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Abstract 

Modern virtual reality (VR) technology has the promise to enable neuroscientists and psychologists to 

conduct ecologically valid experiments, while maintaining precise experimental control. However, in 

recent studies, game engines like Unreal Engine or Unity, are used for stimulus creation and data 

collection. Yet game engines do not provide the underlying architecture to measure the time of 

stimulus events and behavioral input with the accuracy or precision required by many experiments. 

Furthermore, it is currently not well understood, if VR and the underlying technology engages the same 

cognitive processes as a comparable real-world situation. Similarly, not much is known, if experimental 

findings obtained in a standard monitor-based experiment, are comparable to those obtained in VR by 

using a head-mounted display (HMD) or if the different stimulus devices also engage different cognitive 

processes. 

The aim of my thesis was to investigate if modern HMDs affect the early processing of basic visual 

features differently than a standard computer monitor.  

In the first project (chapter 1), I developed a new behavioral paradigm, to investigate how prediction 

errors of basic object features are processed. In a series of four experiments, the results consistently 

indicated that simultaneous prediction errors for unexpected colors and orientations are processed 

independently on an early level of processing, before object binding comes into play.  

My second project (chapter 2) examined the accuracy and precision of stimulus timing and reaction 

time measurements, when using Unreal Engine 4 (UE4) in combination with a modern HMD system. 

My results demonstrate that stimulus durations can be defined and controlled with high precision and 

accuracy. However, reaction time measurements turned out to be highly imprecise and inaccurate, 

when using UE4’s standard application programming interface (API). Instead, I proposed a new 

software-based approach to circumvent these limitations. Timings benchmarks confirmed that the 

method can measure reaction times with a precision and accuracy in the millisecond range.  

In the third project (chapter 3), I directly compared the task performance in the paradigm developed 

in chapter 1 between the original experimental setup and a virtual reality simulation of this 

experiment. To establish two identical experimental setups, I recreated the entire physical 

environment in which the experiments took place within VR and blended the virtual replica over the 

physical lab. As a result, the virtual environment (VE) corresponded not only visually with the physical 

laboratory but also provided accurate sensory properties of other modalities, such as haptic or acoustic 

feedback. The results showed a comparable task performance in both the non-VR and the VR 

experiments, suggesting that modern HMDs do not affect early processing of basic visual features 

differently than a typical computer monitor.  

 

 

   

Diese Dissertation wurde von der Humanwissenschaftlichen Fakultät der Universität zu Köln im (Juli 
2022) angenommen (Beschluss des Promotionsausschusses vom 20.10.2010). 
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Introduction 

Research in cognitive neuroscience aims to understand human behavior and its underlying brain 

functions. A prerequisite to successfully relate behavior and brain activity to specific cognitive 

functions are experiments with a high internal validity. Internal validity describes to which extent a 

study can draw conclusions on cause and effect and how well alternative explanations can be ruled 

out. One critical factor for internal validity is high experimental control, i.e., minimizing the impact of 

variables other than the variable of interest on the experimental outcome. To achieve high 

experimental control, experiments in cognitive neuroscience are preferably conducted using simplified 

and minimalistic stimuli as compared to real-world scenarios. Minimalistic stimuli allow to precisely 

control and manipulate certain stimulus features. Behavioral responses are similarly often restricted 

and repetitive, as scientists aim to obtain behavioral measures, which are comparable between 

participants.  

However, it has been criticized that these sterile laboratory experiments poorly relate to real-world 

phenomena, making it difficult to transfer experimental findings to real-life situations. Hence, many 

researchers have argued for higher ecological validity in behavioral experiments to promote the 

generalizability of experimental findings (Kingstone et al., 2008; Parsons, 2015). Ecological validity 

refers to the relation between real-world phenomena and the experimental context. For example, in 

1976 Neisser criticized that “contemporary studies of cognitive processes usually use stimulus material 

that is abstract, discontinuous, and only marginally real. It is almost as if ecological invalidity were a 

deliberate feature of the experimental design” (Neisser, 1976, p. 34) (accentuation by the author). 

However, although Neisser’s criticism is almost half a century old, researchers remained hesitant to 

strive for increasing ecological validity in behavioral experiments. The reasons for this situation are 

manifold. For example, the concept of ecological validity lacks a clear and generally accepted definition 

and its overall usefulness has been questioned (Schmuckler, 2001). However, beyond theoretical 

considerations for or against ecological validity, one important factor that has kept researchers to 

increase ecological validity is experimental control. Both concepts have been considered as trade-offs 

(Loomis et al., 1999a), emphasizing tensions between researchers striving for the one and those 

striving for the other (Parsons, 2015). 

A promising middle ground comes in form of Virtual Reality (VR). VR has the potential to bring worlds 

into the laboratory and it allows transferring experimental paradigms from the laboratory into 

naturalistic but highly controlled scenarios (Kothgassner & Felnhofer, 2020). Although VR’s benefits 

have been recognized for decades in neuroscientific research (Bohil et al., 2011; Loomis et al., 1999b), 

it has been highly underutilized in cognitive neuroscience and experimental psychology. Yet, advances 

in 3D rendering and virtual reality technology in the recent years, as well as the decreasing cost of 

associated equipment have led to an increasing interest in VR as a research tool.  

VR places the participant in computer-generated and ideally multi-sensory three-dimensional 

environments, while at the same time shutting out sensory input from real-world stimuli as much as 

possible. In other words, the idea of VR is to immerse the participant into a simulated reality, which is 

experienced as if it were real. However, an effective VR simulation constitutes not only sophisticated 

devices for sensory stimulation, but instead requires the ability to closely monitor the participant’s 

behavioral responses and to translate these into virtual interactions in real-time. By default, typical 

state-of-the-art consumer VR systems come with motion tracking systems for head and hand 

movements. Some systems, such as the SteamVR tracking system, allow to increase the number of 
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tracked object or body parts, by including additional tracking sensors. Also, eye-tracking, finger 

tracking or tracking of facial gestures are available on the consumer level. On the professional sector, 

VR systems combined with physiological sensors such as heart rate, galvanic skin-responses, or even 

integrated electroencephalograms (EEG) are available. Hence, a typical VR system is both, a device for 

stimulus delivery but also a sensitive and versatile measurement tool. Not surprisingly, with the release 

of low-cost consumer VR systems, numbers of research papers within neuroscience and experimental 

psychology utilizing VR, has been growing steadily in the recent years (Vasser & Aru, 2020). 

However, although VR found its way into research labs, to date, there is a lack of standards and good 

practice guidelines regarding VR experiments, a situation which has been compared to the “Wild West” 

(Birckhead et al., 2019). For example, within the scientific literature the definitions of Virtual Reality 

range from “computer-generated world” to wall projector such as a Cave system (X. Pan & Hamilton, 

2018b; Slater, 2018; Takac et al., 2021). Hence, the term needs some clarification. Within the context 

of this introduction as well as the chapters 2 and 3 of this dissertation, everything discussed about VR 

will primarily refer to head-mounted display (HMD) based VR systems. The main reasoning is to keep 

the introduction short and concise as well as the research questions of the studies reported in chapter 

2 and 3 specifically focused on HMD-based VR systems. In chapter 2, I investigated the precision and 

accuracy of stimulus timing and time measurements in experiments based on HMDs and associated 

rendering processes. In chapter 3, I examined if the simple fact that an experiment takes place in VR, 

i.e., stimuli were presented via an HMD, changes the behavior of the participants when compared to 

a standard monitor-based setup.  

Furthermore, the recent surge in VR studies is mainly driven by the release of consumer HMD systems, 

such as HTC Vive or Valve Index. While for example, CAVE systems come at a high cost and require a 

lot of space and technical expertise, a state-of-the art HMD system can be bought already for a few 

hundred Euro and is considerably easier to install and to use. Therefore, for the foreseeable future, 

HMDs will be the dominant form of VR systems that can be found in research labs.   

Currently most research experiments have been created by using modern game engines, such as Unity 

or Unreal Engine. While game engines provide powerful tools for the creation of stimulus 

environments and interactions in VR, they do not contain certain key validated technical features that 

are critical for neuroscientific experiments. For example, game engines run in a so-called game-loop. 

The game-loop contains several processes such as physics simulations, input processing or drawing of 

objects, and typically iterates once with every display refresh, when using HMDs. Consequently, 

sampling rates for data collection, e.g., motion tracking data or button presses, are directly limited by 

the refresh rate of the HMD. Typical refresh rates of modern HMDs range between 80 Hz and 144 Hz, 

which limit the precision and accuracy with which for example stimulus timing can be controlled and 

with which time-sensitive measurements can be obtained within the game-loop.   

Furthermore, although VR comes with the great promise towards more naturalistic and generalizable 

experimental designs, currently it is not well understood if and how the VR setting itself might bias 

behavioral responses differently than the real world. In other words, it is not known if virtual settings 

engage the same cognitive processes as the equivalent real-word situation (Kulik, 2018; Pan & 

Hamilton, 2018a; Vasser & Aru, 2020).  

If the simple fact that an experiment takes place in VR, results in different behavioral responses than 

the equivalent real-world setting, the generalizability of research findings from VR studies would need 

to be questioned. However, the same is obviously true for non-VR experiments, e.g., experiments in 

which visual stimuli are presented on a computer screen. In both experiments participants enter an 
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alternate reality, which is different from reality we know from our everyday life (Pan & Hamilton, 

2018a).  

However, this implies that VR experiments might also engage different cognitive processing than 

standard non-VR experiments, questioning the transferability of experimental findings from VR to non-

VR experiments and vice versa.  

Consequently, an important issue to address is whether VR experiments evoke the same behavioral 

responses as non-VR experiments. Given the technological differences between a standard computer 

display and the rather complicated optics on an HMD, behavior differences could for example be driven 

by the stimulus presentation device itself. Furthermore, the current generation of HMDs still suffers 

from various technological limitations like lenses with a fixed focal length, resulting in side-effects like 

vergence-accommodation conflicts (Kramida, 2015). However, so far, studies directly comparing 

monitor-based and VR experiments are rare. 

 

Here, my aim was to examine if reaction time costs induced by unexpected basic visual features differ 

between visual stimulus presentation with an HDM and a standard monitor. The central idea for this 

venture was to create two identical experimental setups, with ideally the only difference being that 

one experiment takes place in VR, while the other one is conducted with a standard non-VR 

experimental setup and to test if both experiments will yield the same results. 

 

In chapter 1, I developed a new behavioral paradigm, which served for the direct comparison between 

VR and non-VR setup in chapter 3. In a series of four experiments, I investigated how prediction errors 

of basic visual stimulus features, such as color and orientation, are formed and on which levels of 

processing they arise. In the first experiment, participants saw two Gabor patches on a computer 

screen, of which one feature (color) was manipulated on one grating and another feature (orientation) 

on the other grating. Expectations were implicitly manipulated by presenting a specific color and 

orientation more frequently than another one. However, these features were rendered completely 

task irrelevant. Instead, participants had to differentiate whether the spatial frequencies of both 

gratings were identical or different.  

The results showed that responses were slower when the color or the orientation was unexpected, 

without an indication for an interaction between the prediction errors. In a second experiment, I tested 

if there is a mutual influence of both types of predictions errors, when both features belong to the 

same object. In general, the paradigm was identical to Experiment 1 with the only difference that both 

colors and orientations were manipulated on each grating simultaneously. Again, the results clearly 

indicated prediction errors of both features affected the task performance independently, without any 

evidence for a mutual interaction. In Experiment 3, feature expectations were manipulated explicitly 

by the means of textural cues indicating the most likely color and orientation in the next trial. 

Additionally, we were concerned that the task irrelevance of the features resulted in participants not 

paying enough attention to them and thereby inhibit feature-binding, a process that requires attention 

according to influential theories like the Feature Integration Theory (FIT) (Treisman & Gelade, 1980). 

Hence, to increase the relevance of the color and orientation, after each block of 64 trials, participants 

had to rate the proportion of trials in which the cue correctly predicted upcoming features. Although 

the analysis of the cue ratings showed that participants paid attention to the cue as well as the 

features, the results showed again no evidence for an interaction of both prediction errors. In the last 

experiment, I evaluated if the missing interaction was the result of two peripheral presented objects, 

requiring participants to divide their attentional resources between the stimuli. In this experiment, 
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only one central grating was presented, and participants had to judge if the spatial frequency was high 

or low. As in the previous experiments, I was able to demonstrate the impact on the task performance 

for both types of prediction errors independently without any evidence for a mutual influence between 

them. Taken together, the results suggest that prediction errors for object features are formed and 

resolved on an early level of visual processing, when the features are still processed in parallel. 

Furthermore, the consistent results of all four experiments demonstrate that the observed effects are 

robust and replicable when tested with a standard setup. This was crucial for the experiments planned 

for the study reported in chapter 3, in which I tested if I could replicate the results when the same 

paradigm is conducted within VR. Without a robust effect, it would become unclear if behavioral 

differences between the experimental setups would be the result of the different hardware or just the 

result of a flakey behavioral effect. 

 

As outlined above, most VR experiments in cognitive neuroscience and experimental psychology use 

game engines for the stimulus creation and data collection. However, game engines come with known 

limitations like limited sampling rates. For the experimental paradigm developed in chapter 1, a 

minimum requirement of the stimulus software is the capability to tightly control stimulus timing and 

to measure precise and accurate reaction times. Hence, in chapter 2 I determined the level of accuracy 

and precision for both stimulus timing and reaction time measurements when using the combination 

of Unreal Engine 4 (UE4), SteamVR and the HTC Vive VR system.  

In a first experiment, the accuracy and precision of pre-defined stimulus durations were tested. 

Objective measurements were provided by means of the Black Box Toolkit (BBTK), a specialized device 

for the validation of several timing parameters and time measurements in behavioral experiments. A 

white square was presented for a pre-defined duration on the display. A photo-sensor, connected to 

the BBTK, was used to measure the duration of each stimulus with a sub-millisecond precision. While 

the stimulus durations turned out highly precise, the measured stimulus durations always exceeded 

the pre-defined duration a bit. In my tests, I defined stimulus durations in terms of displays refreshes 

or ticks, which indicates that the observed inaccuracies can be explained by the refresh rate of the HTC 

Vive. This was confirmed after calculating the exact frequency, with which new frames were presented. 

Across all my tests, including two different computers and two different HTC Vive HMDs, the number 

of frames per second (FPS) turned out to be exactly 89.53 FPS, indicating that the HTC Vive has a true 

refresh rate of 89.53 Hz instead of the officially stated 90 Hz. Overall, the results of the first experiment 

indicate that the VR setup can present stimuli with a high precision and, when taking the exact refresh 

rate into account, with a high accuracy.  

In a second experiment, I evaluated the precision and accuracy of reaction time measurements of the 

VR setup and compared it to results I got with the same test procedure with a standard monitor setup 

and both Presentation and PsychoPy. While I observed precise and accurate RT measurement with 

both standard setups, reaction times measured with the VR setup were highly inaccurate and 

imprecise. In the following, I explain the reasons for the discrepancies between expected and observed 

reaction times based on limitations resulting from the architecture underlying game engines and VR 

rendering. Furthermore, I proposed a new software-based method that circumvents these limitations. 

Benchmarking results revealed that the method is capable to measure reaction time with an accuracy 

and precision, which is on par with both PsychoPy and Presentation.  
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In chapter 3, I report the final study of this dissertation, which tried to replicate the results obtained in 

Experiment 2 of chapter 1, in both a standard non-VR experimental setup as well as in VR, with the 

same group of participants. 

Results from previous studies, which directly compared a VR and a non-VR experimental setup, 

indicate that HMDs might affect how participants allocate attentional resources (Li et al., 2020) and 

spatial processes (e.g., Anglin et al., 2017) as well as impairs motor-learning and increases cognitive 

load (Juliano et al., 2021). However, so far, no study has investigated on which level of processing these 

differences arise. Here, I aimed to determine if modern HMDs already affect early visual processing 

levels differently than a typical monitor setup.  

Furthermore, I was especially interested in potential hardware-related differences. As mentioned 

above, the optical system of HMDs is rather complex, when compared to an ordinary computer screen. 

HMDs contain lenses with a fixed-focal length, resulting in incorrect depth cues and a conflict between 

vergence and accommodation (Kramida, 2015). Previous research indicates that vergence-

accommodation conflicts impair visual performance (Hoffman et al., 2008) and might reduce 

attentional resources, to compensate for the incongruent depth cues and remain clear vision (Daniel 

& Kapoula, 2019). Similarly, the weight of HMDs and the limited FOV have been found to affect head 

and eye coordination (Pfeil et al., 2018).  

However, the discrepant findings between VR and non-VR reported by some studies could be the result 

of inconsistencies of the stimulus presentation between the VR and non-VR conditions. For example, 

Li et al. (2020) found increased attention allocated toward stimuli presented in an HMD as compared 

to the corresponding monitor version. The stimulus material used in their study involved a small three-

dimensional scene, which was presented in stereoscopic 3D in the VR condition, while the stimuli were 

presented monocular in the non-VR version. This leaves open the question if the increased allocation 

towards stimuli in VR originate from technological particularities inherent to HMDs or if the effects 

were merely driven by differences in how the stimuli were presented, i.e., 3D vs 2D. 

In the study reported in chapter 3, I aimed to avoid inconsistencies of the stimulus material as well as 

the context in which it was presented, by achieving the highest possible correspondence between the 

VR and the non-VR experiment.  

Hence, I aimed to design the experimental setup of the VR experiment as close as possible to the non-

VR experiment. A virtual environment (VE) was developed that matched the visual appearance of the  

physical laboratory, in which both experiments took place. However, the virtual replicate 

corresponded with the physical laboratory also 1:1 with respect to scale and location.  This was used 

to present the VE as an overlay blended on top of the real laboratory. Consequently, everything visible 

through the HMD did also exist physically, providing for example realistic and consistent haptic and 

tactile stimulation.  

Having two identical experimental setups, a group of 16 participants was tested in each version in 

counterbalanced order. The results showed for both experiments the same reaction time pattern, 

which I already observed in chapter 1, indicating independent processing of prediction errors for 

unexpected colors and orientation. In particular, the statistical analysis did not provide any evidence 

for behavioral differences between the VR and the non-VR experiment. The findings indicate that early 

visual feature processing is not differently affected by the stimulus-presentation device.  

 

Lastly, in chapter 4 I will discuss some of the main findings reported in a bit broader context and discuss 

some ideas in more detail, which did not find its way in the original papers.   



Chapter 1 – Combined Expectancies 

 
10 

 

Chapter 1 – Combined Expectancies 

 

Wiesing, M., Fink, G. R., Weidner, R., & Vossel, S. (2020). Combined expectancies: the role of 

expectations for the coding of salient bottom-up signals. Experimental brain research, 238(2), 381-393. 

 

Author contributions 

MW, S.V., and R.W. conceptualized and designed the research; MW collected the data; wrote software, 

analyzed and visualized the data; S.V. and R.W. supervised the research project; MW, S.V., G.R.F., and 

R.W. wrote the manuscript. 

 



Chapter 1 – Combined Expectancies 

 
11 

 

 



Chapter 1 – Combined Expectancies 

 
12 

 

 



Chapter 1 – Combined Expectancies 

 
13 

 

 



Chapter 1 – Combined Expectancies 

 
14 

 

 



Chapter 1 – Combined Expectancies 

 
15 

 

 



Chapter 1 – Combined Expectancies 

 
16 

 

 



Chapter 1 – Combined Expectancies 

 
17 

 

 



Chapter 1 – Combined Expectancies 

 
18 

 

 



Chapter 1 – Combined Expectancies 

 
19 

 

 



Chapter 1 – Combined Expectancies 

 
20 

 

 



Chapter 1 – Combined Expectancies 

 
21 

 

 



Chapter 1 – Combined Expectancies 

 
22 

 

 



Chapter 1 – Combined Expectancies 

 
23 

 

 



Chapter 2 - Timing 

 
24 

 

Chapter 2 - Timing 

 

Wiesing, M., Fink, G. R., & Weidner, R. (2020). Accuracy and precision of stimulus timing and reaction 

times with Unreal Engine and SteamVR. PloS one, 15(4), e0231152. 

 

Author contributions 

MW, G.R.F., and R.W. conceptualized and designed the research; MW collected the data; wrote 

software, analyzed and visualized the data; R.W. supervised the research project; MW, G.R.F., and R.W. 

wrote the manuscript. 

 



Chapter 2 - Timing 

 
25 

  



Chapter 2 - Timing 

 
26 

 



Chapter 2 - Timing 

 
27 

 



Chapter 2 - Timing 

 
28 

 



Chapter 2 - Timing 

 
29 

 



Chapter 2 - Timing 

 
30 

 



Chapter 2 - Timing 

 
31 

 



Chapter 2 - Timing 

 
32 

 



Chapter 2 - Timing 

 
33 

 



Chapter 2 - Timing 

 
34 

 



Chapter 2 - Timing 

 
35 

 



Chapter 2 - Timing 

 
36 

 



Chapter 2 - Timing 

 
37 

 



Chapter 2 - Timing 

 
38 

 



Chapter 2 - Timing 

 
39 

 



Chapter 2 - Timing 

 
40 

 



Chapter 2 - Timing 

 
41 

 



Chapter 2 - Timing 

 
42 

 



Chapter 2 - Timing 

 
43 

 



Chapter 2 - Timing 

 
44 

 



Chapter 2 - Timing 

 
45 

 



Chapter 2 - Timing 

 
46 

 



Chapter 2 - Timing 

 
47 

 



Chapter 2 - Timing 

 
48 

  



Chapter 2 - Timing 

 
49 

 

Supporting information 

S1 Text. Temporal characteristics of the graphics pipeline with UE4 and SteamVR 

Figure S2 illustrates the different stages that a frame (devoted as frame n) must pass before it is finally 

presented on display. The following description will focus on the temporal aspects rather than on the 

functional aspects of the described stages. 

Please note, that every stage in the pipeline is synchronized to the vertical sync (VSync) event. Frame 

n is initially processed in the Game Thread where game simulation takes place. The Game Thread 

constitutes a relatively early stage in this processing pipeline and represents the stage where the 

experimental routine is executed, e.g., where the command to present the target stimulus is 

completed. The timestamp marking a stimulus’ onset as measured in Experiment 2 was determined at 

this level. After one frame duration, everything is transferred to the Draw Thread for rendering 

preparation. It also requires an additional full frame duration until the resulting rendering commands 

are passed to the GPU. The GPU then again requires another full frame duration before, finally, the 

frame can be scanned out to the displays. The scan-out occurs while the display is black, which requires 

about 9 ms until the displays light up, and the new frame is presented for about 2 ms. The last two 

stages are controlled by SteamVR rather than UE4, illustrated by the horizontal black line in Fig S2. 

Note that both the Game Thread and the Draw Thread are shifted relative to the VSync events. This is 

a novelty of rendering with SteamVR. In a non-VR graphics pipeline, both the game and the draw 

thread would start right after a VSync event. The rendering commands would then be submitted to 

the GPU right after the VSync event, and everything would be buffered for one or more frame 

durations before the GPU would render the frame. In order to reduce latency, VR rendering occurs 

without frame buffering. However, submitting a frame to the GPU is time-consuming, and without 

frame buffering, a so-called “GPU bubble” of up to two milliseconds would be produced, in which the 

GPU is idle until rendering can be initiated, thus effectively reducing the total time available for 

rendering. The rendering commands of the Draw Thread are submitted to the GPU before the VSync 

event to ensure that the GPU has a full frame duration for rendering. This process is called “running 

start”. To ensure that both the Game Thread and the Draw Thread still have the budget of a full frame 

duration, with SteamVR, the calculations of both threads start a few milliseconds before the VSync 

event.  

The scan-out is the final stage before the frame is displayed. After loading the entire display, the pixels 

illuminate, and the frame gets visible for about 2 ms. 

When considering the above-presented graphics pipeline involved in presenting a single frame, it 

becomes evident that calling the function to present a target stimulus in the Game Thread is just the 

first step of a whole cascade of processes required to display a stimulus. Timestamping a stimulus 

event at the beginning of this cascade (when the function to present the stimulus is called) is far too 

early, resulting in the measurement errors observed in Experiment 2. However, the graphics pipeline 

also illustrates that it is not possible to measure the stimulus onset directly via UE4. After submitting 

the rendering commands to the GPU, SteamVR determines when the frame is sent to the HMD. This is 

further complicated by the fact, that unlike in rendering to a normal computer monitor, the scan-out 

has to be finished before the displays light up and the stimulus is presented. 
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S2 Text. Stimulus onset prediction 

The prediction is based on the fact, that all rendering steps for VR are synchronized to the VSync 

events, which allows us to use VSync events as reliable time markers when a screen refresh has 

finished. 

An exact estimate is based on accurate knowledge when (i.e., during which frame interval) the 

prediction was started. This can be accomplished by sending the onset-trigger from UE4 to the 

background application later within the processing sequence of UE4 than in the previous tests. The 

onset-trigger is then sent to the background application from UE4’s SteamVR plugin at the end of Draw 

Thread’s processing a few milliseconds before the next VSync event. This is accomplished by sending 

the onset-trigger signal right after a function called WaitGetPoses() returns. The WaitGetPoses() 

function is responsible for pose prediction and is called by UE4 after the Draw Thread has finished 

processing. It blocks the Draw Thread until a few milliseconds before the VSync event and then returns 

the predicted poses to be used for the rendering. By sending the onset-trigger right after 

WaitGetPoses() returns, a synchronization point with VSync events is generated and ensures that the 

prediction of a stimulus onset always starts in the same stage of the graphics pipeline.  

The current implementation of the synchronization of UE4 and the background application works as 

follows. The command to show a stimulus on display is called in the Game Thread. In order to generate 

a precise prediction when the stimulus appears on display, one has to determine the time point when 

the Draw Thread in UE4 hands over stimulus processing to SteamVR. Therefore, the current 

background application uses two different trigger signals, one marking the moment when the 

command to show a stimulus is called and later a second trigger signal marking the moment when the 

process is handed over to SteamVR. The latter is about the exact timing and for the synchronization 

with the frame intervals; the former is relevant since it indicates an upcoming visual event that is 

important for the experimental procedure. Both signals are relevant and need to be considered unison, 

which creates a need to integrate or relate both at some stage. This could be done by implementing a 

complicated direct exchange of timing signals between the Game Thread and the Draw Thread. 

Alternatively, this problem could be solved by using an external interface that registers and relates 

both trigger signals such as our background application. The latter approach requires only minimal 

changes in the UE4 source code and hence avoids changes that might affect the normal working of 

UE4. Therefore, we decided to use this option to develop a proof-of-principle method for precise 

timing measures in UE4. It involves sending two trigger signals to the background application. In Game 

Thread, a trigger, which indicates a relevant stimulus to be presented, is sent whenever the command 

to show the stimulus is called. The trigger signal marking the moment when the signal is handed over 

from the Draw Thread to SteamVR is sent on every frame. Hence, the background application can 

integrate both signals in the following way. On every frame the background application receives a 

signal from the Draw Thread, thereby providing an exact measure on when information is passed to 

SteamVR, this information is only valuable when it needs to be related to a relevant visual stimulus, 

i.e., when it is preceded by a trigger signal indicating an upcoming visual event. Otherwise, this 

information can be ignored. Accordingly, our background application waits for a start-trigger from UE4, 

indicating an upcoming stimulus onset, and only then further processes the signal indicating the hand-

over to SteamVR. When this signal is received, it takes the current time and starts predicting the actual 

stimulus onset. Adding the measured time to the prediction then estimates stimulus onset. In the next 

step, the keyboard hook is started, and the application waits until it receives a keyboard message and 

takes the response time. After writing the timing information into a log file, it starts again to wait for 

the next start-trigger.  
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As soon as the background application received the onset-trigger, it takes the current time and then 

starts predicting the time remaining until the target will be displayed.  

The first step in this calculation is to determine the remaining time of the current frame interval 

accurately. This is achieved by calling a function that returns the time since the last VSync event. The 

difference between a frame duration and the time since the last VSync determines the remaining time 

of the frame interval. Instead of hardcoding the frame duration, we calculate the frame duration based 

on the HMD’s refresh rate, which is retrieved from SteamVR. This allows using the background 

application with different HMD and different refresh rates. 

In the next step, one frame duration for the GPU rendering is added to the prediction. The last step of 

the prediction adds the duration of the scan-out, which is again retrieved from SteamVR. Finally, the 

predicted time is added to the initially measured time, which in sum makes up the stimulus onset time. 

The complete framework for the prediction is illustrated in Fig S3. 

Note that the last function returns the time from VSync until the midpoint of the stimulus presentation 

instead of the time of the actual onset, i.e., the very first moment when the displays light up. This 

results from the default behavior of SteamVR’s pose prediction. Therefore, the predicted time is 

effectively another frame duration resulting in an over-prediction of about 1 ms.  

Furthermore, the refresh rate returned by SteamVR, which forms the basis of the calculation for the 

frame duration, is 90 Hz for the HTC Vive. However, the actual refresh rate that we have measured in 

Experiment 1 (89.53 Hz) was slightly lower, which results in an under-prediction of each of the three 

steps of about 58 µs. Taken together, the proposed method does not predict the stimulus onset exactly 

but results in an over-prediction of about 826 µs, when used with the HTC Vive. 

In principle, the over-prediction could be corrected by subtracting 826 µs from the result. However, 

we decided not to correct this marginal over-prediction due to the following reason. The algorithm for 

the prediction is completely based on functions provided by OpenVR without any hardcoding. This 

implementation, at least in principle, should enable experimenters to use the method also with HMDs 

other than the HTC Vive, as long as they use SteamVR as the runtime.  
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Fig S1. Screenshot of UE4’s Realistic Rendering sample.  

The screenshot shows the original environment without the modifications as used in this study. 

 

 

 

Fig S2. Illustration of the processing stages that a frame has to pass before it is presented to the 

display panels.  
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Fig. S3. Framework for the stimulus onset prediction.  
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S1 Table. Results across all conditions of Computer 1 (in ms).  

expected 

duration 
mean sd min max 

Mean 

duration   

white 

2000 2010.56 0.107 2010.50 2010.75 996.04 

1000 1005.28 0.081 1005.25 1005.50 496.40 

400 402.11 0.124 402.00 402.25 191.82 

200 201.06 0.104 201.00 201.25 91.30 

133.33 134.04 0.089 134.00 134.25 57.78 

66.66 67.02 0.066 67.00 67.25 24.27 

22.22 22.34 0.120 22.25 22.50 1.93 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus (in ms). 

 

 

S2 Table. Results across all conditions of Computer 2 (in ms).  

expected 

duration 
mean sd min max 

Mean 

duration 

white 

2000 2010.59 0.121 2010.50 2010.75 996.06 

1000 1005.30 0.098 1005.25 1005.50 493.41 

400 402.12 0.125 402.00 402.25 191.82 

200 201.06 0.106 201.00 201.25 91.29 

133.33 134.04 0.091 134.00 134.25 57.80 

66.66 67.02 0.068 67.00 67.25 24.27 

22.22 22.34 0.120 22.25 22.50 1.93 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus (in ms). 
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S3 Table. Results of the Simple condition across computers (in ms).  

expected 

duration 
mean sd min max 

Mean 

duration 

white 

2000 2010.58 0.116 2010.50 2010.75 996.04 

1000 1005.29 0.091 1005.25 1005.50 493.39 

400 402.12 0.125 402.00 402.25 191.81 

200 201.06 0.105 201.00 201.25 91.28 

133.33 134.04 0.090 134.00 134.25 57.77 

66.66 67.02 0.067 67.00 67.25 24.26 

22.22 22.34 0.120 22.25 22.50 1.92 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus (in ms). 

 

S4 Table. Results of the Complex-Static condition across computers (in ms).  

expected 

duration 
mean sd min max 

Mean 

Duration 

white 

2000 2010.58 0.116 2010.50 2010.75 996.10 

1000 1005.29 0.090 1005.25 1005.50 493.41 

400 402.12 0.125 402.00 402.25 191.82 

200 201.06 0.105 201.00 201.25 91.30 

133.33 134.04 0.090 134.00 134.25 57.79 

66.66 67.02 0.067 67.00 67.25 24.28 

22.22 22.34 0.120 22.25 22.50 1.93 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus (in ms). 
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S5 Table. Results of the Complex-moving condition across computers (in ms).  

expected 

duration 
mean sd min max 

Mean 

Duration 

white 

2000 2010.58 0.116 2010.50 2010.75 996.10 

1000 1005.29 0.091 1005.25 1005.50 493.41 

400 402.12 0.125 402.00 402.25 191.82 

200 201.06 0.105 201.00 201.25 91.30 

133.33 134.04 0.090 134.00 134.25 57.79 

66.66 67.02 0.067 67.00 67.25 24.28 

22.22 22.34 0.120 22.25 22.50 1.93 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus (in ms). 

 

S6 Table. Results of the Simple condition of HMD 1 (in ms).  

Expected 

duration 
mean sd min max 

mean duration 

white 

2000 2010.56 0.107 2010.50 2010.75 996.04 

1000 1005.28 0.082 1005.25 1005.50 493.39 

400 402.11 0.124 402.00 402.25 191.81 

200 201.06 0.104 201.00 201.25 91.28 

133.33 134.04 0.089 134.00 134.25 57.77 

66.66 67.02 0.066 67.00 67.25 24.26 

22.22 22.34 0.120 22.25 22.50 1.92 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus. 
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S7 Table. Results of the Simple condition of HMD 2 (in ms). 

expected 

duration 
mean sd min max 

mean  

duration  

white 

2000 2010.56 0.107 2010.50 2010.75 996.03 

1000 1005.28 0.081 1005.25 1005.50 493.39 

400 402.11 0.124 402.00 402.25 191.81 

200 201.06 0.104 201.00 201.25 91.28 

133.33 134.04 0.089 134.00 134.25 57.77 

66.66 67.02 0.066 67.00 67.25 24.26 

22.22 22.34 0.120 22.25 22.50 1.92 

The first column represents the expected duration for the black and white stimulus cycles. The last 

column represents the measured durations of the white stimulus. 
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S8 Table. Overview of mean reaction time errors, standard deviation, minimum and maximum 

error for each condition of Computer 1 (in ms). 

Condition Mean error SD Min Max 

Simple 1.446 0.4973 1.00 2.00 

Complex-Static 1.451 0.4978 1.00 2.00 

Complex-Moving 1.452 0.4979 1.00 2.00 

Overall 1.446 0.4973 1.00 2.00 

 

 

S9 Table. Overview of mean reaction time errors, standard deviation, minimum and maximum error 

for each condition of Computer 2 (in ms). 

Condition Mean error SD Min Max 

Simple 1.445 0.4992 1.00 3.00 

Complex-Static 1.435 0.4960 1.00 2.00 

Complex-Moving 1.425 0.4946 1.00 2.00 

Overall 1.445 0.4992 1.00 3.00 
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Abstract 

In the recent years, virtual reality (VR) has gained increasing popularity as a research tool in 

neuroscience and experimental psychology. However, whether the same cognitive processes are 

engaged in experiments conducted in front of a computer monitor or in immersive VR is still an open 

question. For example, acting in an VR environment may demand certain cognitive efforts, thereby 

reducing capacities available for other processes. Moreover, different findings may emerge due to 

more basic technical differences regarding, e.g., visual stimulation. So far, studies directly comparing 

monitor-based and VR experiments are rare. Here, we tested whether reaction time costs induced by 

violated expectations of basic visual features differ between visual stimulus presentation with a head-

mounted display (HDMs) and a standard monitor setup.  

We examined whether basic differences in stimulus generation of HMDs as compared to standard 

monitors affect early visual processing. Hence, a previously introduced experimental paradigm 

(Wiesing et al., 2020), investigating early processing of prediction errors of basic visual features, was 

replicated in both the original setup and a replica of the experiment within a virtual environment. In 

order to minimize dissimilarity between experiments, the entire laboratory was recreated in VR. The 

virtual replica matched the physical laboratory not only visually, but also in scale, allowing us to blend 

the virtual laboratory onto its real counterpart. Hence, the VR experiment closely corresponded to the 

non-VR experiment not only visually, but also with respect to auditory, tactile, or olfactory stimulation 

in the lab room. 

A group of 16 participants performed the experiment in both experimental setups with the order 

counterbalanced. The results did not provide any evidence that the expectation-dependent processing 

of basic visual features is different when conducted in VR and showed no evidence for an additional 

binding of attentional resources. Instead, both experiments replicated results of the original study 

Wiesing, et al. (2020).  
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Introduction 

To precisely relate behavior and brain activity to specific cognitive functions, neuroscientific studies 

are usually conducted under controlled laboratory conditions. In cognitive neuroscience and 

experimental psychology, the stimuli used are relatively simple compared to natural settings, with the 

big advantage that specific stimulus features can be precisely varied and controlled. Similarly, these 

experiments are often designed to obtain responses that are comparable between participants and 

experimental conditions which differ in only few parameters of interest. This restricts the behavioral 

options of the participants but allows for precise experimental control. 

The approach to use simple but highly controlled stimuli and responses generated a vast amount of 

knowledge about the architecture of cognitive processes and their underlying neural implementation. 

However, testing this knowledge in real-life situations remains a challenge, since the richness of 

sensory information and the multitude of potential actions come at the expense of a lack of precise 

experimental control. Here, virtual real-life situations may provide a possible solution. Virtual Reality 

(VR) has the potential to bring realistic but well controlled environments into the laboratory. Highly 

controlled experimental paradigms could be integrated into realistic scenarios, thereby enabling the 

study of brain functions and complex behavior in completely new ways (Bohil et al., 2011; Loomis et 

al., 1999b; Wilson & Soranzo, 2015) 

With the recent release of head-mounted displays (HMD) on the consumer market, such as Oculus Rift, 

HTC Vive or Valve Index, VR has increasingly been used in cognitive neuroscience and experimental 

psychology (Vasser & Aru, 2020b). One of the benefits of HMDs is its ability to present stimuli in 

stereoscopic 3D on a large field of view (FOV). HMDs cover the entire visual field, essentially giving full 

control over all visual input, which can be manipulated in real-time.  Due to their relatively small size, 

HDMs are easily portable and an ideal tool for e.g. visual neuropsychological assessment, since they 

allow to control and maintain critical context factors such as illumination and screen sizes as well as 

distances, even when patients are examined in different rooms or in different institutions (Foerster et 

al. (2016, 2019).  

However, VR not only allows to precisely control visual stimulation, but also to obtain accurate 

behavioral measurements as every current state of the art VR system comprises a sensitive motion-

tracking system (Niehorster et al., 2017; Verdelet et al., 2019). Some systems are even already 

available with integrated eye-tracking cameras (Imaoka et al., 2020).  

A critical difference between VR and standard monitor setups is the fact that the participants are not 

required to watch configurations on a 2-dimensional computer screen, but find themselves immersed 

in an interactive three-dimensional virtual environment, experienced from a first-person perspective. 

Hence, VR can be used to present stimuli at different viewing distances relative to the observer (Heber 

et al., 2008; Maringelli et al., 2001).  

Although VR has the potential to allow studying perception and behavior within complex naturalistic 

environments, it is ultimately still an artificial setting which differs from non-virtual reality in various 

aspects, which have been demonstrated to sometimes cause perceptual and behavioral differences to 

the corresponding real-world setting. One of these differences is the field of view. While it is larger 

compared to usual standard 2D displays, it is still smaller than the human visual field, generating an 

impression that is often compared to the feeling of wearing diving goggles. The size of the FOV affects 

performance in walking or visual search tasks (Arthur, 2000) and can affect spatial judgments, such as 

judgement errors of azimuth (Nash et al., 2000). Furthermore, velocity and self-motion are perceived 

slower with a smaller FOV (Caramenti et al., 2019; Hopper et al., 2019) and  head-eye coordination is 

altered. For instance, Pfeil et al. (2018) observed more head movements within VR than in reality. The 
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latter might also be affected by the weight of current HMDs and their rather low pixel density. 

Furthermore, other optical artefacts can occur such as chromatic aberrations or spatial distortions, 

especially in the peripheral parts of the display, leaving only the central area of the display for clear 

vision. Similarly, especially earlier HMDs such as Oculus Rift CV1 or HTC Vive have a comparably low 

pixel-density as compared to a typical computer monitor. A side effect of this is the so-called screen 

door effect, which describes the visible empty space between pixels that is perceived as viewing 

through a mesh on the display. 

It is well known that perceived distances in VR differ from real-world distance and that distances in 

stereoscopic displays are underestimated (e.g., Kelly et al., 2018; Witmer & Kline, 1998), possibly due 

to vergence-accommodation conflicts (VAC) (Bingham et al., 2001; Hoffman et al., 2008b). Such 

conflicts emerge due to the fact that in an HMD the image itself is located at a fixed distance but the 

perceived distance might vary (Batmaz et al., 2019). This can induce visual stress possibly leading to 

visual fatigue symptoms, such as eye strain or double vision (Guo et al., 2017; Iskander et al., 2019). In 

principle, VACs might pose a challenge to our visual system and it has been reported they can reduce 

the cognitive performance in sustained attention tasks (Poltavski et al., 2012) and increase Stroop 

interference (Daniel & Kapoula, 2019). Compensatory mechanisms necessary to maintain clear vision 

may bind visual attention, lowering processing resources available for other cognitive processes. 

However, it is important to note that the impact of VACs on cognitive processing has not been observed 

in HMDs, but in experiments using different prism and lens systems with more pronounced VACs as 

compared to HMDs. Hence, it remains to be examined whether these effects also hold when VACs are 

caused by HMDs.  

These findings raise questions about the comparability of experimental findings obtained using non-

immersive displays and HMDs. In principle, a failure to replicate findings in cognitive experiments with 

visual stimuli in VR can be attributed to different levels of processing. On the one hand, acting in an VR 

environment may demand certain cognitive efforts, thereby reducing capacities available for other 

processes. On the other hand, different findings may emerge due to more basic differences in visual 

stimulation.  

However, so far, studies directly comparing monitor-based and VR experiment are rare and the results 

are heterogeneous. While some studies replicated previous findings in visual search (Olk et al., 2018) 

or flanker tasks (Roberts et al., 2019), others observed different behavioral patterns in VR than in a 

standard setting in mental rotation (Kozhevnikov & Dhond, 2012) or visuomotor adaptation tasks 

(Anglin et al., 2017). Findings of another study  indicated that more attentional resources are allocated 

to stimuli in VR as compared to stimuli presented on a 2D monitor (Li et al., 2020b).  

Here, we investigated the impact of the different modes of visual stimulus presentation in standard 

and VR setups on early visual processing of basic visual features. This was done by generating an 

experimental VR setup that was a faithful replica of a non-VR setup. Instead of a purely visual rendering 

of the environment, a multimodal virtual laboratory was created, providing also haptic feedback, 

sound and smell. This was achieved by a realistic and detailed rendering of the lab environment, with 

every physical object virtually represented in the correct scale and position. This allowed us to blend 

the visual rendering as an overlay onto its physical counterpart, resulting in a more complete and 

immersive simulation of the non-VR experiment. 

A group of participants took part in two identical behavioral experiments, with the only difference 

being that one experiment was conducted in VR while the other involved the standard setup. Thus, 

any differences in task performance could be attributed to the different modes of visual presentation. 

The task used in the present experiment was based on a new  experimental paradigm introduced by 
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Wiesing, Fink, Weidner, et al., (2020) testing the effects of feature-based predictions on reaction times. 

This task was chosen to investigate potential effects of an VR setting on relatively early levels of visual 

processing. In particular, this visual reaction time task involves two-dimensional stimuli and 

investigates how multiple simultaneous feature expectations are processed for the same object. Two 

objects were presented on a monitor and participants had to judge whether the spatial frequency of 

the objects was identical or different. Expectations of two task-irrelevant feature dimensions (color 

and orientation) were manipulated. The results of a series of four behavioral experiments consistently 

indicated that prediction errors of different object features are resolved independently before feature 

binding takes place. Hence, the findings suggest that the processing of the prediction errors happens 

on an early level of processing before attention comes into play. In particular, Experiment 2 of Wiesing, 

et al., (2020) was chosen for the current study. In that experiment, the expectations for two task-

irrelevant object features, color and orientation, were manipulated while participants performed a 

discrimination task regarding another dimension. 

Taken together, we tested in the current study whether differences in the visual stimulus presentation 

inherent to HDMs, such as vergence-accommodation conflicts, affect the processing of (violated) 

expectations about basic visual features when compared to a standard monitor setup.  

 

  



Chapter 3 - Transferring paradigms from physical to virtual reality 

 
65 

 

Materials and methods 

Participants 

Sixteen participants (5 women, mean age: 34.25 years, age range: 20 - 47, one left-handed) took part 

in both experiments. All participants had normal or corrected-to-normal vision and no history of 

neurological or psychiatric disorders. Normal color vision was assessed by pseudo isochromatic color 

plates in all participants (Velhagen & Broschmann, 2003). Before the experiment, written informed 

consent was obtained following the Declaration of Helsinki. The study was approved by the ethics 

committee of the German Society of Psychology, and participants were remunerated for their time. 

 

Apparatus 

In both experiments, the stimuli were presented on a 22-in monitor at either a real or a virtual distance 

of 60 cm. In the non-VR experiment, a Samsung SyncMaster (resolution 1680 X 1050; refresh rate 60 

Hz) was used. In the VR experiment, stimuli were presented on a virtual monitor that matched the real 

monitor both in size, shape and resolution, seen through an HTC Vive HMD (resolution 1080 X 1200 

per eye, refresh rate 90 Hz). In both experiments, participants were seated at a table in a behavioral 

laboratory. Head movements were prevented by a chin rest. Stimulus presentation and response 

recording were controlled using Unreal Engine 4.22 (UE4) (EpicGames), in combination with a custom 

made software that allowed a precise recording of behavioral responses (see below). The modeling of 

the virtual environment for the VR-experiment was conducted in Cinema4D (MAXON, Germany) and 

Blender (Blender Foundation). Participants were provided with button response pads (NAtA 

Technologies) for each hand and responded by pressing the corresponding button on the response 

pad with the left and right index finger.  

 

Stimuli and Task 

A task previously used in a study by Wiesing et al. (2020) was used in both experiments. Visual stimuli 

consisted of two horizontally arranged gratings as target stimuli, each incorporating one of two 

possible spatial frequencies. All combinations of frequencies across stimuli were presented randomly 

and with an equal probability (i.e., 50 % same and 50 % different).  

Additionally, grating stimuli could be colored in red/green or blue/yellow and could have two different 

orientations (45°, 90°). Both gratings were always identical in color and orientation in each trial. During 

piloting we found that, with the original stimulus parameters used in Wiesing et al., (2020), the spatial 

frequencies were difficult to be differentiated in the VR setup. This was resolved by increasing the size 

of the stimuli to 8° x 8° in both set-ups.  

For each participant, a specific color combination (e.g., red/green) was defined as the “expected color” 

and the other combination as “unexpected color”. Likewise, one specific orientation (e.g., tilted by 45°) 

was defined as the “expected orientation” and the other orientation as “unexpected orientation”. For 

both, color and orientation, the expected feature was presented in 87.5% of the trials, while the rare 

feature was presented in 12.5% of all trials. The rare features were assumed to elicit a strong prediction 

error, while prediction errors were expected to be minimal in trials with the frequent feature 

combination.  
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Figure 1. Stimulus example. Participants were asked to respond to the spatial frequency of the two 

gratings, which could be the same or different. One color scheme and one orientation were presented 

in the majority of the trials, but some trials were characterized by rare changes in color and/or 

orientation. 

Hence, the amount of prediction error was manipulated separately for the two different features, 

resulting in a 2 x 2 factorial design with the factors Color Prediction Error (high, low) (ColPE) and 

Orientation Prediction Error (high, low) (OriPE). This yielded four experimental conditions: 

ColPE_low/OriPE_low (color expected and orientation expected), ColPE_high/OriPE_low (color 

unexpected and orientation expected), ColPE_low/OriPE_high (color expected and orientation 

unexpected), and ColPE_high/OriPE_high (both color and orientation unexpected).  

Each experiment consisted of 14 blocks, comprising 64 trials, resulting in 896 trials. The experiment 

comprised 700 ColPE_low/OriPE_low trials (78.125 %), 84 ColPE_high/OriPE_low trials (9.375 %), 84 

ColPE_low/OriPE_high trials (9.375 %), and 28 ColPE_high/OriPE_high trials (3.125 %).  

Trials started with the presentation of the two target stimuli and lasted until a response was given. 

Trials were separated by an inter-trial interval, which randomly varied between 500 and 1000 ms.  Each 

block ended with a break that could be terminated via button press. 

The experimental task required participants to indicate by button press with the left or right index 

finger whether the target stimuli comprised identical or different spatial frequencies. Participants were 



Chapter 3 - Transferring paradigms from physical to virtual reality 

 
67 

 

instructed to respond as fast and accurately as possible. An erroneous response was followed by the 

message “Fehler” (i.e., German for “error”) displayed for 750 ms. 

 

 

Game engines 

Due to a lack of established stimulus software for VR experiments, several recent studies relied on 

game engines, such as Unity (e.g., Buckingham, 2019) or Unreal Engine 4 (UE4) (e.g., Lin et al., 2017), 

to develop their experiments. In a recent study, we observed that time measurements of stimulus and 

response events collected with UE4’s internal timing procedures are highly variable and inaccurate. 

Instead, we were only able to record reaction times with a sufficient precision and accuracy after 

implementing custom measurement procedures into the experimental setup (Wiesing, Fink, & 

Weidner, 2020). By objective measurements using the Black Box Toolkit (BBTK) (Plant & Turner, 2009), 

we have shown that UE4 in combination with our method was able to achieve reaction time 

measurements with a precision and accuracy similar to those of Presentation and PsychoPy. 

For the current study, the same method was used to collect reaction time data in the VR experiment. 

For the non-VR experiment, a modified variant of the method was used that is suitable for non-VR 

rendering. The precision and accuracy of the time measurements was tested and validated prior to the 

experiment by using the procedure described by Wiesing, et al., (2020). 

For the VR setup, we observed a precision (standard deviation) of 0.463 ms and an accuracy (mean 

error) of 1.43 ms, which is comparable to results reported by Wiesing et al., (2020). While the precision 

of the non-VR setup was with 0.496 ms comparable to the VR setup, we observed a substantially 

reduced accuracy, with a mean error of +46.26 ms. The high mean error of the non-VR experiment can 

be partially explained due to measuring the stimulus onset in the middle of the screen. In this 

experiment, the stimuli were presented on an LCD. On LCD’s the pixels’ luminance is updated 

periodically from top to bottom over a duration of about one display refresh. However, the onset 

measurements were synchronized to the vertical blank interval, which is the time between two display 

refreshes. Therefore, the stimulus onset measurement was synchronized to the pixels in the first row 

and not to the pixels in the middle of the display representing the target stimuli, resulting in a 

measurement error of about half a frame duration (i.e., 8.333 ms).  

The remaining error appears to be caused by frame buffering. However, for the current study, we 

decided to not investigate the reasons for the higher mean error any further. The results clearly 

showed that both the non-VR and the VR background applications provided RTs with a comparable 

high precision. Hence, for the behavioral analysis, the results of the timing validation were used to 

correct the RTs for the measurement errors (see below). 

 

To further ensure that the experimental setup was not affected by differences in the software being 

used or differences in the implementation, also the non-VR experiment was created in UE4. Despite 

the modifications of the stimulus size, the only difference between the original experiment (Wiesing, 

Fink, Weidner, et al., 2020) and the non-VR experiment of this study was the software in which it was 

created. Consequently, any failure to replicate the findings of the original findings in the new non-VR 

experiment would indicate that behavioral effects are rather the result of difference of the software 

basis or implementation rather than caused by any particularities of the VR system.   
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Virtual Environment 

The non-VR experiment was conducted in an electronically and acoustically shielded chamber. In order 

to transfer the non-VR Experiment into VR in the most realistic way, and to establish two identical 

experimental setups with the only difference being that one experiment takes place in VR, the virtual 

environment was designed to visually reflect the real test chamber as accurately as possible (Figure 2). 

Furthermore, the virtual environment, including furniture, was built with the same scale and spatial 

arrangement as the physical environment. This allowed to spatially map and align the virtual 

environment onto its physical counterpart. Hence, both experiments were conducted in the same test 

chamber, but in the VR experiment, we created a blending between the real and the virtual chamber 

(i.e., every object in the virtual chamber had a real-world counterpart, identical in shape, size and 

position). 

As a result, the entire virtual environment was supported by real haptic feedback. Since participants 

were unable to see their own body while in VR, a pair of HTC Vive motion controllers was given to the 

participants representing the locations of their hands. 3D models of the controllers were rendered in 

the virtual scenario, exactly mimicking the motion of the physical controllers. This allowed participants 

to touch the environment with the controllers, i.e., they were able to experiment the feel and see 

when a controller collided with a surface. In addition, the blending between physical and virtual world 

spared the need to simulate other sensory modalities than the visual modality, such as the auditory 

stimuli. Since every interaction of the controllers took simultaneously place in the physical and the 

virtual environment, the participants were always able to hear spatially correct sounds caused in the 

physical environment even while being in VR. Similarly, there was no need to simulate any olfactory 

stimuli, but instead every virtual object had its own original smell provided by its physical counterpart.  

In order to familiarize participants with the VR setup and immerse them in the virtual scenario, 

participants were encouraged to explore the virtual environment prior to the experiment for a few 

minutes.  

During both the VR and non-VR experiment, participants placed their hands and arms on a second 

table, beneath the table on which the monitor was placed. This arrangement ensured that the 

participants were not able to see their own hands and arms during the experiment, and hence 

prevented participants from getting distracted due to their own invisibility within VR. 

Similarly, the communication between participant and experimenter was handled through an intercom 

device on the table, to avoid that the participants had to talk to an invisible person in the room.  

For an accurate overlap it was necessary to align the position and orientation of tracking origin defined 

in the physical lab with the corresponding predefined point in the virtual lab. In a first step, the tracking 

origin was defined using SteamVR’s standard setup procedure, to define the tracking origin. In a second 

step, a motion controller was used as a gauge to test the fit of the overlap and the virtual lab was 

moved from within VR along the x-, y-, and z-axis until the overlap was achieved.  
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Figure 2.Comparison of the real test-chamber (left) and the virtual test-chamber (right) in the 

illuminated version. 
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General Procedure 

The standard and the VR experiments were conducted on separate days. The order of experiments 

was counterbalanced across participants.   

To familiarize the participants with the task, a training session of 128 trials was performed before each 

experiment. All training trials used the frequent feature combination of the main experiment 

(ColPE_low/OriPE_low), so that participants could generate expectations about the most likely color 

and orientation combination of the target stimuli. Participants were informed that the color and the 

orientation could change between trials during the main experiment. Furthermore, they were 

informed that color or orientation changes were entirely irrelevant to their task. 

 

Procedure VR Experiment 

Before the experiment, participants could adjust the height of both tables and the chin rest to their 

needs. However, since moving the physical objects would result in a misalignment between the 

environments, both the virtual tables and chin rest were programmed to be moveable via buttons 

presses. After adjusting the height of the physical objects, the experimenter adjusted the height of the 

virtual counterparts via button press until a perfect overlap was achieved.  

Furthermore, before starting with the experiment, participants were familiarized with the virtual 

environment in a short exploration phase. Participants were given a pair of motion controllers as a 

basic hand representation, and they were encouraged to explore and touch the environment. This was 

done to convince participants that the visual environment indeed reflected the physical surrounding.  

During exploration, the virtual environment was normally illuminated. During the experiment, the light 

was turned off and the environment was illuminated by the virtual monitor only.  

To guarantee safety during the VR experiment, participants remained seated on a chair during the 

entire VR session, including the exploration phase to prevent increased postural sway in HMD-based 

virtual environments which have previously been reported (Cobb et al., 1999; Fransson et al., 2019; 

Slobounov et al., 2015).  

 

Data availability statement 

The complete dataset of all experiments, a video of the virtual environment and the UE4 project files 

can be found https://osf.io/8bm9r/ Please note that due to copyright reasons a few textures used for 

this project had to be replaced.
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Behavioral Analysis 

The free statistical software R (R Foundation for Statistical Computing, Vienna, Austria; https://www.r-

project.org) was used for the data analysis. 

For each participant, mean RTs and error rates for each condition and experiment were calculated. 

Error trials, trials following errors and trials with RTs differing more than two standard deviations from 

the mean were excluded from RT analysis.  

The results of the timing validation resulted in substantial differences of the mean measurement errors 

between the experimental setups. To account for these differences, the collected RTs were corrected 

for both experiments, i.e., the observed mean RT error of 46.96 ms was subtracted from all RTs 

collected in the non-VR experiment, hence compensating the delay induced by synchronization of the 

LCD monitor. Similarly, the mean RT error of 1.43 ms observed with the VR setup was subtracted from 

every RT collected in the VR experiment. 

 

Repeated-measures ANOVAs for the RTs and error rates were first conducted for each experiment 

separately, with the within-subject factors ColPE (high, low) and OriPE (high, low). The reported mean 

values for expected and unexpected colors and orientations were calculated by collapsing all trials with 

the specific feature being expected or unexpected (e.g., the mean values for the expected color reflects 

the mean of all ColPE_low/OriPE_low and ColPE_low/OriPE_high trials). To compare behavioral effects 

between experiments, an ANOVA with the within-subject factors ColPE (high, low), OriPE (high, low) 

and Experiment (VR, nonVR) was conducted.  

 

 

Results 

Non-VR Experiment 

Overall, the number of incorrect responses was very low with on average 2.24 % (± 0.40 SEM) errors. 

The ANOVA of the error rates yielded no significant main effect of ColPE (F(1,15) = 3.746, p = 0.072, η𝑃
2  

= 0.200), with 2.04 % errors for expected colors and 3.63 % errors for unexpected colors. Similarly the 

main effect for OriPE, with 2.02 % errors for expected orientation versus 3.79 % errors for unexpected 

orientations, was not significant OriPE (F(1,15) = 3.911, p = 0.066, η𝑃
2  = 0.207). The interaction between 

ColPE and OriPE (F(1,15) = 0.273, p = 0.609, η𝑃
2  = 0.018) was also not significant.  

The ANOVA of the mean RTs revealed a significant main effect for ColPE (F(1,15) = 18.77, p < 0.05, η𝑃
2  

= 0.556) with 516 ms for expected colors versus 543 ms for unexpected colors. Moreover, we observed 

a significant main effect for OriPE (F(1,15) = 17.91, p < 0.05, η𝑃
2  = 0.544), with 515 ms for expected 

orientations versus 548 ms for unexpected orientations. The interaction of ColPE X OriPE was not 

significant (F(1,15) = 0.231, p = 0.638, η𝑃
2  = 0.015). The mean RTs and error rates are shown in Figure 

3. 
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VR Experiment 

Similar to the non-VR experiment, the mean error rate was very low with an average of 2.15 % (±0.36 

SEM).  

The ANOVA of the error rates yielded a significant main effect for ColPE (F(1,15) = 22.2, p < 0.05, η𝑃
2  = 

0.567) with lower error rates for expected colors (1.92 %) compared to unexpected colors (3.74 %). 

The main effect for OriPE was not significant (F(1,15) = 1.633, p = 0.221, η𝑃
2  = 0.098), with error rates 

2.06 % for expected orientations and 2.73 % for unexpected orientations. The interaction was not 

significant (F(1,15) = 0.307, p = 0.588, η𝑃
2  = 0.020). 

Again, the ANOVA of the mean RTs revealed a significant main effect for ColPE (F(1,15) = 14.4, p < 0.05, 

η𝑃
2  = 0.490), with 505 ms for expected colors versus 533 ms for unexpected colors, and a significant 

main effect for OriPE (F(1,15) = 22.57, p < 0.05, η𝑃
2  = 0.601), with 506 ms for expected orientations 

versus 526 ms for unexpected orientations. The interaction of ColPE X OriPE was not significant (F(1,15) 

= 0.061, p = 0.809, η𝑃
2  = 0.004). The mean RTs and error rates are illustrated in Figure 3. 

 

 
Figure 3. Performance measures of the combination of color and orientation manipulations for the 

non-VR and for the VR experiments. A: Error rates non-VR. B: Error rates VR. C: Reaction times non-

VR. D: Reaction times VR. Error bars reflect the 95% confidence intervals. 

 

In the next step, the results of both experiments were combined into one data set and compared 

within a single repeated measures ANOVA with the within-subject factors ColPE (high, low), OriPE 

(high, low) and Experiment (VR, non-VR). The analysis of the combined data set revealed a significant 
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main effect for ColPE (F(1,15) = 12.11, p < 0.05, η𝑃
2  = 0.447) indicating that participants made more 

errors in trials with unexpected colors (mean: 3.26 %) than expected colors (mean: 1.98 %). The main 

effect for OriPE, with error rates of 2.04% for expected and 3.26 % for unexpected color, was not 

significant (F(1,15) = 4.01, p = 0.063, η𝑃
2  = 0.211). We found no evidence for a difference in task-

difficulty in both experiments, as the main effect for Experiment, with an error rate of 2.24 % in the 

non-VR experiment and 2.15 % in the VR experiment, was not significant (F(1,15) = 0.836, p = 0.375, 

η𝑃
2  = 0.053). Consistent with the individual experiments, the interaction of ColPE X OriPE was not 

significant for the combined data set (F(1,15) = 0.355, p = 0.56, η𝑃
2  = 0.023). The interactions of ColPE 

X Experiment (F(1,15) = 0.162, p = 0.693, η𝑃
2  = 0.011) and OriPE X Experiment (F(1,15) = 2.171, p = 0.161, 

η𝑃
2  = 0.126) were not significant. Hence, we could not find evidence that error rates were different 

between experiments. Similarly, the three way interaction of ColPE X OriPE X Experiment was also not 

significant (F(1,15) = 0.025, p = 0.877, η𝑃
2  = 0.002). 

The ANOVA comparing the RTs between experiments resulted in significant main effects for ColPE, 

with mean RTs of 511 ms for expected and 539 ms for unexpected colors (F(1,15) = 23.77, p < 0.05, η𝑃
2  

= 0.613), and for OriPE (F(1,15) = 43.1, p < 0.05, η𝑃
2  = 0.742), with mean RTs of 537 ms for unexpected 

and 511 ms for expected orientations. The main effect for Experiment, with mean RTs of 531 ms in the 

non-VR and 518 ms in the VR experiment, was not significant (F(1,15) = 1.32, p = 0.269, η𝑃
2  = 0.081), 

indicating that the overall reaction times were not differently affected by the stimulus device. The 

interaction of ColPE X OriPE was not significant (F(1,15) = 0.306, p = 0.588, η𝑃
2  = 0.020). The interactions 

of ColPE X Experiment (F(1,15) = 0.337, p = 0.57, η𝑃
2  = 0.022) and OriPE X Experiment (F(1,15) = 2.992, 

p = 0.104, η𝑃
2  = 0.166) were also not significant, indicating that the RT effects were not different 

between experiments. Similarly, the three way interaction of ColPE X OriPE X Experiment was not 

significant (F(1,15) = 0.047, p = 0.832, η𝑃
2  = 0.003). 

 

 

 

Discussion 

The aim of the present study was to examine whether stimulus presentation via an HMD affects early 

processing of basic visual features when compared to a comparable stimulus presentation on a non-

immersive display. In particular, we tested if the reaction time effects observed in a previous study 

(Wiesing et al. 2020), could be replicated in an VR setting. The results did not provide any evidence for 

significant effects of the VR setting.  

In order to generate identical set-ups in VR and its non-VR equivalent, we rendered both the non-VR 

environment and the virtual computer screen within the environment in which the non-VR 

experimental stimulation was presented. Clearly, this posed a challenge for the display resolution of 

the HDM, and we had to slightly alter the stimuli used in the original study (Wiesing et al. 2020). Still, 

the stimuli used in the VR setting and the non-VR setting were matched in the current study. With the 

original stimulus configuration of Wiesing et al. (2020), the spatial frequencies of both Gabor patches 

were hard to differentiate in the VR setting. This problem was resolved after increasing the stimulus 

size. The most likely explanation for this limitation is the low pixel density of the HTC Vive. However, 

newer generations of HMDs, such as the Valve Index, have higher resolution displays and use different 

displays technologies, which help to increase the sharpness of the displays. Future research needs to 

investigate whether these problems persist when using HMDs with higher pixel densities. 
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Another technical issue that had to be addressed in the current study related to the accuracy of RT 

measurements in standard and VR setups, which differed substantially between both experimental 

setups. The most likely explanation for this difference is related to the frame-buffering in the non-VR 

and VR setting and affects the non-VR condition rather than the VR-setting. In particular, we used a 

method that was optimized and validated for the use with HDMs and collided with the buffering 

features of liquid crystal display (LCD) that was used in the non-VR setting. In game engines, the 

sampling rate to measure input such as responses is limited by the frame rate, which decreases the 

accuracy of RT measures substantially. Following the approach previously described in Wiesing et al. 

(2020), we circumvented this limitation in both experiments by collecting the response times via a 

software running in the background of UE4. Benchmarking tests confirmed a high precision and 

accuracy of reaction time measurement obtained in the VR setup, replicating the findings of our 

previous study. However, although we obtained comparably precise measurements, reaction times 

were highly inaccurate when obtained using the non-VR setup. Generally, a higher lag in the non-VR 

setup was not surprising, given the different refresh rates of both setups (non-VR = 60Hz vs VR = 90Hz) 

and superior temporal properties of OLED display (Cooper et al., 2013). Another factor that might have 

contributed to the increased lag are differences of the display refresh between the HTC Vive’s OLED 

panels and LCD panels, as used in the non-VR setup. Typically, computer screens, such as the LCD used 

in this study, do not update the pixels all at once. Instead, the colors of the pixels change sequentially, 

line by line and from top to bottom. However, stimulus onset measurements are synchronized to the 

vertical blank event, i.e., the moment between two display refreshes. As a direct consequence, the 

measured timestamp does not perfectly correspond to the actual stimulus onset, but instead shows 

increasing measurement errors, the lower the position of the stimulus in the display. The panels used 

in the HTC Vive, on the other hand, have so-called global-onset displays, i.e., the entire frame appears 

at once instead of a sequential update. Consequently, with these displays, stimulus-onset 

measurements are unaffected by the location of the stimulus. In the current study, the stimuli were 

presented centrally within the display, causing a lag approximately half of a frame duration, i.e., ~8.33 

ms, when using the LCD panel. The remaining observed lag is most likely explained by frame-buffering, 

which we did not properly account for during data collection. However, using beforehand obtained 

validation data allowed to correct the reaction time data prior to the analysis to account for the 

difference in measurement accuracy. This is essential since without careful consideration of different 

measurement errors, the observed differences could easily be mistaken for a genuine behavioral 

effect.  

Overall, when display resolution and differences in frame buffering are properly considered, it is 

possible to successfully transfer standard behavioral paradigms into a VR-setting.  

The RT pattern observed in the current study is well in line with and replicates the findings from 

previous experiments by Wiesing et al.  (2020). Both studies demonstrated that prediction errors for 

different object features are resolved independently of each other. We further observed symmetrical 

RT costs and increased error rates associated with unexpected features in both the non-VR and VR 

experiment, providing no evidence that the stimulus presentation in current HMDs had a differential 

impact on the early processing of basic visual features when compared to stimulus presentation via a 

standard setup on a computer monitor. Similarly, the overall levels of accuracy and reaction times did 

not significantly differ between the two settings. 

Our results are in line with the studies by Olk et al., (2018) and Roberts et al., (2019), which both were 

able to replicate well known behavioral effects in VR. On the other hand, our findings contrast with 

those studies, which observed behavioral differences between non-VR and VR. Anglin et al. (2017) 
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observed that participants followed different strategies in a visuomotor adaptation task in VR than in 

a standard setup. While the current study used a purely visual feature discrimination task, the study 

of Anglin et al. focused on spatial processing, which might be more easily disturbed by incorrect depth 

cues and spatial distortion caused by modern HMDs. This assumption could similarly explain the 

findings by Kozhevnikov & Dhond (2012), who observed that participants utilized different reference 

frames in mental rotation tasks when the task is conducted in immersive VR as compared the stimulus 

presentation on a computer monitor in both 2D and 3D.  

Furthermore, previous research provided contradictory evidence regarding the allocation of attention 

within immersive VR. While findings from prism and lens induced VACs indicate that attentional 

resources might be reduced due to mechanisms to compensate VACs (Daniel & Kapoula, 2019), 

findings of a study comparing HMDs and normal computer screens found the exact opposite, that 

greater attentional resources are allocated to three-dimensional stimuli in VR as compared to stimuli 

presented on a monitor in 2D (Li et al., 2020).  In the present study we expected differently allocated 

attention between both experiments to manifest in overall different RT cost between experiment, e.g., 

overall higher RT cost in the VR experiment, as well as different error rates, e.g., more errors in total 

in the non-VR experiment. However, we neither found any differences in overall RTs nor in error rates 

between experiments, providing no evidence that optical particularities of HMDs, such as VACs, have 

an impact on the allocation of attention.  

A limitation of the current study in providing a maximum correspondence between experiments, was 

the lack of a full body tracked avatar. Instead, participants only had two motion controllers as basic 

hand representations, which might have resulted in a decreased feeling of embodiment (Pyasik et al., 

2020; Seinfeld & Müller, 2020).  

Overall, the results indicate that early processing of basic visual features does not differ when stimuli 

are presented on a computer monitor or within a modern HMD. Instead, within the context of recent 

literature comparing the different experimental setups, it appears that differences in cognitive 

processing might be related to spatial tasks, which are more easily affected by incorrect depth cues 

and spatial distortions caused by HMDs.  

It is important to note that the present results are task-specific and therefore do not allow any 

conclusions about similar effects when examining the impact of VR on the performance in different 

paradigms. Despite the steadily growing body of literature, the impact of VR technology on cognition 

is still far from understood. Understanding the potential mechanisms underlying cognitive processes 

in physical and virtual environments further will be critical to validly transfer findings from VR 

experiments to real world scenarios. 
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Chapter 4 – General discussion 

 

In a typical experiment in cognitive neuroscience and experimental psychology, the objective is to 

record brain activity and behavior while an individual engages in a cognitive activity. To be able to 

precisely link brain activity to specific cognitive capabilities, neuroscientific studies have usually been 

conducted under controlled laboratory conditions. The need for experimental control is reflected in 

experimental paradigms providing only minimalistic sensory stimulation and allowing only for 

restricted and repetitive behaviors.  

The approach of minimalistic but highly controlled experiments helped scientists to take tremendous 

strides in uncovering the neuronal basis of cognitive processing. However, it has been criticized that 

those minimalistic experimental paradigms fail to replicate the complexity of reality and lack ecological 

validity, casting doubts on the generalizability of findings from the laboratory to real-world situations 

(Schmuckler, 2001; Ulric Neisser, 1976). Since then it has been considered as a trade-off between 

ecological validity and experimental control and researchers found themselves in the dilemma of 

choosing the one or the other (Parsons, 2015). 

Virtual reality has the promise to enable researchers achieving both ecological valid and precisely 

controlled experiments. The potential of virtual reality as a novel tool to study human behavior and 

underlying neural functioning has been recognized for decades (Bohil et al., 2011; Loomis et al., 1999a). 

However, due to the high cost and technical requirements to generate virtual environments, VR has 

been highly underutilized in the past. With the launch of consumer head-mounted displays, high 

quality but low-cost VR-systems, the technology became affordable for most research labs. 

Additionally, with the advances in computing power and widely available rendering engines, the 

interest in VR and the utilization of VR as a research tool has gained some momentum within the last 

years (Vasser & Aru, 2020). 

 

Virtual Reality 

The term virtual reality was originally coined in the 1970’s by Myron Krueger to describe computer 

applications that had to be considered as “responsive environments” (Woolley, 1993). However, it was 

Jaron Lanier, who popularized the term as “three-dimensional realities implemented with stereo 

viewing goggles and reality gloves” (Krueger, 1991). Lanier was the chief executive officer of VPL 

Research, Inc, founded in 1984 and one of the first companies developing and selling commercial VR 

systems.  

In the introduction I defined VR as computer-generated worlds experienced via HMDs. This simplified 

view made sense in the context on the studies reported in chapter 2 and chapter 3. In chapter 2, I 

examined the accuracy and precision of stimulus timing and time measurements when stimuli were 

rendered for and presented within an HMD. In chapter 3, I specifically asked if HMDs might affect the 

early processing of basic visual features differently than a computer monitor.  

However, if we want to exploit the full scientific potential of VR, it is better to understand VR in terms 

of the interplay between participant and content. For example, according to Slater (2018) the 

fundamental element of any VR system includes “a computer-generated world […] that perceptually 

surrounds the participant, and where perception is a function at least of head tracking” (Slater, 2018, 
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p. 431). Others define VR as a ‘‘computer-generated digital environment that can be experienced and 

interacted with as if that environment was real’’ (Jerald, 2015, p. 9) or as a ‘‘set of technologies that 

enable people to immersively experience a world beyond reality’’ (Berg & Vance, 2017, p. 1).  

According to these views, VR is the idea of a computer-generated world which surrounds us, forming 

a parallel reality, with which we can interact naturally, e.g., looking around by turning our head, just 

like we would do in physical reality. Virtual reality is the idea to completely block any sensory input 

coming from physical reality and replacing it with an artificial world, which is experienced and can be 

interacted with, as if it was real.  

 

Virtual Reality as a research tool 

This perspective on VR also explains better why VR holds such an immense promise as a research tool 

in cognitive neuroscience and experimental psychology. VR enables researchers to present a wide 

range of stimulus conditions, which would be difficult or even impossible to create in physical reality. 

For example, Marek & Pollmann (2020) used VR to turn a classical two-dimensional contextual cueing 

task into a three-dimensional VR task, in which participants were surrounded by the stimuli. By using 

this novel stimulus setup, the authors showed that the search time reductions known from the classical 

version of the task, can also be observed when the stimuli were presented outside of the initial field 

of view. Mast & Oman (2004) were able to replicate a perceptual illusion in VR, which was previously 

only observed by astronauts in microgravity. Most astronaut experience so-called visual reorientation-

illusions within microgravity, i.e., occasional changes of the perceived identity of environmental 

surfaces. A surface, which was perceived as a wall might become the ceiling a moment later. Mast & 

Oman recreated the visual ambiguity typically found in spacecrafts within VR, which often do not 

provide clear information about what is, for example, the floor or the ceiling. The authors showed that 

participants can cognitively manipulate the reorientation illusion effects within normal gravity on the 

ground. Others have used VR to create experiments, which would be ethically unacceptable when 

done in physical reality, because it involves placing participants in highly dangerous situations (e.g., 

Ramdhani et al. (2019); Patil et al. (2018)).   

Importantly, since the scenarios are computer-generated, the researcher has control over essentially 

even the smallest detail of the virtual world, allowing them to optimize the entire scene just for the 

experiment in question. Furthermore, researchers can take advantage of the tracking capabilities of 

modern VR systems, allowing them to monitor complex behaviors of freely moving participants with 

great detail, a scenario which would be hard or even impossible to control in physical reality 

(Niehorster et al., 2017). 

      

However, little is known if the virtual setting and the VR technology might engage different cognitive 

processes than physical reality, i.e., if participants respond to virtual stimuli as they would do to real-

world stimuli (Kulik, 2018). Yet, the same can be asked about standard non-VR experiments, which also 

create artificial settings and participant behavior might not match with their real-world behavior (Pan 

& Hamilton, 2018b). This, however, raises questions about the transferability from VR to non-VR 

experiments and vice versa. So far, only a few studies have systematically examined if HMD based VR 

systems affects basic cognitive processes differently than a standard non-VR experiment, i.e., visual 

stimuli are presented on a monitor.  
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Findings from previous research indicate that participants rely on different frames of reference in 

mental rotation tasks (Kozhevnikov & Dhond, 2012) and follow different strategies in visuomotor 

adaptation tasks (Anglin et al., 2017) in VR as compared to a standard setup. Findings of another study 

suggest HMD might provide advantages for the allocation of attentional resources. Li et al. (2020) 

compared the task performance and functional EEG measurements during a visual discrimination task 

within an HMD and in front of a computer monitor. Their results indicate that participant allocated 

greater attentional resources to the stimulus material presented in the HMD condition as compared 

to the non-VR condition. On the other hand, Roberts et al. (2019) observed a similar task performance 

between the VR and non-VR version of a visual flanker task. Other findings indicate that HMDs increase 

cognitive load and reduce motor performance compared to a standard monitor setting (Juliano et al., 

2021). 

Yet so far, no research has examined on which level of processing the observed differences between 

HMD and monitor experiments arise. Here, my aim was to examine whether the processing of 

expectancies for basic visual features is different when the stimuli are presented in an HMD as 

compared to a standard computer monitor. 

 

In a first step, I developed and tested a new behavioral paradigm. The paradigm investigated how 

prediction errors for two simultaneous unexpected features of the same object are formed and on 

which level of processing they arise. The results strongly suggest that unexpected but otherwise task-

irrelevant colors or orientations result in increased reactions times. Furthermore, the results indicate 

that both prediction errors are resolved independently on an early level of processing when different 

feature dimensions are processed in parallel.  

In a series of four experiments, I consistently observed the same pattern of results, showing main 

effects for the individual prediction errors but no interactions between them. This was important with 

respect for the replications planned for the study reported in chapter 3, as it clearly showed that the 

behavioral effects are robust and generally replicable when using the same combination of hardware 

and software.  

 

Another critical factor is the precision and accuracy with which the relevant data can be obtained. In 

chapter 1, the dependent measure I was interested in were reaction times. Measuring reaction times 

consists of two simple time measurements: 1) the stimulus-onset, e.g., target appears on the screen, 

and 2) the response time, e.g., button press. The reaction time can be obtained by calculating the 

difference between the response time minus the time of the stimulus-onset. However, the precision 

and accuracy with which both timepoints can be measured, depends on both the software and 

hardware used for the stimulus presentation as well as for collecting input. 

For example, many liquid crystal displays (LCDs) suffer from unreliable refresh rates and slow response 

times, which can affect both the precision and accuracy of the stimulus timing as well as reaction time 

measurements. In chapter 1 and in the non-VR experiment of chapter 3, stimuli were presented on a 

Samsung SyncMaster 2233. Previous research has shown that the temporal properties of the monitor 

are on par with tested cathode-ray tube (CRT) monitors (Wang & Nikolic, 2011). CRTs are usually 

considered the gold standard for visual stimulus presentation because of their precise and reliable 

timing. 

To my best knowledge no study had yet examined if HMDs provide precise and reliable stimulus timing.  

Fortunately, the temporal properties of the HTC Vive turned out to be highly suitable for experiments 

in vision research. In fact, the so-called global-onset display used in the HTC Vive provide a clear 
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advantage over typical LCDs and CRTs. On typical LCD and CRT screens, the image is built up line by 

line from top to bottom. As a result, the upper part of the image appears earlier than the lower part, 

with the most upper and lowest line of pixels typically being a bit less than a frame duration apart. 

However, the stimulus-onset is typically measured as the begin of the display refresh. Hence, the 

measurement error of the stimulus onset increases, the lower the location of stimulus on the display. 

In contrast, in the displays of the HTC Vive all pixels light up simultaneously, allowing to measure the 

onset of a stimulus independently of its position. 

 

Furthermore, in chapter 1, I used PsychoPy, a standardized and well established toolbox for behavioral 

experiments (Peirce et al., 2011). PsychoPy has been proven to measure reaction times with a high 

accuracy and precision (Bridges et al., 2020). My own measurements, reported in chapter 2, confirm 

these findings.  

However, PsychoPy does only provide limited support for modern HMDs and lacks the rendering 

capabilities required for realistic and interactive virtual worlds. Instead, many studies rely on game 

engines, such as Unity or Unreal Engine. However, game engines are not designed or optimized for 

behavioral experiments. In fact, game engines lack many basic features, required by most experiments. 

For example, PsychoPy provides several functions to create the most common visual stimuli used in 

experiments, such as Gabor patches or random-dot stereograms. On the other hand, in a game engine 

such as UE4, one will look in vain for a function to create a basic Gabor patch. In fact, the Gabor patches 

presented in both experiments of chapter 3 were created in PsychoPy and stored as textures, which 

were applied to the display of the virtual monitor. Similarly, game engines do not provide tools which 

help scientists to setup the trial structure and define stimulus events, and game engines suffer from 

constraints regarding data collection and data quality.  

Fortunately, in the recent years, an increasing number of scientific toolboxes for game engines have 

been released and are in development. For example, Unity Experiment Framework (UXF) intends to 

provide a framework to setup and control experiments and to simplify the data collection for 

behavioral experiments using Unity (Brookes et al., 2020). Toggle Toolkit allows to setup triggers (e.g., 

collisions or button presses) and toggles (changing the state of an objects, e.g., turning light on or off) 

as well as to log the associated data for later analysis (Ugwitz et al., 2021). VREX is another example, 

which provide tools to setup experiments and come with various study protocols for attentional or 

memory tasks (Vasser et al., 2017). Other toolboxes provide solutions to combine the VE with 

simultaneous physiological and kinematic measurements (Grübel et al., 2017; Williams et al., 2019; 

Wolfel et al., 2021).  

However, although a lot of progress has been made in various areas from setting up and controlling 

VR experiments, simplifying data collection, and synchronizing different data streams, to my 

knowledge no research had examined the precision and accuracy of stimulus timing and time 

measurements, when using a game engine in combination with a modern HMD-VR system.  

Especially the limitations in obtaining the correct time of a stimulus-event like the stimulus-onset have 

not received much attention yet. However, to be able to relate functional or behavioral data to ongoing 

cognitive processes, it is crucial to determine when certain sensory events occurred. 

While it is technically relatively easy to measure these events using game engines, doing so precisely 

and accurately is not that trivial. In fact, even software toolboxes which are developed explicitly for 

behavioral experiments have been observed to struggle with precise and accurate time measurements 

and stimulus timing (Bridges et al., 2020; Garaizar et al., 2014).  
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In chapter 2, I have demonstrated that both stimulus onset and response time measurements are 

imprecise and inaccurate when obtained using the standard API of UE4. The reasons can be explained 

by the underlying architecture of game engines and the graphics pipeline for VR rendering. The central 

component of any application created in a game engine is the game loop. The entire application runs 

in one loop, which handles any processes, from input over physics to drawing objects. The game loop 

iterates once every frame, limiting the sampling rate for any measurement within the game loop to 

the current frame rate. Consequently, the frame rate of an experiment directly determines the best 

possible precision with which data, such as timestamps, can be obtained. Furthermore, to prevent 

visual artifacts, such as tearing, each major VR runtime software synchronizes the framerate to the 

refresh rate of the display. According to my own measurements, the refresh rate of the HTC Vive is 

89.53 Hz, i.e., about every 11.17ms a new frame. Hence, every time measurement will vary in a range 

of about ± 5.59 ms, which was also confirmed by my data.  

A possible solution is to render the scene at a higher rate than the display is able to refresh.  Quinlivan 

et al. (2016) aimed to render the visual scene at 1000 frames per second (FPS), allowing them to collect 

input and tracking data with a millisecond precision. However, the downside of this approach is the 

performance cost associated with the increased frame rate, making it unsuitable for realistic and 

complex rendered scenes. Although the environment and stimuli of Quinlivan et al. (2016) were 

minimalistic and probably causing only a low overhead, the frame rate  eventually fluctuated in a range 

of 600 and 1000 FPS. The authors accounted for this by resampling the data at 500 Hz.  

Others have suggested to work around the above discussed limitations by using a microcontroller  as 

an external synchronization device and to separate the measurements from the rendering engine 

(Alsbury-Nealy et al., 2021; Watson et al., 2019; Wienrich et al., 2018). These studies were able to 

improve the precision of response time measurements, by collecting the button input externally via an 

Arduino. Watson et al. (2019) were also able to improve the accuracy of stimulus-onset measurements 

by using a photodiode to detect a small peripheral stimulus flashing simultaneously with the actual 

stimulus, when used on a normal computer screen. However, even a small photosensor and flash 

stimulus will probably be noticeable and distracting for participants.  

Instead, I proposed an approach that solves both the stimulus-onset as well as the response time 

measurements on the software-level, without requiring additional hardware. Instead, I outsourced the 

measurements into another software, running in the background of UE4 and thereby circumventing 

the above-described limitations. Benchmarking data reported in chapter 2 confirmed the high 

precision and accuracy of my method. 

 

Before conducting the experiments of chapter 3, I conducted some benchmark tests of the reaction 

times measurements for both the non-VR and the VR experiment. While the results of the VR 

experiment were basically identical to results reported in chapter 2, the accuracy of reaction times 

measured in the non-VR experiment was clearly off. The differences can partially be explained by the 

different temporal properties of the OLED displays of the HTC Vive and the LCD monitor. As mentioned 

above, the HTC Vive displays light up and present the new frame at an instance, while the LCD updates 

continuously from top to bottom. The test stimulus for the validation was placed at the center of the 

screen, while the stimulus onset was measured at the vertical sync, i.e., at the start of a new display 

refresh. However, this explains only a small amount of the observed lag of maybe 7-8 ms. However, 

most of the lag can be explained in that I did not properly account for additional frame buffering used 

for non-VR rendering. Fortunately, the precision was similarly high for both experiments, which 

allowed me to correct the reaction time data before running the analysis.  
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The timing results of chapter 3 clearly demonstrate that comparison between non-VR and VR 

experiments need to consider and correct for timing differences between HMDs and normal monitors 

as well as the associated rendering processes. Otherwise, it becomes arbitrary whether a behavioral 

difference results from the technology or is the mere product of different data quality between 

experiments.  

As an additional sanity check I created both the VR and the non-VR experiment with UE4. The original 

study, on the other hand, was created in PsychoPy. Hence, apart from the modification in stimulus 

size, both the original and the new non-VR version differed only in the underlying software. Hence, any 

failure to reproduce the original effects in the non-VR UE4 version would suggest some software 

related issues.  

 

The virtual environment, in which the VR experiment of chapter 3 took place, was a realistic and 

accurate replica of the real chamber in which both experiments took place. This was done to establish 

two identical experimental setups, which ideally only differ in the display device. The virtual replica 

corresponded not only visually with its real-world counterpart but also with respect to the scale, 

allowing me to use the visual rendering as an overlay which I blended onto the physical EEG chamber. 

As a result, the visual rendering was enhanced by the non-visual physical properties of the 

environment of the real physical environment itself. The sensory experience of, for example, touching 

the table with a controller provided not only the accurate visual feedback. Participants also felt the 

table blocking their movement and were able to hear the noises generated by the collision of controller 

and table.   

 

What I did here, was to increase the immersion of the virtual EEG chamber. With immersion I refer to 

the so-called system immersion, which is an objective and theoretically quantifiable property of any 

VR system (Nilsson et al., 2016; Slater, 1999), describing the fidelity of the system to create vivid and 

interactive virtual environments, while shutting out physical reality (Cummings & Bailenson, 2016). For 

example, a high-resolution HMD is more immersive than a low-resolution but otherwise identical 

HMD. Similarly, a VR system that can simulate multiple sensory modalities has a higher immersion than 

a purely visual VR system. According to Mel Slater, immersion can be understood as the sum of 

sensorimotor contingencies (SCs) supported by a VR-system (Slater, 2009). SCs refer to all actions that 

can be carried out, in order to perceive the world, for example, by moving the head or body (O’Regan 

& Noë, 2001).  

Previous studies indicate that more immersive virtual environments can improve cognitive functions, 

such as memory (Krokos et al., 2019; Sutcliffe et al., 2005) and elicit more intense emotional responses 

(Diemer et al., 2015; Visch et al., 2010). A recent study demonstrated how the lack of tactile and haptic 

feedback affects the task performance in an obstacle avoidance task (Giesel et al., 2020). The authors 

explained the differences in behavior by the disparity in expected consequences of actions between 

both conditions. 

Furthermore, high levels of immersion are associated with a stronger sense of presence. The term is 

rooted in the concept of telepresence coined by Marvin Minsky, to describe the feeling that a person 

might have while controlling a robot remotely (Minsky, 1980). In the context of VR, however, it is 

commonly just referred to as presence or the sense of presence, which typically is used to describe the 

subjective feeling of being there, in the mediated or computer-generated environment rather than in 

physical reality (Weber et al., 2021). Presence or telepresence is regarded as one of the most crucial 

aspects of a VR experience, maybe even its defining feature (Slater & Wilbur, 1997; Steuer, 1992).  
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Lombard & Ditton (1997) described presence as the “perceptual illusion of nonmediation [which] 

involves continuous (‘realtime’) responses of the human sensory, cognitive and affective processing 

systems”. According to the authors, the illusion of non-mediation occurs when the participant does 

only perceive the virtual content but not the delivering medium and responds as if it would not exist. 

They point out that, although all experiences are mediated through the sensory system, non-mediation 

explicitly refers to experiencing the virtual environment without experiencing the mediating 

technology.  

Another influential account on presence distinguishes between two perceptual illusions, the Place 

Illusion (PI) and the Plausibility Illusion (Psi). While PI describes the feeling of being there, Psi describes 

the feeling of “is apparently happening is really happening (even though you know for sure that it is 

not)” (Slater, 2009). A key component for Psi are events in the environment which directly refer to the 

participant, without them having control over it, such as a computer character smiling at the 

participant as soon they have eye contact (Slater, 2009). Slater describes both dimensions as illusions 

to point out that the participants have the sensation of being there and that things a really happening 

despite the knowledge that this is not the case. Furthermore, both PI and Psi are orthogonal factors. 

According to Slater, if both PI and Psi are experienced, participants will respond realistically, i.e., as in 

a comparable real situation.  

 

A factor, for which I did not account for, was the reduced field of view in the VR experiment. While in 

the non-VR experiment, the entire visual field was provided with visual input, in the VR condition, the 

horizontal field of view was restricted to approximately 110° (Al Zayer et al., 2019). In the study by Li 

et al. (2020), participant were wearing the empty frame of an HMD to reduce the FOV in the non-VR 

condition. Before conducting the experiments reported in chapter 3, I tried the same approach and 

wore the frame of an old and disassembled HMD watching at my stimuli on a computer screen. 

However, the light of the display caused a few but clearly visible reflections on the inside of the frame 

and I was concerned that this might cause distractions interfering with the task. Furthermore, an 

empty frame can only be seen as an approximation of the HMD’s FOV, which depends on different 

factors, such as the distance between lenses and the eyes.  

 

Another factor for which I did not account for, was the lack of a visible body in the VR experiment. 

Since participants cannot see their own body while in HMD-VR, it is common to include a self-avatar, 

i.e., a virtual representation of a body that is experienced from a first-person perspective and provides 

a substitute to their real body. This can give rise to so-called embodiment-illusions or virtual 

embodiment, in which the participants experiences the virtual body as their own (Gonzalez-Franco & 

Peck, 2018; Slater, 2009; Spanlang et al., 2014; Yuan & Steed, 2010).  

Self-avatars have several benefits as they for example provide visual cues about the participant’s 

location and immediate feedback about one owns actions. Another advantage is non-verbal 

communication in shared virtual environments (Y. Pan & Steed, 2019). Self-avatars have been found 

to improve distance judgements in VR (Mohler et al., 2010; Ries et al., 2008), which is more 

pronounced the more embodied the participants were (Gonzalez-Franco et al., 2019). Others have 

shown that self-avatars can reduce cognitive load and  improve memory and cognitive processing 

within VR (Steed et al., 2016).  

Here, I decided to not include a self-avatar but instead to only show floating controller models while 

participants familiarized with the VE. This was mainly done due to the technical requirements for the 

appropriate implementation of a full-body self-avatar, which are substantially higher than floating 
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controllers. Current off-the-shelf VR systems, such as the HTC Vive used in chapter 3, only provide 

motion-tracking for the head and both hands (3-point tracking), while feet and the rest of the body are 

not tracked. This makes it impossible to accurately to track and replicate the participant’s movement 

onto the avatar. As a possible consequence, participants would experience a conflict between vision 

and proprioception, which could make it difficult to interact naturally with the VE  or result in a 

reduction of presence (Slater & Steed, 2000). Incongruencies between the participant’s and their self-

avatars movement and size have also been found to increase simulator-sickness (Kim et al., 2020).   

To ensure that the missing body did not serve as a distraction during the experiment, the experimental 

setup was arranged that the body of the participants was also in the non-VR experiment out of view. 

Participants placed their arms on a second table, hidden from view by the table on which the monitor 

was placed.  

Furthermore, during the familiarization phase, prior to the VR experiment, participants were handed 

a pair of tracked motion controllers, as a simple hand representation. Presenting controller models 

instead of hands or a full-body self-avatar is comparably easy, given that the controllers are rigid bodies 

which already provide all necessary sensors for the tracking.  

 

During the piloting phase, I noticed that comparably low pixel density of the HTC Vive made it almost 

impossible to differentiate between the high and low spatial frequency of the Gabor patches, when 

using the original stimulus parameters, as reported in chapter 1. Although the issue was easily resolved 

by increasing the stimulus size, it clearly demonstrates limitations for present small details. 

Fortunately, the resolution of newer HMDs has seen a massive increase. For example, the HTC Vive 

used in my studies provides 1080x1200 pixels per eye. The latest Vive HMD released by HTC, the HTC 

Vive Pro 2, already provides a resolution of 2448x2488 pixels per eye, making it unlikely to observe the 

same difficulties to clearly present small details as I have observed. 

 

Testing the same group of participants in each experiment in counterbalanced order, both the non-VR 

and the VR experiment replicated the behavioral effects of the study reported in chapter 1. Again, the 

results clearly indicated that both the prediction errors for color and orientation can be manipulated 

independently of each other, regardless of whether the features belonged to the same objects or not. 

Consequently, the no evidence for differences between the two new experiments were found. This 

clearly indicates that the processing of early visual feature expectations as well as their violations does 

not differ between both experimental setups.  

The results are in line with Roberts et al. (2019), who also replicated the results previously observed in 

a standard non-VR setup. On the other hand, the results by Li et al. (2020) suggest that selective 

attentional abilities might be enhanced within HMDs. Here, I expected to find different overall reaction 

times or errors rates between the experiments, if one of the experimental setups provides attentional 

advantages over the other. However, I neither observed differences in overall reaction times or error 

rates between the experiments, providing no evidence that the HMD caused differences in the 

distribution of attention. Importantly, the experiments in chapter 3 were not designed to compare the 

distribution of attention in VR and non-VR setups. Therefore, the paradigm might have failed to 

provide the sensitivity to detect differences in the allocation of attention, explaining the discrepant 

results of my own experiments and the study by  Li et al. (2020). Another explanation could be the 

differences in the stimulus material.  Li et al. (2020) used a three-dimensional scene, in which target 

and distractor stimuli were presented at different locations, including differences in depth. However, 

in contrast to the HMD, the monitor used in the non-VR condition was not capable to present the 
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stimuli in stereoscopic depth. Hence, the differences in depth information between the experiments 

might explain the observed attentional advantages. Furthermore, in the non-VR condition, participants 

saw only a fraction on the virtual environment on a monitor, while they found themselves surrounded 

by the same environment in the VR condition. Previous research indicates that this difference in 

perspective engages different spatial reference frames and spatial encoding. Kozhevnikov & Dhond 

(2012) compared mental rotation in three different display conditions, a stereoscopic HMD, a 

stereoscopic monitor (anaglyph glasses) and a traditional monitor. Their results suggest that 

participants utilized scene-based reference frames and allocentric encoding for both, the traditional 

and the stereoscopic monitor conditions. In contrast, only in the HMD condition, participants 

employed an egocentric frame of reference.  

In chapter 3, I presented in both experiments two-dimensional stimuli on an ordinary computer screen, 

either a physical or virtual one. Hence, a difference between my experiments and the study by Li et al. 

(2020) which might explain the different findings, is the spatial encoding in the VR conditions of both 

studies.  

Generally, the results of chapter 3 indicate that early visual processing is not different when stimuli are 

presented in the HTC Vive as compared to a standard computer monitor. Differences between VR and 

non-VR reported by previous studies appear to be related to spatial processing. More research is 

needed to investigate potential different mechanisms underlying cognitive processing in virtual 

environments and both standard monitor-based experiments and real-world scenarios. Understanding 

how the technology used for stimulus presentation and behavioral measurements affect cognitive 

processing will be critical to validly compare findings obtained with different technology and to 

eventually transfer findings from experiments to real-world scenarios.  

 

Limitations 

A limitation of the measurement method presented in chapter 2 is clearly the usability. While the 

method is already able to provide precise and accurate time measurements, the actual 

implementation, and its integration into UE4 is still in a premature state, e.g., the synchronization with 

UE4 depends on a custom build of UE. Moreover, the current implementation is limited in its 

functionality and was custom-made to fit the requirements of my research projects, making it 

complicated to adapt the method for other research projects.  

Another, more general limitation if the approach is the dependency on third-party tools. In principle, 

every update of UE4 or SteamVR, as well as the driver of the HTC Vive, could potentially break the 

correct functioning of the background application. Hence, the method needs to be regularly 

revalidated and to be adapted to software changes.  

To get the method future-proof, a logical next step would be to rewrite the entire logic using OpenXR, 

a new industry-wide standard API, which works across different platforms and VR hardware brands. 

Soon, OpenXR will completely replace the individual APIs from the different hardware vendors, 

including SteamVR’s own API OpenVR, which was used for the background application. However, this 

is actually a good development and makes it easier to develop software tools, like the background 

application, or entire toolboxes based on the same standard and supporting all platforms and devices.   

Furthermore, in all my reaction time measurements reported chapter 2, I used a standard response 

pad by the same company behind the BBTK. The main reason was the usability, since the BBTK 
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response pad provides already the necessary plugs to control it via the BBTK. However, this did not 

stop me from opening one of the Vive motion controllers and to solder some cable on the mainboard 

to connect it to the BBTK. However, unfortunately SteamVR’s API OpenVR does not provide the 

necessary functions to easily intercept the input signals of the controllers in the way, I was able to 

intercept the input provided by the BBTK response pad. Hence, without further tests of the controllers, 

studies should prefer traditional input devices, if possible, to ensure precise input data.  

 

In chapter 2, I only tested the HTC Vive. Recently, Tachibana & Matsumiya (2021) examined the 

accuracy and precision of visual and auditory stimulus presentation with Python 2 and Python 3 and 

two different HMDs, the Oculus Rift CV1 and the HTC Vive Pro. Their study revealed some issues of 

stimuli with short stimulus durations. For auditory stimuli, they observed lags for auditory stimuli, 

when they were presented for short durations of one or two frames with both the Oculus Rift CV1 and 

the HTC Vive Pro. Interestingly, they also observed lags of visual stimuli with a duration of a single 

frame, but only when using the Oculus Rift.  

 

Furthermore, it is important to point out, that results obtained in chapter 3 are based on only one 

experimental paradigm and only tested the processing of feature expectations for color and 

orientation. Hence, based on these results it is not possible to draw conclusions about other tasks or 

even visual features. For example, previous research has repeatedly shown that distance and size 

perception is distorted in VR when compared to real-world environments (e.g., Kelly et al., 2017; 

Maruhn et al., 2019; Phillips et al., 2009) and that spatial processes also differ between VR and 

standard setups (Anglin et al., 2017; Kozhevnikov & Dhond, 2012). Hence, it is conceivable that 

manipulations of the expected stimulus size might result in different findings between both setups.    
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Summary 

In standard lab-based psychological experiments, the stimulus material is usually minimalistic, and the 

behavior of participants is measured in repetitive and simple responses such as simple button presses.   

Virtual reality has the potential to study brain function and behavior of freely moving participants in 

realistic and ecologically valid environments, without sacrificing experimental control. However, little 

is known yet if VR engages the same cognitive processes as equivalent real-world situations (Kulik, 

2018; Pan & Hamilton, 2018a).  

Here, I asked whether the simple fact that an experiment takes place in VR, changes the behavior of 

participants. From previous research it is well known that spatial perception is distorted in VR, as 

egocentric distances are usually underestimated in VR (Interrante et al., 2006; Kelly et al., 2017), when 

compared to real-world estimates. Also, when comparing the task performance between VR and a 

standard monitor setup, differences in visuomotor adaptation (Anglin et al., 2017) and mental rotation 

(Kozhevnikov & Dhond, 2012) have been observed.  

My dissertation was concerned with the question if the VR technology affects already early visual 

processing differently than a typical computer monitor. If differences in visual processing exist, it is 

important to know on which level of processing these differences arise. Yet, to my knowledge, no 

previous research has investigated if VR already affects early processing of basic visual features.  

 

First, a new behavioral paradigm was developed for a standard monitor-based setup and extensively 

tested to provide robust and replicable behavioral effects. The paradigm investigated how prediction 

errors of basic visual stimulus features are formed and on which levels of processing they arise. In a 

series of four experiments, participants consistently responded slower, when the color or the 

orientation of the targets were different than expected. This was irrespective of the fact that both the 

color and the orientation were completely task irrelevant in three of the four experiments and whether 

the features belonged to the same object (Exp 2 – Exp 4) or whether the features were separated on 

different objects (Exp 1). Increasing the relevance of the features and switching to an explicit 

manipulation of the expectations, in Experiment 3 of chapter 1, did not change results.  

All in all, the behavioral effects turned out to be robust and replicable, when tested with the same 

combination of software and hardware, which was a critical premise for the comparison between a 

standard experiment and the same experiment in VR. 

 

A critical premise for such a comparison is that both experimental setups provide the same high 

precision and accuracy for controlling stimuli and to collect behavioral data. In chapter 2 and chapter 

3, I demonstrated that the accuracy and precision of reaction time measurements is highly dependent 

on the hardware and software used for the experiment. Here, the HTC Vive HMD system turned out 

to be well suited for experiments, which require displays with reliable timing parameters. Stimuli 

presented in the HTC Vive in combination with Unreal Engine were highly precise and accurate, when 

taking the true refresh rate of 89.53 Hz into account. Furthermore, especially the global onset display 

provides advantages over common LCDs for measuring the stimulus-onset. 

Nevertheless, my experiments revealed that reaction times obtained with UE4’s programming 

interface were highly inaccurate and imprecise. This was explained by the underlying architecture of 

game engines and the graphics pipeline for VR rendering. Furthermore, I proposed a novel software-

based method to circumvent these limitations, by recording the data in a background process separate 
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from the engine’s internal logic. This approach turned out to provide reaction time measurements with 

a comparable precision and accuracy as provided by standard toolboxes such as Presentation and 

PsychoPy. The proposed method has not only proven to provide highly accurate and precise reaction 

time measurements, but also provide a basis for other time-sensitive measurements, such as EEG.  

 

For the VR experiment of chapter 3, I aimed to design the experimental setup of the VR experiment as 

close as possible to the non-VR experiment. This included an accurate model of the entire EEG 

chamber, in which the experiments were conducted. In the end, both the non-VR and the VR 

experiment replicated the original findings obtained with PsychoPy in chapter 1. Hence, the results did 

not provide any evidence that basic visual feature and unexpected changes of these features is 

different just because the stimuli are presented in an HMD.  
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