
Algorithms
for Incremental Planar Graph Drawing

and Two-page Book Embeddings

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von
Martin Gronemann

aus Unna

Köln 2015

Berichterstatter (Gutachter): Prof. Dr. Michael Jünger
Prof. Dr. Markus Chimani
Prof. Dr. Bettina Speckmann

Tag der mündlichen Prüfung: 23. Juni 2015

Zusammenfassung

Diese Arbeit beschäftigt sich mit zwei Problemen bei denen es um Knoten-
ordnungen in planaren Graphen geht. Hierbei werden als erstes Ordnungen
betrachtet, die als Grundlage für inkrementelle Zeichenalgorithmen dienen.
Solche Algorithmen erweitern in der Regel eine vorhandene Zeichnung durch
schrittweises Hinzufügen von Knoten in der durch die Ordnung gegebene Rei-
henfolge. Zu diesem Zweck kommen im Gebiet des Graphenzeichnens verschie-
dene Ordnungstypen zum Einsatz. Einigen dieser Ordnungen fehlen allerdings
gewünschte oder sogar für einige Algorithmen notwendige Eigenschaften. Diese
Eigenschaften werden genauer untersucht und dabei ein neuer Typ von Ord-
nung entwickelt, die sogenannte bitonische st-Ordnung, eine Ordnung, welche
Eigenschaften kanonischer Ordnungen mit der Flexibilität herkömmlicher st-
Ordnungen kombiniert. Die zusätzliche Eigenschaft bitonisch zu sein ermöglicht
es, eine st-Ordnung wie eine kanonische Ordnung zu verwenden.

Es wird gezeigt, dass für jeden zwei-zusammenhängenden planaren Graphen
eine bitonische st-Ordnung in linearer Zeit berechnet werden kann. Im Ge-
gensatz zu kanonischen Ordnungen, können st-Ordnungen naturgemäß auch
für gerichtete Graphen verwendet werden. Diese Fähigkeit ist für das Zeichnen
von aufwärtsplanaren Graphen von besonderem Interesse, da eine bitonische
st-Ordnung unter Umständen es erlauben würde, vorhandene ungerichtete Zei-
chenverfahren für den gerichteten Fall anzupassen. Basierend auf dieser Beob-
achtung wird eine Teilmenge der planaren st-Graphen charakterisiert, für die
eine solche Ordnung existiert. Zusätzlich wird ein Linearzeit-Algorithmus vor-
gestellt, der diese Graphen erkennt und eine bitonische st-Ordnung berechnet.
Für die übrigen planaren st-Graphen wird gezeigt, dass mittels Unterteilung
spezifischer Kanten eine Instanz augmentiert werden kann, so dass für diese ei-
ne bitonische st-Ordnung existiert. Dabei bestimmt ein Linearzeit-Algorithmus
die kleinste Kantenmenge für den Unterteilungsschritt. Weiterhin wird gezeigt,
dass für einen planaren st-Graphen G = (V,E) diese Menge nicht mehr als
|V | − 3 Kanten umfasst und jede Kante höchstens einmal unterteilt werden
muss. Dieses Resultat lässt sich sofort übertragen auf die Anzahl der benötigten
Knicke in aufwärtsplanaren Zeichnungen. Es wird ein Algorithmus angegeben,
der eine aufwärtsplanare Zeichnung mit quadratischer Fläche, höchstens |V |−3
Knicken insgesamt und maximal einem Knick pro Kante in linearer Zeit erstellt.

Der zweite Teil der Arbeit widmet sich der Einbettung von planaren Graphen

mit Maximalgrad drei und vier in Büchern mit zwei Seiten. Neben einem ver-
einfachten inkrementellen Linearzeit-Algorithmus für drei-zusammenhängende
3-planare Graphen, wird auch ein Linearzeit-Algorithmus für den 4-planaren
Fall vorgestellt.

Abstract

Subject of this work are two problems related to ordering the vertices of planar
graphs. The first one is concerned with the properties of vertex-orderings that
serve as a basis for incremental drawing algorithms. Such a drawing algorithm
usually extends a drawing by adding the vertices step-by-step as provided by
the ordering. In the field of graph drawing several orderings are in use for
this purpose. Some of them, however, lack certain properties that are desirable
or required for classic incremental drawing methods. We narrow down these
properties, and introduce the bitonic st-ordering, an ordering which combines
the features only available when using canonical orderings with the flexibility
of st-orderings. The additional property of being bitonic enables an st-ordering
to be used in algorithms that usually require a canonical ordering.

With this in mind, we describe a linear-time algorithm that computes such
an ordering for every biconnected planar graph. Unlike canonical orderings, st-
orderings extend to directed graphs, in particular planar st-graphs. Being able
to compute bitonic st-orderings for planar st-graphs is of particular interest for
upward planar drawing algorithms, since traditional incremental algorithms for
undirected planar graphs might be adapted to directed graphs. Based on this
observation, we give a full characterization of the class of planar st-graphs that
admit such an ordering. This includes a linear-time algorithm for recognition
and ordering. Furthermore, we show that by splitting specific edges of an in-
stance that is not part of this class, one is able to transform it into one for
which then such an ordering exists. To do so, we describe a linear-time algo-
rithm for finding the smallest set of edges to split. We show that for a planar
st-graph G = (V,E), |V | − 3 edge splits are sufficient and every edge is split
at most once. This immediately translates to the number of bends required for
upward planar poly-line drawings. More specifically, we show that every planar
st-graph admits an upward planar poly-line drawing in quadratic area with at
most |V | − 3 bends in total and at most one bend per edge. Moreover, the
drawing can be obtained in linear time.

The second part is concerned with embedding planar graphs with maximum
degree three and four into books. Besides providing a simplified incremental
linear-time algorithm for embedding triconnected 3-planar graphs into a book
of two pages, we describe a linear-time algorithm to compute a subhamiltonian
cycle in a triconnected 4-planar graph.

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Technical foundations . 5
2.2 Oriented planar drawings of directed graphs 12

3 Bitonic st-orderings 25
3.1 Bitonic st-orderings of biconnected planar graphs 26

3.1.1 A linear-time algorithm 32
3.1.2 The fixed embedding scenario 40

3.2 Straight-line drawings . 44
3.2.1 The algorithm of de Fraysseix, Pach and Pollack 44
3.2.2 The linear-time variant of Chrobak and Payne 47
3.2.3 A drawing algorithm for bitonic st-orderings 54

3.3 Bitonic st-orderings of planar st-graphs 59
3.3.1 Characterization & recognition 61
3.3.2 Recognition & ordering in linear time 68
3.3.3 Experimental results . 69

3.4 Upward planar poly-line drawings with few bends 74
3.4.1 The edge-split method 76
3.4.2 An optimal linear-time transformation 79
3.4.3 Experimental results . 82

3.5 Visibility & contact representations 82
3.6 Conclusion . 87

4 Two-page Book Embeddings of Bounded Degree Graphs 93
4.1 Two-page book embeddings & subhamiltonicity 96
4.2 Two-page book embeddings of 3-planar graphs 99
4.3 Subhamiltonicity of triconnected 4-planar graphs 103
4.4 Conclusion . 114

5 Conclusion 115

1 Introduction

Incremental drawing algorithms are a popular concept in the field of graph
drawing. Their history goes back to the early beginnings of graph drawing, but
even today, incremental approaches remain an important tool. Especially when
dealing with problems that are concerned with planar graphs, various methods
have been developed to solve these. Most algorithms follow a common principle
that is similar to mathematical induction.

The first ingredient for an incremental drawing algorithm is an ordering of
entities. These entities are usually the vertices, but also other orderings for sets
of vertices, edges or faces exist. Once an ordering of the entities is determined,
a suitable invariant is described that a partially constructed drawing must
comply with. One starts by choosing a base case that is used to create an initial
drawing which complies with the invariant. Afterwards, the entities are added
step-by-step as provided by the ordering. In each step, one has to ensure that
the drawing can be extended while at the same time the invariant is satisfied.
Sometimes it is necessary to distinguish the placement of the last entity.

Algorithms that follow this abstract pattern have a long tradition, not only
in the field of graph drawing. The type of ordering used depends heavily on the
problem that has to be solved, and the ordering itself might require a certain
type of graph. A well-known example are canonical orderings of which there
exist multiple variants, each demanding different structural properties from
the input graph. These serve as a basis for a variety of incremental drawing
algorithms. In order to compensate for the restrictions imposed by the type
of ordering used, one may decompose the graph into components that fulfill
the requirements, compute drawings for these components and compose their
drawings afterwards.

In this thesis we investigate the properties of orderings that are suitable for
incremental drawing algorithms in more detail, and propose a new type of or-
dering, the bitonic st-ordering. The backstory that eventually led to this idea is
as follows. In [5] and [6] we extend existing incremental drawing algorithms that
require the input to be triconnected to ones that require only a biconnected
graph using a standard decomposition technique that is referred to as SPQR-
tree approach. It follows the described principle of decomposing the graph and
merging the drawings afterwards. In [6] the input graph is further restricted to
have maximum degree of three, the so-called 3-planar graphs, whereas in [5]

1

1 Introduction

1

2

3
4

5

6
7

8

(a)

1 2

1

2

3

4

5

6

7

8

(b)

Figure 1.1. (a) A planar graph embedded in the plane and (b) a two-page book
embedding of the same graph. Edges drawn dashed are assigned to the first page,
whereas solid ones are drawn on the second page.

a different problem is solved that is concerned with 4-planar graphs. In both
cases, the degree restriction is of importance. While SPQR-trees on 3-planar
graphs have a simple well-known structure which can easily be exploited, for
4-planar graphs this is not the case. As a result, one has to distinguish many
subcases, thereby, turning a rather simple triconnected algorithm into a com-
plex biconnected one.

Motivated by trying to avoid the SPQR-tree approach, we study the prop-
erties of canonical orderings that are required by most incremental drawing
algorithms. The result is a new ordering that preserves those properties, but
is not as restrictive in terms connectivity. Moreover, we show that for a re-
stricted class of directed graphs, one may obtain such an ordering as well. This
is of particular interest from an algorithmic point of view, because canonical
orderings do not extend to directed graphs at all.

The second topic of this thesis that is not directly related to incremental
drawing algorithms, is the problem of embedding graphs into books. A book
embedding is a special form of embedding in which the vertices are placed along
a line, the spine of a book, and each edge is drawn entirely on one page of a
book such that it crosses no other edge on the same page. An example for a two-
page book embedding of a graph is displayed in Figure 1.1. When considering
Figure 1.1b, it is not hard to see that a two page book embedding is a drawing
in the plane in which no two edges cross, while at the same time the vertices
are aligned. However, not every planar graph admits such a book embedding.
Therefore, it has always been of interest which subsets of the planar graphs fit
into two pages. With this in mind we investigate bounded degree graphs, and
show that the 4-planar graphs admit such an embedding.

2

Outline
We begin in Chapter 2 with the notation and definitions that serve as a basis for
all topics covered in this thesis. Following this, we give a detailed introduction
into drawing conventions for directed planar graphs. Besides introducing a few
existing drawing styles, we derive some insights into the classes of graphs that
admit those. Some results in this part are motivated by questions that arose
during the 5th International Conference on Information, Intelligence, Systems
and Applications (IISA 2014).

Chapter 3, the most comprehensive one, introduces the bitonic st-ordering
and can be roughly divided into two parts. The first part contains related work,
definitions and is concerned with bitonic st-orderings of undirected biconnected
planar graphs. It is based on a conference paper [50] presented at the Inter-
national Symposium on Graph Drawing (GD 2014), whereas the second part
takes this idea one step further, and applies it to directed graphs, in particular
planar st-graphs. The contribution of this chapter is, besides the introduction
of the bitonic st-ordering, linear-time algorithms, for both the undirected and
directed case including a recognition algorithm for the latter case. Applying
this idea to planar st-graphs, yields a new upper bound on number of bends in
upward planar poly-line drawings.

We study in Chapter 4 the problem of embedding planar graphs of bounded
degree into books with two pages. After reviewing related work, we turn our
attention for the time being to triconnected planar graphs with maximum
degree three, the so called 3-planar graphs, and describe a canonical ordering-
based incremental algorithm to solve the problem. Although no new results are
derived, the algorithm is interesting from a practical point of view. Afterwards,
we investigate the structure of separating triangles in the 4-planar case and
show that due to their special properties, every triconnected 4-planar graph
can be embedded into a book of two pages. The proof is constructive and
yields a linear-time algorithm. The 4-planar case is based on the first part of
a paper [7, 8] that has been presented at the 31st International Symposium on
Theoretical Aspects of Computer Science (STACS 2014) and is joint work with
Michael Bekos and Chrysanthi Raftopoulou. The second contribution of the
paper, that is the general 4-planar case, is not part of this thesis, but a brief
overview of the idea is given at the end of the chapter. Work on this problem
began in 2013 during Dagstuhl Seminar 13151: Drawing Graphs and Maps with
Curves. A short conclusion of the main results is given in Chapter 5.

3

2 Preliminaries

We start with fundamental definitions and notation that are used throughout
this work, details are introduced in the corresponding chapters. However, we
assume that the reader is familiar with the basics of computer science, especially
algorithms. The purpose of this chapter is two-fold. The first part is concerned
with the very basic elements of graph drawing and follows partially [42, 59].
The second part discusses various drawing styles for directed graphs in more
detail and from a geometric point of view.

2.1 Technical foundations
A graph G = (V,E) consists of a finite set V called the vertices or nodes of G,
and a finite set of edges E ⊆ V × V being a multi-set of pairs (u, v) ∈ E with
u, v ∈ V . We sometimes refer to the vertices V of G by V (G), and to the set
of edges E by E(G). Given an edge e = (u, v) ∈ E, u and v are referred to as
the endpoints of e. Furthermore, we say that u and v are incident to the edge
e, and that u is a neighbor of v and vice versa. If u and v are neighbors, then
we may also say that u and v are adjacent.

Let G = (V,E) and G′ = (V ′, E′) be two graphs with V ′ ⊆ V and E′ ⊆ E,
then G′ is a subgraph of G which we denote by G′ ⊆ G. In case G′ and G share
the same vertex set, that is, V = V ′ holds, we may emphasize this by calling
G′ a spanning subgraph of G. Let S ⊆ V be a subset of the vertices of G. Then
S induces the subgraph (S,E ∩ (S × S)), that is the subgraph of G consisting
of S and all the edges having their endpoints in S. Furthermore, we may write
G − S for the graph G′ = (V ′, E′) with V ′ = V − S and E′ = E ∩ (V ′ × V ′),
that is, G′ is obtained by removing all vertices in S from G including their
incident edges. Moreover, for two graphs G = (V,E) and G′ = (V ′, E′), we
define G ∪G′ = (V ∪ V ′, E ∪ E′) and G ∩G′ = (V ∩ V ′, E ∩ E′).

In an undirected graph, every edge (u, v) ∈ E is considered to be an unordered
pair, whereas in a directed graph or for short digraph, (u, v) is an ordered pair. In
the literature an undirected edge is sometimes denoted by {u, v} to emphasize
that it is an undirected edge. Since we do not mix directed and undirected
edges, and usually from the context it is clear whether the corresponding graph
is directed or undirected, we use here in both cases the notation (u, v) to refer

5

2 Preliminaries

to an edge. Most of the definitions that follow work for both types, and if that is
not the case or the context is not clear, we explicitly distinguish between them.
Some definitions, however, require a directed graph to be considered undirected.
Hence, we refer to the graph that is obtained by ignoring the direction of the
edges of a directed graph, as the corresponding underlying undirected graph.

If G = (V,E) is directed, then we may refer to e = (u, v) ∈ E as an outgoing
edge of u and an incoming edge of v. Furthermore, v is a successor of u and u
is a predecessor of v. The degree deg(v) of a vertex v is the number of incident
edges of v. The number of outgoing edges of a vertex is referred to as the
out-degree. In a symmetric manner, the number of incoming edges is called the
in-degree. In particular, a vertex having no predecessors is a source, whereas
a sink is a vertex without successors. An edge e = (u, v) with u = v is called
a self-loop. Two edges (u, v), (u′, v′) with u = u′ and v = v′ are said to be
parallel. If G contains neither self-loops nor parallel edges, then G is simple.
A simple undirected graph that contains every possible edge between every
pair of vertices is called a complete graph. The complete graph on n vertices is
denoted by Kn.

Paths & cycles For two vertices s, t ∈ V , a path from s to t is an alternating
sequence of vertices and edges v0, e1, v1, . . . , vk−1, ek, vk with v0 = s, vk = t,
and for every 1 ≤ i ≤ k, ei = (vi−1, vi) ∈ E holds. We refer to the first vertex
v0 and last vertex vk as the endpoints of the path, whereas the remaining ones
v1, . . . , vk−1 are called inner vertices. A set of paths that have no inner vertices
in common, are said to be independent. The length of a path is the number of
edges k it contains. A path is simple, if all vertices on the path are distinct. If
a simple path has length |V | − 1, then it visits every vertex exactly once. Such
a path is called a Hamiltonian path.

We denote a simple path from s to t in G by s t ∈ G. If in the correspond-
ing context G is clear without ambiguity, we may omit G, and just write s t
to express that there exists a path from s to t in G. Conversely, if there exists
no path from s to t, we denote this by s 6 t. If a path s t consists only of a
single edge, we sometimes emphasize this by writing s→ t. Moreover, we may
concatenate these expressions, for example, s u→ v t is a path from s to
t via u, v with u and v appearing consecutively, that is, the path contains the
edge (u, v). If there exists a path from u v ∈ G and an edge e = (v, u) such
that the path does not contain e, then the path plus e is called a cycle. We
often denote with C = {v1, . . . , vk} a cycle that contains the vertices v1, . . . , vk
and assume that there exists for every 1 ≤ i < k an edge (vi, vi+1) ∈ E and
(vk, v1) ∈ E. Similar to a simple path, the vertices on a simple cycle are all

6

2.1 Technical foundations

distinct. The length of a simple cycle is the number of edges it contains, which
is equal to the number of its vertices. Furthermore, we refer sometimes to a
simple cycle of length k as k-cycle, and in case the simple cycle has length |V |,
that is, it contains all vertices of G, we call it a Hamiltonian cycle. A graph
that does not contain a cycle is acyclic, and in case of an undirected graph,
then usually called a forrest. If a digraph is acyclic and contains exactly one
source and one sink, we refer to it as st-graph.

Connectivity In this thesis, connectivity is not used together with digraphs,
thus, the following terms are only being defined for undirected graphs. Let
G = (V,E) be a simple undirected graph. If for every pair u, v ∈ V with u 6= v,
u v ∈ G holds, then G is connected. Furthermore, G is k-connected for
some integer 1 ≤ k < |V |, if for every subset of vertices S ⊂ V with |S| < k,
G − S is connected. Instead of 2-connected or 3-connected, one usually uses
the terms biconnected or triconnected, respectively. A fundamental theorem
by Menger [64] states that a graph is k-connected, if and only if there exist k
independent paths between every pair of distinct vertices. An undirected graph
that is connected and acyclic is called a tree. In the case of a directed graph that
contains a single source and whose underlying undirected graph is connected
and acyclic, we call it a rooted tree. The single source is referred to as the root
of the tree, whereas the sinks are called the leaves. The successors of a node v
are called the children of v, and the predecessor the parent of v.

Let G be a connected graph. If G is not biconnected, then there exists a
so-called cut vertex or articulation point v ∈ V such that G − {v} is not
connected. If there exists an edge e ∈ E such that its removal disconnects G,
then we call this edge a bridge. See Figure 2.1a for an example of cut vertices
and bridges. In case G does not contain any bridges, it is said to be bridge-less.
If G is biconnected but not triconnected, then a pair {u, v} ⊂ V for which
G−{u, v} is not connected anymore, is referred to as a separation pair. In case
G is not 4-connected and there exists a 3-cycle C = {v1, v2, v3} in G, whose
removal disconnects G, that is, G − C is not connected, then C is called a
separating triangle. Notice that in difference to a separation pair, the vertices
of a separating triangle have to be adjacent.

The maximal bridge-less components of a connected graph G = (V,E) are
called the bridge-blocks of G, whereas the maximal biconnected subgraphs of G
are the biconnected components. Notice that a bridge-block is not necessarily
biconnected. Let B1, . . . , Bm ⊆ G be the bridge-blocks of G, and E′ ⊆ E
the bridges connecting them. The bridge blocks are vertex disjoint, that is,
V (Bi) ∩ V (Bj) = ∅ holds for every 1 ≤ i 6= j ≤ m. It is not difficult to see

7

2 Preliminaries

v1

v2

v3

v4 v5

e1

e2

e3

(a)

e1
e2

e3

b1

b2

b3

b4

(b)

v1

v2

v3

v4 v5

e1

e2

e3

(c)

Figure 2.1. (a) A connected graph with five cut vertices v1, . . . , v5 (black) and three
bridges e1, e2, e3 (dotted). (b) The corresponding bridge-block tree with four bridge-
blocks (grey). (c) The BC-tree with five C-nodes (black) representing the cut vertices
and seven B-nodes (grey), three of them being bridges.

that the bridges connecting the bridge-blocks induce a tree structure, since
by definition a bridge cannot be part of a cycle. The bridge-block tree T is
the tree that results from considering the bridge-blocks as nodes, say V (T) =
{b1, . . . , bm} and the bridges as edges connecting them, that is, if there exists
a bridge (u, v) ∈ E′ with u ∈ V (Bi) ∧ u ∈ V (Bj), then there exists an edge
(bi, bj) ∈ E(T). Figure 2.1b shows an example for a bridge-block tree. The
construction of a bridge-block tree takes linear time [67].

In a similar manner, we define the biconnected components tree (BC-tree).
Let B1, . . . , Bm be now the biconnected components of G. Unlike bridge-blocks,
biconnected components are not vertex disjoint, but edge disjoint, that is,
E(Bi) ∩ E(Bj) = ∅ holds for every 1 ≤ i 6= j ≤ m. However, two bicon-
nected components may share at most one vertex which is then a cut vertex.
From its definition, it follows that a cut vertex is part of at least two bicon-
nected components. Let v1, . . . , vk ∈ V be the set of cut vertices in G. The
nodes in a BC-tree T are of two types: B-nodes and C-nodes. The B-nodes
B = {b1, . . . , bm} represent the biconnected components B1, . . . , Bm, whereas
the C-nodes C = {c1, . . . , ck} represent the cut vertices v1, . . . , vk. A B-node
representing Bi is adjacent to a C-node representing a cut vertex vj , if vj is
part of Bi, that is, E(T) = {(bi, cj) | vj ∈ V (Bi)}. The BC-tree of the graph
in Figure 2.1a is shown in Figure 2.1c.

An SPQR-tree T reflects the decomposition of a biconnected graphG = (V,E)
with |E| > 2 into its triconnected components and their relationships [38, 52]. In
fact, every triconnected component Gµ = (Vµ, Eµ) is represented by a tree node
µ in T where Gµ itself is called the skeleton of µ. The interrelationship between
two triconnected components is described by a pair of so-called virtual edges.
Both virtual edges share the same endpoints that correspond to a split pair
{s, t}. A split pair {s, t} is either a pair of adjacent nodes in G or a separation

8

2.1 Technical foundations

v1

v2

v3

(a)

S1R1

P2 R2

P1 S2

(b)

P1

R1

v3

v1

v2

v3

v2

v3

v1

v2

v2

v1

v2

v1

v3

S1

S2

P2

R2

(c)

Figure 2.2. (a) A biconnected graph that is not triconnected with v1, v2, v3 forming
separation pairs. (b) The corresponding SPQR-tree consisting of two R-nodes R1, R2,
two S-nodes S1, S2, two P-nodes P1, P2 and 18 Q-nodes drawn as small grey squares.
(c) The same SPQR-tree, but with the skeletons of the nodes that are not Q-nodes.
Virtual edges between them are drawn dotted, whereas the ones representing Q-nodes
are drawn solid. The arrows indicate the relation between a pair of virtual edges.

pair. Every Gµ can be categorized to be one of four types based on its structure.
A bundle of at least three parallel edges is referred to as P-node. In case Gµ is
a simple cycle of length at least three, it classifies as an S-node, whereas if the
skeleton is a simple triconnected graph, we call it an R-node. The leaves of T
are formed by Q-nodes that are bundles of two edges, one being a virtual edge,
while the other corresponds to an edge of G. An example for a small graph, its
SPQR-tree and the skeletons is shown in Figure 2.2. Usually it is convenient to
root T , hence, inducing a hierarchy on the triconnected components. Except
for the root, every skeleton Gµ contains then a virtual edge (s, t) ∈ Eµ that
represents a link to µ’s parent. We refer to (s, t) as the reference edge of µ
and to its endpoints {s, t} as the poles of µ. When considering a node µ in a
rooted SPQR-tree T , µ induces a subgraph of G called the pertinent graph of
µ. Similar to the previous decompositions, an SPQR-tree can be constructed in
linear time [52]. If the SPQR-tree of a biconnected graph contains no R-nodes,
we may refer to it as series-parallel.

9

2 Preliminaries

Drawings In a drawing Γ ⊂ R2 of a graph G = (V,E), each vertex v ∈ V
is mapped to a distinct point Γ(v) in the plane. Every edge e = (u, v) ∈ E is
mapped to an open jordan curve Γ(e) starting at Γ(u) and ending at Γ(v) and
these are the only two vertices that have a point in common with Γ(e). In case
G is directed, we also consider the curve of an edge (u, v) as being directed
from Γ(u) to Γ(v). More precisely, for two points p, q ∈ Γ(e), we denote with
p ≺ q that p precedes q on Γ(e). Notice that a path u v with u 6= v induces
an open jordan curve as well. Therefore, we may also use p ≺ q to express that
there exists a path that induces an open jordan curve on which p precedes q.
More specifically, there exists either an edge e such that p ≺ q holds or a path
u→ u′ v′ → v (possibly u′ = v′) such that p ∈ Γ((u, u′)) and q ∈ Γ((v′, v)).

If for every edge e ∈ G, Γ(e) is a straight-line segment, instead of an arbitrary
open jordan curve, then Γ is called a straight-line drawing. Similarly, if every
edge is represented by a poly-line, we refer to Γ as a poly-line drawing. In
that case every edge consists of a sequence of straight-line segments such that
consecutive segments share an endpoint. Such an endpoint is called a bend
point, or bend for short. If the coordinates of the vertices and possible bends
are all integer, we refer to the drawing as grid drawing. The width, height and
area of such a grid drawing correspond to the width, height and area of the
smallest axis-aligned rectangle that contains it.

Planarity & embeddings Two edges cross in a drawing Γ, if their correspond-
ing curves intersect. A planar drawing Γ of a graph G = (V,E) is a drawing
in which no two edges cross. A graph that admits a planar drawing is called a
planar graph. Of particular interest in this work are planar graphs of bounded
degree, that is, for some integer k > 0, deg(v) ≤ k holds for every v ∈ V . We
refer to these graphs as k-planar, that is, planar graphs with maximum degree
at most k. A planar drawing of a graph G implies a circular ordering of the
edges around every vertex, which we refer to as a planar embedding of G. Fur-
thermore, a planar drawing subdivides the plane into topologically connected
regions that are called the faces. If G is connected, every face is bounded by
a not necessarily simple cycle of edges. We say a vertex or edge is incident
to a face, if the vertex or edge is part of the bounding cycle, and two faces
are adjacent if they share an edge. Notice that the region of exactly one face
is unbounded, which is referred to as the outer face or exterior face, whereas
the remaining faces are the inner or interior faces. In general, we assume that
the outer face is given when referring to an embedding. A planar graph whose
vertices are all incident to the outer face is said to be outerplanar. A planar
graph G = (V,E) is maximal planar, if one cannot add an edge without de-

10

2.1 Technical foundations

v1

v2

v3

(a)

v1

v2

v3

(b)

v2

v3

R2

P1

R1

v3

v1

v2

v3

v1

v2

v2

v1

v2

v1

v3

S1

S2

P2

(c)

Figure 2.3. (a) Initial embedding of the planar graph from Figure 2.2a. (b) Embedding
after flipping the induced subgraph of R1 along the poles {v1, v3} and swapping the
one of R2 with the Q-node in P2. (c) The corresponding operations in the skeletons.

stroying planarity. Every face in a maximal planar graph is a 3-cycle and the
graph is triconnected. Furthermore, for the number of edges and vertices in a
maximal planar graph, it holds that |E| = 3|V | − 6 [42]. The dual graph of an
embedded planar graph, is the (not necessarily simple) planar graph obtained
from considering the faces as vertices and two vertices are adjacent in the dual
graph, if the corresponding faces have an edge in common.

Now let G = (V,E) be an st-graph. If G′ = (V,E ∪ (s, t)) is planar, then we
say that G is a planar st-graph or has the property of being st-planar. Notice
that in the literature, one may encounter a definition of st-planar in which
it is assumed that the edge (s, t) is present. We explicitly do not require this
property here and are satisfied with s and t being incident to a common face.

Testing whether an undirected graph is planar or not, can be accomplished
in linear-time, and in case a planar embedding exists, it can be obtained within
the same time frame [18, 24, 58, 63]. However, such an embedding is not unique.
In particular, a planar graph that is not triconnected may have an exponen-
tial number of planar embeddings, whereas a triconnected graph has a unique
embedding upon the choice of the outer face and reversing the circular order-
ing, that is, mirroring the embedding. The intuition behind this property is

11

2 Preliminaries

the following: Consider a separation pair {u, v} in a biconnected planar graph
G = (V,E). These may act like two hinges meaning that one may mirror one
of the two subgraphs, while the other one maintains its orientation.

With this in mind, SPQR-trees are of particular interest, because they pro-
vide the information about the triconnected components of a graph. Every
planar embedding induces a planar embedding of the skeletons and vice versa.
Consider a tree node µ of T and its pertinent graph, say G′µ, which is a sub-
graph of G. Now we may obtain a different embedding by flipping G′µ along
the poles of µ. While this works regardless of the node-type of µ, P-nodes offer
even more possibilities. Recall that the skeleton of a P-node is a bundle of at
least three virtual edges (one being the reference edge). Every ordering of the
parallel virtual edges results in a different embedding. An example is given
in Figure 2.3, in which the pertinent graph of R1 is flipped along the poles,
whereas in the skeleton of P1 an edge-swap is performed. Now it is not hard to
see that with these two operations one may generate an exponential number of
different planar embeddings.

st-ordering Let G = (V,E) be an undirected or directed graph with s, t ∈ V ,
s 6= t and let π : V → {1, . . . , |V |} be the rank of the vertices in an ordering
s = v1, v2, . . . , vn = t, that is, π(vi) = i with 1 ≤ i ≤ n. π is called an st-
ordering, if for all vertices v ∈ V with 1 < π(v) < n, there exists (u, v), (v, w) ∈
E with π(u) < π(v) < π(w). It is not hard to see that a directed graph that
admits such an st-ordering is an st-graph and vice versa. In order to obtain
an st-ordering for an st-graph, it is sufficient to topologically sort the vertices,
which takes linear time [31]. An undirected graph G = (V,E) admits an st-
ordering, if and only if, G′ = (V,E ∪ (s, t)) is biconnected. There exist several
linear-time algorithms to compute an st-ordering in the undirected case, see
e.g. [20, 46, 47]. Given an st-ordering π for G, we refer to the directed graph
that is obtained by orienting every edge (u, v) ∈ E such that π(u) < π(v) holds,
as the st-orientation of G.

2.2 Oriented planar drawings of directed graphs
When drawing directed graphs, one usually desires a drawing in which the
edges flow in a common direction, for example from bottom to top. Of course
this is not always possible. Consider a simple cycle; in its nature, there exists
no common direction for the edges. The literature contains quite an extensive
amount of work on this subject. Most of these drawing styles have in common
that they require the drawing to be planar.

12

2.2 Oriented planar drawings of directed graphs

s

t c

d

b
a

(a)
s

t

c

d

b
a

(b)
s

t

c d

ba

(c)

Figure 2.4. (a) A planar st-graph and (b) a corresponding upward planar straight-line
layout. (c) A graph that does not admit an upward planar drawing and is not st-planar.
After adding the dashed edge, the underlying undirected graph is not planar.

Let us formalize the idea of such oriented drawings in more detail. In the fol-
lowing, we introduce different conventions for drawing directed planar graphs.
Instead of an algorithmic approach to this area, we focus on the relation of
these drawings with the aim to sketch the landscape of directed graphs that
admit such drawings. Besides existing styles, we introduce a new type of draw-
ing whose sole purpose is to provide a high degree of freedom from a geometric
point of view. These so-called not-downward drawings generalize in some sense
the concept of drawing edges in a common direction. Although this generaliza-
tion offers great flexibility, we show that the graphs that admit such drawings
are the upward planar graphs that we will introduce now.

The so-called upward planar drawings are a type of drawing that has
received much attention in the past. Given a planar drawing Γ of a directed
graph G = (V,E), we say Γ is upward planar, if for every edge e ∈ E, the
corresponding curve Γ(e) is strictly monotonically increasing in the vertical
direction. More precisely, Γ is upward planar if for every p, q ∈ Γ, the following
holds:

p ≺ q ⇒ y(p) < y(q).

A directed graph G is called upward planar, if there exists a drawing of
G that is upward planar. An example of a planar st-graph and an upward
planar straight-line drawing is shown in Figure 2.4a and 2.4b, respectively.
But not every planar digraph is upward planar. An example is depicted in
Figure 2.4c. Deciding whether a planar acyclic digraph is upward planar is a
difficult problem. Garg and Tamassia [49] show that the general case in which
one may choose the embedding, is NP-complete. Several approaches to solve
this problem have been developed, see e.g. [25, 26]. If the embedding is fixed
or the graph contains only a single source, the problem is polynomial-time
solvable [1, 12, 13, 35].

13

2 Preliminaries

The following theorem by Di Battista and Tamassia [37] is fundamental when
it comes to the characterization of upward planar graphs and drawings.

I Theorem 2.1. [37] Given a planar digraph G, the following three statements
are equivalent.

• G is upward planar.

• G admits an upward planar straight-line layout.

• G is a spanning subgraph of a planar st-graph.1

Another type of straight-line drawing that is more restrictive than the up-
ward planar one, is called dominance drawing. Here the edges are drawn
upward and rightward. Moreover, for two vertices u, v ∈ V , we say that v
dominates u, if and only if x(u) ≤ x(v) and y(u) ≤ y(v) holds. The idea of
dominance drawings is that if there exists a path from u to v, then v dominates
u in the drawing and vice versa. An example is shown in Figure 2.5a. In a more
formal manner, we say that a planar straight-line drawing Γ is a dominance
drawing, if for every pair u, v ∈ V the following holds:

u v ⇔ x(u) ≤ x(v) ∧ y(u) ≤ y(v).

The condition that this holds both ways is quite strong compared to the require-
ments for an upward planar drawing. For example, the graph in Figure 2.5b
does not admit a dominance drawing, but the depicted drawing is clearly up-
ward planar.

Di Battista et al. [39] describe a linear-time algorithm to produce a domi-
nance grid drawing within quadratic area. However, it requires a reduced planar
st-graph as input. We introduce this subset of planar st-graphs in a more for-
mal manner for reasons that will become evident later. In a planar st-graph
G = (V,E), an edge (u, v) ∈ E is a transitive edge, if there exists a path u v
in G that does not contain (u, v). If G does not contain transitive edges, then G
is called a reduced planar st-graph. The algorithm in [39] does not employ any
sophisticated techniques, but relies heavily on the fact that the input graph
does not contain transitive edges.

A slightly relaxed version are the weak dominance drawings in which the
existence of a path still implies the dominance relation, but not necessarily the
other way around. More precisely, for every u, v ∈ V , the following holds:

u v ⇒ x(u) ≤ x(v) ∧ y(u) ≤ y(v).
1Notice that the removal of vertices does not destroy upward planarity, therefore, a non-

spanning subgraph of a planar st-graph is upward planar as well.

14

2.2 Oriented planar drawings of directed graphs

(a) (b) (c)

Figure 2.5. (a) Example for a dominance drawing. (b) An upward planar graph that
does not admit a dominance drawing, but a weak dominance drawing (c).

Figure 2.5c shows a weak dominance drawing of the graph from Figure 2.5b,
which does not admit a dominance drawing. By definition, it follows that every
dominance drawing is a weak one. Assuming a weak dominance straight-line
drawing Γ is given, rotating Γ counter-clockwise by an angle 0 < α < π

2 yields
an upward planar straight-line drawing. This rotation is only necessary in case
Γ contains horizontal edges which are not allowed in an upward drawing.

Although one may get the impression that the weak dominance property is
slightly stricter than upward planarity, it turns out that this is not the case.

I Lemma 2.2. A digraph G admits a planar weak dominance drawing if and
only if G is upward planar.

Proof. We only prove “⇐”, the other direction has already been argued. Since
G = (V,E) is upward planar, it admits an upward planar straight-line draw-
ing Γ. We show how to transform Γ into a planar weak-dominance straight-
line drawing Γ′. The idea is to stretch Γ vertically such that for every edge
(u, v) ∈ E, |x(v) − x(u)| ≤ y(v) − y(u) holds, that is, every edge (u, v) ∈ E
has an angle between π

4 and 3π
4 . Rotating the result by π

4 clockwise yields a
weak dominance drawing. In order to preserve possible grid coordinates in Γ,
an additional scaling of

√
2 is applied.

More specifically, let c be the vertical stretching factor for which we choose

c = max
(u,v)∈E

⌈ |x(v)− x(u)|
y(v)− y(u)

⌉
.

We may assume that there exists at least one edge (u, v) ∈ E with x(u) 6= x(v),
because otherwise, when all edges are vertical segments, Γ is already a planar
weak-dominance straight-line drawing. Rounding up to the nearest integer is
only necessary in case integer coordinates must be preserved. Putting it all

15

2 Preliminaries

together, yields a new set of coordinates for Γ′:

x′(v) = x(v) + c · y(v) and y′(v) = c · y(v)− x(v)

for every v ∈ V . In order to verify that the result is a weak dominance drawing,
that is, x′(v)− x′(u) ≥ 0 and y′(v)− y′(u) ≥ 0 holds for every edge (u, v), we
plug x′ and y′ into the above inequalities and solve for c. For the former, we
get c ≥ x(u)−x(v)

y(v)−y(u) , whereas for the latter, c ≥ x(v)−x(u)
y(v)−y(u) is obtained, which hold

both due to our choice of c. Furthermore, the transformation is affine, therefore,
planarity is not an issue. Notice that if x(v) and y(v) are integer, then the same
holds for x′(v) and y′(v), because c is integer. In case Γ is a grid drawing, that
is all coordinates are integer, then it is not difficult to see that c is bounded
by the width of Γ, which enables us to preserve a possible polynomial area
property of the drawing.

The intuition of this result is the following: The additional restriction that
in a weak dominance drawing the successors have to be placed to the right
and above their successors is only of geometric nature when compared to an
upward drawing, where it is sufficient to place them above their predecessors.

Consider an upward planar drawing Γ and some point p ∈ Γ. By definition, all
other points q for which there exists p ≺ q, have to be placed above p. We may
refer in an informal manner to the upper half plane as the feasible drawing area
for successors in an upward drawing. When now considering a weak dominance
drawing, then the feasible drawing area is the upper right quadrant. In the
proof of Lemma 2.2, we essentially described an affine transformation that
maps one feasible drawing area to the other. And as a result, we may state
that restricting the feasible drawing area for successors does not necessarily
restrict the class of graphs that admit such a drawing. Let us investigate this
idea a bit further.

Di Giacomo et al. [40] introduce another form of drawing that in contrast
to weak dominance drawings does not require a successor to be placed above
and to the right of a vertex. Instead, it can be placed above or to the right.
To avoid confusion, we introduce this drawing style under a slightly different
name than in [40]. We say a planar straight-line drawing Γ of digraph G is a
weak upward-rightward (weak UR) drawing, if for every pair of vertices
u, v ∈ V the following holds:

u v ⇒ x(u) < x(v) ∨ y(u) < y(v).

In [40] the authors show that every planar digraph admits such a drawing within
polynomial area. Figure 2.6a shows a weak UR drawing of a simple cycle. A

16

2.2 Oriented planar drawings of directed graphs

(a)

s

t

d

c

a

b

(b)

s

b

a d

c

t

(c)

Figure 2.6. (a) Weak UR drawing of a cycle that is not a strong UR drawing. (b) Weak
UR drawing of the st-graph from Figure 2.4c that is not upward planar. (c) Strong
UR drawing of the upward planar graph from Figure 2.4a.

weak UR drawing of another graph that is not upward planar is depicted in
Figure 2.6b. Notice that the feasible drawing area of weak UR drawings contains
the upper half plane and the lower right quadrant.

During the conference at which the authors presented their results, a fruitful
discussion emerged, and the question was asked, how a slightly stronger variant
of their model influences the class of graphs that admit such a drawing. We
introduce this model here and call it a strong upward-rightward (strong
UR) drawing. More specifically, a planar drawing Γ of a digraph G = (V,E)
is called strong upward-rightward, if for every two points p, q ∈ Γ it holds that

p ≺ q ⇒ x(p) < x(q) ∨ y(p) < y(q).

Notice that the only differences between weak and strong UR drawings are that
the former requires edges to be straight-lines and constrains the vertex position,
whereas for the later the requirement must hold for all points. Furthermore, a
strong UR drawing is not necessarily a straight-line drawing. It is not difficult
to see from their definitions that every strong UR-drawing is also a weak UR-
drawing, but not necessarily the other way around as illustrated in Figure 2.6a.
Moreover, it is not hard to see that every upward planar drawing is a strong
UR-drawing. However, in comparison to an upward planar drawing, a strong
UR-drawing offers more possibilities due to a larger feasible drawing area.

This observation gives rise to the following questions: Is there a digraph
that admits a strong UR-drawing, but that is not upward planar? In other
words: the strong UR-model is a relaxation of upward planar drawings from
a geometric point of view, so can we draw more graphs in this model due to
this relaxation? Compared to the relation of weak dominance drawings and
upward planar graphs, where restricting the feasible drawing area of successors

17

2 Preliminaries

p ≺ q

p

(a) upward

u

u v

(b) weak-dom.

p

p ≺ q

(c) strong UR

p

p ≺ q

(d) ND

Figure 2.7. Comparison of the feasible drawing area for successors in the various
models: (a) upward planar, (b) weak-dominance straight-line, (c) upward-rightward,
and (d) not-downward. The striped area indicates forbidden locations for successors.

does not lead to a reduced class of graphs that admit such a drawing, we now
ask the opposite question: Does enlarging the feasible drawing area result in a
larger class of graphs?

In order to deal with these questions in more detail, we do not consider strong
UR-drawings. Instead we introduce a new class of drawing that takes the idea
of increasing the feasible drawing area to the extreme. Roughly speaking, we
only require the upward condition, if two points have the same x-coordinate.
This new type of drawing, we refer to as not-downward (ND) drawing, can
be formalized as follows: A planar drawing Γ is an ND-drawing of a digraph G,
if for every pair of points p, q ∈ Γ the following holds:

p ≺ q ⇒ y(p) < y(q) ∨ x(p) 6= x(q).

Figure 2.7 illustrates the feasible drawing areas of four drawing types includ-
ing ND-drawings. By their definition, it follows immediately that every weak
dominance, upward planar or strong UR-drawing is an ND-drawing. An exam-
ple for the degree of freedom granted by this type of drawing is illustrated in
Figure 2.8a, in which the curve of a single edge (u, v) that complies with the
not-downward property is shown. An ND-drawing of a small planar st-graph
is depicted in Figure 2.8b. Clearly, such a drawing is far from being an upward
planar one.

Intuitively, one may think that the class of graphs that admit such an ND-
drawing is much larger than the upward planar graphs. Surprisingly, this is not
the case, and in the following, we show that these classes coincide, that is, the
graphs admitting an ND-drawing are exactly the upward planar graphs.

We start with two simple lemmas to prepare for the main theorem.

I Lemma 2.3. Let G = (V,E) be a digraph and G′ = (V ′, E′) a digraph that
is obtained by replacing every edge e = (u, v) ∈ E by a directed path u v of
arbitrary length. If G′ is upward planar, then G is upward planar.

18

2.2 Oriented planar drawings of directed graphs

u v

p

q

(a)

s

b

c

t
a

d

(b)

Figure 2.8. (a) Example for an edge (u, v) in an ND-drawing. For every point pair p, q
with p ≺ q and x(p) = x(q), y(p) < y(q) holds. (b) Example for an ND-drawing of the
planar st-graph from Figure 2.4a.

Proof. By Theorem 2.1, G′ admits an upward planar straight-line drawing.
Then every edge e = (u, v) ∈ E of G that has been replaced by a directed path
u v in G′ can be drawn as a poly-line using the inner vertices as bends.

Although the ND-property provides many possibilities for drawing a digraph,
the representation of cycles, however, is not one of them.

I Lemma 2.4. A digraph that admits an ND-drawing is acyclic.

Proof. Assume to the contrary that there exists a cycle C. This cycle induces
a closed jordan curve in any ND-drawing. There exists a vertical line that is
crossed by C in at least two points p 6= q such that p ≺ q and q ≺ p holds.
Regardless of their exact y-coordinates, either y(p) < y(q) or y(p) > y(q) holds.
Hence, in one of the two cases, the not-downward property is violated.

We will exploit this property in the upcoming main theorem using a sim-
ple idea. If we augment a graph that admits an ND-drawing and are able to
maintain a feasible ND-drawing, then we can claim that the resulting graph is
acyclic. So instead of arguing along the structural changes made to prove that
the result is acyclic, we argue with the existence of a feasible ND-drawing.

I Theorem 2.5. A digraph admits an ND-drawing if and only if it is upward
planar.

Proof. By definition, every upward planar drawing is planar not-downward.
Hence, it remains to show that a digraph G = (V,E) that admits a not-
downward planar drawing Γ is upward planar.

We first outline the overall idea of the proof. Given an ND-drawing for G,
we augment G by splitting some edges to obtain a new digraph G′. G′ has the
property that every sink is on the outer face or has a vertex right above it.

19

2 Preliminaries

u

v

(a)

u

v
r

w

e

(b)

u

(c)

Figure 2.9. The three possible cases when shooting a ray upwards from a sink u: the
ray hits (a) a vertex v, (b) an edge e = (r, w) or (c) nothing at all.

Similarly, every source has a vertex below or is accessible from the outer face.
Adding edges between sinks (sources) and the corresponding vertices above
(below) eliminates these sinks (sources), and enables us to show that G′ is a
subgraph of a planar st-graph Gst, which suffices for G being upward planar.

We start with describing the construction of G′. Let u be a sink in G. When
shooting a ray from u upwards, three cases are possible (see Figure 2.9): The
ray hits (i) a vertex v, (ii) an edge e = (r, w) or (iii) nothing. The new digraph
G′ should only contain sinks for which either case (i) or (iii) applies. In case
(ii), that is, in which we hit an edge e = (r, w), we split e into two new edges
(r, v), (v, w) with v being a dummy vertex. In the drawing, we place v on the
curve representing e such that x(v) = x(u). The two new edges (r, v), (v, w)
inherit their layout from e. This way the result remains a feasible ND-drawing.
For the sources in G, we proceed similarly by shooting a ray downwards.

Let the result of all these edge splits be G′ = (V ′, E′). By construction, for
every sink u, there either exists v ∈ V ′ with x(u) = x(v) and y(u) < y(v), or
the vertical ray starting from u going upwards does not intersect the drawing.
In a symmetric manner, for every source v, there either exists u ∈ V ′ with
x(u) = x(v) and y(u) < y(v), or the vertical ray pointing downwards from v
hits nothing. Moreover, the drawing Γ′ is a feasible ND-drawing for G′.

As a next step, we show that when adding an edge (u, v) with u being a sink
and v the corresponding vertex above, the result is still a feasible ND-drawing.
The edge is drawn as a vertical segment from u to v. We only consider here
the case in which u is a sink. For a source, the same procedure can be applied.
We prove by induction over the number of edges inserted, say k, assuming that
they are given in some arbitrary order. Let G′k be the graph after adding the
k-th edge, and Γ′k the corresponding drawing. Clearly, Γ′0 = Γ′ is a feasible
ND-drawing for G′0 = G′.

Now assume to the contrary that after adding the k + 1-th edge e = (u, v),

20

2.2 Oriented planar drawings of directed graphs

u

p

v

q

(a)

u

p

v

q

(b)

u

q

v

p

(c)

u

v

p

q

(d)

Figure 2.10. The four subcases to consider when p, q, u, v are vertically aligned. Bold
curves represent contradicting paths. Gray parts of e = (u, v) are not part of p q.
(a) p, q are both on e = (u, v), (b) only p is on e, or (c) only q is on e. (d) Neither p
nor q are on e implying y(p) < y(q)

Γ′k+1 is no longer a feasible ND-drawing for G′k+1 = G′k ∪ e. More specifically,
if we add e to G′k drawn as a vertical segment, then there exist two points p, q
on a curve induced by a path such that p ≺ q and x(p) = x(q) ∧ y(p) > y(q)
holds. Furthermore, by our hypothesis, we may assume that Γ′k is a feasible
ND-drawing for G′k, thus, this curve does not exist in Γ′k. Clearly, the new edge
e = (u, v) must be involved in some way. Let lpq and luv be the vertical lines
through p, q and u, v, respectively. With a slight abuse of notation, we may refer
with lpq and luv to the subset of points or the x-coordinate of the vertical lines.
Based on the relative position of lpq and luv, we distinguish three main cases.

First, suppose that p, q, u and v are vertically aligned, that is, lpq = luv. We
show by enumeration of all subcases that p, q with y(p) > y(q) cannot exist
in Γ′k+1, when Γ′k is a feasible ND-drawing. In total there are four subcases
to consider that depend on the relative position of e = (u, v) and p, q. These
can be summarized as follows: p, q lie on e (including u and v), either p or
q is on e, or none of the two is on e. In order to simplify notation, we refer
to p, q as vertices to prevent an excessive distinction between paths and edge
segments. Notice that p, q are not necessarily vertices, but we may split an edge
temporarily to achieve this. The feasibility of an ND-drawing is not affected,
since it depends only on the curves induced by paths.

In the case p, q are both on e, it follows from y(p) < y(q), that there exists
a path p → v u → q in G′k+1 (Figure 2.10a). The subpath v u cannot
contain (u, v), thus, exists in G′k, but by construction y(u) < y(v) holds, which
contradicts that Γ′k is a feasible ND-drawing. If only p is part of e but q is
not, then there exists a path p → v q with v q ∈ G′k and y(q) < y(v), a
contradiction (Figure 2.10b). In a symmetric manner, that is, if q is on e instead
of p, there exists p u → q, which implies p u ∈ G′k and y(u) < y(p),

21

2 Preliminaries

p

q

lpq luv

u

q′

v′
p′

u′

v

(a)

p

q

lpq luv

u

q′

p′

u′

vr

v′

(b)

Figure 2.11. (a) Example layout of the path p u → v q in the case lpq < luv.
Circles indicate possible candidates for p′, q′, u′ and v′. (b) Subpaths p′ u′ and
v′ q′, both contained in the strip bounded by lpq and luv with a common vertex r.

again a contradiction (Figure 2.10c). If neither p nor q are part of e, then e is
completely involved, that is there exists p u→ v q with p u ∈ G′k and
v q ∈ G′k, which yields y(p) < y(u) and y(v) < y(q). Since by construction
y(u) < y(v) holds, we get y(p) < y(q), contradicting the assumption that
y(p) > y(q) (Figure 2.10d).

Now assume that lpq < luv. Since neither p nor q can lie on e = (u, v), there
exists then a path p u→ v q. Let us take a closer look at the path p u,
more specifically, its intersection with lpq and luv. There exists at least one
such intersection on each side, namely at p and u themselves. However, there
might exist several more (crossings or intersections). See Figure 2.11a for an
example. Let p′ be such a point of (p u) ∩ lpq (possibly p itself). Since this
path does not contain (u, v) and x(p) = x(p′) holds, we may argue that in case
p 6= p′, p p′ also exists in G′k, and, therefore, for every such p′, y(p) ≤ y(p′)
holds. With the same argument, for every u′ ∈ (p u) ∩ luv, it holds that
y(u′) ≤ y(u). Now, we choose p′, u′ such that their corresponding path p′ u′

has no other points in common with lpq, luv, that is (p′ u′) ∩ lpq = {p′} and
(p′ u′) ∩ luv = {u′} holds. In a symmetric manner, we choose v′ and q′ such
that (v′ q′) ∩ lpq = {q′} and (v′ q′) ∩ luv = {v′} holds.

Hence, p′ u′ and v′ q′ are contained in the strip bounded by lpq and
luv, having only their endpoints in common with the two vertical lines (Fig-
ure 2.11b). More specifically, for every r ∈ p′ u′ with p′ ≺ r ≺ u′, it holds
that lpq < x(r) < luv, and for every r ∈ v′ q′ with v′ ≺ r ≺ q′, it holds
that lpq < x(r) < luv. Moreover, by construction, y(u) < y(v), and, by as-
sumption, y(q) < y(p) holds, which yields y(q′) ≤ y(q) < y(p) ≤ y(p′) and
y(u′) ≤ y(u) < y(v) ≤ y(v′).

22

2.2 Oriented planar drawings of directed graphs

Now consider Figure 2.11b in which the situation is illustrated. From y(q′) <
y(p′), y(u′) < y(v′), and that p′ u′, v′ q′ are contained in the strip bounded
by lpq, luv, it follows that they cross or have a vertex in common. The former
case contradicts planarity, so assume they share a vertex, say r with p′ r u′

and v′ r q′. Then there also exists p′ r q′ and v′ r u′. Notice
that the newly added edge e = (u, v) is not involved. Therefore, both paths
exist in G′k and contradict with y(q′) < y(p′) and y(u′) < y(v′) that Γ′k is a
feasible ND-drawing.

The remaining case lpq > luv is symmetric. One may just temporarily flip the
drawing. We conclude that inserting e = (u, v) drawn as a vertical segment,
does not create a pair of points p, q such that p ≺ q with x(p) = x(q) and
y(p) > y(q) holds. Therefore, if Γ′k is a feasible ND-drawing, so is Γ′k+1 then.
Hence, we can add all edges such that for the sinks and sources that remain, only
case (iii) applies, that is, the corresponding sink or source is on the outer face.

In order to eliminate those, we add a super source s and super sink t that
are placed below and above the drawings bounding box, respectively. Now we
exploit that the vertical ray at a sink u hits nothing during the construction
of G′. We insert an edge (u, t) using a vertical line segment until we hit the
bounding box, then we turn towards t with a bend. For a source v, we proceed
similarly by inserting an edge (s, u). Let the resulting graph be Gst for which we
now claim that Gst is st-planar. Clearly, s and t are on the outer face. Moreover,
it is not hard to see thatGst is planar and acyclic. This follows from the fact that
Gst−{s, t} has a feasible ND-drawing, thus, by Lemma 2.4 is acyclic. Addition
of s and t does not induce additional cycles nor does it destroy planarity. By
Theorem 2.1, Gst is upward planar. Moreover, Gst−{s, t} is a subgraph of Gst
and so is G′ and, therefore, upward planar as well. From Lemma 2.3, it follows
then that G is upward planar which concludes the proof.

Since no algorithm has been described to actually create an ND-drawing, one
may argue that it is an artificial construct. But this type of drawing provides a
high degree of freedom by its definition such that it includes most of the other
drawing classes presented so far. At the same time, Theorem 2.5 states that
this relaxation does not lead to an enlarged class of graphs that admit such a
drawing. Therefore, it may serve as an alternative geometric characterization
of upward planarity. One may also say that the upward planar graphs are not
only special in the sense that they admit an upward planar drawing, but that
upward planarity itself is a requirement for a family of drawing styles. Fig-
ure 2.12 illustrates the landscape of the different drawing types, graph classes
and their relations that have been discussed. Notice the cycle obtained from
the proof of Theorem 2.5.

23

2 Preliminaries

planar digraphs weak upward-rightward

upward planar

subgraph of a

planar st-graph

not-downward

Di Giacomo et al.

by def.

by def.

Theorem 2.1

strong upward-rightward
by def.

by def.

Theorem 2.5
weak dominance

Lemma 2.2

straight-line planar st-graph

Figure 2.12. Discussed classes of planar digraphs, their drawings and relationships.
An arc corresponds to the subset relation, for example, every planar st-graph is a
subgraph of a planar st-graph, but not vice versa.

24

3 Bitonic st-orderings

As fundamental ingredients of incremental drawing procedures, various types of
orderings have been developed and improved over the years. De Fraysseix, Pach
and Pollack [34] introduced the canonical ordering to create straight-line draw-
ings of maximal planar graphs. Afterwards, Kant [62] extended this concept to
the triconnected case. Obtainable in linear-time, both have been used in the
graph drawing literature extensively [5, 9, 22, 27, 44, 45, 62]. A few attempts
have been made to generalize them to the biconnected case by relaxing their
properties [51, 53]. However, an alternative that in nature works for biconnected
graphs and that can be computed in linear time, are st-orderings [20, 47]. In
the field of graph drawing, they have been used in several methods, reaching
from the construction of visibility representations to drawings of non-planar
graphs, see e.g. [16, 35, 66]. Although canonical and st-orderings share some
properties in the planar case, it seems that they are usually not used in the
same context.

In the following, we investigate these differences in more detail, especially
one property of canonical orderings that is used implicitly in many drawing al-
gorithms. Consider the successors of a single vertex in the clockwise ordering as
implied by the embedding. Then their ranks in the canonical ordering form an
increasing and then decreasing sequence, that is, a bitonic sequence. Common
st-orderings do not necessarily have this property, rendering them unsuitable
for some applications.

We counteract by introducing a new type of st-ordering for biconnected pla-
nar graphs: the bitonic st-ordering, an st-ordering in which the successors of
every vertex appear in the aforementioned pattern. We show that every bicon-
nected planar graph admits such an ordering. The proof is constructive and
yields a linear-time algorithm that computes the ordering and a corresponding
embedding. For the case where a fixed embedding is given, we prove that one
cannot always find a bitonic st-ordering. In order to further support our idea,
we describe two applications. In the first one, we extend the straight-line al-
gorithm of de Fraysseix, Pach and Pollack [34] to bitonic st-orderings. In the
second one, we describe how to obtain a special visibility representation and
then transform it into a rectilinear T-shaped polygon contact representation.

Although the adaptation of the algorithm of de Fraysseix et al. does not
yield any new results at first glance, it serves as an important algorithmic tool

25

3 Bitonic st-orderings

in the second part, that is, the investigation of bitonic st-orderings for pla-
nar st-graphs. Unlike canonical orderings, the concept of st-orderings directly
translates to directed graphs. Motivated by the observation that the presented
straight-line algorithm creates an upward planar straight-line drawing from a
bitonic st-ordering, we completely characterize the class of planar st-graphs
for which a bitonic st-ordering exist. The result is a linear-time algorithm that
recognizes these graphs and in case such an ordering exists, computes it within
the same time bound.

For planar st-graphs that do not admit a bitonic st-ordering, we offer a
different approach. We show that by splitting specific edges, we can enforce
the existence of such an ordering. In general one would like to split as few
edges as possible, since, for example, in our application every additional vertex
corresponds to a bend in the resulting upward drawing. With this in mind,
we describe a linear-time algorithm that computes the minimum set of edges
to split such that the resulting graph admits a bitonic st-ordering. Although
this does not necessarily minimize the number of bends in an upward planar
drawing, we are able to improve upon the best known theoretical bound. More
specifically, we show that every embedded planar st-graph has an upward pla-
nar poly-line drawing within quadratic area with at most |V |−3 bends in total
and at most one bend per edge. Furthermore, such a drawing can be obtained
in linear time.

3.1 Bitonic st-orderings of biconnected planar graphs

In the following, we first introduce some notations and definitions that are used
throughout this chapter. If not stated otherwise, we consider in this section only
simple planar connected graphs.

Assume that we are given a planar graph G embedded in the plane together
with an st-ordering π for G such that s and t are on the outer face. π has a nice
property which has been used in the graph drawing literature extensively [35]:
When considering the circular ordering of the neighbors at a vertex v as implied
by the embedding, then the set of predecessors and successors of v with respect
to π form a consecutive sequence. We denote the ordered sequence of successors
of a vertex v by S(v) = {w1, . . . , wm} such that for 1 ≤ i < m, wi precedes
wi+1 in the circular clockwise ordering around v and π(v) < π(wi) holds for all
1 ≤ i ≤ m. This is well-defined for every v 6= s due to the presence of at least
one predecessor. For S(s) with |S(s)| > 1, we choose w1 to be the vertex that
follows s on the boundary of the outer face in clockwise direction.

The property that the predecessors and successors appear consecutively is

26

3.1 Bitonic st-orderings of biconnected planar graphs

particularly useful in an incremental drawing procedure. However, one has
no control over which successor is placed when. Consider a simple exam-
ple where a vertex v has been placed that has three successors, let us say
S(v) = {w1, w2, w3}. Then, π may be chosen such that w2 must be placed
before w1 and w3, that is, π(w2) < π(w1) and π(w2) < π(w3) holds. This may
cause problems when attaching the edges (v, w1) and (v, w3), since (v, w2) has
already been attached.

This lack of control is avoided by using canonical orderings. De Fraysseix et
al. [34] were the first to introduce this concept by giving the following definition:

I Definition 3.1 (Canonical ordering for maximal planar graphs [34]). Let G =
(V,E) be a maximal planar graph embedded in the plane with exterior face
u1, u2, u3. An ordering v1 = u1, v2 = u2 . . . , vn = u3 of the vertices is a canon-
ical ordering if for every 4 ≤ k ≤ n, the following holds:

• The subgraph Gk−1 ⊂ G induced by v1, v2, . . . vk−1 is biconnected, and the
boundary of its exterior face is a cycle Ck−1 containing the edge (v1, v2).

• vk is in the exterior face of Gk−1, and its neighbors in Gk−1 form an (at
least 2-element) subinterval of the path Ck−1 − (v1, v2).

A situation as in the small example cannot occur when using canonical or-
derings, because of the biconnectivity of Gk. In fact one can go one step further
and claim (as we did in the introduction) that the partition indices of the suc-
cessors when considered in the clockwise ordering as implied by the embedding,
form an increasing and then decreasing sequence. We will prove this for canon-
ical orderings as an intermediate step later. For now we refer to this as the
bitonic property.

Kant [62] extended the idea of de Fraysseix et al. to triconnected planar
graphs. His definition, however, is not based on a vertex ordering, instead an
ordered partition of the vertices is used.

I Definition 3.2 (Triconnected canonical ordering [62]). Let G = (V,E) be a
triconnected plane graph and (v1, v2) an edge on the outer face. Let V1∪· · ·∪VK
be an ordered partition of V and Gk (1 ≤ k ≤ K) the subgraph induced by
V1 ∪ · · · ∪ Vk with outer face Ck. V1 ∪ · · · ∪ VK is a canonical ordering of G if:

• V1 = {v1, v2} and VK = {vn}, where vn lies on the outer face and is a
neighbor of v1.

• Each Ck (k > 1) is a cycle containing (v1, v2).

• Each Gk is biconnected and internally triconnected.

27

3 Bitonic st-orderings

Gk−1

v1 v2

G−Gk

Vk = {z}

(a)

Gk−1

v1 v2

· · ·Vk = {z1 zm}

G−Gk

(b)

GK−1

v1 v2

VK = {vn}

(c)

Figure 3.1. Triconnected canonical ordering as defined by Kant [62]: (a) A singleton
Vk = {z} with at least two neighbors in Gk−1 and at least one in G−Gk−1. Required
edges are drawn solid whereas optional edges are drawn dashed. (b) A chain Vk =
{z1, . . . , zm} where z1 and zm have exactly one neighbor in Gk−1. (c) The last vertex
vn that is adjacent to v1.

• For 1 < k < K one of the two following conditions holds:
1. Vk = {z} is a singleton where z belongs to Ck and has at least one

neighbor in G−Gk.
2. Vk = {z1, . . . , zm} where each zi (1 ≤ i ≤ m) has at least one

neighbor in G−Gk, and where z1 and zm each have one neighbor in
Ck−1, and these are the only two neighbors of Vk in Gk−1.

In difference to the definition given by de Fraysseix et al., Kant distinguishes
between two types of partitions. The singletons, partitions consisting of a sin-
gle vertex, play a similar role as in Definition 3.1 for maximal planar graphs
(Figure 3.1a and 3.1c). However, chains, that are partitions consisting of more
than one vertex, have a different structure since not all vertices have a neighbor
in Gk−1. See Figure 3.1b for an illustration.

The concept of canonical ordering has been generalized to the biconnected
case. Gutwenger and Mutzel [51] use an ordered partition of the vertices, re-
ferred to as biconnected shelling ordering, to create poly-line drawings in an
incremental manner. A similar but more vertex ordering-based concept is used
by Harel and Sardas [53]. They introduce the so called biconnected canonical
ordering for drawing planar graphs in a straight-line style. In contrast to the
triconnected variant where it is guaranteed that Gk is biconnected, one has
now to deal with the additional problem that a vertex vk may only have one
neighbor in Gk−1. Harel and Sardas introduce for those vertices the property
of having left, right and legal support.

I Definition 3.3 (Left, right and legal support [53]). Let G be a biconnected
planar graph drawn in the plane, Gk be a connected subgraph of G, and Ck =

28

3.1 Bitonic st-orderings of biconnected planar graphs

Gk

wi wi+1

v

v1 v2

(a)

Gk

wiwi−1

v

v1 v2

(b)

Gk

wiwi−1

v1 v2

v

wi+1

(c)

Figure 3.2. A vertex v that has only one neighbor in Gk. In (a) v has right support
on the contour Ck = {v1 = w1, w2, . . . , wm = v2}. Possible other edges incident to wi
whose other endpoints are in G−Gk are drawn dashed. In (b) a symmetric situation
when v has left support, whereas in (c) v has neither left nor right support.

w1, w2, . . . , wm be the counter-clockwise boundary list of the exterior face of Gk.
Moreover, let v ∈ G − Gk be a vertex that lies in the exterior face of Gk, and
which has exactly one neighbor in Gk that by planarity must lie on Ck. Assume
this neighbor is wi for some i with 1 ≤ i ≤ m.

• We say that v has a right support if v immediately follows wi+1 in the
counter clockwise circular ordering around wi; it has a left support if
v immediately precedes wi−1 in the counter clockwise circular ordering
around wi.

• We say that v has a legal support on Ck, if i = 1 and v has a right support,
or i = m and v has a left support, or 1 < i < m and v has a left support
or a right support.

The property of having either right or left support is shown in Figure 3.2a
and Figure 3.2b, respectively. An example for a situation that is not allowed is
given in Figure 3.2c where v follows and precedes two vertices in the counter
clockwise circular ordering around wi that are both not in Gk. This property
is a fundamental requirement for a biconnected canonical ordering that is used
in an incremental drawing procedure, because it may be used to establish the
bitonic property as in the triconnected version. A similar mechanism can be
found in the shelling ordering of Gutwenger and Mutzel [51]. In both definitions,
the constraints of the triconnected version have been relaxed. Since we will use
some more ideas from Harel and Sardas later, we give their definition here.

I Definition 3.4 (Biconnected canonical ordering [53]). Let G be a biconnected
planar graph drawn in the plane, and let (u, v) be an edge on the clockwise
boundary list of its exterior face. A biconnected canonical ordering is a labeling
of the vertices of G in a sequence v1, . . . , vn such that v1 = u and v2 = v, and
for every 2 ≤ k ≤ n the following hold:

29

3 Bitonic st-orderings

• Let Gk be the subgraph of G induced by v1, . . . , vk. Then Gk is connected,
and the edge (v2, v1) is on Ck, the contour of Gk. Fix w1 to be v1, so that
we write Ck as v1 = w1, w2, . . . , wm = v2.

• All vertices of G−Gk lie within the exterior face of Gk.

• For k > 2, the vertex vk has one or more neighbors in Gk−1, If vk has
exactly one neighbor in Gk−1, then it has a legal support on Ck−1.

This generalization sacrifices an important property that is required for some
applications. In the triconnected case, every vertex v ∈ Vk, except for k = K,
has a neighbor in G−Gk. Clearly, this property is missing in the biconnected
canonical ordering of Harel and Sardas and we are not aware of any canoni-
cal ordering-like approach for the biconnected case, where this is guaranteed.
In order to draw a connection to st-orderings, we refer to this property as
the successor property. Table 3.1 summarizes the orderings and their features
including our contribution (bitonic st-ordering).

biconnected successor bitonic
st-ordering yes yes no

biconnected shelling- &
canonical ordering yes no yes

canonical ordering no yes yes
bitonic st-ordering yes yes yes

Table 3.1. Comparison of the features of various orderings.

Another common technique for the biconnected case that can be found in
the literature is to first develop an algorithm using the canonical ordering of
Kant and is therefore limited to triconnected graphs. Afterwards, the algorithm
is extended to the biconnected case using SPQR-trees. The main task can be
sketched as follows. The original algorithm serves as a basis for the R-node
case. It is then modified such that each (virtual) edge in the drawing can
be replaced recursively by a drawing of the corresponding pertinent graph.
Usually a drawing has to match certain invariant properties. For S- and P-nodes
alternative methods are used. Finding a good invariant and presenting a clear
proof can be tedious work and its complexity may outweigh the description of
the original triconnected algorithm. We offer a different approach by defining a
new type of st-ordering whose successor lists have the aforementioned property
of being bitonic. A sequence is said to be bitonic, if it can be partitioned into
two subsequences such that one is monotonically increasing while the other is
decreasing. More specifically:

30

3.1 Bitonic st-orderings of biconnected planar graphs

v

2
4

5

6 3

7

1

(a)

6
57

3

4
2

1
v

(b)

Figure 3.3. (a) Example in which seven successors of a vertex v are placed in a non-
bitonic manner. The last three edges to be attached to v (dashed) are separated by
previously attached ones (solid). In (b), when using a bitonic ordering, they appear
consecutively in the embedding around v.

I Definition 3.5. An ordered sequence A = {a1, . . . , an} is bitonic increas-
ing, if there exists 1 ≤ k ≤ n such that a1 ≤ · · · ≤ ak ≥ · · · ≥ an holds and
bitonic decreasing if a1 ≥ · · · ≥ ak ≤ · · · ≤ an. Moreover, we say A is bitonic
increasing (decreasing) with respect to a function f if A′ = {f(a1), . . . , f(an)}
is bitonic increasing (decreasing).

One property of bitonic sequences that is very useful in our context is the
following:

I Property 3.6. If a sequence A = {a1, . . . , an} is bitonic increasing (decreas-
ing), then the reversed sequence A′ = {an, . . . , a1} is bitonic increasing (de-
creasing) as well.

In the following, we restrict ourselves to bitonic increasing sequences. Thus, we
abbreviate it by just referring to it as being bitonic.

I Definition 3.7. Let G = (V,E) be a planar graph embedded in the plane
and s, t ∈ V two vertices on the outer face. An st-ordering π is a bitonic
st-ordering for G, if at every vertex v ∈ V the ordered sequence of successors
S(v) = {w1, . . . , wm} as implied by the embedding is bitonic with respect to π.

Recall that not every graph admits an st-ordering. More specifically, a graph
G admits an st-ordering if and only if G ∪ {(s, t)} is biconnected, see e.g. [20].
We therefore assume that this is the case. An st-ordering with the additional
property of being bitonic is particularly useful in an incremental algorithm;
the edges that correspond to those successors of a vertex v that have not been
placed yet, appear consecutively in the embedding around v. See Figure 3.3 for
an example.

Next, we describe how to obtain such a bitonic st-ordering.

31

3 Bitonic st-orderings

3.1.1 A linear-time algorithm
The overall idea is to use the aforementioned SPQR-tree approach to derive
a bitonic st-ordering instead of a drawing. Following the same steps, we first
describe how to obtain a bitonic st-ordering for the triconnected case. This
result then serves as a basis for the R-node case when extending the idea to
the biconnected case using SPQR-trees.

I Lemma 3.8. Every triconnected planar graph G = (V,E) admits a bitonic
st-ordering for every (s, t) ∈ E.

Proof. From its definition it is easy to see that a triconnected canonical ordering
V1∪· · ·∪VK as defined by Kant (see Definition 3.2) can be transformed into an
st-ordering π. We start by describing the construction of π and then show that
it is indeed bitonic with respect to π. Given an edge (s, t) ∈ E, we compute a
canonical ordering V1 ∪ · · · ∪ VK of G by choosing V1 = {s, s′} and VK = {t}
with s′ being the vertex that precedes t in the clockwise order around s. Notice
that by definition of the canonical ordering, the edges (s, t) and (s, s′) are
on the outer face. For the st-ordering π we follow a simple principle that is
sometimes referred to as the vertex ordering of a canonical ordering: Regardless
of Vk = {v1, . . . , vm} with 1 ≤ k ≤ K being a chain or singleton, we choose π
for 1 ≤ i ≤ m such that π(vi) = |V1|+ · · ·+ |Vk−1|+ i.

For the sake of notation, we refer to the partition of a vertex v ∈ Vk by
π′(v) = k. Notice that, by construction of π, for all u, v ∈ V with π′(u) < π′(v),
it holds that π(u) < π(v). By definition of the canonical ordering, every v ∈ Vk
with k < K has at least one neighbor w in Vk+1 ∪ · · · ∪ VK . It holds then that
π(w) > π(v) and as a result every v 6= t has at least one successor. In case
Vk = {v} (1 < k ≤ K) is a singleton, v has at least two neighbors, say cl and
cr, in V1∪· · ·∪Vk−1 with π(cl) < π(v) and π(cr) < π(v), thus v has at least two
predecessors. In the other case, that is, Vk = {v1, . . . , vm} (k > 1) is a chain,
only v1 and vm have one neighbor each, let us say cl and cr, in V1 ∪ · · · ∪ Vk−1.
However, for every vi ∈ Vk with i > 1 it holds that π(vi−1) < π(vi). Hence,
every vi with i < m has exactly one predecessor while vm has even two. Special
attention must be paid to V1 = {s, s′} since for this chain no cl and cr exist.
However, the predecessor of s′ is s and s itself does not require a predecessor
for π being an st-ordering. Since all vertices v 6= s have predecessors the order
in S(v) is well-defined by considering them clockwise. For s we have to break
the cyclic order and set S(s) = {t = w1, w2, . . . , wm−1, wm = s′}.

In order to prove that π is a bitonic st-ordering, we first show that ev-
ery successor list obtained from π is bitonic with respect to π′ instead of π.
To do so, assume to the contrary that there exists a successor list S(v) =

32

3.1 Bitonic st-orderings of biconnected planar graphs

v

wi

wi+1

wi−1

(a)

wi

Gk−1
v

wi+1

wi−1 ∈ Vk

(b)

wi

wi+1 ∈ Vk′

wi−1

Gk′−1

v

(c)

Figure 3.4. (a) The initial situation at v with S(v) = {. . . , wi−1, wi, wi+1, . . .}.
(b) Gk−1 with k = π′(wi−1) where wi−1 has to be in the outer face of Gk−1. (c) Gk′−1
with k < k′ = π′(wi−1) where wi+1 has to be in the outer face of Gk′−1.

{w1, . . . , wi, . . . , wm} of some vertex v that is not bitonic with respect to π′,
that is, there is a wi ∈ S(v) with 1 < i < m for which π′(wi−1) > π′(wi)
and π′(wi+1) > π′(wi) holds. Furthermore, let w.l.o.g. π′(wi−1) < π′(wi+1).
Notice that by construction of π and S(v), it follows that π′(wi−1) 6= π′(wi+1).
See Figure 3.4a for the initial situation at v. Now we set k = π′(wi−1) and
k′ = π′(wi+1) and argue that in a canonical ordering this can only occur for
k = 2. By definition of the canonical ordering, wi−1 ∈ Vk has to be in the outer
face of Gk−1 as displayed in Figure 3.4b. Similarly, wi+1 ∈ Vk′ has to be in the
outer face of Gk′−1 (see Figure 3.4c). As a result, the outer face of Gk−1 must be
on both sides of the edge (v, wi) and there is only one such Gk−1 for which this
is the case, namely G1. Hence, k = 2, v = s, wi = s′ and wi+1 = t. However,
we defined S(s) such that it ends with wm = s′ which is a contradiction.

It remains to show that all S(v) are not only bitonic with respect to π′, but
also for π. As aforementioned, by construction of π from π′, for two vertices
u, v ∈ V with π′(u) < π′(v) it follows that π(u) < π(v). And since we have
just shown for the successor list S(v) = {w1, . . . , wi, . . . , wm} of every vertex
v ∈ V it holds that π′(wi−1) < π′(wi) or π′(wi+1) < π′(wi), we may deduce
that π(wi−1) < π(wi) or π(wi+1) < π(wi). Hence, every S(v) is bitonic with
respect to π.

The proof is constructive and reveals one additional property: The successor
list of s is a special case, because it contains s′ and t. Furthermore, s is the only
vertex with π(s) < π(s′) and for every vertex v ∈ V with v 6= t, π(v) < π(t)
holds. Since the successor list of s starts with t, ends with s′ by our construction,
and is bitonic with respect to π, we can state the following:

33

3 Bitonic st-orderings

I Corollary 3.9. The successor list of s starts with t, ends with s′ and is sorted
decreasingly with respect to π, that is, S(s) = {t, w2, . . . , wm−1, s′} such that
π(t) > π(w2) > · · · > π(wm−1) > π(s′).

While the above results follow the intuition of canonical orderings, they hold
only for the case where the input is triconnected. Next, we extend this result
to the biconnected case using SPQR-trees. Corollary 3.9 provides us with the
necessary ingredient for an invariant. More details are given in the proof of the
main result of this section:

I Theorem 3.10. Every biconnected planar graph G = (V,E) has a bitonic st-
ordering π for any given st-edge e∗ ∈ E. The ordering π and a corresponding
embedding can be computed in time O(|V |).

Proof. The overall challenge is to recursively compose a bitonic st-ordering
along an SPQR-tree. For a subtree, we assume that we have already constructed
a bitonic st-ordering that complies with an invariant. Then we show that we
can combine it with the solutions of other subtrees in the skeleton of the parent
node.
Invariant: For the assignment of an index in π, we maintain a single global
counter that we use to label the vertices in an incremental manner. The poles
{s, t} of a tree node µ are labeled by the parent. Moreover, s has already been
labeled such that we may assume that the global counter has a value greater
than π(s). Furthermore, π is a bitonic st-ordering for the subgraph induced by
µ when assigning t the current value of the counter. Additionally, the successor
list of s is sorted decreasingly with respect to π. We start by embedding G,
creating the SPQR-tree T and rooting it at the Q-node representing the given
st-edge e∗ = (s∗, t∗). Then we initialize the global counter, label s∗, and recurse
on the only child of the root. Following standard practice, we now distinguish
the different types of tree nodes.

Serial case: Let µ be an S-node whose skeleton consists of the simple cycle
s, v1, . . . , vm−1, t, s, with (s, t) being the reference edge representing the par-
ent of µ. The remaining edges (s, v1), . . . , (vm−1, t) correspond to the children
µ1, . . . , µm of µ. We recurse on µ1, label v1, recurse on µ2, and so on, until µm.
Notice that we do not label t. Clearly, the result is an st-ordering when assign-
ing t the current value of the counter. The successor lists of s, v1, . . . , vm−1 are
all sorted decreasingly due to our invariant, thus, are bitonic.

Parallel case: We first check if one of the children µ1, . . . , µm of the P-node µ
is a Q-node. In that case we change the order of the children such that µ1 is
the Q-node. Notice that this implies a change in the embedding of G. Then we

34

3.1 Bitonic st-orderings of biconnected planar graphs

recurse on the children in their reverse order, that is µm, . . . , µ1. Consider now
the successor list S(s) of s: The neighbors wi1, . . . , wik′ with 1 ≤ i ≤ m that are
located in the induced subgraph of µi form a consecutive sequence in S(s):

S(s) = {. . . , wi1, . . . , wik︸ ︷︷ ︸
neighbors in µi

, wi+1
1 , . . . , wi+1

k′︸ ︷︷ ︸
neighbors in µi+1

, . . .}

By our invariant, it follows that π(wij) > π(wij+1) and since we recursed on
µ1, . . . , µm in reverse order, π(wik) > π(wi+1

1) holds. Hence, the sequence is
decreasing.

Rigid case: We start by constructing a temporary bitonic st-ordering π′ for
the triconnected skeleton Gµ = (Vµ, Eµ) of the R-node µ using Lemma 3.8 and
choosing the reference edge (s, t) as input. Then we traverse the vertices of Vµ
in the ordering as given by π′. At a vertex v ∈ Vµ, we recurse on the incident
edges (u, v) ∈ Eµ with π′(u) < π′(v), that is, the incoming edges of v with
respect to π′. Afterwards, we label v unless v = t. The resulting ordering is
not necessarily a bitonic st-ordering. We proceed in two steps: First we derive
some useful properties of π and narrow down the problem. Then we argue that
mirroring the embedding of some children of µ changes the successor lists such
that they become bitonic with respect to π.

Let us take a closer look at the properties of π: Since we labeled all v ∈ Vµ in
the order as provided by π′, for any two vertices u, v ∈ Vµ with u 6= v, it holds
that π′(u) < π′(v) if and only if π(u) < π(v). Hence, π is a feasible bitonic
st-ordering for Gµ. Recall that we recursed on the children in a special way.
Consider a vertex v′ in the induced subgraph of a child µuv represented by the
virtual edge (u, v) ∈ Eµ with π(u) < π(v). Furthermore, assume that v′ is not a
pole of µuv, that is, u 6= v′ 6= v. Then v′ has been labeled before v and after any
w ∈ Vµ with π(w) < π(v), thus π(w) < π(v′) < π(v). When now considering
a fourth vertex, say w′, that is defined similar as v′, that is, a non-pole vertex
located in the subgraph induced by a virtual edge (x,w) ∈ Eµ with π(x) <
π(w), then we may deduce the implication π(w) < π(v) ⇒ π(w′) < π(v′).
Stemming from the special traversal of the edges, this property is of particular
interest when considering the successor lists.

Let S′(v) = {w′1, . . . , w′h, . . . , w′m} ⊂ Vµ be the successor list of v ∈ Vµ,
for which an example is shown in Figure 3.5a. Notice that π(w′1) < · · · <
π(w′h) > · · · > π(w′m) holds. Furthermore, let µ1, . . . , µm be the corresponding
children of µ that are represented by the virtual edges (v, w′1), . . . , (v, w′m) with
π(v) < π(w′i) for 1 ≤ i ≤ m. Similar to the P-node case, we refer to the
neighbors of v that are contained in the subgraph induced by µi as wi1, . . . , wiki

.

35

3 Bitonic st-orderings

v

µ1

µ2
µ3

µ4

w′
1
w′

2 w′
3

w′
4

(a)

µ2 µ3

w′
2 w′

3

v v

(b)

v

µ1

µ2 µ3

µ4

w′
2 w′

4w′
1 w′

3

(c)

Figure 3.5. (a) Example of virtual edges (v, w′1), . . . , (v, w′4) in an R-node representing
the tree nodes µ1, . . . , µ4. (b) Mirroring the embedding of the subgraph induced by
µ2, effectively turning the decreasing sequence into an increasing sequence. (c) The
bitonic successor list at v after mirroring the embedding of µ1 and µ2.

These form a consecutive sequence in S(v), hence, we may write S(v) as

S(v) = {w1
1, . . . , w

1
k1︸ ︷︷ ︸

neighbors in µ1

, . . . , wh1 , . . . , w
h
kh︸ ︷︷ ︸

neighbors in µh

, . . . , wm1 , . . . , w
m
km︸ ︷︷ ︸

neighbors in µm

}.

The idea now is to distinguish between two cases, depending on whether i < h
or i ≥ h holds, that is, w′i is in either the increasing or decreasing partition
of S′(v).

Let us first consider the case h ≤ i: Since π(w′i) > π(w′i+1) for h ≤ i < m, it
follows that π(wiki

) > π(wi+1
1) for all h ≤ i < m, that is, the last neighbor in

the subgraph induced by µi has a greater label than the one in µi+1. By our
invariant we may assume that π(wi1) > · · · > π(wiki

) for all h ≤ i ≤ m holds,
that is, with respect to π, we have a decreasing subsequence in S(v). Hence,
the sequence wh1 , . . . , wmkm

is decreasing with respect to π.

In the second case where 1 ≤ i < h holds, an increasing sequence is required.
We mirror the embedding of every subgraph induced by µi with 1 ≤ i < h
along its poles (v, w′i). As a result the decreasing subsequences in S(v) turn
into increasing ones, that is, π(wi1) < · · · < π(wiki

) for all 1 ≤ i < h (µ2 in
Figure 3.5b). Notice that by Property 3.6 the successor list of every vertex in
the mirrored subgraph remains bitonic. Now similar to the first case, we argue
that from π(w′i) < π(w′i+1) it follows that π(wiki

) < π(wi+1
1) for all 1 ≤ i < h.

Thus, the sequence w1
1, . . . , w

h−1
kh−1

is increasing with respect to π. And as a
result, the sequence w1

1, . . . , w
h−1
kh−1

, wh1 , . . . , w
m
km

is bitonic with respect to π

(Figure 3.5c). Notice that for v = s, there exists no i with π(w′i) < π(w′i+1),
thus, S(s) is sorted decreasingly with respect to π as required by the invariant.

36

3.1 Bitonic st-orderings of biconnected planar graphs

The case where µ is a Q-node is trivial. It remains to label t at the root, which,
by our invariant, results in a bitonic st-ordering. Both, the canonical ordering
and the SPQR-tree, can be computed in linear time, thus, the runtime follows
immediately.

In the proof of the main theorem, we changed the embedding of G in two
places. At first, in the P-node case, we had to ensure that a possible Q-node
follows the reference edge in clockwise order around s. Afterwards, in the R-
node case, we mirrored the embedding along the poles to turn a decreasing
sequence into an increasing one. The latter change is caused by our invariant
that only provides a decreasing sequence at s for the sake of an easier main-
tainable invariant. In an actual implementation, this can easily be avoided by
mirroring the embedding twice, once before recursing on the corresponding
child and then afterwards. Thus, the resulting embedding is equivalent to the
initial one. However, the P-node case is not trivial and the question may arise
if it is necessary in general, or if one may always find a bitonic st-ordering for
every edge when a fixed embedding is given.

procedure labelMain(µ, isFlipped)
begin

// Flip the embedding of the skeleton
if isFlipped then

flipEmbeddingAlongPoles(Gµ)
end
// Label it based on the type
switch type of µ do

case S-node: labelSnode(µ, isFlipped);
case P-node: labelPnode(µ, isFlipped);
case R-node: labelRnode(µ, isFlipped);

endsw
// Restore the initial embedding
if isFlipped then

flipEmbeddingAlongPoles(Gµ)
end

end

Algorithm 1: The main recursive labeling procedure.

Before we address this question, we describe the algorithm in more detail
to outline the basic corner stones of an efficient implementation. To deal with
the embedding changes required by the R-node case in an efficient manner, we
have to avoid to flip the embedding of the complete subgraph induced by a tree

37

3 Bitonic st-orderings

node µ. However, since the labeling procedure works solely on the skeletons,
it is sufficient to consider their embedding and project it back on the graph
afterwards. Moreover, we know in advance if a child has to be flipped after its
subtree has been labeled.

The idea is to carry a boolean flag along when recursing on a subtree of a tree
node µ. This flag indicates if such a change is required later by a parent of µ.
Algorithm 1 outlines the idea of our main recursive function labelMain that
takes care of a possible flip along the poles. Before any labeling or recursion
takes place, the function checks if the parent has set the flag isFlipped which
indicates that the current skeleton Gµ has to be flipped afterwards such that
the successor lists are being reversed. If so, it performs a first flip right away
which does not affect any labels. Then the function distinguishes between the
different types of tree nodes and calls the corresponding function. Afterwards,
when the complete subtree has been labeled, the skeleton is flipped again,
turning a decreasing sequence at s into an increasing one and restoring the
original embedding at the same time.

procedure labelSnode(µ, isFlipped)
begin

for i← 1 to m do
labelMain(µi, isFlipped);
if vi 6= t then

π(vi)← cnt;
cnt← cnt + 1;

end
end

end s

t

v1

vm−1

µm

µ1

vm−2

Algorithm 2: Labeling a chain in the S-node case.

When now considering for example the procedure labelSnode that handles
the skeleton of an S-node (see Algorithm 2), the value of isFlipped is passed to
every recursive call for labeling the children µ1, . . . , µm of µ. This ensures that
at every descendant of µ the skeleton is considered to be flipped. The order in
which the function recurses and labels is illustrated by the arrow in the sketch
to the right of Algorithm 2. As in the proof of Theorem 3.10, we assume that
s and t are the poles of the current tree node µ. The reference edge (s, t) is
drawn as an arc from s to t. The global counter is represented by the global
variable cnt that is used to assign the final label π(v) to a vertex v.

Similar in the P-node case that is described in more detail in Algorithm 3, the
value of isFlipped is being propagated along the subtree. However, the P-node
case requires an additional change, where a possible Q-node must be moved

38

3.1 Bitonic st-orderings of biconnected planar graphs

procedure labelPnode(µ, isFlipped)
begin

// Ensure that a possible Q-node is µ1
µj ← µi with 2 ≤ i ≤ m and µi is a Q-node;
if µj 6= ∅ then

swapEdges(ei, ej)
end
for i← m down to 1 do

labelMain(µi, isFlipped);
end

end

µm

s

µ1

t

· · ·

Algorithm 3: Labeling in the P-node case.

such that it follows the reference edge. Therefore, we check all children except
the first for being such a Q-node. The function swapEdges then changes the
embedding such that the first child µ1 is a possible Q-node. Afterwards, the
function recurses in reverse order on the children.

The R-node case, the one that may initiate a flip along the poles {s, t}, is
the most involved one. Here we first compute a canonical ordering and take its
vertex ordering (see the proof of Lemma 3.8) as a temporary ordering π′. Then
we traverse the vertices of the skeleton in that order and, as described in the
proof of Theorem 3.10, at a vertex v, we first recurse on those children µe that
are represented by incoming edges with respect to π′, that is, all e = (u, v)
with π′(u) < π′(v), before labeling v itself. Recall that in the proof we distin-
guished two cases depending on whether v is in the increasing partition in the
successor list S′(u) of its predecessor u or not. In the first case the embedding
of the corresponding children must be flipped. To test for this condition, it is
sufficient to check, if the clockwise neighbor has a higher label. Furthermore,
one has to keep in mind that when considering one particular child whose sub-
tree embedding must be flipped, the skeleton of µ itself may have already been
marked to be flipped. Hence, no action must be taken for that child. Therefore,
it is sufficient to just negate the value of isFlipped.

Implementation details The algorithm has been implemented in C++ using
the Open Graph Drawing Framework (OGDF) [65]. For the canonical ordering
required in the R-node case, we implemented the leftist canonical ordering
algorithm as described by Badent et al. [4]. The linear-time implementation of
Gutwenger and Mutzel [52] is used for the SPQR-tree that provides, besides a
convenient way to traverse the skeletons and tree, the functionality to propagate
the changes made to the embedding.

39

3 Bitonic st-orderings

procedure labelRnode(µ, isFlipped)
begin

π′ ← vertex ordering from canonical ordering of Gµ;
for i← 1 to |Vµ| do

v ∈ Vµ with π′(v) = i;
for e = (u, v) ∈ Eµ with π′(u) < π′(v) do

w ← clockwise neighbour of v at u;
// Determine if we require an increasing or

decreasing sequence.
if π′(w) > π′(v) then

labelMain(µe, not isFlipped);
else

labelMain(µe, isFlipped);
end
if v 6= t then

π(v)← cnt;
cnt← cnt + 1;

end
end

end
end

s

t

v
w

u

µe

Algorithm 4: Labeling the triconnected skeleton in the R-node case.

3.1.2 The fixed embedding scenario
In a preliminary version of this work [50], we presented a simple counterexample
that, for a fixed embedding, and fixed st-edge does not admit a bitonic st-
ordering. However, when choosing a different edge as the st-edge, a feasible
ordering can be found. In the following we prove a slightly stronger result by
allowing a free choice of s and t. We even lift the restriction that they are
incident to the same face.

Furthermore, one may get the impression that a lower maximum degree may
simplify things. For example, in a 3-planar graph, every internal node v ∈ V
with v 6= s has at least one predecessor and as a result at most two successors.
Since it is not possible to violate the bitonic property with two elements, be-
cause two different elements are either sorted increasingly or decreasingly, the
bitonic property cannot be violated. Thus, it is tempting to investigate planar
graphs with bounded degree like the 4-planar graphs. Unfortunately, it turns
out that this is a hopeless endeavor.

But before we construct a counterexample and give a corresponding proof,
we introduce the following technical lemma.

40

3.1 Bitonic st-orderings of biconnected planar graphs

I Lemma 3.11. Given a biconnected graph G = (V,E) and an st-orientation
of G for s, t ∈ V with s 6= t. Let S ⊂ V be a non-empty subset of the vertices
of G with |δ(S)| = 21, that is, there are only two edges having one endpoint in
S and the other in V − S. If s, t /∈ S then in the st-orientation one of the two
edges δ(S) = {e1, e2} is directed towards S and the other towards V − S.

Proof. Assume that both edges, e1 and e2, are directed towards S and let v ∈ S
be a vertex for which by construction v 6= t holds. Since in an st-orientation
there exists at least one path u t for every u ∈ V with u 6= t, the same
applies for v. But this path does not exist because the only two edges between
S and V − S point towards S. A similar contradiction can be derived for the
case in which e1 and e2 point towards V − S.

As a next step, we describe a family of graphs for which in the fixed embed-
ding scenario no bitonic st-ordering exists. At first glance this family belongs
to a very restricted class of planar graphs. On the other hand this class has
some properties that answer a few additional questions:

1. Bounded degree graphs: Do 4-planar graphs with a fixed embedding ad-
mit a bitonic st-ordering?

2. Connectivity: Lemma 3.8 states that triconnected planar graphs always
allow a bitonic st-ordering. What about series-parallel graphs?

3. Choice of s and t: Theorem 3.10 requires s and t to be adjacent. Does a
free choice of s and t simplify the problem?

With the following lemma we settle all three questions.

I Lemma 3.12. There exists an infinite class of biconnected series-parallel
4-planar graphs that do not admit a bitonic st-ordering for a fixed planar em-
bedding and an arbitrary choice for s and t.

Proof. The construction is based on the subgraph G∗ = (V ∗, E∗) and its em-
bedding displayed in Figure 3.6a. We proceed as follows: First, we show that
if s and t are not part of G∗, then the induced st-orientation is either exactly
as displayed in Figure 3.6b or exactly reversed. In both cases, which are sym-
metric, we show that a bitonic ordering cannot be found. As a last step, we
describe a simple family of graphs that contains multiple copies of G∗ and at
least one of the copies neither contains s nor t.

1With δ(S) we denote the edges that are in the cut induced by S ⊂ V , that is, δ(S) =
{(u, v) ∈ E | u ∈ S ∧ v /∈ S}.

41

3 Bitonic st-orderings

v1

v5

v3

v4

v2

(a)

v1

v5

v3

v4

v2
s

t

G∗

(b)

s

t
G∗ G∗

G∗ G∗

(c)

Figure 3.6. (a) Subgraph G∗ used in the construction of a counterexample in
Lemma 3.12. (b) One of the two possible orientations of G∗ when both, s and t are
located in another subgraph that is attached by two edges. (c) Construction of Gk
with k ≥ 3.

Let G = (V,E) be an embedded biconnected planar graph that contains G∗
as a subgraph, which is attached exactly as in Figure 3.6b, that is, δ(V ∗) =
{(u1, v1,), (u2, v5)} with u1 6= u2 holds, and the embedding is as shown in Fig-
ure 3.6b. Now consider an st-orientation of G for some s, t ∈ V − V ∗. For the
two edges connecting G∗ with V − V ∗, we may use Lemma 3.11 with S = V ∗

and assume w.l.o.g. that their orientation is as illustrated in Figure 3.6b. Now
it is not difficult to see that every path to t from a vertex vi ∈ V ∗ has to use
v5. Similarly, every path from s to vi has to contain v1 and eventually all edges
of G∗ are oriented towards v5. More specifically, we may apply Lemma 3.11
two times: First with S = {v4} and then with S = {v2}. Clearly, the resulting
orientation implies an orientation for the edges (v3, v5) and (v1, v3). However, if
their orientation is (v5, v3) and (v1, v3), then v3 is the sink t which by assump-
tion is not the case. Similarly, when (v3, v5) and (v3, v1) holds, v3 would be the
source s. Now assume that their orientation is (v5, v3) and (v3, v1). Since an
st-orientation is acyclic, we may deduce that (v5, v1) ∈ E which implies that
v1 has only incoming edges, thus would be the sink t, and v5 has only out-
going edges implying v5 = s which contradicts our assumption that s, t /∈ V ∗
holds. The only remaining orientation is the one displayed in Figure 3.6b or
the reversed one. W.l.o.g., let the orientation be the one in Figure 3.6b. Then
in any st-ordering π, π(v2) < π(v3) < π(v4) must hold. And since the suc-
cessor list of v1 as implied by the embedding is S(v1) = {v5, v2, v3}, we get a
sequence π(v5) > π(v2) < π(v3) that is not bitonic increasing. For the reversed
orientation, the same arguments can be applied for S(v5).

42

3.1 Bitonic st-orderings of biconnected planar graphs

v′1

v′5

v′3
v′2

v1

v5

v3

v2

t

s

G∗3

G∗1

G∗4G∗2

Figure 3.7. Example for Gk with k = 4 and its orientation for an arbitrary choice
of s and t. Edges without unique orientation are drawn dashed. The successor lists
of v1 and v′1, that is, S(v1) = {v3, v2, v5} and S(v′1) = {v′5, v′2, v′3} are not bitonic
(increasing) with respect to any st-ordering.

We may conclude that if neither the source s nor the sink t is located in the
subgraph G∗, then only two orientations of the edges in G∗ are possible, both
not admitting a bitonic st-ordering.

It remains to show that we can construct a family of graphs for which this is
always the case. The idea is straightforward: s and t can only occupy at most
one copy of G∗ each. Hence, we may create a graph Gk that is a a cycle of k ≥ 3
copies of G∗ as depicted in Figure 3.6c. Then for every choice of s, t there are
at least k−2 successor lists that are not bitonic. A complete example for k = 4
is given in Figure 3.7. Clearly, every Gk is 4-planar. Moreover, it is not hard to
verify that the graph is series-parallel.

Before we turn our attention towards possible applications of bitonic st-
orderings, we briefly summarize the results obtained so far. With the properties
of canonical orderings in mind, we defined a special st-ordering that can be
obtained for any biconnected planar graph. Based on the proof of Theorem 3.10,
a linear-time algorithm has been described that uses the SPQR-tree approach to

43

3 Bitonic st-orderings

derive an ordering and employs the canonical ordering for the triconnected case.
One drawback is that the algorithm is not able to preserve the initial embedding
of the graph. However, we have shown that a change in the embedding might
be necessary by presenting a family of graphs for which in the fixed embedding
scenario no bitonic st-ordering exists. Although in the next section we will focus
more on putting our new tool to work, we will derive some more interesting
properties.

3.2 Straight-line drawings
We start with a classic problem: planar straight-line drawings. We already
argued before that the bitonic property is a requirement for many incremental
drawing algorithms. Since the algorithm of de Fraysseix, Pach and Pollack [34]
is one of them, and many algorithms share the basic concept of creating a
drawing from bottom to top in an incremental manner, we show that we can
adapt this concept to the bitonic st-ordering. Although the ability to draw
biconnected planar graphs with a variant of that algorithm is exactly what
Harel and Sardas [53] do, thus, the result is not new, we are able to derive
a slightly different drawing with the additional property that every face is
y-monotone.

The proposed algorithm will later be used to draw directed graphs. There-
fore, we describe it here in more detail. Starting with the work of de Fraysseix et
al. [34], we review the key concepts of the original algorithm. Afterwards, we
describe the variant of Chrobak and Payne [29] that serves as a basis for a linear-
time algorithm. Based on their work, an adaptation to bitonic st-orderings is
presented. At this point it should be mentioned that there exists an extensive
amount of literature that is concerned with improvements, variants and ex-
tensions of the original algorithm. However, the focus of this chapter lies on
bitonic st-orderings, therefore we restrict ourselves to the work that is essential
for our undertaking.

3.2.1 The algorithm of de Fraysseix, Pach and Pollack
Let us recall the original algorithm of de Fraysseix, Pach and Pollack [34].
Their work marks the beginning of canonical orderings and their use in graph
drawing. They introduce the canonical ordering for maximal planar graphs and
give a linear-time algorithm to obtain it. This ordering is then used to construct
a planar straight-line grid drawing in an incremental manner.

Let G = (V,E) be a maximal planar graph embedded in the plane and
v1, v2, . . . , vn a canonical ordering of the vertices as described in Definition 3.1.

44

3.2 Straight-line drawings

wm

vk

w1

Gk−1

wl wr

(a)
wm

vk

w1

Gk−1

wl wr

(b)

Figure 3.8. (a) Initial situation before installing vk with neighbors wl, . . . , wr. (b) Final
layout for Gk after inserting gaps of unit length between wl, wl+1 and wr−1, wr and
placing vk.

With a slight abuse of notation, we use Ck = {w1 = v1, . . . , wm = v2} for the
path that results from removing the edge (v1, v2) from the clockwise cycle that
bounds the exterior face of Gk = (Ek, Vk) for 3 ≤ k ≤ n. Moreover, we refer to
Ck in an informal manner as the contour of Gk.

The overall idea of the algorithm can be sketched as follows. The vertices
are placed step by step as provided by the ordering. After every step k > 2,
the layout produced so far must satisfy the following invariant properties:

1. The drawing is a feasible planar straight-line grid drawing for Gk.

2. v1 is located at the origin (0, 0) and v2 at (2k − 4, 0).

3. For the vertices of Ck it holds that x(w1) < · · · < x(wm).

4. All edges (wi, wi+1) with 1 ≤ i < m have slope +1 or −1.

Starting with the first three vertices v1, v2, v3 that are placed at (0, 0), (2, 0),
(1, 1), an initial layout for G3 is created. Clearly, the triangle complies with the
invariant.

Now consider the case in which we want to place vertex vk with 4 ≤ k ≤ n.
We may assume that the drawing for Gk−1 satisfies the invariant. The task is
to merge vk into the contour such that the same properties hold also for Gk. By
definition, vk has at least two neighbors on the contour Ck−1 and they appear
consecutively. Let these neighbors be wl, . . . , wr such that 1 ≤ l < r ≤ m
holds. Clearly, only the edges (wl, vk) and (wr, vk) are part of the new contour
Ck. Moreover, all vertices between wl and wr on Ck−1 are replaced by vk. See
Figure 3.8a for an illustration.

The problem arising at this point is to find a suitable position for vk such
that all wl, . . . , wr are visible from vk, and at the same time the edges (wl, vk)

45

3 Bitonic st-orderings

and (wr, vk) have the required slopes. A straightforward solution is to install
vk above wl, . . . , wr such that (wl, vk) has slope +1, whereas (wr, vk) has slope
−1. The corresponding coordinates can be obtained by

x(vk) = x(wr) + x(wl) + y(wr)− y(wl)
2 ,

y(vk) = x(wr)− x(wl) + y(wr) + y(wl)
2

(3.1)

that can be proven to be a grid point due to the invariant properties. Of course,
this only works if wr and wl are visible from vk. This, however, is not always
the case. By the invariant, the edge (wl, wl+1) may have a slope of +1, but then
it overlaps (wl, vk). See Figure 3.8a for an example. Similarly, if the slope of
(wr−1, wr) is −1, then it overlaps (wr, vk). Notice that the remaining neighbors
wi with l < i < r are all visible from vk.

The solution to this problem is to modify the drawing of Gk−1 before in-
stalling vk such that the contour is being stretched in two places, namely di-
rectly to the right of wl and directly to the left of wr. More specifically, we
insert a horizontal gap of unit length between wl and wl+1, and wr−1 and
wr. Then vk is placed, and as a result wl is visible from vk, because the edge
(wl, wl+1) has a slope of less than one now, that is, (wl, wl+1) is below (wl, vk).
A symmetric argument can be applied for wr (Figure 3.8b).

Performing such a stretch is not a trivial task, but in [34] an elegant solution
for this problem is described. We only outline the approach here. Assume that
we have to insert a gap between wl and wl+1. Clearly, it is sufficient to shift wl+1
one unit to the right. To ensure that the resulting drawing still complies with
our invariant (except for the edge (wl, wl+1) which has a different slope now),
we may have to shift additional vertices to the right. To do so, we maintain
for every wi on Ck a subset of vertices M(k,wi) ⊆ Vk containing wi itself and
all vertices that have to be shifted to the right with it. More specifically, these
sets satisfy the following properties:

1. wj ∈M(k,wi) if and only if j ≥ i

2. M(k,w1) ⊃M(k,w2) ⊃ · · · ⊃M(k,wm)

In [34] the authors give a recursive definition of these sets and prove that using
them for the shifting procedure results in a feasible drawing. We only give a
short description here, a full proof can be found in [34].

Starting with the initial triangle G3 with contour C3 = {v1, v3, v2}, we choose
M(3, v1) = {v1, v3, v2},M(3, v3) = {v3, v2} and M(3, v2) = {v2}. Now assume,
we want to install vk for k ≥ 4. By an inductive argument one can assume

46

3.2 Straight-line drawings

that every M(k − 1, wi) with 1 ≤ i ≤ m can be used to perform a shift.
Hence, shifting wl+1 and wr by one unit to the right using M(k− 1, wl+1) and
M(k− 1, wl+1), respectively, enables us to install vk. And as a result, we get a
new contour Ck consisting of the vertices w1, . . . , wl, vk, wr, . . . , wm. It remains
to determine their new sets for the shifting procedure which is done in the next
step:

M(k,wi) = M(k − 1, wi) ∪ {vk} for i ≤ l
M(k, vk) = M(k − 1, wl+1) ∪ {vk}
M(k,wj) = M(k − 1, wj) for r ≤ j

(3.2)

The overall procedure is straightforward now. We described the base case G3.
Let Ck−1 = {w1, . . . , wl, . . . , wr, . . . , wm} be the contour after step k − 1 with
wl, . . . , wr being the neighbors of vk on Ck−1.

1. For each v ∈M(k − 1, wl+1) do x(v) := x(v) + 1.
For each v ∈M(k − 1, wr) do x(v) := x(v) + 1.

2. Place vk (Equation 3.1) and set Ck = {w1, . . . , wl, vk, wr, . . . , wm}.

3. For each v ∈ Ck, initialize M(k, v) as described in Equation 3.2.

From there on in every step k two stretches are performed to install vk.
Furthermore, by the definition of the sets it follows that wm = v2 is shifted two
times per step. In total n− 3 steps are required, resulting in a layout in which
v1 is located at the origin and v2 at 2n− 4. Moreover, vn has been installed at
(n − 2, n − 2), thus, being the top most vertex. Clearly, the drawing occupies
an area of (2n− 4)× (n− 2).

A naive implementation requires quadratic time, but de Fraysseix et al. [34]
present an algorithm that requires only O(n logn) time. Instead of describing
it here, we turn our attention to the more widely used variant of Chrobak and
Payne [29] that runs in linear time and is conceptually simpler.

3.2.2 The linear-time variant of Chrobak and Payne
In their work [29], Chrobak and Payne present an algorithm that uses the basic
framework of the original algorithm, but due to their clever management of the
information required for the computation of the coordinates, they are able to
derive a linear-time implementation.

For a better understanding, we first discuss the obstacles on the road towards
a linear-time algorithm, and how Chrobak and Payne overcome these. Clearly,
embedding G and computing a canonical ordering can be accomplished in linear
time and is not a problem. Furthermore, identifying in every step the neighbors

47

3 Bitonic st-orderings

of vk and maintaining a contour in a dynamic manner, can be achieved within
a reasonable time frame as well. However, the sets required for the shifting
procedure pose both, in terms of runtime and space, a problem. Notice that
such a set may contain nearly all the vertices of Gk−1 in the worst case. Besides
of the space requirement, a single shift induces a coordinate update for all those
vertices, and some of these coordinates are required for the placement of new
vertices in subsequent steps.

The key observation made by Chrobak and Payne is that installing a vertex
vk can be accomplished by knowing only the relative horizontal distances be-
tween consecutive vertices of Ck−1 instead of absolute x-coordinates. Let the
horizontal distance of wi to its predecessor wi−1 be ∆x(wi) = x(wi)−x(wi−1).
When placing vk, we compute y(vk) as usual, but instead of x(vk), we calculate
∆x(vk). For the latter one we get

∆x(vk) = x(wr)− x(wl) + y(wr)− y(wl)
2 .

Since we do not know the absolute x-coordinates x(wr) and x(wl), we have to
express x(wr)− x(wl) by relative ones, which can be accomplished by writing

x(wr)− x(wl) =
r∑

i=l+1
x(wi)− x(wi−1)

=
r∑

i=l+1
∆x(wi).

We define ∆x(wl, wr) =
∑r
i=l+1 ∆x(wi) and obtain

∆x(vk) = ∆x(wl, wr) + y(wr)− y(wl)
2 .

In a similar way, for the absolute y-coordinate of vk we get

y(vk) = ∆x(wl, wr) + y(wr) + y(wl)
2 .

We conclude that ∆x(vk) and y(vk) can both be found without knowing the
absolute x-coordinates. Moreover, evaluating ∆x(wl, wr) takes time depending
on the number of edges between vk and Gk−1. Hence, the total time for all
4 ≤ k ≤ n is bounded by |E| ≤ 3|V | − 6. It remains to show that we can
benefit from this in terms of efficiency, while at some point being able to derive
absolute x-coordinates. Notice that during a shift, the absolute x-coordinates

48

3.2 Straight-line drawings

v3

v5

v2v1

v8

v6
v4 v7

v9

v10

v11

Figure 3.9. Example for the nested hierarchy of shifting sets (dotted). The implied
tree is indicated by the arcs that point from the parent to the children.

of every vertex that has to be moved increases, whereas their relative horizon-
tal distances do not change. For example, consider the vertices on the contour
Ck−1. When installing vk, we have to shift wr and all wi with r < i ≤ m with
it. While ∆x(wr) increases, every ∆x(wi) with r < i ≤ m remains unchanged.
Hence, the vertices of the contour can be shifted efficiently, because the place-
ment of vk induces only updates of ∆x(wl+1) and ∆x(wr). However, this works
only for the vertices that are part of Ck−1.

For shifting the vertices that are located below the contour, Chrobak and
Payne introduce shifting sets similar to those used by de Fraysseix et al. [34].
Roughly speaking, a shifting set L(wi) of a vertex wi contains the vertices below
it, whereas the set M(k,wi) used in the original algorithm contains those that
are below and to the right of wi. As in [34], these sets are maintained during
the incremental drawing procedure. For the first three vertices v1, . . . , v3, we
set L(vi) = {vi} for i ∈ {1, 2, 3}, and for vk with 4 ≤ k ≤ n, L(vk) is initialized
with

L(vk) = {vk} ∪ L(wl+1) ∪ · · · ∪ L(wr−1), (3.3)

that is, L(vk) contains vk itself and the shifting sets of all the vertices that vk
replaces on Ck−1. Recall that in the original approach a vertex wi has different
sets depending on k, while here L(vk) is created in step k and never touched
again in any subsequent step. A closer look at the construction of L(vk) reveals
a nested structure of shifting sets (Figure 3.9). In fact one may consider this
nested structure as a tree rooted at vk with wl+1, . . . , wr−1 being the children
of vk. Moreover, every wi with l < i < r may itself be a root of a subtree.
In their work, Chrobak and Payne [29] suggest to encode this tree as a binary
tree, but we stick here to an implementation that employs the original tree.

49

3 Bitonic st-orderings

This hierarchy can be exploited for the computation of absolute x-coordinates
by making the following observation: After installing the vertex vk, its children
wl+1, . . . , wr−1 are shifted if and only if vk is shifted. And by an recursive
argument this does not hold only for wl+1, . . . , wr−1, but also for every vertex
in their shifting sets. Therefore, once vk is installed, all vertices in L(vk) keep
their relative positions to each other. Let the distance between vk and one of
its children wi with l < i < r be ∆x(vk, wi) = x(wi) − x(vk). Notice that
∆x(vk, wi) can be expressed using relative distances by writing

∆x(vk, wi) = x(wi)− x(wl)− x(vk) + x(wl)

=

 i∑
j=l+1

∆x(wj)

−∆x(vk).

Assume now that we are able to determine x(vk) in some way. Clearly, knowing
x(vk) and ∆x(vk, wi) is sufficient to determine the absolute coordinate x(wi).
In other words, the absolute x-coordinate of the parent yields the absolute x-
coordinates for the children. Hence, when installing vk, we compute ∆x(vk, wi)
for every wi with l < i < r and set vk to be the parent of all wi.

Having placed all vertices, we calculate the absolute x-coordinates for the
vertices on Cn = {v1, vn, v2} by accumulating their relative coordinates. Then
we visit the remaining ones in reverse order as they appear in the canonical
ordering, which corresponds to a top-down traversal of the hierarchy induced
by the shifting sets. When visiting a vertex, say v, we may assume that the
absolute x-coordinate of its parent, say p, has already been obtained and with
x(v) = x(p) + ∆x(p, v) we are able to derive x(v). This way we may obtain
absolute coordinates for all vertices.

The complete procedure is given in Algorithm 5. We assume that a maximal
planar graph G = (V,E) and a corresponding canonical ordering v1, . . . , vn is
given. For the coordinates we use two arrays: While y(v) contains the absolute
y-coordinate of v, x(v) is used to store multiple values. As long as v is part
of the contour, x(v) contains the relative distance to its predecessor ∆x(v) on
the contour. When v disappears from the contour, we use x(v) to store the
horizontal offset to its parent in the shifting set tree. At the end, that is after
the top-down traversal, x(v) contains the absolute coordinate of v. It is not
hard to see from Algorithm 5 that the procedure takes linear time. Let us
summarize the algorithm by stating the following result without a proof.

I Theorem 3.13. Every maximal planar graph G = (V,E) admits a planar
straight-line drawing of size (2|V | − 4)× (|V | − 2) which can be obtained using
linear time and space.

50

3.2 Straight-line drawings

procedure PlanarStraightLine
begin

C3 ← {v1, v3, v2};
x(v1)← 0; y(v1)← 0;
x(v3)← 1; y(v3)← 1;
x(v2)← 2; y(v2)← 0;
// bottom-up pass
for k = 4 to n do

(l, r)← getLeftRight(vk, Ck−1);
// distance wl ↔ wr after shift
d← 2 +

∑r
i=l+1 x(wi);

// place vk
x(vk)← (d+ y(wr)− y(wl))/2;
y(vk)← (d+ y(wr) + y(wl))/2;
// offset wl+1, . . . , wr−1 ↔ vk
t← 1− x(vk);
for i = l + 1 to r − 1 do

parent(wi)← vk;
t← t+ x(wi);
x(wi)← t;

end
// distance vk ↔ wr
x(wr)← d− x(vk);
Ck ← replace wl+1, . . . , wr−1 in Ck−1 with vk

end
// absolute coordinates for the outer face
for i = 2 to |Cn| do

x(wi)← x(wi) + x(wi−1)
end
// top-down pass
for k = n down to 3 do

if parent(vk) then x(vk) = x(vk) + x(parent(vk));
end

end
Algorithm 5: Linear-time implementation of the shifting method. getLeftRight
determines the leftmost and rightmost neighbor of vk on the contour Ck−1.

51

3 Bitonic st-orderings

Before we present the adaptation to bitonic st-orderings, we make a short
detour that is concerned with the computation of coordinates.

A note on coordinate dependencies

The idea of Chrobak and Payne to reduce the dependency of the y-coordinates
from absolute x-coordinates to relative ones is essential for their algorithm.
However, this does not imply that the y-coordinates depend on any form of x-
coordinates at all. Although the slopes required by the invariant suggest that
in some way x-coordinates are involved, with a bit of work one can derive an
expression that is solely based on y-coordinates. This quite counterintuitive
result is not required anywhere in this work. Nevertheless, it is an interesting
property by itself that deserves some attention.

Let us assume that for some reason we are interested only in the y-coordinates
of the resulting layout. Recall that when installing vk, we choose

y(vk) = ∆x(wl, wr) + y(wr) + y(wl)
2

with ∆x(wl, wr) =
∑r
i=l+1 ∆x(wi) being the horizontal distance between wl

and wr after adjusting the offsets of wl+1 and wr. Now let ∆x′(wi) be the
initial offset of wi after step k − 1, before any adjustments are made to place
vk. Similarly, let ∆x′(wl, wr) =

∑r
i=l+1 ∆x′(wi) be the corresponding distance

between wl and wr. Since for the placement of vk two gaps are inserted, both
of length one, ∆x(wl, wr) = ∆x′(wl, wr) + 2 holds. Hence, we may write

y(vk) = 1 + ∆x′(wl, wr) + y(wr) + y(wl)
2 .

Notice that wl, . . . , wr are consecutive vertices on the contour created in step
k − 1. By the invariant, the slope of every edge (wi−1, wi) with 1 ≤ i ≤ m is
either +1 or −1. In the former case, it follows then that ∆x′(wi) = y(wi) −
y(wi−1), whereas in the latter case, ∆x′(wi) = y(wi−1) − y(wi) holds, that is,
∆x′(wi) = |y(wi) − y(wi−1)|. Now it is not difficult to see that y(vk) can be
solely derived using y-coordinates:

y(vk) = 1 + 1
2

y(wr) + y(wl) +
r∑

i=l+1
|y(wi)− y(wi−1)|

 (3.4)

One may further transform this equation using the following observation: Sim-
ilar to the fact that ∆x′(wl, wr) =

∑r
i=l+1 ∆x′(wi) holds, the vertical difference

52

3.2 Straight-line drawings

wl

wr

0.5

0.5

wl+1

wl+2

wl+3

wl+4

wl+5

y(wl+4)− y(wl+3)

1 1

y(wr)− y(wl+5)

y(wl+3)− y(wl+2)

y(wl+1)− y(wl)

0.5

0.5

y(wl+1)− y(wl+2)

y(wl+4)− y(wl+5)

∑r

i=l+1
|y(wi)− y(wi−1)|

vk

Figure 3.10. Geometric interpretation of the two equations derived for y(vk). Dotted
lines illustrate how the vertical difference y(wi)− y(wi−1) contributes to y(vk), which
depends on if the slope of (wi−1, wi) is either +1 (left, black) or −1 (right, gray). The
initial positions of wl and wr before the insertion of gaps, are drawn as white circles,
whereas the positions after installing vk are indicated by black circles.

between wl and wr can be expressed by

y(wr)− y(wl) =
r∑

i=l+1
y(wi)− y(wi−1).

Using this expression to replace y(wr) in Equation 3.4 yields

y(vk) = 1 + 1
2

2y(wl) +
r∑

i=l+1
(y(wi)− y(wi−1)) +

r∑
i=l+1

|y(wi)− y(wi−1)|

 ,
which further simplifies to

y(vk) = y(wl) + 1 + 1
2

 r∑
i=l+1

(y(wi)− y(wi−1)) + |y(wi)− y(wi−1)|

 .
With a+ |a| = max(0, 2a) for every a ∈ R, we get

y(vk) = y(wl) + 1 +
r∑

i=l+1
max(0, y(wi)− y(wi−1)).

53

3 Bitonic st-orderings

So instead of accumulating the horizontal offsets, it is sufficient to accumulate
the vertical distances of edges with slope +1. Replacing y(wr) in Equation 3.4
was an arbitrary decision, substituting y(wl) instead yields

y(vk) = y(wr) + 1 +
r∑

i=l+1
max(0, y(wi−1)− y(wi)),

which accumulates the vertical distance of edges with slope −1 instead of +1.
A geometric interpretation of both equations is depicted in Figure 3.10.

Notice that large parts of Algorithm 5 are concerned with the computation of
x-coordinates, including the maintenance of the tree and its traversal. Remov-
ing the corresponding statements yields a simple algorithm that only computes
the y-coordinates (see Algorithm 6).

procedure PlanarStraightLineVertical
begin

C ← {v1, v3, v2};
y(v1)← 0; y(v2)← 1; y(v3)← 0;
for k = 4 to n do

(l, r)← getLeftRight(vk, C);
y(vk)← y(wl) + 1 +

∑r
i=l+1 max(0, y(wi)− y(wi−1));

C ← replace wl+1, . . . , wr−1 with vk in C;
end

end
Algorithm 6: Algorithm for computing only the y-coordinates.

But let us now return to our original undertaking and focus on the develop-
ment of a straight-line drawing algorithm for bitonic st-orderings.

3.2.3 A drawing algorithm for bitonic st-orderings
In the following, we describe how to adapt the algorithm from the previous
section to bitonic st-orderings by borrowing some ideas from Harel and Sar-
das [53]. They first describe a linear-time algorithm to compute a biconnected
canonical ordering as defined in Definition 3.4. Then a modification of the al-
gorithm of de Fraysseix, Pach and Pollack [33, 34] is used to obtain a planar
straight-line layout. The key observation is that when installing a vertex vk
that has at least two neighbors on the contour Ck−1, one can proceed as in the
original algorithm we presented earlier (Algorithm 5).

The only problematic case is the one in which a vertex vk has only one neigh-
bor on Ck−1, say wi. Recall that Harel and Sardas [53] introduced the property

54

3.2 Straight-line drawings

wm

vk

w1

Gk−1

wi+1

wi

(a)
wm

vk

w1

Gk−1

wi+1

wi

(b)

Figure 3.11. (a) A vertex vk with only one predecessor wi has right support. Vertices
in grey have not been drawn yet. (b) The result of using wi+1 as a second neighbor on
Ck−1 in the layout algorithm by setting wl = wi and wr = wi+1.

of having left, right and legal support for these vertices (see Definition 3.3).
Their solution to the problem is as follows: If vk has left support at its only
neighbor wi, then one may use wi−1, the predecessor of wi on Ck−1, as a second
neighbor for vk and proceed as in the original algorithm by pretending that the
edge (vk, wi−1) exists. However, this is only possible, because the property of
having left support guarantees that all edges that have to be attached to wi
later, follow (vk, wi) clockwise in the embedding. Roughly speaking, all edges
to be attached later appear to the right of vk, so vk is placed to the left of wi to
keep wi accessible from above. Similarly, when vk has right support, every edge
incident to wi that is not yet present will be attached from the left. Therefore,
in case of right support, we may use wi+1 as a second neighbor for vk. An
example for having right support is given in Figure 3.11.

We already argued that the bitonic st-ordering has similar properties. With
the following lemma, we gain the discussed property of having left and right
support for bitonic st-orderings.

I Lemma 3.14. Let G = (V,E) be a connected planar graph embedded in the
plane with a corresponding bitonic st-ordering π. Moreover, let vk be the k-th
vertex in π and Gk the subgraph induced by v1, . . . , vk. For every 1 < k ≤ |V |
the following holds:

1. Gk and G−Gk are connected,

2. vk is in the outer face of Gk−1,

3. For every vertex v ∈ Vk, the neighbors of v that are not in Gk appear
consecutively in the embedding around v.

Proof. The first and second statement hold for every st-ordering with s and t
on the outer face. For the third statement assume to the contrary, that for some
1 < k ≤ |V | the neighbors of a vertex v with π(v) ≤ k that are in G−Gk do not

55

3 Bitonic st-orderings

wm

vk v′k

w1

Gk−1

(a)
wm = vRvL = w1

wm−1

v′kvk

w2
Gk−1

(b)

Figure 3.12. (a) The problem of having no legal support at the boundary of the contour
Ck−1 = {w1, . . . , wm}. The vertex to place has left support at w1 or right support at
wm. (b) Two artificial vertices vL, vR, one at the beginning and one at the end of
Ck−1 = {vL = w1, . . . , wm = vR} may serve as a second neighbor of vk in Gk−1.

appear consecutively in the embedding around v. Then v has two successors
wa, wc ∈ S(v) with π(wa) > k and π(wc) > k. Assume that wa precedes wc
in S(v), that is a < c. Since all vertices in S(v) appear consecutively in the
embedding, there exists then a third successor wb between wa and wc in S(v)
that by our assumption is in Gk, that is, π(wb) ≤ k holds. Notice that S(v) is
of the form S(v) = {. . . , wa, . . . , wb, . . . , wc, . . .} and π(wa) > π(wb) < π(wc)
holds, which contradicts that S(v) is bitonic with respect to π.

It is not difficult to see that due to the third statement, we can use the idea
of Harel and Sardas to deal with the case in which a vertex has only a single
predecessor. When placing such a vertex, say vk, whose only predecessor is u,
then we can assume that vk is not preceded and followed in S(u) by vertices
with a label greater than k. Therefore, the concept of having left and right
support translates to bitonic st-orderings in the following sense: vk has left
support (at u) if no vertex preceding vk in S(u) exists with a label greater
than k. And in a symmetric manner, vk has right support, if there is no vertex
following vk in S(u) with a label greater than k.

However, one problem arises: The approach by Harel and Sardas requires a
vertex with only one neighbor on Ck−1 to have legal support, not just left or
right support. A quick look at Definition 3.3 reveals that there is only a differ-
ence at the boundary of the contour. More specifically, if the only predecessor
of vk is w1 (or wm), then vk must have right support (or left support, respec-
tively). This is, however, not necessarily the case in a bitonic st-ordering, where
it may happen for example that vk has right support at wm. Let us assume for
a moment that we have to cope with this case in which vk has right support at
wm. Hence, the edge (vk, wm) must have a slope of +1, thus, we are forced to
choose wl = wm, whereas for wr we are then not able to find an appropriate
vertex on Ck−1. See Figure 3.12a for an illustration of the problem of lacking
legal support.

56

3.2 Straight-line drawings

procedure getLeftRightBitonic(vk, Ck−1 = {w1, . . . , wm})
begin

l← min{i | (wi, vk) ∈ E};
r ← max{i | (wi, vk) ∈ E};
// one predecessor case
if l = r then

vp ← preceding vertex of vk in S(wr);
if vp = nil or π(vp) ≤ k then l← l − 1;
vs ← following vertex of vk in S(wr);
if vs = nil or π(vs) ≤ k then r ← r + 1;

end
return (l, r)

end
Algorithm 7: Computation of wl and wr for vk with the one-predecessor case.

To overcome this problem and without limiting the applicability of our
bitonic st-ordering, we make a small modification to the algorithm. We add two
dummy vertices vL and vR that take the roles of v1 and v2 in the original algo-
rithm with the property that vL is always the first, and vR always the last vertex
in every contour, that is, for every 1 ≤ k ≤ n, Ck = {vL = w1, . . . , wm = vR}
holds. Notice that vL and vR are isolated vertices, thus, there exists no vk
whose only predecessor is vL or vR, and that has left or right support. Hence,
we are always able to find a second neighbor on Ck−1 for vk as depicted in
Figure 3.12b.

Now we put these ideas together by describing how to modify Algorithm 5
from the previous section. We start by placing vL, v1 and vR at (0, 0), (1, 1)
and (2, 0), respectively. In every step 2 ≤ k ≤ n, we proceed exactly as in
Algorithm 5, only the subroutine for determining wl and wr has to be adjusted
according to the idea of Harel and Sardas. The procedure displayed in Algo-
rithm 7 takes care of this additional case in which vk has only one neighbor on
Ck−1. However, notice that if vk has left and right support at wi, then wl = wi−1
and wr = wi+1 is chosen. A complete example is shown in Figure 3.13, in which
the drawing for a small graph with seven vertices is created step by step.

Now it is not hard to see that only minor modifications are necessary to get
Algorithm 5 to work with a bitonic st-ordering instead of a canonical ordering.
Besides the changes for the initial phase of Algorithm 5 such that vL, vR, v1
are placed accordingly, some minor corrections to the range of the loops have
to be made. See Algorithm 8 for the detailed changes that are necessary. The
missing parts in Algorithm 8 should be replaced with the corresponding parts
from Algorithm 5.

57

3 Bitonic st-orderings

v1 = s

v7 = t

v2

v3
v4

v5
v6

(a)

v1

vL vR

(b)

v1

vL vR

v2

(c)

v1

vL

v3

v2

vR

(d)

v1

vL vR

v3

v4

v2

(e)

v1

vL vR

v3

v4

v2

v5

(f)

v1

vL vR

v3

v4

v2

v5

v6

(g)

v1

vL vR

v3

v4

v2

v5

v6v6

v7

(h)

Figure 3.13. (a) Example graph consisting of seven vertices with a bitonic st-ordering.
(b)-(h) Steps during the construction of the drawing. (c) v2 is supported by vR and
serves in the next step (d) as supporting vertex for v3. (f) v5 uses v1 as support.

We may conclude that Algorithm 8 enables us to use the idea of de Fraysseix
et al., while the algorithm itself is driven by a bitonic st-ordering instead of a
canonical one. Let us summarize this by stating the following theorem:

I Theorem 3.15. Given a plane graph G = (V,E) and a corresponding bitonic
st-ordering π for G. A planar straight-line drawing for G of size (2|V | − 2)×
(|V | − 1) can be obtained from π in time O(|V |).

Proof. We already argued the runtime, it remains to bound the area. Notice
that the input consists besides the vertices of G of two additional vertices
vL, vR. By Theorem 3.13, the drawing has then a size of 2|V | × |V |. However,
vL and vR are dummy vertices and have to be removed anyway. Moreover,
every other vertex is located above them. Hence, their removal yields a slightly
smaller drawing of size (2|V | − 2)× (|V | − 1).

58

3.3 Bitonic st-orderings of planar st-graphs

procedure PlanarStraightLineBitonic
begin

C1 ← {vL, v1, vR};
x(vL)← 0; y(vL)← 0;
x(v1)← 1; y(v1)← 1;
x(vR)← 2; y(vR)← 0;
// bottom-up pass
for k = 2 to n do

(l, r)← getLeftRightBitonic(vk, Ck−1)
...

// top-down pass
for k = n down to 1 do . . .

end
Algorithm 8: Adaptation of Algorithm 5 to bitonic st-orderings.

At the beginning of this section we claimed that the resulting drawing has
the additional property that every face is y-monotone. For the sake of an easier
proof, we will postpone it and show this property as part of the next section.

3.3 Bitonic st-orderings of planar st-graphs

Unlike in the previous section that was concerned with undirected graphs, we
now consider the case in which a directed graph is given. Intuitively this is
much more difficult, because every edge is oriented now, generating additional
constraints that a bitonic st-ordering must comply with. Nevertheless, we start
with an important result that motivates the investigation of planar st-graphs.

I Theorem 3.16. If a planar st-graph admits a bitonic st-ordering, then it
admits an upward planar straight-line drawing within quadratic area.

Proof. Fortunately, the proposed algorithm for drawing undirected graphs in a
straight-line style creates such an upward drawing as a byproduct. Notice that
the algorithm places every vertex above its predecessors, that is, when placing a
vertex v ∈ V , for every (u, v) ∈ E with π(u) < π(v), it holds that y(u) < y(v).
Since after its placement the y-coordinate is never modified again, it follows
that in the final layout y(u) < y(v) holds for every (u, v) ∈ E with π(u) < π(v),
as required for an upward drawing. Hence, we may apply the algorithm to
a planar st-graph with a given bitonic st-ordering π. By Theorem 3.15, the
resulting drawing is a planar straight-line one requiring quadratic area.

59

3 Bitonic st-orderings

t0

s0

s1

t1

G1

(a)

sn

tn

tn−1

tn−2

sn−2

sn−1

Gn−1

Gn

(b)

t0

s0

t1

s1

t2

t3

s2

s3
G3

(c)

Figure 3.14. (a)-(b) Recursive construction of a planar st-graph that requires expo-
nential area in any upward planar straight-line drawing [39]. (c) G3 in which the suc-
cessor list S(s1) and S(s2) are not bitonic with respect to the only possible st-ordering
s3, . . . , s0, t0, . . . , t3.

Since every face in a planar st-graph is bounded by two directed paths, and
the drawing is a feasible upward planar drawing, we may argue that every face
is y-monotone. Recall that we claimed this in the previous section.

However, to create such a drawing, we must be able to compute a bitonic st-
ordering for a planar st-graph, and the first question that comes to mind is, if
this is possible in general or if there exist planar st-graphs for which no bitonic
st-ordering exist. With a closer look at Theorem 3.16, we are able to answer
this question immediately. Although every planar st-graph admits an upward
planar straight-line drawing [37], there exist some classes for which it is known
that they require exponential area [36, 39]. The recursive construction [39] of
one of these classes and an example is depicted in Figure 3.14. Hence, these
graphs cannot admit a bitonic st-ordering, because Theorem 3.16 clearly states
that the drawing requires only polynomial area. Furthermore, when considering
the example G3 in Figure 3.14c, it is not difficult to see that this particular
graph does not admit a bitonic st-ordering.

I Corollary 3.17. There exist planar st-graphs that do not admit a bitonic
st-ordering.

While this had to be expected, we now have to solve an additional problem.

60

3.3 Bitonic st-orderings of planar st-graphs

Before we think about how to compute a bitonic st-ordering, we must first be
able to recognize planar st-graphs that admit such an ordering.

3.3.1 Characterization & recognition
The overall approach can be sketched as follows. We assume a fixed embedding
scenario, and show that we can answer our questions without having to think
about other embeddings. Based on the bitonic property, we derive a condition
that any embedded planar st-graph that admits a bitonic st-ordering, has to
comply with. Afterwards an algorithm is described that exploits this condition
to compute a bitonic st-ordering, which proves that the condition is sufficient.

We start with an alternative characterization of bitonic increasing sequences,
one that suits our needs better in the beginning than the one given earlier in
Definition 3.5. Since we will use the labels of an st-ordering, we can assume
that the elements are pairwise distinct.

I Lemma 3.18. An ordered sequence A = {a1, . . . , an} of pairwise distinct
elements is bitonic increasing if and only if the following holds:

∀1 ≤ i < j < n : ai < ai+1 ∨ aj > aj+1.

Proof. Recall from Definition 3.5 that A is bitonic increasing if and only if there
exists 1 ≤ h ≤ n such that a1 < · · · < ah > · · · > an holds. We first prove “⇒”,
that is, if A is bitonic increasing, then there exists no pair i, j with 1 ≤ i < j < n
and ai > ai+1∧aj < aj+1. Assume to the contrary that there exists such a pair.
Then from ai > ai+1, it follows that h ≥ i, and aj < aj+1 yields j < h, which
contradicts i < j. For “⇐” we choose, if it exists, h = min{j | aj > aj+1},
otherwise we set h = n. By our choice of h, ai < ai+1 holds for every 1 ≤ i < h.
Moreover, for every h ≤ j < n, it must hold that aj > aj+1, because otherwise,
there exists 1 ≤ h < j < n with ah > ah+1 ∧ aj < aj+1.

In general, a planar st-graph may have many different st-orderings, some of
them being bitonic while others are not. To deal with this problem in a more
formal manner, we introduce some additional notation. Given an embedded
planar st-graph G = (V,E) with s and t on the outer face, we refer with
Π(G) to all feasible st-orderings of G. More specifically, Π(G) is a finite set of
bijections such that

Π(G) = {π : V 7→ {1, . . . , |V |} | π is an st-ordering for G}.

The number of different st-orderings of a planar st-graph depends highly on its
structure. Starting with the graphs that have only one unique st-ordering like

61

3 Bitonic st-orderings

u

vi+1vi vj vj+1

π(vi) > π(vi+1) π(vj) < π(vj+1)

Figure 3.15. A successor list S(u) = {. . . , vi, vi+1, . . . , vj , vj+1, . . .} with i < j and a
forbidden configuration of paths vi+1 vi and vj vj+1.

the planar st-graphs that contain a Hamiltonian path (Figure 3.14) to graphs
with an exponential number of orderings. For example, the planar st-graph
with n vertices in which the source and sink are connected by n − 2 directed
paths of length two. Any label between 2 and n− 1 can be assigned arbitrarily
resulting in (n− 2)! different st-orderings, which represents the upper bound:

1 ≤ |Π(G)| ≤ (n− 2)!

Let Πb(G) be the subset of Π(G) that contains all st-orderings that are bitonic
st-orderings. By definition, we can describe Πb(G) by

Πb(G) = {π ∈ Π(G) | ∀u ∈ V : S(u) is bitonic with respect to π}.

Applying the alternative characterization of bitonicity from Lemma 3.18 to the
bitonic property of the successor lists S(u) yields the following expression for
the existence of a bitonic st-ordering:

∃π ∈ Πb(G)⇔ ∃π ∈ Π(G) ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : π(vi) < π(vi+1) ∨ π(vj) > π(vj+1).

(3.5)

Next we translate this expression from st-orderings to the existence of paths.
Although for now we will only be able to derive a necessary condition for G hav-
ing a bitonic st-ordering, we shall later prove that it is indeed sufficient. Con-
sider a path from some vertex u to some other vertex v in G, then for every π ∈
Π(G), by the definition of st-orderings, π(u) < π(v) holds. Now it is not hard to
imagine that if there exists π ∈ Πb(G), then there must exist configurations of
paths that are forbidden. To clarify this, let us rewrite the last part of the con-
dition in Equation 3.5, that is, π(vi) < π(vi+1)∨π(vj) > π(vj+1), using a simple
boolean transformation, which yields ¬(π(vi) > π(vi+1) ∧ π(vj) < π(vj+1)). So
if there exists a path from vi+1 to vi and one from vj to vj+1 with i < j, then

62

3.3 Bitonic st-orderings of planar st-graphs

this expression evaluates to false for every π ∈ Π(G). Therefore, we may refer
to the pair of paths vi+1 vi and vj vj+1 with i < j as a forbidden
configuration of paths. See Figure 3.15 for an illustration.

We may state now that in case there exists a bitonic st-ordering, the afore-
mentioned configuration of paths cannot exist:

∃π ∈ Πb(G)⇒ ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : vi+1 6 vi ∨ vj 6 vj+1.

Conversely, if we find an u with vi and vj in a graph for which these paths exist,
then we can safely reject it as one that does not admit a bitonic st-ordering.
The following well-known property of planar st-graphs will prove itself useful
when it comes to testing for the existence of a path between two vertices.

I Lemma 3.19. Let F be the subgraph of an embedded planar st-graph G =
(V,E) induced by a face that is not the outer face2, and u, v two vertices of F ,
that is, u and v are on the boundary of the face. Then there exists a path from
u to v in G, if and only if there exists such a path in F , that is,

u v ∈ G ⇔ u v ∈ F.

There are several ways to prove this result, one proof can be found in the
work of de Fraysseix et al. [32]. They use the term comparable stemming from
the field of partial order theory, which is equivalent to the existence of a path
between u and v. A more graph-based proof is based on the idea that if a path
exists that is not part of F , then it must intersect either the path from the face-
sink to t or from s to the face-source. Both cases induce a cycle, contradicting
st-planarity of G.

Notice that Lemma 3.19 is concerned with every pair of vertices incident to
the face. But in our case only a special pair of vertices is of interest. Namely,
we are interested in the existence of a path between two consecutive successors
vi and vi+1 of a vertex u. Notice that vi, vi+1 and u share a common face in
which u is the source of that face. Moreover, this face is not the outer face and
is located in between vi and vi+1, that is, vi is on the left path and vi+1 on
the right path. Hence, if there exists a path from vi to vi+1, then vi+1 must be
the sink of the face (Figure 3.16a). Similarly, if there exists a path from vi+1
to vi, then vi is the face-sink (Figure 3.16b). Notice that by Lemma 3.19 this
holds both ways. Thus, if there exists no path between vi and vi+1, then none
of the two is the sink (Figure 3.16c). As a result, we can test for the existence

2This restriction is necessary due to the possible absence of the st-edge which is allowed by
our definition of planar st-graphs.

63

3 Bitonic st-orderings

vi

vi+1

u

(a)

vi

vi+1

u

(b)

vi vi+1

u

w

(c)

Figure 3.16. The three cases at a face between two successors vi and vi+1 of the face-
source u: (a) vi+1 is the sink of the face indicating the existence of a path from vi to
vi+1. (b) Similarly, a path from vi+1 to vi results in a face having vi as sink. (c) There
exists no path between vi and vi+1, if and only if neither vi nor vi+1 is the face-sink.

of a path between two consecutive successors of u by just looking at the sink
of their common face with u.

This gives rise to a first idea for an efficient algorithm for our recognition
problem. But instead of describing such an algorithm right away, we continue
to push for sufficiency. The next proposition is a step towards that in the sense
that it essentially reverses the alternative characterization of bitonicity back to
the original one. But this time, we do not argue with an st-ordering, instead
we are able to describe it by the existence of paths.

I Proposition 3.20. Given an embedded planar st-graph and a vertex u ∈ V
with successor list S(u) = {v1, . . . , vm}. If it holds that

∀ 1 ≤ i < j < m : vi+1 6 vi ∨ vj 6 vj+1,

then there exists 1 ≤ h ≤ m such that

(∀ 1 ≤ i < h : vi+1 6 vi) ∧ (∀ h ≤ i < m : vi 6 vi+1)

holds. In other words, there exists at least one vh in S(u) whose preceding
vertices in S(u) are only connected by paths in clockwise direction, whereas
paths between following vertices are directed counterclockwise.3

Proof. We argue the same way as in the proof of Lemma 3.18. If there exists
no path vi+1 vi with 1 ≤ i < m, choose h = m. Then ∀ 1 ≤ i < m : vi+1 6
vi is satisfied in a trivial way. If there exists at least one such path, we set
h = min{i | vi+1 vi} which satisfies ∀ 1 ≤ i < h : vi+1 6 vi by construction.

3One can show that this holds both ways, but at this point it is sufficient for our purpose.
The other direction will follow implicitly later from the sufficiency of the initial condition.

64

3.3 Bitonic st-orderings of planar st-graphs

· · · · · ·

v1

vh
· · · · · ·

vm· · · ···

u

Figure 3.17. Paths and their orientation between consecutive successors of u. All of
them directed towards vh as described by Proposition 3.20.

Now assume to the contrary that there exists a path vj vj+1 with h ≤ j < m.
Then there exists vh+1 vh and h ≤ j holds, which contradicts our assumption
that for every 1 ≤ i < j < m, it holds that vi+1 6 vi ∨ vj 6 vj+1.

The idea is now the following: If we have a graph that satisfies our necessary
condition, then we can find for every u ∈ V with u 6= t a successor vh with the
property as described in Proposition 3.20. The intuition behind this property
is that all paths that exist between successors of u, are directed in some way
towards vh. See Figure 3.17 for an illustration. The next lemma exploits this
property to obtain a bitonic st-ordering, which proves that this condition is
indeed sufficient for the existence of a bitonic st-ordering.

I Lemma 3.21. Given a planar st-graph with a fixed embedding. If at every
vertex u ∈ V with successor list S(u) = {v1, . . . , vm} the following holds:

∀ 1 ≤ i < j < m : vi+1 6 vi ∨ vj 6 vj+1,

then G admits a bitonic st-ordering π ∈ Πb(G).

Proof. To show that there exists a π ∈ Πb(G), we will require several steps.
First, we describe an algorithm that augments G into a new planar st-graph
by inserting additional edges that we refer to as E′. These edges ensure that
between every pair of consecutive successors in G, there exists a path in G′ =
(V,E ∪E′). Afterwards, we prove that G′ is st-planar and in the last step, we
show that any st-ordering π ∈ Π(G′) for G′ is a bitonic st-ordering for G.

In the following we have to deal with different graphs that share the same
vertex set. To avoid any ambiguity of our notation, we establish some rules.
The successor list S(u) of a vertex u ∈ V is used to refer to the successors of
u in G as they appear in the embedding of G, and never for any graph other
than G. For the existence of a path, we explicitly mention the graph we refer
to, for example, u v ∈ G.

65

3 Bitonic st-orderings

v1

vh
· · · · · ·

vm· · · ···

u

Figure 3.18. The augmented graph G′ in the proof of Lemma 3.21 obtained by adding
edges between consecutive successors of u such that they are oriented towards vh.

For every vertex u with successor list S(u) = {v1, . . . , vm}, we may assume
by Proposition 3.20 that there exists 1 ≤ h ≤ m such that for every 1 ≤ i < h
there exists no path from vi+1 to vi, and for every h ≤ i < m no path from vi to
vi+1 in G. Hence, we may add specific edges to fill the gaps such that there exist
two paths in G′, v1 v2 · · · vh ∈ G′ and vm vm−1 · · · vh ∈ G′.
Figure 3.18 illustrates the idea. More specifically, for every 1 ≤ i < m, there
are three cases to consider.

In the first case, there already exists a path between vi and vi+1 in G, that
is, vi vi+1 ∈ G or vi+1 vi ∈ G, hence, we may just skip the pair, because
Proposition 3.20 ensures that the path is directed towards vh. In the second
case, there exists no path between vi and vi+1 in G and i < h holds. Having
in mind that we want to create a path from v1 vh that contains all vi with
1 < i < h, we add an edge from vi to vi+1. In the third case, if there exists
no path between vi and vi+1 in G, but now h ≤ i < m holds, we add in a
symmetric manner the reverse edge (vi+1, vi) to E′.

As a result of the insertion procedure and the orientation of existing paths
as guaranteed by Proposition 3.20, there exists now a path in G′ = (V,E ∪E′)
between every two consecutive successors of u in G such that

∀ 1 ≤ i < h : vi vi+1 ∈ G′ ∧ ∀ h ≤ i < m : vi+1 vi ∈ G′.

This implies that there exists two paths v1 v2 · · · vh ∈ G′ and
vm vm−1 · · · vh ∈ G′.

As a next step, we show that G′ is still st-planar by induction over the
number of added edges 0 ≤ k ≤ |E′|. Assume that the edges in E′ are ordered
arbitrarily. Let Gk be the graph obtained from inserting the first k edges into
G. Clearly, G0 = G is st-planar.

66

3.3 Bitonic st-orderings of planar st-graphs

Now we add the k-th edge. Let this edge be w.l.o.g. (vi, vi+1), which has been
added to E′ by visiting two consecutive successors vi, vi+1 of some vertex u ∈ V .
The other case in which the k-th edge is (vi+1, vi) is symmetric. Furthermore,
let F be the subgraph induced by the common face of u, vi and vi+1 in G.
Notice that F consists of two directed paths, u → vi w and u → vi+1 w
with face-sink w. By Lemma 3.19, vi 6= w 6= vi+1 holds, because there exists
no path between vi and vi+1 in G, which is a requirement for adding an edge.
We may assume by our induction hypothesis that Gk−1 is st-planar. Since we
only added edges to Gk−1, G is a subgraph of Gk−1, and so is F . Moreover, F
is still a face in Gk−1, because F is the common face of u, vi, vi+1 that we have
not touched yet by inserting another edge into F . Hence, we can safely insert
(vi, vi+1) while preserving planarity.

It remains to show that Gk is acyclic. Since Gk−1 is acyclic, any cycle in Gk
must contain (vi, vi+1). However, then there also exists a path from vi+1 to vi
in Gk which must have existed before in Gk−1. By Lemma 3.19, there exists
then a path in F (and therefore in G) from vi+1 to vi, which is a contradiction.
Hence, Gk is st-planar and it follows that G′ is st-planar.

Consider now an st-ordering π ∈ Π(G′). Since clearly E′ ⊆ E ∪ E′ holds,
π is also an st-ordering for G, that is, Π(G′) ⊆ Π(G) holds. Recall that we
constructed G′ such that for every u ∈ V with S(u) = {v1, . . . , vm}, there
exists v1 v2 · · · vh ∈ G′ and vm vm−1 · · · vh ∈ G′. Hence, it
follows that for every π ∈ Π(G′)

∀ 1 ≤ i < h : π(vi) < π(vi+1) ∧ ∀ h ≤ i < m : π(vi) > π(vi+1)

holds, which implies that S(u) is bitonic with respect to π. Since this holds
for all u ∈ V , it follows that Π(G′) ⊆ Πb(G). Moreover, G′ has at least one
st-ordering, that is, Π(G′) 6= ∅, thus, there exists π ∈ Πb(G).

Let us summarize the implications of the lemma. The only requirement is
that the graph complies with our necessary condition, that is, the absence of
forbidden configurations. If this is the case, then Lemma 3.21 provides us with
a bitonic st-ordering, which in turn proves that this condition is sufficient.

∃π ∈ Πb(G)⇔ ∀u ∈ V with S(u) = {v1, . . . , vm}
∀ 1 ≤ i < j < m : vi+1 6 vi ∨ vj 6 vj+1

Furthermore, the argumentation in the proof of Lemma 3.21 is solely based on
Proposition 3.20. This implies that the existence of a bitonic st-ordering, the
absence of forbidden configurations and the existence of a vh in every successor

67

3 Bitonic st-orderings

list as described in Proposition 3.20, are all equivalent.

∃π ∈ Πb(G)⇔ ∀u ∈ V with S(u) = {v1, . . . , vm} ∃ 1 ≤ h ≤ m
(∀ 1 ≤ i < h : vi+1 6 vi) ∧ (∀ h ≤ i < m : vi 6 vi+1)

Additionally, the proof is constructive and yields a linear-time algorithm. More-
over, it is not hard to see that we can easily extend the algorithm to test on
the fly, whether the input admits a bitonic st-ordering or not. Let us state this
as the main result of this section.

3.3.2 Recognition & ordering in linear time

The algorithm is based on two ideas. The recognition process follows the initial
idea of testing for forbidden configurations, whereas the ordering uses the idea
from the proof of Lemma 3.21. The overall procedure is shown in Algorithm 9
and works as follows. We assume that an embedded planar st-graph G = (V,E)
is given and wish to test if G admits a bitonic st-ordering. In that case the
algorithm should compute such an ordering.

At each successor list S(u) = {v1, . . . , vm}, we test for the existence of the
aforementioned special successor vh. To do so we iterate over S(u) and keep
track if the current vertex vi is in the increasing (i < h) or decreasing partition
(h ≤ i). More specifically, if there exists a path vi vi+1, π(vi) < π(vi+1)
holds. So, in case S(u) is bitonic with respect to π, then vi is in the increasing
partition. Once we find a path vi+1 vi, we entered the decreasing partition
and set the flag accordingly. If we encounter again a path of the form vj vj+1
while the decreasing flag is set, a forbidden configuration has been found and
we can safely reject the graph.

During the procedure, we handle the case in which there exists neither a path
vi vi+1 nor vi+1 vi, the same way as in Lemma 3.21. More specifically, as
long as we are in the increasing partition, we add an edge (vi, vi+1), whereas in
the decreasing partition we add the reverse edge (vi+1, vi) to the set of edges
E′ to augment G.

In the last step, the bitonic st-ordering is obtained by computing an st-
ordering for the augmented graph G′ = (V,E ∪ E′). Unlike for undirected
graphs that require a more sophisticated algorithm, computing an st-ordering
for a directed graph is a rather simple task. A simple topological sort using a
depth-first-search as for example described in [31], is sufficient and takes time
O(|V |+ |E|+ |E′|). Since G′ is planar, the total time required is linear in the
number of vertices. Let us state this result without a proof.

68

3.3 Bitonic st-orderings of planar st-graphs

procedure EmbeddedBitonic
begin

E′ ← ∅;
for u ∈ V with S(u) = {v1, . . . , vm} do

decreasing← false;
for i = 1 to m− 1 do

w ← faceSink(u, vi, vi+1);
if w = vi+1 and decreasing then reject;
if w = vi then decreasing← true;
if vi 6= w 6= vi+1 then

if decreasing then
E′ ← E′ ∪ (vi+1, vi)

else
E′ ← E′ ∪ (vi, vi+1)

end
end

end
end
compute π ∈ Π(V,E ∪ E′);
return π

end
Algorithm 9: Recognition of planar st-graphs that admit a bitonic st-ordering and
its computation. The algorithm assumes that G = (V,E) is an embedded planar
st-graph and its successor lists are given.

I Theorem 3.22. Deciding whether an embedded planar st-graph G admits a
bitonic st-ordering π or not is linear-time solvable. Moreover, if G admits such
an ordering, π can be found in linear time.

3.3.3 Experimental results
With a recognition algorithm now at our disposal, we investigate in the fol-
lowing the bitonicity of random planar st-graphs. In order to gain some in-
sight into how applicable the concept of bitonic st-ordering is, we generated a
benchmark set consisting of random planar st-graphs of varying size and den-
sity. Although we follow the basic principle for generating instances as in the
literature, e.g. [11, 25], we give a more detailed description here due to some
additional requirements.

Namely, we are interested in generating an embedded planar st-graph G that
has exactly n vertices and m edges. Of course, we assume that n and m are
feasible values. Since in the previous section, G has usually been considered to
be simple, we do not allow parallel edges. An implementation that produces

69

3 Bitonic st-orderings

such a graph turned out to be not as straightforward as one would have hoped,
thus, for completeness we describe the procedure here.

Generating random planar st-graphs

In order to simplify the algorithm, we add one more constraint that is the
presence of the st-edge. Notice that by our definition, the st-edge does not
have to be present. The only requirement is that s and t are on the same face.
However, for simplicity we generate only instances in which this edge is present.

In the following, an algorithm is described that is based on a generator
for biconnected planar graphs and implemented as part of the Open Graph
Drawing Framework [65]. However, some minor modifications are made such
that the result is a planar st-graph. Such an approach has been used by [11,
25] to generate benchmark instances for studies of upward planarity testing
algorithms and related problems.

We start by creating a triangle consisting of three edges (s, t), (s, v), (v, t).
From there on, we split edges and faces randomly, until the desired size has
been reached. When splitting an edge, both the vertex and edge count increases
by one, whereas a face split adds only one edge to the graph. For the input n
and m, we may assume that 3 ≤ n ≤ m ≤ 3n − 6 holds, since the underlying
graph of the result is at least biconnected (due to the (s, t)-edge) and at most
maximal planar. The only way to match the vertex count of n, is by performing
exactly n− 3 edge splits. However, these edge splits generate n− 3 additional
edges. Therefore, the remaining edges must be obtained by m−n−6 face splits.

Let Gk = (Vk, Ek) be the planar st-graph after k steps. Furthermore, we
maintain the invariant that |Vk| ≤ n and |Ek| ≤ m−n+ |Vk| holds. The bound
for |Ek| avoids the situation in which we still have to perform n − |Vk| edge
splits to generate enough vertices, while the number of edges remaining is less
than n− |Vk|. Clearly, for G0, that is a triangle, the invariant holds.

Consider the case k > 0, and assume that we are not done yet, that is, at
least one edge or vertex is missing and we have to decide, if we split an edge or
a face. Splitting an edge randomly is a rather unproblematic operation, because
one may choose at any time any edge, except of (s, t), and the result is still a
planar st-graph.

A face split, however, is a different story for which two problems have to
be solved: First, a split is not necessarily possible for every face, because only
faces that are not triangles can be split. Hence, if Gk is maximal planar, we are
forced to split an edge instead. Recall that by our assumption m ≤ 3n−6 holds,
therefore, we can perform such an edge split without exceeding the bound for
the number of vertices.

70

3.3 Bitonic st-orderings of planar st-graphs

In general, a coin is flipped to decide whether an edge or face split is per-
formed. To deal with the maximal planar case and to prevent splitting too
many faces, we choose for the probability of an edge split

Pedge =
{

1 if |Ek| = 3|Vk| − 6
n−|Vk|
m−|Ek| otherwise.

Notice that by our assumption 1 ≤ n − |Vk| ≤ m − |Ek| holds, which implies
0 ≤ Pedge ≤ 1. As a result, in the case in which a face split is chosen, there
exists at least one face that is not a triangle. By rolling a dice, we choose one
of these faces.

Having chosen a face to split, we have to deal with the second problem:
Selecting two non-consecutive vertices of a face as endpoints for the new edge
randomly, may result in a pair of parallel edges. Notice that we cannot just
remove these edges afterwards due to the requirement that |E| = m must hold.
The solution to this problem is to first determine all vertex pairs that are
feasible candidates for inserting an edge, that is, vertices incident to the face
that are not adjacent. Out of this set we choose randomly one pair for the face
split. Although this operation preserves planarity, it may introduce a cycle.
Therefore, we have to pay some attention on the direction of the edge. To do
so we insert the edge into Gk and test both incident faces for a cycle. If such
a cycle exists, we reverse the edge. Notice that we do not have to care about a
cycle after a reversal, because it would imply a cycle in Gk, which contradicts
that Gk is st-planar.

Under every circumstance, the described procedure is able to perform an
operation. It remains to show that the result complies with the invariant. It
is not hard to see that the result Gk+1 is st-planar. Furthermore, since an
edge split raises both the edge and vertex count, |Vk+1| ≤ n and |Ek+1| ≤
m−n+ |Vk+1| holds. In the case of a face split, assume that the second bound
is not satisfied. Clearly, |Ek| = m − n + |Vk| holds then, which implies that
we flipped the coin with Pedge = 1 for the probability of an edge split, a
contradiction.

Bitonicity of random planar st-graphs

We start with the description of the benchmark set that consists of four different
classes based on the density of the instances. The graphs of the first three are
classfied by their edge-vertex ratio. More specifically, for every graph G =
(V,E) it holds that |E| = bδ · |V |c, with δ ∈ {1.5, 2, 2.5} defining the classes.
Graphs of the fourth class are maximal planar, that is |E| = 3|V | − 6 holds.

71

3 Bitonic st-orderings

0

10

20

30

40

50

60

23 24 25 26 27 28 29 210

B
it

on
ic

in
st

an
ce

s
in

%

Number of vertices |V |

δ = 1.5
δ = 2.0
δ = 2.5

max. planar

Figure 3.19. Distribution of instances in the benchmark set that admit a bitonic st-
ordering based on their size.

Every class contains subsets of instances with a vertex count that increases
exponentially. More specifically, the k-th subset only contains instances of size
|V | =

⌊
9k

8k−1

⌋
with k ∈ {0, 1, . . .}. For each such subset we generated 150

sample instances using the generator procedure described earlier. Notice that
the described procedure implies an embedding with (s, t) at the outer face.

Figure 3.19 shows the amount of bitonic instances in the corresponding sub-
set, that is the percentage of graphs that admit a bitonic st-ordering. The
results clearly show what one would expect: With increasing size and density,
the amount of bitonic instances decreases rapidly. Notice that the plot has a
logarithmic scale for the size. The reason for this decline is that the existence
of a single forbidden configuration suffices to reject it. With increasing size and
density, it becomes more likely that one of the successor lists contains at least
one such configuration.

The distribution of these successor lists is shown in Figure 3.20. To obtain
this data, we slightly modified Algorithm 9 such that instead of rejecting an in-
stance right away, it counts the number of successor lists that contain forbidden
configurations. The average amount of these lists converges quickly towards a
value that solely depends on the edge density.

Regardless of the edge density, the amount of successor lists that are not
bitonic shows in the beginning a slightly decreasing trend. This disturbance is

72

3.3 Bitonic st-orderings of planar st-graphs

0

5

10

15

20

25

30

23 24 25 26 27 28 29 210

|v
∈
V

:
S
(v
)

no
t

bi
to

ni
c|

in
%

of
|V

|

Number of vertices |V |

δ = 1.5
δ = 2.0
δ = 2.5

max. planar

Figure 3.20. Average amount of successor lists that are not bitonic with respect to
any st-ordering.

caused by the presence of the st-edge. Since it is on the outer face, it requires the
successor list of s to be sorted instead of being bitonic, which is a slightly stricter
requirement. Therefore, the probability that S(s) is not bitonic is higher when
the edge (s, t) is present. During our experiments, we temporarily removed the
edge from every instance, and we observed a positive effect on the bitonicity
of S(s) which supports this claim. Since some instance sets are quite small
in terms of their vertex count, a forbidden configuration in S(s) has a higher
impact on the total number of successor lists that are not bitonic.

Let us summarize the results so far: Even for rather medium sized graphs
(|V | ≈ 256) with low edge density (δ = 1.5), the probability of admitting a
bitonic st-ordering is very low. Denser instances (δ = 2.5, maximal planar)
with only a few vertices (|V | ≈ 32) are most likely to contain at least one
forbidden configuration. However, the amount of successor lists that contain
such configurations is quite low (< 20%). At this point it should be mentioned
that our results do not include any runtime data. We omitted these due to the
small sizes of the instances and the simplicity of the algorithm.

Now it is tempting to investigate how a variable embedding scenario may
improve the number of instances that admit a bitonic st-ordering. However, a
look at the amount of instances that are maximal planar, thus, have a fixed
combinatorial embedding, and do not admit a bitonic st-ordering suggests that

73

3 Bitonic st-orderings

this is most likely not the case. Moreover, the amount of successor lists that
are not bitonic with respect to any st-ordering suggests that the choice of the
outer face is not going to help much, because it only affects the successor list
S(s). Therefore, the ability to change the embedding cannot have a significant
impact on this quite large number of instances.

However, we counteract now in a different way. Recall that our initial moti-
vation was to create upward planar straight-line drawings of planar st-graphs.
Instead of sticking to straight-line drawings, we allow bends on the edges and
shift our efforts to upward planar poly-line drawings.

3.4 Upward planar poly-line drawings with few bends

In general every planar st-graph admits an upward planar poly-line drawing
in quadratic area. However, the number of bends required varies. An approach
that is based on the visibility representation of a planar st-graph is described by
Di Battista and Tamassia in [37]. Their algorithm produces an upward poly-line
drawing by first computing a visibility representation. Based on this visibility
representation in which every vertex v is represented by a horizontal segment
xmin(v), xmax(v) with y-coordinate y(v) on the grid, they choose for the vertex
position an arbitrary grid point that is covered by the corresponding segment,
that is, xmin(v) ≤ x(v) ≤ xmax(v), whereas the y-coordinate y(v) is kept. The
edge routing follows a simple principle: every edge e = (u, v) is represented
by a vertical segment, say from x(e), y(u) to x(e), y(v) with y(u) < y(v). In
the case in which y(v) − y(u) ≥ 1 holds, this segment serves as a part of a
poly-line from u to v by inserting bends at x(e), y(u) + 1 and x(e), y(v) − 1.
Of course, if y(v) − y(u) = 2 holds, the result is a poly-line with only one
bend, whereas for the case in which y(v)− y(u) = 1 holds, no bend is required.
Clearly, every edge has at most two bends, therefore, the resulting drawing
has at most 6n − 12 bends with n being the number of vertices of the input
graph. With a more careful choice of the vertex positions and by employing a
special visibility representation, the authors manage to improve this bound to
(10n − 31)/3. Moreover, the drawing requires only quadratic area and can be
obtained in linear time.

Another approach by Di Battista et al. [39] employs an algorithm that creates
a straight-line dominance drawing as an intermediate step. Recall that while a
dominance drawing can be transformed into an upward drawing, the converse
is not true. We already argued that dominance drawings have much stronger
requirements, and that the presented algorithm in [39] cannot handle planar
st-graphs directly. Instead it requires a reduced planar st-graph.

74

3.4 Upward planar poly-line drawings with few bends

In order to obtain such a graph, Di Battista et al. [39] split every transitive
edge of a planar st-graph by replacing it with a path of length two. The result
is a reduced planar st-graph for which a straight-line dominance drawing is
obtained that requires only quadratic area and can be computed in linear time.
Then they reverse the procedure of splitting the edges by using the coordinates
of the inserted dummy vertices as bend points. Since a planar st-graph G =
(V,E) has at most 2|V | − 5 transitive edges, the resulting layout has not more
than 2|V | − 5 bends and at most one bend per edge. To our knowledge, this
bound is the best achieved so far.

Our situation now is similar: We also have an algorithm for producing an
upward planar straight-line layout for a subset of planar st-graphs, namely the
planar st-graphs that admit a bitonic st-ordering. And since we put some more
effort into an exact characterization of this class, we will be able to derive an
algorithm that creates drawings with a small number of bends.

The idea is rather straightforward and can best be described by an example.
Assume that an embedded planar st-graph G = (V,E) is given that contains
a single forbidden configuration of paths at a vertex u ∈ V with successors list
S(u) = {v1, . . . , vm}. Let this forbidden configuration be two paths vi+1 vi
and vj vj+1 with i < j between consecutive successors of u.

Now we augment G by splitting either the edge (u, vi) or (u, vj+1). Say
w.l.o.g. that we split the edge (u, vi) into two new edges (u, v′i) and (v′i, vi)
with v′i being the new dummy vertex. Assume that the two new edges inherit
their position in the embedding from (u, vi). As a result, G contains now one
additional successor list S(v′i) that contains only one element, thus, is bitonic
with respect to every st-ordering. Furthermore, vi has been replaced by v′i in
the successor list S(u), but since there exists no path from vi+1 to v′i anymore,
we managed to resolve the forbidden configuration. Now Theorem 3.22 enables
us to compute a bitonic st-ordering π ∈ Πb(G) in linear time. Running the
modified FPP-algorithm (Theorem 3.15) with G and π yields an upward planar
straight-line drawing within the same time bound. We reverse the insertion of
the dummy vertex by using the position of v′i as a bend point for the edge
(u, vi), and obtain an upward planar poly-line drawing with exactly one bend
for the original graph.

Let us compare this idea with the dominance layout-based approach of
Di Battista et al. [39]: In a very similar way, we split an edge to establish
a certain property for the graph. Recall that a forbidden configuration consists
of two paths vi+1 vi and vj vj+1 with i < j between successors of a vertex
u. Then there exists a path u vi via vi+1 that does not contain (u, vi), and in
a symmetric manner, there exists a path u vj+1 via vj that does not contain
(u, vj+1). Clearly, (u, vi) and (u, vj+1) are transitive edges then.

75

3 Bitonic st-orderings

Hence, we may summarize that the existence of a forbidden configuration
implies the existence of transitive edges. Conversely, a planar st-graph without
these edges cannot contain a forbidden configuration, which immediately yields
a subset of planar st-graphs that admit a bitonic st-ordering.

I Corollary 3.23. Every reduced planar st-graph admits a bitonic st-ordering.

Notice that in the example, only one of the two transitive edges has been split
to destroy the forbidden configuration of paths, not both of them. Moreover, a
pair of transitive edges does not necessarily induce a forbidden configuration.
This leads to the question of how many splits are really necessary such that
the resulting graph admits a bitonic st-ordering.

3.4.1 The edge-split method
In the following, we give a detailed answer to this question, and as a result,
are able to significantly improve the upper bound for the number of bends
required in any upward planar poly-line drawing. We proceed in several steps.
The first aspect to consider is the case in which we have multiple forbidden
configurations and how a split of an edge affects these. Then we prove the upper
bound, and as a last step, we describe a linear-time algorithm that splits the
minimum number of edges.

Recall that a forbidden configuration of paths is solely based on the existence
of paths between the successors of a vertex. The next lemma shows that an
edge split has only a very local effect, that is, the existence of paths between
any pair of vertices of the original graph is not affected by such a split.

I Lemma 3.24. Let G′ = (V ′, E′) be the graph obtained from splitting an edge
(u, v) of a graph G = (V,E) by inserting a dummy vertex v′. More specifically,
let V ′ = V ∪{v′} and E′ = (E− (u, v))∪{(u, v′), (v′, v)}. Then for all w, x ∈ V
there exists a path w x ∈ G, if and only if there exists a path w x ∈ G′:

∀w, x ∈ V : w x ∈ G⇔ w x ∈ G′.

Proof. Notice that w, x ∈ V implies w 6= v′ and x 6= v′. Every path in G that
contains (u, v) can use (u, v′), (v′, v) in G′. Assume there is a path w x in G′
that does not exist in G, thus, it contains (u, v′) or (v′, v). From w 6= v′ 6= x,
it follows that the path contains both edges, (u, v′) and (v′, v), and that they
appear consecutively. Hence, w x can use the edge (u, v) in G instead.

We can now argue that when splitting an edge, say (u, v), only two successor
lists are affected. Namely, S(u) which now contains the newly inserted vertex,

76

3.4 Upward planar poly-line drawings with few bends

say v′, instead of v, and the newly created successor list S(v′). However, v′ has
only one successor, thus S(v′) = {v} cannot contain a forbidden configuration.
Moreover, Lemma 3.24 implies that we are not creating nor resolving any for-
bidden configurations in other successor lists, because v′ is the only new vertex
and S(u) is the only successor list that contains it. Hence, no other successor
list is affected by this procedure. Since v′ has only one predecessor, it is not a
face-sink, thus, cannot be involved in other forbidden configurations. Now we
exploit this locality by proving an upper bound on the number of edges to split
in order to resolve all forbidden configurations.

I Lemma 3.25. Every embedded planar st-graph G = (V,E) can be trans-
formed into a new planar st-graph G′ that admits a bitonic st-ordering by
splitting at most |V | − 3 edges.

Proof. We already argued that the insertion of dummy vertices has only local
effects. In order to achieve the upper bound of |V | − 3, we follow a simple
principle based on the edge-split procedure used in the example to destroy a
forbidden configuration.

Consider a vertex u and its successor list S(u) = {v1, . . . , vm} that contains
multiple forbidden configurations of paths. Intuitively, it is not easy to resolve
them within the limits imposed by the upper bound. However, by changing our
point of view on the problem, things become more clear. Instead of arguing by
means of forbidden configurations, we use our second condition from Proposi-
tion 3.20, that is the existence of a vertex vh such that every path that exists
between two consecutive successors vi and vi+1, is directed from vi towards
vi+1 for i < h or from vi+1 towards vi if i ≤ h holds. Of course h does not
exist due to the forbidden configurations. But we can enforce its existence by
splitting some edges.

Assume that we want vh to be the first successor, that is, h = 1. Then every
path from vi to vi+1 with 1 ≤ i < m is in conflict with this choice. However,
we can resolve this by splitting every edge (u, vi+1) for which a path vi vi+1
exists. Clearly, the maximum number of edges to split is at most m − 1, that
is the case in which for every 1 ≤ i < m, there exists a path from vi to vi+1.
However, there do not exist paths vi vi+1 and vi+1 vi at the same time,
because G is acyclic. So, if the number of edges to split is more than m−1

2 ,
then there are less than m−1

2 paths of the form vi+1 vi. In that case, we
may choose in a symmetric manner h to be the last successor (h = m), instead
of being the first. Or in other words, we choose h to be the first or the last
successor, depending on the direction of the majority of paths. And as a result,
at most m−1

2 edges have to be split.

77

3 Bitonic st-orderings

Notice that the overall length of all successor lists is exactly the number
of edges of the graph. Hence, with m = |S(u)| we get

∑
u∈V |S(u)| = |E| ≤

3|V | − 6, and the claimed upper bound can be derived by

∑
u∈V

|S(u)| − 1
2 ≤ 3|V | − 6− |V |

2 = |V | − 3.

Moreover, the split procedure preserves the st-planarity of G.

Notice that we did not prove a time bound. One may argue that the procedure
described in the proof of Lemma 3.25 works in linear time, but for now we leave
it this way and turn our attention to the next problem. Surely, the upper bound
of |V | − 3 is a solid result, but we will push this a bit further from a practical
point of view, and focus on the problem of finding a minimum set of edges to
split. In the following, we will describe an algorithm that solves this problem
in linear time, thereby, implying a linear-time bound for Lemma 3.25.

To do so, we introduce some more notation. As usual, let u ∈ V be a vertex
with successor list S(u) = {v1, . . . , vm}. If we choose now a particular 1 ≤
h ≤ m at u, then we have to split every edge (u, vi+1) with i < h for which
there exists a path vi+1 vi and every edge (u, vi) with h ≤ i for which
G contains a path vi vi+1. Let the number of these edges be L(u, h) and
R(u, h), respectively. More specifically, we define L(u, h) to be

L(u, h) = |{i < h : vi+1 vi}|

and, in a symmetric manner, R(u, h) to be

R(u, h) = |{h ≤ i : vi vi+1}|.

Minimizing the total number of edges that have to be split, for which we have
already an upper bound due to Lemma 3.25, can therefore be expressed by∑

u∈V
min

1≤h≤m
L(u, h) +R(u, h) ≤ |V | − 3.

From an algorithmic point of view, we are interested in the value of h at every
u such that the sum L(u, h) +R(u, h) is minimized. For the sake of a shorter
algorithm, let us put some more effort into this by rewriting L(u, h) in recursive
form:

L(u, h) =


0 if h = 1
L(u, h− 1) + 1 if vh vh−1
L(u, h− 1) otherwise

78

3.4 Upward planar poly-line drawings with few bends

Similarly, we may rewrite R(u, h) as

R(u, h) =


R(u) if h = 1
R(u, h− 1)− 1 if vh−1 vh
R(u, h− 1) otherwise

with R(u, 1) = R(u) = |{1 ≤ i < m : vi vi+1}| being the total number of
consecutive successors for which there exists a path of the form vi vi+1. And
as result, we can now express the sum L(u, h) +R(u, h) recursively by

L(u, h) +R(u, h) =


R(u) if h = 1
L(u, h− 1) +R(u, h− 1) + 1 if vh vh−1
L(u, h− 1) +R(u, h− 1)− 1 if vh−1 vh
L(u, h− 1) +R(u, h− 1) otherwise.

As a next step, we shift this sum by R(u). More specifically, we define C(u, h) =
L(u, h) + R(u, h) − R(u). Notice that R(u) does not depend on h, therefore,
the following holds:∑

u∈V
min

1≤h≤m
L(u, h) +R(u, h) =

∑
u∈V

min
1≤h≤m

C(u, h) +
∑
u∈V

R(u)

Clearly, it suffices to minimize C(u, h) for every u. Moreover, we can express
C(u, h) in a similar way as the recursive variant of L(u, h) +R(u, h):

C(u, h) =


0 if h = 1
C(u, h− 1) + 1 if vh vh−1
C(u, h− 1)− 1 if vh−1 vh
C(u, h− 1) otherwise

(3.6)

It is not difficult to see now that the value of h for which C(u, h) is minimum,
can be found by a single pass over the successor list S(u). We already discussed
how to test for the existence of paths. By borrowing parts of the algorithm
presented earlier, a description of an algorithm that determines an optimum
set of edges to split, becomes straightforward.

3.4.2 An optimal linear-time transformation
We assume that an embedded planar st-graph G = (V,E) is given and the
objective is to compute a set of edges Esplit with minimum cardinality such
that after splitting every edge in Esplit, the resulting graph admits a bitonic
st-ordering. For the algorithm, we follow roughly the same approach taken

79

3 Bitonic st-orderings

procedure BitonicMinSplit
begin

Esplit ← ∅;
for u ∈ V with S(u) = {v1, . . . , vm} do

h← 1;
cmin ← c← 0;
for i = 2 to m do

w ← faceSink(u, vi−1, vi);
if w = vi−1 then c← c+ 1;
if w = vi then c← c− 1;
if c < cmin then

cmin ← c;
h← i;

end
end
for i = 1 to h− 1 do

if vi = faceSink(u, vi, vi+1) then
Esplit ← Esplit ∪ (u, vi);

end
for i = h to m− 1 do

if vi+1 = faceSink(u, vi, vi+1) then
Esplit ← Esplit ∪ (u, vi+1);

end
end
return Esplit

end
Algorithm 10: Algorithm for computing the minimum set of edges to split of an
embedded planar st-graph G = (V,E) with its successor lists given.

in Algorithm 9, that is, traversing the successor list of every vertex u and
inspecting the sink of the corresponding face to test for the existence of paths
between two consecutive successors of u. A full listing of the procedure is given
in Algorithm 10.

Based on the recursive expression given earlier in Equation 3.6, we maintain
a counter that during the traversal, say at vi, holds the value C(u, i). More
specifically, we test if either vi−1 or vi is the sink of the common face of u, vi−1
and vi. In the former case, there exists then a path vi vi−1, and from
Equation 3.6 we get C(u, i) = C(u, i− 1) + 1. Thus, we increment the counter,
whereas when vi is the sink, we decrement it. Now it is not difficult to see that
Algorithm 10 computes 1 ≤ h ≤ m for which C(u, h) is minimum.

Having determined h, we repeat the traversal by considering two cases. If

80

3.4 Upward planar poly-line drawings with few bends

we find a path vi+1 vi with i < h, then the edge (u, vi) has to be split in
order to destroy the path. In the other case, that is, when we encounter a path
vi vi+1 with h ≤ i < m, we add (u, vi+1) to Esplit. The number of edges
added to Esplit by one traversal is exactly L(u, h) + R(u, h) by construction.
Since we have chosen h such that C(u, h) is minimum, we added the minimum
number of edges to Esplit.

As a result Algorithm 10 provides us with a set of edges Esplit to split such
that we can run Algorithm 9 on the resulting graph and be sure that it will
compute a bitonic st-ordering. At this point it should be mentioned that these
two algorithms can be merged into one. The only detail to consider, is that
the edge splits in Algorithm 10 must happen before the edge insertions of
Algorithm 9. However, for the sake of a clear presentation we leave it this way
and draw some conclusions instead. Since we argued already its proof, we state
the following lemma without one.

I Lemma 3.26. Every embedded planar st-graph G = (V,E) can be trans-
formed into a planar st-graph that admits a bitonic st-ordering by splitting
every edge at most once. Moreover, the minimum number of edges to split is at
most |V | − 3 and they can be found in linear time.

Now we may use this result to create upward planar drawings of planar
st-graphs with few bends.

I Theorem 3.27. Every embedded planar st-graph G = (V,E) admits an up-
ward planar poly-line drawing within quadratic area having at most one bend
per edge and at most |V | − 3 bends in total. Moreover, such a drawing can be
obtained in linear time.

Proof. We use Lemma 3.26 to obtain a new planar st-graph G′ = (V ′, E′)
with |V ′| ≤ 2|V | − 3 and |E′| ≤ |E| + |V | − 3 and a corresponding bitonic
st-ordering π. Then with the help of Theorem 3.15 that uses Algorithm 8,
an upward planar straight-line layout for G′ is computed. Replacement of the
dummy vertices by bends, yields an upward planar poly-line drawing for G of
size at most (4|V | − 8)× (2|V | − 4).

Recall that by Theorem 2.1 every upward planar graph is a spanning sub-
graph of a planar st-graph. Since it is a spanning subgraph and not just any
subgraph, the number of vertices does not increase. Therefore, the bound of
|V | − 3 translates to all upward planar graphs.

I Corollary 3.28. Every upward planar graph G = (V,E) admits an upward
planar poly-line drawing within quadratic area having at most one bend per edge
and at most |V | − 3 bends in total.

81

3 Bitonic st-orderings

Notice that we did not bound the runtime. Augmenting an upward planar
graph into a planar st-graph is not a trivial task, but can be accomplished
using upward planarity testing algorithms. However, recall that upward pla-
narity testing in the variable embedding scenario is NP-complete [49]. When
the embedding is fixed, the problem becomes polynomial time solvable, and
an augmentation to a planar st-graph is usually part of the upward planarity
testing procedure, see for example [12, 35].

3.4.3 Experimental results
The experimental results of the recognition algorithm have shown that the
amount of planar st-graphs that admit a bitonic st-ordering is very small. Let
us now have a look how many edges are necessary in practice to transform
these instances into graphs that admit a bitonic st-ordering.

We use the same instances for the benchmark as for the recognition experi-
ments, including those that admit a bitonic st-ordering. Based on their density
and size, we computed the number of edges to split, that is |Esplit|. The average
number of edge splits for a fixed size and density serves as the result. These
results are shown in Figure 3.21 in which they are compared to the number
of transitive edges. Recall that in the dominance drawing based approach of
Di Battista et al. [39] these have to be split in order to obtain the required re-
duced planar st-graph and serve later as bend points. Additionally, the upper
bound of |V | − 3 from Theorem 3.27 has been added.

The results clearly show that the advantage of having only to split one of the
two transitive edges involved in a forbidden configuration is not only significant
in theory. Especially for the sparser larger instances (δ = 1.5 and δ = 2) only
a fraction (3% and 11%) of the upper bound |V | − 3 has to be split, which is
about 10% and 16% of the transitive edges. For the denser instances (δ = 2.5
and maximal planar), the effect is not as strong (22% and 34% of the upper
bound), but at most about 20% of the transitive edges have to be split.

Figure 3.22 shows an example for an upward planar poly-line drawing created
by our implementation. In order to transform the embedded planar st-graph
into one that admits a bitonic st-ordering, three edge splits are necessary, each
resulting in a bend.

3.5 Visibility & contact representations
Before drawing final conclusions for this chapter, we turn our attention to
another application for bitonic st-orderings: contact representations using rec-
tilinear T-shaped polygons. Instead of developing another incremental draw-

82

3.5 Visibility & contact representations

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

23 24 25 26 27 28 29 210

E
dg

es
in

%
of

|V
|

Number of vertices |V |

δ = 1.5
δ = 2.0
δ = 2.5

max. planar
|V | − 3

Figure 3.21. The average amount of edge splits (solid, thick) in comparison to the num-
ber of transitive edges (dotted, thin). The upper bound of |V | − 3 from Theorem 3.27
is drawn dashed-dotted.

83

3 Bitonic st-orderings

Figure 3.22. Example for an upward planar poly-line drawing of a planar st-graph
G = (V,E) with |V | = 16 and |E| = 30. Circles represent vertices of G, whereas
squares indicate bends. The labels correspond to the rank in the bitonic st-ordering.

84

3.5 Visibility & contact representations

3

1

8

2

4

5
6

7

(a)

1

2

3

4

5

6

7

8

(b)

1 2

3

4

5

6

7

8

(c)

Figure 3.23. (a) Planar graph G and a bitonic st-ordering π. (b) Visibility represen-
tation for G when using π for the y-coordinates. The edges to the highest successor
are drawn solid. (c) The resulting T-shaped contact representation.

ing algorithm, we use a visibility representation in conjunction with a bitonic
st-ordering. This combination yields a special property that can easily be ex-
ploited, and we demonstrate this by describing how to obtain the aforemen-
tioned contact representation from it.

The idea of a rectilinear T-shaped contact representation is to represent a
planar graph by touching sides of simple interior-disjoint polygons, in this case
upside-down oriented T-shaped polygons. Alam et al. [2, 3] recently used these
as an intermediate step to create cartograms. Their approach employs Schnyder
realizers and their close relationship to canonical orderings. For more details
see [2, 3]. Alam et al. have not been the first to construct such drawings, an
earlier result is due to Sarrafzadeh and Yeap [73].

We assume that an embedded planar graph G = (V,E) and a corresponding
bitonic st-ordering π is given. The common way to obtain a visibility repre-
sentation for G can be summarized as follows: The y-coordinates y(v) of the
horizontal segments that represent the vertices v ∈ V of G are computed by
an optimal topological numbering of the planar st-graph induced by an st-
ordering. For the x-coordinate x(e) of a vertical segment that represents an
edge e ∈ E, the same procedure is repeated but on the dual planar st-graph.
Since an optimal topological numbering can be obtained in linear time, a visi-
bility representation can be obtained within the same time frame [35].

We skip the first step and choose π itself for the y-coordinates, that is,
y(v) = π(v). As a result every vertex has now its own row that corresponds

85

3 Bitonic st-orderings

vh

v1
vm

u

π(v1)

π(vh)

π(vm)

π(u)

(a)

vh

v1
vm

u

ymax(u)

ymin(u)

x(u) xmax(u)xmin(u)

(b)

Figure 3.24. (a) Successors v1, . . . , vh, . . . , vm of u whose ordering in the embedding is
bitonic with respect to the y-coordinates. (b) Creating a pole at vh, that is the highest
successor, and pulling the bars of the remaining ones towards it.

to its rank in π. Figure 3.23b shows an example of the resulting visibility
representation for the graph depicted in Figure 3.23a. Although a visibility
representation can be derived this way for any st-ordering, we may now benefit
from the property that π is a bitonic st-ordering. Since for every u ∈ V , S(u)
is bitonic with respect to π, by construction it is also bitonic with respect to
the y-coordinates, that is, the successors are located above u in an increasing
and then a decreasing staircase pattern. See Figure 3.24a for an illustration.

By using a simple trick, we now transform this wedge-like structure into a
rectilinear T-shaped polygon. The idea is straightforward: We create a vertical
segment on top of the horizontal bar that reaches all the way up to vh, that
is the highest successor of u. Afterwards we pull the bars of the remaining
successors towards this pole. See the arrows in Figure 3.24b for a sketch of
the idea. Notice that in case of a non-bitonic st-ordering, a single pole is not
sufficient. The contact representation of the example is shown in Figure 3.23c.

Let us describe this idea in more detail. We denote by xmin(u) (xmax(u)) the
left (right) border of the upside-down T representing u, and x(v) the horizontal
offset of the pole. Furthermore, let ymin(u) and ymax(u) denote the vertical offset
of the horizontal bar and the upper border of the pole, respectively. Then,
for every u ∈ V with S(u) = {v1, . . . , vh, . . . , vm} for which y(v1) < · · · <
y(vh) > · · · > y(vm) holds, we create the vertical segment by choosing x(u) =
x(u, vh), where x(u, vh) denotes the x-coordinate of (u, vh) in the visibility
representation. Furthermore, we set ymax(u) = ymin(vh). For the remaining
successors vi with 1 ≤ i < h, that is, those located to the left of the pole, we
establish contact with the pole from the left by choosing xmax(vi) = x(u). In a
symmetric manner, we set xmin(vi) = x(u) with h < i ≤ m for those successors
that are located on the right. Notice that xmin(u) and xmax(u) are only defined

86

3.6 Conclusion

in the case in which there exists such a pole on both sides. Otherwise, we have
to ensure that the horizontal bar of u covers at least the attaching poles from
below. See v3 and v5 in Figure 3.23c for an example. Hence, for every u′ with
u ∈ S(u′) and π(u) = maxv∈S(u′){π(v)}, that is, all u′ for which u is the highest
successor, we set xmax(u) = max{x(u), x(u′)} and xmin(u) = min{x(u), x(u′)}.

It is not difficult to see that this approach takes linear time. Hence we may
state the following:
I Lemma 3.29. Given an embedded planar graph with a bitonic st-ordering, a
rectilinear T-shaped contact representation can be obtained in linear time.

We implemented the above approach using the OGDF [65] with the algorithm
for computing bitonic st-orderings for biconnected planar graphs. The output
from our implementation for a larger graph is displayed in Figure 3.25. It shows
the visibility representation and the obtained contact representation.

3.6 Conclusion
In this chapter we have introduced the concept of bitonic st-orderings, a special
st-ordering with a property that is usually only available when using canonical
orderings. We have shown that every undirected biconnected planar graph ad-
mits such an ordering. The proposed algorithm runs in linear time and utilizes
SPQR-trees and canonical orderings. Unlike biconnected canonical orderings
that preserve a given embedding, the presented algorithm may have to mod-
ify it. However, we presented a family of graphs for which such changes are
necessary to establish the bitonic property, independently of the algorithm.

Afterwards, we described an adaptation of the planar straight-line drawing
algorithm of de Fraysseix et al. By making only minor changes and without the
need to modify key concepts, we demonstrated how easy the transition from a
canonical ordering-based incremental drawing algorithm to one that uses the
bitonic st-ordering can be.

The full strength of this approach is unleashed when applying the bitonic
st-ordering to directed graphs. We gave a characterization of planar st-graphs
that admit such a bitonic st-ordering, resulting in a linear-time algorithm that
recognizes these and in case such an ordering exists, computes it. Although
experiments on random planar st-graphs have shown that most of them do not
admit a bitonic st-ordering, we may establish this property by splitting some
edges. For this task a linear-time algorithm has been developed that computes
the minimum set of edges to split. Based on this result, we were able to improve
the upper bound on the number of bends required in any upward planar poly-
line drawing.

87

3 Bitonic st-orderings

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

(a)

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

(b)

Figure 3.25. (a) Larger example (|V | = 80, |E| = 150) of a visibility representation
obtained from a bitonic st-ordering and (b) the corresponding contact representation.

88

3.6 Conclusion

One may argue now that the necessity of splitting edges in the directed case
is a major drawback. However, one has to keep in mind that the bitonic st-
ordering is essentially a canonical ordering that works for directed graphs and
to our knowledge, the concept of canonical orderings has not been extended to
directed graphs.

Moreover, every such attempt will face similar problems. Recall that we
argued at the very beginning with the area requirements of upward planar
straight-line drawings. Although we used this argument to derive a counterex-
ample for a planar st-graph that does not admit a bitonic st-ordering, the
core problem is that we are able to use the algorithm of de Fraysseix et al.
for directed graphs without modifying its basic functionality. Of course, the
bitonic st-ordering plays an important role for that, but just the fact that
this algorithm works with our ordering on directed graphs, implies that we
cannot handle all planar st-graphs due to the polynomial area argument for
upward planar straight-line drawings. One may even take this one step further
and claim that the algorithm of de Fraysseix et al. cannot work on all planar
st-graphs without making major modifications to it, regardless of the type of
ordering used, due to its polynomial area property.

This is a crucial point and has to be kept in mind when considering alterna-
tive orderings. At this point, we would like to point out that the advantage of
both algorithms, the recognition and edge-split method, lies in their simplicity.
Unlike the algorithm for undirected graphs that employs SPQR-trees, they con-
sist only of a simple traversal of the embedded planar st-graph and do neither
require sophisticated algorithms nor data structures. Basically, the pseudocode
listings provided earlier can directly be used for an efficient implementation.

Open Problems

Let us now close this chapter with some open problems and ideas for future
research. The first question that comes to mind is the case in which the graph
is not biconnected such that it does not admit an st-ordering. This problem
has not been addressed at all, but augmentation might be an option. The next
problem is that the straight-line algorithm presented in Section 3.2.3 is a very
basic one and does not utilize any improvements made to the canonical ordering
based approach. See for example the work of Brandenburg [19] who improves
the area to 4

3n×
2
3n or an earlier result due to Chobrak and Nakano [28]. But

one has to keep in mind that such improvements do not necessarily carry over
to upward planar straight-line drawings, due to different placement strategies.

When considering the larger example of the visibility representation and the
corresponding contact representation in Figure 3.25, it becomes clear that using

89

3 Bitonic st-orderings

the bitonic ordering for the y-coordinates leads to a drawing that is probably
higher than necessary. It is not difficult to see that in this particular example
there is much room for improving the area. This leads to the idea of introducing
an optimal topological numbering with the bitonic property, because bitonicity
provides the staircase pattern and that is all this approach requires.

With this in mind, the presented work already contains an idea that might
be worth exploring. The obvious point to start from is the proof of Lemma 3.21
that serves as a basis for Algorithm 9. Recall that the basic idea is to augment
the input graph G into a new planar st-graph G′ such that at every vertex u
there exists two paths, both directed towards a designated successor of u. These
paths ensure that any st-ordering for G′ is a bitonic one for G. It seems that
this might work for any topological numbering. So maybe instead of computing
an st-ordering for G′ in Algorithm 9, one can compute an optimal topological
numbering for G′ which may result in a topological numbering for G whose vis-
ibility representation requires less area but still contains the staircase pattern.

However, recall that we gave an alternative characterization of bitonicity
in Lemma 3.18 which assumes that the elements are pairwise distinct. This
assumption is required for the proof. While by definition in an st-ordering the
labels are distinct, this is usually not the case in a topological numbering. As a
result one has to take the details into account when arguing along the proof of
Lemma 3.21, since it uses implicitly this characterization via Proposition 3.20.

Another related property that might be used to tackle this problem is rather
hidden. Recall that we have investigated the coordinate dependencies in the
straight-line drawing algorithm. The result has been a very simple algorithm
for computing the y-coordinates. It is not difficult to see that it can be easily
adapted to work with a bitonic st-ordering. The obtained y-coordinates may
serve themselves as a topological numbering of the vertices. The question aris-
ing is, whether this ordering has the bitonic property. Of course, this does not
hold for any straight-line drawing, but maybe this is the case for drawings pro-
duced by this particular straight-line drawing algorithm. Even in the case in
which the y-coordinates have the bitonic property, the corresponding ordering
does not immediately result in a visibility representation of smaller height. But
such a visibility representation has another property that is of interest: By con-
struction and in a trivial way, there exists a transformation from the visibility
representation into a straight-line drawing without changing the y-coordinates.

This leads us to another idea: In general the problem of transforming a visi-
bility representation into a planar straight-line drawing while maintaining the
y-coordinates is not a trivial task. Biedl [14, 15] discusses in her work various
transformations. She shows in [15] how to transform a visibility representation
into a planar straight-line drawing while preserving the y-coordinates. The ap-

90

3.6 Conclusion

proach, however, produces in the worst case a planar straight-line drawing with
exponential width. The exponential width property is unavoidable since oth-
erwise one would be able to compute a visibility representation for any planar
st-graph and transform it into an upward planar straight-line drawing within
polynomial area, and we already argued that this is impossible for some planar
st-graphs. However, we may ask now if that works for the special visibility
representation obtained from a bitonic st-ordering. More precisely, can every
such visibility representation be transformed into a planar straight-line drawing
within polynomial area that preserves the y-coordinates?

Last but not least, we would like to mention an open problem that lead to
the development of the concept of bitonic st-orderings in the first place. In [5],
we show that every 4-planar graph admits an octilinear drawing with one bend
per edge. In an octilinear drawing, the line segments representing edges are
restricted to be vertical, horizontal or diagonal. The approach taken in [5] uses
a rather simple canonical ordering based algorithm for the triconnected case.
However, the SPQR-tree approach that is used to generalize the idea to the bi-
connected case is quite involved and an implementation is not straightforward.
This would be a perfect application for the bitonic st-ordering. However, an
adaptation that is as simple as the straight-line algorithm seems unlikely.

The biggest problem to solve are the vertices with only one predecessor.
These may have three successors, a case that is not covered by the triconnected
algorithm described in [5]. However, in [5] we also present an algorithm for the
5-planar case that in difference to the 4-planar case may produce drawings
that require exponential area. This algorithm might provide a solution to the
problem of dealing with three successors, but some attention must be paid for
the polynomial area property.

91

4 Two-page Book Embeddings of Bounded
Degree Graphs

Book embeddings have a long history and arise in various application areas
such as VLSI design, parallel computing, design of fault-tolerant systems and
bioinformatics, see e.g. [17, 30, 43]. In a book embedding the placement of the
vertices is restricted to a line, the spine of the book. The edges are assigned to
different pages of the book. A page can be thought of as a half-plane bounded
by the spine where the edges are drawn as circular arcs between their endpoints.
We say that a graph admits a k-page book embedding or is k-page embeddable
if one can assign the edges to k pages and there exists a linear ordering of
the vertices on the spine such that no two edges of the same page cross. The
minimum number of pages required to construct such an embedding is the book
thickness or page number of a graph.

Embedding graphs in books with as few pages as possible has received much
attention in the past. There is an extensive amount of literature on embedding
various types of graphs into books; for an overview see e.g. [43]. The focus of
this chapter lies on planar undirected graphs and, therefore, we concentrate
on related work that is concerned with them. An important early work is due
to Bernhart and Kainen [10] which coined the term book thickness and de-
scribes fundamental properties of book embeddings. They show bounds for the
book thickness of various classes of graphs and offer a different perspective
on book embeddings.

Usually a book embedding is considered to be some kind of linear layout, but
one may also consider the vertices in a cyclic order. More specifically, if there
exists a k-page book embedding for a graph G = (V,E) with vertex ordering
v1, . . . , vn and some fixed page assignment of the edges, then Bernhart and
Kainen [10] observe that one may shift the vertices in a cyclic manner, such
that v2, . . . , vn, v1 is still a feasible vertex ordering.

This property can also be explained in an intuitive way by an illustration.
Instead of considering a drawing in which the vertices are drawn on a line
representing the spine, we draw them on a circle according to the ordering
stemming from the spine, whereas the edges are drawn inside the circle and
colored according to the page assignment. It is not hard to see that this does
not introduce any crossings among edges of the same color, because we basically

93

4 Two-page Book Embeddings of Bounded Degree Graphs

v1 v2 v3 v4 v5

(a)

v1

v2

v3

v4

v5

(b)

v1 v2v3 v4 v5

(c)

Figure 4.1. Example for cyclic shifting in a three-page book embedding. The page as-
signment is indicated by the line style (solid, dash, dotted). (a) Folding the 3-page book
embedding of K5 with vertex ordering v1, . . . , v5 into a circular layout. (b) Cutting
open the circular layout between v2, v3, and (c) unravelling it into a book embedding
with vertex ordering v3, v4, v5, v1, v2.

can bend the spine into a circle without changing the ordering of the vertices.
Figure 4.1a shows a three-page embedding of K5, which is turned into a circular
drawing (Figure 4.1b). The observation to make is the following: Of course,
we can reverse this process in order to obtain the initial book embedding,
but instead of “cutting” the circle between v1 and vn again, we may choose
a different position. Figure 4.1c shows the result when choosing v2 and v3
instead. Based on this circular layout, it immediately follows that the graphs
that require only a single page, are exactly the outer planar graphs.

This property enables us to choose the first vertex in any book embedding,
regardless of its book thickness. Recall that in the last chapter, we have been
quite keen on the connectivity of the input graph. As we will see shortly, connec-
tivity plays also a crucial role when it comes to graphs that admit a two-page
book embedding. But before we turn our attention to this problem, we discuss
the following result that does not depend on the book thickness, and uses the
aforementioned property of cyclic shifts. It enables us to focus on biconnected
graphs instead of the more general case.

I Lemma 4.1. [10] The book thickness of a graph is the maximum book thick-
ness of its biconnected components.

It is not hard to see that we may assume that the graph is connected, because
otherwise we may just line up the book embeddings of the connected compo-
nents. A proof to get from the connected to biconnected case can be found
in various places. Bernhart and Kainen [10] present one in their early work.
A more algorithmic approach is given in the thesis of Heath [55]. The idea
is constructive and yields a linear-time algorithm for reassembling the book
embeddings of the biconnected components.

94

v2v1

B1
B3

B2 B4

(a)

v2v1

B1
B3

B2
B4

(b)

v1 v2

B1

B2

B3 B4

(c)

Figure 4.2. (a) Connected graph with two cut vertices v1, v2 and four biconnected
components B1, . . . , B4. (b) The corresponding BC-tree rooted at B1. (c) The resulting
book embedding after shifting and composing the ones of the biconnected components.

One may summarize such an algorithm as follows. We decompose a graph
G = (V,E) into its biconnected components B1, . . . , Bm using a BC-tree (Fig-
ure 4.2a and 4.2b). Now assume that for every biconnected component Bi with
1 ≤ i ≤ m, we have a book embedding given that requires bt(Bi) pages. We
have already seen that besides the linear ordering of the vertices on the spine,
one may also consider them in a cyclic order. This property can be exploited in
the following sense: We root the BC-tree at an arbitrary B-node, say B1, thus,
inducing a hierarchy on the cut vertices. Figure 4.2b shows an example. Hence,
every biconnected component Bi with 1 < i ≤ m contains exactly one cut
vertex that represents its parent, and every cut vertex has exactly one parent
biconnected component.

In the corresponding book embedding of Bi, we may shift the vertices on the
spine in a cyclic manner such that the parent cut vertex is the first. The result
is still a book embedding occupying bt(Bi) pages, but we are now able to nest
them according to the hierarchy as implied by the BC-tree. To do so, we follow
a simple principle: The book embeddings of the children of a cut vertex vc are
being placed directly to the right of vc in the book embedding of vc’s parent.

The idea is illustrated in Figure 4.2c in which for example B4 has been
placed directly to the right of v2 and its successor on the spine in the book
embedding of B2. In a similar manner, B2 and B3 use the position of v1 in
B1 as nesting position. Since two biconnected components have at most one
vertex in common, we can always nest them such that they only overlap at
the cut vertices, thus, not requiring any additional pages. It follows then that
G requires at most as many pages as the book embedding of the biconnected
component with the most pages, that is, for the book thickness of G holds
bt(G) = max1≤i≤m{bt(Bi)}. It is not hard to see that this technique does not
extend to separation pairs, because they are not necessarily consecutive on the
spine, but it has the advantage that it works for any number of pages.

95

4 Two-page Book Embeddings of Bounded Degree Graphs

The book thickness of planar graphs has received much attention in the
past. Especially, in the eighties a lot of work has been done on this topic.
Starting with Bernhart and Kainen [10] who were about the first to discuss
the number of pages required for planar graphs. They conjectured that the
book thickness of a planar graph can be arbitrarily large. We will see shortly
that some planar graphs require at least three pages. However, in 1984, Buss
and Shor showed that nine pages suffice and within the same year, Heath [54]
presented an algorithm that tightens this result to seven pages. Five years later,
Yannakakis [72] described a linear-time algorithm to embed every planar graph
into a book of four pages which still stands today. It should be mentioned that
in a preliminary version [71] of [72], it was claimed that four pages are also
necessary. However, a proof has never been given, and the problem of whether
the bound of four pages is tight or not, is still considered to be an open problem.

In the remainder of this chapter, we focus on two-page book embeddings,
more specifically, we study the problem of embedding 3-planar graphs and,
afterwards, 4-planar graphs into books with two pages. But before we turn our
attention to the bounded degree problems, we first deal with the related work
on two-page embeddable graphs. Afterwards, we focus on triconnected 3-planar
graphs. Of course, these are covered by the 4-planar case and by a result from
Heath [55] who already showed in the eighties that the 3-planar graphs have
book thickness two. However, for the triconnected case, we describe a simple
canonical ordering-based algorithm. Afterwards, we turn our attention to the
4-planar case. We show that every triconnected 4-planar graph is two-page
embeddable and a corresponding ordering can be found in linear time. Before
drawing final conclusions, a short summary of the general 4-planar case is given.
However, the general case is not part of this thesis, and the summary serves
only for reasons of completeness. Let us get started with the introduction of
subhamiltonicity, and its relation to graphs with book thickness two.

4.1 Two-page book embeddings & subhamiltonicity

Book embeddings with two pages have found various applications in the field
of graph drawing and visualization [41], which stems from the fact that a two-
page book embedding is a special form of planar embedding having by definition
a quite useful property: The vertices of a two page embeddable graph can be
arranged on a line representing the spine, while each edge can entirely be drawn
in one of the two half planes defined by this line without crossing another edge
or the line. Clearly, such a drawing is planar, therefore, planarity is a necessary
condition for a graph to have a book thickness of two.

96

4.1 Two-page book embeddings & subhamiltonicity

Planarity, however, is far from being sufficient. In fact two-page book em-
beddings have a strong relation to Hamiltonian cycles in planar graphs. Recall
that a Hamiltonian cycle is a cycle that visits every vertex exactly once. Bern-
hart and Kainen [10] show that a graph admits a two-page book embedding,
if and only if it is a subgraph of a planar Hamiltonian graph, that is, a planar
graph that contains a Hamiltonian cycle. We refer to this subset of the planar
graphs as the subhamiltonian graphs. Notice that a subhamiltonian graph does
not necessarily contain a Hamiltonian cycle. But since it is a subgraph of a
planar Hamiltonian graph, one may add the missing edges without destroying
planarity. In other words, a subhamiltonian graph admits a cyclic ordering of
the vertices such that when adding the missing edges, the graph remains planar
and the ordering is a Hamiltonian cycle. We refer to such a cyclic ordering as
subhamiltonian cycle. One may think of a subhamiltonian cycle as a kind of
Hamiltonian cycle that instead of solely using edges, may also cross faces.

The relation between two-page book embeddings and subhamiltonian cycles
is based on the crucial observation that a subhamiltonian cycle in a planar
graph, like a Hamiltonian cycle, partitions the edges into whether they are
contained inside the cycle or not. While this immediately yields a feasible page
assignment for the edges, the linear ordering of the vertices on the spine is
obtained by breaking the cyclic ordering at an arbitrary position. Recall the
circular drawing of K5 in Figure 4.1b. Besides having only two pages, the only
difference is that the circle representing the subhamiltonian cycle contains one
page on the inside and one on the outside.

The general problem of determining if a graph is Hamiltonian is known to
be NP-complete [48]. Unlike other problems that are NP-complete in general,
but can be solved in polynomial time on planar graphs, the Hamiltonian cycle
problem remains NP-complete in the planar case. Widgerson [70] shows that
deciding whether a maximal planar graph contains a Hamiltonian cycle is NP-
complete. Moreover, the same holds for the problem of determining if a planar
graph is a subgraph of a planar Hamiltonian graph [70]. This immediately
yields NP-completeness of two-page book embeddabilty.

This leads us to the question of which subsets of planar graphs are sub-
hamiltonian. An early important result is due to Whitney [69], who proves
that every maximal planar graph with no separating triangles is Hamiltonian
(recall that a separating triangle is a 3-cycle whose removal disconnects the
graph). Tutte [68] shows that every 4-connected planar graph has a Hamil-
tonian cycle. These two results are related in the following sense: Chen [21]
for example gives a proof that every maximal planar graph with at least five
vertices and no separating triangles is 4-connected. In order to obtain such a
cycle, one may use the linear-time algorithm of Chiba and Nishizeki [23].

97

4 Two-page Book Embeddings of Bounded Degree Graphs

Clearly, in the maximal planar case, separating triangles play an important
role due to their absence being a sufficient condition for Hamiltonicity. How-
ever, their existence does not necessarily imply that a maximal planar graph
is not Hamiltonian, thus, requiring three pages in a book embedding. For the
case in which there exists exactly one separating triangle in a maximal planar
graph, Chen [21] shows that one may still obtain a Hamiltonian cycle. The idea
is to decompose the problem at the triangle, compute two separate Hamiltonian
cycles for the subproblems and merge them afterwards. We will use this idea
later in the 4-planar case. Helden [56] improves this result further to two sep-
arating triangles. For more results on hamiltonicity of maximal planar graphs
and triangulations, we refer the reader to the thesis of Helden [57], which also
contains a proof that maximal planar graphs with five separating triangles are
still Hamiltonian.

For subhamiltonicity the importance of separating triangles is not restricted
to the maximal planar case. The following result due to Kainen and Overbay
completely lifts this restriction in terms of connectivity.

I Theorem 4.2. [60] Every planar graph without separating triangles is sub-
hamiltonian.

The proof of this result in [60] contains a quite elegant two-stage procedure:
At first they show that a triconnected planar graph without separating triangles
can be augmented into a maximal planar graph with the same property. Since
we require this step later in the 4-planar case (Section 4.3), we prove here the
following slightly stronger result which is concerned with the ability to cross
a face. A subhamiltonian cycle H crosses a face, if there are two consecutive
vertices in H that are incident to the face but not adjacent to each other.

I Lemma 4.3. Every triconnected planar graph with no separating triangles
has a subhamiltonian cycle that crosses every face at most once and it can be
computed in linear time.

Proof. In the triconnected case, Kainen and Overbay [60] construct a new max-
imal planar graph G′ = (V ′, E′) by inserting a vertex into each non-triangular
face of G and connect it to the vertices of that face (Figure 4.3a). Clearly this
takes linear time. One may then argue with triconnectivity that this proce-
dure does not introduce additional separating triangles. Figure 4.3b illustrates
this argument. G′ is maximal planar, free of separating triangles, hence, 4-
connected. We can use the linear-time algorithm of Chiba and Nishizeki [23]
to obtain a Hamiltonian cycle H ′ for G′. Deleting the newly inserted ver-
tices V ′ − V yields a subhamiltonian cycle H for G that crosses each face
at most once.

98

4.2 Two-page book embeddings of 3-planar graphs

u1

u2

u3 u4

u5

u6

v

(a)
u1

u4

u5 u6

u7

u8

v

u2

u3

(b)

u

v

w′′w′

G1 G2
G3

(c)

Figure 4.3. (a) A Hamiltonian cycle (dotted) in the augmented graph G′ passing
through a face of G via the inserted dummy vertex v in G′ (b) A separating triangle
introduced by stellating the face u1, . . . , u8 implying a separation pair {u1, u4} in the
original graph G. (c) Eliminating a separation pair {u, v} by inserting degree three
vertices w′, w′′ between components G1, G2, G3 at v to connect them.

The second step in the proof is an augmentation from biconnected to tri-
connected planar graphs without introducing separating triangles. Kainen and
Overbay describe a technique that assumes a fixed embedding and then con-
siders one vertex v of a separation pair {u, v}. The idea is to eliminate the
pair by connecting specific neighbors of v to establish triconnectivity between
components. Figure 4.3c illustrates the idea. The additional vertices between
components are necessary to prevent the introduction of a separating triangle.
Due to Lemma 4.1 one may assume biconnectivity, therefore, the claim follows.

This result is quite powerful as we will see in the next section that is con-
cerned with 3-planar graphs, but the second step has a drawback, which will
become evident in the 4-planar case. But let us get started with 3-planar graphs.

4.2 Two-page book embeddings of 3-planar graphs
We start with considering the case in which a 3-planar graph is given. Since
K4 is 3-planar but not outerplanar, it follows that two pages are necessary. In
fact two pages are also sufficient as Heath shows. In his thesis [55], he describes
a linear-time algorithm for embedding any 3-planar graph into a book of two
pages. We begin by stating this result right away.

I Theorem 4.4. [55] Every 3-planar graph is subhamiltonian.

The key component of the algorithm is a special face traversal for biconnected
3-planar graphs (Heath refers to 3-planar as trivalent graphs). The idea is to
construct a subhamiltonian cycle in an incremental manner based on a step-by-
step traversal of the faces. The proposed method is quite involved, but uses a

99

4 Two-page Book Embeddings of Bounded Degree Graphs

concept that should sound familiar to the reader. Incrementally traversing the
faces is essentially what a canonical ordering does. A quick look at the year in
which Heath wrote his thesis (1985) reveals that it predates the introduction
of canonical orderings. The idea now is to use a canonical ordering instead of
this special traversal. This is only interesting from a technical point of view,
because an implementation for a canonical ordering is most likely to be available
compared to the traversal of Heath.

We proceed now in two steps: First, we describe a simple canonical ordering-
based algorithm for the triconnected case. It uses the canonical ordering of
Kant as described in Definition 3.2 to construct a subhamiltonian cycle for a
triconnected 3-planar graph in an incremental manner. Afterwards, we give an
alternative separating triangle-based proof for the result of Heath that is based
on Theorem 4.2. One may argue that this section does not provide any new
results, however, the algorithm is simple and the alternative proof afterwards
introduces some ideas that are similar to the ones in the next section.

Canonical orderings of triconnected 3-planar graphs have some very special
properties that have been used in the field of graph drawing extensively [9, 61].
Assume a triconnected 3-planar graph G = (V,E) is given. Since G is 3-planar
and triconnected, for every v ∈ V , deg(v) = 3 must hold. Now let V1∪· · ·∪VK be
a canonical ordering as defined by Kant, see Definition 3.2. From this definition,
it follows that every vertex v ∈ Vk with 1 < k < K has at least two neighbors
in Gk and at least one in G−Gk. Since deg(v) = 3 holds, we may assume that
v has exactly two neighbors in Gk and exactly one in G−Gk. Notice that this
holds, regardless of Vk being a singleton or a chain. Furthermore, V1 = {v1, v2}
and V2 = {v3, . . .} holds. From the fact that G2 is a simple cycle in which v2
and v3 are the neighbors of v1, it follows that these two, together with vn, are
the only three neighbors of v1. Of course, this assumes that vn 6= v3 holds,
because otherwise K = 2 and G is triangle, thus, Hamiltonian in a trivial way.

The overall idea of our algorithm is as follows. Similar to a canonical ordering-
based drawing algorithm, we add step-by-step the partitions, but instead of
maintaining an invariant for a drawing, we maintain one for a subhamiltonian
cycle. The intuition of this invariant is that when we consider a partition, then
we may assume that the cycle enables us to pick it up from the contour and
reroute it through the vertices of the partition. In order to achieve this, we have
to ensure that the cycle surfaces on the outer face of Gk at specific vertices.

Let us describe this in a more formal manner. We follow the notation of the
straight-line algorithms in Section 3.2, that is, we use Ck−1 = {w1, . . . , wm} to
denote the contour of Gk−1. Recall that Ck−1 is the outer face of Gk−1 without
the edge (v1, v2). Hence, w1 = v1 and wm = v2 holds. Furthermore, let wl and
wr be the leftmost and rightmost neighbor of Vk on Ck−1, respectively.

100

4.2 Two-page book embeddings of 3-planar graphs

v2v1

v3

H2

G2

vn

(a)

wl

v1 v2

Gk−1

w′l

vi vj

wr

Hk

vn

(b)

GK−1

H

v2

vn

v1

(c)

Figure 4.4. Augmenting a subhamiltonian cycle (dotted) in a triconnected 3-planar
graph using a canonical ordering V1∪· · ·∪VK . Edges that are not present yet are drawn
gray. (a) Initial cycleH2 forG2 consisting of V1 = {v1, v2} and V2 = {v3, . . .} inducing a
simple cycle. (b) Augmenting Hk−1 into Hk when placing Vk = {vi, . . . , vj} by inserting
vi in between w′l and wl replacing the dotted gray part between w′l and wl. (c) The
final cycle H after inserting VK = {vn} in which v1 and vn appear consecutively.

Invariant: For every 3 ≤ k ≤ K, we maintain a subhamiltonian cycle Hk for
Gk. With a slight abuse of notation, we refer with Gk ∪Hk to the Hamiltonian
planar graph that results from adding the missing edges from Hk to Gk. Besides
being subhamiltonian, Hk must satisfy the following condition: For every v ∈
Ck that has a neighbor in G−Gk, v is on the outer face of Gk∪Hk. Furthermore,
the vertex directly preceding v in Hk is also on the outer face of Gk ∪Hk.

Base case: We start with k = 2 in which G2 is a simple cycle consisting of
v1, v3, . . . , v2. This cycle serves also as initial subhamiltonian cycle H2, that is,
we set H2 = {v1, v3, . . . , v2}. See Figure 4.4a for an illustration of the initial
cycle. Since G2 ∪H2 = G2, the invariant holds.

Intermediate step: We show how to handle the k-th partition Vk = {vi, . . . , vj}
with 2 < k < K. Notice that we cannot assume that vi 6= vj holds. Let wl and
wr be the leftmost and rightmost neighbor of Vk on Ck−1, respectively. By our
invariant, we may assume that wl and the predecessor of wl on Hk−1, say w′l,
are both on the outer face of Gk−1 ∪ Hk−1 and on Ck−1. We augment Hk−1
to obtain Hk by inserting the vertices vi, . . . , vj of Vk in between w′l and wl.
Figure 4.4b illustrates the procedure. Since Gk∪{(w′l, vi), (vj , wl)} is planar, Hk

is a subhamiltonian cycle. It remains to show that Hk full fills the additional
requirement. It is not hard to see that vi, . . . , vj are on the outer face of Gk∪Hk

and so are their predecessors w′l, vi, . . . , vj−1 on Hk. However, for wl, . . . , wr this
is not the case anymore. From the definition of canonical ordering, it follows
that wl+1, . . . , wr−1 do not have a neighbor in G−Gk anyway. For wl and wr
we may argue now that they both have already degree three in Gk, thus, there
cannot exist another neighbor in G−Gk.

101

4 Two-page Book Embeddings of Bounded Degree Graphs

v1 v2

G2

vn

v3

(a)

w′l v2

Gk−1

wl

vjvi
wrv1

vn

(b)

Figure 4.5. (a) Corresponding book embedding of G2 from Figure 4.4a. The spine that
represents the subhamiltonian cycle is drawn dotted. (b) Placing Vk = {vi, . . . , vj} in
between w′l and wl, which corresponds to augmenting Hk−1 into Hk as in Figure 4.4b.

This argument is by the way the reason why this approach does not extend
to graphs of higher maximum degree. But in the 3-planar case, Hk complies
with the invariant.

Last step: It remains the case k = K in which we have to deal with VK = {vn}.
Here we proceed exactly as in the case with 2 < k < K even though vn has
three neighbors. Recall that the leftmost neighbor of vn is always v1 and the
predecessor of v1 on HK−1 is v2 due to the initialization. Hence, augmenting
HK−1 into HK by inserting vn in between v1 and v2 yields a subhamiltonian
cycle H = HK for G in which v1, v2, vn appear consecutively (Figure 4.4c).

Although the described algorithm is solely based on augmenting a subhamil-
tonian cycle, one may also think of this procedure as incrementally building a
two-page book embedding. Let us have a quick look at what happens during
the steps in the corresponding book embedding. For the linear ordering of the
vertices we choose v1 to be the first and v2 to be the last. Notice that they ap-
pear consecutively in Hk for every 2 ≤ k < K. For the page assignment of the
edges, we consider the cycle clockwise and agree that every edge outside of it is
to be drawn in the upper half plane. See Figure 4.5a for the initial book embed-
ding of the simple cycle G2. The placement of a partition Vk with 2 < k < K is
illustrated in Figure 4.5b. The invariant guarantees that to the left of a vertex
that has neighbor in G−Gk, the upper half plane is not used. Therefore, there
is enough room on the spine to embed the corresponding vertices and edges.

In the previous section, we have seen that separating triangles are an impor-
tant structure when it comes to subhamiltonicity. It is not hard to imagine that
the possibilities for separating triangles in 3-planar graphs are rather limited,
because each triangle is a cycle already requiring two edges from the possible
three edges incident to a vertex. The next lemma confirms this claim and shows
that biconnectivity is sufficient for their absence.

102

4.3 Subhamiltonicity of triconnected 4-planar graphs

I Lemma 4.5. A biconnected 3-planar graph is free of separating triangles.

Proof. Let G = (V,E) be a biconnected 3-planar graph and assume that there
exists a separating triangle T in G such that the removal of T disconnects
G into two subgraphs G′ and G′′. For the argument the embedding is not
important. Since G is biconnected, there are at least two edges connecting G′
to two distinct vertices of T . By a symmetric argument, this holds also for G′′.
Hence, at least one of the three vertices of T , say v, has a neighbor in both G′
and G′′. Furthermore, v has another two neighbors in T , because T is a 3-cycle,
and it follows that deg(v) ≥ 4, which contradicts that G is 3-planar.

Now it is not difficult to see that with the help of Theorem 4.2, we are
able to claim that every 3-planar is subhamiltonian. Furthermore, the proof
of Lemma 4.5 suggests that 4-planar graphs may contain separating triangles.
And this is indeed the case, but they have a very special structure which we
will investigate and exploit in the next section.

4.3 Subhamiltonicity of triconnected 4-planar graphs
In this section we restrict ourselves to triconnected 4-planar graphs. To state
the main result of this section, we proceed in a step-by-step manner. First we
investigate the special properties of separating triangles in 4-planar graphs,
then we use those to derive a solution for a single separating triangle. Unlike
Chen [21] and Helden [56], we are able to extend our approach to an unbounded
number of triangles by exploiting the degree restriction.

Before investigating the properties of separating triangles, we introduce some
notation. Given an embedded triconnected 4-planar graph G with a fixed out-
erface and a separating triangle T with vertices V (T) = {A,B,C}, we denote
the subgraph of G contained in T by Gin(T) and the subgraph of G outside T
by Gout(T). We also denote Gin(T) = G−Gout(T) and Gout(T) = G−Gin(T).
Since G is triconnected and 4-planar, every vertex of T has degree four and is
adjacent to exactly one vertex in Gin(T) and Gout(T), respectively. We denote
these with Ain, Bin, Cin and Aout, Bout, Cout, respectively (see Figure 4.6).

I Lemma 4.6. Given a 4-planar triconnected graph G and a separating triangle
T = {A,B,C}, then Ain, Bin, Cin(Aout, Bout, Cout) are pairwise distinct or all
represent the same vertex.

Proof. In the other case, where w.l.o.g. Ain = Bin = v and Cin 6= v, there exists
a separation pair (v, C) contradicting the triconnectivity of G. A symmetric
argument applies to Aout, Bout, Cout.

103

4 Two-page Book Embeddings of Bounded Degree Graphs

Cin Bin

Ain

A

BC

Gin(T)

Cout Bout

Aout

Gout(T)

Figure 4.6. Triangle T separating
Gin(T) and Gout(T) on removal.

e

eout

ein

C

A

B

Hin(T)

H

Hout(T)

Figure 4.7. Merging Hin(T) (dotted) and
Hout(T) (dashed) into H (bold gray).

I Lemma 4.7. In a 4-planar triconnected graph, every pair of distinct sepa-
rating triangles T and T ′ is vertex disjoint, that is, V (T) ∩ V (T ′) = ∅ holds.

Proof. Assume to the contrary that T and T ′ share an edge or a vertex. In the
first case, let w.l.o.g. e = (u, v) be the common edge and assume that T and
T ′ are not nested. The degree of both u and v is at least five, since three edges
are required for T, T ′ and two additional edges to connect Gin(T) and Gin(T ′)
to T and T ′, respectively. Now suppose the two separating triangles are nested,
and w.l.o.g. let T ′ be contained in T . Then in a similar manner, at u and v
three edges are required for T, T ′ and two to connect Gout(T) and Gin(T ′) to
T and T ′, respectively. In the second case, let v denote the common vertex.
Regardless of T and T ′ being nested or not, v is part of two edge disjoint cycles
which contribute each two edges to the degree of v. If w.l.o.g. T ′ is contained in
T , then two additional edges are required for Gout(T) and Gin(T ′). Similar in
the case in which they are not nested, Gin(T) and Gin(T ′) contribute an edge
each. It follows in both subcases that deg(v) ≥ 6.

Consider now a 4-planar triconnected graph with a single separating triangle
T . Similar to Chen [21], the idea is to compute two cycles Hin(T) and Hout(T)
for Gin(T) and Gout(T) and link them via the separating triangle together. The
crucial observation is that if two cycles intersect as illustrated in Figure 4.7,
that is, they contain two edges of the triangle but have only one of them in
common, then we can always merge them into one cycle.

I Lemma 4.8. Let G be a triconnected 4-planar graph, T be a separating tri-
angle, and Hin(T) and Hout(T) be two subhamiltonian cycles for Gin(T) and
Gout(T), respectively. If E(Hin(T))∩E(T) = {ein, e} and E(Hout(T))∩E(T) =
{eout, e} where {e, ein, eout} are the edges of T , then G is subhamiltonian.

104

4.3 Subhamiltonicity of triconnected 4-planar graphs

Aout

Cout

Bout

vT

Gout(T)

(a) vT in G∗out(T)

Aout

Cout

Bout

Gout(T)

e1 e2

C B

A

(b) T in Gout(T)

Gin(T)

v′T

Cin Bin

Ain

(c) v′T in G∗in(T)

Gin(T)

A

BC e′1

e′2

(d) T in Gin(T)

A

BC

(e) G with T and H

Figure 4.8. (a) Subhamiltonian cycle H∗out(T) in G∗out(T) containing vT . (b) Augment-
ing H∗out(T) yields Hout(T) containing edges e1 = (C,A) and e2 = (A,B). (c) Dummy
vertex v′T as replacement for T in G∗in(T) and a cycle H∗in(T). (d) Rerouting H∗in(T)
through T resulting in Hin(T) with edges e′1 = (C,B) and e2 = (A,B). (e) The result
of merging Hin(T) and Hout(T) into a cycle H for G.

Proof. Let w.l.o.g. e = (A,B), ein = (B,C) and eout = (A,C) as illustrated
in Figure 4.7. The result of removing the edges of T from both cycles are two
paths Pout = B C and Pin = C A. Joining them at C and inserting e
yields a subhamiltonian cycle.

It remains to show that we can always find two cycles that satisfy the re-
quirements of Lemma 4.8. In the following, we neglect the degenerated case of
Lemma 4.6, where Gout(T) or Gin(T) is a single vertex, because finding a cycle
in that case is trivial. Consider for example Gout(T), for Gin(T) a symmet-
ric argument holds. To obtain Hout(T), we temporarily replace T in Gout(T)
with a single vertex vT as depicted in Figure 4.8a. The resulting graph G∗out(T)
remains 4-planar and triconnected, because deg(vT) = 3 by construction and
any path via T can use vT instead. One may argue that this operation may
introduce additional separating triangles. However, such a triangle must con-
tain vT and, therefore, deg(vT) = 4, a contradiction. Now let us assume that
H∗out(T) is a subhamiltonian cycle for G∗out(T). The idea is to reinsert T and
reroute H∗out(T) through T such that the resulting cycle Hout(T) contains two
edges e1, e2 ∈ E(T) as depicted in Figure 4.8b. In a symmetric manner, this
approach can be applied for Hout(T) as displayed in Figure 4.8c and 4.8d.

105

4 Two-page Book Embeddings of Bounded Degree Graphs

Aout

BoutCout

vT

(a) Edge vT Edge

vT

Aout

BoutCout f2

f1

(b) Edge vT Face

vT

Aout

BoutCout

f1

f2

f3

(c) Face vT Face

Figure 4.9. The three main cases at vT : (a) The cycle uses two of the three edges inci-
dent to vT . (b) The cycle enters via an edge and leaves through a face. (c) Predecessor
and successor are not adjacent to vT .

I Lemma 4.9. Let G be a triconnected 4-planar graph and T be a separating
triangle. Furthermore, let G∗out(T) denote the graph resulting from replacing T
by a vertex vT in Gout(T). A subhamiltonian cycle H∗out(T) for G∗out(T) can be
augmented to a subhamiltonian cycle Hout(T) for Gout(T) such that it contains
two edges of T , that is, E(Hout(T))∩E(T) = {e1, e2}. If H∗out(T) crosses every
face of G∗out(T) at most once, one may choose any pair e1, e2 ∈ E(T) to lie on
Hout(T).

Proof. In order to prove the claim, it is sufficient to consider every combination
of e1, e2 and the location of the predecessor and successor of vT in H∗out(T). In
the following, we enumerate and describe in detail all possible cases that may
occur when augmenting H∗out(T) such that the resulting cycle Hout(T) contains
two edges e1, e2 of T . However, to avoid any redundancies, we omit symmetric
cases and consider for the same reason a directed cycle. We distinguish between
three main cases depending on the relative location of the predecessor and
successor of vT in H∗out(T).

An overview of these main cases is shown Figure 4.9 and can be summarized
as follows. The first case is depicted in Figure 4.9a in which the cycle contains
two edges incident to vT , whereas in the second case the cycle arrives via an edge
but leaves through a face (Figure 4.9b). Here we have to distinguish between
the location of the face, that is if the edge bounds the face or not (f1 and f2
in Figure 4.9b, respectively). In the third case, the cycle does not use any to
vT incident edges and visits it solely using faces (Figure 4.9c). Here again we
have to distinguish between two sub cases based on if the cycle leaves vT via
the same face (f2 in Figure 4.9c) as it arrives or not (f3 in Figure 4.9c).

As a next step, we show that we can expand the separating triangle and
reroute the cycle such that any pair of edges is part of the extended cycle. One
exception is the case in which the cycle visits the vertex vT via the same face
(f1 vT f2 in Figure 4.9c).

106

4.3 Subhamiltonicity of triconnected 4-planar graphs

Aout

BoutCout

A

C B

(a) (A,C) and (C,B)

Aout

BoutCout

A

C B

(b) (C,A) and (A,B)

Aout

BoutCout

A

C B

(c) (A,B) and (B,C)

Figure 4.10. (a) Dummy vertex vT is replaced by the sequence A,C,B to obtain a
cycle with the edges (A,C) and (C,B). (b) Sequence C,A,B yields a cycle with (C,A)
and (A,B) where (Aout, C) requires it to cross a face. (c) Augmenting with A,B,C
results in a cycle containing (A,B) and (B,C).

Aout

BoutCout

A

C B

f2

f1

(a) (A,C) and (C,B)

Aout

BoutCout

A

C B

f2

f1

(b) (C,A) and (A,B)

Aout

BoutCout

A

C B

f2

f1

(c) (A,B) and (B,C)
or (C,B) and (B,A)

Figure 4.11. In (a) and (b) the same sequences as before are used to obtain a cycle
containing (A,C), (C,B) and (C,A), (A,B), respectively. Subcase-specific links are
drawn in blue and red. (c) A more complicated case requiring one additional crossing
of a face from Aout to C.

Aout

BoutCout

A

C B

f1

f2

f3

(a) (A,C) and (C,B)

Aout

BoutCout

A

C B

f1

f2

f3

(b) (B,A) and (A,C)

Aout

BoutCout

A

C B

f1

f2

f3

(c) (A,B) and (B,C)

Figure 4.12. (a) Both subcases have a solution. (b,c) When the cycle uses two distinct
faces (f1 f3) a solution for both pairs of edges can be found. If only one face is used
(f1 f2), then no solution exists for the edges (B,A), (A,C) and (A,B), (B,C).

107

4 Two-page Book Embeddings of Bounded Degree Graphs

Case 1 (Edge vT Edge): Both the predecessor and successor of vT in
H∗out(T) are adjacent to vT , hence, the cycle H∗out(T) contains two edges inci-
dent to vT , let us say (Aout, vT), (vT , Bout) as illustrated in Figure 4.9a. Fig-
ure 4.10 depicts how H∗out(T) can be augmented such that every pair of edges
of T is contained in Hout(T). Notice that while for the pair (A,C), (C,B) in
Figure 4.10a no face crossing is required, for the two other pairs one additional
face crossing is introduced (Figure 4.10b and 4.10c).

Case 2 (Edge vT Face): In this case, the predecessor, say Aout, is adja-
cent to vT , while the successor is not. Since H∗out(T) is a subhamiltonian cycle,
the successor is incident to one of the three faces incident to vT . To cover all
possible combinations, we distinguish between whether (i) the predecessor Aout
is incident to that face or (ii) not. Figure 4.9b illustrates both configurations,
where f1 denotes the successor located at a face of type (i), and f2 the succes-
sor that is incident to the face at the opposite side (ii). For both subcases, the
rerouting rules for the first two edge pairs are relatively simple, since they follow
the basic principle of the first case, see Figure 4.11a and 4.11b. However, the
third pair is more complicated. For (i) the sequence Aout, vT , f1 is replaced by
Aout, C,B,A, f1, whereas for (ii) Aout, vT , f1 is substituted by Aout, A,B,C, f2
(Figure 4.11c).

Case 3 (Face vT Face): Both predecessor and successor of vT in H∗out(T)
are not adjacent to vT . Hence, the cycle enters and leaves vT through a face.
Again to cover all possibilities, we have to deal with two subcases: (i) the two
faces are distinct or (ii) the cycle H∗out(T) leaves through the same face as it
enters. Rerouting H∗out(T) in the first subcase (i) works for all three different
edge pairs, even without introducing any new face crossings. The three solu-
tions for (i) are displayed in Figure 4.12, where the predecessor is labeled by f1
and the successor by f3. So far we have been able to resolve every configuration
such that any pair of edges can be selected to be part of Hout(T). However, the
interesting case is subcase (ii), where the predecessor f1 and successor f2 are in-
cident to the same face. While there is a solution for the edge pair (A,C), (C,B)
as displayed in Figure 4.12a, the two remaining edge pairs create unresolvable
configurations, see Figure 4.12b and 4.12c, respectively. This dilemma is caused
by the fact that Hout(T) has to either enter or leave T via C. However, C is
not accessible from neither f1 nor f2 without destroying planarity.

We may summarize the solutions for the different cases as follows: As long as
the cycle does not enter and leave vT via the same face, we can always choose
two edges of T in advance and reroute the cycle such that these two edges
become part of Hout(T).

108

4.3 Subhamiltonicity of triconnected 4-planar graphs

A B

C

A′ B′

C ′

(a) G with T and T ′

vT

vT ′

(b) Subhamiltonian cycle

A B

C

A′ B′

C ′

(c) After rerouting at T

Figure 4.13. (a) Two separating triangles T and T ′ with vertices V (T) = {A,B,C} and
V (T ′) = {A′, B′, C ′} and for each two prescribed edges (bold). (b) T and T ′ replaced
by vT and vT ′ , every non triangular face is stellated by inserting additional vertices
(squares) and edges (dashed), and a (sub)hamiltonian cycle H ′ (bold). (c) Result of
applying the corresponding rule to T , creating an unresolvable configuration for T ′.

At this point it is tempting to show that we can always find a cycle that
avoids crossing a face twice. By using Lemma 4.3, we may obtain such a cycle
in a triconnected graph with no separating triangles. This raises the question
if we can use it and apply the described rules to obtain a cycle through mul-
tiple triangles for which we may specify two edges in advance. We answer this
question negatively with a small counterexample.

Consider the triconnected 4-planar graph G shown in Figure 4.13a. It con-
tains two separating triangles T and T ′ with vertices V (T) = {A,B,C} and
V (T ′) = {A′, B′, C ′}, respectively. In every triangle the two bold drawn edges,
that is, (A′, C ′), (B′, C ′) and (A,C), (B,C), are prescribed to lie on the aug-
mented subhamiltonian cycle H. We proceed as described; both triangles are
replaced by a dummy vertex vT and vT ′ , respectively. The resulting graph (Fig-
ure 4.13b) is triconnected 4-planar and free of separating triangles. The squares
and dashed lines correspond to the dummy vertices and edges inserted by the
technique of Kainen and Overbay [60] as described in Lemma 4.3.

We may now compute a Hamiltonian cycle H ′ by applying the linear-time
algorithm of Chiba and Nishizeki [23]. Assume the result is the bold cycle in
Figure 4.13b. Clearly the cycle crosses every face at most once after we remove
the dummy vertices inserted by the technique of Kainen and Overbay [60].
We reinsert T and apply the corresponding rule, that is, the augmentation
displayed in Figure 4.11b. The result of augmenting such that the two marked
edges of T , namely (A,C), (B,C), lie on the cycle is displayed in Figure 4.13c.
Notice that we are forced to enter T via A and exit by B. As a result, the
cycle crosses one face twice. Moreover, T ′ must be entered and left through
the same face. The corresponding rule, illustrated in Figure 4.12b, implies that

109

4 Two-page Book Embeddings of Bounded Degree Graphs

we cannot reroute the cycle such that it contains the edges (A′, C ′), (B′, C ′).
However, we may lift the restriction, use the only rule applicable in this case
(Figure 4.12a), and obtain a cycle with edges (A′, C ′), (A′, B′) instead. Notice
that the graph in this example has even a Hamiltonian cycle H through the
requested edges. However, the purpose of the example is to demonstrate that
for an arbitrary chosen subhamiltonian cycle, the described rules cannot always
be applied. We may conclude that when using Lemma 4.3, we may choose for
one (the first) triangle two edges because the initial cycle visits every face at
most once. From there on, we can only guarantee that two unknown edges are
part of the final cycle. In the following we will benefit from this observation.

Recall the aforementioned single-separating-triangle scenario. Both Gout(T)
and Gin(T) are free of separating triangles. Thus, we may construct two graphs
G∗out(T), G∗in(T) by replacing T with dummy vertices. Applying Lemma 4.3
to them yields two subhamiltonian cycles H∗out(T) and H∗in(T), both crossing
every face of G∗out(T) and G∗in(T) at most once. Hence, we may augment them
with the aid of Lemma 4.9 such that they contain each two edges of T . By
choosing the combination of the edges such that Hout(T) and Hin(T) meet the
requirements of Lemma 4.8, we can merge them into a single subhamiltonian
cycle H for G. While the property that G∗out(T) and G∗in(T) are both free of
separating triangles enables us to conveniently choose two edges for each cycle
Hout(T), Hin(T), this only works for a single separating triangle. However, a
closer look reveals that it is sufficient to have a choice for either Hout(T) or
Hin(T), not necessarily both of them. The idea is to first augment the cycle
for which we do not have a choice to see which edges of T are part of it, then
we choose the edges for the second cycle accordingly. We summarize the idea
as the main result of this section and describe it in a more formal manner in
form of a proof.

I Theorem 4.10. Every triconnected 4-planar graph is subhamiltonian.

Proof. Let G denote a triconnected 4-planar graph and τ(G) the number of sep-
arating triangles in G. We prove by induction and claim that for any τ(G) ≥ 0,
we can compute a subhamiltonian cycle H for G. Base case: Since τ(G) = 0,
we can directly apply Lemma 4.3. Inductive case: For τ(G) > 0, we pick a
separating triangle T such that τ(Gin(T)) = 0. Let G∗out(T) be the result of re-
placing T by vT in Gout(T). Notice that τ(G∗out(T)) = τ(G)−1 holds. Hence, by
induction hypothesis, G∗out(T) has a subhamiltonian cycle H∗out(T). We reinsert
T and augment H∗out(T) such that the result Hout(T) contains two (arbitrary)
edges e1, e2 of T . In a similar way, we replace T in Gin(T) by v′T to obtain
G∗in(T). Since τ(Gin(T)) = τ(G∗in(T)) = 0 holds, we can apply Lemma 4.3
to G∗in(T) and compute a cycle H∗in(T) that crosses each face at most once.

110

4.3 Subhamiltonicity of triconnected 4-planar graphs

With Lemma 4.9 we may obtain a cycle Hin(T) for Gin(T) with two edges
e′1, e

′
2 ∈ E(T) of our choice. Choosing e′1 = e1 and e′2 6= e2 yields two cycles

Hout(T) and Hin(T) that meet the requirements of Lemma 4.8 and we can
merge them into one cycle H for G.

The proof of Theorem 4.10 is constructive. Embedding G in the plane takes
linear time. In order to identify all separating triangles in G within the same
time frame, one may apply a naive approach that works as follows. At every
vertex v, we test every neighbor of v’s neighbors if it is adjacent to v, that is, if
v is part of a 3-cycle. If that is the case and this 3-cycle is not a face, which can
be tested by examining the edges incident to the vertices of the 3-cycle in the
embedding, then a separating triangle has been found. Notice that due to the
degree restriction the number of vertices to consider for a fixed v is constant,
which yields a linear-time algorithm. Augmenting a subhamiltonian cycle and
merging two of them takes constant time. Disjointness of separating triangles
yields a linear number of subproblems and every edge occurs in at most one
such subproblem. Hence, the total time spent for the subroutine of Lemma 4.3
is linear in the size of G.

I Corollary 4.11. A subhamiltonian cycle of a triconnected 4-planar graph can
be found in linear time.

In this section, we have shown that in the triconnected case a rather sim-
ple technique can be used to efficiently compute a subhamiltonian cycle in a
4-planar graph. However, the property that G is triconnected has been used
extensively throughout this section, thus, a relaxation to biconnectivity is not
straightforward. Recall that Kainen and Overbay describe in their work [60]
a technique that augments a biconnected planar graph without separating tri-
angles to a triconnected one with the same property. It is tempting to employ
this approach here, but the augmentation step may raise the degree of a vertex,
leaving us with a graph that is not 4-planar anymore.

Overview of the biconnected 4-planar case
Besides the technique for triconnected 4-planar graphs, we describe in [7, 8]
an approach for the general case. The result is a quadratic-time algorithm
that embeds every biconnected 4-planar graph into a book with two pages.
Recall that one may assume biconnectivity due to Lemma 4.1. Although the
biconnected algorithm is not part of this thesis and is quite technical, we give
a brief description here. The overall idea follows a principle that has been used
by Heath [54] and subsequently by Yannakakis [72] to prove the upper bound of

111

4 Two-page Book Embeddings of Bounded Degree Graphs

v3v2v1 v4

Gin(C)

(a)

v3v2v1 v4

1

3
2

4 5
6

(b)

2 3 41 5 6

v3v2
v1 v4

(c)

Figure 4.14. (a) Initial layout of the simple chord-less cycle C that bounds Gin(C).
(b) Bridge-block tree decomposition of Gin(C) with red edges being the ones that
determine the position of the blocks on the spine. (c) The final placement of all blocks.

seven and four, respectively, for the book thickness of planar graphs. It embeds
the graph from the outside to the inside, starting with the outer face, and then
in a recursive manner, peeling away cycles. But in difference to general planar
graphs, in the 4-planar case, two pages are sufficient.

The intuition behind this approach can best be explained by an example.
Suppose we are given some cycle C that, for the beginning, is simple and
without chords. Such a cycle is always drawn as illustrated in Figure 4.14a, that
is every edge (except one) is assigned to the lower page. The main problem, of
course, is everything that is contained inside C. Let this subgraph be Gin(C) as
shown in Figure 4.14a. Gin(C) is decomposed into its bridge-block tree. Notice
that in difference to a BC-tree, a block in the bridge-block tree may contain
cut vertices. Figure 4.14b shows an example of such a bridge-block tree. The
idea is now to treat the blocks as vertices and embedd them on the spine with
a proper page assignment for the edges. These edges are of two types: Bridges
of the bridge-block tree, and edges that connect C and Gin(C). The latter ones
determine the position of the blocks on the spine using roughly the following
rule: Every block that has at least one neighbor on C is placed directly to the

112

4.3 Subhamiltonicity of triconnected 4-planar graphs

v3v2v1 v4

2 3

1

(a)

3

1
2

v
(b)

Figure 4.15. (a) Three bridge-blocks trapped inside a cycle of chords v1, . . . , v4. (b) A
cycle that is not simple with v being a cut vertex in the bridge-block.

right of the leftmost among these neighbors. For those that have no neighbor
on C (see for example the second block in Figure 4.14b and 4.14c), one can
show [8] that there exists always a suitable spot on the spine that preserves
the embedding implied by the original graph.

Suppose now that we have placed the blocks on the spine. Notice that each
block itself is bounded by a (not necessarily simple) cycle. Now we draw every
cycle that bounds a block as displayed in Figure 4.14c, that is upside down
when compared to the layout of C. Applying a recursive argument for these
cycles yields a two-page book embedding. One may ask now, why this only
works for 4-planar graphs. Recall that we assumed that C is simple and chord-
less, which of course is not always the case. This is where the degree restriction
is important.

Assume that C is a simple cycle that contains chords. These chords cannot be
drawn on the lower page, because the embedding cannot be preserved this way.
Hence, they have to be drawn together with the other edges on the top page,
while at the same time it must be ensured that there is always a gap on the
spine to place the blocks. In the general planar case, one may easily construct
a scenario such that a couple of blocks are trapped by chords. An example is
shown in Figure 4.15a in which two blocks cannot be embedded on the spine
due to a cycle of chords surrounding them. This situation is unavoidable in the
general planar case, but in the 4-planar case, the degree restriction prevents
such a situation. Notice that due to biconnectivity, the trapped blocks must
have at least two neighbors on C, both of them exceeding their maximum
degree of four. The other problem arises when C is not simple. Recall that C is
the outer face of a block and such a block may contain cut vertices. However,
a cut vertex is then part of two edge disjoint cycles, thus, having already a
degree of four. This makes it possible to nest the cycles, similar to Lemma 4.1.
Figure 4.15b shows an example. For details, see Lemma 13 in [8].

113

4 Two-page Book Embeddings of Bounded Degree Graphs

4.4 Conclusion
We studied the problem of embedding triconnected 3-planar and 4-planar
graphs into a book of two pages. The former result is more of a practical
nature, since it does not provide any new theoretical results but yields a simple
canonical ordering-based solution to the problem. Thereby lowering consid-
erably the hurdle towards an efficient simple implementation. One question
arising naturally: May one employ the bitonic st-ordering instead?

Indeed this seems to be not too difficult. The key component of a possible
invariant is to guarantee that a vertex with only one neighbor in Gk has both
its predecessor and successor on the subhamiltonian cycle located on the outer
face. As a result, the augmentation step can be applied two times, which might
be necessary due to the possible two neighbors in G − Gk. One may ask now
why we did not present this idea in the first place. At this point it is impor-
tant to keep the big picture in mind. We are given an undirected (biconnected)
3-planar graph and must obtain a bitonic st-ordering. Of course, the previous
chapter provides us with such an ordering. However, our initial argument was
the simplicity of the canonical ordering-based algorithm compared to the cus-
tom face traversal of Heath. Using instead now an algorithm that requires an
SPQR-tree decomposition is probably not the right way to go.

However, applying the bitonic st-ordering to the 4-planar case is different.
The biconnected 4-planar algorithm is quite involved, therefore, a bitonic st-
ordering based algorithm would be of great value. But since one has to deal
with the case in which a vertex may have three neighbors in G−Gk, finding an
invariant, similar to the one used in the 3-planar case, is not straightforward.

Before drawing the final conclusions of this thesis, we would like to state two
open problems that arise naturally. The approach for triconnected 4-planar
graphs relies heavily on the maximum degree restriction and triconnectivity.
It would be interesting to know if a similar approach works by pushing one of
the properties a bit further. More precisely, are triconnected 5-planar graphs
subhamiltonian and is there a way to circumnavigate the problems arising when
extending the presented approach from triconnected to biconnected?

114

5 Conclusion

In Chapter 3 we have introduced the concept of bitonic st-orderings for undi-
rected biconnected planar graphs and planar st-graphs. For the former a linear-
time algorithm has been described that is based on canonical orderings and
an SPQR-tree decomposition. The algorithm is able to provide a bitonic st-
ordering for every planar biconnected graph at the expense of a possible change
in the embedding. Afterwards, an adaptation of the incremental planar straight-
line drawing algorithm of de Fraysseix et al. has been described. Motivated
by the insight that this algorithm would be able to create an upward planar
straight-line drawing in case the bitonic st-ordering is an st-ordering of a pla-
nar st-graph, we studied the problem of finding a bitonic st-ordering for an
embedded planar st-graph. Although not every planar st-graph admits such
an ordering, we were able to fully characterize those that do. Furthermore, a
simple linear-time algorithm for recognizing them has been given. Moreover,
the algorithm is able to obtain such an ordering if it exists.

However, experiments on random planar st-graphs have shown that it is
very unlikely that a planar st-graph admits a bitonic st-ordering. For those for
which no such ordering can be found, an alternative solution has been proposed.
Based on the idea of splitting specific edges, therefore, introducing additional
vertices, a planar st-graph can be transformed into one for which a bitonic
st-ordering exists. We described a linear-time algorithm that finds the smallest
set of edges to split. Together with an upper bound on the number of splits,
we were able to improve the upper bound of the number of bends required in
upward planar poly-line drawings within quadratic area.

Embedding bounded degree graphs into two-page books has been the topic of
Chapter 4. We have shown that every triconnected 4-planar graph admits a two-
page book embedding. For the 3-planar case, a simple canonical ordering-based
algorithm that constructs a subhamiltonian cycle in an incremental manner,
has been presented. For the 4-planar case, we have chosen a different approach.
After investigating the properties of separating triangles under the degree re-
striction, we have shown that by decomposing the problem along the separating
triangles, one is able to reroute the subhamiltonian cycles of the subproblems
such that they can be merged into one subhamiltonian cycle for the original
graph. Since the approach solves only the triconnected case, a short overview
of the general case has been given.

115

Bibliography

[1] S. Abbasi, P. Healy, and A. Rextin. Improving the running time of embed-
ded upward planarity testing. Information Processing Letters, 110(7):274–
278, 2010.

[2] M. J. Alam, T. C. Biedl, S. Felsner, A. Gerasch, M. Kaufmann, and
S. Kobourov. Linear-time algorithms for hole-free rectilinear proportional
contact graph representations. In T. Asano, S.-i. Nakano, Y. Okamoto,
and O. Watanabe, editors, Algorithms and Computation, volume 7074 of
Lecture Notes in Computer Science, pages 281–291. Springer, 2011.

[3] M. J. Alam, T. C. Biedl, S. Felsner, M. Kaufmann, S. G. Kobourov, and
T. Ueckerdt. Computing cartograms with optimal complexity. In Proceed-
ings of the Twenty-eighth Annual Symposium on Computational Geome-
try, SoCG ’12, pages 21–30. ACM, 2012.

[4] M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Jour-
nal of Graph Algorithms and Applications, 15(1):97–126, 2011.

[5] M. A. Bekos, M. Gronemann, M. Kaufmann, and R. Krug. Planar octi-
linear drawings with one bend per edge. In C. Duncan and A. Symvonis,
editors, Graph Drawing, volume 8871 of Lecture Notes in Computer Sci-
ence, pages 331–342. Springer Berlin Heidelberg, 2014.

[6] M. A. Bekos, M. Gronemann, S. Pupyrev, and C. Raftopoulou. Perfect
smooth orthogonal drawings. In The 5th International Conference on
Information, Intelligence, Systems and Applications, IISA 2014, pages 76–
81, July 2014.

[7] M. A. Bekos, M. Gronemann, and C. N. Raftopoulou. Two-page book
embeddings of 4-planar graphs. In 31st International Symposium on The-
oretical Aspects of Computer Science (STACS 2014), STACS 2014, March
5-8, 2014, Lyon, France, pages 137–148, 2014.

[8] M. A. Bekos, M. Gronemann, and C. N. Raftopoulou. Two-page book
embeddings of 4-planar graphs. CoRR, abs/1401.0684, 2014.

117

Bibliography

[9] M. A. Bekos, M. Kaufmann, S. Kobourov, and A. Symvonis. Smooth or-
thogonal layouts. In W. Didimo and M. Patrignani, editors, Graph Draw-
ing, volume 7704 of Lecture Notes in Computer Science, pages 150–161.
Springer Berlin Heidelberg, 2013.

[10] F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of
Combinatorial Theory, 27(3):320–331, 1979.

[11] P. Bertolazzi, G. Di Battista, and W. Didimo. Quasi-upward planarity.
In S. Whitesides, editor, Graph Drawing, volume 1547 of Lecture Notes in
Computer Science, pages 15–29. Springer Berlin Heidelberg, 1998.

[12] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward drawings
of triconnected digraphs. Algorithmica, 12(6):476–497, 1994.

[13] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamassia. Optimal
upward planarity testing of single-source digraphs. In T. Lengauer, editor,
Algorithms—ESA ’93, volume 726 of Lecture Notes in Computer Science,
pages 37–48. Springer Berlin Heidelberg, 1993.

[14] T. C. Biedl. Transforming planar graph drawings while maintaining height.
CoRR, abs/1308.6693, 2013.

[15] T. C. Biedl. Height-preserving transformations of planar graph drawings.
In C. Duncan and A. Symvonis, editors, Graph Drawing, volume 8871
of Lecture Notes in Computer Science, pages 380–391. Springer Berlin
Heidelberg, 2014.

[16] T. C. Biedl and G. Kant. A better heuristic for orthogonal graph drawings.
In J. van Leeuwen, editor, Algorithms — ESA ’94, volume 855 of Lecture
Notes in Computer Science, pages 24–35. Springer Berlin Heidelberg, 1994.

[17] G. Blin, G. Fertin, I. Rusu, and C. Sinoquet. Extending the hardness
of rna secondary structure comparison. In B. Chen, M. Paterson, and
G. Zhang, editors, Combinatorics, Algorithms, Probabilistic and Experi-
mental Methodologies, volume 4614 of Lecture Notes in Computer Science,
pages 140–151. Springer Berlin Heidelberg, 2007.

[18] J. M. Boyer and W. J. Myrvold. On the cutting edge: Simplified o(n)
planarity by edge addition. Journal of Graph Algorithms and Applications,
8(3):241–273, 2004.

118

Bibliography

[19] F. J. Brandenburg. Drawing planar graphs on area 4
3n ×

2
3n. Electronic

Notes in Discrete Mathematics, 31(0):37 – 40, 2008. The International
Conference on Topological and Geometric Graph Theory.

[20] U. Brandes. Eager st-ordering. In R. Möhring and R. Raman, editors,
Algorithms — ESA 2002, volume 2461 of Lecture Notes in Computer Sci-
ence, pages 247–256. Springer Berlin Heidelberg, 2002.

[21] C. Chen. Any maximal planar graph with only one separating triangle is
hamiltonian. Journal of Combinatorial Optimization, 7(1):79–86, 2003.

[22] C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov. Drawing
planar graphs with circular arcs. Discrete and Computational Geometry,
25:405–418, 2001.

[23] N. Chiba and T. Nishizeki. The hamiltonian cycle problem is linear-time
solvable for 4-connected planar graphs. Journal of Algorithms, 10(2):187–
211, 1989.

[24] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-trees. J. Comput. Syst. Sci., 30(1):54–
76, 1985.

[25] M. Chimani and R. Zeranski. Upward planarity testing: A computational
study. In S. Wismath and A. Wolff, editors, Graph Drawing, volume 8242
of Lecture Notes in Computer Science, pages 13–24. Springer International
Publishing, 2013.

[26] M. Chimani and R. Zeranski. Upward planarity testing via sat. In
W. Didimo and M. Patrignani, editors, Graph Drawing, volume 7704 of
Lecture Notes in Computer Science, pages 248–259. Springer Berlin Hei-
delberg, 2013.

[27] M. Chrobak and G. Kant. Convex grid drawings of 3-connected pla-
nar graphs. Intl. Journal of Computational Geometry and Applications,
7(3):211–223, 1997.

[28] M. Chrobak and S.-i. Nakano. Minimum-width grid drawings of plane
graphs. Computational Geometry, 11(1):29–54, 8 1998.

[29] M. Chrobak and T. Payne. A linear-time algorithm for drawing a planar
graph on a grid. Information Processing Letters, 54(4):241 – 246, 1995.

119

Bibliography

[30] F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg. Embedding graphs
in books: A layout problem with applications to VLSI design. SIAM Jour-
nal on Algebraic and Discrete Methods, 8(1):33–58, 1987.

[31] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[32] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. Bipolar orientations
revisited. Discrete Applied Mathematics, 56(2–3):157 – 179, 1995. Fifth
Franco-Japanese Days.

[33] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fary
embeddings of planar graphs. In Procs. 20th Symposium on Theory of
Computing (STOC), pages 426–433, 1988.

[34] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10(1):41–51, 1990.

[35] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, Englewood
Cliffs, NJ, 1999.

[36] G. Di Battista and F. Frati. A survey on small-area planar graph drawing.
ArXiv e-prints, Oct. 2014.

[37] G. Di Battista and R. Tamassia. Algorithms for plane representations of
acyclic digraphs. Theoretical Computer Science, 61(2–3):175 – 198, 1988.

[38] G. Di Battista and R. Tamassia. Incremental planarity testing. In 30th
Annual Symposium on Foundations of Computer Science, 1989, pages 436–
441, 1989.

[39] G. Di Battista, R. Tamassia, and I. Tollis. Area requirement and symmetry
display of planar upward drawings. Discrete & Computational Geometry,
7(1):381–401, 1992.

[40] E. Di Giacomo, W. Didimo, M. Kaufmann, G. Liotta, and F. Montecchi-
ani. Upward-rightward planar drawings. In The 5th International Confer-
ence on Information, Intelligence, Systems and Applications, IISA 2014,
pages 145–150, July 2014.

[41] E. Di Giacomo and G. Liotta. The hamiltonian augmentation problem and
its applications to graph drawing. In M. Rahman and S. Fujita, editors,
WALCOM: Algorithms and Computation, volume 5942 of Lecture Notes
in Computer Science, pages 35–46. Springer Berlin Heidelberg, 2010.

120

Bibliography

[42] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer Berlin Heidelberg, 3rd edition.

[43] V. Dujmovic and D. R. Wood. On linear layouts of graphs. Discrete
Mathematics & Theoretical Computer Science, 6(2):339–358, 2004.

[44] C. Duncan, E. Gansner, Y. Hu, M. Kaufmann, and S. Kobourov. Optimal
polygonal representation of planar graphs. Algorithmica, 63(3):672–691,
2012.

[45] C. Duncan and S. Kobourov. Polar coordinate drawing of planar graphs
with good angular resolution. Journal of Graph Algorithms and Applica-
tions, 7(4):311–333, 2003.

[46] J. Ebert. st-ordering the vertices of biconnected graphs. Computing,
30(1):19–33, 1983.

[47] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Com-
puter Science, 2(3):339 – 344, 1976.

[48] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY,
USA, 1990.

[49] A. Garg and R. Tamassia. On the computational complexity of upward
and rectilinear planarity testing. In R. Tamassia and I. Tollis, editors,
Graph Drawing, volume 894 of Lecture Notes in Computer Science, pages
286–297. Springer Berlin Heidelberg, 1995.

[50] M. Gronemann. Bitonic st-orderings of biconnected planar graphs. In
C. Duncan and A. Symvonis, editors, Graph Drawing, volume 8871 of
Lecture Notes in Computer Science, pages 162–173. Springer Berlin Hei-
delberg, 2014.

[51] C. Gutwenger and P. Mutzel. Planar polyline drawings with good angu-
lar resolution. In S. Whitesides, editor, Graph Drawing, volume 1547 of
Lecture Notes in Computer Science, pages 167–182. Springer Berlin Hei-
delberg, 1998.

[52] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-
trees. In J. Marks, editor, Graph Drawing, volume 1984 of Lecture Notes
in Computer Science, pages 77–90. Springer Berlin Heidelberg, 2001.

121

Bibliography

[53] D. Harel and M. Sardas. An algorithm for straight-line drawing of planar
graphs. Algorithmica, 20(2):119–135, 1998.

[54] L. S. Heath. Embedding planar graphs in seven pages. In Foundations of
Computer Science (FOCS ’84), pages 74–83. IEEE, 1984.

[55] L. S. Heath. Algorithms for Embedding Graphs in Books. PhD thesis,
University of North Carolina, Chapel Hill, 1985.

[56] G. Helden. Each maximal planar graph with exactly two separating tri-
angles is hamiltonian. Discrete Applied Mathematics, 155(14):1833–1836,
2007.

[57] G. Helden. Hamiltonicity of maximal planar graphs and planar triangula-
tions. PhD thesis, RWTH Aachen, 2007.

[58] J. Hopcroft and R. Tarjan. Efficient planarity testing. J. ACM, 21(4):549–
568, Oct. 1974.

[59] M. Jünger and P. Mutzel, editors. Graph Drawing Software. Springer
Berlin Heidelberg, 2004.

[60] P. C. Kainen and S. Overbay. Extension of a theorem of Whitney. Applied
Mathematics Letters, 20(7):835–837, 2007.

[61] G. Kant. Hexagonal grid drawings. In 18th Workshop on Graph-Theoretic
Concepts in Computer Science, pages 263–276, 1992.

[62] G. Kant. Drawing planar graphs using the canonical ordering. Algorith-
mica, 16:4–32, 1996.

[63] K. Mehlhorn and P. Mutzel. On the embedding phase of the hopcroft and
tarjan planarity testing algorithm. Algorithmica, 16(2):233–242, 1996.

[64] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.

[65] OGDF - Open Graph Drawing Framework. http://www.ogdf.net/.

[66] R. Tamassia. Handbook of Graph Drawing and Visualization (Discrete
Mathematics and Its Applications). Chapman & Hall/CRC, 2007.

[67] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal
on Computing, 1(2):146–160, 1972.

[68] W. T. Tutte. A theorem on planar graphs. Transactions of the American
Mathematical Society, 82(1):99–116, 1956.

122

Bibliography

[69] H. Whitney. A theorem on graphs. Annals of Mathematics, 32(2):378–390,
1931.

[70] A. Wigderson. The complexity of the hamiltonian circuit problem for
maximal planar graphs. Technical Report TR-298, EECS Department,
Princeton University, 1982.

[71] M. Yannakakis. Four pages are necessary and sufficient for planar graphs.
In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing, STOC ’86, pages 104–108, New York, NY, USA, 1986. ACM.

[72] M. Yannakakis. Embedding planar graphs in four pages. Journal of Com-
puter and System Sciences, 38(1):36–67, 1989.

[73] K.-H. Yeap and M. Sarrafzadeh. Floor-planning by graph dualization: 2-
concave rectilinear modules. SIAM Journal on Computing, 22(3):500–526,
1993.

123

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig ange-
fertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die
Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die
anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem
Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch
keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie –
abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht
worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Pro-
motionsverfahrens nicht vornehmen werde. Die Bestimmungen der Promotions-
ordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof.
Dr. Michael Jünger betreut worden.

Köln, 27. April 2015

M. Gronemann

Teilpublikationen
• M. Gronemann. Bitonic st-orderings of biconnected planar graphs. In

C. Duncan and A. Symvonis, editors, Graph Drawing, volume 8871 of
Lecture Notes in Computer Science, pages 162–173. Springer Berlin Hei-
delberg, 2014.

• M. A. Bekos, M. Gronemann, and C. N. Raftopoulou. Two-page book
embeddings of 4-planar graphs. In 31st International Symposium on The-
oretical Aspects of Computer Science (STACS 2014), STACS 2014, March
5-8, 2014, Lyon, France, pages 137–148, 2014.

• M. A. Bekos, M. Gronemann, and C. N. Raftopoulou. Two-page book
embeddings of 4-planar graphs. CoRR, abs/1401.0684, 2014.

	Introduction
	Preliminaries
	Technical foundations
	Oriented planar drawings of directed graphs

	Bitonic st-orderings
	Bitonic st-orderings of biconnected planar graphs
	A linear-time algorithm
	The fixed embedding scenario

	Straight-line drawings
	The algorithm of de Fraysseix, Pach and Pollack
	The linear-time variant of Chrobak and Payne
	A drawing algorithm for bitonic st-orderings

	Bitonic st-orderings of planar st-graphs
	Characterization & recognition
	Recognition & ordering in linear time
	Experimental results

	Upward planar poly-line drawings with few bends
	The edge-split method
	An optimal linear-time transformation
	Experimental results

	Visibility & contact representations
	Conclusion

	Two-page Book Embeddings of Bounded Degree Graphs
	Two-page book embeddings & subhamiltonicity
	Two-page book embeddings of 3-planar graphs
	Subhamiltonicity of triconnected 4-planar graphs
	Conclusion

	Conclusion

