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Abstract  

The Arabidopsis thaliana transcription factor WRKY33 is a key transcriptional regulator of 

plant responses towards B. cinerea strain 2100 infection, and is essential for resistance. To 

elucidate the critical molecular components involved, global mapping of WRKY33-regulated 

target genes was performed by integrating ChIP-seq data of WRKY33 binding sites with 

RNA-seq results of 14h B. cinerea-induced and WRKY33-dependent gene expression 

profiles. Comparative gene expression analysis between resistant wild-type Columbia-0 and 

susceptible wrky33 mutant plants revealed that B. cinerea 2100-induced WRKY33 has both 

transcriptional activator and repressor roles in regulating hundreds of target genes with 

distinct molecular functions, but mainly acts as a transcriptional repressor. Genome-wide 

analysis confirmed previously known WRKY33 targets involved in ethylene and jasmonic 

acid hormone signaling and phytoalexin biosynthesis, but also uncovered new vital 

components affecting the complex regulatory circuitry affecting resistance towards Botrytis. 

In particular, the abscisic acid (ABA) biosynthetic genes NCED3 and NCED5 were identified 

as key targets of WRKY33-mediated resistance towards this necrotroph. Further genetic, 

biochemical and molecular studies confirmed that WRKY33 acts upstream of NCED3 and 

NCED5 to negatively regulate ABA biosynthesis and signaling. These results reveal a novel 

role of WRKY33 in modulating host immunity by repressing part of the ABA hormone 

regulatory network. 

Comparative analysis of WRKY33 function between the B. cinerea avirulent strain 2100 and 

the virulent strain B05.10 revealed that Botrytis-induced WRKY33 gene expression and 

protein accumulation are significantly lower in B. cinerea B05.10 infected WT plants than in 

plants challenged with strain 2100. As a consequence, the expression levels of WRKY33-

regulated target genes involved in the biosynthesis of antifungal camalexin and JA/ET related 

defense signaling are clearly reduced upon B05.10 infection. However, WRKY33-

overexpression lines were clearly resistant to B05.10. These data strongly suggest that 

WRKY33-dependent early immune responses in WT plants were negatively affected by B. 

cinerea virulent strain B05.10. Further analysis of Arabidopsis ABA deficiency mutants in 

combination with B. cinerea B05.10 BcABA mutants revealed that, as is the case for strain 

2100, Arabidopsis-derived ABA negatively regulates plant immune responses to B05.10. 

Elevated JA/ET levels were observed in nced3 nced5 double mutants, suggesting that ABA 

antagonizes JA/ET signaling upon B05.10 infection. This ABA antagonism of JA/ET 

signaling was dependent on WRKY33.  
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In conclusion, this thesis provides novel insights into the role of WRKY33 in modulating host 

immunity towards both an avirulent and a virulent strain of the necrotrph B. cinerea. 
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Zusammenfassung 

Der Transkriptionsfaktor WRKY33 von Arabidopsis thaliana ist ein zentraler Regulator von 

pflanzlichen Reaktionen auf den B. cinerea Stamm 2100 und essentiell für die Resistenz der 

Pflanze gegenüber diesem Stamm. Um beteiligte wichtige molekulare Komponenten in 

diesem Prozess zu finden, wurden WRKY33-regulierte Gene 14 Stunden nach Behandlung 

mit B. cinerea genomweit kartiert. Dazu wurden die mittels ChIP-seq ermittelten WRKY33 

Bindungsstellen im Genom mit RNA-seq Ergebnissen von B. cinerea induzierten und 

WRKY33-abhängigen Eexpressionsprofilen abgeglichen. Vergleichende 

Genexpressionsanalysen zwischen resistenten wildtyp Colombia-0 und anfälligen wrky33 

Mutantenpflanzen ergab, daß B. cinerea-induziertes WRKY33 Protein sowohl 

transkriptionsaktivierende als auch -hemmende Aufgaben bei der Regulation von hunderten 

Zielgenen mit bestimmten molekularen Funktionen hat, aber hauptsächlich als Repressor 

fungiert. Die genomweite Untersuchung bestätigte bereits bekannte WRKY33 Zielgene, die 

an den Ethylen (ET) und Jasmonsäure (JA) Hormon-Signalketten und der Phytoalexin 

Biosynthese beteiligt sind. Es wurden aber auch neue wesentliche Komponenten entdeckt, die 

die komplexe Regulation der Resistenz gegenüber B. cinerea beeinflussen. Im Besonderen 

wurden die Abscisinsäure (ABA) Biosynthesegene NECD3 und NECD5 als Schlüsselgene der 

WRKY33-vermittelten Resistenz gegenüber diesem nekrotrophen Pilz identifiziert. 

Eingehendere genetische, biochemische und molekulare Untersuchungen ergaben, daß 

WRKY33 oberhalb von NCED3 und NCED5 agiert um in negativer Weise die ABA 

Biosynthese und Signalkette zu regulieren. Damit stellen diese Ergebnisse eine neue Rolle 

von WRKY33 bei der Modulierung der wirtseigenen Immunität (host immunity) dar, indem 

ein Teil des ABA Hormon zugehörigen Regulationsnetzwerkes unterdrückt wird. 

Vergleichende Untersuchungen des WRKY33 Verhaltens gegenüber dem B. cinerea 

avirulenten Stamm 2100 und dem virulenten Stamm B05.10 ergaben, daß die WRKY33 

Genexpression und Proteinanreicherung in B05.10-infizierten wildtyp Pflanzen signifikant 

geringer war als in Pflanzen die mit dem Stamm 2100 infiziert waren. Als eine Folge davon 

war die Expressionsstärke der WRKY33-regulierten Zielgene, die an der Biosynthese des 

fungiziden Camalexins und an der JA/ET Signalkette beteiligt sind, nach Behandlung mit 

B05.10 klar reduziert. Allerdings waren WRKY33 überexpremierende Pflanzen nach 

Infizierung mit B05.10 eindeutig resistent. Diese Ergebnisse deuten stark darauf hin, daß 

WRKY33-abhängige frühe Immunreaktionen in wildtyp Pflanzen durch den virulenten B. 

cinerea Stamm B05.10 negativ beeinflußt waren. Eine genauere Untersuchung von 
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Arabidopsis ABA-defizienten Mutanten in Kombination mit B05.10 BcABA Mutanten ergab, 

daß, wie auch beim Stamm 2100, von Arabidopsis herrührendes ABA die 

Pflanzenimmunreaktionen unterdrückt. In nced3 und nced5 Mutanten wurden erhöhte JA/ET 

Werte beobachtet, was darauf hindeutet, daß ABA die JA/ET Signalketten nach B05.10 

Infektion unterdrückt. Dieser Antagonismus zwischen ABA und der JA/ET Signalkette war 

abhängig von WRKY33. 

Abschließend kann gesagt werden, daß die vorliegende Arbeit neue Einblicke in die 

Aufgaben von WRKY33 bei der Modulation der Wirtsimmunität gegenüber einem 

avirulenten und einem virulenten B. cinerea Stamm gewährt. 
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1.1. Plant innate immunity 

In nature, plants are under continuous biotic and abiotic stresses that compromise plant 

growth, survival and reproduction. The biotic stresses are mostly caused by different 

phytopathogens such as bacteria, fungi, viruses, oomycetes, and insects. Such stresses already 

affect global food security and thus endanger the human civilization (Dodds and Rathjen, 

2010; Dangl et al., 2013). In the past, the oomycete Phytoththora infestans caused the late 

blight Irish potato famine of the 1840s, and the fungus Fusarium oxysporum, the causal agent 

of Panama disease, led to the loss of the world’s first mass-cultivated banana cultivar Gros 

Michel in the 1920s. Currently, the wheat stem, leaf and yellow stripe rust epidemics are 

spreading from East Africa into the Indian subcontinent caused by rust fungi Puccinia 

graminis and P. striiformis are all testament to the recurring impact of plant diseases affecting 

human food supply (reviewed by Dangl, et al., 2013).  

Plants have developed mechanisms to detect pathogens and to activate defense responses 

(Denance et al., 2013). The plant immune system consists of two interconnected branches 

termed PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) (Dodds and 

Rathjen, 2010). PTI is initiated upon the perception of common microbial compounds, named 

pathogen- or microbe- associated molecular patterns (PAMPs or MAMPs), such as bacterial 

flagellin or fungal chitin, by pattern recognition receptors (PRRs) at the cell surface (Staal et 

al., 2008; Zipfel, 2009). Plants also respond to endogenous plant-derived signals that arise 

from damage caused by pathogen invasion, called damage-associated molecular patterns 

(DAMPs) (Staal et al., 2008). Successful pathogens have evolved means to minimize host 

immune stimulation and utilize virulence effector molecules to bypass PTI, either by 

suppressing PTI signaling or preventing detection by the host (Pieterse et al., 2014). In turn, 

plants have acquired an additional line of defense in which resistance (R) NB-LRR 

(nucleotide-binding-leucine-rich repeat) receptor proteins mediate recognition of pathogen-

specific effector molecules, resulting in ETI (Dodds and Rathjen, 2010). ETI is a 

manifestation of gene-for-gene resistance, which is often accompanied by a programmed cell 

death at the site of infection that prevents further ingress of biotrophic or hemi-biotrophic 

pathogens that thrive on living host tissue (Pieterse et al., 2014). Currently, specific 

recognition of necrotrophic pathogens by similar mechanisms has not been documented. With 

the exception of Arabidopsis thaliana RESISTANCE TO LEPTOSPHAERIA MACULANS 

3 (RLM3), a Toll/interleukin 1 receptor domain R-protein implicated in broad immunity to 

several necrotrophs (Staal et al., 2008), no R-gene has been specially associated with 
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resistance to necrotrophs such as Botrytis cinerea. Plant immunity to B. cinerea appears to be 

under complex genetic control (Rowe and Kliebenstein, 2008).  

Upon pathogen infection, or perception of pathogens in PTI and ETI, a set of downstream 

events are induced, including alterations in hormonal levels, activation of distinct signalling 

pathways, and transcriptional reprogramming. In particular, rapid induction of hormone-

mediated pathways within the host have been demonstrated to play pivotal roles for immunity 

against pathogenic threats (Glazebrook, 2005; Tsuda et al., 2009).  

1.2. Hormonal modulation of plant immunity  

The plant hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are recognized 

as major defense hormones and have been well studied (Robert-Seilaniantz et al., 2011). 

However, other hormones such as abscisic acid (ABA) (Ton et al., 2009), gibberellins (GA) 

(Navarro et al., 2008), auxins (IAA) (Kazan and Manners, 2009), cytokinins (CK) (Walters 

and McRoberts, 2006), brassinosteroids (BR) (Nakashita et al., 2003), nitric oxide (NO) 

(Moreau et al., 2010) and strigolactones (STR) (Torres-Vera et al., 2014) can also function as 

modulators of plant immune signaling networks (Pieterse et al., 2012). Generally, SA 

signaling positively regulates plant defense against biotrophic pathogens, whereas ET/JA 

pathways are commonly required for resistance to necrotrophic pathogens and chewing 

insects (Glazebrook, 2005; Bari and Jones, 2009). However, the situation appears more 

complex since the SA pathway is also required for plant resistance towards specific 

necrotrophic pathogens, whereas ET/JA pathways were found to be essential for resistance to 

some biotrophic pathogens (Berrocal-Lobo et al., 2002; Robert-Seilaniantz et al., 2011).  

In Arabidopsis the biosynthesis of the small phenolic compound SA is based on the 

conversion of the primary metabolite chorismate via two distinct enzymatic pathways (Vlot et 

al., 2009), one involving the enzyme PHENYLALANINE AMMONIA LYASE (PAL), and 

the other ISOCHORISMATE SYNTHASE (ICS1/SID2). Only a small fraction of SA is 

produced via the PAL pathway upon pathogen infection, while the main proportion of SA is 

converted by ICS1 to isochorismate and further processed by ISOCHORSMATE 

PYRUVATE LYASE (IPL) to SA.  ICS1/SID2 mutants are severely compromised in 

pathogen-induced SA production and resistance (Garcion et al., 2008). Major components of 

SA-mediated signaling during pathogenic attack are ENHANCED DISEASE 

SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN DEFICIENT4 (PAD4) acting upstream of 

SA in basal resistance to adapted biotrophic pathogens and in R gene mediated ETI 

(Gassmann et al., 1999; Jirage et al., 1999; Wiermer et al., 2005). Downstream SA signaling 



Chapter 1: General introduction 

 

4 

 

is highly dependent on the function of NON-EXPRESSOR OF PATHOGENESIS-RELATED 

GENE 1 (NPR1), which, upon activation by SA, acts as a transcriptional co-activator of a 

large set of defense related genes including PATHOGENESIS-RELATED 1 (PR1) (Mou et 

al., 2003). Recent studies have demonstrated that nuclear NPR1 and its paralogs NPR3, NPR4 

can act as SA receptors, respectively (Fu et al., 2012; Wu et al., 2012). Interestingly, NPR1 in 

the cytosol plays a role in the crosstalk between SA and JA (Vlot et al., 2009).  

JA belongs to the jasmonate class of plant hormones. JA is derived from α-linolenic acid. α-

linolenic acid is processed by a series of reactions involving different enzymes including 

lipoxygenease (LOX), allene oxide synthase (AOS) and allene oxide cyclase (AOC) to 12-

oxo-phytodienoic acid (OPDA) (Wasternack and Kombrink, 2010). OPDA is further 

processed via several enzymatic reactions in the peroxisome including the OPDA 

REDUCTASE 3 (OPR3), to JA. Finally, JASMONATE RESISTANT 1 (JAR1) catalyzes the 

conjugation of the amino acid isoleucine (Ile) to JA thereby forming the molecularly active 

hormone JA-Ile (Staswick et al., 2002; Fonseca et al., 2009). The F-box protein 

CORONATINE INSENSITIVE 1 (COI1) is a key regulator of the JA signaling pathway. 

Together with JASMONATE ZIM (JAZ) domain transcriptional repressor proteins, COI1 

functions as a JA-Ile receptor in the E3 ubiquitin-ligase Skp1-Cullin-F-box complex SCFCOI1 

(Sheard et al., 2010). JAZ proteins act as transcriptional repressors of JA signaling by binding 

to positive transcriptional regulators such as MYC2, 3 and 4 (Fernandez-Calvo et al., 2011; 

Niu et al., 2011). After JA (JA-Ile) accumulation and perception, the physical interaction 

between JAZ proteins and the transcriptional activators are disrupted due to degradation of 

the JAZ proteins, which results in derepression of the JA signaling pathway and activation of 

a large number of JA-responsive genes (Memelink, 2009).  

The JA and ET pathways are thought to operate mainly synergistically during plant defense as 

both hormones induce similar subsets of defense-related genes upon pathogen challenge (Bari 

and Jones, 2009). Both JA and ET signaling can activate members of the 

APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family of transcription factors, 

such as ERF1 and OCTADECANOID-RESPONSIVE ARABIDOPSIS59 (ORA59) (Lorenzo 

et al., 2003; Pre et al., 2008). ERF1 and ORA59 positively regulate one JA/ET sub-branch 

leading to the activation of downstream JA-responsive gene such as PLANT DEFENSIN1.2 

(PDF1.2). In contrast, MYC factors positively control the second sub-branch thereby 

activating genes such as VEGETATIVE STORAGE PROTEIN2 (VSP2) and THIONINE 2.1 

(Thi2.1) (Dombrecht et al., 2007). MYC factors negatively influence the ERF1/ORA59 
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branch. In general, the ERF branch of the JA pathway is associated with enhanced resistance 

to necrotrophic pathogens, whereas the MYC branch of the JA pathway is associated with the 

wound-response and defense against insect herbivores, although MYC2 also plays a role in 

priming for enhanced pathogen defense (Pieterse et al., 2012). 

 The phytohormone ABA plays crucial regulation role in many aspects of plant growth, 

development, and responses to environmental stresses including biotic and abiotic stresses 

(Nambara and Marion-Poll, 2005; Raghavendra et al., 2010; Denance et al., 2013; Leng et al., 

2014). In higher plants, the ABA biosynthetic pathway is well understood, and numerous 

mutants have been identified at each step in this pathway in Arabidopsis, tomato, and maize 

(Leng et al., 2014). The early step of ABA biosynthesis takes place in plastids (Finkelstein, 

2013). All Arabidopsis mutants isolated on the basis of AB-deficiency affect steps 

downstream of zeaxanthin synthesis, for example, aba1, aba2, aba3, aba4, nceds, and aaos. 

The ABA deficiency mutant aba1 produces non-dormant seeds (Koornneef et al., 1982). 

ABA1 in Arabodopsis encodes zeaxanthin epoxidase (ZEP), the enzyme that converts 

zeaxanthin to violaxanthin via the intermediate antheraxanhin (Rock and Zeevaart, 1991). The 

next steps in ABA synthesis are conversion to trans-neoxanthin, isomerization of either 

(trans)-violaxanthin and trans-neoxanthin to their 9-cis-isomers, and cleavage by 9-cis-

epoxycarotenoid dioxygenase (NCED) to release xanthoxin, also known as xanthoxal 

(Finkelstein, 2013). Overexpression experiments in transgenic plants demonstrated that 

xanthophyll cleavage by NCED is a key rate-limiting step in ABA biosynthesis (Nambara and 

Marion-Poll, 2005; Leng et al., 2014). NCEDs are encoded by multigene families in all 

species analyzed, with differential expression of specific family members contributing to 

ABA synthesis in different context (Finkelstein, 2013). Arabidopsis has 9 potential NCED 

genes, 5 of which actually function as NCEDs (Tan et al., 2003). Xanthoxin exits the plastid 

into the cytosol where it is oxidized in two further steps by ABA2 and abscisic aldehyde 

oxidase (AAO) to form ABA (Qin and Zeevaart, 1999; Schwartz et al., 2003; Taylor et al., 

2005; Finkelstein, 2013). ABA2 encodes a short chain dehydrogenase/reductase-like (SDR1) 

enzyme catalyzing production of abscisic aldehyde. The final step is catalyzed by abscisic 

aldehyde oxidase (AAO). AAO requires a molybdenum cofactor for activity and AtABA3 

encodes the sulfurase that produces a functional cofactor. Consequently, aba3 mutants are 

disrupted in all possible AAO activities. ABA catabolism occurs via hydroxylation reactions. 

In the hydroxylation pathway, among three different methyl groups, C-8’ is the predominant 

position for the hydroxylation reaction, which is mediated in Arabidopsis by proteins encoded 

by the CYP707A gene family, including CYP707A1, CYP707A2 and CYP707A3 (Kushiro et 
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al., 2004; Saito et al., 2004).  

In addition to its role in development and adaption to abiotic stress (Shinozaki and 

Yamaguchi-Shinozaki, 2007; Wasilewska et al., 2008; Leng et al., 2014), ABA has emerged 

as an important modulator of the plant immune signaling network (Asselbergh et al., 2008; 

Ton et al., 2009; Cao et al., 2011; Feng et al., 2012; Sanchez-Vallet et al., 2012). In plant 

defense, ABA can function as a positive or a negative regulator of plant defense depending on 

the lifestyle of the pathogen (Denancé et al., 2013). ABA positively regulate host resistance to 

some pathogens including Alternaria brassicicola, Ralstonia solanacearum, and Pythium 

irregular, as ABA-deficient and insensitive mutants were found to be more susceptible than 

wild-type (WT) plants to these pathogens (Adie et al., 2007; Flors et al., 2008; Jiang et al., 

2009; Garcia-Andrade et al., 2011). However, ABA-impaired (in biosynthesis or signaling) 

mutants in tomato (sitiens) and Arabidopsis were shown to have enhanced resistance to some 

other pathogens such as B. cinerea, Pseudomonas syringae, F. oxysporum, Plectosphaerella, 

and Hyaloperonospora parasitica (Audenaert et al., 2002; Mohr and Cahill, 2003; de Torres-

Zabala et al., 2007; de Torres Zabala et al., 2009; Garcia-Andrade et al., 2011; Sanchez-Vallet 

et al., 2012). In addition, ABA plays a direct role in regulating R protein activity. Plants 

treated with ABA or to high temperature both have reduced nuclear accumulation of SNC1 

(Suppressor of npr1, constitutive 1) and RESISTANCE TO PSEUDOMONAS SYRINGAE4 

(RPS4), and are compromised in disease resistance to P. syringae (Mang et al., 2012). 

Negative interactions of ABA with the major hormones involved in plant defense (SA, JA, 

and ET) have been described (Robert-Seilaniantz et al., 2011; Pieterse et al., 2012; Sanchez-

Vallet et al., 2012). For instance, the application of exogenous ABA or drought stress to 

Arabidopsis reduced plant tolerance to an avirulent P. syringae strain (Mohr and Cahill, 

2003). Moreover, genetic and chemical studies in Arabidopsis showed that systemic acquired 

resistance (SAR) induction is suppressed by ABA through inhibition of the pathway both 

upstream and downstream of SA (Yasuda et al., 2008). In PAMP signaling, ABA is utilized 

by pathogens to suppress the SA mediated pathway (Boatwright and Pajerowska-Mukhtar, 

2013). The bacteria toxin, coronatine, triggered ABA accumulation, resulting in the 

suppression of SA synthesis (de Torres Zabala et al., 2009). The suppression of SA by ABA 

is also observed in tomato and rice plants (McDonald and Cahill, 1999a; Audenaert et al., 

2002; Asselbergh et al., 2008). Conversely, activation of SAR suppresses both ABA-

biosynthetic and ABA responsive genes in an NPR1-dependent manner (Yasuda et al., 2008). 

Likewise, the suppressive effect of SA on abiotic stress responses has also been shown. For 
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example, pre-treatment of Zea mays with SA results in decreased drought tolerance (Nemeth 

et al., 2002). ABA and SA have been shown to function antagonistically, they both trigger 

stomata closure thereby acting together to avoid invasion by the bacterium P. syringae in 

Arabidopsis (Melotto et al., 2006).  

Negative interaction between ABA and JA/ET signaling pathways has been demonstrated 

(Anderson et al., 2004; Robert-Seilaniantz et al., 2011). Exogenous application of ABA on 

Arabidopsis plants repressed expression of JA/ET-related defense genes. Consistent with this 

result, disruption of the ABA biosynthesis-related genes ABA1 and ABA2 led to enhanced 

expression of ET/ JA responsive genes (Anderson et al., 2004). This is also consistent with 

the negative interaction of ABA- and JA-signaling in the modulation of Arabidopsis 

resistance to the necrotrophic fungus Plectosphaerella cucumerina (Sanchez-Vallet et al., 

2012). Conversely, mutants in JA and ET signaling showed up-regulation of ABA responsive 

genes or ABA-related phenotypes, indicating that JA/ET also act to suppress the ABA 

signaling pathway (Anderson et al., 2004). ABA also played a positive role in activation of JA 

biosynthesis. In Arabidopsis, ABA has been shown to be required for JA biosynthesis that is 

essential for resistance to Pythium irregulare (Adie et al., 2007). Moreover, an activation-

tagged mutant that overexpresses NCED5, encoding an ABA biosynthetic enzyme, 

accumulates higher amounts of ABA and JA and had reduced SA content (Fan et al., 2009).  

It is now obvious that the phytohormone pathways are all intimately connected and that 

substantial crosstalk between pathways exists. This complex network of different signaling 

pathways, probably allows plants to fine-tune their responses to different biotic stress 

situations (Pieterse et al., 2012; Denance et al., 2013).  

1.3. Phytoalexins in defense against pathogens 

Next to the plant hormones, plant secondary metabolites play important roles in plant defense. 

Low molecular mass secondary metabolites with antimicrobial activity that are induced by 

various stresses are collectively named phytoalexins (Hammerschmidt, 1999; Pedras et al., 

2011a). Phytoalexins show biological activity towards a variety of pathogens and are 

considered as molecular markers of disease resistance (Ahuja et al., 2012). 

Camalexin is the major phytoalexin of A. thaliana, which is induced in the leaves by a great 

variety of biotrophic and necrotrophic plant pathogens (Glawischnig, 2007). The camalexin 

biosynthetic capacity is not restricted to leaves but also is observed in roots upon infection 

with the Pythium sylvaticum (Bednarek et al., 2005). Camalexin can also be induced by 
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PAMPs, such as the oomycete-derived necrosis and ethylene-induced peptide 1 (Nep1)-like 

proteins and bacteria-derived peptidoglycans (Qutob et al., 2006; Gust et al., 2007). Other 

PAMPs such as flg22 were reported to induce the expression of camalexin biosynthetic genes, 

although triggering of camalexin biosynthesis has not been observed in all instances 

(reviewed by Ahuja, et al., 2012).  

Camalexin is derived from tryptophan and the early biosynthetic steps are shared with other 

indolic compounds, such as indole glucosinolates. Although camalexin biosynthesis in 

Arabidopsis has not yet been fully elucidated, several of the steps in the pathway have been 

characterized. The enzymes in this pathway include CYP79B2/B3 (Hull et al., 2000; 

Mikkelsen et al., 2000), CYP71A12 (Millet et al., 2010), CYP71A13 (Nafisi et al., 2007), 

GSTF6 and GGT1/GGT2 (Su et al., 2011), GGP1/GGP3 (Geu-Flores et al., 2011), PCS1 

(Bottcher et al., 2009) and CYP71B15 (PAD3) (Glazebrook and Ausubel, 1994; Zhou et al., 

1999). CYP79B2 and CYP79B3 convert tryptophan to indole-3-acetaldoxime (IAOx), and the 

cyp79b2 cyp79b3 double mutant is devoid of indole glucosinolates,  has only trace amounts of 

camalexin, and synthesizes reduced levels of the phytohormone indole-3-acetic acid (IAA) in 

heat stressed seedlings and root tips (Zhao et al., 2002; Glawischnig et al., 2004; Ljung et al., 

2005). Thus, IAOx is the substrate not only for the biosynthesis of camalexin, but also for 

indole glucosinolates and IAA. Subsequently, CYP71A13 catalyzes IAOx to indole-3-

acetonitrile (IAN) in leaves (Nafisi et al., 2007). A homolog gene CYP71A12 was shown to 

have an important role in camalexin synthesis in roots (Millet et al., 2010). The penultimate 

steps in camalexin biosynthesis is catalyzed by the multifunctional enzyme CYP71B15 

(PAD3) (Schuhegger et al., 2006; Bottcher et al., 2009). The pad3 mutant accumulates at best 

trace amounts of camalexin upon biotic stress.  

Phytoalexins are typically synthesized locally in proximity to the site of pathogen infection 

(Kuc, 1995). This is also the case for camalexin based on spatial distribution analyses after 

infection with B. cinerea  and Alternaria alternate (Schuhegger et al., 2007). High camalexin 

concentrations were observed at the infection site (A. alternate) or in proximity to the lesions 

induced by B. cinerea, while leaf areas that did not show disease symptoms were camalexin 

deficient (Kliebenstein et al., 2005).  

The regulation of camalexin biosynthesis was reported to involve hormones, MAPKs, and 

microRNAs (Ahuja et al., 2012). Based on numerous genetic and chemical studies, hormone-

dependancy of camalexin biosynthesis is thought to depend on the infecting pathogen. Some 

studies indicate that induction of camalexin is dependent on SA (Denby et al., 2005), JA 
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(Rowe et al., 2010) and ET (Thomma et al., 1999a; Heck et al., 2003), respectively. Other 

reports demonstrate that camalexin biosynthesis is independent of hormones (Nawrath and 

Metraux, 1999; Thomma et al., 1999b; Roetschi et al., 2001; van Wees et al., 2003; Ren et al., 

2008b). In addition, several reports have shown that camalexin biosynthesis is regulated 

through MAPK cascades and WRKY transcription factors (TFs) (Qiu et al., 2008; Mao et al., 

2011). For example, MPK3/MPK6 affected camalexin levels through transcriptional 

activation and phosphorylation of WRKY33 in response to B. cinerea infection. WRKY33 

was previously shown to control camalexin levels by regulating the expression of genes, such 

as PAD3 and CYP71A13 (Mao et al., 2011). Another MAP kinase, MPK4 interacts with its 

substrate MAP kinase substrate 1 (MKS1), the later directly interacting with WRKY33, 

thereby forming a ternary protein complex. PAMP treatment or P. syringae infection activates 

MPK4, which phosphorylates MKS1 and this event releases WRKY33 from the ternary 

protein complexes. The WRKY33 protein is subsequently detected at the promoter of PAD3 

and presumably activates gene expression (Qiu et al., 2008). Two other WRKY TFs, 

WRKY18 and WRKY40, have been implicated in negatively regulating camalexin 

biosynthesis based on the observation that higher transcriptional activation of CYP71A13, and 

higher camalexin levels are detected in the wrky18 wrky40 double mutants compared to WT 

plants (Pandey et al., 2010). 

1.4. Transcriptional regulation of plant immunity 

Global expression analyses suggest that transcriptional re-programming of plant cells is a 

crucial step to mount an efficient defense response (Ferrari et al., 2007; Pandey and Somssich, 

2009; Rushton et al., 2010; Birkenbihl et al., 2012; Mathys et al., 2012; Mulema and Denby, 

2012). Several transcription factor families are involved in the regulation of gene expression 

upon pathogen challenge. These defense-related TFs include MYB, AP2/ERF, MYC/bHLH, 

NAC, TGA/bZIP and WRKY family members.  

For example, several MYB-type Arabidopsis transcription factors have been identified that 

regulate distinct host transcriptional outputs in response to B. cinerea infection. BOS1 

(BOTRYTIS SUSCEPTIBLE 1)/MYB108 appears to restrict necrosis triggered by B. cinerea 

and A. brassicicola, and loss-of-BOS1 function resulted in increased plant susceptibility 

(Mengiste, 2012). In response to stress and B. cinerea, BOS1 physically interacts with and is 

ubiquitinated by BOI, a RING E3 ligase that contributes to defense by restricting the extent of 

necrosis (Luo et al., 2010). MYB51 is involved in the transcriptional activation of indole 

glucosinolate biosynthetic genes, which also contributes to resistance towards necrotrophs 
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(Kliebenstein et al., 2005; Sanchez-Vallet et al., 2010). In contrast, the MYB-related genes 

ASYMMETRIC LEAVES 1 (AS1) and MYB46 appear to play a role in disease susceptibility as 

the mutants show increased disease resistance towards B. cinerea (Choquer et al., 2007b; 

Ramirez et al., 2011).  

Many transcriptional activators and repressors of the ET/JA pathways also impact resistance 

to B. cinerea (Glazebrook, 2005; Bari and Jones, 2009). In particular the TFs ERF1, ORA59, 

ERF5, ERF6 and RAP2.2, have regulatory functions in influencing host susceptibility to B. 

cinerea (Berrocal-Lobo et al., 2002; Pre et al., 2008; Moffat et al., 2012; Zhao et al., 2012). 

Transgenic Arabidopsis lines over-expressing ERF1 or ORA59 were sufficient to confer 

resistance to B. cinerea (Kazan and Manners, 2013) whereas RNAi-ORA59 silenced lines 

were more susceptible (Pre et al., 2008). Both ERF1 and ORA59 appear to be key integrators 

of the ET- and JA-signaling pathways (Muckenschnabel et al., 2001). In contrast, the bHLH 

transcription factor MYC2/JIN1 is a master regulator of diverse JA-mediated responses by 

antagonistically regulating two distinct branches of the JA signaling pathway in response to 

necrotrophs (Kazan and Manners, 2013). 

NAC TFs are also involved in plant immunity. Overexpression of NAC TF ATAF1 resulted in 

enhanced susceptibility of Arabidopsis plants to B. cinerea (Wang et al., 2009). In contrast, 

the ability of Arabidopsis to restrict penetration by the non-host barley pathogen Blumeria 

graminis was shown to be dependent on ATAF1-mediated repression of ABA biosynthesis 

(Jensen et al., 2008). ATAF1 was shown to directly bind to the NCED3 promoter, which 

positively correlated with increased NCED3 expression and ABA levels (Jensen et al., 2013). 

Like ATAF1, transgenic lines overexpressing NAC019 or NAC055 resulted in enhanced 

susceptibility of Arabidopsis plants to B. cinerea. In contrast, the nac019 nac055 double 

mutant showed increased resistance to B. cinerea compared with WT plants (Bu et al., 2008). 

Co-regulators interacting with TFs also play key roles in plant immunity (Buscaill and Rivas, 

2014). For example, during the Arabidopsis SAR response, SA induces NPR1 activation and 

nuclear NPR1 interacts with members of the TGA-bZIP TF subfamily to modulate the 

transcriptional responses of PR1 and WRKY defense-related genes (Tada et al., 2008; 

Pajerowska-Mukhtar et al., 2013). As already mentioned the JAZ proteins act as 

transcriptional repressors of JA signaling by binding to the bHLH class transcriptional 

regulators MYC2, 3 and 4 (Pauwels et al., 2010; Fernandez-Calvo et al., 2011). More 

recently, JAZ proteins are reported to additionally interact with other bHLH TFs, including 

bHLH003, bHLH012 and bHLH017, which function as transcriptional repressors (Fonseca et 
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al., 2014). These studies suggest an intricate competition between activators and repressors 

interacting with JAZ repressors that determine the proper output of JA-dependent 

transcriptional responses (Buscaill and Rivas, 2014).  

1.5. WRKY transcription factors in plant immunity 

In addition to other TFs, the WRKY family of transcriptional regulators have been shown to 

regulate various developmental processes but most prominently to regulate gene expression 

during plant defense responses (Pandey and Somssich, 2009). 

In Arabidopsis, the WRKY family contains 74 expressed genes (Eulgem et al., 2000; Rushton 

et al., 2010). All WRKY TFs contain at least one highly conserved ~60 amino acid long 

region, designated WRKY domain, encompassing the WRKYGQK heptapeptide along with a 

zinc-finger forming motif that enables binding to a specific DNA elements termed the W box 

(5’-T/C-TGAC-T/C-3’). The slight variations of the WRKY domain and alternative binding 

sites have also been identified (Ciolkowski et al., 2008; Pandey and Somssich, 2009). 

Moreover, the nucleotides directly adjacent to the W-box sequence, either at the 5’end or at 

the 3’end, can determine certain binding preferences of different WRKY proteins (Ciolkowski 

et al., 2008). Yamasaki et al. (2012) could resolve the structure of the WRKY domain in 

complex with a W-box (Yamasaki et al., 2012). This analysis revealed that the WRKY 

domain consists of several β-strands. The WRKYGQK residues form the most N-terminal β-

strand and appear to enter the major DNA groove and form contacts with the W-box. WRKY 

proteins contain characteristic features of TFs such as nuclear localization signals, 

activation/repression domains and domains associated with protein - protein interactions 

(Eulgem et al., 2000; Rushton et al., 2010; Chi et al., 2013; Llorca et al., 2014).  

Several genetic studies have revealed the importance of various WRKY TFs in positively or 

negatively regulating plant immunity although due to functional redundancy, single wrky 

mutants often to not show clear phenotypes (Eulgem and Somssich, 2007). In Arabidopsis, 

WRKY18 and WRKY40 negatively modulate host defense towards the biotrophic powdery 

mildew fungus Golovinomyces orontii, as wrky18 wrky40 double mutants render otherwise 

susceptible wild-type plants resistant to this pathogen (Pandey et al., 2010). Resistance in 

wrky18 wrky40 double mutant plants is accompanied by massive transcriptional 

reprogramming, modulating expression of the defense regulator EDS1 and camalexin 

biosynthetic pathway genes, fine-tuning hormones signaling. Interestingly, WRKY18 and 

WRKY40 were also shown to negatively regulate PTI upon infection with P. syringae 



Chapter 1: General introduction 

 

12 

 

DC3000 but to positively impact  RPS4-dependent ETI (Chen et al., 2010; Schnon et al., 

2013). Arabidopsis WRKY11 and WRKY17 were also found to act together to negatively 

regulate PTI to P. syringae DC3000 (Journot-Catalino et al., 2006). A similar finding was 

observed for WRKY38 and WRKY62 (Kim et al., 2008b). Additional Arabidopsis WRKY 

TFs that appear to negatively regulate host immunity include; WRKY7, WRKY23, 

WRKY25, WRKY27, WRKY41, WRKY48, WRKY53, WRKY58, WRKY60 (Pandey and 

Somssich, 2009). In contrast, Arabidopsis WRKY3 and WRKY4 have redundant functions in 

positively modulating resistance towards B. cinerea (Lai et al., 2008), and WRKY53 and 

WRKY70 both positively modulate SAR (Wang et al., 2006). Furthermore, WRKY TFs are 

crucial mediators in defense-related hormone signaling crosstalk (Pieterse et al., 2012). 

Arabidopsis WRKY70 represents an important node of convergence between SA and JA 

signaling (Li et al., 2004; Li et al., 2006). The mutant lacking WRKY70 function is 

susceptible to different bacteria, fungi and the oomycete, but is not affected in the antagonistic 

effect of SA on the JA pathway (Ren et al., 2008a; Leon-Reyes et al., 2010). Based on genetic 

studies other WRKY TFs have been connected to SA-JA signaling crosstalk, including 

WRKY8, WRKY11, WRKY17, WRKY18, WRKY40, WRKY41, WRKY50, WRKY51, 

WRKY60 and WRKY62 (Journot-Catalino et al., 2006; Xu et al., 2006; Higashi et al., 2008; 

Chen et al., 2010; Gao et al., 2011; Pieterse et al., 2012).  

In rice OsWRKY45 expression is induced upon SA treatment and infection with the rice blast 

fungus Magnaporthe grisea. Rice contains the pair of allelic genes OsWRKY45-1 and 

OsWRKY45-2 (Tao et al., 2009). Overexpression of OsWRKY45-1 and -2 both lead to an 

enhanced resistance towards M. grisea, whereas OsWRKY45 knockdown plants did not reveal 

increased susceptibility (Shimono et al., 2007; Shimono et al., 2012). Interestingly however, 

OsWRK45-1 appears to negatively regulate resistance to Xanthomonas oryzae whereas 

OsWRKY45-2 seems to be a positive regulator. More recently, OsWRKY45 was reported to 

interact with a coiled-coiled-nucleotide-binding site-leucine-rich repeat (CC-NB-LRR) 

protein Pb1 (Inoue et al., 2013). Further analysis indicated that Pb1-mediated rice panicle 

blast resistance is largely compromised when WRKY45 expression was knocked down in a 

Pb1-containing rice cultivar ‘Modan’.  

In barley, ETI to barley powdery mildew (B. graminis f. sp. hordei) requires recognition of 

the fungal AVR effector by the CC-NB-LRR type R protein MLA (Shen et al., 2007). 

Recognition of AVRA10 by MLA10 induces nuclear association between the activated MLA10 

homodimer and the transcriptional repressor HvWRKY1 or HvWRKY2 (Shen et al., 2007; 
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Maekawa et al., 2011). Thus, MLA-WRKY association appears to interfere with the WRKY 

repressor function thereby resulting in de-repression of PTI. A recent report identified the 

MYB TF HvMYB6 as an additional MLA10-interacting TF that positively regulates 

resistance to B. graminis (Chang et al., 2013). HvMYB6 also interacts with the HvWRKY1 

repressor. Activated MLA releases the HvMYB6 activator from HvWRKY1 repression, 

thereby enabling HvMYB6 binding to DNA and activating gene expression.  

A recent report showed that WRKY TFs are able to act synergistically with calcium-

dependent protein kinases (CPKs) proteins during ETI signaling in Arabidopsis (Gao et al., 

2013). During ETI, a subgroup of WRKY TFs including WRKY8, 28, and 48 are 

phosphorylated by closely related CPK4, 5, 6 and 11, and subsequently activating expression 

of an ETI marker gene WRKY46. Activation of WRKY46 expression is thought to be 

dependent on the kinase activity of CPKs and the phosphorylated WRKYs (Gao et al., 2013). 

A direct interaction between MAPK and WRKY proteins has also been reported in Nicotiana 

benthamiana. NbWRKY8 regulates broad-spectrum disease resistance, and is a substrate of 

three pathogen-responsive MAPKs, SIPK, WIPK, and NTF4 (Ishihama et al., 2011). 

Phosphorylation of NbWRKY8 enhanced its DNA-binding and transcriptional activities.  

Based particularly on the extensive studies performed in Arabidopsis it appears that the 

WRKY TF family is firmly involved in plant immunity with numerous members engaged in 

controlling diverse signaling pathways and mediating signaling crosstalk. Numerous 

Arabidopsis WRKY genes are themselves strongly responsive to pathogenic stimuli and their 

expression appear to be often dependent on W-box elements within their promoters. This 

implies the existence of substantial feedback and feed-forward mechanisms (cross-regulation 

and auto-regulation) as has been previously hypothesized (Eulgem and Somssich, 2007).      

1.6. The necrotrophic pathogenic fungus Botrytis cinerea 

B. cinerea is an ascomycetous fungus that causes rotting of plant material accompanied by the 

formation of gray conidiophores and conidia, thus the name gray mold disease. B. cinerea is a 

typical necrotroph, which co-opts programmed cell death pathways in the host to achieve 

colonization (van Baarlen et al., 2007). The fungus has a broad host-range capable of 

infecting more than 200 plant species worldwide, including a range of agronomically and 

economically important crops (Williamson et al., 2007). Due to its broad host-range, B. 

cinerea is the second most agriculturally important fungal plant pathogen (Dean et al., 2012). 

Global expenses of Botrytis control easily surmount € 1 billion per year (Dean et al., 2012).  
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B. cinerea is a genuine necrotroph: it has a broad host range, it secretes a large set of cell wall 

degrading enzymes and phytotoxic low molecular weight compounds, it rapidly kills host 

tissue, and is able to draw its nutrients exclusively from dead tissue (Tudzynski and 

Kokkelink, 2009). The life cycle of B. cinerea strain B05.10 under laboratory conditions is 

shown in Figure 1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1:  Life cycle of B. cinerea B05.10 (modified from Schumacher and Tudzynski, 2012). Within a 

few hours, the germination of conidia on primary leaves of French bean (Phaseolus vulgaris) starts. Quickly, the 

short germ tubes penetrate the epidermis and invade the plant tissue (Penetration). After two days post 

innoculation, the first macroscopically visible symptoms appear on the leaf including small necrotic spots 

(primary lesions). Subsequently, the lesion spreads quickly (Invasive growth II), reaching diameters of 25 mm 

after 4 days. After about 1 week the entire leaf is infected: the plant tissue collapses and becomes watery (soft 

rot) accompanied by formation of gray conidiophores and conidia under light condition (asexual reproduction). 

In the absence of light long-term survival structures such as sclerotia are formed after 3-4 weeks. In the field, 

these survival structures can be associated with living plants or with plant debris lying on or buried in soil. 

Sclerotia may germinate by forming conidiophores and conidia under appropriate conditions, forming the 

primary source of inoculum in the field. Additionally, the sclerotia can act as female (sclerotial) parent for 

fertilization with suspensions of microconidia from a male (spermatial) parent carrying the opposite mating type 
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(sexual reproduction). After several weeks of incubation under diurnal illumination, apothecia can be found 

containing asci with eight ascospores.  

In the field, B. cinerea populations are known for high genetic variation in their 

aggressiveness on different plant species (Grindle, 1979). Thus, the outcome of experiments 

using different isolates should be carefully analyzed. Detailed molecular and comparative 

analysis among different isolates is becoming feasible as the genomes of two B. cinerea 

strains have recently been sequenced (Amselem et al., 2011). 

The genome sequencing information is available for strain B05.10 (Botrytis cinerea 

Sequencing Project, Broad Institute of Harvard and MIT; 

http://www.broadinstitute.org/annotation /genome/botrytis cinerea/MultiHome.html) (Staats 

and van Kan, 2012) and strain T4 (Botrytis cinerea genome project, URGI, Genoscope;   

https://urgi.versailles.inra.fr/Species/Botrytis). The availability of the genome sequence and 

the feasibility of obtaining knockout mutants (van Kan et al., 1997; Schumacher et al., 2008) 

or achieving gene silencing (Patel et al., 2008, 2010), together with its economic relevance, 

have contributed to B. cinerea being the most extensively studied necrotrophic fungal 

pathogen.  

Genome-wide transcriptional profiling of B. cinerea B05.10 gene expression during infections 

with different hosts has recently been reported (Blanco-Ulate et al., 2014). This study 

confirmed that Botrytis expressed most of its genes (>80%) encoding putative secreted 

Carbohydrate-active enZymes (CAZymes) during infection of three different hosts, including 

pectin backbone-modifying enzymes, hemicelluloses-modifying proteins, enzymes that 

potentially target pectin and hemicellulose side-branches and putative cellulose degrading 

enzymes (Blanco-Ulate et al., 2014). In addition, several proteomic analyses have been 

reported on B. cinerea (Shah et al., 2009b; Shah et al., 2009a; Espino et al., 2010; Fernandez-

Acero et al., 2010; Cherrad et al., 2012; Li et al., 2012a; Gonzalez-Fernandez et al., 2013; 

Gonzalez-Fernandez et al., 2014). More recently, the mycelium and secreted proteome of six 

B. cinerea wild-type strains with different host range have been reported, including B05.10, 

T4, CECT2100, CECT2850, CECT2996 and CECT20518 (Gonzalez-Fernandez et al., 2014). 

Fungal genetic versatility among different strains was confirmed at the proteome level for 

both mycelium proteome and secreted proteins. In particular, some of identified proteins from 

the secretome have been reported as virulence factors, and play important roles in the 

successful colonization of a plant host. Among these studies, only 10% of the predicted 

secreted proteins from B. cinerea have been identified based on the methodology available 
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currently (Choi et al., 2010; Grandesso et al., 2014). Whether this is consistent with 

transcriptional profiling of secreted-protein related genes in B. cinerea is not known so far.  

Some cell wall-degrading enzymes are related with Botrytis virulence based on molecular and 

genetic studies, including Bcpme1 (Valette-Collet et al., 2003; Kars et al., 2005a), Bcpg1 (ten 

Have et al., 1998), Bcpg2 (Kars et al., 2005b) and xyn11A (Brito et al., 2006). However, most 

cell wall-degrading enzymes are encoded by multigenic families and some may have partly 

redundant functions (Choquer et al., 2007b). In addition, B. cinerea produces numerous 

phytotoxic compounds and proteins. Among them, the best know is botrydial (Colmenares et 

al., 2002). It accumulates around infection sites to high concentrations and its virulence to the 

host is strain dependent. Deletion of the bcbot1 gene in some B. cinerea strains blocks the 

biosynthesis of botrydial and shows reduced virulence; however that is not the case for all 

tested strains (Siewers et al., 2005). B. cinerea can produce other toxins such as botcinolides 

(Reino et al., 2004; Tani et al., 2006). Thus, distinct B. cinerea strains may use different 

toxins, or combinations hereof, to kill plant tissue. Additionally, active oxygen species (AOS) 

production is also associated with B. cinerea pathogenicity (Govrin and Levine, 2000; 

Patykowski and Urbanek, 2003). The targeted deletion of the fungal superoxide dismutase 

(SOD) gene significantly reduced virulence and extracellular H2O2 accumulation at the host-

fungus interface (Rolke et al., 2004). Moreover, B. cinerea is capable of producing several 

plant hormones in axenic cultures. So far, all tested B. cinerea strains produce large quantities 

of ethylene and low levels of IAA, while ABA is produced only by some, but not all, strains 

in culture (Siewers et al., 2004; Siewers et al., 2006; Cristescu et al., 2007). However, 

production of these plant hormones by Botrytis in planta has not been demonstrated, and it 

remains uncertain whether the fungus indeed utilizes plant substrates to produce plant 

hormones, and whether the fungal-produced plant hormones affect disease development. 

1.7. The aims of the thesis  

Previously our group and others have provided convincing evidence that Arabidopsis 

WRKY33 is a key transcriptional regulator of plant immunity towards the necrotrophic 

fungus B. cinerea (Zheng et al., 2006; Birkenbihl et al., 2012). WRKY33 positively 

modulates JA-dependent signaling while negatively affecting the SA pathway thereby 

implicating this TF in SA-JA signaling crosstalk (Birkenbihl et al., 2012). Applying ChIP-

qPCR a small number of gene loci were identified that proved to be direct in vivo WRKY33 

targets upon B. cinerea infection. These genes included CYP71A13 and PAD3 involved in 

camalexin biosynthesis, JAZ1 and JAZ5 encoding repressors of JA signaling, ORA59 
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encoding a TF positively affecting one branch of the JA-ET signaling pathway while 

negatively affecting the other branch (Lippok et al., 2007; Mao et al., 2011; Birkenbihl et al., 

2012). However, based on the massive differential transcriptional reprogramming observed in 

WT and wrky33 mutant plants upon B. cinerea 2100 infection (Birkenbihl et al., 2012),  it was 

obvious that additional in vivo targets for WRKY33 binding are present within the 

Arabidopsis genome. Moreover, although genetic studies of PAD3 clearly confirm its 

contribution to WRKY33-dependent resistance it cannot be the only component involved, as 

fungal growth in planta is significantly higher in the wrky33 mutant compared to pad3. 

Hence, it was apparent that other key genes involved in WRKY33-dependent resistance 

towards this fungus have not yet been identified. We observed that the JA pathway was 

activated both in WT and wrky33 mutant plants 14h post inoculation (14hpi) with B. cinerea 

but significantly decreased in the mutant 24hpi, whereas the SA pathway was strongly 

induced only in the mutant during infection (Birkenbihl et al., 2012). We therefore 

hypothesized that SA-mediated antagonism of the JA signaling pathway occurred at later 

infection stages, and that this antagonism should in part contribute to the susceptibility of 

wrky33 to B. cinerea. However, genetic studies indicated that SA suppression of JA signaling 

was insufficient for WRKY33-mediated resistance (Birkenbihl et al., 2012).  

Thus, the first and major aim of my study was to employ next generation sequencing 

technology (ChIP-seq and RNA-seq) to identify B. cinerea 2100-dependent WRKY33 in vivo 

binding targets on a genome-wide scale, and to associate such binding sites to neighboring 

genes whose expression is clearly altered during the infection process. Subsequent 

biochemical and genetic analyses would then be employed to determine the contribution of 

such candidate target genes in mediating host immunity towards this fungus. 

As a second aim I plan to address the question whether WRKY33-dependent Arabidopsis 

immunity only acts against the B. cinerea strain 2100, or whether it also contributes to host 

immunity towards other B. cinerea strains or isolates. The interaction of Botrytis with 

numerous plants has been extensively studied in the past. Still, most studies on the molecular 

bases of plant-necrotroph interactions failed to consider possible pathogen variation. Recent 

findings however indicate that similar to what has been observed with bacterial and oomycete 

pathogens, plant immune responses to various B. cinerea strains may differ and may be 

mediated by distinct recognition mechanisms due to intraspecific variation in virulence gene 

repertoires of the fungus (Choquer et al., 2007b; Rowe and Kliebenstein, 2010). Thus, I plan 

to include two additional Botrytis isolates in my study to determine if pathogen variation has 
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an influence on host immunity determined by WRKY33. 

In summary, the aim of the current thesis is to gain deeper insights into how Arabidopsis 

WRKY33 regulates host transcriptional outputs towards B. cinerea to establish plant 

immunity. Beyond this, this study should provide the first genome-wide view of a 

transcription factor modulating host target gene expression during the in vivo interaction of a 

plant with a phytopathogen.   
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2.1. Abstract 

The necrotrophic fungus Botrytis cinerea causes serious crop losses worldwide. Plant 

immunity to the necrotrophic fungus B. cinerea is under complex genetic control. In 

Arabidopsis thaliana loss of WRKY33 function renders otherwise resistant Col-0 plants 

susceptible towards B. cinerea strain 2100. To elucidate the molecular components involved 

we performed global mapping of WRKY33 regulated target genes by integrating ChIP-seq 

data of WRKY33 binding sites with RNA-seq results of 14h B. cinerea-induced and 

WRKY33-dependent gene expression profiles. In total we identified ~1500 genes associated 

with WRKY33 high confidence binding sites upon pathogen challenge. The majority of the 

WRKY33 binding peak regions were localized to promoter and 5’ intergenic sites and 

contained the major WRKY factor DNA binding motif, the W-box. The genome-wide 

expression profiles revealed that 318 out of the 2765 genes affected in their expression by 

WRKY33 are direct targets at 14h post infection. Interestingly, the expression of over 75% of 

the WRKY33 target genes is negatively affected after pathogen challenge including critical 

genes involved in signaling, hormone response, and defense, while expression of around 25% 

is positively affected including camalexin biosynthetic pathway genes. In particular, 

WRKY33 negatively regulates an ABA branch of the defense regulatory network by 

suppressing the expression of NCED3 and NCED5, which are involved in ABA biosynthesis. 

Genetic studies showed that in the wrky33 nced3 nced5 triple mutant resistance towards B. 

cinerea 2100 was restored to wild-type (WT). Moreover, the differential expression of many 

WRKY33 regulated genes also returned to WT levels within this triple mutant post infection. 

Consistently, ABA and SA levels decreased to WT levels in the wrky33 nced3 nced5 triple 

mutant compared to wrky33. Our results reveal a new role of WRKY33 in modulating host 

immunity by repressing part of the ABA hormone regulatory network. Furthermore, the dual 

activator and repressor role of WRKY33 in host defense response is discussed.  

2.2. Introduction 

Necrotrophic fungi including B. cinerea, F. oxysporum, A. brassicicola and Sclerotinia 

sclerotiorum, are the largest class of fungal plant pathogens and cause serious crop losses 

worldwide (Audenaert et al., 2002; Lazniewska et al., 2010). These pathogens extract 

nutrients from host cells killed prior to or during colonization, by producing a range of 

phytotoxic compounds and cell wall degrading enzymes (Williamson et al., 2007; Mengiste, 

2012). B. cinerea has a broad host-range, causes disease both pre- and postharvest, and is the 

second most agriculturally important fungal plant pathogen (Dean et al., 2012). 
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Thus, plant immunity to B. cinerea appears to be under complex genetic control (Rowe and 

Kliebenstein, 2008). This remains broadly true since B. cinerea uses multiple strategies to 

quickly kill host cells. However, in the last two decades both forward and reverse genetic 

screens have identified numerous genes that influence the outcomes of host- B. cinerea 

interactions. Large-scale transcriptional reprogramming is often observed after B. cinerea 

infection, indicating the involvement of key transcription factors (TFs) in this process 

(AbuQamar et al., 2006; Birkenbihl et al., 2012; Windram et al., 2012). Several MYB-type 

Arabidopsis transcription factors have been identified that regulate distinct host 

transcriptional responses towards B. cinerea. BOS1 (BOTRYTIS SUSCEPTIBLE 1)/MYB108 

appears to restrict necrosis triggered by B. cinerea and A. brassicicola, and loss-of-BOS1 

function resulted in increased plant susceptibility (Mengiste et al., 2003; Veronese et al., 

2004). In response to stress and B. cinerea, BOS1 can be stabilized by a physicaly interaction 

with the protein BOI, a RING E3 ligase, which ubiquitinates BOS1 (Luo et al., 2010). BOI 

functions similar to BOS1 and contributes to defense against B. cinerea by restricting the 

extent of necrosis (Luo et al., 2010). MYB51 is involved in the transcriptional activation of 

indole glucosinolate biosynthetic genes, which contribute to resistance to necrotrophic fungi 

(Clay et al., 2009). In contrast, the MYB-related gene ASYMMETRIC LEAVES 1 (AS1) and 

MYB46 appear to play a role in disease susceptibility as the mutants show increased disease 

resistance towards B. cinerea (Nurmberg et al., 2007; Ramirez et al., 2011). Many 

transcriptional activators and repressors in ethylene (ET) and jasmonic acid (JA) pathways 

impact resistance to B. cinerea since plant ET / JA signaling are more important for regulating 

resistance to necrotrophic pathogens (Thomma et al., 1998; Glazebrook, 2005; Bari and 

Jones, 2009). Expression of several of these, including ERF1, ORA59, ERF5, ERF6 and 

RAP2.2, influences host susceptibility to B. cinerea (Berrocal-Lobo et al., 2002; Pre et al., 

2008; Moffat et al., 2012; Zhao et al., 2012). Transgenic Arabidopsis lines over-expressing 

ERF1 confer resistance towards the B. cinerea (Berrocal-Lobo et al., 2002). Similarly, 

overexpression of ORA59 increased resistance toward B. cinerea whereas RNAi-ORA59 

silenced lines were more susceptible (Pre et al., 2008). Both ERF1 and ORA59 appear to be 

key integrators of the ET and JA-signaling pathway (Pieterse et al., 2009). In contrast, JA 

INSENSITIVE1 (JIN1/MYC2) affects host resistance by antagonizing JA-ET defense 

responses to necrotrophs (Lorenzo et al., 2004; Nickstadt et al., 2004). Members of the NAC 

TF family have also been shown to affect the outcome of such an interaction, either positively 

or negatively (Bu et al., 2008; Wang et al., 2009). However, very little is known about the TF 
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regulated target genes on a genome-wide level and about the associated regulatory networks 

modulating host transcriptional responses to B. cinerea infection. 

The WRKY family of TFs also modulate host defense towards B. cinerea (Pandey and 

Somssich, 2009). In particular, WRKY33 positively regulates host defense to necrotrophs 

such as A. brassicicola and B. cinerea isolates since wrky33 knockout mutants were fully 

susceptible to these pathogens (Zheng et al., 2006; Birkenbihl et al., 2012). WRKY33-

mediated immune response appear also to involve post-translational regulation (Ishihama and 

Yoshioka, 2012). In one case, WRKY33 was shown to be directly phosphorylated by the 

MAP kinases MPK3 and MPK6 in vivo upon B. cinerea infection and thus subsequently to 

activate PAD3 expression (Mao et al., 2011). PAD3 encodes a key biosynthetic enzyme 

required for the production of the antifungal phytoalexin camalexin (Zhou et al., 1999). Since 

phosphorylation of WRKY33 does not affect its DNA-binding capability, MPK3 and MPK6 

are thought to promote additional WRKY33 functions. Moreover, WRKY33 directly interacts 

with its own gene promoter, suggesting a potential positive feedback regulation loop thereby 

further enhancing WRKY33 transcription (Mao et al., 2011). In a second case study, WRKY33 

was found to interact with MAP KINASE SUBSTRATE1 (MKS1), a VQ-motif containing 

protein, also designated VQ21, and to form a MPK4-MKS1-WRKY33 ternary protein 

complex within the nucleus of resting cells (Andreasson et al., 2005; Qiu et al., 2008). Upon 

challenge with the hemibiotrophic pathogen Pseudomonas syringae or upon elicitation by the 

Microbe Associated Molecular Pattern (MAMP) flg22, activated MPK4 phosphorylates 

MKS1 thereby releasing WRKY33 from the complex. WRKY33 was subsequently found 

bound to the PAD3 promoter, and this binding correlated with enhanced PAD3 expression 

(Andreasson et al., 2005; Qiu et al., 2008). In other cases, WRKY33 interactions with 

different VQ motif-containing proteins such as MVQ1-5 (MPK3/6-targeted VQ-motif-

containing protein 1-5), MVQ10, VQ8, and VQ23/16 (SIGMA FACTOR BINDING 

PROTEIN SIB1/SIB2) were also observed (Lai et al., 2011b; Lai et al., 2011a; Cheng et al., 

2012; Pecher et al., 2014; Weyhe et al., 2014). The dynamic nature of these VQ protein 

interactions has been suggested to have distinct roles and regulatory functions during the plant 

response to either bacterial or fungal pathogens (Buscaill and Rivas, 2014). 

In recent years, ChIP-on-chip and ChIP followed by sequencing (ChIP-seq) have emerged as 

powerful tools to profile genome-wide direct target genes of transcription factors. The 

methods were first applied for human transcription factors (Johnson et al., 2007; Nielsen et 

al., 2008; Robertson et al., 2008; Wederell et al., 2008; Sakabe et al., 2012), but more recently 
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this technology has also been reported for plant transcription factors. In Arabidopsis, genome-

wide direct target gene analysis has been reported for several key TFs, including MADS 

domain proteins such as SEP3, AP1, FLC, SVP, AGL15 and SOC1 (Kaufmann et al., 2009; 

Zheng et al., 2009; Kaufmann et al., 2010; Deng et al., 2011; Immink et al., 2012; Tao et al., 

2012); bHLH TFs such as PIF1, PIF3, PIF4, PIF5, HY5, FHY3 and HBI1 (Oh et al., 2009; 

Ouyang et al., 2011; Zhang et al., 2011a; Zhang et al., 2013; Fan et al., 2014); the ethylene 

response TF EIN3 (Chang et al., 2013); and the plant-specific TF LEAFY, which regulates 

the transition from vegetative growth to flowering (Winter et al., 2011). In Zea mays and 

Oryza sativa, the KNOTTED1 and IPA1 target genes have been identified, respectively 

(Bolduc et al., 2012; Lu et al., 2013). In addition, identification of genome-wide target genes 

for transcriptional regulators containing no DNA binding domains have recently been 

reported, such as Arabidopsis Phytochrome A (phyA) and its chaperone FHY1 (Chen et al., 

2014a; Chen et al., 2014b). Currently, this technology has been utilized in identifying 

genome-wide targets of TFs associated with plant development, but no similar studies about 

TFs involved in plant immunity, especially responding to pathogen attack have been reported.  

Our previous studies using chromatin immunoprecipitation (ChIP)-qPCR have shown that 

WRKY33 is a key transcriptional regulator towards B. cinerea strain 2100 infection by direct 

binding to sequences upstream of genes involved in JA signaling (JAZ1, JAZ5), ET-JA cross 

talk (ORA59), and camalexin biosynthesis (CYP71A13, PAD3) (Birkenbihl et al., 2012). In 

addition, we showed that the JA pathway was activated both in WT and wrky33 mutant plants 

14h post inoculation (14hpi) with B. cinerea but decreased in the mutant after 24hpi, whereas 

the SA pathway was strongly induced only in the mutant during infection (Birkenbihl et al., 

2012). SA-mediated antagonism of the JA signaling at late infection stages appears to 

contribute to the susceptibility of wrky33 to B. cinerea. However, genetic studies indicated 

that SA suppression of JA signaling was insufficient for WRKY33-mediated resistance 

(Birkenbihl et al., 2012). Therefore, WRKY33 apparently targets additional unidentified 

components that are critical for establishing full WRKY33-dependent resistance towards B. 

cinerea. Thus, genome-wide identification of B. cinerea-triggered binding of WRKY33 to 

target genes may help us with uncover novel aspects related to the role of this key regulator in 

host immunity towards this fungal nectrotroph. 

Here, we performed ChIP-seq and RNA sequencing (RNA-seq) experiments to identify 

WKRY33 regulated direct target genes in the A. thaliana genome after B. cinerea 2100 

infection. The results showed that WRKY33 has dual transcriptional activator and repressor 
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roles in regulating hundreds of target genes with distinct molecular functions. The data 

deduced from these studies and the subsequent genetic analysis of selected mutants revealed 

that WRKY33 regulation of the ABA branch of the defense regulatory network is critical for 

resistance to B. cinerea infection. 

2.3. Results 

2.3.1. Genome-wide mapping of loci bound by WRKY33 

To gain a deeper insight into how WRKY33 regulates plant immunity to B. cinerea 2100, we 

performed a genome-wide analysis to identify WRKY33 in vivo target genes using ChIP-seq. 

For this, a transgenic wrky33 mutant line expressing a HA epitope-tagged WRKY33 construct 

under the control of its native promoter (PWRKY33:WRKY33-HA) was used. This line was 

previously shown to complement for B. cinerea 2100 resistance similar to WT Col-0 plants 

(Birkenbihl et al., 2012). 4-week old rosette leaves of plants untreated or spray-inoculated for 

14 hours with spores of B. cinerea 2100 were used to perform ChIP-seq based on the induced 

WRKY33-HA protein levels observed on western blots (Figure 2.1). No WRKY33-HA 

protein was detected in the absence of infection. As an additional control identical tissue was 

harvested from WT plants that did not express WRKY33-HA. Two biological replicates were 

analyzed for mock and B. cinerea 2100 treated WRKY33-HA plants. Previously identified 

WRKY33 in vivo targets,  CYP71A13 and PAD3 (Birkenbihl et al., 2012), were used to 

monitor for enrichment in samples used for library construction and sequencing.   

 

 

 

 

 

Figure 2.1 Western-blot analysis of WRKY33-HA protein levels after mock treatment or spray-

inoculation of PWRKY33:WRKY33-HA transgenic plants with B. cinerea 2100 spores. Plant material selected 

for ChIP-seq is boxed in red. Antibody:α-HA; Protein stained with Ponceau S. 

From ChIP-seq experiments, we obtained ~2300 high confident peaks in each biological 

replicate, among which around 1700 peaks were reproducible between the two replicates 

(Table 2.1). The sequence reads from each two samples were pooled. We identified 1684 high 

confidence peaks (named WRKY33 binding sites) associated with 1576 genes common to 

Ponceau 

S

α-HA

mock B. cinerea 2100      

14h             14h 24h   48h     
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Peak Call replicate 1 replicate 2 pooled

w33_Bc_IP total reproducible1) % reproducible 1) total reproducible1) % reproducible 1) total consistent3) % consistent 3)

vs w33_Bc_input 2341 1753 74.9 2305 1740 75.5 2578 1728 67.0

vs w33_mock_IP 2288 1720 75.2 2302 1708 74.2 2578 1695 65.7

vs wt_Bc_IP n.a. n.a. n.a. 2307 n.a. n.a. n.a. n.a. n.a.

high confidence2) 2269 1710 75.4 2299 1698 73.9 2577 1684 65.3

both replicates (designated WRKY33 candidate targets). Detection of all of these sites was 

dependent on infection of the plants with B. cinerea 2100 as nearly no sites were observed in 

mock treated plants.  

The fidelity of the data obtained by ChIP-seq was subsequently confirmed by qPCR for 

numerous genes (Table 2.2). Moreover, nearly all previously reported WRKY33 in vivo 

targets including PAD3, CYP71A13, ACS2, JAZ1, ORA59, TRX-h5 and WRKY33 itself were 

identified in our ChIP dataset (Mao et al., 2011; Birkenbihl et al., 2012; Li et al., 2012).  

Table 2.1. Summary of identified WRKY33 binding sites 14h post B. cinerea infection. 

Note: This analysis was performed by Dr. Barbara Kracher. 

1) A peak region in a replicate is counted as reproducible, if it overlaps with a peak region in the other replicate 

by at least 50% of the length of the smaller peak region.                                                                                                                               

2) A peak region is counted as high confidence region (within a sample), when it is identified against all 

(two/three) negative controls used for peak calling.                                                                                                                                                              

3) A peak region in the pooled sample is counted as consistent, if it overlaps with a reproducible peak region in 

both of the original replicates by at least 50% of the length of the smaller region.  

n.a.  not analyzed. 

Table 2.2.  List of confirmed WRKY33 targets. 

Gene Description Test methods  

AT2G30750 CYP71A12 ChIP-qPCR   

AT2G30770   CYP71A13 ChIP-qPCR LinDA-qPCR 

AT3G26830   PAD3 ChIP-qPCR LinDA-qPCR 

AT2G38470 WRKY33 ChIP-qPCR  

AT5G22570   WRKY38 ChIP-qPCR   

AT5G26170   WRKY50 ChIP-qPCR   

AT4G23810   WRKY53 ChIP-qPCR   

AT4G11070   WRKY41 ChIP-qPCR   

AT5G49520   WRKY48 ChIP-qPCR   

AT2G40740   WRKY55 ChIP-qPCR   

AT3G44350   NAC061 ChIP-qPCR LinDA-qPCR 

AT5G22380   NAC090 ChIP-qPCR   

 AT2G26650     AKT1   ChIP-qPCR   LinDA-qPCR  

 AT3G14440     NCED3   ChIP-qPCR   LinDA-qPCR  

 AT1G30100     NCED5   ChIP-qPCR   LinDA-qPCR  
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 AT5G45340     CYP707A3   ChIP-qPCR    

AT1G16090   WAKL7   LinDA-qPCR 

AT5G44280   RING1A   LinDA-qPCR 

AT5G45110   NPR3   LinDA-qPCR 

AT5G20960   AAO1   LinDA-qPCR 

AT1G01480   ACS2   LinDA-qPCR 

 AT3G55970    JRG21    LinDA-qPCR  

AT5G47230   ERF5   LinDA-qPCR 

AT3G23240   ERF1   LinDA-qPCR 

AT4G11280 ACS6 ChIP-qPCR 

 AT1G72520 LOX4 ChIP-qPCR 

  

2.3.2. Characterization of WRKY33 binding sites 

We next explored the distribution of WRKY33 binding sites over genic regions. WRKY33 

binding sites were evenly distributed on the five chromosomes and >78 % were located in the 

– 1000 bp promoter or intergenic regions (Figure 2.2A). Furthermore, the locations of 

WRKY33 binding sites were found to be concentrated within a 250-bp window immediately 

upstream of the transcription start sites (Figure 2.2B). This distribution pattern of WRKY33 

binding sites is consistent with its role as a transcriptional regulator. In addition, 15.4% of the 

peaks were located near transcription termination sites (TTS) of neighboring genes, and 5.1% 

of the peaks were detected in intronic regions (in contrast to less than 1% in exons), 

suggesting that these regions may also have a role in WRKY33-mediated gene transcription.  
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Figure 2.2 Genome-wide identification of WRKY33-binding sites. (A) Relative binding-peak distribution 

across genomic regions. A 1-kb region before the transcription start site (TSS) is defined as the promoter region. 

The fraction of each annotation type in all genomic genes is shown as a control. (B) WRKY33 binding sites are 

highly enriched within a 250-bp window immediately upstream of the transcription start site. 

Numerous studies have shown that nearly all WRKY proteins bind to a specific DNA motif, 

TTGACT/C, termed the W box (Eulgem et al., 2000), although adjacent sequences (W box 

extended motifs) can also influence binding (Ciolkowski et al., 2008). To determine the 

consensus of WRKY33 binding motifs across the genome, we used MEME software to 

pinpoint conserved sequences within the 500bp WRKY33 binding peak summit regions. Of 

the 1684 WRKY33-binding sites, 76% contained the well-established W box motif with the 

core consensus sequence TTGACT/C (Figure 2.3A). Moreover we also found W box 

extended sequence motifs within the WRKY33 binding regions (Figure 2.3B). Recently, a 

conserved core sequence, GACTTTT, was reported to interact with Arabidopsis WRKY70 

and to be required for WRKY70-activated gene expression (Machens et al., 2014). We also 

found this GACTTTT sequence within the set of W box extended sequence motifs at 

WRKY33 binding regions (Figure 2.3B). 

Apart from the W box and extended W box variants, we found an additional sequence motif, 

T/GTTGAAG, that occurs in 55% of the WRKY33 binding regions (Figure 2.3A), and is 

often associated with the W box (5’-T/C-TGAC-T/C-3’). More than 40% of WRKY33 

binding peaks contain both W box and this motif. Whether this motif can also be bound by 

WRKY33 or by some other transcription factor associated with WRKY33 function remains to 

be determined. 
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Figure 2.3 Genome-wide identification of WRKY33-binding motifs. (A) DREME motif search identified 

conserved DNA elements within the 500 bp WRKY33 binding peak summit regions: Left -- well established W 

box (TTGACT/C); Right-- newly identified motif (T/GTTGAAT). (B) MEME motif search identified conserved 

DNA elements within the 500bp WRKY33 binding peak summit regions. Left: W box extended motifs in 5’ end; 

Middle: W box extended motifs in 3’ end; Right: Conserved sequence GACTT/ATTC. 

2.3.3. Gene Ontology analysis of genes bound by WRKY33 after B. cinerea 2100 

infection 

We next performed a Gene Ontology (GO) analysis using BiNGO (Maere et al., 2005) to 

characterize these WRKY33 target genes. The GO analysis reveals that several gene clusters 

are enriched: target genes in response to stress, response to biotic or abiotic stimulus, response 

to external or endogenous stimulus, target genes involved in metabolic and cellular processes, 

target genes related to transport and signal transduction are enriched in the term biological 

processes (Figure 2.4A). Target genes associated with transporter activity, transcriptional 

regulator activity, binding, and catalytic activity, especially kinase activity, are enriched in the 

term molecular functions (Figure 2.4B); target genes associated with membrane, intracellular 

and cell wall are enriched in the term cell functions (Figure 2.4C).  

E=2.5e-002 E=4.7e-030 E=4.8e-009 

P=5.5e-76 P=4.9e-7 

A 
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Figure 2.4. GO analysis of WRKY33 total candidate target genes. (A) category biological processes, (B) 

molecular functions, (C) cell functions. Each circle represents an enriched category compared with the whole 

genome after false discovery rate correction. The size of each circle is proportional to the number of genes 

annotated to the node. The yellow color of the circles represents enriched categories based on the FDR-corrected 

P value ranging from 0.05 (yellow) or below (darker yellow). Red arrows in (B) indicates targets enriched in 

WRKY33 target genes but not enriched in WRKY33-regulated target genes. 
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2.3.4. Expression profile and characterization of genes associated with B. cinerea 2100-

induced WRKY33 binding  

ChIP-seq studies from both the animal and plant field have shown that the majority of binding 

sites bound by specific transcription factors in vivo do not result in altered expression levels 

of associated genes (MacQuarrie et al., 2011; Chang et al., 2012; Fan et al., 2014). All 

detected WRKY33-enriched binding sites were only observed upon pathogen infection. Thus 

to study the impact of WRKY33 binding on target gene expression, we performed RNA-seq 

and examined WRKY33-mediated gene expression changes in mock and B. cinerea 2100 

(14hpi) treated wrky33 and WT 4-week old plants.  

Data from three biological replicates allowed us to identify genes altered in their expression 

after B. cinerea infection. In WT plants, the expression of 6101 genes was altered 2-fold or 

more (P≤0.05) compared with noninfected plants, with 3048 genes being up-regulated and 

3053 genes being down-regulated (Figure 2.5A). In wrky33, upon infection, the expression of 

7441 genes, 3583 up-regulated and 3858 down-regulated, was altered more than 2-fold, with a 

common set of 4686 genes showing changes upon infection in WT and wrky33 plants (Figure 

C 
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2.5A, B). While upon infection the expression of 1415 genes was altered only in the WT, 

differential expression of 2755 genes was triggered in the loss of WRKY33 functional mutant 

(Figure 2.5B). Comparing the expression profiles from noninfected plants identified 705 

genes that were constitutively differentially expressed between wrky33 and the WT, 458 of 

them up-regulated and 247 down-regulated (Figure 2.5A). Comparing the expression profiles 

of B. cinerea-infected wrky33 and WT plants (w33 B.c. vs WT B.c.), we identified 2765 

differentially expressed genes, of which 1675 were up-regulated and 1090 were down-

regulated in a WRKY33-dependent manner, therefore being defined as WRKY33-repressed 

genes and WRKY33-induced genes, respectively (Figure 2.5A, C).  

We then compared the WRKY33-dependent differentially expressed genes obtained from the 

RNA-seq data with the WRKY33 target genes revealed by ChIP-seq and thereby identified 

318 WRKY33-regulated candidate target genes that were both bound by WRKY33 and 

exhibited WRKY33-dependent altered gene expression (Figure 2.5C), of which 240 (75.5%) 

are repressed by B. cinerea 2100 while 78 (24.5%) are induced (Figure 2.5C, D). These genes 

were termed WRKY33-repressed targets and WRKY33-induced targets, respectively. Thus, it 

appears that a key role of WRKY33 in mediating immunity to this pathogen is to repress the 

expression of many specific host target genes. The remaining genes that were altered in their 

expression (1435 repressed and 1012 induced) in the wrky33 mutant compared to WT, but 

that showed no WRKY33 enrichment within the locus were defined as WRKY33-dependent 

non-targets (WRKY33-repressed non-targets and WRKY33-induced non-targets) (Figure 

2.5C). The overlap observed between WRKY33 binding and altered expression of the 

associated genes upon fungal infection was around 20% (318 of 1576). Similar levels of 

overlap have been reported for other plant TFs such as EIN3, HBI1 and BES1 (Yu et al., 

2011; Chang et al., 2013; Fan et al., 2014).  
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Figure 2.5. Comparative RNA-seq and ChIP-seq data identify WRKY33 regulated candidate target genes 

in response to B. cinerea infection. (A) Number of differentially expressed genes (≥2-fold; P≤0.05) between 

the WT and wrky33 (w33) at 14h after mock treatment (mo) or B. cinerea spray inoculation (B.c.). Indicated are 

total number  (boxes) and number of up-regulated (           ) and down-regulated (           ) genes between 

treatments or genotypes. (B) Venn diagram illustrating total number and overlap of genes affected in WT and 

wrky33 plants at 14h post B. cinerea inoculation. (C) Venn diagram showing the overlap between the WRKY33-

regulated genes and WRKY33 direct target genes. (D) Percentage of WRKY33-repressed targets and WRKY33-

induced targets (total number of WRKY33-regulated targets is 318). 

GO analysis to characterize these identified WRKY33-regulated target genes are shown in 

Figure 2.6, and reveal enrichment in genes related to stresses, stimulus, signal transduction, 

transport, metabolic process, catalytic activity and membrane when compared with the entire 

genome (P<0.05). These results suggest a direct involvement of WKRY33 in these processes. 

However, in molecular function, GO terms related to transcription factor activity and DNA 

binding were not significantly represented in WRKY33-regulated target genes (mentioned in 

bottom paragraph), although they were significantly enriched in WRKY33 total target genes 

(Figure 2.4). This supports previous reports that transcription factor binding does not 

necessarily coincide with changes in transcription, especially for master regulators targeting 
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other TFs or other factors involved in chromatin state regulation (Yu et al., 2011; Chang et al., 

2013; Fan et al., 2014). 

 

 

Figure 2.6. GO analysis of WRKY33-regulated target genes. Each circle represents an enriched category 

compared with the whole genome after false discovery rate correction. The size of each circle is proportional to 

the number of genes annotated to the node. The yellow color of the circles represents enriched categories based 

on the FDR-corrected P value ranging from 0.05 (yellow) or below (darker yellow). 

2.3.5. WRKY33 function often represses expression of genes involved in plant immunity 

Functional classification of the WRKY33-regulated (induced or repressed) and WRKY33 

bound (targets or non-targets) genes based on GO categories showed that WRKY33 directly 

or indirectly regulates a range of genes involved in biological processes and molecular 

functions, and many of these genes are repressed by WRKY33 (Figure 2.7). For example, 
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genes involved in the GO term “defense response” were highly overrepresented in WRKY33 

repressed targets (37.9%) and in WRKY33 repressed non-targets (17%), suggesting that 

WRKY33 often functions as a repressor of plant defense responses. Still, expression of nearly 

18% of WRKY33 regulated targets were induced whereas only 2% of WRKY33 induced non-

targets were enriched in the GO term “defense response”, indicating that WRKY33 can also 

function as an activator of certain defense associated genes particularly when they are direct 

targets.  

Next to hormonal pathways discussed below, genes involved in the GO terms “cell death” or 

related to diverse “kinase activities” were markedly enriched in WRKY33 repressed targets. 

42 out of 318 WRKY33-regulated targets are involved in cell death, and 38 appear to be 

repressed by WRKY33 (Table S1). This predominance of WRKY33 function to repress host 

responses associated with cell death may be one important feature required for resistance 

towards necrotrophic pathogens that complete their life styles on dead host tissue. 

Interestingly, more than 80% (34 out of 42) of the cell death associated targets are also 

enriched in the GO term “response to salicylic acid (SA)”, indicating that WRKY33 

repression of host “cell death” is associated with “response to SA” (Figure 2.8A). 41 of the 

WRKY33 target genes encode for various kinases, including 10 leucine-rich repeat (LRR) 

RPKs, 8 lectin receptor protein kinases (LecRKs), 7 cysteine-rich (CR) receptor-like protein 

kinases, and 8 serine/threonine kinase (Table S2). Again the majority of these genes appear to 

be repressed by WRKY33 (Table S2). For LecRK VI.2 a critical role in resistance against 

hemibiotrophic P. syringae pv. tomato DC3000 and necrotrophic Pectobacterium 

carotovorum bacteria has been demonstrated (Singh et al., 2012; Singh et al., 2013; Huang et 

al., 2014).  
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Figure 2.7. Gene Ontology analysis of WRKY33-regulated targets and WRKY33-regulated non-targets 

associated with defense response, kinase activity, cell death and hormone responses. Numbers indicate the 

percentages of genes belonging to each GO category. Asterisk indicates significant difference from genome (P < 

0.05).  

 

 

 

 

 

 

 

 

Figure 2.8 GO analysis of WRKY33-regulated target genes in hormone response and cell death. A. Venn 

diagram showing the overlap between the WRKY33-regulated genes responsive to SA and cell death. B. The 

overlap of WRKY33-regulated target genes associated with the hormone pathway SA, ET, ABA and JA. 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%
P

e
rc

e
n

ta
g

e
 o

f 
g

e
n

e
s

WRKY33-induced targets

WRKY33-repressed targets

genome

WRKY33-induced non-targets

WRKY33-repressed non-targets

* 

* 

* * 

* 
* 

* 

* 

* 

* 
* * 

* 

response to SA 

42

cell death

42

34 88

 A  B 



Chapter 2 

 

37 

 

Several TF gene families, many involved in defense response, were targeted by WRKY33. 

ChIP-seq data showed that WRKY33 binds to 133 transcription factor gene loci. Predominant 

among these are members of the AP2/ERFs, MYBs, WRKYs, and NACs families (Figure 

2.9A). However, expression of only 16% (21 of 133) was directly modulated in a WRKY33-

dependent manner after B. cinerea infection. A complete list of TF coding genes that are 

direct targets of WRKY33 and are part of the transcriptional network associated with defense 

to B. cinerea is given in Table S3. As an example, 18 WRKY genes were identified as direct 

targets of WRKY33 including WRKY33 itself (Figure 2.9B). However, only 7 genes, i.e. 

WRKY33, WRKY38, WRKY41, WRK48, WRKY50, WRKY53 -and WRKY55, showed altered 

expression upon WRKY33 binding post infection (Figure 2.9B, Table S3). The observed 

autoregulation of WRKY33 by WRKY33 is consistent with previous reports suggesting a 

positive feedback regulatory loop resulting in high-level accumulation of WRKY33 in 

response to B. cinerea (Mao et al., 2011). In addition, altered transcription of 18 other WRKY 

genes was observed that was dependent of WRKY33 function after fungal infection but to 

which no WRKY33 binding could be detected, indicating that these WRKY genes are 

indirectly regulated by WRKY33 (Figure 2.9A). Consistent with our general observation, 

WRKY33 mainly appears to act as a repressor of most of these WRKY targets.  
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Figure 2.9 WRKY33 regulated transcription factor families commonly associated with stress responses. 

(A) WRKY, MYB, NAC and AP2/ERF TF families are dominant transcription factor targets of WRKY33 after 

B. cinerea infection. The total number of members for each TF family are given in parenthesis next to the  name. 

The number of directly or indirectly WRKY33-regulated gene members is indicated. (B) Visualization (IVG; 

Integrative Genomic Viewer) of ChIP-seq data revealing strong infection-dependent WRKY33 enrichment at the 

indicated WRKY promoter (both biological repetitions, IP B.c. 1 and IP B.c. 2, are shown). Structure of the 

WRKY gene is indicated below along with the position of all W-box motifs. Arrows indicate direction of 

transcription. qRT-PCR analysis of B. cinerea 2100-induced expression of indicated WRKYs (WRKY33, 

WRKY38, WRKY41, WRK48, WRKY50, WRKY53 and WRKY55) in WT and wrky33 mutant plants at indicated 

timepoints post fungal spore application, respectively. Validation of the ChIP-seq data by ChIP-qPCR 

supporting WRKY33 binding to the promoter region of indicated WRKYs. For qRT-PCR all data were 

normalized to the expression of At4g26410 and fold induction values of all genes were calculated relative to the 

expression level of mock-treated (mo) WT plants set to 1. Error bars represent SD of three biological replicates 

(n=3). For ChIP-qPCR, leaves from WRKY33-HA (33HA) plants were spray inoculated with B. cinerea 2100 

(Bc) or mock treated (mo) for 14h. Input DNA before immunoprecipitation (IN) and co-immunoprecipitated 

DNA using an anti-HA (IP) were analyzed by qPCR employing gene-specific primer pairs (P) shown in the IGV, 

and are expressed as fold enrichment relative to a DNA fragment from At4g26410. As a control for primer 

efficiency, purified genomic DNA was included in the analysis. Each ChIP experiment was repeated at least 

twice with similar results. 

2.3.6. WRKY33 differentially regulates genes in hormonal pathways 

Genes encoding components of pathways related to the key hormone signaling molecules SA, 

JA, ET and abscisic acid (ABA) were highly enriched in the WRKY33 regulated gene set 

(Figure 2.7). For instance, genes involved in SA response were enriched in WRKY33-

repressed direct targets and non-target genes, while genes responsive to ethylene were highly 

enriched in the WRKY33-induced direct target dataset. This is consistent with our previous 

report showing that WRKY33 directly or indirectly repressed the expression of genes in SA 

biosynthesis and SA-mediated signaling (Birkenbihl et al., 2012).  

Some WRKY33 induced target genes are associated with response to ET, such as ACS6, 

ORA59 and ERF5 (Figure 2.7, 2.15). ACS6 was reported to be involved in Botrytis-induced 
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ethylene production, and to play an important role in plant immunity (Han et al., 2010; Li et 

al., 2012). ORA59 and ERF5 belong to the AP2/ERF domain TF family with ORA59 acting 

as the integrator of the JA and ET signaling pathways, and as a positive regulator of resistance 

against B. cinerea, while ERF5 is a key component of chitin mediated immunity (Pre et al., 

2008; Moffat et al., 2012). Genes responsive to ABA and JA were also overrepresented in our 

GO analysis but in this case genes responsive to ABA were significantly enriched in the 

WRKY33-repressed non-target genes, while genes involved in JA response were enriched in 

WRKY33-repressed direct targets and non-target genes (Figure 2.7). Interestingly, many of 

the target genes were involved in more than one hormonal response (Figure 2.8B). For 

example, 5 of the WRKY33-regulated targets are described as being responsive to four 

hormones - SA, JA, ET, and ABA, indicating that WRKY33 may be involved in hormone co-

regulation or crosstalk.  

In addition, two GH3 genes, GH3.2 and GH3.3 that were recently reported to conjugate auxin 

and JA with amino acids, respectively (Gonzalez-Lamothe et al., 2012; Gutierrez et al., 2012) 

are direct targets of WRKY33 and their expression increased highly in wrky33 after B. 

cinerea 2100 infection (Figure 2.10A). GH3.2 was shown to be involved in plant disease 

development since the gh3.2 knock out mutant increased resistance to B. cinerea (Gonzalez-

Lamothe et al., 2012; Gutierrez et al., 2012). GH3.3 is postulated to control JA homeostasis in 

seedlings (Gonzalez-Lamothe et al., 2012; Gutierrez et al., 2012). 

These results suggest that WRKY33 plays a role in fine-tuning various hormonal responses 

during the plant response to B. cinerea 2100. However, previous studies have shown that 

wrky33 sid2-1, wrky33 npr1-1 mutants affected in SA biosynthesis and SA amplification do 

not restore WT resistance towards B. cinerea 2100, and mutants in ET/JA signaling such as 

ora59, ein2, opr3 and jar1 showed unaltered WT resistant (Birkenbihl et al., 2012). In this 

study, we also generated wrky33 gh3.2 gh3.3 triple mutants, which may affect auxin and JA 

conjugation with amino acids. Although both the single gh3.2 and gh3.3, as well as the gh3.2 

gh3.3 double mutant plants showed WT-like resistance towards B. cinerea 2100, the triple 

mutants were still nearly as susceptible as wrky33 plants indicating that these GH3 genes are 

not required for full resistance mediated by WRKY33 (Figure 2.10B). Taken together, these 

and our previous results suggest that none of the identified and further investigated potential 

candidate genes appeared to be critical components in WRKY33-dependent host defense 

towards B. cinerea 2100.  

 



Chapter 2 

 

41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 The role of GH3 genes in WRKY33-mediated resistance to B. cinerea 2100. (A) qRT-PCR 

analysis of GH3.2 and GH3.3 in WT and wrky33 at the indicated time points after B. cinerea inoculation. (B)  B. 

cinerea infection phenotypes of indicated Arabidopsis plants, including WT (Col-0), wrky33, gh3.2, gh3.3, gh3.2 

gh3.3 and wrky33 gh3.2 gh3.3. 
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2.3.7. The role of ABA in mediating WRKY33-dependent resistance to Botrytis 

The role of SA and JA/ET in plant defense is well documented. In contrast, less is known 

regarding ABA in host defense although increased ABA levels can enhance pathogen 

susceptibility (Robert-Seilaniantz et al., 2011), and can also positively or negatively impact 

the outcome of plant-microbe interactions, depending on the lifestyle of the pathogen (Adie et 

al., 2007). Our ChIP-seq data revealed that WRKY33 binds to the promoter of NCED3 and to 

the TTS region of NCED5 (Figure 2.11A, B), two major genes encoding 9-cis-

epoxycarotenoid dioxygenase, a key enzyme in the biosynthesis of ABA (Frey et al., 2012). 

WRKY33 binding to both gene loci was confirmed by ChIP-qPCR (Figure 2.11 A, B). 

Moreover, expression levels of NCED3 and NCED5 both increased in the wkry33 mutant after 

B. cinerea infection (Figure 2.11 A, B), indicating that WRKY33 negatively regulates 

expression of these genes. This suggests that WRKY33 can very likely repress ABA 

biosynthesis in WT plants. In addition, WRKY33 also bound to the promoter of CYP707A3 

(Figure 2.11 C), a gene involved in ABA metabolism (Kushiro et al., 2004; Saito et al., 2004), 

and CYP707A3 expression increased in WT plants but decreased in the wrky33 mutant after 

B. cinerea infection (Figure 2.11 C). These results strongly suggest that WRKY33 is involved 

in repressing ABA levels after B. cinerea infection and that this repressor function may be an 

important component in host resistance to this pathogen. 
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Figure 2.11 WRKY33 directly regulates target genes encoding ABA biosynthetic (NCED3, NCED5) and 

metabolic (CYP707A3) enzymes by binding to their promoters or 3’UTR after B. cinerea 2100 treatment. 

(A-C) Visualization (IVG; Integrative Genomic Viewer) of ChIP-seq data revealing strong infection-dependent 

WRKY33 enrichment at the NCED3 (A), NCED5 (B) and CYP707A3 (C) loci (both biological repetitions, IP 

B.c.1 and IP B.c.2, are shown). Structure of the respective genes are indicated below along with the position of 

all W-box motifs. Arrows indicate direction of transcription. Transcript levels of NCED3, NCED5 and 
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CYP707A3 at the indicated time points after inoculation were determined by qRT-PCR. Data were normalized to 

the expression of At4g26410 and fold induction values of all genes were calculated relative to the expression 

level of mock-treated (mo) WT plants set to 1. Validation of the ChIP-seq results was achieved by ChIP-qPCR. 

For ChIP-qPCR, the leaf material and treatment as performed as indicated in legend to Figure 2.9. Input DNA 

before immunoprecipitation (IN) and co-immunoprecipitated DNA using an anti-HA (IP) were analyzed by 

qPCR employing gene-specific primer pairs (P1, P2) shown in the IGV, and are expressed as fold enrichment 

relative to a DNA fragment from At4g26410. As a control for primer efficiency, purified genomic DNA was 

included in the analysis. Each ChIP experiment was repeated at least twice with similar results. 

2.3.8. In wrky33 nced3 nced5 mutants WT-like resistance to B. cinerea 2100 is restored 

To test whether ABA is involved in WRKY33-mediated host defense to B. cinerea 2100, we 

analyzed ABA mutants with respect to their phenotypes after fungal infection. Mutants in 

ABA biosynthesis, aba2-12, aba3-1, nced3-2, nced5-2, and nced3 nced5 were nearly as 

resistant as WT plants (Figure 2.12A, C). This was expected as previous reports showed that 

aba2-12 (Adie et al., 2007), aba3-1 (Leon-Kloosterziel et al., 1996), and nced3 nced5 (Frey et 

al., 2012) accumulated much less ABA than WT plants. To test whether WT resistance to B. 

cinera 2100 could be due to WRKY33 repression of NCED3 and NCED5 expression we 

generated wrky33 nced3, wrky33 nced5 double, and wrky33 nced3 nced5 triple mutants and 

tested their phenotypes following infection. 

ABA deficiency severely affects plant growth leading to stunted phenotypes, as observed in 

nced3 nced5, aba2-12 and aba3-1 mutants. A strong reduction of rosette diameter was also 

observed in wrky33 nced3 nced5 mutants under short day conditions similar to that of nced3 

nced5 (Figure 2.12B). However, unlike the wrky33 single mutant, wrky33 nced3 nced5 plants 

showed clear resistance to B. cinerea 2100 similar to WT (Figure 2.12C). In contrast, wrky33 

nced3 and wrky33 nced5 double mutants remained as susceptible as wrky33 to infection by B. 

cinerea 2100 (Figure 2.12F). Supporting the observed phenotype, qPCR analysis showed 

strongly reduced fungal biomass (measured as abundance of fungal DNA) in wrky33 nced3 

nced5 compared to wrky33 (Figure 2.12D). These results indicate that increased expression 

levels of both NCED3 and NCED5 in wrky33 mutants contribute to susceptibility toward B. 

cinerea 2100, and that a key role of WRKY33 in host immunity towards this pathogen is to 

repress the biosynthesis of ABA in WT plants.  

Since the nced3 nced5 mutant showed reduced ABA levels, we tested whether exogenous 

application of ABA to such mutants could revert the resistant phenotype. Indeed, application 

of ABA together with the fungal spore droplet to the wrky33 nced3 nced5 triple mutant 

partially rendered plants susceptible to B. cinerea 2100 (Figure 2.12E). We also tested the 
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phenotypes of transgenic plants overexpressing NCED3 and NCED5 driven by the 35S CaMV 

promoter, respectively (Fan et al., 2009). These ectopic overexpressor lines showed clear 

resistance towards B. cinerea 2100 (Figure 2.12G). It has been reported that mutants of ABA 

metabolism (CYP707As) accumulated more ABA than lines overexpressing ABA 

biosynthetic genes (Okamoto et al., 2006; Finkelstein, 2013). We therefore further tested the 

phenotypes of cyp707a1, cyp707a2, and cyp707a3 following infection with B. cinerea 2100. 

Interestingly, all of these mutants were as resistant as WT plants (Figure 2.12H). Taken 

together, our genetic analysis revealed that WRKY33-mediated expression of NCED3 and 

NCED5 plays a critical role in host resistance towards B. cinerea 2100, very likely by altering 

ABA biosynthesis.  
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Figure 2.12 WRKY33 controls ABA-mediated plant susceptibility to B. cinerea 2100. (A) B. cinerea 

infection phenotypes of aba2-12 and aba3-1.  (B) Growth phenotypes of WT, wrky33, nced3 nced5 and wrky33 

nced3 nced5 plants. (C) B. cinerea infection phenotypes of WT, wrky33, nced3, nced5, nced3 nced5 and wrky33 

nced3 nced5 plants. (D) B. cinerea biomass growth analysis of indicated Arabidopsis genotypes. The relative 

abundance of B. cinerea and Arabidopsis DNA was determined by qPCR employing specific primers for 

BcCutinase A and AtSKII, respectively. (E) Exogenous application of ABA (10μM) to wrky33 nced3 nced5 

triple mutants partially renders plants susceptible to B. cinerea. (F-G) B. cinerea infection phenotypes of 

indicated Arabidopsis plants, including wrky33 nced3, wrky33 nced5, 35S-NCED3, 35S-NCED5, cyp707a1, 

cyp707a2 and cyp707a3. 
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2.3.9. WRKY33 controls hormone homeostasis in response to B. cinerea 

Given that wrky33 nced3 nced5 plants restore WT-like resistance compared with the 

susceptible wrky33 mutants, we hypothesized that WRKY33 plays a critical regulatory role in 

controlling ABA levels. We therefore measured hormone levels in WT, wrky33, nced3 nced5 

and wrky33 nced3 nced5 plants following infection with B. cinerea 2100 at various time 

points.  

As shown in Figure 2.13, ABA, SA, JA, jasmonoyl-isoleucine (JA-Ile), 12-oxo-phytodienoate 

(OPDA) and l-aminocyclopropane-1-carboxylate (ACC; a precursor of ethylene) levels 

increased strongly in susceptible wrky33 compared to resistant WT plants at later infections 

stages (24hpi and 40hpi). The higher levels of ABA detected in the wrky33 mutant is 

consistent with our hypothesis that WRKY33 negatively regulates ABA biosynthesis. Also 

consistent with our assumptions we could clearly detect reduced ABA levels in resistant 

wrky33 nced3 nced5 plants. Interestingly however, concomitant reduction of SA, JA, JA-Ile, 

OPDA and ACC levels were also observed in wrky33 nced3 nced5 compared with wrky33, 

indicating that the elevated levels of SA, JA, JA-Ile, OPDA and ACC in wrky33 at late 

infection stages are a consequence of higher ABA levels. This suggests that ABA/ABA 

signaling may exert a positive role on the biosynthesis of these other hormonal components. 

Taken together, these data indicate that a key function of WRKY33 in WT plants challenged 

with B. cinerea is to repress ABA levels. Consistent with the gene expression patterns 

observed, mutation of WRKY33 affects the WT hormonal balance and results in elevated ABA 

activity, thereby subsequently inducing among others SA biosynthesis as possibly leading to 

the activation of SA responses, such as host cell death, which could be beneficial for B. 

cinerea colonization.  Furthermore, the elevated ABA levels found in the wrky33 mutant also 

appear to influence JA/ET levels.  
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Figure 2.13 Hormone levels during B. cinerea 2100 infection of Arabidopsis plants. The hormone 

concentrations of ABA, SA, ACC, JA, JA-lle and OPDA were measured at 8, 14, 24 and 40hpi in WT, wrky33, 

nced3nced5 and wrky33 nced3 nced5 plants spray inoculated with B.cinerea spores or mock treated. Error bars 

represent SD (n=4). Note: These experiments were collaborated with Dr. Jörg Ziegler (IPB Halle, Germany), and 

he performed the hormone  measurement. 

2.3.10. In wrky33 nced3 nced5 plants, expression of many up-regulated genes in wrky33 

return to WT like levels 

As noted above more than 75% of WRKY33-regulated target genes showed increased 

expression levels in the susceptible wrky33 mutant after B. cinerea infection. To gain 

additional insights into altered gene expression in the resistant wrky33 nced3 nced5 plants we 

performed qRT-PCR analyses. The levels of many highly expressed SA-related genes 

observed in the wrky33 mutant post infection decreased in the infected leaves of wrky33 

nced3 nced5 plants often reaching WT levels. These included: ICS1, NPR1, NPR3, NPR4, 

TRX-H5 and FMO1 (Figure 2.14). However, the expression levels of other SA-related genes 

such as EDS1, PAD4, MININ1, and PR1 were not as strongly affected and their expression 

levels remained higher than in WT (Figure 2.14). Our results indicate that simultaneous 
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mutations of NCED3 and NCED5 in a wrky33 genetic background partially impaired SA 

biosynthesis and signaling.  

The expression levels of some NAC TF genes, such as NAC019, NAC055, NAC061 and 

NAC090, were reduced in the wrky33 nced3 nced5 mutant compared to the wrky33 mutant at 

24 hpi, indicating that ABA positively regulates their expression in wrky33 plants (Figure 

2.14). This was also the case for some WRKY genes including WRKY41, WRKY48, WRKY53 

and WRKY55, while expression of WRKY38 and WRKY50 increased in wrky33 nced3 nced5 to 

even higher levels than observed in wrky33 (Figure 2.14). These data indicate ABA has a 

positive effect on the expression of WRKY41, WRKY48, WRKY53 and WRKY55, while 

negatively affecting WRKY38 and WRKY50 in wrky33 plants. 

The fungal-induced expression of many other ABA response genes such as ABI1, CDPK1, 

MPK11, CRK36, Lectin-domain containing receptor kinase A4.2 were also restored to wild-

type levels in the wrky33 nced3 nced5 triple mutant (Figure 2.14). Interestingly, CDPK1, 

MPK11, CRK36 and NPR3 are also responsive to SA and all of these genes are also 

associated with the GO term involved in ‘cell death’, suggesting that ABA could have a 

positive effect on cell death responses (Figure 2.8A, Table S1, S2). Thus, WRKY33 

suppresses expression of many of its target genes by negatively regulating ABA responses. 

Taken together, molecular analysis indicates that many, but not all, of the genes that are 

strongly up-regulated in the susceptible wrky33 mutant post infection return to WT-like levels 

in the resistant wrky33 nced3 nced5 triple mutant. Thus, such genes showing restoration of 

WT-like expression levels in this mutant may be prime candidate genes that are causal for 

WRKY33-mediated resistance against this necrotrophic fungus. 

2.3.11. wrky33 nced3 nced5 resistance to B. cinerea does not depend on ET/JA signaling  

ET/JA signaling are generally assumed to be more important for regulating resistance to 

necrotrophic pathogens (Glazebrook, 2005). Several of our identified WRKY33 target genes 

associated with the ET/JA signaling pathway show reduced expression levels in wrky33 plants 

upon infection (Figure 2.7). We therefore next asked the question whether resistance to B. 

cinerea of wrky33 nced3 nced5 mutants depends on ET/JA signaling. As shown in Figure 

2.15 decreased gene expression levels of ACS6, ERF5, ORA59 and PDF1.2 were observed in 

wrky33 nced3 nced5 triple mutants compared to WT plants post infection. Both wrky33 nced3 

nced5 and WT plants are resistant to B. cinerea, but the expression levels of these genes 

involved in ET/JA signaling were much lower in the former, indicating the resistance in 

wrky33 nced3 nced5 is independent on these genes. This is further supported by that fact that 
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expression of all of these genes is, in nearly all cases, even lower in the resistant wrky33 

nced3 nced5 plants compared to the susceptible wrky33 mutant. In addition, the expression 

levels of ORA59 (Figure 2.15) and ERF1 (Figure 2.14) are reduced in the wrky33 nced3 

nced5 mutant compared to the wrky33 mutant at 24 hpi indicating that ABA positively 

regulates their expression in wrky33 plants. This is also consistent with the reduced JA/ET 

levels observed in wrky33 nced3 nced5 plants (Figure 2.13) at later infection stages. Thus, 

JA/ET signaling very likely does not contribute to WRKY33-dependent Botrytis resistance 

observed in the wrky33 nced3 nced5 plants, and possibly also not in WT Col-0 plants.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14 Heatmap presentation of differentially expressed genes in WT, wrky33 (w33), nced3 nced5 

(n3n5) and wrky33 nced3 nced5 (w33n3n5) after mock and B. cinerea (B. c. 2100) infection at 24h (based 
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on qRT-PCR data). In wrky33 nced3 nced5 plants expression of many genes that are strongly up-regulated in 

wrky33 mutants show WT-like levels (framed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15  Expression levels of selected genes associated with ET/JA signaling in WT, wrky33, 

nced3nced5 and wrky33nced3nced5 plants determined by qRT-PCR at indicated timepoints after B. 

cinerea 2100 inoculation. Error bars represent SD of three biological replicates (n=3). 

2.4. Discussion 

Plant immunity is driven by complex genetic programs that result in massive transcriptional 

reprogramming in the host upon pathogen perception and signal transduction to the nucleus. 

Transcription factors are key components of terminal signaling and act by activating and 

repressing the expression of numerous defense-associated genes. The TF WRKY33 plays a 

major role in conferring resistance of Arabidopsis plants to the fungal necrotroph B. cinerea. 

In the present work, ChIP-seq and RNA-seq were employed to gain a global overview of all 

WRKY33 binding sites within the Arabidopsis genome following fungal infection and to 

correlate such binding to altered transcriptional outputs. By including appropriate mutants in 

this study we identified components of the ABA hormonal pathway that act downstream of 

WRKY33 to mediate host resistance.  
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A genome-wide analysis of in vivo binding sites for a selected TF expressed under the control 

of its native promoter in intact plant tissue following infection with a pathogen has not yet 

been reported. Our study shows that the number of high-affinity WRKY33 binding sites 

within the genome by far exceeds the number of direct target genes affected in their 

transcriptional response upon WRKY33 binding during B. cinerea infection. In fact, we found 

1258 genes (80% of WRKY33 ChIP targets) that had a WRKY33-binding region in close 

vicinity but were not differentially expressed in the wrky33 mutant. This excess number of 

gene loci bound by a given transcription factor but unaffected in their expression is consistent 

with previous ChIP-seq studies although the reason for this discrepancy remains to be 

elucidated (MacQuarrie et al., 2011). One possibility is that transcriptional 

activation/repression at a specific promoter is context dependent, that is, may require next to 

WRKY33 binding, additional diverse input signals. For example we detected strong 

enrichment of WRKY33 within the promoters of numerous genes coding for receptors of 

various MAMPs and Damage Associated Molecular Patterns (DAMPs) including FLS2, ERF, 

PEPR1, and PEPR2, in our ChIP-seq studies, but no altered expression of these genes in the 

wrky33 mutant upon B. cinerea infection. WRKY33 has been shown to also be strongly and 

rapidly induced during MAMP-triggered immunity (Lippok et al., 2007) and thus a regulatory 

function of WRKY33 at these promoters may require additional co-factors only 

induced/activated during MAMP/DAMP signaling.  

So far, several ChIP-seq experiments for TFs reported in Arabidopsis used seedlings as 

material while our ChIP-seq and RNA-seq studies were performed using intact rosette leaves 

from 4-week old plants under short-day growth condition and spray infection with B. cinerea 

spores. Although we do not know how synchronous the infection process is and how many 

plants cells within the leaf tissue are actually responding to the fungus we could observe 

stable accumulation of the WRKY33-HA protein already at 14hpi and up to 48hpi in the plant 

material. Actually, we found about 75% reproducible peaks from two biological replicates 

after ChIP-seq (Table 2.1). Subsequent ChIP-qPCR analysis of about 30 selected target genes 

confirmed to 100% enrichment of WRKY33 at these loci. Thus our experiments demonstrate 

the ability to use pathogen-challenged intact mature rosette leaves for ChIP-seq studies.  

Using conservative criteria for selecting differentially expressed genes in wrky33 mutants 

compared to WT (Col-0) plants after B. cinerea 2100 infection, we found that about 2600 

genes were transcriptionally up- and down-regulated. The strikingly high number of 

modulated genes at early infection stages (14hpi) highlights the importance of WRKY33 to 
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initiate host responses to this pathogen. At this early stage no difference in fungal biomass, 

hyphal expansion or other phenotypic criteria can be observed between resistant WT plants 

and susceptible wrky33 mutants.  

2.4.1. WRKY33 binds to genes enriched in different pathways 

WRKY33 bound to approximately 1500 genes after B. cinerea 2100 infection. GO analysis of 

these genes identified functional terms such as ‘response to stress’ and ‘response to stimulus’ 

as being significantly over-represented in the list of putative WRKY33 targets and WRKY33-

regulated targets. Similar results was identified in EIN3, the master regulator of the ethylene 

signaling pathway (Chang et al., 2013). ET signaling pathway positively regulates host 

defense to the necrotrophic B. cinerea, and many genes in ET pathway are direct targets of 

WRKY33 including EIN3, ACS2, ACS6, ERF1, ERF5 and ORA59. Here the observation of 

similar functional categories in WRKY33 and EIN3 indicate that both of them are involved in 

host defense to B. cinerea. Interestingly, recent reports show several key regulators in plant 

development processes also targeting genes enriched in ‘stress’ and ‘stimulus’. These 

regulators include FLOWERING LOCUS C (FLC) (Deng et al., 2011), SHORT 

VEGETATIVE PHASE (SVP) (Gregis et al., 2013), Phytochrome A (phyA) (Chen et al., 

2014b), and LONG HYPOCOTYL 5 (HY5) (Zhang et al., 2011b). FLC and SVP regulate 

Arabidopsis flowering, while phyA and HY5 regulate plant perception of light environment. 

These regulators are involved in plant responses to environmental signals during growth and 

development, therefore, their target genes could be enriched in ‘response to stimulus’ such as 

‘external stimulus’, ‘endogenous stimulus’ and ‘abiotic stimulus’. In this respect, plant 

defense related regulators such as WRKY33 might also regulate target gene functions in plant 

environmental signaling and development.  

Our data show that WRKY33 target genes were enriched in ‘transcription factor activity’ but 

not significantly overrepresented in WRKY33-regulated target genes, i.e. WRKY33 binds to 

133 TF gene loci while only 21 show altered transcription 14hours post B. cinerea 2100 

infection. This is different to what has been reported for EIN3-, PIFs- (bHLH TF) and HY5- 

(bZIP TF) regulated target genes, in which transcription factors are enriched (Zhang et al., 

2011a; Chang et al., 2013; Zhang et al., 2013). One must keep in mind that our study merely 

reflects a snapshot of the binding events occurring over time. The 14hpi timepoint was 

selected based on the abundance of Botrytis-induced WRKY33-HA protein. However, 

WRKY33-HA protein is detected up to 48hpi. Thus, genes not altered in their expression at 

14hpi may still show altered expression at other timepoints. Indeed, in the EIN3 study (Chang 



Chapter 2 

 

54 

 

et al., 2013), the authors showed that EIN3 regulates distinct transcriptional responses in 

several temporal waves. The second possibility is the differences in the material used for 

ChIP-chip (-seq) and RNA-seq. In the PIFs, EIN3 and HY5 studies 2 to 4-day-old seedlings 

were used while in this work we used intact rosette leaves from 4-week old plants following 

spraying infection with B. cinerea spores. Moreover, in the case of the PIF studies seedlings 

ectopically expressing the TF under the strong 35S CaMV promoter were used for ChIP-seq 

analysis (Zhang et al., 2013). Expression of the PIFs under non-physiological concentrations 

may have led to numerous off-target events that could also include several TF loci. Finally, 

expression of some TF targets may play additional roles for example at different 

developmental stages or in specific tissue types.   

Our data show kinases are overrepresented in WRKY33 target genes and WRKY33-regulated 

targets, i.e. WRKY33 binds to 155 genes encoding proteins with kinase activity while 41 

displayed altered transcription 14hours post B. cinerea 2100 infection. This is consistent with 

EIN3 bound genes that are enriched in the GO term ‘kinase activity’. Plant protein kinases 

were reported to play a central role in signaling during pathogen recognition, the subsequent 

activation of plant defense mechanisms, and developmental control (Afzal et al., 2008). 

Different to EIN3 target genes that are induced by ethylene, here most of the WRKY33-

regulated targets with kinase activity were repressed by WRKY33. For example, two LecRK 

members of Arabidopsis LecRK-VI clade, LecRK VI.2 and LecRK VI.3, are direct targets 

and are negatively regulated by WRKY33 after B. cinerea infection. LecRK VI.2 was critical 

for resistance against hemibiotrophic P. syringae pv. tomato DC3000 and the necrotrophic 

Pectobacterium carotovorum bacteria (Singh et al., 2012; Singh et al., 2013; Huang et al., 

2014). CDPK1 was another negatively regulated target gene of WKRY33. CDPK1 was 

reported to respond to drought stress with both T-DNA insertion and overexpression lines 

confirming that CDPK1 enhanced plant tolerance to drought (Zou et al., 2010). Since 

constitutive activation of defense responses is detrimental to plant fitness, plant resistance 

signaling pathways must be negatively controlled. This study suggest that WRKY33 may be 

involved the process by repressing transcription of selected defense signaling genes. For 

another example, WRKY33 directly repressed expression of BIR1, a LRR- receptor-like 

kinase interacting with BAK1 upon bacterial flagellin treatment. BIR1 was shown to 

negatively affect defense because bir1 plants display constitutive long-term immune 

responses, including elevated SA, H2O2, PR1, PR2 expression, and cell death (Gao et al., 

2009).  
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Our ChIP-seq data also revealed that numerous putative direct targets of WRKY33 are 

involved in hormone signaling. Plant hormones are important components to modulate 

immune responses (Pieterse et al., 2012). In response to B. cinerea infection, plant hormone 

levels are commonly enhanced including SA, JA, ET and ABA (Mengiste, 2012). Therefore, 

hormone responses and hormone homeostasis are vital for immunity. However, how plants 

precisely control hormone homeostasis during the immune response to B. cinerea is not clear. 

WRKY33 binds to numerous genes involved in auxin, SA, JA, ET and ABA biosynthesis and 

signaling. Moreover, WRKY33 binding appears to affect the expression of some of these 

genes in response to B. cinerea 2100 infection, thereby resulting in altered hormone 

biosynthesis and hormonal responses. Indeed, out of 1576 WRKY33-target genes, 154 (9.8%, 

p<0.001) and 32 (2%, p<0.05) are involved in hormone-mediated signaling pathways and in 

the hormone biosynthetic process, respectively. Additionally, out of the 318 WRKY33-

regulated target genes, 36 (11.3%, p<0.001) are involved in hormone-mediated signaling 

pathways.  

As shown above, WRKY33-induced target genes are enriched in GO term ‘responsive to ET’, 

while WRKY33-repressed target genes are enriched in the GO terms ‘response to SA and 

JA’. Several of the WRKY33-regulated target genes were involved in more than one 

hormonal response highlighting the potential role of WRKY33 in controlling hormonal 

crosstalk in Arabidopsis. In addition, many of the WRKY33 targets with transcription factor 

functions also are involved in hormone signaling, such as AP2/ERFs, NACs and MYCs. 

Similar to WRKY33, many of the EIN3 regulated candidate targets were enriched in hormone 

related categorical sets, including downstream effectors of the ethylene response, key ethylene 

signaling players, and genes involved in other hormone pathways/responses such as ABA, 

IAA and methyl jasmonate (Chang et al., 2013). EIN3 candidate target genes were suggested 

to involve hormone co-regulation (Chang et al., 2013). Similar to EIN3, our findings 

suggested that B. cinerea-induced WRKY33 could directly control hormone co-regulation, 

and WRKY33 targets hormone pathways at multiple levels, thereby fine-tuning hormone 

homeostasis. 

2.4.2. Negative regulation of the ABA network by WRKY33 is critical for host defense 

towards B. cinerea 2100 

The role of ABA in biotic stress responses is complex and currently ill-defined. Recent 

transcriptomic studies using 4-week old detached Arabidopsis leaves infected with B. cinerea 

strain pepper revealed that genes involved in the suppression of ABA accumulation and 
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signaling were up-regulated at early infection stages (Windram et al., 2012). Our data clearly 

demonstrate that increased expression of WRKY33 target genes associated with ABA 

biosynthesis (NCED3 and NCED5) are causal for the susceptibility of wrky33 to B. cinerea, 

as the ABA deficient wrky33 nced3 nced5 mutant restored WT-like resistance towards this 

necrotroph. Thus our findings reveal a novel role of WRKY33 in modulating host resistance 

to B. cinerea by suppressing ABA accumulation and signaling (Figure 2.16). These finding 

are consistent with observations showing that ABA-deficient mutants in both tomato 

(Audenaert et al., 2002; Asselbergh et al., 2007) and Arabidopsis (Adie et al., 2007) are less 

susceptible to this pathogen.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16 Model shows a new role of WRKY33-dependent host immunity towards the necrotroph B.  

cinerea through negative regulation of ABA signaling.  (A) In WT plants (framed), B. cinerea-induced 

WRKY33 controls ABA level not only by repressing expression of NCED3 and NCED5, two targets involved in 

ABA biosynthethesis, but also by inducing expression of CYP707A3, a target gene involved in ABA 

metabolism. (B) In wrky33 mutants, B. cinerea infection increases ABA level that activates the ABA-mediated 

network. The wrky33 nced3 nced5 triple mutant restored WT resistance indicates ABA acts as one of the key 

sub-nodes in WRKY33-dependent host immunity towards B. cinerea 2100. Thus, mutation of ABA downstream 

genes in wrky33 mutant background could not restore WT resistance (e.g. wrky33 sid2, wrky33 npr1, wrky33 

wrky70, wrky33 gh3.2  gh3.3, wrky33 nac061 etc). Furthermore, many genes in ABA-mediated network are 

WRKY33-repressed targets (green color), thereby forming a more complex WRKY33-ABA regulation network.   

* susceptible
Green  color: 
direct targets

ABA regulated
other genes:

ABI1 etc

Auxin or JA
conjugation

GH3.2
GH3.3

NACs
NAC019
NAC055
NAC061
NAC090

etc

WRKYs
WRKY41
WRKY48
WRKY53
WRKY70

etc

SA signaling
ICS1(SID2), 

NPR1, NPR3, 
NPR4, TRX-H5, 

FMO1 etc

* wrky33gh3.2gh3.3* wrky33sid2
* wrky33npr1

* wrky33nac061

* wrky33wrky70

WRKY33

B.cinerea 2100

NCED3
NCED5

ABA

+ resistant

CYP707A3

WT
wrky33

+ wrky33nced3nced5

A B 



Chapter 2 

 

57 

 

Other reports have shown that ABA can function as a repressor of SA-, ET-, and JA/ET-

dependent signaling (Asselbergh et al., 2008; Ton et al., 2009). However, our genetic and 

chemical studies showed that elevated ABA levels in wrky33 mutants also resulted in 

concomitant increases in SA, JA and ACC (precursor of ET) levels upon B. cinerea 2100 

infection, implying a positive effect of ABA on these hormone signaling components during 

this host-pathogen interaction. Furthermore, molecular analysis of Botrytis challenged wrky33 

and wrky33 nced3 nced5 plants confirmed that ABA only activates the NPR1-dependent SA 

signaling part while not obviously affecting the EDS1-PAD4 pathway (Figure 2.14). Elevated 

ABA levels also appeared to activate ERF1 and ORA59 expression, two targets in ET/JA 

signaling (Figure 2.14, 2.15). Interestingly, consistent with reduced SA levels in wrky33 

nced3 nced5 plants, several WRKY33 target genes that are involved both in response to SA 

and in cell death responses have WT-type like expression levels, indicating a positive effect 

of ABA on cell death, and this activation may depend on ABA-dependent downstream SA 

signaling. If this were the case then WRKY33 function would suppress host cell death by 

repressing part of the ABA signaling network.  

How elevated ABA levels activate these hormone signaling components remains to be 

elucidated. The receptors for ABA are now known (Miyakawa et al., 2013), but how ABA 

signaling downstream of ABA perception interconnects to the other hormonal pathways 

requires further investigation. One possibility is that the increased ABA levels triggers the 

activation of downstream unidentified ABA-response factors that bind to the ABA response 

elements (ABRE, ‘ACGTGG/T’) or G-box (CACGTG) present in some target gene promoters 

resulting in transcriptional activation. Actually, we found some genes including NAC019, 

NAC061, GH3.2 and GH3.3 involved in hormone signaling that contain such conserved 

motifs, which could respond to ABA, and be activated by ABA.  

Besides hormonal signaling, TFs such as certain NAC members may also be activated by 

ABA in the wrky33 mutant. More recently, it was reported that the NAC transcription factor 

ATAF1 regulated ABA biosynthesis by directly binding to the NCED3 promoter (Jensen et 

al., 2013). In our study we observed increased expression of NAC002 (ATAF1), NAC019, 

NAC055, NAC061 and NAC090, which may also regulate expression of NCEDs or other 

genes involved in ABA biosynthesis/accumulation in the wrky33 mutant, and may thereby 

form a positive feedback regulatory loop to enhance ABA biosynthesis (Figure 2.16). We 

generated wrky33 nac061 double mutants and examined their phenotype. Although wrky33 

nac061 did not restore WT resistance towards B. cinerea, we found that expression of NCED3 
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was somewhat decreased at 24hpi in double mutants compared with wrky33 (Figure 2.17). 

However, NCED3 expression remained higher than in WT plants, suggesting that other NAC 

members may be functionally redundant to NAC061 in regulating NCED3 expression. If this 

were the case then WRKY33 function may regulate NCEDs at multiple levels. Further genetic 

studies on other NAC mutants (i.e. NAC019, NAC055, NAC090) in combination with wrky33 

may help to uncover part of the WRKY33-dependent regulation of the ABA signaling 

network.    

 

 

 

 

 

 

 

Figure 2.17 Expression levels of NCED3 in WT, wrky33, nced3 nced5, wrky33 nced3 nced5, nac061 and 

wrky33 nac061 plants determined by qRT-PCR at indicated timepoints after B. cinerea 2100 inoculation. 

Error bars represent SD of three biological replicates (n=3). 

2.4.3. Dual activator and repressor role of WRKY33 in regulating distinct functional 

categories of target genes 

WRKY proteins often act either as activators or repressors, and selected members of the 

family in diverse plant species have been identified as key regulators in diverse plant 

processes (Rushton et al., 2010). Our data strongly suggest that WRKY33 is a bi-functional 

transcription factor that can act both as an activator and as a repressor in a promoter-context 

dependent manner (Figure 2.18).  

Earlier studies had shown that WRKY33 positively regulates genes involved in camalexin 

biosynthesis such as CYP71A13 and PAD3 by directly binding to their promoter regions (Mao 

et al., 2011; Birkenbihl et al., 2012). Mutants of these genes were susceptible to the 

necrotrophs A. brassicicola and B. cinerea (Zhou et al., 1999; Nafisi et al., 2007). Next to 

CYP71A13 and PAD3, we now found that two additional camalexin biosynthetic genes 

namely, AMT1 and CYP71A12, are also positively regulated and are direct targets of 
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WRKY33. WRKY33 appears to be directly involved in camalexin accumulation by directly 

activating several genes within the biosynthetic pathway. In addition, many target genes in the 

ethylene biosynthesis pathway and ethylene-mediated downstream signaling pathway were 

activated earlier in WT compared to wrky33 mutant plants upon B. cinerea inoculation 

implicating WRKY33 as an activator in this process (Figure 2.7, 2.15). Overall, 78 target 

genes were positively regulated by WRKY33, that is these genes were up-regulated in WT 

plants but down-regulated in wrky33 after B. cinerea 2100 infection. In contrast, as noted 

above, WRKY33 also acts as a direct repressor of many genes. WRKY33 repressed 

expression of 240 target genes associated with different functional categories, e.g. response to 

SA and JA, involved in ABA regulation network, associated with cell death, and having 

kinase activity. These genes were all down-regulated in WT plants while up-regulated in 

wrky33 after pathogen challenge. 

 

 

 

 

 

 

 

 

 

Figure 2.18 Dual activator and repressor role of WRKY33 in modulating host defense to B. cinerea 2100. 

WRKY33 positively regulates target genes involved in camalexin biosynthesis thereby contributing to host 

resistance towards B. cinerea 2100. Moreover, target genes involved in ET/JA signaling and ABA metabolism 

are also positively regulated by WRKY33. These data represent activator role of WRKY33. On the other hand, 

WRKY33 acts as a repressor to negatively regulates ABA levels by i.e. directly targeting NCED3 and NCED5. 

Thus, both activator and repressor functions of WRKY33 appear to be dependent on the promoter context. 

In animals and humans, TFs have been described that act as both transcriptional activators 

and repressors, depending on DNA binding sequences or additional co-activators and co-

repressors (Peng and Jahroudi, 2002; Alexandre and Vincent, 2003; Adkins et al., 2006; 

Sakabe et al., 2012; Zhu et al., 2012). In plants, few factors with dual functions have been 
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unequivocally identified and characterized. In tomato, the transcriptional activator Pti4 

represses the expression of PR10-10a by forming a complex with the SEBP repressor 

(Gonzalez-Lamothe et al., 2008). In Arabidopsis, the TF WUSCHEL (WUS) acts mainly as a 

repressor in stem cell regulation but can function as an activator in regulating 

AGAMOUS(AG) during floral patterning (Ikeda et al., 2009). Arabidopsis WRKY53 can 

activate or repress the expression of genes, depending on the nature of the promoter sequence 

of its target genes (Miao et al., 2004). Similarly, WRKY6 activates PR1 expression while 

suppressing the expression of its own gene, and that of its closely related family member 

WRKY42 by an unknown mechanism (Robatzek and Somssich, 2002). How WRKY33 exerts 

its dual regulatory functions will be the focus of future research. For this WRKY33-

containing transcriptional complexes associated with DNA need to be isolated and WRKY33-

interacting proteins identified. In this respect, several WRKY33-interacting proteins 

containing a VQ motif have recently been discovered that influence defense gene expression 

(Lai et al., 2011b; Pecher et al., 2014). For two, SIB1 and SIB2, interaction with WRKY33 

via their VQ motif was required to stimulate WRKY33 DNA binding activity, and are thought 

to be positive regulators of WRKY33-mediated resistance to necrotrophic fungi (Lai et al., 

2011b). In a second study, the protein MVQ1 was thought to act as a negative regulator of 

WRKY transcriptional activators including WRKY33. Upon MAMP treatment, degradation 

of MVQ1 following MAPK-mediated phosphorylation allows WRKY factors to promote 

transcription of defense genes (Pecher et al., 2014). Interestingly, MVQ1 was also 

hypothesized to be a positive regulator whose function may be antagonized by interaction 

with WRKY repressors (Pecher et al., 2014).   

Further studies will try to identify and characterize WRKY33 interacting proteins after B. 

cinerea 2100 infection, and to uncover additional regulatory mechanisms governed by 

WRKY33.  
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3.1. Abstract 

WRKY transcription factors are a large family of regulatory proteins involved mainly in plant 

innate immunity. The Arabidopsis transcription factor WRKY33 is a key transcriptional 

regulator of hormonal and metabolic responses toward B. cinerea strain 2100 infection, and is 

essential for resistance. However, its molecular effects may differ with other B. cinerea 

strains or isolates. In contrast to B. cinerea strain 2100, the B. cinerea strain B05.10 is 

virulent on WT Col-0 Arabidopsis plants. My comparative studies revealed that Botrytis-

induced WRKY33 gene expression and protein accumulation are significantly lower in B. 

cinerea B05.10 infected WT plants than in plants challenged with strain 2100. As a 

consequence of this decrease, the expression levels of the WRKY33 target genes involved in 

the biosynthesis of the antifungal secondary metabolite camalexin and JA/ET related defense 

signaling are also clearly reduced after B05.10 infection. Furthermore, the phytohormone 

ABA negatively influences defense to B05.10 as ABA deficient mutants are resistance to this 

pathogen and display increased JA/ET levels. Consistent with the results in Chapter 2 and 

previous work, here I show that Arabidopsis WRKY33 also positively modulates host 

resistance to B. cinerea strain B05.10 by positively regulating camalexin biosynthesis and by 

negatively regulating ABA biosynthesis. Downregulation of ABA biosynthesis positively 

affects JA/ET defense responses that also contribute to resistance. WRKY33 acts as a 

potential target for B. cinerea virulent strain was further discussed.  

3.2. Introduction 

Pathogens commonly possess naturally occurring intraspecific variation for traits associated 

with pathogenicity or virulence (Rowe and Kliebenstein, 2010). The well-studied 

phytopathogen varieties are the biotrophic pathogen species. The biotrophic pathogen such as 

Pseudomonas exhibits considerable variation in activation or repression of plant defense 

signaling. In response to pathogens attack, plants have developed sophisticated immune 

system that enables them to perceive potential invaders. Generally, plant innate immune 

system consists of two major branches: microbe-/pathogen-associated molecular pattern 

(MAMP or PAMP) triggered immunity (PTI), and pathogen effector triggered immunity 

(ETI) (Jones and Dangl, 2006). PTI is activated by receptor-mediated recognition of common 

MAMPs or PAMPs (Derckel et al., 1999; Jeandet et al., 2002). PTI effectively prevents 

colonization of plant tissue by most non-adapted potential pathogens (Dodds and Rathjen, 

2010). Successful pathogen species such as Pseudomonas can deliver effector proteins to 

plant cells to suppress PTI and promote pathogen virulence. In turn, plants have evolved 
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resistance (R) proteins to recognize some effectors, and to activate ETI (Dodds and Rathjen, 

2010). ETI is an accelerated and intensified defense response towards specific isolates of 

biotrophic and hemibiotrophic pathogens (Jones and Dangl, 2006). Thus, while the elements 

of plant defense signaling may be associated with resistance to particular pathogens, pathogen 

variation in activation, manipulation, and response to plant defense signaling may again alter 

these associations (Rowe et al., 2010). Currently, specific recognition of necrotrophic 

pathogens by similar mechanisms has not been documented. With the exception of 

Arabidopsis thaliana RESISTANCE TO LEPTOSPHAERIA MACULANS 3 (RLM3), a 

Toll/interleukin 1 receptor domain R-protein implicated in broad immunity to several 

necrotrophs (Boller and Felix, 2009), no R-gene has been specially associated with resistance 

to necrotrophs such as B. cinerea. Plant immunity to B. cinerea appears to be under complex 

genetic control (Rowe and Kliebenstein, 2008).  

Large-scale transcriptional reprogramming is usually observed after B. cinerea infection and 

very likely plays a major role in plant defense (Ferrari et al., 2007; Rowe et al., 2010; Mathys 

et al., 2012; Mulema and Denby, 2012). During the last two decades, studies by global 

transcriptional profiling have identified thousands of Arabidopsis transcripts altered in the 

host following B. cinerea infection, indicating the involvement of key transcription factors 

(TFs) in this process (AbuQamar et al., 2006; Birkenbihl et al., 2012; Windram et al., 2012). 

Genetic studies have identified several groups of TF families that affect the outcome of such 

an interaction, including ERFs (Berrocal-Lobo et al., 2002; Pre et al., 2008; Moffat et al., 

2012; Zhao et al., 2012), MYBs (Mengiste et al., 2003; Abuqamar et al., 2009; Ramirez et al., 

2011), NACs (Bu et al., 2008; Wang et al., 2009), MYCs (Lorenzo et al., 2004), and WRKYs 

(Zheng et al., 2006; Pandey and Somssich, 2009; Birkenbihl et al., 2012). These TFs form 

integral parts of the signaling webs that modulate plant defenses either positively or 

negatively.  

In addition, plant hormones are important components that modulate immune responses 

(Pieterse et al., 2012). The contribution of hormones to host immunity vary depending on the 

infection strategy and nutritional requirements of the pathogen (Mengiste, 2012). SA has been 

traditionally associated with defense against biotrophic and hemibiotrophic pathogens, 

whereas JA and ET signaling appear to be more important towards necrotrophic pathogens 

and herbivores (Thomma et al., 1998; Farmer et al., 2003; Glazebrook, 2005; Bari and Jones, 

2009; Vlot et al., 2009). The effect of ABA on host immunity appears more complex and 

displays context-dependent functions (Bari and Jones, 2009). Furthermore, in response to 
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specific pathogens (microbes) plants can fine-tune the hormone balance by extensive 

crosstalk between hormonal pathways (Verhage et al., 2010; Pieterse et al., 2014). In response 

to B. cinerea infection, plant hormone levels are commonly enhanced for SA, JA, ET and 

ABA (Mengiste, 2012). Therefore, hormone responses and hormone homeostasis are vital for 

proper host immunity. It is therefore not surprising that pathogens can target and thereby 

interfere in phytohormone pathways through virulent effectors (Kazan and Lyons, 2014). 

Many reports have shown that B. cinerea produces virulent factors required for successful 

colonization of the host (Choquer et al., 2007b). This fungus can kill host cells through the 

production of toxins, generation of reactive oxygen species and the induction of a plant-

produced oxidative burst, and additionally feed on different tissue using cell wall-degrading 

enzymes (CWDEs). The toxins produced by B. cinerea during infection include botrydial 

(Deighton et al., 2001), botcinic acid (Reino et al., 2004; Tani et al., 2006) and their 

derivatives. During early B. cinerea infection stages, hydrogen peroxide (H2O2) accumulates 

that seems partly to be produced by the fungus as gene inactivation of H2O2 –generating 

enzymes in B. cinerea reduced such H2O2 levels (Rolke et al., 2004; Choquer et al., 2007a). 

For CWDEs, most are encoded by multigenic families and some may have partly redundant 

functions (Choquer et al., 2007b). Reported CWDEs as virulent factors include Bcpme1 

(Valette-Collet et al., 2003; Kars et al., 2005a), Bcpg1 (ten Have et al., 1998), Bcpg2 (Kars et 

al., 2005b) and xyn11A (Brito et al., 2006). In addition, signal transduction cascades 

regulating fungal development and virulence are remarkably conserved between distantly 

related fungi, indicating specific roles in the pathogenicity of some signaling components of 

B. cinerea (Choquer et al., 2007b). Furthermore, B. cinerea-derived small RNAs can silence 

Arabidopsis and tomato genes involved in immunity and also act as effectors to suppress host 

immunity (Weiberg et al., 2013a; Weiberg et al., 2013b).  

However, different strains of B. cinerea may have different repertoires of virulence factors. 

Previous gene inactivation studies demonstrated that the phytotoxin botrydial is a strain-

dependent virulence factor (Siewers et al., 2005). It was also reported that B. cinerea strains 

have different capacities to produce the hormone ABA, with some strains being ABA-

overproducers (Siewers et al., 2004; Siewers et al., 2006). In addition, some B. cinerea 

isolates produce ethylene (Cristescu et al., 2002). Examples of such naturally occurring 

intraspecific pathogen variation affecting plant defense against necrotrophs include variation 

in toxin production by pathogens and variation in pathogen tolerance or detoxification of 

plant-produced defense compounds (Derckel et al., 1999; Quidde et al., 1999; Jeandet et al., 
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2002; Ferrari et al., 2003; Kliebenstein et al., 2005). Thus, compared with many reports on 

numerous isolates of biotrophic or hemibiotrophic pathogens that show differences in 

pathogenicity and plant host responses, very little work in the past has focused on fungal 

variation within the necrotrophic fungi, including B. cinerea. Until recently pathogen 

variation in Arabidopsis - B. cinerea interaction studies was highly neglected with the 

majority of experiments performed only with one isolate or the declaration of the employed 

isolate not even stated (Rowe and Kliebenstein, 2010; Rowe et al., 2010). However, as with 

some biotrophic pathogens, B. cinerea variation recently has been reported to dramatically 

affect the outcome of an interaction with the plant host (Rowe et al., 2010).  

Here, I first tested three B. cinerea strains 2100, BMM and B05.10 differed in their 

pathogenicity on Arabidopsis ecotype Col-0 plants. Different symptoms were observed on 

Arabidopsis plants using these Botrytis strains, Whereas WT plants were resistant to strains 

2100 and BMM, they were susceptible to B05.10. In contrast, wrky33 mutant plants were 

susceptible to all three strains. Further comparative analyses of the plant immune response to 

Botrytis focusing on the avirulent strain 2100 and the virulent strain B05.10 were performed. 

3.3. Results 

3.3.1. Arabidopsis Col-0 plants display different responses upon interaction with B. 

cinerea strains 

I tested whether Arabidopsis plants showed a similar response to three strains of Botrytis 

cinerea. The B. cinerea strain 2100 was originally isolated from Vicia faba (CECT, Spanish 

Type-Culture Collection), while BMM was originally isolated from Pelargonium zonale 

(Zimmerli et al.. 2001), and B05.10 is a benomyl derivative of the strain SAS56 originally 

isolated from Vitis (Quidde et al., 1998).  

3 days post droplet infection of Arabidopsis WT Col-0 leaves with spores of the B. cinerea 

strains 2100, BMM, and B05.10, the plants displayed a clear difference in lesion phenotypes. 

Whereas lesion development with strains 2100 and BMM was mild and locally restricted, 

large expanding lesions were observed with strain B05.10 (Figure 3.1), indicating that WT 

plants are rather resistant to 2100 and BMM while susceptible to B05.10. The wrky33 mutant 

plants however were fully susceptible to all three tested strains as they all showed strong leaf 

maceration. This indicates the Col-0 resistance to strains 2100 and BMM depends on the 

functions of the TF WRKY33. Full resistance of WT plants to strain B05.10 could also partly 

depend on WRKY33 since even larger lesion development was observed on wrky33 mutant 
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plants. As the behavior of strains 2100 and BMM are similar on WT plants, and strain B05.10 

showed a different phenotype I chose the strains 2100 and B05.10 for further analyses. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Phenotypes observed on Arabidopsis WT Col-0 and wrky33 plants following droplet 

inoculations for 3 days with spores of the indicated B. cinerea strains.  

Using this droplet inoculation assay, I first tested these two strains on various Arabidopsis 

genotypes to gain initial insights into the potential host pathways required for resistance. As 

indicated in Table 3.1, WT plant resistance to B. cinerea 2100 depends on the production of 

camalexin, as mutations of genes in the camalexin biosynthetic pathway are susceptible to 

some necrotroph pathogens (Zhou et al., 1999; Nafisi et al., 2007; Birkenbihl et al., 2012). 

These mutants include cyp79b2 cyp79b3, cyp71a13, and pad3. Resistance does not appear to 

depend on the JA/ET pathway, as the selected single or double mutants in JA/ET 

biosynthesis/signaling are not susceptible. These include dde2 (aos1), jar1, ein2, dde2 ein2, 

ora59, erf5, erf6 and erf5 erf6. DDE2/AOS1 is involved in JA biosynthesis while JAR1 

conjugates JA to the amino acid isoleucine thereby forming JA-IIe, which is the major active 

JA conjugate in JA signaling (Staswick et al., 2002; Fonseca et al., 2009). EIN2, ORA59, 

ERF5 and ERF6 are transcription factors involved in ET mediated defense signaling or ET-JA 

cross-talk (Berrocal-Lobo et al., 2002; Adie et al., 2007; Pre et al., 2008; Moffat et al., 2012). 

Resistance to 2100 also does not appear to depend on SA signaling, since the selected mutants 

such as sid2, pad4, npr1, and sid2 pad4 do not alter the resistance phenotype (Table 3.1). 

SID2 is involved in SA biosynthesis (Garcion et al., 2008) while PAD4 (Jirage et al., 1999) is 

a key upstream regulator of SA signaling. NPR1 was another key regulator of SA signaling 

  WT 

   2100                  BMM                B05.10 

wrky33 
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(Mou et al., 2003). However, compared with dde2 ein2, and sid2 pad4 double mutants, a 

quadruple mutant, dde2 ein2 sid2 pad4, was susceptible to strain 2100, indicating a co-

regulation role of SA/JA/ET signaling in resistance to 2100.  

Infections with strain B05.10 revealed several differential phenotypes compared to infections 

with 2100. Most importantly, WT plants are clearly susceptible to this strain as was the 

wrky33 mutant (Figure 3.1). Interestingly, mutants in ABA biosynthesis (e.g. aba2-12, aba3-1 

and nced3 nced5) altered the WT susceptible phenotype resulting in resistance towards 

B05.10. Moreover, mutants in JA/ET and SA pathway that remained resistant towards strain 

2100 displayed the WT-like susceptible phenotype towards B05.10, while the quadruple 

mutant dde2 ein2 sid2 pad4 remained susceptible to B05.10. These results indicate that ABA 

plays a negative role in plant defense to B05.10, while JA, ET and SA may positively affect 

host resistance.  

As already addressed in chapter 2 and also mentioned above, WRKY33 plays a key 

regulatory role in WT host resistance to 2100.  Susceptibility to strain 2100 is strongly linked 

to loss-of-WRK33 function as is further illustrated in crosses of the wrky33 mutant allele with 

different mutants such as sid2, npr1, rbohd, wrky25, wrky40, wrky46 and wrky70. All of these 

single mutants are otherwise resistant to strain 2100 (data not shown) whereas all of the 

double mutants; wrky33 rbohd, wrky33 sid2, wrky33 npr1, wrky33 wrky25, wrky33 wrky40, 

wrky33 wrky46 and wrky33 wrky70, are clearly susceptible (Table 3.1). All of these double 

mutants are also susceptible to B05.10, while a triple mutant wrky33 nced3 nced5, already 

described in detail in chapter 2, is resistant to both the strains 2100 and B05.10. The 

resistance of wrky33 nced3 nced5 to B05.10 lends further support that suppression of ABA 

signaling is critical for WRKY33-dependent host immunity. 
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Table 3.1. The infection phenotypes of indicated Arabidopsis mutants in response to B. cinerea isolates 

2100 and B05.10. (R: resistant; S: susceptible).   

pathway genotypes  B. c. 2100 B. c. B05.10 

  WT R S 

camalexin 

cyp79b2cyp79b3 S S 

cyp71a13 S S 

pad3 S S 

JA/ET 

dde2 (aos) R S 

jar1 R S 

ein2 R S 

dde2ein2 R S 

erf5 R S 

erf6 R S 

erf5erf6 R S 

ora59 R S 

SA 

sid2 R S 

pad4 R S 

npr1 R S 

pad4sid2 R S 

JA/ET/SA dde2ein2pad4sid2 S S 

ABA 

aba2-12 R R 

aba3-1 R R 

nced3nced5 R R 

wrky33 
associated 

wrky33 S S 

wrky33sid2 S S 

wrky33npr1-1 S S 

wrky33rbohd S S 

wrky33wrky70 S S 

wrky33wrky40 S S 

wrky33wrky46 S S 

wrky33nced3nced5 R R 

 

3.3.2. WRKY33 expression and protein levels differ upon infection with B. cinerea strains 

2100 and B05.10 

We have shown that WRKY33 acts as a key transcriptional regulator in plant defense to B. 

cinerea strain 2100. However, WT plants are susceptible to B. cinerea strain B05.10 despite a 

functional WRKY33 gene. However in the droplet infection assays I consistently noticed that 

the size of the expanded lesions were larger in the wrky33 mutants challenged with B05.10 

than in WT plants (Figure 3.1), indicating that WRKY33 may also partly contribute to host 

defense towards strain B05.10.  
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Figure 3.2. Comparative analysis of WRKY33 transcription and protein accumulation levels after infection 

with B. cinerea strains 2100 and B05.10. (A). Endogenous WRKY33 expression levels analyzed by qRT-PCR 

in Arabidopsis WT plants at different timepoints after mock treatment (mo) or spray-inoculation with spores of 

the indicated B. cinerea strains. (B). Western-blot analysis of WRKY33-HA protein levels in pWRKY33: 

WRKY33-HA transgenic plants (in the wrky33 background) after mock treatment or spray-inoculation with the 

indicated B. cinerea spores. The critical timepoints where a clear difference in protein levels is observed between 

plants inoculated with the two fungal strains is marked in red.   

To address this, I first tested WRKY33 gene expression levels after infection with B. cinerea 

strains 2100 and B05.10, respectively. As shown in Figure 3.2A, the induction of WRKY33 

gene expression was detected in WT plant leaves after infection with both strains compared 

with mock treated leaves. Both strains could induce WRKY33 expression in WT plants, but 

there was a clear difference in WRKY33 transcript levels. Transcript levels of WRKY33 were 

2- to 3-fold higher in 2100 infected plants compared with B05.10 at both post infection 

timepoints analyzed. Since no antibody is available to measure endogenous WRKY33 protein 

levels I used a previously generated WRKY33 complementation line for comparison of 

protein levels (Birkenbihl et al., 2012). This complementation lines was generated in the 

background of the wrky33 mutant and expresses an HA-epitope tagged WRKY33 protein 
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driven by the WRKY33 native promoter and restored WT-like resistance towards strain 2100. 

Using an antibody detecting the HA tag, WRKY33 protein levels were assayed on western 

blots at various times after infection with the two fungal strains (Figure 3.2B). B. cinerea 

strain 2100 could strongly and rapidly induce WRKY33-HA protein accumulation, with the 

protein observed as early as 8 hours post inoculation. The highest levels of WRKY33-HA 

were detected at the 14hpi timepoint with substantial amounts still detectable at 24hpi and 

clearly reduced at 48hpi. In plant leaves inoculated with strain B05.10 WRKY33-HA protein 

is barely detectable at 8hpi, and is still significantly lower at 14hpi compared to plants 

infected with strain 2100 (Figure 3.2B). Highest levels of protein are detected at 24hpi 

(comparable to the levels observed at 14hpi after inoculation with strain 2100). However, at 

48hpi reduced protein levels are comparable again between 2100- and B05.10-inoculated 

plants. Based on these studies the major difference at the protein level was that in 2100 

infected plants WRKY33-HA protein accumulated much more rapidly than in B05.10 

infected plants. One can hypothesize that B. cinerea strain B05.10 may somehow impair the 

expression of WRKY33 and thereby partially impair WRKY33 functions at early infection 

stages.  

3.3.3. The expression levels of WRKY33 downstream target genes are reduced in B05.10 

infected plants compared to 2100 inoculated plants 

Previous reports and the work described in chapter 2 showed that several genes involved in 

the camalexin biosynthetic pathway were direct targets of WRKY33 (Mao et al., 2011; 

Birkenbihl et al., 2012). These include AMT1, CYP71A12, CYP71A13 and PAD3. Expression 

of these genes was analyzed by qRT-PCR following infection of plants with the two fungal 

strains. As shown in Figure 3.3, both B. cinerea strains can induce expression of these genes. 

However, inoculation with the strain 2100 resulted in higher induced gene expression levels 

than upon inoculation with the strain B05.10. This lower level of induction by strain B05.10 

was consistently observed for all four genes tested at two different infection timepoints. As all 

these genes are direct WRKY33 activated downstream target genes (see chapter 2), and their 

reduced expression levels in B05.10-infected plants correlates well with the observed lower 

induced WRKY33 protein levels (Figure 3.2B).   
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Figure 3.3. Expression levels of genes involved in camalexin biosynthesis. AMT1, CYP71A12, CYP71A13 and 

PAD3 expression levels following infection of Arabidopsis WT plants with B. cinerea strains 2100 and B05.10 

or after mock treatment (mo) at the indicated timepoints were analyzed by qRT-PCR. All data were normalized 

to the expression of At4g26410. Error bars represent SD of three biological replicates (n=3). 

JA/ET signaling  pathways  are  required  for  plant resistance  against  the  infection  of  

necrotroph pathogens (Glazebrook, 2005). Our genetic studies indicate that JA/ET signaling 

may be involved in the Arabidopsis-B05.10 interaction, while JA/ET/SA all appear to be 

required for resistance to B. cinerea strain 2100. qRT-PCR was performed to test if the 

expression levels of various genes involved in JA or ET biosynthesis or signaling differ upon 

infection with strains 2100 or B05.10. As shown in Figure 3.4, the induced expression of JA-

related genes was detected in Col-0 leaves after infection with both strains compared with 

mock treated leaves including; LOX2, LOX4, AOC3, JAR1, JASMONATE REGULATED 

GENE21 (JRG21), the thionin gene Thi2.1, and the plant defensin gene PDF1.2, while 

expression levels of DDE2 and VSP2 were not induced compared with control plants. LOX2, 

LOX4, DDE2 and AOC3 are involved in JA biosynthesis, while JAR1 plays an important role 

in JA signal transduction. JRG21, Thi2.1, PDF1.2 and VSP2 respond to JA stimulation and 

are often used as JA responsive downstream marker genes. Furthermore, JRG21, Thi2.1 and 

PDF1.2 are associated with plant defense to pathogen infections, while VSP1 (2) and LOX2 

genes are believed to be associated with wound response (Bu et al., 2008). However, some of 

these JA-related genes show a lower level of induced expression upon challenge with strain 

B05.10. These include LOX4, AOC3, JRG21, Thi2.1 and PDF1.2. In contrast, VSP2 and 
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LOX2 expression was somewhat higher in plants that were inoculated with strain B05.10 

compared to 2100-infected plants. Interestingly, LOX4, AOC3 and JRG21 are direct targets of 

WRKY33 (see chapter 2). I also observed induced MYC2 expression, with somewhat higher 

levels being observed 14hpi with B05.10 than strain 2100 (Figure 3.4). Previous studies have 

shown that the transcription factor MYC2 fine tunes early JA signaling by positively 

regulating wound responses, herbivore defense, oxidative stress tolerance and flavonoid 

metabolism while negatively regulating expression of pathogen defenses, and secondary 

metabolism (Dombrecht et al., 2007; Kazan and Manners, 2013). Whether MYC2 is involved 

or associated with delayed WRKY33 function in B05.10 infected plants remains to be tested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

mo 14h 24h

JRG21

wt 2100

wt B05.10

 

0

10

20

30

40

50

mo 14h 24h

WRKY33

wt 2100

wt B05.10

0

1

2

3

4

5

6

7

8

mo 14h 24h

Thi2.1

wt 2100

wt B05.10
 

0

10

20

30

40

50

mo 14h 24h

WRKY33

wt 2100

wt B05.10

0

200

400

600

800

1000

mo 14h 24h

PDF1.2

wt 2100

wt B05.10
 

0

10

20

30

40

50

mo 14h 24h

WRKY33

wt 2100

wt B05.10

0

1

2

3

4

5

6

mo 14h 24h

LOX4
wt 2100

wt B05.10
 

0

10

20

30

40

50

mo 14h 24h

WRKY33

wt 2100

wt B05.10

0

1

2

3

4

5

6

7

mo 14h 24h

AOC3

wt 2100

wt B05.10
 

0

10

20

30

40

50

mo 14h 24h

WRKY33

wt 2100

wt B05.10

0

0,5

1

1,5

2

mo 14h 24h

JAR1

wt 2100

wt B05.10

 

0

10

20

30

40

50

mo 14h 24h

WRKY33

wt 2100

wt B05.10



Chapter 3 

 

73 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Expression levels of selected JA related genes in Arabidopsis WT plants determined by qRT-

PCR at the indicated timepoints after B. cinerea 2100 and B05.10 inoculations. All data were normalized to 

the expression of At4g26410. Error bars represent SD of three biological replicates. 

Expression of several genes in the ET pathway were also observed to be less induced by strain 

B05.10 compared with 2100, including ACS2, ACS6, ERF1 and ORA59 (Figure 3.5). ACS2 

and ACS6 are important genes involved in ET biosynthesis after B. cinerea infection (Han et 

al., 2010; Li et al., 2012b). ERF1 and ORA59 are AP2/ERF transcription factors and both 

positively regulate host defense to B. cinerea (Lorenzo et al., 2003; Pre et al., 2008). All four 

of these genes are direct activated downstream targets of WRKY33 (chapter 2). Thus, their 

lower expression levels in B05.10 infected plants also correlate well with the lower observed 

WRKY33 protein levels at early infection stages (8-14 hpi; Figure 3.2B). Taken together, 

these results indicate ET/JA defense signaling is somewhat compromised during B05.10 

infection as compared with plants infected with the fungal strain 2100. This reduced response 

may impair the overall functions of WRKY33 in such plants. 
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Figure 3.5. Expression analysis of selected ET related genes in Arabidopsis WT plants determined by 

qRT-PCR at indicated timepoints after B. cinerea 2100 and B05.10 inoculations. All data were normalized 

to the expression of At4g26410. Error bars represent SD of three biological replicates. 

Apart from genes related to camalexin biosynthesis and JA/ET responses expression of 

several genes associated with SA responses (eg. EDS1, PAD4, PR1, PR2, NPR1, NPR3 and 

NPR4) and ABA biosynthesis (NCED3, NCED5, ABI1) are also reduced to some degree in 

B05.10 infected Col-0 plants compared to plants inoculated with strain 2100 at certain 

timepoints (Figure 3.6, 3.7). Interestingly, NPR3, NCED3 and NCED5 were also identified as 

being direct in vivo targets of WRKY33 (see chapter 2) and their lower expression levels also 

correlate well with the lower levels of WRKY33 protein observed in B05.10 infected plants. 

Moreover, expression of several other WRKY33 target genes also showed decreased levels in 

B05.10 infected WT plants such as HSF4A, GH3.2 and GH3.3 (data not show). Thus, there 

seems to be a general reduction of the expression levels of numerous genes in plants that are 

inoculated with the B. cinerea strain B05.10 and this reduction appears to correlate well with 

the overall reduction in WRKY33 protein levels in such infected host leaves.  
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Figure 3.6. Expression analysis of selected SA related genes in Arabidopsis WT plants determined by 

qRT-PCR at indicated timepoints after B. cinerea 2100 and B05.10 inoculations. All data were normalized 

to the expression of At4g26410. Error bars represent SD of three biological replicates. 
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Figure 3.7. Expression analysis of selected ABA related genes and WRKY33-regulated target genes in 

Arabidopsis WT plants determined by qRT-PCR at indicated timepoints after B. cinerea 2100 and B05.10 

inoculations. All data were normalized to the expression of At4g26410. Error bars represent SD of three 

biological replicates. 

3.3.4. Plant defense-related hormones and camalexin differentially accumulate in WT 

plants in response to B. cinerea strain 2100 and B05.10 infections 

Following the observation of lower expression levels of genes involved in the camalexin 

biosynthetic pathway in B05.10 infected Arabidopsis leaves, we next examined whether 

camalexin levels themselves are also affected. As shown in Figure 3.8A, B. cinerea strain 

2100 and B05.10 challenged plants both accumulate camalexin over the course of 48hpi. 

However, as was anticipated the relative camalexin levels in strain 2100-infected plants was 

significantly higher than the levels observed following infection with strain B05.10. In fact, 

the relative camalexin amounts were about 15-fold higher in 2100 infected plants than in 

B05.10 infected plants at 14hours, 6-fold at 24, and 2.5-fold at 48 hours, respectively. 

Camalexin is a toxic compound to fungi including B. cinerea. Thus, it is conceivable that one 

mechanism used by strain B05.10 to achieve virulence is to perturb WRKY33 functions 

thereby reducing host camalexin levels during the course of infection. 
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Figure 3.8. Analysis of camalexin and phytohormone levels in Arabidopsis WT plants at indicated 

timepoints after B. cinerea 2100 and B05.10 inoculations. (A). HPLC analysis of the camalexin levels either 

in mock treated (mo) or spray-infected plants with the indicated B. cinerea strains. Sample with the highest 

camalexin levels was set to 100%, and the relative percentage of the other samples was calculated. Bc = B. 

cinerea infected plants. (B). Altered phytohormone levels in WT plants during infections with B. cinerea strains 

2100 and B05.10. Concentrations of the indicated phytohormones were measured at 8, 14, 24 and 40 hours after 

spray inoculation with spores of B. cinerea (Bc) or after mock (mo) treatment. Error bars represent SD (n=4). 

Note: These experiments were collaborated with Dr. Jörg Ziegler (IPB Halle, Germany), and he performed the 

hormone measurements.  

Considering that the expression levels of numerous genes associated to several phytohormone 

pathways were also differentially regulated by B. cinerea strains 2100 and B05.10, we further 

measured the levels of various hormone including JA, JA-IIe, OPDA, ACC, SA and ABA 
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after infection with these two strains. As shown in Figure 3.8B, JA and JA-IIe levels 

increased following inoculation with both strains compared with mock treated plants. 

However, accumulation of these compounds in leaves dramatically increased at 24 hours 

following infection with the strain 2100, whereas significantly lower levels were observed in 

B05.10 infected plants. In contrast no big difference in OPDA was observed between 2100 

and B05.10 infected plants.  For ACC, a precursor of ET, its levels increased somewhat in 

2100 infected leaves after 24hpi, whereas ACC levels remained rather constant and similar to 

mock-treated control plants in B05.10 infected plants over the time period tested. Host SA 

levels increased over the course of infections with both tested strains but again, total SA 

levels remained lower in B05.10 inoculated leaves compared to 2100-infected leaves (Figure 

3.8B). For ABA, no significant differences were observed between strain 2100 and strain 

B05.10 inoculated plants. These results are in good agreement with our expression studies and 

demonstrate that the levels of camalexin, JA, ET and SA are all reduced in strain B05.10-

infected leaves compared to leaves challenged with the strain 2100.  As many genes involved 

in JA/ET signaling are direct WRKY33-induced targets, the virulence of strain B05.10 on 

Arabidopsis Col-0 plants may be mediated by active suppression of WRKY33 functions by 

this fungus. Alternatively, infection by B05.10 fails to strongly or rapidly trigger WRKY33-

dependent host responses and thereby results in only a weak or delayed plant defense 

response that is insufficient to retard fungal growth. However at this stage one also cannot 

exclude that other host responses that are independent of WRKY33 function may be impaired 

by B. cinerea B05.10, or that B05.10 actively produces virulence components that act 

independently of WRKY33 in plants resulting in host susceptibility. 
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Figure 3.9. Enrichment of WRKY33-HA protein at its target loci upon B. cinerea infection. ChIP-qPCR 

analysis to detect differences in enrichment of WRKY33-HA bound to its selected targets after B. cinerea 2100 

and B05.10 inoculations for 14hours. Leaves from WRKY33-HA (33HA) plants were spray inoculated with B. 

cinerea (Bc) strains 2100 or B05.10 or mock treated (mo) for 14h. Input DNA before immunoprecipitation (IN) 

and co-immunoprecipitated DNA using an anti-HA (IP) were analyzed by qPCR employing gene-specific primer 

pairs, and are expressed as fold enrichment relative to a DNA fragment from At4g26410. As a control for primer 

efficiency, purified genomic DNA (DNA) was included in the analysis. Each ChIP experiment was repeated at 

least twice with similar results. 
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3.3.5. Enrichment of WRKY33 binding at its target genes is reduced upon infection with 

B. cinerea B05.10 

As described in the first chapter WRKY33 can directly bind to around ~1500 target genes 

after infection with B. cinerea strain 2100. Since inoculation of leaves with the virulent B. 

cinerea strain B05.10 resulted in significantly lower levels of WRKY33 protein compared to 

that observed after inoculation with the avirulent strain 2100, I tested whether this reduced 

WRKY33 levels also affected their binding to the identified target genes. Thus, I performed 

ChIP-qPCR on the same plant material (pWRKY33: WRKY33-HA transgene in the background 

of wrky33) that was previously used for ChIP (see chapter 2), and the experiment was carried 

out over the same time period. Figure 3.9 shows the results of these experiments for a selected 

set of WRKY33 target genes, including WRKY33, ACS6, LOX4, CYP71A13, PAD3 and 

NAC061. Consistent with my earlier results specific binding of WRKY33-HA protein was 

detected at the promoters of the six genes tested. Enrichment of WRKY33-HA at these sites 

ranged from 11-fold at the LOX4 locus to 32-fold at the NAC061 locus, respectively. By 

comparison, enrichment of WRKY33-HA at all of these loci was significantly reduced in 

plant material derived from B. cinerea strain B05.10 inoculated leaves (Figure 3.9).  Whereas 

in the case of CYP71A13, NAC061, and PAD3 WRKY33-HA enrichment is reduced only by 

about a fold of two, the reduction is more pronounced at the WRKY33 (4-fold), LOX4 (5.5-

fold), and ACS6 (6.5-fold) loci. This shows that the reduced levels of total WRKY33-HA 

observed upon infection with B05.10 (Figure 3.2) also results in the significantly lower 

amounts of WRKY33 protein bound to its target genes. Probably this may explain why 

expression of these genes are lower in B05.10 infected Col-0 plants compared with strain 

2100. 

3.3.6. Plants constitutively expressing WRKY33 are resistant to B. cinerea strain B05.10 

The comparative analysis between Arabidopsis leaves challenged by B. cinerea strains 2100 

and B05.10 described above indicated that virulence of strain B05.10 may be the result of 

lower accumulation of WRKY33 protein at early infection stage thereby leading to lower 

WRKY33-dependent host defense responses. To test this hypothesis I analyzed plants that 

constitutively expressed WRKY33 under the control of the 35S CaMV promoter (Birkenbihl 

et al., 2012) with respect to their resistance toward the fungal strain B05.10. We tested the 

phenotype of a WRKY33-HA overexpression line (WRKY33ox), in which WRKY33 expression 

was driven by the 35S-promoter, and where constitutive levels of WRKY33 are expected. 

These plants did show some altered phenotypes namely they were smaller than WT and 
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showed altered leaf morphology (Figure 3.10A). Nevertheless, droplet inoculations with 

spores of the two B. cinerea strains revealed that these WRKY33ox plants were equally 

resistant towards both strains 2100 and B05.10, while the control WT plants were resistant to 

strain 2100 but susceptible to strain B05.10 (Figure 3.10A). Expression analysis showed that 

WRKY33 was constitutively expressed in the WRKY33ox lines even in the absence of the 

pathogen (mo; Figure 3.10B). In Botrytis treated plants, constitutive expression levels of 

WRKY33 were much higher in the WRKY33ox plants than in WT plants inoculated with 

spores of the strains B05.10 and 2100 for 14h (6-fold and 2.5-fold higher, respectively). The 

WRKY33 protein levels in the WRKY33ox plants showed no major differences in the leaves 

challenged by the two strains over the time period tested (Figure 3.10C), but was significantly 

higher than in challenged WT leaves (Figure 3.2B). One can conclude from these results that 

elevated expression of WRKY33 can render Arabidopsis WT Col-0 plants resistant to the 

otherwise virulent B. cinerea strain B05.10.  
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Figure 3.10. WRKY33ox plants are resistant to both strains of B. cinerea. (A). Phenotype of Arabidopsis WT 

and WRKY33ox plants to the indicated B. cinerea strains after droplet inoculations for 3 days. (B). WRKY33 

expression levels analyzed by q-PCR in WT plants at 14h post spray-inoculation with indicated B. cinerea 

strains or upon mock treatment (mo). (C). Western-blot analysis WRKY33-HA protein levels in WRKY33ox 

plants after mock treatment or spray-inoculation with indicated B. cinerea spores at indicated timepoints. Red 

arrows indicate WRKY33 protein level has no major difference in the WRKY33ox leaves challenged by the two 

strains at early time point (14hpi). 

3.3.7. Expression of WRKY33-regulated target genes reach higher levels in the 

WRKY33ox line compared to WT plants after inoculation with B05.10 

As noted above, many of the tested WKRY33-target genes showed significantly lower 

expression levels in B05.10 infected WT Col-0 plants compared to inoculation with strain 

2100 (Figures 3.3 - 3.7). Since elevated WRKY33 expression levels lead to resistance of WT 

plants to strain B05.10 I tested whether expression of WRKY33 downstream targets are also 

affected. I performed qRT-PCR analysis on resistant WRKY33ox plants, at 14hpi. Indeed, 

many of the WRKY33-target genes showed increased expression level in B05.10 challenged 

WRKY33ox plants compared with B05.10-inoculated WT plants (Figure 3.11). Among the 

genes affected were: AMT1, CYP71A12, CYP71A13, PAD3, ACS2, ACS6, AOC3 and ERF1. 

As mentioned previously, these genes are involved in the camalexin and ET/JA biosynthetic 

pathways, respectively, and their expression is directly activated by WRKY33 after B. cinerea 

2100 infection. The increased expression levels of these genes in WRKY33ox plants correlates 

well with the elevated WRYK33 protein levels observed in these plants. In fact, expression 

levels of these genes were already found to be increased in the mock control (Figure 3.11; 

mo), consistent with the finding that they are directly activated WRKY33 targets, which upon 

ectopic WRKY33 expression, do not appear to require the pathogen infection for their 

induction. However, for some genes such as AMT1, PAD3 and ACS6 stimulation by the 
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pathogen may also be required for maximal expression. Taken together, elevated levels of 

WRKY33-HA in WRKY33ox plants results in increased expression levels of WRKY33 target 

genes, and this may be causal for the resistance observed in these plants towards the B. 

cinerea strain B05.10.  
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Figure 3. 11. Elevated expression levels of WRKY33 target genes are detected in WRKY33ox plants. qRT-

PCR expression analysis of selected WRKY33 target genes involved in camalexin biosynthesis and JA/ET 

signaling in WT and WRKY33ox (W33ox) plants at 14hours after B. cinerea 2100 and B05.10 inoculations. All 

data were normalized to the expression of At4g26410. Error bars represent SD of three biological replicates 

(n=3). 

3.3.8. ABA deficient mutants are resistant to B. cinerea strain B05.10, and elevated 

constitutive expression levels of WRKY33 is observed in nced3 nced5 compared to wild-

type plants. 

In the experiments described in the chapter 2, I showed that the phytohormone ABA 

negatively regulates WRKY33-dependent host resistance to B. cinerea strain 2100 (wrky33 

mutant was susceptible, while the wrky33 nced3 nced5 triple mutant was resistant). Previous 

reports in Arabidopsis have indicated the existence of an antagonistic interaction between the 

phytohormone ABA and JA/ET (Anderson et al., 2004). Since I observed reduced JA/ET 

levels in B05.10 challenged WT plants (Figure 3.8B), I hypothesized that ABA might also be 

involved in the interaction with strain B05.10. ABA deficient mutants such as aba2, aba3, 

and nced3 nced5 were used to test B05.10 infection phenotypes. As shown in Figure 3.12, 

restricted lesion size is observed on leaves of these mutants in contrast to the extended lesions 

seen on WT and wrky33 mutant leaves. In addition, consistent with the conclusions drawn in 

chapter 2 that WRKY33-dependent defenses are negatively regulated via ABA signaling, the 

wrky33 nced3 nced5 triple mutant also showed a strong resistance phenotype towards strain 

B05.10 (Figure 3.12). This strongly indicates that ABA also negatively influences resistance 

to B. cinerea B05.10.  

I also monitored the expression level of WRKY33 in nced3 nced5 plants and observed that its 

expression was higher than in WT plants even without pathogen inoculation (mock; Figure 
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3.13), indicating that ABA signaling may be partly involved in repressing basal expression of 

WRKY33.  

 

 

 

 

 

 

 

 

 

Figure 3. 12. B. cinerea B05.10 infection phenotypes (3 days post treatment) of WT, wrky33, aba2-12, aba3-

1, nced3 nced5 and wrky33 nced3 nced5 plants. 2 µL droplets containing 2.5x105 spores were applied to leaves 

of intact plants of the designated genotypes. 

 

 

 

 

 

 

 

Figure 3.13. Basal expression levels of WRKY33 are elevated in nced3 nced5 mutant plants. qRT-PCR 

expression analysis of WRKY33 in WT, wrky33, nced3nced5, aba2-12 and aba3-1 plants (mock treated). 

3.3.9. In B05.10 challenged nced3 nced5 mutants JA/ET hormone levels are elevated 

compared to inoculated WT plants 

Since ABA appears to negatively influence host resistance to B. cinerea, and nced3 nced5 

mutants are resistant to the strain B05.10, we further measured hormone levels after B05.10 
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infection. As shown in Figure 3.14, ABA levels increased in WT plants after B05.10 infection 

at 40 hours indicating that B05.10 induced ABA levels. As anticipated, little ABA 

accumulation was observed in nced3 nced5 plants. In addition, accumulation of JA, JA-IIe, 

OPDA and ACC highly increased in B05.10 challenged nced3 nced5 plants compared with 

WT. In contrast, SA accumulation did not significantly differ between B05.10 infected WT 

and nced3 nced5 plants, only slightly increased at early stage (14hpi). These data are 

consistent with previous reports that ABA antagonizes JA/ET signaling and that B05.10 

resistance of nced3 nced5 plants may be due to increased JA/ET levels and thus enhanced 

JA/ET signaling. 
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Figure 3.14. Altered hormone levels in different Arabidopsis genotypes during B. cinerea B05.10 infection. 

Concentrations of the indicated hormones were measured at 8, 14, 24 and 40hpi in WT and nced3 nced5 plants 

spray-inoculated with spores of B. cinerea B05.10 (Bc) or mock (mo) treated. Error bars represent SD (n=4). 

Note: These experiments were performed by Dr. Jörg Ziegler (IPB Halle, Germany). 

3.3.10. Expression of defense related genes in B05.10 challenged nced3 nced5 plants 

Since nced3 nced5 mutant plants are resistant to B. cinerea strain B05.10 and plant defense 

related hormone levels are altered, I next examined the expression of several defense related 

genes. As shown in Figure 3.15, JRG21 and Thi2.1, two genes acting downstream in JA 

signaling, as well as the ET biosynthesis-associated gene ACS2, are dramatically elevated in 

the nced3 nced5 mutant compared to WT plants. This indicates that ABA represses 

downstream JA responses and ET biosynthesis. This is also consistent with increased levels of 

JA, JA-IIe and ACC observed in nced3 nced5 upon pathogen infection. However, expression 

of ORA59, ERF1 and PDF1.2 are not dramatically increased in B05.10 challenged nced3 

nced5 plants compared with WT.  In addition, expression of the SA biosynthetic gene ICS1, 

and PR1, a gene acting downstream in SA signaling, showed elevated levels compared to WT 

while NPR1 (data not shown) expression was not altered between nced3 nced5 and WT 

plants. Increased expression of ICS1 is in agreement with the elevated SA level detected in 

nced3 nced5 plants at least at early infection stages (14hpi). 

Interestingly, the elevated expression levels of JRG21 and Thi2.1 in nced3 nced5 plants upon 

B05.10 infection appear to depend on WRKY33 function, as can be concluded from their 

dramatic decreases in expression in nced3 nced5 wrky33 triple mutant plants (Figure 3.16), 

suggesting a role of ABA in negatively affecting WRKY33 functions to antagonize JA/ET 

signaling in WT plants upon B05.10 infection. 
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Figure 3.15. Expression analysis of selected genes associated with phytohormone responses. Expression of 

genes in WT and nced3 nced5 plants determined by qRT-PCR at indicated timepoints after B. cinerea B05.10 

spray inoculation. All data were normalized to the expression of At4g26410. Error bars represent SD of three 

biological replicates (n=3). 
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Figure 3.16. Expression levels of the JA inducible genes JRG21 and Thi2.1, in WT, wrky33, nced3 nced5 

and wrky33 nced3 nced5 plants determined by qRT-PCR at indicated timepoints after B. cinerea B05.10 

spore spray-inoculation. Error bars represent SD of three biological replicates (n=3). All data were normalized 

to the expression of At4g26410. 

3.3.11. Mutations in ABA biosynthesis genes present in B. cinerea strain B05.10 do not 

alter strain virulence  

As observed above, the ABA deficient mutants of Arabidopsis are resistance to B. cinerea 

strain B05.10, supporting a role of this phytohormone in host susceptibility to B05.10. 

Previous reports indicate the existance of an ABA gene cluster in B. cinerea, that include the 

genes bcaba1, bcaba2, baaba3 and bcaba4 (Siewers et al., 2006). Targeted inactivation of 

these genes proved the involvement of BcABA1, BcABA2 and BcABA3 in ABA 

biosynthesis and indicated that BcABA4 may also contribute (Siewers et al., 2004; Siewers et 

al., 2006). The B. cinerea strain B05.10 contains such a gene cluster, and low expression of 

bcaba1 and bcaba2 in axenic culture was observed (Siewers et al., 2006). However, B05.10 

does not produce ABA in axenic culture. Nevertheless, no information is available on whether 

B05.10 can produce ABA during colonization of host plants. To test if virulence of this strain 

on Arabidopsis Col-0 plants may be due to a contribution of additional ABA via this fungal 

gene cluster I infected WT and nced3 nced5 plants with wild-type B. cinerea strain B05.10 or 

with two independent mutant lines each for the B. cinerea ABA1 gene (B05.10:∆bcaba1 lines 

T7 and T10) or the B. cinerea ABA3 (B05.10:∆bcaba3 lines T14 and T22), respectively. As 

shown in Figure 3.17, WT plants are resistance to strain 2100 while being susceptible to the 

wild-type strain B05.10. However, none of the B. cinerea B05.10 ABA mutant lines showed 

alterations in host susceptibility compared to the wild-type B05.10 strain. The wrky33 mutant 

plants always showed susceptibility to all tested strains (data not show), while nced3 nced5 
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plants were resistant to all strains (Figure 3. 18). This indicates that B. cinerea B05.10-derived 

ABA does not directly contribute to virulence during infection, or that this strain does not 

produce ABA during the course of infection. Irrespective of these two possibilities one can 

conclude that resistance of nced3 nced5 plants to B05.10 is very likely due to reduced 

endogenous ABA. Thus, the phytohormone ABA negatively regulates host defense to B05.10 

and is sufficient to promote disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. Phenotypes of Arabidopsis WT plants challenged with B. cinerea B05.10 ABA mutants.  

Pictures were taken of leaves 3 days post inoculation with B. cinerea strain 2100, wild-type strain B05.10, or 
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with ABA mutant lines of strain B05.10 (B05.10:∆bcaba1 lines T7 and T10, and B05.10:∆bcaba3 lines T14 and 

T22). 2 µL droplets containing 2.5x105 spores of each indicated B. cinerea genotype were applied to leaves of 

intact Arabidopsis plants, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Phenotypes of Arabidopsis nced3 nced5 plants challenged with B. cinerea B05.10 ABA 

mutants. Pictures were taken of leaves 3 days post inoculation with B. cinerea strain 2100, wild-type strain 

B05.10, or with ABA mutant lines of strain B05.10 (B05.10:∆bcaba1 lines T7 and T10, and B05.10:∆bcaba3 

nced3nced5 2100 nced3nced5 B05.10

nced3nced5 B05.10: ∆bcaba1 T7 nced3nced5 B05.10: ∆bcaba1 T10

nced3nced5 B05.10: ∆bcaba3 T14 nced3nced5 B05.10: ∆bcaba3 T22
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lines T14 and T22). 2 µL droplets containing 2.5x105 spores of each indicated B. cinerea genotype were applied 

to leaves of intact Arabidopsis plants, respectively. 

3.4. Discussion 

We previously showed that WRKY33 plays a vital role in Arabidopsis defense against the 

necrotrophic fungal pathogen B. cinerea strain 2100 (Birkenbihl et al., 2012). However, its 

molecular effects may differ against other strains or isolates of B. cinerea. Here we initially 

compared  three B. cinerea strains, 2100, BMM and B05.10, and found that resistance of WT 

Col-0 plants to strains 2100 and BMM were dependent on WRKY33 function, whereas this 

was not apparently the case for strain B05.10. Subsequent more detailed comparisons between 

infections using strains 2100 and B05.10 revealed that the avirulent strain 2100 induced 

WRKY33 transcript and protein accumulation to much higher levels in host plants at early 

infection stages than the virulent strain B05.10 did. The difference in the strength of 

WRKY33 induction was also mirrored at the level of numerous tested WRKY33-dependent 

downstream events. This variation in the plant response was strongly correlated with 

differential accumulation of the A. thaliana defense hormones JA and ET and with the 

production of the antifungal compound camalexin. Analyses of A. thaliana ABA deficiency 

mutants in combination with B. cinerea B05.10 BcABA mutants revealed that Arabidopsis 

derived-ABA negatively regulates plant immune response to B05.10 similar to what was 

observed with strain 2100.     

 

The Arabidopsis phytoalexin, camalexin, has been well described as playing a critical role in 

host defense particularly towards necrotrophic fungi and pad3 mutants defective in the final 

steps of camalexin biosynthesis are highly susceptible to B. cinerea (Ahuja et al., 2012). 

Compared to plants infected with strain 2100, the camalexin levels observed in B05.10-

infected plants were significantly reduced (Figure 3.8A). Several genes in the camalexin 

biosynthetic pathway are directly targeted and activated by WRKY33, and their expression 

levels too were reduced in B05.10 infected WT plants. Reports have shown that camalexin 

detoxification mechanisms are used by B. cinerea. Camalexin treatment induces B. cinerea 

apoptotic-like programmed cell death (PCD) and that a transgenic strain with enhanced anti-

apoptotic capacity is less susceptible to camalexin (Shlezinger et al., 2011). In planta, 

camalexin might thus induce fungal PCD, limiting the spread of lesions during the early B. 

cinerea infection stage, while the fungal anti-apoptotic machinery would allow the fungus to 

recover and subsequently establish infection (Shlezinger et al., 2011). When B. cinerea is 
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exposed to camalexin, it also induces the expression of BcatrB, an ABC transporter that has 

an efflux function, acting as a protective mechanism against the fungitoxic effect of 

camalexin (Stefanato et al., 2009). In addition a camalexin detoxification mechanism acting 

through metabolization has also been reported resulting in the production of 3-

indolecarboxylic acid by B. cinerea (Pedras et al., 2011b). However, wrky33 mutants are far 

more susceptible to B. cinerea 2100 and B05.10 than are pad3 plants. Thus, although 

WRKY33-dependent control of camalexin biosynthesis plays an important role in 

Arabidopsis defense towards these strains, additional WRKY33 functions must be acting in 

the host that are also impaired upon challenge with strain B05.10.     

    

In response to pathogen attack, a universal defense response employed by plants involves, 

among others, activation of complex phytohormone signaling networks (Schenk et al., 2000). 

In particular, JA, ET and SA appear to be primary defense hormones, associated with host 

defense. Other phytohormones, such as ABA, IAA and CKs, which are better known for their 

roles in abiotic stress tolerance or plant growth and development, also can regulate plant 

defense, either alone or in conjunction with the primary defense hormones (Robert-

Seilaniantz et al., 2011). However, pathogens have developed capabilities to manipulate or 

subvert plant phytohormone signaling for their own benefits (Kazan and Lyons, 2014). 

Plant defense responses regulated by JA often promote resistance against necrotrophic 

pathogens and herbivorous insects (Glazebrook, 2005; Kazan and Manners, 2008; Mengiste, 

2012). ET is a gaseous hormone and ET signaling often works synergistically with JA to 

promote resistance to necrotrophic pathogens such as B. cinerea and Rhizoctonia solani in 

Arabidopsis (Thomma et al., 1999b) and Medicago (Anderson et al., 2010), respectively. 

However, similar to other phytohormones, the involvement of ET in disease susceptibility, 

either alone or in combination with other phytohomones, has also been documented (Chen et 

al., 2009; Jia et al., 2013; Pantelides et al., 2013; Wang et al., 2013). Therefore, disruption or 

activation of JA/ET signaling by certain pathogens often promotes disease. From the 

comparative analysis of Arabidopsis Col-0 responses to the B. cinerea avirulent strain 2100 

and the virulent strain B05.10 in this study, it appears that the outcome of the interaction 

between the host and the two fungal pathogens is mainly determined by qualitative 

differences in the WRKY33-dependent activation of a similar defense response. In particular 

WT plants inoculated with strain B05.10 were significantly impaired in the accumulation of 

JA, JA-IIe and ACC (a precursor of ET) compared with plants infected with strain 2100 
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(Figure 3.8B) and this impairment seems to be causal for disease development. Whether strain 

B05.10 actively suppresses host JA/ET signaling or whether this is the consequence of some 

other B05.10-dependent host perturbation remains to be elucidated. Other reports have shown 

some pathogens have evolved abilities to suppress the JA/ET pathway. For instance, SSITL 

(SCLEROTINA SCLEROTIORUM INTEGRIN-LIKE) protein, a secretory effector produced 

by the necrotrophic fungal pathogen S. sclerotiorum, suppresses JA-dependent defenses (Zhu 

et al., 2013). The mechanism by which SSITL suppresses JA-dependent defense is currently 

unknown. In a second case, the Xanthomonas oryzae. pv oryzae effector XopD encodes a 

small ubiquitin-like modifier protease with helix-loop-helix and EAR (ERF-Associated 

Amphiphilic Repression) DNA binding domains (Kim et al., 2008a). Mutants in xopd lacking 

either of these domains show reduced virulence (Kim et al., 2008a). The EAR motif acts as a 

transcriptional repressor in plants (Kazan, 2006). Further work indicates that the effector 

XopD from the related bacterial species X. c. pv vesicatoria targeted the tomato TF ERF4 to 

suppress ET mediated host defense responses (Kim et al., 2013).  

 

Pathogens can also exploit phytohormone crosstalk during their interaction with plants. A 

well-known example of phytohormone crosstalk is the mutual antagonism between the SA 

and the JA signaling pathways (Kazan and Lyons, 2014). While the SA pathway often confers 

resistance to biotrophic pathogens, activation of this pathway attenuates JA signaling, thereby 

compromising resistance to necrotrophic pathogens. It has been shown that B. cinerea 

secretes an exopolysaccharide (EP) that enhances disease severity in tomato (El Oirdi et al., 

2011). The EP activates the SA pathway, which antagonizes the JA signaling pathway, 

promoting enhanced disease. The SA-mediated disease development caused by the virulence 

function of EP is dependent on NPR1, a major regulator of SA-dependent immune responses 

(El Oirdi et al., 2011). In contrast, activation of JA pathway enhances resistance to some 

necrotrophs but inhibits the SA pathway and resistance to biotrophs (Thaler et al., 2012). In 

this study I observed a significantly reduced JA level in WT leaves challenged with the 

virulent strain B05.10 compared to infections with the avirulent strain 2100. This reduced JA 

levels is very likely due, in part, to the loss of WRKY33-mediated repressing SA signaling, 

but also to the additional role that WRKY33 plays in enhancing JA/ET signaling.  

Although ABA is the major phytohormone involved in responses to abiotic stresses, it also 

can influence different aspects of plant immunity. ABA has been reported to mediate immune 

responses to necrotrophic bacteria, oomycetes, and certain fungi, contributing to disease 
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resistance or susceptibility (Mengiste, 2012). Elevated ABA levels lead to susceptibility to a 

wide range of pathogens including B. cinerea (Audenaert et al., 2002), F. oxysporum 

(Anderson et al., 2004), M. grisea (McDonald and Cahill, 1999a; Modi and McDonald, 1999), 

P. sojae (McDonald and Cahill, 1999b), and the bacterial pathogen X. oryzae pv oryzae (Xu 

et al., 2013), while it promotes resistance to pathogen such as the rice-infecting fungal 

pathogen Cochliobolus miyabeaus (De Vleesschauwer et al., 2010), and the oomycete 

pathogen Pythium irregular (Adie et al., 2007).  

ABA-mediated resistance or susceptibility is often thought to be a consequence of crosstalk 

with the defense hormones JA, SA, or ET. My studies show that ABA deficiency in 

Arabidopsis, due to mutations in the ABA biosynthetic genes NCED3 and NCED5, result in 

up-regulation of transcripts of JA/ET-related genes, increased JA and ET related hormone 

accumulation, and enhanced resistance to B. cinerea B05.10. This suggests that ABA-JA/ET 

crosstalk modulates defense gene expression and thereby results in disease resistance to 

B05.10. A negative role of ABA was further supported by the enhanced resistance to B05.10 

observed in additional ABA mutants namely, aba2-12, and aba3-1 (Table 3.1, Figure 3.12). 

Previous work has revealed an antagonistic effect between ABA and the JA/ET signaling 

pathways based on ABA deficient mutants leading to up-regulation of basal and induced 

transcription of JA/ET-responsive genes, and enhanced resistance to necrotrophs (Anderson et 

al., 2004; Hernandez-Blanco et al., 2007). The ABA-deficient tomato mutant sitins is resistant 

to B. cinerea, which is attributed to the timely production of hydrogen peroxide and cell wall 

modifications in the epidermis, enhanced cuticle permeability, and altered pectin composition, 

as well as increased basal and induced JA-ET-dependent defense gene expression (Asselbergh 

et al., 2007; Curvers et al., 2010).  

 

Phytohormone responses are regulated by a large number of TFs. Therefore, a potential way 

for pathogens to disturb phytohormone pathways is to target TFs either directly or indirectly 

(Kazan and Lyons, 2014). In Medicaga truincatula, ERF19 is targeted by a secreted effector 

(SP7) from the arbuscular mycorrhizal fungus Glomus intraradices. SP7 interaction with 

ERF19 causes increased mycorrhizal colonization by G. intrardices and prolongs the 

biotrophic phase in rice roots when SP7 is expressed in the hemibiotrophic rice blast fungus 

M. grisea (Kloppholz et al., 2011). The Xanthomonas effector XopD interacts with ERF4 in 

tomato and the MYB TF MYB30 in Arabidopsis. MYB30 is a key regulator of multiple 

hormone signaling pathways, including SA, ABA, and BR signaling (Raffaele and Rivas, 
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2013). In addition to direct interaction with effectors, host TFs may be indirectly targeted by 

pathogen. For instance, The PAMP flg22 induces alternatively polyadenylated forms of ERF4 

transcript in Arabidopsis (Lyons et al., 2013). The full length transcript encodes an AtERF4 

isoform, which contains an EAR domain, and is involved in transcriptional repression, while 

the flg22-induced truncated transcript encoded an ERF4 isoform that does not contain the 

EAR domain and performs novel defense related functions (Lyons et al., 2013). Additionally, 

various members of the NAC family TFs involved in positively or negatively modulating host 

defenses, have recently been shown to be targeted by pathogen effectors (McLellan et al., 

2013; Block et al., 2014; Donze et al., 2014). In the present study our data suggested that 

JA/ET signaling was affected by B05.10 infection, most likely by downregulating WRKY33 

expression (Figure 3.2B). Unfortunately compared with bacteria, nearly nothing is known 

about potential effectors from necrotrophic pathogens such as B. cinerea. Whether virulence 

factors exist that are used by B05.10 to target WRKY33 remain to be revealed. Given the 

large number of transcriptional regulators potentially involved in plant defense, future 

research will also identify how WRKY33 was directly or indirectly targeted by B. cinerea 

B05.10 to promote disease susceptibility. 

 

An additional question is whether ABA is also involved in suppressing WRKY33-dependent 

host immune responses?  B. cinerea strain B05.10 appears to impair early accumulation and 

function of WRKY33 (Figure 3.2), whereas in the nced3 nced5 mutant basal WRKY33 

expression levels are already high and further increases only moderately upon challenge with 

strain B05.10 (Figure 3.19). Thus, ABA seems in part to negatively affect WRKY33 

expression. In addition, ABA also seems to negatively impact the JA/ET pathway at least 

based on the elevated expression levels of JRG21 and Thi2.1 in nced3 nced5 plants upon 

B05.10 infection (Figure 3.15). However, the activation of these JA/ET-related genes also 

appear to depend on WRKY33 function, as can be concluded from their dramatic decreases in 

expression in nced3 nced5 wrky33 triple mutant plants (Figure 3.16), supporting a role of 

ABA in negatively affecting WRKY33 functions in WT plants upon B05.10 infection. 

However, increased WRKY33 expression in nced3 nced5 plants is not observed after B05.10 

infection compared with WT plants (14hpi; Figure 3.19). This could indicate that ABA-

mediated suppression of WRKY33 expression acts via transcription factors that themselves are 

induced by ABA.  
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Figure 3. 19. Expression levels of WRKY33 in WT, wrky33, nced3 nced5 and wrky33 nced3 nced5 plants 

determined by qRT-PCR at indicated timepoints after B. cinerea B05.10 spore spray-inoculation. Error 

bars represent SD of three biological replicates (n=3). All data were normalized to the expression of At4g26410. 

Analysis of the WRKY33 promoter for putative DNA binding sites (Table 3.2) revealed the 

existence of conserved abscisic acid (ABA) response elements (ABRE motifs), binding sites 

found in several ABA-responsive gene promoters that are bound by ABFs, a class of bZIP 

TFs (Sarkar and Lahiri, 2013).  ABFs are themselves activated in an ABA-dependent manner 

upon stress through phosphorylation of their conserved domains by SNF1-related kinase2s 

(Yoshida et al., 2014). In addition, the WRKY33 promoter also contains one MYC2 binding 

site. I tested the expression of MYC2 in leaves of nced3 nced5 and WT plants challenged by 

B05.10 and observed a significant reduction in the double mutant at 14hpi compared to WT 

(Figure 3.20), This is consistent with previous reports showing that ABA positively regulates 

MYC2 (Kazan and Manners, 2013). Thus, one hypothesis is that ABA signaling induces ABFs 

and MYC2 and that these TFs are partly involved in regulating WRKY33. myc2/jin1 mutants 

are resistant to some isolates of B. cinerea (Lorenzo et al., 2004), but whether myc2 plants are 

resistant to B. cinerea strain B05.10, and whether MYC2 can directly target the WRKY33 

promoter and down-regulate its expression remain to be tested. 
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Table 2  List of known DNA motif in the promoter of WRKY33 (-2545 to 1). 

Selected motif DNA sequence Number Cluster  

Evening element motif AAATATCT 2 Yes 

TGA binding site TGACG 4 yes 

ABA response element (ABRE) ACGTGG 3 yes 

HSF binding motif GAAGAAGAA 3 yes 

MYB binding site CACATG 1   

MYC2 binding site CATGTG 1   

G box  CACGTG 1   

W-box TTGACT/C 5 yes 

WRKY33 potential binding site ATTCAAA 1   

 

 

 

 

 

 

 

Figure 3.20. Expression analysis of MYC2 in WT and nced3 nced5 plants determined by qRT-PCR at 

indicated time points after B. cinerea B05.10 spore spray-inoculation. Error bars represent SD of three 

biological replicates (n=3). All data were normalized to the expression of At4g26410. 

Beyond ABA biosynthesis in the plant, some strains of B. cinerea can produce ABA (Siewers 

et al., 2004; Siewers et al., 2006). Thus, Botrytis-derived ABA can contribute to elevated 

ABA levels with host cells during the infection process.  However, based on my analysis of B. 

cinerea B05.10 ABA mutants BcABA1 and BcABA3 this does not appear to be the case in this 

interaction. Rather, it appears that the endogenous plant-derived ABA is sufficient to result in 

host susceptibility. Still, pathogen-derived effectors can also modulate host ABA levels. For 

example, P. syringae infection induces ABA concentrations, and the effector AvrPtoB seems 

to be specifically involved in this process since transgene expression of this effector protein in 

Arabidopsis elevates ABA levels and enhances susceptibility to P. syringae (de Torres et al., 

2006; de Torres-Zabala et al., 2007). By increasing ABA levels, P. syringae seems to 

antagonize the SA pathway required for resistance to this pathogen (Zabala et al., 2009). How 

AvrPtoB affects ABA levels is currently not known. The AvrBAvrC domain of the 

AvrXccC8004 from the bacterial pathogen X. c. pv campestris elicits ABA accumulation by 
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induction of the ABA biosynthesis gene NCED5 when expressed as a transgene in 

Arabidopsis. Compared to the wildtype strain, an X. c. pv campestris mutant strain deficient 

in AvrXccC8004 triggers reduced ABA levels when inoculated onto Arabidopsis. 

Furthermore, exogenous ABA application allows increased growth of the AvrXccC8004-

deficient strain, suggesting that X. c. pv campestris mediated ABA induction promotes 

virulence (Ho et al., 2013). Unfortunately nearly nothing is known about the repertoire of 

effectors encoded B. cinerea strain B05.10. 

 

 Taken together, my studies revealed that the virulent B. cinerea strain B05.10 represses 

WRKY33 gene expression and delays WRKY33 protein accumulation thereby leading to 

clearly reduced early immune responses. From my results I hypothesize that several 

WRKY33-dependent Arabidopsis responses are required for resistance towards the fungus B. 

cinerea.  On the one hand, WRKY33-mediated production of camalexin plays an important 

role in host-mediated resistance. Additionally however, enhancement of the JA and ET 

signaling pathways leading to appropriate defense responses to this necrotrophic fungus is 

also required, and this is achieved as a consequence of the downregulation of ABA 

biosynthesis by direct binding of WRKY33 to the promoters of ABA biosynthetic genes. How 

this negative cross-talk between ABA and JA/ET signaling is mechanistically achieved needs 

to be further investigated. Similarly, it remains unclear how WRKY33 function is impaired 

during the interaction of Arabidopsis with the virulent B. cinerea strain B05.10. 
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4. Conclusions and future perspectives 
 

The studies in this thesis have revealed novel findings about the role of WRKY33 in 

regulating host defenses towards the necrotrophic fungus B. cinerea. In particular these 

studies have provided the first genome-wide in vivo overview of potential binding sites for a 

critical transcription factor during the interaction of an intact plant with a phytopathogen, and 

what the consequence of such binding had on host gene expression. Thus it provides the 

framework for the establishment of a transcriptional regulatory network model for host 

immunity.     

The ChIP-seq and RNA-seq data provided in chapter 2 show that B. cinerea 2100-induced 

WRKY33 has a dual regulatory role by acting either as a transcriptional activator or as a 

repressor in modulating hundreds of target genes with distinct molecular functions. Further 

genetic and biochemical studies highlighted that importance of WRKY33-dependent positive 

regulation of camalexin biosynthetic genes, and the negative regulation of ABA signaling for 

Arabidopsis immunity towards B. cinerea 2100. WRKY33 was shown to act upstream of 

ABA biosynthesis as demonstrated by the re-establishment of WT-like resistance in the 

wrky33 nced3 nced5 triple mutant upon B. cinerea 2100 challenge. 

Studies described in chapter 3 of this thesis revealed that WRKY33-dependent Arabidopsis 

immunity also contributes to defense towards the B. cinerea virulent strain B05.10, but that 

during this interaction WRKY33-dependent early immune responses were clearly reduced or 

dampened. Genetic studies showed that ABA deficient mutants in Arabidopsis are also 

resistant to strain B05.10, and this resistance is correlated with observed elevated basal 

expression levels of WRKY33 in nced3 nced5 double mutant plants, suggesting ABA also 

negatively affects WRKY33 basal expression. ABA antagonizes JA/ET signaling upon B05.10 

infection, and this antagonism is dependent on WRKY33. These findings suggest that B. 

cinerea virulent strain B05.10 impairs WRKY33 function through the phytohormone ABA or 

via ABA signaling.   

Although these studies have provided an extensive and deeper insight into the role of the 

transcription factor WRKY33 in modulating host immunity towards B. cinerea, several 

important questions remain to be resolved. They include: 

- Next to the classical WRKY factor binding site, the W-box, an additional conserved DNA 

motif (5’- T/G-TTGAAG-3’) was often identified within the WRKY33 binding peak regions. 



Conclusions and future perspectives 

 

102 

 

This motif occurred in 55% of the WRKY33 binding regions, and was often associated with 

the W box (in 40% of the cases). It remains to be determined whether this new motif has 

functional relevance and can be bound by WRKY33 itself, or whether it represents a binding 

site for another type of transcription factor.  

-  What is the molecular basis for the observed antagonism between ABA and JA/ET 

signaling? My studies showed that numerous genes are misregulated in the susceptible 

wrky33 mutant compared to the resistant WT plant. In the resistant wrky33 nced3 nced5 triple 

mutant expression of many but not all genes are restored to WT-like levels. Thus, genes 

showing restoration of WT-like expression levels are prime candidates for further 

investigations as they may be causal for WRKY33-mediated resistance against this 

necrotrophic fungus.  

- Why are SA levels so strongly reduced in the ABA biosynthetic double mutant nced3 nced5 

compared to wrky33 upon 2100 infection? Where does ABA signaling interconnect with the 

SA signaling pathway? 

- How does ABA negatively impact WRKY33 expression and possibly also WRKY33 protein 

function? Are the ABA-responsive cis-regulatory DNA elements present in the WRKY33 

promoter relevant in this respect, and if so, which factors bind to these motifs?  

- How does the virulent B. cinerea strain B05.10 negate WRKY33-dependent host resistance? 

Does this fungal strain use virulence effectors to target WRKY33 or some other molecular 

component(s) within the WRKY33-dependent defense pathway? With the advance of rather 

inexpensive next generation sequencing technologies it should be feasible to sequence the 

fungal strains 2100 and BMM and to compare their sequences with the already sequenced 

genome from strain B05.10. Bioinfomatic analyses should help to uncover differences in their 

potential effector repertoires along with additional unique gene sets that may provide clues 

why WRKY33-dependent host immunity remains effective against strains 2100 and BMM 

but not against B05.10.   

The simplified model for the function of WRKY33 in modulating host defense towards B. 

cinerea is described in Figure 4.1.  

 

 

 



Conclusions and future perspectives 

 

103 

 

 

 

Figure 4.1. The involvement of WRKY33 in modulating host immunity towards B. cinerea strains 2100 

and B05.10. The arrows indicate induction or positive modulation; the bar heads indicate block or suppression. 

The red color indicates the role of WRKY33 in host response to B. cinerea strain 2100, and the black color 

indicates the role of WRKY33 in host response to strain B05.10.  SA, salicylic acid; JA, jasmonic acid; ET, 

ethylene; ABA, abscisic acid.  
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5. Materials and Methods 

The material and methods section is subdivided into two parts, listing all materials 

used within this work in the first part. This includes the list of plant lines, oligonucleotides, 

pathogen strains, buffers and chemicals, media, solutions and enzymes. The second part 

describes the methods applied in this work. 

5.1. Materials 

5.1.1. Plant material 

All experiments were performed using Arabidopsis thaliana Columbia-0 (Col-0) wildtype 

plants or mutants in the Col-0 background. The double or triple mutants wrky33 nced3 nced5, 

wrky33 nced3, wrky33 nced5, wrky33 wrky46, gh3.2 gh3.3-1 and wrky33 gh3.2 gh3.3 were 

generated by crossing the homozygous wrky33 ( GABI_324B11) with single or double 

mutants followed by PCR-based verification of the T-DNA insertion. Mutant plants are listed 

in Table 5.1, transgenic plants in Table 5.2. 

Table 5.1. Arabidopsis mutants used in this study. 

Gene Accession Reference/Source 

cyp79b2 cyp79b3 Col-0 Zhao et al. 2002 

cyp71a13 Col-0 Nafisi et al. 2007 

pad3-1 Col-0 Zhou et al., 1999 

dde2-2 Col-0 von Malek et al, 2002 

jar1-1 Col-0 Staswick et al., 2002 

ein2 Col-0 Guzman and Ecker, 1990 

dde2 ein2 Col-0 Tsuda et al. 2009 

erf5-1 Col-0 Son et al. 2012 

erf6-1 Col-0 Son et al. 2012 

erf5 erf6 Col-0 Son et al. 2012 

ora59 Col-0 GK_061A12 

sid2-1 Col-0 Wildermuth et al., 2001 

pad4-1 Col-0 Glazebrook et al., 1997 

npr1-1 Col-0 Cao et al., 1997 

pad4 sid2 Col-0 Tsuda et al. 2009 

dde2 ein2 pad4 sid2 Col-0 Tsuda et al. 2009 

aba2-12 Col-0 González-Guzmán et al. 2002 

aba3-1 Col-0 Leon-Kloosterziel et al. 1996 

nced3-2 Col-0 Frey et al. 2012 

nced5-2 Col-0 Frey et al. 2012 

nced3 nced5 Col-0 Frey et al. 2012 

wrky33 Col-0 GABI_324B11 

wrky33 sid2-1 Col-0 Birkenbihl et al. 2012 
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wrky33 npr1-1 Col-0 Birkenbihl et al. 2012 

wrky33 rbohd Col-0 Birkenbihl et al. 2012 

wrky33 wrky70 Col-0 Birkenbihl et al. 2012 

wrky33wrky40 Col-0 this study 

wrky33 wrky46 Col-0 this study 

wrky33 nced3 nced5 Col-0 this study 

wrky33 nced3 Col-0 this study 

wrky33 nced5 Col-0 this study 

nac019 Col-0 Bu et al. 2008 

nac055 Col-0 Bu et al. 2008 

nac019 nac055 Col-0 Bu et al. 2008 

gh3.2 Col-0/ KanR González-Lamothe et al. 2012 

gh3.2 Ler González-Lamothe et al. 2012 

gh3.3-1 Col-0 Gutierrez et al. 2012 

gh3.3-2 Col-0 Gutierrez et al. 2012 

gh3.2 gh3.3-1 Col-0 this study 

wrky33 gh3.2 gh3.3-1 Col-0 this study 

cyp707a1-1 Col-0 Okamoto et al. 2006 

cyp707a2-1 Col-0 Okamoto et al. 2006 

cyp707a3-1 Col-0 Okamoto et al. 2006 

nac061 Col-0 this study 

wrky33 nac061 Col-0 this study 

rbohd Col-0 Torres et al., 2002 

wrky70 Col-0 GK_752F08 

wrky40 Col-0 Shen et al., 2007 

wrky46 Col-0 GABI_ 038C07 

 

The Arabidopsis mutant gh3.2 was kindly provided by Dr. Kamal Bouarab;  gh3.3 was kindly 

provided by Dr. Catherine Bellini; erf5, erf6 and erf5erf6 were kindly provided by Dr. Gary 

Stacey; dde2 ein2 pad4 were kindly provided by Dr. Kenichi Tsuda; sid2, nced3, nced5, and 

nced3 nced5 were kindly provided by Dr. Annie Marion-Poll; nac019, nac055, and nac019 

nac055 were kindly provided by Dr. Chuanyou Li; cyp707a01, cyp707a02, and cyp707a03 

were kindly provided by Dr. Yong Xiang;  aba2 and aba3 were kindly provided by Dr. Akira 

Mine. 

Table5.2.  Arabidopsis transgenic lines 

Name Background Construct Reference/Source 

WRKY33HA Col-0 wrky33 pWRKY33:WRKY33-HA Birkenbihl et al. 2012 

OE-WRKY33HA Col-0 wrky33 35S:WRKY33-HA Birkenbihl et al. 2012 

OE-NCED3 Col-0 35S:NCED3 Fan et al. 2009 

OE-NCED5  Col-0  35S:NCED5 Fan et al. 2009 
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The Arabidopsis transgenic plants OE-NCED3 and OE-NCED5 were kindly provided by Dr. 

Jun Fan. 

5.1.2. Pathogens 

All pathogens employed in this study are depicted in Table 5.3. In addition, source or 

reference is stated.  

5.1.3. Oligonucleotides 

Primers used in this study were purchased from Sigma-Aldrich or Invitrogen and resuspended 

in H2O to a concentration of 100µM. Working solutions were further diluted to 10µM. 

Primers used for fungal growth biomass are summarized in Table 5.4, for qPCR in Table 5.5, 

for ChIP-PCR or LinDA-PCR in Table 5.6, and for genotyping in Table 5.7, respectively. 
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Table 5.3.  pathogens used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.4.  Oligonucleotides used for fungal growth biomass 

Gene Locus Forward primer (5' - 3') Reverse primer (5' - 3') Purpose 

BC-CutA   AGCCTTATGTCCCTTCCCTTG GAAGAGAAATGGAAAATGGTGAG fungi biomass 

ATSK11  AT5G26751 CTTATCGGATTTCTCTATGTTTGGC GAGCTCCTGTTTATTTAACTTGTACATACC fungi biomass 

Strain Description Reference/Source 

2100 Isolated from leaf of Vicia faba (United Kingdom) CECT (Spanish Type-Culture Collection) 

BMM Isolated from Pelargonium zonale Zimmerli et al. 2001 

B05.10 Obtained after benomyl treatment of a Vitis isolate (Germany) Büttner et al. 1998; Quidde et al. 1998 

B05.10: ∆bcaba1 B05.10, ∆ bcaba1::hygR (T7, T10) Siewers et al. 2004 

B05.10: ∆bcaba3 B05.10, ∆ bcaba3::hygR (T14, T22) Siewers et al. 2006 
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Table 5.5. Oligonucleotides used for qPCR 

Gene Locus Forward primer (5' - 3') Reverse primer (5' - 3') Purpose 

CYP71A12 AT2G30750 TTGTAGGCCGATTTGACTGGA ACGGAAGATGGAAATGCAATG  qPCR 

CYP71A13 AT2G30770   ATTCGGATCAGGGAGAAGGATA CGATACCAATGGCTTCAGTTAGAT qPCR 

PAD3 AT3G26830   GGTTTCTCGACAGTTCCGTTGA TTCAACAATGCCATCTCAACAAGTA qPCR 

WRKY38 AT5G22570   CATAACTTGAAAGCGGTCCAC AAATGAACTCCCCACACGAA qPCR 

WRKY50 AT5G26170   GATCTTGTGTCTGCGGTTTC CAGAAGCAGTGGCTGTAGCA qPCR 

WRKY53 AT4G23810   CCAGAGTCAAACCAGCCATTA CGTATCAGGGAACGAGAAAAC qPCR 

WRKY41 AT4G11070   CCGTCGGATTTCACTGGA GCCTGTGTTAATCTCAGCCG qPCR 

WRKY48 AT5G49520   TCAACATCACCAGCCCTACA CATATCATAACCAAAGCCGGG qPCR 

WRKY55 AT2G40740   CTTCCGGGTCACATACCGT TGAAATCCATGTTGGTTCCG qPCR 

NAC061 AT3G44350   CAGTATCTGTCGAATCTACA TTGGTTTCCTCCTGAATGTG  qPCR 

NAC090 AT5G22380   GCTGAGACATCGTTCCGTG CAGTCCCACATCGGTTCTG qPCR 

GH3.2 AT4G37390   TGGAGCAGCAGAAGCATCAT TGTCGCCAACTCTGTAACGG qPCR 

GH3.3 AT2G23170   ACCTATGCTGGGCTTAACCGT AGAGCGATGCGTTCTCAACC qPCR 

AKT1 AT2G26650   ATAGCCGGGAAGCTGGTA  TGGAACCCAATTCTAGCAACT qPCR 

NCED3 AT3G14440   GGAGAAGGAGGAGAGGAAGA CGACCTGCTTCGCCAAATCAT qPCR 

NCED5 AT1G30100   CGAGGAGAGTTGGGAATCGG  TGGTTTAACATATCCGCCGAA  qPCR 

CYP707A3 AT5G45340   CAGATGGTCAATCGTAGGGC TTTCGTTCCAAGGCAATAGG qPCR 

WAKL7 AT1G16090   CAGTGGCTACAGAGGCAATCC TCACAATCATACCCTTTCCCA qPCR 

NPR3 AT5G45110   CGACATCCTCGACGATTTCC CATGTTGTGTTGTGCAGGTCA qPCR 

AAO1 AT5G20960   AACGGTTGACACAATCCCAAG GCAGTGAACAGAAGCCGCTAA qPCR 

ACS2 AT1G01480   AGTTTCCGACGACTTTACGAG GAAGAGGTGAGTGTGGTGACA qPCR 

JRG21 AT3G55970   AGGGCAATGTTCCTATCGAGC GACATTTGCTACGTGGGCCT qPCR 

ERF5 AT5G47230   TGGAGAGACGTTTCCGTTTGT CGGTCAACTGGGAATAACCA qPCR 

ERF1 AT3G23240   TCGGCGATTCTCAATTTTTCG CCGTCTCATCGAGTGTTTCCT qPCR 

ACS6 AT4G11280 AAACCGAACTATGGCGTGTG TCATGGCAATGGAACGAAC qPCR 

LOX4 AT1G72520 CTCCGTCATCACCACCATC  AAAATACTTTTGAGGATCTTCGATA qPCR 

WRKY33 AT2G38470 CTCGTGGTAGCGGTTACGCC CCTTTGCTCTAGAGAATCCACC qPCR 
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ICS1 AT1G74710 CATTGATCTATGCGGGGACAG TGGACAAAAGCTCGTACCTGAG qPCR 

NPR1 AT1G64280 AGGCACTTGACTCGGATGATATTG CTTCACATTGCAATATGCAACAGC qPCR 

NPR4 AT4G19660 TCGTATCCCGAGAAAGGCAC AGCTGGTGATGAAGAAGAAAGACAA qPCR 

TRXH5 AT1G45145 TGAATTGCAAGCTGTTGCTC GCAGAAGCTACAAGACCACC qPCR 

FMO1 AT1G19250  CGTCCAAAGCAGCTCGAAC CGTGGAAATGCAATGACGTTT  qPCR 

PR2 AT3G57260 TTCAAACCCGTACGACACTG TCTGGCGTCGTGAGGAGGAA qPCR 

EDS1 AT3G48090 AAGCATGATCCGCACTCG CGAAGACACAGGGCCGTA qPCR 

PAD4 AT3G52430 GGTTCTGTTCGTCTGATGTTT GTTCCTCGGTGTTTTGAGTT qPCR 

NIMIN-1 AT1G02450 TTCAAACCCGTACGACACTG TCTGGCGTCGTGAGGAGGAA qPCR 

PR1 AT2G14610 TTCTTCCCTCGAAAGCTCAA AAGGCCCACCAGAGTGTATG qPCR 

NAC019 AT1G52890 GGAGGAAGTCGAGAGCAGTCA CAAACCCACCAACTTGCCC qPCR 

NAC055 AT3G15500 CGCAGCAACAAACTGAGGG CCCGAGTACCCAAATCCGTT  qPCR 

MPK11 AT1G01560 CGATGAAGCCTTGTGCCA CCTTGATGTTCTCTTCCGTCA qPCR 

BIR1 AT5G48380 GGGTAACCTCGTGGAATGG CTTCAAACATGGTTGGCCTC qPCR 

CDPK1 AT1G18890 GGATGTCGATGGAAATGGG CGCTTAGAACACTGGCGTCT qPCR 

CRK36 AT4G04490 GACAAGGTGGGTTTGGATCTG GTCCTGAGCCTCCAGCTAATC qPCR 

ORA59 AT1G06160 AGGCAGCCTCGCAGTACTCAA CTCTTCAAGGCTATCACCGGA qPCR 

PDF1.2 AT5G44420 TGCATGATCCATGTTTGGCTC ACGCACCGGCAATGGTGGAA qPCR 

ABI1 AT4G26080 AAGGGAAAGATCCTGCGGC  TCCGAGGCTTCAAATCAACC qPCR 

AMT1 AT5G05730 AGTGACCCGCAAGACGAA  TCACAAATGCAGATTCAGCC qPCR 

AOC3 AT3G25780 CTGAAAAGAGCGGTGACAGAT CACCAGTGACAGCGAGGAAC qPCR 

JAR1 AT2G46370 CCGTATGTGCCAAAGCTGAGAC GGTTTCTCCTCTCCTTCCCCT qPCR 

JRG21 AT3G55970 AGGGCAATGTTCCTATCGAGC GACATTTGCTACGTGGGCCT qPCR 

THI2.1 AT1G72260 TGCCCAGGCTCTTCATTG AGAGGCGTGGCTTTAGGA qPCR 

VSP2 AT5G24770 ACCGTTGGAAGTTGTGGAAG CCAAATCAGCCCATTGATCT qPCR 

LOX2 AT3G45140 TACTTTCCCAACCGACCAAC CCTGTTTCTGCGATGGGTAT qPCR 

MYC2 

 

AT1G32640 

 

GCGGTTTTATCTCCGAATGA 

 

GCGATGAAGGTAAACG 

 

qPCR (from Dr. 

Akira Mine) 

DDE2 AT5G42650 ATGTGTTGTGGTCGAATGGAC AACGAATCATATCGCCGGA qPCR 

AOC1 AT3G25760 CGCATTCAGCTTTAGGTTTGG CGTTCTTCTCAGGGACGTGT qPCR 
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Table 5.6. Oligonucleotides used for ChIP-qPCR 

HSFA4A AT4G18880 GAATGATGGCTTCTGGCAGC TTGAACTTCCCGTTGCTCG qPCR 

EXP AT4G26410 GAGCTGAAGTGGCTTCCATGAC GGTCCGACATACCCATGATCC qPCR 

Gene Locus Forward primer (5' - 3') Reverse primer (5' - 3') Purpose   

CYP71A12 AT2G30750 CAAGTTTGACTGACCCATCT GATTTAGAAGTTTGAATAACCC ChIP-qPCR 

 CYP71A13 AT2G30770   GGTCGCATTCAACAGCTAAG GGAAGTTTGACTTACCCATTCA ChIP-qPCR LinDA-qPCR 

PAD3 AT3G26830   AGGAGGTGTGCAATATGGAC TAGGTTGCGCTGACCAAACA ChIP-qPCR LinDA-qPCR 

WRKY38 AT5G22570   CAAAAGTATATATTTGACTAAAGCTGG TTAAACCAAGTAGTTGGAACGTAG ChIP-qPCR 

 WRKY50 AT5G26170   GAATGGTACATAACAAGTCCTC TGTGTTTCCAAGCAATAGAGACAT ChIP-qPCR 

 WRKY53 AT4G23810   AGTTAGGCTATTTAATGCGTATATCT CATTGCTTTCAATCCCTTTGATAT  ChIP-qPCR 

 WRKY53 AT4G23810   GAGAGTGACGCCATTATAAAAATTA CAAAAAGAAAATCAATATTCAAAAGGAC ChIP-qPCR 

 WRKY53 AT4G23810   CCTTTGACCTTATACTCTTTCACTA  TTGACCAAATGACCAAACCATAAAT  ChIP-qPCR 

 WRKY41 AT4G11070   GGTTAAACTAAAATAAACCCAAAGTTG TGAAAATTTGACCAAGTGAGCAAAC ChIP-qPCR 

 WRKY48 AT5G49520   GCTTGGTTGAATAACTGATGGT ATGATTGACCACAGGATCATAG ChIP-qPCR LinDA-qPCR 

WRKY55 AT2G40740   GTAATGTTGAAATTTGAAAGAAATAAATAATC TCTAACTAATGATAACCCATTGACC ChIP-qPCR 

 NAC061 AT3G44350   AAAGCACTCACTGTCTCACGTAT GGCCCATCTTTGTGATAATTTC ChIP-qPCR LinDA-qPCR 

NAC090 AT5G22380   AACTGGCAAGCCAAATTAAAAGAT CGGATATTGGTAAAGACAAGGA ChIP-qPCR 

 GH3.2 AT4G37390   GCCATGCCTTCTTTGGAT TTTGCCTGAGATTTCCTTGA ChIP-qPCR  LinDA-qPCR  

AKT1  AT2G26650    AAATGTTGGTTTCCACGTTT GGAGCTTTAGTCGTCAAGTAGTT  ChIP-qPCR   LinDA-qPCR  

NCED3  AT3G14440    CCATGCTTTAGTGACGTTTACTTG TTACTTCCGATAAACAGCTTCAATC  ChIP-qPCR  

 NCED3  AT3G14440    TTGTCGGGTTGGTGTCCTC AAATACAGTTGCCGGTCAAAGA  ChIP-qPCR  

 NCED5  AT1G30100    CCGGTAAATATTGTGAACCTTT CCAAGTAACTGTCACCAATCAC  ChIP-qPCR  LinDA-qPCR 

CYP707A3  AT5G45340    TTTGTCGATCTCTGACCGATTT TCACTTTAACGAAGCGCAAAC  ChIP-qPCR  LinDA-qPCR 

CYP707A3  AT5G45340    TCACAGGCAGAAAGTCAATTT CCTATATATGTGCTTAGAACTTAATCAGA  ChIP-qPCR  LinDA-qPCR 

WAKL7 AT1G16090   AGTTGACAAAGTAAGAGGCAGGA ACAGTTGCCTACTTGGACCAC 

 

LinDA-qPCR 

RING1A AT5G44280   AAATTCAACCATTCACCGTTT ACAATTCAAACCGGCAGC 

 

LinDA-qPCR 
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Table 5.7. Oligonucleotides used for genotyping 

 

 

 

 

 

 

 

 

 

   

NPR3 AT5G45110   TCCTTGTCCAAAGTTTCTTCC TCAACCAAACCCAGAACCA 

 

LinDA-qPCR 

AAO1 AT5G20960   TCTTACCTCCTCGGATTCAAT ACTTGTATTTCTTCTAGTCGTCCAC 

 

 LinDA-qPCR  

ACS2 AT1G01480   TGCAGACTACAACATACCAAATG CCAAGGCTATTTCTAAGCAACTT 

 

LinDA-qPCR 

JRG21  AT3G55970    CAACGACTAAGACGCTCTCACA GCAAAGAATGTAATCATAGACGTGC 

 

LinDA-qPCR 

ERF5 AT5G47230   AAACATGAGATATTGACCGGC TCGACTTGTTCAGACAGAATCAC 

 

LinDA-qPCR 

ERF1 AT3G23240   AGGATTGTCTTTAAGCATGTGC CGCTCCTCAATACTCATGGA 

 

LinDA-qPCR 

ACS6 AT4G11280 TTCTTTCATGGAACTTTCGTTG GATGTGTTGGGAAGTGAGATTG  ChIP-qPCR  

 LOX4 AT1G72520 ACGTTGAACATTAAAGTGTCCG GCCTTGAGAAAGAGAGAGCA  ChIP-qPCR  

 WRKY33 AT2G38470 AAGCATTGAGCCGCCCCTCA ATGAAGAAGAGTAGTTTCTGAG  ChIP-qPCR  

 ORA59 AT1G06160 TGTGGACACCAAATGATAAAGAG CAAGATTAAGAAGTTGAATTGGCTG  ChIP-qPCR  

 NUDT6   AT2G04450 GAAGAGATTGCAGGAGATGG TTGAGGAGGTTGGCGTGATC  refrerence     

Gene Locus Forward primer (5' - 3') Reverse primer (5' - 3') Purpose 

GH3.2 AT4G37390 TACGTAACCACCGGAACTTTG AGAGCGGATGATTGTTGATTG genotyping 

GH3.3 AT2G23170 TTTTAACGTATTAATCTTGGCACG GGGAACAACAACATGATCCCT genotyping 

NCED3 AT3G14440 ACAGAGGCTCTCCTCCGTAAC GTCAGCCACGAGAAGCTACAC genotyping 

NCED5 AT1G30100 TAACACCAAACCCAACCAAAC TGACTCAACCCAAACCATCTC genotyping 

WRKY33   AT2G38470 CTCCTTCTCTTGTCTCTCCTTCC TTGTGATTAAAGCTCCTGTGGTT genotyping 

SALKLBB1.3     ATTTTGCCGATTTCGGAAC  genotyping 

GK-LB8409  ATATTGACCATCATACTCATTGC  genotyping 
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5.1.4. Antibodies and enzymes  

Antibodies 

Listed below are primary and secondary antibodies used for immunoblot detection. 

Table5. 8. Primary antibodies 

Antibody Source Dilution Reference Purpose 

α -HA  Rabbit (polycl.) 1:5000 in 5% milk Sigma ChIP 

α -HA Rat (monocle.) 1:5000 in 5% milk Roche  Western 

 
Table 5.9. List of secondary antibodies used in this study 
 

Antibody Source Dilution Reference Purpose 

α-rat IgG HRPa 1:10.000 in 5% milk Sigma Western 

α-mouse IgG HRPa 1:5000 in 5% milk ECL (GE ealthcare) Western 

a. horseradish peroxidase 

Enzymes 

Taq-Polymerase used for standard PCR-reactions was ordered from Ampliqon (Odense, 

Denmark) and used according to the manufacturer’s instructions. 

5.1.5. Chemicals 

Laboratory grade chemicals and reagents were purchased from Invitrogen (Karlsruhe, 

Germany), Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany) and Sigma-Aldrich 

(München, Germany) unless stated otherwise. 

Pierce ProteinA agarose for ChIP-experiments and Pierce Western substrate were purchased 

from Thermo Fisher Scientific (Rockford, USA). 



Materials and Methods 

 

113 

 

5.1.6. Media  

Sterilized media was used for growing bacteria, fungi or Arabidopsis plants in vitro. For 

sterilization, media was autoclaved for 20 min at 121°C and cooled down prior adding heat 

instable antibiotics or other supplements.  Heat instable compounds were filter-sterilized 

before use. Agar for agar plate preparation was purchased from Becton (Franklin Lakes, 

USA) and MS medium was ordered from Duchefa (Haarlem, Netherlands) or Sigma. 

Escherichia coli medium                                        Luria-Bertani (LB) broth or agar plates 

 
Agrobacterium tumefaciens medium                     YEB broth or agar plates 

 
Arabidopsis thaliana medium                                ½ Murashige-Skoog (MS) medium 

including vitamins and 0.5% 

sucrose 

 
Botrytis cinerea medium                                     PD broth or agar plates 

 

5.1.7. Buffers and solutions 

General buffers and solutions are displayed in the following listing. Buffers and solutions not 

displayed here are described in the corresponding methods. All buffers and solutions were 

prepared using Milli-Q water. Buffers and solutions for molecular biological experiments 

were autoclaved or filter-sterilised. 

Molecular biology work: 

 

DNA extraction buffer  Tris-HCl, pH 7.5 200 mM 

NaCl   250 mM 

EDTA   25 mM 

SDS   0.5% 

 

DNA gel loading dye (6x)  Sucrose  4 g 

EDTA (0.5 M) 2 ml 

Bromphenol blue 25 mg 

H2O to 10 ml 
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TE buffer    Tris-HCl pH 8.0 10 mM 

EDTA   1 mM 

 

SDS-PAGE: 

 

Laemmli buffer (2x)   Tris-HCl pH 6.8 0.125 M 

SDS   4% 

Glycerol  20% (v/v) 

Bromphenol blue 0.02% 

Dithiothreitol (DTT) 0.2 M 

 

SDS running buffer (10x)  Tris   30.3 g 

Glycine  144 g 

SDS   10 g 

H2O to 1000 ml 

 

Western blotting: 

Transfer buffer (10x)   Tris   30.3 g 

Glycine  144 g 

H2O to 1000 mL 

Before using dilute 100mL 10x buffer with 700ml H2O and add 

200mL methanol. 

 

Ponceau S staining Ponceau S working solution was prepared by dilution of ATX 

Ponceau S concentrate (Sigma-Aldrich) 1:5 in H2O. 

 

PBS(T) buffer (10x)     

                                              NaCl                            80 g 

                                              KCl                                2 g 

                                              Na2HPO4                  14.4 g 

                                              KH2PO4                      2.4 g                                                          

                                               Ajust pH to 7.4 (HCl),  H2O to 1000 Ml 

For 1 x PBST working solution, dilute 100mL 10x buffer, and then add Tween 20.  

                                               Tween 20                  0.05% 
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Pathogen infection 

 

 Vogelbuffer  1L 

                                               Sucrose                   15 g 

                                              Na-citrate                  3 g 

                                                K2HPO4                    5 g 

                                      MgSO47H2O        0.2 g 

                                                CaCl22H2O            0.1 g 

                                                NH4NO3                   2 g 

 

5.2. Methods 

5.2.1. Maintenance and cultivation of Arabidopsis plants 

Arabidopsis thaliana seeds were sowed out on 42 mm Jiffy-7 pots soaked in four liters of 

water containing 0.1% Wuxal fertilizer (Manna, Germany), to avoid unspecified pathogen 

infections derived from garden soil. Plants were grown for 4-5 weeks under short-day 

conditions (10 hours light at 23°C/14 hours darkness at 20°C and 60% humidity) in closed 

cabinets (Schneijder chamber) until use. For pathogen infection plants were transferred to 

designated growth-chambers for the respective pathogens.   

5.2.2. Crossing Arabidopsis plants 

Individual flowers with immature stamina were emasculated with fine tweezers. Stigmas were 

pollinated by tapping three to four donor stamens from different flowers onto them. Mature 

siliques containing F1 seeds were harvested and allowed to dry. F1 seeds were grown and 

allowed to self-pollinate. Produced F2 seeds were sown and used for genotyping. 

5.2.3. Pathogen infections and quantification of fungal growth by qPCR 

B. cinerea strain 2100 and BMM was cultivated on potato dextrose plates at 22℃ for 10 days. 

B. cinerea strain B05.10 and mutants (BcABA1, BcABA3) were cultivated on potato dextrose 

plates with light and dark alternatively (12h/12h) for 10-14 days. Spores were collected, 
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washed, and frozen at -80C in 0.8% NaCl at a concentration of 107 spores mL-1. For 

inoculation of Arabidopsis plants the spores were diluted in Vogel buffer prepared as 

previously described. For droplet inoculations, 2 µL of 2.5*105 spores mL-1 was applied to 

single leaves of 4-week-old intact plants. The leaves were detached from the plants only after 

completion of the experiment and only for documentation purposes. The same spore 

concentration was used for spray inoculations of entire 4-week-old intact plants. For mock 

treatment, Vogel buffer alone was used. Plants were kept prior to and during the infection 

under sealed hoods under high humidity. The infection was carried out on the bench at room 

temperature or plants were put in the climate chamber under a strict light (12h/12h, light/dark) 

and temperature (22℃/20℃) regime.  

Quantification of fungal biomass relative to plant biomass by qPCR was basically performed 

as previously described (Gachon and Saindrenan, 2004). Leaves of the indicated Arabidopsis 

lines were inoculated with two 2-μL droplets of B. cinerea spores and DNA extracted 3 days 

later from whole leaves of similar fresh weight. The relative amounts of B. cinerea and 

Arabidopsis DNA were determined by qPCR employing specific primers for Cutinase A and 

SKII, respectively. 

5.2.4. DNA isolation 

For genotyping, 10 mg plant leaf material was collected into 96-well Collection Microtubes 

(Qiagen, Hilden, Germany) containing ~20 1.0 mm Zirconia Beads (BioSpec). Samples were 

frozen in liquid nitrogen and homogenized using a TissueLyser (Qiagen, Hilden, Germany) 

for 2x 30 sec at 30 strokes/sec. 400 µL DNA extraction buffer was added to the homogenized 

samples and shaked again in the TissueLyser for 10 sec at 30 strokes/sec. The following DNA 

extraction was performed according to Kotchoni et al (Kotchoni and Gachomo, 2009). 2 µl of 

extracted DNA was used for subsequent PCR analysis. 

5.2.5. RNA Isolation and cDNA synthesis 

Total RNA was extracted from 100 mg plant leaf material of 4-5 week old Arabidopsis 

plants. Frozen samples were homogenized with ~20 1.0 mm Zirconia Beads (BioSpec) in 

a Mini- BeadBeater-6 (BioSpec) for 2x 30 seconds or using a TissueLyser (Qiagen, 

Hilden, Germany) for 30 sec at 30 strokes/sec. RNA was isolated using the TRI Reagent 

(Ambion) following the manufacturer’s protocol. Concentration and quality was determined 
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using a NanoDrop photometer (PeqLab). RNA with a 260/280 and 160/230 ratio of ~2.0 

was used for cDNA synthesis. 

5 µg total RNA was used for cDNA synthesis with oligodT-primers employing the 

‘SuperScript II first-strand synthesis system for reverse-transcription PCR’ (Invitrogen) 

following the manufacturer’s protocol. cDNA was solved in 50 µl water and subsequently 

used for quantitative real-time PCR. 

5.2.6. Polymerase chain reaction (PCR) 

Standard PCR was performed using the Ampliqon (Odense, Denmark) Taq polymerase. The 

standard PCR reaction mix (Table 5.10) and thermal profile (Table 5.11) is depicted below. 

Table 5.10.  Stadard PCR reaction mix 

Reagent Amount 

DNA template 10-50 ng 

PCR amplification buffer 1/10 of reaction volume 

dNTP mix (dATP, dGTP, dCTP, dTTP) 0,2 mM each 

forward primer 0,5 µM 

reverse primer 0,5 µM 

Taq DNA polymerase 2,5-5 units 

sterile H2O Variable 

 

Table 5.11. Standard PCR thermal profile 

Step Temp. Time 

Initial denaturation 95°C 3 min. 

Denaturation 95°C 30 sec. 

Annealing 55°C 30 sec. 35x 

Extension 72°C 20-120 sec 

Final extension 72°C 5 min. 
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5.2.7. qRT-PCR analysis of Arabidopsis gene expression 

Total RNA was isolated from leaves at 8, 14, 24, and 48 hpi as described above and reverse 

transcribed with oligo(dT) primer to produce cDNA as mentioned above. cDNA 

corresponding to 2.5ng of total RNA was subjected to qPCR with gene-specific primers using 

the SYBR Green reagent (Bio-Rad). The qPCRs were performed on the iQ5 Multicolor Real-

Time PCR Detection System (Bio-Rad) with three biological replicates. The endogenous 

reference gene for normalization was AT4g26410, which was described as being highly 

constant under varying stress conditions (Czechowski et al., 2005), and which also displayed 

very constant expression levels in our analysis. The results were analyzed using the ΔΔCt 

method (Livak and Schmittgen, 2001). To simplify data interpretation, transcript abundance 

was expressed as a ratio relative to mock-treated wild-type plants, which was set to 1. Data 

shown are means ±SD from three biological replicates. The standard qPCR-program is 

depicted in Table 5.12. Results were analysed using the BioRad iQ5 software and Microsoft 

Office Excel. 

Table 5.12. qPCR thermal conditions 

Stage Temperature (°C) Duration (sec) No. of cycles 

Initial denaturation 95 180 1 

Denaturation 95 10 

40 Annealing 58 30 

Elongation 72 30 

Denaturation 95 60 1 

Renaturation 55 60 1 

Melting Curve 55 to 95 

Increase set point temperature 

after cycle 2 by 0,5 °C 

10 81 

 

5.2.8. Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Polyacrylamide gels for SDS-PAGE were prepared by pouring first the resolving gel followed 

by the stacking gel containing a comb to produce slots for sample loading. Composition of 

gels is listed in Table 5.13. 
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Table 5.13. Composition of polyacrylamide gels (10ml) 

 10% resolving 12% resolving 4% stacking 

H2O 3.8 mL 3.3 mL 3.1   mL 

30% Acrylamide/Bis solution 29:1 (BioRad) 3.4 mL 4.0 mL 0.67 mL 

Tris-HCl pH 8.8 2.5 mL 2.5 mL - 

Tris-HCl pH 6.8 - - 1.25 mL 

10% SDS 100 μL 100 μL 50 µL 

10% ammonium persulfate (APS) 100 μL 100 μL 50 µL 

TEMED (BioRad) 10 µL 10 µL 5   µL 

 

For comparable starting amounts, about 100mg leaf tissue was harvested to 1.5mL Eppendorf 

tubes each with ~20 1.0 mm Zirconia Beads (BioSpec), then frozen in liquid nitrogen and 

homogenized using a TissueLyser (Qiagen, Hilden, Germany) for 2x 30 sec at 30 

strokes/sec. Equal amounts of 2x Laemmli sample buffer was added to each tube, samples 

were boiled for 5-10min in a heating block and used directly for western blot analysis. Gels 

were placed into electrophoresis tanks submerged in 1x SDS running buffer. A prestained 

protein ladder (Spectra Multicolor Broad Range Protein Ladder, Thermo Scientific) was 

loaded alongside with the denatured protein samples and samples were separated at 80-120V. 

5.2.9. Western blot and immunodetection of proteins 

Proteins separated by SDS-PAGE were electro-blotted onto PVDF transfer membranes 

(Thermo Scientific) in electrophoresis tanks submerged in 1x transfer buffer for 120 min at 

150mA. Equal protein transfer was monitored by staining membranes with Ponceau S 

(Sigma-Aldrich). Destained membranes were blocked for 1h in 5% milk in PBST before 

incubation in 5% milk in PBST containing primary antibody overnight. The appropriate 

horseradish peroxidase (HRP)-conjugated secondary antibody was applied and proteins were 

detected using Enhanced Chemiluminiscence Reagent (ECL; Pierce Thermo Scientific) either 

by exposure on a photographic film (BioMax light film, Kodak) or by using the ChemiDoc 

MP imaging system (BioRad). 

5.2.10. Chromatin preparation and immunoprecipitation 

4-week-old wild-type plants or plants expressing WRKY33-HA from the native WRKY33 

promoter (pWRKY33:WRKY33-HA) were spray inoculated or mock treated for 14 hours. ChIP 
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assays were performed following the protocol Gendrel et al. (2005) with some modifications. 

Each 2g leaf sample was cross-linked by vacuum infiltration of 1% formaldehyde solution for 

three subsequent 7-min treatments. Sonication of the isolated nuclei was performed on a 

UP50H sonicator (Hielscher) equipped with an MS1 tip four times for 30s each with 30s of 

cooling on ice in between. The sheared chromatin (25μg) was diluted 10-fold in ChIP dilution 

buffer containing protease inhibitors (Roche) and phosphatase inhibitor (Sigma) to lower the 

SDS concentration to 0.1%. After preclearing with protein A-agarose beads, the chromatin 

was incubated overnight with rabbit polyclonal antibodies to HA (ChIP grade; Sigma) at 4°C 

on a nutator. Immuncomplexes were collected by incubation with protein A-agarose. After 

washing, the beads were resuspended in 250 μL of Tris EDTA buffer, pH 8.0, containing 

0.5% SDS with 2 ug of RNAase (Roche) and 2μg of proteinase K (Invitrogen) and incubated 

overnight at 65°C to reverse cross-links. The phenol-chloroform-extracted DNA was 

precipitated with ethanol and resolved in 50 μL of Tris EDTA buffer, pH8.0. One microliter 

was used for qPCR assays. 

5.2.11. ChIP-seq assay 

ChIP DNA was recovered using a QIA quick PCR Purification kit (Qiagen) and subjected to a 

modified linear DNA amplification (LinDA) protocol described recently (Shankaranarayanan 

et al., 2011). The major modification included two rounds of ‘in vitro transcription’ by T7 

RNA polymerase. The resulting LinDA DNA was used to generate sequencing libraries 

bearing barcodes using a NEBNext ChIP-Seq Library Pre Reagent Set for Illumina kit (New 

England Biolabs). The barcoded libraries were pooled and sequenced by Illumina HiSeq2500. 

The ChIP sequencing was performed in the Max Planck Genome Centre Cologne and resulted 

~10 million 100bp single-end reads per sample. 

5.2.12. ChIP-seq data analysis 

Before mapping, remaining LinDA adapters and low quality sequences were removed from 

the sequencing data using a two-step procedure. In this procedure, first Bpm and T7-Bpm 

sites were trimmed from the 5’ end using cutadapt (version 1.2.1) (Martin, 2011) with options 

–e 0.2, -n 2 and –m 36 (otherwise default settings were used), and subsequently poly-A and 

poly-T tails and low quality ends were trimmed and reads with overall low quality or with less 

than 36 bases remaining after trimming were removed using PRINSEQ lite (version 0.20.2) 
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(Schmieder and Edwards, 2011) with options –trim_qual_right/left 20, trim_tail_right/left 3 –

min_len 36, -min_qual_mean 25. After this pre-processing steps, the remaining high quality 

reads were mapped to the Arabidopsis thaliana reference genome TAIR10 

(http://www.arabidopsis.org) using Bowtie (version 0.12.7) (Langmead et al., 2009) with 

options –best –m 1 to extract only uniquely mapped reads and allowing two mismatches in 

the first mapping steps (default settings). 

To identify genomic DNA regions enriched in sequencing reads in the ChIP sample compared 

to input control as well as in inoculated compared to mock-treated samples (‘peak regions’), 

the peak calling algorithm of the QuEST program (version 2.4) (Valouev et al., 2008) was 

applied using the transcription factor mode (option “2”), with permissive parameter settings 

for the peak calling (option “3”). Each of the two biological replicates was first analyzed 

separately and additionally, to obtain more exact peak locations for the consistent peaks, the 

mapped reads of the two replicates were pooled and peaks were also called for the pooled 

samples. To annotate the peak location with respect to annotated gene features in TAIR10 the 

annotatePeaks.pl function from the Homer suite (Heinz et al., 2010) was used with default 

settings. To extract consistent peaks between the replicates, a custom R (http://www.r-

project.org) script was used that identified overlapping peak regions between the replicates. 

Two peak regions were counted as overlapping, if they overlapped by at least 50% of the 

smaller region and a peak region was counted as consistent, if it was found to be overlapping 

between the two individual replicates as well as the pooled sample. 

To search for conserved binding motifs in the consistent WRKY33 binding regions, for each 

consistent peak the 500bp sequence surrounding the peak maximum was extracted and 

submitted to the online version of MEME-ChIP (Machanick and Bailey, 2011). MEME-Chip 

was run with default settings, but a custom background model derived from the Arabidopsis 

genome was provided and “Any number of repetitions” of a motif was allowed. For 

visualization, prominent motifs identified within MEME-ChIP by either MEME or DREME 

were chosen. To extract the number/percentage of peak regions that contain a certain motif, 

the online version of FIMO (Grant et al., 2011) was run with the peak sequences and the 

motif of interest (MEME/DREME output) as input and a p-value threshold of 0.001. Note: 

These analysis were performed by Dr. Barbara Kracher. 

http://www.arabidopsis.org/
http://www.r-project.org/
http://www.r-project.org/
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5.2.13. RNA-seq assay 

Total RNA was extracted from mock treated (14hpi) and B. cinerea infected (14hpi) 4-week-

old plants (Col-0 and wrky33) with using RNeasy Plant Mini (Qiagen) according to the 

manufacturer’s instructions, and mRNA sequencing libraries were constructed with barcodes 

using the TrueSeq RNA Sample Preparation Kit (Illumina). The barcoded libraries were 

pooled together and sequenced by Illumina HiSeq2500. Three biological replicates were 

processed and RNA sequencing was performed by the Max Planck Genome Centre Cologne 

resulting in 25-45 million 100 bp single end reads per sample. Total reads were mapped to the 

Arabidopsis genome (TAIR10) using TopHat (version 2.0.10) (Kim et al., 2013a) with 

settings –a 10 –g 10 and splice sites provided based on TAIR10 gene annotations.  

5.2.14. Statistical Analysis of RNA-seq 

The mapped RNA-seq reads were transformed into a count per gene using the function 

coverageBed of the bedTools suite (Quinlan and Hall, 2010). Genes with less than 50 reads in 

all samples together were discarded, and subsequently the count data of the remaining genes 

were log-transformed and normalized by the function voom from the R package limma 

(version 3.10.3) (Smyth et al., 2005) to yield log2 counts per million. To analyze differential 

gene expression between genotypes (WT, wrky33) and treatments (mock treated, B. cinerea 

infected), we fitted a linear model with the explanatory variable “genotype_treatment” (i.e. 

including both genotype and treatment) using the function lmFit (R package limma). 

Subsequently, we performed moderated t-tests over the four contrasts of interest. Two 

contrasts compare B. cinerea infected vs mock treated samples within each genotype and the 

other two contrasts compare wrky33 vs. WT Col-0 plants within each treatment. In all cases, 

the resulting P values were adjusted for false discoveries due to multiple hypothesis testing 

via the Benjamini–Hochberg procedure. For each contrast, we extracted a set of significantly 

differentially expressed genes between the tested conditions (adj. p value < 0.05, log2FC≥1). 

Note: These were performed by Dr. Barbara Kracher. 
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 MS parameters for MRM-transition of salicylic acids (SA) 

  

Hormone 
MRM 

transitions 

Declustering 
potential 
(DP), V 

Entrance 
potential 
(EP), V 

Cell entrance 
potential 
(CEP), V 

Collision 
potential 
(CE), V 

Cell exit 
potential 
(CEX), V 

SA 
137→93 -25 -5.5 -14 -22 0 

137→65 -25 -5.5 -14 -44 0 

SA-D4 141→97 -25 -5.5 -14 -22 0 

       

Quantifier and qualifier transitions are indicated in bold and italics, respectively 

5.2.15. Gene Ontology analysis 

 The Bingo 2.44 plug-in implemented in Cytoscape v2.81 was used to determine and visualize 

the GO enrichment according to the GOslim categorization. A hypergeometric distribution 

statistical testing method was applied to determinate the enriched genes and the Benjamini 

and Hochberg FDR correction was performed in order to limit the number of false positives. 

The FDR was set up to 0.05 for the ChIP-seq and expression data, respectively.  

5.2.16. Phytohormone measurements and quantification 

 Sample processing, data acquisition, instrumental setup, and calculations were performed as 

described (Ziegler et al., 2014). Instrument specific parameters for the detection of SA are 

shown in Table 5.14. (3,4,5,6-D4)-SA was obtained from Campro Scientific (Veenendal, The 

Netherlands) and used as internal standard for SA quantification (1.5 ng per sample). Note: 

These experiments were performed by Dr. Jörg Ziegler (IPB Halle, Germany). 

Table 5.14. parameters for the detection of SA. 
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Abbreviations 

-    fused to (in the context of gene/protein fusion constructs) 

%                   

 

percent 

°C 

 

degrees Celsius 

3'                    

 

downstream region (of a gene or sequence) 

35S  

 

35S promoter from Cauliflower mosaic virus 

5'                    

 

upstream region (of a gene or sequence) 

ABA               

 

abscisic acid 

AP2/ERF 

 

APETALA2/ETHYLENE RESPONSE FACTOR  

Avr  

 

avirulence 

B.c. 

 

Botrytis cinerea 

bp  

 

base pair 

CC  

 

coiled-coil 

cDNA              

 

copied DNA 

ChIP               

 

chromatin immunoprecipitation 

ChIP-seq  

 

ChIP sequencing 

CNL 

 

CC-NLR 

CPKs  calcium-dependent protein kinases 

CWDEs 

 

cell wall-degrading enzymes 

d  

 

day 

ddH2O  

 

deionised distilled water 

dH2O  

 

deionised water 

DNA  

 

desoxyribonucleic acid 

DNase  

 

desoxyribonuclease 

dNTP  

 

desoxynucleosidetriphosphate 

EDS1  

 

Enhanced disease susceptibility 1 

EDTA  

 

ethylenediaminetetraacetic acid 

EP 

 

exopolysaccharide 

ET                

 

ethylene 

ETI  

 

effector-triggered immunity 

EtOH  

 

ethanol 

g  

 

gram 

G. orontii       

 

Golovinomyces orontii 

h  

 

hour 

hpi  

 

hours post infection 

HR  

 

hypersensitive response 

HRP  

 

horseradish peroxidase 

ICS1               

 

ISOCHORISMATE SYNTHASE 1 

Ile                 

 

isoleucine 

IP 

 

immunoprecipitation 

JA/JAs            

 

jasmonic acid/jasmonates 

JA-Ile            

 

JA-isoleucine 

JAR1             

 

JASMONATE RESISTANT 1 



Abbreviations 

 

125 

 

kb  

 

kilobasepair 

kDa  

 

kilodalton 

L 

 

liter 

LOX2              

 

LIPOXYGENASE 2 

LRR  

 

leucine-rich repeats 

m  

 

milli 

M  

 

molar (mol/L) 

MAMP  

 

microbe-associated molecular pattern 

MAPK             

 

mitogen activated protein kinase 

min 

 

minute 

mM  

 

millimolar 

mo 

 

mock  

mRNA  

 

messenger RNA 

MW  

 

molecular weight 

NB  

 

nucleotide binding 

NB-LRR  

 

nucleotide-binding-lucine-rich repeat 

ng  

 

nanogram 

NLR  

 

NB-LRR receptor 

nm  

 

nanometer 

NPR1  

 

Nonexpressor of PR genes1 

N-terminal  

 

amino-terminal 

OPDA          

 

12-oxo-phytodienoic acid 

ORA59 

 

OCTADECANOID-RESPONSIVE ARABIDOPSIS59  

ox                   

 

overexpressor 

p value 

 

probability value 

P. 

 

Pseudomonas  

PAA  

 

polyacrylamide 

PAD3          

 

PHYTOALEXIN DEFICIENT 3 

PAD4  

 

Phytoalexin deficient 4 

PAGE  

 

polyacrylamide gel-electrophoresis 

PBS               

 

phosphat buffered saline 

PCD 

 

programmed cell death  

PCR  

 

polymerase chain reaction 

PDF1.2           

 

PLANT DEFENSIN 1.2 

pH  

 

negative decimal logarithm of the H+ concentration 

PR  

 

Pathogenesis related 

PRR               

 

pattern recognition receptor 

Pst  

 

Pseudomonas syringae pv. tomato 

PTI  

 

pattern-triggered immunity 

pv.  

 

pathovar 

qRT-PCR       

 

quantitative real-time PCR 

R  

 

Resistance 

RLK                 

 

receptor-like kinase 

RNA 

 

ribonucleic acid 
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RNA-seq 

 

RNA sequencing 

ROS  

 

reactive oxygen species 

rpm  

 

rounds per minute 

RPS  

 

Resistance to P. syringae 

RT  

 

room temperature 

RT-PCR  

 

reverse transcription-polymerase chain reaction 

SA  

 

salicylic acid 

SD               

 

standard deviation 

SDS  

 

sodium dodecyl sulphate 

sec  

 

second 

SID2                

 

SALICYLIC ACID INDUCTION DEFICIENT 2 

SNC1 

 

Suppressor of npr1, constitutive 1 

Taq                

 

Thermophilus aquaticus 

TEMED        

 

N,N,N',N'-Tetramethylethylenediamine 

TF                   

 

transcription factor 

TIR  

 

Toll/Interleukin-1 receptor like 

TNL 

 

TIR-NLR 

Tris  

 

Tris-(hydroxymethyl)-aminomethane 

U  

 

unit 

V  

 

Volt 

VSP2             

 

VEGETATIVE STORAGE PROTEIN 2 

w33 

 

wrky33 

WRKY            

 

WRKY transcription factor 

WT  

 

wild-type 

μ    micro 
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Supplementary tables 
 

Table S1. List of WRKY33 regulated target genes involved  in cell death. 

Gene Description score_ChIP  log2FC Bc KO-WT 

AT5G05730 AMT1 22,94 -1,60 

AT2G30770 CYP71A13 12,74 -3,17 

AT3G26830 CYP71B15 56,29 -1,61 

AT4G23810 ATWRKY53 49,21 1,45 

AT5G22570 ATWRKY38 13,52 4,50 

AT2G38470 ATWRKY33 30,45 -3,32 

AT5G60900 RLK1 28,11 1,17 

AT2G32680 AtRLP23 54,73 1,06 

AT4G35600 CST 17,28 1,64 

AT4G23170 CRK9 18,13 1,33 

AT3G09830 protein kinase 39,86 1,16 

AT5G48380 BIR1 29,67 1,88 

AT4G26070 ATMEK1 26,55 1,36 

AT1G01560 ATMPK11 14,73 2,61 

AT5G01540 LECRKA4.1 24,64 1,07 

AT4G04490 CRK36 22,37 2,01 

AT1G18890 ATCDPK1 13,03 1,27 

AT3G45290 ATMLO3 22,02 1,41 

AT1G11310 ATMLO2 24,36 1,09 

AT2G39200 ATMLO12 40,71 2,06 

AT5G61210 ATSNAP33 39,65 1,39 

AT1G19250 FMO1 11,40 1,75 

AT3G22160 JAV1 22,09 1,16 

AT3G57260 AtPR2 20,18 3,78 

AT4G14400 ACD6 20,11 1,04 

AT1G29690 CAD1 20,96 1,02 

AT1G07000 ATEXO70B2 17,84 1,32 

AT3G11840 PUB24 24,07 1,11 

AT1G76970 Target of Myb1 16,21 1,63 

AT3G49350 RabGAP/TBC domain 11,75 1,20 

AT4G14365 XBAT34 53,67 1,70 

AT3G01830 CML40 17,98 2,09 

AT2G30550 DALL3 14,30 1,44 

AT5G45110 ATNPR3 11,61 1,78 

AT5G50200 ATNRT3.1 14,59 1,87 

AT5G40780 LHT1 22,52 1,38 

AT4G39670 glycolipid transfer 18,06 1,26 

AT5G44070 ARA8 27,54 1,20 

AT5G24530 DMR6 16,85 2,73 
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AT1G08450 AtCRT3 41,77 1,94 

AT4G34150 calcium-dependent 13,10 1,16 

AT4G12470 AZI1 33,92 2,13 

 

Table S2. List of WRKY33 regulated targets representing kinase activity. 

Gene Description score_ChIP log2FC Bc KO-WT 

AT5G48380 BIR1 29,67 1,88 

AT4G08850 LRR-RLP 17,63 1,30 

AT2G25440 RLP20 16,99 1,11 

AT2G32680 RLP23 54,73 1,06 

AT3G11080 RLP35 16,14 2,53 

AT3G28890 RLP43 13,88 2,22 

AT1G47890 RLP7 11,05 1,55 

AT1G51850 LRR-PK 15,51 2,91 

AT1G51790 LRR-PK 13,10 2,22 

AT3G14840 LRR-PK 28,68 1,26 

AT4G11480 CRK32 15,58 1,76 

AT4G23170 EP1 18,13 1,33 

AT4G23220 CRK14 72,22 1,17 

AT1G70520 CRK2 14,66 1,08 

AT4G23320 CRK24 28,25 1,54 

AT4G04490 CRK36 22,37 2,01 

AT4G23150 CRK7 14,37 1,86 

AT2G32800 LECRK-S.2 24,78 1,48 

AT4G04960 LECRK-VII.1 40,93 -1,75 

AT5G01540 LECRK-VI.3 24,64 1,07 

AT5G01550 LECRK-VI.2 26,55 2,57 

AT4G27300 G-type 19,12 -1,00 

AT1G61460 G-type 12,39 1,15 

AT1G61420 G-type 24,14 1,12 

AT1G11330 G-type 17,06 1,25 

AT5G63650 SNRK2.5 16,00 -1,42 

AT5G47850 CCR4 46,02 2,34 

AT4G35600 CONNEXIN 32 17,28 1,64 

AT3G09830 CCR-like 39,86 1,16 

AT2G17220 KIN3 18,83 1,02 

AT5G42440 AT5G42440 25,14 1,34 

AT5G38210 AT5G38210 24,92 1,06 

AT1G67000 AT1G67000 16,36 1,12 

AT5G47070 AT5G47070 18,48 1,00 

AT2G47060 PTI1-4 23,08 1,13 

AT1G65790 RK1 13,17 1,70 

AT5G60900 RLK1 28,11 1,17 

AT1G01560 MPK11 14,73 2,61 

AT4G26070 MEK1 26,55 1,36 

AT1G18890 CDPK1 13,03 1,27 
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AT1G21270 WAK2 35,90 1,01 

 

Table S3. List of WRKY33 target genes encoding transcription factors.  

Gene Description score_ChIP log2FC Bc KO-WT 

AT1G25560 EDF1 24,29 -0,42 

AT2G41710 AP2-like  ERF 12,46 -0,18 

AT4G37750 ANT 24,36 -0,05 

AT5G07580 ERF/AP2 11,97 -0,98 

AT1G04370 ATERF14 17,63 -0,71 

AT4G17500 ATERF-1 50,34 0,01 

AT3G23240 ATERF1 35,69 -0,13 

AT5G47230 ATERF-5 21,67 -1,35 

AT5G53290 CRF3 28,46 0,36 

AT5G25190 ESE3 16,85 -0,97 

AT1G71520 ERF020 16,21 0,22 

AT1G33760 ERF022 19,47 -0,95 

AT1G64380 ERF061 12,53 1,14 

AT1G06160 ORA59 21,31 -2,45 

AT3G23220 ESE1 12,60 0,15 

AT5G43410 ERF096 14,94 -1,14 

AT4G34410 RRTF1 18,27 1,16 

AT2G33710 ERF112 29,24 -0,37 

AT5G07310 ERF115 31,44 n.d. 

AT1G68550 CRF10 17,35 -0,75 

AT1G78080 RAP2.4 21,24 0,44 

AT3G27785 MYB118 12,46 n.d. 

AT3G23250 ATMYB15 24,71 1,28 

AT1G66230 AtMYB20 22,37 -0,44 

AT1G74650 ATMYB31 19,12 -0,74 

AT5G06100 ATMYB33 12,89 0,03 

AT4G12350 AtMYB42 19,61 -0,56 

AT5G16600 AtMYB43 11,05 0,29 

AT1G18570 AtMYB51 37,46 -0,50 

AT1G68320 AtMYB62 32,85 0,09 

AT5G11050 MYB64 23,86 n.d. 

AT5G65790 ATMYB68 17,28 -2,64 

AT2G23290 AtMYB70 13,45 -0,84 

AT4G37260 ATMYB73 17,21 0,62 

AT4G05100 AtMYB74 14,94 0,85 

AT4G22680 AtMYB85 24,99 -0,69 

AT5G62470 ATMYB96 13,31 0,34 

AT5G05090 MYB 17,91 1,39 

AT3G10760 MYB 25,28 -0,21 

AT1G25550 MYB like 15,44 0,62 
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AT4G38620 ATMYB4 18,34 0,38 

AT1G14350 AtMYB124 28,11 0,70 

AT1G14600 MYB like 19,61 -0,49 

AT5G24110 ATWRKY30 29,88 0,01 

AT2G04880 ATWRKY1 16,78 0,26 

AT4G01250 AtWRKY22 23,51 0,47 

AT2G40740 ATWRKY55 12,53 1,88 

AT4G31550 ATWRKY11 22,87 0,50 

AT2G23320 AtWRKY15 33,14 0,16 

AT4G23550 ATWRKY29 18,98 0,38 

AT2G38470 ATWRKY33 30,45 -3,32 

AT5G22570 ATWRKY38 13,52 4,50 

AT4G11070 AtWRKY41 35,61 2,72 

AT4G04450 AtWRKY42 11,68 0,09 

AT5G49520 ATWRKY48 19,26 1,38 

AT5G26170 ATWRKY50 23,65 3,56 

AT4G23810 ATWRKY53 49,21 1,45 

AT1G29280 ATWRKY65 26,62 -0,04 

AT1G80590 ATWRKY66 14,51 n.d. 

AT1G29860 ATWRKY71 17,63 0,49 

AT5G13080 ATWRKY75 30,02 -0,38 

AT3G15510 ANAC056 18,55 -0,93 

AT1G61110 ANAC25 35,83 n.d. 

AT5G13180 ANAC083 22,09 -0,20 

AT2G43000 ANAC042 15,15 -0,51 

AT3G15500 ANAC055 24,71 -0,96 

AT5G22380 NAC090 12,82 3,49 

AT3G44350 NAC061 21,81 3,89 

AT3G12910 NAC 17,63 -0,12 

AT1G35560 TCP23 25,49 -0,50 

AT3G15030 MEE35 35,83 -0,28 

AT5G23280 TCP7 13,31 -0,89 

AT2G45680 TCP9 17,42 -0,19 

AT1G61660 bHLH112 19,61 0,97 

AT2G43140 bHLH129 21,60 1,21 

AT2G40200 bHLH51 18,83 -0,23 

AT4G29100 bHLH68 11,97 -0,28 

AT5G56960 bHLH041 36,96 0,59 

AT2G31730 bHLH 21,81 0,23 

AT3G20770 AtEIN3 44,11 0,36 

AT4G38900 bZIP like 20,04 0,26 

AT1G42990 ATBZIP60 50,63 0,47 

AT5G28770 AtbZIP63 31,01 -1,53 

AT1G78600 BBX22 16,00 -0,62 

AT3G19580 AZF2 16,64 1,38 
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AT5G66730 ENY 12,53 0,27 

AT3G60580 C2H2-like 19,75 0,42 

AT2G01940 ATIDD15 17,13 -1,20 

AT5G60470 C2H2 and C2HC 12,82 0,64 

AT5G04340 C2H2 15,22 0,04 

AT2G40140 ATSZF2 19,90 0,76 

AT3G55980 ATSZF1 42,77 0,16 

AT4G29190 AtC3H49 18,48 -0,99 

AT5G46910 C5HC2 type 17,13 0,45 

AT1G30810 JMJ18 18,62 0,52 

AT1G51700 ADOF1 42,06 0,80 

AT4G24060 DOF4.6 16,78 0,50 

AT5G02460 DOF5.1 11,97 -0,15 

AT4G27310 BBX28 13,24 -0,61 

AT4G39070 BBX20 13,24 0,75 

AT2G41310 ARR8 28,18 -0,12 

AT5G24470 APRR5 12,25 0,30 

AT1G21450 SCL1 25,77 0,61 

AT5G59450 SCL11 26,98 -0,23 

AT1G07530 ATGRAS2 13,03 -0,36 

AT3G46600 SCL30 16,43 0,31 

AT5G48150 PAT1 26,55 -0,02 

AT4G17230 SCL13 33,49 0,35 

AT1G07520 GRAS 13,38 0,27 

AT3G06740 GATA15 15,65 -0,13 

AT4G17570 GATA26 17,63 0,29 

AT5G66320 GATA5 24,99 -0,06 

AT3G54810 BME3 16,92 -0,04 

AT5G39760 AtHB23 20,67 -0,14 

AT4G00730 AHDP 13,45 -0,24 

AT3G61890 ATHB-12 13,24 0,08 

AT4G37790 HAT22 14,23 -0,13 

AT3G60390 HAT3 15,79 0,77 

AT5G44180 RLT2 11,12 0,31 

AT3G18010 WOX1 32,50 -0,44 

AT2G43500 RWP-RK 23,22 -0,09 

AT1G76350 RWP-RK 16,71 0,01 

AT2G36960 TKI1 29,81 0,29 

AT5G46760 MYC3 16,78 -0,31 

AT2G22770 NAI1 12,53 0,64 

AT2G27100 SE 17,21 -0,01 

AT4G18880 AT-HSFA4A 78,59 0,76 

AT1G06040 BBX24 15,44 -0,34 

AT3G14020 NF-YA6 16,14 -0,60 

AT1G55110 AtIDD7 10,13 -0,17 
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AT4G23800 3xHMG-box2 16,78 1,25 

AT1G80420 ATXRCC1 45,88 -0,28 

AT2G22630 AGL17 13,03 1,69 

 

Note: Transcription factors highlight in red color indicate WRKY33-regulated transcription factors. 
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