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Abstract

This thesis studies the shortest path problem in large road networks. The classi-
cal algorithm for networks with non-negative edge weights is due to Dijkstra and
has a worst-case performance ofO(|E| + |V| log |V|) using a simple priority queue
as data structure for temporarily labeled nodes. We present a new, so-called tree
heuristic, which is based on the similarity of shortest path trees and which can be
used to speed up the shortest path search especially in practical applications like
microscopic simulation of traffic or route guidance systems. Instead of searching
a path in the original network, the tree heuristic partitions the network into classes
of about equal size and constructs a special searchgraph for each class. On a test
road network of about one million nodes the tree heuristic outperforms Dijkstra’s
algorithm by a factor of more than three with respect to runtime and about seven
with respect to permanently labeled nodes where the found paths can be expected
to have a relative error below 1%, if the starting and end node are not too close
to each other. We also analyze theA∗-algorithm with overdo-factor, originally de-
vised for Euclidean networks and derive an interval [1.27, . . . , 5] from which an
optimal overdo-factor should be chosen in practical applications. Finally we give
an algorithm which calculates edge tolerances for a shortest path and which can be
used to generate reasonable altervative routes to the exact shortest path.
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Chapter
One

Introduction

The problem of finding a shortest path between two nodes in a weighted graph is
one of the classical problems in network optimization and has been extensively
studied for more than forty years. In many applications the determination of a
shortest path arises either as a stand-alone problem or as a subproblem in a more
complex problem setting. Examples of the first are transportation problems, pro-
ject management and DNA sequencing, examples of the latter are the approxima-
tion of functions and the knapsack problem.

In graph-theoretical notation the shortest path problem can be stated as follows:
Let G = (V,E, c) be a weighted graph whereV is the node set,E the edge set and
c is a given cost function on the set of edges. The problem is to find a pathP =
(s = v0, v1, . . . , vk−1, vk = t) between a given starting nodes and a target nodet
with minimal costs with respect toc, where the cost of the path is the sum of the
weights of its constituent edges.

Algorithms for solving the shortest path problem iteratively assign tentative
distance labels to nodes at each step, which are upper bounds on the shortest path
distance from the starting node to these nodes. While so-called label-setting algo-
rithms designate one label as permanent and thus optimal in each step, in label-
correcting algorithms all labels are temporary up to the last iteration when all la-
bels become permanent. Label-setting algorithms show a better worst-case perfor-
mance, but they are applicable only to acyclic networks or problems with nonneg-
ative edge weights. In contrast, label-correcting algorithms can be applied even if
negative edge weights are allowed and offer more algorithmic flexibility.

The classical label-setting algorithm is due to Dijkstra [20] dating back to 1959.
The algorithm chooses the nodev with the minimum temporary label as next node
to be permanently labeled. The temporary distance of a neighbourw of v is up-
dated if the path froms to w traversing overv has less weight than the present la-
bel of w. By using a simple priority queue as data structure for the temporarily
labeled nodes the node selection and distance update operations lead to a worst-
case complexity ofO(|E| + |V| log |V|). Numerous implementations of Dijkstra’s
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algorithm have been proposed that either improve its running time in practice or
its worst-case complexity by using more complicated data structures (see e.g. [3]).
Recently, Thorup [97] presented a linear algorithm for undirected graphs which
avoids the inherent sorting of nodes in Dijkstra’s algorithm by identifying nodes
that can be permanently labeled in any order.

Although there are very fast implementations of Dijkstra’s algorithm, in prac-
tical applications the special structure of the network often allows to devise even
faster algorithms which will not necessarily give the optimal path, but generate
routes1 that are satisfactory for the specific purpose. One such application arises
from the growing interest in telematics in the past years. Advanced Traffic Ma-
nagement/Information Systems (ATMS/ATIS) analyze the current traffic situation
and give routing advice to travelers. This can be done via variable message signs
or individually using some kind of onboard navigation system in the car.

Since the market introduction of onboard navigation systems in 1994 the sales
figures provided by the suppliers almost doubled every year, reaching an estimate
of 600000 sold systems in Germany in the year 2000 [37]. At the start, these navi-
gation systems were nothing more than a digitalized road map on CD-ROM, which
allowed to calculate a shortest path based on some static information like geomet-
rical length, average link travel time or preference of specific road types. In a next
step up-to-date traffic information could be received via mobile phone indicating
a possible recalculation of the route to the user of such a system. Newer systems
are capable of reacting to dynamic traffic information received via radio over the
traffic message channel (TMC) or mobile phone and GPS-system, generating an
alternative route by itself. Adding a wireless communication interface, i.e. on ba-
sis of the GPRS-standard [25], to onboard systems in the future will give a great
increase in functionality and new fields of applications (cf. [89] for an overview
over currently available systems).

Next to the route generation a variety of problems have to be dealt with in order
to make route guidance systems an important tool for future traffic control systems.
Among these are: collecting state information2, communication, acceptance and
fairness (see [88] for a further discussion of these issues).

Another instrument of increasing significance for a more efficient control and
guidance of traffic are simulation models. These models are capable of analyzing
the state of traffic and evaluate new strategies to meet the current and future envi-

1With the term route generation we mean the calculation of a path betweens andt, which can
be used as an approximation of the optimal path.

2Much (constructional) effort has been invested in the past years to make relevant traffic data
available. Solar-driven sensors measuring traffic flow, density and significant speed changes have
been installed at around 2000 widely used highway sections [53]. Other sources of information in
Germany are the ADAC, community message posts, traffic guidance centers and floating-car-data-
systems.
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ronmental and social burdens of heavy traffic3. Microscopic, i.e. vehicle oriented,
simulation of traffic as in [36, 65, 77, 78, 88] allows to compute traffic flows, travel
times and emissions in large road networks. In doing so, these models solve the dy-
namic traffic assignment problem (cf. [87]) iteratively, which theoretically requires
the update of the route of each driver in each step. Already in a test study of the
rather small city network of Wuppertal with about 9000 nodes and 17000 edges
this means the calculation of a shortest path for about 500000 origin-destination
pairs in each iteration in the worst case [36], which takes several hours on state of
the art computer workstations.

In both of these applications of the shortest path problem the optimal path is
not necessarily needed. For the individual online-routing a user will not know the
actual shortest path, but rather the given routing recommendation has to match the
individual expectation of the user to obtain a high acceptance of these systems. In
the traffic simulation the sum of all suggested paths must lead to a realistic picture
of the current traffic state, which is not affected by small deviations of individual
drivers from the exact path. On the other hand, faster algorithms to generate paths
of sufficient quality can significantly reduce the computational effort of traffic mi-
crosimulations due to the number of path calculations. For route guidance systems
a speedup will give these instruments more flexibility to meet online requirements.

Therefore, heuristical approaches for the shortest path problem are often em-
ployed in practice on networks that can be very large, consisting of several hun-
dred thousand nodes or more4. These algorithms incorporate the special structure
of road networks, in which edges are directed, edge lengths are close to the Euc-
lidean distance between the two endpoints of an edge, a hierarchical structure is
given through different types of edges and the graph is almost planar.

In this thesis we cover several aspects of route generation methods in large road
networks. First we compare the runtime of various implementations of Dijkstra’s
algorithm and some label-correcting algorithms on large road networks using the
test environments for shortest path algorithms of Cherkassky et al. [12] and Gold-
berg et al. [43]. On the largest graphs the best implementations show running times
of a few seconds on a large multi-processor machine.

Then for an even faster algorithm we propose a new, so-called tree heuristic,
which is based on the similarity of shortest path trees. The tree heuristic outper-
forms Dijkstra’s algorithm on the largest networks by a factor of up to eight with re-
spect to runtime and more than twenty with respect to permanently labeled nodes.
The paths found by the tree heuristic can be expected to have a relative error below

3For example, the average daily traffic intensity on German highways and major roads rose by
more than 40% between 1987 and 1998 (cf. [8]), causing a car driver to spend 65 hours per year in
traffic jams [98].

4The largest network considered in this thesis is the state network of California with more than
1.5 million nodes and almost four million edges.
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1%, if the nodess andt are not too close to each other.
Instead of searching a path in the original network, the tree heuristic partitions

the network into classes of about equal size and constructs a special searchgraph
for each class that consists of all nodes of the original graph but only approximately
as many edges as nodes. More precisely, for each class the searchgraph contains all
edges of this class and the union of some shortest path trees in the original network
of a small number of so-called base-nodes in each class. That is, the searchgraph
is locally dense and globally sparse. Applying a reverse Dijkstra algorithm start-
ing with nodet on the searchgraph gives a very fast algorithm due to the tree-like
structure of the searchgraph outside each class. Additionally, in contrast to other
route generation algorithms the tree-like structure makes the heuristic almost in-
variant to the path length. The partitioning of the graph makes the tree heuristic
also very well applicable for traffic simulations in parallel.

For an application of the tree heuristic the partitioning problem and the search-
graph generation have to be addressed. We compare two new partitioning meth-
ods that use characteristics of shortest path trees with ak-way partitioning algo-
rithm due to Karypis and Kumar [62]. The results show that the connectivity of
the partition classes very much affects the quality of the solutions of the tree heu-
ristic. Since our partitioning methods almost always generate connected classes,
they prove to be very well applicable for this purpose. For the searchgraph gen-
eration we test several methods for a suitable selection of base-nodes.

Other algorithms especially designed for the route generation problem in road
networks are theA∗-algorithm and the HISPA heuristic. The latter searches for
shortest paths to nodes of the highest hierarchy level in a circle with given radiusr
arounds andt. These paths are added as appropriate edges to the highest hierarchy
level and a shortest path betweens andt is calculated only on this level, which is
normally very sparse compared to the whole graph. The drawback of this heuristic
is the determination of the optimal radiusr.

For Euclidean networks Sedgewick et al. [92] proposed theA∗-algorithm for
the shortest path problem that can also be applied to road networks. This algo-
rithm directs the search in Dijkstra’s algorithm towardst by using so-called ’future
costs’ based on geometrical information. This will narrow the area of permanently
labeled nodes to a more elliptic shape, but imposes some additional computational
effort through the calculation of the future costs. The tree heuristic shows a better
runtime performance than both of these algorithms and in almost all cases gives
better routing recommendations than the HISPA heuristic.

Recently, theA∗-algorithm was modified by multiplying the future costs with
an overdo factor [56]. This gives faster running times but turns the exact algorithm
into a heuristic. We analyze the modifiedA∗-algorithm for different overdo factors
on four networks of different size and geometry. As it turns out, high overdo fac-
tors can lead to a suggested path which is the sequence of nearest neighbours and
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result in relative errors of more than 100% for most of the paths. Under some as-
sumptions which usually hold in road networks we derive a bound for the overdo
factor, where a factor greater than this bound will always lead to the above de-
scribed algorithmic behaviour. Together with a lower bound for the overdo factor
in gridgraphs this gives an interval, from which the overdo factor should be chosen
in practice.

In practical applications, where routing recommendations are given, informa-
tion about the robustness of shortest path solutions can be a useful control parame-
ter. Under the premise of one changing edge weight, we give an algorithm, which
calculates edge tolerances for a shortest path. These tolerances can then be used
to generate alternative routes to the exact shortest path, which allow a better fine-
tuning for specific demands on such paths than an application of ak-shortest path
algorithm as e.g. Yen’s algorithm [101].

This thesis is organized as follows: In the next chapter we describe the shortest
path problem in road networks in more detail and shortly review the classical short-
est path algorithms along with an analysis of their empirical performance on large
road networks. In chapter 3 we present our tree heuristic and analyze the runtime
performance and solution quality of paths in great detail. TheA∗-algorithm with
overdo is studied in chapter 4 on four road networks of different size and geom-
etry and bounds for an optimal value for the overdo factor are derived. Chapter
5 gives a rather short discussion of the robustness of shortest path solutions with
an application to thek-shortest path problem. The main results of this thesis are
summarized in chapter 6.
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Chapter
Two

Classical Algorithms for the
Shortest Path Problem

2.1 Introduction

The problem of finding a shortest path with respect to some cost function between
two nodes in a network is a core model in network optimization and has been stud-
ied theoretically (for extensive references see the survey papers of Ahuja et al. [1,
2] and the bibliography compiled by Deo and Pang [18]) and empirically (e.g. [11,
21, 33, 38, 42, 54, 102]) by various researchers for about forty years. There are
numerous applications of the shortest path problem either as standalone problem
or as subproblem in more complex problem settings (see [3] for a variety of exam-
ples and further literature on this). Although the problem itself is relatively easy to
solve, the design and analysis of the most efficient algorithms for solving it show
some considerable ingenuity [3].

2.2 Shortest paths in road networks

We represent a road network by a directed graph1 G = (V,E) with node setV of
cardinalityn and edge setE with cardinalitym. Since we do not consider undi-
rected graphs in this thesis we use the terms edges, arcs and links interchangeably
and always mean a directed edge unless otherwise stated.

For each edgee = (u, v) we assume an edge weightc(e) resp.cu,v representing
the cost for the edge which will be travel time if not otherwise noted. LetC =
max{ce : e ∈ E} be the maximal weight in the network. Additionally, for each
edge in a road network a type is given, which describes the importance of the road

1In most cases it is more convenient to use the line-graph representation of the actual road sys-
tem as the network in question, since in this representation turning restrictions can easily be in-
cluded.
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in the network. Normally the types are numbered starting from zero, where this is
the lowest type. The nodes are given with their coordinates with respect to some
coordinate-system like for example the Gauss-Kr¨uger [52] system. The length of
a directed pathP(s, t) between nodess andt is the sum of the weights of edges in
the path. A shortest pathSP(s, t) is a pathP(s, t) of minimal length. For further
graph-theoretical notation not mentioned here see [3].

Theshortest path problem as mentioned in most of the cited literature is to
determine for every nonsource nodev ∈ V a shortest path froms to v. In a rout-
ing application of the shortest path problem one has given a source nodes and ad-
ditionally a target nodet and wants to determine only the shortest pathSP(s, t).
Obviously, this is a subproblem of the former problem which most shortest path
algorithms solve faster since they can be terminated as soon as the target node has
been reached. To distinguish between these two problems we call the latter one
theone-to-one shortest path problem and the former theone-to-all shortest path
problem. In this thesis we are mainly concerned with the one-to-one shortest path
problem, but since the two problems are so closely related the focus will not lie
entirely on the one-to-one subproblem.

The problem of finding a shortest path between a source nodes and a target
nodet can be viewed as sending one unit of flow as cheaply as possible (where the
flow costs are given by the edge weights) from nodes to nodet in an uncapacitated
network. Thus, we have the following linear programming formulation of the one-
to-one shortest path problem:

minz(x) =
∑

(u,v)∈E

cu,vxu,v (2.1)

∑
{v:(u,v)∈E}

xu,v −
∑

{v:(v,u)∈E}

xv,u =




1 for u = s
0 for all u ∈ V \ {s, t}

−1 for u = t

xu,v ≥ 0 for all (u, v) ∈ E

In most studies of the shortest path problem the following assumptions are im-
posed: The network is directed and contains a directed path from the source nodes
to every other node in the network. The edge weights are integers and the network
does not contain a negative cycle (i.e. a directed cycle of negative length).

For the special case of road networks only the first assumption is not always
fulfilled especially if the network in question is part of a larger road network. In
this case there are always nodes at the border that cannot be reached from all nodes
in the network. For our analysis of the shortest path problem this violation does not
have any further meaning.
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The integrality condition imposed on the edge weights is needed for the theo-
retical analysis of some algorithms. In practical applications irrational numbers
have to be converted to rational numbers to represent them on a computer. By mul-
tiplying with a suitable large number rational weights can be transformed to inte-
ger weights. Therefore, this assumption is not a very restrictive one in practice.
In road networks edge weights typically represent the time needed to traverse the
edge, i.e. the travel time is the quotient of geometric length and speed of an edge.
In order to get integer values for these numbers one can either use a sufficient small
time unit like seconds and trunctuate or in a static setting with all possible speeds
known in advance one can multiply with the least common multiplier of the speeds.

While the assumption of no negative cycles is trivially fulfilled in road net-
works with positive travel times as edge weights it is a very crucial one from a
theoretical point of view. If negative cycles are allowed then the shortest path prob-
lem is anNP − complete problem and thus substantially harder to solve than the
shortest path problem without negative cycles2. The reason for this is that a neg-
ative cycle might be traversed an infinite number of times since each repetition
reduces the length of the directed walk3. To solve the problem therefore requires
to prohibit walks that revisit nodes, which makes the problem theoretically harder.

We assume in this thesis that the weights of the edges are known and that a
shortest path calculated with this cost function is indeed the optimal path, even in a
dynamic scenario. For an application of the shortest path algorithms in a real-time
setting with dynamically changing edge weights we have to make the additional
assumption that there is no advantage from waiting at some node in order to save
time on the shortest path. This assumption will be fulfilled if the gradient of the
graph of weight against time is greater than minus one for each edge. With this
assumption we can view the shortest path problem with dynamic edge weights as
a static problem if we think of each edge weight as being the actual weight at the
time we reach the starting node of the edge. In other words, we claim to have the
total information about the network in time and freeze each weight at that time
we reach the node on the shortest path from the source. Since there is no gain in
waiting at some node the shortest path calculated with these edge weights will be
the actual shortest path in time.

2.3 Tree of shortest paths

The one-to-all shortest path problem results in a collection ofn − 1 shortest paths
which can be stored very efficiently in the so calledshortest path tree. This is a
directed out-tree rooted at the sources with the property that the unique path froms

2For the concept and terminology ofNP − completeness see [35] or [83].
3That is, the linear programming formulation (2.1) has an unbounded solution.
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to any node is a shortest path froms to that node. The existence of this tree follows
from the observation that every subpathP(s,w) of some shortest pathSP(s, t) is a
shortest path betweens andw. If this would not be true, i.e. the subpathP(s,w) for
some nodew on the shortest pathSP(s, t) is longer than the shortest pathSP(s,w),
then replacingP(s,w) by SP(s,w) yields a path that is shorter thanSP(s, t), contra-
dicting its optimality.

If dist(v) denotes the length of the shortest pathSP(s, v) then we havedist(v) =
dist(u) + c(e) for every edgee = (u, v) on SP(s, t). The reverse is also true: If
dist(v) = dist(u) + c(e) for every edgee = (u, v) on a directed pathP(s, t) thenP
must be a shortest path froms to t. To see this, lets = v1 − v2 − · · · − vk = t be the
node sequence of pathP(s, t). Then using the fact thatdist(v1) = 0 we have

dist(t) = (dist(vk) − dist(vk−1)) + (dist(vk−1) − dist(vk−2)) + · · · + (dist(v2) − dist(v1))

= c(vk−1, vk) + c(vk−2, vk−1) + · · · + c(v1, v2) =
∑
e∈P

ce.

Thus,P(s, t) is a directed path of lengthdist(t) and we have established the follow-
ing property.

Property 2.3.1 Let dist represent a vector of shortest path distances. Then a path
P(s, t) is a shortest path if and only if dist(v) = dist(u) + c(e) for every edge (u, v) ∈
P(s, t).

If we perform a breadth-first search of the network using the edges satisfying the
equalitydist(v) = dist(u) + cu,v then the breadth-first search tree contains a unique
and by property 2.3.1 shortest path from the sources to every node that can be
reached froms. This is the desired shortest path tree.

2.4 Label-Setting vs. Label-Correcting
Algorithms

Algorithms for solving the shortest path problem are typically classified into two
groups: label setting and label correcting algorithms. Both approaches itera-
tively assign tentative distance labels to nodes at each step which are estimates
of (i.e. upper bounds on) the shortest path distance from the source node to these
nodes. The core of almost all shortest path algorithms is the labeling method which
keeps a distance labeldist(v) and a statusS(v) ∈ {unreached, labeled, scanned}
for each node4. Starting withdist(s) = 0, S(s) = labeled, dist(v) = ∞, S(v) =
unreached, v �= s the algorithm applies theSCAN operation of figure 2.1 to la-
beled nodes until none exists, causing the algorithm to stop.

4In order to actually output the shortest path we need also the predecessorπ(v) for each nodev
on the shortest path for backtracking.
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procedure SCAN(v)
begin

foreach (v,w) ∈ E
begin

if dist(v) + c(e) < dist(w)
begin

dist(w) := dist(v) + c(e);
S(w) := labeled;

end
S(v) := scanned;

end

end

Figure 2.1 SCAN procedure for shortest path algorithms.

While label-setting algorithms designate one label as permanent and thus op-
timal in each step, in label-correcting algorithms all labels are temporary up to the
last iteration when all labels become permanent. Besides the different strategies
the two types of algorithms are distinguished by the class of problems they solve.
Since label-setting algorithms will never return to a node for which the label has
been designated as permanent they are applicable only to (1) shortest paths prob-
lems defined on acyclic networks with arbitrary edge weights, and (2) to shortest
path problems with nonnegative edge weights. In contrast label-correcting algo-
rithms can be applied even if negative edge weights are allowed and offer more al-
gorithmic flexibility. Therefore, label-setting algorithms have a much better worst-
case complexity and also show better empirical performance [11]. Another advan-
tage of label-setting algorithms is to stop the algorithms as soon as some target
nodet has been permanently labeled. Since for label-correcting algorithms all la-
bels become permanent only in the last step, there is no chance for a premature
interruption of the search.

The worst-case complexity of the labeling shortest path algorithms is deter-
mined by the total amount of work for choosing nodes to scan and updating the
temporary distances in the course of the algorithm. We call these two operations
node selection andlabel update and view the overall worst-case complexity of
beingO(nodeselection + labelupdate). Thus, for example in an acyclic network
with arbitrary edge weights we can use a topological ordering of the nodes for
node selection which takes timeO(m). Updating distances for all outgoing edges
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of scanned nodes takes also timeO(m) giving an overall worst-case complexity
of O(m). Since any algorithm for solving the problem must examine every edge
in the network this bound is also best possible5. If cycles are allowed in the net-
work additional work has to be performed for node selection since there is no such
topological ordering of the nodes.

2.4.1 Dijkstra’s algorithm

The main difference of label-setting to label-correcting algorithms is the opera-
tion node selection. Label-setting algorithms designate the label of a nodev as
being permanent as soon as the operationSCAN is applied to that node. There-
fore, in order to work correctly the temporary label of a node for whichSCAN
is applied must be known to be the minimum possible label. To achieve this, the
label-setting algorithms select the node with the minimum temporary label as next
one to be scanned. This idea was first proposed by Dijkstra [20] and independently
by Dantzig [16] and Whiting and Hillier [99]. A pseudo-code description of Dijk-
stra’s algorithm for the one-to-one shortest path problem is shown in figure2.2.

By leaving out the first if-statement and continuing the repeat-statement until
all nodes have been scanned the code solves the one-to-all shortest path problem.
If the edge weights are nonnegative then Dijkstra’s algorithm will find the shortest
path between two nodess andt. To prove this, assume that the algorithm chooses a
nodev for theSCAN operation for which the temporary keylabel(v) is greater than
the length of the shortest path froms tov. LetSP(s, v) = {s = v0, v1, . . . , vk = v} be
the shortest path froms tov. Observe that every subpathP(s,w) of the shortest path
SP(s, v) is a shortest path betweens andw. If this would not be true, i.e. the subpath
P(s,w) for some nodew on the shortest pathSP(s, v) is longer than the shortest
pathSP(s,w), then replacingP(s,w) by SP(s,w) yields a path that is shorter than
SP(s, v), contradicting its optimality.

Let vl be the node onSP(s, v) which has as permanent label the correct length
of SP(s, vl) and greatest index of all nodes on the pathSP(s, v) with this property.
There is such a nodevl since nodes is on the path and has permanent label zero.
Since all edge weights are nonnegative the permanent label ofvl is smaller than
label(v) and thusvl was already chosen for scanning. While scanningvl the neigh-
bourvl+1 of vl onSP(s, v) was assigned as temporary label the length of the shortest
path froms to vl+1 since all subpathsP(s,w) of SP(s, v) are shortest paths froms
to w. Again by assumption of nonnegative edge weigthslabel(vl+1) < label(v) and
nodevl+1 was already scanned. But thenvl+1 is a node onSP(s, v) with correct per-
manent label which has a greater index thanvl. Thereforel = k − 1 and while
scanningvl nodev was assigned the length ofSP(s, v).

5Therefore, thelabel update operation will always have time complexity at leastO(m).
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procedure DIJKSTRA
begin

foreach v ∈ V
begin

dist(v) :=∞;
S(v) := unreached;

end
dist(s) := 0;
S(s) := labeled;
Repeat
begin

v = min
u∈N
{dist(u) : S(u) = labeled};

if u = t then break;
else SCAN(v);

end

end

Figure 2.2 Dijkstra’s algorithm.

Applying Dijkstra’s algorithm to the one-to-one shortest path problem in net-
works with arbitrary edge weights might lead to incorrect search paths, if the algo-
rithm is terminated as soon as the target nodet is chosen for scanning and thus per-
manently labeled. For the one-to-all shortest path problem Dijkstra’s algorithm in
networks with arbitrary edge weights will find the correct shortest paths but might
have an exponential number of scans.

There are numerous implementations of Dijkstra’s algorithm which differ in
the way the node with minimum temporary label is found. The original imple-
mentation of Dijkstra has time complexityO(n2) for the overall node selection
and therefore runs inO(n2) time which is best possible for fully dense networks
(i.e. those withm = Ω(n2)). Applying a simple binary search for finding the node
with minimum temporary gives a total running time ofO(n logn +m). With more
sophisticated data structures one can achieve better bounds for thenode selection
operation. In section 2.5.1 we describe some of these methods in more detail.
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2.4.2 Label-correcting algorithms

Label-correcting algorithms use different strategies for node selection and con-
tinue until the shortest path optimality conditions of theorem2.4.1 are satisfied for
all edges in the network. The proof of the theorem uses very similar arguments to
that of property 2.3.1 and can be found in [3].

Theorem 2.4.1 For every node v ∈ N, let d(v) denote the length of some directed
path from the source node s to node v. Then the numbers d(v) represent shortest
path distances if and only if they satisfy the following shortest path optimality con-
ditions:

d(v) ≤ d(u) + cuv for all (u, v) ∈ E.

As already mentioned, label-correcting algorithms show worse empirical perfor-
mance and worst-case complexity. Additionally, they always solve the one-to-all
shortest path problem since all labels are temporary up to the last step. Neverthe-
less we include some implementations of label-correcting algorithms in our per-
formance test on road networks in section 2.5.

2.4.3 Variants of Dijkstra’s algorithm

A slight variant of Dijkstra’s algorithm is the backward (or reverse) Dijkstra algo-
rithm which will be used extensively in our tree heuristic described in chapter3.
Instead of determining the shortest path distances from a starting nodes to all nodes
in the network, the backward Dijkstra algorithm calculates the shortest paths from
all nodes in the network to some (target) nodet, which can be seen as the all-to-one
shortest path problem. Therefore, the algorithm is also applicable to the one-to-one
shortest path problem by halting as soon as nodes has been scanned. The algorithm
starts withdist(t) = 0, S(t) = labeled, dist(v) = ∞, S(v) = unreached, v �= t and
examines in theSCAN operation all incoming edges (w, v) for each nodev.

Other variants of Dijkstra’s algorithm for the one-to-one shortest path problem
are the bidirectional Dijkstra algorithm and theA∗-algorithm which can be applied
especially to road networks. We describe them in more detail in the next two sec-
tions. Both algorithms make use of the two nodess andt and do therefore not solve
the one-to-all shortest path problem.

2.4.3.1 Bidirectional Dijkstra’s algorithm

The bidirectional Dijkstra algorithm [71] solves the one-to-one shortest path prob-
lem by using both nodes of the desired path as starting nodes for a Dijkstra-like
search proceeding in two phases. In phase 1 a forward Dijkstra starting from node
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s and a backward Dijkstra starting from nodet are performed simultaneously al-
ternatively designating a node as permanent in each search. This gives two node
setsS andT of permanently labeled nodes, i.e. the ones reached froms and the ones
reached fromt. As soon as both the forward and the backward algorithm have per-
manently labeled the same nodew (i.e.S∩T = {w}) the two algorithms are halted
and phase 1 ends. The shortest path betweens andt is then either the concatenation
of the pathsP(s,w) with P(w, t) or a pathP(s, u) ∪ (u, v) ∪ P(v, t) for some edge
(u, v), u ∈ S andv ∈ T. Phase 2 of the algorithm therefore finds the desired path
by examining all cut edges betweenS andT. In practice the algorithm will perma-
nently label fewer nodes than a simple forward or backward Dijkstra but does not
have a better worst case complexity [3].

2.4.3.2 A∗-algorithm

For Euclidean networks6 it is possible to improve the average case performance of
Dijkstra’s algorithm for the one-to-one shortest path problem by making use of the
inherent geometric information of these graphs. The idea is to direct the search of
the shortest path froms to t into the direction of nodet by choosing the next vertex
x the algorithm scans according to the length of the shortest path froms tox plus the
Euclidean distance betweenx andt. The basis idea is from Sedgewick and Vitter
[92] and is originally attributed to Hart, Nilsson and Raphel [46].

More formally letD(x, y) be the Euclidean distance betweenx andy and de-
fine l(x, y) to be the length of the shortest path fromx to y in the network where
this length is the sum of the edge weights that constitute the path. If we assign
each vertex that has not been scanned by the algorithm the value minw{l(s,w) +
D(w, x)} + D(x, t) and always choose as next vertex to be scanned the one which
gives the minimum for this value, then the resulting algorithm will find the exact
shortest path and will scan fewer nodes than Dijkstra’s algorithm on typical graphs.
The correctness follows sinceD(x, t) is a lower bound forl(x, t) and the speedup is
accomplished because the shortest path tree grows in direction oft. In contrast to
Dijkstra’s algorithm the area of scanned nodes will be an ellipsoid.

For the case of road networks where the edge weights correspond to the travel-
ling time on the link the original idea of Sedgewick and Vitter has to be modified.
Instead of usingD(x, t) as lower bound forl(x, t) we useD(x, t)/vmax wherevmax is
the maximal travelling speed observed on an edge. The termD(x, t)/vmax is often
quoted as future costs and gives a lower bound onl(x, t) in road networks. If the
road network is Euclidean theA∗-algorithm will give the exact shortest path. Road
networks will in general be not pure Euclidean for a number of reasons, which we

6A graph is called Euclidean network if the nodes correspond to points inIRd and the weight of
an edge is equal to the Euclidean distance between its two endnodes. In these networks the triangle
inequality is therefore fulfilled.
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will discuss in more detail in chapter 4. As consequence the triangle inequality
must not be fulfilled in road networks which might cause theA∗-algorithm to visit
a vertex more than once or in extreme cases to find not the exact shortest path. This
latter phenomenon was never observed in all our tests.

2.5 Performance of shortest path algorithms
on road networks

In [11] Cherkassky et al. tested a variety of shortest path algorithms on several fam-
ilies of random graphs with a maximum size of 1048578 nodes and 4194305 edges
thereby offering a test environment for shortest path algorithms. This study was
extended in [42] by Goldberg et al. to some new implementations7. Zhan/Noon
[102] tested the algorithms of the first study of Cherkassky et al. for the special
class of road networks, their largest being a graph of the state of Georgia with about
93000 nodes and 265000 edges.

To evaluate the heuristic algorithms for the shortest path problem presented
in this thesis we used an implementation of Dijkstra’s algorithm on the basis of
theLEDA8 class library with either using a priority queue or a bounded priority
queue (see [73, 74] for details). We compared these two implementations with
those of both studies of Cherkassky et al. to check if they are of reasonable perfor-
mance. Using the two large area networks of the states of Northrhine-Westphalia
(NRW) and California with 457124/1050874 nodes/edges resp. 1580305/3934788
nodes/edges also gave the opportunity to test all of these algorithms on realistic
road networks of larger scale than in the study of Zhan/Noon.

In the next section we will very shortly review the various shortest path algo-
rithms of both studies and then show the results of our evaluation on the networks
of NRW and California in section 2.5.2.

2.5.1 Implementations of shortest path algorithms

We will now give a very short description of the shortest path algorithms of our
evaluation. The theoretical worst-case complexity for each of the implementations
is shown in table 2.1 along with the performance results. The notation is taken from
the studies of Cherkassky et al. For more details about the different implementa-
tions see [11], [13] or the original literature cited for each implementation. Note
thatC is the maximal edge weight in the network.

7The codes, generators, and generator inputs of both studies are available at http://
www.intertrust.com/star-lab.com/goldberg/soft.html.

8Library of Efficient Data types andAlgorithms, developed at the Max-Planck Institut f¨ur In-
formatik, Saarbr¨ucken.LEDA is available at http://www.mpi-sb.mpg.de/LEDA/.

http://www.intertrust.com/star-lab.com/goldberg/soft.html
http://www.mpi-sb.mpg.de/LEDA/
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BF: The Bellman-Ford-Moore label-correcting algorithm, due to
Bellman [6], Ford [29] and Moore [76] where the set of labeled
nodes are maintained in a FIFO queue.

BFP: Variant of the Bellman-Ford-Moore algorithm where a node is
only scanned if its parent is not in the queue (parent checking).

DIKB: The implementation of Dijkstra’s algorithm by Dial [19] using
a bucket data structure withC + 1 buckets where the nodes in
each bucket are stored in FIFO order.

DIKBA: Approximate bucket Dijkstra implementation where bucketi
contains nodes with labels in the range [iα, (i + 1)α − 1] with
a fixed parameterα and FIFO order. The code implemented
usesα = �C/211�.

DIKBM: Dial’s algorithm withB < C + 1 buckets. If at some stagei
the B buckets contain labels in the range [Bi,Bi + B − 1] an
overflow bucket keeps all those nodes with labels greater than
Bi +B which are redistributed at the beginning of the next step.
The code implemented usesB = min(50000,C/3).

DIKBD: A k-level bucket Dijkstra implementation fork = 2. Each level
has the same number of buckets but the range of the buckets in-
creases for higher levels. In each level the range of the buckets
is the same.

DIKF: The implementation of Dijkstra’s algorithm using Fibonacci
heaps for storing labeled nodes [31].

DIKH: The implementation of Dijkstra’s algorithm usingk-ary heaps
for k = 3 (see e.g. [15]).

DIKLB: Implementation of Dijkstra’s algorithm with ak-level bucket
data structure of Denardo and Fox [13, 17, 43] fork = 2.

DIKHOT: Dijkstra’s algorithm with ak-level hot queue combining ak-
level bucket data structure with a heap on top [42, 43] fork = 2.

DIKQ: The naive implementation of Dijkstra in [20].

DIKR: The implementation of Dijkstra’s algorithm using one-level R-
heaps [4].

LEDAPQ: Our implementation of Dijkstra’s algorithm using theLEDA
class library and a bucket structure as priority queue [74].

LEDABPQ: Our implementation of Dijkstra’s algorithm using theLEDA
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class library and a bounded bucket structure as priority queue
[74].

GOR: Modification of the Bellman-Ford-Moore algorithm with gen-
eralized parent checking using a topological sort [41].

GOR1: Modification of the Bellman-Ford-Moore algorithm with gen-
eralized parent checking using a topological sort with distance-
update [11, 41].

PAPE: Label-correcting algorithm of Pape-Levit [70, 84] with a high-
priority setS1 of scanned nodes and a low-priority setS2 of la-
beled, but not scanned nodes. The algorithm maintainsS1 as
LIFO stack andS2 as FIFO queue using thedequeue data struc-
ture from [82].

TWO-Q: Algorithm proposed by Pallotino [82] where the two setsS1

andS2 from the Pape-Levit algorithm are maintained as FIFO
queues.

THRESH: A method suggested by Glover et al. [39] using the two subsets
NOW andNEXT for labeled nodes. These are maintained as
FIFO queues. A threshold parameter controls when nodes are
moved fromNEXT to NOW.

Recently Thorup presented a linearO(m) algorithm for solving the shortest
path problem in undirected graphs [97]. Although it is a label-setting algorithm
it is not a variant of Dijkstra’s algorithm, since otherwise the linear running time
would imply that the algorithm is capable of sortingn numbers in linear time. In-
stead of choosing the node with minimum label to be scanned next, the algorithm
avoids the sorting bottleneck by building a hierarchical bucketing structure, iden-
tifying node pairs that may be visited in any order.

2.5.2 Run-time and space performance

Table 2.1 gives the results of our evaluation of the shortest path implementations
described in section 2.5.1 on the two road networks of Northrhine-Westphalia and
California. All implementations of the shortest path problem software library by
Cherkassky et al. [10, 12] solve the one-to-all shortest path problem thereby gen-
erating the shortest path tree for some starting nodes. Therefore, the variants of
Dijkstra’s algorithm for the one-to-one shortest path problem described in section
2.4.3 are not included in this study. Their run time performance will be analyzed in
comparison with the tree heuristic in section3.5.3. We calculated the shortest path
trees for the same 100 randomly chosen starting nodes for each implementation
and averaged the running times over five independent runs. The experiments were
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performed on a Sun Enterprise E450 with 1.15 GByte RAM and four UltraSparc-
II CPU’s with 400 MHz, running under Solaris 2.5. The code was compiled using
the GNU compiler version 2.8.9 with O4 optimization flag.

The different codes are sorted according to their running time on the California
network. The last column of the table gives the ratio of runtime in relation to the
best code on the California network.

In the extensive study of Cherkassky et al. [11] the three Dijkstra codes DIKB,
DIKBA and DIKBD performed very well on almost all problem families. The
codes DIKR, DIKH and DIKF were noticeably worse than the former three and
DIKBM performed bad on simple grid problems but well on others. The perfor-
mance of the hotqueue implementations DIKLB and DIKHQ in [13] seems to be
as good as that of the other fastest Dijkstra algorithms, although the problem fam-
ilies of the two studies were not the same. The performance of the incremental
algorithms PAPE and TWO-Q and the threshold code THRESH was very good
on simple grid problems, but poorly on some other problems. The Bellman-Ford-
Moore algorithm showed good performance on networks with small shortest path
tree depth and on networks with highly metric edge lengths.

The simple grid families from the study of Cherkassky et al. are most interest-
ing for us being of similar structure than road networks. The results of Cherkassky
et al. were confirmed in the study of Zhan/Noon [102], where TWO-Q, PAPE,
THRESH and DIKBA performed best on the largest road networks.

The results in our tests differ from the one mentioned mainly in the poor per-
formance of TWO-Q and PAPE on the California network, while the performance
for NRW was comparable to the one of the other studies. In line with these results
is the performance of the Dijkstra implementations DIKBA, DIKLB2, DIKHQ2,
DIKB and THRESH which are the fastest in our tests. The DIKBD code was not as
good in our tests as in the study of Cherkassky et al. and also DIKF showed a very
poor performance. For the Bellman-Ford-Moore algorithms GOR shows a good
performance especially if the worst-case complexity is taken into account. BF and
BFP show a very poor performance on the California network being in line with the
results from Zhan. The codes LEDABPQ and LEDAPQ show a reasonable perfor-
mance, being fast enough for the analysis of the proposed shortest path heuristics
in this thesis. As expected the usage of the LEDA software library increases the
memory requirements of the code significantly by a factor of about four. For the
other codes the differences in memory between the implementations are small.

2.6 Heuristical shortest path algorithms

There are a number of heuristical shortest path algorithms for the one-to-one short-
est path problem especially for routing purposes in road networks. These algo-
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rithms try to narrow the search area for Dijkstra’s algorithm and either use geo-
metrical properties of the topology underlying road networks or some kind of hier-
archy based on the different road types given in these networks. We mention two of
them in this section which will be used in the following as benchmarks for our tree
heuristic. If applied to the one-to-one shortest path problem the heuristics will cal-
culate a path between two nodes which must not be the shortest path with respect
to the weight function. Therefore, we call the path computed by any heuristic the
suggested path between starting nodes and target nodet which might coincide
with the actual shortest path between the two nodes.

2.6.1 The HISPA heuristic

The HISPA (HierarchicalShortestPath) heuristic makes use of the hierarchical
structure of road networks [79, 93]. The different types of roads in a road network
induce a discrete hierarchy in the graph. The object of this heuristic is to calculate
the shortest path on the graph of the highest hierarchy level which is very sparse
compared to the whole graph. Since normally the two nodess andt will not belong
to the highest hierarchy level the algorithm first calculates the shortest paths from
s resp.t to all nodesv of the highest hierarchy which lie within the circle of a given
radiusr arounds resp.t. If there is no such vertex in the circle with radiusr the
search is continued until a vertex is found. Ift (s) lies within the circle with radiusr
arounds (t) the algorithm stops. For each shortest path froms to such av resp. from
v to t an edge is added to the graph of the highest hierarchy together with the two
nodess andt. The length of these edges is given as the length of the associated
shortest path. Finally, a shortest path froms to t is calculated on the modified graph
of the highest hierarchy level.

The path found by this algorithm is not necessarily the shortest path for two
reasons. The optimal switch-vertices of the highest level fors andt will not always
lie within the circle with radiusr and the highest hierarchy level must not be closed
under shortest path calculations in case there is a shortcut using edges of a lower
hierarchy level. Proposed methods to avoid these drawbacks of the algorithm turn
out to be very time consuming because of the necessary preprocessing especially
in a dynamic setting [95].

2.6.2 The A∗-algorithm with overdo

TheA∗-algorithm with overdo [92] is a variant of theA∗-algorithm presented in
section 2.4.3.2. The basic idea is to direct the search more strongly in direction
of the target nodet by multiplying the future costs with a factor greater than one.
As consequence the future costs are not necessarily a lower bound for the travel
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time between some nodev andt and the algorithm will not always find the exact
shortest path. We analyze this algorithm in great detail in chapter4.



Chapter
Three

A Heuristic Based on Trees

3.1 Introduction

In this chapter we propose a new heuristic for generating routes in road networks
that has a very good runtime performance and gives solution paths of high quality.
The results from our empirical test of implementations of Dijkstra’s algorithm in
section 2.5 show that the one-to-one shortest path problem can be solved in a few
seconds even for very large networks on multi-processor machines with high-end
processor performance. In applications where a very large number of routes have
to be determined, even an application of a very sophisticated Dijkstra implemen-
tation might not be of sufficient speed and faster algorithms are desired.

One such application is the traffic microsimulation on the basis of a cellular
automaton (cf. [65, 66, 67, 77, 78, 88]). In this day-to-day simulation of traffic
flows an equilibrium is generated iteratively. In doing so, the dynamic traffic as-
signment problem (cf. [87]) is solved in each iteration, which theoretically requires
the update of the route of each driver in each step. In a test study of the network
of Wuppertal with about 9000 nodes and 17000 edges this leads in each iteration
to the calculation of routing recommendations for about 500000 origin-destination
pairs in the worst case [36], which takes several hours on state of the art computer
workstations1.

Another application are onboard route guidance systems, which become more
and more popular. In those a driver asks for the shortest path from his current to
some target location. Although these systems are currently still employed in an
almost static setting, dynamic aspects will be more and more integrated. Rick-
ert showed the positive effect of rerouting drivers to avoid grid-locks in a micro-
simulation of an online-routing system [88], which increases the computational re-
quirements of such a system. For both applications the optimal path must not be

1Our traffic simulation bypasses this excessive calculation by rerouting in each iteration only
part of the drivers on an individual route set.
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found. It suffices that the suggested path is close to the optimal path, in order to
make these systems of practical use.

The heuristic we propose is based on the intuition of a greater similarity of
shortest path trees for nearby starting nodes in road networks. This intuition is
based on the underlying geometry of those networks. Characteristic features of
road networks are edge lengths near the Euclidean distance between the two end
points of an edge, the hierarchical structure through the classification of the edges
in different types and near-planarity. An example for the similarity of shortest
paths in these networks are the paths of two different starting nodess1 ands2, which
are geometrically not too far apart, to a more distant nodet. In a road network we
expect the two paths froms1 ands2 to differ in the vicinity of the starting nodes
but to be the same neart.

Therefore, our so called tree heuristic2 partitions the network into a few clusters
of approximately equal size and constructs a searchgraph on the whole nodeset for
each cluster. This searchgraph is locally dense (i.e. contains all edges having one
endpoint in the cluster) and globally sparse (i.e. contains only those edges outside
the cluster which belong to the union of a few shortest path trees for specific base
nodes in the cluster). In order to calculate a shortest path from a nodes to a nodet
the search is performed on the searchgraph of that clusters belongs to. The number
of edges in the searchgraph is approximately the number of nodes in the network
and therefore applications of Dijkstra’s algorithm on this reduced graph will have
faster running times than on the whole graph. The speedup can be significantly
increased by applying the backward Dijkstra algorithm (see section 2.4.3) since
the searchgraph has a tree-like structure outside of the cluster. The main idea of
the tree heuristic is the similarity of shortest path trees for starting nodes that are in
some sense close to each other. Therefore, we expect the tree heuristic to perform
well for all graphs which satisfy this similarity property.

This chapter is organized as follows: In the next section we give a statistical
motivation of the tree heuristic by analyzing the similarity of shortest path trees
in road networks. After describing the tree heuristic formally in section 3.3 we
give a detailed account of a practical realization in section3.4. In section 3.5 we
analyze the quality of the paths found by the tree heuristic and compare its runtime
performance with that of other well-known shortest paths algorithms. Our main
results are summarized in section 3.6.

2Since the similarity of shortest paths is expected for almost all target nodest in the network
we have similar shortest path trees for nearby starting nodes, giving the heuristic its name.
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#SPT NRW Cologne20x25 Cologne10x10
inside outside inside outside

0 37.435% 33.40% 53.51% 27.13% 54.74%
[1-10] 11.37% 12.99% 1.69% 15.08% 0.90%
[11-20] 5.10% 5.75% 0.84% 6.43% 0.36%
[21-30] 5.57% 5.24% 1.02% 7.48% 0.82%
[31-40] 4.96% 5.14% 0.66% 5.98% 0.35%
[41-49] 9.39% 10.53% 1.66% 11.49% 0.85%

50 26.18% 26.96% 40.63% 26.41% 41.16%

Table 3.1 Frequency of edges in shortest path trees.

3.2 A statistical justification of the tree
heuristic

The intuition that shortest paths in road networks differ only locally is supported
by a statistical comparison of shortest path trees we performed on the network
of Northrhine-Westphalia (NRW) having 457124 nodes and 1040687 edges. The
roads are classified into five different types, where type four are mostly highway
edges. Fifty shortest path trees for randomly chosen starting nodes out of regions
of different size were calculated and for each edge of the graph the number of
trees was counted in which the edge appeared. The results are shown in table3.1
for three regions: A square of length 10 kilometers in the center of Cologne, a
25kmx20km rectangle around Cologne and whole NRW. The first resp. last row
shows the percentage of edges which appeared in zero resp. in all fifty shortest path
trees. The other rows give the results for intervals of size 10 resp. 9 for the interme-
diate values. For the two areas around Cologne we distinguished between edges
having at least one endpoint in the area (inside) and those lying completely outside
(outside). The values for each area are given relative to the number of edges inside
resp. outside the area.

The results in table 3.1 show that:

• The number of edges inside an area lying in no shortest path tree decreases if
the area gets smaller (37% to 27%). On the other hand this number increases
for edges outside an area (37% to 54%). This shows that it is unlikely for an
edge not to be in some shortest path tree for starting nodes close to the edge.

• The number of edges which are in all shortest path trees increases for edges
outside of the area if the area of the starting nodes is small (26% to 41%)
showing that outside of a small area trees are likely to have more edges in
common.
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• If you take the shortest path tree of a randomly chosen starting node out of
a small area more than 90% of the outside edges will have the same tree or
non-tree status than for any other shortest path tree out of this area.

• Taking the numbers in the table relative to the total number of tree- resp. non-
tree edges we can conclude that more than 90% of the edges of a shortest path
treeTs for some nodes will be in every shortest path tree for starting nodes
out of a small area arounds. Of the non-tree edges ofTs more than 92% will
be in no shortest path tree for starting nodes out of a small area.

The last observation is also supported by a different evaluation of similarities
of shortest path trees in road networks. For the shortest path tree of a given starting
node we calculated the percentage of tree and non-tree edges which are also found
as tree resp. non-tree edges in a shortest path tree of a different starting node. In fig-
ure 3.1 the results are plotted against the distance between the two starting nodes.
The results in the plot are averaged over ten randomly chosen starting nodes in
each distance bin and the result in each bin is averaged over ten shortest path trees
randomly chosen in the whole graph. The length of the distance bin was five kilo-
meters.
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Figure 3.1 Conformity of Shortest Path Trees.

The plot shows that the shortest path trees for two starting nodes which are not
more than 20 kilometers apart are expected to have more than 95% of the edges in
common. This number decreases to about 90% for nodes being not more than 60
kilometers apart, but is still more than 80% if you take two arbitrary starting nodes.
The percentages for the non-tree edges are even a little higher. The variances were
below 5% for tree edges and below 3.5% for non-tree edges. The degree of con-
formity is naturally affected by the travelling speed of the various road types as-
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sociated with the links of the road network. The shown data was calculated for
speeds of 40, 50, 60, 80 and 100 km/h for the five types of links. If these speeds are
changed to 20, 40, 60, 80 and 120 km/h, thus giving different road types a greater
speed difference, then the conformity of the shortest path trees is even higher. On
the other hand making no difference between the various road types by associating
the same speed on all of them results in a greater nonconformity for the shortest
path trees. But even then one can expect that the shortest path trees of two arbi-
trary starting nodes in the network have more than 70% of tree- and non-tree edges
in common. In summary the results show that shortest path trees in road networks
tend to be very similar and that this conformity is the higher the closer the starting
nodes of the trees are.

3.3 A formal description of the tree heuristic

The results from the previous section motivate the following tree heuristic for ef-
ficiently finding shortest paths in a road networkG = (V,E): The set of nodesV is
partitioned into clusters of approximately equal size. For each clusterC a special
search graphHC with V(HC) = V(G) is constructed which is used for every shortest
path calculation with starting nodes ∈ C. The main difference betweenHC and
G is the set of edges of the graphs. In each cluster a few special nodes are chosen
and the shortest path trees for these nodes are calculated in the original network.
These nodes are calledbase-nodes for the cluster. The set of edges ofHC consists
of the union of the edges of the shortest path trees of all base-nodes ofC, all edges
having at least one endnode inC and a few edges which are expected to belong to
many shortest paths. For road networks those are typically the edges of the high-
est hierarchy level, the number of which is small compared to the total number of
edges.

To describe the tree heuristic more formally letV(G) = V1 ∪ . . . ∪ Vk be a
partition of the nodes ofG into k clusters of size approximatelyn/k. For eachVi

choose a number of base-nodesvi
1, . . . , v

i
bi
, bi ≥ 1, and calculate their shortest path

treesT1, . . . , Tbi in G. The numberbi of base-nodes must not be the same for all
clusters. LetEin

i be the set of edges having at least one node inVi andE∗ be the set
of edges which are expected to be of high importance for shortest paths (i.e. the
edges of the highest hierarchy level). LetEi = Ein

i ∪ E∗ ∪ E(T1) ∪ . . . ∪ E(Tbi)
andHi = (V(G),Ei). For each starting nodes ∈ Vi the shortest path to a nodet is
calculated in the graphHi. We exemplify the above procedure in figure 3.2 on a
small example network. In the example only one base-nodevb is chosen and the
set of special edgesE∗ is empty.

In summary the tree heuristic consists of four phases:
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Figure 3.2 The generation of a searchgraph for a class of a partitioned graph.
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Phase I: Partition the graph intok clusters of about equal size.

Phase II: Choose base-nodes for each cluster.

Phase III: Calculate the searchgraphHi for each clusterVi in such a way
that you will always find a path from every nodes ∈ Vi to
every other nodet.

Phase IV: To calculate a path from some nodes to some nodet apply the
backward Dijkstra algorithm on the graphHi.

The first three phases can be seen as preprocessing phases for the actual shortest
path search in phase four. For each of the three preprocessing phases a number of
different methods can be used to accomplish its goal. We describe a few methods in
section 3.4 along with a discussion of their application in a pure dynamical setting
with continously changing edge weights.

If d is the average degree inG andE∗ � E(G) then the number of edges inHi

is approximately (n−n/k)+d∗ (n/k)/2 = n+(d/2−1)n/k. Sinced is typically less
than five in a road network the search graphHi has not significantly more edges
than there are nodes inG and the number gets smaller if the number of clustersk
is increased.

3.4 Processing the tree heuristic

In this section we will describe the different approaches we used for the three pre-
processing phases of the tree heuristic, i.e. the graph partitioning, base-node and
searchgraph generation. In section 3.5 we show our experimental results of short-
est path calculations on the road network of Northrhine-Westphalia.

3.4.1 Graph partitioning

In the first phase of the tree heuristic the vertices of the road network have to be
partitioned into a number ofk subsets of approximately equal size. This partitio-
ning should reflect the fact that the graph is of special type, i.e. a road network and
that the objective is the shortest path calculation between two arbitrary nodes in the
network. The requirement of approximate equally sized clusters shall assure that
the expected running time for the shortest path computation will be independent
of the partition class. Since the computational complexity of the used implemen-
tation of Dijkstra’s algorithm is O(|V| log |V| + |E|) a better measurement to fulfill
this requirement would be additionally an approximately equal number of edges in
each class. However, the structure of road networks with evenly distributed nodes
in relation to their degree should make the concentration on the nodes a reasonable
approximation.
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The partitioning problem described above is closely related to thek-way par-
titioning problem which is defined as follows [61]: Given a graphG = (V,E)
with |V| = n, partitionV into k subsetsV1,V2, . . . ,Vk such thatVi ∩ Vj = ∅ for
i �= j, |Vi| = n/k,

⋃
i Vi = V and the number of edges ofE whose incident ver-

tices belong to different subsets is minimized. Even fork = 2 the problem is NP-
complete [34] but can be solved in polynomial time by standard network flow tech-
niques if no restriction is made on the sizes of the subsets [57].

While both partitioning problems seek to find subsets of approximately equal
size, a good partition for thek-way partitioning problem is one which minimizes
the weight of the edge cut. In contrast a good partition for the tree heuristic should
generate subsets such that the shortest path trees of the nodes in one cluster are very
much alike. Intuitively one would suggest that therefore the induced subgraph of
the nodes of every cluster should at least be strongly connected. Combining the
objective of thek-way partition with that of the tree heuristic leads to the question
to what extent a good partition for the latter is related to a small edge cut.

We tested three different approaches in order to find a good partition of the
given road network. The first is a direct partition intok subsets by calculatingk
shortest path trees of size approximately|V|/k by applying Dijkstra’s algorithm.
The second approach uses the METIS library [62], a software package by Karypis
and Kumar which implements a multilevelk-way partitioning scheme for irregu-
lar graphs. This library was chosen because of its fast computation of partitions
of high quality. The third approach tries to combine the objective of shortest path
tree conformity in the generated subsets with the quality of the partitions gener-
ated by METIS and makes use of a so calledtreegraph. The three approaches are
described in more detail next.

3.4.1.1 Dijkstra-Partition

A direct approach for finding a partition intok subsets of approximately equal size
which gives clusters of high uniformity concerning shortest path trees is to choose
k nodes in the network and run Dijkstra’s algorithm with these nodes as starting
vertices. One of the main advantages of this approach is that the generated clusters
will be connected. The proposed algorithm belongs to the greedy type of partitio-
ning algorithms the first of which was presented by Farhat [26]. Our algorithm is
closely related to the one developed by Ciarlet et al. in [80] for partitioning meshes
into equally sized connected subgraphs.

The latter algorithm uses a Breadth-First-Search approach to iteratively distrib-
ute the nodes intok classes of sizeni. ni is chosen as (|V| −

∑i−1
j=1 nj)/(k − (i − 1)).

If there are not enough nodes found for someni during the iteration, these nodes
are redistributed to neighbouring classesVj for j < i andni is updated accordingly.
Thus, the sequence of sizes of the classes is non-increasing and the classes might
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become very small towards the end of the iteration. Ifk−1 classes have been deter-
mined the last class will consist of the largest connected component of the remain-
ing nodes. Nodes that have not been distributed at that point are assigned to neigh-
bouring classes. Therefore, the classes might vary significantly in size and the al-
gorithm applies a postprocessing to balance and reshape the subsets [81], thereby
preserving the connectivity of the subsets. The postprocessing is a variant of the
heuristic first proposed by Kernighan and Lin [64] with its modifications by Fiduc-
cia et al. [28] and Hendrickson and Leland [47, 48]. A partitioning algorithm using
Breadth-First-Search is also presented in [40], but there the resulting subsets need
not be connected.

Our approach for a direct partitioning of the graph intok connected subgraphs
differs from the one of Ciarlet et al. in two ways. First we use Dijkstra’s algorithm
in order to reach nodes that have not been assigned to any class yet. Second we do
not need any of the cited postprocessing heuristics to improve the balance of our
partition. Instead our algorithm computesk shortest path trees of about equal size
and assigns the remaining nodes to neighbouring trees using a minimum spanning
tree approach. The algorithm can be divided into three phases which we will now
describe in more detail.

Preprocessing phase. In a preprocessing all dead end roads are successively
removed from the network and each remaining node is given a weight that corre-
sponds to the number of dead ends which were reduced to this node3. We call this
the reduced original network. Since stretches of dead end nodes must be assigned
to the same class as the starting nodew of the stretch in order to get connected
subsets, they can be identified withw. By removing dead end nodes we wish to
calculate more balanced subsets in the second phase of the algorithm. If the pre-
processing is omitted it might happen that balanced shortest path trees calculated
get very unbalanced when all stretches of dead end nodes are assigned in the third
phase of the algorithm.

Shortest path tree partitioning. In the second phase of the algorithmk nodes
are chosen and a shortest path tree for each is computed. The calculation of the
shortest path tree stops if no more vertices can be added to the tree or as soon as
the tree has sizec1 ∗ (n/k) where the size of the tree equals the sum of the weights
of the vertices. If the tree has less thanc2 ∗ (n/k) nodes it is discarded and a new
starting node is chosen. If no shortest path tree of sufficient size can be found af-
ter some fixed number of iterationsit the algorithm terminates without a result4.
Naturallyc2 ≤ c1 ≤ 1. The factorc1 helps to govern the size of the trees such that
the algorithm will find a tree of reasonable size even for the last partition class.

3With this we mean that a whole stretch of links ending at some dead end node is removed and
the starting node of this stretch gets as weight the number of nodes removed plus one.

4For the valueit = 100 this didn’t happen in any of our calculations.
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Therefore,c1 should decrease if the number of classes increases.c2 prevents that
the trees all have very different sizes which would make the partition classes very
unequally sized.

Each starting node is chosen out of those vertices which have not yet been in-
cluded in a shortest path tree of previously chosen nodes. After thek shortest path
trees have been calculated all those vertices have to be distributed which were not
visited by any of thek shortest path trees.

Distribution of the remaining nodes using a minimum spanning tree. First
we assign all nodes for which all neighbours have been distributed to the class of
minimum weight of all neighbours. For the remaining nodes we calculate a min-
imal spanning tree with Kruskals’s algorithm [68] on the following graphH (see
figure 3.3): The nodeset ofH consists of all nodes of the reduced original network
which have not yet been assigned. In addition there is one node for each of thek
shortest path trees. There arek −1 edges of weight 0 inH connecting thek cluster
nodes. For each edge (u, v) in the original graph withu not yet assigned andv in
the shortest path treeTi let uH andTi

H be the corresponding vertices inH andcH be
the size ofTi. Create an edge (uH, Ti

H) in H with weightcH. For each edge (u, v)
in the original graph withu andv both not assigned create an edge (uH, vH) in H
with weightcmax + 1 whereuH, vH are the corresponding vertices inH andcmax is
the maximum size of the shortest path trees.

By calculating a minimum spanning treeTmin for the graphH each unassigned
nodeu will be connected to a clusterTi if there is such an edge inH or connected
to such a node by a path of edges of weightcmax + 15. The unassigned nodes that
are connected to someTi

H and those that are connected toTi
H via a path inTmin are

assigned to the classi. No unassigned node is connected to two different cluster
nodesTi since all cluster nodes are connected via a path of weight 0 inTmin. By
giving each edge between an unassigned node and a cluster node the size of the
tree as weight an unassigned node is assigned to the class of minimum weight of
all neighbouring classes. We calculate the class of each unassigned node by apply-
ing Dijkstra’s algorithm on the minimum spanning treeTmin with nodeT0

H as start-
ing node, distributing all nodes to the class of the nodeTj

H from which the node is
reached.

Correctness of the algorithm. In phase two of the algorithm all nodes of some
shortest path tree are assigned to the same class. Thus, all subsets are connected
after the shortest path tree computation. Also in the third phase of the algorithm
a node is assigned to a cluster only if there is an edge in the original graph to a
node which is in the same cluster, since all edges in the graphH that are incident
to some unassigned node correspond to some edge in the original graph. Therefore,
the generated partition classes will be connected.

5This is true since the original graph is connected.
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Figure 3.3 Distribution of remaining nodes using a minimum spanning
tree inH.
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Complexity of the algorithm. The preprocessing has complexityO(|E|) since
we have to scan each edge of the original graph at most once. In phase two we
calculate at mostk · it shortest path trees of size at mostn/k giving an overall com-
plexity ofO(||V| log |V||) sinceit is treated as constant. For the complexity of the
third phase letE(H) be the set of edges of graphH for which a minimum span-
ning tree is computed. Every shortest path tree computed in phase two has at least
c2 ∗ n/k nodes, thus the graphH has at most (1− c2) ∗ |V| + k nodes and therefore
at mostd ∗ (1 − c2) ∗ |V| + k edges, whered is the average degree inG. The cal-
culation of the minimum spanning tree with Kruskal’s algorithm has complexity
O(|E(H)| log |E(H)|) giving an overall complexity of the partitioning algorithm of
O(|E| + |V| log |V| + (d ∗ (1 − c2) ∗ |V| + k) log(d ∗ (1 − c2) ∗ |V| + k)).

3.4.1.2 METIS-Partition

There are a variety of software packages for the graph partitioning problem in-
cluding CHACO [49], METIS [62], PARTY [86] and TOP/DOMDEC [27]. In
[100] CHACO, METIS and PARTY are extensively studied for the case of road
networks. In this study the METIS software-library shows very good results with
respect to runtime and quality of the partitioning. Therefore, we used METIS to
compute graph partitions for our test network.

This software-library implements a multilevelk-way partitioning scheme de-
scribed in [61]. The algorithm proceeds in three steps. First the graph is coarsened
down to a few hundred nodes and this reduced graph is then partitioned intok parts
directly by using the multilevel bisection algorithm from [60]. In the third step the
partitioning of the coarser graph is projected back to the original graph using a vari-
ant of ak-way Kernighan-Lin algorithm for refinement [50, 64]. For more details
see [61] and [59] for a theoretical analysis. The described algorithm computes a
k-way partitioning of a graph in O(|E|) and produces excellent partitions with re-
spect to a minimum edge cut [59]. The algorithm allows to assign weights to the
nodes such that the generated node classes are approximately of equal weight.

For our experiments we used the METIS library with different weight func-
tions for the edges. This allowed us to study the effects of different partitioning
objectives on the tree heuristic. E.g. the multilevelk-way partitioning algorithm
does not necessarily give connected subsets of nodes.

3.4.1.3 Treegraph Partition

The third partitioning method we used is a twofold partitioning algorithm. In the
first step a geometrical partitioning procedure is applied using the geometrical in-
formation given with road networks. Using this partition a new graph is defined
that tries to capture shortest path tree characteristics of the original road network.
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This so-calledtreegraph is of much smaller size than the original graph. In the
second step thetreegraph is partitioned with the algorithm of the METIS-library
[62].

Geometrical partitioning and treegraph generation. A well-known geo-
metrical partitioning heuristic is the inertial bisection, where a graph given with
two-dimensional coordinates is partitioned recursively along straight lines until a
given number of classes are generated. Our algorithm instead divides the original
networkG into squares by placing a grid of lengthl over it. From all nodes ofG
in a gridsquareSij we choose a representativevij of high degree and calculate its
shortest path treeTij in G. All nodes in a gridsquare will later be assigned to the
class the representative of the square is assigned to. In order to build the treegraph,
we proceed as follows:

For each gridsquareSij the treegraphTG has a nodewij and edges (wij,wi+1j)
and (wij,wij+1), where the edges inTG are undirected. For the weight of an edge
(wij,wkr) we count the number of edges which are in both treesTij andTkr and as-
sign this number as weight to the edge. Each node inTG gets as weight the number
of nodes ofG which lie in the corresponding gridsquare. In figure 3.4 we sketch
the construction of the treegraph.

45

25

33

23

Figure 3.4 Construction of the treegraph: The large nodes are the rep-
resentatives of each gridsquare. The weight of edges between these nodes
counts the number of edges present in both shortest path trees of two nodes.

If we think of each representative of a grid square as being a center node, the
treegraph can be viewed as a weighted gridgraph where each edge weight mea-
sures, how much the shortest path trees of the corresponding nodes are alike and
where each node weight gives the number of nodes the center node represents.
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The size of TG depends on the length l but will in general be much smaller than
the original graph G. By applying the k-way multilevel partitioning scheme from
the METIS software-library to the treegraph TG with the described node and edge
weights we get a partition of TG which can directly be expanded to a partition of
G into k parts by assigning each node to the part of the corresponding gridsquare
of TG. The use of node weights in the partitioning therefore gives node sets of
approximately equal size. The objective of a minimum edge cut in the partition of
TG tries to assign two nodes wij and wkr to different parts when the shortest path
trees Tij and Tkr of the two representatives of the corresponding gridsquares do not
have many edges in common.

If the gridlength l is small compared to the whole graph the shortest path tree
of the representative of a gridsquare should look very much like the shortest path
tree of any node in this square. The partition therefore should generate classes for
which shortest path trees for two nodes in the same class are expected to be more
alike than for two nodes of different classes. On the other hand a smaller l leads to a
treegraph of greater size and therefore to more shortest path trees which have to be
computed and compared in order to build TG which causes this approach to have
a significant higher running time than the other two algorithms (see also section
3.5.1.1).

3.4.2 Base-node generation

In order to build the searchgraph Hi for each class of the partition we have to deter-
mine base-nodes for each class for which a shortest path tree is computed. We tried
three different approaches to determine the b base-nodes for each partition class.
Note that the number b must not be the same for all classes, but can instead be
chosen individually for each class thereby using some possibly known informa-
tion about the specific class. The third approach is only applicable to a partition
generated with the treegraph procedure. In all three procedures only those nodes
were chosen as bases which had outdegree at least one such that a shortest path tree
could be computed.

Euclideanbase approach. This is a very fast and simple approach that tries
to find base-nodes which are geometrically as far apart as possible. The first base-
node is chosen near the geometrical center of the class and therefore called center-
node6. The other b − 1 base-nodes are chosen iteratively with a startbase of nodes
near the border of the class trying to maximize the sum of Euclidean distances be-
tween each pair of the b −1 base-node candidates. In each iteration b −1 nodes are
randomly chosen and replace the current base if the objective function increases,

6In case that the geometrical center of the class is not part of the class we take an arbitrary node
of the class.



3.4. Processing the tree heuristic 39

keeping the centernode fixed. The iteration is halted either after a given number
of steps or when there is no change in the basis for some number of steps. We call
this procedure the Euclideanbase approach.

Sptbase approach. We use the same procedure as in the Euclideanbase ap-
proach with a different objective function for basis exchange. For each of the b−1
basis candidates we compute the shortest path tree in G and take the number of
edges appearing in at least one of these trees as the objective function. Maximiz-
ing this number should lead to base-nodes with diversified shortest path trees such
that the chosen nodes are good representatives of the class. This approach is by far
not as fast as the Euclideanbase approach since in each iteration b−1 shortest path
trees have to be generated and the number of different edges in these trees have to
be computed. We will refer to this approach as sptbase approach.

Instead of choosing the b−1 base-nodes at random in each iteration of the latter
two procedures we also tried a different approach by picking only neighbours of
the current base-nodes as candidates. This leads to only a few iterations in most
runs (less than twenty) together with smaller values for the objective functions than
in the random case. The approach was therefore not studied in more detail.

Gridbase approach. For the treegraph-partition we also used a third method
for the base-node generation. Since each partition class consists of a number of
gridsquares with discrete coordinates we determined the two gridsquares with min-
imum and maximum x (y) coordinate for the minimum and maximum y (x) coordi-
nate. Together with a gridsquare in the center of the class this gives a total of nine
gridsquares. If two gridsquares are close together (i.e. |x1 −x2|+ |y1 −y2| ≤ 3) only
one was chosen giving a minimum of five squares. In each square the representa-
tive of the square was chosen as base-node. This approach tries to find base-nodes
which reflect the geometry of the partition class. We will refer to it as gridbase
approach in the following.

3.4.3 Searchgraph generation

The proposed tree heuristic builds searchgraphs H1, . . . ,Hk for each of the k clus-
ters V1, . . . ,Vk of a given partition for the network. The shortest path from a node
s to a node t is computed on the graph Hi if s lies in the cluster Vi. The graph Hi

has significantly less edges than the original graph but should be build in a way
that the heuristic always finds at least some path between s and t if there is such
a path in the original graph G. Since not all edges of the whole graph are present
in the searchgraph the path between s and t that is found by the heuristic will not
necessarily be the shortest path in G. Therefore, the generation of the searchgraphs
should try to make this deviation as small as possible.

Let G = (V,E) be the graph of the whole road network. The searchgraph Hi =
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(Vi,Ei) of a specific cluster Vi has nodeset Vi = V. The set of edges is the union

Ei = Ein
i ∪ E∗ ∪ E(T1) ∪ . . . ∪ E(Tbi)

where Ein
i = {e = (u, v) ∈ E : u ∈ Vi or v ∈ Vi} is the set of edges having at

least one incident node in Vi, E(Tj) are the edges of a shortest path tree Tj for base-
node vj and E∗ are edges of high importance for shortest paths for starting nodes
s ∈ Vi. The set E∗ is small compared to the total number of edges in Hi. In all our
experiments we took the edges of type four as the set E∗ making up less than 1%
of the edges of the searchgraph for the network of NRW.

In the searchgraph Hi it might happen that a path from a node s ∈ Vi to a node
t �∈ Vi is not found because some edge is neither in Ein

i nor in the union of the
shortest path trees. In this case we say that the partition class is not closed under
shortest path calculations. To avoid this phenomenon we compute a shortest
path tree Tc for the center base-node bc on the reversed edge set of G (that is we
switch the direction of each edge in E). For all nodes v ∈ Vi we check that all
edges on the reversed path from v to bc are included in H′i and if not, add missing
edges to E∗. This guarantees that we reach the centernode bc from all nodes in the
class Vi and thus all nodes in G, since for bc the shortest path tree is included in Hi.
This gives the final searchgraph Hi for a class Vi.

To generate Hi we have to compute b shortest path trees on G and another one
for bc on the reversed edge set of G. This gives an overall complexity of O(|E| +
||V| log |V||) since making the graph closed under shortest path calculations has
complexity O(|E|) and k and b are treated as small constants.

In section 3.5.1.1 we compare the runtime performance of the first three phases
of the tree heuristic for the network of Northrhine-Westphalia.

3.5 Experimental results

We conducted an extensive experimental test of the proposed tree heuristic on the
road network of Northrhine-Westphalia with 457124 nodes and 1046087 edges
giving an average degree of approximately 4.6. The maximum degree is 12. Each
edge has a weight which gives the integer length of the edge in 10m and the type of
the road the edge represents. Table 3.2 shows the distribution of the edges accord-
ing to their type. A high percentage of 71.4% of the edges are of type zero, while
only 0.4% are of type four making a total of 4263 edges of the highest level. The
nodes are given with their x − y coordinates with respect to the Gauss-Krüger sys-
tem [52]. The graph is connected but not strongly connected because of vertices
on the border and unidirectional stretches in the highest hierarchy level.
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Type Description #Edges Percentage
0 non-artery artery 746967 71.4%
1 collector artery 85465 8.2%
2 local artery 160788 15.4%
3 secondary artery 48604 4.6%
4 primary artery 4263 0.4%

Total 1046087 100%

Table 3.2 Distribution of the edges according to their type for NRW.

3.5.1 Experimental setup

We tested the tree heuristic with the different partitioning and base-node genera-
tion methods described in section 3.4 on the network of NRW. For values k = 8,
k = 12 and k = 16 we computed a k-way partitioning choosing different weight
functions for the METIS partitioning and different gridlengths l for the treegraph
partitioning.

For each partition of the network into k clusters we randomly chose 50 starting
nodes in each partition class and 75 target nodes in the whole graph. We then cal-
culated a total of 50∗k∗75 shortest paths by using the backward Dijkstra algorithm
in the searchgraphs of the tree heuristic. The suggested paths of the heuristic were
compared with those of Dijkstra’s algorithm and a bidirectional variant of Dijk-
stra’s algorithm on the whole graph, with those of the well-known A∗-algorithm
and the so called HISPA heuristic (see section2.4.3 and section 2.6 for details about
these algorithms).

For the running time of the algorithms (excluding i/o) the timing system of the
operating system with granularity 0.01 seconds (1 tick) was used. To evaluate the
quality of the solutions of the different algorithms we reported the following facts
for each calculated shortest path: Length of the path, number of edges of the path,
number of scanned nodes and the cluster of the starting node. The latter was used
for a better understanding of the relationship between the quality of shortest paths
and the structure of the partition classes.

To measure the quality of the shortest paths we calculated the average traveling
time error, the maximum relative traveling time error and the percentage of paths
which have an error greater than a given threshold. For the searchgraphs we con-
centrate on the different sizes of the partition classes, the number of edges of the
searchgraphs and the number of edges which are present in all searchgraphs for a
given partition. If this quantity is high the space requirements for the tree heuristic
are reduced.

From section 3.5.2.1 to section 3.5.2.3 we present the results of the tree heu-
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ristic for an 8-way partitioning of NRW for the three partitioning methods from
section 3.4.1 with respect to the characteristics of the searchgraphs and the quality
of the shortest paths. For the results we generated five base-nodes for each class for
the Dijkstra and METIS partitioning with the Euclideanbase approach and for the
treegraph partitioning we used the gridbase approach giving not always the same
number of base-nodes for every class. An overview over the preprocessing times
of phases one to three of the tree heuristic for these cases is given in section3.5.1.1.

In section 3.5.2.4 we analyze the effects of choosing k = 12 and k = 16 in
the k-way partitioning. Results for different base-node generation methods and a
different number of base-nodes are given in subsequent subsections. The runtime
performance of the heuristic compared to Dijkstra’s algorithm and its variants is
analyzed in section 3.5.3.

Hardware and Software Support. The experiments were performed on a Sun
Enterprise E4500/E5500 with 5.0 GByte RAM and 12 UltraSparc-II CPU’s with
336 MHz, running under Solaris 2.5. We used the SUN Workshop CC compiler
with optimization flag O4. Our software code made use of the software library
LEDA [74] using a bounded priority queue for Dijkstra’s algorithm and a priority
queue for the A∗-algorithm.

3.5.1.1 Comparison of preprocessing times

In table 3.3 we give the running times and space requirements for the different pre-
processing phases of the tree heuristic with its various generation methods for an
8-way partitioning with five base-nodes for each class. The Dijkstra and METIS
partitionings take less than a minute, where more than 25% of the nodes in the orig-
inal network lie on the dead-end stretches for the Dijkstra partitioning. The tree-
graph partitioning proceeds in two steps, where the times given in the table apply
to the generation of the treegraph. The actual partitioning of this treegraph takes
less than a second.

For the different methods of the base-node generation we observe that the spt-
base approach takes substantially longer than the other two approaches. The num-
ber of iterations until a basis is kept when there is no increase in the objective func-
tion is given in the last column. The generation of the searchgraphs for an 8-way
partition takes less than five minutes.

3.5.2 Quality of solutions

3.5.2.1 Dijkstra partition

As described in section 3.4.1.1 the Dijkstra partition computes k distinct short-
est path trees of size approximately n/k which correspond to the partition classes.
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Runtime MemoryPhase Method
in sec in Mb

Note

Dijkstra 15.4 213 120277 dead-ends
METIS 45.1 439Partition
Treegraph 1426.3 145 l=10000m
Treegraph 5341.2 159 l=5000m
Euclideanbase 2.0 136 10000 iterations

Base-nodes SPTbase 4064.8 165 50 iterations
Gridbase < 1.0 < 1.0

Searchgraph 211.5 175

Table 3.3 Preprocessing times of the tree heuristic for NRW.

Nodes that are not reached by any of the trees are assigned to the k classes in such
a way that each class stays connected and all classes are approximately of equal
size.

We chose the starting nodes for the shortest path trees at random out of all nodes
which have at least one outgoing edge and used c2 = 0.8 as factor for the lower
bound for the size of the trees. For the 8-way partitioning we chose c1 = 0.95.
In table 3.4 some statistical characteristics of the partition are given. The base-
nodes were generated with the Euclideanbase approach maximizing the sum of
the Euclidean distances for the b − 1 border nodes.

σV/|V| in table 3.4 is given with σV =
√

1
k ·
∑k

j=1(nj − n̄)2 where nj is the num-
ber of nodes in partition class Vj and n̄ the average number of nodes in the classes.
Thus, σV measures the deviation of the partition with respect to equally sized parti-
tion classes. Another measure of this kind is Nodedev which shows the difference
between the largest and the smallest node class as percentage of the average num-
ber of nodes in each class. Edgedev and σE/|E| denote these numbers for the edges.
Avg. Edges is the average number of edges per class as percentage of the total num-
ber of edges in G. While the average number of nodes is determined by k, the value
for the edges depends on the structure of the partition. |E+| is the average number
of edges per class which have to be added to guarantee that a shortest path from an
arbitrary node in the class will be found. In our terminology |E+| is the number of
edges needed to make the searchgraph closed under shortest path calculations (see
section 3.4.3 for details). Avg. Components resp. Max. Components denote the
average resp. maximal number of components of a partition class which is one for
the Dijkstra partitioning by construction. All-edges gives the percentage of edges
of the graph G which are present in the searchgraphs for all partition classes and
Avg. Bases denotes the average number of bases in each class which is five for all
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classes for this partition.

# PartsDIJK
8

σV/|V| 0.002
Nodedev 5.6%
σE/|E| 0.02
Edgedev 11.1%
Avg.Edges 55.9%
|E+| 10.5
Avg. Components 1
Max. Components 1
All-edges 38.3%
Avg. Bases 5
c1 0.95

Table 3.4 Partition characteristics for the 8-way Dijkstra partition.

The results in table 3.4 show that the partition is very well balanced with respect
to nodes. With respect to the number of edges the classes vary more in size and this
number is of greater importance for the running time of the tree heuristic. The aver-
age number of edges in the searchgraphs is about 56% leading to an average degree
in the searchgraphs below 2.4. That is, the generation process for the searchgraphs
produces a network that has a very path-like structure. By construction all partition
classes are connected and the number of edges that have to be added to make the
searchgraph closed under shortest path calculations is small. That there are edges
that have to be added results from the difference between connectivity and strong
connectivity. During the partitioning we only require the partition classes to be
connected regardless of the orientation of any edges in the graph. Neglecting the
orientations of the edges during the partitioning therefore might lead to missing
edges. A picture of this 8-way Dijkstra partition is shown in figureA.1 (a) in the
appendix.

To analyze the quality of the shortest paths found by the tree heuristic we use
different error measures. One is the difference in travel time between the suggested
path found by the heuristic and the actual shortest path in the whole graph G found
by Dijkstra’s algorithm. Figure3.5 shows the relative error in percent of the length
of the actual shortest path as function of this length for the 8-way Dijkstra parti-
tioning. The shortest paths were grouped into bins of length five minutes and for
each bin the mean error was calculated.

The mean error is below 1.5% and decreases below 0.5% for paths longer than
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Figure 3.5 Mean error of paths for the Dijkstra partition with random
starting nodes.

40 minutes. Since each partition class P contains all edges that have at least one
endnode in P the errors made for short paths result from paths where the target
node t lies just outside P or the exact shortest path between s and t uses an edge
having both endnodes not in P. Because of the shortness of the paths the relative
error for these paths will be higher.

As second error measure we use the maximal relative error in traveling time
made by paths. Figure 3.6 shows this error, again plotted against the length of the
paths. This error is very high for short paths, but decreases to below 15% for paths
longer than 60 minutes. Paths with a high relative deviation found by the heuristic
are of great interest, especially if they are not rare. To measure the expected fre-
quency of such high deviations we use the fraction of paths with a relative error
greater than a given threshold. Figure 3.7 shows the data for the Dijkstra partition
for thresholds 0%, 1%, 5% and 10%. While the percentage of erroneous paths is
around 10% for all path lengths, the fraction of paths with relative error greater
than 5% or 10% tends to zero for longer paths.

Summarizing the results one can say that the expected traveling time error of
paths found by the tree heuristic on searchgraphs generated with the Dijkstra par-
tition method with random starting nodes lies below a few percent. The relative
errors are higher for short paths and can almost be neglected for paths longer than
60 minutes where even the maximum errors are in the range of a realistic traveling
time dispersion.
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than a given threshold for a
8-way Dijkstra partition.

3.5.2.2 METIS partition

The METIS software package [62] computes a k-way partition with the objective
of a small edge cut. By using different weight functions we studied the influence
of various edge characteristics on the generated partition and ultimately on the tree
heuristic. Thereby, we used the following quantities for each edge e: the length
l(e) in 10m, the type t(e) in the range [0, . . . , 4] and the lcm-speed lcm(t(e)). The
latter is the least common multiplier of the speeds for the different types of edges
divided by the speed for edge e. Multiplying l(e) with lcm(t(e)) gives the traveling
time tt(e) as integer value in min/lcm(speeds).

We generated a k-way partition for k = 8, 12 and 16 for four different weight
functions c : E → IN and compare the results of the different weight functions for
the 8-way partition in this section. Results for the other values of k are given in
section 3.5.2.4. The weight functions can be described as follows:

W1 c(e) = (1 + lmax − l(e)) ∗ lcm(e): This gives long edges of high type a smaller
weight than short edges of low type. (lmax is the length of the longest edge
in G.)

W2 c(e) = l(e)∗lcm(4−t(e)): This gives short edges of low type a smaller weight
than long edges of higher type.

W3 c(e) = tt(e): Minimizes the sum of the travel times for edges in the cut.

W4 c(e) = 1: Minimizes the number of edges in the edge cut.

Results for W1 and W2 Table 3.5 show the characteristics of the 8-way partition
for the two weight functions W1 and W2. The two functions are contrary to each
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other by favouring long edges of high type (W1) resp. small edges of small type
(W2) to be in the edge cut. The base-nodes were generated with the Euclideanbase
approach maximizing the sum of the Euclidean distances for b − 1 border nodes.

8-wayMETIS
W1 W2

σV/|V| 0.0007 0.005
Nodedev 1.7% 13.6%
σE/|E| 0.02 0.01
Edgedev 8.1% 7.4%
Avg.Edges 56.7% 59.6%
|E+| 0.1 26.8
Avg. Components 1 2.5
Max. Components 1 5
All-edges 40.0% 42.2%
Avg. Bases 5 5

Table 3.5 Partition characteristics for W1 and W2.

The results show that the partitioning with weight function W1 is very well
balanced with respect to nodes while the function W2 gives an equally sized par-
tition with respect to the edges. For weight function W1 the partition classes are
all connected and the number of edges that have to be added to make each class
closed under shortest path calculations is very small. For function W2 the classes
are mostly not connected although the number of connected components is small.
The disconnectivity leads to more edges that have to be added to close the graph un-
der shortest path calculations. At least 40% of the edges appear in all searchgraphs.
Figures A.1 (c) and A.1 (d) in the appendix show a picture of these partitions.

To evaluate the quality of the paths found by the heuristic we use the same error
measures as in the previous section. Figure 3.8 shows the relative error of paths
found by the heuristic in percent of the length of the actual shortest path as function
of this length for the two 8-way partitionings.

For paths longer than 20 minutes the heuristic on the average finds paths that
are within 1% of the actual shortest path lengths for function W1. Only for paths
that are very short the relative error increases up to 2.5%. For weight function W2
the results are not as good and have a relative error of about 9% for short paths
decreasing slowly below 1%. For the maximal relative error shown in figure3.9
the partitioning with weight function W1 also gives better results. For paths longer
than 60 minutes the relative error is below 15% for W1, while this value is reached
for weight function W2 only for paths longer than 100 minutes. Both partitionings
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Figure 3.8 Mean error of paths for METIS partitions with weight func-
tions W1 and W2.

have a maximal relative error above 200% for very short paths below 15 minutes.
(The data is not shown for better presentation.)
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Figure 3.9 Maximal relative error of paths for METIS partitions with
weight functions W1 and W2.

To analyze the frequency of paths with high relative error we show the frac-
tion of paths with an error higher than a given threshold for weight function W1 in
figure 3.10. The results for W1 are similar to the 8-way Dijkstra partitioning with
a fraction of deficient paths below 15% and almost no paths of length at least 60
minutes with error above 5%. Figure 3.11 shows the same plot for weight function
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W2. Not only is the fraction of deficient paths much higher for W2, being above
20% for paths up to a length of 120 minutes, but also the high error paths are more
frequent. But even for W2 the fraction of paths with relative error greater than 10%
is below 1% for paths longer than 60 minutes.
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Figure 3.10 Fraction of
paths with an error greater
than a given threshold for a
METIS 8-way partition with
weight function W1.
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In summary the paths found by the heuristic for a METIS 8-way partition with
weight function W1 are of similar quality than those for the 8-way Dijkstra par-
tition, where both partitionings generate connected subclasses. In contrast the 8-
way METIS partition with weight function W2 results in some partition classes
that are not connected. The qualitiy of paths found by the heuristic for this parti-
tion is worse than for the two others.

Results for W3 and W4 Table 3.6 shows the characteristics of the 8-way par-
tition for weight functions W3 and W4, which minimize the sum of travel times
of cut-edges resp. the number of cut edges. The base-nodes were again generated
with the Euclideanbase approach maximizing the sum of the Euclidean distances
for b − 1 border nodes.

Weight function W3 is closely related to W2 since there are many short edges
in the graph of low type. The most noteable fact from the data given is the high
number of connected components for the METIS partition with weight function
W3. No partition class is connected and there is a class with a maximum of 5242
components. This leads to the addition of many edges to make the searchgraphs
closed under shortest path calculations and also to searchgraphs with more than
60% of the edges of the original graph on the average. Additionally, the partition is
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8-wayMETIS
W3 W4

σV/|V| 0.01 0.001
Nodedev 29.6% 2.5%
σE/|E| 0.02 0.003
Edgedev 8.4% 2.0%
Avg.Edges 61.3% 55.7%
|E+| 6559.1 2.1
Avg. Components 1618.6 1
Max. Components 5242 1
All-edges 47.3% 39.2%
Avg. Bases 5 5

Table 3.6 Partition characteristics for W3 and W4.

not very well balanced with respect to nodes. In contrast the partition with weight
function W4 which minimizes the number of edges in the cut consists of connected
subclasses. The partition is very well balanced and the number of edges that have
to be added to make the searchgraphs closed under shortest path calculations is
small. Figures A.1 (e) and A.1 (f) in the appendix show a picture of these partitions.

Figure 3.12 shows the mean error in percent of paths found by the tree heuristic
for the two partitions. For weight function W4 this error is very low, lying below
1% for paths longer than 30 minutes. For shorter paths it is slightly higher but far
below the one for weight function W3 which is up to 25% for short paths. For
longer paths the error is decreasing but does not tend as fast to zero as for weight
function W4.

With respect to the maximal relative error the results for weight function W3
are even worse (see figure 3.13). For paths as long as 140 minutes this error stays
above 20%. For weight function W4 the maximal relative error is much smaller,
lying below 15% for paths longer than 70 minutes. For very short paths the error
climbs up well above 200% for both weight functions.

For the fraction of deficient paths we show the results in figure 3.14 and fig-
ure 3.15. For weight function W3 almost 50% of the suggested paths of the tree
heuristic are not the shortest path and a significant number of paths have an error
greater than 10%. This fraction is well below 1% for weight function W4 for paths
longer than 40 minutes and the number of deficient paths is below 15%.

Summary of METIS results The quality of the paths found by the tree heuristic
is very much influenced by the weight function used in the partition process. The
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Figure 3.12 Mean error of paths for METIS partitions with weight func-
tions W3 and W4.
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Figure 3.13 Maximal relative error of paths for METIS partitions with
weight functions W3 and W4.
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METIS 8-way partition with
weight function W3.
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main effect to be observed is that partitions that generate classes with many con-
nected components lead to paths of greater error. Figure 3.16 shows the data for
the fractions of paths of error greater than 10% for the 8-way partition using the
four different weight functions.
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Figure 3.16 Fraction of paths with an error greater than 10% for METIS
partitions with different weight functions.

The partitions with weight functions W2 and W3 with many connected com-
ponents in the classes lead to a rather high percentage of error paths especially for
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paths shorter than 40 minutes. For the other two partitions the percentage is small
and tends to zero fast. The same classification can be made with respect to the
average error of the traveling times. There are some differences for the different
weight functions regarding the maximum error in each distance bin, but these are
not as significant as for the other measures. This results primarily from the fact
that the maximum error depends only on one s-t path. In most cases the maximum
error in all distance bins is caused by the same bad starting node s or target node t
for which the searchgraph misses some important link.

For the different weight functions it can be observed that the ones which favour
short edges to be cut edges result in partitions with highly disconnected subclasses.
Instead, if long edges of high type tend to be in the edge cut the subclasses are
connected and the tree heuristic gives the best results for the METIS partitions.
The paths found for the partition minimizing the number of edges in the cut are
only slightly worse. Thus, the topology of the road network seems to be of less
influence on the quality of the paths found by the tree heuristic than the observation
that the partition classes should be connected.

3.5.2.3 Treegraph partition

For a partitioning of the original graph G with the treegraph approach (see section
3.4.1.3 for details) we studied the influence of the gridlength l on paths found by the
tree heuristic. A smaller l gives a finer grid and thereby the treegraph TG will reflect
the shortest path tree structure in the graph G more accurately. If l was chosen so
small that each gridsquare contains exactly one node of G then the treegraph would
give a very good picture of shortest path tree differences in G since each edge in
TG gives the number of edges the shortest path trees of the adjacent nodes have in
common.

Figure 3.17 shows the effect of the gridlength on the edge weights of the tree-
graph. The plot shows the cumulative distribution of the inverse edge weights.
That is, instead of counting the number of edges two shortest path trees have in
common we count the number of edges in which they differ. Thus, each data point
(x, y) means that for y% of the edges of the gridgraph the shortest path trees of the
two endnodes differ in less than x edges. While for gridlength 2500m more than
90% of the edges have an edge weight less than 10000 the rate is around 40% for
gridlength 10000m. For edge weights smaller than 10000 (meaning a very high
conformity of the shortest path trees) figure 3.18 shows the graphs in more detail.

The disadvantage of a smaller l is the longer preprocessing time for generating
the treegraph and the size of TG which has to be partitioned (see section 3.5.1.1).
We have chosen the three values l = 2500m, l = 5000m and l = 10000m for
the gridlength and generated an 8-way, 12-way and 16-way partitioning using the
METIS software library minimizing the sum of the weights for the edge cut. In
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Figure 3.17 Cumulative
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distribution of edge weights
for different gridlengths
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table 3.7 the size of the treegraphs for the three values of l is given together with
the average edge weight in the treegraph as percentage of the number of nodes in
the original graph.

GridlengthTG
2500 5000 10000

Number of Nodes 5149 1486 401
Number of Edges 9297 2829 739
Avg. Weight 99.0 98.3 96.9

Table 3.7 Size of the treegraphs for different gridlengths.

In this section we show the results for the 8-way partitioning using the gridbase
approach (see 3.4.2) to generate base-nodes for each partition class. This approach
does not give the same number of base-nodes for all classes of a partition. The
results using the Euclideanbase approach were of similar quality and are therefore
not shown here.

Table 3.8 gives the characteristics for the 8-way partition for the three grid-
lengths. For gridlength 2500m there is exactly one class which decomposes into
two connected components, while for the other gridlengths all subclasses are con-
nected. Since the treegraph is small compared to the whole graph, it does not have
to be coarsened much and therefore we expect most of the partition classes to be
connected. All three partitions are well balanced with respect to the nodes, for
l = 5000m the classes are also very equally sized with respect to the edges. Com-
pared to a direct partition with the METIS software the number of edges that have
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to be added to make the partition closed under shortest path calculations is high
although almost all classes are connected. The reason for this is the rectangular
shape of the partition classes due to the assigning of nodes into gridsquares. Since
missing edges are determined by calculating a shortest path from the center base-
node to all nodes of the class the partition using gridsquares will miss some edges
on the border of the class which do not fit into the rectangular shape. The number
of bases is between five and eight while the number of edges present in all search-
graphs is rather low compared to the other partitionings. A picture of the 8-way
treegraph partition for l = 5000m is shown in figure A.1 (b) in the appendix.

GridlengthTG
2500 5000 10000

σV/|V| 0.003 0.003 0.002
Nodedev 5.8% 6.0% 5.1%
σE/|E| 0.02 0.006 0.009
Edgedev 9.1% 3.4% 5.2%
Avg. Edges 56.7% 55.5% 55.7%
|E+| 192.8 269.6 212.4
Max. Components 2 1 1
Avg. Components 1.1 1 1
All-edges 40.1% 37.8% 38.5%
Avg. Bases 5.62 6.75 5.88

Table 3.8 Partition characteristics for the treegraph partition.

Figure 3.19 shows the mean error for paths calculated by the tree heuristic for
the three partitions. The relative error is small even for short paths and tends to zero
for paths longer than 60 minutes. Comparing the three gridlengths shows that for
l = 5000m the observed errors are greatest.

The maximal relative error in a distance bin (see figure 3.20) is very small for
gridlength 10000m being less than 15% for paths longer than 50 minutes. For
the other two partitionings the error is slightly higher. For paths shorter than 20
minutes there are errors of more than 200% for gridlength 5000m.

For the frequency of error paths we show in figure 3.21 to figure 3.23 the frac-
tion of paths with a relative error greater than a given threshold. For all three grid-
lengths the fraction for threshold 10% is very close to zero. For l = 2500m there
are less than 10% of erroneous paths, for gridlength 10000m there are only sligthly
more.

Compared to the METIS partitioning the quality of the solutions for the tree-
graph 8-way partitioning is very good for all three gridlengths. This is especially
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Figure 3.19 Mean error of paths for an 8-way treegraph partition for dif-
ferent gridlengths.
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Figure 3.21 Fraction of
paths with an error greater
than a given threshold for
the treegraph 8-way partition
with gridlength 2500m.
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Figure 3.22 Fraction of
paths with an error greater
than a given threshold for
the treegraph 8-way partition
with gridlength 5000m.

true for the fraction of deficient paths which is very small for the treegraph parti-
tions in comparison to the other methods. The differences between the partitions
for the three gridlengths are very small, the quality of paths being slightly worse
for l = 5000m. Thus, the effect of a smaller gridlength leading to a treegraph con-
taining more information about the structure of the shortest path trees is not very
pronounced for the NRW network.
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Figure 3.23 Fraction of paths with an error greater than a given thresh-
old for the treegraph 8-way partition with gridlength 10000m.
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3.5.2.4 Comparison of k-way partitions

In this section we compare the results of the tree heuristic, where different values
for k are chosen for the Dijkstra k-way partition, i.e. we study the values k = 8, 12
and k = 16. We discuss the effect of different values for k for the other partitioning
methods at the end of this section. Since the conclusions for the Dijkstra partitio-
ning can also be drawn for the other methods, we abstain from showing them in
great detail.

Table 3.9 gives the characteristics of the three Dijkstra partitions, the data for
k = 8 is the same as in table 3.4. As can be seen the 12-way and 16-way partition
are not as equally sized with respect to the number of nodes as the 8-way partition.
However, the searchgraphs for these two partitions are more balanced with respect
to the number of edges than for the 8-way partition.

# PartsDIJK
8 12 16

σV/|V| 0.002 0.006 0.006
Nodedev 5.6% 25.1% 33.7%
σE/|E| 0.02 0.014 0.013
Edgedev 11.1% 8.6% 8.6%
Avg. Edges 55.9% 53.1% 51.7%
|E+| 10.5 5.7 2.6
Max. Components 1 1 1
All-edges 38.3% 36.6% 35.7%
Avg. Bases 5 5 5
c1 0.95 0.85 0.9

Table 3.9 Partition characteristics for the Dijkstra partition for different
values of k.

Analyzing the quality of the paths found by the tree heuristic for the three parti-
tions in figure 3.24 we observe that the 8-way partition gives slightly better results
especially for short paths. For longer paths the differences are small. For the max-
imal relative error the curves are almost of identical shape and therefore are not
shown.

Since the latter error depends only on exactly one s-t pair in each distance bin,
it is not so well suited for comparison of different partitions. Instead, we show the
plots for the fraction of paths having a relative error greater than a given threshold
for k = 12 in figure 3.25 and for k = 16 in figure 3.26 with thresholds 0%, 1%, 5%
and 10%. For the 8-way partition the plot was given in figure 3.7. All three par-
titions show a very identical frequency of deficient paths with the 8-way partition
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Figure 3.24 Mean error of paths for the Dijkstra partition for different k.

giving the best results for greater error paths.
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Figure 3.25 Fraction of
paths with an error greater
than a given threshold for a
12-way Dijkstra partition.
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Figure 3.26 Fraction of
paths with an error greater
than a given threshold for a
16-way Dijkstra partition.

In summary we conclude that the 8-way Dijkstra partition gives slighty better
results for all three error measures than the ones for k = 12 and k = 16. However,
the differences are very small and do not allow a definite classification. The same
conclusions can be drawn for the other partitioning methods we studied.

For the METIS k-way partitionings for different values of k the quality of the
paths found by the tree heuristic was very much influenced by the number of con-
nected components in the partition classes. For the weight functions W1 and W4
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the partitioning resulted in connected subclasses in all cases. The errors observed
for suggested paths were of the same magnitude as for the 8-way partition analyzed
in section 3.5.2.2. For the other two weight functions the subclasses for k = 12 and
k = 16 decomposed into a few connected components for W2 and classes with a
few thousand components for W3. In line with our results from section3.5.2.2 the
paths found by the tree heuristic were of much poorer quality for these two weight
functions. Since the 8-way partitioning resulted in the minimal number of con-
nected components for all weight functions the quality of the paths was slightly
better than for the other values of k.

The treegraph partitioning for gridlength l = 5000m always gave connected
subclasses for all three values of k. For l = 2500m there was one subclass with
two connected components in all cases. However, the effect on the quality of the
suggested paths was not significant. For these two gridlengths the results were very
similar for all three k-way partitionings with a slightly better quality for k = 8.
For l = 10000m the 12-way and 16-way partitioning were not very balanced with
respect to nodes. The reason is that the number of nodes of G that are assigned to
a gridsquare differs much more for this length. Therefore, it is much harder to find
an equally sized partition with respect to the number of nodes of G. The effect on
the number of edges per class was less significant. There were some disconnected
subclasses for l = 10000m, especially for k = 16. This resulted in paths of better
quality for the 8-way partitioning also for this gridlength.

3.5.2.5 Influence of the geometric shape of classes

Next to the connectivity of partition classes the geometric shape affects the quality
of the tree heuristic. In figure 3.27 we show an almost convex class and in figure
3.28 two classes of irregular shape of a 12-way Dijkstra partitioning of NRW.

The different quality of paths found by the tree heuristic for these three classes
is shown for the average relative error in figure3.29 and for the fraction of deficient
paths in figure 3.30. While the average error of the almost convex class is very
low it is much higher for the classes of irregular shape especially for short paths.
The fraction of deficient paths is above 30% even for long paths for the classes of
irregular shape while it is below 5% for class 1.

Another aspect where the classes differ, is the number of border nodes, i.e. no-
des for which at least one neighbour is in a different class7. The classes 10 and
11 have about twice as many border nodes than class 1. While classes of irregular
shape will in general have more border nodes, the reverse is not true. There are
classes in all our partitionings that are of almost convex shape, but have a high
number of border nodes. For these classes the tree heuristic performs equally well

7Since the road networks we considered, have a very evenly distributed degree, the number of
border edges is proportional to the number of border nodes.
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Figure 3.27 Class 1 of a
Dijkstra 12-way partition.

Figure 3.28 Classes 10
and 11 of a Dijkstra 12-way
partition.
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Figure 3.29 Mean error
for different classes of a
Dijkstra 12-way partition.
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as for those of convex shape with few border nodes. Thus, in our analysis of the
tree heuristic we did not observe a direct correlation between the number of border
nodes and the quality of paths found by the heuristic.

3.5.2.6 Influence of the base-nodes

Generation method For the results shown in the previous sections we either
used the Euclideanbase or the gridbase approach for the generation of the base-
nodes (see section 3.4.2 for details). We also studied the sptbase approach, where
the number of edges in the shortest path trees of the base-nodes is maximized. The
generation of base-nodes with this approach is very time consuming compared to
the other two methods (see section 3.5.1.1) and did not find paths of better quality.
In fact the Euclideanbase approach yields in many cases bases where the shortest
path trees of the base-nodes differed more than for the sptbase approach. In sum-
mary our results suggest that especially with respect to running times the Euclid-
eanbase and the gridbase approach seem to be proper methods for the base-node
generation for the tree heuristic.

Number of base-nodes Outside of a partition class Ps which contains the start-
ing node the tree heuristic searches for the shortest path to some node t only on
the edges of some shortest path trees for the so called basedodes of Ps. The more
base-nodes are chosen the better the paths found by the heuristic are expected to
be. The paths would always be exact if all nodes of Ps are chosen as base-nodes but
for this an all-pairs-shortest-paths algorithm would have to be performed which is
computational by far to expensive for a dynamic application.

Therefore, the number of base-nodes has to be chosen in such a way that the
searchgraph can be computed reasonably fast which depends mainly on the time to
calculate the shortest path trees for the base-nodes. At the same time the shortest
path trees of the base-nodes should capture as much structure of the shortest paths
of the partition class in order to keep the fraction of error paths low. To determine a
value b for the number of base-nodes which fulfills these assumptions we tested the
quality of the solutions of the tree heuristic for values b = 1, 3, 5 and b = 10 using
the Dijkstra 8-way partition with the Euclideanbase approach for base-node gen-
eration (see section 3.4.2). Table 3.10 shows the characteristics of the searchgraph
for the four values of b. The number of base-nodes does not affect the partition
thus the number of components and size of the classes with respect to nodes is the
same for all values of b.

The sizes of the searchgraphs differ more if b is increased. On the other hand
|E+| decreases. The searchgraphs contain more edges for greater b and the number
of edges being present in all searchgraphs increases.
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# BasesDIJK
1 3 5 10

Edgedev 1.3% 10.7% 11.1% 12.4%
Avg. Edges 50.8% 55.1% 55.9% 56.5%
|E+| 36.6 13.0 10.5 8.4
All-edges 33.2% 37.6% 38.3% 38.9%

Table 3.10 Searchgraph characteristics for different numbers of base-
nodes for the 8-way Dijkstra partition.

To analyze the effect of b on the quality of solutions of the tree heuristic we
first show the mean error with respect to traveling time for a total of 30000 paths
in figure 3.31. If only one base-node in the center of each partition class is chosen
the mean error is up to 7% for short paths and still around 1% for longer paths.
For the other three values of b the average error is significantly lower. For paths
longer than 40 minutes it is below 0.5%, for shorter paths the error is smaller if
more base-nodes are chosen.
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Figure 3.31 Mean error of traveling times for a different number of
base-nodes for the Dijkstra 8-way partition.

For the fraction of erroneous paths the effect is even more pronounced. Figure
3.32 shows the results. While for b = 1 about 20% of the paths are not the exact
path, it is around 5% for short paths, tending to zero for b = 10. For the maximal
relative error b = 1 has deviations of more than 50% even for longer paths up to a
length of 100 minutes. For the other three values the error is below 20% for paths
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longer than 60 minutes and the differences are very small for the three values. The
plot is therefore not shown here.
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Figure 3.32 Fraction of deficient paths for a different number of base-
nodes for the Dijkstra 8-way partition.

In summary the results show that the quality of the solutions found by the tree
heuristic can be improved significantly by choosing more than one base-node. A
value of b = 3 already makes the heuristic well applicable but since even a choice
of ten base-nodes does not lead to major computational expenses for the calcula-
tion of the searchgraph a number of at least five should be chosen in order to get
acceptable solutions.

For a more exact analysis the shape of the partition classes should be taken into
account since this affects the quality of the paths significantly as shown in section
3.5.2.5. If the partition classes are almost convex than a smaller number of base-
nodes should be sufficient. In figure 3.33 and figure 3.34 we show two partition
classes of the Dijkstra 8-way partition of very different shape. Class 1 is almost
convex with a few bulges while class 6 has a very irregular shape.

The fractions of deficient paths for the two classes and a different number of
base-nodes are shown in figure 3.35 and figure 3.36.

For partition class 1 the fraction of paths with a high error is below 10% for
all traveling times even for b = 1. If more base-nodes are chosen the fraction de-
creases but the effect is not very pronounced. For class 6 with its irregular shape
the fraction of deficient paths is very high being at most 50% for b = 1. If at least
three base-nodes are chosen it decreases below 10% and the differences between
b = 3 and b = 10 are small. Also the fractions of paths are of the same magnitude
for the two classes when b is at least three. Thus, a greater number of base-nodes
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Figure 3.33 Class 1 of the
Dijkstra 8-way partition.

Figure 3.34 Class 6 of the
Dijkstra 8-way partition.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0 10 20 30 40 50 60 70 80 90

Fr
a
ct

io
n
 o

f 
p
a
th

s

Travel time in minutes

Class1: B1
Class1: B3
Class1: B5

Class1: B10

Figure 3.35 Fraction of
deficient paths for partition
class 1 of the Dijkstra 8-way
partition for a different
number of base-nodes.
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allows the tree heuristic to find the exact shortest path even for partition classes of
very irregular shape.

3.5.2.7 Analysis of maximum error paths

In some cases paths found by the tree heuristic show high relative errors for short
range paths. For longer paths these errors decrease below 15%. In either case the
absolute travel time errors in minutes are about the same size regardless of the path
length8. In figure 3.37 and figure 3.38 we show two examples of maximal error
paths for an 8-way Dijkstra partitioning of NRW. The shortest path in figure3.37
is a very short path of travel time about four minutes. As can be seen the search-
graph for the heuristic misses some short links close to the target node of the path,
resulting in a suggested path of a length of about nine minutes.

Heuristical path

t

s

Dijkstra path not in H
Dijkstra path in H

Figure 3.37 An s-t path with high relative error in NRW: The edges of
the shortest path that are not present in the searchgraph are near t, shown
in solid line in the circle.

For the path in figure 3.38 the searchgraph misses some edges very close to
the starting node, causing the heuristic to find a path which starts out in the wrong
direction. Although the shortest path has a length of about only 12 minutes, the
suggested path by the heuristic takes 25 minutes. The absence of these particular
edges in the searchgraph for the heuristic also leads to the maximal errors for longer
paths, e.g. there is a path of a length of about 70 minutes which also uses these
edges. The path which is suggested by the heuristic for this pair of nodes takes the
same deviation as the short path and has a length of 83 minutes.

8For the NRW network with the speed model we used the maximal errors were in the range
between 10 and 15 minutes.
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Dijkstra path not in H
Dijkstra path in H

Figure 3.38 An s-t path with high relative error in NRW: The edges of
the shortest path that are not present in the searchgraph are near s, shown
in solid line in the circle.

In both examples the searchgraph for the heuristic misses only a small number
of edges of the actual shortest path. The main difference of the two examples is
the location of the missing edge on the shortest path. From the idea of the tree
heuristic we expect that most deficient paths miss some edges close to the border
of the partition class of the starting node. In order to check if this expectation holds
we analyzed a total of 180 maximum error paths of different length and partition
classes for an 8-way Dijkstra partitioning with respect to the number of missing
edges in the searchgraph and distance of missing edges to the partition class of the
starting node in figure 3.39 and figure 3.40.

Figure 3.39 shows that the average number of missing edges of the shortest
path in the searchgraph of the tree heuristic is small lying below 15. The number
is not much influenced by the length of the path leading to a decreasing fraction of
missing edges for longer paths. In figure 3.40 we show the minimal and maximal
Euclidean distance between a missing edge and the last node of the partition class
of the starting node on the shortest path averaged over all paths in each distance bin.
The plot shows that the first edge on the shortest path missing in the searchgraph
can be expected to be not further than 20 kilometers away from the partition class.
With one exception the maximal distance between missing edges on the shortest
path and the partition class is only slightly higher than the minimal distance. The
results therefore confirm our expectation that the searchgraphs of the tree heuristic
miss mostly edges of shortest paths that lie just outside the partition classes while
all edges around the target nodes are present.

For the 180 paths of maximal error there were only 522 edges of the shortest
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paths that were missing in all searchgraphs. Most of these edges were used not
only by a single shortest path and lead to the same absolute deviation for all those
suggested paths for the tree heuristic. This is also the reason why the maximal
absolute travel time error in minutes is in most cases the same regardless of the
path length for the tree heuristic.

In order to see if these missing edges are of significant importance for short-
est paths for this specific partitioning we added all 522 missing edges to the set
E∗ for the searchgraphs of the 8-way Dijkstra partitioning and calculated paths
for a different set of starting and target nodes. These paths were compared to the
ones found by the tree heuristic if these edges were not added. Additionally we in-
creased the number of bases in each class from five to 15 and calculated the short-
est paths for the set of starting and target nodes. This lead to searchgraphs that had
about 1% more edges than the searchgraphs for five bases per class.

In figure 3.41 we show the relative error as a function of the travel time for the
three approaches. The addition of the 522 edges slightly improves the expected
error while increasing the number of bases to 15 shows a significant effect with a
relative error below 0.2% for paths longer than 40 minutes. A similar effect can be
observed for the fraction of deficient paths (see figure3.42) for paths up to a length
of 80 minutes. For longer paths both approaches of adding edges lead to a decrease
of deficient paths. The two plots suggest that by adding only a few edges of im-
portance to the searchgraphs the tree heuristic more likely finds the exact path. On
the other hand the quality of a suggested path that is not the exact shortest path is
not improved by adding these edges. In order to decrease the expected maximal
relative error of the paths the number of bases should be increased. This conclu-
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Figure 3.41 Comparison of the relative error if specific edges are added
to the searchgraphs or the number of bases increases in an 8-way Dijkstra
partitioning.

sion is supported by figure 3.43 where the fraction of paths with an error greater
than 10% is shown. The fraction of these paths does almost not improve if the 522
edges are added. In contrast an increase on the number of bases leads to a sig-
nificant smaller number of high error paths. This is especially true for partition
classes of high maximal relative error, while classes of small relative error show
some improvement for both approaches of adding edges. This suggests that the
searchgraphs of bad classes miss a variety of edges while the number of missing
edges for good classes is much smaller. Therefore, for the latter classes there is
some chance of identifying edges of high importance for shortest paths starting
from this class and thus improving the quality of the paths found by the tree heu-
ristic by adding these edges, while for bad classes only an increase of bases leads
to a significant improvement.

3.5.2.8 A theoretical bound for the maximal error

From the partitioning of the road network into k classes we can derive a theoretical
bound for the maximal travel time error of paths found by the tree heuristic in com-
parison to the actual shortest path. For this, let s resp. t be the starting resp. target
node of such a path, where s lies in the partition class Vi and t ∈ V. Let SP(s, t)
be the shortest path between the two nodes in the network G and Pth(s, t) the path
found by the tree heuristic in the searchgraph Hi between s and t. Finally let bc be
the center base-node for partition class Vi. The searchgraph Hi contains the shortest
path tree Tbc of bc in G. Figure 3.44 outlines the notation for an idealized example,
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where no paths intersect for a better presentation.

s

bc

t

Vi

SP (s; t)

SP (bc; s)SP (bc; t)

Pth(s; t)

Figure 3.44 Example graph for the bound on the maximal travel time error.

In order to make the searchgraph Hi closed under shortest path calculations, Hi

includes those parts of the shortest path tree on the reversed edge set for the center
base-node bc of Vi, that belong to nodes of Vi, i.e. Hi includes all shortest paths
from some node v ∈ Vi to bc. Since Hi also includes the shortest path SP(bc, t)



3.5. Experimental results 71

from bc to the target node t, the path Pth(s, t) found by the tree heuristic will be no
longer than the concatenation of the shortest paths from s to bc and from bc to t in
Hi. This gives the following inequality:

Pth(s, t) ≤ SP(s, bc) + SP(bc, t) (3.1)

The shortest path from bc to t is not longer than the concatenation of the shortest
paths from bc to s and from s to t giving the inequality

SP(bc, t) ≤ SP(bc, s) + SP(s, t) (3.2)

Putting these two inequalities together, we get for the maximal travel time error as
difference between the two paths:

Pth(s, t) − SP(s, t) ≤ SP(s, bc) + SP(bc, t) − SP(s, t)

≤ SP(s, bc) + SP(bc, s) + SP(s, t) − SP(s, t)

= SP(s, bc) + SP(bc, s)

The derived bound will in general be much greater than the actual errors encoun-
tered since the two nodes s and bc can be very far apart while the suggested path
of the heuristic does not need to go all the way back to the center node of the par-
tition class. If the travel times on the links are derived from average speeds given
for each road type then we can assume that the travel times of the two shortest
paths SP(s, bc) and SP(bc, s) are about the same since most of the roads in the net-
work are bidirectional. Thus, the bound for the maximal travel time error reduces
to 2 · SP(s, bc).

For an 8-way Dijkstra partitioning we calculated the derived error bound for
each partition class and compared it with the actual maximal absolute travel time
errors observed in our shortest path calculations. The results are given in table
3.11, showing that the observed errors are clearly below the theoretical bound.

3.5.2.9 Comparison with the HISPA heuristic

For a better evaluation of the quality of the paths found by the tree heuristic we
compared the paths with those found by the HISPA heuristic (see section2.6.1 for
a description of the heuristic). A comparison between the tree heuristic and the
A∗-algorithm with overdo is given at the end of chapter 4. Using the same set of
s-t paths allowed a direct comparison of a specific partition for the tree heuristic
with the HISPA heuristic. Observe that the partition has no influence on the paths
found by the latter.

The HISPA heuristic first searches a shortest path from either endnode to nodes
of the highest hierarchy level in a circle with radius r around the endodes. For each
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Theoretical Observed
Class error in min error in min

0 96 4
1 88 10
2 170 5
3 64 3
4 78 9
5 140 12
6 346 19
7 110 14

Table 3.11 Comparison of theoretical error bound and observed error
for an 8-way Dijkstra partitioning.

path found an edge of appropriate length is added to the highest hierarchy level and
an s-t path is computed on the graph of the highest hierarchy level. If no node of the
highest hierarchy level is found in the circle the algorithm searches for the first one
encountered. In most cases this will suffice to find a path between s and t unless the
only nodes found on the highest hierarchy level for s and t are not connected by a
path. This can be avoided by adding edges between nodes representing a highway
stretch for both directions.

We tested the HISPA heuristic for a chosen radius of 10, 20, 30 and 40 minutes.
For radius r = 10 and r = 20 there was a small number of paths that were not
found. The running times for r = 30 and r = 40 minutes were slow outperforming
Dijkstra’s algorithm only for paths longer than 100 minutes. On the other hand
for radius r = 10 the average error and the maximal error of the found paths were
higher than for the other values of r by a factor of up to five.

Therefore, for the comparison with the tree heuristic we chose r = 20 minutes
as radius for the HISPA heuristic since for this value the running times were reason-
ably fast and the errors made by the heuristic were comparable to those of higher
radius.

Figure 3.45 shows the average error of the paths found by the HISPA heuristic
and those of the tree heuristic using a Dijkstra k-way partition for k = 8 and k = 16.
In figure 3.46 we show this error measure for the HISPA heuristic in comparison
with the tree heuristic using a METIS k-way partition with weight function W1 for
k = 8 and k = 12.

For the set of paths of the 8-way Dijkstra partition the HISPA heuristic gives
very good results with an average error below 0.5% for all path lengths. The tree
heuristic has the same quality only for paths longer than 40 minutes. In contrast
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for the set of paths of the 16-way Dijkstra partition the HISPA heuristic has a large
average error of up to 5% for long paths while the error for the tree heuristic is
below 0.5%.

For the set of paths of the METIS partition with weight function W1 the tree
heuristic has an average error between 1% and 3.5% for short paths while the error
of the HISPA heuristic is below 0.5%. For paths longer than 60 minutes the error
is below 0.5% for the tree heuristic and around 1% for the HISPA heuristic.

For the error measure of the maximal relative traveling time error the data for
the set of paths of the Dijkstra partition and METIS partition with weight function
W1 is shown in figure 3.47 and figure 3.48.

For the tree heuristic using the Dijkstra partition the maximal relative error is
very high for very short paths but below 20% for paths longer than 60 minutes. In
contrast the HISPA heuristic finds paths of relative error above 20% even for long
paths and of more than 50% for midrange paths. The maximal relative error for
the HISPA heuristic is even worse for the set of paths of the METIS partition for
paths longer than 30 minutes, where the greatest deviations are observed. The error
decreases for longer paths but stays above the maximum of the tree heuristic. On
the other hand the tree heuristic makes a great maximal error for very short paths,
where the HISPA heuristic finds the exact paths because of the chosen radius.

The fraction of deficient paths in figure 3.49 and figure 3.50 shows that the tree
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heuristic finds about 85% of the exact shortest paths9. In contrast the HISPA heu-
ristic finds all shortest paths up to a length of 20 minutes. For longer paths the
fraction of erroneous paths increases, intersecting the graph of the tree heuristic
between 60 and 80 minutes. It even reaches a value of one for the set of paths of
the METIS partition.

This inverse behaviour of the tree heuristic and the HISPA heuristic can also be
observed for the fraction of paths with a relative error greater than 10% (see figure
3.51 and figure 3.52). For short paths the tree heuristic has between 15% and 25%
of high error paths and almost none for longer paths. In contrast this fraction is
about 5% for the HISPA heuristic.

Evaluating the quality of the solutions found by the two heuristics the tree heu-
ristic performs worse for very short paths where HISPA gives the exact shortest
paths. As soon as the paths are longer than the radius used by HISPA the relative
error and the fraction of shortest paths with an error greater than 10% are compa-
rable for both heuristics. While the results for these two error measures decrease
for the tree heuristic for longer paths they increase for HISPA. The maximal rel-
ative error of paths is much higher for HISPA than for the tree heuristic and with
values above 50% very high for all distances greater than 20 minutes. Thus, the
tree heuristic gives much better results if the two endnodes of the path are not too

9We only show the curves for the 8-way partitions, because the ones for the 16-way partitions
are almost identical.
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close to each other in which case the value of the relative error made is of greater
importance.

3.5.2.10 Summary for the quality of solutions

For most of the studied partitions of the NRW network the tree heuristic finds paths
between two nodes s and t that are either exact or at least within an error range of
a few percent. For paths longer than 40 minutes the expected error for most parti-
tions is below 1% percent. The relative error for shorter paths is higher but still lies
below 5% for good partitions. The fraction of paths found by the tree heuristic that
have an error greater than 10% is well below 1% for paths longer than 40 minutes
and below 5% for shorter paths for the good partitions. However, the maximal rel-
ative error observed can be very high, i.e. higher than 100% for very short paths.
It is below 15% for paths longer than 40 minutes for good partitions.

The HISPA heuristic with a radius of 20 minutes shows a higher maximal rel-
ative error of up to 50% for paths of length at least 20 minutes. For short paths the
HISPA heuristic is exact and therefore outperforms the tree heuristic which takes
its highest relative errors for these paths. For paths just longer than the radius of
the HISPA heuristic the average error and the fraction of paths with high error are
comparable for both heuristics, for even longer paths the tree heuristic shows a
better performance. The main difference is a decrease of these quantitites for the
tree heuristic and an increase for the HISPA heuristic if paths get longer. Another
difference is the fraction of error paths which is about 10% to 15% for the tree
heuristic regardless of path length and increases from 0% to 100% for the HISPA
heuristic.

All three partitioning methods presented find partitions showing a very good
solution quality. For almost all methods the 8-way partitions had the least average
error and fraction of paths with high error. This quality is very much affected by
the number of connected components of the partition classes. For the Dijkstra and
most of the treegraph partitions all classes are connected10 leading to solutions with
an expected error below 0.5% for paths longer than 40 minutes and a fraction of
paths with a high error tending to zero fast for the 8-way partitions.

The partitions with METIS that lead to connected partition classes show a com-
parable solution quality. Weight functions leading to disconnected components in
the partition classes are of worse solution quality especially for short paths. For
longer paths the expected error is still below 2%. Although the partitioning method
should be considered in a practical application the tree heuristic seems to be very
robust against changes of the partitioning method.

10For those treegraph partitions that generate unconnected subclasses, the number of connected
components is very small.
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3.5.3 Runtime performance

We use different measures to analyze the runtime performance of the heuristic for
shortest path computations: The actual runtime of the algorithm, the number of
scanned nodes and the ratio of scanned nodes to the length of the path. These quan-
tities were calculated for the tree heuristic, Dijkstra’s algorithm, a bidirectional
variant of Dijkstra’s algorithm, the A∗-algorithm and the HISPA heuristic (see sec-
tions 2.4.3 and 2.6 for details about these algorithms). Since the experimental tests
were run on a multiuser system the actual runtime of the algorithms is not a truly
sophisticated measure. On the other hand for all our tests the running times were
fairly consistent usually with relative errors below 4% for identical shortest path
calculations. Therefore, we include this measure in our runtime analysis.

In the next subsection we analyze the runtime performance of the tree heuristic
for different partitions followed by a comparison with the performance of the other
heuristics mentioned.

3.5.3.1 Runtime of the tree heuristic
The runtime of the tree heuristic depends mainly on the number of edges that are
scanned by the backward Dijkstra algorithm. Keeping the number k of partition
classes fixed the size of the searchgraph with respect to the edges depends mainly
on the number of base-nodes for which a shortest path tree is computed. Although
the size of the edge sets differs for the described methods of partitioning, the dif-
ferences are so small that they have almost no measurable effect on the running
time of the algorithm.

The choice of the partition method for fixed k did not affect the runtime perfor-
mance of the tree heuristic in such a way as to allow a complete qualitative rating
of the different methods. Only the METIS partitions with weight functions W3 and
W4 lead to searchgraphs with slightly more edges than the other partition methods
(compare the tables with the partition characteristics in section3.5.2.2). Both of
these weight functions tend to place edges of small weight in the edge cut leading
to a great number of edges in the cut. Since edges between two partition classes
will be part of both searchgraphs of the adjoining classes a great number of edges
will belong to two searchgraphs, thereby increasing the size of the graphs. The run-
ning times of the path calculations for these partitions were therefore not as good
as for the other partitions. Together with the worse quality of the suggested paths
these two weight functions do not seem to be a recommended choice for an appli-
cation of the tree heuristic. All the other partition methods generated searchgraphs
of very similar size with respect to the edges for fixed k.

Runtime performance for different numbers of base-nodes As shown in ta-
ble 3.10 in section 3.5.2.6 the number of edges in the searchgraph for the 8-way



78 Chapter 3 A Heuristic Based on Trees

Dijkstra partition differs for the four values of b for the number of base-nodes by
more than 5% due to the different number of shortest path trees which are part of
the searchgraph. The effect on the running time of the tree heuristic is shown in
figure 3.53 for the number of nodes that are scanned during the shortest path cal-
culation. If only one base-node is used for each partition class the least nodes are
scanned. This number is almost the same for b = 5 and b = 10, being slightly
higher than for b = 1.
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The effect on the actual running time of the algorithm is very small being in
the range of a few microseconds on the described system as shown in figure3.54.
Weighting the small running time advantage of one base-node per partition class
against the significantly better quality of the found solutions when using for exam-
ple ten base-nodes per class leads to the conclusion that a choice of five base-nodes
gives a good compromise between overall runtime performance and solution qual-
ity.

Runtime performance for different values of k If the original graph is parti-
tioned into a higher number of classes, the different classes have fewer nodes and
therefore the searchgraph has fewer edges since the portion of edges having at least
one endnode in the class is smaller. Therefore, it is expected that the running time
of the tree heuristic decreases when the number of classes k is increased.

Figure 3.55 shows the number of scanned nodes during the shortest path cal-
culation for an 8-way, 12-way and 16-way Dijkstra partition. As expected the al-
gorithm scans most of the nodes for the 8-way partition having searchgraphs with
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more edges. For paths longer than 60 minutes the 16-way partition scans about
half as many nodes as the 8-way partition. The effect on the actual running times
for the three partitions is shown in figure 3.56. While the running times for the
12-way and 16-way partition do not differ much, the 8-way partition is about 0.05
seconds slower for longer paths.
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Another interesting quantity for measuring the runtime performance of a short-
est path search is the number of nodes that are scanned by the algorithm in relation
to the number of nodes that lie on the shortest path. While the number of scanned
nodes shown in figure 3.55 is an absolute value that in most cases increases with
the length of the path, the ratio of scanned nodes to path nodes is a relative measure
and therefore allows to examine if an algorithm scales well. Figure3.57 shows this
ratio for the three Dijkstra partitions. The 16-way partition takes a maximum ratio
of about 150 for paths of length 70 minutes. For longer paths the ratio decreases.
The ratio for the 12-way partition is slightly above 150, while the 8-way partition
takes values up to 250. The sharp increase for the longest paths for each partitio-
ning is due to an unsufficient number of data points. At least for the 12-way and the
16-way partition the ratio decreases for longer paths showing that the tree heuristic
does scale well.

As the plots show the reduced size of the searchgraphs for partitions into more
classes leads to faster shortest path calculations. Since the actual runtime differ-
ences between the various k-way partitions are below 0.1 seconds in our tests, an
optimal value for k should be better chosen from the viewpoint of solution quality
where the 8-way partitions showed in general a slightly better performance.
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3.5.3.2 Runtime comparison with other shortest path
algorithms

In this section we compare the runtime performance of the tree heuristic with that
of Dijkstra’s algorithm, a bidirectional Dijkstra, the A∗-algorithm and the HISPA
heuristic with radius 20 minutes (see section2.4.3 and section 2.6 for details about
these algorithms).

We have chosen the 8-way Dijkstra partition for the tree heuristic and calcu-
lated the shortest paths for the other algorithms mentioned on the same set of node
pairs. As shown in section 3.5.3.1 partitions for a greater k lead to a faster algo-
rithm, therefore the differences between the tree heuristic and the other algorithms
are even more pronounced for k ≥ 8.

Figure 3.58 shows the plot for the actual run time of the different algorithms.
The running times for the tree heuristic increase slowly with the path length, not
exceeding 0.6 seconds even for long paths. For paths longer than 30 minutes the
tree heuristic outperforms all other algorithms at least by a factor of two. The
HISPA heuristic is the worst for paths that are a bit longer than the chosen radius
for the search on the whole graph. For these paths the overhead of performing
three separate Dijkstra-like searches overhelms the effect of a sparse graph of the
highest hierarchy level. For longer paths the running time is second best. The A∗-
algorithm has running times closest to the tree heuristic for paths up to a length
of 130 minutes. For longer paths the calculation of the future costs starts to slow
down the algorithm since the number of scanned nodes gets close to that of Dijk-
stra’s algorithm. For very long paths the A∗-algorithm is the slowest. The bidi-



3.5. Experimental results 81

rectional Dijkstra is the fastest for very short paths and stays below the normal
Dijkstra for paths up to a length of about 100 minutes. For longer paths the over-
head of performing two searches and finding the shortest path over the cut-edges
lead to a slower algorithm than even Dijkstra’s algorithm. A similar conclusion
about the running time of this variant is stated in [56] for the road network of Port-
land/Oregon. Dijkstra’s algorithm is slower than most of the algorithms for paths
of a length up to 80 minutes. For longer paths it is outperformed only by the HISPA
heuristic and the tree heuristic.
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Figure 3.58 Comparison of the running times for different algorithms
using a Dijkstra 8-way partition.

Analyzing the shape of the curves for the different algorithms shows that the
running time of the tree heuristic increases very gradually. Only the graph of Dijk-
stra’s algorithm is close to convexity while those of the A∗-algorithm and bidirec-
tional Dijkstra show a strong increase for longer paths. The HISPA heuristic has
a peak for paths where the two endnodes are just a bit further apart than the given
radius. The decrease of the running time for longer paths is due to border effects
of the network: The graph of the highest hierarchy level is very sparse compared
to the whole graph (about 0.5% of the edges) and therefore has only very little in-
fluence on the running time for different paths. Most of the running time is due to
the two searches around the endnodes s and t on the whole graph. The denser the
network is in the circle with radius r around s and t the longer the search takes. For
longer paths there is a higher probability that the randomly chosen endnodes lie in
sparse areas of the network leading to a faster running time.

The tree heuristic outperforms Dijkstra’s algorithm by a factor of about 3.5, the
HISPA heuristic by a factor of two even for longer paths and the A∗-algorithm and
the bidirectional Dijkstra by a factor of more than four for longer paths. For the
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main portion of midrange paths the tree heuristic outperforms all other algorithms
at least by a factor of 2.5.

For an analysis of the runtime performance of the different shortest path al-
gorithms that neglects the used system architecture and all performance overhead
resulting from software design and implementation details we study the number of
scanned nodes during the shortest path search. Since these numbers differ greatly
for the described algorithms we look at the ratio of scanned nodes of Dijkstra’s
algorithm and the number of scanned nodes for each algorithm. This ratio gives
the speedup of each algorithm compared to Dijkstra’s algorithm with respect to
the search area in the network. Figure 3.59 shows the resulting plot for the 8-way
Dijkstra partition.
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Figure 3.59 Comparison of scanned nodes for different algorithms
against Dijkstra’s algorithm using a Dijkstra 8-way partition.

The tree heuristic gives a speedup of about seven which means that Dijkstra’s
algorithm scans seven times more nodes than the tree heuristic. For short paths
the ratio is increasing since the effect of the search in the shortest path trees for
the tree heuristic evolves. For longer paths the ratio is almost constant since for
these paths the additional number of nodes that are scanned is proportional for both
algorithms. The ratio for the HISPA heuristic climbs from below one for paths a
bit longer than 20 minutes (due to the double application of Dijkstra’s algorithm)
to a ratio of about four for paths up to a length of 100 minutes. For longer paths the
speedup increases rapidly which is caused by the normally sparse areas around the
endnodes. If for example the two endnodes lie in rural areas in the East and West
of Northrhine-Westphalia the HISPA heuristic searches two sparse circles around
the endnodes together with the very thin graph of the highest hierarchy level while
Dijkstra’s algorithm will expand through the entire very dense Ruhr area.
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The A∗-algorithm has the best speedup for short paths where the future costs
direct the algorithm towards the endnode. For longer paths the A∗-algorithm scans
more than half of the nodes of Dijkstra’s algorithm which might result from a too
optimistic estimate for the actual travel time which causes the search ellipse to be
wider. Together with the additional costs of calculating the future costs the algo-
rithm will therefore in general not lead to a faster algorithm for long paths. The
bidirectional Dijkstra has a speedup for the scanned nodes of about two for all paths
which shows that the search area indeed is smaller than for Dijkstra’s algorithm.
But as shown in figure 3.58 the additional overhead of two searches and finding the
actual path makes the algorithm in practice even slower than Dijkstra’s algorithm.
Figure 3.60 shows the different regions of scanned nodes of the algorithms for a
path in NRW consisting of 269 nodes.

As last performance measure we compare the ratio of scanned nodes to path
nodes for the different algorithms in figure 3.61. For the tree heuristic this ratio
increases from below 200 to approximately 350. In contrast Dijkstra’s algorithm
takes values between 1400 and 1900 for paths longer than 50 minutes. That the
curve is not monotonously is caused by boundary effects as mentioned earlier. In
particular the number of scanned nodes is not only affected by the length of the
path (either in minutes or in number of nodes) but also by the density of the area
of the two endnodes.

The HISPA heuristic has a peak of 1600 for paths a bit longer than 40 minutes
and decreases with path lengths to a ratio below 200. The A∗-algorithm and the
bidirectional Dijkstra take similar values for long paths while for midrange paths
the A∗-algorithm outperforms the bidirectional Dijkstra by a factor of almost two.

3.5.3.3 Summary of runtime performance

For all three performance measures studied the tree heuristic shows the best re-
sults. Compared to Dijkstra’s algorithm it gives a speedup for the actual running
time by a factor of almost four and for the number of scanned nodes by a factor
of about seven on the test network of NRW. For long paths the HISPA heuristic
comes closest in the running time being slower by a factor of about two and out-
performs the tree heuristic in the number of scanned nodes. Both the A∗-algorithm
and the bidirectional Dijkstra are slower by a factor of at least two for all perfor-
mance measures.

The runtime performance of the tree heuristic evolves homogenously over all
path lengths. The actual running time and the number of scanned nodes increase
smoothly with the length of the shortest path. In contrast the HISPA heuristic has
good runtime performance for long paths but is very slow for short paths. The A∗-
algorithm is fast for short paths but takes even longer than Dijkstra’s algorithm for
long paths. The bidirectional Dijkstra does also not seem to be well suited for long
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Shortest path

(a) Shortest path with 269 nodes.

 
 

(b) Tree heuristic scanning 70346
nodes.

 
 

(c) Dijkstra’s algorithm scanning
432640 nodes.

 
 

(d) Symmetrical Dijkstra scanning
240927 nodes.

 
 

(e) A∗-algorithm scanning 192063
nodes.

 
 

(f) HISPA heuristic scanning 20745
nodes.

Figure 3.60 Region of scanned nodes for different shortest path algo-
rithms in NRW.
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Figure 3.61 Comparison of scanned nodes to path nodes for different
algorithms using a Dijkstra 8-way partition.

paths. A k-way partition for higher k will speed up the tree heuristic further with
respect to all studied performance measures making the differences to the other
algorithms even more pronounced. The effect of the number of base-nodes on the
running times of the tree heuristic is small. The used partition method affects the
quality of the shortest path solutions in a more significant way than the running
times. Therefore, the partition method should better be chosen according to the
latter quantity and not according to the runtime performance.

3.5.4 Summary of Experimental Results

The proposed tree heuristic computes shortest paths between two nodes in a road
network very efficiently finding about 90% of the exact shortest paths on our test
network of NRW. The average error to be expected is small and lies below 1% for
most partitions. The quality of the solutions found by the heuristic increases with
the length of the paths. Considering the inherent insecurity about expected trav-
eling times in reality due to dynamic changes and data insufficiency errors below
1% make the tree heuristic applicable for practical use.

For the described error measures - average travel time error, maximal relative
travel time error and fraction of shortest path with an error greater than a given
threshhold - the tree heuristic outperforms the well-known HISPA heuristic for all
path lengths but for very short paths.

The tree heuristic gives best results if the partitioning method generates con-
nected partition classes. In our tests the 8-way partitions usually resulted in slightly
higher quality of shortest paths than the 12-way and 16-way partitions. However,



86 Chapter 3 A Heuristic Based on Trees

for the latter the tree heuristic has a better runtime performance due to the smaller
searchgraphs. In our test on the road network of Northrhine-Westphalia between
51 and 57% of the edges of the network were present in the searchgraphs where
the k searchgraphs differed usually by not more than 10% of the edges. More than
30% of the edges of the whole graph were found in all searchgraphs for a given
partition. That is, more than 50% of the edges of a searchgraph will be part of all
searchgraphs for the given partition. Considering this in a practical implementa-
tion of the tree heuristic greatly reduces the memory requirements of the algorithm.

Compared to the running times of other shortest path algorithms the tree heu-
ristic with an 8-way partition outperforms Dijkstra’s algorithm by a factor of more
than three. The bidirectional Dijkstra and the A∗-algorithm are outperformed by a
factor of about 2.5 for midrange paths and by a factor of more than four for longer
paths. The HISPA heuristic is outperformed by a factor of more than four for mid-
range paths and by a factor of at least two for long paths.

For the number of scanned nodes the tree heuristic visits about seven times
less nodes than Dijkstra’s algorithm. For short paths the bidirectional Dijkstra and
the A∗-algorithm visit less nodes than the tree heuristic. For longer paths, i.e. 40
minutes for our test network, the tree heuristic is best outperforming the other two
by a factor of about three. The speedup of the HISPA heuristic increases over the
length of the path, but still visits more nodes than the tree heuristic with the excep-
tion of very long paths, i.e. paths of length at least 140 minutes for NRW.

3.6 Summary of results

We evaluated the proposed tree heuristic by conducting extensive experimental
tests on the road network of Northrhine-Westphalia. Besides the running time of
the heuristic we were mainly interested in the quality of the found solutions since it
is not guaranteed that the tree heuristic always finds the exact shortest path between
two arbitrary nodes. To this end we tested different approaches for the graph par-
titioning and base-node generation in relation to structure of the searchgraph and
the quality of the suggested path solutions.

For a better classification of the tree heuristic we compared our results with
those of some well-known algorithms for finding shortest paths in road networks:
Dijkstra’s algorithm, a bidirectional variant of Dijkstra’s algorithm, the A∗-algo-
rithm which computes exact shortest paths by assigning future costs to the visited
nodes and the HISPA heuristic which makes use of the hierarchical structure of the
network.

Our main results can be summarized as follows:

• For the test network of NRW the tree heuristic finds about 90% of the exact
shortest paths. For good partitionings the fraction of paths with a traveling
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time error greater than 10% is below 5% and the quality of the solutions in-
creases with the length of the paths.

• The relative traveling time error usually is below 1% for paths longer than
40 minutes and below 10% for shorter paths. The maximum relative trav-
eling time error can be very high for short paths, but it can be expected to
be below 15% for paths longer than 60 minutes. Considering the inherent
insecurity about expected traveling times in reality due to dynamic changes
and data insufficiency the observed errors below 1% make the tree heuristic
well applicable for practical use.

• The tree heuristic gives best results if the partitioning method generates con-
nected partition classes.

• The Dijkstra partitioning always finds connected partition classes and gives
shortest path solutions that have a very low average traveling time error.

• The treegraph partitioning also finds paths of high quality. For a smaller
gridlength the found paths usually are better. The partition classes are mostly
connected or decompose only into a few connected components.

• The METIS partitioning gives very good results if the weight function cho-
sen results in connected partition classes. For some weight functions classes
decompose into several hundred components which results in a high fraction
of erroneous shortest paths.

• The 8-way partitions usually give better results than the 12-way and 16-way
partitions in the test network, but they have a slightly worse runtime perfor-
mance due to a bigger searchgraph.

• The number of chosen base-nodes affects the quality of the solutions, result-
ing in more accurate paths if the number increases. If the number of base-
nodes is small, i.e. less than ten, the differences in the runtime performance
for the searchgraph generation can be neglected.

• For the considered error measures the tree heuristic outperforms the well-
known HISPA heuristic for all path lengths but for very short paths. For
the tree heuristic the average error decreases with longer paths while for the
HISPA heuristic it increases.

• For the running times the tree heuristic with an 8-way partition outperforms
Dijkstra’s algorithm by a factor of more than three. The bidirectional Dijk-
stra and the A∗-algorithm are outperformed by a factor of about 2.5 for mid-
range paths and by a factor of more than four for longer paths. The HISPA
heuristic is outperformed by a factor of more than four for midrange paths
and by a factor of at least two for long paths.

• The tree heuristic scans about seven times less nodes than Dijkstra’s algo-
rithm. For short paths the bidirectional Dijkstra and the A∗-algorithm visit
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less nodes than the tree heuristic. For longer paths, i.e. 40 minutes for our test
network, the tree heuristic is best outperforming the other two by a factor of
about three. The speedup of the HISPA heuristic increases over the length of
the path, but still visits more nodes than the tree heuristic with the exception
of very long paths, i.e. paths of length at least 140 minutes for NRW.

• The running time of the tree heuristic as a function of the travel time of the
paths is almost constant due to the tree-like structure of the searchgraph and
an application of the backward Dijkstra. Therefore, the heuristic scales very
well.

To verify the above conclusions for the proposed tree heuristic we also tested
the heuristic on the road network of the state of California with its 1568089 nodes
and 3915521 edges using a 24-way partitioning. Since the network of California
is about three times as large as that of NRW the partition classes for k = 24 have
about the size of those of the 8-way partitionings of NRW. The searchgraphs of the
classes were about three times as large as those for NRW.

Figure 3.62 shows the average relative error for a total of 1000 shortest paths
for each of the 24 partition classes as function of the travel time, where the er-
rors were averaged in bins of length 20 minutes. For the treegraph partitioning we
chose a gridlength of l = 10000m. As for the Dijkstra partitioning this resulted in
connected partition classes with the exception of one class decomposing into two
components. For the METIS partitioning we show the results for weight function
W3 (see section 3.5.2.2) which produced partition classes with an average of 2.7
components, where the maximum was 7 components. This contrasts to the very
poor partitions with respect to connectivity for this weight function in NRW.

The mean error is below 1% for all three partitionings for paths longer than
200 minutes. The error for shorter paths is not much higher for the Dijkstra and
treegraph partitioning. That the two latter partitioning will in general find paths
of higher quality is also confirmed in figure 3.63 for the fraction of deficient paths
and figure 3.64 for the fraction of paths with an error greater than 10%.

For the runtime performance of the tree heuristic we show in figure3.65 a com-
parison of Dijkstra’s algorithm, the HISPA heuristic with radius 50 minutes and the
tree heuristic for a 24-way Dijkstra partitioning. Observe that Dijkstra’s algorithm
takes about four times longer for long paths than in NRW, while the runtime of
the tree heuristic only doubles and is about the same for all path lengths. Here the
application of the backward Dijkstra in the tree-like searchgraph outside the parti-
tion classes amplifies the speedup even more. This once more confirms that the tree
heuristic scales very well. For the number of scanned nodes figure3.66 shows the
ratio of scanned nodes for Dijkstra’s algorithm and the two heuristics. Compared
to the tree heuristic Dijkstra’s algorithm scans up to 25 times more nodes for long
paths, while this ratio is up to ten for the HISPA heuristic. In contrast to NRW the
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HISPA heuristic therefore scans even more nodes than the tree heuristic for all path
lengths. The reasons for this are first the chosen radius of 50 minutes and second
the classification of all roads of type greater than zero as highest hierarchy level11.
This was necessary in order to find at least one path between the starting and target
node. But even then the quality of the suggested paths of the HISPA heuristic was
very poor with expected errors above 30% even for long paths. Thus, from our
tests it seems that the HISPA heuristic is much less applicable to large networks if
the hierarchical structure is not so strongly developed.
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In summary the results for the California network confirm the conclusions for
NRW about the quality of paths found by the tree heuristic. While the expected
errors of paths are of about the same size for the two networks, the tree heuristic
outperforms other shortest paths algorithms in the California network by a signi-
ficantly higher factor than for NRW.

11In NRW only the roads of type four were chosen for the highest hierarchy level.



Chapter
Four

A∗-algorithm with Overdo

4.1 Introduction

For networks that are Euclidean it is possible to improve the average case beha-
viour of Dijkstra’s algorithm for the one-to-one shortest path problem by making
use of geometrical information inherent in those networks. This approach was first
analyzed by Sedgewick and Vitter in [92] and dates back to the work of Hart, Nils-
son and Raphel in 1968 [46]. The basic idea is to calculate for each node v scanned
during the search of an s-t-path an estimation of the time it takes to reach t from
v. The sum of these so called ’ future costs’ and the travel time of the found path
from s to v is used as temporary label in a Dijkstra-like search. Thus, the tempo-
rary label for each node v is an estimation of the length of a shortest path from s to
t traversing over node v. Note that this approach cannot be generalized to the one-
to-all shortest path problem since the target needs to be fixed for the calculation of
the future costs.

The classical approach in Euclidean networks for the future costs is to use the
time it takes to travel the Euclidean distance between v and t with maximum speed.
In this case this so called A∗-algorithm will always find the exact shortest path be-
tween two nodes s and t. To see this, observe that in each step of the algorithm,
where a node v is scanned, the path P(s, v) by which v is reached is a shortest path
from s to v. This follows from the triangle inequalitiy holding in Euclidean net-
works1. Therefore, when the algorithm scans node t a shortest path from s to t has

1For a short proof assume that v is reached along a path P(s, v) but there is a shorter path P′(s, v).
The temporary label of v is l(P(s, v)) + fc(v, t) with fc(v, t) being the future costs for v. Let w be the
last node on P′(s, v) which has been scanned by the algorithm and x the next node after w along
P′(s, v). Now x �= v because otherwise v has a wrong temporary label. Since v is scanned be-
fore x we have l(P′(s, x)) + fc(x, t) ≥ l(P(s, v)) + fc(v, t). On the other hand, the triangle inequal-
ity gives fc(x, t) ≤ fc(x, v) + fc(v, t) and fc(x, v) ≤ l(P′(x, v)). Combining the last two inequalties
gives l(P′(s, x)) + fc(x, t) ≤ l(P′(s, x)) + fc(x, v) + fc(v, t) ≤ l(P′(s, x)) + l(P′(x, v)) + fc(v, t) =
l(P′(s, v)) + fc(v, t) < l(P(s, v)) + fc(v, t). Thus, the temporary label of x is smaller than that of v
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been found. The A∗-algorithm will on the average have a better run time perfor-
mance by having a more elliptic search area of expanded nodes.

Road networks using travel times as weights for the edges are in general not
pure Euclidean for a number of reasons: Different speed classes give roads of equal
geometric length not necessarily the same travel time, in a dynamic setting con-
gested roads can cause great delays on ’short’ links and finally networks coming
from real life applications sometimes include links that are shorter than the Euclid-
ean distance between the two endpoints due to artificial conventions or data errors
(cf. [56]). Therefore, the triangle inequality will not always be fulfilled and road
networks are only nearly Euclidean. An application of the A∗-algorithm to nearly
Euclidean networks will in most cases2 still find the exact shortest path but might
expand nodes more than once leading to a significant performance slow down.

In a variant of the A∗-algorithm the Euclidean distance between a node v and the
endpoint t of the shortest path is weighted with an overdo factor fov ≥ 1. This idea
was hinted at in [92] and analyzed in [56] for the road network of the Dallas/Fort
Worth area in Texas/US using data from a traffic microsimulation of the area. The
geometric idea of using such an overdo factor is to narrow the search area of ex-
panded nodes to smaller ellipses if fov increases. On the other hand, by weighting
the Euclidean distance, the future costs are not necessarily a lower bound for the
travel time from v to t. Therefore, the A∗-algorithm with overdo factor finds a path
between s and t that might not be the exact shortest path. This approximation is ex-
pected to get worse the higher the overdo factor is chosen since then the search area
of expanded nodes gets smaller and fewer nodes are examined. Figure4.1 gives a
pseudo-code description of the modified A∗-algorithm where d(v) gives the travel
time of the path from s to v found by the algorithm, label(v) is the key of each node
in the priority queue and S(v) is the status of the node during the algorithm. Ad-
ditionally, eu(w, t) gives the Euclidean distance between nodes w and t, c(e) are
the costs of an edge e and vmax is the maximal possible speed on any link in the
network.

For the road network of Dallas/Fort Worth with 9863 nodes and 14750 edges
Jacob et al. in [56] analyzed the modified A∗-algorithm for overdo factors between
1 and 99. This improved the running times by almost a factor of 40 for overdo para-
meter 99 while still giving solutions of very good quality with a maximum error no
worse than 16%. For overdo parameter 99 almost all paths were erroneous but only
around 15% had a relative error of 5% or more. In the analysis of their results they
suggested an ’optimal’ value for the overdo factor which significantly improves
the running time while still giving solution paths of good quality. In order to find

giving the desired contradiction.
2There might be the rare case that the triangle inequality is violated for target node t causing the

algorithm to halt too early. In our tests of the A∗-algorithm this phenomenon never occurred.
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procedure A∗ with overdo
begin

foreach v ∈ N
begin

d(v) :=∞;
label(v) :=∞;
S(v) := unreached;

end
d(s) := 0;
label(s) := 0;
S(s) := labeled;
Repeat
begin

v = min
u∈N
{ label(u) : S(u) = labeled};

if v = t then break;
foreach (v,w) ∈ E
begin

if d(v) + c(e) < d(w)
begin

d(w) := d(v) + c(e);
label(w) := d(w) + fov ∗ eu(w, t)/vmax;
S(w) := labeled;

end
S(v) := scanned;

end

end

end

Figure 4.1 Modified A∗-algorithm.
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such an optimal value we analyze the trade off between run time performance and
quality of the generated solution for the described overdo heuristic for a number
of different road networks.

4.2 Experimental setup

As long as the future costs that are added to the temporary label of each visited
node v are a lower bound on the actual travel time from v to t the algorithm will
always find the optimal path and is expected to visit less nodes than Dijkstra’s al-
gorithm. For our analysis of the overdo factor, it is useful to study the two compo-
nents - Euclidean distance and maximum speed - of the future costs individually,
since an optimal value should lead to a good aproximation of the actual length of
the remaining path and of the actual speed this path can be travelled on. While
the actual length of the remaining path depends very much on the geometry of the
road network, the actual travel speed will be determined by the travel time on the
different links and thus by the load of the network.

Therefore, we studied the A∗-algorithm on various networks of different size
and geometry and used various speed models for the links of the networks. In this
section we present the main results for four networks: The network of the Ger-
man city Cologne, the large area network of the German federal state Northrhine-
Westphalia and the two large area networks of the US states Kansas and California.
Table 4.1 shows the size and average degree for these networks. All networks were
normalized in the sense that the length of a link is at least the Euclidean distance
between its two endpoints.

Network Nodes Edges Avg.Degree
Cologne 31011 67490 4.35
NRW 457124 1046087 4.58
Kansas 489148 1251913 5.12
California 1580305 3934788 4.98

Table 4.1 Size of the different networks.

Lacking pure dynamical data for the networks we used three different speed
models which are supposed to reflect different types of traffic load. A free-flow
model where all roads allow the maximum speed of their type, a model of con-
gested roads with low speed on all roads and the uniform model where all types of
roads allow the same speed. Although the uniform model is not expected to be a
very realistic one3, it was chosen to capture the pure geometrical properties of the

3With the posssible exception of very congested city networks.
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shortest path search with the modified A∗-algorithm in road networks. Since all
roads allow the same travelling speed, the difference between the exact path and
an approximation will be solely the result from varying geometric lengths. Table
4.2 gives the speed in kilometers per hour for the different types of roads for the
three models.

Road typeSpeed Model
0 1 2 3 4

Free-flow 30 30 60 80 100
Congestion 20 20 30 40 50
Uniform 60 60 60 60 60

Table 4.2 Different speed models used on the networks.

The quality of the solutions found by the modified A∗-algorithm were studied
using the maximum relative error of travel times and the fraction of paths having
an error greater than a given threshold. For the run time performance we studied
the actual running times and the number of nodes that are visited by the algorithm.

4.3 Analysis of shortest path quality

4.3.1 Cologne

The road network of Cologne with its 31011 nodes and 67490 edges is the small-
est network in our study and has the lowest average degree. Table4.3 gives some
statistical information about the Cologne network. For each road type the ratios
according to total number of links and to total length of all links are given in col-
umn two and three. Additionally, the maximum link length, average link length
and standard deviation of the link distribution are given in meters. The stretch fac-
tor gives the average ratio of link length and Euclidean distance between the two
endpoints, with its standard deviation shown in brackets. The ratios with respect
to length of the total network are higher than those with respect to number of links
for types higher than one. The total length of all links in the network is 6498.5
kilometers and the average link length is only 96 meters showing that the network
consists mainly of very short links. The longest paths in this network had a travel
time of up to 30 minutes for free-flow traffic.

For Cologne we compared 5000 shortest paths found by Dijkstra’s algorithm
with those found by the modified A∗-algorithm varying the overdo factor between
one and ten. In figure 4.2 we show the maximum relative error of paths for the
various overdo factors and the three speed models. Up to an overdo factor of four
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Ratio Max. Avg.Road
Number Length length length

(σ) Stretch (σ)

Type 0 71.07 64.07 1550 87 (80) 1.16 (0.22)
Type 1 10.83 10.43 1100 93 (81) 1.13 (0.15)
Type 2 11.55 14.38 1420 120 (119) 1.13 (0.18)
Type 3 6.19 8.04 2380 125 (137) 1.14 (0.23)
Type 4 0.36 3.06 5410 816 (1019) 1.21 (0.7)

Table 4.3 Distribution of road types for Cologne.

the curves for the three different speed models do not differ very much rising to a
maximum relative error of about 100%. For higher factors the maximum relative
error for the uniform speed model increases more slowly, while for free-flow traffic
it climbs above two. Figure 4.3 shows a closeup of the previous plot for overdo
factors between one and two. While the curves for free-flow and congested traffic
are almost identical the uniform model has slightly higher errors for small overdo
factors, which become smaller than those of the other two models if the overdo
factor increases.
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The reason for the smaller maximum relative error for the uniform speed model
than for the other two models is just the uniform distribution of speeds for this
model. Since all links allow the same speed the only source of potential errors
is the geometric length of paths. There is no effect of choosing links of the wrong
type. For free-flow and congestion a non exact path might be of the same geomet-
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ric length as for the uniform model, but the speed differences up to a factor of 3.5
can lead to significantly larger relative errors. Although this explains why the uni-
form model gives smaller relative errors it still surprises that even for the uniform
model there are paths found by the modified A∗-algorithm that have a relative error
of more than one. Since in the uniform model a shortest path is a path of smallest
geometrical length, one would expect that the search directed geometrically toward
the target node will give paths at least very close to the shortest path.

Therefore, we analyzed the quality of an average path found by the modified
A∗-algorithm by looking at the fraction of paths that have a relative error above
some given threshold. Figure 4.4 and figure 4.5 show this quality measure for the
four thresholds 0, 0.02, 0.1 and 0.5 for the free-flow and uniform traffic speed mod-
els.
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Figure 4.4 Fraction of de-
ficient shortest paths for dif-
ferent thresholds in Cologne
with free-flow.
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Figure 4.5 Fraction of de-
ficient shortest paths for dif-
ferent thresholds in Cologne
with uniform speed.

For the uniform speed model the fraction of paths with a relative error above
0.5 is almost zero even for overdo factor ten. Thus, paths of very high error are very
rare and might come from specific geometric properties of the path, i.e. the actual
shortest path is directed away from the target node near the starting node to reach
some long edges leading straight to the target or there are turning restrictions near
the target node causing the found path to use some expensive deviations to reach
t. But still, even for the uniform speed model almost all paths are erroneous for
overdo factors greater than two. That means that almost no optimal path is just the
sequence of nodes where each node minimizes the geometric distance to t of all
candidates at that point of the search. For free-flow traffic we observe that there is
a smaller fraction of deficient paths compared to the uniform speed model at least
for overdo factors below seven. This can be expected since now the different road
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Ratio Max. Avg.Road
Number Length length length

(σ) Stretch (σ)

Type 0 71.41 53.93 4670 114 (115) 1.14 (0.22)
Type 1 8.17 12.93 7810 238 (495) 1.11 (0.16)
Type 2 15.37 22.52 7970 220 (408) 1.11 (0.17)
Type 3 4.65 7.76 7150 251 (428) 1.11 (0.22)
Type 4 0.41 2.86 10630 1056 (1510) 1.13 (0.44)

Table 4.4 Distribution of road types for Northrhine-Westphalia.

types result in shortest paths that are not necessarily the geometric shortest paths.
For small overdo factors the speed effect of a link outweighs the effect of the future
costs leading to a higher fraction of exact paths. For overdo factors greater than
four the future costs dominate the speed effects and the shorter travel times give
higher relative errors. For overdo factor ten about half of the suggested paths have
a relative error above 0.5.

4.3.2 Northrhine-Westphalia

The network of Northrhine-Westphalia (NRW) with its 457124 nodes and average
degree 4.58 is the smallest of the three large area networks. The statistical data in
table 4.4 shows that the percentage of roads of type zero and one with respect to
length is only about 65% and therefore smaller than for the network of Cologne.
This is mainly due to a much higher average link length for type two and three,
since the type distribution is very much the same for the two networks. Addition-
ally, the maximum length of links is much longer for all road types than for the road
network of Cologne resulting in an average link length of 150 meters for a total of
157241.8 kilometers. The longest paths had a travel time of up to 200 minutes for
free-flow traffic. From the data we observe that the two networks have a very simi-
lar structure with respect to type four and type zero edges. The differences between
the two networks arise mainly from the links of the other types.

Analyzing the quality of shortest paths between 10000 node pairs chosen at
random we see in figure 4.6 that the maximum relative error is very much the same
for free-flow traffic and congestion up to an overdo factor of about six and reaching
a maximum of 2.2 for free-flow traffic and factor ten. For the uniform speed model
this maximum relative error increases almost linearly up to a value of 1.1. For
overdo factors between one and two (see figure4.7) the error is about 0.2 for factors
greater than 1.4 for all speed models.

The three curves for the maximum relative error for the three speed models
look very much the same as those for Cologne especially for small overdo factors
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Figure 4.6 Maximum rel-
ative error of shortest paths
for A∗ with overdo for NRW.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 1.2 1.4 1.6 1.8 2

R
e
la

ti
v
e
 e

rr
o
r

Overdo-factor

Free-flow
Congestion

Uniform

Figure 4.7 Maximum rel-
ative error of shortest paths
for A∗ with overdo 1 − 2 for
NRW.

(compare figure 4.3 and figure 4.7). Since the network of Cologne is a subgraph
of NRW we do not expect the overall maximum relative error to decrease in NRW,
although we observe a lower error for overdo factor ten in the uniform model in
NRW than in Cologne due to different sets of node pairs for the shortest paths. On
the other hand, the plots suggest that the maximum relative error is independent of
the size of the network at least for networks of very similar type distribution and
geometry.

While the maximum relative errors observed for the modified A∗-algorithm are
comparable for NRW and Cologne the fraction of deficient paths is much worse for
the large area network of NRW. As can be seen in figure 4.8 for free-flow traffic
the curves are much steeper than for Cologne. The fraction of not exact paths is
almost 90% for an overdo factor of two. For factor three almost 80% of the paths
have a relative error greater than 0.1 and for overdo factor six the fraction of paths
having a relative error above 0.5 is higher than 70%, rising to almost 90% for factor
ten. The plot for congested traffic looks almost the same with a fraction of about
0.8 for paths with relative error greater than 0.5 for overdo factor ten. For the uni-
form speed model (see figure 4.9) for overdo factors greater than two the fraction
of paths with error greater than 0.0 resp. 0.02 are close to one and above 0.6 for
threshold 0.1. Paths of error greater than 50% are very rare in NRW as in Cologne.

Comparing the results for NRW and Cologne shows that the geometric length
of the paths found by the algorithm in NRW tend to deviate more from the exact
paths than in Cologne. A reason for this might be the longer average link length
in NRW resulting in longer deviations. For free-flow traffic the fraction of paths
with high error is significantly higher in NRW than in Cologne. This suggests that
the type distribution of paths found by the algorithm in NRW differs much more
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from the distribution of exact paths than in Cologne.
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Figure 4.8 Fraction of
deficient shortest paths for
different thresholds in NRW
with free-flow.
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Figure 4.9 Fraction of
deficient shortest paths for
different thresholds in NRW
with uniform speed.

4.3.3 Kansas

The road network of Kansas has 489148 nodes and an average degree of 5.12. It
is therefore only slightly larger than the one of NRW and was chosen because of
its very grid-like structure, more typically for networks in the United States. The
statistical data in table 4.5 shows that in contrast to NRW the Kansas network con-
sists mainly of type zero links that are on the average four times as long as the
respective links in NRW. For the other types of roads the NRW network has more
and longer links. There is not much difference between the link distributions with
respect to number and length. The average link length is 441 meters, about three
times as long as in NRW. The total length of roads in Kansas is 552589 kilometers
giving paths with a travel time of up to 640 minutes for free-flow traffic. Note also
that the stretch factor of the links is very close to one, indicating very straight links
between the two respective endpoints. The data supports our expectation that the
Kansas network is of simpler geometrical structure than the almost equally sized
NRW network.

Figure 4.10 compares the maximum relative errors for 10000 shortest paths for
overdo factors between one and ten. For the uniform speed model this error climbs
up to 0.5 already for overdo factor less than two but rises not much for greater
factors. In fact it is almost constant for factors greater than four suggesting that
the increase of the factor always leads to the same path of maximum relative error.
Although an error of 50% resulting solely from a geometrical deviation is very high
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Ratio Max. Avg.Road
Number Length length length

(σ) Stretch (σ)

Type 0 93.66 93.62 13980 441 (487) 1.07 (0.37)
Type 2 2.77 2.98 6950 476 (495) 1.05 (0.14)
Type 3 2.89 2.79 5130 426 (459) 1.05 (0.19)
Type 4 0.69 0.61 5890 393 (510) 1.05 (0.11)

Table 4.5 Distribution of road types for Kansas.

the results for the uniform speed model are better than for the NRW network. This
is in line with the observed simpler geometric structure of the Kansas network.
On the other hand the maximum relative error is higher for the Kansas network if
different speeds are used on the roads. For congested traffic the relative error is
almost two for overdo factor four and reaches a maximum close to three for free-
flow traffic. These extreme deviations are even more surprising remembering that
almost 95% of the roads in the Kansas network are of type zero and thus a higher
speed is used only on very few roads. Therefore, the fact that these errors occur
means that the algorithm finds paths consisting more or less of type zero edges
while the exact paths instead use mainly edges of type four. The closeup to overdo
factors between one and two in figure 4.11 shows that there is almost no difference
between the three speed models in this range but the observed errors are slightly
higher than for the NRW network.
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Figure 4.10 Maximum
relative error of shortest
paths for A∗ with overdo for
Kansas.
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Figure 4.11 Maximum
relative error of shortest
paths for A∗ with overdo
1 − 2 for Kansas.

The differences between Kansas and Northrhine-Westphalia for the fraction of
deficient paths are less significant resulting in very similar plots. For the uniform
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speed model in the Kansas network (see figure4.13) the fraction for threshold zero
is very close to one but rises not above 0.7 for threshold 0.1. In NRW the frac-
tion for threshold 0.1 was above 0.9. This means that the algorithm finds paths of
slightly smaller relative error in Kansas for uniform speed. On the other hand for
free-flow traffic and threshold 0.5 the fraction is clear above 0.9 (see figure4.12).
For the other three thresholds the curves are not as steep as for the NRW network
especially for overdo factors below three. The same applies for congested traffic.
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Figure 4.12 Fraction
of deficient shortest paths
for different thresholds in
Kansas with free-flow.
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Figure 4.13 Fraction
of deficient shortest paths
for different thresholds in
Kansas with uniform speed.

4.3.4 California

The network of California is by far the largest of the networks in this study. It has
1580305 nodes and almost four million edges giving an average degree of almost
five. The distribution of the different road types is very much the same as for the
Kansas network with an even higher percentage of type zero links. Although there
are longer links than in any other of the networks the average link length is 288
meters, thus lying in between that of the Kansas and the NRW network. The total
length of all links combines to 1134068 kilometers resulting in paths with a travel
time as long as 1260 minutes for free-flow traffic.

We see in figure 4.14 that the maximum relative errors for overdo factors be-
tween one and ten in California are the highest of all four networks. Even for the
uniform speed model the error is as high as 1.5 for long paths and thus three times
as high as in Kansas. Similar to Kansas the maximum relative error for uniform
speed increases more slowly than for NRW. For free-flow traffic we get relative er-
rors of up to 3.5. For overdo factors between one and two (cf. figure4.15) the dif-
ference between the three speed models is small with uniform speed being slightly
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Ratio Max. Avg.Road
Number Length length length

(σ) Stretch (σ)

Type 0 96.45 95.62 23720 286 (471) 1.12 (0.56)
Type 2 2.23 2.87 15180 371 (553) 1.07 (0.18)
Type 3 2.89 2.79 7520 447 (607) 1.05 (0.09)
Type 4 0.69 0.61 12990 309 (497) 1.06 (0.18)

Table 4.6 Distribution of road types for California.

worse for small factors. Thus, here the size of the network affects the maximum
relative error, although Kansas and California have a very similar type distribution.
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Figure 4.14 Maximum
relative error of shortest
paths for A∗ with overdo for
California.
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Figure 4.15 Maximum
relative error of shortest
paths for A∗ with overdo
1 − 2 for California.

The fraction of deficient paths for free-flow traffic rises not as steeply for Cal-
ifornia as for NRW for overdo factors below three and is very similar than for
Kansas (cf. figure 4.16). Almost all paths in California have errors greater than
50% for overdo factor ten with free-flow traffic. For uniform speed the fractions
of deficient paths in California are also highest. While in the other large area net-
works the fraction of paths with relative errors greater than 0.5 were below 1%
even for high overdo factors, it climbs up to 10% in California. Even the fraction
of paths with errors greater than 10% already lies above 90% for overdo factor
three in California.
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Figure 4.16 Fraction
of deficient shortest paths
for different thresholds in
California with free-flow.
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Figure 4.17 Fraction
of deficient shortest paths
for different thresholds in
California with uniform
speed.

4.3.5 A closer look at maximum error paths

The results presented in the previous sections for four road networks of different
size and geometry showed that the modified A∗-algorithm with overdo will already
for an overdo factor greater than two generate shortest paths that can have extreme
high relative errors above 50%. For higher overdo factors the fraction of paths that
deviate from the exact path by such great errors increases above 0.5 at least for free-
flow and congested traffic. Although paths of such poor quality are not satisfying
in any case, from a practical approach it is also important to know if such high
deviations occur for long journeys where high relative errors might cause a delay
of several hours or only for short trips of a couple of minutes.

Therefore, we investigated how the relative errors relate to the length of the
actual shortest path. In figure 4.18 and figure 4.19 we present the results for the
road network of Cologne and the large area network of California for overdo fac-
tors two, four and ten using free-flow traffic since for this speed model the relative
errors were highest. The travel time was divided into bins of one minute length for
Cologne and ten minute length for California.

The plots show that the paths found by the modified A∗-algorithm are of poor
quality regardless of the length of the exact path. Therefore, they confirm the pre-
vious observation that for overdo factors greater than two the A∗-algorithm with
overdo will mostly generate paths of very high relative error. This is surprising at
first hand since the idea of the modified A∗-algorithm is to direct the search towards
the target node and thus, we expect the found paths to be close to the optimal path
especially in the uniform speed model.
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Figure 4.18 Maximum
relative errors subject to
travel time for Cologne with
free-flow traffic.
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with free-flow traffic.

One potential source of error lies in the strongly hierarchical structure of road
networks where turning restrictions, bridges and highway access might lead to very
poor results when searching directly toward the target node. Figure4.20 gives an
example for the Cologne network with the uniform speed model for a very short
path of length about three kilometers and overdo factor ten.

But even if the modified A∗-algorithm finds a path that is actually directed to-
wards the target node the errors can be very high due to the different road types.
Figure 4.21 shows a shortest path in NRW of length almost 250 kilometers. The
modified A∗-algorithm finds a path with relative error 1.5 that runs almost parallel
to the shortest path. But while the shortest path uses almost exclusively highway
edges, the path found by the heuristic uses only edges of low type. The reason for
this is that by using the overdo factor any improvement in the Euclidean distance
to the target is weighted higher than the travelling time on the used edge. This is
proven by the sequence of successive labels which is almost monotonely decreas-
ing for the heuristic and increasing for the optimal path. Thus, if at some point
a node of the shortest path has a higher temporary label than the current scanned
node in the heuristic than this node will never be scanned by the heuristic since the
following labels are all smaller. As the example shows this effect already arises for
overdo factor three and leads to the dramatic relative errors for higher overdo fac-
tors. Eventually, for such high factors the algorithm always scans as next node a
neighbour of the just previously scanned node. The label of this neighbour is ei-
ther smaller than the label of the previous scanned node or at least smaller than
the labels of previous nodes that have not been scanned yet. Thus, if the algorithm
once takes a ’wrong’ turn, it will never come back to this deviaton point. Figure
4.22 shows an example for Cologne and figure 4.23 one for the network of NRW
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Figure 4.20 A path of relative error 2.5 in Cologne with uniform speed
for overdo factor 10. The path found by the modified A∗-algorithm (shown
with dashed lines) is directed from the starting node s towards the target
node t which lies on a highway and almost reaches it. Since there is no
opportunity to turn from the bridge on the highway the algorithm must find
the closest highway access point from there. The first node on the shortest
path (shown with solid lines) after the starting node has such a high label
that it is never scanned by the A∗-algorithm.

for overdo factor ten.
As shown by the examples for high overdo factors the modified A∗-algorithm

chooses the sequence of scanned nodes not according to any aspects of shortest
distances from the starting node but by accounting only for neighbours of the pre-
vious scanned node. Once a bad decision is made there is no way to recover from
it. Instead, the path found to the target node is only based on reachability. In this
case the sequence of successive labels is strictly decreasing or at least close to it. In
section (4.5) we will derive an upper bound for the overdo factor with the property
that for higher factors the algorithm will show the described behaviour.

4.3.5.1 Summary for the quality of solutions

The results of our experimental study of the modified A∗-algorithm on the different
networks with various speed models can be summarized as follows:

• For overdo factors between one and two the maximum relative error is about
the same for all four networks. Also, there is almost no difference for this
error between the three speed models we studied.
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Figure 4.21 A path of relative error 1.5 in NRW with free-flow traffic
for overdo factor 3. The path found by the modified A∗-algorithm (shown
with dashed lines) runs almost parallel to the shortest path (shown with
solid lines). At some point the shortest path deviates slightly away from
the target node t and the heuristic prefers the geometrically direct way. The
labels on the dashed path are almost monotonousely decreasing, thus the
alternative node on the shortest path is never scanned. The shortest path
has 169 edges, 87% of which are highway edges. The path found by the
heuristic has 859 edges, none of which is a highway edge.

• For overdo factors greater than three the sequence of successive labels of
the nodes on the suggested path are more or less decreasing. That means,
that the algorithm always scans as next node that neighbour of the previous
node that is geometrically closest to the target node. Nodes that were reached
but not scanned earlier in the search are never returned to. Thus, turning
restrictions, bridges and highway access have a very strong influence on the
search and the algorithm follows a wrong turn according to reachability to
the target node, while shortest path distances from the starting node are of
almost no relevance for the search. For such overdo factors the maximum
relative errors can get very high even for the uniform speed model where the
shortest path is the one with the least geometrical distance.

• For the uniform speed model the Kansas network has the lowest maximal
relative errors while those of the other three networks are about the same.
This suggests that the simpler grid-like structure of the Kansas network with
the highest average degree of all networks is slightly better suited for an ap-
plication of the A∗-algorithm with overdo.
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Figure 4.22 An s-t-path of relative error 2.1 in Cologne with uniform
speed for overdo factor 10. The path found by the modified A∗-algorithm
(shown with dashed lines) always scans a neighbour of the previously
scanned node. At some node it turns on the highway leaving the shortest
path (shown with solid lines). From then on, the heuristical path stays on
the highway since there is no left-turn until it becomes cheaper to turn right
on the highway than to continue straight ahead.
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Figure 4.23 An s-t-path of relative error 1.66 in NRW with uniform
speed for overdo factor 10. The path found by the modified A∗-algorithm
(shown with dashed lines) chooses near the starting node a node that is geo-
metrically closer to t than the next node on the shortest path (shown with
solid lines). From then on, the sequence of labels is strictly decreasing. The
node on the shortest path just after the deviation node is never scanned.
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• For free-flow traffic the maximum relative errors are significantly higher for
the US networks. One of the reasons is the high fraction of low type edges
in the found paths while the shortest paths use links of high type. The differ-
ence between the German and US networks can be explained with the much
higher average length of high type edges in Cologne and NRW compared to
the other types and the US networks. This will include more edges of high
type in paths found by the algorithm even for high overdo factors, reducing
the relative error of these paths. This effect leads to a higher fraction of paths
with a high relative error for the US networks.

• On the other hand for free-flow traffic and overdo factors up to three the ra-
tios of deficient paths with an error greater than a given threshold are highest
for the NRW network. This is due to the fact that for this network the frac-
tion of type four edges in shortest paths is the highest. If the algorithm does
not find the exact path then the suggested path most likely contains edges
of lower type instead, leading to higher relative errors. The fraction of type
four edges in shortest paths is lowest in Cologne, accordingly the errors of
deficient paths do not increase as fast with large overdo factors.

• The travel time on the paths in the uniform speed model is not affected by
different speeds on the links. This effect causes the relative errors for uni-
form speed to be smaller leading to a higher fraction of paths with errors
greater than 10% for free-flow and congested traffic.

Comparing our results on the four networks with those of Jacob et al. [56] for
the Dallas/Fort Worth network we observe that the modified A∗-algorithm finds
paths of very poor quality already for overdo factors greater than five in our exper-
imental study. This contrasts to a maximum relative error of no more than 16% in
the study of Jacob et al. even for overdo factor 99. There are several points that
might explain this discrepancy [55]: The used Dallas/Fort Worth network was not
as detailed as the ones in our study. Only in a very small area all roads were present,
while for the other parts only major roads were included. Additionally, the input
data of the roads was less exact in Dallas/Fort Worth. If fewer links are present in
the network then a search strategy of choosing always a neighbour as next node
to be scanned will give better paths as long as the search is directed towards the
target node. Another major difference between the two studies is the source of
the edge weights. While our study is based on different static speed models with
a few classes of possible speeds, Jacob et al. used load data coming from a traf-
fic microsimulation of the area. This data is much less structured in the sense that
stretches of edges allowing exactly the same speed are more uncommon. There-
fore, a wrong turn on a subpath of minor roads will probably have a greater effect
on the quality of the path in the static model.
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4.4 Analysis of runtime performance

In order to examine the runtime performance of the modified A∗-algorithm we use
the actual running time of the algorithm and the number of nodes scanned during
the shortest path calculation. Both measures have their drawbacks: The running
time depends in the first place on the used hardware and the stated results there-
fore do not allow a general quantification of the running time performance but give
only an indication of possible speedups. In contrast is the number of scanned nodes
hardware-independent and thus captures the algorithmic behaviour of the shortest
path search more accurately. But this measure does not include the algorithmic
work that has to be performed in order to calculate the Euclidean distances for the
A∗-algorithm. For Dijkstra’s algorithm this calculation is not necessary and there-
fore, the measured number of scanned nodes favours the A∗-algorithm.

4.4.1 Dijkstra versus modified A∗-algorithm

In figure 4.24 we show the speedup of the modified A∗-algorithm for overdo fac-
tors between one and ten for the different networks with free-flow traffic. For each
overdo factor we averaged the speedup of all shortest path calculations for each
network. All four networks show a significant speedup for overdo factors between
one and two climbing from 1.5 to almost six for the Kansas network. For greater
overdo factors the speedup is almost constant or even declining as for the Cologne
network. The corresponding running times are shown in figure 4.25 for the three
large area networks. The runtime of Dijkstra’s algorithm is plotted as overdo factor
zero.

Looking at the gain of the modified A∗-algorithm regarding scanned nodes in
figure 4.26 we observe that Dijkstra’s algorithm scans more than a hundred times
more nodes than the heuristic for overdo factors greater than three for the three
large area networks. For smaller overdo factors between one and two (cf. figure
4.27) the speedup is still significant especially for the three large area networks.

The idea behind the modified A∗-algorithm is to direct the search toward the tar-
get node thereby scanning not as many nodes as Dijkstra’s algorithm. The higher
the overdo factor gets the fewer nodes are expected to be permanently labeled by
the algorithm. On the other hand for the modified A∗-algorithm additional algorith-
mic work has to be performed by calculating the Euclidean distance between the
target node and each visited node. This will slow down the modified A∗-algorithm
and is expected to have a greater effect, if the path gets longer. This expectation
is confirmed by figure 4.28 for the Cologne network and figure 4.29 for the Cal-
ifornia network both with free-flow traffic. The figures show the speedup of the
modified A∗-algorithm against Dijkstra’s algorithm with respect to running time
plotted against the length of the shortest path in minutes.
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Figure 4.24 Runtime
speedup of the modified
A∗-algorithm compared to
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For the classical A∗-algorithm (overdo factor one) the speedup increases only
for paths up to a length of 10 minutes (Cologne) resp. 400 minutes (California). For
longer paths the speedup declines and is even less than one for the longest paths,
i.e. Dijkstra’s algorithm is faster than the A∗-algorithm. For overdo factor 1.4 we
observe a similar behaviour but at least the heuristic is not slower than Dijkstra’s
algorithm. For overdo factors three and ten the speedup of the heuristic stays on a
high level.

In figure 4.24 we observed an effect of declining speedup for larger overdo fac-
tors in the Cologne network which can be seen again in figure4.28 for longer paths.
The only explanation for this effect is that the modified A∗-algorithm visits and thus
scans more nodes for overdo factor ten than for overdo factor three. This would
be absolute contrary to the desired effect of the heuristic. Next to the scanning of
the nodes there is also the additional computation of Euclidean distances if more
nodes are visited.

We observed this effect of an increasing number of scanned nodes for high
overdo factors in all networks. While for most networks the increase was only very
gradual, in one network the algorithm scanned about 20% of the nodes scanned by
Dijkstra’s algorithm for overdo factor four but as many nodes as Dijkstra’s algo-
rithm for overdo factor ten. It is possible that a node that is not scanned for some
overdo factor f might be scanned for overdo factors greater than f (see [56] for a
small numerical example) but a strong increase of scanned nodes for high overdo
factors cannot be explained with this observation. Instead, the reason is that nodes
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are scanned more than once by the algorithm. That means that the triangle inequal-
ity is not fulfilled for these networks and for high overdo factors the algorithm first
neglects some node v being the predecessor of a node w on the path. Node v is
scanned later resulting in a rescanning of all nodes between the scanning of w and
v. In fact we observed shortest path calculations in the Cologne network where
more than 2000 nodes were scanned more than once. For other paths we had a
few nodes that were scanned more than 80 times. In larger networks more than
15000 nodes were multi-scanned for some paths and there were paths where some
nodes were scanned more than 700 times.

4.4.2 Comparison of Euclidean against Manhattan
distance

By weigthing the Euclidean distance between some node v and target node t of
the desired path with some overdo factor the actual geometric length of the path
P(v, t) is approximated. One can think therefore about using a different distance
measure for the approximation of the path length which might be computationally
more efficient than the Euclidean distance. One such measure is the Manhattan
distance mhdist, i.e. mhdist(v, t) = |xv − xt| + |yv − yt|which avoids the operation of
taking the square root.

We analyzed the runtime performance of the two versions of the modified A∗-
algorithm on the network of NRW averaging over 10000 shortest paths. Note that
the two versions of the algorithm will in general choose different nodes for scan-
ning and the found paths will not be the same since the future costs, being one part
of the label at each node, are different due to the varying distance measures. Most
importantly will the number of nodes that are scanned not be the same and thus the
difference of the actual running times of the two algorithms will be mostly affected
by the numerical difference of scanned nodes. To actually measure the effect of
using the Manhattan distance instead of the Euclidean distance we therefore used
as label for a node v only the distance from s to v and additionally calculated the
future costs for each node visited without using this information4.

Figure 4.30 shows that the speedup of the running times using the Manhattan
against the Euclidean distance for the NRW network increases for longer paths but
is less than 2% and therefore almost insignificant. Since the modified A∗-algorithm
scans in general far less nodes than Dijkstra’s algorithm the speedup in a direct
application of the two algorithms must be expected to be even smaller. For a high
fraction of paths using the Euclidean distance results even in faster running times as
figure 4.31 shows. The fraction of paths using the Manhattan distance with faster

4Thus, we just ran two normal Dijkstra algorithms and additionally calculated the future costs
using the Euclidean resp. Manhattan distance for each node encountered.
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running times is below 75% for almost all travelling times.
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Figure 4.30 Speedup w.r.t. running times using Manhattan against Euc-
lidean distance for the A∗-algorithm on the network of NRW. The travel
times were binned in five minute intervals.

While the Euclidean distance gives a lower bound on the length of the actual
path between two nodes the Manhattan distance might be longer. Therefore the A∗-
algorithm with an overdo factor of one using the Euclidean distance will find the
exact shortest path, while using the Manhattan distance with an overdo factor of
one might lead only to approximate paths5. By appropriately choosing an overdo
factor of less than one the algorithm with Manhattan distances can be forced to find
the exact path. The marginal runtime savings although suggest that there is no real
payoff for the additional work.

Our analysis of the run time performance of the modified A∗-algorithm shows
that the heuristic outperforms Dijkstra’s algorithm on the average by a factor of
at least two and more than four for overdo factors greater than two. For overdo
factors of up to two Dijkstra’s algorithm scans significantly more nodes, but for
long paths the additional computation of the Euclidean distance reduces the run
time speedup of the heuristic and even leads to a slower algorithm than Dijkstra
in some cases. For high overdo factors the speedup of the heuristic with respect
to number of scanned nodes goes up to a factor of several hundred, resulting in a
much faster algorithm even for long paths. On the other hand the violation of the
triangle inequality for these overdo factors leads to the rescanning of nodes. This
slows the heuristic down and in some cases countereffects the idea of the modified

5In our test on the network of NRW we observed more than 10% of erroneous paths with errors
as high as 17%. About 2% of the paths had errors of 5% or more.
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Figure 4.31 Fraction of paths with better running times using the Man-
hattan distance on the network of NRW. The travel times were binned in
five minute intervals.

A∗-algorithm when some nodes are scanned several hundred times.
In summary small overdo factors generate on the average solutions of good

quality with a reasonable speedup against Dijkstra’s algorithm. For longer paths
the computation of the Euclidean distance reduces the gain in runtime of the heu-
ristic significantly. High overdo factors lead to a very fast algorithm, but show a
very poor solution quality. Additionally, in some cases a multiple rescanning of
nodes can be observed.

4.5 Theoretical bounds for the overdo factor

In section (4.3.5) we saw that for high overdo factors the modified A∗-algorithm
scans as next node always a neighbour of the previously scanned node. The dis-
tance from the starting node has almost no effect and there is almost no chance to
recover from a wrong turning decision. Thus, the found path is mainly character-
ized by reaching the target somehow, but not according to some kind of distance
minimization. This will always happen if the savings in the future costs of being
closer to the target node for a node w are greater than the additional expenses to
reach w. In this case the sequence of labels of successive nodes on the path is often
decreasing.

From this observation we will derive in section (4.5.1) an upper bound for the
overdo factor with the property that for higher factors the sequence of successive
labels is strictly decreasing. If the sequence of successive labels has this prop-
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erty, the algorithm always scans a neighbour of the current node as next node. To
achieve the upper bound we have to make some assumptions on the network which
we expect to be fulfilled in road networks in most cases.

In section 4.5.2 we derive an expected lower bound for the optimal overdo fac-
tor in a gridgraph with uniform speed on all links. Although this bound must not
hold in an arbitrary road network with uniform speed together with the upper bound
from section 4.5.1 it gives an interval for the choice of the overdo factor in a prac-
tical application with dynamic link weights.

For the analysis of the algorithmic behaviour we distinguish between scanning
and visiting a node. If a node u is scanned then the temporary label of u becomes
the permanent label6 and for all of its neighbours w the algorithm calculates the
sum of travelling time to w via u and future costs of w. This sum is compared to the
temporary label of w and possibly updated if the sum is smaller. To visit a node u
shall mean that a temporary label has been calculated but the node was not scanned
yet.

4.5.1 Upper bound for the overdo factor

In this section we will derive an upper bound fmax
ov for the overdo factor such that for

overdo factors greater than fmax
ov the modified A∗-algorithm will scan as next node

always one of the neighbours of the previous scanned node (if there is at least one
neighbour). Thus, if the algorithm at some point scans a node u, all not yet scanned
nodes that were visited from nodes on the path from s to u will never be scanned as
long as their temporary label is not decreased at some later stage of the algorithm.
This means that if the algorithm takes a ’wrong’ turn at some node u it will never
come back to the other nodes visited from u and thus will not be able to find the
exact shortest path which might lead over one of those neighbours as shown by the
examples in section 4.3.5.

For the described algorithmic behaviour of always scanning a neighbour we
have to assume that there are no dead-end nodes in the network for otherwise the
node scanned after the backtracking of a dead-end path must not be a neighbour
of the last node scanned. Although realistic road networks always have dead-end
nodes our assumption is easily justified in the context of analysis of the algorith-
mic behaviour since leaving out dead-end paths does not alter all possible paths
between s and t as long as both nodes do not lie on such dead-end paths.

We will need the following notation for node u and edge e in an application of
the modified A∗-algorithm calculating a path for fixed starting node s and target t.

fov: Overdo factor

6We assume here that the triangle inequality is fulfilled and there is no cycling in the algorithm.
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l(e): Length of edge e in meters

v(e): The travelling speed for edge e in meters/seconds

vmax: Maximal speed of an edge in the network in meters/seconds

d(u): Travel time on the shortest path from s to u in seconds

eu(u,t): Euclidean distance between nodes u and t in meters

fc(u): Future costs of node u calculated as eu(u, t)/vmax

label(u): Label of u according to which the nodes are chosen by the al-
gorithm in seconds. The label is the sum of d(u) and fc(u).

The main result of this section is stated in the following lemma:

Lemma 4.5.1 Let u be a node scanned in a dead-end-free network at some stage
of the modified A∗-algorithm.

(i) If there is an edge e = (u,w) for which the angle between line (u, t) and e is
at most 45◦, eu(u, t) > eu(w, t) and the overdo factor fov satisfies

l(e)

eu(u, t) ·
(

1 −
√

1 −
√

2·l(e)
eu(u,t) +

(
l(e)

eu(u,t)

)2
) · vmax

v(e)
< fov (4.1)

then label(w) < label(u).

(ii) If node w is scanned just after node u and label(w) < label(u), then there is
an edge (u,w), i.e. w is a neighbour of u.

Before we prove the lemma we will discuss the algorithmic implications. The
first part of the lemma gives a sufficient condition in terms of the overdo factor
and the existence of a specific edge for the sequence of successive labels to be
strictly decreasing. The second part of the lemma then shows that the modified A∗-
algorithm always scans a neighbour of the previous scanned node if the sequence of
successive labels is strictly decreasing. Thus, under the conditions of the first part
of the lemma the algorithm will always scan a neighbour of the previous scanned
node, leading to paths that are mainly characterized by reachability as discussed
earlier.

A necessary condition for this behaviour certainly is that there is some edge
between consecutively scanned nodes. The lemma shows that for sufficiency we
need a bound on the overdo factor and an additional condition for such an edge.
Note also that the decreasing sequence of labels is a stronger claim on the algorith-
mic behaviour since always adding a neighbour w of the previous scanned node u
to the path can also occur if label(w) ≥ label(u). The label of w only has to be
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smaller than all other temporary labels at that point of the algorithm. Figure4.22
shows this effect at the node where the found path leaves the highway. By deriving
the stronger property from the condition on the overdo factor we will eventually
get an upper bound for the overdo factor which might prove too high in practice.

Proof of lemma 4.5.1. For the proof of the first part of the lemma let us first
assume that there is an edge e = (u,w) for which the angle between line (u, t) and
e is exactly 45◦ (see figure 4.32).

u

e

x

t

w

Figure 4.32 Edge e having a 45◦ angle with line (u, t).

For the Euclidean distance between w and t we have:

eu(w, t) =
√

(eu(u, t) − eu(u, x))2 + eu(x,w)2

=
√

(eu(u, t) − l(e)/
√

2)2 + (l(e)/
√

2)2

=
√

eu(u, t)2 − 2 · eu(u, t) · l(e)/
√

2 + 2 · (l(e)/
√

2)2

= eu(u, t) ·

√
1 −
√

2 · l(e)
eu(u, t)

+
(

l(e)
eu(u, t)

)2

. (4.2)

Plugging equation (4.2) into inequality (4.1) gives

l(e)

eu(u, t) ·
(

1 −
√

1 −
√

2·l(e)
eu(u,t) +

(
l(e)

eu(u,t)

)2
) · vmax

v(e)
< fov

⇔ l(e)

eu(u, t) − eu(u, t) ·
√

1 −
√

2·l(e)
eu(u,t) +

(
l(e)

eu(u,t)

)2
· vmax

v(e)
< fov

⇔ l(e)
eu(u, t) − eu(w, t)

· vmax

v(e)
< fov. (4.3)
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If the angle between line (u, t) and edge e = (u,w) is smaller than 45◦, then
eu(w, t) will be smaller than the right hand side of equation (4.2) for fixed length
of e, thereby increasing the denominator of the first fraction of the left hand side of
inequality (4.3), since we assumed that eu(u, t) > eu(w, t). Thus, inequality (4.3)
holds if the assumptions of the first part of the lemma are satisfied. Together with
eu(u, t) > eu(w, t) the assumption for the overdo factor in lemma4.5.1 leads to the
following sequence of inequalities:

l(e)

eu(u, t) ·
(

1 −
√

1 −
√

2·l(e)
eu(u,t) +

(
l(e)

eu(u,t)

)2
) · vmax

v(e)
< fov

⇒ l(e)
eu(u, t) − eu(w, t)

· vmax

v(e)
< fov

⇔ l(e)
v(e)

< fov ·
eu(u, t) − eu(w, t)

vmax

⇔ d(u) +
l(e)
v(e)

+ fov ·
eu(w, t)

vmax
< d(u) + fov ·

eu(u, t)
vmax

⇔ d(w) + fov ·
eu(w, t)

vmax
< d(u) + fov ·

eu(u, t)
vmax

⇔ label(w) < label(u) (4.4)

For the second part of the lemma recall that the algorithm always chooses the
node with minimal temporary label for scanning. Thus, label(u) ≤ label(w) when
u was chosen for scanning. But then the label of w must have changed when u
was scanned in order to give label(w) < label(u). Since in each step only adjacent
nodes reached over edges with the scanned node as starting node are visited, there
must be an edge (u,w). �

Discussion of the assumptions in lemma 4.5.1. Lemma 4.5.1 shows that the
algorithm shows a non-desirable behaviour for overdo factors greater than the left
hand side of inequality (4.1) if the algorithm encounters in each step an edge e =
(u,w) for which the angle between line (u, t) and e is in the interval [0, . . . , π/2]
and additionally w lies geometrically closer to t than u.

For the first assumption we observe that many nodes in the network are part of a
four-road crossing in reality. In the line-graph representation of the network where
turning restrictions are included these lead to nodes of degree at least six (inde-
gree=outdegree=3) which make up more than 45% of the dead-end node free net-
work7. For a common four-road crossing the three outgoing edges will normally

7The exact numbers for the four networks are: Cologne 48.7%, NRW 53.6%, Kansas 59.4%
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lie within a radius of about 90◦.
Also we know that the incooperation of future costs prefers edges that are di-

rected into the direction of the target node especially at the start of the search. The
geometry of paths without crossings will normally not be of a zig-zag type but
roughly keep a once chosen direction. Thus, if the search starts out into the di-
rection of the target node, we can even expect to find an edge of appropriate angle
at nodes of indegree and outdegree at least two of which there are more than 90%
in our dead-end free networks8.

If the algorithm encounters such an edge of appropriate angle then we can ex-
pect the geometric distance eu(w, t) to be smaller than eu(u, t) with high probability
since the average length of the edges is small compared to Euclidean distances to
the target node along the search path. Only in the near vicinity of the target node
there might be the effect that node u is closer to t than node w. But at that point
most of the suggested path has already be determined by the algorithm for an av-
erage length path.

From these observations we conclude that we can expect to find an appropriate
edge in road networks with high probablility and therefore, the derived theoretical
bound for the overdo factor will also be of relevance in practice, especially since
the algorithmic behaviour of always adding the geometrically closest neighbour to
the path might occur even if the sequence of labels is not strictly decreasing.

Practical value for the overdo factor. In order to derive an explicit value for
f max
ov in a practical application from the theoretical bound in lemma 4.5.1 we set

x = l(e)/eu(u, t) for edge e = (u,w). We assume that x ≤ 1, which will be true for
the most part of the shortest path calculation, only for nodes u near the target node t
this condition might be violated. Plugging this into the left hand side of inequality
(4.1) yields

x

(1 −
√

1 −
√

2 · x + x2)
· vmax

v(e)
< fov

⇒ label(w) < label(v)

Looking at the graph of the function f (x) = x/(1 −
√

1 −
√

2 · x + x2) for x ∈
[0, 1] in figure 4.33 we see that the function values lie in between 1.4 and 4.5. We
can expect for most nodes scanned during the run of the algorithm that the length
of the relevant edge will only be a very small fraction of the Euclidean distance
between node u and target t. By looking at the average link length of less than 500
meters for the used networks a ratio of 0.1 seems to be a sufficient upper bound

and California 70.4%.
8The exact numbers for the four networks are: Cologne 90.6%, NRW 94.1%, Kansas 99.9%

and California 99.6%.
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for x for almost all nodes in a shortest path calculation. Therefore, we expect the
value of function f to be around 1.5 for almost all nodes during the shortest path
search. The ratio of vmax and speed v(e) for the used speed models (see table 4.2)
is at most 3.3. Thus, we get a bound of approximately five for fmax

ov , meaning that
for overdo factors greater than five we will have a decreasing sequence of labels
and the algorithm will add as next node to the found path always a neighbour of
the previous scanned node. A value of five for fmax

ov is very much in line with the
results of our experimental analysis in section 4.3.
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Figure 4.33 Function describing the ratio of l(e) and eu(u, t) − eu(w, t).

In a pure dynamical setting with heavy congestion the ratio of vmax and v(e)
must be expected to be greater than 3.3 thus leading to a greater bound for a prac-
tical overdo factor.

4.5.2 Lower bound for an optimal overdo factor

In this section we derive a lower bound for an optimal overdo factor for the special
class of gridgraphs with equal speed on all links. The future costs for a node u used
in the A∗-algorithm are calculated as the Euclidean distance between u and target
t priced with the maximum speed on any link in the network. The actual shortest
path between u and t will normally be longer in geometric length and slower due to
the fact that it is not possible to realize the maximum speed on all edges of the path.
Thus, an optimal overdo factor can be thought of consisting of two factors (greater
or equal to one), one approximating the real geometric length with the Euclidean
distance and the other approximating the actual speed with maximum speed. We
call the first factor the deviation factor and the second one the speed factor.
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By assigning the same speed to all links on the network we concentrate our
analysis on the deviation factor and neglect the speed factor. For the uniform speed
model the speed factor will be one, while for other speed models or dynamic link
weights this factor is at least one. Thus, the derived bound is indeed a lower bound
for an optimal overdo factor in gridgraphs even with dynamic speeds. The restric-
tion to gridgraphs is a good approximation for small city-networks. For large area
networks as NRW or California one will expect that the Euclidean distance be-
tween two nodes is a better approximation than for gridgraphs, making the lower
bound for the deviation factor derived in this section an approximation for arbitrary
networks with uniform speed on all links.

Let G = (V,E) be a gridgraph with target node t = (xt, yt) and v = (xv, yv) be an
arbitrary node, each given with their coordinates. Let x = xt − xv and y = yt − yv.
Since we assume that there is the same speed on all links the length of the shortest
path SP(v, t) from v to t is just |x| + |y|. For the Euclidean distance between the two
nodes we have r =

√
x2 + y2. The ratio

F =
|x| + |y|

r
gives the deviation factor for this pair of nodes. To derive the desired lower bound
we take r as constant and average the ratio F over the circumference of the circle
with radius r in a fine grid.

〈F〉 =
1

2πr
·

2π∫
0

|x| + |y|
r
· rdφ

=
1

2πr
·

2π∫
0

r · (| sin φ| + | cosφ|)dφ

=
1

2π
· 2 ·

π∫
0

[sinφ + | cosφ|]dφ

=
1
π
· 2 ·

π∫
0

sinφdφ

︸ ︷︷ ︸
=2

=
4
π

∼ 1.273

Thus, we can expect that the deviation factor will be about 4/π in gridgraphs
with uniform speed on all links, thereby giving a lower bound fmin

ov for the overdo
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factor in gridgraphs with arbitrary edge weights. The approximation of the devia-
tion factor will be more accurate if the radius r is large, since then we can expect
to find a sufficient number of nodes on the circumference of the circle.

As already mentioned we do expect the deviation factor to be smaller than fmin
ov

in arbitrary road networks9. Experimental tests with a value of 1.273 as overdo
factor for 10000 shortest path calculations support this expectation as the results
for the maximum relative error in table 4.7 and for the fraction of deficient paths
in table 4.8 show for the four different networks.

Speed model
Network Free-flow Congestion Uniform
Cologne 0.04 0.05 0.12
NRW 0.06 0.07 0.12
Kansas 0.12 0.14 0.21
California 0.06 0.08 0.15

Table 4.7 Maximum relative errors for overdo factor 1.273.

The results show that for uniform speed the errors are greatest and a high frac-
tion of paths are erroneous. If the edge weights are not uniform, then the speed
factor is greater than one and the derived lower bound is more likely to hold. Note
also that for the more gridlike network of Cologne we have the best results espe-
cially for the number of deficient paths.

We conclude from the bounds derived in this section that an optimal overdo
factor should be chosen from the interval Iov = [1.27, . . . , 5] in a practical appli-
cation. In section (4.6) we compare the observed ratio of path lengths and future
costs from our experimental analysis with the described bounds.

Speed model
Network Free-flow Congestion Uniform
Cologne 0.002 0.003 0.46
NRW 0.08 0.09 0.86
Kansas 0.08 0.09 0.96
California 0.12 0.17 0.93

Table 4.8 Fraction of deficient paths for overdo factor 1.273.

9For the four networks of our study the empirical deviation factor of the shortest paths was in
the interval [1.2, . . . , 1.35] with high probability.
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4.6 A statistical approach to an optimal overdo
factor

In section 4.3 we analyzed the shortest paths found by the modified A∗-algorithm
with different overdo factors on different road networks of various size. To this
end we calculated the exact shortest path using Dijkstra’s algorithm. This gave
the opportunity to estimate an optimal value for the overdo factor statistically. By
backtracking along the exact shortest path from t to s we compared for each en-
countered node the future costs for v with the travelling time from v to t and also
the actual geometric length of the path P(v, t) with the Euclidean distance between
v and t. While the ratio of future costs to travel time gives an estimation for the
overdo factor, the ratio of geometric length to Euclidean distance will approximate
the deviaton factor for which we derived a lower bound for gridgraphs in section
4.5.2.

Figure 4.34 shows how the curves of the described ratios evolve dependent on
the Euclidean distance between node v and target node t for the Cologne network.
For free-flow traffic the ratio of future costs and travel time (denoted with ’overdo’ )
lies between 1.6 and 2 for distance greater than five kilometers. The ratio of geo-
metric length of the path P(v, t) and Euclidean distance (denoted with ’deviation’ )
is around 1.3 in this interval for free-flow traffic. It is slightly smaller for uniform
speed on all links10. The deviation factor is very much in line with the theoreti-
cally derived lower bound of 1.27 from section 4.5.2. Since the overdo factor is
the product of deviation and speed factor we tried to estimate the speed factor from
the statistical data we had from the shortest paths calculations. We calculated the
ratio of the different road types with respect to geometric length in all the shortest
paths . From this we estimated an average speed on a typical path by summation
over the road type speeds weighted with this ratio. The speed factor was then cho-
sen as the ratio of this average speed and the maximum speed in the network. For
Cologne this resulted in a speed factor of 1.28. Multiplying the curve for the geo-
metric deviation with this speed factor gives a good approximation for the overdo
factor as the fourth curve in figure 4.34 shows.

For nodes very close to the target node we observe for free-flow traffic an ex-
perimental overdo factor that is significantly higher than for nodes being further
away. The reason for this is the high fraction of roads of type zero in our net-
works. For most target nodes the shortest path will consist of type zero links at
the end. For the future costs for the nodes on this stretch the Euclidean distance
to the target node, which will be very close to the actual geometric length of the
path, is weighted with the maximum speed although the path allows only the min-

10Since all links allow the same speed, the ratio for the overdo factor is the same as the one for
the deviation factor for the uniform speed model.
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Figure 4.34 Experimental overdo and deviation factors for the Cologne
network with free-flow traffic and uniform speed. Multiplying the devia-
tion factor with an empirical speed factor of 1.28 gives a good approxima-
tion for the empirical overdo factor.

imum speed of the type zero links. For free-flow traffic the ratio of maximum to
minimum speed is 3.3 which is very close to the experimental overdo observed for
short Euclidean distances.

In figure 4.35 and figure 4.36 we show the results for the empirical overdo and
deviation factor for the network of NRW and California. As in Cologne the devi-
ation factor is around 1.3 while the empirical speed factor is much smaller due to
the higher fraction of type four roads in the shortest paths. This leads to a higher
average speed which reduces the empirical speed factor. Again the multiplication
of the empirical speed factor with the deviation factor gives a good approximation
of the empirical overdo factor.

In summary we conclude from the empirical study of the overdo factor in road
networks:

• The deviation factor is close to the lower bound fmin
ov = 1.27 derived in sec-

tion 4.5.2. It is independent of the speeds on the links and of the distance to
the target node.

• The overdo factor is below two for nodes not in the vicinity of the target
node. For nodes very close to the target node the overdo factor is near the
ratio of maximum to minimum speed in the network.

• The speed factor is approximated very well by taking the ratio of maximum
speed and average speed where for the average speed the different link types
are weighted according to the ratio of this type in the shortest paths.
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4.7 Comparison of A∗ with overdo and the tree
heuristic

In chapter 3 we showed that the proposed tree heuristic is a fast shortest path heu-
ristic generating solutions of very good quality. To achieve this the network has
to be preprocessed and the memory requirements are significantly higher than for
Dijkstra’s algorithm or the HISPA heuristic. In contrast, the modified A∗-algorithm
with overdo is a heuristic that can be directly applied to the network without any
computational work for some preprocessing. In this section we compare the tree
heuristic and the modified A∗-algorithm regarding solution quality and run time
performance for an 8-way Dijkstra partitioning of the NRW network. For the com-
parison of suggested paths we chose for the overdo factor values of 1.1, 1.5 and the
lower bound 1.273 derived in section 4.5.2.

In figure 4.37 we show the mean relative error for a set of 10000 shortest paths
with randomly chosen starting and target nodes. For overdo factor 1.1 all found
paths are exact, while for factor 1.273 there is a slightly higher mean error for
longer paths than for the tree heuristic. Overdo factor 1.5 results in paths with an
expected error above 1% for paths longer than 40 minutes. The error rises up to
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about 2.5% for long paths and is significantly higher than for the tree heuristic.
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Figure 4.37 Comparison
of the mean relative error
for the tree heuristic and the
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Figure 4.38 Comparison
of the maximal relative error
for the tree heuristic and the
A∗-algorithm with overdo in
the NRW network.

For the maximal relative error (see figure 4.38) an overdo factor of 1.273 re-
sults in maximal errors of about 10%. This error increases to about 20% for overdo
factor 1.5 for almost all path lengths. In contrast, the tree heuristic shows a high
relative error of about 90% for very short paths and the error decreases for longer
paths below 10% for paths longer than 70 minutes.

For the fraction of deficient paths figure 4.39 shows that for the modified A∗-
algorithm the number of erroneous paths increases the longer the shortest path gets.
For overdo factor 1.5 more than 50% of the paths are not exact for paths longer
than 60 minutes. In contrast, the tree heuristic leads to about 10% deficient paths
regardless of path length. For paths longer than 80 minutes this fraction is thereby
smaller than for overdo factor 1.273. The fraction of paths with an error greater
than 10% is almost zero for overdo factors 1.1 and 1.273 (cf. figure4.40). Overdo
factor 1.5 shows an increasing fraction while it is decreasing for the tree heuristic.

In summary the modified A∗-algorithm generates paths of better quality than
the tree heuristic if the overdo factor is close to one. Already for overdo factors
greater than about 1.4 the A∗-algorithm with overdo gives a high number of er-
roneous paths with significantly greater relative errors than the tree heuristic es-
pecially for longer paths. This difference in solution quality gets more and more
pronounced the greater the overdo factor is chosen11.

11For overdo factors greater than two the fraction of paths with error greater than 10% already
rises above 50%.
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paths for the tree heuristic
and the A∗-algorithm with
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For the comparison of runtime performance figure 4.41 shows the actual run-
ning times of the different algorithms in seconds. We include the classical A∗-
algorithm (overdo factor one) in our analysis. For overdo factor one and 1.1 the
algorithm is only slightly faster than Dijkstra’s algorithm and even slower for long
paths due to the additional computation of the Euclidean distances. For overdo fac-
tor 1.273 the running times of the A∗-algorithm and the tree heuristic are very simi-
lar, while for overdo factor 1.5 the algorithm is the fastest. Looking at the speedup
for the number of scanned nodes of the heuristics against Dijkstra’s algorithm we
see in figure 4.42 that the tree heuristic scans about eight times less nodes than
Dijkstra’s algorithm. For overdo factor 1.273 the speedup is about ten, but the ad-
ditional computation of Euclidean distances makes the two heuristics about equally
fast. For higher overdo factors the speedup increases significantly while for overdo
factor one and 1.1 it is about four.

From the runtime and solution quality analysis we conclude that the tree heu-
ristic and the modified A∗-algorithm with overdo factor close to the derived lower
bound of 1.273 from section 4.5.2 have a very similar performance. For both the
expected errors are small and the fraction of deficient paths and runtime of the
shortest path computation are almost the same. For smaller overdo factors the so-
lution quality increases but the effect on the runtime compared to Dijkstra’s algo-
rithm is small or even negative. For overdo factors greater than 1.4 the modified
A∗-algorithm outperforms the tree heuristic for the runtime but the suggested paths
must be expected to show significantly greater errors.
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Chapter
Five

Sensitivity Analysis for Shortest
Paths and its Application to the

k-Shortest Path Problem

The robustness of a generated solution is a natural question that arises for optimiza-
tion problems in networks with a time-dependent cost function (see [44] for an ex-
tensive online bibliography of sensitivity analysis and [32] for recent advances).
This is especially true for the various applications of the routing problem in road
networks with dynamic edge weights. For the individual online routing a recom-
mended path should ideally be actualized whenever a dynamic change of the edge
weights occurs. If the routes for all users of such an online-routing system are re-
calculated, the best implementations of Dijkstra’s algorithm or an application of
even faster algorithms like the tree heuristic or the modified A∗-algorithm might
not succeed in sufficiently short response times for a practical application. Sensi-
tivity information for already calculated paths can help to reduce the computational
effort for the online routing in two ways. On the one hand unnecessary recalcula-
tions can be avoided if the dynamic changes of the edge weights do not alter the
shortest path and this conclusion can be drawn from the sensitivity data. On the
other hand a complete recalculation of a route might be avoided if the robustness
information allows a quick update of the path in case it is affected by the change
of the edge weights. Information about the robustness of shortest paths is also use-
ful for the routing problem in microsimulations of traffic, where theoretically the
routes of all drivers have to be calculated in each interation.

In this chapter we present an algorithm to determine edge tolerances for a short-
est path in a network. For edges of the shortest path the tolerance shows how much
the weight of the edge can increase such that the edge is still included in the shortest
path. In contrast, for edges that are not on the shortest path the tolerance gives the
necessary decrease of the edge weight in order to make the edge part of the shortest
path. Next to the applications of such sensitivity data described above we use these
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edge tolerances to determine alternatives for the shortest path. This is closely re-
lated to the k-shortest path problem, but in our setting the alternative paths derived
from the edge tolerances are not necessarily the k shortest paths but can incorpo-
rate other useful requirements such as a greater diversity or bypassing of specific
roads. In an online-routing application our method allows to present each user a
set of meaningful alternatives which can even be individualized. For an applica-
tion in the traffic simulation our method gives a different approach to generate an
initial set of routes for each driver.

5.1 Edge tolerances for the one-to-one
shortest path problem

If a shortest path SP(s, t) between a starting node s and a target node t has been
calculated in a weighted graph G = (V,E, c) this path might be affected by dy-
namic changes of the edge weights. Either the weights of some edges on the path
increase leading to a shorter path between s and t which avoids these edges. Or the
weights of some edges that are not part of SP(s, t) decrease making it cheaper to
use these edges. A decrease of the weight of a shortest path edge or an increase of
the weight of a non-shortest path edge will never alter the shortest path. Although
for an application in road networks all edge weights will be positive, we assume
for the moment that the cost function can take arbitrary values from IR, but that the
graph has no negative cycles.

More formally for a path SP(s, t) between two nodes s and t in a graph G =
(V,E, c) we are interested in two quantities δ+(e) ≥ 0 and δ−(e) ≤ 0 for each edge e
of G, such that for a change δ of the edge weight with δ− ≤ δ ≤ δ+ the path SP(s, t)
is still the optimal path between s and t. δ− is called the lower tolerance and δ+ the
upper tolerance of the edge with respect to a shortest path SP(s, t). For the problem
of finding a shortest path between nodes s and t in road networks the edge weights
c(e) are given as the current travel time on each link when the starting node of the
edge is reached and the shortest path SP(s, t) is calculated on the basis of these edge
weights. The two quantities δ− and δ+ for each edge e of G then define an interval

[c(e) + δ−, c(e) + δ+]

such that SP(s, t) is a shortest path between s and t as long as the weight of the
edge lies in this interval. Note that this interval of edge tolerance is defined for
each edge individually, i.e. the weights of all other edges are assumed to be fixed.
The concept of edge tolerances for a shortest path presented here is closely related
to that of edge tolerances for shortest path trees in [94].
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We already observed that δ−(e) = −∞ for an edge e lying on the shortest path
SP(s, t) and δ+(e) = +∞ if e �∈ SP(s, t). In order to determine the remaining tol-
erances we need some more notation. Let Ts be a shortest path tree in G for start-
ing node s and Tt a shortest path tree for node t on the reversed edge set←−E of G,
i.e.
←−
E = {(v, u) : (u, v) ∈ E}. In Tt the time reaching t from v is given for each

node v. If an edge e0 = (u, v) ∈ SP(s, t) is removed from the tree Ts then the set
of nodes decomposes into two disjoint subtrees, one of which contains node s and
the other contains node t. The same applies for the shortest path tree Tt and thus
the following node sets are well-defined:

V(Ts(e0)) = {w ∈ V : s and w lie in the same subtree of Ts \ {e0}} (5.1)

V(Ts(e0)) = {w ∈ V : t and w lie in the same subtree of Ts \ {e0}}
V(Tt(e0)) = {w ∈ V : t and w lie in the same subtree of Tt \ {e0}} (5.2)

V(Tt(e0)) = {w ∈ V : s and w lie in the same subtree of Tt \ {e0}}

For a node v ∈ V let ds(v) be the travel time from s to v in the shortest path
tree Ts and dt(v) the time it takes to reach t from v in Tt. Once the trees Ts and Tt

are calculated, ds(v) and dt(v) are known for each node v. Also let d(s, t) = ds(t) =
dt(s) be the length of the shortest path between s and t. Note that the shortest path
SP(s, t) is included in both shortest path trees1. Then the reduced costs for each
edge e = (u, v) are defined as

∆(e) = ds(u) + c(e) + dt(v) − d(s, t). (5.3)

For edges of the shortest path these reduced costs are zero and the optimality crite-
rion for the shortest path requires that∆(e) ≥ 0 for all non-path edges e �∈ SP(s, t).
For these edges ∆(e) gives the additional costs of using the path P(s, u, v, t)2 in-
stead of SP(s, t). Thus, δ−(e) = −∆(e) for all e �∈ SP(s, t). The remaining upper
tolerance δ+ for edges on the shortest path can be calculated by using the node sets
defined above, which we present together with the other tolerances in the following
lemma.

Lemma 5.1.1 Let SP(s, t) be a shortest path between nodes s and t in a weighted
graph G = (V,E, c) and define∆(e) for each edge e ∈ E as in (5.3).

1We assume in the following that the shortest path from s to t is the same in both Ts and Tt.
This can be achieved by starting Dijkstra’s algorithm for tree Tt with a node v of the shortest path
SP(s, t) pre-labeled with d(s, t) − ds(v). These are the correct labels in Tt for those nodes and they
will therefore not be updated during the algorithm, giving the desired s-t-path in Tt.

2P(s, u, v, t) is the path in G that consists of the shortest path from s to u in Ts, the edge e = (u, v)
and the shortest path from v to t in Tt.
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If e �∈ SP(s, t) then

δ−(e) = −∆(e)

δ+(e) = ∞

If e0 ∈ SP(s, t) then

δ−(e0) = −∞
δ+(e0) = min{∆(e) : e = (u, v), u ∈ V(Ts(e0)), v ∈ V(Tt(e0)), e �= e0} (5.4)

Proof. From the above discussion it remains to proof the upper tolerance δ+(e0)
for an edge e0 ∈ SP(s, t). Increasing the cost c(e0) of a path edge e0 by an amount
δ > 0 affects the distances of nodes in the shortest path trees Ts and Tt as follows:

d̂s(v) =
{

ds(v) : if v ∈ V(Ts(e0))
ds(v) + δ : if v ∈ V(Ts(e0))

d̂t(v) =
{

dt(v) : if v ∈ V(Tt(e0))
dt(v) + δ : if v ∈ V(Tt(e0))

Here d̂s(v) and d̂t(v) signify the perturbed distances of nodes in the shortest path
trees Ts and Tt due to the perturbation of edge e0. These changes of the distances
affect the quantities ∆(e) for an edge e = (u, v) �= e0, which enter the optimality
critertion for the shortest path:

∆̂(e) =




∆(e) : if u ∈ V(Ts(e0)), v ∈ V(Tt(e0))

∆(e) + δ : if u ∈ V(Ts(e0))

∆(e) + δ : if v ∈ V(Tt(e0))

Thus, for edges e = (u, v) with u ∈ V(Ts(e0)) and v ∈ V(Tt(e0))∆(e) does not
change. Intuitively for these edges the alternative path does not use the path edge
e0. The minimum ∆ of all those edges gives the maximal range for which the op-
timality of SP(s, t) is preserved. �
Lemma 5.1.1 shows that the edge tolerances can be determined if the two shortest
path trees Ts and Tt are given. The calculation of the upper tolerance of a path
edge involves the minimization over an appropriate cutset. However, determining
cutsets can be computationally burdensome. To avoid this, we will proceed along
a different approach. For each edge e �∈ SP(s, t) we update the upper tolerance for
all those edges e0 ∈ SP(s, t) for which e is in the appropriate cutset of e0.

The shortest paths in a shortest path tree T with root-node r define a partial
ordering, the root ordering, of the nodes of T. We write v1 � v2 for nodes v1, v2 ∈ T
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if v1 ∈ SP(r, v2). Any two nodes v1, v2 ∈ T have a greatest lower bound (GLB) v0 =
GLB(v1, v2), with respect to the root ordering, namely the greatest node v0 in the
root order such that v0 ∈ SP(r, v1) and v0 ∈ SP(r, v2). For a shortest path SP(s, t),
node v �∈ SP(s, t) and shortest path trees Ts on the edge set E and Tt on the edge set←−
E we define

ms(v) = GLB(v, t) w.r.t. root ordering in Ts (5.5)

mt(v) = GLB(v, s) w.r.t. root ordering in Tt (5.6)

Intuitively ms(v) (mt(v)) is the first node encountered on the shortest path SP(s, t)
when backtracking from v to s (t) in Ts (Tt). According to lemma5.1.1 to determine
the upper tolerance δ+(e0) for an edge e0 ∈ SP(s, t) we have to minimize over the
cutset of all those edges e = (u, v) for which u ∈ V(Ts(e0)) and v ∈ V(Tt(e0)) where
V(Ts(e0)) and V(Tt(e0)) are given as in (5.1) and (5.2). From equalities (5.5) and
(5.6) we can express the upper tolerance of a path edge e0 = (u0, v0) as

δ+(e0) = min{∆(e) : ms(u) � u0 and mt(v) � v0, e = (u, v), e �= e0} (5.7)

From equality (5.7) we can determine the upper tolerances of edges on the short-
est path by updating for a non-path edge e = (u, v) the minimum along the subpath
SP(ms(u),mt(v)) of SP(s, t). Note that if v1 � v2 w.r.t. root ordering in Ts, then
v2 � v1 w.r.t. root ordering in Tt. Therefore, the subpath SP(ms(u),mt(v)) is well-
defined. In figure 5.1 we give a short description of our algorithm for determining
edge tolerances for the one-to-one shortest path problem, using the notation intro-
duced in this section.

For the complexity of the algorithm the calculation of the shortest path trees
takes time at most O(|V| · log |V| + |E|). For the first loop over all non-path edges
we note that the backtracking to reach ms(u) and mt(v) must not be performed for
each edge individually. If n1 � n2 w.r.t. root ordering in Ts (Tt) for two nodes
n1, n2 �∈ SP(s, t) then ms(n1) = ms(n2) (mt(n1) = mt(n2)). Thus, we can halt the
backtracking for some node n1 as soon as we reach a node n2 for which ms(n2)
(mt(n2)) has been determined, setting ms(n) = ms(n2) (mt(n) = mt(n2)) for all nodes
n ∈ SP(n2, n1). The amortized costs of calculating ms(u) and mt(v) for each non-
path edge e = (u, v) are therefore O(|E|). This is also the reason, why we pre-
sented the backtracking and the calculation of the upper tolerances in two separate
loops. The second loop over all non-path edges has a worst-case complexity of
O(|E| · |V|) since the shortest path can have up to n − 1 edges, giving an overall
complexity of O(|E| · |V|) for the algorithm.

5.1.1 Edge tolerances for shortest path trees

Robustness of shortest path trees for dynamic changes of edge weigths has been
studied by various authors, see for example [7, 16, 45, 58, 94, 96]. In [94] an al-
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procedure Edge Tolerances
begin

Calculate the shortest path tree Ts for node s on edge set E ;
Calculate the shortest path tree Tt for node t on edge set←−E ;
foreach e0 ∈ E, e0 ∈ SP(s, t)
begin
δ−(e0) := −∞ ;
δ+(e0) :=∞ ;

end
foreach e = (u, v) ∈ E, e �∈ SP(s, t)
begin
∆(e) := ds(u) + c(e) + dt(v) − d(s, t);
δ−(e) := −∆(e);
δ+(e) :=∞ ;
Find ms(u) by backtracking along Ts ;
Find mt(v) by backtracking along Tt ;

end
foreach e = (u, v) ∈ E, e �∈ SP(s, t)
begin

foreach e0 ∈ E, e0 ∈ SP(ms(u),mt(v))
begin
δ+(e0) := min{δ+(e0),∆(e)};

end

end

end

Figure 5.1 Algorithm to determine edge tolerances for the one-to-one
shortest path problem.
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gorithm due to Dantzig [16] is presented which gives upper and lower edge toler-
ances for a shortest path tree. Very similar to our approach for a shortest path these
quantities measure how much the weight of an edge can vary without changing the
shortest path tree for some node s, thereby keeping the edge weights of all other
edges fixed.

To state the main result about these tolerances we need the following notation:
Let Ts be a shortest path tree for starting node s with shortest path distances d(v)
for each node v ∈ V. Define the reduced costs for an edge e = (u, v) ∈ E as
D(e) = d(u) +c(e) −d(v). Removing a tree edge e0 = (u0, v0) from Ts partitions the
node set into two components N(e0) with u0 ∈ N(e0) and N(e0) with v0 ∈ N(e0).
For a tree edge e0 ∈ Ts two cut-sets can be defined, i.e.

C+(e0) = {e = (u, v) ∈ E : u ∈ N(e0), v ∈ N(e0)},
C−(e0) = {e = (u, v) ∈ E : u ∈ N(e0), v ∈ N(e0)}.

Lemma 5.1.2 Let Ts be a shortest path tree for node s in a weighted graph G =
(V,E, c) with distances d(v) for nodes v ∈ V and reduced costs D(e) for edges
e ∈ E.

If e �∈ Ts then

δ−(e) = −D(e)

δ+(e) = ∞

If e0 ∈ Ts then

δ−(e0) = max{−D(e) : e ∈ C−(e0)}, (5.8)

δ+(e0) = min{D(e) : e ∈ C+(e0), e �= e0} (5.9)

Intuitively equalities (5.8) and (5.9) show that the costs of a tree edge e0 can be
increased for a shortest path tree as long as there is no cheaper path over a non-tree
edge in the equally directed cutset. The costs of e0 can be decreased until a path to
some node using e0 and an edge of the co-directed cutset becomes cheaper than the
present path to this node. Each non-tree edge e = (u, v) closes an (undirected) cycle
{P(m, u), e,P(m, v)} in the tree where m = GLB(u, v) w.r.t. the root ordering and
P(x, y) is the distinct tree path between x and y. From this we get for e = (u, v) �∈ Ts

and e0 ∈ Ts

e ∈ C+(e0) ⇔ e0 ∈ P(m, v), (5.10)

e ∈ C−(e0) ⇔ e0 ∈ P(m, u), (5.11)
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These last two equations allow to determine the edge tolerances for tree edges with-
out a direct minimization and maximization over the cutsets. Instead, for each non-
tree edge the minima and maxima are updated along the two paths to the greatest
lower bound m. Each edge in Dijkstra’s algorithm is scanned exactly once and
if it is not added to the shortest path tree, the edge is a non-tree edge, for which
the two paths to m already have been determined. Thus, the edge tolerances can
be calculated within Dijkstra’s algorithm, which was first observed by Dantzig in
[16] (a pseudo-code description of the algorithm is given in [94]). The worst-case
complexity of the algorithm isO(|E| · |V|), since the cycle which is closed by each
non-tree edge can be of length |V|.

There are two main differences between edge tolerances for a shortest path and
a shortest path tree. For the latter a decrease of an tree edge might change the short-
est path tree, while a decrease of a path edge will not alter the shortest path. The
reduced costs D(e) for a non-tree edge are known at that point of the algorithm,
when the edge is scanned. For the reduced costs ∆(e) of a non-path edge both
shortest path trees Ts and Tt must have been calculated in order to determine∆(e).
Therefore, these costs cannot be determined within the tree calculation.

5.1.2 Edge tolerances in road networks

In lemma 5.1.1 we showed that a dynamic change of an edge weight will alter the
shortest path between two nodes only if a non-path edge decreases by more than
∆(e) or a path edge increases by more than δ+(e). If the graph in question is a
road network from a practical real-world application additional properties of these
quantities have to be considered. Obviously the weight of an edge in a road net-
work will always be positive. But then the weight of a non-path edge e can de-
crease by at most c(e), which means that edges with ∆(e) ≥ c(e) are no realisitic
alternative for the shortest path between s and t. For the lower tolerance of non-
path edges we therefore state:

If e �∈ SP(s, t) then

δ−(e) =
{

−∆(e) : if ∆(e) < c(e)
−∞ : if ∆ ≥ c(e)

(5.12)

However, even if c(e) ≤ ∆(e), these edges have to be considered for the mini-
mum in δ+ of appropriate path edges, since there is no obvious bound for a maximal
increase for path edges.

In an online-routing application we do not want to generate routes that contain
a cycle, since these are not acceptable from a user point of view. Therefore, we
have to exclude non-tree edges from the calculation of the upper tolerances of the
tree edges, for which the alternative path from s to t contains a cycle. Every non-
path edge closes a cycle in the shortest path trees Ts and Tt, but these cycles do not
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necessarily lead to an alternative s-t-path containing a cycle (see figure 5.2 (d)).
There are three ways for a non-path edge e = (u, v) to belong to an alternative s-t-
path P̃(s, t) with cycle CP̃.

(a) e closes a cycle in Ts, that does not intersect with SP(s, t) (see figure5.2 (a)).
Then v ∈ P(ms(u), u) in Ts.

(b) e closes a cycle in Tt, that does not intersect with SP(s, t) (see figure5.2 (b)).
Then u ∈ P(mt(v), v) in Tt.

(c) The shortest path SP(s, t) and CP̃ intersect (see figure 5.2 (c)). In this case
ds(mt(v)) < ds(ms(u)), that is the node mt(v) comes before ms(u) on the short-
est path.

The condition for case (c) can be checked directly. For case (a) we need to
backtrack in Ts from node u until we either reach v or ms(u). If v ∈ P(ms(u), u)
in Ts, then ms(u) = ms(v) and ds(v) < ds(u). By checking these two equalitites
we can avoid the time consuming backtracking for most non-path edges. There
are similar equalities for case (b) which allow to speed up the cycle tracing. Any
non-path edge, which gives an s-t-path with a cycle as in (a), (b) or (c), will not be
considered for the upper tolerance of path edges and its lower tolerance is set to
−∞. Thereby, the edge tolerances calculated with our algorithm give practicable
routing alternatives.

For the runtime performance of the algorithm we already showed that it has a
worst-case complexity of O(|V| · |E|). We tested the algorithm for 10000 shortest
paths between randomly chosen nodes in the road network of Northrhine-West-
phalia with 457124 nodes and 1040687 edges. The test was performed on a Sun
Enterprise E450 with 1.15 GByte RAM and four UltraSparc-II CPU’s with 400
MHz, running under Solaris 2.7. The code was compiled using the GNU compiler
version 2.8.9 with O4 optimization flag.

In figure 5.3 we show statistics about the described algorithm for edge toler-
ances in road networks. The runtime of the algorithm is below eight seconds and
therefore about half as fast as a one-to-all Dijkstra algorithm. The number of path
edges, for which upper tolerances are determined is between 100 and about 300
for the longest paths. The number of non-path edges, for which the lower toler-
ance is not equal to −∞ is below 10000. However, we already noted, that those
edges still have to be considered for the upper tolerances of the path edges unless
the alternative paths with these edges include a cycle.

5.2 An application to k-shortest paths

By not including non-path edges in the minimization of 5.7, which fulfill any one
of the conditions (a), (b) or (c), we get tolerances for the path edges of SP(s, t) for
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Figure 5.2 Different alternative paths for a non-path edge e. The short-
est path and edge e are shown in black, the alternative path in grey.
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Figure 5.3 Performance of the edge tolerance algorithm. The y-axis
represents different attributes.

acyclic paths which can be used to give drivers a set of meaningful alternatives for
the shortest path between two nodes. For every path edge the upper tolerance gives
the additional costs of an alternative s-t-path, that uses that non-path edge, which
determines the minimum of (5.7) for the path edge. By giving a set of alternative
paths our algorithm is closely related to the k-shortest path problem.

This network programming problem has been studied as long as the classical
shortest path problem [22, 51, 101], but without a similar intensity, despite its ob-
vious practical interest (see [23] for a very complete online bibliography). The
problem is typically divided into two classes: the unconstrained problem, where
the objective is to find the k shortest paths between two nodes and the constrained
problem, where additional constrains, such as cycle-free or edge-disjoint must be
satisfied.

For the unconstrained problem in a directed graph G = (V,E) with |V| = n
and |E| = m, Fox [30] presented a method based on Dijkstra’s algorithm which
with more recent improvements in priority queue data structures [31] takes time
O(m + kn log n). Other algorithms use a path deletion method [5, 72] or vector/-
matrix methods [69, 75]. Recently, Eppstein proposed an approach with a binary
heap at each node where edges are kept, that are not part of the shortest path, giving
an O(m + n log n + k) algorithm [24].

For the problem with the additional constraint that the k shortest paths are re-
quired to be loopless one of the first algorithms is due to Clarke et al. [14]. Its main
weakness of storing a greatly varying number of candidate paths, was overcome
by Yen’s method [101] for anO(kn3) algorithm with a generally smaller number of
candidate paths. This algorithm shows a very good performance in practice [85].
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For undirected graphs the method of Katoh et al. [63] has the lowest worst case
complexity O(kn2) of all known algorithms. Algorithms for the constrained prob-
lem with arc capacities are dealt with in [9] and [90].

By appropriately choosing the k minimal upper tolerances of path edges one
gets a set of k alternative paths between s and t. With ’appropriately’ we mean
that the chosen tolerances should lead to different paths. For two path edges f1, f2

with δ+(e1) = δ+(e2) the corresponding non-path edges e1 = (u1, v1), e2 = (u2, v2)
may belong to the same alternative path, if ms(u1) = ms(u2) and mt(v1) = mt(v2).
If one of these equalities does not hold, then the two paths will be different,3 since
the nodes ms and mt are the deviation nodes of the alternatives from the shortest
path. Such a set of k different paths must not be the set of the k shortest paths, as
the example in figure 5.4 shows.

s

mt(v)

v

w1

u

w2

ms(u)

t

Figure 5.4 Example that the upper tolerances for path edges do not give
the set of k shortest paths. If the upper tolerance of all path edges between
ms(u) and mt(v) is determined by the reduced cost of non-path edge (u,w1),
then the alternative using the edge (u,w2) can not be deduced from the tol-
erances.

However, from the calculation of the tolerances the deviation nodes ms(u) and
mt(v) are known for alternative paths using some non-path edge e = (u, v). These

3The reverse must not be true: Even if ms(u1) = ms(u2) and mt(v1) = mt(v2), the two paths may
differ, although to check this, the paths have to be traversed.
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nodes allow to control the alternatives which are given as routing recommenda-
tions in a more sophisiticated way than algorithms, which calculate the k shortest
(loopless) paths between two nodes s and t. The k shortest paths found by these
algorithms tend to be very similar especially in realworld applications [91]. For
these, small deviations which bypass for example a longer link by two smaller links
or which take the next link after a highway exit and returning on the opposite di-
rection4 give alternatives, that have slightly higher costs than the shortest path, but
are not satisfactory from a routing perspective. Travelers and operators of such
systems will view those paths not as true alternatives.

One approach to avoid this phenomenon is link elimination, which excludes
specific links of the shortest path. The disadvantage is that in many instances the
traveler/operator will not be able to identify such ’bad’ links, but rather prefer a
’different’ path, where different is not clearly defined. Scott et al. proposed a dif-
ferent approach, where an alternative path has not many links in common with the
best path [91]. There approach leads to a constrained linear programming prob-
lem, which is solved using Lagrangian relaxation. For this the number of links, in
which the two paths differ must be known in advance.

By using the information about the deviation nodes ms and mt of each non-path
edge, it is possible to generate alternative paths in a more flexible way. For exam-
ple if a whole stretch of the shortest path between two nodes u0 and v0 shall be
avoided, then only those non-path edges e = (u, v) must be considered for the cal-
culation of the path tolerances, for which ms(u) ≤ u0 and mt(v) ≥ v0. Or by exclud-
ing non-path edges e = (u, v), for which |mt(v)−ms(u)| ≤ c for some bound c, alter-
natives that are just small deviations of the shortest path are avoided. In figure5.5
we give an example of such alternative paths for the road network of Cologne, that
seem to be more acceptable for realworld routing applications. Figure5.6 shows
three alternatives for which path edges with smallest upper tolerance are avoided.

4This is a loopless path due to individual links for each highway direction.
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Figure 5.5 Alternative routes for a shortest path in Cologne, where the
non-path edges fulfill |mt(v) − ms(u)| ≤ 0.25 · d(s, t). The shortest path has
a length of 17.9 minutes, the three alternatives have a length of 18.1, 20.2
and 23.9 minutes.
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Figure 5.6 Alternative routes for a shortest path in Cologne of length
17.9 minutes, where path edges with smallest upper tolerance are avoided.
The alternatives bypass only a very small stretch of the shortest path
(shown in circles). The length of all three alternatives is 18 minutes.



Chapter
Six

Summary and Outlook

In this work we have studied different algorithms for shortest path problems in
large road networks. Fast implementations of the classical Dijkstra algorithm cal-
culate a shortest path between a starting and a target node in a few seconds on a
Sun Enterprise E450 for the network of California consisting of almost four mil-
lion edges. In applications like online-routing and dynamic traffic assignment for
traffic microsimulations even faster route generation algorithms are needed to en-
hance the practical use of these instruments.

This can be achieved by employing heuristical methods which incorporate the
special structure of road networks. A path generated by such an algorithm must
not necessarily be the optimal path, but if it is of sufficient quality a heuristical
solution will be acceptable for many practical applications.

In this thesis we presented a new heuristic based on the similarity of shortest
path trees to generate routes in road networks. On the networks considered in this
treatise this so-called tree heuristic outperforms Dijkstra’s algorithm by a factor of
at least four with respect to running time, finding paths of very good quality.

A different approach for a faster generation of shortest paths uses the geomet-
rical information of the edges in road networks to calculate future costs. Multi-
plying these future costs with an overdo factor turns the algorithm into a heuristic.
We analyzed this modified A∗-algorithm on different road networks and derived
theoretical bounds for an optimal overdo factor.

In chapter 2 we introduced the shortest path problem for the special class of
road networks and shortly reviewed various implementations of Dijkstra’s algo-
rithm and some label-correcting algorithms. An empirical test showed that the
fastest of these algorithms find a shortest path in the network of Northrhine-West-
phalia with about one million edges in less than a second and within a few se-
conds in the network of California with almost four million edges on a fast multi-
processor machine. In chapter 3 we presented the tree heuristic which partitions
the network into a number of equally sized classes and generates a searchgraph
for each partition class. The searchgraphs have a tree-like structure and are much
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sparser than the original network, leading to very fast shortest path calculations by
applying a backward Dijkstra algorithm. We studied different methods for parti-
tioning the network into k clusters. Our analysis showed that the connectivity of
the partition classes is of great importance for the quality of found paths. The par-
titioning based on k shortest path trees proved to be well applicable by generating
paths with an expected error below 1% for the networks of NRW and California.

A comparison of the runtime performance of the tree heuristic with Dijkstra’s
algorithm, a bidirectional variant of Dijkstra, the HISPA heuristic and the A∗-al-
gorithm proved that the tree heuristic has the best running times of all algorithms.
With respect to the number of scanned nodes only the HISPA heuristic performs
better, but generates paths of significantly worse quality. Also, the runtime of the
tree heuristic is not much affected by the length of the shortest path. Since we did
not test the tree heuristic with dynamically changing weights on the edges, it would
be interesting to study the influence of the partitioning of the network on the qual-
ity of paths in such a dynamic setting. Also, the correlation between the quality of
the heuristic and the edge cut of the partition can be analyzed in more detail. For
a practical application of the tree heuristic methods to reduce the memory require-
ments of the algorithm should be considered.

In chapter 4 we studied the A∗-algorithm with overdo on four road networks us-
ing three speed models. We could not identify significant differences for the qual-
ity of paths found by the algorithm on these networks. Instead, we observed for
all networks an algorithmic behaviour that favours reachability over shortest path
distances if the overdo factor increases. More precisely, for high overdo factors the
algorithm chooses always a neighbour of the previously scanned node as next node
on the path. This leads to a high fraction of paths with errors greater than 100%.
We derived a theoretical bound for the overdo factor, such that higher factors will
always lead to the described algorithmic behaviour. For a practical application we
expect a value of about five for this bound under some assumptions on the struc-
ture of the network and the observed speeds. For small overdo factors between one
and 1.5 the modified A∗-algorithm finds the exact path or at least paths of very good
quality. While the exact A∗-algorithm can be even slower than Dijkstra’s algorithm
for long paths due to the additional calculation of the future costs, a value of 1.5
gives a considerable speedup. Since we used static speed models for our analysis,
a verification of our results in a dynamical setting would be of great interest.

Finally, in chapter 5 we presented an algorithm to calculate edge tolerances for
a shortest path with respect to one changing edge weight. An application of this al-
gorithm on the network of NRW showed that only for a small fraction of the edges
a changing edge weight might influence the shortest path. The information about
the edge tolerances additionally allows to generate alternatives for the shortest path
that are of a more meaningful diversity for a practical application than those cal-
culated by standard k-shortest path algorithms.
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A

Partitions of NRW

This appendix shows some coloured plots of different partitionings of the road net-
work of Northrhine-Westphalia (NRW) into eight classes. The NRW network has
457124 nodes and 1040687 edges. The plots only show the nodes of the network
but no edges. Therefore, the connectivity of the subclasses cannot be deduced di-
rectly from the plots.

For the partitioning methods we used the Dijkstra partitioning (cf. 3.4.1.1),
the METIS software-library [62] (cf. 3.4.1.2) and the treegraph partitioning (cf.
3.4.1.3). The Dijkstra partitioning (see figureA.1 (a)) always generates connected
subclasses and as the plot shows, the classes are of rather regular geometric shape.
For the treegraph partitioning (cf figureA.1 (b)) there is one subclass, which is not
connected decomposing into two components. Since one of these components is
very small, it cannot not identified from the plot. Due to the geometric partitioning
using a grid of length l = 5000m the border of the classes is made of parallels to
the x- und y-axis.

The four partitionings using the METIS software-library result in partitions of
various connectivity. Weight functions W1 and W4 (cf. 3.4.1.2) lead to connected
subclasses (see figures A.1 (c) and (f)), while the other two weight functions re-
sult in classes that in some cases have several hundred connected components (see
figures A.1 (d) and (e)). Accordingly, the geometric shape of the subclasses of
the connected partitionings are more regular than the others, which are partly very
scattered.
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Dijkstra_P8-Partition

(a) 8-way Dijkstra partition of
NRW.

Treegraph_5000_P8-Partition

(b) 8-way Treegraph partition of
NRW for gridlength l = 5000m.

METIS_W1_P8-Partition

(c) 8-way METIS partition of
NRW with weight function W1.

METIS_W2_P8-Partition

(d) 8-way METIS partition of
NRW with weight function W2.

METIS_W3_P8-Partition

(e) 8-way METIS partition of
NRW with weight function W3.

METIS_W4_P8-Partition

(f) 8-way METIS partition of
NRW with weight function W4.

Figure A.1 Different partitions of NRW.
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Deutsche
Zusammenfassung

Das Problem, einen kürzesten Weg zwischen zwei Knoten in einem gewichteten
Graphen zu finden, ist eines der klassischen Probleme in der Netzwerkoptimie-
rung, das seit über vierzig Jahren Gegenstand ausgiebiger Forschungstätigkeit ist.
In vielen praktischen Anwendungen taucht die Bestimmung von kürzesten Wegen
entweder als eigenständige Fragestellung (z.B. bei Transportproblemen, Projekt-
management und DNA-Sequenzierung) oder als Teilproblem in einem komplexe-
ren Problemzusammenhang auf (z.B. bei der Approximation von Funktionen und
dem Knapsack-Problem).

Das Ziel der vorliegenden Arbeit ist die Untersuchung verschiedener Aspek-
te von algorithmischen Verfahren zur kürzesten-Wege-Bestimmung in sehr großen
Straßengraphen. Motiviert wurde der Untersuchungsgegenstand durch die zuneh-
mende praktische Bedeutung der Generierung von geeigneten Routenempfehlun-
gen für eine Vielzahl von Fahrern in Straßennetzen.

Ausgelöst wurde diese Entwicklung durch die Notwendigkeit einer effektive-
ren Verkehrslenkung aufgrund des immer weiter steigenden Verkehrsaufkommens
und den Einsatz neuer Technologien im Bereich der Fahrzeugelektronik in den
letzten Jahren (siehe [89] für eine aktuelle Übersicht). Hier ist insbesondere die zu-
nehmende Verbreitung von individuellen Navigationssystemen und das damit ver-
bundene Gebiet der Telematik zu nennen. Seit der Markteinführung solcher Na-
vigationssysteme vor einigen Jahren verzeichnen die Hersteller jährlich sich ver-
doppelnde Umsatzzahlen mit einem erwarteten Absatz von über 600000 Geräten
in Deutschland für das Jahr 2000 [37]. Dabei geht die Entwicklung langsam aber
stetig hin zu einer Routenführung, bei der immer mehr dynamische Verkehrsdaten
berücksichtigt werden.

Ein weiteres Instrument zur effizienteren Planung und Steuerung von Verkehr
ist die einzelfahrzeugbasierte Mikrosimulation wie z.B. in [36, 88]. Bei der ite-
rativen Bestimmung des dabei angestrebten Verkehrsgleichgewichts müssen ide-
alerweise in jedem Iterationsschritt die Routen aller Fahrer neu berechnet werden.
Bereits für ein relativ kleines Untersuchungsgebiet wie die Stadt Wuppertal mit un-
gefähr 17000 Kanten im Graphen bedeutet dies die Berechnung von 500000 Rou-
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ten pro Iterationsschritt [36], was selbst auf Computerworkstations der aktuellen
Technik mehrere Stunden in Anspruch nimmt.

Beiden beschriebenen Anwendungen gemeinsam ist, daß eine benötigte Rou-
te nicht unbedingt der tatsächlich kürzeste Weg zwischen den beiden Endpunkten
sein muß. Es reicht, wenn die Fahrtzeit einer vorgeschlagenen Routenempfehlung
hinreichend nahe an derjenigen des optimalen Weges ist. Für die Zufriedenheit des
Benutzers eines individuellen Navigationssystems ist es dabei wichtig, daß seine
persönlichen Erwartungen erfüllt werden. Dagegen steht im Rahmen einer Ver-
kehrssimulation eine ausreichende Beschreibung des realen Verkehrszustandes im
Vordergrund, der von vereinzelten nicht zu großen Abweichungen von optimalen
Wegen nicht beeinträchtigt wird.

In der Sprache der Graphentheorie läßt sich das kürzeste-Wege-Problem wie
folgt darstellen: Finde für einen Startknoten s und einen Endknoten t eines ge-
wichteten Graphen G = (V,E, c) mit Knotenmenge V, Kantenmenge E und Ko-
stenfunktion c, definiert auf den Kanten, einen Pfad zwischen s und t mit minima-
len Kosten. Dabei ergeben sich die Kosten eines Pfades als Summe der Gewichte
der Pfadkanten.

In Graphen mit nicht-negativer Kostenfunktion wie z.B. Straßengraphen ist der
klassische Algorithmus zur Bestimmung von kürzesten Wegen das bereits 1959
von Dijkstra [20] vorgeschlagene Verfahren. Dabei wird in jedem Schritt der Kno-
ten v mit minimaler temporärer Markierung gewählt und permanent markiert. Für
alle Nachbarn w von v wird geprüft, ob die temporäre Markierung größer ist als der
Weg von s über v nach w. Wenn ja, wird die temporäre Markierung von w aktua-
lisiert. Bei Verwendung einer priority queue als Datenstruktur für die Verwaltung
der temporär markierten Knoten führt der Aufwand der Knotenauswahl und der
Distanzaktualisierung zu einer worst-case-Laufzeit von O(|E| + |V| log |V|).

Im Laufe der Jahre sind eine Vielzahl von Implementierungen von Dijkstra’s
Algorithmus vorgeschlagen worden, die entweder zu praktischen Laufzeitverbes-
serungen oder zu einer verbesserten worst-case-Komplexität führen (eine Über-
sicht gibt z.B. [3]). Kürzlich wurde von Thorup [97] ein linearer Algorithmus für
ungerichtete Graphen vorgeschlagen, der die inhärente Sortierung der Knoten nach
Distanzen in Dijkstra’s Algorithmus durch geeignete Identifizierung von Knoten,
die in beliebiger Reihenfolge bearbeitet werden können, umgeht.

Die schnellsten Implementierungen von Dijkstra’s Algorithmus benötigen für
die Bestimmung eines kürzesten Weges im Straßengraphen von Nordrhein-West-
falen mit etwas über einer Million Kanten weniger als eine Sekunde auf einer Sun
Enterprise E450 mit vier mit 400 MHz getakteten UltraSPARC-II Prozessoren (s.
Kapitel 2).

In praktischen Anwendungen kommen häufig heuristische Verfahren zur Rou-
tengenerierung in Straßengraphen zum Einsatz. Solche Methoden nutzen zumeist
die spezielle Struktur von Straßengraphen mit gerichteten Kanten, Kantenlängen



159

nahe der euklidischen Distanz der beiden Endknoten, Fastplanarität und einer hier-
archischen Struktur aufgrund einer Typisierung der Kanten nach Wichtigkeit.

In Kapitel 3 wurde eine vom Autor entwickelte Heuristik vorgestellt, die die
Ähnlichkeit von kürzesten-Wege-Bäumen in Straßengraphen für nahe beeinander
liegende Startknoten ausnutzt. Diese so genannte Baumheuristik ist in Bezug auf
die Rechenzeit auf den größten betrachteten Netzen etwa um einen Faktor acht
schneller als Dijkstra’s Algorithmus. In Bezug auf die Anzahl permanent markier-
ter Knoten erzielt die Heuristik einen Gewinn um etwa den Faktor 20. Dabei wer-
den Pfade gefunden, die im Mittel um weniger als 1% vom optimalen Weg abwei-
chen, sofern die beiden Endknoten nicht zu nahe beeinander liegen.

Die Baumheuristik gliedert sich in mehrere Phasen. Zuerst wird der Graph
in k Klassen möglichst gleicher Größe partitioniert und dann ein Suchgraph für
jede Partitionsklasse erzeugt. Die Suchgraphen haben eine baumähnliche Struk-
tur und enthalten wesentlich weniger Kanten als der Gesamtgraph, aber alle Kno-
ten des Graphen. Sie werden erzeugt, indem für jede Partitionsklasse eine Rei-
he von Basisknoten bestimmt wird. Die Kantenmenge eines Suchgraphen besteht
dann aus allen Kanten der Klasse und der Vereinigung aller Kanten von kürzesten-
Wege-Bäumen der Basisknoten. Die Suchgraphen sind somit lokal dicht, aber glo-
bal dünn besetzt. Die Anwendung eines Rückwärtsdijkstra bei der eigentlichen
Routensuche führt dann zu einem sehr schnellen Algorithmus, der darüber hin-
aus wenig von der Länge der Wege beeinflußt wird. Durch die Zerlegung des ur-
sprünglichen Graphen eignet sich die Baumheuristik auch für eine Verkehrssimu-
lation auf Parallelrechnern.

Bei der Zerlegung des Graphen wurden zwei neue Methoden, die Charakteri-
stiken von kürzesten-Wege-Bäumen berücksichtigen mit einem k-way partitioning
Algorithmus von Karypis und Kumar [62] verglichen. Dabei zeigte sich, daß der
Zusammenhang der Partitionsklassen einen großen Einflußauf die Güte der gefun-
denen Wege hat, wobei die in der Arbeit entwickelten Zerlegungsmethoden fast
immer zusammenhängende Partitionsklassen lieferten.

Andere Verfahren zur Routengenerierung in Straßengraphen sind der A∗-Al-
gorithmus und die HISPA Heuristik. Letzere sucht kürzeste Wege von den beiden
Endknoten zu Knoten der obersten Hierarchieebene in einem Kreis mit einem ge-
gebenen Radius r. Diese Pfade werden als Kanten entsprechender Länge zur ober-
sten Hierarchieebene hinzugefügt und ein kürzester Weg auf der so modifizierten
Ebene zwischen s und t bestimmt. Dabei ist die Anzahl der Kanten der obersten
Hierarchieebene sehr klein im Vergleich zur Gesamtzahl der Kanten, jedoch ist ei-
ne optimale Bestimmung des Radius r schwierig.

Für euklidische Netzwerke haben Sedgewick et al. [92] den A∗-Algorithmus
vorgeschlagen, der sich auch für Straßengraphen verwenden läßt. Dieses exakte
Verfahren steuert die Suche bei Dijkstra’s Algorithmus in Richtung des Zielkno-
tens durch Verwendung von so genannten ’ future costs’ , die aus geometrischen In-
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formationen gewonnen werden. Dadurch wird der Suchbereich schmäler, auf der
anderen Seite erzeugt die Berechnung der future costs zusätzlichen rechnerischen
Aufwand. Im Vergleich zur Baumheuristik schneiden beide Verfahren in Bezug
auf die Rechenzeit schlechter ab, und in fast allen Fällen war die Qualität der ge-
fundenen Routen bei der Baumheuristik wesentlich besser als bei der HISPA Heu-
ristik.

Kürzlich wurde von Jacob et al. [56] eine Modifizierung des A∗-Algorithmus
auf Straßengraphen untersucht, bei der die future costs mit einem overdo-Faktor
multipliziert werden. Dies beschleunigt die Rechenzeit des Algorithmus, führt je-
doch zu einem heuristischen Verfahren. In Kapitel4 wurde dieser modifizierte Al-
gorithmus auf vier verschiedenen Straßennetzen ausgiebig untersucht. Für kleine
overdo-Faktoren zwischen eins und 1.5 findet der Algorithmus den optimalen Pfad
oder Routen mit nur geringen Abweichungen. Während der exakte A∗-Algorith-
mus bei sehr langen Pfaden wegen der zusätzlichen Berechnung der future costs
zum Teil längere Laufzeiten als Dijkstra’s Algorithmus aufweist, wird für einen
Faktor von 1.5 eine deutliche Laufzeitverbesserung erzielt.

Diese steigert sich mit größeren overdo-Faktoren, jedoch führen solche Fakto-
ren in der Regel zu Pfaden von sehr schlechter Güte. Der Grund dafür ist, daßder
Algorithmus für große Faktoren die geometrische Entfernung der Nachbarknoten
des zuletzt permanent markierten Knotens zum Zielknoten als einziges Auswahl-
kriterium für den nächsten Knoten auf dem Pfad aufweist. Dadurch ist der Pfad
die Folge von ’nächsten’ Nachbarn, was dazu führt, daßeine falsche Abzweigung
im späteren Verlauf des Algorithmus nicht mehr korrigiert werden kann. Unter
bestimmten Voraussetzungen an den Graphen, die bei Straßennetzen in der Regel
erfüllt sind, wurde eine theoretische Schranke für den overdo-Faktor hergeleitet,
so daß der Algorithmus für größere Werte das beschriebene Verhalten zeigt. Für
eine praktische Anwendung wurde daraus ein zu erwartender Wert von höchstens
fünf für diese Schranke bestimmt.

Informationen über die Robustheit gegebener Routenempfehlungen bei sich
ändernden Kantengewichten können in praktischen Anwendungen ein hilfreicher
Entscheidungsparameter für eine eventuelle Neuberechnung einer Route sein. Un-
ter der Voraussetzung, daß sich nur ein Kantengewicht ändert, wurde in Kapitel5
ein Algorithmus vorgestellt, der Toleranzen für Kanten in Bezug auf einen kür-
zesten Weg bestimmt. Dabei zeigte sich für den Straßengraphen von Nordrhein--
Westfalen, daßder kürzeste Weg nur von Änderungen eines sehr geringen Anteils
der Kanten beeinflußt wird. Die mit Hilfe der Kantentoleranzen gewonnenen In-
formationen können darüber hinaus benutzt werden, um Alternativrouten zu er-
mitteln. Dabei können die Alternativen gezielter an spezielle Anforderungen an
solche Wege in der praktischen Anwendung angepaßt werden als bei der Verwen-
dung einschlägiger k-kürzester-Wege Algorithmen wie z.B. [101].



Deutsche
Kurzzusammenfassung

In dieser Arbeit wird das Problem, einen kürzesten Weg in einem großen Stra-
ßengraphen zu finden, untersucht. Der klassische Lösungsalgorithmus für Gra-
phen mit nicht-negativer Kostenfunktion ist der Algorithmus von Dijkstra mit ei-
nem Laufzeitverhalten von O(|E| + |V| log |V|) unter Benutzung einer einfachen
Priority Queue als Datenstruktur für temporär markierte Knoten. Wir stellen eine
neue, sogenannte Baumheuristik vor, die auf derÄhnlichkeit von kürzesten-Wege-
Bäumen basiert und besonders in praktischen Anwendungen wie beispielsweise in
der mikroskopischen Verkehrssimulation oder bei Online-Routingsystemen ein-
gesetzt werden kann. Anstatt einen Weg im Gesamtgraphen zu suchen, partitio-
niert die Baumheuristik den Graphen in Klassen von in etwa gleicher Größe und
konstruiert einen speziellen Suchgraphen für jede Klasse. Auf einem Testgraphen
mit ca. einer Million Knoten ist die Baumheurisitk um einen Faktor größer drei
schneller als Dijkstra’s Algorithmus bzgl. der Laufzeit. Die von der Baumheuri-
stik gefundenen Wege haben dabei einen erwarteten Fehler von unter 1%, sofern
Start- und Endknoten der Suche nicht zu nahe beieinander liegen. Ferner analysie-
ren wir den A∗-Algorithmus mit Overdo-Faktor, der ursprünglich für Euklidische
Netzwerke entworfen wurde, und leiten ein Intervall [1.27, . . . , 5] her, aus dem
ein optimaler Overdo-Faktor in praktischen Anwendungen gewählt werden sollte.
Abschließend stellen wir einen Algorithmus zur Bestimmung von Toleranzen für
die Kantengewichte eines kürzesten Weges vor, der verwendet werden kann, um
sinnvolle Alternativrouten zum kürzesten Weg zu finden.
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die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der
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