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Economics is about the efficient allocation of scarce re-

sources, and about making resources less scarce.

Alvin E. Roth

1
Introduction

This thesis consists of three theoretical essays that contribute to the research of matching and market

design. In particular, these essays focus on incentive analysis in different centralized matching envi-

ronments, and they aim to provide a better understanding of how people’s incentives of behaving

truthfully can be influenced by factors including observable information, revelation principles and

their abilities to perform contingent reasoning.

Starting with the celebrated work by Gale and Shapley (1962), the literature on matching theory

and its applications has developed greatly over the last decades. Theway how resources are allocated in

practice has been optimized based on theoretical and empirical findings in this field. Examples include
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centralized allocation of students to colleges/public schools (Balinski and Sönmez, 1999; Abdulka-

diroğlu and Sönmez, 2003), kidneys to patients (Roth et al., 2004), doctors to hospitals (Roth and

Peranson, 1999), vaccinations to residents (Pathak et al., 2021) and so on. Participants’ preferences

are critical to achieve allocationswith desirable properties in thesemarkets. However, true preferences

are usually private information that is not known by central authorities which are responsible for the

allocation procedures. Therefore, an important concern in designing matching rules is to provide in-

centives to participants such that they reveal their preferences truthfully. This thesis deals with various

incentive properties in matching markets and their applications.

Inmatchingmarkets, the classic approach to incentivize truthful behaviors is through strategy-proof

matching rules, under which stating their true preferences is a dominant strategy for participants.

Nevertheless, researchers have designed a broad range of non-strategy-proof rules in recent years since

they aim at achieving promising properties which are at odds with strategy-proofness (Kesten, 2010;

Dur et al., 2019; Alva and Manjunath, 2019). As a weakening of strategy-proofness, the first essay

(Chapter 2) conducts a regret-based incentive analysis on non-strategy-proof rules. Specifically, while

observable information is irrelevant in identifying the dominant strategy under strategy-proof rules, it

might be helpful for participants to decide on certain strategies under non-strategy-proof rules where

no strategy is dominant. Thus, under certain non-strategy-proof rules, we explore participants’ in-

centives of truth-telling by allowing them to anticipate that they would receive market information

which is commonly accessible in public school choice procedures.

On the contrary, economists have also started to seek for solutionswith incentive guarantees stronger

than those induced by strategy-proof rules. These endeavours are motivated by empirical and exper-

imental findings which suggest that dominated behaviors from participants are routinely observed

under strategy-proof rules (see e.g., Chen and Sönmez (2006), Hassidim et al. (2016) and Shorrer and

Sóvágó (2018)). A prevailing answer that reacts to these counter-intuitive results is obviously strategy-

proof (OSP)mechanisms due to Li (2017). In matching markets, OSP mechanisms are essentially se-
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quential implementations of strategy-proof rules and they make the incentive given by strategy-proof

rules more apparent. Concretely, OSPmechanisms ensure that truth-telling is an obviously dominant

strategy everywhere, meaning that the worst-case outcome under the truthful report is weakly bet-

ter than the best-case outcome under any misreport. Li (2017) shows that even participants who are

unable to engage in any contingent reasoning would follow the truthful strategy inOSPmechanisms.

However, recent findings suggest that popular strategy-proofmatching rules, such asTopTradingCy-

cles (TTC) and Deferred Acceptance (DA), cannot be implemented via OSP mechanisms in general

(Li, 2017; Ashlagi andGonczarowski, 2018). The remaining two essays of this thesis aremotivated by

these negative results. Specifically, the second essay (Chapter 3) uses obvious dominance as a guide-

line to design sequential implementations of strategy-proof rules that exist even in the absence ofOSP

mechanisms. The third essay (Chapter 4) systematically studies the amount of contingent reasoning

necessary for a participant to figure out that a rule is strategy-proof.

In particular, Chapter 2 is based on Chen and Möller (2021). It is co-authored by Markus Möller

and both authors contributed equally to this project. We consider the many-to-one school choice

model with consent (Kesten, 2010) under incomplete information and we interpret the priorities of

schools in the form of scores. The incomplete information structure is inspired by common features

in public school applications. To be more concrete, students can observe the final allocation and the

cutoff at each school that denotes the lowest score with which a student is admitted to that school.

Based on the observed information, students can draw inferences about scores of schools and reported

preferences of other students. We adopt the regret-based incentive notion by Fernandez (2020) to

our setting. Specifically, a strategy is regret-free for a student if at any observation, she will not find

her strategy to be weakly dominated by another strategy at all inferences of reported preferences and

scores, which are consistent with that observation.

The first non-strategy-proof rule we study in this chapter is the Efficiency Adjusted Deferred Accep-

tance Rule (EDA) due to Kesten (2010). A fair allocation ensures that for each student, each school
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that she prefers to her assignment is assigned to students with higher scores than she has. As it is

impossible to achieve a mechanism which always yields allocations that are both efficient and fair

(Balinski and Sönmez, 1999), EDA elegantly circumvents this impossibility by asking for students’

consents to relax the fairness criterion. The main results of this chapter confirm that reporting their

true preferences is regret-free for students under EDA and that no untruthful strategy provides the

same guarantee under EDA. We also study the family of efficient stable dominating rules (Alva and

Manjunath, 2019), which always produce allocations that are efficient and weakly Pareto dominate

a fair allocation. We show that no efficient stable dominating rule satisfies our regret-based incentive

criterion. Our findings address the unique role of truth-telling under EDA in terms of incentives and

provide useful insights for organizations seeking to practically implement EDA.

Chapter 3 is based on Chen andWestkamp (2021). It is joint work with AlexanderWestkamp and

both authors contributed equally to this work. While Chapter 2 studies an incentive property that is

weaker than strategy-proofness, Chapter 3 aims at achieving stronger incentives for truth-telling than

those given by strategy-proof rules. We concentrate on a standard priority-based allocation problem

without transfers. The main contribution of this chapter is our proposal of optimal sequential im-

plementations of matching rules, for which we set two requirements. First, whenever it is obviously

dominant for an agent to truthfully reveal certain information about her preferences, an optimal se-

quential implementation will prioritize picking such decisions over decisions in which truthful reve-

lations are not obviously dominant. Second, an optimal sequential implementation elicits no more

than the minimal amount of information necessary to unambiguously determine the outcome under

that rule. We find that whenever a strategy-proof rule can be implemented via OSP mechanisms, an

optimal sequential implementation of that rule is also anOSPmechanism. Thus, optimal implemen-

tations are complementary to the characterization ofOSPmechanismswithout transfers by Pycia and

Troyan (2021).

We develop an optimal sequential implementation of TTC as one main finding of this chapter.
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Notably, the existence of our proposed implementation is guaranteed in all markets under considera-

tion. We also introduce aweaker notion of optimality: It loosens the second requirement by imposing

no restriction on the amount of information elicited through decisions in which truthful revelations

are obviously dominant. We further introduce a weakly optimal sequential implementation for DA

that exists generally. Our proposals for TTC and DA are promising solutions in providing incentives

for truth-telling for markets where implementations of TTC and DA via OSP mechanisms are un-

available. In this sense, this study complements the line of study initiated by Li (2017), shedding light

on incentive design inmatchingmarkets. Moreover, this chapter contributes to the design of practical

applications of DA and TTCwith the goal of maximizing truthful behaviors.

Chapter 4 is based onChen (2021) and is single authored. It considers the samemodel as in Chap-

ter 3. However, while Chapter 3 contributes to Li (2017)’s concept by designing sequential games

that are closely connected to OSP mechanisms, this chapter relates to Li (2017) by studying the de-

gree of contingent reasoning necessary to understand the strategy-proofness of a rule. I consider par-

ticipants who are deficient in contingent reasoning and adopt Zhang and Levin (2017)’s method to

measure such deficiencies. Concretely, I assume that each participant can partition all states of the

world, namely all potential preferences of others, into several events. Accordingly, a rule is called par-

tition obviously strategy-proof for that participant if within each event of the just described partition,

the worst-case outcome under the truthful report is at least as good as the best-case outcome under

any misreport. In this sense, a partition is used to interpret a participant’s limited reasoning ability:

Given each of her own preferences, she can figure out the set of possible outcomes in each event, but

she does not know which outcome results from which preferences of others in that event.

The main result of this chapter states that a participant can understand the incentive given by a

strategy-proof rule if and only if given each of her own preferences and in each event of the partition

specified by her reasoning ability, her assignment is uniquely determined. In other words, a partici-

pant will stick to the truthful strategy under a strategy-proof rule if and only if her reasoning ability
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uncovers all uncertainties about her own assignment. Moreover, I find that in sequential implemen-

tations of strategy-proof rules, the amount of reasoning ability required to stick to truth-telling is

reduced. This finding provides a new angle to understand laboratory results (Klijn et al., 2019; Bó

and Hakimov, 2020a; Breitmoser and Schweighofer-Kodritsch, 2021) which observe higher rates of

truth-telling in dynamic forms of strategy-proof rules compared to static counterparts.

Overall, the results from the three essays presented in this thesis gain new insights into when and

how participants will be incentivized to behave truthfully under various matching rules and mech-

anisms. First, although not being strategy-proof, EDA still provides participants with reasonably

strong incentives to report truthfully considering the information participants usually obtain in prac-

tice. Second, a promising complementary solution to OSP mechanisms could be the mechanisms

that comply with obvious dominance whenever possible and minimize the amount of information

revealed from participants. Third, to understand that a rule is strategy-proof, people must reason to

the degree such that there remains no uncertainty about their own assignments. These works add to

the literature on incentive studies in matching theory as well as to the literature on their applications.
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2
Regret-Free Truth-Telling in School Choice

with Consent∗

The Efficiency Adjusted Deferred Acceptance Matching Rule (EDA) is a promising candidate mecha-

nism for public school assignment. A potential drawback of EDA is that it could encourage students

to game the system since it is not strategy-proof. However, to successfully strategize, students typically

need information that is unlikely to be available to them in practice. We model school choice under

∗This chapter is based on Chen andMöller (2021). We thank especially our advisor, Alexander Westkamp.
We are grateful to Christoph Schottmüller, Marcelo Ariel Fernandez, Kevin Breuer and Marius Gramb for
helpful comments. All errors remain our own.
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incomplete information and show that EDA is regret-free truth-telling, which is a weaker incentive

property than strategy-proofness andwas introduced by Fernandez (2020). We also show that there is

no efficientmatching rule that Pareto dominates a stablematching rule and is regret-free truth-telling.

2.1 Introduction

Efficiency and fairness are incompatible in the school choice problem.1 The Efficiency Adjusted De-

ferred Acceptance Rule (EDA) (Kesten, 2010) elegantly circumvents this incompatibility by allowing

students to give their consent to relax the fairness constraint. However, no compromise solution,

including EDA, is strategy-proof (Abdulkadiroğlu et al., 2009).2,3 We study whether EDA satisfies

an incentive criterion by Fernandez (2020) which is weaker than strategy-proofness and is based on

participants’ wish to avoid regret.

We employ the many-to-one school choice model with consent (Kesten, 2010) under incomplete

information. Students can reconsider their admission chances for alternative reports, through an ob-

servational structure that is based on the cutoff terminology. We express schools’ priorities in the form

of scores and for each school, the cutoff is the lowest score among all students that have been admitted

to that school. Once the final matching has been determined, each student observes which student

is assigned to which school and each school’s cutoff. Based on her observation, a student can then

draw inferences about plausible scenarios—pairs of underlying scores of schools and reports of other

students that are consistent with the observation. We motivate our model through features common

in the context of public school assignment. In practice, matching rules often use scores based on prox-

1A student has justified envy at a matching, if there exists a lower prioritized student assigned to a school
and the corresponding school is preferred to her assignment (Abdulkadiroğlu and Sönmez, 2003). Amatching
is fair if no justified envy exists and a matching rule is fair if it only produces matchings which are fair. The
trade-off between efficiency and fairness follows from Balinski and Sönmez (1999).

2Strategy-proofness requires that it is a weakly dominant strategy for students to report their true prefer-
ences.

3For related results, see also Erdil and Ergin (2008) and Alva andManjunath (2019).
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imity, walk-zone areas, sibling-status and other socioeconomic variables. The composition of scores

is usually public information, whereas accurate information on other students’ scores and reported

preferences will generally be covered by privacy protection. Moreover, students typically receive feed-

back on the market outcome and cutoffs.

In this model, we adopt the incentive notion by Fernandez (2020). Specifically, a student regrets a

report through an alternative report, once she finds her submitted report to be dominated by the alter-

native in any plausible scenario. A rule is regret-free truth-telling if no student would regret reporting

her preferences truthfully.

The main finding of this chapter is that EDA is regret-free truth-telling (Theorem 2.1). Moreover,

we show that under EDA, truth-telling is the unique option which never leads to regret (Proposition

2.2). Concretely, we show that for any misreport, there exists an observation such that the student

regrets the misreport through her true preferences. Our last result concerns matching rules which

Pareto dominate a stable matching rule.4 A stable dominating rule always implements a matching

that weakly Pareto dominates a stable matching (Alva and Manjunath, 2019). It is well known that

all stable dominating rules, except the well known Deferred Acceptance Matching Rule (DA) (Gale

and Shapley, 1962), are not strategy-proof (Abdulkadiroğlu et al., 2009).5 We show that among the

efficient stable dominating rules nomatching rule is regret-free truth-telling (Theorem 2.2). Note that

the original formulation of EDA considered in this chapter is not Pareto efficient since EDA respects

improvements on efficiency only with students’ consents for being exposed to justified envy.

All our results extend to the case where the students only observe their own assignment and the

cutoffs. By showing that truth-telling is the unique regret-free strategy, we provide an appropriate

statement for the intuition that truth-telling may be a focal strategy under EDA. Thus, our work

4Amatching rule is stable if it produces outcomes which are fair, individually rational and non-wasteful. A
matching is non-wasteful if there is no object that is unassigned although there is an agent that prefers it over her
assignment. Amatching is individually rational if no agent prefers her outside option over her final assignment.

5See also Erdil and Ergin (2008), Kesten (2010) and Alva andManjunath (2019).
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contributes to the strand of literature that outlines the many desirable features of EDA for practical

implementation.

Related literature To our knowledge, Fernandez (2020) is the first to introduce regret-based

incentives in thematching literature.6 Inmarriagemarkets, Fernandez (2020) shows that truth-telling

is the unique regret-free strategy underDAfor bothmen andwomen and thatDA is the unique regret-

free truth-telling rule among so-called quantile stable rules.7 Fernandez (2020) sheds light on college

admissions problems. He shows that the student-proposing variant of DA is regret-free truth-telling.

However, under the college-proposing variant of DA, being truthful does not need to be free of regret

for colleges. The key differences of our work to that of Fernandez (2020) is that only the student

market side is strategic. Moreover, whereas in Fernandez (2020) participants only observe the realized

matching, students in our model additionally observe cutoffs.

This chapter mainly contributes to the literature that deepens the understanding of EDA’s incen-

tive properties. Our results complement those of Troyan andMorrill (2020), who show that for cog-

nitively limited participants beneficial misreporting under EDA is not obvious in the following sense:

a profitable misreport is an obvious manipulation if the best-case outcome of the misreport is bet-

ter than the best-case outcome of telling the truth or, if the worst-case outcome of the misreport is

better than the worst-case outcome of telling the truth. The main difference between our work and

that of Troyan andMorrill (2020) concerns the source of uncertainty that students face. A profitable

misreport is obvious if it is easy to recognize for students whose knowledge on thematching rule is im-

perfect, given that these students have full access to the scores of other students. That is, non-obvious

6Regret-based incentives have a long tradition in economic theory. For instance, in auction theory, regret-
based incentives of bidders in first-price auctions have been studied by Filiz-Ozbay and Ozbay (2007) and
Engelbrecht-Wiggans (1989). For a more detailed discussion we refer to Fernandez (2020). See Gilovich and
Medvec (1995) and Zeelenberg and Pieters (2007) for psychological treatments of regret.

7Given any q ∈ (0, 1], the q-quantile stable rule selects the [qk] best stable school for each student given any
report, where k is the number of stable matchings under this report. For more information on quantile stable
mechanisms, we refer to Teo and Sethuraman (1998), Klaus and Klijn (2006), or Chen et al. (2014).
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manipulability is mainly driven by participants’ limited understanding of the matching rule. By con-

trast, students in ourmodel knowhow thematching ruleworks and our results are driven by students’

incomplete access to the scores of other students. Notably, the positive result of Troyan and Morrill

(2020) covers both EDA and stable dominating rules, where we reach a negative result for efficient

stable dominating rules.

Previous results on EDA’s incentive properties are inspired by the theoretical benchmark for low

information environments fromRoth and Rothblum (1999) and Ehlers (2008). Kesten (2010) stud-

ies Bayesian incentives of EDA in a setting where it is common knowledge that students’ preferences

over schools are ordered into shared quality classes and students’ beliefs on how other students or-

der schools within each quality class are symmetrically distributed. Kesten (2010) shows that if other

students submit their true preferences, then truth-telling stochastically dominates any other strategy.

The key difference to our model is that we do not specify any prior probability distribution regarding

the beliefs or distribution on other participants’ preferences and thus do not impose any symmetry

assumptions or correlation of preferences over schools. Thus, in contrast to the approach of Kesten

(2010) our information environment follows the ‘Wilson doctrine’ (Wilson, 1987).

The literature that is concerned with other theoretical properties of EDA is rapidly growing. Tang

and Yu (2014), Ehlers and Morrill (2019), Bando (2014) and Dur et al. (2019) recently developed

tractable alternatives to Kesten’s initial formulation of EDA. Ehlers and Morrill (2019) generalize

EDA to a school choice model where school priorities take the form of more flexible choice functions

and Kwon and Shorrer (2019) propose a version of EDA for organ exchange.

Ourwork also relates to the line of literature that uses the cutoff terminology in school choicemod-

els. Most prominent in this regard isAzevedo andLeshno (2016)who characterize stablematchings in

terms of cutoffs in a continuum school choicemodel. They show that cutoffs take the formofmarket-

clearing prices that equalize supply and demand and can be used to perform comparative statics with

respect to schools’ incentives to invest in quality. When used to characterize stable matchings, cutoffs

13



usually take the form of a guarantee for participants to be admitted at schools. In our framework,

final assignments may not correspond to stable matchings. Therefore, the cutoffs do not necessarily

provide a studentwith information aboutwhether shewill be admitted at a desired school. Moreover,

in our model the cutoffs are incorporated into students’ strategic reasoning.

The rest of this chapter is organized as follows. We introduce the basic model and EDA in Section

2.2. We model the informational environment and adopt regret-free truth-telling in Section 2.3. In

Section 2.4, we present our main results. Our analysis regarding efficient stable dominating rules is

provided in Section 2.5. Finally, Section 2.6 gives a short conclusion. The Appendix contains most of

our proofs.

2.2 Model

There is a finite set of students I and a finite set of schools S. Each school s ∈ S has a fixed capacity qs

and we collect the capacities in q = (qs)s∈S. We add a common outside option s∅ for students which

has infinite capacity.

Each school s ∈ S has a set of scores gs = {gsi}i∈I, where gsi ∈ (0, 1) is i’s score at s. We assume that

gsi ̸= gsj for any i, j ∈ I and any s ∈ S, and we say that for each pair of students i, j ∈ I, i has higher

priority at s than j if and only if gsi > gsj. That is, for each school s, the school’s scores induce a strict

priority ranking over I.8 For each i ∈ I, let gi = {gsi}s∈S be the set of scores assigned to student i.

Let a score structure g = (gi)i∈I be a collection of scores for each student and let g−i = (gj)j∈I\{i}

be a collection of scores for students in I \ {i}. Moreover, set GI as the domain of all possible score

structures and G−i as the domain of all score structures for students other than i.

For each student i ∈ I, let≻i be a strict preference relation over S∪{s∅}. The corresponding weak

8The incomplete information framework we introduce in Section 2.3 allows students to draw inferences
about their admission chances. Our formulation of scores will then ensure that a student typically cannot infer
her exact rank on a school’s priority list just on the basis of her own score.
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preference relation of≻i is denoted by⪰i.9 LetP denote the set of all possible strict preference rela-

tions over S∪{s∅}. For any≻i ∈ P , a school s is acceptable to i if s ≻i s∅ and unacceptable if it is not

acceptable. A preference profile≻= (≻i)i∈I is a realization ofP for each i ∈ I and≻−i= (≻j)j∈I\{i}

is a preference profile for students in I \ {i}. We definePI as the domain of all preference profiles and

P−i as the domain of all preference profiles for students in I \ {i}.

Amatching μ : I → S∪{s∅} is a function such that for each s ∈ S, |μ−1(s)| ≤ qs. Given any μ, we

set μi = μ(i) as the assignment of i and μs = μ−1(s) as the set of students assigned to s. Denote the

set of all possible matchings byM.

In the following, fix any≻∈ PI. We say a matching μ weakly Pareto dominates another matching

μ′ if for all i ∈ I, μi ⪰i μ′i. A matching μ Pareto dominates μ′ if μ weakly Pareto dominates μ′ and

for some j ∈ I, μj ≻j μ′j. A matching μ is Pareto efficient if there does not exist another matching μ′

which Pareto dominates μ.

We now introduce two fairness notions, where we start with the well-known notion by Abdulka-

diroğlu and Sönmez (2003). Given a matching μ, student i has justified envy towards student j at

school μj under μ if μj ≻i μi and g
μj
i > g

μj
j . A matching μ is fair if no student has justified envy at

μ. A matching μ is individually rational if for each student the assigned school is acceptable to her.

A matching μ is non-wasteful if there does not exist a student i and a school s, such that s ≻i μi and

|μs| < qs. A matching μ is stable if it is fair, individually rational and non-wasteful.

We also consider a weaker fairness notion that was introduced by Kesten (2010). The notion takes

students’ willingness to consent for being exposed to justified envy into account. For each student i,

the consent is parameterized by a binary variable ci ∈ {0, 1} where ci = 1 means that i consents to

any envy that is justified and otherwise to none. We say a matching μ violates the priority of student

i given ci if ci = 0 and if there exists another student j ∈ I such that i has justified envy towards j

at μ. Let c = (ci)i∈I be a consent profile and let CI be the domain of all consent profiles. Denote a

9That is, for all s, s′ ∈ S, s ⪰i s′ if either s ≻i s′ or s = s′.
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consent profile of students other than i by c−i = (cj)j∈I\{i} and the respective domain by C−i. Given

a matching μ, a profile of preferences ≻ and a consent profile c, we say that a matching is fair with

consent if there exists no student whose priority is violated at μ.

Wecall a collection (I, S, q, g,≻, c) a school choice problemwith consent (or simply a problem). Through-

out the main body of the chapter, we fix a problem (I, S, q, g,≻, c). A report of student i is pair

(≻′
i, c′i) ∈ P × {0, 1}, and a report profile is described by (≻′, c′) ∈ PI × CI. Analogously, let

(≻′
−i, c′−i) ∈ P−i × C−i be a report profile of students except i.

Amatching rule f : GI × PI × CI → Mmaps any triple of a score structure, preference profile

and consent profile into a matching. Given a report profile (≻, c) and a score structure g, let the

outcome of f be f(g,≻, c) and for each i ∈ I let fi(g,≻, c) denote student i’s respective assignment.

If the matching rule does not take consent decisions into consideration, we write f(g,≻) instead of

f(g,≻, c). Amatching rule f is Pareto efficient if each outcome of the matching rule is Pareto efficient.

Similarly, a matching rule is stable if it produces a stable matching for any problem.

Weproceedwith the description of two incentive notions for students. Amatching rule f is consent-

invariant if fi(g,≻, (ci, c−i)) = fi(g,≻, (c′i, c−i)) for all i and all ci, c′i. That is, each student’s assign-

ment is independent of her own consent decision. Note that thematching rules studied in this chapter

are all consent-invariant. Amatching rule f is strategy-proof if fi(g, (≻i,≻−i), c) ⪰i fi(g, (≻̃i,≻−i), c)

for all i and all ≻̃i ∈ P . That means, for each student, reporting her true preferences is weakly better

than reporting untruthfully regardless of other students’ reports.

2.2.1 EDA

In this subsection, we presentKesten’sEfficiencyAdjustedDeferredAcceptanceRule (EDA) alongwith

our first result. We use theTop-Priority (TP) algorithm (Dur et al., 2019) to calculate the outcomes of

EDA and start with some basic terminologies needed for its introduction. For the rest of this section,

fix any (≻, c). For any matching μ ∈ M, any student i and any school s, we say that i demands s at μ
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if s ≻i μi. Moreover, we say that student i is eligible for s at μ if i demands s at μ and there exists no j

who also demands swith cj = 0 and gsi < gsj. In other words, the set of students eligible for s are those

students who, once assigned to s, would not violate the priority of any other student at matching μ.

Note that there could be more than one student who is eligible for a school and if two students i, i′

are both eligible for s, then gsi > gsi′ implies ci = 1.

Given a matching μ ∈ M, consider the directed graph G(μ) = (I,E(μ)), where E(μ) ⊆ I× I

is the set of (directed) edges such that ij ∈ E(μ) if and only if i is eligible for μj. A set of edges

{i1i2, i2i3, ..., inin+1} in G(μ) is a path if i1, i2, ..., in+1 are distinct and it is a cycle if i1, i2, ..., in are

distinct while i1 = in+1.

A school s has no demand at μ if no student demands s at μ. A school s is underdemanded at μ if

either it has no demand at μ or, there is no path in G(μ) that ends with some i ∈ μs which contains

students who are part of a cycle in G(μ). We say that a student is permanently matched at μ if she is

assigned to an underdemanded school at μ. Furthermore, a student is temporarily matched if she is

not permanently matched.

Given μ ∈ M, we callG∗(μ) = (I,E∗(μ)) the Top-priority graph of μ and its set of edges E∗(μ) is

defined as follows: we have ij ∈ E∗(μ) if and only if among the students who are temporarilymatched

at μ and are eligible for μj, student i has the highest score for μj. That is, for each i ∈ I, E∗(μ) ⊆ E(μ)

contains at most one edge pointing to i. Solving cycle γ = {i1i2, i2i3, ...ini1} in G∗(μ) is defined by

the operation ◦ and yields matching ν = γ ◦ μ, such that νi = μj for each ij ∈ γ, and νi′ = μi′ for

each i′ /∈ {i1, i2, ...., in}.

The TP algorithm iteratively solves cycles based on the top-priority graphs, where one starts with

the graph of the Student Optimal Stable Matching (SOSM). The SOSM Pareto dominates all other

stable matchings and can be calculated via the popular Student-Proposing Deferred Acceptance Algo-

rithm (DA) (Gale and Shapley, 1962) which is presented in Appendix 2.A. The TP algorithm works

as follows:
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Step 0: Calculate the SOSM and denote the matching by μ0.

Step t, t ≥ 1: Given matching μt−1:

t.1 If there is no cycle inG∗(μt−1), then stop and let the final outcome be μt−1.

t.2 Otherwise, select one of the cycles in G∗(μt−1), say γt, and let μt = γt ◦ μt−1. Move to

step t+ 1.

As has been shown in Lemma 6 of Dur et al. (2019), any cycle selection of the algorithm leads to

the outcome of EDA and thus the TP algorithm induces EDA.

We now move to our discussion on EDA’s incentive properties which is known to be consent-

invariant but not strategy-proof (Kesten, 2010). Our first result, Proposition 2.1, states that a certain

class of deviations of a student does not affect her own assignment. For any preference relation≻i∈ P

and school s ∈ S, let the weak lower contour set of≻i with respect to s be L≻i
s = {s′ ∈ S | s ⪰i s′}.

Proposition 2.1. If EDA(g,≻, c) = μ and ≻̃i ∈ P is such that for all s, s′ ∈ L≻i
μi
, s ≻i s′ only if

s ≻̃i s′, then EDAi(g, (≻̃i,≻−i), c) = μi.

Proof. See Appendix 2.B.

In words, Proposition 2.1 shows that if a student’s deviation from her baseline report keeps the

same order of the schools in the lower contour set with respect to the baseline assignment, then it

yields the same outcome for the deviating student. Note that the set of deviations we consider in

Proposition 2.1 is a subset of the monotonic transformations at the student’s baseline assignment.

Formally,≻′
i is amonotonic transformation of≻i at s ∈ S ∪ {s∅} if s′ ≻′

i s implies that s′ ≻i s. Our

main result presented in Theorem 2.1 can be used to illustrate that Proposition 2.1 does not hold for

all monotonic transformations at μi.
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2.3 Regret in school choice

In this section, we introduce the informational environment and regret-based incentives. We first

describe the students’ information and impose an observational structure. Assume that before sub-

mitting the report, each student i knows (I, S, q, gi) and the matching rule f. After assignments have

been determined by f, each student observes the matching and the cutoff at each school, i.e., the low-

est score among all applicants matched to the school. More formally, given a report profile (≻̂, ĉ),

student i observes μ = f(g, ≻̂, ĉ) and for each school s ∈ S ∪ {s∅}, she observes πs(μ, g) = minj∈μs g
s
j

when |μs| = qs and πs(μ, g) = 0 otherwise. Let π(μ, g) = {πs(μ, g)}s∈S∪{s∅} and let an observation

of student i be captured by (μ, π(μ, g)).

Next, define any triple (≻′
−i, c′−i, g′−i) ∈ P−i × C−i × G−i as a scenario for student i. If i submits

(≻̂i, ĉi) andobserves (μ, π(μ, g)), then scenario (≻′
−i, c′−i, g′−i) is plausible ifπ(μ, g) = π(μ, (gi, g′−i))

and f((gi, g′−i), (≻̂i,≻′
−i), (̂ci, c′−i)) = μ. The set of all plausible scenarios for student i is her infer-

ence set I(μ, ≻̂i, ĉi). Moreover, for student i ∈ Iwho reports (≻̂i, ĉi) to f, let

M|(≻̂i ,̂ci) = {μ ∈ M | ∃(≻′
−i, c′−i) ∈ P−i × C−i : f(g, (≻̂i,≻′

−i), (̂ci, c′−i)) = μ}

be the set of matchings that could be observed by student i. Note that g is fixed inM|(≻̂i ,̂ci), since it is

a primitive of the market and independent of the report profile.

Having defined our observational structure, we are ready to introduce the notions of regret and

regret-free truth-telling adopted from Fernandez (2020). Recall that all matching rules we study are

consent-invariant. To simplify our notation, we define regret with a fixed consent decision for the

student under consideration.

Definition 2.1. Fix consent decision ĉi. Student i regrets submitting ≻̂i at μ ∈ M|(≻̂i ,̂ci) through ≻̂
′
i

under f if

1. ∀(≻′
−i, c′−i, g′−i) ∈ I(μ, ≻̂i, ĉi): fi((gi, g′−i), (≻̂

′
i,≻′

−i), (̂ci, c′−i)) ⪰i μi
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2. ∃(≻̃−i, c̃−i, g̃−i) ∈ I(μ, ≻̂i, ĉi): fi((gi, g̃−i), (≻̂′
i, ≻̃−i), (̂ci, c̃−i)) ≻i μi.

In words, a student regrets her report at an observation if there is an alternative report which guar-

antees her a weakly better assignment in all plausible scenarios and realizes a strict improvement in at

least one plausible scenario.

Definition 2.2. Fix consent decision ĉi. A report ≻̂i is regret-free under f if there does not exist a pair

(μ, ≻̂′
i) ∈ M|(≻̂i ,̂ci) × P such that i regrets ≻̂i at μ through ≻̂′

i.

That is, a regret-free report ensures that regardless of the realized observation, the student does not

regret her report.

In this chapter, we only consider matching rules that are invariant in the unacceptable set and de-

fine reports as truth-telling if the report differs from a student’s true preferences only in the order

within the unacceptable set. Formally, letAi(≻i) = {s ∈ S|s ≻i s∅} collect all acceptable schools and

letUi(≻i) = S \ Ai(≻i) collect all unacceptable schools. Furthermore, let

Ti(≻i) = {≻′
i∈ P | Ai(≻′

i) = Ai(≻i) and s ≻′
i s′ ⇔ s ≻i s′, ∀s, s′ ∈ Ai(≻i) ∪ {s∅}}

be the set of preferences which differ from≻i by only allowing for permutations in Ui(≻i). We say

that for any i and her true preferences≻i, a report≻′
i∈ P is truth-telling if≻′

i∈ Ti(≻i).

Definition 2.3. Amatching rule f is regret-free truth-telling if for each problem and for each student,

truth-telling is regret-free under f.

Strategy-proofness is stronger than regret-free truth-telling. That is, once truth-telling is weakly

dominant under a matching rule, it must also be regret-free. However, the converse is not true.

Specifically, strategy-proofness means that truth-telling is the weakly best option under any scenario,

whereas regret-freeness only requires that, given a students’ observation, no alternative report weakly

dominates the truth under all plausible scenarios.
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2.4 Main results

In this section, we present our main result. We show that a student can avoid regret under EDA if

she submits her true preferences (Theorem 2.1) and that there is no other reporting behavior that

provides the same guarantee (Proposition 2.2). As will be apparent from the corresponding proofs,

all our results hold under the assumption that each student can only observe her own assignment and

the cutoffs.

Theorem 2.1. EDA is regret-free truth-telling.

Proof. See Appendix 2.C.

The following exposition provides an overview of the main arguments used in the formal proof.

Fix any student i ∈ I, suppose that she reports her true preferences≻i and she observes (μ, π(μ, g)).

Then, any misreport ≻̃i can be interpreted as a combination of the following types of permutations,

where relative to≻i:

(A1) for all s, s′ ∈ S, s ≻i s′ and s′ ≻̃i s only if s ∈ S \ L≻i
μi
;

(A2) there exists s′ ∈ S such that μi ≻i s′ and s′ ≻̃i μi, or;

(A3) there exists s, s′ ∈ L≻i
μi

such that s, s′ ∈ L≻̃i
μi
, s ≻i s′ and s′ ≻̃i s.

Type (A1) involves all permutations relative to≻i which keep the same ranking of all schools that

are truly less preferred toμi. Type (A2) considers themisreportswhich rank some schools that are truly

less preferred to μi as more preferred and type (A3) considers the misreports which alter the rankings

among the schools that are truly less preferred to μi.

First note that any permutation ≻̃i of type (A1) relates to Proposition 2.1. If (≻̃−i, c̃−i, g̃−i) is

plausible, then we have EDA((gi, g̃−i), (≻i, ≻̃−i), (ci, c̃−i)) = μ and we can apply Proposition 2.1

to obtain EDAi((gi, g̃−i), (≻̃i, ≻̃−i), (ci, c̃−i)) = μi.
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Next, let student i choose a misreport ≻̃i that contains permutations of type (A2) and we write

S̃ = {s′ ∈ S | μi ≻i s′ and s′ ≻̃i μi}. The key arguments in the proof can roughly be divided into two

categories: The submission of ≻̃i either would not have effectively influenced the assignment process

at all, meaning i’s assignment remains μi; or there is at least one plausible scenario in which the stu-

dent is finally assigned to some s∗ ∈ S̃. Here, we discuss the latter and more interesting case. The

starting point of our argument is to construct a plausible scenario (≻̃−i, c̃−i, g̃−i) where i is assigned

to s∗ under DA((gi, g̃−i), (≻̃i, ≻̃−i)). Then, we show that either the potential improvements that

involve i cannot be realized because the consent of a student is missing; or s∗ has no demand under

DA((gi, g̃−i), (≻̃i, ≻̃−i)). If each student could fully observe the consent decisions of other students,

EDA is no longer regret-free truth-telling. Conversely, the uncertainty regarding other students’ con-

sent decisions is necessary for our result to hold.10

Finally, suppose that the misreport ≻̃i contains permutations of type (A3). The key argument for

such amisreport is similar to that for type (A2): By submitting ≻̃i, student i faces the possibility to be

assigned to a less preferred school s∗ whose order is permuted in ≻̃i and which is underdemanded un-

der DA((gi, g̃−i), (≻̃i, ≻̃−i)) for a plausible scenario (≻̃−i, c̃−i, g̃−i). However, different from type

(A2), here the target school s∗ still ranks below μi on ≻̃i. This difference brings an additional challenge

to the proof. While for (A2) it is enough to consider a plausible scenario where under truth-telling,

i was already assigned to μi under DA, for (A3) we need to construct a scenario where under truth-

telling, i is involved in at least one solved cycle to improve her from some school ŝ ∈ L≻i
μi

to μi. Then,

when i submits ≻̃i, she is assigned to the underdemanded s∗ underDA and thus loses the opportunity

to be involved in any cycle.

Our final result in this section shows that truth-telling is the unique regret-free choice under EDA.

Proposition 2.2. For any non-truthful report, there exists an observation at which the student regrets it

through truth-telling.
10See Case 3.2.1 in Lemma 2.3 in Appendix 2.C for details.
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Proof. See Appendix 2.D.

At first glance, it might appear that Proposition 2.1 and Proposition 2.2 are in conflict with each

other. However, Proposition 2.1 only implies that a certain class of misreports does not change the

student’s assignment when we fixed an observation that follows from her true preferences. In Propo-

sition 2.2, however, the observation is not fixed. Instead, we show that given any non-truthful report,

we can find a corresponding observation, such that truth-telling guarantees weakly better assignments

in all plausible scenarios.

As an intuition for Proposition 2.2 note that for everymisreport theremust exist a pair, say school s

and s̃, which compared to the truth, reverse their rankings. Let student iprefer s to s̃under truth. Now

suppose that upon submission of the misreport, she is assigned to s̃ while a seat at s is vacant. Note

that the vacant seat at s allows i to infer that the truthwould have guaranteed her at worst s. As a result,

she will regret not having been truthful. The key step in the proof is to construct an observation of

the type just described for any misreport.

2.5 Efficient stable dominating rules

In this section, we extend our analysis to efficient stable dominating rules, which are Pareto efficient

and only produce outcomes which weakly Pareto dominate a stable matching. In contrast to EDA,

consent decisions do not play a role under efficient stable dominating rules and from now onwe omit

the corresponding notation.

Definition 2.4. Amatching rule f is efficient stable dominating if for any problem (I, S, q, g,≻) the

matching f(g,≻) is Pareto efficient and weakly Pareto dominates a stable matching.

Efficient stable dominating rules are a natural refinement of stable dominating rules, introduced

by Alva and Manjunath (2019). It is well known that efficient rules which Pareto dominate a stable
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matching rule are not strategy-proof (Abdulkadiroğlu et al., 2009; Kesten, 2010). As we will show

next, among efficient stable dominating rules also the weaker property of regret-free truth-telling can-

not be fulfilled.

Theorem 2.2. No efficient stable dominating rule is regret-free truth-telling.

The proof below is constructive. We provide a problem with |S| = 2 and |I| = 3, and show that

a student regrets submitting her true preferences under any efficient stable dominating rule. We only

need small adaptions in the construction to apply the basic argument to any market with |S| ≥ 2 and

|I| ≥ 3.

Proof. Consider a problem (I, S, q, g,≻)with two schools S = {s1, s2}with capacities qs1 = qs2 = 1

and three students I = {i1, i2, i3}. Suppose that i1’s true preferences≻i1 are

s2 ≻i1 s∅ ≻i1 s1.

Let≻−i ∈ P−i be such that

s1 ≻i2 s2 ≻i2 s∅,

s2 ≻i3 s1 ≻i3 s∅.

and consider the following score structure gwith

gs1i1 > gs1i3 > gs1i2 ,

gs2i2 > gs2i1 > gs2i3 .
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The unique stable matching with respect to≻ is

ν = {(i1, s∅), (i2, s2), (i3, s1)}

and that matching

μ = {(i1, s∅), (i2, s1), (i3, s2)},

is the unique Pareto efficient matching that Pareto dominates ν. Thus, for an arbitrary efficient stable

dominating rule, denoted by fESD, we must have fESD(≻) = μ.

In the following,we construct amisreport ≻̃i1 throughwhich i1 regrets≻i1 at observation (μ, π(μ, g)).

Before we can make this misreport explicit, we need to describe i1’s inference set I(μ,≻i1). To start,

note that

gs1i1 > πs1(μ, g) , g
s2
i1 > πs2(μ, g).

We now show that any g̃s2 must share its ordinal ranking with gs2 for any plausible score structure g̃−i.

First, from the observation (μ, π(μ, g)) student i1 observes that her top choice s2 is assigned to a lower

priority student i3, i.e. g̃s2i1 > g̃s2i3 . Second, if i1 would have top priority at s2 this would imply that

i1 is assigned to s2 under any stable matching ν′ whenever s2 is submitted as her top choice. Thus,

this must also hold true for any Pareto Efficient matching μ′ that improves on ν′ and hence i1 can

infer that student i2 must have top priority at s2. In conclusion, for any plausible (≻̃−i1 , g̃−i1), the

corresponding g̃s2 shares the same ordinal ranking with gs2 .

Next, given g̃s2 , it must hold ≻̃i2 =≻i2 . First, i2 must submit s2 as acceptable since otherwise any

stable matching would assign s2 to i1. Therefore, i1 knows s2 ≻̃i2 s∅. Second, note that since i2 has top

priority at s2, fESD would have assigned s2 to i2 if i2 would have submitted s2 as her top choice. Thus,

i1 knows s1 ≻̃i2 s2. Combining the two relations i1 can infer that ≻̃i2 =≻i2 is the unique candidate

contained in any plausible (≻̃−i1 , g̃−i1).
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Now, we describe the candidates for g̃s1 . First, by observing (μ, π(μ, g)), student i1 knows that s1 is

assigned to the lower priority student i2, i.e., g̃s1i1 > g̃s1i2 . Second, we establish that given the information

regarding g̃s2 and ≻̃i2 , we must have g̃s1i3 > g̃s1i2 . Suppose by contradiction that g̃s1i2 > g̃s1i3 . In this

case, in fESD, i1 and i2 must be assigned to their top choices s2 and s1, respectively. However, this is

incompatible with μ. Thus, there are two remaining ordinal rankings

either g̃s1i1 > g̃s1i3 > g̃s1i2 or g̃s1i3 > g̃s1i1 > g̃s1i2

that are compatible with any plausible scenario (≻̃−i1 , g̃−i1).

At last, we show that only ≻̃i3 =≻i3 is compatible with i1’s observation. First, since i3 is assigned

to s2 in μ, student i1 can conclude that s2 ≻̃i3 s∅. If i3 would have submitted s∅ ≻̃i3 s1, then any stable

matching would have assigned both i1 and i2 to their top choices, which is incompatible with the

observation. Thus, itmust be true that s1 ≻̃i3 s∅. Furthermore, suppose by contradiction that s1 ≻̃i3 s2.

Given that s∅ ≻i1 s1 and g̃
s1
i3 > g̃s1i2 , student i3 is assigned to s1 under f

ESD, which is again incompatible

with observing μ. Hence, student i3 can only have submitted ≻̃i3 =≻i3 .

As a result, we can classify i1’s inference set I(μ,≻i1) into two cases that are distinguished by the

remaining candidates of ordinal rankings for scores at s1.

We now show that i1 regrets reporting the truth≻i1 at (μ, π(μ, g)) through

≻̃i1 : s2 ≻̃i1 s1 ≻̃i1 s∅.

We do so by establishing that among the two possible classes from the inference set, in one class i1 is

strictly better off through the misreport and she is not worse off in the remaining class.

Case 1 Suppose that (≻̃−i1 , g̃−i1) ∈ I(μ,≻i1) satisfies g̃
s1
i1 > g̃s1i3 > g̃s1i2 . In this case, we argue

that fESDmust assign i1 to s2 when i1 submits ≻̃i. Hence, student i1 would strictly improve her assign-
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ment from s∅ under truth-telling to her top choice s2. We first establish that there is a unique stable

matching

ν̃ = {(i1, s1), (i2, s2), (i3, s∅)}.

Note that in any stable matching i1 cannot be assigned to s∅, since i1 would have justified envy at s1.

This implies that whenever i1 is not assigned to s2, she must be assigned to s1. Furthermore, if i1 is

matched with s2, then i2 must be assigned to s1, which would mean that i3 has justified envy at s1.

Thus, the unique stable matching corresponds to ν̃. Hence, any efficient stable dominating rule must

select

μ̃ = {(i1, s2), (i2, s1), (i3, s∅)}

since it is the only Pareto efficient matching that dominates ν̃. Thus, we conclude that conditional on

her observation (μ, π(μ, g)), in this scenario, i1 would have been better off if she had reported ≻̃i1 to

fESD.

Case 2 It remains to show that given (≻̃−i1 , g̃−i1) ∈ I(μ,≻i1) with g̃
s1
i3 > g̃s1i1 > g̃s1i2 , student i1

is not assigned to a worse option than under truth-telling (namely s1). Clearly, in this case the unique

stable matching is ν, while the unique matching that Pareto dominates ν is μ. Therefore, i1 will be

assigned to s∅ under fESD, which is the same assignment as under true preferences.

Since the choice of fESD was arbitrary, we have shown that for any efficient stable dominating rule,

student i1 regrets reporting the truth ≻i1 through misreport ≻̃i1 at (μ, π(μ, g)). This completes the

proof.

As mentioned before, this example allows us to illustrate one important feature of Theorem 2.1.

Concretely, the observation (μ, π(μ, g)) at the beginning of the example is reached through EDA if
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one leaves reported preferences unchanged and additionally requires that ci1 = 1. Notice that in Case

1 the improvement of i1’s assignment from s∅ to s2 relies on the consent of student i3. However, based

on i1’s observation, the consent decision of i3 cannot be inferred by i1. Specifically, if ci3 = 0, then i1

would be assigned to s1 in Case 1 which implies that she would not regret that she had told the truth.

Thus, EDA being regret-free truth-telling relies partially on the uncertainty regarding other students’

consent decisions.

All our results extend to the more restrictive case where instead of observing the full matching

μ, each student i observes only her own assignment μi and the cutoffs. For Theorem 2.2 this can

be explained as follows. In the problem constructed above, there is only one additional consistent

matching if i1 observes only μi. For this matching, which switches the assignments for student i2 and

i3 compared to μ, a symmetric argument leads to the same conclusion as for μ.

2.6 Conclusion

Telling the truth is a safe choice under EDA if students wish to avoid regret their submitted reports.

Strengthening this first result, we have also shown that truth-telling is the unique regret-free option

under EDA. Moreover, among the class of efficient stable dominating rules—a class that covers nat-

ural alternatives for EDA in practice—no candidate is regret-free truth-telling. Our results open up

several avenues for future research. For instance, it would be interesting to study whether EDA is the

unique candidate among all non-strategy-proof and constrained Pareto-Efficient rules which is regret-

free truth-telling. It is also an open question whether EDA is still regret-free if schools’ priorities take

the form of more flexible choice functions.11

11Ehlers and Morrill (2019) introduce a generalized version of EDA that might serve as a starting point for
an investigation.
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2.A DA

In this section, we first introduce the Student Proposing Deferred Acceptance Algorithm which in-

duces the Student-Proposing Deferred Acceptance Rule (DA) due to Gale and Shapley (1962). There-

after, we present a lemma onDA that is necessary to prove Proposition 2.1 and Theorem 2.1. In the

following, fix a problem (I, S, q, g ≻, c). The DA algorithm works as follows:

Step 1 Each student i ∈ I proposes to her most preferred school in S ∪ {s∅}. Each school s ∈ S

considers all the proposals and tentatively accepts the candidates who apply to s and are among

the qs-highest ranked applicants at that school. The remaining proposals are rejected. If there

are fewer than qs proposals, s accepts all of them. Moreover, all students that propose to the

outside option s∅ are accepted.

Step k, k ≥ 2 Each student who was rejected at step k − 1 applies to her most preferred school not

yet applied to. Each school s ∈ S considers all the new applicants together with those who

are tentatively assigned to it at step k− 1. Each school s now tentatively accepts the qs-highest

ranked applicants and rejects all others. If there are fewer than qs proposals, s accepts all of

them. Moreover, all students that propose to the outside option s∅ are accepted.

The algorithm terminates with the tentative assignments of the first step in which no student is

rejected. For our lemma presented below we define Weak Maskin Monotonicity as in Kojima and

Manea (2010). We call≻′ a monotonic transformation of≻ at matching μ, if for each i′ ∈ I,≻′
i′ is a

monotonic transformation of≻i′ at μi′ .

Definition 2.5. Amatching rule f is weaklyMaskin monotonic if, given any≻ and for any≻′ that is

a monotonic transformation of≻ at f(g,≻, c), f(g,≻′, c)weakly Pareto dominates f(g,≻, c)
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Kojima andManea (2010) showthatDA isweaklyMaskinmonotonic. Furthermore,DA is strategy-

proof (Dubins and Freedman, 1981; Roth, 1982) and produces the SOSM for a given score structure

and preference profile.

Lemma 2.1. Let≻′
i∈ P be a monotonic transformation of≻i at DAi(g,≻), then DA(g, (≻′

i,≻−i))

weaklyPareto dominatesDA(g,≻)and i’s outcomes are identical, i.e.,DAi(g,≻) = DAi(g, (≻′
i,≻−i)).

Proof. The first part follows from weak Maskin monotonicity of DA. The second part is proved by

means of contradiction. Suppose thatDAi(g,≻) ̸= DAi(g, (≻′
i,≻−i)), then byweakMaskinmono-

tonicity of DA,DAi(g, (≻′
i,≻−i)) ≻i DAi(g,≻), which contradicts strategy-proofness of DA.

2.B Proof of Proposition 2.1

For ease of presentation, we use EDA(≻) to refer to EDA(g, (≻i,≻−i), c) and EDA(≻̃) to refer to

EDA(g, (≻̃i,≻−i), c). In a similar way, we useDA(≻) to refer toDA(g, (≻i,≻−i)) andDA(≻̃) to

refer toDA(g, (≻̃i,≻−i)).

We first show that the outcomes of EDA are identical under both profiles given that i consents, i.e.,

we prove that EDA(≻) = EDA(≻̃) when ci = 1. At the end of the proof we extend our arguments

to cover the case where ci = 0.

Let pTP≻ = {γt}Tt=1 be an arbitrary realized process of the TP algorithmwith input (≻, c, g) that

are captured by the series of solved top priority cycles {γt}Tt=1. Specifically, for each t ≤ T, γt is solved

at step t of pTP≻ and we set EDAt(≻) = γt ◦ EDAt−1(≻)with EDA0(≻) = DA(≻).

Since the outcome of the TP algorithm is invariant in the choice of the cycle solved in each round,

it suffices to construct one TP process with input ((≻̃i,≻−i), c, g), denoted by pTP≻̃, that leads to

the same outcome as pTP≻. As a part of our construction, we make use of the algorithm presented

next.
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Initialize: Let t = 1. Also, let ν0(≻̃) = DA(≻̃) and EDA0(≻) = DA(≻).

Round t ≤ T: Let Lt = {l ∈ I | νt−1
l (≻̃) ̸= EDAt−1

l (≻)}.

• If each jk ∈ γt satisfies that j, k ∈ Lt, let νt(≻̃) = νt−1(≻̃). Then, move to Round t + 1 or

terminate the algorithm if t = T.

• If there exists jk ∈ γt such that j /∈ Lt or k /∈ Lt, let νt(≻̃) = γt ◦ νt−1(≻̃). Then, move to

Round t+ 1 or terminate the algorithm if t = T.

Collect in {γ̃t}T̃t=1 the series of cycles solved in the course of running the algorithm and note that, by

construction, we have {γ̃t}T̃t=1 ⊆ {γt}Tt=1. We now show that the generated cycle selection {γ̃t}T̃t=1

allows to fully describe the desired pTP≻̃ which terminates at matching EDA(≻). Our strategy will

be as follows. At the first step, we establish that the algorithm is well defined. At the second step, we

will argue that νT(≻̃) = EDAT(≻) and thatG∗(νT(≻̃)) contains no cycles.

Step 1 We can generate the desired sequence of cycles {γ̃t}T̃t=1 if for each round t ≤ T, the following

three statements are satisfied:

(B1) Either all agents involved in γt belong to Lt, or none of them does.

(B2) γt ∈ G∗(νt−1(≻̃))when γt contains no agent from Lt.

(B3) νt(≻̃)weakly Pareto dominates EDAt(≻), and Lt+1 ⊆ Lt.

For each t, statement (B1) and statement (B2) ensure that we can find and solve the cycle as described

in the algorithm in round t. Then, given that (B1) and (B2) are true, statement (B3), is needed to

ensure that (B1) and (B2) will also be true for the next round t+ 1. To prove these three statements,

we now argue via induction over t.
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For the initial case we build on the following observations. First, it is immediate from Lemma 2.1,

that DA(≻̃) weakly Pareto dominates DA(≻) and DAi(≻) = DAi(≻̃). Thus, we can infer that

L1 = {l ∈ I | DAl(≻̃) ≻l DAl(≻)} and i /∈ L1. Furthermore, by the definition of ν it is true

that DAl(≻̃) = ν0l (≻̃) for any l ∈ I. Note that these conditions resemble those in condition (B3).

Moreover, let S′ = {s ∈ S | s ≻i μi and μi ≻̃i s}.

We present our arguments in their general form since they are also applicable to the inductive step.

That is, for the initial case we do not explicitly insert t = 1.

Initial case (Let t = 1): Statement (B1): Since γt is a cycle, it suffices to show that jk ∈ γt and

k ∈ Lt imply j ∈ Lt.

Towards this goal, we first establish that for jk ∈ γt, if k ∈ Lt, then j ∈ Lt ∪ {i}. More generally,

we show that for any jk ∈ G∗(EDAt−1(≻)), if k ∈ Lt, then we have j ∈ Lt ∪ {i}. This generality

will turn out to be useful proving other statements later on. By contradiction, let j /∈ Lt, j ̸= i and

k ∈ Lt. We aim at a contradiction towards the stability ofDA(≻̃). First, if k ∈ Lt, then there exists

l ∈ Lt such that νt−1
l (≻̃) = EDAt−1

k (≻). Since l ∈ Lt, it holdsDAl(≻̃) = νt−1
l (≻̃) ≻l EDAt−1

l (≻).

Remarkably, for the initial case this argument is immediate since DAl(≻̃) = ν0l (≻̃) ≻l DAl(≻).

When t > 1, the validity of this argument depends on the results wewill establish later in the inductive

step. Next, the previous observations and jk ∈ G∗(EDAt−1(≻)) imply that gDAl(≻̃)
j > gDAl(≻̃)

l and

EDAt−1
k (≻) ≻j EDAt−1

j (≻). Furthermore, j /∈ Lt implies EDAt−1
j (≻) = νt−1

j (≻̃) ⪰j DAj(≻̃)

while j ̸= i implies≻j= ≻̃j. Combining the relations derived so far, leads to

DAl(≻̃) = νt−1
l (≻̃) = EDAt−1

k (≻) ≻̃j EDAt−1
j (≻) = νt−1

j (≻̃) ⪰̃j DAj(≻̃).

However, this implies that j has justified envy towards l atDA(≻̃). Hence we arrive at a contradiction

to the stability ofDA(≻̃)with respect to ≻̃.

32



It remains to show that jk ∈ γt and k ∈ Lt imply j ̸= i. When EDAt−1
k (≻) /∈ S′, the arguments

above ensure ik /∈ G∗(EDAt−1(≻)), and therefore also ik /∈ γt. Consider the remaining case where

EDAt−1
k (≻) ∈ S′. Here, if ik ∈ γt, then it implies that EDAt−1

k (≻) = EDAt
i(≻) ≻i μi. However,

this is a contradiction to μ being the final matching. Thus, we must have j ̸= i.

Now, we can conclude that once there is an edge jk ∈ γt with k ∈ Lt, then j ∈ Lt. Therefore, either

all agents involved in γt belong to Lt, or no such agent does. Statement (B1) is satisfied at round t.

Statement (B2): Given that (B1) is true at round t, we proceed to prove (B2). Suppose that for each

jk ∈ γt, j, k /∈ Lt. Thus, we get EDAt−1
j (≻) = νt−1

j (≻̃) and EDAt−1
k (≻) = νt−1

k (≻̃). This implies

that

νt−1
k (≻̃) ≻̃j νt−1

j (≻̃).

Note that this is also true if j = i, since in this case νt−1
k (≻̃) /∈ S′. Hence, we obtain that student

j must still desire νt−1
k (≻̃) at νt−1(≻̃). Note that the last argument is true for all j such that jk ∈ γt.

Thus, we have that all students involved in γt are temporarilymatched at νt−1(≻̃). Next, since νt−1(≻̃)

weakly Pareto dominates EDAt−1(≻), there are weakly fewer temporarily matched students who de-

sire νt−1
k (≻̃) at νt−1(≻̃) compared to EDAt−1(≻). As a result, j still has the highest score among all

temporarily matched students pointing to k. Hence jk ∈ G∗(νt−1(≻̃)). Since this holds for all edges

in γt, it follows that γt ∈ G∗(νt−1(≻̃)).

Statement (B3): We start with showing that the desired weak Pareto dominance relation holds at

the end of round t. To begin with, note that νt−1(≻̃)weakly Pareto dominates EDAt−1(≻) and that

if any, only students in γt change their assignments in round t of our algorithm (and also in round t

of pTP≻). Thus, to conclude that νt(≻̃) weakly Pareto dominates EDAt(≻), it is sufficient to show

that for each jk ∈ γt:

νtj(≻̃) ⪰j EDAt
j(≻).

Of the two caseswehave to consider, we startwith the simpler one, inwhich for any jk ∈ γt, we have
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j, k /∈ Lt. In this case, γt is solved in both νt−1(≻̃) and EDAt−1(≻). Therefore, νtj(≻̃) = EDAt
j(≻)

and we obtain the desired result.

In the remaining case, any jk ∈ γt satisfies that j, k ∈ Lt. Clearly, we can solve a cycle of this

form only if Lt ̸= ∅. Moreover, note that EDAt(≻) = γt ◦ EDAt−1(≻) and νt(≻̃) = νt−1(≻̃).

We proceed by contradiction and assume that EDAt
j(≻) ≻j νtj(≻̃). We derive a contradiction to the

stability of DA(≻̃) with respect to ≻̃. We make the following observations: First, since k ∈ Lt,

there must exist l ∈ Lt such that we have νt−1
l (≻̃) = EDAt−1

k (≻). Second, l ∈ Lt implies that

DAl(≻̃) = νt−1
l (≻̃) ≻l EDAt−1

l (≻). Therefore, jk ∈ γt also means that gDAl(≻̃)
j > gDAl(≻̃)

l and

EDAt−1
k (≻) = EDAt

j(≻). Third, the algorithm guarantees that νtj(≻̃) ⪰j DAj(≻̃). If we combine

all relations above with≻j= ≻̃j, we obtain

DAl(≻̃) = νt−1
l (≻̃) = EDAt−1

k (≻) = EDAt
j(≻) ≻̃j νtj(≻̃) ⪰̃j DAj(≻̃)

and reach a contradiction, since j has justified envy towards l atDA(≻̃). Thus, νt(≻̃) weakly Pareto

dominates EDAt(≻). Moreover, based on the Pareto dominance result, we can also write Lt+1 as

Lt+1 = {l ∈ I | νtl(≻̃) ≻l EDAt
l(≻)}.

To finish the proof for statement (B3) we need to show that Lt+1 ⊆ Lt for which we again have

two cases to consider. If any jk ∈ γt satisfies j, k /∈ Lt, then it is immediate that Lt+1 = Lt. On the

contrary, if any jk ∈ γt satisfies j, k ∈ Lt, then we make the following two observations. First, for

each such j, as j ∈ Lt, we have νt−1
j (≻̃) ≻j EDAt−1

j (≻) and νtj(≻̃) ⪰j EDAt
j(≻). This implies that

while j is contained in Lt, she might not be in Lt+1. Second, for each j′ ∈ I not involved in γt, we have

νtj′(≻̃) = νt−1
j′ (≻̃) and EDAt

j′(≻) = EDAt−1
j′ (≻), which implies that j′ ∈ Lt if and only if j′ ∈ Lt+1.

In conclusion, we can infer that Lt+1 ⊆ Lt. Hence statement (B3) is satisfied.
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Inductive step: Let t > 1 and assume that for all t′ < t, (B1) - (B3) are satisfied. By assump-

tion of the inductive step and from (B3), we have that Lt′+1 ⊆ Lt′ for any t′ < t, which implies

Lt ⊆ Lt′ . Second, through the description of the algorithm, we know that given any t′ < t, assign-

ments at νt′(≻̃) and νt′−1(≻̃) are identical for each student in Lt′ . Therefore, since Lt ⊆ Lt′ , we can

infer that for each l ∈ Lt, DAl(≻̃) = νt−1
l (≻̃). Together with the observations above, the argu-

ments we already presented for (B1) in the initial case also apply to the inductive step. Furthermore,

the same holds for (B2). Finally, given we established (B1) and (B2), also (B3) follows again from the

same arguments as in the initial case. This completes the induction.

Step 2: We show that EDAT(≻) = νT(≻̃). Let ti ≤ T be the first step in pTP≻ where i is perma-

nently matched and consider round ti of our algorithm.

If EDAti−1(≻) = νti−1(≻̃), we have that Lt = ∅ and that γt is solved in each round t > ti of the

algorithm. Consequently, it is true that EDAT(≻) = νT(≻̃).

If EDAti−1(≻) ̸= νti−1(≻̃), then Lti is non-empty. In this case, we show that there exists t̂ > ti

such that EDAt̂(≻) = νt̂(≻̃). As shown above, this leads to EDAT(≻) = νT(≻̃).

We show that there must be a cycle in G∗(EDAti−1(≻)) that solely consists of elements in Lti .

We begin with showing that for any k ∈ Lti , there exists an edge jk ∈ G∗(EDAti−1(≻)) for some

j ∈ I. Since k ∈ Lti , there exists l ∈ Lti such that EDAti−1
k (≻) = νti−1

l (≻̃) ≻l EDAti−1
l (≻).

That is, at EDAti−1(≻), for each student in Lti , her assignment is desired by at least one student in Lti

whose assignment is further desired by some other student in Lti . Now, recall that we assume c1 = 1.

Since i is permanently matched at step ti and i consents, then even if i prefers EDAti−1
k (≻) to μi, she

cannot prevent any agent from being eligible forEDAti−1
k (≻). In other words, at least one edge that is

pointing to k, namely lk, is contained inG(EDAti−1(≻)). Therefore, we can infer that k is temporarily

matched in EDAti−1(≻) and thus there must be jk ∈ G∗(EDAti−1(≻)) for some j ∈ I.

Next, for any such jk, our arguments from (B1) will be sufficient to conclude that j ∈ Lti . First, we
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have already shown j ∈ Lti ∪{i}. Second, we know that j ̸= i, since i is permanently matched. Thus,

we can infer that each student inLti is pointed by another student inLti inG∗(EDAti−1(≻)). SinceLti

is finite, the existence of the desired cycle is guaranteed. Notably, according to (B3) and by iteratively

applying the same argument, we can eventually reach a round t̂ > ti where EDAt̂(≻) = νt̂(≻̃).

We next claim that no cycles can be found in G∗(νT(≻̃)). Notably, if G∗(νT(≻̃)) has a cycle, by

similar arguments in (B2), we can infer that G∗(EDAT(≻)) must also have a cycle. However, this

contradicts the fact that exactly T cycles are solved in pTP≻.

Based on the statements provided so far, we can construct the desired pTP≻̃ as pTP≻̃ = {γ̃t}T̃t=1.

This leads to

EDA(≻) = EDA(≻̃)

which completes the proof for ci = 1.

Finally, it remains to prove that our results extend to the case where ci = 0. Note that since EDA

is consent-invariant, the following two relations are true: EDAi(≻) = EDAi(g, (≻i,≻−i), (̃ci, c−i))

andEDAi(≻̃) = EDAi(g, (≻̃i,≻−i), (̃ci, c−i)) for c̃i = 1. Sincewe just showedwhen i consents, sub-

mitting ≻̃i will not alter the outcome: EDA(g, (≻i,≻−i), (̃ci, c−i)) = EDA(g, (≻̃i,≻−i), (̃ci, c−i)).

This allows us to conclude EDAi(≻) = EDAi(≻̃), which completes the proof.

2.C Proof of Theorem 2.1

Fix an arbitrary problem (I, S, q, g,≻, c) and consider an arbitrary student i ∈ I. Since EDA only

takes acceptable schools into account, for any tuple (g,≻−i, c) and any ≻′
i∈ Ti, we can claim that

EDA(g, (≻′
i,≻−i), c) = EDA(g, (≻i,≻−i), c). Hence, if student i does not regret reporting her

true preferences≻i, she does not regret to report any≻′
i∈ Ti. Thus, we show that i does not regret to

report≻i.
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Lemma 2.2, 2.3 and 2.7 each consider a distinct class of misreports of student i and jointly imply

that i cannot regrets submitting her true preferences. In the following exposition, take an arbitrary ob-

servation (μ, π(μ, g))where μ ∈ M|(≻i,ci). We fix i’s scores gi and i’s consent decision ci throughout

the proof. From now on, we use g̃ to refer to (gi, g̃−i) and c̃ to refer to (ci, c̃−i).

We first show that a misreport is not profitable for i, if it shares the same relative ranking of schools

weakly below her own assignment under truth-telling.

Lemma 2.2. Consider ≻̃i ∈ P such that for all s, s′ ∈ L≻i
μi
, s ≻̃i s′ if and only if s ≻i s′. For any

(≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci), it is true that EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi.

Proof. Select any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci). By definition, EDA(g̃, (≻i, ≻̃−i), c̃) = μ and using

Proposition 2.1, we know EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi.

We proceed with misreports in which some schools ranked below μi under truth permute their

order with μi. Our next Lemma shows that the student can either infer that she would have possibly

beenworse off, or that themisreport would not have affected her assignment in any plausible scenario.

Lemma 2.3. Consider ≻̃i ∈ P such that μi ≻i s and s ≻̃i μi for some s ∈ S. Then,

(1) either there exists (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci) such that μi ≻i EDAi(g̃, (≻̃i, ≻̃−i), c̃);

(2) or for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci): EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi.

Proof. Let S̃ = {s′ ∈ S | μi ≻i s′ and s′ ≻̃i μi}. We start by considering the case where S̃ = {s∗} is a

singleton. We will explain how to generalize the arguments to cases where S̃ contains more elements

at the end of the proof. Given that S̃ is a singleton, we distinguish the following exhaustive cases based

on i’s observation (μ, π(μ, g)):

Case 1: πs∗(μ, g) = 0. If πs∗(μ, g) = 0, then s∗ has not exhausted its capacity at the observed

matching. We use the following argument repeatedly throughout the proof: Note that students
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assigned to a school that has not exhausted its capacity under the observed matching cannot be in-

volved in a cycle in any corresponding TP process for any plausible scenario. This implies that at this

school also under DA the same set of students must have been assigned there. Furthermore, since

DA is non-wasteful, we can conclude that at any plausible scenario the school has no demand un-

der the DA matching. Concretely, since for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci), s∗ has vacant seat

at EDA(g̃, (≻i, ≻̃−i), c̃) = μ, then s∗ must also have vacant seat at DA(g̃, (≻i, ≻̃−i)) and that for

any i′ ∈ I, i′ weakly prefers DAi′(g̃, (≻i, ≻̃−i)) to s∗ given preference profile ≻. That is, s∗ has no

demand.

Next, if i submits ≻̃i then we obtain DAi(g̃, (≻̃i, ≻̃−i)) = s∗. Now notice that before being

matched to the final assignment, the set of applications i sends to reachDAi(g̃, (≻̃i, ≻̃−i)) is a subset

of those sent to reach DAi(g̃, (≻i, ≻̃−i)). Therefore, DAi′(g̃, (≻̃i, ≻̃−i)) ⪰i′ DAi′(g̃, (≻i, ≻̃−i))

holds for all i′ ̸= i. Accordingly, each agent i′ ∈ I still weakly prefers DAi′(g̃, (≻̃i, ≻̃−i)) to s∗

given preference profile ≻̃. Hence s∗ has again no demand atDA(g̃, (≻̃i, ≻̃−i)) and thus no agent is

pointing to i in G∗(DA(g̃, (≻̃i, ≻̃−i))). As a result, i cannot be involved in any solved cycle during

the TP process and thus EDAi(g̃, (≻̃i, ≻̃−i), c̃) = DAi(g̃, (≻̃i, ≻̃−i)) = s∗. Statement (1) holds.

Case 2: πs∗(μ, g) ≠ 0, πμi(μ, g) = 0 and gs∗i < πs∗(μ, g). Under this condition, we show

that statement (2) is satisfied. Take an arbitrary (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci). To start, note that

whenever a student j improves her assignment from one school to another at one step of the TP al-

gorithm, another student with lower priority is assigned to the school that j left at that step. Since

gs∗i < πs∗(μ, g), this implies that student imust have a lower score than any student assigned to s∗ at

DAi(g̃, (≻i, ≻̃−i)). Thus, compared to the DA procedure of i submitting≻i, i’s additional applica-

tion to s∗ by submitting ≻̃i has no influence on the outcome and we reach

DA(g̃, (≻i, ≻̃−i)) = DA(g̃, (≻̃i, ≻̃−i)). Moreover, since πμi(μ, g) = 0 and as argued in Case 1,

μi must have vacant seat at DA(g̃, (≻i, ≻̃−i)), thus also at DA(g̃, (≻̃i, ≻̃−i)). As a result, μi has no
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demand atDA(g̃, (≻̃i.≻̃−i)) and this implies thatEDAi(g̃, (≻̃i, ≻̃−i), c̃) = DAi(g̃, (≻̃i.≻̃−i)) = μi.

Hence, statement (2) holds.

Case 3: πs∗(μ, g) ̸= 0andeither (C1) gs∗i > πs∗(μ, g); or (C2) πμi(μ, g) ̸= 0and gs∗i < πs∗(μ, g).

Throughout the discussion, we will make it explicit whenever (C1) and (C2) are in need to be distin-

guished.12 Furthermore, except for the last subcase (Case 3.2.2.2), statement (1) will apply in Case

3 and our approach for each subcase except this last subcase will be standardized going through the

following steps:

Step 1: We construct a candidate scenario (≻̃−i, c̃−i, g̃−i).

Step 2: We show that (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Step 3: We argue that EDAi(g̃, (≻̃i, ≻̃−i), c̃) = s∗.

Let j ∈ I be such that μj = s∗ and gs∗j = πs∗(μ, g). Let Ŝ = {s1, . . . , sT} be the set of schools for

which i has justified envy at μ and assume without loss of generality s1 ≻i s2 ≻i . . . ≻i sT. Note that

our constructions of the candidate scenarios (≻̃−i, c̃−i, g̃−i) below varies for different cardinalities of

Ŝ.

In the following, for any ≻′
i∈ P and any s ∈ S, we denote the strict lower contour set of ≻′

i at s

by SL≻′
is = {s′ ∈ S | s ≻′

i s′} and the strict upper contour set of≻′
i at s by SU

≻′
is = {s′ ∈ S | s′ ≻′

i s}.

Notably, the following observations on Ŝwill be helpful:

• Ŝ = ∅whenever ci = 0, since EDA does not allow for any priority violations for i.

• If Ŝ ̸= ∅, non-wastefulness of EDA implies that for each s′ ∈ Ŝ, πs′(μ, g) ̸= 0.

• Since Ŝ ⊆ SU≻i
μi

and s∗ ∈ SL≻i
μi
, s∗ /∈ Ŝ.

12Note that since we assume that gsi ̸= gsj for any i, j ∈ I and any s ∈ S, it cannot be true that πs∗(μ, g) = gs
∗

i ,
when i /∈ μs∗ .
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Next, for each t ∈ {1, . . . ,T}, let it ∈ μst be such that gstit = πst(μ, g). Collect all such students in

Î = {i1, . . . , iT}. For each it ∈ Î, in any TP process corresponding to a plausible scenario, there must

exist a solved cycle γ such that itk ∈ γ for some k ∈ I and it is assigned to stwhen γ is solved. Moreover,

solving γmust be the last step in that TP process in which it is improved.

Case 3.1: |Ŝ| ̸= 1. For now, assume that (C2) is satisfied. At the end of this subcase, we present

a slight modification needed in the construction for (C1).

Step 1: We start with the candidate score structure g̃−i:

• let g̃μii ≥ πμi(μ, g) > g̃μij and;

• for any s′ ∈ S \ {Ŝ ∪ μi} let g̃
s′ = gs′ .

Let i0 = iT and sT+1 = s1. In case that Ŝ ̸= ∅:

• for each st ∈ Ŝ, let g̃st be such that g̃stit−1
> g̃sti > g̃stit and for all l ∈ μst with l ̸= it, let g̃stl > g̃stit−1

.

Next, select an arbitrary c̃−i and consider the following preferences ≻̃−i:

μi ≻̃j s∗ ≻̃j s∅ ≻̃j . . . ,

st ≻̃it st+1 ≻̃it s∅ ≻̃it . . . ∀t ∈ {1, . . . ,T},

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\(̂I ∪ {i, j}).

Step 2: As one can easily see, we have π(μ, (gi, g̃−i)) = π(μ, g). We now show that the constructed

scenario (≻̃−i, c̃−i, g̃−i) yields μ under the TP algorithm. We have two cases to consider: First, if

Ŝ = ∅, we getDA(g̃, (≻i, ≻̃−i)) = μ and the TP process terminates with μ since there are no cycles

G∗(μ). Second, suppose that Ŝ ̸= ∅. We describe how we arrive at the corresponding DA outcome:

DAk(g̃, (≻i, ≻̃−i)) = μk for all k ∈ I \ Î and DAit(g̃, (≻i, ≻̃−i)) = st+1 for all it ∈ Î. Note that
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every student k ∈ I \ {i, j} considers her assigned school (μk) as the top choice in ≻̃−i and each such

student k gets accepted by her top choice at the first step of the correspondingDAprocess. Moreover,

at some step, student i applies to s1 and gets tentatively accepted. This triggers a series of rejections.

Specifically, for each t ∈ {1, . . . ,T}, it gets rejected by st and applies to st+1 in the next step, causing

it+1 being rejected by st+1 and so forth. This rejection chain ends with iT applying to s1 which leads

i to be rejected by s1. Thereafter, i applies to all schools in SU≻i
μi

\ SU≻i
s1 and is rejected until finally

being accepted by μi. At last, j is rejected by μi and applies to s
∗ to which she is finally assigned in DA.

There is a unique cycle γ = {iTiT−1, . . . , i2i1, i1iT} inG∗(DA(g̃, (≻i, ≻̃−i)))which, once solved,

produces μ. According to (≻i, ≻̃−i), i and j are the only students who do not receive their top choice

in μ and therefore the TP algorithm terminates with μ.

Step 3: First, be aware that the outcomeDA(g̃, (≻̃i, ≻̃−i))may vary in the position of s∗ on ≻̃i:

• If s∗ ≻̃i s1, thenDAi(g̃, (≻̃i, ≻̃−i)) = s∗,DAj(g̃, (≻̃i, ≻̃−i)) = μi,DAk(g̃, (≻̃i, ≻̃−i)) = μk

for any k ∈ I\{i, j}.

• If s1 ≻̃i s∗, thenDAi(g̃, (≻̃i, ≻̃−i)) = s∗,DAj(g̃, (≻̃i, ≻̃−i)) = μi,DAit(g̃, (≻̃i, ≻̃−i)) = st+1

for any it ∈ Î andDAk(g̃, (≻̃i, ≻̃−i)) = μk for any k ∈ I \ ({i, j} ∪ Ŝ).

In both instances above s∗ has no demand at DA(g̃, (≻̃i, ≻̃−i)). As a result, we have that

EDAi(g̃, (≻̃i, ≻̃−i), c̃) = s∗ and thus the argument for (C2) is complete.

Now suppose that (C1) holds. The construction above does not work here generally, since when

πμi(μ, g) = 0, both i and j get finally assigned to μi in EDA(g̃, (≻i, ≻̃−i), c̃). We make the following

adjustments in the construction:

Step 1: Modify the preferences of j to be

s∗ ≻̃j s∅ ≻̃j . . . ,
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and keep all other details of our construction the same as in instance (C2) above.

Step 2 and Step 3: The arguments resemble those in instance (C2) above.

Case 3.2: |Ŝ| = 1. The construction in Case 3.1 does not work here. Specifically, we cannot

construct a cycle that consists of students in Î when |̂I| = |Ŝ| = 1. Cycles will therefore contain

students not in Î and moreover, from (C1) to (C2), we need to alter the identity of students involved

in the cycle:

Case 3.2.1: gs∗i > πs∗(μ, g). That is, (C1) holds and we have gs∗i > gs∗j .

Step 1: Let g̃−i be such that

• g̃s1j > g̃s1i > g̃s1i1 ;

• g̃s∗i > g̃s∗i1 > g̃s∗j ;

• g̃s′ = gs′ for any s′ ∈ S \ {s∗, s1}.

Now, let c̃−i be such that c̃i1 = 013 and consider the following profile ≻̃−i:

s∗ ≻̃j s1 ≻̃j s∅ . . . ,

s1 ≻̃i1 s∗ ≻̃i1 s∅ . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\{i, j, i1}.

Step 2: First, it is easily checked π(μ, (gi, g̃−i)) = π(μ, g). Following a similar application proce-

dure as in Case 3.1, the DA algorithm leads to DAj(g̃, (≻i, ≻̃−i)) = s1, DAi1(g̃, (≻i, ≻̃−i)) = s∗

and DAk(g̃, (≻i, ≻̃−i)) = μk for all k ∈ I \ {j, i1}. There is a unique cycle γ = {i1j, ji1} in

13It is worth mentioning that this is the only place in the proof of Theorem 2.1, where we need a scenario
where a student does not consent.
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G∗(DA(g̃, (≻i, ≻̃−i))) and once this cycle is solved we obtain μ. In this instance, all students except

i receive their top choice in μ. The TP algorithm thus terminates and EDA(g̃, (≻i, ≻̃−i), c̃) = μ.

Step 3: Note that the DA algorithm arrives at DAi(g̃, (≻̃i, ≻̃−i)) = s∗, DAj(g̃, (≻̃i, ≻̃−i)) = s1,

DAi1(g̃, (≻̃i, ≻̃−i)) = s∅ and DAk(g̃, (≻̃i, ≻̃−i)) = μk for all k ∈ I\{i, j, i1}. Also, j is not el-

igible for s∗ since c̃i1 = 0. Therefore, we cannot add ji to the graph and thus there is no cycle in

G∗(DA(g̃, (≻̃i, ≻̃−i))). In conclusion, EDAi(g̃, (≻̃i, ≻̃−i), c̃) = s∗.

Case 3.2.2: πμi(μ, g) ̸= 0 and gs∗i < πs∗(μ, g) That is, (C2) holds and we thus have gs∗i < gs∗j .

Case 3.2.2.1: There exists s′ ∈ S \ {s1, μi, s
∗} such that πs′(μ, g) ̸= 0. Pick an arbitrary such s′ and

denote with j′ the student who has the lowest score among all students being assigned to s′ under μ.

Step 1: Let g̃−i be such that

• g̃s1j′ > g̃s1i > g̃s1i1 ;

• g̃s′i1 > g̃s′j′ ;

• g̃μii > gμij ;

• g̃s′′ = gs′′ for any s′′ ∈ S \ {s1, μi, s
′}.

Next, fix an arbitrary c̃−i and consider the following profile ≻̃−i:

μi ≻̃j s∗ ≻̃j s∅ ≻̃j . . . ,

s1 ≻̃i1 s′ ≻̃i1 s∅ ≻̃i1 . . . ,

s′ ≻̃j′ s1 ≻̃j′ s∅ ≻̃j′ . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\{i, i1, j, j′}.
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Step 2 and Step 3: We omit the arguments for Step 2 and Step 3, since they are similar to those in

Case 3.1.

Case 3.2.2.2: There does not exist s′ ∈ S \ {s1, μi, s
∗} such that πs′(μ, g) ̸= 0. Since πs∗(μ, g) ̸= 0

and πμi(μ, g) ̸= 0, there are only three schools, namely s1, μi, s
∗, which exhaust their capacity under

μ. In this last subcase, we show that statement (2) is satisfied.

We first argue that in any plausible scenario, there is only one top priority cycle and it consists of

i1 and one student assigned to s∗. To start, since i has justified envy for s1 at μ, there exists a cycle

containing i1 that is solved in the EDAprocess. Second, by non-wastefulness of EDA, we know that if

a school is contained in one solved cycle, it exhausts its capacity under the final matching. Recall that

only s1, μi, s
∗ exhaust their capacity at μ. Thus, the candidate student for forming a cycle can only be

assigned to s∗. Therefore, we can construct exactly one cycle with i1 and some l ∈ μs∗ .

Now select any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci). Since gs∗i < πs∗(μ, g) and by our arguments

made above, it must be true g̃s∗i1 > g̃s∗l > gs∗i and DAi1(g̃, (≻i, ≻̃−i)) = s∗. However, this im-

plies that i will be rejected by s∗ under DA when she reports ≻̃i. As a result, we can claim that

DAi(g̃, (≻̃i, ≻̃−i)) = EDAi(g̃, (≻̃i, ≻̃−i), c̃) = μi and statement (2) thus holds.

This completes the proof for the case in which S̃ is a singleton. To finish the proof, suppose now

that S̃ contains multiple elements.

We denote the top ranked school on ≻̃i among all schools in S̃ by s1. Specifically, let ≻1
i be such

that s1 ≻1
i μi and s ≻1

i s′ if s ≻i s′ for all S \ {s1}. Since s1 is the only permuted school on ≻1
i

compared to≻i, we can apply the arguments above (for singleton S̃) to≻1
i . Here, we distinguish two

cases. In the first case, suppose that the observation (μ, π(μ, g)) is such that statement (1) holds for

≻1
i . That is, we find (≻1

−i, c1−i, g1−i) ∈ I(μ,≻1
i , ci) such that EDAi(g1, (≻1

i ,≻1
−i), c1) = s1. Note

that all our constructions above satisfy that DAi(g1, (≻1
i ,≻1

−i)) = EDAi(g1, (≻1
i ,≻1

−i), c1) = s1.
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Since SU≻̃i
s1 = SU≻1

is1 , we obtainDAi(g1, (≻̃i,≻1
−i)) = EDAi(g1, (≻̃i,≻1

−i), c1) = s1. Thus, we can

conclude that statement (1) also holds for misreport ≻̃i for the first case. In the second case, suppose

that the observation (μ, π(μ, g)) falls into the case where statement (2) holds for≻1
i . Then, we need

further consider the second ranked school among S̃ on ≻̃, denoted by s2.

Specifically, we construct≻2
i such that s1 ≻2

i s2 ≻2
i μi and s ≻

2
i s′ if s ≻i s′ for all s, s′ ∈ S\{s1, s2}.

Since we assume that ≻1
i has no influence on the result at all, we can again apply the arguments for

the singleton case to≻2
i . That is, we consider whether statement (1) or statement (2) applies to≻2

i .

If statement (1) holds for ≻2
i , then as explained above we can conclude that statement (1) holds for

≻̃i. Otherwise, we further consider the third ranked school among S̃ on ≻̃. In the following, we

iteratively apply the above arguments by adding a new school from S̃ through each iteration. Once

we arrive at a step where statement (1) holds, we stop and conclude that statement (1) holds for ≻̃i.

On the contrary, if for all schools in S̃ the observation (2) holds, then we conclude that statement (2)

holds for the misreport ≻̃i.

We move to the final class of misreports in which all schools that are truly less preferred to μi still

rank lower than μi. That is, in the rest of the proof, we consider ≻̃i ∈ P such that SU≻̃i
μi

⊆ SU≻i
μi

and

for which there exists s, s′ ∈ SL≻i
μi

such that s ≻i s′ and s′ ≻̃i s. Our strategy is to show that if a student

could have been improved upon truth through such a misreport ≻̃i in a plausible scenario, then the

misreport could also have made the misreporting student worse off in another plausible scenario.

Before we formally show the above argument, we provide three auxiliary results. The first result

states that a student can improve upon μi via reporting ≻̃i only if μi is not her SOSM assignment un-

der true preferences. Throughout the remaining discussion, we fix some (≻′
−i, c′−i, g′−i) ∈ I(μ,≻i

, ci). Also, for any ≻′
i∈ P and any s ∈ S, we denote the weak upper contour set of ≻′

i at s by

U≻′
is = {s′ ∈ S | s′ ⪰′

i s}.

Lemma 2.4. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, then μi ≻i DAi(g′, (≻i,≻′

−i)).
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Proof. EDA guarantees that μi ⪰i DAi(g′, (≻i,≻′
−i)). We now prove the contrapositive statement:

IfDAi(g′, (≻i,≻′
−i)) = μi, thenEDAi(g′, (≻̃i,≻′

−i), c′) = μi. Towards this goal, construct ≻̂i ∈ P

such that

(D1) for each s1, s2 ∈ L≻i
μi
, s1 ≻̂i s2 if and only if s1 ≻i s2;

(D2) for each s3, s4 ∈ U≻̃i
μi
, s3 ≻̂i s4 if and only if s3 ≻̃i s4 and;

(D3) for all s ∈ SU≻i
μi

\ SU≻̃i
μi
, s ∈ SL≻̂i

μi
.

Since SU≻̃i
μi

⊆ SU≻i
μi

and SU≻i
μi

∩ SL≻i
μi

= ∅, one obtains L≻i
μi

∩ U≻̃i
μi

= {μi}. Therefore, (D1) and

(D2) consider distinct sets of schools, and more concretely, (D1) - (D3) defines the full order of ≻̂i.

With (D1) we can immediately apply Proposition 2.1 such that we reach EDAi(g′, (≻̂i,≻′
−i), c′) =

EDAi(g′, (≻i,≻′
−i), c′) = μi. Clearly, (D1)means that ≻̂i is amonotonic transformation of≻i at μi.

Thus, according to Lemma 2.1 we haveDAi(g′, (≻̂i,≻′
−i)) = DAi(g′, (≻i,≻′

−i)). Thus, we obtain

EDAi(g′, (≻̂i,≻′
−i), c′) = DAi(g′, (≻̂i,≻′

−i)) = μi. Moreover, (D2) and (D3) jointly ensure that

DA(g′−i, (≻̃i,≻′
−i)) = DA(g′−i, (≻̂i,≻′

−i)).

Now, note that DAi(g′, (≻̂i,≻′
−i)) = EDAi(g′, (≻̂i,≻′

−i), c′), which implies that i cannot be

improved to any school more preferred than μi on ≻̂i by EDA. Since by (D2) and (D3) we know

that ≻̃i and ≻̂i share the same ranking for schools more preferred than μi. Thus, it follows that

DAi(g′, (≻̃i,≻′
−i)) = EDAi(g′, (≻̃i,≻′

−i), c′). Thus, weobtainEDAi(g′, (≻̃i,≻′
−i), c′) = μi. This

completes the proof.

Next, we show that if a student could improve upon μi via a misreport ≻̃i, then at least one school

satisfies the following three conditions: First, the student prefers her assignment to this school. Sec-

ond, the relative ranking of this school is lowered under the misreport compared to truth-telling.

Third, the student’s score at this school is higher than this school’s cutoff.
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Let S′ = {s ∈ SL≻i
μi
| ∃ s̃ ∈ SL≻i

μi
: s ≻i s̃ and s̃ ≻̃i s}. Recall that we now consider misreport ≻̃i of

the last class where SU≻̃i
μi

⊆ SU≻i
μi
. According to Proposition 2.1, we know that S′must be non-empty

since EDAi(g′, (≻̃i,≻′
−i), c′) ̸= EDAi(g′, (≻i,≻′

−i), c′).

Lemma 2.5. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, then there exists s′ ∈ S′ such that

gs′i > πs′(μ, g) > 0.

Proof. Weprove bymeans of contradiction. That is, givenEDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, we suppose

that for each ŝ ∈ S′ either πŝ(μ, g) > ĝsi or πŝ(μ, g) = 0. We aim at a contradiction by showing that

we arrive at EDAi(g′, (≻̃i,≻′
−i), c′) = μi.

Select any TP process with input (g′, (≻i,≻′
−i), c′) and denote it by pTP≻. Let EDAt(≻) be the

outcome of the tth step in pTP≻. Since EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, by Lemma 2.4 we have that

μi ≻i DAi(g′, (≻i,≻′
−i)). Then, we collect the set of schools to which i is (temporarily) assigned

during pTP≻ in Si = {̂s ∈ S | ∃t ∈ N : EDAt
i(≻) = ŝ}. As mentioned before, during the process

of the TP algorithm, scores of assigned students are weakly decreasing at each school from step to

step. Thus, for any s′′ ∈ Si we have gs
′′
i ≥ πs′′(μ, g). Also, schools in Si must have positive cutoffs.

Therefore, by assumption of S′, we have S′ ∩ Si = ∅. Hence, we can use the following two features:

1. for any s′ ∈ Si, SU≻̃i
s′ ⊆ SU≻i

s′ ; and

2. for any s′, s′′ ∈ Si, s′ ≻̃ s′′ if and only if s′ ≻i s′′.

In the following, we first assume that ci = 1. Under this assumption, we claim that with the

above two features of ≻i and ≻̃i, we can implement the algorithm in proof of Proposition 2.1 with

profiles (g′, (≻̃i,≻′
−i), c′) to construct a process pTP≻̃ that yields the same outcome as pTP≻ does.

Concretely, compared to the misreports studied in Proposition 2.1, the misreport ≻̃i considered here

allows for additional permutations which move some s ∈ L≻i
μi

from above some s′′ ∈ Si to below.

Note that the first feature above ensures that all cycles solved in pTP≻ which do not involve i are no
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different from those already covered by the algorithm in Proposition 2.1. Concretely, although agent

i demands some additional schools in S′, since i consents and i has a lower score than the cutoff at each

of these schools, the additional demand of student i does not change the formation of cycles at each

step of the algorithm. Next, note that for cycles solved in pTP≻ which contain i, the second feature

above guarantees that such a cycle can still be solved at the corresponding step. Therefore, we arrive at

EDAi(g′, (≻̃i,≻′
−i), c′) = EDAi(g′, (≻i,≻′

−i), c′) = μi, which contradicts our initial assumption.

Next, assume ci = 0. Recall that in Proposition 2.1, we extend the conclusions to the case where

ci = 0. Here, we can also concludeEDAi(g′, (≻̃i,≻′
−i), c′) = EDAi(g′, (≻i,≻′

−i), c′)with the same

line of reasoning. Again, we reach the desired contradiction.

From now on, assume that μi ≻i DAi(g′−i, (≻i,≻′
−i)). The reason for this assumption is that,

as shown in Lemma 2.5, misreporting ≻̃i could potentially be profitable only if this assumption is

satisfied. If reporting ≻̃i is notprofitable at all, then the agentwill never regret telling the truth through

such a misreport. Notably, this assumption also implies that we have πμi(μ, g) ̸= 0 in the rest of the

proofs. Moreover, Lemma 2.5 shows that there exists a maximal and non-empty set S1 ⊆ S′ such that

s′ ∈ S1 if and only if gs
′
i > πs′(μ, g) > 0. For the rest of the proof, let s∗ ∈ S1 be such that s∗ ⪰i s′ for

any s′ ∈ S1. Furthermore, we collect in S2 = {r′ ∈ L≻i
μi

| s∗ ≻i r′, r′ ≻̃i s∗} and denote with r∗ ∈ S2

the school such that r∗ ⪰̃i r′ for any r′ ∈ S2. For our construction for the last class of misreports, we

rely on the following property of r∗.

Lemma 2.6. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, then πr∗(μ, g) ̸= 0.

Proof. We aim to show the contrapositive statement. That is, given πr∗(μ, g) = 0, we prove that

μi ⪰i EDAi(g′, (≻̃i, ,≻′
−i), c′). Let DA(g′, (≻i,≻′

−i)) = νi. Since we assume πμi(μ, g) ̸= 0, it

follows immediately πνi(μ, g) ̸= 0. That is, νi ̸= r∗. In the following, we consider two cases that are

distinguished by the relative ranking of r∗ and νi on ≻̃i.
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In the first case, suppose νi ≻̃i r∗. We claim EDAi(g′, (≻̃i,≻′
−i), c′) = μi here and will use similar

arguments as in the proof of Lemma 2.5. Recall that we have SU≻̃i
μi

⊆ SU≻i
μi
. Together with the

assumption νi ≻̃i r∗ and the fact μi ⪰i νi, we can infer μi ≻̃i r∗. Now, select an arbitrary TP process

with input (g′, (≻i,≻′
−i), c′), denoted by pTP≻′ and let EDAt(≻′) be the outcome of the tth step

in pTP≻′ . Also, let S′i = {s′ ∈ S | ∃t ∈ N : EDAt
i(≻′) = s′} be the set of schools to which i is

(temporarily) assigned during pTP≻′ . As argued before, for each s′ ∈ S′i, it is true gs
′
i > πs′(μ, g) > 0.

Note that νi ∈ S′i and by assumption νi ≻̃i r∗, the selection of r∗ ensures that:

1. for any s′ ∈ S′i, SU
≻̃i
s′ ⊆ SU≻i

s′ ; and

2. for any s′, s′′ ∈ S′i, s′ ≻̃ s′′ if and only if s′ ≻i s′′.

Notably, as argued in Lemma 2.5, this leads to EDAi(g′, (≻̃i,≻′
−i), c′) = μi.

In the second case, suppose r∗ ≻̃i νi. We show μi ≻i EDAi(g′, (≻̃i,≻′
−i), c′) here. Towards this

goal, we first argue SU≻̃i
r∗ ⊆ SU≻i

νi . By contradiction, suppose that there exists s′ ∈ S such that

r′ ∈ SU≻̃i
r∗ and r′ /∈ SU≻i

νi . Then, we know that (1) νi ≻i r′, (2) r′ ≻̃i νi and (3) r′ ≻̃i r∗. Since

gνii > πνi(μ, g) > 0, by (1) and (2) we can infer νi ∈ S1. Thus, the selection of s∗ ensures that s∗ ⪰i νi,

which combined with (1) shows s∗ ≻i r′. Moreover, from (3) and the construction of S2 we have

r′ ≻̃i r∗ ≻̃i s∗. Note that s∗ ⪰i νi and r′ ≻̃i r∗ ≻̃i s∗, we reach a contradiction to how r∗ is selected.

Thus, we have SU≻̃i
r∗ ⊆ SU≻i

νi . Next, since by assumption r∗ has vacant seat atEDA(g′, (≻i,≻′
−i), c′),

it also has vacant seat atDA(g′, (≻i,≻′
−i)). With the two findings above, we can implement the argu-

ments inCase 2 of Lemma 2.3 and conclude thatDAi(g′, (≻̃i,≻′
−i)) = r∗ is underdemanded. Thus,

student i cannot improve her assignment above r∗ and we reach EDAi(g′, (≻̃i,≻′
−i), c′) = r∗. Since

μi ≻i r∗, this completes the proof.

We now show the formal arguments for the last class ofmisreports. Concretely, we show that when

i reports ≻̃i, she could have been worse off by being assigned to r∗.
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Lemma 2.7. If EDAi(g′, (≻̃i,≻′
−i), c′) ≻i μi, there exists (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci) such that

μi ≻i EDAi(g̃, (≻̃i, ≻̃−i), c̃) = r∗.

Proof. Note that by Lemma 2.6, we only need to construct such a scenario for case πr∗(μ, g) > 0.

Similar as in the proof of Lemma 2.3, we go through a series of steps to show the desired result:

Step 1: We construct a candidate scenario (≻̃−i, c̃−i, g̃−i).

Step 2: We show that (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Step 3: We argue that EDAi(g̃, (≻̃i, ≻̃−i), c̃) = r∗.

Recall that s∗ ∈ S1 is the school that ranks highest on ≻i among all schools in S1. Let j ∈ I be

such that μj = r∗, and let l ∈ I be such that μl = s∗ and gs∗l = πs∗(μ, g). Moreover, consider the set

S̄ = {s′ ∈ SU≻i
s∗ | gs′i > πs′(μ, g)} and denote S̄ = {s1, s2, . . . , sT}. Without loss of generality, let

s1 ≻i s2 ≻i . . . ≻i sT. Since r∗ ∈ SL≻i
s∗ , we know that r∗ /∈ S̄. For each t ∈ {1, ...,T}, denote the

student with the lowest score assigned to st in μ by it and collect all such students in Ī = {i1, . . . , iT}.

Similar to Lemma 2.3, we make a case distinction based on different observations. However, since we

already know that πμi(μ, g) ̸= 0 and πr∗(μ, g) ̸= 0, it suffices to consider different cardinalities of S̄.

Case 1: |S̄| ̸= 1. Step 1: We start with the candidate score structure. Let g̃−i be such that

• g̃μil > g̃μij > g̃μii ; and for any k ∈ μμi \ {i}, g
μi
k > gμil ;

• gs∗i > gs∗l ; and for any k ∈ μs∗ \ {l}, g̃
s∗
k > g̃s∗i ;

• g̃s′ = gs′ for any s′ ∈ S \ {s1, . . . , sT, μi, s
∗}.

Let i0 = iT and sT+1 = s1. In case that S̄ ̸= ∅, for any st ∈ S̄:

• g̃stit−1
> g̃sti > g̃stit ; and for any k ∈ μst \ {it}, g̃

st
k > g̃stit−1

.
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Next, we specify c̃−i such that for all i′ ∈ I\{i} it holds that c̃i′ = 1 and consider preference profile

≻̃−i ∈ P−i:

st ≻̃it st+1 ≻̃it s∅ ≻̃it . . . ∀t ∈ {1, . . . ,T},

s∗ ≻̃l μi ≻̃l s∅ ≻̃l . . . ,

μi ≻̃j r∗ ≻̃j s∅ ≻̃j . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\(̄I ∪ {i, j, l}).

Step 2: It is easily checked that π(μ, (gi, g̃−i)) = π(μ, g). Next, we show that DA leads to

DAi(g̃, (≻i, ≻̃−i)) = s∗,DAj(g̃, (≻i, ≻̃−i)) = r∗,DAl(g̃, (≻i, ≻̃−i)) = μi,DAit(g̃, (≻i, ≻̃−i)) = st+1

for each t ∈ {1, . . . ,T} andDAk(g̃, (≻i, ≻̃−i)) = μk for k ∈ I\(̄I ∪ {i, j, l}).

Consider the corresponding application process of DA under the constructed scenario. For each

student k ∈ I \ (̄I ∪ {i, j, l}), either μk is inU
≻i
s∗ and k is among the top qμk scored students at μk; or

μk is in SL
≻i
s∗ and at most qμk students apply to μk according to (≻i, ≻̃−i). Therefore, at the first step

of the DA process, each such k applies to μk and is finally assigned to μk. Furthermore, the following

students will be tentatively accepted at the first step:

• student j applies to μi,

• student l applies to s∗,

• for all t ∈ {1, . . . ,T}, student it applies to st.

At the first step of the application process, also i applies to her top choice. If i’s top choice is not s1,

let t1 ∈ N be the step in the application process, inwhich i applies to s1. In all the previous steps t < t1,

student i is rejected at each school she proposes to. However, at step t1 student i is tentatively accepted

at s1 and student i1 is rejected. In fact, being initial for student i1 being rejected at s1, student i induces
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a sequence of rejections. This sequence ends in student i being rejected at s1 and for all t ∈ {2, ...,T}

student it is rejected from school st in favor of student it−1 at step t1+ t. Finally at step t1+T, student

iT applies to s1 such that student i gets rejected. In the following steps, only student i makes new

applications until she gets accepted. Precisely, student i proposes to each remaining school in SU≻i
s∗

that she has not yet proposed to and gets immediately rejected at each of these schools. Finally, student

i applies to s∗ and gets accepted in favor of student l. Student l being rejected at s∗ applies now to μi

such that student j gets rejected. Next, j applies to r∗ and gets accepted. Notice that at this step no

student is rejected, the application process ends and the algorithm terminates.

Starting with the final outcome DAi(g̃, (≻i, ≻̃−i)) of the just described process, we now show

that the cycle selection under a TP process ends in the observed matching μ. Since j is permanently

matched in DA(g̃, (≻i, ≻̃−i)) and c̃j = 1, we know that G∗(DA(g̃, (≻i, ≻̃−i))) contains the cycle

γ1 = {il, li} and solving it yields EDA1(g̃, (≻i, ≻̃−i), c̃) = γ1 ◦ DA(g̃, (≻i, ≻̃−i)), where compared

to inDA(g̃, (≻i, ≻̃−i)), only i and l switch their assignments.

Next, since ci = 1 and i is permanently matched to μi in EDA1(g̃, (≻i, ≻̃−i), c̃), whenever S̄ is

non-empty,G∗(EDA1(g̃, (≻i, ≻̃−i), c̃)) contains a unique cycle

γ2 = {iTiT−1, iT−1iT−2, ..., it+1it, ...i2i1, i1iT}

which once solved yields matching μ. Since all students except i and j get their top-choice, and both

i, j are permanently matched, there is no cycle inG∗(μ). Therefore, EDA(g̃, (≻i, ≻̃−i), c̃) = μ.

Step 3: Reviewing the application process above, we getDAi(g̃, (≻̃i, ≻̃−i)) = r∗. Moreover, note

that apart from the students who are matched with school r∗ at DA(g̃, (≻̃i, ≻̃−i)), student j is the

only one who ranks r∗ above s∅ in ≻̃−i. However, notice thatDAj(g̃, (≻̃i, ≻̃−i)) = μi ≻̃j r∗ and thus

school r∗ is underdemanded in DA(g̃, (≻̃i, ≻̃−i)). As a result, i is permanently matched with r∗ at

DA(g̃, (≻̃i, ≻̃−i)), which implies EDAi(g̃, (≻̃i, ≻̃−i), c̃) = r∗. This completes the proof for Case 1.
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Case 2: |S̄| = 1. Step 1: Let g̃−i be such that

• g̃s1l > g̃s1i > g̃s1i1 ; and for all k ∈ μs1 \ {i1}, g̃
s1
k > g̃s1l ;

• g̃μii1 > g̃μij > g̃μii ; and for all k ∈ μμi \ {i}, g̃
μi
k > g̃μii1 ;

• g̃s∗i > g̃s∗i1 > g̃s∗l ; and for all k ∈ μs \ {l}, g̃
s∗
k > g̃s∗i ;

• g̃s′ = gs′ for any s′ ∈ S \ {s1, μi, s
∗}.

Also, let c̃−i be such that for all i′ ∈ I \ {i} it holds that c̃i′ = 1 and consider preference profile

≻̃−i ∈ P−i:

s1 ≻̃i1 s ≻̃i1 μi ≻̃i1 s∅ ≻̃i1 . . . ,

s∗ ≻̃l s1 ≻̃l s∅ ≻̃l . . . ,

μi ≻̃j r∗ ≻̃j s∅ ≻̃j . . . ,

μk ≻̃k s∅ ≻̃k . . . ∀k ∈ I\{i, j, l, i1}.

Step 2 and Step 3: We can resemble the arguments in Step 2 and Step 3 for Case 1 to conclude that

i is worse off by being finally assigned to r∗ in this constructed scenario.

Since the conclusion holds for any observation, any student and any problem, we conclude that

EDA is regret-free truth-telling.

2.D Proof of Proposition 2.2

With a similar technique as in the proof of Proposition 1 in Fernandez (2020), we now show that

any non-truthful report is regretted through the truth at some observation. Throughout the discus-

sion, fix an arbitrary problem (I, S, q, g,≻, c) and fix an arbitrary i ∈ I. We divide the set of possible
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misreports into three exhaustive cases. In each case, we consider an arbitrary misreport≻′
i. We then

construct an observation following ≻′
i such that the truth ≻i would have granted i a weakly better

assignment in any plausible scenario. Moreover, there exists at least one plausible scenario in which

the improvement is strict.

Case 1 Suppose that for≻′
i there exists s ∈ S such that s∅ ≻i s and s ≻′

i s∅. Let i submit≻′
i and

consider the pair (μ, π(μ, g)) such that μi = s and gs′i < πs′(μ, g) for all s′ ∈ SU≻′
is . At first, we show

that μ ∈ M|(≻′
i ,ci) by constructing (≻̃−i, c̃−i, g̃−i) that leads to (μ, π(μ, g)): That is, we show that

(μ, π(μ, g)) is an observation under EDA. Let g̃−i be such that, for each s′ ∈ SU≻′
iμi , each student in μs′

is among the top qs′ ’s scored students at school s′. Let i rank highest on g̃s and suppose that the remain-

ing scores are arbitrary. Let ≻̃−i be such that for each j ∈ I \ {i}, ≻̃j only ranks μj as acceptable and

suppose that c̃ = c. Apparently, we have π(μ, (gi, g̃−i)) = π(μ, g) and EDA(g̃, (≻′
i, ≻̃−i), c̃) = μ.

Thus, μ ∈ M|(≻′
i ,ci).

It remains to be shown that student i regrets ≻′
i through the truth ≻i. Note that since EDA is

individually rational, it holds thatEDAi(g̃, (≻i, ≻̃−i), c̃) ⪰i s∅ for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Since s∅ ≻i s, student i thus regrets≻′
i through the truth at (μ, π(μ, g)).

Case 2 Let for ≻′
i exist s ∈ S such that s∅ ≻′

i s and s ≻i s∅. Suppose i submits ≻′
i and consider

(μ, π(μ, g)) such that μi = s∅, πs(μ, g) = 0 and gs′i < πs′(μ, g) for all s′ ∈ SU≻′
is∅ . Notably, by doing

the same construction (≻̃−i, c̃−i, g̃−i) as in Case 1, we can infer μ ∈ M|(≻′
i ,ci).

It remains to be shown that student i regrets≻′
i through the truth≻i. To see this, note that since

EDA is non-wasteful, it holds that EDAi(g̃, (≻i, ≻̃−i), c̃) = s for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci).

Since s ≻i s∅, student i thus regrets≻′
i through the truth at (μ, π(μ, g)).

Case 3 In this last case consider≻′
i which only contains permutations in the acceptable and unac-

ceptable set, i.e., Ai(≻′
i) = Ai(≻i) andUi(≻′

i) = Ui(≻i).
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The following labeling for any≻′′
i ∈ P in the acceptable set Ai(≻′′

i ) ensures that a school’s index

corresponds to its position in≻′′
i . Precisely, we denote s′′1 as the≻′′

i -maximal element on Ai,1(≻′′
i ) =

Ai(≻′′
i ) and s′′2 as the≻′′

i -maximal element on Ai,2(≻′′
i ) = Ai,1(≻′′

i ) \ {s′′1 }, and so forth.

Now suppose that |Ai(≻i)| = N ∈ N is the number of acceptable schools under true preferences

of student i and consider a permutation≻′
i as described above. Since≻′

i is a permutation, there exists

n∗ = argmin
n

{n ≤ N | s′n ̸= sn}.

Next, let student i observe (μ, π(μ, g)) such that μi = s′n∗ , πsn∗ (μ, g) = 0 and gs′i < πs′(μ, g)

for all s′ ∈ UC≻′
i

s′n∗
. Again, by doing the same construction (≻̃−i, c̃−i, g̃−i) as in Case 1, we can infer

μ ∈ M|(≻′
i ,ci).

It remains to be shown that student i regrets≻′
i through the truth≻i. Since sn∗ has capacity left,

this allows us to conclude that if iwouldhave reported≻i then, for any (≻̃−i, c̃−i, g̃−i) ∈ I(μ,≻i, ci),

student iwould have beenmatched to sn∗ . Since sn∗ ≻i s′n∗ , we conclude that i regrets≻′
i through≻i

at (μ, π(μ, g)). This completes the proof. □
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3
Optimal Sequential Implementation∗

We introduce anoptimality notion for sequential implementations ofmatching rules in priority-based

matching problems. An optimal sequential implementation (1) complies with obvious dominance

(Li, 2017) whenever possible and (2) does not elicit more information about preferences from agents

than necessary to determine the outcome. We show that optimal sequential implementations of a

strategy-proof rule are obviously strategy-proof (OSP) when that rule is OSP-implementable. As a

promising solution in providing incentives for truth-telling, we derive an optimal implementation

∗This chapter is based on Chen andWestkamp (2021). For their insightful discussions and suggestions, we
are grateful to Christoph Schottmüller, MarkusMöller andMarius Gramb. This work has also benefited from
the comments made by the seminar participants at the University of Cologne and the University of Bonn.
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of Top Trading Cycles (TTC) that exists even when OSP-implementations of TTC are unavailable.

We further introduce a weaker notion of optimality that imposes no restriction on the amount of in-

formation elicited through decisions in which truthful revelations are obviously dominant. Finally,

we introduce a weakly optimal implementation of Deferred Acceptance which exists generally.

3.1 Introduction

Many public school choice procedures and entry-level labor markets use a central clearinghouse to

match agents to resources. To achieve desirable outcomes in the presence of strategic agents, clear-

inghouses are often based on strategy-proof matching rules, in which truthful behaviors are weakly

dominant for agents. Unfortunately, although advised to report their true preferences, agents are

routinely observed tomisreport both in experiments (Chen and Sönmez, 2002, 2006; Pais and Pintér,

2008) and in the field (Hassidim et al., 2016; Shorrer and Sóvágó, 2018; Rees-Jones, 2018) in static

implementations of strategy-proof matching rules.1

Tomake the incentives provided by strategy-proof rules more apparent, Li (2017) proposes imple-

mentations via sequential revelation games that are obviously strategy-proof (OSP). Loosely speaking,

a game is OSP if acting truthfully is an obviously dominant strategy for each agent and at each stage

she plays in that game, and a strategy is obviously dominant if based on the information elicited so

far, the worst-case outcome under that strategy is weakly better than the best-case outcome under any

deviation. Li (2017) shows that the strategic simplicity of OSP-implementations can be recognized

by agents even without contingent reasoning, and such implementations lead to more truthful pref-

erence revelations in the lab.

Despite their appealing incentiveproperties,OSP-implementationsofpopular strategy-proof rules,

1An implementation of a rule implements that rule under truthful behaviors: For any preference profile,
when agents act truthfully, it always results in the unique outcome consistent with the allocation that rule
assigns to that profile.
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such as Top Trading Cycles (TTC) and Deferred Acceptance (DA), only exist when priorities satisfy

stringent acyclicity conditions that rarely hold in practice (Troyan, 2019; Thomas, 2021). Notably,

while a number of papers study how to achieve OSP in various frameworks, few of them ask what is

the “next best thing” when it is impossible to implement a strategy-proof rule in obviously dominant

strategies. This chapter aims at an answer to this question.

To this end, we employ a standard priority-based allocation problem without monetary transfers

anduse obvious dominance as a guidingprinciple to develop anoptimality notionof implementations

that exists even whenOSP-implementations are absent. In particular, a sequential implementation of

a matching rule is optimal if it satisfies the following two conditions: First, whenever it is obviously

dominant for an agent to truthfully reveal certain information about her preferences, such decision is

prioritized in picking over decisions in which truthful revelations are not obviously dominant. Sec-

ond, it elicits no more than the minimal amount of information necessary to unambiguously deter-

mine the outcome under that rule. Intuitively, one can break down the revelation of preferences into

a set of small decisions. Each time an agent reveals some information about her preferences, she essen-

tially makes a subset of those small decisions.2 From the perspective of obvious strategy-proofness,

it is natural to expect that an agent may make mistakes in each such small decision once it is not ob-

viously dominant. Therefore, our notion of optimality reaches the extreme in the sense of avoiding

mistakes.

We show that whenever a rule can be implemented in obviously dominant strategies, any optimal

implementation of that rule is also OSP (Proposition 3.2). Moreover, in this case, our concept refers

to the set of OSP-implementations in which revelations are efficient. On the contrary, when OSP-

implementations are impossible, our concept provides a solution that incentivizes agents to behave

truthfully from the perspective ofminimizingmistakes fromcognitively limited agents. Consider that

2For instance, for any agent, each such small decision can be a revelation of how she ranks two given objects.
Accordingly, if an agent reveals that an object is her top choice, she essentiallymakes a set of small decisions each
of which reveals that she prefers that object to some other object.
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an agent reports an object to be her top choice through a preference revelation. Then, that preference

revelation is obviously dominant for that agent if and only if she will secure that object through the

underlying revelation (Proposition 3.1).3

The first main result of this chapter shows how to construct an optimal implementation of TTC.

Notably, our proposed implementation exists in all problems under consideration (Theorem 3.1). It

turns out that our two conditions of optimality might sometimes be incompatible in DA implemen-

tations, and this is essentially caused by the tentative nature of acceptances inDA.Reacting to such an

incompatibility, we develop a weaker optimality notion which loosens the second condition by only

minimizing the amount of information elicited through non-obviously dominant revelations. It is

worth noting that Proposition 3.2 still holds with this weaker notion. At last, we classify the objects

which an agent can secure during DA implementations (Proposition 3.3) and introduce a weakly op-

timal implementation for DA that exists generally (Conjecture 3.1). Our proposals for TTC andDA

contribute to the design of practical implementations of these rules that aims at maximizing the rate

of truthful preference revelations.

RelatedLiterature This chapter belongs to the growing lineof research that relates toLi (2017)’s

obvious strategy-proofness. Pycia and Troyan (2021) introduce a family of simplicity standards and

characterize simple mechanisms in broad domains under their richness assumption. In terms of ob-

vious strategy-proofness, they introducemillipede games that characterize general OSP mechanisms

without monetary transfers. Troyan (2019) focuses on TTC and characterizes all priorities that en-

sure TTC to be implementable in obviously dominant strategies. Ashlagi and Gonczarowski (2018)

show that stablemechanisms (includingDA) are onlyOSP-implementable in very restrictive environ-

ments, and Thomas (2021) follows their study characterizing all such environments that make DA

OSP-implementable. Bade andGonczarowski (2016) studyOSP-implementations of Pareto-efficient
3Specifically, this result relates closely to Pycia andTroyan (2021)’s characterization aboutOSPmechanisms

without transfers. A detailed discussion will be presented in the main text.
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social choice rules in various domains. The present chapter complements prior works on OSPmech-

anisms since we provide solutions to problems where OSP mechanisms are absent.4

Ourwork also relates to the broader literature that considers sequential implementations ofmatch-

ing rules. From the theoretical perspective, the closest paper to ours in this class is Bó and Hakimov

(2020b), who propose the family of pick-an-object (PAO) mechanisms, in which agents are asked to

choose their favorites from individualized menus of available objects. They show that both DA and

TTCcanbe implemented via PAOmechanisms in robust truthful Bayesian equilibria. Notably, while

our concept of optimal implementations has the same equilibriumproperty as PAOmechanisms, our

focus is different sincewe aim at finding themost obvious implementations. Bó andHakimov (2020a)

andKlijn et al. (2019) conduct experimental research, suggesting that compared to static implementa-

tions of strategy-proof rules, sequential counterparts result in higher rates of truth-telling. Moreover,

there are studies that evaluate various practical applications of sequential matching rules (Gong and

Liang, 2016; Chen and Kesten, 2017; Dur et al., 2018; Bo and Hakimov, 2019; Haeringer and Iehlé,

2019; Grenet et al., 2019).

Our paper also contributes to the literature exploring information efficiency in matching. Immor-

lica et al. (2020) introduce regret-free stability which requires both a stable outcome and efficient in-

formation revelations. They show that nomechanism is regret-free stable and introduce amechanism

that yields approximately regret-free stable outcomes. Similar to their work, we also set amodel where

information communication is not costly. However, while they concentrate on a specific stochastic

model of preferences, we consider a setting that is more general. Other papers study information ef-

ficiency in matching problems where information communication is costly (Nisan and Segal, 2006;

Gonczarowski et al., 2019; Ashlagi et al., 2020).

Besides those already discussed, there is an increasing number of studies proposing innovative con-

4See also Zhang and Levin (2017), Mackenzie (2020) and Troyan and Morrill (2020) that introduce new
concepts that closely relate to obvious strategy-proofness.

60



cepts that apply to sequential mechanisms. Börgers and Li (2019) introduce a notion of simplicity on

mechanisms which guarantees that agents can recognize the optimal strategies with their first-order

beliefs on others’ preferences. The key difference to our work is that our setting does not take beliefs

into consideration. Furthermore, Akbarpour and Li (2020) classify credible mechanisms to which

authorities have commitment power. Hakimov and Raghavan (2020) investigate the transparency of

a mechanismwhich requires any deviation from that mechanism to be detected by agents. Both cred-

ibility and transparency indicate the benefits of sequential mechanisms in views different from our

incentive considerations.

The remainder of this chapter is organized as follows. Section 3.2 presents the basicmodel. Section

3.3 formally defines an optimal sequential implementation. While Section 3.4 provides the applica-

tion to TTC, Section 3.5 defines the weaker version of optimality and presents our results on DA.

Section 3.6 concludes.

3.2 Model

We consider a standard priority-based allocation problem without monetary transfers. Formally, a

priority-based allocation problem without transfers, problem from now on, is described by a quadru-

ple (I,O,▷O,⪰), where

• I is a finite set of agents,

• O is a finite set of indivisible objects,

• ▷O = (▷o)o∈O is a priority structure, where for each o ∈ O,▷o is a strict priority ordering of

I ∪ {o}, and

• ⪰= (⪰i)i∈I is a preference profile, where for each i ∈ I, ⪰i is a strict preference ranking of

O ∪ {i}.
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For the remainder of this chapter, we fix the set of agents I, the set of objects O and the priority

structure ▷O. Hence, problems are parameterized by agents’ preferences. For agent i ∈ I, let Pi

denote the set of possible preferences, and let P = (Pi)i∈I denote the set of all possible preference

profiles. Given some preference profile ⪰∈ P and some I′ ⊆ I, let ⪰I′= (⪰i)i∈I′ denote the pref-

erences of agents in I′, and let −I′ denote the set I \ I′. Moreover, given some preference relation

⪰i∈ Pi, some subset O′ ⊆ O ∪ {i}, and some integer k, let topk(⪰i |O′) ∈ O ∪ {i} denote the kth

most preferred option amongO′ according to⪰i.

Amatching is a function μ : I → O∪ I such that |μ−1(o)| ≤ 1 for each o ∈ O and μ(i) ∈ O∪{i}

for each i ∈ I. Denote the set of all matchings byM. A rulemaps preference profiles intomatchings,

i.e., a matching rule is a mapping f : P → M. Given some ⪰∈ P and some i ∈ I, f(⪰) is the

matching chosen by f for⪰ and fi(⪰) is i’s match (∈ O ∪ {i}).

A matching rule f is said to be strategy-proof if fi(⪰i,⪰−i) ⪰i fi(⪰′
i,⪰−i) for all i ∈ I, all

⪰i,⪰′
i∈ Pi and all ⪰−i∈ P−i. In words, a matching rule f is strategy-proof when submitting the

true preferences is a weakly dominant strategy for all agents.

3.2.1 Preliminaries

In this subsection, we introduce key concepts for the development of optimal sequential implemen-

tations. First, we formally introduce “decisions” for the agents and distinguish between those that are

obvious and those that are not. Fix any P̃ ⊆ P .

Definition 3.1. 1. A decision by i ∈ I at P̃ is a non-trivial partition P̃i of P̃i.5

2. Decision P̃i is obvious for i at P̃ if, for any pair ⪰i,⪰′
i∈ P̃i such that ⪰i and ⪰′

i belong to

5That is, P̃i = (P̃1
i , . . . , P̃M

i ) is a disjoint partition of P̃i such that P̃m
i ̸= ∅ for allm ≤ M andM ≥ 2.
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different elements of P̃i, we have that

min
⪰−i∈P̃−i

fi(⪰i,⪰−i) ⪰i max
⪰−i∈P̃−i

fi(⪰′
i,⪰−i), (3.1)

where min and max refer to the worst and best possible outcome with respect to ⪰i, respec-

tively.

Asking agent i ∈ I to take a decision at P̃ in the sense of Definition 3.1 means asking her to reveal

additional information about her preferences. The notion of an obvious decision P̃i is inspired by

the notion of obvious strategy-proofness due to Li (2017). The requirement here is that if i’s true

preferences are given by ⪰i∈ P̃i, then the worst thing that could happen to i when she truthfully

chooses the element of P̃i that contains⪰i is no worse than the best thing that could happen to her if

she chooses any other element of P̃i.

Finally, we introduce some further notation that will be used in our construction of optimal se-

quential implementations in the next section and that will also enable us to provide a general charac-

terization of obvious decisions. Given some agent i ∈ I and a matching rule f, let

Oi(P̃, f) = {o ∈ O ∪ {i} : fi(⪰) = o for some ⪰∈ P̃}.

Let

Si(P̃, f) = {o ∈ O : fi(⪰) = o for all ⪰∈ P̃ such that top(⪰i |Oi(P̃,f)) = o}6

be the (possibly) empty set of objects that i can secure by ranking themfirst among objects inOi(P̃, f).

We call each object in Si(P̃, f) a secure object for i at P̃ . Clearly, we have that Si(P̃, f) ⊆ Oi(P̃, f). For

any o ∈ Oi(P̃, f), let P̃o
i be the set of all possible preference relations for i in P̃i that have o as their top

6In the following discussion, we omit the subscript in top1(⪰i |Oi(P̃,f)) = o when we refer to the object
which ranks first amongOi(P̃, f) on⪰i.
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choice amongOi(P̃, f), i.e.

P̃o
i = {⪰i∈ P̃i : top(⪰i |Oi(P̃,f)) = o}.

For any O′ ⊆ Oi(P̃, f), let P̃O′
i = ∪o∈O′P̃o

i . We are now ready to state and prove a characterization

of obvious decisions in our setting. Specifically, this result is closely related to the characterization of

OSP mechanisms without transfers in Pycia and Troyan (2021).

Proposition 3.1. Let f be a strategy-proof matching rule, i ∈ I be arbitrary, and P̃i be such that, for all

o ∈ Oi(P̃, f) where |Oi(P̃, f)| ≥ 2, if there exists⪰i∈ P̃i for which top(⪰i |Oi(P̃,f)) = o, then there

exists⪰′
i∈ P̃i for which top2(⪰′

i |Oi(P̃,f)) = o. The decision Pi = (P̃ t
i )t⊆Oi(P̃,f) is obvious for i at P̃ if

and only if there exists a t such that P̃Oi(P̃,f)\Si(P̃,f)
i ⊆ P̃ t

i .

Proof. Let Si(P̃, f) = {o1, . . . , oM} for someM ≥ 0 (where, obviously, Si(P̃, f) = ∅ ifM = 0).

We argue first that P∗
i = (P̃o1

i , . . . , P̃
oM
i , P̃Oi(P̃,f)\Si(P̃,f)

i ) is an obvious decision for i. Let⪰i∈ P̃i

be arbitrary. We distinguish two cases:

• Case 1: top(⪰i |Oi(P̃,f)) = om for somem ≥ 1.

By definition of Si(P̃, f), we have that fi(⪰i,⪰−i) = om for all⪰−i∈ P̃−i. Hence, Eq. 3.1 is

satisfied.

• Case 2: top(⪰i |Oi(P̃,f)) ∈ Oi(P̃, f) \ Si(P̃, f).

Given the structure of the decision P∗
i , any possible deviation for i is a preference relation⪰′

i

such that top(⪰′
i |Oi(P̃,f)) = om for some m ≥ 1. By definition of Si(P̃, f), we have that

fi(⪰′
i,⪰−i) = om for all⪰−i∈ P̃−i.

Hence, if Proposition 3.1 were not true, there would exist ⪰′
−i∈ P̃−i which satisfies that

om ≻i fi(⪰i,⪰′
−i). Nowfix some⪰′

i∈ P̃om
i . By construction, we have that om = fi(⪰′

i,⪰′
−i).

But then, f cannot be strategy-proof. This contradiction completes the proof in Case 2.
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Next, we argue that if P̃i = (P̃ t
i )t is obvious, then there exists a t such that P̃

Oi(P̃,f)\Si(P̃,f)
i ⊆ P̃ t

i .

Let⪰i,⪰′
i∈ P̃Oi(P̃,f)\Si(P̃,f)

i be arbitrary. We argue that these two preference relations have to belong

to the same element of P̃i in order for the decision to be obvious for i. We again distinguish two cases.

• Case 1: top(⪰i |Oi(P̃,f)) = top(⪰′
i |Oi(P̃,f)).

Let o = top(⪰i |Oi(P̃,f)). Since o ∈ Oi(P̃, f) \ Si(P̃, f), there exists ⪰1
−i∈ P̃−i such that

fi(⪰i,⪰1
−i) ̸= o.

We claim that there is some ⪰2
−i∈ P̃−i such that fi(⪰′

i,⪰2
−i) = o: By the assumption that

o ∈ Oi(P̃, f), there exist ⪰2∈ P̃ such that fi(⪰2) = o; by strategy-proofness of f, we must

have o = fi(⪰′
i,⪰2

−i).

Hence, P̃i cannot be obvious if⪰i and⪰′
i belong to different elements of the partition.

• Case 2: top(⪰i |Oi(P̃,f)) ̸= top(⪰′
i |Oi(P̃,f)).

Let o = top(⪰i |Oi(P̃,f)) and p = top(⪰′
i |Oi(P̃,f)). By our assumption about P̃i, there exists a

preference relation⪰′′
i such that o ≻′′

i p ≻′′
i q for all q ∈ Oi(P̃, f). By our arguments in Case

1, there must exist a t such that {⪰i,⪰′′
i } ⊆ P̃ t

i .

Assume first that there exists some ⪰1
−i∈ P̃−i such that fi(⪰′′

i ,⪰1
−i) = p is true. Since

p ∈ Oi(P̃, f) \ Si(P̃, f), there exists ⪰2
−i∈ P̃−i such that fi(⪰′

i,⪰2
−i) ̸= p. Hence, in or-

der for P̃i to be obvious for i, we must have⪰′
i∈ P̃ t

i .

Next, assume fi(⪰′′
i ,⪰−i) ̸= p for all⪰−i∈ P̃−i. Since o ∈ Oi(P̃, f) \ Si(P̃, f), there exists

⪰1
−i∈ P̃−i such that fi(⪰′′

i ,⪰1
−i) ̸= o. In the case which we consider here, we must have that

fi(⪰′′
i ,⪰1

−i) ̸= p as well. Since p ∈ Oi(P̃, f), there is⪰2
−i∈ P̃−i such that fi(⪰′

i,⪰2
−i) = p.

Hence, in order for P̃i to be obvious for i, we must again have⪰′
i∈ P̃ t

i .
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Notably, the above proof allows us to conclude the following result that turns out to be useful in

the following sections.

Corollary 3.1. Let f be a strategy-proof matching rule and let i ∈ I, o ∈ O and P̃ be arbitrary. If

o ∈ Si(P̃, f), then for any P̂ ⊆ P̃ such that top(⪰i |Oi(P̂,f)) = o for some ⪰i∈ P̂i, it holds that

o ∈ Si(P̂, f).

Pycia and Troyan (2021) characterize that any OSP mechanism without transfers can be inter-

preted as a “millipede game” where each obvious decision comprises several “clinching” options and

a “passing” option. Concretely, a “clinching” option ensures the player to get certain outcomes, and

the “passing” option allows the player to wait for better outcomes while keeping all outcomes in the

“clinching” option still open for that player. The decision P∗
i = (P̃o1

i , . . . , P̃
oM
i , P̃Oi(P̃,f)\Si(P̃,f)

i )

discussed in the above proof provides the same guarantees. That is, each of {P̃o1
i , . . . , P̃

oM
i } can be

regarded as a “clinching” option and P̃Oi(P̃,f)\Si(P̃,f)
i can be recognized as the “passing” option. As

shown in the proof, if i chooses any of {P̃o1
i , . . . , P̃

oM
i }, she is assigned to her top choice for sure.

Moreover, according to Corollary 3.1, if i chooses P̃Oi(P̃,f)\Si(P̃,f)
i , she can get back to objects in

Si(P, f) anytime when the more preferred objects inOi(P̃, f) \ Si(P̃, f) are no longer available.

An immediate implication of Proposition 3.1 is that for each agent, the existence of secure objects

is necessary and sufficient for the existence of obvious decisions.

Corollary 3.2. Let f be a strategy-proof matching rule, let i ∈ I be arbitrary, and P̃i be such that, for

all o ∈ Oi(P̃, f) where |Oi(P̃, f)| ≥ 2, if there exists ⪰i∈ P̃i for which top(⪰i |Oi(P̃,f)) = o, then

there exists⪰′
i∈ P̃i for which top2(⪰′

i |Oi(P̃,f)) = o. There is an obvious decision for i at P̃ if and only

if Si(P̃, f) ̸= ∅.
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3.3 Optimal sequential implementation

In this section, we develop a notion of optimality for extensive-form implementations of a given rule.

We start by formally introducing the types of sequential revelation games thatwe consider in this chap-

ter. The definition is identical to that in Ashlagi and Gonczarowski (2018), which in turn provided

a more concise reformulation of the general extensive-form revelation games considered by Li (2017)

that applies to matching markets.

Definition 3.2. An extensive-formrevelation gamewith perfect informationΓ is aquadruple (R, τ, π, φ),

where

1. R is a rooted game tree

(a) r is the root node ofR

(b) N(R) is the set of non-terminal nodes ofR, where r ∈ N(R)

(c) L(R) is the set of terminal nodes ofR

(d) E(R) = {E(n)}n∈N(R) is the set of edges ofR, whereE(n) is the set of edges originating

from non-terminal node n; given any edge e ∈ E(R), we denote the origin node of e by

n(e)

2. τ : L(R) → Mmaps terminal nodes to matchings

3. π : N(R) → Imaps non-terminal nodes to agents

4. φ = (φn)n∈N(R), where for each n ∈ N(R), φn : E(n) → 2Pπ(n) \ {∅}maps edges to sets of

preference relations for agent π(n) such that:

(a) for any two distinct e, e′ ∈ E(n), φn(e) ∩ φn(e
′) = ∅, and
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(b) if e∗ is the first edge along the path from n back to the root r such that π(n(e∗)) = π(n),

then∪e∈E(n)φ(e) = φ(e∗); if no such edge exists, then ∪e∈E(n)φ(e) = Pπ(n).

For the following discussion, fix an extensive-form revelation game Γ = (R, τ, π, φ). For each

n ∈ N(R) ∪ L(R), let Pn(Γ) ⊆ P be the set of remaining preference profiles upon reaching n, i.e.

for each i ∈ I,Pn
i (Γ) = φ(ei)where ei is themost recent edge along thepathback fromn to r such that

π(n(ei)) = i (andPn
i (Γ) = Pi if no such edge exists). For eachn ∈ N(R), letPn(Γ) = (φn(e))e∈E(n)

be the decision (in the sense of Definition 3.1) facing agent π(n), and let Γn be the sub-game of Γ such

that n is the root node of Γn. Note that Definition 3.2 implies PΓ ≡ (P l(Γ))l∈L(R) is a partition of

P . The next definition introduces a key property of Γ and PΓ.

Definition 3.3. An extensive-form revelation game Γ is an implementation of f if, for all l ∈ L(R)

and all pairs⪰,⪰′∈ P l(Γ), f(⪰) = f(⪰′).

Note that if Γ is an implementation of f, then if agents always act truthfully, Γ is guaranteed to

always elicit enough information from agents in order to implement f. We nowmake this precise. Fix

an agent i, and denote the nodes where i plays in Γ byNi(Γ) = {n ∈ N(R) : π(n) = i}. A strategy

for i in Γ is a function si : Ni(Γ) × Pi → E(R) such that si(n,⪰i) ∈ E(n) for all n ∈ Ni(Γ) and

⪰i∈ Pi. We say that strategy si is truthful, if it always chooses edges that correspond to the agent’s true

preferences, that is, for any⪰i∈ Pi and any n ∈ Ni(Γ) such that⪰i∈ ∪e∈E(n)φn(e), si(n,⪰i) = e⪰i

where e⪰i ∈ E(n) is the unique edge such that⪰i∈ φn(e
⪰i). Given some truthful strategy-profile s

and a preference profile ⪰∈ P , let s(⪰) ≡ s(·,⪰) and let l(s(⪰)) be the terminal node of Γ that is

reached when agents play according to s(⪰). If Γ is an implementation of f, then f(⪰′) = f(⪰) for

all⪰′∈ P l(s(⪰))(Γ).

The idea behind Definition 3.3 is that PΓ always collects enough information from the agents in

order to unambiguously determine the outcome under f. Hence, if agents always act truthfully in the
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sense that they choose the actions that correspond to their true preferences, then for each⪰∈ P , the

outcome chosen via Γ will coincide with f(⪰).

Definition 3.4 (Li (2017)). A rule f is OSP-implementable if there exists an implementation Γ of f

such that for each non-terminal node n ∈ N(R) in Γ, Pn(Γ) is obvious for π(n) atPn(Γ).7

Note that all the concepts that were introduced so far apply equally well to any sub-domainPn(Γ),

wheren ∈ N(R), that can be generated via Γ. In particular, we can define an extensive-form revelation

game Γ′ on any P̃ ⊂ P . We say that Γ′ is an implementation of f on P̃ ⊂ P if PΓ′ is a partition of P̃

and for each⪰∈ P̃ , the outcome chosen via Γ′ under agents’ truthful strategies is f(⪰). We are now

ready to define our notion of an optimal implementation of f.

Definition 3.5. The extensive-form revelation game Γ∗ = (R∗, τ∗, π∗, φ∗) is an optimal implemen-

tation of f if

1. Γ∗ is an implementation of f,

2. for all n ∈ N(R∗),

(a) if Pn(Γ∗) is not obvious, then there is no obvious decision atPn(Γ∗), and

(b) there is no implementation Γ′ of f onPn(Γ) such that PΓ′ is coarser than PΓ∗n .

As already mentioned in introduction, popular strategy-proof rules are not OSP-implementable

in general. Nevertheless, it is often possible to elicit at least partial information about an agent’s pref-

erences via obvious decisions. For example, if, as is true for most mechanisms that are studied in the

literature, an agent is guaranteed to be matched to an object o when she ranks it first and she has the

highest priority for it, then a decisionwhich asks the agent to reveal whether her top choice is o or some

7Note that if all decisions an agent made in Γ are obvious, then the truthful strategy is obviously dominant
for that agent in Γ. Therefore, our definition of OSP-implementability is equivalent to that in Li (2017).
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other object is obvious. More generally, we can break the revelation of a preference ⪰i into a finite

sequence of decisions each of which asks the agent to reveal partial information about⪰i. From the

perspective of obvious strategy-proofness, it is natural to expect that agents may make mistakes each

time they are asked to reveal more about their preferences. Definition 3.5 therefore requires optimal

implementations to minimize the amount of information that they collect from agents. In Appendix

3.B, we present two examples that describe the types of information (elicited by some non-obvious

decisions) which are usually avoided by optimal implementations.

In order to motivate Definition 3.5, we first relate it to OSP-implementability via the following

proposition.

Proposition 3.2. If f is OSP-implementable, then, for any optimal implementationΓ∗ of f, all decisions

are obvious.

Proof. Since f is OSP-implementable, we can find an implementation Γ = (R, τ, π, φ) of fwhere all

decisions are obvious. Now, select any optimal implementation Γ∗ = (R∗, τ∗, π∗, φ∗) of f and select

any non-terminal node n∗ ∈ N(R∗). To reach the desired result, we show that we can always find an

obvious decision for some agent atPn∗(Γ∗) ⊆ P .

Since Pr(Γ) = P , this ensures us to find (at least) a node n′ ∈ N(R) ∪ L(R) in Γ such that

Pn∗(Γ∗) ⊆ Pn′(Γ). Specifically, let n be the last such node in Γ. That is, either n ∈ L(R), or for

each immediate successor ñ of n in R, Pn∗(Γ∗) ⊆ P ñ(Γ) does not hold. Note that we might find

multiple such nodes in Γ, and it is sufficient to focus on an arbitrary one. In the remaining proof, we

distinguish three cases based on the properties of n.

• Case 1: n ∈ L(R).

Since Γ implements f, then f(⪰) = f(⪰′) for any ⪰,⪰′∈ Pn(Γ). However, note that since

Pn∗(Γ∗) ⊆ Pn(Γ) and n∗ is a non-terminal node in Γ∗, by eliminating all the decisions made

in Γ∗n while keeping all other decisions the same as in Γ∗, we get an implementation of f that
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induces a coarser partition than that induced by Γ∗. We can then infer that Γ∗ fails to satisfy

condition 2.(b) of Definition 3.5, which contradicts to Γ∗ being an optimal implementation

of f. Thus, we have n /∈ L(R).

• Case 2: n ∈ N(R) and Pn∗
π(n)(Γ

∗) = Pn
π(n)(Γ).

Let π(n) = i. Recall that Γ provides i with an obvious decision at n. According to Corollary

3.2, it must be true that Si(Pn(Γ), f) ̸= ∅. Next, as state in Corollary 3.1, all secure objects

for an agent will remain secure for her until she is assigned. Therefore, Pn∗
i (Γ∗) = Pn

i (Γ)

andPn∗
−i(Γ∗) ⊆ Pn

−i(Γ) jointly indicate Si(Pn(Γ), f) ⊆ Si(Pn∗(Γ∗), f). Since this shows that

Si(Pn∗(Γ∗), f) is non-empty, we conclude by Corollary 3.2 that there is an obvious decision

for i atPn∗(Γ∗).

• Case 3: n ∈ N(R) and Pn∗
π(n)(Γ

∗) ⊂ Pn
π(n)(Γ).

Again let π(n) = i. First, by the selection of n, we can find at least two immediate successors

n1, n2 ofn in Γ such thatPn∗
i (Γ∗)∩P ñ

i (Γ) ̸= ∅ for each ñ ∈ {n1, n2}. Next, since Γ provides i

with an obvious decision at n, by Proposition 3.1, there exists exactly one immediate successor

n′ of n in Γ such that⪰′
i∈ Pn′

i (Γ) if top(⪰′
i |Oi(Pn

i (Γ),f)) ∈ Oi(Pn
i (Γ), f) \ Si(Pn

i (Γ), f). Let

ñ ∈ {n1, n2} \ {n′} be arbitrary and fix any ⪰∈ Pn∗
i (Γ∗) ∩ P ñ

i (Γ), then it must hold that

top(⪰ |Oi(Pn(Γ),f)) ∈ Si(Pn(Γ), f). Let top(⪰ |Oi(Pn(Γ),f)) = o.

At last, we show that o is secure for i at Pn∗(Γ∗). Since o is secure for i at Pn(Γ), it holds that

fi(⪰) = o and thus o ∈ Oi(Pn∗(Γ∗), f). Moreover, since Pn∗
−i(Γ∗) ⊆ Pn

−i(Γ), it follows that

Oi(Pn∗(Γ∗), f) ⊆ Oi(Pn(Γ), f). We can then infer that top(⪰ |Oi(Pn∗ (Γ∗),f)) = o. Therefore,

we know byCorollary 3.1 that o ∈ Si(Pn∗(Γ∗), f) and thus Si(Pn∗(Γ∗), f) is non-empty. As a

result, we can again concludebyCorollary 3.2 that there is anobvious decision for i atPn∗(Γ∗).
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For our purpose, it will prove useful to focus on a specific class of possible implementations of a

given matching rule that we define next.

Definition 3.6. Let Γ = (R, τ, π, φ) be an implementation of f. Then, Γ only asks about top choices

if, for all n ∈ N(R), if top(⪰π(n) |Oπ(n)(Pn(Γ),f)) = top(⪰′
π(n) |Oπ(n)(Pn(Γ),f)) for two preferences

⪰π(n),⪰′
π(n)∈ Pn

π(n)(Γ), then ⪰π(n) and ⪰′
π(n) belong to the same cell of the partition induced by

Pn(Γ).

In following sections, we introduce implementations of different strategy-proof rules that only ask

about top choices. We focus on two well-studied strategy-proof rules: the top trading cycle (TTC)

and the agent-proposing deferred acceptance (DA).8 Aside from their popularity, the key driver of

our choice of TTC and DA is that both rules are found to be not OSP-implementable in general (Li,

2017; Ashlagi and Gonczarowski, 2018; Troyan, 2019). In this sense, our upcoming proposals are

promising solutions to markets where OSP-implementation of TTC or DA is absent.

3.4 Optimal implementation of TTC

We now introduce a sequential revelation game with perfect information, denoted by ΓT, that imple-

ments TTC under truthful behavior. At each point in the game there is a set of remaining agents I, a

set of remaining objects O and a directed path G on node set I. We say that a remaining agent i ∈ I

owns a remaining object o ∈ O at I if i has the highest priority on ▷o among all agents in I. At the

start of ΓT, let I andO be the same as in the original problem and letG be empty. The triple (I,O,G)

is updated as follows.

8Since the formal definitions ofTTCand agent-proposingDAare familiar tomost readers, we relegate them
to Appendix 3.A
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Stage 1: For each agent i ∈ I, let

Ii = {i} ∪ {k ∈ I : there exists a path from k to i inG}

and let

Si = {i} ∪ {o ∈ O : there exists k ∈ Ii who owns o at I}.

Ask each agent i ∈ I to reveal whether her top choice out of the set O ∪ {i} is in O \ Si or

which one of the objects in Si.9

Once one such i reveals her top choice to be some o∗ ∈ Si, let i point to the agent who owns

o∗ at I in G and move to Stage 2. If each such i reveals her top choice to be in O \ Si, move to

Stage 3.

Stage 2: There is a directed cycle C inG. Ask each agent involved in C to further specify her top choice

among the objects owned by the agent she points to in C. Assign all these agents to their re-

ported top choices, remove them from I and O respectively, update G accordingly and move

back to Stage 1.

Stage 3: IfG is non-empty, select the agent i inGwho does not have an outgoing edge; otherwise, let i

be the smallest indexed agent among those who own most objects at I.10 Then, ask i to reveal

the agent k ∈ Iwho owns her top choice at I, add the edge ik toG and move back to Stage 1.

The game terminates when O or I becomes empty. After termination, ΓT yields the matching that

comprises the assignments made in all nodes where Stage 2 is reached.

According to Proposition 3.1, all decisions in Stage 1 are obvious since for any agent i ∈ I, the set

Si contains all objects that she could secure by reporting as favorite. The same also applies to Stage
9We assume that repeated decisions are avoided. That is, i is asked tomake such a revelation in Stage 1 if and

only if compared to last time the game reaches i in Stage 1, the set Si orO has changed.
10That is, we always select the smallest indexed agent i from those agents k for whom |Sk| is maximal among

all agents in I.
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2, since in Stage 2 agents get whatever they reveal as top choices. The decisions in Stage 3 will not

in general be obvious to agents. Exceptions include when there are only two agents in I, denoted by

i1, i2, who do not have an outgoing edge inG. Note thatG is always a path upon reaching Stage 3 (and

after Stage 3). Thus, in this case, i1’s top choice is in Si2 and i2’s top choice is in Si1 . As a result, both

agents receive whatever they report as top choices – the decisions are obvious. A detailed discussion

about another kind of exceptions can be found right below in Example 3.1.

The following is our main result on TTC.

Theorem 3.1. The extensive-form revelation game ΓT is an optimal implementation of TTC.

Proof. See Appendix 3.C.

The following corollary follows immediately from Proposition 3.2 and Theorem 3.1.

Corollary 3.3. ΓT is OSP whenever TTC is OSP-implementable.

Notably, in problems where ΓT is not OSP, we might find some nodes in ΓT such that there ex-

ist preference profiles which satisfy the following two statements: First, these preference profiles are

compatible with the information collected at that node. Second, ΓT does not implement the TTC

outcomes of these profiles in obviously dominant strategies while one can implement those TTC

outcomes in obviously dominant strategies. The following example presents such a scenario.

Example 3.1. There are four agents I = {i1, i2, i3, i4} and four objectsO = {o1, o2, o3, o4}. Priority

structure▷O is given by the following table.

▷o1 ▷o2 ▷o3 ▷o4

i1 i1 i2 i3

i2 i4 i4 i4

i3 i2 i1 i1

i4 i3 i3 i2
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Note that since there are three agents who rank top at some priorities, the weak acyclicity condi-

tion11 of Troyan (2019) is violated in ▷O and TTC is thus not OSP-implementable. Specifically,

suppose that agents’ true preferences are given by the following table.

⪰i1 ⪰i2 ⪰i3 ⪰i4

o3 o4 o3 o4

o4 o3 o1 o3

o1 o1 o4 o1

o2 o2 o2 o2

Assume that agents are truthful until the first time we reach Stage 3 in ΓT. Then, we claim that if

we deviate from ΓT by first asking i2 about her top choice in Stage 3, we can find an implementation

Γ′ in which it is obviously dominant for all agents with the above profile to tell the truth. Concretely,

the preference for i2 ensures that truth-telling is obviously dominant for her in Stage 3:

• With respect to all preference profiles that are still possible at the first time we reach Stage 3,

the worst case for reporting truthfully for i2 is being assigned to o3.

• The best case for misrepresenting top choice is to be assigned o3: If i2 does not get her top

choice o4, then i3 must have traded o4 to i1; best remaining object in this case is o3.

Assume that i2 follows the obviously dominant strategy and we have inferred i2’s top choice with

her obviously dominant revelation. Then, let Γ′ proceed to Stage 1 with i3. Note that since i3 will be

assigned to her top choice o3 by reporting truthfully, truth-telling is then obviously dominant for her.

After i2 and i3 is assigned to o4 and o3 respectively, let Γ′ turn to i1 as it is then obviously dominant for

11A strong cycle in a priority structure▷O is described by three agents i, j, k ∈ I and three objects a, b, c ∈ C
such that i▷a j, k, j▷b i, k and k▷c i, j. If there are no strong cycles, the priority structure is said to be weakly
acyclic. Troyan (2019) shows that TTC is OSP-implementable in amarket if and only if the underlying priority
structure is weakly acyclic.
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i1 to report her top choice between o1 and o2. In conclusion, for the above profile, Γ′ can implement

the TTC outcome so that truth-telling is obviously dominant for all agents.

Since acting truthfully is not obviously dominant for i1 in ΓT (as she is the first one tobe approached

in Stage 3), the example shows that, for a given preference profile, ΓT may fail to implement the TTC

outcome in obviously dominant strategies even though that outcome is implementable in obviously

dominant strategies by another implementation Γ′ of TTC.

As a remark, if we change the preferences of above agents i1 and i2 to o3 ⪰i1 o1 ⪰i1 o2 ⪰i1 o4 and

o1 ⪰i2 o4 ⪰i2 o2 ⪰i2 o3, we construct a profile for which the TTC outcome is implemented in obvi-

ously dominant strategies in ΓT but not in the deviation Γ′. In fact, for any implementation of TTC

that outperforms ΓT in terms of implementing the TTC outcome of certain preference profiles in

obviously dominant strategies, we can find some other preference profiles for which ΓT outperforms

that implementation.

3.5 Weakly optimal implementation andDA

In this section, we focus on DA, which we denote by fDA hereafter. In the following discussion, for

any i ∈ I and P̃ ∈ P , we simplifyOi(P̃, fDA) asOi(P̃) if there is no risk of confusion.

3.5.1 Incompatibility result for DA

We start this section by presenting a challenge in designing an implementation of DA that is optimal

in the sense of Definition 3.5. Concretely, in some cases, we will face the incompatibility between

selecting an existing obvious decision and collecting the least necessary information from agents, as

illustrated in the next example.

Example 3.2. Consider a problemwith six agents I = {i1, . . . , i6} andfive objectsO = {o1, . . . , o5}.

Let▷O be
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▷o1 ▷o2 ▷o3 ▷o4 ▷o5

i1 i2 i3 i4 i5

i6 i6 i4 i5 i3
...

...
...

...
...

...
... i6 i6 i6

...
... i1 i1 i1

The above table indicates that i6 and i1 rank lowest at ▷o3 , ▷o4 and ▷o5 . Let the true preference

profile⪰ be given in the following table.

⪰i1 ⪰i2 ⪰i3 ⪰i4 ⪰i5 ⪰i6

o2 o1 o1 o1 o1 o1

o1 o2 o4 o5 o3 o2
...

...
...

...
...

...

Let Γ be an implementation of DA that always asks obvious decisions whenever they exist. In the

following, we will describe the path in Γ that corresponds to the truthful behaviors of agents with

the above profile. Specifically, we show that at a certain node in the underlying path, i1 reveals more

information than necessary to compute the outcome as Γ prioritizes picking an obvious decision (of

i1) over non-obvious decisions (of other agents).

At the initial steps, Γ asks i1, . . . , i5whether their top choices (among {o1, . . . , o5}) are the ones for

which they have top priority. Note that each agent can secure the objects for which she ranks highest

by reporting them as her top choice. Thus, all these decisions are obvious according to Proposition

3.1. For the given profile ⪰, we know that all agents will answer “No”. Then, there are no obvious

decisions.

Next, Γ turns to i6 and asks her whether her top choice (among {o1, . . . , o5}) is o1, for which she

ranks second. Note that i6 answers “Yes” in the underlying path and thus she is temporarily assigned
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to o1. Since o1 is then no longer available to i2, . . . , i5, there are again obvious decisions for i2, . . . , i5,

namely whether their top choices (among {o2, . . . , o5}) are objects for which they have top priority.

At this point, it is obviously dominant for i2 to report that o2 is her top choice. After i2 reports so, she

is assigned to o2 with certainty. Then, Γ turns to i3, i4 and i5 with obvious decisions: Whether their

top choices (among {o3, o4, o5}) are those at which they rank top.

In the following, consider the node in Γ where all i3, i4 and i5 answer ”No” to the just mentioned

obvious decisions. Specifically, denote this node by n. Note that it remains exactly one obvious de-

cision at n, which is to ask i1 to reveal whether o1 is her top choice among {o1, o3, o4, o5}. By the

assumption that Γ picks an obvious decision whenever one exists, Γ can only ask i1 to make this ob-

vious decision at n. We next argue that some of the information revealed by i1 at n is redundant for

computing the outcome.

In fact, n is a node in Γ where i1’s obvious decision will not be informative to i3, i4 and i5 at all.

In particular, if i1 reveals that her top choice is not o1, it will not contribute to ease the decisions of

i3, i4, i5 since they all have higher priority than i1 at ▷o3 ,▷o4 and ▷o5 . On the contrary, if i1 reveals

that her top choice is o1, it will cause i6 to be rejected by o1. However, since all i3, i4, i5 already know

that o1 is not available, this information will not be helpful either. Moreover, note that since i6 ranks

lower than i3, i4, i5 at ▷o3 ,▷o4 and ▷o5 , then i6’s any further decision also makes no difference for

i3, i4, i5.

Finally, we construct an implementationΓ′ ofDAthat induces a coarser partition than that induced

by Γ. Concretely, Γ′ is identical to Γ except in the sub-game Γn: When n is reached, Γ′ directly picks

the decision that Γ picks at an immediate successor of n. Apparently, Γ′ is not optimal. However, at

any successor of n in Γ′ where i1 plays, she reveals weakly less about her preferences than she reveals

at n in Γ. To be more specific, recall that i1 reveals whether o1 is her top choice among {o1, o3, o4, o5}

at n in Γ. In Γ′, instead, i1 only reveals whether o1 is her top choice among a subset of {o1, o3, o4, o5}

since the decisions of i3, i4, i5 might cause some of {o3, o4, o5} to be no longer available to i1. As a
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conclusion, Γ′ induces a coarser partition than Γ does in terms of i1’s decisions (in the sub-game Γn).

Example 3.2 describes a specific scenario where we fail to induce the coarsest partition among DA

implementations if we always provide obvious decisions whenever they exist. Moreover, it remains

unclear how to avoid encountering such scenarios when we design an optimal implementation of

DA that generally exists. Towards a solution concept which accounts for such a challenge, it seems

reasonable to have tolerance for redundant decisions as long as they are obvious for agents. Thus,

we next provide a weakening of optimality in Definition 3.5 that allows agents to reveal unnecessary

information via obvious decisions.

Fix a matching rule f and two implementations Γ and Γ̂ of f. If PΓ̂ is coarser than PΓ, then at least

two elementsP1,P2 ∈ PΓ are contained in the same cell of PΓ̂. Accordingly, there must be (at least)

one agent i ∈ Iwho plays at some n ∈ N(R) such thatP1
i ,P2

i are contained in different elements of

the decisionPn(Γ) for which f is constant. We now formally define how the decisionPn(Γ) causesPΓ

to be more revealing than PΓ̂.

Definition 3.7. Consider two implementations Γ and Γ̂ of f such that PΓ̂ is coarser than PΓ. Fix any

n ∈ N(R) and let π(n) = i. We say PΓ̂ is coarser than PΓ caused by Pn(Γ) if there exists P̂ s ∈ PΓ̂ and

⪰,⪰′∈ P̂ s such that

1. ⪰,⪰′∈ Pn(Γ), and

2. ⪰i∈ P t
i and⪰′

i∈ P t′
i for distinctP t

i ,P t′
i ∈ Pn(Γ).

We are now ready to define a weakly optimal implementation of f.

Definition 3.8. The extensive-form game Γ∗ = (R∗, τ∗, π∗, φ∗) is aweakly optimal implementation

of f if

1. Γ∗ is an implementation of f,
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2. for all n ∈ N(R∗),

(a) if Pn(Γ∗) is not obvious, then there is no obvious decision atPn(Γ∗), and

(b) ifPn(Γ∗) is not obvious, then there is no implementation Γ̂ of f onPn(Γ∗) such thatPΓ̂

is coarser than PΓ∗n caused by Pn(Γ∗).

In words, an implementation is weakly optimal if it always picks obvious decisions when they exist

and if it guarantees agents the minimal amount of non-obvious decisions. Compared to the optimal-

ity in Definition 3.5, we loosen condition 2.(b) in Definition 3.8 by only checking for non-obvious

decisions. In weakly optimal implementation, agents might reveal information that turns out to be

irrelevant for the finalmatchings. However, it is ensured that all such irrelevant information is elicited

throughobvious decisions. It isworthy ofmentioning that Proposition 3.2 also holdswith ourweaker

notion of optimality.

3.5.2 Characterization of secure objects in DA implementations

In this subsection, we characterize the set of secure objects at any node in an implementation of DA.

According to Corollary 3.2, this characterization is helpful for figuring out obvious decisions under

DA, which in turn contributes to the design of a weakly optimal implementation of DA in the next

subsection.

In general, the identification of secure objects inDA ismore challenging than for TTC.Recall that

in implementations of TTC, we can identify a secure object of an agent by simply checking whether

that agent is assigned to that object if she reports it as favorite. In implementations of DA, however,

this strategy is not working since the assignmentsmade during the process of DA are temporary. That

is, even if an agent is assigned to an object at some intermediate stage of DA, she might be rejected

later.
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As a starting point, note that there are secure objects that can be easily identified in DA implemen-

tations: For agents who own some objects, the objects they own are secure for them. That is, revealing

whether their favorite objects are among the ones they own, is an obvious decision. Thus, when any

of the answers to these obvious decisions is “Yes”, we can update the market immediately. When all

answers are “No”, however, it is not clear how to uncover secure objects then. Towards a solution, let

us first consider the following example that describes such a scenario.

Example 3.3. There are four agents I = {i1, i2, i3, i4} and four objects O = {o1, o2, o3, o4}. The

priority structure▷O is given in the following table.

▷o1 ▷o2 ▷o3 ▷o4

i1 i1 i1 i2

i2 i3 i3 i1

i3 i2 i2 i3

i4 i4 i4 i4

At the initial step, there are obvious decisions for i1 and i2: Whether among {o1, o2, o3, o4}, her top

choice is in {o1, o2, o3} and {o4}, respectively. Suppose that both agents’ answers are “No”. Clearly, in

this case, i1 implicitly reveals that her top choice is o4 and thus the following two statements are true.

First, i1 is temporarily assigned to o4 and no revelation from i1 is needed until she is rejected by o4.

Second, regardless of i1’s final assignment, the stability of DA ensures that i3 and i4 (who rank lower

than i1 on▷o4) cannot be matched with o4 under DA. That is, o4 is no longer available to i3 and i4.

For the remainder of this example, we study whether there are secure objects for i2, i3 and i4 after

both i1 and i2 answer “No” to the above obvious decisions. First, it is immediate that i4 has no secure

objects since she ranks lowest at all objects.

Next, we claim that o1 is then a secure object for i2. Concretely, if i2 reveals that her top choice is

o1, then the temporarily assigned pairs are {(i1, o4), (i2, o1)}. Since only i1 could let i2 be rejected by
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o1 and only i2 could let i1 be rejected by o4, and since both of them are temporarily assigned to their

top choices, they will not be rejected anymore. Thus, o1 is secure for i2.

Finally, we claim that i3 has no secure object at this point. Since o4 is no longer available to i3, the

available objects for i3 are {o1, o2, o3}. We show that o2 (for which i3 ranks second) is not secure for i3.

For instance, if i3’s true preference is⪰i3 : o2, o3 . . ., then theworst possible outcome of reporting o2 as

favorite is o3 (with the preferences⪰i1 : o4, o2, . . . and⪰i2 : o2, o4, . . .), and the best possible outcome

of reporting o3 as favorite is o2 (with the preferences ⪰′
i1 : o4, o3, . . . and ⪰i2 : o3, o4, . . .). Since the

arguments for the other two objects are similar, we omit the details here.

Intuitively, compared to other agent-object pairs, the pair (i2, o1) is distinct since i1, who could

potentially let i2 be rejected by o1, is temporarily assigned to o4 at which only i2 ranks higher than i1.

In fact, o1 could be secure for i2 even when i1 is not temporarily assigned. To illustrate this, we slightly

adjust ▷o3 in the above example such that we cannot infer the exact top choice of i1 from the “No”

answers.

Example 3.3 (Continued). The adjusted priorities are:

▷o1 ▷o2 ▷o3 ▷o4

i1 i1 i2 i2

i2 i3 i1 i1

i3 i2 i3 i3

i4 i4 i4 i4

Again, consider the point where both i1 and i2 answer “No” at the beginning. We claim that o1

is still a secure object for i2 then. Note that when i1 answers “No”, her top choice can only be o3 or

o4. If i2 reports o1 as favorite, the potential set of temporarily assigned pairs is either {(i1, o3), (i2, o1)}

or {(i1, o4), (i2, o1)}. With the same reasoning as above, we know that i2 is ultimately assigned to o1

under DA in both cases.
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Generally speaking, at the underlying points in the above examples, once i2 is temporarily assigned

to o1, all agents who could potentially cause i2 to be rejected by o1 are (or will be) assigned to objects by

which they will not be rejected. In other words, after o1 is temporarily allocated to i2, no continuation

of the game will have some i with i ▷o1 i2 applying to o1. Notably, as will become clear soon, this

feature is vital for o1 being secure for i2.

In the reminder of this subsection, we first formalize the generalization of the above described fea-

ture, and then use it to characterize secure objects under DA. To this end, fix any matching μ ∈ M,

we denote μ = {(i1, o1), . . .} such that it contains only agent-object pairs and (i, o) ∈ μ if and only if

μ(i) = o. For any twomatchings μ, μ′ ∈ M, we write μ′ ⊆ μ if for each (i, o) ∈ μ′, it holds μ(i) = o.

Next, fix an implementation Γ ofDAand a non-terminal noden ∈ N(R). We use amatching μn to

describe all temporarily assigned pairs at n. Formally, (i, o) ∈ μn if and only if top(⪰i |Oi(Pn(Γ))) = o

for all ⪰i∈ Pn
i (Γ). Abusing notation, we say i ∈ μn when i is contained in some (i, o) ∈ μn. The

next definition regarding μn generalizes the feature we derive from Example 3.3.

Definition 3.9. Fix any implementation Γ of DA and n ∈ N(R). Amatching μ′ ⊆ μn is anchored in

(I,O,▷O) if for all (i, o) ∈ μ′ and all j ∈ I such that j▷o i, it holds j ∈ μ′.

That is, a matching μ′ is anchored during a DA implementation when for any μ ∈ M such that

μ′ ⊆ μ, no agent i /∈ μ′ can have justified envy towards any i′ ∈ μ′ at μ. For instance, in Example

3.3 when i2 reports o1 as her top choice, the matching {(i1, o4), (i2, o1)} is anchored.12 Importantly,

note that since any i ∈ μn is assigned to her top choice among her available objects atPn(Γ), she will

not have justified envy when μn is part of the final matching. Therefore, once an anchored matching

μ′ ⊆ μn is formed during DA implementations, it is immune to justified envy from both inside and

outside μ′. In conclusion, μ′ will be fixed at any continuation of the underlying revelation game. We

formally present this result.

12Note that an anchored matching can also be singleton: If an agent i is temporarily assigned to one of her
owned objects o, then no one ranks higher than i on▷o and μ′ = {(i, o)} is anchored.
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Corollary 3.4. Fix any implementation Γ ofDA and n ∈ N(R). If μ′ ⊆ μn is anchored in (I,O,▷O),

then for all⪰∈ Pn(Γ) and (i, o) ∈ μ′, it holds fDA
i (⪰) = o.

According to Corollary 3.4, we can infer that to predict whether an object o is secure for an agent i,

we just need to checkwhether (i, o) is part of an anchoredmatching in any consistent future. Notably,

it is not enough to only check with the set of temporarily assigned pairs at the underlying point. To

see this, consider in Example 3.3 (Continued), when both i1 and i2 answer “No” and i2 reveals that

o1 is her top choice, we have μn = {(i2, o1)}. However, since we further know that i1 prefers either

o3 or o4 most, there are two candidates for μn, namely {(i1, o3), (i2, o1)} and {(i1, o4), (i2, o1)}, and

both candidates are anchored. As a result, even if we cannot find an anchored matching in μn, we still

know that o1 is secure for i2.

This motivates us to define a set of potential matchings at n, which is the final notation necessary

for our characterization of secure objects under DA. Let I(n) be the set of agents who have played at

least once when n is reached in Γ and letK = {i ∈ I(n) : i /∈ μn} be the set of agents from I(n)who

have not revealed their top choices until n. That is, for each k ∈ K, there are ⪰k,⪰′
k∈ Pn

k (Γ) such

that top(⪰k |Ok(Pn(Γ))) ̸= top(⪰′
k |Ok(Pn(Γ))). Moreover, for any i /∈ μn, updating a pair (i, o) to μn is

defined by the operation⊙ that yields a new matching μ = (i, o)⊙ μn such that

μ =


μn ∪ {(i, o)} \ {(i′, o)}, if ∃i′ ̸= i such that (i′, o) ∈ μn;

μn ∪ {(i, o)}, otherwise.

Fix any i /∈ μn, let Un
i be the set of all possible matchings that i could infer at n. In particular, let

{k1, . . . , kT} denote all agents inK \ {i}, then μ ∈ Un
i if and only if

μ = (k1, o1)⊙ . . .⊙ (kT, oT)⊙ μn
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where for each t ≤ T, there exists⪰kt∈ Pn
kt(Γ) such that top(⪰kt |Okt (Pn(Γ))) = ot.

We are now ready to characterize the secure objects in DA implementations.

Proposition 3.3. Let Γ be an implementation of DA that only asks about top choices, n ∈ N(R) be

arbitrary and π(n) = i. An object o ∈ Oi(Pn(Γ)) is secure for i at Pn(Γ) if and only if for any

μ ∈ Un
i , there exists μ′ ⊆ μ such that μ∗ = (i, o)⊙ μ′ is anchored in (I,O,▷O).

Proof. We first prove the “if” part. To do so, construct the following implementation Γ̂ of DA that

deviates from Γ from node n onwards. At n, Γ̂ asks k1 ∈ K \ {i} to reveal her top choice among

Ok1(Pn(Γ)). After k1 reveals, Γ̂ turns to k2 ∈ K \ {i, k1} and asks her to reveal her top choice among

Ok2(Pn(Γ)), and so on. After all agents inK \ {i} have revealed, Γ̂ turns to i and provides iwith the

same decision as Γ provides at n. Let N̂ collect all nodes in Γ̂ where i faces such a decision. Then, it

followsPn(Γ) = {P n̂(Γ̂)}n̂∈N̂.

Select any n̂ ∈ N̂. By definition of Un
i , we can find μ ∈ Un

i such that μn̂ = μ. That is, there

exists μ′ ⊆ μn̂ such that μ∗ = (i, o) ⊙ μ′ is anchored in (I,O,▷O). Fix any ⪰∗
i ∈ P n̂

i (Γ̂) such

that top(⪰∗
i |Oi(Pn(Γ))) = o. According to Corollary 3.4, it holds that fDA

i (⪰∗
i , ⪰̂−i) = o for all

⪰̂−i ∈ P n̂
−i(Γ̂). Note that since n̂ is arbitrarily taken, the above result holds for all nodes in N̂ and

thus fDA
i (⪰∗

i ,⪰−i) = o for all⪰−i∈ Pn
−i(Γ).

We proceed with the “only if” part. Suppose that o ∈ Oi(Pn(Γ)) is secure for i atPn(Γ), then we

have fDA
i (⪰∗

i ,⪰−i) = o for all⪰−i∈ Pn
−i(Γ). Select any μ ∈ Un

i . In the remaining proof, we extract

μ′ ∈ μ such that μ∗ = (i, o)⊙ μ′ is anchored in (I,O,▷O).

We first claim that for any j such that j▷o i, it holds j ∈ μ. Suppose that there exists j ∈ I such that

i ▷o j and j /∈ μ, and we aim at a contradiction to o being secure for i. As argued before, we can find

n̂ ∈ N̂ in the constructed Γ̂ such that μn̂ = μ. Select any⪰j∈ P n̂
j (Γ̂), and let top(⪰j |Oj(Pn(Γ))) = oj.

According to Γ̂, j has revealed that her top choice among Oj(Pn(Γ)) is oj before n̂. Then, j /∈ μn̂

implies that j is rejected by oj and oj /∈ Oj(P n̂
j (Γ̂)). Construct ⪰′

j such that o ranks right after oj on
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⪰′
j and o′ ⪰′

j o′′ if and only if o′ ⪰j o′′ for all o′, o′′ ∈ O \ {o}. Since Γ only asks about top choices,

it follows⪰′
j∈ P n̂

j (Γ̂). However, this implies that when j reports according to⪰′
j at the continuation

of n̂ in Γ̂, iwill be rejected by o given j▷o i. This contradicts to the assumption that o is secure for i.

Thus, we collect in μ′ all pairs (j, oj) from μ such that j▷o i. If (i, o)⊙ μ′ is anchored in (I,O,▷O),

we are done. If not, this indicates that for some j ∈ μ′, there exists k such that k /∈ μ′ and k▷oj j. We

next claim that for such k, we can find a pair (k, ok) ∈ μ. By contradiction, if k /∈ μ, then k is rejected

by ok before n̂ and ok /∈ Ok(P n̂
k (Γ̂)). Notably, with the same arguments as above, we can construct a

consistent profile such that after k is rejected by ok, she applies to oj which causes j to be rejected by oj

and then to apply to o. In such a scenario, i is finally rejected by o, which again contradicts to o being

secure for i. As a result, k ∈ μ and we update μ′ = (k, ok)⊙ μ′.

We inductively apply the same reasoning and update corresponding pairs from μ \ μ′ to μ′. Since μ

is finite, we will finally reach a matching μ′ ⊆ μ such that (i, o) ⊙ μ′ is anchored in (I,O,▷O). This

completes the proof.

Looking carefully at the proof of Proposition 3.3, we know that to predict whether an object o is

secure for an agent i, we just need to ensure that no consistent future will have some agent jwith j▷o i

applying to o. Moreover, it is guaranteed to exist no such future when all such j will be assigned to

whatever she could still report as her top choice. In this sense, Proposition 3.3 provides a method to

identify secure objects without computing the results for all remaining preference profiles.

3.5.3 Weakly optimal implementation of DA

In this section, we introduce a sequential revelation game with perfect information, denoted by ΓD,

that implements DA under truthful behavior. Towards this goal, we first define some additional ter-

minology. Given somePn ⊆ P ,
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1. let (I,O,▷O) be the reduced problem consisting only of agents and objects for whom theDA-

matching is not identical across all⪰∈ Pn;

2. let J ⊆ I be the set of active agents j who have revealed their top choices, that is, for whom

top(⪰j |Oj(Pn)) = top(⪰′
j |Oj(Pn)) for all⪰j,⪰j′∈ Pn

j ;

3. let{Io}o∈O be such that each Io is the set of agents iwhocan still reveal (or have already revealed)

that o is her top choice amongOi(Pn). That is, let

Io = {i ∈ I : o ∈ Oi(Pn) and o = top(⪰i |Oi(Pn)) for some ⪰i∈ Pn
i }.

In the following, denote by io the agent who ranks top on▷o among all agents in Io;13

4. let {Ko}o∈O be such that each Ko consists of all agents who rank higher than io on▷o, that is,

Ko = {k ∈ I : k ▷o io} contains all agents who already state that o are not their top choices

among their available objects; and

5. let Ou ⊆ O be the set of all uninformative objects in the problem (I,O,▷O) that are yielded

via the following algorithm:

Step 0: LetOu be empty.

Step k, k ≥ 1: Find any setO′ ⊆ O \ Ou such thatO′ ̸= O and

(∪o′∈O′Io′) ∩ (∪o∈O\(Ou∪O′)Ko) = ∅,

add all objects inO′ toOu andmove to the next step. If no such set exists, terminate and

outputOu.

13Note that if io ∈ J, then Io = {io}. Moreover, this implies that all agents who are still eligible for o have
revealed that o is not their top choice. In this case, no further decision regarding o can be made atPn.
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In short, for any o ∈ O, we have o ∈ Ou if and only if there is Ō ⊂ O such that o ∈ Ō and

(∪ō∈ŌĪo) ∩ (∪o′∈O\ŌKo′) = ∅. Note that it is possibleOu = ∅ orOu = O.

LetO∗ ≡ O\Ou be the set of informative objects in the problem (I,O,▷O). Notably, for each

o∗ ∈ O∗ and each o ∈ O \ {o∗}, o∗ being assigned to io∗ could trigger rejections or invoke new

decisions that cause io to be changed (to one agent inKo).

Accordingly, for any subset Ô ⊆ O, let Ô∗ be the set of informative objects in the restricted

problem (̂I, Ô,▷Ô)where Î = ∪ô∈Ô(Îo ∪ Kô).

Moreover, we say that a set of uninformative objects Ō ⊆ Ou in (I,O,▷O) is benign if it

satisfies: (1) Ō∗ ̸= ∅, where Ō∗ is the set of informative objects in the restricted problem

(̄I, Ō,▷Ō) and (2) there is no super set Ō′ ⊂ O of Ō that satisfies the first condition.14

The basic components of ΓD are given by the tuple (I,O,▷O, J, {Io}o∈O, {Ko}o∈O,O∗). More-

over, we use μn to keep track of all temporarily matched pairs at Pn. According to Corollary 3.4,

we can derive the reduced problem (I,O,▷O) from μn: If there exists μ′ ∈ μn that is anchored in the

original problem, we remove all agents/objects in μ′ from themarket and the remaining agents/objects

constitute the reduced problem.

Initially, let (I,O,▷O) be the original problem, P0 = P , μ0 = ∅, O∗ = O, Io = I for all o ∈ O

andKo = ∅ for all o ∈ O. At anyPn for n ≥ 0, the game ΓD selects the next decision via the following

algorithm:

Stage 1: If no agent has secure objects atPn,15 move to Stage 2.

14Note that onceOu is non-empty, the existence of a benign uninformative set Ō ∈ Ou is guaranteed. Con-
cretely, take any o ∈ Ou and let Ō = {o}, then by definition o is an informative object in the restricted problem
(Io ∪Ko, Ō,▷Ō) – the set Ō satisfies the first condition of a benign uninformative set. Then, we simply enlarge
Ō by adding other objects inOu until the second condition is also satisfied.

15Sincewe already introduced the identification of secure objects in Proposition 3.3, we omit the details here.
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Otherwise, select the smallest indexed i ∈ I \ J among all such agents. Ask i to reveal whether

she wants to secure one of her secure objects at Pn or whether her top choice is one of the

objects that she cannot secure.

– If i reveals that a secure object o is her top choice, let μn+1 = (i, o)⊙ μn, update the re-

maining preference profilesPn+1, update the tuple (I,O,▷O, J, {Io}o∈O, {Ko}o∈O,O∗)

and repeat Stage 1.

– Otherwise, update the remaining preference profilesPn+1 and repeat Stage 1.

Stage 2: First, select an object o∗ ∈ O in the following way:

– If O∗ is non-empty, consider only those objects o ∈ O∗ for which io /∈ J and io has

changed most recently.16 Among those objects, pick the smallest indexed one o∗.

– IfO∗ is empty, collect in {Ōt}t all benign uninformative sets. Then, find Ō ∈ {Ōt}t in

which there exist an object ō ∈ Ō∗ such that for any other Ô ∈ {Ōt}t, if there is ô ∈ Ô

with īo ∈ Îo, then ô ∈ Ô∗ and īo = îo (If no such set exists, let Ō ∈ {Ōt}t be arbitrary).

Among those just mentioned objects in Ō∗, consider only o for which io /∈ J and io has

changed most recently, and pick the smallest indexed object o∗.

Second, based on the selected o∗, ask agent io∗ whether o∗ is her top choice among all objects

inOio∗ (Pn).

– If io∗ answers “Yes”, let μn+1 = (io∗ , o∗)⊙ μn, update the remaining preference profiles

Pn+1, update the tuple (J, {Io}o∈O, {Ko}o∈O,O∗) and repeat Stage 1.

– Otherwise, update the remaining preference profilesPn+1 and repeat Stage 1.
16Concretely, for each o, let no be the first node along back from n to the root in ΓD where inoo ̸= io. We

consider the objects for which no is the closest to n.
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The game terminates at node n where O = ∅ or μn contains all agents in the original problem.

After termination, all assigned pairs in μn are finalized and all remaining agents stay unassigned.

We next present our conjecture on DA.

Conjecture 3.1. The extensive-form revelation game ΓD is a weakly optimal implementation of DA.

To prove the conjecture, it seems promising to compare ΓD with some Γ̂ that we assume to induce

a partition weakly coarser thanPΓD and show thatPΓ̂ is coarser thanPΓD only caused by obvious deci-

sions made in ΓD. In order to establish the just mentioned result, it is useful to proceed by induction

on the number of nodes where ΓD reaches Stage 2 and to show that the decisions provided by ΓD and

Γ̂ have to be identical at these nodes.

Since the description of Stage 1 is straightforward, here we discuss Stage 2. We first consider when

O∗ ̸= ∅ and o∗ ∈ O∗ is selected in Stage 2. According to the definition of O∗, each o ∈ O \ {o∗}

might be finally assigned to some k ∈ Ko after io∗ reports o∗ as her top choice at n. Note that in Stage

2, we always select object o∗ for which io∗ has changed most recently. This actually ensures that for

each o ∈ O and each i ∈ Io at n, after io∗ chooses o∗ at n, there is a possible continuation in ΓDn where

o becomes unavailable to i before i reveals any information of her preference about o. In other words,

for each agent i ̸= io∗ who remains at n, if we deviate from ΓD by asking i to play at n, then nomatter

what i reveals at n in the deviation, she would reveal less such information in some realizations of ΓDn

where io∗ selects o∗ at n. Intuitively, this in turn contributes to that no other implementation induces

a coarser partition than PΓD caused by the non-obvious decision ΓD picks at n.

Next, we consider when O∗ = ∅ in Stage 2. Informally speaking, as ΓD turns to agents according

to priorities from top to bottom for each object, it is very likely that an object is informative if it is still

unassigned. That is, O∗ = ∅ is usually reached in scenarios where all objects are either temporarily

assigned or revealed to be not the top choice by most agents. As for each benign uninformative set

Ō ∈ {Ōt}t, it is the maximal set of uninformative objects that can form a restricted problem in which
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the set of informative objects Ō∗ is non-empty. Although the decision io∗ made at n cannot influence

the assignments of all objects, it is vital in at least one restricted problem. Moreover, ΓD prioritizes se-

lecting an agent io∗ whose decisionwill not be influenced by assignments in other restricted problems.

In this sense, ΓD guarantees a non-obvious decision at n that will not cause PΓD to be more revealing

than the partition induced by any other implementation.

3.6 Conclusion

Wedevelop an optimality notion for sequential implementations of matching rules that selects an ob-

vious decision whenever it exists and minimizes the amount of information revealed by agents. An

optimal implementation guarantees to implement a rule in obviously dominant strategies in prob-

lems where that rule is OSP-implementable. In the absence of OSP-implementations, our optimality

notion provides a promising solution that complies with obvious dominance whenever possible and

incentivizes agents by minimizing decisions made.

Wederive an optimal sequential implementation ofTTCwhich only asks agents about top choices.

However, we show that the two conditions for optimality might contradict each other in DA imple-

mentations. We thus propose a weaker optimality notion that while prioritizing obvious decisions,

minimizes the amount of information elicited through non-obvious decisions. At last, we introduce

a sequential revelation game that weakly optimally implements DA under truthful behavior.

Our results may serve as a starting point for further works in various frameworks where OSP-

implementations are absent. For instance, one possible direction is to explore models beyond the

unit-supply case. Also, it is worthwhile to investigate alternative notions of optimality that exist for

arbitrary strategy-proof rules. As we introduce the (weakly) optimal implementations of TTC and

DA through different algorithms, it would be interesting to design an algorithm that derives (weakly)

optimal implementations for any strategy-proof rule.
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3.A TTC andDA

In this section, we give the formal definitions of TTC and agent-proposing DA studied in this chap-

ter. The definition of TTC given below follows from Abdulkadiroğlu and Sönmez (2003). For any

preference profile⪰∈ P , TTC yields a matching via the following algorithm:

Step 1 Each agent i ∈ I points to her favorite object (or herself) according to ⪰i, and each object

o ∈ O points to the agent who has the highest priority on▷o. Since I andO are finite, there is

at least one top trading cycle {i1, o1, i2, . . . , ik, ok, i1} such that i1 points to o1, o1 points to i2,

…, and ok points to i1 while all element in this cycle are distinct. Remove all such cycles from

the system by assigning each agent in these cycles to the object she points to.17 Denote the

remaining agents by I1 and the remaining objects by O1. If I1 ̸= ∅ and O1 ̸= ∅, move to Step

2; otherwise end the algorithm.

Step k, k ≥ 2 Each agent i ∈ Ik−1 points to her favorite object in Ok−1 (or herself) according to⪰i,

and each object o ∈ Ok−1 points to the agent who has the highest priority among all agents

in Ik−1. There is at least one top trading cycle. Remove all cycles from the system by assigning

each agent in these cycles to the object she points to. Denote the remaining agents by Ik and

the remaining objects by Ok. If Ik ̸= ∅ and Ok ̸= ∅, move to Step k + 1; otherwise end the

algorithm.

The algorithm terminates when no agent or no object left. The resultingmatching is the collection

of the assigned pairs at each step and the unassigned agents/objects after the last step.

Next, we induce the agent-proposing DA due to Gale and Shapley (1962). For any preference

profile⪰∈ P , the algorithm that computes the outcome of DA works as follows:

17Note that {i, i} is also a top trading cycle, removing such cycle means assigning agent i to herself. This
statement also applies to the following rounds.
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Step 1 Each agent i ∈ I proposes to her most preferred object (or herself) in O ∪ {i}. Each object

o ∈ O considers all the proposals and tentatively accepts the candidates who apply to o with

the highest priority at that object. The remaining proposals are rejected. Moreover, all agents

that propose to themselves are regarded as accepted and assigned alone.

Step k, k ≥ 2 Each agent who was rejected at step k − 1 applies to her most preferred object (or

herself) not yet applied to. Each object o ∈ O considers all the new applicants together with

the tentatively assigned agent at step k − 1. Each object o now tentatively accepts the highest

ranked applicant and rejects all others. Moreover, all agents that propose to themselves are

regarded as accepted and assigned alone.

The algorithm terminates at the first step when no agent is rejected. The matching outcome is the

tentative assignments at that step.

3.B Examples

In this section, we present two examples that illustrate the non-obvious decisions an optimal imple-

mentation of DA would avoid. In both examples, we consider a simplified problem where all prefer-

ences are full, and our insight can be easily generalized to problems where preferences are not full.

Example 3.4. There are three agents I = {i1, i2, i3} and three objectsO = {o1, o2, o3}. The priority

structure▷O is given by the following table.

▷o1 ▷o2 ▷o3

i1 i1 i2

i3 i3 i1

i2 i2 i3
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We consider the following two implementations Γ, Γ′ of DA. At the beginning, both Γ and Γ′ ask

i1 (i2) whether among {o1, o2, o3}, her top choice is in {o1, o2} ({o3}). Consider the continuation of

the games where both agents’ answers are “No”. Note that when i1 answers “No”, it implicitly means

that she prefers o3 most. Thus, candidates for the next player are i2 and i3.

Suppose that Γ picks i2 to make decisions then. That is, i2 is called on to choose from {o1, o2}.

Notably, no matter what i2 reports, it will not add any useful information to i1 and i3. Thus, at the

next step, Γ needs to ask i3 to choose from {o1, o2}.

Suppose that Γ′ picks i3 to make decisions after the “No” answers from i1 and i2. That is, Γ′ asks

i3 to choose from {o1, o2}. Notably, the following part of the game will be exactly the same as Γ.

However, Γ′ induces a coarser partition than Γ in terms of i2’s decisions.

In conclusion, Γ is not optimal. More specifically, if i1 and i2 have revealed that their top choices

are not the objects for which they have the highest priority, then i2’s revelation is irrelevant since how

the assignments are determined depends on i3’s decision.

Intuitively, this indicates that an optimal implementation must avoid picking agents whose non-

obvious decisions will not cause any other agent to reveal less information.

The next example explains that after selecting agents whose non-obvious decisions are informative,

an optimal implementation should further care about the “right” amount of revelation from them.

Example 3.5. There are four agents I = {i1, i2, i3, i4} and four objects O = {o1, o2, o3, o4}. The

priority structure▷O is given by the following table.

▷o1 ▷o2 ▷o3 ▷o4

i1 i2 i1 i2

i3 i3 i2 i1

i4 i4 i4 i4

i2 i1 i3 i3
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Let⪰i1 : o2, o3, . . . and⪰i2 : o1, o4, . . .. Suppose that both i1 and i2 tell the truth.

Consider an implementation Γ ofDA that reaches i3 after both i1 and i2 have revealed that their top

choices are not the objects for which they have the highest priority. Specifically, Γ asks i3 to choose

her favorite object from {o1, o2, o3, o4}. However, if i3 reports o3 or o4, the following game will be

exactly the same as she only reveals that her top choice is in {o3, o4}. That is, revealing the exact top

choice from {o3, o4} will not ease the decisions of the next player. Moreover, only for some of the

possible scenarios, it is necessary to know the exact top choice of i3. For instance, if⪰i4 : o1, . . ., it is

not necessary to know; if⪰i4 : o3, . . ., it is then necessary to know. Notably, even when it is necessary

to know, it will not hurt others if we ask i3 to reveal (which of o3 and o4 is her top choice) after i4

reports her top choice.

In conclusion, the information about i3’s top choice between {o3, o4} is only valuable for some

realizations of the game. Moreover, it will not cause any agent to reveal more information if we ask i3

to reveal her top choice between o3 and o4 later in this game when it becomes necessary.

Loosely speaking, when there are no obvious decisions for any agent, then it is unfair for the next

player since she has to reveal information via non-obvious decisions. Our optimality notion mini-

mizes such non-obvious revelations in two folds: First, it avoids selecting agents whose decisions are

not informative at that stage. Second, it avoids asking active agents to reveal information more than

necessary at that stage.

3.C Proof of Theorem 3.1

Denote TTC by fT. Since we only consider the matching rule fT throughout the proof, we refer to

in the following Oi(P̃, fT) as Oi(P̃) for any i ∈ I and P̃ ∈ P . By construction ΓT implements fT

under truthfully behavior. Thus, it suffices to show that ΓT satisfies the condition 2.(a) and 2.(b) of

Definition 3.5.
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Fix an arbitrary node n of ΓT. Let i ∈ I denote the agent being called to take actions at n and let

the remaining preference profiles at n bePn. Denote the decision imade at n by Pn
i . Before formally

proving the result, we first consider the partition ofPn induced by ΓT, which we denote by PΓTn here-

after. Specifically, if a partition P̃ ofPn is coarser than PΓTn , then at least two elements P̂1, P̂2 ∈ PΓTn

are contained in the same cell of P̃. Accordingly, theremust be (at least) one agent kwhose decisionP′
k

in the subgame ΓTn causes P̂1, P̂2 to be apart. In this case, we say that the coarser part of P̃ compared

toPΓTn , namely the union of P̂1 and P̂2, is caused byP′
k (a formal definition is presented inDefinition

3.7).

Next, select an arbitrary extensive-form revelation game Γ̃ on Pn such that PΓ̃ implements fT on

Pn and PΓ̃ is weakly coarser than PΓTn . In the following, we show that

(A) If Pn
i is not obvious, then there is no obvious decision atPn; and

(B) PΓ̃ cannot be coarser than PΓTn caused by the decision Pn
i .

Note that since n is arbitrarily taken, showing statement (A) above is equivalent to showing condition

2.(a) of Definition 3.5 for ΓT. Moreover, after we show statement (B), we will use it inductively to

show that condition 2.(b) of Definition 3.5 also holds for ΓT.

Now, we formally prove statement (A) and (B) in three stages separately.

Stage 1 Suppose thatn is a nodewhere Stage 1 is reached. Note that the set Si at noden contains all

options which i is secured to receive when she reports as her top choice. Thus, we have Si(Pn) ⊆ Si.

Let Si(Pn) = {o1, . . . , oK}, then the decision provided by ΓT to agent i at node n can be represented

as Pn
i = (POi(Pn)\Si

i ,Po1
i , . . . ,PoK

i ), where PO′
i denotes the set of all preference relations from Pn

i

in which the top choice among Oi(Pn) belongs to O′ ⊆ Oi(Pn). According to Proposition 3.1, the

decisions Pn
i is obvious for i at Pn. Therefore, we do not need to consider condition 2.(a), namely

statement (A), at such node n.
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It remains to be shown that statement (B) holds, and we proceed by contradiction. Suppose that

there exist P̃ s ∈ PΓ̃ and⪰,⪰′∈ P̃ s such that⪰i,⪰′
i belong to different cells of Pn

i . Then, we distin-

guish the following two cases.

• Case 1: ⪰i∈ Pp
i ,⪰

′
i∈ Pq

i for distinct p,q ∈ Si(Pn).

Since p, q ∈ Si(Pn) and PΓ̃ is a partition of Pn, it follows immediately that fTi (⪰i, ⪰̃−i) = p

and fTi (⪰′
i, ⪰̃−i) = q for any ⪰̃−i ∈ P̃ s

−i. Recall that we consider Cartesian subsets. It then

follows that (⪰i,⪰−i), (⪰′
i,⪰−i) ∈ P̃ s. This implies that PΓ̃ does not implements fT onPn

and we reach a contradiction.

• Case 2: ⪰i∈ Pp
i for some p ∈ Si(Pn) and⪰′

i∈ POi(Pn)\Si

i .

Note that we can just relabel the two profiles if⪰i,⪰′
i are the other way around. We introduce

the following necessary notation. Let top(⪰′
i |Oi(Pn)) = o for some o ∈ Oi(Pn). Also, fix

any ≻̃−i ∈ P̃ s
−i and let k∗ ∈ I be such that fTk∗(⪰′

i, ⪰̃−i) = o. For ease of presentation

denote fT(⪰′
i, ⪰̃−i) = μ hereafter. Let {k∗, o, k1, o1 . . . , kt, ot, k∗} be the top priority cycle

that assignsk∗ to o in thematchingμ and letK = {k∗, k1, . . . , kt}be the set of agents contained

in that cycle. As a remark,K could be a singleton. Our strategy for Case 2 is as follow. First, we

show that there exists j ∈ Kwho has not revealed her ranking between p and μj atP
n. Second,

we show that Γ̃ asks such j to reveal more information than ΓTn does, with which we reach a

contradiction to PΓ̃ being coarser than PΓTn .

We now show the first part, that is, we show that there exists j ∈ K, ≻j,≻′
j∈ Pn such that

p ⪰j μj and μj ⪰
′
j p. We proceed by contradiction. First, assume that p ⪰k μk for all k ∈ K

and all⪰k∈ Pn
k . Notably, since p ∈ Si(Pn), it holds p /∈ Sk(Pn) for any k ∈ K. Therefore,

if k has revealed that she prefers p to μk, she must have pointed to some agent in Ii (who only

owns p) in Stage 3 before n. In this case, however, we have p⪰̃kμk and we should find the cycle

{i, o, k1, p, . . . , i}when calculate fT(⪰′
i, ⪰̃−i). This contradicts to μi = p. Next, assume that
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μk ⪰k p for all k ∈ K and all⪰k∈ Pn
k . In this case, each k ∈ K has revealed that her top choice

is μk before node n. Note that such revelation only happens in Stage 2, according to ΓT, these

agents are assigned and removed then. Recall that o is involved in the same cycle withKwhen

calculate fT(⪰′
i, ⪰̃−i), o should also be removed being assigned to k1 before n. However, this

contradicts to o ∈ Oi(Pn).

As a result, there exists j ∈ Kwhohas not revealedher rankingbetween p andμj atn. Moreover,

fromabove argumentswe can infer that the underlying ⪰̃−i ∈ P̃ s
−i satisfies thatμj ⪰̃j p. Before

starting the second part, we make the following construction. Construct ⪰̂j ∈ Pj such that

(1) p ⪰̂j μj and; (2) o
′ ⪰̂j o′′ if and only if o′ ⪰̃j o′′ for all o′, o′′ ∈ O ∪ {j} \ {p}. Notice that

in ΓT the preferences are elicited from the top down to the bottom and that j has not revealed

her preference between p and μj at n, we know that ⪰̂j ∈ Pn
j .

Wenowformally showthe secondpart forCase 2. More concretely,we showthat (⪰i, ⪰̃j, ⪰̃−i,j)

and (⪰i, ⪰̂j, ⪰̃−i,j) are contained in different cells of PΓ̃ while they are contained in the same

cell of PΓTn . The former part follows if (⪰i, ⪰̂j, ⪰̃−i,j) /∈ P̃ s. As argued above, since p ⪰̂j μj,

we have fTi (⪰′
i, ⪰̂j, ⪰̃−i,j) = o ̸= μi. Note that we consider Cartesian domains and that Γ̃

implements fT on Pn, this implies that (⪰i, ⪰̂j, ⪰̃−i,j) /∈ P̃ s. Thus, it remains to be shown

that (⪰i, ⪰̃j, ⪰̃−i,j) and (⪰i, ⪰̂j, ⪰̃−i,j) belong to same cell of PΓTn . Towards this goal, let np

be the immediate successor of n in ΓT such that Pnp = Pp
i × Pn

−i. According to ΓT, p is

removed from the market (being assigned to i) at np and thus p /∈ Oj(Pnp). Notice that ΓT

only asks players to reveal information about their preferences over objects that are still avail-

able to them, we can infer that in ΓTnp , agent j does not reveal any information about how she

ranks p on her preferences. Since ⪰̃j and ⪰̂j only differ in p’s ranking, if we let P∗ ∈ PΓTnp be

such that (⪰i, ⪰̃j, ⪰̃−i,j) ∈ P∗, we must have (⪰i, ⪰̂j, ⪰̃−i,j) ∈ P∗. We reach the desired

contradiction and this completes the proof for Case 2.
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As a result, we can claim that no extensive-form game that implements fT onPn induces a coarser

partition than ΓTn does – statement (B) is satisfied. This completes the proof for Stage 1.

Stage 2 Suppose thatn is a nodewhere Stage 2 is reached. Note that in Stage 2, i is directly assigned

to the object that she reports as favorite. Therefore, the decision is obvious and we do not need to

consider statement (A) for such node n. Let i′ be the agent towhom i points inG and let {o1, . . . , oK}

be the objects that i′ owns at I. Then, the decision at n can be represented as Pn
i = (Po1

i , . . . ,PoK
i ).

Notably, we can use exactly the same reasoning as we used for Case 1 in Stage 1 to conclude that

statement (B) also holds here. This finishes the check for Stage 2.

Stage 3 Suppose that n is a node where Stage 3 is reached. Let

J = {i ∈ I : i has an outgoing edge inG}

be the agents in Iwho have already revealed who owns their top choices (amongO) and let

L = {i ∈ I \ J : Si ̸= {i}}

be the agents who are not in J andwho own at least one object at I. We first claim |L| ≥ 2. Specifically,

if |L| = 1, for the only agent l ∈ L, Sl contains all remaining objects and herself. This implies that

in Stage 1, agent lmust reveal that her top choice is in Sl and that Stage 3 will not be reached. Thus,

|L| ≥ 2 in Stage 3. Since i is the player at node n, we have i ∈ L and we write L = {i, l1, . . . , l|L|−1}.

Moreover, for eachm < |L|, let S∗m = Slm\{lm}be the set of objectswhich directly or indirectly point

to lm at n. Then, the decision provided by ΓT to i at n can be represented asPn
i = (PS∗1

i , . . . ,P
S∗|L|−1
i ).

Notably, if |L| = 2, thenPn
i = (PS∗1

i ), implying that no decision is required from i. Therefore, in the

rest of the proof, we only need to check the two target statements for cases where |L| ≥ 3.
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Wefirst show that statement (A) holds, and the argument follows fromTroyan (2019). Concretely,

if |L| ≥ 3, thepriority among the remaining agents violates theweakacyclicity condition18. According

to the proof of Theorem 1 of Troyan (2019), there is no extensive-form game that implements fT on

Pn and that provides the first player with obvious decisions. That is, there is no obvious decision

available at node n – statement (A) is satisfied.

In the rest of Stage 3, we show that statement (B) holds. We use the same strategy as we used in

Case 2 of Stage 1. Concretely, we show that if compared to in ΓTn , i reveals less information in terms

of the decisionPn
i in Γ̃, then some agent l ∈ Lmust reveal more information in Γ̃ than she does in ΓTn .

In the following, assume that there is P̃ s ∈ PΓ̃ and⪰1,⪰2∈ P̃ s such that⪰1
i∈ P t′

i and⪰2
i∈ P t′′

i for

distinctP t′
i ,P t′′

i ∈ Pn
i .

In this paragraph, we present some necessary notation. We denote top(⪰1
i |Oi(Pn)) = o1 and let

l1 ∈ L be such that o1 ∈ S∗l1 . Similarly, we denote top(⪰2
i |Oi(Pn)) = o2 and let l2 ∈ L be such that

o2 ∈ S∗l2 . By the structure of P
n
i it is clear o1 ̸= o2 and l1 ̸= l2. Since PΓ̃ implements fT on Pn, we

must have fT(⪰1) = fT(⪰2). Thus, theremust be⪰∈ {⪰1,⪰2} such that fTi (⪰) ̸= top(⪰i |Oi(Pn)).

Suppose that (at least)⪰1 satisfies this inequality. Let{k1, o1, l1, . . . , kt, ot, k1}be the toppriority cycle

that involves o1 in calculating fT(⪰1) and letK1 = {l1, k1, . . . , kt}be the set of agents contained in that

cycle. Next, if⪰2 also satisfies fTi (⪰2) ̸= top(⪰2
i |Oi(Pn)), we define K2 in a similar way. Otherwise,

let {i, o2, l2 . . . , k′t′ , o′t′ , i} be the top priority cycle that involves i and o2 in calculating fT(⪰2), and let

K2 = {k : k ∈ L ∩ {l2, k′1, . . . k′t′} and fTk (⪰2) /∈ Si}.19 Finally, LetK = K1 ∪ K2. Notably, we will

select the target l, who reveals more information in Γ̃ than in ΓTn , from the setK.

Next, we present a common feature for agents in K which is useful for selecting the target agent.

That is, for each k ∈ K, she has not revealed her ranking between any two objects in Ok(Pn) \ S∗k at

18As defined by Troyan (2019), a strong cycle in a priority structure is described by three agents i1, i2, i3 ∈ I
and three objects o1, o2, o3 ∈ O such that i1 ▷o1 i2, i3 and i2 ▷o2 i1, i3 and i3 ▷o3 i1, i2. If there are no strong
cycles, the priority structure is said to be weak acyclicity.

19That is, K2 contains the set of agents who are contained in both L and the underlying top priority cycle
while who do not point to the object o′t′ ∈ Si that points to i at n. Notably,K2 could be empty.
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n. Note that since all agents in L have not revealed their rankings between any two available objects,

it will be sufficient to show K ⊆ L. Also, since K2 is either selected in the same way as K1 or selected

directly fromL, we only need to showK1 ⊆ L. Looking carefully at the description of ΓT, we can find

that for each j ∈ J at node n, agent jmust (in)directly point to i in G. Suppose by contradiction that

J∩K1 ̸= ∅, then one of the following two scenarios is realized. First, i is assigned to o1 at fT(≻1), which

clearly contradicts to o1 ⪰1
i fTi (⪰1). Second, o1 has already been allocated at Pn, which contradicts

to o1 ∈ Oi(Pn). Thus, we can then infer that J ∩ K1 = ∅ and thus K1 ⊆ L. As a result, we have

K ⊆ L and thus all agents inK have not revealed their ranking between any two available objects. This

implies that fix any p ∈ Si and any k ∈ K, there exists⪰k∈ Pn
k such that top(⪰k |Ok(Pn)) = p.

We now select the target agent l fromK, where the selection is based on the game Γ̃. In the rooted

tree R̃ of Γ̃, we denote the root by r̃, denote the terminal node which corresponds to P̃ s by s ∈ L(R̃)

and let P̃n′ be the set of remaining preference profiles at any non-terminal node n′ ∈ N(R̃). Since Γ̃

implements fT onPn, we have P̃ r̃ = Pn. As has already been shown above, for all k ∈ K, there exists

⪰k∈ P̃ r̃
k such that top(⪰k |Ok(Pn)) = p. Moreover, we must have that fTk (⪰1) ⪰′

k p for all k ∈ K

and all⪰′
k∈ P̃ s since otherwise i should be contained in the same top trading cycle with some agents

in K. This implies that top(⪰′
k |Ok(Pn)) ̸= p for all ⪰′

k∈ P̃ s. Therefore, along the path from r̃ to s

in Γ̃, we can find the last node ñ′ where p is still a possible top choice for all agents in K. Specifically,

denote the player at ñ′ by l ∈ K and denote the immediate successor of ñ′ on the underlying path by

ñ. Then, we have that (1) for all k ∈ K, there exists⪰k∈ P̃ ñ′
k such that top(⪰k |Ok(Pn)) = p and (2)

for all⪰l∈ P̃ ñ
l , top(⪰l |Ol(Pn)) ̸= p.

Finally, we show that l reveals more about her preference in Γ̃ than in ΓTn . To do so, select any

la ∈ {l1, l2} \ {l} with a ∈ {1, 2}. In ΓTn , let na be the successor of n such that Pna = PS∗a
i × Pn

−i.

Moreover, let np be the immediate successor of na such that Pnp = PS∗a
i × Pp

la × Pn
−i,la , where P

p
la

denotes the set of preferences fromPn
la in which the top choice amongOla(Pn) is p. Since la ̸= l, we

know that at node ñ in Γ̃, her top choice among Ola(Pn) could still be p. Thus, select any ⪰∈ P̃ ñ
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such that⪰i=⪰a
i and top(⪰la |Ola (Pn)) = p, and we know that⪰∈ Pnp . Next, let ⪰̂l be such that

(1) top(⪰̂l|Ol(Pn)) = p and; (2) o′⪰̂lo′′ if and only if o′ ⪰l o′′ for all o′, o′′ ∈ O ∪ {l} \ {p}. By

construction it is obvious that ⪰̂l /∈ P̃ ñ
l , which implies (⪰̂l,⪰−l) /∈ P̃ ñ. Since⪰∈ P̃ ñ, we can infer

that⪰ and (⪰̂l,⪰−l) cannot be in the same cell of PΓ̃. However, since p is removed at np in ΓT, ΓTnp

will never ask l to reveal her rankings about p. Note that as ⪰l, ⪰̂l ∈ Pna
l = Pn

l and ⪰l, ⪰̂l only

differ in p’s ranking,⪰ and (⪰̂l,⪰−l)must belong to the same cell of PΓTn . This completes the proof

for statement (B) in Stage 3.

So far, we have shown statement (A) and statement (B). Since n is arbitrarily taken, statement (A)

being true indicates that condition 2.(a) of Definition 3.5 is satisfied by ΓT. It remains to be shown

that condition 2.(b) ofDefinition 3.5 is also satisfied by ΓT. Towards this goal, we show that Γ̃ induces

the same partition as ΓTn does. Specifically, according to statement (B) and the assumption that PΓ̃ is

weakly coarser than PΓTn , Γ̃ must pick the same decision at its root r̃ as ΓTn picks at n. That is, r̃ in Γ̃

and n in ΓTn have the same number of immediate successors and for each immediate successor ñ of r̃

in Γ̃, there exists an immediate successor n′ of n in ΓTn such that the remaining preference profiles at

these two nodes are the same. Notably, this ensures us to use the above arguments for statement (B)

to ñ and n′, which leads to the result that at ñ, Γ̃ can only pick the same decision as ΓTn picks at n′.

By inductively applying such argument to each node in ΓTn , we reach the conclusion that PΓ̃ must be

the same as PΓTn . Since Γ̃ is arbitrarily taken, we conclude that no other implementation of fT on Pn

induces a coarser partition than PΓTn . Finally, since n is arbitrarily taken, this implies that condition

2.(b) of Definition 3.5 is satisfied by ΓT. This completes the proof.
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4
Partition Obviously Strategy-Proof Rules∗

Obviously strategy-proof (OSP)mechanisms (Li, 2017) provide appealing incentive properties. How-

ever, it is rarely possible to implement strategy-proof matching rules via OSP mechanisms. In the

context of one-to-one object allocation markets, this chapter studies the incentive criterion parti-

tion obvious strategy-proofness (POSP) due to Zhang and Levin (2017), which is weaker than OSP but

stronger than strategy-proofness. Similar to OSP, this criterion takes agents’ limited reasoning abil-

ities into consideration. For implementations of strategy-proof rules via static games, I introduce a

∗This chapter is based on Chen (2021). I am grateful to Alexander Westkamp, Christoph Schottmüller,
Markus Möller and Marius Gramb for their insightful suggestions and comments. This chapter also benefits
from comments made by the seminar participants at the University of Cologne.
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self-invariance condition that is both necessary and sufficient for such implementations to be POSP.

However, this result does not hold when extensive-form implementations of strategy-proof rules are

considered.

4.1 Introduction

In centralized object allocation markets, one desirable criterion when designing the matching rules is

strategy-proofness, which guarantees that it is in agents’ best interest to report their preferences truth-

fully.1 Nevertheless, empirical and experimental studies on strategy-proof rules (e.g., Chen and Sön-

mez (2006); Hassidim et al. (2017); Shorrer and Sóvágó (2018)) suggest that in practice, a significant

fraction of agents deviate from being truthful. These findings indicate that the incentives provided

by strategy-proof rules might not be straightforward to some agents.

Strengthening strategy-proofness, Li (2017) introduces obvious strategy-proofness (OSP) in his sem-

inal paper. Loosely speaking, a mechanism is OSP if at any information set, the worst possible out-

come from telling the truth is weakly better than the best possible outcome following any deviation.

Li (2017) shows that the strategic incentives induced by OSP mechanisms can be understood even

by agents who are unable to engage in any contingent reasoning.2 However, popular strategy-proof

matching rules, such as Deferred Acceptance (DA) and Top Trading Cycles (TTC), are not OSP im-

plementable in general (Li, 2017; Ashlagi and Gonczarowski, 2018; Troyan, 2019). Thus, a certain

degree of contingent reasoning is essential for an agent to understand the incentives provided by these

strategy-proof rules. In this chapter, I study degrees of contingent reasoning needed for agents’ under-

standing of strategy-proofess, where the degree is interpreted by a partition-based incentive criterion

1Abdulkadiroğlu et al. (2005) shows that in Boston, the local committee has replaced the manipulable
Boston mechanism by the remarkable deferred acceptance (DA) mechanism for the school choice program.
Pathak and Sönmez (2008) argue that the Boston mechanism, which is not strategy-proof, may harm naive
agents who are not good at strategizing.

2Generally speaking, contingent reasoning is the ability to reason state-by-state about all hypothetical sce-
narios.
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that is weaker than OSP.

I set up amodel with limited contingent reasoning in a standard one-to-one object allocation prob-

lem. Concretely, I assume that agents could partition all states of the world into different events and

contingently reason event-by-event. Zhang and Levin (2017) provide decision-theoretic foundations

for obvious dominance in such a setting and define a strategy to be partition dominant if it is op-

timal in each event of that partition. For the interest of this chapter, I focus on partition obvious

strategy-proofness (POSP), a concept extracted from partition dominance with acting truthfully being

the optimal strategy. In particular, fix an agent and given her partition of all possible preferences of

other agents, a rule is partition obviously strategy-proof for her if within each event of that partition,

the worst possible outcome from telling the truth is weakly better than the best possible outcome

from any deviation. The incentive provided by a POSP rule can be understood by agents with limited

reasoning abilities featured by the underlying partitions. Note that our model nests no contingent

reasoning and full contingent reasoning as two extreme cases, thus, the incentive provided by POSP

is located between those provided by OSP and strategy-proofness.

I define a partition to be self-invariant under a matching rule for an agent if fix any that agent’s

reported preference, her assignment is unambiguously determinedwithin each event of that partition.

For any strategy-proof rule, I show that the self-invariance condition on partitions is both necessary

and sufficient for the static implementation of that rule to be POSP (in the sense of the underlying

partitions). That is, an agent canunderstand the incentive providedby a strategy-proof rule if andonly

if her reasoning ability ensures her to figure out what she exactly gets in each event. Moreover, under

any strategy-proof rule and fix any agent, I find that there exists a unique lowest degree of reasoning

ability for her to understand that being truthful is optimal, and I develop an algorithm that yields such

coarsest self-invariant partition.

Furthermore, I study POSP in extensive-form settings and find that the self-invariant partitions

are not necessary for POSP of sequential implementations of strategy-proof rules. The key drivers
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regarding this result are that in extensive-form games, agents’ decisions of reporting preferences are

decomposed into several small parts and they receive information on others’ preferences from the sys-

tem as game goes on. These features help an agent stick to the optimal strategy even with contingent

reasoning specified by a partition that is coarser than the coarsest self-invariant partition under that

matching rule.

Related Literature The present chapter mostly relates to Zhang and Levin (2017). In a gen-

eral domain, they provide an axiomatic approach to account for agents’ deficiencies in reasoning and

classify a broad family of mechanisms which overcome such deficiencies and which are verified to be

useful in the laboratory. This chapter is an application of their approach to matching markets and I

restrict attention to truthful behaviors. Moreover, this chapter provides results on how strategy-proof

rules are related to POSP, which is not a focus in Zhang and Levin (2017).

This work also relates to the growing line of research that is based on Li (2017)’s obvious strategy-

proofness, which has already discussed in the related literature of Chapter 3. As a review, Pycia and

Troyan (2021) introduce a family of simplicity standards and characterize simplemechanisms in broad

domains under their richness assumption. In terms of obvious strategy-proofness, they introducemil-

lipede games that characterize general OSP mechanisms without monetary transfers. Troyan (2019)

focuses on TTC and characterizes all priorities that ensure TTC to be implementable in obviously

dominant strategies. Ashlagi andGonczarowski (2018) show that stable mechanisms (including DA)

are only OSP-implementable in very restrictive environments, Thomas (2021) follows their study

characterizing all such environments that make DA OSP-implementable. Bade and Gonczarowski

(2016) study OSP-implementations of Pareto-efficient social choice rules in various domains. This

chapter complements the prior works on OSPmechanisms since I provide potential ideas about how

to train agents’ reasoning abilities such that they conduct fewer deviations in implementations of

strategy-proof rules that are not OSP.
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Finally, this chapter is also in line with laboratory results (Echenique et al., 2016; Klijn et al., 2019;

Bó and Hakimov, 2020a; Breitmoser and Schweighofer-Kodritsch, 2021) which observe higher rates

of truth-telling in sequential implementations of strategy-proof rules compared to those static coun-

terparts.

The rest of this chapter is organized as follows. Section 4.2 introduces the model, the definition of

POSP, and the basic features of POSP rules. Section 4.3 studies the relationship between POSP and

strategy-proof matching rules, including the main result. Section 4.4 shows that the main result does

not hold in extensive-form settings. Section 4.5 concludes.

4.2 Model

This chapter employs the same notation and considers the same allocation problem (I,O,▷O,⪰) as

we defined in Chapter 3. Recall that

• I is a finite set of agents,

• O is a finite set of indivisible objects,

• ▷O = (▷o)o∈O is a priority structure, where for each o ∈ O,▷o is a strict priority ordering of

I ∪ {o}, and

• ⪰= (⪰i)i∈I is a preference profile, where for each i ∈ I, ⪰i is a strict preference ranking of

O ∪ {i}.

For the following discussion, given a preference profile ⪰, we refer to ⪰i as the type of agent i.

Moreover, I refer to the tuple (I,O,▷O,P) as amarket.

4.2.1 Partition obvious strategy-proofness

In this subsection, I introduce partition obvious strategy-proofness in the context of object alloca-

tions. For the following discussion, fix a problem (I,O,▷O,⪰) and a rule f. I first define the parti-
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tion system, which I adapt fromZhang and Levin (2017) and is useful to set up amodel of how agents

reason in the game.

Definition 4.1. Let Σ = {Σi}i∈I be a partition system where each Σi = {P t
−i}Tt=1 is a finite disjoint

partition ofP−i.

I next introduce a class of incentive properties built on partition systems. Inspired by Li (2017),

the concept below requires truth-telling to stand out in the best-worst case comparison. Notably, I

restrict attention to static games for now and the following definition applies exclusively to normal-

form settings.3

Definition 4.2. Given a partition system Σ = {Σi}i∈I, we say that

1. f is Σi-obviously strategy-proof (Σi-OSP) for agent i if for all P t
−i ∈ Σi and all distinct ⪰i,

⪰′
i∈ Pi,

inf
⪰−i∈P t

−i

fi(⪰i,⪰−i) ⪰i sup
⪰−i∈P t

−i

fi(⪰′
i,⪰−i)

where inf and sup represent the worst and best possible assignments for i with respect to ⪰i

respectively.

2. f is Σ-obviously strategy-proof (Σ-OSP) if f is Σi-OSP for all i.

In words, if a matching rule is Σi-OSP for agent i, then given any i’s type, when she only considers

types of others within one (and any) element of Σi, the worst possible outcome following truth-telling

is no worse than the best possible outcome following any misreporting strategy. We say that f is parti-

tion obviously strategy-proof (POSP) if there exists some partition system Σ such that f is Σ-OSP.

For each agent i, each type profile ⪰−i∈ P−i is a possible scenario that could realize and each

element P t
−i ∈ Σi represents a possible event that contains a series of scenarios. In Definition 4.2, I

3POSP also applies to extensive-form games, and the formal definition of POSP in extensive-form games
can be found in Appendix 4.4
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use a partition system Σ to describe the reasoning abilities of agents in I. Concretely, if the reasoning

ability of an agent i ∈ I is specified by Σi, then for any⪰i∈ Pi and any event P t
−i ∈ Σi, i can figure

out

M(⪰i,P t
−i) = {μ ∈ M | ∃ ⪰−i∈ P t

−i s.t. f(⪰i,⪰−i) = μ},

the set of matchings that could be potentially realized when she submits⪰i to fwithin the eventP t
−i.

However, onceM(⪰i,P t
−i) is not a singleton, for any type profile⪰−i∈ P t

−i, she is not able to cal-

culate the exact matching f(⪰i,⪰−i). In other words, when an agent has deficient reasoning ability,

she can only partition all possible scenarios into different events and reason event-by-event, but not

scenario-by-scenario within each event. The limited reasoning ability of an agent can be interpreted

as her bounded understanding about the relation between the resulting matchings and possible sce-

narios. The coarser the partition is, the more difficult contingent reasoning becomes.

Note that POSP bridges the well-studied strategy-proofness and obvious strategy-proofness as two

extreme cases of reasoning abilities. Concretely, when a partition Σ̂i is the coarsest, i.e., when it holds

that Σ̂i = {P−i}, f is said to be obviously strategy-proof (OSP) for i when f is Σ̂i-OSP for i.4 On the

contrary, when a partition Σ̄i is the finest, i.e., when each P t
i ∈ Σ̄i is a singleton, f being Σ̄-OSP is

equivalent to f being strategy-proof.

4.2.2 Features of POSP rules

Next, I provide some general features of partition obviously strategy-proofmatching rules which turn

out to be useful for my analysis.

Wefirst investigate the relationshipbetweenpartitionobvious strategy-proofness andobvious strategy-

proofness. Fix a partition system Σ. For each Σi = {P t
−i}Tt=1 and each t, let P t,i = Pi × P t

−i de-

note the subset of P such that ⪰∈ P t,i if and only if ⪰−i∈ P t
−i. In addition, for any P̂ ⊆ P ,

4The definition of OSP provided here is a simplification of Li (2017)’s formal definition, and it only applies
to normal-form settings.
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we say that f is OSP on P̂ for i if given any distinct ⪰i,⪰′
i∈ P̂i, it holds that with respect to ⪰i,

inf⪰−i∈P̂ t
−i
fi(⪰i,⪰−i) ⪰i sup⪰−i∈P̂ t

−i
fi(⪰′

i,⪰−i). The next result shows that if f is Σi-OSP for i,

then truth-telling is an obvious dominant strategy for i in each event of Σi.

Lemma 4.1. If f is Σ-OSP, then for each i and each t such thatP t
−i ∈ Σi, f is OSP for i onP t,i.

Proof. The result follows immediately fromDefinition 4.2.

Fix any i ∈ I and any two partitions Σi and Σ̃i. We say that Σ̃i is a decomposition of Σi if for

each P̃ ′
−i ∈ Σ̃i, there exists P ′

−i ∈ Σi such that P̃ ′
−i ⊆ P ′

−i, where at least one inclusion is strict.

Accordingly, a partition system Σ̃ is a decomposition of another partition system Σ if Σ̃i decomposes

Σi for each i ∈ I.

Li (2017) shows that anyobviously strategy-proofmechanism is also strategy-proof. Thenext result

generalizes this statement to any two POSPmatching rules where one of the two underlying partition

systems is a decomposition of the other.

Lemma 4.2. Let Σ and Σ̃ be two partition systems such that Σ̃ is a decomposition of Σ. If f is Σ-OSP,

then f is Σ̃-OSP.

Proof. If f is Σ-OSP, then inf⪰−i∈P t
−i
fi(⪰i,⪰−i) ⪰i sup⪰−i∈P t

−i
fi(⪰′

i,⪰−i) for all i ∈ I, all

P t
−i ∈ Σi and all⪰i,⪰′

i∈ Pi.

From now on, fix any i ∈ I, any P̃ t̃
−i ∈ Σ̃i and any⪰i∈ Pi as i’s true type. First, consider that i

submits her true preference⪰i to f. Note that as Σ̃ is a decomposition of Σ, there is an eventP t
−i ∈ Σ

such that P̃ t̃
−i ⊆ P t

−i. This implies that

∪⪰−i∈P̃ t̃
−i
fi(⪰i,⪰−i) ⊆ ∪⪰−i∈P t

−i
fi(⪰i,⪰−i).

That is, with respect to ⪰i, the worst outcome within ∪⪰−i∈P̃ t̃
−i
fi(⪰i,⪰−i) must be weakly better

than the worst outcome within∪⪰−i∈P t
−i
fi(⪰i,⪰−i):
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inf
⪰−i∈P̃ t̃

−i

fi(⪰i,⪰−i) ⪰i inf
⪰−i∈P t

−i

fi(⪰i,⪰−i).

Second, consider that i submits anymisreport⪰′
i∈ Pi to f. In this case, a similar argument also applies

to the best outcomes with respect to⪰i:

sup
⪰−i∈P t

−i

fi(⪰′
i,⪰−i) ⪰i sup

⪰−i∈P̃ t̃
−i

fi(⪰′
i,⪰−i).

Combining the above relations, we obtain

inf
⪰−i∈P̃ t̃

−i

fi(⪰i,⪰−i) ⪰i sup
⪰−i∈P̃ t̃

−i

fi(⪰′
i,⪰−i).

Since all i,⪰i,⪰′
−i and P̃ t̃

−i are arbitrarily taken, we reach the desired result that f is Σ̃-OSP.

An immediate observation ofLemma4.2 is that fix anyΣ, if amatching rule isOSP, it is alsoΣ-OSP;

moreover, if a matching rule is Σ-OSP, it is also strategy-proof.

We say that Σ provides stronger incentive than Σ̃ if whenever a rule is Σ-OSP, it is also Σ̃-OSP.Note

that Lemma 4.2 is tight since in general, we cannot compare the incentives provided by two partition

systemswhen none of them is a decomposition of the other. The following illustrative example shows

that fix any Σi and Σ̃i, if we only know that the number of events in Σi is less than the number of

events in Σ̃i, then f is not necessarily Σ̃i-OSP when f is Σ-OSP.

Example 4.1. Consider a market with I = {i, j, k} and O = {a, b, c}. Each agent i′ ∈ I has two

possible types denoted by ⪰1
i′ and ⪰2

i′ . Specifically, for agent i, let c ⪰1
i b ⪰1

i a and b ⪰2
i a ⪰2

i c.

Fix a matching rule f and in the following, I only present i’s assignments under f since the remaining

assignments are irrelevant for the discussion. Concretely, suppose that f assigns i to the following

objects for each preference profile:
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⪰1
i ⪰2

i

(⪰1
j ,⪰1

k) c a

(⪰1
j ,⪰2

k) b b

(⪰2
j ,⪰1

k) c a

(⪰2
j ,⪰2

k) c b

Next, consider two partitions for agent i: Σi = {P1
−i,P2

−i} and Σ̃i = {P̃1
−i, P̃2

−i, P̃3
−i} where the

events in these two partitions are given as follows:

P1
−i = {(⪰1

j ,⪰1
k), (⪰2

j ,⪰1
k)} P2

−i = {(⪰1
j ,⪰2

k), (⪰2
j ,⪰2

k)}

P̃1
−i = {(⪰1

j ,⪰1
k)} P̃2

−i = {(⪰2
j ,⪰2

k)} P̃3
−i = {(⪰1

j ,⪰2
k), (⪰2

j ,⪰1
k)}

Note that f is Σi-OSP for agent i, since in both events P1
−i and P2

−i and for each type of i, the worst

possible outcomes of truth-telling are at least as good as the best possible outcomes of misreporting.

However, f is not Σ̃i-OSP for agent i. To see this, it is enough to check for P̃3
−i. In this event, the

possible outcomes for i are {b, c} and {b, a}when she reports⪰1
i and⪰2

i , respectively. Since b ⪰2
i a,

truth-telling is not obviously strategy-proof for i in this event. By Lemma 4.1, f is thus not Σ̃i-OSP

for i.

4.3 POSP and strategy-proof rules

In this section, I focus on the requirement a partition systemΣ should fulfill such that a strategy-proof

matching rule is also Σ-OSP. In other words, I study the levels of reasoning ability necessary for agents

to understand that a matching rule is strategy-proof.
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4.3.1 Self-invariant partition

Towards this goal, I first introduce a class of partitions which specify agents’ reasoning abilities that

minimize the uncertainty about their own assignments in each event.

Definition 4.3. A partition Σi = {P t
−i}Tt=1 is self-invariant under f if for all⪰i∈ Pi, all P t

−i ∈ Σi

and all pairs⪰−i,⪰′
−i∈ P t

−i, fi(⪰i,⪰−i) = fi(⪰i,⪰′
−i). A partition systemΣ is self-invariant under

f if each Σi ∈ Σ is self-invariant under f.

In words, a partition Σi is self-invariant under a matching rule if given any i’s preference, i’s assign-

ments under that rule are the same within each event of Σi. The idea behind Definition 4.3 is that

when an agent has reasoning ability specified by a self-invariant partition, then she could reason to the

degree such that her assignment is unambiguously determined in each event. That is, it only allows

the underlying agent to have uncertainty about the assignments of other agents.

The next noteworthy example provides an intuition about how a self-invariant partition system Σ

under f relates to Σ-OSP of f. For simplicity, I will argue in the example under the assumption that

all objects are acceptable to all agents inP (i.e., that I only consider preference relations that are full).

The generalization to preferences with unacceptable objects is straightforward.

Example 4.2. There are three agents I = {i, j, k} and three objects O = {a, b, c}. Consider first a

sub-domain of preference profiles P̃ ⊂ P that is given as follows:

⪰1
i ⪰2

i ⪰3
i ⪰4

i ⪰5
i ⪰6

i

a a b b c c

b c a c a b

c b c a b a

⪰1
j ⪰2

j

a a

b c

c b

⪰1
k ⪰2

k

a b

b a

c c

The following table depicts the priority structure▷O:
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▷a ▷b ▷c

i j k

j k i

k i j

Moreover, denote the Top Trading Cycles (TTC) matching rule by fTTC. As has been shown in

Abdulkadiroğlu and Sönmez (2003), fTTC is strategy-proof.

The table below presents the assignments of agent i under fTTC for each preference profile in P̃ . It

is apparent from the table that given any of agent i’s type, her assignment is determined in P̃−i. Since

P̃i = Pi, we can infer that the event P̃−i is self-invariant under fTTC for i.

⪰1
i ⪰2

i ⪰3
i ⪰4

i ⪰5
i ⪰6

i

(⪰1
j ,⪰1

k) a a b b c c

(⪰1
j ,⪰2

k) a a b b c c

(⪰2
j ,⪰1

k) a a b b c c

(⪰2
j ,⪰2

k) a a b b c c

I now argue that fTTC is OSP for i on P̃ . To see this, note that agent i is guaranteed to get the object

that she reports as her favorite on P̃ . Therefore, for any type of agent i, the worst possible outcome

under truth-telling is at least as good as the best possible outcomeunder anymisrepresentation. Truth-

telling is thus an obviously dominant strategy and fTTC is OSP for i on P̃ .

Next, consider another sub-domain P̂ that comprises the same sets of preferences for i, k and that

satisfies P̂j = P̃j ∪ {⪰3
j } with⪰3

j : c ⪰ b ⪰ a. We list below the assignments for i under fTTC given

the type profile (⪰3
j ,⪰2

k) that is contained in P̂ .

⪰1
i ⪰2

i ⪰3
i ⪰4

i ⪰5
i ⪰6

i

(⪰3
j ,⪰2

k) a a a a a a
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By checking i’s assignment when she submits⪰3
i , it is apparent that P̂ is not self-invariant under

fTTC for i. Moreover, in the sub-domain P̂ and given that the true type of i is⪰3
i , the worst possible

outcome under truth-telling is being assigned to a. However, this assignment is strictly worse than

the best possible outcome by misreporting⪰4
i (i.e., getting b). Therefore, fTTC is not OSP for i on P̂ .

Finally, consider the full domain of preference profilesP . I argue how to construct a partition Σi of

P−i such that fTTC is Σi-OSP for agent i. Recall that fTTC is OSP for i on P̃ but not on P̂ . According

to Lemma 4.1, it is reasonable to have P̃−i as an event in Σi. In fact, as I present in Appendix 4.A, if

we further partition the remaining scenarios P−i \ P̃−i such that each event is self-invariant under

fTTC for i, we reach the desired partition Σi.

Generalizing the findings in Example 4.2, the next and main result of this section shows that self-

invariant partition systems under a strategy-proof rule are necessary and sufficient for that rule to be

POSP.

Theorem 4.1. A strategy-proof matching rule f is Σ-OSP if and only if Σ is self-invariant under f.

Proof. I first show the “if” part, which follows directly from definitions. Select any i ∈ I,⪰i,⪰′
i∈ Pi,

P t
−i ∈ Σi and ⪰∗

−i∈ P t
−i. First, since the partition system Σ is self-invariant under f, it is true that

with respect to⪰i,

inf
⪰−i∈P t

−i

fi(⪰i,⪰−i) = sup
⪰−i∈P t

−i

fi(⪰i,⪰−i) = fi(⪰i,⪰∗
−i)

and

inf
⪰−i∈P t

−i

fi(⪰′
i,⪰−i) = sup

⪰−i∈P t
−i

fi(⪰′
i,⪰−i) = fi(⪰′

i,⪰∗
−i).

Next, since f is strategy-proof, it holds

fi(⪰i,⪰∗
−i) ⪰i fi(⪰′

i,⪰∗
−i).
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Combing the three relations above, we conclude

inf
⪰−i∈P t

−i

fi(⪰i,⪰−i) = fi(⪰i,⪰∗
−i) ⪰i fi(⪰′

i,⪰∗
−i) = sup

⪰−i∈P t
−i

fi(⪰′
i,⪰−i).

Note that since i,⪰i,⪰′
i andP t

−i are arbitrarily taken, f is by definition Σ-OSP.

To show the “only if” part, I prove the contrapositive statement: If the partition system Σ is not

self-invariant under f, then f is not Σ-OSP.

Suppose that Σ is not self-invariant under f. Then, there exist Σi ∈ Σ,P∗
−i ∈ Σi,⪰1

−i,⪰2
−i∈ P∗

−i

and⪰i∈ Pi such that fi(⪰i,⪰1
−i) ̸= fi(⪰i,⪰2

−i). Since I focus on strict preferences, it follows that

either fi(⪰i,⪰1
−i) ≻i fi(⪰i,⪰2

−i) or fi(⪰i,⪰2
−i) ≻i fi(⪰i,⪰1

−i). For the rest of the proof, I assume

w.l.o.g. that fi(⪰i,⪰1
−i) ≻i fi(⪰i,⪰2

−i), since we just need to relabel the two profiles otherwise and

the following argument would still work. Select any⪰′
i∈ Pi such that (1) fi(⪰i,⪰1

−i) ranks top on

⪰′
i and (2)⪰′

i ̸=⪰i.

I first argue that fi(⪰′
i,⪰1

−i) = fi(⪰i,⪰1
−i). If not, and note that as fi(⪰i,⪰1

−i) ranks top on⪰′
i,

it follows that fi(⪰i,⪰1
−i) ⪰′

i fi(⪰′
i,⪰1

−i). However, this contradicts to the fact that f is strategy-

proof. Next, since f(⪰′
i,⪰1

−i) = fi(⪰i,⪰1
−i) and⪰1

−i∈ P∗
−i, we can infer that with respect to⪰i,

sup
⪰−i∈P∗

−i

fi(⪰′
i,⪰−i) ⪰i fi(⪰i,⪰1

−i).

Also, since⪰2
−i∈ P∗

−i, it is clear that

fi(⪰i,⪰2
−i) ⪰i inf

⪰−i∈P∗
−i

fi(⪰i,⪰−i).

Combining the just described two relations with the assumption fi(⪰i,⪰1
−i) ≻i fi(⪰i,⪰2

−i), we can
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claim that there exist⪰i,⪰′
i∈ Pi andP∗

−i ∈ Σi such that with respect to⪰i,

sup
⪰−i∈P∗

−i

fi(⪰′
i,⪰−i) ≻i inf

⪰−i∈P∗
−i

fi(⪰i,⪰−i).

This means that f is not Σi-OSP for agent i. Since Σi ∈ Σ, f is thus not Σ-OSP, and this completes the

proof.

Theorem 4.1 states that agents will avoid strategic mistakes under strategy-proof matching rules

if and only if the uncertainty about their own assignments is avoided. On the one hand, the result

is intuitive since I focus on ordinal preferences where agents only care about their own assignments.

Therefore, agents with self-invariant partitions stick to truth-telling even if they cannot figure out

others’ assignments. On the other hand, Theorem 4.1 implies that any small uncertainty about their

own results might cause agents to deviate. Note that so far I restrict attention to static games where

agents report their full preferences at once. As I will show in Section 4.4, the requirements put on by

Theorem 4.1 are loosened when extensive-form games are included.

Theorem4.1 characterizes all partition systemswhichguarantee thePOSPof a strategy-proofmatch-

ing rule. In fact, it might be interesting to focus on the coarsest ones since they refer to the least nec-

essary levels of reasoning abilities for agents to understand the strategy-proofness of the underlying

rule. As I will construct the coarsest partition systems in the next section, I show here that for each

strategy-proof rule, the coarsest self-invariant partition system is unique.

Proposition 4.1. For any strategy-proof matching rule f, there exists a partition system Σf such that (1)

f is Σf-OSP and that (2) for any Σ ̸= Σf satisfying f being Σ-OSP, Σ is a decomposition of Σf.

Proof. Since possible partitions are finite in a given problem, for each agent i ∈ I, select a partition

Σf
i such that f is Σf

i-OSP for i and that |Σi| ≥ |Σf
i| for any other partition Σi which satisfies that f
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is Σi-OSP. Let Σf = {Σf
i}i∈I, and it is obvious that f is Σf-OSP. In the following, we show that the

selected partition system Σf also fulfills the second condition in Proposition 4.1.

As has been already shown by Lemma 4.2, given any decomposition Σ of Σf, it must be true that f is

Σ-OSP. To complete the proof, it remains to show that for every Σ′ that is not a decomposition of Σf,

f is not Σ′-OSP. I proceed by contradiction. Suppose that there exists Σ′ such that f is Σ′-OSP and that

Σ′ is not a decomposition ofΣf. Then, there exists at least one agent i ∈ I, one eventP ′
−i ∈ Σ′

i and two

type profiles⪰1
−i,⪰2

−i∈ P ′
−i such that⪰1

−i∈ P f,1
−i and⪰2

−i∈ P f,2
−i for two distinctP

f,1
−i,P

f,2
−i ∈ Σf

i. I

aim at a contradiction to the selection of Σf.

From now on, fix any⪰i∈ Pi. Since f is Σ′-OSP, by Theorem 4.1 we know that Σ′
i is self-invariant

under f. Therefore, we have

fi(⪰i,⪰1
−i) = fi(⪰i,⪰2

−i).

Similarly, since f is Σf-OSP, we know that Σf
i is self-invariant. Thus, for all⪰′

−i∈ P f,1
−i, we have

fi(⪰i,⪰′
−i) = fi(⪰i,⪰1

−i),

and for all⪰′′
−i∈ P f,2

−i , we have

fi(⪰i,⪰′′
−i) = fi(⪰i,⪰2

−i).

Let P f
−i = P f,1

−i ∪ P f,2
−i . Note that⪰i is arbitrarily taken, we conclude from the above findings that

for all⪰′
i∈ Pi and all⪰−i, ⪰̃−i ∈ P f

−i,

fi(⪰′
i,⪰−i) = fi(⪰′

i, ⪰̃−i).

Then,we constructΣ∗ such thatΣ∗
i = Σf

i∪P
f
−i\{P

f,1
−i,P

f,2
−i} andΣ∗

j = Σf
j for j ̸= i. By construction,

Σ∗ is self-invariant under f. Again byTheorem4.1, f is Σ∗-OSP.However, note that as |Σ∗
i | = |Σf

i|−1,
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this contradicts to how Σf is selected.

The next and final result of this subsection is a characterization for self-invariant partitions. Fix a

strategy-proof matching rule f and a type profile⪰−i∈ P−i. Let

Oi(f,⪰−i) = {o ∈ O | ∃ ⪰i∈ Pi : fi(⪰i,⪰−i) = o}

denote the set of objects that agent i could potentially receive under fwhen the type profile of others

is known as⪰−i.

Proposition 4.2. A partition Σi is self-invariant under a strategy-proof rule f if and only if for each

P t
−i ∈ Σi, it is true that Oi(f,⪰−i) = Oi(f,⪰′

−i) for all pairs⪰−i,⪰′
−i∈ P t

−i.

Proof. The “only if” part follows directly from the definition: If Σi is self-invariant under f, then

for any two type profiles ⪰−i,⪰′
−i that are contained in the same event P t

−i ∈ Σi, we have that

fi(⪰i,⪰−i) = fi(⪰i,⪰′
−i) for all⪰i∈ Pi. It then follows thatOi(f,⪰−i) = Oi(f,⪰′

−i).

I prove the “if” part by showing the contrapositive statement. Suppose that Σi is not self-invariant,

that is, there exist ⪰i∈ Pi, P t
−i ∈ Σi and ⪰−i,⪰′

−i∈ P t
−i such that fi(⪰i,⪰−i) ̸= fi(⪰i,⪰′

−i).

Denote the two assignments of i by fi(⪰i,⪰−i) = o and fi(⪰i,⪰′
−i) = o′, respectively. For the

rest of the proof, I assume w.l.o.g. that o ≻i o′, since we can just relabel the two profiles otherwise.

First, note that since fi(⪰i,⪰−i) = o, we have o ∈ Oi(f,⪰−i) by the definition of Oi. Second, since

f is strategy-proof, it must hold that o′ = fi(⪰i,⪰′
−i) ⪰i fi(⪰′

i,⪰′
−i) for all ⪰′

i∈ Pi. Therefore,

for any õ ∈ Oi(f,⪰′
−i), we have o′ ⪰i õ, which implies o /∈ Oi(f,⪰′

−i). Since o ∈ Oi(f,⪰−i)

and o /∈ Oi(f,⪰′
−i), we obtain the desired result that Oi(f,⪰−i) ̸= Oi(f,⪰′

−i). This completes the

proof.

Proposition 4.2 shows that for each agent with a self-invariant partition, the set of objects that

remains possible to her in each event is constant. As a remark, Proposition 4.2 provides an important
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implication for the coarsest partition systemΣf introduced in Proposition 4.1. That is, for all Σf
i ∈ Σf,

all P t
−i,P s

−i ∈ Σf
i (with t ̸= s) and all ⪰t

−i∈ P t
−i, ⪰s

−i∈ P s
−i, it is true Oi(f,⪰t

−i) ̸= Oi(f,⪰s
−i).

In fact, Proposition 4.2, along with this implication, turn out to be useful soon when I construct the

unique coarsest self-invariant partition system under a strategy-proof matching rule.

4.3.2 Coarsest self-invariant partition system under TTC

In this subsection, I focus on TTC.More concretely, I introduce an algorithmwhich yields the coars-

est self-invariant partition system under fTTC for a problem (I,O,▷O,P). Building on the insights

from Proposition 4.2, this algorithm computes the desired partition system by classifying the sets

{Oi(fTTC,⪰−i) | ⪰−i∈ P−i} for each i ∈ I via the following processes.

Round 0 Let P ′
−i = P−i and let ΣTTC

i be the finest partition of P−i where each event is a singleton.

Move to Round 1.

Round 1 If P ′
−i is non-empty, select any ⪰−i∈ P ′

−i and move to Round 2. Otherwise, terminate the

algorithm.

Round 2 Run TTCwithout i’s report. Concretely, go through the following processes.

Round 2.1 Each agent i′ ∈ I\{i} points to her favorite object (or herself) according to ⪰−i, and

each object o ∈ O points to the agent who has the highest priority on▷o. If there are

no cycles, move to Round 3. Otherwise, remove the cycles from the system, denote the

remaining agents by I1, denote the remaining objects byO1 and move to Round 2.2.

Round 2.k, k ≥ 2 Each agent i′ ∈ Ik−1\{i}points to her favorite object inOk−1 (or herself) accord-

ing to⪰−i, and each object o ∈ Ok−1 points to the agent who has the highest priority

among agents in Ik−1. If there are no cycles, move to Round 3. Otherwise, remove the

cycles from the system, denote the remaining agents by Ik, denote the remaining objects

byOk and move to Round 2.(k+ 1).
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Round 3 Let O(⪰−i) comprise the objects that remain in the system after the last step of Round 2. If

there exists⪰′
−i∈ P−i \P ′

−i such thatO(⪰−i) = O(⪰′
−i), add⪰−i to the event in ΣTTC

i that

contains⪰′
−i. Otherwise, keep the singleton event in ΣTTC

i that contains⪰−i. Then, remove

⪰−i fromP ′
−i and move back to Round 1.

The algorithm goes through the above three rounds for |P−i| times and terminates with the parti-

tion ΣTTC
i . After running the algorithm for all i ∈ I, we obtain a partition systemΣTTC = {ΣTTC

i }i∈I.

The next result shows that ΣTTC is the desired partition system.

Lemma 4.3. The partition ΣTTC
i is the coarsest self-invariant partition for i under fTTC.

Proof. To see this, let us first look at Round 3. Note that in this round, the algorithm guarantees that

for any event P t
−i ∈ ΣTTC, all types⪰−i∈ P t

−i yield the same set of remaining objects at the end of

Round 2. Let O(P t
−i) = O(⪰−i) for any⪰−i∈ P t

−i. Moreover, Round 3 also guarantees that any

two eventsP t
−i,P s

−i ∈ ΣTTC
i have different values of remaining objects: O(P t

−i) ̸= O(P s
−i).

As explained in the discussion of Proposition 4.2, the desired result follows once we have that

O(⪰−i) = Oi(fTTC,⪰−i). Thus, I show next that O(⪰−i) = Oi(fTTC,⪰−i). Under TTC, agents

and objects are allocated when they are contained in a top trading cycle. During the process of TTC,

once we find a top trading cycle that does not contain iwhile i remains unassigned, this cycle becomes

part of the finalmatchingnomatterwhat i reports (Roth, 1982). In otherwords, for objects contained

in such cycles, i has no chance to be assigned to them regardless of her submitted type. Notably, each

cycle removed in Round 2 of the algorithm belongs to the cycles mentioned above. This implies that

o ∈ O \ Oi(fTTC,⪰−i) for each o ∈ O \ O(⪰−i). That is, it holds Oi(fTTC,⪰−i) ⊆ O(⪰−i).

Next, select any o ∈ O(⪰−i). Since o remains unassigned after Round 2, then it is not contained in

any cycle. Instead, o must be part of a top trading chain5 that ends up with an object pointing to i.

5A top trading chain is an ordered list of distinct objects and agents where each agent points to her top
choice and where each object points to agent with the top priority.
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In this case, if i points to o, a top trading cycle will immediately be formed and TTC will assign i to

o. Thus, o ∈ Oi(fTTC,⪰−i), which further implies O(⪰−i) ⊆ Oi(fTTC,⪰−i). In conclusion, we

have O(⪰−i) = Oi(fTTC,⪰−i), and thus ΣTTC is the coarsest self-invariant partition system under

fTTC.

Loosely speaking, the main benefit of the above algorithm for TTC is that it can compute the set

Oi(fTTC,⪰−i) without considering the types of agent i. Looking carefully at the discussions above,

we see that this benefit comes from the fact that TTC is non-bossy (Pápai, 2000).6 In Appendix 4.C,

I present an algorithmwhich computes the coarsest partition system for any strategy-proof matching

rule. Beingmore general than the above algorithm for TTC, it runs inmore rounds but still improves

upon cycling through all preference profiles.

4.4 Extensive-form games

Like obvious strategy-proofness, POSP is a solution concept that also applies to extensive-form games.

Therefore, I now extend the analysis to extensive-form settings. Since the formal definition of an

extensive-form revelation game is familiar to most readers, I relegate it to Appendix 4.B. Also, since

the necessary adaptations to the definition of POSP are standard, I relegate the adapted version and

the definition of a POSP implementation to Appendix 4.B.

Notably, it turns out that with necessary adjustments in the respective proofs, Lemma 4.1, Lemma

4.2, Proposition 4.1 and Proposition 4.2 are still true after including extensive-form games. However,

as the next result shows, Theorem 4.1 fails to hold in this more general setting. Concretely, the self-

invariance of a partition system Σ becomes not necessary for Σ-OSP implementation of TTC.

Theorem 4.2. There exists aΣ-OSP implementation of TTCwhereΣ is not self-invariant under TTC.

6As defined by Satterthwaite and Sonnenschein (1981), non-bossiness of a rule requires that no agent can
change others’ assignments without changing her own assignment by misreporting her types.
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Theproof below is constructive. Troyan (2019) shows thatTTC isOSP-implementable if and only

if the underlying priority structure is weakly acyclic.7 Since Lemma 4.2 holds in extensive-form game

settings, we can infer that when the priority structure is weakly acyclic, TTC is Σ-OSP implementable

for any partition system Σ. Therefore, in the following, I consider an example where the priority

structure is notweakly acyclic, and construct a partition systemΣ that is not self-invariant under TTC

but guarantees the Σ-OSP implementation of TTC.

Proof. Consider a market with three agents I = {i, j, k} and three objects O = {a, b, c}. For sim-

plicity suppose that all objects are acceptable. Agent i has the full domain of preferences while the

preferences of agent j and k are given in the following table:

⪰1
j ⪰2

j

a b

b a

c c

⪰1
k ⪰2

k

a c

b a

c b

The priority structure▷O is as follows

▷a ▷b ▷c

i j k

j k i

k i j

Note that ▷O is not weakly acyclic since there are three agents who rank top at all objects. Suppose

that TTC is implemented in this market, and consider the following partition Σi = {P t
−i}3t=1 with

P1
−i = {(⪰1

j ,⪰1
k), (⪰1

j ,⪰2
k)}, P2

−i = {(⪰2
j ,⪰1

k)}, P3
−i = {(⪰2

j ,⪰2
k)}.

7As defined in Troyan (2019), a strong cycle in a priority structure▷O is described by three agents i, j, k ∈ I
and three objects a, b, c ∈ C such that i▷a j, k, j▷b i, k and k▷c i, j. If there are no strong cycles, the priority
structure is said to be weakly acyclic.
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It is easily checked that Oi(f,⪰1
j ,⪰1

k) = {a, b, c} and Oi(f,⪰1
j ,⪰2

k) = {a, b}. Next, note that since

(⪰1
j ,⪰1

k), (⪰1
j ,⪰2

k) ∈ P1
−i and Oi(f,⪰1

j ,⪰1
k) ̸= Oi(f,⪰1

j ,⪰2
k), by Proposition 4.2, Σi is not self-

invariant under TTC.

Now consider the following extensive-formmechanism Γ that implements TTC in this market:

Step 1 Ask agent i to choose her top choice from {a, b, c}. If i responds a, assign i to a, j to b and k

to c, then stop the mechanism; if i answers b, move to Step 2; if i answers c, move to Step 3.

Step 2 Ask j if she prefers a to b. If yes, assign i to b, j to a and k to c, then end the mechanism;

otherwise, assign j to b and move to Step 2.1.

Step 2.1 Ask agent i if she prefers a to c. If yes, assign i to a and k to c, then end the mechanism.

Otherwise, ask agent k if she prefers a to c. If k answers yes, assign i to c, assign k to a and

end the mechanism; if k answers no, assign i to a, assign k to c and end the mechanism.

Step 3 Ask k if she prefers a to c. If yes, assign i to c, j to b and k to a, then end the mechanism;

otherwise, assign k to c and move to Step 3.1.

Step 3.1 Ask agent i if she prefers a to b. If yes, assign i to a and j to b, then end the mechanism.

Otherwise, ask j if she prefers a to b. If j answers yes, assign i to b, assign j to a and end

the mechanism; if j answers no, assign i to a, assign j to b and end the mechanism.

I now argue that Γ is Σi-OSP for agent i. Concretely, I show that in each event of Σi, at each Step

where i plays, her worst possible outcome under truth-telling is weakly better than her best possible

outcome under misreporting.

I first check for the event P1
−i, that is, consider the two profiles (⪰1

j ,⪰1
k) and (⪰1

j ,⪰2
k). In this

event, if i reports a or b as her top choice, she is ensured to receive it. Therefore, truth-telling is an

obviously dominant strategy for i in cases where she truly prefers a or bmost. It remains to consider
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the case where the true preferences of agent i are⪰1
i : c ⪰1

i a ⪰1
i b or⪰2

i : c ⪰2
i b ⪰2

i a. In these two

cases, wefirst checkwhether ihas the incentive tomisreport at Step 1. Note that truth-telling of⪰1
i and

⪰2
i refer to the same action at Step 1. Therefore, if i reports truthfully at Step 1, then under (⪰1

j ,⪰1
k),

she will receive her favorite object; and under (⪰1
j ,⪰2

k) she will receive her second favorite object at

Step 3.1. However, if imisreports at Step 1, she will be assigned to a or bwhichever she misreports as

her favorite. That is, the best possible assignment undermisreporting is her second choice. Therefore,

no matter whether i is of type ⪰1
i or ⪰2

i , reporting truthfully obviously dominates any misreport at

Step 1. Next, I check whether agent i has the incentive to report ⪰2
i when she is of type ⪰1

i (or the

other way around) at Step 3.1. Once Step 3.1 is reached, agent i knows that c is already allocated to k.

Then, in event P1
−i, she receives a by reporting⪰1

i while she receives b by reporting⪰2
i . Notice that

a ⪰1
i b and b ⪰2

i a, she thus has no incentive to misreport at Step 3.1. In conclusion, when agent i

only considers eventP1
−i, truth-telling is an obviously dominant strategy.

As for the remaining events P2
−i and P3

−i, since both events are singleton, the argument follows

directly from strategy-proofness of TTC. I thus omit the details here.

So far, I can claim that Γ is Σi-OSP for agent i. Next, since Γ implements TTC andTTC is strategy-

proof, it is easy to construct two self-invariant partitions under TTC, Σj and Σk for agent j and agent

k, respectively. Let Σ = {Σi,Σj,Σk}. Since Σi is not self-invariant under TTC, Σ is not self-invariant

under TTC.However, by construction it follows that Γ is Σ-OSP. Thus, Σ is a partition systemwhich

is not self-invariant under TTC but guarantees Σ-OSP implementation of TTC. This completes the

proof.

Notably, the self-invariance condition on a partition Σ under f is still sufficient for Σ-OSP imple-

mentation of f. To provide an intuition, recall first Theorem 4.1: If the reasoning ability of an agent

corresponds to a self-invariant partition, then even if she is asked to report her entire preference rank-

ing without any information about others’ types, she will stick to truth-telling. Next, note that in
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extensive-form games, agents are usually asked to reveal their types step by step. Such a way of report-

ing brings agents two sources of benefits. First, it allows agents to break down their decisions into

small parts, and each of them requires less reasoning ability. Second, at each step when they (partially)

reveal preferences, they receive information about preferences of others through the game. In conclu-

sion, with more information and less reasoning load, agents with self-invariant partitions under f still

have the incentive to truthfully report their preferences in extensive-form games that implement f.

4.5 Conclusion

In a standard one-to-one object-allocation setting, Imodel agents’ bounded contingent reasoning and

define an incentive property that lies between OSP and strategy-proofness. I study the degree of rea-

soning which is necessary and sufficient for an agent to understand that a matching rule is strategy-

proof. This chapter opens up several avenues for future study. For instance, it is still an open question

how much reasoning abilities are needed to understand a sequential form of a strategy-proof match-

ing rule. Also, it would be interesting to regard POSP as a criterion to study and compare the perfor-

mances of different sequential implementations of a matching rule.

4.A Supplement for Example 4.2

I now construct Σi such that in each event and given any of i’s type, the assignment of i is fixed under

TTC. The construction of Σi and i’s assignments under TTC for all preference profiles are listed in

Table 4.1. Concretely, the types of j and k are divided into four different events, namely P1
−i to P4

−i.

Let Σi = {P t
−i}4t=1. It is apparent from the table that agent i receives the same outcome in each event

given any her own type – Σi is self-invariant for i under fTTC. Also, we can conclude from the table

that fTTC is Σi-OSP for agent i.
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Events ⪰j ⪰k fTTC(⪰)
⪰i abc acb bac bca cab cba

P 1
−i

abc abc a a b b c c
abc acb a a b b c c
acb abc a a b b c c
acb acb a a b b c c
abc bac a a b b c c
abc bca a a b b c c
acb bac a a b b c c
acb bca a a b b c c
cab abc a a b b c c
cab acb a a b b c c
cba abc a a b b c c
cba acb a a b b c c

P2
−i

abc cab a a b b a b
abc cba a a b b a b
acb cab a a b b a b
acb cba a a b b a b
cab cab a a b b a b
cab cba a a b b a b

P3
−i

bac abc a a a c c c
bac acb a a a c c c
bca abc a a a c c c
bca acb a a a c c c
bac bac a a a c c c
bca bac a a a c c c

P4
−i

bac bca a a a a a a
bca bca a a a a a a
bac cab a a a a a a
bac cab a a a a a a
bca cba a a a a a a
bca cba a a a a a a
cab bac a a a a a a
cab bca a a a a a a
cba bac a a a a a a
cba bca a a a a a a
cba cab a a a a a a
cba cba a a a a a a

Table 4.1: All scenarios for agents i
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4.B POSP in extensive-form settings

In this section, I introduce partition obvious strategy-proofness in extensive-form settings. I start by

formally introducing the extensive-form revelation games with imperfect information.

Definition 4.4. An extensive-form revelation game with imperfect information Γ consists of:

1. A rooted game treeRwhere:

(a) r is the root node ofR

(b) N(R) is the set of non-terminal nodes ofR, where r ∈ N(R)

(c) L(R) is the set of terminal nodes ofR

(d) E(R) = {E(n)}n∈N(R) is the set of edges ofR, whereE(n) is the set of edges originating

from node n; given any edge e ∈ E(R), we denote the origin of e by n(e)

2. A map τ: L(R) → M from the terminal nodes to matchings.

3. A map π: N(R) → I from non-terminal nodes to agents.

4. For each n ∈ N(R), a map φn: E(n) → 2Pπ(n) \ {∅} from edges to sets of preference relations

for agent π(n) such that:

(a) for any two distinct e, e′ ∈ E(n), φn(e) ∩ φn(e
′) = ∅,

(b) if e∗ is the first edge along the path from n back to the root r such that π(n(e∗)) = π(n),

then∪e∈E(n)φ(e) = φ(e∗); if no such edge exists, then ∪e∈E(n)φ(e) = Pπ(n).

5. The collection of information setsK = {Ki}i∈Iwhere eachKi is a partition of{n | π(n) = i}.

Specifically, n1 andn2 are in the same cell ofKi if and only if the following conditions hold. For

any e1 ∈ E(n1), there is an edge e2 ∈ E(n2) such that φ(e1) = φ(e2) and |E(n1)| = |E(n2)|.

Each cell ofKi is called an information set for agent i.
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For the following discussion, fix an extensive-form revelation game Γ. Intuitively, at each internal

node of Γ, an agent is called to take action, and the actions are interpreted by the edges. Specifically, an

edge eoutgoing fromanoden is one possible action that agent π(n) could take atn, andφn(e) specifies

the types of agent π(n) that are recommended to take this action. Upon reaching any information

set K ∈ Ki ∈ K, let PK ⊆ P be the set of remaining preference profiles, i.e. for each i ∈ I,

PK
i = φ(ei)where ei is themost recent edge along the path back from the information setK to r such

that π(n(ei)) = i (and PK
i = Pi if no such edge exists). Note that at any node n ∈ K, the set of

remaining preference profilesPn satisfiesPn = PK.

I now define agents’ strategies in the game. Fix an agent i, and a strategy for i in Γ is a function

si : Ki × Pi → Pi such that for all K ∈ Ki and all ⪰i∈ Pi, it holds si(K,⪰i) ∈ ∪e∈E(n)φn(e)

with any n ∈ K . When si(K,⪰i) =⪰′
i, it means that at information set K, i will choose the action

corresponding to the edge e ∈ E(n)with⪰′
i∈ φ(e) if her true type is⪰i. We use s = (si)i∈I to denote

the strategy profile of all agents. Specifically, a strategy profile s∗ is said to be the truthful behavior if

s∗i (K,⪰i) =⪰i for all i ∈ I, K ∈ Ki and⪰i∈ Pi. That is, agents always choose edges that contain

their true preferences under truthful behavior. With the notation by hand, I nowdefinewhat itmeans

for an extensive-form game to implement a matching rule.

Definition 4.5. An extensive-form revelation game with imperfect information Γ implements rule f

under truthful behavior if for any terminal node l ∈ L(R) and any⪰∈ Pn, it holds τ(l) = f(⪰).

Next, I introduce a fewmore notation that are necessary for defining POSP. Fix a partition system

Σ. For anyK ∈ Ki ∈ K and any Σi ∈ Σ, let

ΣK
i = {P t,K

−i }nt=1 where P t,K
−i = P t

−i ∩ PK
−i

be the conditional partition for i at K. Loosely speaking, the conditional partition ΣK
i partitions the

set PK
−i based on how these profiles are separated in Σi. Moreover, two preferences ⪰i,⪰′

i∈ Pi
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are said to diverge at node n, if there exist two distinct edges e, ẽ ∈ E(n) such that ⪰i∈ φn(e) and

⪰′
i∈ φn(̃e). Accordingly,⪰i,⪰′

i are said to diverge at the information set K, if there exist two distinct

edges e, ẽ ∈ {E(n)}n∈K such that⪰i∈ φn(e),⪰
′
i∈ φn(̃e) and φn(e) ̸= φn(̃e).

We are now ready to define POSP in the more general setting.

Definition 4.6. Let Γ implement f under truthful behavior.

1. The revelation game Γ is Σi-obviously strategy-proof (Σi-OSP) for agent iwhen for allK ∈ Ki,

allP t,K
−i ∈ ΣK

i and all⪰i,⪰′
i∈ Pi such that⪰i,⪰′

i diverge atK,

inf
⪰−i∈P t,K

−i

fi(⪰i,⪰−i) ⪰i sup
⪰−i∈P t,K

−i

fi(⪰′
i,⪰−i)

where inf fi (sup fi) represents the outcome which ranks lowest (highest) on⪰i.

2. The game Γ is Σ-obviously strategy-proof (Σ-OSP) if for each Σi ∈ Σ, Γ is Σi-OSP for agent i.

In words, Γ is Σi-OSP for i if at each information set, for each conditional partition, for every type

instructed to follow a certain edge at that information set, when agent ionly considers the types of oth-

ers in one certain cell of the conditional partition, the worst possible outcome she can receive is weakly

better than the best outcome from any other edge. Finally, the definition of Σ-OSP implementation

follows immediately from the above concepts.

Definition 4.7. An extensive-form revelation game with imperfect information Γ is said to be a Σ-

OSP implementation of a matching rule f if Γ implements f under truthful behavior and Γ is Σ-OSP.

4.C Coarsest self-invariant partition system

In this section, I introduce an algorithm that computes the coarsest self-invariant partition system

under any strategy-proof matching rule. Fix a problem (I,O,⪰,▷O) and a strategy-proof matching
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rule f. Following Proposition 4.2, I reach the goal by classifying the sets {Oi(f,⪰−i) | ⪰−i∈ P−i}.

Specifically, to provide a convenient way of figuring out each Oi(f,⪰−i), I introduce the following

result which holds with respect to any f.

Lemma 4.4. Fix any i ∈ I and any ⪰−i∈ P−i. For any object o′ ∈ O\Oi(f,⪰−i), agent i cannot

receive o′ no matter what she reports. Moreover, for any o ∈ Oi(f,⪰−i), agent i is guaranteed to be

matched with o once she ranks o as her top choice.

Proof. The first part is obvious from the definition, and thus omitted. I show the second part by

contradiction. Suppose that there exists o ∈ Oi(f,⪰−i) such that for ⪰i on which o ranks high-

est, fi(⪰i,⪰−i) ̸= o. Notice that as o ∈ Oi(f,⪰−i), there exists a preference ⪰′
i∈ Pi such that

fi(⪰′
i,⪰−i) = o. However, since that o ranks highest on⪰i and that⪰i is a strict ranking, we must

have fi(⪰′
i,⪰−i) ⪰i fi(⪰i,⪰−i), which contradicts the fact that f is strategy-proof.

Lemma 4.4 clarifies that under any strategy-proof matching rule, to find out whether an object is

available to an agent when the others’ types are given, it is enough to check if that agent receives that

object when she only lists it as acceptable. In the following, I introduce the target algorithm based on

the characteristics provided in Lemma 4.4. Initially, fix any i ∈ I, let P ′
−i = P−i and let Σ

f
i be the

finest partition ofP−i.

Round 1 If P ′
−i is empty, terminate the algorithm. Otherwise, choose any⪰−i∈ P ′

−i, let O∗ = O, let

O(⪰−i) = ∅ and move to Round 2.

Round 2 If O∗ is empty, move to Round 4. Otherwise, choose any o ∈ O∗, let ⪰o
i be the preference

where agent i only ranks o as acceptable,8 let⪰o= (⪰o
i ,⪰−i) and move to Round 3.

Round 3 Calculate f(⪰o), let O(⪰−i) = O(⪰−i) ∪ {fi(⪰o)}, remove o from O∗ and move back to

Round 2.
8That is,⪰o

i exhibits the following ranking: o ⪰o
i i ⪰o

i . . .
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Round 4 If there exists⪰′
−i∈ P−i \P ′

−i such thatO(⪰−i) = O(⪰′
−i), add⪰−i to the event in Σ

f
i that

contains⪰′
−i. Otherwise, keep the singleton event in Σf

i that contains⪰−i. Then, remove⪰−i

fromP ′
−i and move back to Round 1.

Let Σf = {Σf
i}i∈I be the partition system found by running the above algorithm for each i ∈ I.

Notably, by Proposition 4.2 and Lemma 4.4, Σf is the coarsest self-invariant partition system under f.
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