs also appear downregulated under Pol-II
inhibition, suggesting strongly that Alu elements are, at least to a
certain extent, transcribed by Pol-II.

To addressCorrelation Analysis the follow-up question if the apparent expression
of Alu elements by Pol-II may result from Alu RNAs being side
products of gene transcription, we argued as follows [Conti 2015,
Zhang 2019]: If Alu elements were transcribed alongside genes,
those inside or close to genes should show higher expression
compared to Alu elements that are far away from genes. The ex-
pression of a gene should also correlate with the expression of
Alu elements inside or close to it. Finally, Alu elements should
show a bias towards lying in sense direction with regard to their
associated gene.
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Figure 2: Modification of figure 3e from Baar [2022]. 2D density heatmap showing the DESeq2
differential expression of Alu elements, mRNAs, and tRNAs under α-amanitin Pol-II inhibition.
Semi-transparent areas do not pass the significance threshold. Loci with a normalised mean
expression below 0.1 are excluded, with affects 51 % of all annotated Alu loci and practically no
mRNAs or tRNAs.
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While we did detect a significantly higher expression of Alu ele-
ments that lie inside or close to genes, this effect can result easily
from increased genome accessibility in areas of active gene tran-
scription [Guo 2017]. This also biases the correlation analysis.
Therefore, we examined the difference in correlation strength be-
tween Alu element and gene transcription if split by sense and an-
tisense Alu direction. As we detected no difference in correlation
strength and also found that Alu elements show no preference for
inserting themselves in sense direction into genes, we conclude
that it is unlikely that Alu transcription is a side product of gene
transcription. While our results do not rule out that some Alu
transcripts are created alongside genes, this does not appear to
be a major source for Alu RNAs.

To search Generalised
Linear Model

for sequence features that influence Alu expression, we
pursued two different approaches. Firstly, to analyse Alu elements
on a per-base level, we used a generalised linear model created
with the glmnet package for R [Nelder 1972, Friedman 2010] (see
also Method Overview). We assumed a Poisson family distribu-
tion response type and used an elastic mixing parameter α of 1
(full Lasso penalty, no ridge regression penalty), no fitted inter-
cept parameter, and 1000× cross-validation. To create the input
matrices, we aligned all Alu sequences against the Alu consen-
sus sequence and encoded base exchanges, deletions, and inser-
tions for each position as a binary matrix. For these three types
of point mutation, we trained GLMs with the Alu read counts as
a response variable. Finally, we used the Euclidean norm of the
three obtained effect sizes for each position in the Alu consensus
sequence to judge their respective importance, uncovering several
influential positions.

Secondly, De Bruijn Graphto detect larger sequence features, we created a De
Bruijn graph of all Alu sequences using bifrost v1.0.5 [Holley 2020].
A De Bruijn genome graph is a way to encode sequence variability
in a graph structure [Chikhi 2014]. This method is based on gen-
eral De Bruijn graphs, which are directed graphs representing the
overlap between symbol strings [Sainte-Marie 1894, De Bruijn
1946, Good 1946]. In the context of biological data, the strings are
sequences of length k (k-mers), using DNA or RNA bases as sym-
bols. Each node in the graph represents one unique k-mer present
in the source data from which the k-mers are generated. Each
node also represents its own reverse complement, depending on
the direction in which it is traversed. Edges in the graph represent
overlaps. For example, a sequence S1 would be connected by an
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edge to another sequence S2 if they overlap except for one base,
such that

S1 = (s1, s2, . . . , sn) and S2 = (s2, s3, . . . , sn, sn+1)

With 4 biological bases, each node can have up to 16 edges con-
nected to it, 4 in- and 4 out-edged in forward direction and again
in reverse complement direction. If a graph is compacted, sequen-
tial nodes without branching edges can be combined into a single
node representing a sequence with a length greater than k.

As the De Bruijn genome graph we constructed from all
Alu sequences was almost complete with an in-degree per node of
>7.99, we focused on the constituent k-mers and disregarded the
graph structure in downstream analyses. We filtered the k-mers
using two criteria. The expression of Alu elements possessing the
k-mer needed to be significantly different from those not possess-
ing it. Also, we took each k-mers’s suffix and prefix into account.

Assuming a k-mer with the structure X J Y, with X, Y ∈
{A, C, T, G} and J a fixed 2-mer, to assure that X J Y is causal
for observed changes in Alu transcription, we test the group of
Alu elements containing X J Y against the group containing the k-
mer’s prefix X J or its suffix J Y, but not the full k-mer. Thus we can
be confident that the observed effect is caused by the complete
k-mer and not just its partial sequence.

With this method. we uncovered several statistically sig-
nificant and biologically relevant sequence motifs which previ-
ous attempts using regular de novo motif search did not [Zhang
2019].

In summary, we found that Alu transcripts appear to be as stable
as mRNAs, more stable than previously thought. In addition, we
found evidence for Alu elements originating in independent Pol-II
transcription, not originating as side products of gene transcrip-
tion. Finally, we also identified a list of sequence features that
influence Alu expression and might therefore be promising targets
for future investigations.

18



2.0 Evolution Shapes the Alu RNA Metabolism

My contribution to this publication was the complete bioinfor-
matic and statistical analysis.

Baar, T., Dümcke, S., Gressel, S., Schwalb, B., Dilthey, A.,
Cramer, P., Tresch, A. (2022).
RNA transcription and degradation of Alu
retrotransposons depends on sequence features and
evolutionary history
G3: Genes | Genomes | Genetics, 2160-1836
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3
Angiography for

Gastrointestinal Bleeding
This retrospective study’s goal was the identification of variables
that increase the chance for a patient suffering from lower gas-
trointestinal bleeding (LGIB) to benefit from angiography.

LGIB describes any form of gastrointestinal (GI) bleeding
occurring in the lower gastrointestinal tract, which includes most
of the small intestine and all of the large intestine [Treuting 2018].
GI bleeding can have many causes, including cancer, and the re-
sulting blood loss can lead to shock, syncope, and even death with
a chance of around 15 % in general [Rockey 2005, Prasad Kerlin
2013, Wang 2013, Kim 2014]. While the majority of GI bleedings
subside on their own or can be arrested through endoscopic treat-
ment, endoscopy cannot detect the cause of LGIB in 40 % of all
cases [Yamada 2015, Werner 2018]. Once localised, though, over
90 % of LGIBs can be treated successfully. It is therefore vital that
in cases with symptoms severe enough to result in hospitalisation,
the source of bleeding is identified quickly and reliably and that
hemostasis is achieved, be that through endoscopic treatment or
surgery [Strate 2010, Werner 2018].

It is at this point that angiography comes into the pic-
ture. Angiography is a medical radiological imaging technique
that visualises blood vessels, as well as bleeding. This is achieved
by injecting a radio-opaque contrast agent into the bloodstream
in conjunction with X-ray imaging [Martin 2015]. Catheter an-
giography (CA), coupled with transarterial embolisation (TAE), a
method to stop the flow of blood to a selected area of tissue, has
high technical success rates of 90 % to 100 % and low complica-
tion rates of 1 % to 5 % [Tan 2008, Evangelista 2000, Strate 2010,
Kim 2017, Lee 2018, Oakland 2019, Pannatier 2019]. However, it
also exposes the patient to the contrast agent and X-ray imaging,
while endoscopy requires only anaesthesia. Angiography is also a
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more complex technique and involves the patient’s referral to a
radiologist. Thus, the decision of when to conclude endoscopic
procedures and begin angiographic treatment is challenging. If
angiography is initiated too late, the patient is subjected to mul-
tiple failed endoscopies, while if angiography is used too early,
the patient is needlessly exposed to the side effects of radiological
and surgical treatment.

Accordingly, our goal was to construct a decision-making
aid for clinicians, assisting them in deciding when to apply en-
doscopy and when to apply angiography to treat LGIB. While
prospective investigations will be required to consolidate our re-
sults, the predictors we selected may contribute to the develop-
ment of future official guidelines.

Methodology
The data for this study was collected over the span of 11 years
at a maximum care hospital and included 133 patients. Of these,
the treatment group consisted of 41 patients that received CA
for LGIB, while the control group of 92 patients was treated for
LGIB without angiography. 110 variables were recorded for each
patient, of which 20 were designated as being of particular clinical
relevance according to expert opinion.

As the data collection period was so extensive and in-
volved many clinicians, no precise statements concerning the
methods used for data recording can be made. The data types
were also highly diverse, ranging from binary labels, such as clini-
cal success, time intervals and ordinal variables, to numeric labo-
ratory test results.

Analysis
All of our data was ultimately recorded by humans and was thus
flawed, which may sound harsh but is true more often than not.
For example, Gøtzsche [1989] reports that 76 % of the 196 anal-
ysed drug trials to treat rheumatoid arthritis contained “doubtful
or invalid statements” [Brown 2018]. Therefore, data cleaning and
validation was the first step, an arduous step that is nonetheless
crucial.

Descriptive statistics followed, along with naïve pairwise
correlation analyses between selected variables and nonparamet-
ric tests, using either Fisher’s exact test or the Mann-Whitney
U test, depending on the data at hand [Winters 2010] (see also
Method Overview).

At the start of the principal analysis, two items had to
be considered . Firstly, we had to establish that we assume the
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professional decision of the clinicians to treat a patient either with
or without angiography to be founded in their medical expertise.
The alternative assumption would be that we cannot equate a pa-
tient receiving angiographic treatment with the need of a patient
to receive such treatment. Under this alternative assumption, our
investigation could not have drawn any meaningful conclusions.
It is a natural limitation of a retrospective study, which is also
why prospective investigations are necessary before an official
guideline can be established. Hence, we assume that a causal link
exists between a patient’s statistics and treatment.

Secondly, our goal was to create a decision-making aid for
clinicians, helping them decide when to switch from endoscopy
to angiography for the treatment of LGIB. While we could have
constructed a complex regression model to predict the method
suitable for a patient as best as possible, such a model would not
be applicable in the daily clinic routine. While computer-based
predictors to guide treatment decisions may become mundane
in the future, this is not yet the case. Consequently, our decision-
making aid needed to be easily traceable, allowing the clinician to
arrive at a prognosis by following a transparent algorithm. Accept-
ing that, in consequence, our final model may be undercomplex

Figure 3: Modification of figures 2 and 3 from Werner [2021]. Conditional inference trees were
constructed from either the complete data set (left) or a set of variables selected for clinical
relevance (right). Each binary split (numbered boxes 1 to 4) is annotated with its p-value. Each
terminal node (vertical bars a to f) shows the percentage of angiography-positive cases.
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to some extent and thus prone to underfitting, we elected to use
conditional inference trees (see Method Overview).

We decided to construct two decision trees shown in
figure 3, one based on all recorded patient variables and another
based solely on the clinically relevant variables. The trees offer
a straightforward way for a clinician to determine if a patient
should receive angiography or not. Using the tree based on the
full variable set as an example, only two queries are needed for
a patient: If hemostasis was achieved in the first endoscopy, the
number of blood transfusions a patient has received is needed
as input. On the other hand, if the primary endoscopy failed
to achieve hemostasis, the Glasgow- Blatchford Bleeding Score
(GBS) of the patient becomes the telling factor. The GBS is used
to classify the severity of GI bleeding [Laursen 2015].

Figure 4: Modification of figure 1 from Werner [2021]. Variable importance in terms of mean
decrease in accuracy of the features included in the construction of the decision trees computed
using a random forest classifier with 10 000 trees and 25 iterations.
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In addition, we also used random forest to compute the mean
decrease in accuracy variable importance measure for the vari-
ables used in constructing the decision trees [Han 2016] (see also
Method Overview). This was done to substantiate the variable
choices made by the decision tree models. Mean decrease in accu-
racy is computed by permuting the out-of-bag (OOB) data, refer-
ring to the data not included in an individual bootstrap sample.
The error rate on the OOB data is computed once and computed
again after permuting each predictor variable. The difference
between the two is averaged over all bootstrap samples and nor-
malised by the standard deviation of the differences. The resulting
variable importance is a positive value that increases the more
influential any given variable is. The results agreed satisfactorily
with the decision trees, with the success of achieving hemosta-
sis in the primary endoscopy (binary split 1 in figure 3) and the
number of transfusions (binary splits 3 and 4 in figure 3) being
the two most important variables.

My contribution to this publication was the complete bioinfor-
matic and statistical analysis.

Werner, DJ., Baar, T., Kiesslich, R., Wenzel, N., Abusalim, N.,
Tresch, A., Rey, JW. (2021).
Endoscopic hemostasis makes the difference:
Angiographic treatment in patients with lower
gastrointestinal bleeding
World J Gastrointest Endosc, 13(7): 221-232
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4
Theragnosis Biomarkers in

Lung Cancer
This study investigates the connection between rearrangement
of the anaplastic lymphoma kinase (ALK) and TP53 mutations in
human non-small cell lung cancer.

Lung cancer, one of the main causes of death in humans
[Siegel 2018], is traditionally divided into two types: small cell
lung cancer (SCLC) and non-small cell lung cancer (NSCLC),
which constitutes over 80 % of all cases [Reck 2014]. However,
NSCLC has proven to be too diverse and is now treated as a collec-
tion of many different cancer types that each require individual
treatment regimes [Boolell 2015]. One of these is ALK+ lung can-
cer, in which the ALK gene breaks and fuses with other genes
[Holla 2017].

The ALK gene encodes a receptor tyrosine kinase that is
only expressed in early embryonic development and is involved
in cell proliferation, survival, and differentiation of the nervous
system [Iwahara 1997]. However, in ALK+ lung cancer, the fusion
of ALK to other genes causes uncontrolled activation of its down-
stream signalling paths through the fusion partner’s promoter
[Holla 2017]. In turn, tyrosine kinase inhibitors (TKI) have been
shown to be an effective treatment for ALK+ lung cancer [Kwak
2010, Reck 2014].

Gainor [2016] found that 33 % of ALK+ tumours also
show mutations in the TP53 gene, and Aisner [2018] discovered
that TP53 mutations reduced patient survival in ALK+ lung can-
cer. TP53 is classified as a tumour suppressor gene, as it prevents
genome mutation [Surget 2013]. It plays a role in cell cycle regu-
lation and apoptosis, activating DNA repair mechanisms when
damage has been sustained and halting the cell cycle until the
damage is repaired. If the damage is too severe and cannot be re-
paired, it initiates apoptosis. TP53 mutations are thus frequent in
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many cancer types, as inactivation of TP53 severely compromises
tumour suppression [Olivier 2010].

Our assumption, which we could corroborate in the pub-
lication, was that mutations in TP53 lead to genetic instability,
which in turn promote the development of resistance mecha-
nisms, reducing patient survival rate in ALK+ lung cancer [Ali-
dousty 2018].

Methodology
To show that ALK+ lung cancers with TP53 mutations do exhibit
genetic instability, we examined tumour tissue samples from a
total of 423 patients originating in routine molecular diagnostics.
However, depending on the used laboratory procedure, not all
samples were eligible for analysis.

Bulk, panel-based DNA-seq was used to categorise the
tumour samples according to the variants present in a set of genes
of interest. In panel-based sequencing, a mix of PCR primers limits
the analysis to selected genomic target loci. This has the benefit
of increasing the coverage of these loci, as the vast majority of
generated reads is focused on the panel regions. As this method
could not detect large-scale genomic rearrangements, like the ALK
translocation, it was paired with fluorescence in situ hybridisation
(FISH). In this technique, fixed tumour tissue sections are treated
with fluorescent molecular probes. The probes target multiple
parts of a gene of interest, ALK, in this case, hybridising to the
sequence’s position on the respective chromosome in the nucleus.
The tissue sections are then analysed under a microscope. If no
rearrangement has taken place, the probes show up as a single
fluorescent spot in the nucleus. However, if parts of the ALK gene
have fused to another gene on another chromosome, multiple
spots become visible, as can be seen in figure 2 of the included
publication. FISH offers the benefit of being a well- established
laboratory technique in cancer diagnostics, reliable at detecting
translocation events with clinical relevance. Its shortcomings are
that is it a labour-intensive protocol and can only detect specific
breakpoints, which is why FISH will most likely be replaced by
genome-wide DNA-seq in the future [Skovgaard 2011]. Finally,
immunohistochemistry (IHC) antibody staining was used to de-
tect the presence of the TP53 protein in the tissue samples. As
TP53 is only active in early embryonic development, its presence
in tumour cells indicates aberrant TP53 expression.

A fractionNanostring of the tissue samples were also analysed using
the NanoString nCounter platform [Geiss 2008, Tsang 2017], as
described in Kim [2016]. This technology uses fluorescent probes
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to generate direct counts of DNA molecules in tissue samples.
First, a mixture of probes is added to the extracted DNA. Each
probe targets a specific sequence unique to a gene of interest so
that each molecule containing that sequence is hybridised to a
probe. The probes carry unique fluorescent barcodes composed
of six spots, each spot being one of four colours. The barcodes
are read by the instrument through automated fluorescent mi-
croscopy and counted, generating raw counts that report the phys-
ical number of DNA molecules containing the sequence of interest
on the instrument’s slide. This technique has several advantages
over sequencing-based technologies, mostly its robustness with
regard to fixed samples and the reproducibility of its count data, as
no amplification bias is introduced. However, like in panel-based
DNA sequencing, the genes that can be analysed are limited by
the used probes, of which there are no more than 800 per panel
(assuming that each spot needs to be a different colour from its
predecessor leaves 4 · 3 5 = 972 possible barcodes, of which some
are needed for quality control and normalisation purposes).

Finally Cell Culture, the results obtained from the tumour tissue sam-
ples were furthermore supplemented by analysing three different
ALK+ human lung cancer cell lines with different TP53 statuses.
Using cell culture samples has the benefit that no fixation proce-
dure is applied and that the amount of available genetic material
is unlimited for all practical concerns. This allowed for a chro-
matin immunoprecipitation DNA sequencing (ChIPseq) analysis
to be performed on the cell culture samples. ChIP-seq limits bulk
DNA-seq to regions of the genome bound by specific proteins
[Park 2009]. First, proteins bound to the genome are chemically

Figure 5: Modification of figure 1c from Alidousty [2018]. Copy number plots of ALK+ cell lines
harbouring wild type TP53 (middle and right facet) or mutated TP53 (left facet). Copy numbers of
87 genes were determined by NanoString nCounter technology (see Methodology). Alternating
colours denote chromosome boundaries.
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immobilised to prevent detachment, and the DNA is fragmented.
Then, antibodies are used to pull out only those DNA fragments
bound by specific proteins. Finally, these fragments are sequenced
and mapped to the genome. In our study, we used ChIP-seq to
ascertain the binding of MYC [Dang 2012], a transcription factor
that, if overexpressed due to increased MYC copy numbers, grants
ALK+ TP53-mutated tumour cells a proliferative advantage over
their wild-type counterpart. We could observe this by monitoring
the growth of cell cultures in which we induced transient MYC
overexpression.

Analysis
Of the three publications included in this dissertation, this is the
one with the most straightforward analysis. The central question
was if ALK+ tumour cells with a TP53 mutation show higher ge-
netic instability than those without. Genetic instability, in this
case, was defined as higher variability in the copy number of genes.
In diploid organisms like humans, autosomal genes have two
copies each, one for each chromosome [Hartl 2009]. Every devia-
tion from a copy number of 2 can thus be seen as a copy number
alteration.

In this case, the choice of laboratory protocol simplified
the analysis. As NanoString nCounter technology was employed
(see Methodology), the data sets consisted of count matrices giv-
ing the number of fluorescent probe detections, automatically
normalised between samples through internal controls. Without
a prior PCR reaction, no amplification biases could be introduced.
We thus chose to use the Brown-Forsythe test for the equality of
variances [Brown 1974] (see also Method Overview), which con-
firmed the apparent increased genetic instability of ALK+ TP53-
mutated cells, as exemplified in figure 5.
My contribution to this publication’s bioinformatic and statistical
analysis part was the copy number analysis, which facilitates the
study’s central finding.

Alidousty, C., Baar, T., Martelotto, L. G., Heydt, C., Wagener,
S., Fassunke, J., Duerbaum, N., Scheel, A. H., Frank, S., Holz,
B., Binot, E., Kron, A., Merkelbach-Bruse, S., Ihle, M. A.,
Wolf, J., Buettner, R., Schultheis, A. M. (2018).
Genetic instability and recurrent MYC amplification in
ALK-translocated NSCLC; a central role of TP53 mutations
J Pathol (July):67–76.
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5
Conclusion

As the three included publications demonstrate, the methods to
analyse biological data can be as varied as the data itself. In the
following, some more general insights gained after the conclusion
of the individual projects are discussed.

Evolution Shapes the Alu RNA Metabolism
Of the three included publications, this project is the method-
ologically most complex one, as it essentially addresses four sep-
arate questions based on the same RNA-seq data. This shows the
breadth of possible approaches that can be taken when analysing
biological data. The data was used to investigate general expres-
sion patterns, differential expression under Pol-II inhibition, and
sequence features, too.

We also looked into different ways to answer whether
Alu elements are transcribed by Pol-II or Pol-III, but these did not
result in conclusive answers. We examined chromatin immuno-
precipitation sequencing (ChIPseq), trying to correlate Pol-II and
Pol-III peaks with Alu expression, but the resolution of the data
we could obtain was not enough to draw any solid conclusions.
We also tried to exploit the 5'-cap structure to differentiate tran-
scripts, but this would have required a different experimental
setup and did not appear promising in the first place. Finally,
we also considered using genomic run-on sequencing (GROseq),
which limits the sequencing to nascent RNAs that are currently
transcribed by a polymerase, but at the time of data collection,
the method was not developed enough to generate both Pol-II
and Pol-III data of sufficient quality [Gardini 2017].

To continue the investigation into the life cycle of Alu ele-
ments, the main point left unanswered is the individual transcript-
or loci-level origin of Alu RNAs. Three strategies present them-
selves but would require new experiments. Firstly, synthetic in-
hibitors specific to Pol-II or Pol-III have been developed that work
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more efficiently than α-amanitin. These could be used in conjunc-
tion with deeper RNA-seq to perform a high-resolution differen-
tial expression analysis with less biological noise caused by the
long incubation time required by α-amanitin. Secondly, GRO-seq
could be used to ascertain the origin of individual Alu transcripts.
Thirdly, an in vitro experiment could be used, combining selected
Alu DNA fragments with either Pol-II or Pol-III, observing which
of the fragments are targeted by which polymerase.

Angiography for Gastrointestinal Bleeding
This project demonstrates that the goal is not always to choose
the method that can model the data most accurately. During the
course of the investigation, we discussed several potential candi-
dates, such as GLMs and random forests (see Method Overview).
In retrospect, these techniques could have resulted in a model
closer to the optimal balance between bias and variance (see In-
troduction). However, these techniques would also have lacked
the interpretability offered by a simple decision tree.

As our goal was to construct a decision-making aid, easy
to use in the daily clinic routine, it turned out that, in the end,
slight losses in model accuracy and specificity were acceptable
trade-offs for improved practicability.

Another method we could have applied that might have
resulted in a similarly interpretable model are born-again tree
ensembles [Sagi 2020, Vidal 2020]. This method is proven to
transform a random forest model back into a single minimal-size
decision tree, the born-again (BA) tree, with the optimal num-
ber of leaves and a faithful feature space representation. The
underlying algorithm was tested on different data sets, including
medical data. However, a high number of features can lead to
severe decreases in performance, and an upper limit of 20 fea-
tures is recommended by the authors. Also, the BA tree can still be
very complex with over 1000 leaves, which would again make the
method impractical for the daily clinic routine. While pruning of
BA trees is implemented to simplify the final result, the accuracy
of the final BA tree is then no longer guaranteed. Still, testing
showed only negligible losses in accuracy. Should this project be
continued, possible with a much larger data set, BA trees could
be a good model choice.

Finally, this project also showed the importance of data
cleaning and validation, and how essential it can be to set up
analyses in a reproducible manner. Throughout the investigation,
the data set had to be amended and corrected numerous times,
as each new descriptive report revealed new inconsistencies and
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errors in the original records, which is not surprising considering
that the data was collected over a ten-year period. Would the anal-
yses have needed to be re-run manually, surely this publication
would have spend a few more months in preparation.

Theragnosis Biomarkers in Lung Cancer
This investigation exemplifies how important the choice of the
best-suited measurement technology is. Would we not have used
the NanoString nCounter method (see page 26) but more conven-
tional bulk RNA-seq, the analysis would most likely have been
much more complicated. Copy number variant detection from
RNA-seq was, at least at the time of the publication of our study,
still very unreliable and largely impossible with panel-based se-
quencing, which is common in the clinical environment. Since
then, advances have been made, and tools like CaSpER could
present an alternative route to take in future investigations [Serin
Harmanci 2020].

In conclusion, this dissertation shows that the analysis of high-
dimensional, biological data, and regression, in particular, is a
broad field with many forks in the road. While first and fore-
most an exact scientific discipline, of course, choosing the proper
method to answer a research question is also an art.
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