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Abstract 
 
In this study, the role of hypothalamic inflammation in obesity, insulin resistance and 

the regulation of the ageing process is investigated. Activation of c-Jun N-terminal 

kinase (JNK)1- and inhibitor of nuclear factor kappa-B kinase (IKK)2-dependent 

signalling plays a crucial role in the development of obesity-associated insulin and 

leptin resistance not only in peripheral tissues but also in the CNS. This study 

demonstrates that constitutive JNK1 activation in agouti-related peptide (AgRP)-

expressing neurons of the hypothalamus is sufficient to induce weight gain and 

adiposity in mice as a consequence of hyperphagia. JNK1 activation increases 

spontaneous action potential firing of AgRP cells and causes both neuronal leptin 

resistance in a molecular level and resistance in the anorexigenic and body weight 

regulating effects of leptin. Similarly, activation of IKK2 signalling in AgRP neurons 

also increases firing of these cells but fails to cause obesity and leptin resistance. In 

contrast to JNK1 activation, IKK2 activation blunts insulin signalling in AgRP 

neurons and impairs systemic glucose homeostasis. Collectively, these experiments 

reveal both overlapping and non-redundant effects of JNK- and IKK-dependent 

signalling in AgRP neurons, which cooperate in the manifestation of the metabolic 

syndrome.  

JNK1 ablation in the CNS has been demonstrated to resemble the effects of 

caloric restriction, a dietary intervention that delays ageing. In this study, JNK1 

ablation in the CNS results in extended median and maximum lifespan in mice, 

protection from high-fat diet induced insulin resistance and increased energy 

expenditure but also increased adiposity and decreased bone mineral density. 

Hypothalamic inflammation amelioration via JNK1 and/or IKK2 inhibition are 

potential future therapeutic targets to counteract obesity- and ageing-associated 

diseases. 
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Zusammenfassung 

In dieser Studie wird die Rolle von hypothalamischer Entzündung bei Adipositas, 

Insulinresistenz und der Regulation von Alterungsprozessen untersucht. Die 

Aktivierung der c-Jun N-terminal Kinase (JNK)1 und die der Inhibitor der Nuklear-

Faktor-Kappa-B Kinase (IKK)2-abhängigen Signalübertragung spielt bei der 

Entwicklung von adipositasassoziierter Insulin- und Leptinresistenz in peripheren 

Geweben aber auch im ZNS eine entscheidende Rolle. Diese Arbeit zeigt, dass 

konstitutive JNK1-Aktivierung in Agouti-assoziierten Peptid (AgRP)-exprimierenden 

Neuronen des Hypothalamus ausreichend ist um Gewichtszunahme und Adipositas in 

Mäusen aufgrund von Hyperphagie zu induzieren. Die Aktivierung von JNK1 erhöht 

spontane Aktionspotentialimpulse der AgRP-Zellen und verursacht sowohl neuronale 

Leptinresistenz auf molekularer Ebene als auch Resistenzen des appetitzügelnden 

sowie körpergewichtsregulierenen Effektes von Leptin. Ebenso erhöht die 

Aktivierung der IKK2-Signalübertragung das Feuern in AgRP-Neuronen, verursacht 

jedoch weder Adipositas noch Leptinresistenz. Im Gegensatz zur JNK1-Aktivierung 

dämpft die Aktivierung von IKK2 Insulinsignalübertragung in AgRP-Neuronen und 

beeinträchtigt die systemische Glucosehomöostase. Zusammengefasst zeigen die 

Experimente sowohl den überlappenden als auch nichtredundanten Effekt der JNK- 

und IKK abhängigen Signalübertragung in AgRP-Neuronen, welche kooperativ zur 

der Erscheinungsform des metabolischen Syndroms beitragen. 

Es wurde gezeigt, dass JNK1-Ablation im ZNS den Effekten von 

Kalorienrestriktion, einer den Alterungsprozess verlangsamenden 

Ernährungsintervention gleicht. In dieser Studie führt JNK1-Ablation im ZNS zu 

erhöhter mittlerer und maximaler Lebensdauer, Schutz vor von fettreicher Ernährung 

induzierter Insulinresistenz sowie Energieverbrauch, jedoch auch zu erhöhter 

Adipositas sowie geringerer Knochendichte. Eine Verbesserung der 

hypothalamischen Entzündung durch Inhibierung von JNK1 und IKK2 stellen 

potentielle therapeutische Ziele dar um adipositas- und altersassoziierter Krankheiten 

entgegenzuwirken.  

 

 



     

1 Introduction 

1.1 Obesity 

Overweight, defined as body mass index (BMI) greater or equal to 25 kg/m2, and 

obesity, BMI greater or equal to 30 kg/m2, are conditions of excess fat accumulation 

that affect more than one third of the global adult population [source: World Health 

Organization (WHO), 2015].  

Obesity and its associated pathologies, such as type 2 diabetes and 

cardiovascular diseases (Katzmarzyk et al., 2003), have reached epidemic proportions 

enhancing the necessity to develop effective therapeutic strategies against them. 

Various environmental factors, including consumption of energy-dense food and 

sedentary lifestyle, have been held responsible for the obesity epidemic, however the 

genome-wide association studies (GWAS) and studies in families and twins (Farooqi 

and O’Rahilly, 2006) revealed that the truth is also lying in our genes (Locke et al., 

2015) and the epigenetic modifications we carry (Slomko et al., 2012). In relatively 

similar environmental backgrounds some individuals are more prone to develop 

obesity and obesity-associated diseases and the effect of dietary interventions has 

been proven to be ineffective in the long-run for obese patients as 90% of them return 

to their initial body weight in a 5-year period (Safer, 1991).   

Obesity is not only a major health concern but also an immense economic 

burden with the health care costs for obesity and its associated diseases expanding 

every year, reaching an annual impact of 2 trillion dollars globally, paralleling 

expenses associated with smoking and war according to the WHO. Collectively, 

obesity is a global threat and its initiation and manifestation arise from interactions 

between multiple genes and the environment that in turn affect behaviour and energy 

homeostasis. 

 

1.2 Energy homeostasis 

Life is a process that relies on energy. Energy homeostasis is the balance between 

energy intake and expenditure to ensure steady body weight and its dysregulation can 

lead to excessive fat accumulation, and eventually obesity.  
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In order to ensure steady body weight orexigenic, promoting appetite, and 

anorexigenic, suppressing appetite, hormones have been identified to communicate 

signals of energy status in mammals. Two of the most important hormones for energy 

homeostasis regulation are insulin and leptin.  

Insulin is secreted by pancreatic β-cells in response to increased blood glucose 

levels to promote glucose uptake and suppress hepatic glucose production and also to 

regulate glycogenesis, lipogenesis and protein synthesis (Roth et al., 2012). Upon 

increased blood glucose concentrations, glucose enters the β-cells, it is metabolized 

into adenosine triphosphate (ATP) resulting in the closure of ATP-dependent 

potassium (KATP) channels, cell depolarization and subsequent influx of Ca2+ ions 

which in turn leads to the exocytosis of insulin-containing vesicles and the release of 

insulin into the circulation (Roth et al., 2012; Taniguchi et al., 2006). In the 

prediabetic state, the β-cells produce more insulin, resulting in hyperinsulinemia, to 

compensate for the decreased efficacy of insulin in exerting its effects, a condition 

termed insulin resistance. The β-cells cannot sustain the excessive insulin secretion 

for long, as it leads to their exhaustion, impaired glucose homeostasis and the 

development of type 2 diabetes (Muoio and Newgard, 2008). 

Leptin is anorexigenic, secreted from adipocytes in proportion to the adiposity 

of an organism communicating the current energy status to the central nervous system 

(CNS) (Friedman and Mantzoros, 2015). Importantly, leptin deficiency (Halaas et al., 

1995; Ozata et al., 1999) as well as lack of a functional leptin receptor (Clément et al., 

1998; Montague et al., 1997; Zhang et al., 1994) in  mice and humans results in 

morbid obesity. Although initially leptin was considered a potential treatment against 

obesity, it has been demonstrated that obese individuals have increased plasma leptin 

levels and develop resistance to its anorexigenic action (Friedman, 2011).  

Insulin and leptin communicate their signals to the central nervous system to 

regulate energy and glucose homeostasis (Cummings and Overduin, 2007; Belgardt 

and Brüning, 2010). Leptin and insulin signalling in the regulation of energy and 

glucose homeostasis will be introduced further in detail. 

 

1.2.1 Insulin signalling pathway 

Upon binding of insulin to the insulin receptor (IR) the insulin signalling cascade is 

activated [reviewed in (Guo, 2014)]. The insulin receptor consists of two 
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heterodimers of the α- and β- subunits, which are products of a single gene and are 

derived from the same polypeptide that is subjected to proteolytic processing. The 

insulin-binding site is on the α-subunits and the insulin-regulated tyrosine kinase 

activity domain is on the β-subunits. Conformational changes upon binding of insulin 

to the α-subunits of the IR activate the tyrosine kinase activity of the β-subunits 

resulting in autophosphorylation of tyrosine residues and in turn recruitment of the 

insulin receptor substrates (IRS1-4) and the growth factor receptor binding (Grb)2 

protein-associated binder (Gab) proteins. IRS proteins, when phosphorylated, are 

docking platforms for the phosphatidylinositol 3 kinase (PI3K), Grb2 and the SH2 

domain containing phosphatase (Shp)-2.  PI3K phosphorylates phosphatidylinositol-

(4,5)-bisphophate (PIP2) to phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) and 

PIP3 in turn activates downstream targets including the Akt, which co-localizes with 

phosphoinositide-dependent protein kinase 1 (PDK1) leading to phosphorylation and 

activation of Akt. Akt, among other proteins, can phosphorylate FoxO1 thereby 

triggering its translocation out of the nucleus, thus regulating gene transcription 

(Figure 1). Activation of the IRS-PI3K cascade is crucial for most of insulin’s well-

known effects, including glucose transporter translocation, glycogen synthesis, 

protein synthesis and the regulation of gene transcription [reviewed in (Boucher et al., 

2014)]. 

 

1.2.2 Leptin signalling pathway 

Leptin signalling is initiated upon binding of leptin to its receptor (LepR) to initiate 

the JAK/STAT pathway, among others. Activation of LepRb, the long form of leptin 

receptor mediating its anorexigenic effects (de Luca et al., 2005), leads to recruitment 

of JAK2, which phosphorylates the receptor and itself. Phosphorylated LepRb recruits 

and phosphorylates STAT3, triggering STAT3 dimerization and nuclear localization, 

where it regulates gene expression (Figure 1). Leptin has been also demonstrated to 

trigger the mitogen-activated protein kinase (MAPK), adenosine monophosphate-

activated protein kinase (AMPK) and PI3K pathways (Figure 1) [reviewed in 

(Bjørbaek and Kahn, 2004)]. 
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1.3 CNS in energy homeostasis regulation 

The major orchestrator of energy homeostasis is the hypothalamus. The importance of 

the hypothalamus in energy homeostasis regulation has been demonstrated since the 

1940s with the first lesion experiments in rats from Hetherington and Ranson 

(Hetherington and Ranson, 1940). The hypothalamus is connected to brain areas that 

affect behaviours such as reward and food foraging either directly or through inter-

neurons (Heisler et al., 2003; Leinninger et al., 2009). 

The major hypothalamic areas responsible for energy homeostasis are situated 

around the third ventricle and above the median eminence and are the ventromedial 

hypothalamus (VMH), dorsomedial hypothalamic nucleus (DMH), paraventricular 

nucleus (PVN), lateral hypothalamic nucleus (LH) and the arcuate nucleus (ARC). 

The hypothalamus is a region sensitive to blood-born signals due to a permeable 

blood-brain-barrier (BBB), and to its position adjacent to the third ventricle, thus 

allowing hypothalamic communication with the periphery. The VMH is very 

important in the feeding response to insulin-induced hypoglycemia and is home to 

many glucose sensing neurons that can be glucose-excited or glucose-inhibited 

(Verberne et al., 2014). The DMH is a target site of projections from other 

hypothalamic regions and is pivotal to appetite regulation, circadian rhythm and 

thermogenesis (Chao et al., 2011; Chou et al., 2003). The PVN regulates the 

hypothalamic-pituitary-adrenal axis (HPA) by the release of corticotropin-releasing 

hormone (CRH) in response to stress and thyrotropin-releasing hormone (TRH) and 

also modulates the autonomic nervous system (Biag et al., 2012). Furthermore, the 

PVN harbours second-order neurons with melanocortin 4 receptors (MC4R) regulated 

by neurons of the arcuate nucleus. The LH is responsible for circadian rhythm 

(Goodless-Sanchez et al., 1991) and additionally for hedonic and reward-related 

behaviours (Sternson, 2013). The ARC is the best characterized hypothalamic region 

concerning energy homeostasis and will be discussed further in detail. 

 

1.3.1 Arcuate nucleus in energy homeostasis regulation 

Multiple neuronal populations regulate food intake and energy expenditure via tight-

coordination in intra- and extra-hypothalamic brain areas and the most thoroughly 

studied hypothalamic region for energy homeostasis is the ARC adjacent to the third 

ventricle and over the median eminence. The ARC is considered a circumventricular 
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organ due to its position, a permeable blood-brain barrier (BBB) and extensive 

vasculature.  

In the ARC two neuronal populations with opposing roles reside, the 

orexigenic neuropeptide Y (NPY) and Agouti-related peptide (AgRP)-co-expressing 

neurons and the anorexigenic pro-opiomelanocortin (POMC) neurons. The AgRP and 

POMC neurons are first-order neurons that receive diverse circulating signals relevant 

to energy homeostasis, such as hormones and nutrients, from the periphery. AgRP and 

POMC neurons act on second-order neurons with MC4R residing predominantly in 

the PVN forming the melanocortin system (Cowley et al., 1999; Elmquist et al., 

1999). The anorexigenic POMC neurons activate MC4R-expressing neurons to 

decrease food intake and increase energy expenditure whereas the AgRP neurons 

increase food intake and decrease energy expenditure by antagonizing POMC action 

on MC4R (Kim et al., 2014b). Importantly, Mc4r mutations are one of the most 

common monogenic mutations resulting in obesity in humans (Yeo et al., 1998). 

A variety of proteins, including α-, β- and γ-melanocyte stimulating hormone 

(MSH) and adrenocorticotrophin (ACTH), are generated by the Pomc gene encoding 

the protein precursor Pro-opiomelanocortin which undergoes post-translational 

modification processes and mutations of the gene result in obesity (Krude et al., 

1998). The best-studied anorexigenic peptide mediating its effects on energy 

expenditure and food intake is α-MSH by binding and activating MC4Rs (Ollmann et 

al., 1997). POMC-deficient mice are obese (Yaswen et al., 1999) and acute ablation 

of POMC neurons in adult mice results in hyperphagia and obesity (Gropp et al., 

2005). Interestingly, early postnatal ablation of POMC neurons results in decreased 

food intake but also decreased energy expenditure resulting in an obese phenotype 

(Greenman et al., 2013). 

The orexigenic AgRP neurons integrate peripheral signals and release NPY, 

AgRP and the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to mediate 

their effects on other neuronal populations and in turn exert behavioural responses. 

AgRP and NPY bind to MC4Rs and NPYRs, respectively, to inhibit the activity of 

MC4R-expressing neurons (Gerald et al., 1996;  Cowley et al., 1999) through G-

protein dependent and independent pathways (Ghamari-Langroudi et al., 2015). 

Ablation of AgRP neurons in adult mice induces hypophagia and starvation (Gropp et 

al., 2005; Luquet et al., 2005; Luquet et al., 2007) but surprisingly, early postnatal 

ablation or AgRP mutations result in unchanged food intake and body weight 
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(Erickson et al., 1996; Gropp et al., 2005; Luquet et al., 2005; Qian et al., 2002). In 

order to succumb the absence of functional AgRP neurons compensatory mechanisms 

are proposed to be taking place during development (Wu and Palmiter, 2011; Wu et 

al., 2012) and the importance of GABA as a pivotal inhibitory neurotransmitter is 

pointed out. GABAergic signalling by AgRP neurons through direct synaptic 

innervations in the ARC inhibits POMC neurons (Cowley et al., 2001; Horvath et al., 

1997) and the parabranchial nucleus (PBN) in the hindbrain (Wu et al., 2009). 

Additionally, the oxytocin (OXT) and Sim1 neurons in the PVN receive GABAergic 

input from the AgRP neurons (Atasoy et al., 2012; Krashes et al., 2014). Furthermore, 

AgRP neuron-specific deletion of vesicular GABA transporter genes results in a lean 

phenotype and protection from HFD-induced obesity demonstrating the importance of 

GABAergic signalling (Tong et al., 2008). Although the AgRP neuropeptide is able to 

antagonize the melanocortin pathway, the orexigenic effects of AgRP neurons are not 

affected by MC4R deletion (Krashes et al., 2011) again proposing the main role of 

GABAergic signalling to exert the orexigenic effects of AgRP neurons.  

Acute neuronal activation of AgRP neurons, by approaches such as the 

designer receptors exclusively activated by designer drugs (DREADD) and 

optogenetic stimulation, resulted in robust hyperphagia and provided strong evidence 

for the orexigenic role of AgRP neurons (Aponte et al., 2011; Atasoy et al., 2012; 

Krashes et al., 2011). Of note, the AgRP neurons are not only tightly-wired to the 

PVN and intra-hypothalamic areas as the DMH and LH but also to extra-

hypothalamic areas, as demonstrated by anatomical and functional analyses of AgRP 

neuronal projections (Betley et al., 2013; Broberger et al., 1998) adding up to the 

complexity of neuronal circuits regulating feeding behaviour. Collectively, the AgRP 

neurons are potent regulators of energy homeostasis, participating in the melanocortin 

pathway, with GABAergic signalling playing a crucial role in exerting their 

orexigenic effects. 

 

1.3.2 Insulin and leptin signalling in the CNS 

Insulin’s functions are not only profound in the periphery, regulating glycogenesis, 

lipogenesis and protein synthesis (Roth et al., 2012), but also in the CNS, where 

insulin receptors (IR) are widely expressed (Havrankova et al., 1978). Brain-specific 

IR-deficient mice have increased food intake and fat mass, developing mild obesity 
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(Brüning et al., 2000). Furthermore, CNS insulin signalling is important for the 

control of peripheral fat metabolism (Koch et al., 2008; Scherer et al., 2011). 

Although IR deletion in AgRP and POMC neurons does not affect energy 

homeostasis in mice, IR deletion in AgRP neurons results in defective suppression of 

hepatic glucose production (Könner et al., 2007). Additionally, in a study using mice 

with hypothalamic deficiency of IRs, re-expression of IR in AgRP and POMC 

neurons had distinct effects, with insulin signalling in AgRP neurons decreasing 

hepatic glucose production whereas in POMC neurons increasing hepatic glucose 

production, energy expenditure and locomotor activity (Lin et al., 2010).  

Insulin signalling not only modulates neuronal gene expression by activation 

of the PI3K pathway (Niswender et al., 2003) but also PIP3 has been shown to bind to 

KATP channels antagonizing the action of ATP, hyperpolarizing and thus silencing 

the neurons (MacGregor et al., 2002; Plum et al., 2006). Insulin further exerts its 

anorexigenic role in AgRP and POMC neurons by triggering Pomc expression and 

suppressing Agrp by phosphorylating and excluding FoxO1 from the nucleus (Kim et 

al., 2006). FoxO1 was also demonstrated to activate Gpr17 to activate AgRP neurons 

and regulate food intake (Ren et al., 2012) but recently Gpr17 deficient mice were 

reported to have unaltered food intake, body weight and glucose homeostasis 

compared to their control littermates (Mastaitis et al., 2015). 

Leptin signalling in the CNS has been extensively studied, especially its role 

in AgRP and POMC neurons. Neuron-specific leptin deficient mice are obese (de 

Luca et al., 2005) together with POMC- and AgRP-restricted leptin deficient mice 

(Balthasar et al., 2004; van de Wall et al., 2008). Leptin is able to depolarize POMC 

neurons and simultaneously hyperpolarize AgRP neurons (Cowley et al., 2001) being 

also able to modulate synaptic plasticity in the hypothalamus (Pinto et al., 2004). 

Furthermore, leptin has been demonstrated to increase POMC and decrease AgRP 

mRNA levels (Mizuno and Mobbs, 1999; Mizuno et al., 1998). Collectively, leptin’s 

regulatory functions are diverse and broad affecting not only gene expression but also 

synaptic plasticity and neuronal activity. 

 Importantly, there are distinct leptin and insulin responsive POMC neuronal 

subpopulations (Williams et al., 2010) adding to the complexity of the hypothalamic 

regulation of energy homeostasis.  
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1.4 Insulin and leptin resistance 

Obesity and type 2 diabetes are underlined by a deteriorated efficacy of leptin and 

insulin to exert their anorexigenic and glucoregulatory functions, conditions termed 

leptin and insulin resistance (Könner and Brüning, 2012). Leptin and insulin 

resistance develop despite the high plasma concentrations of both hormones in obese 

individuals through different mechanisms, such as metabolic inflammation, which 

will be introduced later.  

 Chronic leptin signalling induces high levels of suppressor of cytokine 

signalling 3 (SOCS3), which has been shown to blunt leptin signalling by inhibiting 

the leptin-induced tyrosine phosphorylation of JAK2 (Bjørbaek et al., 1999). High-fat 

feeding can also induce the protein-tyrosine phosphatase 1B (PTP1B) (Zabolotny et 

al., 2008) and protein kinase C (PKC) contributing to insulin resistance (Figure 1) 

(Benoit et al., 2009). Furthermore, activation of inflammatory signalling which in turn 

induces, among others, c-Jun N-terminal kinase 1 (JNK1) and nuclear factor kappa-

light-chain-enhancer of activated B cells (NFκB) has been implicated in leptin and 

insulin resistance and will be introduced further in detail. 

 

1.5 Metabolic Inflammation, or Metaflammation 

The last two decades metabolic inflammation, or metaflammation, has been in focus 

as a mechanism to explain the pathophysiology of obesity and its hallmarks, insulin 

and leptin resistance (Gregor and Hotamisligil, 2011). Differing from classical 

inflammation, which is activated by pathogens and trauma, metaflammation is 

chronic and low-grade. Metaflammation is observed after high-fat diet (HFD) 

consumption and during obesity in multiple organs, as the adipose tissue, liver, 

pancreas, muscle and brain and results in insulin resistance and impaired energy 

homeostasis (Hotamisligil et al., 1993; Cai et al., 2005; Ehses et al., 2007; Saghizadeh 

et al., 1996; De Souza et al., 2005). The mechanisms and time-course of 

metaflammation initiation are of great importance and will be introduced further. 

 

1.5.1 Metabolic inflammation: Where and when? 

Metaflammation was first described in the adipose tissue (Hotamisligil et al., 1993) 

and gained a lot of attention with multiple studies demonstrating its apparent role in 
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obesity-associated pathologies (Sam and Mazzone, 2014), as the manifestation of 

insulin resistance after HFD consumption (Xu et al., 2003). The role of immune cells 

(Mraz and Haluzik, 2014) and especially adipose tissue macrophages (ATMs) in 

metaflammation is essential (McNelis and Olefsky, 2014). ATMs are either resident 

and get activated or infiltrate the adipose tissue attracted by signals from dying 

adipocytes, which reached their oxygen diffusion limit. ATMs are shown to foster the 

remodelling of the adipose tissue when it reaches its capacity limits during obesity 

(McNelis and Olefsky, 2014). Interestingly, obese people can remain healthy and 

insulin sensitive when they can safely store their excess energy, keeping the levels of 

‘toxic’ circulating FFA low and avoiding ectopic lipid accumulation in liver and 

muscle (Blüher, 2010). Furthermore, the polarization of ATMs, into M1 or M2, is 

important in the regulation of insulin sensitivity, affected by the primary 

inflammatory response, but is hard to define because ATMs can simultaneously 

express M1 and M2 markers (Bourlier et al., 2008). Collectively, the impact of 

metaflammation in obesity and insulin resistance is being thoroughly studied (Gregor 

and Hotamisligil, 2011), making it an important target for therapeutics.  

Metaflammation is detected after some hours of HFD consumption or lipid 

infusion with changes in the circulating mononuclear cells, liver, muscle and brain 

(Ghanim et al., 2009; Aljada et al., 2004; Watt et al., 2006; Thaler et al., 2012). 

Inflammatory pathways are activated involving, most commonly NFκB and JNK 

pointing to the direction that inflammation is triggered by nutrients long before 

obesity arises. Indeed, fatty acids (Shi et al., 2006; Schaeffler et al., 2009) can directly 

activate TLR4 signalling to induce insulin resistance and mice lacking TLR4 are 

protected from HFD-induced insulin resistance. ΗFD can induce gut microbiota to 

exacerbate inflammation in mice via the TLR4 signalling pathway changing also the 

permeability of the gut (Kim et al., 2012; Schaeffler et al., 2009). Changes in gut 

permeability enhance endotoxemia, seen as increases in circulating 

lipopolysaccharide (LPS) and tumour necrosis factor α (TNFα) concentrations to 

initiate insulin resistance and obesity (Cani et al., 2007; Cani et al., 2008). It is 

evident that HFD-induced metaflammation is initiated before obesity arises and it is a 

rapid and multifaceted process with multiple organs participating in this nutrient 

response.  

To understand the complex interplay between metabolic organs during 

metaflammation, their endocrine role has to be considered. Leptin and insulin 
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communicate the energy status to the CNS comprising the two master regulators of 

energy and glucose homeostasis (Myers and Simerly, 2010). Changes in circulating 

leptin and insulin levels but also nutrients and cytokines are sensed by defined 

hypothalamic areas and importantly the arcuate hypothalamic nucleus (Vogt and 

Brüning, 2013; Milanski et al., 2009; Thaler et al., 2012), where the orexigenic AgRP 

and the anorexigenic POMC neurons reside. The AgRP neurons are the first to sense 

small fluctuations in plasma metabolic signals to regulate food intake and short term 

high-fat feeding increases SOCS3 to cause leptin resistance, already after 48h of HFD 

consumption (Olofsson et al., 2013).  

Collectively, the importance of metaflammation in obesity-associated 

complications is highly appreciated. Importantly, as metaflammation is initiated so 

fast, it can be defined as a nutrient response. The role of CNS, particularly the 

hypothalamus, is vital in orchestrating energy homeostasis since it can sense slight 

changes in the circulation and is rapidly affected by metaflammation. CNS 

metaflammation is an important target for the development of therapies against 

obesity and obesity–associated pathologies. 

 

1.5.2 Hypothalamic inflammation 

It has been a decade since the first observations of hypothalamic metabolic 

inflammation after HFD consumption (De Souza et al., 2005). There are still a lot of 

open questions regarding the fine mechanisms that regulate energy homeostasis which 

are affected by the activated inflammatory pathways leading to vast amounts of 

research conducted in order to define them. Hypothalamic metaflammation is 

associated with multiple stimuli/signalling pathways like ER stress and activated 

inflammatory receptors resulting in central insulin and leptin resistance. The focus 

here will be on the hypothalamus, although metaflammation is also induced in other 

regions as the amygdala of DIO rats, related to insulin resistance and ER stress 

(Castro et al., 2013) and the subfornical organ (SFO), a brain region regulating blood 

pressure (de Kloet et al., 2014). 

De Souza et al. were the first to demonstrate that hyperlipidic diet leads to 

increased pro-inflammatory cytokines and inflammatory responsive proteins in the 

hypothalamus, such as JNK and NFκB (De Souza et al., 2005). In the same year 

Zhang et al. reported increased NFκB activity and neural oxidative stress in the brain 
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after HFD consumption linking it to increased risk for dementia (Zhang et al., 2005). 

Here, the role of ER stress, different inflammatory mediators and cell types that 

mediate hypothalamic metaflammation will be introduced.  

 

1.5.2.1 ER stress in hypothalamic inflammation 
The importance of ER stress and the unfolded protein response (UPR) in metabolic 

regulation in the periphery is well appreciated (Hotamisligil, 2008) and it was first 

demonstrated in the hypothalamus by Ozcan et al. 2009 (Ozcan et al., 2009). Reduced 

ER capacity was shown to lead to a significant augmentation of obesity on a HFD 

(Ozcan et al., 2009). ER stress and UPR can be activated to a different degree by a 

variety of stimuli.  For example, LPS can stimulate ER stress and UPR whereas TNFα 

activates ER stress to a certain degree but fails to induce a complete UPR in the 

hypothalamus (Denis et al., 2010) and palmitate is able to induce ER stress in the 

neuronal cell model mHypoE44 (Mayer and Belsham, 2010). Induction of ER stress 

in the hypothalamus by thapsigargin inhibits the anorexigenic effects of leptin and 

insulin, whereas treatment with the chemical chaperone 4-phenyl butylic acid 

significantly improves leptin and insulin sensitivity in diet-induced obese mice (Won 

et al., 2009). Furthermore, even short-term brain ER stress is sufficient to induce 

glucose intolerance, systemic insulin resistance, increased blood pressure and elevated 

sympathetic tone (Purkayastha et al., 2011).  

Lipids are important regulators of hypothalamic inflammation and a recent 

study revealed that hypothalamic ER stress can be activated by ceramides, leading to 

sympathetic inhibition, reduced brown adipose tissue (BAT) thermogenesis and 

weight gain (Contreras et al., 2014). The ceramide action is abolished by genetic 

overexpression of GRP78/BiP in the VMH. GRP78 overexpression reduces 

hypothalamic ER stress and increases BAT thermogenesis, leading to weight loss and 

enhanced leptin and insulin sensitivity (Contreras et al., 2014). Inactivation of fatty 

acid synthase in the hypothalamus prevents diet-induced obesity (DIO) and systemic 

inflammation and neuron-specific deletion of PPARδ -a lipid sensor that regulates 

genes involved in lipid metabolism- leads to increased susceptibility to DIO, leptin 

resistance and hypothalamic inflammation in low-fat diet (Kocalis et al., 2012). 

Stearic acid, a saturated fatty acid, is able to cause hypothalamic inflammation and 

results in reduced oxygen consumption and blunted peripheral insulin signal 
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transduction (Arruda et al., 2011) and impaired insulin secretion from the pancreas 

(Calegari et al., 2011).  

To understand the mechanistic basis of ER stress-induction, the significance of 

ER and mitochondria interactions has been investigated. Depletion of Mfn2, a protein 

vital for ER-mitochondria interactions, in POMC neurons results in ER stress-induced 

leptin resistance, hyperphagia, reduced energy expenditure and defective POMC 

processing, effects that are reversed by inhibition of ER stress by chemical chaperone 

treatment (Schneeberger et al., 2013). 

Collectively, ER stress in CNS metaflammation is activated to a different 

degree by a variety of stimuli resulting in insulin and leptin resistance and 

diminishing BAT thermogenesis. ER-mitochondria interactions, pivotal for regulating 

energy balance and chaperone treatment, can reverse the detrimental effects of 

hypothalamic ER stress. 

 

1.5.2.2 Pathways and mediators of hypothalamic inflammation 
Obesity is accompanied by increased concentrations of circulating cytokines, pro-

inflammatory interleukins and lipids, which can reach the brain and initiate 

inflammatory pathways, modulating hypothalamic function and regulation of energy 

homeostasis, a condition termed hypothalamic inflammation (Thaler et al., 2013). 

Hypothalamic inflammation involves multiple pathways converging in the activation 

of inflammatory mediator proteins, as JNK and NFκB. Here, important players of 

inflammatory pathways in the hypothalamus will be introduced. 

 

TNFα 

TNFα is a pleiotropic cytokine showing increased levels in obesity that is implicated 

in metabolic inflammation in many tissues (Gregor and Hotamisligil, 2011). TNFα in 

the hypothalamus can induce insulin and leptin resistance activating NFκB, JNK and 

SOCS3 (Romanatto et al., 2007). TNFα acts on the hypothalamus to increase PTP1B 

expression and activity via the NFκB pathway and cause insulin and leptin resistance 

(Ito et al., 2012) having also a dose dependent effect in regulating energy balance. 

Furthermore, although low doses of ICV administration of TNF induce leptin 

resistance (Arruda et al., 2011) and a dysfunctional increase in insulin secretion and 

markers of apoptosis in pancreatic islets (Calegari et al., 2011), higher doses 
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reproduce features of cancer-induced cachexia including reduced food intake (Arruda 

et al., 2011). Of note, hypothalamic administration of TNFα has been also 

demonstrated to reduce the expression of thermogenic genes in BAT (Arruda et al., 

2011). Taken together, TNFα has dose-dependent orexigenic and anorexigenic effects 

in the hypothalamus and mediates insulin and leptin resistance. 

 

Interleukins 

Pro-inflammatory interleukins (ILs), as IL6, are found in obese patients with 

increased plasma concentrations. The role of diet-induced pro-inflammatory IL 

signalling in the brain is highly complex. Central administration of IL4 during HFD 

increases pro-inflammatory cytokine gene expression and causes excess weight gain 

(Oh-I et al., 2010). Interestingly, transgenic mice secreting human IL6 predominantly 

from the brain and lung are more insulin sensitive, with human IL6 enhancing central 

leptin action (Sadagurski et al., 2010). In human patients massive reduction of body 

mass after bariatric surgery promotes a partial reversal of hypothalamic dysfunction 

accompanied by increased IL6 concentration in the CSF (van de Sande-Lee et al., 

2011). Furthermore, IL6 and IL1 have been demonstrated to mediate the anorexigenic 

effects of glucagon-like peptide 1 receptor (GLP1R) (Shirazi et al., 2013), with IL1 

signalling being important in mediating glucose-induced anorexia (Mizuno et al., 

2013). Pharmacological inhibition of IL1 and IL6 attenuates central exendin 4 effects 

on reducing food intake and body weight (Shirazi et al., 2013). Collectively, IL 

signalling in the hypothalamus exerts pro- and anti-inflammatory effects, which can 

suppress or enhance insulin sensitivity, respectively.  

 

Toll-like Receptors 

Inflammatory responses associated with high-fat feeding are also mediated by Toll-

like Receptors (TLRs), key players in innate immunity. Saturated fatty acids can 

signal through TLR4 resulting in ER stress in the hypothalamus and obesity (Milanski 

et al., 2009). TLR4 pharmacological inhibition or loss of function mutation, protect 

mice from DIO (Milanski et al., 2009). Furthermore, genetic ablation of the 

downstream mediator of TLR4 signalling, MyD88, in the brain also protects mice 

from DIO and leptin resistance, caused either by HFD or central palmitate 

administration (Kleinridders et al., 2009). In contrast, intact TLR4 signalling protects 

cells from diet-induced apoptotic signals (Moraes et al., 2009) and TLR2-deficient 
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mice exhibit mature onset obesity and susceptibility to HFD-induced weight gain, 

with TLR2 being increased with age or HFD in POMC neurons (Shechter et al., 

2013). Collectively, hypothalamic TLR signalling is pleiotropic and is not always 

connected to positive energy balance. 

 

NFκB 
NFκB is a transcription factor family acting as an integral immune response regulator. 

NFκB consists of five members, which form homo- and heterodimers (RelA or p65, 

RelB, c-Rel, p50 and p52).  NFκB dimers are associating with proteins of the 

inhibitor of NFκB family (IκB) and kept inactive. Activation of NFκB is mediated by 

the IκB kinase (IKK) complex, which induces polyubiquytilation and degradation of 

the IκB proteins, allowing NFκB activation and translocation to the nucleus for the 

regulation of gene expression [reviewed in (Pasparakis, 2009)]. IKK signalling has 

been demonstrated to induce insulin resistance by serine phosphorylation of IRS 

proteins and increased NFκB activation in the liver results in insulin resistance and 

glucose intolerance (Cai et al., 2005). Haploinsufficient IKK2 knockout mice as well 

as hepatocyte- and myeloid-cell specific IKK2 deficient mice, are protected against 

systemic insulin resistance and glucose intolerance (Yuan et al., 2001; Arkan et al., 

2005; Cai et al., 2005). 

Activation of NFκB/IKK2 in the brain results in central insulin and leptin 

resistance (Zhang et al., 2008) and conversely, inactivation of NFκB in the 

mediobasal hypothalamus and AgRP neurons protects against obesity and glucose 

intolerance (Zhang et al., 2008). IKK2 is activated in the brain by HFD (Posey et al., 

2009) being downstream of IL4 action and central administration of IL4 increases 

cytokine gene expression and causes excess weight gain, effects that are blocked by 

PS1145, an IKK2 inhibitor (Oh-I et al., 2010). NFκB is also linked to defective 

hypothalamic autophagy caused by high-fat feeding, resulting in hyperphagia and 

reduced energy expenditure (Meng and Cai, 2011). Defective autophagy in AgRP and 

POMC neurons has been linked to increased food intake and impaired lipolysis, 

respectively (Kaushik et al., 2011; Kaushik et al., 2012).  

Maternal perinatal high-fat feeding and intake of trans fatty acids during 

lactation also leads to NFκB activation and impaired glucose homeostasis (Pimentel 

et al., 2012; Rother et al., 2012; Melo et al., 2014).  
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Neuronal apoptosis and neurogenesis are two mechanisms that are also 

implicated in the CNS metaflammation and diet-induced changes in the 

hypothalamus. It has been demonstrated that HFD induces apoptosis in neurons and a 

reduction of synaptic inputs in the ARC and the LH (Moraes et al., 2009). High-fat 

feeding has been shown to suppress neurogenesis by increasing apoptosis in new 

neurons (McNay et al., 2012). NFκB was identified as a critical mediator of stress 

with antineurogenic actions (Koo et al., 2010). Similarly, high-fat feeding has been 

shown to impair differentiation and result in depletion of hypothalamic stem cells 

upon NFκB activation (Li et al., 2012). Of note, leptin deficiency also results in 

partial loss of hypothalamic stem cells (McNay et al., 2012). Pierce et al. contributed 

to the deeper understanding of neurogenesis in metaflammation by demonstrating that 

the AgRP neurons are capable of de novo neurogenesis under neurodegenerative 

conditions suggesting this as a potential compensatory mechanism contributing to a 

more plastic control of energy balance (Pierce and Xu, 2010). Furthermore, it was 

demonstrated that NFκB-dependent gene expression establishes a growth inhibition in 

the post-lesioned brain that limits structural regeneration of neuronal circuits, pointing 

to a similar role in diet-induced hypothalamic changes (Engelmann et al., 2014).   

Of note, neuronal androgen receptors regulate hypothalamic insulin signalling 

by repressing NFκB-mediated induction of PTP1B (Yu et al., 2013) and ERα protects 

premenopausal females from metabolic complications of inflammation and obesity-

related diseases (Morselli et al., 2014). 

NFκB also demonstrates anorexigenic effects in the brain, making its action 

more complicated and difficult to define in the context of metabolic diseases. NFκB 

attenuates the glucocorticoid effect to stimulate the expression of AgRP and NPY 

under ER stress in mouse hypothalamic cultures (Hagimoto et al., 2013). 

Furthermore, RelA is able to bind to the POMC promoter region and activate 

transcription (Shi et al., 2013). Under HFD-induced chronic inflammation, the POMC 

promoter gets methylated and RelA cannot bind to it in order to activate the 

anorexigenic peptide transcription (Shi et al., 2013). Lastly, NFκB is tightly 

connected to illness- and leptin-induced anorexia and weight loss (Jang et al., 2010). 

Collectively, NFκB activation is implicated in insulin and leptin resistance in 

the hypothalamus linked also to defective autophagy and neuronal apoptosis but has 

been also shown to mediate anorexigenic effects. 
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JNK 

The c-Jun N-terminal kinase (JNK) family consists of three proteins, JNK1-3, with 

several isoforms due to alternative splicing (Weston and Davis, 2007). The JNK 

proteins are serine/threonine kinases that are activated by a variety of stimuli, 

including cytokines, resulting in the phosphorylation of c-Jun and the induction of the 

transcription factor activator protein 1 (AP1) (Weston and Davis, 2007). JNK is 

activated in obesity and it has been shown to interfere with insulin signalling by 

phosphorylating and inhibiting IRS1 (Aguirre et al., 2002). JNK1 null mice are 

protected against diet-induced obesity and mice with ablation of JNK1 in myeloid 

cells are protected from diet-induced insulin resistance (Bogoyevitch, 2006; Vallerie 

et al., 2008). 

Hypothalamic JNK, similar to NFκB, is activated by maternal high-fat feeding 

during pregnancy and trans fatty acid intake during lactation resulting in impaired 

glucose metabolism in adult mice (Pimentel et al., 2012; Rother et al., 2012; Melo et 

al., 2014). Genetic JNK inactivation in the brain results in improved insulin 

sensitivity, protection from hepatic steatosis after high-fat feeding (Belgardt et al., 

2010) and suppression of DIO by increasing energy expenditure connected with the 

HPA axis (Sabio et al., 2010). Acute inhibition of central JNK1 improves impaired 

glucose homeostasis and is associated with sensitization to hypothalamic insulin 

signalling independent of leptin levels (Benzler et al., 2013). JNK is also tightly 

connected to leptin resistance as it was demonstrated that JNK inhibition in the ARC 

reinstates the anorexigenic effects of leptin, in DIO leptin resistant mice (Koch et al., 

2014). Interestingly, in this study it was also shown that even leptin deficient mice 

acquire leptin resistance upon HFD consumption pointing to the role of activated 

inflammatory pathways, independent of hyperleptinemia to be able to cause leptin 

resistance (Koch et al., 2014). Palmitate is an upstream mediator of JNK activation 

and can cause ER stress through a JNK-dependent pathway that activates eIF2 and 

XBP1 (Mayer and Belsham, 2010). 

JNK has been also shown to have a pleiotropic role in the central regulation of 

energy homeostasis, demonstrating specific anorexigenic effects. JNK inhibition in 

hypothalamic explants stimulates AgRP and NPY expression (Unger et al., 2010). 

JNK inhibits AgRP and NPY antagonizing the orexigenic effects of glucocorticoids 

(Unger et al., 2010). Similar to NFκB, JNK has orexigenic and anorexigenic effects 

depending on the level of activation and upstream stimuli. 
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1.5.2.3 Complex environment: Microglia, astrocytes and endothelial cells 
The role of different brain cell types that participate in metabolic inflammation has 

been extensively studied the last years. Microglia, astrocytes, endothelial cells interact 

with each other and the neurons to regulate energy homeostasis and are all distinctly 

affected by diet-induced obesity. 

Microglia, the macrophages of the brain, have been demonstrated for the first 

time to participate in CNS metaflammation by Tapia-Gonzalez et al. who showed that 

neonatal overnutrition results in microglial activation not only in hypothalamic areas 

but also the cerebellum of rats (Tapia-González et al., 2011). Thaler et al. determined 

that already 1 to 3 days after HFD consumption reactive gliosis and markers of 

neuronal injury become evident in the arcuate nucleus of rodents and that gliosis is 

also present in obese humans, as assessed by MRI studies (Thaler et al., 2012). HFD-

associated microglia activation is reversible with exercise as demonstrated by Yi et al. 

assessed in HFD-fed LDL1R-/- mice after treadmill running (Yi et al., 2012a). 

Reversal of microglial activation is also possible after a switch to normal chow diet 

(NCD) for 4 weeks, following a 16-week HFD-feeding (Berkseth et al., 2014). 

Recently the origin of microglia was determined, by Buckman et al. who 

demonstrated the recruitment of peripheral immune cells in the brain, most of them 

being CD45+ and CD11b+, characteristics of macrophages/microglia (Buckman et 

al., 2014). 

Astrogliosis, as a marker of neuronal injury in the metabolic syndrome, has 

been observed after HFD consumption in brain areas including the medial preoptic, 

PVN and DMH and less in VMH, LH and AHA (Buckman et al., 2013). Furthermore, 

astrogliosis was detected in obese Zucker rats (Tomassoni et al., 2013) and as a result 

of neonatal overnutrition (Fuente-Martín et al., 2013) but already in 1999 Plagemann 

et al. observed astrogliosis due to hyperinsulinemia in the rat brain, pointing out the 

relationship between insulin signalling and astrocyte activation (Plagemann et al., 

1999). Astrocytes can also be activated by saturated long chain fatty acids, such as 

palmitic acid, independent of the presence of microglia (Gupta et al., 2012). 

Furthermore, astrocyte activation is regulated by glucolipids, such as lactosylceramide 

(Mayo et al., 2014) and TLR4 signalling in astrocytes can induce pro-inflammatory 

signalling by NFκB, MAPK and JAK/STAT1 pathways with the crosstalk signal 

capable of modulating the response of surrounding cells (Gorina et al., 2011). 
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The role of endothelial cells and angiogenesis in diet-induced obesity was 

demonstrated by Yi et al., who observed that high-fat high-sucrose diet results in 

increased length and density of the blood vessels in the ARC and increased formation 

of new arterial vessels (Yi et al., 2012b). Similarly, type 2 diabetes patients have more 

arterioles, suggesting that the same mechanisms are responsible for these changes in 

both rodents and humans (Yi et al., 2012b). 

Collectively, the role of microglia, astrocytes and endothelial cells is pivotal 

during the initiation and manifestation of diet-induced obesity and has to be 

considered in order to understand the interplay with the neuronal populations that 

reside in regions responsible for energy homeostasis regulation.   

 

Figure 1. Activation of inflammatory pathways results in insulin and leptin resistance.  Binding of 

insulin leads to a conformational change of the IR, resulting in activation of the endogenous kinase 

activity, in turn IRS proteins bind to the phosphorylated residues, and are phosphorylated by the IR. 

Shp2 and Grb2 are activated and Grb2 triggers the MAPK signalling pathway. Phosphorylation of IRS 

proteins allows for activation of PI3K, which subsequently phosphorylates the membrane lipid PIP2 to 

generate PIP3. PIP3 binds to KATP channels, leaving them open and resulting in hyperpolarization of 

the neurons. PIP3 accumulation recruits and allows binding of both PDK1 and AKT. PDK1 

phosphorylates and thereby activates AKT, which mediates most of insulin´s effect on glucose and 

glycogen metabolism, as well as activating protein translation and gene transcription. Binding of leptin 

leads to recruitment of JAK2, autophosphorylation and phosphorylation of LepR. After Jak2-mediated 

phosphorylation of STAT3, pSTAT3 dimers activate transcription of target genes. One of these genes 

is SOCS3, and the SOCS3 protein in a feedback loop binds to JAK2 and thereby inhibits STAT3 

phosphorylation. Additionally, JAK2 is able to directly activate IRS/PI3K signalling, leading to AKT 

activation. Increased SFAs, FFAs, glucose, cytokines in the circulation during obesity can signal 

through TLR, cytokine and nutrient receptors and result in the activation of inflammatory pathways, 

such as IKK2 and JNK1. Furthermore, ER stress and autophagy defect can also result in IKK2 and 

JNK1 activation. Both JNK1 and IKK2 have been shown to inducing insulin resistance and activation 

leptin resistance. It still remains elusive whether JNK1 and/or IKK2 activation per se, without any 

environmental trigger such as high-fat feeding, could still have the same effect in insulin and leptin 

signalling.  
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1.6 Ageing 

Ageing is a process during which deteriorative changes decrease an organism’s ability 

to survive. These deteriorative changes might occur due to molecular damage, for 

example caused by oxidative stress, but can also be influenced by genetic variation 

(Kenyon, 2005). Ageing is associated with pathologies as neoplastic, 

neurodegenerative and immune diseases (Niccoli and Partridge, 2012) and very 

importantly the metabolic syndrome (Ford et al., 2010; Hildrum et al., 2007), termed 

as the metabolic dysfunctions including obesity, insulin resistance and type 2 

diabetes.  

Improvements in sanitation and medicine keep increasing the average human 

lifespan since the 1800’s (Oeppen and Vaupel, 2002) but there is still a lot to answer 

concerning the biology of ageing and the determinants of maximum lifespan. On one 

hand, scientific proof exists that decreasing the caloric intake accompanied by 

increased insulin sensitivity, termed as caloric restriction, can extend the maximum 

lifespan (Masoro, 2005). Amelioration of hypothalamic inflammation has also been 

connected to lifespan extension (Zhang et al., 2013) and resembles some effects of 

caloric restriction, such as increased insulin sensitivity and reduced growth hormone 

(Belgardt et al., 2010). On the other hand the disruption of insulin/insulin-like growth 

factor 1 (IGF1) signalling also extends lifespan, creating a controversy with caloric 

restriction (Katic and Kahn, 2005). The concept of caloric restriction and the 

importance of insulin/IGF1 signalling in ageing will be introduced further in detail. 

 

1.6.1 Caloric restriction  

The only dietary intervention able to increase maximum lifespan is caloric restriction 

and was described for the first time almost a century ago (Osborne et al., 1917). 

Caloric restriction (CR) delays the onset of ageing-associated pathologies (Bronson 

and Lipman, 1991; Maeda et al., 1985; Roe et al., 1995) and is accompanied by 

increased insulin sensitivity (Gresl et al., 2003). Other common features of CR 

include decreased levels of growth hormone (GH), thus retardation of growth, and 

suppressed IGF1 signalling (Anderson et al., 2009). 

CR, the reduction of caloric intake without malnutrition (Masoro, 2005), has 

been  applied successfully in many model organisms including yeast, C. elegans, fruit 

fly, rat, mouse and non-human primates (Taormina and Mirisola, 2014; Colman et al., 
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2009; Weindruch and Walford, 1982), although the primate studies still present 

controversial results (Mattison et al., 2012).  

It has been proposed that not only the reduction in caloric intake is essential, 

varying from 20-40% in the studies using mammals, but also the diet composition is 

of great significance for the lifespan extension (Taormina and Mirisola, 2014). 

Indeed, protein, methionine and tryptophan restriction were also used as diets that 

mimic the effects of caloric restriction and were demonstrated to also result in 

extended lifespan (Malloy et al., 2006; De Marte and Enesco, 1986; Parrella et al., 

2013).  

The free radical theory provides an attractive explanation for CR’s longevity 

promoting effects, suggesting that free radical reactivity results in cumulative damage 

to lipids, proteins and DNA and eventually, senescence. Reduced energy intake, 

decreases mitochondrial respiration and eventually reactive oxygen species (ROS) 

production leading to less chronic inflammation resulting in lifespan extension 

(López-Torres et al., 2002; Sohal et al., 1994).  

 

1.6.2 Insulin/IGF signalling in ageing 

Ageing appears to be stochastic and the mechanisms underlying it remain poorly 

understood but growing evidence supports the important role of insulin/IGF signalling 

in the ageing process [reviewed in (Katic and Kahn, 2005)].  

Although severe reduction in insulin/IGF1 signalling can result in perinatal 

lethality, insulin resistance and type 2 diabetes (Accili et al., 1996; Brüning et al., 

2000; Joshi et al., 1996; Liu et al., 1993), moderate alterations in insulin/IGF1 

signalling can extend lifespan in C. elegans  (Kenyon et al., 1993; Wolkow et al., 

2000) and Drosophila melanogaster (Clancy et al., 2001; Tatar et al., 2001) and in 

mice (Blüher et al., 2003; Selman et al., 2008). Specifically, deletion of the insulin 

receptor in the adipose tissue (Blüher et al., 2003) results in lifespan extension 

although the mechanism behind this remains elusive and disruption of IRS1 in the 

brain only results in lifespan extension in female mice (Selman et al., 2008). 

Furthermore, low plasma levels of IGF1 and growth hormone, as found in the Dwarf 

mice, are related to life extension (Bartke et al., 2001; Brown-Borg et al., 1996; 

Flurkey et al., 2001).  
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1.7 Scientific objectives 

In this study we investigate the role of hypothalamic inflammation in the fine 

balances that regulate energy and glucose homeostasis, as a first aim, and ageing, as a 

second aim. Specifically, while both inhibition of JNK1 and IKK2, two major 

inflammatory mediators, in the hypothalamus protects from high-fat diet-associated 

pathologies, it has not yet been demonstrated in which hypothalamic neuronal 

population JNK1 and/or IKK2 action deregulates energy and/or glucose homeostasis, 

and whether neuron-restricted JNK1 and/or IKK2 activation are sufficient to alter 

energy and glucose homeostasis. Here, we use two models of targeted mouse 

mutagenesis to constitutively activate JNK1 (AgRPJNK1CA) or IKK2 (AgRPIKK2CA/CA) 

in the AgRP orexigenic neurons of the arcuate hypothalamic nucleus in order to 

examine their role in the regulation of energy and glucose homeostasis, examining 

insulin and leptin signalling in a molecular and systemic level. 

The second aim of this study is to reveal whether conditional ablation of JNK1 

in the CNS and pituitary by Nestin Cre (JNK1ΔNes) affects the ageing process in mice. 

The phenotype of JNK1ΔNes mice resembles the effects of caloric restriction, an 

intervention that delays ageing. Specifically, JNK1ΔNes mice show reduced body 

weight under normal chow and high-fat diet conditions and improved insulin 

sensitivity, glucose tolerance and impaired somatic growth with decreased circulating 

levels of IGF1 and decreased expression of growth hormone in the pituitary (Belgardt 

et al., 2010). Furthermore, JNK1ΔNes mice are protected from hepatic steatosis and 

present with an anti-inflammatory gene expression pattern in the adipose tissue 

(Belgardt et al., 2010). The fact that JNK1ΔNes phenotype characteristics resemble the 

features of caloric restriction prompted us to further investigate the impact of JNK1 

ablation in the central nervous system in a longitudinal study.  

Collectively, the following mutant mouse models are used in this study: 

-Mice with AgRP neuron-specific JNK1 constitutive activation (AgRPJNK1CA) 

-and mice with AgRP neuron-specific IKK2 constitutive activation (AgRPIKK2CA/CA) 

to investigate the effects of inflammation in energy and glucose homeostasis. 

-Mice with Nestin-specific JNK1 ablation (JNK1ΔNes) 

to investigate the effects of hypothalamic inflammation in ageing. 

 



             

2 Materials & Methods 

2.1 Animal care and generation of mice 

All animal procedures were conducted in compliance with protocols approved by 

local government authorities (Bezirksregierung Köln, Cologne, Germany) and were in 

accordance with NIH guidelines. Mice were housed in groups of 3–5 at 22–24°C 

using a 12h light/12h dark cycle. Animals were fed NCD (Teklad Global Rodent 

2018; Harlan) containing 53.5 % carbohydrates, 18.5 % protein, and 5.5 % fat (12 % 

of calories from fat) or HFD (HFD; C1057; Altromin) containing 32.7 % 

carbohydrates, 20 % protein, and 35.5 % fat (55.2 % of calories from fat). Animals 

had ad libitum access to water at all times, and food was only withdrawn if required 

for an experiment.  

Only male mice were used in these studies to avoid the effect of different 

stages of estrous cycle on glucose homeostasis. NPYGFP, R26StopFLJNK1CA, 

R26StopFLIKK2CA, Z/EG, LacZ, AgRPCre, NestinCre and JNK1fl/fl mice have been 

described previously (Könner et al., 2007; Sasaki et al., 2006; Novak et al., 2000; 

Tong et al., 2008; Belgardt et al., 2010).  

 

2.2 Genotyping 

2.2.1 Isolation of genomic DNA 

Tail biopsies were obtained at postnatal day 19-21. The samples were incubated for 

5h in 500μl Tail Lysis Buffer (100mM Tris pH 8.5, 5mM EDTA, 0.2 % (w/v) SDS, 

0.2M NaCl) containing 1 % ProteinaseK (Roche,Germany) at 56°C. DNA was 

precipitated by adding an equal volume of isopropanol, mixed and pelleted by 

centrifugation, was washed with 70 % (v/v) Ethanol, dried at RT and redissolved in 

50μl ddH2O. 

 

2.2.2 Polymerase chain reaction 

For genotypic analysis, polymerase chain reaction (PCR) was performed on tail DNA 

using the primers given in Table 1. For PCR DreamTaq PCR MasterMix and DNA 

polymerase (Thermo Scientific, Walldorf, Germany) was used. Standard PCR 
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contained approx. 50 ng DNA, 25 pMol of each primer, 25 mM dNTP mix and 1 unit 

DNA polymerase in a 25 ml reaction mix. 

 

Table 1. Genotyping Primers 

AgRPCre GGG CCC TAA GTT GAG TTT TCC T sense 

GAT TAC CCA ACC TGG GCA GAA C antisense 

GGG TCG CTA CAG ACG TTG TTT G antisense (mutant) 

NestinCre CGC TTC CGC TGG GTC ACT GTC G sense 

TCG TTG CAT CGA CCG GTA ATG CAG GC antisense 

LacZ ATC CTC TGC ATG GTC AGG TC sense 

CGT GGC CTG ATT CAT TCC antisense 

GFP CTG GTC GAG CTG GAC GGC GAC G sense 

CAG GAA CTC CAG CAG GAC CAT G antisense 

JNK1fl/fl ACA TGT ACC ATG TAC TGA CCT AAG sense 

CAT TAC TCT ACT CAC TAT AGT AAC A antisense 

GAT ATC AGT ATA TGT CCT TAT AG antisense (deletion) 

 

2.3 Phenotyping 

2.3.1 Insulin tolerance test 

Insulin tolerance tests were always performed in the morning to avoid deviations of 

the blood glucose concentration. The mice were injected with 0.75 U of recombinant 

insulin (Novo Nordisk, Basvaerd, Denmark) per kg of body weight (diluted in saline) 

and their blood glucose concentration was measured at 0, 15, 30 and 60 minutes post-

injection by an automatic glucose monitor (Contour, Bayer, Germany). 

 

2.3.2 Glucose tolerance test 

Glucose tolerance tests were performed after a 6h fasting period. 20 % glucose 

(DeltaSelect, Germany) (10ml/kg body weight) were injected intraperitoneally and 

blood glucose levels were determined at 0, 15, 30, 60 and 120 minutes post-injection 

using an automatic glucose monitor (Contour, Bayer, Germany). 
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2.3.4 Behavioural analysis for learning and memory 

Morris Water Maze analysis was performed in order to assess learning and memory in 

JNK1 ΔNes mice. JNK1ΔNes and JNK1fl/fl control mice were trained daily for 9 days to 

memorize the location of a submerged platform in a water pool using spatial 

recognition markers, and the time taken by each mouse to find the platform was 

measured by an automatic, software based system, termed acquisition time. Each 

mouse performed 4 trials per day, entering the pool from different positions and given 

60 seconds to find the submerged platform. In case the mouse did not find the 

platform it was placed on it until it stayed in place for 10 seconds. On the 4th, 7th and 

10th day of the test, the platform was removed from the pool, and the amount of time 

the mouse swam in the quadrant in which the platform had been was automatically 

measured by a software based system, termed the retention time. In order to assess 

learning plasticity, the ability to learn a new task, the platform was moved to the 

opposite quadrant the 11th day of the experiment and the acquisition time was 

measured for another 3 days. 

 

2.3.5 Indirect calorimetry, physical activity and food intake 

All measurements for indirect calorimetry were performed in a PhenoMaster System 

(TSE systems, Bad Homburg, Germany), which allows measurement of metabolic 

performance and activity monitoring by an infrared light-beam frame. Mice were 

placed at room temperature (22 °C–24 °C) in 7.1-l chambers of the PhenoMaster open 

circuit calorimetry. Mice were allowed to acclimatize in the chambers for at least 24h. 

Food and water were provided ad libitum in the appropriate devices and measured by 

the build-in automated instruments. Locomotor activity and parameters of indirect 

calorimetry were measured for at least the following 48h. Presented data are average 

values obtained in these recordings. Food intake was measured manually the mice 

were single-caged at least 4 days prior to the experiment in order to acclimatize to the 

special food racks.   

 

2.3.6 Body composition and Bone mineral Density 

Nuclear magnetic resonance was employed to determine body composition using the 

NMR Analyzer minispeq mq7.5 (Bruker Optik, Germany). Bone mineral density was 

measured by computed tomography in anaesthetised mice using the LaTheta micro 
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CT scanner (Aloka, Tokyo, Japan). The sections were set to 0.6 mm and analysis was 

performed using the LaTheta software. 

 

2.4 Electrophysiology 

2.4.1 Animals and brain slice preparation for electrophysiological 

experiments 

Electrophysiological experiments were performed by Lars Paeger (Kloppenburg 

laboratory) on brain slices from 35- to 42-day male mice. The animals were 

anesthetized with halothane (B4388; Sigma-Aldrich, Taufkirchen, Germany) and 

subsequently decapitated. The brain was rapidly removed and a block of tissue 

containing the ARC was immediately cut out. Coronal slices (260 µM) containing the 

ARC were cut with a vibration microtome (HM-650 V; Thermo Scientific, Walldorf, 

Germany) under cold (4 °C), carbonated (95 % O2 and 5 % CO2), glycerol-based 

modified artificial cerebrospinal fluid (GaCSF) to enhance the viability of neurons. 

GaCSF contained (in mM): 250 Glycerol, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 

10 HEPES, 21 NaHCO3, 5 Glucose adjusted to pH 7.2 with NaOH resulting in an 

osmolarity of ~310 mOsm. Brain slices were transferred into carbogenated artificial 

cerebrospinal fluid (aCSF). First, they were kept for 20 min in a 35 °C 'recovery bath' 

and then stored at room temperature (24 °C) for at least 30 min prior to recording. 

aCSF contained (in mM): 125 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 21 

NaHCO3, 10 HEPES, and 5 Glucose adjusted to pH 7.2 with NaOH resulting in an 

osmolarity of ~310 mOsm. 

 

2.4.2 Perforated patch recordings 

Slices were transferred to a recording chamber (~3 ml volume) and continuously 

superfused with carbogenated aCSF at a flow rate of ~2 ml·min-1. Neurons in ARC 

were visualized with a fixed-stage upright microscope (BX51WI; Olympus, 

Hamburg, Germany), using a 60x water immersion objective (LUMplan FI/IR; 60×; 

0.9 numerical aperture; 2 mm working distance; Olympus) with infrared-differential 

interference contrast and fluorescence optics. In the ARC NPY/AgRP neurons were 

identified by their specific GFP fluorescence (Chroma 41001 filter set; EX: 

HQ480/40x, BS: Q505LP, EM: HQ535/50m, Chroma, Rockingham, VT, USA). 
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 Current-clamp recordings in the perforated patch configuration were 

performed with an EPC10 patch-clamp amplifier (HEKA, Lambrecht, Germany) 

controlled by the PatchMaster software (version 2.32; HEKA) running under 

Windows. Data were sampled at a rate of 10 kHz and low-pass filtered at 2 kHz with 

a four-pole Bessel filter. The liquid junction potential between intracellular and 

extracellular solution was compensated (14.6 mV for normal aCSF; calculated with 

Patcher's Power Tools plug-in downloaded from 

http://www3.mpibpc.mpg.de/groups/neher/index.php?page=software for Igor Pro 6 

[Wavemetrics, Lake Oswego, OR, USA]). 

Perforated patch recordings were performed using protocols modified from Horn and 

Marty (Horn and Marty, 1988) and Akaike and Harata (Akaike and Harata, 1994). 

Electrodes with tip resistances between 3 and 5 MΩ were fashioned from borosilicate 

glass (0.86 mm inner diameter; 1.5 mm outer diameter; GB150-8P; Science Products, 

Hofheim, Germany) with a vertical pipette puller (PP-830; Narishige, London, UK). 

Perforated patch recordings were performed with ATP and GTP free pipette solution 

containing (in mM): 128 K-gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 2 MgCl2 

adjusted to pH 7.3 with KOH resulting in an osmolarity of ~300 mOsm. ATP and 

GTP were omitted from the intracellular solution to prevent uncontrolled 

permeabilization of the cell membrane (Lindau and Fernandez, 1986). The patch 

pipette was tip filled with internal solution and back filled with tetraethylrhodamine-

dextran (D3308, Invitrogen, Eugene, OR, USA) and amphotericin B containing 

internal solution (100-250 µg·ml-1; A4888; Sigma) to achieve perforated patch 

recordings. Amphotericin B was dissolved in dimethyl sulfoxide (final concentration: 

0.2 - 0.5%; DMSO; D8418, Sigma) as described in (Rae et al., 1991) and was added 

to the modified pipette solution shortly before use. The used DMSO concentration 

had no obvious effect on the investigated neurons. Experiments were carried out at 

~32°C using an inline solution heater (SH27B; Warner Instruments, Hamden, CT, 

USA) operated by a temperature controller (TC-324B; Warner Instruments). During 

the perforation process access resistance (Ra) was constantly monitored and 

experiments were started after Ra and the action potential (AP) amplitude were stable 

(~10–30 min). A change to the whole-cell configuration was indicated by diffusion of 

tetraethylrhodamine-dextran into the neuron. Such experiments were rejected. For 

each neuron, the firing rate and the membrane potential was determined by averaging 

periods of 5 minutes using Spike2. 

http://www3.mpibpc.mpg.de/groups/neher/index.php?page=software
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2.5 Immunohistochemistry 

GFP/phospho-c-Jun and PIP3/LacZ double stainings were performed similarly to 

previously reported protocols (Belgardt et al., 2008; Plum et al., 2006). The following 

antibodies were used, α-GFP antibody (Abcam, #13970, dilution 1: 1000), α-p-c-Jun 

antibody (Cell Signalling, #3270, dilution 1: 800), α-pSTAT3 antibody (Cell 

Signalling, #9145, dilution 1:100), α-pIκBα antibody (Cell Signalling, #2859, dilution 

1:100). After overnight incubation at 4°C, we used goat α-chicken (Jackson, #103-

095-155, FITC-coupled, dilution 1:500) and goat α-rabbit (Molecular Probes, 

#A11012, Alexa 594-coupled, dilution 1:500). Images were captured using a Leica S5 

confocal microscope and analyzed, as described below, using ImageJ software (NIH). 

In the Figures 4B, 4D, 6B, 6D, 9B, cells with immunoreactivity above threshold were 

counted manually as positive and marked digitally to prevent multiple counts, for 

each cell immunoreactivity was assessed in every channel (at least 2 sections/animal 

were used for quantification).  

Co-staining for both pSTAT3 and LacZ immunoreactivity was quantified in 

10 confocal slices, at 1μm intervals per animal from three animals per group (at least 

2 hemisections/animal). In detail, maximum intensity projections were prepared for 

each series of confocal images, separately for pSTAT3 and LacZ immunoreactivity. 

Each image was binarized to isolate immunoreactive positive cells from the 

background and compensate for differences in fluorescence intensity. To determine 

co-localization, the integrated density of overlapping pixels was measured from the 

pSTAT3 and LacZ binarized images (Figure 2). The integrated density, depicted in 

Figure 6C, is therefore proportional to the intensity of pSTAT3 and LacZ 

immunoreactivity co-localization. To quantify the intensity of pSTAT3 

immunoreactivity in non-LacZ cells (LacZ-), the same binarized images of pSTAT3 

and LacZ immunoreactivity were used for analysis as for Figure 6E. Specifically, the 

binarized image of LacZ was subtracted from the binarized image of pSTAT3 to 

define the pSTAT3 immunoreactivity in LacZ- cells (non-AgRP neurons), and the 

integrated density of the resulting image defined the intensity depicted in Figure 6E. 
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Figure 2. Immunoreactivity quantification. To quantify the immunoreactivity, each image was 

converted to 16-bit format and then binarized to isolate immunoreactive positive cells from the 

background and compensate for differences in fluorescence intensity. To determine co-localization, the 

integrated density of overlapping pixels was measured, from the pSTAT3 and LacZ binarized images. 

The integrated density is proportional to the intensity of pSTAT3 and LacZ immunoreactivity co-

localization. To quantify the intensity of pSTAT3 immunoreactivity in non-LacZ cells (LacZ-), the 

binarized image of LacZ was subtracted from the binarized image of pSTAT3 to define the pSTAT3 

immunoreactivity in LacZ- cells (non-AgRP neurons), and the integrated density of the resulting image 

defined the intensity. 

 

For semi-quantitative analysis of PIP3 levels in AgRP neurons, 

β-galactosidase positive neurons were assessed in ARC slices of control AgRPLacZ, 

AgRPJNK1CA;LacZ and AgRPIKK2CA;LacZ mice, which had been injected either with saline 

or insulin as previously described (Plum et al., 2006). In detail, the amount of PIP3 
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was classified as low (immunoreactive cytoplasmic dots/sprinkles in the proximity of 

the nucleus at background levels, i.e. 6 or fewer dots, no cloudy aspect, no confluent 

areas), moderate (dots/sprinkles at levels above background, i.e. more than 6 dots, 

cloudy aspect), or high (more than 20 dots/sprinkles, cloudy with confluent areas) 

(Figure 3). 

 

Figure 3. PIP3 quantification. The amount of PIP3 was classified as low (immunoreactive 

cytoplasmic dots/sprinkles in the proximity of the nucleus at background levels, i.e. 6 or fewer dots, no 

cloudy aspect, no confluent areas), moderate (dots/sprinkles at levels above background, i.e. more than 

6 dots, cloudy aspect), or high (more than 20 dots/sprinkles, cloudy with confluent areas. 

 

Determination of adipocyte surface 
Haematoxylin and eosin staining was performed in epididymal/parametrial adipose 

tissue. In order to quantify the adipocyte surface in epididymal/parametrial adipose 

tissue, pictures were taken with a bright-field Leica microscope and the surface size 

was determined using the provided Leica software. 

 

2.6 Data analysis and statistical methods 

Data analysis was performed with Igor Pro 6 (Wavemetrics) and Graphpad Prism 

(version 5.0b; Graphpad Software Inc., La Jolla, CA, USA). Numerical values are 

given as mean ± standard error. Boxplots are generated according to Tukey, means 
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are reflected by “+” and medians by the dash, respectively. To determine differences 

in means t tests and 2-way ANOVA analyses were performed. A significance level of 

0.05 was accepted for all tests. *p ≤ 0.05; **p ≤ 0.01;***p ≤ 0.001 versus controls. 

 

2.7 Chemicals and Enzymes 

Table 2. Chemicals and enzymes 

0.9% saline, sterile Delta Select, Pfullingen, Germany 

2,2,2-Tribromethanol (Avertin) Sigma-Aldrich, Seelze, Germany 

Agarose (Ultra Pure) Invitrogen, Karlsruhe, Germany 

Aprotinin Sigma-Aldrich, Seelze, Germany 

Bacillol Bode Chemie, Hamburg, Germany 

Bovine serum albumin (BSA) Sigma-Aldrich, Seelze, Germany 

Bromphenol blue Marck, Darmstadt, Germany 

Calcium chloride Merck, Darmstadt, Germany 

Diaminobenzidin (DAB) Dako, Denmark 

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany 

di-Natriumhydrogenphosphat Merck, Darmstadt, Germany 

Ethanol, absolute Applichem, Darmstadt, Germany 

Ethidium bromide Sigma-Aldrich, Seelze, Germany 

Ethylendiamide tatraacetate (EDTA) Applichem, Darmstadt, Germany 

Glucose 20%, sterile DeltaSelect, Pfullingen, Germany 

Glycerol Serva, Heidelberg, Germany 

HEPES Applichem, Darmstadt, Germany 

Hydrogen peroxide Sigma-Aldrich, Seelze, Germany 

Insulin (human) Novo Nordisk, Basvaerd, Denmark 

Isopropanol Roth, Karlsruhe, Germany 

Ketamine hydrochloride Sigma-Aldrich, Seelze, Germany 

Leptin NHPP, USA 

Magnesium chloride Merck, Darmstadt, Germany 

Methanol Roth, Karlsruhe, Germany 

Nitrogen (liquid) Linde, Pullach, Germany 

Paraformaldehyde (PFA) Fluka, Sigma-Aldrich, Seelze, Germany 

Phosphate buffered saline (PBS) Gibco, Eggenstein, Germany 

Potassium hydroxide Merck, Darmstadt, Germany 
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Rompun (Xylazine) Bayer, Germany 

Sodium chloride Applichem, Darmstadt, Germany 

Sodium dodecyl sulfate (SDS) Applichem, Darmstadt, Germany 

Sodium fluoride Merck, Darmstadt, Germany 

Sodium hydroxide Applichem, Darmstadt, Germany 

Sodium orthovanadate Sigma-Aldrich, Seelze, Germany 

Sodium pyruvate Sigma-Aldrich, Seelze, Germany 

Tissue freezing medium Jung, Heidelberg, Germany 

Tris AppliChem, Darmstadt, Germany 

Vectashield (with DAPI) Vector, Burlingame, USA 

Proteinase K Roche, Basel, Switzerland 

DreamTaq DNA Polymerase Thermo Scientific, Walldorf, Germany 
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3 Results 

3.1 Hypothalamic inflammation in obesity and insulin resistance 

3.1.1 Activation of JNK signalling in AgRP neurons occurs in obesity 
and increases firing of these cells 
Hypothalamic inflammation, and particularly activation of JNK signalling, is 

observed after HFD consumption (Belgardt et al., 2010) but the relative contribution 

of the different hypothalamic cell types remains elusive. Therefore, to assess whether 

JNK-activation occurs in AgRP neurons during obesity development, we employed a 

reporter mouse strain that allows for genetic identification of AgRP/NPY-co-

expressing neurons via the expression of humanized Renilla Green Fluorescent 

Protein (hrGFP) under the control of the mouse Npy promoter (NPYGFP) and fed 8-

week-old mice with NCD  (NCD:NPYGFP) or HFD for ten days (HFD:NPYGFP). 

Immunostaining for phosphorylated c-Jun -as a read-out for JNK-activation and a 

crucial regulator of hypothalamic inflammation (De Souza et al., 2005; Belgardt et al., 

2010; Sabio et al., 2010; Unger et al., 2010)- in combination with GFP performed 

revealed a ~3-fold increase of p-c-Jun immunoreactivity in GFP positive neurons in 

NPYGFP mice after HFD consumption compared to the NCD fed NPYGFP mice 

(Figure 4A, B). These data indicate that indeed early during the course of HFD-

feeding JNK is activated in AgRP neurons. 

To address whether JNK-activation per se in AgRP neurons, as observed upon 

obesity development and HFD consumption (Figure 4A, B), is sufficient to induce 

metabolic abnormalities we sought to generate a genetic mouse model for cell type-

specific JNK-activation. Constitutive activation of JNK has previously been achieved 

by expression of a constitutively active version of the upstream kinase JNKK2/MKK7 

(MKK7D) (Wang et al., 1998) or a fusion protein consisting of JNKK2/MKK7 and 

JNK1 (JNKK2-JNK1) (Zheng et al., 1999). Thus, we generated mice allowing for the 

conditional expression of a MKK7D-JNK1 fusion protein upon Cre-recombinase-

induced excision of a transcriptional Stop cassette (R26StopFLJNK1CA mice) from 

the ROSA26-locus (Pal et al., 2013). In order to activate JNK signalling in AgRP 

neurons, we crossed R26StopFLJNK1CA mice with mice expressing the Cre-

recombinase in these cells (AgRPCre+/-) (Tong et al., 2008).
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To investigate the efficiency of this transgenic approach to activate JNK, we 

generated reporter mice expressing GFP in AgRP neurons, by crossing the AgRPCre 

with the Z/EG mice, in the presence or absence of JNK1CA expression. 

Immunostaining for phosphorylated c-Jun -as a read-out for JNK-activation- in 

combination with GFP revealed that less than 20% of GFP+-AgRP neurons exhibited 

p-c-Jun immunoreactivity in lean control animals, whereas in AgRPJNK1CA;GFP mice 

more than 70% of GFP+-AgRP neurons showed detectable phosphorylation of c-Jun 

(Figure 4C, D), in fact to similar degree as observed upon HFD-feeding. Importantly, 

constitutive JNK activation in AgRP neurons did not affect the total number of GFP+-

AgRP cells, although JNK1 had been implicated in a cell-type specific regulation of 

cell death and survival (Bogoyevitch, 2006), (Figure 4E). Taken together, these 

results indicate that the AgRPJNK1CA mice are a suitable model to investigate the 

physiological consequences of chronically activated JNK1 signalling in AgRP 

neurons without altering AgRP-neuron viability.  

To determine the effect of activated JNK-signalling on the cellular properties 

of AgRP neurons, we first investigated the electrophysiological parameters of AgRP 

neurons. Here, we employed the NPYGFP reporter mouse strain and crossed it to 

AgRPJNK1CA and the respective control mice. Perforated patch-clamp recordings of 

genetically identified AgRP/NPY-neurons revealed that activation of JNK-signalling 

in AgRP neurons of NPYGFP;AgRPJNK1CA mice increased the spontaneous firing 

frequency of these cells and depolarized the membrane potential compared to 

AgRP/NPY-neurons of lean control littermates (NPYGFP;JNK1CA;AgRPCre-/-) (Figure 

4F-H). We did not observe any differences in other basic electrophysiological 

properties, such as input resistance, cell capacitance and spike frequency adaptation 

(Figure 5A-C). 
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Figure 4. Activation of JNK signalling in AgRP neurons occurs in obesity and increases firing of 

these cells. A, B) High-fat diet consumption for ten days is sufficient to trigger c-Jun phosphorylation 

in AgRP neurons of NPYGFP reporter mice. Immunostaining for phospho-c-Jun and GFP performed in 

arcuate nuclei of NPYGFP reporter mice at the age of 10 weeks fed with normal chow diets (NCD) or 

high-fat diet for ten days (HFD). The number of p-c-Jun and GFP double positive neurons was 

significant increased in NPYGFP mice fed with HFD (HFD:NPYGFP; n=3) compared to NPYGFP mice 
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fed with normal chow diet (NCD:NPYGFP; n=3). Scale bar, 40 μm. C, D) Expression of the JNK1CA 

protein in AgRP neurons leads to cell-specific phosphorylation of the JNK-target c-Jun in vivo. AgRP 

neurons were visualized by immunostaining for GFP in AgRPGFP and AgRPJNK1CA;GFP reporter animals. 

Immunostaining for phospho-c-Jun revealed few AgRP neurons positive for p-c-Jun in control reporter 

animals, whereas the majority of AgRP neurons in AgRPJNK1CA;GFP mice showed clear 

immunoreactivity for p-c-Jun. Quantification of p-c-Jun and GFP positive AgRP neurons is depicted in 

D in control AgRPGFP (n=3) and AgRPJNK1CA;GFP (n=3) reporter mice. Scale bar, 100 μm. 

E) Chronic JNK1 activation does not affect AgRP neuron numbers. All GFP+ AgRP neurons were 

counted in control AgRPGFP (n=3) and AgRPJNK1CA;GFP (n=3) reporter mice. No difference in neuron 

counts per slide was detected between genotypes.  

F) Spontaneous action potential frequencies of NPYGFP;JNK1CA;AgRPCre-/- (N=3 mice; n=13 AgRP 

neurons) and NPYGFP;ARPJNK1CA (N=3 mice; n=9 AgRP neurons).  

G) Membrane potentials of NPYGFP;JNK1CA;AgRPCre-/- (N=3 mice; n=13 AgRP neurons) and 

NPYGFP/ARPJNK1CA (N=3 mice; n=8 AgRP neurons). 

H) Representative recordings of spontaneous action potential frequencies of 

NPYGFP;JNK1CA;AgRPCre-/- and NPYGFP/ARPJNK1CA mice at the age of 6 weeks. 

Electrophysiological experiments were performed by Lars Paeger. Displayed values are means +/- 

SEM. ***p<0.001. 

 

Figure 5. JNK1 activation does not affect input resistance, capacitance and spike frequency 

adaptation ratio in AgRP neurons. Input resistances A, cell capacitances B and spike frequency 

adaptation (SFA) ratios C show no differences between control (NPYGFP;JNK1CA;AgRPCre-/-) and 

NPYGFP;AgRPJNK1CA mice. Electrophysiological experiments were performed by Lars Paeger. 

  

0

2

4

6

8

10

in
p

u
t 

re
s
is

ta
n

c
e

 (
G

)

0

5

10

15

c
a

p
a

c
ita

n
c
e

 (
p

F
)

0

5

10

15

S
F

A
 r

a
tio

 (
1

/I
S

I fi
rs

t)/
l(1

/I
S

I la
s
t)

A B C

NPYGFP;AgRPJNK1CA

NPYGFP;JNK1CA;AgRPCre-/-

NPYGFP;AgRPJNK1CA

NPYGFP;JNK1CA;AgRPCre-/-

NPYGFP;AgRPJNK1CA

NPYGFP;JNK1CA;AgRPCre-/-



Results     

 44 

3.1.2 JNK activation in AgRP neurons causes cellular and systemic 
leptin resistance 

Apart from regulating neuronal firing of AgRP neurons, leptin exerts its 

regulatory role on feeding behaviour through STAT3-dependent regulation of 

neuropeptide expression, including that of AgRP and NPY (Bates et al., 2003). Thus, 

we directly assessed leptin’s ability to activate STAT3-phosphorylation in AgRP 

neurons of AgRPJNK1CA and control mice. To this end, we employed mice, which 

allow for Cre-dependent expression of ß-galactosidase (Plum et al., 2006) and crossed 

these animals with AgRPJNK1CA mice, yielding both, control mice with genetically 

marked AgRP neurons (AgRPLacZ mice) as well as AgRPJNK1CA;LacZ mice. Whereas in 

vivo leptin stimulation markedly induced Stat3 phosphorylation in AgRP neurons of 

10-week-old control mice, leptin’s ability to induce pSTAT3-immunoreactvity in 

AgRP neurons of AgRPJNK1CA;LacZ mice was largely reduced, demonstrated both as 

the percentage of pSTAT3 immunoreactive LacZ positive cells per section (Figure 

6A, B) and as intensity of the pSTAT3 immunoreactivity in LacZ positive cells 

(Figure 6C). Thus, activating JNK-signalling in AgRP neurons induces leptin 

resistance in these cells. This effect is AgRP cell-specific, since pSTAT3 

immunoreactivity after leptin stimulation is not affected in non-AgRP cells (Figure 

6D and Figure 6E). 

To investigate systemic leptin sensitivity, control and AgRPJNK1CA mice were 

injected twice daily for 3 consecutive days with saline followed by twice-daily 

injections for 3 consecutive days with 2mg/kg leptin. Leptin treatment significantly 

reduced food intake and body weight in both, control and AgRPJNK1CA mice at 8 

weeks of age (Figure 6F, G). Importantly, at the age of 15 weeks, leptin treatment 

failed to suppress food intake and to reduce body weight in AgRPJNK1CA mice, 

whereas control mice still responded to the food intake- and body weight-reducing 

action of leptin (Figure 6H, I). Of note, leptin resistance at this age occurred in 

weight-matched animals, to rule out a potential confounding effect of increased body 

weight between the two genotypes. Collectively, these experiments reveal that 

chronic activation of JNK-signalling in AgRP neurons is sufficient to initially cause 

cell-autonomous and subsequently systemic leptin resistance. 
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Figure 6. JNK1 activation causes AgRP neuron-specific and subsequently systemic leptin 

resistance. A) Representative pSTAT3 immunostaining of AgRPLacZ and AgRPJNK1CA;LacZ after fasting 

for 16h and intraperitoneal leptin stimulation (1mg/kg) in 10 week-old animals. Scale bar, 40 μm. B) 

Average number of pSTAT3 and LacZ immunoreactive cells per section of control AgRPLacZ (n=3) and 

AgRPJNK1CA;LacZ (n=3) mice. C) Intensity of pSTAT3 immunoreactivity in AgRP neurons of control 

AgRPLacZ (n=3) and AgRPJNK1CA;LacZ (n=3) mice depicted as the percentage of the control. D) Average 

number pSTAT3 immunoreactive non-AgRP (LacZ negative) cells after leptin stimulation is 
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indistinguishable between AgRPLacZ (n=3) and AgRPJNK1CA;LacZ  (n=3) mice. E) The intensity of 

pSTAT3 immunoreactivity in non-AgRP (LacZ-) cells after leptin stimulation is indistinguishable 

between AgRPLacZ (n=3) and AgRPJNK1CA;LacZ  (n=3) mice. F) Changes in body weight after 

intraperitoneal leptin treatment in control (n=7) and AgRPJNK1CA (n=7) mice at 8 weeks of age. Data 

represent percentage of basal body weight (the body weight in the beginning of each treatment) after a 

3-day (72h) treatment with twice-daily injections (12h apart) of saline followed by a 3-day treatment 

with twice-daily injections of 2mg/kg leptin. G) Changes in food intake after intraperitoneal leptin 

treatment in control (n=7) and AgRPJNK1CA (n=7) mice at 8 weeks of age. Data represent daily food 

intake after a 3-day (72h) treatment with twice-daily injections (12h apart) of saline followed by a 3-

day treatment with twice-daily injections of 2mg/kg leptin. H) As in F but at 15 weeks of age (n=10; 

4). I) As in G but at 15 weeks of age (n=10; 4). Displayed values are means +/- SEM. *p<0.05; 

**p<0.01; ***p<0.001. 

 

3.1.3 Activation of JNK signalling in AgRP neurons causes obesity 
To address the effect of activating JNK signalling in AgRP neurons on energy 

homeostasis, we monitored the body weight of male control and AgRPJNK1CA mice. 

Whereas body weight did not differ between genotypes at the beginning of our 

analysis, AgRPJNK1CA mice displayed progressively increased body weight starting at 

the age of 5 weeks, which continued until the end of our study at 28 weeks of age 

(Figure 7A).  Moreover, analysis of body composition revealed increased adipose 

tissue mass in AgRPJNK1CA compared to control mice (Figure 7B), which was 

associated with adipocyte hyperplasia (Figure 7C, D). 

In light of the increased body weight and adiposity of AgRPJNK1CA mice, we 

aimed to identify the mechanism of how AgRP-neuron-specific activation of JNK-

signalling caused a positive energy balance. These analyses revealed that daily food 

intake was significantly increased upon activation of JNK-signalling in AgRP-cells 

(Figure 7E), whereas locomotor activity and energy expenditure remained unaltered 

in AgRPJNK1CA mice compared to control mice (Figure 7F,G). Thus, activation of JNK 

signalling in AgRP neurons is sufficient to promote hyperphagia and obesity 

development in mice. 
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Figure 7. Chronic JNK1 signalling in AgRP neurons results in increased body weight and 

adiposity. A) Average body weight of control (n= 20) and AgRPJNK1CA mice (n= 20) on normal diet. 

B) Body fat as measured by nuclear magnetic resonance analysis of control (n= 12) and AgRPJNK1CA 

mice (n= 14) on normal diet at the age of 25 weeks. C) Representative pictures of epididymal adipose 

tissue paraffin sections. Scale bar, 50μm. Average fat cell area of control (n= 3) and AgRPJNK1CA mice 

(n= 4) at the age of 25 weeks. D) Fat cell area distribution of control (n= 3) and AgRPJNK1CA mice (n= 

4) at the age of 25 weeks. E) Average ad libitum food intake at the age of 6 weeks of control (n= 12) 

and AgRPJNK1CA mice (n= 12). F) Locomotor activity at the age of 6 weeks of control (n= 7) and 

AgRPJNK1CA mice (n= 7). G) Energy expenditure at the age of 6 weeks of control (n= 7) and 

AgRPJNK1CA mice (n= 7). Displayed values are means +/- SEM. *p<0.05; **p<0.01. 

A

20

22

24

26

28

30

F
a
t 
m

a
s
s
 (
%

)

*

B

C

0

500

1000

1500

2000

2500

C
e
ll 

a
re

a
 (
µ
m

2  
)

*
control AgRPJNK1CA

D

0-500 500-1000 1000-2000 2000-3000 3000-4000 4000
0

10

20

30

40

50

60

F
a
t 
c
e
lls

 (
%

)

Area (µm2

AgRPAgRP

)

*

*

0

1

2

3

4

5

F
o
o
d
 in

ta
k
e
 (
g
ra

m
)

**

E

F

light phase dark phase
0

20000

40000

60000

80000

A
c
ti
v
it
y
 (
c
o
u
n
ts

)

3 4 5 6 7 8 9 10 11 12 13 14 15 16 20 24 28
0

10

20

30

40

50

Age (weeks)

B
o

d
y

 w
e

ig
h

t 
(g

ra
m

)

*
*

**

** *

**
*

*

G

light phase dark phase
0

10

20

30

E
n

e
rg

y
 e

x
p

e
n

d
it
u

re
 (
k

c
a

l/
h

/k
g

)

control 

AgRP
JNK1CA

control AgRP
JNK1CA

control 

AgRP
JNK1CA

control 

AgRP
JNK1CA

control 

AgRP
JNK1CA

control AgRP
JNK1CA

control 
JNK1CA

AgRP

Week 25

Week 25

Week 25

Week 6Week 6



Results     

 48 

3.1.4 Unaltered glucose homeostasis in AgRPJNK1CA mice 
Insulin action in AgRP neurons is critical for the control of hepatic glucose output 

(Könner et al., 2007; Lin et al., 2010). Insulin activates the PI3 kinase cascade in 

AgRP neurons, which catalyses the generation of phosphatidylinositol 3,4,5 

triphosphate (PIP3) from phosphatidylinositol 4,5 diphosphate (PIP2). To examine 

whether JNK activation leads to the development of insulin resistance, we 

investigated the effect of constitutive JNK activation in AgRP neurons on insulin's 

ability to activate PI3-kinase signalling in these cells by immunostaining for PIP3 in 

genetically marked β-galactosidase-positive AgRP neurons of mice expressing LacZ 

in AgRP neurons in the presence or absence of JNK1CA expression (AgRPJNK1CA;LacZ 

and AgRPLacZ, respectively). In both, AgRPJNK1CA and control mice, insulin treatment 

resulted in comparable PIP3 formation in AgRP neurons, indicating that activation of 

JNK-signalling did not cause neuronal insulin resistance in this cell type (Figure 8A, 

B). Basal levels of immunoreactive PIP3 were also indistinguishable between 

AgRPLacZ and AgRPJNK1CA;LacZ mice (Figure 8C). Consistent with unaltered insulin 

action in AgRP neurons, systemic glucose homeostasis remained unaffected in 

AgRPJNK1CA compared to control mice as assessed by insulin and glucose tolerance 

tests (Figure 8D, E). Thus, these experiments revealed the development of leptin but 

not insulin resistance as a consequence of JNK activation in AgRP neurons. 
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Figure 8. Unaltered AgRP-neuronal insulin sensitivity and glucose homeostasis in AgRPJNK1CA 

mice. A) Representative PIP3 immunostaining of AgRPLacZ and AgRPJNK1CA;LacZ after intravenous 

insulin stimulation with 5U of insulin. Scale bar, 10 μm. B) Quantification of PIP3 levels in AgRP 

neurons of AgRPLacZ (N=5 mice; n=460 AgRP neurons) and AgRPJNK1CA;LacZ (N=3 mice; n=148 AgRP 

neurons) mice after fasting for 16h and insulin stimulation (in the vena cava inferior)  with 5U of 

insulin for 10 minutes. C) Quantification of PIP3 levels in AgRP neurons of AgRPLacZ (N=3 mice; 

n=234 AgRP neurons) and AgRPJNK1CA;LacZ (N=3 mice; n=346 AgRP neurons) mice in basal state 

(saline injection in the vena cava inferior) after fasting for 16h. D) Blood glucose levels as percentage 

of the initial blood glucose during an insulin tolerance test of control (n=14) and AgRPJNK1CA mice 

(n=18). E) Blood glucose levels during glucose tolerance test of control (n=9) and AgRPJNK1CA (n=11). 

The mice were fasted for 6h before the injection with 20% glucose (10 ml/kg). Displayed values are 

means +/- SEM. *p<0.05; **p<0.01; ***p<0.001. 
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3.1.5 Activation of IKK2 signalling increases the firing rate of AgRP 
neurons 
Since activation of JNK signalling in AgRP neurons was sufficient to induce obesity 

and leptin resistance, but neither caused neuronal insulin resistance nor impaired 

systemic glucose metabolism, we sought to investigate whether chronic activation of 

IKK2 signalling in AgRP neurons would impact on the regulation of energy 

homeostasis and/or glucose homeostasis. Therefore, we generated mice expressing a 

constitutive active IKK2 mutant (IKK2CA) (Sasaki et al., 2006) specifically in AgRP 

neurons (AgRPCreR26Stopfl/wtIKK2EE, referred to as AgRPIKK2CA mice). Given that in 

this mouse model IKK2EE-expression is driven by the endogenous ROSA-26-

promoter, which exhibits lower expression than the construct employed for expressing 

the JNK1CA variant, we generated homozygous mice expressing two copies of 

IKK2CA (AgRPIKK2CA/CA) to achieve a more robust expression of the IKK2CA-

variant. 

To test the functionality of this approach we employed pIκBα immunostaining 

as a read-out for IKK2 activation in AgRP neurons of reporter mice expressing ß-

galactosidase in AgRP neurons upon Cre-mediated expression of LacZ from the 

ROSA26-locus. Since both, the ß-galactosidase reporter, as well as the IKK2CA-

allele were expressed from the ROSA-allele, we compared the degree of pIκBα 

immunoreactivity in control AgRPLacZ mice and AgRPIKK2CA;LacZ mice, which express 

only one copy of the IKK2CA-allele. Whereas approximately 45% of β-

galactosidase-positive neurons displayed pIκBα immunoreactivity in control 

AgRPLacZ mice, AgRP-specific constitutive activation of IKK2 resulted in pIκBα 

immunoreactivity in approximately 70% of β-galactosidase-positive neurons in 

AgRPIKK2CA;LacZ mice (Figure 9A, B). Constitutive IKK2 activation in AgRP neurons 

did not affect the total number of LacZ+-AgRP cells (Figure 9C). Collectively, these 

experiments reveal successful activation of IKK2-signalling in AgRP neurons in 

mice, already in those that express only one copy of the IKK2CA-allele. 

Next we performed electrophysiological recordings of genetically marked 

NPYGFP-neurons of control NPYGFP;IKK2CA/CA;AgRPCre-/- or 

NPYGFP;AgRPIKK2CA/CA mice. Similar to what we had observed in 

NPYGFP;AgRPJNK1CA mice, activation of IKK2-signalling in AgRP neurons increased 

their firing rate compared to AgRP neurons of control mice (Figure 9D-F). Again, 

other basic electrophysiological properties remained unaltered (Figure 10A-C). These 
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experiments indicate that activation of both major inflammatory mediators JNK1 and 

IKK2 propagate increased activity of orexigenic AgRP/NPY-neurons in the ARC in a 

cell-autonomous manner. 

 

Figure 9. Activation of IKK2 signalling increases the firing rate of AgRP neurons. A, B) 

Expression of the IKK2CA protein in AgRP neurons leads to cell-specific phosphorylation of the IKK2 

target IκBα in vivo. AgRP neurons were visualized by immunostaining for β-galactosidase in AgRPLacZ 

and AgRPIKK2CA;LacZ reporter animals. Immunostaining for phospho-IκBα revealed 45% of the AgRP 

neurons positive in control reporter animals, whereas 70% of AgRP neurons in AgRPIKK2CA;LacZ mice 
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showed clear immunoreactivity for p-IκBα. Quantification of p-IκBα positive and β-galactosidase 

positive AgRP neurons is depicted in B in control AgRPLacZ (n=3) and AgRPIKK2CA;LacZ (n=3) reporter 

mice. Scale bar, 50 μm. C) Chronic IKK2 activation does not affect AgRP neuron numbers. β-

galactosidase positive AgRP neurons were counted in control AgRPLacZ (n=3) and AgRPIKK2CA;LacZ 

(n=3) reporter mice. No difference in neuron counts per slide was detected between genotypes. 

Displayed values are means +/- SEM. *p<0.05. D) Spontaneous action potential frequencies of 

NPYGFP;IKK2CA/CA;AgRPCre-/- (N=3 mice; n=17 AgRP neurons) and NPYGFP;ARPIKK2CA/CA (N=3 

mice; n=11 AgRP neurons). E) Membrane potentials of NPYGFP;IKK2CA/CA;AgRPCre-/- (N=3 mice; 

n=17 AgRP neurons) and NPYGFP;ARPIKK2CA/CA (N=3 mice; n=11 AgRP neurons). F) Representative 

recordings of spontaneous action potential frequencies of NPYGFP;IKK2CA/CA;AgRPCre-/- (N=3 mice; 

n=17 AgRP neurons) and NPYGFP;ARPIKK2CA/CA (N=3 mice; n=11 AgRP neurons) mice at the age of 6 

weeks. Electrophysiological experiments were performed by Lars Paeger. 

 

Figure 10. IKK2 activation does not affect input resistance, capacitance and spike frequency 

adaptation ratio in AgRP neurons. Input resistances A, cell capacitances B and spike frequency 

adaptation ratios C show no differences between control  (NPYGFP;IKK2CA/CA;AgRPCre-/-) and 

NPYGFP;AgRPIKK2CA/CA mice. Electrophysiological experiments were performed by Lars Paeger. 

 

3.1.6 Activation of IKK2 signalling in AgRP neurons does not affect 
leptin sensitivity or body weight  
In contrast to what we observed in AgRPJNK1CA mice, leptin-mediated suppression of 

food intake was retained in AgRPIKK2CA/CA mice to the same degree as in control 

animals even at the age of 15 weeks, when AgRPJNK1CA mice develop profound 

systemic leptin resistance (Figure 11A, B). Taken together, activating IKK2-

signalling in AgRP neurons does not interfere with body weight maintenance or leptin 

sensitivity in contrast to what is observed upon activation of JNK signalling in the 

same neurons. 
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Upon validation of the functionality of the constitutively active IKK2 variant 

expressed in AgRP neurons, we performed a metabolic characterization of 

AgRPIKK2CA/CA and their respective control mice. In contrast to what we had observed 

in AgRPJNK1CA mice, AgRPIKK2CA/CA mice did not develop increased body weight or 

adiposity (Figure 11C, D) despite a slightly elevated food intake compared to controls 

(Figure 11E). Similarly, locomotor activity and energy expenditure remained 

unaltered between genotypes (Figure 11F, G).   

 

Figure 11. Chronic activation of IKK2 signalling in AgRP neurons does not affect body weight 

and leptin sensitivity. A) Changes in body weight after intraperitoneal leptin treatment in control 

(n=7) and AgRPJNK1CA (n=7) mice at 15 weeks of age. Data represent percentage of basal body weight 

(body weight in the beginning of each treatment) after a 3-day (72h) treatment with twice-daily 

injections (12h apart) of saline followed by a 3-day treatment with twice-daily injections of 2mg/kg 

leptin. B) Changes in food intake after intraperitoneal leptin treatment in control (n=5) and AgRPJNK1CA 

(n=5) mice at 15 weeks of age. Data represent daily food intake after a 3-day (72h) treatment with 

twice-daily injections (12h apart) of saline followed by a 3-day treatment with twice-daily injections of 
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2mg/kg leptin. C) Average body weight of control (n= 20) and AgRPIKK2CA/CA mice (n= 20) on normal 

chow diet. D) Body fat as measured by nuclear magnetic resonance analysis of control mice (n= 8) and 

AgRPIKK2CA/CA mice (n= 7) on normal chow diet at the age of 20 weeks. E) Average ad libitum food 

intake of control (n= 10) and AgRPIKK2CA/CA mice (n= 7) at the age of 6 weeks. F) Locomotor activity 

of control (n= 20) and AgRPIKK2CA/CA mice (n= 19). G) Energy expenditure at the age of 6 weeks of 

control (n= 20) and AgRPIKK2CA/CA mice (n= 19) at the age of 6 weeks. Displayed values are means +/- 

SEM. *p<0.05; **p<0.01. 

 

3.1.7 Impaired glucose homeostasis in AgRPIKK2CA/CA mice 
Despite unaltered body weight and adiposity, AgRPIKK2CA/CA mice displayed impaired 

insulin sensitivity and mild glucose intolerance as compared to control mice (Figure 

12A, B). Since glucose homeostasis critically depends on the ability of insulin to 

activate PI3-kinase in AgRP neurons leading to subsequent membrane 

hyperpolarization of these neurons, we investigated the ability of insulin to activate 

PI-3-kinase signalling in AgRP neurons of control AgRPLacZ mice and 

AgRPIKK2CA;LacZ mice. Whereas intravenous insulin stimulation induced high levels of 

immunoreactive PIP3 in approximately 60% of AgRP neurons in control mice, this 

proportion was significantly reduced to 40% in mice expressing only one IKK2CA-

allele (Figure 12C, D). Of note, at basal levels the amount of PIP3 formation was also 

indistinguishable between AgRPIKK2CA;LacZ and control mice (Figure 12E). Thus, 

activating IKK2-signalling in AgRP neurons causes cell-autonomous insulin 

resistance and subsequently impairs systemic insulin sensitivity in the absence of 

altered body weight regulation.  
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Figure 12. Impaired glucose homeostasis in AgRPIKK2CA/CA mice. A) Blood glucose levels as 

percentage of the initial blood glucose during an insulin tolerance test of control (n=21) and 

AgRPIKK2CA/CA (n=20). B) Blood glucose levels during glucose tolerance test of control (n=8) and 

AgRPIKK2CA/CA (n=7). The mice were fasted for 6h before the experiment. C) Representative PIP3 

immunostaining of AgRPLacZ (same as depicted in Figure 8A) and AgRPIKK2CA;LacZ mice after 

intravenous insulin stimulation with 5U of insulin. Scale bar, 10 μm. D) Quantification of PIP3 levels 

in AgRP neurons of AgRPLacZ (N=5 mice; n=460 AgRP neurons, same as depicted in Figure 8B) and 

AgRPIKK2CA;LacZ (N=5 mice; n=357 AgRP neurons) mice after fasting for 16h and insulin stimulation 

(in the vena cava inferior)  with 5U of insulin for 10 minutes. E) Quantification of PIP3 levels in AgRP 

neurons of AgRPLacZ (N=3 mice; n=234 AgRP neurons, same as depicted in Figure 8C) and 

AgRPIKK2CA;LacZ (N=3 mice; n=256 AgRP neurons) mice in basal state (saline injection in the vena cava 

inferior) after fasting for 16h. Displayed values are means +/- SEM. *p<0.05; **p<0.01. 
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3.2 Hypothalamic inflammation in ageing 

3.2.1 Extended median and maximum lifespan in JNK1ΔNes mice 

To address the role of hypothalamic inflammation in ageing we performed a 

longitudinal study using the JNK1ΔNes mice. The JNK1ΔNes mice have been 

demonstrated to be protected by HFD-induced insulin resistance, having reduced 

levels of circulating IGF1 and reduced somatic growth, characteristics that resemble 

the effects of caloric restriction, a dietary intervention that prolongs lifespan (Belgardt 

et al., 2010). Log-rank testing was used to evaluate differences between lifespan in 

male JNK1ΔNes and JNK1fl/fl control mice, fed HFD since weaning. Median survival in 

JNK1ΔNes mice was significantly extended by 52 days (from 603 to 655 days, 

p=0.038) accounting for an 8.6% increase relative to that of JNK1fl/fl mice. 

Furthermore, maximum lifespan, which was calculated as the mean age of the 20% of 

the oldest animals of each genotype, was also significantly increased in JNK1ΔNes 

mice by 7.2% (from 762 to 818 days, p=0.007) relative to JNK1fl/fl mice (Figure 13). 

Mice were monitored daily and examined weekly for macroscopic pathological 

changes. In order to minimize pain, discomfort and distress the mice were euthanized 

when they fulfilled the moribund criteria scoring (Burkholder et al., 2012). 

Furthermore, mice that died during the course of the experiments were eliminated. Of 

note, there were no significant differences in the proportion of each mode of death 

between the two groups. Primary causes of death were ulcerative dermatitis (27%) 

and rectal prolapse (18%), also many mice were found dead without clear indications 

for the reason of death (28%). We next sought to determine the underlying 

mechanisms of the lifespan extension by investigating ageing markers and metabolic 

parameters at different ages. 

 

Survival curve JNK1ΔNes HFD

400 500 600 700 800 900
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Survival (Days)

F
ra

c
ti
o

n
 s

u
rv

iv
a

l

JNK1fl/fl

JNK1ΔNes



Results     

 57 

Figure 13. Ablation of JNK1 by NestinCre results in extended lifespan in mice. Median and 

maximum lifespan were significantly increased in JNK1ΔNes male mice fed HFD. JNK1fl/fl (n= 61), 

JNK1ΔNes (n= 38). 

3.2.2 Decreased body weight in JNK1ΔNes mice up to 1 year of age 
It has previously been demonstrated that the JNK1ΔNes mice have decreased body 

weight under high-fat diet conditions compared to the control JNK1fl/fl mice until 16 

weeks of age (Belgardt et al., 2010). In this longitudinal study body weight difference 

persists until 1 year of age but is gradually lost probably due to the age-dependent 

wasting (sarcopenia) that is observed in both groups of mice (Figure 14). 

Furthermore, we measured the body weight of NestinCre and Bl6 littermate mice in 

order to assure that the body weight difference between JNK1ΔNes and JNK1fl/fl is not 

due to NestinCre activity. Indeed, there was no body weight difference between 

NestinCre and Bl6 mice, with their body weights being similar to those of JNK1fl/fl 

control mice (Figure 15). Collectively, the decreased body weight of JNK1ΔNes mice is 

not due a side effect of NestinCre activity and is not present through the whole study.  

 

Figure 14. JNK1ΔNes mice have decreased body weight up to one year of age. The body weight of 

male mice upon HFD was measured weekly until week 13 and monthly until week 100.  The JNK1ΔNes 

mice weighed less up to the age of one year (p<0.0001) compared to the JNK1fl/fl control mice. 

JNK1fl/fl (n= 6-57), JNK1ΔNes (n= 7-44).  
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Figure 15. NestinCre activity does not affect body weight regulation. JNK1fl/fl (n= 27), JNK1ΔNes (n= 

33), Bl6 (n= 5), NestinCre (n= 10). 

3.2.3 Enhanced insulin sensitivity in JNK1ΔNes mice 
During caloric restriction lowered fasting insulin and glucose levels combined with 

increased insulin sensitivity have been reported. Similarly, the JNK1ΔNes mice remain 

insulin sensitive after short-term high-fat feeding and also have decreased blood 

glucose and serum insulin (Belgardt et al., 2010). Here, we investigated insulin 

sensitivity longitudinally and could demonstrate that JNK1ΔNes mice are insulin 

sensitive also at 3, 6, 9, 12 and 15 months of age, under high-fat feeding, compared to 

the insulin resistant JNK1fl/fl mice (Figure 16). This enhanced insulin sensitivity, 

sustained also after prolonged high-fat feeding, resembles the positive effects of 

caloric restriction and is potentially contributing to the extended median and 

maximum lifespan of JNK1ΔNes mice. 
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Figure 16. The JNK1ΔNes mice remain insulin sensitive upon HFD consumption until the age of 15 

months. Blood glucose levels as percentage of the initial blood glucose during insulin tolerance tests at 

the age of 3 (n= 23; 13), 6 (n= 20; 13), 9 (n= 17; 11), 12 (n= 13; 7) and 15 (n= 7; 5) months of age of 

JNK1fl/fl and JNK1ΔNes mice. Displayed values are means +/- SEM. *p<0.05; **p<0.01; ***p<0.001. 

 

3.2.4 Increased adiposity in JNK1ΔNes mice 
Calorically restricted mice remain lean throughout life (Anderson et al., 2009), in 

contrast other longevity models present with increased adiposity (Flurkey et al., 

2001). We measured fat content in JNK1ΔNes and JNK1fl/fl mice at the ages of 7 and 

12 months. At 7 months of age there was a significant increase in adiposity in 

JNK1ΔNes compared to JNK1fl/fl mice, which persisted at 12 months of age (Figure 

17). The increase in adiposity in JNK1ΔNes mice might be due to the reduced lipolytic 

effects of growth hormone (Davidson, 1987; Salomon et al., 1989). It is evident that 

although the JNK1ΔNes mice resemble the phenotype of calorically restricted mice, not 

all the characteristics are similar in these two models. 
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Figure 17. JNK1ΔNes mice have increased adiposity. Body fat as measured by magnetic tomography 

analysis of JNK1fl/fl mice (n= 11) and JNK1ΔNes mice (n= 30) on HFD at the age of 7 months and 12 

months (n= 7; 17). Displayed values are means +/- SEM. ***p<0.001. 

 

3.2.5 Increased energy expenditure in JNK1ΔNes mice 
We next performed calorimetric analyses in JNK1ΔNes and JNK1fl/fl mice at 7 and 14 

months of age. Oxygen consumption, CO2 production, energy expenditure are 

increased and respiratory quotient decreased in JNK1ΔNes mice compared to JNK1fl/fl 

control mice at 7 months of age (Figure 18A-D). At 14 months of age the JNK1ΔNes 

mice still present a tendency (p= 0.12) for increased energy expenditure compared to 

the JNK1fl/fl control mice but the difference is not significant (Figure 18G-J). Of note, 

no differences in locomotor activity were observed between JNK1ΔNes and JNK1fl/fl 

mice in 7 or 14 months of age (Figure 18F, K). Collectively, the JNK1ΔNes mice have 

increased metabolic rate at 7 months of age but due to the age-related decline of 

metabolic rate in JNK1fl/fl mice there is no difference at 14 months of age between the 

two groups.  
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Figure 18. JNK1ΔNes mice have increased energy expenditure at the age of 7 months. A) O2 

consumption (p= 0.005; n= 6; 5), B) CO2 production (p= 0.018; n= 6; 5), C) Energy expenditure (p= 

0.007; n= 6; 5), D) Respiratory quotient (p= 0.04; n= 6; 6) and F) Activity (n= 6; 6) in JNK1fl/fl and 

JNK1ΔNes mice at the age of 7 months. G) O2 consumption (n= 6; 5), H) CO2 production (n= 6; 5), I) 

Energy expenditure (n= 6; 5), J) Respiratory quotient (n= 7; 7) and K) Activity (n= 7; 7) in JNK1fl/fl 
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and JNK1ΔNes mice at the age of 14 months. The grey background represents the night phase and the 

white background the light phase. 

 

3.2.6 Declined Bone Mineral Density in JNK1ΔNes mice 
The effects of caloric restriction are not always beneficial and the decreased 

circulating levels of growth hormone and IGF1 have been correlated to decreased 

bone mineral density (BMD) (Devlin et al., 2010). BMD-decline is an important age-

related health problem and ageing marker. Therefore, we measured the BMD of 

JNK1ΔNes, which also present with reduced growth hormone and IGF1 levels 

(Belgardt et al., 2010), and JNK1fl/fl mice at 6 and 10 months of age. Using computed 

tomography scan we measured cortical, cancellous and whole BMD of JNK1ΔNes and 

JNK1fl/fl control mice setting as region of interest (ROI) the bones of the for- and hind 

limbs.  Already from 6 months of age the JNK1ΔNes mice show reduced cortical BMD 

compared to the JNK1fl/fl control mice (Figure 19). At 10 months of age the JNK1ΔNes 

mice show reduced cortical, cancellous and whole BMD compared to the JNK1fl/fl 

control mice (Figure 19). Collectively, it is evident that the increased lifespan in 

JNK1ΔNes mice is accompanied by negative side effects, similar to those found in 

calorically restricted mice, as the reduced BMD (Devlin et al., 2010). 

 

Figure 19. JNK1ΔNes mice have decreased bone mineral density. Cortical, cancellous and total BMD 

as measured by computed tomography scan in JNK1fl/fl  (n= 4) and JNK1ΔNes (n= 3) at the age of 6 

months and JNK1fl/fl  (n= 8) and JNK1ΔNes (n= 6) at the age of 10 months. 

 

3.2.7 Improved learning plasticity in JNK1ΔNes mice 
There are three JNK isoforms with JNK3 being more prevalent in the brain (Weston 

and Davis, 2007). Brain-specific deletion of JNK3 has previously been demonstrated 

to protect from Aβ formation in an Alzheimer’s disease model (Yoon et al., 2012). 

Furthermore, JNK has been indicated to be a negative regulator of associative 

learning (Sherrin et al., 2010). Therefore, in the JNK1ΔNes mice we investigated 
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spatial memory and learning abilities hypothesizing that they could also be protected 

from the detrimental effects of ageing in Morris Water Maze performance. JNK1ΔNes 

and JNK1fl/fl control mice were trained daily for 9 days to memorize the location of a 

submerged platform in a water pool using spatial recognition markers, and the time 

taken by each mouse to find the platform was measured by an automatic, software 

based system, termed acquisition time (Figure 20A). Each mouse performed 4 trials 

per day, entering the pool from different positions and given 60 seconds to find the 

submerged platform. On the 4th, 7th and 10th day of the test (Probe day 1, 2 and 3, 

respectively), the platform was removed from the pool, and the amount of time the 

mouse swam in the quadrant in which the platform had been, was automatically 

measured by a software based system and was termed the retention time (Figure 20B). 

There were no differences observed between JNK1ΔNes and JNK1fl/fl control mice in 

acquisition and retention time at 6 and 15 months of age (Figure 20A, B), but 

JNK1ΔNes mice were significantly faster when reverse acquisition time was assessed at 

6 months of age. More specifically, after the 10-day experiment in 6-month-old mice 

the position of the platform was changed, in order to assess their ability to learn a new 

task, and the experiment was continued for another 3 days, with the JNK1ΔNes mice 

being significantly faster already from the first day (Figure 20C). The lower reverse 

acquisition time in the JNK1ΔNes mice proposes an increased learning plasticity, the 

ability to learn new tasks, which deserves further investigation in the future. 
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Figure 20. JNK1ΔNes mice have increased learning plasticity. Learning and memory were assessed 

by the Morris Water Maze test. A) There were no differences in acquisition time, the time needed to 

find the submerged platform, between the JNK1fl/fl  (n= 8) and JNK1ΔNes (n= 11) at 6 months of age and 

JNK1fl/fl  (n= 11) and JNK1ΔNes (n= 14) at 15 months of age. B) There were no differences in retention 

time, the time a mouse stays at the quadrant when the platform is removed, between the JNK1fl/fl  (n= 8) 

and JNK1ΔNes (n= 11) at 6 months of age and JNK1fl/fl  (n= 11) and JNK1ΔNes (n= 14) at 15 months of 

age.  
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4 Discussion 

4.1 Hypothalamic inflammation in obesity and insulin resistance 

Among the various challenges facing mankind in the 21st century, the obesity 

epidemic is an immense socioeconomic and health threat. In our evolutionary history 

we were never exposed to such an oversupply of calories before. Food was scarce, 

survival and reproduction were ever-present struggles, and fat, a rare energy-dense 

source with extremely high relative value for our reward system. Therefore, our 

hypothalamic neuronal circuits that regulate energy homeostasis are primarily 

programmed to drive food consumption to ensure survival.  Importantly, we are also 

supplied with mechanisms to counteract excess energy intake during the times of 

abundance; peripheral hormones such as insulin and leptin signal to the hypothalamus 

to limit food intake. Prolonged and excessive fat consumption, however, results in 

resistance to the anorexigenic effect of insulin and leptin. Furthermore, the modern 

sedentary lifestyle is responsible for a major decrease in energy expenditure, making 

the positive energy balance even more pronounced. In addition, genetic and 

epigenetic parameters are added to the equation making the search for a therapy 

against obesity a never-ending scientific battle. 

 Taking advantage of our already existing anorexigenic mechanisms might 

prove to be a successful therapeutic strategy to counteract obesity. More specifically, 

if we ensure that insulin and leptin persistently mediate their effects even after 

prolonged fat consumption, persons may remain lean by reducing their caloric intake 

whenever necessary. Therefore, the mechanisms that are involved in insulin and leptin 

resistance initiation and manifestation, such as hypothalamic inflammation, require 

thorough investigation. While hypothalamic activation of inflammatory pathways 

including that of JNK- and IKK2-mediated signalling had been reported early upon 

high-fat feeding of mice (De Souza et al., 2005; Olofsson et al., 2013; Thaler et al., 

2012), the functional significance of this phenomenon remained unclear. Recent 

experiments demonstrating that attenuation of neuronal IKK2-, JNK1-, TLR- and ER-

stress-signalling protect from the development of diet-induced obesity (Zhang et al., 

2008; Kleinridders et al., 2009; Belgardt et al., 2010) indicate, that hypothalamic 

inflammation, indeed contributes to the manifestation of the metabolic syndrome. 
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However, the contribution of different cell types that reside in the 

hypothalamus, such as astrocytes, microglia, stem cells, endothelial cells and neurons, 

to the initiation and manifestation of hypothalamic inflammation, is only partially 

understood (García-Cáceres et al., 2013; Gao et al., 2014; Purkayastha and Cai, 2013; 

Gosselin and Rivest, 2008). Moreover, due to the diversity and partial functional 

antagonism of distinct hypothalamic neurons, we sought to clarify the role of 

inflammatory signalling in the orexigenic AgRP neurons of the arcuate nucleus in the 

manifestation of the metabolic syndrome. To this end, the present study clearly 

reveals that activation of JNK1 and IKK2 in these cells is sufficient to initiate key 

features of the metabolic syndrome, even in the absence of environmental triggers, 

such as high-fat feeding. At the same time, our results demonstrate that activation of 

inflammatory signalling pathways in neurons is a crucial determinant in the 

pathogenesis of obesity and impaired insulin sensitivity. 

 

4.1.1 JNK1 activation in AgRP neurons results in leptin resistance and 
obesity 
JNK activation has been reported in the hypothalamus after HFD consumption 

(Belgardt et al., 2010; De Souza et al., 2005). Here we used a mouse model of 

targeted mutagenesis to constitutively activate JNK1 specifically in AgRP neurons, to 

investigate its effects on energy and glucose homeostasis in mice fed NCD.  In detail, 

JNK1 was fused to its upstream kinase MKK7, which was rendered constitutively 

active through two point mutations, and this fusion protein was expressed in the 

ROSA26 locus after a CAGS promoter, for robust expression (Pal et al., 2013). In 

AgRP neurons, the levels of p-c-Jun, the downstream target of JNK1, were similar in 

mice expressing JNK1 in a constitutively active form and mice fed HFD for a short 

time, demonstrating that our model for hypothalamic inflammation mimics the effects 

of HFD consumption. Importantly, we were able to show that JNK1 activation does 

not affect the viability of the neurons, consistent with previous studies reporting the 

role of JNK3 in mediating the apoptotic response of neurons to stress, and not JNK1 

or JNK2 (Kuan et al., 2003; Yang et al., 1997).  

We next investigated the molecular effects of JNK1 activation in AgRP 

neurons, which revealed that it initially promotes neuronal leptin resistance and 

subsequently resistance to leptin’s anorexigenic effects on food consumption and 

body weight reduction. These findings are consistent with reports that mice with 
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targeted disruption of LepR signalling in the AgRP neurons develop hyperphagia and 

obesity (van de Wall et al., 2008). Moreover, AgRP neurons have been reported to be 

one of the first hypothalamic neuronal populations to sense changes in plasma 

metabolic signals and develop cellular leptin resistance (Olofsson et al., 2013), 

possibly as a consequence of activating inflammatory signalling cascades, i.e. JNK. 

Indeed, it has been demonstrated that JNK-activation can promote SOCS3 expression, 

a well characterized negative regulator of leptin signalling (Qin et al., 2007; Bjørbaek 

et al., 1999; Howard et al., 2004). In agreement with our observations, JNK inhibition 

in the ARC of DIO leptin resistant mice reinstates the anorexigenic effects of leptin 

(Koch et al., 2014). Interestingly, in this study it was also shown that even leptin 

deficient mice acquire leptin resistance upon HFD consumption pointing to the role of 

activated inflammatory pathways, independent of hyperleptinemia to be able to cause 

leptin resistance (Koch et al., 2014). 

On the other hand, JNK-activation in AgRP neurons fails to promote cell-

autonomous and systemic insulin resistance, despite the fact that JNK-dependent 

serine phosphorylation of IRS-1 has been proposed to cause insulin resistance, at least 

in vitro, in myeloid progenitor cells (Aguirre et al., 2002). However, mice with a 

mutation of IRS-1 serine 307 to alanine, that prevents this phosphorylation, are 

surprisingly more insulin resistant under high-fat diet conditions than their control 

littermates (Copps et al., 2010). These results indicate that JNK activation does not 

necessarily result in attenuation of insulin signalling via IRS-1 ser307-

phosphorylation in vivo, consistent with what we observe in AgRP neurons. 

Furthermore, it is possible that the fusion protein MKK7-JNK1, as it was previously 

reported (Zheng et al., 1999), is primarily located in the nucleus and therefore does 

not directly access the IRS to phosphorylate it and trigger insulin resistance, yet is still 

able to trigger leptin resistance indirectly by regulating SOCS3 expression. 

Interestingly, translocation of c-Jun to the nucleus does not require JNK signalling but 

binding of c-Jun enhances nuclear accumulation of JNK (Schreck et al., 2011). 

 

4.1.2 IKK2 activation in AgRP neurons triggers insulin resistance 
In order to investigate the effects of IKK2 activation in AgRP neurons we generated 

mice that express a constitutively active form of IKK2 (IKK2EE) (Sasaki et al., 2006) 

specifically in AgRP neurons. IKK2EE harbours mutations that result in two 
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aminoacid substitutions (S177E and S181E) that mimic the charge of the 

phosphorylated and activated form of IKK2. Using this approach, IKK2 activation 

resulted in a significant increase in pIκBα in AgRP neurons, yet a more moderate one 

compared to the robust increase seen in p-c-Jun of the AgRPJNK1CA mice. This is 

likely due to lack of the CAGS promoter. The heterozygous mice (AgRPIKK2CA) did 

not exhibit a significant alteration in glucose homeostasis, therefore we used 

homozygous mice (AgRPIKK2CA/CA) that are expected to closer mimic the 2-fold 

increase in IKK2 activation observed after HFD consumption (Zhang et al., 2008). Of 

note, previous studies using the same transgenic mice also reported higher levels of 

IKK2 activation and stronger effects in homozygous mice (Vlantis et al., 2011). 

IKK2 activation in AgRP neurons causes cell-autonomous and systemic 

insulin resistance in the absence of leptin resistance and obesity. In fact this 

observation is consistent with the notion that disruption of insulin signalling in the 

AgRP neurons impairs systemic insulin sensitivity through impairing insulin’s ability 

to suppress hepatic glucose production but without affecting body weight regulation 

(Könner et al., 2007). IKK2 has been shown to trigger insulin resistance (Cai et al., 

2005; Yuan et al., 2001) by directly interacting with IRS (Gao et al., 2002) and 

indirectly by inducing TNF expression, which is also known to inhibit insulin 

signalling (de Alvaro et al., 2004; Gao et al., 2003). In contrast to our observations, 

previous studies have shown that ablation of IKK2 specifically from the AgRP 

neurons was sufficient to largely prevent obesity and leptin resistance upon HFD 

feeding (Zhang et al., 2008). This points to the possibility that IKK2 in AgRP neurons 

might act synergistically with other activated inflammatory pathways, and is 

necessary to promote weight gain and leptin resistance upon HFD consumption, but 

its activation per se is not sufficient to initiate all the aspects of the metabolic 

syndrome, under NCD conditions.  

 

4.1.3 JNK1 or IKK2 activation result in increased firing of AgRP neurons 
Activation of either inflammatory signalling branch, JNK1 or IKK2, results in 

increased basal firing of AgRP neurons. In fact, both JNK and IKK2 have been 

demonstrated to regulate glutamatergic signalling and synapse maturation, raising the 

possibility that both inflammatory kinases promote AgRP-neuron excitability via 

similar or distinct pathways (Thomas et al., 2008; Bockhart et al., 2009; Ahn and 
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Choe, 2010; Schmeisser et al., 2012). Importantly, inflammatory signalling has been 

demonstrated by multiple studies to influence neuronal excitability by regulating 

sodium, potassium and calcium channels (Amaya et al., 2006; Beyak and Vanner, 

2005; Flake, 2004; Malykhina et al., 2004; Malykhina et al., 2006; Peng et al., 2011; 

Riazi et al., 2008; Rodgers et al., 2009; Rus et al., 2005; Yoshimura and de Groat, 

1999). 

 Interestingly, despite the fact that in both models AgRP firing is increased by 

~2-fold, only the AgRPJNK1CA mice develop obesity. While optogenetic stimulation 

has clearly defined that robustly increasing AgRP-neuron firing evokes voracious 

feeding (Aponte et al., 2011), our experiments reveal, that increases in AgRP firing 

per se, does result in increased food intake, but does not necessarily cause obesity. 

Despite increased firing at young age, as detected in our animals, compensatory 

mechanisms might normalize electrical activity of these cells in the long-term despite 

increased JNK and IKK2-activity. For example, leptin action has been demonstrated 

to modulate the intrinsic excitability of AgRP neurons (Baver et al., 2014) and 

subsequent leptin resistance in the AgRPJNK1CA mice might therefore affect their 

excitability differentiating them from the leptin sensitive AgRPIKK2CA/CA mice. 

Similarly, insulin resistance blunts signalling via PIP3 that has been shown to bind to 

KATP channels, resulting in hyperpolarisation and thus silencing of the neurons 

(MacGregor et al., 2002; Plum et al., 2006). Additionally, AgRP neurons receive 

excitatory and inhibitory input (Bouret et al., 2012; Pinto et al., 2004; Shanley et al., 

2001; Villanueva and Myers, 2008), which could be affected by JNK1 and IKK2 in 

distinct ways, due to their differential effects in leptin and insulin signalling. 

Ultimately we cannot rule out the possibility of unidentified cellular heterogeneity in 

AgRP neurons -as observed for POMC neurons- that may contribute to these 

differential outcomes (Williams et al., 2010).  

 

4.2 Hypothalamic inflammation in ageing 

In order to investigate the role of hypothalamic inflammation in ageing we performed 

a longitudinal study with the JNK1ΔNes mice. JNK1ΔNes mice have been demonstrated 

to resemble the effects of caloric restriction, an intervention that delays ageing. 

Specifically, JNK1ΔNes mice show reduced body weight under normal chow and high-

fat diet conditions and improved insulin sensitivity, glucose tolerance and impaired 
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somatic growth with decreased circulating levels of IGF1 and decreased expression of 

growth hormone in the pituitary (Belgardt et al., 2010). Here, ablation of JNK1 by 

NestinCre resulted in a significant extension of 8.6 % in median lifespan and 7.2 % in 

maximum lifespan. Similarly, hypothalamic inflammation has been reported to 

influence ageing as CNS ablation of IKK2 by NestinCre can also extend median 

lifespan by 23 % and maximum lifespan by 20%, and activation of IKK2 accelerates 

the ageing process (Zhang et al., 2013).  

The JNK1ΔNes mice remain insulin sensitive, even after prolonged HFD 

consumption, a characteristic that resembles the effects of caloric restriction (Masoro, 

2005; Gresl et al., 2003) compared to the JNK1fl/fl mice that develop insulin resistance 

already at 3 months of age. The effect of CR to reduce blood glucose levels and 

enhance insulin sensitivity has not only been reported for rodents (Masoro et al., 

1992) but also for monkeys, and is proposed to be one of the mechanisms that 

contribute to lifespan extension (Bodkin et al., 1995; Cefalu et al., 1997; Kemnitz et 

al., 1994).  

Although the JNK1ΔNes mice upon HFD consumption weigh less up to the age 

of 1 year, compared to the JNK1fl/fl mice, they develop diet-induced obesity. The 

JNK1ΔNes have increased adiposity, already at 7 motnhs of age, compared to the 

JNK1fl/fl mice and are not protected from age-related sarcopenia, characteristics that 

distinguish them from the caloric restriction phenotype (Colman et al., 2008). 

Interestingly, increased adiposity has also been reported for the long-lived pituitary 

dwarf mice (Flurkey et al., 2001) and for insulin/IGF C. elegans mutants with 

extended lifespan (Ashrafi et al., 2003; Kenyon et al., 1993; Kimura et al., 1997; 

Wolkow et al., 2000). Moreover, adiposity can be uncoupled from longevity in the 

case of leptin deficient mice as they retain increased fat content (48 %) compared to 

control mice (14 % body fat) when subjected to CR yet both groups show the same 

lifespan extension (Harrison et al., 1984). Collectively, our results, in agreement with 

other studies, suggest that longevity is regulated by alterations in the metabolic 

function rather than absolute fat mass. 

The metabolic rate of JNK1ΔNes mice is increased at 7 months of age, as they 

consume more oxygen and have increased energy expenditure normalized to their 

lean body mass, in agreement with previous studies investigating the effects of JNK1 

ablation in the CNS (Sabio et al., 2010), although their activity levels are similar to 

those of JNK1fl/fl mice. In contrast, multiple studies in the past have shown the 
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relationship between CR and reduced metabolic rate. In some cases only a transient 

reduction of metabolic rate occurred after the initiation of CR in rats and monkeys 

which was normalised in the long term (Lane et al., 1996; McCarter and Palmer, 

1992; Ramsey et al., 2000). Other studies, have shown that CR results in a sustained 

reduction in metabolic rate in rhesus monkeys (DeLany et al., 1999). The theory that 

reduced metabolic rate might contribute to the lifespan extension was proposed for 

the first time by Sacher in 1977 but it has been challenged, as there have been reports 

showing a positive correlation between metabolic rate and longevity in mice 

(Speakman et al., 2004). Although it has been proposed that oxygen consumption 

positively correlates with oxidative DNA damage, and therefore senescence, 

(Adelman et al., 1988; Loft et al., 1994) there are multiple studies showing that the 

opposite occurs in many situations and the factors that determine the mitochondrial 

ROS generation are more complex than simply increases in oxygen consumption 

[reviewed in (Barja, 2007)]. Therefore, it cannot be concluded whether the increased 

metabolic rate seen in the JNK1ΔNes mice present at 7 months of age, is causative to 

any differences in lifespan. 

The JNK1ΔNes mice displayed reduced BMD compared to JNK1fl/fl mice. BMD 

decline is an ageing marker that is also a consequence of caloric restriction (Devlin et 

al., 2010; Villareal, 2006). BMD decline is likely to occur due to the reduced levels of 

IGF1 and growth hormone in JNK1ΔNes mice (Belgardt et al., 2010). More 

specifically, growth hormone and IGF1 are important for bone formation as they 

facilitate the proliferation and differentiation of chondrocytes, the cells responsible for 

bone growth (Olney, 2003; Mohan et al., 2003). Another possibility is that the 

increased levels of T3 and TSHβ, as reported for JNK1ΔNes mice (Belgardt et al., 

2010), affect BMD. Interestingly, T3 exerts anabolic actions during growth but 

catabolic actions in adult skeleton [reviewed in (Bassett and Williams, 2009)]. 

Moreover, hyperthyroidism, even in a subclinical level, has been associated with 

increased fracture risk and decreased BMD in postmenopausal women (Morris, 

2007). Collectively, JNK1ΔNes mice present with reduced BMD, which might be due 

to their affected HPA axis and resembles the negative effect of caloric restriction on 

BMD. 

Lastly, while brain-specific deletion of JNK3 has previously been 

demonstrated to protect from Aβ formation in an Alzheimer’s disease model (Yoon et 

al., 2012) and JNK has been indicated to be a negative regulator of associative 
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learning (Sherrin et al., 2010), learning per se was not affected in JNK1ΔNes mice, 

compared to JNK1fl/fl mice. Interestingly, while the Morris Water Maze test 

determined no differences in learning, when the submerged platform was moved, in 

order to assess the ability of the mice to learn a new task, the JNK1ΔNes mice learnt the 

new task significantly faster. Therefore we concluded that JNK1 affects learning 

plasticity. This hypothesis warrants further investigation using immunohistochemical 

analyses to reveal the impact of JNK1 ablation on, for example, synapse formation 

and maturation. 

 

4.3 Targeting inflammation, is it the solution? 

Our study clearly demonstrated the detrimental effects of JNK1 and IKK2 activation 

in AgRP neurons in the initiation of insulin and leptin resistance, respectively. 

Furthermore, ablation of JNK1 by NestinCre resulted in lifespan extension and 

enhanced insulin sensitivity upon HFD consumption. As a future perspective, the use 

of anti-inflammatory therapeutics to target hypothalamic inflammation should be 

considered. While significant research efforts have been made, more thorough 

investigations regarding the specificity and duration of inflammation amelioration is 

required to determine the therapeutic potential of reducing hypothalamic 

inflammation in metabolic disease. 

 

4.3.1 Strategies and positive effects of hypothalamic inflammation 
amelioration 
Multiple studies have examined the role of anti-inflammatory and anti-oxidant 

substances/strategies to ameliorate inflammation and its detrimental effects in the 

brain during obesity and/or HFD consumption. Natural foods, containing 

polyunsaturated fatty acids, chemical compounds, dietary interventions and exercise 

can that have anti-inflammatory actions in the hypothalamus will be discussed further. 

Dietary unsaturated fatty acids such as C18:3 and C18:1 have been 

demonstrated to correct hypothalamic inflammation, revert insulin resistance, reduce 

adiposity and inhibit the AMPK/ACC pathway in the hypothalamus (Cintra et al., 

2012). Pimentel et al. demonstrated the benefits of omega 3 PUFAs in improving 

central and peripheral inflammatory profiles via the reduction of intracellular 

inflammatory mediators (Pimentel et al., 2013). Moreover, utilizing immortalized 
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hypothalamic neurons Wellhauser et al. determined that omega 3 fatty acids act 

through the receptor GPR120, to mediate their anti-inflammatory effects (Wellhauser 

and Belsham, 2014). Furthermore, it has been recently demonstrated that fatty acid 

esters of hydroxyl fatty acids correlate with insulin sensitivity, improve insulin 

secretion and reduce inflammation (Yore et al., 2014). 

Multiple natural plant-derived substances have been demonstrated to exert 

anti-inflammatory effects in the hypothalamus, restoring insulin and leptin signalling. 

Ursolic acid, found in many fruits, has been shown to inhibit NFκB and ER stress 

restoring insulin signalling and improving impaired cognition induced by HFD 

consumption (Lu et al., 2011). Hydroalcoholic extract of Solidago chilensis also 

improves hypothalamic insulin sensitivity after HFD consumption reducing NFκB, p-

IκB and pJNK levels in mice (Melo et al., 2011). Momordica charantia (bitter melon) 

ameliorates HFD-associated changes in the blood brain barrier permeability and 

reduces glial cell activation, oxidative stress and pro-inflammatory markers in the 

brain (Nerurkar et al., 2011). The plant terpenoid compound ginsenoside Rb1, when 

administered intraperitoneally, can decrease the expression of inflammatory markers 

and negative regulators of leptin signalling, restoring its anorexigenic effect in the 

hypothalamus of HFD-fed mice (Wu et al., 2014). Also substances in the grape skin 

and seeds (Charradi et al., 2012) and green tea (Okuda et al., 2014) have been 

demonstrated to reduce brain lipotoxicity, and HFD-induced hypothalamic 

inflammation, respectively. Collectively, these studies advocate that dietary 

supplementation with natural substances can exert potent anti-inflammatory actions in 

the hypothalamus and potentially enhance insulin and leptin sensitivity. 

Interestingly, Milanski et al. demonstrated that ICV administration of 

immunoneutralizing antibodies against TLR4 and TNFα results in reduced 

hypothalamic inflammation accompanied by the improved hypothalamic leptin 

sensitivity and insulin signal transduction in the liver, reduced hepatic steatosis and 

reduced hepatic glucose production mediated by parasympathetic signals (Milanski et 

al., 2012). Although, this approach could not be directly translated to human 

application, it indicates the potential for novel therapeutics. 

Ageing also causes hypothalamic insulin resistance and increased levels of 

NFκB, p38 and PTPs (García-San Frutos et al., 2012). Ageing-associated 

hypothalamic inflammation can be ameliorated by dietary interventions such as 

caloric restriction (García-San Frutos et al., 2012). Exercise as an intervention has 
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also been proven to protect against HFD-induced hypothalamic inflammation, Yi et 

al. demonstrated that treadmill running reduces hypothalamic inflammation, 

microglial activation and improves glucose tolerance in HFD-fed LDLR-/- mice (Yi et 

al., 2012a). Similarly, Ropelle et al. demonstrated that exercise-induced IL6 and IL10 

synergistically act to suppress hyperphagia-related obesity by blocking IKK2 and ER 

stress, reconstituting leptin and insulin sensitivity and reducing hypothalamic 

inflammation (Ropelle et al., 2010). 

Taken together, these studies highlight the diverse successful approaches to 

revert hypothalamic inflammation, by dietary supplementation, lifestyle interventions 

and development of potential therapeutics with significant results in rodents. 

 

4.3.2 Negative effects of inflammation amelioration 
Anti-inflammatory therapeutics have been employed against obesity and insulin 

resistance however many of them did not yield the desired effects [reviewed in (Gao 

and Ye, 2012; Ye and McGuinness, 2013)]. Inflammatory pathways are highly 

conserved through evolution and although they appear to have detrimental effects 

during the course of obesity multiple studies using targeted mouse mutagenesis have 

demonstrated their importance and even their protective role in energy homeostasis. 

Cytokines and signalling pathways that are increased in obesity, such as NFκB, TNFα 

and pro-inflammatory interleukins, have been demonstrated to be detrimental when 

ablated or down-regulated.  

The role of NFκB in metabolism has been extensively studied but it remains 

elusive whether and how it can be targeted to improve metabolic abnormalities. 

Unexpectedly, constitutive activation of IKK2 in adipose tissue prevents diet-induced 

obesity in mice (Jiao et al., 2012) and the conditional disruption of IKK2 fails to 

prevent obesity and insulin resistance (Röhl et al., 2004). NFκB can induce energy 

expenditure and its deficiency can stimulate the progression of non-alcoholic 

steatohepatitis in mice by promoting NKT-cell-mediated responses (Locatelli et al., 

2013). Recently a study has provided evidence that overexpression of p65 in 

macrophages ameliorates atherosclerosis in ApoE-/- mice (Ye et al., 2013). 

Furthermore, IKK2 and JNK are required for activating the innate immune response 

to viral infection (Chu et al., 1999). 
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JNK inhibition has been proven beneficial in diseases such as inflammatory 

bowel disease (Mitsuyama et al., 2006) and asthma (Chialda et al., 2005). 

Interestingly, JNK1 deficiency increases skin tumour incidence, induced by a tumour 

promoter (She et al., 2002), while JNK2 deficiency suppresses it (Chen et al., 2001). 

Furthermore, although our results indicate that ablation of JNK1 in the CNS increases 

lifespan in mice there have been studies in flies where JNK1 activation also increased 

lifespan as much as 80% by activating hormesis (Wang et al., 2003). Specifically, 

JNK1 activation is believed to activate a stress-induced longevity pathway by 

conferring tolerance to oxidative stress. 

The effects of TNF, the most investigated cytokine family, in energy 

homeostasis and metabolic diseases are also controversial. In the absence of TNFα/β, 

mice have increased body weight compared to control mice and develop hepatic 

steatosis in a high cholesterol diet (Schnyder-Candrian et al., 2005). Furthermore, 

HFD-fed TNFR1 and 2 deficient mice are insulin resistant (Pamir et al., 2009) and 

develop obesity and diabetes (Schreyer et al., 1998). 

 Recent evidence supports the beneficial role of IL6 to alternatively activate 

macrophages to limit endotoxemia and insulin resistance (Mauer et al., 2014). 

Furthermore, mice lacking IL6 develop hepatic inflammation and hepatic insulin 

resistance (Matthews et al., 2010) and Wunderlich et al. demonstrated that IL6 

signalling in liver parenchymal cells suppresses hepatic inflammation and improves 

insulin action (Wunderlich et al., 2010). Even in the CNS human IL6 has been shown 

to enhance leptin’s action to reduce food intake (Sadagurski et al., 2010). IL1 and IL6 

mediate GLP1R effects to suppress food intake (Shirazi et al., 2013) and combined 

deficiency of those interleukins can cause obesity in young mice (Chida et al., 2006). 

The pro-inflammatory IL1 was also demonstrated to have a protective role in 

multiple studies. IL1 mediates glucose-induced food intake suppression (Mizuno et 

al., 2013) and in absence of IL1 signalling in IL1R deficient mice the suppression of 

feeding by the gut hormone xenin, was impaired (Kim et al., 2014a). Lastly, long-

term exposure to HFD results in the exacerbated development of glucose intolerance 

and insulin resistance in IL1βR1 deficient mice compared to control mice (García et 

al., 2006). 

Further studies have been conducted proving the beneficial role of the pro-

inflammatory cytokine IL18. IL18 can control energy homeostasis by suppressing 

appetite and weight regain in food-deprived mice, although its levels are generally 
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elevated in obese individuals (Zorrilla et al., 2007). IL18-/- mice are hyperphagic and 

become overweight (Zorrilla et al., 2007) and IL18 null mutation not only increases 

food intake and weight but also reduces energy expenditure and lipid substrate 

utilization in HFD-fed mice (Zorrilla and Conti, 2014). Furthermore, IL18 activates 

skeletal muscle AMPK and reduces weight gain and insulin resistance (Lindegaard et 

al., 2013). 

Collectively, there is evidence that disrupting pro-inflammatory signalling by 

NFκB, TNF and interleukins is not always beneficial and could potentially present 

undesired effects. In order to develop therapies against obesity and insulin resistance 

the role of the molecules participating in the inflammatory responses has to be clearly 

defined and there should be specific tissue or even cell-specific targeting. 

 

4.4 Conclusions and Future perspectives 

In this study we demonstrate the importance of hypothalamic inflammation in obesity, 

insulin resistance initiation and manifestation, and ageing regulation. We used two 

genetic mouse models to trigger inflammation in the AgRP neurons and could show 

that JNK1 activation results in obesity and leptin resistance whereas IKK2 activation 

results in insulin resistance, even in the absence of an environmental trigger, such as 

high-fat feeding. Furthermore, we demonstrated that JNK1 ablation in the CNS results 

in lifespan extension and protection from HFD-induced insulin resistance but on the 

other hand increased adiposity and reduced bone mineral density.  

In the future, hypothalamic JNK1 and IKK2 could be used as potential 

therapeutic targets to counteract obesity- and ageing-associated pathologies. It is of 

great importance to investigate the timeframe of diet-induced hypothalamic 

inflammation initiation, the dynamic regulation of these kinases and their role in 

multiple other processes, apart from insulin and leptin signalling, and also regard the 

negative effects of inflammation inhibition. Furthermore, the molecular effects of 

JNK1 ablation in the CNS should be thoroughly studied in order to reveal the 

mechanism that results in this lifespan increase. Moreover, the role of different cell 

types residing in the hypothalamus in hypothalamic inflammation is an important area 

for further investigation. Are subpopulations of AgRP neurons responsible for 

different processes? How are the hypothalamic neuronal circuits affected by 
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inflammation? Future studies will further define the role of hypothalamic 

inflammatory pathways in obesity and ageing. 
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