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Abstract

’There are very few things that can be proved rigorously in condensed matter physics.’

These famous words, brought to us by Nobel laureate Anthony James Leggett in 2003, summarize very
well the challenging nature of problems researchers find themselves confronted with when entering the
fascinating field of condensed matter physics. The former roots in the inherent many-body character
of several quantum mechanical particles with modest to strong interactions between them: their
individual properties might be easy to understand, while their collective behavior can be utterly
complex. Strongly correlated electron systems, for example, exhibit several captivating phenomena
such as superconductivity or spin-charge separation at temperatures far below the energy scale set by
their mutual couplings. Moreover, the dimension of the respective Hilbert space grows exponentially,
which impedes the exact diagonalization of their Hamiltonians in the thermodynamic limit. For this
reason, renormalization group (RG) methods have become one of the most powerful tools of condensed
matter research - scales are separated and dealt with iteratively by advancing an RG flow from the
microscopic theory into the low-energy regime.
In this thesis, we report on two complementary implementations of the functional renormalization
group (fRG) for strongly correlated electrons. Functional RG is based on an exact hierarchy of coupled
differential equations, which describe the evolution of one-particle irreducible vertices in terms of an
infrared cutoff Λ. To become amenable to numerical solutions, however, this hierarchy needs to be
truncated. For sufficiently weak interactions, three-particle and higher-order vertices are irrelevant at
the infrared fixed point, justifying their neglect. This one-loop approximation lays the foundation for
the N -patch fRG scheme employed within the scope of this work. As an example, we study competing
orders of spinless fermions on the triangular lattice, mapping out a rich phase diagram with several
charge and pairing instabilities. In the strong-coupling limit, a cutting-edge implementation of the
multiloop pseudofermion functional renormalization group (pffRG) for quantum spin systems at zero
temperature is presented. Despite the lack of a kinetic term in the microscopic theory, we provide
evidence for self-consistency of the method by demonstrating loop convergence of pseudofermion
vertices, as well as robustness of susceptibility flows with respect to occupation number fluctuations
around half-filling. Finally, an extension of pffRG to Hamiltonians with coupled spin and orbital
degrees of freedom is discussed and results for exemplary model studies on strongly correlated electron
systems are presented.
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Kurzzusammenfassung

’There are very few things that can be proved rigorously in condensed matter physics.’

Diese berühmten Worte des Nobelpreisträgers Anthony James Leggett aus dem Jahr 2003, fassen
die herausfordernde Natur der Probleme, mit denen Wissenschaftler im faszinierenden Gebiet der
Physik kondensierter Materie konfrontiert werden, sehr gut zusammen. Diese resultieren aus dem
inhärenten Vielteilchen-Charakter von mehreren quantenmechanischen Teilchen mit mässigen bis
starken Wechselwirkungen: ihre individuellen Eigenschaften mögen einfach zu verstehen sein, ihr
kollektives Verhalten aber ist äusserst komplex. In Systemen bestehend aus stark korrelierten Elek-
tronen beispielsweise, treten spannende Phänomene wie Supraleitung oder die Trennung von Spin-
und Ladungsfreiheitsgraden erst bei Temperaturen auf, die weitaus niedriger sind als die Energieskala
ihrer wechselseitigen Kopplungen. Zudem verhindert das exponentielle Wachstum der Dimension
des zugehörigen Hilbert-Raums die exakte Diagonalisierung ihrer Hamiltonoperatoren im thermo-
dynamischen Limes. Renormierungsgruppen (RG) Methoden gehören aus diesem Grund zu den
mächtigsten Werkzeugen der Forschung an kondensierter Materie, da Skalen voneinader separiert
und iterativ abgehandelt werden indem ein RG Fluss von der mikroskopischen Theorie bis hin zum
Niedrigenergiebereich fortgesetzt wird.
In dieser Arbeit diskutieren wir zwei komplementäre Implementierungen der funktionalen Renormie-
rungsgruppe (fRG) für stark korrelierte Elektronen. Funktionale RG basiert auf einer exakten Hierarchie
von gekoppelten Differentialgleichungen, welche die Entwicklung Einteilchen-irreduzibler Vertizes an-
hand eines Infrarot cutoff Λ beschreiben. Damit sie numerisch lösbar wird, muss diese Hierarchie
jedoch trunkiert werden. Für hinreichend schwache Wechselwirkungen sind Dreiteilchen-Vertizes
und solche noch höherer Ordnung am Infrarotfixpunkt irrelevant und können daher vernachlässigt
werden. Diese one-loop Näherung bildet im Rahmen dieser Arbeit die Grundlage für das angewandte
N -Patch fRG Schema. Als Beispiel betrachten wir konkurrierende Ordnungen spinloser Fermionen
auf dem Dreiecksgitter, für welche wir ein ergiebiges Phasendiagramm mit mehreren Ladungs- und
Paarungsinstabilitäten berechnen. Für den Fall starker Wechselwirkungen stellen wir eine Spitzenimple-
mentierung der multiloop Pseudo-Fermion funktionalen Renormierungsgruppe (pffRG) zur Anwendung
auf quantenmechanische Spinsysteme am absoluten Nullpunkt vor. Darüber hinaus zeigen wir, dass die
Methode, trotz des Fehlens eines kinetischen Terms in der mikroskopischen Theorie, selbstkonsistent
ist, indem wir sowohl die loop-Konvergenz der Pseudo-Fermion Vertizes demonstrieren, als auch
die Stabilität von Suszeptibilitätsflüssen gegenüber Teilchenzahlfluktuationen nahe halber Füllung.
Schliesslich diskutieren wir die Anwendung der pffRG Methode auf Hamiltonoperatoren mit gekoppelten
Spin- und Orbitalfreiheitsgraden und stellen die Ergebnisse von Modellstudien an stark korrelierten
Elektronensystemen vor.
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Introduction

1 Introduction
Strongly correlated electron systems haven proven themselves fertile ground for the discovery of novel
and intriguing physical phenomena, such as high-temperature superconductivity, frustrated magnetism
or the fractionalization of quantum numbers. The common motif shared by materials exhibiting these
strong correlations is the absence of a coherent single-particle picture - interactions between them are
often on a par with their kinetic energy, which calls for a many-body perspective.
To develop the latter, the consultancy of theoretical models is of paramount importance. Ideally, these
should be simple enough to distill the essential properties of an interacting electron system, while
being of relevance for actual materials. A prototypical Hamiltonian for strongly correlated electrons is
the Hubbard model [1, 2], which describes fermions within a single band subject to Coulomb repulsion.
Their movement is thereby restricted to hopping processes between nearest neighbor sites of the crystal
lattice, characterized by some rate t, whereas their interactions are assumed to be screened, such that
only an on-site term of magnitude U remains.
In the weak-coupling limit, that is U/t ≪ 1, one may view the interacting system as a perturbed version
of the Fermi gas in which the constituents acquire an effective or renormalized mass and magnetic
moment [3]. Excitations of such a Fermi liquid (FL), its so-called quasiparticles, are thus qualitatively
equivalent to those of the non-interacting system. In general, their lifetime is finite due to scattering
processes close the Fermi level. Importantly, one should not labor the misapprehension that the Fermi
liquid state is stable just because U is sufficiently small. An infinitesimal attractive interaction, for
example, could cause an unbounded growth of scattering amplitudes with vanishing total spin and
momentum and ultimately lead to a breakdown of FL theory [4, 5]. Such a pairing instability marks
the onset of a superconducting phase in which electron pairs obey Bose-Einstein statistics and are thus
capable of condensing into a coherent ground state. Yet, the bare Coulomb interaction is repulsive,
which should impede the formation of bound electron states all together. This raises the question
how an effective interaction capable of glueing one electron to another can be generated. A famous
paper by Bardeen, Cooper and Schrieffer (BCS) [6] provides one possible explanation by attributing
the adhesion to electron-phonon coupling: one electron perturbs its surrounding crystal structure
and indirectly attracts another electron nearby. For some materials, such as iron-pnictides, however,
phonon mediated pairing is too weak to explain their ability to conduct electrical currents without
resistivity. A general explanation for the pairing mechanism in superconducting materials has, despite
all efforts, remained obscure up to the present day.
According to conventional wisdom, partially filled valence bands make for archetypal electrical conduc-
tors. For sufficiently strong interactions U/t ≳ 1 though, metals may undergo a Mott transition and
become insulators, which sharply contrasts this single-particle picture. In the strong-coupling limit
U/t → ∞, electrons localize and one expects some sort of magnetic ground state driven by residual
interactions between their spin degrees of freedom. In the presence of strong quantum fluctuations,
however, such spin models can harbor quantum spin liquids (QSLs), massively entangled states of
matter which host fractionalized spinon excitations and refuse to order even at lowest temperatures.
Apart from few exceptions, such as the honeycomb Kitaev model [7] and the observation of a half-
integer thermal quantum hall response in α-RuCl3 [8], their pivotal property, namely the absence of a
magnetic order parameter, complicates the unambiguous identification of QSLs in experiments as well
as numerical simulations. Moreover, despite ambitions to characterize them in terms of their underlying
gauge structure [9], physicists have hitherto struggled to come up with a complete classification of
elusive quantum spin liquids [10].
Capturing the multitude of collective phenomena inherent to strongly correlated electron systems is
particularly challenging due to their scale-dependent nature. In cuprate superconductors, for example,
one traverses three orders of magnitude in energy starting from the Coulomb repulsion, over magnetic
exchange couplings, down to the superconducting transition temperature [11]. The renormalization
group (RG) framework is particularly powerful for bridging between microscopic models and their
effective low-energy description. Over the years, various implementations of the RG idea have come
forth, many of which can only be pursued numerically. Wilson’s numerical renormalization group (NRG),
for example, is an excellent tool for solving impurity models in an accurate and non-perturbative way.
In conjunction with dynamical mean-field theory (DMFT) it can also be extended to lattice systems
at the cost of neglecting non-local correlations and yields valuable insights into the metal-insulator
transition exhibited by the Hubbard model [12]. In one dimension, the density matrix renormalization
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Introduction

group (DMRG) is probably the single most potent method for determining properties of strongly
correlated quantum models, since one is able to calculate static, as well as dynamic quantities up to
machine precision while invoking only moderate computational resources [13]. The generalization of
DMRG to higher spatial dimensions in the form of tensor network methods [14] is currently one of the
most vibrant fields in computational condensed matter physics.
The RG flavor laying the foundation for this thesis is the functional renormalization group (fRG)
[15], which will be formally introduced in Chapter 1. In particular, we discuss the derivation of the
differential equation for the effective action at heart of the fRG approach, as well as important approx-
imations required to render its solution feasible. Chapters 2 and 3 are devoted to two complementary
incarnations of functional RG: one for weakly-coupled itinerant electrons and the other one capable of
dissecting magnetic instabilities in quantum spin models. Special emphasis is payed to their numerical
implementation - we will detail each and every algorithm and point out mayor improvements regarding
the accuracy of the so-obtained results when compared to existing literature. Both chapters are
closed with two examples each, giving insight into the outputs produced by the different fRG solvers
and simultaneously highlighting the flexibility of the method. Chapter 5 summarizes methodological
developments pursued within the scope of this thesis: the implementation of multiloop flow equations
for quantum spin systems and the extension of the fRG formalism to spin-valley coupled Hamiltonians,
relevant for moiré heterostructures such as TLG/h-BN [16]. Applications of functional RG to various
model systems are discussed in Chapter 6. Chapter 7 is concerned with side projects disconnected
from the fRG aspect of this work. We present two novel platforms for engineering exotic quantum
states, multi-layer compositions of transition metal dichalcogenides (TMDs), in which the twist angle
between adjacent TMD sheets provides another tuning parameter for controlling properties of the
band structure, and magnetic materials coupled to an optical cavity. The latter hold promise for
the realization of robust QSL states, which we decipher via a Schwinger-Boson analysis. Chapter 8
provides a summary of the insights gained in this work and speculates about future methodological
directions for the fRG approach.

2



Functional renormalization group

2 Functional renormalization group
In this chapter, the functional renormalization group (fRG) approach to correlated fermionic systems
is introduced on a general level, closely following the derivations presented in Refs. [17, 18]. After its
inception in high-energy physics [19, 20], fRG calculations are, nowadays, also employed in the context
of condensed matter systems, ranging from applications to variants of the Hubbard model [11, 21],
over strongly-coupled spin Hamiltonians [22, 23] to impurity models [24, 25].
The general idea behind fRG is the successive inclusion of fermionic fluctuations during a renormalization
group flow, which evolves the many-body interactions of a microscopic theory in terms of an infrared
cutoff Λ. The outcome of an fRG calculation are fully renormalized, one-particle irreducible vertices,
which characterize the effective interactions of the system at low energies. From these, useful physical
quantities such as magnetic response functions or superconducting gaps can be obtained.
While the fRG description of a given fermionic model is in principle exact, appropriate truncation
schemes are essential for facilitating numerical solutions of the flow equations. Most implementations
of fRG concern themselves with the self-energy and two-particle vertex, while neglecting higher-order
terms. Although many physical phenomena can already be captured by this seemingly simple approach,
functional RG calculations have often been lacking quantitative accuracy. In recent years, however,
multiple attempts for improving the predictive power of fRG have been made [26, 27]. The multiloop
scheme by Kugler and von Delft [28] is the latest iteration in that series, allowing to efficiently
incorporate all diagrams of parquet type, that is, diagrams which can be evaluated at the numerical
cost of the conventional one-loop flow.
In the following, we first present the derivation of fRG flow equations from general principles. We
continue by discussing different truncation schemes and how they can be motivated from the parquet
formalism, which offers an alternative field-theoretical description of the many-body problem up to
the two-particle level. Given the vast amount of literature that exists on the matter, some of our
considerations are kept short and the reader is encouraged to follow the given references, which provide
excellent discussions beyond the scope of this work.

2.1 Generating functionals
We consider Hamiltonians of the form H = H0 + Hint, featuring a quadratic part

H0 =
∑

x′
1,x1

ξx′
1|x1c

†
x′

1
cx1 , (2.1)

and a two-particle interaction

Hint =
∑

x′
1,x

′
2,x1,x2

Vx′
1x

′
2|x1x2c

†
x′

1
c†
x′

2
cx2cx1 . (2.2)

Here, c†
x (cx) creates (annihilates) a fermion with quantum numbers encoded in the multi-index x.

According to the algebra of fermionic operators, the matrix elements Vx′
1x

′
2|x1x2 must be antisymmetric

with respect to permutations (x′
1 ↔ x′

2) and (x1 ↔ x2), as indicated by a vertical line separating the
respective index sets.
Since fRG is formulated in the path-integral formalism, we introduce the action of our Hamiltonian in
terms of Grassmann fields ψ̄, ψ as

S[ψ̄, ψ] = −(ψ̄, G−1
0 ψ) +

∑

x′
1,x

′
2,x1,x2

Vx′
1x

′
2|x1x2 ψ̄x′

1
ψ̄x′

2
ψx2ψx1 , (2.3)

where we defined (ψ̄, G−1
0 ψ) ≡ ∑x′

1,x1
ψ̄x′

1
[G−1

0 ]x′
1x1ψx1 . The bare propagator G0 can be determined

from H0 and we write out its algebraic expression explicitly once we settle on a particular model.
For now, however, G0 is left unspecified. The partition function Z for the action in Eq. (2.3) can be
expressed as

Z = 1
Z0

∫
D[ψ̄, ψ]e−S[ψ̄,ψ] , (2.4)
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Figure 2.1: Schematic illustration of the functional renormalization group. The effective action
Γ[ϕ̄, ϕ] lives in a high-dimensional parameter space spanned by the self-energy Σ, the two-particle vertex Γ2
and higher-order vertex functions. Under the RG flow, the couplings are evolved from the ultraviolet (UV) to
the infrared (IR) limit as a function of some cutoff scale Λ. In practical applications, however, approximations
are unavoidable, such that one computes effective low-energy theories only in proximity to the exact solution
(grey). The multiloop (mℓ) truncation, for example, successively incorporates more complex diagrams, until
one recovers a solution to the parquet approximation (PA) for m → ∞.

where we normalize with its non-interacting counterpart Z0.
The sought-after quantities for a given action are correlations between its fermionic constituents, which
can be computed as Taylor coefficients of properly defined generating functionals. The generator of
disconnected n-particle Green’s functions W [η̄, η], for example, is obtained by adding source fields η̄, η
to the partition function, yielding

W [η̄, η] = 1
Z0

∫
D[ψ̄, ψ]e−S[ψ̄,ψ]−(ψ̄,η)−(η̄,ψ) . (2.5)

Disconnected correlation functions can subsequently be calculated as

Gn(x′
1, ..., x

′
n|x1, ..., xn) = δn

δη̄x1 ...δη̄xn

δn

δηx′
n
...δηx′

1

W [η̄, η]
∣∣∣∣
η̄=η=0

. (2.6)

The Gn are fully determined by their connected components as spawned by the Schwinger functional
Wc[η̄, η] = ln(W [η̄, η]), whose Legendre transform

Γ[ϕ̄, ϕ] = −Wc[η̄, η] − (ϕ̄, η) − (η̄, ϕ) + (ϕ̄, G−1
0 ϕ) , (2.7)

is the generator for one-particle irreducible (1PI) vertex functions [15]. Here, ϕ = − δWc[η̄,η]
δη̄ and

ϕ̄ = δWc[η̄,η]
δη denote conjugate source fields. The 1PI vertices cannot be decomposed any further

by cutting single propagator lines and thus constitute the elementary building blocks for computing
connected correlation functions via the so-called tree expansion [15]. To clarify their physical meaning,
let us consider the matrix identity

R ≡
(

δ2Wc[η̄,η]
δη̄δη − δ2Wc[η̄,η]

δη̄δη̄

− δ2Wc[η̄,η]
δηδη

δ2Wc[η̄,η]
δηδη̄

)
=



δ2Γ[ϕ̄,ϕ]
δϕ̄δϕ

+G−1
0

δ2Γ[ϕ̄,ϕ]
δϕ̄δϕ̄

δ2Γ[ϕ̄,ϕ]
δϕδϕ

δ2Γ[ϕ̄,ϕ]
δϕδϕ̄

− (G−1
0 )T




−1

, (2.8)

which can be derived from Eq. (2.7). Focusing on the matrix element to the upper left for vanishing
source fields and pairing terms1, we find the identity

G =
(
G−1

0 + Γ1
)−1

, (2.9)

1 With pairing terms, we refer to derivatives δ2F
δψδψ

and the likes of them. F denotes some generic functional of
Grassmann fields.
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where we defined the dressed or full propagator

G ≡ δWc[η̄, η]
δη̄δη

∣∣∣∣
η̄=η=0

, (2.10)

and the one-particle vertex

Γ1 ≡ δΓ[ϕ̄, ϕ]
δϕ̄δϕ

∣∣∣∣
ϕ̄=ϕ=0

. (2.11)

Equation (2.9) resembles the form of Dyson’s identity G = (G−1
0 − Σ)−1, which defines the self-energy

as the interaction correction to the bare propagator. Consequently, Γ1 = −Σ. This sheds light on
the interpretation of 1PI vertices: they capture effective many-body interactions and their generating
functional Γ[ϕ̄, ϕ] is therefore commonly referred to as effective action [11, 15].

2.2 Exact flow equations
The central step for setting up the fRG approach amounts to implementing a cutoff Λ into the bare
propagator, such that it vanishes in the ultraviolet limit, GΛ→∞

0 = 0, and coalesces with G0 when
approaching the infrared, GΛ→0

0 = G0. By construction, all other Green’s functions become cutoff
dependent, too, since they depend on G0 through their respective generating functional. In order to
capture the variation of 1PI vertices under incremental changes of the cutoff parameter, one rephrases
Eq. (2.7) as a differential equation. For this sake, we need the cutoff-derivative of Wc[η̄, η], which
reads

d

dΛW
Λ
c [η̄, η] = − Tr

(
QΛGΛ

0
)

+ Tr
(
QΛ δ

2WΛ
c [η̄, η]
δη̄δη

)
−
(
δWΛ

c [η̄, η]
δη

,QΛ δW
Λ
c [η̄, η]
δη̄

)
, (2.12)

with QΛ ≡ d
dΛ (GΛ

0 )−1. The cutoff-derivative of the effective action evaluates to

d

dΛΓΛ[ϕ̄, ϕ] = − d

dΛW
Λ
c [η̄Λ, ηΛ] −

(
ϕ̄,

d

dΛη
Λ
)

−
(
d

dΛ η̄
Λ, ϕ

)
+
(
ϕ̄, QΛϕ

)
, (2.13)

where a Λ-dependence needs to be added to the η̄, η source fields to make up for the change of variables
in the Legendre transformation. Plugging Eq. (2.12) into Eq. (2.13) one finds

d

dΛΓΛ[ϕ̄, ϕ] = Tr
(
QΛGΛ

0
)

− Tr
(
QΛRΛ

11
)
, (2.14)

where we made use of Eq. (2.8). Eliminating G−1
0 in R using Dyson’s equation, this expression can be

rephrased as
d

dΛΓΛ[ϕ̄, ϕ] = Tr
(
QΛGΛ

0
)

− Tr
(
GΛQΛR̃Λ

11
)
, (2.15)

where R̃Λ
11 denotes the upper left element of

R̃Λ =


1 −

(−GΛ 0
0

(
GΛ)T

)
 UΛ δ2ΓΛ[ϕ̄,ϕ]

δϕ̄δϕ̄
δ2ΓΛ[ϕ̄,ϕ]
δϕδϕ −(UΛ)T






−1

, (2.16)

with UΛ = δ2ΓΛ[ϕ̄,ϕ]
δϕ̄δϕ

− ΓΛ
1 . R̃Λ resembles a geometric series, which is particularly useful for the

derivation of vertex flow equations discussed below.
Starting from Eq. (2.15), we expand ΓΛ[ϕ̄, ϕ] in powers of the conjugate source fields

ΓΛ[ϕ̄, ϕ] =
∞∑

n=0

(−1)n
(n!)2

∑

x′
1,...,x

′
n

x1,...,xn

ΓΛ
n(x′

1, ..., x
′
n|x1, ..., xn)ϕ̄x′

1
...ϕ̄x′

n
ϕxn ...ϕx1 , (2.17)

in order to obtain flow equations for the Taylor coefficients of the effective action (see Fig. 2.1). Limiting
ourselves to terms of first and second order in the fields, we arrive at the self-energy flow

d

dΛΣΛ(x′
1|x1) = −[ΓΛ ◦ SΛ]Σ ≡ −

∑

x′
2,x2

ΓΛ(x′
1, x

′
2|x1, x2)SΛ(x2|x′

2) . (2.18)
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Here, SΛ ≡ GΛQΛGΛ = − d
dΛG

Λ|ΣΛ
2 denotes the single-scale propagator. The corresponding flow

equation for the two-particle vertex reads
d

dΛΓΛ(x′
1, x

′
2|x1, x2) =

∑

x′
3,x3

ζΛ(x′
1, x

′
2, x

′
3|x1, x2, x3)SΛ(x3|x′

3)

+
∑

x′
3,x

′
4,x3,x4

[ΓΛ(x′
3, x

′
4|x1, x2)ΓΛ(x′

1, x
′
2|x3, x4)

− ΓΛ(x′
1, x

′
4|x1, x3)ΓΛ(x′

3, x
′
2|x4, x2) − (x′

3 ↔ x′
4, x3 ↔ x4)

+ ΓΛ(x′
2, x

′
4|x1, x3)ΓΛ(x′

3, x
′
1|x4, x2) + (x′

3 ↔ x′
4, x3 ↔ x4)]

×GΛ(x3|x′
3)SΛ(x4|x′

4) , (2.19)

where we employed the abbreviations

ΓΛ(x′
1, x

′
2|x1, x2) ≡ ΓΛ

2 (x′
1, x

′
2|x1, x2)

ζΛ(x′
1, x

′
2, x

′
3|x1, x2, x3) ≡ ΓΛ

3 (x′
1, x

′
2, x

′
3|x1, x2, x3) . (2.20)

For Λ → ∞, the effective action reduces to the bare many-body interactions [15], which constitute the
initial condition for the RG flow. Here, we have focused on two-particle interactions and as such only
Γ survives in the UV limit

ΓΛ→∞(x′
1, x

′
2|x1, x2) = Γ0(x′

1, x
′
2|x1, x2) = Vx′

1x
′
2|x1x2 . (2.21)

To simplify the following discussions, contributions to d
dΛΓΛ are grouped into three channels: the

particle-particle (s) channel, the direct particle-hole (t) channel and the crossed particle-hole (u)
channel, corresponding to the first/second/third diagram depicted in Fig. 2.2, respectively. A diagram
is referred to as two-particle reducible (2PR) in the s channel if it can be decomposed by cutting two
parallel propagator lines. Diagrams which can be split up by cutting two antiparallel lines, on the other
hand, are dubbed particle-hole reducible and therefore belong either to the t or u channel, depending
on whether the disconnected parts carry external indices (x′

1, x1)/(x′
2, x2) or (x′

2, x1)/(x′
1, x2). Note

that two-particle diagrams are either s/t/u-reducible or fully two-particle irreducible (2PI). With each
channel c, we associate a bubble function Bc = [Γ ◦ (G × G′) ◦ Γ′]c defined for generic two-particle
vertices Γ,Γ′ and propagators G,G′, namely

Bs(x′
1, x

′
2|x1, x2) ≡ −1

2
∑

x′
3,x

′
4,x3,x4

Γ(x′
3, x

′
4|x1, x2)G(x3|x′

3)G′(x4|x′
4)Γ′(x′

1, x
′
2|x3, x4)

Bt(x′
1, x

′
2|x1, x2) ≡ +

∑

x′
3,x

′
4,x3,x4

Γ(x′
1, x

′
4|x1, x3)G(x3|x′

3)G′(x4|x′
4)Γ′(x′

3, x
′
2|x4, x2)

Bu(x′
1, x

′
2|x1, x2) ≡ −

∑

x′
3,x

′
4,x3,x4

Γ(x′
2, x

′
4|x1, x3)G(x3|x′

3)G′(x4|x′
4)Γ′(x′

3, x
′
1|x4, x2) . (2.22)

Hence, the flow of the two-particle vertex can be compactly written as
d

dΛΓΛ(x′
1, x

′
2|x1, x2) =

∑

x′
3,x3

ζΛ(x′
1, x

′
2, x

′
3|x1, x2, x3)SΛ(x3|x′

3) +
∑

c

B̃Λ
c (x′

1, x
′
2|x1, x2) , (2.23)

with B̃Λ
c = [ΓΛ ◦ d

dΛ (GΛ ×GΛ)
∣∣
ΣΛ ◦ ΓΛ]c. Note that the particle-hole bubbles fulfill

Bt(x′
1, x

′
2|x1, x2) = −Bu(x′

2, x
′
1|x1, x2) = −Bu(x′

1, x
′
2|x2, x1)

Bu(x′
1, x

′
2|x1, x2) = −Bt(x′

2, x
′
1|x1, x2) = −Bt(x′

1, x
′
2|x2, x1) , (2.24)

which follows from antisymmetry of the two-particle vertex under commutations of incoming or outgoing
legs (crossing symmetry).
The biggest obstacle in solving the flow equations is the appearance of the three-particle vertex ζ in
Eq. (2.19). Generally speaking, the flow for any 1PI vertex Γn depends on all Γm with m ≤ n + 1,
such that a closed set of fRG equations necessitates a truncation. In the next section, we discuss three
different truncation schemes of increasing diagrammatic complexity and how they can be derived from
the parquet formalism.
2 d

dΛ GΛ|ΣΛ is a shorthand notation for d
dΛ GΛ|ΣΛ=const..
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1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="I2VC/pcOPLcN1XK7X49ZAzm5YKA=">AAACJ3icbVDLSgNBEJz1Gd+JHr0sBsFT2BVRL0LQi8cIRgNJkN7Z3mRwHsvMrBKWfIFX/Qi/xpvo0T9xElcwiQUNRVU33V1RypmxQfDpzc0vLC4tl1ZW19Y3NrfKle0bozJNsUkVV7oVgUHOJDYtsxxbqUYQEcfb6P5i5N8+oDZMyWs7SLEroCdZwihYJ12d3ZWrQS0Yw58lYUGqpEDjruKVO7GimUBpKQdj2mGQ2m4O2jLKcbjayQymQO+hh21HJQg03Xx86dDfd0rsJ0q7ktYfq38nchDGDETkOgXYvpn2RuJ/XjuzyWk3ZzLNLEr6syjJuG+VP3rbj5lGavnAEaCauVt92gcN1LpwJrZwoWLU0j2iUeIjVUKAjPNOAoLxQYwJZNwO845JfrnLMJxObJbcHNbC49rR1VG1fl6kWSK7ZI8ckJCckDq5JA3SJJQgeSLP5MV79d68d+/jp3XOK2Z2yAS8r29i96bW</latexit>=
<latexit sha1_base64="5qUZb+nWBJFOQpNpcpbjXQWeM2Q=">AAACJ3icbVDLSgNBEJyN7/iKevSyGAQvhl0J6jHoxaOCiYEkhN7Z3mTIPJaZWSUs+QKv+hF+jTfRo3/i5CGosaChqOqmuytKOTM2CD68wsLi0vLK6lpxfWNza7u0s9swKtMU61RxpZsRGORMYt0yy7GZagQRcbyLBpdj/+4etWFK3tphih0BPckSRsE66ea4WyoHlWACf56EM1ImM1x3d7xSO1Y0Eygt5WBMKwxS28lBW0Y5jortzGAKdAA9bDkqQaDp5JNLR/6hU2I/UdqVtP5E/TmRgzBmKCLXKcD2zV9vLP7ntTKbnHdyJtPMoqTTRUnGfav88dt+zDRSy4eOANXM3erTPmig1oXzawsXKkYt3SMaJT5QJQTIOG8nIBgfxphAxu0ob5vkm7sMw7+JzZPGSSU8rVRvquXaxSzNVbJPDsgRCckZqZErck3qhBIkj+SJPHsv3qv35r1PWwvebGaP/IL3+QVGx6bG</latexit>≠

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+

<latexit sha1_base64="eK5HJwlvzwpbRotxUj4vpl98Mb4=">AAACMXicbZDLSsNAFIYnXuu96tJNsAiuSlKKuhTduKxgW6EpcjI5qYNzCTMTpYQ8hlt9CJ+mO3HrSzi9CFr9YeDjP+dwzvxxxpmxQTDyFhaXlldWK2vrG5tb2zvV3b2OUbmm2KaKK30bg0HOJLYtsxxvM40gYo7d+OFyXO8+ojZMyRs7zLAvYCBZyihYZ/WiVAMtwrJolHfVWlAPJvL/QjiDGpmpdbfrVaNE0VygtJSDMb0wyGy/AG0Z5ViuR7nBDOgDDLDnUIJA0y8mN5f+kXMSP1XaPWn9iftzogBhzFDErlOAvTfztbH5X62X2/SsXzCZ5RYlnS5Kc+5b5Y8D8BOmkVo+dABUM3erT+/BxWBdTL+2cKES1NJ9RKPEJ6qEAJkUUQqC8WGCKeTclkVk0m92GYbzif2FTqMentSb183a+cUszQo5IIfkmITklJyTK9IibUKJIs/khbx6b97Ie/c+pq0L3mxmn/yS9/kFEWGrSA==</latexit>1
2

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+
<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk=">AAACPXicbVDLShxBFK32ER8xyai4ctNkELMaukWiS4kblwYcFaaH4Xb1baewHk3VbXUo+mPcxo/Id+QD3Em22aZmHMHXgYLDOffWqTp5JYWjJPkTzczOzX9YWFxa/rjy6fOX1uraqTO15djlRhp7noNDKTR2SZDE88oiqFziWX55OPbPrtA6YfQJjSrsK7jQohQcKEiD1sZORnhDk4v89VAQNn67GbTaSSeZIH5L0ilpsymOB6tRKysMrxVq4hKc66VJRX0PlgSX2CxntcMK+CVcYC9QDQpd309im3grKEVcGhuOpniiPt/woJwbqTxMKqChe+2Nxfe8Xk3lft8LXdWEmj8GlbWMycTjMuJCWOQkR4EAtyK8NeZDsMApVPYiRSpToNXhIxY1XnOjFOjCZyUoIUcFllBLanzmyiceOkxfN/aWnO500u+d3Z+77YMf0zYX2Sb7yr6xlO2xA3bEjlmXcebZLfvF7qLf0X30EP19HJ2Jpjvr7AWif/8B+VSwPA==</latexit>

2Õ<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ

<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ<latexit sha1_base64="rlX3i38cMz+Dw/P9puSnnzRxtMc=">AAAB/HicdVDLSgNBEJyNrxhfUY9eBoPgaZmYxE1uAS8eEzAPSJYwO+kkQ2Znl5lZIYT4A171D7yJV//FH/A7nDwEI1rQUFR1090VxIJrQ8iHk9rY3NreSe9m9vYPDo+yxydNHSWKQYNFIlLtgGoQXELDcCOgHSugYSCgFYxv5n7rHpTmkbwzkxj8kA4lH3BGjZXqupfNEZcUS5VCERO34FW8UsGSa69QJh7Ou2SBHFqh1st+dvsRS0KQhgmqdSdPYuNPqTKcCZhluomGmLIxHULHUklD0P50cegMX1iljweRsiUNXqg/J6Y01HoSBrYzpGakf3tz8S+vk5hB2Z9yGScGJFsuGiQCmwjPv8Z9roAZMbGEMsXtrZiNqKLM2GzWtogw6oOSMxvM9/f4f9K8cvMll9SLuWqtuowojc7QObpEeeShKrpFNdRADAF6RE/o2XlwXpxX523ZmnJWsZ6iNTjvX82Ilnk=</latexit>s

<latexit sha1_base64="Yg6ghxn96R8Xu54wUZTM2e6KDXE=">AAAB/HicdVDLSgNBEJyNrxhfUY9eBoPgaZmNJm5uAS8eEzAxkCxhdtJJhszOLjOzQgjxB7zqH3gTr/6LP+B3OHkIRrSgoajqprsrTATXhpAPJ7O2vrG5ld3O7ezu7R/kD4+aOk4VgwaLRaxaIdUguISG4UZAK1FAo1DAXTi6nvl396A0j+WtGScQRHQgeZ8zaqxUT7v5AnErfsUrlzFxS4T4/oyQi6JfrGDPJXMU0BK1bv6z04tZGoE0TFCt2x5JTDChynAmYJrrpBoSykZ0AG1LJY1AB5P5oVN8ZpUe7sfKljR4rv6cmNBI63EU2s6ImqH+7c3Ev7x2avp+MOEySQ1ItljUTwU2MZ59jXtcATNibAllittbMRtSRZmx2axsEVHcAyWnNpjv7/H/pFl0vZJL6peFaq26iCiLTtApOkceukJVdINqqIEYAvSIntCz8+C8OK/O26I14yxjPUYrcN6/ANFalns=</latexit>u

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="c9+MGXM+wvwoHO/DNdZoC5hCI9k=">AAAB/HicdVDLSgNBEJyNrxhfUY9eBoPgaZlNNsbcAl48JmAekIQwO+kkQ2Znl5lZIYT4A171D7yJV//FH/A7nDwEI1rQUFR1090VxIJrQ8iHk9rY3NreSe9m9vYPDo+yxycNHSWKQZ1FIlKtgGoQXELdcCOgFSugYSCgGYxv5n7zHpTmkbwzkxi6IR1KPuCMGivVTC+bI27J9/yrPCYuKRYK5YIlPikXSRF7Llkgh1ao9rKfnX7EkhCkYYJq3fZIbLpTqgxnAmaZTqIhpmxMh9C2VNIQdHe6OHSGL6zSx4NI2ZIGL9SfE1Maaj0JA9sZUjPSv725+JfXTszgujvlMk4MSLZcNEgENhGef437XAEzYmIJZYrbWzEbUUWZsdmsbRFh1AclZzaY7+/x/6SRd72iS2p+rlKtLCNKozN0ji6Rh0qogm5RFdURQ4Ae0RN6dh6cF+fVeVu2ppxVrKdoDc77F7DYlmY=</latexit>

t

<latexit sha1_base64="7qT9DLdfBTP7hqcNlW49LbWpAJs="></latexit>

d

d�
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c=">AAACPXicbVDLShxBFK32ER8xcTS4ctNkCMlq6BYxWYpuXBpwVJgehtvVt53CejRVt6ND0R+TrX6E3+EHuAtu3aZmHMHXgYLDOffWqTp5JYWjJLmNZmbn5j8sLC4tf1z59Hm1tbZ+7ExtOXa5kcae5uBQCo1dEiTxtLIIKpd4kp/vj/2TP2idMPqIRhX2FZxpUQoOFKRBayPNCC9pcpG/GArCxn9vBq120kkmiN+SdErabIrDwVrUygrDa4WauATnemlSUd+DJcElNstZ7bACfg5n2AtUg0LX95PYJv4WlCIujQ1HUzxRn294UM6NVB4mFdDQvfbG4nter6byV98LXdWEmj8GlbWMycTjMuJCWOQkR4EAtyK8NeZDsMApVPYiRSpToNXhIxY1XnCjFOjCZyUoIUcFllBLanzmyiceOkxfN/aWHG910p3O9u/t9u7etM1Ftsm+sh8sZT/ZLjtgh6zLOPPsL7ti19FNdBf9i+4fR2ei6c4X9gLRw3/3fbA7</latexit>
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Figure 2.2: fRG equations for the self-energy (a) and two-particle vertex (b). The slashed line in
the Σ-flow denotes a single-scale propagator SΛ, while pairs of slashed lines correspond to cutoff-derivatives
of the form d

dΛ (GΛ × GΛ)|ΣΛ (see text). The first three diagrams appearing in the Γ-flow differ in their
two-particle reducibility: they can either be split into disconnected parts by cutting parallel (for the s channel)
or antiparallel lines (for the t and u channel). The three-particle vertex ζ cannot be computed exactly and in
general requires some approximation. Note that we have exchanged the outgoing lines for both two-particle
vertices in the u channel compared to Eq. (2.19).

2.3 Systematic truncation via parquet approximation
In the last section, we derived flow equations for the self-energy and two-particle vertex, concluding
that some approximation for the three-particle vertex is vital for closing the infinite hierarchy of fRG
equations. Here, we switch gears and tackle the problem of computing fermionic vertices in the parquet
formalism [29], which provides a different, yet concomitant perspective on our previous considerations.
In doing so, we refrain from deriving the parquet equations explicitly, referring the reader to the
excellent discussion given in Ref. [30] instead.
Within the parquet formalism, the two-particle vertex is decomposed into two distinct classes of
diagrams, those which are 2PI and those reducible in one of the three channels introduced in Sec. 2.2.
Schematically, we may thus write

Γ = I2PI + γs + γt + γu , (2.25)

or, alternatively,

Γ = Ic + γc , (2.26)

where Ic = I2PI +
∑
c̄ γc̄

3 denotes diagrams irreducible in channel c. For each channel, one formulates
a self-consistent Bethe-Salpeter equation (BSE)

γc = [Ic ◦ (G×G) ◦ Γ]c = [Γ ◦ (G×G) ◦ Ic]c , (2.27)

which requires full propagators G as input [28, 29]. To dress them with self-energies, one determines Σ
likewise self-consistently via the Schwinger-Dyson equation (SDE), which, using the compact notation
introduced in the previous section, reads

Σ = [Γ0 ◦G]Σ + [[Γ0 ◦ (G×G) ◦ Γ]s ◦G]Σ = [Γ0 ◦G]Σ + 1
2 [[Γ0 ◦ (G×G) ◦ Γ]u ◦G]Σ . (2.28)

While solving the parquet equations for an action as in Eq. (2.3) amounts to finding an exact solution
for effective interactions up to the two-particle level [29, 30], one needs to determine I2PI before all
other vertices follow self-consistently from the SDE and BSEs. Away from weak-coupling, however,
this becomes a formidable challenge, since more complicated diagrams start to contribute. Henceforth,
we work in the famous parquet approximation (PA) [29], which replaces the fully irreducible vertex
by its first-order contribution I2PI = Γ0 (see Fig. 2.3). Although the PA corresponds to the most

3 With c̄ we refer to all c′ ̸= c.
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simple approximation for I2PI, it retains a number of useful properties by (a) summing up the
leading, logarithmically divergent diagrams from perturbation theory [29], (b) fulfilling the Mermin-
Wagner theorem [31], (c) presenting a conserving approximation on the one-particle level [32], and (d)
incorporating important diagrammatic identities [33].
In the following, we connect to our discussion of the fRG approach in Sec. 2.2 by using the parquet
approximation as an alternative starting point to derive flow equations for the self-energy and two-
particle vertex. Our motivation for doing so is twofold. On the one hand side, this allows us to replace
the set of algebraic parquet equations by ordinary differential equations, for which efficient numerical
solvers are readily available. On the other hand, different truncation schemes for approximating the
three-particle vertex in fRG can be developed in a systematic manner.
We start by equipping the bare propagator with an infrared cutoff Λ, i.e. G0 → GΛ

0 . Consequently, Σ
and Γ acquire a scale dependence through the SDE and BSEs, if we require the parquet equations to
hold at any value of Λ for a given I2PI [32]. Differentiating the c-channel with respect to the cutoff, we
therefore arrive at the flowing BSE

d

dΛγc =
[
d

dΛIc ◦ (G×G) ◦ Γ
]

c

+
[
Ic ◦ d

dΛ(G×G) ◦ Γ
]

c

+
[
Ic ◦ (G×G) ◦ d

dΛΓ
]

c

. (2.29)

Note that we refrain from writing out Λ-superscripts for brevity, since all object are implicitly cutoff
dependent. Using Γ = Ic + γc, the right hand side can be written as

d

dΛγc =
[
Γ ◦ d

dΛ(G×G) ◦ Γ
]

c

+
[
d

dΛIc ◦ (G×G) ◦ Γ
]

c

+
[
Γ ◦ (G×G) ◦ d

dΛIc
]

c

+
[
Γ ◦ (G×G) ◦ d

dΛγc
]

c

−
[
γc ◦ d

dΛ(G×G) ◦ Γ
]

c

−
[
γc ◦ (G×G) ◦ d

dΛΓ
]

c

. (2.30)

Finally, plugging [Eqs. (2.27) & (2.29)] into Eq. (2.30) yields

d

dΛγc =
[
Γ ◦ d

dΛ(G×G) ◦ Γ
]

c

+
[
d

dΛIc ◦ (G×G) ◦ Γ
]

c

+
[
Γ ◦ (G×G) ◦ d

dΛIc
]

c

+
[
Γ ◦ (G×G) ◦

[
d

dΛIc ◦ (G×G) ◦ Γ
]

c

]

c

, (2.31)

where we have ordered the contributions to the flow of γc according to the position of the cutoff-
derivative in their respective bubble function. The first line in Eq. (2.31), which we dub one-loop part
γ̇

(1ℓ)
c , resembles B̃c, except that single-scale propagators are substituted by full Λ-derivatives of G.

The three leftover terms are referred to as left, right and central part and denoted by γ̇Lc , γ̇Rc and γ̇Cc ,
respectively. In consequence, we can recast Eq. (2.31) in the compact form

d

dΛγc = γ̇(1ℓ)
c + γ̇Lc + γ̇Cc + γ̇Rc , (2.32)

from which the flow of the full two-particle vertex follows as d
dΛΓ =

∑
c
d
dΛγc. Remarkably, the

inner bubble of the central part can be substituted for the right vertex object (as in [Eq. (2.31)]) or,
alternatively, for the left one. This can be seen, for example, by writing out the bubble functions
explicitly and comparing the resulting expressions.
Although conceptually simple, deriving a flow equation for the self-energy from the SDE requires
extensive algebraic modifications to rephrase all terms by known objects. Hence, we content ourselves
with stating the final result

d

dΛΣ = − [Γ ◦ S]Σ + Σ̇1 + Σ̇2

Σ̇1 =
[
γ̇Ct̄ ◦G

]
Σ

Σ̇2 =
[
Γ ◦ (G× Σ̇1 ×G)

]
Σ , (2.33)
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Functional renormalization group

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="I2VC/pcOPLcN1XK7X49ZAzm5YKA=">AAACJ3icbVDLSgNBEJz1Gd+JHr0sBsFT2BVRL0LQi8cIRgNJkN7Z3mRwHsvMrBKWfIFX/Qi/xpvo0T9xElcwiQUNRVU33V1RypmxQfDpzc0vLC4tl1ZW19Y3NrfKle0bozJNsUkVV7oVgUHOJDYtsxxbqUYQEcfb6P5i5N8+oDZMyWs7SLEroCdZwihYJ12d3ZWrQS0Yw58lYUGqpEDjruKVO7GimUBpKQdj2mGQ2m4O2jLKcbjayQymQO+hh21HJQg03Xx86dDfd0rsJ0q7ktYfq38nchDGDETkOgXYvpn2RuJ/XjuzyWk3ZzLNLEr6syjJuG+VP3rbj5lGavnAEaCauVt92gcN1LpwJrZwoWLU0j2iUeIjVUKAjPNOAoLxQYwJZNwO845JfrnLMJxObJbcHNbC49rR1VG1fl6kWSK7ZI8ckJCckDq5JA3SJJQgeSLP5MV79d68d+/jp3XOK2Z2yAS8r29i96bW</latexit>=
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+
<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="LaKfqkS+odpgipk1c6CpeHdni1c=">AAACKXicbVDLSgNBEJz1Gd+JHr0sBsFT2BVFj0EveotojJCE0DvbmwzOY5mZVcKST/CqH+HXeFOv/oiTZAVfBQ1FVTfdXVHKmbFB8ObNzM7NLyyWlpZXVtfWN8qVzWujMk2xSRVX+iYCg5xJbFpmOd6kGkFEHFvR7enYb92hNkzJKztMsSugL1nCKFgnXZ73sl65GtSCCfy/JCxIlRRo9CpeuRMrmgmUlnIwph0Gqe3moC2jHEfLncxgCvQW+th2VIJA080nt478XafEfqK0K2n9ifp9IgdhzFBErlOAHZjf3lj8z2tnNjnu5kymmUVJp4uSjPtW+ePH/ZhppJYPHQGqmbvVpwPQQK2L58cWLlSMWrpHNEq8p0oIkHHeSUAwPowxgYzbUd4xyRd3GYa/E/tLrvdr4WEtuDio1k+KNEtkm+yQPRKSI1InZ6RBmoSSPnkgj+TJe/ZevFfvfdo64xUzW+QHvI9PN1KnxQ==</latexit>

Iu <latexit sha1_base64="5qUZb+nWBJFOQpNpcpbjXQWeM2Q=">AAACJ3icbVDLSgNBEJyN7/iKevSyGAQvhl0J6jHoxaOCiYEkhN7Z3mTIPJaZWSUs+QKv+hF+jTfRo3/i5CGosaChqOqmuytKOTM2CD68wsLi0vLK6lpxfWNza7u0s9swKtMU61RxpZsRGORMYt0yy7GZagQRcbyLBpdj/+4etWFK3tphih0BPckSRsE66ea4WyoHlWACf56EM1ImM1x3d7xSO1Y0Eygt5WBMKwxS28lBW0Y5jortzGAKdAA9bDkqQaDp5JNLR/6hU2I/UdqVtP5E/TmRgzBmKCLXKcD2zV9vLP7ntTKbnHdyJtPMoqTTRUnGfav88dt+zDRSy4eOANXM3erTPmig1oXzawsXKkYt3SMaJT5QJQTIOG8nIBgfxphAxu0ob5vkm7sMw7+JzZPGSSU8rVRvquXaxSzNVbJPDsgRCckZqZErck3qhBIkj+SJPHsv3qv35r1PWwvebGaP/IL3+QVGx6bG</latexit>≠

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="Yd33R4KNmnCAB8jchM7Uwr3cl9Y=">AAACKXicbVDLSgNBEJz1/Tbq0ctiEDyFXVH0GPSiN0WjQhJC72xvHJzHMtOrhCWf4FU/wq/xpl79EScxgq+ChqKqm+6uJJfCURS9BmPjE5NT0zOzc/MLi0vLlZXVC2cKy7HBjTT2KgGHUmhskCCJV7lFUInEy+TmcOBf3qJ1wuhz6uXYVtDVIhMcyEtnxx3qVKpRLRoi/EviEamyEU46K0GllRpeKNTEJTjXjKOc2iVYElxif65VOMyB30AXm55qUOja5fDWfrjplTTMjPWlKRyq3ydKUM71VOI7FdC1++0NxP+8ZkHZfrsUOi8INf9clBUyJBMOHg9TYZGT7HkC3Ap/a8ivwQInH8+PLVKZFK32j1jUeMeNUqDTspWBErKXYgaFpH7ZctkX9xnGvxP7Sy62a/FuLTrdqdYPRmnOsHW2wbZYzPZYnR2xE9ZgnHXZPXtgj8FT8By8BG+frWPBaGaN/UDw/gE1j6fE</latexit>

It

<latexit sha1_base64="VBq4h2gL06W3iIgixWkuhsZPCpI="></latexit>

(a)

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="I2VC/pcOPLcN1XK7X49ZAzm5YKA=">AAACJ3icbVDLSgNBEJz1Gd+JHr0sBsFT2BVRL0LQi8cIRgNJkN7Z3mRwHsvMrBKWfIFX/Qi/xpvo0T9xElcwiQUNRVU33V1RypmxQfDpzc0vLC4tl1ZW19Y3NrfKle0bozJNsUkVV7oVgUHOJDYtsxxbqUYQEcfb6P5i5N8+oDZMyWs7SLEroCdZwihYJ12d3ZWrQS0Yw58lYUGqpEDjruKVO7GimUBpKQdj2mGQ2m4O2jLKcbjayQymQO+hh21HJQg03Xx86dDfd0rsJ0q7ktYfq38nchDGDETkOgXYvpn2RuJ/XjuzyWk3ZzLNLEr6syjJuG+VP3rbj5lGavnAEaCauVt92gcN1LpwJrZwoWLU0j2iUeIjVUKAjPNOAoLxQYwJZNwO845JfrnLMJxObJbcHNbC49rR1VG1fl6kWSK7ZI8ckJCckDq5JA3SJJQgeSLP5MV79d68d+/jp3XOK2Z2yAS8r29i96bW</latexit>=
<latexit sha1_base64="eK5HJwlvzwpbRotxUj4vpl98Mb4=">AAACMXicbZDLSsNAFIYnXuu96tJNsAiuSlKKuhTduKxgW6EpcjI5qYNzCTMTpYQ8hlt9CJ+mO3HrSzi9CFr9YeDjP+dwzvxxxpmxQTDyFhaXlldWK2vrG5tb2zvV3b2OUbmm2KaKK30bg0HOJLYtsxxvM40gYo7d+OFyXO8+ojZMyRs7zLAvYCBZyihYZ/WiVAMtwrJolHfVWlAPJvL/QjiDGpmpdbfrVaNE0VygtJSDMb0wyGy/AG0Z5ViuR7nBDOgDDLDnUIJA0y8mN5f+kXMSP1XaPWn9iftzogBhzFDErlOAvTfztbH5X62X2/SsXzCZ5RYlnS5Kc+5b5Y8D8BOmkVo+dABUM3erT+/BxWBdTL+2cKES1NJ9RKPEJ6qEAJkUUQqC8WGCKeTclkVk0m92GYbzif2FTqMentSb183a+cUszQo5IIfkmITklJyTK9IibUKJIs/khbx6b97Ie/c+pq0L3mxmn/yS9/kFEWGrSA==</latexit>1
2

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ

<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk=">AAACPXicbVDLShxBFK32ER8xyai4ctNkELMaukWiS4kblwYcFaaH4Xb1baewHk3VbXUo+mPcxo/Id+QD3Em22aZmHMHXgYLDOffWqTp5JYWjJPkTzczOzX9YWFxa/rjy6fOX1uraqTO15djlRhp7noNDKTR2SZDE88oiqFziWX55OPbPrtA6YfQJjSrsK7jQohQcKEiD1sZORnhDk4v89VAQNn67GbTaSSeZIH5L0ilpsymOB6tRKysMrxVq4hKc66VJRX0PlgSX2CxntcMK+CVcYC9QDQpd309im3grKEVcGhuOpniiPt/woJwbqTxMKqChe+2Nxfe8Xk3lft8LXdWEmj8GlbWMycTjMuJCWOQkR4EAtyK8NeZDsMApVPYiRSpToNXhIxY1XnOjFOjCZyUoIUcFllBLanzmyiceOkxfN/aWnO500u+d3Z+77YMf0zYX2Sb7yr6xlO2xA3bEjlmXcebZLfvF7qLf0X30EP19HJ2Jpjvr7AWif/8B+VSwPA==</latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="Rk1nL+lPNB1XRz9r+v5idI0cEA4=">AAACKXicbVDLSgNBEJz1Gd+JHr0sBsFT2BVFj0EveotojJCE0DvbmwzOY5mZVcKST/CqH+HXeFOv/oiTZAVfBQ1FVTfdXVHKmbFB8ObNzM7NLyyWlpZXVtfWN8qVzWujMk2xSRVX+iYCg5xJbFpmOd6kGkFEHFvR7enYb92hNkzJKztMsSugL1nCKFgnXZ73TK9cDWrBBP5fEhakSgo0ehWv3IkVzQRKSzkY0w6D1HZz0JZRjqPlTmYwBXoLfWw7KkGg6eaTW0f+rlNiP1HalbT+RP0+kYMwZigi1ynADsxvbyz+57Uzmxx3cybTzKKk00VJxn2r/PHjfsw0UsuHjgDVzN3q0wFooNbF82MLFypGLd0jGiXeUyUEyDjvJCAYH8aYQMbtKO+Y5Iu7DMPfif0l1/u18LAWXBxU6ydFmiWyTXbIHgnJEamTM9IgTUJJnzyQR/LkPXsv3qv3Pm2d8YqZLfID3scnM8ynww==</latexit>

Is

<latexit sha1_base64="50KZh0CMHWyw9A8XJzkJjwzvrw4="></latexit>

(b)
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="9SGA9Cpzk15nVMB/Yi0MsVS+MjU=">AAACDXicbZDLSsNAGIUnXmu9RV26GSyCq5IURZcFN3YXwV6gDWEymbRDZyZhZlIoIc/gC7jVN3Anbn0GX8DncNJ2YVt/GDic8w//4QtTRpV2nG9rY3Nre2e3slfdPzg8OrZPTjsqySQmbZywRPZCpAijgrQ11Yz0UkkQDxnphuP7Mu9OiFQ0EU96mhKfo6GgMcVIGyuw7VaQDzjSI8nzhtcqisCuOXVnNnBduAtRA4vxAvtnECU440RozJBSfddJtZ8jqSlmpKgOMkVShMdoSPpGCsSJ8vNZ8wJeGieCcSLNExrO3L8/csSVmvLQbJYl1WpWmv9l/UzHd35ORZppIvD8UJwxqBNYYoARlQRrNjUCYUlNV4hHSCKsDaylK4wnEZGiBOOuYlgXnUbdvak7j9e1ptecI6qAc3ABroALbkETPAAPtAEGE/ACXsGb9Wy9Wx/W53x1w1pgPQNLY339AmTrnLs=</latexit>

I2PI

<latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="HXDccq4kahcfVyuUsEgPsnb1hO4=">AAACA3icbVDJSgNBEO2JW4xb1KOXxiB4CjOi6DHgQY8RzALJEHp6apImvQzdPUIYcvQHvOofeBOvfog/4HfYWQ4m8UHB470qqupFKWfG+v63V1hb39jcKm6Xdnb39g/Kh0dNozJNoUEVV7odEQOcSWhYZjm0Uw1ERBxa0fB24reeQBum5KMdpRAK0pcsYZRYJ7W7d0QI0vN75Ypf9afAqySYkwqao94r/3RjRTMB0lJOjOkEfmrDnGjLKIdxqZsZSAkdkj50HJVEgAnz6b1jfOaUGCdKu5IWT9W/EzkRxoxE5DoFsQOz7E3E/7xOZpObMGcyzSxIOluUZBxbhSfP45hpoJaPHCFUM3crpgOiCbUuooUtXKgYtBy7YILlGFZJ86IaXFX9h8tKrV6bRVREJ+gUnaMAXaMaukd11EAUcfSCXtGb9+y9ex/e56y14M1jPUYL8L5+ARLqmMA=</latexit>�0

<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

<latexit sha1_base64="I2VC/pcOPLcN1XK7X49ZAzm5YKA=">AAACJ3icbVDLSgNBEJz1Gd+JHr0sBsFT2BVRL0LQi8cIRgNJkN7Z3mRwHsvMrBKWfIFX/Qi/xpvo0T9xElcwiQUNRVU33V1RypmxQfDpzc0vLC4tl1ZW19Y3NrfKle0bozJNsUkVV7oVgUHOJDYtsxxbqUYQEcfb6P5i5N8+oDZMyWs7SLEroCdZwihYJ12d3ZWrQS0Yw58lYUGqpEDjruKVO7GimUBpKQdj2mGQ2m4O2jLKcbjayQymQO+hh21HJQg03Xx86dDfd0rsJ0q7ktYfq38nchDGDETkOgXYvpn2RuJ/XjuzyWk3ZzLNLEr6syjJuG+VP3rbj5lGavnAEaCauVt92gcN1LpwJrZwoWLU0j2iUeIjVUKAjPNOAoLxQYwJZNwO845JfrnLMJxObJbcHNbC49rR1VG1fl6kWSK7ZI8ckJCckDq5JA3SJJQgeSLP5MV79d68d+/jp3XOK2Z2yAS8r29i96bW</latexit>=
<latexit sha1_base64="PZ4+3KvviC583bstCt9MhSj40sw=">AAACMXicbVDLSsNAFJ3U97vVpZtgEVyVRBRdVt24rGCr0BS5mdzUwXmEmYlSQj/DrX6EX+NO3PoTTtoK2npg4HDOvdwzJ844MzYI3r3K3PzC4tLyyura+sbmVrW23TEq1xTbVHGlb2MwyJnEtmWW422mEUTM8SZ+uCj9m0fUhil5bQcZ9gT0JUsZBeukbiTA3mtRtM6Gd9V60AhG8GdJOCF1MkHrruZVo0TRXKC0lIMx3TDIbK8AbRnlOFyNcoMZ0AfoY9dRCQJNrxhlHvr7Tkn8VGn3pPVH6u+NAoQxAxG7yTKjmfZK8T+vm9v0tFcwmeUWJR0fSnPuW+WXBfgJ00gtHzgCVDOX1af3oIFaV9OfK1yoBLV0H9Eo8YkqIUAmRZSCYHyQYAo5t8MiMukPdx2G043Nks5hIzxuBFdH9eb5pM1lskv2yAEJyQlpkkvSIm1CiSLP5IW8em/eu/fhfY5HK95kZ4f8gff1DU4+q2Y=</latexit>

PA
<latexit sha1_base64="ibCrmn+eeyT59Le8GqHTse//V2c="></latexit>

1Õ <latexit sha1_base64="UtsiLCco9IgKEJjmm7XvwBAzYws=">AAACKHicbVDLSgNBEJz1Gd+JHr0sBtFT2JWgHoNePEYxRkiC9M72JoPzWGZmlbDkD7zqR/g13iRXv8TJQ9DEgoaiqpvurijlzNggGHoLi0vLK6uFtfWNza3tnWJp986oTFNsUMWVvo/AIGcSG5ZZjvepRhARx2b0eDnym0+oDVPy1vZT7AjoSpYwCtZJN+HRQ7EcVIIx/HkSTkmZTFF/KHnFdqxoJlBaysGYVhiktpODtoxyHKy3M4Mp0EfoYstRCQJNJx+fOvAPnRL7idKupPXH6u+JHIQxfRG5TgG2Z2a9kfif18psct7JmUwzi5JOFiUZ963yR3/7MdNILe87AlQzd6tPe6CBWpfOny1cqBi1dI9olPhMlRAg47ydgGC8H2MCGbeDvG2SH+4yDGcTmyd3J5XwtFK9rpZrF9M0C2SfHJBjEpIzUiNXpE4ahJKEvJBX8ua9ex/epzectC5405k98gfe1ze33Kb7</latexit>

1Õ

<latexit sha1_base64="1Dj9nvkzXY6l5IYCVXXz9Y8zbfk="></latexit>

2Õ <latexit sha1_base64="pFbl7vmF4YAeyJHqpjXkE/03ljA=">AAACKHicbVDLSgNBEJz1GeMr0aOXxSB6CrsS1GPQi8coxgSSEHpne82QeSwzs0pY8gde9SP8Gm+Sq1/iJEbwVdBQVHXT3RWlnBkbBBNvYXFpeWW1sFZc39jc2i6Vd26NyjTFJlVc6XYEBjmT2LTMcmynGkFEHFvR8GLqt+5RG6bkjR2l2BNwJ1nCKFgnXR8f9kuVoBrM4P8l4ZxUyByNftkrdWNFM4HSUg7GdMIgtb0ctGWU47jYzQymQIdwhx1HJQg0vXx26tg/cErsJ0q7ktafqd8nchDGjETkOgXYgfntTcX/vE5mk7NezmSaWZT0c1GScd8qf/q3HzON1PKRI0A1c7f6dAAaqHXp/NjChYpRS/eIRokPVAkBMs67CQjGRzEmkHE7zrsm+eIuw/B3Yn/J7XE1PKnWrmqV+vk8zQLZI/vkiITklNTJJWmQJqEkIY/kiTx7L96r9+ZNPlsXvPnMLvkB7/0DuaCm/A==</latexit>

2Õ

Figure 2.3: Diagrammatic representation of the parquet equations. (a) The self-energy is computed
from the Schwinger-Dyson equation, such that the one and two-particle level are linked self-consistently.
(b) Contributions to the two-particle vertex are segregated into a two-particle irreducible part I2PI and three
2PR functions γc, each of which is determined by a Bethe-Salpeter equation. In the parquet approximation
(cyan box), I2PI is approximated by its lowest-order contribution Γ0.

and refer the reader to Ref. [32] for further details. Note that the first contribution to the Σ-flow in
the parquet approximation precisely coincides with the respective fRG flow derived in Sec. 2.2, while
the other terms correspond to higher-order corrections.
Taken together, these equations track the evolution of the self-energy and reducible vertices along a
self-consistent flow trajectory and their solution in the limit Λ → 0 is equivalent to solving the parquet
approximation. Nonetheless, the flowing SDE and BSEs resemble algebraic differential equations,
which are generally hard to solve. For this reason, we proceed by approximating them via ordinary
differential equations corresponding to resummation schemes of increasing diagrammatic complexity.
This allows us to establish a stringent connection between common fRG truncations and simplified
versions of the flowing PA.

2.3.1 Level-2 truncation

The simplest approximation for the flowing PA can be motivated from a perturbative point of view.
To begin with, let us consider the flow of reducible vertices in Eq. (2.32), in which we substitute full
vertices Γ by their lowest-order contribution Γ0. It immediately follows that the one-loop contribution
γ̇

(1ℓ)
c is at least second order in Γ0, while the left and right parts are O

(
Γ3

0
)
. Finally, contributions to

the central part start at fourth power in Γ0. Assuming the bare two-particle interactions to be weak,
it thus makes sense to maintain only the leading term, given by γ̇(1ℓ)

c , and discard the rest. Similarly,
one finds that the leading contribution to the self-energy flow is given by the single-scale loop, whereas
Σ̇1 and Σ̇2 are O

(
Γ4

0
)

and O
(
Γ5

0
)
, respectively.

The simplified flow equations for the self-energy and reducible vertices thus read

d

dΛΣ = −[Γ ◦ S]Σ
d

dΛγc =
[
Γ ◦ d

dΛ(G×G) ◦ Γ
]

c

. (2.34)

These particular equations, which will be discussed in greater detail in the next section, are known as
Katanin flow equations in the fRG context [26]. Note that so far, the γc-flow implicitly depends on the
flow of the self-energy due to the full Λ-derivative of G which appears in the bubble function. Therefore,
it silently incorporates additional third order contributions. More explicitly, the cutoff-derivative of
the (matrix valued) dressed propagator reads

d

dΛG = d

dΛ
(
G−1

0 − Σ
)−1 = −G

[
d

dΛ
(
G−1

0 − Σ
)]
G = −S +G

(
d

dΛΣ
)
G . (2.35)
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Consequently, the flow of the vertices can be split into two parts

d

dΛγc = − [Γ ◦ (S ×G+G× S) ◦ Γ]c +
[
Γ ◦
(
G

(
d

dΛΣ
)
G×G+G×G

(
d

dΛΣ
)
G

)
◦ Γ
]

c

, (2.36)

where the second term summarizes precisely these higher-order terms. In order to eliminate the
self-energy derivative from the vertex flows and thereby assemble flow equations which only contain the
leading terms in the bare coupling, we simply drop the second term from Eq. (2.36), which yields

d

dΛΣ = −[Γ ◦ S]Σ
d

dΛγc = − [Γ ◦ (S ×G+G× S) ◦ Γ]c . (2.37)

Remarkably, we may now establish a stringent connection between the leading-order PA flows in
Eq. (2.37) and the fRG equations (2.18) and (2.23): the former are recovered if one truncates all
vertices beyond the two-particle level from the fRG hierarchy. Therefore, we call Eq. (2.37) level-2
(L2) truncation.
Importantly, our arguments to rationalize Eq. (2.37) were entirely based on the presence of a small
bare interaction Γ0. We are, however, interested in finding a suitable approximation to the PA, which
is consistent for all RG scales Λ, not just in vicinity of the UV limit. To this end, we need to take the
scaling behavior of different contributions to the effective action into account. On the crudest level of
counting powers in Λ, one indeed finds that n-particle vertices with n ≥ 3 are irrelevant in the RG
sense [34], that is, they can be neglected at the infrared fixed point. For spatial dimensions d > 1 and
curved Fermi surfaces, this holds true even if an improved power counting is applied [34]. Hence, the
L2 equations should provide a qualitatively meaningful description of 1PI flows even upon lowering the
cutoff.
The most noteworthy simplification over the full PA that we reached thus far, is the removal of
differentiated vertices from the right hand side of the flow equations. In other words, we have successfully
replaced the algebraic differential equations (2.32) and (2.33) by a set of ordinary differential equations,
which can be solved numerically. Despite its simplicity (we merely distilled the leading-order terms
in the bare interaction), this approximation already captures the non-trivial interplay of fluctuations
in the 2PR channels and is therefore routinely employed to shed light on the pairing mechanism in
prototypical model systems of high temperature superconductivity such as cuprates or iron-pnictides
[11, 21, 35, 36]. More recently, it has also been applied to map out the phase diagrams of novel moiré
heterostructures and eludicate the role of competing instabilities therein [37–40]. Note, however, that
self-energy feedback is neglected in these works, i.e. the Σ-flow is set to zero and dressed propagators
are replaced by bare ones. From a scaling point of view [15, 34], this approximation is inconsistent:
the leading contribution [Γ ◦ S]Σ to the self-energy flow is non-negligible on the bare level and Σ has
marginal dependencies on Matsubara frequencies and momenta orthogonal to the Fermi surface. Yet,
the inclusion of self-energy effects is in general quite complicated, which motivates their neglect for
reasons of numerical simplicity if not for mathematical rigour.

2.3.2 Katanin’s self-energy corrections

In hindsight of the simplified flow equations obtained in the previous section, we may ask whether
there is any need to further improve them. After all, their validity could be justified on the bare
level and more importantly even at the IR fixed point. One of the reasons to do so, is to remedy
deficiencies related to the fulfillment of conservation laws. Recall that a solution of the full PA, which
we would obtain if we could solve [Eqs. (2.32) & (2.33)] in the infrared limit Λ → 0, is conserving
on the one-particle level and thus fulfills certain Ward identities. In the derivation of Eq. (2.37), we
have, however, discarded subclasses of parquet diagrams, which spoils the exact fulfillment of said
conservation laws.
To lower the systematic error induced by the L2 truncation, the Katanin substitution

S → − d

dΛG (2.38)

was proposed in Ref. [26]. It reinstantiates the full Λ-derivative of the propagator and allows for
feedback of the self-energy flow into 2PR vertices (see [Fig. 2.4(a)]). One thus incorporates terms
of the form indicated in Eq. (2.36) from the three-particle vertex. Notably, ladder summations in
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Figure 2.4: Katanin substitution and exemplary 2ℓ diagrams. (a) The Katanin substitution replaces
single-scale propagators in the L2 flow equations by total Λ-derivatives of G. This way, the derivative of the
self-energy (turquoise box) is fed back into the flow of the vertices, such that certain third order diagrams like
the one on the right are generated. (b) Multiloop flows go beyond the Katanin substitution by incorporating
parquet diagrams with overlapping loops. In 2ℓ flows, for example, one inserts 1ℓ diagrams into bubbles with
complementary two-particle reducibility. Here, the 1ℓ flow in the t channel (cyan box) is plugged into the left
vertex of the s bubble, giving rise to the ġL(2ℓ)

s diagram on the right hand side.

the particle-hole channels with the Katanin substitution fulfill Ward identities exactly and recover
standard mean-field results [26].
We have already seen that, from the perspective of the parquet approximation, the flow equations
proposed by Katanin can be obtained by setting the left, right and central part in Eq. (2.32) to zero.
Similar to the L2 equations, vertex derivatives are thus erased from the right hand side of the flow
and we are again left with a coupled set of ordinary differential equations. The only exception is that
the self-energy derivative is now required as additional input to compute the 2PR flows and therefore
needs to be calculated beforehand.

2.3.3 Multiloop fRG

So far, we have discussed two approximations to the PA, which both discard differentiated vertices
from the flow equations. The missing diagrams are, however, vital to achieve full consistency with
the PA and instill confidence in the fulfillment of conservation laws. Yet, their appearance poses a
numerical challenge, as the full set of flowing SDE and BSEs is algebraic, not ordinary. Fortunately,
one can reconstruct the left, right and central part (and as such also the corrections to the self-energy)
in an iterative manner, which results in the multiloop fRG (mfRG) scheme pioneered by Kugler and
von Delft [28, 32].
The central idea to derive the multiloop flow equations has already been discussed: it is precisely the Γ
power counting which we used to motivate the L2 and Katanin flow equations, that is, we start from
the lowest-order contributions and iteratively generate higher-order diagrams. We start by considering
the 1ℓ flows

d

dΛΣ (1ℓ)= −[Γ ◦ S]Σ
d

dΛγc
(1ℓ)=

[
Γ ◦ d

dΛ(G×G) ◦ Γ
]

c

. (2.39)

from which one constructs the lowest-order contributions to the left and right part as

γ̇L(2ℓ)
c =

[
γ̇

(1ℓ)
c̄ ◦ (G×G) ◦ Γ

]
c

γ̇R(2ℓ)
c =

[
Γ ◦ (G×G) ◦ γ̇(1ℓ)

c̄

]
c
. (2.40)
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Hence, the two-loop flow [27] computes to

d

dΛγc
(2ℓ)= γ̇(2ℓ)

c = γ̇(1ℓ)
c + γ̇L(2ℓ)

c + γ̇R(2ℓ)
c . (2.41)

At the three-loop level and beyond, consecutive loop orders are constructed in similar fashion. The
multiloop (mℓ) flow for the two-particle vertex with m ≥ 3 reads

d

dΛγc
(mℓ)= γ̇(1ℓ)

c +
m∑

n=2
γ̇L(nℓ)
c +

m∑

n=3
γ̇C(nℓ)
c +

m∑

n=2
γ̇R(nℓ)
c , (2.42)

with

γ̇L(mℓ)
c =

[
γ̇

([m−1]ℓ)
c̄ ◦ (G×G) ◦ Γ

]
c

γ̇C(mℓ)
c =

[
Γ ◦ (G×G) ◦ γ̇L([m−1]ℓ)

c

]
c

γ̇R(mℓ)
c =

[
Γ ◦ (G×G) ◦ γ̇([m−1]ℓ)

c̄

]
c
. (2.43)

For m → ∞, Eq. (2.42) incorporates all parquet diagrams, which can be computed with the same cost
as the one-loop flow. Hence, the calculation of vertex corrections with overlapping loops scales only
linear in ℓ and is therefore well-suited for numerical simulations [28].
Finally, we need to discuss how to reinstantiate self-energy corrections. Before we proceed, however,
let us remind ourselves why these corrections are necessary. From the perspective of the PA, the
terms Σ̇1(2) naturally appeared when computing the cutoff-derivative of the Schwinger-Dyson equation.
In the fomally exact fRG, on the other hand, d

dΛΣ is given solely by the single-scale loop. However,
the flow equations are truncated and the vertex which enters the single-scale loop is therefore only
determined approximately. Hence, the additional corrections ensure self-consistency between the one
and two-particle level by virtue of the PA. The only input required to explicitly compute them are
t-irreducible contributions to the central part

γ̇Ct̄
(mℓ)=

m∑

n≥3
γ̇
C(nℓ)
t̄

. (2.44)

which are needed anyways to account for vertex corrections. On the other hand, γ̇C
t̄

depends on d
dΛ Σ

via Katanin diagrams and restoring the self-energy corrections in full glory would therefore already
require the exact solution. This means that a one-shot calculation of Σ̇1(2) from γ̇C

t̄
does not necessarily

suffice to reach self-consistency and the refined self-energy should, in turn, be used to recompute vertex
corrections until convergence is reached. The importance of such self-energy cycles can, for example, be
seen in fRG calculations for the two-dimensional Hubbard model, where they are essential to achieve
quantitative agreement with other numerical approaches [41].

2.4 Final remarks
In this chapter, we have introduced the fRG approach to fermionic many-body systems and discussed
three different truncation schemes to close the hierarch of flow equations: level-2 truncation, Katanin
scheme and mfRG. The Katanin scheme extended the diagrams of the L2 truncation by replacing
single-scale propagators S with full cutoff-derivatives d

dΛG. This way, certain contributions from the
three-particle vertex could be included. The multiloop fRG developed this approach even further,
adding parquet diagrams with overlapping loops to the flow of 2PR vertices and accounting for
additional self-energy diagrams. Both, vertex and self-energy corrections are essential to establish
consistency with the parquet approximation, from which these different truncation schemes could be
motivated, and guarantee the fulfillment of conservation laws on the one-particle level. Here, we add
some further comments on different aspects of (multiloop) fRG.
Hitherto, the only requirements for the regularization G0 → GΛ

0 were that GΛ→∞
0 = 0 and GΛ→0

0 = G0,
but otherwise Λ could have been implemented arbitrarily. For this reason, however, fRG results
obtained within the L2 or Katanin scheme depend on the actual choice of regulator, even if it acts on
the same physical quantity, such as momentum [11] or frequency [24, 42]. The quantitative accuracy of
such a renormalization group flow is therefore difficult to assess. Remarkably, regulator independence is
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restored in mfRG calculations, since the couplings flow towards a solution of the parquet approximation.
The latter, as a general many-body relation, has cutoff independent solutions. Numerical evidence for
this property of mfRG is, for example, provided in Ref. [43].
Although the multiloop flow has a number of beneficial properties, namely those incorporated by
the PA, it cannot go beyond the parquet approximation. Outside the weak-coupling regime, the
neglect of diagrams beyond the bare vertex Γ0 could therefore be insufficient to characterize two-
particle irreducible contributions to the vertex. Any deficiency embodied by the PA would thus carry
over to mfRG and render its outcome self-consistent, but only qualitative. One can come up with
different strategies to extend the multiloop flow even beyond the PA, some of which are reported in
Ref. [28].
Up to now, we have not addressed the role of symmetries, which play a vital role in reducing the
numerical effort for computing 1PI functions. Usually, they are incorporated via efficient vertex
parametrizations, which reduce, for example, the number of flow equations in the fRG formalism.
These symmetries are model specific after all, and their discussion has therefore been postponed to
later sections of this thesis.
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3 Weak-coupling fRG for itinerant fermions
In this chapter, we consider the application of the functional renormalization group framework presented
in Ch. 2 to itinerant electron systems. Our focus lies on spin-polarized or spinless fermions, throughout.
This allows us, on the one hand, to study toy models for the single band physics in so-called moiré
systems, specifically transition metal dichalcogenides (TMDs). On the other hand, the capabilities
of the fRG approach can be presented without complicating the matter by additional spin or orbital
degrees of freedom. Furthermore, we exclusively consider level-2 truncated flow equations, which
incorporate the lowest-order contributions to the parquet approximation. This is justified insofar that
we assume only moderately strong interactions (see Sec. 2.3.1). Self-energy feedback and frequency
dependencies of the two-particle vertex are neglected. Yet, monitoring the full momentum dependence
of the 2PR channels remains numerically challenging.
Nonetheless, some implementations [37, 38, 44] successfully managed to integrate the vertex flow1 on a
dense grid with up to 24 × 24 momenta in the first Brillouin zone by exploiting the sheer power of
large scale computing architectures. While this approach offers a lot of flexibility and allows to tackle,
for example, few-band models with ease, its scalability is severely limited by the cubic growth of the
required memory resources with the number of momenta. Furthermore, subtle incommensurate effects,
which require even more fine grained grids, are difficult to capture. This circumstance calls for more
efficient ways to store the vertex.
Traditionally, N -patch schemes2 have been employed to study competing orders in two-dimensional
Hubbard models [21, 35, 36, 40]. Within this approach, scattering processes perpendicular to the
Fermi surface (FS) are not accounted for due to their negative scaling dimension [15] and the vertex
is consequently approximated by its values along the FS. For illustrative purposes and due to its
comparably simple numerical implementation, N -patch fRG is our method of choice in the following.
There are, however, more advanced techniques, such as truncated-unity (TU) approximations [45, 46],
which deserve to be mentioned. Within TU schemes, computing times grow only linear in the number
of momenta, such that further methodological improvements like those presented in Refs. [41, 47, 48]
can be considered.
This chapter is structured as follows. First, some basic aspects of superconductivity, such as its
mean-field description or its classification in term of irreducible representations of the lattice point
group are recapped. We proceed by presenting our numerical implementation of N -patch fRG and
the analysis of results obtained therein. Lastly, exemplary results for spinless fermion models on the
triangular lattice are discussed.

3.1 A prelude on superconductivity
More than a century after its discovery by Kamerlingh Onnes in 1911 [49], the phenomenon of
superconductivity - vanishing electral resistivity and the sudden expulsion of magnetic fields at low
temperatures known as Meissner-Ochsenfeld effect [50] - has remained one of the most intensely studied
subjects in condensed matter physics. Its first theoretical characterization was due to Bardeen, Cooper
and Schrieffer (BCS) in 1957 [6]. Their celebrated BCS theory attributes superconductivity to an
attractive electron-electron interaction mediated by phonon modes which cause them to bind as Cooper
pairs. In their most symmetric form, the s-wave state, these pairs form a spin singlet without relative
angular momentum. Such superconductors are nowadays dubbed conventional.
Unconventional superconductors, in contrast, exhibit different kinds of pairing mechanisms which
disfavor the conventional s-wave state. After the discovery of superfluidity in liquid 3He, highly
sought-after unconventional pairing in a solid state platform was reported in multiple heavy fermion
materials, although the nature of the superconducting state in, for example, CeCu2Si2 is still under
debate [51]. In 1987, Bednorz and Müller received the noble prize for uncovering superconductivity in
LaBaCu4 with a transition temperature Tc ≈ 35K, higher than the critical temperatures measured so
far. Materials with similar or even higher Tc were consequently dubbed high-Tc superconductors. Note
that unconventional does not imply high-Tc. Strontium ruthenate (Sr2RuO4), for example, exhibits
unconventional pairing analogous to 3He but only at temperatures as low as 0.93K [52].

1 Since Σ = 0, we occasionally refer to the two-particle vertex simply as the vertex.
2 A review on N -patch fRG can be found in Ref. [11].
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Recently, superconductivity with a transition temperature Tc ≈ 1.7K has also been reported in twisted
bilayer graphene (tBG) [53]. The latter, as its name suggests, consists of two stacked graphene sheets
which are rotated with respect to each other, giving rise to nearly flat bands for certain magic-angles
[54]. In consequence, the strength of electronic interactions relative to the bandwidth is strongly
enhanced, resulting in a plethora of fascinating low-temperature phases [55]. Since then, many more
twisted van der Waals heterostructures have received prominent attention in the search for exotic states
of matter. The most remarkable property of such materials is the degree of experimental tunability
they offer. The ability to change, for example, the carrier concentration by electrostatic gating has
therefore assigned moiré materials a prominent role in the search for robust condensed matter quantum
simulators [56].
In addition to moiré heterostructures, kagome metals such as CsV3Sb5 [57] have been put forward
as another exciting platform for realizing novel superconducting states. Their special appeal arises
from the intricate three-orbital geometry of the kagome network [58], which, already by itself, gives
rise to an enriched single-particle dispersion featuring flat bands, Dirac cones and Van Hove points.
The discovery of all these new platforms for unconventional superconductivity brings tremendous
progress to the field. Further, it lays the foundation for new theoretical concepts and numerical tools
for deciphering the nature of the pairing mechanism in condensed matter systems.

3.1.1 Mean-field theory

The BCS Hamiltonian for spin-polarized fermions reads

H =
∑

k

ξ(k)c†
kck + 1

2N
∑

k,k′

VBCS(k,k′)c†
kc

†
−kc−k′ck′ , (3.1)

where ξ(k) = ϵ(k) − µ is the single-particle dispersion relative to the chemical potential µ and
VBCS(k,k′) = Vk−k|k′−k′ denotes the hermitian pairing potential3. We assume that VBCS is attractive
in a thin shell around the Fermi level ξ(k) = 0 without specifying its origin for now. To simplify the
interaction, we resort to the mean-field decouplings

c†
kc

†
−k = ⟨c†

kc
†
−k⟩ +

(
c†

kc
†
−k − ⟨c†

kc
†
−k⟩
)

c−k′ck′ = ⟨c−k′ck′⟩ +
(
c−k′ck′ − ⟨c−k′ck′⟩

)
, (3.2)

and discard terms of second order in the fluctuations (the terms in rounded brackets). Up to a constant,
the Hamiltonian now reads

HMF =
∑

k

ξ(k)c†
kck − 1

2
∑

k

[
∆̄(k)c−kck + ∆(k)c†

kc
†
−k

]
, (3.3)

where we defined the pairing fields

∆(k) = − 1
N

∑

k′

VBCS(k,k′)⟨c−k′ck′⟩

∆̄(k) = − 1
N

∑

k′

VBCS(k′,k)⟨c†
k′c

†
−k′⟩ . (3.4)

Introducing the spinor Ψk = (ck, c
†
−k)T , HMF assumes the quadratic form

HMF =
∑

k

Ψ†
kQ(k)Ψk with Q(k) = 1

2

(
ξ(k) −∆(k)

−∆̄(k) −ξ(k)

)
. (3.5)

In order to solve the mean-field theory, the decoupled Hamiltonian needs to be diagonalized. To this
end, one performs the Bogoliubov-Valatin transformation

Φk =
(
bk

b†
−k

)
= U(k)Ψk with U(k) =

(
ū(k) −v(k)
v̄(k) u(k)

)
, (3.6)

3 That is, it obeys VBCS(k,k′) = V̄BCS(k′,k), where the bar denotes complex conjugation.
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and subsequently eliminates all non-diagonal terms, which results in the condition

2ξ(k)ū(k)v(k) + ∆̄(k)[v(k)]2 − ∆(k)[ū(k)]2 = 0 . (3.7)

In general, ∆, u and v are complex valued, such that we can express them via Euler’s identity

∆(k) = |∆(k)|eiα(k)

u(k) = |u(k)|eiβ(k)

v(k) = |v(k)|eiγ(k) . (3.8)

Plugging into Eq. (3.7), one possible choice that diagonalizes the mean-field Hamiltonian is

|u(k)|2 − |v(k)|2 = ξ(k)
E(k) , (3.9)

for β(k) = 0 and α(k) = γ(k). Here, E(k) =
√

[ξ(k)]2 + |∆(k)|2. Requiring that the Bogoliubov
quasiparticles b(†)

k obey fermionic commutation relations4, we obtain our central result

HMF =
∑

k

E(k)b†
kbk . (3.10)

Note that in order to derive Eq. (3.10), we assumed inversion symmetry, that is, ξ(k) = ξ(−k) and
|∆(k)| = |∆(−k)|.
Remarkably, the quasiparticles b(†)

k have a largely gapped excitation spectrum with |∆(k)| characterizing
magnitude and symmetry of the gap5. Consequently, ∆(k) is dubbed gap function. The gap can
be determined self-consistently by applying [U(k)]−1 to the pairing terms in Eqs. (3.4) and utilizing
Fermi-Dirac statistics to compute the remaining quasiparticle expectation values. This procedure
yields the self-consistent gap equation at temperature T

∆(k) = − 1
N

∑

k′

VBCS(k,k′) ∆(k′)
2E(k′) tanh

(
E(k′)

2T

)
. (3.11)

Let us consider the form of this algebraic equation close to the critical temperature Tc, where the gap
opens (closes). In that case, we may assume that E(k) ≈ ξ(k) and, thus, contributions away from the
Fermi level ξ(k) = 0 are strongly suppressed6. The dominant terms in the momentum sum therefore
cover only a thin energy shell −ϵc ≤ ξk ≤ ϵc ≪ ϵFS around the Fermi surface and, consequently, we
can approximate the right-hand side of the gap equation by

∆(k) ≈ − 1
N

[∫ ϵc

−ϵc
dξ

1
2ξ tanh

(
ξ

2Tc

)] ∑

k′∈FS
VBCS(k,k′)∆(k′) , (3.12)

where the integral evaluates to
∫ ϵc

−ϵc
dξ

1
2ξ tanh

(
ξ

2Tc

)
≈ ln

(
1.13 ϵc

Tc

)
. (3.13)

The linearized gap equation (3.12) has the form of an eigenvalue problem. The eigenvalues of
VBCS,

λ = − N

ln
(

1.13 ϵcTc
) , (3.14)

characterize different mean-field critical temperatures Tc = 1.13ϵce
N
λ , respectively. The dominant

pairing fields are thus obtained as the eigenvectors with the largest, negative λ [59].

4 This implies that U is unitary.
5 In general, |∆(k)| vanishes only at special values of k.
6 This can be seen by expanding 1

ξ
tanh( ξ

2T ) around ξ = 0.
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C6v E C2 2C3 2C6 3σν 3σd
A1 1 1 1 1 1 1

A2 1 1 1 1 -1 -1

B1 1 -1 1 -1 1 -1

B2 1 -1 1 -1 -1 1

E1 2 -2 -1 1 0 0

E2 2 2 -1 -1 0 0

Table 3.1: Character table for the point group C6v. The columns denote the six different classes
of the group: identity map, two-fold, three-fold and six-fold rotations as well as two kinds of reflections,
respectively. The rows, on the other hand, denote the different irreps. Note that the characters of
the identity map E, i.e. the first column of the table, characterize the dimensions of the different
irreducible representations.

3.1.2 Classification via representation theory

In the last section, we derived an eigenvalue equation for the hermitian pairing potential VBCS,
whose eigenvectors with the largest negative eigenvalue, ∆, correspond to the superconducting gap
functions with the highest critical temperature. Note that we have switched to a matrix-vector
notation (VBCS)kk′ ≡ VBCS(k,k′) and ∆k ≡ ∆(k), respectively. Now, unitary transformations U
from the symmetry group G of the Hamiltonian should leave the pairing potential invariant, thus
U †VBCSU = VBCS for all U ∈ G. Consequently, λ(U∆) = VBCS(U∆) or in other words, the
eigenspace span({∆i}λ) corresponding to the eigenvalue λ is also invariant under G. In that case, we
can expand U∆i as a linear combination of the other eigenvectors as

U∆i =
n∑

j=1
RG
ij(U)∆j , (3.15)

that is, the gaps transform in an n-dimensional representation RG of the symmetry group G, where
n = dim({∆i}λ) is the dimension of the eigenspace. Conversely, it should be possible to represent to
the gap by characteristic basis functions which likewise transform in this representation.
To formalize this discussion, let us recap some basic mathematical aspects of representation theory.
We focus on concepts which are elementary for the renormalized mean-field analysis that is carried
out on the basis of the fRG formalism presented in Ch. 2. For an in-depth presentation of these
concepts, we refer the reader to Ref. [60]. To start with, recall that any group G can be separated into
different classes of conjugate group elements. Two elements x and y are called conjugate, if there exists
another element, say u, such that y = u−1 ◦ x ◦ u, where ◦ denotes the group operation. Computing all
ensembles of conjugate elements, the classes of G, is surprisingly simple and can be done by brute
force. One simply calculates y = u−1 ◦x ◦u for all u ∈ G and for a fixed x ∈ G and thereby determines
all conjugate elements y of x. Iterating this procedure over all x then allows one to sort conjugate
elements into the respective class.
Secondly, recall that a representation RG : G → GL(W ) is a group homomorphism that maps the
elements of G into the general linear group GL(W ) of some vector space W . As such, the algebraic
structure of the group operation is preserved, that is, RG(x ◦ y) = RG(x) × RG(x) (× is the group
operation in GL(W )). W is dubbed representation space of RG and dim(W ) is called the dimension
of the representation. For finite dimensional representations in particular, one can choose a basis in W
and identify the images of the group elements RG(x) with invertible matrices, such that × becomes
the usual matrix product. Group representations are extremely useful for practical purposes, since the
abstract elements of G can be identified with familiar algebraic objects (matrices). In other words, the
representation of a group G basically defines its action on the vector space W . Our discussion from
this point on always assumes finite dimensional representations. Moreover, we consider Hilbert spaces
W and require that the matrices RG(x) are unitary. RG is thus called unitary representation.
A representation RG of G is called irreducible, if it has no invariant subspaces S ⊂ W , that is
RG(x)s ∈ S for s ∈ S and x ∈ G, except the zero element {0} and W itself. If this is not the case,
RG is coined reducible. Every matrix in a unitary representation of a Hilbert space can be written as

17



Weak-coupling fRG for itinerant fermions

a direct sum of the respective irreps7. Hence, the latter are sufficient to fully characterize possible
representations of G. A powerful concept to determine irreducible representations or finding out
whether a particular representation is reducible are the characters χG(x) of the group elements in a
representation RG, which are defined as

χG(x) = Tr[RG(x)] . (3.16)

The character of the identity element e ∈ G, for example, corresponds to the dimension of RG. In
general, the characters of group elements in the same class are equal. Moreover, the number of classes
in G corresponds to the number of its irreducible representations. For this reason, we may sort all
characters in an nG × nG tableau, the character table of G, where nG is the number of classes. The
character table for the group C6v, for example, is given in Tab. 3.1. Deciding, whether or not a
representation RG is irreducible thus boils down to computing its characters and comparing the result
with the rows of the character table.
We can use the concepts outlined above to characterize superconducting gaps in terms of irreducible
representations of the Hamiltonian’s point group. From the action of unitary transformations on the
eigenspaces of the gap equation (see [Eq. (3.15)]) it became apparent that the gaps transform in some
representation of the symmetry group. In principle, that respective representation might be reducible
or irreducible, in most cases, however, it is irreducible [59, 60]. We can therefore reconstruct the gaps
in terms of basis functions or lattice harmonics of a suitable irrep. To accomplish this goal, we utilize
the projection

P(RG) =
∑

x∈G
χ̄G(x)x , (3.17)

which singles out those contributions that transform in the irrep RG [60]. Given some trial function
f(ri, rj) on lattice sites ri and rj , we compute P(RG)f and transform to momentum space to allow
for comparison with ∆(k). Consider, for example, f(ri, rj) = δri,rj=ri+a1 , where a1 = (1, 0)T is the
nearest-neighbor bond of the triangular lattice with point group C6v. Operating upon f with the
projection operator for the E1 irrep yields

[P(E1)f ](ri, rj) = 2(δri,ri+a1 − δri,ri−a1) + δri,ri+a2 − δri,ri−a2 − δri,ri+a3 + δri,ri−a3 , (3.18)

with a2 =
(

1
2 ,

√
3

2

)T
and a3 =

(
− 1

2 ,
√

3
2

)T
. In momentum space, we therefore obtain

[P(E1)f ](k,k′) = iδk,k′

[
4sin (kx) + 2sin

(
kx
2 +

√
3ky
2

)
− 2sin

(
−kx2 +

√
3ky
2

)]
, (3.19)

which can now be compared to the momentum dependence of the gap function. In similar fashion,
basis functions for the other irreps and beyond the nearest-neighbor level can be computed. Note that
E1 is two-dimensional, and as such, one needs at least two lattice harmonics to characterize functions
transforming in E1 for each nearest-neighbor shell, as demonstrated in Fig. 3.1. To find an additional
basis function, one can simply repeat the calculation above, but for a linearly independent bond.

3.1.3 Topological superconductivity

On the mean-field level (see Sec. 3.1.1), superconductors can be described in terms of Bogoliubons, that
is, quasiparticles with energy spectrum E(k) =

√
[ξ(k)]2 + |∆(k)|28. On the Fermi line, the energy is

entirely determined by the gap function, since E(k) = |∆(k)|. A conventional s-wave superconductor
with ∆(k) = ∆ therefore opens a finite energy gap of magnitude |∆|. Generally speaking, however,
there might be zero-crossings, so-called nodes, at which ∆(k) becomes gapless. In many cases, these
nodes are energetically unfavorable since excited states could be occupied without any penalty.
Imaginary contributions to the gap function, on the other hand, can reinstate a finite energy gap at the
Fermi level and render superconducting states with extended symmetries, such as d+ id, competitive
[61]. A complex order parameter ∆(k) is not invariant under the anti-unitary time-reversal operation

7 Note that each group has a trivial irrep which assigns RG(x) = 1 to any x ∈ G.
8 We still focus on spinless fermions for which ∆(k) has no spin dependence.
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(a) A1 irrep
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Figure 3.1: Basis functions of C6v irreps on the triangular lattice. (a) The A1 irrep (s-wave) is
one-dimensional and thus a single basis function suffices on both the first and second neighbor level. The
p-wave irrep E1 shown in (b) is, on the other hand, two-dimensional and another linearly independent lattice
harmonic needs to be computed. The black hexagon denotes the boundary of the first Brillouin zone.

∆(k) → ∆̄(−k)9, since the latter involves complex conjugation. For spinful systems with SU(2)
symmetry, such states would thus belong to class C in the Altland-Zirnbauer tenfold-way [61, 62] and
can exhibit non-trivial topology. To unravel the latter, we can resort to an integer-valued topological
invariant, the Chern number C, which can be computed from the winding of the pseudospin m(k)
along the contour lines of ξ(k) resulting in the skyrmion number formula [61, 63] 10

C = 1
4π

∫

BZ
dk

〈
m(k)

∣∣∣∣
∂m(k)
∂kx

× ∂m(k)
∂ky

〉
with m(k) = 1

E(k)




Re[∆(k)]
Im[∆(k)]
ξ(k)


 . (3.20)

Finite |C| > 0 indicate non-trivial topology and imply, for example, quantized spin Hall conductances
proportional to the Chern number in spinful systems [64] as well as the existence of gapless edge
modes by virtue of the bulk-boundary correspondence [65]. For vanishing Re[∆(k)] or Im[∆(k)], the
Chern number evaluates to C = 0 and the superconducting state is thus topologically trivial. The sign
of C is related to the handedness of the Skyrmion winding. In consequence, superconductors with
C ≠ 0 are commonly referred to as chiral superconductors. Notably, any chiral superconductor breaks
time-reversal, otherwise C = 0 as discussed above. Conversely, superconductors breaking time-reversal
do not generically qualify as chiral (see Ref. [61] and references therein).

3.2 Level-2 fRG for spin-polarized fermions
In Ch. 2, the fRG formalism was introduced on a general level and flow equations for the self-energy
and two-particle vertex were derived. Here, we work in the L2 truncation and simplify these equations
for spin-polarized fermions. Much in the spirit of related weak-coupling fRG implementations [11, 21,
39, 40, 66, 67], self-energy feedback is neglected such that we content ourselves with the flow of the
two-particle vertex Eq. (2.37), which reads

d

dΛΓ(x′
1, x

′
2|x1, x2) = 1

2
∑

x3,x4

Γ(x3, x4|x1, x2)Γ(x′
1, x

′
2|x3, x4)P (x3, x4)

−
∑

x3,x4

Γ(x′
1, x4|x1, x3)Γ(x3, x

′
2|x4, x2)P (x3, x4)

+
∑

x3,x4

Γ(x′
2, x4|x1, x3)Γ(x3, x

′
1|x4, x2)P (x3, x4) , (3.21)

with P (x3, x4) ≡ S(x3)G(x4) +G(x3)S(x4). Note that we dispense with symbolically indicating the
Λ-dependence of the vertices and, instead, assume it implicitly. We consider an action of spin-polarized
9 In spinful systems, time-reversal would additionally flip the spin.
10 ⟨.|.⟩ denotes the inner product of Euclidean space.
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fermions in imaginary time, such that xi = (ωi,ki) with Matsubara frequency ωi and momentum ki
11.

For translation invariant systems, the propagators are diagonal and conserve energy and momentum
[11, 15]. In addition, the vertex obeys

Γ(x′
1, x

′
2|x1, x2) = V (x′

1, x
′
2, x1) × βδω′

1+ω′
2,ω1+ω2 ×ABZδk′

1+k′
2,k1+k2 , (3.22)

that is, the fourth frequency (momentum) in Γ can be computed from the other three and does not
need to be written out explicitly. Here, ABZ denotes the volume of the first Brillouin zone and β = 1/T
is the inverse temperature.

3.2.1 Temperature flow scheme

The cutoff scale Λ can be implemented differently, as long as the boundary conditions GΛ→∞
0 = 0

and GΛ→0
0 = G0 are fulfilled. This implies, however, that the results obtained with a truncated

fRG flow are affected by the choice of regulator (see Sec. 2.4). Moreover, depending on the type of
regulator that is selected, e.g., momentum or frequency, fluctuations in some channels may be artificially
enhanced or suppressed, leading to an inherent bias towards specific phases. A momentum-shell RG
flow, for example, underestimates fluctuations with small total momenta in the particle-hole channels
above scales set by the temperature and, thus, long-range antiferromagnetic correlations may overhaul
putative ferromagnetic ordering tendencies [67]. Choosing an appropriate regulator is, therefore, of
uttermost importance to make robust predictions.
Here, we adopt the temperature flow scheme pioneered by Honerkamp and Salmhofer [67], which
directly associates Λ with the physical temperature T and allows to track small momentum transfers
on equal footing in all interaction channels. The central step to implement the T -flow, amounts to
removing all temperature dependencies in the quartic part of the action, such that only the Gaussian
part depends on T . This can be achieved, by rescaling the original fields by a factor β3/4, which
cancels the β−3 prefactor from the normalization of Matsubara sums [67]. The bare propagator then
becomes

G0(ωn,k) → GT0 (ωn,k) = T 1/2

iωn − ξ(k) , (3.23)

where ξ(k) = ϵ(k)−µ is the single-particle dispersion for chemical potential µ. Using ωn = (2n+ 1)πT ,
we now observe that GT0 scales like T−1/2 for large T and therefore GT→∞

0 = 0. The second boundary
condition, which qualifies Eq. (3.23) as a suitable cutoff implementation, is fulfilled by construction, since
GT0 presents the usual bare propagator for the rescaled field theory. Therefore, we can straightforwardly
use the flow equation (3.21), substituting Λ → T and dropping the temperature normalization of
the Matsubara sums. Without self-energy feedback, the propagator bubble in the vertex flow then
evaluates to

P (ωnk, ωn′k′) = − d

dT
[G0(ωn,k)G0(ωn′ ,k′)] = − d

dT

[
T

(ωn − ξ(k))(ωn′ − ξ(k′))

]
, (3.24)

where we again suppress temperature dependencies to keep the notation convenient.

3.2.2 Patching approximation

Following the RG flow in Eq. (3.21), corresponds to integrating the right-hand side of the vertex
flow from the UV to the IR limit. The vertex itself is, even after utilizing translation invariance, a
high-dimensional object with three momentum and three frequency arguments and as such scales as
N3
ωN

3
k. Its most singular contributions, however, are located at zero frequency and along the Fermi

surface [11]. The momentum dependence orthogonal to the FS is, in contrast, less important.
As a first simplification, we therefore set external frequencies in the flow equation (3.21) to zero and
neglect the frequency dependence of vertices. Using Eq. (3.22), the vertex flow then computes to

d

dT
V (k′

1,k
′
2,k1) = 1

2ABZ

∫

BZ
dk V (k, qs − k,k1)V (k′

1,k
′
2,k)Ls(k, qs)

− 1
ABZ

∫

BZ
dk V (k′

1,k,k1)V (qt + k,k′
2,k)Lt(k, qt)

+ 1
ABZ

∫

BZ
dk V (k′

2, qu + k,k1)V (k,k′
1, qu + k)Lu(k, qu) , (3.25)

11 Sums
∑

xi
therefore have to be interpreted as 1

β

∑
ωi

1
ABZ

∫
dki.
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where we introduced the particle-particle and particle-hole loop functions

Ls(k, q) = λf (ξ(k)) + λf (ξ(q − k))
ξ(k) + ξ(q − k)

Lt(k, q) = −λf (ξ(k)) − λf (ξ(q + k))
ξ(k) − ξ(q + k) = Lu(k, q) , (3.26)

with λF (x) = d
dT ηF (x) and Fermi function ηF (x) = (ex/T + 1)−1. The expressions for the loop

functions result from carrying out Matsubara sums over (3.24) analytically using
∑

ωn

T

(iωn − ζ1)(iωn − ζ2) = ηF (ζ1) − ηF (ζ2)
ζ1 − ζ2

. (3.27)

Here, the transfer momenta qc are given by the Mandelstam variables

qs ≡ k′
1 + k′

2
qt ≡ k′

1 − k1

qu ≡ k′
1 − k2 . (3.28)

In a second step, we define the projection π : BZ → ZNFS, mapping any momentum k in the first
Brillouin zone to its nearest-neighbor π(k) within an angular discretization ZNFS of the Fermi surface
consisting of N points. The set of all points closer to one discretization point then to any other point
is called a patch, which lends the approximation its name: N -patch fRG [11]. In this manuscript, we
consider ZNFS = {ϕi = 2π

N i | i = 1, ..., N}, but the generalization of our results to non-uniform grids is
straightforward. Applying this projection to the momentum dependence of the vertex, we obtain the
flow equation

d

dT
V (ϕ′

1, ϕ
′
2, ϕ1) = 1

2ABZ

∫

BZ
dk V (π(k), π(qs − k), ϕ1)V (ϕ′

1, ϕ
′
2, π(k))Ls(k, qs)

− 1
ABZ

∫

BZ
dk V (ϕ′

1, π(k), ϕ1)V (π(qt + k), ϕ′
2, π(k))Lt(k, qt)

+ 1
ABZ

∫

BZ
dk V (ϕ′

2, π(qu + k), ϕ1)V (π(k), ϕ′
1, π(qu + k))Lu(k, qu) , (3.29)

where we replaced all arguments which coincide with a patching point ki by the respective angle
ϕi. Note that the patching approximation spoils momentum conservation: the momentum k2 =
π(k′

1) + π(k′
2) − π(k1) for three projected momenta π(k′

1), π(k′
2), π(k1) is usually offset from the Fermi

surface and thus necessitates to be operated upon by an additional projection. Yet, the numerical
effort and memory requirements for computing the two-particle vertex are greatly reduced. Instead of
having to discretize momenta in the entire Brillouin zone, one only needs to account for patch points
on the Fermi surface, that is, some lower dimensional manifold in momentum space. In most cases,
fewer discretization points are thus sufficient for resolving the vertex.

3.3 Numerical implementation of N-patch fRG
Having simplified the flow equations as much as possible, we now want solve Eq. (3.29) numerically.
This requires two ingredients: (a) some quadrature to compute the two-dimensional momentum integrals
and (b) an ordinary differential equation (ODE) solver to lower the temperature (see Fig. 3.2). It
turns out beneficial to change the basis and formulate the momentum integrals in polar coordinates.
Without loss of generality, let us focus on the particle-particle channel (the first line in [Eq. 3.29]),
which, after performing the basis change, reads

d

dT
γs(ϕ′

1, ϕ
′
2, ϕ1) = 1

2ABZ

∫ 2π

0
dθ

∫ Rθ

0
dk k × V (π(kθ), π(qs − kθ), ϕ1)V (ϕ′

1, ϕ
′
2, π(kθ))Ls(kθ, qs) .

(3.30)

Recall that the vertices possess no radial dependence on momentum due to the projection onto patch
points and we can thus write

d

dT
γs(ϕ′

1, ϕ
′
2, ϕ1) = 1

2ABZ

∫ 2π

0
dθ V (π(kθ), π(qs − kθ), ϕ1)V (ϕ′

1, ϕ
′
2, π(kθ))Πs(θ, qs) , (3.31)
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Figure 3.2: Numerical implementation of N-patch fRG for spinless fermions. For a given single-
particle dispersion ξ(k) one computes the renormalized interactions V from the bare interaction V0 by integrating
the renormalization group flow from some initial temperature TUV to some final scale TIR using an ODE solver.
The latter step involves the computation of two-dimensional momentum integrals, which can efficiently be
evaluated in polar coordinates. The renormalized 2PR channels, obtained at TIR or at Tc > TIR where one of
them eventually diverges, characterize the effective low-energy theory and can be used to extract symmetries
of the associated mean-field gaps. For more details on the individual algorithms, see text.

where Πs(θ, qs) is the radial integral over the loop function

Πs(θ, qs) =
∫ Rθ

0
dk k × Ls(kθ, qs) . (3.32)

Usually, the k-integral needs to be computed with high-accuracy to obtain a stable and qualitatively
correct fRG flow as will be demonstrated in the next section. The θ-integral, on the other hand,
causes mostly quantitative changes, but leaves the important physics, regarding, for example, which
couplings become relevant in the low-temperature regime, unchanged. We therefore approximate the
latter by a simple Riemann sum over the patch points, such that our exemplary flow in the s channel
becomes

d

dT
γs(ϕ′

1, ϕ
′
2, ϕ1) ≈ ∆ϕ

2ABZ

N∑

i=1
V (ϕi, π(qs − kϕi), ϕ1)V (ϕ′

1, ϕ
′
2, ϕi)Πs(ϕi, qs) + O((∆ϕ)2) , (3.33)

with ∆ϕ = 2π
N . Hence, higher resolution on the Fermi surface, which is desirable anyways, simultaneously

reduces the error for the θ-integration (see Fig. 3.4).

3.3.1 Radial integration of the loop function

As we have seen in the last section, the only input required to evaluate the right-hand side of the flow
equation are the radially-integrated loop functions Πc. In order to choose an appropriate quadrature
from the large pool of numerical algorithms which exist for that matter, a meticulous study of the
target function is required to make a well-informed decision.
To do so, we compute the loop function as well at its k-integral taking the dispersion

ϵ(k) = −2t×
[
cos (kx) + cos

(
kx
2 +

√
3ky
2

)
+ cos

(
kx
2 −

√
3ky
2

)]
, (3.34)

of the single-band Hubbard model on the triangular lattice as an example. In [Figs. 3.3(c) &
(d)], we show the loop function along the same two representative momentum space cuts, but at
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Figure 3.3: Radial integration of the loop function. (a) Schematic illustration of the N -patch fRG
scheme for the single-band triangular lattice Hubbard model with N = 24. Silver lines mark the boundaries
of the individual patches and black dots denote their respective patch points on the Fermi surface. (b)
Temperature flow of the scale-derivative of the pairing susceptibility χ̇s(qs = 0). Standard integration schemes
such as Gauss-Kronrod quadrature (dashed lines) fail to faithfully compute the radial component of the
necessary momentum integral, resulting in non-analytic results for T/t < 10−2. In contrast, a temperature
adaptive routine (dubbed custom for brevity), yields stable results for temperatures as low as T/t = 10−5

(full lines). The origin for this behavior roots in the progressive sharpening of the loop function around the
Fermi level, as displayed in (c) and (d). Here, we plot Ls(k, qs = 0) for µ/t = 1.7 along two high-symmetry
directions of the triangular lattice. The respective intersection points KFS and MFS with the circularly shaped
Fermi surface are marked by dotted vertical lines.

different temperatures. In both cases, the largest value is assumed at the Fermi level. The width of
the corresponding peak, however, is strongly modulated upon lowering T . An efficient quadrature
should take this effect into account and successively increase the radial resolution upon lowering the
temperature.
Here, we adress this issue in three consecutive steps. We firstly subdivide the integral into two parts,
one ranging from the origin k = 0 to the Fermi surface and a second one ranging from the Fermi
surface to the boundary of the Brillouin zone. We thus have

Πc(θ, qc) =
∫ Fθ

0
dk k × Lc(kθ, qc) +

∫ Rθ

Fθ

dk k × Lc(kθ, qc) , (3.35)

where the radius Fθ corresponds to the Fermi level at angle θ. This way, we can rest assured that
the most dominant contribution is always accounted for. In a second step, we further subdivide both
integrals into nT uniform domains, that is

Πc(θ, qc) =
nT−1∑

i=0

[∫ Fθ
nT

(i+1)

Fθ
nT

i

dk k × Lc(kθ, qc) +
∫ Fθ+Rθ−Fθ

nT
(i+1)

Fθ+Rθ−Fθ
nT

i

dk k × Lc(kθ, qc)
]
, (3.36)

where we scale the number of subdomains according to

nT = min
(

max
(
nTUV√
T
, nTUV

)
, nTIR

)
. (3.37)

This procedure ensures stability of the routine also at small temperatures by successively increasing
the number of integration nodes. Lastly, each integral is solved by an adaptive routine to obtain
error-controlled results. We opt for Simpson’s rule as a compromise between numerical efficiency
and accuracy. The number of function evaluations is thereby doubled until we either meet the error
tolerance or surpass the maximum number of function evaluations. Unless stated otherwise, we use
an absolute tolerance atol = 10−8 and a relative tolerance rtol = 10−4. The integration is terminated
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preemptively if the number of function evaluations exceeds 220. Additionally, we fix nTUV = 10 and
nTIR = 103. Note that in order to estimate the integration error, a single Richardson extrapolation
between two consecutive steps, as well as on the final result, is performed.
To demonstrate the superiority of our implementation, we compute the scale-derivative of the pairing
susceptibility, i.e. the momentum integral

χ̇s(qs = 0) = 1
ABZ

∫

BZ
dk Ls(k, qs = 0) , (3.38)

as a function of temperature. In Fig. 3.3(b), we have contrasted our radial quadrature with an adaptive
Gauss-Kronrod rule as exported by the QuadGK library in the Julia programming language. In all
cases, we employ a N = 192 Riemann sum for the angular integration. For temperatures T/t > 10−2

both methods are in perfect agreement. Below this scale, however, one observes non-analytic jumps in
the results obtained with the Gauss-Kronrod rule, whereas the implementation described here yields
accurate results for temperatures as low as T/t = 10−5 - an appreciable boost by more than two orders
of magnitude. On the triangular lattice, such temperature scales can in fact become relevant due to
the collective interplay between fluctuations and geometric frustration [39, 40].

3.3.2 Differential equation solver

Knowing how to compute the right-hand side of Eq.(3.29), one can evolve the vertex V given at some
initial temperature scale Ti to some lower temperature Tf < Ti by integrating the flow equations.
More specifically, these are of the form

d

dT
V = f(T, V ) (3.39)

where f schematically represents the sum of channel derivatives, which makes up the right-hand side
of the flow. This equation amounts to a set of ordinary differential equations for which numerous
solvers are available. Ideally, one would like to use that algorithm which produces V Tf with the highest
possible accuracy but the least number of evaluations of f . Indeed, as recent efforts have demonstrated
[44], an optimal solver for a specific incarnation of the flow equations may exist. Although the ideal
choice may be model dependent after all, there are some generic traits shared by well-performing ODE
solvers for fRG flow equations. A qualified ODE solver should

(a) adjust its step size dynamically to account for sudden changes such as the rapid growth of certain
couplings when approaching the infrared regime.

(b) account for the change of difficulty upon lowering the temperature. A maximum step width that
one deems appropriate for large T might be a bad choice close to the infrared, where the vertex
has been subject to strong renormalization effects. Conversely, if the couplings change only
weakly with T , small step sizes are inefficient and should be circumvented to safe computation
time.

(c) optimize both efficiency and numerical accuracy. Multiple evaluations of f should be avoided if
the hypothetical gain in accuracy is in an imbalance with the actual change of the results. For
example, if one is only interested in qualitative results simple methods such as single-step Euler
solvers might suffice already.

To respect these conditions, we integrate the flow equations using the Bogacki-Shampine [RK3(2)]
method [68] from the Runge-Kutta family and implement the step-size adjustment (a) according
to the proposal in Ref. [69]. We set an absolute (relative) error tolerance of 10−8 (10−2), unless
stated otherwise. In order to factor in (b), the maximum step size of the solver is chosen relative to
the current temperature, max(∆T ) = T/10. The minimum step size, on the other hand, is fixed to
min(∆T ) = 10−7 (T is given in units of the hopping). Most notably, this algorithm possesses the
First-Same-As-Last (FSAL) property, allowing one to recycle the function evaluation for the error
estimate in the subsequent ODE step, which helps to pay heed to (c).

3.3.3 Linearized gap equations and calculation of Chern numbers

In Sec. 3.1.1, we linearized the mean-field equation for the superconducting gap ∆(k) around the Fermi
surface. The resulting gap equation then assumed the form

λ∆(k) =
∑

k′∈FS
VBCS(k,k′)∆(k′) , (3.40)
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Figure 3.4: Numerical convergence checks in N-patch fRG. In (a) we plot temperature flows of the
scale-derivative of the pairing susceptibility χ̇s(qs = 0) at van Hove filling for various angular resolutions N . In
the high temperature regime T/t ≳ 10−2 all curves agree sufficiently well, while at low temperatures significant
deviations are visible. In our fRG calculations we typically use N = 192 as a compromise between accuracy
and computing time. Note that below van Hove filling convergence is typically reached much faster. The
scaling of the Chern number calculation with the Brillouin zone resolution for the E1 irrep is shown in (b).
The convergence behavior generally depends on the filling (close to nesting, convergence is typically slower),
yet, Nk ≈ 103 momenta are usually sufficient to obtain the correct result.

that is, an eigenvalue equation for the pairing potential VBCS, whose solutions (eigenvectors) are
superconducting gaps with associated eigenvalue λ, which sets the corresponding mean-field critical
temperature. Our analysis further revealed that the largest, negative eigenvalue represents the dominant
pairing tendency.
At that point, however, the precise form and origin of the pairing potential remained obscure. Fortu-
nately, it can be explicitly computed from the fRG approach. When one integrates the flow, some
contributions to the vertex usually become singular, indicating spontaneous symmetry breaking and
the onset of an ordered phase [11, 15, 70]. At this point, the fRG flow has to be stopped. Now, consider
an effective interaction of the form VBCS(k,k′) = V (k,−k|k′,−k′), which has a transfer momentum
qs = 0 and should thus be dominated by fluctuations in the particle-particle channel. If it occurs that
the latter diverges during the fRG flow12, this means that the fermions become strongly-interacting
and the Fermi liquid state thus exhibits a pairing instability. The pairing potential at the critical scale
Tc

13 can then be extracted as

VBCS(k,k′) ≈ γs(k,−k|k′,−k′) . (3.41)

Consequently, any numerical eigenvalue solver can be applied in order to calculate the leading
superconducting gap from Eq. (3.40). More generally speaking, an instability in any channel can be
associated with a linearized gap equation for the respective scattering potential [71]. A mean-field
decoupling ⟨ψ̄k+qtψk⟩, for example, corresponds to an effective interaction γt(k + qt,k′|k,k′ + qt) in
the t channel with transfer momentum qt and the eigenvectors would therefore characterize a density
wave. Note, however, that the gap is computed from a singular vertex γc at T = Tc and as such, there
is no real meaning in its size, but only in its symmetry.
Having obtained the pairing field from the renormalized vertex, the symmetry based classification
discussed in Sec. 3.1.2 can be applied. In particular, one can find an optimal fit of lattice harmonics
by comparing the agreement of different irreps with the dominant eigenvectors of the scattering
potential. Recall that in the case of degenerate pairing solutions, corresponding to multi-dimensional
representations, complex superpositions of lattice harmonics would open a gap at the Fermi surface and
are thus preferable from an energetic point of view. Superconducting gaps of this form could exhibit
non-trivial topology, that is, they could have a finite Chern number C. For a complex superposition
of two such fits, the latter can be determined from the winding of the pseudospin m(k) around the
Fermi surface (see Sec. 3.1.3) using

C = 1
4π

∫

BZ
dk

〈
m(k)

∣∣∣∣
∂m(k)
∂kx

× ∂m(k)
∂ky

〉
. (3.42)

12 Numerically, a divergence can, for example, be characterized by the channel maximum growing larger than some
multiple of the electronic bandwidth.

13 In this context, Tc corresponds to the temperature at which the fRG flow breaks down.
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Figure 3.5: Spinless N-patch fRG in the pairing channel for V/t = −1. (a) For low densities µ/t < 2,
the Fermi surface (dark grey line) resembles a circular shape. Beyond Van Hove filling µ/t = 2, where nesting
(silver line) occurs, the Fermi surface intersects with the boundary of the Brillouin zone (black line) and forms
pockets around the K points (white lines). (b) Critical fRG scale Tc/t as a function of the chemical potential
µ/t. At µ/t ≈ 1.2 one finds a transition from p-wave to f -wave superconductivity. The p-wave instability could
be chiral with Chern number C = −1.

Computing C boils down to calculating a two-dimensional momentum integral. The difficulty in solving
the latter for arbitrary m evolves around developing a stable algorithm, which is able to cope with
repeated evaluations of the product of partial derivatives. Here, we proceed in two steps. First, the
integral is replaced by a two-dimensional Riemann sum

C = ∆ABZ
4π

N∑

i=1

〈
m(ki)

∣∣∣∣
∂m(k)
∂kx

∣∣∣∣
k=ki

× ∂m(k)
∂ky

∣∣∣∣
k=ki

〉
, (3.43)

where the ki form a uniform discretization of the Brillouin zone, that is, the Wigner-Seitz cell for
each point encloses the same volume ∆ABZ = ABZ

N . To compute the sum, we evaluate the partial
derivatives via forward mode automatic differentiation (AD), as exported by the ForwardDiff Julia
module. Compared to finite-difference methods, AD has turned out to be more stable in the present
context. We find the interval to converge already with a modest momentum resolution Nk ≈ 103, as
exemplified in Fig. 3.4(b).

3.4 Examples
In the last decades, the Hubbard model on the square lattice has attracted tremendous attention as
the prototypical Hamiltonian of strong correlations in high-Tc candidate materials, such as cuprates
or iron-pnictides [1, 2]. Moreover, it has served as a valuable environment for benchmarking novel
numerical approaches and exploring their performance for disentangling the non-trivial interplay
between thermal and quantum fluctuations [41, 72].
The advent of twisted bilayer graphene [53, 73] as one of the first moiré materials for which a
plethora of correlated many-body states could be observed, however, renewed the conceptual interest in
effective Hamiltonians on hexagonal geometries, such as the honeycomb, kagome or triangular lattice.
Remarkably, the phase diagram of tBG [53, 55, 73], resembles that of the high-Tc cuprate materials:
superconducting domes are separated by insulating regions as a function of doping. Moreover, a
comparison of the superconducting transition temperature Tc relative to the Fermi temperature TF [53]
shows that Tc/TF for twisted bilayer graphene lies somewhere between the iron-pnictides and cuprates,
indicating tBG as a potential platform for the study of unconventional superconductivity.
Recently, multilayer transition metal dichalcogenides (TMDs) have been put forward as another
highly-tunable platform for the simulation of exotic many-body states [40, 74–81]. The effective models
considered for TMDs usually involve a couple of spin-split bands that arise from broken SU(2) symmetry
due to strong spin-orbit coupling in the monolayer system [78, 82, 83]. To capture the elementary
physics of interacting fermions on a lattice relevant to the field of TMDs and, more importantly, to
exemplify the capabilities of the functional renormalization group approach, we consider a toy model
of spinless fermions on the triangular lattice with real-space Hamiltonian

H = −t
∑

⟨ij⟩
c†
i cj − µ

∑

i

c†
i ci + V

∑

⟨ij⟩
c†
i c

†
jcjci , (3.44)
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Figure 3.6: Characterization of pairing instabilities in the Cooper channel. (a) Temperature
flow of the maximum of γs for µ/t = 0. The calculation is terminated preemptively, once an upper bound
of 3W/t (upper silver line) is surpassed. (b) Renormalized 2PR vertex γs at the critical scale Tc. Singular
couplings appear as two parallel lines, whose momenta add up to qs = 0. (c) p-wave gap function extracted
from the vertex in (b). The leading eigenvalue is doubly degenerate and can be accurately described by the
nearest-neighbor harmonics of the E1 irrep (dashed lines). (d) & (e) same as (a) & (b) but at Van Hove
filling. (f) Gap function for the f -wave instability. Here, only a single eigenvector, which transforms in the B1
irrep, is competitive.

which could perhaps be realized by coupling an external magnetic field to spins in the moiré valence
band and driving the system into a polarized state. Note that in the absence of a spin degree of
freedom, the nearest-neighbor density interaction V presents the simplest conceivable interaction term.
Here, our sign convention is chosen such that V < 0 (> 0) denotes an attractive (repulsive) interaction.
In momentum space Eq. (3.44) becomes

H =
∑

k

ξ(k)c†
kck +

∑

k′
1,k

′
2,k1,k2

V F(k′
2,k2) × δ(k′

1 + k′
2 − k1 − k2)c†

k′
1
c†

k′
2
ck2

ck1
, (3.45)

where F(k,k′) =
∑

{δ} e
i(k−k′)δ corresponds to the nearest-neighbor form factor with triangular

displacement vectors δ. The single-particle dispersion

ξ(k) = −2t
[
cos (kx) + cos

(
kx
2 +

√
3ky
2

)
+ cos

(
kx
2 −

√
3ky
2

)]
− µ , (3.46)

is computed for Bravais lattice vectors a1 = (1, 0)T and a2 = (1/2,
√

3/2)T .
To shed light on the ground state instabilities of this toy model, we employ the N -patch fRG scheme
from Sec. 3.2.2 combined with the renormalized mean-field analysis discussed in Sec. 3.3.3. The
properly antisymmetrized initial condition for the two-particle vertex is given by

V0(k′
1,k

′
2,k1) = V [F(k1,k

′
1) − F(k′

2,k1)] , (3.47)

where we utilized inversion symmetry of the triangular lattice. We set the initial scale TUV to the
bandwidth W = 9t and terminate the flow for temperatures T ≤ TIR = 10−5t or if the maximum of
one channels exceeds 3W , in which case we declare to have reached the strong-coupling regime. The
flow of the vertex is tracked on N = 192 patches, for which our susceptibility results in Fig. 3.4 seemed
reasonably well converged. In total, this corresponds to a set of roughly seven million differential
equations in every channel, which goes significantly beyond previously used patching resolutions.
In the following, numerical results for the phase diagram of Eq. (3.44) are presented. We proceed
in two steps. Firstly, our approach is benchmarked against mean-field results from Ref. [84] by
exclusively considering the s channel and setting all other 2PR diagrams to zero. In this case, the fRG
flow resembles a ladder summation of particle-particle diagrams. Secondly, we perform full patching
calculations and map out the phase diagram for both attractive and repulsive four-fermion interactions
V .
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Figure 3.7: Phase diagrams for spinless fermions on the triangular lattice. (a) Close to Van Hove
filling and for sizable attractive interactions V/t < 0, one finds a Pomeranchuk instability, whose onset is
marked by a colored dot for the respective Tc line. Below µ/t = 2, however, two pairing instabilities can
occur: p-wave at low densities and an f -wave superconductor at intermediate fillings, for which we indicate the
respective transition by diamond markers. Note that for V/t = −1.0 (blue line) no f -wave instability is found
in the fRG calculation. For weak interactions V/t = −0.4 there additionally exists a metallic regime. (b) Same
as (a), but for repulsive density interactions V/t > 0. Instead of a Pomeranchuk instability, one finds a charge
density wave with a finite pitch vector qt = M that breaks translation invariance. If the filling is reduced,
the particle-hole instability is overhauled by a divergence in the s channel. The respective gap has p̃-wave
symmetry, i.e. it transforms in the E1 irrep, but further neighbor contributions need to be accounted for. At
low densities we find a metallic phase, in which singular couplings are absent.

3.4.1 Example 1: Channel truncated N-patch fRG

For the mean-field scenario, we study the Hamiltonian presented in Eq. (3.44) with attractive interac-
tions V/t = −1 and for fillings µ/t ∈ [−1, 2]. For µ/t = 2, the dispersion Eq. (3.46) exhibits a Van Hove
singularity at k = M due to saddle points in the dispersion. Moreover, the Fermi surface is perfectly
nested (see [Fig. 3.5(a)]) and touches the Brillouin zone at the Van Hove points. For larger chemical
potentials, the ξ(k) = 0 line intersects with the boundary of the Brillouin zone, giving rise to Fermi
pockets around the K-points. This opens up the possibility for superconducting states with extended
symmetries (such as f -wave) if their respective nodes lie in the regions between the pockets. Below
Van Hove filling, nesting is absent and the Fermi surface assumes a circular shape, which progressively
shrinks around the Γ-point when µ/t is decreased. One could therefore expect a competition between
two superconducting instabilities in the chosen range of fillings: one with extended symmetry in vicinity
of Van Hove filling, and one with a lesser number of nodes for µ/t < 2.
Indeed, as depicted Fig. 3.5(b) and in agreement with Ref. [84], we find a transition between a p-wave
instability at low fillings and an f -wave superconductor for µ/t ≳ 1.2, signified by a local minimum
in the critical temperature. The p-wave instability features two nodes on the Fermi surface and its
gap, which is best described by the nearest-neighbor basis functions δ1, δ2 of the two-dimensional E1
irrep, is doubly degenerate (see [Fig. 3.6(a) - (c)]). Its Chern number for a mean-field constructed
as ∆(k) = δ1(k) ± iδ2(k) evaluates to C = −1, that is, the respective px + ipy state is topologically
non-trivial, which agrees with the findings of Ref. [84]. The f -wave state (see [Fig. 3.6(d) - (f)]),
on the other hand, transforms in the one-dimensional B1 irrep and is therefore topologically trivial.
Consequently, there must be a quantum phase transition in between, which according to Ref. [84] is
likely first order.

3.4.2 Example 2: N-patch fRG for spinless triangular-lattice fermions

Having instilled some confidence in the correctness of our implementation, we now turn to the discussion
of the fRG results with competing channels. To generalize the results from the ladder resummation,
we begin by presenting the phase diagram for various attractive interactions V/t < 0, plotted in
Fig. 3.7(a).
In total, we find three different ground state instabilities. Starting from a p-wave instability at low
densities, the symmetry of the gap changes from p- to f -wave for interactions −0.4 < V/t < −1,
followed by a plateau of particle-hole instabilities. For smaller |V |/t, the critical temperature of the
p-wave instability is suppressed below TIR = 10−5 and thus becomes elusive. The respective region in
the phase diagram is therefore coined metal. For larger |V |/t, on the other hand, the region of f -wave
superconductivity diminishes.
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Figure 3.8: Competing instabilities for repulsive interactions close to Van Hove filling. (a) Flow
of the maxima in the 2PR channels, signifying an instability in the pairing channel. (b) Renormalized pairing
vertex at the critical scale Tc. (c) Superconducting gap function computed from (b). The solution is doubly
degenerate and hast extended p̃-wave symmetry, as indicated by multiple nodes on the Fermi surface. A fit
of E1 basis functions is plotted as dashed lines. (d) Same as (a), but with an instability in the particle-hole
channels. (e) Direct particle-hole channel at the critical temperature. The respective order parameter is
plotted in (f), with a fit of A1 (s-wave) lattice harmonics (dashed blue line).

Close to Van Hove filling, one finds a simultaneous divergence of the two particle-hole channels (see
Fig. 3.8). Due to crossing symmetry, which relates the respective bubble functions ([Eq. 2.24]), the
flows closely align and we can reduce our discussion to γt for brevity. The direct particle-hole channel
becomes singular for transfer momenta qt = 0, that is, a Pomeranchuk instability occurs. Since the
respective gap equation possesses a large negative eigenvalue, it seems that the system develops a
tendency towards Fermi surface deformation [35]. This result, however, has to be taken with a grain of
salt, since the respective mean-field ⟨ψ̄kψk⟩, corresponding to the fermion density, does not break any
symmetries. Therefore, we cannot associate the singularity with any order. One possible reason for
the divergence of the flow could be the neglect of self-energy effects in N -patch fRG. The latter could,
in principle, acquire a non-trivial momentum dependence and counteract the divergence, but in the
absence of numerical results, this remains speculation.
On a qualitative level, our results obtained with additional fluctuations in the particle-hole channels
are consistent with those obtained in the previous section, since the gaps for both the p and f -wave
instabilities transform in the same irreps of C6v. Moreover, the sequence of their appearance as a
function of doping remains identical. The Pomeranchuk instability, on the other hand, could not be
obtained from exclusively considering fluctuations in γs.
Let us now consider repulsive interactions V/t > 0. Similar to the attractive case, we again find an
instability of the particle-hole channels for chemical potentials µ/t ≈ 2. This time, however, finite
momenta qt = M are transferred through the internal bubble, signaling the emergence of a charge
density wave (CDW), which breaks translation invariance. Since qt coincides with the nesting vector,
this instability can be considered a two-dimensional analogue of a Peierl’s instability. The dominant
eigenvector of the associated scattering potential is found to transform in the A1 irrep and has s-wave
symmetry.
Below Van Hove filling nesting is lost, but fluctuations in the particle-hole channels remain sizable.
Nonetheless, one finds an instability in γs if µ/t is decreased far enough. This is remarkable, since the
nearest-neighbor interaction is repulsive, V/t > 0, and an attractive interaction in the Cooper channel
must be caused by inter-channel feedback during the RG flow, similar to the generation of d-wave
superconductivity from antiferromagnetic fluctuations in the square lattice Hubbard model [21, 36].
The flows of the 2PR channels plotted in Fig. 3.8(a), for sufficiently strong V/t mimic this behavior.
At large temperatures, the vertex is dominated by the particle-hole channels. When the temperature
is decreased, however, both γt and γu freeze out and flow to a constant value. The particle-particle
channel, which is subdominant in the ultraviolet, then displays a strong increase in the low-temperature
regime and its maximum ultimately surpasses the upper numerical bound 3W . The corresponding
gap function features an unusual large number of ten nodes on the Fermi surface and has higher-order
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p̃-wave symmetry, that is it transforms in the E1 irrep but its momentum dependence needs to be
modeled with both first and second neighbor harmonics. From an experimental point of view this is
interesting insofar that a superposition of nearest and next-nearest-neighbor functions of the E1 irrep
can boost the Chern number to values C > 1 (see Ch. 6.1), which would result in a strongly enhanced
quantum Hall response.
Let us summarize the main achievements of this section. We have presented an accurate, yet numerically
efficient implementation of N -patch fRG, which facilitated calculations with Fermi surface resolutions
well beyond the scope of other studies. Motivated by twisted transition metal dichalcogenides with
hexagonal superlattices, we considered a toy model of spinless fermions on the triangular lattice, for
which a plethora of charge and pairing instabilities could be uncovered. Moreover, our results have
been carefully benchmarked with a truncated-unity fRG solver (see Ch. 6.1). Therefore, our work can
be readily generalized to more realistic models for moiré materials with additional spin and/or orbital
degrees of freedom.
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4 Pseudofermion fRG for quantum spin systems
In this chapter, we concern ourselves with another flavor of the fRG approach: the pseudofermion
functional renormalization group (pffRG) and its application to quantum spin systems. The method
was pioneered by Reuther and Wölfle in Ref. [22] and, as its name suggests, is based on a representation
of spin operators in terms of Abrikosov fermions. In sharp contrast to itinerant electron models, where
the Hamiltonian typically contains both, a kinetic part characterized by some hopping amplitude t
and interaction terms identified with some energy scale U , the pseudofermion Hamiltonian resembles
the t/U → 0 limit, where only quartic terms remain. Since the approximations presented in Sec. 2.3
were derived assuming weak coupling, the question arises to which extent a truncated and thus
formally uncontrolled pffRG flow is able to capture the low-energy physics of strongly interacting spin
models.
First insight into this issue can be gained from a closer inspection of the 1ℓ flow. The Katanin truncated
pffRG equations boil down to a resummation of ladder diagrams both in the large-S (spin length) and
large-N (as in in SU(N)) limit [70, 85], the former boosting classical order, whereas the latter promotes
quantum fluctuations. In both cases the exact mean-field results are recovered. This indicates that,
even for S = 1/2 and N = 2, some competition between magnetic instabilities and paramagnetic
fluctuations, which hamper the spread of long-range correlations, is built into the pffRG flow. Note
that feedback of the self-energy derivative into the flow of 2PR vertices is crucial for establishing this
delicate balance, since flows without the Katanin truncation appear to be heavily biased towards
magnetic instabilities [22].
Throughout the past decade 1ℓ-pffRG has, due to its versatility, been picked up by quite a number
of research groups, which uttered in a surge of papers that concern themselves with a plethora of
(frustrated) spin models in different spatial dimensions [22, 86–114]. Apart from the addition of 2ℓ
corrections by Rück and Reuther [115], the assessment of systematic errors induced by truncating
the pffRG flow, has, until recently [P1, 116], attracted much less attention. This is surprising insofar
that 1/S (1/N) is usually not a small parameter such that the neglect of higher-order contributions
is unjustified. Therefore, assuring self-consistency of the method becomes a mandatory task. As
outlined in Sec. 2.3.3, the addition of multiloop corrections restores the equivalence between fRG and
solutions of the self-consistent parquet approximation. For this reason, mfRG can be deemed a valid
starting point for gauging the importance of higher-order corrections. The loop order hereby serves as
a control parameter: convergence of the pseudofermion vertices with increasing ℓ instills confidence in
the respective level of truncation and ensures that mutual screening effects between the 2PR channels
are fully accounted for.
The remainder of this chapter is structured as follows. In Sec. 4.1 we provide a brief introduction to
the intricate physics of frustrated quantum spins systems and the appearance of exotic spin liquid
states therein. We proceed by reviewing the pseudofermion representation of spin operators in Sec. 4.2
and, following Refs. [117, 118], present an efficient parametrization of the vertices with regard to their
real space, spin and frequency structure. At last, the numerical implementation of pffRG is extensively
discussed and rounded off with a few computational examples in Sec. 4.5.

4.1 Frustrated magnetism and quantum spin liquids
Quantum spin models are Hamiltonians which describe interactions between the magnetic moments of
firmly localized, yet strongly correlated electrons. At high temperatures, spins usually exhibit param-
agnetic behavior, that is, the contributions from individual moments to the macroscopic magnetization
cancel out. Upon cooling, however, they can behave cooperatively and give rise to long-range magnetic
order. Frustrated quantum magnets, on the other hand, provide prominent exceptions to this rule.
Here, the proliferation of magnetic correlations is impeded by strong fluctuations and the presence of
competing ground states.
One recurring motif in frustrated magnets is the formation of so-called quantum spin liquids (QSLs),
exotic states of matter in which the spins remain disordered even at the lowest temperature scales.
A positive definition of QSLs goes to back to the resonating valence bond (RVB) state proposed by
Anderson as an alternative ground state of spin-1/2 antiferromagnets [119]. In an RVB, the ground
state wave function is composed of a massive superposition of singlet coverings of the lattice, so-called
valence bond states, and thus shows an anomalously large degree of quantum entanglement. Moreover,
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the RVB state features spin-1/2 quasiparticles called spinons, which can be generated by fractionalizing
one of the singlets into two deconfined magnetic charges. These excitations can be gapped or gapless
depending on the spatial extent of singlet bonds.
Over the years, the theory of quantum spin liquids has rapidly evolved, resulting in many excellent
review papers such as Refs. [10, 120, 121]. However, the key ingredients of QSL states, namely competing
interactions, frustration and strong quantum fluctuations, have impeded the development of a complete
classification scheme [10]. In this vacuum, the consultancy of realistic models which are exactly solvable
and thus provide invaluable insights into the physics of spin liquids are of paramount importance. A
famous example of a Hamiltonian which precisely fits these criteria is Kitaev’s honeycomb model [7],
which, despite its simplicity, harbors both gapped and gapless QSL states. Here, spins fractionalize into
Majorana fermions and a static Z2 gauge field. Their respective fate in the presence of tilted magnetic
fields has recently been investigated in breakthrough experiments by Kasahara [8] and, concomitantly,
by numerical calculations with different many-body techniques [122–125].
The revelation that the Kitaev model could be realized in Mott insulators with partially filled t2g
shells and strong spin-orbit coupling [126] has ignited a lasting interest in the quest for palpable
spin liquid materials. This search is, of course, not strictly limited to pristine Kitaev materials, but
includes triangular and kagome systems such as EtMe3Sb[Pd(dmit)2]2 [127] and Herbertsmithite
(ZnCu3(OH)6Cl2) [128] besides three-dimensional spin-ice materials like Ho2Ti2O7 and Dy2Ti2O7 [129].
Despite the steady stream of additions to the family of QSL candidates, tackling the multifaceted spin
Hamiltonians encountered therein has remained challenging, although many established numerical
methods have become very sophisticated. The exponential growth of the Hilbert space dimension with
system size has, so far, prohibited the study of large systems with exact diagonalization or DMRG,
while the infamous sign problem restricts quantum Monte Carlo (QMC) simulations to relatively high
temperatures. This calls for the development of novel theoretical tools to unravel the low-temperature
phase diagrams of frustrated quantum magnets.

4.2 Abrikosov fermion representation of spin operators
We consider general spin-1/2 Hamiltonians of the form

H = 1
2
∑

ij

Jµνij S
µ
i S

ν
j , (4.1)

where Sµi denotes the µ ∈ {x, y, z} component of the su(2)1 spin operator on lattice site i. The
prefactor 1/2 ensures that each bond (i, j) contributes to the total energy only once. We assume that
the couplings Jµνij (usually Jµνii = 0) between sites i and j are real, such that the spin Hamiltonian is
hermitian and time-reversal symmetric [117]. Moreover, we impose

Jµνij = ξJµνji = ξJνµij . (4.2)

Here, ξ ∈ {±1} is a Z2 variable such that Jµνij can be symmetric or antisymmetric in spin space and
either break or preserve inversion symmetry on individual bonds. This Hamiltonian already captures a
plethora of different spin models including, for example, SU(2) symmetric Heisenberg interactions for
which Jµνij evaluates to Jµνij = Jijδ

µν .
In order to apply the fRG framework developed in Ch. 2, the spin operators are expressed in terms of
complex pseudofermions [130] as

Sµi = 1
2c

†
iασ

µ
αβciβ , (4.3)

where equal spin indices α ∈ {↑, ↓} are summed over. Here, σµαβ are the elements of the Pauli matrix
σµ. Introducing the matrix operator

Fi =
(
ci↑ −c†

i↓
ci↓ c†

i↑

)
, (4.4)

Sµi can alternatively be represented as

Sµi = 1
2Tr[F †

i σ
µFi ] . (4.5)

1 su(2) denotes the spin algebra.
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Importantly, Sµi is invariant under Fi → FiTi, where Ti ∈ SU(2) is a local gauge transformation. Note
that in contrast to a physical symmetry, which would be implemented by left multiplication with some
unitary matrix U †, the gauge transformation is defined by right multiplication, instead. A general
symmetry, in the sense that it leaves the Hamiltonian unchanged, can therefore act both globally as
well as in the gauge sector: Fi → U †FiTi. Guided the pioneering work of Wen [9], this observation has
led to the notion of projective symmetry groups (PSGs)2 and quantum order, which can be used to
classify mean-field ansätze for spin liquid phases.
Although the Pauli matrices σµ ensure that the su(2) commutator stays intact, Eq. (4.5) does not yet
suffice to faithfully reproduce the original spin model. This is because the dimension d = 2 × 2 = 4
of the local pseudofermion Hilbert space is larger than that of the spin-1/2 representation (d = 2).
Two of these states, namely |n↑, n↓⟩ = |0, 0⟩ and |n↑, n↓⟩ = |1, 1⟩, where nα denotes the spin up (down)
occupation are unphysical, since they corresponds to magnetic vacancies which are absent in Eq. (4.1).
Their existence requires an additional half-filling constraint

c†
iαciα = 1 , (4.6)

to be fulfilled on every lattice site in order to render the pseudofermion model isomorphic to the
spin-1/2 Hamiltonian. In the context of pffRG, several ways to cope with this local constraint have
been suggested:

(a) An exact fulfillment in a field-theoretical setup such as fRG could, for example, be accomplished by
introducing a functional δ-distribution on the level of the fermionic action [131]. In consequence,
one would need to keep track of an additional flowing constraint field, which complicates the
fRG analysis tremendously. For this reason, we refrain from employing this approach.

(b) At finite temperatures, unphysical contributions to the partition function can be projected out by
means of an imaginary valued chemical potential µ = iπT2 as suggested by Popov and Fedotov
[132]. For T → 0 the chemical potential vanishes, which motivates its neglect at zero temperature.
Indeed, as has been demonstrated in Ref. [133], pseudofermion fRG results obtained with and
without the Popov-Fedotov constraint coincide in the low temperature regime. Unfortunately, µ
breaks the hermitian symmetry of the Hamiltonian, which makes its implementation comparably
expensive [22].

(c) At zero temperature, the constraint is usually not exactly enforced, but holds on average due to
local particle-hole symmetry of the pseudofermion Hamiltonian [P1, 117]. As will be exemplified
in Sec. 4.5.2, the magnitude of fluctuations around the average ⟨c†

iαciα⟩ = 1 can be further
reduced by means of local level repulsion terms ASµi S

µ
i which, for A < 0, swell the gap between

physical and unphysical states proportional to |A| [85, 116]. In principle, one could achieve
the same by employing a Lagrange multiplier λ(ni − 1)2 on every site, where ni denotes the
local pseudofermion density. Yet, this approach manifestly breaks particle-hole symmetry and is
therefore numerically inefficient (see Sec. 4.3.4).

In the following, our focus lies on the implementation of local half-filling as outlined in (c), which
restricts us to quantum spin models in the zero temperature limit.

4.3 Parametrization of pseudofermion vertices
In its pseudofermion representation, the general spin Hamiltonian Eq. (4.1) computes to

H = 1
8
∑

ij

Jµνij σ
µ
αβσ

ν
γδc

†
iαc

†
jγcjδciβ , (4.7)

that is, it does not comprise a kinetic part and assumes a purely quartic form instead. The bare
propagator G0 is therefore particularly simple and reads

G0(x′
1|x1) = 1

iω1
× βδi′1i1δα′

1α1δω′
1ω1 ≡ G0(ω1) × βδi′1i1δα′

1α1δω′
1ω1 , (4.8)

i.e., G0 is diagonal in all fermionic indices x1 = (i1, α1, ω1), where lattice sites are denoted by i1,
spin indices by α1 and Matsubara frequencies by ω1, respectively. Following the initial proposal

2 A PSG combines the symmetry group of a QSL with its invariant gauge group, i.e. the set of pure gauge transformations
which leave a given pseudfermion mean-field ansatz unchanged.
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Figure 4.1: Sketch of scale-dependent bare propagators. The regularized bare propagator G0(ω) (blue
line) peaks for frequencies close to the RG scale Λ and decays algebraically for |ω| ≫ Λ. The bare single-scale
propagator S0(ω) = − d

dΛG0(ω) displays even sharper features close to |ω| = Λ and falls off exponentially for
large |ω|/Λ. Both propagators are antisymmetric with respect to the origin.

by Reuther [22], the pffRG cutoff has commonly been implemented via a Heavyside θ-function:
GΛ

0 (ω) = θ(|ω| − Λ)G0(ω). This way, fluctuations with |ω| < Λ are sharply suppressed. Although the
sharp cutoff helps to facilitate analytical calculations [70, 85], θ is not a smooth function, which has
prohibited the usage of higher-order numerical integration methods. To circumvent this issue, we
employ a Gaussian regulator

GΛ
0 (ω) =

(
1 − e−ω2/Λ2

)
G0(ω) , (4.9)

as shown in Fig. 4.1. Notably, GΛ
0 (ω) exhibits an algebraic fall-off with 1/ω for frequencies |ω| ≫ Λ.

Our parametrization of pseudofermion vertices is largely based on the thorough symmetry analysis
performed in Ref. [117]. The general strategy unfolds in two steps: First, symmetry transformations
are verified on the level of the action and their validity is subsequently imposed on the level of 1PI/2PR
vertices. In a second step, one derives a set of constraints that they ought to obey. Equipped with these
prerequisites, the general expressions for the self-energy loop and channel specific bubble functions
from Sec. 2.2 can be drastically simplified.

4.3.1 Local flow equations

The first invariance we concern ourselves with, is the local U(1) gauge redundancy of the pseudofermion
action, i.e. Grassmann fields are assigned a local phase ϕj as

ψjα → eiϕjψjα

ψ̄jα → e−iϕj ψ̄jα , (4.10)

which leaves single spin operators Sµj unchanged. Due to the absence of any kinetic term in Eq. (4.7), this
implies conservation of the particle number per site and thus demands (bi-)locality of the propagators
and 1PI vertices [117]. In other words, Σ (as well as G) is diagonal in site indices

Σ(x′
1|x1) = Σi1(x̃′

1|x̃1) × δi′1i1 , (4.11)

whereas Γ (as well as γc) is subject to the condition

Γ(x′
1, x

′
2|x1, x2) = Γ=

i1i2(x̃′
1, x̃

′
2|x̃1, x̃2) × δi′1i1δi′2i2 + Γ×

i1i2
(x̃′

1, x̃
′
2|x̃1, x̃2) × δi′1i2δi′2i1 . (4.12)

On the right-hand side of these equations, dependencies on the lattice sites have been made explicit
such that x̃i solely comprises frequency and spin indices. In pffRG, one usually assumes that all
sites are symmetry equivalents of one another and, consequently, the self-energy and propagators are
spatially uniform Σi1(x̃′

1|x̃1) = Σ(x̃′
1|x̃1). For the models considered in this work, this conjecture is

indeed fulfilled. The components Γ= and Γ× correspond to the two possibilities of connecting incoming
and outgoing fermions at a generic two-particle vertex: lattice indices are either preserved along two
parallel (=) or two crossing lines (×) (see Fig. 4.2). Notably, crossing symmetry implies that

Γ×
i1i2

(x̃′
1, x̃

′
2|x̃1, x̃2) = −Γ=

i1i2(x̃′
2, x̃

′
1|x̃1, x̃2) = −Γ=

i2i1(x̃′
1, x̃

′
2|x̃2, x̃1) , (4.13)
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Figure 4.2: Bilocal parametrization of the two-particle vertex. Due to local U(1) symmetry, Γ
decomposes into a parallel (Γ=) and a crossed component (Γ×), corresponding to the two possibilities to
connect in and outgoing legs. Here, lattice indices are preserved along single fermion lines. The two vertices
Γ= and Γ× are related to one another by crossing symmetry.

which allows us to formulate the flow equations entirely in terms of Γ= or Γ×3. Applying this
parametrization to the self-energy loop we find
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2) × δi′1i1 . (4.14)

Note that we have highlighted vertex components Γ= which have been obtained through Eq. (4.13)
as Γ̃=. This level of book keeping becomes essential for the formulation of the multiloop pffRG flow,
where Γ is occasionally substituted with 2PR contributions γc. To compute the mfRG flow for the
self-energy, for example, t-irreducible vertex contributions need to be inserted into the self-energy loop
in order to compute Σ̇1. This is important insofar that γt and γu are exchanged by crossing symmetry,
giving rise to the identities
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In similar fashion, one can bring the general bubble functions Bc into their bilocal form, which likewise
decomposes into a parallel and a crossed component. Here, we present results for the former and
dispense with presenting the explicit calculation. The s bubble only operates on crossing symmetric
objects like Γ, γs or γs̄ and projections between the parallel and crossed components thus do not need
to be especially accounted for, resulting in the compact expression
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The bubble function for the direct particle-hole channel, in contrast, contains contributions affected by
[Eqs. (4.15)], such that further book keeping is required. Using the Γ̃= notation introduced for the
self-energy loop, B=

t,i1i2
computes to
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For the calculation of the u bubble, only parallel components need to be invoked and we can straight-
forwardly calculate B=

u,i1i2
, which yields
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3 We choose Γ=.
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1̃
Õ

<latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="I2VC/pcOPLcN1XK7X49ZAzm5YKA=">AAACJ3icbVDLSgNBEJz1Gd+JHr0sBsFT2BVRL0LQi8cIRgNJkN7Z3mRwHsvMrBKWfIFX/Qi/xpvo0T9xElcwiQUNRVU33V1RypmxQfDpzc0vLC4tl1ZW19Y3NrfKle0bozJNsUkVV7oVgUHOJDYtsxxbqUYQEcfb6P5i5N8+oDZMyWs7SLEroCdZwihYJ12d3ZWrQS0Yw58lYUGqpEDjruKVO7GimUBpKQdj2mGQ2m4O2jLKcbjayQymQO+hh21HJQg03Xx86dDfd0rsJ0q7ktYfq38nchDGDETkOgXYvpn2RuJ/XjuzyWk3ZzLNLEr6syjJuG+VP3rbj5lGavnAEaCauVt92gcN1LpwJrZwoWLU0j2iUeIjVUKAjPNOAoLxQYwJZNwO845JfrnLMJxObJbcHNbC49rR1VG1fl6kWSK7ZI8ckJCckDq5JA3SJJQgeSLP5MV79d68d+/jp3XOK2Z2yAS8r29i96bW</latexit>=
<latexit sha1_base64="5qUZb+nWBJFOQpNpcpbjXQWeM2Q=">AAACJ3icbVDLSgNBEJyN7/iKevSyGAQvhl0J6jHoxaOCiYEkhN7Z3mTIPJaZWSUs+QKv+hF+jTfRo3/i5CGosaChqOqmuytKOTM2CD68wsLi0vLK6lpxfWNza7u0s9swKtMU61RxpZsRGORMYt0yy7GZagQRcbyLBpdj/+4etWFK3tphih0BPckSRsE66ea4WyoHlWACf56EM1ImM1x3d7xSO1Y0Eygt5WBMKwxS28lBW0Y5jortzGAKdAA9bDkqQaDp5JNLR/6hU2I/UdqVtP5E/TmRgzBmKCLXKcD2zV9vLP7ntTKbnHdyJtPMoqTTRUnGfav88dt+zDRSy4eOANXM3erTPmig1oXzawsXKkYt3SMaJT5QJQTIOG8nIBgfxphAxu0ob5vkm7sMw7+JzZPGSSU8rVRvquXaxSzNVbJPDsgRCckZqZErck3qhBIkj+SJPHsv3qv35r1PWwvebGaP/IL3+QVGx6bG</latexit>≠

<latexit sha1_base64="lMJUHcKj9lRqI4AEK+2GxyuZLLo=">AAACHXicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AW0smc9uGZjJDckctw2x9DV/Arb6BO3ErvoDP4XTahW29EDicc5MTPjeUwqBtf1tLyyura+u5jfzm1vbObmFvv26CSHOo8UAGuukyA1IoqKFACc1QA/NdCQ13eDXOG/egjQjULY5C6Pisr0RPcIap1S3QNgrpQVxO7uI2wiNmT8YPA4GQxCdJ0i0U7ZKdDV0UzlQUyXSq3cJP2wt45INCLpkxLccOsRMzjYJLSPLtyEDI+JD1oZVKxXwwnTirTehx6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOrlknNesm/OipVqZYIoRw7JETklDrkgFXJNqqRGOHkiL+SVvFnP1rv1YX1OVpesKdYDMjPW1y+wBqR5</latexit>

2̃
Õ <latexit sha1_base64="JN9hAIEmYwJI3QXUILc842D2mvI=">AAACCHicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AO5ZM5k4bmmTGJCOUoS/gC7jVN3Anbn0LX8DnMNN2YVsPBA7n3HAvX5Bwpo3rfjsrq2vrG5uFreL2zu7efungsKnjVFFo0JjHqh0QDZxJaBhmOLQTBUQEHFrB8CbvW0+gNIvlvRkl4AvSlyxilBgb+V3DeAhZdfyQnY17pbJbcSfCy8abmTKaqd4r/XTDmKYCpKGcaN3x3MT4GVGGUQ7jYjfVkBA6JH3oWCuJAO1nk6PH+NQmIY5iZZ80eJL+/ZERofVIBHZSEDPQi10e/td1UhNd+xmTSWpA0umiKOXYxDgngEOmgBo+soZQxeytmA6IItRYTnNbuIhDUDIH4y1iWDbNasW7rLh3F+VavTZFVEDH6ASdIw9doRq6RXXUQBQ9ohf0it6cZ+fd+XA+p6MrzgzrEZqT8/ULgm2bOQ==</latexit>

2̃
Õ

<latexit sha1_base64="eJUyBNGONoTm8fTelZE5sL2JVUI=">AAACHXicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsDbS2ZzG0bmskMyR21DLP1NXwBt/oG7sSt+AI+h9NpF7b1QuBwzk1O+NxQCoO2/W3llpZXVtfy64WNza3tneLuXt0EkeZQ44EMdNNlBqRQUEOBEpqhBua7Ehru8GqcN+5BGxGoWxyF0PFZX4me4AxTq1ukbRTSg9hJ7uI2wiNmT8YPA4GQxMdJ0i2W7LKdDV0UzlSUyHSq3eJP2wt45INCLpkxLccOsRMzjYJLSArtyEDI+JD1oZVKxXwwnTirTehR6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOqnZee8bN+clSrVygRRnhyQQ3JCHHJBKuSaVEmNcPJEXsgrebOerXfrw/qcrOasKdZ9MjPW1y+uVqR4</latexit>

1̃
Õ <latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="7qT9DLdfBTP7hqcNlW49LbWpAJs="></latexit>

d

d�

<latexit sha1_base64="eJUyBNGONoTm8fTelZE5sL2JVUI=">AAACHXicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsDbS2ZzG0bmskMyR21DLP1NXwBt/oG7sSt+AI+h9NpF7b1QuBwzk1O+NxQCoO2/W3llpZXVtfy64WNza3tneLuXt0EkeZQ44EMdNNlBqRQUEOBEpqhBua7Ehru8GqcN+5BGxGoWxyF0PFZX4me4AxTq1ukbRTSg9hJ7uI2wiNmT8YPA4GQxMdJ0i2W7LKdDV0UzlSUyHSq3eJP2wt45INCLpkxLccOsRMzjYJLSArtyEDI+JD1oZVKxXwwnTirTehR6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOqnZee8bN+clSrVygRRnhyQQ3JCHHJBKuSaVEmNcPJEXsgrebOerXfrw/qcrOasKdZ9MjPW1y+uVqR4</latexit>

1̃
Õ <latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="lMJUHcKj9lRqI4AEK+2GxyuZLLo=">AAACHXicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AW0smc9uGZjJDckctw2x9DV/Arb6BO3ErvoDP4XTahW29EDicc5MTPjeUwqBtf1tLyyura+u5jfzm1vbObmFvv26CSHOo8UAGuukyA1IoqKFACc1QA/NdCQ13eDXOG/egjQjULY5C6Pisr0RPcIap1S3QNgrpQVxO7uI2wiNmT8YPA4GQxCdJ0i0U7ZKdDV0UzlQUyXSq3cJP2wt45INCLpkxLccOsRMzjYJLSPLtyEDI+JD1oZVKxXwwnTirTehx6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOrlknNesm/OipVqZYIoRw7JETklDrkgFXJNqqRGOHkiL+SVvFnP1rv1YX1OVpesKdYDMjPW1y+wBqR5</latexit>

2̃
Õ <latexit sha1_base64="JN9hAIEmYwJI3QXUILc842D2mvI=">AAACCHicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AO5ZM5k4bmmTGJCOUoS/gC7jVN3Anbn0LX8DnMNN2YVsPBA7n3HAvX5Bwpo3rfjsrq2vrG5uFreL2zu7efungsKnjVFFo0JjHqh0QDZxJaBhmOLQTBUQEHFrB8CbvW0+gNIvlvRkl4AvSlyxilBgb+V3DeAhZdfyQnY17pbJbcSfCy8abmTKaqd4r/XTDmKYCpKGcaN3x3MT4GVGGUQ7jYjfVkBA6JH3oWCuJAO1nk6PH+NQmIY5iZZ80eJL+/ZERofVIBHZSEDPQi10e/td1UhNd+xmTSWpA0umiKOXYxDgngEOmgBo+soZQxeytmA6IItRYTnNbuIhDUDIH4y1iWDbNasW7rLh3F+VavTZFVEDH6ASdIw9doRq6RXXUQBQ9ohf0it6cZ+fd+XA+p6MrzgzrEZqT8/ULgm2bOQ==</latexit>

2̃
Õ

<latexit sha1_base64="eJUyBNGONoTm8fTelZE5sL2JVUI=">AAACHXicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsDbS2ZzG0bmskMyR21DLP1NXwBt/oG7sSt+AI+h9NpF7b1QuBwzk1O+NxQCoO2/W3llpZXVtfy64WNza3tneLuXt0EkeZQ44EMdNNlBqRQUEOBEpqhBua7Ehru8GqcN+5BGxGoWxyF0PFZX4me4AxTq1ukbRTSg9hJ7uI2wiNmT8YPA4GQxMdJ0i2W7LKdDV0UzlSUyHSq3eJP2wt45INCLpkxLccOsRMzjYJLSArtyEDI+JD1oZVKxXwwnTirTehR6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOqnZee8bN+clSrVygRRnhyQQ3JCHHJBKuSaVEmNcPJEXsgrebOerXfrw/qcrOasKdZ9MjPW1y+uVqR4</latexit>

1̃
Õ <latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="lMJUHcKj9lRqI4AEK+2GxyuZLLo=">AAACHXicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AW0smc9uGZjJDckctw2x9DV/Arb6BO3ErvoDP4XTahW29EDicc5MTPjeUwqBtf1tLyyura+u5jfzm1vbObmFvv26CSHOo8UAGuukyA1IoqKFACc1QA/NdCQ13eDXOG/egjQjULY5C6Pisr0RPcIap1S3QNgrpQVxO7uI2wiNmT8YPA4GQxCdJ0i0U7ZKdDV0UzlQUyXSq3cJP2wt45INCLpkxLccOsRMzjYJLSPLtyEDI+JD1oZVKxXwwnTirTehx6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOrlknNesm/OipVqZYIoRw7JETklDrkgFXJNqqRGOHkiL+SVvFnP1rv1YX1OVpesKdYDMjPW1y+wBqR5</latexit>

2̃
Õ<latexit sha1_base64="JN9hAIEmYwJI3QXUILc842D2mvI=">AAACCHicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AO5ZM5k4bmmTGJCOUoS/gC7jVN3Anbn0LX8DnMNN2YVsPBA7n3HAvX5Bwpo3rfjsrq2vrG5uFreL2zu7efungsKnjVFFo0JjHqh0QDZxJaBhmOLQTBUQEHFrB8CbvW0+gNIvlvRkl4AvSlyxilBgb+V3DeAhZdfyQnY17pbJbcSfCy8abmTKaqd4r/XTDmKYCpKGcaN3x3MT4GVGGUQ7jYjfVkBA6JH3oWCuJAO1nk6PH+NQmIY5iZZ80eJL+/ZERofVIBHZSEDPQi10e/td1UhNd+xmTSWpA0umiKOXYxDgngEOmgBo+soZQxeytmA6IItRYTnNbuIhDUDIH4y1iWDbNasW7rLh3F+VavTZFVEDH6ASdIw9doRq6RXXUQBQ9ohf0it6cZ+fd+XA+p6MrzgzrEZqT8/ULgm2bOQ==</latexit>

2̃
Õ

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+

<latexit sha1_base64="eJUyBNGONoTm8fTelZE5sL2JVUI=">AAACHXicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsDbS2ZzG0bmskMyR21DLP1NXwBt/oG7sSt+AI+h9NpF7b1QuBwzk1O+NxQCoO2/W3llpZXVtfy64WNza3tneLuXt0EkeZQ44EMdNNlBqRQUEOBEpqhBua7Ehru8GqcN+5BGxGoWxyF0PFZX4me4AxTq1ukbRTSg9hJ7uI2wiNmT8YPA4GQxMdJ0i2W7LKdDV0UzlSUyHSq3eJP2wt45INCLpkxLccOsRMzjYJLSArtyEDI+JD1oZVKxXwwnTirTehR6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOqnZee8bN+clSrVygRRnhyQQ3JCHHJBKuSaVEmNcPJEXsgrebOerXfrw/qcrOasKdZ9MjPW1y+uVqR4</latexit>

1̃
Õ <latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="JN9hAIEmYwJI3QXUILc842D2mvI=">AAACCHicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AO5ZM5k4bmmTGJCOUoS/gC7jVN3Anbn0LX8DnMNN2YVsPBA7n3HAvX5Bwpo3rfjsrq2vrG5uFreL2zu7efungsKnjVFFo0JjHqh0QDZxJaBhmOLQTBUQEHFrB8CbvW0+gNIvlvRkl4AvSlyxilBgb+V3DeAhZdfyQnY17pbJbcSfCy8abmTKaqd4r/XTDmKYCpKGcaN3x3MT4GVGGUQ7jYjfVkBA6JH3oWCuJAO1nk6PH+NQmIY5iZZ80eJL+/ZERofVIBHZSEDPQi10e/td1UhNd+xmTSWpA0umiKOXYxDgngEOmgBo+soZQxeytmA6IItRYTnNbuIhDUDIH4y1iWDbNasW7rLh3F+VavTZFVEDH6ASdIw9doRq6RXXUQBQ9ohf0it6cZ+fd+XA+p6MrzgzrEZqT8/ULgm2bOQ==</latexit>

2̃
Õ<latexit sha1_base64="lMJUHcKj9lRqI4AEK+2GxyuZLLo=">AAACHXicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AW0smc9uGZjJDckctw2x9DV/Arb6BO3ErvoDP4XTahW29EDicc5MTPjeUwqBtf1tLyyura+u5jfzm1vbObmFvv26CSHOo8UAGuukyA1IoqKFACc1QA/NdCQ13eDXOG/egjQjULY5C6Pisr0RPcIap1S3QNgrpQVxO7uI2wiNmT8YPA4GQxCdJ0i0U7ZKdDV0UzlQUyXSq3cJP2wt45INCLpkxLccOsRMzjYJLSPLtyEDI+JD1oZVKxXwwnTirTehx6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOrlknNesm/OipVqZYIoRw7JETklDrkgFXJNqqRGOHkiL+SVvFnP1rv1YX1OVpesKdYDMjPW1y+wBqR5</latexit>

2̃
Õ <latexit sha1_base64="JN9hAIEmYwJI3QXUILc842D2mvI=">AAACCHicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AO5ZM5k4bmmTGJCOUoS/gC7jVN3Anbn0LX8DnMNN2YVsPBA7n3HAvX5Bwpo3rfjsrq2vrG5uFreL2zu7efungsKnjVFFo0JjHqh0QDZxJaBhmOLQTBUQEHFrB8CbvW0+gNIvlvRkl4AvSlyxilBgb+V3DeAhZdfyQnY17pbJbcSfCy8abmTKaqd4r/XTDmKYCpKGcaN3x3MT4GVGGUQ7jYjfVkBA6JH3oWCuJAO1nk6PH+NQmIY5iZZ80eJL+/ZERofVIBHZSEDPQi10e/td1UhNd+xmTSWpA0umiKOXYxDgngEOmgBo+soZQxeytmA6IItRYTnNbuIhDUDIH4y1iWDbNasW7rLh3F+VavTZFVEDH6ASdIw9doRq6RXXUQBQ9ohf0it6cZ+fd+XA+p6MrzgzrEZqT8/ULgm2bOQ==</latexit>

2̃
Õ

<latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="lMJUHcKj9lRqI4AEK+2GxyuZLLo=">AAACHXicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AW0smc9uGZjJDckctw2x9DV/Arb6BO3ErvoDP4XTahW29EDicc5MTPjeUwqBtf1tLyyura+u5jfzm1vbObmFvv26CSHOo8UAGuukyA1IoqKFACc1QA/NdCQ13eDXOG/egjQjULY5C6Pisr0RPcIap1S3QNgrpQVxO7uI2wiNmT8YPA4GQxCdJ0i0U7ZKdDV0UzlQUyXSq3cJP2wt45INCLpkxLccOsRMzjYJLSPLtyEDI+JD1oZVKxXwwnTirTehx6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOrlknNesm/OipVqZYIoRw7JETklDrkgFXJNqqRGOHkiL+SVvFnP1rv1YX1OVpesKdYDMjPW1y+wBqR5</latexit>

2̃
Õ

<latexit sha1_base64="eJUyBNGONoTm8fTelZE5sL2JVUI=">AAACHXicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsDbS2ZzG0bmskMyR21DLP1NXwBt/oG7sSt+AI+h9NpF7b1QuBwzk1O+NxQCoO2/W3llpZXVtfy64WNza3tneLuXt0EkeZQ44EMdNNlBqRQUEOBEpqhBua7Ehru8GqcN+5BGxGoWxyF0PFZX4me4AxTq1ukbRTSg9hJ7uI2wiNmT8YPA4GQxMdJ0i2W7LKdDV0UzlSUyHSq3eJP2wt45INCLpkxLccOsRMzjYJLSArtyEDI+JD1oZVKxXwwnTirTehR6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOqnZee8bN+clSrVygRRnhyQQ3JCHHJBKuSaVEmNcPJEXsgrebOerXfrw/qcrOasKdZ9MjPW1y+uVqR4</latexit>

1̃
Õ

<latexit sha1_base64="lMJUHcKj9lRqI4AEK+2GxyuZLLo=">AAACHXicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AW0smc9uGZjJDckctw2x9DV/Arb6BO3ErvoDP4XTahW29EDicc5MTPjeUwqBtf1tLyyura+u5jfzm1vbObmFvv26CSHOo8UAGuukyA1IoqKFACc1QA/NdCQ13eDXOG/egjQjULY5C6Pisr0RPcIap1S3QNgrpQVxO7uI2wiNmT8YPA4GQxCdJ0i0U7ZKdDV0UzlQUyXSq3cJP2wt45INCLpkxLccOsRMzjYJLSPLtyEDI+JD1oZVKxXwwnTirTehx6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOrlknNesm/OipVqZYIoRw7JETklDrkgFXJNqqRGOHkiL+SVvFnP1rv1YX1OVpesKdYDMjPW1y+wBqR5</latexit>

2̃
Õ

<latexit sha1_base64="eJUyBNGONoTm8fTelZE5sL2JVUI=">AAACHXicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsDbS2ZzG0bmskMyR21DLP1NXwBt/oG7sSt+AI+h9NpF7b1QuBwzk1O+NxQCoO2/W3llpZXVtfy64WNza3tneLuXt0EkeZQ44EMdNNlBqRQUEOBEpqhBua7Ehru8GqcN+5BGxGoWxyF0PFZX4me4AxTq1ukbRTSg9hJ7uI2wiNmT8YPA4GQxMdJ0i2W7LKdDV0UzlSUyHSq3eJP2wt45INCLpkxLccOsRMzjYJLSArtyEDI+JD1oZVKxXwwnTirTehR6ni0F+j0KKSZ+/dGzHxjRr6bbvoMB2Y+G5v/Za0Ie5edWKgwQlB8UtSLJMWAjrFQT2jgKEepYFyL9K+UD5hmHFN4My3SDzzQagzGmcewKOqnZee8bN+clSrVygRRnhyQQ3JCHHJBKuSaVEmNcPJEXsgrebOerXfrw/qcrOasKdZ9MjPW1y+uVqR4</latexit>

1̃
Õ <latexit sha1_base64="9Ear3Qdkb5agAeuWKlUYJIvD4WI=">AAACCHicbZDNSgMxFIUz9a/Wv6pLN8Eiuiozouiy4MZlBfsD7Vgymds2NJOMSUYow7yAL+BW38CduPUtfAGfw0zbhW09EDicc8O9fEHMmTau++0UVlbX1jeKm6Wt7Z3dvfL+QVPLRFFoUMmlagdEA2cCGoYZDu1YAYkCDq1gdJP3rSdQmklxb8Yx+BEZCNZnlBgb+V3DeAiplz2kp1mvXHGr7kR42XgzU0Ez1Xvln24oaRKBMJQTrTueGxs/JcowyiErdRMNMaEjMoCOtYJEoP10cnSGT2wS4r5U9gmDJ+nfHymJtB5HgZ2MiBnqxS4P/+s6ielf+ykTcWJA0OmifsKxkTgngEOmgBo+toZQxeytmA6JItRYTnNbeCRDUCIH4y1iWDbN86p3WXXvLiq1em2KqIiO0DE6Qx66QjV0i+qogSh6RC/oFb05z8678+F8TkcLzgzrIZqT8/ULgNCbOA==</latexit>

1̃
Õ

<latexit sha1_base64="JN9hAIEmYwJI3QXUILc842D2mvI=">AAACCHicbZDNSgMxFIUz/tb6V3XpJlhEV2WmKLosuHFZwf5AO5ZM5k4bmmTGJCOUoS/gC7jVN3Anbn0LX8DnMNN2YVsPBA7n3HAvX5Bwpo3rfjsrq2vrG5uFreL2zu7efungsKnjVFFo0JjHqh0QDZxJaBhmOLQTBUQEHFrB8CbvW0+gNIvlvRkl4AvSlyxilBgb+V3DeAhZdfyQnY17pbJbcSfCy8abmTKaqd4r/XTDmKYCpKGcaN3x3MT4GVGGUQ7jYjfVkBA6JH3oWCuJAO1nk6PH+NQmIY5iZZ80eJL+/ZERofVIBHZSEDPQi10e/td1UhNd+xmTSWpA0umiKOXYxDgngEOmgBo+soZQxeytmA6IItRYTnNbuIhDUDIH4y1iWDbNasW7rLh3F+VavTZFVEDH6ASdIw9doRq6RXXUQBQ9ohf0it6cZ+fd+XA+p6MrzgzrEZqT8/ULgm2bOQ==</latexit>

2̃
Õ

<latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+ <latexit sha1_base64="Iwy1VS9H1uA4y6hfTFSHrMU+dzE=">AAACJ3icbVDLSgNBEJyN7/iKevSyGARBCLsS1GPQi0cFEwNJCL2zvcmQeSwzs0pY8gVe9SP8Gm+iR//EyUNQY0FDUdVNd1eUcmZsEHx4hYXFpeWV1bXi+sbm1nZpZ7dhVKYp1qniSjcjMMiZxLpllmMz1Qgi4ngXDS7H/t09asOUvLXDFDsCepIljIJ10s1xt1QOKsEE/jwJZ6RMZrju7nildqxoJlBaysGYVhiktpODtoxyHBXbmcEU6AB62HJUgkDTySeXjvxDp8R+orQraf2J+nMiB2HMUESuU4Dtm7/eWPzPa2U2Oe/kTKaZRUmni5KM+1b547f9mGmklg8dAaqZu9WnfdBArQvn1xYuVIxaukc0SnygSgiQcd5OQDA+jDGBjNtR3jbJN3cZhn8TmyeNk0p4WqneVMu1i1maq2SfHJAjEpIzUiNX5JrUCSVIHskTefZevFfvzXuftha82cwe+QXv8wtDQabE</latexit>+

Figure 4.3: (Bi-)local pffRG flow equations in 1ℓ truncation. (a) The self-energy flow decomposes
into a non-local Fock and a local Hartree term (the first and second diagram, respectively). Slashed lines
denote single-scale propagators. (b) The flow of the two-particle vertex can be entirely expressed in terms of
its parallel component. Notably, t-reducible contributions to Γ (magenta box) fall apart into three terms, the
first of which is the RPA diagram, responsible for the proliferation of magnetic correlations over the lattice.
Here, a pair of slashed fermion lines corresponds to d

dΛ (G×G).

Having parametrized the bubble functions, one can formulate the pffRG flow equations in terms
of bilocal vertices, as diagrammatically shown in Fig. 4.3 for ℓ = 1. Remarkably, only the first
term in the t bubble, the RPA diagram, contains a lattice summation and is therefore responsible
for the proliferation of (magnetic) correlations. This argument is further supported by the large-S
generalization of pffRG, wherein the RPA loop receives an additional sum over fermion flavors [85]
and thus a prefactor proportional to S. Other contributions to the flow are on the order of unity,
instead. Instabilities in the t channel are therefore prominently associated with long-range magnetic
order.

4.3.2 Efficient evaluation of spin sums

We now turn to the simplification of the spin dependence of the vertices. To keep the notation
concise, we refrain from writing out superscripts for the parallel vertex component and, instead, assume
Γi1i2 = Γ=

i1i2
from now on. In agreement with Ref. [117], we expand the vertices in terms of the basis

elements of the su(2) spin-1/2 representation, i.e. in Pauli matrices, and add 2 × 2 unities, which cover
density fluctuations. The self-energy (and propagators) then assume the general form

Σ(x̃′
1|x̃1) =

∑

µ

Σµ(ω′
1|ω1)σµα′

1α1
, (4.19)

with µ ∈ {d, x, y, z}, whereas bilocal two-particle vertices decompose into

Γi1i2(x̃′
1, x̃

′
2|x̃1, x̃2) =

∑

µ,ν

Γµνi1i2(ω′
1, ω

′
2|ω1, ω2)σµα′

1α1
σνα′

2α2
. (4.20)

Here, σd = 1. For highly symmetric spin models, such as spin-rotation invariant Heisenberg Hamilto-
nians, some functions Γµνi1i2 remain identical to zero and can thus be neglected. Here, however, we keep
them for the sake of generality. At this point, we can make use of the hermiticity and time-reversal
symmetry of the general spin Hamiltonian in Eq. (4.1), which impose that single-particle objects are
diagonal in spin space [117]. In the expansion of the self-energy, we therefore only need to consider
density contributions.
Plugging the spin parametrization into the local self-energy loop Eq. (4.11) therefore yields

[Γ ◦G]Σ = 1
β2

∑

ω′
2,ω2


2
∑

j

Γddi1j(ω
′
1, ω

′
2|ω1, ω2) −

∑

µ

Γ̃µµi1i1(ω′
2, ω

′
1|ω1, ω2)


G(ω2|ω′

2) × δi′1i1δα′
1α1 ,

(4.21)
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that is, only vertex functions with equal spin directions µ = ν contribute. Note that we have dropped
the d superscript over the propagator G for brevity. To compress the respective algebraic expression
for the 2PR bubbles, we introduce the rank-4 doublet and rank-5 triplet tensors, denoted by Π2 and
Π3 respectively, and defined as

Πµν
2,α′

1α1
≡
∑

α2

σµα′
1α2

σνα2α1

Πµντ
3,α′

1α1
≡
∑

α′
2,α2

σµα′
1α

′
2
σνα′

2α2
στα2α1 . (4.22)

The spin-parametrized bubble functions then read
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To obtain a specific Bµνc,i1i2 , one can yet again expand the doublet and triplet tensors in σµ and
exploit that the Pauli matrices, in contrast to the Kronecker delta, are traceless, i.e. Tr(σµ) = 0 for
µ ≠ d. Without loss of generality (for Π3 one proceeds analogously), consider Πµν

2 =
∑
τ aτσ

τ , which
implies

ad = 1
2Tr(Πµν

2 ) . (4.24)

Moreover, we have the identity σµσν = δµν1 + iϵµντσ
τ , where ϵ is the Levi-Civita symbol. From this

equation, we are able to obtain the coefficient aτ (with τ ̸= d) as simple as

aτ = 1
2Tr [(Πµν

2 − ad1)στ ] , (4.25)

such that the right-hand side of each bubble function can ultimately be decomposed into contributions to
specific components Bµνc,i1i2 . Using a computer algebra program to perform these algebraic manipulations
for a given model, one can straightforwardly derive efficient, spin-parametrized pffRG flow equations
for the general Hamiltonian in Eq. (4.1).

4.3.3 Asymptotic frequency parametrization

The last step in reducing the complexity of the flow equations amounts to exploiting frequency (energy)
conservation by virtue of time translation invariance [117], that is, we impose

Σ(ω′
1|ω1) = Σ(ω1) × βδω′

1,ω1 (4.26)

on the self-energy and propagators and

Γµνi1i2(ω′
1, ω

′
2|ω1, ω2) = Γµνi1i2(ωs, ωt, ωu) × βδω′

1+ω′
2,ω1+ω2 (4.27)
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Ê1Õ = Ês

2 ≠ ‹Õ
s

<latexit sha1_base64="c63ipXxuJ6R1gf0uUij+ghSg2rE=">AAACJnicbZDLSsNAFIYn3u9WXboZLKIilKQoulEENy4V7AWaEibTk3ZwLmFmIpSQZ/A1fAG3+gbuRNy58jmc1iy8/TDw859zOGe+OOXMWN9/8yYmp6ZnZufmFxaXlldWK2vrTaMyTaFBFVe6HRMDnEloWGY5tFMNRMQcWvHN+ajeugVtmJLXdphCV5C+ZAmjxLooquyFSkCfRHl9p8AnOEw0oXmZmSKvF3gfhzLbiUxUqfo1fyz81wSlqaJSl1HlI+wpmgmQlnJiTCfwU9vNibaMcigWwsxASugN6UPHWUkEmG4+/lKBt13Sw4nS7kmLx+n3iZwIY4Yidp2C2IH5XRuF/9U6mU2OuzmTaWZB0q9FScaxVXjEB/eYBmr50BlCNXO3Yjogjop1FH9s4UL1QMvCgQl+Y/hrmvVacFjzrw6qZ6clojm0ibbQLgrQETpDF+gSNRBFd+gBPaIn79579l6816/WCa+c2UA/5L1/AgwFpaE=</latexit>

Ê2Õ = Ês

2 + ‹Õ
s

<latexit sha1_base64="50KZh0CMHWyw9A8XJzkJjwzvrw4="></latexit>

(b)<latexit sha1_base64="dFI5x9ZctbeC2Wt42QSPYFez2wQ=">AAACJXicbZDPSiNBEMZ7dNe/q0Y9emk2LAhimBGX3csugb14zILRQCYMPZ2apEn/GbprhDDMK/ga+wJe9Q28LYInbz7HduIcjO4HDR9fVVHVvzSXwmEYPgZLyx8+rqyurW9sftra3mns7l04U1gOXW6ksb2UOZBCQxcFSujlFphKJVymk1+z+uUVWCeMPsdpDgPFRlpkgjP0UdI4jI2CEUvKqKI/6HGcWcbLOsOqPKnoEY11kWDSaIatcC763kS1aZJanaTxHA8NLxRo5JI514/CHAclsyi4hGojLhzkjE/YCPreaqbADcr5jyr6xSdDmhnrn0Y6T19PlEw5N1Wp71QMx+5tbRb+r9YvMPs+KIXOCwTNXxZlhaRo6AwPHQoLHOXUG8at8LdSPmYeCnqIC1ukMkOwuvJgorcY3puLk1b0tRX+Pm22f9aI1sgB+UwOSUS+kTY5Ix3SJZxckxtyS+6CP8F98Dd4eGldCuqZfbKg4Okfpp2ldw==</latexit>

Ê1 = ≠Êt

2 + ‹t

<latexit sha1_base64="mn0Tfw0V6gAh6pKTjg66h9vNEfA=">AAACJXicbZDLSuxAEIY73o53R126aRxEQRgSUXSjCG5cKjgqTIbQ6amMjX0J3ZUDQ8gr+Bq+gFvPG5ydCK7c+Rz2jFl4+6Hh56sqqvpPcykchuFLMDY+MTn1Z3pmdm5+YXGpsbxy6UxhObS5kcZep8yBFBraKFDCdW6BqVTCVXp7Mqxf/QXrhNEXOMihq1hfi0xwhh4lja3YKOizpNyp6CGNM8t4WSOshnCbxrrYTDBpNMNWOBL9aaLaNEmts6TxFvcMLxRo5JI514nCHLslsyi4hGo2LhzkjN+yPnS81UyB65ajH1V0w5MezYz1TyMd0c8TJVPODVTqOxXDG/e9NoS/1ToFZgfdUui8QND8Y1FWSIqGDuOhPWGBoxx4w7gV/lbKb5hPBX2IX7ZIZXpgdeWDib7H8NNc7rSivVZ4vts8PqojmiZrZJ1skYjsk2NySs5Im3ByRx7II/kX3Af/g6fg+aN1LKhnVskXBa/vo3ylcg==</latexit>

Ê2 = Êt

2 + ‹Õ
t

<latexit sha1_base64="SYdBrQtrIi5Aoix2ALCsQ0KMzfA=">AAACJXicbZDPSiNBEMZ7dNe/q0Y9emk2LApCmBGX3csugb14zILRQCYMPZ2apEn/GbprhDDMK/ga+wJe9Q28LYInbz7HduIcjO4HDR9fVVHVvzSXwmEYPgZLyx8+rqyurW9sftra3mns7l04U1gOXW6ksb2UOZBCQxcFSujlFphKJVymk1+z+uUVWCeMPsdpDgPFRlpkgjP0UdI4io2CEUvK6LCiP2icWcbLOsOqPKnoMY11kWDSaIatcC763kS1aZJanaTxHA8NLxRo5JI514/CHAclsyi4hGojLhzkjE/YCPreaqbADcr5jyr6xSdDmhnrn0Y6T19PlEw5N1Wp71QMx+5tbRb+r9YvMPs+KIXOCwTNXxZlhaRo6AwPHQoLHOXUG8at8LdSPmYeCnqIC1ukMkOwuvJgorcY3puLk1b0tRX+Pm22f9aI1sgB+UyOSES+kTY5Ix3SJZxckxtyS+6CP8F98Dd4eGldCuqZfbKg4OkfnBOlcQ==</latexit>

Ê1Õ = Êt

2 + ‹t

<latexit sha1_base64="NLKnlPDV0ttl4en3FR2nLIx5Dto="></latexit>

Ê2Õ = ≠Êt

2 + ‹Õ
t

<latexit sha1_base64="Z8IsDxBlVQyUooVU7yTGPMAjdu4=">AAACB3icbZDNSsNAFIUn9a/Wv6pLN8Ei1E1JRNFlwY3LCvYHmlAm05t26MwkzNyIJfQBfAG3+gbuxK2P4Qv4HCZtF7b1wMDhnDvcyxfEght0nG+rsLa+sblV3C7t7O7tH5QPj1omSjSDJotEpDsBNSC4giZyFNCJNVAZCGgHo9u8bz+CNjxSDziOwZd0oHjIGcUs8jyEJwzCtMrOJ71yxak5U9mrxp2bCpmr0Sv/eP2IJRIUMkGN6bpOjH5KNXImYFLyEgMxZSM6gG5mFZVg/HR688Q+y5K+HUY6ewrtafr3R0qlMWMZZJOS4tAsd3n4X9dNMLzxU67iBEGx2aIwETZGdg7A7nMNDMU4M5Rpnt1qsyHVlGGGaWGLkFEftMrBuMsYVk3rouZe1Zz7y0q9UZ8hKpITckqqxCXXpE7uSIM0CSMxeSGv5M16tt6tD+tzNlqw5liPyYKsr1+Mxpqv</latexit>

(c)<latexit sha1_base64="E7Tv4DxBox4PFvhxo6pslv8rvHk=">AAACJHicbZDJSgNBEIZ73I1b1KOXxiAKQpgRRS+K4MWjglEhE4aeTk1s7GXoRQjDPIKv4Qt41TfwJh68ePQ57CRzcPuh4eevKqr6S3POjA3D92BsfGJyanpmtjY3v7C4VF9euTTKaQotqrjS1ykxwJmElmWWw3WugYiUw1V6ezKoX92BNkzJC9vPoSNIT7KMUWJ9lNQ3YyWgR5IiKvEhjjNNaFFFrix2SryNY+kSl9QbYTMcCv81UWUaqNJZUv+Mu4o6AdJSToxpR2FuOwXRllEOZS12BnJCb0kP2t5KIsB0iuGHSrzhky7OlPZPWjxMv08URBjTF6nvFMTemN+1Qfhfre1sdtApmMydBUlHizLHsVV4QAd3mQZqed8bQjXzt2J6QzwU6xn+2MKF6oKWpQcT/cbw11zuNKO9Zni+2zg+qhDNoDW0jrZQhPbRMTpFZ6iFKLpHj+gJPQcPwUvwGryNWseCamYV/VDw8QUzwqVC</latexit>

Ê1 = Êu
2 + ‹u

<latexit sha1_base64="4kNmlnJlQQ36qZ2pmSte+7gzO64=">AAACJnicbZDJSsRAEIY77rujHr00DqIiDokoelEELx4VHBUmQ+j0VMbGXkIvwhDyDL6GL+BV38CbiDdPPoc9Yw5uPzT8fFVFVf9pzpmxYfgWDA2PjI6NT0xOTc/Mzs3XFhYvjHKaQpMqrvRVSgxwJqFpmeVwlWsgIuVwmd4c9+uXt6ANU/Lc9nJoC9KVLGOUWI+S2kasBHRJUmyX+ABvxZkmtKiYK/t0E8fSrSUuqdXDRjgQ/muiytRRpdOk9hF3FHUCpKWcGNOKwty2C6ItoxzKqdgZyAm9IV1oeSuJANMuBl8q8aonHZwp7Z+0eEC/TxREGNMTqe8UxF6b37U+/K/WcjbbbxdM5s6CpF+LMsexVbifD+4wDdTynjeEauZvxfSa+FSsT/HHFi5UB7QsfTDR7xj+movtRrTbCM926keHVUQTaBmtoHUUoT10hE7QKWoiiu7QA3pET8F98By8BK9frUNBNbOEfih4/wQdD6Wr</latexit>

Ê2 = ≠Êu
2 + ‹Õ

u

<latexit sha1_base64="CMKKWN/GwJ9UnDC0QTJDa6OryUA=">AAACJnicbZDJSgNBEIZ73HejHr00BlERwkxQ9KIIXjwqGBUyYejp1MTGXoZehDDMM/gavoBXfQNvIt48+Rx24hzcfmj4+auKqv7SnDNjw/AtGBkdG5+YnJqemZ2bX1isLS1fGOU0hRZVXOmrlBjgTELLMsvhKtdARMrhMr05HtQvb0EbpuS57efQEaQnWcYosT5KaluxEtAjSRFtlPgAx5kmtKgyVxbNEm/jWLqNxCW1etgIh8J/TVSZOqp0mtQ+4q6iToC0lBNj2lGY205BtGWUQzkTOwM5oTekB21vJRFgOsXwSyVe90kXZ0r7Jy0ept8nCiKM6YvUdwpir83v2iD8r9Z2NtvvFEzmzoKkX4syx7FVeMAHd5kGannfG0I187diek08Fesp/tjCheqClqUHE/3G8NdcNBvRbiM826kfHVaIptAqWkObKEJ76AidoFPUQhTdoQf0iJ6C++A5eAlev1pHgmpmBf1Q8P4JEMelpA==</latexit>

Ê1Õ = Êu
2 + ‹Õ

u

<latexit sha1_base64="F1vgyQdjg9zWg91MUssr9ZYSpWQ=">AAACJnicbZDLSiNBFIarvU3MeInO0k0xYVARQ3cY0Y0ScDPLCCYK6dBUV07Hwro0dRFC08/ga/gCbvUNZjcM7mY1zzGVpBfj5YeCn/+cwzn1pTlnxobhS7CwuLS88qm2Wv+8tr6x2dja7hvlNIUeVVzp65QY4ExCzzLL4TrXQETK4Sq9PZ/Wr+5AG6bkpZ3kMBRkLFnGKLE+Shr7sRIwJknR3i3xKT6MM01oUYWuLNolPsCxdIlLGs2wFc6E35uoMk1UqZs0/sYjRZ0AaSknxgyiMLfDgmjLKIeyHjsDOaG3ZAwDbyURYIbF7Esl/uaTEc6U9k9aPEv/nyiIMGYiUt8piL0xb2vT8KPawNnsZFgwmTsLks4XZY5jq/CUDx4xDdTyiTeEauZvxfSGeCjWU3y1hQs1Ai1LDyZ6i+G96bdb0VErvPje7JxViGpoB31FeyhCx6iDfqAu6iGK7tEjekLPwUPwM/gV/J63LgTVzBf0SsGffxdWpas=</latexit>

Ê2Õ = ≠Êu
2 + ‹u

Figure 4.4: Natural frequency parametrization of 2PR vertices. Each channel γc is associated with
one bosonic transfer frequency ωc and two fermionic frequencies νc and ν′

c. Our convention is chosen such that
νc (ν′

c) exclusively appears as an argument of the left (right) vertex object in the respective bubble function
Bc. Moreover, the general vertex symmetries Eq. (4.36) assume a particularly convenient form when projected
into γc.

on two-particle vertices, where we introduced the transfer frequencies

ωs = ω′
1 + ω′

2
ωt = ω′

1 − ω1

ωu = ω′
1 − ω2 . (4.28)

This way, only one instead of two frequency arguments for one-particle objects and three instead of four
frequencies for two-particle objects need to be accounted for. So far, we kept our derivations applicable
also to finite temperatures for the sake of generality. When approaching T = 0, however, the spectrum
of Matsubara frequencies becomes continuous and, consequently, Matsubara sums are promoted to
integrals over the imaginary axis. Since zero temperature is the preferred regime of operation for pffRG
because thermal fluctuations which could boost the occupation of unphysical states are frozen out, we
switch to the integral notation from now on. The self-energy loop thus simplifies to

[Γ ◦G]Σ =
∫
dv


2
∑

j

Γddi1j(ω1 + v, 0, ω1 − v) −
∑

µ

Γ̃µµi1i1(ω1 + v, v − ω1, 0)


G(v)δi′1i1δα′

1α1δω′
1,ω1 .

(4.29)

Note that using the simplified self-energy loop (or 2PR bubbles) to derive flow equations for 1PI
vertices requires to parametrize the respective left-hand side of the equation in similar terms. This
procedure cancels not only the leftover Kronecker deltas or Pauli matrices, but also produces a prefactor
2π, which needs to be included in an explicit implementation. Using energy conservation, the spin
parametrized bubbles Eq. (4.23) evaluate to

Bs,i1i2(x̃′
1, x̃

′
2|x̃1, x̃2) = −

∫
dv

∑

µ,ν,τ,κ

Πτµ
2,α′

1α1
Πκν

2,α′
2α2

δω′
1+ω′

2,ω1+ω2

× Γµνi1i2(ωs, v − ω1, v − ω2)G(v)G(ωs − v)Γτκi1i2(ωs, ω′
1 − v, ω′

1 − s+ v)

Bt,i1i2(x̃′
1, x̃

′
2|x̃1, x̃2) = + 2

∫
dv
∑

µ,ν,κ

∑

j

σµα′
1α1

σκα′
2α2

δω′
1+ω′

2,ω1+ω2

× Γµνi1j(ω
′
1 − ωt + v, ωt, ω

′
1 − v)G(v)G(v − ωt)Γνκji2(ω′

2 + v, ωt, v − ω2)

−
∫
dv

∑

µ,ν,τ,κ

σµα′
1α1

Πκντ
3,α′

2α2
δω′

1+ω′
2,ω1+ω2

× Γµνi1i2(ω′
1 − ωt + v, ωt, ω

′
1 − v)G(v)G(v − ωt)Γ̃τκi2i2(ω′

2 + v, v − ω2, ωt)

−
∫
dv

∑

µ,ν,τ,κ

Πµτν
3,α′

1α1
σκα′

2α2
δω′

1+ω′
2,ω1+ω2

× Γ̃µνi1i1(ω′
1 − ωt + v, ω′

1 − v, ωt)G(v)G(v − ωt)Γτκi1i2(ω′
2 + v, ωt, v − ω2)

Bu,i1i2(x̃′
1, x̃

′
2|x̃1, x̃2) = −

∫
dv

∑

µ,ν,τ,κ

Πτµ
2,α′

1α1
Πνκ

2,α′
2α2

δω′
1+ω′

2,ω1+ω2

× Γµνi1i2(ω′
2 + v, v − ω1, ωu)G(v)G(v − ωu)Γ̃τκi1i2(ω′

1 − ωu + v, ω′
1 − v, ωu) .

(4.30)

Remarkably, every transfer frequency ωc is intimately tied to one of the 2PR bubbles and describes
the energy transmitted through the internal loop. The frequency ωs, for example, only appears in the
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<latexit sha1_base64="MigswTBMulbdWZlJCfyIz3zuFtg=">AAACBXicbVDLSsNAFJ3UV62vqks3wSK4KokoupKCG5cVbCu2oUwmN+3QeYSZiVBC1/6AW/0Dd+LW7/AH/A4nbRa29cCFwzn3cu89YcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaR6CLEGRgW0DDUMHhIFmIcMOuHoJvc7T6A0leLejBMIOB4IGlOCjZUee5LDAPczf9Kv1ry6N4W7TPyC1FCBZr/604skSTkIQxjWuut7iQkyrAwlDCaVXqohwWSEB9C1VGAOOsimF0/cE6tEbiyVLWHcqfp3IsNc6zEPbSfHZqgXvVz8z+umJr4KMiqS1IAgs0Vxylwj3fx9N6IKiGFjSzBR1N7qkiFWmBgb0twWxmUESuTB+IsxLJP2Wd2/qHt357XGdRFRGR2hY3SKfHSJGugWNVELESTQC3pFb86z8+58OJ+z1pJTzByiOThfvxW9maE=</latexit>Ê1

<latexit sha1_base64="K5VyQXRYQgZ8IiBOQLZgnCeRzrQ=">AAACBXicbVDLSgNBEJyNrxhfUY9eFoPgKewGRU8S8OIxgnlgsoTZ2U4yZB7LzKwQlpz9Aa/6B97Eq9/hD/gdziZ7MIkFDUVVN91dYcyoNp737RTW1jc2t4rbpZ3dvf2D8uFRS8tEEWgSyaTqhFgDowKahhoGnVgB5iGDdji+zfz2EyhNpXgwkxgCjoeCDijBxkqPPclhiPtpbdovV7yqN4O7SvycVFCORr/804skSTgIQxjWuut7sQlSrAwlDKalXqIhxmSMh9C1VGAOOkhnF0/dM6tE7kAqW8K4M/XvRIq51hMe2k6OzUgve5n4n9dNzOA6SKmIEwOCzBcNEuYa6WbvuxFVQAybWIKJovZWl4ywwsTYkBa2MC4jUCILxl+OYZW0alX/surdX1TqN3lERXSCTtE58tEVqqM71EBNRJBAL+gVvTnPzrvz4XzOWwtOPnOMFuB8/QIXVpmi</latexit>Ê2

<latexit sha1_base64="U4ym8NS59VU1L3oLPiSQLtFCOc0=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KokoupKCG5cVbC2koUymN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A4nbRa29cCFwzn3cu89UcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaTqRFgDowJahhoGnUQB5hGDx2h0m/uPT6A0leLBjBMIOR4IGlOCjZWCruQwwL3MP530qjWv7k3hLhO/IDVUoNmr/nT7kqQchCEMax34XmLCDCtDCYNJpZtqSDAZ4QEElgrMQYfZ9OSJe2KVvhtLZUsYd6r+ncgw13rMI9vJsRnqRS8X//OC1MTXYUZFkhoQZLYoTplrpJv/7/apAmLY2BJMFLW3umSIFSbGpjS3hXHZByXyYPzFGJZJ+7zuX9a9+4ta46aIqIyO0DE6Qz66Qg10h5qohQiS6AW9ojfn2Xl3PpzPWWvJKWYO0Rycr198hpnS</latexit>Ê1Õ

<latexit sha1_base64="dxgrJiTNE0PZ+xvYhZbrJGIt76k=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KklRdCUFNy4r2AekoUwmN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A6TNgvbeuDC4Zx7ufeeIGZUG8f5tkpr6xubW+Xtys7u3v5B9fCoo2WiCLSJZFL1AqyBUQFtQw2DXqwA84BBNxjf5X73CZSmUjyaSQw+x0NBI0qwySSvLzkM8SBtnE8H1ZpTd2awV4lbkBoq0BpUf/qhJAkHYQjDWnuuExs/xcpQwmBa6ScaYkzGeAheRgXmoP10dvLUPsuU0I6kykoYe6b+nUgx13rCg6yTYzPSy14u/ud5iYlu/JSKODEgyHxRlDDbSDv/3w6pAmLYJCOYKJrdapMRVpiYLKWFLYzLEJTIg3GXY1glnUbdvao7D5e15m0RURmdoFN0gVx0jZroHrVQGxEk0Qt6RW/Ws/VufVif89aSVcwcowVYX79+IJnT</latexit>Ê2Õ

<latexit sha1_base64="A4Id0cAcpc/s8hjKn1aHABWtA4A=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoicJePEY0cRAsoTZ2dlkyDyWmVkhhIA/4FX/wJt49Vf8Ab/DSbIHk1jQUFR1090VpZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jco0oQ2iuNKtCBvKmaQNyyynrVRTLCJOH6PBzcR/fKLaMCUf7DClocA9yRJGsHXSfUdm3XLFr/pToGUS5KQCOerd8k8nViQTVFrCsTHtwE9tOMLaMsLpuNTJDE0xGeAebTsqsaAmHE1PHaMTp8QoUdqVtGiq/p0YYWHMUESuU2DbN4veRPzPa2c2uQpHTKaZpZLMFiUZR1ahyd8oZpoSy4eOYKKZuxWRPtaYWJfO3BYuVEy1HLtggsUYlknzrBpcVP2780rtOo+oCEdwDKcQwCXU4Bbq0AACPXiBV3jznr1378P7nLUWvHzmEObgff0CvFOWrQ==</latexit>‹

<latexit sha1_base64="ESGxKA3VOuIUoHtWk4bFcA/1ago=">AAACCXicbVBLSgNBFOyJvxh/UZduGoPgxjAjiq4k4MZlBPOBzBh6Oi9Jk/4M3T1CCDmBF3CrN3Anbj2FF/AcdpJZmMSCB0XVe9Sj4oQzY33/28utrK6tb+Q3C1vbO7t7xf2DulGpplCjiivdjIkBziTULLMcmokGImIOjXhwO/EbT6ANU/LBDhOIBOlJ1mWUWCc9hkpAj7QNPsOhTNvFkl/2p8DLJMhICWWotos/YUfRVIC0lBNjWoGf2GhEtGWUw7gQpgYSQgekBy1HJRFgotH06zE+cUoHd5V2Iy2eqn8vRkQYMxSx2xTE9s2iNxH/81qp7V5HIyaT1IKks6BuyrFVeFIB7jAN1PKhI4Rq5n7FtE80odYVNZfCheqAlmNXTLBYwzKpn5eDy7J/f1Gq3GQV5dEROkanKEBXqILuUBXVEEUavaBX9OY9e+/eh/c5W8152c0hmoP39QtBlJq/</latexit>Ês ≠ ‹

<latexit sha1_base64="MigswTBMulbdWZlJCfyIz3zuFtg=">AAACBXicbVDLSsNAFJ3UV62vqks3wSK4KokoupKCG5cVbCu2oUwmN+3QeYSZiVBC1/6AW/0Dd+LW7/AH/A4nbRa29cCFwzn3cu89YcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaR6CLEGRgW0DDUMHhIFmIcMOuHoJvc7T6A0leLejBMIOB4IGlOCjZUee5LDAPczf9Kv1ry6N4W7TPyC1FCBZr/604skSTkIQxjWuut7iQkyrAwlDCaVXqohwWSEB9C1VGAOOsimF0/cE6tEbiyVLWHcqfp3IsNc6zEPbSfHZqgXvVz8z+umJr4KMiqS1IAgs0Vxylwj3fx9N6IKiGFjSzBR1N7qkiFWmBgb0twWxmUESuTB+IsxLJP2Wd2/qHt357XGdRFRGR2hY3SKfHSJGugWNVELESTQC3pFb86z8+58OJ+z1pJTzByiOThfvxW9maE=</latexit>Ê1

<latexit sha1_base64="K5VyQXRYQgZ8IiBOQLZgnCeRzrQ=">AAACBXicbVDLSgNBEJyNrxhfUY9eFoPgKewGRU8S8OIxgnlgsoTZ2U4yZB7LzKwQlpz9Aa/6B97Eq9/hD/gdziZ7MIkFDUVVN91dYcyoNp737RTW1jc2t4rbpZ3dvf2D8uFRS8tEEWgSyaTqhFgDowKahhoGnVgB5iGDdji+zfz2EyhNpXgwkxgCjoeCDijBxkqPPclhiPtpbdovV7yqN4O7SvycVFCORr/804skSTgIQxjWuut7sQlSrAwlDKalXqIhxmSMh9C1VGAOOkhnF0/dM6tE7kAqW8K4M/XvRIq51hMe2k6OzUgve5n4n9dNzOA6SKmIEwOCzBcNEuYa6WbvuxFVQAybWIKJovZWl4ywwsTYkBa2MC4jUCILxl+OYZW0alX/surdX1TqN3lERXSCTtE58tEVqqM71EBNRJBAL+gVvTnPzrvz4XzOWwtOPnOMFuB8/QIXVpmi</latexit>Ê2

<latexit sha1_base64="U4ym8NS59VU1L3oLPiSQLtFCOc0=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KokoupKCG5cVbC2koUymN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A4nbRa29cCFwzn3cu89UcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaTqRFgDowJahhoGnUQB5hGDx2h0m/uPT6A0leLBjBMIOR4IGlOCjZWCruQwwL3MP530qjWv7k3hLhO/IDVUoNmr/nT7kqQchCEMax34XmLCDCtDCYNJpZtqSDAZ4QEElgrMQYfZ9OSJe2KVvhtLZUsYd6r+ncgw13rMI9vJsRnqRS8X//OC1MTXYUZFkhoQZLYoTplrpJv/7/apAmLY2BJMFLW3umSIFSbGpjS3hXHZByXyYPzFGJZJ+7zuX9a9+4ta46aIqIyO0DE6Qz66Qg10h5qohQiS6AW9ojfn2Xl3PpzPWWvJKWYO0Rycr198hpnS</latexit>Ê1Õ

<latexit sha1_base64="dxgrJiTNE0PZ+xvYhZbrJGIt76k=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KklRdCUFNy4r2AekoUwmN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A6TNgvbeuDC4Zx7ufeeIGZUG8f5tkpr6xubW+Xtys7u3v5B9fCoo2WiCLSJZFL1AqyBUQFtQw2DXqwA84BBNxjf5X73CZSmUjyaSQw+x0NBI0qwySSvLzkM8SBtnE8H1ZpTd2awV4lbkBoq0BpUf/qhJAkHYQjDWnuuExs/xcpQwmBa6ScaYkzGeAheRgXmoP10dvLUPsuU0I6kykoYe6b+nUgx13rCg6yTYzPSy14u/ud5iYlu/JSKODEgyHxRlDDbSDv/3w6pAmLYJCOYKJrdapMRVpiYLKWFLYzLEJTIg3GXY1glnUbdvao7D5e15m0RURmdoFN0gVx0jZroHrVQGxEk0Qt6RW/Ws/VufVif89aSVcwcowVYX79+IJnT</latexit>Ê2Õ

<latexit sha1_base64="A4Id0cAcpc/s8hjKn1aHABWtA4A=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoicJePEY0cRAsoTZ2dlkyDyWmVkhhIA/4FX/wJt49Vf8Ab/DSbIHk1jQUFR1090VpZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jco0oQ2iuNKtCBvKmaQNyyynrVRTLCJOH6PBzcR/fKLaMCUf7DClocA9yRJGsHXSfUdm3XLFr/pToGUS5KQCOerd8k8nViQTVFrCsTHtwE9tOMLaMsLpuNTJDE0xGeAebTsqsaAmHE1PHaMTp8QoUdqVtGiq/p0YYWHMUESuU2DbN4veRPzPa2c2uQpHTKaZpZLMFiUZR1ahyd8oZpoSy4eOYKKZuxWRPtaYWJfO3BYuVEy1HLtggsUYlknzrBpcVP2780rtOo+oCEdwDKcQwCXU4Bbq0AACPXiBV3jznr1378P7nLUWvHzmEObgff0CvFOWrQ==</latexit>‹

<latexit sha1_base64="ESGxKA3VOuIUoHtWk4bFcA/1ago=">AAACCXicbVBLSgNBFOyJvxh/UZduGoPgxjAjiq4k4MZlBPOBzBh6Oi9Jk/4M3T1CCDmBF3CrN3Anbj2FF/AcdpJZmMSCB0XVe9Sj4oQzY33/28utrK6tb+Q3C1vbO7t7xf2DulGpplCjiivdjIkBziTULLMcmokGImIOjXhwO/EbT6ANU/LBDhOIBOlJ1mWUWCc9hkpAj7QNPsOhTNvFkl/2p8DLJMhICWWotos/YUfRVIC0lBNjWoGf2GhEtGWUw7gQpgYSQgekBy1HJRFgotH06zE+cUoHd5V2Iy2eqn8vRkQYMxSx2xTE9s2iNxH/81qp7V5HIyaT1IKks6BuyrFVeFIB7jAN1PKhI4Rq5n7FtE80odYVNZfCheqAlmNXTLBYwzKpn5eDy7J/f1Gq3GQV5dEROkanKEBXqILuUBXVEEUavaBX9OY9e+/eh/c5W8152c0hmoP39QtBlJq/</latexit>Ês ≠ ‹

<latexit sha1_base64="XSl2ieBEGtDe1q1iEDkqWA66/AI=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovoqiSi6EoKblxWsLXQhjKZTNqhk5kwMxFK6MIfcKt/4E7c+in+gN/hpM3Cth64cDjnXu69J0g408Z1v53Syura+kZ5s7K1vbO7V90/aGuZKkJbRHKpOgHWlDNBW4YZTjuJojgOOH0MRre5//hElWZSPJhxQv0YDwSLGMEml3oiPe1Xa27dnQItE68gNSjQ7Fd/eqEkaUyFIRxr3fXcxPgZVoYRTieVXqppgskID2jXUoFjqv1seusEnVglRJFUtoRBU/XvRIZjrcdxYDtjbIZ60cvF/7xuaqJrP2MiSQ0VZLYoSjkyEuWPo5ApSgwfW4KJYvZWRIZYYWJsPHNbeCxDqsTEBuMtxrBM2ud177Lu3l/UGjdFRGU4gmM4Aw+uoAF30IQWEBjCC7zCm/PsvDsfzuesteQUM4cwB+frFyDFlt4=</latexit>

‹Õ

<latexit sha1_base64="ePrWpvSE8kOMC8w5eTnCJGOrGoA=">AAACEnicdVDLSgMxFM34flsVV26CRRTEISMtthspuHFZwarQlpJJb2swjyHJCGXoX/gDbvUP3Ilbf8Af8DvM1AoqeiDhcM693HtPnAhuHSFvwcTk1PTM7Nz8wuLS8spqYW39wurUMGgwLbS5iqkFwRU0HHcCrhIDVMYCLuObk9y/vAVjuVbnbpBAW9K+4j3OqPNSp7DZ0hL6tBPhA9xSKd7P/91OoUjCo9JhtRJhEpJyKarmpETK1aiCo5CMUERj1DuF91ZXs1SCckxQa5sRSVw7o8ZxJmC40EotJJTd0D40PVVUgm1no/WHeMcrXdzTxj/l8Ej93pFRae1Axr5SUndtf3u5+JfXTF2v0s64SlIHin0O6qUCO43zLHCXG2BODDyhzHC/K2bX1FDmfGI/pgipu2DU0AfzdT3+n1wchlE5JGelYu14HNEc2kLbaA9F6AjV0CmqowZiKEP36AE9BnfBU/AcvHyWTgTjng30A8HrB9ainRM=</latexit>

Ê
1

≠
‹

+
‹

Õ

<latexit sha1_base64="MigswTBMulbdWZlJCfyIz3zuFtg=">AAACBXicbVDLSsNAFJ3UV62vqks3wSK4KokoupKCG5cVbCu2oUwmN+3QeYSZiVBC1/6AW/0Dd+LW7/AH/A4nbRa29cCFwzn3cu89YcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaR6CLEGRgW0DDUMHhIFmIcMOuHoJvc7T6A0leLejBMIOB4IGlOCjZUee5LDAPczf9Kv1ry6N4W7TPyC1FCBZr/604skSTkIQxjWuut7iQkyrAwlDCaVXqohwWSEB9C1VGAOOsimF0/cE6tEbiyVLWHcqfp3IsNc6zEPbSfHZqgXvVz8z+umJr4KMiqS1IAgs0Vxylwj3fx9N6IKiGFjSzBR1N7qkiFWmBgb0twWxmUESuTB+IsxLJP2Wd2/qHt357XGdRFRGR2hY3SKfHSJGugWNVELESTQC3pFb86z8+58OJ+z1pJTzByiOThfvxW9maE=</latexit>Ê1

<latexit sha1_base64="K5VyQXRYQgZ8IiBOQLZgnCeRzrQ=">AAACBXicbVDLSgNBEJyNrxhfUY9eFoPgKewGRU8S8OIxgnlgsoTZ2U4yZB7LzKwQlpz9Aa/6B97Eq9/hD/gdziZ7MIkFDUVVN91dYcyoNp737RTW1jc2t4rbpZ3dvf2D8uFRS8tEEWgSyaTqhFgDowKahhoGnVgB5iGDdji+zfz2EyhNpXgwkxgCjoeCDijBxkqPPclhiPtpbdovV7yqN4O7SvycVFCORr/804skSTgIQxjWuut7sQlSrAwlDKalXqIhxmSMh9C1VGAOOkhnF0/dM6tE7kAqW8K4M/XvRIq51hMe2k6OzUgve5n4n9dNzOA6SKmIEwOCzBcNEuYa6WbvuxFVQAybWIKJovZWl4ywwsTYkBa2MC4jUCILxl+OYZW0alX/surdX1TqN3lERXSCTtE58tEVqqM71EBNRJBAL+gVvTnPzrvz4XzOWwtOPnOMFuB8/QIXVpmi</latexit>Ê2

<latexit sha1_base64="U4ym8NS59VU1L3oLPiSQLtFCOc0=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KokoupKCG5cVbC2koUymN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A4nbRa29cCFwzn3cu89UcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaTqRFgDowJahhoGnUQB5hGDx2h0m/uPT6A0leLBjBMIOR4IGlOCjZWCruQwwL3MP530qjWv7k3hLhO/IDVUoNmr/nT7kqQchCEMax34XmLCDCtDCYNJpZtqSDAZ4QEElgrMQYfZ9OSJe2KVvhtLZUsYd6r+ncgw13rMI9vJsRnqRS8X//OC1MTXYUZFkhoQZLYoTplrpJv/7/apAmLY2BJMFLW3umSIFSbGpjS3hXHZByXyYPzFGJZJ+7zuX9a9+4ta46aIqIyO0DE6Qz66Qg10h5qohQiS6AW9ojfn2Xl3PpzPWWvJKWYO0Rycr198hpnS</latexit>Ê1Õ

<latexit sha1_base64="dxgrJiTNE0PZ+xvYhZbrJGIt76k=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KklRdCUFNy4r2AekoUwmN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A6TNgvbeuDC4Zx7ufeeIGZUG8f5tkpr6xubW+Xtys7u3v5B9fCoo2WiCLSJZFL1AqyBUQFtQw2DXqwA84BBNxjf5X73CZSmUjyaSQw+x0NBI0qwySSvLzkM8SBtnE8H1ZpTd2awV4lbkBoq0BpUf/qhJAkHYQjDWnuuExs/xcpQwmBa6ScaYkzGeAheRgXmoP10dvLUPsuU0I6kykoYe6b+nUgx13rCg6yTYzPSy14u/ud5iYlu/JSKODEgyHxRlDDbSDv/3w6pAmLYJCOYKJrdapMRVpiYLKWFLYzLEJTIg3GXY1glnUbdvao7D5e15m0RURmdoFN0gVx0jZroHrVQGxEk0Qt6RW/Ws/VufVif89aSVcwcowVYX79+IJnT</latexit>Ê2Õ

<latexit sha1_base64="XSl2ieBEGtDe1q1iEDkqWA66/AI=">AAAB/3icbVDLSsNAFL2pr1pfVZduBovoqiSi6EoKblxWsLXQhjKZTNqhk5kwMxFK6MIfcKt/4E7c+in+gN/hpM3Cth64cDjnXu69J0g408Z1v53Syura+kZ5s7K1vbO7V90/aGuZKkJbRHKpOgHWlDNBW4YZTjuJojgOOH0MRre5//hElWZSPJhxQv0YDwSLGMEml3oiPe1Xa27dnQItE68gNSjQ7Fd/eqEkaUyFIRxr3fXcxPgZVoYRTieVXqppgskID2jXUoFjqv1seusEnVglRJFUtoRBU/XvRIZjrcdxYDtjbIZ60cvF/7xuaqJrP2MiSQ0VZLYoSjkyEuWPo5ApSgwfW4KJYvZWRIZYYWJsPHNbeCxDqsTEBuMtxrBM2ud177Lu3l/UGjdFRGU4gmM4Aw+uoAF30IQWEBjCC7zCm/PsvDsfzuesteQUM4cwB+frFyDFlt4=</latexit>

‹Õ

<latexit sha1_base64="A4Id0cAcpc/s8hjKn1aHABWtA4A=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoicJePEY0cRAsoTZ2dlkyDyWmVkhhIA/4FX/wJt49Vf8Ab/DSbIHk1jQUFR1090VpZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jco0oQ2iuNKtCBvKmaQNyyynrVRTLCJOH6PBzcR/fKLaMCUf7DClocA9yRJGsHXSfUdm3XLFr/pToGUS5KQCOerd8k8nViQTVFrCsTHtwE9tOMLaMsLpuNTJDE0xGeAebTsqsaAmHE1PHaMTp8QoUdqVtGiq/p0YYWHMUESuU2DbN4veRPzPa2c2uQpHTKaZpZLMFiUZR1ahyd8oZpoSy4eOYKKZuxWRPtaYWJfO3BYuVEy1HLtggsUYlknzrBpcVP2780rtOo+oCEdwDKcQwCXU4Bbq0AACPXiBV3jznr1378P7nLUWvHzmEObgff0CvFOWrQ==</latexit>‹

<latexit sha1_base64="ESGxKA3VOuIUoHtWk4bFcA/1ago=">AAACCXicbVBLSgNBFOyJvxh/UZduGoPgxjAjiq4k4MZlBPOBzBh6Oi9Jk/4M3T1CCDmBF3CrN3Anbj2FF/AcdpJZmMSCB0XVe9Sj4oQzY33/28utrK6tb+Q3C1vbO7t7xf2DulGpplCjiivdjIkBziTULLMcmokGImIOjXhwO/EbT6ANU/LBDhOIBOlJ1mWUWCc9hkpAj7QNPsOhTNvFkl/2p8DLJMhICWWotos/YUfRVIC0lBNjWoGf2GhEtGWUw7gQpgYSQgekBy1HJRFgotH06zE+cUoHd5V2Iy2eqn8vRkQYMxSx2xTE9s2iNxH/81qp7V5HIyaT1IKks6BuyrFVeFIB7jAN1PKhI4Rq5n7FtE80odYVNZfCheqAlmNXTLBYwzKpn5eDy7J/f1Gq3GQV5dEROkanKEBXqILuUBXVEEUavaBX9OY9e+/eh/c5W8152c0hmoP39QtBlJq/</latexit>Ês ≠ ‹ <latexit sha1_base64="2FX3sgyL5e0D9DhQR1Reh7Nyw1c="></latexit> ‹
+

‹
Õ ≠

Ê
1Õ

<latexit sha1_base64="MigswTBMulbdWZlJCfyIz3zuFtg=">AAACBXicbVDLSsNAFJ3UV62vqks3wSK4KokoupKCG5cVbCu2oUwmN+3QeYSZiVBC1/6AW/0Dd+LW7/AH/A4nbRa29cCFwzn3cu89YcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaR6CLEGRgW0DDUMHhIFmIcMOuHoJvc7T6A0leLejBMIOB4IGlOCjZUee5LDAPczf9Kv1ry6N4W7TPyC1FCBZr/604skSTkIQxjWuut7iQkyrAwlDCaVXqohwWSEB9C1VGAOOsimF0/cE6tEbiyVLWHcqfp3IsNc6zEPbSfHZqgXvVz8z+umJr4KMiqS1IAgs0Vxylwj3fx9N6IKiGFjSzBR1N7qkiFWmBgb0twWxmUESuTB+IsxLJP2Wd2/qHt357XGdRFRGR2hY3SKfHSJGugWNVELESTQC3pFb86z8+58OJ+z1pJTzByiOThfvxW9maE=</latexit>Ê1

<latexit sha1_base64="K5VyQXRYQgZ8IiBOQLZgnCeRzrQ=">AAACBXicbVDLSgNBEJyNrxhfUY9eFoPgKewGRU8S8OIxgnlgsoTZ2U4yZB7LzKwQlpz9Aa/6B97Eq9/hD/gdziZ7MIkFDUVVN91dYcyoNp737RTW1jc2t4rbpZ3dvf2D8uFRS8tEEWgSyaTqhFgDowKahhoGnVgB5iGDdji+zfz2EyhNpXgwkxgCjoeCDijBxkqPPclhiPtpbdovV7yqN4O7SvycVFCORr/804skSTgIQxjWuut7sQlSrAwlDKalXqIhxmSMh9C1VGAOOkhnF0/dM6tE7kAqW8K4M/XvRIq51hMe2k6OzUgve5n4n9dNzOA6SKmIEwOCzBcNEuYa6WbvuxFVQAybWIKJovZWl4ywwsTYkBa2MC4jUCILxl+OYZW0alX/surdX1TqN3lERXSCTtE58tEVqqM71EBNRJBAL+gVvTnPzrvz4XzOWwtOPnOMFuB8/QIXVpmi</latexit>Ê2

<latexit sha1_base64="U4ym8NS59VU1L3oLPiSQLtFCOc0=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KokoupKCG5cVbC2koUymN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A4nbRa29cCFwzn3cu89UcKoNp737ZRWVtfWN8qbla3tnd296v5BW8tUEWgRyaTqRFgDowJahhoGnUQB5hGDx2h0m/uPT6A0leLBjBMIOR4IGlOCjZWCruQwwL3MP530qjWv7k3hLhO/IDVUoNmr/nT7kqQchCEMax34XmLCDCtDCYNJpZtqSDAZ4QEElgrMQYfZ9OSJe2KVvhtLZUsYd6r+ncgw13rMI9vJsRnqRS8X//OC1MTXYUZFkhoQZLYoTplrpJv/7/apAmLY2BJMFLW3umSIFSbGpjS3hXHZByXyYPzFGJZJ+7zuX9a9+4ta46aIqIyO0DE6Qz66Qg10h5qohQiS6AW9ojfn2Xl3PpzPWWvJKWYO0Rycr198hpnS</latexit>Ê1Õ

<latexit sha1_base64="dxgrJiTNE0PZ+xvYhZbrJGIt76k=">AAACBnicbVDLSsNAFJ3UV62vqks3wSK6KklRdCUFNy4r2AekoUwmN+3QeYSZiVBC9/6AW/0Dd+LW3/AH/A6TNgvbeuDC4Zx7ufeeIGZUG8f5tkpr6xubW+Xtys7u3v5B9fCoo2WiCLSJZFL1AqyBUQFtQw2DXqwA84BBNxjf5X73CZSmUjyaSQw+x0NBI0qwySSvLzkM8SBtnE8H1ZpTd2awV4lbkBoq0BpUf/qhJAkHYQjDWnuuExs/xcpQwmBa6ScaYkzGeAheRgXmoP10dvLUPsuU0I6kykoYe6b+nUgx13rCg6yTYzPSy14u/ud5iYlu/JSKODEgyHxRlDDbSDv/3w6pAmLYJCOYKJrdapMRVpiYLKWFLYzLEJTIg3GXY1glnUbdvao7D5e15m0RURmdoFN0gVx0jZroHrVQGxEk0Qt6RW/Ws/VufVif89aSVcwcowVYX79+IJnT</latexit>Ê2Õ

<latexit sha1_base64="A4Id0cAcpc/s8hjKn1aHABWtA4A=">AAAB/nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoicJePEY0cRAsoTZ2dlkyDyWmVkhhIA/4FX/wJt49Vf8Ab/DSbIHk1jQUFR1090VpZwZ6/vfXmFldW19o7hZ2tre2d0r7x80jco0oQ2iuNKtCBvKmaQNyyynrVRTLCJOH6PBzcR/fKLaMCUf7DClocA9yRJGsHXSfUdm3XLFr/pToGUS5KQCOerd8k8nViQTVFrCsTHtwE9tOMLaMsLpuNTJDE0xGeAebTsqsaAmHE1PHaMTp8QoUdqVtGiq/p0YYWHMUESuU2DbN4veRPzPa2c2uQpHTKaZpZLMFiUZR1ahyd8oZpoSy4eOYKKZuxWRPtaYWJfO3BYuVEy1HLtggsUYlknzrBpcVP2780rtOo+oCEdwDKcQwCXU4Bbq0AACPXiBV3jznr1378P7nLUWvHzmEObgff0CvFOWrQ==</latexit>‹

<latexit sha1_base64="ESGxKA3VOuIUoHtWk4bFcA/1ago=">AAACCXicbVBLSgNBFOyJvxh/UZduGoPgxjAjiq4k4MZlBPOBzBh6Oi9Jk/4M3T1CCDmBF3CrN3Anbj2FF/AcdpJZmMSCB0XVe9Sj4oQzY33/28utrK6tb+Q3C1vbO7t7xf2DulGpplCjiivdjIkBziTULLMcmokGImIOjXhwO/EbT6ANU/LBDhOIBOlJ1mWUWCc9hkpAj7QNPsOhTNvFkl/2p8DLJMhICWWotos/YUfRVIC0lBNjWoGf2GhEtGWUw7gQpgYSQgekBy1HJRFgotH06zE+cUoHd5V2Iy2eqn8vRkQYMxSx2xTE9s2iNxH/81qp7V5HIyaT1IKks6BuyrFVeFIB7jAN1PKhI4Rq5n7FtE80odYVNZfCheqAlmNXTLBYwzKpn5eDy7J/f1Gq3GQV5dEROkanKEBXqILuUBXVEEUavaBX9OY9e+/eh/c5W8152c0hmoP39QtBlJq/</latexit>Ês ≠ ‹
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Figure 4.5: Decomposition of reducible vertices into asymptotic classes. In panels (a) - (d), examples
for s-reducible diagrams with different high-frequency behavior are shown. If both incoming and both outgoing
legs are attached to the same bare vertex as in (a), the vertex function only depends on the transfer frequency
ωs. By replacing either the left or right bare vertex by a diagram reducible in the t channel [see (b) & (c)],
one feeds an external frequency and thereby νs or ν′

s into the loops. In case both bare vertices are substituted
this way [see (d)], one recovers the full frequency dependence on (ωs, νs, ν′

s). In (e), we show a sketch of
the asymptotic behavior of 2PR vertices in their respective natural parametrization. Their main features for
fixed ωc are a localized structure around the origin, described by Q3,c, two stripes along the νc and ν′

c axis,
determined by Q̄2,c or Q2,c and, lastly, a constant background for large |νc| and |ν′

c| given by Q1,c (see Fig. A.1
for explicit numerical data).

corresponding s bubble. This motivates us to parametrize each channel γc in terms of the respective
bosonic frequency and two additional fermionic arguments, i.e. we write

Γµτi1i2(s, t, u) = Γµτ0,i1i2 +
∑

c

γµτc,i1i2(ωc, νc, ν′
c) , (4.31)

where Γµτ0,i1i2 = 1
4J

µτ
i1i2

are the components of the frequency independent bare pseudofermion vertex.
Our convention for projecting the Mandelstam variables (ωs, ωt, ωu) of the full vertex into the natural
frequency arguments (ωc, νc, ν′

c) of its 2PR contributions is shown in Fig. 4.4. This specific choice
ensures that frequencies νc (ν′

c) exclusively appear in the left (right) vertex of Bc. On the other
hand, it simplifies the implementation of frequency symmetries, which will be further discussed in
the next section. The sum of all 2PR diagrams in a specific channel is characterized by a total of
three frequencies and the numerical effort to compute it thus grows as Nω ×N2

ν where Nω (Nν) is the
number of bosonic (fermionic) discretization points. Certain contributions to γc depend, however, on a
lesser number of arguments and can be classified according to their high-frequency behavior [118, 134].
This asymptotic parametrization of the 2PR vertices roots in the frequency independence of the bare
two-particle vertex. Whenever both external legs associated with frequencies νc (ν′

c) are attached to
the same Γ0, information about them cannot be fed into the internal loop. The dependence on these
arguments is therefore eradicated. For the transfer frequencies ωc, in contrast, this is not possible due
to their appearance in the propagators. This motivates the following decomposition of γc: Diagrams
which solely depend on the transfer frequency are summarized as K1

c . Those contributions where
information about one of the two fermionic frequencies is deleted by a bare vertex are coined K2

c or K̄2
c

depending on whether the diagram depends on νc (for K2
c ) or ν′

c (for K̄2
c ). Lastly, diagrams where each

external leg connects to a different bare vertex depend on all three frequencies (ωc, νc, ν′
c) and belong

to K3
c . Examples for each asymptotic class are presented in Fig. 4.5. In total, we thus have

γµτc,i1i2(ωc, νc, ν′
c) = K1,µτ

c,i1i2
(ωc) +K2,µτ

c,i1i2
(ωc, νc) + K̄2,µτ

c,i1i2
(ωc, ν′

c) +K3,µτ
c,i1i2

(ωc, νc, ν′
c) . (4.32)

From our convention in Fig. 4.4 it is apparent that two external legs which are assigned the same
fermionic frequency can only connect to different bare vertices in a c-reducible diagram if they are
attached to some building block which is is c-irreducible. In that case, one external frequency νc or νc′

is processed in the propagators of the internal c̄-loop. Since G0(ω) ∼ (iω)−1, the latter vanish, if the
respective external frequency is taken to infinity. One can therefore project out contributions from a
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specific Kn
c to γc considering an appropriate high-frequency limit, namely

lim
|νc|→∞

lim
|ν′
c|→∞

γµτc,i1i2(ωc, νc, ν′
c) = K1,µτ

c,i1i2
(ωc)

lim
|ν′
c|→∞

γµτc,i1i2(ωc, νc, ν′
c) = K1,µτ

c,i1i2
(ωc) +K2,µτ

c,i1i2
(ωc, νc)

lim
|νc|→∞

γµτc,i1i2(ωc, νc, ν′
c) = K1,µτ

c,i1i2
(ωc) + K̄2,µτ

c,i1i2
(ωc, ν′

c) . (4.33)

Finally, K3
c can be computed by calculating the other classes beforehand and subtracting them from

the full 2PR channel. The decay of K3
c in any frequency direction is the origin for the computational

efficiency of the asymptotic classification scheme. Although γc is generally obtained by summing up
diagrams from all classes, only some of them persist at larger frequencies. For large |ν′

c|, for example,
one just needs to compute K1

c and K2
c . The more expensive K3

c , on the other hand, solely needs to be
monitored within a small, but three-dimensional domain around the origin.
For numerical purposes it is convenient to define the asymptotic classes in terms of new kernels Qnc ,
which are composed of sums of Kn

c functions. More precisely speaking, we define

Q1,µτ
c,i1i2

(ωc)c ≡ K1,µτ
c,i1i2

(ωc)
Q2,µτ
c,i1i2

(ωc, νc) ≡ K1,µτ
c,i1i2

(ωc) +K2,µτ
c,i1i2

(ωc, νc)
Q̄2,µτ
c,i1i2

(ωc, νc) ≡ K1,µτ
c,i1i2

(ωc) + K̄2,µτ
c,i1i2

(ωc, νc)
Q3,µτ
c,i1i2

(ωc, νc, ν′
c) ≡ γµτc,i1i2(ωc, νc, ν′

c) . (4.34)

Since the Kn
c decay to zero if one of their arguments is taken to infinity, the Qnc are mapped to the

respective class with lesser arguments, for example Q3,µτ
c,i1i2

(ωc, νc, ν′
c) → Q2,µτ

c,i1i2
(ωc, νc) for |ν′

c| → ∞.
In principle, both the Kn

c formulation pioneered in Ref. [118] as well as the Qnc parametrization from
Ref. [134] contain the same information about the asymptotic frequency structure of the 2PR vertex
components and can be freely converted into one another using Eq. (4.34). For pffRG, this has been
demonstrated in Ref. [P2]. The decisive difference between both approaches lies in their respective
numerical performance. In terms of the Kn

c functions, one can more accurately model the channels
choosing a tight mesh but with fewer frequencies to resolve K3

c . To evoke a full 2PR vertex in the
evaluation of bubble functions, however, one eventually needs to calculate the sum of all four Kn

c . In
the Qnc formulation, only a single kernel needs to be computed to obtain γc, making this scheme more
efficient for reassembling a 2PR vertex at the cost of having to use slightly more frequencies to resolve
Q3
c . Note that reading out a vertex from memory usually requires interpolations to handle the natural

mismatch between discretization points and the frequency arguments in Eq. (4.30). We further discuss
this aspect in Sec. 4.4.2.

4.3.4 Symmetries in Matsubara space

In Ref. [117] a comprehensive symmetry analysis of the pseudofermion action and the resulting
constraints on the structure of 1PI vertices has been carried out. So far, we made use of local
U(1) symmetry to simplify the spatial structure of the one and two-particle vertex functions, as well
as time-reversal symmetry and hermiticity, which impose that one-particle vertices are diagonal in
spin space. Moreover, we employed energy conservation to reduce the required number of frequency
arguments. Combining these transformations with (local) particle-hole and crossing symmetry, further
restrictions on the frequency structure can be derived, as shown in Ref. [117]. Most importantly, the
self-energy (propagators) obeys

Σ(ω) = −Σ(−ω)
Σ(ω) = −Σ̄(ω) . (4.35)

Hence, one-particle pseudofermion vertices are antisymmetric functions in frequency space and purely
imaginary. Remarkably, this implies that the half-filling constraint is fulfilled on average [P1]. Two-
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particle vertex functions Γµνi1i2 , on the other hand, are subject to the conditions

Γµνi1i2(ωs, ωt, ωu) = Γνµi2i1(−ωs, ωt, ωu)
Γµνi1i2(ωs, ωt, ωu) = ξ(µ)ξ(ν)Γµνi1i2(ωs,−ωt, ωu)
Γµνi1i2(ωs, ωt, ωu) = ξ(µ)ξ(ν)Γνµi2i1(ωs, ωt, ω−u)
Γµνi1i2(ωs, ωt, ωu) = −ξ(ν)Γµνi1i2(ωu, ωt, ωs)
Γµνi1i2(ωs, ωt, ωu) = ξ(µ)ξ(ν)Γ̄µνi1i2(ωs, ωt, ωu) , (4.36)

where ξ(d) = +1 and ξ(µ) = −1 for µ ̸= d. Consequently, Γµνi1i2 is imaginary if (µ, ν) mixes spin
and density indices and real otherwise. Each of the first four identities in Eq. (4.36) translates into
a respective equation for the 2PR vertices by converting (ωs, ωt, ωu) into the corresponding natural
parametrization. In summary, one finds

γµνs,i1i2(ωs, νs, ν′
s) = γνµs,i2i1(−ωs, νs, ν′

s)
γµνs,i1i2(ωs, νs, ν′

s) = −ξ(µ)γνµu,i2i1(ωs,−νs, ν′
s)

γµνs,i1i2(ωs, νs, ν′
s) = −ξ(ν)γµνu,i1i2(ωs, νs,−ν′

s)
γµνs,i1i2(ωs, νs, ν′

s) = ξ(µ)ξ(ν)γνµs,i2i1(ωs, ν′
s, νs) , (4.37)

for the s channel,

γµνt,i1i2(ωt, νt, ν′
t) = ξ(µ)ξ(ν)γµνt,i1i2(−ωt, νt, ν′

t)
γµνt,i1i2(ωt, νt, ν′

t) = −ξ(µ)γµνt,i1i2(ωt,−νt, ν′
t)

γµνt,i1i2(ωt, νt, ν′
t) = −ξ(ν)γµνt,i1i2(ωt, νt,−ν′

t)
γµνt,i1i2(ωt, νt, ν′

t) = ξ(µ)ξ(ν)γνµt,i2i1(ωt, ν′
t, νt) , (4.38)

for the t channel and finally

γµνu,i1i2(ωu, νu, ν′
u) = ξ(µ)ξ(ν)γνµu,i2i1(−ωu, νu, ν′

u)
γµνu,i1i2(ωu, νu, ν′

u) = −ξ(ν)γνµs,i2i1(ωu,−νu, ν′
u)

γµνu,i1i2(ωu, νu, ν′
u) = −ξ(ν)γµνs,i1i2(ωu, νu,−ν′

u)
γµνu,i1i2(ωu, νu, ν′

u) = ξ(µ)ξ(ν)γµνu,i1i2(ωu, ν′
u, νu) , (4.39)

for γu. In similar fashion, the symmetries of the kernel functions Qnc can be extracted from the
symmetries of γc by considering the respective high-frequency limit. As can be seen from the conditions
above, the numerical effort for computing the 2PR vertices can be drastically reduced. Most importantly,
one can dispense with accounting for negative frequencies explicitly, since the latter can always be
projected on the positive Matsubara axis. The exchange symmetry νc ↔ ν′

c, present in every channel,
can be exploited to further restrict γc to a grid with νc ≥ ν′

c, but it also comes with a caveat for
multiloop pffRG flows. To compute the latter, one needs to calculate the left/right part γL/Rc for every
loop order ℓ ≥ 2. Since νc and ν′

c basically define how left and right is supposed to be understood
for every bubble function, a swap of the two also induces a mapping γLc ↔ γRc . This can be used, for
example, to obtain the entire γRc solely from γLc .

4.3.5 Observables

The central physical observable computed from the pseudofermion vertices is the spin-spin correlation
function or magnetic susceptibility defined as

χµνjk (ω) ≡
∫ ∞

0
dτeiωτ ⟨T̂τSµj (τ)Sνk (0)⟩ , (4.40)

where T̂τ is the imaginary time-ordering operator. We are commonly interested in the elastic component
χµνjk = χµνjk (ω = 0), from which one obtains the static structure factor

χµν(k) = 1
N

∑

j,k

eik(ri−rj)χµνjk . (4.41)
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For magnetic materials, χµν(k) can be measured by neutron-scattering, which proliferates a direct
comparison between the output produced by solving the pffRG flow equations and experimental results
(see Ref. [114] for an instructive example). The most striking feature in the static structure factor are
sharp Bragg peaks for long-range magnetic orders, whereas χµν(k) for paramagnetic states is more
washed out.
In pseudofermion language, two-spin correlations translate into four-fermion disconnected Green’s
functions

⟨T̂τSµj (τ)Sνk (0)⟩ = 1
4
∑

{αi}
σµα′

1α1
σνα′

2α2
⟨T̂τ ψ̄jα′

1
(τ)ψjα1(τ)ψ̄kα′

2
(0)ψkα2(0)⟩ . (4.42)

By Fourier transforming the fields via ψjα(τ) = 1
2π
∫
dω e−iωτψjα(ω) one therefore obtains

χµνjk (ω) = 1
4
∑

{αi}
σµα′

1α1
σνα′

2α2

∫ ∞

0
dτeiωτ ⟨T̂τ ψ̄jα′

1
(τ)ψjα1(τ)ψ̄kα′

2
(0)ψkα2(0)⟩

= 1
4(2π)3

∑

{αi}
σµα′

1α1
σνα′

2α2

∫
dω′

2

∫
dω1

∫
dω2 ⟨ψ̄jα′

1
(ω1 − ω)ψjα1(ω1)ψ̄kα′

2
(ω′

2)ψkα2(ω2)⟩ ,

(4.43)

where we used
∫
dτei(ω+ω′

1−ω1)τ = 2π × δ(ω + ω′
1 − ω1) to derive the second from the first line. In

order to express the disconnected correlator in term of 1PI vertices, one first uses the identity

G4(x′
1, x

′
2|x1, x2) = Gc,4(x′

1, x
′
2|x1, x2) +G(x′

1|x1)G(x′
2|x2) −G(x′

1|x2)G(x′
2|x1) (4.44)

which can straightforwardly be derived from the definition of the generating functional Wc from Sec. 2.1.
It decomposes the disconnected four-particle Green’s function into a connected part and disconnected
products of propagators. Subsequently, one makes use of the tree expansion [15] to replace Gc,4 by a
two-particle vertex. As a last step, one needs to plug in the site, spin and frequency parametrized
form of the 1PI functions. We skip these somewhat lengthy derivations and directly state the final
result, which reads

χµνjk (ω) = − 1
4π

∫
dv G(v)G(ω + v) × δjkδµν

− 1
16π2

∫
dv

∫
dv′G(v)G(ω + v)G(v′)G(ω + v′)

×


4Γµνjk (ω + v + v′, ω, v − v′) −

∑

λ,κ

Tr
(
Πµκ

2 Πνλ
2
)

Γλκjj (ω + v + v′, v′ − v,−ω) × δjk


 .

(4.45)
Here, Π2 is the doublet spin tensor from Sec. 4.3.2.
One remarkable property of the spin-spin correlator is its intimate relation to the fulfillment of
half-filling in the pseudofermion representation of spin Hamiltonians [116]. Consider the equal-time
correlation function

Υµν
ij = 1

2π ⟨Sµi (t = 0)Sνj (0)⟩ =
∫
dω χµνij (ω) . (4.46)

Replacing spin operators by pseudofermions, one verifies that
∑

µ

Υµµ
ii = 3

2 ⟨ni⟩ − 3
4 ⟨n2

i ⟩ =⇒ ⟨n2
i ⟩ = 2⟨ni⟩ − 4

3
∑

µ

Υµµ
ii , (4.47)

where ni =
∑
α ψ̄iαψiα is the particle number on site i. Since the pseudofermion self-energy is

particle-hole symmetric, i.e., ⟨ni⟩ = 1 [P1], fluctuations around the mean evaluate to

⟨n2
i ⟩ − ⟨ni⟩2 = 1 − 4

3
∑

µ

Υµµ
ii . (4.48)

Consequently,
∑
µ Υµµ

ii = 3
4 implies exact fulfillment of the half-filling constraint. Since χµνij (ω) can be

computed from the renormalized propagators and two-particle vertex in pffRG, one can monitor the
evolution of fluctuations under the RG flow (see Sec. 4.5.2) and thus gauge their impact within the
formalism itself.
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4.4 Numerical Implementation
In the last section, we presented an efficient parametrization of 2PR vertices and considered their
symmetries in frequency space. Yet, we have to implement further approximations in order to obtain a
finite set of flow equations that can be solved numerically. Importantly, the vertices need to be defined
on a finite lattice graph and discrete frequency grid in such a way that the most relevant features with
respect to, for example, the decay of correlation functions in real space or the extent of asymptotic
kernels, are accounted for. In the following, we examine each and every aspect of the numerical
implementation of pffRG and present a set of useful algorithms which we have learned to appreciate
for their high-accuracy and computational efficiency. We also point out significant differences between
our code and established pffRG implementations, with special emphasis devoted to the control over
numerical errors therein.

4.4.1 Symmetry-reduced lattice representation

As discussed in Sec. 4.3.1, the pseudofermion self-energy and other one-particle vertices can be
approximated as spatially uniform if one assumes that all lattice sites are symmetry equivalent to one
another. Two-particle objects, on the other hand, depend on two site arguments. We can, however,
employ symmetries to constrain Γ even further by imposing that

Γµνi1i2 = ΓµνQ(i1)Q(i2) , (4.49)

for any element Q of the lattice space group [117]. Note that we have dispensed with spelling out
frequency dependencies for brevity.
Any lattice graph is characterized by a set of Bravais lattice vectors ai with i ∈ {1, ..., d} as well as a
basis bi with i ∈ {1, ..., Nb}, where we denote the spatial dimension by d ≤ 3 and the number of basis
sites by Nb. Consequently, one can characterize any lattice site with real space coordinates r, by a set
of d+ 1 indices (α1, ..., αd, β) as

r =
d∑

i=1
αiai + bβ , (4.50)

where αi ∈ Z and β ∈ {1, ..., Nb}. In other words, one can obtain any site from shifting the unit
cell containing the basis along integer multiples of the Bravais vectors. Since memory resources of
computing machines are limited, one needs to decide on a finite set of indices (α1, ..., αd, β) to perform
the flow integration. In our code, we generate the lattice graph by computing all sites which can
be reached from a reference site i0, typically (0, ..., 0, 1), by travelling at most L steps along the
lattice bonds. This corresponds to building the lattice according to the Manhattan or L1 norm. Most
importantly, this procedure preserves point group symmetries for any value of L.
To respect the space group, we proceed in three steps. At first, we compute transformations P , such
as rotations and reflections, which leave i0 unchanged. This is achieved by iterating over all pairs of
non-collinear nearest-neighbor bonds and determining possible transformations between them using the
Rodrigues formula [135]. In the next step, we group all sites which are mapped onto one another under
P into classes of equivalent sites. Since all vertices Γµνi0i∗2 with i∗2 in such a class are equal by virtue of
Eq. (4.49), this amounts to generating a reduced representation of the full lattice graph. At last, we
compute mappings between sites in the unit cell by shifting basis elements bi with i ≥ 2 onto b1 and
composing this translation with a point group symmetry that matches the respective nearest-neighbor
bonds. This allows us to map any pair of indices (i1, i2) with bond distance ||i1 − i2||b ≤ L onto an
equivalent pair (i0, i∗2) in the reduced lattice by first considering a translation i1 → i′1, where i′1 lies in
the unitcell of the reference site, and concomitantly applying a projection i′1 → i0 within the unitcell (if
necessary). Here, ||i1 − i2||b corresponds to the minimum number of bonds required to walk from i1 to
i2 on the lattice graph. Since these mappings only need to be computed once, one effectively condenses
the spatial dependence of the vertex into a single index, which tremendously reduces computation time
and memory requirements (see Fig. 4.6).
We employ open boundary conditions and set Γµνi1i2 = 0 if ||i1 −i2||b exceeds the maximum bond distance
L. Physically, this amounts to limiting the maximum length scale over which pseudofermions can be
correlated. For this reason, L can be deemed a control parameter to check numerical convergence: it is
large enough if the vertices have sufficiently decayed for large distances. This implementation bears
the advantage that no artificial boundary is introduced such that lattice incommensurate phenomena
can also be resolved.
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Figure 4.6: Comparison of lattices in full and symmetry-reduced representation. We plot the
number of lattice sites for the cubic, fcc and pyrochlore lattice as a function of the maximum bond distance
L using full lattices, denoted by straight lines and dots, and the decomposition into equivalence classes after
employing point group symmetries with respect to the reference site (dashed lines and diamonds). Without
the employment of lattice symmetries, the number of vertex components which need to be invoked during the
pffRG flow scales quadratically in the number of sites. For the reduced representation, in contrast, the scaling
is only linear and the numerical effort in computing Γ is, thus, reduced by several orders of magnitude.

4.4.2 Evaluation of Matsubara integrals

In Sec. 4.3, we derived concrete expressions for the T = 0 self-energy loop and 2PR bubble functions,
which are essential to construct the flow of pseudofermion vertices. In this limit, the spectrum of
Matsubara frequencies becomes continuous and frequency summations are promoted to integrals. The
general motif that provides guidance for choosing an appropriate quadrature is the same as for the
itinerant fermion case discussed in Sec. 4.4, that is, one needs to pay attention to the structure of the
propagators and how it changes as a function of the RG scale Λ.
To begin with, consider the loop function [Γ ◦G′]Σ, which invokes a single propagator G′. The latter
could be a single-scale propagator G′ = S as in the 1ℓ flow or a dressed propagator G′ = G as required
by the multiloop corrections to d

dΛ Σ. As we have exemplified in Fig. 4.1, the overall shape of G and
S is, neglecting self-energy corrections, quite similar: both propagators exhibit their maximum for
frequencies close to Λ and asymptotically decay to zero for |ω| ≫ Λ. The peaks for the single-scale
propagator are, however, more pronounced and its fall-off is much faster (exponential instead of
algebraic). To cope with these characteristics, we employ adaptive Gauss-Kronrod (GK) quadrature
as exported by the QuadGK Julia package. We divide the integration domain into three segments,
(−∞,−2Λ), (−2Λ, 2Λ) and (2Λ,+∞), which respect both the vivid frequency structure around the
origin, as well as the asymptotic decay of the propagators. The ±∞-bounds are hereby implemented
via a change of integration variables. In contrast to the itinerant case, where Gauss-Kronrod quadrature
turned out to be inappropriate at low temperatures, the relevant energy scales in pffRG are somewhat
larger, since Λ-values on the percent level relative to the spin coupling J4 are often sufficient to resolve
instabilities in the flow of pseudofermion vertices. Hence, QuadGK provides an accurate frequency
integrator for evaluating self-energy loops. Note that this aspect is usually not discussed in the pffRG
literature. This is because older works have primarily focussed on the sharp regulator, for which the
single-scale propagator is proportional to a Dirac delta distribution such that the Matsubara integral
boils down to an evaluation of the integrand at ±Λ.
A crucial ingredient for the efficient integration of the bubble functions is the exploit of their real
space and spin structure. To keep the discussion concise, consider, without loss of generality, the
parametrized s bubble, which reads

Bs,i1i2(x̃′
1, x̃

′
2|x̃1, x̃2) = −

∫
dv

∑

µ,ν,τ,κ

Πτµ
2,α′

1α1
Πκν

2,α′
2α2

δω′
1+ω′

2,ω1+ω2

× Γµνi1i2(ωs, v − ω1, v − ω2)G(v)G(ωs − v)Γτκi1i2(ωs, ω′
1 − v, ω′

1 − s+ v) . (4.51)

Remarkably, all frequency dependent functions in Bs,i1i2 preserve their arguments, independent of the
respective index pairs (i1, i2) and superscripts µ, ν, τ, κ. However, there is no a priori guarantee that

4 J denotes a heuristic measure for the magnitude of the exchange matrix Jµνij .
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the frequency arguments of the vertices align with the numerical grid. For this reason, it has become
common practice to obtain Σ by linear and Γ by trilinear interpolation [17, 18]. Here, we translate
this principle to the 2PR vertices of which Γ is composed. For a given frequency triplet (ωc, νc, ν′

c), we
thus obtain γµτc,i1i2 as

γµτc,i1i2(ωc, νc, ν′
c) = 1

(ωc,i> − ωc,i<)(νc,i> − νc,i<)(ν′
c,i>

− ν′
c,i<

) ×
[

γµτc,i1i2(ωc,i< , νc,i< , ν′
c,i<)(ωc,i> − ωc)(νc,i> − νc)(ν′

c,i> − ν′
c)

+γµτc,i1i2(ωc,i< , νc,i< , ν′
c,i>)(ωc,i> − ωc)(νc,i> − νc)(ν′

c − ν′
c,i<)

+γµτc,i1i2(ωc,i< , νc,i> , ν′
c,i<)(ωc,i> − ωc)(νc − νc,i<)(ν′

c,i> − ν′
c)

+γµτc,i1i2(ωc,i< , νc,i> , ν′
c,i>)(ωc,i> − ωc)(νc − νc,i<)(ν′

c − ν′
c,i<)

+γµτc,i1i2(ωc,i> , νc,i< , ν′
c,i<)(ωc − ωc,i<)(νc,i> − νc)(ν′

c,i> − ν′
c)

+γµτc,i1i2(ωc,i> , νc,i< , ν′
c,i>)(ωc − ωc,i<)(νc,i> − νc)(ν′

c − ν′
c,i<)

+γµτc,i1i2(ωc,i> , νc,i> , ν′
c,i<)(ωc − ωc,i<)(νc − νc,i<)(ν′

c,i> − ν′
c)

+γµτc,i1i2(ωc,i> , νc,i> , ν′
c,i>)(ωc − ωc,i<)(νc − νc,i<)(ν′

c − ν′
c,i<)

]
, (4.52)

where subscripts i<(i>) denote the nearest smaller (larger) grid point. Note that the frequency grid has
been left general for now such that different discretizations for each channel and frequency axis are, in
principle, accounted for. We elaborate on this aspect further in the next section. The kernel functions
Qc are obtained in similar fashion, using (bi-)linear interpolation if fewer than three arguments are
required. For given external frequencies, it is thus computationally advantageous to perform the
Matsubara integration for all combinations of lattice sites and spin components first, since both the
interpolation nodes, i.e. the frequencies with i<(i>) subscripts, as well as the respective weights
only need to be computed once for any value of v invoked in the Matsubara integral. Moreover, the
interpolation of the vertices as well as the contraction of vertex components in the bubble function
can be very efficiently implemented using SIMD parallel processing. This is especially important for
calculations on high-performance computing architectures where further hardware optimizations can
be unlocked by utilizing advanced vector extensions (AVX).
Another important aspect for the calculation of bubble functions is the exploit of the high-frequency
behavior of the vertex. The T = 0 Matsubara integral generally extends over the whole imaginary
axis. Yet, some contributions to Γ have decayed at large v, justifying their neglect. For any bubble
function, there, thus, exists some upper (lower) bound ±ṽc beyond which the vertex effectively assumes
a constant value. This implies that one can split the bubble integration into three parts: a costly
bulk integral from −ṽc to +ṽc which evokes two interpolated vertices, and two boundary corrections
from −∞ to −ṽc and +ṽc to +∞, respectively. Since the latter only involve the propagators, which
themselves depend on a single frequency, they can be computed with lower computational costs. These
considerations motivate the following integration strategy for the bubble functions:

(a) Precompute the boundary corrections for all ωc using Gauss-Kronrod quadrature.
(b) Calculate the bulk integral for all pairs (i0, i∗2) and spin (density) components (µ, ν) in the

symmetry-reduced lattice representation (see Sec. 4.4.1). GK quadrature requires the storage
of intermediate results to perform the adaptive subdivision of the integration domain. In order
to recycle interpolation parameters for the evaluation of the vertices though, we implement
the integral over multiple pairs of real space indices and spin components by representing the
integrand as an Nµ ×NL array, where Nµ is the number of spin (density) components and NL
the number of symmetry-reduced lattice sites. Allocating multiple instances of these matrices,
thus, comes with a large memory overhead. To circumvent this issue, we employ a matrix-valued
version of the adaptive Simpson integration presented in Sec. 3.3.1 fixing the absolute error
tolerance to atol = 10−8 and relative tolerance to rtol = 10−4 if not stated otherwise. For further
details see Fig. 4.7(a).

(c) Add the boundary corrections to the bulk integral by multiplying the results from (a) with the
respective vertex values at v = ±ṽc.

This procedure offers a few advantages over older pffRG implementations [17, 18], where the quadrature
was prevalently performed utilizing the trapezoidal rule with a fixed number of logarithmically spaced
integration points. Most prominently, our results are error-controlled, which helps to instill confidence
in the correctness of the obtained results. Moreover, it drastically improves the robustness of the
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Figure 4.7: Numerical computation of Matsubara integrals. The bare propagator bubble is shown
in (a). Note that we have shifted ν by half a transfer frequency in order to center G0(ν)G0(ν − ωc) at the
origin. The bubble features two peaks whose position is determined by the transfer frequency ωc and RG
scale Λ and it decays algebraically for |ν|/Λ ≫ 1. To account for these characteristics when computing bubble
functions in pffRG, we transcribe the quadrature presented in Sec. 3.3.1 to frequency space. The integration
domain is consequently split into three segments, two of them exhibiting quadratic decay and one showing a
more pronounced frequency structure. These are subsequently discretized into either logarithmically or linearly
spaced intervals, where the number of intervals is increased proportional to Λ−1/2. The integral for each of
them is then computed with an adaptive Simpson rule. (b) Numerical results for the bare susceptibility χ0.
The required Matsubara integral is either computed adaptively (full lines) or with a non-adaptive trapezoidal
rule (dashed lines) using 60 logarithmically spaced points between νmin = 10−3J and νmax = 250J , where J
denotes the magnitude of the spin coupling.

Matsubara integration in the high-frequency regime. This is illustrated in Fig. 4.7(b), where we plot
results for the bare susceptibility

χ0(ω) = − 1
4π

∫
dν G0(ν + ω

2 )G0(ν − ω
2 ) , (4.53)

for different values of the cutoff Λ obtained with the trapezoidal rule and our adaptive routine. For
large ω/Λ, the non-adaptive quadrature is haunted by strong oscillations, indicating its insufficiency
to resolve the asymptotic ω-regime. The results gathered with the adaptive algorithm, on the other
hand, perfectly resemble the expected quadratic falloff. This, of course, raises the question to which
extent non-adaptive quadrature is justified. The bare susceptibility computed here, constitutes the
simplemost bubble-like integral in the pffRG flow, after all. Away from the UV limit, the propagators
are additionally dressed with self-energy insertions and, in addition, two frequency dependent vertices
enter the integral. Naively, one would therefore expect even larger numerical errors for the non-adaptive
routine due to the enriched frequency structure. Note that this risk is greatly reduced for the adaptive
routine. Although it might be more difficult to achieve convergence for small cutoffs, the algorithm
does not terminate before the error bars on the results are sufficiently small, unless the number of
function evaluations required to reach this goal becomes unusually large. The latter scenario would
imply, however, that the integrand itself is numerically ill-behaved, in which case the continuation of
the pffRG flow is anyways questionable.

4.4.3 Adaptive frequency discretization

Since the Matsubara frequencies become continuous in the zero temperature limit, any numerical
implementation of pffRG needs to sample the vertices (and dynamical correlations) on a finite grid.
As hinted at in the last section, there are several ways in which this could be achieved. One could
imagine, for example, to have different meshes for every channel and frequency axis. Moreover, the
spacing between adjacent grid points does not need to be uniform. Our choice for discretizing the
self-energy, 2PR vertices and spin-spin correlations is based on several empirical observations, which,
taken together, shall provide the reader with a few guidelines for setting up proper frequency grids for
pffRG calculations.
Both, one-particle Green’s functions, as well as two-particle objects decay for large frequencies. It is
therefore sufficient to coarse-grain high-frequency tails and save the remaining grid points to resolve
the more prosperous frequency structure around the origin. To reflect this behavior, we compose all
our grids of a linear part, extending from ω = 0 to ωlin = ∆ω ×Nlin, and a logarithmic tail from ωlin
to an upper bound ωmax. Here, ∆ω denotes the linear grid spacing and Nlin the respective number of
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equidistant points. The discrete frequencies of the logarithmic part are obtained as

ωi = ωlin ×
(
ωmax
ωlin

)i/Nlog

, (4.54)

with Nlog = Nω −Nlin and i ∈ {1, ..., Nlog}. Here, Nω denotes the total number of grid points, where,
typically, Nlin = 0.4 ×Nω, if not stated otherwise. Note that we include only positive frequencies, since
the vertices for negative arguments can be obtained by reflections at the origin (see Sec. 4.3.4).
Further criteria for an accurate discretization of 2PR vertices can be distilled from the symmetries in
Sec. 4.3.4. All channels are, up to an eventual exchange of site indices and spin directions, invariant
under ωc → −ωc and νc ↔ ν′

c. Moreover, the s and u-reducible contributions transform into one another
under reflections of fermionic frequencies, whereas the t channel is either symmetric or antisymmetric
for νc (ν′

c) → −νc (−ν′
c). To cope with the different behavior of the channels, as well as the bosonic

and fermionic frequency axis, we introduce a total of four grids for the 2PR vertices: the same set of
discrete points for the transfer and fermionic frequency axis of the s and u channel and a separate pair
of grids for the t channel. Choosing the grids equally for the particle-particle and crossed particle-hole
diagrams improves the fulfillment of fermionic reflection symmetries on the level of the flow equations,
while the different grids for t-reducible contributions help to resolve peculiarities tied specifically to
the direct particle-hole channel. In principle, one could also separate the frequency grids in between
different spin components of the vertex to account for exclusive features of certain γµνc . This comes,
however, with the great disadvantage that the external arguments entering the respective bubble
functions would not be the same anymore, such that the interpolation parameters for evaluating the
integrand cannot be recycled. To keep our code as efficient as possible, we therefore refrain from
making use of this ansatz. Lastly, we implement two independent grids for the self-energy, as well as for
the dynamic spin-spin correlations in addition to the discretization of the two-particle vertex.
One facet that sets our pffRG solver apart from other implementations, is the dynamical adjustment
of the six different frequency grids throughout the flow. For large cutoffs, one would expect that
the vertices are only weakly renormalized, such that all features in frequency space should scale
roughly according to the features of the bare propagators, that is, with the RG scale Λ (see e.g.
[Figs. 4.1 & 4.7(a)]). If Λ is, however, on the order of the spin coupling J , a more intricate frequency
structure has been generated such that its precise extent may not be captured by simple Λ-scaling.
This behavior is, for example, visible in Fig. 4.14 and has also been pointed out in Refs. [P1, 116, P2].
A static frequency grid, as, for example, used by the authors of Refs. [17, 18], consequently fails to
accurately resolve the vertex. This has led to the appearance of strong numerical artifacts in the form
of wiggly RG flows. In order to faithfully resolve the renormalized vertices over the entirety of the
flow, we propose the following strategy. For Λ above some reference scale Λref, the linear extent of the
frequency grids is chosen proportional to Λ. Below Λref we employ a sophisticated scanning routine to
compute an appropriate ωlin for every grid, which, for the 2PR vertices, operates as follows:

(a) Determine argmax{|γµτc,i0i∗2 (ωc, νc, ν′
c)|} for each tuple (µ, τ).

(b) Sweep through γc along the bosonic and both fermionic axes, as well as along the diagonal
νc = ν′

c to extract one-dimensional snapshots of the data (see App. A.1 for further details). The
respective other arguments are hereby fixed to the values determined in (a).

(c) For each cut, check if there exists a peak (at ω = ωpeak) somewhere close to the origin. Propose
to set ωlin to that value ω > ωpeak, where γc has decayed to 75 percent of the peak height, unless
more than half of the equidistantly spaced grid points would be placed below ωpeak. In that case
request ωlin = ωpeak/2 in order to avoid excessive squeezing of the linear part of the mesh.

(d) If the value of γc at the origin of the respective cut is larger than one percent of the corresponding
max{|γc|}, propose ωlin, such that the relative deviation between the vertex values at the origin
and the first finite grid point, ∆, fulfills p1 < ∆ < p2, where p1 and p2 are free numerical
parameters. This ensures that the grid is properly adjusted, even if there is no sharp peak at
finite frequencies.

(e) Combine the heuristics (c) and (d), by setting ωlin to the value from (d) if (c) does not apply, or to
the minimum of their respective proposals. Assure that p3 < ωlin < p4, to prevent overambitious
shrinking or expanding of the linear grid.

(f) For each tuple (µ, τ), (e) outputs four values: one ωlin for the bosonic cut and three for the
fermionic ones. The latter are fused to a single number by considering only their minimum value.
Finally, the grids for all (µ, τ) components of γc are chosen according to the smallest ωlin value
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Σ ωc νc χ

ωlin 2Λ 6Λ 4Λ 4Λ
ωmax 50Λ 200Λ 150Λ 100Λ
p1 / 0.02 0.02 0.02
p2 / 0.05 0.05 0.05
p3 / 0.05Λ ×Nlin 0.03Λ ×Nlin 0.01Λ ×Nlin

p4 / 40Λ 30Λ 20Λ

Table 4.1: Summary of typical grid and scanning parameters. The linear extent ωlin and
upper bound ωmax are to be understood with respect to a reference scale Λref/J = 5 and a stopping
scale Λstop/J = 0.5. Some entries for the self-energy grid are left blank, since its frequency structure
assumes a particularly simple form in pffRG. It consists of a single quasiparticle peak at ω = ωpeak
followed by a regime of linear decay (see Fig. 4.14). For this reason, we usually fix ωlin = p5 × ωpeak
with p5 = 1 − 2. The control parameters p1 to p4 are, in contrast, not relevant for the Σ-grid.

determined by scanning each component individually.
While we have only discussed the algorithm employed for the 2PR vertices, steps (c) - (e) can be applied
to the spin-spin correlations, and, in principle, to the self-energy as well. In contrast to ωlin, our routine
to adjust the upper mesh bounds is much simpler. We scale ωmax proportional to Λ up to some Λstop,
where ωmax remains fixed. This assures that the high-frequency tails of the vertices (and correlations)
are sufficiently resolved. By determining ωlin and ωmax according to these criteria after every RG
step, we obtain a new set of frequency grids to which we transfer the vertices using the multilinear
interpolation scheme from Sec. 4.4.2. The spin-spin correlations are, in contrast, post-processed from
the vertices and can thus be directly evaluated on the new grid. A typical set of grid and scanning
parameters is given in Tab. 4.1.

4.4.4 Parquet iterations

In the microscopic limit Λ → ∞, the pseudofermion self-energy vanishes, while the vertex is characterized
by the bare spin coupling. The pffRG flow has therefore traditionally been initialized with Γ ∼ J
at some finite cutoff Λi ≫ J . This does, however, introduce numerical artifacts the lower the value
of Λi, since the vertices acquire non-trivial features beyond their frequency independent bare value.
This problem can, of course, be mitigated by setting the initial scale to larger and larger values until
one finds the numerical results to converge in the low-energy regime. An alternative approach makes
use of the fact that the mfRG flow provides a solution to the parquet approximation at any Λ. This
equivalence should, by construction, hold true also at Λ = Λi.
We thus determine the initial condition for the pffRG flow by computing an explicit solution of the
regularized PA, which amounts to solving the algebraic set of equations given by the SDE and BSEs.
To this end, we treat the parquet approximation as a fixed-point equation of the form x = f(x) and
try to find x = (Σ,Γ) by self-consistent forward iterations, that is, we first converge Σ = fSDE(Σ,Γ)
with Σ = 0 and the bare vertex Γ = Γ0 as input (recall that Γ = Γ0 +

∑
c γc). In a second step, this

solution is used to update the 2PR vertices according to γc = fBSE(Σ,Γ) (see Fig. 4.8). We declare to
have reached convergence once the absolute (relative) deviation between two updates is smaller than
10−8 (10−4), if not stated otherwise. In practice, we find convergence already within a few iterations
as long as Λ ≫ J . If the cutoff is on the order of the bare interaction, however, the rate of convergence
starts to drop, which eventually leads to divergent results. To improve on this front, we employ a
mixing scheme between consecutive fixed-point iterations, such that the input x′ for the next step is
given by

x′ = (1 − η) × x+ η × f(x) , (4.55)

where η denotes the mixing factor. For η = 1, one recovers the standard update scheme x′ = f(x).
In our implementation, it has turned out beneficial to scale η roughly proportional to Λ as soon as
Λ ∼ J .
Having obtained a solution of the PA, the integration of the fRG flow of pseudofermion vertices
corresponds, as usual, to the integration of an ODE. Here, we adhere to the general principles outlined
in Sec. 3.3.2 and solve the flow equations using the adaptive Runge-Kutta solver described therein.
The initial scale is typically chosen as Λi/J = 5 − 10 and we follow the flow down to the percent level
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Figure 4.8: Numerical scheme for solving the parquet approximation. The central green box
highlights the self-consistency cycle for determining the fixed-point, i.e. starting from the bare couplings, we
first converge the self-energy via the SDE and subsequently update the vertex using the respective BSE for
γc. The so-obtained two-particle vertex can, in turn, be used to start another set of SDE iterations until the
fixed-point for both equations has been found. In this case the calculation is stopped.

relative to the spin coupling, which justifies a larger minimum step size min{∆Λ} = 10−4J .

4.4.5 Calculation of correlation functions

Computing the spin-spin correlation function χµνij (ω) amounts to solving the Matsubara integrals in
Eq. (4.45). The first term resembles the bare susceptibility from Sec. 4.4.2 and can thus be calculated
with the techniques outlined therein. For the second part, we need to integrate vertices over the
two-dimensional frequency domain. In principle, this could be achieved by computing two nested
1D integrals using a Gauss-Kronrod rule. For multidimensional integrals there exist, however, more
efficient quadratures such as the Genz-Malik rule [136], which is implemented in the Cubature package
of the Julia programming language. Since Cubature supports only finite rectangular domains, we
employ the mapping

v → 2v − 1
1 − (2v − 1)2 , dv → 1 + (2v − 1)2

(1 − (2v − 1)2)2 , (4.56)

for both integration variables, such that the integral can be computed over (0, 1)2 = (0, 1) × (0, 1)5

instead of (−∞,∞)2. In addition, we divide the rectangle (0, 1)2 into 9 smaller boxes, where the
volume of the central box is scaled with Λ, to cope with the evolution of vertices and propagators
under the RG flow.

4.5 Examples
In this section, we want to provide two examples for the application of pffRG and showcase the analysis
of results obtained with the method. To begin with, we consider an effective spin model for twisted
tungsten diselenide, which resembles a spinful version of the Hamiltonian from Sec. 3.4, but in the
strong-coupling limit. Although the model itself is quite involved, featuring spatially anisotropic and
off-diagonal nearest-neighbor couplings, we underline the simplicity with which it can be embedded
into the general pffRG formalism (see Sec. 4.3). Here, our focus lies on arranging a closed discussion of
the low-temperature phase diagram and its implications for experiments, rather than a conceptual
debate, and we thus allow ourselves to truncate the flow equations at the 1ℓ level.
5 Here, × denotes the cartesian product.
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Figure 4.9: Three-sublattice transformation on the triangular lattice. As shown in the upper right,
the phase factor ϕ inherited from the tight-binding model Eq. (4.57) changes sign on neighboring bonds of the
triangular lattice and thus breaks inversion symmetry. By decomposing the lattice into three sublattices and
transforming their respective spins according to the rules in the bottom right, SU(2) symmetry on the level of
the strong-coupling Hamiltonian Eq. (4.58) can be restored if ϕ is an integer multiple of π/3.

To remedy this shortcoming, we study the implications of a multiloop truncated pffRG flow in our
second example. For the sake of simplicity, we focus on the nearest-neighbor ferromagnet on the cubic
lattice, for which the ground state is well known. Special emphasis is layed on self-consistency, that is,
the question whether the pseudofermion vertices converge to a solution of the parquet approximation
or not. We conclude by explicitly computing particle number fluctuations for different loop orders and
gauging their influence on physical conclusions drawn from the fRG flow.

4.5.1 Example 1: Strong-coupling study of twisted WSe2

Among the plethora of moiré heterostructures which have recently become of interest, twisted transition
metal dichalcogenides are very much appreciated for their high degree of tunability and the variety of
collective phases emerging therein [40, 74–81]. While tBG is based on graphene, an SU(2) symmetric
semiconductor with gapless Dirac cones, tMDs are, as their name suggest, built from a transition
metal like molybdenum (Mo) or tungsten (W) and two chalcogens like sulfur (S), selenium (Se) or
tellurium (Te), which makes for vastly different physical properties: TMD monolayers usually feature a
direct band gap, strong spin-orbit coupling and have no inversion symmetry. Similar to tBG, however,
multilayer tTMD heterostructures can harbor superconducting [75] as well as correlated insulating
states [74, 78] for different levels of carrier doping. To sharpen the discussion, we focus on the insulating
phase reported for twisted tungsten diselenide at half-filling [74].
The effective lattice model proposed for tWSe2 [82, 83] can be considered a spinful version of the
Hamiltonian studied in Sec. 3.4 augmented by a transverse displacement field Vz corresponding to the
potential difference between the gate voltages applied to the top and bottom TMD layer. On the level
of the triangular moiré bandstructure, Vz generates a spin dependence of the single-particle dispersion:
if |Vz| > 0, the emergent inversion symmetry of the bilayer system is broken and the bands are related
to each other by threefold rotations, such that, due to strong spin-momentum locking in the monolayer
system, the dispersion near the K (K ′) point is predominantly governed by spin up (down) states [82].
For Vz = 0 and sufficiently small twist angles, on the other hand, inversion symmetry is approximately
restored [82]. These aspects can be summarized by a tight-binding Hamiltonian of the form

Htb =
∑

i,j

∑

σ∈{↑,↓}
tσijc

†
iσcjσ . (4.57)

The hopping parameters tσij = |tσij |eiϕ
σ
ij are parametrized by their respective magnitude |tσij | and phase

factor ϕσij , where the aforementioned inversion symmetry breaking is implemented by imposing that
ϕσji = −ϕσij and |tσji| = |tσij |. Time-reversal symmetry then requires that the phase factors on the
same bond have opposite sign for the two spin directions (see Fig. 4.9). Moreover, tσij should be
invariant under C3 transformations. Due to these symmetry requirements, all hoppings in the n-th
nearest-neighbor shell of the triangular lattice are fully determined by fixing |tn| and ϕ

↑(↓)
n = ϕn for

one representative bond [83]. An estimate of these parameters for a twist angle θ = 4◦ (see Fig. 4.10),
reveals that nearest-neighbor hopping is predominant for displacement fields |Vz| ≤ 100meV and we,
thus, allow ourselves to truncate Htb beyond n = 1.
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Figure 4.10: Hubbard model parameters for tWSe2. The data in panels (a) - (c) was kindly provided
by the authors of Ref. [83] for a twist angle θ = 4◦. In (a), we plot the strength of n-th nearest-neighbor
interactions up to n = 3. The most dominant contribution is given by an on-site Hubbard repulsion U0. Panels
(b) and (c) present the magnitude and phase factor of the hopping parameters for the n-th shell. Using
Jn = 4|tn|2/U0, one can estimate the magnitude of two-spin interactions in the strong-coupling limit, as shown
in the inset of (d). Remarkably, ϕ2 = π is constant over the entire range of displacement fields, resulting in an
SU(2) symmetric interaction characterized by J2, which can reach values up to four percent relative to J1.

The simplest conceivable interaction term is given by an on-site Hubbard repulsion U0. Since U0 is
approximately one order of magnitude larger than |t1| (see Fig. 4.10), we consider the strong-coupling
limit, in which case the Hamiltonian reads

H = J1
2
∑

⟨ij⟩

[
cos(2ϕ1)(Sxi Sxj + Syi S

y
j ) + Szi S

z
j

]
+ J1

2
∑

⟨ij⟩
sin(2ϕ1)(Si × Sj)z , (4.58)

that is, we obtain a model of interacting spins on the triangular lattice, featuring XXZ and Dzyaloshinski-
Moriya (DM) exchange [82, 83]. With the estimates from Ref. [83], J1 = 4|t1|2/U0, lies in the range of
1meV and, thus, resembles the energy scales of typical Mott insulators such as α-RuCl3 [137]. Note
that in order to incorporate the symmetries of the tight-binding Hamiltonian, ϕ1 has alternating signs
on nearest-neighbor bonds (see Fig. 4.9). To shorten the notation, we use J1 = J and ϕ1 = ϕ from
now on. Introducing the matrix

Rz(−2ϕ) =




cos(2ϕ) sin(2ϕ) 0
−sin(2ϕ) cos(2ϕ) 0

0 0 1


 , (4.59)

corresponding to a rotation about the z-axis by an angle −2ϕ, Eq. (4.58) can alternatively be written
as

H = J

2
∑

⟨ij⟩
STi Rz(−2ϕ)Sj . (4.60)

In this form, it becomes apparent that the Hamiltonian possesses a hidden SU(2) symmetry for
|ϕ| ∈ Zπ

3 . This can be seen by decomposing the triangular lattice into three sublattices as shown in
Fig. 4.9 and subsequently transforming their spins according to Si → Rz(θi)Si with θi ∈ {0,±2|ϕ|},
respectively. Along the same lines, one finds that the eigenvalues of the Hamiltonian for |ϕ|, |ϕ| + Zπ

3
and Zπ

3 − |ϕ| are the same, although the corresponding eigenstates differ precisely by the sublattice
transformation required to restore spin rotation invariance.
In order to study the ground state phase diagram of tWSe2 using pffRG, we need to find a suitable
parametrization of the vertex in spin space, that is, we must identify the minimal set of vertex
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Figure 4.11: Phase diagram for tWSe2 in the strong-coupling limit. The critical scale Λc and vector
chirality κ as a function of the transversal displacement field Vz are plotted in (a). Around the SU(2) symmetric
point Vz = 0, κ changes sign, accompanied by a pronounced dip in the critical scale. The respective flow of
the structure factor χ(k) =

∑
µ
χµµ(k) indicated by a violet line in (b) for k = K features a gentle shoulder,

followed by a strong increase in the susceptibility. If SU(2) symmetry is broken by finite Vz, flow breakdowns
become noticeable as sharp divergencies of χ(k). For symmetry reasons (see Fig. 4.9), the flows obtained for
the same |Vz| precisely match, although the respective instabilities have different chiralities.

components Γµνi1i2 that become finite throughout the flow. To this end, we exploit that H is U(1)
symmetric, i.e. invariant for Si → Rz(θ)Si6. Imposing this symmetry on the level of the vertex, we
find the condition

R̃z(θ)TΓi1i2R̃z(θ) = Γi1i2 , (4.61)

where Γi1i2 symbolically indicates the 4 × 4 matrix of vertex components (we suppress frequency
arguments for brevity). Consequently, R̃z(θ) is defined as the direct sum Rz(θ) ⊕ 1, generalizing the
U(1) rotation to the combined space of spin and density indices. To fulfill Eq. (4.61), Γi1i2 needs to be
of the form

Γi1i2 =




Γxxi1i2 Γxyi1i2 0 0
−Γxyi1i2 Γxxi1i2 0 0

0 0 Γzzi1i2 Γzdi1i2
0 0 Γdzi1i2 Γddi1i2


 , (4.62)

and we, thus, need to monitor only six instead of 16 vertex components during RG flow. The respective
initial conditions can be read off directly from Eq. (4.58): all components with a density subscript
vanish, whereas

Γxx0,i1i2(ωs, ωt, ωu) = J

4 cos(2ϕ)

Γzz0,i1i2(ωs, ωt, ωu) = J

4
Γxy0,i1i2(ωs, ωt, ωu) = J

4 sin(2ϕ) , (4.63)

if i1 and i2 are nearest-neighbors sites. With these prerequisites, closed expressions for the self-energy
loop and bubble functions following the discussions in Sec. 4.3 can be derived and evaluated with the
numerical algorithms outlined in Sec. 4.4. The two-particle vertex is hereby discretized on a dense
Nωc ×N2

νc = 84 × 722 frequency grid and truncated beyond bond distances L = 12. For Σ, we choose
NΣ = 200 frequencies. Our main observables are the in-plane and out-of-plane correlation functions
χxxij and χzzij , as well as χxyij .
To map out the ground state phase diagram as a function of the transverse displacement field, we
utilize the microscopic coupling parameters given in Ref. [83], i.e. we consider |Vz| ≤ 100meV and set
J > 0 and ϕ accordingly. Our results for the characteristic RG scale Λc/Z7, where the pffRG flow
breaks down, is shown in Fig. 4.11(a). We find two reflection symmetric domes with Λc > 0, separated
by a sharp minimum at Vz = 0. To identify the nature of the incipient magnetic orders, we probe the
dominant structure factors in vicinity of Λc/Z. Both for Vz > 0 as well as Vz < 0, in-plane structure

6 Note that in comparison to the sublattice transformation from before, θ now characterizes a global spin rotation.
7 Z =

√
2J defines the energy scale of the microscopic model as the Euclidean norm of J × (cos(2ϕ), 1, sin(2ϕ))T .
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Figure 4.12: Characterization of in-plane 120◦ order. (a) We plot the full momentum-resolved structure
factor χ(k), which features sharp incipient Bragg peaks at the K points, indicative of 120◦ order. It can
subsequently be decomposed into in-plane components χxx(k) as plotted in (b) and an out-of-plane part
described by χzz(k) and displayed in (c). We find that χxx(k) is predominant for any value of Vz, signifying a
strong tendency towards coplanar magnetic order in tWSe2.

factors χxx(k) clearly dominate (see Fig. 4.12) and show pronounced Bragg peaks at the K-points of
the Brillouin zone, indicative of coplanar 120◦ spin order. The two 120◦ degree states differ, however,
by their respective vector chirality

κ = sgn
(

1
2 ⟨Si1 × Si2 + Si2 × Si3 + Si3 × Si1⟩z

)
= sgn

(
χxyi1i2 + χxyi2i3 + χxyi3i2

)
(4.64)

which determines the sense of rotation for spins on a triangular plaquette spanned by sites i1, i2 and
i3. For the convention shown in the inset of Fig. 4.11(a), the chirality switches from κ− = −1 for
Vz < 0 to κ+ = +1 for Vz > 0. For vanishing displacement field, SU(2) symmetry is fully recovered,
which implies vanishing off-diagonal spin correlators and consequently κ = 0 in pffRG. The strong
suppression of the critical scale observed for the Heisenberg antiferromagnet [86] may, therefore, be
related to the κ+ and κ− state becoming degenerate for Vz = 0, which, apparently, hampers the growth
of magnetic correlations during the RG flow.
At last, let us discuss possible corrections to the Hamiltonian in Eq. (4.58). As can be seen from
Fig. 4.10, longer-ranged couplings J2 and J3 can assume values on the percent level relative to J1.
While third neighbor couplings J3 are predominant for small |Vz|, their relevance falls off upon ramping
up the displacement field and for |Vz| ≳ 50meV, second neighbor exchange J2 presents the most
important perturbation. This is interesting insofar that Ref. [83] predicts ϕ2 = π, such that the
next-nearest-neighbor term would be SU(2) symmetric. For the triangular antiferromagnet, even small
second-neighbor Heisenberg couplings tend to destabilize the 120◦ phase in favor of a paramagnetic
state, widely believed to be a spin liquid [96, 138–140]. This raises the question, whether the same
can happen in tWSe2 where, for |Vz| > 0, SU(2) breaking interactions like XXZ anisotropy and
DM exchange need to be accounted for. Indeed, as shown in Ch. 6.1, pffRG calculations for the
J2-augmented Hamiltonian predict extended regimes without a flow breakdown, indicative of spin
liquid states lurking in the correlated insulating regime of twisted TMDs.

4.5.2 Example 2: Multiloop fRG for the cubic ferromagnet

In order to study the impact of multiloop corrections on 1ℓ-pffRG results, we consider the ferromagnet
on the simple cubic lattice as characterized by the Hamiltonian

H = J

2
∑

⟨ij⟩
Sµi S

µ
j , (4.65)

with J < 0. The coupling matrix Jij on nearest-neighbor sites ⟨ij⟩ assumes the particularly simple
form Jij = J × 1 and thus fulfills U †JijU = Jij for U ∈ SU(2). Exploiting this symmetry on the
vertex level, we obtain the decomposition

Γi1i2 =




Γsi1i2 0 0 0
0 Γsi1i2 0 0
0 0 Γsi1i2 0
0 0 0 Γdi1i2


 , (4.66)
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Figure 4.13: Ferromagnetic correlation functions from mfRG. In (a), the flow of the inverse on-site
correlator 1/χ is plotted as a function of loop order ℓ and compared to results obtained with the parquet
approximation (black crosses). The inset displays 1/χ close to the critical scale Λ(1ℓ)

c /J ≈ 0.76 at which a
sharp downturn appears in the 1ℓ flow. For Λ/J < 0.76, the parquet equations could not be properly converged.
Panel (b) shows the structure factor χ(k) in momentum space for two different cutoffs Λ: close to the ordering
scale Λ(1ℓ)

c (main plot) and for Λ > Λ(1ℓ)
c (inset). Though the results are in good agreement among loop orders

and with the PA for Λ/J = 0.9, featuring dominant peaks at the Γ point in all cases, convergence becomes
harder to achieve for Λ → Λ(1ℓ)

c .

that is, one only needs to consider a spin component Γs and a density contribution Γd. For our
numerical calculations, we choose L = 8, NΣ = 200 and Nω × N2

ν = 84 × 722 for which our results
seemed reasonably well converged.
Since our model is defined on a bipartite and non-frustrated lattice graph, we would expect to
find a ferromagnetic instability at Λ = Λc when approaching the infrared. The inverse spin-spin
correlation function 1/χ = 1/χxxii = 1/χyyii = 1/χzzii for ℓ = 1, plotted in Fig. 4.13(a), indeed features
a sharp downturn away from its linear behavior at large cutoffs, indicative of an ordering transition.
Moreover, the diagonal static structure factor χ(k) =

∑
µ χ

µµ(k) computed from χµµij in vicinity of
Λ(1ℓ)
c (see [Fig. 4.13(b)]), displays sharp peaks at k = Γ, which confirm that the correlations are

ferromagnetic.
Comparing different loop orders, we observe a drastic change between ℓ = 1 and ℓ = 2. While the 1ℓ
results clearly imply a diverging spin-spin correlation function at Λ(1ℓ)

c /J ≈ 0.76, χ is suppressed in 2ℓ
calculations and its flow remains regular. This discrepancy can be attributed to the construction of two
loop contributions [141]: to compute γ(2ℓ)

c in a specific 2PR channel, one solely considers 1ℓ diagrams
from channels c̄ complementary to c and thus accounts for screening effects [116, 141]. Since magnetic
contributions primarily result from RPA diagrams in the t channel [85], the exclusive feedback of
non-magnetic, i.e. s or u-reducible, diagrams apparently causes an underestimation of long-range order
in the 2ℓ flow. For ℓ ≥ 3, this effect is partially remedied, since the central part allows for contractions
of c-reducible diagrams. In consequence, we again observe a ferromagnetic instability in the 3ℓ flow (see
Fig. 4.13). Resolving that divergence of χ at even higher loop orders, however, becomes increasingly
difficult and for ℓ = 5, 7, 9 (dashed lines in [Fig. 4.13(a)]) the mfRG flows have to be terminated
prematurely, as the error of the numerical ODE solver grows unacceptably large. Yet, χ(k) shows a
pronounced peak at k = Γ, consistent among loop orders. Note that self-energy corrections for loop
orders ℓ ≥ 3 have been computed via one-shot iterations instead of self-consistency cycles.
To test for self-consistency of the pffRG truncation, we additionally computed solutions of the parquet
approximation for various Λ/J ∈ [0.76, 1.2]. For Λ/J < 0.76, we were not able to converge the PA,
even with finite damping factors. By construction, we would expect that Σ and γc calculated with
mfRG should likewise solve the Schwinger-Dyson and Bethe-Salpeter equations for ℓ → ∞. Ideally,
one would be able to obtain converged pseudofermion vertices and spin-spin correlations already for
ℓ < ∞, which, a posteriori, justifies the neglect of further corrections. For Λ > Λ(1ℓ)

c , the χ-flows for
different loop orders certainly overlap with the PA results, which we have indicated with black crosses
in Fig. 4.13(a). Remarkably, even ℓ = 1 suffices to reproduce the parquet solution. Approaching
Λ(1ℓ)
c /J ≈ 0.76, deviations between the fRG and PA results are more visible and agreement among loop

orders becomes harder to achieve. Furthermore, it seems that the convergence in ℓ is non-monotonous:
for ℓ = 3, we follow the PA solutions more closely than for ℓ = 5 and ℓ = 7, whereas the 9ℓ flow
resembles the 3ℓ results. This behavior is also reflected in the momentum space profile of χ(k). For
Λ/J = 0.9 (see the inset in [Fig. 4.13(b)]), the mfRG and parquet structure factors agree formidably
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Figure 4.14: Comparison of mfRG and PA pseudofermion vertices. We plot the purely imaginary self-
energy Σ (first column) and t-reducible contributions to the vertex (second to fourth column) at different scales
Λ/J , corresponding to the individual rows. To display the reducible vertex γt, we focus on two representative
cuts through frequency space: one along the bosonic ωt-axis for fermionic frequencies νt = ν′

t = 0 and the other
one along the ν′

t = νt line with ωt set to zero. For the ωt-cut, we solely plot the spin contribution γst , since
γdt vanishes due to symmetries. Note that we have subtracted Q1 from the vertices in the third and fourth
column, as indicated by a hat over the respective labels. This is because Q1 is independent of νt and therefore
simply offsets γt by a constant value along this cut. Upon reducing Λ, the vertices grow in magnitude and
their dominant features, such as the maximum at ωt = 0 in the second column, progressively sharpen. Though
loop convergence and agreement with the parquet solution (black line) is quickly achieved for Λ/J ≳ 0.9, even
ℓ = 9 does not suffice to fully reproduce PA results for γst when Λ is further reduced (see the second and third
column of the last row).

well, while at Λ/J = 0.8, somewhat closer to Λ(1ℓ)
c , larger discrepancies are visible.

Instead of comparing spin-spin correlations, which are, after all, obtained by integrating vertices over
frequency space (see the discussion in Sec. 4.3.5), we can inspect Σ and γc directly. This additional
step of numerical analysis is helpful in order to digest the influence of higher order corrections as
well as to attest to the accuracy of the implementation8. In Fig. 4.14, we present results for the
purely imaginary pseudofermion self-energy, as well as exemplary cuts through the t channel, which is
responsible for proliferating magnetic correlations. Even above Λ(1ℓ)

c /J ≈ 0.76, where the spin-spin
correlations seem to converge already, pronounced deviations between the 1ℓ and higher loop results
for γt can be observed. These are most prominently visible along the fermionic frequency axis, as
shown in the third and fourth column of Fig. 4.14. At Λ/J = 1, for example, there is a pronounced
peak in the density component γdt , which gains in magnitude when higher loops are included. For
ℓ ≥ 3, the mfRG vertices nonetheless converge and resemble the parquet solution. Close to the 1ℓ
instability, however, 3ℓ calculations are not sufficient to reproduce the PA, which can be seen in the
spin component γst at Λ/J = 0.8. For ℓ ≥ 5 one finds a cusp around the origin, followed by a rather
rapid decay of the 2PR vertex along the fermionic νt = ν′

t direction. In 3ℓ calculations, there is an
additional change of curvature at νt/Λ ≈ 2, which is, however, absent in the PA solution. Remarkably,
the self-energy seems well converged already for ℓ = 2, indicating that self-energy corrections, which
contribute only at the three loop level and beyond, are fairly small. This also implies that the neglect
of expensive self-consistency loops between the Σ and Γ flows is indeed valid.
At last, we want to scrutinize the fulfillment of the pseudofermion constraint ni = 1, where ni = ψ̄iαψiα
is the number of pseudofermions on site i. As shown in Ref. [P1], ⟨ni⟩ = 1 always holds if the self-energy

8 To instill confidence in the mfRG and PA results, one needs to assure that discretization artifacts like sharp kinks or
cusp are absent in the 1PI vertices.
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Figure 4.15: Pseudofermion occupation number fluctuations. (a) Flows of the variance Var(ni) of the
particle number ni = ψ̄iαψiα at site i for different loop orders and the parquet approximation (see discussion
in Sec. 4.3.5). Though fluctuations decrease with Λ, they remain fairly sizable even in vicinity of the ordering
transition, where a sharp drop in the 1ℓ (3ℓ) flow occurs. (b) Same as (a) but for ℓ = 1 and with finite
level repulsion terms A(Si)2 (for A < 0). Although fluctuations are suppressed in comparison to the A = 0
result (horizontal grey line), the structure factor profile, as shown in the inset for A/J = −8 at Λ/Z ≈ 0.17
(vertical grey line), remains qualitatively unchanged and still suggests a ferromagnetic ground state. Here,
Z =

√
A2 + J2.

is particle-hole symmetric. Nonetheless, there might be fluctuations around the mean, quantified by
the variance Var(ni) = ⟨n2

i ⟩ − ⟨ni⟩2, which can be computed from equal-time spin-spin correlations (see
Sec. 4.3.5). If every site was half-filled Var(ni) vanishes, if not, 0 < Var(ni) ≤ 19, where Var(ni) = 1/2
indicates that all states, even the unphysical ones, occur with equal probabilities. As can be seen from
the results in Fig. 4.15(a), the variance never vanishes and only mildly decreases below the infinite
temperature limit Var(ni) = 1/2. In consequence, the pseudofermion constraint is not exactly fulfilled
in pffRG. Close to the ordering transition Λ(1ℓ)

c /J ≈ 0.76, Var(ni) shows a strong downturn for ℓ = 1
and ℓ = 3, which remains obscure in the higher loop and parquet results. Recall, however, that we had
to prematurely stop the calculation for those in order to maintain control over numerical errors, which
explains the absence of such a feature in their respective flows.
In an attempt to manually impose half-filling, we repeated the 1ℓ calculations with finite level repulsion
terms A(Si)2 on every lattice site. To enforce ni = 1, we initialize the flow with different A < 0,
such that empty or doubly occupied states are energetically penalized. The respective results are
shown in Fig. 4.15(b). There are three important observations to make: (a) The critical scale Λ(1ℓ)

c is
reduced for finite A. Since we have introduced an additional energy scale larger than the non-local
spin coupling J and the cutoff is, therefore, given in units of Z =

√
A2 + J2, this is rather intuitive.

Unfortunately, A → −∞, corresponding to the limit in which the constraint should be enforced exactly,
simultaneously shifts Λc → 0, that is, into the regime which is extremely challenging for numerics. (b)
In line with our expectations, occupation number fluctuations are indeed reduced for finite A. For
A/J = −8, for example, Var(ni) ≈ 0.15 in vicinity of the ordering transition (vertical grey line in
[Fig. 4.15(b)]), which is roughly half of the value it assumed for A = 0 (indicated by a horizontal grey
line). (c) The nature of the incipient magnetic order is left unchanged, even if fluctuations are further
reduced. As can be seen from the inset in Fig. 4.15(b), the structure factor still features dominant
peaks at the Γ point and thus indicates ferromagnetic correlations. On a qualitative level, spin-spin
correlations therefore seem remarkably robust to occupations of the spin zero states [85, 107, 116]:
they suggest a ferromagnetically ordered ground state in any case.
Let us summarize the main results of this example section. We have compared multiloop pffRG results,
that is, spin-spin correlations, pseudofermion vertices and occupation number fluctuations, among
different loop orders ℓ and checked for their agreement with solutions of the parquet approximation.
For our model system, the nearest-neighbor ferromagnet on the simple cubic lattice, a conclusive
picture emerged: for cutoffs larger than the ordering scale Λ(1ℓ)

c , reaching convergence on the level of
spin-spin correlations was fairly easy and already the 1ℓ calculations resembled the parquet results. For
the pseudofermion vertices, further corrections up to ℓ = 3 were necessary. Approaching Λ(1ℓ)

c , however,
achieving convergence becomes progressively more difficult and even 9ℓ calculations showed slight
deviations to the PA solution. Yet, all results consistently predict dominant ferromagnetic correlations,
as expected. Regarding the pseudofermion constraint, we were able to show that fluctuations around

9 Var(ni) = 1 signifies that only spin zero states contribute.
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half-filling are indeed suppressed by local level repulsion terms, though their implementation does
not affect the principal conclusion (emergence of long-range ferromagnetic order) drawn from the RG
flow. We were thus able to provide evidence for the qualitative reliability of the pffRG approach by (a)
demonstrating self-consistency of the employed truncation through loop convergence in regimes where
the flow is well-behaved and (b) showing that particle number fluctuations do not seem to affect the
principal interpretation of the results.
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5 Methodological development of pseudofermion fRG

5.1 Overview
Quantum spin models continue to attract formidable research interest in condensed matter physics for
harboring a plethora of interesting many-body states. Quantum fluctuations in frustrated magnets,
for example, can become so violent as to impede the formation of magnetic order all together, even
at temperatures down to absolute zero. These elusive quantum spin liquids present highly-entangled
states of matter, featuring unusual properties such as fractionalized excitations and emergent gauge
fields [9, 10, 120].
The accurate numerical treatment of generic spin Hamiltonians remains a daunting challenge, despite
tremendous progress made with various techniques. Tensor network methods, for example, undoubtedly
belong to the most powerful algorithms in condensed matter research, especially in one dimension.
Although generalizations to higher dimension have been successfully developed [142, 143], their
performance beyond d = 1 generally suffers from the area-law obedience of the entanglement entropy.
Other sophisticated methods, such as quantum Monte Carlo simulations, face similar difficulties when
applied to frustrated spin models. There, the infamous sign problem prohibits the study of the low-
temperature regime. In the absence of any singular approach, which is able to resolve phase diagrams
of arbitrary quantum magnets in an unbiased way, novel techniques are highly sought-after.
The pseudofermion functional renormalization group (pffRG) [22] is one of the few theoretical methods
capable of treating spin models both in two and three spatial dimensions. This comes, however, at
the cost of having to invoke an approximate treatment of the spin operators by decomposing them
into fermionic partons. Nonetheless, pffRG has served as a valuable tool for providing insights into
quantum phase diagrams of hitherto inaccessible Hamiltonians, such as Heisenberg models on extended
cubic [105, 110, 111, P1], diamond [107], hyperkagome [98] and pyrochlore lattices [109, P1]. The
quantitative accuracy of pffRG is, however, difficult to assess. This is because of the aforementioned
pseudofermion representation as well as the truncation of three-particle vertex, which is inherent to any
fRG approach. Both approximations are formally uncontrolled and their validity therefore needs to be
tested a posteriori. An indication for the faithfulness of the method came from its generalization to
arbitrary spin lengths S by Baez and Reuther in 2017 [85]. They were able to show, that for S → ∞,
pffRG results resemble those obtained by classical Luttinger-Tisza calculations. To establish this
result, however, further parton flavors per lattice site had to be introduced and the question to which
extent the pseudofermion representation is trustworthy thus became even more severe. Fortunately,
qualitative conclusion regarding the nature of the magnetic ground state were robust with respect
to suppressions of the unphysical states, which attested to the consistency of the method. Shortly
afterwards, these observations were corroborated by an analogous treatment of the large-N limit [70,
131]. Hence, the diagrammatic resummations performed by pffRG resemble a simultaneous 1/S and
1/N expansion, which has been the standard justification for the employed truncation ever since. Yet,
neither S nor N is typically small and as such, the challenge of evaluating the impact of higher order
corrections is still pending.
The first two of the following papers document recent progress on that front. In Ref. [P1], we study three
different Heisenberg models using multiloop pffRG. For the antiferromagnet on the pyrochlore lattice,
corresponding to the Hamiltonian with the highest degree of frustration, a paramagnetic ground state
is consistently predicted among loop orders. By a detailed inspection of susceptibility profiles at low
energies, we provide evidence that mfRG corrections boost quantum fluctuations and thus substantiate
more severe violations of the classical ice-rule. In a second step, we consider extended Heisenberg
models on the simple and face-centered cubic lattice. Taking the cubic antiferromagnet as reference,
we demonstrate that, in contrast to the pyrochlore Hamiltonian but in agreement with the results
presented in Sec. 4.5.2, loop convergence becomes difficult to achieve once an ordering transition occurs.
Principal results, such as critical scales and phase diagrams, are only moderately affected though,
which supports the validity of 1ℓ results computed hitherto. In the second publication, Ref. [P2], our
code is benchmarked against a complementary, but algorithmically distinct implementation developed
by our colleagues at LMU Munich. Remarkably, the results produced with both solvers show a large
degree of quantitative agreement, implying that pillar pffRG results are robust against numerical
heuristics, such as the choice of frequency grids and their respective adaption during the flow.
Within the third article, Ref. [P3], an extension of pseudofermion fRG for spin-valley coupled Hamilto-
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nians in the self-conjugate representation of su(4) is developed. Such models have relevance for the
study of the correlated insulating regimes in twisted bilayer graphene and related moiré materials, while
being applicable to transition-metal oxides, where they are more prominently known as Kugel-Khomski
Hamiltonians [144]. To facilitate computation, we perform a meticulous symmetry analysis to devise a
set of constraints similar to those presented in Ref. [117]. Feasibility of the so-derived parametrization
is exemplified by considering a toy model for trilayer graphene on hexagonal boron-nitride, for which we
uncover a diverse phase diagram of spin and valley ordered states in vicinity of the SU(4) point.
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Renormalization group methods are well-established tools for the (numerical) investigation of the low-energy
properties of correlated quantum many-body systems, allowing us to capture their scale-dependent nature. The
functional renormalization group (FRG) allows us to continuously evolve a microscopic model action to an effec-
tive low-energy action as a function of decreasing energy scales via an exact functional flow equation, which is
then approximated by some truncation scheme to facilitate computation. Here, we report on our implementation
of multiloop FRG, an extended truncation scheme recently developed for electronic FRG calculations, within the
pseudofermion functional renormalization group (pf-FRG) framework for interacting quantum spin systems. We
discuss in detail the conceptual intricacies of the flow equations generated by the multiloop truncation, as well as
essential refinements to the integration scheme for the resulting integrodifferential equations. To benchmark our
approach, we analyze antiferromagnetic Heisenberg models on the pyrochlore, simple cubic, and face-centered
cubic lattice, discussing the convergence of physical observables for higher-loop calculations and comparing
with existing results where available. Combined, these methodological refinements systematically improve the
pf-FRG approach to one of the numerical tools of choice when exploring frustrated quantum magnetism in higher
spatial dimensions.

DOI: 10.1103/PhysRevResearch.4.023185

I. INTRODUCTION

The intriguing physics of quantum many-body systems
often plays out on a multitude of scales. Archetypal examples
include the spread of correlations on diverging length scales
at phase transitions, the formation of coherent states of matter
such as superconductivity at low temperatures, or the emer-
gence of macroscopic entanglement in topological quantum
liquids.

Capturing such diverse physics starting from simple mi-
croscopic models is a notoriously hard problem, since the
most interesting phenomena manifest themselves solely at
low temperatures and large system sizes. To establish a
stringent connection between microscopic models and their
effective low-energy, i.e., long-range physics, one often turns
to renormalization group (RG) techniques that, by design,
treat different scales iteratively rather than simultaneously,
and thereby allow us to evolve the original high-energy model
description in an RG flow to an effective low-energy action
[1,2].
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While the RG concept was originally developed in high-
energy particle physics [3], its quick adaptation in the context
of condensed matter physics and statistical physics has not
only provided deeper understanding but also a multitude
of applications and variations of the RG scheme. After
Kadanoff’s idea of a block spin RG [4] to describe magnetic
phase transitions, it was Wilson’s numerical renormalization
group (NRG) [5,6] that led to the solution of the Kondo
problem, i.e., the accurate, nonperturbative description of
metallic conduction electrons coupled to a magnetic impu-
rity below the Kondo temperature Tk and the explanation of
the finite electrical resistivity that these systems exhibit at
ultralow temperatures [7]. The density matrix renormaliza-
tion group (DMRG) developed by White [8] to capture the
formation of entanglement in the ground states of quantum
many-body systems has basically solved the one-dimensional
interacting quantum many-body problem [9]. Its application
to two-dimensional systems [10] and its generalization to
tensor network approaches [11] is one of the most active
developments in contemporary computational physics.

When it comes to systems of interacting electrons in two
and three spatial dimensions, a particularly appealing flavor
of the RG is the functional renormalization group (FRG)
[1,12]. This approach, which will be the foundation of this
paper, is based on an infinite hierarchy of ordinary integr-
differential equations; they govern the evolution of n-particle
Green’s functions or vertices controlled by a flow param-
eter � (usually chosen as an infrared cutoff). This allows
us to systematically derive effective low-energy actions for
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interacting electron problems and is routinely employed to
elucidate the pairing mechanism in certain superconductors or
other kinds of Fermi surface instabilities [13,14]. In practice,
unless for the exactly solvable model originally studied by
Polchinski [1], the FRG necessitates approximations imposed
on the coupled integrodifferential flow equations to render
their numerical solution feasible.

First, one needs to truncate their hierarchy to a level which
covers the physics of interest but is still amenable to semian-
alytical or numerical approaches. Most often, one considers
n-point functions with n � 4 and treats higher-order contri-
butions only to a small extent. Truncations which completely
neglect these Green’s functions are especially justified when
the bare interactions are weak and corrections to the flow
are thus presumably small. As it turns out, FRG studies of
itinerant fermion models have reached a remarkable degree
of precision for determining ground-state phase diagrams of,
e.g., the Hubbard model at, and even away, from half filling
[13,15,16].

Second, there exists no unique way of implementing the
RG parameter � into the generator of the vertices. Since
the flow equations are only used in their truncated form, it
naturally introduces a dependence of the results on the choice
of regulator function. For FRG, this has often led to a certain
inherent dependence of quantitative predictions on the actual
choice of regularization.

Recently, the multiloop truncation [17,18] of the FRG flow
equations (ml-FRG) has been developed to overcome some
of these shortcomings. This is done by iteratively advancing
the flow of the two-particle vertex to arbitrary orders in the
bare interaction until convergence to the first-order parquet
equation [19,20] is reached. Thereby, one recovers an in-
dependence of the choice of regulator while simultaneously
keeping the additional numerical cost at a manageable level.
For itinerant electron systems, this approximation has been
found to improve the outcome of the FRG calculations, e.g.,
allowing for quantitative agreement with determinant quan-
tum Monte Carlo simulations of the two-dimensional Hubbard
model [21]. For intermediate interaction strengths, a high
degree of convergence in the number of loops � was found
to already be reached at � ≈ 8 [22], with the numerical effort
scaling linearly in �.

In this paper, we apply the multiloop scheme to the pseud-
ofermion FRG (pf-FRG) approach to quantum spin systems
[23–26]. Based on a decomposition of spin operators into
fermionic partons [20], this adaptation of the FRG scheme
allows us to study the physics of frustrated quantum magnets
in two [23,24,27–45] and three spatial dimensions [38,46–
57], which are commonly beyond the reach of other numerical
quantum many-body schemes.

On a technical level, our multiloop pf-FRG approach intro-
duced here is a transcription of the multiloop weak coupling
implementations mentioned above. Besides certain subtleties
that result from the bilocal parametrization of the two-particle
vertex in real space, our technical formulation of the mul-
tiloop equations is in agreement with earlier studies [17].
Furthermore, we have implemented a characterization of the
high-frequency structure of vertex functions which fully cap-
tures their asymptotic behavior [21,22,58,59] to attenuate
numerical artifacts at higher loop orders and to stabilize the
flow of all dressed couplings.

We benchmark our method by applying the ml-FRG to
Heisenberg models on various three-dimensional lattices sub-
ject to different levels of frustration. For the antiferromagnets
on the pyrochlore and cubic lattice, we distill the impact of
higher loops on the signatures of the respective ground states,
i.e., the symmetry-preserving Coloumb spin liquid phase for
the former [51] and the symmetry-broken Néel state for the
latter [47,60]. We then add a finite third-nearest neighbor cou-
pling J3 to the antiferromagnetic nearest-neighbor Heisenberg
model on the simple cubic lattice and map out the phase
diagram both in the unfrustrated regime J3/J1 > 0, as well
as for mildly frustrated J3/J1 < 0. As a last step of exemplary
numerical analysis, we study the rich phase diagram of the
J1 − J2 Heisenberg model on the face centered cubic (fcc)
lattice, featuring spin liquid candidates with subextensively
degenerate ground state manifolds (GSMs) as well as mag-
netically ordered phases [53,61–64].

The paper is structured as follows. In Sec. II, we review
the conventional formulation of pf-FRG as put forward in
Refs. [23–26,47,65]. We further proceed by highlighting the
parametrization of the high-frequency structure of the two-
particle vertex [58] and the multiloop truncation. In Sec. III,
we discuss our refinements of the numerical implementation
of the pf-FRG procedure. Finally, for Sec. IV, we present our
benchmark results for Heisenberg models on the pyrochlore,
cubic and fcc lattice. In Sec. V, we conclude that the multiloop
pf-FRG promises to rise up as one of the few numerical
approaches available today that are capable of analyzing quan-
tum magnetism in higher dimensions. We further speculate
on the next potential methodological extensions and improve-
ments of pf-FRG which can use our work as a reference
point in terms of conceptual implementation and numerical
performance.

II. METHOD

In this section, we briefly review the conventional for-
mulation of pf-FRG as put forward in earlier studies
[23,25,26,29,43,47,49,51–53,65,66], before we continue with
a discussion of the methodological extensions which are sub-
ject to this paper.

A. Conventional pf-FRG

Our starting point is a spin-1/2 Heisenberg model of SU(2)
spins,

H =
∑

i j

Ji jSiS j, (1)

on a lattice with sites i, j subject to real exchange couplings
Ji j . The spin operators are represented in terms of complex
pseudofermions f (†)

iα with α ∈ {↑,↓} [20], i.e.,

Sμ
i = 1

2

∑
α,β

f †
iασ

μ

αβ fiβ, (2)

where σ
μ

αβ for μ ∈ {x, y, z} denote Pauli matrices. While
this results in a purely quartic Hamiltonian which can di-
rectly be treated by established functional RG techniques
[13], the pseudofermion representation of the spin algebra
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FIG. 1. Diagrammatic representation of the flow Eqs. (5) and (6) in terms of bilocal vertices where conserved lattice indices are indicated
by thick black lines. The self-energy flow (a) is decomposed into a local Fock diagram and a nonlocal Hartree term which contains a summation
over the full lattice. The two-particle vertex flow (b) can be written as a sum of five terms differing either in their two-particle reducibility or,
in the case of the three diagrams reducible in the d ph channel, in their spatial structure. Slashed lines denote pairs of differentiated propagators

is a priori not isomorphic to the original spin-1/2 rep-
resentation, since the dimensions of the Hilbert spaces of
pseudofermions (d = 4) and spin operators (d = 2) differ.
However, unphysical Fock states with net zero spin can be
projected out by an additional particle number constraint∑

α f †
iα fiα = 1, which has to be fulfilled on all lattice sites

individually.
In practice, this constraint is only enforced on average

(corresponding to the T → 0 limit of the Popov-Fedotov
chemical potential [67]) by an explicit implementation of
particle-hole symmetry on the level of irreducible vertex func-
tions [25,43,65] (cf. Appendix A). Furthermore, the impact
of occupation number fluctuations can be checked for by
implementing local level repulsion terms −ASμ

i Sμ
i , which gap

out the unphysical states. Though these fluctuations are indeed
further, though not entirely, suppressed for A > 0 [68], recent
studies [25,43,49,68] suggest that physical observables ex-
tracted from the pf-FRG flows are remarkably unaffected, that
is, they only differ by an overall energy rescaling between A =
0 and finite A [25,43,49]. As the A → ∞ limit, unfortunately,
spoils the numerical stability of the pf-FRG by introducing
a new predominant energy scale [68], we, instead, consider
the more stable Ansatz A = 0 in this paper. Note that the
existence of unphysical states in the fermionic Hilbert space
can be circumvented by decomposing the spin operators into
Majorana instead of Abrikosov fermions [69], allowing us to
transcribe the zero temperature pf-FRG approach considered
here to finite temperatures within the pseudo-Majorana FRG
[69]. At low temperatures T � |J|, on which we focus in the
present paper, however, this approach suffers from unphysical
divergencies due to an overcounting of physical Hilbert space
sectors. How to cure these divergencies is a question of current
research.

Due to the absence of kinetic contributions, the free prop-
agator for the pseudofermion Hamiltonian takes the simple
form

G0(w) = (iw)−1, (3)

diagonal in real and spin space, where w is a fermionic Mat-
subara frequency. Similar to other flavors of FRG, a regulator
function ��(w) is introduced to cut off infrared divergencies
in a controlled manner: For � → ∞, the product of full
propagator and regulator vanishes, while the original system
is recovered for � → 0. Here we choose

��(w) = 1 − e−w2/�2
. (4)

The FRG equations for the n-particle vertices then correspond
to an interpolation between the simple limit where vertices
collapse to the bare interaction Ji j and the physical limit of
vanishing cutoff. Although these equations are in principle
exact, the full hierarchy of integrodifferential equations is
not closed, rendering approximations necessary in attempts to
seek its solution.

Previous implementations of pf-FRG [23,25,26,43,47,66]
have made extensive use of the Katanin scheme, which trun-
cates the FRG equations after the two-particle vertex while
simultaneously approximating contributions from the three-
particle vertex by a self-energy feedback in the two-particle
vertex flow. After truncation, the flows for the self-energy ��

and the two-particle vertex 	� (see Fig. 1) read

d

d�
��(1) = − 1

2π

∑
2

	�(1, 2; 1, 2)S�(2)

≡ −[	� ◦ S�]� (5)
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d

d�
	�(1′, 2′; 1, 2)

= 1

2π

∑
3,4

[	�(3, 4; 1, 2)	�(1′, 2′; 3, 4)

− 	�(1′, 4; 1, 3)	�(3, 2′; 4, 2) − (3 ↔ 4)

+ 	�(2′, 4; 1, 3)	�(3, 1′; 4, 2) + (3 ↔ 4)]

× G�(3)S�(4), (6)

where the compound indices comprise a lattice and a spin
index as well as a Matsubara frequency e.g., 1 = (i1, α1,w1).
Conjugate Grassmann fields are discriminated by primes at-
tached to the respective index, where 1′ indicates an outgoing
and 1 an incoming fermionic parton. Furthermore, S� ≡
− d

d�
G�|��=const. is the single-scale propagator. Note that due

to local U(1) and global SU(2) symmetry of the Hamiltonian
in Eq. (1) the self-energy as well as the dressed propagators
are diagonal in real and spin space. The Katanin truncation
now amounts to the replacement

S� → − d

d�
G� (7)

in the 	� flow. In this form, the pf-FRG equations become
equivalent to mean-field gap equations in the limit of large
spin length S, where they collapse to a mere resummation of
RPA diagrams, as well as a large dimension of the spin algebra
N [25,66], where only crossed particle-hole diagrams remain.

Transitions into phases with broken symmetries become
visible in pf-FRG by an instability (indicated by a kink, cusp,
or divergence) in the flowing spin-spin correlation

χ�
i j (iw = 0) =

∫ β

0
dτ

〈
Tτ Sμ

i (τ )Sμ
j (0)

〉�
, (8)

where the renormalization has to be stopped to still extract
sensible results. Here, Tτ is the imaginary time ordering op-
erator and μ ∈ {x, y, z} can be chosen arbitrarily due to spin
rotation invariance of Eq. (1). For long-range ordered states,
the momentum k for which the susceptibility (i.e. the Fourier
transform of χi j) is most dominant characterizes the respec-
tive type of order. The absence of a flow breakdown is, on the
other hand, associated with putative spin liquid phases.

B. Asymptotic frequency parametrization

For the T = 0 implementation of pf-FRG, the spectrum
of Matsubara frequencies becomes continuous and vertices
need to be discretized on a finite number of frequency mesh
points to compute a numerical RG flow. Moreover, a crucial
ingredient for the solution of the truncated set of equations is
the integration of products of Green’s functions in frequency
space during the evaluation of the inner sums in Eq. (6).
Hence, numerical computations with limited resolution need
to capture all relevant features of the vertices to obtain robust
results. We employ an established parametrization scheme,
which sorts all diagrams that may become finite during the
flow into one of four classes and thereby tracks the high-
frequency structure of the two-particle vertex in an efficient
manner [58]. We start by grouping the contributions in Eq. (6)

into three channels, which differ in their two-particle re-
ducibility, i.e., the way in which external legs are assigned
to vertices after cutting the two propagators in the respective
diagrams. In this sense, the first term is particle-particle (pp)
reducible, the second one direct particle-hole (dph) reducible,
and the last one crossed particle-hole (cph) reducible. Equa-
tion (6) with the Katanin substitution Eq. (7) can therefore be
compactly stated as

d

d�
	� = ġ�

pp + ġ�
dph + ġ�

cph (9)

ġ�
c ≡ [	� ◦ ∂�(G� × G�) ◦ 	�]c, (10)

where the precise definitions of the channels are given in
Appendix B. As a consequence of imaginary time translation
invariance and therefore Matsubara frequency conservation,
each term can be associated with a specific bosonic frequency,
corresponding to the energy transferred through the internal
loop: pp with s = w1′ + w2′ , dph with t = w1′ − w1, and
cph with u = w1′ − w2. If the frequency dependence of the
channels is projected onto the respective transfer frequency,
two independent fermionic frequency arguments remain to
be determined, with our choice displayed in Fig. 2. This
specific parametrization simplifies the internal symmetries
of the channels under frequency inversions and exchange of
fermionic frequencies (cf. Appendix D).

The diagrams contributing to each channel are classified
according to the number of external arguments, which enter
the internal summations [58], i.e.,

ġ�
c (wc, vc, v

′
c) = K�

1c(wc) + K�
2c(wc, vc)

+ K̄�
2c(wc, v

′
c) + K�

3c(wc, vc, v
′
c) (11)

for c ∈ {pp, dph, cph}. Note that we have only stated the fre-
quency dependence explicitly while suppressing site and spin
indices. Each kernel captures a certain asymptotic limit of the
channels, since they decay to zero if one of their respective ar-
guments is taken to infinity [58]. This can be seen by recalling
that the full propagator effectively scales as 1/(iw) for large
Matsubara frequencies. In this regard, one gains, in principle,
explicit access to the asymptotic behavior of all contributions,
allowing us to model different diagrams more effectively in
numerical calculations, where only a finite number of frequen-
cies can be used. For computational purposes, however, it is
far more advantageous to define new kernels,

Q�
1c(wc) ≡ lim |vc|, |v′

c| → ∞ġ�
c (wc, vc, v

′
c),

Q�
2c(wc, vc) ≡ lim |v′

c| → ∞ġ�
c (wc, vc, v

′
c),

Q̄�
2c(wc, v

′
c) ≡ lim |vc| → ∞ġ�

c (wc, vc, v
′
c),

Q�
3c(wc, vc, v

′
c) ≡ ġ�

c (wc, vc, v
′
c), (12)

where the limits are either performed numerically, by setting
the respective frequency to a large value or by scanning the
boundaries of Q3c after evaluating the right-hand side of the
flow equations. In the latter case, the asymptotic classes,
though they can individually be extracted in each stage of
the flow, only serve as efficient numerical buffers for con-
stant extrapolations beyond the domain where Q3c has been
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FIG. 2. Symmetrized frequency parametrization of the two-particle vertex channels. Shifting all arguments by half a transfer frequency
allows for a more convenient implementation of symmetries on the level of vertex functions (see Appendix D for more details).

discretized. The new functions are related to the old kernels
by

Q�
1c(wc) = K�

1c(wc),

Q�
2c(wc, vc) = K�

1c(wc) + K�
2c(wc, vc),

Q̄�
2c(wc, v

′
c) = K�

1c(wc) + K̄�
2c(wc, v

′
c),

Q�
3c(wc, vc, v

′
c) = K�

1c(wc) + K�
2c(wc, vc)

+ K̄�
2c(wc, v

′
c) + K�

3c(wc, vc, v
′
c). (13)

Keeping only these sums, one significantly reduces the num-
ber of memory accesses in a numerical implementation of the
method, since for a given set of frequency arguments, only one
function Q� needs to be accessed instead of multiple kernels
K�. Another advantage of this definition is that the additional
cost of extracting the asymptotic functions after computing
limits of the flow [58] is avoided.

C. Multiloop extension

In the context of FRG for itinerant fermions [21,22,59], it
has been shown that an extended truncation, dubbed the multi-
loop scheme, leads to a substantial improvement of functional
RG calculations by (1) restoring independence of the choice
of regulator function for � → 0 [17,18] and (2) generation
of all two-particle reducible (parquet) diagrams, which can
be computed at a manageable numerical cost. This multiloop
FRG (ml-FRG) scheme is based on the parquet equations.
i.e., the Schwinger-Dyson equation (SDE) connecting the
self-energy to the two-particle vertex and the Bethe-Salpeter
equations (BSEs) for the two-particle reducible channels,
which compactly written read

� = [(	0 + [	0 ◦ (G × G) ◦ 	]pp) ◦ G]�, (14)

gc = [(
	 − gc

) ◦ (G × G) ◦ 	
]

c. (15)

Note that we have already applied the well-known parquet
approximation (PA), substituting the fully irreducible ver-
tex with the bare vertex 	0. To construct from the parquet
equations (in the PA) the ml-FRG flow, one regularizes the
propagators as in Eq. (4). In consequence the SDE and BSEs
become scale dependent and can be put into differential form
by taking derivatives with respect to � on both sides of the

equation. The multiloop flow in a channel gc can then be
computed via an iterative scheme which reads [17,18]

ġc =
∑
��1

ġ(�)
c , (16)

ġ(1)
c = [	 ◦ ∂�(G × G) ◦ 	]c, (17)

ġ(2)
c = [

ġ(1)
c̄ ◦ (G × G) ◦ 	

]
c + [

	 ◦ (G × G) ◦ ġ(1)
c̄

]
c

≡ ġ(2),L
c + ġ(2),R

c , (18)

ġ(��3)
c = ġ(�),L

c + [
ġ(�−1),R

c ◦ (G × G) ◦ 	
]

c + ġ(�),R
c , (19)

= ġ(�),L
c + [

	 ◦ (G × G) ◦ ġ(�−1),L
c

]
c + ġ(�),R

c , (20)

≡ ġ(�),L
c + ġ(�),C

c + ġ(�),R
c , (21)

where we have defined the left, right, and central part of the
� loop contribution. The flow equation for the self-energy
Eq. (5) is in principle exact, at least given an exact two-particle
vertex 	�. One computes, however, an approximate RG flow
for the latter, such that additional corrections become neces-
sary [18,21,59]. The ml-FRG flow for the self-energy then
reads

�̇ = �̇0 + �̇1 + �̇2, (22)

�̇0 = −[	 ◦ S]�, (23)

�̇1 =
[∑

��3

(
ġ(�),C

pp + ġ(�),C
cph

) ◦ G

]
�

, (24)

�̇2 = [	 ◦ (G × �̇1 × G)]�. (25)

Since the flow of the vertex requires the self-energy derivative,
which itself builds on the central parts of the particle-particle
and crossed particle-hole channels, one usually computes the
vertex corrections using only the standard expression �̇ = �̇0

and accounts for self-energy corrections �̇1, �̇2 afterward.
The revised value for �̇ can in turn be used to recompute the
vertex corrections until convergence is reached. In this paper,
however, these numerically expensive self-energy loops are
not considered, as the self-energy corrections already turn out
to be small during the flow.

For systems of itinerant fermions, it is widely known [13]
that truncation of the two-particle vertex flow equation bears
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a resemblance to considering perturbative contributions up
to some order in the bare interaction. Indeed, for a weakly
coupled system, the inclusion of higher loops is therefore
expected to improve upon the one-loop results in a system-
atic manner [17,18,21,59]. For inherently strongly coupled
systems, such as the spin systems in the pseudofermion
representation considered here, however, the question arises
whether loop convergence can be achieved at all and, if so,
how the loop expansion has to be interpreted.

To discuss the latter aspect further, we focus on the large-S
(similar arguments can be made for large-N [26]) generaliza-
tion of pf-FRG as put forward in Ref. [25]. It turns out that
the leading O(1) contribution to the two-particle vertex flow
consists of a single diagram, namely, the nonlocal RPA loop in
the direct particle-hole (dph) channel (see Fig. 1), whereas all
other diagrams are O(1/S). From Eqs. (16)–(21), it then be-
comes clear which diagrams are added to the pf-FRG flow at
higher loop orders. Two-loop contributions augment the series
of O(1/S) diagrams by inserting contributions of O(1) into
subleading one-loop diagrams, while further contributions of
O(1/S2) are generated by merging two O(1/S) terms, such
as the particle-particle (pp) and crossed particle-hole (cph)
ladder. The � = 3 terms then complete the possible O(1/S)
contributions and simultaneously new O(1/S3) diagrams are
generated. Every other odd loop order � then finalizes the set
of O(1/S(�−1)/2) diagrams of the previous loops, while adding
some new O(1/S�) diagrams.

This line of argument has three important consequences: (i)
For S → ∞, all higher loop contributions vanish, leaving, as
expected, the already exact one-loop results unchanged [25].
(ii) For any finite S < ∞, multiloop corrections may, in the
above sense, loosely be regarded as a 1/S series expansion,
with, for example, � = 1 corresponding to a level-1 truncation
of that series, that is, it generates the full set of leading-order
diagrams and it consistently includes subleading corrections
via the Katanin truncation (such that the exact results are
recovered considering the S(N ) → ∞ limit [25,26]). (iii) The
latter fact, however, renders the physical conclusiveness of
a nonconverged � > 1 multiloop result in pf-FRG somewhat
unclear. This is because, in contrast to itinerant FRG, where
every loop by itself is controlled, higher loops in pf-FRG,
where a small parameter is absent (usually 1/S = 2 and
1/N = 1/2), only partially include subleading 1/S and 1/N
corrections, leading to an inconsistency in the respective or-
ders of expansion.

Hence, only the two limits � = 1, contributing the essen-
tial leading order contributions for magnetic and spin liquid
phases, and � → �c < ∞, where the multiloop expansion in
pf-FRG has (up to this point hypothetically) converged to a
self-consistent solution of the parquet equations should be
regarded as physically relevant.

III. NUMERICAL IMPLEMENTATION

To treat the closed set of integrodifferential equations form-
ing the truncated pf-FRG equations, we have to introduce a
few more approximations to both the infinite real space lat-
tice and the continuous Matsubara frequencies to make them
numerically tractable.

A. Finite lattice graphs

The parton decomposed spin operators Eq. (2) are invariant
under local U(1) transformations f (†)

iα → e±iφ f (†)
iα , implying

conservation of the number of spinons per lattice site. The
site dependence of the two-particle vertex can therefore be
efficiently reduced by the bilocal parametrization [65]

	�(1′, 2′; 1, 2) = 	�=
i1i2 (1′, 2′; 1, 2)δi1′ i1δi2′ i2

+ 	�×
i1i2

(1′, 2′; 1, 2)δi1′ i2δi2′ i1 , (26)

where vertices with crossed fermion lines 	�×
i1i2

can be re-
placed by vertices with parallel fermion lines 	�=

i1i2 (or
vice versa) by making use of the crossing symmetry
	�(1′, 2′; 1, 2) = −	�(2′, 1′; 1, 2). We therefore focus only
on vertices with parallel lines in the following and drop the
additional superscript “=” for brevity [Fig. 1]. In addition,
by treating all sites as symmetry equivalent, the site depen-
dence of the self-energy can be entirely discarded, while
lattice symmetries can be employed to obtain an effective
dependence on a single site i∗1 for the two-particle vertex, i.e.,
	�

i1i2 → 	�
i∗1 i0

. Here i0 is a fixed reference site, taken to be
invariant under point-group symmetries, and i∗1 is the image
of i1 for i2 mapped to i0. Given a unit cell of the lattice,
our code automatically performs this symmetry reduction by
explicitly computing transformations, which leave the lattice
invariant. Finally, vertices are truncated if the bond distance
d (i∗1, i0) exceeds a threshold L, which amounts to artificially
introducing a maximal correlation length. In this paper, we
choose L = 6 to keep the numerical effort for the multiloop
truncation in conjunction with the three-dimensional lattices
of interest at a manageable level.

B. Matsubara frequency discretization and integration

The pf-FRG flow equations have been derived in the T = 0
limit, where Matsubara frequencies become continuous and
internal summations are promoted to integrals. To solve the
flow equations numerically, one therefore has to make an
appropriate choice both for the integration algorithm as well
as the discretization of the vertices on a finite grid. To this end,
one should carefully consider the interplay between the choice
of regulator function, the propagators, and the vertices. In
Fig. 3, we have schematically plotted the product P�

0 (w, v) =
−[G�

0 (w)G�
0 (v)] as it typically (up to self-energy corrections)

appears for evaluations of the right-hand side of the multiloop
flow. By integrating this function, one initially generates the
frequency dependence of the vertices, and respecting its fea-
tures is therefore crucial to obtain precise results.

The integration domain can roughly be split into three
regions, two algebraically decaying tails that enclose a vivid
structure residing symmetrically around v = 0. The position
of the peaks is directly related to the transfer frequency of the
respective channel wc as well as the RG scale � necessitating
a dynamical adjustment of integration breakpoints during the
flow. Note that, although the outer domains formally require
an integration up to infinity, one can in practice cut off the
integral at a finite upper bound, where additional contributions
to the integral become negligible.
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FIG. 3. Schematic plot of P�
0 . The numerical integration of this

function can be separated into three domains, each featuring either
a multiply peaked structure, where high resolution is required, or
a simple 1/v2 decay. While successively lowering the value of the
flow parameter, the peaks shift closer to wc/2, making it necessary to
dynamically adjust the breakpoints used for the integration to obtain
precise results. See main text for further details on the quadrature
rule utilized during the RG flow.

To cope with these characteristics, we utilize an adaptive
quadrature rule, tailored toward the functions at hand. The
integration domains are first split into linearly (for the inner
domain) or logarithmically (for the outer domains) distributed
intervals, where the interval’s width is the smallest close to the
peaks of P�

0 for the logarithmic part. In each of those subdo-
mains, we then apply an adaptive trapezoidal rule ameliorated
by a Richardson extrapolation for the final result, where the
number of function evaluations is increased until we meet an
absolute error tolerance of 10−10 or a relative error tolerance
of 10−3.

The vertices are discretized on non-negative frequency
meshes composed of a linear part starting at w = 0 with
spacing h and a logarithmic part from Nh to some large upper
bound, where N = 0.4Ntot is the number of linearly spaced
frequencies. Negative frequencies are not used explicitly as
they can always be mapped onto their positive counterpart by
the symmetries outlined in Appendix D. In total, we monitor
seven independent meshes throughout the flow: one for the
self-energy (N� = 200) and two for every channel, thereby
one for the the transfer frequency axis (N� = 40) and one for
the fermionic frequency axis (Nν = 30). Decoupling the fre-
quency meshes for the different two-particle channels turned
out to be crucial to stabilize our code for small values of the
flow parameter because competing ground states, paramag-
netic ones for the s/u channel, and magnetic ones for the t
channel, could be resolved in an unbiased way.

Finally, the evaluation of the right-hand side of the flow
equations requires knowledge of the vertices for frequencies,
which do not necessarily align with the points in the chosen
frequency mesh. To address this issue, we perform multilinear
interpolations in between grid points for all (at most three)
arguments of the different diagram classes, which in the worst
case require eight kernel values to be taken into account.

C. Differential equation solver

To initialize the RG flow in the ml-FRG framework there
are, in principle, two ways. As commonly done in FRG calcu-
lations, one can set the initial scale �i to a value much larger

than the spin coupling |J| ≡
√∑

i J2
i (where Ji are the cou-

plings with a finite value in the Hamiltonian) to approximate
the � → ∞ limit where only bare vertices remain. On the
other hand, since the ml-FRG converges to the regularized
PA by construction, one could also initialize the flow at a
somewhat smaller value �i/|J| with a solution of the SDE
and the BSEs [68]. Here, we chose the latter, as it allows us to
remedy small numerical artifacts, primarily in the self-energy,
that appear when the conventional option is selected.

Starting from an initial scale �i/|J| = 5, we therefore
first solve the parquet equations by simple fixed point iter-
ations with a damping factor β (where β = 1 corresponds
to a full update). The self-energy and two-particle channels
are declared to have converged sufficiently once the max-
imumabsolute/relative deviation between two iterations is
smaller than 10−10/10−5. In practice, we found quick conver-
gence as long as �/|J| > 1, where no damping was needed
to reach the fixed point, while slowing down rapidly when
�/|J| � 1. In the latter case, smaller and smaller values of β

were required and directly solving the parquet equations soon
became unfeasible, in agreement with Ref. [68].

The ml-FRG flow equations are integrated using the
Bogacki-Shampine method [70] with adaptive step-size con-
trol. This causes the flow to first progress rapidly, while
slowing down when instabilities, signaling spontaneous sym-
metry breaking, emerge at smaller energy scales. A third order
solver, although it requires multiple (costly) evaluations of the
right-hand side of the flow equations, in our opinion resembles
a good compromise between reliability and numerical effi-
ciency. We have set an absolute error tolerance of 10−10 and a
relative error tolerance of 10−3 for one step of the solver, with
a minimum step size of hmin = 10−4|J| and maximum size
hmax = 0.1�, where � is the current cutoff value in units of
|J|. To prevent the step size h increasing too rapidly whenever
we meet the desired tolerances (and potential features in the
flow are therefore overlooked), we limit its growth to at most
10% with respect to the old value. The RG flow is continued
down to a minimal value � f /|J| = 0.05 if the following san-
ity checks are fulfilled:

(1) The absolute maximum of the vertex is smaller than
50|J|.

(2) The correlations do not show nonmonotonicities like
peaks or cusps.

(3) The relative integration error of the ODE solver does
not exceed the error tolerance by more than an order of mag-
nitude.

The first and second criterium ensure that the solver is
terminated whenever the flow breaks down at some large value
of �/|J| and the step size of the Bogacki-Shampine method
therefore diminishes to hmin, resulting in a critical loss of per-
formance. The last check secures that the adaptive step-size
control of our ODE solver is still reliable and that h is properly
reduced in critical regions of the flow to keep the errors inside
the desired bounds. We found the latter test to be occasionally
violated when either χ� diverges or sufficient convergence
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in loops cannot be achieved beyond a symmetry-breaking
phase transition. That the flow in these cases becomes unstable
is, however, an expected result and the ODE solver is only
stopped to prevent excessive run times.

Furthermore, we found that to obtain stable results also
at small �/|J|, resolving all relevant features of the ver-
tices at different stages of the flow is of special importance.
Therefore, we have developed a simple scanning routine (cf.
Appendix E 3) which analyzes the vertices and subsequently
proposes a new linear step width for the different frequency
meshes after each Runge-Kutta step. The vertices are then
transferred to the updated meshes via multilinear interpola-
tions.

D. Algorithmic complexity

The asymptotic scaling of computation times with the dif-
ferent numerical parameters can be read off directly from the
flow equations and is given by

O
(
N2

L × NI N�N2
ν × �

)
,

where NL ∼ Ld is the number of symmetry-reduced lattice
sites for a lattice of dimension d , NI the initial number of
linearly/logarithmically spaced intervals for the adaptive fre-
quency integration, N� the number of mesh points for the
transfer frequency axis of the channels, Nν the respective
number of points on the fermionic axes and � the number of
loops.

Let us examine in more detail how this scaling is obtained.
To do so, we can focus on the computation of the two-particle
vertex, as the effort of computing the self-energy derivative,
the latter being a function of one frequency argument only,
is negligible. After exploiting lattice symmetries and time
translation invariance, each channel is parametrized by one
site index, one transfer, and two fermionic frequencies. To
compute the derivative for each of these components, one
needs to evaluate the respective right-hand side of the flow
equations, which comprise a single frequency integration over
at least NI frequency points and, in the case of the dph channel,
another summation over the full lattice. Although, for large �,
the number of terms to compute within each loop stays con-
stant, and as such the numerical effort asymptotically scales
as O(�), there is a computational overhead going from � = 1
to � = 3. The two-loop contribution consists of two terms,
a left and right part, which both are as costly to evaluate as
the one-loop terms. Furthermore, for � � 3, the central part
additionally comes on top.

E. Code performance

Given the computational complexity outlined in the pre-
vious section, the question arises how the ml-FRG flow
equations can be efficiently integrated down to small values of
the infrared cutoff �/|J|, as their number Neq rapidly grows
for larger system sizes and increased frequency resolution (in
this paper, for example Neq ≈ 107). Efficient code is therefore
crucial to obtain results with modest computational resources
and feasible run times.

Our code is written in the Julia programming language and
so far utilizes two levels of parallelization [71]: vectorization

utilizing on-core SIMD units and the invocation of multiple
cores per CPU via Julia’s native multithreading support.

To accelerate the evaluation of the integrands on the
right-hand side of the flow equations, we buffer all spatial con-
tributions for a given tuple of outer frequencies (wc, vc, v

′
c) in

an array which is subsequently passed to the adaptive quadra-
ture routine. This not only allows us to recycle interpolation
parameters for different lattice sites but also makes it possible
to vectorize the actual read-out process for the vertices.

Since different frequency components of the vertex can
be computed independently, parallelizing the pf-FRG flow
over several cores is in principle straightforward. The largest
pitfall in distributing the calculations over multiple threads
comes, however, from the adaptiveness of the quadrature rou-
tine. This is because every frequency component (wc, vc, v

′
c)

may require a different number of integrand evaluations (and
therefore computing time) before the trapezoidal rule con-
verges in each domain. In consequence, the workload is highly
asymmetric and load balancing becomes vital for boosting
code performance to its full extent. The Julia language offers
dynamic thread scheduling out of the box and is therefore
well-suited for this problem.

Another possible level of parallelization that could in prin-
ciple be exploited is the distribution of calculations across
multiple computing nodes (for example via MPI). We found,
however, that computing times are still tolerable when only
a single node is used. For example, a � = 4 flow for the
pyrochlore lattice with ∼460 sites was obtained in ∼10 hours
with 48 threads on two Intel Xeon Platinum 8168 CPUs.
Therefore, distributed memory parallelization is currently not
implemented in our code.

IV. BENCHMARK CALCULATIONS

In this section, we present benchmark calculations of our
multiloop pf-FRG machinery for a number of (frustrated)
quantum spin models—the Heisenberg antiferromagnet on the
pyrochlore lattice, a J1 − J3 Heisenberg model on the simple
cubic (sc) lattice, and a J1 − J2 model on the fcc lattice, with
respective Hamiltonians

Hpyro = J1

∑
〈i j〉

Si · S j, (27)

Hsc = J1

∑
〈i j〉

Si · S j + J3

∑
〈〈〈i j〉〉〉

Si · S j, (28)

Hfcc = J1

∑
〈i j〉

Si · S j + J2

∑
〈〈i j〉〉

Si · S j, (29)

where the nearest-neighbor coupling J1 > 0 is always anti-
ferromagnetic. Here Jn denotes the spin coupling to the nth
nearest neighbor determined by spatial distance. We start
by considering two limiting examples, the nearest-neighbor
antiferromagnets on the pyrochlore and cubic lattices, re-
spectively. While the former hosts an extensively degenerate
(classical) GSM at T = 0 and in its quantum version is con-
sidered a candidate model for a quantum spin liquid ground
state, the latter is free from geometric frustration and features
a symmetry-broken ground state at low temperatures [60],
even in the presence of a third-nearest neighbor coupling
J3. As a final benchmark, we consider the phase diagram of
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FIG. 4. Results for the S = 1/2 nearest-neighbor Heisenberg antiferromagnet on the pyrochlore lattice indicating a potential quantum spin
liquid ground state. (a) Susceptibility flows depicted at the momentum with the largest amplitude. Increasing the loop order from � = 1 to
� = 4 leads to rapid convergence (as demonstrated in the inset) and a substantial reduction of χ�(k). (b) Multiloop self-energies obtained at
two different stages of the flow. The inset shows that two-loop corrections already become relevant at relatively large scales � ∼ |J|, with
excellent convergence for � > 2. At small cutoffs, deviations between one and higher loops become more pronounced with respect to position
and height of the quasiparticle peak. Though the self-energies seem well converged in loops for most frequencies, small differences around
the peak are visible, indicating that loop convergence for small �/|J| on the level of vertices is more difficult to reach than for the spin-spin
correlations, in agreement with Ref. [68].

the J1 − J2 model on the fcc lattice, which in its classical
limit is interesting for its appearance of degenerate GSMs of
codimensions 2 (lines) and 1 (surfaces) at T = 0 [61,62], thus
providing a promising playground to realize a competition be-
tween magnetically ordered and quantum spin liquid ground
states.

From a technical point of view, these benchmark calcu-
lations show how the multiloop framework can capture the
sometimes delicate balance between quantum fluctuations and
ordering tendencies. Our case studies provide examples where
either one of the two tendencies is strengthened when going
to higher loop orders in our pf-FRG calculations.

A. Heisenberg model on the pyrochlore lattice

The S = 1/2 nearest-neighbor Heisenberg antiferromagnet
on nonbipartite lattices, such as the kagome or pyrochlore
lattices of corner-sharing triangles or tetrahedra, remains an
unresolved problem in frustrated quantum magnetism. For the
pyrochlore antiferromagnet, there are strong indications for
a quantum paramagnetic ground state [51,73–77]; however,
deciphering its nature has proven to be notoriously difficult
[78–85]. Recently, there is mounting evidence in favor of a
ground state which breaks only point-group symmetries while
the nature of the symmetry-broken ground state remains under
debate [78–80]. Indeed, while a DMRG calculation [78] has
provided indications for inversion symmetry breaking, un-
constrained many-variable variational Monte Carlo [79] and
pf-FRG [80] calculations support a scenario where both inver-
sion and C3 symmetries are broken in the ground state [86].
Nonetheless, the competition of the recently proposed sym-
metric and chiral U(1) andZ2 quantum spin liquids [83,87,88]
with the symmetry broken states of Refs. [78–80] remains
to be investigated. In a recent � = 1 pf-FRG calculation, it
was shown that the RG flow of the susceptibility does not
develop a divergence at finite � for any wave vector in the
extended Brillouin zone, indicating quantum paramagnetic
behavior [51]. Here we show that this finding is remarkably

robust up to � = 4, where our results have sufficiently con-
verged (see Fig. 4), providing compelling evidence in favor of
a quantum paramagnetic ground state. This low-temperature
phase is characterized by the presence of a bowtie pattern
in the susceptibility profile of the [hhl], i.e., kx = ky plane
[72], with the points at the center of the bowties (called
pinch points) being host to sharp features (singularities) in
the case of the corresponding classical model at T = 0 [89].
These pinch points are reflective of dipolar spin correlations
[90,91] which are hallmark of a cooperative paramagnetic
state—a Coulomb phase [92], and have been argued to arise
from the zero total spin moment rule (called ice-rule) on
every tetrahedron [72,93,94]. In contrast, for a quantum model
it is impossible to have a vanishing magnetization on ev-
ery tetrahedron because the Hamiltonian does not commute
with the total spin operator of any given tetrahedron. Hence,
quantum fluctuations lead to violations of the ice rule, with
the pinch points losing their sharpness and their singularity
rounded off. Consequently, the pinch points [the (0, 0,±4π )
(and symmetry related) points in Fig. 5(a)] smear out, ac-
quiring a finite width [51,73,75,77,82,95–97], which serves
as a measure of the degree of violation of the ice rule, i.e.,
the net magnetization acquired by the tetrahedra. To get a
quantitative picture concerning the impact of diagrammatic
contributions at higher loop orders, we plot the susceptibil-
ity along the h = 0 momentum cut [the vertical solid white
line in Fig. 5(a)] for different loop orders in [Fig. 5(c)].
One observes that the width of the pinch point, as quanti-
fied by the full width at half maximum (σ ) increases with
� and finally converges at � = 4 to σ = 1.328π compared
to σ = 1.2π at � = 1 (see Refs. [51,77,82] for compari-
son of σ with other methods). This finding suggests that in
the pyrochlore Heisenberg antiferromagnet quantum fluctua-
tions get amplified with increasing loop order. In Fig. 5(d),
we show the evolution of σ with � (effective temperature)
[47] and find that it remarkably obeys (to a good accuracy)
the same

√
� scaling at small � expected of a classical

model [72].
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FIG. 5. Analysis of pinch points in the momentum-resolved susceptibility profile of the nearest-neighbor Heisenberg antiferromagnet on
the pyrochlore lattice at � = 0.05|J|. (a) Susceptibility in the [hhl] plane for � = 4. (b) Cut through momentum space along the [hh4π ]
direction as indicated by the dashed horizontal line in (a). (c) Cut through momentum space along the [00l] direction as indicated by the solid
vertical line in (a) with the respective full width at half maximum σ . The latter increases upon the inclusion of higher loops, in contrast to the
classical result, where one expects that the peaks become singular. (d) Flow of σ for different loop orders. The inset shows σ (for � = 4) at
small values of �/|J|, which to good accuracy obeys a

√
� behavior, a result hitherto expected only for the classical model [72]. However, for

large cutoffs σ rather scales linear in �.

The variation of the intensity along a horizontal cut through
the pinch point [dashed horizontal line in Fig. 5(a)] is shown in
Fig. 5(b). It is interesting to note that the maxima of the static
susceptibility in the [hhl] plane is not located at the pinch
points [(0, 0,±4π )] but rather in the two symmetrical lobes
of the bowties in agreement with Ref. [73]. This should be
compared with the findings from a recent finite-temperature
matrix product state study [78,82] on clusters up to 128 sites
(with fully periodic boundary conditions) which located the
maxima of the equal-time structure factor S(q) at the pinch
points. Given the fact that all but two of the cluster geome-
tries considered in this paper do not preserve the full cubic
pyrochlore symmetry, it is difficult to reliably establish the
behavior of S(q) in the thermodynamic limit. A rotation-
invariant Green’s function method (RGM) [77] (computing
S(q)) and bold-diagrammatic Monte Carlo simulations (com-
puting static susceptibility) [75] find the intensity distribution
to be essentially constant across the length of the bowtie.
This variance in the findings between the three methods calls
for further investigations since these different patterns of in-
tensity distributions likely correspond to different quantum
spin liquid mean-field ansätze [83]. Hence, for an accurate
identification of the nature of the quantum spin liquid ground
state [83,87,88] of the S = 1/2 Heisenberg antiferromagnet
on the pyrochlore lattice, which still remains at large, it will

be important to unambiguously resolve the behavior of S(q)
and the static susceptibility in the thermodynamic limit from
other numerical approaches.

From a purely methodological perspective, we have
demonstrated that loop convergence toward a symmetric
ground state for the pyrochlore antiferromagnet can be ob-
tained even at small values of the cutoff (percent level relative
to the bare coupling) and already with a modest number of
loops (� ≈ 4). We would also like to mention that our ml-
FRG framework and its implementation have the versatility
to probe for different symmetry-breaking patterns by intro-
ducing a bias in the initialization of the two-particle vertex
functions, and studying the evolution of the corresponding
response functions under RG flow. In particular, it would be
important to investigate the loop converge toward the different
patterns of symmetry breaking recently studied at the � = 1
level in Ref. [80]. Such a ml-FRG analysis, which we defer
to a future work, could possibly inform whether the inversion
symmetry alone is broken or in combination with C3 as these
two gave similar responses at � = 1 level.

B. J1 − J3 Heisenberg model on the cubic lattice

We now turn our attention to a similar Heisenberg-
type Hamiltonian, but for a lattice geometry devoid of any
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FIG. 6. Results for the S = 1/2 nearest-neighbor Heisenberg antiferromagnet on the simple cubic lattice. (a) Susceptibility flows at the
dominant momentum k = (π, π, π ). With increasing loop order, the � = 1 divergence is rounded off to a gentle shoulder in the � > 1
flows. However, beyond �/|J| ≈ 0.85 (marked by the vertical turquoise line in the inset, where the deviation between the � = 5 and � = 6
flows exceeds 5% ), the multiloop flows cannot be properly converged, indicating a breakdown of ml-FRG and therefore a phase transition.
(b) Normalized real-space correlations in the z = 0 plane for a L = 4 patch of the full lattice obtained from � = 1 calculations right before the
divergence. Here, purple (yellow) dots denote positive (negative) values of χi0 j where the reference site i0 is marked by a grey circle. (c) Same
as (b) but for � = 6 at the point where loop convergence breaks down.

geometric frustration—the simple cubic lattice, which we,
however, augment by a third-nearest-neighbor interaction J3.
This model system exhibits a magnetically ordered ground
state for all couplings, with a transition from staggered Neél
to collinear magnetic order for ferromagnetic J3 < −0.3 J1.
Indeed, quantum Monte Carlo simulations [47,60] have con-
firmed that the model orders at relatively large temperatures
Tc/|J| ∼ 1, a result which could already be reproduced by
previous one-loop pf-FRG calculations [47]. For J3 < 0, how-
ever, exchange frustration sets in and QMC approaches are
not applicable due to the negative sign problem, though the
classical ground states (at T = 0) are nondegenerate and the
magnetic order simply changes from staggered to collinear at
J3/J1 = −0.25. Here, we probe the effect of quantum fluctu-
ations on the phase transition in the frustrated regime.

To start our analysis, we consider the limit J3 = 0 and study
the impact of higher loops on the formation of magnetic order
for the cubic antiferromagnet [see Fig. 6(a)]. On the one-loop
level, the susceptibility flow diverges at �c/|J| ≈ 0.86, where
the real-space correlations are in line with an antiferromag-
netic ground state [Fig. 6(b)], consistent with Refs. [47,60].
When higher loop orders are included, the one-loop diver-
gence is diminished and only a soft shoulder appears in the
� > 1 flows, though in close vicinity to the former. In addition,
we were not able to properly converge the multiloop flows
beyond �c/|J| ≈ 0.85 [see the inset in Fig. 6(a)] with the er-
rors produced by our Runge-Kutta method growing relatively
large such that the step size of the ODE solver was drastically
reduced.

Considering the rapid convergence at higher loops for the
pyrochlore model even at an order of magnitude smaller
values of the cutoff, we can exclude that the nonsystematic
behavior we observe beyond �/|J| ≈ 0.85 in the present case
is due to the numerical stability of our implementation. From
this, and our analytical argument in Sec. II C, we therefore
conclude that once magnetic order sets in, loop convergence
apparently gets spoiled due to large couplings in the magnetic
(dph) channel, causing the 1/S (1/N) expansion presented
by multiloop pf-FRG to break down at this point. In other
words, a pf-FRG flow which lacks a bosonic field to describe
order parameter fluctuations [67] seems insufficient to pro-
vide a solution to the PA in the symmetry-broken regime.

Conversely, the correlations computed for �c/|J| � 0.85,
where our flows still converged sufficiently well, support the
formation of antiferromagnetic order [Fig. 6(c)] though their
range and amplitude are reduced with respect to the � = 1
result [compare Figs. 6(b) and 6(c)].

For finite J3, we found the behavior between one and
higher loops to qualitatively agree with our findings for the
nearest-neighbor antiferromagnet. Using the absence of loop
convergence as an indicator for breakdown of the ml flow, we
coarsely scanned the phase diagram of the J1 − J3 model in
the frustrated (J3 < 0) and nonfrustrated (J3 > 0) parameter
regime (see Fig. 7), determining the critical scales �c where
the flow cannot be faithfully continued for � = 1 and � > 1.
We find that both at the one and higher loop levels, �c is

FIG. 7. Phase diagram for the J1 − J3 model on the simple cu-
bic lattice. The pf-FRG data is obtained from one and higher loop
calculations with at most � = 6. Antiferromagnetic third-nearest-
neighbor couplings J3 > 0 stabilize Neél order with wave vector k =
(π, π, π ). Ferromagnetic J3 < 0 introduces exchange frustration,
leading to a suppression of the breakdown scale �c for intermediate
values −0.4 < J3/J1 < 0.0. At J3/J1 = −0.3 (vertical black line),
the magnetic order changes, promoting the momentum k = (π, π, 0)
instead. Insets show the static susceptibilities (for � = 6) in the
two phases, plotted in the first Brillouin zone for kz = π . Though
�c slightly deviates between one and higher loops, the results are
qualitatively consistent.
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FIG. 8. Phase diagram of the J1 − J2 fcc model at T = 0. Clas-
sically, one finds three phases with energetically favorable momenta
located at the X , W , and L high-symmetry points of the first Brillouin
zone. These magnetic states are separated by two points, at J2/J1 =
0.0 and J2/J1 = 0.5, where sub-extensively degenerate ground-state
manifolds (lines and surfaces) appear. In the quantum model, we find
an extended regime (J2/J1 ≈ 0.0 − 0.65) without a breakdown of the
(ml-) FRG flows, marking a possible realm to realize quantum spin
liquid behavior. Increasing the loop order leads to a small decrease
in the extent of the paramagnetic regime with respect to the lower
bound, which is shifted from J2/J1 ≈ −0.1 for � = 1 to J2/J1 ≈ 0.0
for � > 1. Black markers indicate the couplings for which we display
the results more explicitly in Fig. 9.

suppressed close to the phase transition from (π, π, π ) to
(π, π, 0) magnetic order at J3/J1 = −0.3. The value of the
breakdown scale is similar between � = 1 and � > 1, with
the higher loop result being slightly smaller in most cases.
Given that the classical phase boundary at J3/J1 = −0.25 lies
in close vicinity to our FRG result, we conclude, that quantum
fluctuations, which were boosted for the strongly frustrated
pyrochlore model, have only little influence on the ground
state of the mildly frustrated model at hand.

C. Heisenberg model on the fcc lattice

The fcc crystal structure serves as another classic textbook
example of a three-dimensional Bravais lattice which is not
bipartite, thereby frustrating the two-sublattice Néel order.
A measure of the degree of frustration is provided for by
the dimensionality of the GSM, i.e., the set of wave vectors
{Q} where J (q) takes on its minimal value. At T = 0, the
corresponding classical (S → ∞) version of Eq. (29) with
J2 = 0 features a one-dimensional degenerate GSM [62,63]
(see left plot in Fig. 8), while at J2 = 0.5, the GSM takes the
form of a two-dimensional spin spiral surface [61],

cos
Qxa

2
+ cos

Qya

2
+ cos

Qza

2
= 0, (30)

(see right plot in Fig. 8) reflective of an increased frustration.
This two-dimensional manifold can be topologically charac-
terized as a triply periodic Schwarz-P surface with an Euler
characteristic χ = −4 [98], rationalized by an affine lattice
construction [99], and can be associated with an electronic
Fermi surface via a supersymmetry construction [100].

The origin of these degeneracies is manifest once the
Hamiltonian is recast as a sum of complete squares of spins
over edge-sharing tetrahedra (for J2 = 0) and edge sharing
octahedra (for J2 = 0.5) which tessellate the fcc lattice [64],

H = J1

4

∑
tetra

(S1 + S2 + S3 + S4)2 − 2J1N, (31)

H = J1

4

∑
octa

(S1 + S2 + S3 + S4 + S5 + S6)2 − 3

2
J1N, (32)

where S1, . . . , S4 [Eq. (31)] and S1, . . . , S6 [Eq. (32)]
refer to the four and six spins on the sites of a tetrahedron
and octahedron, respectively. Since J1 > 0, the Hamiltonian
is minimized if and only if the spins sum up to zero on every
tetrahedron (for J2/J1 = 0) and octahedron (for J2/J1 = 0.5),
with the additional constants giving the ground-state energy.
Every spin configuration satisfying this zero magnetization
constraint is a valid classical ground state at T = 0. When
the temperature T �= 0 or/and the reciprocal spin 1/S �= 0,
thermal and quantum fluctuations could potentially lift this de-
generacy via the entropic order-by-disorder mechanism [101]
and stabilize long-range magnetic order. However, if they fail
to do so, one realizes a quantum paramagnet which could pos-
sibly be a quantum spin liquid. Thus, the J1–J2 fcc Heisenberg
antiferromagnet serves as an ideal test bed to study the role of
diagrammatic contributions at higher loop orders in distilling
the nontrivial and subtle interplay of quantum and thermal
selection effects for S = 1/2.

For the nearest-neighbor S = 1/2 Heisenberg antiferro-
magnet [see Fig. 9(a)], we find that the RG flows of the
susceptibility at loop orders � � 5 do not display a diver-
gence at finite �/|J| for the wave vectors of either of the
two classically degenerate orders present for J2 = 0, namely,
the X (1, 0, 0) (type 1) or W (1, 1/2, 0) (type III) orders (we
henceforth adopt the notation where the points in the Brillouin
zone are referred to by their names and coordinates in units of
2π , e.g., QW = (2π, π, 0) = W (1, 1/2, 0), where the lattice
constant a = 1). Furthermore, one observes that the suscepti-
bility displays strongly broadened maxima at the W (1, 1/2, 0)
points [see � = 5 in Fig. 9(a)], consistent with earlier pf-FRG
calculations [53], resembling the classical lines of degeneracy.
Although loop convergence is excellent up to � = 4, small
deviations become visible for � = 5 at the smallest cutoffs.
We attribute the latter to numerical interpolation errors which
become stronger the higher the loop order and the lower �,
rather than a breakdown of the flow (as, e.g., in the cubic
antiferromagnet), since lower loop orders were shown to be
converged already. Further simulations with even higher fre-
quency resolution will presumably remedy these artifacts and
allow flows with large � toward and beyond the minimum cut-
off value of �/|J| = 0.05 chosen here. This is likely to shed
light toward addressing a long-standing problem of whether
the ground state of the S = 1/2 fcc Heisenberg antiferromag-
net develops long-range magnetic order or is nonmagnetic in
nature. The latter scenario (for which we see some signa-
tures) provides a rare example of a frustrated model with a
codimension-2 manifold where the combined effect of quan-
tum and thermal fluctuations fails to lift the degeneracy thus
realizing a paramagnetic ground state.
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FIG. 9. Multiloop results for the J1 − J2 Heisenberg model on the fcc lattice. (a) Susceptibility flows for the fcc antiferromagnet, showing
smooth and converging (for � � 4) flows down to the numerical lower bound set for �. Insets show the momentum-resolved susceptibilities
in the first Brillouin zone, extracted at the lowest possible cutoff. (b) Same as (a) but for J2/J1 = 0.5. (c), (d) Results for J2/J1 = −0.5 and
J2/J1 = 1.0 deep in the ordered phases (see Fig. 8). In contrast to the one-loop flow, which diverges at a finite �c, the multiloop results remain
regular, though they could not be converged far below the characteristic scale of the one-loop result, as indicated by a thick turquoise line. The
susceptibilities plotted in the inset are computed from the results right before the divergence for � = 1 and before loop convergence breaks
down for � = 6.

The classically degenerate point J2/J1 = 0.5 is a triple
point of the W (1, 1/2, 0) (type III), L(1/2, 1/2, 1/2) (type II),
and incommensurate spiral (q, q, 0) orders [102], and the RG
flows for the susceptibility tracked at the corresponding wave
vectors display a smooth and monotonically increasing be-
havior down to the lowest simulated cutoff at all loop orders,
with well-converged results to � = 5 [see Fig. 9(b)], similar
to the nonmagnetic ground state probed for the pyrochlore
antiferromagnet. The absence of a divergence at finite � (and
the rapid convergence for � > 1) provides strong evidence in
favor of a quantum paramagnetic ground state [103,104]. With
increasing loop order, one observes a progressive smearing
and softening of the spectral weight [compare � = 1 and
� = 5 in Fig. 9(b)], and at � = 5 order we have a broadly
homogeneous distribution of intensity over the surface of the
Brillouin zone with soft maxima at the W (1, 1/2, 0) points.
A recent work [105] has identified two symmetric Z2 quan-
tum spin liquids which could potentially serve as candidate
ground states: (i) a gapped Z2 state and (ii) a Z2 spin liq-
uid featuring a network of symmetry-protected linelike zero
modes in reciprocal space. Within a self-consistent mean-field
treatment, state (ii) was found to have a lower energy with
the corresponding dynamical spin structure factor exhibiting
enhanced intensity at the L(1/2, 1/2, 1/2) point. This find-
ing lends support to a scenario whereby a redistribution of

spectral weight from the W (1, 1/2, 0) to the L(1/2, 1/2, 1/2)
is likely to occur at a relatively lower energy scale. In contrast
to S = 1/2, in the semiclassical limit (1/S � 1), quantum
fluctuations (treated within the harmonic approximation) have
been shown to select the L(1/2, 1/2, 1/2) (type II) long-range
magnetically ordered state [99].

For J2/J1 = −0.5 (J2/J1 = 1.0), i.e., deep in the mag-
netically ordered phases of the classical model, our results
display the same behavior that we observed for the symmetry-
broken ground state of the cubic lattice antiferromagnet [see
Figs. 9(c) and 9(d)]. At the one-loop level, the susceptibil-
ity flows at the X (1, 0, 0) [or L(1/2, 1/2, 1/2), respectively]
points diverge, with clearly resolved incipient Bragg peaks
in the corresponding momentum-resolved susceptibilities.
While the structure factors do not change qualitatively at
higher loops, the divergence vanishes, though for cutoffs close
to the respective �c/|J| of the � = 1 flows, loop convergence
cannot be achieved up to � = 6.

Finally, we performed a rough scan of the full phase dia-
gram of the antiferromagnetic J1 − J2 fcc model. In between
the two degenerate points J2/J1 = 0.0 and J2/J1 = 0.5, we
found an extended regime of paramagnetic ground states (see
grey bar in Fig. 8), where one and higher loop results consis-
tently show no flow breakdown. Furthermore, at J2/J1 ≈ 0.65,
both calculations with � = 1 and � > 1 predict a transition
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into the L(1/2, 1/2, 1/2) ordered state. For J2/J1 � −0.1 on
the other hand, one-loop calculations predict type-I magnetic
order, whereas higher loop calculations show no loop conver-
gence down to the lowest cutoffs for J2/J1 � 0.0. The extent
of the putative spin-liquid regime is therefore slightly reduced
between � = 1 and � > 1.

V. CONCLUSIONS AND OUTLOOK

In this paper, we set out to add several methodological
refinements to the pf-FRG approach for quantum spin mod-
els. Our primary goal was the employment of the multiloop
truncation scheme [17,18] in pf-FRG, whose numerical im-
plementation the manuscript at hand describes in meticulous
detail. On a technical level, we found that the implementa-
tion of the multiloop pf-FRG approach necessitates a critical
reevaluation of the (adaptive) integration schemes employed
in solving the coupled integrodifferential equations, particu-
larly with regard to the underlying frequency discretization.
These methodological advancements we make accessible via
the open-source package PFFRGSOLVER.JL written in the Ju-
lia programming language [106].

As a benchmark, we have employed this multiloop pf-
FRG approach to a family of Heisenberg antiferromagnets,
subject to varying levels of geometric frustration. For the
model with the highest degree of frustration, i.e., the py-
rochlore antiferromagnet (the GS is extensively degenerate
in the classical limit), we find that the multiloop corrections
strengthen quantum fluctuations, which we decipher via a
careful analysis of the width of the pinch points characterizing
the low-temperature quantum spin liquid phase. In addition,
we found excellent convergence of χ� already for � = 4
even at the smallest cutoff �/|J| = 0.05. These results are to
be contrasted with the data obtained for the cubic antiferro-
magnet, which, due to the bipartite nature of the underlying
lattice, is free from geometric frustration. Though we have
shown that resolving a divergence of χ�(k) for � > 1 is
rather challenging due to long computation times and large
errors of the ODE solver, we could demonstrate that con-
verging the multiloop flows was not possible far beyond the
characteristic scale of the one-loop result, indicating a break-
down of ml-FRG in this regime. Furthermore, the real space
correlations, momentum-resolved susceptibilities, and phase
boundary, when a finite third-nearest-neighbor coupling J3 is
included, are qualitatively consistent between � = 1 and � >

1. These two different scenarios, loop convergence at small
cutoffs for putative spin liquids and the absence thereof when
SU(2) symmetry is spontaneously broken, were shown to be
consistent with our findings for the J1 − J2 Heisenberg model
on the fcc lattice, settled between the cubic and pyrochlore
antiferromagnets frustrationwise. Enclosed between the two
degenerate points J2/J1 = 0.0 and J2/J1 = 0.5, we found an
extended regime of paramagnetic states, whose full extent is,
however, slightly reduced when higher loop calculations are
employed.

Even though the inclusion of higher loop orders for FRG
calculations on itinerant fermion systems has demonstrated
that, already with a few iterations, convergence in several
susceptibilities can be reached [21,59], for spin systems as
considered here one could not anticipate that the RG flow

is similarly well behaved. Formally, since the spinons do
not carry kinetic energy, our parton decomposed Hamiltonian
resembles the U → ∞ limit of the Hubbard model and con-
sequently there is no small parameter that one can build a
perturbative argument on. Remarkably, our work shows that
convergence in loop order can also be achieved for an FRG
treatment of strongly coupled pseudofermions, complement-
ing the initial development of multiloop FRG in the weakly
coupled regime [17,18].

Employing the multiloop pf-FRG may pave an avenue
for further systematic improvements. Besides the demon-
stration of loop convergence on the level of postprocessed
susceptibilities, no difference between the latter and suscep-
tibilities computed from response functions should remain at
higher loops [22]. Similarly, self-energies and two-particle
vertices should converge to solutions of the regularized PA at
all cutoffs where the symmetries of the microscopic model
are preserved. Note that, for moderate cutoffs, this has
been shown in Ref. [68]. Although the PA provides a self-
consistent many-body framework to derive flow equations for
the self-energy and two-particle vertex, one could increase the
diagrammatic complexity of the FRG equations even further
by employing higher order approximations for the fully two-
particle irreducible vertex to generate a more sophisticated
starting point for strong-coupling FRG approaches. These
methodological refinements are, however, beyond the scope
of this paper. Furthermore, we want to emphasize that the
generalization of our formulation to Hamiltonians with re-
duced spin symmetries [65,107,108] or additional degrees of
freedom [43] is in principle straightforward, as it does not alter
the principal structure of the multiloop equations.

Finally, a long-term objective of the further development
of the pseudofermion FRG is to gain access not just to static
correlators but also to dynamic correlations of frustrated quan-
tum spin systems to facilitate an in-depth comparison between
microscopic theoretical modeling and experimental evidence
from, e.g., neutron scattering. It is likely that for all such
enterprises, the refinements of pf-FRG reported in this paper
are vital to achieve sufficient numerical performance.
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APPENDIX A: HALF-FILLING CONSTRAINT

The decomposition of the spin operators Si into auxiliary
fermionic partons introduces an artificial enlargement of the
Hilbert space, which needs to be handled by a constraint
on the occupation number on each lattice site i. However,
enforcing the constraint exactly, in our case

∑
α f †

iα fiα = 1

with α ∈ {↑,↓}, is technically difficult, since it would re-
quire the inclusion of an additional flowing gauge field in
our FRG approach [67]. Therefore, we enforce the constraint
only on average 〈∑α f †

iα fiα〉 = 1, by imposing particle-hole
symmetry on the level of vertices. The successful (numerical)
implementation can be checked by computing the product
Giα (τ )Giα (−τ ) for the single-particle Green’s function

Giα (τ ) = −〈T̂τ fiα (τ ) f †
iα (0)〉 (A1)

in imaginary time, which, written as the convolution of its
Fourier transform Giα (w), is given by

Giα (τ )Giα (−τ ) = 1

(2π )2

∫ ∞

−∞
dw

∫ ∞

−∞
dv Giα (w)

× Giα (w − v)eivτ . (A2)

If the constraint is fulfilled, on average, one should then have

lim
τ→0+

Giα (τ )Giα (−τ ) = Giα (0+)Giα (0−) = − 1
4 . (A3)

For the T = 0 implementation of pf-FRG, one cannot directly
compute Giα (0±), since the propagator is an odd function in
frequency space, such that an integral over the full frequency
domain vanishes. Note that Eq. (A3) should generally hold
for any particle-hole symmetric self-energy, especially the one
obtained in our FRG flow. Therefore, we have computed the
double integral Eq. (A2) with our numerical ��(w) as input
to check the consistency of our implementation. We find that,
independent of the scale �, the coupling, the system size, and
the loop order, the half-filling constraint is indeed fulfilled on
average.

APPENDIX B: DEFINITION OF TWO-PARTICLE
REDUCIBLE CHANNELS

In Eq. (10), we introduced the decomposition of the two-
particle vertex flow in three two-particle reducible channels
ġ�

c with c ∈ {pp, dph, cph}, which were symbolically defined
as

ġ�
c = [	� ◦ ∂�(G� × G�) ◦ 	�]c. (B1)

Starting from Eq. (6), the concrete expressions read

ġ�
pp(1′, 2′; 1, 2) = − 1

4π

∑
3,4

	�(3, 4; 1, 2) ∂�(G�(3)G�(4)) 	�(1′, 2′; 3, 4), (B2)

ġ�
dph(1′, 2′; 1, 2) = 1

2π

∑
3,4

	�(1′, 4; 1, 3) ∂�(G�(3)G�(4)) 	�(3, 2′; 4, 2), (B3)

ġ�
cph(1′, 2′; 1, 2) = − 1

2π

∑
3,4

	�(2′, 4; 1, 3) ∂�(G�(3)G�(4)) 	�(3, 1′; 4, 2), (B4)

where the pp channel needs to be defined with an additional prefactor 1
2 . Note that the crossing symmetry of the two-particle

vertex 	�(1′, 2′; 1, 2) = −	�(2′, 1′; 1, 2) holds similarly for the pp channel, while the dph and cph channel are exchanged, that
is,

ġ�
pp(1′, 2′; 1, 2) = −ġ�

pp(2′, 1′; 1, 2),

ġ�
dph(1′, 2′; 1, 2) = −ġ�

cph(2′, 1′; 1, 2),

ġ�
cph(1′, 2′; 1, 2) = −ġ�

dph(2′, 1′; 1, 2). (B5)
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APPENDIX C: TWO-PARTICLE REDUCIBLE CHANNELS IN BILOCAL PARAMETRIZATION

In Eq. (26), we introduced a bilocal parametrization for the real-space dependence of the two-particle vertex. This represen-
tation can be carried over to the two-particle reducible channels from Appendix B by plugging in the bilocal form and collecting
terms with the same spatial structure. This procedure yields

ġ�
pp i1i2 (1′, 2′; 1, 2) = − 1

2π

∑
3,4

	�
i1i2 (3, 4; 1, 2) ∂�(G�(3)G�(4)) 	�

i1i2 (1′, 2′; 3, 4),

ġ�
dph i1i2 (1′, 2′; 1, 2) = 1

2π

∑
j,3,4

	�
i1 j (1

′, 4; 1, 3) ∂�(G�(3)G�(4)) 	�
ji2 (3, 2′; 4, 2)

− 1

2π

∑
3,4

	�
i1i2 (1′, 4; 1, 3) ∂�(G�(3)G�(4)) 	�

i2i2 (3, 2′; 2, 4)

− 1

2π

∑
3,4

	�
i1i1 (1′, 4; 3, 1) ∂�(G�(3)G�(4)) 	�

i1i2 (3, 2′; 4, 2),

ġ�
cph i1i2 (1′, 2′; 1, 2) = − 1

2π

∑
3,4

	�
i1i2 (3, 2′; 1, 4) ∂�(G�(3)G�(4)) 	�

i1i2 (1′, 4; 3, 2). (C1)

Here, the multi-indices on the right-hand side only contain
a spin and frequency index, with spatial indices written out
explicitly. Vertices 	� are to be understood as a shorthand
notation for the bilocal vertex component with parallel legs,
i.e., 	�=. For the local vertices 	�

i1i1 and 	�
i2i2 in the second

and third terms of the dph channel, crossing symmetry was
applied to map 	�× to 	�=. This is irrelevant as long as
full vertices 	� are used in this expression. For the ml-FRG
flow Eqs. (16)–(21), however, one also needs to insert only
partial contributions to the full vertex. In this case, the channel
mapping Eqs. (B5) needs to be accounted for explicitly.

APPENDIX D: SYMMETRIES OF TWO-PARTICLE
REDUCIBLE CHANNELS

In previous work [65], a full symmetry analysis for the two-
particle vertex in the presence of nondiagonal spin interactions
has been performed. Although we focus our effort on Heisen-
berg spin systems here, we may nevertheless use the derived
symmetries in the special case of diagonal interactions. To
this end, we use the SU(2) symmetric parametrization of the
bilocal vertex into a spin (s) and density (d) component,

	�
i1i2 (1′, 2′; 1, 2) =

[
	�s

i1i2 (s, t, u)
∑

μ

σμ
α1′α1

σμ
α2′α2

+ 	�d
i1i2 (s, t, u)δα1′ α1δα2′α2

]

× δ(w1′ + w2′ − w1 − w2), (D1)

for which the symmetries read

	
�s/d
i1i2

(s, t, u) = 	
�s/d
i2i1

(−s, t, u), (D2)

	
�s/d
i1i2

(s, t, u) = 	
�s/d
i1i2

(s,−t, u), (D3)

	
�s/d
i1i2

(s, t, u) = 	
�s/d
i2i1

(s, t,−u), (D4)

	
�s/d
i1i2

(s, t, u) = ζ	
�s/d
i1i2

(u, t, s), (D5)

where ζ = +1 for the spin part and ζ = −1 for the density
part. Combinations of one or more symmetries can directly
be related to symmetries of the channels by recalling that the
fermionic frequencies of each channel are directly related to
linear combinations of the three bosonic transfer frequencies.
This yields

g�s/d
pp i1i2

(s, vs, v
′
s) = g�s/d

pp i2i1
(−s, vs, v

′
s), (D6)

g�s/d
pp i1i2

(s, vs, v
′
s) = ζg�s/d

cph i2i1
(s,−vs, v

′
s), (D7)

g�s/d
pp i1i2

(s, vs, v
′
s) = ζg�s/d

cph i1i2
(s, vs,−v′

s), (D8)

g�s/d
pp i1i2

(s, vs, v
′
s) = g�s/d

pp i2i1
(s, v′

s, vs) (D9)

for the pp channel;

g�s/d
dph i1i2

(t, vt , v
′
t ) = g�s/d

dph i1i2
(−t, vt , v

′
t ), (D10)

g�s/d
dph i1i2

(t, vt , v
′
t ) = ζg�s/d

dph i1i2
(t,−vt , v

′
t ), (D11)

g�s/d
dph i1i2

(t, vt , v
′
t ) = ζg�s/d

dph i1i2
(t, vt ,−v′

t ), (D12)

g�s/d
dph i1i2

(t, vt , v
′
t ) = g�s/d

dph i2i1
(t, v′

t , vt ) (D13)

for the d ph channel, and, finally,

g�s/d
cph i1i2

(u, vu, v
′
u) = g�s/d

cph i2i1
(−u, vu, v

′
u), (D14)

g�s/d
cph i1i2

(u, vu, v
′
u) = ζg�s/d

pp i2i1
(u,−vu, v

′
u), (D15)

g�s/d
cph i1i2

(u, vu, v
′
u) = ζg�s/d

pp i1i2
(u, vu,−v′

u), (D16)

g�s/d
cph i1i2

(u, vu, v
′
u) = g�s/d

cph i1i2
(u, v′

u, vu) (D17)

for the cph channel. Given these symmetries, one can fur-
ther conclude how they affect the respective kernel functions
by successively eliminating certain kernels considering their
asymptotic limit. Performing the full symmetry analysis, we
were able to drastically reduce the numerical effort in comput-
ing the two-particle vertex flow. Most notably, all kernels need
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to be saved only for positive Matsubara frequencies. Finally,
the v ↔ v′ symmetry allows us to restrict Qs/d

3 c to a mesh with
v � v′.

APPENDIX E: NUMERICAL IMPLEMENTATION DETAILS

To clarify the implementation details of the code used for
the numerical pf-FRG computations, we further elaborate on
the general concepts outlined previously in Sec. III.

1. Finite lattice graphs

The finite lattice graphs are implemented by first enu-
merating all points within a bond distance L. Subsequently,
using a small test lattice of two unit cells in all directions,
the code determines the point group symmetry transforma-
tions with respect to a test site i0 by trying to rotate pairs
of connections onto other pairs of bonds. Afterward, the full
lattice is checked for symmetry equivalent points and the set
of symmetry-inequivalent points together with their respective
multiplicity is determined. As a next step, a mapping table
of any connection from point i1 to i2 in the full lattice to a
symmetry equivalent connection i0 to i∗1 within the reduced
lattice is generated. This can then be used to construct the full
overlap between two sites in the reduced lattice, i.e., a map-
ping table of pairs of connections i0 to i1 with an intermediate
point i2 located within the full lattice, as is needed for the site
summation in the dph channel.

2. Discrete frequency meshes and interpolation

For a numerical treatment, we have to discretize the con-
tinuous, positive Matsubara frequency axis. We do this by
constructing a mesh consisting of 0.4Ntot linearly spaced fre-
quencies, amended by 0.6Ntot logarithmically spaced ones,
where Ntot is the total number of nonzero frequencies. Ad-
ditionally, ω = 0 is always part of the mesh. This means the
frequencies can be obtained as

ωi = i · ωlin

0.4Ntot
for i = 0, 1, . . . , 0.4Ntot, (E1)

ωi = ωlin ·
(ωmax

ωlin

) i
0.6Ntot for i = 0.4Ntot + 1, . . . , Ntot,

(E2)

assuming that 0.4Ntot corresponds to an integer value (other-
wise a ceil / floor operation has to be performed). The
parameters ωlin and ωmax are the extent of the linear part and
full mesh, respectively, and are determined by the scanning
routine outlined in Appendix E 3.

In the evaluation of the flow equations, values of the ver-
tices are needed, which do not necessarily correspond to one
of these discrete frequencies and, as such, we have to use a
multilinear interpolation scheme to obtain them. In practice,
this means that the value of a two-particle reducible channel
at an arbitrary frequency combination (ω, ν, ν ′) is given by

g(ω, ν, ν ′) = [g(ωi<, νi<, ν ′
i< )(ωi> − ω)(νi> − ν)(ν ′

i> − ν ′)

+ g(ωi>, νi<, ν ′
i< )(ω − ωi< )(νi> − ν)(ν ′

i> − ν ′)

+ g(ωi<, νi>, ν ′
i< )(ωi> − ω)(ν − νi< )(ν ′

i> − ν ′)

+ g(ωi<, νi<, ν ′
i> )(ωi> − ω)(νi> − ν)(ν ′ − ν ′

i< )

+ g(ωi>, νi>, ν ′
i< )(ω − ωi< )(ν − νi< )(ν ′

i> − ν ′)

+ g(ωi>, νi<, ν ′
i> )(ω − ωi< )(νi> − ν)(ν ′ − ν ′

i< )

+ g(ωi<, νi>, ν ′
i> )(ωi> − ω)(ν − νi< )(ν ′ − ν ′

i< )

+ g(ωi>, νi>, ν ′
i> )(ω − ωi< )(ν − νi< )(ν ′ − ν ′

i< )]

× 1

(ωi> − ωi< )(νi> − νi< )(ν ′
i>

− ν ′
i<

)
, (E3)

using subscripts i<(i>) to indicate that the nearest smaller
(larger) discrete frequency should be used. If one or both
of the fermionic frequency arguments are larger than the
respective maximum frequency of the mesh, the correspond-
ing asymptotic kernels as defined in Eqs. (12) are used for
the analogous interpolation in two or one dimensions. If the
bosonic frequency exceeds the mesh boundary, the vertex is
taken to be zero.

3. Scanning routine for frequency mesh adaptation

Continuing the ml-FRG flow to small values of the flow
parameter requires that all relevant features of the vertices
are well resolved in intermediate stages of the flow. Care-
fully analyzing the vertices, we found that most structures
are usually located around the zero-frequency regime, where
sharp peaks right at or close to (wc, vc, v

′
c) = (0, 0, 0) appear,

and for lattice sites close to the reference site i0. Our routine
to scan the vertices after each step of the ODE solver and
to determine from that a suitable linear spacing h for the
frequency meshes uses the relative deviation � = |g2−g1|

max(|g2|,|g1|)
as a control parameter. Here {gi} are the respective vertex
values along a given frequency axis {wi} with w1 = 0. More
precisely, the mesh spacing h is increased or decreased such
that p1 � � � p2, where p1 and p2 are external parameters.
We choose p1 = 0.05 and p2 = 0.1. As an additional sanity
check, the spacing h must fulfill p3� � h � p4� to avoid
overambitious shrinking or expanding of the linear part of
the mesh. We choose p3 = 0.05 and p4 = 2.0. The scanning
is carried out for the bosonic and fermionic axis right at the
reference site i0 for all channels and with the respective other
frequency arguments set to zero. Note that this scanning is
only carried out when max({|gi|}) > 10−3 to prevent adapting
the meshes according to noisy (i.e., not well captured with
respect to the chosen error tolerances) data.

4. Frequency integration

For the quadrature of the frequency integrals on the right-
hand side of the flow equations, we use an adaptive routine
tailored to the structure of the propagator bubbles as outlined
in Sec. III B. We first divide the integration into four in-
tervals: [−100 × (� + ω/2),−2 × (� + ω/2)], [−2 × (� +
ω/2), 0], [0, 2 × (� + ω/2)], and [2 × (� + ω/2), 100 ×
(� + ω/2)], where ω is the external bosonic frequency for the
integration at hand. This is to accurately capture the features
around ±(� + ω/2) as well as the those at large frequencies.
We have found empirically that 100 × (� + ω/2) is a good
approximation for the infinite upper and lower boundaries in
the integration.
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The two outer intervals are then logarithmically [analogous
to Eq. (E2)], the inner two linearly [cf. Eq. (E1)] divided into
30 subintervals. In each of those, we use an adaptive trape-
zoidal rule, which subdivides the intervals even further until

an absolute error of less than 10−10 and a relative error of less
than 10−3 is reached. Errors are computed by the difference
between two subdivision steps. The final result is ameliorated
by a Richardson extrapolation.
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Abstract. The pseudofermion functional renormalization group (pffRG) is a computational method for
determining zero-temperature phase diagrams of frustrated quantum magnets. In a recent methodological
advance, the commonly employed Katanin truncation of the flow equations was extended to include mul-
tiloop corrections, thereby capturing additional contributions from the three-particle vertex (Thoenniss
et al. https://arxiv.org/abs/2011.01268; Kiese et al. https://arxiv.org/abs/2011.01269). This development
has also stimulated significant progress in the numerical implementation of pffRG, allowing one to track
the evolution of pseudofermion vertices under the renormalization group flow with unprecedented accu-
racy. However, cutting-edge solvers differ in their integration algorithms, heuristics to discretize Matsubara
frequency grids, and more. To lend confidence in the numerical robustness of state-of-the-art multiloop
pffRG codes, we present and compare results produced with two independently developed and algorithmi-
cally distinct solvers for Heisenberg models on three-dimensional lattice geometries. Using the cubic lattice
Heisenberg (anti)ferromagnet with nearest and next-nearest neighbor interactions as a generic benchmark
model, we find the two codes to quantitatively agree, often up to several orders of magnitude in digital
precision, both on the level of spin-spin correlation functions and renormalized fermionic vertices for vary-
ing loop orders. These benchmark calculations further substantiate the usage of multiloop pffRG solvers
to tackle unconventional forms of quantum magnetism.

1 Introduction

A fascinating phenomenon in the study of frustrated
quantum magnets is the interplay of unconventional
forms of magnetic order and the possible emergence
of quantum spin liquid states near zero temperature
[3]. The successful description of such low-energy states
of quantum spin systems has, however, remained chal-
lenging, especially in the presence of competing inter-
actions, geometric frustration, and in higher spatial
dimensions.

Since its inception more than a decade ago [4],
the pseudofermion functional renormalization group
(pffRG) has become a powerful and flexible approach to
map out the zero-temperature phase diagrams of vari-
ous quantum spin models, both in two [4–20] and three
spatial dimensions [16,21–29]. Although the problem
obtained after representing the spin operators by com-
plex fermions is treated approximately, one of the strik-
ing features of pffRG is its ability to track competing
instabilities in different interaction channels, allowing
one to discriminate putative spin-liquid phases from

a e-mail: ritter.marc@physik.uni-muenchen.de (corre-
sponding author)

long-range ordered magnetic ground states. This ability
can be traced back [30,31] to the inclusion of leading-
order 1/S and 1/N diagrams (the former promoting
classical magnetic order, the latter quantum fluctua-
tions), which are treated on equal footing in pffRG by
means of the routinely employed Katanin truncation
[32].

Recently, the multiloop truncation scheme of the infi-
nite hierarchy of fRG flow equations [33–35], previ-
ously used in the context of the Hubbard [36,37] and
Anderson impurity model [38], was applied to the zero-
temperature pffRG by some of us [1,2]. The convergence
in the number of loops over a wide range of energy
scales attested to the inner consistency of the pffRG
method, despite being used in the strong-coupling limit.
These developments were accompanied and facilitated
by substantial improvements of the numerical imple-
mentation that remedy many shortcomings of previ-
ous studies. Yet, some of these advances, such as the
employed integration routines and adaptive Matsubara
frequency grids [1,2], rely on certain numerical heuris-
tics, affecting, e.g., the minimal grid spacing and largest
Matsubara frequencies considered. Therefore, quanti-
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tative agreement between different implementations is,
although highly desired, not guaranteed a priori.

In the present work, we provide evidence for the
numerical robustness of pffRG by benchmarking two
independent state-of-the-art solvers, one provided by a
research group at LMU Munich (dubbed code #1 in the
following), and one by a Cologne–Würzburg collabora-
tion (denoted by code #2) with an open-source release
[39]. As a test case, we consider ferro- and antiferromag-
netic Heisenberg models on the simple cubic lattice and
compare our results both on the level of renormalized
couplings (i.e. fermionic vertex functions) as well as for
the (post-processed) spin-spin correlation functions.

The remainder of the paper is structured as follows.
We begin by providing a brief overview of the multi-
loop pffRG in Sect. 2. This is followed by an in-depth
comparison of the numerical results produced by the
two codes at hand in Sect. 3. Finally, in Sect. 4, tech-
nical aspects of the implementation, such as the choice
of frequency grids, integration routines and differential
equation solvers are discussed, with special emphasis
devoted to their influence on the numerical stability
and accuracy of the two codes.

2 Multiloop pseudofermion fRG

Within the pffRG approach, one can study generic spin-
1/2 Hamiltonians with bilinear spin couplings, i.e.,

H = 1
2

∑

ij

Jμν
ij Sμ

i Sν
j . (1)

Here, the spin operators Sμ
i live on the sites i of an

arbitrary lattice, and the exchange matrices Jμν
ij are

assumed to be real. The spin operators are represented

in terms of complex pseudofermions f
(†)
iα with α ∈ {↑, ↓}

as

Sμ
i = 1

2

∑

α,β

f†
iασμ

αβfiβ , (2)

where σμ
αβ for μ ∈ {x, y, z} are the Pauli matrices.

This yields a purely quartic Hamiltonian which can be
treated by established functional RG techniques.

Note that the pseudofermion representation of the
spin algebra comes with an artificial enlargement of
the local Hilbert space dimension, which must be
dealt with by an additional particle number constraint∑

α f†
iαfiα = 1 on every lattice site. In practice, this

constraint is not enforced, but holds on average due to
particle-hole symmetry [1,2,4]. Nevertheless, the influ-
ence of fluctuations can be quantitatively gauged by
explicitly computing the variance of the number oper-
ator, which can be expressed through the equal-time
spin-spin correlation function 〈Sμ

i Sμ
i 〉 [1]. Although

fluctuations are not fully suppressed, even if a local
level repulsion term ASμ

i Sμ
i (with A < 0) is employed,

recent studies [1,19,23,30] pointed out that observables

extracted from pffRG flows are qualitatively unaffected
by the unphysical Hilbert space sectors.

An alternate decomposition of the spin operators
into Majorana instead of Abrikosov fermions allows one
to circumvent the problem of unphysical states in the
fermionic representation at the cost of redundant copies
of physical Hilbert-space sectors [40]. For moderately
high temperatures, the latter approach was recently
shown to enable an accurate calculation of thermody-
namic observables [41], such as the free energy and spe-
cific heat. However, the approach was also found to suf-
fer from unphysical divergencies when approaching the
T → 0 limit, which we consider here (for the Abrikosov
fermion decomposition).

Since kinetic contributions are absent in the pseudo-
sfermion representation of Eq. (1), the free propagator
assumes the simple form

G0(1
′|1) = (iω1)

−1δi1′ i1δα1′ α1
δ(ω1′ − ω1) , (3)

diagonal in all indices. To successively integrate out
high-energy modes and thus provide an effective low-
energy description of a given model, a cutoff parameter,
here denoted as Λ, is introduced in the bare propaga-
tor. The fRG equations then govern the flow of the n-
particle vertices from the UV limit Λ → ∞, where the
regularized bare propagator vanishes, to the infrared
limit Λ → 0, where one recovers the physical theory. As
such, there is a certain degree of freedom in the cutoff
implementation. A popular choice for the regulator in
pffRG is a Heavyside step function, which sharply sup-
presses frequency contributions |ω| < Λ. This choice
is very useful for analytical treatments of pffRG in the
large-S and large-N limit, where the flow equations can
be solved exactly and reproduce mean-field gap equa-
tions [30,31]. However, if numerical calculations are
employed away from these limits, a non-analytic reg-
ulator spoils the smoothness of the right-hand side of
the flow equations, and therefore limits the applicabil-
ity of higher-order integration routines. For this reason,
we consider a smooth regulator

RΛ(ω) = 1 − e−ω2/Λ2

, (4)

throughout this manuscript, and implement the cutoff
as GΛ

0 (ω) = RΛ(ω)G0(ω), with G0(ω) ≡ (iω)−1.
To make the infinite hierarchy of fRG flow equations

amenable to further calculations, a truncation is neces-
sary. Usually, this is done by neglecting all n-particle
vertices of n = 3 and higher [32]. However, to capture
the physics of interest in pffRG, one must already go
beyond that using the Katanin truncation, which feeds
the Λ derivative of the self-energy ΣΛ back into the
flow of the two-particle vertex ΓΛ [4]. Within this trun-
cation, the flow equations schematically read

d

dΛ
ΣΛ = −

[
ΓΛ ◦ SΛ

]
Σ

, (5)
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d

dΛ
ΓΛ =

∑

c

γ̇Λ
c = −

∑

c

[ΓΛ ◦ ∂Λ(GΛ × GΛ) ◦ ΓΛ]c .

(6)

Here, we introduced the loop function [Γ ◦ G]Σ and the
single-scale propagator SΛ ≡ − d

dΛGΛ|ΣΛ=const.. We cat-
egorized the contributions to the flow of Γ into three
distinct channels c: the particle-particle (s) channel,
the direct particle-hole (t) channel, and the crossed
particle-hole (u) channel. Each “bubble” term, with the
general form [Γ ◦ (G × G′) ◦ Γ′]c, describes the flow of
a two-particle reducible vertex γc. As all self-energies,
vertices, and related correlators are Λ-dependent, we
refrain from writing this dependence explicitly in the
following.

The multiloop fRG (mfRG) flow [33–35], recently
employed within pffRG [1,2], is an attempt to go
beyond the Katanin truncation and capture even more
contributions from n-particle vertices with n ≥ 3. It can
be derived from the parquet approximation [42], which
self-consistently connects one- and two-particle corre-
lation functions via the Schwinger–Dyson (SDE) and
Bethe–Salpeter equations (BSE), and as such the inher-
ent dependence of the Λ → 0 fRG result on the specific
choice of regulator is eliminated [34]. This approxima-
tion includes all those contributions to the flow of the
two-particle vertex which can be efficiently calculated,
i.e., with the same cost as the one-loop flow in Eqs. (5)
and (6). Summarized briefly: To obtain the mfRG flow
of γc, one iteratively computes multiloop corrections to
the one-loop (� = 1) result, using bubble functions with
undifferentiated propagators but differentiated vertices.
In a similar fashion, one can recover equivalence to the
SDE, by feeding back the so-determined vertex correc-
tions into the self-energy flow.

One of the most important ingredients to achieve
sufficient numerical accuracy throughout the multi-
loop flow is an appropriate treatment of the frequency
dependence of the two-particle vertex. In Ref. [43],
a parametrization in terms of one bosonic and two
fermionic frequencies (the fourth frequency argument
is fixed by energy conservation) for each two-particle
reducible vertex was put forward. This parametrization
captures the non-trivial high frequency asymptotics of
the vertices while being numerically efficient. Code #1
uses precisely the proposal of Ref. [43], and the dia-
grams contributing to each channel are grouped into
four asymptotic classes Kn as

γc(ωc, νc, ν
′
c) = K1,c(ωc)

+ K2,c(ωc, νc) + K2′,c(ωc, ν
′
c)

+ K3,c(ωc, νc, ν
′
c) , (7)

where we displayed only frequency arguments for
brevity. Here, ωc, νc and ν′

c, denote the natural fre-
quency arguments for diagrams reducible in channel c
(see Ref. [1] for the conventions used). The Kn asymp-
totically decay to zero in each frequency, allowing one
to reduce the necessary number of arguments when

summing up the asymptotic classes to obtain γc. Code
#2 chooses a slightly different approach, by defining
asymptotic classes Qn [44] as

Q1,c(ωc) = K1,c(ωc)

Q2,c(ωc, νc) = K1,c(ωc) + K2,c(ωc, νc)

Q2′,c(ωc, ν
′
c) = K1,c(ωc) + K2′,c(ωc, ν

′
c)

Q3,c(ωc, νc, ν
′
c) = K1,c(ωc)

+ K2,c(ωc, νc) + K2′,c(ωc, ν
′
c)

+ K3,c(ωc, νc, ν
′
c) , (8)

with the respective choice of natural frequency argu-
ments outlined in Ref. [2]. Since the Kn classes decay
to zero for large frequencies, the Qn (at least for
n > 1) are projected to a lower class. For instance,
Q3,c(ωc, νc, ν

′
c) = Q2,c(ωc, νc) if |ν′

c| → ∞. Let us
emphasize that both parametrizations contain the same
information about the asymptotic structure of the two-
particle vertices, as the Kn and Qn parametrizations
can be exactly transformed into each other. For an
appropriate choice of numerical frequency grids, both
parametrizations are therefore equally valid and differ
only in numerical performance. The former approach
allows for a more fine-grained adjustment of dis-
crete frequencies to the asymptotic decay of individ-
ual classes, while the latter reduces the cost of evoking
a two-particle vertex from a summation of up to four
classes Kn to loading just a single Qn.

The central observable computed from the pffRG
equations is the flowing spin-spin correlation function,

χμν
ij (iω = 0) =

∫ ∞

0

dτ〈TτSμ
i (τ)Sν

j (0)〉 , (9)

where we omit indication of the Λ-dependence for
brevity. In all models considered here, the interactions
in the Hamiltonian are diagonal and SU(2)-symmetric.
This leads to spin-spin correlations that are symmetric
as well, and we thus define χij ≡ χxx

ij = χyy
ij = χzz

ij .
The spin-spin correlations can be used to identify

transitions into phases with broken symmetries; there,
the flow becomes unstable at some ΛT and must be
stopped. For long-range ordered states, the momentum
k for which the structure factor

χ(k, iω) =
1

Nsites

∑

ij

eik·(Ri−Rj)χij(iω) (10)

(i.e. the Fourier transform of χij) is most dominant
gives an indication of the emergent magnetic order,
as exemplified in Fig. 1. A smooth flow down to the
infrared Λ → 0 is, on the other hand, associated with
non-magnetic phases, such as spin liquids, dimerized,
or plaquette-ordered states.
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Fig. 1 Momentum-resolved structure factors within the
first Brillouin zone of the cubic lattice for (a, b) the fer-
romagnetic case at Λ/J = 0.8 and (c, d) the paramagnetic
case at Λ/J = 0.3, computed for (a, c) � = 1 and (b, d)
� = 3 using code #2. The ferromagnet shows a sharp peak at
the Γ point, without visible difference between the two loop
orders. The putative paramagnet shows a broadened distri-
bution of spectral weight centered around soft maxima at
the M points in � = 1 calculations, while the structure fac-
tor peaks more distinctively for � = 3, signalling the onset
of magnetic order instead

3 Results

To benchmark the two codes, we calculate the spin-spin
correlations and pseudofermion vertices of an extended
Heisenberg model on the cubic lattice with a maximum
correlation length ξ = 5 in units of the lattice spacing
[1]. The corresponding three-dimensional cluster con-
tains N = 515 sites, small enough to efficiently compare
the two codes but large enough to produce the (qual-
itatively) correct physics. The corresponding Hamilto-
nian with up to third-neighbor interactions (see inset
in Fig. 2) reads

H = J1

∑

〈ij〉
Sμ

i Sμ
j + J2

∑

〈〈ij〉〉
Sμ

i Sμ
j + J3

∑

〈〈〈ij〉〉〉
Sμ

i Sμ
j ,

(11)

where we fix J ≡
√

J2
1 + J2

2 + J2
3 as the unit of energy.

We focus on two choices of these interaction parameters
to highlight differences between fRG flows in different
phases:

J1 < 0, J2 = 0, J3 = 0, (12)

J1 > 0, J2/J1 = 0.6, J3/J1 = 0.25, (13)

Fig. 2 Inverse spin-spin correlation function for the fer-
romagnet as a function of Λ. Shown here is a comparison
of the � = 1 and � = 3 flows obtained from both codes.
The dotted line is a Λ−1 fit [χC = CJ/(Λ − ΛC)] to the
data at Λ/J ∈ [1.0, 4.0]. The transition to a ferromagnet-
ically ordered phase is visible as a sharp downturn away
from Curie–Weiss behavior. Inset: Definition of the first,
second, and third nearest-neighbor interaction, J1 (green),
J2 (purple), and J3 (yellow)

where Eq. (12) yields a nearest-neighbor ferromagnet
and the setup of Eq. (13) was previously reported to
result in a paramagnetic ground state [21].

Rewriting each spin operator Sμ in the Hamiltonian
in terms of pseudofermions leads to an expression pro-

portional to f†
α′fαf†

β′fβ , with interactions proportional

to
∑

μ σμ
α′ασμ

β′β . Exploiting this SU(2) symmetry (the
interactions are diagonal and of equal magnitude in
every spin direction), the flowing pseudofermion vertex
Γ (and each of its two-particle reducible parts γc) can
be decomposed into a spin component Γs, proportional
to the latter combination of Pauli matrices, and a den-
sity component Γd proportional to δα′αδβ′β [4,45]. Note
that the density component, although initially vanish-
ing for any typical spin model, becomes finite away from
the UV limit and is essential for tracking the evolution
of all symmetry-allowed couplings under the RG flow.

3.1 Ferromagnetic phase

With pure nearest-neighbor ferromagnetic interactions,
the zero-temperature ground state is intuitively expec-
ted to be a ferromagnet. Therefore, in the context of
pseudofermion fRG, there should be a transition at
some finite ΛT > 0 from a paramagnetic regime at
large Λ > ΛT to the ferromagnetic phase at Λ < ΛT.
Approaching the transition, the spin-spin correlator χij

is expected to diverge, similar to a finite-temperature
phase transition. In this case, a peak will form at the Γ
point in reciprocal space, as is visible Fig. 1, since the
correlations are uniform and positive in a ferromagnet.

Close to the transition, the flow is supposed to visi-
bly deviate from its paramagnetic Curie–Weiss behav-
ior χii ≈ CJ/(Λ − ΛC) at large Λ  ΛT. For this
reason, it is convenient to plot the inverse correlator
1/χii as a function of Λ to locate the transition, as
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shown in Fig. 2. Here, the 1/Λ behavior appears as a
straight line with slope 1/C displaced horizontally by
ΛC/J and the transition to the ferromagnetic phase is
visible as a sharp turn down to a smaller inverse cor-
relation function at Λ/J ≈ 0.76. The structure factor
at Λ close to ΛT, shown in Figs. 1 and 3, has a single

Fig. 3 Structure factor for the ferromagnet along a high-
symmetry path of the cubic lattice Brillouin zone. The
results are in excellent agreement between both codes, both
for � = 1 and � = 3, showing dominant ferromagnetic corre-
lations indicated by a sharp peak around the Γ point. Inset:
Zoom into the path segment connecting the X ,M , and R
point

peak at the Γ point, signifying an instability towards
ferromagnetic order. This, as well as the Curie–Weiss fit
parameters, are consistent across both considered loop
orders � = 1, 3 and both codes, while ΛT differs slightly.

Since both implementations obtain the spin-spin cor-
relations by post-processing the vertices, any discrep-
ancy therein originates from differences in the vertices.
Therefore, a more detailed examination of the 1/χii-
deviations between the codes for � = 1 will follow once
the flow of the vertex components has been discussed.
Moreover, even if the flows for the χij agree perfectly
(as, e.g., in the regime Λ > ΛT), discrepancies in the
vertices cannot be fully excluded, as post-processing
spin-spin correlations from pseudofermion vertex data
amounts to integrating a combination of several prop-
agators and the vertex over two frequencies [1]. Hence,
this additional step might hide potential differences in
the vertex data.

To investigate this further, we focus on the t-
reducible vertex γt plotted in Fig. 4 at various values
of Λ: Its spin component γs

t (second and third column)
is responsible for the transition and becomes sharply
peaked at small bosonic frequencies ω ≈ 0. Its density
component γd

t (last column) with its extended struc-
tures and peaks at non-zero fermionic frequencies ν is
particularly difficult to resolve and thus most likely to
contain numerical artifacts. Comparing γt, as well as
the the self-energy Σ between the codes, we find quan-

Fig. 4 Frequency structure of self-energy and t-reducible vertex for the ferromagnet at different values of Λ/J for � = 3
flows. The self-energy is purely imaginary and antisymmetric in frequency space, while all vertex components are real and
symmetric along the directions plotted here. We show two cuts through the three-dimensional structure of γΛ,μ

t,〈ij〉(ω, ν, ν′):
A cut along the bosonic frequency axis ω, with both fermionic frequencies set to ν = ν′ = 0, and a cut with equal fermionic
frequencies ν = ν′, where the bosonic frequency was set to ω = 0. The first cut is not shown for γd

t as γd
t,〈ij〉(ω, 0, 0) = 0

due to symmetry [1,2]. The most prominent structure in the t-reducible vertex is a peak around zero bosonic frequency
ω = 0 that grows in magnitude and becomes sharper as Λ is decreased. This indicates ferromagnetic correlations that grow
stronger as the ordering phase transition is approached. In all components, there is quantitative agreement between the two
codes
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Fig. 5 Decomposition of the γs
t,〈ij〉(ω, ν, ν′) vertex for the

ferromagnet into asymptotic classes K1,t, K2,t, K3,t (first,
second, third row) for the � = 3 flows at Λ/J = 0.8. Fre-
quency axes shown here are the same as in Fig. 4. As the
flow is close to the ordering phase transition at this value of
Λ, strong ferromagnetic correlations are present as a peak
around ω = 0 in K1,t. The other classes are at least one
order of magnitude smaller. In all classes, both codes show
quantitative agreement

titative agreement also on this very detailed level of
inspection.

As outlined in Sect. 2, both codes use a decomposi-
tion of the reducible vertices γs, γt, γu into four asymp-
totic classes each. The decomposition into asymptotic
classes Kn is shown for γs

t at Λ/J = 0.8 in Fig. 5, where
we omit Ks

2′,t, as it is equal to Ks
2,t by crossing sym-

metry [1,2]. Note that, while these vertices can directly
be extracted from code #1, an additional transforma-
tion is applied to the Qn decomposition of code #2 [see
Eq. (8)]. The peak in γs

t at small bosonic frequencies
in Fig. 4 is found to stem from the K1 contribution,
which is an order of magnitude larger than the other
classes. In K2 and K3, extended structures with mul-
tiple maxima and minima exist. It is thus crucial to
use a frequency mesh with enough mesh points in an
extended region around the origin to control numerical
interpolation errors (see Sect. 4).

Though the codes implement the vertex decom-
position differently (see Sect. 2) and use different
approaches to build appropriate frequency meshes (see
[1,2] for a detailed description), all components of the
vertex are consistent with each other. This demon-
strates that it is possible to gain control over said inter-
polation errors by a careful adaptive implementation
that places enough mesh points where they are needed.

Since the numerical error incurred by interpolation
of the continuous frequency structure from a discrete
mesh is particularly relevant whenever sharp struc-
tures are present in the vertex, different choices of fre-

Fig. 6 Flows with rescaled frequency meshes. Compari-
son of the flow of inverse static on-site spin correlations
1/χii(iω = 0) obtained using frequency meshes with dif-
ferent scaling factors κ. The dotted line is a Λ−1 fit to the
data at Λ/J ∈ [1.0, 4.0]. For all values of κ, a transition
to a ferromagnet is visible as a sharp turn down. The pre-
dicted transition point as well as the slope of χ in the region
Λ/J < 0.8 differs, while the behavior at large Λ > J remains
identical

quency meshes have strong effects close to phase transi-
tions, where some couplings are expected to diverge. For
instance, in the ferromagnetic setup discussed above,
the transition was induced by a peak in the spin com-
ponent of the t-reducible vertex that grows quickly and
starts to diverge, as can be seen in the second column of
Fig. 4. As the transition is approached, this peak pro-
gressively becomes sharper and thus more difficult to
resolve using discrete meshes. Thus, minor differences
in mesh spacing can induce differences in the flow at
the transition, though the qualitative, physical results
remain unchanged.

To investigate the effects of changes in the mesh spac-
ing explicitly, we compared results obtained from both
codes with artificially modified meshes. Both implemen-
tations make use of adaptive frequency grids where,
during the flow, the mesh spacing is adjusted according
to the frequency structure of the vertex. The simplest
way to manipulate the meshes is to rescale them by
an artificial scaling factor κ. In Fig. 6, we show the
effect of such a rescaling on the � = 1 flow from Fig. 2.
Above Λ/J ≈ 0.8, all frequency structures in the ver-
tex are fairly broad and easy to resolve. Consequently,
rescaling the frequency grid has little effect and values
κ = 0.5 . . . 3.0 result in the same flow and also the same
Curie–Weiss fit parameters. Below that point, the flows
differ more and more as structures become sharper and
ultimately predict slightly different transition points
ΛT/J . Nevertheless, all flows predict a transition to the
same ferromagnetic phase, which can be identified by a
peak in the structure factor at the Γ point.

3.2 Paramagnetic phase

For the second set of parameters, Eq. (13), all interac-
tions up to the third neighbor are antiferromagnetic.
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Fig. 7 Inverse spin-spin correlation function for the puta-
tive paramagnet as a function of Λ. Shown here is a com-
parison of the � = 1 and � = 3 flow obtained from both
codes. The dotted line is a fit of a Λ−1 power law to the
data at Λ/J ∈ [1.0, 4.0]. For Λ/J ≥ 0.5, the Λ−1 behavior
is followed almost perfectly. At smaller Λ/J , the � = 1 and
� = 3 flows disagree: The � = 1 curve smoothly approaches
Λ = 0 (staying above the power law), indicating antiferro-
magnetic correlations. By contrast, the � = 3 curve displays
a downward cusp, similar to Fig. 2, and thus predicts an
ordered state

Consistent with prior work using one-loop fRG [21],
both codes find a paramagnetic ground state for � = 1,
indicated by a smooth and regular flow down to Λ = 0
in Fig. 7.

Remarkably, the � = 3 data predicts a qualitatively
different phase: There is a divergence in the spin cor-
relations at ΛT/J ≈ 0.24, indicating an ordering tran-
sition at a scale roughly three times lower than for the
ferromagnetic ordering instability discussed in the pre-
vious section. Such a reduced ordering scale is not unex-
pected for an exchange-frustrated spin system when
compared to an unfrustrated one, but sometimes hard
to establish.

Probing the structure factor in the vicinity of the
divergence reveals a strong enhancement of magnetic
correlations compared to the � = 1 flow, as indicated by
sharpened Bragg peaks around the M = (0, π, π) points
in Figs. 1 and 9. These correspond to antiferromagnetic
correlations between planes orthogonal to the vector
connecting the second nearest-neighbors along diago-
nals of the faces in the cubic unit cell (shown in purple
in Fig. 2). Our result is consistent with earlier observa-
tions of long-range (0, π, π) order neighboring the para-
magnetic phase [21]. Yet, the mfRG flows obtained from
both codes suggest a rather strong modification of the
respective phase boundaries as the coupling parameters
investigated here were previously predicted to be deep
in the non-magnetic regime.

In the vertex (see Fig. 8) and self-energy, there is
again very good quantitative agreement between both
codes. At Λ/J = 0.05, small quantitative differences
between code #1 and #2 appear in the density com-
ponent γd

t of the t-reducible vertex, consistent with the
earlier remark that it is the most difficult component
to resolve well.

The � = 1 and � = 3 flows are very similar down
to Λ/J ≥ 1. Contributions of � > 1 terms become sig-
nificant at Λ/J ≈ 1 and eventually lead to an order-
ing instability induced by a peak in the γs

t component
that diverges at Λ/J ≈ 0.24. In contrast to the fer-
romagnetic case, this peak is negative, indicating anti-
correlation. Along the fermionic ν frequency axis, the
vertex shows an extended structure with multiple peaks
of similar magnitude to the one on the bosonic axis.
Since the K1 class has no fermionic frequency, this
means that, remarkably, other classes reach an order
of magnitude comparable to K1, as shown explicitly in
Fig. 10. Consequently, vertex structures along fermionic
frequency axes, in contrast to the ferromagnetic transi-
tion, become sizeable. It is therefore crucial to resolve
the full three-dimensional frequency structure in K3.
Though numerically expensive, a large number of mesh
points is necessary to ensure sufficient accuracy, as inad-
equate resolution of features along the fermionic fre-
quency axes can strongly affect the fRG flow. This is
even more important for multiloop flows, where inter-
polation errors might accumulate during the iteration
over loop orders.

4 Technical aspects

To conclude our benchmark calculations, we discuss
some of the particularly relevant technical aspects (see
Table 1) which are needed to obtain confidence that we
have sufficient degree of control over numerical errors.
In doing so, we will also connect to the existing litera-
ture and scrutinize some of the algorithmic approaches
which are routinely employed in the pffRG community.

4.1 Frequency grids

Both the self-energy and two-particle vertices are func-
tions of Matsubara frequencies, which are continuous
in the zero-temperature limit. A numerical implemen-
tation has to sample these functions on a finite grid and
interpolate their values in between the sampling points.
In many previous works (see e.g. Refs. [4,19,46]), the
same frequency grid was chosen for the self-energy and
all reducible vertices, usually featuring logarithmically
increasing distances between adjacent grid points start-
ing from some small but finite frequency. The inten-
tion behind such a choice of frequencies was to resolve
the structure around zero frequency with high accu-
racy while coarse-graining high-frequency tails. More-
over, each vertex component was parametrized in terms
of the three bosonic transfer frequencies, instead of
the channel-specific mixed bosonic-fermionic frequency
treatment utilized by codes #1 and #2.

Although most of the structure of the two-particle
vertex is indeed centered around zero frequency, its pre-
cise extent strongly depends on the cutoff scale Λ (see,
e.g., Figs. 4 and 8) and a static frequency grid will there-
fore fail to faithfully resolve the evolution of frequency
structures under the fRG flow. Furthermore, multipeak
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Fig. 8 Frequency structure of self-energy and t-reducible vertex for the putative paramagnet at different values of Λ/J for
� = 1 and 3 flows. As the � = 3 flow diverges at Λ/J ≈ 0.24, only � = 1 is shown at Λ/J = 0.05. The same cuts through the
three-dimensional frequency structure of the vertices are shown as in Fig. 4. Again, a peak in the γs

t,〈ij〉 component (second
column) indicates strong correlations that become stronger as Λ is further decreased. In contrast to the ferromagnetic case,
this peak is negative, indicative of antiferromagnetic correlations, and there is a sizeable contribution of γs

t for nonzero
fermionic frequencies ν, ν′ (third column), particularly for � = 3

structures that are present in several vertex components
will in general not be captured by logarithmic sampling.

To address both shortcomings, codes #1 and #2
introduce hybrid frequency meshes using linear spac-
ing around zero frequency augmented by an algebraic
(code #1) or logarithmic (code #2) part to capture
the high-frequency behavior in the asymptotic classes
Kn or Qn. The parameters of these meshes are then
independently rescaled for different vertex components
making use of sophisticated scanning routines (see [1,2]
for further details).

4.2 Evaluation of bubble integrals

Having fixed the frequency discretization, the evalua-
tion of frequency integrals in loop and bubble func-
tions necessitates the use of a quadrature rule. In earlier
implementations, a trapezoidal quadrature was used,

with integration points coinciding with the frequency
mesh of the vertex. As discussed above, this procedure
yields good resolution around the origin of the integra-
tion variable. For 1� calculations, the bubble function
consists of a single-scale and a full propagator, the for-
mer being more strongly peaked than the latter. As the
integration variable was usually shifted such that the
origin coincided with the more important pole of the
single-scale propagator, at least the dominant contri-
bution was accounted for in previous implementations.

In higher loops, however, both propagators enter the
bubble on equal footing, necessitating adaptive routines
to deal with the enriched frequency structure. This is
illustrated in Fig. 11, where we compare the results of
integrating the bare susceptibility

χΛ
0 (ω) =

1

4π

∫
dν GΛ

0 (ν + ω
2 )GΛ

0 (ν − ω
2 ) ,
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Fig. 9 Structure factor for the paramagnetic setup along a
high-symmetry path of the cubic lattice Brillouin zone. The
results are in good agreement between both codes, both for
� = 1 and � = 3, showing that correlations are strongest
around the M point. Here, the peak sharpens with increas-
ing loop order, and the � = 3 flow predicts enhanced long-
range correlations

Fig. 10 Decomposition of the γs
t,〈ij〉(ω, ν, ν′) vertex in the

paramagnetic setup as in Fig. 5, for the � = 3 flows at
Λ/J = 0.3. Here, all asymptotic classes are of the same
order of magnitude, and structures with multiple peaks are
present along the fermionic frequency cut (second column)

Fig. 11 Evaluation of bubble integrals. Comparison of the
bare susceptibility χΛ

0 (ω) = 1
4π

∫
dν GΛ

0 (ν + ω
2
) GΛ

0 (ν − ω
2
)

obtained numerically via adaptive and static quadrature.
The adaptive method utilizes the Simpson rule, while the
static method applies a trapezoidal rule to a fixed loga-
rithmic frequency discretization (see main text for more
details). For frequencies larger than the scale set by the cut-
off Λ, the non-adaptive integration becomes unstable and is
plagued by rapid oscillations. By contrast, the adaptive rou-
tine yields stable results even beyond the small frequency
regime and is therefore crucial to obtain accurate results for
the vertex functions and their asymptotic behavior

i.e., the simplest bubble-like integral encountered dur-
ing the fRG flow. Using trapezoidal quadrature over
a fixed set of 60 logarithmically distributed integration
points between νmin = 10−3J and νmax = 250J , we find
strong deviations for frequencies ω/Λ � 1 ∼ 10 com-
pared to the results produced with the adaptive routine
of code #2 (see Ref. [2] for further details). Moreover,
at small cutoffs Λ/J � 1, the non-adaptive result is
plagued by rapid oscillations, rendering it numerically
unstable and thus inapplicable. Analytically, an asymp-
totic falloff with a power law ω−2 is expected, and this
is reproduced perfectly by the adaptive integrator.

We emphasize that the test case considered here
merely constitutes the simplest version of a bubble-like
integral computed within the pffRG flow. In general,
the propagators in bubble functions are dressed with
self-energy insertions and additionally contracted with
two-frequency dependent vertices. One should, there-
fore, expect even larger numerical errors for full fRG
calculations that utilize non-adaptive quadrature.

Table 1 Technical summary of the algorithmic choices in code #1 and #2

Code #1 Code #2

Vertex decomposition K1, K2, K3 Q1, Q2, Q3

Frequency mesh Adaptive linear and algebraic Adaptive linear and logarithmic
Integration rule Adaptive 21-point Gauss–Kronrod rule Adaptive Simpson rule + Richardson extrapolation
ODE solver 5th order Cash–Carp 3rd order Bogacki–Shampine
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(a) (b)

(d)(c)

Fig. 12 Scaling of relative runtime with numerical parameters. Median computational runtime of 60 samples of a single
calculation of the right-hand side of the flow equation for Λ/J = 1 relative to the runtime of the fastest computation in
each series. Calculations start from a parquet solution to make the code integrate over non-trivial frequency structures. The
numerical parameters for all plots are fixed to Nω = 50, Nν = 30, ξ = 4 and � = 1, if not varied. The asymptotic behavior
expected analytically is achieved in all cases (dashed red lines)

4.3 Flow integration

The integration of the RG flow can, in principle, be
performed using any standard solver for ordinary dif-
ferential equations. While earlier works used an Euler
scheme with decreasing step-sizes (see, e.g., Ref. [46]),
we employ higher order solvers in the Runge–Kutta
family with adaptive step-size control to achieve max-
imum accuracy while being numerically efficient to
operate. It is of particular importance to implement
an error-controlling method near ordering instabilities
such as the ferromagnetic setup in Sect. 3, as otherwise
numerical errors may become unacceptably large even
at scales Λ ≈ J .

4.4 Initial condition

The final ingredient to set up the pffRG flow is an
appropriate initial condition. In the UV limit Λ → ∞,
the pseudofermion vertex is given by the bare spin
coupling, which, in numerical calculations, is naturally
implemented using J as the initial condition at a large
but finite value of Λ. The mfRG flow will, by con-
struction, reproduce a solution to the parquet equa-
tions [33–35], given an initial condition consistent with
them. Therefore, we solve the regularized parquet equa-
tions iteratively for an initial scale Λ/J = 5 and use
the resulting self-energy and reducible vertices as a
dynamic, i.e., frequency-dependent starting point for
the fRG flow [1].

4.5 Scaling analysis

Most of the runtime needed to evaluate the right-
hand side of the flow equations is spent calculating

the derivative of the high-dimensional two-particle ver-
tex as given in Eq. (6). In comparison, the computa-
tion time spent for the self-energy derivative of Eq. (5)
is negligible. Consequently, the (asymptotic) computa-
tional complexity is given by

O
(
N2

ξ × NωN2
ν × �

)
,

where Nξ is the number of (symmetry reduced [1,2])
lattice sites, Nω (Nν) the number of bosonic (fermionic)
frequencies, and � denotes the number of loops. The
total number of sites, in turn, is expected to follow a
O(ξd) dependence, where ξ is the maximal correlation
length considered and d is the spatial dimensionality of
the underlying lattice, with d = 3 for the simple cubic
lattice at hand.

To demonstrate that we indeed reach this asymp-
totic algorithmic scaling also in numerical implemen-
tations we show, in Fig. 12, the median runtime data
for 60 evaluations of the right-hand side of the fRG
equations obtained using code #2. For the number of
bosonic and fermionic frequencies, the expected linear
and quadratic behavior, respectively, is achieved over
the whole parameter range. Note that, due to the adap-
tive integration and parallelization used, slight devia-
tions from the theoretical scaling are to be expected.
Similarly, the scaling in the maximal correlation length
ξ is achieved for the whole parameter range. In the num-
ber of loops, the linear scaling sets in at � = 5, while
for smaller � a steeper slope is found. We attribute this
behavior to the contributions of higher loops becoming
successively smaller, leading to faster converging adap-
tive loop integrals for given absolute and relative toler-
ances. That way, the initial overhead of computing two
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Table 2 Number of (symmetry reduced) vertex flow equa-
tions for Heisenberg models on the cubic lattice as a function
of the maximum correlation length ξ. The number of posi-
tive frequencies is fixed to 60 (50) for the bosonic (fermionic)
Matsubara axis

Max. correlation length ξ No. flow equations

3 9 183 600
5 24 795 720
7 53 264 880
9 101 019 600

11 167 141 520
13 258 059 160

(three) loop corrections, which require twice (thrice)
the number of integrals to be evaluated compared to
� = 1, diminishes with increasing loop number and the
analytically expected scaling, linear in �, is recovered.

As a final remark, we mention that the number of
vertex flow equations, another measure of algorithmic
complexity, grows rapidly as one increases the maximal
correlation length considered for a given lattice model.
This is summarized in Table 2.

5 Conclusions

We benchmarked two state-of-the-art codes for solving
pseudofermion functional renormalization group equa-
tions. Our analysis considered both physical observ-
ables, i.e. spin-spin correlation functions and struc-
ture factors, as well as fermionic vertex functions (self-
energy and two-particle vertex) for ferro- and antifer-
romagnetic models on the simple cubic lattice.

For the nearest-neighbor ferromagnet, both codes
were in quantitative agreement at least until Λ/J �
0.76, where they consistently predicted a breakdown of
the RG flow, indicated by a sharp peak (for � = 1) or a
divergence (for � = 3) in the spin-spin correlations. The
energy scale ΛT associated with this numerical insta-
bility slightly differed, which necessitated an in-depth
comparison of the influence of the numerical frequency
grid on the obtained results. We found that both fRG
solvers, due to the emergence of a singular peak in the t
reducible vertex functions, become sensitive to the pre-
cise mesh spacing and thus predict marginally different
critical scales, although the physical conclusion drawn
from the RG flow, i.e. the onset of long-range ferromag-
netic order, remains the same.

For the antiferromagnetic setup, the � = 1 results
obtained by both codes were in agreement with one
another and previous studies [21], predicting a para-
magnetic state, signified by a regular RG flow down
to the infrared. For � = 3, similar numerical agreement
between the two codes was found. However, the physical
results changed qualitatively: the flow of the spin-spin
correlator diverged around Λ/J ≈ 0.24, accompanied
by sharp Bragg peaks at the M points indicating the
formation of antiferromagnetic order at low tempera-

tures. This reinstantiates the importance of including
higher loop corrections in pffRG to avoid overestimat-
ing the extent of paramagnetic phases and to obtain
more accurate predictions of ground states in frustrated
quantum magnets.

We also elaborated on the importance of employing
adaptive numerical algorithms to obtain robust results
at all stages of the flow. More explicitly, there are
extended structures with multiple peaks in the three-
dimensional frequency dependence of several vertex
components. As these structures are sizable, it is cru-
cial to resolve them in an accurate manner. We found
fixed logarithmic frequencies to be insufficient for struc-
tures not centered at zero frequency, and rely instead on
adaptive frequency meshes that have been specifically
optimized for pffRG vertices. Furthermore, we demon-
strated that the commonly employed quadrature of a
trapezoidal rule over a static, logarithmic mesh fails to
produce the analytically expected behavior of bare bub-
ble integrations at large frequencies. It is thus unsuit-
able for providing the essential Matsubara integrals for
error-controlled fRG flows. By contrast, the implemen-
tations presented and benchmarked here solve these
problems using highly accurate, yet efficient adaptive
routines (see Table 1). We thus believe that, moving
forward, they will be widely used for unbiased calcu-
lations of (multiloop) ground-state phase diagrams of
frustrated magnets from pffRG.
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Abstract. The observation of strongly correlated states in moiré systems has renewed the conceptual
interest in magnetic systems with higher SU(4) spin symmetry, e.g., to describe Mott insulators where the
local moments are coupled spin–valley degrees of freedom. Here, we discuss a numerical renormalization
group scheme to explore the formation of spin–valley ordered and unconventional spin–valley liquid states
at zero temperature based on a pseudo-fermion representation. Our generalization of the conventional
pseudo-fermion functional renormalization group approach for su(2) spins is capable of treating diagonal
and off-diagonal couplings of generic spin–valley exchange Hamiltonians in the self-conjugate representation
of the su(4) algebra. To achieve proper numerical efficiency, we derive a number of symmetry constraints
on the flow equations that significantly limit the number of ordinary differential equations to be solved. As
an example system, we investigate a diagonal SU(2)spin ⊗ U(1)valley model on the triangular lattice which
exhibits a rich phase diagram of spin and valley ordered phases.

1 Introduction

Moiré materials that exhibit flat bands such as twisted
bilayer graphene (tBG) or certain van der Waals het-
erostructures such as trilayer graphene on hexagonal
boron nitride (TLG/h-BN) have recently been estab-
lished as novel, highly tunable platforms for the study of
strongly correlated electrons. Relative to an almost van-
ishing bandwidth, residual interactions in these mate-
rials can induce a plethora of different many-body phe-
nomena ranging from the formation of correlated insu-
lators [1–4] and superconductors [5–7] to anomalous
quantum Hall effects [8]. However, a microsopic descrip-
tion of these phenomena is a formidable challenge as
the number of of low-energy degrees of freedom is often
increased [9–11] in comparison to conventional Mott
insulators.

More specifically, it has been argued [12,13] that
multi-orbital Hubbard models can describe the flat
band physics in, e.g., TLG/h-BN within the topolog-
ically trivial regime, where fully symmetric Wannier
states may be constructed [14]. The proposed inter-
action terms for the corresponding Hamiltonians usu-
ally include a generalized Hubbard U [12,13,15] as well
as Hund’s type couplings. Performing a strong cou-
pling expansion where one treats the interactions as the
dominant energy scale, these extended Hubbard mod-

1 With su(4), we refer to the Lie algebra of the Lie group
SU(4).

a e-mail: gresista@thp.uni-koeln.de (corresponding
author)

els can then be mapped to su(4)1 spin–valley Hamilto-
nians that may be used as a starting point to inves-
tigate the nature of the correlated insulating states.
The so-derived su(4) models bear a close resemblance
to Kugel–Khomskii models [16] that have a long his-
tory in the study of transition metal oxides, where they
are used to capture the Jahn–Teller physics of inter-
twined spin and orbital degrees of freedom. Increasing
the number of relevant microscopic degrees of freedom
(in comparison to conventional quantum magnets) has
been particularly appreciated to boost quantum fluc-
tuations independent of, e.g., lattice geometries [17],
which has made Kugel–Khomskii models a recurring
target in the search for unusual many-body states such
as quantum spin–orbital liquids [18–21]. As such, one
might expect the su(4) spin–valley physics relevant to
the correlated insulating states of moiré materials to
hold similar promise for the observation of spin–valley
liquid states with macroscopic entanglement and poten-
tially long-range, topological order.

In this manuscript, we present a powerful numeri-
cal scheme to analyze such su(4) spin–valley (or spin–
orbital) models based on a functional renormalization
group (FRG) technique. Our approach is based on the
pseudo-fermion FRG (pf-FRG) [22], approximating the
elementary spin operators of the six-dimensional, self-
conjugate representation of su(4) by auxiliary complex
fermions combined with an on-average constraint on
the number of particles per site. Our approach allows
to go beyond mean-field level by treating competing
instabilities in different interaction channels on equal
footing, and is able to capture both, long-ranged spin
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and/or valley ordered states as well as spin–valley liq-
uid phases. In expanding previous work (by some of
us) [21], we extend the range of applicability of this
approach to models with off-diagonal interactions in
either spin or valley space by formulating an efficient
vertex parametrization derived from a meticulous sym-
metry analysis. We demonstrate the feasibility of this
method by studying a spin–valley Hamiltonian with
SU(2)spin ⊗ U(1)valley symmetry where we identify a
plethora of spin and valley orderded phases from a
state-of-the-art numerical implementation of pf-FRG
[23,24].

The remainder of this manuscript is structured as
follows. To begin with, we introduce the spin–valley
Hamiltonian of interest on a general level and discuss
its specific form for TLG/h-BN as a concrete example
in Sect. 2. We will continue by reviewing the pf-FRG
approach (Sect. 3), its generalization for su(4) models
as well as the implementation of model specific symme-
tries (Sect. 4). Finally, numerical results for the phase
diagram of a SU(2)spin ⊗ U(1)valley model on the trian-
gular lattice are presented and examined in Sect. 5.

2 Model

Microscopically, the SU(4) models of interest in this
manuscript can be cast in terms of a general Hamilto-
nian

H =
1

8

∑

〈ij〉
J(1 + σiσj)(1 + τ iτ j) , (1)

which couples two elementary su(2) degrees of free-
dom, captured by the operators σ and τ , which might
denote a spin and valley (or oribtal) degree of free-

dom. The overall SU(4) symmetry of the Hamiltonian
arises from the balanced couplings of equal strength
in both degrees of freedom, i.e., J is identical for the
Heisenberg-like coupling of spins σiσj on sites i and j
(with σi = (σx

j , σy
j , σz

j )T ) and a similar interaction of
the valley degrees of freedom τ iτ j . Such valley degrees
of freedom arise, in the context of tBG and related
moiré materials, from the Dirac cones in the original
graphene bands, which hybridize between the two lay-
ers upon twisting and thereby add an extra index [25]
to the moiré bands, as illustrated in Fig. 1. Before draw-
ing broad attention in the context of moiré materials,
the spin–orbital variant of this model has been widely
studied as Kugel–Khomskii model [16], often in con-
nection with Jahn–Teller physics in transition metal
oxides where spin and orbital ordering are intertwined
[26]. We note that while we will frame our discussion
of the SU(4) model (1) in the language of spin-valley
physics relevant to moiré materials, the presented pf-
FRG approach is equally applicable in the study of such
spin–orbital models. We will return to this point in the
discussion section at the end.

In what we will discuss in the following, we will put
a focus on the self-conjugate representation of su(4),
where the spin–valley operators can be represented in
terms of fermionic creation and annihilation operators
as

σμ
i τκ

i ≡ σμ
i ⊗ τκ

i = f†
islθ

μ
ss′θ

κ
ll′f

†
is′l′

σμ
i ≡ σμ

i ⊗ τ0
i = f†

islθ
μ
ss′f

†
is′l

τκ
i ≡ σ0

i ⊗ τκ
i = f†

islθ
κ
ll′f

†
isl′ , (2)

with a local half-filling constraint

f†
islf

†
isl = 2 (3)

θ

θ

Γ

K1

K1′

K2

K2′

Γm

Γm

Km

K ′
m

Km

K ′
m

(a) (b)

Fig. 1 a Moiré pattern emerging in two stacked layers of graphene with a relative twist angle θ. Clearly visible are the
different regions with AA, AB, and BA stacking leading to a triangular super-lattice structure. b Construction of the two
degenerate mini Brillouin zones from the difference of the K (or K’) points of the two layers of graphene. In addition to the
spin degree of freedom, indicated by the grey arrows, the electrons obtain a valley degree of freedom due to the possibility
of being in either one of the mini Brillouin zones at the two valleys (at the K and K’ points) of the graphene band structure
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subject to every lattice site, where summation over
repeated spin indices s and valley indices l is implied.
Here, θμ denotes a Pauli matrix with μ ∈ {0, 1, 2, 3}
and θ0 = 1. Allowing also for more generic, i.e., SU(4)
breaking, interactions, any bilinear spin–valley Hamil-
tonian can be written as

H =
1

8

∑

ij

[
(σμ

i Jμν
s,ijσ

ν
j )(τκ

i Jκλ
v,ijτ

λ
j ) + Iij n̂in̂j

]

≡ 1

8

∑

ij

[
(σμ

i ⊗ τκ
i )

(
Jμν

s,ij ⊗ Jκλ
v,ij

)
(σν

j ⊗ τλ
j )

+Iijn̂in̂j

]
, (4)

where Jμν
s,ij ⊗ Jκλ

v,ij is understood as the Kronecker
product of the spin and valley exchange matrices
and summation over repeating μ, ν, κ or λ is again
implied. Here, n̂i is the density operator n̂i ≡ σ0

i τ0
i =

f†
islf

†
isl, and the term proportional to the coupling

Iij is needed to potentially cancel the density term
∼ σ0

i τ0
i J00

s,ijJ
00
v,ijσ

0
j τ0

j , which does not appear in pure
su(4) spin models as, e.g., the SU(4) symmetric Hamil-
tonian in Eq. (1).

To keep the numerical effort for employing our pf-
FRG approach at a manageable level, we assume a spe-
cific form of the exchange matrices, namely, that both,
the spin and the valley exchange only couple bilinears
of spin/valley or density operators and that the spin
exchange is Z2 ×Z2 ×Z2 symmetric, and thus

Js,ij =

⎛
⎜⎜⎝

Jd
s,ij 0 0 0
0 Jx

s,ij 0 0
0 0 Jy

s,ij 0
0 0 0 Jz

s,ij

⎞
⎟⎟⎠

Jv,ij =

⎛
⎜⎜⎝

Jd
v,ij 0 0 0
0 Jxx

v,ij Jxy
v,ij Jxz

v,ij

0 Jyx
v,ij Jyy

v,ij Jyz
v,ij

0 Jzx
v,ij Jzy

v,ij Jzz
v,ij

⎞
⎟⎟⎠ .

(5)

This form, although it spoils the generality of Eq. (4) it
is nevertheless relevant to certain practical applications.
For instance, the effective Hamiltonian for TLG/h-BN
[11] can be recast to this form. Originally, the former is
often given as

H =
J1

8

∑

〈ij〉
(1 + σiσj)(1 + τ iτ j)

+
J2

8

∑

〈〈ij〉〉
(1 + σiσj)(1 + τ iτ j)

+
1

8

∑

〈ij〉
J1

p;ij(1 + σiσj)(τ
x
i τx

j + τy
i τy

j )

+
1

8

∑

〈ij〉
J2

p;ij(1 + σiσj)(τ
x
i τy

j − τy
i τx

j ) + O

(
t3

U2

)
,

(6)

which, in addition to SU(4) symmetric nearest-neigh
bour (∼ J1) and next-nearest-neighbour (∼ J2) inter-
actions, contains both diagonal ∼ J1

p,ij and off-diagonal

∼ J2
p,ij valley exchange that breaks the SU(4) symme-

try down to an SU(2)spin ⊗ U(1)valley symmetry. Com-
paring this model to the form of the general spin–valley
Hamiltonian defined in Eq. (4), the nearest-neighbour
exchange matrices can be written as

Js,ij = 1

Jv,ij =

⎛
⎜⎝

J1 0 0 0
0 J1 + J1

p;ij J2
p;ij 0

0 −J2
p;ij J1 + J1

p;ij 0
0 0 0 J1

⎞
⎟⎠ ,

(7)

and the next-nearest-neighbour exchange is fully SU(4)
symmetric, showing that they are indeed captured by
the exchange matrices defined in Eq. (5).

3 pf-FRG for spin–valley models: an
overview

We now proceed to the core methodological advance-
ment of this manuscript, which will be laid out in this
section—the extension of the conventional pf-FRG to
spin–valley models described by Hamiltonians of the
form given in Eq. (4), with general, diagonal, and off-
diagonal couplings as defined by Eq. (5). To set the
stage, we will first revisit the flow equations of the con-
ventional pf-FRG approach for su(2) spins and explain
how the numerical solution of the flow equations can
be used to determine whether and what type of mag-
netic order forms for a particular spin Hamiltonian at
zero temperatures. We then proceed to the adapted pf-
FRG approach for spin–valley models, for which we
derive an efficient parametrization of the self-energy
and two-particle vertex in what is a direct extension of
the parametrization for su(2) spin models with generic
two-spin interactions [27]. Our particular focus is on
constraints that symmetries of the spin–valley Hamil-
tonian pose on the parametrized vertex functions—very
similar to the su(2) case but with slight differences
which we especially highlight. To put these equations
into numerical practice, we discuss our implementation
of the spin–valley pf-FRG approach and its algorithmic
scaling. This section is intended as an overview stating
the main results of our study important for the imple-
mentation of the pf-FRG for spin–valley models. Read-
ers looking for a more detailed discussion of how the
symmetries of the Hamiltonian lead to the parametriza-
tion and symmetry constraints are referred to Sect. 4.

3.1 Pseudo-fermion functional renormalization
group

Let us set the stage by revisiting some of the concep-
tual steps of the pseudo-fermion FRG, which has orig-
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inally been formulated for bilinear su(2) spin models
[22] with generic (diagonal and off-diagonal) interac-
tions [27] and later generalized to SU(N) Heisenberg
models [28], in the context of the spin–valley mod-
els at hand. By going to a pseudo-fermion represen-
tation of the original degrees of freedom, one arrives at
a fermionic representation of the original model (with
an additional half-filling constraint) as outlined in the
previous section. One can then proceed to apply the
well-established methods of the fermionic FRG [29,30].

An important distinction to electronic systems is that
the pseudo-fermion Hamiltonian exhibits only a quartic
interaction term and no quadratic kinetic terms. This
readily implies that the free propagator is diagonal in
all its arguments and takes the simple form

G0(1
′, 1) = G0(ω1)δi1′ i1δs1′s1

δl1′ l1δω1′ω1
, (8)

with G0(ω) = (iω)−1. The multi-index 1=(i1, s1, l1, ω1)
consists of a lattice site index i1, a spin index s1, a
fermionic Matsubara frequency ω1 and, for spin–valley
models, the additional valley index l1. To implement
the RG scale, or cut-off, Λ, we multiply a regulator to
the free propagator

GΛ
0 (ω) = G0(ω)(1 − e−ω2/Λ2

), (9)

where we choose a smooth regulator for improved
numerical stability. The pf-FRG flow equations are then
given as a special case of the general fermionic FRG
equations by assuming that the flowing self-energy is,
just as the free propagator, diagonal in all its argu-
ments. This assumption is true for arbitrary spin-model
bilinear in su(2) spin operators [27]. For spin–valley
Hamiltonians, however, we will show in Sect. 4 that
this is only the case if the couplings are diagonal in
either the spin or valley sector. That is why, in this
work, we always consider couplings diagonal in the spin
sector as stated in Eq. (5). In the context of moiré
materials, most physically relevant spin–valley models
are indeed of this form. This additional assumption,
therefore, leaves our method still generally applicable
to most models of interest.

In the original implementation of the pf-FRG [22] and
most works since, then the flow equations are truncated
using the Katanin truncation scheme [31], which we also
adapt here2. In the Katanin truncation, only the self-
energy ΣΛ and the two-particle vertex ΓΛ are consid-
ered, while higher order vertex functions are neglected.

2 More recently, an alternative multi-loop truncation has
been introduced in the context of electronic FRG calcula-
tions [32], which was subsequently also adapted in the con-
text of pf-FRG [23,24]. Such a multi-loop approach can also
be applied in the context of spin–valley pf-FRG calculations,
but will be left to future exploration. Additionally, one may
further improve the efficiency of the method by adapting
the cluster FRG scheme [33].

The flow equations are then given by

d

dΛ
ΣΛ(1′, 1) = − 1

2π

∑

2

ΓΛ(1′, 2, 1, 2)SΛ(ω2)

(10)

for the self-energy and

d

dΛ
ΓΛ(1′, 2′, 1, 2)

= − 1

2π

∑

3,4

[
ΓΛ(1′, 2′, 3, 4)ΓΛ(3, 4, 1, 2)

−ΓΛ(1′, 4, 1, 3)ΓΛ(3, 2′, 4, 2) − (3 ↔ 4)

+ΓΛ(2′, 4, 1, 3)ΓΛ(3, 1′, 4, 2) + (3 ↔ 4)

]

×GΛ(ω3)∂ΛGΛ(ω4), (11)

for the two-particle vertex. Here, the single-scale prop-
agator is defined as SΛ ≡ −∂ΛGΛ|ΣΛ=const.. Note
that the flow equations are formulated in the T → 0
limit and the sums should therefore be understood as∑

1 ≡ ∑
i1s1l1

∫
dω1.

The fermionic representation of the spin–valley oper-
ators, as presented in the previous section, necessi-
tates the enforcement of a local half-filling constraint

(f†
islf

†
isl = 2) to determine the dimensionality of the

local Hilbert space. To this end, we employ the same
technique used for su(2) models, where the constraint
is fulfilled only on average by explicitly implementing
particle-hole symmetry on the level of the vertex func-
tions [22–24], as will be discussed in detail in Sect. 4.

Numerically, computing the expectation value 〈f†
islf

†
isl〉

from the self-energy and two-particle vertex, we confirm
that the average constraint is indeed fulfilled during the
entire pf-FRG flow. Although particle-number fluctua-
tions violating the exact constraint have been shown to
be sizeable, recent studies suggest that they leave the
physical results obtained from the pf-FRG qualitatively
unaffected [21,23,34]. We note that in contrast to su(2)
spin models, the physically relevant filling for spin–
valley models depends on the considered material and

may also be at quarter-filling (f†
islf

†
isl = 1) [11,35], cor-

responding to the fundamental representation of su(4).
At quarter-filling, however, the spin–valley Hamiltonian
is no longer particle–hole symmetric and the constraint
cannot be enforced in the same efficient manner. In this
work, we therefore limit ourselves to half-filling.

To identify the ground state of a model of interest,
we numerically solve the flow equations (as discussed
in more detail below in Sect. 3.3) and thereby calculate
the flow of various correlation functions from the flow
of the vertex functions. In its most general we define a
spin-valley-spin-valley correlation function

χμνκλ
ij (ω) =

∫ ∞

0

dτeiωτ 〈Tτ (σμ
i ⊗ τκ

i ) (τ)

×(σν
j ⊗ τλ

j )(0)
〉
, (12)
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where Tτ is the time-ordering operator. From this gen-
eral definition, we can then read off the form of spin–
spin correlations

χs,μν
ij ≡ χμν00

ij ∼
〈
σμ

i σν
j

〉
, (13)

as well as valley–valley correlations

χv,κλ
ij ≡ χ00κλ

ij ∼
〈
τκ
i τλ

j

〉
. (14)

A thermal phase transition to long-range, symmetry-
breaking order in the spin or valley sector at some
finite temperature can formally be detected by a diver-
gence in the RG flow of the corresponding correlation
at some breakdown scale Λc [28], as shown in Fig. 2a.
Due to finite numerical resolution, however, they often
manifest as a kink or a peak in the susceptibility. The
momentum space profile of the dominant structure fac-
tor close to the breakdown scale, i.e., the Fourier trans-

form of the static correlation χ
Λs/v
ij (ω = 0), then indi-

cates the type of symmetry-breaking. Since the solu-
tion of the flow equation below the breakdown scale
Λc is no longer physical, this only allows us to detect
the phase transition that occurs at the largest break-
down scale if there are multiple subsequent transitions.
This might be the case when spin and valley degrees
of freedom exhibit different ordering transitions at two
distinct energy scales. If, in this scenario, the spin sector
orders at the larger of the two energy scales, we cannot
directly determine the ground-state order of the valley
sector from the flow of the valley–valley correlations.
Instead, we need to fall back to, for instance, mean-
field arguments as proposed in [21] to determine the
most likely valley order. If, on the other hand, the cor-
relations show no flow breakdown, both spin and valley
degrees of freedom do not order, indicative of a ground
state that remains paramagnetic or exhibits spin–valley
liquid behavior.

These two scenarios are illustrated in Fig. 2a, b. Both
panels show the flow of the structure factor at the dom-
inant momentum for a magnetically ordered phase with
dominant valley order (a) and the paramagnetic state at
the SU(4) point [36] (b) where the spin–valley Hamilto-
nian corresponds to Eq. (1). In the magnetically ordered
phase of panel (a), we see a clear flow breakdown in
the valley structure factor χΛv, which manifests as a
peak or divergence, depending on the vertex truncation
length L (further discussed in Sect. 3.3). The spin struc-
ture factor χΛs shown by the purple lines is strongly
suppressed. At the SU(4) point, on the other hand,
the flow of the structure factor is smooth and convex
down to the lowest energy scale we can reliable cal-
culate (Λ = 0.02J), indicating a paramagnetic ground
state. Here, spin and valley correlations are identical
due to the global SU(4) symmetry of the Hamiltonian
(and indistinguishable in our plot).

3.2 Vertex parametrization and symmetry
constraints

To make the solution of the flow equations numerically
feasible, one needs to keep the overall number of differ-
ential equations needed to capture the flow equations
as small as possible. Practically, this can be achieved by
eliminating redundant calculations through implement-
ing the symmetry constraints which the Hamiltonian
poses on the self-energy and the two-particle vertex. A
comprehensive symmetry analysis of this sort has been
carried out for generic su(2) spin models [27], which
here will be generalized to the spin–valley Hamiltoni-
ans of interest. Details of this symmetry analysis will
be discussed in Sect. 4, while we will report its main
findings in the following.

The first important finding is that symmetries dictate
that the self-energy is completely diagonal and can be
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Fig. 2 Flow of the spin and valley structure factor in a magnetically ordered phase (a) and a paramaganetic phase
(b) for different values of the vertex truncation length L. All structure factors are shown at the momentum at which they
are maximal. The insets zoom into the flow at small cut-offs. In the magnetically ordered phase, we clearly see a breakdown
of the flow in the valley sector, which manifests as a peak for small L and a more clear divergence when increasing L. In
the paramagnetic phase, the flow is smooth and convex down to about Λ/J = 0.02, which is the smallest scale for which
our calculations are numerically reliable
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parametrized by a single function Σ(ω) as

Σ(1′, 1) = Σ(ω)δs′sδl′lδi′iδω′ω. (15)

We emphasize again that this is only the case if the
interactions remain diagonal in either the spin or valley
sector. For Hamiltonians with off-diagonal interactions
in both sectors, the self-energy will not be diagonal
in the spin and valley indices, greatly increasing the
numerical cost for the solution of the flow equations.
The two-particle vertex can be parametrized as

Γ (1′, 2′, 1, 2)

=
[
Γμκλ

i1i2
(s, t, u) θμ

s1′s1
θμ

s2′s2
θκ

l1′ l1θ
λ
l2′ l2 δi1′ i1δi2′ i2

−(1′ ↔ 2′)
]

δω1′+ω2′−ω1−ω2
, (16)

with the three bosonic transfer frequencies

s = ω1′ + ω2′

t = ω1′ − ω1

u = ω1′ − ω2.

(17)

This parametrization is of the same form as for su(2)
spin models—apart from an increased number of com-
ponents due to the valley sector ∼ θκ

l1′ l1θ
λ
l2′ l2 with

the corresponding indices κ and λ. If we assume the
Hamiltonian to be diagonal in the spin sector, we will
only need to consider components diagonal in the spin
∼ θμ

s1′s1
θμ

s2′s2
, with the corresponding index μ (and

vice versa for a system with a diagonal valley Hamil-
tonian). The basis functions of the parametrization are
constrained by the symmetries of the Hamiltonian as

Σ(ω) ∈ iR

Σ(ω) = −Σ(−ω) (18)

Γμκλ
i1i2

(s, t, u) ∈
{
R if ξ(κ)ξ(λ) = 1

iR if ξ(κ)ξ(λ) = −1

Γμκλ
i1i2

(s, t, u) = Γμλκ
i2i1

(−s, t, u)

Γμκλ
i1i2

(s, t, u) = ξ(κ)ξ(λ)Γμκλ
i1i2

(s,−t, u)

Γμκλ
i1i2

(s, t, u) = ξ(κ)ξ(λ)Γμλκ
i2i1

(s, t,−u), (19)

where we defined the sign function

ξ(κ) =

{
1 if κ = 0

−1 otherwise
. (20)

These are the same relations as for the su(2) case, apart
from a missing constraint relating the s und u frequen-
cies in the two-particle vertex (c.f. Eq. (14) in Ref. [27]).
This is a consequence of the Hamiltonian only being
invariant under a global particle–hole symmetry instead
of the local particle–hole symmetry under which the
su(2) Hamiltonian is invariant. We discuss this in more
detail in Sect. 4. The missing relation, however, does not

change the key implications of the constraints, namely
that the basis functions are either completely real or
imaginary, and that values of the vertex functions at
negative transfer frequencies can be inferred from the
positive frequency axes.

The parametrization of the two-particle vertex using
the three transfer frequencies in Eq. (17) is conve-
nient for deriving the flow equations and symmetry
constraints. However, to better capture the asymp-
totic frequency dependence of the two-particle vertex
one can further refine the frequency parametrization
[23,24,37]. The first step is to group the contributions
in the flow equation of the two-particle vertex given
in Eq. (11) into three channels according to their two-
particle irreducibility. This results in a particle–particle
(pp), direct particle–hole (dph), and crossed particle–
hole (cph) channel, which correspond to the three con-
tributions on the right-hand side (RHS) of Eq. (11), in
the respective ordering. In these terms, the flow equa-
tion for the two-particle vertex can be written as

d

dΛ
ΓΛ = ġΛ

pp + ġΛ
dph + ġΛ

cph, (21)

and the vertex is parametrized (stating only the fre-
quency dependence) as

ΓΛ(s, t, u) = ΓΛ→∞ +
∑

c

gΛ
c (ωc, vc, v

′
c), (22)

where ΓΛ→∞ is the bare two-particle vertex at infinite
cut-off. Each channel gc(ωc, vc, v

′
c) is parametrized by

one bosonic transfer frequency ωc and two additional
fermionic frequencies v′

c, v
′
c. The precise definition of

the frequencies can be chosen in numerous ways. It
is, however, advantageous to choose them, so that the
symmetry constraints of the two-particle vertex given
in Eq. (19) result in equally simple relations for each
channel in the new parametrization. Here, we adapt
the choice of Ref. [24]

ωpp = s vpp = ω1 − s

2
v′

pp =
s

2
− ω1′

ωdph = t vdph = ω1 +
t

2
v′

dph = ω1′ − t

2

ωcph = u vcph = ω1 − u

2
v′

cph = ω1′ − u

2
,

(23)

and give the resulting symmetry constraints for the
channels in A. Compared to su(2) spin models, no
constraint relating the particle–particle and crossed
particle–hole channel with each other is present, which
can be traced back to the missing symmetry constraint
relating the s and u frequency dependence3.

3 Fortunately, as we will explain in Sect. 3.3, this only
results in an increase of numerical complexity by a factor
of two, making numerical calculations only slightly more
costly.
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To complete the discussion, we still need to state the
initial conditions of the flow equations corresponding
to the self-energy and two-particle vertex in the limit
Λ → ∞, which are given by

ΣΛ→∞(ω) = 0

ΓΛ→∞μκλ
i1i2

(s, t, u) =
1

8
Jμ

s,i1i2
Jκλ

v,i1i2 ,
(24)

with the couplings Jμ
s,i1i2

and Jκλ
i1i2

defined in Eq. (5).

3.3 Numerical implementation

The numerical solution of the pf-FRG flow equa-
tions poses several challenges and necessitates further
approximations to be made. To overcome these chal-
lenges, we employ the state-of-the-art numerical imple-
mentation of Refs. [23,24], where additional details of
the implementation are discussed. Here, we only give a
short overview and discuss some slight technical differ-
ences in the implementation for spin–valley models.

First, one has to truncate the infinite lattice geometry
by a finite lattice graph. Employing the symmetries of
the lattice geometry for which the spin–valley model is
formulated and the local U(1) symmetry present in all
pseudo-fermion Hamiltonians, the spatial dependence
of the two-particle vertex can be reduced to just one
site index j and one arbitrary fixed reference site i0, as
will be derived in Sect. 4. To obtain a finite number of
vertex components ΓΛ

i0j (considering only the lattice site
dependence), we define a finite length scale L and trun-
cate the vertex ΓΛ

i0,j for bond distances d(i0, j) > L,
effectively enforcing a maximal correlation length. The
finite-size effect of this truncation can be observed in
Fig. 2, where several calculations with increasing val-
ues of L were performed for a magnetically ordered and
a paramagnetic phase. In the ordered phase, the flow
breakdown sharpens from a relatively broad peak for
low values of L to a clear divergence for larger values
of L, which is a typical observation. The paramagnetic
phase is, in contrast, not affected by the increase of L
(at least qualitatively). From an algorithmic point of
view, the asymptotic scaling of the computation time
is quadratic in the number of lattice points NL ∼ Ld,
where d is the number of spatial dimensions. This is
due to the fact that the number of vertex components
as well as the sum over all lattice sites included in the
flow equations scale linearly with NL. In this work, we
typically perform calculations at L = 9, above which
the breakdown scale does not significantly change any-
more and the numerical effort is still reasonable.

Since the pf-FRG approach is formulated at zero
temperature, another point we need to address is how
to discretize the continuous Matsubara frequencies. To
accurately resolve all features of the two-particle vertex,
it turns out that particular care needs to be taken in
the choice of frequency meshes [23,24]. To this end, the
frequencies are discretized on adaptive, hybrid linear-
logarithmic meshes, which are updated using a scan-
ning routine between each step of the ordinary dif-

ferential equation (ODE) solver. In addition to con-
tinuous Matsubara frequencies, the flow equations at
T = 0 include frequency integrals which have to be
performed numerically. To calculate these integrals, we
employ an adaptive quadrature which takes both the
relevant features around the origin and the algebraic
decay for large frequencies into account. Values of the
vertex for frequencies not lying on the discrete fre-
quency meshes are obtained by multi-linear interpola-
tion. The computation time asymptotically scales with
the number of (positive) bosonic frequencies NΩ and
(positive) fermionic frequencies Nν as O(NΩ · N2

ν ). A
typical setup for which the two-particle vertex is suffi-
ciently well resolved is NΩ = 40 and Nν = 30, which we
use for all calculations in this work. The computational
effort to compute the self-energy is, compared to the
vertex, negligible, as it only depends on one frequency.
Here, we choose a frequency mesh with NΣ = 250
frequencies. In the su(2) case, only positive frequen-
cies were required, as the symmetry constraints map
all negative frequency components to some positive
counterpart. For spin–valley models, however, due to
the missing symmetry constraint relating the particle–
particle and crossed particle–hole channel (discussed in
Sect. 3.2), we have to also consider negative frequen-
cies for either νc or ν′

c. This results in an additional
factor of two in computation time compared to su(2)
spin models.

The adaptive frequency meshes and integration rou-
tine allow for an efficient evaluation of the RHS of the
flow equations. For the solution of the ODEs them-
selves, we choose the Bogacki–Shampine method [38],
which is a third-order Runge–Kutta method with adap-
tive step size control. We find that this method is a good
compromise between computational cost and numerical
precision.

Although the asymptotic scaling of the computation
time with the number of lattice points and frequencies
is the same as for the su(2) case, more complex spin–
valley models usually require a much larger numeri-
cal effort, as the extra valley index greatly increases
the number of independent two-particle vertex compo-

nents ΓΛ,μκλ
i1i2

, in which the computation time scales lin-
early. With the coupling matrices given in Eq. (5), there
would be NΓ = 4 · 42 = 64 independent vertex com-
ponents (only considering the spin–valley dependence).
In comparison, the parametrization for generic su(2)
models only has NΓ = 42 = 16 components. Fortu-
nately, in almost all physical models, extra symmetries
in the spin and valley space will greatly reduce the num-
ber of independent components. Considering, e.g., an
SU(2) symmetry in the spin space and a U(1) symme-
try in valley space, which is present in several models for
moiré materials [11,35], the number is already reduced
to NΓ = 2 · 6 = 12. For these models, the numerical
effort is similar to su(2) models with off-diagonal inter-
actions and even allows for computations of relatively
large-phase diagrams as will be presented in Sect. 5.
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4 Symmetry classification

To proof the validity of the parametrization and the
symmetry constraints presented in the previous section,
we repeat the symmetry analysis of Ref. [27], where
the pseudo-fermion Hamitonian for su(2) spin models
with generic diagonal and off-diagonal interactions is
considered, but for the spin–valley Hamiltonian given
in Eq. (4). We show that most of the symmetries of
the su(2) pseudo-fermion Hamiltonian are either also
present in the spin–valley Hamiltonian, or can be gener-
alized in a straightforward fashion. There are, however,
some differences that we will highlight in the following.
Most notably, we show that, even at the SU(4) point,
the spin–valley model does not posses a local particle–
hole symmetry that is present in the su(2) case, but
only the corresponding global symmetry. Consequently,
it is also not present in generalizations of the SU(2)
Heisenberg model to SU(N), which might not have been
clearly stated before. This is the reason for the missing
symmetry constraint for the two-particle vertex as pre-
sented in the previous section.

4.1 Local U(1) symmetry

The first symmetry transformation we consider, a local
U(1) transformation, directly follows from the form of
the spin–valley operator given by Eq. (2). It acts on the
fermionic Hilbert space at site i by multiplying a local
phase ϕi ∈ [0, 2π) to the fermionic operators as

gϕi

(
f†

isl

f†
isl

)
g−1

ϕi
=

(
eiϕif†

isl

e−iϕif†
isl

)
, (25)

which clearly leaves all spin–valley operators invariant.
Interpreting the spin–valley Hamiltonian as a fermionic
representation of an su(4) spin model, it is simply a con-
sequence of the choice for the fermionic representation
of the spin operators. It is therefore also present in all
conventional pf-FRG implementations using the stan-
dard pseudo-fermion representation. In that sense, it
is sometimes also referred to as a gauge redundancy
instead of a symmetry, as it is not a symmetry of
the original spin Hamiltonian, but only of the pseudo-
fermion representation. For our functional renormaliza-
tion group approach, we are interested in the implica-
tion of the symmetry on the functional form4 of the
one-particle correlation function

G(1′, 1) ≡ −〈f†
1′f

†
1 〉

= −
∫

dτ ′dτeiτ ′ω′−iτω
〈
f†

i′τ ′s′l′f
†
iτsl

〉

(26)

4 Note that our definition deviates from normal ordering
to be in line with the conventional definition of retarded
Greens functions.

and the two-particle correlation function

G(1′, 2′, 1, 2) := 〈f†
1′f

†
2′f

†
2f†

1 〉

=

∫
dτ1′dτ2′dτ1dτ2e

i(τ1′ ω1′+τ2′ω2′−τ1ω1−τ2ω2)

×
〈
f†

i1′τ1′ s1′ l1′ f
†
i2′ τ2′s2′ l2′ f

†
i2τ2s2l2

f†
i1τ1s1l1

〉
,

(27)

where we suppress the time-ordering operator as it
becomes trivial in the path integral framework that the
function renormalization group is formulated in. Acting
with the local U(1) transformation given in Eq. (25) on
the definition of the correlation functions and demand-
ing their invariance leads to the corresponding symme-
try constraint. It directly implies that we can restrict
ourselves to a local one-particle correlation function

G(1′, 1) = G(1′, 1)δi1′ i1 , (28)

which only depends on one lattice site i1, and a bi-local
two-particle correlation function

G(1′, 2′, 1, 2) = G(1′, 2′, 1, 2)δi1′ i1δi2′ i2

− G(2′, 1′, 1, 2)δi2′ i1δi1′ i2 , (29)

which only depends on the two lattices sites i1 and i2.

4.2 Global particle–hole symmetry

In the pf-FRG for su(2) spin models, spin operators
Sa

i are represented using fermions with one spin index
α = ±1 as

Sa =
1

2
f†

iαθa
αα′f

†
iα′ , (30)

with a ∈ {1, 2, 3}. In addition to the U(1) gauge redun-
dancy, there exists another redundancy in this represen-
tation that can be formulated as a local particle–hole
symmetry [27]. It acts on the fermionic Hilbert space
as

gi

(
f†

iα

f†
iα

)
g−1

i =

(
αf†

iᾱ

αf†
iᾱ

)
, (31)

with ᾱ ≡ −α. It leaves the fermionic representation
of the su(2) spin operators invariant and is therefore a
symmetry of the pseudo-fermion Hamiltonian. We note
that this symmetry is not anti-unitary and therefore
does not correspond to the usual physical particle–hole
symmetry [27]. Instead, it is again a consequence of
the representation of the spin operators. The natural
extension for spin–valley models with spin index s = ±1
and valley index l = ±1 is the transformation

gi

(
f†

isl

f†
isl

)
g−1

i =

(
slf†

is̄l̄

slf†
is̄l̄

)
, (32)
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under which the spin–valley operator transforms as

gi σμ
i ⊗ τκ

i g−1
i = −ξ(μ)ξ(κ)σμ

i ⊗ τκ
i , (33)

which can be shown straightforwardly using the anti-
commutation relations of the fermionic operators and
the identity

ᾱᾱ′θμ
αα′ = ξ(μ)θμ

ᾱ′ᾱ. (34)

Spin–valley operators with either the spin index μ or
the valley index κ set to zero—which correspond to
the individual spin and valley operators as defined in
Eq. (2)—are invariant under this transformation. Gen-
eral spin–valley operators, on the other hand, may
change their sign. The Hamiltonian is, therefore, not
invariant under the local particle–hole symmetry that
acts on the Hilbert space of just one lattice site. Spin–
valley operators, however, only appear in pairs in the
spin–valley Hamiltonian. Performing the local particle–
hole symmetry transformation on all lattice sites, such
a pair of spin–valley operators transform as

g(σμ
i ⊗ τκ

i )(σν
j ⊗ σλ

j )g−1 = ξ(μ)ξ(κ)ξ(ν)ξ(λ)

×(σμ
i ⊗ τκ

i )(σν
j ⊗ σλ

j ).

(35)

If an odd number of spin and valley indices is set to
zero, this again implies a sign change. Recalling the
definition of the spin–valley Hamiltonian in Eq. (4)
and the following definition of the exchange matrices
in Eq. (5), such terms are not included in our defini-
tion of the Hamiltonian. All terms that do appear in
the Hamiltonian are indeed invariant. The main differ-
ence to the su(2) pseudo-fermion Hamiltonian is, there-
fore, that the spin–valley Hamiltonian is invariant only
under the global transformation, while the former was
invariant under the local transformation. For the local
single-particle correlation function, the global particle–
hole symmetry implies

G(1′, 1)δi′i = −ss′ll′G(i − ωs̄l̄, i − ω′s̄′ l̄′)δi′i, (36)

and for the bi-local two-particle correlator, it implies

G(1′, 2′, 1, 2)δi1′ i1δi2′ i2

= s1′s1l1′ l1s2′s2l2′ l2δi1′ i1δi2′ i2G(i1 − ω1s̄1 l̄1, i2

−ω2s̄2 l̄2, i1 − ω1′ s̄1′ l̄1′ , i2 − ω2′ s̄2′ l̄2′). (37)

These relations are, apart form the extra factors of
valley indices, the same as for the su(2) case when
considering the global transformation. The invariance
under the local transformation would yield additional
constraints on the two-particle correlator acting only
on multi-indices with the same lattice site (i1 or i2).
For the parametrized two-particle vertex, these result
in a constraint relating the s and u dependence or,
in the asymptotic frequency parametrization defined in

Eqs. (22, 23), the particle–particle and crossed particle–
hole channel with each other. As already discussed in
Sect. 3, this constraint is, consequently, missing for
spin–valley models.

4.3 Generalized time-reversal symmetry

For su(2) spin models, a genuinely physical symme-
try is the invariance under time-reversal. In this set-
ting, time-reversal reverses the sign of all spin opera-
tors Sa → −Sa and, as it is an anti-unitary symmetry,
additionally applies complex conjugation to all complex
numbers. Hamiltonians with real couplings in which
spin operators only appear in pairs are therefore always
invariant under time-reversal. On the Hilbert space of
the su(2) pseudo-fermions, it can be represented as

g

(
f†

iα

f†
iα

)
g−1 =

(
eiπα/2f†

iᾱ

e−iπα/2f†
iᾱ

)
. (38)

We again consider a straightforward generalization of
the transformation to spin–valley operators, which we
define as the anti-unitary transformation

g

(
f†

isl

f†
isl

)
g−1 =

(
eiπs/2eiπl/2f†

is̄l̄

e−iπs/2e−iπl/2f†
is̄l̄

)
. (39)

Using the relation eiπ(α−α′)/2 = αα′ and Eq. (34), it is
straightforward to show that the spin–valley operator
transforms as

g σμ
i ⊗ τκ

i g−1 = ξ(μ)ξ(κ)σμ
i ⊗ τκ

i , (40)

which, up to a minus sign, is the same transformation
behavior as for the particle–hole symmetry in Eq. (33).
As only pairs of spin–valley operators appear in the
spin–valley Hamiltonian, for which the minus sign is
irrelevant, the arguments for the invariance of Hamilto-
nian given there, consequently, also apply here. Apply-
ing this generalized version of time-reversal to the local
one-particle correlator implies

G(1′, 1)δi′,i = ss′ll′G(i − ω′s̄′ l̄′, i − ωs̄l̄)∗δi′,i, (41)

where the complex conjugation stems from the fact that
the transformation is anti-unitary. For the bi-local two-
particle correlation function, it implies

G(1′, 2′, 1, 2)δi1′ i1δi2′ i2

= s1′s1l1′ l1s2′s2l2′ l2δi1′ i1δi2′ i2G(i1 − ω1′ s̄1′ l̄1′ ,

×i2 − ω2′ s̄2′ l̄2′ , i1 − ω1s̄1 l̄1, i2 − ω2s̄2 l̄2)
∗. (42)

Apart from extra valley indices, this is exactly the same
as in the su(2) case.
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4.4 Hermitian symmetry

Just as the su(2) spin operator, the spin–valley oper-
ator is Hermitian. The spin–valley Hamiltonian only
consists of pairs of spin–valley operators and we have
restricted ourselves to real couplings, making it Her-
mitian aswell. Complex transposition, therefore, leaves
the Boltzman factor in the thermal expectation value
invariant. Applying complex transposition on both
sides of Eqs. (26, 27) and explicitly evaluating the RHS
by “pulling” the complex transpose into the thermal
expectation value, we obtain the constraint

G(1′, 1)δi′,i = G(i − ωsl, i − ω′s′l′)∗δi′,i (43)

for the local one-particle correlator and

G(1′, 2′, 1, 2)δi1′ i1δi2′ i2 = δi1′ i1δi2′ i2

×G(i1 − ω1s1l2, i2 − ω2s2l2,

i1 − ω1′s1′ l1′ , i2 − ω2′s2′ l2′)∗

(44)

for the two-particle correlator. These constraints are
again of the same form as for the su(2) case.

4.5 Lattice symmetries

The spin models we consider are all formulated on
lattices that can be specified in terms of an underly-
ing Bravais lattice and a possibly multi-atomic basis.
Therefore, lattice symmetries exist necessarily for any
spin–valley model and are very important to efficiently
implement the pf-FRG. Their implementation is the
same whether one considers su(2) spin models or spin–
valley models. We can therefore use the same approach
as for the conventional pf-FRG as, e.g., explained in
Ref. [27]. There, all sites are assumed to be identical,
in the sense that one can map any site to any other
site via a lattice automorphism T that leaves the lat-
tice itself invariant. On the fermionic operators, such a
transformation acts as

gT

(
f†

isl

f†
isl

)
g−1

T =

(
f†

T (i)sl

f†
T (i)sl

)
. (45)

In the case of bond-directional couplings, the transfor-
mation would additionally have to be combined with
transformations in spin and valley space. For the one-
particle correlation function, this implies

G (1′, 1) δi′,i = G (T (i) ω′s′l′, T (i)ωsl) δi′,i. (46)

The locality constraint in Eq. (28), resulting from the
local U(1) symmetry, already reduces the spatial depen-
dence of the self-energy to only one site index i1.
Using lattice automorphisms, we can map all sites to
an arbitrary reference site i0 and therefore completely

remove the spatial dependence of the one-particle cor-
relation function. Similarly, for the two-particle corre-
lation function, it implies

G (1′, 2′, 1, 2) δi1′ i1δi2′ i2 = δi1′ i1δi2′ i2

×G
(
T (i1) ω1′s1′ l1′ , T (i2) ω2′s2′ l2′ ,

T (i1) ω1s1l1, T (i2) ω2s2l2
)
. (47)

Combining this with the bi-locality constraint in Eq.
(29), and again mapping the first index i1 to an arbi-
trary reference site i0, the spatial dependence of the
two-particle correlator can be reduced to just one lat-
tice site.

4.6 Parametrization of correlation functions

To make use of the symmetry constraints on the cor-
relation functions, it is advantageous to parametrize
them, so that the symmetry constraints manifest in a
more practical form. To this end, we can extent the
parametrization for the correlation functions for generic
su(2) spin models introduced in [27] also to spin–valley
models. This ultimately leads to the parametrization of
the self-energy and two-particle vertex in Eqs. (15, 16)
and the symmetry constraints in Eqs. (18, 19). Starting
with the one-particle correlation function, we argued
that due to the local U(1) symmetry and lattice sym-
metries, it is independent of the lattice site. Addition-
ally, due to Matsubara frequency conservation, which
is a consequence of translational invariance in imagi-
nary time, it is diagonal in the frequency arguments.
Expanding the spin and valley dependence in Pauli
matrices θμθκ (μ, κ = 0, 1, 2, 3), the one-particle cor-
relation function can be parametrized as

G(1′, 1) = Gμκ(w)θμ
s′sθ

κ
l′lδi′iδω′ω. (48)

Similarly, the two-particle correlation function depends
only on two lattice sites and three frequencies, for
which we choose the three transfer frequencies defined
in Eq. (17). The parametrization then reads

G(1′, 2′, 1, 2)

=
(
Gμνκλ

i1i2
(s, t, u)θμ

s1′ s1
θν

s2′s2
θκ

l1′ l1θ
λ
l2′ l2δi1′ i1δi2′ i2

−(1′ ↔ 2′)
)
δω1′+ω2′−ω1−ω2

. (49)

Plugging this parametrization into the symmetry con-
straints derived in Sects. 4.1–4.5, we obtain the symme-
try constraints for the basis functions of the
parametrization listed in Table 1. In the derivation of
these constraints, we make heavy use of Eq. (34) and
the particle-exchange symmetry

G(1′, 2′, 1, 2) = G(2′, 1′, 2, 1), (50)

which is present in all purely fermionic models.
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Table 1 Symmetry constraints for the basis functions of
the parametrization of the correlation functions

Gμκ(ω) = ξ(μ)ξ(κ)Gμκ(ω) (H ◦ TR)

Gμκ(ω) = −Gμκ(−ω) (H ◦ TR ◦ PH)
Gμκ(ω) = −Gμκ(ω)∗ (TR ◦ PH)

Gμνκλ
i1i2

(s, t, u) = ξ(μ)ξ(ν)ξ(κ)ξ(λ)

×Gμνκλ
i1i2

(s, t, u)∗ (TR ◦ PH ◦ H ◦ TR)

Gμνκλ
i1i2

(s, t, u) = Gνμλκ
i2i1

(−s, t, u) (H ◦ TR ◦ PH ◦ X)

Gμνκλ
i1i2

(s, t, u) = ξ(μ)ξ(ν)ξ(κ)ξ(λ)

×Gμνκλ
i1i2

(s, −t, u) (H ◦ TR)

Gμνκλ
i1i2

(s, t, u) = ξ(μ)ξ(ν)ξ(κ)ξ(λ)

×Gνμλκ
i2i1

(s, t, −u) (H ◦ TR ◦ X)

The labels specify which symmetries of the Hamiltonian
were used in their derivation, where H stands for Hermitian,
TR for generalized time-reversal, PH for global particle–hole
and X for particle-exchange symmetry. The most notable
implications are that all correlation functions will always
be either only real or imaginary and all expression with
negative frequencies can be related to those with positive
frequencies

The list of symmetry constraints is very similar to the
su(2) case derived in Ref. [27], but has two significant
differences. First, as already discussed in Sects. 3.2 and
4.2, the symmetry constraint relating s and u frequen-
cies, or the particle-particle and crossed particle–hole
channel, is missing because the spin–valley Hamilto-
nian is not invariant under a local particle–hole trans-
formation but only under the global version. Second,
the symmetry constraints do not imply that the one-
particle correlation function is completely diagonal in
all spin and valley indices. In the parametrization, this
would manifest in G00 being the only non-vanishing
basis function. Instead, for a general spin–valley Hamil-
tonian, also the terms Gab with a, b > 0, which come
with the factor ∼ θa

ss′θb
ll′ , are allowed. This would

increase the number of flow equations and therefore also
the numerical complexity significantly. Additionally, we
could not use the conventional pf-FRG flow equations
given in Eqs. (10, 11), where a diagonal one particle
correlator (and self-energy) was assumed. Fortunately,
in the context of moiré materials, many Hamiltonians
of physical relevance posses additional symmetries in
the spin and valley space [11,35] that further constrain
the spin and valley dependence of the self-energy and
two-particle vertex. It turns out that the minimal sym-
metry needed in order for the one-particle correlator to
be diagonal is a Z2 × Z2 × Z2 symmetry in either the
spin or valley sector. On the level of spin–valley opera-
tors, this means that the Hamiltonian is invariant under
the transformation (for the case of the spin sector)

gμ σμ
i ⊗ τκ

i g−1
μ = ξ(μ)σμ

i ⊗ τκ
i , (51)

for each μ individually. This simply reverses the signs
of all σμ

i ⊗ τκ
i with μ > 0. Assuming a completely diag-

onal spin exchange matrix as in Eq. (5), the spin–valley

Hamiltonian is indeed invariant under this transforma-
tion. This directly implies that all terms proportional
to a single ∼ θμ (with μ > 0) in the correlation func-
tions have to vanish. More precisely, it imposes the con-
straint

Gμκ(ω) = δμ0G
0κ(ω), (52)

which in combination with the first equation in Table 1
implies

Gμκ(ω) = δμ0δκ0G
00(ω) ≡ δμ0δκ0G(ω), (53)

resulting in a completely diagonal one-particle correla-
tion function parametrized by a single basis function
G(ω). For the coupling matrices stated in Eq. (5), we
can therefore use the standard pf-FRG approach also
for spin–valley models. Assuming this additional sym-
metry, in the two-particle correlator, only diagonal com-
ponents in the spin sector ∼ θμθμ (no sum over μ) are
allowed, resulting in the constraint

Gμνκλ
i1i2

(s, t, u) = δμνGμμκλ
i1i2

(s, t, u) ≡ δμνGμκλ
i1i2

(s, t, u).

(54)

Imposing these additional constraints, all factors of
ξ(μ)ξ(ν) in Table 1 are equal to one and the relations
reduce exactly to the constraints given in Eqs. (18, 19)
with the self-energy and two-particle vertex replaced
by the one- and two-particle correlation functions. We
can therefore still consider a completely imaginary
one-particle correlator that is odd in frequency space
and completely diagonal. The two-particle correlator is
either completely real or imaginary, depending on the
sign of ξ(κ, λ), and all negative frequency components
can be mapped to a positive counterpart.

The argument why these constraints on the discon-
nected correlation functions carry over to the one-
particle irreducible correlation functions, i.e., the self-
energy and the vertex, is the same as given for the su(2)
case in [27]. For the self-energy, it simply follows from
the Dyson equation [30]:

G(1′, 1) =
1

iω − Σ(1′, 1)
, (55)

from which it is easy to see that all constraints carry
over to the self-energy. For the two-particle vertex, the
tree expansion (neglecting the three-particle vertex)
relates it to the connected two-particle correlation func-
tion G(c) as [30]

G(c) (1′, 2′, 1, 2)

= −
∑

3,4,5,6

Γ (3, 4, 5, 6)G (1′, 3) G (2′, 4) G(5, 1)G(6, 2).

(56)

As the one-particle correlation function is diagonal in
all indices, it is clear that all constraints carry over from
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the connected correlation function to the two-particle
vertex. That the constraints from the disconnected two-
particle correlation function carry over to the connected
correlation function can be proven by their definition
via generating functionals [30].

4.7 Symmetries of the flow equations

To verify that the parametrization and the symme-
try constraints derived in the previous sections are
indeed preserved also for the flowing self-energy and
two-particle vertex for any value of Λ, they can addi-
tionally be proven using the pf-FRG flow equations
given in Eqs. (10, 11) . That the parametrization for the
self-energy in Eq. (15) and for the two-particle vertex
in Eq. (16) is indeed complete can be seen by inserting
them into the RHS of the flow equations and confirming
that no additional terms are generated.

For the additional symmetry constraints, the proof
can be performed via induction, as already explained
in Refs. [27,39]. This essentially amounts to verifying
the fulfillment of the constraints in the initial condi-
tions and then showing that the derivatives d

dΛΣ and
d

dΛΓ given by the RHS of the flow equations also fulfill
them, assuming the self-energy and two-particle vertex
themselves already do. The proof that the self-energy
is odd, imaginary, and completely diagonal has to be
repeated for spin–valley models due to slight differences
in the flow equations. This is quite lengthy and, there-
fore, done in B. For the two-particle vertex, the proof of
the symmetry constraints is much easier on the level of
the unparametrized vertex, as there the flow equations
still have a much simpler form. We therefore postulate
the relations

ΓΛ(1′, 2′, 1, 2) = ΓΛ(2′, 1′, 2, 1) (57)

ΓΛ(1′, 2′, 1, 2) = ΓΛ(1, 2, 1′, 2′)∗ (58)

ΓΛ(1′, 2′, 1, 2) = ΓΛ(−2′,−1′,−2,−1) (59)

ΓΛ(1′, 2′, 1, 2) = s1′s1l1′ l1s2′s2l2′ l2

×ΓΛ(1̄, 2̄, 1̄′, 2̄′), (60)

where we defined −1 = (i1−ω1s1l1) and 1̄ = (i1ω1s̄1 l̄1).
When translated to the parametrized two-particle ver-
tex and then combined, these relations yield exactly
the symmetry constraints given in Eq. (19). Prov-
ing the relations for the unparametrized vertex, there-
fore, directly proves the symmetry constraints of the
parametrized vertex. As Eq. (57) simply amounts to a
simple particle exchange, no further proof is required.
Eq. (58) is proven in [27] and Eq. (59) in [39] using
the general pf-FRG flow equations. The only remain-
ing relation still left to prove is Eq. (60), which we also
show in B. This proves that the parametrization and
the symmetry constraints are indeed valid also for the
flowing self-energy and vertex, at any value of the cut-
off Λ.

5 Results

To give an explicit example for the application of
the pseudo-fermion functional renormalization group
approach introduced in the manuscript and its efficient
implementation in terms of the aforementioned symme-
tries, we apply it to elucidate the phase diagram of an
SU(2)spin ⊗ U(1)valley symmetric spin–valley Hamilto-
nian on the triangular lattice. The explicit Hamiltonian
we consider is

H =
J

8

∑

〈ij〉
(1 + σiσj)(1 + τ iτ j)

+
Jx

8

∑

〈ij〉
(1 + σiσj)(τ

x
i τx

j + τy
i τy

j )

+
Jz

8

∑

〈ij〉
(1 + σiσj)(τ

z
i τz

j ), (61)

with a SU(4) symmetric term proportional to the cou-
pling J and an in-plane Jx and out-of-plane Jz coupling
that when non-zero break the SU(4) symmetry down to
an SU(2) symmetry in the spin sector and a U(1) sym-
metry in the valley sector. We only include interactions
between nearest neighbours 〈ij〉.

Such a model can be motivated, e.g., from includ-
ing the effect of Hund’s type couplings in a two-orbital
extended Hubbard model and performing a strong cou-
pling expansion [20]. It can therefore be regarded as
a natural extension to previously studied models with
either full SU(4) or reduced SU(2)spin ⊗ SU(2)valley
symmetry [18–21] by adding an XXZ type perturba-
tion to the orbital sector and likewise provides an inter-
mediate, but important step towards the more com-
plicated spin–valley Hamiltonians proposed for various
moiré systems [10,11,20].

5.1 Phase diagram

To obtain the quantum phase diagram, we fix the cou-
pling J in front of the SU(4) symmetric part of the
Hamiltonian in Eq. (61) to a positive value and then
vary the values of the in-plane coupling Jx and out-
of-plane coupling Jz which break the SU(4) symme-
try. As described in Sect. 3, to determine the magnetic
order for a particular pair of couplings (Jx, Jz) we cal-
culate the flow of the spin–spin and valley–valley cor-
relations (and associated structure factors) as defined
in Eqs. (13, 14), check whether or not a flow break-
down occurs and if so, which type of order is visi-
ble in the structure factor at the breakdown scale Λc.
Due to the SU(2)spin ⊗ U(1)valley symmetry of the
Hamiltonian all non-vanishing components of the spin–
spin correlation are equivalent and we calculate only

χΛs
ij ≡ χΛs,xx

ij = χΛs,yy
ij = χΛs,zz

ij . For the valley–valley
correlation, we can distinguish between in-plane and
out-of-plane order by calculating the in-plane valley–
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Fig. 3 Flow of the structure factor at points of
higher symmetry. All structure factors are shown at the
momentum where they are maximal. The grey line shows
the structure factor at the SU(4) point, where the consid-
ered spin–valley model corresponds to the SU(4) symmetric
Heisenberg model. Here, all structure factor components are
identical. The flow is smooth and convex down to the lowest
numerically reliable cut-off and no flow breakdown occurs,
indicating a putative quantum spin–valley liquid (QSVL)
ground state. The purple and green lines show the spin and
valley structure factor for Jx/J = Jz/J = −1, where all
terms containing valley operators cancel and the spin–valley
model resembles an SU(2) symmetric Heisenberg model. In
this case, the valley structure factors are strongly suppressed
and the spin structure factor shows a sharp peak at the K
and K′ points, indicating 120◦ order in the spin sector

valley correlation χΛv,x
ij ≡ χΛv,xx

ij = χΛv,yy
ij and out-of-

plane valley-valley correlation χΛv,z
ij ≡ χΛv,zz

ij .

Starting at the SU(4) point with Jx/J = Jz/J = 0,
where all spin–spin and valley–valley correlations are
equivalent, we observe no flow breakdown of the struc-
ture factors, as depicted by the grey line in Fig. 3.
This indicates that no magnetic order is present in
both the spin and the valley sector even for very-low-
energy scales and indicates a putative quantum spin–
valley liquid (QSVL) state [21]. Going away from the
SU(4) point, however, we almost immediately observe a
flow breakdown in either the spin or valley sector, indi-
cating that the putative QSVL state is highly unstable
in the presence of XXZ like perturbations. This is in
line with results for the su(2) XXZ model on the tri-
angular lattice, where by varying the out-of-plane cou-
pling a phase transition from in-plane 120◦ order to an
“umbrella” order is observed at the SU(2) symmetric
point [40]. Similarly, we observe a rich ensemble off dif-
ferent spin and valley ordered phases with both in- and
out-of-plane ordering in the valley sector.

Before we present the full quantum phase diagram,
however, let us first consider a classical mean-field
approach to better understand the origin of the dif-
ferent phases. To this end, we note that the spin sector
by itself will order either ferromagnetically (FM) or in
a 120◦ order, depending on the sign of the exchange
coupling. Assuming one of these states is realized, we
decouple the spin and valley sector by approximat-
ing the pair of spin operators by its expectation value
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Fig. 4 Classical phase diagram in valley space for fixed
spin ordering obtained from a Luttinger–Tisza analysis.
The grey lines depict the phase boundaries and the color
illustrates the (normalized) ground-state energy, where blue
denotes out-of-plane and orange denotes in-plane ordering.
At Jx/J = Jz/J = −1, where the phase boundaries meat,
the classical mean-field Hamiltonian vanishes. Away from
this point the Luttinger–Tisza analysis predicts the follow-
ing types of valley order: (II) in-plane ferromagnetic (FM),
(III) out-of-plane FM, (IV) in-plane 120◦, and (VI) out-
of-plane 120◦. The so-obtained valley order is independent
from the fixed nearest-neighbour spin order

σiσj ≈ 〈σiσj〉, with 〈σiσj〉 = 1 for ferromagnetic
(FM) and 〈σiσj〉 = cos(2π/3) = −0.5 for 120◦ order.
The resulting mean-field Hamiltonian is then given, up
to a constant, by

HMF = Es
0

∑

〈ij〉

[(
1 +

Jx

J

) (
τx
i τx

j + τy
i τy

j

)

+

(
1 +

Jz

J

)
τz
i τz

j

]
, (62)

where the spin expectation value only appears in the
positive factor Es

0 ≡ J(1 + 〈σiσj〉) and, therefore, has
no influence on the type of valley order. Approximating
the valley operators by classical vectors with |τ i| = 1,
we perform a Luttinger–Tisza analysis [41,42] on the
mean-field Hamiltonian. This analysis predicts in-plane
(out-of-plane) valley order for large values of |1 + Jx/J |
(|1 + Jz/J |), which is either FM for positive, or 120◦

like for negative values. The precise phase boundaries
along with the ground-state energies Eg are depicted in
Fig. 4.

Special attention needs to be paid to the point at
Jx/J = Jz/J = −1 where the phase boundaries meet.
Exactly at this point, the couplings in front of the valley
operators are equal to zero and the mean-field Hamilto-
nian vanishes. Going back to the full quantum Hamil-
tonian, it reduces to only the term

∑
ij J(1 + σiσj),

which resembles an SU(2) symmetric Heisenberg model
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indicate dominant order in the valley sector, and the opacity determines the magnitude of the breakdown scale Λc/J . In
the case where we observe a flow breakdown in both the in-plane (χΛv,x) and out-of-plane (χΛv,x) valley structure factor
the color determines the angle φ illustrated in the cones on the right of the figure. (I–VI) show the structure factors at Λc

for the different types of order we observe: (I) 120◦ spin order, (II) out-of-plane FM valley order, (III) in-plane FM valley
order, (IV-VI) 120◦ valley order shifting from an out-of-plane (IV) to an in-plane (VI) orientation, with competing order
(V) in between. For Jx/J = Jz/J = 0, indicated by the star, the model is equivalent to the SU(4) symmetric Heisenberg
model for which no flow breakdown is observed
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Fig. 6 Flow of the structure factors for different types of
order as described under Fig. 5. The dashed lines show the
breakdown scale Λc. (I) shows dominant spin order (purple)
with the valley structure factors strongly suppressed. (IV–
VI) shows dominant valley order which shifts from an in-
plane (orange) to an out-of-plane (blue) orientation

with antiferromagnetic coupling J . Here, the flow of
the spin structure factor shows a sharp peak, while the
valley structure factors are strongly suppressed, as is

depicted in Fig. 3. The same behavior occurs in a larger
region around Jx/J = Jz/J = −1, which is shown
in Fig. 5 along with the corresponding momentum
resolved structure factor (annotated with the numeral
I). The spin structure factor (in purple) shows strong
peaks at the K and K ′ points, while the in-plane
(orange) and out-of-plane (blue) valley structure factors
show no distinct features when shown on the same color
scale. This indicates 120◦ spin order, which again agrees
with the results for the conventional su(2) Heisenberg
model [40,43].

In all other regions of the quantum phase diagram,
the valley structure factors are clearly dominant and
the spin structure factor shows only weak features. We
enumerate the different types of valley order we find
by the numerals II–VI, as shown in Fig. 5. The val-
ley order at large negative couplings (II and III) agrees
with the classically predicted results, as either the in- or
out-of-plane structure factors show strong peaks at the
Γ point, indicating FM order. At larger positive values
for either the in-plane or out-of-plane coupling (VI–IV),
the valley structure factors show peaks at the K and
K ′ points indicating 120◦ like order. In contrast to the
sharp phase boundary in the classical case, however,
the valley order seems to gradually shift from mostly
in-plane (IV), over competing in- and out-of-plane (V)
to out-of-plane (VI) order. This is well visualized by
the flow of the structure factors in Fig. 6. The valley
structure factors both show flow breakdowns at approx-
imately the same breakdown scale, but the magnitude
at the breakdown scale shifts from a dominant χΛv,x to
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a dominant χΛv,z when going from IV to VI. To quan-
tify this transition, we define the angle

φ = arctan(χΛcv,x/χΛcv,z), (63)

illustrated in Fig. 5 by the cones on the right and by
the color scale ranging from from blue (in-plane) over
green (competing in-plane and out-of-plane) to orange
(out-of-plane)

To better illustrate the transitions between the dif-
ferent types of order, Figs. 7 and 8 show horizontal
and vertical cuts through the phase diagram, respec-
tively. The transitions between the phases are always
accompanied by a dip or kink in the breakdown scale,
indicating the positions of the phase boundaries. This
is especially relevant for the transitions between mixed
in- and out-of-plane valley order (V) to dominant in- or
out-of-plane valley order (IV and VI), where the phase
transition would not be as easily recognizable by just
considering the evolution of the structure factors. The
same is true for the transition from dominant valley to
dominant spin order, as, e.g., depicted in the Jx/J = 0
cut in Fig. 8. Here, the at first very dominant out-of-
plane valley order (III) gradually transitions to domi-
nant spin order (I), with a region in between where the
spin and valley structure factors are of similar mag-
nitude. The kink in the breakdown scale appears at
the largest Jz/J where the valley structure factor still
shows a clear flow breakdown (Jz/J ≈ −1.6), even
though the spin structure factor is already dominant
for smaller Jz/J . This is similar at all boundaries of
phase I, which also becomes evident in the phase dia-
gram of Fig. 5 by noting that the minima of the break-
down scale are positioned slightly inwards in the region
of dominant spin order (colored in purple).

Of special interest are the cuts across the SU(4) point
(Jx/J = 0 and Jz/J = 0), which show that even for
very small values of the in- and out-of-plane couplings,
the flow develops a breakdown at a finite Λc.

6 Summary

In this manuscript, we have presented a generalization
of the established pf-FRG approach to generic spin–
valley Hamiltonians in the self-conjugate representation
of su(4), with either diagonal spin or valley interac-
tions. We performed a careful symmetry analysis and
derived a set of constraints on the vertex functions,
which drastically lower the computational cost of track-
ing the flow of running couplings. Using a highly accu-
rate solver for the functional flow equations, we sub-
sequently applied this method to map out the quan-
tum phase diagram of an SU(2)spin ⊗ U(1)valley model
on the triangular lattice, which presents a simplified
variant of the more general Hamiltonian proposed for
TLG/h-BN, but already hosts a rich variety of spin and
valley ordered ground states. In addition, we were able
to demonstrate, that, by promoting the spin symme-
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Fig. 7 Horizontal cuts through the phase diagram of Fig. 5
at Jz/J = 1 (top), Jz/J = 0 (middle) and Jz/J = −1 (bot-
tom). The color-coding and the labels (I-VI) denote different
types of order and are explained in Fig. 5. The transition
between these phases is always accompanied by a dip or kink
in the breakdown scale. In the transitions between domi-
nant spin and valley order, there are regions where both the
spin and valley structure factor show flow breakdowns at a
similar Λc and with similar magnitudes. These regions are
shaded and colored both orange and purple, as, e.g., visible
in the transition between II and I along the Jz/J = −1.0
axis. At the SU(4) point (colored white), no flow breakdown
occurs
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Fig. 8 Vertical cuts through the phase diagram of Fig. 5
at Jx/J = 1 (top), Jx/J = 0 (middle) and Jx/J = −1
(bottom). The color-coding and the labels (I–VI) denote
different types of order and are explained in Fig. 5. The
transition between these phases is always accompanied by
a dip or kink in the breakdown scale. In the transitions
between dominant spin and valley order, there are regions
where both the spin and valley structure factor show flow
breakdowns at a similar Λc and with similar magnitudes.
These regions are shaded and colored both orange and blue,
as e.g. visible in the transition between III and I along the
Jx/J = 0 axis. The white regime close to the SU(4) point
marks points for which no flow breakdown is observed

try group from SU(2) to SU(4), quantum fluctuations
are boosted, ultimately resulting in a smooth RG flow
down to the lowest energy scales, indicative of a spin–
valley liquid state. However, this QSVL state appears
to be very sensitive even to weak XXZ anisotropies in
the valley sector, and we almost immediately detect the
emergence of long-range order, when perturbing it.

While our focus in this manuscript has been on spin–
valley Hamiltonians, we note that very similar mod-
els have been discussed for spin–orbit coupled systems
that go beyond the celebrated Kugel–Khomskii model.
The microscopic ingredients of such spin–orbital mod-
els are surprisingly similar to those of “Kitaev mate-
rials” [44]—a partially filled 4d or 5d orbital, the for-
mation of a spin–orbital entangled local moment, and
an edge-sharing octahedral crystalline environment.
Specifically, a d1 configuration can lead to local j = 3/2
moments subject to bond-directional exchanges that
break the original SU(4) symmetry of the j = 3/2
moments. As a concrete material candidate exhibiting
this microscopic mechanism, α-ZrCl3 – a 4d sister com-
pound of the isostructural Kitaev material RuCl3—has
been put forward [45]. To study the phase diagram of
spin–orbital ground states in such a setting with vary-
ing diagonal and off-diagonal couplings, one can again
rely on the pseudo-fermion FRG approach put forward
in this manuscript.
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Appendix A: Symmetry constraints in the
asymptotic frequency parametrization

In Eq. (19), we stated the symmetry constraints of the two-
particle vertex in the frequency parametrization using the
three transfer frequencies s, t, and u. As was discussed in
Sect. 3.2, in our implementation of the pf-FRG, we use a
refined frequency parametrization [23,24,37], where the ver-
tex is split into three channels gc(ωc, vc, v

′
c) as defined in

Eq. (22), with our choice of frequencies given in Eq. (23).
We can obtain symmetry constraints for the different chan-
nels by employing the same parametrization in the spin,
valley, and site indices as for the full vertex

gΛ
c (1′, 2′, 1, 2)

=
[
gΛμκλ

c,i1i2
(ωc, vc, v

′
c) θμ

s1′ s1
θμ

s2′ s2
θκ

l1′ l1θλ
l2′ l2 δi1′ i1δi2′ i2−

(1′ ↔ 2′)
]
δω1′+ω2′ ,ω1+ω2 , (A.1)

and utilizing that the frequencies ωc, vc, v
′
c can be written as

linear combinations of the transfer frequencies. Combining
one or more symmetry constraints of the two-particle vertex,
this results in symmetry constraints for the particle–particle
channel

gΛμκλ
pp,i1i2

(s, vs, v
′
s) = gΛμλκ

pp,i2i1
(−s, vs, v

′
s)

gΛμκλ
pp,i1i2

(s, vs, v
′
s) = gΛμλκ

pp,i2i1
(s, −vs, −v′

s)

gΛμκλ
pp,i1i2

(s, vs, v
′
s) = ξ(κ)ξ(λ)gΛ,μλκ

pp,i2i1
, (s, v′

s, vs),

(A.2)

the direct particle–hole channel

gΛμκλ
dph,i1i2

(t, vt, v
′
t) = ξ(κ)ξ(λ)gΛμκλ

dph,i1i2
(−t, vt, v

′
t)

gΛμκλ
dph,i1i2

(t, vt, v
′
t) = ξ(κ)ξ(λ)gΛμκλ

dph,i1i2
(t, −vt, −v′

t)

gΛμκλ
dph,i1i2

(t, vt, v
′
t) = ξ(κ)ξ(λ)gΛ,μλκ

dph,i2i1
(t, v′

t, vt), (A.3)

and the crossed particle–hole channel

gΛμκλ
cph,i1i2

(u, vu, v′
u) = ξ(κ)ξ(λ)gΛ,μλκ

cph,i2i1
(−u, vu, v′

u)

gΛμκλ
cph,i1i2

(u, vu, v′
u) = ξ(κ)ξ(λ)gΛ,μλκ

cph,i2i1
(u, −vu, −v′

u)

gΛμκλ
cph,i1i2

(u, vu, v′
u) = ξ(κ)ξ(λ)gΛμκλ

cph,i1i2
(u, v′

u, vu),

(A.4)

where for the fermionic frequencies vc, v
′
c we used the sub-

scripts s, t, u instead of pp, dph, cph for brevity. Using these
symmetry relations, we only have to explicitly calculate the

two-particle vertex for positive values of ωc and vc, but
have to also consider negative values for v′

c. Additionally, we
only have to calculate components with |v′

c| < |vc|. We note
again that, compared to the su2 case, no constraints relat-
ing the particle–particle and crossed particle–hole channel
are present.

Appendix B: Proof of symmetry constraints
via flow equations

In Sect. 4.7, we claim that the completeness of the
parametrization given in Eqs. (15, 16) and the symmetry
constraints given in Eqs. (18, 19) can also be proven by
induction using the flow equations, as was already done for
the su2 case [27,39]. The proof amounts to checking that
the constraints are fulfilled in the initial conditions and
then showing that the RHS of the pf-FRG flow equations in
Eqs. (10, 11) also fulfill the constraints, assuming the self-
energy and two-particle vertex themselves already do. That
the constraints are fulfilled in the initial conditions is easy
to see, as for Λ → ∞ the two-particle vertex is frequency
independent and the self-energy vanishes. We will, therefore,
only perform the induction step here.

Starting with the two-particle vertex, it is straightforward
to see that the parametrization is complete by plugging it in
the pf-FRG flow equations and showing that no additional
terms are generated. To proof the symmetry constrains, we
postulated equivalent constraints for the unparametrized
two-particle vertex in Eqs. (57–60), which, when combined,
lead to the symmetry constraints of the parametrized ver-
tex. Fortunately, only the relation

Γ Λ(1′, 2′, 1, 2) = s1′s1l1′ l1s2′s2l2′ l2Γ
Λ(1̄, 2̄, 1̄′, 2̄′)

(B.5)

differs from the su(2) case and all other relations have
already been proven [27,39]. The induction step for this
relation is performed by writing down the flow equations
for s1′s1l1′ l1s2′s2l2′ l2Γ

Λ(1̄, 2̄, 1̄′, 2̄′) and then manipulating
the RHS

s1′s1l1′ l1s2′s2l2′ l2
d

dΛ
Γ Λ(1̄, 2̄, 1̄′, 2̄′)

= −s1′s1l1′ l1s2′s2l2′ l2
1

2π

∑

3,4

[
Γ Λ(1̄, 2̄, 3, 4)Γ Λ

(3, 4, 1̄′, 2̄′)

−Γ Λ(1̄, 4, 1̄′, 3)Γ Λ(3, 2̄, 4, 2̄′)

−(3 ↔ 4) + Γ Λ(2̄, 4, 1̄′, 3)Γ Λ(3, 1̄, 4, 2̄′)

+(3 ↔ 4)

]
GΛ(ω3)∂ΛGΛ(ω4)

(I)
= − 1

2π

∑

3,4

[
Γ Λ(3, 4, 1, 2)Γ Λ(1′, 2′, 3, 4)

−Γ Λ(1′, 3, 1, 4)Γ Λ(4, 2′, 3, 2) − (3 ↔ 4)

+Γ Λ(1′, 3, 2, 4)Γ Λ(4, 2′, 3, 1) + (3 ↔ 4)

]

×GΛ(ω3)∂ΛGΛ(ω4)

(II)
= − 1

2π

∑

3,4

[
Γ Λ(3, 4, 1, 2)Γ Λ(1′, 2′, 3, 4)
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−Γ Λ(1′, 4, 1, 3)Γ Λ(3, 2′, 4, 2) − (3 ↔ 4)

+Γ Λ(3, 1′, 4, 2)Γ Λ(2′, 4, 1, 3) + (3 ↔ 4)

]

×GΛ(ω3)∂ΛGΛ(ω4)

=
d

dΛ
Γ Λ(1′, 2′, 1, 2).

In step I, we applied Eq. (B.5) and transformed the sum
indices 3̄, 4̄ to 3 and 4 using that the propagator is odd in
frequency space. In step II, we exchanged the indices 3 ↔ 4
and applied the particle exchange symmetry [Eq. (57)] to
the last term. This concludes the proof for the two-particle
vertex. Due to the additional vertex components compared
to the su(2) case, we have to repeat the proof for the self-
energy, although we will closely follow Ref. [27]. To this
end, we first rewrite the relations in Eqs. (57, 60) for the
parametrized vertex, but using natural frequencies

Γ Λμκλ
i1i2

(ω1′ , ω2′ , ω1, ω2) = Γ Λμλκ
i2i1

(ω2′ , ω1′ , ω2, ω1)

Γ Λμκλ
i1i2

(ω1′ , ω2′ , ω1, ω2) = ξ(κ)ξ(λ)Γ Λμκλ
i1i2

(ω1, ω2, ω1′ , ω2′),

which directly implies

Γ Λμκλ
i1i2

(ω1, ω2, ω1, ω2) = 0 if ξ(κ)ξ(λ) = −1

(B.6)

Γ Λμκλ
i1i1

(ω1, ω2, ω2, ω1) = ξ(κ)ξ(κ)Γ Λμλκ
i1i1

(ω1, ω2, ω2, ω1).

(B.7)

Using these relations, we can simplify the self-energy flow
equation

2π
dΣ(1′, 1)

dΛ

(I)
= δw1′ w1δi1′ i1

∫
dω2

∑

μ,κ,η

∑

s2,l2

[ ∑

i2

Γ Λμκλ
i1i2

×(ω1, ω2, ω1, ω2)θ
μ
s1′ s1

θμ
s2s2

θκ
l1′ l1θλ

l2l2

−Γ Λμκλ
i1i1

(ω1, ω2, ω2, ω1)θ
μ
s1′ s2

θμ
s2s1

θκ
l1′ l2θλ

l2l1

]
SΛ(ω2)

(II)
= δw1′ w1δi1′ i1δs1′ s1

∫
dω2

∑

l2

[
2

∑

i2

Γ Λ0κλ
i1i2

×(ω1, ω2, ω1, ω2)θ
κ
l′1l1

θλ
l2l2

−
∑

μ

( ∑

κ>λ>0

Γ Λμκλ
i1i1

(ω1, ω2, ω2, ω1)(θ
κ
l1′ l2θλ

l2l1 + θλ
l1′ l2θκ

l2l1)

+
∑

κ>0

Γ Λμκ0
i1i1

(ω1, ω2, ω2, ω1)(θ
κ
l1′ l2θ0

l2l1 − θ0
l1′ l2θκ

l2l1)

+
∑

κ

Γ Λμκκ
i1i1

(ω1, ω2, ω2, ω1)θ
κ
l1′ l2θκ

l2l1

)]
SΛ(ω2)

(III)
= δw1′ w1δi1′ i1δs1′ s1δl1′ l1

∫
dω2

×
[
4

∑

i2

Γ Λ000
i1i2 (ω1, ω2, ω1, ω2)

−
∑

μ,κ

Γ Λμκκ
i1i1

(ω1, ω2, ω2, ω1)

]
SΛ(ω2).

In step I, we simply wrote out the self-energy flow equation
using the vertex parametrization. In step II, we performed
the sum over s2 using (θμ)2 = 1 and Tr θμ = 2δμ,0 and
applied Eq. (B.7) to rearrange the sum over κ and λ. In
step III, we perform the sum over l2 again using Tr θλ =
2δλ,0 and (θκ)2 = 1 and the (anti)commutation relations
[θκ, θ0] = 0 and {θκ, θλ} = 2δκλ (for κ, λ > 0). In this
form of the flow equation, it is clear that the self-energy
indeed stays diagonal during the flow and, as all two-particle
vertex components appearing in the last line are real and
the single-scale propagator is imaginary, the self-energy is
completely imaginary. That the self-energy is also odd in
frequency space can easily be seen using Eq. (58) and the
particle-exchange symmetry [Eq. (57)]. This concludes the
proof for the self-energy.
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fRG studies on strongly correlated electrons

6 fRG studies on strongly correlated electrons

6.1 Overview
In this section, we present model studies of different strongly correlated electron systems. Starting in
the weak-coupling limit, we employ N -patch and truncated-unity fRG to compute the renormalized
interaction for spin-polarized fermions on the triangular lattice (see Ref. [P4]). For once, this allows
us to study Fermi liquid instabilities of electrons in isolated bands of transition metal dichalcogenide
heterostructures. The simplicity of the model, on the other hand, enables a detailed comparison of the
two momentum space approximations. Considering both, attractive and repulsive nearest-neighbor
interactions, we demonstrate agreement of the methods with regard to the produced phase diagrams,
especially close to van-Hove filling. The predicted critical scales, however, are slightly off, which could
be attributed to the neglect of fluctuations away from the Fermi level in the N -patch scheme.
In Ref. [P5], we consider antiferromagnetic Heisenberg models on the kagome lattice. The latter have a
long history in the quest for finding spin liquid materials, with herbertsmithite (ZnCu3(OH)6Cl2) being
one of the most prominent candidates. One intriguing feature of the kagome antiferromagnet (KAFM)
is the possibility to rewrite its Hamiltonian in terms of local constraints on every triangular plaquette,
which, if simultaneously fulfilled, make for a classical ground state. Since many such configurations
exist, this gives rise to an extensive degeneracy of minimal energy states - a Coloumb spin liquid with
algebraically decaying real space correlations and pinch points in the static structure factor. This
Coloumb phase has recently been demonstrated to survive even upon perturbing the KAFM with
second and third neighbor interactions of equal strength J [145]. If J is further increased, however,
the pinch points give rise to arc-like features dubbed half-moons. For J/J1 = 1, where J1 characterizes
the nearest-neighbor Heisenberg interaction, the half-moons from different Brillouin zones merge into
stars, bringing about yet another configuration of the classical spins. In our publication, we access the
quantum phase diagram of this model from different many-body methods such as pffRG, DMRG and
variational Monte Carlo simulations. Our main findings can be summarized as follows: (a) We find the
quantum spin liquid phase of the KAFM to be stable beyond its classical extent. (b) For J ≈ 0.27−0.3,
one observes the opening of half-moons in the structure factor. In real space, the half-moon phase
corresponds to a pinwheel VBC in which reflection symmetries of the lattice are broken. Such a state
was recently suggested as one possible instability of the QSL phase [146]. (c) For large J , we find a
long-range ordered ground state characterized by incipient Bragg peaks forming a star pattern. Our
results provide solid evidence for a regime of enhanced stability of the KAFM spin liquid, which has so
far been regarded as quite susceptible to additional perturbations [117, 147, 148]. Hereby, the QSL
candidate YCu3(OH)6Br2[Brx(OH)1−x] [149] might serve as motivation for further explorations of the
phase diagram and the investigation of exotic many-body states possibly emerging therein.
Refs. [P6, P7] are devoted to two exemplary pffRG studies of frustrated magnets in moiré heterostruc-
tures. In particular, we map out the phase diagram of twisted tungsten diselenide in Ref. [P6], finding
an overly rich variety of commensurate and incommensurate magnetic orders with small regimes of
spin liquid behavior. The effective model considered for tWSe2 resembles a pure spin-1/2 Hamiltonian,
albeit with Dzyaloshinski-Moriya interactions which break inversion symmetry [82, 83]. In Ref. [P7],
on the contrary, we study the effect of Hund’s type couplings on the stability of quantum spin-valley
liquids (QSVLs), finding that the QSVL states are remarkably robust with respect to SU(4)-breaking
interactions. Both our papers establish moiré materials as an exciting platform not only for the
emergence of superconducting phases, but also for exhibiting fascinating physics in the insulating
regime.
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Abstract. We study competing orders of spinless fermions in the triangular-lattice Hubbard model with
nearest-neighbor interaction. We calculate the effective, momentum-resolved two-particle vertex in an
unbiased way in terms of the functional renormalization group method and compare two different schemes
for the momentum discretization, one based on dividing the Fermi surface into patches and one based
on a channel decomposition. We study attractive and repulsive nearest-neighbor interaction and find a
competition of pairing and charge instabilities. In the attractive case, a Pomeranchuk instability occurs at
Van Hove filling and f -wave and p-wave pairing emerge when the filling is reduced. In the repulsive case,
we obtain a charge density wave at Van Hove filling and extended p-wave pairing with reduced filling. The
p-wave pairing solution is doubly degenerate and can realize chiral p+ ip superconductivity with different
Chern numbers in the ground state. We discuss implications for strongly correlated spin-orbit coupled
hexagonal electron systems such as moiré heterostructures.

1 Introduction

For decades the single-band Hubbard model has been the
Standard Model of Correlated Electron Physics. Not only
has it been thought of as capturing essential features of the
phase diagram of high-temperature superconductors and
related materials, it has also served as a reference model
for the development of quantum many-body methods [1].

In terms of Fermi surface instabilities, the square lat-
tice has been the dominating focus of theoretical research
as it has been hosting the majority of quasi-two dimen-
sional candidate materials for strongly correlated electron
systems. More recently, however, the discovery of strongly-
correlated states in moiré materials, i.e. systems based
on few-layer stacks of two-dimensional materials such as
graphene or transition metal dichalcogenides (TMD) [2–6],
has made a strong case for revisiting hexagonal lattice sys-
tems of correlated electrons from the viewpoint of state-
of-the-art quantum many-body approaches [7–14].

Kagome, honeycomb, and triangular lattices all share
the same hexagonal point group symmetry but differ in
terms of Wyckoff positions taken by their respective lat-
tice sites. The triangular lattice stands out as the local site
symmetry matches that of the hexagonal point group sym-
metry. It has a high potential to offer exotic many-body
states due an intricate interplay between frustration and
correlations, see, e.g., [15–23] for a recent series of studies
on that matter.

In systems such as TMDs, a sizable spin-orbit coupling
breaks the spin-rotation invariance. As a consequence, ef-
fective models for moiré TMDs often involve several spin-
split bands [24–26] which need to be taken into account by
adequate quantum many-body approaches. In an attempt
to boil down moiré TMDs to its fermiological essence, this
can thus lead to an effective model of spin-polarized inter-
acting electrons (or spinless fermions). Note that in the
absence of local Hubbard repulsion due to the removed
spin degree of freedom, nearest-neighbor density-density
interactions are the most elementary terms to consider,
which we adopt for our paradigmatic toy model in the
following.

A method that has been shown to be quite flexible
when it comes to the description of competing instabilities
of correlated-electron systems on various lattice geometries
and for a broad range of fillings and interactions, is the
functional renormalization group (FRG) [27–29]. The FRG
has been used in numerous studies to identify the leading
Fermi-surface instabilities with all competing interaction
channels being treated on equal footing [30,31] Within the
correlated-electron FRG different schemes have been em-
ployed for numerical implementations, most prominently
the N -patch scheme, which divides the Brillouin zone into
a number of N patches with the representative momenta
lying on the Fermi surface [32]. The N -patch scheme allows
for a relatively simple and straightforward numerical im-
plementation, but becomes numerically expensive for high

ar
X

iv
:2

20
5.

12
54

7v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  2

5 
M

ay
 2

02
2



momentum resolution and also does not faithfully incorpo-
rate momentum conservation. More recently, an alterna-
tive scheme – the truncated-unity scheme [33] (TUFRG) –
based on a decomposition of the different interaction chan-
nels [34] has been devised, which separates stronger and
weaker momentum dependencies and therefore allows for
a more efficient numerical evaluation at high momentum
resolution.

In this work, we establish the correlated phase diagram
of of spinless electrons on the triangular lattice in the
presence of competing interaction channels around Van
Hove filling. To that end, we set up both, an N -Patch-
and a TUFRG approach for correlated fermions without
spin-SU(2) invariance. We carefully study the convergence
within both schemes and compare them to each other. The
motivation of our work is twofold:

1. The FRG represents a very promising scheme for set-
ting up sophisticated numerical implementations that
can capture accurate multi-orbital/-band models for
moiré TMDs. Our results can then be used for future
reference of such implementations.

2. The systematic quantitative comparison between the
two FRG schemes provides guidance to the choice of
transfer-momentum resolution and form-factor expan-
sions in future TUFRG studies, which are likely to
be more appropriate for a faithful description of more
involved models due to numerical efficiency.

2 Model

We consider a tight-binding model for spinless fermions
on the triangular lattice where we add a nearest-neighbor
density-density interaction, reading

H =− t
∑

〈ij〉

(
c†i cj + h.c.

)
− µ

∑

i

ni + V1

∑

〈ij〉
ninj . (1)

Here the operator c
(†)
i annihilates (creates) a fermion on

lattice site i, such that we allow for nearest-neighbor fermion
hopping with rate t. The fermion density operator ni =

c†i ci couples to the chemical potential µ to change the fill-
ing of the system and V1 > 0 (< 0) is the strength of the
repulsive (attractive) density interaction of neighboring
fermions (see Fig. 1). We will study the effects of attrac-
tive and repulsive interactions for an extended range of
fillings corresponding to µ. The energy band of this model
is given via a Fourier transform, yielding

ξ(k)=−2t[cos(kx)+2 cos(kx/2) cos(
√

3ky/2)]− µ , (2)

with wavevector k = (kx, ky). We note that at µ/t = 2 the
band dispersion features saddle points at the three inequiv-
alent M points of the Brillouin zone (BZ) (Fig. 1), giving
rise to a Van Hove singularity (VHS). Our investigations
of the emergent many-body instabilities of the system will
be carried out in the vicinity of the VHS, but also beyond.

Fig. 1. Real-space lattice and dispersion in the BZ. The
solid line in the right panel shows the perfectly nested Fermi
surface for µ/t = 2 which corresponds to Van Hove filling. The
dashed line shows the Fermi surface for µ/t = 1.4.

3 Fermionic functional renormalization group

The fermionic functional renormalization group (FRG)
[27, 28] has been established as a versatile approach to
treat strongly-correlated electrons without bias towards
a specific mean-field channel [30, 31]. It is rooted in the
functional integral description of quantum many-body sys-
tems and it allows for the investigation of a broad range
of models without specific limitations for their kinetic or
interaction parameters. Generally, the FRG acts as func-
tional implementation of the Wilsonian renormalization-
group (RG) idea, namely, one starts at an ultraviolet (UV)
cutoff scale ΛUV and successively takes effects of fermionic
fluctuations into account by approaching the infrared (IR)
limit ΛIR = 0.

While the FRG description of a selected model is at a
formal level exact, one needs to decide for truncations of
the description to derive a feasible numerical application
from the general principles. In the situation of compet-
ing interactions, this truncation will mostly concentrate
on the evolution of the two-particle vertex as an indica-
tor for emerging Fermi-surface instabilities. In the past,
this has led to many successful applications of the method
to strongly-correlated electron systems, for example, for
models of spin-rotational invariant electrons on triangu-
lar and honeycomb lattices, see, e.g., [8–13, 35–39]. In
addition more specific models of these geometries have
been investigated aiming at the description moiré materi-
als [23,40–44].

The FRG flow is realized by solving a system of coupled
differential equations interpolating between the UV and
the IR limit. In this work, we want to compare two specific
computational schemes to track this FRG evolution of
running couplings: (1) the N -patch scheme, which was one
of the first well-established methods within the fermionic
FRG framework, and (2) the truncated-unit FRG, a more
recent approach which goes beyond the patching scheme
and allows for a finer grained momentum resolution.
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3.1 Flow equations

Our starting point is the action for a many-electron system

S[ψ̄, ψ] = −(ψ̄, G−1
0 ψ) + Sint[ψ̄, ψ] , (3)

where ψ̄, ψ are Grassmann-valued fields. Here, the quadratic
term includes the free propagator G0(ω,k) = 1/(iω−ξ(k))
with Matsubara frequency ω and single-particle disper-
sion ξ(k), and the bracket (., .) denotes integrations over
continuous and summations over discrete indices. The
second term Sint[ψ̄, ψ] in Eq. (3) is an interaction term,
which can be read off directly from the interaction part
of the microscopic Hamiltonian in Eq. (1). With the help
of the action S, we can define the Schwinger functional
G[η̄, η] = − ln

∫
DψDψ̄ exp(−S[ψ̄, ψ]) exp[(η̄, ψ) + (ψ̄, η)]

and its Legendre transform - the effective action - Γ [ψ̄, ψ] =
(η̄, ψ)+(ψ̄, η)+G[η̄, η] with ψ = −∂G/∂η̄ and ψ̄ = ∂G/∂η,
which generates the one-particle irreducible (1PI) correla-
tion functions [45].

The central step for setting up the renormalization
group scheme amounts to regularizing the free propagator
by an infrared cutoff Λ, such that G0(ω,k) → GΛ0 (ω,k).
The cutoff implementation is, in some sense, arbitrary, as
long as the ultraviolet (Λ→∞) and infrared limit (Λ→ 0)
are smoothly connected. Here, we opt for implementing
the temperature flow scheme introduced by Honerkamp
and Salmhofer [46] which is employed for both FRG imple-
mentations. For now, however, we will keep the discussion
general and refer the reader to App. A for details on the
T -flow.

Having regularized the bare propagator, the effective
action Γ [ψ̄, ψ] becomes scale dependent and its flow is
governed by an exact differential equation [47], which reads

∂

∂Λ
ΓΛ=−(ψ̄, (ĠΛ0 )−1ψ)− 1

2
Tr
(
(ĠΛ

0 )−1(Γ(2)Λ)−1
)
, (4)

where Γ(2)Λ = (∂ψ̄, ∂ψ)T (∂ψ, ∂ψ̄)ΓΛ is the matrix of sec-

ond derivatives of ΓΛ. Here, the appearance of the ma-
trix of second functional derivatives of the effective action
Γ(2) necessitates some truncation to derive a closed set
of equations for the 1PI vertex functions. We employ a
standard approximation scheme, which (1) neglects self-
energy insertions, such that undifferentiated fermion lines
correspond to bare, unrenormalized propagators, (2) sets
external Matsubara frequency arguments to zero and, si-
multaneously, does not account for the frequency depen-
dence of the two-particle vertex and (3) truncates the
three-particle vertex from the flow equations (an in-depth
discussion of these approximations is reviewed in [30]). As
a result, we obtain flow equations for the static two-particle
vertex V (k1,k2,k3) (the fourth momentum is fixed by mo-
mentum conservation), which allow us to determine Fermi
liquid instabilities in an unbiased way.

For spinless fermions, the flow equations read [48,49]

d

dΛ
V Λ = τpp + τph,c + τph,d . (5)

where

τpp =− 1

2

∫

q

d

dΛ
[GΛ0 (iω, q + k1 + k2)GΛ0 (−iω,−q)]

× V Λ(k1,k2, q + k1 + k2)

× V Λ(q + k1 + k2,−q,k3) , (6)

denotes the pairing or particle-particle channel

τph,c =−
∫

q

d

dΛ
[GΛ0 (iω, q + k1 − k4)GΛ0 (iω, q)]

× V Λ(k1, q, q+k1− k4)

× V Λ(q + k1 − k4,k2,k3) , (7)

the crossed particle-hole channel and

τph,d = +

∫

q

d

dΛ
[GΛ0 (iω, q + k1 − k3)GΛ0 (iω, q)]

× V Λ(k1, q,k3)

× V Λ(q+k1−k3,k2, q) , (8)

the direct particle-hole channel, respectively. Here the in-
tegral is defined as

∫
k

= A−1
BZT

∫
BZ
dk
∑
iω and k = (k, ω)

where ABZ is the area of the Brillouin zone.
Integrating these equations starting with the bare cou-

pling in the Λ → ∞ limit, Fermi liquid instabilities are
signified by singular contributions to V . We note that V
is a function of three momenta and it is therefore costly
to compute. For this reason, we rely on further approxi-
mations for its momentum dependence, two of which are
presented in the following.

3.2 N-patch FRG

The first, well-established approximation of the momen-
tum dependence assumes that the two-particle vertex is
constant along elongated patches in momentum space [30].

To implement the patching scheme, we define a map-
ping π : 1.BZ → ZNFS, identifying momenta k in the first
Brillouin zone with their nearest-neighbor π(k) in an angu-
lar discretization ZNFS of the Fermi surface, which consists
of N points, see Fig. 2. This way, irrelevant couplings
perpendicular to the Fermi surface are projected out and
the vertex is fully determined by its value on the cen-
tral patch points, which we place equidistantly. Note, that
this treatment of the momentum dependence of the vertex
spoils momentum conservation, since the fourth momen-
tum k4 = π(k1) + π(k2) − π(k3) of the projected ver-
tex V (π(k1), π(k2), π(k3)) will in general not align with a
patch point and therefore require an additional transfor-
mation with π.

N -patch FRG calculations were successfully employed
to track the flow of marginal couplings for prototypical
model systems of high-Tc superconductivity such as iron

3
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Fig. 2. Illustration of the N-patch FRG scheme for N =
24 points on the Fermi surface (thick black line). The patches,
indicated by thin black lines, range from the Γ point to the
boundary of the first Brillouin zone (thick grey line). Our results
are produced with N = 192. The reference patch for the angular
discretization is indicated by a thin magenta line.

pnictides and cuprates, see, e.g., Refs. [29–31] and refer-
ences therein. This legitimates the method as a valid start-
ing point to determine the leading instabilities around the
Fermi surface fixed point.

In summary, the patching scheme describes the vertex
with three projected momenta, i.e. V (π(k1), π(k2), π(k3)),
such that for a selection of N patches, the numerical cost
will scale with N3. In this work, we implemented a resolu-
tion of the Fermi surface using N = 192 patches.

3.3 Truncated-unity FRG

The truncated-unity FRG (TUFRG) [33] allows for a high
resolution of the full Brillouin zone, i.e. in contrast to the
N -patch scheme, it is not restricted to the Fermi surface.
Instead, one can chose arbitrary points of momenta to
evaluate the flow equations. The derivation of the TUFRG
approach is based on the fact that the singular behaviour of
instabilities are mainly depending on the transfer momenta
inside the loops in Eqs. (6)–(8) connecting the two vertices
[34]. Specifically, they are k1 + k2 in τpp, k1 − k4 in τph,c
and k1 − k3 in τph,d. Consequently, the interaction is re-
parametrized into different channels such that each object
is accounting for one of the transfer momenta. In practice,
V Λ is decomposed as

V Λ(k1,k2,k3,k4) = V Λ,0(k1,k2,k3,k4)

+ ΦΛ,P (k1 + k2;−k2,−k4)

+ ΦΛ,C(k1 − k4;k4,k2)

+ ΦΛ,D(k1 − k3;k3,k2) , (9)

where V Λ,0(k1,k2,k3,k4) accounts for the initial condi-
tions of the model. The channels carry the important trans-
fer momentum as first argument and each channel can be

Fig. 3. Illustration of the TUFRG resolutions. Left: for
the comparison with the patching scheme, Nq = 180 momen-
tum points were chosen which are evenly spaced in the Brillouin
zone. Only the contributions of the red points have to be cal-
culated since the rest can be obtained by symmetry operations.
Right: The plane-wave form factors are fl(k) = exp(ikRl),
where Rl are the real space vectors. Our results are produced
with Nf = 19 (inside the magenta circle) unless stated other-
wise. For more details see App. B.2.

interpreted as representing a specific kind of interaction.
The choice of these three channels was initially motivated
by models of spinful fermions, where P will represent a
pairing interaction, and depending on spin combinations,
C and D represent magnetic and density-density interac-
tions. Since our model Eq. (1) is spinless, both channel
C and D will eventually represent density-density interac-
tions and this choice is therefore redundant We keep this
representation anyway such that a transfer of this method
to a spinful model can be done in a transparent way.

To relate the channels to the diagrams with the same
important momentum, we define the flow equations

d

dΛ
ΦP (k1 + k2;−k2,−k4) = τpp(k1,k2,k3,k4) , (10)

d

dΛ
ΦC(k1 − k4;k4,k2) = τph,c(k1,k2,k3,k4) , (11)

d

dΛ
ΦD(k1 − k3;k3,k2) = τph,d(k1,k2,k3,k4) , (12)

where Λ was dropped for brevity. Since the the last two
momenta of the channels are deemed as less important, we
will expand them in form-factors:

ΦX(q,k,k′) =
∑

l,l′

X l,l′(q)fl(k)f∗l′(k
′) (13)

with X ∈ {P,C,D}. This expansion can be imposed as
long as the form-factors are forming a unity:

A−1
BZ

∑

l

f∗l (p)fl(k) = δ(p− k) , (14)

A−1
BZ

∫
dkf∗l (k)fl′(k) = δl,l′ . (15)
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Fig. 4. Patching results for V1/t = −1 and µ/t = 2. The
flow of the largest couplings in each channel is plotted in (a) and
indicates an instability in the particle-hole channels. Solving
the respective gap equation using the renormalized vertex in
(b), yields the largest eigenvalue for transfer momentum q = 0.
The so-determined order parameter, indicated by light blue
dots in (c), has an extended s-wave symmetry and transforms
in the A1 irrep. with both first and second neighbor harmonics
(a fit to the numerical data is plotted as a dark blue line).

The channel decomposition and the unity of the form-
factors can now be used to reformulate the initial flow
equations into a form which offers a computational advan-
tage.

In the TUFRG approach we derive flow equations for
P l,l

′
(q), Cl,l

′
(q), Dl,l′(q) by taking the derivative d

dΛ and
inserting form-factor resolved unities on the right hand side
of Eqs. (6)–(8) between the vertices and the loops, even-
tually leading to separating the three objects momentum-
wise while connecting them in terms of form-factors. The
sum of the form factors introduced with the unity Eq. (15)
can then be truncated safely to gain a numerical advantage.
The final form of the TUFRG flow equations reads

d

dΛ
P l,l

′
(q) = +

1

2

∑

l1,l2

V P (q)l,l1Ḃ(q)
(−)
l1,l2

V P (q)l2,l′ , (16)

d

dΛ
Cl,l

′
(q) = +

∑

l1,l2

V C(q)l,l1Ḃ(q)
(+)
l1,l2

V C(q)l2,l′ , (17)

d

dΛ
Dl,l′(q) = −

∑

l1,l2

V D(q)l,l1Ḃ(q)
(+)
l1,l2

V D(q)l2,l′ , (18)

for details of the objects see App. B.1.
The flow equations now scale with Nq ×N2

f , where Nq
is the number of momenta q which discretize the Brillouin
zone and Nf is the number of chosen form-factors, see
Fig. 3. In practice one has to choose much less form-factors

than patches in the patching scheme. Therefore, we gain
a numerical advantage over the scaling of the N -patch
scheme (∼ N3) and the freedom to choose a larger number
of momenta Nq in the Brillouin zone. In this work, we
use Nq = 180 and Nf = 19 for comparison with 192
patches in the other approach. To discuss single points in
the phase diagram we use Nq = 540 and Nf = 19. In the
convergence checks we go up to Nq = 792 and Nf = 61.
For details about the choice of momenta and form factors,
see App. B.2.

3.4 Linearized gap equation

To obtain the gap function ∆(k) for the superconducting
instabilities encountered during the FRG flow, we utilize
standard BCS theory [50], that is, we perform a mean-field
decoupling in the superconducting channel and derive a
self consistent gap equation for ∆(k). Close to the critical
temperature, where the gap is presumably small, the gap
equation can be linearized and resembles an eigenvalue
equation, which reads

∆(k) = − 1

N

∑

k′

VBCS(k,k′)
∆(k′)
2ξk′

tanh

(
ξk′

2Tc

)
. (19)

The only input required to solve Eq. (19) and determine
the leading contributions to the gap function as the eigen-
vectors with the largest negative eigenvalues, is then given
by the pairing potential VBCS(k,k′) = V (k,−k,k′,−k′).

For the patching approach, we rewrite the right hand
side of Eq. (19) as an integral over a small energy shell
−εc ≤ ξk ≤ εc � εFS around the Fermi surface, where the
most dominant contribution to the momentum sum stems
from. The gap equation thus becomes

∆(k) ≈−
[∫ εc

−εc
dξ

1

2ξ
tanh

(
ξ

2Tc

)]

× 〈VBCS(k,k′)∆(k′)〉k′∈FS , (20)

where the integral evaluates to

∫ εc

−εc
dξ

1

2ξ
tanh

(
ξ

2Tc

)
≈ ln

(
1.13

εc
Tc

)
. (21)

Finally, substituting VBCS(k,k′) = τTc
pp (k,−k,k′,−k′) in

Eq. (21) allows to straightforwardly obtain ∆(k) on the
Fermi surface within the patching approach.

If we work with the TUFRG approach instead, we can
restore the pairing interaction straightforwardly by calcu-
lating the pairing interaction from the P channel, which
is just given by the form-factor expansion in Eq. (13):

ΦP (q,k,k′) =
∑

l,l′

P l,l
′
(q)fl(k)f∗l′(k

′). (22)

Since the divergence has a sharp peak at q = 0, we set the
superconducting pairing interaction as:

ΦP (q = 0,k,k′) := ΦP (k,k′) , (23)

5
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Fig. 5. TUFRG results for V1/t = −1 and µ/t = 2. Track-
ing the evolution of the P,C,D channels, we can compare the
maximal value of the respective vertices and detect a diver-
gence in the C/D channel, see (a). Moreover we notice the
expected alignment of the D and C channel due to symmetry.
The momentum resolved on-site vertex D1,1(q) in (b) peaks
at the Γ point, indicating the possibility of a Pomeranchuck
instability. The reconstructed order parameter ∆D(k) of the D
channel is in the A1 irrep., see (c). We use Nq = 540, Nf = 19.

and identify VBCS(k,k′) = ΦP (k,k′). Thereafter, the gap
function is obtained by diagonalization of the Nq × Nq
matrix ΦP (k,k′).

Note, that while we have focused on pairing instabilities
for the sake of brevity, one can generalize the discussion
above directly to instabilities in the particle-hole channels
by performing the respective mean-field decoupling and de-
riving a gap equation with an appropriate density instead
of a pairing potential.

4 Attractive case V1 < 0

We first investigate the case of attractive interactions V1 <
0 at and away from Van Hove filling µ/t = 2. To that
end, we apply both, the N -patch and the TUFRG scheme,
and work out the qualitative and quantitative differences
between these approaches. In order to generate a common
starting point we initialize both methods as follows: the
RG flow starts at

TUV = W , (24)

where W = 9t is the bandwidth of the model. The respec-
tive flow equations are integrated down to the infrared,
which we numerically define by TIR/t = 10−5. If one of the
channels diverges, signified by its maximum exceeding 3W ,
the integration is terminated preemptively. As initial value
for the vertex, we set VW (π(k1), π(k2), π(k3)) = V1 in the

patching scheme, and VW (k1,k2,k3,k4) = V1, ΦW,X = 0
in the TUFRG.

4.1 Pomeranchuk instability at Van Hove filling

Tracking the evolution of the attractive case under the RG
flow both employed approaches eventually detect a diver-
gence of the particle-hole channels between T/t = 1 and
T/t = 0.1, see Figs. 4 and 5. Due to crossing symmetry,
which relates the direct and crossed particle-hole contri-
butions, the flows of the respective maxima align and we,
thus, reduce our discussion to τph,d for brevity.

In the patching scheme, we find the most singular
eigenvalue to emerge from the linearized gap equation
(see App. ?? for further details) with transfer momentum
q = k1−k3 = 0, corresponding to a Pomeranchuk instabil-
ity [51]. The respective order parameter 〈ψ̄kψk〉 (see (c) in
Fig. 4) is found to live in the A1 irreducible representation
(irrep.) of C6v with an extended s-wave form factor includ-
ing nearest and second-nearest neighbors. The momentum
modulation, induced by the second neighbor harmonic, is,
however, quite weak to the constant offset presented by
the nearest-neighbor A1 basis function.

In the TUFRG scheme, the instability almost exclu-
sively affects the onsite-component D1,1(q) of the direct
particle-hole channel, with a pronounced peak at the Γ
point (see Fig. 5 (b)) and in agreement with the patching
results. The reconstructed order parameter ∆D (see (c) in
Fig. 5) likewise transforms in the A1 irrep., including a
momentum modulation on the Fermi line. Note that, due
to this modulation being weak compared to the nearest-
neighbor A1 contribution, this is rather difficult to see
from the colormap in Fig. 5.

4.2 Superconductivity below Van Hove filling

For fillings µ/t < 2, the Fermi surface is deformed and at
some point the Pomeranchuck instability is overruled by
a superconducting instability. We observe that, depending
on the combination of chemical potential and interaction
strength, both employed FRG schemes consistently predict
two different kinds of superconductivity with q = 0 for an
extended range of fillings.

More specifically, moving away from µ/t = 2 towards
smaller values, the Pomeranchuck instability will at first
be replaced by a region of f -wave superconductivity. Us-
ing the FRG data, we can reconstruct a gap function as
detailed in Sec. 3.4. Indeed, we find that the gap func-
tion belongs to the one-dimensional B1 irrep. of C6v (see
Figs. 6 and 7). The size of the filling range where the
f -wave superconductivity instability occurs grows for de-
creasing interaction strength |V1|. In the case of V1 = −0.4
this type of superconductivity is even the only one which
persists. Notably, in the case of V1 = −1.0, where the re-
gion is the smallest, the N -patch FRG scheme does not
detect f -wave at all while TUFRG still resolves a small
domain of this instability.
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Fig. 6. Patching results for V1/t = −0.6 and µ/t = 1.8.
Here, the flows of the channel maxima (see (a)) signifies a
pairing instability. The superconducting gap, extracted from
the renormalized vertex in (b), has f -wave symmetry (light
blue dots) and can be fitted by the nearest-neighbor harmonic
of the B1 irrep. (dark blue line).
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Fig. 7. TUFRG results for V1/t = −0.6 and µ/t = 1.8.
Tracking similar to Fig.5 we can now find a divergence of the P
channel away from Van Hove filling, indicating the emergence of
superconductive instability (see (a)). The reconstructed leading
gap ∆(k) of this instability (see (b)) depicts a function in the
B1 irrep. of C6v. The black line represents the Fermi surface,
featuring 6 zero crossings. We use Nq = 540, Nf = 19.

Lowering µ further, p-wave superconductivity becomes
the leading instability, which is described by the two-
dimensional E1 irrep. of the same point group (see Figs. 8
and 9). On a mean-field level, it is energetically beneficial
for the superconducting order to open a full gap in the
quasi-particle spectrum, which can be accomplished, for
example, by constructing the superconducting gap ∆(k)
as a complex superposition of the E1 lattice harmonics.
This leads to a p + ip superconducting state featuring a
finite Chern number C = −1 which is thus topologically
non-trivial (see App. D).
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Fig. 8. Patching results for V1/t = −1 and µ/t = 1.2.
Similar to Fig. 6, the vertex flows, plotted in (a), hint towards a
superconducting instability. The respective gap equation, which
requires the renormalized vertex from (b) as input, has a two-
fold degenerate leading eigenvalue. The respective eigenvectors
(superconducting gaps), displayed as light blue (light red) dots
in (c), have p-wave symmetry and are well described by the
nearest-neighbor lattice harmonics of the E1 representation of
C6v, which we indicate by a dark blue (dark red) line.

Qualitatively, the two superconducting instabilities we
find here are also consistent with the mean-field study pre-
sented in Ref. [52]. We note, however, that our FRG study
includes additional fluctuations, which induce the Pomer-
anchuk instability when approaching Van Hove filling.

4.3 Phase diagram of the attractive case

In Fig. 10, we have mapped out the phase diagram for
various V1/t < 0 using both, the N -patch FRG and the
TUFRG. Generally, the phase boundaries, the respective
ground state instabilities, and the critical scales are in
reasonable agreement. Some deviations in the critical tem-
peratures are visible, in particular, in the regions where
the superconducting instabilities occur at very low scales.
Notably, the transition from Pomeranchuk to the f -wave
superconductivity is in good alignment in both methods
while the second transition point towards p-wave super-
conductivity has a larger difference although deep into this
particular phase the methods apparently converge.

To establish the reliability of our results, we have fur-
ther studied the convergence of the TUFRG approach
with respect to the momentum- and form-factor resolution
(Nq, Nf ) in more detail, see App. B.2.
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Fig. 9. TUFRG results for V1/t = −1 and µ/t = 1.2 with
Nq = 540, Nf = 19 For even lower fillings we still find a diver-
gence of the P channel (a). But the reconstructed (degenerate)
leading gaps ∆(k) of the emerging superconductivity instability
(see (b)) depict now functions in the E1 irrep. of C6v. The black
line represents the Fermi surface, featuring 2 zero crossings.

0.0 0.5 1.0 1.5 2.0

µ/t

10−5

10−4

10−3

10−2

10−1

100

T
c
/
t

metal

p-wave SC f -wave SC Pomeranchuk
V1 patch RG TUFRG

-1.0

-0.8

-0.6

-0.4

Fig. 10. Phase diagram for attractive interactions from
patching and TUFRG. At Van Hove filling and for suffi-
ciently strong interactions, both methods consistently predict
a Pomeranchuk instability (see Figs. 4 & 5 for more details).
Below µ/t = 2.0, two kinds of pairing instabilities can be found:
an f -wave superconductor in vicinity of Van Hove filling (see
Figs. 6 & 7) and a p-wave instability (see Figs. 8 & 9) at even
smaller values of µ/t. The boundaries are indicated by col-
ored crosses (for the f -wave superconductor) or dots (for the
Pomeranchuk instability), respectively.

5 Repulsive case V1 > 0

We now consider the repulsive case V1/t > 0. Here, we
can expect that the occurring instabilities result from an
interplay of the perfect nesting at the Van Hove point,
whose effect can be mitigated by changing the filling, and

10−1 100 101
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m
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x
(|τ

c
|)

(a)

c = pp
c = ph,d
c = ph,c

0 π 2π
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0

π

2π

φ
2

φ3 = 0

(b) τTcph,d(φ1, φ2, φ3)/W

−3

0

3

Fig. 11. Patching results for V1/t = 1 at Van Hove filling.
(a) Flow of the channel maxima, indicating a simultaneous
divergence in both particle-hole channels, consistent with the
TUFRG result in Fig. 12. (b) Plot of the direct particle-hole
channel right at the critical scale Tc. The corresponding plot for
τph,c can be obtained via crossing symmetry, i.e. a permutation
φ1 and φ2 and a flip of the overall sign.

a divergent susceptibility in the pairing channel, which
eventually induces a superconducting instability.

5.1 CDW at Van Hove filling

Similar to the attractive case, both methods detect a di-
vergence of the particle-hole channels for µ/t = 2. An
analysis of the possible order parameters 〈ψ̄k+qψk〉 (see
Figs. 11 and 12), however, reveals that the leading insta-
bility occurs for transfer momenta q, which coincide with
the nesting vector M . The FRG results thus indicates the
instability towards a charge density wave.

5.2 p̃-wave superconductivity below Van Hove filling

As we have discussed for the attractive case, the Fermi sur-
face loses its nesting property below Van Hove filling, and,
thus, fluctuations in the particle-hole channels are weaker
(but still finite). In contrast to our previous considerations,
however, putative superconducting instabilities would now
arise from a different mechanism. Since V1/t > 0, pairing is
not directly encapsulated by the bare vertex and an attrac-
tive interaction in τpp henceforth needs to be generated
by inter-channel feedback during the RG flow.

Indeed, both methods find an instability of the particle-
particle channel for various fillings µ/t < 0 and, remark-
ably, the flows of the maxima in the different channels
plotted in Figs. 13(a) and 14(a) underline the importance
of particle-hole fluctuations for the emergence of super-
conductivity. While the pairing channel is negligible (in
TUFRG) or at least smaller than the other contributions
(in the patching scheme), the particle-hole channels first
sharply increase and then converge to a constant value,
which dominates the vertex. In the low temperature regime,
however, an abrupt upturn in the τpp flow can be ob-
served, which ultimately results in a divergence of the RG
flow. The respective gap function again transforms in the
E1 representation of C6v, but requires both nearest- and
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Fig. 12. TUFRG results for V1/t = 1 and µ/t = 2 with
Nq = 540, Nf = 19. Tracking the evolution of the channels
P,C,D, we will find a CDW instability as the maximal absolute
value of the C and D diverge while the P channel remains small,
see (a). The alignment of the C and D channel is still expected
because of the symmetric connection of the diagrams. The on-
site, momentum resolved D channel D1,1(q) inhabits peaks
at the M points, indicating the emergence of the CDW with
modulation exp (iMR).

second-nearest neighbor lattice harmonics, as indicated by
an increased number of nodes on the Fermi surface (see
Fig. 13(c) or Fig. 14(b)). We dub this instability p̃-wave
to set it apart from its counterpart in the attractive case.

Notably, a complex order parameter constructed solely
from the second neighbor E1 basis functions likewise yields
C = −1, whereas superpositions of both the first and sec-
ond neighbor harmonics can generate an enhanced quan-
tum Hall response due to Chern numbers |C| > 1 (see
Fig. 19 for more details).

5.3 Phase diagram of the repulsive case

In Fig. 15 we finally show results for the phase diagram ob-
tained from the patching scheme and TUFRG for various
fillings and repulsive interactions. Interestingly, the tem-
perature scales for the p̃-wave superconductor measured
in the patching scheme are almost one order of magnitude
higher than in TUFRG, though the nature of the insta-
bility remains the same. Moreover, the sharp drop in Tc
between the CDW and superconducting regime is absent
in the patching results, where only a soft shoulder is in-
dicative of the transition. Close to Van Hove filling on the
other hand, the agreement is more reasonable. Since the
central patch points coincide with the saddle points in the
latter case, this generates the suspicion that the projection
to the Fermi surface might be responsible for the observed
discrepancy away from perfect nesting.

6 Discussion

We analyzed competing orders in a model of spinless elec-
trons on the triangular lattice with nearest-neighbor in-
teraction. Our study was motivated by the observation
of correlated states in moiré bilayers of transition metal
dichalcogenides. These systems are effectively described
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Fig. 13. Patching results for V1/t = 1 and µ/t = 1.7. A
superconducting instability, driven by strong particle-hole fluc-
tuations, becomes visible as a divergence of the particle-particle
channel (see (a) and (b)). The pairing potential, constructed
from τpp at the critical scale Tc, has two degenerate gaps (light
red and light blue dots in (c)), which can be fit by a linear
combination of first and second neighbor lattice harmonics of
the two-dimensional E1 representation of C6v (dark red/blue
line).

by interacting electrons on a triangular lattice, although
equipped with (pseudo)spin and/or orbital degrees of free-
dom. To distill out the minimal degrees of freedom, we
considered the paradigmatic toy model of spinless elec-
trons and showed that it still possesses a rich interplay of
ordering tendencies in the vicinity of a Van Hove singu-
larity. To resolve this interplay, we calculated the effective
two-particle interaction vertex in an unbiased way with
the functional renormalization group. It is crucial to ac-
curately resolve the momentum dependence of the vertex
and we used two different parameterizations - a patching
scheme for the Fermi surface and a channel decomposition
for the momentum transfers. Both of them give qualita-
tively consistent results.

With an attractive bare interaction, we find a Pomer-
anchuk instability in the s-wave channel directly around
Van Hove filling and f - and p-wave pairing instabilities
in its vicinity for smaller fillings. Within RPA, both the
charge and pairing channel can develop an instability, al-
though at weak coupling the pairing channel has a stronger
divergence (logarithmic vs double logarithmic). Interest-
ingly, in our calculations, the Pomeranchuk instability in
the charge channel develops first due to non-universal ef-
fects (beyond the logarithmic scaling). The s-wave Pomer-
anchuk instability corresponds to a singular compressibil-
ity but is not associated with any symmetry-breaking or-
der. This can signal the tendency to phase separation with
domains of different density. Another possibility is that
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Fig. 14. TUFRG results for V1/t = 1 and µ/t = 1.7 with
Nq = 540, Nf = 19 The RG flow for repulsive interactions away
from Van Hove filling features the divergence of the P channel
and hence a superconductive instability (a). The reconstructed
degenerate leading gaps ∆(k) of this instability (see (b)) depict
a higher harmonic function of the E1 irrep. of C6v. The black
line represents the Fermi surface, featuring 10 zero crossings
each.
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Fig. 15. Phase diagram for repulsive interactions from
patching and TUFRG. Both approaches predict one tran-
sition from a metallic state, where no instability of the RG
flow is observed down to T/t = 10−5, to an extended p̃-wave
superconductor (see Figs. 13 & 14), followed by another tran-
sition (indicated by a colored dot) to a charge density wave
with transfer momentum q = M close to Van Hove filling (see
Figs. 11 & 12).

the divergence is cured by terms outside of our truncation,
e.g., by self-energy terms, and makes room for a sublead-
ing instability. The p-wave pairing solution is two-fold
degenerate and can form chiral p+ ip superconductivity in
the ground state. This topological triplet superconducting
state breaks time-reversal symmetry and can host Majo-
rana modes on its boundaries.

In the case of a repulsive bare interaction, we obtain a
CDW instability closest to Van Hove filling, whose fluctu-
ations mediate unconventional p-wave pairing at smaller
fillings. The wave vectors of the CDW are the three non-
equivalent M points of the Brillouin zone and the ex-
act charge pattern of the associated order depends on
their combination in the ground state. Due to the bare
nearest-neighbor repulsion, we find the unconventional p-
wave pairing to be of extended size described by nearest-
and next-nearest-neighbor harmonics. This can yield topo-
logical p + ip states with higher Chern numbers, which
increases, e.g., the number of chiral edge modes and the
quantum Hall response.
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A Temperature regulator

Both codes applied in this manuscript make use of the temperature flow scheme developed by Honerkamp and
Salmhofer [46]. As such, the bare propagator is regularized as

G0(iω,k)→ GT0 (iω,k) =
T 1/2

iω − ξ(k)
, (25)

while the fermionic fields ψ̄, ψ are simultaneously rescaled by a factor T−3/4. This way, the temperature only appears
in the Gaussian part of the action and the flow equations (5) apply up to a substitution Λ→ T . Another prominent
advantage of this regularization, apart from being able to directly identify Λ with a physical quantity (temperature),
is that contributions from particle-hole loops are fully taken into account even for small total momenta. In contrast to,
for example, momentum shell schemes (see Ref. [47]), instabilities with transfer momenta at the Γ point are therefore
not artificially suppressed, allowing to treat all channels in an unbiased way [46].

B Flow equations and numerical implementation of TUFRG

B.1 Elements of flow equations

Each flow equation Eqs. (16)-(18) consists of a product of a particle-particle (−) or particle-hole (+) bubble integral

Ḃ(q)±l,l′ connecting two cross-channel projections V X , with X = P,C,D. For completeness, both objects will be

described here explicitly. The bubble integrals emerge by insertion of the form-factor resolved unities in Eqs. (6)-(8)
to separate the loops of the diagrams from the vertices. Their explicit form is given by

Ḃ(q)
(±)
l,l′ = −

∫

p

d

dΛ
[GΛ0 (iω, q + p)×GΛ0 (±iω,±q)]fl(p)f∗l′(p) . (26)

By implementing the temperature flow as shown in App. A and performing the Matsubara summations explicitly the
bubbles are cast into:

Ḃ(q)
(+)
l,l′ =+

∫

p

n′F (ξ(q+p))−n′F (ξ(q))

ξ(q+p)−ξ(q)
fl(p)f∗l′(p), (27)

Ḃ(q)
(−)
l,l′ =−

∫

p

n′F (ξ(q+p))+n′F (ξ(−q))

ξ(q+p)+ξ(−q)
fl(p)f∗l′(p), (28)

where n′F (x) is the Fermi function after performing the temperature-derivative i.e. n′F (x) = d
dT nF (x). After inserting the

form-factor resolved unities into the initial flow equations, the vertices will also gain a dependency on the form-factors.
The emergent objects will be the cross-channel projections:

V Pl,l′(q)=

∫

k,k′
fl(k)f∗l′(k

′)V Λ(k+q,−k,k′+q,−k′), (29)

V Cl,l′(q)=

∫

k,k′
fl(k)f∗l′(k

′)V Λ(k + q,k′,k′ + q,k) , (30)

V Dl,l′(q)=

∫

k,k′
fl(k)f∗l′(k

′)V Λ(k + q,k′,k,k′ + q) , (31)

where the integral includes the Brillouin zone area:
∫
k

= A−1
BZ

∫
dk. These expressions can also be simplified by plugging

in the plane wave form-factors exp(ikRl) (see App. B.2) and expressing V Λ by the decomposition Eq. (9). Therefore
the double integral over the Brillouin zone is exchanged by a simple sum over the selected form-factors

∑
L:

V Pl,l′(q)=V P,0l,l′ (q)+V P(Cl,l′ (q)+V P(Dl,l′ (q)+Pl,l′(q) , (32)

V P(Cl,l′ (q) =
∑

L

C̃RL,−RL+Rl+Rl′ (−RL+Rl′)e
−i(RL−Rl′ )q ,

V P(Dl,l′ (q) =
∑

L

D̃RL,−RL+Rl−Rl′ (−RL−Rl′)e
−iRLq .
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V Cl,l′(q)=V C,0l,l′ (q)+V C(Pl,l′ (q)+V C(Dl,l′ (q)+Cl,l′(q) , (33)

V C(Pl,l′ (q) =
∑

L

P̃RL,−RL+Rl+Rl′ (−RL+Rl′)e
−i(RL−Rl′ )q ,

V C(Dl,l′ (q) =
∑

L

D̃RL,RL−Rl+Rl′ (−Rl)e
−iRLq ,

V Dl,l′(q)=V D,0l,l′ (q)+V D(Pl,l′ (q)+V D(Cl,l′ (q)+Dl,l′(q) , (34)

V D(Pl,l′ (q) =
∑

L

P̃RL,RL−Rl−Rl′ (−Rl)e
−i(RL−Rl′ )q ,

V D(Cl,l′ (q) =
∑

L

C̃RL,RL−Rl+Rl′ (−Rl)e
−iRLq.

The objects V X,0l,l′ (q) encode the initial interaction of the model Eq. (1) by projecting it into the respective channels,

see App. C. X̃l,l′ represents the Fourier-transformed channels, for example for the pairing channel P :

P̃l,l′(Ri) = A−1
BZ

∫
dpPl,l′(p)e−ipRi . (35)

B.2 Choice of momenta and form-factors and convergence

One has the freedom to select different sets of form-factors as long as the unity condition Eqs. (14)-(15) are fulfilled.
The simplest choice of form-factors have the form of plane waves: fl(k) = exp (ikRl) where Rl is a real space vector
of the lattice of the investigated model, i.e. in our case the triangular lattice. This choice has the advantage, that
the truncation of form-factors can be done within an interpretable reasoning: the inclusion of a form-factor fl(k) will
correspond to taking effects of fermionic bilinears with distance Rl into account [53]. Since we assume that the emerging
physics in the RG flow will be predominately influenced by short-range effects, we will truncate all form-factors which
exceed a chosen distance. In our calculations we mostly select Nf = 19 form-factors, corresponding to on-site (i.e.
R1 = 0), first-, second- and third-nearest neighbors effects. For the convergence checks in Figs. 17,18 we will also use
Nf = 37 (i.e. up to 5th nearest-neighbors effects) and Nf = 61 (i.e. up to 8th nearest-neighbors effects), see Fig.16.
This specific choice of amount of form-factors is based on keeping a hexagonal-shell Ns into account. This means, that
we will include all plane waves with Rl which are on or inside the Ns − th hexagon of the real space lattice, cf. Fig.16.
Therefore the numbers Nf = 19, 37, 61 correspond to the hexagon-shells Ns = 2, 3, 4.

For the momentum resolution, we choose evenly placed points in the Brillouin zone. Most of our calculations
are done with Nq = 180 momenta to compare it with the 192 patching points of the other approach, while for the
convergence checks in Figs. 17,18 we also choose Nq = 336, Nq = 540 and Nq = 792.

Actually, one does not have to calculate the RG flow for all momenta Nq, but only for a fraction 1/12×Nq. The
rest of the contributions can then be restored by symmetry relations since the symmetries of the initial model Eq. (1)
are inherited by the flow equations, see [54] for details.

C Initial conditions

The initial condition for the FRG flow is given by the bare two-particle vertex V0, which can be directly read off the
microscopic model in Eq. (1). For this purpose, one needs to identify the action Sint with the vertex at the UV scale,
i.e Sint = V ΛUV = V0, and additionally account for crossing symmetries, such as V (k1,k2,k3,k4) = −V (k2,k1,k3,k4).
The initial condition needs to be properly (anti-) symmetrized henceforth. On the level of the Hamiltonian, crossing
symmetry can already be made explicit by reordering the Fock space operators as

V1

∑

〈ij〉
ninj = V1

∑

〈ij〉
c†i c
†
jcjci =

1

4
V1

∑

〈ij〉

(
c†i c
†
jcjci − c†i c†jcicj − c†jc†i cjci + c†jc

†
i cicj

)
. (36)
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Fig. 16. Momentum resolutions and form-factors choice. Left: different resolutions of the Brillouin zone. Only 1/12 of
the momenta (red) actually have to be calculated in the RG flow while the rest can be derived by symmetry relations. Right:
real space vectors Rl for the plane wave form-factors.
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Fig. 17. Convergence of critical RG scales from TUFRG for the attractive case V1/t < 0. (a) Study for convergence
for increasing momentum resolution. All calculations align qualitatively and quantitatively for the checked region. (b) Study for
convergence in form factors. While the results match qualitatively, minor deviations in the critical temperature regarding the
superconductive instabilities occur.

Transforming to momentum space, the initial condition for the FRG flow is thus

V0(k1,k2,k3,k4) =
V1

2

∑

δ

(
e−i(k2−k4)δ − e−i(k2−k3)δ − e−i(k1−k4)δ + e−i(k1−k3)δ

)
, (37)

where we sum over the nearest-neighbor displacement vectors δ. Projecting all momenta to the Fermi surface via
π : 1.BZ→ ZNFS, Eq. (37) directly serves as the initial condition for the patching scheme.
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Fig. 18. Convergence of critical RG scales from TUFRG for the repulsive case V1/t > 0.(a) For the investigation of
convergence in increasing momentum resolution Nq we find qualitatively the same phase diagram which quantitative deviations
diminish for higher resolution. (b) The the investigation of including more form factors Nf we still find qualitative alignment,
while the critical temperature slightly grows for including more shells. Since we are primarily interested in the qualitative
behaviour and the deviations are not too strong, we use Ns = 2 for the calculations in the sections 4 and 5.

For the TUFRG approach, we additionally insert Eq. (37) into Eqs. (29)-(31) to derive explicit expressions for

V X,0l,l′ , with X ∈ {P,C,D}. This procedure finally yields

V C,0R1,R1
(q) = −V D,0R1,R1

(q) = −V1

∑

δ

eiqδ (38)

V P,0Rl,Rl
(q) = V C,0Rl,Rl

(q) = −V D,0Rl,Rl
(q) = V1 (39)

V P,0R−l,Rl
(q) = −V1e

−iqRl , (40)

with l ∈ {2, 3, 4, 5, 6, 7} as the initial condition for the TUFRG flow.

D Chern numbers

To access possible topological properties of pairing instabilities, we consult a Skyrmion winding number formula [55,56]

C =
1

4π

∫

1.BZ

d2k

〈
m(k)

∣∣∣∣
∂m(k)

∂kx
× ∂m(k)

∂ky

〉
, (41)

where 〈. | .〉 is the Euclidean scalar product. Here, m(k) denotes the pseudospin vector or Skyrmion magnetization,
which follows the winding of the superconducting gap around the Fermi surface. In algebraic form, m(k) is given by

m(k) =
1

E(k)




Re(∆(k))
Im(∆(k))
ξ(k)


 , (42)

where E(k) =
√
|∆(k)|2 + ξ(k)2 is the Bogoliubov quasi-particle spectrum.

It is immediately clear, that any real or purely imaginary gap function will result in a topologically trivial state
with C = 0. In contrast, for a gap function corresponding to a two-dimensional irreducible representation, such as
the p-wave instabilities we found in the main text, the possibility of non-trivial topology arises. In principle, one
would need to minimize the mean-field free energy for a linear superposition of the respective lattice harmonics and
determine whether or not a complex gap function prevails. Here, we resign from employing this variational approach
and instead use a heuristic argument. Consider the ground state energy E0 = −〈|∆(k)|〉FS for a gap function ∆(k)
which we suppose to live in the complex two-dimensional space corresponding to a doubly degenerate eigenvalue of
the linearized gap equation. If this linear combination is either real or purely imaginary, there will be momenta on
the Fermi surface where |∆(k)| is gapless and no contribution to the ground state energy is obtained henceforth. If
one assumes a complex linear combination instead, |∆(k)| will be fully gapped at the Fermi level and thus, a lower
ground state energy is obtained. It is therefore natural to assume, that the energetically more beneficial superposition
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Fig. 19. Example calculations for Chern numbers in the E1 representation for µ/t = 1.7. Motivated by our finding of
a higher-harmonic p̃-wave instability for repulsive interactions V1/t > 0 (see Figs. 13 & 14), we perform exemplary computations
of C for superconducting gaps of the form ∆(k) = [cos(α)δE1

1 (k) + sin(α)δ̃E1
1 (k)] + i× [cos(α)δE1

2 (k) + sin(α)δ̃E1
2 (k)], where δE1

1(2)

denotes the nearest-neighbor lattice harmonics of the E1 irrep. and δ̃E1
1(2) the respective second neighbor functions. The model is

chosen such that we recover the pure first (second) neighbor limit for α = 0 (π).

of lattice harmonics is a complex one. Computing C from the ansatz ∆(k) = δE1
1 (k) + iδE1

2 (k) for the nearest-neighbor
or second neighbor lattice harmonics δE1 of the E1 irrep., for example, we find C = −1 over the entire range of fillings
where the p-wave instability occurs. An admixture of both, the first and second neighbor functions may, however, yield
a strongly enhanced Chern number, as exemplified in Fig. 19.
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Pinch point singularities, associated with flat band magnetic excitations, are tell-tale signatures of Coulomb
spin liquids. While their properties in the presence of quantum fluctuations have been widely studied, the fate
of the complementary non-analytic features – shaped as half-moons and stars – arising from adjacent shallow
dispersive bands has remained unexplored. Here, we address this question for the spin S = 1/2 Heisenberg
antiferromagnet on the kagome lattice with second and third neighbor couplings, which allows one to tune
the classical ground state from flat bands to being governed by shallow dispersive bands for intermediate cou-
pling strengths. Employing the complementary strengths of variational Monte Carlo, pseudo-fermion functional
renormalization group, and density-matrix renormalization group, we establish the quantum phase diagram. The
U(1) Dirac spin liquid ground state of the nearest-neighbor antiferromagnet remains remarkably robust till in-
termediate coupling strengths when it transitions into a pinwheel valence bond crystal displaying signatures of
half-moons in its structure factor. Our work thus identifies a microscopic setting that realizes one of the prox-
imate orders of the Dirac spin liquid identified in a recent work [Song, Wang, Vishwanath, He, Nat. Commun.
10, 4254 (2019)]. For larger couplings, we obtain a collinear magnetically ordered ground state characterized
by star-like patterns.

Classical spin models which admit a completion of squares
belong to the distinct genre of “maximally frustrated” Hamil-
tonians which feature an exponentially large degenerate
ground-state manifold [1, 2]. In two spatial dimensions, a cel-
ebrated example is the classical nearest-neighbor Heisenberg
antiferromagnet (NNHAF) on the kagome lattice

H = J1

∑

〈ij〉
Si · Sj =

J1

2

∑

4,5
(S1 + S2 + S3)2 − J1N (1)

with |Si| = 1 and N the total number of spins. By virtue of
the right-hand-side of Eq. (1), any spin configuration which
satisfies (S1+S2+S3) = 0 on each triangle qualifies as a clas-
sical ground state. The emergence of such a local constraint
leads to the formation of a Coulomb spin liquid [3], with alge-
braically decaying spin-spin correlations in real space, which
gives structure to the exponentially large manifold of degen-
erate ground states. In Fourier space, these correlations most
strikingly manifest themselves in the presence of non-analytic
features in the structure factor called pinch points [4, 5]. Re-
markably, this classical Coulomb phase remains stable [6, 7]
even in the presence of additional couplings along a fine-tuned
line when second neighbor (J2) and third neighbor along
edges (J3a) [see Fig. 1(a)] are concurrently introduced and
of equal strength, i.e. J2 = J3a (≡ J henceforth). This can
be readily understood when diagonalizing the spin exchange
HamiltonianH(k) in momentum space [8–10], which reveals
that the characteristic flat band of the NNHAF persists [6]

up to J/J1 = 1/5. For J/J1 > 1/5, a shallow dispersive
band starts to cut below the flat band in parts of the Bril-
louin zone [6], which in turn gives rise to pairs of half-moons,
i.e., crescent shaped arcs in the static structure factor [11],
with the flat band remaining close-by with a multitude of low-
energy excitations [12]. On a deeper level, the formation of
half-moons in the static structure factor results from a non-
analyticity in the dispersive-band eigenvectors as a function
of momentum and, given the completeness of the eigenvector
basis, can be viewed as necessarily arising in order to com-
plement the singularity in the momentum dependence of the
flat-band eigenvectors [6, 13]. With increasing J/J1, the ra-
dius of the half-moon continuously grows and at J/J1 = 1,
the half-moons from different Brillouin zones coalesce, giv-
ing rise to a star pattern in the static structure factor. While
in the case of Ising spins, which show a similar sequence of
momentum space signatures as a function of J/J1, the na-
ture of the half-moons and star phases has a well-understood
real-space picture in terms of magnetic clustering of topolog-
ical charges [14–16], for continuous (Heisenberg) spins, the
nature of the real-space clustering and its freedom to contin-
uously evolve with J is far more involved and not yet com-
pletely understood [6].

Much of the interest in the kagome quantum antiferromag-
net as a potential host to highly entangled quantum states owes
its origin to the realization that its classical ground state is
governed by flat bands – an opportunity for otherwise resid-
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<latexit sha1_base64="3hm5WlLfrQ49LlN/5WTGj2YTpnA=">AAAB/3icdVDLSsNAFJ3UV62vqks3g0VwFZK26WNXdOOygn1AG8pkMmmHTiZhZiKU0IU/4Fb/wJ249VP8Ab/DSVvBih64cDjnXu69x4sZlcqyPozcxubW9k5+t7C3f3B4VDw+6cooEZh0cMQi0feQJIxy0lFUMdKPBUGhx0jPm15nfu+eCEkjfqdmMXFDNOY0oBipTBqPyoVRsWSZVq1Sb5ShZTpOpeLUNWk2m42aA23TWqAEVmiPip9DP8JJSLjCDEk5sK1YuSkSimJG5oVhIkmM8BSNyUBTjkIi3XRx6xxeaMWHQSR0cQUX6s+JFIVSzkJPd4ZITeRvLxP/8gaJChpuSnmcKMLxclGQMKgimD0OfSoIVmymCcKC6lshniCBsNLxrG1hYeQTwec6mO/v4f+kWzbtmlm9rZZaV6uI8uAMnINLYIM6aIEb0AYdgMEEPIIn8Gw8GC/Gq/G2bM0Zq5lTsAbj/Qsby5bn</latexit>g2

<latexit sha1_base64="zz8OIUgin0e6BKphtkfZpd/sltc=">AAACD3icbVBLSgNBFOzxG+MvxqWbwSC4McxIUJdBNy4VjArJEHo6b5Im/Rm630jCMIfwAm71Bu7ErUfwAp7DTszCX8GDouo96lFxKrjFIHj35uYXFpeWSyvl1bX1jc3KVvXa6swwaDEttLmNqQXBFbSQo4Db1ACVsYCbeHg28W/uwFiu1RWOU4gk7SuecEbRSd1KtYMwwnxARXIgtVa2KHcrtaAeTOH/JeGM1MgMF93KR6enWSZBIRPU2nYYpBjl1CBnAopyJ7OQUjakfWg7qqgEG+XT3wt/zyk9P9HGjUJ/qn6/yKm0dixjtykpDuxvbyL+57UzTE6inKs0Q1DsKyjJhI/anxTh97gBhmLsCGWGu199NqCGMnR1/UgRUvfAqMIVE/6u4S+5PqyHR/XGZaPWPJ1VVCI7ZJfsk5AckyY5JxekRRgZkQfySJ68e+/Ze/Fev1bnvNnNNvkB7+0T9B+dVQ==</latexit>

half-moons
<latexit sha1_base64="8ZfVNN0yhAUUBqgiO842v0wdqYw=">AAACEXicbVBLSgNBFOzxG+Nv/OzcDAbBjWFGgroMunEZwXwgCaGn85I06ekeut+IccgpvIBbvYE7cesJvIDnsPNZmMSCB0XVe9Sjwlhwg77/7Swtr6yurWc2sptb2zu77t5+xahEMygzJZSuhdSA4BLKyFFALdZAo1BANezfjPzqA2jDlbzHQQzNiHYl73BG0Uot97CB8IhpzCXrncWKSzTDbMvN+Xl/DG+RBFOSI1OUWu5Po61YEoFEJqgx9cCPsZlSjZwJGGYbiYGYsj7tQt1SSSMwzXT8/dA7sUrb6yhtR6I3Vv9epDQyZhCFdjOi2DPz3kj8z6sn2LlqplzGCYJkk6BOIjxU3qgKr801MBQDSyjT3P7qsR7VlKEtbCZFRKoNWg5tMcF8DYukcp4PLvKFu0KueD2tKEOOyDE5JQG5JEVyS0qkTBh5Ii/klbw5z8678+F8TlaXnOnNAZmB8/ULwICeUQ==</latexit>

pinch-points
<latexit sha1_base64="cW0eQRx4FHRJXmWPQv47cB9/e/8=">AAACCHicbVDLSsNAFJ3UV62vqks3wSK4KomIuiy6cVnBPqANZTK5aYdOJnHmRiyhP+APuNU/cCdu/Qt/wO9w2mZhWw9cOJxzL+dy/ERwjY7zbRVWVtfWN4qbpa3tnd298v5BU8epYtBgsYhV26caBJfQQI4C2okCGvkCWv7wZuK3HkFpHst7HCXgRbQvecgZRSN5XYQnzDRSpcelXrniVJ0p7GXi5qRCctR75Z9uELM0AolMUK07rpOgl1GFnAkYl7qphoSyIe1Dx1BJI9BeNn16bJ8YJbDDWJmRaE/VvxcZjbQeRb7ZjCgO9KI3Ef/zOimGV17GZZIiSDYLClNhY2xPGrADroChGBlCmeLmV5sNqKIMTU9zKSKKA1BybIpxF2tYJs2zqntRPb87r9Su84qK5Igck1PikktSI7ekThqEkQfyQl7Jm/VsvVsf1udstWDlN4dkDtbXL81lmys=</latexit>stars

<latexit sha1_base64="hYcGdObCqTQc8HR4Amk3gJrIL2w=">AAACD3icbZBLTgJBEIZ78IX4Qly66UhMcENmDFGXRF24xESQBAjpaQro0NMz6a4xkAmH8AJu9QbujFuP4AU8h81jIeCfVPLnr6pU5fMjKQy67reTWlvf2NxKb2d2dvf2D7KHuZoJY82hykMZ6rrPDEihoIoCJdQjDSzwJTz6g5tJ//EJtBGhesBRBK2A9ZToCs7QRu1srokwxKRa8M7ordCMjzPtbN4tulPRVePNTZ7MVWlnf5qdkMcBKOSSGdPw3AhbCdMouIRxphkbiBgfsB40rFUsANNKpr+P6alNOrQbalsK6TT9u5GwwJhR4NvJgGHfLPcm4X+9Rozdq1YiVBQjKD471I0lxZBOQNCO0MBRjqxhXAv7K+V9ZgmgxbVwRQZhB7QaWzDeMoZVUzsvehfF0n0pX76eI0qTY3JCCsQjl6RM7kiFVAknQ/JCXsmb8+y8Ox/O52w05cx3jsiCnK9fKfCcOw==</latexit>

U(1) Dirac
<latexit sha1_base64="Xjghrlruo5Yl06HXYT4w7Ae8BhE=">AAACEXicbVBLTgJBFOzxi/jDz85NR2LiiswYoi4JbFxiIp8ECOlpHtChp2fS/UbFCafwAm71Bu6MW0/gBTyHzWchYCUvqVS9l3opP5LCoOt+Oyura+sbm6mt9PbO7t5+5uCwasJYc6jwUIa67jMDUiiooEAJ9UgDC3wJNX9QGvu1e9BGhOoOhxG0AtZTois4Qyu1M8dNhEdMIqEe+gCSVoulUbqdybo5dwK6TLwZyZIZyu3MT7MT8jgAhVwyYxqeG2ErYRoFlzBKN2MDEeMD1oOGpYoFYFrJ5PsRPbNKh3ZDbUchnah/LxIWGDMMfLsZMOybRW8s/uc1YuxetxKhohhB8WlQN5YUQzqugnaEBo5yaAnjWthfKe8zzTjawuZSZBB2QKuRLcZbrGGZVC9y3mUuf5vPFoqzilLkhJySc+KRK1IgN6RMKoSTJ/JCXsmb8+y8Ox/O53R1xZndHJE5OF+/69+dzA==</latexit>

pinwheel VBC
<latexit sha1_base64="Lmwbf5mwcK+4oUoUPE8yMzy1PB4=">AAACD3icbVBLSgNBFOyJvxh/MS7dDAbBVZiRoC6DblxGMB9IQujpeUma9HQP3W8kYcghvIBbvYE7cesRvIDnsPNZmMSCB0XVe9Sjglhwg5737WQ2Nre2d7K7ub39g8Oj/HGhblSiGdSYEko3A2pAcAk15CigGWugUSCgEQzvpn7jCbThSj7iOIZORPuS9zijaKVuvtBGGGGqGNIBhJqKSa6bL3olbwZ3nfgLUiQLVLv5n3aoWBKBRCaoMS3fi7GTUo2cCZjk2omBmLIh7UPLUkkjMJ109vvEPbdK6PaUtiPRnal/L1IaGTOOArsZURyYVW8q/ue1EuzddFIu4wRBsnlQLxEuKndahBtyDQzF2BLKNLe/umxANWVo61pKEZEKQcuJLcZfrWGd1C9L/lWp/FAuVm4XFWXJKTkjF8Qn16RC7kmV1AgjI/JCXsmb8+y8Ox/O53w14yxuTsgSnK9fLYSdeA==</latexit>octahedral

<latexit sha1_base64="5ZPYi4ns/3IsKGrqe0salZ0g39s=">AAAB/3icdVDLSsNAFJ34rPVVdelmsAiuQtKmbboruhFXFewD2lAmk2k7dDIJMxOhhC78Abf6B+7ErZ/iD/gdTtoKVvTAhcM593LvPX7MqFSW9WGsrW9sbm3ndvK7e/sHh4Wj47aMEoFJC0csEl0fScIoJy1FFSPdWBAU+ox0/MlV5nfuiZA04ndqGhMvRCNOhxQjlUk3Azs/KBQts1yqO24VWqZbrtTdmiZ21alVLGib1hxFsERzUPjsBxFOQsIVZkjKnm3FykuRUBQzMsv3E0lihCdoRHqachQS6aXzW2fwXCsBHEZCF1dwrv6cSFEo5TT0dWeI1Fj+9jLxL6+XqKHrpZTHiSIcLxYNEwZVBLPHYUAFwYpNNUFYUH0rxGMkEFY6npUtLIwCIvhMB/P9PfyftEs6KtO5dYqNy2VEOXAKzsAFsEENNMA1aIIWwGAMHsETeDYejBfj1XhbtK4Zy5kTsALj/Qvk5pbE</latexit>

J1

<latexit sha1_base64="BU5DK89CuwxvWWnG8dCTyrrrSwI=">AAAB/3icdVDLSsNAFJ34rPVVdelmsAiuQtI2feyKbsRVBfuANpTJZNIOnUzCzEQooQt/wK3+gTtx66f4A36Hk7aCFT1w4XDOvdx7jxczKpVlfRhr6xubW9u5nfzu3v7BYeHouCOjRGDSxhGLRM9DkjDKSVtRxUgvFgSFHiNdb3KV+d17IiSN+J2axsQN0YjTgGKkMulmWMoPC0XLtKrlWr0ELdNxymWnpkmj0ahXHWib1hxFsERrWPgc+BFOQsIVZkjKvm3Fyk2RUBQzMssPEklihCdoRPqachQS6abzW2fwXCs+DCKhiys4V39OpCiUchp6ujNEaix/e5n4l9dPVFB3U8rjRBGOF4uChEEVwexx6FNBsGJTTRAWVN8K8RgJhJWOZ2ULCyOfCD7TwXx/D/8nnZJpV83KbaXYvFxGlAOn4AxcABvUQBNcgxZoAwzG4BE8gWfjwXgxXo23ReuasZw5ASsw3r8A7S2Wyg==</latexit>

J2

<latexit sha1_base64="cfM4c6fxYJLkphwf/9QQJEOsh9Q=">AAACAnicdVDLSgMxFM3UV62vqks3wSK4GjJt7WNXdCOuKtgHtEPJZNI2NJMZkoxQhtn5A271D9yJW3/EH/A7TB+CFT1w4XDOvdx7jxdxpjRCH1ZmbX1jcyu7ndvZ3ds/yB8etVUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa5mfueeSsVCcaenEXUDPBJsyAjWRurcDJISTnODfAHZ9TqqVooQ2RfIKdZrhqCSUy3VoGOjOQpgieYg/9n3QxIHVGjCsVI9B0XaTbDUjHCa5vqxohEmEzyiPUMFDqhyk/m5KTwzig+HoTQlNJyrPycSHCg1DTzTGWA9Vr+9mfiX14v1sOYmTESxpoIsFg1jDnUIZ79Dn0lKNJ8agolk5lZIxlhiok1CK1t4EPpUitQE8/09/J+0i7ZTscu35ULjchlRFpyAU3AOHFAFDXANmqAFCJiAR/AEnq0H68V6td4WrRlrOXMMVmC9fwFr0pgu</latexit>

J3a

<latexit sha1_base64="cfM4c6fxYJLkphwf/9QQJEOsh9Q=">AAACAnicdVDLSgMxFM3UV62vqks3wSK4GjJt7WNXdCOuKtgHtEPJZNI2NJMZkoxQhtn5A271D9yJW3/EH/A7TB+CFT1w4XDOvdx7jxdxpjRCH1ZmbX1jcyu7ndvZ3ds/yB8etVUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa5mfueeSsVCcaenEXUDPBJsyAjWRurcDJISTnODfAHZ9TqqVooQ2RfIKdZrhqCSUy3VoGOjOQpgieYg/9n3QxIHVGjCsVI9B0XaTbDUjHCa5vqxohEmEzyiPUMFDqhyk/m5KTwzig+HoTQlNJyrPycSHCg1DTzTGWA9Vr+9mfiX14v1sOYmTESxpoIsFg1jDnUIZ79Dn0lKNJ8agolk5lZIxlhiok1CK1t4EPpUitQE8/09/J+0i7ZTscu35ULjchlRFpyAU3AOHFAFDXANmqAFCJiAR/AEnq0H68V6td4WrRlrOXMMVmC9fwFr0pgu</latexit>

J3a

<latexit sha1_base64="BU5DK89CuwxvWWnG8dCTyrrrSwI=">AAAB/3icdVDLSsNAFJ34rPVVdelmsAiuQtI2feyKbsRVBfuANpTJZNIOnUzCzEQooQt/wK3+gTtx66f4A36Hk7aCFT1w4XDOvdx7jxczKpVlfRhr6xubW9u5nfzu3v7BYeHouCOjRGDSxhGLRM9DkjDKSVtRxUgvFgSFHiNdb3KV+d17IiSN+J2axsQN0YjTgGKkMulmWMoPC0XLtKrlWr0ELdNxymWnpkmj0ahXHWib1hxFsERrWPgc+BFOQsIVZkjKvm3Fyk2RUBQzMssPEklihCdoRPqachQS6abzW2fwXCs+DCKhiys4V39OpCiUchp6ujNEaix/e5n4l9dPVFB3U8rjRBGOF4uChEEVwexx6FNBsGJTTRAWVN8K8RgJhJWOZ2ULCyOfCD7TwXx/D/8nnZJpV83KbaXYvFxGlAOn4AxcABvUQBNcgxZoAwzG4BE8gWfjwXgxXo23ReuasZw5ASsw3r8A7S2Wyg==</latexit>

J2

<latexit sha1_base64="AFZ8uzANbYREUo+AzbgsTE9oUuY=">AAAB/HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqMegF/GUgHlAsoTZ2d5kyOzMMjMrhCX+gFf9A2/i1X/xB/wOJ8keTGJBQ1HVTXdXkHCmjet+O4W19Y3NreJ2aWd3b/+gfHjU0jJVFJpUcqk6AdHAmYCmYYZDJ1FA4oBDOxjdTf32EyjNpHg04wT8mAwEixglxkqNh3654lbdGfAq8XJSQTnq/fJPL5Q0jUEYyonWXc9NjJ8RZRjlMCn1Ug0JoSMygK6lgsSg/Wx26ASfWSXEkVS2hMEz9e9ERmKtx3FgO2NihnrZm4r/ed3URDd+xkSSGhB0vihKOTYST7/GIVNADR9bQqhi9lZMh0QRamw2C1t4LENQYmKD8ZZjWCWti6p3Vb1sXFZqt3lERXSCTtE58tA1qqF7VEdNRBGgF/SK3pxn5935cD7nrQUnnzlGC3C+fgHtdZWt</latexit>

J<latexit sha1_base64="0+97vNU8sg0us4NIvfA1BZexURE=">AAAB/HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqBch6MVjAuYByRJmZ3uTIbMzy8ysEJb4A171D7yJV//FH/A7nCR7MIkFDUVVN91dQcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUUWhSyaXqBEQDZwKahhkOnUQBiQMO7WB0P/XbT6A0k+LRjBPwYzIQLGKUGCs1bvvlilt1Z8CrxMtJBeWo98s/vVDSNAZhKCdadz03MX5GlGGUw6TUSzUkhI7IALqWChKD9rPZoRN8ZpUQR1LZEgbP1L8TGYm1HseB7YyJGeplbyr+53VTE934GRNJakDQ+aIo5dhIPP0ah0wBNXxsCaGK2VsxHRJFqLHZLGzhsQxBiYkNxluOYZW0LqreVfWycVmp3eURFdEJOkXnyEPXqIYeUB01EUWAXtArenOenXfnw/mctxacfOYYLcD5+gXYvZWg</latexit>= <latexit sha1_base64="0+97vNU8sg0us4NIvfA1BZexURE=">AAAB/HicbVDLSgNBEJyNrxhfUY9eBoPgKeyKqBch6MVjAuYByRJmZ3uTIbMzy8ysEJb4A171D7yJV//FH/A7nCR7MIkFDUVVN91dQcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUUWhSyaXqBEQDZwKahhkOnUQBiQMO7WB0P/XbT6A0k+LRjBPwYzIQLGKUGCs1bvvlilt1Z8CrxMtJBeWo98s/vVDSNAZhKCdadz03MX5GlGGUw6TUSzUkhI7IALqWChKD9rPZoRN8ZpUQR1LZEgbP1L8TGYm1HseB7YyJGeplbyr+53VTE934GRNJakDQ+aIo5dhIPP0ah0wBNXxsCaGK2VsxHRJFqLHZLGzhsQxBiYkNxluOYZW0LqreVfWycVmp3eURFdEJOkXnyEPXqIYeUB01EUWAXtArenOenXfnw/mctxacfOYYLcD5+gXYvZWg</latexit>=

<latexit sha1_base64="PicQXOjwCvpnMOC1s4ZNyPg5sTk=">AAACB3icbVDLSsNAFJ3UV62vqks3wSLUTUmKqMuiG5cV7AOaUCaTm3boZBJmbsQS+gH+gFv9A3fi1s/wB/wO0zYL23rgwuGcezmX48WCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jpKFIMWi0Skuh7VILiEFnIU0I0V0NAT0PFGt1O/8whK80g+4DgGN6QDyQPOKGaS4yA8oRekVXo+6ZcrVs2awVwldk4qJEezX/5x/IglIUhkgmrds60Y3ZQq5EzApOQkGmLKRnQAvYxKGoJ209nPE/MsU3wziFQ2Es2Z+vcipaHW49DLNkOKQ73sTcX/vF6CwbWbchknCJLNg4JEmBiZ0wJMnytgKMYZoUzx7FeTDamiDLOaFlJEGPmg5LQYe7mGVdKu1+zL2sV9vdK4ySsqkhNySqrEJlekQe5Ik7QIIzF5Ia/kzXg23o0P43O+WjDym2OyAOPrF3NYmmI=</latexit>

(a)
<latexit sha1_base64="0H3w8hemTVSVgGf1ULQRDjlPSls=">AAACB3icbVDLSsNAFJ3UV62vqks3wSLUTUmKqMuiG5cV7AOaUCaTm3boZBJmbsQS+gH+gFv9A3fi1s/wB/wO0zYL23rgwuGcezmX48WCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jpKFIMWi0Skuh7VILiEFnIU0I0V0NAT0PFGt1O/8whK80g+4DgGN6QDyQPOKGaS4yA8oRekVe980i9XrJo1g7lK7JxUSI5mv/zj+BFLQpDIBNW6Z1sxuilVyJmASclJNMSUjegAehmVNATtprOfJ+ZZpvhmEKlsJJoz9e9FSkOtx6GXbYYUh3rZm4r/eb0Eg2s35TJOECSbBwWJMDEypwWYPlfAUIwzQpni2a8mG1JFGWY1LaSIMPJByWkx9nINq6Rdr9mXtYv7eqVxk1dUJCfklFSJTa5Ig9yRJmkRRmLyQl7Jm/FsvBsfxud8tWDkN8dkAcbXL3TymmM=</latexit>

(b)

<latexit sha1_base64="2/LDlZR86G0SynT6tct65hSfUgw=">AAACB3icbVDLSsNAFJ3UV62vqks3wSLUTUmKqMuiG5cV7AOaUCaTm3boZBJmbsQS+gH+gFv9A3fi1s/wB/wO0zYL23rgwuGcezmX48WCa7Ssb6Owtr6xuVXcLu3s7u0flA+P2jpKFIMWi0Skuh7VILiEFnIU0I0V0NAT0PFGt1O/8whK80g+4DgGN6QDyQPOKGaS4yA8oRekVXY+6ZcrVs2awVwldk4qJEezX/5x/IglIUhkgmrds60Y3ZQq5EzApOQkGmLKRnQAvYxKGoJ209nPE/MsU3wziFQ2Es2Z+vcipaHW49DLNkOKQ73sTcX/vF6CwbWbchknCJLNg4JEmBiZ0wJMnytgKMYZoUzx7FeTDamiDLOaFlJEGPmg5LQYe7mGVdKu1+zL2sV9vdK4ySsqkhNySqrEJlekQe5Ik7QIIzF5Ia/kzXg23o0P43O+WjDym2OyAOPrF3aMmmQ=</latexit>

(c)

<latexit sha1_base64="CMB/cFJKN42f4KavYWKVdJeEW6Q=">AAACAXicbVDLSgNBEJyNrxhfUY9eBoPgxbAbRD1GBfFiiGAekCxhdnaSjJnHMjMrhCUnf8Cr/oE38eqX+AN+h5NkDyaxoKGo6qa7K4gY1cZ1v53M0vLK6lp2PbexubW9k9/dq2sZK0xqWDKpmgHShFFBaoYaRpqRIogHjDSCwfXYbzwRpakUD2YYEZ+jnqBdipGxUr1SObm8uevkC27RnQAuEi8lBZCi2sn/tEOJY06EwQxp3fLcyPgJUoZiRka5dqxJhPAA9UjLUoE40X4yuXYEj6wSwq5UtoSBE/XvRIK41kMe2E6OTF/Pe2PxP68Vm+6Fn1ARxYYIPF3UjRk0Eo5fhyFVBBs2tARhRe2tEPeRQtjYgGa2MC5DosTIBuPNx7BI6qWid1Y8vS8VyldpRFlwAA7BMfDAOSiDW1AFNYDBI3gBr+DNeXbenQ/nc9qacdKZfTAD5+sXxkOXMA==</latexit>

NN-AFM
<latexit sha1_base64="5jyxDeE847Qv/2dHOzcVAITLZfk=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKe5KUI9BL5JTBPOAZAmzk9lkyOzsMtMrhJCP8OJBEa9+jzf/xkmyB00saCiquunuChIpDLrut5NbW9/Y3MpvF3Z29/YPiodHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6G7mt564NiJWjzhOuB/RgRKhYBSt1KqRC1Lreb1iyS27c5BV4mWkBBnqveJXtx+zNOIKmaTGdDw3QX9CNQom+bTQTQ1PKBvRAe9YqmjEjT+ZnzslZ1bpkzDWthSSufp7YkIjY8ZRYDsjikOz7M3E/7xOiuGNPxEqSZErtlgUppJgTGa/k77QnKEcW0KZFvZWwoZUU4Y2oYINwVt+eZU0L8veVbnyUClVb7M48nACp3AOHlxDFe6hDg1gMIJneIU3J3FenHfnY9Gac7KZY/gD5/MHeCGOXA==</latexit>

J/J1
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0
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0
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°2º 0 2º
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FIG. 1. The kagome skymap. (a) Illustration of first- (J1), second- (J2), and third-neighbor interactions along edges (J3a) of the kagome
lattice for the considered model. (b) The S = 1/2 quantum phase diagram with (top panel) representative real-space spin-spin correlation
profiles, with red (blue) bonds denoting antiferromagnetic (ferromagnetic) correlations, and (lower panel) spin structure factors of the different
phases evaluated at J/J1 = 0.1 (DSL), J/J1 = 0.4 (pinwheel VBC), and J/J1 = 0.9 (collinear order) from pf-FRG. (c) estimates of the
phase boundaries (g1 and g2) obtained from the various approaches employed in this work. While we see agreement, within error bars, for g1
for all approaches, the pf-FRG result for g2 (marked by an asterisk), shows a notable deviation whose origin we discuss in Appendix I B.

ual quantum effects to dictate the macroscopic ground state.
Thence, tuning the pairwise exchange along the maximally
frustrated axis (J2 = J3a ≡ J) which, classically, is tuned
to have a flat band over an extended region in parameter
space, should provide a fertile playground to potentially re-
alize novel states of matter also in the quantum model. For
one, the U(1) Dirac spin liquid (DSL) [17–19] ground state
of the NNHAF [20–23] is indeed known to be fragile to mag-
netic order when perturbed by longer-range Heisenberg cou-
plings [24, 25] or Dzyaloshinskii-Moriya interactions [26], as
expected for algebraic spin liquids, but its fate along the max-
imally frustrated direction of interest here is unknown. In par-
ticular, this parameter axis may afford a higher degree of sta-
bility to the U(1) DSL against long-range order, and one may
wonder whether the DSL naturally gives way to other exotic
quantum phases as one marches along this direction. On a
conceptual level, instabilities of the DSL have recently been
rigorously classified [19] in field theoretical work. But it re-
mains an open challenge to identify microscopic settings in
which these instabilities manifest themselves and what tell-
tale signatures they come along with that might be accessible
in experimental studies.

In this manuscript, we take an important step in this di-
rection by establishing the quantum counterpart to the clas-
sical half-moon phase as a pinwheel valence bond crystal
state which the DSL transitions into only for finite coupling
strength. We do so by employing complementary numeri-
cal quantum many-body approaches to build a detailed pic-
ture of the S = 1/2 quantum phase diagram along the max-

imally frustrated axis for J/J1 > 0, resolving the character-
istic real-space and Fourier-space signatures of all quantum
phases. The numerical approaches include fermionic vari-
ational Monte Carlo (VMC) with versatile Gutzwiller pro-
jected Jastrow wave functions [27], many-variable variational
Monte Carlo (mVMC) with unconstrained optimization of the
Bardeen-Cooper-Schrieffer (BCS) pairing function (supple-
mented with symmetry projectors) [28, 29], one-loop pseudo-
fermion functional renormalization group (pf-FRG) [30], and
density-matrix renormalization group (DMRG) [31]. The re-
sulting quantum phase diagram is shown in Fig. 1, where
cumulative and complementary evidence from all employed
approaches shows that the ground state remains nonmag-
netic over an appreciably wide span of parameter space [see
Fig. 1(b)], notably extending far beyond the classical domain
(0 6 J/J1 6 0.2) where flat bands are lowest in energy. This
nonmagnetic region is composed of two phases: (i) the U(1)
Dirac spin liquid (DSL) for 0 6 J/J1 . 0.26 characterized
by soft maxima at the pinch points in its spin structure factor
χ(k), and (ii) a 12-site unit cell, C6 symmetric pinwheel va-
lence bond crystal (VBC) for 0.26 . J/J1 . 0.51, displaying
signatures of half-moons in χ(k), see Fig. 1(b). Our analysis
indicates the DSL-VBC transition to be first-order as ascer-
tained on finite systems from a sudden change in the spin-
spin correlation profile and a crossing of the energies. For
J/J1 & 0.51, the VBC gives way, via a first-order transition,
to collinear long-range magnetic order [32, 33] with signa-
tures of a star-like pattern in χ(k).

Results. We set the stage, by observing that across our nu-
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FIG. 2. Transition into half-moon phase. (a) From VMC, the evo-
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ison. (b) From pf-FRG, the variation of the spectral measure ∆χk

(see text below) with J/J1 evaluated at the lowest simulated RG cut-
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√
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1 + 2J2.

merical approaches we find that the ground state energy is
seen to increase with J/J1, reflecting an enhanced degree of
frustration at variance with conventional expectation that the
NNHAF represents the point of maximal frustration, which is
relieved upon inclusion of long-range couplings. The pres-
ence of a pronounced kink in the evolution of the ground state
energy is indicative of a phase transition [see Fig. 2(a)] which
we estimate to be at g1 = 0.27(1) via an analysis of its deriva-
tive (from our DMRG calculations). This value is also cor-
roborated by the behavior of the von Neumann entanglement
entropy which starts decreasing sharply at g1 [see Fig. S12]
indicating the formation of a less entangled state.

To probe the nature of the ensuing states, let us start by dis-
cussing results from our fermionic VMC approach with versa-
tile Gutzwiller-projected wave functions constructed in a man-
ner enabling us to accurately study the competition between
nonmagnetic quantum spin liquid (QSL) and VBC phases, to-
gether with magnetically ordered states. Such a unified frame-
work has been met with success in its application to a wide
range of frustrated spin models [24, 25, 34–36]. Our cal-
culations are performed on 3 × L × L clusters respecting
the full symmetry of the kagome lattice. For the S = 1/2
NNHAF, there is emerging consensus towards a U(1) DSL
ground state [20, 23, 37, 38], which is known to yield the
lowest variational energy [20, 37]. Upon including a J cou-
pling, we investigate for the potential instability of the U(1)
DSL to symmetric Z2 [39], chiral U(1) [40], chiral Z2 [41],
and lattice nematic Z2 [42] QSLs. We also probe for possi-
ble dimerization tendencies into VBCs with various unit cell
sizes up to 36 sites and different symmetries [17, 18, 43–
45]. Our analysis finds a remarkable robustness of the U(1)
DSL to the above-mentioned potential instabilities over a wide
range along the maximally frustrated axis extending up till
J/J1 = 0.26(1), which we note is beyond the range of J/J1

for the classical model where the flat band is the lowest in
energy [6].

At J/J1 = 0.26(1), we detect a dimer instability of the
DSL towards a VBC ground state in our VMC calculations.
This VBC state is found to be characterized by a 2×2 enlarged

unit cell with a C6 invariant pinwheel structure of spin-spin
correlations in real space which breaks reflection symmetries
[see Fig. 1(b)]. The formation of such a VBC state is further
corroborated by an enhanced dimer response (see Fig. S4).
Interestingly, such a pattern of strong/weak bonds has previ-
ously been identified as descending from confinement transi-
tions of Z2 spin liquids [46] (left panel of Fig. 1 therein), and
recently proposed in Ref. [19] [Fig. 3(c) therein] as a potential
instability of the U(1) DSL resulting from a condensation of
a C6 invariant mass and the associated monopole terms. Our
finding of aC6 symmetric VBC, as opposed to other less sym-
metric patterns [Fig. 2(c) in Ref. [47]], is likely connected to
the fact that the imaginary expectation value of the monopole
condensation responsible for this reflection symmetry break-
ing pattern also optimizes the Landau potential [19]. It is
worth pointing out that our VBC pattern is distinct from the
2 × 2 enlarged VBC patterns previously proposed in Fig. 4
of Ref. [17] and Fig. 5 of Ref. [18] which do not break reflec-
tions (though these pattern also minimize the Landau potential
as noted in Ref. [19]). While, the DSL to VBC transition is
allowed to be continuous, our microscopic calculations find it
to be first-order as inferred from a level-crossing of the ener-
gies of the two states [see Fig. 2(a)] together with the obser-
vation of an abrupt change in the nearest-neighbor spin-spin
correlation profile. We show that the energy gain of the VBC
w. r. t. the U(1) DSL is non-zero for J/J1 > 0.26(1) and re-
mains so on all finite size systems we simulated, indicating
size-consistency of the VBC state and its stability in the ther-
modynamic limit.

Further support for the pinwheel VBC state comes from
mVMC calculations at J/J1 = 0.4, for which we measure
the real-space dimer-dimer correlation pattern (see Fig. S6)
where the emergence of the C6 symmetric pinwheel VBC is
also manifest. We also construct a symmetry-breaking dimer
operator with non-vanishing susceptibility extrapolated to the
thermodynamic limit (see Fig. S7). An analysis of the lat-
ter suggests a triply-degenerate C3-related order parameter,
with the three M -points momenta setting the spatial depen-
dence, which signals a VBC behavior with the spontaneous
C3-symmetry breaking. However, the equal-weight sum of
these three basis functions of the dominant irreducible rep-
resentations results into an effective C6 symmetric pinwheel
pattern as obtained within VMC [see Fig. 1 (b)], which we il-
lustrate in the inset of Fig. S7. The corresponding susceptibil-
ity decreases rapidly as J/J1 → 0, substantiating a transition
to a quantum spin liquid phase from the VBC.

To probe the aforementioned VBC order within DMRG, we
start by imposing the pinwheel VBC pattern (via small pin-
ning fields) in a trial wavefunction that is then used as ini-
tial state for subsequent DMRG calculations performed with
the original unperturbed Hamiltonian deep within the three
phases of interest, namely, at J/J1 = 0.2, J/J1 = 0.4, and
J/J1 = 0.65. This procedure allows us to probe the stability
of the initial pinwheel VBC state for these three phases or, al-
ternatively, see its melting into different quantum states. We
see that for J/J1 = 0.4 [see Fig. 3(c)], the removal of the bias
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FIG. 3. Nearest-neighbor spin-spin correlations obtained from
DMRG. (a) the initial state obtained at J/J1 = 0.4 with a bias in
the Hamiltonian (5% of J1) that favours the onset of the pinwheel
VBC. The final converged states obtained after 24 sweeps at (b)
J/J1 = 0.2, (c) J/J1 = 0.4 and (d) J/J1 = 0.65.

hardly affects the initial state thus providing strong support for
the pinwheel VBC as true ground state in this regime. This is
further corroborated by the fact that at J/J1 = 0.2 and 0.65,
the VBC pattern is progressively washed out [see Fig. 3(b)
and see Fig. 3(d)]. Together, these results provide a smoking
gun signature for the formation of the pinwheel VBC state in
the range J ∈ (g1, g2) [see Fig. 1(c)].

In Fourier space, the hallmark of the onset of the VBC or-
der, as obtained within pf-FRG, is the splitting of the pinch
points (M-points of the extended Brillouin zone), where the
maxima of χ(k) are located for the DSL, into two symmetric
half-moons resulting in the maxima of the intensity now being
located at generic (0, qy) (and symmetry related) incommen-
surate points, as captured in an earlier pf-FRG study of the
same model [49]. Given that the DSL and VBC phases can
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J/J1

0.0

0.2

0.4

0.6

R
/
π
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S = 5/2
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S = 3/2
S = 1
S = 1/2
S →∞

FIG. 4. Half-moon radii. From pf-FRG, we show for different val-
ues of spin-S [48], the evolution with J/J1 of the radius of the half-
moons characterizing the pinwheel VBC. The large-S (classical) re-
sult is from Ref. [6].

also be distinguished by comparing χ(k) along two cuts in
momentum space, i.e., Γ − K and Γ − M segments, more
precisely, we define a “spectral measure” ∆χk as the differ-
ence between the maxima along these two cuts, i.e., ∆χk =
χmax(k ∈ Γ − K) − χmax(k ∈ Γ −M). The splitting of
the pinch point into half-moons correspond to a downturn in
the value of ∆χ while the zero crossing of ∆χ indicates that
the half-moons become the dominant feature in χ(k). Based
on these two signatures, we estimate the onset of VBC from
pf-FRG at J/J1 = 0.30(2) [see Fig. 2(b) and Fig. S1], in
good agreement with the other employed approaches. The
evolution of the radius of the half-moon as a function of J/J1

obtained from pf-FRG is shown in Fig. 4, where for S = 1/2
one observes an appreciable deviation from the reported large-
S result [6]. For progressively increasing values of S, the
known large-S behavior [6] is approached. Within the VMC
calculation, the splitting of the pinch point maxima into half-
moons is observed deep inside the VBC phase as shown in
Fig. S8. Similarly, deep inside the VBC phase, the χ(k) ob-
tained from mVMC shows maxima at incommensurate (0, ky)
points as shown in Fig. S5.

Finally, let us turn to the transition into the star phase. To
this end, we show, in Fig. 5, the evolution of the square of
the sublattice magnetization m2 with J/J1, as obtained from
mVMC, VMC, and DMRG. One observes a sudden change
to a finite value of m2 for J/J1 > 0.51(1), indicating the
onset of long-range collinear spin order with a 12-site mag-
netic unit cell (see inset of Fig. 5) [32]. While the estimate
of the phase boundary from these three approaches shows re-
markable agreement, the comparatively smaller values of m2

inside the ordered phase obtained in DMRG can be ascribed
to the quasi one-dimensional character of the cylindrical ge-
ometries. The abrupt nature of the jump in the value of m2

observed in mVMC and VMC, together with the crossing of
the energies of the disordered VBC and magnetically ordered
states across the transition point (see inset of Fig. 5), lends
evidence in favor of a first-order character of the transition.
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FIG. 5. Transition into the star phase. The behavior of the square
of the sublattice magnetization m2 with J/J1 near the transition
from the pinwheel VBC into collinear magnetic order [illustrated in
the inset, with blue and red spins pointing in opposite directions].
The results from VMC and mVMC are for a 3 × 8 × 8 site cluster
[see Fig. S10 for finite-size scaling results of m2 from VMC to the
thermodynamic limit], while those from DMRG are obtained on a
YC8-8 cylinder.

Similar conclusions are drawn from VMC via finite-size scal-
ing of m2 for different values of J/J1 (see Fig. S10), wherein
one observes a jump in the value of m2 in the thermodynamic
limit. The collinear magnetically ordered state displays a star-
like pattern of intensity distribution in χ(k) [see Fig. 1(b)]
with maxima at the location expected for the octahedral reg-
ular magnetic order [33]. It is worth noting that for S = 1/2
the phase boundary between the half-moon and star phases
considerably shifts to a smaller value of J/J1 = 0.51(1),
compared to the classical boundary at J/J1 = 1, highlight-
ing significant effects of quantum fluctuations.

Discussion. Moving the ground state of the kagome an-
tiferromagnet along the maximally frustrated line is a com-
plicated endeavor – as such it is quite fulfilling to see the
remarkable agreement between our complementary numer-
ical approaches yielding a consistent understanding of mo-
mentum and real space signatures of the ground state phases
and their respective boundaries; a feat that would not have
been imaginable only a few years ago. One might hope that
the U(1) DSL, half-moon, and star phases will have a win-
dow of stability away from the maximally frustrated axis.
It would thus be of interest to search and identify materials
promising to realize the Dirac spin liquid phase and which
lie within this region of stability. The recently studied mate-
rial YCu3(OH)6Br2[Brx(OH)1− x] [50] wherein signatures of
DSL behavior has been presented, could serve as a potential
material candidate warranting further investigation. Another
interesting candidate material might be the distorted kagome
compound Rb2Cu3SnF12 [51] where indications for a pin-
wheel VBC have been reported. One may be able to approach
the maximally frustrated line by effectively varying the super-
exchange couplings by application of hydrostatic or uniaxial
pressure to vary the super-exchange bond angles [52]. On the
theoretical front, given the persistent and enhanced frustration

upon inclusion of J , it would be interesting to ascertain the ex-
tent of the nonmagnetic phase of the spin S = 1 NNHAF, and
decipher the corresponding real-space nature of the half-moon
phase. Finally, it would be worth exploring the corresponding
quantum phase diagram on the pyrochlore lattice, which sim-
ilarly at the classical level is host to persistent flat bands, as
well as half-moon and star phases [6, 15].

During completion of this manuscript, we were made aware
of a paper by Lugan et al. studying the same model with a
complementary bosonic method.
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— Supplemental Material —

I. PSEUDO-FERMION FUNCTIONAL
RENORMALIZATION GROUP

The pseudo-fermion functional renormalization group ap-
proach (pf-FRG) [S30] approximates the original spin model
by a fermionic Hamiltonian using an Abrikosov fermion rep-
resentation

Sµi =
1

2

∑

α,β

f†i,ασ
µ
α,βfi,β , (S1)

of the spin operators together with the soft-constraint
〈∑α f

†
i,αfi,α〉 = 1 on every lattice site. Fluctuations around

this average decrease during the RG flow and can be fur-
ther suppressed adding level repulsion terms to the Hamilto-
nian [S54], yet the qualitative results, especially with respect
to the nature of the ground state, appear robust with respect to
small variations of the number of particles per site [S48, S54–
S56].

The flow equations are generated by implementing an in-
frared cutoff Λ into the bare propagator G0(ω) = (iω)−1

of the pseudo-fermion Hamiltonian and taking derivatives of
one-particle irreducible vertices with respect to it. The result-
ing hierarchy of ordinary differential equations is not closed
and thus needs to be truncated, usually by discarding all n-
particle vertices with n > 2. In pf-FRG one needs to incor-
porate some contributions from the three-particle vertex by
means of the so called Katanin truncation [S30], which feeds
back the self-energy flow into the flow of the two-particle ver-
tex. The corresponding flow equations for the self-energy Σ
and two-particle vertex Γ then read

d

dΛ
ΣΛ(1) = − 1

2π

∑

2

ΓΛ(1, 2|1, 2)SΛ(2)

d

dΛ
ΓΛ(1′, 2′|1, 2) = − 1

2π

∑

3,4

[
ΓΛ(3, 4|1, 2)ΓΛ(1′, 2′|3, 4)

− ΓΛ(1′, 4|1, 3)ΓΛ(3, 2′|4, 2)− (3↔ 4)

+ ΓΛ(2′, 4|1, 3)ΓΛ(3, 1′|4, 2) + (3↔ 4)
]

× ∂Λ(GΛ(3)GΛ(4)) , (S2)

where GΛ denotes the full fermionic propagator and SΛ ≡
− d
dΛG

Λ|ΣΛ=const. the single-scale propagator. Here, multi-
indices 1 = (i1, α1, ω1) comprise a lattice, spin and Matsub-
ara frequency index.

To characterize the physical field theory that the pf-FRG is
flowing towards, one usually computes spin-spin correlators

χij = χzzij (iω = 0) =

∫ β

0

dτ〈TτSzi (τ)Szj (0)〉 , (S3)

from renormalized pseudo-fermion vertices (we suppress the
Λ dependence here for brevity) and checks whether long-
range order manifests as an instability in their flow. The as-
sociated spin configuration can then be determined by Fourier
transforming χij to momentum space and locating the posi-
tion of the incipient Bragg peaks. A paramagnetic phase, on

the other hand, is signified by a smooth flow down to the in-
frared Λ → 0 with broadened features in the structure factor
χ(k).

We use the PFFRGSolver.jl [S57, S58] software pack-
age to perform the integration of the flow equations in this
manuscript. All calculations are performed on a 48× 362 fre-
quency grid with absolute error tolerances atol = 10−8 and
a relative error tolerance rtol = 10−2 (10−4) for the differ-
ential equation solver (Matsubara frequency integrals). The
real-space truncation is set to L = 24 bonds away from the
origin.

A. Pinch-point to half-moon transition in pf-FRG

To support the data regarding the pinch-point to half-moon
transition presented in the main text, we explicitly present the
pf-FRG data, from which the phase boundary was distilled.
In Fig. S1, we plot structure factors close to the transition
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FIG. S1. Pinch-point to half-moon transition from pf-FRG data
at Λ/Z = 0.01. We plot the structure factor in the kx − ky plane
(left column) and along two distinct cuts through momentum space
(right column). In the spin liquid phase (a), the maximum intensity
is centered around the corners of the kagome Brillouin zone (ma-
genta line), with subdominant peaks at the pinch-points (orange line).
Approaching the half-moon phase (b) and (c), the pinch-points first
flatten and split into two peaks and finally also carry the maximum
intensity in the structure factor.
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at J/J1 ≈ 0.33 for Λ/Z = 0.01, both in the two dimen-
sional kx−ky plane as well as along two distinct momentum
space cuts. In the spin-liquid phase (see panel (a) in Fig. S1),
the structure factor peaks at the corners of the kagome Bril-
louin zone, as well as at the pinch-points, with more spectral
weight distributed around the corners. Thus, the spectral mea-
sure ∆χk, i.e the difference between the magenta and orange
dashed line in the right column of Fig. S1, is positive. Around
J/J1 ≈ 0.31, the peaks at the pinch-points flatten and give
rise to two peaks (the half-moons), yet ∆χk > 0 holds. Only
at larger J/J1, shown, e.g. in panel (c) of Fig. S1, the spec-
tral measure changes sign, and the half-moons indeed pose the
most distinct feature in the structure factor.

B. Half-moon to star transition in pf-FRG

In contrast to the transition from the spin liquid (pinch-
point) to the VBC (half-moon) phase, which could easily be
identified in pf-FRG calculations by measuring the half-moon
radius and the spectral parameter ∆χk, determining the tran-
sition from the non-magnetic VBC to the magnetic collinear
phase turns out to be more difficult. All other numerical ap-
proaches employed here consistently predict a finite magne-
tization around J/J1 ≈ 0.5, yet, the pf-FRG flows show no
sign of a flow breakdown at this point (see Fig. S2). Here,
magnetic order sets in at larger couplings J/J1 ≥ 0.8 and
only for extremely small cutoffs Λ/Z & 0.011, close to the
lower limit Λ/Z = 0.01 which is still numerically feasible.
Probing the real-space correlations χ0 ∆xa1 = χ(∆x) along
the a1 = (1, 0) direction (i.e. along one axis of the kagome
lattice), we indeed find fairly long-range correlations extend-
ing over the whole L = 24 real space cluster considered in
the numerical simulations. In the spin liquid and half-moon
phase, in contrast, correlations decay more rapidly and al-
ready for few bonds away from the origin, their magnitude is
strongly diminished (see Fig. S3). The discrepancy in the pre-
cise location of the phase boundary could be related to the ful-
fillment of the half-filling constraint in pf-FRG. After all, it is
only enforced on average and there may still exist fluctuations
which populate unphysical, i.e. non-magnetic pseudofermion
states [S54]. These might be responsible for impeding the for-
mation of a clear divergence of the RG flow already at smaller
values of J/J1. Furthermore, we cannot rule out a scenario
in which the critical scale lies below the numerical threshold
Λ/Z = 0.01.

C. Dimer response from pf-FRG

While the order parameter corresponding to a VBC state is
of order S4 and would require higher vertex functions that are
out of reach for the pf-FRG, a qualitative picture of a system’s
tendency to select a particular dimer pattern may still be ob-
tained. To achieve this, the unit cell needs to be enlarged so
that translational symmetry is broken by slightly increasing
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FIG. S2. pf-FRG flows of the structure factor at the momenta
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and can be continued down to the smallest considered energy scale
Λ/Z = 0.01. For J/J1 = 0.8 the flow shows a sharp upturn at the
lowest values of Λ/Z, which evolves into a divergence for J/J1 >
0.8, signalling the onset of long-range magnetic order.
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FIG. S3. Spin-spin correlations along the a1 direction of the
kagome lattice extracted from pf-FRG vertices at Λ/Z ≈ 0.011
deep in the three different phases. Here blue (red) markers de-
note (anti-) ferromagnetic correlations to the reference site marked
in grey. In (a) the spin liquid and (b) the half-moon phase, correla-
tions decay particularly fast, and beyond 6 ∼ 10 bonds away from
the origin their magnitude become negligible. In the star phase (c),
however, magnetic correlations spread over the whole range of the
lattice considered in the numerical calculations, explaining the ob-
served flow breakdowns.
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FIG. S4. pf-FRG dimer response for the pinwheel VBC pattern in
Fig. 1 of the main text as a function of J/J1. The dimer response is
calculated via Eq. (S4). The phase boundaries shown as grey dotted
lines are obtained as described in the sections above.

the strength of dimerized bonds while weakening the others,
i.e. J1 → J1 ± δ with δ = 0.01J1 [S59–S61]. Defining
the equal time, real-space spin-spin correlation along such a
strengthened dimer bond as 〈Szi Szj 〉+ and a completely unper-
turbed (i.e. δ = 0) reference value 〈Szi Szj 〉0, we may define
the dimer response as

χd =
J1

δ
×
〈Szi Szj 〉+ − 〈Szi Szj 〉0

〈Szi Szj 〉0
. (S4)

Note that this definition requires the evaluation of two sepa-
rate FRG runs to compute 〈Szi Szj 〉0 and 〈Szi Szj 〉+. From pf-
FRG, equal-time correlators can be computed as 〈Szi Szj 〉 ≡
〈Szi Szj 〉(t = 0) =

∫
dνχij(ν).

Fig. S4 shows the response obtained for the pinwheel VBC
pattern displayed in Fig. 1, where thick red bonds are strength-
ened and thin bonds are weakened by δ: In the QSL phase, we
observe a relatively small value of the dimer response which
rises steadily towards the VBC phase up until a distinct maxi-
mum at J2 ≈ 0.45 after which it decreases once more. This is
in good agreement with the phase diagram presented in Fig. 1
of the main text.

II. MANY-VARIABLE WAVE FUNCTION (MVMC)

The many-variable variational Monte Carlo (mVMC)
method can be successfully used in studies of strongly corre-
lated spin and electronic systems [S62, S63]. In particular, the
method can be applied to distinguish between quantum spin
liquid and valence bond solid phases, such as in the case of
the J1-J2 Heisenberg model on the square lattice [S64, S65].
In this work, we employ the mVMC implementation from
Ref. [S28, S29]. The construction of the variational states re-
lies on the Abrikosov fermion representation of spin degrees
of freedom, as given in Eq. (S1).

Inspired by the Anderson resonating valence-bond wave
function, the mVMC ansatz has the form

|φpair〉 = P̂∞G exp


∑

i,j

Fi,j f̂
†
i,↑f̂
†
j,↓


 |0〉, (S5)
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FIG. S5. Static (equal-time) spin structure factor at J/J1 = 0.4
as computed by mVMC. The color plot shows the isotropic structure
factor χ(k) [Eq. (S8)] in the kx − ky plane. The results have been
obtained on a 3× 8× 8 finite cluster. The white hexagon with solid
(dashed) lines delimits the first (extended) Brillouin zone. The green
box highlights the “half-moon” feature of the correlation pattern.

where single occupation is ensured by the Gutzwiller projec-
tor

P̂∞G =
∏

i

(f†i,↑fi,↑ − f
†
i,↓fi,↓)

2, (S6)

which maps the fermionic Hilbert space to the original Hilbert
space of spin operators. The wave-function value 〈σ|φpair〉 of
a specific spin configuration |σ〉 is evaluated using the Slater
determinant of the matrix with elements Fi, j . Here, σ rep-
resents a string of ±1, which, for each lattice site, stands for
the respective spin eigenstate in the Sz basis. The param-
eters Fi, j are optimised using the stochastic reconfiguration
technique [S66], which can be seen as a way of performing
imaginary-time evolution in the variational parameters mani-
fold [S27, S67].

To improve the accuracy of the variational wave functions,
we employ quantum-number projections. The point-group
symmetry Ĝ is enforced by applying its generators until the
symmetry orbit is exhausted

|Ψξ〉 = P̂ |Ψ〉 =
∑

n

ξnĜn|Ψ〉, (S7)

where ξ is the desired projection quantum number and |Ψξ〉
the resulting symmetrized state. The projection onto the total
spin S is performed by superposing the SU(2)–rotated wave
functions [S29]. In this work, for systems with more than 36
sites, we partially impose translational symmetry directly on
the variational parameters Fi, j . Namely, we introduce trans-
lational symmetry modulo 2× 2 unit cells sublattice structure
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and enforce the 2 × 2 translations and the point-group sym-
metries using Eq. (S7). The resulting procedure amounts into
2×2×32×L2 variational parameters withL being the number
of unit cells in each lattice direction. Such partial translational
symmetry imposition is a reasonable compromise between the
ability to express complicated wave function and the required
time to optimize the wave function.

Magnetic properties of variational wave functions can be
assessed by computing the structure factor χ(k) as the equal-
time momentum-resolved spin-spin correlation function

χ(k) =
1

3L2

∑

i, j

eik·(ri−rj)〈Ŝi · Ŝj〉, (S8)

where ri indicates the position of the lattice site i including
sublattice displacement. In Fig. S5, we present the spin struc-
ture factor at J/J1 = 0.4 as computed by mVMC.

In a non-magnetic phase, the properties of the wave func-
tion are assessed by measuring the dimer-dimer correlation
function χDb, b′ = 〈D̂bD̂b′〉 − 〈D̂b〉〈D̂b′〉 for all pairs of bonds
in the system, 0 6 b, b′ < Nbonds, where D̂b = Ŝi · Ŝj ,
with i, j being sites at ends of the bond b. In Fig. S6, we
show the dimer-dimer correlations between the base bond
(located in a distant unit cell) and other bonds. To carry
out a quantitative assessment of the VBC character of the
ground state, we need to define suitable scalar order param-
eters to perform an infinite-volume extrapolation of the dimer
order. Thus, we regard χDb, b′ as a matrix in the bond in-
dices and we diagonalize it; the resulting set of eigenval-
ues/eigenvectors pairs (λ, Aλb ) is used to define the operators
Ôλ =

∑
bA

λ
b D̂b, each of them corresponding to a certain

momentum and irreducible representation of the lattice point
group. The tendency to establish a finite expectation value
of one of these operators, and thus spontaneously break the
corresponding lattice symmetry, is measured by the suscep-
tibility χÔλ = 〈Ô†λÔλ〉 − 〈Ô

†
λ〉〈Ôλ〉 = λ extrapolated to the

thermodynamic limit [S68].
Following this procedure, we obtain leading eigenvalues

and eigenstates of the χDb, b′ matrix at J/J1 = 0.2, 0.3, 0.4
on finite-size lattices with L = 4, 6, 8 and 10. In Fig. S7,
we show an equal-weight superposition of the three degen-
erate leading eigenstates at the M–points. Other eigenval-
ues are an order of magnitude smaller, and are thus not
shown. We extrapolate the corresponding susceptibility to
the thermodynamic limit and obtain, for J/J1 = 0.4, non-
vanishing susceptibility extrapolation of 7.6(3) × 10−3. This
signals presence of symmetry breaking through establishment
of a dimer order at J/J1 = 0.4. Similar extrapolations
at J/J1 = 0.2, 0.25, 0.3 and 0.35 yield 3.8(2) × 10−3,
4.1(2)×10−3, 5.1(3)×10−3 and 6.9(2)×10−3, respectively.
By fitting the susceptibility dependence on J/J1 with a hyper-
bolic tangent ansatz, we estimate the inflection point to be at
J/J1 = 0.32(3). This provides an estimate of the transition
point from the QSL to the VBC phase. We emphasize that
the dimer-dimer susceptibility within mVMC remains finite
in the QSL phase. This is related to the fact that the mVMC
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FIG. S6. Real-space correlations pattern 〈D̂aD̂b〉 − 〈D̂a〉〈D̂b〉
measured within mVMC on the 3 × 8 × 8 kagome lattice for
J/J1 = 0.4. Here D̂a is the dimer operator placed on the “base”
bond (in a distant unit cell) and D̂b is the dimer operator on other
bonds. Red (blue) color in the figure represents positive (negative)
values of the correlator, while its absolute magnitude (multiplied by
100) is marked near each bond. The correlations were measured on
a non-symmetrized mVMC wave function for which the pinwheel
dimer pattern is more pronounced.
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FIG. S7. Extrapolation of the maximum eigenvalue of the χD
ij

dimer-dimer correlation matrix at J/J1 = 0.4 as the function of
inverse lattice volume. The leading eigenvalue is triply-degenerate,
while the other eigenvalues are an order of magnitude smaller. The
inset shows an equal-weight superposition of the three basis func-
tions of the dominant irreducible representation, all three connected
by 2π/3–rotations.

wave function cannot efficiently express the ground state of
the U(1) DSL phase, unlike the dimerized VBC case. This is
confirmed by the comparison of the mVMC variational energy
to the one of the DMRG approach in the two phases.
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FIG. S8. Static (equal-time) spin structure factor of the VBC phase as computed by VMC [Eq. (S8)]. Results for J/J1 = 0.5 are shown
(on a 3 × 24 × 24 lattice). In (a) we plot χ(k) as a function of |k|, along the kx = 0 cut in momentum space shown in Fig. S1 (orange
vertical line). The inset highlights the dip in the profile of χ(k) (with error bars) at the pinch-point positions, which signals the appearance of
half-moons. The color plots in (b) and (c) show the value of χ(k) in the kx − ky plane. The results of (b) are obtained with the bare VBC
wave function, which breaks the reflection symmetry of the kagome lattice. In (c) we show symmetrized results for the structure factor, where
the reflection symmetry is imposed a posteriori. The white hexagon with solid (dashed) lines delimits the first (extended) Brillouin zone.

III. VARIATIONAL MONTE CARLO (VMC)

The variational Monte Carlo (VMC) [S27] approach em-
ployed in this work shares several common aspects with the
mVMC method introduced in the previous section. Both tech-
niques rely on the Abrikosov fermion representation of spin
operators, introduced in Eq. (S1). Within this fermionic for-
mulation, suitable variational states for the Heisenberg model
are obtained by projecting a fermionic wave function to the
spin Hilbert space. The projection, which enforces the sin-
gle fermionic occupation of each lattice site, is achieved by
means of a Gutzwiller-projector P∞G [see Eq. (S6)], and can
be performed exactly by an appropriate Monte Carlo sam-
pling [S27]. The variational Ansätze of VMC, discussed in
this section, differ from those of the mVMC approach in the
choice of the fermionic states to be projected.

Within the VMC approach, the variational state is obtained
by projecting a Slater determinant, |Φ0〉, which is the ground
state of an auxiliary quadratic Hamiltonian

H0 =
∑

i,j

tij(f
†
i,↑fj,↑ + f†i,↓fj,↓) +

∑

i

∑

µ=x,y,z

hµi S
µ
i . (S9)

The parameters tij (hoppings) and hµi (fictitious magnetic
field) ofH0 are optimized in order to minimize the variational
energy of the projected state [S69]. The complete expression
for the variational wave function is

|Ψvar〉 = JP∞G |Φ0〉 , (S10)

where, in addition to the projected Slater determinant, we have
included the long-range spin-spin Jastrow factor [S27]

J = exp
(∑

i,j

vi,jS
z
i S

z
j

)
. (S11)

The pseudopotential parameters vi,j are assumed to be trans-
lationally invariant, and numerically optimized along with the

fermionic parameters tij and hµi . The optimization of the vari-
ational wave function is achieved through the stochastic re-
configuration method [S27, S66, S67]

A. Spin liquid to pinwheel VBC transition in VMC

For small values of the ratio J/J1, the optimal variational
wave function for the model is the U(1) DSL [S20, S37].
Upon increasing J/J1, the system undergoes a phase transi-
tion to the pinwheel VBC at J/J1 = 0.26(1) (see Fig. 2 of the
main text). The variational Ansatz for the VBC is obtained by
considering a 2 × 2 enlarged unit cell of 12 sites, which can
accommodate the pinwheel pattern depicted in Fig. 1 (b) of
the main text. The variational parameters of the VBC Ansatz
are the inequivalent hoppings within the enlarged unit cell,
from first- to third-neighbors (the latter ones being limited to
the J3a-bonds). The number of independent hopping param-
eters is reduced from 72 to 12 by applying the C6 rotational
symmetry of the kagome lattice. Finally, an underlying sign
structure for the hoppings is imposed, to reproduce the flux
pattern of the U(1) DSL (similarly to the approach used in
Ref. [S43]). For this reason, the VBC wave function can be
regarded as an instability of the DSL state. We find that the
energy of the VBC state is lower than the one of the DSL for
J/J1 > 0.26, signalling the transition to the pinwheel VBC
phase. Deep inside the VBC phase, the static structure factor
χ(k) displays signatures of half-moons, as shown in Fig. S8.

B. Pinwheel VBC to collinear magnetic order transition in
VMC

At J/J1 = 0.51(1), a phase transition from the pinwheel
VBC to the magnetic phase with collinear order is observed.
The auxiliary Hamiltonian H0 for the magnetic state features
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FIG. S10. Finite-size scalings of the square of the sublattice mag-
netization m2 for the collinear spin order showing its behavior at
the VBC-magnetic order transition. We employed 3×L×L clusters
with L = 6, 8, 10, 12. The values of J/J1 are reported in the box in
the lower-left corner. The inset shows the finite-size scaling of m2

within the VBC regime, as a function of 1/L2. For J/J1 > 0.51
(i.e., within the collinear magnetic phase), m2 extrapolates to a non-
zero value for L→∞.

the same hopping parametrization of the VBC Ansatz, with
the addition of a fictitious magnetic field hµi which repro-
duces the collinear order sketched in the inset of Fig. 5. The
fictitious collinear field hµi is taken along the Sx direction.
Thus, the presence of the Jastrow factor, which is a function
of Sz operators, introduces transverse spin fluctuations on
top of the ordered fermionic state. Although the variational
parametrization allows for a continuous transition between

the VBC and the collinear ordered states, the transition turns
out to be of the first order. Indeed, we detect the presence of
two energy minima when optimizing the variational energy,
i.e. an absolute minimum and a metastable state with higher
energy. One of the minima corresponds to the VBC state,
i.e., it is characterized by a vanishingly small magnetic field
hµi in the thermodynamic limit and a dimer pattern like the
one of Fig. 1 (b); the other minumum, instead, corresponds
to the magnetically ordered phase. The relative positions
of the two minima swap at J/J1 = 0.51(1), and magnetic
order sets in for larger values of J/J1. In the collinear
ordered phase, the static structure factor shows the presence
of Bragg peaks at the ordering vectors, as shown in Fig. S9
for J/J1 = 0.6. The first-order nature of the VBC-collinear
order transition is confirmed by the sudden jump of the
sublattice magnetization, shown in Fig. S5 of the main text
for a 3 × 8 × 8 lattice. A finite-size scaling analysis of
m2 confirms the presence of an abrupt change at the phase
boundary also in the thermodynamic limit (see Fig. S10).

IV. DENSITY MATRIX RENORMALIZATION GROUP

Our density matrix renormalization group (DMRG) calcu-
lations are performed with the matrix product state (MPS) al-
gorithm using the ITensor library [S70] on YC4-4 (38 sites)
and YC8-8 (124 sites) spin tubes as illustrated in Fig. S11,
with 4 and 8 sites lying on the y-axis with a periodic bound-
ary condition implemented along the y-axis. Along x-axis the
system is open.The maximum bond dimension used for these
calculations is 2048. In general, for each DMRG run we are
performing 12 full sweeps.

FIG. S11. DMRG clusters. The YC4-4 (38 sites) and YC8-8 (124
sites) spin tubes used for the DMRG calculations.
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A. Spin liquid to pinwheel VBC transition in DMRG

In our DMRG calculations, we find g1 is occurring at
J/J1 = 0.27(1) which is signalled in (i) a discontinuity in
the derivative of ground state energy with respect to J as plot-
ted in Fig. 2(a) of the main text, and (ii) a sharp kink in the
von Neumann entanglement entropy right at this transition as
shown in Fig. S12. Both signatures are consistent with a first-
order transition.

DMRG

pinwheel VBC

DSL

FIG. S12. DMRG results for the spin liquid to pinwheel VBC
transition. Top: The ground state energy as a function of J/J1
and its derivative (middle panel). Bottom: The von Neumann en-
tanglement entropy SN calculated across the central bond using the
matrix product ground state obtained via DMRG. The kink in the
ground state energy, leading to a step-function behavior in its deriva-
tive, and the sharply kinked, non-monotonous behavior of SN are all
indicative of a first-order phase transition. Its location is estimated at
J/J1 ≈ 0.27(1) indicated by the dashed line, consistent with results
from VMC calculations, see Fig. 2(a).



APL Materials ARTICLE scitation.org/journal/apm

TMDs as a platform for spin liquid physics:
A strong coupling study of twisted bilayer WSe2

Cite as: APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901
Submitted: 8 November 2021 • Accepted: 2 March 2022 •
Published Online: 18 March 2022

Dominik Kiese,1 Yuchi He,2 Ciarán Hickey,1 Angel Rubio,3 ,4 ,5,a) and Dante M. Kennes2 ,3,b)

AFFILIATIONS
1 Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany
2 Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Information Technology,

52056 Aachen, Germany
3Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science,

Luruper Chaussee 149, 22761 Hamburg, Germany
4Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, New York 10010, USA
5Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, UPV/EHU,

20018 San Sebastián, Spain

Note: This paper is part of the Special Topic on Moire Materials.
a)Electronic mail: angel.rubio@mpsd.mpg.de
b)Author to whom correspondence should be addressed: dante.kennes@rwth-aachen.de

ABSTRACT

The advent of twisted moiré heterostructures as a playground for strongly correlated electron physics has led to a plethora of experimental and
theoretical efforts seeking to unravel the nature of the emergent superconducting and insulating states. Among these layered compositions of
two-dimensional materials, transition metal dichalcogenides are now appreciated as highly tunable platforms to simulate reinforced electronic
interactions in the presence of low-energy bands with almost negligible bandwidth. Here, we focus on the twisted homobilayer WSe2 and the
insulating phase at half-filling of the flat bands reported therein. More specifically, we explore the possibility of realizing quantum spin liquid
(QSL) physics on the basis of a strong coupling description, including up to second-nearest neighbor Heisenberg couplings J1 and J2 as well
as Dzyaloshinskii–Moriya (DM) interactions. Mapping out the global phase diagram as a function of an out-of-plane displacement field, we
indeed find evidence for putative QSL states, albeit only close to SU(2) symmetric points. In the presence of finite DM couplings and XXZ
anisotropy, long-range order is predominantly present with a mix of both commensurate and incommensurate magnetic phases.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077901

I. INTRODUCTION

Twisted moiré materials, such as the prominent magic-angle
twisted bilayer graphene (tBG), have recently been established as
a new platform to study many-body electron physics.1–27 The key
mechanism promoting strongly enhanced electronic correlations is
the formation of large moiré unit cells hosting low-energy bands
with an extremely narrow bandwidth.28–30 These flat bands have
been shown to give rise to exotic low temperature phase diagrams
featuring superconducting and insulating states while offering a
high degree of experimental control,5 e.g., over twist angle and
doping.

Recently, twisted bilayer transition metal dichalcogenides
(tTMDs) have moved to the center of experimental attention as a
tunable platform to simulate electronic many-body states.31–41 The
decisive difference between tBG and tTMDs is the reduction in
effective degrees of freedom in going from the former to the latter,
allowing for the construction of simplified microscopic Hamilto-
nians, such as generalized Hubbard models, more amenable to
(numerical) quantum many-body methods.35,36,42,43

Here, we consider a specific TMD bilayer, twisted WSe2
(tWSe2), for which a correlated insulating phase at half-filling of the
flat bands has recently been reported.31,32 These results have

APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901 10, 031113-1
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triggered corollary theoretical activity in deciphering the
ground state phase diagram of the effective strong coupling
Hamiltonian,44,45 where the full rotation symmetry of the underly-
ing triangular superlattice is broken down to C3 by an anisotropic
modulation of the spin couplings. The latter is parameterized
by a phase ϕ inherited from the respective Hubbard model and
can be tuned by an out-of-plane displacement field Vz . Notably,
there is evidence from microscopic considerations44 that large
values of ∣Vz ∣ > 50 meV support the emergence of second-nearest

neighbor, SU(2) symmetric Heisenberg exchange interactions. For
the pure triangular lattice Heisenberg model, these are believed
to undermine magnetic order in favor of a spin liquid ground
state,46–50 and as such, the intriguing possibility of realizing exotic
phases in the exceptionally tunable experimental setup provided
by twisted TMDs remains an interesting research direction. If
experimentally realized, this would add elusive spin liquid states
to the list of phases of matter accessible by controlled moiré
engineering.5

FIG. 1. Magnetic phase diagram for tWeS2 obtained from pf-FRG. We plot the characteristic RG scale Λc indicating the emergence of magnetic long-range order or the
absence thereof. In total, we identify a plethora of nine potential phases (SL: spin liquid, ICS: incommensurate spin spiral, and FM: ferromagnet), including a putative
quantum spin liquid for ϕ close to integer multiples of π/3 and finite second-nearest neighbor Heisenberg coupling J2/J1. The surrounding heat maps display the full elastic
component of the structure factor [i.e.,∑μ χΛc

μμ(k, iw = 0)], measurable, for example, by neutron scattering experiments. Further details about the different phases and how
they are identified in our numerical calculations can be found in Secs. III A, III B 1, and III C of the main text.

APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901 10, 031113-2
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In this article, we set out to study the effective spin model pro-
posed for tWSe2,44,45 augmented by an antiferromagnetic second-
nearest neighbor Heisenberg coupling J2 previously not considered,
using both classical and quantum many-body methods. In the classi-
cal limit, we first use the Luttinger–Tisza (LT) method to determine
the likely magnetic orders at zero temperature. We then investi-
gate their stability with respect to thermal fluctuations and a strictly
enforced constraint on the length of the classical O(3) spins by
performing classical Monte Carlo (MC) simulations. The quantum
phase diagram is mapped out utilizing state-of-the-art pseudo-
fermion functional renormalization group (pf-FRG) calculations
and (infinite) density matrix renormalization group51–53 techniques
(iDMRG).

Our key results are summarized in Fig. 1. In order to discuss
them in a concise manner, we first focus on the regime ϕ ∈ [0, π

6 ]
as the remainder of the phase diagram can be related via a simple
three-sublattice mapping (see Sec. II). The three main features of this
regime can then be phrased in the following way: (1) Both classically
and quantum mechanically, we find that the 120○ order, featuring,
for ϕ > 0, a finite vector chirality κ (discussed in the following),
becomes more stable with increasing ϕ. (2) At large J2, finite ϕ tends
to favor one of the two incommensurate spin spiral states over the
stripe order expected for the pure J1–J2 model. Classically, any finite
ϕ suffices to generate incommensurate correlations, whereas quan-
tum mechanically, the stripe order seems to remain stable for small
ϕ. (3) Close to the Heisenberg limit, a paramagnetic region is iden-
tified for finite values of J2, indicating a putative realm for quantum
spin liquid (QSL) physics. This regime, however, quickly diminishes
with increasing ϕ. These observations can straightforwardly be gen-
eralized to the parameter space beyond ϕ = π/6, albeit with new
labels for the different phases. For example, close to ϕ = π/3, one
finds a ferromagnetic (FM) ground state instead of the chiral 120○
orders found at ϕ = 0 and ϕ = 2π/3.

The remainder of this article is structured as follows: First,
following the arguments of previous microscopic considerations,44

the derivation of the effective tWSe2 spin model, starting from the
corresponding tight-binding Hamiltonian, is recapped. We then
summarize known results for the J2 = 0 limit and elaborate on sym-
metry properties of the strong coupling Hamiltonian. Second, the
results obtained within the Luttinger–Tisza method and classical
Monte Carlo simulations are discussed. Next, we introduce the pf-
FRG and iDMRG methods and present their implications for the
quantum phase diagram. We conclude by evaluating the relevance
of our results for future experimental studies of tWSe2 and pointing
out further possible research directions.

II. MODEL

We focus on homobilayers of tWSe2, which have recently
been studied both experimentally,31,54 using transport and scan-
ning tunneling microscopy (STM) measurements, as well as
theoretically,31,44,45 using mean-field approaches. The STM mea-
surements have demonstrated that the moiré valence bands origi-
nate from the ±K valleys of the two TMD layers, while the Γ valley is
energetically disfavored. Spin degrees of freedom are thereby locked
to one of the two valleys, giving rise to an effective spin–orbit
coupling in the corresponding tight-binding Hamiltonian on the
triangular superlattice,44,45

Ht = ∑
α∈{↑,↓}∑⟨ij⟩tα

ijc
†
iαc†jα + h.c., (1)

which is a valid description of tWSe2 for small commensurate
twist angles θ ≳ 3○, where lattice relaxation effects and further
neighbor hoppings can be neglected.44 Note that because of the
aforementioned spin-valley locking, the sum over spin degrees of
freedom α should be a understood as a simultaneous sum over
valleys.

Due to time-reversal and point group symmetries, the hoppings
tα
ij have to obey tα

ij = t̄α
ji and tα

ij = t̄ᾱ
ij, while also being invariant under

only threefold lattice rotations.44 More specifically, the dispersion
for the tight-binding Hamiltonian in Eq. (1) reads

εα(k) = −2∣t∣∑
δnn

cos(kδnn + αϕ) (2)

with ∣t∣ = ∣tα⟨ij⟩∣ ∼ 1 meV defining the energy scale of the model.44

Here, δnn sums over three out of six nearest neighbor displace-
ment vectors of the triangular lattice with an equal phase ϕ
(see Fig. 2). Density functional theory (DFT) calculations imply
that the latter can be varied between ±π/3 by an out-of-plane
displacement field ∣Vz ∣ ≲ 100 meV, which shifts the energies at
the K and K′ points of the mini-Brillouin zone in opposite
directions and thus breaks the approximate inversion symme-
try of the bilayer system.31,44,45 A spin–orbit coupled generalized
Hubbard model results by combining the tight-binding Hamil-
tonian (1) with an on–site interaction U. This on–site interac-
tion has been found to be about one order of magnitude larger
than the kinetic contribution,44 motivating a strong coupling
description.

FIG. 2. Three-sublattice rotation for the triangular lattice model. The anisotropic
phase ϕij changes sign between nearest neighbor bonds (as shown in the upper
right corner). The Hamiltonian (3) can be recast in terms of out-of-plane rotation
matrices Rz(−2ϕij) [see Eq. (4)]. By rotating the spins on the three sublattices
(see the lower right corner), each nearest neighbor term in Eq. (4) can be trans-
formed into an SU(2) symmetric Heisenberg interaction, except for terms coupling
the red and green sublattices. The remaining rotation, by −6ϕ, vanishes for
ϕ = n π

3
with n ∈ Z.

APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901 10, 031113-3
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In this work, we consider the U ≫ ∣t∣ limit at half-filling,
where one can derive an effective spin model44,45 with residual U(1)
symmetry about the z axis,

H = J1∑⟨ij⟩[cos(2ϕij)(Sx
i Sx

j + Sy
i Sy

j ) + Sz
i Sz

j ]
+ J1∑⟨ij⟩ sin(2ϕij) ẑ ⋅ (Si × Sj) + J2 ∑⟨⟨ij⟩⟩Si ⋅ Sj, (3)

featuring XXZ, off-diagonal Dzyaloshinskii–Moriya (DM) and
SU(2) symmetric next-nearest neighbor Heisenberg interactions.
The phase ϕij varies sign between nearest neighbor bonds (see
Fig. 2), thus inheriting the reduction from sixfold to threefold lattice
rotational symmetry from the tight-binding model (1). As pointed
out in Ref. 44, the form of the underlying second-nearest neigh-
bor hopping motivates the inclusion of a fully SU(2) symmetric
Heisenberg interaction J2, which has previously not been consid-
ered. For large displacement fields ∣Vz ∣ > 50 meV, this J2 is the next
largest interaction beyond the nearest neighbor J1 terms (with J1 ∼ 1
meV).44

For J2 = 0, the ground state phase diagram of Eq. (3) has
previously been studied using classical Luttinger–Tisza and self-
consistent Hartree–Fock mean-field calculations.44,45 For ϕ ∈ [0, π],
both works find a ferromagnetic phase (π/3 < ϕ < 2π/3) sand-
wiched between two antiferromagnetic 120○ orders with opposite
vector chiralities κ± with κ = sgn(ẑ ⋅ (S1 × S2 + S2 × S3 + S3 × S2)),
where S1, S2, and S3 are spins on a triangular plaquette. For finite
J2, however, the situation has not yet been studied and quantum
fluctuations could stabilize more exotic phases especially since the
several numerical works46–48,50 suggest that the pure J1–J2 Heisen-
berg model on the triangular lattice hosts a quantum spin liquid
ground state.

For finite ϕ = n π
3 with n ∈ Z, the nearest neighbor terms can

be transformed into a fully SU(2) symmetric form by performing a
three-sublattice rotation (see Fig. 2), thus opening up the possibility
to experimentally tune the system close to the (effective) Heisenberg
limit by variation of the displacement field.44,45 This can be clearly
seen by rewriting the Hamiltonian as

H = J1∑⟨ij⟩ST
i Rz(−2ϕij)Sj + J2 ∑⟨⟨ij⟩⟩Si ⋅ Sj, (4)

where Rz(−2ϕij) is an out-of-plane rotation matrix with rota-
tion angle −2ϕij and then performing the transformation shown
in Fig. 2. Indeed, more generally, the energetics at ϕ, ϕ + nπ/3,
and nπ/3 − ϕ are identical although crucially the wavefunctions do
change.

With these observations in mind, we therefore focus our efforts
on the regime ϕ ∈ [0, π

6 ] and study the respective ground states by
classical Luttinger–Tisza and Monte Carlo simulations as well as
quantum pf-FRG and iDMRG calculations that go beyond mean-
field theory. The global phase diagram can then be straightforwardly
obtained using the sublattice rotation outlined above and adjusting
the labels of the phases accordingly.

III. RESULTS
A. Classical limit

First, we explore the classical S→∞ limit of the model. In
order to determine the likely classical magnetic orders, we turn to
the Luttinger–Tisza (LT) method.55 This method treats the spin
as an unconstrained vector, allowing for a straightforward Fourier
transform and subsequent diagonalization of any quadratic spin
Hamiltonian. For the model in Eq. (3), the corresponding energy
eigenvalues are

EH(k) = J1∑
δ1

cos(k ⋅ δ1) + J2∑
δ2

cos(k ⋅ δ2),
E±(k) = J1∑

δ1

cos(k ⋅ δ1 ± 2ϕij) + J2∑
δ2

cos(k ⋅ δ2), (5)

where δ1 and δ2 are the set of nearest and next-nearest neigh-
bor lattice vectors. EH(k) is independent of ϕ and is identical to
the Heisenberg result (i.e., ϕ = 0) with the eigenvalue lying purely
along the z axis. On the other hand, E±(k) are explicitly ϕ depen-
dent with eigenvalues lying purely within the xy-plane. For a given
set of parameters, the absolute minimum eigenvalue provides a
strict lower bound to the classical energy, and the correspond-
ing momenta, which we denote by k⋆, provide candidate classical
ordering wavevectors. They also provide crucial clues as to what cor-
relations one might expect in the quantum case, where the spins are
not subject to a hard classical constraint.

For ϕ = 0, i.e., the J1–J2 Heisenberg model, there is a transition
from 120○ order with ordering wavevector k⋆ = K to stripe order
with k⋆ =M at a critical value of J2/J1 = 1/8. Turning on a small
finite ϕ ≠ 0 has three important consequences: (i) it forces the spins
to order within the xy-plane [E±(k) are always favored], (ii) it selects
a definite chirality and helps stabilize the 120○ order, increasing its
extent to a maximum of J2/J1 = 1/3 at ϕ = π/6, and (iii) it immedi-
ately turns the stripe order incommensurate, which we label ICS-I,
with ordering wavevectors k⋆ that lie along the high-symmetry
M − K line (and M − K′ line although from here on we will sim-
ply use K when no further distinction is necessary). It also generates
a new ordered phase, clustered close to ϕ = π/6, with incommensu-
rate magnetic order and associated ordering wavevectors that do not
lie on any high-symmetry line, which we label ICS-II. Note that due
to the low-symmetry when ϕ ≠ 0, the Luttinger–Tisza method does
not support classical coplanar spirals with just a single k⋆,56 meaning
that the ICS phases must be multi-k spirals (see the supplementary
material for further information).

As noted in Sec. II, the physics of the model for ϕ > π/6 can
be related to the region ϕ ∈ [0, π

6 ] discussed above via a simple
three-sublattice transformation. Indeed, this can also be seen from
the form of the LT eigenvalues with E±(k)→ E±(k ± nK) for ϕ→ ϕ + nπ/3. Thus, the 120○ order gets mapped to FM order, and the
ICS-I phase with k⋆ along the M − K line gets mapped to a new ICS-
III phase with k⋆ along the K − Γ line. All phases remain ordered
within the xy-plane. The classical Luttinger–Tisza phase diagram is
summarized in Fig. 3(a).

Classical Monte Carlo (MC) simulations allow us to explore the
relative stability of the different phases as well as to confirm that the
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FIG. 3. Classical phase diagram with (a) the Luttinger–Tisza (LT) result. Six distinct phases are visible, a simple ferromagnetic order (FM), two 120○ orders with vector
chirality κ+ and κ−, and three incommensurate phases, ICS-I, ICS-II, and ICS-III. The background color indicates the norm of the ordering wavevector ∥k⋆∥. (b) Classical
Monte Carlo results on a 96 × 96 lattice for the peak temperature Tpeak from the specific heat across the phase diagram with the LT phase boundaries overlaid on top. (c)
Locations of the LT ordering wavevectors k⋆ for the four points marked in (b) with, for example, the green dots in (c) marking the LT ordering wavevectors for the green
parameter point in (b) (see Fig. 4 for the spin-1/2 pf-FRG structure factors at the same points). (d) Classical static spin structure factor at low temperature obtained by
Monte Carlo simulations at the point J2/J1 = 0.36 and ϕ = π/10 [orange point in (b) and (c)] within the ICS-I phase. The two sharp peaks lie at the same incommensurate
momenta as the LT minima shown in (c).

Luttinger–Tisza k⋆ are correct. As the model contains a continu-
ous U(1) rotational symmetry about the z axis, the Mermin–Wagner
theorem precludes a finite in-plane magnetization at finite tem-
perature. However, a peak in specific heat at Tpeak related to a
Berezinskii–Kosterlitz–Thouless (BKT) transition due to ordering
in the xy-plane is still possible,57,78 as seen, for example, in the
triangular lattice XXZ model [the first term in Eq. (3)].58 A map
of Tpeak is shown in Fig. 3(b) with, as expected, the highest Tpeak∼ 1.5J1 occurring for J2/J1 = 0 and ϕ = π/6, a consequence of the
enhanced stability for the 120○ order that finite ϕ provides. On the
other hand, within the incommensurate phases, Tpeak shows little
variation, lying between 0.4 and 0.5J1 for the whole range shown.
Finally, Fig. 3(d) shows an example of the static spin structure
factor taken from the MC within the ICS-I phase. There are two
peaks at incommensurate wavevectors located along the M − K and
M − K′ high-symmetry lines whose location precisely matches two
of the ordering wavevectors k⋆ predicted by the Luttinger–Tisza
method [the orange dots in Fig. 3(c)]. This is accompanied by a
complex real space structure (see the supplementary material for
examples).

B. Pseudo-fermion functional renormalization group
1. Method

In the past decade, the pseudo-fermion functional renormal-
ization group (pf-FRG) developed by Reuther and Wölfle59 has
been widely employed to investigate ground state phase diagrams of
quantum spin models on two59,60 and three61 dimensional lattices.
The method utilizes the parton decomposition,

Sμ
i = 1

2∑α,β
f †

iασμ
αβ fiβ, (6)

to recast the original Hamiltonian in terms of fermionic creation and
annihilation operators. Here, σμ

αβ for μ ∈ {x, y, z} denote Pauli matri-
ces. Changing the representation space of the spin algebra, however,
comes with a caveat: The dimensions of the (local) Hilbert space of
pseudo-fermions (d = 4) and spin-1/2 operators (d = 2) are differ-
ent, and as such, the respective representations are not isomorphic.
Although unphysical states can be eliminated by an additional local
constraint ∑α f †

iα fiα = 1 on every lattice site, an exact treatment of
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this constraint is rather difficult, and in practice, the softened con-
dition ⟨∑α f †

iα f †
iα⟩ = 1 is employed. Fluctuations around the mean

have been found to leave observables computed within pf-FRG qual-
itatively unchanged,62,63 advocating an on-average treatment of the
fermionic number constraint at zero temperature.

Having rewritten the spin Hamiltonian in terms of fermions, a
regulator function, here chosen as

ΘΛ(w) = 1 − e−w2/Λ2

(7)

with flow parameter Λ, is implemented in the bare propagator as

G0(w)→ GΛ
0 (w) = ΘΛ(w)G0(w). (8)

This procedure gives rise to Λ-dependent n-point correlation func-
tions whose flow from the ultraviolet GΛ→∞

0 (w) = 0 to the infrared
GΛ→0

0 (w) = G0(w) limit is governed by a hierarchy of ordinary
integro-differential flow equations. To be amenable to numerical
algorithms, the latter has to be truncated. Here, we utilize the
Katanin truncation,59,62,64 which cuts off the flow equations beyond
the two-particle vertex and has been demonstrated to efficiently
capture competing magnetic and non-magnetic phases.65

The main observable extracted from the pf-FRG is the flowing
spin–spin correlation function,

χμνΛ
ij (iw = 0) = ∫ β

0
dτ⟨TτSμ

i (τ)Sν
j (0)⟩Λ, (9)

which shows an instability (such as a cusp, kink, or divergence)
once the RG flow selects a ground state with broken symmetries.
The absence of such a breakdown is consequently associated with
paramagnetic phases such as spin liquids. Furthermore, for long-
range ordered states, the respective type of magnetic order can be
characterized by Fourier transforming χμνΛ

ij to momentum space

(F[χμνΛ
ij ](k) = χΛ

μν(k)) and determining the wavevectors kmax with
the largest spectral weight. Further information on the method
and its numerical implementation is provided in Sec. I of the
supplementary material.

Due to the symmetry properties of Eq. (3), we consider two dis-
tinct susceptibilities χΛ

XX(k) (= χΛ
YY(k)) and χΛ

ZZ(k) in momentum
space to distinguish possible in-plane and out-of-plane magnetic
orders. While finite, in general, for ϕij > 0, off-diagonal correlation
functions χΛ

XY(k) (= −χΛ
YX(k)) turn out to be rather small compared

to their diagonal counterparts in our pf-FRG calculations and are
therefore only considered as a benchmark to check for a switch in
vector chirality between the two 120○ orders.

2. Phase diagram
We now turn to the discussion of the ϕ ∈ [0, π

6 ] region of the
phase diagram of our model Hamiltonian Eq. (3), as obtained within
pf-FRG and summarized in Fig. 4.

For small ϕ ≲ π/48 and intermediate next-nearest neighbor
coupling, we find a small region of spin liquid behavior, where the
RG flow [see the blue curve in Fig. 4(c)] stays smooth and feature-
less down to the lowest simulated cutoff value Λ/∣J∣ = 0.05, where∣J∣ =√J2

1 + J2
2 . For ϕ = 0, corresponding to the pure J1–J2 Heisen-

berg model, the estimated range of the spin liquid regime 0.12≲ J2/J1 ≲ 0.32 is larger than the respective literature values 0.06–0.08

≲ J2/J1 ≲ 0.15–0.17, which we attribute to our softened treatment of
the fermionic number constraint and the exclusion of higher loop
corrections in the current framework. Since the FRG calculation is
nevertheless capable of reproducing the existence of a paramagnetic
regime between the adjacent 120○ and stripe ordered phases (con-
sistent with previous studies60), we are confident that its qualitative
predictions of the phase diagram are reliable. The structure factor∑μ χΛ

μμ(k) within the SL phase is displayed in Fig. 4(d). It resem-
bles an interpolation between the 120○ and stripe orders [Figs. 4(e)
and 4(f)] in the sense that its peaks move on the high-symmetry line
between the K and M points of the first Brillouin zone as J2 and ϕ
are increased. In this regard, the spin liquid region appears similar
to a molten version of the neighboring incommensurate spin spiral
phase [ICS-I in Figs. 4(a) and 4(b)], albeit with a washed out distri-
bution of the subleading weight along the Brillouin zone edges. The
spectral weight for the ICS-I phase is, in contrast, much more local-
ized although, of course, the maxima still reside at incommensurate
positions between the K and M points [Fig. 4(g)].

For larger ϕ, we find the pf-FRG phase diagram to be roughly
consistent with the classical result (Fig. 3), predicting, for J2/J1≳ 0.32, a transition from in-plane 120○ order to one of the two
incommensurate phases that can be distinctly identified by the posi-
tion of their ordering wavevector kmax within the first Brillouin zone
[Fig. 4(b)]. The phase boundary is, however, shifted upward in favor
of the 120○ order within the FRG. We generally find the dominant
contributions to the structure factor to stem from the in-plane cor-
relations, i.e., χΛ

XX + χΛ
YY, where flow breakdowns are most visible

although out-of-plane correlations become sizable with increasing
J2. This finding is in line with the Luttinger–Tisza result Eq. (5) as
the eigenvalues corresponding to in-plane and out-of-plane order
move closer together.

Notably, our pf-FRG approach also finds a stripe ordered
ground state for J2/J1 ≳ 0.32–0.36 and close to ϕ = 0. In contrast,
our classical calculations predict the stripe order to be unstable to
incommensurate ordering for any finite ϕ. This could be, on the one
hand, due to finite size effects in the pf-FRG calculations (although
for increased lattice truncation ranges, no changes are observed),
which would make it difficult to decipher the extremely weak clas-
sical incommensuration at small ϕ. On the other hand, quantum
fluctuations may also favor the commensurate stripe order over the
ICS-I phase especially since their classical energies for small ϕ and
large J2 are almost degenerate. We also note that the signatures for
magnetic ordering as characterized by a breakdown of the RG flow
[see Fig. 4(c)] are rather weak in the incommensurate phases (pro-
nounced shoulder vs sharp peak or divergence in the stripe and
120○ phase), hinting toward strongly competing magnetic and non-
magnetic channels within the FRG approach for this part of the
phase diagram.

For ϕ > π/6, as before, the structure of the model outlined
in Sec. II allows us to straightforwardly generalize our results (see
Fig. 1), while adjusting the labels for the different phases. For π/3< ϕ < 2π/3, antiferromagnetic 120○ order is replaced by a ferromag-
netic ground state, which yet again becomes 120○ ordered although
with opposite vector chirality for 2π/3 < ϕ < π. At large J2 and π/6< ϕ < 5π/6, the ICS-I order gets mapped to another incommensu-
rate spin spiral phase (ICS-III) with susceptibility maxima located
on the high-symmetry line between the Γ and K points. Finally, the
stripe order found close to the Heisenberg limit ϕ = 0 re-appears
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FIG. 4. Phase diagram for ϕ ∈ [0, π
6
] obtained from pf-FRG. In (a), the characteristic RG scale Λc is shown as a function of antiferromagnetic next-nearest neighbor

coupling J2/J1 and phase 0 ≤ ϕ ≤ π/6 with approximate phase boundaries drawn as a guide to the eye. We find a small region of quantum spin liquid (SL) behavior for
small ϕ < π/24 and intermediate values of 0.12 < J2/J1 < 0.32, where the RG flow [see the blue curve in panel (c)] stays smooth and featureless down to the lowest
accessible cutoff values. The rest of the phase diagram is occupied by four different magnetically ordered phases, which can be distinguished by their ordering wavevector
kmax and its respective norm, as displayed in (b). For the stripe and 120○ ordered phases (with definite vector chirality κ+), kmax resides at the M and K points, respectively,
whereas it continuously changes the position in the spin liquid and incommensurate spin spiral (ICS) phases, as apparent from the color gradient in (b). In (c), we show
representative flows of the magnetic susceptibility as a function of the RG scale Λ/∣J∣ with dashed lines highlighting the position of the characteristic scale Λc/∣J∣ (which is
most visible for the in-plane correlators). The latter can be distinctly identified for the stripe and 120○ phase, whereas the incommensurate phases only show a pronounced
shoulder, indicating strongly competing tendencies between magnetic and non-magnetic channels in the pf-FRG equations. The flows have been normalized by their
respective maximum for better comparability. Finally, (d)–(g) display the full, diagonal structure factors∑μχΛ

μμ(k) computed at the characteristic scale Λc for the four points
marked with colored dots in (a) and (b).

close to ϕ = π/3 and ϕ = 2π/3 in coexistence with the ICS-III order
(see Fig. 1 in the supplementary material for further details).

C. Density matrix renormalization group
To complement our numerical results, we now present our

iDMRG calculations of the model for two representative J2 cuts at
ϕ = π/48 and π/12 on an infinite cylinder geometry. We use the two-
site iDMRG algorithm51,52 to optimize infinite matrix product states
(iMPSs) as approximations to the ground state wavefunctions. We
chose the bond dimension such that the error is smaller than the
marker size in every plot.66 The two-site iDMRG truncation errors
are at most of the order of 10−7.

The cylinder geometry is illustrated in Fig. 5(a). We choose a
circumference Ly = 6, compatible with the possible 120○ and stripe
orders, with an example of the latter shown in the same inset.
The infinite cylinder geometry then allows us to probe possible
incommensurate correlations along the infinite direction.

Recall that finite ϕ explicitly breaks SU(2) symmetry
down to a residual in-plane U(1) symmetry. According to the
Mermin–Wagner theorem for quasi-one-dimensional systems
(such as our cylindrical iDMRG geometry), an in-plane 120○ order

that spontaneously breaks U(1) symmetry is forbidden. However,
the existence of a possible two-dimensional 120○ phase can be
inferred by studying spin–spin correlations. On the other hand,
long-range out-of-plane stripe order does not break any continuous
symmetry and can therefore be directly observed within our iDMRG
calculations.

We study the out-of-plane, ⟨Sz
0Sz

na2⟩, and in-plane, ⟨S+0 S−na2⟩,
spin–spin correlation functions, where a2 is the lattice vector along
the infinite direction [see Fig. 5(a)] and S±i = Sx

i ± iSy
i . Using the

iMPS data, it is known that static correlation functions of this form
can be written as ∑jCjeikjne−n/ξj ,53 where j sums over eigenvectors
of the iMPS transfer matrix. The largest ξj corresponds to the domi-
nant correlation length, while the respective kj then characterizes the
momentum of the lowest-lying excitation along the infinite direc-
tion. The correlation length spectrum has, for example, been used to
study the ϕ = 0 case in Ref. 47.

Within the correlation length spectrum, the 120○ order for the
SU(2) symmetric case corresponds to a dominant correlation length
at k = ±2π/3, equal in magnitude for both in- and out-of-plane
components. For finite ϕ, however, our classical and pf-FRG calcula-
tions indicate that 120○ order is not only locked to the xy-plane but
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FIG. 5. Correlation length spectrum on an infinite cylinder geometry. (a) shows the triangular lattice on an infinite cylinder geometry with an Ly = 6 site circumference.
A configuration of the possible out-of-plane stripe order is illustrated by the coloring of sites in orange (cyan), indicating an out-of-plane spin up (down). (b)–(f) show the
correlation length spectra (see the main text for definition) along the infinite direction for ϕ = π/48 and π/12. For each value of J2/J1, we plot the 20 largest correlation
lengths at their respective k values. For most cases, few points are visible as they share the same k. Finally, in (d), the out-of-plane staggered magnetization along the
cylinder direction, mz , is plotted. The evidence for the in-plane 120○ phase is the dominant in-plane correlation length at −2π/3. In-plane incommensurate correlations
are visible for relatively large J2 in both (b) and (c), where the momenta are not locked to high-symmetry points, but are instead distributed around −π/10 and −π/6,
respectively. The indication for out-of-plane stripe order is given by a non-vanishing mz in (d).

also locked to a certain chirality. Our DMRG data (see Fig. 5) are
consistent with these results as we observe that only in-plane
correlations display a peak at k = −2π/3.

For large J2 and ϕ ≠ 0, we find incommensurate corre-
lations characterized by a continuously varying momentum in
Figs. 5(b) and 5(c). Curiously, the incommensurate correlations
can exist either with or without an accompanying finite out-of-
plane staggered magnetization along the cylinder direction, mz

= ∑y∣⟨Sz
yeiπy⟩∣/Ly.79 For the chosen cylinder geometry, an out-of-

plane stripe order with stripes parallel to the infinite a2 direction
[shown in Fig. 5(a)] has a finite mz . For ϕ = π/48, we observe a rela-
tively large region, 0.2 ≲ J2/J1 ≲ 0.3, with in-plane incommensurate
correlations and with negligible out-of-plane components, Sz

i ≈ 0.
This is consistent with the pf-FRG structure factor computed in the
putative spin liquid phase, Fig. 4(d), where residual but broadened
incommensurate peaks are visible. On the other hand, for larger J2,
we obtain a finite out-of-plane mz [see Fig. 5(d)], consistent with the
onset of out-of-plane stripe order. For ϕ = π/12, we observe, how-
ever, at least within our resolution, just a single direct transition from
in-plane 120○ order to out-of-plane stripe order, not inconsistent
with the absence of a spin liquid in the pf-FRG calculations.

Note, however, that at ϕ = π/12, the pf-FRG predicts that out-
of-plane stripe order is much weaker compared to the in-plane

incommensurate correlations [see Fig. 4(e), where peaks at the M
point, coming from the out-of-plane component of the structure fac-
tor, are overshadowed by the in-plane incommensurate peaks]. The
stripe order that we identify in iDMRG may be a finite size artifact
of the quasi-one-dimensional cylinder geometry with the possibility
that stripe order is molten in favor of the incommensurate in-plane
order when going to two dimensions. As the incommensurate cor-
relations are frustrated along the finite direction of the cylinder, the
finite size effects should, in fact, be rather large. Our iDMRG calcu-
lations may, in turn, be biased toward commensurate stripe order,
as opposed to an incommensurate phase. Further simulations with
larger Ly, beyond the scope of this work, are necessary to settle on a
final conclusion regarding this issue.

IV. DISCUSSION

Twisted TMDs have been predicted to provide an exciting
opportunity to realize the physics of the triangular lattice Hubbard
model and potentially access the magnetism of its strong coupling
limit. By focusing on the particular case of tWSe2 and including
both first- and second-nearest neighbor couplings as well as a finite
displacement field, we have mapped out the strong coupling phase
diagram. Perhaps the most intriguing phase, the QSL that appears
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in the pure J1–J2 limit, unfortunately only inhabits a small portion
of the larger phase diagram, which includes XXZ anisotropy and an
effective DM interaction. Accessing QSL physics thus requires tun-
ing the displacement field such that ϕ ∼ nπ/3 and the twist angle
such that J2/J1 is within the required range. It is an open question
whether further interactions, generated by taking into account fur-
ther hoppings tα

ij and interactions U ij of the underlying Hubbard
model, can lead to a wider, more stable QSL window.

A large part of the phase diagram, above a sufficiently large
J2/J1 ∼ 0.3, hosts incommensurate magnetic phases. Such phases can
be expected to host gapless phason modes due to the low-energy
cost of translating the incommensurate magnetic structure. This is
on top of the underlying moiré structure, which, at the atomic level,
is generically incommensurate. If it is possible to tune to such a
large J2/J1 ratio, it would allow to explore the interplay between the
moiré scale incommensurate magnetic structure and its gapless pha-
son modes with the atomic scale incommensurate lattice structure
and its gapless phonon modes.67,68

For smaller ratios of J2/J1 ≲ 0.3, the 120○ order is stabilized.
For ϕ = π/6, it is particularly stable and has a fixed chirality, which
leaves only a single BKT transition at finite temperature, with an
expected TBKT ≳ J1. It thus provides a particularly clean example of
BKT physics within potential experimental reach and the possibility
of exploring moiré scale magnetic vortices.

An important additional tuning parameter to consider in the
future is an external magnetic field. Its effects on the 120○ order
and J1–J2 QSL are already known,69,70 but how it will distort the
incommensurate phases found at finite ϕ is not immediately clear.
An interesting possibility would be the formation of multi-Q states.
Indeed, such a possibility is actually realized for incommensurate
phases found within the pure J1–J2 Heisenberg model.71 In that case,
it is even possible to stabilize a skyrmion lattice phase at finite tem-
perature. Realizing a similar scenario for the model at hand with
incommensurate phases ICS-I, II, and III would open up a path to
studying moiré scale skyrmion lattices within tWSe2.72

The phase diagram uncovered in this work expands our view
on the landscape of opportunities arising within tTMDs. In par-
ticular, the strong coupling physics of tWSe2 has the potential to
realize and tune between QSLs, incommensurate magnetic orders,
and extremely stable, chiral 120○ and ferromagnetic orders. Adding
QSL states and incommensurate magnetic orders to the cata-
log of moiré-controllable phases of matter is an exciting open
experimental question, which might be in reach using highly tun-
able TMDs. We note that the case of tWSe2 was taken here
as a prominent experimentally characterized homobilayer exam-
ple, but the available range of TMDs might help to fabricate
other twisted van der Waals materials. In those, e.g., the QSL
state could take a more prominent stage in the respective phase
diagram.

Note added in proof. During the completion of this article, we
became aware of the publication of related (but previously inacces-
sible) work by Zare and Mosadeq.73 In contrast to our study, they
focus on a honeycomb lattice model, rather than a triangular lattice
model, which is then analyzed using the Luttinger–Tisza method
(combined with a variational approach to optimize the classical
ground states) and DMRG simulations. They find similar conclu-
sions regarding the fate of the quantum spin liquid phases and the
stability of magnetic orders.

SUPPLEMENTARY MATERIAL

In addition to the results presented in the main text, fur-
ther analysis can be found in the supplementary material. This
includes a discussion of the real space spin configurations obtained
from the classical Monte Carlo simulations, the full trajectory of
Luttinger–Tisza wavevectors within the first Brillouin zone upon
variation of ϕ, and details on the pf-FRG implementation.
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Twisting moiré heterostructures to the flatband regime allows for the formation of strongly correlated quantum
states, since the dramatic reduction of the bandwidth can cause the residual electronic interactions to set
the principal energy scale. An effective description for such correlated moiré heterostructures, derived in the
strong-coupling limit at integer filling, generically leads to spin-valley Heisenberg models. Here we explore the
emergence and stability of spin-liquid behavior in an SU(2)spin⊗ SU(2)valley Heisenberg model upon inclusion of
Hund’s-induced and longer-ranged exchange couplings, employing a pseudofermion functional renormalization
group approach. We consider two lattice geometries, triangular and honeycomb (relevant to different moiré
heterostructures), and find, for both cases, an extended parameter regime surrounding the SU(4) symmetric
point where no long-range order occurs, indicating a stable realm of quantum spin-liquid behavior. For large
Hund’s coupling, we identify the adjacent magnetic orders, with both antiferromagnetic and ferromagnetic
ground states emerging in the separate spin and valley degrees of freedom. For both lattice geometries the
inclusion of longer-ranged exchange couplings is found to have both stabilizing and destabilizing effects on
the spin-liquid regime depending on the sign of the additional couplings.

DOI: 10.1103/PhysRevResearch.2.013370

I. INTRODUCTION

Spurred by the discovery of a plethora of insulating and su-
perconducting states in twisted bilayer graphene (TBG) [1,2],
a growing stream of experimental evidence points to the
generic emergence of correlated electronic behavior in vari-
ous moiré heterostructures [3–12]. The basic mechanism that
gives rise to strongly enhanced correlation effects in these
materials is the formation of long-wavelength moiré patterns
with (almost) flat low-energy bands whose narrow bandwidth
becomes comparable to the otherwise negligible energy scale
of the electronic interactions [13–15]. Due to a high degree
of control, e.g., in the regulation of the twist angle, tunable
bandwidths, or fillings, and a low level of disorder, such
systems are discussed as ideal platforms for detailed studies
of quantum many-body states. Despite a vast amount of con-
comitant theoretical activity [16–41], the precise nature of the
observed insulators and superconductors, however, remains to
be explored and settled through the construction of faithful
models and application of appropriate quantum many-body
approaches.

Several model constructions for correlated moiré materials
have been put forward in terms of effective tight-binding
descriptions on the moiré superlattice, augmented by
various interaction terms [38,39,41]. Whereas details of
the models may differ, they feature a series of universal

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

traits: (1) an emergent hexagonal superlattice, (2) a
multiorbital structure, and (3) extended Hubbard and Hund’s
interactions. More specifically, while TBG is preferably
described using a honeycomb superlattice [38,39,41], related
structures such as, e.g., twisted double-bilayer graphene
(TDBG) or trilayer graphene/hexagonal boron nitride
heterostructures (TLG/h-BN) are better captured by a
triangular superlattice [6,41–44]. The orbital degrees of
freedom are inherited from the valleys in the original bands,
e.g., the two Dirac valleys in the Brillouin zone of graphene.

Beyond these universal traits it has been argued that band
topology can play an important role in moiré heterostruc-
tures [35,41,45–48]. Faithfully incorporating a nontrivial band
topology in an effective tight-binding model and simulta-
neously maintaining all symmetries, for example, for TBG,
is a formidable task, which can lead to complex multiband
models that refuse a reduction to the flat bands only [49–51].
However, at least in some flat-band moiré heterostructures,
including TLG/h-BN, the quantum valley topological number
can be tuned from being nontrivial to being trivial by applying
a perpendicular electric field [35,41,43]. In that latter case,
the universal traits (1)–(3) may be combined into a minimal
two-orbital extended Hubbard model [16,17] serving as a
paradigmatic starting point. Its kinetic term

Ht = −t
∑

〈i j〉

4∑

α=1

(c†
iαc jα + H.c.) , (1)

for the electrons combines the spin projection s ∈ {↑,↓} and
valley quantum number l ∈ {+,−} in a flavor index α ∈
{(↑,+), (↑,−), (↓,+), (↓,−)}, reflecting an effective SU(4)
symmetry. On the triangular lattice this results in a set of four
degenerate bands, which can potentially describe, e.g., the set

2643-1564/2020/2(1)/013370(11) 013370-1 Published by the American Physical Society



DOMINIK KIESE et al. PHYSICAL REVIEW RESEARCH 2, 013370 (2020)

of minibands above charge neutrality in TDBG or TLG/h-BN
at appropriately tuned out-of-plane electric field.

The simplest conceivable interaction term retaining
the SU(4) symmetry is a Hubbard interaction Hint =
U

∑
i(
∑4

α=1 niα )2, which can arise in the limit of large lat-
tice periods where the interaction depends primarily on the
total charge on a site and becomes the dominant interaction
scale. In this strong-coupling limit, the kinetic term can
then be treated perturbatively [16,17,41,43]. With an inte-
ger number of electrons per site this leads to an effective
spin-valley Heisenberg Hamiltonian with SU(4) symmetric
superexchange coupling JH ∝ t2/U . Additional symmetry-
breaking interactions are also expected, in particular in the
form of further Hund’s-type couplings in either the spin or
valley degrees of freedom [16,17]. Moreover, Wannier state
constructions suggest that further-neighbor interactions can
become sizable [38] and should augment any minimal model.
We note that for TLG/h-BN an intersite Hund’s interaction
has been argued to provide a leading ferromagnetic contribu-
tion to the nearest-neighbor exchange coupling in the strong-
coupling limit [43]. Away from the strict limit, however,
antiferromagnetic superexchange may dominate [43]. In this
regime, the triangular geometry together with the additional
valley degrees of freedom augments the role of quantum fluc-
tuations suggesting that the system may host exotic quantum
liquid behavior. In view of the large and ever-growing number
of different correlated moiré heterostructures and the persis-
tent interest in exotic quantum liquid behavior, we take this
observation as a motivation to study generic antiferromagnetic
spin-valley Heisenberg models. Further possible applications
of such models are, e.g., Mott insulators with strong spin-orbit
coupling [52–54].

More specifically, in this work, we explore
antiferromagnetic nearest-neighbor spin-valley Heisenberg
models with SU(2)spin ⊗ SU(2)valley symmetry for both
triangular and honeycomb lattice geometries, which we later
supplement with further-neighbor interaction terms. Our focus
is on the case of half-filling of the underlying Hubbard model,
i.e., two electrons per site. For the effective Heisenberg model
at strong coupling, this implies that we are working with the
six-dimensional self-conjugate representation of SU(4) spins.
This is in contrast to the four-dimensional fundamental repre-
sentation of SU(4) relevant to, e.g., the case of quarter-filling.

For both lattice geometries, we find extended parame-
ter regimes surrounding the SU(4) symmetric point where
no long-range symmetry-breaking order occurs, indicating
a stable realm for a spin-valley entangled quantum liquid.
Moving further away from the SU(4) symmetric point, we find
magnetic order in the spin and valley degrees of freedom that
can be either antiferromagnetic or ferromagnetic. To explore
the effect of longer-range interactions, we augment our model
by a next-nearest neighbor coupling and determine its role
in stabilizing quantum spin-valley liquid (QSVL) behavior
versus long-range order for different signs of the coupling
and the two lattice geometries. Our work complements earlier
work for the case of quarter-filling, where it was argued that a
QSVL state with neutral gapless fermionic excitations forms
on the honeycomb lattice [53], while on the triangular lattice
extended parameter regimes without any net magnetization
have been identified in DMRG simulations [55].

II. SPIN-VALLEY MODEL

The starting point of our study is an SU(4) spin-valley
Heisenberg model [16,41], HSU(4) = JH

∑
〈i j〉 T̂ μ

i T̂ μ
j , where

JH is the antiferromagnetic exchange coupling between near-
est neighbors on either the triangular or honeycomb lattice,
and T̂i denote SU(4) spins. The μ=1, . . . , 15 components of
the spin operators can be represented on a fermionic Hilbert
space via the parton construction T̂ μ

i = f †
iαT μ

αβ fiβ , where the
index α enumerates four different fermion flavors and the
matrices T μ are the SU(4) generators [56]. At half-filling of
the underlying Hubbard model, the local spin-valley Hilbert
space is six-dimensional (4 choose 2), which leads to a local
filling constraint of two partons per lattice site

∑
α f †

iα fiα = 2.
Upon inclusion of Hund’s couplings, the SU(4) symmetry

of the model is explicitly broken [16]. Omitting other sources
of SU(4) breaking, a residual separate spin-valley SU(2)s ⊗
SU(2)v symmetry remains which is reflected by the extended
Hamiltonian

H =
∑

〈i j〉
J
(
σ̂ a

i ⊗ τ̂ b
i

)(
σ̂ a

j ⊗ τ̂ b
j

) + Jsσ̂
a
i σ̂ a

j + Jv τ̂
b
i τ̂ b

j , (2)

where the spin-valley operators read σ̂ a
i = f †

is′l ′θ
a
s′sδl ′l fisl , τ̂

b
i =

f †
is′l ′δs′sθ

b
l ′l fisl , and σ̂ a

i ⊗ τ̂ b
i = f †

is′l ′θ
a
s′sθ

b
l ′l fisl . Instead of enu-

merating the four fermion types by a single index, we have
exposed the spin quantum number s ∈ {↑,↓} and the valley
quantum number l ∈ {+,−} explicitly; Pauli matrices are
denoted by θa, a ∈ {1, 2, 3}. At the high-symmetry point
J = Js = Jv the full SU(4) symmetry is restored. We assume
that the Hund’s interactions are weak enough such that all
exchange couplings are antiferromagnetic [55], i.e., J, Jv,

Js > 0.

III. PSEUDOFERMION FUNCTIONAL RG

Parton-decomposed quartic Hamiltonians of the general
type defined in Eq. (2) can readily be analyzed by the pseud-
ofermion functional renormalization group (pf-FRG) [57–60].
For SU(N) spins, the approach is already naturally formulated
with a local constraint of N/2 fermions per site. It combines
aspects of an expansion in spin length S [61] (which nat-
urally favors magnetic order) and in the SU(N) spin sym-
metry [62,63] (which typically favors quantum spin-liquid
states), and it becomes exact on a mean-field level in the
separate limits of large S and large N . It is thus suited to
resolve the competition between ordered ground states and
QSVL phases in the spin-valley model at hand. We extend
the standard implementation of pf-FRG to incorporate the
SU(2)s ⊗ SU(2)v symmetry, thereby obtaining flow equations
for the one-particle irreducible vertices as a function of an
RG frequency cutoff scale �. Numerically solving the set of
O(106) flow equations at up to 84 Matsubara frequencies and
using a real-space vertex truncation of L=7 lattice bonds in
each spatial direction, spontaneous symmetry breaking, e.g.,
the onset of long-range magnetic or valence bond order, is
indicated by an instability of the RG flow [57,64] which
occurs at some critical scale �c.

In the case of long-range order, to identify the precise
nature of the ordered state we can separately gain access to
the elastic component (ω = 0) of the correlation functions in
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FIG. 1. Phase diagram on the triangular lattice. (a) Colors indi-
cate the magnitude of the breakdown scale �c in units of J , triangles
(squares) denote regions with negative (positive) effective coupling
Eq. (4); see text for details. (b) Structure factor in the spin (valley)
subspace at dominant Js (Jv), plotted at �c, indicating the onset of
120◦ order. (c) Structure factor at the SU(4) point where no instability
of the RG flow occurs. Local correlations are reminiscent of 120◦

order albeit broadened. The same color scale is applied to both
(b) and (c). The solid gray lines mark the phase boundaries between
the QSVL and the ordered phases, the dotted line marks the diagonal
Js/J = Jv/J .

the spin sector and in the valley sector,

χ s�
i j = 〈

σ̂ a
i σ̂ a

j

〉�
, and/or χv�

i j = 〈
τ̂ b

i τ̂ b
j

〉�
. (3)

Sharp features emerging in the respective structure factors
χ s/v (�q) ∝ ∑

i j ei �q·(�ri− �r j )χ
s/v
i j allow us to deduce the type of

long-range order in either the spin or the valley degrees of
freedom, cf. Figs. 1 and 2.

IV. EMERGENT SPIN-VALLEY LIQUID BEHAVIOR

We begin our analysis with the SU(4) symmetric point,
Js/J = Jv/J = 1. For both the triangular and honeycomb
lattice, no instabilities are detected in the pf-FRG flow, in-
dicating a fully symmetric ground state. In addition, upon
varying the vertex range L we observe no finite-size depen-
dence of the flows, consistent with a ground state without
symmetry-breaking long-range order. This rules out not just
magnetically ordered states, but also valence bond or dimer
crystals [65], an ordering which spins in the self-conjugate
representation are often prone to [66,67]. For SU(4) spins
in the self-conjugate representation we can further use the
Lieb-Schultz-Mattis-Hastings [68–70] theorem to rule out a
featureless Mott insulator as the ground state in the case of
the triangular lattice, whereas such a state is in principle
still a possibility on the honeycomb lattice. We note that
the spin/valley structure factors have features resembling
120◦/Néel order, albeit significantly broadened; see Figs. 1(c)
and 2(c).

FIG. 2. Phase diagram on the honeycomb lattice. (a) Colors
indicate the magnitude of the breakdown scale �c in units of J ,
triangles (squares) denote regions with negative (positive) effective
coupling Eq. (4); see text for details. (b), (c) Structure factors for
a state deep in the Néel ordered phase versus the SU(4) symmetric
state, with the same color scale applied.

V. STABILITY OF SPIN-VALLEY LIQUID
AND ADJACENT MAGNETISM

Moving towards parameter regimes with broken SU(4)
symmetry, Js/J, Jv/J �= 1, we find that an extended paramag-
netic region emanates from the SU(4) symmetric point, see the
white wedges in Figs. 1 and 2. Importantly, this finding sup-
ports the stability of the emergent spin-valley liquid behavior
even in the presence of SU(4) breaking perturbations such as
the Hund’s coupling. Comparing the two lattice geometries,
the triangular lattice gives rise to a parametrically larger
QSVL phase than the bipartite honeycomb lattice, which can
likely be traced back to the geometric frustration of the former.
Along the diagonal line of equal coupling Jv = Js, the QSVL
region eventually collapses and disappears, being replaced by
long-range antiferromagnetic order. Moving along the dotted
diagonal line in the respective phase diagrams we observe
a strongly suppressed breakdown scale �c, relative to the
surrounding parameter space, indicating that quantum fluctu-
ations are strongest when Jv = Js.

For sufficiently strong dominance of either spin or valley
coupling, different ordered phases occur for both lattice ge-
ometries. The transition towards an ordered state is indicated
by a leading instability in the RG flow, either in the spin
or valley sector. To explore the subleading instabilities in
the remaining sector, we employ a heuristic mean-field-like
approach to estimate the effective spin or valley couplings
between nearest-neighbor sites i and j,

Jeff
v = Jv + Jχ

s�c
i j and Jeff

s = Js + Jχ
v�c
i j . (4)

Note that for 120◦ or Néel order in one of the SU(2) sectors
the corresponding nearest-neighbor correlation becomes neg-
ative. Therefore, the effective couplings Jeff

v and Jeff
s may, too,

turn negative and drive a ferromagnetic instability in the other
sector, despite the antiferromagnetic nature of all couplings in
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FIG. 3. Phase diagrams for SU(4) J1-J2 models on the triangular
lattice (a) and the honeycomb lattice (b). Gray boxes indicate the
extent of the quantum spin-liquid (QSL) regime for the respective
spin-1/2 SU(2) model. Structure factors for the respective phases are
shown to the right, where the same color scale is applied to all plots
of the underlying lattice.

the microscopic spin-valley model [55]. This kind of mech-
anism may be at the origin of the spin polarization observed
at half-filling in TDBG [9,10], as first pointed out in Ref. [55]
for quarter-filling. Extracting the sign of the effective coupling
according to Eq. (4) at the transition scale of the leading sector
allows us to distinguish two regimes with either ferro- or
antiferromagnetic correlations in the subleading sector [71].
In Figs. 1 and 2 the so-determined order in the subleading
regimes is indicated by triangle (ferromagnetic) or square
(antiferromagnetic) symbols.

VI. LONGER-RANGE INTERACTIONS

In the ongoing search for an effective microscopic de-
scription for moiré heterostructures it has been pointed out
that longer-ranged Coulomb interactions should not be ne-
glected [38], which in the effective spin model will give rise
to exchange couplings beyond nearest-neighbor. To probe the
stability of the QSVL regime in our model we here consider
the effect of a next-nearest neighbor coupling J2.

Let us first recapitulate the effect a next-nearest-neighbor
coupling J2 for the spin-1/2 SU(2) case on the triangu-
lar and the honeycomb lattices. Here the bare nearest-
neighbor coupling leads to magnetic ordering and only an
antiferromagnetic J2 of intermediate coupling strength facil-
itates the formation of a narrow quantum spin-liquid (QSL)
regime [59,72–74], as indicated by the gray boxes in Fig. 3.
Notably, the induced QSL regime is somewhat larger for the
honeycomb lattice where the next-nearest neighbor interac-
tion introduces geometric frustration.

For the model at hand, we first concentrate on the SU(4)
symmetric point and explore the effect of J2/J1 ∈ [−1, 1].
As shown in Fig. 3, the QSVL region for the SU(4) model
is significantly expanded for both lattice geometries in com-
parison to the SU(2) QSL case. The impact of J2 on the the
full spin-valley (Js, Jv ) phase diagrams of Figs. 1 and 2 is

FIG. 4. Phase diagrams for longer-ranged spin-valley model
showing the effect of ferromagnetic J2/J1 = −0.15 for (a) the trian-
gular and (b) the honeycomb model. The same for antiferromagnetic
J2/J1 = 0.25 for (c) the triangular and (d) the honeycomb model.
Colors correspond to critical scales as indicated in Figs. 1 and 2. For
reference, the phase boundaries at J2/J1 = 0 and the diagonal are
marked by dotted lines.

illustrated in Fig. 4 for both ferromagnetic and antiferromag-
netic J2. While an antiferromagnetic J2 is found to further
widen the wedge-shaped QSVL region, the converse occurs
for ferromagnetic J2, which drives the system closer to the
ordered states. This means that, depending on the sign of
J2, longer-range interactions can actually stabilize and even
expand the region of QSVL behavior.

VII. CONCLUSIONS

In this work, we studied SU(2)s ⊗ SU(2)v-symmetric spin-
valley Heisenberg models in the self-conjugate representation
for both the triangular and honeycomb lattice. Seen as the
effective Hamiltonians generated in the strong-coupling limit
of an underlying Hubbard model, such models are relevant
as minimal models in the exploration of the correlated insu-
lating states of recently synthesized moiré heterostructures.
Depending on which set of minibands the Hubbard model
is designed to describe, the half-filling case studied here can
potentially describe different candidate correlated insulators,
e.g., the insulator at half-filling n = +ns/2 in the triangular
system TDBG.

In particular, we focused on the study of Hund’s-induced as
well as longer-ranged exchange couplings and their impact on
the spin-valley liquid which has been found to emerge in the
limit of SU(4) symmetry in both lattice geometries. We find
extended parameter regimes where this phase is stabilized,
with no signatures of long-range order, providing evidence for
a stable realm of spin-valley liquid behavior. Experimentally,
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such a phase would be consistent with a correlated insulator
lacking spin and valley polarization. However, the precise
nature of the phase and potential experimental fingerprints are
left for future study, though we note that a recent projective-
symmetry-group classification of fermionic partons on the
half-filled triangular lattice suggests the possibility of a U(1)
spin liquid with four Fermi surfaces [75], which would be con-
sistent with our analysis. Our findings hint at the possibility
of spin-valley entangled quantum liquids lurking within the
correlated insulating regimes of moiré heterostructures.
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APPENDIX A: HEXAGONAL MOIRÉ STRUCTURES

As noted in the main text, the minimal model that covers
the necessary universal aspects of the various moiré het-
erostructures is a two-orbital extended Hubbard model. With
four flavors of fermions per site, two spin and two valley
degrees of freedom, this leads to a four band model on the
triangular lattice and an eight band model on the honeycomb
lattice (where the doubling is simply due to the doubling of the
unit cell). Which of these lattices is appropriate to use depends
on the particular moiré heterostructure one is interested in.

For TBG, TLG/h-BN, and TDBG there are a total of eight
minibands near charge neutrality, four above and four below,
that are separated from the rest of the spectrum by trivial
band gaps. Filling of these minibands is thus typically denoted
as ranging from n = −ns to n = +ns, as indicated in Fig. 5
[where, for convenience, we plot n/(ns/4)]. In the case of
TBG, the bands above/below charge neutrality are connected

FIG. 5. Comparison of filling for the effective Hubbard model, ν,
and for the minibands in the experimental cases of interest, n/(ns/4)
(where n = ±ns corresponds to fully empty or filled bands) in the
case of a triangular (upper) and honeycomb (lower) lattice descrip-
tion. Depending on the lattice description the effective Hubbard
model can either apply to all of, or just half of, the minibands, with
its region of applicability denoted by the blue boxes.

via Dirac points, meaning that any effective Hubbard model
must describe all eight bands. This naturally motivates the use
of the honeycomb lattice Hubbard model. Half-filling, i.e.,
the scenario focused on in the main text, thus corresponds
to charge neutrality n = 0. However, in the case of TDBG
and TLG/h-BN the bands above/below charge neutrality are
disconnected from one another, meaning that an effective
Hubbard model description need only focus on one or the
other set of four bands. This naturally leads to a triangular
lattice description, with half-filling now corresponding to n =
±ns/2.

APPENDIX B: PSEUDOFERMION FUNCTIONAL
RG APPROACH

The pseudofermion functional renormalization group (pf-
FRG) has recently been established as a versatile tool for
the investigation of ground state phase diagrams for a wide
class of spin models [57,76,77]. In doing so, the free fermion
propagator G0 = (iω)−1 of a pseudofermion decomposed
quartic Hamiltonian, e.g., Eq. (1) (main text), is modified by a
step-like regularization function �(|ω| − �) with frequency
cutoff scale �, i.e., G0 → G�

0 = G0�
�. The artificial scale

dependence of this theory results in a hierarchy of coupled
one-loop RG flow equations for the one-particle-irreducible
(1PI) interaction vertices. We employ a standard approxima-
tion scheme, where the hierarchy is truncated to exclusively
account for the frequency-dependent self-energy � and two-
particle interaction vertex ��; see, e.g., Ref. [62] for more
details and technicalities.

Here, we describe the aspects of the pf-FRG which are
particular to the present spin-valley model, i.e., the vertex
parametrization for the SU(2) ⊗ SU(2) symmetry and the
implementation of the filling constraint.

1. Vertex parametrization for SU(2)⊗SU(2) symmetry

The flow equations for the special case of SU(2)s ⊗ SU(2)v

symmetry can be extracted from the general fermionic FRG
equations. Here we consider the flows of the self-energy and
the two-particle vertex given by

d

d�
�(1′; 1) = − 1

2π

∑

2

��(1′, 2; 1, 2)S�(2), (B1)

d

d�
��(1′, 2′; 1, 2)

= − 1

2π

∑

3,4

[��(1′, 2′; 3, 4)��(3, 4; 1, 2)

− ��(1′, 4; 1, 3)��(3, 2′; 4, 2) − (3 ↔ 4)

+ ��(2′, 4; 1, 3)��(3, 1′; 4, 2) + (3 ↔ 4)]

× G�(3)
d

d�
G�(4) , (B2)

where the numbers n = {in, sn, ln,wn} represent tuples, com-
prising a lattice site index in, a spin index sn, a valley index
ln and a Matsubara frequency wn. We already employed that
both the full G� and single-scale S� propagator are diagonal
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FIG. 6. Effect of level terms on the static structure factor χ�ds(k) for the triangular lattice. (a), (b) Js/J = Jv/J = 1.0. (c), (d) Js/J =
0.5, Jv/J = 4.0. Negative μ yield no qualitative changes at k = kmax where the structure factor exhibits its peak value. For μ > 0, especially
in the QSVL phase, the flows differ visibly. Note that all axis have been normalized to a common energy scale by z = √

J2 + J2
s + J2

v + μ2 to
account for the change of initial conditions.

in all arguments. Their remaining frequency dependence is
given by

G�
i (w) = θ (|ω| − �)

iw − �
i (w)

, (B3)

S�
i (w) = δ(|ω| − �)

iw − �
i (w)

. (B4)

The spin/valley dependence of the 1PI irreducible vertices can
then be expanded in terms of an su(2) basis. Augmenting this
scheme by symmetry-allowed SU(2)-invariant density terms
and making use of translation invariance in imaginary time,
as well as local U (1) symmetry, the parametrization of the
vertices reads

�(1′; 1)=
∑

α,β


�αβ
i1

(w1)θα
s1′ s1

θ
β

l1′ l1δi1′ i1δ(w1′ − w1) , (B5)

��(1′, 2′; 1, 2)

=
∑

α,α′,β,β ′
�

�αα′ββ ′
i1i2

(w1′w2′ ; w1w2)θα
s1′ s1

θα′
s2′ s2

θ
β

l1′ l1θ
β ′
l2′ l2δi1′ i1δi2′ i2

× δ(w1′ + w2′ − w1 − w2) − (1 ↔ 2), (B6)

where α, β ∈ {0, 1, 2, 3} with θ0 = 1. Exploiting SU(2) sym-
metry in both spin and valley indices we are left with pure den-
sity contributions for the self-energy, while the two-particle
vertex may also contain off-diagonal terms albeit with equal
spin directions, i.e.,

�(1′; 1) = �
i1 (w1)δs1′ s1δl1′ l1δi1′ i1δ(w1′ − w1) , (B7)

��(1′, 2′; 1, 2)

= [��ss
i1i2 (w1′w2′ ; w1w2)θa

s1′ s1
θa

s2′ s2
θb

l1′ l1θ
b
l2′ l2

+ ��sd
i1i2 (w1′w2′ ; w1w2)θa

s1′ s1
θa

s2′ s2
δl1′ l1δl2′ l2

+ ��ds
i1i2 (w1′w2′ ; w1w2)δs1′ s1δs2′ s2θ

b
l1′ l1θ

b
l2′ l2

+ ��dd
i1i2 (w1′w2′ ; w1w2)δs1′ s1δs2′ s2δl1′ l1δl2′ l2 ]

× δi1′ i1δi2′ i2δ(w1′ + w2′ − w1 − w2) − (1 ↔ 2) ,

(B8)

where a, b ∈ {1, 2, 3}. The superscripts ss, sd, ds, dd hereby
denote if the coupling in the spin (valley) sector is spin like
(s) or density like (d).
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FIG. 7. Effect of level terms on the static structure factor χ�ds(k) for the honeycomb lattice. (a), (b) Js/J = Jv/J = 1.0. (c), (d) Js/J =
0.5, Jv/J = 4.0. Similar to what is seen in Fig. 6, unphysical contributions become relevant only at μ > 0, while for negative μ no qualitative
change is observed.

The initial conditions at the UV scale then read ∞
i1 (w) =

0 for the self-energy and

�∞ss
i1i2 (w1′w2′ ; w1w2) = J , �∞sd

i1i2 (w1′w2′ ; w1w2) = Js ,

�∞ds
i1i2 (w1′w2′ ; w1w2) = Jv , �∞dd

i1i2 (w1′w2′ ; w1w2) = 0 ,

(B9)

for the two-particle interaction vertices. Further details on
the inner workings of the pf-FRG approach can be found in
Ref. [78].

2. Particle-hole symmetry and the half-filling constraint

In the model studied here, the local Hilbert space
for fermionic flavors α ∈ {(↑+), (↑−), (↓+), (↓−)} is
equipped with the particle-number basis B = {|n1, ..., n4〉}.
We define the linear unitary operator P acting on
the basis by exchanging each occupied state with an
empty state P|n1, ..., n4〉 = |1 − n1, ..., 1 − n4〉. By com-
puting the corresponding matrix elements, one finds that
P transforms creation and annihilation operators into
each other, i.e., P† f †

α P = fα , P† fα P = f †
α . This trans-

formation leaves the spin-valley Hamiltonian and its

groundstate at � → ∞ invariant. On the level of vertex func-
tions, we obtain the identities �(1′; 1) = −�(−1; −1′)
and ��(1′, 2′; 1, 2) = ��(−1,−2; −1′,−2′), where the mi-
nus sign applies only to Matsubara frequencies. The ver-
tex components therefore obey �

i1 (w) = −�
i1 (−w) and

�
�ζ
i1i2

(s, t, u) = �
�ζ
i1i2

(−s, t,−u) where ζ ∈ {ss, sd, ds, dd}.
These symmetries are explicitly implemented in our pf-

FRG approach. However, only one local subspace, namely
the one with two occupied states, is mapped to itself by P ,
i.e., by enforcing the symmetries of that respective subspace
half-filling at each lattice site is expected to be well-enforced
on average. Furthermore, since the particle number per site
must be conserved as a consequence of local U(1) symmetry,
hopping processes that alter the filling would trigger a mea-
surable nonmagnetic instability of the flow, which we do not
observe here.

To test the validity of the above considerations we have
employed a numerical scheme first exploited in [61]. The spin-
valley Hamiltonian is extended by local level terms μT̂ ν

i T̂ ν
i

diagonal in the parton representation of SU (4) spins. Each of
them contributes an energy E (n) = 5

2μ(n − 1
4 n2) where n is

the fermion occupation number. For μ < 0 half-filling (i.e.,
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FIG. 8. Finite-size analysis of the onsite correlation function χ�ds
ii = χ v�

ii for the triangular lattice (orange) and the honeycomb lattice
(blue). (a), (b) Js/J = Jv/J = 1.0. (c), (d) Js/J = 0.5, Jv/J = 4.0. For a paramagnetic ground state the flow shows neither dependence on L
nor an instability and correlations quickly decay to zero beyond nearest neighbors.

n = 2) is favored, whereas for μ > 0 E (n) is minimized for
either n = 0 or n = 4. Hence, if the assumption of half-filling
is correct, then our results at μ = 0 should be consistent with
those obtained for negative μ (up to an overall shift of the
energy scale). However level attractions (μ > 0) should lead
to qualitative changes, since a subspace with different filling
is populated.

By repeating our pf-FRG calculations with finite level
(repulsion or attraction) terms, such behavior can indeed be
observed. While negative values of μ seem to have no qual-
itative impact, level attraction terms lead to visible changes
of the susceptibility flows. In the absence of a breakdown
(top row in Figs. 6 and 7) susceptibilities start to vanish,
consistent with effective lattice vacancies at n = 0(4). For
coupling parameters supporting long-range order (bottom row
in Figs. 6 and 7) the effect of positive μ is however less
pronounced, numerical instabilities a merely shifted towards
lower values of �. Since the exchange couplings relevant
to these phases are usually higher than the simulated ratios
μ/J this behavior is expected. In light of these results we
are confident that half-filling is well enforced even without
an explicit projection scheme.

3. Finite-size analysis of the RG flow

An instability in the vertex function during the RG flow
indicates spontaneous breaking of symmetries that have been
implemented in the initial conditions [62]. Most prominently,
magnetic instabilities appear as pronounced kinks or cusps
in the flow of the momentum resolved two-spin correlations.
Alternatively, one may check the behavior of an on-site cor-
relation function, i.e., χ�

ii , for different values of the vertex
range L. Formally, L does not determine the system size
(which is in fact infinite in pf-FRG) but rather sets the scale
on which spins can be correlated. It is then natural to expect
sensitivity to this parameter near the critical scale since the
physics is governed by the collective behavior of all spins.
However, if the system does not develop an instability down to
the smallest energy scales, i.e., the pf-FRG flow stays regular,
then real-space correlations should be robust with respect to
variations of L.

Indeed as shown in Fig. 8, flows of the spin correlation in
the dominant interaction channel for different L are aligned
within the paramagnetic regions of the spin-valley phase
diagrams, but deviate from each other around the critical scale
in the ordered phases. We find, however, that this effect is
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FIG. 9. Structure factors for the SU(4) model on the triangular
lattice within the paramagnetic phase. Lines denote the first Brillouin
zone boundary. From left to right J2/J1 = 0.0/0.1/0.2/0.3/0.4/0.5.
At a ratio of J2/J1 ≈ 0.2 a deformation from local 120◦ correlations
to local stripe correlations is observed.

more subtle for the triangular than the honeycomb lattice,
which we attribute to the inherent geometric frustration of the
former.

4. Structure factor evolution in the spin-valley liquid
of the J1-J2 model

The spin-valley entangled liquid ground states of the
nearest-neighbor SU(4) Heisenberg models (on both the tri-
angular and honeycomb lattice) remain stable upon inclusion
of moderate longer-ranged exchange interactions as illustrated
in Fig. 3 of the main text.

FIG. 10. Structure factors for the SU(4) model on the honeycomb
lattice within the paramagnetic phase. Dashed lines denote the first,
full lines the extended Brillouin zone. From left to right J2/J1 =
0.0/0.1/0.2/0.3/0.4/0.5. At a ratio of J2/J1 ≈ 0.3 a deformation
from local Néel to local spiral correlations is observed.

Here, we provide further information about the evolu-
tion of the structure factors upon varying J2/J1. First, we
recall that for J2/J1 = 0, local correlations are reminiscent
of 120◦ (Néel) order for the triangular (honeycomb) model.
Going to large antiferromagnetic J2 > 0, stripe (spiral) order
emerges with the evolution of the structure factor being plot-
ted in Figs. 9 and 10 at the onset of these orders. Around
J2/J1 ≈ 0.2 for the triangular and at about J2/J1 ≈ 0.3 for the
honeycomb lattice, the topology of the momentum resolved
correlation functions changes visibly, indicating a Lifshitz
transition.
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7 Novel platforms for frustrated magnetism

7.1 Overview
Quantum spin liquids (QSLs) are enigmatic states of matter, in which conventional magnetic order is
impeded by strong quantum fluctuations. In the past, several QSL materials have been proposed, albeit
many of them ultimately order at low temperatures. Their respective coupling parameters, however,
place them in vicinity of theoretically predicted spin liquid phases and certain QSL signatures, such
as the temperature dependence of spin-spin correlation functions, can, thus, still be observed [150].
This has raised the intriguing question, whether its possible to artificially prohibit long-range order
in these materials by tuning the interactions in such a way that frustration increases and magnetic
states are consequently penalized. In the following, two routes for achieving this ambitious goal are
proposed.
The twist angle between multi-layer composition of van der Waals materials, such as twisted bilayer
graphene (tBG) [53, 73], has recently been established as a promising tuning knob for modifying
electronic correlations. In Ref. [P8], we study the properties of bilayer molybdenum disulfite (tMoS2)
using large-scale density functional theory (DFT) and many-body calculations. Remarkably, tMoS2
realizes a honeycomb superlattice with two flat bands, which result from the destructive interference of
certain elements in the hopping matrix. In contrast to tBG, however, we find that the band structure
of tMoS2 at small twist angles is well described by a strongly-asymmetric px-py Hamiltonian. If
augmented by Hubbard-Kanamori type interactions, the latter gives rise to an intricate Kugel-Khomski
model with competing interactions in the orbital sector1, which has been proposed to give rise to exotic
spin dimer and spin-orbital liquid phases [151, 152]. Twisted moiré heterostructures, in which models
with competing spin and orbital fluctuations can be crafted by stacking different materials and varying
their relative twist angle, thus open up a promising avenue for the realization of elusive spin liquid
states.
In the second publication, Ref. [P9], we engineer algebraically decaying Heisenberg couplings (γ) on
top of an ordinary square antiferromagnet by utilizing the light of an optical cavity. The former, for
γ → ∞ and sufficiently long-range interactions, resemble a global singlet constraint and thus assure to
suppress Néel order. Employing a Schwinger-Boson mean-field approach, we could indeed demonstrate
the emergence of two spin liquid phases, one opening a spinon gap, the other one becoming gapless in
the thermodynamic limit. This is remarkable insofar that the square lattice Heisenberg antiferromagnet
is non-frustrated and yet our protocol is able to successfully destroy magnetic order. Cavity mediated
interactions could thus become a powerful tool for generating QSLs both in condensed matter systems
as well as in quantum simulators made from ultracold atoms.

Relevant publications:
[P8] Realization of Nearly Dispersionless Bands with Strong Orbital Anisotropy

from Destructive Interference in Twisted Bilayer MoS2
L. Xian, M. Claassen, D. Kiese, M. M. Scherer, S. Trebst, D. M. Kennes and A. Rubio
Nature Communications 12, 5644 (2021)

[P9] Cavity-induced quantum spin liquids
A. Chiocchetta, D. Kiese, C. P. Zelle, F. Piazza and S. Diehl
Nature Communications 12, 5901 (2021)

Author contributions: The author performed the mean-field calculations in Ref. [P8] and prepared the
corresponding section in the manuscript. D. Kiese was also responsible for writing the Schwinger-Boson
code on which Ref. [P9] is based. Furthermore, he performed the numerical simulations, generated the
respective figures and participated in the writing of that paper.

1 The spin sector has SU(2) symmetry and is non-frustrated.
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Realization of nearly dispersionless bands with
strong orbital anisotropy from destructive
interference in twisted bilayer MoS2
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Recently, the twist angle between adjacent sheets of stacked van der Waals materials

emerged as a new knob to engineer correlated states of matter in two-dimensional hetero-

structures in a controlled manner, giving rise to emergent phenomena such as super-

conductivity or correlated insulating states. Here, we use an ab initio based approach to

characterize the electronic properties of twisted bilayer MoS2. We report that, in marked

contrast to twisted bilayer graphene, slightly hole-doped MoS2 realizes a strongly asymmetric

px-py Hubbard model on the honeycomb lattice, with two almost entirely dispersionless

bands emerging due to destructive interference. The origin of these dispersionless bands, is

similar to that of the flat bands in the prototypical Lieb or Kagome lattices and co-exists with

the general band flattening at small twist angle due to the moiré interference. We study the

collective behavior of twisted bilayer MoS2 in the presence of interactions, and characterize

an array of different magnetic and orbitally-ordered correlated phases, which may be sus-

ceptible to quantum fluctuations giving rise to exotic, purely quantum, states of matter.
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Two-dimensional van der Waals materials constitute a ver-
satile platform to realize quantum states by design, as they
can be synthesized in many different stacking conditions1,

offer a wide variety of chemical compositions, and are easily
manipulated by back gates, strain and the like. Stacking two
sheets of van der Waals materials atop each other at a relative
twist has recently emerged as a vibrant research direction to
enhance the role of electronic interactions, with first reports on
twisted bilayer graphene2–6 and another van der Waals materials
stacked atop each other at a twist7–17 displaying features of cor-
related physics that afford a high level of control. In particular, bi-
, tri-, and quadruple-layer graphene18 as well as twisted few-layer
transition metal dichalcogenides (TMDs)19,20 are currently under
intense experimental scrutiny13,21–29. By forming a moiré
supercell at small twist angles, a large unit cell in real space
emerges for twisted systems, which due to quantum interference
effects leads to a quasi-two-dimensional system with strongly
quenched kinetic energy scales. This reduction in kinetic energy
scale, signaled by the emergence of flat electron bands, in turn
enhances the role of electronic interactions in these systems.
Therefore, twisted systems enable the realization of new corre-
lated condensed matter models, establishing a solid-state quan-
tum simulator platform30.

Whereas the flatting of band dispersions in two-dimensional
moiré superlattices results mainly from the localization of charge
density distributions by the moiré potential, a well-known alter-
nate pathway to flat bands can occur in certain lattices such as the
Lieb and the Kagome lattices. Here, purely geometric considera-
tions lead to the formation of perfectly localized electronic states
that have weight only on single plaquettes or hexagons, respec-
tively, and that are eigenstates of the kinetic Hamiltonian due to
destructive interference between lattice hopping matrix
elements31. To put it differently, linear combinations of the
macroscopically degenerate extended Bloch states in these systems
allows to form localized Wannier-like eigenstates (living on single
plaquettes or hexagons in the examples above) with no dispersion
(for a review on the subject see, e.g,32). Such flat band systems can
give rise to many interesting phenomena, such as the formation of
nontrivial topology when time-reversal symmetry is broken, or
other exotic quantum phases of matter due to their susceptibility
to quantum fluctuations and electronic correlations32.

Here, we demonstrate that both flat band mechanisms can be
engineered to coexist in twisted bilayers of MoS2 (tbMoS2): a
TMD of direct experimental relevance that has been extensively
studied from synthesis to applications33,34. We confirm that
families of flat bands emerge when two sheets of MoS2 in the 2H
structure are stacked at a twist12,35 due to moiré potentials. Our
large-scale ab initio based simulations show that while the first set
of engineered flat bands closest to the edge of the bandgap with
twist angles close to Θ ≈ 0∘ can be used to effectively engineer a
non-degenerate electronic flat band in analogy to a single layer of
graphene at meV energy scales, more intriguingly, the next set of
flat bands instead realizes a strongly asymmetric flat band px–py
honeycomb lattice36,37. Both of these families of bands should be
accessible experimentally via gating. The strongly asymmetric
nature of this px–py honeycomb lattice is in marked contrast to
the much-discussed case of twisted bilayer graphene, where an
approximately symmetric version of such a Hamiltonian is now
believed to describe the low-energy flat band structures found at
small twist angle38–42. The strongly asymmetric px–py honey-
comb model itself features two almost entirely dispersionless flat
bands that touch the top and the bottom of graphene-like Dirac
bands at the Gamma point, respectively. These flat bands in this
model originate from destructive interference, in analogy to flat
bands in the Lieb and the Kagome lattices31 discussed above, and
will be referred to as ultra-flat bands in the following discussion.

On top of that, the total bandwidth of the strongly asymmetric
px–py honeycomb effective model realized here (all four bands)
can be further flattened by decreasing the twist angle. In addition,
these ultra-flat bands can be topologically nontrivial in the pre-
sence of spin-orbital coupling (SOC)43. Although all the flat
bands discussed here originate from the Γ-point states of MoS2
and are not affected by intrinsic SOC (see Supplementary Fig. 3),
we expect that substrate engineering44 can be used to introduce
SOC coupling into these bands and invoke topologically non-
trivial behavior of the ultra-flat band states. Previously, the px-py
model was studied in the context of cold gases where exotic
correlated phases were predicted36,45,46, as well as in semi-
conductor microcavities47 and certain 2D systems such as orga-
nometallic frameworks48,49 and Bismuth deposited on SiC50 with
a focus on their nontrivial topology properties. Our findings
elevate tbMoS2 to an interesting platform where effects of ultra-
flat bands can be studied systematically in a strongly correlated
solid-state setting.

Notably, in the strong-coupling regime, the px–py model
amended by Hubbard and Hund’s interactions gives rise to a
spin-orbital honeycomb model which – depending on the specific
parameters and symmetries of the model – hosts magnetic, orbital
as well as valence-bond orderings, or even more exotic quantum
spin-orbital liquid phases51–53. With this, our work adds an
interesting type of lattice model – the highly asymmetric px–py
Hubbard model – to the growing list of systems that can effec-
tively be engineered using the twist angle between multiple layers.
This is particularly intriguing as we maintain the full advantages
that come with two-dimensional van der Waals materials, such as
relative simplicity of the chemical composition and controllability
of the material properties; e.g. of the filling (by a back gate),
electric tunability (by displacement fields) or the bandwidth of the
model (by the twist angle).

Results
Ab initio characterization of twisted MoS2. We first characterize
the low-energy electronic properties of twisted bilayer MoS2 using
density functional theory (DFT) calculations (see Methods). DFT
in particular has established itself as a reliable tool to provide
theoretical guidance and to predict the band structure of many
twisted bi- and multilayer materials8,13,15. However, such a first-
principles characterization becomes numerically very demanding
as the twist angle Θ approaches small values and the unit cell
becomes very large entailing many atoms (of the order of a few
thousands and more). Nevertheless, it is that limit in which
strong band-narrowing effects and as a consequence prominent
effects of correlations are expected. The results of such a char-
acterization are summarized in Fig. 1. Note that atomic relaxation
has been shown to affect the electronic properties of twisted 2D
materials12,35,54. While for twisted bilayer graphene this effect is
only significant at twist angles smaller than 1 degree54, it
noticeably alters the low-energy band dispersions and charges
density localization for twisted transition metal dichalcogenides
bilayer (such as MoS2) even with relatively large twist angles
above 1 degree12,35. Therefore, we relax all the systems in our
DFT calculations. Panel (a) shows the relaxed atomic structure of
two sheets of MoS2 in real space, twisted with respect to each
other. A moiré interference pattern forms at a small twist angle
yielding a large unit cell, within which we identify different local
patterns of stacking of the two sheets of MoS2, indicated via areas
framed by cyan, magenta or purple dashed lines. The local
stacking arrangements of the respective areas are given in the
right sub-panels of the panel (a). Note that the BMo/S and the
BS/Mo regions are equivalent as they are related by C2 symmetry.
These equivalent BMo/S/BMo/S regions form a hexagonal network.
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In panel (b) we show the ab initio band structure of the twisted
material after relaxation, where we find two families of bands that
will become increasingly flat and start to detach from all other
bands, as the twist angle is lowered. We mark these bands by blue
and red color in panel (b), which shows results for decreasing
angles from Θ= 3.16∘–2.28∘. The bandwidth of these two ener-
getically separated groups of bands is summarized in panel (c) of
Fig. 1. We find that the bandwidth of these two bands shrinks
drastically as the angle is decreased, yielding bandwidths of the
order of 10 meV as the angle approaches Θ ≈ 2°. Similar features
are also shown in the work of Naik et al.35. The bandwidth and
the shape of the flat bands (in particular for the second set) in our
calculations are slightly quantitatively different from the previous
work probably because we relax the structure directly with DFT
while the authors of ref. 35 use a force-field approach. Note that
these flat bands near the top of the valence bands originate from
the states around the Γ point in the Brillouin zone of the primitive
unit cell of untwisted MoS2, with both S pz and Mo dz2 characters
(see Supplementary Fig. 2 for a DFT characterization of the
orbital contribution to the different bands). This is different to the
case of twisted WSe2, where the top valence flat bands originate
from the states around the K point in the Brillouin zone of the
primitive unit cell (dominated by W dx2�y2 and dxy orbitals),
which experience different interlayer moiré potentials compared
with those of the Γ-point flat bands discussed here leading to an
effective triangular lattice Hubbard model13. Since also in other
TMDs, such as MoSe2 and WS2, the top of the valence band in
the untwisted bilayer is also located at the Γ point in the Brillouin
zone55,56, the physics we discussed here transfers also to those
materials being twisted.

The upper bands in Fig. 1 (marked in blue) show a Dirac cone
at the K point and behave very similar to the bands found for
monolayer graphene (with the exception of a reduced

bandwidth). They are spin degenerate in nature, but feature no
additional degeneracy except at certain high symmetry points.
Instead, the next set of bands (marked in red) is essential to our
work. They too feature a Dirac cone at the K point, but also
feature two additional ultra-flat bands at the top and bottom in
addition to a band structure similar to graphene. The ratio
between the width of the ultra-flat and the flat bands decreases as
the angle is decreased, but saturates in our calculations as a twist
angle of Θ ≈ 2.28° is approached. We attribute this saturation to
lattice relaxation effects; note however that the overall bandwidth
keeps decreasing. To access this second set of bands we need to
empty the bands marked in blue first. The effects of this doping
are of minor quantitative nature (see Supplementary Fig. 5).

Remarkably, this second family of flat bands is well-described
by an effective px–py tight-binding model on a honeycomb lattice,
depicted schematically in Fig. 2a, and conveniently described by
the following Hamiltonian:

H0 ¼ ∑
hi;ji;s

ðtσcyi;s � nk
ijn

k
ij � cj;s � tπc

y
i;s � n?

ij n
?
ij � cj;sÞ

þ ∑
hhi;jii;s

ðtNσ cyi;s � nk
ijn

k
ij � cj;s � tNπ c

y
i;s � n?ij n?

ij � cj;sÞ;
ð1Þ

where ci;s ¼ ðci;x;s; ci;y;sÞT with ci,x(y),s annihilating an electron with
px(y)-orbital at site i and with spin s= ↑, ↓. i; j

� �
( i; j
� �� �

) denotes
(next) nearest neighbors. For each sum in Eq. (1), the first term
describes the σ hopping (head to tail) between the p-orbitals and
the second term denotes the π hopping (shoulder to shoulder).
Furthermore, nk

ij ¼ ðri � rjÞ=jri � rjj, with ri being the position of

site i and n?
ij ¼ Unk

ij with U being the two-dimensional 90 degree

rotation matrix U ¼ 0 �1
1 0

� �
. Finally, tσ and tπ (tNσ and tNπ ) are

the nearest neighbor (next-nearest neighbor) hopping amplitudes

Fig. 1 Atomic and electronic structures of twisted bilayer MoS2. a Atomic structure of tbMoS2 at Θ= 3.15°. Local atomic arrangements of the three
different regions in the moiré unit cell are indicated in the right panels. The Mo (S) atoms are indicated with purple (yellow) balls. b Evolution of low-energy
band structures at the top of the valence bands of tbMoS2 with decreasing small twist angles. The first set and the second set of valence bands are
highlighted with blue and red lines, respectively. c Evolution of the bandwidth of the first set and the second set of valence bands with decreasing twist
angles. Inset: twist angle dependence of the ratio of the hopping amplitudes tπ and tσ in the px–py honeycomb lattice.
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for the σ-bonding term and π-bonding term, respectively.
Figure 2b, c depict the corresponding dispersions, density of
states, and wave functions in comparison to model predictions,
illustrating that the four moiré bands at low energies are well
captured by Eq. (1) upon the choice of hopping parameters
tπ= 0.25tσ, tNσ ¼ 0:07tσ and tNπ ¼ �0:04tσ . The density of states
exhibits a characteristic four van Hove singularities structure, with
two originating from the Dirac bands and two stemming from the
additional two ultra-flat bands. The small ratio between the
nearest neighbor hopping amplitudes tπ/tσ determines the residual
small dispersion in the ultra-flat bands we report. This ratio is
controllable by the twist angle, which is summarized in the inset of
Fig. 1c. All these parameters are related to the interlayer moiré
potential and are thus expected to be also affected and controllable
by the uniaxial pressure perpendicular to the layers as demon-
strated for twisted bilayer graphene4.

The flat band wavefunctions consist of atomic wavefunctions
from the pz orbital on S atoms and the dz2 orbital on Mo atoms.
Modulated by the moiré potential, the weighting of the atomic
wavefunctions and their modulus square (i.e., charge density)
vary at different atomic sites across the whole supercell, showing
distinct patterns for different flat band states at the K point in the
supercell Brillouin zone as shown in Panel (c) of Fig. 2. These
patterns of the charge density as well as the real and the
imaginary part of the total wavefunctions obtained from DFT
show features consistent with those of the px–py Hamiltonian of
Eq. (1). Note, that we call this the px-py Hamiltonian to connect
to established literature on the subject; whereas the actual moiré
wave functions are composed of pz and dz orbitals, they transform
like px, py orbitals according to the irreps of the reduced

symmetry group of the moiré supercell. Interestingly, the charge
density distribution of the top ultra-flat band state displays a
Kagome lattice structure. We have thus unambiguously estab-
lished twisted MoS2 to be a candidate system to realize a px–py
model on the honeycomb lattice with strongly asymmetric
hoppings tσ and tπ, giving rise to a new set of ultra-flat bands.

Correlations and magnetic properties. We now study the role of
electronic interactions. As the highly-anisotropic px-py orbital
structure constitutes the essential novelty of twisted bilayer MoS2,
we focus on quarter filling (one electron per sublattice in the Moié
unit cell) where orbital fluctuations can be expected to be crucial.
This filling fraction is straightforwardly accessible in the experi-
ment via back gating, and we defer a discussion of the half-filled
case to Supplementary Note 1. To proceed, we assume purely
local electronic interactions, which can be generically para-
meterized in terms of the Hubbard-Kanamori Hamiltonian:

HU ¼U∑
i;α
niα"niα# þ ðU � 2JÞ∑

i
nixniy þ J ∑

i;s;s0
cyixsc

y
iys0cixs0ciys

þ J ∑
i;α≠β

cyiα"c
y
iα#ciβ#ciβ"

ð2Þ
for two orbitals with rotational symmetry. More realistic mod-
elling should include long-range interactions. However, for our
choice of commensurate quarter filling, any longer-ranged com-
ponent of the Coulomb interaction at strong-coupling will serve
merely to renormalize the effective spin-orbital interactions of the
resulting Kugel-Khomskii model and we therefore concentrate on
purely local interactions for simplicity. Furthermore, our DFT

Fig. 2 px-py honeycomb model for twisted bilayer MoS2. a Illustration of the model: in a honeycomb lattice composed of sublattices A and B, there are two
orthogonal orbitals (px and py) at each of the two sublattice sites. The solid and the dashed lines denote the py and the px orbitals, respectively, and the red
and the blue color denotes the positive and the negative side of the orbital, respectively. b Fitting the dispersion of the px-py model to the second set of
valence bands of tbMoS2 calculated with DFT for tbMoS2 at 2.65°. The left panel shows the corresponding density of states displaying the signature four-
peak structure. c Charge density, real and imaginary parts of the wave function calculated with DFT for the states in the two quasi-flat bands 1 and 4 shown
in (b). The isosurface of the charge density is colored yellow. The positive and the negative parts of the isosurfaces of the wave function are colored in pink
and purple, respectively. The solutions of the corresponding states from the px–py model are indicated with the blue and red ovals and agree with the DFT
results.
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calculations suggest tπ ≈ 0.25tσ and only weak next-nearest
neighbor hopping at small twist angles; we therefore neglect
next-nearest neighbor hopping in the analysis below (see Sup-
plementary Fig. 4 for a comparison of the band structures with
and without next-nearest neighbor hopping). An ab initio based
characterization of the values of U and J requires numerically
expansive Wannierzation of the wave functions and is unfortu-
nately beyond the scope of this work. However, by substrate
engineering22 it is likely that a whole range of values can be
accessed and therefore it is useful to vary these parameters to
explore all possible phases accessible in experiments to make
concrete predictions. Vice versa given a future experimental
observation our results can be used to estimate the strength of
correlations.

Figure 3c depicts the local density of states as a function of
Hubbard U and Hund’s exchange J interactions, calculated via an
exact diagonalization study of Eqs. (1) and (2) for a cluster
depicted schematically in (a). Clear evidence of a charge gap
beyond U/tσ ~ 4 at small J signifies the onset of a correlated
insulator which could be directly observed via transport and
scanning tunnelling microscopy. The behavior of the gap is
depicted in Fig. 3b as a function of U, J and signifies that charge
fluctuations are strongly suppressed for large U. Establishing the
existence of a charge gap motivates to set up a strong-coupling
Hamiltonian routinely employed for the types of systems under
scrutiny here.

In this regime, a natural follow-up questions concerns possible
orderings of the orbital and magnetic degrees of freedom. The
corresponding strong-coupling Kugel-Khomskii Hamiltonian57–59

for the px-py model at quarter filling is given in refs. 51–53 and

reads:

H ¼ ∑
hiji

1
U � 3J

ξ1ij tσ tπ �Qij � ðt2σ þ t2πÞðPxy
ij þ Pyx

ij Þ
h i

� 1
U þ J

ξ0ij tσ tπQij þ 2t2σP
xx
ij þ 2t2πP

yy
ij

h i

þ 1
U � J

ξ0ij tσ tπðQij � �QijÞ � 2t2σP
xx
ij � 2t2πP

yy
ij � ðt2σ þ t2πÞðPxy

ij þ Pyx
ij Þ

h i
:

ð3Þ
Here, ξ1ij ¼ 3=4þ SiSj denotes the projector onto triplet states,

whereas ξ0ij ¼ 1=4� SiSj selects the singlet spin states instead.
Note that the orbital operators, for example Qij, are bond
dependent, giving rise to a strong spatial anisotropy of the
resulting spin-orbit model. To be more precise following ref. 52,
the operators Qij and �Qij describe processes where orbital
occupations of sites i and j are reversed, that is they are defined
as Qij ¼ ðτþi τþj þ τ�i τ

�
j Þ=2 and �Qij ¼ ðτþi τ�j þ τ�i τ

þ
j Þ=2, with

τ ±
i ¼ n?

ij τi ± iτ
y
i where τi ¼ ðτzi ; τxi ; τyi Þ

T
. The orbital projection

operators can then be expressed as Pxx
ij ¼ ð1þ nk

ijτiÞð1þ nk
ijτjÞ=4,

Pyy
ij ¼ ð1� nk

ijτiÞð1� nkijτjÞ=4, Pxy
ij ¼ ð1þ nk

ijτiÞð1� nk
ijτjÞ=4 and

Pyx
ij ¼ ð1� nk

ijτiÞð1þ nk
ijτjÞ=4, where e.g. Pxx

ij selects states where

the superposition ðpxex þ pyeyÞnk
ij is occupied on nearest neighbor

sites i and j connected by the bond nk
ij.

To study its ground state phase diagram using the ab initio
parameters found in the previous section, we employ a mean-field
analysis of competing for orbital orderings with ferromagnetic
and antiferromagnetic spin order. Note, that the simplifying

Fig. 3 Charge gap and correlations for twisted bilayer MoS2 at vanishing temperature. a depicts the 16-orbital cluster geometry employed for exact
diagonalization of the Hubbard-Kanamori Hamiltonian. b depicts the charge gap as a function of Hubbard U and Hund’s exchange J interactions, calculated
for the 16-orbital cluster and extracted from (c) the local density of states, which is readily accessible via scanning tunnelling microscopy. A well-defined
charge gap develops beyond U/tσ ~ 4 at small J that scales linearly with the Hubbard interaction U. Vertical gray dotted lines indicate phase transitions to
charge-ordered states at large J/U, coinciding with a closing of the charge gap.
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assumption of vanishing temperature – a standard one in
condensed matter research – still allows to draw conclusions
for the low-temperature physics accessible in experiments as
fingerprints of the phases we discuss extend into this regime as
well. To this end, we note that on the bipartite honeycomb lattice
the SU(2) invariant spin sector would, on its own, order either
ferro- or antiferromagnetically, depending on the sign of the
exchange couplings. As an Ansatz, we therefore assume that one
of the respective states is stabilized and decouple the spin from
the orbital degrees of freedom by replacing SiSj with its
expectation value 〈SiSj〉= ±1/4 such that ξ1ij ¼ 1; ξ0ij ¼ 0 for

ferromagnetic spin order and ξ1ij ¼ ξ0ij ¼ 1=2 for Neél order.
After such a mean-field decoupling corresponding to the

ground state in the spin sector, we analyze the ground states of
the resulting Hamiltonian for the orbital degrees of freedom,
which we approximate as classical vectors. We use an iterative
energy minimization combined with simulated annealing techni-
ques (see Methods) to converge the mean-field equations and find
the phase diagram summarized in Fig. 4. Panel (a) shows the
energy of ferromagnetic and antiferromagnetic spin configura-
tions from which the magnetic phase diagram can be read off.
This is given in the upper part of the plot and we find
antiferromagnetic ordering with an intermittent ferromagnetic
phase at intermediate ratios of 0.1 < J/U < 1/3. In the lower part of
the plot, we show the corresponding subsidiary orbital order.
From our simulations, we identify three different configurations
of orbital vectors τ, which can be classified according to their
projection on a single definite plane in space, shown in the lower
left of the plots: (1) ferro-orbital (FO) nematic order5,6,60–62,
where the vectors on all lattice sites align in parallel to the xz-

plane. Quantum mechanically, finite values of hτx=zi i indicate an
imbalance of the occupation of px and py orbitals, breaking

rotation symmetry and thereby motivating the notion of a
nematic state. (2) AFO nematic order; each vector is aligned anti-

parallel with its nearest neighbors corresponding to hτx=zi i≠ 0 on
each sublattice, but without finite projections τyi on individual
sites. (3) FO magnetic order; all vectors order along the y-axis,
such that hτyi i≠ 0, which, in the quantum mechanical system,
would indicate time-reversal symmetry breaking. The inclusion of
quantum fluctuations can change this picture and more exotic
ground states may emerge. For example, for our ab initio band
structure parameters, a noncollinear spin dimer phase is
predicted in a certain range of interaction couplings and even a
quantum spin-orbital liquid is found in its proximity53. Since
these exotic phases primarily occur for weak Hund’s coupling and
strong orbital anisotropies, the assumptions made for our
calculations can therefore be justified for sizable JH and modest
distances to the isotropic tσ= tπ point.

Discussion
We have established that twisted bilayer MoS2 is a promising
platform to realize the orbital anisotropic px–py Hubbard model
by employing large-scale ab initio calculations. We find that
families of flat bands emerge where the first family of flat bands
shows s-orbital character and the second family is an intriguing
realization of a strongly asymmetric px–py Hubbard model both
on a honeycomb lattice, adding a lattice with nontrivial almost
perfectly-flat bands due to destructive interference to the growing
list of systems that can be engineered in twisted heterostructures.
The symmetry of these flat bands is inherited from the hexagonal
lattice formed by the equivalent BMo/S and BS/Mo regions. At an
even smaller angle, the sequence in the family of flat bands found
with respect to their orbital character continues. Our analysis
shows that the low-energy DFT band structures in this system can

Fig. 4 Magnetic phase diagram for twisted bilayer MoS2. a Classical ground state energy per orbital in units of Δ ¼ t2σ=U, assuming ferro- (blue) or
antiferromagnetic (red) order for the spin degrees of freedom. We take the ab initio parameters, tπ= 0.25tσ and use an iterative energy minimization. The
lower panel determines the phase boundaries for the orbital degrees of freedom given the energetically more favorable spin order shown in the top panel.
At J/U= 0.1 we find the spin order to change from AFM to FM, with AFO nematic order for the orbital degrees of freedom remaining stable in agreement
with ref. 53. b Configurations of orbital vectors are found at the end of iterative minimization. Note that we display the projection of τ to the plane in R3

(indicated by the axis shown in the bottom left), such that nematic states with finite contributions only in xz direction ((1) & (2)) can be distinguished from
magnetic states (3) which point perpendicular, i.e along the y-axis.
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be well captured by a free electron gas model modulated by a
simple harmonic potential that has hexagonal (D6) symmetry,
which is consistent with a recent study63. This simple model
further shows that the next family would exhibit a d-orbital
character on the honeycomb lattice. Such a lattice would effec-
tively realize a multi-orbital generalization of a Kagome lattice – a
prototypical model for quantum spin liquids. However, at such
small angles strong relaxation is likely to become dominant,
prohibiting access to this regime and potentially spoiling its
experimental realization. Currently, the ab initio characterization
of such small angles is numerically too exhaustive and this work
sparks a direct need for novel computational methods to tackle
this question.

Furthermore, our combined exact diagonalization and strong-
coupling expansion approaches classify the magnetic and orbital
phase diagrams, however, the inclusion of quantum fluctuations
stipulates an intriguing avenue of future theoretical research.

Indeed, previous theoretical works provide some evidence for a
quantum spin liquid in the SU(4)-symmetric Kugel-Khomskii
model on the honeycomb lattice64, the square lattice as a related
system without frustration65 and studied the role of perturbations
that break SU(4) symmetry and isotropy53 In twisted MoS2, this
regime would in fact map to larger twist angles, where the ani-
sotropy of the px-py model is less pronounced, as well as to a
regime of vanishing Hund’s coupling, placing such a putative
quantum spin liquid at the transition between FO nematic and
AFO nematic phases.

In addition, by proximity or variations in the chemical com-
position of the twisted bilayer, it might be possible to induce spin-
orbit coupling splitting of the ultra-flat bands at the top and
bottom of the asymmetric px–py dispersion. Such a bandgap
opening would induce interesting topological properties66 in a
highly tunable materials setting.

Methods
Details on ab initio calculations. We calculate the electronic properties of twisted
bilayer MoS2 with ab initio methods based on density functional theory (DFT) as
implemented in the Vienna ab initio Simulation Package (VASP)67. We employ
plane-wave basis sets with an energy cutoff of 550 eV and pseudopotentials as
constructed with the projector augmented wave (PAW) method68. The exchange-
correlation functionals are treated at the generalized gradient approximations
(GGA) level69. The supercell lattice constants are chosen such that they correspond
to 3.161Å for the 1 × 1 primitive cell of MoS2. Vacuum spacing larger than 15Å is
introduced to avoid artificial interaction between the periodic images along the
z-direction. Because of the large supercells, a 1 × 1 × 1 k-grid is employed for the
ground state and the relaxation calculations. For all the calculations, all the atoms
are relaxed until the force on each atom is less than 0.01 eV/Å. Van der Waals
corrections are considered with the method of Tkatchenko and Scheffler70. We
extract the real and the imaginary parts of the DFT wavefunctions with the
VASPKIT code71.

Details on exact diagonalization. Exact diagonalization calculations were per-
formed for the electronic tight-binding model in Eq. (1) with Hubbard-Kanamori
interactions defined in Eq. (2). All calculations were performed for a two-orbital
eight-site cluster with periodic boundary conditions at quarter filling, corre-
sponding to eight spin-1/2 particles in sixteen orbitals. Rotationally symmetric
Kanamori interactions are adopted, with U 0 ¼ U � 2J . As the magnitudes of the
Hubbard U and Hund’s exchange J interactions cannot be reliably predicted for a
Moié supercell from first principles, all presented results are shown as a function of
U, J. Calculations of the single-particle Green’s functions and local density of states
are performed starting from the ground state in the total momentum Ktot= 0 and
total spin Sz= 0 sectors, using the Lanczos method and continued-fraction
representation, and a spectral broadening (imaginary part of the self-energy) of
η= 0.1 is imposed.

Details on minimization procedure for classical Hamiltonian. Metropolis Monte
Carlo simulations are a prime tool for the investigation of classical spin models,
since they allow for off-diagonal, spatially anisotropic spin couplings to be inclu-
ded, even when one-spin terms, such as magnetic fields, are involved. Here we
employ a special variant of the algorithm to the mean-field version of (3), keeping
in mind that the ‘spins’ used in the simulation are approximations to orbital
operators τ. First, a lattice site i is randomly chosen, and its respective gradient field

hi=∇iH is computed for the current spin configuration {τi}. Second, a random
orientation τ0i for the vector at site i is proposed and the weight

g ¼ min e�βðτ0i�τiÞhi ; 1
� �

; ð4Þ
is computed for an effective inverse temperature β. Performing several Metropolis
updates with increasing values of β we are able to efficiently lower the energy of a
random initial configuration, minimizing the odds to converge to a local minimum
by only allowing optimal updates (i.e. τi=−hi) right from the start. After Na

sweeps over the full lattice, the so-obtained configuration is ameliorated by No

optimization sweeps, where the randomly selected spin is rotated anti-parallel to
the local gradient field such that the energy is deterministically lowered in every
step and we converge as close to the global energy minimum as possible. Hence,
this algorithm is reminiscent of Monte Carlo simulations with simulated annealing,
but at zero temperature where thermal fluctuations are frozen out.

To benchmark our implementation we have carried out the minimization
procedure in the isotropic limit tσ= tπ for Na=No= 105, where the optimization
sweeps are terminated when the energy change after one sweep, ϵ, becomes small
(usually ϵ ≤ 10−10). Mapping out the phase diagram for both the FM, 〈SiSj〉= 1/4,
as well as the AFM, 〈SiSj〉=−1/4, spin sector on a lattice with N= 1250 spins
subject to periodic boundary conditions we find the result in Fig. 5, which is
consistent with the one presented in ref. 52. For J < 0 the AFM spin sector has lower

energy, with the orbitals forming a ferro-orbital (FO) nematic state where hτx=zi i≠ 0
and hτyi i ¼ 0. For J > 0 one finds the FM spin sector (for which the orbital degrees
of freedom restore their rotation invariance) to dominate as long as J < 1/3, where

the AFM sector takes over again and establishes a FO magnetic state, i.e. hτx=zi i ¼ 0
and hτyi i≠ 0.

Data availability
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from the corresponding authors on reasonable request.
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Cavity-induced quantum spin liquids
Alessio Chiocchetta 1✉, Dominik Kiese1, Carl Philipp Zelle1, Francesco Piazza2 & Sebastian Diehl1

Quantum spin liquids provide paradigmatic examples of highly entangled quantum states of

matter. Frustration is the key mechanism to favor spin liquids over more conventional

magnetically ordered states. Here we propose to engineer frustration by exploiting the

coupling of quantum magnets to the quantized light of an optical cavity. The interplay

between the quantum fluctuations of the electro-magnetic field and the strongly correlated

electrons results in a tunable long-range interaction between localized spins. This cavity-

induced frustration robustly stabilizes spin liquid states, which occupy an extensive region in

the phase diagram spanned by the range and strength of the tailored interaction. This occurs

even in originally unfrustrated systems, as we showcase for the Heisenberg model on the

square lattice.
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Quantum spin liquids (QSLs) represent strongly correlated
phases of matter, which are characterized by quantum
fluctuations so dominant as to suppress magnetic

ordering down to the lowest temperatures. Yet, the spins may be
quantum mechanically entangled over long distances1–3. In
Nature, QSLs are expected to occur in proximity to magnetic
phases, but their existence often remains elusive. The key ingre-
dient behind quantum spin liquid formation is, however, clearly
identified: it is the presence of strong frustration, which disallows
magnetic symmetry breaking, but need not be averse to, e.g.,
quantum mechanical singlet ordering. The routes towards frus-
tration are manifold: one promising avenue is the focus on
materials where magnetic ordering is penalized by the geometry
of the lattice, such as for triangular, Kagomé or pyrochlore
lattices4–7. Another one proceeds via the energetic competition of
couplings of different ranges, like in the antiferromagnetic (AFM)
J1–J2 Heisenberg model or dipolar-interacting systems8–10, where
the simultaneous appearance of nearest- and beyond-nearest-
neighbour couplings counteracts global antiferromagnetism.

The challenge is then out to engineer robust QSL states of
quantum condensed matter. Here, we will achieve this task by
coupling an ordinary Heisenberg antiferromagnet on a square
lattice to the electromagnetic field of an optical cavity.

The physical mechanism stabilizing the QSL takes the second
route towards strong frustration to the extreme, by considering
long-range AFM interactions described by an algebraically
decaying spin–spin interaction ~r−α including the case of all-to-
all couplings α= 0, mediated by the cavity, cf. Fig. 1a. For the
limiting case α= 0 and a cavity-induced interaction γ dominating
over the nearest-neighbour Heisenberg coupling J, J/γ= 0, this
realizes a state with long-range correlations mediated by singlets
of arbitrarily large size (LRS). Away from this limit, and for decay
exponents α≲ 1, within a Schwinger–Boson approach, we find
that the frustration imprinted by the cavity creates an extensive
regime of QSL states. It is characterized by the absence of
spontaneous symmetry breaking, and fractional excitations of
both of a gapped (SL-I) and of gapless (SL-II) nature, cf. Fig. 1b.
As a consequence of the underlying long-ranged interactions,
correlations decay algebraically in both these phases.

In terms of physical implementation, we draw motivation from
recent developments exploring the interplay of quantum mate-
rials with quantized light. This idea has been researched in the
context of weakly correlated systems, mainly as a tool to reinforce
superconductivity and other coherent many-body phases11–20.
First works have also addressed the strong coupling regime,
showing how existing phases can be manipulated in this

way12,21,22. Here, we demonstrate that the coupling to a cavity
can even induce phases that are not present in its absence: an
unfrustrated AFM system is turned into a quantum spin liquid,
provided the AFM interaction mediated by the cavity is suffi-
ciently long-ranged and strong. To achieve these requirements,
we develop a solid-state implementation harnessing localized
electronic orbitals as effective spin degrees of freedom, coupled to
the cavity modes via additional coherent laser drive, cf. Fig. 1a.
This gives rise to quantum mechanically fluctuating, effective
magnetic fields in all linearly independent spatial directions,
which vanish on average. They thus counteract dynamically
magnetization in any direction, but do not suppress the spin-
singlet ordering, crucial for QSL states.

Results
Model. We consider a long-range SU(2)-symmetric Heisenberg
model on a square lattice

H ¼ J ∑
hi;ji

Si � Sj þ γ∑
i≠j

Si � Sj
jrijjα

; ð1Þ

with Si ¼ ðSxi ; Syi ; Szi Þ spin-1/2 operators on the lattice site i, J > 0
the nearest-neighbour AFM exchange, γ > 0 the strength of the
long-range interaction modulated by the exponent α and rij≡
ri− rj. Periodic boundary conditions are assumed. Before ana-
lysing the ground-state phase diagram of the Hamiltonian (1), let
us qualitatively discuss the expected phases, starting with some
known limiting cases. For γ= 0, the ground state of the Hamil-
tonian (1) displays Néel-like order23. For α= 0 and γ≫ J, the
long-range Hamiltonian is proportional to the total spin ð∑iSiÞ2:
this imposes a constraint on this singlet manifold, energetically
penalizing states with a finite value of the total spin S, including
states with finite magnetization. As a result, the ground state of
the total Hamiltonian is given by the ground state of the short-
range Hamiltonian projected on the singlet manifold. This is
similar to the analysis in ref. 24, where resonating valence bond
(RVB) states with singlets of arbitrarily large size were used as
variational wavefunctions. We will denote this state as a long-
range singlet state (LRS). Finally, for J= 0, different scenarios are
possible: for α large enough, only nearest-neighbouring sites
experience an appreciable interaction, and therefore Néel-like
order is expected. For smaller values of α, the frustrating nature of
the interaction is expected to penalize AFM order, thus favoring
disordered phases. This was shown to be the case for α= 3 on the
triangular lattice8, and on the square lattice9 (although only for

Fig. 1 Implementation of a cavity-induced quantum spin liquid and phase diagram. a Setup: a two-dimensional material, with nearest-neighbour
exchange interaction J, is coupled to a cavity with fundamental frequencies ω⊥,∥, whose field is represented by the light-blue arrows. The system is driven
by an external laser with frequency ωL. b Level scheme: the electronic orbitals jb1;2i, with energies ~ϵ1,2 are coupled to the auxiliary band b3

�� �
, with energy

~ϵ3 via the laser with Rabi frequency ΩL and the cavity modes a⊥,∥. The third band is detuned from the laser by Δ3, and from the cavity modes by Δ⊥,∥. c
Phase diagram for the ground state of Hamiltonian (1), obtained from the bosonic spinon decomposition, as a function of the exponent α and of the
coupling ratio γ/J, featuring spin-liquid (SL), long-range-single (LRS) and antiferromagnetic (AFM) phases. Error bars on the phase boundaries are within
the symbols’ size. The inset shows the square lattice and the reciprocal one, with the respective primitive vectors.
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spatially anisotropic interactions in the latter case), where a QSL
phase was found.

Summarizing, by varying γ/J and α, we expect three kinds of
phases: (i) Néel-like AFM, (ii) a disordered QSL phase, and (iii)
an LRS phase. This is substantiated below using a
Schwinger–Boson approach, which is capable of capturing all
the phases mentioned above. In particular, it provides a natural
interpolation scheme between the well-understood RVB and Néel
physics discussed above.

In order to unveil the nature of the ground state of the
Hamiltonian (1), we apply the bosonic spinon decomposition
pioneered in refs. 25–27, where the spin operators are represented
in terms of new bosonic degrees of freedom, ultimately
interpreted as emergent fractional excitations. While this method
represents an approximation25,26, it still provides useful informa-
tion to identify candidate spin liquids. Moreover, the main
advantage of this method is its flexibility to interpolate between
the different states previously identified. On the one hand, SU(2)-
symmetric bosonic ground states are identified with candidate
spin liquids. On the other hand, the onset of magnetic order is
signalled by the Bose–Einstein condensation of these bosons.

The spin operators on the lattice site j are decomposed as
(using sum convention for the Greek indices)

Sj ¼
1
2
byj;μσμνbj;ν; ð2Þ

where bj,μ is a boson (spinon) with spin μ∈ {↑, ↓}, and σ the
vector of Pauli matrices. The mapping is then completed by the
constraint byjμbjμ ¼ 1. Insights on the nature of the state are then
obtained from the expectation values of the SU(2)-invariant
bilinears Aij ¼ iσyμνhbiμbjνi=2; and Bij ¼ hbyiμbjμi=2, which indi-
cate the tendency of the spins at the sites i and j of forming a
singlet or to align, respectively. For SU(2)-symmetric states, finite
values of Aij and Bij determine a finite spinon hopping between
the lattice sites i and j, thus signalling the emergence of
propagating fractional excitations.

After performing a mean-field decoupling of the spinonic
Hamiltonian (see ‘Methods’ for further details), the values of Aij

and Bij are self-consistently determined by minimizing the
ground-state energy. This task is enabled in practice by using an
Ansatz for the values of Aij and Bij. The most natural choice is
the manifestly translational-invariant Ansatz Aij ¼ Ai�j,
Bij ¼ Bi�j, which follows from a projective-symmetry-group
analysis28. The resulting saddle-point equations, reported in Eq.
(9a, b, c), are reduced to a system of 2N+ 1 coupled non-linear
equations, for finite-size systems with N= L × L lattice sites. The
numerical complexity of the problem still limits the size N of the
systems for which a solution can be found.

For finite-size systems, a spontaneous symmetry breaking
cannot occur, and therefore the AFM order parameter always
vanishes. Accordingly, other criteria are needed to assess the onset
of an ordered phase. Here, we identify the onset of an AF-ordered
phase when the two following conditions are met: (i) the gap
Eg � minq Eq in the spinon dispersion closes upon increasing the
system size N and (ii) the squared magnetizationM2≡∑j∣Sj ⋅ S0∣/N
approaches a constant value upon increasing N. Notice that these
two indicators also naturally lend themselves to characterize the
other phases outlined before: a phase with M2= 0 corresponds to
either a gapped (Eg ≠ 0) or a gapless Eg= 0 QSL, while a phase with
M2 ≠ 0 and Eg ≠ 0 can be naturally identified with an LRS state.
These criteria are summarized in Table 1.

Let us finally discuss the phase diagram in Fig. 1c. The first,
main result, is the emergence of a gapped QSL phase (denoted as
SL-I) for α≲ 1.25, and γ≳ 5J, characterized by the presence of a

gap and by the absence of long-range correlations. This phase
appears for any α > 0.05, corresponding to the minimum value
here considered, suggesting that the LRS phase is unstable in this
region and only exists for α= 0. In addition, our data also show
the existence of a gapless QSL phase (denoted SL-II) for
intermediate values of α, clearly manifested in the largest
available system sizes, as shown in Fig. 2a, b.

For γ≲ 5J, the LRS phase is remarkably stable for α≲ 1.25.
Here, the system is simultaneously gapped and characterized by
long-range correlations (cf. Table 1), which, however, do not
correspond to a spontaneous symmetry breaking. Finally, we
observe that, as expected, for large values of α, as well as for γ= 0,
the system is always in the ordinary Néel–AFM phase.

An example of extrapolated values of M2 and Eg used to build
the phase diagram in Fig. 1c is shown in Fig. 2d, as a function of α
for γ= 7J. The fitting function used to extrapolate the L→∞
limit of these observables has the form OL ¼ O1 þ bOL

�ωO , with
O1, bO and ωO fitting parameters. The slightly negative
extrapolated values of M2 and Eg are due to the simplified form
of the extrapolation function above, which neglects subleading
terms in 1/L (cf. ref. 29). This fitting function was identified by a

preliminary evaluation of the quantity ξOðLÞ ¼ 1=ln OL�4�OL�2
OL�2�OL

� �
,

which displays a linear behaviour in L for algebraic finite-size
scaling, while it saturates for an exponential one30. The algebraic
finite-size scaling occurring also for gapped phases is imprinted
by the algebraic character of the interactions31. For the same
reason, the spin–spin correlation functions in the QSL phases also
display an algebraically decaying behaviour, rather than the usual
short-range one, with an exponent depending continuously on
the interaction’s exponent α (cf. Fig. 2e). Algebraic correlations
were similarly found for gapped, disordered phases in spin chains
with long-range interactions32–34, further substantiating the
generality of this mechanism.

Besides gap and long-range order, we provide a further
observable to characterize the phases here identified, i.e., the
dynamical structure factor SqðωÞ ¼

R
te
iωthS�qðtÞ � Sqð0Þi, with Sq

the Fourier transform of the spin operators with momentum q.
Sq(ω), which can be straightforwardly computed from the spinon
decomposition35, leads to markedly different features depending
on the phase. For the SL-I and SL-II phases (Fig. 3a, b,
respectively), the DSF features a broadening originated in the
continuum of fractional excitations. On the contrary, the AFM
phase (Fig. 3c) shows a sharper signal close to the gapless quasi-
particle dispersion, corresponding to the magnonic dispersion
expected in the AFM phase. We emphasize that the presence of a
gap in the DSF for the SL-II phase is a finite-size effect, and it is
expected to close in the thermodynamic limit. Finally, the LRS
phase (Fig. 3d) features a broadening similar to the SL-I phase,
suggesting the presence of fractionalized excitations.

A final word of caution concerns the accuracy of the bosonic
spinon decomposition used here. As a mean-field theory, it
provides a qualitatively correct topology of the phase diagram,
while the phase borders cannot be expected to be quantitatively
accurate.

Table 1 Ground-state phases.

SL-I SL-II LRS AFM

Gap Yes No Yes No
LRO No No Yes Yes

The summary of the four phases identified in this work was according to the criteria discussed in
the main text.
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Implementation. The Hamiltonian Eq. (1) (or variations of it)
can be realized in quantum simulators using trapped ions or
ultracold atoms8,36,37. While these platforms provide unprece-
dented controllability, the realization of low-temperature strongly
correlated phases remains challenging. On the converse, solid-
state platforms naturally feature strongly correlated physics at
cryogenically accessible temperatures. Moreover, the controll-
ability in 2D materials is progressing fast, making them, among
others, candidates for quantum simulators38. In the following, we

will focus on a scheme for implementing the Hamiltonian (1) in a
solid-state system.

Our proposal uses two electronic orbital degrees of freedom,
constituting a pseudospin of length S= 1/2. In the absence of a
cavity, the pseudospins are assumed to be described by a short-
range AFM Heisenberg model, emerging as a strong Mott limit of
a Hubbard model for the electronic degrees of freedom: this is the
case, e.g., of iridate and ruthenate materials39–41. We assume
SU(2) symmetry for the sake of simplicity.

Fig. 2 Numerical characterization of the ground state. a, b Dependence of the spinon gap (upper panel) and square magnetization (lower panel) on the
inverse linear system size. The curves refer to values of α and γ/J denoted in Fig. 1c by star symbols, according to the corresponding background colours.
The maximum linear size considered is L= 110. Insets: values of the functions ξEg ;M2 ðLÞ as functions of the linear system size L. c Spinon dispersion for
γ= 7J and α= 0.3 (SL-I phase), for given cuts in the first Brillouin zone. Inset: spinon dispersion in the first Brillouin zone. The white lines denote the cuts of
the main plot. d Extrapolated gap (blue curve) and square magnetization (red curve) as functions of the exponent α. The background colours reflect the
phases illustrated in Fig. 1c. e Spin–spin correlation functions along the lattice axis for different values of the exponent α and for γ= 7J. Inset: spin–spin
correlations at short distances.

Fig. 3 Dynamical structure factor. Sq(ω) as a function of the frequency ω and of the momentum q. Results are shown for: SL-I [panel a, γ= 9J, α= 0.3],
SL-II [panel b, γ= 9J, α= 0.6], AFM [panel c, γ= 5J, α= 1.0] and LRS [panel d, γ= 4.4J, α= 0.35].
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As substantiated further below, the coupling of the localized
electronic states to the cavity will result in a coupling between the
pseudospins and quantized effective magnetic fields. The setup we
consider is sketched in Fig. 1a. Two aspects of the long-range
Hamiltonian (1) are essential to unveil QSL phases: (i) an AFM
character of the induced interaction and (ii) a high degree of
symmetry, ideally SU(2). In order to control the symmetry of the
emerging cavity-mediated interaction, we propose to use two
cavity modes. While a single mode is sufficient to mediate a U(1)-
symmetric interaction, a second mode allows for an enhancement
to SU(2) symmetry. The required selectivity in the cavity–spin
coupling can be achieved via an auxiliary third band which is
driven far off-resonance by a laser [see Fig. 1b]. The resulting
two-photon transitions involve virtual excitations to the third
band and back to one of the two bands implementing the
pseudospin degree of freedom. The sign of the cavity-mediated
interaction is then finally determined by the detuning between the
laser and each cavity mode.

The paramagnetic and diamagnetic coupling terms between
electrons and electromagnetic field are given by:

Hint ¼
1
2m

Z
r
ψyðrÞ½2e p � Aðr; tÞ þ e2A2ðr; tÞ�ψðrÞ ; ð3Þ

with ψ the electronic operators, e the electronic charge and A(r, t)
the vector potential. A(r, t) includes the external laser with
frequency ωL and the cavity modes a⊥,∥ with frequencies ω⊥,∥. By
choosing the proper polarization for the cavity modes and the
laser, the scheme depicted in Fig. 1b can be realized: the laser and
the cavity mode a⊥ induces transitions between orbitals 1 and 3,
while the cavity mode a∥ couples only orbitals 2 and 3. As we
assume the electrons to be localized by the strong interaction
between particles, due to the strong localization, the field
operators can be conveniently expanded onto localized orbitals23:
ψ(r)=∑i,b= 1,2,3wib(r)cib, where wib(r)= wb(r− ri), with ri the
position of the centre of the unit cell. Here, the index i runs over
the lattice sites and b is the band index. The interaction
Hamiltonian (3) thus reads (see ‘Methods’ for further details)

Hint ¼ ∑
i

cyi3ci1ðρL31 þ a?ρ
?
31Þ þ cyi3ci2akρ

k
32 þ h.c.

h i
; ð4Þ

where we neglected counter-rotating terms and changed to the
frame rotating with the laser frequency, where ci3 ! ci3e

�iωLt ,
a‘ ! a‘e

�iωLt . Correspondingly, the third electron band and the
fundamental frequencies of the cavity modes ω‘ are shifted as
Δ3= ϵ3− ωL and Δ‘ = ω‘ − ωL. The matrix elements ρ‘bb0 ,
‘∈ {L,⊥, ∥} correspond to the transition rates between the bands
b and b0.

The effective cavity–spin coupling is then obtained by
eliminating the third band adiabatically, assuming the band
detuning ∣Δ3∣ to be much larger than the matrix elements ρ‘bb0 ,
‘∈ {L,⊥, ∥} and the cavity detunings Δ⊥,∥. The resulting
interaction Hamiltonian describes spins coupled to global,
quantum mechanically fluctuating effective magnetic fields:

Hint ¼ ∑
i
BxSxi þ BySyi þ BzSzi
� �

; ð5Þ

with Bz ¼ �ðρL13ρ?31a? þ h.c. Þ=Δ3, Bx ¼ �ðρL13ρk32ak þ h.c. Þ=Δ3

and By ¼ �ðiρL13ρk32ak þ h.c. Þ=Δ3, and Si ¼ cyibσbb0cib0=2 is the
pseudo-spin operator. The values of the effective fluctuating
effective magnetic fields Ba, a= x, y, z, reflect the laser-assisted
processes illustrated in Fig. 1. For instance, Bx and By, which
couple the first and second orbital, result from the laser-assisted
excitation of an electron from the first to the third auxiliary band,
followed by a decay to the second band with the emission of a
cavity photon. The U(1) symmetry of the Hamiltonian results
from neglecting the counter-rotating terms, and it is evident from

the fact that an excitation from the first to the second band is
accompanied only by the creation of a cavity photon, and vice
versa. Equation (5) is one of the main results of this paper: the
effective quantum magnetic fields Ba couple to all the spins,
generating an effective long-range coupling. To further con-
solidate this insight, we integrate out the cavity field at the level of
the Heisenberg equations and obtain an effective Hamiltonian for
the spins only42:

Hint ¼ ∑
ij

γzS
z
i S

z
j þ γ?ðSxi Sxj þ Syi S

y
j Þ

h i
; ð6Þ

with the long-range exchange γz ¼ jρL13ρ?13j2=ðΔ2
3Δ?Þ and

γ? ¼ jρL13ρk23j2=ðΔ2
3ΔkÞ. The interaction is thus naturally U(1)-

symmetric, and full SU(2) symmetry can be achieved by adjusting
the cavity-mode detunings. Importantly, by choosing the latter to
be positive (i.e. a blue-detuned laser), the cavity-mediated
interaction is AFM.

We now briefly show how multi-mode cavities can generate
spatially dependent effective spin–spin interactions. To this end,
we consider a cavity with a large number of modes. For
simplicity, we assume them to correspond to photons propagat-
ing as plane waves along the transverse direction with a

dispersion Δ‘;q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
‘ þ ðcqÞ2

q
� ωL, with c the speed of light

in the medium. The form of the Hamiltonian (5) is then
preserved, with the fluctuating magnetic fields now possessing a
spatial structure according to

Ba ¼ ∑
q
gaq aq eiq�rj þ h.c. ; ð7Þ

with gaq the momentum-dependent version of the coupling
reported below Eq. (5). By integrating out the cavity photons, one
obtains an effective Hamiltonian as in Eq. (6), where the effective
exchange interaction between the spins Sa and Sb is given by
Γabij ¼ ∑qg

a
qg

b
q e�iq�rij=Δ‘;q: While the precise form of Γabij

depends on the details of gaq, its spatial structure is expected to
be long-ranged. In fact, the length scale governing the spatial

behaviour is proportional to Δ�1=2
‘ : in THz cavities, the ratio

between the lattice size and this length scale is of order 10−4, see,
e.g., ref. 14, and, therefore Γabij , can be effectively modelled as a
slowly decaying function. For photonic crystal cavities, the form
of Γabij can be even further engineered by exploiting the band
dispersion of the cavity photons43. The precise form of this
function is not expected to qualitatively affect the phase diagram.
Accordingly, we choose to parametrize the interaction as
Γabij ’ jri � rjj�α, with the value of α compactly encoding the
interaction range. The values of α achievable with realistic cavity
parameters are of order 10−1, and therefore favourable to observe
the SL phases (see ‘Methods’ for further details).

We finally provide an estimate for the values of γ in Eq. (1)
achievable with this setup (see ‘Methods’ for further details). The
dipole matrix elements can be estimated assuming a lattice
spacing of few angstroms. For THz cavities with a compression
factor of ~10−5 or smaller, a drive with an intensity of
~10MW cm−2 leads to values of γ of order ~100 K. This number
is comparable or larger than typical couplings in antiferro-
magnets, which range from ~5 K for vanadates44 to ~600 K for
iridates45. For α-RuCl3, the (ferromagnetic) Heisenberg interac-
tion is ~40 K, while the Kitaev one is ~80 K, see ref. 46.
Accordingly, the spin–liquid phases predicted in the phase
diagram in Fig. 1c are achievable with current setups.
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Discussion
In this work, we showed that long-range spin–exchange inter-
actions can be robustly induced by coupling a strongly correlated
electron system to the quantum fluctuations of a driven cavity.
The electron–cavity coupling gives rise to a variety of tunable spin
interactions, including frustrated ones. The thus created cavity-
mediated frustration can destroy the magnetic order, favoring
disordered spin–liquid states, absent in the cavity-less config-
uration. We have demonstrated this for an ordinary Heisenberg
antiferromagnet, whose ground state manifests an extensive and
robust quantum spin–liquid phase when coupled to a cavity. Our
results open avenues for engineering quantum spin liquids,
sparking the challenge to devise new schemes to control elec-
tronic degrees of freedom with quantum light, and to uncover
phases of matter that are usually inaccessible. This also represents
an exciting perspective for the experimental detection of strongly
correlated phases: photons emitted from the cavities carry sig-
natures of the quantum many-body state, which become acces-
sible to standard optical measurements. Our findings are
immediately relevant also for quantum simulations. Artificial spin
systems with tunable long-range interactions can be currently
created using either trapped ions36,47 or ultracold atoms coupled
to an optical cavity48–51. These platforms represent, therefore,
ideal candidates to simulate quantum spin liquid phases.

Methods
Saddle-point equations for bosonic spinons. In this section, we outline the
derivation of the saddle point equations for the spinon bilinear expectation values
Aij and Bij.

The spin-exchange terms appearing in Eq. (1) can be recast as SiSj ¼: By
ijBij :

�Ay
ijAij for i ≠ j, where Aij ¼ iσyμνbiμbjν=2 and Bij ¼ byiμbjμ=2 are SU(2)-invariant

spinonic bilinears. A finite expectation value of these operators indicates the
tendency of the spins at the sites i and j of forming a singlet (Aij) or to align (Bij);
moreover, it induces a finite bosonic hopping rate between the lattice sites i and j,
signalling the existence of propagating fractional excitations. In order to solve for
the value of these quantities, we build on the approach of ref. 25. First, the
bosonized version of the Hamiltonian (1) is represented as a path integral, with the
constraint implemented by a space- and time-dependent Lagrange multiplier λi(t).
After decoupling the bilinear products by using a Hubbard–Stratonovich
transformation, the expectation values Aij ¼ hAiji and Bij ¼ hBiji are obtained as
saddle point values of the corresponding action. This approximation imposes the
constraint only on average, and the now position- and time-independent Lagrange
multiplier λ has to be determined self-consistently. This approximation is
equivalent to decoupling the Hamiltonian (1) in bosonic bilinears as:

H ¼ 1
2
∑
i;j

ϵijb
y
iμbjμ þ iΔ�

ijσ
y
μνbiμbjν

� �
þ h.c. þ ε0; ð8Þ

where ϵij ¼ JijB�
ij þ δijλ=2, Δ

�
ij ¼ �JijA�

ij and ε0 ¼ ∑i;jð�jBijj2 þ jAijj2Þ � 2SNλ.
As discussed in the main text, we assume a translational-invariant ansatz, i.e.
Aij ¼ Ai�j and Bij ¼ Bi�j , able to interpolate between all the expected phases. The

two degenerate eigenvalues of H are given by E2
q ¼ ϵ2q � jΔqj2, with ϵq and Δq the

Fourier transform of the functions appearing in Eq. (8). By minimizing the ground-

state energy E0 ¼ ∑q Eq � ϵq

� �
þ ε0 with respect to the variational parameters ϵq,

Δq and λ, one obtains the saddle-point equations:

1 ¼ 1
2N

∑
q

ϵq
Eq

; ð9aÞ

ϵp ¼ λþ 1
2N

∑
q
Jp�q

ϵq
Eq

� 1

 !
; ð9bÞ

Δp ¼ 1
2N

∑
q
Jp�q

Δq

Eq
; ð9cÞ

with Jq the Fourier transform of Jij. These equations provide the full momentum
dependence of the functions ϵq and Δq. The actual number of unknowns increases
with the range of the interaction. In fact, for short-range interactions, the
momentum dependence can be found analytically, and only a few parameters are
left to be computed self-consistently. For long-range interactions, instead, the full
momentum dependence needs to be found numerically. Equation (9a, b, c)
amounts to a system of 2N+ 1 coupled non-linear equations, with N the total
number of sites. To find the roots of these equations, we used a trust region solver

as provided by the Julia NLSolve library, with the accepted residual norm set to
10−8. The error of the numerical solution for a finite system of N sites is, therefore,
negligible compared to the extrapolation to the thermodynamic limit. Determining
ξOðLÞ by a least-squares fit resulted in relative errors between 0.5 and 2%, which we
consider to be sufficient for the analysis performed here. The root-finding
algorithm is accelerated by exploiting vectorization for the evaluation of the saddle-
point equations where possible, and by parallelization via OpenBLAS.

Implementation details. Here, we provide additional details to the set-up
described in the main text. The vector potential can be written as

Aðr; tÞ ¼ ΩLuLφLðrÞeiωLt þ ∑
‘¼k;?

N ‘u‘a‘φ‘ðrÞ þ h:c:; ð10Þ

where Ω2
L and ωL denote the laser intensity and frequency, respectively. Here u and

φ(r) are the polarization vector and the mode wavefunction. For the cavity modes,
labelled by ‘= ∥,⊥, the wave function is normalized over the finite volume Vc and
N ‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2ω‘ϵ0ϵr

p
, where ω‘ is the mode fundamental frequency and ϵ0, ϵr are the

vacuum and relative permittivity of the material, respectively.
We assume that that the mode wavefunctions φ(r) does not vary significantly

over the extent of the Wannier functions. By tuning the polarization vectors u to
selectively couple the orbitals as in Fig. 1, and by performing the rotating-wave
approximation, the resulting paramagnetic Hamiltonian term is given by Eq. (4),
with

ρ‘bb0 ¼
eN ‘

m
φ‘u‘ � hwibjpjwib0 i: ð11Þ

The expression for ρLbb0 can be obtained from the previous equation by replacing
N ‘ with ΩL.

The diamagnetic part of the Hamiltonian (3) reads, after neglecting higher-
order electron-photon processes of the type cy3c3ðaþ ayÞ and cy3c3a

ya:

Hint,dia ¼ ∑
‘¼?;k

δ‘ a
y
‘a‘ þ∑

i
δ3 cyi3ci3; ð12Þ

plus a term linear in the cavity fields, which vanishes as the laser and cavity
wavefunctions are orthogonal. The shifts

δ‘ ¼
e2

m
Ve N 2

‘ jφ‘j2; ð13aÞ

δ3 ¼
e2Ω2

L

m
jφLj2 þ ∑

‘¼?;k
e2N 2

‘

2m
jφ‘j2; ð13bÞ

renormalize the energies of the cavity modes and of the third band, respectively. By
assuming that the band detuning jeΔ3j is much larger than the coupling strengths
and the cavity detunings eΔ‘, the third band can be adiabatically eliminated, leading
to Eq. (5) in the main text, including an additional term B0 ∑iS

z
i , with

B0 ¼ jρL13j2=eΔ3. This effective classical magnetic field breaks explicitly the SU(2)
symmetry, but it is much smaller than the spin exchange and therefore it can be
safely neglected.

Estimate of interaction strength and range. We consider a THz laser (ωL= 100
THz) with intensity Ω2

L ¼ 10MWcm−2, with a small detuning from the cavity fre-
quency Δ⊥=Δ∥= 10−2 THz. The compression factor of the cavity is assumed to be
Λ= 10−5. The detuning from the third band is Δ3= 1 THz, thus satisfying the con-
dition Δ3≫Δ⊥. We estimate the matrix as follows: hwi1jpjwi30 i � mω13hwi1jrjwi30 i,
with ω13=ωL+ΔL and hwi1jrjwi30 i ¼ 10A, the same order of magnitude of a typical
lattice spacing. Using the formulas derived in the text, one then estimates a long-range
interaction with strength γ ~ 100 K.

We also provide an estimate of the values of α. To this end, we evaluate the
explicit form of Γ(rij) as reported in the text below Eq. (7). For simplicity, we
assume Δ⊥= Δ∥ ≡ Δ and ω⊥= ω∥ ≡ ω. The Rabi-like couplings gq inherits the
momentum dependence from the normalization of every mode, i.e.

gq / ðω2 þ ðcqÞ2Þ�1=4
. Accordingly, the cavity-mediated exchange is given by:

ΓðrijÞ / ∑
q

e�iq�rijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ ðcqÞ2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
c þ ðcqÞ2

q
� ωLÞ

: ð14Þ

The corresponding integral is computed numerically, and the results shown in
Fig. 4 over a range of 50 lattice sites, for different values of the cavity detuning. The
values of α obtained are reported in the figure.

Heating effects. A possible advantage of our scheme is that it does not rely on the
laser being resonant with any electronic or phononic excitation, with the only
tradeoff of a decreasing coupling strength as the detuning increases. Exploiting the
variability of the detuning, as well as the knowledge of the relevant excitation
modes of the quantum material and the cavity, resonances can be avoided and
heating is pushed to later times. This said, we can on the other hand consider the
worst-case scenario, where heating does efficiently take place, and estimate the
amount of it, following ref. 52. As a paradigmatic material, we consider RuCl3,
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which features orbital pseudospin, and whose low-temperature properties have
been intensely studied46. In order to estimate the heating of the material surface
due to the external laser, we evaluate the energy density deposited by the laser using
the formula:

ϵðzÞ ¼ ð1� RÞ F
dp

e
� z

dp ; ð15Þ

with z the depth in the sample, R ~ 0.05 the material reflectivity at the laser fre-
quency considered, i.e. 100 THz (cf. ref. 53), dp the penetration depth, chosen of an
order of micrometres and F is the excitation energy density. In order to achieve
lasing in the desired frequency range, a short-pulse protocol can be used. By
considering pulses of ~10 ps, and maximal laser intensity of 10 MW cm−2, we
require F ¼ 10�5 J cm−2. In order to estimate the increase in temperature due to
the deposited energy density ϵ(z), we assume that thermalization time is fast, and
use the following relation:

ϵðzÞ ¼ 1
Vm

ZT f ðzÞ

T0

CpðTÞdT; ð16Þ

where Vm= 53.32 cm3 mol−1 is the molar volume of α-RuCl3, and Cp is the molar
heat capacity, for which we use the value fitted from the measurements of ref. 54,
and T0 is the initial temperature in the sample. For an initial temperature of
T0= 2 K, the rise in temperature as a function of z and for different values of the
penetration length dp are reported in Fig. 5 here. The estimated temperature
increase in the first layers is in between 5 and 20 K, depending on the penetration
depth. In order to understand the impact of heating on the candidate QSL phases, a
simple criterion compares the temperature increase with the gap (at least for the
gapped spin liquid phase, which we dubbed SL-I in the main text). Robustness of

the QSL phase then requires the temperature increase to be smaller than the gap,
whose scale is given by the material couplings and by the cavity-induced interac-
tion. For α-RuCl3, as discussed in the main text, interactions lie between 40 and
80 K. Accordingly, the heating induced by the laser is not expected to destabilize
the gapped QSL phase. For what concerns the gapless QSL phase (SL-II in the main
text), the previous argument is clearly inapplicable, and its robustness against
thermal fluctuations must be assessed using a more sophisticated approach, e.g. by
solving the saddle-point equations at finite temperature.

Code availability
The code that supports the plots within this paper is available from the corresponding
author upon reasonable request.
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8 Conclusion and Outlook
In this thesis, two efficient numerical implementations of the functional renormalization group were
developed. More specifically, N -patch fRG was employed to study competing orders of weakly-coupled
spinless fermions on the triangular lattice. Even for purely repulsive interactions, we were able to
demonstrate the opening of superconducting gaps with different symmetries. Here, Cooper pairing
was prominently driven by charge fluctuations, which become sizable enough to mediate inter-electron
attraction in vicinity of van-Hove filling. To tackle quantum spin systems, corresponding to localized
electrons in the strong-coupling limit, we picked up the pseudofermion functional renormalization
group method. In the last decade, pffRG has become an auspicious tool to map out phase diagrams of
frustrated magnets, yet, elementary questions about the validity of its inherent approximations have
been left unanswered. Going beyond the widely used 1ℓ truncation of the flow equations using multiloop
fRG, we could prove convergence to solutions of the parquet approximation for several energy scales,
which attests to the method’s consistency. Moreover, we scrutinized fulfillment of the pseudofermion
constraint by explicitly computing occupation number fluctuations. Although sites are half-filled on
average, sizable fluctuations persisted even if the RG scale Λ was reduced below the energy scale set
by the spin coupling. Qualitative features of the flow, on the other hand, appeared remarkably robust
against the occupation of unphysical states with net-spin zero. Finally, a generalization of pffRG to
spin-valley coupled Hamiltonians in the self-conjugate representation of su(4) was presented and fRG
results for additional model systems were discussed.
A central message we wanted to convey with this work is that highly accurate fRG flows and feasible
computing times do not exclude themselves. Many implementations, be it for weakly [153, 154] or
strongly-coupled electron systems [17, 18], have opted for inferior integration techniques regarding both
precision and robustness of the obtained results. From our point of view, this is for one of two reasons:
One could, in principle, argue that systematic deficiencies, such as the regulator dependence of 1ℓ
flows induced by truncating the three-particle vertex, overshadow numerical errors. In other words, no
matter how accurate the numerical results, principal approximations cannot be made up for. Second,
fRG calculations appear to be quite expensive from the outset. Recall that the two-particle vertex for
itinerant electron models requires three momentum and frequency arguments even after exploiting
translation invariance. For two-dimensional systems, this implies that the number of effective couplings
grows as N6

kN
3
ω, where Nk is the number of momenta along one axis of the Brillouin zone and Nω the

number of Matsubara frequencies. It might therefore seem appealing to reduce computing times by
falling back to low-confidence methods. Both lines of reasoning, however, come with their own flaws.
Indeed, fRG is based on systematic and sometimes even uncontrolled approximations, but how are we
supposed to gauge their impact on the results if we allow ourselves to be sloppy with the numerical
implementation? As an example, consider the multiloop truncation. In theory, mfRG should overcome
many shortcomings of traditional 1ℓ flows. Yet, this approach is based on successive insertions of
bubble integrals into each other. Hence, numerical errors invoked by 1ℓ diagrams will proliferate into
higher orders, which makes conclusions regarding loop convergence appear like mere speculation. The
second argument, on the other hand, is likely based on the perception that adaptive quadrature based
on higher-order methods is too expensive to pursue. As we have demonstrated for the calculation of
loop functions in N -patch fRG and Matsubara integrals in pffRG, this does not adhere to the truth.
For sure, performing integrations with higher-order quadrature rules initially requires more function
evaluations, which, especially in fRG, are quite costly. Tuning these in such a way that they cope with
the structure of the integrand, however, renders them extremely efficient, since subsequent refinements
of the integration domain are only necessary in regions where sharp features emerge. In all other
cases, convergence is rapid and thus numerically cheap. Moreover, already the calculation of bare
susceptibilities revealed that this procedure is essential for producing stable results especially in the
low-energy regime.
Through publishment of the PFFRGSolver Julia package [P1, P2], we aimed at providing a coherent
numerical standard for the simulation of quantum spin systems with pseudofermion fRG, while reducing
the entry barrier for newcomers to the field. Our code combines the technical achievements of this
thesis embedded into a performance oriented backend with a plug-and-play style user interface. In the
spirit of similar efforts from the weak-coupling community [153], we strongly believe that this step
helps to advance the method by bringing it forth to a wider audience. This way, long-standing quests,
such as the calculation of dynamic structure factors from a full-fledged Keldysh pffRG implementation
or the generalization to finite temperatures in conjuction with the Popov-Fedotov trick, come within
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reach.
With the advent of (twisted) moiré heterostructures, many new and exciting platforms for the study
of strongly correlated electron physics have emerged. One of their most fascinating trademarks is
the broad landscape of quantum models they can harbor, ranging from extensions of the Hubbard
model [82, 83, 155–157] to spin-valley entangled Hamiltonians in the strong-coupling limit [16, P3, P7,
152], which hold promise for the realization of elusive spin-valley liquids [158, 159]. Their unbiased
theoretical simulation using fRG, however, poses numerous challenges. First of all, the dimension of
the local Hilbert space is usually enhanced by additional orbital degrees of freedom, such that their
electronic band structure involves multiple bands with intricate Fermi surface topologies [54, 77–79, 82,
83]. Second, mapping out phase diagrams for hexagonal superlattices with frustrated interactions will
certainly require fine grained momentum space grids to resolve the interplay of competing orders at low
temperatures. For field-theoretical approaches such as fRG, compact representations of two-particles
vertices are therefore of paramount importance. Fortunately, several techniques for reducing the
numerical cost of computing and storing Γ have recently been proposed. These include, for example,
truncated unity approximations [39, 45, 46, 153, 154] or the single boson exchange decomposition [160,
161], the former based on an expansion of the vertex’s momentum dependence into analytic form factors,
the latter representing Γ in terms of three-leg Hedin vertices coupled by bosonic fluctuations. Their
implementation within (multiloop) fRG, combined with the methodological advances and numerical
achievements of this thesis, paves a promising avenue for future explorations of exotic ground states in
the ever growing manifold of moiré materials.
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Appendix

A Appendix

A.1 Frequency structure of pseudofermion vertices
In Sec. 4.4.3, we presented an algorithm to dynamically adjust the frequency grids for the 2PR vertices
γc during the fRG flow. Since our routine is based on cuts along different bosonic (fermionic) frequency
axes, one has to ascertain that these one-dimensional snapshots of the data are representative of
the full (three-dimensional) frequency structure. This is further exemplified with Fig. A.1, where we
decompose the two-particle vertex, as obtained from a PA calculation with fixed frequency grids for
the ferromagnet on the cubic lattice, into its reducible contributions to the spin and density component
(see Sec. 4.5.2). For brevity, we fix Λ/J = 0.8 and ωc = 0, henceforth. As expected from the discussion
in Sec. 4.3.3, the most dominant features in the νc-ν′

c plane are indeed found in vicinity of the origin
νc = ν′

c = 0. Importantly, γc can peak either on the fermionic axis or along the diagonal cut νc = ν′
c, a

circumstance which necessitates scans along both directions to faithfully adapt the numerical grids to
the frequency structure of the vertices. This is most prominently visible in the t channel (see the second
column of Fig. A.1), wherein the density component γdt exhibits a sharp peak at some νc = ν′

c > 0
on the one hand, but, on the other hand, evaluates to zero along the fermionic axis due to symmetry
constraints (see Sec. 4.3.4).
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Figure A.1: Decomposition of the two-particle vertex into 2PR channels. We perform parquet
calculations at Λ/J = 0.8 to determine Γ for the cubic ferromagnet, where it can be described in terms of a
spin (top row) and density component (bottom row), both of which fall apart into s/t/u-reducible diagrams
corresponding to the individual columns, respectively. The 2PR vertices exhibit their most dominant features
close to the origin, either on the fermionic axis or along the νc = ν′

c diagonal (dotted line).

A.2 Scaling of pffRG code
The majority of the computing time in pffRG is spent on evaluating the cutoff derivative of the
two-particle vertex, that is, the right-hand side of the respective flow equation. To calculate the latter,
a Matsubara integral for every component of the 2PR bubbles1 needs to be determined. These can,
however, be calculated independently from one another thus opening up the possibility to exploit
parallelization over several computing units. In our code, PFFRGSolver.jl, we utilize the built-in
multi-threading capabilities of the Julia programming language to speed up the evaluation of d

dΛ Γ. To
cope with the adaptive nature of our quadrature, which implies that computing times differ between
individual Matsubara integrals, dynamical load balancing is applied.

1 In Refs. [98, P2] examples for the number of flow equations are given.
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To test for the (shared-memory) scalability of our implementation, we measured computing times
for single evaluations of the vertex derivative on different processors. Our results are summarized in
Fig. A.2. In most cases, the observed speedup is near ideal, the only visible deviations appear for the
Intel Xeon Platinum CPU (see [Fig. A.2(b)]), where scaling appears to be suboptimal for more than 16
threads. For this particular processor, however, we simultaneously find the single-thread efficiency to
be higher, which could imply that scalability might be impeded by the workloads per thread becoming
too trivial.
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Figure A.2: Scaling of pffRG computing times with multiple threads. We test the performance
of the PFFRGSolver Julia package on four different CPUs: (a) Intel Xeon Phi Knights Landing (JURECA
Booster, Forschungszentrum Jülich), (b) Intel Xeon Platinum (JUWELS, Forschungszentrum Jülich), (c)
AMD EPYC (JUWELS Booster, Forschungszentrum Jülich) and (d) AMD Milan (NOCTUA-2, Paderborn
Center for Parallel Computing). Scaling is near optimal in most cases, attesting to the parallel efficiency of our
code.
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’There are very few things that can be proved rigorously in condensed matter physics.’

These famous words, brought to us by Nobel laureate Anthony James Leggett in 2003,
summarize very well the challenging nature of problems researchers find themselves
confronted with when entering the fascinating field of condensed matter physics. The
former roots in the inherent many-body character of several quantum mechanical
particles with modest to strong interactions between them: their individual properties
might be easy to understand, while their collective behavior can be utterly complex.
Strongly correlated electron systems, for example, exhibit several captivating phenomena
such as superconductivity or spin-charge separation at temperatures far below the energy
scale set by their mutual couplings. Moreover, the dimension of the respective Hilbert
space grows exponentially, which impedes the exact diagonalization of their Hamiltonians
in the thermodynamic limit. For this reason, renormalization group (RG) methods
have become one of the most powerful tools of condensed matter research - scales are
separated and dealt with iteratively by advancing an RG flow from the microscopic
theory into the low-energy regime.
In this thesis, we report on two complementary implementations of the functional
renormalization group (fRG) for strongly correlated electrons. Functional RG is based
on an exact hierarchy of coupled differential equations, which describe the evolution of
one-particle irreducible vertices in terms of an infrared cutoff Λ. To become amenable to
numerical solutions, however, this hierarchy needs to be truncated. For sufficiently weak
interactions, three-particle and higher-order vertices are irrelevant at the infrared fixed
point, justifying their neglect. This one-loop approximation lays the foundation for the
N -patch fRG scheme employed within the scope of this work. As an example, we study
competing orders of spinless fermions on the triangular lattice, mapping out a rich phase
diagram with several charge and pairing instabilities. In the strong-coupling limit, a
cutting-edge implementation of the multiloop pseudofermion functional renormalization
group (pffRG) for quantum spin systems at zero temperature is presented. Despite the
lack of a kinetic term in the microscopic theory, we provide evidence for self-consistency
of the method by demonstrating loop convergence of pseudofermion vertices, as well
as robustness of susceptibility flows with respect to occupation number fluctuations
around half-filling. Finally, an extension of pffRG to Hamiltonians with coupled spin
and orbital degrees of freedom is discussed and results for exemplary model studies on
strongly correlated electron systems are presented.


	Introduction
	Functional renormalization group
	Generating functionals
	Exact flow equations
	Systematic truncation via parquet approximation
	Level-2 truncation
	Katanin's self-energy corrections
	Multiloop fRG

	Final remarks

	Weak-coupling fRG for itinerant fermions
	A prelude on superconductivity
	Mean-field theory
	Classification via representation theory
	Topological superconductivity

	Level-2 fRG for spin-polarized fermions
	Temperature flow scheme
	Patching approximation

	Numerical implementation of N-patch fRG
	Radial integration of the loop function
	Differential equation solver
	Linearized gap equations and calculation of Chern numbers

	Examples
	Example 1: Channel truncated N-patch fRG
	Example 2: N-patch fRG for spinless triangular-lattice fermions


	Pseudofermion fRG for quantum spin systems
	Frustrated magnetism and quantum spin liquids
	Abrikosov fermion representation of spin operators
	Parametrization of pseudofermion vertices
	Local flow equations
	Efficient evaluation of spin sums
	Asymptotic frequency parametrization
	Symmetries in Matsubara space
	Observables

	Numerical Implementation
	Symmetry-reduced lattice representation
	Evaluation of Matsubara integrals
	Adaptive frequency discretization
	Parquet iterations
	Calculation of correlation functions

	Examples
	Example 1: Strong-coupling study of twisted WSe2
	Example 2: Multiloop fRG for the cubic ferromagnet


	Methodological development of pseudofermion fRG
	Overview
	Publication: Multiloop functional renormalization group approach to quantum spin systems
	Publication: Benchmark Calculations of Multiloop Pseudofermion fRG
	Publication: Moments and multiplets in moiré materials: A pseudo-fermion functional renormalization group for spin-valley models

	fRG studies on strongly correlated electrons
	Overview
	Publication: Functional renormalization of spinless triangular-lattice fermions: N-patch vs. truncated-unity scheme
	Publication: Pinch-points to half-moons and up into the stars: the kagome skymap
	Publication: TMDs as a platform for spin liquid physics: A strong coupling study of twisted bilayer WSe2
	Publication: Emergence and stability of spin-valley entangled quantum liquids in moiré heterostructures

	Novel platforms for frustrated magnetism
	Overview
	Publication: Realization of Nearly Dispersionless Bands with Strong Orbital Anisotropy from Destructive Interference in Twisted Bilayer MoS2
	Publication: Cavity-induced quantum spin liquids

	Conclusion and Outlook
	Appendix
	Frequency structure of pseudofermion vertices
	Scaling of pffRG code


