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Abstract

Abstract

Modern virtual reality (VR) technology has the promise to enable neuroscientists and psychologists to
conduct ecologically valid experiments, while maintaining precise experimental control. However, in
recent studies, game engines like Unreal Engine or Unity, are used for stimulus creation and data
collection. Yet game engines do not provide the underlying architecture to measure the time of
stimulus events and behavioral input with the accuracy or precision required by many experiments.
Furthermore, it is currently not well understood, if VR and the underlying technology engages the same
cognitive processes as a comparable real-world situation. Similarly, not much is known, if experimental
findings obtained in a standard monitor-based experiment, are comparable to those obtained in VR by
using a head-mounted display (HMD) or if the different stimulus devices also engage different cognitive
processes.

The aim of my thesis was to investigate if modern HMDs affect the early processing of basic visual
features differently than a standard computer monitor.

In the first project (chapter 1), | developed a new behavioral paradigm, to investigate how prediction
errors of basic object features are processed. In a series of four experiments, the results consistently
indicated that simultaneous prediction errors for unexpected colors and orientations are processed
independently on an early level of processing, before object binding comes into play.

My second project (chapter 2) examined the accuracy and precision of stimulus timing and reaction
time measurements, when using Unreal Engine 4 (UE4) in combination with a modern HMD system.
My results demonstrate that stimulus durations can be defined and controlled with high precision and
accuracy. However, reaction time measurements turned out to be highly imprecise and inaccurate,
when using UE4’s standard application programming interface (API). Instead, | proposed a new
software-based approach to circumvent these limitations. Timings benchmarks confirmed that the
method can measure reaction times with a precision and accuracy in the millisecond range.

In the third project (chapter 3), | directly compared the task performance in the paradigm developed
in chapter 1 between the original experimental setup and a virtual reality simulation of this
experiment. To establish two identical experimental setups, | recreated the entire physical
environment in which the experiments took place within VR and blended the virtual replica over the
physical lab. As a result, the virtual environment (VE) corresponded not only visually with the physical
laboratory but also provided accurate sensory properties of other modalities, such as haptic or acoustic
feedback. The results showed a comparable task performance in both the non-VR and the VR
experiments, suggesting that modern HMDs do not affect early processing of basic visual features
differently than a typical computer monitor.

Diese Dissertation wurde von der Humanwissenschaftlichen Fakultdt der Universitat zu Koln im (Juli
2022) angenommen (Beschluss des Promotionsausschusses vom 20.10.2010).
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Introduction

Introduction

Research in cognitive neuroscience aims to understand human behavior and its underlying brain
functions. A prerequisite to successfully relate behavior and brain activity to specific cognitive
functions are experiments with a high internal validity. Internal validity describes to which extent a
study can draw conclusions on cause and effect and how well alternative explanations can be ruled
out. One critical factor for internal validity is high experimental control, i.e., minimizing the impact of
variables other than the variable of interest on the experimental outcome. To achieve high
experimental control, experiments in cognitive neuroscience are preferably conducted using simplified
and minimalistic stimuli as compared to real-world scenarios. Minimalistic stimuli allow to precisely
control and manipulate certain stimulus features. Behavioral responses are similarly often restricted
and repetitive, as scientists aim to obtain behavioral measures, which are comparable between
participants.

However, it has been criticized that these sterile laboratory experiments poorly relate to real-world
phenomena, making it difficult to transfer experimental findings to real-life situations. Hence, many
researchers have argued for higher ecological validity in behavioral experiments to promote the
generalizability of experimental findings (Kingstone et al., 2008; Parsons, 2015). Ecological validity
refers to the relation between real-world phenomena and the experimental context. For example, in
1976 Neisser criticized that “contemporary studies of cognitive processes usually use stimulus material
that is abstract, discontinuous, and only marginally real. It is almost as if ecological invalidity were a
deliberate feature of the experimental design” (Neisser, 1976, p. 34) (accentuation by the author).
However, although Neisser’s criticism is almost half a century old, researchers remained hesitant to
strive for increasing ecological validity in behavioral experiments. The reasons for this situation are
manifold. For example, the concept of ecological validity lacks a clear and generally accepted definition
and its overall usefulness has been questioned (Schmuckler, 2001). However, beyond theoretical
considerations for or against ecological validity, one important factor that has kept researchers to
increase ecological validity is experimental control. Both concepts have been considered as trade-offs
(Loomis et al., 1999a), emphasizing tensions between researchers striving for the one and those
striving for the other (Parsons, 2015).

A promising middle ground comes in form of Virtual Reality (VR). VR has the potential to bring worlds
into the laboratory and it allows transferring experimental paradigms from the laboratory into
naturalistic but highly controlled scenarios (Kothgassner & Felnhofer, 2020). Although VR’s benefits
have been recognized for decades in neuroscientific research (Bohil et al., 2011; Loomis et al., 1999b),
it has been highly underutilized in cognitive neuroscience and experimental psychology. Yet, advances
in 3D rendering and virtual reality technology in the recent years, as well as the decreasing cost of
associated equipment have led to an increasing interest in VR as a research tool.

VR places the participant in computer-generated and ideally multi-sensory three-dimensional
environments, while at the same time shutting out sensory input from real-world stimuli as much as
possible. In other words, the idea of VR is to immerse the participant into a simulated reality, which is
experienced as if it were real. However, an effective VR simulation constitutes not only sophisticated
devices for sensory stimulation, but instead requires the ability to closely monitor the participant’s
behavioral responses and to translate these into virtual interactions in real-time. By default, typical
state-of-the-art consumer VR systems come with motion tracking systems for head and hand
movements. Some systems, such as the SteamVR tracking system, allow to increase the number of
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tracked object or body parts, by including additional tracking sensors. Also, eye-tracking, finger
tracking or tracking of facial gestures are available on the consumer level. On the professional sector,
VR systems combined with physiological sensors such as heart rate, galvanic skin-responses, or even
integrated electroencephalograms (EEG) are available. Hence, a typical VR system is both, a device for
stimulus delivery but also a sensitive and versatile measurement tool. Not surprisingly, with the release
of low-cost consumer VR systems, numbers of research papers within neuroscience and experimental
psychology utilizing VR, has been growing steadily in the recent years (Vasser & Aru, 2020).

However, although VR found its way into research labs, to date, there is a lack of standards and good
practice guidelines regarding VR experiments, a situation which has been compared to the “Wild West”
(Birckhead et al., 2019). For example, within the scientific literature the definitions of Virtual Reality
range from “computer-generated world” to wall projector such as a Cave system (X. Pan & Hamilton,
2018b; Slater, 2018; Takac et al., 2021). Hence, the term needs some clarification. Within the context
of this introduction as well as the chapters 2 and 3 of this dissertation, everything discussed about VR
will primarily refer to head-mounted display (HMD) based VR systems. The main reasoning is to keep
the introduction short and concise as well as the research questions of the studies reported in chapter
2 and 3 specifically focused on HMD-based VR systems. In chapter 2, | investigated the precision and
accuracy of stimulus timing and time measurements in experiments based on HMDs and associated
rendering processes. In chapter 3, | examined if the simple fact that an experiment takes place in VR,
i.e., stimuli were presented via an HMD, changes the behavior of the participants when compared to
a standard monitor-based setup.

Furthermore, the recent surge in VR studies is mainly driven by the release of consumer HMD systems,
such as HTC Vive or Valve Index. While for example, CAVE systems come at a high cost and require a
lot of space and technical expertise, a state-of-the art HMD system can be bought already for a few
hundred Euro and is considerably easier to install and to use. Therefore, for the foreseeable future,
HMDs will be the dominant form of VR systems that can be found in research labs.

Currently most research experiments have been created by using modern game engines, such as Unity
or Unreal Engine. While game engines provide powerful tools for the creation of stimulus
environments and interactions in VR, they do not contain certain key validated technical features that
are critical for neuroscientific experiments. For example, game engines run in a so-called game-loop.
The game-loop contains several processes such as physics simulations, input processing or drawing of
objects, and typically iterates once with every display refresh, when using HMDs. Consequently,
sampling rates for data collection, e.g., motion tracking data or button presses, are directly limited by
the refresh rate of the HMD. Typical refresh rates of modern HMDs range between 80 Hz and 144 Hz,
which limit the precision and accuracy with which for example stimulus timing can be controlled and
with which time-sensitive measurements can be obtained within the game-loop.

Furthermore, although VR comes with the great promise towards more naturalistic and generalizable
experimental designs, currently it is not well understood if and how the VR setting itself might bias
behavioral responses differently than the real world. In other words, it is not known if virtual settings
engage the same cognitive processes as the equivalent real-word situation (Kulik, 2018; Pan &
Hamilton, 2018a; Vasser & Aru, 2020).

If the simple fact that an experiment takes place in VR, results in different behavioral responses than
the equivalent real-world setting, the generalizability of research findings from VR studies would need
to be questioned. However, the same is obviously true for non-VR experiments, e.g., experiments in
which visual stimuli are presented on a computer screen. In both experiments participants enter an
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alternate reality, which is different from reality we know from our everyday life (Pan & Hamilton,
2018a).

However, this implies that VR experiments might also engage different cognitive processing than
standard non-VR experiments, questioning the transferability of experimental findings from VR to non-
VR experiments and vice versa.

Consequently, an important issue to address is whether VR experiments evoke the same behavioral
responses as non-VR experiments. Given the technological differences between a standard computer
display and the rather complicated optics on an HMD, behavior differences could for example be driven
by the stimulus presentation device itself. Furthermore, the current generation of HMDs still suffers
from various technological limitations like lenses with a fixed focal length, resulting in side-effects like
vergence-accommodation conflicts (Kramida, 2015). However, so far, studies directly comparing
monitor-based and VR experiments are rare.

Here, my aim was to examine if reaction time costs induced by unexpected basic visual features differ
between visual stimulus presentation with an HDM and a standard monitor. The central idea for this
venture was to create two identical experimental setups, with ideally the only difference being that
one experiment takes place in VR, while the other one is conducted with a standard non-VR
experimental setup and to test if both experiments will yield the same results.

In chapter 1, | developed a new behavioral paradigm, which served for the direct comparison between
VR and non-VR setup in chapter 3. In a series of four experiments, | investigated how prediction errors
of basic visual stimulus features, such as color and orientation, are formed and on which levels of
processing they arise. In the first experiment, participants saw two Gabor patches on a computer
screen, of which one feature (color) was manipulated on one grating and another feature (orientation)
on the other grating. Expectations were implicitly manipulated by presenting a specific color and
orientation more frequently than another one. However, these features were rendered completely
task irrelevant. Instead, participants had to differentiate whether the spatial frequencies of both
gratings were identical or different.

The results showed that responses were slower when the color or the orientation was unexpected,
without an indication for an interaction between the prediction errors. In a second experiment, | tested
if there is a mutual influence of both types of predictions errors, when both features belong to the
same object. In general, the paradigm was identical to Experiment 1 with the only difference that both
colors and orientations were manipulated on each grating simultaneously. Again, the results clearly
indicated prediction errors of both features affected the task performance independently, without any
evidence for a mutual interaction. In Experiment 3, feature expectations were manipulated explicitly
by the means of textural cues indicating the most likely color and orientation in the next trial.
Additionally, we were concerned that the task irrelevance of the features resulted in participants not
paying enough attention to them and thereby inhibit feature-binding, a process that requires attention
according to influential theories like the Feature Integration Theory (FIT) (Treisman & Gelade, 1980).
Hence, to increase the relevance of the color and orientation, after each block of 64 trials, participants
had to rate the proportion of trials in which the cue correctly predicted upcoming features. Although
the analysis of the cue ratings showed that participants paid attention to the cue as well as the
features, the results showed again no evidence for an interaction of both prediction errors. In the last
experiment, | evaluated if the missing interaction was the result of two peripheral presented objects,
requiring participants to divide their attentional resources between the stimuli. In this experiment,




Introduction

only one central grating was presented, and participants had to judge if the spatial frequency was high
or low. As in the previous experiments, | was able to demonstrate the impact on the task performance
for both types of prediction errors independently without any evidence for a mutual influence between
them. Taken together, the results suggest that prediction errors for object features are formed and
resolved on an early level of visual processing, when the features are still processed in parallel.
Furthermore, the consistent results of all four experiments demonstrate that the observed effects are
robust and replicable when tested with a standard setup. This was crucial for the experiments planned
for the study reported in chapter 3, in which | tested if | could replicate the results when the same
paradigm is conducted within VR. Without a robust effect, it would become unclear if behavioral
differences between the experimental setups would be the result of the different hardware or just the
result of a flakey behavioral effect.

As outlined above, most VR experiments in cognitive neuroscience and experimental psychology use
game engines for the stimulus creation and data collection. However, game engines come with known
limitations like limited sampling rates. For the experimental paradigm developed in chapter 1, a
minimum requirement of the stimulus software is the capability to tightly control stimulus timing and
to measure precise and accurate reaction times. Hence, in chapter 2 | determined the level of accuracy
and precision for both stimulus timing and reaction time measurements when using the combination
of Unreal Engine 4 (UE4), SteamVR and the HTC Vive VR system.

In a first experiment, the accuracy and precision of pre-defined stimulus durations were tested.
Objective measurements were provided by means of the Black Box Toolkit (BBTK), a specialized device
for the validation of several timing parameters and time measurements in behavioral experiments. A
white square was presented for a pre-defined duration on the display. A photo-sensor, connected to
the BBTK, was used to measure the duration of each stimulus with a sub-millisecond precision. While
the stimulus durations turned out highly precise, the measured stimulus durations always exceeded
the pre-defined duration a bit. In my tests, | defined stimulus durations in terms of displays refreshes
or ticks, which indicates that the observed inaccuracies can be explained by the refresh rate of the HTC
Vive. This was confirmed after calculating the exact frequency, with which new frames were presented.
Across all my tests, including two different computers and two different HTC Vive HMDs, the number
of frames per second (FPS) turned out to be exactly 89.53 FPS, indicating that the HTC Vive has a true
refresh rate of 89.53 Hz instead of the officially stated 90 Hz. Overall, the results of the first experiment
indicate that the VR setup can present stimuli with a high precision and, when taking the exact refresh
rate into account, with a high accuracy.

In a second experiment, | evaluated the precision and accuracy of reaction time measurements of the
VR setup and compared it to results | got with the same test procedure with a standard monitor setup
and both Presentation and PsychoPy. While | observed precise and accurate RT measurement with
both standard setups, reaction times measured with the VR setup were highly inaccurate and
imprecise. In the following, | explain the reasons for the discrepancies between expected and observed
reaction times based on limitations resulting from the architecture underlying game engines and VR
rendering. Furthermore, | proposed a new software-based method that circumvents these limitations.
Benchmarking results revealed that the method is capable to measure reaction time with an accuracy
and precision, which is on par with both PsychoPy and Presentation.
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In chapter 3, | report the final study of this dissertation, which tried to replicate the results obtained in
Experiment 2 of chapter 1, in both a standard non-VR experimental setup as well as in VR, with the
same group of participants.

Results from previous studies, which directly compared a VR and a non-VR experimental setup,
indicate that HMDs might affect how participants allocate attentional resources (Li et al., 2020) and
spatial processes (e.g., Anglin et al., 2017) as well as impairs motor-learning and increases cognitive
load (Juliano et al., 2021). However, so far, no study has investigated on which level of processing these
differences arise. Here, | aimed to determine if modern HMDs already affect early visual processing
levels differently than a typical monitor setup.

Furthermore, | was especially interested in potential hardware-related differences. As mentioned
above, the optical system of HMDs is rather complex, when compared to an ordinary computer screen.
HMDs contain lenses with a fixed-focal length, resulting in incorrect depth cues and a conflict between
vergence and accommodation (Kramida, 2015). Previous research indicates that vergence-
accommodation conflicts impair visual performance (Hoffman et al.,, 2008) and might reduce
attentional resources, to compensate for the incongruent depth cues and remain clear vision (Daniel
& Kapoula, 2019). Similarly, the weight of HMDs and the limited FOV have been found to affect head
and eye coordination (Pfeil et al., 2018).

However, the discrepant findings between VR and non-VR reported by some studies could be the result
of inconsistencies of the stimulus presentation between the VR and non-VR conditions. For example,
Li et al. (2020) found increased attention allocated toward stimuli presented in an HMD as compared
to the corresponding monitor version. The stimulus material used in their study involved a small three-
dimensional scene, which was presented in stereoscopic 3D in the VR condition, while the stimuli were
presented monocular in the non-VR version. This leaves open the question if the increased allocation
towards stimuli in VR originate from technological particularities inherent to HMDs or if the effects
were merely driven by differences in how the stimuli were presented, i.e., 3D vs 2D.

In the study reported in chapter 3, | aimed to avoid inconsistencies of the stimulus material as well as
the context in which it was presented, by achieving the highest possible correspondence between the
VR and the non-VR experiment.

Hence, | aimed to design the experimental setup of the VR experiment as close as possible to the non-
VR experiment. A virtual environment (VE) was developed that matched the visual appearance of the
physical laboratory, in which both experiments took place. However, the virtual replicate
corresponded with the physical laboratory also 1:1 with respect to scale and location. This was used
to present the VE as an overlay blended on top of the real laboratory. Consequently, everything visible
through the HMD did also exist physically, providing for example realistic and consistent haptic and
tactile stimulation.

Having two identical experimental setups, a group of 16 participants was tested in each version in
counterbalanced order. The results showed for both experiments the same reaction time pattern,
which | already observed in chapter 1, indicating independent processing of prediction errors for
unexpected colors and orientation. In particular, the statistical analysis did not provide any evidence
for behavioral differences between the VR and the non-VR experiment. The findings indicate that early
visual feature processing is not differently affected by the stimulus-presentation device.

Lastly, in chapter 4 | will discuss some of the main findings reported in a bit broader context and discuss
some ideas in more detail, which did not find its way in the original papers.
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Abstract

The visual system forms predictions about upcoming visual features based on previous visual experiences. Such predictions
impact on current perception, so that expected stimuli can be detected faster and with higher accuracy. A key question is
how these predictions are formed and on which levels of processing they arise. Particularly, predictions could be formed on
early levels of processing, where visual features are represented separately, or might require higher levels of processing, with
predictions formed based on full object representations that involve combinations of visual features. In four experiments, the
present study investigated whether the visual system forms joint prediction errors or whether expectations about different
visual features such as color and orientation are formed independently. The first experiment revealed that task-irrelevant and
implicitly learned expectations were formed independently when the features were separately bound to different objects.
In a second experiment, no evidence for a mutual influence of both types of task-irrelevant and implicitly formed feature
expectations was observed, although both visual features were assigned to the same objects. A third experiment confirmed
the findings of the previous experiments for explicitly rather than implicitly formed expectations. Finally, no evidence for a
mutual influence of different feature expectations was observed when features were assigned to a single centrally presented
object. Overall, the present results do not support the view that object feature binding generates joint feature-based expec-
tancies of different object features. Rather, the results suggest that expectations for color and orientation are processed and
resolved independently at the feature level.

Keywords Probabilistic context - Feature expectancies - Feature binding - Object binding - Prediction error

Introduction a faster and more accurate stimulus detection, whereas per-

formance is impaired when these features or properties are

Perception is not passive and not exclusively determined
by the physical properties of sensory stimuli. Rather, it is
affected by internal settings such as prior beliefs and proba-
bilistic expectations about upcoming sensory events (Von
Helmbholtz 1867; Gregory 1997). Prior knowledge in form of
experience-based expectancies about behaviorally relevant
stimulus features alters how fast and accurately visual stim-
uli can be detected and perceived. Stimulus features or object
properties that are consistent with prior expectations lead to

Communicated by Melvyn A. Goodale.

Ralph Weidner and Simone Vossel have contributed equally to this
work and thus share the senior authorship.

< Michael Wiesing
mi.wiesing @fz-juelich.de

Extended author information available on the last page of the article

inconsistent and hence violate current expectations (Domb-
ert et al. 2016b; Kuhns et al. 2017). Expectations not only
facilitate stimulus detection (Stojanoski and Niemeier 2015),
but also affect object recognition and enhance perceptual
sensitivity (Wyart et al. 2012; Stein and Peelen 2015). Such
expectations can be induced by either varying the frequency
of occurrence of different features in an experiment or by
cues that indicate certain features with a specific probability.
Rarely occurring or invalidly cued features are assumed to
elicit prediction error signals that slow down response times.
Compelling evidence for the influence of expectations and
prediction error signaling also comes from neuroimaging
and electrophysiological studies, in which the perception of
unexpected stimuli produces larger neuronal responses than
expected ones (Mars et al. 2008; Summerfield and Egner
2009; Kok et al. 2012; Richter et al. 2017; Stefanics et al.
2018).

@ Springer
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Behavioral studies suggest that expectations can be
formed about single visual features such as color or orienta-
tion (Cheadle et al. 2015; Dombert et al. 2016a; Jabar et al.
2017). However, expectations may not only concern single
features but also refer to fully integrated object represen-
tations. For instance, contextual probabilities can affect
perceptual performance, such that object recognition is
facilitated when an object is perceived within a scene that
is typical for that particular object (e.g., a couch in the liv-
ing room) compared to when an object is embedded in an
untypical environment (e.g., a couch on the beach) (Bar
2004; Summerfield and Egner 2009; Zhao et al. 2013). A
key question is how expectations from different processing
levels relate to each other. The brain may form expectations
simultaneously and independently on different processing
levels and within different processing modules. One pos-
sibility is that expectations concerning one entity of visual
information would be unaffected by expectations formed
about other aspects of visual information.

Evidence for this assumption comes from a recent fMRI
study by Stefanics et al. (2019). The authors tested whether
the same physical stimulus produced distinct feature-specific
prediction errors for the color and emotional expression of
faces. Their results suggest that violations of different fea-
ture expectations are processed in different brain regions
and do not interact when the features are unattended and
task-irrelevant.

Alternatively, expectations from various processing lev-
els may be combined to form a joint expectation when they
are perceptually related, for instance, when they refer to the
same object. Recent evidence in favor of the latter assump-
tion comes from a study by Jiang, Summerfield and Egner
(2016). The authors performed a behavioral experiment in
which colored moving dots were presented. The dots could
be either red or green and move upwards or downwards.
An auditory cue indicated the upcoming color and move-
ment direction with a validity of 75%, and participants
were instructed to attend to either the color or motion of
the stimuli presented. In particular, participants were asked
to identify the color or the motion direction of the dots.
Three competing hypotheses were tested. First, expecta-
tions about color and motion operate independently, and
the violation of one feature expectation does not affect the
other (“independence model”). Second, a prediction error
for one feature spreads to the other due to an expectation
at the object level (“reconciliation model”). Third, the con-
flict between expected and unexpected features will result
in the perception that both features do not belong to the
same object and produce segregated representations for
each feature (“segregation model”). The results suggested
that expectancy-related reaction time benefits did affect not
only the attended but also the unattended feature, thereby
supporting the assumptions of the reconciliation model that

A Springer

prediction errors referring to the same object are combined.
Yet, at least in principle, prediction errors emerging within
different visual dimensions may interact irrespective of
whether or not they are bound to the same object. Testing
this hypothesis requires an experimental variation assign-
ing prediction errors from different dimensions to different
objects. Accordingly, feature expectations were manipu-
lated on the same or different objects in the current study.
To prevent potential confounding effects originating from
response-consistent perceptual and motor expectations, fea-
ture expectations induced in the present experiment were
defined as task-irrelevant and were, hence, not related to any
particular motor response.

We hypothesized that for combined object-level expec-
tancies (i.e., for expectancies about features on the same
object), the simultaneous violation of two feature expecta-
tions would result in an interaction of both prediction errors,
which would reflect a mutual influence of both prediction
error signals in that the joint prediction error signal is less
or more than the sum of its parts. In contrast, the prediction
errors for both features should be independent (i.e., addi-
tive) and not interact when the features are distributed to
separate objects.

Experiment 1

Experiment 1 was conducted to determine whether it is pos-
sible to manipulate feature expectations independently on
two task-irrelevant dimensions when the features are sepa-
rated on different objects. We presented two sinusoidal grat-
ing stimuli, where one feature (color) was manipulated on
one grating and the other feature (orientation) on the other
grating.

Expectations were manipulated by presenting specific
feature configurations more frequently than others, assum-
ing that the biased probabilities of the features of the tar-
get objects would be learned implicitly. This setup resulted
in four experimental conditions: (1) color and orientation
expected, (2) color expected and orientation unexpected, (3)
color unexpected and orientation expected, and (4) color and
orientation unexpected.

The participants’ task was focused on yet a further stimu-
lus feature and they were asked to report whether the spatial
frequencies of both target gratings were identical or differ-
ent. Thereby, the participants’ task required them to keep
track of and to respond to this third dimension (e.g., fre-
quency), so that it was orthogonal to the expectations related
to color and orientation.

We hypothesized that violations of feature expectations
for color and orientation will affect behavior (response
times) independently (i.e., additively), and will, hence, not
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interact even when both feature expectations are violated
simultaneously.

Materials and methods
Participants

Sixteen participants (five women, mean age: 29.2 years, age
range: 19—46, one left-handed) took part in Experiment
1. All participants had a normal or corrected-to-normal
vision and no history of neurological or psychiatric disor-
ders. Normal color vision in all participants was assessed
by pseudo-isochromatic color plates (Velhagen and Bro-
schmann 2003). Before the experiment, written informed
consent was obtained following the Declaration of Helsinki.
The study was approved by the ethics committee of the Ger-
man Society of Psychology, and participants were remuner-
ated for their time.

Apparatus

Stimuli were presented on a 22-in. Samsung SyncMas-
ter monitor (spatial resolution 1680 X 1050; refresh rate
120 Hz) at a distance of 60 cm. A chin and forehead rest pre-
served the distance. The presentation of stimuli and response
recording were controlled using PsychoPy psychology soft-
ware for Python (Peirce 2007, 2008). Participants were
provided with button response pads (NAtA Technologies)
for each hand and responded by pressing the corresponding
button on the button response pad with the left and right
index fingers.

Stimuli and task

The visual stimuli consisted of two horizontally arranged
target stimuli (see Fig. 1). A central black plus sign (0.57°
% 0.57°) was placed in between serving as a fixation point.
All stimuli were presented on a gray background. Partici-
pants were instructed to fixate the cross throughout the
experiment.

The target stimuli were grating stimuli which consisted of
a4°x4° sine wave grating windowed by a two-dimensional
Gaussian envelope with a standard deviation of 0.66° with
two possible spatial frequencies (low frequency: 1.5 cycles
per degree and high frequency: 2.5 cycles per degree). All
combinations of frequencies were presented randomly and
with an equal probability (e.g., 50% same and 50% different).

Furthermore, one grating (color target) was always
colored (either red/green or blue/yellow) and was oriented
vertically (0°). The other grating (orientation target) was in
grayscale, but could have two different orientations (45°,
90°). The side on which the color and the orientation targets

Fig.1 Stimulus examples of Experiment 1. The participants were
asked to indicate by button presses whether the two gratings had the
same or different spatial frequency. The probabilities of occurrence
of the colors of one grating and the orientations of the other grating
were manipulated to induce feature expectations

were presented was held constant during the experiment
(e.g., color was always left and orientation always right),
but was counterbalanced across participants.

For the color target, one color combination (e.g., blue/
yellow) was defined as the “expected color” and the other
combination as “unexpected color”. Likewise, one orienta-
tion (e.g., 45°) was defined as the “expected orientation” and
the other orientation as “unexpected orientation”. For both,
color and orientation, the expected feature was presented on
87.5% of the trials.

A 2x 2 factorial design with the factors Color Prediction
Error (high, low) (ColPE) and Orientation Prediction Error
(high, Tow) (OriPE) resulted in four experimental condi-
tions: ColPE_low/OriPE_low (color expected and orienta-
tion expected), ColPE_high/OriPE_low (color unexpected
and orientation expected), ColPE_low/OriPE_high (color
expected and orientation unexpected), and ColPE_high/
OriPE_high (both color and orientation unexpected).

The experiment consisted of 14 blocks, each comprising
64 trials, resulting in 896 trials. The experiment comprised
700 ColPE_low/OriPE_low trials (78.125%), 84 ColPE_
high/OriPE_low trials (9.375%), 84 ColPE_low/OriPE_
high trials (9.375%), and 28 ColPE_high/OriPE_high trials
(3.125%).

Each trial started with the presentation of the two target
stimuli until a response was given. An inter-trial interval,
which randomly varied between 500 and 1000 ms, separated
the trials.

Each block was followed by a break that could be termi-
nated via button press.
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The participants’ task was to indicate whether both target
stimuli were identical or different concerning spatial fre-
quency by pressing the corresponding response button with
the left or right index fingers. The task was independent of
the expectation manipulations of color and orientation, to
avoid any confounding effects of response preparation to
the features. Participants were asked to respond as fast and
accurately as possible. An erroneous response produced the
message “Fehler” (i.e., the German word for “error”) on the
screen for 750 ms.

To familiarize the participants with the task, participants
performed a training session of 128 trials before they started
with the experiment. During the training, all trials were
ColPE_low/OriPE_low trials. This was intended to let the
participants form expectations about the most likely color
and orientation of the target stimuli.

All participants were informed that the color and the ori-
entation could change during the main experiment. Further-
more, they were told that color or orientation changes are
irrelevant to their task.

Analysis

The free statistical software R (R Foundation for Statisti-
cal Computing, Vienna, Austria; https://www.r-project.org)
was used for behavioral data analysis. For each participant,
mean RTs and error rates were calculated. Error trials, and
trials following errors and trials with RTs differing more
than two standard deviations from the mean were excluded
from RT analysis.

Repeated-measures ANOVASs for the RTs and error rates
were conducted with the within-subject factors ColPE
(high, low) and OriPE (high, low). The reported mean val-
ues for expected and unexpected color and orientation were
calculated by collapsing all trials with the specific feature
being expected or unexpected (e.g., the mean values for the
expected color reflect the mean of all ColPE_low/OriPE_
low and ColPE_low/OriPE_high trials).

Results

The overall amount of incorrect responses was very low
with on average 2.19% (+0.34 SEM) errors. The ANOVA
of the error rates yielded a significant main effect of OriPE
(F(1,15)=5.025, p < 0.05, n;=0.186) with lower error
rates for expected orientations (2.04%) compared to unex-
pected orientations (3.29%). Neither the main effect ColPE,
with 2.02% errors for expected colors versus 3.40% errors
for unexpected colors, was significant (F(1,15)=3.437,
p=0.0835, r[f,:().251), nor was the interaction between
ColPE and OriPE (F(1,15)=1.453, p=0.247, 1, =0.088).

@ Springer

The ANOVA of the mean RTs revealed a sig-
nificant main effect for ColPE (F(1,15)=13.31,
p<0.05, nf,=0.470) with 662 ms for expected colors
versus 682 ms for unexpected colors, reflecting RT
costs for the unexpected colors. Moreover, we observed
a significant main effect for OriPE (F(1,15)=5.735,
p <0.05, nf,:().277), with 660 ms for expected orienta-
tions versus 692 ms for unexpected orientations, reflecting
a cost for unexpected orientation. Thus, both unexpected
colors and unexpected orientations resulted in significantly
higher RTs compared to the expected features, although
both features were task-irrelevant and orthogonal to the
actual task. The interaction of ColPE X OriPE was not
significant (F(1,15)=0.401, p=0.536, n7,=0.026), provid-
ing no evidence that prediction errors for both features
influenced each other. The mean RTs and error rates are
shown in Fig. 2.
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Fig.2 Performance measures of each combination of color and orien-
tation manipulations of Experiment 1. a Error rates. b Reaction times.
Error bars reflect the 95% confidence intervals
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Discussion

Experiment 1 investigated whether two simultaneous feature
expectations can be manipulated independently. We hypoth-
esized that feature expectation would be processed indepen-
dently when the features are separated on different objects.
Consistent with the hypothesis, the experiment provides
evidence that separated feature expectations are processed
independently.

When color and orientation features were expected
due to their higher probability of occurrence, participants
responded faster than in trials with one unexpected feature.
Response times increased further in trials with two unex-
pected features compared to one unexpected. However, the
RTs for two unexpected features increased additively rather
than interactively, indicating independent effects for both
features. These effects were observed despite color and ori-
entation being irrelevant for the task of the subjects.

To investigate whether multiple simultaneous feature
expectations of the same object result in a combined object-
level expectation, we conducted a second experiment.

Experiment 2

Experiment 2 was designed to determine whether concurrent
color and orientation expectancies combine interactively
when both features are bound to the same object. In Experi-
ment 1, the color and orientation features were distributed
to separate objects, which, consequently, did not result in an
interaction of both types of prediction errors. Experiment
2 followed the procedure of Experiment I, except that in
Experiment 2, both color and orientation expectations were
manipulated on both gratings simultaneously. We hypoth-
esized that simultaneous violations of both feature expecta-
tions for color and orientation within the same object would
result in an interaction, indicating combined object-level
expectancies.

Materials and methods
Participants

Sixteen participants (eight women, mean age: 29.69 years,
age range: 2045, two left-handed) took part in Experiment
2. Seven of them already participated in Experiment 1. All
participants had a normal or corrected-to-normal vision and
no history of neurological or psychiatric disorders. Normal
color vision in all participants was assessed by pseudo
isochromatic color plates (Velhagen and Broschmann

2003). Before the experiment, written informed consent
was obtained following the Declaration of Helsinki. The
study was approved by the ethics committee of the German
Society of Psychology, and participants were remunerated
for their time.

Stimuli, design, and procedure

In general, procedures were similar to Experiment 1. Again,
the participants’ task was to indicate whether the spatial fre-
quencies of two gratings stimuli were identical or differ-
ent. In contrast to Experiment 1, however, both color and
orientation expectation were manipulated on the two grat-
ings simultaneously (see Fig. 3). The probabilities for the
expected and unexpected features were identical to those in
Experiment 1.

Like in Experiment I, participants performed a training
session of 128 trials with 100% expected features before they
started with the experiment.

Analysis

In general, the analysis of Experiment 2 was identical to
Experiment 1. In an additional analysis, we compared data
across Experiment 1 and Experiment 2, to test whether
simultaneous prediction errors of color and orientation on
the same objects resulted in a combined expectancy effect.
Therefore, for both experiments, the mutual interaction of
prediction errors in the different dimensions was estimated
by calculating an interaction score (ISC) that contrasts

Fig.3 Stimulus examples of Experiment 2. As in Experiment 1, par-
ticipants were asked to respond to the spatial frequency of the two
gratings, which could be the same or different. The probabilities of
occurrence of both color and orientation of the identical gratings
were manipulated to induce feature expectations
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the effects of simultaneous high prediction errors in both
dimensions with high prediction errors in only one dimen-
sion. Trials with only a prediction error in one dimension
(ColPE_low/OriPE_high and ColPE_high/OriPE_low)
were subtracted from the sum of trials with consistent pre-
diction errors in both dimensions (ColPE_high/OriPE_high
and ColPE_low/OriPE_low). In particular, the calculation
can be expressed by the interaction score ISC=(ColPE_
high/OriPE_high + ColPE_low/OriPE_low)—(ColPE_
high!OriPE_low + ColPE_low/OriPE_high). Please note
that in both terms, the same number of high and low pre-
diction errors are involved, the only difference being that
in one term prediction errors occurred simultaneously. In
case there is absolutely no interaction (i.e., when the effects
of a prediction error in one dimension is independent of a
prediction error in another visual dimension), the ISC would
be expected to be 0. Otherwise, if prediction errors in both
dimensions jointly generate a higher prediction error, the
ISC value will be positive. ISC values smaller than zero
would be indicative of reduced prediction errors when both
belong to the same object.

This calculation was conducted for RTs as well as for
error rates. The resulting scores from both experiments were
then compared using a ¢ test for partially depending samples
(Derrick et al. 2017).

Results

Similar to Experiment 1, the mean error rate was very low
with an average of 3.28% (+0.38 SEM).

The ANOVA of the error rates yielded a significant main
effect for ColPE (F(1,15)=9.785, p <0.05, ;,=0.395) with
lower error rates for expected colors (2.97%) compared to
unexpected colors (5.47%) and a significant main effect for
OriPE (F(1,15)=11.65, p<0.05, #3=0.437) with lower
error rates for expected orientations (2.95%) compared to
unexpected orientations (5.58%). The interaction was not
significant (F(1,15)=0.904, p=0.357, n3=0.057).

Again, the ANOVA of the mean RTs revealed a significant
main effect for ColPE (F(1,15)=8.035, p <0.05,rlf,=0.349),
with 569 ms for expected colors versus 591 ms for unex-
pected colors, and a significant main effect for OriPE
(F(1,15)=5.778, p<0.05, n;=0.278), with 569 ms for
expected orientations versus 593 ms for unexpected orien-
tations, reflecting the cost for unexpected features. Thus,
both unexpected color and unexpected orientation stimuli
resulted in significantly higher RTs compared to the more
frequently presented standard targets. The interaction
of ColPE x OriPE was not significant (F(1,15)=0.329,
p=0.575, n3=0.021), providing no evidence for a mutual
influence of prediction errors for both features. Both feature
prediction errors were hence again processed independently,
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even when they were part of the same object. The mean RTs
and error rates are shown in Fig. 4.

A joint analysis of the combined data of Experiment 1 and
Experiment 2 revealed no significant difference concerning
the interaction score ISC of error rates between experiments
(1(19.5)= —0.12, p=0.909), with an ISC of 1.57 in Experi-
ment | and 1.79 in Experiment 2. Similarly, the comparison
of the ISC related to RT costs revealed no significant dif-
ference between experiments (#(19.5)= —0.15, p=0.879),
with an ISC of -8 in Experiment | and -5 in Experiment 2.

Discussion

Experiment 2 was designed to determine whether concur-
rent color and orientation expectancies are combined inter-
actively when both features are bound to the same object.
We hypothesized that violations of both feature expectations
simultaneously would result in mutual influence and hence
in an interaction.

Consistent with Experiment 1, the RT costs associated
with one feature being unexpected were also evident in
Experiment 2 (as evidenced by the significant main effects
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Fig.4 Performance measures of the combination of color and orien-
tation manipulations of Experiment 2. a Error rates. b Reaction times.
Error bars reflect the 95% confidence intervals
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for ColPE and OriPE). Contrary to our hypothesis, the
results of Experiment 2 did not show an interaction between
ColPE and OriPE, providing no evidence for a mutual influ-
ence of both types of prediction errors. This finding was con-
firmed by a direct comparison of the interaction pattern, as
reflected in ISC determined in Experiment 1 and Experiment
2. In Experiment 1, the feature expectations for color and
orientation were separated onto two different objects while
the same feature expectations were combined and manipu-
lated on the same objects simultaneously in Experiment 2.
We hypothesized that combined object-level expectancies
for color and orientation should be reflected in different ISCs
related to the RT costs and error rates between experiments.
However, this comparison revealed no significant differ-
ence and, again, did not provide any evidence for combined
object-level expectancy effects.

These findings do not support the idea of combined fea-
ture expectancies on an object level, at least when expec-
tancies are formed implicitly and when they relate to visual
dimensions that are currently irrelevant for an ongoing
task and are hence unattended. Attention has previously
been suggested to play an essential role in feature binding.
According to Treisman’s Feature Integration Theory (FIT),
basic visual features are first processed independently on a
preattentive level before attentional binding combines them
into a single-object representation (Treisman and Gelade
1980). Following this argumentation, one may expect that
without attentional binding, not only feature representations
per se, but also related expectancies are coded separately.
Conversely, when these features are attended and are hence
integrated to whole object representations via attentional
binding, then expectancies may also be formed by combined
feature information. To investigate whether the lack of inter-
action was indeed due to the lack of attentive processing of
the implicitly learned target features, a third experiment was
conducted.

Experiment 3

The results of Experiment 2 indicated that multiple feature
expectations for task-irrelevant features influence behavior
additively rather than interactively, even when the features
belong to the same object. This result seems to be in line
with the findings of Stefanics et al. (2019) who did not find
an interaction of prediction errors of different features, when
the features were unattended. Thus the absence of an inter-
action may be accounted for by a lack of attention assigned
to the different features and hence by a lack of object bind-
ing in the current experiments. Therefore, Experiment 3
was designed to test whether the absence of an interaction
between feature expectations was due to a lack of object
binding. To promote object feature binding, we increased the

subjects’ need to attend to the gratings’ color and orienta-
tion explicitly. Instead of manipulating feature probabilities
of upcoming targets by their frequency of occurrence, we
induced expectations of the upcoming feature configuration
explicitly on a trial-by-trial basis using verbal cues.
Furthermore, we added a secondary task to the experi-
ment, where participants had to estimate the percentage of
cue validity after each experimental block. This approach
allowed increasing the feature relevance without an associa-
tion between the main task and a specific motor response.

Materials and methods
Participants

Sixteen participants (six female, mean age: 30.7 years, age
range: 21-46, two left-handed) took part in Experiment 3.
Seven of them had participated in the previous experiments,
and one had participated in Experiment 2. All participants
had a normal or corrected-to-normal vision and no history of
neurological or psychiatric disorders. Normal color vision in
all participants was assessed by pseudo-isochromatic color
plates (Velhagen and Broschmann 2003). Before the experi-
ment, written informed consent was obtained following the
Declaration of Helsinki. The study was approved by the eth-
ics committee of the German Society of Psychology, and
participants were remunerated for their time.

Stimuli, design, and procedure

In general, procedures were very similar to Experiment 2.
The participants’ task was again to indicate whether the spa-
tial frequencies of two gratings were identical or different,
and the occurrence of different colors and orientations was
manipulated for both gratings simultaneously. However,
in contrast to Experiment 1 and 2, the probability for each
color and orientation was identical, e.g., 50% red/green and
50% blue/yellow, as well as 50% horizontal and 50% tilted
orientation. Each trial started with a verbal cue, indicat-
ing the most likely color and orientation for the next trial
for 583 ms. Explicit cues comprised the written words of
the likely upcoming color [“gelb” or “rot” (i.e., “yellow”,
“red”)] and the likely upcoming orientation (“horizontal”
or “diagonal”). To keep the information provided by the cue
minimal, only one color of the color combinations was cued
(e.g., “yellow” instead of “blue/yellow”). The cue validity
was equivalent to the feature probabilities of Experiments 1
and 2. Hence, the cue was valid in 78.125% of the trials for
both features; in 9.375%, the color information was invalid;
likewise in 9.375% of the trials, the cue was invalid regard-
ing the orientation, and in 3.125% of the trials, both the color
and the orientation information were invalid. The number of
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valid and invalid cues was the same for all blocks. The cue
and target stimuli were separated by a cue—target interval,
which randomly varied between 250 and 500 ms.

Additionally, to increase the relevance of the color and
orientation features, a secondary task was added to the
experiment. Participants were asked to report their belief
about the cue validity at the end of each block, using a rat-
ing scale ranging from 0 to 100% (in 5% steps). Participants
were not aware that the overall validity was the same for all
the blocks.

As in the previous experiments, participants performed
a training session of 128 trials with 100% expected features
before the experiment.

Analysis

In general, the analysis of Experiment 3 was identical to
Experiment 2. Again, the results of Experiment 3 were
compared with the previous experiment’s results. Addition-
ally, to test whether explicitly formed expectations affect
behavior differently than implicit formed expectations,
RT costs and error rates for ColPE [(ColPE_high/OriPE_
low)—(ColPE_low/OriPE_low)] and OriPE [(ColPE_low/
OriPE_high)—(ColPE_low/OriPE_low)] were compared
between Experiment 2 and Experiment 3.

To test whether participants perceived the verbal cues as
valid, two one-sample 7 tests were conducted. First, to test
whether participants assigned any predictive value to the
verbal cues at all, we tested whether the estimated cue validi-
ties were better than chance level (i.e., significantly different
from 50%). Second, to test whether participants were able to
infer the actual validity, estimated cue validity values were
compared against the true cue validity of 78.125%.

Results

Participants estimated cue validity for all blocks on average
at 67.46% (+2.33% SEM). A one-sample 7 test indicated
that this value was significantly different from chance level
(50%) (1(15)=17.482, p <0.05). However, cue validity as per-
ceived by the participants was also lower than the actual cue
validity of 78.125% as indicated by a second one-sample ¢
test (1(15)= —4.573, p<0.05).

Similar to the previous experiments, the mean error
rate was low, with an average of 4.65% (+0.65 SEM). The
ANOVA of the error rates showed neither significant main
effects of ColPE (F(1,15)=4.028, p=0.0631, 7,=0.211),
with 4.23% for expected colors versus 7.59% for unex-
pected colors, nor a significant main effect of OriPE
(F(1,15)=1.219, p=0.287, n,=0.075), with 4.43%
for expected orientations versus 6.14% for unexpected
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orientations. The interaction between the two factors was
not significant (F(1,15)=0.486, p=0.496, n,=0.314).

As in the previous experiments, the ANOVA of the
mean RTs revealed significant main effects for ColPE
(F(1,15)=14.31, p<0.05, n7=0.488), with 612 ms for
expected colors versus 676 ms for unexpected colors, and
OriPE (F(1,15)=10.08, p<0.05, 7,=0.402), with 613 ms
for expected orientations versus 676 ms for unexpected ori-
entations, reflecting the cost for unexpected stimuli. Similar
to the previous experiments, both unexpected color and ori-
entation stimuli resulted in significantly higher RTs com-
pared to the standard targets. Likewise, the interaction of
ColPE x OriPE was again not significant (F(1,15)=0.993,
p=0.335, n,z,=0.062). The mean RTs and error rates are
shown in Fig. 5.

A joint analysis of the combined data from Experiment 2
and Experiment 3 revealed no significant difference in error
rates for color expectation between experiments [Experiment
2:2.76% (expected) vs. 4.54% (unexpected); Experiment 3:
4.06% (expected) vs. 7.51% (unexpected); 1(18.5)= — 1.65,
p=0.116] However, there was a significant difference in
error rates for orientation expectation between experiments
[Experiment 2: 2.76% (expected) vs. 4.69% (unexpected);
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Fig.5 Performance measures of the combination of color and orien-
tation manipulations of Experiment 3. a Error rates. b Reaction times.
Error bars reflect the 95% confidence intervals
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Experiment 3: 4.06% (expected) vs. 5.58% (unexpected);
#(18.5)=0.49, p <0.05]. Additionally, there was no sig-
nificant difference in error rates between the experiments
for simultaneous prediction errors of color and orientation
(¢(18.5)=1.20, p=0.244), with regard to the ISC of error
rates between experiments, with an ISC of 1.79 in Experi-
ment 2 and 1.22 in Experiment 3.

Comparing RTs from Experiment 2 with those from
Experiment 3 revealed a significant difference in RT
costs for unexpected colors between the experiments
(¢(18.5) = —2.39, p<0.05), with unexpected colors result-
ing in an RT increase of 18.36 ms in Experiment 2 versus
an increase of 56.72 ms in Experiment 3. The comparison
of RTs for the orientation expectation between experiments
was non-significant (#(18.5)= —1.87, p=0.077), with
unexpected orientation resulting in 21.65 ms higher RTs
in Experiment 2 versus an increase of 60.08 ms in Experi-
ment 3. The comparison of RT costs for simultaneous pre-
diction errors of color and orientation between experiments
was non-significant concerning the ISC-related RT costs
(1(18.5)=0.92, p=0.369), with an ISC of -5 in Experiment
2 and —23 in Experiment 3.

Discussion

Experiment 3 was conducted to examine whether the lack of
an interaction between the feature expectations observed in
Experiment 2 was due to the implicitly learned probabilities
of the task-irrelevant features that may have prevented object
feature binding. To increase the demands for participants to
attend to the color and orientation features, we manipulated
feature expectations in Experiment 3 explicitly on a trial-
by-trial basis through verbal cues. Furthermore, to make the
features relevant, a secondary task was added to the experi-
ment. Participants were asked to report their estimate about
the cue validity after every experimental block.

The estimated validity differed from the true cue valid-
ity of 78.125%, indicating that participants underestimated
cue validity. However, participants noticed the predictive
value of the cue as indicated by validity estimates differ-
ent from chance level. Not only that they perceived cues
as valid, they also used the cue information to prepare for
upcoming stimulus configurations, as can be seen from the
reaction time pattern. In particular, participants responded
faster in trials involving validly cued features rather than
invalidly cued features, reflecting the RT costs for invalidly
cued and hence unexpected features. This pattern is consist-
ent with the reaction time pattern observed in the previous
experiments where participants responded faster in trials
with expected rather than unexpected features. Hence, the
findings from Experiment 3 indicate that the verbal cues suc-
cessfully manipulated feature expectations. Additionally, as

in the previous experiments, RTSs for two unexpected features
increased additively rather than interactively, providing no
evidence for joint expectations regarding both features. This
result suggests that the effects observed in Experiment 2
were not specific to the implicit nature of feature expectancy.

To test whether the explicitly formed feature expectations
affected the processing of prediction error concerning these
expectations differently than the implicitly learned expec-
tations of Experiment 2, we compared the results of both
experiments. The analysis revealed significantly higher RT
costs for unexpected colors in Experiment 3 than in Experi-
ment 2, but not for unexpected orientations. Furthermore,
unexpected orientations but not unexpected colors resulted
in significantly higher error rates in Experiment 2 than in
Experiment 3. This finding shows that explicitly formed
expectations affect the behavior differently than implicitly
formed expectations. This effect was not consistent across
both visual dimensions, and the behavioral pattern indi-
cated an asymmetry about explicitly formed expectations,
such that the effects of prediction errors based on explicitly
formed expectations increased for color and decreased for
orientation. This result might either reflect an attentional
bias towards color in Experiment 3, rendering prediction
errors in the color domain more relevant. Alternatively, pre-
dictions concerning orientation may be formed more implic-
itly than explicitly.

Experiment 4

The previous experiments indicated that expectations regard-
ing different visual features affect behavior additively rather
than interactively. This was true even when these features
belonged to the same object. Moreover, this effect was like-
wise observed for implicit and explicit expectations. The
task performed in these experiments required participants
to simultaneously attend to two objects, thereby reducing
the attentional resources available for each single object.
Since attention has been suggested to be a necessary pre-
requisite for feature binding (Treisman and Gelade 1980),
divided attention might possibly decrease the degree of fea-
ture binding and accordingly potential interactions between
feature expectations. This interpretation seems consistent
with findings from previous studies. Evidence for a separate
coding of feature expectations has been reported in a study
using multiple non-foveated stimuli (Stefanics et al. 2019),
whereas a study using a single central stimulus provided
evidence in favor of an interaction between feature predic-
tions (Jiang et al. 2016). In Experiment 4, we, therefore,
tested whether an interaction between feature expectations
would be observed when feature binding was maximized by
manipulating feature expectations of a single central grating.
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Materials and methods
Participants

Sixteen participants (seven female, mean age: 32.6 years,
age range: 23-47, two left-handed) took part in Experi-
ment 4. All participants had a normal or corrected-to-
normal vision and no history of neurological or psychiat-
ric disorders. Normal color vision in all participants was
assessed by pseudo-isochromatic color plates (Velhagen
and Broschmann 2003). Before the experiment, written
informed consent was obtained following the Declaration
of Helsinki. The study was approved by the ethics commit-
tee of the German Society of Psychology, and participants
were remunerated for their time.

Stimuli, design, and procedure

In general, procedures were similar to Experiment 2. How-
ever, in contrast to Experiment 2, only a single central
grating with a fixation point was presented in Experiment
4 (Fig. 6). Moreover, the task this time was to indicate
whether the spatial frequency of the grating was either
high or low. The probabilities of the different color and
orientation features were identical to those in Experiment
1 and Experiment 2. As in the previous experiments, par-
ticipants performed a training session of 128 trials with
100% expected features before the experiment.

Fig. 6 Stimulus examples of Experiment 4. Participants were asked to
respond to the spatial frequency of the grating, which could be high
or low. The probabilities of occurrence of both color and orientation
of the single grating were manipulated to induce feature expectations

2} Springer

Analysis

The analysis of Experiment 4 was identical to Experiment 1.

Results

Similar to the previous experiments, the mean error rate was
low, with an average of 5.33% (+0.65 SEM).

The ANOVA of the error rates yielded a significant main
effect for ColPE (F(1,15)=5.811, p<0.05, 7,=0.279), with
lower error rates for expected colors (4.95%) compared to
unexpected colors (8.04%), and a significant main effect for
OriPE (F(1,15)=8.356, p <0.05, 7,=0.358) with lower
error rates for expected orientations (4.91%) compared to
unexpected orientations (8.31%). The interaction was not
significant (F(1,15)=0.908, p=0.356, n,=0.057).

Again, the ANOVA of the mean RTs revealed a
significant main effect for ColPE (F(1,15)=16.559,
p<0.05, 1;=0.525), with 427 ms for expected colors ver-
sus 444 ms for unexpected colors, and a significant main
effect for OriPE (F(1,15)=15.17, p <0.05, #,=0.503), with
427 ms for expected orientations versus 442 ms for unex-
pected orientations, reflecting the cost for unexpected fea-
tures. Thus, both unexpected color and unexpected orienta-
tion stimuli resulted in significantly higher RTs compared to
the more frequently presented standard targets. The interac-
tion of ColPE X OriPE was not significant (£(1,15)=0.101,
p=0.75, 1112,=0.007), providing no evidence for a mutual
influence of prediction errors for both features. Hence, both
feature prediction errors were again processed indepen-
dently, even when they were part of the same object. The
mean RTs and error rates are shown in Fig. 7.

Discussion

Experiment 4 was conducted to examine whether the lack
of an interaction between feature expectations observed
in Experiments 1-3 can be explained by reduced object
feature binding due to divided attention across multiple
objects. Therefore, in Experiment 4, only one single central
stimulus was presented, which was used to manipulate color
and orientation expectations. Consistent with the previous
experiments, the RT costs associated with one feature being
unexpected were also evident in Experiment 4. Furthermore,
as in the previous experiments and despite a higher degree
of feature object binding, RTs for two unexpected features
increased additively rather than interactively providing no
evidence for joint expectations regarding both features.
Accordingly, the lack of an interaction between prediction
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Fig.7 Performance measures of the combination of color and orien-
tation manipulations of Experiment 4. a Error rates. b Reaction times.
Error bars reflect the 95% confidence intervals

errors in different visual features in the previous experiments
cannot be accounted for by a need to divide the attentional
focus.

General discussion

This study investigated whether expectations regarding
multiple visual features of different dimensions (color and
orientation) are formed independently when they refer to the
same object, or whether feature expectations are combined
to a joint object-level expectation. A previous study by Jiang
et al. (2016) reported behavioral and functional imaging evi-
dence supporting the latter assumption. In particular, they
suggested that a prediction error about one feature spreads
across other object features and marks the entire object as
“unexpected”. In the current study, four behavioral experi-
ments were performed to systematically manipulate the
distribution of feature expectations to the same or differ-
ent objects and, hence, to extend the findings of Jiang et al.
(2016).

The newly developed paradigm allowed inducing pre-
diction errors in different visual dimensions for the same
or different objects. Furthermore, the paradigm allowed

investigating prediction errors emerging within two task-
irrelevant feature dimensions and hence avoided any poten-
tial confounds with response-related prediction errors in the
motor domain. In a first experiment, prediction errors were
induced in the color and orientation dimension, and each
type of prediction error was confined to separate objects.
Both unexpected color and unexpected orientation increased
RTs, indicating that the paradigm successfully elicited pre-
diction error signals of task-irrelevant feature dimensions
and that these predictive error signals, although task-irrele-
vant, altered behavior in an ongoing task. Prediction errors
in both visual dimensions were comparable in magnitude
and showed no signs of mutual influence as indicated by an
additive rather than an interactive RT pattern. Therefore,
they appear to be calculated separately when the features are
distributed between separate objects.

We then tested whether this pattern changed when predic-
tion errors in different dimensions co-occurred within the
same object. Again, prediction errors in both dimensions
reliably induced slower RTs when unexpected features were
presented. As in the previous experiment and contrary to our
initial hypothesis, RTs showed an additive rather than an
interactive pattern. Accordingly, even when prediction errors
were induced by features belonging to the same object, we
could not find evidence for mutual influence and interference
between dimensions. One possible explanation for this find-
ing is that feature expectations in the present experiments
were generated implicitly and may, hence, be formed before
object binding occurs, a process that has critically been asso-
ciated with focused attention (Treisman and Gelade 1980).
To test this, an additional experiment was conducted where
feature expectations were induced by verbal cues, hence
increasing top-down aspects of feature expectations. Despite
a more explicit representation of features expectations, no
evidence for combined feature expectations was observed
and the RT patterns found in Experiments 1 and 2 were rep-
licated. These patterns persisted even when a single-object
version of our task was used. This variant was introduced to
increase the amount of attention allocated to a single target
object and thereby the degree of object feature binding. No
evidence for a mutual interaction of feature expectations was
found, although visual features were part of an integrated
object representation.

In sum, this series of experiments yielded no evidence
for a mutual influence of prediction errors in different
dimensions. This finding was independent of whether fea-
ture expectations were formed implicitly or explicitly and
whether or not attention was fully engaged at a single target
object.

Our results are thus in line with results reported by Ste-
fanics et al. (2019) in the sense that task-irrelevant feature
predictions do not interact. However, the finding of an inde-
pendent coding of feature predictions seems at contrast with
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a study by Jiang et al. (2016) which reported a cross-blend-
ing of prediction errors. A crucial difference between the
study by Stefanics et al. (2019) and our study on one hand
and the study by Jiang et al. (2016) on the other hand is
related to a feature’s task relevance. Evidence for an interac-
tion of prediction errors was observed only in the study by
Jiang et al. (2016) where prediction errors in a task-irrelevant
dimension affected predictions in a task-relevant dimension.
In the present study, prediction errors were manipulated in
two task-irrelevant dimensions and no interactions were
found between the two. However, the present study involved
spatial frequency as an additional task-relevant dimension.
Expectations with regard to this dimension were held neu-
tral, with both feature values being equally likely across the
experiment. Prediction errors in the task-irrelevant dimen-
sions interfered with spatial frequency judgements in the
task-relevant dimension and increased reaction times. A
possible explanation for this interference is that prediction
errors emerging in the task-irrelevant dimension alter pre-
diction errors in the task-relevant dimension, rendering the
neutral but task-relevant feature unexpected. In this case, the
results could be taken as support for the view that combined
expectancies critically depend on task or response relevancy.
However, it is unclear whether interference of task-irrelevant
and task-relevant features is in fact based on a combination
of prediction errors. Inconsistent prediction errors may also
result in more general interference effects generating higher
demands on attentional and cognitive control. In particu-
lar, prediction errors may render irrelevant features more
salient and generate attentional capture that interferes with
the ongoing task. For instance, interference could be based
on a series of automatic and sequential attentional switches
between salient feature dimensions before attention could
then be deployed to the task-relevant dimension (spatial fre-
quency). This interpretation corresponds to findings from
visual search experiments, showing that search for a target
with an unknown target-defining feature results in higher
RT costs when the feature could change between different
dimensions (e.g., color and orientation) compared to features
within the same dimension (e.g., red and blue) (Miiller et al.
1995; Treisman 1988). Alternatively, attentional capture by
irrelevant but salient stimulus features may bind attentional
resources on irrelevant feature dimensions and will, hence,
decrease those available for the task performed.

In summary, the present results suggest that feature
expectations for color and orientation are processed and
resolved independently, and are unaltered by processes
related to object binding. This finding is consistent with an
early implementation of predictive coding within separate
feature channels. Although the present findings cannot rule
out that prediction errors for different object features might
possibly be combined into an object-level expectancy, our
results do not support the view that object feature binding
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leads to mutual influences of predictions errors of different
object features.
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Abstract

The increasing interest in Virtual Reality (VR) as a tool for neuroscientific research contrasts
with the current lack of established toolboxes and standards. In several recent studies,
game engines like Unity or Unreal Engine were used. It remains to be tested whether these
software packages provide sufficiently precise and accurate stimulus timing and time mea-
surements that allow inferring ongoing mental and neural processes. We here investigated
the precision and accuracy of the timing mechanisms of Unreal Engine 4 and SteamVR in
combination with the HTC Vive VR system. In a first experiment, objective external mea-
sures revealed that stimulus durations were highly accurate. In contrast, in a second experi-
ment, the assessment of the precision of built-in timing procedures revealed highly variable
reaction time measurements and inaccurate determination of stimulus onsets. Hence, we
developed a new software-based method that allows precise and accurate reaction time
measurements with Unreal Engine and SteamVR. Instead of using the standard timing pro-
cedures implemented within Unreal Engine, time acquisition was outsourced to a back-
ground application. Timing benchmarks revealed that the newly developed method allows
reaction time measurements with a precision and accuracy in the millisecond range. Overall,
the present results indicate that the HTC Vive together with Unreal Engine and SteamVR
can achieve high levels of precision and accuracy both concerning stimulus duration and
critical time measurements. The latter can be achieved using a newly developed routine that
allows not only accurate reaction time measures but also provides precise timing parame-
ters that can be used in combination with time-sensitive functional measures such as
electroencephalography (EEG) or transcranial magnetic stimulation (TMS).

Introduction

Over the last 20 years, Virtual Reality (VR) has been increasingly recognized as a powerful
research tool in behavioral neuroscience [1,2]. VR enables researchers to study complex and
naturalistic behavior in virtual environments while maintaining a high degree of experimental
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control. VR can help to increase the ecological validity of experiments, i.e., allowing to conduct
experiments in a context that is closer to everyday life, which might lead to more generalizable
and valid explanations regarding cognitive processes. For example, a virtual scenario of a class-
room allows to investigate the attentional capacities of children with ADHD in a realistic but
well-controlled environment [3].

Consumer-grade HMD based VR Systems like Oculus Rift, Valve Index, or HTC Vive are
now making VR available for many researchers and will soon dramatically increase the impact
of VR in the field of cognitive neuroscience. Most likely, VR will have major impact on studies
of visual perception as one of the many advantages that VR offers is its ability to present stimuli
in stereoscopic 3D with a large field of view and with the HMDs entirely covering the visual
field.

Yet, the suitability and reliability of HMDs concerning the measurement of visual cognitive
performance needs to be demonstrated. Recent studies examined whether HMDs, at least in
principle, can be used to reliably investigate visual processing components. The results indi-
cate, that the Oculus Rift Development Kit 2 (DK2) and the HTC Vive allow assessing visual
processing as reliably as CRT displays [4,5].

In addition, due to a lack of established stimulus software for VR experiments, several
recent studies relied on using game engines like Unity [6] or Unreal Engine [7] [e.g., 8, 9].
However, game engines do not contain certain key features that are critical for neuroscientific
experiments. For example, data collection with build-in features, such as response time mea-
surements, are tied to the software’s frame rate, resulting in a sampling rate of 90 Hz when
using an HMD such as Oculus Rift CV1, HTC Vive, or HTC Vive Pro.

Furthermore, modern VR systems use runtime software tools like SteamVR [10] or the
Oculus Rift Software [11], which operate in the so-called “direct mode” that allows direct com-
munication with the HMD hence bypassing the operating system’s typical display communica-
tion pathways. These runtime software tools determine when a new frame will be presented.
They thus have control over the exact timing of stimulus presentation, while at the same time
limiting the accuracy with which stimulus events can be measured, at least when the game
engine’s build-in timing methods are used.

These limitations are well described in the literature [e.g., 12,13] and different approaches
have been proposed to increase the precision and accuracy of time critical measurements in
combination with game engines [e.g., 14-16].

However, to date, no study has systematically quantified the maximum precision and accu-
racy of stimulus timing and time measurements achievable with consumer VR hardware in
combination with game engines.

The goal of the present study was (1) to assess timing errors of the HTC Vive combined
with Unreal Engine 4 (UE4) and SteamVR, and (2) to present a new method that allows to
measure the timing of visual stimulus events and response times with an accuracy and preci-
sion in the millisecond range.

Displays

Experimental neuroscience requires accurate and precise control of stimulus durations and is
hence in need for display techniques with appropriate temporal properties. Display technolo-
gies differ in how accurate stimulus onsets and offsets can be determined. The display technol-
ogy currently used in VR differs from the computer screens often used in experimental
neuroscience. For instance, in contrast to cathode-ray tube (CRT) or liquid crystal displays
(LCD) monitors, many modern HMDs such as Oculus Rift or HTC Vive use organic light-
emitting diode (OLED) displays, and their accuracy remains to be tested. In particular, it is
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essential to determine how accurately stimulus onset times (i.e., the time point when a stimu-
lus appears on the display) can be controlled and how precise and solid stimulus durations can
be defined.

For a long time, CRT monitors were considered the gold-standard for visual stimulus deliv-
ery in experimental neuroscience. In CRT monitors every pixel is updated periodically to gen-
erate an image via an electron beam that scans all pixels in rows from top-left to bottom right,
a process referred to as raster scanning [17]. An important characteristic here is a pixel’s per-
sistence, i.e., the time pixels are illuminated after stimulation by the electron beam. Each pixel
is covered with phosphor. When hit by the electron beam, the phosphor illuminates and
quickly reaches its maximum luminance and then starts to fall off again over a given time. This
time depends on specific characteristics of the given phosphor and ranges from virtually no
persistence (e.g., P15) to several seconds (e.g., P31) [18]. Thus, on a CRT monitor, the entire
image cannot be updated simultaneously and does hence not deliver a continuous luminance
pattern.

LCD monitors are based on a completely different technology. LCD monitors constitute
so-called sample and hold displays in which a steady light source is positioned behind a
layer of liquid crystals. The orientation of the crystals defines a pixel’s luminance. Although
there is no longer an actual electron beam in modern LCDs, and it is no longer necessary to
update displays periodically, it is still common that LCDs are updated in scan like patterns
similar to those in CRT monitors. However, in contrast to CRT monitors, LCD signals do not
decay and remain constant during the display refresh (except for possible backlight modula-
tions) [17].

Since in both LCD and CRT monitors the image is built up line by line from top to bottom,
stimulus onset measurements are synchronized to the vertical blank interval, which is the time
between two display refreshes. Therefore, the stimulus onset measurement is only perfectly
synchronized to the actual stimulus onset, if the stimulus is presented in the leftmost pixel of
the first row. Consequently, the measurement error of the stimulus onset is correlated with the
position of the stimulus on the display [19,20].

In contrast, the HTC Vive uses two low-persistence OLEDs. OLEDs are comprised of a thin
film of organic material that uses an electrical circuit to control the emission of light [21,22].
Unlike LCDs, OLEDs do not rely on time-consuming reorientations of liquid crystals and
have, therefore, faster response times than LCDs. Furthermore, while luminance transition
times of LCDs depend on the luminance of the previous frame, in OLEDs, transition times are
supposed to be independent of the previous frame’s luminance [23]. In general, OLEDs show
precise temporal responses and appear to be suitable for visual neuroscientific research [21]
Hence, the displays used in HMD’s are unique with regard to timing and time measurements
due to particularities of how the display is refreshed.

The whole display gets loaded before it illuminates so that all pixels illuminate simulta-
neously. This type of display is hence often referred to as “global displays” [24]. In particular, a
display refresh of the HTC Vive’s displays starts with a blank period, during which the displays
stay black. The pixels then illuminate for about 2 ms at the end of the screen refresh period.
This is done to minimize visual motion artifacts like smearing and judder. Thus, the updating
behavior of the HTC Vive’s displays should allow accurate measurements of the stimulus
onset, independent of its position.

Stimulus software

For traditional experiments in visual neuroscience, a variety of commercial and open-source
software tools are available that meet strict timing requirements, e.g., Presentation [25],
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PsychoPy [26], or the Psychophysics Toolbox [27]. These software tools are optimized for the
presentation of two-dimensional stimuli and offer no or only limited support for the current
state of the art VR systems. Concerning VR, established toolboxes for neuroscientific experi-
ments are lacking. While a variety of commercial and open-source software is available for the
creation of virtual environments, most of the software tools do not contain features specifically
designed for neuroscientific experiments. One exception is WorldViz Vizard [28], a commer-
cial solution, which allows researchers to create and conduct VR experiments.

However, in several recent studies, game engines like Unity or Unreal Engine were used
and it remains to be tested whether these software packages provide precise and accurate stim-
ulus timing and time measurements that allow inference on mental and neural processes.

For instance, a time-critical presentation of visual stimuli is required for visual masking
paradigms [29] or attentional blink paradigms [30] as well as for almost any experiment
involving visual psychophysics [31]. Similarly, a precise recording of response times is required
for all studies involving mental chronometry, with reaction times as a dependent measure.
Furthermore, a precise recording of events within an experiment is mandatory for the analysis
of all time-sensitive functional measures, such as EEG, TMS, magnetoencephalography
(MEG), or galvanic skin response (GSR), where cognitive and perceptual events are assigned
to functional markers.

The current study investigated the timing errors of the HTC Vive combined with UE4 and
SteamVR. In the first experiment, we assessed the precision and accuracy of stimulus presenta-
tions. In the second experiment, we explored the limitations of UE4’s build-in timing proce-
dures for reaction time measurements resulting in variable and inaccurate reaction time
measures that are inappropriate for a wide range of reaction time experiments. Further, a
newly developed method and its benchmarking results will be presented. This new method
allows precise and accurate reaction time measurements with UE4 and SteamVR.

In the following, in order to increase readability, we will always refer to UE4, although, if
not stated differently, it always refers to the combination of UE4, SteamVR, and the HTC
Vive.

General methods
Unreal engine settings

We aimed to keep almost all default settings of UE4 in this study. However, due to the high
rendering demands of VR, it is generally recommended to adjust some settings to optimize
UE4’s VR rendering.

First, we changed the rendering technique from the default Deferred Renderer to the For-
ward Renderer. Forward rendering is generally the preferable rendering method for VR since
it usually improves performance and allows better anti-aliasing methods than deferred render-
ing. Forward rendering allows using multisample anti-aliasing (MSAA) that increases sharp-
ness and leads to better visuals [24,32]. Additionally, we enabled Instanced Stereo rendering.
By default, the geometry has to be drawn twice for VR applications as compared to non-VR
rendering, once for the left eye and once for the right eye, which essentially doubles the num-
ber of draw calls, i.e., the rendering information that is send from the central processing unit
(CPU) to the graphics processing unit (GPU). With Instanced Stereo rendering, the geometry
has to be drawn only once and is then projected to the right-eye view and left-eye view of the
geometry. This procedure halves the number of draw calls and thereby saves a substantial
amount of CPU time.

All tests described in this paper were conducted with Unreal Engine 4.21.2 with the config-
uration described above.
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SteamVR settings

In all experiments, we disabled supersampling anti-aliasing (SSAA) by setting the render reso-
lution of the HTC Vive to 100%. SSAA works by rendering a scene with a higher resolution
than the one displayed and then averages neighboring samples to create the image [33]. SSAA
is often used for VR rendering to reduce aliasing and improve visual quality.

Additionally, we disabled “Motion Smoothing” for all experiments. Motion Smoothing is a
method to stabilize the frame rate when an application starts to drop frames. As soon as the
frame rate decreases below the HMD’s refresh rate (90 frames per second (FPS) for the HTC
Vive), SteamVR reduces the frame rate by half and instead extrapolates every second frame
based on the last two presented frames [34]. However, while this method is helpful for the
common usage of VR (e.g., gaming) to provide smoothly running VR experiences, it would
corrupt all the timing precision and accuracy within a scientific experiment. Thus, it is recom-
mended to disable this option whenever precise timing is required or when the timing of
events (e.g., reaction times) needs to be determined precisely. However, besides Motion
Smoothing another technique helps to smooth out dropped frames called “Asynchronous
Reprojection”. Like Motion Smoothing, Asynchronous Reprojection reduces the number of
rendered frames by half. However, instead of extrapolating frames, it repeats the previous
frame but reorients it based on the user’s latest head rotation [35]. Since Asynchronous Repro-
jection cannot be disabled, a VR experiment should always be optimized about hard- and soft-
ware to ensure stable frame timing.

All tests described in this paper were conducted with SteamVR 1.2.10 with the configura-
tion described above.

Experiment 1

The aim of Experiment 1 was to test the precision and accuracy of visual stimulus presenta-
tions using UE4. The goal was to assess potential discrepancies between the stimulus timing
defined by the researcher and the actual stimulus timing on the display. Please note, stimulus
duration errors are observed even in software tools that, in contrast to UE4, are especially
designed for behavioral experiments [20].

Material and methods

Tests were performed using the Black Box Toolkit v2 (BBTK) to test the timing precision and
accuracy of simple black and white transitions with predefined durations. The BBTK is spe-
cially designed for benchmarking these type of tests [36]. We tested three different conditions
to determine the precision and accuracy of UE4’s stimulus timing under different rendering
workloads. Furthermore, we ran every test on two different Windows computers to compare
the timing precision and accuracy on systems with different hardware specifications.

Apparatus. All tests were conducted on two different desktop computers with Windows
10 as the operating system. The specifications of Computer 1) were Intel i7-8700, 32 GB DDR4
RAM, and an Nvidia GTX 1080 graphics card, and of Computer 2) Intel i7-7700K, 32 GB
DDR4 RAM, and an Nvidia GTX 1080Ti graphics card. The tested VR System was the HTC
Vive (1080 x 1200 pixels per eye).

General procedure. We used a well-established procedure to test the timing of visual
stimulus presentations for PC [37-39]. For each test, a photo-sensor connected to the BBTK
was attached to the middle of the HTC Vive’s left lens. The photo-sensor was used to measure
the stimulus timing under all conditions with a sampling resolution of 0.25 ms. Stimuli were
filled-in squares repeatedly alternating their contrast from black to white. Contrast reversals
were programmed to occur after durations of 11.111, 33.333, 66.666, 100, 200, 500, and 1000
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Fig 1. Presentation and measurement setup.

https://doi.org/10.1371/journal.pone.0231152.g001

ms (ie., 1,3, 6,9, 18, 45, and 90 display refreshes at 90 Hz). All stimulus durations were
defined in terms of the frames or ticks.

The BBTK was controlled with a second computer that was independent of the presentation
computer to prevent interference of the stimulus delivery process and the measurements
(Fig 1).

Each stimulus duration was tested in a single series with a duration of 10 minutes and
hence allowed evaluating the stability of UE4’s timing behavior over long durations. Further-
more, three different conditions were introduced, in which the rendering workload was sys-
tematically varied (Fig 2).

To test whether UE4 is generally able to provide sufficient timing precision and accuracy of
visual stimulus presentations while the rendering workload is low, a first condition was intro-
duced, which is from now on referred to as Simple. In this condition, we created an empty and
completely black virtual environment that only consisted of a single square that was presented

Simple Complex-Static Complex-Moving

-

4 4 4

Fig 2. Stimulus conditions. Please note, the brightness of the illustrations was increased and does not represent the actual brightness
presented.

https:/doi.org/10.1371/journal.pone.0231152.9002
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centrally of the left eye’s image. The square’s brightness alternated between black and white
with the durations mentioned above.

This procedure allowed us to determine UE4’s timing precision and accuracy of visual stim-
ulus presentations with a minimal rendering workload and assured that presentation times
were unaffected by possible performance constraints.

A second condition, further referred to as Complex-Static, aimed to evaluate the stimulus
timing precision and accuracy with a high rendering workload. In a typical VR experiment, sti-
muli are not displayed in isolation but are embedded in a complex virtual environment.

The stimulus material in this condition still consisted of simple black and white transitions.
In contrast to the Simple condition, the stimulus square was embedded in a virtual
environment.

We used the Realistic Rendering sample project of UE4 as a virtual environment consisting
of a highly realistic and detailed rendered living room [40] (S1 Fig).

A third condition Complex Moving aimed to evaluate the stimulus timing precision and
accuracy while the movement of a user was simulated. We used the same virtual environment
as in the Complex Static condition, but of a single static viewpoint, the first-person camera was
placed in the center of the environment. The first-person camera was programmed to rotate
around the yaw axis with a constant rate of 30" per second. This was done to simulate the
user’s head movements. Additionally, to provide a fixed location of the square relative to the
camera, we attached the stimulus square to the camera. Apart from these adjustments, the gen-
eral procedure was identical as in the other conditions.

The displays of the HMD are relatively small, so the photo-sensor could not be directly
placed at the stimulus location to detect light from the stimulus square exclusively. Instead, it
always included some parts of the surrounding background. Hence, for the Complex-Static
and Complex-Moving conditions, it was necessary to calibrate the photo-sensor’s sensitivity to
ensure that the photo-sensor was driven only by the stimulus square and not by the environ-
ment’s light.

Calibration consisted of two steps. First, we adjusted the threshold to set the activation
point of the BBTK’s photo-sensor to the highest possible value that still detected the white
stimulus. In a second step, we adjusted the illumination of the environment. We first replaced
the default post-processing of the environment with a custom post-processing. Post-process-
ing describes techniques that change and add visual elements to a rendered scene after the ren-
dering has been completed. This procedure allowed changing the luminance within the scene
globally via a single setting, i.e., changing the light exposure, a post-processing effect that
changes the overall brightness of a scene. For the calibration, we increased the light exposure
until the environment’s light activated the photo-sensor and then reduced it again until the
photo-sensor was not activated by it anymore. This procedure ensured a proper illumination
of the environment while ruling out any interference between the environment’s light and the
photo-sensor’s light measurements.

Results

For each series, the mean durations of a single stimulus cycle (black and white stimulus inter-
val), as well as the standard deviation and the overall longest and shortest measured durations
were computed and reported for all tested stimulus durations. Furthermore, the mean dura-
tion of the white stimulus intervals was calculated. However, due to the low persistence dis-
plays, the display changed regularly between black and white even during the white stimulus
intervals. Accordingly, the BBTK measured constant changes between black and white during
white stimulus intervals. Hence, we defined the duration for the white stimulus interval as the
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time from the first white frame lighting up until the end of the last frame lightning up in that
white stimulus interval.

Further, since the low persistence displays only light up for about 2 ms at the end of each
display refresh, the white stimulus intervals started with a blank period during which the dis-
play was still black. Hence, the BBTK’s photo detector was not able to separate the actual black
stimulus interval from this first blank period of the white stimulus intervals first frame.
Accordingly, the measured white stimulus interval durations are expected to be shorter than
the expected stimulus duration by the duration of one frame’s blank period, i.e., about 9 ms.

The overall variability of the stimulus intervals was consistently within the range of BBTK’s
sampling rate of 0.25 ms. However, the measured stimulus durations steadily exceeded the
expected, i.e., programmed, stimulus duration. Further, the difference between expected and
measured durations appeared to be linearly correlated with the expected stimulus duration.
This result was confirmed by a simple linear regression between the expected and measured
durations of the stimulus cycles (F(1,5) = 3.62 x 10", p < 0.05), with an R?of 1.

Since the stimulus timing was defined in terms of ticks, the most parsimonious explanation
for the difference in stimulus durations was that the true frame rate was lower than the expected
90 FPS. Hence, for all measured stimulus durations, the corresponding frame rate was deter-
mined as 89.53 FPS, which was consistent for all tested stimulus durations and computers.

A potential explanation for the lower frame rate could be performance problems affecting
the frame rates. However, we systematically varied the rendering workload between conditions
and any effect of performance problems on the frame rate should be reflected in different
frame rates between conditions.

To test for potential performance problems between conditions, a two factorial Anova with
the factors Condition (Simple, Complex-Static, Complex-Moving) and Computer (Computer
1, Computer 2) was performed. The ANOVA revealed no significant main effect for Condition
(F(1,2) =0.001, p = 0.999) indicating no difference between the FPS in the Simple (M = 89.528,
SD = 0.370), Complex-Static (M = 89.528, SD = 0.370), and Complex-Moving (M = 89.528,

SD = 0.370) conditions. In fact, the values observed in the different conditions were identical
up to the fifth decimal place.

Furthermore, potential performance problems should be pronounced differently on the
two different computer systems. However, the main effect Computer between Computer 1
(M =89.529, SD = 0.370) and Computer 2 (M = 89.527, SD = 0.370) was not significant (F(1,1)
= 1.160, p = 0.281). There was also no significant interaction between Condition x Computer (F
(1,2) = 0.001, p = 0.999).

Besides, to exclude that the reduced frame rate (89.53 Hz vs. 90 Hz) observed was due to
particularities of HMD tested, all tests of the Simple condition were repeated with an additional
HTC Vive system on Computer 1. The mean results of these tests are presented in the support-
ing information (see S6 Table—S7 Table). The mean frame rate of 89.53 FPS was confirmed
with this setup and a one factorial ANOVA with the Factor HMD (HMD 1, HMD 2) resulted
in a non-significant difference of the mean FPS between HMD 1 (M = 89.529, SD = 0.370) and
HMD 2 (M = 89.529, SD = 0.370); (F(1,1) = 0.000, p = 0.99).

Table 1 shows the results of the whole set of measurements for the three conditions and two
computers. The individual results of the three conditions and both computers separately can
be found in the supporting information (see S1 Table-S5 Table).

Discussion

Experiment 1 aimed to determine Unreal Engine’s timing precision and accuracy for stimulus
presentations. Stimulus timing was measured under different rendering workloads. The results
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Table 1. Combined results across all conditions and computers (in ms).

expected duration mean sd min max mean duration white
2000 2010.58 0.116 2010.50 2010.75 996.05

1000 1005.29 0.091 1005.25 1005.50 493.41

400 402.12 0.125 402.00 402.25 191.82

200 201.06 0.105 | 201.00 201.25 91.29

133.33 134.04 0.090 134.00 134.25 57.78

66.66 67.02 0.067 67.00 67.25 24.27

22.22 22.34 0.120 22.25 22.50 1.93

The first column represents the expected duration for the black and white stimulus cycles. The last column represents the measured durations of the white stimulus

intervals.

https://doi.org/10.1371/journal.pone.0231152.1001

revealed that Unreal Engine in combination with the HTC Vive and SteamVR was able to
achieve precise and accurate stimulus timings. Timing precision and accuracy were stable even
with a high rendering workload. Furthermore, timing precision and accuracy remained stable
when the user’s head movements were simulated.

The HMD’s empirical frame rate was determined as 89.53 FPS, slightly differing from the
specifications given in the HTC Vive manual. Importantly, the frame rate was stable across dif-
ferent rendering workloads and when tested in combination with different computers, indicat-
ing that the observed frame rate was device-specific and not an artifact resulting from
potential performance problems. Moreover, additional tests with a second HTC Vive system
replicated this finding hence confirming that the reduced frame rate was not the results of a
defective HMD.

The results suggest that the true refresh rate of the HTC Vive is 89.53 Hz rather than 90 Hz,
at least when used in combination with UE4 running on a Windows 10 platform. Different
frame rates may arise when using different software packages. Future research needs to investi-
gate whether these findings hold for different rendering engines and operating systems.

Furthermore, the results of the present study emphasize that when using HMDs such as the
HTC Vive, for precise stimulus timing, researchers need to take into account the peculiarities
of low persistence displays with the so-called global update. In these displays, every frame starts
with a blank period in which the displays stay black. Only after this blank period, the displays
illuminate and the image appears. Therefore, black and white flickering stimuli as used in the
present experiment involve longer black than white periods. Consequently, studies that rely on
exact stimulus timing should consider this difference, when specifying stimulus durations.

Overall, we conclude that UE4, together with SteamVR and the HTC Vive, can present sti-
muli with precise and accurate stimulus durations.

Experiment 2
Introduction

Cognitive Neuroscience requires a mapping of internal neural states and cognitive processes.
A prerequisite to successfully relate both is to infer a cognitive system’s current state, which
can only be done from behavior. Response times and differences in reaction times are one of
the most important behavioral measures available to infer cognitive processes. Hence, a reli-
able and precise determination of participants’ responses is essential for cognitive neurosci-
ence since it allows inferring the mental processes to be related to neural events.
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Furthermore, in order to relate functional data and ongoing cognitive processes, it is vital
to accurately determine the points in time when specific sensory, cognitive, or motor events
occur. For instance, studies dealing with time-sensitive functional measures, such as EEG, usu-
ally utilize the onset of a stimulus or the response time as markers to synchronize with a func-
tional measure.

However, game engines such as UE4 are not designed for this kind of tasks and hence do
not provide the necessary timing procedures allowing precise and accurate time measure-
ments. For instance, precise reaction time measurements require that button events are regis-
tered in parallel to the stimulus presentation. UE4 registers button events only once per frame
resulting in uncertainties in the range of one frame duration.

Furthermore, as described above, the actual presentation of stimuli is controlled by a VR
runtime software such as SteamVR rather than by UE4 itself, which makes it impossible to
accurately measure the onset time of a stimulus with UE4’s build-in timing procedures.

Therefore, the aim of Experiment 2 was to determine the precision and accuracy of time
measurements with UE4 and thereby to investigate the limitations of UE4’s build-in timing
procedures. Additionally, the precision and accuracy of reaction time measurements of Psy-
choPy and Presentation, two experimental software packages commonly used in cognitive
neuroscience, were collected and compared against the results obtained with UE4.

Material and methods

All the settings of UE4 and SteamVR in Experiment 2 were identical to those used in Experi-
ment 1.

Again, the BBTK was used to determine the precision and accuracy of time measurements,
in particular, the precision of reaction time measurements. The BBTK’s photo-sensor was
used to measure the onset of a stimulus on the display, and a 1000 Hz USB response device,
connected to the BBTK and the stimulus computer, was set to elicit a response when the
photo-sensor signaled the onset of a stimulus (Fig 3). The BBTK software allowed generating
response schedules in which a sequence of response times, as well as corresponding response
durations (i.e., the duration of a button press) for a number of trials, was defined. This proce-
dure allowed the BBTK to simulate a realistic reaction time pattern. The sequence of reaction
times was obtained from a previously acquired data set collected in a behavioral experiment.

We used a well-established procedure to test the precision and accuracy of reaction time
measurements [20,36,41]. Again, simple black and white transitions were used as visual sti-
muli. However, in contrast to Experiment 1, in which the black and white transitions were
restricted to a square in the middle of the display, in Experiment 2, the black and white transi-
tions involved the entire display. The latter was done because the tests involving PsychoPy and
Presentation were conducted using an LCD monitor. As previously mentioned, in contrast to
the HTC Vive’s globally illuminated display, on LCD monitors the image is built up line-wise
from top to bottom causing varying measurement errors depending on the position of the
stimulus on the screen. Stimulus onsets were measured at the uppermost position in the left
corner of the monitor to minimize hardware-related measurement errors when testing Psy-
choPy or Presentation. Furthermore, since LCD monitors have different and often inferior
temporal properties as compared to OLEDs [42], the Samsung SyncMaster 2233 was used,
which has previously been shown to provide sufficiently precise timing for vision research
[43]. The tests of PsychoPy (v1.90.3) and Presentation (v20.3 02.25.19) were conducted with a
refresh rate of 60 Hz.

In Experiment 2, the white stimulus was defined as the target stimulus eliciting a response
by the BBTK. The target stimulus remained on the display until a response was given.
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Fig 3. BBTK setup of the reaction time measurements.
https://doi.org/10.1371/journal.pone.0231152.9003

Following the response, the stimulus turned black for 1 second and turned white again until
the following response was given (Fig 4). This procedure allowed to compare the true reaction
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Fig 4. Example of one response schedule (left) and reaction time task of Experiment 2 (right).

https://doi.org/10.1371/journal.pone.0231152.9004
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times as generated by the BBTK with the reaction times recorded by the stimulus software and
to determine the reaction time errors as well as its variability.

All three software packages were tested in five runs of 200 trials each. For each of the five
runs, a different response time schedule was applied. In order to represent realistic reaction
time distributions, we assigned reaction times of human participants measured in a previously
acquired dataset [44]. The reaction times of the first 200 trials of five randomly selected partici-
pants were used to generate five response time schedules (Fig 4). The response duration was
kept constant and was set to 100 ms in all trials. For each software package, the same response
time schedules and testing procedures were used.

All tests were conducted on a Windows 10 platform. The specification of the computer was
an Intel i7-8700 CPU, 32 GB DDR4 RAM, with an Nvidia GTX 1080 graphics card.

Results

The mean results for the three tested software packages are presented in Table 2. Both Psy-
choPy and Presentation showed comparable and only small overall reaction time errors

that led to a mean overestimation of the reaction times of approximately 4 ms. Furthermore,
the variability of the reaction time errors was comparably small in both PsychoPy and
Presentation.

In contrast, UE4 showed substantial errors, with highly variable reaction time measure-
ments with a mean measurement error of +55 ms and variability in an error range of 12 ms.
Two-sample Welch t-tests were conducted to compare the mean error of UE4 with each stan-
dard software package. The comparison of UE4 (M = 55.073, SD = 3.326) and Presentation
(M =3.964, SD = 0.345) resulted in significant different mean errors t(1020) = 483.33,

p < 0.05). Similarly, the comparison between UE4 and PsychoPy (M = 4.337, SD = 0.483) was
significant t(1041) = 477.36, p < 0.05). Additionally, F-tests resulted in significant differences
of the variance between UE4 and Presentation (F(1,999) = 93.103, p < 0.05) as well as between
UE4 and PsychoPy (F(1,999) = 47.344, p < 0.05).

Discussion

Experiment 2 aimed to quantify the precision and accuracy of reaction time measurements of
UE4 and SteamVR in combination with the HT'C Vive VR system. The tests illustrate the limi-
tations of the build-in timing procedures of UE4. To obtain an estimate of the precision and
accuracy provided by established software toolboxes for neuroscientific experiments in a non-
VR context, we applied the same testing procedure to Presentation and PsychoPy. While both
Presentation and PsychoPy provided precise and accurate reaction time measurements, reac-
tions times measured with UE4’s build-in timing procedures were highly variable with a high
mean measurement error.

The variability of the reaction time measurements can be accounted for by the fact that but-
ton events in UE4 are not registered in parallel. Instead, response events are only recorded
once per frame, hence resulting in an error range of one frame duration.

Table 2. Overview of measurement errors, standard deviation, minimum and maximum error for each software
package (in ms).

Software | Mean error | SD | Min Max
Presentation 3.964 0.345 3.00 ‘ 5.00
PsychoPy 4337 0.483 | 3.00 | 6.00
UE4 55.073 | 3.326 | 49.00 61.00

https://doi.org/10.1371/journal.pone.0231152.t002
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In the tests reported above, stimulus onset times were determined after the command to
change the stimulus color from black to white. The high overall mean error illustrates a delay
between the moment the software executes the command to show a stimulus and the actual
stimulus presentation time. This delay stems from several processing steps preceding the actual
stimulus presentation, including a transfer of control over the stimulus presentation from UE4
to SteamVR.

However, these results were not surprising since these are known difficulties, and different
frameworks have been suggested to simplify data collection for behavioral experiments [45,46]
and to integrate and synchronize multiple data streams from different hardware devices, such
as EEG or eye-tracking [14,16,47,48].

One framework mainly focused on the precision of reaction time measurements in combi-
nation with Unity and the HTC Vive [15]. In this study, the authors used an Arduino, a pro-
grammable microcontroller, to measure response times independently of Unity and with a
sampling rate that is not limited by the refresh rate of the display. The benchmarking results
illustrated that they were able to measure response times with a precision (standard deviation)
of about 2.5 ms. Additionally, it was suggested that installing a photo-sensor in the HTC Vive
could further improve time measurements. A small photo-sensor could measure the onset of a
small peripheral stimulus appearing simultaneously with the target-stimulus. This additional
stimulus could be registered directly with the Arduino.

Another recent study introduced the Unified Suite for Experiments (USE), a combination
of soft- and hardware tools for the creation of experiments using Unity [14]. USE comes with a
custom designed SyncBox, that is again based on an Arduino and allows to synchronize different
data streams. A photo-sensor is used to measure the onset of an additional, peripheral stimulus
that is presented simultaneously with the target. Benchmarking results demonstrated that the
method was able to determine the stimulus onset with high precision for shorter durations.
Instead, over a longer duration, the authors observed nonsystematic changes in accuracy. How-
ever, the authors provide pre-processing tools to account for these timing errors and to provide
millisecond accurate stimulus onset measurements. Unfortunately, USE was not tested on
HDMs directly. Instead, tests were performed on a computer monitor. Installing a photo-sensor
in an HMD is technically challenging, as the photo-sensor needs to be small enough not to cause
any discomfort to the participant. Nevertheless, even when small enough, the photo-sensor
would be noticeable to the participant. Furthermore, this approach includes another peripheral
flash stimulus that is correlated with the target. This additional stimulus could potentially con-
found some experiments, such as the second stimulus could distract from the target stimulus.

Therefore, in the next section, we will present a new software-based method that allows cir-
cumventing these limitations and measuring accurate and precise reaction times with UE4
and SteamVR.

A new method for reaction time measurements with Unreal Engine
and SteamVR

Aims of the proposed method

The impact of VR on neuroscientific studies will critically depend on how easily VR experi-
ments can be implemented and how precise control of stimulus delivery and response acquisi-
tion will be. Promising and important frameworks that aim to simplify the creation and
control of VR experiments with game engines [e.g., 44, 45] are available already or are cur-
rently under development. However, so far, the progress with time-critical measurements,
such as reaction times, is still insufficient and requires technically challenging setups, including
additional hardware.
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Here we aimed to develop a method for reaction time measurements that can provide pre-
cise and accurate measurements entirely on a software basis, which makes the need for addi-
tional hardware and complicated technical setups obsolete.

Although our method was developed mainly for UE4 and SteamVR, our aim was to ensure
that the underlying principles are compatible with different game engines and the Oculus VR
runtime.

However, our goal was not to develop a ready-to-use toolbox, as there are already promis-
ing toolboxes currently being developed [e.g., 45,48]. Instead, we aimed to develop and test
our method as a proof-of-principle to provide a framework that can be integrated into other
toolboxes.

Method

The concept of our method is based on separating reaction time measurements from UE4 by
outsourcing the measurement procedure into a background application. Hence, our method
follows the same idea as the ioHub of PsychoPy. In order to provide, e.g., framerate indepen-
dent response times, the ioHub monitors response events in parallel of the PsychoPy main
process by running a separate process in the background [26].

In the first section, we will describe how to obtain frame rate independent measures of
response times.

In the second section, we will describe how this procedure can be extended to also obtain
accurate measures of stimulus onsets.

In the third section, we will provide timing benchmarks of the proposed method.
Measuring frame rate independent response times. For the detection of responses, a
global low-level keyboard hook is used. The Microsoft Developer Network describes a hook as
“a point in the system message-handling mechanism where an application can install a subrou-

tine to monitor the message traffic in the system and process certain types of messages before
they reach the target window procedure.”[49]. This procedure allows to intercept the keyboard
message before Unreal receives the message and thus allows to process button input with a
high sampling rate and independently of the displays frame rate (Fig 5). In particular, this

Keyboard input

Background
Application

Unreal Engine

Fig 5. Illustration of the response time logging procedure.

https://doi.org/10.1371/journal.pone.0231152.9g005
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procedure allowed us to increase the sampling rate of the input processing from 90 Hz to the
hardware limit of the response pad of 1000 Hz.

Furthermore, to determine the reaction time, i.e., the time between stimulus onset and key-
board response, an exact determination of when a stimulus appears on the screen is necessary
in addition to the exact time of a keyboard event. Therefore, it is mandatory to establish an
interface that allows synchronizing our background application with UE4. For this purpose, a
trigger signal (onset-trigger) is sent from UE4 to the background application, marking the
time point when a stimulus is presented by using Event Objects. Event Objects can be used to
exchange signals between threads or processes, indicating that a particular event has occurred
[50]. As soon as the function that initiates UE4 to present the target stimulus, the onset-trigger
signal is sent to our background application determining the time of a stimulus’ onset. The
background application then registers the time, and the keyboard hook is activated. Once a
response is given, the response time is logged, and the hook is stopped until the next onset-
trigger is received from UE4.

We, therefore, ran another series of tests to assess whether this method reduces the variabil-
ity of the measurement error previously observed. Again, five runs of 200 trials each, with the
same response schedules used in Experiment 2 were tested.

The results demonstrated that our background application effectively reduced the variabil-
ity of the response time errors down to a range of 2 ms. Conversely, the mean response time
error was reduced by about half a frame duration to a mean error of 49 ms. A two-sample
Welch t-test resulted in a significant difference of the mean errors between UE4 (M = 55.073,
SD = 3.326) and UE4 + Hook (M = 49.030, SD = 0.381); t(1025) = 57.081, p < 0.05). A F-test
comparing the variances also resulted in a significant reduced variance when measurements
were conducted with the background application (F(1,999) = 76.166, p < 0.05).

The results are summarized in Table 3.

Measuring the stimulus onset. Accordingly, the variability of the reaction time errors
can effectively be reduced. However, the mean absolute response time error of 49 ms remained
relatively high compared to PsychoPy and Presentation. The remaining error indicated a delay
between the moment UE4 receives the command to show a stimulus and the time when the
stimulus appeared on the screen. A closer look at the rendering processes of UE4 and SteamVR
revealed the origin of this delay and allowed compensating for it.

3D real-time rendering is accomplished within a pipelined architecture called graphics
pipeline. Fig 6 coarsely depicts the conceptual stages for the graphics pipeline. The first stage
consists of the game simulation and rendering preparation. Before the scene can be rendered,
the system needs to determine the locations of objects to be rendered in the scene. The game
simulation accomplishes this task. The game simulation calculates all the logic and transforms,
i.e., the position, orientation, and scale of all objects in the scene, taking into account inputs by
the user, animations, physics simulation, and Al The rendering preparation then determines
what is currently visible in the scene and creates a list of all the objects that need to be rendered
and passes this list to the GPU. These steps are mostly processed on the CPU and controlled
by UE4. The next stage is the actual geometry rendering, which is processed on the GPU. The
final stage before the frame gets visible on the displays is referred to as scan-out. Scan-out

Table 3. Comparison of the reaction time errors, standard deviation, the minimum and maximum error of UE4
together with the hook procedure and the previous results obtained with UE4 build-in timing functions (in ms).

Software ‘ Mean error SD Min Max
UE4 \ 55.073 3326 ‘ 49.00 61.00
UE4 + Hook | 49.030 [ 0.381 7 48.00 50.00

https://doi.org/10.1371/journal.pone.0231152.t003
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Unreal SteamVR

Rendering
(GPU)

Panels illuminate for 2 ms
(Stimulus Onset)

Fig 6. Basic illustration of the graphics pipeline.

https://doi.org/10.1371/journal.pone.0231152.9006

describes the transfer of the image via HDMI, thereby loading it onto the displays. After scan-
out completion, the display panels illuminate, and the frame gets visible. The last two stages
are controlled by SteamVR rather than UE4.

Calling the function to present a target stimulus in UE4 is just the first step of a whole cas-
cade of processes required to display a stimulus. Timestamping a stimulus event at the begin-
ning of this cascade (when the function to present the stimulus is called) is far too early,
resulting in the measurement errors observed in Experiment 2.

However, the graphics pipeline illustrates that it is not possible to measure the stimulus
onset directly via UE4. After submitting the rendering commands to the GPU, SteamVR deter-
mines when the frame is sent to the HMD. This is further complicated by the fact, that unlike
in rendering to a normal computer monitor, the scan-out has to be finished before the displays
light up and the stimulus is presented.

A more detailed illustration and description of the temporal characteristics of the graphics
pipeline is shown in the supporting information (S2 Fig and S1 Text).

Prediction. The method that allows determining the true stimulus onset time is based on
prediction. In particular, in order to predict the exact stimulus onset, a procedure can be
implemented that is based on SteamVR’s procedures to predict the user’s pose. One of the crit-
ical determinants to provide a compelling VR experience is to reduce the so-called Motion-
To-Photon latency. Motion-To-Photon latency describes the time that is required for a user’s
head movement to be fully reflected in the HMD. As described above, the system has to deter-
mine the layout of the scene before the scene can be rendered. One of the critical factors that
determine what is currently visible and what hence needs to be rendered is the user’s pose, i.e.,
the position and the orientation of the HMD. However, rendering takes time and induces
undesired latencies, thereby reducing the quality of the VR experience. Furthermore, latency is
one of the main drivers of motion sickness, a side effect that leads to symptoms like nausea,
dizziness, or vertigo [51].

SteamVR’s strategy to reduce the Motion-To-Photon latency is to predict the user’s pose,
giving the best estimate for the users’s pose when the frame is displayed on the headset, to com-
pensate for the latency in the system. To obtain an accurate prediction, the system needs to esti-
mate when the currently rendered frame will finally be displayed. All necessary functions to
predict when a frame will be displayed are provided within SteamVR’s application programming
interface (API) OpenVR. The proposed method is synchronized to SteamVR’s pose prediction
processes and further utilizes the provided functions to estimate the exact onset time of a frame.

SteamVR allows predicting when a frame will be presented. The prediction is purely tempo-
ral and does not contain any information on the frame’s content. In other words, it holds

PLOS ONE | https://doi.org/10.1371/journal.pone.0231152  April 8, 2020 16/24



Chapter 2 - Timing

PLOS ONE

Stimulus timing and reaction times with Unreal Engine and SteamVR

Unreal

information on when a frame will be presented but not on what will be presented in that
frame. Trial specific information is only available through UE4. Hence, in order to be able to
predict the onset time of a specific event such as the stimulus onset, it is necessary to combine
information about the contents and temporal orders of trials from UE4 and the exact frame-
timing from SteamVR. Our background application can meet this challenge.

In particular, our background application first synchronizes with the trial-timing of UE4.
For this synchronization, UE4 sends a trigger-signal (onset-trigger) to the background applica-
tion whenever a frame marking the stimulus-onset is about to be submitted to the GPU, right
before the control over the rendering is handed over to SteamVR. Following the trigger-signal,
the background application stores a timestamp and fetches the necessary information about
the frame-timing from SteamVR, which is then used to predict the stimulus-onset (Fig 7).

A more detailed description of the processing steps involved in the prediction can be found
in the supporting information, S3 Fig and S2 Text.

Assumptions. Onset prediction is based on a few assumptions that have to be met. The
first assumption is that there are no additional frame buffers in the graphics pipeline. More-
over, the Experiment must run at a constant frame rate without dropped or reprojected frames
and without the use of Motion Smoothing. We recommend turning off Motion Smoothing
completely. However, Asynchronous Reprojection cannot be turned off, and to prevent frame
drops and reprojected frames, optimization of the experiment is mandatory. Yet, even with
such optimization, occasional performance problems cannot be ruled out entirely, and, hence,
should be controlled for. Therefore, a control mechanism was implemented to detect trials
affected by dropped or reprojected frames. The background application stores the number of
dropped or reprojected frames of every experimental trial and stores it into a log file. When-
ever a trial contains dropped or reprojected frames, the trial should be excluded from the anal-
ysis, since the validity of the measured reaction time cannot be guaranteed.

1 Prediction I

SteamVR

Rendering
(GPU)

Panels illuminate for 2 ms

Onset-Trigger
The background
application )

a. Measure current time

b. Predict time until photons
» a+b = Stimulus Onset Time

(Stimulus Onset)

Fig 7. llustration of the stimulus onset prediction.

https://doi.org/10.1371/journal.pone.0231152.9007
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Validation of the method

To ensure that the above-described method can measure precisely and accurately reaction
times, we repeated the testing procedure of Experiment 2. The three conditions of Experiment
1 were tested to determine the precision and accuracy of the method. Furthermore, the tests
were conducted on both computers, previously used in Experiment 1, to determine the reli-
ability of the method on different computer hardware. Overall, the method was tested in 6000
trials.

Results

The mean results for the three conditions are presented in Table 4. The mean measurement
error was 1.44 ms within a range of 2 ms across conditions and computers. Performance
remained good during all tests, as no dropped or reprojected frames were observed.

To test for differences in precision or accuracy between conditions or computers, a two
factorial ANOVA with the factors Condition [Simple (M = 1.446 ms, SD = 0.498), Complex-
Static (M = 1.443, SD = 0.497), Complex-Moving (M = 1.439, SD = 0.496)] and Computer
(Computer 1, Computer 2) was performed. The ANOVA revealed no significant main effects—
neither for the factor Condition (F(1,2) = 0.102, p = 0.903), nor for the factor Computer [Com-
puter 1 (M = 1.450 ms, SD = 0.4975) and Computer 2 (M = 1.435, SD = 0.4965); (F(1,1) = 1.305,
p = 0.253)]. The interaction between the factors Condition and Computer was also not signifi-
cant (F(1,2) = 0.345, p = 0.709). The individual results of both computers separately can be
found in the supporting information (see S8 Table and S9 Table).

Discussion

In Experiment 2, we observed highly variable reaction time measurements with inaccurate
stimulus onset measurements with Unreal Engine, SteamVR, and the HTC Vive VR system,
when using the built-in timing procedures.

Hence, we developed a new software-method to provide precise and accurate reaction time
measurements with Unreal Engine and SteamVR. Instead of measuring reaction times in
Unreal Engine directly, the measurement part was outsourced to a background application.
Timing benchmarks indicate that the method allows precise and accurate reaction time
measurements.

We made the source code of the background application and the project files as well as proj-
ect builds of the UE4 projects as tested in this experiment available on https://jugit.fz-juelich.
de/inm3/timingvr. The commits to the UE4 source code are available on https://github.com/
INM3FZ]/UnrealEngine/tree/TimingVR. However, note that the background application was
developed as a proof-of-principle rather than a ready-to-use toolbox, as the current implemen-
tation is limited in its functionality and was custom-made to fit the particular requirements of
the current research project.

Table 4. Overview of mean reaction time errors, standard deviation, minimum and maximum error for each con-
dition (in ms).

Condition | Meanerror | SD Min Max
Simple | 1.446 } 0.498 _ 100 | 3.00
Complex-Static | 1.443 ‘ 0.497 | 1.00 | 2.00
Complex-Moving | 1.439 ‘ 0.496 | 1.00 | 2.00
Overall i \ oA L 2ad

https:/doi.org/10.1371/journal.pone.0231152.t004
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General discussion

The study aimed to investigate the precision and accuracy in stimulus presentation durations
and reaction time measurements with Unreal Engine and SteamVR in combination with the
HTC Vive VR system.

In Experiment 1, we tested the precision and accuracy of stimulus presentations to deter-
mine potential discrepancies between the stimulus timing defined by the researcher and the
actual stimulus timing on the display. Our measurements revealed that the precise frame rate
of the HTC Vive slightly differs from the information given in the HTC Vive manual. The
HMD’s empirical frame rate was determined as 89.53 FPS rather than the indicated 90 FPS.
Importantly, the frame rate remained stable across conditions and in combination with differ-
ent computer hardware. The same frame rate was confirmed in a second HTC Vive system,
suggesting that the observed frame rate was device specific.

The results of Experiment 1 indicate that the stimulus timing was precise and accurate and
remained stable across different computer hardware configurations as well as across different
rendering workload requirements. UE4 in combination with SteamVR and the HTC Vive VR
system, therefore, appears to be suitable for time-critical visual stimulus presentations. The so-
called global-onset displays as used in the HTC Vive come with another significant advantage.
Due to the nature of how the image is updated in LCD and CRT monitors, the measurement
error of the stimulus onset is correlated with the position of the stimulus on the display. In
contrast, the displays of the HTC Vive load the entire image before the displays illuminate.
Consequently, when used in combination with precise time measurements, the global-onset
displays allow determining the onset of a stimulus without variable measurement errors due to
the stimulus position.

Experiment 2 aimed to investigate the limitations of the build-in timing procedures of UE4
for reaction time measurements. Timing benchmarks resulted in highly variable measurement
errors more than ten times higher as those obtained with Presentation and PsychoPy.

Hence, a new software-based method as a proof of principle was developed that allows precise
and accurate reaction time measurements with UE4 in combination with SteamVR. The new
method measures reaction times as independent as possible from the procedures implemented in
UE4. This is achieved by outsourcing the measurement procedure into a background application
that allows circumventing the limitations of UE4’s build-in timing procedures. In a first step, a
subroutine implemented into the background application monitors and processes keyboard mes-
sages before they reach UE4 and hence allows the collection of frame rate independent response
times. In a second step, a prediction algorithm, based on SteamVR’s pose prediction procedures,
was implemented to determine the true stimulus onset accurately. Timing benchmarks show that
the method accurately and precisely determines stimulus onsets and hence in combination with
veridical response time acquisition allows validly measuring reaction times.

The method presented here could help to simplify experimental procedures, as is allows to
measure stimulus events and response times without a need for complex hardware and sensor
setups.

Please note, the background application introduced here, is a proof-of-principle rather than
a ready-to-use toolbox. Our aim was to provide an example of a framework for reaction time
measurement that could be integrated into other toolboxes.

Although our method was tested with UE4, the underlying principles are, at least in princi-
ple, also applicable to other game engines such as Unity, as it is only necessary to provide a
trigger signal to synchronize the reaction time measurements of the background application
with the trial-timing of the game engine. Furthermore, to our understanding, the principles to
predict the stimulus-onset should also apply to the Oculus VR runtime software. Oculus uses a
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similar mechanism to predict the user’s pose as SteamVR, and the Oculus API also provides
the tools necessary to predict the onset time of a frame and hence could be used to predict the
stimulus onset. Additionally, the version of the background application here presented was
already designed to also support different HMD’s other than the HTC Vive.

Furthermore, the ability to accurately and precisely determine the time of stimulus events,
such as stimulus onset, and response times, is not only essential for reaction time measure-
ments. Instead, a precise recording of events within an experiment is mandatory for the analy-
sis of all time-sensitive functional measures, such as EEG or MEG. Therefore, the method
could also be extended, that stimulus and response events could be used as markers to syn-
chronize with time-sensitive functional measures.

However, it should be noted that the method heavily relies on game engines and VR run-
time software (here UE4 and SteamVR). Therefore, a limitation of this method is that future
updates of these third-party tools might cause compatibility problems or result in incorrect
measurements. Hence, it will be important to regularly validate the precision and accuracy of
time measurements with new software releases.

Furthermore, we developed and tested the method only for standard keyboard input and
did not include support for the HTC Vive’s motion controllers. Motions controllers are
increasingly used to investigate naturalistic behavior, as they allow to track the hand move-
ments of the participant [e.g., 52,53]. Future research needs to assess timing errors related to
motion controllers.

In sum, the HTC Vive, in combination with UE4 and our newly developed tool, constitutes
a precise and valuable instrument for neuroscientific research and visual sciences. Besides its
excellent performance, regarding accuracy and precision it allows taking advantage of all the
benefits that VR offers. When used in combination with precise research tools, VR has the
potential to implement new paradigms involving large fields of view of realistic and three-
dimensional environments. It allows integrating a variety of behavioral responses, increasing
the ecological validity of neuroscientific experiments, which may lead to more generalizable
and valid explanations regarding cognitive processes.
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Supporting information

S1 Text. Temporal characteristics of the graphics pipeline with UE4 and SteamVR

Figure S2 illustrates the different stages that a frame (devoted as frame n) must pass before it is finally
presented on display. The following description will focus on the temporal aspects rather than on the
functional aspects of the described stages.

Please note, that every stage in the pipeline is synchronized to the vertical sync (VSync) event. Frame
n is initially processed in the Game Thread where game simulation takes place. The Game Thread
constitutes a relatively early stage in this processing pipeline and represents the stage where the
experimental routine is executed, e.g., where the command to present the target stimulus is
completed. The timestamp marking a stimulus’ onset as measured in Experiment 2 was determined at
this level. After one frame duration, everything is transferred to the Draw Thread for rendering
preparation. It also requires an additional full frame duration until the resulting rendering commands
are passed to the GPU. The GPU then again requires another full frame duration before, finally, the
frame can be scanned out to the displays. The scan-out occurs while the display is black, which requires
about 9 ms until the displays light up, and the new frame is presented for about 2 ms. The last two
stages are controlled by SteamVR rather than UE4, illustrated by the horizontal black line in Fig S2.
Note that both the Game Thread and the Draw Thread are shifted relative to the VSync events. This is
a novelty of rendering with SteamVR. In a non-VR graphics pipeline, both the game and the draw
thread would start right after a VSync event. The rendering commands would then be submitted to
the GPU right after the VSync event, and everything would be buffered for one or more frame
durations before the GPU would render the frame. In order to reduce latency, VR rendering occurs
without frame buffering. However, submitting a frame to the GPU is time-consuming, and without
frame buffering, a so-called “GPU bubble” of up to two milliseconds would be produced, in which the
GPU is idle until rendering can be initiated, thus effectively reducing the total time available for
rendering. The rendering commands of the Draw Thread are submitted to the GPU before the VSync
event to ensure that the GPU has a full frame duration for rendering. This process is called “running
start”. To ensure that both the Game Thread and the Draw Thread still have the budget of a full frame
duration, with SteamVR, the calculations of both threads start a few milliseconds before the VSync
event.

The scan-out is the final stage before the frame is displayed. After loading the entire display, the pixels
illuminate, and the frame gets visible for about 2 ms.

When considering the above-presented graphics pipeline involved in presenting a single frame, it
becomes evident that calling the function to present a target stimulus in the Game Thread is just the
first step of a whole cascade of processes required to display a stimulus. Timestamping a stimulus
event at the beginning of this cascade (when the function to present the stimulus is called) is far too
early, resulting in the measurement errors observed in Experiment 2. However, the graphics pipeline
also illustrates that it is not possible to measure the stimulus onset directly via UE4. After submitting
the rendering commands to the GPU, SteamVR determines when the frame is sent to the HMD. This is
further complicated by the fact, that unlike in rendering to a normal computer monitor, the scan-out
has to be finished before the displays light up and the stimulus is presented.
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S2 Text. Stimulus onset prediction

The prediction is based on the fact, that all rendering steps for VR are synchronized to the VSync
events, which allows us to use VSync events as reliable time markers when a screen refresh has
finished.

An exact estimate is based on accurate knowledge when (i.e., during which frame interval) the
prediction was started. This can be accomplished by sending the onset-trigger from UE4 to the
background application later within the processing sequence of UE4 than in the previous tests. The
onset-trigger is then sent to the background application from UE4’s SteamVR plugin at the end of Draw
Thread’s processing a few milliseconds before the next VSync event. This is accomplished by sending
the onset-trigger signal right after a function called WaitGetPoses() returns. The WaitGetPoses()
function is responsible for pose prediction and is called by UE4 after the Draw Thread has finished
processing. It blocks the Draw Thread until a few milliseconds before the VSync event and then returns
the predicted poses to be used for the rendering. By sending the onset-trigger right after
WaitGetPoses() returns, a synchronization point with VSync events is generated and ensures that the
prediction of a stimulus onset always starts in the same stage of the graphics pipeline.

The current implementation of the synchronization of UE4 and the background application works as
follows. The command to show a stimulus on display is called in the Game Thread. In order to generate
a precise prediction when the stimulus appears on display, one has to determine the time point when
the Draw Thread in UE4 hands over stimulus processing to SteamVR. Therefore, the current
background application uses two different trigger signals, one marking the moment when the
command to show a stimulus is called and later a second trigger signal marking the moment when the
process is handed over to SteamVR. The latter is about the exact timing and for the synchronization
with the frame intervals; the former is relevant since it indicates an upcoming visual event that is
important for the experimental procedure. Both signals are relevant and need to be considered unison,
which creates a need to integrate or relate both at some stage. This could be done by implementing a
complicated direct exchange of timing signals between the Game Thread and the Draw Thread.
Alternatively, this problem could be solved by using an external interface that registers and relates
both trigger signals such as our background application. The latter approach requires only minimal
changes in the UE4 source code and hence avoids changes that might affect the normal working of
UE4. Therefore, we decided to use this option to develop a proof-of-principle method for precise
timing measures in UE4. It involves sending two trigger signals to the background application. In Game
Thread, a trigger, which indicates a relevant stimulus to be presented, is sent whenever the command
to show the stimulus is called. The trigger signal marking the moment when the signal is handed over
from the Draw Thread to SteamVR is sent on every frame. Hence, the background application can
integrate both signals in the following way. On every frame the background application receives a
signal from the Draw Thread, thereby providing an exact measure on when information is passed to
SteamVR, this information is only valuable when it needs to be related to a relevant visual stimulus,
i.e., when it is preceded by a trigger signal indicating an upcoming visual event. Otherwise, this
information can be ignored. Accordingly, our background application waits for a start-trigger from UE4,
indicating an upcoming stimulus onset, and only then further processes the signal indicating the hand-
over to SteamVR. When this signal is received, it takes the current time and starts predicting the actual
stimulus onset. Adding the measured time to the prediction then estimates stimulus onset. In the next
step, the keyboard hook is started, and the application waits until it receives a keyboard message and
takes the response time. After writing the timing information into a log file, it starts again to wait for
the next start-trigger.
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As soon as the background application received the onset-trigger, it takes the current time and then
starts predicting the time remaining until the target will be displayed.

The first step in this calculation is to determine the remaining time of the current frame interval
accurately. This is achieved by calling a function that returns the time since the last VSync event. The
difference between a frame duration and the time since the last VSync determines the remaining time
of the frame interval. Instead of hardcoding the frame duration, we calculate the frame duration based
on the HMD’s refresh rate, which is retrieved from SteamVR. This allows using the background
application with different HMD and different refresh rates.

In the next step, one frame duration for the GPU rendering is added to the prediction. The last step of
the prediction adds the duration of the scan-out, which is again retrieved from SteamVR. Finally, the
predicted time is added to the initially measured time, which in sum makes up the stimulus onset time.
The complete framework for the prediction is illustrated in Fig S3.

Note that the last function returns the time from VSync until the midpoint of the stimulus presentation
instead of the time of the actual onset, i.e., the very first moment when the displays light up. This
results from the default behavior of SteamVR’s pose prediction. Therefore, the predicted time is
effectively another frame duration resulting in an over-prediction of about 1 ms.

Furthermore, the refresh rate returned by SteamVR, which forms the basis of the calculation for the
frame duration, is 90 Hz for the HTC Vive. However, the actual refresh rate that we have measured in
Experiment 1 (89.53 Hz) was slightly lower, which results in an under-prediction of each of the three
steps of about 58 pus. Taken together, the proposed method does not predict the stimulus onset exactly
but results in an over-prediction of about 826 us, when used with the HTC Vive.

In principle, the over-prediction could be corrected by subtracting 826 ps from the result. However,
we decided not to correct this marginal over-prediction due to the following reason. The algorithm for
the prediction is completely based on functions provided by OpenVR without any hardcoding. This
implementation, at least in principle, should enable experimenters to use the method also with HMDs
other than the HTC Vive, as long as they use SteamVR as the runtime.

51



Chapter 2 - Timing

Fig S1. Screenshot of UE4’s Realistic Rendering sample.
The screenshot shows the original environment without the modifications as used in this study.
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Fig S2. lllustration of the processing stages that a frame has to pass before it is presented to the
display panels.
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Fig. S3. Framework for the stimulus onset prediction.
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S1 Table. Results across all conditions of Computer 1 (in ms).

Mean
expected . .
. mean sd min max duration
duration .
white
2000 2010.56 0.107 2010.50 2010.75 996.04
1000 1005.28 0.081 1005.25 1005.50 496.40
400 402.11 0.124 402.00 402.25 191.82
200 201.06 0.104 201.00 201.25 91.30
133.33 134.04 0.089 134.00 134.25 57.78
66.66 67.02 0.066 67.00 67.25 24.27
22.22 22.34 0.120 22.25 22.50 1.93

The first column represents the expected duration for the black and white stimulus cycles. The last

column represents the measured durations of the white stimulus (in ms).

S2 Table. Results across all conditions of Computer 2 (in ms).

Mean
expected ) )
. mean sd min max duration
duration .
white
2000 2010.59 0.121 2010.50 2010.75 996.06
1000 1005.30 0.098 1005.25 1005.50 493.41
400 402.12 0.125 402.00 402.25 191.82
200 201.06 0.106 201.00 201.25 91.29
133.33 134.04 0.091 134.00 134.25 57.80
66.66 67.02 0.068 67.00 67.25 24.27
22.22 22.34 0.120 22.25 22.50 1.93

The first column represents the expected duration for the black and white stimulus cycles. The last
column represents the measured durations of the white stimulus (in ms).
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S3 Table. Results of the Simple condition across computers (in ms).

Mean
expected . .
. mean sd min max duration
duration .
white
2000 2010.58 0.116 2010.50 2010.75 996.04
1000 1005.29 0.091 1005.25 1005.50 493.39
400 402.12 0.125 402.00 402.25 191.81
200 201.06 0.105 201.00 201.25 91.28
133.33 134.04 0.090 134.00 134.25 57.77
66.66 67.02 0.067 67.00 67.25 24.26
22.22 22.34 0.120 22.25 22.50 1.92

The first column represents the expected duration for the black and white stimulus cycles. The last

column represents the measured durations of the white stimulus (in ms).

S4 Table. Results of the Complex-Static condition across computers (in ms).

Mean
expected . .
. mean sd min max Duration
duration )
white
2000 2010.58 0.116 2010.50 2010.75 996.10
1000 1005.29 0.090 1005.25 1005.50 493.41
400 402.12 0.125 402.00 402.25 191.82
200 201.06 0.105 201.00 201.25 91.30
133.33 134.04 0.090 134.00 134.25 57.79
66.66 67.02 0.067 67.00 67.25 24.28
22.22 22.34 0.120 22.25 22.50 1.93

The first column represents the expected duration for the black and white stimulus cycles. The last
column represents the measured durations of the white stimulus (in ms).
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S5 Table. Results of the Complex-moving condition across computers (in ms).

Mean
expected . .
. mean sd min max Duration
duration .
white
2000 2010.58 0.116 2010.50 2010.75 996.10
1000 1005.29 0.091 1005.25 1005.50 493.41
400 402.12 0.125 402.00 402.25 191.82
200 201.06 0.105 201.00 201.25 91.30
133.33 134.04 0.090 134.00 134.25 57.79
66.66 67.02 0.067 67.00 67.25 24.28
22.22 22.34 0.120 22.25 22.50 1.93

The first column represents the expected duration for the black and white stimulus cycles. The last
column represents the measured durations of the white stimulus (in ms).

S6 Table. Results of the Simple condition of HMD 1 (in ms).

Expected ) mean duration
duration mean sd min max white
2000 2010.56 0.107 2010.50 2010.75 996.04
1000 1005.28 0.082 1005.25 1005.50 493.39
400 402.11 0.124 402.00 402.25 191.81
200 201.06 0.104 201.00 201.25 91.28
133.33 134.04 0.089 134.00 134.25 57.77
66.66 67.02 0.066 67.00 67.25 24.26
22.22 22.34 0.120 22.25 22.50 1.92

The first column represents the expected duration for the black and white stimulus cycles. The last
column represents the measured durations of the white stimulus.
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S7 Table. Results of the Simple condition of HMD 2 (in ms).

mean
expected ) )
. mean sd min max duration
duration .
white
2000 2010.56 0.107 2010.50 2010.75 996.03
1000 1005.28 0.081 1005.25 1005.50 493.39
400 402.11 0.124 402.00 402.25 191.81
200 201.06 0.104 201.00 201.25 91.28
133.33 134.04 0.089 134.00 134.25 57.77
66.66 67.02 0.066 67.00 67.25 24.26
22.22 22.34 0.120 22.25 22.50 1.92

The first column represents the expected duration for the black and white stimulus cycles. The last
column represents the measured durations of the white stimulus.
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S8 Table. Overview of mean reaction time errors, standard deviation, minimum and maximum
error for each condition of Computer 1 (in ms).

Condition Mean error SD Min | Max
Simple 1.446 0.4973 | 1.00 | 2.00
Complex-Static 1.451 0.4978 | 1.00 | 2.00
Complex-Moving 1.452 0.4979 | 1.00 | 2.00
Overall 1.446 0.4973 | 1.00 | 2.00

S9 Table. Overview of mean reaction time errors, standard deviation, minimum and maximum error
for each condition of Computer 2 (in ms).

Condition Mean error SD Min | Max
Simple 1.445 0.4992 | 1.00 | 3.00
Complex-Static 1.435 0.4960 | 1.00 | 2.00
Complex-Moving 1.425 0.4946 | 1.00 | 2.00
Overall 1.445 0.4992 | 1.00 | 3.00
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Abstract

In the recent years, virtual reality (VR) has gained increasing popularity as a research tool in
neuroscience and experimental psychology. However, whether the same cognitive processes are
engaged in experiments conducted in front of a computer monitor or in immersive VR is still an open
guestion. For example, acting in an VR environment may demand certain cognitive efforts, thereby
reducing capacities available for other processes. Moreover, different findings may emerge due to
more basic technical differences regarding, e.g., visual stimulation. So far, studies directly comparing
monitor-based and VR experiments are rare. Here, we tested whether reaction time costs induced by
violated expectations of basic visual features differ between visual stimulus presentation with a head-
mounted display (HDMs) and a standard monitor setup.

We examined whether basic differences in stimulus generation of HMDs as compared to standard
monitors affect early visual processing. Hence, a previously introduced experimental paradigm
(Wiesing et al., 2020), investigating early processing of prediction errors of basic visual features, was
replicated in both the original setup and a replica of the experiment within a virtual environment. In
order to minimize dissimilarity between experiments, the entire laboratory was recreated in VR. The
virtual replica matched the physical laboratory not only visually, but also in scale, allowing us to blend
the virtual laboratory onto its real counterpart. Hence, the VR experiment closely corresponded to the
non-VR experiment not only visually, but also with respect to auditory, tactile, or olfactory stimulation
in the lab room.

A group of 16 participants performed the experiment in both experimental setups with the order
counterbalanced. The results did not provide any evidence that the expectation-dependent processing
of basic visual features is different when conducted in VR and showed no evidence for an additional
binding of attentional resources. Instead, both experiments replicated results of the original study
Wiesing, et al. (2020).
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Introduction

To precisely relate behavior and brain activity to specific cognitive functions, neuroscientific studies
are usually conducted under controlled laboratory conditions. In cognitive neuroscience and
experimental psychology, the stimuli used are relatively simple compared to natural settings, with the
big advantage that specific stimulus features can be precisely varied and controlled. Similarly, these
experiments are often designed to obtain responses that are comparable between participants and
experimental conditions which differ in only few parameters of interest. This restricts the behavioral
options of the participants but allows for precise experimental control.

The approach to use simple but highly controlled stimuli and responses generated a vast amount of
knowledge about the architecture of cognitive processes and their underlying neural implementation.
However, testing this knowledge in real-life situations remains a challenge, since the richness of
sensory information and the multitude of potential actions come at the expense of a lack of precise
experimental control. Here, virtual real-life situations may provide a possible solution. Virtual Reality
(VR) has the potential to bring realistic but well controlled environments into the laboratory. Highly
controlled experimental paradigms could be integrated into realistic scenarios, thereby enabling the
study of brain functions and complex behavior in completely new ways (Bohil et al., 2011; Loomis et
al., 1999b; Wilson & Soranzo, 2015)

With the recent release of head-mounted displays (HMD) on the consumer market, such as Oculus Rift,
HTC Vive or Valve Index, VR has increasingly been used in cognitive neuroscience and experimental
psychology (Vasser & Aru, 2020b). One of the benefits of HMDs is its ability to present stimuli in
stereoscopic 3D on a large field of view (FOV). HMDs cover the entire visual field, essentially giving full
control over all visual input, which can be manipulated in real-time. Due to their relatively small size,
HDMs are easily portable and an ideal tool for e.g. visual neuropsychological assessment, since they
allow to control and maintain critical context factors such as illumination and screen sizes as well as
distances, even when patients are examined in different rooms or in different institutions (Foerster et
al. (2016, 2019).

However, VR not only allows to precisely control visual stimulation, but also to obtain accurate
behavioral measurements as every current state of the art VR system comprises a sensitive motion-
tracking system (Niehorster et al., 2017; Verdelet et al., 2019). Some systems are even already
available with integrated eye-tracking cameras (Imaoka et al., 2020).

A critical difference between VR and standard monitor setups is the fact that the participants are not
required to watch configurations on a 2-dimensional computer screen, but find themselves immersed
in an interactive three-dimensional virtual environment, experienced from a first-person perspective.
Hence, VR can be used to present stimuli at different viewing distances relative to the observer (Heber
et al., 2008; Maringelli et al., 2001).

Although VR has the potential to allow studying perception and behavior within complex naturalistic
environments, it is ultimately still an artificial setting which differs from non-virtual reality in various
aspects, which have been demonstrated to sometimes cause perceptual and behavioral differences to
the corresponding real-world setting. One of these differences is the field of view. While it is larger
compared to usual standard 2D displays, it is still smaller than the human visual field, generating an
impression that is often compared to the feeling of wearing diving goggles. The size of the FOV affects
performance in walking or visual search tasks (Arthur, 2000) and can affect spatial judgments, such as
judgement errors of azimuth (Nash et al., 2000). Furthermore, velocity and self-motion are perceived
slower with a smaller FOV (Caramenti et al., 2019; Hopper et al., 2019) and head-eye coordination is
altered. For instance, Pfeil et al. (2018) observed more head movements within VR than in reality. The
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latter might also be affected by the weight of current HMDs and their rather low pixel density.
Furthermore, other optical artefacts can occur such as chromatic aberrations or spatial distortions,
especially in the peripheral parts of the display, leaving only the central area of the display for clear
vision. Similarly, especially earlier HMDs such as Oculus Rift CV1 or HTC Vive have a comparably low
pixel-density as compared to a typical computer monitor. A side effect of this is the so-called screen
door effect, which describes the visible empty space between pixels that is perceived as viewing
through a mesh on the display.

It is well known that perceived distances in VR differ from real-world distance and that distances in
stereoscopic displays are underestimated (e.g., Kelly et al., 2018; Witmer & Kline, 1998), possibly due
to vergence-accommodation conflicts (VAC) (Bingham et al.,, 2001; Hoffman et al., 2008b). Such
conflicts emerge due to the fact that in an HMD the image itself is located at a fixed distance but the
perceived distance might vary (Batmaz et al., 2019). This can induce visual stress possibly leading to
visual fatigue symptoms, such as eye strain or double vision (Guo et al., 2017; Iskander et al., 2019). In
principle, VACs might pose a challenge to our visual system and it has been reported they can reduce
the cognitive performance in sustained attention tasks (Poltavski et al., 2012) and increase Stroop
interference (Daniel & Kapoula, 2019). Compensatory mechanisms necessary to maintain clear vision
may bind visual attention, lowering processing resources available for other cognitive processes.
However, it is important to note that the impact of VACs on cognitive processing has not been observed
in HMDs, but in experiments using different prism and lens systems with more pronounced VACs as
compared to HMDs. Hence, it remains to be examined whether these effects also hold when VACs are
caused by HMDs.

These findings raise questions about the comparability of experimental findings obtained using non-
immersive displays and HMDs. In principle, a failure to replicate findings in cognitive experiments with
visual stimuli in VR can be attributed to different levels of processing. On the one hand, acting in an VR
environment may demand certain cognitive efforts, thereby reducing capacities available for other
processes. On the other hand, different findings may emerge due to more basic differences in visual
stimulation.

However, so far, studies directly comparing monitor-based and VR experiment are rare and the results
are heterogeneous. While some studies replicated previous findings in visual search (Olk et al., 2018)
or flanker tasks (Roberts et al., 2019), others observed different behavioral patterns in VR than in a
standard setting in mental rotation (Kozhevnikov & Dhond, 2012) or visuomotor adaptation tasks
(Anglin et al., 2017). Findings of another study indicated that more attentional resources are allocated
to stimuli in VR as compared to stimuli presented on a 2D monitor (Li et al., 2020b).

Here, we investigated the impact of the different modes of visual stimulus presentation in standard
and VR setups on early visual processing of basic visual features. This was done by generating an
experimental VR setup that was a faithful replica of a non-VR setup. Instead of a purely visual rendering
of the environment, a multimodal virtual laboratory was created, providing also haptic feedback,
sound and smell. This was achieved by a realistic and detailed rendering of the lab environment, with
every physical object virtually represented in the correct scale and position. This allowed us to blend
the visual rendering as an overlay onto its physical counterpart, resulting in a more complete and
immersive simulation of the non-VR experiment.

A group of participants took part in two identical behavioral experiments, with the only difference
being that one experiment was conducted in VR while the other involved the standard setup. Thus,
any differences in task performance could be attributed to the different modes of visual presentation.
The task used in the present experiment was based on a new experimental paradigm introduced by
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Wiesing, Fink, Weidner, et al., (2020) testing the effects of feature-based predictions on reaction times.
This task was chosen to investigate potential effects of an VR setting on relatively early levels of visual
processing. In particular, this visual reaction time task involves two-dimensional stimuli and
investigates how multiple simultaneous feature expectations are processed for the same object. Two
objects were presented on a monitor and participants had to judge whether the spatial frequency of
the objects was identical or different. Expectations of two task-irrelevant feature dimensions (color
and orientation) were manipulated. The results of a series of four behavioral experiments consistently
indicated that prediction errors of different object features are resolved independently before feature
binding takes place. Hence, the findings suggest that the processing of the prediction errors happens
on an early level of processing before attention comes into play. In particular, Experiment 2 of Wiesing,
et al., (2020) was chosen for the current study. In that experiment, the expectations for two task-
irrelevant object features, color and orientation, were manipulated while participants performed a
discrimination task regarding another dimension.

Taken together, we tested in the current study whether differences in the visual stimulus presentation
inherent to HDMs, such as vergence-accommodation conflicts, affect the processing of (violated)
expectations about basic visual features when compared to a standard monitor setup.
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Materials and methods

Participants

Sixteen participants (5 women, mean age: 34.25 years, age range: 20 - 47, one left-handed) took part
in both experiments. All participants had normal or corrected-to-normal vision and no history of
neurological or psychiatric disorders. Normal color vision was assessed by pseudo isochromatic color
plates in all participants (Velhagen & Broschmann, 2003). Before the experiment, written informed
consent was obtained following the Declaration of Helsinki. The study was approved by the ethics
committee of the German Society of Psychology, and participants were remunerated for their time.

Apparatus

In both experiments, the stimuli were presented on a 22-in monitor at either a real or a virtual distance
of 60 cm. In the non-VR experiment, a Samsung SyncMaster (resolution 1680 X 1050; refresh rate 60
Hz) was used. In the VR experiment, stimuli were presented on a virtual monitor that matched the real
monitor both in size, shape and resolution, seen through an HTC Vive HMD (resolution 1080 X 1200
per eye, refresh rate 90 Hz). In both experiments, participants were seated at a table in a behavioral
laboratory. Head movements were prevented by a chin rest. Stimulus presentation and response
recording were controlled using Unreal Engine 4.22 (UE4) (EpicGames), in combination with a custom
made software that allowed a precise recording of behavioral responses (see below). The modeling of
the virtual environment for the VR-experiment was conducted in Cinema4D (MAXON, Germany) and
Blender (Blender Foundation). Participants were provided with button response pads (NAtA
Technologies) for each hand and responded by pressing the corresponding button on the response
pad with the left and right index finger.

Stimuli and Task

A task previously used in a study by Wiesing et al. (2020) was used in both experiments. Visual stimuli
consisted of two horizontally arranged gratings as target stimuli, each incorporating one of two
possible spatial frequencies. All combinations of frequencies across stimuli were presented randomly
and with an equal probability (i.e., 50 % same and 50 % different).

Additionally, grating stimuli could be colored in red/green or blue/yellow and could have two different
orientations (45°, 90°). Both gratings were always identical in color and orientation in each trial. During
piloting we found that, with the original stimulus parameters used in Wiesing et al., (2020), the spatial
frequencies were difficult to be differentiated in the VR setup. This was resolved by increasing the size
of the stimuli to 8° x 8° in both set-ups.

For each participant, a specific color combination (e.g., red/green) was defined as the “expected color”
and the other combination as “unexpected color”. Likewise, one specific orientation (e.g., tilted by 45°)
was defined as the “expected orientation” and the other orientation as “unexpected orientation”. For
both, color and orientation, the expected feature was presented in 87.5% of the trials, while the rare
feature was presented in 12.5% of all trials. The rare features were assumed to elicit a strong prediction
error, while prediction errors were expected to be minimal in trials with the frequent feature
combination.

65



Chapter 3 - Transferring paradigms from physical to virtual reality

Figure 1. Stimulus example. Participants were asked to respond to the spatial frequency of the two
gratings, which could be the same or different. One color scheme and one orientation were presented
in the majority of the trials, but some trials were characterized by rare changes in color and/or
orientation.

Hence, the amount of prediction error was manipulated separately for the two different features,
resulting in a 2 x 2 factorial design with the factors Color Prediction Error (high, low) (ColPE) and
Orientation Prediction Error (high, low) (OriPE). This yielded four experimental conditions:
ColPE_low/OriPE_low (color expected and orientation expected), ColPE_high/OriPE_low (color
unexpected and orientation expected), ColPE_low/OriPE_high (color expected and orientation
unexpected), and ColPE_high/OriPE_high (both color and orientation unexpected).

Each experiment consisted of 14 blocks, comprising 64 trials, resulting in 896 trials. The experiment
comprised 700 ColPE_low/OriPE_low trials (78.125 %), 84 ColPE_high/OriPE_low trials (9.375 %), 84
ColPE_low/OriPE_high trials (9.375 %), and 28 ColPE_high/OriPE_high trials (3.125 %).

Trials started with the presentation of the two target stimuli and lasted until a response was given.
Trials were separated by an inter-trial interval, which randomly varied between 500 and 1000 ms. Each
block ended with a break that could be terminated via button press.

The experimental task required participants to indicate by button press with the left or right index
finger whether the target stimuli comprised identical or different spatial frequencies. Participants were
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instructed to respond as fast and accurately as possible. An erroneous response was followed by the
message “Fehler” (i.e., German for “error”) displayed for 750 ms.

Game engines

Due to a lack of established stimulus software for VR experiments, several recent studies relied on
game engines, such as Unity (e.g., Buckingham, 2019) or Unreal Engine 4 (UE4) (e.g., Lin et al., 2017),
to develop their experiments. In a recent study, we observed that time measurements of stimulus and
response events collected with UE4’s internal timing procedures are highly variable and inaccurate.
Instead, we were only able to record reaction times with a sufficient precision and accuracy after
implementing custom measurement procedures into the experimental setup (Wiesing, Fink, &
Weidner, 2020). By objective measurements using the Black Box Toolkit (BBTK) (Plant & Turner, 2009),
we have shown that UE4 in combination with our method was able to achieve reaction time
measurements with a precision and accuracy similar to those of Presentation and PsychoPy.

For the current study, the same method was used to collect reaction time data in the VR experiment.
For the non-VR experiment, a modified variant of the method was used that is suitable for non-VR
rendering. The precision and accuracy of the time measurements was tested and validated prior to the
experiment by using the procedure described by Wiesing, et al., (2020).

For the VR setup, we observed a precision (standard deviation) of 0.463 ms and an accuracy (mean
error) of 1.43 ms, which is comparable to results reported by Wiesing et al., (2020). While the precision
of the non-VR setup was with 0.496 ms comparable to the VR setup, we observed a substantially
reduced accuracy, with a mean error of +46.26 ms. The high mean error of the non-VR experiment can
be partially explained due to measuring the stimulus onset in the middle of the screen. In this
experiment, the stimuli were presented on an LCD. On LCD’s the pixels’ luminance is updated
periodically from top to bottom over a duration of about one display refresh. However, the onset
measurements were synchronized to the vertical blank interval, which is the time between two display
refreshes. Therefore, the stimulus onset measurement was synchronized to the pixels in the first row
and not to the pixels in the middle of the display representing the target stimuli, resulting in a
measurement error of about half a frame duration (i.e., 8.333 ms).

The remaining error appears to be caused by frame buffering. However, for the current study, we
decided to not investigate the reasons for the higher mean error any further. The results clearly
showed that both the non-VR and the VR background applications provided RTs with a comparable
high precision. Hence, for the behavioral analysis, the results of the timing validation were used to
correct the RTs for the measurement errors (see below).

To further ensure that the experimental setup was not affected by differences in the software being
used or differences in the implementation, also the non-VR experiment was created in UE4. Despite
the modifications of the stimulus size, the only difference between the original experiment (Wiesing,
Fink, Weidner, et al., 2020) and the non-VR experiment of this study was the software in which it was
created. Consequently, any failure to replicate the findings of the original findings in the new non-VR
experiment would indicate that behavioral effects are rather the result of difference of the software
basis or implementation rather than caused by any particularities of the VR system.
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Virtual Environment

The non-VR experiment was conducted in an electronically and acoustically shielded chamber. In order
to transfer the non-VR Experiment into VR in the most realistic way, and to establish two identical
experimental setups with the only difference being that one experiment takes place in VR, the virtual
environment was designed to visually reflect the real test chamber as accurately as possible (Figure 2).
Furthermore, the virtual environment, including furniture, was built with the same scale and spatial
arrangement as the physical environment. This allowed to spatially map and align the virtual
environment onto its physical counterpart. Hence, both experiments were conducted in the same test
chamber, but in the VR experiment, we created a blending between the real and the virtual chamber
(i.e., every object in the virtual chamber had a real-world counterpart, identical in shape, size and
position).

As a result, the entire virtual environment was supported by real haptic feedback. Since participants
were unable to see their own body while in VR, a pair of HTC Vive motion controllers was given to the
participants representing the locations of their hands. 3D models of the controllers were rendered in
the virtual scenario, exactly mimicking the motion of the physical controllers. This allowed participants
to touch the environment with the controllers, i.e., they were able to experiment the feel and see
when a controller collided with a surface. In addition, the blending between physical and virtual world
spared the need to simulate other sensory modalities than the visual modality, such as the auditory
stimuli. Since every interaction of the controllers took simultaneously place in the physical and the
virtual environment, the participants were always able to hear spatially correct sounds caused in the
physical environment even while being in VR. Similarly, there was no need to simulate any olfactory
stimuli, but instead every virtual object had its own original smell provided by its physical counterpart.
In order to familiarize participants with the VR setup and immerse them in the virtual scenario,
participants were encouraged to explore the virtual environment prior to the experiment for a few
minutes.

During both the VR and non-VR experiment, participants placed their hands and arms on a second
table, beneath the table on which the monitor was placed. This arrangement ensured that the
participants were not able to see their own hands and arms during the experiment, and hence
prevented participants from getting distracted due to their own invisibility within VR.

Similarly, the communication between participant and experimenter was handled through an intercom
device on the table, to avoid that the participants had to talk to an invisible person in the room.

For an accurate overlap it was necessary to align the position and orientation of tracking origin defined
in the physical lab with the corresponding predefined point in the virtual lab. In a first step, the tracking
origin was defined using SteamVR’s standard setup procedure, to define the tracking origin. In a second
step, a motion controller was used as a gauge to test the fit of the overlap and the virtual lab was
moved from within VR along the x-, y-, and z-axis until the overlap was achieved.
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Figure 2.Comparison of the real test-chamber (left) and the virtual test-chamber (right) in the
illuminated version.
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General Procedure

The standard and the VR experiments were conducted on separate days. The order of experiments
was counterbalanced across participants.

To familiarize the participants with the task, a training session of 128 trials was performed before each
experiment. All training trials used the frequent feature combination of the main experiment
(ColPE_low/0OriPE_low), so that participants could generate expectations about the most likely color
and orientation combination of the target stimuli. Participants were informed that the color and the
orientation could change between trials during the main experiment. Furthermore, they were
informed that color or orientation changes were entirely irrelevant to their task.

Procedure VR Experiment

Before the experiment, participants could adjust the height of both tables and the chin rest to their
needs. However, since moving the physical objects would result in a misalignment between the
environments, both the virtual tables and chin rest were programmed to be moveable via buttons
presses. After adjusting the height of the physical objects, the experimenter adjusted the height of the
virtual counterparts via button press until a perfect overlap was achieved.

Furthermore, before starting with the experiment, participants were familiarized with the virtual
environment in a short exploration phase. Participants were given a pair of motion controllers as a
basic hand representation, and they were encouraged to explore and touch the environment. This was
done to convince participants that the visual environment indeed reflected the physical surrounding.
During exploration, the virtual environment was normally illuminated. During the experiment, the light
was turned off and the environment was illuminated by the virtual monitor only.

To guarantee safety during the VR experiment, participants remained seated on a chair during the
entire VR session, including the exploration phase to prevent increased postural sway in HMD-based
virtual environments which have previously been reported (Cobb et al., 1999; Fransson et al., 2019;
Slobounov et al., 2015).

Data availability statement

The complete dataset of all experiments, a video of the virtual environment and the UE4 project files
can be found https://osf.io/8bm9r/ Please note that due to copyright reasons a few textures used for
this project had to be replaced.
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Behavioral Analysis

The free statistical software R (R Foundation for Statistical Computing, Vienna, Austria; https://www.r-
project.org) was used for the data analysis.

For each participant, mean RTs and error rates for each condition and experiment were calculated.
Error trials, trials following errors and trials with RTs differing more than two standard deviations from
the mean were excluded from RT analysis.

The results of the timing validation resulted in substantial differences of the mean measurement errors
between the experimental setups. To account for these differences, the collected RTs were corrected
for both experiments, i.e., the observed mean RT error of 46.96 ms was subtracted from all RTs
collected in the non-VR experiment, hence compensating the delay induced by synchronization of the
LCD monitor. Similarly, the mean RT error of 1.43 ms observed with the VR setup was subtracted from
every RT collected in the VR experiment.

Repeated-measures ANOVAs for the RTs and error rates were first conducted for each experiment
separately, with the within-subject factors ColPE (high, low) and OriPE (high, low). The reported mean
values for expected and unexpected colors and orientations were calculated by collapsing all trials with
the specific feature being expected or unexpected (e.g., the mean values for the expected color reflects
the mean of all ColPE_low/OriPE_low and ColPE_low/OriPE_high trials). To compare behavioral effects
between experiments, an ANOVA with the within-subject factors ColPE (high, low), OriPE (high, low)
and Experiment (VR, nonVR) was conducted.

Results
Non-VR Experiment

Overall, the number of incorrect responses was very low with on average 2.24 % (+ 0.40 SEM) errors.
The ANOVA of the error rates yielded no significant main effect of ColPE (F(1,15) = 3.746, p =0.072, n%
=0.200), with 2.04 % errors for expected colors and 3.63 % errors for unexpected colors. Similarly the
main effect for OriPE, with 2.02 % errors for expected orientation versus 3.79 % errors for unexpected
orientations, was not significant OriPE (F(1,15) = 3.911, p = 0.066, N2 = 0.207). The interaction between
ColPE and OriPE (F(1,15) = 0.273, p = 0.609, n4 = 0.018) was also not significant.

The ANOVA of the mean RTs revealed a significant main effect for ColPE (F(1,15) = 18.77, p < 0.05, 13
=0.556) with 516 ms for expected colors versus 543 ms for unexpected colors. Moreover, we observed
a significant main effect for OriPE (F(1,15) = 17.91, p < 0.05, n3 = 0.544), with 515 ms for expected
orientations versus 548 ms for unexpected orientations. The interaction of ColPE X OriPE was not
significant (F(1,15) = 0.231, p = 0.638, N2 = 0.015). The mean RTs and error rates are shown in Figure
3.
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VR Experiment

Similar to the non-VR experiment, the mean error rate was very low with an average of 2.15 % (+0.36
SEM).

The ANOVA of the error rates yielded a significant main effect for ColPE (F(1,15) = 22.2, p < 0.05, mza =
0.567) with lower error rates for expected colors (1.92 %) compared to unexpected colors (3.74 %).
The main effect for OriPE was not significant (F(1,15) = 1.633, p = 0.221, m% = 0.098), with error rates
2.06 % for expected orientations and 2.73 % for unexpected orientations. The interaction was not
significant (F(1,15) = 0.307, p = 0.588, n,zg =0.020).

Again, the ANOVA of the mean RTs revealed a significant main effect for ColPE (F(1,15) = 14.4, p < 0.05,
m% = 0.490), with 505 ms for expected colors versus 533 ms for unexpected colors, and a significant
main effect for OriPE (F(1,15) = 22.57, p < 0.05, n3 = 0.601), with 506 ms for expected orientations
versus 526 ms for unexpected orientations. The interaction of ColPE X OriPE was not significant (F(1,15)
=0.061, p = 0.809, n% = 0.004). The mean RTs and error rates are illustrated in Figure 3.

A Cc
16 16
9 S
c 12 c 12
= =
£ 8 £ 8
s T e
s F 5 T
5 _ ﬁ ,—I—‘ 5 ﬁl < -
ColPE_low/ CelPE_high/ ColPE_low/ ColPE_high/ ColPE_low/ ColPE_high/ ColPE_low/ ColPE_high/
OriPE_low OriPE_low OriPE_high OriPE_high OriPE_low OriPE_low OriPE_high OriPE_high
Condition Condition
C D
v @
£ 600 £ 600
[ o
— - —
= — - = —
E 500 ’+‘ = E 500 == ’+‘ o
400 400
ColPE_low/ ColPE_high/ ColPE_low/ ColPE_high/ ColPE_low/ ColPE_high/ ColPE_low/ ColPE_high/
OriPE_low OriPE_low OriPE_high OriPE_high OriPE_low OriPE_low OriPE_high OriPE_high
Condition Condition

Figure 3. Performance measures of the combination of color and orientation manipulations for the
non-VR and for the VR experiments. A: Error rates non-VR. B: Error rates VR. C: Reaction times non-
VR. D: Reaction times VR. Error bars reflect the 95% confidence intervals.

In the next step, the results of both experiments were combined into one data set and compared
within a single repeated measures ANOVA with the within-subject factors ColPE (high, low), OriPE
(high, low) and Experiment (VR, non-VR). The analysis of the combined data set revealed a significant

72



Chapter 3 - Transferring paradigms from physical to virtual reality

main effect for ColPE (F(1,15) = 12.11, p < 0.05, n3 = 0.447) indicating that participants made more
errors in trials with unexpected colors (mean: 3.26 %) than expected colors (mean: 1.98 %). The main
effect for OriPE, with error rates of 2.04% for expected and 3.26 % for unexpected color, was not
significant (F(1,15) = 4.01, p = 0.063, n,% = 0.211). We found no evidence for a difference in task-
difficulty in both experiments, as the main effect for Experiment, with an error rate of 2.24 % in the
non-VR experiment and 2.15 % in the VR experiment, was not significant (F(1,15) = 0.836, p = 0.375,
n,% = 0.053). Consistent with the individual experiments, the interaction of ColPE X OriPE was not
significant for the combined data set (F(1,15) = 0.355, p = 0.56, r|12:> = 0.023). The interactions of ColPE
X Experiment (F(1,15) =0.162, p =0.693, n,% =0.011) and OriPE X Experiment (F(1,15)=2.171, p=0.161,
n,% = 0.126) were not significant. Hence, we could not find evidence that error rates were different
between experiments. Similarly, the three way interaction of ColPE X OriPE X Experiment was also not
significant (F(1,15) = 0.025, p = 0.877, 12 = 0.002).

The ANOVA comparing the RTs between experiments resulted in significant main effects for ColPE,
with mean RTs of 511 ms for expected and 539 ms for unexpected colors (F(1,15) = 23.77, p < 0.05, 1)
=0.613), and for OriPE (F(1,15) = 43.1, p < 0.05, N3 = 0.742), with mean RTs of 537 ms for unexpected
and 511 ms for expected orientations. The main effect for Experiment, with mean RTs of 531 ms in the
non-VR and 518 ms in the VR experiment, was not significant (F(1,15) = 1.32, p = 0.269, n2 = 0.081),
indicating that the overall reaction times were not differently affected by the stimulus device. The
interaction of ColPE X OriPE was not significant (F(1,15) = 0.306, p = 0.588, N = 0.020). The interactions
of ColPE X Experiment (F(1,15) =0.337, p =0.57, n% = 0.022) and OriPE X Experiment (F(1,15) = 2.992,
p = 0.104, N2 = 0.166) were also not significant, indicating that the RT effects were not different
between experiments. Similarly, the three way interaction of ColPE X OriPE X Experiment was not
significant (F(1,15) = 0.047, p = 0.832, 2 = 0.003).

Discussion

The aim of the present study was to examine whether stimulus presentation via an HMD affects early
processing of basic visual features when compared to a comparable stimulus presentation on a non-
immersive display. In particular, we tested if the reaction time effects observed in a previous study
(Wiesing et al. 2020), could be replicated in an VR setting. The results did not provide any evidence for
significant effects of the VR setting.

In order to generate identical set-ups in VR and its non-VR equivalent, we rendered both the non-VR
environment and the virtual computer screen within the environment in which the non-VR
experimental stimulation was presented. Clearly, this posed a challenge for the display resolution of
the HDM, and we had to slightly alter the stimuli used in the original study (Wiesing et al. 2020). Still,
the stimuli used in the VR setting and the non-VR setting were matched in the current study. With the
original stimulus configuration of Wiesing et al. (2020), the spatial frequencies of both Gabor patches
were hard to differentiate in the VR setting. This problem was resolved after increasing the stimulus
size. The most likely explanation for this limitation is the low pixel density of the HTC Vive. However,
newer generations of HMDs, such as the Valve Index, have higher resolution displays and use different
displays technologies, which help to increase the sharpness of the displays. Future research needs to
investigate whether these problems persist when using HMDs with higher pixel densities.
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Another technical issue that had to be addressed in the current study related to the accuracy of RT
measurements in standard and VR setups, which differed substantially between both experimental
setups. The most likely explanation for this difference is related to the frame-buffering in the non-VR
and VR setting and affects the non-VR condition rather than the VR-setting. In particular, we used a
method that was optimized and validated for the use with HDMs and collided with the buffering
features of liquid crystal display (LCD) that was used in the non-VR setting. In game engines, the
sampling rate to measure input such as responses is limited by the frame rate, which decreases the
accuracy of RT measures substantially. Following the approach previously described in Wiesing et al.
(2020), we circumvented this limitation in both experiments by collecting the response times via a
software running in the background of UE4. Benchmarking tests confirmed a high precision and
accuracy of reaction time measurement obtained in the VR setup, replicating the findings of our
previous study. However, although we obtained comparably precise measurements, reaction times
were highly inaccurate when obtained using the non-VR setup. Generally, a higher lag in the non-VR
setup was not surprising, given the different refresh rates of both setups (non-VR = 60Hz vs VR = 90Hz)
and superior temporal properties of OLED display (Cooper et al., 2013). Another factor that might have
contributed to the increased lag are differences of the display refresh between the HTC Vive’s OLED
panels and LCD panels, as used in the non-VR setup. Typically, computer screens, such as the LCD used
in this study, do not update the pixels all at once. Instead, the colors of the pixels change sequentially,
line by line and from top to bottom. However, stimulus onset measurements are synchronized to the
vertical blank event, i.e., the moment between two display refreshes. As a direct consequence, the
measured timestamp does not perfectly correspond to the actual stimulus onset, but instead shows
increasing measurement errors, the lower the position of the stimulus in the display. The panels used
in the HTC Vive, on the other hand, have so-called global-onset displays, i.e., the entire frame appears
at once instead of a sequential update. Consequently, with these displays, stimulus-onset
measurements are unaffected by the location of the stimulus. In the current study, the stimuli were
presented centrally within the display, causing a lag approximately half of a frame duration, i.e., ~8.33
ms, when using the LCD panel. The remaining observed lag is most likely explained by frame-buffering,
which we did not properly account for during data collection. However, using beforehand obtained
validation data allowed to correct the reaction time data prior to the analysis to account for the
difference in measurement accuracy. This is essential since without careful consideration of different
measurement errors, the observed differences could easily be mistaken for a genuine behavioral
effect.

Overall, when display resolution and differences in frame buffering are properly considered, it is
possible to successfully transfer standard behavioral paradigms into a VR-setting.

The RT pattern observed in the current study is well in line with and replicates the findings from
previous experiments by Wiesing et al. (2020). Both studies demonstrated that prediction errors for
different object features are resolved independently of each other. We further observed symmetrical
RT costs and increased error rates associated with unexpected features in both the non-VR and VR
experiment, providing no evidence that the stimulus presentation in current HMDs had a differential
impact on the early processing of basic visual features when compared to stimulus presentation via a
standard setup on a computer monitor. Similarly, the overall levels of accuracy and reaction times did
not significantly differ between the two settings.

Our results are in line with the studies by Olk et al., (2018) and Roberts et al., (2019), which both were
able to replicate well known behavioral effects in VR. On the other hand, our findings contrast with
those studies, which observed behavioral differences between non-VR and VR. Anglin et al. (2017)
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observed that participants followed different strategies in a visuomotor adaptation task in VR than in
a standard setup. While the current study used a purely visual feature discrimination task, the study
of Anglin et al. focused on spatial processing, which might be more easily disturbed by incorrect depth
cues and spatial distortion caused by modern HMDs. This assumption could similarly explain the
findings by Kozhevnikov & Dhond (2012), who observed that participants utilized different reference
frames in mental rotation tasks when the task is conducted in immersive VR as compared the stimulus
presentation on a computer monitor in both 2D and 3D.

Furthermore, previous research provided contradictory evidence regarding the allocation of attention
within immersive VR. While findings from prism and lens induced VACs indicate that attentional
resources might be reduced due to mechanisms to compensate VACs (Daniel & Kapoula, 2019),
findings of a study comparing HMDs and normal computer screens found the exact opposite, that
greater attentional resources are allocated to three-dimensional stimuli in VR as compared to stimuli
presented on a monitor in 2D (Li et al., 2020). In the present study we expected differently allocated
attention between both experiments to manifest in overall different RT cost between experiment, e.g.,
overall higher RT cost in the VR experiment, as well as different error rates, e.g., more errors in total
in the non-VR experiment. However, we neither found any differences in overall RTs nor in error rates
between experiments, providing no evidence that optical particularities of HMDs, such as VACs, have
an impact on the allocation of attention.

A limitation of the current study in providing a maximum correspondence between experiments, was
the lack of a full body tracked avatar. Instead, participants only had two motion controllers as basic
hand representations, which might have resulted in a decreased feeling of embodiment (Pyasik et al.,
2020; Seinfeld & Miiller, 2020).

Overall, the results indicate that early processing of basic visual features does not differ when stimuli
are presented on a computer monitor or within a modern HMD. Instead, within the context of recent
literature comparing the different experimental setups, it appears that differences in cognitive
processing might be related to spatial tasks, which are more easily affected by incorrect depth cues
and spatial distortions caused by HMDs.

It is important to note that the present results are task-specific and therefore do not allow any
conclusions about similar effects when examining the impact of VR on the performance in different
paradigms. Despite the steadily growing body of literature, the impact of VR technology on cognition
is still far from understood. Understanding the potential mechanisms underlying cognitive processes
in physical and virtual environments further will be critical to validly transfer findings from VR
experiments to real world scenarios.
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In a typical experiment in cognitive neuroscience and experimental psychology, the objective is to
record brain activity and behavior while an individual engages in a cognitive activity. To be able to
precisely link brain activity to specific cognitive capabilities, neuroscientific studies have usually been
conducted under controlled laboratory conditions. The need for experimental control is reflected in
experimental paradigms providing only minimalistic sensory stimulation and allowing only for
restricted and repetitive behaviors.

The approach of minimalistic but highly controlled experiments helped scientists to take tremendous
strides in uncovering the neuronal basis of cognitive processing. However, it has been criticized that
those minimalistic experimental paradigms fail to replicate the complexity of reality and lack ecological
validity, casting doubts on the generalizability of findings from the laboratory to real-world situations
(Schmuckler, 2001; Ulric Neisser, 1976). Since then it has been considered as a trade-off between
ecological validity and experimental control and researchers found themselves in the dilemma of
choosing the one or the other (Parsons, 2015).

Virtual reality has the promise to enable researchers achieving both ecological valid and precisely
controlled experiments. The potential of virtual reality as a novel tool to study human behavior and
underlying neural functioning has been recognized for decades (Bohil et al., 2011; Loomis et al., 1999a).
However, due to the high cost and technical requirements to generate virtual environments, VR has
been highly underutilized in the past. With the launch of consumer head-mounted displays, high
quality but low-cost VR-systems, the technology became affordable for most research labs.
Additionally, with the advances in computing power and widely available rendering engines, the
interest in VR and the utilization of VR as a research tool has gained some momentum within the last
years (Vasser & Aru, 2020).

Virtual Reality

The term virtual reality was originally coined in the 1970’s by Myron Krueger to describe computer
applications that had to be considered as “responsive environments” (Woolley, 1993). However, it was
Jaron Lanier, who popularized the term as “three-dimensional realities implemented with stereo
viewing goggles and reality gloves” (Krueger, 1991). Lanier was the chief executive officer of VPL
Research, Inc, founded in 1984 and one of the first companies developing and selling commercial VR
systems.

In the introduction | defined VR as computer-generated worlds experienced via HMDs. This simplified
view made sense in the context on the studies reported in chapter 2 and chapter 3. In chapter 2, |
examined the accuracy and precision of stimulus timing and time measurements when stimuli were
rendered for and presented within an HMD. In chapter 3, | specifically asked if HMDs might affect the
early processing of basic visual features differently than a computer monitor.

However, if we want to exploit the full scientific potential of VR, it is better to understand VR in terms
of the interplay between participant and content. For example, according to Slater (2018) the
fundamental element of any VR system includes “a computer-generated world [...] that perceptually
surrounds the participant, and where perception is a function at least of head tracking” (Slater, 2018,
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p. 431). Others define VR as a “‘computer-generated digital environment that can be experienced and

Ill

interacted with as if that environment was real” (Jerald, 2015, p. 9) or as a “set of technologies that
enable people to immersively experience a world beyond reality” (Berg & Vance, 2017, p. 1).

According to these views, VR is the idea of a computer-generated world which surrounds us, forming
a parallel reality, with which we can interact naturally, e.g., looking around by turning our head, just
like we would do in physical reality. Virtual reality is the idea to completely block any sensory input
coming from physical reality and replacing it with an artificial world, which is experienced and can be

interacted with, as if it was real.

Virtual Reality as a research tool

This perspective on VR also explains better why VR holds such an immense promise as a research tool
in cognitive neuroscience and experimental psychology. VR enables researchers to present a wide
range of stimulus conditions, which would be difficult or even impossible to create in physical reality.
For example, Marek & Pollmann (2020) used VR to turn a classical two-dimensional contextual cueing
task into a three-dimensional VR task, in which participants were surrounded by the stimuli. By using
this novel stimulus setup, the authors showed that the search time reductions known from the classical
version of the task, can also be observed when the stimuli were presented outside of the initial field
of view. Mast & Oman (2004) were able to replicate a perceptual illusion in VR, which was previously
only observed by astronauts in microgravity. Most astronaut experience so-called visual reorientation-
illusions within microgravity, i.e., occasional changes of the perceived identity of environmental
surfaces. A surface, which was perceived as a wall might become the ceiling a moment later. Mast &
Oman recreated the visual ambiguity typically found in spacecrafts within VR, which often do not
provide clear information about what is, for example, the floor or the ceiling. The authors showed that
participants can cognitively manipulate the reorientation illusion effects within normal gravity on the
ground. Others have used VR to create experiments, which would be ethically unacceptable when
done in physical reality, because it involves placing participants in highly dangerous situations (e.g.,
Ramdhani et al. (2019); Patil et al. (2018)).

Importantly, since the scenarios are computer-generated, the researcher has control over essentially
even the smallest detail of the virtual world, allowing them to optimize the entire scene just for the
experiment in question. Furthermore, researchers can take advantage of the tracking capabilities of
modern VR systems, allowing them to monitor complex behaviors of freely moving participants with
great detail, a scenario which would be hard or even impossible to control in physical reality
(Niehorster et al., 2017).

However, little is known if the virtual setting and the VR technology might engage different cognitive
processes than physical reality, i.e., if participants respond to virtual stimuli as they would do to real-
world stimuli (Kulik, 2018). Yet, the same can be asked about standard non-VR experiments, which also
create artificial settings and participant behavior might not match with their real-world behavior (Pan
& Hamilton, 2018b). This, however, raises questions about the transferability from VR to non-VR
experiments and vice versa. So far, only a few studies have systematically examined if HMD based VR
systems affects basic cognitive processes differently than a standard non-VR experiment, i.e., visual
stimuli are presented on a monitor.
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Findings from previous research indicate that participants rely on different frames of reference in
mental rotation tasks (Kozhevnikov & Dhond, 2012) and follow different strategies in visuomotor
adaptation tasks (Anglin et al., 2017) in VR as compared to a standard setup. Findings of another study
suggest HMD might provide advantages for the allocation of attentional resources. Li et al. (2020)
compared the task performance and functional EEG measurements during a visual discrimination task
within an HMD and in front of a computer monitor. Their results indicate that participant allocated
greater attentional resources to the stimulus material presented in the HMD condition as compared
to the non-VR condition. On the other hand, Roberts et al. (2019) observed a similar task performance
between the VR and non-VR version of a visual flanker task. Other findings indicate that HMDs increase
cognitive load and reduce motor performance compared to a standard monitor setting (Juliano et al.,
2021).

Yet so far, no research has examined on which level of processing the observed differences between
HMD and monitor experiments arise. Here, my aim was to examine whether the processing of
expectancies for basic visual features is different when the stimuli are presented in an HMD as
compared to a standard computer monitor.

In a first step, | developed and tested a new behavioral paradigm. The paradigm investigated how
prediction errors for two simultaneous unexpected features of the same object are formed and on
which level of processing they arise. The results strongly suggest that unexpected but otherwise task-
irrelevant colors or orientations result in increased reactions times. Furthermore, the results indicate
that both prediction errors are resolved independently on an early level of processing when different
feature dimensions are processed in parallel.

In a series of four experiments, | consistently observed the same pattern of results, showing main
effects for the individual prediction errors but no interactions between them. This was important with
respect for the replications planned for the study reported in chapter 3, as it clearly showed that the
behavioral effects are robust and generally replicable when using the same combination of hardware
and software.

Another critical factor is the precision and accuracy with which the relevant data can be obtained. In
chapter 1, the dependent measure | was interested in were reaction times. Measuring reaction times
consists of two simple time measurements: 1) the stimulus-onset, e.g., target appears on the screen,
and 2) the response time, e.g., button press. The reaction time can be obtained by calculating the
difference between the response time minus the time of the stimulus-onset. However, the precision
and accuracy with which both timepoints can be measured, depends on both the software and
hardware used for the stimulus presentation as well as for collecting input.

For example, many liquid crystal displays (LCDs) suffer from unreliable refresh rates and slow response
times, which can affect both the precision and accuracy of the stimulus timing as well as reaction time
measurements. In chapter 1 and in the non-VR experiment of chapter 3, stimuli were presented on a
Samsung SyncMaster 2233. Previous research has shown that the temporal properties of the monitor
are on par with tested cathode-ray tube (CRT) monitors (Wang & Nikolic, 2011). CRTs are usually
considered the gold standard for visual stimulus presentation because of their precise and reliable
timing.

To my best knowledge no study had yet examined if HMDs provide precise and reliable stimulus timing.
Fortunately, the temporal properties of the HTC Vive turned out to be highly suitable for experiments
in vision research. In fact, the so-called global-onset display used in the HTC Vive provide a clear
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advantage over typical LCDs and CRTs. On typical LCD and CRT screens, the image is built up line by
line from top to bottom. As a result, the upper part of the image appears earlier than the lower part,
with the most upper and lowest line of pixels typically being a bit less than a frame duration apart.
However, the stimulus-onset is typically measured as the begin of the display refresh. Hence, the
measurement error of the stimulus onset increases, the lower the location of stimulus on the display.
In contrast, in the displays of the HTC Vive all pixels light up simultaneously, allowing to measure the
onset of a stimulus independently of its position.

Furthermore, in chapter 1, | used PsychoPy, a standardized and well established toolbox for behavioral
experiments (Peirce et al., 2011). PsychoPy has been proven to measure reaction times with a high
accuracy and precision (Bridges et al., 2020). My own measurements, reported in chapter 2, confirm
these findings.

However, PsychoPy does only provide limited support for modern HMDs and lacks the rendering
capabilities required for realistic and interactive virtual worlds. Instead, many studies rely on game
engines, such as Unity or Unreal Engine. However, game engines are not designed or optimized for
behavioral experiments. In fact, game engines lack many basic features, required by most experiments.
For example, PsychoPy provides several functions to create the most common visual stimuli used in
experiments, such as Gabor patches or random-dot stereograms. On the other hand, in a game engine
such as UE4, one will look in vain for a function to create a basic Gabor patch. In fact, the Gabor patches
presented in both experiments of chapter 3 were created in PsychoPy and stored as textures, which
were applied to the display of the virtual monitor. Similarly, game engines do not provide tools which
help scientists to setup the trial structure and define stimulus events, and game engines suffer from
constraints regarding data collection and data quality.

Fortunately, in the recent years, an increasing number of scientific toolboxes for game engines have
been released and are in development. For example, Unity Experiment Framework (UXF) intends to
provide a framework to setup and control experiments and to simplify the data collection for
behavioral experiments using Unity (Brookes et al., 2020). Toggle Toolkit allows to setup triggers (e.g.,
collisions or button presses) and toggles (changing the state of an objects, e.g., turning light on or off)
as well as to log the associated data for later analysis (Ugwitz et al., 2021). VREX is another example,
which provide tools to setup experiments and come with various study protocols for attentional or
memory tasks (Vasser et al., 2017). Other toolboxes provide solutions to combine the VE with
simultaneous physiological and kinematic measurements (Gribel et al., 2017; Williams et al., 2019;
Wolfel et al., 2021).

However, although a lot of progress has been made in various areas from setting up and controlling
VR experiments, simplifying data collection, and synchronizing different data streams, to my
knowledge no research had examined the precision and accuracy of stimulus timing and time
measurements, when using a game engine in combination with a modern HMD-VR system.

Especially the limitations in obtaining the correct time of a stimulus-event like the stimulus-onset have
not received much attention yet. However, to be able to relate functional or behavioral data to ongoing
cognitive processes, it is crucial to determine when certain sensory events occurred.

While it is technically relatively easy to measure these events using game engines, doing so precisely
and accurately is not that trivial. In fact, even software toolboxes which are developed explicitly for
behavioral experiments have been observed to struggle with precise and accurate time measurements
and stimulus timing (Bridges et al., 2020; Garaizar et al., 2014).
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In chapter 2, | have demonstrated that both stimulus onset and response time measurements are
imprecise and inaccurate when obtained using the standard APl of UE4. The reasons can be explained
by the underlying architecture of game engines and the graphics pipeline for VR rendering. The central
component of any application created in a game engine is the game loop. The entire application runs
in one loop, which handles any processes, from input over physics to drawing objects. The game loop
iterates once every frame, limiting the sampling rate for any measurement within the game loop to
the current frame rate. Consequently, the frame rate of an experiment directly determines the best
possible precision with which data, such as timestamps, can be obtained. Furthermore, to prevent
visual artifacts, such as tearing, each major VR runtime software synchronizes the framerate to the
refresh rate of the display. According to my own measurements, the refresh rate of the HTC Vive is
89.53 Hz, i.e., about every 11.17ms a new frame. Hence, every time measurement will vary in a range
of about + 5.59 ms, which was also confirmed by my data.

A possible solution is to render the scene at a higher rate than the display is able to refresh. Quinlivan
et al. (2016) aimed to render the visual scene at 1000 frames per second (FPS), allowing them to collect
input and tracking data with a millisecond precision. However, the downside of this approach is the
performance cost associated with the increased frame rate, making it unsuitable for realistic and
complex rendered scenes. Although the environment and stimuli of Quinlivan et al. (2016) were
minimalistic and probably causing only a low overhead, the frame rate eventually fluctuated in a range
of 600 and 1000 FPS. The authors accounted for this by resampling the data at 500 Hz.

Others have suggested to work around the above discussed limitations by using a microcontroller as
an external synchronization device and to separate the measurements from the rendering engine
(Alsbury-Nealy et al., 2021; Watson et al., 2019; Wienrich et al., 2018). These studies were able to
improve the precision of response time measurements, by collecting the button input externally via an
Arduino. Watson et al. (2019) were also able to improve the accuracy of stimulus-onset measurements
by using a photodiode to detect a small peripheral stimulus flashing simultaneously with the actual
stimulus, when used on a normal computer screen. However, even a small photosensor and flash
stimulus will probably be noticeable and distracting for participants.

Instead, | proposed an approach that solves both the stimulus-onset as well as the response time
measurements on the software-level, without requiring additional hardware. Instead, | outsourced the
measurements into another software, running in the background of UE4 and thereby circumventing
the above-described limitations. Benchmarking data reported in chapter 2 confirmed the high
precision and accuracy of my method.

Before conducting the experiments of chapter 3, | conducted some benchmark tests of the reaction
times measurements for both the non-VR and the VR experiment. While the results of the VR
experiment were basically identical to results reported in chapter 2, the accuracy of reaction times
measured in the non-VR experiment was clearly off. The differences can partially be explained by the
different temporal properties of the OLED displays of the HTC Vive and the LCD monitor. As mentioned
above, the HTC Vive displays light up and present the new frame at an instance, while the LCD updates
continuously from top to bottom. The test stimulus for the validation was placed at the center of the
screen, while the stimulus onset was measured at the vertical sync, i.e., at the start of a new display
refresh. However, this explains only a small amount of the observed lag of maybe 7-8 ms. However,
most of the lag can be explained in that | did not properly account for additional frame buffering used
for non-VR rendering. Fortunately, the precision was similarly high for both experiments, which
allowed me to correct the reaction time data before running the analysis.
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The timing results of chapter 3 clearly demonstrate that comparison between non-VR and VR
experiments need to consider and correct for timing differences between HMDs and normal monitors
as well as the associated rendering processes. Otherwise, it becomes arbitrary whether a behavioral
difference results from the technology or is the mere product of different data quality between
experiments.

As an additional sanity check | created both the VR and the non-VR experiment with UE4. The original
study, on the other hand, was created in PsychoPy. Hence, apart from the modification in stimulus
size, both the original and the new non-VR version differed only in the underlying software. Hence, any
failure to reproduce the original effects in the non-VR UE4 version would suggest some software
related issues.

The virtual environment, in which the VR experiment of chapter 3 took place, was a realistic and
accurate replica of the real chamber in which both experiments took place. This was done to establish
two identical experimental setups, which ideally only differ in the display device. The virtual replica
corresponded not only visually with its real-world counterpart but also with respect to the scale,
allowing me to use the visual rendering as an overlay which | blended onto the physical EEG chamber.
As a result, the visual rendering was enhanced by the non-visual physical properties of the
environment of the real physical environment itself. The sensory experience of, for example, touching
the table with a controller provided not only the accurate visual feedback. Participants also felt the
table blocking their movement and were able to hear the noises generated by the collision of controller
and table.

What | did here, was to increase the immersion of the virtual EEG chamber. With immersion | refer to
the so-called system immersion, which is an objective and theoretically quantifiable property of any
VR system (Nilsson et al., 2016; Slater, 1999), describing the fidelity of the system to create vivid and
interactive virtual environments, while shutting out physical reality (Cummings & Bailenson, 2016). For
example, a high-resolution HMD is more immersive than a low-resolution but otherwise identical
HMD. Similarly, a VR system that can simulate multiple sensory modalities has a higher immersion than
a purely visual VR system. According to Mel Slater, immersion can be understood as the sum of
sensorimotor contingencies (SCs) supported by a VR-system (Slater, 2009). SCs refer to all actions that
can be carried out, in order to perceive the world, for example, by moving the head or body (O’Regan
& Noé, 2001).

Previous studies indicate that more immersive virtual environments can improve cognitive functions,
such as memory (Krokos et al., 2019; Sutcliffe et al., 2005) and elicit more intense emotional responses
(Diemer et al., 2015; Visch et al., 2010). A recent study demonstrated how the lack of tactile and haptic
feedback affects the task performance in an obstacle avoidance task (Giesel et al., 2020). The authors
explained the differences in behavior by the disparity in expected consequences of actions between
both conditions.

Furthermore, high levels of immersion are associated with a stronger sense of presence. The term is
rooted in the concept of telepresence coined by Marvin Minsky, to describe the feeling that a person
might have while controlling a robot remotely (Minsky, 1980). In the context of VR, however, it is
commonly just referred to as presence or the sense of presence, which typically is used to describe the
subjective feeling of being there, in the mediated or computer-generated environment rather than in
physical reality (Weber et al., 2021). Presence or telepresence is regarded as one of the most crucial
aspects of a VR experience, maybe even its defining feature (Slater & Wilbur, 1997; Steuer, 1992).
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Lombard & Ditton (1997) described presence as the “perceptual illusion of nonmediation [which]
involves continuous (‘realtime’) responses of the human sensory, cognitive and affective processing
systems”. According to the authors, the illusion of non-mediation occurs when the participant does
only perceive the virtual content but not the delivering medium and responds as if it would not exist.
They point out that, although all experiences are mediated through the sensory system, non-mediation
explicitly refers to experiencing the virtual environment without experiencing the mediating
technology.

Another influential account on presence distinguishes between two perceptual illusions, the Place
Illusion (P1) and the Plausibility Illusion (Psi). While Pl describes the feeling of being there, Psi describes
the feeling of “is apparently happening is really happening (even though you know for sure that it is
not)” (Slater, 2009). A key component for Psi are events in the environment which directly refer to the
participant, without them having control over it, such as a computer character smiling at the
participant as soon they have eye contact (Slater, 2009). Slater describes both dimensions as illusions
to point out that the participants have the sensation of being there and that things a really happening
despite the knowledge that this is not the case. Furthermore, both Pl and Psi are orthogonal factors.
According to Slater, if both Pl and Psi are experienced, participants will respond realistically, i.e., as in
a comparable real situation.

A factor, for which | did not account for, was the reduced field of view in the VR experiment. While in
the non-VR experiment, the entire visual field was provided with visual input, in the VR condition, the
horizontal field of view was restricted to approximately 110° (Al Zayer et al., 2019). In the study by Li
et al. (2020), participant were wearing the empty frame of an HMD to reduce the FOV in the non-VR
condition. Before conducting the experiments reported in chapter 3, | tried the same approach and
wore the frame of an old and disassembled HMD watching at my stimuli on a computer screen.
However, the light of the display caused a few but clearly visible reflections on the inside of the frame
and | was concerned that this might cause distractions interfering with the task. Furthermore, an
empty frame can only be seen as an approximation of the HMD’s FOV, which depends on different
factors, such as the distance between lenses and the eyes.

Another factor for which | did not account for, was the lack of a visible body in the VR experiment.
Since participants cannot see their own body while in HMD-VR, it is common to include a self-avatar,
i.e., avirtual representation of a body that is experienced from a first-person perspective and provides
a substitute to their real body. This can give rise to so-called embodiment-illusions or virtual
embodiment, in which the participants experiences the virtual body as their own (Gonzalez-Franco &
Peck, 2018; Slater, 2009; Spanlang et al., 2014; Yuan & Steed, 2010).

Self-avatars have several benefits as they for example provide visual cues about the participant’s
location and immediate feedback about one owns actions. Another advantage is non-verbal
communication in shared virtual environments (Y. Pan & Steed, 2019). Self-avatars have been found
to improve distance judgements in VR (Mohler et al., 2010; Ries et al., 2008), which is more
pronounced the more embodied the participants were (Gonzalez-Franco et al., 2019). Others have
shown that self-avatars can reduce cognitive load and improve memory and cognitive processing
within VR (Steed et al., 2016).

Here, | decided to not include a self-avatar but instead to only show floating controller models while
participants familiarized with the VE. This was mainly done due to the technical requirements for the
appropriate implementation of a full-body self-avatar, which are substantially higher than floating
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controllers. Current off-the-shelf VR systems, such as the HTC Vive used in chapter 3, only provide
motion-tracking for the head and both hands (3-point tracking), while feet and the rest of the body are
not tracked. This makes it impossible to accurately to track and replicate the participant’s movement
onto the avatar. As a possible consequence, participants would experience a conflict between vision
and proprioception, which could make it difficult to interact naturally with the VE or result in a
reduction of presence (Slater & Steed, 2000). Incongruencies between the participant’s and their self-
avatars movement and size have also been found to increase simulator-sickness (Kim et al., 2020).

To ensure that the missing body did not serve as a distraction during the experiment, the experimental
setup was arranged that the body of the participants was also in the non-VR experiment out of view.
Participants placed their arms on a second table, hidden from view by the table on which the monitor
was placed.

Furthermore, during the familiarization phase, prior to the VR experiment, participants were handed
a pair of tracked motion controllers, as a simple hand representation. Presenting controller models
instead of hands or a full-body self-avatar is comparably easy, given that the controllers are rigid bodies
which already provide all necessary sensors for the tracking.

During the piloting phase, | noticed that comparably low pixel density of the HTC Vive made it almost
impossible to differentiate between the high and low spatial frequency of the Gabor patches, when
using the original stimulus parameters, as reported in chapter 1. Although the issue was easily resolved
by increasing the stimulus size, it clearly demonstrates limitations for present small details.
Fortunately, the resolution of newer HMDs has seen a massive increase. For example, the HTC Vive
used in my studies provides 1080x1200 pixels per eye. The latest Vive HMD released by HTC, the HTC
Vive Pro 2, already provides a resolution of 2448x2488 pixels per eye, making it unlikely to observe the
same difficulties to clearly present small details as | have observed.

Testing the same group of participants in each experiment in counterbalanced order, both the non-VR
and the VR experiment replicated the behavioral effects of the study reported in chapter 1. Again, the
results clearly indicated that both the prediction errors for color and orientation can be manipulated
independently of each other, regardless of whether the features belonged to the same objects or not.
Consequently, the no evidence for differences between the two new experiments were found. This
clearly indicates that the processing of early visual feature expectations as well as their violations does
not differ between both experimental setups.

The results are in line with Roberts et al. (2019), who also replicated the results previously observed in
a standard non-VR setup. On the other hand, the results by Li et al. (2020) suggest that selective
attentional abilities might be enhanced within HMDs. Here, | expected to find different overall reaction
times or errors rates between the experiments, if one of the experimental setups provides attentional
advantages over the other. However, | neither observed differences in overall reaction times or error
rates between the experiments, providing no evidence that the HMD caused differences in the
distribution of attention. Importantly, the experiments in chapter 3 were not designed to compare the
distribution of attention in VR and non-VR setups. Therefore, the paradigm might have failed to
provide the sensitivity to detect differences in the allocation of attention, explaining the discrepant
results of my own experiments and the study by Li et al. (2020). Another explanation could be the
differences in the stimulus material. Li et al. (2020) used a three-dimensional scene, in which target
and distractor stimuli were presented at different locations, including differences in depth. However,
in contrast to the HMD, the monitor used in the non-VR condition was not capable to present the
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stimuli in stereoscopic depth. Hence, the differences in depth information between the experiments
might explain the observed attentional advantages. Furthermore, in the non-VR condition, participants
saw only a fraction on the virtual environment on a monitor, while they found themselves surrounded
by the same environment in the VR condition. Previous research indicates that this difference in
perspective engages different spatial reference frames and spatial encoding. Kozhevnikov & Dhond
(2012) compared mental rotation in three different display conditions, a stereoscopic HMD, a
stereoscopic monitor (anaglyph glasses) and a traditional monitor. Their results suggest that
participants utilized scene-based reference frames and allocentric encoding for both, the traditional
and the stereoscopic monitor conditions. In contrast, only in the HMD condition, participants
employed an egocentric frame of reference.

In chapter 3, | presented in both experiments two-dimensional stimuli on an ordinary computer screen,
either a physical or virtual one. Hence, a difference between my experiments and the study by Li et al.
(2020) which might explain the different findings, is the spatial encoding in the VR conditions of both
studies.

Generally, the results of chapter 3 indicate that early visual processing is not different when stimuli are
presented in the HTC Vive as compared to a standard computer monitor. Differences between VR and
non-VR reported by previous studies appear to be related to spatial processing. More research is
needed to investigate potential different mechanisms underlying cognitive processing in virtual
environments and both standard monitor-based experiments and real-world scenarios. Understanding
how the technology used for stimulus presentation and behavioral measurements affect cognitive
processing will be critical to validly compare findings obtained with different technology and to
eventually transfer findings from experiments to real-world scenarios.

Limitations

A limitation of the measurement method presented in chapter 2 is clearly the usability. While the
method is already able to provide precise and accurate time measurements, the actual
implementation, and its integration into UE4 is still in a premature state, e.g., the synchronization with
UE4 depends on a custom build of UE. Moreover, the current implementation is limited in its
functionality and was custom-made to fit the requirements of my research projects, making it
complicated to adapt the method for other research projects.

Another, more general limitation if the approach is the dependency on third-party tools. In principle,
every update of UE4 or SteamVR, as well as the driver of the HTC Vive, could potentially break the
correct functioning of the background application. Hence, the method needs to be regularly
revalidated and to be adapted to software changes.

To get the method future-proof, a logical next step would be to rewrite the entire logic using OpenXR,
a new industry-wide standard API, which works across different platforms and VR hardware brands.
Soon, OpenXR will completely replace the individual APIs from the different hardware vendors,
including SteamVR’s own APl OpenVR, which was used for the background application. However, this
is actually a good development and makes it easier to develop software tools, like the background
application, or entire toolboxes based on the same standard and supporting all platforms and devices.
Furthermore, in all my reaction time measurements reported chapter 2, | used a standard response
pad by the same company behind the BBTK. The main reason was the usability, since the BBTK
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response pad provides already the necessary plugs to control it via the BBTK. However, this did not
stop me from opening one of the Vive motion controllers and to solder some cable on the mainboard
to connect it to the BBTK. However, unfortunately SteamVR’s APl OpenVR does not provide the
necessary functions to easily intercept the input signals of the controllers in the way, | was able to
intercept the input provided by the BBTK response pad. Hence, without further tests of the controllers,
studies should prefer traditional input devices, if possible, to ensure precise input data.

In chapter 2, | only tested the HTC Vive. Recently, Tachibana & Matsumiya (2021) examined the
accuracy and precision of visual and auditory stimulus presentation with Python 2 and Python 3 and
two different HMDs, the Oculus Rift CV1 and the HTC Vive Pro. Their study revealed some issues of
stimuli with short stimulus durations. For auditory stimuli, they observed lags for auditory stimuli,
when they were presented for short durations of one or two frames with both the Oculus Rift CV1 and
the HTC Vive Pro. Interestingly, they also observed lags of visual stimuli with a duration of a single
frame, but only when using the Oculus Rift.

Furthermore, it is important to point out, that results obtained in chapter 3 are based on only one
experimental paradigm and only tested the processing of feature expectations for color and
orientation. Hence, based on these results it is not possible to draw conclusions about other tasks or
even visual features. For example, previous research has repeatedly shown that distance and size
perception is distorted in VR when compared to real-world environments (e.g., Kelly et al., 2017;
Maruhn et al., 2019; Phillips et al., 2009) and that spatial processes also differ between VR and
standard setups (Anglin et al.,, 2017; Kozhevnikov & Dhond, 2012). Hence, it is conceivable that
manipulations of the expected stimulus size might result in different findings between both setups.
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Summary

In standard lab-based psychological experiments, the stimulus material is usually minimalistic, and the
behavior of participants is measured in repetitive and simple responses such as simple button presses.
Virtual reality has the potential to study brain function and behavior of freely moving participants in
realistic and ecologically valid environments, without sacrificing experimental control. However, little
is known yet if VR engages the same cognitive processes as equivalent real-world situations (Kulik,
2018; Pan & Hamilton, 2018a).

Here, | asked whether the simple fact that an experiment takes place in VR, changes the behavior of
participants. From previous research it is well known that spatial perception is distorted in VR, as
egocentric distances are usually underestimated in VR (Interrante et al., 2006; Kelly et al., 2017), when
compared to real-world estimates. Also, when comparing the task performance between VR and a
standard monitor setup, differences in visuomotor adaptation (Anglin et al., 2017) and mental rotation
(Kozhevnikov & Dhond, 2012) have been observed.

My dissertation was concerned with the question if the VR technology affects already early visual
processing differently than a typical computer monitor. If differences in visual processing exist, it is
important to know on which level of processing these differences arise. Yet, to my knowledge, no
previous research has investigated if VR already affects early processing of basic visual features.

First, a new behavioral paradigm was developed for a standard monitor-based setup and extensively
tested to provide robust and replicable behavioral effects. The paradigm investigated how prediction
errors of basic visual stimulus features are formed and on which levels of processing they arise. In a
series of four experiments, participants consistently responded slower, when the color or the
orientation of the targets were different than expected. This was irrespective of the fact that both the
color and the orientation were completely task irrelevant in three of the four experiments and whether
the features belonged to the same object (Exp 2 — Exp 4) or whether the features were separated on
different objects (Exp 1). Increasing the relevance of the features and switching to an explicit
manipulation of the expectations, in Experiment 3 of chapter 1, did not change results.

All in all, the behavioral effects turned out to be robust and replicable, when tested with the same
combination of software and hardware, which was a critical premise for the comparison between a
standard experiment and the same experiment in VR.

A critical premise for such a comparison is that both experimental setups provide the same high
precision and accuracy for controlling stimuli and to collect behavioral data. In chapter 2 and chapter
3, | demonstrated that the accuracy and precision of reaction time measurements is highly dependent
on the hardware and software used for the experiment. Here, the HTC Vive HMD system turned out
to be well suited for experiments, which require displays with reliable timing parameters. Stimuli
presented in the HTC Vive in combination with Unreal Engine were highly precise and accurate, when
taking the true refresh rate of 89.53 Hz into account. Furthermore, especially the global onset display
provides advantages over common LCDs for measuring the stimulus-onset.

Nevertheless, my experiments revealed that reaction times obtained with UE4’s programming
interface were highly inaccurate and imprecise. This was explained by the underlying architecture of
game engines and the graphics pipeline for VR rendering. Furthermore, | proposed a novel software-
based method to circumvent these limitations, by recording the data in a background process separate
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from the engine’s internal logic. This approach turned out to provide reaction time measurements with
a comparable precision and accuracy as provided by standard toolboxes such as Presentation and
PsychoPy. The proposed method has not only proven to provide highly accurate and precise reaction
time measurements, but also provide a basis for other time-sensitive measurements, such as EEG.

For the VR experiment of chapter 3, | aimed to design the experimental setup of the VR experiment as
close as possible to the non-VR experiment. This included an accurate model of the entire EEG
chamber, in which the experiments were conducted. In the end, both the non-VR and the VR
experiment replicated the original findings obtained with PsychoPy in chapter 1. Hence, the results did
not provide any evidence that basic visual feature and unexpected changes of these features is
different just because the stimuli are presented in an HMD.
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