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Abstract

Genes and their interactions with one another crucially affect re-
productive success, commonly referred to as fitness. Biallelic models
have been used in the past as a mathematical framework to model
and explain these interactions. One approach is to represent L bial-
lelic loci as hypercubic graphs, known as L-cubes. On these L-cubes,
vertices model genotypes and the edges connect the vertices that dif-
fer by a single locus value. Assigning fitness values to genotypes gives
edges a direction towards higher fitness. Local optimal genotypes,
called peaks, then have a higher fitness than all their direct neighbors.
Recently, researchers have introduced the notion of peak patterns, re-
ferring to the set of peaks that are unique up to relabeling of vertices.
However, a complete characterization of all possible peak patterns has
not yet been performed for L ≥ 4. This work concerns itself with an
analysis for L = 4 regarding peak patterns and all possible instances
of sign and reciprocal sign epistasis, substantiating the importance of
peak patterns. Additionally a lower bound ∝ 22L−1 is provided for
the set containing all possible peak patterns for a given L. Informed
by this, all peak patterns up to L = 6 are computed and joined with
a variant of Fishers Geometric Model having a one dimensional phe-
notype. Moreover peak patterns are used to calculate the maximal
number of peaks for the staircase triangulation up to L = 8.
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1 Introduction

Genetic interaction is a central mechanism for the development of complex
lifeforms. The question of how genes cooperate or interfere with each other
and thereby affect an organisms phenotypes is a central topic in genetics.
With the importance of understanding and predicting this mechanism being
highlighted by the constant change and evolution of pathogens, such as the
development of antibiotic resistant bacteria or the emergence of viruses and
their variants. Both measurements and modeling of different genotypes aim
to study their reproductive success, labeled as fitness. They play a crucial
role in predicting evolution and aim to enable us to act with foresight to
counter or prepare for these emerging problems.

The mathematical framework used in this thesis is composed of fitness land-
scapes and fitness graphs. The former maps genotypes to their respective
fitness and the latter is the corresponding oriented acyclic graph. Genotypes
are the vertices and edges connect genotypes which differ only by one mu-
tation. In the case of all possible L biallelic loci, the graph corresponds to
an L-cube, being oriented and acyclic. Former efforts to study the interplay
between different alleles in this setting include the introduction of shapes in
[1] and rank orders in [8]. Another approach to this problem are peak pat-
terns, introduced in [6]. They focus on how many different configurations of
peaks, meaning genotypes of higher fitness than all their nearest neighbors,
the L-cube has up to renaming of vertices while keeping distances invariant.
The shape approach relies on triangulations and rank orders infer interac-
tions on the base of relative fitness values. Both have been studied for the 3-
and 4-cube in [1] and [16] for shapes and in [8] and [7] for rank orders. Due to
the exponential increase of genotypes with increasing number of loci, higher
dimensional L-cubes become increasingly difficult to study. Peak patterns
are aimed to study larger L-cubes than previously possible for the shape and
rank order approaches. However, previous work on peak patterns is missing a
formal definition and the calculation of all possible peaks patterns for L ≥ 4.
This thesis aims to close this gap by defining peak patterns for L ≥ 4, calcu-
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lating the set of all possible ones up to L = 6 and providing a lower bound
on its size for arbitrary L. The latter can be used to make the case that it
is not suitable to calculate the set of all peak patterns for L ≥ 7 due to its
enormous increase in size. Moreover, some special cases of peak patterns are
observed and described as well as being combined with the shape approach
and a version of Fishers Geometric Model, having a one dimensional phe-
notype and only individually beneficial mutations. A brief summary of the
content is given next.

Sec.2 is concerned with the mathematical structure of the L-cube, defines
peak patterns and develops the mathematical structure later needed to effi-
ciently calculate them. In order to describe biological genetic systems sec.3
starts by giving an overview of the modeling terminology. Epistasis is defined
next, which is used to quantify genetic interactions. It follows an introduction
to a version of Fishers Geometric Model (FGM) as a genotype-phenotype-
fitness map. A variant of FGM with a one dimensional phenotype and only
individually beneficial mutations is defined next. Afterwards shapes are in-
troduced and briefly explained in sec.4, focusing on the so called staircase
triangulation. Results regarding peak patterns are combined in sec.5 and
constitute the main result of this thesis. Starting with a proof for the maxi-
mal number of peaks for the variant of FGM. Subsequently it continues with
the analysis of all possible 193270310 oriented acyclic 4-cubes, taking into
account the set of all peak patterns, their corresponding partially ordered
set by inclusion and two-way epistasis. Also included is the calculation of
all possible peak patterns for the 5- and 6-cube. In order to explain why it
might not be reasonable to go beyond L = 6, a lower bound for the size of
the set containing all possible peak pattern for a given L is provided. Fur-
thermore an analysis to check which peak patterns of the 5- and 6-cube are
compatible with the defined variant of FGM, as well as an short analysis of
possibly interesting peak pattern samples is conducted. The calculation of
all compatible peak patterns with the staircase triangulation, by a necessary
condition, up to L = 8 is performed in sec.6. Last but not least a summary
of the results and an outlook is given in sec.7, followed by methods in sec.8.
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2 The Cube Graph - Mathematical Background

A graph G = (V, E) is a collection of points and lines, referred to as ver-
tices V and edges E, with the latter connecting some subsets of the former.
Edges can have a direction, marked as single-arrows using a graphical repre-
sentation. If all edges have a direction, the graph is called a directed graph,
while this definition does not exclude multiple edges connecting the same two
vertices. If a graph has no multiple edges between the same two vertices, it
is called an oriented graph.

The most important graph in this work is the hypercube, a generalized 3-
cube. It is labeled by its dimension L, as L-cube or QL. Familiar cubes are
the 1- to 4-cube, being a line, square, cube and tesseract respectively.
The vertex coordinates of the unit L-cube can be directly formed by applying
the graph cartesian product L times

QL = P2� . . .�P2 (1)

to the path graph P2, which consists of two vertices connected by a single
edge [10].
By labeling the vertices of P2 by 0 and 1, each vertex of an L-cube can be
uniquely represented by an bit-String of length L, see fig.1. Hence vertices
are labeled by a row vector ~σ ∈ G, with its entry σi ∈ {0, 1} being the i-th
coordinate. When assigning a direction to each edge, the L-cube becomes an
oriented graph, denoted by QO

L .

2.1 Paths in Oriented L-cubes

A sequence p of unique edges joining vertices is called a path and a sequence
which minimizes the number of edges between two vertices is referred to as a
direct path. A sequence of directed edges is called a directed path. Note that
the distinction is important when referring to oriented graphs, as in those
the direction of edges is neglected when referring to direct paths.
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The structure of oriented graphs can still be taken into account for directed
paths. If the direction of edges switches along a direct path, the vertices
at which switching occurs are called path maxima if both edges are directed
toward the vertex and path minima vice versa.

2.2 Hamming-Distance of the L-cube

Distances between vertices ~σA, ~σB ∈ QL within the unit L-cube are measured
by their Hamming-Distance

∆(~σA, ~σB) =
L∑
i=1
|σAi − σBi |. (2)

Eq.(2) is a measure for the number of differing coordinates or the length of
a direct path between them. As there are L coordinates needed to describe
all vertices of an L-cube, the maximal distance between two vertices is L,
being the diameter. When referring to the distance to a fixed vertex ~σA, it’s
denoted as ∆~σA(~σB) = ∆(~σA, ~σB). Two important Hamming-Distances are
the ones from ~σ = ~0, ∆0(~σ) ≡ ∆~0(~σ), and ~σ = ~1, ∆1(~σ) ≡ ∆~1(~σ). Those
count the number of zeros and ones respectively.

2.3 k-cubes of the L-cube

L-cubes contain lower-dimensional k-faces, which have the same cubic struc-
ture as the corresponding k-cube. The number of k-faces contained in an
L-cube is

Q(k, L) = 2L−k L!
k!(L− k)! (3)

from [10]. The number of vertices and edges for L = 2, 3 and 4 can be found
in table 1. As each edge has two directions to point in, the number of oriented
graphs can be calculated from eq.(3), resulting in 2Q(1,L).

2.4 Oriented and Acyclic L-cubes

Of particular interest are oriented L-cubes which do not contain any cycles.
Meaning that by starting from a vertex ~σ it is impossible to return to ~σ
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L-Cube Vertices Edges |BL| Acyclic Graphs
2-Cube 4 4 8 14
3-Cube 8 12 48 1862
4-Cube 16 32 384 193270310

Table 1: Various properties of the 2-, 3- and 4-Cube.

by a directed path via other vertices. Those L-cubes are denoted as acyclic
L-cubes or QA

L .
The number of possible acyclic oriented L-cubes can be computed by using
the L-cubes chromatic polynomial χ(λ) and evaluating it at λ = −1 [22].
The chromatic polynomials up to L = 4 are known from the OEIS A334159
[15]. Numbers of all possible acyclic oriented L-cubes for L = 2, 3 and 4 can
be found in table 1.
Vertices which only have incoming (outgoing) edges are called graph maxima
(graph minima) or simply maxima (minima), as they are local sinks (sources)
with respect to the orientation of the L-cube. Maxima are throughout re-
ferred to as peaks. The set of all maxima is denoted by max(QO

L ) or max(QA
L ),

with the same holding for minima being min(QO
L ) or min(QA

L ).
Oriented and acyclic L-cubes can have up to 2L−1 peaks, with the configu-
ration having the largest number of peaks called the Haldane Graph [14].
Note that while path maxima are a necessary condition for a graph maxima,
it is not a sufficient one.

2.5 Super and Subset

The super- and sub-set [9] of a vertex ~σ ∈ QL are given by either all vertices
containing the same coordinates being 1 for the former or 0 for the latter

super(~σ) = {~σs ∈ QL : if σi = 1 then σsi = 1 ∀i ∈ {1, . . . , L}}, (4)

sub(~σ) = {~σs ∈ QL : if σi = 0 then σsi = 0 ∀i ∈ {1, . . . , L}}. (5)

As these sets are sub-cubes of the L-cube, their sizes are

| super(~σ)| = 2|~σ|1 = 2L−m, (6)

5
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| sub(~σ)| = 2|~σ|0 = 2m (7)

with m = ∆0(~σ) being the number of ones.
Hence, the size of the union of these two sets is

| super(~σM) ∪ sub(~σM)| = 2m + 2L−m − 1 (8)

Minimizing the size of the set in eq.(8) with regard to m yields
⌊
L
2

⌋
.

2.6 Peak Patterns

A symmetry operation of an L-cube is an isomorphism and defined by a map
s : ~σs 7→ ~σd which maps each vertex ~σs to a unique vertex ~σd, while preserving
the edge-vertex connectivity of the graph. When representing vertices of an
unit L-cube as ~σ from sec.2, all symmetry operations can be constructed by
the composition of two maps. Either switching the values of bit pairs σi and
σj, σi ↔ σj, or by negating sites σi value, σi → σi ∀i, j ∈ {1, . . . , L}. As each
site’s value is a binary, negating a site results in σi = 1−σi, hence 0→ 1 and
1→ 0. This group is known as the Hyperoctahedral Group BL [2]. Switching
sides results in L! and negating them in 2L possibilities each. Hence the size
of

|BL| = 2LL!, (9)

including the unit operation. The values up to L = 4 can be found in table
1 and a graphical representation in fig.1.

A peak pattern (pp) of an oriented L-cube is a symmetry class of the L-
cubes peaks under the action of BL.
Let a set of vertices σP = { ~σ1, . . . , ~σN} be all N peaks of an oriented L-cube,
σP = max(QO

L ). It’s orbit is defined as

BL(σP ) = {s · σP : s ∈ BL} (10)

where s acts on all ~σ ∈ σP . Such an orbit is considered a peak pattern.
Note that every peak pattern of QO

L is also valid for QA
L . Without loss of
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generality let ~1 be a peak and the edge directions are chosen such that the
direction is from vertices with m to m+ 1 ones. This configuration is acyclic
and placing additional peaks doesn’t alter this property. Hence, each peak
pattern has at least one configuration of directed edges which is acyclic.
There are also many different realizations of the same peak pattern, when
considering all possible configurations of QA

L . E.g. all configurations hav-
ing only N = 1 peak correspond to the same peak pattern. However, two
configurations with N = 2 peaks each, and Hamming distance 2 and 3,
can’t correspond to the same peak pattern. This is due to the fact that BL

does conserve the vertex-edge connectivity and does not change distances. A
graphical representation for two configurations with the same peak pattern
of the 3- and 4-Cube can be found in fig.1.

The distance between each pair of peaks can be mapped to a symmetric
distance matrix {∆ij}, with its trace values being zero. The entry ∆ij cor-
responds to the Hamming-Distance between peaks i and j.
Note that while peak patterns are unique, their corresponding distance ma-
trices are not. The peak pattern σ1 = {0100, 0010, 0001, 0111} of the 4-cube
corresponds to the distance matrix ∆ij = 2 for j 6= i and ∆ij = 0 for j = i.
However σ2 = {0110, 0101, 0011, 1111} corresponds to the same distance ma-
trix as σ1, but they are not the same peak pattern. This relation can be
checked computationally or by observing that no coordinate of every peak in
σ2 can be zero or one at the same time, as needed for σ1.

The average maxima distance of a peak pattern σP with N ≥ 2 is the mean
of its upper triangular distance matrix, excluding the trace, given by

∆̄σP := 2
N(N − 1)

∑
j>i

∆ij. (11)

The distance between peaks within an acyclic L-cube can only take real values
between 2, as this is the minimal Hamming distance between two peaks, and
L, being the L-cubes diameter, resulting in ∆̄σP ∈ [2, L]. Note that fixing
certain peaks and hence ∆ij constrains the possible relative distance of other

7



entries within the distance matrix, as some configurations are not possible
given a number of fixed peaks.
The mean average distance ∆̄N is the mean distance of nN different peak
patterns with N maxima, defined by

∆̄N = 1
nN

nN∑
i=1

∆̄pi (12)

The weighted mean average distance D̄N of peak patterns is the weighted
arithmetic mean

D̄N = 1∑nN
i=1 ωi

nN∑
i=1

ωi∆̄pi (13)

with ωi as the number of all possible oriented acyclic L-cube configurations
having peak pattern pi.

2.7 Peak Pattern Normal Form

In order to check if two sets of peaks correspond to the same orbit it is
possible to successively apply all elements of BL to one set and comparing
it to the other. This is however computationally expensive, as BL has 2LL !
elements. Also checking set equality can be a bottleneck when comparing
large numbers of peak patterns. Hence a unique representation for each
element of a peak pattern can reduce the time to check if two sets of maxima
belong to the same orbit enormously.
Arranging the bit-strings of N maxima as columns of a L × N matrix M

leaves three degrees of freedom for the representation of an orbit. The first
two are inherited from BL. First to permute bits, which corresponds to
permuting rows, second to switch one or multiple bits, which is equivalent
to switching all bits of one or multiple rows and third how the columns are
ordered. The 0 and 1 in a columns bit-string can be thought of as a number
in base 2. Define Cp for p ∈ {1, . . . , N} as the corresponding p-th column
integer value in base 10. Then, all three degrees can be fixed by maximizing
the column integer values and assuring that

Ci > Cj for i > j. (14)
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Figure 1: Peaks are colored in red and vertices are labeled by their bit string
representation as in sec.2. The numbered edges of the upper left 3-cube
are calculated in sec.8.1. Left and right cubes are mapped onto each other
by the elements of BL, indicated by the corresponding arrows between the
cubes. top: 3-Cube with two peaks and encodings 221812 for the left and
326512 for the right plot. Note that the cubes are rotations of each other,
as both cubes have 000 as the lower left vertex. bottom: 4-cube with four
peaks and encodings 3789680032 for the left and 61957689832 for the right
plot. Spatial position of maxima are the same in both plots, as the vertices
only got relabeled.
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This translates to finding the optimal number of ones in a row. Fixing it then
as the last row and repeating this iteratively for the remaining non-fixed
rows, taking the already fixed rows into account. This scheme maximizes
the number of ones in the lower right part of the matrix, and ensures that
eq.(14) is true. One can see that this scheme also maximizes the integer row
values Rl, being the l-th row bit-string in base 10, for l ∈ {1, . . . , L}, with
the ordering relation

Ri ≥ Rj for i > j. (15)

Note that in eq.(14) Ci is strictly greater than Cj and in eq.(15) Ri and Rj

are greater or equal. The first it due to the fact that Ci and Cj represent
different vertices of the L-cube and hence can’t be the same. Ri represents a
row values and bit position i can be the same value for all peaks. The peak
pattern normal form of M is then defined as the column vector

~nM =


R1
...
RL

 . (16)

A schematic structural representation of the corresponding binary matrix
and their rows values can be seen in eq.(17). The last row has two domains,
consisting of 0s and 1s. Within each domain, columns can be permuted
without changing RL. In the second last row, four domains exist, which have
the same permuting rules and so on. By maximizing the number of ones in
all the rightmost domains, from bottom to top, then the second most right
and so on, the number of ones in each column and row are maximized.





... R1

0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 ...
0 | 1 | 0 | 1 ...

0 | 1 RL

C1 · · · · · · · · · CN

(17)
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For example consider the set of four peaks, σP = {1010, 0100, 1001, 0011} of
the 4-cube with N = 4. This results in the 4× 4 matrix

P =


1 0 1 0
0 1 0 0
1 0 0 1
0 0 1 1

 . (18)

Transforming it into its peak pattern normal form yields
1 0 1 0
0 1 0 0
1 0 0 1
0 0 1 1


(3̄142̄)−−−→


0 1 1 0
1 0 1 0
0 0 1 1
1 0 1 1


sort−−−−→

columns


1 0 0 1
0 1 0 1
0 0 1 1
0 1 1 1

 =⇒ ~nP =


9
10
12
14

 .

The first step ensures that by using s1 = (3̄142̄) ∈ BL the column integer
values Ci are maximal, yet not ordered, hence violating eq.(14). Subsequent
sorting of the column integer values results in an matrix form of eq.(17) and
fulfills eq.(14). Note that s1 is not unique, as either of (24̄31̄), (1̄4̄23) ∈ BL

would result in same peak pattern normal form after sorting the columns,
while producing different second matrices. Additionally, P has the same
peaks as the lower right 4-cube of fig.1 and the lower left plot the ones of its
peak pattern normal form.
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3 Biological Modeling

A genotype is a collection of genes. In this work binary genotypes are used,
consisting of L biallelic loci. They are represented by a vector ~σ = (σ1, . . . , σL)T .
If a genotypes site i is mutated, it is represented by σi = 1 and a non-mutated
one by σi = 0. Hence, there are 2L possible genotypes of a sequence of length
L, with the wild-type ~σWT = ~0 and the full-mutant ~σFM = ~1. The set of all
possible genotypes can be represented by an L-cube, with genotypes being
connected by an edge if the Hamming distance between them is one.
Phenotypes are an organism’s quantitative traits of arbitrary kind and in-
fluenced by its genotype and environment. A phenotype is represented as a
collection of n real values in Cartesian space ~z = (z1, . . . , zn)T . A common
phenotype is e.g. the height of mammals. Specific labels for phenotypes are
however not used in this work, as the phenotype space is only considered in
an abstract form and will be defined when needed.
Fitness is the expected number of offspring, dependent on genotype and phe-
notype features. For bacteria the growth rate in a controlled environment is
often used as a proxy for fitness. It can however become more difficult to
measure fitness for organisms which e.g. reproduce sexually. Hence, fitness
is not a global concept, as it needs to be interpreted in terms of the under-
lying setting. Nonetheless, fitness peaks are of certain interest, as they dis-
play genotypes which have a local optimal configuration in phenotype space.
When only considering the relative fitness between genotypes of Hamming
distance one and assuming that no two fitness values are exactly the same,
each edge in the corresponding L-cube is directed from the genotype with
lower to the one with higher fitness. The resulting oriented acyclic L-cube
is referred to as fitness graph [5]. Fitness values are denoted by ωg where g
can refer to a genotypes vector ~σg entries or a set containing the loci of its
1-alleles.

12



3.1 Epistasis

Epistasis describes the effect of mutations behaving differently, depending
on the genetic background, and thereby interacting with each other [7][8]. In
this work only epistasis with regard to fitness will be considered.

Two-Loci Interaction: Let a two-locus system have fitness values ω00,
ω01, ω10, ω11, with the subscript referring to the corresponding genotype. If
there is no interaction between the two loci, fitness values are said to be
additive, described by

ε2 = ω00 + ω11 − ω01 − ω10 (19)

with ε2 = 0. If ε2 6= 0 the loci are said to interact and exhibit epistasis.
When only considering the sign of ε2, ε2 > 0 is said to have positive and
ε2 < 0 negative epistasis. Combining the sign of ε2 together with its corre-
sponding fitness graph results in a more fine grained picture. For L = 2 there
are 24 = 16 possible graphs, two of which are cyclic and have no correspond-
ing fitness landscape. The other 14 can be categorized into no epistasis, sign
epistasis (SE) and reciprocal sign epistasis (RSE), see fig.2. Note one can
also define magnitude epistasis (ME), which refers to the same fitness graph
as no epistasis, with e.g. all arrows up. Therefore ε2 and the corresponding
fitness graph can be understood as incorporating complementary informa-
tion. While in this case the computation of ε2 is necessary to determine if
there is no epistasis or ME, it does not contain information about SE or RSE
beyond epistasis taking place or not. Checking for SE or RSE requires an
analysis of the corresponding fitness graph.

Higher Loci Interaction: Higher order epistasis can be defined in a sim-
ilar way to two-loci interaction. There is however more than one possible
interaction for L > 2, as opposed to the two-loci case. For instance, in [1]
these are defined and called interaction coordinates of which there are

C(L) = 2L − L− 1. (20)
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Figure 2: Schematic repre-
sentation of two-way epis-
tasis of a two-loci system
and fitness being depicted as
height of the fitness graphs
genotypes. The gray shades
depict the corresponding tri-
angulation from sec.4.
A: ε2 = 0, no epistasis. B:
ε2 > 0, magnitude epistasis.
C: ε2 > 0, sign epistasis. D:
ε2 < 0, reciprocal sign epis-
tasis.

For e.g. a fitness landscape of three loci and fitness values wg, one of these
interaction coordinates is

u111 = (ω000 + ω110 + ω101 + ω011)− (ω100 + ω010 + ω001 + ω111). (21)

As this work is only concerned with two-loci interaction, this paragraph is
only included for reason of completeness and not further discussed.

L-Cubes and k-Loci epistasis: As described in sec.2.3, L-cubes have k-
faces of lower dimension. These k-faces have the k-cubes structure, hence k-
way epistasis can be measured for every k-face. This is of interest as it allows
the computation and analysis of k-loci epistasis for systems with multiple
loci under e.g. certain constraints or to check which kind of interactions are
possible for multiple loci in general. Computing k-face epistasis is analogous
to computing k-loci epistasis using interaction coordinates, just for every k-
face. There will however only be two-loci epistasis of L-cubes be discussed
and used throughout this work.
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loci system. To the position of the
wild type ζWT , the mutation of lo-
cus 2 is added first, then locus 3 and
last locus 1. The displacements are
depicted by their corresponding ζi.
This figure has been modified from
[24].

3.2 Fishers Geometric Model

Fishers Geometric Model (FGM) has been first suggested by R. A. Fisher
in [13]. The original idea has been extended and in this work a genotype-
phenotype-fitness map is used, as described in [17]. The genotype-phenotype
map z : QL 7→ Rn is additive and hence linear, while each mutation i has
a fixed mutational displacement vector ~ζi ∈ Rn. The position in phenotype
space is given by

~z(~σ) = ~ζWT +
L∑
i=1

σi~ζi (22)

with ~ζWT as the phenotype position of the wild type ~σWT = ~0.
Its phenotype-fitness function is a non-linear map f : Rn 7→ R of the phe-
notype. Note that the non-linearity is an important feature as it allows to
incorporate gene interactions [23].
In the given setting of FGM, each genotype has a position in phenotype
space, which in turn has a fitness value. In general, the graphical represen-
tation of the genotype-fitness map can be rough and have similarities with
an actual landscape. Therefore it is also referred to as fitness landscape.

3.3 FGM - Construction and Constraints

In [24] the effect of beneficial mutations in TEM-1 β-lactamase that increase
resistance of Escherichia coli to cefotaxime is studied. The correspond-
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ing potential gene interactions regarding fitness are also described using a
phenotype-fitness map. One focus is the dimension of the phenotype-fitness
function used to model the individual effects of mutations on fitness under
a certain genotypic background. With only beneficial mutations and a one
dimensional phenotype-fitness function with a single maximum, an increase-
decrease-increase pattern for different individually beneficial mutations is out
ruled.
Building up on the work in [24] the phenotype-fitness function f(~z) used is
considered to be smooth, with a single maximum at the origin, as in [17],
and no other extreme points. This is due to the fact, that this setup turned
out to be solvable as a simplified model and is compatible with some of
the questions asked in this thesis. Note that in [24] it is laid out that for
the experiment conducted a multi-dimensional phenotype is strongly hinted.
Moreover throughout this work only individually beneficial mutations are
considered for FGM, although their combination can be deleterious. Ad-
ditionally, the phenotype dimension is set to be one dimensional, n = 1,
resulting in ~z(~σ), ~ζWT and all ~ζi to be scalars and not vectors. The vector
symbol will be omitted from this point on. Furthermore, the wild type ~σWT

and full mutant ~σFM are minima. This last condition ensures that while
each individual mutation is beneficial, their combination eventually leads to
a decrease in fitness. A schematic representation of this setup can be seen
in fig.3. Note that the sign of ζi depends on the position of ζWT relative to
the fitness optimum. If ζWT is on the left side of the fitness peak, it results
in ζi > 0 and if it’s on the right side in ζi < 0 ∀i ∈ {1, ..., L}. As each
mutation is individually beneficial by construction, this leads to constraints
on the displacements ζi. The fitness of any genotype with a single mutation
is closer to the global maxima resulting in

f(ζWT + ζi) > f(ζWT ), (23)

requiring ζi 6= 0 for ∀i ∈ {1, ..., L}.
By choosing such a constrained setup, conditions can be obtained which
enable to check if a certain oriented acyclic L-cube is compatible with the
assumptions, as well as a necessary condition for the compatibility of peak
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patterns with the given setup. Note that for this analysis no numerical
information about the displacement vectors or the phenotype-fitness function
are needed.
With the wild type and full mutant as graph minima, the number of an L-
cubes edges that can change direction reduces by 2 · L. Using eq.(3), the
number of edges which can change their direction reduces to 6 and 24 for the
3-cube and 4-cube respectively.
All possible oriented L-cubes will be numerically checked for L = 4. For
L = 5 there are already 280 different oriented configurations to check and
270 when using the described variant of FGM. Hence, L = 5 is improbable
to be checked in a brute-force manner when using standard computational
equipment.

3.4 Path Condition

For the variant of FGM described in sec.3.3, each direct path from ~σWT to
~σFM can have only one path maxima for an arbitrary L. This condition is
named the path condition.
There are L! possible direct paths of length L from ~σWT to ~σFM . A path
maximum and a peak have only incoming edges, which results in the minimal
Hamming distance of two between combinations of either path maxima or
peaks. Hence, the largest possible number of path maxima within a direct
path of length L is

⌊
L
2

⌋
. The maximal number of graph peaks are calculated

in sec.5.1.
Let the path maxima of one of these paths be ~σm, with m as the number of
mutations. Then all m! direct paths from ~σWT to ~σm, as well as all (L−m)!
direct paths from ~σm to ~σFM can not contain any path maxima and hence no
graph peaks. This results in the statement that super(~σm) and sub(~σm) can’t
contain any vertices that are peaks. Checking if for a set of peaks σP at least
one realizations of BL(σP ) fulfills this statement, is therefore a necessary
condition for the corresponding peak pattern of σP , to be compatible with
the described variant of FGM.

17



4 Triangulation and Shapes Background

The shape approach is a method developed by N. Beerenwinkel et.al. in
[1] and further clarified by K. Crona in [4]. It aims to understand gene-
interactions between multiple loci by studying the geometry a fitness land-
scape imposes onto the convex hull of an L-cube, called the genotope. Two
fitness landscapes are said to have the same shape if they impose the same
triangulation onto the genotope.
Note that this method depends on a lot of mathematical background, which
is not all covered in this introduction, but can be found in [1] and addition-
ally in [18]. Nonetheless the main aspects are being explained in the next
section, which summarizes the basics needed to get a understanding of the
shape method. Therefore the ensuing subsection is a brief summary of [1],
following its structure and only included for reason of completeness.

4.1 Triangulations and Shapes Introduction

Consider a finite alphabet Σ of size l, it can e.g. label different nucleotides
or alleles of a gene. The biallelic case results in l = 2 and Σ2 = {0, 1}. When
considering a population of some sort, the individuals contain either the 0 or
1 allele. All probability distributions of this allele can be identified with the
l − 1 dimensional standard simplex, for the biallelic case being

∆Σ2 = {(p0, p1) ∈ [0, 1]2 : p0 + p1 = 1} (24)

and its general form

∆Σ = {(p1, p2, · · · , pl) ∈ [0, 1]l : p1 + p2 + · · ·+ pl = 1}. (25)

When now creating a different alphabet, using the Σ2 alphabet L times by
the direct product, one gets ΣL

2 with (∆Σ2)L ≡ ∆L
Σ2 being the L-cube having

2L vertices. Note that not the whole set of possible genotypes in ΣL
2 needs to

be considered for this approach to work, when e.g. some genotypes can’t be
realized biologically. G ⊆ ΣL

2 is named the genotype space and its convex hull
ΠG the genotope. In this work however, only the case G ≡ ΣL

2 is considered,
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which results in ΠG ≡ ΠΣL
2

as the convex hull of the L-cube ∆L
Σ2 . Now a

point v = (v1, . . . , vL) ∈ ΠG is an L-tuple of allele frequencies, with the index
of its components referring to the corresponding locus.
Rather than individual genotypes consider now a population of genotypes.
Any probability distribution p on the set G can be considered such a popu-
lation, with coordinates pg representing the fraction of a population that is
of genotype g ∈ G. Hence, a population is a point in the population simplex
∆G. It is important to reemphasize the difference between ∆G and ΠG. The
former is used for distributions of populations and the latter for frequencies
of alleles. They are related trough the marginalization map

ρ : ∆G → ΠG, (pσ1...σL
)~σ∈ΣL 7→

 ∑
~σ:σi=τ

pσ1...σL


τ∈Σ


i=1,··· ,L

. (26)

which maps a population p to its L-tuple of allele frequencies. Note that ρ
is linear and all possible L-tuples, hence allele frequencies, can be realized
by choosing the corresponding v ∈ ΠG. Notably every population realized
by G can be mapped to the corresponding allele-frequency vector v via the
marginalization map ρ.
The fiber ρ−1 then maps allele frequencies to populations, possibly being not
unique. It is defined as

ρ−1(v) = {p ∈ ∆G : ρ(p) = v}, (27)

which is a polytope inside the population simplex.
A fitness landscape ω : G → R from sec.3.2 assigns a single fitness value
to each genotype g ∈ G. But ω needs to be continuous in order to speak
about the ”shape” or ”curvature” of the fitness landscape. Hence, consider
populations p ∈ ∆G instead of individuals. A populations fitness can be
written as

ω · p =
∑
g∈G

ωg · pg. (28)

The corresponding continuous landscape ω̃ : ΠG → R can be derived from
ω by assigning every v ∈ ΠG the maximum fitness among all populations p
with allele frequencies v. Define

ω̃(v) := max{p · ω : p ∈ ρ−1(v)} ∀v ∈ ΠG. (29)
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Note that a populations fitness p · ω varies over the fiber ρ−1. It does so
because of the gene interactions underlying the fitness landscape ω.
The domains of linearity ω̃ of are the cells in a regular polyhedral subdivision
ΠG[ω] of the genotope ΠG. Those subdivisions ΠG[ω] are named the shape
of the fitness landscape ω in [1]. For more information about polyhedral
subdivisions see [18]. It is nonetheless important to note that the subdivision
ΠG[ω] will be in most cases a regular triangulation, meaning a subdivision
whose cells are simplices.
Now those simplices in ΠG[ω] have a interpretation in terms of alleles and
populations: For any L-tuple of allele frequencies, v ∈ ΠG, a unique fittest
population p exists. Hence a fittest population p fulfills ρ(p) = v, with the
genotypes occurring in p being the vertices of the simplex ΠG[ω] that contains
v. Concluding that either knowing all the fittest populations for a given ω

or its shape is equivalent.

4.2 Triangulation of the 3-cube

For the 3-cube there are exactly 74 triangulations categorized into 6 inter-
action types, which differ only by labeling of the vertices. Hence, they are a
symmetry class of the 3-cube. Moreover all triangulations are a combination
of 4 different simplices that can be formed by the vertices of the 3-cube,
again up to labeling of the vertices. For a graphical representation of the 4
simplices and the 6 interaction types, see fig.4.

4.3 The Staircase Triangulation and Peak Patterns

Combining peak patterns and triangulations has been done in [6]. An inter-
esting finding is that not all peak patterns are compatible with any triangu-
lation. The staircase triangulation number 6 in fig.4, composed only of the
staircase simplex, can’t have 3 or 4 peaks, leaving only three out of five peak
patterns to be possibly compatible with it. The reason is that certain peak
patterns, such as the one imposed by the Haldane graph, from sec.2.4, cut
off genotypes. A genotype ~σg is said to be cut off, if there exists no other
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Figure 4: First row: All four possible simplices of the 3-cube with their re-
spective names. 1-6: All six possible interaction types up to cube-symmetry
of the 3-cube. Number 6 is the staircase triangulation, which uses only the
staircase simplex. Modified from [20].

genotype ~σg′ that belongs to the same simplex and fulfills ∆(~σg, ~σg′) = 2.
Meaning that there is no diagonal induced by the triangulation on one of the
2-faces that connects the cut off genotype ~σg to a another genotype.
The staircase triangulation is of particular relevance and generalized to L

dimensions in [6]. Note that for L = 3 each simplex contains the ~0 and ~1
vertex. These are connected by the L! direct paths between them and the
L + 1 vertices of each path are the vertices of the individual staircase sim-
plices. The generalization of the staircase triangulation of an L-cube is then
given by the L! simplices whose vertices are the ones of the L! direct paths
between ~0 and ~1. This results in a inequality for the fitness values in order
for its triangulation to be the defined staircase one. Let g and g′ be the set
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representations of genotypes ~σg and ~σg′ 1-allele loci,

ωg∪g′ + ωg∩g′ ≥ ωg + ωg′ (30)

has been named universal positive epistasis in [6]. An interpretation is, that
an uneven distribution of 1’s in a pair of genotypes results in a greater or
equal fitness than a more even one. While upper bounds for the maximal
number of peaks of the staircase triangulation have been shown for L = 4
and L = 5 in [6], a compatibility check for which peak patterns are possible
for L ≥ 4 is however missing.
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5 Results for Peak Patterns

In this section all possible peak patterns are calculated for L = 4, 5 and 6
and further analyzed. They are also combined with the path condition from
sec.3.4 for which the maximal number of peaks are calculated next.

5.1 Largest Possible Number of Peaks for the Path
Condition and n = 1

Starting from the minimal size of the sub- and super-set union in eq.(8), one
can choose all genotypes with distance

⌊
L
2

⌋
from the wild type as peaks. This

choice of peaks is valid, as none of the vertices is a sub- or super-set of each
other, hence not violating the path condition from sec.3.4, and thus being a
lower bound on the largest number of peaks

Nmax ≥
(
L⌊
L
2

⌋). (31)

An upper bound can be obtained by mapping this problem to set theory.
By numbering each loci from 1 to L, the set containing all loci is defined as
X = {1, . . . , L}. It’s power set, meaning the set of all possible combinations
of the elements in X, is denoted by P(X) and is of size 2L. Now one can
construct a partial set order, which allows to compare two elements in P(X).
The order will be determined by set inclusion which checks if a set is a subset
of another. By constructing a Hasse-Diagramm, meaning to create a graph
with its vertices being the sets of P(X) and connected by an edge if for
a, b, c ∈ P(X) with a ⊂ b, there exists no c with a ⊂ c ⊂ b. For the case of
the power set, the result is a graph which has the same structure as the L-
cube, see fig.5 for the L = 3 case and is called a partially ordered set (poset).
Now the maximal size of a set S ⊆ P(X) with no element in S being a subset
of another, is the largest number of possible peaks Nmax = |S|. The upper
bound is known from Sperner’s Theorem [11] to be

N ≤
(
L⌊
L
2

⌋). (32)
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Figure 5: Hasse-Diagramm of the
power set P({1, 2, 3}), which has
the same structure as the 3-cube.

Combining eq.(31) and (32) results in in the largest number of possible max-
ima

Nmax =
(
L⌊
L
2

⌋). (33)

5.2 Full Analysis of the 4-Cube

All the following information can be found or directly computed from table 2
and it is referred to it if not stated otherwise. Also some values are explicitly
calculated and pointed to if needed.

5.2.1 Distribution of Maxima and their Distance

From [6] the number of peak patterns is known to be 5 for L = 3. The fre-
quency of a peak pattern is the fraction of possible configurations of oriented
acyclic L-cubes exhibiting this peak pattern and the number of realizations
the overall number. All configurations for L = 4 are computed as in sec.8.2.
This results in 20 possible peak patterns for acyclic oriented graphs, dis-
played as orthogonal graph plots in fig.6.
When including the additional path condition from sec.3.4, only 13 peak
pattern remain possible. The left plot in fig.7 shows the number of peak
patterns which are possible for the 4-Cube and the additional path condi-
tion, with its maximal number of peaks being 6, consistent with the proof in
sec.5.1. Moreover already starting at 4 peaks not all possible peak patterns
are compatible with the path condition. Hence when having sufficient data
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available to compute the peak patterns, one can already determine if a one
dimensional single peaked phenotype function is of use when fitting the data.
Only taking into account the path condition for a one dimensional single phe-
notype function, the number of possible acyclic graphs reduces significantly,
from 193270310 to 34572. The single most frequent configuration has two
peaks with Hamming distance 4, accounting for more than half of all possi-
ble configurations. When including all possible acyclic oriented 4-cubes, this
peak pattern is the least frequent one, see No.4 in table 2.
It’s impact can be observed in fig.8 when computing the mean average dis-
tance of the possible peak patterns, especially when adding the corresponding
number of possible acyclic graph realization as a weight. For two peaks, most
acyclic graphs correspond to the peak pattern with both peaks being at dis-
tance two, having the smallest possible distance (H). With the additional
path condition, the observation reverses to the peak patterns with distance
4 (N). Hence, the path condition has the tendency to increase the distance
between maxima, which seems reasonable, as neither the sub- or super-set of
a peak can contain another peak. This observation is however not true for
the case with three peaks, but for any higher number, up to the maximum
of six. The peak patterns which are possible for four peaks using the path
condition (+) are the ones with a larger mean average distance when taking
all possible ones (×) into account. This trend increases for five and six peaks.

5.2.2 Partially Ordered Set of Peak Patterns

Another graph that is useful to take into account is the poset of peak pat-
terns. If a peak pattern can be constructed by adding or removing a single
peak, two nodes, each representing a peak pattern, are connected by an edge.
The poset graph for the peak patterns of the 4-cube can be found in fig.9.
When measuring e.g. drug response curves one could measure how the peak
patterns change dynamically. For example a dose response curve [9] of dif-
ferent mutants will have an effect on the corresponding oriented graph every
time the fitness values of direct neighbors change their ordering. Measuring
antibiotic concentration and the corresponding growth rate can result in a
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Figure 6: Orthographic graph plots for all possible peak patterns for L = 4
from tab.2. Vertices: Peaks are colored red, vertices constrained by nearest
neighbor peaks grey and unconstrained vertices, by the same condition, cyan.
Edges: Edges which are constrained by peaks have directed black-arrows and
cyan lines are edges which are possibly not constrained by the peak pattern,
up to the graphs acyclic condition.

27



0 1 2 3 4 5 6 7 8
No. of Peaks

0

2

4

6

N
o.

of
Pe

ak
Pa

tt
er

ns

0 1 2 3 4 5 6 7 8
No. of Peaks

0.0

0.2

0.4

0.6

Fr
ac

tio
n

of
Gr

ap
hs

Acyclic
Acyclic+Path Cond.

L=4

Figure 7: Results for the 4-cube. Left: Bar plot of the total number of
possible peak patterns. Right: The fraction of possible graph configurations
for both cases. The total number of graphs for the acyclic case is 193270310,
see table 1, and when including the additional path condition 34572.

large amount of different oriented acyclic L-cubes. A course grained analysis
can therefore be analyzing the change of peak patterns. Note that from the
outlined viewpoint only a single edge changes in every step, hence the num-
ber of peaks can only increase or decrease by one or not change at all.
Note that each peak pattern with a fixed number of maxima N constrains
the same number of edges, being N ·L, through the next neighbor condition.
Due to the graph structure the same is not true for vertices, compare e.g.
No.10 and No.12 in fig.6. Both have 4 peaks, but the former has 0 and the
latter 5 unconstrained vertices. Of particular interest are the peak patterns
with only incoming edges from the left, but no outgoing edges on the right,
as they directly constrain possible fitness values for all vertices. Those are
discussed in more detail sec.5.6.
When considering the path condition of sec.3.4 one sees that there are cer-
tain paths of peak patterns which can no longer be realized, e.g. from no.
13, 15, 18, 19 to 20, implied by transparent edges and nodes. This is due
to the fact, that if one peak pattern is not possible, all other ones which
might be constructed from these aren’t possible either. While there are only
20 peak patterns for the 4-cube, the path conditions effect can be observed
more clearly for L = 5, 6 in sec.5.5.
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Figure 8: Scatter plot of the mean (weighted) average distance of peak pat-
terns maxima (WMAD) MAD for a given number of maxima. The weight
is given by the number of possible graph realizations for each peak pattern.
N = 1 is not displayed, as it is of no relevance in this setup.

5.2.3 Two-Loci Epistasis

The possible interplay of epistasis and peak patterns is of interest as only
looking at the number of peaks might not be enough in order to distinguish
potential interactions of mutations. Fig.10 shows every possible combination
of peak patterns and SE/RSE of the 4-cube. Each 4-cube has 24 2-faces
of which a certain number express SE and RSE. Iterating over all possible
oriented acyclic 4-cubes and counting the number of SE/RSE shows an in-
teresting behavior. The left heat map, showing instances of SE, seems more
smooth than the right one representing RSE. First, the structure of both
heat maps in terms of SE and RSE are discussed, followed by a short note
on the overall number of realizations.

SE: Two immediate observations from the left heat map are that the
number of 2-faces with SE decreases with an increase in peaks. Also, while
being not frequent, there are instances for every peak pattern, having no SE
at all, seen in the most left bluish column, but none with one or two 2-faces,
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Figure 9: Partially ordered set of the peak patterns from table 2, including
the corresponding labels. If two nodes are connected, the peak patterns are
the same, up to removing or adding a single peak. The pie chart for each
node represents the fraction of maxima of a certain kind. The coloring is the
same as in fig.6, with the cyan and gray nodes representing unconstrained
and constrained vertices by the next neighbor condition and peaks being red.
Transparent nodes are not possible by the path condition laid out in sec.3.4.

seen as two white columns on the left. Additionally there are gaps with a
certain number of 2-faces with no SE, while other 4-cube realizations can
have more or less 2-faces with SE. For peak pattern No.1, containing only a
single peak, there are no instances of 22 and 23 2-faces showing SE, while
there are for 21 and 24. Also for six peaks, there is a gap for peak pattern
No.17, showing no possible 4-cubes with 5 2-faces displaying SE. This is all
the more interesting as both six peaks peak pattern No.17 and 18 constrain
the same number of vertices, see fig.9. Further, for a number of peaks with
more than one peak pattern, there are different kind of boundaries. On one
hand, for 2, 5 and 6 peaks the lower bound, when excluding no SE, is two,
and the upper bound 21, 12 and 8 respectively, being sharp. On the other
hand, the structure is more complex for 3 and 4 peaks, with the lower bound
being the same, but the upper one being not constant. For the three peak
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Figure 10: Logarithmic heat map of a 20×25 matrix, with the y-axis being the
20 peak patterns from table 2 in the same order. The x-axis corresponds to
the number of 2-faces of the 4-cube showing sign epistasis (SE) or reciprocal
sign epistasis (RSE), from 0 to 24. Displayed on the left is the count of SE
and on the right for RSE of the 2-faces for each of the 193270310 oriented
acyclic 4-cubes. White spots correspond to zero realizations of SE/RSE.
Black horizontal lines separate the peak patterns with a different number of
peaks N , which are shown between those lines in the left plot. Red vertical
lines on the right plot are the lower bound N − 1 for the number of 2-faces
showing RSE given the number of peaks from [3]. Note that the right plot
is discussed and some of it’s features partly proven in [3], while the left one
is not.

patterns with 3 peaks, No.5, 6, and 7, the upper bound is 20, 19 and 18
respectively. For the six peak patterns having 4 peaks, No.8, 9 and 10 have
each an upper bound of 16 2-face epistasis and No.12 and 13 have 14 and 15
respectively. This shows that the cubic configuration of maxima has to be
taken into account and not only the number of peaks or their distance when
being interested in SE.
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RSE: The right heat map shows an increase in RSE when increasing
the number of 2-faces. As known from [21] a necessary condition for multiple
peaks is RSE, which can be directly observed for the 4-cube. Although the
lower bound of N −1 2-faces showing RSE from [3], indicated by red vertical
lines, underestimates the occurrences of RSE for N ≥ 4. This underestima-
tion increases with increasing number of peaks N . A more rough structure
than for the left SE heat map can also be observed, with the lower and upper
bound of the number of 2-faces showing RSE being less constant. For 3, 4, 5
and 6 peaks the lower bound is not constant, being 2-3, 5-6, 8-9 and 12-13 re-
spectively. The right bound is rough, containing e.g. gaps. Notably for peak
patterns No.2, 3 and 4 with 2 peaks, there are no oriented acyclic 4-cubes
with 11 2-faces showing RSE, but with 12. A similar behavior is observable
for peak pattern no.15 and 16 having 5 peaks and not a single instance of 17
2-faces showing RSE. Again there is a peak pattern disrupting this scheme,
as No.14 has at most 16 RSE 2-faces, missing the gap. Peak patterns No.17
and 18 with 6 peaks differ by not showing 17 and 19 for the former and 12
2-face RSE for the latter, but do vice versa. In total, it can be concluded
that when observing RSE, one should take into account the underlying peak
patterns in order to understand which interactions are theoretically possible
and which not.

Realizations: A more detailed figure in regard to the number of in-
stances showing SE or RSE can be found in fig.17 from the appendix. Note
that it differs from fig.10, as the y-axis is linear. On one side this makes it
more difficult to find if and when SE or RSE occurs for a given number of
2-faces. On the other side it shows clearer that the acyclic instances of the
4-cube showing SE or RSE have an reciprocal behavior with regard to the
increase or decrease in number of peaks. Note that each row in both plots
of fig.10 and each subplot of fig.17 sums up to the number of realizations
in table 2. For peak patterns No.1-16, the bar plot of RSE is more sharply
peaked than its SE counterpart, resulting in a higher maxima. For some
subplots both bar plots seem to have a bell shape, it is often tilted, and in
other cases absent.
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5.3 Lower Bound for the Number of Peak Patterns of
an L-cube

A lower bound for the number of possible peak patterns |PPL| can be ob-
tained by comparing the growth of possible peak patterns and of the Hype-
roctahedral group BL.
One can start by calculating a lower bound for peak patterns of an L-cube
with N peaks, |PPL,N |. Using the known configuration of the Haldane graph,
one can simply choose N peaks to get a configuration σP . Dividing the num-
ber of all possible sets σP by the size of BL(σP ), which is 2LL! from eq.(9),
and taking the ceiling value, results in a lower bound

|PPL,N | ≥
⌈

1
2LL!

(
2L−1

N

)⌉
(34)

for the number of possible peak pattern with N peaks.
Note that |PPL,N | can only be a natural number. If both sides in eq.(34)
are equal, the right side is a natural number and if the right side is not
a natural number, the left side needs to be larger. Therefore to simplify
calculations the ceiling function can be neglected. Taking the sum over all
possible numbers of peaks is then a lower bound for |PPL| and one obtains

|PPL| ≥
2L−1∑
N=1

1
2LL!

(
2L−1

N

)
= 22L−1−L

L! . (35)

Eq.(35) results in |PP5| ≥ 17, |PP6| ≥ 93206 and |PP7| ≥ 2.8 · 1013. Note
that the choice to start with the Haldane graph leaves out configurations of
peaks which can not be created from it, e.g. peak patterns which only have
incoming edges from the left in fig.9.
An algorithm storing only the bit strings of N peaks, would need at least
N · L bits of memory storage per peak pattern, resulting in ≈ 8 · 105 GB
as a lower bound for L = 7. Concluding that calculating all possible peak
patterns is only reasonable up to L = 6.
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5.4 Peak Pattern Algorithm for Arbitrary L

Calculating all possible peak patterns in a brute force manner by trying
out every possible configuration of oriented acyclic L-cubes, as in sec.5.2 for
L = 4, is not suitable for e.g. L ≥ 5. Already the corresponding oriented
graph for L = 5 has 80 edges, resulting in 280 configurations to check when
applying brute force methods. Peak patterns can however be calculated when
only focusing on the configuration of peaks.

Of particular importance are the following properties in order:

1. Due to the acyclic condition, every graph has at least one peak and one
sink. Fixing without loss of generality the WT as peak, and choosing
the other edges such that vertices with more 1’s have a lower fitness,
meaning all arrows down, the graph is acyclic.

2. When now placing peaks on the graph and keeping in mind that two
peaks have at least Hamming distance 2, arbitrary peak patterns can
be constructed, as adding sinks does not alter the acyclic property.

3. One can see that there is only one peak pattern with one peak and
L − 1 with two peaks. The latter ones are having Hamming distance
2, 3, . . . , L, as two peaks have so to speak no angles between them,
which would prohibit the transformation of one configuration to an-
other. Additionally there is only one peak pattern with 2L−1 peaks,
the Haldane graph.

4. There are in general three types of vertices, see for example fig.6. Peaks
(red), constrained vertices with a peak as next neighbor (grey) and
unconstrained vertices which can potentially be either of the former
(cyan).

5. Having a peak pattern with N + 1 peaks and removing one results in
a peak pattern with N peaks, which is a sub-structure of the former
one. This procedure also works in the opposite way, allowing to create
peak patterns with N + 1 peaks from peak patterns N peaks.
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An algorithm to use above properties to calculate all peak patterns for a
given L-cube is as follows:

I Starting from all possible peak patterns pmax with N peaks, e.g. the
known ones for N = 1 or N = 2 from prop.3. Those seed peak patterns
can be seen as sub-structures of peak patterns with N+1 maxima, with
one maxima being removed. Create a list a of peak patterns with N+1
maxima, which is empty at first.

II Choose the p’th (1 at start for a given N) peak pattern with N maxima.
Compute a list of all umax unconstrained vertices u.

III Add a maxima to the u’th (1 at start for a given p) unconstrained
vertex, resulting in a valid peak pattern with N + 1 maxima.

IV Compute its normal form from sec.2.7 and compare it to all known ones
in a. Add to a when unknown, discard if known.

V If u < umax increase u by one and go back to step III.

VI (u = umax, checked all peak patterns which can be created by adding a
maxima to peak pattern p) If p < pmax increase p by one and go back
to step II.

VII (p = pmax, checked all peak patterns with N maxima) If N < 2L−1 go
to step I and increase N by one.

VIII All possible peak patterns of the L-cube have been computed.

5.5 Peak Patterns for the 5- and 6-cube

Using the algorithm from sec.5.4 and taking into account the lower bound
on the number of peak patterns from sec.5.3, it is feasible to calculate all
possible peak patterns up to L = 6.
Logarithmic bar plots for the distribution of peak patterns given the number
of peaks can be found in fig.11.
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Figure 11: Left: Bar plot for peak patterns of the 5-cube, with the total
number of peak patterns being 287. The maximal number of peak patterns
for a given number of peaks is at N = 8. Right: Bar plot for peak patterns
of the 6-cube, with the total number of peak patterns being 519194. The
maximal number of peak patterns for a given number of peaks is at N = 13.
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Figure 12: From left to right: Logarithmic bar plots displaying the fraction
of peak patterns for the 4-, 5- and 6-cube which are compatible with the path
condition from sec.3.4, namely 13 (65%), 83 (≈ 28.92%) and 7348 (≈ 0.01%)
respectively. The maximal number of peaks is given by eq.(33).
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5-Cube: For the 5-cube there are in total 287 peak patterns. The distribu-
tion given the number of maxima N seems slightly tilted to the left. This is
to be expected, as with every additional peak the graph has more constraints
for vertices becoming peaks themselves due to the next neighbor condition.
What stands out is a sudden drop for N = 7, hinting that the next neighbor
condition creates a complex interaction between maxima.

6-Cube: There are 519194 peak patterns for the 6-cube in total. As for
L = 5 the distribution is slightly tilted for the same reason and has its
maximum at N = 13. It appears also smoother and has a single peak in
comparison to L = 5.

When taking into account the path condition from sec.3.4 the number of
possible peak patterns changes significantly. The fraction of these peak pat-
terns, given the number of peaks, is shown in fig.12.
One notices that the shape of all three plots is similar, as they each show an
initial constant period, followed by and exponential decrease in the fraction
of suitable peak patterns with Nmax being an exception. Note that for each
of the 4-,5- and 6-cube, all peak patterns having N = 1, 2 or 3 peaks are
compatible with the path condition. Also observable in all three plots is the
sudden increase for the maximum number of possible peaks Nmax =

(
L
bL/2c

)
,

see eq.(33). This is due to the fact, that the peak pattern with N = Nmax,
of which there is only one, has only peaks with the same number m of ones.
When removing a single peak it is not possible to move all remaining Nmax−1
peaks to a set of vertices with either m− 1 or m + 1 ones, because as there
is no such set. The next largest set of vertices with the same number of ones
in it has

(
L

L/2±1

)
vertices for an even L and

(
L

bL/2c−1

)
or
(

L
dL/2e+1

)
vertices for

an uneven L, of which none has Nmax − 1 vertices. Hence there is only one
suitable peak pattern with Nmax − 1 peaks. This peak pattern is the same
up to a single peak as the single one with Nmax peaks. But as known from
fig.7 and fig.11, the number of overall peak patterns decreases from Nmax−1
to Nmax, resulting in a smaller fraction.
Overall all three plots in fig.12 show interesting similarities, while the num-
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Figure 13: Bar plots for the number of fully vertex constrained peak patterns
(fvcpp), left being the 5-cube, totaling 10 fvcpp, and right the 6-cube, having
134 fvcpp.

ber of vertices increases exponentially and of peak patterns at least double-
exponentially, see eq.(35).

5.6 Fully Vertex Constrained Peak Patterns

A subset of peak patterns that stands out are the ones in which every vertex
is either a peak or can’t be one due to the next neighbor condition, referred
to as fully vertex constrained peak patterns (fvcpp). While the Haldane graph
is a trivial example of such, with every vertex being either a peak or minima,
peak patterns with less peaks are not.
In table 2 they have zero unconstrained vertices and can be found as leaves
in fig.9. For the 4-cube there are three of these peak patterns (15%) out of
the 20 possible ones, No.10, 16 and 20 with 4, 5 and 8 peaks respectively.
For the 5- and 6-cube there are 10 and 134 fvcpp, ≈ 3.48% and ≈ 0.02%
of all possible peak patterns respectively. Bar plots matching the number of
peaks and fvcpp are shown in fig.13. Both bar plots have a clear maximum
for 8 = 23 and 16 = 24 peaks. A general structure has not been observed,
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although this result can also be written as 2L−2 for L = 5 and L = 6. A
lower and upper bound for the minimal number of peaks for an L-cube can
be calculated.

Lower bound: As each peak has L neighbors, this results in a lower bound
of
⌊

2L

L+1

⌋
, while not taking into account the L-cubes graph structure, hence

not guarantying existence. Note that this result is also known as the mean
value of peaks for the House of Cards model [19].

Upper bound: As described in eq.(1), constructing an L-cube out of two
(L− 1)-cubes can be done by connecting them via the graph cartesian prod-
uct. A more visual way of the graph cartesian product acting on two (L−1)-
cubes is as follows: Add an additional coordinate for each vertex and set it
0 for one and 1 for the other (L− 1)-cube. Afterwards connect each pair of
vertices which are the same up to the added coordinate by an edge. Applying
this procedure and constructing the 4-cube out of two 3-cubes can be seen
in fig.1. The lower left plots inner 3-cube has 0 for its last bit coordinate,
while for the outer 3-cube it is 1.
The peak pattern with 2 maxima in distance 3 of the 3-cube is a fvcpp and
has its peaks at some of the 3-cubes diagonal opposite vertices. Taking now
a similar one, with its peaks being at a different diagonal allows one to create
a fvcpp with 4 peaks. By this scheme one can get higher dimensional fvcpp,
resulting in an upper bound of 2L−2 peaks for the minimal number of peaks
for an fvcpp of an L-cube.

It is interesting that there are no fully constrained peak patterns for a small
number of peaks and only a few for the opposite side with a lot of peaks.
The first case is reasonable due to the lower bound above. The latter case
has at least two factors involved. First, fig.11 shows that there is a several
magnitude difference in the number of peak patterns having e.g. 16 and 28
peaks. Hence, leaving less peak patterns to possibly be a fvcpp. Second, once
an L-cube has a high number of peaks, it leaves few options for more peaks.
This is due to the next neighbor condition, which constrains more vertices
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the more peaks are present and in turn leaves few vertices which have a lot
of unconstrained vertices as neighbors.
Standing out is the fvcpp having the smallest number of peaks for the 6-cube,
namely 12. A plot of this fvcpp can be found in the appendix fig.18.
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6 The Staircase Triangulation, Universal Pos-
itive Epistasis and Peak Patterns

As laid out in sec.4.3 upper bounds for the maximal number of peaks for
the staircase triangulation are known from [6] for L = 4 and L = 5. This
section combines the peak pattern approach and the staircase triangulation.
It starts with an algorithm of how to check if a peak pattern is compatible
with eq.(30) and subsequently calculates all compatible peak patterns for
L = 4 to L = 8.

6.1 Algorithm for Staircase Triangulation Compatible
Peak Patterns

Eq.(30) can be used as a necessary condition to check which peak patterns
are compatible. It is not a sufficient condition, as peak patterns encode only
the direction of N · L edges, up to the acyclic condition, and no numerical
fitness values to compute the triangulation.
A peak pattern σP is said to be compatible in the sense of eq.(30), if there
exists an element in its orbit, σF ∈ BL(σP ), see eq.(10), for which none of
the N(N−1)

2 pairs of peaks (~σg, ~σg′) Hamming distances

dg,∪ = ∆(~σg, ~σg∪g′)

dg′,∪ = ∆(~σg′ , ~σg∪g′)

dg,∩ = ∆(~σg, ~σg∩g′)

dg′,∩ = ∆(~σg′ , ~σg∩g′)

(36)

are allowed to fulfill

(dg,∪ = 1 ∧ dg′,∩ = 1) ∨ (dg′,∪ = 1 ∧ dg,∩ = 1). (37)

If a pair does fulfill eq.(37), it means that the sum of the fitness values of
~σg∪g′ and ~σg∩g′ , having distance one to the peaks ~σg and ~σg′ , are greater than
the peaks fitness sum. Hence eq.(30) can’t be true, as peaks must have a
higher fitness than their neighbors. This is a generalization of an idea in [6].
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Figure 14: Peak Pattern that are compatible with the staircase triangulation
of the corresponding L-cube. Left: Maximal number of peaks of the peak
patterns. Right: Number of peak patterns, note the double exponential y-
scale.

From sec.5.5 the peak patterns up to L = 6 are known and can be checked
individually if they are compatible with the staircase triangulation or not.
While eq.(35) gives a lower bound when calculating all possible peak patterns,
it is not relevant setting. Note that for each pair of peaks eq.(37) needs to be
checked, therefore only adding a peak to a peak pattern that is compatible
can lead to another compatible peak pattern. This is due to the fact, that
for each pair g and g′ eq.(37) needs to be checked and if a pair does not
fulfill this property, adding another vertex does not change this. Resulting
in an enormous reduction in the computation of peak patterns with N + 1
peaks from peak patterns with N peaks. Additionally, checking if any σF ∈
BL(σP ) does fulfill the conditions above can be a bottleneck, as checking
all elements in BL(σP ) can result in a complexity of O(L!2L), see eq.(9).
However, the permutations part of BL, being of complexity O(L!) doesn’t
need to be checked. This is due to the fact that the compatibility check of
eq.(30) is only based on the number of 1-alleles, which is not changed by
permutation.
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Figure 15: All possible different layer configurations of peak patterns com-
patible with the staircase triangulation and having the maximal number of
peaks. Shown are the cases for L = 4 up to L = 8.

6.2 Compatible Peak Patterns up to L = 8

Using as a seed only peak patterns which are compatible for the algorithm
described in sec.5.4, all compatible peak patterns from L = 4 up to L = 8
have been computed. The maximal number of peaks and the overall number
of those peak patterns can be seen in fig.14. The right plot has a double
exponential scale, which seems in line with eq.(35). There are however not
enough data-points to substantiate this statement. If it is true though, it
limits substantially the number of staircase triangulation peak patterns that
seem reasonable to calculate with the outlined algorithm for higher L. The
left plot, showing the maximal number of peaks, does not seem to show a
pattern, but the corresponding peak patterns do.
Let σS be a set of peaks that is compatible with the staircase triangulation
as outlined before, then at least one element in BL(σS) is compatible. As the
difficulty of interpreting peak pattern plots using the full L-cube increases
with higher L, omitting some of the information comes at hand. Instead
of plotting every single vertex and edge, clustering all peaks with an equal
number of ones into the same layer is performed. There are L + 1 layers,
labeled by their distance m from ~0, m = ∆0(~σ). All possible unique layer
configurations for L = 4 up to L = 8, having the maximal number of peaks,
are shown in fig.15. There are 1, 5, 1, 2, 1 possible configurations for the 4- to
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Figure 16: Bar plot for the number of peak patterns that are compatible
with the staircase triangulation for the 4− to 8-cube. Note the logarithmic
y-scale for L = 8.

8-cube respectively. For L = 4, 7 and 8, peaks are only at m = 0, L and at
layers having the most vertices, m = L

2 for L = 4 and 8 and at m =
⌊
L
2

⌋
,
⌈
L
2

⌉
for L = 7. With its 5 different realizations, the L = 5 case stands out, where
every layer has at least one peak in at least one pattern. This is likely due to
the fact, that there are only 4 peaks in total, being the same as for L = 4, but
with double the number of vertices to choose from. With only one realization
and peaks at m = 0, 6, L2 ± 1, the 6-cube has again a different pattern.
Bar plots of peak patterns given the number of peaks N are shown in fig.16.
As outlined in [6], there are at maximum 4 peaks for L = 4 and L = 5
and the three different possible configurations for L = 5 are also given.
However there seems to be no immediate structure between the number of
peak patterns having the maximal number of peaks and the number of their
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layer configurations from fig.15. There are 1, 3, 1, 1, 2 peak patterns for the
4- to 8-cube respectively, while having 1, 5, 1, 2, 1 layer patterns.
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7 Results and Outlook

This section is a summary of this thesis and points out difficulties, solutions
and possible further research questions and directions.

Computation of Peak Patterns: The approach of checking all oriented
acyclic 4-cubes, and thereby encountering each possible peak pattern at least
once, is a straightforward method for calculating all 4-cube peak patterns
from fig.6. It is however a slow one and practically not viable for L ≥ 5, as
for e.g. L = 5 this would require checking 280 oriented 5-cubes, see sec.2.3.
Using the peak pattern normal from sec.2.7 in combination with the insights
and corresponding algorithm from sec.5.4 turned out to be a fast and efficient
method for calculating all peak patterns from L = 4 to L = 6. Additionally
knowing from sec.5.3 that for L = 7 there are at least 2.8 · 1013 possible
peak patterns led to the conclusion that calculating all the peak patterns
for a given L ≥ 7 is not a viable approach. However, the calculation of
a peak patterns normal form turned out to be the computationally most
expensive part for L ≤ 6. As the number of peak patterns with N peaks is
at least

⌈
1

2LL!

(
2L−1

N

)⌉
from eq.(34), comparing a peak patterns normal form

to all other already found ones, while storing them in a simple list as in the
algorithm used from sec.5.4, also becomes computationally expensive. Using
e.g. eq.(16) to cluster the known peak patterns into batches would provide
a speedup, as each new peak pattern would only get compared to a subset
of the already found ones. The resulting batches can be compared to each
other after all peak patterns with N + 1 peaks have been computed from the
ones with N peaks. Optimizing both parts might allow one to calculate the
minimal number of peaks for a fully vertex constrained peak patterns (fvcpp)
for L = 7 and all peak patterns compatible with the staircase triangulation
for L = 9.

Peak Patterns: The number of peak patterns for L = 1, 2 and 3 are 1, 2
and 5 respectively from [6] and 20 for L = 4 from fig.6, as well as 287 for
L = 5 and 519194 for L = 6 from fig.11. This results in the integer sequence
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for the number of peak patterns given L to be 1, 2, 5, 20, 287, 519194 for L = 1
to L = 6. At the time of submission of this thesis, this sequence was absent
in the OEIS - On-Line Encyclopedia of Integer Sequences1, a website storing
integer sequences from various fields. Moreover peak patterns turned out to
have an interesting structure, as for the same number of peaks the number
of constrained vertices can vary. This led to the definition of fvcpp in sec.5.6.
The result that for a fvcpp of the 6-cube the minimal number of peaks is
N = 12 , see fig.18, came as a surprise. With the next possible fvcpp having
N = 14 peaks, it highlights the range of patterns that can be formed by
peaks constraining the fitness of their next neighbors.
Peak patterns have not been applied to empirical data in this work, but
fig.10 shows that it might not be sufficient in general to look at the number
of peaks alone, but rather at their peak patterns. Already for L = 4 some
peak patterns, with the same number of peaks, show interesting behavior for
sign epistasis (SE) and reciprocal sign epistasis (RSE). While for some peak
patterns some instances of SE or RSE are possible, they are not possible
for others having the same number of peaks. Nonetheless applying the idea
of peak patterns to empirical data is an important step to potentially show
their relevance for real biological systems. In order to develop the peak pat-
tern approach further, additional steps are necessary. For a biallelic system
empirical data might not be available as a full set of all 2L fitness values due
to experimental or biological reasons. Going further, the system of interest
could have not only biallelic loci. Hence further work is needed, including the
generalization of peak patterns for subsets of the L-cube, as well as for other
than collections of biallelic loci. Regarding the partially ordered set (poset)
of peak patterns by inclusion from sec.5.2.2 no analysis has been performed
for the L = 5 and L = 6 cases.
Potentially leaving the weak mutation strong selection regime, that is usually
considered when using the L-cube with edges between genotypes of Hamming
distance one, might also be an option. When connecting e.g. genotypes with
Hamming distance two, there may also be a peak pattern-like structure to

1https://oeis.org/
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observe.

Fishers Geometric Model: The exponential decrease in peak patterns
fulfilling the path condition in fig.12 has similarities between the 4-, 5- and 6-
cube, while having vastly different numbers of peak patterns for the respective
L-cube. All peak patterns with N = 1, 2 and 3 peaks notably do fit the
variant of FGM. However an analysis for a higher dimensional phenotype
space, n ≥ 2, has not been performed, but is achievable using the calculated
peak patterns when having a path condition for these cases at hand. It might
also be worth generalizing the poset from fig.9 for the 4-cube to the 5- and
6-cube. Observing if models of real evolution experiments follow the allowed
paths on the poset, could give insights that potentially point to the necessity
of adapting the model used. Additionally an increase in distance between
peaks when including the path condition in fig.8 has been observed, with
three peaks being an exception.

Epistasis: One of the most notable plots is fig.10, as it shows that taking
into account the spatial configuration of peak patterns and not only their
number is possibly a necessary step to find a lower bound for the number of
instances of RSE. Moreover it might still be feasible to compute the L = 5
case in a similar manner, possibly showing an even more diverse structure
due to its 287 different peak patterns. Also looking at subsets of peak pat-
terns such as the fvcpp could provide insight into how the distance between
peaks influence SE or RSE. With only 10 fvcpp for the 5-cube, the 6-cube
might be more significant in this manner. For its 134 fvcpp certain edges are
already fixed du to neighboring peaks. One could choose the remaining ones
randomly in order to create the full fitness graph, check if they are acyclic
and calculate their instances of SE or RSE. Note that it becomes less likely
to get an acyclic graph when choosing edge directions by e.g. a 50% chance
for each of both possible directions. With the 5- and 6-cube already having
80 and 192 edges, see eq.(3), choosing a peak pattern preliminary instead
of creating all edges at random and checking the peak pattern later on, the
number of random edges gets reduced by N · L.
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Staircase Triangulation: An application for peak patterns is to find the
maximal number of peaks for the staircase triangulation. The algorithm from
sec.5.4 in combination with the insights of looking at peak patterns as a poset
allowed the extension of the former limit, being at L = 5, to higher L. Calcu-
lations up to L = 8 are included in sec.6.2. While the inequality provided by
universal positive epistasis from eq.(30) was only checked for pairs of peaks,
hence being only a necessary condition rather than a sufficient one, it still led
to interesting insights. Fig.14 shows the maximal number of peaks for L = 4
up to L = 8, as well as the overall number of compatible peak patterns. The
latter notably shows a potentially double exponential behavior, just as the
upper bound for peak patterns in eq.(35). As the staircase triangulation is
highly symmetric, due to only using one type of simplex, the methods to
check if a peak pattern is compatible with a triangulation could in principle
be extended to other triangulations. This however depends on the inequal-
ities defining them, which would need to allow to make use of peaks and
their next neighbors with lower fitness. The switching from a peak pattern
standpoint to a layered one in sec.6.2 and shown fig.15 marks an important
last step in this thesis. It shows that it is suitable for larger L to switch to
a different representation when trying to find structure in the L-cubes peak
patterns, as it becomes increasingly difficult to interpret plots of higher di-
mensional L-cubes. Hence the final remark is that peak patterns are suitable
for some range of L, depending on the purpose, but further reduction of the
information stored in the full oriented acyclic L-cube is needed for larger
systems.
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8 Methods

8.1 Encoding of Oriented L-cubes

Each oriented L-cube has Ne = Q(1, L) edges and needs Ne-bits to be stored.
A unique map between those edges can be constructed, up to choosing an
origin which corresponds to a vertex which will be labeled by only zeros in
the L-cubes vertex bit representation. Reading the Ne-bit word c from left
to right, like all following bit strings, the n-th bit encodes the direction of
an edge between vertices vl and vh. Within the vertex bit representation bit
number k is 0 for vl and 1 for vh. Removing bit number k results in an L− 1
bit string with integer value r. The n-th bit position on the Ne-bit string is
then calculated by

n = 2L−1(k − 1) + r + 1, (38)

while the bits value is 0 for an directed edge from vl → vh and 1 for vl ← vh.
This idea from the GitHub repository of Devin Greene, found in [8].
The Ne-bit string is translated from base 2 into an unsigned integer x of base
10, while the number of edges is represented in the subscript, e.g. xNe . Fig.1
shows examples for oriented acyclic 3- and 4-cubes. If a graph has fixed edges
due to boundary conditions, it is represented by an Ne-bit string nonetheless.
For example consider the upper left plot from fig.1. First calculate n for each
edge, see (39), and subsequently the values of ci with i ∈ {1, · · · , 12}. The
resulting bit string is c = 010101010001. Using base 10 instead of 2 for c
results in ∑12

n=1 cn2n−1 = 221812.
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000→ 100 : k = 1, r = 0 =⇒ n = 1, c1 = 0

000→ 010 : k = 2, r = 0 =⇒ n = 5, c5 = 0

000→ 001 : k = 3, r = 0 =⇒ n = 9, c9 = 0

100← 110 : k = 2, r = 1 =⇒ n = 6, c6 = 1

100→ 101 : k = 3, r = 1 =⇒ n = 10, c10 = 0

010← 110 : k = 1, r = 1 =⇒ n = 2, c2 = 1

010→ 011 : k = 3, r = 2 =⇒ n = 11, c11 = 0

110← 111 : k = 3, r = 3 =⇒ n = 12, c12 = 1

001→ 101 : k = 1, r = 2 =⇒ n = 3, c3 = 0

001→ 011 : k = 2, r = 2 =⇒ n = 7, c7 = 0

101← 111 : k = 2, r = 3 =⇒ n = 8, c8 = 1

011← 111 : k = 1, r = 3 =⇒ n = 4, c4 = 1

(39)

8.2 Checking Graph Properties

Using the encoding from sec.8.1 and the number of oriented L-cubes from
sec.2.3, each possible oriented 3-cube, iterating from 012 to 409512 (212 − 1),
and oriented 4-cube, from 032 to 429496729532 (232− 1), is being checked for
three properties:

P.1 Is it acyclic?

P.2 Which peak pattern does it correspond to?

P.3 Does it fulfill the path condition from sec.3.3?

If P.1 is computed to be false, the next oriented graph is checked. The func-
tion is cyclic is used, with its algorithm using depth-first search, from [12].
As the number and configuration of peak patterns is not known from the be-
ginning for P.2, each oriented graph gets checked and if a formerly unknown
peak pattern arises it gets saved to a list. Then each following graphs peak
pattern gets compared to the peak patterns within that list.
To check P.3, all possible L! paths from the WT to the FM for the path
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condition are being checked.
Note that distributed computing is being used for L = 4 in order to reduce
computation time. The 232 possible combinations are split into batches, com-
puted individually and joined for subsequent computations and analysis.
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9 Appendix

No. Encoding
Peak Pattern
Normal Form

Maxima
Uncons-
trained
Vertices

Realizations
(Single Peak)

1 032 1, 1, 1, 1 1 11 (5654)48649200
2 1644832 2, 2, 3, 3 2 8 (4356)41536560
3 105268832 2, 2, 2, 3 2 6 (2688)40995968
4 1684300932 2, 2, 2, 2 2 6 (17879)12296152
5 13475846432 5, 5, 6, 6 3 5 (1536)9214656
6 6738745832 4, 5, 6, 6 3 3 (1056)24193728
7 421078432 4, 5, 6, 7 3 6 (856)9663408
8 15160147332 10, 10, 12, 12 4 4 (108)1050384
9 107586362432 10, 9, 13, 14 4 4 (336)323088

10 10107347432 9, 10, 12, 12 4 0 242832
11 3789680032 9, 10, 12, 14 4 1 (64)2300160
12 107795261632 8, 11, 13, 14 4 5 (2)2170464
13 631612832 9, 10, 12, 15 4 4 311604
14 121060564032 21, 19, 26, 28 5 3 (36)57728
15 108005796032 18, 21, 25, 30 5 3 134080
16 111163863232 17, 22, 26, 28 5 0 118992
17 122744864932 42, 38, 52, 56 6 2 (1)1800
18 161693092032 37, 42, 51, 60 6 2 9264
19 175167293632 75, 85, 102, 120 7 1 240
20 176851594532 150, 170, 204, 240 8 0 2
Table 2: Calculated peak patterns and corresponding properties for L = 4,
which results in i) 20 possible peak patterns for all acyclic oriented graphs
and ii) 13 including the additional path condition from sec.3.4. Peak patterns
which do not have a single instance fullfilling the path condition are marked
gray and the possibly differing values for ii) are given in brackets. The
encoding given corresponds to the peak pattern normal form with all arrows
up.
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Figure 17: Grouped bar plots, with linear scales, for the same data shown in
fig.10, with the central upper number in each subplot referring to the peak
pattern no. in table 2 and the subscript to the number of peaks.
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Figure 18: Fully vertex constrained peak pattern with 12 peaks, being the
minimal number of peaks to fully constrains all vertices of the 6-cube. The
coloring is the same as in fig.6.
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