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1Social interaction, gaze exchange

and cortical dynamics

Social cognition has a long past for mankind but, as a science, it has a short history. Over

the last decades, it has been studied with unprecedented conceptual and methodological

granularity while involving a growing number of academic disciplines. Social cognition

historically spawned from social psychology and cognitive psychology and focussed on social

information processing (Fiske & Taylor, 2013), which includes impression formation, person

perception, social attribution, and, Theory of Mind. Other central notions refer to implicit

and automated versus explicit and deliberate processing and are commonly subsumed under

dual mode theories (Frith & Frith, 2008). Over the last two decades, many influences from

neighboring disciplines have been incorporated and shaped the social cognition discourse in

multiple ways by contributing new conceptual tools, paradigms and data analysis methods.

Research on social cognition has extended to neuroscience. Classical social cognition con-

structs have been mapped to fluctuations in brain function using electrophysiology and

neuroimaging techniques such as functional magnetic resonance imaging (fMRI), elec-

troencephalography (EEG), magnetoencephalography (MEG), and transcranial magnetic

stimulation (TMS). As a result, putative core-networks of brain regions implicated in so-

cial cognition have been identified (Lieberman, 2006; Saxe, 2006; Frith & Frith, 2008).

At the same time, the repertoire of study protocols has been dramatically extended by

interaction-centered techniques. New insights into the development of cooperation, nor-

mative understanding and Theory of Mind have been generated by abandoning classical

interviewing techniques that relied on language mastery. Instead, nonverbal multi-person

paradigms have been developed, backed by concepts from cognitive science and philosophy

of mind (Warneken, Chen, & Tomasello, 2006; Rakoczy, 2008; Köymen et al., 2014). These

were then used to study the emerging intentional structure of early social interactions. Based

on cross-species comparisons, cross-cultural studies and principles of darwinian evolution,

related findings argue in favor of an inherently cooperative structure of basic person percep-

tion (Tomasello, Carpenter, Call, Behne, & Moll, 2005; Callaghan et al., 2011). This view has

been complemented by embodiment approaches that focussed on interpersonal coordination

dynamics instead. Related experimental findings revealed implicit but systematic synchro-

nization between interaction partners (Sebanz & Frith, 2004; Marsh, Richardson, & Schmidt,

2009). A successive translation of such interaction-based techniques to neuroscience can be
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observed over the last decade. Social decision-making processes and social conflict have been

studied in healthy and clinical populations using protocols backed by behavioral game theory,

often involving multiple subjects acting simultaneously. Virtual-reality techniques have been

employed in concert with fMRI recordings to study biological motion and gaze-processing

during ongoing interactions (Bohil, Alicea, & Biocca, 2011). Such techniques often rely on

dynamic presentation of virtual characters in a quasi-naturalistic manner (Schilbach et al.,

2009; Vogeley & Bente, 2010; Pfeiffer, Timmermans, Bente, Vogeley, & Schilbach, 2011).

Social interaction and related coordination dynamics have been investigated usingbrain

signals EEG and fMRI studies (Saito et al., 2010; Dumas, Chavez, Nadel, & Martinerie, 2012;

Nummenmaa et al., 2012). These experimental approaches are accompanied by recent

theoretical developments that propose an interactive approach to social cognition and social

cognitive neuroscience based on the notions of embodiment, entrainment and a 2nd-person

perspective (Hari & Kujala, 2009; Schilbach et al., 2013). In this context, gaze-processing

has been argued to glue together the diverse scientific approaches to studying social interac-

tion, especially with respect to cooperation and collaboration (Engemann, Bzdok, Eickhoff,

Vogeley, & Schilbach, 2012).

At the same time, these protocols call for more advanced signal processing and data analysis

techniques to leverage the increased granularity of experimental protocols. To fully recognize

the mathematical foundations of game theoretic paradigms, researchers started to pursue

computational bayesian techniques which permit to model behavior and related physiological

parameters (Yoshida, Dolan, & Friston, 2008; Behrens, Hunt, & Rushworth, 2009). Machine-

learning techniques have recently been adopted by social cognition researchers to predict

and categorize mental states, behavior and social perception in a data-driven fashion based

on brain-signals (Said, Moore, Engell, Todorov, & Haxby, 2010; Redcay & Carlson, 2014).

The theory of complex systems and dynamic coupled oscillators has been used to analyze

inter-person synchronization (Dumas, de Guzman, Tognoli, & Kelso, 2014).

These developments also raise increased demands with regard to basic neuroimaging tech-

niques and their usage. Interactive paradigms are challenging to implement in an neu-

roimaging environment and the choice of the imaging modality is associated with different

trade-offs between spatial resolution, temporal resolution and the ecological validity that

can be reached for a paradigm in a given imaging environment. EEG is available at a low

cost, provides with high mobility that allows to setup hyper-scanning protocols in everyday

situations, but suffers from poor spatial resolution. In contrast, fMRI-protocols benefit from

mature signal processing procedures and high availability, but suffer from lower temporal

resolution. Novel developments such as multimodal imaging based on combined EEG-fMRI

protocols or fast sequences that sample the hemodynamic signal at about 0.1 Hz mitigate

this limitation to some extent but are not yet very well established. The combination of such
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data— beyond an inferential level— in data analyses often requires to make concessions to

either modality’s unique strengths. The benefits of increased temporal resolution of fMRI are

limited by the inherent characteristics of the hemodynamic signal which updates at a second

scale. As a consequence the researcher is left with the burden of designing sophisticated

and optimized sampling protocols which may interfere with the experimental logic dictated

by the phenomenon under investigation. In this context, MEG constitutes an interesting

technique as it combines temporal resolution at a millisecond scale with moderate spatial

resolution that can achieve up to 3-5 millimeter spatial precision, and, moreover, has become

increasingly available across sites1. Bibliographic indices as well as the recent publication of

the first two MEG-methods textbooks for experimental researchers (Hansen, Kringelbach,

& Salmelin, 2010; Supek & Aine, 2014) indicate an increasing adoption of this method

in cognitive sciences. In contrast to EEG, in both fMRI and MEG settings, hyperscanning

techniques are costly and do not yet enjoy a wide adoption, despite recent advances.

These examples illustrate the following developmental trajectories in social cognition re-

search.

1. Analysis of ongoing and multi-agent interactions.

2. The differentiation of qualities and contexts inherent to social interaction instead of

contrasting social with nonsocial categories.

3. Advanced neuroimaging and data analysis techniques.

The present thesis follows these principles in selecting a scientific problem that emerges

at their intersection: the neuromagnetic study of eye gaze during social interacVirtual

realitytion. To unfold this problem, the next section will review research findings on eye

gaze and and detail its social cognitive role, its evolutionary origins, and its neurobiological

basis. The subsequent section will introduce MEG, followed by a concluding synthesis of the

present research agenda.

1.1 Gaze exchange as paradigmatic social

interaction
Facial interactions are a prominent behavioral feature in primates, including monkeys.

During hominoid evolution, increasingly complex social environments created selective

pressures on the evolution of social-cognitive capacities (Humphrey, 1976; Dunbar, 1993).

In such environments it was beneficial to predict conspecifics’ behavior. Visual awareness

depends on foveal stimulation, which depends on the eye position. Therefore, looking

1see http://megcommunity.org/index.php/groups-jobs/groups

1.1 Gaze exchange as paradigmatic social interaction 3

http://megcommunity.org/index.php/groups-jobs/groups


behavior indicates the attentional focus, hence, allows to generate predictions regarding

an individual’s behavior. During evolution organisms learned to leverage this link. Their

capacities to discern other conspecifics’ looking direction progressively advanced (Tomasello,

Call, & Hare, 2003; Tomasello, 2008; Shepherd, 2010). This process was further promoted

by anatomical evolution. The human sclera gives a paradigmatic example as it lacks

pigmentation and therefore produces a strong intensity and color contrast relative to the skin

and the iris (Kobayashi & Kohshima, 1997). As a consequence, gaze direction has become

transparent among humans. This property then paved the way for the evolution of advanced

forms of intentional communication and cooperation that require the understanding of goals

and intentions (Kobayashi & Kohshima, 1997; Tomasello, 1999; Tomasello et al., 2005).

Therefore, gaze has been argued to play a unique role in human social cognition (Tomasello

et al., 2005; Engemann et al., 2012; Pfeiffer, Vogeley, & Schilbach, 2013; Schilbach et al.,

2013).

This evolution is reflected in the prominent role of eye gaze across human lifespan. Newborns

prefer images depicting faces that look at them (Farroni, Csibra, & Simion, 2002). At the age

5-7 weeks, infants exhibit a strong increase in fixations of the eye region of a face (Haith,

Bergman, & Moore, 1977). About 2 years of month infants begin to engage with caregivers

in structured interaction that involves precisely timed alternations of looking at each other

and terminating eye contact (Field, 1981; Reddy, 2003). At 10 months of age, infants

recognize whether other persons look at each other or not and begin to expect eye contact

during conversations (Beier & Spelke, 2012). Between 12 and 18 months of age, toddlers

start to follow and direct other’s gaze to objects (Carpenter, Nagell, Tomasello, Butterworth,

& Moore, 1998). At this age, they begin to learn that their caregiver’s attentional focus, as

expressed by eye gaze, acts as a constraint to successful social interaction. Later in ontogeny,

gaze behavior serves to establish and regulate intimacy and social distance (Argyle & Dean,

1965; Argyle & Ingham, 1972; Argyle, Ingham, Alkema, & McCallin, 1973). Patterns of

gaze behavior further indicate social structure, hierarchy as well as cultural norms (Blais,

Jack, Scheepers, Fiset, & Caldara, 2008; McCall, Blascovich, Young, & Persky, 2009). These

interdisciplinary findings highlight the constitutive role of eye gaze for social interaction,

communication and culture.

The following passages will summarize operational definitions of gaze, central associated

behavioral findings, and related neuroscientific evidence. The section concludes with an

intermediate evaluation.

1.1.1 Scientific operationalization of gaze
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Mutual and averted gaze Gaze research follows a coarse classification of gaze-related phe-

nomena which distinguishes visuomotor elements of gaze and emerging dynamic-intentional

contexts thereof. In a first approximation, mutual and averted gaze were often contrasted.

This distinction was typically implemented using images or photographs that convey the

impression of eye contact or its absence. Mutual gaze, at the level of stimulus-materials also

commonly referred to as direct gaze, denotes situations in which two observers look into

each other’s eyes. Averted gaze refers to situations in which the observed individual does

not look into the observer’s eyes but focusses on something else instead. Sensitivity to both

direct gaze and averted gaze has been demonstrated in macaques and chimpanzees at the

behavioral level (Perrett et al., 1985; Emery & Lorincz, 1997; Sato & Nakamura, 2001; Kano

& Tomonaga, 2010) and at the neuronal level respectively (Hoffman, Gothard, Schmid, &

Logothetis, 2007), even after differentiating between head posture and gaze direction (Per-

rett et al., 1985). Reminiscent of human infants (Farroni et al., 2002), chimpanzee infants

have recently been reported to preferentially fixate photographs of human faces displaying

direct gaze (Myowa-Yamakoshi, Tomonaga, Tanaka, & Matsuzawa, 2003; Tomonaga et al.,

2004). However, recent findings suggests that adult chimpanzees exhibit less complex

fixation patterns when analyzing another individual’s eye region than humans (Kano &

Tomonaga, 2010) conforming to the cooperative eye hypothesis (Kobayashi & Kohshima,

1997). In humans, exposure to mutual gaze has been found to modulate a wide spectrum of

physiological and cognitive process including perceived intimacy (Argyle & Dean, 1965),

attribution of sympathy (Kuzmanovic et al., 2009), attractiveness (Mason, Tatkow, & Macrae,

2005), emotional arousal (Nichols & Champness, 1971), imitation Wang, Newport, and

Hamilton, 2011 and visual search (von Grünau & Anston, 1995). In contrast, exposure to

averted gaze has been found to reorient attention to peripheral targets, commonly referred

to as spatial-cueing (Posner, 1980).

Gaze-following, gaze alternation and joint attention Additional insights have been

generated based on gaze-following paradigms, or more generally, in tasks in which mutual

and averted gaze were dynamically combined. When presented with peripheral targets and

distractors, macaques have been shown to follow a human’s gaze to the target, conforming

to the attentional reorienting characterization of averted gaze. Chimpanzees have been

shown to be sensitive to gaze shifts in such gaze-following tasks under certain conditions.

Recent findings based on systematic comparison between head and gaze cues suggests that

chimpanzees attribute more relevance to head posture as compared to direction of eye

gaze, whereas human children preferentially respond to gaze. For example, in a study

by Tomasello, Hare, Lehmann, and Call (2007) children at 12 months of age neglected the

head cue if the experimenter closed her eyes before moving her head, whereas chimpanzees

were not sensitive to eye gaze. Such tasks highlight the communicative role of mutual gaze
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as an ostensive cue (Sperber, Wilson, & Ziran, 1986) which biases the interpretation of

subsequent behavior as communicative and intentional. This point is further illustrated

by the phenomenon of joint attention which commonly emerges from single or repeated

episodes of gaze-following with interleaved mutual gaze and has often been characterized as

triadic interaction in which social interaction is structured around objects (Bard & Vauclair,

1984; Tomasello et al., 2005; Call, 2009). Chimpanzees have been shown to read both their

interaction partner’s attentional state and intentions based on gaze behavior. However, given

the current state of research, it can be stated that only humans share a unique propensity

to share their attention and intentions with their conspecifics (Call & Tomasello, 1999;

Call, 2009). Sometimes researchers therefore distinguish joint attention (coincidental or

implicit correspondence of mental states) from shared attention (mutual manifestness of

corresponding mental states) (Emery, 2000). The social cognitive impact of gaze-based

interactions is illustrated by studies in which such triadic joint attention was experimentally

varied to study collaborative behavior, suggesting eye contact and joint attention to strongly

modulate cooperative commitment and the normative implications of the following social

interaction (for example Gräfenhain, Behne, Carpenter, and Tomasello (2009)). Joint

attention, moreover, has been suggested to be a developmental precursor of language and

Theory of Mind (Mundy, Sigman, & Kasari, 1990; Charman et al., 2000; Aschersleben, Hofer,

& Jovanovic, 2008). The latter refers to the ability to explain others’ behavior in terms

of (false) beliefs and desires (Premack & Woodruff, 1978; Wimmer & Perner, 1983), also

commonly summarized as mentalizing.

1.1.2 Neuroscientific analysis of gaze
Neural circuitry concerned with processing other individuals’ faces and eye gaze have, to date,

only been extensively investigated in macaque monkeys and in humans (Yovel & Freiwald,

2013). Exposure to face stimuli elicits activation in specialized parts of the primate visual

system that is concerned with object recognition (Tsao, Moeller, & Freiwald, 2008; Yovel &

Freiwald, 2013), also referred to as ventral visual stream (Corbetta, Patel, & Shulman, 2008).

In macaques, most face-sensitive areas have been detected inside the superior temporal

sulcus (STS), and, based on anatomical landmarks, occupy relatively more dorsal locations

of the temporal cortex as compared to human face sensitive areas (Tsao et al., 2008).

Additional face-sensitive neurons have been found in the monkey’s amygdala (Hoffman

et al., 2007) and in the monkey’s ventral prefrontal cortex (Tsao et al., 2008), both related

to emotion processing. It has been suggested that macaque face areas have undergone

massive expansion and anatomical reorganization during hominoid evolution (Van Essen

& Dierker, 2007). However, recent research has proposed that macaque intra-STS patches

can be mapped to the human face-sensitive system (Orban, Van Essen, & Vanduffel, 2004).
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Interestingly, numerous tuning characteristics have been isolated for these face-selective

patches inside the monkey STS (Freiwald, Tsao, & Livingstone, 2009). These include

face aspect-ratio, face direction, eye size, gaze direction, but also various mouth and limb

attributes as well as preferential discharge during observation of action. These findings

suggest that macaques possess a wide array of specialized functional units concerned with

the analysis of social stimuli. Therefore, primate cross-species differences in behavioral

capacities and propensities regarding eye gaze are expected to reflect progressive structural

and functional refinements of the face and gaze processing system.

In humans, three occipito-temporal regions have been identified that harbor one to multiple

face-sensitive areas (Yovel & Freiwald, 2013), i.e., the lateral occipital cortex, the face-

sensitive fusiform gyrus fusiform gyrus (FG), and the STS. It has been suggested that the

lateral occipital cortex implements an early face-related visual feature processing node

which passes information to the face-sensitive FG and the STS (Haxby, A., & Gobbini,

2002). Numerous studies based on mutual gaze and averted gaze have suggested that the

face-sensitive fusiform gyrus is preferentially concerned with recognition, categorization,

individuation and processing of invariant face features. In contrast, the face sensitive patches

inside the STS are commonly related to processing dynamic features of faces, such as eye

gaze and facial expressions. This is illustrated by frequent coactivation of STS patches with

the middle temporal area (MT/V5) region that is motion sensitive, the intraparietal sulcus

(IPS) and the frontal eye fields (FEF) which are commonly related to spatial-attentional

reorienting (dorsal attention network) (Corbetta et al., 2008). Interestingly, intracranial

recordings from the face-sensitive fusiform gyrus show that early and late components

can be differentiated which dissociate between function typically ascribed to the FG and

the STS (Pourtois, Spinelli, Seeck, & Vuilleumier, 2010; Kawasaki et al., 2012). Several

face-sensitive neuromagnetic components have been differentiated (Linkenkaer-Hansen

et al., 1998; Liu, Harris, & Kanwisher, 2002; Sato, Kochiyama, Uono, & Yoshikawa, 2008;

Morel, Ponz, Mercier, Vuilleumier, & George, 2009; Meeren, de Gelder, Ahlfors, Hamalainen,

& Hadjikhani, 2013; Cauchoix, Barragan-Jason, Serre, & Barbeau, 2014). Among these, the

M170 component, commonly attributed to face-recognition and individuation (Xu, Liu, &

Kanwisher, 2005; Deffke et al., 2007; Taylor, Bayless, Mills, & Pang, 2011), has been most

consistently supported by the literature. It has been localized to different regions, including

the face-sensitive fusiform gyrus (Sams, Hietanen, Hari, Ilmoniemi, & Lounasmaa, 1997;

Linkenkaer-Hansen et al., 1998; Sato et al., 1999; Watanabe, Kakigi, Koyama, & Kirino,

1999; Halgren, Raij, Marinkovic, Jousmaki, & Hari, 2000; Watanabe, Kakigi, & Puce, 2003;

Deffke et al., 2007; Henson et al., 2007; Okazaki, Abrahamyan, Stevens, & Ioannides, 2008;

Corrigan et al., 2009; Hadjikhani, Kveraga, Naik, & Ahlfors, 2009; Henson, Mattout, Phillips,

& Friston, 2009), the extrastriate occipital cortices (Itier, Herdman, George, Cheyne, & Taylor,
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2006; Thierry et al., 2006; Henson et al., 2009; Dumas et al., 2013), the lateral occipito-

temporal cortex (Schweinberger, Pickering, Jentzsch, Burton, & Kaufmann, 2002; Dumas

et al., 2013), the STS (Watanabe et al., 2003; Itier & Taylor, 2004; Corrigan et al., 2009) and

the lingual gyrus (LG) (Mnatsakanian & Tarkka, 2004). A recent fMRI-based connectivity

analysis has targeted functional coupling between occipto-temporal face-sensitive cortices

and other cortical networks during perception of eye gaze (Nummenmaa, Passamonti, Rowe,

Engell, & Calder, 2010). Results suggested that both, the fusiform gyrus and the posterior

superior temporal sulcus (pSTS) share modulations of connectivity induced by eye gaze

with the superior temporal gyrus (STG) and the supramarginal gyrus (SMG) which are also

often attributed to the temporo-parietal junction (TPJ) and stand in close relationship with

attentional capture and orienting to relevant objects (ventral attention network) (Corbetta

et al., 2008). These findings suggest that the commonly assumed regional model of face-

related visual processing in which the STS and the FG are preferentially concerned with

dynamic and static featurs of faces, respectively, might need to be extended. Therefore, more

advanced investigation of differential gaze-related cortical dynamics is warranted, which

considers a wider range of social cognitive contexts.

Somewhat reminiscent of the monkey’s ventral prefrontal face patches (Tsao et al., 2008),

additional human regions linked with face- and gaze-processing have been found in the

amygdala, the orbitofrontal cortex (OFC), the inferior frontal gyrus (IFG) and the dorso-

medial prefrontal cortex (dMPFC) (Akiyama et al., 2007; Vuilleumier & Pourtois, 2007;

Nummenmaa & Calder, 2009). The amygdala has been suggested to be modulate cortical

face-related activity, depending on saliency, relevance and emotion (Senju & Johnson, 2009;

Bzdok et al., 2012; Dumas et al., 2013). The dMPFC has recently been linked Theory of

Mind and gaze-processing. This was illustrated by recent neuroimaging studies on joint

attention which were based on hyperscanning techniques (Saito et al., 2010; Lachat, Farroni,

& George, 2012), virtual environments (Schilbach et al., 2009; Pfeiffer et al., 2014) or

live-video feedback (Redcay et al., 2010). While electrophysiological findings are most

sparse, let alone reports with respect to cortical dynamics, a recent dual- EEG hyperscanning

experiment found modulations of spectral inter-person synchrony in the alpha and the mu

band related to joint attention (Lachat et al., 2012). Findings based on fMRI have related

the dMPFC, the anterior cingulate cortex (ACC) and the right TPJ to the experience of

shared as compared to individual visual attention during social interaction (Schilbach et al.,

2009; Redcay et al., 2010; Pfeiffer et al., 2014). These findings suggest that the putative

human cortical mentalizing system is tuned by dynamic alternations of mutual and averted

gaze during ongoing interactions and that ensuing computations concerned with mental

state attribution might therefore rely on shared visual attention. At a subcortical level, joint

attention has been reported to evoke activation of the ventral striatum (Schilbach et al.,
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2009; Pfeiffer et al., 2014), a structure implicated in the human reward system. Such

findings conform with the shared intentionality theory of human cognitive and cultural

evolution which predicts that sharing mental states is rewarding for humans (Tomasello

et al., 2005; Call, 2009). Less unequivocally, activation of the IFG, which is believed to be

part of the putative human mirror neuron system, has been reported to be evoked by joint

attention (Saito et al., 2010). Recent meta-analytic connectivity studies add to this findings

in demonstrating task-related and resting-state connectivity between gaze-related networks

and the dMPFC but not the ventromedial prefrontal cortex (vMPFC). This suggests that

the dMPFC is preferentially involved in higher-order processing and top-down modulation

of basic social perceptions ensuing from interaction with others (Bzdok et al., 2013a).

These findings demonstrate that the macaque and the human gaze-processing system pos-

sesses striking functional and structural similarities. The systems of both species possess

differentiated temporal cortical networks concerned with visual processing of faces and eye

gaze, possess patches which are related to emotional modulation of gaze-processing, and,

possess frontally situated patches concerned with specialized and higher-order processing

of faces. Naturally, the structural expansion and evolution of face-sensitive cortical areas

in humans seems to reflect the more diverse human social propensities. It has recently

been argued that the human mentalizing network or at least core elements thereof can be

delineated from the macaque’s middle superior temporal sulcus (mSTS) region, suggesting

that the evolutionary origins of human social cognition are grounded in visual and post-visual

face-, gaze- and body-processing. On the other hand, the diverse functional imaging and

electrophysiology findings regarding the social cognitive role of human visual face-sensitive

areas demonstrate that more fine-grained investigations thereof are warranted. Given the

tempting view that human origins of social cognition are situated in gaze processing, novel

insights are expected from investigating how visual face-sensitive cortical networks are

tuned by ongoing, social interaction. Unfortunately, to date, virtually nothing is known

about this subject matter. MEG studies have revealed various characteristic modulations of

cortical activity in visual face areas related to perception of eye gaze in both the time and

the frequency domain (for example Taylor, George, and Ducorps (2001), Dobel, Junghofer,

and Gruber (2011)). Unfortunately, it remains unclear, how these gaze-related signals relate

to ongoing social interaction. A few recent fMRI studies have addressed the question of how

the putative human mirror-neuron system (hMNS) is tuned by eye gaze during ongoing

social interactions and suggest that networks related to mentalizing and self-other distinc-

tion, i.e., the dMPFC closely interacts with the putative hMNS to quickly adjust ongoing

action to social and intentional contexts (Schilbach, 2010; Wang, Ramsey, & De C Hamilton,

2011). However, these findings did not detail the cortical dynamics. I therefore propose

to investigate how social interaction tunes gaze-related cortical dynamics using MEG. The
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following sections will give a brief summary of basic biophysical and physiological facts,

principles and practices regarding MEG. Where it is indicated, links between MEG and social

cognitive neuroscience will be established.

1.2 Magnetoencephalography
MEG is a noninvasive neuroimaging technique which permits the analysis of cortical dy-

namics at submillisecond temporal resolution. The following sections introduce the method

summarize basic physiological, biophysical and analysis related principles and issues.

1.2.1 Neural sources
MEG measures extracranial magnetic fields inside a magnetically shielded room (MSR) by

using an array of sensors which are positioned inside a helmet. These sensors are commonly

referred to as superconducting quantum interference device (SQUID)s. These magnetic

fields are usually observed at a scale of femtotesla (1× 10−15 Tesla). The primary neuronal

sources of MEG signals have been shown to reflect post-synaptic potentials of neocortical

layer V and layer II-III neurons located in the walls of the sulci (Murakami, Hirose, & Okada,

2003; Murakami & Okada, 2006). These neurons posses long apical dendrites oriented

peripendicularly to the pial surface. On de- or hyper-polarization resulting from synaptic

modulation, electric currents flow alongs these dendrites and generate electromagnetic fields,

appearing as a dipolar pattern from the distance (Hämäläinen, Hari, Ilmoniemi, & Knuutila,

1993). Assuming a single current dipole moment magnitude of 0.29 to 0.90 pAm for cells

of this type, a population of 50.000 synchronously active neurons is required to generate

a current dipole moment of 10nAm (Murakami & Okada, 2006), which is the threshold

above which signals can be detected by MEG given the volume conductor properties and

Maxwell’s equations (Hämäläinen et al., 1993) and the noise level of the sensors. Depending

on the density of pyramidal neurons in a patch of cortex, a thin column of of roughly 1mm2

can already generate a detectable dipole moment (Murakami & Okada, 2006). However,

due to field cancellation, larger areas may be required to generate a detectable MEG

signal (Hämäläinen et al., 1993). To a lesser extent, and, depending on the geometry of

their dendrites, stellate neurons may also contribute to the MEG signal (Murakami & Okada,

2006). In contrast, action potentials are unlikely to be detectable by MEG because large-scale

synchronization of action potentials is highly unlikely under nonpathological conditions

and, moreover, their field is rather described by a quadrupole (Hämäläinen et al., 1993;

Murakami & Okada, 2006). Importantly, passive volume currents, also called secondary

currents, lead to cancellation of radially oriented primary currents (Hämäläinen et al., 1993).

This is why MEG is mainly sensitive to the tangential field components whereas EEG is
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also sensitive to radial components oriented towards the skull (Hämäläinen et al., 1993;

Ahlfors, Han, Belliveau, & Hämäläinen, 2010). Given the negligible magnetic resistance of

the conducting medium and reference-free measurements of magnetic fields, MEG signals

directly capture current magnitudes of a population of neurons and are, hence, less subject

to spatial distortion than EEG signals. Second, because conductivities have a stronger impact

on EEG signals, it is also more difficult to reliably estimate a forward solution. These

properties allow to achieve a more accurate localization of MEG signals as compared to EEG.

Depending on the signals, MEG inverse solutions reach a precision of 3-5mm (Hämäläinen

et al., 1993). Importantly, MEG signals can be generated by sources that are not otherwise

detectable because they are too transient to be reflected in fMRI-BOLD signals (Logothetis,

Pauls, Augath, Trinath, & Oeltermann, 2001; Singh, Barnes, Hillebrand, Forde, & Williams,

2002; Logothetis, 2008; Muthukumaraswamy & Singh, 2009). Other sources possess spectral

characteristics that EEG cannot clearly differentiate (Hari & Kujala, 2009). It has also been

suggested that the orientation selectivity of MEG can improve the signal-to-noise ratio for

certain sources (Ahlfors et al., 2010; Ahlfors et al., 2010). Against the background of the

previous discussion, these properties suggest that MEG might play an important role in

further differentiating gaze-related cortical dynamics.

1.2.2 Taxonomy of neuromagnetic signals
Research has converged on the following threefold classification of MEG and MEG signals.

Spontaneous oscillatory activity can occur in the absence of any stimulus or overt behavior,

but can be modulated by various conditions. One prominent example of such spontaneous

activity refers to oscillations in the alpha band (7–13 Hz), commonly observed at sensors

over parietal and occipital brain areas while subjects are at rest (Berger, 1929; De Munck

et al., 2007). These spontaneous oscillations are further modulated by context, for instance,

when subject’s have their eyes closed alpha-power usually increases (Ciulla, Takeda, & Endo,

1999).

Induced oscillatory activity is strictly task-related and is defined as response fluctuation

over a series of repeated stimuli. An example of such induced oscillatory are task-related

modulations of 40-90Hz gamma band responses in the visual cortex (Tallon-Baudry &

Bertrand, 1999; Muthukumaraswamy & Singh, 2009; Brunet et al., 2014). Importantly,

because this kind of activation is not strictly phase-locked to the stimuli, signals cannot be

directly averaged across trials in the temporal domain, since such averaging would only

preserve time-locked components (Tallon-Baudry & Bertrand, 1999).

Time-locked activity, also referred to as evoked response, is phase-locked to stimulus or

motor events. Prominent examples of such responses are given by the M170 face-sensitive
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component, a deflection with a peak around 170 milliseconds which becomes visible when

averaging over multiple trials in which faces have been presented (Susac, Ilmoniemi, Ranken,

& Supek, 2011; Taylor et al., 2011; Perry & Singh, 2014).

Oscillatory activity can be generated by thalamo-cortical modulation but can also emerge

locally in a population of synchroneously discharging cortical neurons (Llinás, 1988; Ribary

et al., 1991; Ikeda, Leyba, Bartolo, Wang, & Okada, 2002), and has been linked to numerous

cognitive and behavioral phenomena including attention and awareness (Tallon-Baudry &

Bertrand, 1999). Importantly, oscillations establish a link between MEG and EEG signals

and hemodynamic responses as measured by the blood-oxygen-level-dependent (BOLD)

signal (Logothetis et al., 2001; Singh et al., 2002; Logothetis, 2008; Muthukumaraswamy &

Singh, 2009). Despite the exhaustive body of electrophysiology literature regarding time-

locked activity, no unequivocal physiological explanation of the phenomena has been been

achieved so far (Hanslmayr et al., 2007; Sauseng et al., 2007; Mazaheri & Jensen, 2010).

The classical additive model suggests the existence of weak potentials that are evoked by

certain stimuli or events in a stereotype manner but are overshadowed by ongoing oscillatory

brain activity. In this model, averaging across trials eliminates non-time-locked activity

and ultimately reveals the weak evoked response by linear addition. Alternatively, it has

been argued, that time-locked activity results from synchronous resetting of the phase in a

population of neurons (Makeig et al., 2002; Sauseng et al., 2007). In this model, no weak

component is assumed at the single trial, but averaging will lead to the deletion of non-time-

locked activation and will preserve the first cycle of the waveform after the time-locked reset.

While this debate is still not resolved it is noteworthy that the phase-resetting theory is more

parsimonious since it explains composite phenomena in terms of basic oscillatory network

dynamics and modulation instead of assuming a more complex ontology of intrinsic brain

responses. A more recent proposal also pursued an oscillatory explanation of time-locked

activity but focussed on rhythmic properties required to explain sustained evoked responses

which the phase-resetting theory falls short of (Mazaheri & Jensen, 2008, 2010).

1.2.3 Principles of MEG data analysis
To process MEG data such that accurate descriptions of active neural sources can be obtained

is both challenging and resource consuming (Gramfort et al., 2013a). It involves removal of

noise and artifacts from the measurements, extracting anatomical models from MRI-scans,

a numerical solution of the biomagnetic forward problem, and a plausible, constrained

solution to the inverse problem (von Helmholtz, 1853). The following passage gives a brief

overview on MEG data processing which follows the summaries provided by Gramfort et al.

(2013a, 2014).
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1.2.3.1 Signal extraction

MEG recordings cannot be meaningfully analyzed without any preprocessing. The common

steps related to preprocessing are concerned with reducing interference from endogenous

(biological) and exogenous (environmental) sources.

Often the signal of interest and interferences thereof occupy different frequency bands,

and, hence can be filtered accordingly. Filtering approaches can be regarded as settled, but

still, the characteristics of a filter and the exact choices of parameters should be considered

carefully against the background of the scientific question and the signal of interest. Some

filters may induce phase or frequency related artifacts, while, for example weak sustained

evoked responses can be wiped out by inappropriate high-pass filter settings and too wide

transition bandwidths.

When segmenting continuous recordings into observation windows organized around events

of interest, commonly referred to as epochs, one simple but efficient option of artifact

removal amounts to discarding contaminated epochs. Typically, peak-to-peak amplitude

thresholds are defined based on the natural scale of the measurements and the expected

amplitude of the signal of interest. Epochs in which one single sensor at a given sample

exceeds the defined threshold are subsequently excluded. For MEG data this threshold

depends on the sensor type, typically for magnetometers values between 2000 and 4000

fT can be considered meaningful choices. The resulting number of remaining trails is an

important aspect to monitor. To avoid biased analysis when comparing conditions, after

rejection of epochs the number of trials should be equalized for each condition.

Fine-grained post-hoc tuning of signal quality can be achieved by employing signal decom-

position techniques, often resulting in more ‘good’ segments of data. The general principle

behind such approaches consists in estimating a transformation on a subspace of the data in

which noise and artifact related signal components are be separated based on their differen-

tial statistical features, as characterized by variance, skewness or kurtosis. Commonly used

are procedures based on principal component analysis (PCA) or independent component

analysis (ICA). One important aspect to be considered refers to the introduction of artificial

correlations into the data due to rank reduction. The rank of the data refers to the system

of linearly independent equations. Signal decomposition techniques typically project the

data on a subsystem of independent components which has a lower rank than the number of

observations. Each noise-related component which is removed, typically reduces the rank by

the number of one. As long as the rank of the between-sensors noise covariance matches

the rank of the data, and as long as the difference between the rank and the numbers of

sensors is not too large, rank reduction does usually not pose a problem to subsequent

analysis. One has to be certain, however, that the signals of interest are not described,
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by low-variance components that would be excluded by excessive rank reduction. If one

assumes for example preprocessing based on PCA, components would be orthogonal and

sorted by variance in descending order. Often such procedures take into account the noise

covariance, estimated from data acquired in the absence of a subject or from segments

of data considered as irrelevant, also referred to as subject noise. If the scientific interest

focusses on ongoing, task-free, or instantaneous single-trial activity, the separation of subject

noise from the signals of interest is less probable, hence, estimators of the noise covariance

based on empty room recordings are preferable.

1.2.3.2 Source localization

One fundamental challenge of MEG data refers to the fact that neuromagnetic signals are

recorded outside and not inside of the head and it is necessary to solve an ill-posed inverse

problem in order to localize the origin of the signals. Unfortunately, no mathematically

unique solution exists to determine the exact origin of these signals (von Helmholtz, 1853).

This problem is commonly addressed by choosing biophysically and anatomically plausible

constraints to the space of feasible solutions. This step is commonly referred to as inverse

solution. A particular method for source localization is also called inverse solver. Resulting

estimated dynamics of cortical sources are often referred to as source estimates. As a direct

consequence of the ill-posed nature of the inverse problem such estimates to some degree

depend on model assumptions and parameter choices, which stands in sharp contrast to

MRI data-acquisition which does not implicate such an ill-posed problem.

Based on Maxwell’s equations it is possible to predict the extracranial magnetic fields based

on a given cortical electric current at a given location in the brain (Hämäläinen et al., 1993;

Gramfort et al., 2013a). To compute such a forward solution, which is an essential component

of any source localization method, one needs to take into account tissue conductivities, the

head geometry, and sensor arrangements (Gramfort et al., 2013a). Assuming a current

dipole as source model and a constant conductivity per shell2 (skin, skull, brain), a boundary

element model (BEM) can be used to simplify the forward solution (Mosher, Leahy, & Lewis,

1999). Once an appropriate forward model has been estimated the remaining problem

amounts to finding a transformation of the measured data which, given the forward model

allows to reconstruct the measured sensor data with minimum error. This step is referred to

as inverse solution.

The basic sources of M/EEG data are described as equivalent current dipoles. A classic source

localization approach assumes that the signals observed can be explained by a small number

of such dipoles. Such models can be compellingly parsimonious and easy to interpret, but

2described by so called piecewise constant functions.
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the assumption of a small set of focal active sources is not always plausible. For example,

complex cognitive processes and ongoing spontaneous or “resting-state” activity is likely

to implicate activity in networks of brain regions and such activity may be too spatially

extended to be properly accounted for by one or a few current dipoles. In addition, dipole

models make more assumptions about the data and the fitting procedure is computationally

demanding.

In contrast, distributed source models implicate thousands of dipolar sources which are

positioned in a grid of predefined locations, based on anatomical information. The only

parameters to be estimated for such source localization methods are the dipole amplitudes

at a given time. The most popular distributed source localization models implement linear

models with `2-norm constraints. For example models from the minimum-norm estimates

(MNE) family, weighted MNE (Lin, Belliveau, Dale, & Hamalainen, 2006), low resolution

brain electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002), dynamical statistical

parametric mapping (dSPM) (Dale et al., 2000), mixed-norm estimates (MxME) (Gramfort,

Kowalski, & Hämäläinen, 2012), time-frequency mixed-norm estimates (TF-MxNE) (Gram-

fort, Strohmeier, Haueisen, Hämäläinen, & Kowalski, 2013b), or time domain, e.g. linear

constrained minimum-variance (LCMV) (Veen, Drongelen, Yuchtman, & Suzuki, 1997), and

frequency domain, beamformers, e.g. dynamic imaging of coherent sources (DISC) (Gross,

Kujala, Hämäläinen, & Timmermann, 2001). It is important to note that some of these

inverse solvers, i.e., TF-MxNE, LCMV, DISC, and MxME implement non-linear optimizations

that cannot be expressed in a single matrix multiplication with a weight matrix. Moreover,

beamformers implement adaptive spatial filters which not only depend on the forward model

and the noise covariance but also on the covariance of the data3. Such Euclidean `2-norm

constraints inherently assume Gaussian noise with zero mean and equal variance across

sensors. While bandpass filtering can improve data with regard to these requirements it is

usually preferred to implement a spatial whitening step that allows to suppress between-

sensor correlations related to noise. More specifically, the spatial covariance of the additive

noise is estimated from data and subsequently used for whitening. This transforms data

into independent white noise vectors characterized by identical variances across channels.

Importantly, in the statistical literature it is a commonly known fact that covariance es-

timators can be unstable if the number of samples is insufficient. The relevance of this

problem has recently been demonstrated for source localization of M/EEG data and, to date,

it is unknown to which extent this problem scales with decreasing signal-to-noise ratio, as

common for high-level cognitive processes and related signal contrasts.

3For contextual completeness, the term beamformer refers to radar technology, which was the
historical context in which such models have initially been developed
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1.2.3.3 Statistical analysis

When identifying active neuronal sources based on MEG signals, the researcher not only

faces challenges related to the high anatomical variability of the brain across subjects. The

increased temporal granularity of MEG adds another layer of complexity once cortical sources

are compared across subjects (Gramfort et al., 2013a). A group analysis of cortical source

estimates over a time range of a few hundred milliseconds easily implicates millions of

statistical variables and constitutes a severe multiple comparison problem (MCP). Common

approaches to the MCP employed for fMRI research are often too conservative for M/EEG

applications. For example, the false discovery rate (FDR) which counts as rather liberal

in the fMRI domain is prohibitive for most meaningful whole brain analysis using MEG.

This problem is specifically aggravated by domain-specific aspects of cognitive and social

cognitive neuroscience. In particular, high variability between subjects, weak effect sizes or

unstable effects add to this problem. In the following paragraphs, one recently developed

approach to address the MCP in the context of M/EEG will be introduced.

To mitigate the MCP, many MEG researchers tend to analyze average time courses from re-

gions of interest (ROI) instead of analyzing all source locations. Another variant of this

approach coined ‘mean amplitude analysis’ compares signals averaged over all source loca-

tions and time samples in an ROI across conditions. While sensitivity is gained by reducing

the number of multiple comparisons and, hence, the amount of correction, such averaging

approaches may fail to detect effects of interest that are both sparse and transient. Moreover,

this approach clearly abandons a data-driven perspective, that is desirable for scientific

exploration, in favor of confirmatory analyses. This challenge recently stimulated method-

ological developments which adapt to the requirements imposed modern M/EEG analysis.

One promising approach put forward by Maris and Oostenveld (2007) tackles the MCP by

making use of clustering techniques in combination with a nonparametric permutation test.

The output of an arbitrary test statistic, often a t-test or an ANOVA statistic is fed into a

clustering procedure which ties together independent observations that exceed a threshold

value of the test statistic, based on their adjacency in feature space, e.g. their spatial and

temporal neighborhood. An initial clusterwise test statistic, also referred to as maximum

statistic (Nichols & Holmes, 2002), is then obtained by summing the test statistic of each

variable. Subsequently, this procedure is repeated multiple times on random partitions of

the data where the samples are randomly assigned to conditions. The significance test is

then obtained by analyzing the tails of the resulting distribution using the clusterwise test

statistic. This approach alleviates the MCP as adjacent variables are combined into one score

and the correction for multiple comparisons is carried out on a few observations, not on

millions. The sensitivity of the test statistic can then be further increased by incorporating
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prior knowledge such as the spatial adjacency between source location as a constraint for

cluster formation. Other advanced options for treating the MCP refer to approaches based on

random field theory (Kilner, Kiebel, & Friston, 2005) and recent studies suggest comparable

results for both families of methods (Pantazis, Nichols, Baillet, & Leahy, 2005). It can be

stated, however, that random field theory makes stricter assumptions about the data because

it specifies smoothness and distribution parameters.

1.3 Structure and scientific agenda
The previous review suggests that, to date, cortical dynamics underlying gaze processing are

not sufficiently understood. Interaction oriented experimental protocols have demonstrated

extended but highly contextual brain responses to eye gaze. Combined with MEG such

protocols are expected to extend the scientific understanding of human gaze-processing.

However, for such applications, MEG is still less standardized than fMRI and poses particular

data processing challenges to the researcher. These refer to the inverse problem and the high

dimensionality of the dara, which both become more difficult to master if data suffer from a

low signal-to-noise ratio. This is arguably the case for subtle social cognitive comparisons in

the context of interaction oriented protocols.

The goal of this thesis is to advance the neuromagnetic study of social cognition. First,

by developing new a new method which helps to process low signal-to-noise data and

by evaluating it on domain specific data. Second, by developing and evaluating a novel

experimental MEGprotocol that contextualizes gaze processing and its related cortical

dynamics with regard to social interaction.

Study 1 set out to improve the general stability of neuromagnetic findings, both within and

across studies and laboratories in replacing hand-set parameter choices by automatic and

data-driven parametrization. To maximize efficiency, a problem was picked that is common

to nearly all source localization methods and many preprocessing procedures, the estimation

of M/EEG between-sensor covariance. As has been shown by previous work (Woolrich,

Hunt, Groves, & Barnes, 2011a), estimates of the M/EEG between-sensor covariance can

dramatically impact final analysis results. To address this challenge, study 1 exploited state-

of-the-art machine-learning techniques to achieve an automatic solution for the estimation

of MEG and EEG between-sensor covariance an. Besides domain general model validation,

study 1 pursued a domain-specific and practically oriented validation which was based on a

publicly available dataset from an experiment which examined cortical responses to human

faces. The results of study-1 demonstrate the relevance of the problem and the generality of

the solution.
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The goal of Study 2 was to investigate neuromagnetic underpinnings of gaze-processing

during social interaction. The study comprised two experiments. Experiment 1 set out to

develop a forefront gaze processing protocol. This protocol had the purpose of orchestrating

two conflicting goals. Capturing gaze-processing during ongoing interaction in a maximum

naturalistic way while producing controlled neuromagnetic recordings. The protocol focussed

on continuous action-perception loops as a proxy for social interaction but made use of

virtual characters to control the physical properties of the stimulation. To leverage the

naturalistic potential of such virtual characters, the statistical structure of gaze behavior was

explicitly designed to promote the subject’s entrainment to the task. The social dimension was

further contextualized by varying the participant’s action intentions and the social relevance

characteristics of stimuli. Based on this protocol, experiment 2 allowed to systematically

evaluate time-locking properties of cortical dynamics supporting gaze processing during

ongoing action-perception loops.
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2Automated model selection in

covariance estimation and spatial

whitening of MEG and EEG

signals.

2.1 Introduction
At the current state of the art, MEG applications constitute inherent mathematical and statisti-

cal signal processing challenges. A modern M/EEG analysis workflow involves segmentation

of anatomical MRI data, the computation of an electromagnetic forward model, multiple

data-coregistration steps, extraction of signals of interest from the raw measurements and

finally a numerical solution to the ill-posed biomagnetic inverse problem (Hämäläinen, Lin,

& Mosher, 2010; Gramfort et al., 2013a). This study will focus on one common problem

of M/EEG analysis pipelines which is the estimation of between-sensor covariance, also

referred to as spatial covariance. Interest for such covariance estimates comes from the

known physics of the problem and commonly used Gaussian assumptions. Thanks to the

linearity of Maxwell’s equations, M/EEG data are obtained by linear mixing of brain sources,

which are corrupted by additive noise. Assuming the source amplitudes to be Gaussian, the

measured data are also Gaussian due to linear mixing. The additive noise is also commonly

assumed to be Gaussian. Under these assumptions, brain signals and noise can be fully

characterized with a mean vector and a covariance matrix. In practice signals are high pass

filtered or “baseline corrected”, which allows us to assume the data to be zero mean. The

only quantities to be estimated from data are therefore the spatial covariances.

The problem of estimating the covariance between an array of features from multivariate

samples is a problem that has been widely studied in statistics and for which various

models have been proposed. In one such approach (Ledoit & Wolf, 2004; Chen, Wiesel,

Eldar, & Hero, 2010), optimal coefficients are computed for the shrinkage targeting the

off-diagonal terms while other contributions propose structured models with reduced rank

assumptions (Tipping & Bishop, 1999; Barber, 2012). In the context of M/EEG, noise

can be biological (heart beat, eye blinks, muscle activity), environmental (line noise) and

sensor-related. Purely sensor-related noise can be assumed to be independent across sensors.
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It can hence be modeled with a diagonal covariance matrix. In contrast, most sources of

noise are structured and induce strong correlations between sensors. When estimating

the spatial covariance from signal of interest as done for beamformers (Veen, Drongelen,

Yuchtman, & Suzuki, 1997) or brain computer interfaces (BCI) for common spatial patterns

(CSP) (Ramoser, Müller-Gerking, & Pfurtscheller, 1998), strong between-sensor correlation

occur and can be explained by the following fact. If one assumes a single active source in

the brain without the presence of noise, the linearity of the forward problem guarantees

that the measured data span a subspace of dimension one. If one now assumes that the

source rotates over time, the subspace dimension increases to two in the case of MEG and

three in the case of EEG. See for example Mosher and Leahy (1998) for discussions on this

matter. Low rank hypotheses are also relevant for some MEG systems where the data are

projected to a low rank signal subspace for denoising. This technique is known as signal

space separation (SSS) (Taulu, Simola, & Kajola, 2005). Another peculiarity of modern MEG

systems is the different sensor types used during recordings, i.e. magnetometers and planar

gradiometers. These impose additional difficulties to the estimation because values differ by

orders of magnitude between sensors while the sources captured only partially overlap.

This study therefore evaluates various strategies for the estimation of the spatial covariance

of M/EEG data under Gaussian assumptions and develops a systematic approach of deciding

between these alternatives. The study will focus on two particular kinds of approaches,

shrinkage covariance estimators (Ledoit & Wolf, 2004; Chen et al., 2010) and on generative

low rank models, also commonly referred to as latent variable models: probabilistic principal

component analysis (PPCA) and factor analysis (FA) (Tipping & Bishop, 1999; Barber,

2012). In a first step, relevant statistical models and methods and their corresponding

assumptions will be introduced and related to M/EEG data and the problem of covariance

estimation. Subsequently, relevant implementation strategies will be detailed. Finally,

a comprehensive quantified evaluation of two classical and four alternative approaches

to covariance estimation is conducted based on simulations, on sensor space analyses of

different M/EEG datasets, and, on source localizations of differentially face-related cortical

activity based on a publicly available dataset.

2.2 Material and methods
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2.2.1 Statistical methods
Before detailing the covariance estimation models, a motivating example will be considered:

the problem of source reconstruction with `2 regularization, also known as MNE. The

notations which will be used for that purpose are adopted from the MNE-manual1.

2.2.1.1 Minimum-norm estimates (MNE)

MNE employ a distributed source model that consists of a large number of spatially fixed

candidate dipoles whose amplitudes are estimated from the data (Hämäläinen et al., 2010;

Gramfort et al., 2013a). For the present purpose N denotes the number of sensors, M the

number of candidate dipoles and T the number of time samples in the data. Following the

linearity of Maxwell’s equation and the assumption of additive noise, the data matrix Y of

size N × T is obtained by multiplication of the forward gain matrix G of size N ×M by X,

the unknown sources amplitudes of size M × T , to which is added a noise term E of size

N × T . The model reads:

Y = GX + E . (2.1)

According to Tarantola (1987), and Lin et al. (2006) the model can then be further specified

as follows. Assuming that X and E have zero mean Gaussian distributions at each time

sample t, i.e. Xt ∼ N (0, R) and Et ∼ N (0, C). The matrices R and C, of size M ×M and

N ×N respectively, refer to the source covariance and the noise covariance. Assuming C

and R to be known, an estimate X̂ of the amplitudes of the dipoles located on the cortical

mantle is obtained by maximum a posteriori (MAP):

X̂ = arg min
X∈RM×T

‖Y −GX‖2
C + ‖X‖2

R (2.2)

where ‖A‖2
B = Trace(AtB−1A). This leads to:

X̂ = RGt(GRGt + C)−1Y , (2.3)

where Gt stands for the matrix transposition of G.

The noise is said to be white if the matrix C is the identity I. In the following C
1
2 denotes a

square root matrix of C, such that C
1
2C

1
2 = C. Note that there is no unique square root of a

matrix which refers to the problem of invertibility. If C is invertible, so is C
1
2 . If one denotes

by Ỹ = C−
1
2Y and G̃ = C−

1
2G then (2.3) is equivalent to:

X̂ = RG̃t(G̃RG̃t + I)−1Ỹ . (2.4)

1http://martinos.org/mne/stable/manual.html#manual
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In other words, after introducing Ỹ and G̃, the noise can be modeled as white. One can

observe that (2.4) resembles (2.3) after replacing C by I. The process of computing C
1
2 and

subsequently Ỹ and G̃ is called spatial whitening. The matrix Ỹ contains the whitened data,

and G̃ is referred to as the whitened gain matrix.

In practice the square root C
1
2 is obtained from the eigenvalue decomposition under sym-

metry constraints of the estimated covariance C = UCΛ2
CU

t
C where UC is an orthonormal

matrix, UCU tC = I, and ΛC is a diagonal matrix with non negative entries. Assuming C to

be full rank, it is straight forward to verify that C−
1
2 = Λ−1

C U tC is a valid square root of C.

To reduce redundancy: (2.4) reveals that MNE actually implements what is known as

Tikhonov regularization (Tikhonov & Arsenin, 1977) or Ridge regression in the field of

statistical learning (Hoerl & Kennard, 1970). As a consequence, if the gain matrix and

the data are appropriately whitened, general conditions of statistical regression models

apply to the M/EEG inverse problem. Minimum-norm estimates, therefore, rely on the

specification of the noise covariance matrix that needs to be estimated from the data. Or

in other words, the inverse solution is likely to be wrong if the covariance estimate is

wrong. This also holds true for most other source localization including time-domain and

frequency-domain beamformers such as LCMV (Veen et al., 1997) and DISC (Gross, Kujala,

Hämäläinen, & Timmermann, 2001), respectively. It likewise applies to MNE variants such as

dSPM (Litvak et al., 2011) or sLORETA (Pascual-Marqui, 2002), as well as other distributed

models such as minimum-current estimates (MCE) (Uutela, Hämäläinen, & Somersalo,

1999), MxME (Gramfort, Kowalski, & Hämäläinen, 2012; Gramfort, Strohmeier, Haueisen,

Hämäläinen, & Kowalski, 2013b). It therefore cannot be considered a local problem.

2.2.1.2 Model selection using cross-validation

The noise covariance estimator is typically applied to segments of M/EEG data that were

not used to estimate the noise covariance and that typically include both, brain signals and

noise. Its quality can hence be assessed by investigating how well the model describes new

data. This idea of model quality assessment on unseen data is realized by aggregating results

over random partitions of the data, and is referred to as cross-validation. Since M/EEG data

are assumed to follow a multivariate Gaussian distribution, parametrized by a covariance

matrix C, adapting Minka (2000) eq. 16, Barber (2012) eq. 21.2.20 and Tipping and Bishop

(1999) eq. 4, the log-likelihood of some data Y can be expressed as

L(Y |C) = − 1
2T Trace(Y Y tC−1)− 1

2 log((2π)N det(C)) . (2.5)
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The higher this quantity on unseen data, the more appropriate the estimated noise covariance

C and the higher its success at spatially whitening the data. The log-likelihood, hence,

allows to select the best noise covariance estimators out of a given set of models using

cross-validation on left out data. The following passage will discuss candidate strategies to

estimate covariance matrices from M/EEG data.

2.2.1.3 Empirical covariance and regularization

The empirical covariance matrix can be computed by C = 1
T Y Y

t, where Y contains the

sensor data of size N × T . With a sufficient number of observations (T large), the sample

covariance, which can be derived from maximum likelihood, is a good estimator of the

true covariance. Typically, a noise covariance is computed on baseline segments preceding

stimulation or for MEG on empty room measurements during which no subject is present.

Outlier samples, e.g., biological artifacts, often contaminate the data and sometimes the data

statistics can change over time, e.g., changes in environmental noise or changes in head

position. In such situations, a limited number of samples is available causing the empirical

covariance to suffer from high variance. The estimate is noisy and unreliable for further

analysis.

One typical way to reduce the variance of the covariance estimator is to apply diagonal

loading. It consists in amplifying the diagonal with a hand-selected constant which attenuates

the off-diagonal elements that correspond to inter-sensor covariance:

C ′ = C + αI, α > 0 . (2.6)

The value α is the regularization parameter. This diagonal weighting of the covariance

stabilizes MNE-like estimates by reducing the variance. However, the introduced bias

amounts to assuming a stronger noise level which leads to underestimated amplitudes

in the source estimates. This especially applies to dSPM and sLORETA where the noise

variance is used to rescale MNE estimates and convert them to statistical quantities such as

F or T statistics. When used in beamformers, such a regularization of the data covariance

matrices tends to increase the point spread function of the spatial filters and smear the

estimates (Woolrich, Hunt, Groves, & Barnes, 2011b). In addition, hand-set regularization

raises a new problem, which is how to choose the value of α.

2.2.1.4 Shrinkage models of covariance

An improvement of the hand-selected regularization or shrinkage approach is provided

by the Ledoit-Wolf (LW) shrinkage model (Ledoit & Wolf, 2004). This covariance model
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constitutes an optimal weighted average of the invariant identity matrix and the variable

empirical covariance matrix (2.7). The LW covariance estimates CLW takes the form of:

CLW = (1− α)C + αµI , (2.7)

where I stands for the identity matrix, µ is the mean of the diagonal elements of C, and α is

called the shrinkage parameter. The contribution of Ledoit and Wolf, 2004 is to provide a

formula to compute the optimal value for α. The solution is derived from the values of N,

the number of dimensions, and T, the number of samples. It is provided in closed form and

minimizes the mean squared error between the estimator and the population covariance.

The underlying assumptions of the LW estimator is that the data are independent identically

distributed (i.i.d.) which, as will be seen below, is not a reasonable assumption for M/EEG

data. However, Ledoit and Wolf (2004) have shown that the optimal shrinkage parameter

guarantees CLW to be well conditioned, i.e., matrix inversion is numerically stable, and

more stable than the empirical covariance.

A data-driven extension to the Ledoit-Wolf estimator can be motivated by (2.7). Instead of

using the Ledoit-Wolf formula to compute α, cross-validation and likelihood estimation on

unseen data can be compared over a range of α values to select the optimal regularization

parameter. The optimal α can then be determined as the one yielding a covariance estimator

with the maximum likelihood on unseen data. Throughout the manuscript, models with

data-driven shrinkage coefficient as in (2.7) will be referred to as shrunk covariance (SC).

(for additional details on the SC estimator, see the related documentation and examples

from the scikit-learn library for machine learning (Pedregosa et al., 2011)).

2.2.1.5 Latent variable models of covariance

2.2.1.5.1 Probabilistic principal component analysis (PPCA) M/EEG measurements

are obtained by sensor recordings at various locations in space. They include signals from

the brain but also artifacts. Such signals and artifacts yield spatially structured patterns

on the sensor array. For example, a source in the brain that would be well modeled by

an equivalent current dipole (ECD) produces a dipolar pattern on the sensors. If this dipole

does not rotate, due to the physics of the forward problem, the signal space spanned by

this ECD is of dimension one. The signal space is thus said to be of rank one. Both sources in

the brain and artifacts share this property of generating low rank signals on the sensors. This

is for example what justifies the use of signal space projection (SSP) (Uusitalo & Ilmoniemi,

1997). The idea behind SSP is that the noise subspace is of low rank and approximately

orthogonal with the subspace spanned by the brain signals of interest. Therefore, projecting

the data on the orthogonal of the noise subspace will remove artifacts and therefore denoise
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the data. PCA is a statistical method that is built on this idea of low rank signal space. When

using classical PCA, one needs to pre-specify the number of components, which matches

the rank of the subspace. While PCA was historically introduced as a method to reduce

the dimension of data, or to approximate a matrix with one of lower rank, Tipping and

Bishop (1999) have explained how it can be reframed as a generative probabilistic model

and coined the term PPCA.

According to this perspective, PPCA corresponds to a multivariate Gaussian model where a

random vector can be expressed as a random weighted linear combination of components

added to some independent noise. The covariance can be decomposed as the sum of a low

rank matrix and a scaled identity matrix. This statistical model transforms standard PCA

into a latent variable model such as FA.

To give a more formal description of the PCA model, let K represent the number of

components and y a sample generated by the model. The N -dimensional vector y is then

obtained from a K-dimensional random vector w which is linearly transformed by K latent

factors forming a matrix H of size N ×K, to which is added a fixed N -dimensional vector

m and a random noise vector e (cf. Tipping and Bishop (1999) and Minka (2000))

y = Hw +m+ e . (2.8)

Bothw and e are independent random vectors obtained from spherical2 multivariate Gaussian

distributions, respectively of sizeK andN . Following Tipping and Bishop (1999) and (Minka,

2000), the covariance can be derived from the latent variable model as follows: Without loss

of generality, the covariance of w is the identity IK and the covariance of e is σ2IN

e ∼ N (0, σ2IN ) and w ∼ N (0, IK) . (2.9)

It naturally follows that given H, m and σ, the vector y is Gaussian:

y|H,m, σ ∼ N (m,HHt + σ2IN ) . (2.10)

As a result, the covariance derived from the PCA model is given by:

C PCA = HHt + σ2IN . (2.11)

The natural question is then how to estimate m, H and σ from the data, and why the

standard PCA method provides estimates of these quantities. In then following, Y =

2with identity covariance matrix
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{y1, . . . , yT } denotes the observed data. According to the PPCA model (Minka, 2000) the

likelihood of the data is expressed by:

p(Y |H,m, σ) = (2π)−T M
2 det(HHt + σ2IN )−T

2 exp
(
−1

2Trace((HHt + σ2IN )−1S)
)

,

(2.12)

where

S =
∑
i

(yi −m)(yi −m)t . (2.13)

The maximum-likelihood estimates of each parameter are given by (2.14).

m̂ = 1
T

T∑
i=1

yi σ̂2 =
∑M
j=K+1 λj

M −K
Ĥ = U(Λ− σ̂2IK) 1

2Q , (2.14)

where U is the matrix formed by the K top eigenvectors of S, the diagonal matrix Λ

contains the corresponding eigenvalues λ1 to λN while Q is a random orthogonal matrix.

Importantly, to recover the principal components given by standard PCA, this matrix Q needs

to be an identity matrix. From this it naturally follows how CPPCA can be derived from

standard PCA estimates.

The latter results are obtained assuming the number of components K to be known. In

order to estimate this number from the data, various strategies have been developed.

In Bishop (1999), Bayesian PCA has been proposed as an extensions of PPCA in which

hyperparameters control the number of dimensions. This technique was used in the context

of LCMV beamformers to estimate the spatial covariance of the data and its rank (Woolrich

et al., 2011b). In contrast, Minka (2000) proposed a Bayesian rank estimation technique

based on Laplace approximation where inference is obtained from a variational Bayes

approach. The resulting rank estimate will be referred to in the following as PCA Bayes.

Finally, as detailed in (Minka, 2000), cross-validation can be used to obtain rank estimates

using PPCA without using additional hyperparameters as used in Bayesian PCA. With this

approach, PPCA models are estimated on a fraction of the data over all possible numbers of

components while the Gaussian likelihood of left out data is used as a principled quantitative

measure to evaluate how well the model fits the data. The estimated number of components,

K, is the value that maximizes the Gaussian likelihood of the left out data. In the course

of the study the focus will be put on the two latter approaches, Bayesian estimation with

Laplace approximation and cross-validation.

2.2.1.5.2 Factor analysis FA is another latent variable model that can be regarded as

extension of PPCA (Tipping & Bishop, 1999; Barber, 2012). The crucial difference to PPCA is

that instead of assuming spherical noise, e ∼ N (0, σ2IN ), it assumes a diagonal covariance,

w ∼ N (0,Ψ) , where Ψ is diagonal with diagonal positive entries denoted by ψ1, . . . , ψN . In
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contrast, PPCA is said to assume a homoscedastic noise: the noise variance is the same for

all variables, here all sensors. Contrastingly, FA assumes a heteroscedastic noise: the noise

variance differs between sensors.

Adapting (2.11), the covariance as delivered by FA is given by

C FA = HHt + diag(ψ1, . . . , ψD) . (2.15)

Factor analysis therefore covers a richer class of models and can be more suitable for data

such as M/EEG where the noise varies between sensors, for example, due to undetected bad

channels, or when combining different sensor types, e.g. magnetometers and gradiometers.

The consequence of this difference between PCA and FA models, is that the component

matrix in FA differs from the principal components, also referred to as principal axes of

the data (Tipping & Bishop, 1999). This practically implies that the FA model parameters

cannot be inferred as easily as with PPCA. Indeed, no closed form solution is available for

FA. It hence relies on an iterative algorithm.

The estimation of the FA model parameters is performed using expectation maximization

(EM) as described in Barber (2012). In practice each iteration consists of a spatial whitening

of the data using the present estimate of the data covariance followed by an update of the

components. This later step is performed with an singular value decomposition (SVD),

which is also commonly used to compute the standard PCA solution. Usually a minimum of

20 iterations is necessary to reach convergence of the FA estimation on M/EEG data. FA is

therefore about 20 times slower to compute than a PCA. However, thanks to randomized

numerical linear algebra (Martinsson, Rokhlin, & Tygert, 2011), SVD computation can

be significantly sped up making FA estimation very tractable on full datasets, even when

combining MEG and EEG. Such an efficient implementation is provided in the scikit-learn

machine learning library (Pedregosa et al., 2011; Abraham et al., 2014).

2.2.2 Whitened evoked response
The whitened evoked response is a sensor-space metric which is obtained by computing a

matrix multiplication between the whitener and the array of sensor measurements:

C−1/2Y (2.16)

The resulting signal amplitudes are expected to be situated between -1.96 and 1.96 for

baseline segments from which the covariance was estimated, following a standard-normal

distribution.
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2.2.3 Whitened global field power
After having applied the whitener, the noise can assumed to be white. The global field power

(GFP) is a sensor space metric that quantifies variability over the sensor array at a given

time sample. It assumes χ2 random variable that is normalized by the number of channels.

Should the dimensionality of the data have been previously reduced, the χ2 random variable

does not have N degrees of freedom but P < N where P is the size of the subspace the

data belong to. This typically happens when ICA, SSP or SSS has been applied to the data

and its rank is reduced as a consequence thereof. This yields the following expression for

computing the rank-adjusted GFP.

∑P
i=1 x

2
i

P
. (2.17)

The resulting signals are expected to have a value of one for baseline segments from which

the covariance was estimated.

2.2.4 General data analysis and software
All covariance estimators and the cross-validation were computed using the Python machine

learning package scikit-learn (Pedregosa et al., 2011). The empirical covariance and the

regularization were computed using the MNE software (Gramfort et al., 2013a, 2014). The

FA implementation was based on algorithm 21.1 from (Barber, 2012). Estimation of FA

parameters is iterative with expensive SVDs, one at each iteration. To improve suitability

for cross-validation and extensive rank estimation, the author of this thesis contributed

a modified implementation of Factor Analysis to the scikit-learn package, based on the

randomized SVD algorithm (Halko, Martinsson, & Tropp, 2011; Martinsson et al., 2011).

While producing results equivalent to a full SVD, the randomized SVD uses significantly

less memory and allowed to cut computation times by up to a factor of seven3.

The MNE software (Gramfort et al., 2013a, 2014) was used to process and analyze all MEG

and EEG data.

2.2.5 Simulated data
To compare the behavior of the covariance estimators across a varying numbers of samples,

four different data scenarios were simulates which can be represented on a 2 (homoscedastic

VS heteroscedastic noise) × 2 (low VS high rank) grid. For each scenario, covariance

estimates and rank estimates were computed for PPCA, the PCA (Bayes) and FA with a

3cf. https://github.com/scikit-learn/scikit-learn/pull/2406
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continuously increasing number of samples. In addition, model-likelihood was computed for

the Ledoit-Wolf and the SC estimator as well as for PPCA and FA. To reduce data variability,

results were averaged over 50 runs using different random seeds. The data were simulated

as follows: to obtain low rank data, a random N ×N square matrix was computed. Number

of dimensions was set to N = 50. In a second step, the rank of the matrix was reduced

by applying a truncated SVD. The K singular vectors with highest singular values were

kept to form a matrix H of size N ×K as in (2.8). An arbitrary orthogonal matrix of size

K × T was then used to form T independent samples that were projected using H into the

N dimensional space. The outcome is a N × T dataset living in a subspace of dimension

K. Finally, either homoscedastic or heteroscedastic Gaussian noise was added to the data.

This was achieved by adding a N × T random matrix formed by T samples drawn from

Gaussian distributions with diagonal covariances. In the heteroscedastic case the entries on

the diagonal are all positive but different (each feature, sensor, is corrupted with a different

noise level), while in the homoscedastic case all the entries on the diagonal are positive and

equal. The rank was set to either K = 10 (low rank) or to K = 40 (high rank). T was varied

between 200 and 2000 in steps of 50.

To determine the optimal SC estimator with cross-validation, estimators were computed with

α varying on a logarithmic grid of 30 values between 0.01 and 1. Each estimator was then

evaluated with a three-fold Monte Carlo cross-validation procedure. The optimal shrinkage

was then determined based on the highest likelihoods on left out data. To determine the

hyperparameter k of the low rank models, PPCA and FA were computed on a grid of rank

values. K varied between one to 49 in steps of three. For the sake of completeness, 50 (the

number of observed dimensions) was included in this range. Each value was used to select

the number of dimensions directly. At each step, the models obtained were evaluated with

the same cross-validation procedure. The estimated rank was then determined by the k

parameter of the model with the highest log-likelihood.

2.2.6 M/EEG datasets
The covariance and rank estimation procedures were subsequently tested using MEG data

recorded by three commercial and widely used MEG systems: 1) a 4D-Neuroimaging whole-

head magnetometer system with 248 channels (MAGNES-3600WH MEG), 2) a VSM MedTech

Inc. whole-head axial gradiometer system with 275 channels (CTF/VSM) using second-

order axial gradiometers and synthetic third gradient for denoising and 3) a Neuromag

VectorView whole-head system with 306 channels, consisting of 102 magnetometers and 204

planar gradiometers (Elekta Neuromag, Finland) each comprising two orthogonal planar

gradiometers and one magnetometer.
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The Neuromag dataset is shipped with the MNE software (Gramfort et al., 2013a, 2014) and

includes combined M/EEG recordings conducted at the Martinos Center of Massachusetts

General Hospital. EEG were recorded simultaneously using an MEG-compatible cap with

60 electrodes. Data were sampled at 600 Hz. In the experiment, auditory stimuli (delivered

monaurally to the left or right ear), and visual stimuli (shown in the left or right visual

hemifield) were presented in a random sequence with a stimulus onset asynchrony (SOA)

of 750 ms.

The CTF/VSM data-set includes MEG recordings conducted by the the Functional Imaging

Group, London and is available at the SPM webpage4 (Litvak et al., 2011) and can also be

downloaded using the MNE software 5. Data were sampled at 480 Hz. In this experiment,

faces and scrambled faces were presented to the participant. The paradigm is detailed in

(Henson & Rugg, 2003). The 4D-Neuroimaging dataset was kindly provided by Breuer and

colleagues (Breuer, Dammers, Roberts, & Shah, 2014b). Recordings were conducted at

the Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Germany

and sampled at 1017.25 Hz. In the experiment, auditory stimuli (simple sinusoidal tones at

1000 Hz and 2000 Hz) were presented to the participant in a random sequence with a SOA

of 1000− 2000 ms.

All data were bandpass filtered between 1− 45 Hz using a zero-phase 4th order Butterworth

filter. Low pass at 45 Hz excluded the power line frequencies at 50 Hz and 60 Hz for data

recorded in Europe and the USA. High pass at 1 Hz removed low-frequency drifts as well

as baseline offsets from the data. To allow the comparison of the results obtained with

the different datasets, all epochs were resampled at 150 Hz. Segments contaminated by

biological artifacts were detected based on peak-to-peak amplitude and ignored during

estimation to avoid distorted covariance estimates due to outliers. Note that this lead to

slightly different sample sizes for some datasets.

MEG data expressed in T or T/m are very small, and close to machine precision. To

improve numerical stability, data were scaled by the order of magnitude corresponding to

the measurement unit. For datasets combining gradiometers and magnetometers, the latter

were scaled by a factor of 0.04 as recommended by maxfilter software (Elekta-Neuromag).

The estimated covariances were then rescaled to the squared measurement unit. Epochs

were defined from −200 ms to 500 ms with respect to the stimulus onset. To estimate the

noise covariance, baseline segments (−200 to 0 ms) were extracted and concatenated to

form a two-dimensional matrix comprising channels and time samples.

4http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/
5http://martinos.org/mne/auto_examples/datasets/plot_spm_faces_dataset.html
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Table 2.1: Overview on datasets used and corresponding legend keys

key dataset and channel type number of channels used

bti-mag 4D Magnes 3600 WH magnetometers 248

ctf-mag CTF-275 axial gradiometers 274

vv-eeg VectorView EEG electrodes 59 (1 bad)

vv-grad VectorView planar gradiometers 203 (1 bad)

vv-mag VectorView magnetometers 102

vv-meg-grad VectorView planar gradiometers, combined estimation 203 (1 bad)

vv-meg-mag VectorView magnetometers, combined estimation 102

2.2.7 Sensor space validation
The same protocol was applied to the M/EEG datasets as for the simulation. For each dataset,

covariances and their log-likelihoods were computed based on each estimator. The PPCA and

FA parameters were evaluated using cross-validation over a range of different values for rank

parameter K from five and to the multiple of five that was closest to the actual number of

channels, advancing in steps of five. Subsequently, the log likelihood, the whitened evoked

response and the corresponding GFP were computed for each estimator. The procedure was

executed separately for each channel type as well as for magnetometers and gradiometers

combined. For the combined-sensors runs, whitening effects related to either gradiometers

or magnetometers are presented separately. The acronyms used to refer to the different

datasets or to the views on datasets are summarized in table 2.1.

This procedure was conducted at two discrete sample sizes, one including the first 15 epochs

encompassing 450 samples, and a second one including the first 50 epochs of 1550 samples.

These values reflect arbitrary choices. However, both levels approximate the lower and the

upper bounds for the number of samples used for the simulation. For each dataset, whitened-

evoked responses were then computed based on the covariance estimator with the highest

model-likelihood. A second, purely graphical monitoring techniques was implemented by

computing the whitened global field-power for each estimator and super-imposing the results

separate estimator. The estimators tested on M/EEG data are presented in table 2.2 with

their corresponding abbreviations. The non-whitened evoked responses are displayed in

figure 2.1.

2.2.8 Source estimates
To demonstrate the practical impact of estimator quality on source localization in applied

contexts, the single subject SPM-faces dataset described above was analyzed at the source

level using the above covariance estimation and selection procedure. This dataset was

chosen because it implicates experimental contrasts relevant to cognitive and social-cognitive
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Table 2.2: Overview on covariance estimators used in concert with M/EEG data

key estimator

Raw Empirical covariance computed from restricted number of epochs

Reg Regularized covariance with α = 0.1 (default regularization parameter in the MNE software)

LW Ledoit-Wolf estimator

SC Shrunk covariance with cross-validation

PCA Probabilistic PCA with cross-validation to set K

FA Factor analysis with cross-validation to set K

Figure 2.1: Non-whitened evoked responses of all datasets for 15 epochs (450 samples) and 50 epochs
(1500 samples).

neuroscience. Data were exactly preprocessed as for the sensor-space validation. MNE

source estimates were then computed separately for the faces and the scrambled faces

condition. Resulting maps of cortical activity maps were then subtracted to form a paired

contrast. Except for the covariance parameter, MNE estimates were computed using

the default parameters proposed by the MNE-software. The regularization-parameter λ2

was set to 1.0/SNR ∗ ∗2 where, SNR refers to the signal-to-noise ratio parameter which

defaults to 3. A depth-weighting of 0.8 was used in combination with a loose-constraint

of 0.2 and free orientation. The parametrization of MNE will be commented in greater

detail in study 2 where it is more relevant to the analysis (c.f. 3.2.2.6.4). The dSPM

procedure was used for noise normalization. This resulted in unsigned dSPM source estimates

reflecting normalized current magnitude. Positive values resulting from a paired contrast
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of the form dSPMfaces − dSPMscrambled therefore reflect activity specific to the faces

condition. To quantify differential statistical properties of the resulting dSPMs, means and

standard deviations were computed across source locations, and, subsequently their temporal

maxima.

To asses the differential impact of covariance estimation, this analysis was conducted over

varying numbers of epochs using both best and the worst covariance estimator as parameter

for the MNE computation.

2.3 Results

2.3.1 Simulated data
Figure 2.2 presents the rank estimation results based on PPCA, Minka’s Bayes PCA (Minka,

2000), and, FA. All three estimators recovered the true rank of the data when noise was

homoscedastic. When heteroscedastic noise was present, only FA was able to recover the true

rank, irrespective of the true rank (10 or 40). When the noise was heteroscedastic, dramatic

overestimations of the true rank occured for PPCA. Furthermore, it can be observed that PPCA

and FA only produced stable results if the sample size exceeded a minimum of roughly 350

samples. This is further illustrated in Figure 2.3 which shows the model likelihoods of the

covariance estimators. For all conditions, the model likelihood increased with the number of

samples, and most steeply in the range where the rank estimates exhibited high instability. In

the low rank scenario, the latent variable models were unequivocally more appropriate than

the “unstructured” shrunk covariance models. For homoscedastic noise and a rank of 10,

both PPCA and FA performed equal. When noise was heteroscedastic, FA had the highest

model likelihood across the entire sample range, followed by the shrunk covariance models

and PPCA. However, differences between the other estimator’s performance disappeared

with increasing number of samples. In contrast, the high rank scenario was governed by a

different regime. Independent of the noise structure, a clear performance pattern emerged

where SC exhibited the best results at a low number of samples while the probabilistic latent

variable models only gradually improved with increasing numbers of samples, ultimately

reaching comparable model probabilities.

2.3.2 Sensor space validation

2.3.2.1 Rank estimation

The results on M/EEG data are presented in figure 2.4. Probabilistic PCA and FA both

indicated a low rank structure for the data, except for the EEG scenario with the larger
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Figure 2.2: Comparison between rank estimators on simulated data. Panel (A) homoscedastic noise,
ground truth rank of 10. All rank estimators converge. Panel (B) Same ground truth as in
A) but heteroscedastic noise. Only FA recovers the true rank. Panel (C) homoscedastic
noise, ground truth rank of 40. The low rank estimators converge, however, the sample
size must be sufficiently large for FA and the PCA Bayes rank estimation procedures. Panel
(D) same rank as in (C), heteroscedastic noise. Note that FA consistently recovers the
true rank of the data but only if the number of samples exceeds a minimum.
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sample size where PPCA suggested full rank. On average, the FA rank estimate (MK =

35.833, SDK = 14.410) was lower than the PPCA rank estimate (MK = 42.083, SDK =

17.376). Second, the estimated rank was generally higher for the high number of samples

(MK = 26.667, SDK = 1.952) as compared to the low number of samples scenario (MK =

51.250, SDK = 0.203).
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Figure 2.4: Rank estimates for low and high numbers of baseline samples computed on the different
datasets. The estimated rank was higher when increasing the number of samples. FA al-
ways outperformed PCA suggesting that M/EEG noise is heteroscedastic, not homoscedas-
tic. One also observes that PPCA rank estimates are almost always than equivalents
estimated with FA.

2.3.2.2 Model likelihood

The model likelihoods of the covariance estimators are reported in figure 2.5. Three main

observations can be made. First, the automatically selected covariance estimator were

consistently more appropriate than the empirical covariance. Second, FA and SC consistently

delivered better models than PCA and LW respectively. The SC estimator prevailed where

the number of samples was lower while FA produces the most appropriate fit when applied

to multi-sensor datasets or when the number of samples was high.
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Figure 2.5: Log-likelihoods of covariance models for low and high numbers of baseline samples
obtained on the different datasets. Either cross-validated SC or FA turned out to the best
model. FA was always more appropriate than PCA. Except for the multi-sensor dataset, FA
outperformed SC only when the number of samples was high. In most cases, standard
regularization either under- or overestimated the baseline noise.
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2.3.2.3 Whitened global field power

In figure 2.6 whitened GFPs are presented for each estimator. The GFP dynamics exemplify

respective under- and overestimation tendencies. The black dotted horizontal line indicates

the expected value for white Gaussian data. GFPs values below and above this line correspond

to overestimation and underestimation of the noise level, respectively. When the noise is

underestimated, that is when normalized GFPs is below one, the procedure is said to underfit.

In contrast, it is said to overfit if the noise is greater than one during the baseline periods

(between −200 and 0 ms). The huge deflections in the post-baseline window represent

time-locked brain responses.
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Figure 2.6: Global field power (χ2 statistic) of whitened evoked data for low and high numbers of
baseline samples and different datasets. The dotted vertical black represents the expected
baseline amplitude of one, given Gaussian baseline data.

In four out of seven datasets the empirical covariance produced clearly visible overfitting

while the regularized covariance tended to underfit the noise. However, in almost any other

case, differences seem hard to distinguish by mere visual inspection.

2.3.2.4 Whitened evoked response

Figure 2.7 shows whitened evoked responses for each dataset where the whitener was

computed from the best fitting covariance estimator determined by its log-likelihood on
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unseen data. Except one case, where hand-set regularization was most-appropriate, either

SC or FA performed best.
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Figure 2.7: Time-locked whitened with the optimal covariance model for low and high numbers of
baseline samples and different datasets. Selection based on results depicted in figure 2.5.

2.3.3 Source estimates
The impact of covariance estimation was practically examined by computing signal contrasts

that reflect cortical activity related to face perception over a range of different numbers of

epochs for both the worst and the best estimators. Figure 2.8 depicts contrast-results for

20, 40, and 60 input epochs, respectively. When comparing spatial signal dynamics across

epochs, the best covariance estimator showed less variability while the worst estimator

drastically changed depending on the number of epochs. This higher consistency for source

estimates based on the best estimator were also reflected in more consistent spatial extents

of the cortical activity. With 20 epochs of input data, the best estimator still showed a

pronounced ventral-temporal center of activity in the mid-FG, a brain region commonly

associated with processing of faces. In contrast, the worst estimator lead to source estimates

which suggest strongly increased and extended activity for nearly the entire ventral part
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of the temporal lobe. In general, differences between the best and the worst estimator

decreased with increasing numbers of epochs.

worst

best

Figure 2.8: Worst and best covariance estimators for faces > scrambled contrast. The top row
represents statistical parametric maps around 175 milliseconds for the worst covariance
estimators. The mid-row represents average temporal dynamics for worst and best
estimators superimposed. The bottom-row represents statistical parametric maps around
175 milliseconds for the best covariance estimators. The columns refer to results for 20,
40 and 60 epochs of input data, respectively. Statistical maps are constantly thresholded
with a maximum at the 99th percentile. For comparability to other studies, results are
shown on the FreeSurfer average brain’s inflated surface in ventral view. The curvature
of the cortical surface is indicated by light and and dark gray colors for gyri and sulci,
respectively.

2.4 Discussion
The present study addressed the problem of data-driven regularization of spatial covariance

estimates computed on M/EEG data. Such covariance estimates are a building block of

most M/EEG data analysis pipelines. Their particular use case refers to spatial whitening of

data which is required by most distributed source localization methods. This problem was

approached by employing model-selection with cross-validation. In detail, the log-likelihood

of the covariance was proposed as a metric to select the best model out of a set of alternative

covariance estimators. In addition to empirical and regularized covariance estimates which

reflect common standard choices, Gaussian covariance models, i.e. shrinkage estimators

and latent variable models, were subjected to model-selection. Data were validated by
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simulations, sensor-space metrics and, practically, by source localization of an experimental

contrast from a social-cognitive science MEG experiment.

Both, simulation and sensor space results unequivocally demonstrated that there was not

one single model that fitted all scenarios and datasets. Different global parameters, such as

sample size, the true number of dimensions, the noise structure, and, the sensor type shaped

the log-likelihood of the covariance estimators. The simulation suggested that covariance

models based on latent variable models delivered a more appropriate covariance estimate if

the true rank of the data was low and the number of samples was sufficient. In detail, given a

sufficient sample size, FA was the best model when the structure of noise was heteroscedastic

while probabilistic PCA performed best with homoscedastic noise. This stands in contrast

to the M/EEG study were PPCA never achieved the highest model probability on any of

the M/EEG datasets. However, the sensor-space validation suggests that on M/EEG data

two solutions are likely to be selected, either favoring FA or SC models. In this context it is

helpful to recapitulate differences between FA and PCA. Due to its diagonal noise term, the

former tends to generate more complex noise models that can handle varying noise levels

across channels. FA can therefore describe the data with fewer dimensions. This is because in

such latent variable variance that is not captured by the components is captured in the noise

term. However, complex models require more samples than simple models. Simulation and

sensor space findings are consistent with these characteristics in suggesting that FA lead to a

lower rank estimates than PPCA but was only preferred when the number of samples was

sufficiently high. Second, in the multi-sensor dataset only FA produced appropriate noise

estimates for combined sensor types. Also, in other cases where FA was selected the number

of samples was higher, not lower. In contrast, if analysis was constrained to one sensor

type, SC was selected irrespective of the sample size. Taken together, these findings indicate

that the model likelihood may depended on the system type and the recordings themselves

in ways which are not sufficiently understood. In this sense, M/EEG data problems are

subject to the “no free lunch theorem” (Wolpert, 1996). In practice, these findings suggest

to evaluate at least FA, SC in addition to the default regularization and to then chose the

best model using cross-validation on unseen data.

Combining simulation and sensor-space results reveals a basic M/EEG signal-chracacteristic.

Sensor noise is heteroscedastic, and not homoscedastic. This is reflected by the fact that

on MEG data PPCA models never prevailed, whereas such models were preferred under

certain simulated conditions. M/EEG methods should, therefore, focus on models that take

into account the variable sensor noise in M/EEG. This aspect seems only partially covered by

the literature. Examples are given by research on ICA in neuroimaging (Beckmann & Smith,

2004; Hyvärinen, Karhunen, & Oja, 2004; Dammers et al., 2008) and approaches which
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leverage FA for source imaging and artifact rejection (Nagarajan, Attias, Hild, & Sekihara,

2007; Zumer, Attias, Sekihara, & Nagarajan, 2007, 2008).

The sensor space findings demonstrate another important implication of this study. In the

context of model selection, mere visualization is insufficient to assess the quality of the

whitening step. Two visual inspection methods have been demonstrated, namely GFP plots

and whitened evoked plots. Both provide with basic diagnostics for spatial whitening but

only provide with limited guidance on how to rank the different models. To go beyond

graphical data exploration, the multivariate Gaussian log-likelihood score evaluated on

left out data can be regarded an unbiased quantified measure of estimator performance.

Estimating the log-likelihood of the covariance given unseen data is equivalent to estimating

the amount of whitening. Assuming that the whitened noise covariance is an identity matrix,

this quantity measures how close the covariance of the whitened data approximates the

identity matrix. Or, put differently, to which degree the data will be whitened by a whitening

operator computed from the covariance estimator under question. In other words, it is a

quantified measure of the success of the spatial whitening procedure.

Importantly, the log-likelihood procedure is closely linked to commonly neglected aspect

of M/EEG data analysis. Since the log-likelihood was evaluated on data that were not

used for parameter estimation it measures what is called in machine learning the ‘out of

sample performance’ (Breiman & Spector, 1992). This is relevant, since, in fact virtually all

whitening operations on M/EEG data are applied to time intervals which were not used for

the estimation of the noise model, i.e., post-baseline time-locked signals which reflect brain

activity in addition to noise. Likewise, often the MEG noise covariance is not even computed

from the dataset analyzed but from so called empty room recordings, which correspond

to measurements during which no subject is present. Such empty room recordings are

commonly used when running time frequency analyses and are regarded as mandatory for

resting state analyses (Lin et al., 2004; Hämäläinen et al., 2010; Gramfort et al., 2013a).

As a consequence, goodness of fit measures computed on unseen data generally desirable.

Based on formula (2.5), the procedure that was developed and evaluated in this study can

be easily generalized to any covariance estimate, even beyond the estimators that were

investigated in the present context. Importantly, this new method can be used with any kind

of inverse solution, whether of MNE type or beamforming type. These findings are expected

to be even more relevant for beamformers, since their estimation typically relies on two

covariance estimates, one that aims to describe the spatial structure of noise, and one that is

concerned with the spatial structure of the data.

The practical impact assessment on a publicly available social-cognitive neuroscience dataset

demonstrated at least two critical implications. Across varying amounts of learning exposure,

the best estimator lead to more stable source amplitudes and spatial variability thereof.
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Around 20 epochs this effect was dramatic, when compared to the worst estimator that lead

to massive expansion of the cortical surface considered to represent active sources. The

best estimator still estimated the same contrast-amplitudes with only 20 trials of exposure

compared to three times as many trials. This new procedure is therefore expected to render

datasets tractable for which a covariance estimate from baseline segments is preferred and

which only consist of few epochs (see, for example (Lu, Jiang, Bi, Liu, & Yao, 2014)). But

more importantly, it can be expected to reduce overall variability in source estimates across

subjects. The source localization results suggest an asymptotic trend towards convergence

between the worst and the best estimator. Consistent with the simulation findings, with

increasing numbers of epochs their differences was becoming increasingly smaller. But,

practically, stability differences are still visible when comparing results between 40 epochs

and 60 epochs exposure which refers to a more common scenario than the previously

mentioned analysis of events that occur at a very low rate. This implies that the worst

covariance estimator which turned out to be the default empirical sample covariance, will

lead to increased variance as a function of different numbers of epochs. This case is

practically relevant if one assumes that, for a group of subjects different numbers of trials

will be selected, based on behavioral and artifact-related exclusion criteria. It is then easily

conceivable that different epochs counts can lead to a ramping-up of variance which will be

prevented by a robust estimator that exerts a stabilizing impact on the amplitudes of source

estimates.

To the best of the authors knowledge, this is the first time that an automated procedure

based on cross-validation on unseen data has been employed for model selection in spatial

whitening of M/EEG data and has been validated on source localized contrast signal relevant

to the broader cognitive neuroscience community. To avoid an unbalanced view, related

subjects need to mentioned though. One such approach has been recently proposed by

(Woolrich et al., 2011b) who employed Bayesian PCA (Bishop, 1999) to estimate noise and

data covariance matrices in the context of beamforming. Bayesian PCA is an alternative

approach to infer the number of latent components in the PCA model. It solves this problem

using a Bayesian inference approach, what is here achieve with PPCA (maximum-likelihood

instead of Bayesian) and cross-validation (to avoid overfitting). Practically, as with the

PPCA and FA estimators, the amount of regularization and the number of components is

learned from the data. Also, the Bayesian PCA model is not specific to one M/EEG inverse

problem. It can hence be plugged into any M/EEG imaging technique that is formulated as a

constrained linear model. However, the method presented in the present study goes beyond

the Bayesian PCA (Woolrich et al., 2011b), as it quantifies the benefit of each modeling

assumption and can select the best estimator over a richer class of models. This is an

important consideration since latent variable models can be outperformed by shrinkage
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when few samples are available for estimation. Second, Bayesian PCA is a PCA model and

hence assumes a homoscedastic noise which has been shown to be a suboptimal assumption

for M/EEG data.

More advanced models have been proposed in which the baseline noise covariance is

estimated jointly with the post baseline data covariance (Nagarajan et al., 2007; Zumer et al.,

2007, 2008). However, these approaches are particularly tailored for beamformer methods

and not for MNE-type inverse solvers which do not rely a post-baseline data covariance.

It is important to note that the proposed approach is subject to certain numerical constraints.

The computation of the low rank estimators can result in numerical errors if the data is

rank-deficient. As a consequence, at the current stage of development it is recommend

to compute the PPCA and FA models before applying processing steps such as SSS, SSP

or ICA (Uusitalo & Ilmoniemi, 1997; Hyvärinen et al., 2004; Taulu et al., 2005). Second,

outlier samples may strongly distort model selection in certain estimators, especially FA. It is

therefore recommended to remove heavily corrupted time segments before estimation.

To conclude, this study has developed an automated procedure to tune covariance estimates

computed from M/EEG data. This method establishes a quality-preserving function, since it

will lead to estimates that will not fall behind the default empirical covariance. Indeed the

result of the automatic whitening performance was in almost all cases more accurate than

whitening based on hand-set regularization. But it was always preferable to the empirical

covariance. However, for the unlikely case that all other options fail, the empirical covariance

would be selected as fall-back option. Automatic whitening, hence, constitutes a solution to

the regularization problem and helps avoiding ad-hoc parametrization and other heuristics

that are difficult to generalize across the variety of M/EEG data analysis pipelines. The

impact demonstration on face-related signal contrasts suggest that this study contributes

one small but important element in a set of measures which help promoting laboratory- and

data-independent analysis pipelines which are so urgently needed to improve reproducibility

of M/EEG research (Gramfort et al., 2013a; Gross et al., 2013; Gramfort et al., 2014).
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3Neuromagnetic decomposition of

eye gaze during ongoing social

interaction

Gaze processing is a fundamental primate capacity which has undergone substantial phe-

nomenological differentiation during hominoid evolution (Call, 2009; Yovel & Freiwald,

2013). These modifications are reflected in structural expansion and differentiation of brain

networks concerned with gaze-processing (Van Essen & Dierker, 2007; Mars, Sallet, Neubert,

& Rushworth, 2013). Recent findings show how context shapes cognitive processing and

cortical dynamics in humans (for example see Bar et al. (2005, 2006)) and numerous study

detail cortical dynamics related to stimulus-driven processing of gaze (Watanabe, Kakigi,

Miki, & Puce, 2006; Sato, Kochiyama, Uono, & Yoshikawa, 2008; Ulloa, Puce, Hugueville,

& George, 2014). Little is known however how social interaction and intentional contexts

shape visual time-locked cortical dynamics. As social interactions can be conceptualized

as multi-person action-perception loops in which actions and perceptions are mutually

related (Hari & Kujala, 2009), it is also less plausible to assume purely stimulus-related

cortical dynamics during visual gaze-processing. This refers to commonly employed MEG

study protocols which compare gaze or face related neuromagnetic recordings to baseline

segments in which both visual stimulation and social context are absent (see for exam-

ple Sato et al. (2008)). In such situations the exposure to social materials is known to trigger

stimulus-related cortical dynamics in visual gaze processing. This can be assumed to reflect

the general fact that in such situations perceptions and ensuing representations have to be

constructed in the first place. As a result, related time-locked signals are referenced to a

context-free baseline. In contrast, little is known about the dynamic response-characteristics

of gaze-relate during ongoing interaction in which such representations are, literally, in

action already. Schilbach et al. (2013) recently suggested that during ongoing interactions

which contrast with passive observation, patterns of brain activity are tuned by social context,

reflecting subtle predictions of others’ behavior and preparation for action. It is therefore

conceivable that the role of visual gaze-perception is reconfigured to subserve the needs of

ongoing action and perceptual contexts. This reconfiguration could be expressed in prefer-

ential time-locking characteristics of gaze-related visual processes. If these are assumed to

subserve cognitive processes which relate to ongoing social actions and interactions, one

would expect preferential response-locked patterns, not stimulus- or gaze-locked patterns.
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While response-locked analysis of neuromagnetic signals is not a new technique (Libet,

Gleason, Wright, & Pearl, 1983), response-locked visual activity is commonly not reported in

the context of face or gaze related studies. Similarly, to date, no systematic reports seem

available that strictly compared expected effects with regard to preferential time-locking.

The goal of this study is to investigate preferential time-locking properties of cortical dynam-

ics in visual gaze-related areas during ongoing social interactions. This goal is addressed by

comparing cortical activity time-locked to perceived changes in eye gaze and time-locked

to the subject’s motor acts which closely followed perceived changes in eye gaze. To relate

these events at a functional and cognitive level, a task is employed which models ongoing

social interaction by establishing ongoing visual and motor processing of eye gaze. The

study comprises two experiments. The first experiment optimized an existing social stimulus

response compatibility (SSRC) protocol and evaluated it in terms of its capacity to establish

ongoing gaze-related action perception loops. The second experiment repeated the first

experiment with a second set of participants and concomitant neuromagnetic recordings.

3.1 Experiment 1

3.1.1 Objective and hypotheses
The goal of the present experiment was to establish an SSRC protocol and evaluate it with

regard to the following criteria,

1. to link gaze-processing to the subject’s own action-intention,

2. an enriched, quasi-naturalistic stimulation that activates ‘hot’ processing by entraining

the subject.

To investigate how eye contact reconfigures cognition during ongoing action, researchers

recently proposed to use protocols in which subjects are exposed to ongoing socially relevant

visual stimulation while observing a target action they are asked to act upon. Such protocols

are commonly referred to as a SSRC task and often they go along with an enriched and quasi-

naturalistic context commonly implemented by continuous, blockwise visual stimulation

based on video clips of a real person or animated virtual characters who perform certain

target acts, such as hand, finger, or, eye movements. The social context is commonly

modified by alternations between mutual and averted gaze. Importantly, in SSRC tasks, the

intentional context of observing these target acts is modified by requiring persons to perform

congruent or incongruent actions with respect to the observed person which helps to involve

the subjects in an active manner. This modification of intention is commonly achieved by

instructions previous to the stimulation. This is highly relevant for the present purposes as
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it contextualizes visual perception with ongoing action plans without requiring subjects to

process additional task-relevant cues as for example in a gaze-cueing or Posner task (Posner,

1980). The impact of gaze-processing on ongoing action can than be measured in terms of

a modulation of reaction time differences between congruent and incongruent actions by

eye gaze. To strengthen the link between action and perception and to trigger non-reflective

automated processes, subjects are typically required to respond as accurately and as fast

as possible. The SSRC protocol was based on a recent study by Schilbach et al. (2010) in

which the social context and the target acts were implemented by eye contact and eye gaze,

respectively. Following Wang, Newport, and Hamilton (2011) only human stimuli were

used to modulate social context, and eye contact was varied in terms of direct and averted

gaze.

The temporal structure of the paradigm was adjusted to the purposes of the MEG study. For

MEG, jittering of inter-stimulus intervals does not serve the function of sampling the BOLD

signal. Instead, the signals of interest referred to transient changes at the order of tens to

hundreds of milliseconds. To advance the task’s potential of entraining the subject to the

ongoing interaction, inter-stimulus-interval (ISI), i.e., intervals between changes of eye gaze,

were chosen to follow a Gaussian distribution. With a Gaussian distribution of ISIs, single

events should not be consciously predictable provided the variance of the ISIs is sufficiently

high. On the other hand, a Gaussian distribution should help to facilitate implicit prediction

of changes in eye gaze. As inter-saccadic intervals do not follow a uniform distribution in

nature but, depending on the context, can be normally or log-normally distributed (McPeek &

Keller, 2002; Credidio, Teixeira, Reis, Moreira, & Andrade Jr, 2012), the chosen distribution

characteristics are expected to create a more naturalistic stimulation. Interestingly, both the

duration of direct gaze and the duration of laterally averted gaze exhibit optima with regard

to social function and have been shown to modulate sympathy attribution (Kuzmanovic

et al., 2009) and the perception of sharing attention (Pfeiffer et al., 2012), respectively. The

distribution characteristics and the event timing were chosen according to these findings.

The experiment pursues the following hypotheses.

1. Gaze perception under congruent intention evokes lower reaction times.

2. The reaction time difference reflecting congruent vs incongruent intentions are

modulated by eye contact.

3. The distribution of the subject’s inter-button press intervals follows the distribution

of ISIs and the distance between them is modulated by the task.

3.1 Experiment 1 46



3.1.2 Methods

3.1.2.1 Participants

27 right handed volunteers (14 female, 13 male) between of 18 to 46 years of age (male: M

= 29.99, SD = 9.426; female: M = 29.309, SD = 7.409) participated in experiment 1. All

volunteers were naïve with respect to the purpose of the study. All volunteers gave informed

written consent to the study protocol.

3.1.2.2 Experimental protocol

3.1.2.2.1 Design and task Participants completed an SSRC task. The experiment followed

a 2 (action intention: congruent versus incongruent) × 2 (social context: direct versus

averted gaze) design. The task comprised a micro structure (trial) and a macro structure

(block). A block began with the action instruction, either congruent (’gleich’) or incongruent

(’gegen’) followed by a continued visual presentation of a human face (either male or female)

that lasted for about 50 seconds. Within one such block, 12 trials were presented. Each

trial was composed of an contact phase and a lateral changes of eye gaze (to the left or to

the right) that served as target events. Subjects were required to respond to target events

with an ipsilateral or a contralateral key-press during congruent (’gleich’) and incongruent

(’gegen) blocks, respectively.

For the entire duration of one block, the faces displayed direct gaze or averted gaze during

the eye contact phase. The conditions were presented in random order and were counter-

balanced. Participants where instructed to respond as quickly and accurately as possible.

The time between two gaze shifts was artificially subdivided into two time windows for

procedural reasons, one before the gaze shift and one after the gaze shift. Three uniform

jitters were drawn from an identical uniform distribution to produce structured ISIs following

a Gaussian distribution. The time-window before the gaze shift was jittered between 1000

and 1750 milliseconds. The duration of the virtual character’s lateral eye gaze was jittered

between 400 and 800 milliseconds. The time after the lateral gaze shift was jittered between

350 and 1675 milliseconds. According to the central limit theorem Feller, 1945 the inter-

stimulus-intervals should therefore approximately converge on a Gaussian distribution with

a mean around 3 seconds. To help subjects sustain their attention, the avatar performed an

eye blink on 50 % of the trials that lasted about 70 ms. A constant delay of 800ms was added

to each trial to allocate time-windows of non-interest in case more samples are needed for

covariance estimation or spectral analyses. Figure 3.2 depicts the expected distribution for

these timing parameters.
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GLEICH

Action-Instruction 
1.5s 

Contact-Phase 
1.35-3.5s

Gaze-Shift 
0.4-0.8s 

Block (x 24)

Trial (x 12)

Figure 3.1: Stimulus materials and procedure.

3.1.2.2.2 Stimulus materials The faces were created using the commercially available

Poser 8 application (Smith Micro Software, Inc., Columbia, USA) for Max OS X 10.6.8. The

face stimuli comprised a male face and a female face and were used as shipped with the

software. For each face a set of 4 images was created that encompassed straight direct

gaze, straight but downward-gaze as well as gaze, laterally deviated to the left and right.

Intermediate images were used for creating the impression of smooth movement. Additional

images showing the faces with eye lids closed were produced to create short blinks that

served to refresh the subject’s attention and promote a more natural visual experience. The

facial expression and the vertical position of straight gaze were chosen based on the author’s

subjective perception of mutual eye contact. An internet-based pre-study based on 370

participants established that the stimuli consistently varied the impression of eye contact

over a wider range of persons.

The stimuli were animated using the Python language (2.7) and the PsychoPy toolbox (Peirce,

2007, 2008).

3.1.2.2.3 Procedure The experiment was conducted at the Institute of Neuroscience

and Medicine (INM-3), Forschungszentrum Jüelich. The protocol was administered in a

dedicated psychophysical examination booth. The experimental stimuli were presented

on a monitor with a resolution of 1280 × 720 pixels with a refresh-rate of 60Hz at a

visual angle of 4◦. The difference between straight-direct gaze and straight-averted gaze
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Figure 3.2: Estimated kernel density (c.f. section ) of the theoretical distribution of inter-gaze shift
intervals. The data were simulated based on the jitters employed for the experiment and
the sample size of the present experiment.

amounted to approximately 0.1◦ visual angle. The experimenter welcomed the participants

and announced that they would now be going to take part in a study on social perception.

After that, they sat down in a chair in front of the psychophysical booth to give informed

written consent. Subsequently, the subjects were guided inside the testing booth and sat

down on a chair, approximately 114 cm away from the computer monitor. They put their

head on a chin-rest so that could easily view the center of the screen. The experimenter

closed the door and turned off the light. A black screen was displayed with instructions

printed in white letters. Participants read the instructions at their own pace and subsequently

performed to the task. Participants responded by pressing a button on a Lumitouch optical

response keypad, either with their right middle or with their right index finger. The task

took about 20 minutes to complete. After the experiment the BDI (Beck, Ward, Mendelson,

et al., 1961; Beck, Steer, & Hautzinger, 1994), the AQ (Baron-Cohen, Hoekstra, Knickmeyer,

& Wheelwright, 2006), and the IRI (Davis, 1996) were administered.

3.1.2.3 General data analysis and software

All data processing and visualization steps were carried out using the Python language

(2.7). For analyses of central tendency, mean variability and mean measures of distribu-

tion, the R-language was used (R Core Team, 2014). To explore differential distribution

characteristics, kernel density estimates were computed using the scikit-learn library for

machine learning (Pedregosa et al., 2011). Such kernel density estimates are nonparametric
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estimators of the distribution of a random variable and are closely related to histograms. In

a plot they can be superimposed for the purpose of comparing different distributions. All

error bars represent the standard error of the mean (SEM). Outliers were defined based on

the inter-quartile range (IQR),

IQR = Q1 −Q3, T1 = Q1 − 1.5× IQR, T2 = Q3 + 1.5× IQR (3.1)

Where Q1 is the first quartile, Q3 the third quartile, T1 is the lower threshold and T2 is the

upper threshold.

3.1.3 Results
Subjects performed an SSRC task, which required to look at a face that either was looking at

the subject (direct gaze) or was looking downwards (averted gaze). Whenever the face’s

eye gaze laterally changed, the subject was required to press a key that was contra-lateral

(incongruent action intention) or ipsilateral (congruent action intention) to the faces gaze

shift.

3.1.3.1 Distribution

To characterize the distribution of reaction times within each condition, kernel densities

were estimated for each condition over all subjects. The estimates shown in figure 3.3

indicate a lower mean and a lower variance for reaction times resulting from congruent as

compared to incongruent action intentions. The distributions suggest that reaction times

under congruent intentions and direct gaze had a higher density between 200 and 300

milliseconds. Moreover, cases above 800 ms appear to be outliers. An outlier classification

based on the IQR rule suggests inclusion boundaries of 102.563 and 859.462 milliseconds,

respectively. Subsequent analysis focussed on this reaction time range.

3.1.3.2 Central tendency and mean variability

To statistically analyze the central tendencies under each condition displayed in figure 3.4, a

2 (intention: congruent VS incongruent) × 2 (gaze: direct VS averted) repeated measures

ANOVA was conducted on median reaction times. The test revealed a significant main effect

of action intention (F (1, 26) = 226.500, p = 4.24e−11) and a significant interaction between

action intention and gaze (F (1, 26) = 4.590, p = 0.042). No effect of gaze was found

significant. Participants showed higher reaction time differences between congruent and

incongruent action intentions when they had experienced eye contact. This point is further
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Figure 3.3: Kernel density estimation of reaction times for each condition (bandwidth of 10 ms).
Button presses plotted in bottom rows, order follows the legend.

illustrated by reaction differences between responses following congruent and incongruent

action intentions shown in figure 3.5. While eye contact did not directly modulate reaction

times, it modulated the influence of action intention on motor execution.

congruent + direct congruent + averted incongruent + direct incongruent + averted
350

400

450

500

m
e
a
n
 r

e
a
ct

io
n
 t

im
e
 [

m
s]

central tendency of reaction times

Figure 3.4: Mean reaction time for each condition. Error bars show the SEM.

Figure 3.6 depicts the average median absolute deviation (MAD) across conditions. The

mean variability seems to follow the pattern visible for the kernel density estimates. However,

the error-bars indicated huge variability of dispersion across subjects. A subsequent 2
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Figure 3.5: Mean reaction time difference between actions given congruent and actions given incon-
gruent intentions. Error bars show the SEM.

(intention: congruent VS incongruent) × 2 (gaze: direct VS averted) repeated measures

ANOVA on mean MAD scores did not yield any significant effect.
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Figure 3.6: Median absolute deviation across conditions. Error bars show SEM.

3.1.3.3 Entrainment

The distributions of the avatar’s inter-gaze shift intervals and the subject’s inter-button

press intervals depicted in figure 3.7 suggest a highly similar statistical structure for
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both types of events. A subsequent Kolmogorov-Smirnoff test for two samples yields a

tendency towards significance D = 0.024, p = 0.06, suggesting that both, inter-saccadic

intervals and button presses, originate from the same distribution. To further investigate the

distribution dynamics in a task-related fashion, mean distribution distances as measured by

the Kolmogorov-Smirnoff statistic were computed for each condition. The pattern depicted in

figure 3.7 follows the pattern of mean reaction times in figure 3.4. To statistically analyze the

distribution similarity as function of the task, a 2 (intention: congruent VS incongruent) × 2

(gaze: direct VS averted) repeated measures ANOVA was conducted on Kolmogorov-Smirnoff

distances. The test reveals a significant main effect of intention F (26, 1) = 10.600, p = 0.003.

This suggests that the rhythm of subject’s responses more closely followed the rhythm of the

avatar’s gaze when subjects acted upon congruent action intentions. No other contrast of

interest reached statistical significance.
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Figure 3.7: Kernel density estimation of inter-gaze shift intervals and button presses (bandwidth of
300 ms).

3.1.3.4 Speed-accuracy trade-off

Figure 3.9 shows the task performance in terms of accuracy for each condition. The overall

pattern suggests higher accuracy for conditions involving congruent action intentions. A 2

(intention: congruent VS incongruent) × 2 (gaze: direct VS averted) repeated measures

ANOVA on accuracy revealed a significant main effect of action intention (F (26, 1) = 9.4, p =

0.005). Subjects committed more errors when acting upon incongruent intentions. No other

contrast of interest reached statistical significance.
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Figure 3.8: Mean distance between the distribution of inter-gaze shift and button presses intervals for
each condition. Error bars show the SEM.

congruent + direct congruent + averted incongruent + direct incongruent + averted
80

85

90

95

100

a
cc

u
ra

cy
 [

%
]

performance

Figure 3.9: Mean accuracy for each condition. Error bars show the standard error of the mean.

3.1.4 Discussion
Subjects have been found to respond about 50 milliseconds faster in the congruent intention

condition compared to the incongruent intention condition. Likewise, the accuracy was

higher for the congruent intention condition. These results suggests that planning and

performing movements defined as contra-lateral to the observed person’s target act posed

significant cognitive load. This observation is in line with findings on attention, motor
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execution and cognitive control (see Hommel (2011) for a broad review of that subject

matter). The high accuracy unequivocally indicates that the subject’s action intention was

successfully manipulated while the reaction time differences between conditions clearly

show that the action intention influenced the processing of the task. Importantly, the

correspondence between high accuracy and low reaction times suggest that participants did

not strategically optimize their response speed at the expense of accuracy.

Importantly, reaction time differences between the congruent intention and the incongruent

intention condition were modulated by eye contact. This dependency rules out an explana-

tion of the task performance in terms of pure cognitive control or spatial attention. Since the

task did not involve any cueing it can be ruled out that the effect is the result of enhanced

visual saliency. Moreover, the stimulus materials were designed in a way that the size of

the avatar’s sclera and pupil were constant across conditions. In other words, if eye contact

exerted any saliency effect it cannot be purely visual but must be explained by a taking into

account higher visual processing steps related to mutual gaze, conforming to the ‘eye contact-

effect’ hypothesis (Senju & Johnson, 2009). Interestingly, the ranking of mean reaction times

flipped as function of gaze across the intention conditions. For the congruent conditions,

direct gaze went along with the faster reaction times, for the incongruent conditions, it

resulted in greater reaction times. This suggests, that eye contact might exert its modulatory

impact by subtly modifying performance in both conditions instead of boosting or interfering

processing in one of the conditions. In other words, eye contact is suggested to enhance

following another person’s gaze and interfere with the plan for a spatially opposed action.

This view would also be compatible with the distribution densities observed (c.f. 3.3). Acting

congruently upon direct gaze, an increase in response-density relative to the averted gaze

condition can be observed in the congruent intention between 200 and 300 millisecond. In

contrast, a similar increase is present for the incongruent condition between 700 and 800

milliseconds. It is important to note that no interaction effect was found in the analysis of

accuracy, which rules out a trivial explanation in terms of strategic task-sets.

As a third important finding, the statistical structure of button presses closely matched the

distribution of ISIs. This finding suggests that the task was easy to understand and to follow

and, hence, the distribution of inter-gaze intervals directly shaped the frequency of button

presses. Importantly, the fact that the distance between stimulus and response distribution

was modulated by action intention indicates that subjects were indeed entrained to the task.

In other words, in the congruent intention condition subjects synchronized their action to

the virtual character’s gaze more strongly than in incongruent intention condition. This

finding suggests that the distribution pattern expresses a cognitive mechanism rather than

arbitrary correlation.
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Taken together, the overall response profile closely matched the results reported by Wang

et al. (2011) who used a similar SSRC protocol which measured automated gaze-dependent

adjustments of mimicry. The findings, therefore indicate that the task captured an intrinsic

and automated cognitive mechanism. it can be argued that the present experiment estab-

lished a quasi-naturalistic paradigm that captured cognitive processes, which relate action

intentions and action execution to the perception of other person’s eye gaze. The quasi-

naturalistic characteristic of the paradigm was achieved by a sustained visual stimulation

typical for social encounters and by structuring the avatar’s gaze behavior, which allowed

subjects to become entrained. The task successfully setup different action intentions as a

context for gaze processing and impacted on several statistical properties of reaction times.

These results indicate task-related neuromagnetic dynamics.

3.2 Experiment 2

3.2.1 Objective and hypotheses
The objective of the present experiment is the exploration of cortical dynamics that underly

processing the eye gaze of another person during social interaction. Experiment 1 had

revealed modulatory effects of previous eye contact on action control as indicated by latency

differences for responses resulting from congruent versus incongruent intentions. The results

of experiment 1 conformed to other findings based on SSRC protocols which were used to

measure automated modulatory mechanisms related to processing eye gaze (Wang et al.,

2011). Such behavioral interaction effects indicate that processing eye gaze is relevant to

action-related cognitive processes such as preparation for action, or the implementation of

motor commands or a series thereof. This raises the question, whether gaze-processing is

preferentially recruited during cognitive processes related to action or whether early and

perception-locked processes also equally contribute to this behavioral effect.

This question can be addressed by an MEG experiment based on the protocol of experiment

1. This protocol has been shown to establish a statistical link between the ISIs and the

subject’s responding rhythm. The subject’s repsonses can, hence, be regarded as as a shifted

version of the stimulus-related event, just with higher uncertainty due to variance in reaction

times. As a consequence, activity time-locked to the eye gaze should also be visible when

averaging signals on the subject’s response and observing the temporal window before the

response event. The presence of differential activity when averaging on the stimulus event

paired with the absence of differential activity when averaging on the subjects’ response

would indicate a dominantly stimulus-locked role of gaze-related cortical activity during

ongoing interactions. Effects that follow this pattern will be referred as response-locked. The
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temporal structure of differential components and their localization would then be expected

to conform the findings from studies which investigated dynamics time-locked to changes in

eye gaze (for example Sato et al. (2008), Dumas et al. (2013)). The absence of differential

activity when averaging on the stimulus event paired with the presence of differential activity

when averaging on the subjects response would indicate a dominantly response-locked role

of gaze-related cortical activity during ongoing interactions. Such effects will be referred to

as response-locked. As, to the best of my knowledge, to date, this phenomenon has not been

systematically investigated, predictions are difficult to formulate. However, neuro-behavioral

correlations should give additional hints and should be most pronounced in regions which

are known to possess anatomical connections to the motor-system.

3.2.2 Methods

3.2.2.1 Participants

Sixteen right handed, healthy university students and employees of the Jülich Research

Centre (7 female, 9 male) ranging in age between 20 and 31 years (male: M = 23.000, SD =

1.291; female: M = 25.800, SD = 3.780) volunteered to participate in this experiment. All

volunteers were naïve with respect to the purpose of the study. All volunteers gave informed

written consent to the study protocol that had been approved by the local ethics committee

of the Medical Faculty of the University of Cologne, Germany.

3.2.2.2 Experimental protocol

3.2.2.2.1 Design, task and stimulus materials Participants completed a SSRC task as

described in experiment 1. To take into account the loss of trials due to artifact rejection and

to acquire sufficient data for covariance computation, 336 trials were acquired instead of 288.

Trials were grouped in blocks of 14 instead of 12 directional cues. The experiment followed

a 2 (action intention: congruent versus incongruent) × 2 (eye contact-phase: direct versus

averted gaze) design. Stimulus materials and instructions were identical to experiment 1.

One detail regarding the instruction-phase was modified. In the present experiment, subjects

were required to confirm that they had read the instruction by pressing a key in a self paced

manner. The next block begun once the subject had confirmed.

3.2.2.2.2 Procedure The experiment was conducted at the Institute of Neuroscience

and Medicine (INM-4), Forschungszentrum Jüelich. Stimuli were generated by a stimulus

generator board (ViSaGe MKII, Cambridge Research System Ltd.) and projected using a

DLP Projector (Luxion LM-X 25) onto a mirror system inside the MSR on a nonmagnetic
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back-projection screen. The screen was affixed about 1m above of the participants. Stimuli

were presented at about 2.5◦ × 4◦ visual angle. The difference between straight-direct gaze

and straight-averted gaze amounted to approximately 0.1 ◦ visual angle. The stimuli were

presented jitter free with a refresh rate of 60 Hz. A system specific constant time delay of 2

ms respective to the stimulus onset was taken into account and subtracted for subsequent

event-related analysis.

The experimenter welcomed the participants and announced that they would now be going

to take part in a study on social perception. After that, they sat down in a chair in front of

the MSR to give informed written consent. Subsequently, the subjects were guided inside

the magnetically shielded room by the experimenter and a medical research assistant and

sat down on the MEG system’s bed. The assistant subsequently affixed electrocardigram

(ECG), electrooculogram (EOG), and, fiducial electrodes. The subject was then guided into

the supine position and the experimenter made final adjustments to the subjects position to

ensure that the head and eye region of the avatar were clearly visible to the subject. For this

purpose a gray shape was used as landmark to avoid uncontrolled familiarization with the

stimuli. The experimenter then closed the door and dimmed the light. Then the subject’s

head position was digitized. A black screen was displayed with instructions printed in white

letters. Participants read the instructions at their own pace and subsequently performed the

task. Participants responded by pressing a button on an MEG-compatible Lumitouch optical

response keypad in a bimanual fashion using their left and right index fingers. The task took

about 15 minutes to complete. After the experiment the BDI (Beck et al., 1961; Beck et al.,

1994), the AQ (Baron-Cohen et al., 2006), and the IRI (Davis, 1996) were administered.

3.2.2.3 Data acquisition

Neuromagnetic signals were recorded using a whole-head 248-channel magnetometer system

in a supine position (Magnes 3600-WH, 4D-Neuroimaging, San Diego, CA, USA). The signals

were continuously sampled at 601.25 Hz with a bandwidth ranging from 0.1 to 400 Hz.

Reference gradiometers and magnetometers were concomitantly applied to the ongoing

recordings to compensate for environmental noise. Ocular movements and cardiac signals

were monitored using EOG and ECG. The participant’s position was tracked by three head

location coils attached to the forehead, the left and the right postauricular points. The head

shape was measured at the beginning and at the end of each recording using the Polhemus

FASTRAK head digitization system. For each subject, T1-weighted structural MR scans were

acquired using a 3-T Siemens Trio system (voxel size of 1× 1× 1mm3). Recordings were
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converted to the Neuromag format using the a designated conversion tool that the author

implemented in Python and contributed to the MNE-Python project1.

3.2.2.4 Cortical reconstruction and volumetric segmentation

The anatomical processing was performed using the Freesurfer image analysis suite. The

implementation details of the Freesurfer segmentation procedures have been described in

prior publications (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999a; Fischl,

Sereno, Tootell, & Dale, 1999; Fischl & Dale, 2000; Fischl, Liu, & Dale, 2001; Fischl et al.,

2002; Fischl et al., 2004a, 2004b; Segonne et al., 2004; Han et al., 2006; Jovicich et al.,

2006; Reuter, Rosas, & Fischl, 2010; Reuter, Schmansky, Rosas, & Fischl, 2012). These

processing steps included motion correction and averaging (Reuter et al., 2010) of multiple

volumetric T1 weighted images, removal of non-brain tissue based on a hybrid watershed/-

surface deformation procedure (Segonne et al., 2004), automated Talairach transformation,

segmentation of the subcortical white matter and deep gray matter volumetric structures,

including hippocampus, amygdala, caudate, putamen, ventricles (Fischl et al., 2002; Fischl

et al., 2004a), intensity normalization (Sled, Zijdenbos, & Evans, 1998), tessellation of the

gray matter white matter boundary, as well as automated topology correction (Fischl et al.,

2001; Segonne, Pacheco, & Fischl, 2007). In addition, surface deformation were performed

following intensity gradients to optimally place the gray/white and gray/cerebrospinal fluid

borders at the location where the greatest shift in intensity defines the transition to the

other tissue class (Dale et al., 1999; Fischl & Dale, 2000). The outputs of the segmentation

procedure were than refactored for the computation of the source space, based on surface

inflation (Fischl, Sereno, & Dale, 1999b) and, the group analysis, based on registration to

a spherical atlas. The latter takes into account individual cortical folding patterns and has

been shown to improve the match of cortical geometry across subjects (Fischl et al., 1999a).

Finally, the Freesurfer software was used to obtain a parcellation of the cerebral cortex into

units with respect to gyral and sulcal structure Desikan et al., 2006, later used for narrowing

the source analysis.

3.2.2.5 Signal extraction

All MEG data have been been processed using custom scripts built on-top of functionality

provided the MNE software suite (Gramfort et al., 2013a, 2014), a publicly available open

source software which implements solutions at all common stages of M/EEG data processing.

All programming has been carried out with the Python language (2.7). For particular

1c.f. https://github.com/mne-tools/mne-python/pull/385. Critical parts of this conversion routine
were previously only available under the Solaris platform.
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statistical analyses of behavioral data the R-language was used (R Core Team, 2014). Parts

of the methods that have been implemented by the author and contributed to the MNE suite

are additionally highlighted.

3.2.2.5.1 Denoising and bad channel handling Data were bandpass filtered between 1

and 20 Hz using a zero-phase 4th order Butterworth filter based on infinite impulse response

(IIR) time domain implementation. This filter type has been chosen since it avoids ringing

artifacts around the cutoff frequency, as compared to frequency domain implementations.

It’s weak attenuation curve justifies the relatively low lowpass frequency. The highpass

cutoff frequency of 1 Hz was chosen to remove low frequency drifts from the data and

achieve baselining by removing inter-trial offsets. Bad channels were detected based on

visual inspection after training by the MEG system’s operators.

3.2.2.5.2 Removal of biological artifacts using independent component analysis (ICA)

ICA is a matrix decomposition technique similar to FA and is commonly used in neuroimaging

to explore latent data features (Beckmann & Smith, 2004; Salustri & Kronberg, 2004; Lu,

Wang, Luo, Li, & Yao, 2013) and to remove artifacts from the data (Dammers et al., 2008;

Breuer, Dammers, Roberts, & Shah, 2014a). The FastICA model proposed by Hyvärinen,

Karhunen, and Oja (2004) explains the observed data as a product of the true latent sources

and a weigh- or mixing matrix:

X = A ∗ S . (3.2)

In contrast to methods based on PCA(c.f. section 2.2.1.5.1) that achieve decomposition

into a subspace of linearly independent components, ICA estimates statistically independent

sources, based on non-linear distribution moments such as kurtosis or skewness. This

characteristic is of advantage when tackling biological artifacts such as ECG or EOG signals

which do not follow a Gaussian distribution. In such cases, ICA provides a more exact

approach to separating such dynamics from the signal of interest (Dammers et al., 2008;

Gramfort et al., 2014). When ICA is successfully applied to M/EEG data, typically a few

components emerge that describe these common artifacts. These can be identified by signal

comparisons with actual ECG and EOG recordings. A clean MEG signal can then be produced

by transforming the raw data into ICA space, zeroing out the latent sources corresponding to

the previously identified artifacts and then inverse transforming the modified latent sources

using the inverse of the unmixing matrix.

Here, ICA was performed to remove ECG and EOG artifacts using the FastICA algorithm (Hyväri-

nen et al., 2004). To decorrelate the ICA input signals, PCA was used. This step is mandatory,

since the FastICA algorithm does not possess noise term (see (3.2)). The number of estimated
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ICA components was determined as the number of PCA components that explain 99% of the

signal variance. To exclude contaminated, non-stationary segments during model estimation,

a peak-to-peak rejection was performed with a threshold of 5e − 12 Tesla. ECG artifacts

were identified using the cross-trial-phase-statistic proposed by Dammers et al., 2008. ECG

related trials were accordingly defined as time windows ranging from -500 to 500 ms around

the ECG r-peak. The latent sources ICA sources were obtained from applying the estimated

unmixing matrix to each ECG related epoch. The resulting source epochs (in ICA space) were

then bandpass filtered between 8 and 16 Hz. Subsequently, a Hilbert transform was applied

to obtain the phase information. To assess the cross-trial phase coupling, Kuiper’s test was

computed across all ICA source epochs. This significance test quantifies the uncertainty

of inferring uniform distribution characteristics from a sample distribution. In the present

context, it was used to asses whether the phase angles across epochs are widely dispersed

across the time points of an epoch or concentrated around certain samples. The latter

constitutes typical behavior for components related to the respective artifact. Components

with a significance value exceeding a value of 0.25 were considered as phase-coupled to

the r-peak and hence marked for exclusion. To balance the trade-off between denoising

and preservation of signal, the maximum number of components to exclude was set to

four. To identify EOG related components, Pearson correlations were computed between the

reconstructed latent sources and the EOG recoding after bandpass filtering signals between

1 and 10 Hz. EOG-related components were then identified using repeated z-scoring and

rejection at an absolute threshold of three and two iterations. A maximum of three EOG

components was excluded. The ICA computation relied on the scikit-learn (Pedregosa et al.,

2011) implementation of FastICA. This ICA procedure was implemented by the author and

was contributed to the MNE-Python project (Gramfort et al., 2013a). The source code is

publicly available at the project website2. Previous versions of the procedure have also been

detailed in Gramfort et al. (2013a, 2014). Figure 3.10 displays a typical solution for one

representative subject.

3.2.2.5.3 Epoching, rejection of contaminated trials, and averaging For stimulus-

related time-locked analysis, data were segmented at the onset of the gaze shift, encom-

passing a temporal window between -200ms and 1500ms. For response-related time-locked

analyses data were segmented at the onset of the button press, encompassing a temporal

window between -800ms and 700ms. After cleaning the epochs using ICA, remaining bad

epochs were rejected based peak-to-peak amplitude and using a threshold of 4000 fT, or,

were declared as bad if the subject failed to respond correctly. To avoid biasing the statistical

analysis to any of the conditions, the resulting epoch counts were equalized across conditions.

2https://github.com/mne-tools/mne-python
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Figure 3.10: Diagnostic visualizations of the ICA solution for a representative subject. Panel A)
displays detection and removal results for ECG artifacts. Panel B) displays detection and
removal results for EOG-artifacts. From top to bottom: Scores for the detection-metric
across ICA components, detected components marked in red. Topographic patterns of
the detected ICA components. Time-courses of ICA components averaged across trials
defined by artifact-events. Overlay diplays of averaged artifacts in sensor space, before
and after applying ICA.
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The baseline mean was not subtracted from the window of interest as offsets were already

removed by highpass-filtering the data at 1 Hz. Data were then averaged across trials.

3.2.2.6 Source localization

To determine the origins of the neuromagnetic recordings an MNE inverse solution (c.f.

section 2.2.1.1 for a detailed description) was computed for each condition and subject.

The following paragraphs will detail parameter choices at each step of computing the MNE

solution. In this section, all mathematical descriptions are adopted from the MNE-manual3.

The corresponding parameter descriptions are based on Gramfort et al. (2014).

3.2.2.6.1 Forward modeling For any distributed inverse solution, the dipole locations

need to be determined in advance to compute the forward model. This step is achieved by

constructing a source space that places the dipole sources on a chosen surface model and

specifies a subsampling factor. The latter helps to reduce computation times and is justified

by the fact of field spread. The spread of electromagnetic fields leads to spatial correlation

of the MEG signal and, hence, sets boundaries to the maximum spatial resolution.

To construct the source space, the FreeSurfer inflated surfaces was used, which defines the

boundary between gray and white matter. It was subsampled using a 6-fold subdivision of

an octahedron (oct-6), yielding 4098 sources per hemisphere. This subsampling realizes

an average distance of approximately 4.9mm between the sources and spans a surface of

24mm2 per source.

To compute the actual forward solution, a boundary element model (BEM) was used(Mosher,

Leahy, & Lewis, 1999), which assumes a constant conductivity per shell; skin, skull, brain

(c.f. 1.2.3.2). As no EEG data were recorded, a single layer BEM, consisting of 5120

triangles, was computed based on the linear collocation method (Mosher et al., 1999) and

an isolated skull approach (Hämäläinen & Sarvas, 1989) which are implemented in the MNE

software (Gramfort et al., 2014).

3.2.2.6.2 Coordinate alignment To compute an inverse solution, the BEM surfaces, the

source space, and the sensor positions need to be aligned in a shared coordinate system.

Computing the transformation matrix that satisfies this requirement is achieved by co-

registration, as the fiducial electrodes used during recording deviated from standard positions

and the nose was included in digitization. Initial alignments were then manually performed

using the graphical co-registration-tool provided by the MNE software. The strategy was

to approximate the nose-related digitization points to the nose clearly visible on the skull

3http://martinos.org/mne/stable/manual.html#manual
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surface obtained from the BEM computation. Final alignments were performed using the

iterative closest point procedure (Besl & McKay, 1992) implemented by the MNE software.

3.2.2.6.3 Covariance estimation The modern MNE inverse solution requires a noise

covariance estimate to whiten the input data (Dale et al., 2000; Gramfort et al., 2013a,

2014). As a result, the spatial configuration captured by the noise covariance will be

suppressed in the resulting source estimates (Gramfort et al., 2013a, 2014). Segments of

200 milliseconds preceding the gaze shift were used to compute the noise covariance based

on trials from all conditions. The automated estimation technique described in chapter 2

was used to compute the covariance. To match the rank and contents of the data as closely

as possible, the noise covariance was computed after cleaning the data using ICA. Since the

computation of FA on rank-reduced data has been shown to lead to numerical errors it was

not included in the list of potential estimators. The choice of these time segments is justified

by the role of the noise covariance in computing spatial filters: in the current experiment, the

segments preceding the events of interest did not reflect steady-state activity but background

activity characterized by visual processing of the idle face stimulus and waiting for the next

event for interest. The choice of noise covariance is hence expected to produce more focal

post-baseline source estimates.

3.2.2.6.4 Computation of source estimates Modern MNE inverse solutions implement

a set of additional parameters that allow to adjust the behavior of the source estimates to

the requirements of analyses.

Orientation constraints To improve the accuracy of the inverse solution, anatomical

priors are typically incorporated in the inverse solution. Postsynaptic currents in the cortical

pyramidal neurons are believed to be the primary sources of M/EEG signals (Hämäläinen,

Hari, Ilmoniemi, & Knuutila, 1993; Murakami & Okada, 2006). The net primary current

associated with these currents is oriented normal to the cortical mantle. Therefore, a cortical

normal orientation constraint is commonly employed in source estimation.

One such approach strictly fixes the source orientation to the surface normal direction

resulting in signed amplitudes related to the dipole’s direction relative to the cortical surface.

As a consequence, the source amplitudes will be directly influenced by the quality of the

anatomical surface reconstruction used to determine the normal direction. Second, this

approach poses challenges to comparisons across subjects, since anatomical variability will

necessary lead to different amplitudes and different signs, even if a putative neuromagnetic

component behaves identically for all subjects with regard to its dynamics. In contrast,

for an MNE solution with free orientation the norm is computed over the three spatial

components of the current estimates. In that case, the resulting estimate reflects a summary
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of each spatial component’s current strength. However, such a solution is supposed to be

less susceptible to anatomical between-subject variability and sign differences. While a fixed

orientation is mandatory for certain types of analyses, for example time-frequency analyses,

in time locked analyses it is not mandatory. One additional option that is compatible with a

free orientation is a so called loose constraint. The columns of the gain matrix represent

the corresponding x, y and z directions of the unit dipoles’ fields at a given source location.

The loose constraint approach will put the source’s first two components on a plane that

is normal to the remaining third component which is normal to the surface. The variance

of the first two components is then scaled by a specified factor. This constraint, hence,

considers anatomical information, but instead of ignoring the non-normal components, they

are summarized and re-scaled.

To improve comparability between amplitudes, a free orientation was chosen in combination

with a loose constraint of 0.2. This value is preset as default parameter by the MNE

software.

Noise normalization To further improve comparability between subjects, Dale et al.

(2000) proposed a procedure called dynamical dSPM. This approach normalizes each source

estimate by its variance and yields a dimensionless neural activation index. Given the present

choice of unsigned free-orientation source estimates, the normalization of the kth dipole at

the tth time can be denoted as

F dSPMkt =
∑3
q=1(XMNE

3(k−1)+q,t)2∑3
q=1 w

2
3(k−1)+q

, (3.3)

where w is the variance of a given source and X is the source estimate (Lin et al., 2006).

Under the null-hypothesis, the dSPM score follows an F-distribution with three degrees of

freedom for the numerator. The degrees of freedom of the denominator depend on the

source space and the number of time samples analyzed. This normalization technique has

been shown to produce source estimates that are less dependent on the location of the

source on the cerebral cortex and that dSPM amplitudes are not subject to the surface bias

of MNE (Lin et al., 2006).

All analyses presented are based on dSPM scores.

Depth weighting MNE inverse solutions are known to be biased towards superficial

locations. To mitigate this problem, depth weighting of cortical sources is commonly

employed. One common approach to depth weighting directly modifies the entries of the

source covariance matrix R (cf. (2.3)), which is a diagonal matrix in which the diagonal
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contains the variance of each source. The weighting of the variances is then proportional the

function fk at the kth dipole (Liu & Ioannides, 2006).

fp = (gT1pg1p + gT2pg2p + gT3pg3p)−γ , (3.4)

where gi is the ith column of the gain matrix and γ is the variable depth weighting parameter

that determines the steepness of (3.4). Given the regularization in (2.3), this weighting can

be interpreted as penalty that is inversely proportional to the depth of the source. Given a

fixed amount of activation, superficial sources would then be assumed to have less influence

on the final estimate compared with deeper ones.

Since it has been shown that the depth-weighting does not significantly affect noise normal-

ized estimates (Lin, Belliveau, Dale, & Hamalainen, 2006) the default parameter of 0.8 was

kept.

3.2.2.7 Group analysis

3.2.2.7.1 Common source space To make the individual source estimates comparable,

the spherical morphing procedure has been employed (Dale et al., 2000; Fischl & Dale, 2000).

The procedure makes use of the spherical coordinate system which is computed for each

hemisphere using the the FreeSurfer anatomy pipeline. The source estimates are defined

on a subsampled cortical surface model. Therefore, aligning a subject with an average

brain model that uses the full cortical surface tessalation includes three steps (Gramfort

et al., 2013a). First, the source estimates have to be extrapolated to all vertices of the

high-resolution cortical tessalation, which are not already included in the source space. This

spreading of source estimates to neighboring vertices is achieved using an iterative diffusion

process. Subsequently, the FreeSurfer spherical registration is used to linearly interpolate

data defined on the subject’s cortical model to the average cortical surface. The final data

are then obtained by re-subsampling to the number of source locations defined by the source

space of interest.

For producing the final source estimates subject to statistical analysis, 20 smoothing steps

have been used. The default ico-5 source space (obtained from a fivefold subdivision of an

icosahedron) has been chosen for the final subsampling. It comprises 10242 cortical sources

per hemisphere.

3.2.2.7.2 Statistical contrasts and nonparametric testing For the present experiment,

a nonparametric clustering permutation test was used (Maris & Oostenveld, 2007). The

permutation test was computed based on a repeated measures f-statistic. In the case of a
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2 × 2 design with multiple measurements per sample unit, i.e., the subjects, a 1-sample

t-test on the paired contrast of the main effect is mathematically equivalent to a t-test for

related samples where each factor level serves as related sample. By squaring, the resulting

t-statistic can be directly converted into the corresponding f-test with 1 numerator and n-1

denominator degrees of freedom. Compared to a designated repeated measures ANOVA, this

implementation involves less computational steps and can be implemented in an efficient

vectorized fashion while producing equivalent results. In combination with the subsequently

described clustering permutation test this procedure cuts down computation times by one to

several hours.

To compute main effects, the conditions belonging to one factor level were averaged. The

resulting aggregated signals were then subtracted to form a paired contrast. The interaction

effect was implemented based on the higher-order difference between contrasts. This

resulted in the following three contrasts:

A (A1 +A2)− (B1 +B2)

B (A1 +B1)− (A2 +B2)

A:B (A1−A2)− (B1−B2)

Letters denote the main effect of action intention and numbers denote the main effect of

eye contact. The third contrast tested for the interaction between action intention and eye

contact, specifically, the statistical hypothesis that the difference between direct and averted

gaze was different across action the factor levels of action intention.

Definitions of spatial adjacency were used as anatomical prior for the clustering and were

based on the triangle configuration of the cortical surface tessalation that was computed

with FreeSurfer. For temporal adjacency a regular lattice adjacency was assumed (a variable

at ti is connected to variables at ti−1 and ti+1). To obtain the F-statistic for a given paired

contrast, a 1-sample t-test was computed and its output squared. A liberal clustering-

threshold was chosen, which was equivalent to an F-value at a 5% significance level. This

means, having computed the initial test statistic, features that exceeded this threshold were

included in the clustering-procedure. To mitigate problems related to low-variance variables,

a constant of 1× 10−3 has been added to the variance term of the t-test as recommended

by the “hat” method (Ridgway, Litvak, Flandin, Friston, & Penny, 2012). This technique

can be considered as smoothing or regularization of the test statistic and has been shown

to remove edge artifacts in a given test’s spatial distribution. Since the biggest clusters can

overshadow activity in smaller clusters, a step-down test was additionally employed (Holm,

1979; Holmes, Blair, Watson, & Ford, 1996). Applied to the clustering permutation test,
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clusters below the critical value are rejected and the procedure is repeated on the remaining

clusters until no further significant cluster is found. This technique can increase the chance of

detecting additional active variables. To facilitate the interpretation of results, parametrical

statistical maps resulting from this permutation clustering test were thresholded at a value

that corresponded to an F-value from a repeated measures ANOVA at a 1% significance

level.

3.2.2.7.3 Anatomical masking and sources of interest In addition, prior knowledge

about the potential source locations has been incorporated by constraining the analysis

to a subset of the cortical surface. This search space comprised an anterior part and a

posterior part which were composed of adjacent definitions of Brodmann areas (BA), based

on the PALS B12 Brodmann annotation (Van Essen, 2005; Van Essen & Dierker, 2007)

and were selected based on the literature review presented in chapter 1.1.2. The posterior

search surface included BA 18-19 (extra-striate visual cortex including MT/V5), BA 37

(including the face-sensitive parts of the fusiform gyrus), BA22, BA39 BA40 (including parts

of the superior temporal sulcus and the temporoparietal junction), BA7 (including regions

attributed to the dorsal attention network). The anterior surface included BA32, BA9-12,

BA40-46. The resulting anatomical mask is displayed in figure 3.11.

Figure 3.11: Cortical mask used to constrain source analysis. The different colors correspond to
Brodmann areas included. The small dots on the surface indicate dipole locations defined
by the ICO-5 source spaces used for group analyses.

3.2.2.7.4 Neurobehavioral correlation To compute correlations between cortical activ-

ity and reaction times, data were normalized for each subject based on a normalization

technique adopted from Larson and Lee (2012). Here, xia and xib denote the measurements
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corresponding to the first and the second factor level of a contrast for a given subject,

respectively.

x′i = (|xia| − |xib|)
(|xia|/2 + |xib|/2) , (3.5)

In the case of cortical activity, xia and xib refer to the sum over the activity in a significant

cluster for a given subject. This normalization assumes a two-sided paired contrast. That is

why the data terms in the denominator are divided by 2, which is the number of conditions

(in contrast Larson and Lee (2012) investigated a paired contrasts where 1 condition was

a baseline condition). The resulting score, hence, expresses percentages of signal change

and the sign indicates the relative direction of the effect. A score of 15% would read as

relative signal increase in the condition referred to by xia. Such a normalization is required

to eliminate a subjects’s bias regarding the overall activity level and its bias regarding

preferential activity relative to one condition.

3.2.3 Results
The task required to look at a face that either was looking at the subject (direct gaze) or was

looking downwards (averted gaze). Whenever the face’s eye gaze laterally changed, the

subject was required to press a key that was contra-lateral (incongruent action intention) or

ipsilateral (congruent action intention) to the faces gaze shift.

3.2.3.1 Behavioral data

3.2.3.1.1 Distribution To characterize the distribution of reaction times within each condi-

tion, a kernel density estimation was conducted. The results depicted in figure 3.12 indicate

a lower mean and a lower variance of reaction times for action backed by congruent as

compared to incongruent intentions. The distributions suggest that reaction times under

congruent intentions and direct gaze seemed to have a higher density between 200 and 300

milliseconds. An outlier classification based on the IQR rule suggested inclusion boundaries

of 150.405 and 622.263 milliseconds, respectively. Subsequent analysis focused on responses

within this time range.

3.2.3.1.2 Central tendency and mean variability To statistically analyze the central

tendencies under each condition (figure 3.13), a 2 (intention: congruent VS incongruent)

× 2 (gaze: direct VS averted) repeated measures ANOVA was conducted on mean reaction

times. The test revealed a significant main effect of action intention (F (15, 1) = 90.870, p =

9.35e − 08) and a significant interaction between action intention and gaze (F (1, 15) =
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Figure 3.12: Kernel density estimation of reaction times for each condition (bandwidth of 10 ms).
Button presses plotted in bottom rows, order follows the legend.

4.806, p = 0.045). No effect of gaze has been detected. Participants showed faster reaction

times under congruent intentions than under incongruent intentions. While gaze did not

directly modulate reaction times, reaction times were fastest when lateral gaze shifts were

processed under congruent action intentions and preceding eye contact, which is clearly

reflected in the related nonoverlapping error bars depicted in figure 3.13.
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Figure 3.13: Mean reaction time for each conditions. Error bars show the standard error of the mean.
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Figure 3.14 depicts the average median absolute deviation (MAD) across conditions. The

mean variability seems to follow the pattern visible for the kernel density estimates. A

subsequent 2 (intention: congruent VS incongruent) × 2 (gaze: direct VS averted) re-

peated measures ANOVA on mean MAD score yielded a significant effect of intention (F(15,

1)=11.920, p=0.004). This suggests that the overall variability in responses was lower for

the congruent intention condition.
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Figure 3.14: Mean standard-deviation for each conditions. Error bars show the standard error of the
mean.

3.2.3.1.3 Entrainment The distributions of the avatar’s inter-gaze shift intervals and the

subject’s inter-button press intervals depicted in figure 3.7 suggest a highly similar statistical

structure for both types of events. A subsequent Kolmogorov-Smirnoff test for two samples

yielded a significant test statistic D = 0.034, p = 0.009, suggesting that both, inter-saccadic

intervals and button presses, originate from the same distribution. To demonstrate that

this match is task-related rather than a spurious correlation, mean distributions distances

as measured by the Kolmogorov-Smirnoff statistic were computed for each condition. The

pattern depicted in 3.15 follows the pattern of mean reaction times in figure 3.13. To statis-

tically analyze the distribution similarity as function of the task, a 2 (intention: congruent

VS incongruent) × 2 (gaze: direct VS averted) repeated measures ANOVA was conducted

on Kolmogorov-Smirnoff distances. The test reveals a significant main effect of intention

F (26, 1) = 10.600, p = 0.003. This suggests that the rhythm of subject’s responses more

closely followed the rhythm of the avatar’s gaze when subjects acted upon congruent action

intentions. No other contrast of interest reached statistical significance.
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Figure 3.15: Kernel density estimation of inter-gaze shift intervals and button presses (bandwidth of
300 ms).
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Figure 3.16: Mean distance between the distribution of inter-gaze shift and button presses intervals
for each condition. Error bars show the standard error of the mean.

3.2.3.1.4 Speed-accuracy trade-off Figure 3.17 shows the task performance in terms of

accuracy for each condition. The overall pattern suggests higher accuracy for conditions

involving congruent action intentions. A 2 (intention: congruent VS incongruent) × 2 (gaze:

direct VS averted) repeated measures ANOVA on accuracy did not reveal any significant

effect. It is noteworthy, however, that the contrast related to the main effect of action
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intention was the only comparison that implicated variation. The F-values for all other

contrasts amounted to zero.
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Figure 3.17: Mean accuracy for each condition. Error bars show the standard error of the mean.

3.2.3.2 Neuromagnetic data

Table 3.1: Significant spatiotemporal clusters found for the main effect of action intention (A) and
of eye contact (B), time-locked to the subject’s response (R) or the stimulus (S), p-values
corrected for multiple comparisons, temporal window with temporal center of mass, ap-
proximate anatomical region, MNI coordinates for peak activation, normalized correlation
with changes in reaction time, family-wise error corrected using the Bonferroni procedure
(p < 0.05/4 = 0.0125.). Note. Time ranges related to response onsets are negative.

id effect onset p-value time range (ms) region MNI-RAS correlation (r, p)

1 B S .046 30–174 (121) visual ventral R -23 -85 -13 .153, 0.5

2 A R .002 226–52 (138) visual dorsolateral R 26 -79 15 -.758, 1e-4

3 A R .001 189–52 (107) visual ventral L -20 -85 17 -.346, .069

4 B R .001 167–77 (120) visual ventromedial L -20 -96 -15 -.250, .351

MEG data were concomitantly recorded to investigate the implication of cortical dynamics in

gaze-processing during continuous action-perception loops. The neuromagnetic recordings

were co-registered with the subject’s anatomical model based on structural MRI. Averaged

sensor space time series were then used to reconstructed time-locked cortical activation using

an anatomically constrained minimum norm estimate (MNE) (Hämäläinen & Ilmoniemi,

1994). Spatiotemporal clustering (Maris & Oostenveld, 2007) was employed to detect

task-specific gaze-locked and response-locked activation inside a predefined cortical search
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Figure 3.20: Neurobehavioral correlation between normalized changes in cortical current relative to
the condition and relative changes in reaction time.

area (c.f. section 3.2.2.7.3) for all contrasts of interest (see section 3.2.2.7.3). Subsequently,

the relationship between activation in significant spatiotemporal clusters and the subjects’

reaction times was examined. For that purpose, source estimates were averaged within the

cluster for each of the conditions contrasted. Normalized differences between conditions

were computed for source estimates and reaction times, reflecting contrast-relative changes

in cortical activation and reaction time. A conservative Bonferroni correction was employed

to correct for multiple comparisons. The analysis revealed four significant clusters which

are summarized in table 3.1. The following passage will present these four spatiotemporal

segments in the order of their appearance, detail the contrast, its direction and time-locking

properties, and, highlight specific regional and behavioral correlates.

The first significant dissociation of neuromagnetic signals occurred gaze-locked, 30 mil-

liseconds post-stimulus, and terminated on average 230 milliseconds prior to the subjects’

response (cluster 1). During this time interval, increased cortical activation for averted-gaze

was observed in visual cortices, extending to the face-sensitive fusiform gyrus and the parieto-

occipital sulcus (panel (A) in 3.19). All subsequent dissociations were response-locked.

The next dissociation occurred on average 174 milliseconds posterior to the lateral gaze

shift and 226 milliseconds prior to the subject’s response (cluster 2). It lasted throughout

the remaining part of the observation window, terminating 52 milliseconds prior to the

subject’s response. During this time window, increased cortical activation was observed in
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the congruent intention condition (panel (A) in figure 3.18). Specific regional activation was

found in the MT/V5 region and the right TPJ, extending into the right pSTS. A significant

neurobehavioral correlation was established between activity changes in this cluster and

changes in reaction time (r = −.758, p < 1.0× 10−4), depicted in figure 3.20.

The third dissociation was observed, on average, 211 milliseconds posterior to the gaze shift,

lasting for about 107 milliseconds and terminating 52 milliseconds prior to the response

(cluster 3, panel (B) in figure 3.18). During this interval, the left mid-STS, the left face-

sensitive fusiform gyrus, and the left intraparietal sulcus showed increased activation for

the congruent intention condition as compared to the incongruent intention condition.

A correlation tendency was observed which, however, did not survive the correction for

multiple comparisons.

On average, the last window of dissociation began 233 milliseconds after the gaze shift and

terminated 77 milliseconds before the subject’s response (cluster 4, panel B) in figure 3.19).

During this time segment, increased cortical activity was found in the MT/V5 area, the left

lingual gyrus, extending into the face-sensitive fusiform gyrus. While the first cluster did not

show any substantial temporal overlap with the other clusters, the last three clusters shared

common time windows between 167 and 77 milliseconds prior to the subject’s response.

For the purpose of unambiguous discussion, these four clusters will be referred to by their

corresponding entry in the id-column of table 3.1.

3.2.4 Discussion

3.2.4.1 Behavioral data

The present experiment replicated nearly all behavioral findings from experiment 1. The

following passage will therefore only discuss findings which differed from experiment 1.

Subjects were found to respond about 50 milliseconds faster in the congruent intention

condition as compared to the incongruent intention condition. These results conform to the

findings in experiment 1, arguing for the presence of an automated cognitive mechanism

related to action execution. Identical to experiment 1, reaction time differences between

the congruent intention and the incongruent intention condition were modulated by eye

contact, suggesting that as in experiment 1, the statistical structure of button presses closely

matched the distribution of ISIs and was modulated by action intention in exactly the same

direction as in experiment 1. These findings support the interpretation that the subjects

were entrained to the task.
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In contrast to experiment 1, the structure of the interaction between eye contact and action

intention for average reaction times was different. In experiment 1, the difference between

reaction times under congruent compared to incongruent intentions was modulated by eye

contact. In the present experiment, reaction times under congruent intention were different

for direct compared to averted gaze. These findings suggest that eye contact might have

boosted responses following from congruent intentions reactions, but did not significantly

interfere with incongruent action intentions. Such an interpretation would be consistent

with previous findings based on SSRC protocols (Wang et al., 2011; Wang, Ramsey, &

De C Hamilton, 2011). This finding might be explained by at least two factors. In the

present experiment, the sample size was more than one third smaller than in experiment 2.

Given the subtleties of the two alternative mechanisms at stake, this finding might therefore

reflect inherent instability, or, sample bias. Both alternatives might relate to individual

or group differences. The present sample might have represented a group of persons for

whom direct gaze exerts facilitating effects during congruent actions. The larger sample in

experiment 1 might have represented a wider range of individuals, also including persons for

whom direct gaze might be irritating during incongruent action. Such a difference might be

moreover related to age, which considerably differed between both samples. Future research

on individual differences regarding the responsiveness to SSRC may therefore be fruitful.

While the differences between the two experiments indicate that different mechanisms may

be at stake, both experiments captured interaction effects between eye contact and action

intention, which indicate action-related contextualization of gaze-processing.

Another notable difference between the findings from both experiments refers to the average

variability of reaction times across conditions. The distributions displayed for each condition

in experiment 1 (cf. figure 3.3) had already suggested differences in variability between

congruent and incongruent responses. This suggested tendency turned statistically signifi-

cant in the present experiment and conforms to the modulation of similarity between the

distribution of ISIs and the between-button press intervals. Lower variance in reaction times,

necessarily, implicates stricter coupling between these two inter-event intervals. The fact that

experiment 1 showed a modulation of distribution similarity by intention without yielding

significantly differences in reaction time variability might simply reflect the characteristics of

the Kolmogorov-Smirnoff statistic, which is known to be more sensitive around the mode of

the distribution and less so at its tails. The definitive result might be explained by the use

of a more fine-grained stimulation and recording technique in the present experiment. A

designated external graphics computation unit allowed jitter-free stimulation, and responses

were recorded virtually analog, using the designated input channels of MEG acquisition

system. In contrast, a regular office workstation is less exact with regard to timing and might

therefore lack the temporal precision required to differentiate such subtleties. Differences

3.2 Experiment 2 78



between both experiments regarding overall reaction times point into a similar direction.

Given the differences between the acquisition system that were used in both experiments, it

is conceivable that data in experiment 1 are subject to a constant offset due to the compara-

bly less specialized hardware employed. This point, further, highlights the importance of

specialized acquisition devices for the study of behavioral temporal dynamics.

Finally, the low overall error rate is remarkable. While descriptive results are in line with

experiment 1, variability of errors was not sufficient to compute meaningful inferential

statistics. This result might indicate cognitively more favorable conditions provided by

the MEG-acquisition setup, but the details, which might help concretizing this line of

thought, are not obvious. One explanation might refer to the breaks between the blocks that

were provided to the subjects. Before advancing with the experiment, subjects were required

to confirm that they had read the instruction by pressing a key in a self paced manner.

3.2.4.2 Neuromagnetic data

The analysis of source estimates revealed four spatiotemporal clusters of differential cortical

signals. These clusters were characterized by activation of common cortical regions, notably,

visual areas V1-3, and to a more variable extent, the face-sensitive areas in the FG and the

lateral occipital cortices, and the MT/V5 area. Second, they were characterized by different

time-locking properties and different temporal on- and offsets. Importantly, three out of four

effects where response-locked, not gaze-locked, suggesting preferentially response-dominant

gaze-processing during ongoing social interactions. The following paragraphs will integrate

these temporal and regional facets in discussing findings by contrasts of interest. To provide

with additional context, the following paragraphs will comment in greater detail on regional

findings. Contrasts will be referred to according to section 3.2.2.7.3 and table 3.1.

The main effect analysis of action intention (contrast A) revealed two congruency-positive

clusters (2 & 3) with identical time-locking properties (response-locked) and similar temporal

onsets (around 200 milliseconds prior to the subject’s response). It is therefore conceivable

that cluster 2 and cluster 3 represent a bihemispheric congruency-positive network. Cluster

2 implicated differential activity in the MT/V5 and the rTPJ.

The MT/V5 is located at the temporo-occipital border inside the visual extra-striate cortex

(Brodmann area 19). The region possesses anatomical connections to visual cortical areas,

from which it receives modulatory input, and, provides inputs to other areas participating in

the dorsal visual processing stream (Born & Bradley, 2005). The tuning properties of the

cells inside the MT area refer to speed and direction of motion and it has been implicated

with the analysis of optical flow and motion in both monkeys and humans (Shipp, Blanton,

& Zeki, 1998; Born & Bradley, 2005). The area has further been implicated in processing
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biological motion (Bonda, Petrides, Ostry, & Evans, 1996). Recent connectivity analyses

have linked this region to the pSTS, suggesting its implication in a network concerned with

processing motion of eye gaze (Nummenmaa, Passamonti, Rowe, Engell, & Calder, 2010).

The TPJ is commonly defined as a region that encompasses the SMG, posterior parts

of the STG, and dorsal-rostral parts of the occipital gyri. As suggested by Bzdok et al.

(2013b), anatomical labeling of the TPJ is highly inconsistent and the TPJ is often also

referred to as Brodmann area 39 or 40, angular gyrus or posterior part of the pSTS. The TPJ

is a hetero-modal cortex and does not possess any obvious structural-functional equivalents

in monkeys. Recent research, however, has linked the rTPJ to the monkeys mSTS based

on its overall connectivity pattern (Mars et al., 2013), which is characterized by common

coactivation with the anterior cingulate, the posterior cingulate, the anterior insula and the

cingulate motor area, which all possess unequivocal equivalents in monkeys. The middle

temporal cortex and the adjacent parts of the parietal cortex that harbor the human TPJ

are believed to have progressively expanded during human evolution (32 times the size

of the macaque’s corresponding area), purportedly resulting in regional and functional

differentiation of the macaque’s temporal face- and action processing battery into several

distinct subunits in humans (Van Essen & Dierker, 2007; Mars et al., 2013). Seemingly

contradictory interpretations of this region’s cognitive profile have been proposed (Corbetta,

Patel, & Shulman, 2008), mainly referring to colocalization of attentional reorienting to

relevant stimuli (Arrington, Carr, Mayer, & Rao, 2000; Corbetta, Kincade, Ollinger, McAvoy,

& Shulman, 2000; Macaluso & Patria, 2007) with social attribution processes (Saxe &

Kanwisher, 2003; Aichhorn et al., 2009). A recent meta-analysis by Decety and Lamm

(2007) summarizes this debate in showing that the rTPJ was implicated in four distinct

cognitive domains across a large set of studies: spatial-attentional processing, sense of

agency, empathy, and Theory of Mind. Beyond targeting explanations that refer to the tasks

and materials, researchers have sought to identify conceptual abstractions that are general

enough to harmonize these different cognitive interpretations. A nonexhaustive list of

candidates includes switching between frames of reference (Corbetta et al., 2008), updating

predictions about external events (Decety & Lamm, 2007), and most recently, the production

self-awareness and its social attribution (Graziano & Kastner, 2011; Graziano, 2014; Kelly,

Webb, Meier, Arcaro, & Graziano, 2014). A recent meta-analytic and connectivity-based

approach helped further differentiating the TPJ’s role in cognitive processes and lead to

the proposal of a twofold functional subdivision into a posterior part and an anterior part

related to spatial-attentional and social-cognitive processing, respectively (Bzdok et al.,

2013b). In the present experiment, increased activity in this region was found for the

congruent intention condition with local peaks inside to both clusters reported in Bzdok et al.

(2013b). Figure 3.21 shows the source activation for this effect with the cluster centroids

superimposed.
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Figure 3.21: Right TPJ activation and clusters based on metaanalytic connectivity. Colored markers
represent cluster centroids reported in Bzdok et al. (2013b). Activity has been masked
to Brodmann area 40, based on the PALS B12 annotation (Van Essen, 2005).

Cluster 3 implicated differential activity the FG, the STS, and the IPS.

The ventrally located FG is part of the temporal lobe and extends into Brodmann area

37 in the occipital lobe. Together with the STS and the OFA its mid and posterior parts

belong to a core-network subserving visual perception of faces and is believed to constitute a

uniquely human functional specialization (Tsao, Moeller, & Freiwald, 2008; Yovel & Freiwald,

2013). Typically, this area has been associated with processing of static aspects of faces,

such as identity. This aspect is illustrated by neurological case studies which demonstrate

that patients suffering from lesions of this area were unable to identify a person based on

her face. Similarly, for prosopagnosia patients, reduced activation has been reported in

this area (Dobel, Junghofer, & Gruber, 2011). MEG studies have localized components

between 110 and 170 milliseconds into this region which were sensitive to the onset or

the offset of face stimuli (Halgren, Raij, Marinkovic, Jousmaki, & Hari, 2000; Sato et al.,

2008; Hadjikhani, Kveraga, Naik, & Ahlfors, 2009; Tanaka, Inui, Kida, & Kakigi, 2009; Susac,

Ilmoniemi, Ranken, & Supek, 2011; Taylor, Bayless, Mills, & Pang, 2011; Perry & Singh,

2014). Interestingly, based on a seed in the face-sensitive FG, Khan et al. (2013) found

reduced long-range MEG connectivity patterns in persons suffering from autism spectrum

disorders, suggesting a wider implication of this area in networks concerned with attribution

of mental states and nonverbal communication. This conforms to a series of recent findings

suggesting face-sensitive FG functionality beyond static face processing. According to this

line of literature the face-sensitive FG is also involved in processing valence (Pizzagalli et al.,

2002; Lewis et al., 2003; Japee, Crocker, Carver, Pessoa, & Ungerleider, 2009; Monroe et al.,

2013) and specifically, social and affective judgments of persons (Bzdok et al., 2012). In

contrast to the canonical view of the FG’s function, recent findings have suggest that the FG
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area is related to processing gaze direction (George, Driver, & Dolan, 2001; Dumas et al.,

2013). Evidence based on intracranial recordings from the intact FG highlights a possible

dissociation of these functional contexts based on signal latency and waveform (Pourtois,

Spinelli, Seeck, & Vuilleumier, 2010; Kawasaki et al., 2012). These findings detail early

components around 200 ms post-stimulus which were related to purely perceptual face

processing and low-level categorization. In contrast, late components were reported, which

were related to processing affect and gaze-direction.

The STS constitutes a major anatomical landmark on the temporal cortex and belongs

to Brodmann areas 39 and 22. Monkeys do not seem to possess a ventral brain region,

analogously to the human FG, concerned with processing faces and gaze (Yovel & Freiwald,

2013). Instead, their STS has been shown to harbor numerous patches concerned with

high-level visual processing of social stimuli, such as gaze, faces, body parts and their

characteristics such as spatial appearance, motion and goal-directedness (Bruce, Desimone,

& Gross, 1981; Hasselmo, Rolls, Baylis, & Nalwa, 1989; Brothers & Ring, 1993; Umilta et al.,

2001; Tsao & Freiwald, 2003; Keysers et al., 2004; Tsao, Freiwald, Tootell, & Livingstone,

2006). This link is drastically illustrated by post-operative debilitation of gaze-differentiation

capacities in monkeys after removal of the banks and the floor of the STS region (Campbell,

Heywood, Cowey, Regard, & Landis, 1990) and single gaze-selective patches (Heywood,

Cowey, & Rolls, 1992), respectively. Recent comparative findings have implicated a functional

expansion of the STS region in humans compared to monkeys (Mars et al., 2013). Indeed, in

humans the STS region that includes the adjacent gyral structures, has been associated with

a wide array of cognitive functions including multimodal perceptual integration, perception

of motion, perception of faces and gaze, speech processing, and Theory of Mind and is

commonly subdivided into a posterior and an anterior part (Allison, Puce, & McCarthy,

2000). A recent meta-analytic study reported clustering solutions supporting this subdivision

(Hein & Knight, 2008) and suggested a bilateral posterior cluster concerned with processing

of eye gaze while, in contrast, anterior clusters have been predominantly associated with

speech processing. Interestingly, peak maxima from experiments which were concerned with

Theory of Mind were found bilaterally dispersed across the entire STS region, conforming

to the functional link between ToM and both speech processing and eye gaze (Mundy,

Sigman, & Kasari, 1990; Tomasello, Carpenter, Call, Behne, & Moll, 2005). The same pattern

applied to motion-processing in the left STS. Importantly, the pSTS receives modulatory

input from the MT/V5 region, highlighting its role in movement-related and directional

processing (Nummenmaa et al., 2010). Consistent with this classification, neuromagnetic

studies on eye gaze and face-processing have mainly reported activation in the posterior

part of the pSTS detailing time-locked dynamics related to averted gaze that peak around

250 milliseconds (Sato et al., 2008), transient BOLD-correlated beta-band modulations

related to emotion recognition (Jabbi et al., 2014) and experience based processing of facial
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expressions (Furl, van Rijsbergen, Treves, Friston, & Dolan, 2007). Recent neuroanatomical

work based on individual differences in gyration proposes a refined subdivision of the

STS into an anterior part, a middle part and a posterior part with two distinct terminal

endings (Ochiai et al., 2004). Based on this subdivision, the mSTS region has been associated

with a wide array of social-perceptual tuning-characteristics including human voices, faces,

and, biological motion related to hand- and mouth and eye movement (Grafton, Arbib,

Fadiga, & Rizzolatti, 1996; Rizzolatti et al., 1996; Grezes, 1998; Haxby, Hoffman, & Gobbini,

2000), suggesting a generalized functional selectivity to people (Watson, Latinus, Charest,

Crabbe, & Belin, 2014). This link is further reminiscent of the evolutionary link between the

monkey’s mSTS and the human pSTS and rTPJ (Mars et al., 2013). Applying these proposed

subdivisions, activity in cluster 3 showed local maxima that were located in the mid-STS

and extended into the pSTS.

The IPS is located inside the parietal lobe, Brodmann area 7, and is attributed to the

dorsal attention network (Corbetta et al., 2008). In monkeys, this region has been related to

visuomotor-processing, such as the preparation of saccadic and reach-to-grasp movements

in monkeys (Snyder, Batista, & Andersen, 1997). In humans, this region has also been

linked to action preparation, but additionally, stands in close relationship to covert selective

attention, goal representation (Astafiev et al., 2003; Hamilton & Grafton, 2006), and exerts

putative top-down tuning of feature processing in sensory areas (Corbetta et al., 2008). The

IPS is further believed to link incoming sensory information to action intentions (Snyder

et al., 1997) and has been associated with processing gaze direction (Haxby et al., 1994;

George et al., 2001) as expressed by frequent co-activation with the pSTS when processing

eye gaze.

Based on the regional implications of cluster 2 and 3 it can therefore be argued that

performing congruent actions with regard to another persons’s eye gaze recruited a wide

array of areas related to visual processing of motion, spatial attention, face and gaze

perception, and, object-related attention. The identical timing properties of cluster 2 and

3 argue in favor of their interpretation as bihemispheric network that facilitates socially

defined target actions. This is consistent with the finding that contrast-relative increases of

activity were significantly related to contrast-relative decreases in reaction time, indicating a

direct involvement of this network in action preparation.

The current time-locked analysis does not allow to assess the flow of information or

changes in connectivity. However, at least two scenarios are conceivable. The visual gaze

and attention related areas are triggered by an unknown, common cortical or subcortical

driver. Following the phase-resetting view of time-locked responses (e.g. see Hanslmayr

et al. (2007)), activity would therefore reflect modulatory top-down input, potentially

reflecting visual and objected-related feature-tuning. Second, the evoked activity might

reflect network-intrinsic, endogenous phase resets. Ensuing potentials might then propagate
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to motor cortices along anatomical connections, reflecting a ramping-up process which

might be observed as ‘readyness-potential’ at later stages. The high correlation between

changes of cortical activity and relative decrease of reaction time in cluster 3 indeed support

the second scenario. In this context, it is tempting to regard the rTPJ as a hub concerned

with high-level parsing of visual-spatial and social perceptions and its forwarding to motor

networks based on its functional connectivity with the cingulate motor area (Mars et al.,

2013). This, however, would not explain the role of activity in the left hemispheric cluster

that was not significantly related to reaction time changes. It is therefore most likely that

both scenarios apply to different degrees. One more additional cue is given by the correlation

differences between the left and the right cluster. In regional and related functional terms,

one striking difference between the left and the right clusters refers to the implication of

the dorsal and the ventral attention network, respectively. The left hemispheric cluster 3

differentially involved the mSTS, the mid FG and the IPS. Given the previous discussion,

these findings might argue in favor of a subnetwork concerned with processing gaze direction.

In contrast, the right hemispheric cluster 2 implicated the rTPJ, which belongs to the ventral

attention network. Following the previous discussion, this suggests a right hemispheric

subnetwork concerned with object-related, in this case: social and attentional processing.

The fact that differential activity in the left hemispheric cluster started later than in the

right hemispheric cluster, but only the latter exhibited significant correlation with reaction

times might even indicate a hierarchical relationship between cluster 2 and cluster 3, hence,

between spatial and object-related attentional processes during action-oriented processing of

eye gaze. In other words, the dominant frame of reference was object-based, social, whereas

spatial computations were possibly subordinated and terminated before final execution.

In this sense, it might be speculated that activity in cluster 2 rather followed the second

interpretation of evoked activity as endogenous processes while activity in cluster 3 might

be more accurately understood in terms of exogenous modulation.

The main effect analysis of eye contact (contrast B) revealed one direct-gaze-negative

gaze-locked cluster in the right hemisphere (cluster 1) and one direct-gaze-positive response-

locked cluster in the left-hemisphere (cluster 4).

The overall time course of activity in cluster 1 is reminiscent of a M170 waveform and

exhibits differential increases of activity for averted gaze. In regional terms, primary and

higher visual areas including the parieto-occipital sulcus have been differentially implicated.

Activity extended into the posterior FG.

The parieto-occipital sulcus serves as a macroanatomical landmark which separates

occipital from parietal lobes. In both monkeys and humans the V6 has been located in this

area, which belongs to the dorsal visual pathway and exhibits anatomical connections to the

motor cortices. This region has been linked to visual attention (Vanni, Revonsuo, & Hari,
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1997), representation of one’s own eye gaze (Galletti, Battaglini, & Fattori, 1995; Nakamura,

Chung, Graziano, & Gross, 1999), and planning of reach-to-grasp movements (Galletti, Kutz,

Gamberini, Breveglieri, & Fattori, 2003). Based on its time-locking properties, this effect

might refer to stimulus-driven bottom-up modulations of visual face-related attention that is

triggered by changes of eye gaze in the absence of preceding eye contact.

One remarkable detail refers to the early onset of activation after 30 milliseconds only.

Such early cortical activations have only rarely been reported in the gaze-literature, but

are not unexpected in situations in which subjects have been entrained to a task (Stefanics

et al., 2010; Besle et al., 2011). This finding might therefore indicate enhanced cortical

sensitivity to directional eye gaze cues following prolonged exposure to averted gaze. Signals

were subtracted from each other and differences between averted and direct gaze stimuli

where minima. Importantly, they manifested prior to the time-locking event which was

identical in all conditions (lateral gaze shift). These facts pose a severe problem to purely

visual interpretation of this effect. One putative explanation might refer to social factors.

A lack of eye contact might impair the subject’s tendency to predict changes in eye gaze,

which then might appear as more surprising as reflected in stronger update-signals reflecting

prediction-error. Alternatively, a lack of eye contact might enhance fixation of the eye region,

leading to enhanced visual processing. Such construals will be examined later in greater

detail (c.f. 3.3).

Cluster 4 was characterized by increased activity time-locked to changes of eye gaze

following previous eye contact and differentially implicated the MT/V5 region, the lingual

gyrus, extending into the middle FG and the lateral occipital cortex.

The lingual gyrus is located medially in the occipital and temporal cortices, and traverses

Brodmann areas 18 and 19. This region has been associated with various cognitive processes

that relate visual processing to language (Damasio & Damasio, 1983), object memory (Allison

et al., 1994; Perani et al., 1995), cross-modal attentional (Macaluso, Frith, & Driver, 2000),

and social cognition (Rilling, Sanfey, Aronson, Nystrom, & Cohen, 2004; Völlm et al.,

2006).

Against the background of the previous discussion, this regional pattern argues in fa-

vor of a network related to the perception of eye movements. Based on its time-locking

characteristics and the absence of meaningful correlation with reaction time changes, this ac-

tivation might reflect top-down-modulations from other networks during action preparation.

Interestingly, the temporal window of activity is endorsed by the temporal windows defining

clusters 2 and 3, which also implicated activity in the MT/V5 region and the functionally

connected STS. This provides with another additional cue for the interpretation of its cogni-

tive role. Significant activity in the congruent-intention network lasted until the end of the

temporal observation window, and, most likely, extended into the time around the motor act.

Activity in this spatiotemporal segment terminated within the temporal observation-window,
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which argues for a sub-process, that is action-related but not necessarily execution-related.

At a cognitive level, intensified processing of gaze-related motion during planning of so-

cially defined actions might refer to the ostensive role of eye contact (Tomasello, Hare,

Lehmann, & Call, 2007). Eye contact serves as a major communicative cue, or marker of

relevance (Sperber, Wilson, & Ziran, 1986), and commonly modulates the interpretation of

subsequent behaviors as deictic or of communicative intent. Such modulations might include

social-visual feature tuning with regard to processing deictic gestures, such as changes of eye

gaze. The fact that such a modulation is found to be response-locked indicates that preceding

ostensive-cues, that lie in the past are effectively evaluated, during action planing. In other

words, the recognition of ostensive cues as such might refer to post-hoc contextualization

of present events at a time at which they become relevant for the implementation of the

intended action.

3.3 General discussion
The overall goal of this study was to investigate the time-locking properties of visual gaze-

related cortical dynamics during ongoing social interaction. In detail, the hypothesis pursued

in this study referred to changes of related time-locking properties from stimulus-dominance

to action-dominance. The study comprised two experiments, of which the first evaluated

a novel SSRC protocol which was used in the second experiment to evoked gaze-related

cortical dynamics tuned to interaction. The plausibility of this novel protocol was evaluated

with regard to rapid reaction time dynamics related to varied intentional context and, second,

with regard to entrainment to the task as expressed by context-dependent distance-reduction

of ISI distributions and response-interval distributions. These characteristics turned out to be

robust as indicated by replication of the main findings in the second experiment. Behavioral

findings in both experiments conformed to the patterns reported by Wang et al. (2011),

Wang et al. (2011), which comprised a main effect of action intention (congruent actions

were faster than incongruent actions) and its modulation by eye contact. The mean reaction

time patterns across conditions in both experiments argued in favor of a rapid, automatic, or

implicit modulation of action control by social context, i.e., eye gaze, resulting in facilitated

performance of socially congruent action. The task-induced entrainment constitutes a novel

finding for which the literature regarding SSRC protocols did not report any equivalent.

This aspect therefore required internal validation in terms of cortical dynamics. In total,

behavioral findings unequivocally indicated cross-talk between action intentions and eye

contact during visual processing of changes in eye gaze.

Experiment 2 manifested response-dominant time-locking characteristics manifested for

differential signals with regard to action intention and with regard to eye contact. For
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action intention the case was unequivocal, no differential gaze-locked activity occurred.

Instead, response-locked and congruency-positive differential activity was observed in a

wide array of visual areas and regions related to higher visual attention, social perception

and face processing. Given the significant correlation with reaction times observed inside

this network, it can be argued that this congruency-positive activity explains the behavioral

main effect of gaze observed over both experiments. One fundamental ambiguity of the

behavioral findings related to the direction of modulation, i.e., as to whether actions

following congruent intentions receive a boost or whether, alternatively, actions following

incongruent intentions were inhibited. The intrinsic low error rate for congruent intentions

and the higher distribution-similarities with regard to ISIs and response rhythms, had made

the existence of a congruency-positive mechanism plausible. The present neuromagnetic

findings unambiguously argue in favor of such a mechanism, which might be concerned

with enhancing action-perception integration during ongoing social interaction by allocating

visual attention to the eye region of another person and by establishing ‘fast’, direct mappings

between perceived gaze direction and ipsilateral motor commands. Given the wide array of

cortical sites along the visual ventral and dorsal pathways, which included both attention-,

gaze- and self-other-related networks, it is likely that this phenomenon is related to the social

properties of the task. Additional clues were given by the putative hierarchical subordination

of spatial-processing under object-related social processing, which was indicated by the

different correlation patterns in both congruency-positive clusters. At a cognitive level,

these findings would implicate a proactive adjustment and sensitivity-boosting towards

others when acting in mutually compatible or congruent ways. This finding would be

compatible with the joint action literature that has described vast forms of intuitive mutual,

often automated synchronization. On the other hand, some caution is indicated, since the

correlation roughy explains 17 percent of the behavioral variance, and therefore the current

analysis might have been blind to a congruency-negative network that relates to impaired

reaction times during incongruent processing. In fact, the fMRI data by Schilbach et al.

(2010) found such a network, prominently highlighting the role of the dorsal attention

network during incongruent processing. However, no congruency-positive network was

found in their study. This might be due to the neuroimaging modality, implicating transient

activity that might not have been captured by fMRI, or due to the present protocol that had

a tighter and more intuitive temporal structure. The fact that activity dissociations were

rather enduring than transient would argue in favor of the second interpretation. In this

context, it is noteworthy to highlight the fact that the congruent intention contrast in the

present study implicated regions which Schilbach et al. (2010) exclusively reported in either

the congruent intention contrast or in the social versus object contrast.
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For eye contact, both gaze-locked and response-locked differential signals were observed.

But based on the location, the contrast and the timing of these effects, it can be ruled

out that both clusters in any sense refer to the same activity. The gaze-locked cluster

implicated early visual activity, which was increased for change of eye gaze in the averted

gaze condition and terminated before activity in the other cluster started. In the second

cluster, activity was increased with regard to changes of eye gaze in the direct gaze condition.

Activity for the effect of eye contact hence clearly dissociated as a function of time-locking

properties. It has been suggested that the first finding does not reflect stimulus-properties,

as in both conditions, the stimuli to which activity was time-locked to have been identical.

One interpretation suggested intensified update-signals as a consequence of the presumably

aversive experience of sustained averted gaze. However, averted-gaze might also have

lead subjects to enter a spectatorial mode which might have facilitated to focus on the eye

region. This idea refers to interpersonal distance norms with regard to the socially tolerable

duration of mutual gaze. Experiments based on one-way mirrors have shown that humans

tend to fixate other humans’ eye region significantly longer as long the other could not

see them (Argyle, Ingham, Alkema, & McCallin, 1973). However, the lack of eye tracking

data and also the lack of obvious behavioral correlates makes it hard to decide between

those two cognitive interpretations. In contrast, the second activation cluster was linked to

referential-ostensive processing based on its regional and its time-locking properties.

At first glance, the absence of any significant interaction contrast seems astonishing given

the interaction between eye contact and action intention at the behavioral level, which

was observed in experiment 1 and experiment 2. This phenomenon may be explained

in at least four ways. The interaction effect might not be reflected in time-locked but in

induced oscillatory activity. The interaction effect, at the behavioral level, might not be

reflected in a corresponding interaction effect at the level of cortical dynamics. The subtle

boosts of reaction time observed for congruent intentions with preceding eye contact (c.f.

figure 3.13) might by implemented in a ‘sparse-coded’ manner, for example as simultaneous

time-locked activity inside regions clusters 2 and 3. Such a scenario might implicate an

unknown aggregation mechanism which nonadditively translates into reaction time benefits.

In a third scenario the driver for this interaction effect is not captured by cortical MEG signals.

Finally, the effect might have been too weak to be detected by the clustering permutation

test. Recent studies have highlighted the relevance of the dMPFC and the IFG for interaction

effects in SSRC protocols. Assuming that related effects can be found in neuromagnetic

signals from frontal and prefrontal cortical locations, this approach would also explain the

absence of any significant cluster in the frontal cortical search surface. These potential

mechanisms warrant further investigations in future studies.
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One common, but remarkable characteristic of the neuromagnetic findings refers to the

regional structure of maximum duration of significance. All clusters show peaks of sustained

activation in occipital visual cortices. These activations, depending on the related time-

locking characteristics, as suggested by the discussion of contrasts, most likely reflect bottom-

up or top-down feature tuning of face and gaze-related perception. Importantly, for none of

the contrasts, stimuli that defined the time-locking events systematically differed. For the eye

contact contrast, the previous visual context slightly differed between the conditions, but for

the congruent intention contrast, strictly speaking, no difference existed with regard to visual

stimulation. These facts rule out purely stimulus-based explanations of this phenomenon.

Instead, the extended duration of visual activity argues in favor of this experiment’s online

character implicating continuous action-perception loops. These observations clearly warrant

further investigations of temporal succession and causality at the single trial level and call

for an investigation of oscillatory behavior. Given the present evidence, no unequivocal

conclusions are permitted with regard to the direction and the structure of modulation.
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4Conclusion

The overarching goal of this thesis was to promote the magnetoencephalographic study of

social cognition. This agenda was addressed by choosing two forefront research questions

in MEG and social cognitive neuroscience, the regularization of covariance and the cortical

dynamics underlying gaze processing during ongoing social interactions, respectively.

Study 1 investigated the problem of between-sensors noise covariance and its implications

for spatial whitening of MEG data. A new method was developed, based on recent machine

learning techniques and evaluated on simulate data and several MEG datasets and one EEG

dataset. The method permits to determine the most appropriate M/EEG covariance estimator

out of a set of different candidates by using a maximum-likelihood metric. A list of conceiv-

able candidate models was identified based on applicability to the signal characteristics of

M/EEG data and subsequently examined. Simulation results and results based on M/EEG

data showed that different models can describe the MEG between-sensors noise covariance

most appropriately, depending on various circumstances. The study demonstrated that

the proposed method is both automatic and quality preserving, since the ultimate metric

chosen was always superior to the default choice, i.e., the sample covariance. Importantly,

the impact of the method was practically assessed by analyzing signal contrasts related to

face-processing from a publicly available MEG dataset. Results demonstrated that the new

estimation method helps stabilizing the source amplitudes of inverse solutions and identified

one candidate mechanism which explains between-subject variability in group analysis.

Because of the far-reaching implication of covariance estimation in M/EEG analysis the

results of study 1 help to solve multiple problems at once over a general range of particular

methods MEG from which researchers can choose.

Study 2 investigated the time-locking properties of cortical dynamics during ongoing social

interactions. The results showed that the majority of significant spatiotemporal signal

dissociations were found time-locked to the subject’s actions, not to the onset of eye gaze.

Importantly, these response-locked signals implicated visual processing, areas commonly

related to spatial- and object-oriented attention, and areas commonly associated with social

perception and Theory of Mind. The study found differential correlation between cortical

activity and reaction times which additional served the validation of the results. The

findings from this study suggest that response-locked cortical responses become increasingly

dominant during social interaction. This might indicate that during ongoing interaction,

gaze processing is tuned to social coordination.
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Study 1 did not investigate the impact of covariance estimators on preprocessing techniques

such as SSP and ICA. Such investigations are relevant given the mathematics implied and

are warranted given the challenges associated with MEG signal processing. Second, single

subject datasets where used for validation. While this does not relativize the results of study

1, group level benchmarks are highly desirable for cognitive researchers. Future studies,

therefore, should investigate spatial whitening in the context of preprocessing ICA, where

the current procedure could be used to optimally decorrelate input signals before actually

computing ICA and, second, yield automated rank estimates that would help addressing

another unsolved problem, i.e., the informed choice of numbers of components. Such a

project should be based on a large group of subjects, for example EEG patient data, to further

limit potential overfitting during the development of methods.

Study 2 suffered from exposing a phenomenon which has been rarely reported and that is

insufficiently investigated. The study therefore generated a series of questions which need

to be addressed in future studies. The study has based its observations on an approximation

to social interaction by using a protocol which facilitated entrainment. To maximize the

expected effects, different means where combined at the same time (‘sledge hammer ap-

proach’). As a consequence, the exact mechanisms by which the protocol achieved its goals

are not yet well understood. Additional, purely visual-directional experimental contexts

investigating different jitter distributions for ISIs might help to better understand the exact

implications of the present protocol. A future study should closely investigate oscillatory

characteristics of gaze-related cortical dynamics during social interaction. Especially sin-

gle trial analyses might help track-down routes of entrainment with the ultimate aim of

showing under which circumstance cortical time-locking properties may swap between

two macroscopic systemic attractor events, such as stimulus changes and intended action.

Most importantly, the physiological meaning of nonmotor response-locked activity is poorly

understood. The related literature seems to be sparse if not non-existing. In this context,

future studies should dedicate a reasonable amount of time into modeling and simulation

of time-locking properties. In a minimum scenario, distinct time-locked sources would be

placed around alternative trigger-events to exactly quantify the conditions of dissociation

and overlap at the observational level of source analysis. A further limitation refers to the

approximative nature of the interaction task which is markedly different from investigating

ongoing multi-person dynamics. While this does not weaken the present findings, more

fine-grained conclusions might be reached based on multi-person protocols. One first modifi-

cation of the protocol in this direction would point to the use of eye-tracking. This would

allow to replace the manual response channel by subjects’ eye gaze and would allow to

track subjects’ behavior during the task in a more fine-grained fashion which can facilitate

interpretation of results. A future variant of the protocol could involve a second subject and
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interactions could be based on mutual congruent versus incongruent looking. Comparing

such two-person interactions to the statistical entrainment that was used in this study might

further help to differentiate cortical effects of entrainment.

The two problems investigated by this thesis are related in several ways. MEG instrumentation

and choice of analysis parameters can impact neuromagnetic findings in complex ways which

are not yet fully understood. Often, local ad-hoc solutions are propagated which, globally,

complicate analyses as they reduce the reproducibility of findings and impact creativity by

multiplying uncertainty. This is even more true where the signals of interests and contrasts

between them lend themselves towards low signal-to-noise ratios, as it is the case for social

cognition data. Arguably, methods research and engineering are inextricably linked with

domain specific progress, especially when working on forefront challenges. At the same time,

the MEG methods research can test its relevance and generality by including domain specific

perspectives during development and evaluation. From a data scientific point of view, signal

contrasts which are relative to subtly varied social interactive contexts pose challenges to

instrumentation and development. These can easily be missed when only testing novel

methods against less demanding data that neither involves contrast signals nor demanding

experimental protocols. In this sense, the results from this thesis motivate a close exchange

and collaboration between researchers who focus on engineering problems and researchers

whose work poses engineering problems.
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