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Abstract 

The extracellular matrix (ECM) functions as a structural scaffold for tissues and 

regulates signaling by interacting with specific receptors and by providing a reservoir 

for growth factors. This multitude of functions makes the ECM an essential regulator 

of organ development and maintenance. The deposition and remodeling of the ECM 

into a precise configuration is a cell-dependent process that requires integrin adhesion 

receptors and the generation of cellular forces. However, it is not clear how integrins 

transduce force necessary for ECM remodeling. In addition, the role of ECM 

remodeling in directing cell fate decisions in vivo is not completely understood. 

Integrin-linked kinase (ILK) is an essential adaptor protein that binds to β1- and β3-

integrin cytoplasmic tails and links them to the actin cytoskeleton. The aim of this 

study was to analyze the function of ILK in ECM remodeling and the role of this 

process in the regulation of stem cell (SC) fate. In vitro experiments revealed that ILK 

is required for cellular force generation, cell-matrix adhesion maturation, and 

subsequent remodeling of a fibronectin matrix. Using various strategies to delete ILK 

in murine epidermis, it was further shown that ILK regulates SC fate within hair 

follicles (HFs). Deletion of ILK led to gradual loss of HFSCs due to their aberrant 

activation and enhanced differentiation. Furthermore, ILK was observed to regulate 

the precise composition of the basement membrane (BM) SC niche. The inverse 

gradients of laminin-(LN) 511 and LN-332 present in the skin of wild type mice was 

lost upon deletion of ILK. As a consequence, Wnt and Tgf-β signaling pathways that 

were shown to be modulated by LN-511 and LN-332, were dysregulated causing 

aberrant SC activation. Consequently, reconstituting a wild type ECM restored the 

activities of Wnt and Tgf-β pathways in ILK-deficient cells to the level of controls. 

The aberrant SC activation was observed to cause replication stress and accumulation 



 

of DNA damage, which predisposed ILK-deficient mice to skin carcinogenesis. 

Taken together, this study identifies a critical role for ILK in ECM remodeling and 

highlights the importance of reciprocal cell-ECM interactions in cell fate decisions 

and tissue homeostasis. 

 



Zusammenfassung 

Die extrazelluläre Matrix (EZM) dient als Gerüst für Gewebe, sowie als Reservoir für 

Wachstumsfaktoren und reguliert Signalwirkungen durch die Interaktion mit 

spezifischen Rezeptoren. Diese Vielzahl an Funktionen macht sie zu einem 

wesentlichen Regulierer von Organentwicklung und –erhalt. Die Ablagerung und 

Umgestaltung der EZM in eine konkrete Struktur ist ein zell-abhängiger Prozess, der 

Integrin Adhäsionsrezeptoren und die Generierung von Zellkräften benötigt. 

Allerdings ist es unklar, wie Integrine die erforderliche Kraft für die EZM 

Umgestaltung übertragen. Des Weiteren ist die Rolle der EZM in der Regulation von 

Zell-Schicksalen in vivo nicht komplett verstanden. Integrin-linked Kinase (ILK) ist 

ein entscheidendes Adapterprotein, dass an die zytoplasmatischen Anteile der β1- und 

β3-Integrine bindet und diese mit dem Aktin Zytoskelett verbindet. Das Ziel dieser 

Studie war es, die Funktion von ILK bezüglich seiner Rolle in der EZM 

Umgestaltung und in der Regulation von Stammzell (SZ)-Schicksalen zu untersuchen. 

Durch in vitro Experimente konnte gezeigt werden, dass ILK für die Generierung der 

Zellkraft, der Reifung von Zell-Matrix Adhäsionen und die darauffolgende 

Umgestaltung einer Fibronektin Matrix notwendig ist. Durch den Gebrauch von 

unterschiedlichen epidermalen ILK-defizienten Mausmodellen konnte ferner gezeigt 

werden, dass ILK das Schicksal von SZ im Haarfollikel (HF) reguliert. Die Deletion 

von ILK führte zu einem Verlust von HFSZ aufgrund von veränderter Aktivierung 

und erhöhter Differenzierung. Des Weiteren konnte festgestellt werden, dass ILK die 

präzise Zusammensetzung der Basalmembran (BM) der SZ Nische regelt. Der inverse 

Gradient aus Laminin-(LN) 511 und LN-332 in der Haut von Kontrollmäusen war in 

ILK-defizienten Mäusen nicht vorzufinden. Daraus folgte, dass die Signalwege Wnt 

und Tgf-β, die durch LN-511 und LN-332 reguliert werden, missreguliert waren, was 



 

zu einer veränderten Aktivierung von SZ führte. Durch die Verwendung einer 

Wildtyp-EZM konnten die Signalwege in ILK-defizienten Keratinozyten wieder auf 

Kontrollniveau zurückgesetzt werden. Die veränderte Aktivierung hatte zur Folge, 

dass replikativer Stress entstand, der zur Anhäufung von DNA Schädigung führte, 

wodurch die ILK-defizienten Mäuse anfälliger für Haut Karzinogenese waren. 

Zusammenfassend hat die Studie eine entscheidende Rolle von ILK in der EZM 

Umgestaltung ermittelt und hebt die Wichtigkeit der gegenseitigen Zell-Matrix 

Kommunikation im Zusammenhang mit Zell-Schicksalsentscheidungen und 

Gewebehomöostase hervor. 



Introduction

1 Introduction 

Tissues in our body are organized into complex multicellular structures. Their 

formation and maintenance is determined by cellular interactions governed by cell-

cell and cell-matrix adhesions. Interactions between cells and their environment not 

only provide the tissue their shape and proper architecture, but they also regulate fate 

decisions of individual cells. Cell-matrix interactions have the potential to generate 

signals that regulate proliferation, differentiation, and migration, which is essential to 

ensure coordinated growth during development and tissue homeostasis (Daley and 

Yamada, 2013). Cells in turn actively remodel the extracellular matrix (ECM) thereby 

engaging in dynamic crosstalk with their environment. Most adult tissues contain 

stem cells (SCs) that provide the tissue the capability to regenerate. The ability to 

mobilize SCs upon demand, and on the other hand to maintain a stable pool of SCs 

throughout the lifetime of an individual, requires the tight regulation of SC quiescence 

and activation (Gattazzo et al., 2014; Hsu and Fuchs, 2012; Hsu et al., 2014; Scadden, 

2006). In this respect it is critical to understand how cell-ECM interactions are able to 

regulate SC fate. 

 

1.1 The extracellular matrix 

The ECM is a complex non-cellular network present within tissues. It serves as a 

physical scaffold and as a regulator of intercellular communication. The ECM is 

mainly composed of fibrous proteins and proteoglycans, which determine the 

biochemical and mechanical properties of the tissue. The ECM also provides an 

anchoring platform for cells and serves as a reservoir for growth factors. Therefore 

the composition and organization of the ECM and ECM-associated proteins is a 
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critical determinant of cellular fate during development, homeostasis and disease 

(Frantz et al., 2010; Gattazzo et al., 2014; Watt and Fujiwara, 2011). The basement 

membrane (BM) is a specialized type of ECM and unique to metazoans (Breitkreutz 

et al., 2013; LeBleu et al., 2007). The following chapters will introduce the main 

components of the ECM and BMs and highlight the constituents relevant for this 

thesis. 

 

1.1.1 Collagens 

Collagens play an important role in structuring and shaping the tissue and determine 

its mechanical properties such as tensile strength or rigidity. The collagen superfamily 

comprises of 28 members that are all characterized by their triple helical structure. 

Three collagen α-chains can form either hetero- or homotrimers resulting in a 

structural triple helix. Collagens are classified into fibril-forming, network-forming, 

microfibrillar, fibril-associated collagens with interrupted triple helix (FACIT) and 

transmembrane collagens (Bruckner, 2010; Kadler et al., 2007; Ricard-Blum, 2011). 

Collagen synthesis is a complex stepwise process. mRNA transcription leads to the 

synthesis of precursor polypeptides (α-chains). Pre-pro-collagen forms in the 

endoplasmatic reticulum by post-translational modifications. It undergoes further 

modifications including glycosylation and prolyl hydroxylation leading to the 

formation of procollagen. Procollagen undergoes its last modifications in the Golgi 

apparatus before it is secreted into the extracellular space. Outer membrane-bound 

collagen peptidases process procollagen into collagen molecules. Lysyl oxidase then 

crosslinks collagen molecules leading to fibril formation. The subsequent interaction 

with other collagens and macromolecules of the ECM defines the specific structure 

and biological activity of the tissue (Gordon and Hahn, 2010). 
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1.1.2 Glycoproteins 

Glycoproteins are proteins that contain covalently bound oligosaccharide chains. 

They are highly abundant in the ECM and comprise of a variety of different 

subgroups with different properties. For instance, LNs, elastic fibers, fibronectin 

(FN), tenascins, thrombospondins and matrilins can be found ubiquitously or in a 

tissue-restricted manner (Naba et al., 2012). LNs will be discussed in the context of 

the BM. Also FN and its assembly will be introduced in the next sections. Finally, 

elastic fibers are of interest as they regulate the bioavailability of certain growth 

factors. 

 

1.1.3 Elastic fibers 

The elastic fiber network consists of fibrillins, fibulins, microfibril-associated 

glycoproteins (MAGPs) and latent Tgf-β-binding proteins (LTBPs) (Ramirez and 

Dietz, 2007). These proteins are especially interesting, as they regulate Tgf-β 

bioavailability. Tgf-β is associated with small latent associated proteins (LAPs) and 

LTBP and together they are secreted as the large latent complex. Binding of the 

growth factor to its receptor is inhibited by LAPs, rendering it inactive. LTBP 

interacts with fibrillin-1 and fibulin 4/5, which then anchor the latent growth factor to 

the ECM. Binding of αv-integrins to LAPs and the subsequent induction of adhesion-

mediated cellular forces lead to the release and activation of the growth factor 

(Munger et al., 1998). Mutations in fibrillin causes Marfan syndrome that is 

associated with increased Tgf-β signaling, providing compelling evidence for the 

importance of ECM-association to confer latency to Tgf-β (Ramirez and Dietz, 2007; 

Ramirez and Sakai, 2010). 
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1.1.4 Fibronectin  

FN is a ubiquitously expressed glycoprotein that is secreted as a dimeric protein. FN 

contains multiple binding domains for protein interactions. It interacts with the cell 

surface by binding to integrins or syndecans, and with other ECM proteins such as 

thrombospondin-1, tenascin-C, fibrillin-1 as well as extracellular enzymes 

(Schwarzbauer and DeSimone, 2011). FN is essential for development and deletion of 

FN in mice leads to embryonic lethality (George et al., 1993). The expression and 

local assembly of FN-containing ECM is crucial for morphogenesis and 

differentiation (Sakai et al., 2003a). Mice with functional null mutations in FN or 

deletion of FN initiate gastrulation, but mutant embryos fail to form mesodermally 

derived tissues such as the notochord and somites. It is suggested that FN acts as a 

guidance cue for ECM remodeling and subsequent organogenesis (George et al., 

1993; Georges-Labouesse et al., 1996b). FN fibrillogenesis is a cell-dependent 

process wherein FN binding to integrins induces integrin clustering and the 

compaction of FN. Upon exertion of cellular forces, FN assembles into fibrils, where 

it undergoes conformational changes and becomes extended, exposing cryptic self-

assembly sites that promote fibrillogenesis (Baneyx et al., 2002; Pankov et al., 2000).  

 

1.1.5 Proteoglycans 

Proteoglycans consist of a core protein and glycosaminoglycan (GAG) chains. 

According to their GAG chains, they can be grouped into proteoglycans containing 

dermatan sulfate, heparan sulfate, chondroitin sulfate and keratin sulfate chains. 

Proteoglycans can be membrane-bound where they can act as co-receptors of growth 

factor receptors or as adhesion receptors. Secreted into the ECM space, they bind to a 

variety of other ECM molecules and regulate morphogenic gradients of growth 
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factors and chemokines (Esko et al., 2009). In light of their function as adhesion 

receptors and regulator of growth factor bioavailability, the group of heparan sulfate 

proteoglycans will be described in more detail. 

 

1.1.6 Heparan sulfate proteoglycans 

Heparan sulfate proteoglycans (HSPGs) contain one to four HS chains that are 

connected to the core protein. HSPG biosynthesis is a stepwise process that is 

initiated by the attachment of xylose to the core protein in the ER. Chain elongation 

occurs in the Golgi apparatus and is mediated by enzymes of the exostoses (EXT) 

family, which link glucuronic acids to N-acetylglucosamines giving rise to repetitive 

polysaccharide chains. Chain modifications such as N-deacetylation and sulfation are 

carried out by various sulfotransferases and epimerases (Bulow and Hobert, 2006). 

Deletion of key enzymes for HSPG synthesis results in embryonic or perinatal 

lethality, highlighting their importance in organogenesis (Fan et al., 2000; Lin et al., 

2000). Syndecans and glypicans are the main membrane-bound HSPGs in epithelial 

cells, whereas perlecan, agrin and collagen XVIII are an integral part of the BM 

(Sarrazin et al., 2011). Syndecan-1 and syndecan-4 can regulate the activation of 

integrins at the cell surface, which then act synergistically to induce cell spreading 

(McQuade et al., 2006; Okina et al., 2009). In addition, HSPGs have been shown to 

have an essential role in regulating growth factor signaling. Morphogens like Wnts or 

Hedgehogs are transferred from one HSPG to the next along a path that is defined by 

the interacting ligands, thereby restricting diffusion (Yan and Lin, 2009). Cell surface 

HSPGs such as glypicans can act on morphogens by capturing those and presenting 

them to their appropriate receptors (Fico et al., 2011). 
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1.2 The basement membrane 

BMs are thin, specialized layers of ECM that serve as an extension of the plasma 

membrane, protecting tissues from mechanical stress and providing an interactive 

interface between cells and their local environment by mediating signals between 

these compartments. The composition of BMs is specific to each developmental stage 

and tissue type. However, all BMs consist of at least one type of laminin (LN), 

nidogen, HSPGs such as perlecan or agrin and type IV collagen (Murray and Edgar, 

2000; Yurchenco, 2011). On a structural level two distinct layers are present - the 

electron-dense lamina densa that is separated from the plasma membrane by the 

electron-lucent lamina lucida (McMillan et al., 2003). The assembly of the BM is a 

stepwise process and depends on binding of LNs to LN-binding competent cell 

surfaces. Cell surface anchorage of LNs and their interconnection facilitates the 

accumulation of nidogen, type IV collagen and perlecan, building a nascent scaffold 

that further matures by proteolytic processing of LNs, crosslinking of type IV 

collagens and rearrangement of cell surface receptors to strengthen the binding of the 

cell to the BM (Colognato et al., 1999; McKee et al., 2009).  

 

1.2.1 Laminins 

LNs are heterotrimeric proteins consisting one of five α, one of four β and one of 

three γ subunits. 16 different heterotrimers have been identified. Their distribution is 

tissue-specific and depends additionally on the developmental or pathophysiological 

state of the tissue (Aumailley et al., 2005). LN trimers assemble intracellularly. The β- 

and γ subunits form and are retained in the cytoplasm until trimerization with the α-

subunit drives their secretion (Yurchenco et al., 1997). At a structural level, all LNs 

show an arrangement of their chains into a cross-shape pattern with a central α-
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subunit surrounded by the β- and γ subunits. They differ from each other by the basis 

of their short arm composition, the binding affinity in the LN globular (LG) domain 

of the α subunit as well as their posttranslational proteolytic processing. In general, 

LNs interact via their C-terminal ends of the α-subunit with cell surface receptors, 

thereby mediating biochemical and mechanical cues between intra- and extracellular 

networks. Through the N-terminus, LNs interact with other ECM proteins to facilitate 

BM assembly and stability (Figure 1.2.1) (Aumailley, 2013). 

 

Figure 1.2.1. Schematic representation of the BM. During BM assembly, LNs bind 

to a binding-competent surface and form a network with interacting HSPGs 

(perlecan, agrin). An assembled network of type IV collagen interacts with LN-

associated nidogen and HSPGs leading to BM formation (Hohenester and Yurchenco, 

2013). 
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1.3 The integrin receptor family 

The search for molecules by which cells interact with the ECM protein FN led to the 

discovery of integrins that were named according to their structure: integral 

membrane protein complex linking the ECM to the cytoskeleton (Tamkun et al., 

1986). Integrins are the major ECM receptors in all metazoans. Accordingly, their 

main task is to mediate the interactions of cells with the ECM. In addition, they are 

tightly connected to the actin and intermediate filament cytoskeletons, allowing them 

to generate traction forces. Finally, they are able to assemble large intracellular 

signaling platforms termed focal adhesions (FAs) that activate multiple signaling 

cascades. Together these three features make integrins essential for most cellular 

processes (Legate et al., 2009; Wickström et al., 2011). 

 

1.3.1 Integrin structure and activation 

Integrins are a family of heterodimeric type I transmembrane proteins comprising of 

18 α and 8 β subunits that assemble non-covalently into 24 distinct heterodimers 

(Hynes, 2002). The specific subunit combination determines their binding affinity and 

ligand specificity. Each integrin α and β subunit consists of a large (~750-1000 amino 

acids) extracellular ectodomain, a short (~20 amino acids) membrane-spanning 

domain and a short (10-70 amino acids) flexible cytoplasmic domain (Campbell and 

Humphries, 2011). The α subunit ectodomain comprises 4-5 extracellular domains: a 

β-propeller, a thigh, two calf domains, and 9 out of 18 α subunits contain an α-I 

domain. The β-propeller with its Ca2+ binding sites (metal ion-dependent adhesion 

site; MIDAS) and the α-I domain are important to define ligand-binding specificity 

(Larson et al., 1989; Oxvig and Springer, 1998). The β subunit ectodomain comprises 

seven domains: a β-tail domain connected to four epidermal growth factor (EGF) 
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domains, a plexin-semaphorin-integrin (PSI) domain and a hybrid domain connected 

to the β-I domain, which contains ion-binding sites for Mn2+ and Mg2+ (ADMIDAS; 

adjacent to metal-ion dependent adhesion site) and SyMBS (synergistic metal ion 

binding site) for Ca2+-binding, involved in fine-tuning ligand-binding affinities 

(Campbell and Humphries, 2011; Hynes, 2002; Zhu et al., 2008). 

Integrins receptors can switch between a bent and an extended conformation. The 

bent confirmation with closed headpieces of α and β subunits represents an “inactive” 

state with very low ligand binding affinity. Upon ligand binding, the head domains 

undergo conformational changes and “open” as the integrin extracellular domain 

extends. In this primed state, the cytoplasmic adaptor protein talin binds to the β-

integrin cytoplasmic domain and enables further recruitment of integrin co-activators. 

The stepwise recruitment of co-activators results in a fully “active” conformation with 

high ligand binding affinity (Zhu et al., 2008). 

Integrins can be classified according to their ligand-binding and tissue-specific 

expression patterns (Figure 1.3.1). One group comprises integrins that bind to RGD 

(arginine, glycine, aspartate) motif-containing matrix proteins, such as FN. These 

contain the family of αv-integrins, platelet-binding αIIbβ3 integrin and α5β1 and 

α8β1. A second group consists of integrins α4β1 and α9β1 that can bind to RGD and 

additionally recognize VCAM (vascular cell adhesion molecule), a member of the Ig-

superfamily counter receptors. Another class of integrin heterodimers interacts with 

LNs (α3β1, α6β1, α7β1 and intermediate filament binding integrin α6β4). The fourth 

class of β1-containing integrins forms dimers with α1-, α2-, α10- or α11-integrin and 

binds to collagens. The fifth class of β2-containing integrins and αEβ7 integrin are 

leukocyte-specific integrin receptors involved in cell-cell adhesion (Humphries et al., 

2006; Hynes, 2002). 
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Figure 1.3.1. The integrin receptor family. Based on their recognition specificity 

integrin heterodimers can be subdivided into different groups (Hynes, 2002). 

 

Knockout studies in mice have revealed the importance of different integrin subunits 

and their tissue-specific functions. Defects caused by the loss of integrins range from 

embryonic lethality and perinatal lethality to no obvious or very mild phenotypes. 

Deletion of integrin subunits α4, α5 or β1 in mice leads to embryonic lethality caused 

by severe impairment of ECM remodeling during embryogenesis (Fässler et al., 1995; 

Stephens et al., 1995; Yang et al., 1993, 1995). Perinatal lethality is found in mice 

with deletions for integrins that have tissue-restricted expression or that recognize 

non-ubiquitously expressed molecules such as specific LNs or collagens (Georges-

Labouesse et al., 1996a). Collagen receptors have overlapping ligand-binding 

specificity, so that knockout of one α1-, α2-, α10- or α11- integrin subunit in mice is 

compensated by another α-subunit and causes any drastic phenotype (Bouvard et al., 

2013; Hynes, 2002). 
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1.3.2 Integrin signaling 

A hallmark of integrin receptors is their ability to mediate bi-directional signaling. 

“Inside-out” signaling regulates the ligand binding properties of integrins and is 

induced by non-integrin mediated signaling pathways. “Outside-in” signaling 

regulates cellular responses induced by ligand binding to integrin receptors that 

regulate cell spreading, migration and proliferation. Upon ligand binding, integrins 

cluster at the plasma membrane and a large number of integrin-binding proteins are 

recruited to the cytoplasmic tails of β-integrins. Adaptor proteins subsequently initiate 

the link to the actin cytoskeleton, thereby connecting the ECM with the cytoskeleton 

of the cell (Legate et al., 2009; Wickström et al., 2011). 

 

1.3.2.1 Inside-out signaling 

Binding of intracellular proteins to the integrin cytoplasmic tails in response to an 

integrin-independent stimulus is termed inside-out signaling. Integrin-independent 

signals initiate the translocation of talin and kindlin to β-integrin cytoplasmic tails and 

thereby activate integrins. The initial binding of these proteins leads to the subsequent 

recruitment of further adhesion associated proteins, thus enabling the link of integrins 

to the cytoskeleton, increasing the binding affinity towards its ligand (Margadant et 

al., 2011; Wickström et al., 2011). 

 

1.3.2.2 Outside-in signaling 

Binding of integrins to their ECM ligands initiates outside-in signaling. In the first 

step, binding of talin to β-integrin initiates the formation of a link between integrins 

and the actin cytoskeleton. Talin can bind actin directly but it also provides a binding 

platform for vinculin that stabilizes the integrin-actin connection. Recruitment of α-
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actinin to talin and vinculin further strengthens the integrin-cytoskeleton linkage. 

Paxillin is also recruited into early FAs where it can bind to vinculin and integrin-

linked kinase (ILK). ILK together with its binding partners PINCH and parvin is also 

an early component of FAs. ILK might directly bind integrins, whereas parvin 

provides an additional contact to the actin cytoskeleton (Ghatak et al., 2013). In 

addition to direct recruitment, kindlins can also target ILK to integrin-adhesion sites 

(Huet-Calderwood et al., 2014). ILK will be discussed in more detail later in this 

thesis. 

The core FA components subsequently recruit a large number of actin-modulatory 

proteins and signaling molecules allowing actin stress fiber formation, FA maturation, 

and propagation of intracellular signaling cascades (Harburger and Calderwood, 

2009; Legate et al., 2009; Morse et al., 2014). 

Recent mass-spectrometry analyses have identified a large number (200 different) of 

proteins found to be directly or indirectly bound to integrins (Zaidel-Bar et al., 2007). 

An even larger number of direct interactors (~700), including scaffolding and 

regulatory interactors, have been identified as components of integrin adhesions in the 

so-called “adhesome” (Zaidel-Bar and Geiger, 2010). 

 

1.3.3 Focal adhesion maturation 

The assembly and remodeling of integrin adhesion complexes is a highly dynamic 

process that requires the recruitment of adaptor proteins and myosin II-containing 

actin networks to adhesion sites (Vicente-Manzanares and Horwitz, 2011). Upon cell 

attachment, integrins bind to the underlying substrate and focal complexes (FCs), or 

nascent adhesions, assemble at the contact site of the cell with the ECM, the 

lamellipodium. The maturation of small FCs (~100 nm in size) into large FAs (~1 
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µm) is driven by active myosin II that enables further recruitment of adhesion-

associated proteins, such as vinculin or paxillin, along polymerizing actin. The 

integrin-actin cytoskeleton connection is strengthened leading to formation of stress 

fibers, antiparallel myosin II-containing actin bundles. Polymerizing actin creates a 

flow and mature FAs form behind lamellipodium, in the lamella (Vicente-Manzanares 

and Horwitz, 2011; Zamir and Geiger, 2001).  

Fibroblasts adhering to a FN matrix develop a special type of cell-matrix adhesion 

called fibrillar adhesions (FB) (Pankov et al., 2000; Zamir et al., 2000). During FA 

maturation, specific FN-bound integrins, such as α5β1 integrins are segregated along 

the actin cytoskeleton. The subsequent generation of cellular forces and recruitment 

of tensin induces FB formation (Pankov et al., 2000). The cellular force that is applied 

on FN leads to conformational changes and self-assembly, resulting in FN 

fibrillogenesis (Ohashi et al., 2002; Zamir et al., 2000). 

 

1.4 Integrin-linked kinase  

ILK is a central component of β1- and β3-integrin adhesion complexes. It is 

ubiquitously expressed, consists of 452 amino acids and has a molecular weight of 52 

kDa. ILK was originally identified in a yeast two-hybrid screen as a direct binding 

partner of β1-integrin (Hannigan et al., 1996). Due to its sequence homology to other 

protein kinases as well as in vitro observations showing that ILK is capable of 

phosphorylating several substrates including GSK-3β and PKB/AKT and β1-integrin, 

it was initially believed to be a serine/threonine kinase.  
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1.4.1 Protein structure of ILK 

ILK is composed of five N-terminal ankyrin repeat (ANK) domains, followed by a 

pleckstrin homology (PH)-like domain and an N-terminal kinase domain (KD). Each 

of the five ANK domains forms an antiparallel α-helix and together they form a 

superhelical spiral, giving rise to an “ankyrin groove” that serves as the binding 

domain for the LIM domain of PINCH (Chiswell et al., 2008). The PH-like domain of 

ILK is integrated into the P-loop structure of the ILK-KD and is not capable of 

binding the second messenger PIP3. A short 14-amino acid long unstructured linker 

domain connects the N-terminal ANK repeats with the C-terminal KD. The KD of 

ILK contains the binding domain for the calponin homology 2 (CH2) domain of α-

parvin (Fukuda et al., 2009; Stiegler et al., 2013). Despite the initial in vitro 

observations of weak kinase activity, sequence and crystal structure analyses of the 

ILK-KD demonstrated the lack of catalytic activity and validated ILK as a 

pseudokinase. During phosphortransfer, the DFG (Asp-Phe-Gly) motif conserved in 

most eukaryotic kinases mediates the alignment of the γ-phosphate, but in ILK this 

motif is replaced by DVK (Asp-Val-Lys). Phosphotransfer also requires the proton 

acceptance from the hydroxyl group catalyzed by the aspartate residue in the HRD 

(His-Arg-Asp) motif that is also lacking in ILK (Wickström et al., 2010). The 

presence of both DFG and HRD motif are required to fulfill kinase activity (Boudeau 

et al., 2006). 

The crystal structure of the ILK-KD bound to the CH2 domain of α-parvin showed 

that ILK-KD folds into a typical bilobial kinase structure but has a dramatically 

different catalytic core compared to known kinases. The P-loop structure that is 

essential for ATP-binding contains a non-flexible motif in ILK, which is unable to 

receive non-transferable phosphates of ATP. Due to the DVK motif the γ-phosphate is 
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abnormally aligned and lies far away from the putative catalytic site. Hence, bound 

ATP remains in an unhydrolyzed state (Figure 1.4.1) (Fukuda et al., 2009). Taken 

together, both sequence as well as structural analysis of ILK showed that ILK has no 

kinase activity. It was further shown that the observed activity observed in vitro was 

due to contaminants of the purified protein (Fukuda et al., 2009). 

 

Figure 1.4.1. Structure of the ILK-KD. The ILK-KD folds into a kinase-typical 

bilobial structure. Conformational differences to known kinases are the DVK motif 

that replaces the DFG and, the untypical orientation of the non-hydrolyzed ATP with 

its γ-phosphate far away from the catalytic loop and forming a salt bridge with DVK. 

Additionally, ILK-KD contains just one Mg2+, instead of two in typical kinases, and 

the activation segment has a rigid conformation (Ghatak et al., 2013). 

 

1.4.2 ILK is a pseudokinase that functions as an essential adaptor protein 

Genetic studies further supported the role of ILK as a pseudokinase with adaptor 

function. The deletion of ILK in Drosophila melanogaster leads to embryonic 

lethality with failure in muscle attachment. Expression of ILK containing a mutation 

in the kinase domain (E359K) (corresponding to human kinase dead ILK), in these 

mutant flies is able to completely rescue the phenotype, indicating that ILK fulfills its 
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function independent of kinase activity (Zervas et al., 2001). Similarly, the knockout 

of pat-4 (paralyzed, arrested elongation at two-fold; C. elegans homolog of ILK) in 

Caenorhabditis elegans leads to the inability of actin and myosin filament recruitment 

in embryonic muscle cells and the phenotype is rescued by the expression of a kinase 

dead ILK (Mackinnon et al., 2002). The constitutive deletion of ILK in mice is 

embryonic lethal (Sakai et al., 2003b). ILK-deficient mouse embryos die due to peri-

implantation defects, and they fail to form a polarized epiblast due to impaired F-actin 

rearrangement and BM remodeling (Sakai et al., 2003b).  

Knock-in mice that carry either a R211A mutation within the PH-domain leading to a 

kinase-dead ILK, or a mutations within the putative autophosphorylation site leading 

to a kinase-dead (S343A) or hyperactive (S343D) ILK are viable and healthy with no 

differences in phosphorylation of AKT or GSK-3β (Lange et al., 2009), supporting 

the kinase-independent function of ILK. Knock-in mice with mutations in the ATP-

binding site, K220A or K220M, die shortly after birth due to renal dysgenesis (Lange 

et al., 2009). This mutation in ILK interferes with its ability to bind to α-parvin, 

demonstrating that ILK-α-parvin interaction is crucial for the function of ILK (Lange 

et al., 2009). α-parvin knockout mice develop similar kidney phenotype as that 

observed in ILK K220A/M mutants (Montanez et al., 2009), which suggests that ILK 

acts via α-parvin to link integrins to the actin cytoskeleton at least during kidney 

development. Together, all these studies support the pseudokinase and adapter 

function of ILK. 

1.4.3 The ILK-PINCH-parvin complex 

ILK forms a trimolecular protein complex with two other adaptors, PINCH and parvin 

(Figure 1.4.3). PINCH binds the ANK repeats and regulates actin dynamics by 

binding other downstream signaling proteins such as Ras suppressor protein 1 
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(RSU1), which activates the small GTPase Rac1, essential for cell spreading (Ito et 

al., 2010). Two PINCH isoforms are described in mammals. Both, PINCH1 and 

PINCH2, contain five LIM domains and a nuclear export signal. PINCH binds to ILK 

via its first LIM domain to the “ankyrin groove” of ILK (Chiswell et al., 2008; Yang 

et al., 2009).  

As discussed above, parvin binds the KD of ILK. Three parvin isoforms exists in 

mammals. While α-parvin is ubiquitously expressed, β-parvin is expressed in skeletal 

muscles and in the heart and γ-parvin expression is restricted to the hematopoietic 

system (Nikolopoulos and Turner, 2000; Olski et al., 2001; Tu et al., 2001; Yamaji et 

al., 2001). Parvins consist of a flexible N-terminal polypeptide chain followed by two 

CH domains at the C-terminus. The second CH domain binds to the KD domain of 

ILK (Fukuda et al., 2009; Tu et al., 2001). The IPP complex is presumed to assemble 

in the cytoplasm and is then recruited to integrin-containing adhesion sites (Zhang et 

al., 2002).  
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Figure 1.4.3 Schematic representation of the IPP complex. ILK consists of an N-

terminal ANK domain and a C-terminal KD. The interaction with parvin via its CH2 

domain with the ILK-KD facilitates the connection of integrins to the actin 

cytoskeleton. Pinch binds with its LIM1 domain to the “ankyrin groove” of ILK. ILK 

might bind β integrins directly, although also indirect binding has been reported 

(Ghatak et al., 2013). 

 

1.4.4 ILK regulates the actin cytoskeleton 

Tissue-specific ILK knockout mouse models have been generated to study the 

function of ILK. Mice with a chondrocyte-specific deletion of ILK show 

chondrodysplasia with abnormal chondrocyte shape, adhesion defects due to reduced 

FAs and actin stress fiber formation as well as decreased proliferation (Grashoff et al., 

2003). Loss of ILK in skeletal muscle of mice leads to progressive muscle dystrophy 

with muscle detachment from the BM and subsequent development of fibrosis 

(Gheyara et al., 2007; Wang et al., 2008). Tissue-specific deletions in the kidney (El-
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Aouni et al., 2006), liver (Gkretsi et al., 2007), immune system (Liu et al., 2005), 

central nervous system (Belvindrah et al., 2006; Mills et al., 2006; Niewmierzycka et 

al., 2005) or cardiovascular system (Friedrich et al., 2004) are reported. In most cases, 

deletion of ILK leads to disorganization of the actin cytoskeleton and subsequently 

defects in cell shape and migration. Collectively these studies indicate that ILK is an 

essential regulator of actin reorganization, linking the cytoskeleton to FA sites. In 

addition, ILK has important functions in ECM remodeling, and, depending on the 

tissue type, it is often required for proliferation, migration and/or polarity.  

 

1.5 Mammalian skin 

Mammalian skin is a multilayered organ that covers the surface of the entire body. It 

serves as a barrier to protect the body from internal water loss and external insults 

caused by toxins, pathogens or temperature changes. The skin is comprised of the 

outer epithelial compartment - the epidermis, the underlying mesenchymal 

compartment - the dermis, and an adipose subcutis underneath. A BM separates 

epidermis and dermis.  

In order to fulfill its function as a barrier, the epidermis undergoes constant self-

renewing. Multiple distinct SC populations within the epidermis fuel the regeneration 

under homeostatic conditions and upon wound repair. 

1.5.1 Epidermal architecture and homeostasis 

The epidermis is a stratified epithelium composed mainly of keratinocytes. It can be 

separated into pilosebaceous units comprising the hair follicle (HF), the sebaceaous 

gland (SG) and the interfollicular epidermis (IFE) (Figure 1.5.1). Keratinocytes within 

the basal layer of the epidermis are in direct contact with the basement membrane 
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(BM) and can proliferate and give rise to differentiating daughter cells. During the 

process of stratification these differentiating cells translocate from the basal layer 

upwards into the suprabasal layers. While entering the terminal differentiation 

program, keratinocytes downregulate the expression of integrins and become post-

mitotic. This stepwise process enables the formation of a multilayered epidermis 

consisting of the suprabasal spinous and granular layers and the stratum corneum. 

From here the terminally differentiated corneocytes are finally shed from the 

epidermal surface. Basal and suprabasal keratinocytes can be discriminated by their 

differential expression of keratins. While basal keratinocytes are marked by the 

expression of keratin 5 (K5) and K14 (Moll et al., 1982), suprabasal keratinocytes 

express K10 and K1 (Winter and Schweizer, 1983). Cells within the granular layer 

and stratum corneum are marked by their expression of loricrin and filaggrin, 

respectively (Steinert and Marekov, 1995).  
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Figure 1.5.1. The architecture of the skin and epidermis. The skin can be subdivided 

into epidermis and dermis, which are separated by the BM. The pilosebaceous unit 

consists of a HF, SG and the surrounding IFE. Proliferating cells are located in the 

basal layer of the epidermis, adjacent to the BM. The differentiated suprabasal layers 

can be subdivided into the spinous and granular layers and the stratum corneum 

(Jones and Simons, 2008) 

 

How epidermal multilayering and stratification is achieved is still not completely 

clear. Four different models to describe this process have been proposed: asymmetric 

cell division, delamination, epidermal proliferative units and a single-cell progenitor 

model. The asymmetric cell division model describes early embryonic skin 

development, where a single-layered epidermis expands first by symmetric cell 

division. Asymmetric cell divisions drive the onset of stratification, wherein the 

mitotic spindle orientates perpendicular to the BM and the resulting daughter cell 

directly translocates into the developing suprabasal layer (Lechler and Fuchs, 2005). 

However, it is not clear whether this occurs in the adult epidermis, as symmetric and 
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asymmetric cell divisions are found to occur randomly (Clayton et al., 2007). The 

delamination model describes a process in which basal keratinocytes weaken their 

adhesion to the BM and are subsequently pushed into the suprabasal layer by cellular 

contractions of neighboring keratinocytes (Vaezi et al., 2002; Watt and Green, 1982). 

The epidermal proliferative unit model (EPU) suggests that slow cycling basal layer 

keratinocytes give rise to transit-amplifying cells (TACs) that have a limited capacity 

of cell divisions and that are maintained in clusters within the epidermis (Potten, 

1981). The single-cell progenitor model has challenged this idea. By tracing the fate 

of epidermal progenitors in vivo it was demonstrated that a single population of 

progenitors that undergoes stochastic cell division to provide daughters with 

progenitor or differentiated fate, is capable of maintaining epidermal homeostasis 

(Clayton et al., 2007; Jones et al., 2007). The asymmetric division model and the EPU 

model would require the presence of a distinct, bona fide epidermal SCs population. 

However, such cells have not yet been clearly identified.  

 

1.5.2 Hair follicle morphogenesis and cycling 

HF morphogenesis is a tightly controlled process that relies on the precise signaling 

crosstalk between epidermis and the underlying mesoderm. HF morphogenesis starts 

at embryonic day (E) 14, when a dermal condensate of specialized fibroblasts forms 

in the dermis adjacent to the yet undifferentiated epidermis. Inductive epidermal 

signals act on the dermal condensate, which subsequently signals back to the 

epidermis leading to placode formation. A complex signaling network of activating 

and inhibitory signals secreted and received by the placodes and the dermal 

condensate allows further HF morhogenesis. In addition, it promotes neighboring 

cells to adopt IFE fate resulting in coordinated HF spacing (Sennett and Rendl, 2012). 
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By E16, the placode further develops into a hair germ (HG) and the dermal 

condensate differentiates into the dermal papilla (DP). During organogenesis the HG 

grows downwards and forms a peg that subsequently engulfs the dermal papilla at 

around E18. HF keratinocytes that are in direct contact with the DP become hair 

matrix cells. Hair matrix cells proliferate and move upwards to differentiate into six 

cylindrical layers of inner root sheath (IRS) and the hair shaft (HS). The outer layer of 

the HF, the outer root shealth (ORS) forms a continuum with the IFE and is 

surrounded by the BM (Botchkarev and Paus, 2003; Schmidt-Ullrich and Paus, 2005; 

Schneider et al., 2009).  

There are different kinds of HFs in murine skin: guard hairs, awl/auchenne hairs and 

zig-zag hairs, which are formed in 3 specific waves of HF development during 

embryogenesis. After the third HF placode wave at E18 that gives rise to zig-zag hairs 

that represent the majority of the adult mouse hair coat (Schlake, 2007), HF 

morphogenesis continues with the full downgrowth of all three hair types until 

postnatal day (P) 14. Fully formed HFs undergo the first regression phase (catagen) 

between P17 and P19 followed by the first resting phase (telogen) around P21 

(Cotsarelis et al., 1990). HF growth and regression appears cyclic and synchronous 

during the first two postnatal hair cycles. After this the HF continue cycling 

asynchronously (Blanpain and Fuchs, 2006).  

 

1.5.3 Hair follicle stem cells and cycling 

Hair follicle stem cells (HFSCs) drive HF cycling. HFSCs identity is first established 

by distinct transcription factors. Sox9 (Nowak et al., 2008; Vidal et al., 2005) 

maintains HFSC identity and specifies the ORS lineage. The transcription factor 

nuclear factor of activated T cells c1 (Nfatc1) regulates SC quiescence in HFSCs 
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(Horsley et al., 2008), and Lhx2 balances HFSC maintenance and activation (Rhee et 

al., 2006). At the end of HF morphogenesis, the quiescent HFSC niche, the bulge, is 

formed below the SG at the base of the non-cycling part of the HF (Cotsarelis et al., 

1990). It contains SCs that are marked by their expression of keratins (K15, K5, K14), 

the cell surface markers CD34 and Leucine-rich repeat-containing G protein-coupled 

receptor 5 (Lgr5), integrins (α6β4 and α3β1) and the transcription factors mentioned 

above.  

To initiate the hair cycle and to start cell proliferation, HFSCs need to become 

activated. SC activation relies on the regulation of two critical signaling pathways: 

activation of Wnt pathway and inhibition of Bone Morphogenetic Proteins (BMPs). 

The Transforming Growth Factor β (Tgf-β) pathway plays an important role in 

initiating this regulation (Figure 1.5.3) (Blanpain and Fuchs, 2006).  

 

Signaling during telogen-anagen transition 

Tgf-β ligands (Tgf-β 1, 2 and 3) form dimers that bind to heterodimeric receptor 

complexes of serine/threonine kinases consisting of type I and type II receptor 

subunits. Upon ligand binding, the type II receptor phosphorylates and activates the 

type I receptor, initiating a Smad-dependent signaling cascade that regulates 

transcriptional activity (Dong et al., 2002). Tgf-β signals through the receptor-

regulated Smad2 and Smad3 (R-Smads) (Owens et al., 2008).  

During the telogen-anagen transition, Tgf-β2 is produced and secreted by the DP that 

acts on epithelial Tgf-β2 receptors. This leads to the induction of transmembrane 

protein with EGF-like and two follistatin-like domains 1 (TMEFF1) that mediates the 

inhibition of the BMP pathway (Oshimori and Fuchs, 2012).  
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Furthermore, the DP secretes Wnt ligands and the BMP inhibitor noggin, which 

activates TACs in the hair matrix (Botchkarev et al., 2001; Greco et al., 2009). These 

TACs, characterized by P-cadherin expression (Muller-Rover et al., 1999), activate 

the Wnt/β-catenin pathway leading to cell proliferation and formation of the new hair 

(Deschene et al., 2014; Lowry et al., 2005). Wnt ligands bind to the frizzled receptor 

leading to the inactivation of a downstream destruction complex, thus enabling β-

catenin to accumulate in the cytosol and to enter the nucleus to activate transcription 

of Wnt target genes (Clevers and Nusse, 2012). The epidermal deletion of β-catenin 

or its downstream mediator Lef-1 leads to hair loss (Huelsken et al., 2001; van 

Genderen et al., 1994). β-catenin is the master regulator of HF differentiation. In the 

absence of β-catenin, HFSCs fail to differentiate into follicular keratinocytes and 

adopt epidermal fate (Huelsken et al., 2001). Additionally, epidermal overexpression 

of β-catenin and thus a constitutively activated Wnt pathway, leads to de novo HF 

formation in these transgenic mice (Gat et al., 1998).  

After dividing, HFSCs exit the bulge and migrate downwards along the ORS, where 

they further divide and expand the newly forming hair (Rompolas et al., 2013). The 

DP is pushed downward during this process and as it becomes more distant, the upper 

ORS becomes quiescent and lower ORS cells convert into TACs within the matrix 

(Rompolas et al., 2013). SC progeny or TACs that have not fully differentiated into a 

HF lineage but have migrated out of the bulge can return to their niche and serve as 

functional SCs during the next hair cycle (Hsu et al., 2014; Hsu et al., 2011). 

Lgr5-positive HFSCs can be found in the lower part of the bulge and in the HG 

during telogen (Jaks et al., 2008). Upon anagen induction, these cells contribute to the 

lower ORS and replenish the pool of differentiating matrix cells. A proportion of 

these cells actively cycles and does not differentiate. Cells from the HG of the anagen 
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HF return to the HF bulge in the following telogen and provide the SC source for the 

next hair cycle. A small amount of Lgr5-progeny is additionally able to repopulate the 

HF isthmus (Jaks et al., 2008). 

 

Catagen 

When matrix cells have exhausted their proliferative potential, the onset of catagen is 

initiated (Figure 1.5.3). Catagen is marked by a decrease in keratinocyte proliferation 

and the lower, non-permanent part of the HF degenerates by apoptosis. The DP 

remains attached to the BM at the HF tip while entering catagen and telogen. 

By the onset of catagen, Wnt/β-catenin signaling in the HF is downregulated and 

apoptosis is initiated. Epidermal Growth Factor (EGF) receptor signaling (Mak and 

Chan, 2003; Murillas et al., 1995) and Tgf-β1 (Foitzik et al., 2000) have been shown 

to be key players during this process. However, it is not clear what initiates this 

cascade. 

 

Telogen 

After the regression phase HFSC enter the quiescent telogen state (Figure 1.5.3). This 

phase is characterized by high BMP pathway activity. BMPs belong to the Tgf-β 

superfamily and upon binding to their receptor they signal through R-Smads, Smad1, 

-5 and -8 (Owens et al., 2008). Mice with an inducible epidermis or HFSC-specific 

knockout of BMP receptor-1 have a defect in HFSC quiescence. The BMP receptor-

deficient HFSCs show molecular characteristics of HG cells and they differentiate 

prematurely (Kandyba et al., 2013; Kobielak et al., 2007). Long-range BMPs, which 

are produced and secreted in cycles by the subcutaneous fat tissue, have also been 
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implicated in the regulation of SC quiescence (Plikus et al., 2008). After the quiescent 

phase, HFSCs become activated again and undergo the next round of cycle. 

Figure 1.5.3. The hair cycle. The HF undergoes cyclic bouts of hair growth and 

regression. A pool of bulge HFSCs drives HF cyling. HFSCs are activated by the 

upregulation of Wnt and Tgf-β signaling pathways upon anagen entry and 

downregulated when the HF regresses. Upregulation of the BMP pathway is required 

to establish and maintain SC quiescence during telogen (adapted from Hsu and 

Fuchs, 2014). 

 

1.5.4 Hair follicle stem cell niche 

The term “niche” was first introduced in 1978 by Schofield as he described the 

functionality of hematopoietic cells in a local environment (Schofield, 1978). This 

local environment consisting of neighboring cells and ECM regulates SC behavior 

and is essential for their function (Fujiwara et al., 2011; Hsu and Fuchs, 2012; 

Scadden, 2006). SCs in the HF are localized within their distinct niches. Despite their 

intrinsic chronobiology that determines HF cycling in a temporal manner, the HFSC 

also participates in the regulation of SC activation and quiescence (Paus and Foitzik, 
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2004). Components of the HFSC niche consist of their local BM microenvironment, 

the DP as part of the dermal niche, and the subcutaneous fat tissue as part of the 

macroenvironment (Hsu and Fuchs, 2012). The cooperation of all niche components 

ensures proper HFSC function. 

The BM is a central component of the HFSC niche. The BM provides a specific 

adhesion platform and determines growth factor bioavailability, thereby regulating SC 

function (Kerever et al., 2007; Nistala et al., 2010). Profiling of adult K15-positive 

HFSCs revealed that a large number of ECM genes are differentially expressed by 

bulge SCs compared to other basal keratinocytes (Morris et al., 2004). Furthermore, 

transcription profiling of genes that determine stemness identified β1-integrin and α6-

integrin to be upregulated in SCs compared with their progeny (Ivanova et al., 2002; 

Ramalho-Santos et al., 2002). Studies on epidermal β1-integrin hypomorphic mice 

further showed that keratinocytes expressing β1-integrins in vivo expanded more than 

β1-low or β1-null cells (Piwko-Czuchra et al., 2009), indicating that β1 integrin 

expression is essential for epidermal SC function.  

 

1.6 The skin basement membrane 

The epidermis and dermis are physically separated by a BM. It serves as an anchoring 

platform for keratinocytes, stabilizes the tissue and controls the release and diffusion 

of growth factors. Stable anchorage of the epidermis to the BM is mediated by 

hemidesmosomes (see below). As all BMs, the skin BM consists of LNs, type IV 

collagen, glycoproteins, nidogen and perlecan (Behrens et al., 2012; Mokkapati et al., 

2008). The BM is anchored to the underlying dermis via type VII collagen, produced 

by fibroblasts (Breitkreutz et al., 2013).  
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1.6.1 Laminins in the skin 

Both keratinocytes as well as fibroblasts express and deposit LNs into the epidermal 

BM (Marinkovich et al., 1993). The most relevant LNs in the BM of the skin are LN-

332 and LN-511. Mice lacking the LN-α5 (LAMA5) chain die by E16.5 due to severe 

defects including syndactyly, failure in neural tube closure and placentopathy (Miner 

et al., 1998). To study the role of LN-511 in hair development, skin from E16.5 LN-

α5 deficient mice was transplanted onto nude mice, revealing a failure in HF 

organogenesis resulting in HF regression (Li et al., 2003). Further analysis showed 

that epidermis-derived LN-511 is important for the crosstalk with the DP, and 

consequently for HF downgrowth (DeRouen et al., 2010; Gao et al., 2008). The 

expression of LN-332 during HF morphogenesis occurs at later stages compared to 

LN-511 (Imanishi et al., 2014). Deletion of the LN-α3 gene (LAMA3) results in 

neonatal lethality (Ryan et al., 1999). Deletions or mutations in LAMA3, LAMB3 and 

LAMC2 genes encoding for the chains of LN-332 lead to perturbation of LN-332 

function in humans. Lack of functional LN-332 leads to a skin blistering disease 

termed junctional epidermolysis bullosa, characterized by disruption of the BM, 

diminished dermal-epidermal adhesion, and subsequent blister formation (Bruckner-

Tuderman and Has, 2012).  

Expression analyses of LN-332 and LN-551 during HF cycling showed that when 

anagen is induced by hair plucking, the expression of LN-511 remains constant 

whereas LN-332 expression is transiently downregulated during the peak phase of 

anagen (Sugawara et al., 2007). Furthermore, adding recombinant LN-511 to HF 

cultures in vitro promoted hair growth, whereas adding recombinant LN-332 

suppressed this (Sugawara et al., 2007), supporting the hair growth-promoting role of 

LN-511. The opposing effect of the two LNs was further analyzed during catagen. At 
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this stage LN-332 levels were unchanged whereas LN-511 expression was gradually 

downregulated (Tateishi et al., 2010). Application of recombinant LN-332 had no 

effect on catagen progression, whereas LN-511 caused a prolonged catagen (Tateishi 

et al., 2010). A model that emerges from these studies is that LN-511 is highly 

expressed during the growth phase of the HF and it has a growth-promoting effect, 

whereas LN-332 suppresses HF growth and is subsequently involved in HF 

regression. 

 

1.6.2 Laminins and their integrin receptors 

Both LN-332 and LN-511 bind to α3β1 integrins, although LN-511 binds with a 

higher affinity to α3β1 integrin compared to LN-332 (Nishiuchi et al., 2003). LN-332 

also binds to the hemidesmosome-forming integrin α6β4. Besides α6β4 integrin, skin 

hemidesmosomes contain type XVII collagen and tetraspanin CD151, and they are 

connected to intermediate filament network inside the cell. Disturbances in 

hemidesmosome formation lead to skin blistering due to BM instability (Wickström et 

al., 2011). 

Proteolytical processing of the LN α3 chain alters its binding affinity to integrin 

receptors. While the long, more immature isoform of the α3-chain mainly binds to 

α3β1 integrins, the shorter processed α3-chain binds preferentially to α6β4 integrins. 

The interaction of LN-332 with α3β1 integrin is mainly implicated in keratinocyte 

migration (Frank and Carter, 2004), where the cleavage in the α3-chain appears to be 

a prerequisite for hemidesmosome formation, enabling α6β4 integrin clustering and 

thereby promoting keratinocyte adhesion and BM stabilization (Baudoin et al., 2005).  
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1.7 The extracellular matrix of the dermis 

The dermis is the connective tissue layer between the epidermis and the subcutaneous 

fat layer. In addition to ECM, it contains ECM-producing fibroblasts, immune cells 

(lymphocytes, neutrophils, monocytes and mast cells), blood and lymphatic vessels. It 

is subdivided into two parts: the papillary dermis (stratum papillare) adjacent to the 

epidermis and the BM, and the reticular dermis (stratum reticulare) underneath. The 

papillary dermis is composed of loose, small diameter collagen fibers and immature 

elastic fibers. The reticular dermis contains large-diameter collagen fibers and mature 

elastic fibers that are decorated with proteoglycans and fibril-associated 

macromolecules. Fibril-forming collagens including collagen type I, III and V are the 

most abundant collagens in the dermis. They interact with FACIT collagens type XII 

and XIV and assemble together into large, parallel fibril bundles. Non-fibril-forming 

collagens, including type IV, VI and VII are found in the BM (collagen type IV), 

intercalated into fibril bundles (type VI) or anchoring epidermis and dermis (type 

VII). Proteoglycans in the skin include HSPGs, chondroitin-6-sulfate proteoglycans, 

which are associated with the BM, whereas chondroitin sulfate (versican) or dermatan 

sulfate proteoglycans (lumican, decorin, biglycan) are found in the dermis. Decorin 

and biglycan contribute to collagen fibrillogenesis by connecting type I collagen and 

FACIT collagens. Lumican controls collagen fibril diameter and fibril spacing 

(Aumailley and Gayraud, 1998; Eckes and Krieg, 2004; Krieg and Aumailley, 2011).  

The elastic fiber network in the dermis consists of fibrillins, fibulins, MAGPs and 

LTBPs, which regulate the bioavailability of Tgf-β and BMPs. Under physiological 

conditions, fibroblasts produce little ECM but upon tissue injury, Tgf-β causes 

fibroblasts to differentiate into myofibroblasts, thus enabling ECM remodeling 

(Tomasek et al., 2002).  
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1.8 Integrin-linked kinase in the skin 

The expression of ILK in the epidermis is restricted to the basal layer keratinocytes of 

the IFE and the HF, where keratinocytes are anchored to the BM. In the dermis, ILK 

is expressed by all cell types present, including the dermal fibroblasts. To investigate 

the role of ILK in the skin, different conditional knockout mouse models with either 

epidermis- or dermis-specific deletions of ILK have been generated (Blumbach et al., 

2010; Lorenz et al., 2007; Nakrieko et al., 2011; Nakrieko et al., 2008).  

 

1.8.1 ILK in the epidermis 

Three different epidermal ILK-deficient mouse models have been described so far 

(Lorenz et al., 2007; Nakrieko et al., 2011; Nakrieko et al., 2008). Nakrieko and 

coworkers (2008) bred transgenic mice that express Cre recombinase under the K14 

promoter with mice carrying loxP sites flanking exons 4 and 12 of ILK (Terpstra et 

al., 2003). The resulting ILK-K14 knockout mice were born with no detectable ILK 

protein in the epidermis at birth and the pups survived until P4 (Nakrieko et al., 

2008). Lorenz and coworkers (2007) deleted ILK in the epidermis by crossing mice 

that overexpress Cre under the K5 promoter with mice that carry a floxed exon 2 

including the transcription start site of ILK (Sakai et al., 2003b). These mice that are 

also used in this thesis work were viable and ILK was still present in the epidermis at 

birth, but became undetectable two days after birth (Lorenz et al., 2007). The 

differences in viability and HF morphogenesis (discussed below) between ILK-K14 

and ILK-K5 mice are probably caused by the differential onset of Cre recombinase 

expression. K14-Cre expression is first detectable at E11.5 (Turksen et al., 1992) 

therefore leading to an earlier gene deletion as K5 promoter-driven Cre that starts to 

express Cre from E15.5 onwards (Ramirez et al., 2004). 
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ILK-K14 mice displayed a 55 % reduction in HF number. This was associated with 

reduced proliferation within the HFs, whereas proliferation within the IFE was not 

affected (Nakrieko et al., 2008). The epidermal-dermal junction showed presence of 

microblisters with discontinuous expression patterns of α6- and β4-integrins at the 

BM. In addition, some β1-integrin expressing cells were present in the suprabasal 

layer. The expression patterns for differentiation markers K14 and K15 were mostly 

similar between knockouts and controls (Nakrieko et al., 2008).  

In a later study, the same authors investigated ILK-K14 animals during different 

stages of embryonic HF morphogenesis (Rudkouskaya et al., 2014). They found a 

downregulation of the Wnt signaling pathway during HF development and linked this 

finding to impairment in HF matrix formation and IRS lineage specification in ILK-

K14 mice. The authors attributed the phenotype to a loss of keratinocyte apical-basal 

polarity in ILK-deficient HFs caused by impaired assembly of an intact LN-511-rich 

BM at the HF tip. The exogenous addition of LN-511 in ex vivo embryonic tissue 

explants rescued hair matrix formation indicated by a structural reorganization of P-

cadherin expressing cells. However, it was not sufficient to rescue HF organogenesis. 

In conclusion, although some finding of this study were contradictory to their 

previous findings where they reported upregulation of Wnt, Hedgehog and Tgf-β 

pathways, the authors concluded that ILK is required for the assembly of LN-511 in 

order to ensure functional epithelial-mesenchymal crosstalk, which is essential for 

hair matrix formation (Judah et al., 2012; Rudkouskaya et al., 2014). 

The K5-Cre driven conditional ILK knockout mouse model (ILK-K5) used in this 

thesis was described by Lorenz and colleagues (Lorenz et al., 2007). At birth, the 

ILK-deficient mice are indistinguishable from their control littermates. They develop 

a hair coat with partial alopecia containing a mixture of fully developed and shortened 
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HFs. After the first telogen phase (P21) ILK-K5 mice progressively lose their hair, 

resulting in complete alopecia at 6-8 weeks. During the first 3 weeks of postnatal 

development, the skin becomes hyperplastic (from P7 onwards) and microblisters 

develop into macroscopically visible skin blisters. Skin blistering is associated with 

compromised keratinocyte adhesion and BM integrity detected by irregular deposits 

of LN-332 containing BM fragments at the dermo-epidermal junction. Electron 

microscopy revealed no change in hemidesmosome number in intact parts of the BM. 

Furthermore, the expression levels of the α6-, β4-, and αv-integrins were unchanged 

in ILK-K5 keratinocytes, whereas α3- and α2-integrin chains were slightly 

upregulated and β1-integrin was slightly downregulated. Hyperplasticity of the 

epidermis was associated with an increase in proliferation with abnormal localization 

of proliferating cells in the suprabasal layer. Increased proliferation was also observed 

in ORS cells that accumulated and led to ORS thickening. Differentiation within the 

IFE was impaired as K14-expressing cells were present in the suprabasal layer. 

However, the mechanism for the progressive hair loss was not uncovered in this 

study.  

 

1.8.2 ILK in dermal fibroblasts 

To study the role of ILK in the dermis, ILK floxed mice were crossed with mice 

carrying Cre recombinase fused to a tamoxifen-sensitive estrogen receptor (CreERT) 

under the control of a fibroblasts-specific regulatory fragment of the pro-α2(I) 

collagen gene (Col1α2) (Blumbach et al., 2010; Sakai et al., 2003b). The authors 

found that ILK plays an important role in myofibroblast formation during skin repair. 

Myofibroblasts play critical role in regenerative processes in the skin (Hinz, 2007). In 

vitro experiments further showed that deletion of ILK in fibroblasts leads to increased 



Introduction

RhoA-ROCK activity, causing abnormal cell morphology, impaired cell motility and 

cell contraction. Reduced Tgf-β1 secretion by ILK-deficient fibroblasts as well as 

decreased exogenous Tgf-β1 activity was insufficient to induce α-smooth muscle 

actin (α-SMA) production, which consequently led to failure in myofibroblast 

differentiation. 



Aims of the thesis 

2 Aims of the thesis 

ILK is an essential adaptor protein linking β1- and β3-integrins to the actin 

cytoskeleton. It thereby regulates cellular processes that depend on integrin-driven 

actin dynamics such as migration and polarity. On the other hand, cell-matrix 

interactions are crucial for ECM remodeling that requires the generation of cellular 

tension. The precise composition of the ECM in turn determines cellular behavior 

through the modulation of various signaling activities. This study aimed to understand 

the role of ILK in cellular force generation and subsequent ECM remodeling. 

Furthermore, the project was directed to investigate the importance of these processes 

in vivo and in particular to unravel the roles of cell-ECM interactions in regulating the 

SC niche and subsequently SC behavior. 

The specific questions asked were: 

1. Does ILK have a function in cellular force generation and ECM remodeling? 

2. What is the role of ILK in SC fate regulation? 

3. Does ECM remodeling by ILK impact SC behavior? What are the molecular 

mechanisms? 
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3 Materials and methods 

3.1 Chemicals and reagents 

Unless denoted explicitly, common chemicals and reagents used in this study were 

purchased from the following suppliers: Merck (Darmstadt, Germany), Carl Roth 

(Karlsruhe, Germany), Sigma Aldrich (Munich, Germany). 

3.2 Animal experiments 

All experiments were performed in compliance to guidelines and animal licenses of 

the State Office North Rhine-Westphalia and Bavaria, Germany. All mouse strains 

(except for ILK-Lgr5) were maintained and bred in the specific-pathogen-free mouse 

facility of the Center of Molecular Medicine Cologne, Germany. ILK-Lgr5 mice were 

housed in the animal facility of the Department for Pharmacology, Cologne, 

Germany. Mice for the two-stage carcinogenesis experiment were bred and 

maintained in the animal facility of the Max-Planck-Institute for Biochemistry 

(Martinsried, Germany). In all cases, mice were given ad libitum access to standard 

rodent diets and water. Breeding of mice started at 8-10 weeks of age. Mice were 

weaned between postnatal day (P) 18 and 22. Tail clips were taken for subsequent 

DNA isolation and genotyping. Genders were distributed randomly between 

genotypes in all mouse experiments. 

3.2.1 Breeding schemes and animal procedures 

Epidermis-specific ILK-K5 mice 

To generate epidermis-specific ILK knockout mice, homozygous female mice with 

loxP sites inserted to flank exon 2 and the transcription start site of the Ilk gene (ILK 

flox/flox; (Sakai et al., 2003b) were intercrossed with heterozygous male mice (ILK 
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flox/wt) that additionally carried a transgene to express the Cre recombinase under the 

control of the keratin 5 (K5) promoter (Ramirez et al., 2004). ILK flox/flox, K5-Cre 

(from here on ILK-K5) knockout mice were compared to ILK flox/wt, K5-Cre (from 

here on controls) littermates.  

Inducible epidermis-specific ILK-iK14 mice 

To generate mice with an inducible deletion of the Ilk gene within the epidermis 

heterozygous female ILK flox/wt mice additionally carrying the tetracycline-

controlled transactivator protein (rtTA) transgene under the control of the Keratin-14 

promoter (K14rtTA) were crossed with homozygous ILK flox/flox male mice 

additionally carrying a Cre recombinase transgene under the control of a tetracycline-

responsive promoter element (tet-O-Cre) (Nguyen et al., 2006). Cre recombinase 

expression was induced by administration of doxycycline (for details see below). ILK 

flox/flox, K14rTA, tet-O-Cre knockout mice (from here on ILK-iK14) were compared 

to control littermates carrying the following genotypes: ILK flox/flox tet-O-Cre; ILK 

flox/wt, K14rTA, tet-O-Cre (controls).  

ILK-iK14 mice were fed with doxycycline containing chow (1 g/ kg; ssniff, 

Germany) from 3 weeks of age onwards in order to induce Cre expression and the 

deletion of the Ilk gene. Deletion of ILK was induced by the tetracycline-controlled 

transcriptional activation (Tet-on) system, which activates the expression of a 

transgene that is dependent on the activity of a transcriptional activator and the 

presence of tetracycline or its derivate doxycycline. In brief, the basis for the Tet-on 

system is the reverse tetracycline-controlled transactivator (rtTA), a fusion protein 

comprising of a Tet repressor DNA binding protein (isolated from the tetracycline-

resistance operon of Escherichia coli) fused to the transactivating domain of VP16 

from Herpes simplex virus. In the presence of doxycycline, rtTA induces the 
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expression of target transgenes that contain a tetracycline-responsive promoter 

element. This element consists of a Tet operator (tetO) sequence fused to a minimal 

promoter. In this study, rtTA expression was driven by the Keratin 14 (K14) promoter 

and the tetO was coupled to the Cre transgene. Hence, expression of Cre in K14-

positive cells was induced by administration of doxycycline, leading to the excision of 

the floxed Ilk allele within these cells. 

HFSC-specific ILK-Lgr5 mice 

To achieve inducible deletion of the Ilk gene in HFSCs and to perform lineage-tracing 

experiments ILK flox/flox mice were crossed with Lgr5-EGFP-Ires-CreERT2 mice 

additionally carrying a LacZ Cre reporter (Rosa26R-LacZ; (Soriano, 1999)). These 

mice were described previously (Jaks et al., 2008). Lgr5-specific ILK-knockout mice 

(from here on ILK-Lgr5) were compared to control littermates (controls). 

Lgr5-EGFP-Ires-CreERT2 mice express Cre recombinase fused to a mutated hormone-

binding domain of the estrogen receptor (ERT) under the Leucine-rich repeat-

containing G-protein coupled receptor 5 (Lgr5) promoter. Lgr5 is specifically 

expressed in HFSCs, restricting the expression of CreERT to this compartment. CreERT 

is constitutively expressed in Lgr5-expressing cells but it is inactive. The Cre can be 

activated by administration of a synthetic estrogen receptor ligand such as tamoxifen. 

Tamoxifen binds to the fused receptor and CreERT translocates from the cytoplasm 

into the nucleus where it mediates the excision of loxP sites. CreERT2 is an improved 

CreERT recombinase system where Cre is fused to a human estrogen receptor ligand-

binding domain. It has a decreased background activity and shows increased 

sensitivity due to enhanced tamoxifen binding specificity.  

In order to activate Cre, ILK-Lgr5 mice were injected with 100 µl of 10 mg/ml 

tamoxifen (Sigma, T5648) into the intraperitoneal cavity from P17 for 5 consecutive 



Materials and methods   

days at 24-h intervals. 10 mg tamoxifen was dissolved in 50 µl 100 % ethanol at 

55 °C and supplemented with corn oil (Sigma, C8267) to a final volume of 1 ml. The 

mixture was further incubated at 55 °C, with 800 rpm rotation for at least 45 min 

before injection. 

 

3.2.2 Two-stage carcinogenesis experiment 

Two-stage carcinogenesis experiments were carried out by Sara A. Wickström in the 

animal facility of the Max-Planck Institute for Biochemistry in Martinsried, Germany. 

8-week old mice were shaved on the back followed by the topical treatment of with 

100 nmol 7,12-dimethylbenz[a]anthracene (DMBA; Sigma) in 100 μl of acetone 2 

days after shaving. The treatment was repeated one more time two days after the first 

application. 2 weeks post DMBA treatment 10 nmol 12-O-tetradecanoylphorbol-13-

acetate (TPA; Sigma) in 200 μl of acetone was applied twice-weekly for 18 weeks. 

The experiment was terminated after 18 weeks of TPA treatment due to skin health 

condition of ILK-K5 mice. All mice were euthanized at the end of the experiment. 

Tumor size and numbers of tumors were recorded weekly after the start of TPA 

treatment (week 0). Skin biopsies and tumors were analyzed biochemically and by 

histology. 

 

3.2.3 BrdU and EdU injections 

The in vivo proliferation experiment on ILK-K5 mice was carried out by injecting the 

thymidine homolog 5-bromo-2´deoxyuridine BrdU. For analyses of short-term 

proliferation 100 mg/ml BrdU (Sigma) was injected intraperitoneally 1 h prior to 

sacrifice. BrdU incorporation was analyzed by immunofluorescence staining with 

antibodies against BrdU (see 3.4.6). To mark label-retaining cells (LRCs) in ILK-K5 
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mice, 50 mg/kg thymidine homolog 5-ethynyl-2’-deoxyuridine EdU (Invitrogen) was 

injected intraperitoneally four times at 12-h intervals from P10 to P11. The EdU was 

subsequently chased for 10 days. At P21, mice were sacrificed and skin tissues were 

dissected and prepared for cryo/paraffin embedding as described in section 3.3.2.1 

and 3.3.2.2. EdU incorporation was analyzed as described in section 3.4.7. 

 

3.3 Histological analyses 

3.3.1 Equipment and materials 

Light microscope: Leica DMI3000B 

Microtome: NM 340E, Thermo Scientific  

Water bath: Leica H1210 

Cryostat: Microm HM 560, Thermo Scientific  

Antigen Retriever: Retriever 2100, electron microscopy sciences  

Embedding machine: Leica EG 1160  

Tissue processor: STP 120, Thermo Scientific 

Embedding cassettes: EBK, Hartenstein, Germany 

Filter paper for embedding: Medite 46-6200-00 

Cryomold intermediate; 4566, Tissue-Tek, Sakura 

Mounting media: 

Entellan, Merck 1.07961.0100 

Aquatex, Merck 1.08562.0050 

 

3.3.2 Histological methods 

The most critical concern aspect of histochemical techniques is tissue preservation to 

maintain morphology, but on the other hand to allow histochemical procedures such 
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as antibody penetration and antigen preservation. Therefore, fixation and tissue 

embedding have to be carried out with care. Paraformaldehyde or glutaraldehyde fix 

the tissue by reacting with basic amino acid residues thereby crosslinking neighboring 

proteins. Methanol, ethanol or acetone fix the tissue by denaturing wherein the 

solubility of proteins gets reduced due to the disruption of tertiary protein structures. 

Aldehydes preserve the tissue much better than alcoholic fixatives. 

Embedding of fixed tissue into paraffin wax helps to maintain tissue architecture and 

enables cutting of thin sections (see 3.3.2.1). For unfixed tissues, cryopreservation 

and tissue embedding into cryo-resisting matrix is used and enables sectioning at 

temperatures below -10 °C. 

 

3.3.2.1 Preparation of paraffin sections 

Mice were sacrificed at indicated time points and tissue samples were taken. The 

samples were then wrapped in filter paper in order to avoid tissue deformation during 

tissue processing. The isolated samples in filter paper were placed into embedding 

cassettes and transferred into freshly prepared, ice-cold paraformaldehyde (4 % PFA 

in phosphate buffered saline (PBS)) and incubated 1-2 h on ice for fixation. 

Subsequently, the fixed samples were transferred to 70 % ethanol and incubated at 

4 °C overnight. For dehydration and paraffin processing, samples were placed into an 

automated tissue-processing machine (for detailed program see below). Embedding 

into paraffin was done using the embedding machine. Paraffin blocks were stored at 

room temperature (RT) until cutting. Prior to cutting, paraffin blocks were cooled to -

20 °C and 6-8 µm sections were cut using the microtome. To ensure tissue 

straightening, sections were floated on water at 45 °C for at least 5 min. Test sections 

were inspected under the microscope and adjustments were done to obtain the best 
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quality and orientation of sections. Slides were dried over night at 37 °C and stored at 

RT. 

 

Tissue processor program: 

70 % ethanol  1,5 h 

80 % ethanol  1,5 h 

96 % ethanol  1,5 h 

100 % ethanol  1 h 

100 % ethanol  1 h 

Xylol   1,5 h 

Xylol   1,5 h 

Paraffin  2 h 

Paraffin  2 h 

Paraffin  2 h 

 

10 x PBS 

80 g  NaCl 

2.0 g  KCl 

14.4 g  Na2HPO4 x 2 H2O 

2.0 g  KH2PO4 

filled up with H2O to 1000 ml, after diluting to 1x PBS pH becomes 7.4 

 

4 % paraformaldehyde /PBS 

4 g Paraformaldehyde was dissolved in 100 ml 1x PBS at 60 °C while stirring. 

Solution was cooled down to 4 °C before use. 
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3.3.2.2 Preparation of cryosections 

Tissue samples were placed into cryomolds containing OCT Tissue Tek directly after 

dissection and subsequently allowed to solidify on dry ice. Frozen blocks were stored 

at -80 °C, and 6-8 µm thick sections were cut at -20 °C using the cryostat. Sections 

were air-dried and finally stored at -80 °C. 

 

3.3.2.3 Hematoxylin and eosin staining 

This method is a standard histological method that allows detection of several distinct 

tissue structures. The principle is based on the application of hemalum, an oxidation 

product of haematoxylin. Hemalum colors nuclei in blue. Eosin serves as a 

counterstain and colors eosinophilic structures, mainly structures that are basic, in 

different shades of red. 

For hematoxylin and eosin staining, paraffin sections were deparaffinized (2 x 5 min 

Xylol) followed by rehydration (100 % isopropanol, 95 %, 75 %, 50 % ethanol, and 

distilled water; 5 min each). Sections were stained for 50 s with Hematoxylin and 

blued in tap water. Sections were counterstained for 10 sec with Eosin and 

subsequently washed in water. Sections were then dehydrated (50 %, 75 %, 95 % 

ethanol, isopropanol 2 min each), washed 2 x 2 min in Xylol, and finally mounted in 

Entellan. 

 

Hematoxylin: Shandon Gill3 Hematoxylin 

Eosin: Shandon Eosin Y, Aqueous 
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3.3.2.4 β-galactosidase staining 

The lacZ reporter gene was used to visualize Cre activity in skin tissue. LacZ encodes 

for β-galactosidase that can be detected by a chromogenic substrate 5-Bromo-4-

Chloro-3-indolyl-β-D-galactopyranosidase (X-Gal) that becomes hydroxylated by β-

galactosidase to produce a blue precipitate.  

Tissue samples were fixed in 0,2 % glutaralehyde/PBS for 1 h on ice. After rinsing 3 

x 10 min with PBS, the tissue was permeabilized with wash solution for 1 h at RT. 

Samples were then incubated with freshly prepared staining solution at 37 °C 

overnight. Subsequently, samples were washed 3 x 10 min with PBS and post-fixed 

with 4 % PFA in PBS for 1 h at RT. Samples were stored in 70 % ethanol until 

processing for paraffin embedding (see 3.3.2.1). 8-10 µm-thick sections were 

subsequently cut using the microtome. Sections were deparaffinized (see 3.3.2.3) and 

counterstained with nuclear fast red for 1 min. After this, the sections were 

dehydrated and mounted in Entellan. 

 

Glutaraldehyde 25 % Serva 23115 

Nuclear fast red (Roth N069.1) 

 

Wash solution 

0.02 %  Nonidet P-40 

2 mM  MgCl2 

in 1x PBS 

 

Staining solution 

5 mM   Kaliumferrocyanide (K4Fe(CN)6) 
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5 mM  K-ferricyanide (K3Fe(CN)6) 

1 mg/ml X-Gal (prepared from a 100 mg/ml stock in DMF; biomol 02249.1) 

in wash solution 

 

3.3.2.5 Alkaline phosphatase staining 

Alkaline phosphatases are dephosphorylating enzymes that are active in a basic 

environment. Alkaline phosphatase staining was used to visualize its endogenous 

activity within the DP of the HF using the NBT/BCIP reporter system. BCIP (5-

Bromo-4-chloro-3-indolyl phosphate) becomes hydrolyzed by alkaline phosphatase 

and the resultant product is oxidized by NBT (Nitro blue tetrazolium chloride) 

resulting in the formation of a blue precipitate.  

Cryosections were air-dried, fixed with acetone for 10 min at -20 °C, and washed for 

5 min in PBS. Staining solution was applied and the reaction was monitored under the 

microscope in real time. The reaction was terminated by placing the slides into water. 

After that, sections were counterstained with nuclear fast red for 10 min, washed with 

water and mounted in Aquatex. 

 

Staining solution 

2 %   NBT/BCIP stock solution (Roche, 11681451001)  

in  0.1 M Tris-HCl, pH 9.5; 0.1 M NaCl 
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3.4 Immunological Methods 

3.4.1 Materials 

3.4.1.1 Primary antibodies 

Name Company Cat. No. IF Fixation/TRS WB 
β-Catenin Santa Cruz sc-7199 1:300 PFA/pH6 1:5000 
BrdU BD 347580 1:50 pH6  
CD3 Serotec MCA-1477 1:100 pH9  
CD34 M. Koch KR66 1:1000 PFA/pH6  
F4/80 Dianova BM8 1:200 pH6  
γH2AX Cell 

Signaling 
9718 1:250 pH9  

ILK BD 611802 1:500   
Keratin 14 Progen GP-CK14 1:100 PFA/pH6, pH9  
Keratin 14 Covance PRB-155P 1:1000 PFA7pH6, pH9  
Keratin 15 Thermo MS-1068-po 1:2000 PFA/pH6, pH9  
Ki67 DAKO M7249 1:100 IHC pH6  
Lef1 Cell 

Signaling 
2230 1:100 PFA  

LN 332 Aumailley R14 1:10000 PFA  
LN α5 Sorokin 405 1:10000 PFA  
p53 Leica DM5 1:100 pH6  
Paxillin BD 610051 1:300 PFA/MeOH  
Phalloidin Sigma  1:600 PFA  
Ras BD 610001   1:2500 
p-Cadherin Invitrogen  1:200   
p-Smad 
1/5/8 

Cell 
Signaling 

9511   1:1000 

p-Smad 2 Cell 
Signaling 

3101 1:100 IHC 1:100 1:1000 

Smad 2 Cell 
Signaling 

3103   1:1000 
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3.4.1.2 Secondary antibodies 

Name Company Cat. No. Conjugate Appl. dilution 
α-IgG guineapig Invitrogen 98228 A488 IF 1:500 
α-IgG rabbit Invitrogen A11011 A568 IF 1:500 
α-IgG rabbit Invitrogen A11008 A488 IF 1:500 
α-IgG mouse Invitrogen A11001 A488 IF 1:500 
α-IgG1 mouse Invitrogen A21121 A488 IF 1:500 
α-IgG2a mouse Invitrogen A21131 A488 IF 1:500 
α-IgG2a mouse Invitrogen A21134 A568 IF 1:500 
α-IgG mouse BioRad 170-6516 HRP WB 1:10 000 
α-IgG rabbit BioRad 170-6515 HRP WB 1:10 000 
α-IgG rabbit Thermo 31820 Biotin IHC 1:300 
 

3.4.2 Immunofluorescence staining of paraffin sections 

Immunofluorescence staining was carried out on paraffin sections using the protocol 

described below. The antigen retrieval method was specifically chosen for each 

antibody. The antigen retrieval method used for a particular antibody is described in 

the table for primary antibodies. 

Paraffin sections were deparaffinized and rehydrated as described. Subsequently 

antigen retrieval was performed. During antigen retrieval protein cross-links that were 

formed during formalin fixation are released and hidden antigen sites are uncovered. 

Hot antigen retrieval was carried out using target retrieval solution (TRS) with pH 6 

or pH 9 in a pressure cooker, where samples are cooked in high pressure for 20 min. 

followed by 1 h of cooling. Sections were then blocked with 5 % normal goat serum 

(NGS), 3 % bovine serum albumin (BSA) in PBS for 1 h at RT. Primary antibodies 

diluted in Antibody Diluent was applied overnight at 4 °C. After that, samples were 

washed 3 times for 5 min in PBS. Sections were incubated with fluorescent-labeled 

secondary antibodies diluted in PBS for 1 h in the dark. The nuclei were 

counterstained with 1 mg/ml 4',6-Diamidine-2'-phenylindole dihydrochloride (Dapi; 

1:1000). After 3 x 5 min washes in PBS, samples were mounted in elvanol and dried 

at RT in the dark. 
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Antibody Diluent   Dako S3022 

Target Retrieval Solution, pH6 (10x) Dako S1699 

Target Retrieval Solution, pH9 (10x) Dako S2367 

R-Buffer A (10 x; pH6)  EMS 62706-10 

Dapi     Roche 10236276001 

 

Elvanol 

2.4 g  Mowiol-Dabco (Roth) 

7.5 ml  87 % glycerol 

11.7 ml distilled water 

-> stir for 2 h at RT, then add 

4.8 ml  Tris-HCl, pH 8,5 

-> stir at 53 °C until dissolved, then add 

0.02 g  Dabco (Roth) 

aliquot and store at -20 °C 

 

3.4.3 Immunofluorescence staining of cryosections 

Cryosections were air-dried for 20 min. Sections were fixed with the indicated 

fixative (see table for primary antibodies). Fixation was carried out as follows: 

For acetone and methanol fixation slides were covered with ice-cold dried 

acetone/methanol and incubated at -20 °C for 10 min. Acetone/methanol was then 

removed and slides were rehydrated with PBS. 

For PFA fixation sections were covered with freshly prepared, cold 4 % PFA in PBS 

and incubated for 10 min at RT. The fixative was then removed and slides were 
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washed with PBS. The tissue was subsequently permeabilized by treatment with 

0,2 % Triton-X-100 in PBS for 10 min at RT. 

After fixation, unspecific antibody binding was blocked with 5 % GNS, 3 % BSA in 

PBS for 1 h at RT. The primary antibody was applied overnight at 4 °C in 1 % BSA 

in PBS (0,1 % Triton-X-100 was supplemented for proteins with anticipated nuclear 

localization). The next day, slides were washed 3 times for 5 min with PBS. The 

fluorescent-labeled secondary antibody was applied for 1 h at RT in the dark. The 

nuclei were counterstained with 1 mg/ml Dapi (1:1000). After 3 washes for 5 min 

each with PBS, samples were mounted in elvanol and dried at RT in the dark. 

 

3.4.4 Immunofluorescence staining of adherent cells 

Cells grown on coverslips were fixed with 4 % PFA in PBS for 10 min at RT. The 

staining procedure was carried out in a 24-well plate. Cells were washed once with 

PBS and then permeabilized with 0,2 % Triton-X-100 in PBS for 10 min at RT. After 

2 washes for 5 min with PBS cells were blocked with 5 % BSA in PBS for 1 h at RT. 

The primary antibody was applied over night at 4 °C in blocking solution. The next 

day, cells were washed 3 times for 5 min with PBS followed by secondary antibody 

treatment for 1 h at RT in PBS in the dark. Cells were washed 3 times for 5 min with 

PBS and coverslips were mounted on an objective slide using elvanol. Samples were 

air dried in the dark. 

 

3.4.5 Immunohistochemistry 

The stainings were carried out utilizing the Avidin-Biotin-Peroxidase Complex 

(ABC) principle. A biotinylated secondary antibody bridges the primary antibody to 

an avidin-containing enhancer complex. Avidin (or streptavidin) binds strongly to up 
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to four biotin molecules. Streptavidin is coupled to horseradish peroxidase (HRP) that 

is used for a chromogenic end reaction. Thereby the ABC system serves as a signal 

amplification bridge for the primary antibody.  

Paraffin sections were deparaffinized and rehydrated, followed by antigen retrieval as 

described above. Subsequently, slides are washed with PBS for 5 min. To reduce 

background, sections were incubated with unconjugated avidin for 10 min, followed 

by incubation with unconjugated biotin for 10 min and finally with peroxidase 

blocking solution for 10 min. After 3 washes with PBS for 5 min each, sections were 

blocked with 5 % GNS, 3 % BSA in PBS for 1 h. The primary antibody was applied 

in Antibody Diluent over night at 4 °C. The next day, sections were washed 3 times 

for 5 min with PBS. A secondary biotinylated antibody was applied in Antibody 

Diluent for 30 min at RT. After 3 washes for 5 min each with PBS, tertiary labeling 

was performed by incubation with HRP-coupled streptavidin for 30 min at RT. 

Samples were washed 3 times for 5 min in PBS and the signal was developed using 3-

3`diaminobenzidine (DAB) as a substrate. DAB reacts with the coupled peroxidase 

resulting in a product of intense brown color. The staining reaction was followed 

under the microscope and samples were placed in distilled water to stop the reaction. 

Sections were counterstained with Hematoxylin (1:10 dilution) for 30 sec. Finally, 

sections were dehydrated, incubated twice for 2 min in Xylol, and mounted in 

Entellan. 

 

Avidin-Biotin-Block    Dako X0590 

Peroxidase-Blocking solution  Dako S2023 

Streptavidin/HRP   Dako P0397 
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3.4.6 BrdU staining 

5-bromo-2´deoxyuridine (BrdU) incorporation is used to measure cell proliferation. 

DNA replication is required for cell division. BrdU is a thymidine homolog that can 

be added to cells or tissues where it is then incorporated into newly synthesized DNA. 

The incorporated BrdU can be visualized with specific antibodies. The detection of 

BrdU was carried out on paraffin sections using the protocol for immunofluorescence 

stainings on paraffin sections described above. 

 

3.4.7 EdU staining 

5-ethynyl-2’-deoxyuridine (EdU) is a thymidine homolog like BrdU but its detection 

does not require an antibody. As BrdU, EdU is incorporated into DNA during DNA 

synthesis. The basis for the detection of EdU is the click reaction. Herein an alkyne 

(EdU) reacts with an azide in a copper (I)-catalyzed reaction. The product is a stable 

triazole ring that is linked to a fluorophore.  

EdU staining was carried out on paraffin sections. Paraffin section were 

deparaffinized and rehydrated. Samples were incubated in staining solution for 30 

min at RT. After 3 washes for 5 min in PBS, antigen retrieval was performed as 

described above. 

 

EdU staining solution: 

100 mM   Tris, pH 8,5 

1 mM    CuSO4 

10 µM    488-Azide (Invitrogen A10266) 

100 mM   ascorbic acid 
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3.4.8 TUNEL staining 

Apoptosis is associated with DNA degradation where double-stranded or single-

stranded DNA breaks are exposed. The TUNEL (Terminal deoxynucleotidyl 

transferase dUTP nick end labeling) assay is a method for the detection of fragmented 

DNA by labeling free 3`-ends of nucleic acids. Terminal deoxynucleotidyl-transferase 

(TdT) catalyzes the transfer of fluorescent-labeled dUTP toward the free DNA end, 

enabling the visualization of apoptotic cells. TUNEL staining was carried out on 

paraffin sections according to the manufactures instructions. 

 

DeadEnd Fluorometric TUNEL System Kit, Promega G3250 

 

3.5 Cell culture methods 

3.5.1 Equipment and materials 

Centrifuge: Heraeus Multifuge X1R, Thermo Scientific 

5 ml, 10 ml, 25 ml Pipettes: Cellstar, Greiner bio-one 

Light microscope: Axiovert 40C, Zeiss 

24-well and 6-well plates: Cellstar, Greiner bio-one 

10 cm dishes: Cellstar, Greiner bio-one, 100 x 20 mm, 664160 

Sterile filters: Acrodisc syringe filters, 0,2 µm, PALL 

Sterile filter bottles: Nalgene Rapid-flow, 1564020 

Cell strainers: BD Falcon, 70 µm (352350), 40 µm (352340) 

Cryo tube vials: Nunc, 368032 

P/S: Penicillin, Streptomycin (10.000 U/ml) Gibco, 15140-122 

Trypsin 10 x: Gibco 15090-046 

Serum: Fetal bovine serum (FBS) secure, Gibco 10099-141 
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3.5.2 Cell culture of immortalized mouse fibroblasts 

Primary kidney fibroblasts were isolated from 3-week-old ILK f/f mice, and 

immortalized with SV40 virus. Single cell clones from ILK f/f fibroblasts were 

subsequently obtained, from which the ILK gene was deleted by adenoviral 

expression of Cre-recombinase to generate ILK -/- cells. The cells were established at 

and received from the Max-Planck Institute for Biochemistry (Martinsried, Germany). 

These fibroblasts were maintained on 10-cm dishes in fibroblast growth medium in a 

humidified atmosphere at 37 °C and 5 % CO2. To obtain a single cell suspension, 

cells were washed once with PBS and incubated with 2 x Trypsin/EDTA in PBS for 

3-5 min at 37 °C. Detached cells were resuspended in growth medium, centrifuged at 

900 rpm for 3 min and plated. 

 

Fibroblast growth medium 

DMEM (with Glutamax, Gibco 61965-026) supplemented with 1 % P/S solution and 

10 % FBS 

 

Freezing medium 

Fibroblast growth medium supplemented with 10 % DMSO 
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3.5.3 Gel contraction assay 

2 x106 fibroblasts were suspended in 800 μl of 5 x Hank’s Balanced Salt solution 

(Sigma), 50% fetal calf serum and mixed with 3 ml of 4mg/ml acid-extracted rat tail 

type I collagen, avoiding air bubble formation. 500 µl of the suspension was loaded 

into wells of a 24-well plate and allowed to polymerize at 37˚C for 30 min. 500 µl 

fibroblast medium was subsequently applied on top of the gel. After 3 days of culture 

gel contraction was determined by measuring gel diameter.  

 

3.5.4 Isolation of primary keratinocytes 

Primary keratinocytes were isolated from mouse skin in telogen phase (P21-P23 or 8-

9 weeks old). The mouse was sacrificed and shaved. Subsequently, the mouse was 

incubated in 70 % ethanol for 1 min, rinsed in distilled water and incubated in PBS 

for 1 min. Tail and limbs were removed and the skin was isolated. The subcutaneous 

fat was removed by scraping with a round surgical blade (No 22). The skin was then 

incubated in 2x antibiotic/antimycotic in PBS dermis side up for 5 min at RT. The 

skin was cut into smaller pieces and transferred epidermal side up in 0,8 % trypsin in 

PBS for 50 min at 37 °C. Skin pieces were subsequently transferred to a new dish 

containing keratinocyte growth medium (KGM), the epidermis was separated from 

the dermis using small forceps, and finally minced into small pieces. The epidermis 

suspension was subsequently transferred into a 50 ml falcon tube and mechanically 

disrupted by passing through a 25 ml pipette 8-10 times. The suspension was filtered 

through a 70 µm cell strainer and centrifuged at 900 rpm for 5 min. The supernatant 

was removed and the cells were resuspended and plated on dishes precoated with 

coating medium. Cells were incubated at 37 °C, 5 % CO2 and medium was changed 

the day after isolation. 
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Antibiotic Antimycotic Solution (100×), Sigma A5955 

Trypsin powder Gibco 27250-018 

 

Keratinocyte Growth Medium (KGM): 

Final concentration of reagent   Stock concentration Add vol 

MEM (Spinners modified, Sigma M8167)     500ml 

5 ug/ml Insulin (Sigma I5500)   5mg/ml 4mM HCL 0.5ml 

10 ng/ml EGF (Sigma)    200ug/ml PBS  25µl 

10 ug/ml Transferrin (Sigma T8158)    5mg/ml PBS  1ml 

10 uM Phosphoethanolamine (Sigma P0503) 10mMPBS  0.5ml 

10 uM Ethanolamine (Sigma E0135)   10mM PBS  0.5ml 

0.36 ug/ml Hydrocortisone (Calbiochem 386698) 5mg/ml Ethanol 36µl 

1x Glutamine (Gibco 25030)    100x   5ml 

1x Pen/Strep (Gibco 15140-122)   100x   5ml 

8 % Chelated FBS        40ml 

45 µM CaCl2       100mM  225µl 

 

All reagents were combined and sterile filtered. 

 

Chelated FBS: 

Add 500g Chelex (Biorad #142-2832) to 1l 1M Tris (121.1g Tris-base, adjust pH to 

7.4 with ~66ml 37% HCl). 

Stir over night at 4 °C 

Filter through folded filter (Schleicher&Schuell 314856). 

Add the chelex resin to 1250 ml FBS and stir at 4  oC for overnight. 
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To remove chelex, filter again through folded filter, sterile filter and aliquot and store 

at –20  oC. 

 

Coating medium: 

25 ml MEM (Sigma M8167) 

0.5 ml Hepes pH 7.3(1 M stock) 

0.25 ml Collagen I (Millipore, 08-115) 

0.25 ml Fibronectin (1 mg/ml Stock, Millipore FC010) 

11.25 µl CaCl2 (100 mM stock)  

 

3.5.5 Cell substrate adhesion assay 

Primary mouse keratinocytes were isolated as described above (see 3.5.4). 6-well 

plates were coated with defined matrix substrates over night at 4 °C. Recombinant 

proteins were diluted in sterile PBS. Unspecific binding was blocked with heat-

inactivated 2 % BSA (heated for 1h at 70 °C) in PBS for 1h at RT, after which freshly 

isolated keratinocytes were suspended in KGM and allowed to adhere for 6 h before 

extraction of RNA or protein. 

To generate a wild type ECM platform, wild type keratinocytes were isolated (see 

3.5.4) and plated on coated 6-wells or coated activated coverslips (see 3.5.6). 

Keratinocytes were cultured in KGM for 4-6 days to allow the deposition of ECM. 

After that, cells were removed by adding pre-warmed extraction buffer (1 ml for 6-

well, 0.2 ml for coverslip in 24-well plate) for 30-45 s under visual control using a 

microscope. To stop the reaction, a 5-fold excess of PBS was added, after which the 

attached matrix was washed 5 times with PBS and blocked with heat-inactivated 2% 
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BSA in PBS for 1h at RT. Freshly isolated keratinocytes were subsequently plated in 

KGM and allowed to adhere for 12 h before harvesting. 

 

Collagen I/ Fibronectin: 25 µg/ml / 10 µg/ml 

Human recombinant laminin-511 (Biolamina LN511): 10 µg/ml 

Human recombinant laminin-332 (Biolamina LN332): 1 µg/ml 

 

3.5.6 Coverslip activation 

10-mm round coverslips were used for culturing of cells within a 24-well plate. 

Coverslips were activated to ensure better cell adhesion on glass substrate. To this 

end, coverslips were soaked in 0,1 N NaOH and air-dried. 50 % 3-

aminopropyltrumethoxysilane (Sigma) was spread on the coverslip and incubated for 

5 min. Coverslips were subsequently soaked in distilled water, placed into a 24-well 

plate and washed with distilled water for 3 times. 0.5 % glutaraldehyde in PBS was 

added and coverslips were incubated for 30 min. After 3 washes for 5 min with 

distilled water coverslips were air-dried. For sterilization, coverslips were treated with 

UV for 30 min before use. 

 

3.6 Biochemical Methods 

3.6.1 Equipment and materials 

Electrophoresis chambers: Mini-Protean, BioRad 

Membrane transfer: Trans-Blot Turbo transfer system, BioRad; Power Pac Basic, 

BioRad 

Spectrophotometer: TECAN infinite M200 

Developing machine: Curix 60, Agfa 
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3.6.2 Preparation of cell extracts from adherent cells 

Cells were washed once with ice-cold PBS and subsequently incubated with lysis 

buffer (150 µl/well for a 6-well plate or 200 µl for a 6-cm dish) for 10 min on ice. 

Subsequently, cells were scraped and lysates were placed into eppendorf tubes, 

incubated for a further 10 min on ice and centrifuged for 10 min at 15000 x g at 4 °C. 

The supernatant was transferred into a fresh tube and protein concentration was 

measured using the BCA assay (see 3.6.4). The appropriate amount of 4 x Laemmli 

sample buffer was added and lysates were denatured by incubation for 5 min at 95 °C. 

Lysates were then either directly subjected to SDS-PAGE or stored at -20 °C. In the 

latter case lysates were heated at 95 °C for 1 min after thawing before subjecting to 

SDS-PAGE. 

 

Lysis Buffer 

150 mM  NaCl 

50 mM  Tris-HCl, pH 7,4 

1 mM  EDTA pH 8,0 

0.5 %  Triton-X-100 

+ 1 tablet of protease inhibitor and 1 tablet of phosphatase inhibitor per 10 ml lysis 

buffer 

Protease Inhibitor  cOmplete Mini EDTA-free, Roche 04693159001 

Phosphatase inhibitor  PhosSTOP, Roche 04906845001 

 

4 x Laemmli sample buffer 

125 mM Tris-HCl, pH 6,8 

4 %  SDS 
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50 %  glycerol 

0.2 %  bromphenol blue 

5%  beta-mercaptoethanol, added fresh before use 

 

3.6.3 Preparation of ECM extracts from mouse skin 

Monika Pesch and Monique Aumailley from the University of Cologne, Germany, 

carried out the ECM extraction as well as the corresponding immunoblot in Figure 

4.5.1.2.  

After skin isolation, the subcutaneous fat was removed and the skin piece was cut into 

small pieces of ~ 2 cm2. The tissue was homogenized using mortar and pestle in 

liquid nitrogen. All subsequent steps were performed at 4 °C with solutions 

containing protease and phosphatase inhibitors. The tissue was suspended in Tris 

buffered saline (TBS) and centrifuged for 5 min at 15000xg. The pellet was washed 

with TBS with 0,1% Tween-20, resuspended in EDTA buffer over night with shaking. 

After this, the samples were centrifuged (5 min, 15000 x g) and the pellet was 

resuspended in 1 x Laemmli sample buffer containing 5 M urea. The samples were 

subsequently allowed to rotate over night at RT. After centrifugation (5 min, 15000 x 

g) the supernatant was subjected to SDS-PAGE (see 3.6.5) and subsequent western 

blotting (see 3.6.6). 

 

HALT Protease Inhibitor cocktail Thermo Scientific 78430 

 

EDTA buffer 

1x TBS with 20 mM EDTA pH 8.0 
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3.6.4 Determination of protein concentration 

The BCA protein assay was used to determine protein concentration. The principle of 

the assay is based on the Biuret test. Proteins in an alkaline environment, mediated by 

sodium hydroxide, reduce Cu2+ to Cu+ leading to complex formation with 

bicincchoninic acid resulting in a bluish color change that can be measured by 

absorbance at 562 nm. The assay was performed according to the manufacturers 

instructions. The absorbance was measured using a spectrophotometer. 

 

Pierce BCA Protein Assay Kit, 23227 

 

3.6.5 One-dimensional SDS-polyacrylamide-gel electrophoresis 

SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) is a method used for 

separation of proteins, where denatured proteins are subjected to a one-dimensional 

electric field within a denaturing gel and thereby separated according to their 

molecular weight. To enable concentration of the loaded protein sample before 

passing the separation gel, the samples are first run through a differentially buffered 

stacking gel that is cast on top of the separation gel. SDS-PAGE was carried out in a 

Minigel format (7.3 mm x 8.3 mm x 1.5 mm) using the MiniProtean System (BioRad) 

and subsequently used for western blotting (see 3.6.6). 

Polyacrylamide gels were casted as described below. After polymerization of the 

polyacrylamide gel, the electrophoresis module was assembled and protein samples 

were loaded onto the stacking gel. The electrophoresis module was filled with SDS 

running buffer and electrophoresis was performed at 100 V at RT. 
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10x SDS Running buffer 

30.3 g  Tris base 

144.2 g glycine 

50 ml  20 % SDS 

filled to a final volume of 1000 ml with distilled water 

 

Stacking gel 

2.75 ml distilled water 

3.5 ml  0,5 M Tris-HCl, 0,4 % SDS, pH 6,8 

0.8 ml  acrylamide 

93.8 µl  10 % APS 

9.8 µl  TEMED 

 

Separating gel 

     7,5 %  10 %  12 % 

distilled water    3,5 ml  2 ml  0,9 ml 

acrylamide    4 ml  5,4 ml  6,5 ml 

1.5 M Tris-HCl, 0.4 % SDS, pH 8.8 8,4 ml  8,4 ml  8,4 ml 

10 % APS    135 µl  135 µl  135 µl 

TEMED    13,5 µl  13,5 µl  13,5 µl 

 

N,N,N',N'-Tetramethylethylenediamine (TEMED), Roth 2367.1 

Acrylamide: Rotiphorese Gel30, Roth 3029.1 

 

 



  Materials and methods 

3.6.6 Western blotting and immunodetection 

Western blotting is a method to detect specific proteins from a protein mixture. 

Proteins separated by SDS-PAGE are transferred onto a Polyvinylidene fluoride 

(PVDF) membrane. The proteins bind to the membrane, after which specific 

antibodies can be applied to detect specific proteins.  

After SDS-PAGE the stacking gel was removed and the separating gel was placed in 

blotting buffer. The PVDF membrane was activated by incubating in methanol for at 

least 10 min, followed by washing in blotting buffer for at least 10 min. The SDS-

PAGE gel and the PDVF membrane were assembled into a sandwich and transferred 

onto the Trans-Blot machine. Proteins were transferred at 20 V, 0.3 A for 90 min at 

RT. After transfer, the sandwich was disassembled, the membrane stained with 

Ponceau S solution for 30-60 s, and rinsed with water to detect protein bands and to 

confirm successful transfer. Membranes were subsequently washed with TBS-T and 

blocked for 1 h at RT with blocking buffer (5 % skimmed milk in TBS-T). Incubation 

with primary antibodies (see Table) was carried out at 4 °C overnight with shaking. 

The next day, membranes were washed 3 times for 5 min in TBS-T and incubated 

with the secondary antibody conjugated with HRP in 5 % skimmed milk in TBS-T for 

30 min at RT. After 3 washes of 10 min with TBS-T and once for 10 min with TBS, 

bound HRP was detected using chemiluminescence exposed on X-ray film. 

 

Ponceau S Sigma P7170 

Chemiluminescence Kit Immobilion Western, Millipore WBKLS0500 

Immobilion-P transfer membrane, Millipore IPVH00010 

CL-XPosure Film, Thermo Scientific 34089 
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10x Blotting buffer 

30.3 g  Tris base 

144.1 g glycine 

filled to a final volume of 1000 ml with distilled water. 

1x blotting buffer was diluted from 10x blotting buffer and 20 % methanol were 

added. The buffer was stored at 4 °C. 

 

10x TBS 

60.5 g  Tris base 

87.6 g  NaCl 

filled to a final volume of 1000 ml distilled water and pH adjusted to 7,5 

 

TBS-T 

10x TBS was diluted to 1x TBS and 0.1 % Tween20 was added 

 

3.7 Molecular biology methods 

3.7.1 Equipment and materials 

Eppendorf Thermomixer compact 

Centrifuge: 5417R, Rotor HL118, Eppendorf 

Agarose gel chambers: PerfectBlue Gelsystem, Peqlab  

Geldoc station: U:Genius, Syngene 

PCR machine: Thermocycler Professional trio, Biometra, analytic Jena 

qPCR machine: StepOne Plus Real-Time PCR System, Applied Biosystems 

Flow cytometer: BD Biosystems FACS Canto II with BD FACS Diva Software 6.1.3 

FlowJo software 7.6 
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3.7.2 Extraction of mouse tail DNA 

For mouse genotyping, DNA was isolated from small tail biopsies. The tissue was 

digested in 250 µl DNA lysis buffer overnight at 55 °C with shaking at 800 rpm. 

After this, 250 µl isopropanol was added and mixed by inverting the tube several 

times, followed by centrifugation for 10 min at 15000 x g. The supernatant was 

removed and the pellet was washed with 200 µl 70 % ethanol followed by 

centrifugation for 5 min at 15000 x g. The pellet was air-dried for 10 min, 100 µl 

Tris-EDTA (TE) buffer was added and samples were incubated 2 hours at 55 °C to 

dissolve the pellet. 

DNA lysis buffer 

0.1 M   Tris-HCl, pH 8.5 

5 mM   EDTA, pH 8.0 

0.2 %   SDS 

0.2 M   NaCl 

100 µg/ml Proteinase K (Roche 03115828001) 

 

TE Buffer 

10 mM  Tris-HCl, pH 8.0 

1 mM  EDTA, pH 8.0 

 

3.7.3 Extraction of mouse epidermis 

Mouse epidermis was extracted using ammonium thiocyanate that induces a split 

within the lamina lucida zone of the BM and therefore allows the separation of 

epidermis from dermis without further damage to the tissue. After isolation of the skin 

as described earlier, the skin piece was floated epidermis side up on ammonium 
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thiocyanate solution for 30-45 min on ice. Subsequently, the skin was washed with 

PBS and the epidermis was carefully removed using forceps. Epidermis was either 

snap frozen in liquid nitrogen and stored at -80 °C or directly processed for protein or 

RNA isolation. To this end, the epidermis was mixed with lysis buffer or RNA 

extraction buffer for protein or RNA isolation, respectively. The tissue was subjected 

to homogenization in Lysing Matrix tubes using a MP FastPrep tissue disrupter at a 

speed of 6.0 and 4 intervals of 30 sec of milling. The samples were allowed to cool 

down for 5 min on ice before centrifugation at 15000 x g for 10 min at 4 °C. The 

supernatant was used for either protein quantification (see 3.6.4) or RNA isolation 

(see 3.7.7). 

 

Ammonium thiocyanate solution 

0.1 M  Na2HPO4 

0.1 M  KH2PO4 

mixed to obtain a 0.1 M NaKHPO4 buffer, and adjusted to pH 6.8 

380 mg NH4SCN was dissolved in 10 ml NaKHPO4 buffer, prepared fresh before use 

 

3.7.4 Magnetic-activated cell separation 

For magnetic-activated cell separation (MACS), cells in single-cell suspension are 

magnetically labeled using magnetic microbead-conjugated antibodies. The labeled 

cells are then applied to column coupled to a magnet that enables the separation of 

positively labeled cells from un-labeled cell populations. 

Primary mouse keratinocytes were isolated as described above (see 3.5.4). 107 cells 

were then resuspended in 100 µl MACS buffer and transferred into a 2 ml eppendorf 

tube. FITC-conjugated CD49f (α6-integrin) was added to the cell suspension (1:50), 
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mixed and incubated for 20 min on ice, protected from light. Cells were washed in 

1.5 ml MACS buffer and centrifuged for 10 min at 4 °C at 600 x g. The supernatant 

was removed and cells were resuspended in 90 µl MACS buffer. 10 µl of anti-FITC 

MicroBeads were added, mixed and incubated for 15 min on ice, protected from light. 

Cells were washed and centrifuged as before, the supernatant was removed and the 

cells were resuspended in 500 µl MACS buffer. The column was attached to a magnet 

and primed by rinsing with 500 µl MACS buffer. Cells were passed through a 30 µm 

filter and placed onto the column. The flow-through was the α6-integrin-negative 

population. After 3 washes with 500 µl MACS buffer the column was removed from 

the magnet and the magnetic labeled 6 integrin positive population was eluted with 

1 ml of MACS buffer. The cells were pelleted and subjected to RNA isolation (see 

3.7.7). 

FITC-conjugated primary antibody α6 integrin (CD49f; BD, 555735) 

Anti-FITC MicroBeads Miltenyi Biotech, 130-048-701 

MS Columns Miltenyi Biotech, 130-042-201 

Pre-Separation Filters, 30 µm (Miltenyi, 130-041-407) 

 

MACS Buffer 

2 %  FBS 

2 mM  EDTA, pH 8.0 

in PBS, sterile filtered 

 

3.7.5 Polymerase chain reaction 

Polymerase chain reaction (PCR) is a technique for DNA amplification. In the 

presence of a DNA template strand, oligonucleotides (forward and reverse primers) 
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bind to the template at specific complementary sites and the DNA polymerase (Taq 

polymerase) synthesizes a new DNA strand using dNTPs. To amplify a specific DNA 

fragment, several (30-35) cycles of the following 3 steps are preformed: the DNA 

template strand is first denatured at 95 °C, primers are subsequently allowed anneal to 

the template (55-68 °C depending on the primers) and the DNA is synthesized at 

72 °C. Custom designed oligonucleotides were synthesized by Eurofins MWG 

Operon (Ebersberg, Germany). Oligonucleotides used for genotyping and the 

corresponding PCR product fragment sizes are listed below. 

 

Genotyping PCR reaction 

2 µl  10x Dreamtaq PCR buffer (Fermentas) 

0.4 µl  dNTP (10 mM) (Fermentas) 

1 µl  forward primer (10 pmol) 

1 µl  reverse primer (10 pmol) 

0.2 µl  Dream Taq Polymerase (Fermentas) 

1 µl  isolated tail DNA 

final volume adjusted to 20 µl with distilled water 

 

PCR programs 

The following PCR reactions were performed for 35 cycles (step 5-7), as a touch 

down PCR from 68 - 60 °C (ILK) and 60 - 53 °C (Cre) in 9 cycles by sequential 

reduction of the annealing temperature (-1 °C/cycle; step 2-4): 
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ILK PCR     Cre PCR 

Step temp (°C) time (sec)  Step temp (°C) time (sec) 

1 95  60   1 95  60 

2 95  30   2 95  30 

3 68  30   3 68  30 

4 72  30   4 72  45 

5 95  30   5 95  30 

6 60  30   6 60  30 

7 72  30   7 72  45 

8 72  300   8 72  300 

9 16  ∞   9 16  ∞ 

 
The following PCRs were performed for 36 cycles (step 2-4) for rTA PCR and for 35 

cycles (step 2-4) for LacZ PCR: 

rTA PCR     LacZ PCR 
 
Step temp (°C) time (sec)  Step temp (°C) time (sec) 

1 95  60   1 95  90 

2 95  30   2 95  20 

3 60  30   3 60  45 

4 72  20   4 72  60 

5 72  300   5 72  120 

6 16  ∞   6 16  ∞ 
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Name Sequence 5`-3 Product size 

ILK fw GTCTTGCAAACCCGTCTCTGCG fw and rev:  

340 bp floxed allele 

290 bp wild type allele 

Fw and KO: 

1000 bp wild type allele 

250 bp KO allele 

ILK rev CAGAGGTGTCAGTGCTGGGATG 

ILK KO CCCTTCACATCCCATACCAACTC 

Cre fw AACATGCTTCATCGTCGG 350 bp for transgene 

Cre rev TTCCGATCATCAGCTACACC 

rTA fw CGCTGTGGGGCATTTTACTTTAG 450 bp for transgene 

rTA rev CATGTCCAGATCGAAATCGTC 

LacZ 1 AAAGTCGCTCTGAGTTGTTAT 550 bp wild type allele 

250 bp transgene allele LacZ 2 GCGAAGAGTTTGTCCTCAACC 

LacZ 3 GGAGCGGGAGAAATGGATATG 

 

3.7.6 Agarose gel electrophoresis 

Agarose gel electrophoresis is a standard method to separate DNA fragments 

according to their size. The method was used to identify amplified PCR products. The 

gel was prepared by dissolving 1,5 % w/v agarose in 1xTAE buffer by boiling in a 

microwave. For 100 ml of melted agarose, 4 µl of ethidium bromide was added. 

Ethidium bromide is a DNA intercalating reagent that emits fluorescence when 

exposed to UV light. The melted agarose was poured into a casting mold and allowed 

to set at RT. The gel was subsequently placed into a gel electrophoresis chamber and 

the chamber was filled with 1xTAE buffer. The DNA was mixed with 6 x loading 

buffer and loaded on the gel. Electrophoresis was carried out at 100-130 V at RT and 
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DNA bands were detected under UV light at 366 nm. The DNA fragment size was 

determined by comparison to a DNA ladder of known size. 

 

DNA ladder: Gene Ruler DNA ladder mix, Thermo Scientific SM0331 

 

TAE buffer (50 x) 

2 M  Tris base 

50 mM  EDTA 

57.1 ml glacial acetic acid 

adjusted to a final volume of 1 l with distilled water 

 

6x DNA loading buffer 

7.5 ml   glycerol 

3.0 ml  0,5 M EDTA, pH 8,0 

0.0625 g bromphenol blue 

14.5 ml distilled water 

 

3.7.7 RNA isolation 

Cells or tissue extracts were lysed in RNA lysis buffer and homogenized by passing 

them through a 20 G needle 5 times. 

The RNeasy Plus Mini Kit (Qiagen) was used for RNA isolation following the 

manufacturer’s instructions. In brief, genomic DNA was removed by passing the 

RNA lysate through a gDNA eliminator column (Qiagen). Ethanol was added to 

precipitate the RNA that is subsequently trapped in a spin column. After washing, the 
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RNA is subsequently eluted in distilled water. RNA was either used directly for 

cDNA synthesis (see below) or stored at -80 °C. 

 

RNeasy Plus Mini Kit, Qiagen 74134 

 

3.7.8 Quantitative real-time polymerase chain reaction  

Quantitative real-time polymerase chain reaction (qRT-PCR) is a PCR-based method 

that allows the detection and visualization of the amplified DNA product using 

fluorescent dyes in real time. This method was used to quantitatively measure gene 

expression at the RNA level. The isolated RNA was first reverse-transcribed to 

cDNA, and then using target gene-specific primers and SYBR-green fluorescent 

reagent the amount of cDNA amplification was quantified. Analysis was done 

manually using the comparative cyclic threshold method (see below). For a complete 

list of primers used in this study see Appendix A. 

 

cDNA synthesis (Applied Biosystems High Capacity cDNA Reverse Transcriptase Kit 

(4368814)) 

 

2 µl   10x RT Buffer 

2 µl  10x random primer 

0.8 µl  25x dNTPs (100 mM) 

1 µl  reverse transcriptase 

0.5 - 1 µg RNA 

final volume adjusted to 20 µl with RNase-free water 
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Thermocycler program 

25 °C  10 min 

37 °C  2 h 

85 °C  5 min 

4 °C    

cDNA was stored for 2 days at 4 °C or at -20 °C for long-term storage 

 

qPCR Mix 

Measurements were always performed in triplicates 

Single reaction: 

10 µl   2x SYBR Green (DyNAmo Color Flash, Thermo Scientific F-416) 

0.5 µl  forward primer (10 µM) 

0.5 µl  reverse primer (10 µM) 

8 µl  distilled water 

1 µl  cDNA (diluted 1:5) 

 

3.7.8.1 Analysis of qRT-PCR 

qRT-PCR analysis was carried out according to the relative quantification method 

with primer efficiency correction. 

Efficiency (E) was calculated from the slopes of a cDNA dilution (1:2, 1:5, 1:10) 

calibration curve according to the equation: E= 10 (-1/slope) 

The calculation of the ratio was made according to the equation: 

Ratio = ((Etarget) 
ΔCt

target
(control-sample)) / ((Ereference) 

ΔCt
reference

(control-sample)) 

where ΔCt = crossing point difference of cyclic threshold 
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3.7.9 Flow cytometry 

Flow cytometry and Fluorescence-activated cell sorting (FACS) are methods for 

specific cell type identification and quantification from a mixed cell suspension. Cells 

can be identified by their size, granularity, by expression of genetically engineered 

fluorescent proteins (such as Enhanced Green Fluorescent Protein; EGFP) or by 

differential expression of cell surface markers that can be detected by fluorescent-

labeled antibodies. Cells in suspension are passed through a stream of fluid where 

lasers of different wavelengths can excite the fluorescent labels. An electronic 

detection system reads these signals and displays them as events of passed cells. For 

this study, flow cytometry was used to quantify the number of HFSCs and Lgr5-

EGFP-expressing cells. 

Primary mouse keratinocytes were isolated as described above (see 3.5.4). 

Keratinocytes were resuspended in 5 ml FACS buffer and passed through a 40 µm 

cell strainer. Cells were counted and the appropriate number of cells was transferred 

to eppendorf tubes for antibody staining. Cells were centrifuged at 300 rcf for 8 min 

at 4 °C, resuspended in 100 µl FACS buffer, and incubated with antibodies (see 

below) for 30 min on ice. Cells were washed with 1 ml FACS buffer, centrifuged as 

before, resuspended in 500 µl FACS buffer containing 7-aminoactinomycin D (7-

AAD) and subjected to flow cytometry. Before the first measurement, flow cytometer 

settings and compensation settings were calibrated and antibody dilutions were 

titrated. 

Flow cytometry analysis of processed samples was carried out using FlowJo software. 

Here, cells were gated according to their size (FSC-A/SSC-A), cell doublets were 

excluded (FSC-W/FSC-A) and live cells were discriminated by 7-AAD (FSC-A/ 

PerC-CP-Cy7). From the live cell population, cells were gated for their expression of 
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α6-integrin (FITC/Pacific blue) and CD34 (APC-A), or for the expression of EGFP 

(FITC). 

 

FACS buffer: 5 % FCS in 1 x PBS 

Antibodies:  

CD49f-FITC (BD 555735; 1:500)  

CD49f-Pacific Blue (eBioscience; 1:300) 

CD34 (eBioscience clone RAM34; 1:100) 

7-AAD (eBiosciences, 1:100) 

 

3.8 Microscopy 

3.8.1 Light microscopy 

Light microscopy was carried out for histological analysis using Leica DM4000 and 

10x or 20x objectives. 

 

3.8.2 Laser scanning confocal microscopy 

Fluorescence images were collected by laser scanning confocal microscopy. All 

images were recorded sequentially and averaged at least from two frames. Fluorescent 

images were quantified using ImageJ (NIH, version 1.47h). 

 

Confocal microscope Leica TSC SP-5X with Leica software LAS software version 4 

Objectives used: 

Objective type Magnification/Aperture Immersion Article number 

HC PL APO 20x/0.70 IMM/CORR 11506191 

HCX PL APO 40x/1.25-0.75 OIL 11506253 
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3.8.3 Traction force microscopy 

Traction force microscopy (TFM) was carried out to visualize and measure cellular 

traction forces. The method is a combination of cell microscopy and computational 

analysis. The principle behind TFM is that fluorescent microbeads embedded within 

an elastic substrate can be tracked. Deformation of the substrate caused by cellular 

traction forces leads to the displacement of the beads. Cellular traction forces can then 

be computed based on the elastic modulus of the substrate and the displacement of the 

beads. 

Glass-bottomed imaging µ-dishes (Ibidi) were activated as described for glass 

coverslips (see 3.5.6). Polyacrylamide gels (7.5 % acrylamide/0.25 % bis-acrylamide) 

containing 0.2 µm-diameter fluorescent beads (1:125) were cast on the glass surface 

resulting in a gel with a Young`s modulus of 50 kPa. The gel was allowed to 

polymerize for 5 min at RT after which unpolymerized acrylamide was removed by 3 

washes with PBS. The gel was submerged with 10 mM Sulfo-SANPAH (Sigma) in 

50 mM HEPES, pH 8.5 and exposed to UV light at 254 nm for 30 min to activate the 

crosslinker. After 3 washes with 50 mM HEPES in the dark, the FN (5 µg/ml in 50 

mM HEPES) was crosslinked to the gels over night at 4 °C. Subsequently, coating 

medium was removed and the gels were washed for 3 times with PBS. The gel was 

covered with PBS and sterilized by exposure to UV light for 30 min. Gels were kept 

submerged in PBS protected from light until cells were plated. 

The elasticity of the gel was determined manually as described previously (Pelham 

and Wang, 1997). Polyacrylamide gels of a defined size were deformed with a 

HCX PL APO CS 63x/1.30 GLYC 21°C 11506194 

HCX PL APO CS 100/1.46 OIL 11506274 
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defined force (F). The Young`s modulus (Y) was calculated according to the 

equation: Y=(F/A)/(Δl/l) 

l= length of gel 

Δl= change in length 

A= cross-sectional area of gel 

 

Fibroblasts were trypsinized (see 3.5.2) and plated in low density (5x103 cells per 

dish) onto the gel. Cells allowed to adhere and spread for 6 h prior to imaging. 

Imaging was performed with a 63x oil objective at 37 °C and 5 % CO2. Live images 

were captured with an Axio Observer (Zeiss) microscope, a CSU10 spinning-disc 

confocal scanhead (Yokogawa), and a Cascade II EMCCD camera (Photometrics). 

Acquisition was controlled by Metamorph software. Differential interference contrast 

(DIC) images were taken to measure cell size. Beads were simultaneously imaged 

with a 488 nm laser. To quantify the total traction force a single cell exerts on a 

substrate, bead displacement was quantified while cells were detaching from a 

substrate. For this, cells were imaged for 20 min at 1 min/frame rate in DMEM 

containing 0,05 % trypsin.  

Displacement vectors were calculated using Particle Imaging Velocimetry (PIV). 

Subsequent Fourier transform traction cytometry (FTTC) with regularization (7x109) 

was performed to calculate traction forces using the ImageJ Plug-In (Tseng et al., 

2011). The sum of all force magnitudes was multiplied with the cell size to achieve 

total traction force per cell. 

 

Microbeads Fluoresbrite Plain YG 0.2 µm Polysciences 17151-10 
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3.9 Statistical Analysis 

Statistical analyses were performed using GraphPad Prism software (GraphPad, 

version 5.0). Statistical significances were determined by the Mann-Whitney U-test, 

ANOVA with Dunn’s post hoc test, Student’s t-test, or Chi-square test. The test used 

for each experiment and the number of biological replicates is indicated in the 

corresponding figure legend. When a test for normally distributed data was used, 

normal distribution was confirmed with the Kolmogorov–Smirnov test (α = 0.05). 
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4 Results 

4.1 ILK promotes force generation and matrix assembly 

ILK is an essential adaptor protein that links the actin cytoskeleton to β1- and β3 

integrins at cell-ECM contact sites (Wickström et al., 2010). The ECM-actin linkage 

is essential for force generation. On the other hand, force generation is critical for 

essential processes such as cell shape regulation and ECM remodeling (Daley and 

Yamada, 2013; Stanchi et al., 2009). Therefore it was of great interest to examine the 

role of ILK in these processes.  

4.1.1 ILK-deficient fibroblasts show a disorganized actin cytoskeleton and 

altered FA structures 

FBs are specialized adhesions essential for FN fibrillogenesis. Interestingly, FB 

maturation is a force-dependent process (Pankov et al., 2000). To investigate the 

impact of ILK on cellular force generation and matrix assembly in vitro, the formation 

and maturation of integrin-actin adhesion complexes was first examined. For this, 

fibroblasts lacking ILK (ILK -/-) and control fibroblasts (ILK f/f) were subjected to 

immunofluorescence analysis with antibodies against paxillin, a marker of mature 

FAs and FBs, and phalloidin to detect F-actin. 

ILK f/f fibroblasts displayed a spread and elongated morphology with long, thick 

actin stress fibers (Figure 4.1.1). Immature FCs and mature FAs were present at the 

edges of the cell. Thin, elongated FBs were present in the cell center. Both FAs and 

FBs were directly linked to the actin cytoskeleton. ILK-deficient fibroblasts, however, 

showed a less spread and rounded morphology and lacked cytoplasmic actin stress 

fibers (Figure 4.1.1). Instead, large, cortical actin bundles were present. Large, 

paxillin-containing FAs were present at cell edges, but they were poorly associated 



with the F-actin bundles. Strikingly, small FCs and FBs were completely absent. 

These data indicate that ILK is required for FA maturation in fibroblasts.  

 

Figure 4.1.1. Immunofluorescence analysis of ILK f/f and ILK -/- fibroblasts stained 

for paxillin (red) and phalloidin (green). ILK f/f fibroblasts contain FCs (arrow), 

mature FAs (empty arrowhead), and FBs (arrowhead), which are linked to the actin 

cytoskeleton. ILK-deficient fibroblasts lack FCs as well as FBs (empty arrowhead) 

and display a disorganized actin cytoskeleton. 

 

4.1.2 ILK is required for force generation 

FA maturation is a force-dependent process that is driven by myosin activity 

(Vicente-Manzanares and Horwitz, 2011). On the other hand FA maturation is 

required to generate and transduce force to the cellular substrate in order to remodel 

the ECM. To investigate whether ILK is required for force generation, TFM was 

carried out. TFM can be used to measure adhesive forces that a single cell exerts on 

its underlying substrate (Tseng et al., 2011). The analysis revealed that the total 

traction force generated by ILK f/f fibroblasts was 128 ± 15 nN, whereas ILK -/- 

fibroblasts generated traction forces of 44.3 ± 9.2 nN (Figure 4.1.2). This indicates 

that ILK is essential for cellular force generation. 
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Figure 4.1.2. A. Heat-scale map of traction stress magnitudes. The color code 

indicates local traction in kilopascals (kPa). Cell outlines are indicated by dotted 

lines. B. Quantification of total cellular traction forces. ILK -/- cells generate less 

traction forces than wild type cells. Data are presented as mean ± SEM, n=56/22, 

**p=0.0011, Student´s t-test. 

 

4.1.3 ILK is required for matrix assembly and remodeling 

To analyze whether ILK is required for force-dependent ECM assembly, fibroblasts 

were cultured in vitro and their ability to deposit FN matrices was analyzed. The 

analyses were performed in the context of a study in which the stability and turnover 

of ILK was investigated (Radovanac et al., 2013). Heat shock protein 90 (Hsp90) was 

found to bind and stabilize ILK thereby facilitating its interaction with α-parvin. 

Therefore, the effect of an Hsp90 inhibitor 17AAG (Gorska et al., 2012) on FN 

fibrillogenesis was additionally assessed in this experiment (Figure 4.1.3.1). 

Immunofluorescence analysis showed that ILK f/f fibroblasts had deposited a FN-rich 

matrix with distinct fibrillar network architecture within 24 h after plating (Figure 

4.1.3.1A). Inhibition of Hsp90 by treatment with 17AAG led to a significant reduction 

of FN fibrillogenesis (Figure 4.1.3.1A, B). FN deposition was also detected in ILK -/- 

fibroblasts cultures but it was strongly reduced and the formation of FN fibrils was 

absent. Treatment with 17AAG had no additive effect (Figure 4.1.3.1A, B). Western 



blot analyses of cell lysates revealed no difference in FN protein expression between 

ILK-deficient and wild type fibroblasts. Furthermore, inhibition of Hsp90 by 17AAG 

had no impact on FN expression in either ILK f/f or ILK -/- fibroblasts. (Figure 

4.1.3.1C). Together the data show that ILK is not required for FN expression but is 

critical for force-dependent FN matrix assembly.  

 

Figure 4.1.3.1. A. Immunofluorescence staining of the FN matrix and the actin 

cytoskeleton (phalloidin) to visualize cell area. Decreased FN matrix deposition is 

seen in ILK -/- cells compared to ILK f/f cells as well as in ILK f/f cells treated with 

17AAG. Scale bar 100 μm. B. Quantification of the integrated intensity of the FN 

staining normalized to total cell surface area. Data are presented as mean ± SEM, 

n=4. C. Western blot analysis of FN protein expression in ILK f/f and ILK -/- 

fibroblasts shows no difference in FN protein levels. GAPDH was used as loading 
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control. Treatment with the HSP90 inhibitor 17AAG for 24 h does not affect FN 

protein levels. 

 

To test whether the impaired adhesion maturation and local force generation in ILK-

deficient fibroblasts impacts ECM remodeling in a more physiological setting, 3D 

collagen gel contraction assays were performed. This assay can be used to measure 

the ability of cells to migrate, generate forces and to remodel the collagen network. 

Wild type fibroblasts that were embedded into a 3D collagen matrix exerted forces on 

their substrate and caused significant gel contraction (Figure 4.1.3.2). Fibroblasts 

lacking ILK were completely unable to contract the gel (Figure 4.1.3.2).  

 

Figure 4.1.3.2. A. Gel contraction assay with ILK f/f and ILK -/- fibroblasts. ILK-

deficient fibroblasts are unable to contract the gel. B. Quantification of gel 

contraction. Data are presented as mean ± SEM, n=3. 

 

4.2 ILK is required for the maintenance of HFSCs  

The results so far indicated that ILK is required for adhesion maturation, cellular force 

generation and ECM assembly. To investigate the role of these processes in vivo, a 

mouse model with an epidermis-specific deletion of ILK was used (ILK f/f - Keratin-

5 Cre; from here on ILK-K5). This model was chosen as it is known that the 

interaction with SCs and their niche is essential for tissue homeostasis (Scadden, 



2006). However, the functional importance of ECM remodeling within the SC niche 

has not been assessed. SCs in the skin, and especially in the HF, are well 

characterized, making the epidermis a particularly suitable model organ for these 

studies. 

4.2.1 Epidermal deletion of ILK causes progressive loss of HFSCs 

The most obvious phenotype of ILK-K5 mice is their progressive hair loss. At the 

time of birth, ILK-K5 mice are indistinguishable from their heterozygous littermates 

but from week 3 onwards ILK-K5 mice start losing their hair, resulting in nearly 

complete alopecia around 6-8 weeks of age (Figure 4.2.1.1).  

Figure 4.2.1.1. ILK-K5 mice display partial alopecia at P21 and progressively loose 

their hair resulting in complete alopecia at P57. 

 

The bulge HFSC niche of the cycling part of the HF is established around P21, when 

HF morphogenesis is completed. The onset of alopecia in ILK-K5 at the time of bulge 

establishment suggested a role of ILK in regulation of HFSCs. Bulge HFSCs can be 

identified on the basis of the expression of two cell surface markers, CD34 and α6 

integrin. FACS analysis of epidermis at P21, the first telogen phase after HF 

morphogenesis, using these two markers revealed a 50 % decrease in bulge HFSC 

numbers in ILK-K5 mice (Figure 4.2.1.2A, B). Immunofluorescence staining for 

CD34 further showed that a CD34-positive compartment was not present in all HFs of 
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ILK-K5 mice. HFs positive for CD34 showed a reduction in the size of the bulge 

compartment (Figure 4.2.1.2C, D). In order to exclude that the reduction in bulge SCs 

at P21 was due to a reduction in the number of HFs in ILK-K5, HF density was 

assessed. The analysis revealed no difference in the HF density between control and 

ILK-K5 at P21 (Figure 4.2.1.2E). 

At P57, when HFs of control mice had entered the second telogen phase, the majority 

of HFs was destroyed in ILK-K5 mice. The remaining HFs did not show CD34 

staining (Figure 4.2.1.2F). In addition, no CD34-positive bulge SCs were detected by 

FACS analysis of the epidermis (Figure 4.2.1.2A, B). These data indicated that the 

progressive hair loss was associated with a loss of bulge SCs in ILK-K5 and that the 

reduction of SCs occurred prior to the loss of HFs. 
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Figure 4.2.1.2. A. Representative plots of FACS analyses with antibodies against 

CD34 and α6-integrin from P21 and P57 epidermis. B. ILK-K5 mice show reduced 

amounts of CD34+/α6+ HFSCs. FACS analyses of CD34+/α6-integrinhi bulge SCs 

shows progressive reduction of these cells in ILK-K5 skin from P21 to P57 (mean ± 

SEM; n=8; **p=0.0042 for P21; n=5; **p=0.0079 for P57; Mann-Whitney). C. 

Immunofluorescence staining for the bulge SC marker CD34 (red) and EPC marker 

K14 (green) from P21 skin. CD34 staining within the bulge (Bu) is decreased in P21 

and absent in P57 ILK-K5 HFs. Scale bars 30 μm. D. Quantification of bulge length 

from CD34 stainings at P21. Only HFs where CD34 staining was clearly present 

were analyzed (mean ± SEM; n=3; *p=0.05, Mann-Whitney). E. Hematoxylin/eosin 

staining of P21 skin (scale bars 100 μm). No difference in HF density between control 

and ILK-K5 mice is observed (mean ± SEM; n=3; ns=not significant, p=0.70, Mann-

Whitney). F. Immunofluorescence staining for the CD34 (red) and K14 (green) from 

P57 skin. CD34 staining is absent in ILK-K5 HFs. Scale bars 30 μm. 

To investigate whether HFSC lineage identity is established in ILK-K5 by P21, qRT-

PCR analysis of transcription factors that have been shown to be essential to the 

establishment of bulge SC identity (Schepeler et al., 2014) was performed from α6-

integrin+ sorted EPCs (Figure 4.2.1.3). No difference in Sox9, Nfatc1 or Lhx2 

expression was detected between control and ILK-K5 cells, indicating that HF lineage 

identity was not affected per se. 

 

Figure 4.2.1.3. RT-qPCR analysis of key transcription factors required to establish 

bulge SC fate. No significant difference is observed in expression of Lhx2 or Nfatc1. 

Sox9 expression is slightly increased (mean ± SEM; n=4; ns=not significant, 

p>0.2817; *p=0.0211, Mann Whitney). 



Upon activation, a subset of HFSCs transform into HG cells, divide and generate a 

pool of TACs (Greco et al., 2009; Hsu et al., 2014). TACs lack expression of CD34, 

but maintain the expression of the progenitor marker Keratin-15 (K15) and initiate 

expression of P-Cadherin, a specific marker for these cells (Li et al., 2003; Muller-

Rover et al., 1999). To determine whether TACs were present in ILK-K5 HFs, 

immunofluorescence analysis for P-Cadherin was carried out. In control HFs, P-

Cadherin staining was restricted to the HG, whereas in ILK-K5 HFs the staining 

significantly extended upwards (Figure 4.2.1.4). Interestingly, this pool partly 

overlapped with K15 at the putative bulge. These results indicated that the pool of 

actively cycling TACs might be increased in ILK-deficient HFs and that these cells 

might be replacing the quiescent bulge HFSCs. 

 

Figure 4.2.1.4. Immunofluorescence analysis of the bulge (Bu) marker K15 (green) 

and the TAC marker P-Cadherin (P-Cad; red) in P21 HFs shows expansion of both 

markers and mixing of the K15 and P-Cad-positive compartments (arrows). Scale 

bars 30 μm. 

 

To assess whether the HFSC were indeed activated, a short pulse BrdU labeling assay 

was performed to identify proliferating cells. After a 1-h BrdU pulse, a significant, 3-

fold increase of BrdU-positive cells were observed in ILK-K5 HFs compared to 
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controls (Figure 4.2.1.5A), indicating that proliferation was increased in ILK-deficient 

HFs. 

Bulge SCs have been shown to be quiescent, and this manifests in their ability to 

retain incorporated EdU or BrdU for a long period of time. Hence, these cells are also 

termed label retaining cells (LRCs) (Cotsarelis et al., 1990). To test whether the 

increased proliferative activity in ILK-K5 HFs was accompanied with a reduction in 

quiescent LRCs, an EdU-label retaining assay was performed. Control and ILK-K5 

mice were pulsed with EdU at P10 for a period of 48 hours at 12-hour intervals and 

label-retention was analyzed in telogen at P21. A significant decrease in LRC 

numbers was observed in ILK-K5 compared to controls (Figure 4.2.1.5B). Together, 

these data indicate that deletion of ILK leads to a progressive depletion of quiescent 

bulge HFSCs. This is accompanied by an increased pool of activated TACs and 

increased proliferation within the HFs. 

Figure 4.2.1.5. A. Detection of BrdU-positive cells within HFs of P21 mice after a 1 h 

BrdU pulse shows increased numbers of BrdU-positive cells in ILK-K5 HFs. Scale 

bars 50 μm. Values in quantification represent mean ± SEM of BrdU-positive cells 



per total HF cells (n=3; **p=0.0036, Mann-Whitney). B. Analysis of EdU-positive 

LRCs within HFs of P21 mice after 10 d of EdU chase. Immunostaining shows 

decreased presence of LRCs in ILK-K5 bulge (Bu) SCs. Scale bars 30 μm. Values in 

quantification represent mean ± SEM of EdU-positive cells per total cells in HFs 

(n=4; *p=0.05, Mann-Whitney). 

 

4.3 Loss of HFSCs in ILK-deficient epidermis occurs 

independently from morphogenesis 

We next asked whether the progressive loss of HFSCs was secondary to impairment 

of HF morphogenesis in ILK-K5 mice, or whether ILK is also required to maintain a 

stable pool of HFSCs in adult mice. To this end an inducible, epidermis-specific ILK 

knockout mouse was generated (ILK-iK14). In this system Cre expression is induced 

by doxycycline. After 8 months of doxycycline feeding the mice began showing 

patches of spontaneous alopecia (Figure 4.3A).  

The deletion of ILK at this time point was confirmed by immunofluorescence staining 

of ILK-iK14 skin, which showed absence of ILK staining within the IFE and HFs in 

the areas affected by hair loss (Figure 4.3B). Histological analyses of HFs showed the 

typical thin and short architecture of telogen HFs in controls (Figure 4.3C). In 

contrast, the HFs in ILK-iK14 mice were thicker with a wider infundibulum and 

thickened ORS (Figure 4.3C), resembling HFs of ILK-K5 mice. FACS analysis 

further revealed a reduction in CD34-positive bulge SCs (Figure 4.3D). These data 

indicate that ILK plays an essential role in the maintenance of quiescent HFSCs 

independently from morphogenesis. Due to the inefficiency of the knockout and the 

long time period required to achieve the phenotype, these mice were not used for 

further analyses. 
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Figure 4.3. A. Macroscopic phenotype of ILK-iK14 mice after 8 months of 

doxycycline feeding reveals hair loss and blister-induced wounding. B. 

Immunofluorescence staining for ILK (red) and K14 (green). ILK staining is not 

detected within the IFE (asterisk) or HFs (arrows) of ILK-iK14 mice. Scale bars 50 

μm. C. Hematoxylin and eosin staining shows telogen HF morphology in control skin, 

whereas HFs in ILK-iK14 are enlarged with a thickened infundibulum and ORS 

(arrows). Scale bar 200 μm. D. FACS analysis of CD34+/α6 integrinhi bulge SCs 

shows reduction of these cells in ILK-iK14 skin (mean ± SEM; n=3). 

 

4.4 ILK-deficiency leads to loss of bulge SCs through enhanced 

differentiation 

The data so far indicated that deletion of ILK leads to loss of SCs quiescence and 

progressive exhaustion of the bulge SC pool. To investigate the fate of these cells in 

vivo, we performed lineage tracing experiments. To this end ILK f/f mice were 

crossed with an Lgr5-promoter-driven inducible Cre line that contains an IRES-EGFP 



as well as a LacZ Cre reporter. This model allowed us to: 1) Delete ILK specifically 

in Lgr5-expressing cells that are a subpopulation of CD34-expressing bulge HFSC. 2) 

Quantify Lgr5-expressing HFSC after ILK deletion using the EGFP marker. 3) Trace 

the fate of ILK-deficient HFSCs using the LacZ reporter. 

Daily administration of tamoxifen in ILK-Lgr5 mice from P17 until P21 resulted in 

Lgr5-Cre activation that was confirmed by the expression of LacZ (Figure 4.4.1). 

Analyses of mice at P22, one day after the last tamoxifen injection, revealed Lgr5-

expressing cells marked by β-galactosidase label within the telogen HF bulge and in 

the HG, as expected. Control mice and ILK-deficient mice showed comparable 

numbers of labeled HFs as well as similar localization of β-galactosidase-positive 

cells (Figure 4.4.1). 

 

Figure 4.4.1. Lineage-tracing analysis of β-galactosidase-positive Lgr5+ SC progeny 

of control and ILK-Lgr5 mice in P22 skin, directly after 5 consecutive days of 

tamoxifen application. β-galactosidase-positive Lgr5 progeny are seen in the bulge 

and secondary germ regions of HFs (arrows) both in controls and ILK-Lgr5 mice. 

Scale bars 100 μm.  
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Upon activation of Lgr5-positive SCs during the first post-morphogenesis anagen 

phase at P30, β-galactosidase-positive Lgr5 progeny were found in the permanent part 

of the HF, the isthmus and the bulge, as well as in the non-permanent part within the 

ORS and in the matrix of control HFs (Figure 4.4.2A, B). ILK-Lgr5 HFs, however, 

showed less β-galactosidase label within the isthmus, but comparable labeling within 

bulge and ORS, when compared to controls (Figure 4.4.2A, B). More strikingly, ILK-

Lgr5 mice showed a significant increase in the presence of β-galactosidase-positive 

matrix cells (Figure 4.4.2A, B). 

The expression of Lgr5 is restricted to the bulge, HG, and ORS, whereas the matrix 

cells no longer express Lgr5 (Jaks et al., 2008). We therefore used the Lgr5-promoter 

driven EGFP to further quantify the differentiation of these cells. FACS analysis of 

EGFP-positive Lgr5-expressing SCs revealed a significant reduction in the number of 

EGFP-positive cells in ILK-Lgr5 mice (Figure 4.4.2C). Immunofluorescence analysis 

showed efficient deletion of ILK at this point (Figure 4.4.2D). 



 

Figure 4.4.2. A. β-galactosidase staining of P30 skin shows Lgr5 progeny in the 

isthmus (asterisk), bulge (arrowhead), ORS (bracket) and matrix (arrow) 

compartments in HFs of control mice, whereas ILK-Lgr5 mice show strongest 

staining in the matrix cells (arrows). Scale bars 100 μm. B. Quantification of the 

distribution of β-galactosidase-positive cells within P30 HFs (mean ± SEM; n=4; 

*p=0.0159, Mann-Whitney). C. FACS analysis of EGFP+ Lgr5-Cre expressing cells 

shows a reduction in this cell population in P30 ILK-Lgr5 mice (mean ± SEM; n=7; 

*p=0.0013, Student’s t-test). D. Immunofluorescence staining for ILK (red) and K14 

(green) at P30. ILK staining is not detected in HFs of ILK-Lgr5 mice (arrows), 

whereas the IFE (arrowhead) and DP (asterisk) show comparable staining to control 

mice. Scale bars 50 µm. 
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After anagen and subsequent catagen, a population of Lgr5-expressing cells returns to 

the bulge and re-establishes its quiescence (Jaks et al., 2008). To determine whether 

this process is perturbed in the absence of ILK, we traced the fate of these cells 

through 2 full rounds of anagen and analyzed the skin at P85. At this stage the overall 

number of HFs that contained β-galactosidase labeled cells was significantly reduced 

in ILK-Lgr5 mice (Figure 4.4.3A, B). In addition, FACS analysis revealed a further 

reduction of EGFP-positive cells in these mice (Figure 4.4.3 C, D). This indicated that 

the ILK-deficient Lgr5-exrpessing cells were unable to return to the bulge and were 

progressively lost from HFs during cycling. Taken together, these results indicate that 

deletion of ILK in Lgr5-positive bulge SCs leads to their enhanced activation and 

differentiation into hair matrix cells. This results in the progressive loss of the HFSC 

pool. 



 

Figure 4.4.3. A. Lineage-tracing of Lgr5 progeny at P85 from control and ILK-Lgr5 

mice shows positive cells throughout HFs of controls, whereas ILK-deleted mice show 

strongly reduced staining. Scale bars 100 μm. B. Quantification of the distribution of 

β-galactosidase staining within P22, P30, and P85 HFs. ILK-Lgr5 mice show reduced 

β-galactosidase staining at P85 (mean ± SEM; n=4; *p= 0.0286, Mann-Whitney). C. 

FACS analysis of GFP+ Lgr5-expressing cells shows a reduction in this cell 

population in P85 ILK-Lgr5mice (mean ± SEM; n=4; *p=0.0381, Mann-Whitney). D. 

Representative FACS plots for quantification of Lgr5-EGFP cells. ILK-Lgr5 mice 

show reduced amounts of EGFP-positive cells. 
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4.5 ILK is required to establish and maintain the bulge SC niche 

Our previous analysis of ILK-deficient fibroblasts had shown that ILK is crucial for 

ECM deposition and remodeling. In addition it was reported that ILK is essential for 

BM maintenance at the dermo-epidermal junction within the IFE (Lorenz et al., 

2007). As the BM represents an integral part of the HFSC niche, it raised the question 

whether changes in the BM microenvironment could regulate SC activation. We 

focused our analyses on LN-332 and LN-511, the two major BM components, as they 

have been shown to influence HF growth and cycling (Sugawara et al., 2007; Tateishi 

et al., 2010). 

 

4.5.1 ILK-deficiency leads to alterations in LN-332 and LN-511 deposition  

First, the composition of the HF BM was analyzed in more detail. 

Immunofluorescence staining for LN-332 and LN-511 in P21 telogen HFs and skin 

showed an inverse gradient of these two LNs within the IFE and HFs in control mice 

(Figure 4.5.1.1). LN-332 staining was more intense in the IFE compared to the HFs 

(Figure 4.5.1.1A), whereas LN-511 staining was weaker in the IFE than around the 

HF (Figure 4.5.1.1B). Within the HF LN-511 was most intense at the distal end of the 

HF surrounding the HG as well as at the isthmus region (Figure 4.5.1.1B). However, 

the bulge region showed only weak staining for LN-511 (Figure 4.5.1.1B). In ILK-K5 

skin, staining for LN-332 and LN-511 was observed in the BM of the IFE and HFs 

(Figure 4.5.1.1). In line with previous observations (Lorenz et al., 2007), LN-332 and 

LN-511 staining showed fragmentation within the IFE of ILK-K5 mice. The BM 

around HFs seemed more intact than that of the IFE. LN-332 staining of ILK-K5 HFs 

revealed reduced deposition around the HG compared to controls (Figure 4.5.1.1A). 



In addition, LN-511 expression was strongly increased around the putative bulge 

marked by K15 staining, as well as surrounding the HG (Figure 4.5.1.1B). 

 

Figure 4.5.1.1. A. Immunofluorescence staining for LN-332 (red) and K15 (green) 

from P21 skin. LN-332 staining shows higher intensity beneath IFE (arrow) than 

around HFs in control skin. Fragmentation of LN-332 staining in the IFE (asterisk) 

and tips of HFs (arrow) is seen in ILK-K5 skin. Scale bars 50 μm. B. 

Immunofluorescence staining for LN-511 (red) and K15 (green) from P21 skin. LN-

511 staining shows highest intensity at the isthmus region and around the HG 

(arrowheads). Only faint staining is observed beneath the IFE (arrow) and around 

the bulge (bracket) in control skin. Fragmentation of LN-511-staining in the IFE 

(asterisk) and high intensity around bulge and HG (brackets) is observed in ILK-K5 

skin. Scale bars 50 μm. 

These alterations in LN-332 and LN-511 were further analyzed by western blotting. 

Protein extracts of skin ECM showed increased levels of LN-γ1, representing LN-

511, and decreased levels of LN-γ2, representing LN-332 in ILK-K5 skin (Figure 

4.5.1.2), demonstrating that the LN-332/LN-511 ratio is dramatically altered in the 

absence of ILK. Taken together these results show that LN-332 and LN-511 are 

deposited in inverse gradients along the IFE and HFs. IFE contains high levels of LN-
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332 and low levels of LN-511, whereas the HF and in particular the HG contains high 

levels of LN-511 and low levels of LN-332. This gradient is severely disrupted in 

ILK-deficient skin, resulting in a reduction in LN-332/LN-511 ratio. 

 

Figure 4.5.1.2. Western blot analysis of LN γ1 and LN γ2 chains from skin extracts. 

Actin is used as loading control. ILK-K5 skin shows increased levels of γ1 and 

decreased levels of γ2, resulting in a decreased γ2 to γ1 ratio (mean ± SEM; n=4; 

*p=0.0286, Mann-Whitney). 

 

We next asked whether ILK would not only be required to establish but also to 

maintain the HFSC BM niche. As we observed loss of HFSCs also when ILK was 

deleted in adult mice, we predicted that the BM defects should also be present in this 

model. To assess this, we analyzed LN-332 and LN-511 distribution in ILK-iK14 

mice. Here, control HFs were in telogen and LN-332 and LN-511 showed an inverse 

gradient with high LN-332 expression in the IFE and highest LN-511 in the HG 

(Figure 4.5.1.3), as already observed earlier in the K5-Cre control mice at P21. 

Immunofluorescence analysis of both LN-332 and LN-511 in ILK-iK14 skin revealed 

fragmentation of the staining beneath the IFE. In addition, ILK-iK14 HFs showed 

weaker staining for LN-332 in the distal end of HFs compared to controls. 

Furthermore, LN-511 staining of ILK-iK14 HFs showed increased intensity around 



the bulge and HG (Figure 4.5.1.3). These data demonstrate that ILK is important for 

the establishment and maintenance of the architecture of the HFSC niche. 

Figure 4.5.1.3. A. Immunofluorescence staining for LN-332 (red) and K15 (green). 

LN-332 staining shows higher intensity beneath the IFE (arrow) than around HFs in 

control skin. Fragmentation of LN-332 staining in the IFE (asterisk) and tips of HFs 

(arrow) is observed in ILK-iK14 skin. Scale bars 50 µm. B. Immunofluorescence 

staining for LN-511 (red) and K15 (green). LN-511 staining shows highest intensity at 

the isthmus region and around HG (arrowheads). Only faint staining is observed 

beneath the IFE (arrow) and around bulge (bracket) in control skin. Fragmentation 

of LN-511 staining in the IFE (asterisk) and high intensity around bulge and HG 

(brackets) is seen in ILK-iK14 skin. Scale bars 50µm. 

 

4.5.2 ILK-deficiency leads to alterations in the epithelial-mesenchymal 

crosstalk 

As we had observed alterations in the BM niche of the HF, we sought to characterize 

the HFSC niche in more detail. A second important component of this niche is the 

DP. It contains highly specialized mesenchymal cells that respond to epidermal Wnt 

signals by secreting growth factors and inhibitors essential for the regulation of SC 

activation and quiescence (Driskell et al., 2011; Millar, 2002). The physical contact of 
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the DP with the HF is crucial for this crosstalk. Mesenchymal cells within the DP are 

marked by the expression of endogenous alkaline phosphatase (AP). Analyses of AP-

stained control HFs at P21 showed a distinct cluster of AP-positive cells in close 

contact with the distal tip of the HF. ILK-K5 HFs showed severe alterations in the 

distribution of AP-positive cells (Figure 4.5.2A). The DPs were enlarged and 

surrounded the entire lower part of the HF. These defects in DP architecture were also 

observed in ILK-iK14 HFs (Figure 4.5.2B). ILK-iK14 control telogen HFs showed a 

DP attached at the distal tip whereas ILK-iK14 HFs, like ILK-K5 HFs, showed an 

enlarged sheet of AP-positive DP cells at the distal tip of the HF (Figure 4.5.2B). This 

indicated that ILK plays an important role in the crosstalk between the HFSC and the 

DP and that impairment is independent of HF morphogenesis. 

 

Figure 4.5.2. A. Alkaline phosphatase (AP) staining to detect DP cells in P21 skin. In 

control skin the DP is found attached to the base of each HF (arrows; left panel). In 

ILK-K5 skin AP-positive cell population is increased and encapsulates the entire base 

of the HF (arrows; right panel) Scale bars 200 μm. B. AP staining to detect DP cells 

in ILK-iK14 skin after 8 months of doxycycline administration. In control skin the DP 



is attached to the base of telogen HFs (arrows; left panel), whereas the DP is 

enlarged and surrounds the hair bulb in ILK-iK14 HFs (arrows; right panel). Scale 

bars 200 µm. 

4.5.3 No alterations in the immune cells within the HF microenvironment 

A third important component of the HF niche are the inflammatory cells. 

Inflammation and the infiltration of immune cells have been shown to cause alopecia 

in human and mice. To exclude the possibility that the presence of immune cells 

would induce HFSC activation, the presence of T cells and macrophages was assessed 

by immunofluorescence and the levels of pro-inflammatory cytokines within the 

epidermis were analyzed by qRT-PCR. Immunofluorescence staining for the T cell 

marker CD3 and quantification of CD3-positive cells showed no major differences in 

T cell infiltrates between control and ILK-K5 skin at P14 or at P21 (Figure 4.5.3A, 

B). Immunofluorescence staining for the macrophage marker F4/80 revealed no 

differences between control and ILK-K5 skin at the same time points (Figure 4.5.3C, 

D). RNA isolated from epidermal splits of P21 mice was analyzed for the expression 

of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. No significant differences 

were detected between in the levels of pro-inflammatory cytokines between control 

and ILK-K5 epidermis (Figure 4.5.3E). The findings indicate that inflammation is 

unlikely to trigger for HFSC activation in ILK-K5 epidermis. 
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Figure 4.5.3. A, B. Immunofluorescence staining for CD3 as a marker for T-cells 

(red) in P14 (A) and P21 (B) control and ILK-K5 skin shows no significant difference 

in the amount of T-cells in the tissue. Scale bars 50 μm. C, D. Immunofluorescence 

staining for F4/80 as a marker for macrophages (red) in P14 (C) and P21 (D) control 

and ILK-K5 skin shows no significant difference in the amount of macrophages in the 

tissue. Scale bars 50 μm. E. RT-qPCR analysis of pro-inflammatory cytokines shows 

no major changes in TNF-α, IL-6 and IL-1β expression in P21 ILK-K5 epidermis. 

Values in all quantifications represent mean ± SEM; n=3; ns=not significant, p>0.06, 

Mann-Whitney. 

 



4.6 SC fate-determining pathways are altered upon ILK-deficiency 

Quiescence during the telogen phase at P21 is enforced by low Wnt and Tgf-β 

pathway activities and high BMP pathway activity (Blanpain and Fuchs, 2006). To 

identify the molecular mechanism that underlies the aberrant activation and 

differentiation of HFSCs in ILK-deficient mice, we next investigated the activation 

status of these key SC-regulatory pathways. To this end, α6-integrin-positive EPCs 

were sorted by MACS and analyzed by qRT-PCR. The gene expression signature of 

ILK-K5 EPCs at P21 was characterized by high expression levels of Wnt pathway 

target genes Lef1, CD44, Dkk3, Tcf3, and Lgr5, as well as Tgf-β pathway target genes 

Pai1 and Tgfβ1. In contrast, BMP pathway target genes Id2, Grem1, and Bambi were 

downregulated. Collectively the pattern of target gene expression reflected a signature 

of activated SCs when compared to controls (Figure 4.6.1). 

Figure 4.6.1. RT-qPCR analysis of target gene expression of key SC regulatory 

pathways shows upregulation of Wnt and Tgf-β pathway target genes and 

downregulation of BMP pathway target genes in sorted EPCs from P21 ILK-K5 skin 

(mean ± SEM; n=5; **p=0.0075, *p<0.0211, Mann-Whitney). 
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Immunohistochemical staining for phosphorylated (p) Smad2 as readout for Tgf-β 

signaling revealed a significant increase in number of pSmad2-positive nuclei in the 

HFs of ILK-K5 skin compared to controls (Figure 4.6.2A), confirming the increased 

Tgf-β pathway activity in the absence of ILK. Immunofluorescence analysis for β-

catenin showed an increased number of cells with nuclear β-catenin cells within the 

HG of P21 ILK-K5 HFs (Figure 4.6.2B), indicative for increased Wnt activation. 

Enhanced Wnt pathway activity was further confirmed by analyzing the downstream 

target Lef1. While Lef1-positive cells were only detectable in the DP of P21 control 

mice, Lef1-positive cells were also found in the HG expanding into the K15-positive 

compartment in ILK-K5 skin (Figure 4.6.2C). Protein extracts from P21 ILK-K5 

epidermis showed increased levels of pSmad2 and decreased levels of pSmad1/5/8 

indicative for upregulated Tgf-β and downregulated BMP pathway activity, 

respectively (Figure 4.6.2D). Overall, these data showed that loss of ILK caused an 

increase in Tgf-β and Wnt/ β-catenin signaling activities and a concomitant decrease 

in BMP activity, a molecular signature typically found in activated SC. 



Figure 4.6.2. A. Immunohistochemical staining for pSmad2 (brown) from P21 HFs 

shows increased Smad2 phosphorylation in ILK-K5 HFs. Right panel shows 

quantification of pSmad2 staining (mean ± SEM; n=5; *p=0.0297, Student’s t-test). 

B. Immunofluorescence staining for β-Catenin (green) from P21 HFs. Lower panel 

represents blow up of area marked with white rectangle. Increased nuclear 

localization of β-Catenin is observed in ILK-K5 HFs (arrows). Scale bars 50 μm. 

Right panel shows quantification of nuclear β-Catenin staining (mean ± SEM; n=3; 

*p=0.05, Mann-Whitney). C. Lef-1 staining (red) from P21 control and ILK-K5 skin. 

Controls show staining only in the DP (asterisk) whereas also K15-positive (green) 

cells show staining for Lef1 in ILK-K5 HFs. Scale bar 50 μm. D. Western blot 

analysis from P21 epidermal lysates shows increased phosphorylation of Smad2 and 

decreased phosphorylation of Smad1/5/8 in ILK-K5 epidermis. 
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To address whether the increase in SC-activating pathways in ILK-K5 skin was due to 

the fact that the HFs were not entering the telogen phase and remained in an anagen-

like state, earlier time points were subsequently analyzed. At P14, during anagen 

phase of HF morphogenesis, both control and most ILK-K5 HFs are elongated and 

reach into the deep fat layer of the skin (Figure 4.6.3A). At this time point, Wnt and 

Tgf-β target genes were already upregulated in ILK-K5 mice (Figure 4.6.3B), 

indicating that the differences observed in SC fate regulating pathways at P21 could 

not be attributed to the difference in HF cycling. However, BMP pathway target genes 

were not altered in ILK-K5 skin at this time point (Figure 4.6.3B), indicating that 

changes in BMP pathway activity were secondary to the difference in HF cycle stage. 

No major differences in Wnt target gene expression were found at P7 (early anagen of 

morphogenesis), with the exception of Lgr5 that was slightly upregulated (Figure 

4.6.3C). Taken together, these results show that ILK-deficiency leads to sustained 

activation of Wnt and Tgf-β pathways in late anagen, leading to the inability of HFs 

to enter the quiescent telogen phase. 



Figure 4.6.3. A. Hematoxylin and eosin staining of P14 skin. Both control and ILK-

K5 HFs display anagen morphology. Scale bars 500 μm (left panel); 100 μm (right 

panel). B. RT-qPCR analysis of target gene expression from P14 control and ILK-K5 

EPCs shows upregulation of Wnt and Tgf-β pathway target genes, but no change in 

BMP pathway target genes (mean ± SEM; n=3). C. RT-qPCR analysis of Wnt target 

gene expression from P7 EPCs. Only Lgr5 expression is found upregulated at this 

point (mean ± SEM; n=4; p>0.0765, Mann-Whitney). 

 

4.7 LN-332 and LN-511 regulate SC fate determining pathways 

As we had observed changes in the SC niche as well as in key SC regulatory 

pathways, we next addressed the question whether the changes in the niche could 

directly impact the activity of these pathways and thereby SC activation. 

 

4.7.1 LN-332 regulates Wnt and LN-511 regulates Tgf-β signaling 

To test whether the observed changes in altered LN-332 and LN-511 deposition might 

be involved in the deregulation of SC fate pathways, wild type EPCs were isolated 

and plated onto human recombinant LN-332 or LN-511, respectively, and allowed to 

adhere for 6 h before analysis. A mixture of type I collagen (Col1) and FN was used 

as a control substrate to exclude effects from altered adhesion or integrin usage. 

Adhesion to LN-332 and LN-511 as well as to Col1 and FN is mediated β1 integrins. 

Adhesion of EPCs on LN-511 led to an increase in Smad2 phosphorylation as well as 

to significant upregulation of Tgf-β target gene (p21, Pai1, Tgfβ1) expression (Figure 

4.7.1A, B). In contrast, β-catenin stabilization and expression of Wnt/ β-catenin target 

genes (Axin2, Lef1, Dkk3) were unaffected (Figure 4.7.1A, B). Adhesion of EPCs on 

LN-332 showed the opposite. β-catenin was destabilized as indicated by decreased 

protein levels and Wnt/ β-catenin pathway target genes (Axin2, Lef1, Dkk3, Sfrp1) 

were downregulated (Figure 4.7.1C, D). In contrast, Smad2 phosphorylation and Tgf-
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β pathway target gene expression (Pai1, Tgfβ1) were not changed (Figure 4.7.1C, D). 

Collectively, these findings demonstrate that LN-511 promotes the activation of the 

Tgf-β pathway, whereas LN-332 suppresses Wnt/ β-catenin pathway activity. 

 

Figure 4.7.1. A. Western blot analysis of freshly isolated EPCs plated on LN-511 or a 

mixture of Col1 and FN as control. Cells adhering on LN-511 for 6 h show increased 

Smad2 phosphorylation, whereas β-Catenin is unchanged. Gapdh was used as 

loading control. B. RT-qPCR analysis of Wnt/β-Catenin and Tgf-β pathway target 

gene expression shows selective upregulation of Tgf-β pathway target genes in cells 

adhering to LN-511 (mean ± SEM; n=5; **p=0.0075, Mann-Whitney). C. Western 

blot analysis of freshly isolated EPCs plated on LN-332 or Col1+FN as control. Cells 

adhering on LN-332 for 6 h show decreased β-Catenin levels, whereas Smad2 

phosphorylation is unchanged. Gapdh was used as loading control. D. RT-qPCR 

analysis of Wnt and Tgf-β pathway target gene expression shows selective 



downregulation of Wnt/β-Catenin pathway target genes in cells adhering to LN-332 

(mean ± SEM; n=4; *p=0.0211, Mann-Whitney). 

 

4.7.2 A wild type matrix rescues the altered signaling activity in ILK-deficient 

keratinocytes 

Our results so far indicated that ILK regulates the LN-332/LN511 ratio within the HF 

BM as well as SC activation. In addition, we observed that LN-332 and LN-511 are 

capable of regulating key SC fate determining pathways. Therefore we next addressed 

whether the changes in Wnt and Tgf-β signaling in ILK-K5 EPCs arise from 

alterations in the LN-332/LN-511 ratio. To this end, in vitro rescue experiments were 

performed where the ECM of ILK-deficient EPCs was substituted by that deposited 

by wild type EPCs. A mixture of Col1 and FN was used as a control substrate. 

First, the different matrices were characterized by immunofluorescence. In contrast to 

control cells that assembled a LN-332 matrix, ILK-deficient EPCs deposited patchy 

aggregates of LN-332 when plated onto the Col1+FN control substrate (Figure 

4.7.2.1A). Interestingly ILK-deficient cells were found to displace themselves from 

the LN-332 aggregates (Figure 4.7.2.1A). When wild type EPCs were allowed to 

deposit ECM for 4-5 days after which the cells were removed leaving an intact 

matrix, the deposited preassembled ECM showed abundant LN-332 staining. ILK-

deficient EPCs adhered and spread on this matrix (Figure 4.7.2.1A). Control EPCs 

plated onto Col1+FN did not deposit detectable amounts of LN-511. In contrast, ILK-

deficient EPCs deposited low amounts LN-511 and adhered on it (Figure 4.7.2.1B). In 

agreement with the limited deposition of LN-511 by control cells, the preassembled 

wild type ECM also contained very little LN-511 (Figure 4.7.2.1B). ILK-K5 EPCs 

that adhered on the preassembled ECM showed reduced deposition of LN-511 (Figure 

4.7.2.1B).  
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Figure 4.7.2.1. A. Freshly isolated EPCs were allowed to adhere on Col1+FN (upper 

panel) or preassembled ECM (lower panel), after which they were analyzed by 

immunofluorescence. Control cells deposit a LN-332 matrix (in green), whereas EPCs 

from ILK-K5 skin deposit LN-332 aggregates and the cells displace themselves from 

the aggregates (arrows). The preassembled ECM contains large amounts of LN-332 

that supports adhesion in both control and ILK-K5 EPCs (lower panels). Phalloidin 

(red) was used to counterstain adhering cells. Scale bars 35 μm. B. EPCs were 

allowed to adhere on Col1+FN (upper panel) or preassembled ECM (lower panel), 

after which they were analyzed by immunofluorescence. Control cells do not deposit 

detectable amounts of LN-511 (in green), whereas EPCs from ILK-K5 skin deposit 

and adhere on LN-511 (arrows). The preassembled ECM contains very low levels of 

LN-511 (lower panels). Phalloidin (red) was used to counterstain adhering cells. 

Scale bars 25 μm. 

 

Next, we assessed the activities of Tgf-β and Wnt/β-Catenin pathways on the different 

substrates. qRT-PCR analyses of control and ILK-deficient EPCs plated on Col1+FN 

substrate revealed that ILK-K5 EPCs maintained their molecular signature 

characterized by high Tgf-β (Pai1, Tgfβ1) and high Wnt (Axin2, Lef1, Dkk3, Tcf3) 

target gene expression in vitro (Figure 4.7.2.2). Adhesion of control EPCs onto the 

preassembled ECM did not significantly alter their gene expression pattern. In 



contrast, adhesion of ILK-deficient EPCs to the preassembled ECM restored both the 

Tgf-β and Wnt pathway target gene expression to resemble that of control cells 

(Figure 4.7.2.2). These data indicate that the ratio of LN-332 and LN-511 regulates 

Tgf-β and Wnt/β-Catenin pathway activities and that restoring the altered ECM 

microenvironment of ILK-deficient cells also rescues the aberrant signaling activities 

of Tgf-β and Wnt/β-Catenin pathways in these cells. 

Figure 4.7.2.2. RT-qPCR analyses show that adhesion of EPCs from ILK-K5 skin on 

preassembled wild type ECM restores Wnt and Tgf-β pathway target gene expression 

to the level of control cells (mean ± SEM; n=7; ***p<0.0001, **p<0.0045, 

*p=0.0062, ns=not significant, ANOVA and Dunnet’s). 

 

4.8 Aberrant SC activation causes replication stress and 

predisposes to skin carcinogenesis 

Loss of quiescence and sustained SC activation leads to SC exhaustion and can lead to 

the formation of tumor-initiating cells (Beck and Blanpain, 2013). The balance of SC 

quiescence and activation has been described to act as a tumor-suppressing 

mechanism in hematopoietic cells (Bakker and Passegue, 2013). It has been proposed 

that SC quiescence acts as a protective mechanism that minimizes replication stress 
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and thereby prevents accumulation of DNA damage in SCs (Bakker and Passegue, 

2013). We hypothesized that due to its SC-activating effect deletion of ILK might 

cause enhanced replication stress and DNA damage and even predispose the 

epidermis to carcinogenesis. 

To test this hypothesis we first analyzed DNA damage in P21 skin by 

immunofluorescence staining using the DNA damage marker histone 2A member X 

(H2A.X). H2A.X becomes phosphorylated at serine 139 (γH2AX) upon DNA damage 

caused by either DNA double strand breaks or replication fork collapse (Lukas et al., 

2011). The latter state is characterized by a pan-nuclear staining of γH2AX (Murga et 

al., 2009). These analyses revealed that γH2AX-positive nuclei were rarely present in 

controls but significantly more abundant in ILK-K5 HFs, with mainly pan-nuclear 

staining observed (Figure 4.8.1A). Immunofluorescence staining for the tumor 

suppressor protein p53 provided further evidence for increased DNA damage. Upon 

DNA damage p53 becomes N-terminally phosphorylated and subsequently stabilized 

within the nucleus where it activates target gene expression (Elias et al., 2014). At 

P21, there was a significant increase in number of p53-positive cells within the HFs of 

ILK-K5 as compared to controls (Figure 4.8.1B). Collectively these data show that 

deletion of ILK leads to increased replicative stress and DNA damage. 



 

Figure 4.8.1. A. Immmunofluorescence staining for γH2AX (red) and K14 (green) 

from P21 skin. Control mice rarely show γH2AX-positive cells (asterisk), whereas 

ILK-K5 HFs show clusters of cells with pan-nuclear γH2AX within HFs (arrows). 

Scale bars 50 μm. Right panel shows quantification of HFs containing more than two 

γH2AX-positive cells (mean ± SEM; n=3; *p=0.0383, Mann-Whitney). B. Staining for 

p53 (red) and K14 (green) from P21 skin. In contrast to control mice that show only 

solitary p53 positive cells (asterisk), ILK-K5 mice frequently show p53-positive cells 

within HFs and IFE (arrows). Scale bars 50 μm. Right panel shows quantification of 

HFs containing more than two p53-positive cells (mean ± SEM; n=4; *p=0.0286, 

Mann-Whitney). 

 

In addition to regulating HFSC activation, Wnt/β-catenin signaling has been shown to 

maintain the homeostatic balance between proliferation and differentiation within the 

IFE. Increased Wnt activity in the IFE leads to hyperproliferation that is also observed 

in the ILK-K5 IFE (Choi et al., 2013; Lorenz et al., 2007). We therefore assessed Wnt 

target gene expression at later stages (P57), when HFs were almost completely 

depleted in ILK-K5 mice, and found Wnt target genes to be upregulated (Figure 
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4.8.2A). Immunofluorescence analysis for γH2AX was performed at P57 to determine 

if the upregulation of Wnt activity was accompanied by increased replication stress in 

ILK-deficient epidermis. Very few γH2AX-positive nuclei were detectable within the 

IFE of control mice, whereas significant numbers of γH2AX-positive nuclei with pan-

nuclear staining were identified in ILK-K5 skin (Figure 4.8.2B). These data suggest 

that replication stress persists in 8-week old mice and that cells with DNA damage 

accumulate in the epidermis of ILK-K5 mice. 

 

Figure 4.8.2. A. RT-qPCR analysis of Wnt pathway target gene expression shows 

upregulation of Wnt target gene expression in EPCs from P57 ILK-K5 skin (mean ± 

SEM; n=4; *p=0.0211, Mann-Whitney). B. Staining for γH2AX (red) and K14 (green) 

from P57 skin. Control mice show only solitary γH2AX-positive cells (asterisk) within 

the IFE, whereas ILK-K5 IFE shows abundant pan-nuclear γH2AX staining (asterix). 

Scale bars 50 μm. Right panel shows quantification of γH2AX-positive cells within the 

IFE (mean ± SEM; n=4; *p=0.0286, Mann-Whitney). 

 



Hyperproliferation can be caused by inflammation. To assess whether inflammation 

was associated with the hyperproliferation of ILK-K5 IFE at this stage, the immune 

cell infiltrate of T cells and macrophages was assessed at P57, as described previously 

for P21 skin. Immunofluorescence staining for the T cell maker CD3 and macrophage 

marker F4/80 revealed no differences in the immune cell infiltrate between ILK-K5 

and control skin at P57 (Figure 4.8.3). These findings suggested that the transient 

inflammation caused by HF destruction (Lorenz et al., 2007) was resolved at this time 

point. 

Figure 4.8.3. A. Immunofluorescence staining for CD3 (red) in P57 control and ILK-

K5 skin shows no significant difference in the amount of T-cells in the tissue. Scale 

bars 50 µm. Values in quantification represent mean ± SEM; n=3; ns=not significant, 

p=0.20, Mann-Whitney. B. Immunofluorescence staining for F4/80 (red) in P57 

control and ILK-K5 skin shows no significant difference in the amount of 

macrophages in the tissue. Scale bars 50 µm. Values in quantification represent mean 

± SEM; n=3; ns=not significant, p=0.20, Mann-Whitney. 
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Next, to examine whether the accumulation of DNA damage would predispose ILK-

K5 to skin carcinogenesis, mice were subjected to a two-stage carcinogenesis 

experiment (Abel et al., 2009). Tumor initiation was performed by topical application 

of 7,12-dimethylbenz[a]-anthracene (DMBA) on shaved skin of 8-week old mice. The 

treatment was performed twice within 1 week, followed by a two-week break. After 

this, tumor formation was promoted by twice-weekly application of 12-O-

tetradecanoylphorbol-13-acetate (TPA). After 18 weeks of TPA treatment all ILK-K5 

mice had developed papillomas, whereas only 50 % of control mice had tumors 

(Figure 4.8.4A). Due to the deteriorating skin health condition of the ILK-K5 mice, 

most likely due to the irritating effect of the vehicle acetone, the experiment was then 

terminated. Quantitative analyses of tumor formation showed that ILK-K5 mice 

displayed a significant increase in papilloma incidence and in the number of 

papillomas per affected mouse (Figure 4.8.4A, B). No obvious differences in 

papilloma morphology were observed (Figure 4.8.4C). In addition, analyses of tumor 

size revealed no differences between control and ILK-K5 tumors (Figure 4.8.4D). 

Proliferation and apoptosis within the papillomas was further examined. As assessed 

by TUNEL staining there was no difference in the rate of apoptosis between control 

and ILK-K5 papillomas (Figure 4.8.4E). Furthermore, no significant change in 

proliferation was observed (Figure 4.8.4F). This indicated that ILK increases the 

incidence of tumor formation, but does not impact the behavior of the tumor cells 

themselves. 

Taken together, these data show that ILK-deficiency causes upregulation of the Wnt 

signaling pathway and hyperproliferation within the IFE. These changes are 

accompanied with increased replication stress that promotes the accumulation of 

DNA damage, thereby predisposing the skin for carcinogenesis.  



 

Figure 4.8.4. A. Tumor incidence of control and ILK-K5 mice treated twice with 

DMBA followed by 18 weeks of biweekly TPA treatment. ILK-K5 mice show increased 

tumor incidence (n=11/11; *p=0.0209, Chi-square). B. Tumor multiplicity in affected 

control and ILK-K5 mice. ILK-K5 mice show increased tumor multiplicity (mean ± 

SEM; n=11/11; **p<0.01, Two-way ANOVA). C. Hematoxylin and eosin stainings of 

papillomas from control and ILK-K5 mice show comparable histology. Scale bars 

500 µm. D. Quantification of tumor diameter shows no significant difference in tumor 

sizes from control and ILK-K5 mice (mean ± SEM; n=11/31; ns=not significant, 

p=0.1386, Student’s t-test). E. Quantification of apoptosis within tumors using 

TUNEL assay shows no significant difference in tumor cell apoptosis in control and 

ILK-K5 mice (mean ± SEM; n=3; p=0.344, Mann-Whitney). F. Quantification of 

proliferation within tumors using Ki67 staining shows no significant difference in 

tumor cell proliferation in control and ILK-K5 mice (mean ± SEM; n=3; p=0.344, 

Mann-Whitney). 
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5 Discussion 

ILK is a central adaptor protein that links β1 and β3 integrins to the actin cytoskeleton 

and thereby regulates integrin-dependent actin remodeling. Therefore, multiple 

processes dependent on actin regulation such as adhesion, spreading, migration, 

proliferation and differentiation rely on the function of ILK. Reciprocally, actin 

rearrangement causes deformation within the cell and generation of cellular tension, 

which is directly coupled to changes in integrin-dependent adhesions and leads to the 

remodeling of the local ECM environment. The relevance for ILK in this crosstalk 

has already been shown in a large variety of functional in vitro and in vivo studies 

(Lange et al., 2009; Larsen et al., 2006; Wickström et al., 2010). However, it is still 

unclear how ILK regulates ECM and BM remodeling and how the BM, as part of the 

SC niche, regulates SC fate. The current thesis work shows that ILK is essential for 

cellular force generation and subsequent FN fibrillogenesis in vitro. Using skin as a 

model tissue, the findings further indicate that ILK is essential for deposition of 

precise LN-511 and LN-332 gradients within the niche of bulge SCs. This is required 

to adjust the activities of SC fate-determining signaling pathways Wnt and Tgf-β to 

regulate SC activation and quiescence. ILK-deficiency drives SCs towards an 

activated phenotype that is more susceptible to replication stress, causing DNA 

damage and predisposes skin to carcinogenesis. 

 

5.1 ILK promotes force generation and matrix assembly 

During FA maturation, the connection between integrin ligands and the actin 

cytoskeleton is strengthened and myosin II-dependent actin stress fibers form, thus 

enabling cell contraction (Schiller and Fässler, 2013). FBs are specialized FAs that 

evolve from mature FAs and are bound to FN. Binding of integrins to FN and the 
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subsequent generation of tension via the actin cytoskeleton induces FN fibril 

formation (Pankov et al., 2000). We observed large FAs at the cell edges but absence 

of nascent FCs and FBs in ILK-deficient fibroblasts. This indicates that ILK is 

required for FA maturation. These observations are in line with previous studies 

where ILK was also implicated in the maturation of FBs (Stanchi et al., 2009). Here, 

the authors concluded that ILK together with its actin-binding partner α-parvin, as 

part of the IPP complex, mediates the segregation of α5β1 integrins from FAs, thus 

allowing the recruitment of tensin and maturation of FBs (Stanchi et al., 2009).  

FB maturation is a prerequisite for subsequent FN fibrillogenesis. Although the 

expression of FN in ILK-deficient fibroblasts is unaltered compared to controls, FN 

fibrillogenesis is absent. Interestingly, it was recently shown that the recruitment of 

proteins to adhesion sites is dependent on myosin II activity (Schiller and Fässler, 

2013). However, ILK recruitment to FA sites is upstream of myosin II activity 

(Schiller and Fässler, 2013), suggesting that ILK might be involved in myosin II-

dependent recruitment of FA-associated proteins. The results of this thesis showing 

that ILK is required for the generation of traction forces, provides functional evidence 

for this notion. This inability to generate force probably affects further recruitment of 

FB-associated proteins and explains the observed failure in force-dependent ECM 

remodeling in ILK-deficient fibroblasts. Besides driving α5β1 integrin segregation 

along the actin cytoskeleton, ILK could additionally be involved in mediating force-

dependent conformational changes in α5β1 integrins, which are required for 

fibrillogenesis (Clark et al., 2005).  

Although α5β1 integrin is the primary FN receptor (Huveneers et al., 2008), integrin 

αvβ3 (Wennerberg et al., 1996), α4β1 (Sechler et al., 2000) and αIIbβ3 (Olorundare et 

al., 2001) have been shown to be involved in FN fibrillogenesis in vitro. Knockout 
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studies in mice suggest overlapping as well as independent functions for α5- and αv-

class integrins in this process and only the double knockout of α5- and αv- integrins in 

mice results in loss of fibrillogenesis (Yang et al., 1999). It is tempting to speculate 

that ILK, through its ability to bind both to β1- and β3-integrins, might be involved in 

their differential engagement and thereby tuning the forces required for FN 

fibrillogenesis.  

Additionally, it has been proposed that the assembly state of FN fibers plays an 

important role in regulating cell behavior by acting as a checkpoint signal for 

subsequent ECM remodeling (Schwarzbauer and DeSimone, 2011). For instance, 

only the precise ratio of FN fibril assembly ensures epithelial branching 

morphogenesis during cleft formation (Sakai et al., 2003a). Furthermore, FN 

fibrillogenesis regulates fibrillin-1 microfibril assembly (Kinsey et al., 2008) and 

could thereby impact on growth factor bioavailability. Therefore it is becoming clear 

that the ECM-remodeling function of ILK is central to its role as an essential 

regulator of cell and tissue behavior. It will be of great interest to evaluate how force-

induced fibril assembly driven by ILK impacts these processes and what is the role of 

ECM remodeling in the various phenotypes of ILK-deficient mice. 

 

5.2 ILK is required for HFSC quiescence and maintenance 

The observation that ILK is required for cellular force generation and subsequent 

ECM remodeling raised the question of the functional implications of these processes 

in vivo. The adhesion of cells to the BM, a specialized form of ECM, plays an 

important role in regulating cell fate (Gattazzo et al., 2014). In many organs including 

the skin, the BM is an inherent part of the adult SC niche. Adult SCs are capable of 

long-term self-renewal and the generation of differentiating cells. In order to ensure 



Discussion

tissue homeostasis throughout the lifetime of an individual a stable pool of adult SCs 

needs to be maintained. Therefore, SC activation and quiescence needs to be precisely 

regulated in a spatial and temporal manner. Perturbations in this regulation can cause 

SC exhaustion or malignant transformation (Beck and Blanpain, 2013). Deletion of 

ILK in the ILK-K5 mice led to progressive hair loss, which was associated with the 

loss of CD34-positive HFSCs. The bulge HFSC niche is formed after HF 

morphogenesis, around P21 (Cotsarelis et al., 1990). At this time, ILK-K5 HFs 

contained some CD34-positive HFSCs, although the number was significantly 

reduced. While the bulge further develops during the next HF cycle and the number of 

CD34-positive cells increased in controls, ILK-K5 mice completely lost their CD34-

positive bulge SCs, indicating that ILK is required for the establishment and 

maintenance of the bulge SC niche. This is further supported by the observation that 

the inducible deletion of ILK in adult ILK-iK14 animals also led to a reduction in 

bulge HFSCs.  

Whether loss of HFSCs and alopecia also cause the observed regression of HFs is not 

entirely clear. Different forms of alopecia are described in humans and in most cases 

the HFs are destroyed by immune cell infiltrates. However in reversible cases of 

alopecia the HF remains intact (Sinclair et al., 2003). Interestingly, it has been 

reported that in human alopecia the arrector pili muscle plays an important role in the 

decision whether a HF persists or is destroyed (Torkamani et al., 2014). In this respect 

it is intriguing to note that bulge SCs within their niche create a muscle niche by 

expressing nephronectin, a specialized ECM protein that serves as an anchoring 

platform for tendon cell attachment of the arrector pili muscle (Fujiwara et al., 2011). 

As ILK is important for ECM remodeling, the loss of HFs in ILK-K5 and ILK-iK14 

mice might be caused by the impairment of the bulge SC niche architecture. Analysis 
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of nephronectin deposition and arrector pili anchring is therefore an interesting future 

experiment.  

Aberrant loss of quiescence and subsequent activation in the long-term leads to SC 

exhaustion. HFSC fate is regulated by the SC-activating pathways Wnt and Tgf-β and 

the quiescence-promoting BMP pathway. Lorenz and colleagues (Lorenz et al., 2007) 

showed that Wnt/β-catenin activity was unchanged in 2 week-old mice. Their 

analyses, using a Wnt reporter mouse model where β-galactosidase expression is 

controlled by nuclear β-catenin–Lef1, showed that hair shafts from both controls and 

ILK-K5 contained β-galactosidase label, indicative for an active Wnt pathway. As 

control and ILK-K5 mice were both in anagen by 2 weeks of age, detection of β-

galactosidase label in both genotypes can be expected. They did not analyze the 

activity of the reporter in telogen. Furthermore, this particular Wnt reporter was 

shown to be rather insensitive compared to other reporters such as the Axin2 

promoter-based Wnt reporter mouse model (Lien et al., 2014), and only very high 

Wnt activity as in mid-anagen can be detected. Using qRT-PCR analysis, which is a 

more sensitive method to detect alterations in Wnt target gene expression, we 

observed that Wnt and Tgf-β target genes became gradually upregulated during 

morphogenetic anagen progression in ILK-deficient EPCs. Consistent with Lorenz et 

al., no difference was observed in early anagen at P7 whereas no differences became 

visible at p14. This upregulation became even more striking in the quiescent telogen 

phase, when Wnt and Tgf-β pathways are normally downregulated and the BMP 

pathway is upregulated. 

The overall gene expression signature of ILK-K5 EPCs resembled that of activated 

SCs, marked by high Wnt and Tgf-β and low BMP activity. In line with the 

upregulation of the pro-proliferative Wnt and Tgf-β pathways, an increased 
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proliferation rate in ILK-K5 was observed. Interestingly, the Wnt target genes that 

were observed to be highly upregulated are implicated in lineage progression within 

the HF. Sox9, Tcf3 and Lgr5 all regulate ORS differentiation (Jaks et al., 2008; 

Merrill et al., 2001; Vidal et al., 2005), whereas Lef1 promotes generation of matrix 

cells (Zhang et al., 2013). These findings provide a molecular mechanism for the 

enhanced differentiation of ILK-deficient HFSC into matrix cells in the Lgr5-Cre 

model as well as for the observed enlargement of the ORS compartment in ILK-K5 

mice (Lorenz et al., 2008 17485490) Besides its pro-proliferative properties, the 

Wnt/β-catenin pathway is also implicated in the inhibition of apoptosis (Chen et al., 

2001). Therefore it is interesting to speculate that the ORS cells could be protected 

from apoptosis during catagen due to their high Wnt activity. This might explain why 

ILK-K5 HFs do not enter telogen at P21. It would be interesting to study this by 

analyzing the apoptosis rates of the ILK-deficient ORS cells in catagen. It would 

further be interesting to investigate the specific gene expression signature of the 

various SC populations to directly assess the status of the different HFSC lineages. 

However, isolating CD34-positive bulge SCs from P21 ILK-K5 mice is challenging 

because of their low abundance.  

 

5.3 ILK-deficiency leads to loss of bulge SCs through enhanced 

differentiation 

The results of the thesis work suggested that ILK regulates SC activation and its 

deletion leads to SC exhaustion. However, an inducible deletion of ILK in K15-

positive SCs has previously been published, and it showed no phenotype under 

homeostatic conditions (Nakrieko et al., 2011). The SC-specific deletion of ILK in 

Lgr5-positive HFSCs reported in this thesis also caused no macroscopic phenotype. 
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However, lineage-tracing analysis of ILK-deleted Lgr5-positive HFSCs revealed that 

ILK-deficient SCs more frequently differentiated to hair matrix and HG cells 

compared to controls. As a result, ILK-deficient SCs did not repopulate the bulge and 

only very few HFs contained ILK-Lgr5 progeny in the next hair cycle. The loss of 

actively cycling Lgr5-positive cells upon deletion of ILK was confirmed by the loss 

of EGFP-positive cells that reflects the undifferentiated pool of Lgr5-positive cells. 

Therefore a SC-specific phenotype was probably not observed in the ILK-K15 mice 

because the authors analyzed the mice only within the same HF cycle during which 

ILK-deletion was induced. In addition the deletion efficiency in their model was 

reported to be 50 %. As heterozygous ILK-K5, ILK-iK14 or ILK-K14 (Nakrieko et 

al., 2008) mice also show no phenotype, and the ILK-deficient SCs are lost to 

differentiation whereas the wild type cells persist, it is not surprising that no obvious 

difference between the ILK-K15 and control mice was detected. 

Taken together, the results show that ILK regulates HFSC fate by coordinating the 

differentiation of HFSCs into ORS and hair matrix. Interestingly, Lgr5 was initially 

identified as a SC marker of cycling crypt base columnar cells, which represent a 

cycling SC population attached to the BM in the small intestine of mice (Barker et al., 

2007). Until now, Lgr5 has been identified as a marker for a variety of epithelial SC 

including the ovary (Ng et al., 2014), the olfactory epithelium (Chen et al., 2014) and 

cochlea (Shi et al., 2013). Therefore it would be interesting to assess whether ILK has 

similar functions in SC fate regulation in other organs. 

 

5.4 ILK is required to establish and maintain the bulge SC niche 

LN-332 and LN-511 are integral components of the skin BM. Their relevance for skin 

development and physiology was already demonstrated in mouse knockout studies, 
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where the absence of LN-332 leads to severe skin blistering and the deletion of LN-

511 results in severe HF morphogenesis defects (Bruckner-Tuderman and Has, 2012; 

Li et al., 2003). Both LNs are regulated during the HF cycle. LN-511 expression is 

high during anagen and decreases during catagen (Sugawara et al., 2007; Tateishi et 

al., 2010), whereas LN-332 levels decrease during anagen around the HF and remain 

stable throughout catagen (Sugawara et al., 2007; Tateishi et al., 2010). The findings 

of this thesis work show that LN-332 and LN-551 form inverse gradients in telogen 

HFs. LN-332 is more abundant beneath the IFE, whereas LN-511 shows higher 

expression around the HF bulb. In ILK-K5 skin this distribution was compromised. In 

ILK-K5 HFs LN-332 was less abundant around the distal HF whereas LN-511 

expression was increased and expanded from the distal HF towards the K15-positive 

putative bulge compartment. The mechanism by which ILK regulates this inverse 

gradient is not clear. One possibility is that α-dystroglycan that binds LN-511 but not 

LN-332 (Kikkawa et al., 2004) might be able to stabilize LN-511 in the BM. 

Dystroglycan is an adhesion receptor that also associates wit the actin cytoskeleton, 

but does not require ILK for its function (Higginson and Winder, 2005), and hence 

could compensate the absence of functional β1 integrins in ILK-deficient epidermis. 

Another possibility is that the LN-511 is derived from the DP fibroblasts that show 

expansion around the HFs of ILK-K5 skin. Interestingly, abnormal fibroblast 

attachment to a disrupted lamina densa of HFs was also observed in α3-integrin-

deficient skin grafts (Conti et al., 2003), suggesting that fibroblast might also be 

involved in LN deposition to compensate for the loss of BM integrity around the HF.  

During telogen, the DP appears as a small cluster of cells attached to the HF tip in 

controls. However, AP-positive cells formed an enlarged capsule-like structure 

around the lower part of the ILK-deficient HF, coating the lateral lower surface of the 
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HF by forming a sheet. The severe abnormalities observed in the DP of ILK-K5 mice 

and to a lesser extent also in ILK-iK14 mice are secondary to the loss of ILK in the 

epidermis because ILK is not deleted in the DP that do not express K5 or K14. The 

enlarged DP in ILK-deficient epidermis could further be induced by increased 

interaction between DP cells and the increased LN-511-positive BM encompassing 

the HF.  

 

5.5 Functional consequences of the altered niche 

This thesis work shows that LN-332 inhibits Wnt signaling whereas LN-511 promotes 

Tgf- β signaling in vitro. The predominant presence of LN-332 during catagen-

telogen transition might therefore inhibit Wnt signaling and terminate hair growth. In 

addition, its high expression in the IFE might prevent these cells from acquiring a HF 

fate. The mechanism of how LN-332 inhibits Wnt is not clear. One option is that it 

regulates the bioavailability of Wnt antagonists, such as Dkk. Interestingly, the 

diffusion of secreted Dkk1 is involved in regulation of HF spacing (Sick et al., 2006). 

Another scenario is the involvement of syndecans. LN-332 interacts with syndecan-1 

and syndecan-4 (Rousselle and Beck, 2013), HSPGs that bind Wnt and thereby 

regulate Wnt signaling (Astudillo et al., 2014; Liu et al., 2003). 

How LN-511 regulates Tgf-β signaling is also an interesting open question. Tgf-β is 

secreted in a large latent complex that needs to be activated for Tgf-β to bind its 

receptors. LN-511 contains a HSPG-binding domain that is known to interact with 

perlecan (Yu and Talts, 2003). Interestingly, perlecan can interact with fibrillin-1 

(Tiedemann et al., 2005), which directly interacts with LTBPs (Massam-Wu et al., 

2010), thus providing a potential mechanism by which LN-511 could mediate Tgf-β 

activation. 
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5.6 Aberrant SC activation causes replication stress and 

predisposition to skin carcinogenesis 

An imbalance between SC quiescence and activation can lead to the generation of 

tumor-initiating cells (Beck and Blanpain, 2013). SC quiescence has been proposed to 

act as a tumor suppressing mechanism in hematopoietic SCs (Bakker and Passegue, 

2013). Loss of cell cycle regulator p21 in hematopoietic SCs leads to increased 

proliferation and SC exhaustion with the accumulation of DNA damage due to 

replication stress (Cheng et al., 2000). Furthermore quiescent bulge SCs respond to 

DNA damage by increasing levels of the anti-apoptotic gene Bcl-2 and a faster DNA 

repair machinery (Sotiropoulou et al., 2010). In line with these observations and in 

agreement with the loss of HFSC quiescence, the amount of DNA damage within 

ILK-K5 skin was significantly increased already in P21 HFs.  

8-week old ILK-K5 mice, despite having lost most of the HFs, still showed elevated 

Wnt/β-catenin pathway activity accompanied by a hyperproliferative epidermis. 

Again, increased DNA damage was observed. When subjected to a two-stage 

carcinogenesis experiment ILK-K5 mice showed higher tumor incidence and tumor 

multiplicity. As no difference in tumor size, proliferation, or apoptosis was observed, 

we hypothesize that the increased replicative stress and DNA damage predisposes 

ILK-deficient skin to malignant transformation, whereas later on the tumor cells do 

not benefit from the absence of ILK expression. 

However, due to skin health conditions of ILK-K5 mice, investigating tumor 

progression and malignant conversion was not possible. Using a genetic cancer mouse 

model in combination with an inducible deletion of ILK would be the best way to 

continue these studies in the future. This would not only circumvent the skin health 

problems generated by deletion of ILK during embryogenesis, but the genetic tumor 
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model would also prevent additional induction of oxidative and replicative stress that 

is caused by DMBA and TPA (DiGiovanni, 1992). The conditional expression of 

oncogenic mutant KRas (such as lox-STOP-lox KRas G12D) in an inducible ILK-

deficient epidermis would provide such a model (O'Hagan and Heyer, 2011). The SC-

specific Lgr5 mouse model in combination with the keratinocyte-specific expression 

of oncogenic KRas would serve as an excellent model to study HFSC tumor 

development and the impact of ILK as a potential tumor suppressor by balancing SC 

differentiation and maintenance.  

To conclude, the thesis work has identified mechanisms by which ILK regulates ECM 

remodeling and the BM niche and how the composition of this niche feeds back on 

cellular behavior. Together with other work in the field it highlights the role of tissue 

architecture in coordinating cellular behaviors and protecting it from malignant 

transformation. Future work should be aimed at precise molecular characterization of 

the ECM of the various SC niches, for example, by mass-spectrometry. Furthermore, 

investigating the topography and stiffness of the various ECM niches would generate 

important insights into the molecular mechanisms of SC-niche interactions.



References  

References 

Abel, E.L., Angel, J.M., Kiguchi, K., and DiGiovanni, J. (2009). Multi-stage chemical 
carcinogenesis in mouse skin: fundamentals and applications. Nature protocols 4, 
1350-1362. 

Astudillo, P., Carrasco, H., and Larrain, J. (2014). Syndecan-4 inhibits Wnt/beta-
catenin signaling through regulation of low-density-lipoprotein receptor-related 
protein (LRP6) and R-spondin 3. The international journal of biochemistry & cell 
biology 46, 103-112. 

Aumailley, M. (2013). The laminin family. Cell adhesion & migration 7, 48-55. 

Aumailley, M., Bruckner-Tuderman, L., Carter, W.G., Deutzmann, R., Edgar, D., 
Ekblom, P., Engel, J., Engvall, E., Hohenester, E., Jones, J.C., et al. (2005). A 
simplified laminin nomenclature. Matrix biology : journal of the International Society 
for Matrix Biology 24, 326-332. 

Aumailley, M., and Gayraud, B. (1998). Structure and biological activity of the 
extracellular matrix. Journal of molecular medicine 76, 253-265. 

Bakker, S.T., and Passegue, E. (2013). Resilient and resourceful: genome 
maintenance strategies in hematopoietic stem cells. Experimental hematology 41, 
915-923. 

Baneyx, G., Baugh, L., and Vogel, V. (2002). Fibronectin extension and unfolding 
within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci U S A 
99, 5139-5143. 

Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., 
Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. (2007). Identification of 
stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007. 

Baudoin, C., Fantin, L., and Meneguzzi, G. (2005). Proteolytic processing of the 
laminin alpha3 G domain mediates assembly of hemidesmosomes but has no role on 
keratinocyte migration. J Invest Dermatol 125, 883-888. 

Beck, B., and Blanpain, C. (2013). Unravelling cancer stem cell potential. Nature 
reviews Cancer 13, 727-738. 

Behrens, D.T., Villone, D., Koch, M., Brunner, G., Sorokin, L., Robenek, H., 
Bruckner-Tuderman, L., Bruckner, P., and Hansen, U. (2012). The epidermal 
basement membrane is a composite of separate laminin- or collagen IV-containing 
networks connected by aggregated perlecan, but not by nidogens. J Biol Chem 287, 
18700-18709. 

Belvindrah, R., Nalbant, P., Ding, S., Wu, C., Bokoch, G.M., and Muller, U. (2006). 
Integrin-linked kinase regulates Bergmann glial differentiation during cerebellar 
development. Molecular and cellular neurosciences 33, 109-125. 



References

Blanpain, C., and Fuchs, E. (2006). Epidermal stem cells of the skin. Annual review 
of cell and developmental biology 22, 339-373. 

Blumbach, K., Zweers, M.C., Brunner, G., Peters, A.S., Schmitz, M., Schulz, J.N., 
Schild, A., Denton, C.P., Sakai, T., Fassler, R., et al. (2010). Defective granulation 
tissue formation in mice with specific ablation of integrin-linked kinase in fibroblasts 
- role of TGFbeta1 levels and RhoA activity. Journal of cell science 123, 3872-3883. 

Botchkarev, V.A., Botchkareva, N.V., Nakamura, M., Huber, O., Funa, K., Lauster, 
R., Paus, R., and Gilchrest, B.A. (2001). Noggin is required for induction of the hair 
follicle growth phase in postnatal skin. FASEB journal : official publication of the 
Federation of American Societies for Experimental Biology 15, 2205-2214. 

Botchkarev, V.A., and Paus, R. (2003). Molecular biology of hair morphogenesis: 
development and cycling. Journal of experimental zoology Part B, Molecular and 
developmental evolution 298, 164-180. 

Boudeau, J., Miranda-Saavedra, D., Barton, G.J., and Alessi, D.R. (2006). Emerging 
roles of pseudokinases. Trends Cell Biol 16, 443-452. 

Bouvard, D., Pouwels, J., De Franceschi, N., and Ivaska, J. (2013). Integrin 
inactivators: balancing cellular functions in vitro and in vivo. Nature reviews 
Molecular cell biology 14, 430-442. 

Breitkreutz, D., Koxholt, I., Thiemann, K., and Nischt, R. (2013). Skin basement 
membrane: the foundation of epidermal integrity--BM functions and diverse roles of 
bridging molecules nidogen and perlecan. BioMed research international 2013, 
179784. 

Bruckner, P. (2010). Suprastructures of extracellular matrices: paradigms of functions 
controlled by aggregates rather than molecules. Cell and tissue research 339, 7-18. 

Bruckner-Tuderman, L., and Has, C. (2012). Molecular heterogeneity of blistering 
disorders: the paradigm of epidermolysis bullosa. J Invest Dermatol 132, E2-5. 

Bulow, H.E., and Hobert, O. (2006). The molecular diversity of glycosaminoglycans 
shapes animal development. Annual review of cell and developmental biology 22, 
375-407. 

Campbell, I.D., and Humphries, M.J. (2011). Integrin structure, activation, and 
interactions. Cold Spring Harb Perspect Biol 3. 

Chen, M., Tian, S., Yang, X., Lane, A.P., Reed, R.R., and Liu, H. (2014). Wnt-
responsive Lgr5(+) globose basal cells function as multipotent olfactory epithelium 
progenitor cells. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 34, 8268-8276. 

Chen, S., Guttridge, D.C., You, Z., Zhang, Z., Fribley, A., Mayo, M.W., Kitajewski, 
J., and Wang, C.Y. (2001). Wnt-1 signaling inhibits apoptosis by activating beta-
catenin/T cell factor-mediated transcription. J Cell Biol 152, 87-96. 



References  

Cheng, T., Rodrigues, N., Shen, H., Yang, Y., Dombkowski, D., Sykes, M., and 
Scadden, D.T. (2000). Hematopoietic stem cell quiescence maintained by 
p21cip1/waf1. Science 287, 1804-1808. 

Chiswell, B.P., Zhang, R., Murphy, J.W., Boggon, T.J., and Calderwood, D.A. 
(2008). The structural basis of integrin-linked kinase-PINCH interactions. Proc Natl 
Acad Sci U S A 105, 20677-20682. 

Choi, Y.S., Zhang, Y., Xu, M., Yang, Y., Ito, M., Peng, T., Cui, Z., Nagy, A., 
Hadjantonakis, A.K., Lang, R.A., et al. (2013). Distinct functions for Wnt/beta-
catenin in hair follicle stem cell proliferation and survival and interfollicular 
epidermal homeostasis. Cell stem cell 13, 720-733. 

Clark, K., Pankov, R., Travis, M.A., Askari, J.A., Mould, A.P., Craig, S.E., Newham, 
P., Yamada, K.M., and Humphries, M.J. (2005). A specific alpha5beta1-integrin 
conformation promotes directional integrin translocation and fibronectin matrix 
formation. Journal of cell science 118, 291-300. 

Clayton, E., Doupe, D.P., Klein, A.M., Winton, D.J., Simons, B.D., and Jones, P.H. 
(2007). A single type of progenitor cell maintains normal epidermis. Nature 446, 185-
189. 

Clevers, H., and Nusse, R. (2012). Wnt/beta-catenin signaling and disease. Cell 149, 
1192-1205. 

Colognato, H., Winkelmann, D.A., and Yurchenco, P.D. (1999). Laminin 
polymerization induces a receptor-cytoskeleton network. J Cell Biol 145, 619-631. 

Conti, F.J., Rudling, R.J., Robson, A., and Hodivala-Dilke, K.M. (2003). alpha3beta1-
integrin regulates hair follicle but not interfollicular morphogenesis in adult 
epidermis. Journal of cell science 116, 2737-2747. 

Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990). Label-retaining cells reside in the 
bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and 
skin carcinogenesis. Cell 61, 1329-1337. 

Daley, W.P., and Yamada, K.M. (2013). ECM-modulated cellular dynamics as a 
driving force for tissue morphogenesis. Current opinion in genetics & development 
23, 408-414. 

DeRouen, M.C., Zhen, H., Tan, S.H., Williams, S., Marinkovich, M.P., and Oro, A.E. 
(2010). Laminin-511 and integrin beta-1 in hair follicle development and basal cell 
carcinoma formation. BMC developmental biology 10, 112. 

Deschene, E.R., Myung, P., Rompolas, P., Zito, G., Sun, T.Y., Taketo, M.M., 
Saotome, I., and Greco, V. (2014). beta-Catenin activation regulates tissue growth 
non-cell autonomously in the hair stem cell niche. Science 343, 1353-1356. 

DiGiovanni, J. (1992). Multistage carcinogenesis in mouse skin. Pharmacology & 
therapeutics 54, 63-128. 



References

Dong, C., Zhu, S., Wang, T., Yoon, W., and Goldschmidt-Clermont, P.J. (2002). 
Upregulation of PAI-1 is mediated through TGF-beta/Smad pathway in transplant 
arteriopathy. J Heart Lung Transplant 21, 999-1008. 

Driskell, R.R., Clavel, C., Rendl, M., and Watt, F.M. (2011). Hair follicle dermal 
papilla cells at a glance. Journal of cell science 124, 1179-1182. 

Eckes, B., and Krieg, T. (2004). Regulation of connective tissue homeostasis in the 
skin by mechanical forces. Clinical and experimental rheumatology 22, S73-76. 

El-Aouni, C., Herbach, N., Blattner, S.M., Henger, A., Rastaldi, M.P., Jarad, G., 
Miner, J.H., Moeller, M.J., St-Arnaud, R., Dedhar, S., et al. (2006). Podocyte-specific 
deletion of integrin-linked kinase results in severe glomerular basement membrane 
alterations and progressive glomerulosclerosis. Journal of the American Society of 
Nephrology : JASN 17, 1334-1344. 

Elias, J., Dimitrio, L., Clairambault, J., and Natalini, R. (2014). The p53 protein and 
its molecular network: modelling a missing link between DNA damage and cell fate. 
Biochim Biophys Acta 1844, 232-247. 

Esko, J.D., Kimata, K., and Lindahl, U. (2009). Proteoglycans and Sulfated 
Glycosaminoglycans. In Essentials of Glycobiology, A. Varki, R.D. Cummings, J.D. 
Esko, H.H. Freeze, P. Stanley, C.R. Bertozzi, G.W. Hart, and M.E. Etzler, eds. (Cold 
Spring Harbor (NY)). 

Fan, G., Xiao, L., Cheng, L., Wang, X., Sun, B., and Hu, G. (2000). Targeted 
disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory 
distress in mice. FEBS Lett 467, 7-11. 

Fässler, R., Pfaff, M., Murphy, J., Noegel, A.A., Johansson, S., Timpl, R., and 
Albrecht, R. (1995). Lack of beta 1 integrin gene in embryonic stem cells affects 
morphology, adhesion, and migration but not integration into the inner cell mass of 
blastocysts. J Cell Biol 128, 979-988. 

Fico, A., Maina, F., and Dono, R. (2011). Fine-tuning of cell signaling by glypicans. 
Cell Mol Life Sci 68, 923-929. 

Foitzik, K., Lindner, G., Mueller-Roever, S., Maurer, M., Botchkareva, N., 
Botchkarev, V., Handjiski, B., Metz, M., Hibino, T., Soma, T., et al. (2000). Control 
of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB journal : 
official publication of the Federation of American Societies for Experimental Biology 
14, 752-760. 

Frank, D.E., and Carter, W.G. (2004). Laminin 5 deposition regulates keratinocyte 
polarization and persistent migration. Journal of cell science 117, 1351-1363. 

Frantz, C., Stewart, K.M., and Weaver, V.M. (2010). The extracellular matrix at a 
glance. Journal of cell science 123, 4195-4200. 

Friedrich, E.B., Liu, E., Sinha, S., Cook, S., Milstone, D.S., MacRae, C.A., Mariotti, 
M., Kuhlencordt, P.J., Force, T., Rosenzweig, A., et al. (2004). Integrin-linked kinase 



References  

regulates endothelial cell survival and vascular development. Molecular and cellular 
biology 24, 8134-8144. 

Fujiwara, H., Ferreira, M., Donati, G., Marciano, D.K., Linton, J.M., Sato, Y., 
Hartner, A., Sekiguchi, K., Reichardt, L.F., and Watt, F.M. (2011). The basement 
membrane of hair follicle stem cells is a muscle cell niche. Cell 144, 577-589. 

Fukuda, K., Gupta, S., Chen, K., Wu, C., and Qin, J. (2009). The pseudoactive site of 
ILK is essential for its binding to alpha-Parvin and localization to focal adhesions. 
Mol Cell 36, 819-830. 

Gao, J., DeRouen, M.C., Chen, C.H., Nguyen, M., Nguyen, N.T., Ido, H., Harada, K., 
Sekiguchi, K., Morgan, B.A., Miner, J.H., et al. (2008). Laminin-511 is an epithelial 
message promoting dermal papilla development and function during early hair 
morphogenesis. Genes Dev 22, 2111-2124. 

Gat, U., DasGupta, R., Degenstein, L., and Fuchs, E. (1998). De Novo hair follicle 
morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. 
Cell 95, 605-614. 

Gattazzo, F., Urciuolo, A., and Bonaldo, P. (2014). Extracellular matrix: a dynamic 
microenvironment for stem cell niche. Biochim Biophys Acta 1840, 2506-2519. 

George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H., and Hynes, 
R.O. (1993). Defects in mesoderm, neural tube and vascular development in mouse 
embryos lacking fibronectin. Development 119, 1079-1091. 

Georges-Labouesse, E., Messaddeq, N., Yehia, G., Cadalbert, L., Dierich, A., and Le 
Meur, M. (1996a). Absence of integrin alpha 6 leads to epidermolysis bullosa and 
neonatal death in mice. Nat Genet 13, 370-373. 

Georges-Labouesse, E.N., George, E.L., Rayburn, H., and Hynes, R.O. (1996b). 
Mesodermal development in mouse embryos mutant for fibronectin. Dev Dyn 207, 
145-156. 

Ghatak, S., Morgner, J., and Wickström, S.A. (2013). ILK: a pseudokinase with a 
unique function in the integrin-actin linkage. Biochem Soc Trans 41, 995-1001. 

Gheyara, A.L., Vallejo-Illarramendi, A., Zang, K., Mei, L., St-Arnaud, R., Dedhar, S., 
and Reichardt, L.F. (2007). Deletion of integrin-linked kinase from skeletal muscles 
of mice resembles muscular dystrophy due to alpha 7 beta 1-integrin deficiency. The 
American journal of pathology 171, 1966-1977. 

Gkretsi, V., Mars, W.M., Bowen, W.C., Barua, L., Yang, Y., Guo, L., St-Arnaud, R., 
Dedhar, S., Wu, C., and Michalopoulos, G.K. (2007). Loss of integrin linked kinase 
from mouse hepatocytes in vitro and in vivo results in apoptosis and hepatitis. 
Hepatology 45, 1025-1034. 

Gordon, M.K., and Hahn, R.A. (2010). Collagens. Cell and tissue research 339, 247-
257. 



References

Gorska, M., Popowska, U., Sielicka-Dudzin, A., Kuban-Jankowska, A., Sawczuk, W., 
Knap, N., Cicero, G., and Wozniak, F. (2012). Geldanamycin and its derivatives as 
Hsp90 inhibitors. Frontiers in bioscience 17, 2269-2277. 

Grashoff, C., Aszodi, A., Sakai, T., Hunziker, E.B., and Fässler, R. (2003). Integrin-
linked kinase regulates chondrocyte shape and proliferation. EMBO reports 4, 432-
438. 

Greco, V., Chen, T., Rendl, M., Schober, M., Pasolli, H.A., Stokes, N., Dela Cruz-
Racelis, J., and Fuchs, E. (2009). A two-step mechanism for stem cell activation 
during hair regeneration. Cell stem cell 4, 155-169. 

Hannigan, G.E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M.G., Radeva, 
G., Filmus, J., Bell, J.C., and Dedhar, S. (1996). Regulation of cell adhesion and 
anchorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature 
379, 91-96. 

Harburger, D.S., and Calderwood, D.A. (2009). Integrin signalling at a glance. 
Journal of cell science 122, 159-163. 

Higginson, J.R., and Winder, S.J. (2005). Dystroglycan: a multifunctional adaptor 
protein. Biochem Soc Trans 33, 1254-1255. 

Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. J 
Invest Dermatol 127, 526-537. 

Hohenester, E., and Yurchenco, P.D. (2013). Laminins in basement membrane 
assembly. Cell adhesion & migration 7, 56-63. 

Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H., and Fuchs, E. (2008). 
NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299-310. 

Hsu, Y.C., and Fuchs, E. (2012). A family business: stem cell progeny join the niche 
to regulate homeostasis. Nature reviews Molecular cell biology 13, 103-114. 

Hsu, Y.C., Li, L., and Fuchs, E. (2014). Transit-amplifying cells orchestrate stem cell 
activity and tissue regeneration. Cell 157, 935-949. 

Hsu, Y.C., Pasolli, H.A., and Fuchs, E. (2011). Dynamics between stem cells, niche, 
and progeny in the hair follicle. Cell 144, 92-105. 

Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., and Birchmeier, W. (2001). 
beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the 
skin. Cell 105, 533-545. 

Huet-Calderwood, C., Brahme, N.N., Kumar, N., Stiegler, A.L., Raghavan, S., 
Boggon, T.J., and Calderwood, D.A. (2014). Differential binding to the ILK complex 
determines kindlin isoform adhesion localization and integrin activation. Journal of 
cell science. 

Humphries, J.D., Byron, A., and Humphries, M.J. (2006). Integrin ligands at a glance. 
Journal of cell science 119, 3901-3903. 



References  

Huveneers, S., Truong, H., Fassler, R., Sonnenberg, A., and Danen, E.H. (2008). 
Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion 
redistribution and contractile shape. Journal of cell science 121, 2452-2462. 

Hynes, R.O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110, 
673-687. 

Imanishi, H., Tsuruta, D., Tateishi, C., Sugawara, K., Kobayashi, H., Ishii, M., and 
Kishi, K. (2014). Spatial and temporal control of laminin-332 and -511 expressions 
during hair morphogenesis. Medical molecular morphology 47, 38-42. 

Ito, S., Takahara, Y., Hyodo, T., Hasegawa, H., Asano, E., Hamaguchi, M., and 
Senga, T. (2010). The roles of two distinct regions of PINCH-1 in the regulation of 
cell attachment and spreading. Molecular biology of the cell 21, 4120-4129. 

Ivanova, N.B., Dimos, J.T., Schaniel, C., Hackney, J.A., Moore, K.A., and 
Lemischka, I.R. (2002). A stem cell molecular signature. Science 298, 601-604. 

Jaks, V., Barker, N., Kasper, M., van Es, J.H., Snippert, H.J., Clevers, H., and 
Toftgard, R. (2008). Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat 
Genet 40, 1291-1299. 

Jones, P., and Simons, B.D. (2008). Epidermal homeostasis: do committed 
progenitors work while stem cells sleep? Nature reviews Molecular cell biology 9, 82-
88. 

Jones, P.H., Simons, B.D., and Watt, F.M. (2007). Sic transit gloria: farewell to the 
epidermal transit amplifying cell? Cell stem cell 1, 371-381. 

Judah, D., Rudkouskaya, A., Wilson, R., Carter, D.E., and Dagnino, L. (2012). 
Multiple roles of integrin-linked kinase in epidermal development, maturation and 
pigmentation revealed by molecular profiling. PLoS One 7, e36704. 

Kadler, K.E., Baldock, C., Bella, J., and Boot-Handford, R.P. (2007). Collagens at a 
glance. Journal of cell science 120, 1955-1958. 

Kandyba, E., Leung, Y., Chen, Y.B., Widelitz, R., Chuong, C.M., and Kobielak, K. 
(2013). Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene 
network ruling stem cell homeostasis and cyclic activation. Proc Natl Acad Sci U S A 
110, 1351-1356. 

Kerever, A., Schnack, J., Vellinga, D., Ichikawa, N., Moon, C., Arikawa-Hirasawa, 
E., Efird, J.T., and Mercier, F. (2007). Novel extracellular matrix structures in the 
neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from 
the extracellular milieu. Stem cells 25, 2146-2157. 

Kikkawa, Y., Yu, H., Genersch, E., Sanzen, N., Sekiguchi, K., Fassler, R., Campbell, 
K.P., Talts, J.F., and Ekblom, P. (2004). Laminin isoforms differentially regulate 
adhesion, spreading, proliferation, and ERK activation of beta1 integrin-null cells. 
Experimental cell research 300, 94-108. 



References

Kinsey, R., Williamson, M.R., Chaudhry, S., Mellody, K.T., McGovern, A., 
Takahashi, S., Shuttleworth, C.A., and Kielty, C.M. (2008). Fibrillin-1 microfibril 
deposition is dependent on fibronectin assembly. Journal of cell science 121, 2696-
2704. 

Kobielak, K., Stokes, N., de la Cruz, J., Polak, L., and Fuchs, E. (2007). Loss of a 
quiescent niche but not follicle stem cells in the absence of bone morphogenetic 
protein signaling. Proc Natl Acad Sci U S A 104, 10063-10068. 

Krieg, T., and Aumailley, M. (2011). The extracellular matrix of the dermis: flexible 
structures with dynamic functions. Experimental dermatology 20, 689-695. 

Lange, A., Wickström, S.A., Jakobson, M., Zent, R., Sainio, K., and Fässler, R. 
(2009). Integrin-linked kinase is an adaptor with essential functions during mouse 
development. Nature 461, 1002-1006. 

Larsen, M., Artym, V.V., Green, J.A., and Yamada, K.M. (2006). The matrix 
reorganized: extracellular matrix remodeling and integrin signaling. Current opinion 
in cell biology 18, 463-471. 

Larson, R.S., Corbi, A.L., Berman, L., and Springer, T. (1989). Primary structure of 
the leukocyte function-associated molecule-1 alpha subunit: an integrin with an 
embedded domain defining a protein superfamily. J Cell Biol 108, 703-712. 

LeBleu, V.S., Macdonald, B., and Kalluri, R. (2007). Structure and function of 
basement membranes. Experimental biology and medicine 232, 1121-1129. 

Lechler, T., and Fuchs, E. (2005). Asymmetric cell divisions promote stratification 
and differentiation of mammalian skin. Nature 437, 275-280. 

Legate, K.R., Wickström, S.A., and Fässler, R. (2009). Genetic and cell biological 
analysis of integrin outside-in signaling. Genes Dev 23, 397-418. 

Li, J., Tzu, J., Chen, Y., Zhang, Y.P., Nguyen, N.T., Gao, J., Bradley, M., Keene, 
D.R., Oro, A.E., Miner, J.H., et al. (2003). Laminin-10 is crucial for hair 
morphogenesis. EMBO J 22, 2400-2410. 

Lien, W.H., Polak, L., Lin, M., Lay, K., Zheng, D., and Fuchs, E. (2014). In vivo 
transcriptional governance of hair follicle stem cells by canonical Wnt regulators. 
Nature cell biology 16, 179-190. 

Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J.D., Wells, D.E., and Matzuk, M.M. 
(2000). Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient 
mice. Developmental biology 224, 299-311. 

Liu, B.Y., Kim, Y.C., Leatherberry, V., Cowin, P., and Alexander, C.M. (2003). 
Mammary gland development requires syndecan-1 to create a beta-catenin/TCF-
responsive mammary epithelial subpopulation. Oncogene 22, 9243-9253. 

Liu, E., Sinha, S., Williams, C., Cyrille, M., Heller, E., Snapper, S.B., Georgopoulos, 
K., St-Arnaud, R., Force, T., Dedhar, S., et al. (2005). Targeted deletion of integrin-



References  

linked kinase reveals a role in T-cell chemotaxis and survival. Molecular and cellular 
biology 25, 11145-11155. 

Lorenz, K., Grashoff, C., Torka, R., Sakai, T., Langbein, L., Bloch, W., Aumailley, 
M., and Fässler, R. (2007). Integrin-linked kinase is required for epidermal and hair 
follicle morphogenesis. J Cell Biol 177, 501-513. 

Lowry, W.E., Blanpain, C., Nowak, J.A., Guasch, G., Lewis, L., and Fuchs, E. 
(2005). Defining the impact of beta-catenin/Tcf transactivation on epithelial stem 
cells. Genes Dev 19, 1596-1611. 

Lukas, J., Lukas, C., and Bartek, J. (2011). More than just a focus: The chromatin 
response to DNA damage and its role in genome integrity maintenance. Nature cell 
biology 13, 1161-1169. 

Mackinnon, A.C., Qadota, H., Norman, K.R., Moerman, D.G., and Williams, B.D. 
(2002). C. elegans PAT-4/ILK functions as an adaptor protein within integrin 
adhesion complexes. Current biology : CB 12, 787-797. 

Mak, K.K., and Chan, S.Y. (2003). Epidermal growth factor as a biologic switch in 
hair growth cycle. J Biol Chem 278, 26120-26126. 

Margadant, C., Monsuur, H.N., Norman, J.C., and Sonnenberg, A. (2011). 
Mechanisms of integrin activation and trafficking. Current opinion in cell biology 23, 
607-614. 

Marinkovich, M.P., Keene, D.R., Rimberg, C.S., and Burgeson, R.E. (1993). Cellular 
origin of the dermal-epidermal basement membrane. Dev Dyn 197, 255-267. 

Massam-Wu, T., Chiu, M., Choudhury, R., Chaudhry, S.S., Baldwin, A.K., 
McGovern, A., Baldock, C., Shuttleworth, C.A., and Kielty, C.M. (2010). Assembly 
of fibrillin microfibrils governs extracellular deposition of latent TGF beta. Journal of 
cell science 123, 3006-3018. 

McKee, K.K., Capizzi, S., and Yurchenco, P.D. (2009). Scaffold-forming and 
Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement 
Membrane Assembly. J Biol Chem 284, 8984-8994. 

McMillan, J.R., Akiyama, M., and Shimizu, H. (2003). Epidermal basement 
membrane zone components: ultrastructural distribution and molecular interactions. J 
Dermatol Sci 31, 169-177. 

McQuade, K.J., Beauvais, D.M., Burbach, B.J., and Rapraeger, A.C. (2006). 
Syndecan-1 regulates alphavbeta5 integrin activity in B82L fibroblasts. Journal of cell 
science 119, 2445-2456. 

Merrill, B.J., Gat, U., DasGupta, R., and Fuchs, E. (2001). Tcf3 and Lef1 regulate 
lineage differentiation of multipotent stem cells in skin. Genes Dev 15, 1688-1705. 

Millar, S.E. (2002). Molecular mechanisms regulating hair follicle development. J 
Invest Dermatol 118, 216-225. 



References

Mills, J., Niewmierzycka, A., Oloumi, A., Rico, B., St-Arnaud, R., Mackenzie, I.R., 
Mawji, N.M., Wilson, J., Reichardt, L.F., and Dedhar, S. (2006). Critical role of 
integrin-linked kinase in granule cell precursor proliferation and cerebellar 
development. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 26, 830-840. 

Miner, J.H., Cunningham, J., and Sanes, J.R. (1998). Roles for laminin in 
embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the 
laminin alpha5 chain. J Cell Biol 143, 1713-1723. 

Mokkapati, S., Baranowsky, A., Mirancea, N., Smyth, N., Breitkreutz, D., and Nischt, 
R. (2008). Basement membranes in skin are differently affected by lack of nidogen 1 
and 2. J Invest Dermatol 128, 2259-2267. 

Moll, R., Franke, W.W., Schiller, D.L., Geiger, B., and Krepler, R. (1982). The 
catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and 
cultured cells. Cell 31, 11-24. 

Montanez, E., Wickström, S.A., Altstatter, J., Chu, H., and Fässler, R. (2009). Alpha-
parvin controls vascular mural cell recruitment to vessel wall by regulating 
RhoA/ROCK signalling. EMBO J 28, 3132-3144. 

Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, 
J.A., and Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. 
Nature biotechnology 22, 411-417. 

Morse, E.M., Brahme, N.N., and Calderwood, D.A. (2014). Integrin cytoplasmic tail 
interactions. Biochemistry 53, 810-820. 

Muller-Rover, S., Tokura, Y., Welker, P., Furukawa, F., Wakita, H., Takigawa, M., 
and Paus, R. (1999). E- and P-cadherin expression during murine hair follicle 
morphogenesis and cycling. Experimental dermatology 8, 237-246. 

Munger, J.S., Harpel, J.G., Giancotti, F.G., and Rifkin, D.B. (1998). Interactions 
between growth factors and integrins: latent forms of transforming growth factor-beta 
are ligands for the integrin alphavbeta1. Molecular biology of the cell 9, 2627-2638. 

Murga, M., Bunting, S., Montana, M.F., Soria, R., Mulero, F., Canamero, M., Lee, Y., 
McKinnon, P.J., Nussenzweig, A., and Fernandez-Capetillo, O. (2009). A mouse 
model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat 
Genet 41, 891-898. 

Murillas, R., Larcher, F., Conti, C.J., Santos, M., Ullrich, A., and Jorcano, J.L. (1995). 
Expression of a dominant negative mutant of epidermal growth factor receptor in the 
epidermis of transgenic mice elicits striking alterations in hair follicle development 
and skin structure. EMBO J 14, 5216-5223. 

Murray, P., and Edgar, D. (2000). Regulation of programmed cell death by basement 
membranes in embryonic development. J Cell Biol 150, 1215-1221. 



References  

Naba, A., Clauser, K.R., Hoersch, S., Liu, H., Carr, S.A., and Hynes, R.O. (2012). 
The matrisome: in silico definition and in vivo characterization by proteomics of 
normal and tumor extracellular matrices. Mol Cell Proteomics 11, M111 014647. 

Nakrieko, K.A., Rudkouskaya, A., Irvine, T.S., D'Souza, S.J., and Dagnino, L. 
(2011). Targeted inactivation of integrin-linked kinase in hair follicle stem cells 
reveals an important modulatory role in skin repair after injury. Molecular biology of 
the cell 22, 2532-2540. 

Nakrieko, K.A., Welch, I., Dupuis, H., Bryce, D., Pajak, A., St Arnaud, R., Dedhar, 
S., D'Souza, S.J., and Dagnino, L. (2008). Impaired hair follicle morphogenesis and 
polarized keratinocyte movement upon conditional inactivation of integrin-linked 
kinase in the epidermis. Molecular biology of the cell 19, 1462-1473. 

Ng, A., Tan, S., Singh, G., Rizk, P., Swathi, Y., Tan, T.Z., Huang, R.Y., Leushacke, 
M., and Barker, N. (2014). Lgr5 marks stem/progenitor cells in ovary and tubal 
epithelia. Nature cell biology 16, 745-757. 

Nguyen, H., Rendl, M., and Fuchs, E. (2006). Tcf3 governs stem cell features and 
represses cell fate determination in skin. Cell 127, 171-183. 

Niewmierzycka, A., Mills, J., St-Arnaud, R., Dedhar, S., and Reichardt, L.F. (2005). 
Integrin-linked kinase deletion from mouse cortex results in cortical lamination 
defects resembling cobblestone lissencephaly. The Journal of neuroscience : the 
official journal of the Society for Neuroscience 25, 7022-7031. 

Nikolopoulos, S.N., and Turner, C.E. (2000). Actopaxin, a new focal adhesion protein 
that binds paxillin LD motifs and actin and regulates cell adhesion. J Cell Biol 151, 
1435-1448. 

Nishiuchi, R., Murayama, O., Fujiwara, H., Gu, J., Kawakami, T., Aimoto, S., Wada, 
Y., and Sekiguchi, K. (2003). Characterization of the ligand-binding specificities of 
integrin alpha3beta1 and alpha6beta1 using a panel of purified laminin isoforms 
containing distinct alpha chains. Journal of biochemistry 134, 497-504. 

Nistala, H., Lee-Arteaga, S., Smaldone, S., Siciliano, G., Carta, L., Ono, R.N., Sengle, 
G., Arteaga-Solis, E., Levasseur, R., Ducy, P., et al. (2010). Fibrillin-1 and -2 
differentially modulate endogenous TGF-beta and BMP bioavailability during bone 
formation. J Cell Biol 190, 1107-1121. 

Nowak, J.A., Polak, L., Pasolli, H.A., and Fuchs, E. (2008). Hair follicle stem cells 
are specified and function in early skin morphogenesis. Cell stem cell 3, 33-43. 

O'Hagan, R.C., and Heyer, J. (2011). KRAS Mouse Models: Modeling Cancer 
Harboring KRAS Mutations. Genes & cancer 2, 335-343. 

Ohashi, T., Kiehart, D.P., and Erickson, H.P. (2002). Dual labeling of the fibronectin 
matrix and actin cytoskeleton with green fluorescent protein variants. Journal of cell 
science 115, 1221-1229. 



References

Okina, E., Manon-Jensen, T., Whiteford, J.R., and Couchman, J.R. (2009). Syndecan 
proteoglycan contributions to cytoskeletal organization and contractility. 
Scandinavian journal of medicine & science in sports 19, 479-489. 

Olorundare, O.E., Peyruchaud, O., Albrecht, R.M., and Mosher, D.F. (2001). 
Assembly of a fibronectin matrix by adherent platelets stimulated by lysophosphatidic 
acid and other agonists. Blood 98, 117-124. 

Olski, T.M., Noegel, A.A., and Korenbaum, E. (2001). Parvin, a 42 kDa focal 
adhesion protein, related to the alpha-actinin superfamily. Journal of cell science 114, 
525-538. 

Oshimori, N., and Fuchs, E. (2012). Paracrine TGF-beta signaling counterbalances 
BMP-mediated repression in hair follicle stem cell activation. Cell stem cell 10, 63-
75. 

Owens, P., Han, G., Li, A.G., and Wang, X.J. (2008). The role of Smads in skin 
development. J Invest Dermatol 128, 783-790. 

Oxvig, C., and Springer, T.A. (1998). Experimental support for a beta-propeller 
domain in integrin alpha-subunits and a calcium binding site on its lower surface. 
Proc Natl Acad Sci U S A 95, 4870-4875. 

Pankov, R., Cukierman, E., Katz, B.Z., Matsumoto, K., Lin, D.C., Lin, S., Hahn, C., 
and Yamada, K.M. (2000). Integrin dynamics and matrix assembly: tensin-dependent 
translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J 
Cell Biol 148, 1075-1090. 

Paus, R., and Foitzik, K. (2004). In search of the "hair cycle clock": a guided tour. 
Differentiation 72, 489-511. 

Pelham, R.J., Jr., and Wang, Y. (1997). Cell locomotion and focal adhesions are 
regulated by substrate flexibility. Proc Natl Acad Sci U S A 94, 13661-13665. 

Piwko-Czuchra, A., Koegel, H., Meyer, H., Bauer, M., Werner, S., Brakebusch, C., 
and Fassler, R. (2009). Beta1 integrin-mediated adhesion signalling is essential for 
epidermal progenitor cell expansion. PLoS One 4, e5488. 

Plikus, M.V., Mayer, J.A., de la Cruz, D., Baker, R.E., Maini, P.K., Maxson, R., and 
Chuong, C.M. (2008). Cyclic dermal BMP signalling regulates stem cell activation 
during hair regeneration. Nature 451, 340-344. 

Potten, C.S. (1981). Cell replacement in epidermis (keratopoiesis) via discrete units of 
proliferation. International review of cytology 69, 271-318. 

Radovanac, K., Morgner, J., Schulz, J.N., Blumbach, K., Patterson, C., Geiger, T., 
Mann, M., Krieg, T., Eckes, B., Fässler, R., et al. (2013). Stabilization of integrin-
linked kinase by the Hsp90-CHIP axis impacts cellular force generation, migration 
and the fibrotic response. EMBO J 32, 1409-1424. 



References  

Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R.C., and Melton, D.A. 
(2002). "Stemness": transcriptional profiling of embryonic and adult stem cells. 
Science 298, 597-600. 

Ramirez, A., Page, A., Gandarillas, A., Zanet, J., Pibre, S., Vidal, M., Tusell, L., 
Genesca, A., Whitaker, D.A., Melton, D.W., et al. (2004). A keratin K5Cre transgenic 
line appropriate for tissue-specific or generalized Cre-mediated recombination. 
Genesis 39, 52-57. 

Ramirez, F., and Dietz, H.C. (2007). Fibrillin-rich microfibrils: Structural 
determinants of morphogenetic and homeostatic events. Journal of cellular physiology 
213, 326-330. 

Ramirez, F., and Sakai, L.Y. (2010). Biogenesis and function of fibrillin assemblies. 
Cell and tissue research 339, 71-82. 

Rhee, H., Polak, L., and Fuchs, E. (2006). Lhx2 maintains stem cell character in hair 
follicles. Science 312, 1946-1949. 

Ricard-Blum, S. (2011). The collagen family. Cold Spring Harb Perspect Biol 3, 
a004978. 

Rompolas, P., Mesa, K.R., and Greco, V. (2013). Spatial organization within a niche 
as a determinant of stem-cell fate. Nature 502, 513-518. 

Rousselle, P., and Beck, K. (2013). Laminin 332 processing impacts cellular 
behavior. Cell adhesion & migration 7, 122-134. 

Rudkouskaya, A., Welch, I., and Dagnino, L. (2014). ILK modulates epithelial 
polarity and matrix formation in hair follicles. Molecular biology of the cell 25, 620-
632. 

Ryan, M.C., Lee, K., Miyashita, Y., and Carter, W.G. (1999). Targeted disruption of 
the LAMA3 gene in mice reveals abnormalities in survival and late stage 
differentiation of epithelial cells. J Cell Biol 145, 1309-1323. 

Sakai, T., Larsen, M., and Yamada, K.M. (2003a). Fibronectin requirement in 
branching morphogenesis. Nature 423, 876-881. 

Sakai, T., Li, S., Docheva, D., Grashoff, C., Sakai, K., Kostka, G., Braun, A., Pfeifer, 
A., Yurchenco, P.D., and Fässler, R. (2003b). Integrin-linked kinase (ILK) is required 
for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes 
Dev 17, 926-940. 

Sarrazin, S., Lamanna, W.C., and Esko, J.D. (2011). Heparan sulfate proteoglycans. 
Cold Spring Harb Perspect Biol 3. 

Scadden, D.T. (2006). The stem-cell niche as an entity of action. Nature 441, 1075-
1079. 

Schepeler, T., Page, M.E., and Jensen, K.B. (2014). Heterogeneity and plasticity of 
epidermal stem cells. Development 141, 2559-2567. 



References

Schiller, H.B., and Fässler, R. (2013). Mechanosensitivity and compositional 
dynamics of cell-matrix adhesions. EMBO reports 14, 509-519. 

Schlake, T. (2007). Determination of hair structure and shape. Seminars in cell & 
developmental biology 18, 267-273. 

Schmidt-Ullrich, R., and Paus, R. (2005). Molecular principles of hair follicle 
induction and morphogenesis. BioEssays : news and reviews in molecular, cellular 
and developmental biology 27, 247-261. 

Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. (2009). The hair follicle as a 
dynamic miniorgan. Current biology : CB 19, R132-142. 

Schofield, R. (1978). The relationship between the spleen colony-forming cell and the 
haemopoietic stem cell. Blood cells 4, 7-25. 

Schwarzbauer, J.E., and DeSimone, D.W. (2011). Fibronectins, their fibrillogenesis, 
and in vivo functions. Cold Spring Harb Perspect Biol 3. 

Sechler, J.L., Cumiskey, A.M., Gazzola, D.M., and Schwarzbauer, J.E. (2000). A 
novel RGD-independent fibronectin assembly pathway initiated by alpha4beta1 
integrin binding to the alternatively spliced V region. Journal of cell science 113 ( Pt 
8), 1491-1498. 

Sennett, R., and Rendl, M. (2012). Mesenchymal-epithelial interactions during hair 
follicle morphogenesis and cycling. Seminars in cell & developmental biology 23, 
917-927. 

Shi, F., Hu, L., and Edge, A.S. (2013). Generation of hair cells in neonatal mice by 
beta-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci 
U S A 110, 13851-13856. 

Sick, S., Reinker, S., Timmer, J., and Schlake, T. (2006). WNT and DKK determine 
hair follicle spacing through a reaction-diffusion mechanism. Science 314, 1447-
1450. 

Sinclair, R., Jolley, D., Mallari, R., Magee, J., Tosti, A., Piracinni, B.M., Vincenzi, C., 
Happle, R., Ferrando, J., Grimalt, R., et al. (2003). Morphological approach to hair 
disorders. The journal of investigative dermatology Symposium proceedings / the 
Society for Investigative Dermatology, Inc [and] European Society for 
Dermatological Research 8, 56-64. 

Soriano, P. (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. 
Nat Genet 21, 70-71. 

Sotiropoulou, P.A., Candi, A., Mascre, G., De Clercq, S., Youssef, K.K., Lapouge, 
G., Dahl, E., Semeraro, C., Denecker, G., Marine, J.C., et al. (2010). Bcl-2 and 
accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-
damage-induced cell death. Nature cell biology 12, 572-582. 

Stanchi, F., Grashoff, C., Nguemeni Yonga, C.F., Grall, D., Fässler, R., and Van 
Obberghen-Schilling, E. (2009). Molecular dissection of the ILK-PINCH-parvin triad 



References  

reveals a fundamental role for the ILK kinase domain in the late stages of focal-
adhesion maturation. Journal of cell science 122, 1800-1811. 

Steinert, P.M., and Marekov, L.N. (1995). The proteins elafin, filaggrin, keratin 
intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are 
isodipeptide cross-linked components of the human epidermal cornified cell envelope. 
J Biol Chem 270, 17702-17711. 

Stephens, L.E., Sutherland, A.E., Klimanskaya, I.V., Andrieux, A., Meneses, J., 
Pedersen, R.A., and Damsky, C.H. (1995). Deletion of beta 1 integrins in mice results 
in inner cell mass failure and peri-implantation lethality. Genes Dev 9, 1883-1895. 

Stiegler, A.L., Grant, T.D., Luft, J.R., Calderwood, D.A., Snell, E.H., and Boggon, 
T.J. (2013). Purification and SAXS analysis of the integrin linked kinase, PINCH, 
parvin (IPP) heterotrimeric complex. PLoS One 8, e55591. 

Sugawara, K., Tsuruta, D., Kobayashi, H., Ikeda, K., Hopkinson, S.B., Jones, J.C., 
and Ishii, M. (2007). Spatial and temporal control of laminin-332 (5) and -511 (10) 
expression during induction of anagen hair growth. The journal of histochemistry and 
cytochemistry : official journal of the Histochemistry Society 55, 43-55. 

Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C., Horwitz, A.F., and 
Hynes, R.O. (1986). Structure of integrin, a glycoprotein involved in the 
transmembrane linkage between fibronectin and actin. Cell 46, 271-282. 

Tateishi, C., Tsuruta, D., Sugawara, K., Yoshizato, K., Imanishi, H., Nishida, K., 
Ishii, M., and Kobayashi, H. (2010). Spatial and temporal control of laminin-511 and 
-332 expressions during catagen. J Dermatol Sci 58, 55-63. 

Terpstra, L., Prud'homme, J., Arabian, A., Takeda, S., Karsenty, G., Dedhar, S., and 
St-Arnaud, R. (2003). Reduced chondrocyte proliferation and chondrodysplasia in 
mice lacking the integrin-linked kinase in chondrocytes. J Cell Biol 162, 139-148. 

Tiedemann, K., Sasaki, T., Gustafsson, E., Gohring, W., Batge, B., Notbohm, H., 
Timpl, R., Wedel, T., Schlotzer-Schrehardt, U., and Reinhardt, D.P. (2005). 
Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol 
Chem 280, 11404-11412. 

Tomasek, J.J., Gabbiani, G., Hinz, B., Chaponnier, C., and Brown, R.A. (2002). 
Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature 
reviews Molecular cell biology 3, 349-363. 

Torkamani, N., Rufaut, N.W., Jones, L., and Sinclair, R.D. (2014). Beyond 
goosebumps: does the arrector pili muscle have a role in hair loss? International 
journal of trichology 6, 88-94. 

Tseng, Q., Wang, I., Duchemin-Pelletier, E., Azioune, A., Carpi, N., Gao, J., Filhol, 
O., Piel, M., Thery, M., and Balland, M. (2011). A new micropatterning method of 
soft substrates reveals that different tumorigenic signals can promote or reduce cell 
contraction levels. Lab on a chip 11, 2231-2240. 



References

Tu, Y., Huang, Y., Zhang, Y., Hua, Y., and Wu, C. (2001). A new focal adhesion 
protein that interacts with integrin-linked kinase and regulates cell adhesion and 
spreading. J Cell Biol 153, 585-598. 

Turksen, K., Kupper, T., Degenstein, L., Williams, I., and Fuchs, E. (1992). 
Interleukin 6: insights to its function in skin by overexpression in transgenic mice. 
Proc Natl Acad Sci U S A 89, 5068-5072. 

Vaezi, A., Bauer, C., Vasioukhin, V., and Fuchs, E. (2002). Actin cable dynamics and 
Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of 
assembling a stratified epithelium. Dev Cell 3, 367-381. 

van Genderen, C., Okamura, R.M., Farinas, I., Quo, R.G., Parslow, T.G., Bruhn, L., 
and Grosschedl, R. (1994). Development of several organs that require inductive 
epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 
8, 2691-2703. 

Vicente-Manzanares, M., and Horwitz, A.R. (2011). Adhesion dynamics at a glance. 
Journal of cell science 124, 3923-3927. 

Vidal, V.P., Chaboissier, M.C., Lutzkendorf, S., Cotsarelis, G., Mill, P., Hui, C.C., 
Ortonne, N., Ortonne, J.P., and Schedl, A. (2005). Sox9 is essential for outer root 
sheath differentiation and the formation of the hair stem cell compartment. Current 
biology : CB 15, 1340-1351. 

Wang, H.V., Chang, L.W., Brixius, K., Wickström, S.A., Montanez, E., Thievessen, 
I., Schwander, M., Muller, U., Bloch, W., Mayer, U., et al. (2008). Integrin-linked 
kinase stabilizes myotendinous junctions and protects muscle from stress-induced 
damage. J Cell Biol 180, 1037-1049. 

Watt, F.M., and Fujiwara, H. (2011). Cell-extracellular matrix interactions in normal 
and diseased skin. Cold Spring Harb Perspect Biol 3. 

Watt, F.M., and Green, H. (1982). Stratification and terminal differentiation of 
cultured epidermal cells. Nature 295, 434-436. 

Wennerberg, K., Lohikangas, L., Gullberg, D., Pfaff, M., Johansson, S., and Fassler, 
R. (1996). Beta 1 integrin-dependent and -independent polymerization of fibronectin. 
J Cell Biol 132, 227-238. 

Wickström, S.A., Lange, A., Montanez, E., and Fässler, R. (2010). The 
ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J 
29, 281-291. 

Wickström, S.A., Radovanac, K., and Fässler, R. (2011). Genetic analyses of integrin 
signaling. Cold Spring Harb Perspect Biol 3. 

Winter, H., and Schweizer, J. (1983). Keratin synthesis in normal mouse epithelia and 
in squamous cell carcinomas: evidence in tumors for masked mRNA species coding 
for high molecular weight keratin polypeptides. Proc Natl Acad Sci U S A 80, 6480-
6484. 



References  

Yamaji, S., Suzuki, A., Sugiyama, Y., Koide, Y., Yoshida, M., Kanamori, H., Mohri, 
H., Ohno, S., and Ishigatsubo, Y. (2001). A novel integrin-linked kinase-binding 
protein, affixin, is involved in the early stage of cell-substrate interaction. J Cell Biol 
153, 1251-1264. 

Yan, D., and Lin, X. (2009). Shaping morphogen gradients by proteoglycans. Cold 
Spring Harb Perspect Biol 1, a002493. 

Yang, J.T., Bader, B.L., Kreidberg, J.A., Ullman-Cullere, M., Trevithick, J.E., and 
Hynes, R.O. (1999). Overlapping and independent functions of fibronectin receptor 
integrins in early mesodermal development. Developmental biology 215, 264-277. 

Yang, J.T., Rayburn, H., and Hynes, R.O. (1993). Embryonic mesodermal defects in 
alpha 5 integrin-deficient mice. Development 119, 1093-1105. 

Yang, J.T., Rayburn, H., and Hynes, R.O. (1995). Cell adhesion events mediated by 
alpha 4 integrins are essential in placental and cardiac development. Development 
121, 549-560. 

Yang, Y., Wang, X., Hawkins, C.A., Chen, K., Vaynberg, J., Mao, X., Tu, Y., Zuo, 
X., Wang, J., Wang, Y.X., et al. (2009). Structural basis of focal adhesion localization 
of LIM-only adaptor PINCH by integrin-linked kinase. J Biol Chem 284, 5836-5844. 

Yu, H., and Talts, J.F. (2003). Beta1 integrin and alpha-dystroglycan binding sites are 
localized to different laminin-G-domain-like (LG) modules within the laminin alpha5 
chain G domain. Biochem J 371, 289-299. 

Yurchenco, P.D. (2011). Basement membranes: cell scaffoldings and signaling 
platforms. Cold Spring Harb Perspect Biol 3. 

Yurchenco, P.D., Quan, Y., Colognato, H., Mathus, T., Harrison, D., Yamada, Y., and 
O'Rear, J.J. (1997). The alpha chain of laminin-1 is independently secreted and drives 
secretion of its beta- and gamma-chain partners. Proc Natl Acad Sci U S A 94, 10189-
10194. 

Zaidel-Bar, R., and Geiger, B. (2010). The switchable integrin adhesome. Journal of 
cell science 123, 1385-1388. 

Zaidel-Bar, R., Itzkovitz, S., Ma'ayan, A., Iyengar, R., and Geiger, B. (2007). 
Functional atlas of the integrin adhesome. Nature cell biology 9, 858-867. 

Zamir, E., and Geiger, B. (2001). Molecular complexity and dynamics of cell-matrix 
adhesions. Journal of cell science 114, 3583-3590. 

Zamir, E., Katz, M., Posen, Y., Erez, N., Yamada, K.M., Katz, B.Z., Lin, S., Lin, 
D.C., Bershadsky, A., Kam, Z., et al. (2000). Dynamics and segregation of cell-matrix 
adhesions in cultured fibroblasts. Nature cell biology 2, 191-196. 

Zervas, C.G., Gregory, S.L., and Brown, N.H. (2001). Drosophila integrin-linked 
kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma 
membrane. J Cell Biol 152, 1007-1018. 



References

Zhang, Y., Chen, K., Tu, Y., Velyvis, A., Yang, Y., Qin, J., and Wu, C. (2002). 
Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for 
localization of each component to cell-matrix adhesion sites. Journal of cell science 
115, 4777-4786. 

Zhang, Y., Yu, J., Shi, C., Huang, Y., Wang, Y., Yang, T., and Yang, J. (2013). Lef1 
contributes to the differentiation of bulge stem cells by nuclear translocation and 
cross-talk with the Notch signaling pathway. International journal of medical sciences 
10, 738-746. 

Zhu, J., Luo, B.H., Xiao, T., Zhang, C., Nishida, N., and Springer, T.A. (2008). 
Structure of a complete integrin ectodomain in a physiologic resting state and 
activation and deactivation by applied forces. Mol Cell 32, 849-861. 



Appendix  

Gene/oligo Sequence 5’ – 3’ Amplicon lenght 
(bp) 

mβAct fw TCAAGATCATTGCTC 106 
mβAct rev TACTTCTGCTTGCTGATCCAC  
mAxin2 fw AGCGCCAACGACAGCGAGTT 188 
mAxin2 rev AGGCGGTGGGTTCTCGGAAA  
mBambi fw CTTTGGAATGCTGTCACGAA 149 
mBambi rev GGAAGTCAGCTCCTGCATCT  
mBgn fw TCCGCACTCCAACAACATCA 204 
mBgn rev GGCAACCACTGCCTCTACTT  
mCD44 fw AGCCCCTCCTGAAGAAGACT 116 
mCD44 rev ACTCGCCCTTCTTGCTGTAG  
mDkk3 fw ATGCTATGCACCCGAGACAG 159 
mDkk3 rev GAACAGCAGGCCTCTTTGGA  
mGrem1 fw CCACGGAAGTGACAGAATGA 141 
mGrem1 rev TTGTGCTGAGCCTTGTCAGG  
mId2 fw ATCCCCCAGAACAAGAAGGT 128 
mId2 rev TGTCCAGGTCTCTGGTGATG  
mIL1b fw CGACCCCAAAAGATGAAGGGCTGC 99 
mIL1b rev GCTCTTGTTGATGTGCTGCTGCG  
mIL6 fw ACACATGTTCTCTGGGAAATC 84 
mIL6 rev AAGTGCATCATCGTTGTTCATACA  
mLef1 fw CGGAACTCTGCGCCACCGAT 177  
mLef1 rev TGACCACCTCATGCCCGTTGC  
mLhx2 fw CCTACTACAACGGCGTGGGCACTGT  137 
mLhx2 rev GTCACGATCCAGGTGTTCAGCATCG   
mLgr5 fw CCAATGGAATAAAGACGACGGCAACA 128 
mLgr5 rev GGGCCTTCAGGTCTTCCTCAAAGTCA  
mNfatc1 fw GGTGCTGTCTGGCCATAACT 128 
mNfatc1 rev CCAGGGAATTTGGCTTGCAC  
mp21 fw GGCAGACCAGCCTGACAGAT 69 
mp21 rev TTCAGGGTTTTCTCTTGCAGAAG  
mPai1 fw GACACCCTCAGCATGTTCATC 218 
mPai1 rev AGGGTTGCACTAAACATGTCAG  
mS26 fw CGTCTTCGACGCCTACGTGCT 180  
mS26 rev CGGCCTCTTTACATGGGCTTTGGT  
mSfrp1 fw GCAAGCGAGTTTGCACTGAGGATGA 101  
mSfrp1 rev GGCCCCAGCTTCAAGGGTTTCTTCT  
mTcf3 fw CTCAGCAGCAAATCCAAGAGGCAGAG 109 
mTcf3 rev TGGGAAGACGCAGGGCTATCACAAG  
mTgfb1 fw ACCCTGCCCCTATATTTGGA 63 
mTgfb1 rev TGGTTGTAGAGGGCAAGGAC  
mTNFa fw GACCCTCACACTCAGATCATCTTCT 80 
mTNFa rev CCTCCACTTGGTGGTTTGCT  



Abbreviations 

AdMIDAS   adjacent to MIDAS 

Akt    RAC-alpha serine/threonineprotein kinase 

ANK   ankyrin repeat 

Arp2/3   actin related protein 2/3complex 

Axin2   axis inhibition protein 2 

Bgn   biglycan 

BrdU    5-bromo-2'-deoxyuridine 

Cdc42    cell division cycle 42 

CH    calponin homology  

Cre    cyclization recombinase 

Ctgf   connective tissue growth factor 

Col   collagen 

DAG    diacylglycerol 

Dkk3   Dickkopf 3 

DMBA  7,12-Dimethylbenz(a)anthracene 

E   embryonic day 

ECM    extracellular matrix 

EdU   5-ethynyl-2'-deoxyuridine 

EGF    epidermal growth factor 

EGFP   Enhanced Green Fluorescent Protein 

EGFR    epidermal growth factor receptor 

ERK    extracellular signal-regulated kinase 

FA    focal adhesion 

FB   fibrillar adhesion 



 

FC   focal complex 

FN   fibronectin 

FAK    focal adhesion kinase 

GAP    GTP-ase activating protein 

GEF    guanine nucleotide exchange factor 

GPCRs   G proteins coupled receptors 

GSK3β   glycogen synthase kinase 3β 

HF   hair follicle 

Id2   inhibitor of differentiation 2 

IF   immunofluorescence 

Ig    immunoglobulin 

IL   interleukin 

ILK    integrin linked kinase 

IPP    ILK-PINCH-Parvin 

IP3    inositol triphosphate 

JAK    Janus kinase 

K   keratin 

KD   kinase domain 

LAP    latency-associated peptide 

Lhx2   LIM homeobox protein 2 

LEF    lymphoid enhancer-binding factor 

Lgr 5   leucine-rich repeat-containing G-protein coupled receptor 5 

LN   laminin 

LTBP    latent TGF-β binding protein 

MAPK   mitogen-activated protein kinase 



MIDAS   metal-ion-dependent adhesion site 

MLC    myosin light chain 

MMP    matrix metalloproteinase 

NFATc1  nuclear factor of activated T cells cytoplasmic 1 

P   postnatal day 

pFAK   phosphoFAK 

Pai-1   plasmonogen activator inhibitor-1 

PI3K    phosphatidylinositol 3-kinase 

PINCH   Particularly interesting new Cys-His protein 

PKC    protein kinase C 

PH    pleckstrin homology  

PLC   phospholipase C 

PtdIns    phosphatidylinositol 

PtdIns-4,5-P2   PtdIns4,5-bisphosphate 

Rac1    ras-related C3 botulinum toxin substrate 1 

Rap1    RAS-related protein-1 

Ras    rat sarcoma viral oncogene homolog 

rcf   relative centrifugal force 

RGD    arginine, glycine, aspartate 

RhoA    ras homolog gene family, member A 

RIAM    Rap1-interacting adaptor molecule 

ROCK   Rho-associated protein kinase 

rpm   rounds per minute 

RSU1   Ras suppressor protein 1  

RT   room temperature 



 

SC   stem cell 

Sfrp1   secreted frizzled related protein 1 

Smad    Similar to mothers against decapentaplegic 

Sox 9   (sex determining region Y)-box 9 

Src    Rous sarcoma oncogene 

SyMBS   synergistic metal ion binding site 

TCF    T cell-specific transcription factor 

TGF-β    transforming growth factor β 

TESK1  testis-specific kinase 1  

TPA   12-O-Tetradecanoylphorbol-13-acetate 

WASP   Wiscott-Aldrich Syndrome protein 

WAVE   WASP-family verprolin homologue 

Wnt    wingless-type MMTV integration site family member 
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