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πάντα ρ̀ει̃ - Everything flows
-Heraclitus of Ephesus

(From the Socratic dialogue „Kratylos", c.420 BC)

Just let go
Let it flow, let it flow, let it flow
Everything’s gonna work out right
You know?
-Toni Braxton
(From the R&B song „Let It flow", 1995)





Kurzzusammenfassung

In dieser Dissertation präsentieren und implementieren wir die kürzlich entwickelte truncated-unity
functional renormalization group (TUFRG) für eine Reihe von verschiedenen Hubbard-Modellen auf
Dreiecksgittern an Van Hove-Füllung. Diese Arbeit ist in drei Teile gegliedert.

Im ersten Teil präsentieren wir eine kurze Einführung in die allgemeine Natur der entstehenden
elektronischen Instabilitäten in korrelierten Fermionensystemen. Zu diesem Zweck führen wir das
Hubbard-Modell als paradigmatische Beschreibung korrelierter Elektronen in der Festkörperphysik
ein und leiten erste Erkenntnisse über das Auftreten magnetischer und supraleitender Instabilitäten
im Sinne der Störungstheorie her. Es wird sich zeigen, dass bereits der kinetische Teil des Hamilto-
nians entscheidende Informationen über die elektronischen Instabilitäten enthält, welche schließlich
durch Wechselwirkungen ausgelöst werden. Dennoch werden wir zeigen, dass die Störungstheo-
rie allein das Auftreten von unkonventioneller Supraleitung nicht erklären kann, sodass direkt die
Notwendigkeit begründet ist, im folgendenKapitel eine Renormierungsgruppenmethode zu entwick-
eln. Bevor wir damit fortfahren werden wir kurz die BCS-Theorie für unkonventionelle Supraleitung
zusammenfassen und leiten folgend die zulässigen Symmetrien für die Funktion der Energielücke
für unsere Dreiecksgittersysteme durch einen kurzen Abstecher in die Gruppentheorie her. Diese
Einführung wird dann durch einen kurzen Überblick über Moiré-Materialien abgeschlossen, eine
neuartige Plattform interessanter stark korrelierter Systeme, welche effektiv durch Hubbard-Modelle
beschrieben werden können. Die Existenz dieser effektiven Modelle hebt unsere Untersuchungen ab
von der Behandlung paradigmatischer Spielzeugmodelle hin zu tatsächlich relevanten Ergebnissen
aktiver Forschung.

Im zweiten Teil wird die TUFRG als eine neue Form der funktionalen Renormierungsgruppe (FRG)
eingeführt. Zunächst stellen wir die allgemeinen Grundlagen der FRG dar, um einen Ausgangspunkt
für die Herleitung der TUFRG zu erreichten. Die Flussgleichungen der FRG werden hier direkt mit
allen für unsere Anwendungen notwendigen Symmetrien hergeleitet. Die TUFRG verbessert die In-
terpretierbarkeit der FRG durch die Einführung einer Kanalzerlegung, sodass bestimmte Diagramme
des FRG-Schemasdirektmit demmöglichenAuftreten bestimmter Instabilitäten verknüpft sind. Darü-
ber hinaus verbessert es die numerische Performanz älterer FRG-Schemata durch die Identifizierung
unwichtiger Impulsabhängigkeiten, welche anschließend in Formfaktoren entwickelt werden um eine
Beschleunigung der Rechenzeit zu erreichen. Wir werden nicht nur den kompletten Kontext der
TUFRGvonGrund auf herleiten, sondern auch dieDetails der numerischen Implementierung demon-
strieren. Zu diesem Zweck werden mehrere nicht-generische technische Herausforderungen der An-
wendungen vorgestellt und die notwendigen numerischen Lösungen bereitgestellt.

Der dritte Teil besteht aus der Anwendung des TUFRG auf drei verschiedene Dreiecksgittermodelle.
In der ersten Anwendung werden wir ein SU(2)-invariantes erweitertes Hubbard-Modell auf einem
Dreiecksgitter behandeln. Wir werden zunächst eine Spielzeugmodellversion behandeln, welche nur
eine Hubbard-Wechselwirkung U und Nächste-Nachbarn-Wechselwirkungen V1 enthält. Wir wer-
den sehen, dass bereits in diesem einfachen Fall eine Fülle von magnetischen Instabilitäten und In-
stabilitäten zur unkonventioneller Supraleitung auftauchen, sodass sich ein reichhaltiges Phasendia-
gramm ergibt. Wir werden die analytischen Erkenntnisse aus dem ersten Kapitel mit den Ergebnissen
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hier verknüpfen, sodass überzeugende Argumente für die Fundiertheit unserer numerischen Imple-
mentierung gemacht werden können. Anschließend fügen wir dem Modell Wechselwirkungen und
Hüpfratenmit längerer Reichweite hinzu, sodass dasModell effektiv ein verdrilltes Übergangsmetall-
Dichalcogenid (tTMD)-Heteroschichtensystem beschreibt. Wir werden sehen, dass ein Großteil des
qualitativen Verhaltens diesesModells bereits durch das paradigmatische Spielzeugmodell abgedeckt
ist und Veränderungen in der Form der unkonventionellen Supraleitung teilweise durch die Analyse
des Kanalflusses verstanden werden können. Der Vollständigkeit halber fügen wir diesem Abschnitt
Konvergenzprüfungen hinzu, welche die Korrektheit unserer Ergebnisse demonstrieren.

In der zweiten Anwendung behandeln wir ein spinloses Hubbard-Modell auf einem Dreiecksgitter.
Ursprünglich wurde dieses Modell verwendet, um die TUFRG-Ergebnisse mit den Ergebnissen einer
anderen FRG-Implementierung zu vergleichen, aber in dieser Dissertation werden wir uns nur auf
die TUFRG-Ergebnisse konzentrieren, sodass dieses System als Spielzeugmodell dient. Wir werden
hier nur die Nächste-Nachbarn-Wechselwirkung V1 einbeziehen, aber den Fall einer attraktiven und
einer repulsiven Wechselwirkungsstärke untersuchen. Der Vergleich dieser beiden Fälle verdeutlicht
den Unterschied des zugrundeliegenden Mechanismus der zur Supraleitung führt, welcher bei einer
anziehenden Wechselwirkung trivial und im Falle einer abstoßenden Wechselwirkung weitaus kom-
plexer ist. Wir werden mehrere Phasendiagramme mit unterschiedlichen Wechselwirkungsstärken
und Füllungen berechnen und diesen Abschnitt durch zusätzliche Konvergenzprüfungen komplet-
tieren.

In der dritten und letzten Anwendung werden wir erneut ein spinvolles Hubbard-Modell auf einem
Dreiecksgitter behandeln, allerdings ohne SU(2)-Symmetrie. DiesesModellweist zwei nicht entartete
Bänder auf sodass die TUFRG muss mit Spin-Freiheitsgraden ausgestattet werden muss um dieser
zusätzlichen Quantenzahl Rechnung zu tragen. Dieses Modell ist wesentlich komplexer als seine
Gegenstücke in den vorherigenAnwendungen, so dassmehrere Änderungen an unserer numerischen
Implementierung vorgenommen werden müssen. Die hier vorgestellten Ergebnisse sind nicht veröf-
fentlicht und dienen dem vorläufigen Verständnis des Modells. Durch den Vergleich numerischer
Ergebnisse mit analytischen Erkenntnissen werden wir zeigen, dass die TUFRG eine geeignete und
leistungsfähige Methode zur Untersuchung dieses Modells ist. Diese vorläufigen Ergebnisse zeigen
bereits eine Fülle exotischer physikalischer Instabilitäten, wie inkommensurate Spindichtewellen und
eine ungewöhnliche supraleitende Instabilität namens Paardichtewelle. Außerdem weist dieses Modell
eine Van-Hove-Singularität höherer Ordnung auf, deren Auswirkungen ebenfalls hier sichtbar wer-
den können.



Abstract

In this PhD thesis, we present and implement the recently developed truncated-unity functional renor-
malization group (TUFRG) for a set of different triangular lattice Hubbard models around Van Hove
filling. The thesis is composed into three parts.

In the first part, we will present a brief introduction to the general nature of emerging electronic insta-
bilities in correlated fermion systems. To this purpose, we introduce the Hubbard model as paradig-
matic description of correlated electrons in solid state physics and derive first insights about the onset
of magnetic and superconductive instabilities in terms of perturbation theory. It will become appar-
ent that already the kinetic part of the Hamiltonian encodes crucial information about these electronic
instabilities which are finally triggered by interactions. Nevertheless, wewill demonstrate that pertur-
bation theory alone cannot explain the occurrence of unconventional superconductivitywhich directly
establishes the necessity to develop renormalization group methods in the following section. Before
we proceed there, we will briefly summarise the BCS theory for unconventional superconductivity
and derive the allowed symmetries for the gap functions for our triangular lattice systems by are
short detour into the realm of group theory. The introduction is then finalized by a short review of
Moiré Materials, a novel platform of interesting strongly correlated systems which can be effectively
described byHubbardmodels. The existence of these effective models elevates our studies from treat-
ing paradigmatic toy models to actually delivering relevant results for active research.

In the second part, we will introduce the TUFRG as a novel form of the functional renormalization
group (FRG). At first, the general basics of the FRG will be presented as a foundation for deriving
the TUFRG method. The flow equations of the FRG are directly obtained with all necessary symme-
tries for our applications. The TUFRG advances the FRG in interpretability by introducing a channel
decomposition such that several diagrams of the FRG scheme are directly linked to the possibility
of certain instabilities. Moreover, it greatly increases the numerical performance of previous FRG
schemes by the identification of unimportant momentum dependencies which are subsequently de-
veloped in form factors to generate computational speedup. We will not only derive the complete
TUFRG framework from first principles, but also demonstrate the details of the numerical implemen-
tation. For this purpose, several non-generic technical challenges of the applications are presented
and the necessary numerical solutions are provided.

The third part consists of the application of the TUFRG to three different triangular lattice models.
In the first application, we will treat a SU(2)-invariant extended Hubbard model on a triangular lat-
tice. At first, we will treat a toy model version which only includes a Hubbard interaction U and
nearest-neighbour interactions V1. We will see that already in this simple case a plethora of magnetic
instabilities and instabilities towards unconventional superconductivity emerge, such that a rich phase
diagram is formed. We will link analytical insights from the first section to these results, allowing us
to make convincing arguments for the soundness of our numerical implementation. Subsequently,
we will add longer ranged interactions and hoppings to the model such that the model effectively
describes a twisted transition metal dichalcogenide (tTMD) heterobilayer system. We will see that a
majority of the qualitative behaviour of this model is already covered by the paradigmatic toy model
and changes in the form of the unconventional superconductivity can be in parts be understood by the



analysis of the channel flow. For completeness, we add convergence checks to this section, demon-
strating the correctness of our results.
In the second application, we will treat a spinless Hubbard model on a triangular lattice. Originally,
this model was used to compare TUFRG results with results of another FRG implementation, but in
this thesis we will focus on the TUFRG results only such that the system serves as a toy model. We
will only include a nearest-neighbour interaction V1 here, but will investigate the case of an attractive
and a repulsive interaction strength. The comparison of these two cases highlights the difference of
the underlying mechanism leading to superconductivity which is trivial for an attractive interaction
andmuchmore complex in the case of a repulsive interaction. Wewill deliver several phase diagrams
by changing interaction strengths and fillings and will support this section by additional convergence
checks.
In the third and last application, we will again treat a spinful Hubbard model on a triangular lattice,
but without SU(2)-symmetry. This model will feature two non-degenerate bands and the TUFRG
has to be equipped with spin degrees of freedom to account for this additional quantum number.
This model is much more complex than its counterparts in the former applications such that several
alterations to our numerical implementation have to be made. The results presented here are not pub-
lished yet and serve as a preliminary understanding of the model. By comparing numerical results
with analytical insights, we will demonstrate that the TUFRG is a suitable and powerful method of
examining this model. The preliminary results will already feature rich exotic physical instabilities
such as incommensurate spin density waves and an unusual superconductive instability called pair
density wave. Also this model features a higher order Van Hove singularity, whose effects also become
apparent here.
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Overture

One gram of copper inhabits roughly 1023 free electrons moving around in this solid formed by the
copper atoms, participating in a plethora of interactions. Those interactions are not only with respect
to the ions, but also between the electrons themselves. Moreover, electrons are responsive to the outer
temperature and can be influenced by external magnetic and electric fields. Nevertheless, the physi-
cal phenomena we experience as humans regarding solid state systems do not showcase any of these
multitude ofmicroscopic processes, but are indeedmacroscopic. Magnets, insulators, conductors and
optical effects appear on ordinary length scales which we can process as humans without technical
instruments and just by the bare eye. Without deeper knowledge of physics, we would not directly
come up with the idea that these phenomena are rooted in the collective activity of objects which are
almost twenty orders of magnitude smaller than we are.

This is the realm of condensed matter physics or - more precise - correlated electron systems. A
central philosophical paradigm of this branch of physics was given by Anderson in his famous es-
say More is Different [1]. The effects of correlated electron systems must be understood as emergent,
meaning that the behaviour of electrons on a larger scale cannot be explained by only examining the
single properties of the respective electrons alone. In contrast, this behaviour must be understood as
collective phenomenon, with an entirely new set of rules and mechanisms. Therefore, the physical
effects on larger scales are accompanied with additional complexity and every reductionist approach,
explaining those effects by a decomposition of the constituents of the underlying system, must fail.
In some sense, Andersons’ essay is a modernized rephrasing of a tenet of ancient Greek philosophy1:
the whole is greater than the sum of its parts.

Leaving philosophy to the old Greeks, we want to be more specific about the physics. The complexity
in correlated electron systems stems from electron-electron interactions, mainly the Coulomb interac-
tion which leads to the general repulsive behaviour of two electrons. The complete scene of correlated
electrons is set by the movement of the electrons, which is described as hopping in the ion lattice, in
combination to thermal excitations and the general repulsive Coulomb interaction. This leads to a
complex interplay of different aspects such that a simple treatment of the system to understand the
occurring physical effects is not possible.

The physical framework which successfully describes quantum many-body physics is provided by
quantum field theory. Originally describing high-energy physics in the context of sub-atomic parti-
cles, it moved on being one of the crucial achievements of modern theoretical physics. For condensed
matter physics, an intuitive approach of quantum field theory is provided by the path integral for-
malism:

Z =

∫
D(ψ̄, ψ) e−S[ψ̄,ψ].

In the spirit of statistical mechanics, all many-body information of a system is encoded in the partition
functionZ . The path integral accounts for the effects of a systemwithmany or infinite degrees of free-
dom by the usage of fermionic fields ψ, ψ̄, while the action S is the description of this given system

1Some sources point to Aristotle for this quote, but apparently the true origin is unclear. Anyway, this is not a thesis in
philosophy, so we deem this as good enough for us.
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at the microscopical level. Therefore, the path integral formalism mirrors exactly the philosophical
presumptions of Anderson. On the right hand side, we have all the microscopic constituents of a solid
- given by the continuous fields - and their behaviour is modeled by the action S. The functional inte-
gration accounts for all possible configurations of the systemweightedwith this action. Subsequently,
we are reaching an emergent object, the partition function Z , from which we can derive macroscopic
effects.

Unfortunately (and not really surprisingly), nature does not reveal itself that easily since the path
integral is in general not analytically solvable. This is of course not a problem special to correlated
electrons and various analytical and computational methods were developed in the past to treat mod-
els accordingly. In this zoo of methods, we will shift our focus on the renormalization group (RG)
techniques which emphasise the importance of scales explicitly in the formalism of quantum field the-
ory. In a general momentum formulation, the RG was pioneered by Kenneth Wilson [108, 109]. The
conceptual core of RG is given by treating fluctuations of the path integral scale by scale, and not in
the unsorted manner by an ordinary path integral. Starting at high energies (or momenta) the effects
of these degrees of freedom are integrated out and the effects are absorbed to the remaining degrees
of freedom of the theory. An iterative procedure can then be derived, integrating out energy scale by
energy scale. The initial interactions describing the system microscopically are renormalized, and the
change of these interactions is named RG flow.

Metaphorically speaking, the RG acts as themagnifying glass ormicroscope of theoretical physics. Start-
ing at high momentum scales (reciprocally corresponding to small length scales), we see a given
physical system at a microscopical scale. We look at individual constituents, governed by their mi-
croscopical laws and mechanisms. Then, by zooming out of the system, i.e. starting the RG procedure,
we reach lower momentum scales (larger length scales). The effects of the scale beneath are coarse
grained and absorbed into the emergent description of the next scale. An iterative application of this
procedure leads us to the macroscopic level where all underlying effects are absorbed and we reach
at the effective emergent description. It is of course no coincidence that this description matches the
proposed epistemological notion favoured by Anderson. The RG procedure is a direct implementa-
tion of this idea, providing a description of the emergent behaviour of the vast amount of electrons in
a solid.

In this thesis we will work with the functional renormalization group (FRG), introduced by Wetterich
[107]. The FRG takes the RG idea to an even higher level by re-formulating the path integral itself in
the context of scales. For this purpose, the path integral is exchanged for an integro-differential equa-
tion: the flow equation. The flow equation describes the evolution of the initial interaction S towards
the full effective action Γ (which can be understood as an object equivalent to Z) by the trajectory
stemming from solving this differential equation. This description is, on a formal level, exact but we
will see that also here several approximations and truncations have to be employed to restore a feasi-
ble method.

Within this framework, we will treat correlated electron systems and search for electronic instabilities,
i.e. interaction strengths which diverge under the FRG procedure. These instabilities signal the ten-
dency towards spontaneous symmetry breaking and a corresponding onset of ordering. Our models
of choice will be electronic systems near Van Hove singularities. These singularities are divergencies
in the density of states and will greatly enhance the possibility of aforementioned electronic instabili-
ties. The paradigm of understanding different ordering tendencies was already established before in
the discussion of unconventional superconductivity. These competing phases could be successfully
explained by the FRG [39] and outgoing from this influential work in 2001 several developments and
advancements of the FRG have been made, describing correlated electron systems at various levels of
electronic filling and lattice geometries.
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One of the most recent versions of the FRG method is the truncated-unity FRG (TUFRG)[64, 40, 98].
This scheme advances previous schemes by recognizing that specific diagrams of the FRG description
can be directly related to physical phenomena, e.g. superconductivity or magnetism. Consequently,
a channel decomposition[46] is employed to track the possible onset of an instability of different types
(superconductivity, magnetism, charge-density wave) individually. In addition, the diagrammatic
structure of these channels allows for an analysis of the dependence of the instabilities to themomenta
which are used for the parametrization of the method. Accordingly, the instabilities are mainly medi-
ated by one transfer momentum of the diagrams. In a new formulation of the flow equations, unim-
portant momenta are expanded into form factors and the TUFRG framework will eventually only de-
pend linearly on the amount of used momenta, allowing for high momentum resolutions. Eventually,
the TUFRG improves previous FRG schemes in three aspects: computational speed, interpretability
and the possibility to use any kind of Brillouin zone sampling such that incommensurable structures
(i.e. structures with pronounced features away from the Fermi surface) can be resolved.

An active and recently established research area governed by correlated electron systems is given
by Moiré materials. This research area was ignited by the recent study of twisted bilayer graphene
(TBG) [15, 14], illustrating the essence of a Moiré material. Here, two graphene sheets are stacked on
each other and a small twist angle is applied to one of these layers. Therefore, a superlattice structure
emerges2. The length scales of this superlattice is a magnitude larger than the lattices of the single
graphene sheets. In this study[15], correlated insulator states and unconventional superconductiv-
ity were found, indicating that the observed effects are indeed stemming from strongly correlated
electrons. Interestingly, these models feature extremely flat and isolated bands. By these properties,
the electron carrier density is easy to tune in these systems since the flatness of the bands leads to
a small bandwidth and a large amount of filling situations can be achieved just by an external gate
voltage, circumventing problems of chemical doping. Following the stir caused by TBG, a plethora of
other Moiré materials were proposed. One of these classes of materials are twisted transition metal
dichalcogenides (tTMDs) which are constructed exactly like TBG by just changing the material used
for stacking and twisting. Interestingly, these models happen to be effectively capturable by (ex-
tended) triangular lattice Hubbard models [112, 79].

This defines the general direction of research followed in this thesis. The following work is divided
intro three parts:

1. Introduction. We briefly present the foundations of electronic instabilities and their emergence.
For that purpose, we dive into heuristical arguments made in the context of perturbation the-
ory. Eventually, we will see that this perturbative description cannot completely describe the
formation of superconductivity in every givenmodel. This indicates to go beyond perturbation
theory and develop a RG method to fully resolve the missing components to capture electronic
instabilities. In a second section, we give a brief introduction to unconventional superconduc-
tivity itself. We describe standard BCS-theory and supplement this discussion by key results of
representation theory to classify the gap functions belonging to superconductive instabilities.
In a third section, we shortly discussMoirématerials as possible application cases for triangular
lattice Hubbard models.

2. Method. Here we describe and derive the TUFRG scheme used in this thesis. This section starts
with a standard introduction of FRG for correlated electron systems which is used as a starting
point for the TUFRG method. The application of this method to the triangular lattice Hubbard
models is not generic, therefore we will also investigate a selection of conceptual and numerical
problems which will arise when treating these models. This is covered in an implementation

2The term ”Moire” is derived from the so-called Moiré interference pattern which can produced when an opaque ruled
pattern with transparent gaps is overlaid on a structure of a similar pattern.

13



CONTENTS

section where the individual parts and purposes of the numerical machinery are discussed.

3. Application. Finally, the TUFRG is applied to three different triangular lattice models near Van
Hove filling which are relevant in the context of Moiré materials. We present various instabil-
ities, detected in these studies, and display comprehensive phase diagrams. Furthermore, we
will not just exhibit the findings of our studies, but also discuss them in the established context
of the first chapter. We derive several sanity checks connected to the basic notions of electronic
instabilities to ensure the soundness of the developed numerical methodology.

For now, we spoke about the content of this thesis, but there should also be a remark on the spirit of
this thesis.

As any piece of research, the core aspect of this work is given by developing a tool to collect new
data which (hopefully) leads to novel insights into current research areas. Naturally, a large part of
this thesis is dedicated to this paradigm. Admittedly, there is a second aspect which we try to cover
with care within this work. In lack of a better word, this aspect is didactics. It is an explicit goal of
this work, to not only add new information and data to the body of research connected to the topics
covered here, but also to be a guide for research to come. For that very reason, this thesis is written
in a certain holistic form which tries to paint a complete picture of how to detect electronic instabili-
ties in Hubbard models and how to specifically capture them by using the novel TUFRG approach.
Therefore, the reader may find some passages in this work more didactic than he or she is used to
from other theses. This is indeed intended, because we aim to present a work which can be used as a
starting point for future practitioners.
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CHAPTER 1

Introduction:
Competing Order in Triangular Lattice Hubbard Models

This section serves as an introduction to the basic notions of describing fermionic systems and how
electronic instabilities towards specific phases can already be concluded from simple channel summa-
tions. We will also demonstrate how some cases of superconductivity are rooted in the interplay of
different interaction types such that they are not derivable in simple terms. This circumstance justifies
the necessity of a renormalization groupmethodwhichwewill establish in chapter 2. Wewill proceed
by briefly summarizing the theory of unconventional superconductivity, whereas wewill focus on the
relationship of the underlying lattice symmetry of our Hamiltonian and the emerging gap functions.
Finally, a short overview of Moiré materials is presented which serve as potential application cases of
our method.

1.1 Quantum Many-Body Instabilities in Fermionic Systems

The idea of a metal or a likewise solid state system is - at its core - quite simple. We can think of the
system as the composition of two different kinds of entities:

1. The atomic ions which form a periodic geometric structure: the lattice.

2. The electrons which move through this lattice.

In the context of correlated electron systems, the ions can be assumed to be almost static and their in-
teractions to each other can be reasonably neglected. Therefore, metals are described by the dynamics
of the electrons and their interaction effects. These interactions occur between the electrons and the
ions, but also among electrons themselves [12]. So, the ions provide the geometrical structure of a
system which is eventually described as being purely electronic. But this abridgment should not be
confused as being overly simplistic. A plethora of different ground states can be found in these sys-
tems when the temperature is lowered, depending on the electronic filling, the geometry of the lattice
and the present types of interaction. Some of these tendencies towards specific phases can already be
concluded from simple channel summations, but we will show that some materials exhibit behaviour
which has to be explained in a more refined manner.

1.1.1 Interacting Fermions and the Hubbard model

The most elementary way to describe≈ 1023 electrons in a solid state system is to assume the forma-
tion of a free Fermi gas. In this concept, the non-interacting electrons possess momentum k, spin σ
and charge e− and move freely in the system. They obey the known Fermi-Dirac statistics and they
will fill up all momentum states from the ground state upwards exactly twice (with opposite spins)
at T = 0 by the Pauli exclusion principle. The highest lying state which is occupied this way signifies
the Fermi energyEF .
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1.1. QUANTUM MANY-BODY INSTABILITIES IN FERMIONIC SYSTEMS

Figure 1.1: Properties of the triangular lattice Hubbard model: a) Real space lattice structure of
model with hopping t and Coulomb interaction U . b) Dispersion of the model in the first Brillouin
zone. The dashed lines correspond to the Fermi surfaces for chemical potentials of µ/t = 1.8 (blue),
µ/t = 2.0 (black) and µ/t = 2.2 (brown).

As mentioned before, the phases emerging in correlated electron systems are results of the inter-
actions of electrons such that the Fermi gas cannot be a sufficient description of what we ought to
describe. Fortunately, the Fermi liquid theory proposed by Landau [103] successfully explains the
interaction effects on electrons in metals at low temperatures. In Landau’s theory, the interacting
Fermi liquid is thought as a state of the systemwhich is adiabatically connected to the non-interacting
Fermi gas. Landau showed that the excitations in the Fermi liquid behave mostly similar to the free
fermions in the gas: they still keep their fermionic nature andwill keep their momentum k, spin σ and
charge e− without a change of the Fermi energy. But the adiabatic increase of interactions will lead
to a change (or renormalization) of dynamic properties like massm or effective magnetic moment g.
These new excitations of the Fermi liquid theory are called (fermionic) quasiparticles. Knowing that
these quasiparticles are qualitatively now similar to the fermions in the free Fermi gas, we can work
safely with Hamiltonians of interacting electrons describing our materials of interest. One of the most
paradigmatic Hamiltonian models describing electrons in metals is the Hubbard model[45]:

H = −t
∑
⟨i,j⟩,σ

(
c†i,σcj,σ + h.c.

)
+ U

∑
i

ni↑ni↓ − µ
∑
i,σ

niσ, (1.1)

with electronic annihilation (creation) operators c(†)i,σ for lattice site i with spin σ ∈ {↑, ↓} and den-
sity operators ni,σ = c†i,σci,σ . Each term resembles one of the aforementioned aspects of electrons
moving in an atomic lattice. The first term indicates nearest-neighbour hopping of electrons from lat-
tice site i to j with hopping rate t, i.e. the kinetic part of the electrons. The second term models the
Coulomb interaction of the electrons with interaction strength U since the term penalizes situations
where two electrons with opposing spins are sitting on the same lattice site. The last term exhibits the
chemical potential µwhich couples to the density operator. The filling of the system can therefore be
changed by tweaking µ. Note that also higher hopping rates tn and density interactions Vn can be
easily added to this model to include effects of n-th nearest-neighbours.

The model Eq. (1.1) does not specify directly the geometry of the underlying lattice. An extensive
body of work - in both analytical and numerical terms - cover various geometries of this model (e.g.
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1.1. QUANTUM MANY-BODY INSTABILITIES IN FERMIONIC SYSTEMS

see reviews [4],[87]) with a strong focus on the square lattice version of the Hubbard model. In our
case, it will be expedient to focus on the triangular lattice Hubbard model, but it should be noted that
the arguments of perturbation theory are indeed general and apply to several lattice geometries.

For the triangular lattice we impose the primitive real space vectors a1,2 = a/2
(√

3,±1
)T with

lattice constant a. To extract the dispersion of this model one directly uses a Fourier transform to
diagonalize the kinetic part of Eq. (1.1) reaching:

Hkin =
∑
k,σ

ξkc
†
k,σck,σ =

∑
k,σ

(ϵk − µ) c†k,σck,σ

ϵk = −2t ·

(
cos

(
a ·

(√
3

2
kx +

1

2
ky

))
+ cos

(
a ·

(√
3

2
kx −

1

2
ky

))
+ cos(a · ky)

)
.

(1.2)

The dispersion ϵk (note the spin degeneracy and omitted spin index σ) of this model is displayed in
Fig. 1.1, where we show how the Fermi surface changes by including different fillings i.e. varying µ.

1.1.2 The emergence of electronic instabilities

The appearance of instabilities in this paradigmaticmodel can be better inferred by translatingEq. (1.1)
into the formalism of quantum field theory. The object of interest will then be the action:

S[ψ̄, ψ] = S0[ψ̄, ψ] + SI [ψ̄, ψ], (1.3)

S0[ψ̄, ψ] =

∫
k

∑
σ

(−iω + ξk)× ψ̄σ(k)ψσ(k), (1.4)

SI [ψ̄, ψ] =

∫
k1,k2,k3,k4

U × ψ̄↑(k1)ψ̄↓(k2)ψ↓(k4)ψ↑(k3)× δ1234 (1.5)

where ψσ(k) = ψσ(ω,k) are Grassmann fields with momentum k in the first Brillouin zone and
fermionicMatsubara frequencyω. The integral

∫
k is a shorthandnotation for

∫
k = T ·A−

BZ1
∫
BZ dk

∑
ω ,

integrating over all momenta in the Brillouin zone (normalised to the area of the Brillouin zoneABZ)
and summing over the Matsubara frequencies with temperature T . Moreover, we will use the abbre-
viation δ1234 = δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4).

Naturally, for obtaining the full quantum many-body information of a system one is confronted with
the task of solving the path integral:

Z =

∫
D(ψ̄, ψ) e−S[ψ̄,ψ]

which in the majority of the cases is not possible. Nevertheless, the onset of electronic instabilities is
already capturable in terms of perturbation theory which is the simplest first method we can apply
to this model. For that purpose we rewrite the action Eqs. (1.4) and (1.5) to derive simple Feynman
rules to lead through an instructive example of emerging instabilities. For the quadratic part, we will
add an explicit second integration to read of the bare propagator:

S0[ψ̄, ψ] =

∫
k

∫
k′

∑
σ,σ′

(−iω + ξk)× δ(k − k′)× δσ,σ′︸ ︷︷ ︸(
G0

σ,σ′ (k,k
′)
)−1

=(G0(k))−1×δ(k−k′)×δσ,σ′

×ψ̄σ(k)ψσ′(k′), (1.6)

and for the quartic part, we will directly perform one of the momentum integrations to explicitly
equip the fields with momentum conservation. In addition, we will shift the momenta such that the
parametrization of the interaction inhabits a transfer momentum q which will become practical later:

SI [ψ̄, ψ] =

∫
k,k′,q

U × ψ̄↑(k + q)ψ̄↓(k
′ − q)ψ↓(k

′)ψ↑(k). (1.7)
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a) b)

c) d)

Figure 1.2: Feynman rules and second order corrections: a) Feynman rules for bare propagator and
interaction vertex derived from the initial action. The propagator is diagonal in both, spin and mo-
mentum space and will therefore only connect legs with the same spin and imposes momentum con-
servation. The spin structure of the interaction vertex is dictated by the initial form of the Hubbard
interaction. b),c) A particle-particle and a particle-hole diagram in second order, derived by contract-
ing two vertices with the given propagators. The internal closed loop will result in being the so-called
bubble.

We aim to investigate if specific correlation functions can gain substantial contributions under correc-
tions of a perturbative expansion. At first, we want to look at a superconducting instabilities. For this
purpose, we propose a generalized BCS-like interaction1:

S BCS
I [ψ̄, ψ] =

∫
k,k′,q

∑
σ,σ′

V BCS(k, k′)× ψ̄σ(q + k)ψ̄σ′(−k)ψσ′(−k′)ψσ(q + k′). (1.8)

To probe if an interaction like this will get significant increments, we must treat the connected di-
agrams of the (time-ordered) two-particle correlation function corresponding to Eq. (1.8). At first,
the second order correction will be investigated. For brevity, we want to focus on only one of the
contributions regarding of spin indices, namely σ =↑, σ′ =↓:

G(4)
c (q + k′, ↑;−k′, ↓;−k, ↓, q + k, ↑) = −〈ψ↑(q + k′)ψ↓(−k′)ψ̄↓(−k)ψ̄↑(q + k)〉c (1.9)

which is simply done by applying the derived Feynman rules (see Fig. 1.2 a) and contracting two
vertices such that the outer indices match those imposed by Eq. (1.9). One of the emerging diagrams
at second order is called the particle-particle diagram (see Fig. 1.2 b) :

PP− diagram → G0(q + k′)G0(−k′)G0(q + k)G0(−k)×Bpp(q) (1.10)

1A more detailed perspective for this action is presented in the next section
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where the internal closed integration loop will be called the particle-particle bubble:

Bpp(q) =

∫
p

G0(p+ q)G0(−p) = T ×A−
BZ1

∫
BZ
dp
∑
ω

G0(ωp + ωq,p+ q)G0(−ωp,−p)

= A−
BZ1

∫
BZ
dp

1− nF [ξ(−p)]− nF [ξ(p+ q)]

iωq + ξ(−p) + ξ(p+ q)
, (1.11)

where we explicitly performed the Matsubara sum2 to reach the final result featuring the Fermi func-
tion nF (x). We will see later that the explicit evaluation of this particular object is crucial for the
onset of an instability. But first, we want to derive a related object by also inspecting a magnetic-like
interaction3:

SMI [ψ̄, ψ] =

∫
k,k′,q

∑
σ,σ′

VM (k, k′)× ψ̄σ(q + k)ψ̄σ′(k′)ψσ′(k)ψσ(q + k′). (1.12)

Repeating the procedure which resulted into the particle-particle diagram, one can derive in second
order the particle-hole diagram (see Fig. 1.2 c) which inhabits the so called particle-hole bubble:

Bph(q) =

∫
p

G0(p+ q)G0(p) = T ·A−
BZ1

∫
BZ
dp
∑
ω

G0(ωp + ωq,p+ q)G0(ωp,p)

= A−
BZ1

∫
BZ
dp

nF [ξ(p)]− nF [ξ(p+ q)]

iωq + ξ(p)− ξ(p+ q)
. (1.13)

Naturally, a throughout application of perturbation theory also includes the examination of all emerg-
ing diagramswhich can appear by applying the Feynman rules of ourmodel, e.g. a proper summation
of diagrams for the superconducting correlation function would have the form:

〈ψ↑(q + k′)ψ↓(−k′)ψ̄↓(−k)ψ̄↑(q + k)〉

=

∑∞
n=0

1
n!〈
(
ψ↑(q + k′)ψ↓(−k′)ψ̄↓(−k)ψ̄↑(q + k)

)
× (−SI)n〉0∑∞

n=0
1
n!〈(−SI)

n〉0
. (1.14)

Butwewill see that for both physical phenomena described before, already a specific class of diagrams
is sufficient to detect a diverging contribution to the correlation function, implying the possible onset
of an instability.

These specific diagrams are the particle-particle ladder and the particle-hole ladder. The particle-
particle ladder is straightforwardly assembled by repeating the construction which led to the particle-
particle diagram also for higher orders of U and only including these types of diagrams in the sum-
mation Eq. (1.14) (see Fig. 1.3):

〈ψ↑(q + k′)ψ↓(−k′)ψ̄↓(−k)ψ̄↑(q + k)〉PP−Ladder

= G0(q + k′)G0(−k′)G0(q + k)G0(−k)
(
−U + U2 ×Bpp(q)− U3 ×Bpp(q)2 + . . .

)
= G0(q + k′)G0(−k′)G0(q + k)G0(−k) −U

1 + U ×Bpp(q)
, (1.15)

where we evaluated the sum to infinite order in U by using the expression of the geometric series. A
similar result can be derived for the magnetic interaction correlator in terms of a particle-hole ladder:

〈ψ↑(q + k′)ψ↓(k
′)ψ̄↓(k)ψ̄↑(q + k)〉PH−Ladder

= G0(q + k′)G0(k′)G0(q + k)G0(k)
−U

1 + U ×Bph(q)
. (1.16)

2The occurringMatsubara sum is covered in a plethora of standard text books for quantum field theory, see [76] or [122].
3In contrast to the BCS interaction, it is often not intuitively visible why this interaction is related tomagnetic phenomena.

This will become apparent in the discussion of the channel decomposition later in chapter two.
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...

+ + +

∝

...

+

Figure 1.3: Construction of particle-particle ladder: Repeated construction of the particle-particle
bubble to infinite order eventually builds up to a geometric series which can be evaluated directly.

Before continuing with further analysing the ladders Eqs. (1.15) and (1.16), we want to briefly stop
and examine which insights we can now retrieve from this rather simplistic application of perturba-
tion theory.

Confronted with the triangular Hubbard model as a simple and paradigmatic description of elec-
trons in a solid, we were interested in the onset of instabilities i.e. diverging correlation functions
which indicate the tendency of the system towards a specific phase. For this purpose, we chose ex-
emplarily the correlator describing a superconductive interaction and another correlator describing
magnetic interactions. In terms of a perturbative expansion, we successfully reached at an analytical
expression of these correlators by only summing over a selected class of diagrams:

〈ψ↑(q + k′)ψ↓(−k′)ψ̄↓(−k)ψ̄↑(q + k)〉PP−Ladder ∝
−U

1 + U ×Bpp(q)
,

〈ψ↑(q + k′)ψ↓(k
′)ψ̄↓(k)ψ̄↑(q + k)〉PH−Ladder ∝

−U
1 + U ×Bph(q)

.

The form of these expressions leads us to two important observations:

1. The onset of an instability (diverging correlator) is mainly dependent on the value of the bub-
blesBph/pp(q) as long as the bare propagator is regular.

2. On the other hand, the singular behaviour of these bubbles is mainly influenced by the value
of the transfer momentum q.

Therefore, it is now the next logical step to investigate the physical situations which lead to diverging
bubbles to understand the emergence of electronic instabilities.

Instabilities towards superconductivity

For finding an instability, we will investigate the case of q = 0, i.e. q = 0, ωq = 0. Using the
inversion symmetry of the dispersion Eq. (1.2) one can rewrite the particle-particle bubble Eq. (1.11)
and transform it into an energy integral:

Bpp(0) = A−
BZ1

∫
BZ
dp

1− 2nF [ξ(p)]

2ξ(p)
=

+W∫
−W

dϵρ(ϵ)
1− 2nF [ϵ− µ]

2 (ϵ− µ)
. (1.17)

Where we introduced the bandwidth W of the dispersion and the density of states ρ(ϵ). It can be
shown that under the assumption that there is no singular behaviour in the density of states ρ(ϵ), the
particle-particle bubble will develop a generic logarithmic dependency4:

Bpp(0) ∝ ρF log (W/T ) (1.18)
4Precisely, this behaviour is only valid for a dispersion obeying inversion symmetry. For a detailed derivation of this

results, see App. A.1.
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where we also assumed that the density of states does not differ much from the value obtained at
the Fermi surface ρF . Therefore, the particle-particle bubble will diverge for T → 0. Considering
the denominator of the particle-particle ladder Eq. (1.15) and setting it to zero such that a diverging
correlator emerges:

1 + U ×Bpp(0)
!
= 0. (1.19)

Considering that the particle-particle bubble is positive, we see that for an initial repulsive interaction
(U > 0) this condition can not be met, and for T → 0 the correlator will just become small. If indeed
the initial interaction would be attractive, i.e. U = −|U | such that:

1− |U | ×Bpp(0)
!
= 0 (1.20)

then there exists a Tc which consequentially leads to a divergence of the particle-particle ladder. This
triggers the onset of a superconductive instability with transfer momentum q = 0. This behaviour is
generic for fermionic systems since the logarithmic divergence of the bubble is only dependend on the
inversion symmetry of the dispersion and on a positive density of states at the Fermi surface ρF > 0.

Indeed, we also want to consider a more special situation, namely a system at Van Hove filling. For
the triangular lattice model, the Fermi surface for µ = 2twill have the form of a rotated hexagon (see
Fig. 1.1 b) touching the M points. These points are special, because they will lead to a logarithmic
divergence of the density of states. In vicinity of these points, the density of states can be described
as:

ρ(ϵ) ∝ log
(

W

|ϵ− ϵV H |

)
(1.21)

where ϵV H is the energy at these points, called Van Hove singularities. This additional divergence
will lead to a double-logarithmic divergence of the particle-particle bubble:

Bpp(0) ∝ log2 (W/T ) . (1.22)

The effect of this divergence will be the same: for an attractiveU there will be an emerging instability
towards superconductivity for q = 0 at low T . The nature of the double-logarithmic divergence will
become important later when we discuss competing orders.

Instabilities towards magnetism

We will now repeat the analysis for the particle-hole bubble. At first, it should be noted that the
particle-hole bubble is strictly i) real and ii) negative (as long as the dispersion inhabits inversion
symmetry). Also, we will set the external Matsubara frequency to zero, ωq = 0. The criterion of a
divergence regarding the denominator of the particle-hole ladder Eq. (1.16) is then given by:

1− U × |Bph(0, q)| !
= 0. (1.23)

Differently to the particle-particle case, the singularity of the particle-hole bubble does not generally
appear for the transfer momentum q = 0. Instead, the transfer momentum which leads to a diver-
gence of the particle-hole bubble is connected to the so-called nesting vector. We describe perfect
nesting as a situation where every point of the Fermi surface can be mapped to another point of the
Fermi surface by a vector q Nesting, such that:

ϵ(k) = −ϵ(k + q Nesting). (1.24)

This situation is realized in the Van Hove filling case, see Fig. (1.1). Moreover, the presence of the Van
Hove singularity itself will add a logarithmic dependence to the bubble. In total, at Van Hove filling
the form of the particle-hole bubble is given by5:

Bph(0, q Nesting) ∝ − log2 (W/T ) . (1.25)
5For a detailed derivation, see App. A.2
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So, for a repulsive U , we can directly expect an instability towards magnetism at low temperatures
with transfer momentum q = q Nesting. From the construction of the magnetic interaction Eq. (1.12),
it can be derived that the emerging instability indeed is a spin density wave with modulation vector
q Nesting. A special case is given if this transfer momentum happens to be zero: then the emerging
instability will be a ferromagnet (since the spins are not modulating at all).

Roundup

This brief presentation of electronic instabilities in the Hubbard model serves this work in two ways.
First, the general mechanism of emerging instabilities has been established. We will understand
and discuss instabilities as the divergence of specific interaction types. These instabilities indicate
that cases of symmetry breaking are possible, such that the system transfers to a respective phase.
The instabilities are mainly driven by the behaviour of the particle-particle and particle-hole bubble,
whose singular features are dictated by the underlying kinetic electronic behaviour. We derived that
a particle-particle bubble divergence is generic and can only be realized if the initial interaction of
the model is attractive. For the magnetic interaction, we saw that instabilities are directly driven by
the existence of nesting vectors. Both tendencies towards these instabilities are also amplified by the
presence of a Van Hove singularity.
Second, the usage of ladder summations as a perturbative framework also limits our perspective and
cannot explain all possible phases of a system. The ladder summations can only signal the onset of
superconductivity when the initial interaction is attractive. This does of course not imply that su-
perconductivity with a repulsive interaction is in general out-ruled. To provide an understanding
for these situations, we have to expand our theoretical approach such that additional crucial effects
beyond ladder summations are accounted for.

1.1.3 The peculiar absence of attractive interaction or: competing instabilities

To answer the proposed question of the previous section, we want to shift the focus on materials
which are actually capturable by the Hubbardmodel: cuprate superconductors [92, 86]. Cuprates are
3D materials where layers of copper oxides (CuO2) are alternating with layers of metal oxides (XO
with X a metal). The metals in the metal oxide layers can be replaced with other metals such that
an experimentalist can decide to add electrons or holes into the system, a procedure called chemical
doping. Therefore, these layers effectively act as charge reservoirs for the copper oxide planes. The
copper oxide planes can then be treated as 2D models, where the filling is affected by the doping.
Several angle-resolved photoemission (ARPES) studies have been conducted for cuprates, finding an
antiferromagnetic phase which can be superseded by phases of superconductivity by variation of the
filling [23, 3, 83] (see Fig. 1.4 for more details). In theoretical works, several ab-initio calculations
successfully derived (square lattice) Hubbard models as an effective description for the cuprate band
structures [120, 47, 69, 38, 37]. In perspective of our previous analysis this begs the question:

• How is superconductivity possible from an initial repulsive interaction?

To this end, we follow the lead suggested by the body of theoretical work and investigate the square
lattice Hubbard model including also next-to nearest neighbours (indicated with a sum over 〈〈i, j〉〉
) with coupling t′:

H = −t
∑
⟨i,j⟩,σ

(
c†i,σcj,σ + h.c.

)
− t′

∑
⟨⟨i,j⟩⟩,σ

(
c†i,σcj,σ + h.c.

)
+U

∑
i

ni↑ni↓−µ
∑
i,σ

niσ. (1.26)

The dispersion is given by:

ξk = −2t (cos(a · kx) + cos(a · ky))− 4t′ cos(a · kx) cos(a · ky)− µ, (1.27)

where the X-points at (0,±π), (±π, 0) will be Van Hove singularities. The Fermi surface can be
tuned to those points by imposing µVH = 4t′. The value of t′ is mostly estimated to be ranging from
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a) b)

c) d)

Figure 1.4: Superconductivity in cuprates: a) Crystal structure of the cuprates R2−xCexCuO4 and
La2−xSrxCuO4 taken from [3]. b) Phase diagram of the cuprates in a), displaying a transition from
magnetism to superconductivity for under- or overdoping also taken from [3] c) ARPESmeasurment
of cuprate Tl2Ba2CuO6+δ showing the Fermi surface, taken from [83]. d) Dispersion of the square
lattice Hubbard model with t = 1, t′ = −0.2t. The black line corresponds to Van Hove filling
µ = 4t′, the dashed brown line to underdoping with µ = 2.4t′.

−0.1t to −0.5t and will effectively add a small curvature to the Fermi surfaces (see Fig. 1.4 d). We
focus on the findings derived by perturbation theory and establish the following scenarion:

• The Fermi surface can be tuned to a Van Hove singularity at the X-points by selecting µVH =
4t′

• At Van Hove filling, the Fermi surface is perfectly nested for t′ = 0 and will have remnants of
this effect if t′ is still small.

• Therefore, the particle-particle bubble will have a double-logarithmic divergence for q = 0 and
the particle-hole bubble will also feature a double-logarithmic divergence for q = qNesting.

From this, two questions arise:

1. To which of these two instabilities will the ground state finally tend, if both bubbles have the
same degree of divergence?

2. How can a superconductive instability emerge in the first place if the interaction U is not at-
tractive?
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To answer these questions we must acknowledge that our perturbative approach negligently dis-
missed diagrams of mixed quality i.e. where the divergent particle-particle and particle-hole bubble
are both part of. We can understand these missing diagrams as feedback of the two phenomena: the
possible onset of superconductivity or magnetism may have far reaching consequences on other cor-
relators. Since we only analysed the ladder summations, these effects were immediately neglected
(similar to neglecting certain fluctuations when choosing a specific channel in mean field theory).

Consequently, convincing theoretical explanations for the superconducting phases in the square lat-
tice Hubbard model have been made in the scope of the renormalization group (RG). We want to
discuss and introduce the (functional) RG in detail later, but still want to highlight that the immense
advantage of RG techniques lies in accounting for all interacting channels and their respective feed-
back on each other on the same footing, overcoming the problemwhich comeswith using perturbation
theory. Using parquet RG [67] or functional RG [93], the emergent phases of d-wave superconductiv-
ity could be identified in the square lattice Hubbardmodel which was also anticipated by other works
[104, 96]. The intuitive essence of themechanism can be understood as follows: near the VanHove fill-
ing with perfect nesting, the system will develop a strong tendency towards antiferromagnetism (as
already anticipated by the particle-hole ladder since our initial interaction U is repulsive). While this
tendency grows, the feedback of themagnetic channel on the superconductive channelmay eventually
induce an attractive component, enabling the option of Cooper-pairing. The result of which instabil-
ity will prevail eventually depends strongly on the model parameters. As a rule of thumb, situations
at perfect nesting will in the majority of the cases induce an instability towards antiferromagnetism
and will only make space for superconductivity if the Fermi surface is tuned lightly away from the
VanHove point or by systematically reducing the amount of nesting (which can be done by tuning t′).

The situation of superconductivity in cuprates serves therefore as a paradigmatic example of com-
peting instabilities. We will see that the models which we will eventually investigate in this thesis
obey the same principles and can be understood under a similar perspective.

1.2 A brief summary of unconventional superconductivity

While it was presumed that the reader already knows about some fundamental aspects of supercon-
ductivity in the previous part, we will briefly review the basic notions of this phase of matter in this
section. The benefit of this summary is twofold: on one hand, a discussion about the elementary
theory of superconductivity - namely the (generalized) BCS theory - should be included to ensure a
specific degree of completeness of this work. But moreover, the results derived in this section which
will become indeed practical in the application of our method later. To be precise, the treatment of
the generalized BCS theory provides the form of the superconductive gap equation and the possible
symmetries of its solutions, the gap functions∆k.

Until today, superconductivity prevails of being one of the most interesting and fascinating phe-
nomena of modern physics. Historically, the story of superconducitivity starts in 1911 with Heike
Kamerlingh Onnes who discovered at first that the resistance of mercury spontaneously drops when
cooled below a critical temperature of Tc = 4.2K . Initially only described as a perfect conduc-
tor, this perspective changed when in 1933 Meissner and Ochsenfeld discovered that metals entering
a superconducting phase also fully expel all external magnetic fields entering the superconductor
[71]. Therefore these materials are in fact not perfect conductors, but perfect diamagnets. The first
major breakthrough from the side of the theory was proposed by Leon Cooper in 1956, making a
profound argument that an ordinary Fermi gas cannot be a stable ground state of an electronic sys-
tem if an electron-electron attraction of arbitrarily weak strength is included [22]. Indeed, the de-
rived consequence is the formation of a ground state inhabiting so-called Cooper pairs, two electrons
with opposing momentum which are created simultaneously above the Fermi energy which lead to
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a destabilization of the Fermi surface. In 1957, Bardeen, Cooper and Schrieffer (BCS) published the
BCS-theory as the groundbreaking contribution to the theoretical explanation of superconductivity
[7]. The aformentioned pairing of electrons could be captured with a model Hamiltonian:

HBCS =
∑
k,σ

ξk,σc
†
k,σck,σ +

∑
k,k′

Vk,k′c†k,↑c
†
−k,↓c−k′,↓ck′,↑. (1.28)

Notably, the attractive interaction leading to the Cooper pairing was found to be mediated by the
coupling of the phonons to the electrons. In a simplistic manner, this mechanism can be imagined like
this: the (negatively charged) electrons moving through the solid can attract the (positively charged)
ions of the lattice. Since the timescales on which the ions move are much slower than the scales of the
electron, the ions (which are now moved away from their resting position) form a positive charge in
space, leading to the attraction of another electron, effectively describing an attractive electron-electron
interaction. This mechanism was already discovered before the formulation of the BCS-theory by
Fröhlich [27] who also showed that this interaction is effectively only strong in the vicinity of the
Fermi surface. The interaction Vk,k′ in Eq. (1.28) can then be replaced by:

Vk,k′ =

{
−|V0| if ϵk,σ ≈ ϵkF ,σ

0 otherwise
(1.29)

Proceeding in the history of superconductivity, several different origins for the pairing potential have
been found. Of major influence were the studies of 3He, showing mechanisms induced by Van-der-
Waals interactions [63], but of course also the aforementioned cuprates feature an unconventional
mechanism mediated by magnetic fluctuations [96]. To account also for these possible mechanisms,
the model Hamiltonian Eq. (1.28) should be extended to a generalized form which we will present in
the first subsection. The majority of the reproduction of the generalized BCS-theory here relies on the
review by Sigrist [100].

1.2.1 Generalized BCS-Theory

We start with the generalized BCS Hamiltonian6

H =
∑
k,σ

ξkc
†
k,σck,σ +

1

2

∑
k,k′

∑
σ1,σ2,σ3,σ4

Vk,k′;σ1,σ2,σ3,σ4 × c†k,σ1c
†
−k,σ2

c−k′,σ4ck′,σ3 , (1.30)

where in perspective to our Hubbard model we assume a spin-degeneracy in terms of the bands
ξk,σ = ξk. This Hamiltonian is treated in terms of a mean field decoupling. For this purpose we
impose the expectation values of the cooper pairs as follows:

c†k,σ1c
†
−k,σ2

=〈c†k,σ1c
†
−k,σ2

〉+
[
c†k,σ1c

†
−k,σ2

− 〈c†k,σ1c
†
−k,σ2

〉
]
, (1.31)

c−k′,σ4ck′,σ3 =〈c−k′,σ4ck′,σ3〉+
[
c−k′,σ4ck′,σ3 − 〈c−k′,σ4ck′,σ3〉

]
, (1.32)

where the content of the brackets [. . . ] can be understood as the fluctuations around the mean field
expectation value. By plugging Eqs. (1.31),(1.32) into the Hamiltonian Eq. (1.30), we reach the de-

6Notice that we used this structure in the previous section to probe a superconducting correlator in Eq. (1.8). Although
we used a simplified spin structure there, namely imposing SU(2) invariance and also enabling the possibility of a nonzero
transfer momentum q.
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coupled Hamiltonian:

H =H0 +HInt +HInt′

H0 =
∑
k,σ

ξkc
†
k,σck,σ (1.33)

HInt =+
1

2

∑
k,k′

∑
σ1,σ2,σ3,σ4

Vk,k′;σ1,σ2,σ3,σ4 ×
[
〈c†k,σ1c

†
−k,σ2

〉c−k′,σ4ck′,σ3 + c†k,σ1c
†
−k,σ2

〈c−k′,σ4ck′,σ3〉
]

(1.34)

HInt′ =− 1

2

∑
k,k′

∑
σ1,σ2,σ3,σ4

Vk,k′;σ1,σ2,σ3,σ4 × 〈c†k,σ1c
†
−k,σ2

〉〈c−k′,σ4ck′,σ3〉 (1.35)

where we want to focus onHInt for now. We define the gap functions as:

∆k,σσ′ = −
∑
k̃,σ̃,σ̃′

Vk,k̃;σ,σ′,σ̃,σ̃′〈c−k̃,σ̃′ck̃,σ̃〉 (1.36)

∆∗
−k,σ′σ = −

∑
k̃,σ̃,σ̃′

Vk,k̃;σ̃,σ̃′,σ,σ′〈c†
k̃,σ̃
c†−k̃,σ̃′〉 (1.37)

to recastHInt into:

HInt = −1

2

∑
k,σ,σ′

[
∆∗

k,σ,σ′ck,σc−k,σ′ +∆k,σ,σ′c†k,σc
†
−k,σ′

]
. (1.38)

DismissingHInt′ now, the rest of the Hamiltonian can be cast into the following form:

H =
∑
k

C†
kHkCk (1.39)

where the matrixH is defined as:

Hk =
1

2

(
1ξk ∆̄k

∆̄†
k 1− ξ−k

)
, ∆̄k =

1

2

(
∆k,↑↑ ∆k,↑↓
∆k,↓↑ ∆k,↓↓

)
(1.40)

and spinorCk are defined as:

Ck =
(
ck,↑ ck,↓ c†−k,↑ c†−k,↓

)T
. (1.41)

Ultimate goal is to diagonalize the Hamiltonian. This can be achieved by a Bogolyubov transforma-
tion, meaning we need an unitary transformationUk such that:

Ek = U †
kHkUk =


Ek,+ 0 0 0
0 Ek,− 0 0
0 0 −E−k,+ 0
0 0 0 −E−k,−

 . (1.42)

This Bogolyubov transformation is given by:

Uk =

(
ūk v̄k
v̄∗−k ū∗−k

)
, ūk = 1× Ek + ξk√

2Ek (Ek + ξk)
, v̄k = ∆̄k × −1√

2Ek (Ek + ξk)
(1.43)

Here, the usage of unity pariring i.e. ∆∆† ∝ 1 will guarantee that Ek,+ = Ek,− = Ek. The final
Hamiltonian is cast into:

H =
∑
k

A†
kEkAk, Ck = UkAk, Ak =

(
ak,+ ak,− a†−k,+ a†−k,−

)T
(1.44)
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where a Bogolyubov transformation is constructed in such a way that the emerging quasiparticles
a
(†)
k,± still satisfy fermionic commutation relations. The energy and gap are finally given by:

Ek =
√
ξ2k + |∆k|2, |∆k|2 =

1

2
tr
(
∆̄k∆̄

†
k

)
. (1.45)

To reach at the gap function, we replace the fermionic operators of the mean field defined before
Eq. (1.36) by those defined by the Bogolyubov transformation Eq. (1.44) eventually leading to:

∆k,σσ′ = −
∑

k′,σ3,σ4

Vk,k′;σ,σ′,σ3σ4

∆k′,σ3σ4

2Ek′
tanh

(
Ek′

2T

)
. (1.46)

For the actual use for the applications later, we can further simplify this. In the application B, the
fermions will carry no spin entirely, such that the whole 2 × 2 spin structure shrinks to a scalar. In
the application A, we will treat a SU(2) invariant system. In the framework of the FRG, this will lead
to an interaction like:

Vk,k′;σ1,σ2,σ3σ4 = Vk,k′δσ1,σ3δσ2,σ4 + Ṽk,k′δσ1,σ4δσ2,σ3 , (1.47)

where it will be sufficient to solve the equations for the first part only. Including the constraint
δσ1,σ3δσ2,σ4 in Eq. 1.46 will lead to ∆k,σσ′ = ∆k for all combinations of σ, σ′. Therefore the gap
equation fo application A and B is given by:

∆k = −
∑
k′

Vk,k′
∆k′

2Ek′
tanh

(
Ek′

2T

)
. (1.48)

For the practical use of this equation, we want to derive an eigenvalue equation from it. For that
purpose, we state that the system is near the critical temperature Tc such that the gap ∆k is right
about to open up to a finite value, but still such thatEk ≈ ξk holds. Therefore Eq. (1.48) is rewritten:

∆k = −
∑
k′

Vk,k′
∆k′

2ξk′
tanh

(
ξk′

2Tc

)
. (1.49)

Which can then be treated as an eigenvalue problem if Vk,k′ is given for the range of momenta we
desire. In the end, the interaction Vk,k′ will be delivered effectively by the FRG calculations. To
interpret the eigenvalues of this equation we can revisit Eq. (1.49) in a further approximation. For
that purpose, we note that the function tanh(x/2Tc)/x will have its maximal value at x = 0 and
will decay quickly if deviating from this value, especially if Tc is small. This observation transfers to
the fact that the major contributions are coming from the Fermi surface, i.e. ξk = 0. Therefore, the
highest increments to the right hand side of the equation are stemming from an energy range in a tiny
shell around the Fermi surface [−ϵc, ϵc] i.e. we introduce a cutoff energy ϵc. Approximating that the
interaction Vk,k′ and the density of states in this shell are not changing much when moved along a
direction which is not the direction of the Fermi surface, we can approximate the gap equation with
the following energy integral:

−
∑
k′

Vk,k′
∆k′

2ξk′
tanh

(
ξk′

2Tc

)
≈ −

[
Vk,k′∆k′

]
k,k′near FS

+ϵc∫
−ϵc

ρ(0)
1

2ϵ
tanh

(
ϵ

2Tc

)
dϵ

︸ ︷︷ ︸
≈ρ(0) log(1.13ϵc/Tc)=ν−1

. (1.50)

So, when focusing on the contributions near the Fermi surface only, the gap equation will finally
simplify to:

ν∆k = −
[
Vk,k′∆k′

]
k,k′near FS (1.51)
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and the eigenvalues λ of this problem (namely diagonalizing Vk,k′∆k′) can now be related to the
constant ν finally delivering the context:

λ =ν

λ =(ρ(0) log(1.13ϵc/Tc))−1

⇐⇒ Tc =1.13ϵc exp(−1/λρ(0)) (1.52)

such that the eigenvector ∆i
k with the highest eigenvalue λi will result into the highest critical tem-

perature Tc and will therefore be the first superconducting state which will be realized. Throughout
this thesis we will call this eigenvector the leading gap.

This small detour gained us insight about a suitable physical interpretation of the eigenvalues of the
gap equation. For all practical applications, we are not restricted to values of k on the Fermi surface
only and will indeed use Eq. (1.49) for the calculation of the leading gap.

1.2.2 Symmetry of Gap functions

It is of no surprise that the symmetry of the underlying Hamiltonian will have consequences on the
form of the emergent superconductive gap function ∆k. In practice, the gaps can be classified in the
context of the point group on which the kinetic Hamiltonian is defined on. In this section, we will
derive the possible gap functions for a system on a triangular lattice. For this purpose, the necessary
elements of group theory and representation theory are introduced directly in the context of the tri-
angular lattice. We will refrain from proving the needed mathematical theorems but will instead use
the necessary foundations of the theory to derive the classification scheme of the gap functions in a
pragmatic and practical way. For an in-depth discussion of the mathematical background, the reader
is referred to the standard literature (highly recommending: [117]) or the thesis by Platt [85], from
which this section is compiled from.

The triangular lattice and the point group C6v

Choosing one lattice site in the triangular lattice as the origin, we can find a set of operations which
leave the lattice invariant i.e. the state of the lattice after the application is identical to the state before
applying the operation. Naturally for lattices, these operations are rotations and reflections and are
collected in so-called point groups. The point group which leaves the triangular lattice invariant
is C6v , including rotations around the z-axis with angles ϕ = ±2π

6 ,±
2π
3 ,

2π
2 and in addition six

reflections (see Fig. 1.5). The elements of the point group form a group (hence the name) which is
formally defined as:

Definition 1 (Group). A group G = {G, ◦} is a set G equipped with a multiplication law ”◦” such that
the following axioms hold:

• The multiplication is associative: (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

• It exists a neutral element E such that for every gi ∈ G: gi ◦ E = E ◦ gi = gi.

• For each element gi in the group exists an inverse element g−1
i ∈ G such that: gi◦g−1

i = g−1
i ◦gi = E.

Where it is implied that the multiplication law always maps on the group again, i.e. gi ◦ gj ∈ G for all
gi, gj ∈ G.

A straightforward way to fully describe a group is implemented by employing a multiplication
table. Since the multiplication of two group elements always results again in a group element, we can
sufficiently and completely define a group by the results of these multiplications (see Fig. 1.5).
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Figure 1.5: Properties of the C6v point group. Display of the respective symmetry operations leaving
the triangular lattice invariant, differentiating between the reflections σix and the rotations Cn around
2π/N also accounting for possible rotation directions. The multiplication table of the point group
C6v indicates the operations which are equal to the multiplication of two operations of the group.

Representation, conjugacy class and character

If the reader forms the opinion that the characterization of the symmetry group of a lattice by a mul-
tiplication table feels in some sort clunky and awkward, then he or she is certainly right. In practice,
physicist tend to think about symmetry operations in terms of matrices instead of elaborate multipli-
cation tables. Labeling the lattice sites - outgoing from the origin - with a real space vector (x, y), we
can represent the group elements as matrices. What is done in physics intuitively, is actually the usage
of a representation of a group which is formally defined as follows:

Definition 2 (Representation). A group {F, ·} is called a representation of a group {G, ◦}, if there exists a
mapping Γ : F 7−→ G, such that for every element gi, gj ∈ G holds: Γ(gi) · Γ(gj) = Γ(gi ◦ gj).

In our practical applications, Γ will be matrices and ” · ” the ordinary matrix multiplication. The
nature of a representation is very literal. On one hand, there exists the abstract group which is com-
pletely defined by a multiplication table and is not cast in a specific formwhich would make an appli-
cation feasible. It is the representation which lends the abstract group a tangible form. The necessary
condition that a representation actually faithfully resembles the underlying structure of the group
operations is exactly implemented by the property Γ(gi) ·Γ(gj) = Γ(gi ◦ gj)which ensures that the
rules of the multiplication table are inherited by the representation. The following collection displays
one example representation of C6v , consisting of thematrices a physicist would intuitivelywrite down
for the appearing rotations and reflections.

Γ(E) =

(
1 0
0 1

)
, Γ(C6) =

(
1
2

√
3
2

−
√
3
2

1
2

)
, Γ(C−1

6 ) =

(
1
2 −

√
3
2√

3
2

1
2

)
,

Γ(C3) =

(
−1

2 −
√
3
2√

3
2 −1

2

)
, Γ(C−1

3 ) =

(
−1

2

√
3
2

−
√
3
2 −1

2

)
, Γ(C2) =

(
−1 0
0 −1

)
,

Γ(σ1v) =

(
1
2 −

√
3
2

−
√
3
2 −1

2

)
, Γ(σ2v) =

(
1
2

√
3
2√

3
2 −1

2

)
, Γ(σ3v) =

(
−1 0
0 1

)
,

Γ(σ1d) =

(
−1

2 −
√
3
2

−
√
3
2

1
2

)
, Γ(σ2d) =

(
1 0
0 −1

)
, Γ(σ3d) =

(
−1

2

√
3
2√

3
2

1
2

)

In addition, there is another structure one would intuitively think of for which a formally defined ob-
ject exists. When looking at Fig. 1.5 again, we directly group the different symmetry operations into
different sub-classes. There are obviously the different rotations, there are the reflections for which
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the reflection axes are going straight through the nearest neighbour lattice sites (σ1,2,3v ) and the reflec-
tions where the reflection axes go through the bonds (σ1,2,3d ). Also, there is the identify itself doing
nothing to the lattice. In representation theory, this is formally defined as conjugacy and conjugacy
classes:

• Two elements gi, gj ∈ G are conjugate, if there exists another element in the group A ∈ G
such that gi = A◦gj ◦A−1. By transitivity, if an element gi is conjugate to gj and gj otherwise
to gk, then also gi and gk are conjugate.

• All elements which are conjugate to each other are forming a so-called conjugacy class.

The different conjugacy classes can be calculated straightforwardly by the definition. It is no coin-
cidence that these classes will match the intuitive grouping which we can already think of before
explicitly calculating these classes:

E = {E}, 2C6 = {C6,C−1
6 }, 2C3 = {C3,C−1

3 }, C2 = {C2},
3σd = {σ1d, σ2d, σ3d}, 3σv = {σ1v , σ2v , σ3v}.

Central to the nature of representations is the question: is a given representation irreducible? To
define this property, we also define the notion of equivalent representations:

• Two representationsΓµ,Γν of the same group are equivalent if there exists a matrixU such that
Γµ(gi) = U · Γν(gi) · U−1 for all gi ∈ G.

• If a representation Γ is equivalent to a representation where all matrices have a common block

structure, i.e. Γ(gi) =
(
Γ11(gi) 0

0 Γ22(gi)

)
then the representation is called reducible. Other-

wise the representation is irreducible (an irreducible representation is abbreviated by the name
irrep).

If one desires now to check if a representation (e.g. the intuitive representation above) is irreducible,
one must now complete the tedious task to work out a matrix U which transforms the matrices of
the representation into a common block structure if possible. Fortunately, there are other ways to
determine the irreducibility of a representation, but for this purpose an additional property has to be
founded, namely the character. This is defined as follows:

Definition 3 (Character). The character χΓ(gi) of an group element gi ∈ G in a representation Γ is the
trace of the corresponding matrix: χΓ(gi) = Tr(Γ(gi)).

We note two important insights:

• The trace is cyclic, therefore all elements of a conjugacy class have the same character.

• The character is therefore in fact a property of the conjugacy class, not of the objects themselves.
Wewill denote the application of the character in an irrepΓµ on a class ci as: χΓµ(ci) = χµ(ci).

Now that all the groundwork is defined, we can actually proceed to the character table which con-
denses the essential information of the irreps of a point group.

Character table

In terms of mathematical rigor, we will allow us the freedom to take some leaps here now and state
the important results about characters and irreps without proving or developing them. In the end,
we will give some intuitive rationalizations about the correctness of these results.

At first, it is stated that the amount of conjugacy classes of a point group Nc are equivalent to the

30



1.2. A BRIEF SUMMARY OF UNCONVENTIONAL SUPERCONDUCTIVITY

C6v E 2C6 2C3 C2 3σd 3σv
A1 +1 +1 +1 +1 +1 +1
A2 +1 +1 +1 +1 −1 −1
B1 +1 −1 +1 −1 +1 −1
B2 +1 −1 +1 −1 −1 +1
E1 +2 +1 −1 −2 0 0
E2 +2 −1 −1 +2 0 0

Table 1.1: Character table of the point group C6v .

amount of different irreps for the group Ni. Furthermore, the conjugacy classes and irreps are con-
nected by two orthogonality theorems:∑

i

|ci|χ∗
µ(ci)χν(ci) = δµνNG, (1.53)

∑
µ

χ∗
µ(ci)χµ(cj) = δij

NG

|ci|
, (1.54)

where NG is the amount of elements in the group (i.e. for C6v we have 12 elements) and |ci| is the
amount of elements in a conjugacy class ci. With these orthogonality relations and the insight that we
will have exactly 6 irreps for 6 conjugacy classes, we can construct the so-called character table (Ta-
ble 1.1). In this table, the characters of the different conjugacy classes are presented for all six irreps
(named A1,A2, B1, B2, E1 and E2). By using this character table, we can now answer the question if
our formerly proposed representation (the ”intuitive” matrices) is an irrep or not. This can be done
by selecting one matrix for every conjugacy class and calculate its trace. Consequently it becomes ap-
parent that the representation is equivalent to the E1 irrep since all characters match. The character
table therefore encodes all relevant information about the irreps of a given point group and provides
a simple criterion to check for reducibility of a given representation.

It should be noted that some of the irreps in the character table are qualitatively different from the
rest, namely E1,2. From the definition of the representation it directly follows that the matrix repre-
senting the unity group element always also has to be an unity itself. Investigating the first column of
the character table, we can read off the character of the unity in each irrep. ForA1,2, B1,2 this charac-
ter is+1, implying that the unity is just the scalar 1. Therefore, these irreps are one-dimensional and
the characters of the conjugacy classes are also directly the elements of the irrep itself. It is easy to see
that the multiplication of the different characters in those four irreps faithfully represent the initial
multiplication table of the C6v point group.

For E1,2, the character of the unity is +2, revealing that these irreps are two-dimensional (i.e. 2× 2
matrices). In this case, the character of the conjugacy classes obviously cannot be equated to the an
element of the irrep itself since the trace does not provide any information about the off-diagonal
elements of the matrices.

Projection and basis functions

The practical use of the character table will become apparent when we go back to the eigenvalue
problem of the gap function Eq. (1.49):

∆k = −
∑
k′

Ṽk,k′∆k′ (1.55)

where we absorbed the factor consisting of the dispersion and the tanh(. . . ) into the new interaction
Ṽk. Ṽk will inherit the symmetries from the initial BCS Hamiltonian, where it should be highlighted
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that also the symmetries of the point group C6v are leaving the interaction invariant. Under the as-
sumption that these symmetries still hold, we can now apply the framework of representation theory
to the eigenvalue problem to derive the following key results7:

• The diagonalization of Ṽk,k′ leads to a diagonal matrixDk,k′ with eigenvalues λi. The corre-
sponding eigenspaces are ordered with respect to the derived irreps of C6v .

• Since the irreps are either 1- or 2-dimensional, the corresponding eigenspaces belonging to the
eigenvalues λi are also either 1- or 2-dimensional. In the latter case, this means that there exists
a 2× 2 block insideDk,k′ with degenerated eigenvalues λi1 = λi2 .

• The eigenvectors of our problem are the eigenfunctions∆i
k corresponding to eigenvalueλi. We

remind ourselves that the eigenfunction belonging to the highest eigenvalue was the leading
gap function of the superconductor.

• In standard linear algebra, vectors in the span of an eigenspace can be expressed as linear com-
binations of these eigenvectors. Since the eigenspaces are either 1- or 2-dimensional, the corre-
sponding functions f ik in a subspace belonging to eigenfunction∆i

k can be expressed as:

f ik = α∆i
k

f ik = α∆
i,(1)
k + β∆

i,(2)
k

with some coefficients α, β depending if λi belongs to 1-dimensional or 2-dimensional sub-
space.

• The eigenfunctions∆i
k extracted from the diagonalization will be equivalent to the basis func-

tions of the irrep Γ which can be derived by applying a projection operator to a suitable basis
function of momentum space:

P (µ) =

NG∑
i=1

dµ

NG
χ∗(gi)µΓ(gi), (1.56)

where dµ is the dimension of the irrep Γ which are indexed with µ where the numbers µ =
1, 2, 3, 4, 5, 6 correspond to the listing in the character table. The aforementioned basis function
can be derived in momentum space by using plane wave basis functions.

In [85], it was nicely shown how this procedure can be executed. It was shown that one useful pro-
cedure uses basis functions on the lattice as basis functions of the real space on which the projector
Eq. (1.56) is applied to. In contrast to [85], we will derive the lattice harmonics directly in momentum
space by using plane waves as basis functions of momentum space:

bi(k) = eiRik (1.57)

whereRi are real space lattice vectors of the triangular lattice as numerated in Fig. 1.6. We apply the
projection operator Eq. (1.56):

Pµbi(k) =

NG∑
j=1

dµ

Ng
χµ(gj)e

i(Γµ(gj)Ri)k (1.58)

The application of the symmetry operators (Γµ(gi)Ri) in the projection operator Eq. (1.58) will map
Ri to one of the other real space vectorsRj with the same distance. Wewill proceed and offer a recipe
to construct a lattice harmonic of nth order for a desired irrep.

7Again, we will just state this result without proving them since this would be immensely out of the scope of this intro-
ductory chapter. For a more detailed look for these results we advise [50].
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Figure 1.6: a) Numeration of first 61 lattice sites, including 0th to 8th nearest neighbours. b) momen-
tum basis function of the irrep A1 in first order.

For the one-dimensional irreps (i.e. A1,A2, B1, B2) we choose a lattice vectorRi displayed in Fig. 1.6
a. The distance to the origin corresponds to the order of the lattice harmonic. Therefore, for a first
order lattice harmonic, we have to choose a nearest-neighbour lattice vector, e.g. R2. For higher or-
ders, we have to select a lattice vector with larger distance. Two suitable sets for the different orders
of vectors are given by:

Order Set 1 Set 2
1st R2 R4

2nd R10 R14

3rd R8 R12

4th R22 R28

5th R20 R26

6th R42 R50

7th R40 R48

8th R38 R46

where the signification of the second setwill become apparentwhenwemove over to the two-dimensional
irreps E1, E2. For a practical example we will now construct the first order lattice harmonic for the
irrep A1. The character table indicates that all characters are given by+1 for this irrep. The expansion
of Eq. (1.58) is then given by:

P 1b2(k) =
1

12
((+1)× eiR2k + (+1)× eiR7k + (+1)× eiR4k

(+1)× eiR3k + (+1)× eiR5k + (+1)× eiR6k

(+1)× eiR2k + (+1)× eiR6k + (+1)× eiR5k

(+1)× eiR4k + (+1)× eiR7k + (+1)× eiR3k)

=
1

3
(cos (k ·R2) + cos (k ·R4) + cos (k ·R6))

=2 cos
(
kx

√
3/2
)
cos (ky/2) cos (ky) . (1.59)
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This lattice harmonic is depicted in Fig. 1.6 b. For the other one-dimensional irreps the procedure is
done analogously, where only the values of the characters change and therefore some of the signs in
front of the plane waves.

For the construction of the lattice harmonics of the two-dimensional irreps we have to compose a
superposition of two lattice harmonics built from non-parallel vectorsRi. Now the second set of the
of the table becomes handy: we will construct for a given order two lattice harmonics. One with the
vector of set 1 and another with the vector of set 2. Then we will calculate two superpositions by
adding/subtracting these lattice harmonics. For example for the E2 (µ = 6) irrep of first order, we
would select vectorR2 andR4 such that:

P 6b2(k) + P 6b4(k) =

2

3

(
cos
(
3kx
2

)
cos

(√
3ky
2

)
− cos

(√
3ky

))
,

P 6b2(k)− P 6b4(k) =

−

(
sin
(
3kx
2

)
sin

(√
3ky
2

))
.

The basis functions for all irreps are depicted from order 1 to 8 in Fig. 1.7.

Gap function and Fermi surface: a word on nomenclature

In a last consideration, we want to investigate the behaviour of the mean field energy regarding the
presence of a superconductor and its gap function. For simplicity, we will refrain ourselves to the
simple, ungeneralized BCS Hamiltonian Eq. (1.28) for this discussion, but the arguments made here
generalize also to other systems. In this case, Thematrix structure of the gap function becomes a scalar
function ∆̄k → ∆k, and the Hamiltonian before application of the Bogolyubov transformation is a
2× 2matrix:

Hk =

(
ξk ∆k

∆∗
k −ξ−k

)
. (1.60)

Where after the application of the Bogolyubov transformation the energies are given as:

Ek = ±
√
ξ2k + |∆k|2. (1.61)

The Fermi surface is given by the values of kwhich lead to ξk = 0 since wemeasure the dispersion in
distance to the Fermi surface energy. By the expression Eq. (1.61), it is possible to havemomentak for
which isEk is zero due to the fact that ξk and |∆k|2 can vanish simultaneously. Geometrically, these
points can be understood as nodes since the Fermi surface crosses the zeros of the given gap function
∆k. These nodes represent locations in the Brillouin zone where gapless excitations are possible (by
the touching of the quasi-particle energies Eq. (1.61)) and are therefore energetically unfavourable
[10]. This heuristic construction delivers therefore the argument that the leading gap function ∆k

should have as few nodes as possible8.

An interesting way to fulfill this condition is given by the two-dimensional irreps of the point group.
As we showed before, the leading gap lies in the subspace of the leading eigenvalue λi corresponding
to one of the irreps. While the one-dimensional irreps will therefore deliver only one lattice harmonic
of those displayed in Fig. 1.7, the two-dimensional irreps represent a two-dimensional space and the

8It is important to acknowledge that this argument is indeed heuristic. While delivering a good rule of thumb, we will
see later in the result chapter that it is not universally applicable.
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Figure 1.7: All possible basis functions for the irreps of point group C6v up to order 8.

emerging total gap function ∆k can be a superposition of two lattice harmonics if the leading eigen-
value λi is degenerated:

∆k = α∆
i,(1)
k + β∆

i,(2)
k , (1.62)

whereα andβ can be complex numbers. So, while the isolated lattice harmonics of the two-dimensional
irreps E1 and E2 may have nodes with a given Fermi surface, the complex superposition of two lattice
harmonics of a given order may lead to a fully gapped state since their contribution to the quasi-
particle energy is given by |∆k|2. By the heuristic argument that nodeless states are favoured, the
actual occurrence of these gaps is in general to be expected. Indeed, we will detect candidates for
such gap functions later in chapter 3.

In the most simple combination, we set α = 1 and β = ±i. Therefore, the system has to chose
one of the signs regarding the complex component, indicating the presence of time-reversal breaking
[89, 106]. For that reason, these superconductors are called chiral. In terms of nomenclature, super-

35



1.2. A BRIEF SUMMARY OF UNCONVENTIONAL SUPERCONDUCTIVITY

conductors featuring a lattice harmonic of the E1 irrep is called d-wave superconductors. For making
the nomenclature more precise, the chiral variant of these superconductors are then called d+id su-
perconductors.

Interestingly, the chiral superconductors are distinct from their non-chiral counterparts in terms of
topology. A Chern number can be constructed as follows [106, 10]:

C =
1

4π

∫
k
mk ·

(
∂mk

∂kx
× ∂mk

∂ky

)
, (1.63)

with a pseudospin vector:

mk =
1√

ξ2k + |∆k|2

Re(∆k)
Im(∆k)
ξk

 . (1.64)

For a gap function of the form of Eq. (1.62), this construction delivers a touchstone to determine its
chirality. FromEq. (1.63) it is obvious that any gap functionwhich is purely real or imaginarywill lead
to C = 0. Chiral gap functions subsequently are able to return non-zero values, C 6= 0. This property
delivers not only a measure to differentiate between chiral and non-chiral gaps in a purely theoretical
manner, but it is also linked to experiments. It has been demonstrated that the Chern number of
the gap function directly enhances the quantum spin and thermal Hall conductance measured in
experiments[99, 44]. Therefore, we reach at an experimental verifiable quantity which reveals hints
about the nature of a present superconducting gap function.

Précis

In the end, the essential content of this section is embodied by three important key results.

1. By the means of the BCS theory, it is possible to reduce the problem of finding a superconduct-
ing gap function to an eigenvalue problem which only includes the pairing interaction Vk,k′ .
Effectively, this pairing interaction will be the result of our calculations after applying the func-
tional renormalization group, stated in the next section.

2. The symmetry of the gap function, which is obtained by diagonalization, is dictated by the point
group of the triangular lattice. The main result of the application of representation theory in
this context leads to the insight that the leading gap ∆k will be of the form of an irrep basis
function or -more directly- in the form of one of the functions depicted in Fig. 1.7.

3. For the occurrence of a gap function belonging to a two-dimensional irrep, the system inhab-
its the possibility of featuring a chiral superconductor which is characterized by a complex
superposition of two lattice harmonics of the irrep. These chiral gap functions can be differ-
entiated from the non-chiral gap functions by the calculation of a Chern number C which for
the non-chiral cases is trivially zero. This construction has direct consequences to experiments
since a non-zero Chern number enhances quantum spin and thermal Hall responses. Therefore
the detour in group and representation theory is connected again to the real world eventually,
delivering a criterion for differentiating between the topological property of a given supercon-
ductor.

This finalizes our discussion about unconventional superconductivity. In the next section we will
proceed with describing our models of interest.
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1.3 Moiré materials

In this last section of the introductory chapter, we will discuss a specific class of materials, namely
Moiré materials which sparked numerous research interests in the last years. Starting with twisted
bilayer graphene which historically started the recent history of Moiré materials, wewill then proceed
to twisted bilayer transition metal dichalcogenides which serve as an ideal plattform of triangular
lattice systems exhibiting unconventional superconductivity.

1.3.1 Twisted bilayer graphene (TBG)

Before discussing the nature of Moiré materials we want to shift the focus to single layer graphene
since the distinct structures of Moiré materials are actually rooted in structures which emerge already
in single layer graphene. Since the groundbreaking work in 2004 by Geim et al.[28] there has been
a tremendous body of research work committed to this material as plattform for a plethora of quan-
tummany-body effects likemagnetism, superconductivity or the occurrence of the anomalous integer
quantum hall effect (for a compiled review see [16]). The fundamentals of graphene which are re-
produced here are presented as usual in the canonical literature (e.g. see [52]).

A single layer of graphene consists of carbon atoms which are arranged in a honeycomb lattice struc-
ture. The spinful electrons in this system can be described by a tight-binding Hamiltonian:

H = −t
∑
⟨i,j⟩

∑
σ

(
a†i,σbj,σ + h.c

)
, (1.65)

where in this simple model we only take nearest-neighbour hopping into account. The operators
a
(†)
i,σ, b

(†)
i,σ create(annihilate) an electron on lattice site iwith spin σ for sublattice a or b. This sublattice

structure is needed since the honeycomb lattice is not a Bravais lattice. Instead the fundamental Bravais
lattice of graphene is a triangular lattice with lattice vectors (see Fig. 1.8 a):

a1 =
a

2

(
3,
√
3
)T

, a2 =
a

2

(
3,−

√
3
)T

, a ≈ 1.42Å

with a two-atomic basis with distance δ = (−a, 0)T to incorporate the two sublattices. This Hamil-
tonian can be diagonalized by going into Fourier space, resulting eventually into:

H =
∑
k,σ

(
ϵk,+a

†
k,σak,σ + ϵk,−b

†
k,σbk,σ

)
(1.66)

with two bands indexed as b = ±1 and the (spin-degenerated) dispersions:

ϵk,b = b× t
√
3 + f(k), (1.67)

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos
(
3

2
kxa

)
. (1.68)

At half-filling (i.e. no chemical potential), the Fermi surface is at the Dirac pointsK,K′ (see Fig. 1.8
b), where both bands exactly touch each other. The structures which emerge here are called Dirac
cones, where in close vicinity of the K,K′ points the dispersion features a linear slope. We can
derive a low energy theory which is valid as long as the electrons stay in the vicinity of the Fermi
energy by Taylor expanding the dispersion Eq. (1.67) around the Dirac points:

HK(K′) =
3at

2

∑
q,σ

ψ†
q,σ

(
0 qx ∓ iqy

qx ± iqy 0

)
ψq,σ = vF

∑
q,σ

ψ†
q,σ [σ · q](∗) ψq,σ (1.69)

where we collect the former operators in ψq,σ = (ak,σ, bk,σ)
T . The vector q must be understood as

momentum close to the K(K′) point, q = k −K(K′) such that q = 0 is the momentum directly
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a) b)

d)c)

Figure 1.8: Properties of single layer graphene: a) Real space lattice structure of graphene tight-
bindingmodel with sublattice A (brown) and B (green) forming the basis (blue ellipsis). b) Brillouin
zone of graphene with symmetry pointsΓ,M ,K andK′. c) Band structure of graphene plotted for
one spin in first Brillouin zone. d) Sketch of the two in-equivalent Dirac cones in the Brillouin zone
at K and K′, depicting that an electron in one cone is in momentum space well separated from the
other cone.

at a respective Dirac point. We collect two Pauli matrices in the vector σ = (σx, σy)
T and define the

Fermi velocity vF = 3at/2. Since these twoDirac cones are in-equivalent andwell separated in terms
of momentum, an electron in one of these cones will stay at this cone as long as no strong scattering
events take place. To build a complete low energy effectivemodel of graphenewhich accounts for both
Dirac cones, we will introduce now the new spinorΨq,σ = (aq,σ, bq,σ, aq′,σ, bq′,σ)

T and expand the
Hamiltonian to a 4× 4 structure:

H =
∑
q,σ

Ψ†
q,σ

(
HK 0
0 HK′

)
Ψq,σ, (1.70)

where two block Hamiltonians include the two seperate Dirac cones. Since the emergent low en-
ergy Hamiltonian Eq. (1.70) decomposes in a diagonal of two blocks, we can therefore interpret the
two Dirac cones as new quantum numbers, namely the valley degree of freedom. In the low energy
Hamiltonian an electron is therefore completely described by its momentum q = k − K(K′), its
spin σ and its location in momentum space i.e. if it sits near K or K′. We will see later that the in-
terplay of different valleys is essential for constructing effective Hubbard models for Moiré Materials.

The recent enthusiasm for Moiré materials can be traced back to the works of Cao et al. in 2017 [15]
although there are works in 2011 which preceded these studies by Bistrizer and MacDonald [9]. The
(obviously) underlying effect of Moiré materials is the Moiré effect which describes the interference
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Figure 1.9: Original graphics taken from [15]: a) Schematic representation of a TBG measurement
device. The four-probe measurement measures the resistance Rxx = Vxx/I . The graphene sheets
G1,G2 are sandwiched by two hexagonal boron nitride layers where the bottom layer is connected to the
gate voltage Vg to control the carrier density n. b) Phase diagram of TBG at an angle of θ = 1.05deg.
Two superconducting domes are formed around half filling, with a Mott insulator state in between.
The highest critical temperature for the onset of superconductivity is Tc ≈ 1.7K .

pattern which is produced if two patterns with transparent gaps are laid on each other. In condensed
matter physics, this emergentMoiré pattern was first produced by stacking two single layer Graphene
sheets on each other and twist them with certain angle θ.

Experimental results

As shown in [15], there exist specific so called magic angles for the bilayer of twisted graphene sheets
where the emergent band structure will feature low-lying bands with a pronounced flatness. In the
specific case of the (smallest) magic angle of θ ≈ 1.1 deg, the total bandwidth of these bands is in
the order of magnitude of 10 meV and they are also well separated from the rest of the system. The
tremendous advantage of this small bandwidth is the tunability in terms of a gate voltage. The amount
of electron carriers can be easily controlled with the application of an external voltage, allowing for
an extraordinary controllable system in terms of the electronic filling. The compiled phase diagrams
from those experiments is displayed in Fig. 1.9 and show the existence of a correlated insulator and
two superconducting domes with T ≈ 1.7K as highest transition temperature around half filling.
In [15] it is also argued that a phonon-mediated mechanism for the superconductivity is unlikely.
Therefore TBG is indeed a platform exhibiting unconventional superconductivity with an extraordi-
nary level of control over the filling. Most interestingly, if we compare the phase diagram in Fig. 1.9
with the phase diagram of a cuprate in Fig. 1.4 b in the previous section, a striking resemblance be-
comes apparent. This sparks the idea that the phase diagram of TBG may also be explainable by the
paradigm of competing instabilities of a Hubbard model.

Theoretical description

We will give a brief overview how TBG can be described from the theoretical side. The methodology
to do so translates also toMoiré systems other than TBG. Actually, this description comes in two steps.
At first we will show how the continuum models are build for TBG, based on the aspects we already
described for single layer Graphene. Outgoing from these continuum models, one can actually in a
second step derive an effective Hubbard model for the lowest lying flat bands.

A theoretical description of twisted bilayer graphenewas actually alreadypublished in 2011 byBistrizer
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a) b)

Figure 1.10: Geometry of TBG in real space and momentum space: a) An example of TBG with real
space Moiré vectors a∗

1,2 connecting different regions of AA-stacking. b) The Brillouin zone of the
single graphene sheets and the emerging tiny Brillouin zones of the Moiré superlattice for each valley.
Since the momentum space is reciprocal to real space, the larger Moiré unit cell will lead to a smaller
Brillouin zone. Since the two valleys atK,K′ are still well separated for small angles in momentum
space, one can derive a continuum model for each valley, for example for K by including both Dirac
cones atK1,K2 from each sheet and adding an interlayer coupling U .

and MacDonald [9]. For the construction of this low energy effective model it is appropriate to inves-
tigate the geometry of a Moiré pattern constructed by TBG. For brevity we will consider AA-stacked
TBG, meaning that one sheet is put onto another sheet such that the respective A-sublattices are di-
rectly below each other. The rotational axis is therefore going though twoA sublattice points, one from
each layer. If the twisting angle θ is a commensurate magic angle, then there will be an emergent su-
perlattice (i.e. the Moiré structure) for which we can define new basis vectors a∗

1,2 (see Fig. 1.10 a).
The Brillouin zones of the twisted graphene sheets will evidently also be twisted. The Brillouin zone
of the Moiré superlattice will be much smaller than of its corresponding single layer counter parts,
caused by the larger real space structure of the superlattice. As discussed before, in a low energy ef-
fective model we only have to describe a single graphene sheet in the vicinity of the respective Dirac
cones. The idea of the construction for TBG is now to couple the Dirac cones of two graphene sheets in
terms of an interlayer coupling U or sometimes also called a Moiré potential. This is valid for small
angles, causing that the Dirac cones of each layer will be in short distance to each other in momentum
space (see Fig. 1.10 b). Conclusively, two valleys ξ = ± at K and K′ emerge and each of those can
be described independently as:

HTBG
K =

(
HK1 U
U † HK2

)
, (1.71)

where HK1,2 are the low energy Hamiltonians at the Dirac cones at the K point of layer 1 and 2
respectively. The main challenge which remains in this approach is the modelling of the interlayer
hopping U , for which various methods exist in terms of tight-binding approaches [73, 59, 101]. This
sets out the general idea of the TBG continuummodel, such that the band structure can be derived by
diagonalization of the Hamiltonian9.

In a second step, it is possible to only describe the lowest lying flat bands of the model by deriving an
effective Hubbard model from the continuum model. A successful implementation of this procedure
was demonstrated by Koshino et al. [60]. The general procedure demands that one introduces Bloch
states for the derived continuum model which will then serve as a starting point to derive Wannier

9For a general review of the method to derive the continuum model of TBG there exists the recent review by Andrei and
MacDonald [2].
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states which are localized at the AA-points of the TBG. Outgoing from this construction, it is possible
to derive an effective honeycomb tight-binding model which is defined on the Moiré sublattice:

H =
∑
ξ=±

∑
ij

t(rij)e
iξϕ(rij)c†iξcjξ, (1.72)

where the hopping t(rij) between lattice site i and j is also multiplied with a phase factor ϕ(rij).
One conclusion by Koshino et al. is that a sufficiently large amount of these hoppings have to be in-
cluded to faithfully reproduce the low-lying band structure whose numerical values can be derived by
the Wannier-based approach. Notably, the spin degree of freedom will not translate into the effective
description, but the valley degree ξ will inherit a SU(2) structure. The possibility of deriving a tight
bindingmodel of the TBG enables the possibility to view occurring phases through the lens of compet-
ing instabilities when interactions are included which highlights the importance of this methodology.

Obviously, the construction of Moiré superlattices is not only restricted to TBG. Several other materi-
als haven been proposed to engineer Moiré structures. It is a disadvantage of TBG that the emerging
tight binding model is also defined on a honeycomb lattice which in terms of the sublattice structures
directly poses a greater challenge than for example triangular lattices. Fortunately, there exists also a
class of models which results into triangular effective models which we will present next.

1.3.2 Twisted bilayer transition metal dichalcogenides

The procedure to stack graphene sheets onto each other and twist them can also be implemented for
transition metal dichalcogenides (TMDs). A TMD consists of three layers MX2:

• Two layers of chalcogen atoms X2, like Sulfur (S), Selenium (Se) or Tellurium (Te),

• One layer of transition metal atoms M, like Molybden (Mo) or Tungsten (W),

where the chalcogen layers are building the top and bottom layer with the transition metal layer in-
between. While these materials have therefore an actual lattice structure in 3D, its extraordinary thin-
ness allows for a 2D description. A top view on a TMDwill reveal a hexagonal lattice structure, where
the sublattices A and B are nowmade of different atoms, namely chalcogen or transition metal atoms.
The body of work considering the experimental properties and physical applications of TMDs largely
exceed the scope of this section, for which we advise to the literature [68, 58]. In terms of this work,
we will directly consider the properties of the electronic band structure of TMDs.

A special feature of TMDs is the breaking of inversion symmetry and the strong spin-orbit coupling.
In the example of WSe2 this will lead to a valence band with a large spin-splitting with a considerable
gap to the conduction bands with a weak spin-splitting [65, 91]. This results into a non-degenerate
valence band, with maxima located at theK,K′ points. Instead of Dirac cones, we can approximate
in a continuum model these maxima as parabolic ϵk ∝ −(k−K)2 [112]. Importantly, the inversion
symmetry breaking will lead to the fact that the spins and valleys are locked i.e. at the K points the
high lying valence band is of σ =↑ and at the in-equivalentK′ point it is of σ =↓.

These materials can now be used to construct Moiré materials called twisted TMDs (or tTMDs) by
reproducing the approach used in TBG. Naturally one has two choices for these constructions. First,
one can take two different TMDs to build a tTMD which is called a tTMD heterobilayer. Second, one
can take two sheets made from the same TMD resulting into a tTMD homobilayer. Both materials can
effectively be described by a tight-binding model on a triangular lattice as follows.

tTMD heterobilayers

Recent works developed a continuum model for tTMD heterobilayers by the theoretical description
of twisted WX2/MoX2 (X = S, Se) systems [112]. In the example of WSe2/MoS2, experiments in-
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a) b) c)

Valence bands

Conduction bands

Figure 1.11: Geometry of a TMD in real space and momentum space: a) Monolayer TMDs are effec-
tively 2D materials with a honeycomb structure. As a noticeable difference to graphene, the different
sublattices are actually made out of different atoms, namely a transition metal M and a chalcogenide
X whereas in graphene both sublattices are made of carbon atoms. b) The spin-valley locking in TMD
will lead to two non-degenerate valence bands for the spins with maximums at the K,K′ points.
The inversion symmetry breaking imposes that both valleys will have a different highest lying va-
lence band with regard to the spin. c) Detailed view at the K,K′ points regarding valence and
conduction bands. The conduction bands do only exhibit a small spin-splitting, while the valence
bands are separated by a strong spin-splitting. Eventually, the Fermi energy of the Moiré material
ϵF will be close to the high lying valence bands, such that an isolated treatment of these bands for a
continuum model is possible.

dicate that the valence band of the WSe2 layer lies inside a gap of MoS2 bands [119, 80]. Therefore,
a continuum model can be built from the high lying valence band (see Fig. 1.11 c) of the WSe2, and
the Moiré structure stemming from the coupling to the MoS2 layer with applied magic angle adds
an periodic Moiré potential to the continuum model description10. The whole band structure can
then by derived by the diagonalization of the continuum Hamiltonian. The inversion symmetry of
the TMD monolayer enforces that the dispersion has the same form at theK andK′ point, although
these maxima come from different spin bands. Consequently, by using only one band per symmetry
point for the construction of the continuum model, the spin and valley degree of freedom will be-
come equivalent due to the spin-valley-locking of the dispersion. After diagonalization, this model
will feature separated flat bands at highest energy. For these bands only, a fit can be employed by
an effective tight-binding model on the triangular Moiré superlattice. Another study finds that this
model should include hoppings tn and interactions Vn up to third nearest-neighbour in addition to
an onsite interaction U for a realistic description [121]:

HHeterobilayer =−
∑
n

∑
⟨ij⟩n

∑
σ

tn

(
c†iσcjσ + h.c.

)
− µ

∑
iσ

niσ

+ U
∑
i

ni↑ni↓ +
∑
n

∑
⟨ij⟩n

∑
σσ′

Vnniσnjσ′ . (1.73)

Therefore, the effective description of this tTMDheterobilayermaterial is indeed given by an extended
triangular lattice Hubbard model. We note that the spin-degree of freedom can be used equivalently
to the valley ξ due to the spin-valley locking. The spin/valley is a SU(2) quantum number now, with
two spin/valley-degenerated bands.

tTMD homobilayers

A continuum model and an effective description of a tTMD homobilayer system was alredy investi-
gated for system composed of two WSe2 layers [79]. The crucial difference in these models is given

10For a detailed derivation of this potential, the reader is advised to [49].
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a)

d)c)

b)

Figure 1.12: Sketch for effective description of tTMD heterobilayers: a) Twisted Brillouin zones of
two different twisted TMD layers. The WSe2 (solid) contributes valence bands (green/yellow) of
different spin/valleys to the continuum model. The coupling to the MoS2 layer (dashed) leads to the
formation of flat bands. b) Original figure taken from [112]. The Moiré potential in real space ∆(r)
stems from the coupling of both twisted layers. c) Original figure taken from [112]. The emergent
band structure after diagonalizing the continuum Hamiltonian. The red flat band on top is isolated
from the other bands. d) The red band in c) can be fitted by a tight-binding model defined on the
triangular Moiré superlattice (dashed).

by the fact that both monolayer systems contribute bands to the effective description since the valence
bands of both systems are identical. Effectively, the method to produce an effective triangular lattice
Hamiltonian is analogue to the heterobilayer system. Since we are confronted with a degeneracy of
the bands at the K and K′ point of the single layers, the effective Hubbard model will also inhabit
this degeneracy. Interestingly, this degeneracy can be lifted by the inclusion of an out-of-plane electric
field, called the displacement field. This field splits the bands at the respective points, leading to two
non-degenerate bands in the effective model. The Hamiltonian of this system is given by[79, 116]:

HHomobilayer = −2|t|
∑
k,δ

∑
σ

cos (k · δ + σ · ϕ) c†k,σck,σ + U
∑
i

c†i,↑ci,↓ (1.74)

where ϕ ∈ [0, π/2] represents the strength of the displacement field. δ are the vectors to three
selected nearest-neighbour lattice sites in a triangular lattice. This model will not inhabit a SU(2)-
invariance for ϕ 6= 0. In addition to this model, also longer-ranged hoppings and interactions can be
included to fit the minimal model to realistic materials [79].

Both of the proposed Hubbard models inhabit nesting effects and Van Hove singularities similar to
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a)

c)

b)

Figure 1.13: Sketch for effective description of tTMD homobilayer: a) Twisted Brillouin zones of
two TMDs of the same material. The spin-down maxima of the separate bands are located at K(′)

1 ,
while the spin-up maxima are located at K(′)

2 . The strategey of deriving an effective description is
similar to the case of heterobilayers, but now both monolayers contribute bands to the formation of
theMoiré band structure in addition of forming aMoiré potential b)Without a displacement field, the
four depicted maxima are equal in form, such that the effective model will consist of two degenerated
bands . c) Applying the displacement field, the band degeneracy can be lifted, also leading to non-
degenerate bands in the effective model.

our paradigmatic triangular lattice Hubbard model as described in the previous sections. So, they are
suitable models from the perspective of competing instabilities and will therefore be treated later as
such.
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1.4 The scope of this thesis

In this last section, wewill give a brief précis of this introductory chapter. Afterwards, wewill establish
the further direction of this thesis.

• At first we gave a heuristic overview of the origin of electronic instabilities. We showed that
instabilities towards magnetism or superconductivity may be induced by electron-electron in-
teractions in a triangular lattice Hubbardmodel. Furthermore, we argued that the main impact
for the formation of these instabilities stems from the singular behaviour of particle-particle and
particle-hole bubbles. The underlying conditions for the divergence of these objects is rooted
in the geometry of the Fermi surface, where the occurrence of perfect nesting and the presence
of a Van Hove singularity leads to logarithmic divergencies in the respective channels.

• The limitations of perturbation theory become visible, if multiple divergencies appear to hap-
pen at the same time. Moreover, perturbation theory fails to explain how the onset of super-
conductivity may happen if the model does not possess an attractive interaction to begin with.
These problems were present in the description of cuprates which calls for a method beyond
perturbation theory is necessary for the description of competing orders. Indeed, renormaliza-
tion group methods were able to explain the superconductivity mechanism in absence of an
attractive bare interaction which establishes the justification to work in this framework.

• Of the various possible instabilities, we took a special look at unconventional superconductiv-
ity. We presented how to deduce the superconducting gap function ∆k by the usage of an
eigenvalue equation which incorporates the interaction responsible for Cooper pairing. In a
short excursion into the realm of representation theory we showed that the possible forms of
∆k are dictated by the point group describing the lattice on which the Hamiltonian is defined
on. In our example, this is the triangular lattice and the C6v point group.

• In the last section, we gave a quick overview over Moiré materials, especially tTMDs. We pre-
sented that already established research derived effective triangular lattice Hubbardmodels for
tTMDs, where the models for heterobilayers and homobilayers differ qualitatively from each
other by the presence of SU(2)-invariance.

The conclusion of these points renders the triangular latticeHubbardmodel to be extraordinary useful
for describing possible unconventional superconductors in tTMDs. While there exists a large amount
of FRG studies about the square and honeycomb lattice Hubbard model [42, 39, 115, 32, 55, 54], we
notice that the work on the triangular lattice does not match this quantity, although substantial work
for competing orders also exist here [41, 20].

The goal of this work is now to develop and implement a renormalization group method to inves-
tigate triangular lattice Hubbard models beyond perturbation theory. This specific method will be
the truncated-unity functional renormalization group. This thesis will therefore proceed as follows:

1. Chapter 2 introduces and establishes the truncated-unity functional renormalization group as
one of the most recent variations of the functional renormalization methods. In this chapter,
we will briefly lay out the idea and basics of functional renormalization group in general and
then move over to the truncated-unity ansatz. Following the formal description and deriva-
tion, we will also describe the concrete numerical implementation, where we will outline the
computational challenges and the respective solutions.

2. In chapter 3, we will apply the developedmethod to triangular lattice Hubbardmodels in three
distinct cases:

(a) At first, we will tackle spinful fermions on a triangular lattice with SU(2)-invariance.
Here, we will investitagte two cases: at first a rather simplistic model with only nearest-
neighbour hopping and interaction and then a more realistic model with longer ranged
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hoppings and interactions which models a tTMD heterobilayer system. We will demon-
strate that a domain of unconventional superconductivity exists in the tTMDheterobilayer
which is in general already strongly present in the paradigmatic description.

(b) In a second application, amodel of spinless fermions on a triangular lattice is treated. This
model serves more as toy model than a realization of a physical material. This work was
initiated to compare the truncated-unity scheme to the so-called patching scheme, a pre-
vious variant of functional renormalization. Again, we will find phaes of unconventional
superconductivity.

(c) In a third and last application, we will deal with spinful fermions on a triangular lattice
without SU(2). Here we will use the effective tight-binding model describing a tTMD
homobilayer system. Here, we want to especially study the effects of the displacement
field.
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CHAPTER 2

Method:
The Truncated-Unity Functional Renormalization Group

In this chapter wewill derive and develop themethod of our choice to treat triangular lattice Hubbard
models: the truncated-unity functional renormalization group. First, wewill give an introduction to
the general framework of the functional renormalization group for correlated fermion systems. Then,
wewill proceed to the truncated-unity ansatz. After the formal derivation of thismethod, wewill turn
to its numerical implementation, where a number of computational challenges arise. We will discuss,
how these challenges can be solved to ensure that our developed numerical tool is equipped with the
necessary stability and performance speed to be a viable approach to investigate the competing orders
in triangular lattice systems.

2.1 The Functional Renormalization Group

In the first chapter we already made the case that the behaviour of a condensed matter system with
≈ 1023 electrons and its emergent qualities is ultimately encoded in the path integral:

Z =

∫
D(ψ̄, ψ) e−S[ψ̄,ψ].

Here, we are confronted with the enormous challenge of solving this integral which is in a closed
analytical form almost never possible to treat since every kind of interaction will alter the Gaussian
quality of the integrand to something more complex, leading to all the difficulties preventing the ex-
istence of an exact solution. On a philosophical note, the author wants to share the opinion that it
is really baffling that exactly that part which renders nature so complex -namely the interaction be-
tween particles- has its corresponding complex counterpart in the realm of mathematics in the form
of non-Gaussian structures in the path integral. In an overly simplified point of view, the plethora of
different methods developed in the area of quantum field theory are a consequence of our inability to
solve its central object analytically without approximation.

One of these methods is the renormalization group (RG), one of the great achievements of theoretical
physics in the last 100 years. The important cornerstone of RG is the emphasis of including scaleswhen
thinking about physical systems. The famous example of block spins by Kadanoff [51] accentuates
this notion for condensed matter physics where the coupling of microscopic spins J is renormalized by
grouping spins to a new, emergent spin at a higher length scale. The repetition of this construction
allows for a function describing the coupling J for larger and larger length scales, delivering a pre-
scription for the emerging macroscopic system by developing J to the desired scale.

This idea was formalized by Wilson [108, 109], who translated this idea into momentum space. Here,
the central notion is to integrate out high momentum degrees of freedom in the path integral in a
small momentum shell between Λ/b < k < Λ and absorb the effects into the remaining integrand
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(a) (b)

Figure 2.1: Basic RG schemes: a) Kadanoff block spin renormalization. The couplings between the
macroscopic spins is given by J . By grouping and averaging four spins to are new, larger spin, a new
couplingJ ′ is introducedwhich describes the effective interaction between the new spins. By iterating
this procedure, a renormalization group application in real space formed. b) Wilsonian momentum
space renormalization. By describing a theory in theory space, a small shell between Λ/b and Λ is
integrated. The effects of this integral are absorbed in the theory. Repeating these steps leads to a
renormalization group application in momentum space.

with an scaling factor b. After rescaling the momenta b · k → k, this procedure can be repeated to
derive the RG flow for the coupling parameters of a given action.

Amodern RG approach is the functional renormalization group (FRG), pioneered byWetterich [107].
The FRG method focuses on the effective action Γ instead on the partition sum Z1. The effective ac-
tion Γ generates all one-particle-irreducible (1PI) diagrams of a given theory and is therefore suitable
to treat all the occurring contributions to the integrand of the path integral in a constructive man-
ner. Compared to Wilsonian RG, the FRG is based on exchanging the integration of the path integral
by solving an integro-differential equation for a scale dependent effective action ΓΛ. By design, this
object is equal to the initial action ΓΛUV = S at a given ultraviolet cutoff and equal to the effective
action at the infrared cutoff ΓΛ→0 = Γ. The evolution from one of these extreme cases to another is
governed by a flow equation d

dΛΓΛ where the initial condition reflects an unperformed path integral
and a solved differential equation to the infrared regime corresponds to a full integration of the path
integral, including all quantum effects.

In this first subsection, wewill derive the general framework of FRG, starting fromderiving the general
flow equation and moving on to deriving a set of flow equations for our proposed electronic systems
by the usage of symmetries. Noticeably, we will see that also the FRG approach cannot solve the path
integral in the end in closed form; we will have to impose certain truncations to arrive at a formwhich
is feasible for numerical calculations.

The presentation and compilation of this subsection relies on the standard review articles by Met-
zner et. al [72], Platt et. al [84] and the work by Honerkamp and Salmhofer [94].

2.1.1 Flows and functionals

At first we will derive the flow equations for the Schwinger functional (the generating functional of
all connected diagrams) and for the effective action (the generating functional for all 1PI diagrams).
Eventually, we will exclusively use the flow of the effective action and the flow of the Schwinger func-
tional is a means to an end, namely deriving the flow of the effective action in the first place. We will
start by defining some nomenclature and will then guide through the general steps of the derivations.

1While also other FRG schemes exist, we will limit ourselves to the effective action approach.
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Finally, we will adopt the notion of the vertex expansion to derive the characteristical hierachy of
differential equations used in condensed matter applications.

Adopting notation

We will start by leaning on the general expression of the action of an electronic system as presented
in section 1, Eqs. (1.4) and (1.5). For this purpose, the action was decomposed in a kinetic part S0
and an interacting part SI . Starting with the kinetic part and assuming that by diagonalization the
dispersion ξσ(k) of the system was already obtained:

S0
[
ψ̄, ψ

]
=−

∫
k

∑
σ

(iω − ξσ(k)) ψ̄σ(k)ψσ(k)

=−
∫
k,k′

∑
σ,σ′

(iω − ξσ(k)) δ
(
k − k′

)
δσ,σ′ × ψ̄σ(k)ψσ′(k′)

=−
∫
k,k′

∑
σ,σ′

(iω − ξσ(k)) δ
(
k − k′

)
δσ,σ′ × ψ̄σ(k)ψσ′(k′)

=−
∫
k,k′

∑
σ,σ′

(
G0
σ(k)

)(−1)
δ
(
k − k′

)
δσ,σ′ × ψ̄σ(k)ψσ′(k′)

=−
∑∫
K,K′

(
G0(K,K ′)

)(−1) × ψ̄(K)ψ(K ′)

=−
(
ψ̄, (G0)(−1)ψ

)
, (2.1)

where we introduced a superindexK = (k, ω, σ)with the respective integration/summation∑∫ K =∫
k

∑
σ = A−1

BZ T
∫
dk
∑

ω

∑
σ . Furthermore we defined the bare propagator:

G0(K,K ′) =
1

iω − ξσ(k)
δ(k − k′)× δσ,σ′ =: G0(K)× δ(K −K ′) (2.2)

and adopted the notation
(
ψ̄, . . . ψ

)
for the generalmatrixmultiplication and integration/summation

over all indices. Starting form the establishment of this notation, we define the interaction part of the
action SI :

S
[
ψ̄, ψ

]
= −

(
ψ̄, (G0)(−1)ψ

)
+ SI

[
ψ̄, ψ

]
, (2.3)

SI
[
ψ̄, ψ

]
=

∑∫
K′

1,K
′
2,K1,K2

V (K ′
1,K

′
2,K1,K2)× ψ̄(K ′

1)ψ̄(K
′
2)ψ(K2)ψ(K1), (2.4)

where V (K ′
1,K

′
2,K1,K2) is an arbitrary interaction strength. Notice that the order of indices in the

fields ψ are not in the same order as in the interaction strength which is indeed intended. This choice
was made such that the diagrams emerging in this section have a clearer structure later.

Flow equation for the Schwinger functional

At first, we want to treat the Schwinger functional [76] with new fermionic source fields η, η̄:

G[η̄, η] = − log
∫
D(ψ̄, ψ) e−S[ψ̄,ψ]+(η̄,ψ)+(ψ̄,η). (2.5)

All connected diagrams can be obtained from this functional by taking the derivative as follows:

G(2m)
(
K ′

1, . . .K
′
m;K

′
m . . .K1

)
=− 〈ψ̄1, . . . ψ̄m;ψm . . . ψ1〉c

=(−1)m
δ2mG[η̄, η]

δη̄(K1) . . . δη̄(Km)δη(K ′
m) . . . δη(K

′
1)

∣∣∣
η,η̄=0

. (2.6)
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At this point, we want to introduce the scale parameter Λ to the functional, i.e. G → GΛ. The effect
of the scale on the Schwinger functional should be defined as follows:

GΛ =

{
G Λ → 0

0 Λ → ∞

i.e. restoring the original functional for vanishing scale parameter and going to zero for the infinite
large scales to employ a well behaved boundary condition for the emerging differential equation. This
is implemented by equipping the bare propagator with the scale as follows:

(
G0,Λ

)(−1)
=

{(
G0
)(−1)

Λ → 0

∞ Λ → ∞
.

The correct behaviour of this implementation is obvious for Λ → 0, while for Λ → ∞ one is refer-
enced to the path integral and acknowledging that

(
G0,Λ

)(−1) behaves as an infinite mass term for
Λ → ∞. The introduction of this scale is often implemented by the multiplication of the bare prop-
agator with a suitable cutoff function. One example is given by a Heavyside function regarding the
momenta k:

G0,Λ(K) = Θ(|ξσ(k)| − Λ)
1

iω − ξσ(k)
. (2.7)

Here it also becomes apparent that the cutoff function also regularizes infrared divergencies occuring
for ω, ξ(k) → 0. The cutoff function can be implemented in various forms (momentum, Matsubara,
temperature) and shapes (smooth or sharp) which will be discussed in more detail in section 2.2.4.
The exact choice of the regulator scheme is not important for the general discussion of this section.

We will now derive a differential equation for the Schwinger functional. Starting from the ultravi-
olet regime Λ → ∞, this differential equation establishes a smooth interpolation to the infrared
regime Λ → 0. The derivation is done by taking the scale derivative of the Schwinger functional and
calculating in a straight-foward manner:

d

dΛ
GΛ = −eGΛ

(
d

dΛ
e−GΛ

)
= −eGΛ d

dΛ

∫
D(ψ̄, ψ)e−S

Λ+(η̄,ψ)+(ψ̄,η)

= −eGΛ

∫
D(ψ̄, ψ)

(
− d

dΛ
SΛ
0

)
e−S

Λ+(η̄,ψ)+(ψ̄,η)

= eG
Λ

∫
D(ψ̄, ψ)

∑∫
K,K′

(
Ġ0,Λ(K,K ′)

)(−1)
ψ̄(K)ψ(K ′)

 e−S
Λ+(η̄,ψ)+(ψ̄,η)

= eG
Λ

∫
D(ψ̄, ψ)

∑∫
K,K′

(
Ġ0,Λ(K,K ′)

)(−1) δ

δη(K)

δ

δη̄(K ′)

 e−S
Λ+(η̄,ψ)+(ψ̄,η)

= eG
Λ

∑∫
K,K′

(
Ġ0,Λ(K,K ′)

)(−1) δ

δη(K)

δ

δη̄(K ′)

∫ D(ψ̄, ψ)e−S
Λ+(η̄,ψ)+(ψ̄,η)

= eG
Λ

∑∫
K,K′

(
Ġ0,Λ(K,K ′)

)(−1) δ

δη(K)

δ

δη̄(K ′)

 e−GΛ
. (2.8)
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Where we denoted for brevity the scale derivative acting on the inverse bare propagator as:(
Ġ0,Λ(K,K ′)

)(−1)
=

d

dΛ

(
G0(K,K ′)

)(−1)

Proceeding from this, the flow equation is derived by performing the two remnant derivatives respec-
tive to the fields η, η̄:

δ

δη(K)

δ

δη̄(K ′)
e−GΛ

=

(
−δ2G

δη(K)δη̄(K ′)
+

−δGΛ

δη(K)

−δGΛ

δη̄(K ′)

)
e−GΛ

, (2.9)

such that by plugging Eq. (2.9) into Eq. (2.8) we finally reach:

d

dΛ
GΛ =

∑∫
K,K′

((
Ġ0,Λ(K,K ′)

)(−1) −δ2G
δη(K)δη̄(K ′)

+
(
Ġ0,Λ(K,K ′)

)(−1) −δGΛ

δη(K)

−δGΛ

δη̄(K ′)

)

=

∑∫
K,K′

(
Ġ0,Λ(K,K ′)

)(−1) −δ2G
δη(K)δη̄(K ′)

+

(
δGΛ

δη
,
(
Ġ0,Λ

)(−1) δGΛ

δη̄

)
. (2.10)

Which is the final form of the flow equation for the Schwinger functional. As mentioned before, we
will just use Eq. (2.10) as an identity for the derivation of the flow for the effective action.2

Flow equation for the effective action

Now, we are moving over to the flow equation of the effective action which will be much more prac-
tical and interpretable for our purposes.

While the Schwinger functional generates all connected Green’s functions, the effective action will
generate all 1PI diagrams. The effective action is obtained by the Schwinger functional via a Legendre
transformation. Since we already equipped the Schwinger functional with a scale, the effective action
will also inherit a scale dependence:

ΓΛ
[
ψ̄, ψ

]
= G[η̄Λ, ηΛ] +

(
η̄Λ, ψ

)
+
(
ψ̄, ηΛ

)
, (2.11)

where the scale originates from the Legendre transformation, since ηΛ and η̄Λ are functions of ψ̄, ψ
as:

ψ(K) = −δG[η̄
Λ, ηΛ]

δη̄Λ(K ′)
, ψ̄(K ′) =

δG[η̄Λ, ηΛ]
δηΛ(K)

. (2.12)

The 1PI diagrams Γ(2m) with 2m legs are finally generated by the effective action by also taking the
derivative with respect to the fields:

ΓΛ,(2m)
(
K ′

1 . . .K
′
m,Km . . .K1

)
=

δ(2m)ΓΛ
[
ψ̄, ψ

]
δψ̄(K ′

1) . . . δψ̄(K
′
m)δψ(Km) . . . δψ(K1)

. (2.13)

From the definition of the effective action Eq. (2.12) it holds:

ΓΛ,(2) =

(
δ2ΓΛ

δψ̄(K′)δψ(K′)
− δ2ΓΛ

δψ̄(K′)δψ̄(K)

− δ2ΓΛ

δψ(K′)δψ(K)
δ2ΓΛ

δψ(K′)δψ̄(K)

)
= −

(
δ2GΛ

δη̄(K)δη(K′) − δ2GΛ

δη̄(K)δη̄(K′)

− δ2GΛ

δη(K)δη(K′)
δ2GΛ

δη(K)δη̄(K′)

)−1

=
(
GΛ,(2)

)−1
.

(2.14)

2If one still desires to investigate FRGmethods based on the Schwinger functional, we point to the reviews [6, 24], where
this flavour of FRG is known under the name Polchinski RG or Exact RG.
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Stating from the definition, we begin deriving the flow equation for the effective action again by taking
the scale derivative:

d

dΛ
ΓΛ
[
ψ̄, ψ

]
=

d

dΛ

(
G[η̄Λ, ηΛ] +

(
η̄Λ, ψ

)
+
(
ψ̄, ηΛ

))
, (2.15)

where after application of the chain rule to the Schwinger functional, the additional terms cancel such
that:

d

dΛ
ΓΛ
[
ψ̄, ψ

]
=

∂

∂Λ
G[η̄Λ, ηΛ] |η̄Λ,ηΛ fixed . (2.16)

For the right hand side we derived Eq. (2.10) before. Inserting this expression and further manipula-
tions yields:

d

dΛ
ΓΛ =

∑∫
K,K′

(
Ġ0,Λ(K,K ′)

)(−1) −δ2Ġ
δη(K)δη̄(K ′)

+

(
δGΛ

δη
,
(
Ġ0,Λ

)(−1) δGΛ

δη̄

)

= −1

2
Tr
((

Ġ0,Λ
)(−1) (

ΓΛ,(2)
)−1

)
−
(
ψ̄,
(
Ġ0,Λ

)(−1)
ψ

)
(2.17)

For the second line we used the definitions of the Legendre transformation Eq. (2.12) and the identity
Eq. (2.14). Furthermore we introduced:

(
Ġ0,Λ

)(−1)
= diag

((
Ġ0,Λ

)(−1)
,−
(
Ġ0,Λ

)(−1),T
)
. (2.18)

By reframing the equation Eq. (2.17) by deriving the flow for the difference between scale dependent
and original inverse bare propagator: RΛ =

(
G0,Λ

)(−1) −
(
G0
)(−1) (see Ellwanger and Wetterich

[26] for details), one can derive the interpretable boundary conditions:

ΓΛ =

{
Γ : Λ → 0

S : Λ → ΛUV
.

Now, the flow equation Eq. (2.17) interpolates smoothly between two systems. Starting at the ultravi-
olet cutoff as an initial scale where the actionS is defined on, the flow equation describes an evolution
in the space of the functionals which eventually leads to the effective action Γ. This implements the
idea of the FRG as a differential equation analogon for the path integral. The initial condition S cor-
responds to a path integral which has not been calculated yet: no quantum fluctuations are included
to the action, since the integration is not performed. The final result of the differential equation is the
effective action Γ, resembling the full execution of the path integral calculation (although technically
Z still has to be converted to Γ). The intriguing mechanism of the FRG consists of what happens in
between these two extreme cases: instead of actually calculating the path integral, the different quan-
tum fluctuations - which would be included by the path integral - are accounted for scale by scale, by
solving the flow equation Eq. (2.17).

The form of the derived flow equation is still exact at this point and can be thought of as a reformulation
of the basis object of quantum field theory. Nevertheless, the complex form of this equation does not
allow for a straightforward solution right away. To derive a feasible scheme allowing for solving the
flow equation, we will now introduce the expansion of the effective action in terms of vertices.
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Vertex expansion

For the vertex expansion, the effective action is expanded with respect to the fields as:

ΓΛ
[
ψ̄, ψ

]
=

∞∑
m=0

A(2m)
[
ψ̄, ψ

]
, (2.19)

A(2m)
[
ψ̄, ψ

]
=

(−1)m

(m!)2

∑
K1,...Km

K′
1,...K

′
m

Γ(2m),Λ(K1, . . .Km,K
′
1, . . .K

′
m)×

¯ψ(K ′
1) . . .

¯ψ(K ′
m)ψ(Km) . . . ψ(K1), (2.20)

such that the effective action is decomposed in terms of 1PI diagrams of different orders. The awkward
expression in Eq. (2.17) is the inverse of the second variation of the effective action. Consequently, it
is useful to isolate the field-independent part of this object. For that purpose, we construct the object
ΣΛ containing contributions of quadratic order in fields or higher:

ΣΛ = −ΓΛ,(2) +
(
GΛ
)−1 (2.21)

whereGΛ = diag
(
GΛ,−

(
GΛ
)T). By a rearrangement of the terms we arrive at:(

ΓΛ,(2)
)(−1)

=
(
(GΛ)(−1) −ΣΛ

)−1
=
(
1−GΛΣΛ

)−1
GΛ, (2.22)

Ultimately, we want to exchange the problematic object in the flow equation (2.17) by an expansion.
This expansion is done in the manner of a geometric series:(

ΓΛ,(2)
)(−1)

=
(
1−GΛΣΛ

)−1
GΛ

=
∞∑
i=0

(
GΛΣΛ

)i
GΛ

=
(
1+GΛΣΛ +GΛΣΛGΛΣΛ + . . .

)
GΛ

= GΛ
(
1+ΣΛGΛ +ΣΛGΛΣΛGΛ + . . .

)
(2.23)

By obtaining this expansion, the flow equation (Eq. (2.17)) can now be cast into the following form:

d

dΛ
ΓΛ = −1

2
Tr
(
Ġ0,Λ

(
ΓΛ,(2)

)−1
)
−
(
ψ̄,
(
Ġ0,Λ

)(−1)
ψ

)
= −1

2
Tr
(
Ġ0,ΛGΛ

(
1+ΣΛGΛ +ΣΛGΛΣΛGΛ + . . .

))
−
(
ψ̄,
(
Ġ0,Λ

)(−1)
ψ

)
= −1

2
Tr
(
Ġ0,ΛGΛ

)
−
(
ψ̄,
(
Ġ0,Λ

)(−1)
ψ

)
+

1

2
Tr
(
SΛ
(
ΣΛ +ΣΛGΛΣΛ +ΣΛGΛΣΛGΛΣΛ + . . .

))
. (2.24)

Where we defined the single-scale propagator:

SΛ = −GΛ
(
Ġ0,Λ

)(−1)
GΛ (2.25)

SΛ = −GΛ
(
Ġ0,Λ

)−1
GΛ =

d

dΛ
GΛ
∣∣∣
ΣΛfixed

(2.26)(
GΛ
)−1

=
(
G0,Λ

)−1 − ΣΛ. (2.27)

In the last line we related the self-energy ΣΛ to the full propagator via the Dyson equation. Now,
Eq. (2.24) serves as new form of the flow equation.
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Hierarch of flow equations

Thefinal step is nowdone by expressing the effective actionEq. (2.24) by the vertex expansionEq. (2.19)
and compare coefficients of the expressions on both sides. Eventually, for every 1PI diagramwith 2m
legs in Eq. (2.22) we can derive a single flow equation. Explicitly for m = 1 and m = 2 this will
result into:

d

dΛ
ΣΛ(K ′,K) =

∑∫
P,P ′

SΛ(P, P ′)Γ(4),Λ(K ′, P ′,K, P ) (2.28)

d

dΛ
Γ(4),Λ(K ′

1,K
′
2,K1,K2) =

∑∫
P1,P ′

1

∑∫
P2,P ′

2

GΛ(P1, P
′
1)S

Λ(P2, P
′
2)

+
[
Γ(4),Λ(K ′

1,K
′
2, P1, P2)× Γ(4),Λ(P ′

1, P
′
2,K1,K2)

]
−
[
Γ(4),Λ(K ′

1, P
′
2,K1, P1)× Γ(4),Λ(P ′

1,K
′
2, P2,K2) + (P1 ↔ P2, P

′
1 ↔ P ′

2)
]

+
[
Γ(4),Λ(K ′

2, P
′
2,K1, P1)× Γ(4),Λ(P ′

1,K
′
1, P2,K2) + (P1 ↔ P2, P

′
1 ↔ P ′

2)
]

−
∑∫
P,P ′

SΛ(P, P ′)Γ(6),Λ(K ′
1,K

′
2, P

′,K1,K2, P ). (2.29)

At this point we want to give a brief précis of the presented derivation.

• We exchanged performing the path integral by solving a differential equation for the scale de-
pendent effective action ΓΛ. This objects interpolates between the microscopic action S =
ΓΛ=ΛUV and the full effective action Γ = ΓΛ=0. Therefore, the FRG flow can be understood
as a trajectory in an abstract theory space which indicates the value of the components of the
evolving functional, where the starting point is S and the end point is Γ, (see Fig. 2.2 a). We
can understand the derived flow equation Eq. (2.24) as a reformulation of the path integral and
the expression is up to this point still exact.

• By the means of the vertex expansion, we were able to derive for every 1PI diagram of arbitrary
order a dedicated flow equation. Whilewe only presented two of them explicitly (it will become
apparent in the next section that we do not need more diagrams for our description), a simple
set of rules directly stems from the form of the general flow equation Eq. (2.24). The trace leads
to a one-loop structure on the right hand side of a flow equation. Therefore, the flow equation
of a 1PI diagramΓ(2m),Λ is given by all constructed diagrams which have 2m external legs and
only include one closed loop. In addition, one of the propagators connecting these diagrams
has to be the single-scale propagator SΛ. A selection of flow diagrams is displayed in Fig. 2.2
b.

• By these rules, it is obvious that the flow equation for Γ(2m),Λ will always also depend on the
diagram Γ(2m+2),Λ by directly forming a tadpole diagram on the right hand side. Therefore,
we are confronted with a hierarchy for a tower of coupled differential equations which is not
closed. Eventually we will have to employ a suitable truncation to frame the flow equations
solvable.

2.1.2 Truncation

Wewill now abolish the exactness of the derived flow equations by the implementation of a truncation
scheme which eventually leads to a numerically solvable system of differential equations. The used
truncation scheme includes three aspects:
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a) b)

+

+ +

Figure 2.2: FRG flow and diagram hierachy: a) Depiction of the FRG flow, connecting the microscop-
ical action S and ending in the full effective action Γ. The trajectory in theory space indicates how
the couplings of the general functional ΓΛ change while solving the flow equation. b) Diagrammatic
representation of the flow equations after employing the vertex expansion for the first three diagrams.
The right hand side of the diagrams match the external legs of the left hand side and always includes
exactly one closed loop and one single-scale propagator SΛ. Each diagram of order 2m will depend
on the diagram of the next order 2m + 2, indicated by the tadpole diagrams shown at first on the
respective right hand side.

• Wewill neglect all vertices withm > 2 such that the only class of diagrams, which will survive
in the truncation scheme, is the class of four-legged diagrams. The pragmatical reasoning to
implement this approximation is given by the fact that the aforementioned tower of differential
equations becomes capped such that only a finite set of differential equations have to be solved.
A justification of this approximation for weak and intermediate coupling regimes was given
by Salmhofer and Honerkamp [94] at the example of the m = 3 diagram. At initial scales,
diagrams of orderm = 3will be zero since no bare initial interaction is of this type. Diagrams
withm = 2 will grow slowly and and are still relatively small. The flow equation form = 3
diagrams depends in the order of three on m = 2 diagrams, leading to small increments of
these diagrams. The problematic regime is reached when diagrams of order m = 2 start to
diverge (i.e. are flowing to a strong coupling regime), causing also m = 3 contributions to
become large. Since we are going to stop the flow calculation later anyway when a divergency
sets on, we can therefore use this approximation scheme.

• Wewill neglect self-energy corrections and consequentially drop the flow equation d
dΛΣ

Λ. Nat-
urally, all occurring propagatorswhich connect diagrams in the flow equationswill then be bare
propagators. This approximation is applicable, as it has also be shown that the self-energy is
contributing to third order to them = 2 diagram [72]. Note that the truncation of higher order
diagrams and self-energy corrections may be valid in weak coupling applications, but becomes
much more delicate in terms of strong coupling applications [90, 53, 5]

• Finally, we will drop the external frequency dependence of the vertices, i.e. only the internal
Matsubara dependence of the bare propagators is includedwhich becomes a continuum for low
temperatures and will be the limit we are working in. It has been shown that the most singular
part of the vertex sits at zero Matsubara frequency [72] which was already foreshadowed by
the analysis of the bubbles in section 1which also inhabited this feature. Since we are interested
in many-body instabilities, i.e. divergencies of the vertex, this approximation is expedient for
our application.
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Figure 2.3: Remaining diagrams after application of truncation: All of the three diagram classes in
Eq.(2.31) consist of two vertices with four legs connected by the term ḂΛ(P1, P

′
1, P2, P

′
2) inhabiting

the single-scale propagator and the full propagator. The dot indicates the scale derivative d
dΛ . The

four-point vertex is for all three diagrams still the same object, the colours do only mark the different
diagram classes.

While this truncation (which we will call level-2 truncation) appears to be invasive, it has been suc-
cessfully demonstrated that competing orders in the context of the Hubbard model could be treated
in this approximation scheme [39, 115, 32]. Competition between unconventional superconductivity
and magnetism at van Hove filling could be captured for Hubbard models on the square [42], honey-
comb [55] and triangular lattice [41]. While the exactness is therefore lost at this point, it should be
highlighted that the substantial aspect of the flow equations (even in this truncated form) is given by
taking different types of diagrams into account on equal footing.

For further simplification, we slightly rewrite the remaining diagrams in Eq. (2.29). With the defi-
nition of the single-scale propagator Eq. (2.26), we employ3:

ḂΛ(P1, P
′
1, P2, P

′
2) =

d

dΛ
(GΛ(P1, P

′
1)G

Λ(P2, P
′
2))

=GΛ(P1, P
′
1)S

Λ(P2, P
′
2) + SΛ(P1, P

′
1)G

Λ(P2, P
′
2) (2.30)

Now, the flow Eq. (2.29) is cast into the following form:

d

dΛ
Γ(4),Λ(K ′

1,K
′
2,K1,K2) =

∑∫
P1,P ′

1

∑∫
P2,P ′

2

ḂΛ(P1, P
′
1, P2, P

′
2)

×

(
+

1

2

[
Γ(4),Λ(K ′

1,K
′
2, P1, P2)× Γ(4),Λ(P ′

1, P
′
2,K1,K2)

]
−

[
Γ(4),Λ(K ′

1, P
′
2,K1, P1)× Γ(4),Λ(P ′

1,K
′
2, P2,K2)

]
+

[
Γ(4),Λ(K ′

1, P
′
1, P2,K2)× Γ(4),Λ(P ′

2,K
′
2,K1, P1)

])
(2.31)

where for the first and third line we have to use the remnant of the Grassmann anti-symmetry. Pre-
cisely, this is the opportunity to switch the first two or last two arguments with the expense of an

3We still write this identity with the full propagator. We will install the reduction to the bare propagator due to the
absence of self-energy later.
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additional minus sign:

Γ(4),Λ(K ′
1,K

′
2,K1,K2) = −Γ(4),Λ(K ′

1,K
′
2,K2,K1)

= −Γ(4),Λ(K ′
2,K

′
1,K1,K2) = +Γ(4),Λ(K ′

2,K
′
1,K2,K1).

In the first line we also doubled the termGΛSΛ to cast this line into the desired form. Wewill see later
that each of these three diagrams will result into the description of a specific interaction type, namely
pairing/superconductivity, charge density and magnetism/spin density. For further simplifications
of Eq. (2.31) we will now take the symmetries of the system into account.

2.1.3 Symmetries

We will exploit the symmetries of the system to reduce the complexity of the flow equations. The
origin of these symmetries is delivered by the bare model. Since the symmetries should hold for the
complete FRG flow4, we can impose the following symmetry considerations for the flow equations.
Furthermore, there is of course the symmetry of the underlying triangular lattice. Indeed, we will not
use the lattice symmetries at this point. Instead these symmetries are exploited later when we derive
the truncated-unity approach. For brevity, we will state the consequences of the symmetries without
presenting the corresponding calculations, for a detailed look into this procedure we refer to [84].

Translation invariance

The translational invariance of the systemwith respect to imaginary time and real space results in the
conservation of Matsubara frequency and momentum respectively:

Γ(4),Λ(K ′
1,K

′
2,K1,K2) =Γ(4),Λ(K ′

1,K
′
2,K1,K2)× δ(K ′

1 +K ′
2 −K1 −K2)

=Γ(4),Λ(K ′
1,K

′
2,K1,K

′
1 +K ′

2 −K1)

=Γ(4),Λ(K ′
1,K

′
2,K1), (2.32)

where in the last line we dropped the last argument of the vertex which is meant as an implication of
the conservation.

SU(2)-invariance

In the presence of SU(2)-invariance for the spins we follow the construction presented in [94]. For
that purpose, the vertex is rewritten with explicit spin degrees of freedom:

Γ(4),Λ(K ′
1,K

′
2,K1,K2) = Γ

(4),Λ
σ′
1σ

′
2σ1σ1

(k′1, k
′
2, k1, k2). (2.33)

Then the decomposition for a SU(2)-invariant vertex is given by:

Γ
(4),Λ
σ′
1σ

′
2σ1σ2

(k′1, k
′
2, k1, k2) = V (4),Λ(k′1, k

′
2, k1, k2)×δσ′

1σ2
δσ′

2σ1
−Ṽ (4),Λ(k′1, k

′
2, k1, k2)×δσ′

1σ1
δσ′

2σ2
.

(2.34)
Indeed, it is sufficient to treat only one of the two emerging vertices V (4),Λ, Ṽ (4),Λ since it holds by
employing Grassmann anti-symmetry:

Γ
(4),Λ
σ′
1σ

′
2σ1σ2

(k′1, k
′
2, k1, k2) = −Γ

(4),Λ
σ′
1σ

′
2σ2σ1

(k′1, k
′
2, k2, k1)

= −V (4),Λ(k′1, k
′
2, k2, k1)× δσ′

1σ1
δσ′

2σ2

+ Ṽ (4),Λ(k′1, k
′
2, k2, k1)× δσ′

1σ2
δσ′

2σ1
. (2.35)

4Indeed, our scheme is not able to allow flows into regimes where symmetries are broken such that this statement is
valid. However, methods to employ also the possibility of flowing into phases with broken symmetries exist[95], but we
will refrain from these in this thesis.
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And concluding by comparison of coefficients regarding the spin Kronecker-δ:

V (4),Λ(k′1, k
′
2, k1, k2) = Ṽ (4),Λ(k′1, k

′
2, k2, k1). (2.36)

For a spin-invariant system we will therefore only explicitly solve the flow for the vertex V (4),Λ. This
vertex itself has no explicit spin-dependency anymore, but the symmetry expresses itself in the terms
of δ-functions which allows only for a specific set of contractions of two diagrams. Diagrammatically,
we will indicate this feature by implying that the spin degree of freedom is conserved along the edges
of the diagram, see Fig. 2.4 b.

2.1.4 Explicit flow equations

We will now derive the explicit flow equations for the three applications of this thesis by using the
presented symmetries. The flow equations for the spinless model and for the model with no SU(2)-
invariance will have the same structure regarding the emerging diagrams. The only aspect differenti-
ating these flow equations is the spin degree of freedom σ which is excluded in the superindexK for
the spinless application. We will now explicitly drop the external frequency dependence as already
mentioned in the truncation scheme. From the definition of the bare propagator Eq. (2.2) follows:

Ḃ(P1, P
′
1, P2, P

′
2) =

d

dΛ

(
G0,Λ(P1)G

0,Λ(P2)
)
× δ(P1 − P ′

1)δ(P2 − P ′
2), (2.37)

where we now also followed our truncation and replaced the full propagators by bare propagators.

Equations without SU(2)-invariance (Application B and C)

We will use the translational invariance Eq. (2.32) with the aforementioned notation for momentum
conservation. We already directly employ the approximation of dropping all external Matsubara fre-
quency dependencies:

Γ
(4),Λ
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2) → V Λ

σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1). (2.38)

Finally, by application of these expressions to Eq. (2.31) and using the momentum conservation to
shift around momentum indices, we arrive at:

d

dΛ
V Λ
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2) = τ

pp
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2)+τ

ph,d
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2)

+τ
ph,cr
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2)

(2.39)

τ
pp
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2) =

1

2

∫
p

∑
ν′1,ν

′
2,ν1,ν2

d

dΛ
[G0,Λ

ν′1,ν1
(iωp,p+ k′

1 + k′
2)G

0,Λ
ν′2,ν2

(−iωp,−p)]

×V Λ
σ′
1,σ

′
2,ν

′
1,ν

′
2
(k′

1,k
′
2,p+ k′

1 + k′
2)× V Λ

ν1,ν2,σ1,σ2(p+ k′
1 + k′

2,−p,k1) (2.40)

τ
ph,d
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2) = −

∫
p

∑
ν′1,ν

′
2,ν1,ν2

d

dΛ
[G0,Λ

ν′1,ν1
(iωp,p+ k′

1 − k1)G
0,Λ
ν2,ν′2

(iωp,p)]

×V Λ
σ′
1,ν

′
2,σ1,ν

′
1
(k′

1,p,k1)× V Λ
ν1,σ′

2,ν2,σ2
(p+ k′

1 − k1,k
′
2,p) (2.41)

τ
ph,cr
σ′
1,σ

′
2,σ1,σ2

(k′
1,k

′
2,k1,k2) = +

∫
p

∑
ν′1,ν

′
2,ν1,ν2

d

dΛ
[G0,Λ

ν′1,ν1
(iωp,p+ k′

1 − k2)G
0,Λ
ν2,ν′2

(iωp,p)]

×V Λ
σ′
1,ν

′
2,ν

′
1,σ2

(k′
1,p,p+ k′

1 − k2)× V Λ
ν1,σ′

2,σ1,ν2
(p+ k′

1 − k2,k
′
2,k1) (2.42)

where (as stated before) for a spinless system one only has to omit all spin indices σ, ν and the re-
spective sums. We remind the reader that the integral

∫
p describes the integration over momenta in

the Brillouin zone p and the Matsubara sum over frequencies ωp:
∫
p = A−1

BZT
∫
dp
∑

ωp
.
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Equations with SU(2)-invariance (Application A)

For the derivation of the SU(2)-invariant flow equation, we have invest an extra step. At first, we apply
the translational invariance Eq. (2.32) and spin invariance Eq. (2.34) to the vertex:

Γ
(4),Λ
σ′
1,σ

′
2,σ1,σ1

(k′
1,k

′
2,k1,k2) → V Λ(k′

1,k
′
2,k1)δσ′

1σ2
δσ′

2σ1
− V̄ Λ(k′

1,k
′
2,k1)δσ′

1σ1
δσ′

2σ2
, (2.43)

where (as stated before) it is sufficient to derive a flow equation for V Λ only. To proceed, we ex-
press the vertex on both sides of Eq. (2.31) by the new vertices after the application of the symmetries
Eq. (2.43). To derive the correct flow equation for V Λ, we have to sort the right hand side of the
Eq. (2.31) in terms of the spin Kronecker deltas δσ′

1σ2
δσ′

2σ1
to project all necessary terms to the flow

equation. The consequences of the SU(2)-invariance are twofold. At first, we will get different pref-
actors in contrast to the former derived flow equations. More substantively, the amount of possible
diagram contractions shrinks such that only specific classes of diagrams remain.

d

dΛ
V Λ(k′

1,k
′
2,k1,k2) = τpp(k′

1,k
′
2,k1,k2)+τ

ph,d(k′
1,k

′
2,k1,k2)

+τph,cr(k′
1,k

′
2,k1,k2) (2.44)

τpp(k′
1,k

′
2,k1,k2) =

∫
p

d

dΛ
[G0,Λ(iωp,p+ k′

1 + k′
2)G

0,Λ(−iωp,−p)]

×V Λ(k′
1,k

′
2,p+ k′

1 + k′
2)× V Λ(p+ k′

1 + k′
2,−p,k1), (2.45)

τph,d(k′
1,k

′
2,k1,k2) =

∫
p

d

dΛ
[G0,Λ(iωp,p+ k′

1 − k1)G
0,Λ(iωp,p)]

[V Λ(k′
1,p,p+ k′

1 − k1)× V Λ(p+ k′
1 − k1,k

′
2,p)

+V Λ(k′
1,p,k1)× V Λ(p+ k′

1 − k1,k
′
2,k2)

−2V Λ(k′
1,p,k1)× V Λ(p+ k′

1 − k1,k
′
2,p)], (2.46)

τph,cr(k′
1,k

′
2,k1,k2) =

∫
p

d

dΛ
[G0,Λ(iωp,p+ k′

1 − k2)G
0,Λ(iωp,p)]

×V Λ(k′
1,p,p+ k′

1 − k2)× V Λ(p+ k′
1 − k2,k

′
2,k1). (2.47)

Précis of section 2.1

• In this section, we defined the basic notions of the FRG method which exchanges the path in-
tegral of a quantum many-body system with a differential equation for the scale-dependent
effective action ΓΛ, namely Eq. (2.17).

• By expanding the effective action into orders of 1PI diagrams, wewere able to derive a hierarchy
of flow equations Eq. (2.29). This tower of equations is not closed and therefore not feasible for
a numerical implementation.

• We chose a truncation scheme, namely only keeping vertices of fourth order, neglecting self-
energy corrections and dropping the external frequency dependence. This procedure leads to
an actual solvable set of diagrams Eq. (2.31).
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a)

b)

Figure 2.4: Diagrammatic depiction of the flow equation for the four-legged vertex: a) Without
SU(2)-invariance, the outer indices are the momentum in the Brillouin zone k and the spin σ if the
model happens to be spinful. The diagrams of the flow equation on the right hand side will look
still similar to those in Fig. 2.2 where we omitted the dot for the derivative for brevity. b) Including
SU(2)-invariance, it is implied that the spin σ is conserved along the upper and lower edge of the
vertex, leaving only the momentum in the Brillouin zone k as an outer index. Therefore, only a subset
of diagrams will remain in contrast to a).

• Eventually by the inclusion of symmetries, we derived the final version of the flow equations
of the four-legged vertex. For a system without SU(2)-invariance, these equations are given
by Eqs. (2.40)-(2.42). For a system including SU(2)-invariance, the proper flow equations are
Eqs. (2.45)-(2.47). For a diagrammatic representation of these equations, we refer to Fig. 2.4.

• The three types of diagrams are now labeled as τpp,τph,cr and τph,d abbreviating particle-
particle, particle-hole crossed and particle-hole direct. These names refer to the fact that for
the first type of diagram (yellow) the vertices are connected by a particle-particle bubble, while
the other diagrams (blue/green) are connected by a particle-hole bubble (and a scale-derivative
d/dΛ). We encountered this feature already in section 1.1 while discussing the possible forma-
tion of instabilities. The crossed and direct names for the particle-hole diagrams stem from the
SU(2)-invariant flow equation and refer to the depiction of the two vertices.

• In both sets of equations we shifted the momenta around with the usage of momentum con-
servation such that a specific combination of momenta is carried by the propagators. This will
make the diagrams interpretable in a simpler way which we will see in the next section.

This derivation ends section 2.1. The key elements of this section are the flow equations Eqs. (2.40)-
(2.42) and Eqs. (2.45)-(2.47) from which we can now start doing numerical investigations. Effec-
tively, this approach can be boiled down to implementing a solver for the differential equation for
V Λ
σ′
1,σ

′
2,σ1,σ1

(k′
1,k

′
2,k1) or V Λ(k′

1,k
′
2,k1) respectively. In both cases, the amount of equations to

solve per step scales with N3
k , where Nk is the amount of chosen momenta k in the Brillouin zone.

This poses a numerical challenge, since even for a relatively small amount of momenta Nk ≈ 100
this will result to 1, 000, 000 equations to solve for each step. Indeed, an established scheme which
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was implemented for this flow equation is the so-called patching scheme [39, 115, 32] where the actual
sampling points in the Brillouin zone are chosen to be on the Fermi surface which should account for
the most important contributions to the flow equations. In the next section, we will derive a more re-
cent scheme for solving the flow equations, called the truncated-unity approach which will eventually
lead to a linear scaling in momentum instead of cubic scaling like in the patching scheme. This allows
for a higher momentum resolution where the discretization points are not restricted to be placed on
the Fermi surface.

Sidenote: The derived flow equations differ from these used in the publications [29, 30] by a global
sign. This global sign stems from the convention of how to write down the differential equation solver
for the derivative d

dΛ . We decided to do the derivation in this section as presented such that it is in
congruence with the standard literature. In section 2.3.4 we will treat this peculiar feature again in
more detail.
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2.2 The Truncated-Unity approach

In this section we will present and derive the Truncated-Unity Functional Renormalization Group
(TUFRG) [64, 40, 98] as an advanced scheme to treat the emerging FRG flow equations. The key
property of this approach is exchanging the three momentum arguments of the vertex by one very
specific momentum argument and two form factors, an idea which was initially proposed by Huse-
mann and Salmhofer [46]. The choice of the specific momentum for the parametrization is motivated
by the physical insights presented in the context of section 1.1, namely that the transfer momentum
of the particle-particle and particle-hole bubble is mainly responsible for the onset of an instability.
Since the other two momenta are then deemed as playing no crucial role for this formation, they
will consequently be expanded into form factors which can be reasonably truncated at a finite order.
Therefore, we will reach at a superior scaling for the flow equations in terms of momenta which is
only linear. This improvement opens up the possibility of including additional quantum numbers
(like spin,orbital or sublattice indices) in the FRG flow. The inclusion of these quantum numbers
would frame the application in previous schemes extraordinary challenging, since the additional nu-
merical cost of dealing with these quantum numbers in addition to the already poor cubic scaling in
momenta results into an unfavourable high-dimensional object.

Wewill derive and discuss the TUFRG in context of the SU(2)-invariant flow equations here, although
the majority of the discussion also applies to the other flow equations presented in section 2.1. The
respective TUFRG equations for each case are presented in the application sections later as a summary.

2.2.1 Channel decomposition

As a first step, we want to motivate the decomposition of the FRG flow into specific physical channels
[46]. This is a crucial step for developing the TUFRG method, although it should be mentioned that
this decomposition is not exclusive for the TUFRG, but can also be applied in other schemes [25, 11].
Previously, we derived the flow equations for a SU(2)-invariant interaction where we also imposed
translation invariance. Since we truncated all interaction vertices with six legs or more, the vertex
expansion Eq. (2.19) for interactions does only consist of the terms:

ΓΛ
V =

1

2

∫
k1,k2,k3,k4

V Λ(k1, k2, k3, k4)δ(k1 + k2 − k3 − k4)
∑
σ,σ′

ψ̄σ(k1)ψ̄σ′(k2)ψσ′(k4)ψσ(k3),

(2.48)
where we also directly applied mentioned symmetries. Note that we changed the notation here to be
consistent with the publications/applications later. The four momenta are therefore relabeled:

(k′1, k
′
2, k1, k2) → (k1, k2, k3, k4)

We will inspect the flow equations Eqs. (2.45)-(2.47) in perspective of this interaction to receive a
physical interpretation of the diagrams.

Analysis of the particle-particle diagram

We will start with the particle-particle contribution:

τpp(k1,k2,k3,k4) =

∫
p

d

dΛ
[G0,Λ(iωp,p+ k1 + k2)G

0,Λ(−iωp,−p)]

×V Λ(k1,k2,p+ k1 + k2)× V Λ(p+ k1 + k2,−p,k3).

For a first hint of a physical interpretation for this diagram class we notice that the combination of bare
propagators equals the definition of the particle-particle bubble as described in section 1, Eq. (1.11),
with transfer momentum q = k1+k2. In this section we showed that the occurrence of an instability

62



2.2. THE TRUNCATED-UNITY APPROACH

towards superconductivity is linked to the divergence of this exact bubble which in turn is sensitive
to the value of the transfer momentum q. A divergence of this bubble will therefore also manifest
in a divergence of the diagram τpp due to the singular contributions such that we suspect that this
diagram effectively describes the contributions towards pairing interactions which are generated in
the FRG flow.

For a more detailed investigation we will now treat at a typical pairing interaction and try to relate it
to Eq. (2.48). Starting with:

SP [ψ̄, ψ] =

∫
q,k,k′

ΦP (q; k, k′)
∑
σ,σ′

ψ̄σ(q + k)ψ̄σ′(−k)ψσ′(−k′)ψσ(q + k′) (2.49)

where this pairing interaction was constructed after the BCS-like interactions described in section 1.2.
We also include the symmetries used for Eq. (2.48). In addition, we allow for a general transfer mo-
mentum q. This particular momentum is notated at first position in the pairing interaction strength
ΦP (q; k, k′) to highlight its importance. We will relate this pairing interaction to Eq. (2.48) by explic-
itly shifting and renaming the momenta:

q + k =k1

−k =k2

q + k′ =k3

−k′ = k4 =k1 + k2 − k3

which in reciprocal relation indicates:

q =k1 + k2

k =− k2

k′ =− k4

Then the proposed interaction vertex has the new form:

SP [ψ̄, ψ] =

∫
k1,k2,k3,k4

ΦP (k1 + k2;−k2,−k4)
∑
σ,σ′

ψ̄σ(k1)ψ̄σ′(k2)ψσ′(k4)ψσ(k1 + k2 − k4).

(2.50)
This expressionpossesses the same structure like the general effective action in our approachEq. (2.48)
in terms of Grassmann fields. Also, the transfer momentum of this interaction term happens to be
k1 + k2 (the first argument of ΦP ) which also aligns with the transfer momentum in the particle-
particle diagram τpp. Therefore, it is indeed reasonable to interpret this diagram as the contributions
to the pairing vertex where q = k1 + k2 is the crucial transfer momentum which determines the
singular behaviour of the particle-particle bubble.

We will repeat this analysis for the other diagrams.

Analysis of the direct particle-hole diagram

The two remaining diagram classes τph,d and τph,cr do both include the definition of the particle-hole
bubble, but with two distinct transfer momenta. To gain insight about the physical interpretation of
both diagrams, wewill propose twodifferent interaction types and relate each to one diagram. Wewill
start with the τph,d diagram class and propose a charge densitywave (CDW).ACDWdescribes a state
of order where charge modulates through a lattice with modulation vector q. Similar to the analysis
in section 1.1, where the transfer momentum of the spin density wave (SDW) (i.e. the nesting vector)
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2.2. THE TRUNCATED-UNITY APPROACH

corresponded to the modulation vector of the wave, we assume a similar structure for the CDW. To
construct a general CDW interaction, we start with the Hamiltonian:

H =
∑
k,k′

n†k,qnk′,q (2.51)

nk,q =
∑
k,σ

c†k+q,σck,σ. (2.52)

In field theory, this can then be translated to the action:

SD[ψ̄, ψ] =

∫
q,k,k′

ΦD(q; k, k′)
∑
σ,σ′

ψ̄σ(q + k)ψ̄σ′(k′)ψσ′(q + k′)ψσ(k), (2.53)

where we includedΦD(q; k, k′) as interaction strength. Again, we impose the notation to keep track
of the transfer momentum q as first argument. We will shift the momenta:

q + k =k1

k′ =k2

k =k3

q + k′ = k4 =k1 + k2 − k3

and in reciprocal relation:

q = k1 − k3

k = k3

k′ = k2

such that:

SD[ψ̄, ψ] =

∫
k1,k2,k3,k4

δ(k1+k2−k3−k4)ΦD(k1−k3; k3, k2)
∑
σ,σ′

ψ̄σ(k1)ψ̄σ′(k2)ψσ′(k4)ψσ(k3).

(2.54)
Therefore, the transfer momentum of the CDW interaction given by q = k1 − k3 does indeed match
the transfer momentum of the particle-hole bubble in the direct particle-hole diagram τph,d and we
will interpret this diagram class the contributions towards a density-density interactionwhich favours
the onset of a CDW instability.

Analysis of the crossed particle-hole diagram

The last diagram does also include a particle-hole bubble, but with another transfer momentum. We
will a propose a SDW as possible interpretation for this diagram. Starting with the Hamiltonian of a
SDW with transfer momentum q:

H =
∑
p,k

S⃗†
p,q · S⃗k,q, (2.55)

S⃗k,q =
1

2

∑
α,β

c†k+q,α · σ⃗αβ · ck,β , (2.56)

where σ⃗ is the vector of Pauli matrices. Using the identity:

σ⃗†αβ · σ⃗α′β′ = 2δα,β′δα′,β − δα,βδα′,β′ , (2.57)
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we can cast the Hamiltonian into the form:

H =
1

2

∑
p,k

∑
α,β

c†p,αcp+q,βc
†
k+q,αck,β

−1

4

∑
p,k

∑
α,β

c†p,αcp+q,αc
†
k+q,βck,β . (2.58)

The second term will again result into a density-density term which was already captured by the
direct particle-particle diagram. So, we focus on the first term describing the magnetic interaction
only. Using the field theoretical description and translating the Hamiltonian to an action:

SC [ψ̄, ψ] =

∫
q,k,k′

ΦC(q; k, k′)
∑
σ,σ′

ψ̄σ(q + k)ψ̄σ′(k′)ψσ′(k)ψσ(q + k′) (2.59)

with interaction strength ΦC(q; k, k′). We employ again a shift to the momenta and reach:

q + k = k1

k′ = k2

q + k′ = k3

k = k4

and in reciprocal relation:

k = k1 − k4

k = k4

k′ = k2.

Such that the rewritten action reads:

SC [ψ̄, ψ] =

∫
k1,k2,k3,k4

δ(k1+k2−k3−k4)ΦC(k1−k4; k4, k2)
∑
σ,σ′

ψ̄σ(k1)ψ̄σ′(k2)ψσ′(k4)ψσ(k3).

(2.60)
Since the crossed particle-hole diagram class τph,cr includes a particle-hole bubble with transfer mo-
mentum q = k1 − k4, we will relate it to the possibility of a magnetic instability. Interestingly, it
directly shows that a substantial amount of growth in a magnetic interaction also leads to contribu-
tions to the density-density channel as expected for SDWs.

The analysis of three different diagrams of the flow equations for the systems leads us to the im-
plementation of the channel decomposition, meaning that from the general flow equation:

d

dΛ
V Λ = τpp + τd + τph,cr, (2.61)

we aremotivated to decomposeV Λ into channels such that the three discussed interactions are visible
in each channel. For that purpose, we use the parametrization scheme already derived in the anal-
ysis of the three diagram classes and impose for our flow equations (where we directly omitted the
frequency dependence):

V Λ(k1,k2,k3,k4) = V 0(k1,k2,k3,k4)

+ ΦP,Λ(k1 + k2;−k2,−k4)

+ ΦD,Λ(k1 − k3;k3,k2)

+ ΦC,Λ(k1 − k4;k4,k2) (2.62)
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Figure 2.5: Channel decomposition of V Λ: By the analysis of the diagrams, the vertex V Λ is decom-
posed into three channels ΦX,Λ withX = P,D,C . The transfer momentum qX and the other two
momenta kX , k′X are given in a summary table in the text.

where V 0,Λ accounts for initial conditions as seen later. All three interaction channels ΦX,Λ, X =
P,D,C are now also scale dependent. One can check the correctness of this decomposition by plug-
ging Eq. (2.62) into Eq. (2.48) where it becomes apparent that the three aforementioned interaction
types are reproduced. By taking the derivative of Eq. (2.62), we distribute the scale derivative on the
three channels and impose that these objects only depend on their specific diagram class:

d

dΛ
ΦP,Λ(k1 + k2;−k2,−k4) = τpp(k1,k2,k3,k4) (2.63)

d

dΛ
ΦD,Λ(k1 − k3;k3,k2) = τph,d(k1,k2,k3,k4) (2.64)

d

dΛ
ΦC,Λ(k1 − k4;k4,k2) = τph,cr(k1,k2,k3,k4) (2.65)

The channel decomposition can be summarized as:

ChannelX P D C

Interaction type Pairing Density Magnetic
Transfer momentum qX k1 + k2 k1 − k3 k1 − k4

Momentum kX −k2 k3 k4

Momentum k′X −k4 k2 k2

Flow contribution τpp τph,d τph,cr

2.2.2 Derivation

We will now derive the TUFRG flow equations. As laid out before, the transfer momentum q is of
higher relevance, since its value determines the possible onset of an instability. Therefore, we want to
keep track of this momentum and expand the other two momenta k,k′ into form factors:

ΦX,Λ(q;k,k′) =
∑
l,l′

X l,l′(q)× f∗l (k)fl′(k
′) (2.66)

X l,l′(q) =

∫
k,k′

ΦX,Λ(q,k,k′)× fl(k)f
∗
l′(k

′) (2.67)

where the momentum integral includes the normalization with respect to the Brillouin zone,
∫
k =

A−1
BZ
∫
dk. There are several choices for selecting a set of form factors fl(k)which only have to fulfill

a unity condition:

δ(p− k) =
∑
l

f∗l (p)fl(k) (2.68)

δl,l′ =

∫
k
fl(k)f

∗
l′(k). (2.69)
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Declaring our specific choice of form factors later, the derivation is kept general for now. We will
guide through the derivation of the TUFRG equation only for the particle-particle channel now, since
the derivation for the other two channels work analogously. The general strategy is as follows: we
will derive a flow equation for the form factor dependent channels X l,l′(q) by using the channel
decomposition Eq. (2.63). For that purpose, we will use the insertion of unities expressed by form
factors Eq. (2.68). For the particle-particle diagram, we start therefore by taking the derivative of
Eq. (2.67) with respect to the flow parameter Λ:

d

dΛ
P l,l

′
(q) =

∫
k,k′

d

dΛ
ΦP,Λ(q;k,k′)× fl(k)f

∗
l′(k

′). (2.70)

By the channel decomposition Eq. (2.63) , the derivative of the ΦP,Λ channel can be exchanged with
the particle-particle diagram τpp. Adjusting the respective arguments eventually leads to:

d

dΛ
ΦP,Λ(q,k,k′) = τpp(q + k,−k, q + k′,−k′)

=

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(−iωp,−p)

]
× V Λ(q + k,−k, q + p)

× V Λ(q + p,−p, q + k′). (2.71)

At this point, we are going to decouple the vertices momentum-wise from the bubble by including a
δ-function for the connecting momentum p:

d

dΛ
ΦP,Λ(q;k,k′) = τpp(q + k,−k, q + k′,−k′)

=

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(−iωp,−p)

]
×
∫
k̃
V Λ(q + k,−k, q + k̃)× δ(k̃ − p)

×
∫
k̃′
V Λ(q + p,−k̃′, q + k′)× δ(p− k̃′). (2.72)

Now the two δ-functions are expressed via form factors Eq. (2.68):

d

dΛ
ΦP,Λ(q,k,k′) = τpp(q + k,−k, q + k′,−k′)

=

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(−iωp,−p)

]
×
∫
k̃
V Λ(q + k,−k, q + k̃)×

∑
l1

f∗l1(k̃)fl1(p)

×
∫
k̃′
V Λ(q + p,−k̃′, q + k′)×

∑
l2

f∗l2(p)fl2(k̃
′). (2.73)

A last rearrangement yields:

d

dΛ
ΦP,Λ(q,k,k′) = τpp(q + k,−k, q + k′,−k′)

=
∑
l1,l2

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(−iωp,−p)

]
fl1(p)f

∗
l2(p)

×
∫
k̃
V Λ(q + k,−k, q + k̃)× f∗l1(k̃)

×
∫
k̃′
V Λ(q + p,−k̃′, q + k′)× fl2(k̃

′). (2.74)
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The final step for the derivation consists of plugging expression Eq. (2.74) back into Eq. (2.70) which
(after a shifting around the expressions) results into:

d

dΛ
P l,l

′
(q) =

=
∑
l1,l2

{
∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(−iωp,−p)

]
fl1(p)f

∗
l2(p)

×
∫
k,k̃

V Λ(q + k,−k, q + k̃)× fl(k)f
∗
l1(k̃)

×
∫
k̃′,k′

V Λ(q + p,−k̃′, q + k′)× fl2(k̃
′)f∗l′(k

′)

}
. (2.75)

Since the length of this equation is a bit unwieldy, we will cast it into a more concise form:

d

dΛ
P l,l

′
(q) =

∑
l1,l2

V P
l,l1(q)Ḃ

−
l1,l2

(q)V P
l′,l2(q) (2.76)

where we defined:

Ḃ−
l,l′(q) =

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(−iωp,−p)

]
fl(p)f

∗
l′(p), (2.77)

V P
l,l′(q) =

∫
k,k′

V Λ(q + k,−k, q + k′)× fl(k)f
∗
l′(k

′). (2.78)

In a complete analogous way, we can repeat this procedure for the particle-hole diagrams, resulting
into:

d

dΛ
Dl,l′(q) =

∑
l1,l2

[
V C
l,l1(q)Ḃ

+
l1,l2

(q)V D
l′,l2(q) + V D

l,l1(q)Ḃ
+
l1,l2

(q)V C
l′,l2(q)

− 2V D
l,l1(q)Ḃ

+
l1,l2

(q)V D
l′,l2(q)

]
, (2.79)

d

dΛ
C l,l

′
(q) =

∑
l1,l2

V C
l,l1(q)Ḃ

+
l1,l2

(q)V C
l′,l2(q), (2.80)

where we respectively defined:

Ḃ+
l,l′(q) =

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(iωp,p)

]
fl(p)f

∗
l′(p), (2.81)

V D
l,l′(q) =

∫
k,k′

V Λ(q + k,k′,k)× fl(k)f
∗
l′(k

′), (2.82)

V C
l,l′(q) =

∫
k,k′

V Λ(q + k,k′, q + k′)× fl(k)f
∗
l′(k

′). (2.83)

Wewill callV X
l,l′(q) the cross-channel projections of the respective channels and Ḃ

±
l,l′(q) the form fac-

tor dependent particle-particle (-) and particle-hole (+) bubble integration. At this point we should
employ a brief recapitulation:
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• We analyzed the diagrams of the ”ordinary” flow Eqs. (2.45)-(2.47) and were able to interpret
those physically by identifying the particle-particle and particle-hole bubble in the diagrams.
A comparison with some paradigmatic interaction Hamiltonians led us to the conclusion that
the three terms can be understood as contributions to a superconducting (τpp), CDW (τph,d)
and SDW (τph,cr) interaction. Therefore, an instability in a given system towards one of these
phases should manifest itself in of the three respective channels, since the divergence of the
bubble plays a crucial role in this emergence (as discussed in section 1.1).

• Motivated by these interpretations, we employed the channel decomposition Eq. (2.62) such
that the vertexV Λ is decomposed into the three interaction types discussed before. The parametriza-
tion of these channels is chosen a way that exactly these interaction types can be reconstructed
by insertion in Eq. (2.48). We then proceeded and imposed three differential equations, relating
each channel to its corresponding diagram Eq. (2.63).

• Keeping track of the transfer momentum q, we expanded the other momenta into form factors
since they only play a minor role in the onset of an instability. The form factors can be chosen
arbitrarily as long as they form a unity in momentum and form factor space Eqs.(2.68), (2.69).
Using these definitions, we were able to derive the TUFRG flow equations for the form factor
dependent channelsX l,l′(q).

• Notice that this decomposition does not violate the feature of FRG in omitting feedback of dif-
ferent diagrams to each other. The cross-channel projectionsV X

l,l′(q) still depend on the original
interaction V Λ and therefore the feedback of the channels onto each other is still fully present.

Nowwemay ask the question: Which advantage was achieved by this reformulation? The new flow
equations (Eqs. (2.76),(2.79) and (2.80)) do not have any numerical advantage on a formal level. The
former flow equations were defined by three momenta, therefore forNk chosen momenta to sample
a Brillouin zone the amount of equations to solve would scale withN3

k . The new flow equations de-
pend on one momentum q and two form factor arguments l, l′, therefore scaling withNq ×N2

l . The
numerical advantage of this method is now achieved by truncating the unity, i.e. the sums

∑
l will

eventually only cover a small set of form factors such thatN2
l becomes relatively small, allowing for a

high scaling of momentaNq . Naturally, this constitutes an approximation, since the unity conditions
Eqs. (2.68) and (2.69) are only correct by including an infinite amount of form factors.

We will see in the next section how a specific choice of form factors delivers a substantial physical
picture to understand the effect of the inclusion of form factors in the flow equations. This will grant
us an interpretable rational for employing the truncation of the form factors.

2.2.3 Form factors

As previously shown, any well behaved set of functions fl(k) can be selected as form factors, as long
as this set confirms the unity conditions Eqs. (2.68),(2.69). In the most pragmatic way, the simplest
choice of these form factors are therefore plane waves:

fl(k) = eikRl (2.84)

where Rl is an real space lattice vector of the lattice, i.e. in our case of the triangular lattice. This
choice has three major advantages.

• We will show that the idea of truncating the form factor sum can be understood as truncating
long-distance effectswhich should have onlyweak impact on the emerging short-range physics.

• The cross-channel projections can be rewritten in a form which is numerically much easier to
handle.
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Figure 2.6: Numeration of real space vectors in the triangular lattice: The red shades indicate the
distance to the origin. Throughout this thesis, Nl = 61 is the highest amount of form factors which
is included.

• In contrast to form factors which are designed after specific symmetries (for example used in
studies for the square lattice in [36, 35]), the plane waves will act as an unbiased choice with
respect to the emergent symmetry of the gap function as long as form factors of sufficient range
are included.

At first, we will elaborate on the physical interpretation of the form factors. For the numeration of
the form factors, we will name the lattice sites as already chosen in in section 1.2 where the lattice
harmonics of the gap equations were derived. The two basis vectors of the triangular lattice in this
numeration coincide with l = 2 and l = 4:

R2,4 = a1,2 = a/2
(√

3,±1
)T

. (2.85)

To study the effect of the form factors, we consider again the pairing interaction Eq. (2.49) as an ex-
ample and express the channel ΦP,Λ by its form factor counterpart:

SP [ψ̄, ψ] =

∫
q,k,k′

ΦP (q;k,k′)
∑
σ,σ′

ψ̄σ(q + k)ψ̄σ′(−k)ψσ′(−k′)ψσ(q + k′)

(2.66)
=

∫
q,k,k′

∑
l,l′

P l,l
′
(q)× f∗l (k)fl′(k

′)

∑
σ,σ′

ψ̄σ(q + k)ψ̄σ′(−k)ψσ′(−k′)ψσ(q + k′)

=

∫
q

∑
σ,σ′

∑
l,l′

P l,l
′
(q)×

∫
k

ψ̄σ(q + k)ψ̄σ′(−k)f∗l (k)


︸ ︷︷ ︸

=:(F l
σ′σ(q))

†

×

∫
k′

ψσ′(−k′)ψσ(q + k′)fl′(k
′)


︸ ︷︷ ︸

=:F l′
σ′σ(q)

(2.86)
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Now, the pairing interaction decomposes into two fermion bilinears (F l′σ′σ(q))
(†) which are decou-

pled in momentum space regarding k and k′. The effect of the form factors become apparent by
transforming these bilinears into real space:

F l
′
σ′σ(q) =

∫
k′

ψσ′(−k′)ψσ(q + k′)fl′(k
′)

Fourier
=

∑
R

ψσ′(R+R′
l)ψσ(R)× eiqR. (2.87)

This reveals that F l′σ′σ(q) sums over all fermion bilinears which are connected by the lattice vector
Rl′ . Therefore, by the sum

∑
l in Eq. (2.86), all effects of fermion bilinears with distance vectors

Rl are included. So, a truncation of this very sum excludes effects of fermions of this distance. This
serves an opportunity to develop a specific rational in truncating this sum. We will assume that the
emergent physics is mainly dependent on the short-range effects of the fermions. In consequence, we
will truncate form factors describing effects of larger distances, meaning that we will include form
factors up to specific distance shells. In Fig. 2.6 these shells are indicated by the blue hexagons. The
0th shell does only include one form factor R1 = (0, 0)T which we will call the on-site form factor.
The next shell includes all form factors up to l = 7, which are the nearest-neighbour form factors.
The second shell includes in total all form factors from l = 1 to l = 19 which includes on-site,
nearest-neighbour, second nearest-neighbour and third nearest-neighbour form factors. We want to
stress here that we always select the form factors in terms of the hexagonal shell and not the total
distance e.g. second- or third-nearest neighbour. The reason for this choice will become apparent
whenwe discuss the symmetries of the bubble integrations in section 2.3.2. Wewill call these hexagon
shellsNs withNl form factors. The following table specifies the details of those shells. As a second

Ns Nl Corresponding nearest-neighbor shells
0 1 on-site only
1 7 0th - 1st nearest-neighbors
2 19 0th - 3rd nearest-neighbors
3 37 0th - 5th nearest-neighbors
4 61 0th - 8th nearest-neighbors

aspect, we want to present how the plane-wave form factors simplify the cross-channel projections
Eqs. (2.78),(2.82) and (2.83). As before, we will show this for the P channel only since it applies to
the other channels in an analogueway. Startingwith Eq. (2.78), wewill use the channel decomposition
Eq. (2.62) to break the cross-channel projection into four parts:

V P
l,l′(q) =

∫
k,k′

V Λ(q + k,−k, q + k′)× fl(k)f
∗
l′(k

′)

(2.62)
=

∫
k,k′

V 0(q + k,−k, q + k′)× fl(k)f
∗
l′(k

′)

+

∫
k,k′

ΦP,Λ(q,k,k′)× fl(k)f
∗
l′(k

′)

+

∫
k,k′

ΦD,Λ(k − k′, q + k′,−k)× fl(k)f
∗
l′(k

′)

+

∫
k,k′

ΦC,Λ(q + k + k′,−k′,−k)× fl(k)f
∗
l′(k

′)

=V 0,P
l,l′ (q) + P l,l

′
(q) + V D→P

l,l′ (q) + V C→P
l,l′ (q). (2.88)
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Each of the four terms includes the projection of the components of the channel decomposition onto
the P channel. V 0,P

l,l′ (q) contains the projection of the initial conditions onto the P channel. It is no
surprise that the projection of ΦP,Λ onto itself will just result again in the P channel again: P l,l′(q).
The other two terms are the projection of the D and C channel onto the P channel and the double
integration over the Brillouin zone can be simplified by using the plane wave form factors. We will
guide throughV D→P

l,l′ (q) to demonstrate this. By taking the derived expression and expandingΦD,Λ

again in its form factor depending shape:

V D→P
l,l′ (q) =

∫
k,k′

ΦD,Λ(k − k′, q + k′,−k)× fl(k)f
∗
l′(k

′)

=

∫
k,k′

∑
l̃,l̃′

Dl̃,l̃′(k − k′)f∗
l̃
(q + k′)fl̃′(−k)

× fl(k)f
∗
l′(k

′). (2.89)

At this point, we define the Fourier transform of the channels as:

X̃ l,l(Rl) =

∫
p
X l,l′(p)× e−ipRl , X = P,C,D. (2.90)

We apply the Fourier transform, express the form factors explicitly in their plane wave form and order
the exponentials with respect to the momenta:

V D→P
l,l′ (q) =

∫
k,k′

∑
l̃,l̃′

∑
L

D̃l̃,l̃′(Rl)× eik(RL−Rl̃′+Rl) × eik
′(−RL−Rl̃+Rl′ ) × e−iqRl̃′ , (2.91)

performing the integrals will reveal δ-functions such that the equation eventually yields:

V D→P
l,l′ (q) =

∑
L

D̃L,−L+l−l′(−Rl′ −RL)× e−iqRL . (2.92)

The additions and subtractions of the form factor indices imply the sumof the lattice vectors belonging
to these form factors, e.g. l − l′ − L → Rl − Rl′ − RL = RM → M . Therefore, Eq. (2.92)
highlights the computational advantage of the plane wave form factors. Initially, we had to perform
a double integral over the Brillouin zone. Now, for a fixed pair of l, l′, we only have to perform a
single summation over form factors

∑
L. Considering that we will truncate this sum by only taking at

maximum 61 form factors into account, this procedure vastly simplifies the calculation of the cross-
channel projections. We have to repeat this derivation for all three channels by including the channel
decomposition such that in total we will end up with:

V P
l,l′(q) =V

0,P
l,l′ (q) + P l,l(q) + V D→P

l,l′ (q) + V C→P
l,l′ (q), (2.93)

V D→P
l,l′ (q) =

∑
L

D̃L,−L+l−l′(−Rl′ −RL)× e−iqRL , (2.94)

V C→P
l,l′ (q) =

∑
L

C̃L,−L+l+l
′
(−RL +Rl′)× e−iq(RL−Rl′ ). (2.95)

For theD channel:

V D
l,l′(q) =V

0,D
l,l′ (q) +Dl,l(q) + V P→D

l,l′ (q) + V C→D
l,l′ (q), (2.96)

V P→D
l,l′ (q) =

∑
L

P̃L,L−l−l
′
(−Rl)× e−iq(RL−Rl′ ), (2.97)

V C→D
l,l′ (q) =

∑
L

C̃L,L−l+l
′
(−Rl)× e−iqRL , (2.98)
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and for the C channel:

V C
l,l′(q) =V

0,C
l,l′ (q) + C l,l(q) + V P→C

l,l′ (q) + V D→C
l,l′ (q), (2.99)

V P→C
l,l′ (q) =

∑
L

P̃L,−L+l+l
′
(−RL +Rl′)× e−iq(RL−R′

l), (2.100)

V D→C
l,l′ (q) =

∑
L

D̃L,L−l+l′(−Rl)× e−iqRL . (2.101)

2.2.4 Regulator

Until nowwe kept the exact nature of the scale parameterΛ abstract. The derivative of the form factor
dependent bubble integrations can be concluded as:

Ḃ±
l,l′(q) =

∫
p

d

dΛ

[
G0,Λ(iωp,p+ q)G0,Λ(±iωp,±p)

]
fl(p)f

∗
l′(p) (2.102)

In fact, there are many different shapes and forms to introduce the necessary regularization scheme
for the propagatorG0,Λ which we introduced in section 2.1:

G0,Λ =

{
G0 Λ → 0

0 Λ → ΛUV

An intuitive way of introducing the correct behaviour in these limits is employed by using a step
function in momentum space:

G0,Λ(iωp,p) = Θ(ξ(p)− Λ)
1

iω − ξ(p)
, (2.103)

where the Heavy-side function can also be exchanged by a smooth cutoff as long as the correct be-
havior in the limits is secured. The derivative d

dΛ acting on the bare propagator (equipped with this
cutoff function)will implement a scheme resembling theWilsonianmomentum shell integration since
performing this derivative explicitly yields:

d

dΛ
G0,Λ(iωp,p) =

dΘ(|ξ(p)| − Λ)

dΛ

1

iωp − ξ(p)
∝ δ(|ξ(p)| − Λ)G0(iωp,p), (2.104)

such that the bare propagator does only „survive” if the energy corresponding to themomentum ξ(p)
equals the scale Λ. Therefore, by solving the flow equation starting from the bandwidthW = ΛUV
(since all energies larger thanW will never satisfy the argument of the δ-function and are therefore
irrelevant), downwards to Λ → 0, the effects of each scale Λ are included, momentum shell for
momentum shell. Although this implementation is intuitively pleasing, it is flawed in a way that fluc-
tuations towards ferromagnetism are artificially suppressed [43].

Fortunately, there are other cutoff schemes which circumvent this problem. Wewant to discuss briefly
two of those. One of these choices is given by implementing the regularization with respect to the
Matsubara frequencies instead of the momenta which is called the Ω-scheme [46]:

G0,Ω(iωp,p) =
ω2
p

ω2
p +Ω2

1

iωp − ξ(p)
, (2.105)

where the scale is relabeled to Λ → Ω. While this scheme is not prone to the artificial suppression of
fluctuations, it comes with the technical disadvantage that the Matsubara summation in Eq. (2.102)
cannot be calculated in a simple manner anymore, since the two propagators will develop non-trivial
poles in the complex plane due to the structure of the regularization function.
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A third possibility is given by choosing the temperature as flow parameter, called the T-flow scheme
[43]. Let us consider a typical actionwith translational symmetrywherewe nowexplicitlywrite down
the temperature scaling of the terms stemming, from the Matsubara summations:

S =A−1
BZ

∫
k
T
∑
ω

∑
σ

(iω − ξσ(k)) ψ̄σ(k)ψσ(k)

+A−3
BZ

∫
k1,k2,k3

T 3
∑

ω1,ω2,ω3

V (k1, k2, k3)×
∑
σ,σ′

ψ̄σ(k1)ψ̄σ′(k2)ψσ′(k1 + k2 − k3)ψσ(k3).

(2.106)

For a proper usage of the temperature T as a flow parameter, the interaction term should not directly
depend on T . This can be achieved by the rescaling of the fields:

ψσ(k) = ησ(k)× T−3/4, (2.107)

such that the interaction becomes temperature independent and the bare propagator scales with
T−1/2:

S =A−1
BZ

∫
k
T−1/2

∑
ω

∑
σ

(iω − ξσ(k)) η̄σ(k)ησ(k)

+A−3
BZ

∫
k1,k2,k3

∑
ω1,ω2,ω3

V (k1, k2, k3)×
∑
σ,σ′

η̄σ(k1)η̄σ′(k2)ησ′(k1 + k2 − k3)ησ(k3).

(2.108)

HonerkampandSalmhofer showed [43] that by replacing the scale-derivative accordingly, this scheme
indeed fulfills the regularization scheme needed for the FRG implementation. In practice, this scheme
is formulated as:

d

dΛ
→ d

dT
,

G0,Λ(iωp,p) → G0,T (iωp,p) =
T 1/2

iωp − ξ(p)
, (2.109)

S0,Λ(iωp,p) → S0,T (iωp,p) = −G0,T (iωp,p)

(
d

dT

(
G0,T (iωp,p)

)−1
)
G0,T (iωp,p)

=− T−1/2 iωp − ξ(p)

(iωp + ξ(p))2
. (2.110)

Here it should be noted that for the result of the single-scale propagator one also has to take care of
the temperature dependence of the Matsubara frequency. By repeating the derivation for the general
FRG flow equations, we will eventually arrive at the same flow equations naturally where the bubble
integrations read:

Ḃ±
l,l′(q) = A−1

BZ

∫
p

∑
ωp

[G0,T (iωp,p+ q)ST (±iωp,±p)

+ST (iωp,p+ q)G0,T (±iωp,±p)]fl(p)f
∗
l′(p) (2.111)

where it should be noted that the normalization of Matsubara summation with T is not appearing
here since the initial prefactor was absorbed by the bare propagator in the derivation of the T -flow
equations. By computing the integrand with definitions Eqs. (2.109),(2.110) one gets:

G0,T (iωp,p+ q)ST (±iωp,±p) + ST (iωp,p+ q)G0,T (±iωp,±p)

=
d

dT

[
T ×G0,T (iωp,p+ q)G0,T (∓iωp,∓p)

]
(2.112)

74



2.2. THE TRUNCATED-UNITY APPROACH

such that the whole bubble integral during the flow is determined as:

Ḃ(q)±l,l′ = A−1
BZ

∫
dp
∑
ωp

d

dT

[
T ×G0,T (iωp,p+ q)G0,T (±iωp,±p)

]
fl(p)f

∗
l′(p).

By passing the Matsubara summation past the internal expression, we can finally just execute the
particle-particle (−) and particle-hole (+) diagram term as usual (as already done in section 1.1):

Ḃ(q)+l,l′ =−
∫
p

n′F (ξ(q+p))−n′F (ξ(p))
ξ(q+p)−ξ(p)

fl(p)f
∗
l′(p), (2.113)

Ḃ(q)−l,l′ =+

∫
p

n′F (ξ(q+p))+n′F (ξ(−p))

ξ(q+p)+ξ(−p)
fl(p)f

∗
l′(p). (2.114)

n′F is the temperature-derivative of the Fermi function. It is an obvious disadvantage that we cannot
calculate the FRG flow for finite temperatures in this scheme such that the results of emerging insta-
bilities are only valid at the critical temperature. Since this is actually everything we want to achieve
in the first place, we will accept this disadvantage and prefer the temperature scheme in our calcu-
lations since the form of the bubbles Eqs.(2.113),(2.114) are cast into a feasible form for a numerical
implementation.

This ends the section about the theoretical foundations of the TUFRG. By illuminating the relation-
ship of the three diagrams in the „ordinary” FRG scheme to possible physical instabilities, we were
able to derive this new formalism which does only depend on one momentum q (namely the impor-
tant transfer momentum) and two form factors l, l′. While many possibilities exist for the choice of
these form factors, we showed that the plane wave form factors fl(k) = eikRl equip the TUFRGwith
two advantages. At first, the truncation of form factors can be rationalized by connecting a form factor
fl(k) to the real space vectorRl and therefore the truncation is justified by arguing that the emerging
instabilities in the final TUFRG application will be mainly deviated by short-range physics. Second,
we showed that this choice of form factors also greatly reduces the numerical effort for calculating
the cross-channel projections. Eventually, we established the usefulness of the temperature flow as
a regularization scheme, since this scheme does not artificially suppress magnetic fluctuations and
gains a numerical advantages for the bubble integrations. Since all separated objects of the TUFRG
are now developed, we will proceed to the actual numerical implementation of the method for trian-
gular lattice systems.
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2.3 Implementation

The general method of the TUFRG and the choice of specific technical aspects, namely the form factors
and the regulator scheme, are now specified. Nowwewill present the implementation of TUFRG and
again use the SU(2)-invariant model as an example. For the spinless system (application B) the vast
majority of this discussion does also apply. For the spinful model without SU(2)-invariance (appli-
cation C), some substantial alterations have to be made which we will discuss at the given time later
in the respective section.

The most general form of the SU(2)-invariant Hamiltonian treated in application A is given by:

H =−
∑
n

∑
⟨ij⟩n

∑
σ

tn

(
c†iσcjσ + h.c.

)
− µ

∑
iσ

niσ︸ ︷︷ ︸
=:HKin

+ U
∑
i

ni↑ni↓ +
∑
n

∑
⟨ij⟩n

∑
σσ′

Vnniσnjσ′

︸ ︷︷ ︸
=:HInt

. (2.115)

Where we allow for the largest distance of the hopping parameters and the density-density interac-
tions to be third-neighbour distance, i.e. n = 1, 2, 3. In this section we will not only show how the
TUFRG is applied in general, but we will also go into the details of technical difficulties which happen
to occur when solving the TUFRG flow equations numerically. Therefore, we will treat these aspects
of the method in the order they are appearing in the code. This covers the following steps:

1. We will show how the interaction parameters in Eq. (2.115) are projected into the channels to
instate the correct initial conditions.

2. The bubble integrations Ḃ(q)±l,l′ are non-trivial and have to be carried out with great care.
Moreover, we will present how the symmetries of the form factors can be used to improve the
computational performance of these integrations.

3. Until now, we did not exploit the symmetry of the lattice for the TUFRG flow equations. We
will present how this can be done on the level of the verticesX l,l′(q) such that the numerical
cost can be substantively reduced.

4. After the increment of the flow equation is calculated, we will show how the differential equa-
tions are solved. We will also comment on the sign-convention here which can lead to a global
minus sign of the flow equations.

5. Finally, we will briefly recap how to use the eigenvalue equation from section 1.2 to calculate
the leading gap(s)by using the renormalized vertex P l,l′(q).

2.3.1 Initial conditions

We already encountered the projections of the initial conditions onto the channels when we derived
the simplification of the cross-channel projections by the plane wave form factors:

V 0,P
l,l′ (q) =

∫
k,k′

V 0(q + k,−k, q + k′)× fl(k)f
∗
l′(k

′), (2.116)

V 0,D
l,l′ (q) =

∫
k,k′

V 0(q + k,k′,k)× fl(k)f
∗
l′(k

′), (2.117)

V 0,C
l,l′ (q) =

∫
k,k′

V 0(q + k,k′, q + k′)× fl(k)f
∗
l′(k

′). (2.118)
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Therefore, the only object which has to be derived is the initial interaction V 0. This expression is
defined by taking the interacting part of Eq. (2.115) and cast it into a form resembling Eq. (2.48) by
the means of a Fourier transformation:

HInt →
1

2

∫
k1,k2,k3,k4

V 0(k1,k2,k3,k4)δ(k1 + k2 − k3 − k4)
∑
σ,σ′

c†σ(k1)c
†
σ′(k2)cσ′(k4)cσ(k3).

(2.119)
We will show this procedure explicitly for the Hubbard interaction and the density-density interac-
tions Vn for the SU(2)-invariant model.

Projection of U

We rewrite theHubbard interaction term at first and transform it consequently intomomentum space:

U
∑
i

ni↑ni↓ = U
∑
i

c†i↑ci↑c
†
i↓ci↓ =

U

2

∑
i

∑
σ,σ′

c†i,σc
†
i,σ′ci,σ′ci,σ

Fourier
=

1

2

∫
k1,k2,k3,k4

U × δ(k1 + k2 − k3 − k4)
∑
σ,σ′

c†σ(k1)c
†
σ′(k2)cσ′(k4)cσ(k3). (2.120)

Comparing with Eq. (2.119) yields for the Hubbard interaction:

V 0(k1,k2,k3,k4) = U.

Since for this interaction there is no additional momentum structure, the projection is identical for the
three different channels Eqs. (2.116),(2.117),(2.118):

V
0,P (C,D)
l,l′ (q) =

∫
k,k′

U × fl(k)f
∗
l′(k

′) =

∫
k,k′

U × eiRlk e−iRl′k
′
= Uδ(Rl)δ(Rl′). (2.121)

Projection of Vn

For the density-density interactions of nth nearest neighbors, the projection onto the three channels
will have different forms. But the structure for different values of n will be identical and only differ
in the set of lattice vectors to sum over. Again starting by rewriting the interaction term in real space:

Vn
∑
⟨ij⟩n

∑
σσ′

niσnjσ′ = Vn
∑
⟨ij⟩n

∑
σσ′

c†i,σci,σc
†
j,σ′cj,σ′ =

Vn
2

∑
i

∑
δn

∑
σ,σ′

c†i,σc
†
i+δn,σ′ci+δn,σ′ci,σ

Fourier
=

1

2

∫
k1,k2,k3,k4

∑
δn

Vn × eiδn(k2−k4)δ(k1 + k2 − k3 − k4)
∑
σ,σ′

c†σ(k1)c
†
σ′(k2)cσ′(k4)cσ(k3).

(2.122)

Where δn indicates the lattice vectors connecting the n-th nearest neighbours. Again, by comparing
the derived expression with Eq. (2.48) we conclude:

V 0(k1,k2,k3,k4) =
∑
δn

Vn × eiδn(k2−k4).

Explicitly for the projection onto the P channel Eq.(2.116) this results into:

V 0,P
l,l′ (q) =

∫
k,k′

Vn
∑
δn

eiδn(−k+k′) × fl(k)f
∗
l′(k

′) =

∫
k,k′

Vn
∑
δn

eiδn(−k−k′) × eiRlke−iRl′k
′

=Vn

∫
k,k′

∑
δn

eik(Rl−δn) × eik
′(δn−Rl′ ) = Vn

∑
δn

δ(Rl − δn)× δ(δn −Rl′)

=Vn × δ(Rl −Rl′) for :Rl,Rl′ ∈ {δn}. (2.123)

In a similar fashion, one can derive the projections into the other channels for these interaction terms.
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Complete set of initial conditions

Compactly, all initial conditions for the interactions U and V1,2,3 are given by:

V 0,P
1,1 (q) =V 0,C

1,1 (q) = U (2.124)

V 0,P
l,l (q) =V 0,C

l,l (q) = V1, for : l ∈ {2, 3, 4, 5, 6, 7} (2.125)

V 0,P
l′,l′ (q) =V

0,C
l′,l′ (q) = V2, for : l′ ∈ {10, 11, 14, 15, 18, 19} (2.126)

V 0,P
l′′,l′′(q) =V

0,C
l′′,l′′(q) = V3, for : l′′ ∈ {8, 9, 12, 13, 16, 17} (2.127)

V 0,D
1,1 (q) =U + V1

∑
l

eiRlq + V2
∑
l′

eiRl′q + V3
∑
l′′

eiRl′′q. (2.128)

For the model without spins and the model with spins but without SU(2)-symmetry, we have to be
careful about keeping the anti-symmetry of the initial conditions intact. Also, we have to be careful
about the order of the spin indices in the later case. For a the complete set of these initial conditions,
see Appendices A.3 and A.5 respectively.

2.3.2 Symmetries of bubble integrations

The bubble integrations connect the vertices of the flow equations (2.76),(2.79) and it will turn out
that these objects are by far the most challenging part of the numerical implementation with the given
truncations. The difficulties are stemming mainly from two aspects:

1. The integrationswill feature sharp peaks at lower scales such that the integrand becomes harder
and harder to integrate properly while continuing the flow. This does not only lead to problems
regarding the numerical cost, but also calls for the implementation of a sophisticated integration
scheme, carefully ensuring the correctness of the results.

2. We have to performNq ×N2
l of these challenging integrals when no symmetries are used. So,

the computational run-time is increased to an unusable amount such that we have to exploit
the present symmetries to frame this feasible.

We will present how these problems can be successfully solved. For the first aspect, we will construct
an adaptive integration routine which is specifically tailored to our present FRG implementation. For
the second aspect, we will demonstrate how the symmetries of the plane wave form factors can be
employed such that necessary computational effort for the full calculation of the bubble integrations
is vastly reduced.

Adaptive integration routine

We want to explicitly describe the goal of this section for clarity. We are going to develop a routine
such that the bubble integrations are correctly and quickly executed. These objects depend only on
the dispersion of the underlying model and the given scale. Since we decided on the temperature
flow, this scale is naturally the temperature and our objects of interest are:

Ḃ(q)+l,l′ =−
∫
p

n′F (ξ(q+p))−n′F (ξ(p))
ξ(q+p)−ξ(p)

fl(p)f
∗
l′(p),

Ḃ(q)−l,l′ =+

∫
p

n′F (ξ(q+p))+n′F (ξ(−p))

ξ(q+p)+ξ(−p)
fl(p)f

∗
l′(p),

ξ(k) =− 2t1[cos(ky)+2 cos(ky/2) cos(
√
3kx/2)]

− 2t2[2 cos(3ky/2) cos(
√
3kx/2) + cos(

√
3kx)]

− 2t3[cos(2ky) + 2 cos(ky) cos(
√
3kx)]− µ,

n′F (x) =
d

dT

1

ex/T + 1
=

x

2T 2

1

cosh
(
x
T

)
+ 1

.
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Here, we extracted the dispersion ξ(k) just by diagonalization of the kinetic part in Eq. (2.115) by
using a Fourier transformation and setting the lattice constant a = 1 for brevity. With all three hop-
pings t1,2,3 present, the tuning of the Fermi surface to the Van Hove singularity at the M points is
given by:

µVH = 2(t1 + t2 − 3t3).

In the following, we will call a system with µ < µVH as being underdoped and a system with
µ > µV H overdoped. A system with µ = µV H will obviously be called to be at Van Hove filling.
Examples for these three scenarios are shown in Fig. 2.7 a. As a first step, we want to introduce how
we will perform a 2D integration in the Brillouin zone. We will employ a polar coordinate integration
by using the Γ point as the origin for some function f(k). The hexagonal shape of the Brillouin zone
dictates that for every angle ϕ the maximal length of the ρ integration is different, namely the edge
of the Brillouin zone ρmax(ϕ), unlike for the integration of circular shaped forms where the maximal
length is constant. Therefore the polar integration is given by:

A−1
BZ

∫
dkf(k) = A−1

BZ

∫ 2π

0
dϕ

∫ ρmax(ϕ)

0
f(k(ρ, ϕ))× ρ dρ. (2.129)

Employing a suitable numerical implementation, we will choose an angular resolution NA which
placesNA „beams” in the Brillouin zone where the radial integrations will be evaluated (see Fig. 2.7
b). Then, angular distance of these beams is ∆ϕ = 2π/NA. The discretized version of Eq. (2.129)
withNA selected angles ϕi, i = 0, . . . , NA − 1 is given by:

A−1
BZ

∫
dkf(k) ≈ A−1

BZ

NA−1∑
i=0

∆ϕ

[∫ ρmax(ϕi)

0
f(k(ρ, ϕi))× ρ dρ

]
. (2.130)

Following this approach, we are now confronted with solvingNA 1D integrals in radial direction ρ
for all chosen angles ϕi. In practice, the function f(k) will be the bubble integrals Ḃ(q)±l,l′ . These
objects distinctly feature the temperature-derivative of the Fermi function n′F (x) which will lead to
complications in carrying out the computation. In general, n′F (x)will develop sharp features around
x = 0 if the temperature becomes small. This includes especially the Fermi surface for our bubble
integrals. Therefore we will employ a routine for the radial integrations Eq. (2.130) such that two
aspects are covered:

1. We avoid to miss the sharp peak of the integrand at the Fermi surface by splitting the radial
integral into two integrations: one defined between 0 to ρF (the position of the Fermi surface)
and a second one defined between ρF to ρrmax.

2. In both of these intervals, the functionwill be integrated adaptively such that additional features
are approached with a reasonable amount of numerical effort.

The adaptive integration schemewill work as follows: given a radial resolutionNR for the integration
of the beams, the intervals are split intoNR − 1 sub-intervals. These are calculated by a trapezoidal
rule. After this procedure, each interval is split again in NR − 1 sub-intervals and these are again
integrated by a trapezoidal rule. If this finer integration scheme does not change the value of the
former integration by a significant amount (for which we will determine a criterion by using a rela-
tive tolerance and an absolute tolerance), then the integration is deemed as converged. We will repeat
this procedure until all initial sub-intervals are converged (see Fig. 2.8). While this procedure works
well for the case of underdoping, it has to be slightly changed for overdoped Fermi surfaces. In this
case, the Fermi surface will develop pockets around the K,K′ points and there are some areas where
a beam from the origin to the edge of the Brillouin zone will not cut the Fermi surface at all. In this
case, we will implement beams with a kink such that all beams contribute a substantial value to the
integration. The first section of these beams is constructed as before, going from the Γ point radially
towards the edges of the Brillouin zone, although this time the beam goes only to the nesting line, i.e.
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a) b)

Figure 2.7: Filling situations and discretization: a) Fermi surfaces for the triangular lattice tight-
binding model for t1 = 1.0, t2 = t3 = 0.0. The Van Hove filling is given by µV H = 2t1 here.
Furthermore, we show the underdoped case (blue) at µ = 1.9t1 and the overdoped case (red) at
µ = 2.1t1. b) Example discretization of the polar integration of the Brillouin zone forNA = 6. The
six green beams are 1D integrations regarding the radial coordinate ρ where the integration range
goes from ρ = 0 (Γ point) to ρ = ρmax(ϕi) which is the edge of the Brillouin zone for a respective
angle ϕi. Two beams are separated by the angular distance 2π/NA which is also the width of the
angular sector each integration beam represents (black triangle).

the Fermi surface at Van Hove filling. The complement part of this beam will then go from the K,K′

points radially to the point where the other beam ended (see Fig. 2.9). The intervals themselves are
then treated exactly as in the underdoped case with the adaptive trapezoidal routine.

Since the function becomes sharper at lower temperatures and the hard part of the integral will con-
centrate on smaller regions on the ρ-axis, we will scaleNR with the temperature. Then, the important
small regions will not have unnecessary large initial sizes leading to a high amount of iterations until
the sharp peaks are properly integrated. This scaling is done with respect to the orders of magnitude
of the temperature:

NR = 3× 2⌈log10(|t|/T )⌉,

i.e. we will start with NR = 3 and double this number for each lower order of magnitude reached.
For the angular resolution NA, it has been sufficient to choose numbers between 120 and 360. The
tolerance values are selected as:

relative tolerance = 10−3, absolute tolerance = 10−10.

This concludes the construction of the integration routine. We will present in the applications later
that this routine faithfully reproduces expected behaviour of the bubbles.

Symmetry properties of form factors

While the adaptive routine is now developed, we are still confronted with the problem that this inte-
gral has to be performed for each RG step forNq×N2

l components in slight variations depending on
the form factor indices. We will show now that the scaling stemming from the form factors l, l′ can
actually be drastically reduced.
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Figure 2.8: Adaptive integration routine for an underdoped system: a) One of the 1D integrations
withNR = 4. The interval from 0 to the edge of the Brillouin zone is divided into two sub-intervals,
defined by the Fermi surface (yellow). b) For each 1D integration, the intervals are successively
treated with a trapzoidal rule. If the desired precision is met, the interval is deemed as convergend
(green tick). If this is not the case (yellow cross), the interval of interest is again divided intoNR− 1
intervals where the procedure is repeated until all sub-interval integrations are converged.

For this purpose we explicitly write the form factors of the bubbles as only one plane wave:

Ḃ(q)+l,l′ =−
∫
p

n′F (ξ(q+p))−n′F (ξ(p))
ξ(q+p)−ξ(p)

fl(p)f
∗
l′(p)

=−
∫
p

n′F (ξ(q+p))−n′F (ξ(p))
ξ(q+p)−ξ(p)

ei(Rl−Rl′ )p. (2.131)

Of course the following discussion also holds for the particle-particle bubble, but we will treat the
particle-hole bubble only now for brevity. Since all terms besides the plane wave in Eq. (2.131) are
real, it directly follows: (

Ḃ(q)+l,l′
)∗

= Ḃ(q)+l′,l, (2.132)

which already roughly halves the amount of integrals to calculate. Moreover, we see that form factor
dependent part, i.e. the plane wave:

ei(Rl−Rl′ )p = eiRl−l′p (2.133)

can result into the same value for different sets of form factors l, l′. As a direct example, for all bubbles
with l = l′ this composed plane wave will just return e0 = 1 such that all these bubble integrals have
the same value. By inspecting again our numeration of form factors Fig. 2.10, we can find a plethora
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+

Figure 2.9: Adaptive integration routine for an overdoped systemwithNR = 4: The beam defining
the 1D integration (dashed green) will feature a kink at the nesting line at ρN . The complement part
of this beam is then constructed by going from the Dirac point to the nesting line. In total, there will
be three sub-intervals to integrate. The first one comes from the inner beam. The outer beam will be
divided with respect to the Fermi surface at ρF , exactly as in the underdoped case.

of these cases. Another example of combinations resulting in the same plane wave would be:

R2 −R5 = R12 −R6 = R10.

We will exploit this property to circumvent superfluous calculations which could have been related
to integrations of other form factor combinations. At this point, we can now finally motivate the selec-
tion of the amount of form factors by hexagons and not distances alone. We will for example consider
Ns = 2, namely the second hexagon which corresponds to form factors 1 to 19. We can conclude
from Fig. 2.10 that all combinations of these 19 real space vectors will point to lattice vectors which
belong at maximum to the fourth hexagon shell. Therefore, if we considerNs = 2 without symme-
tries we would have to calculate 19 × 19 = 361 bubble integrals for each momentum q. Using the
presented property, all of these 361 integrals can actually be related to one of the form factors up to
the fourth hexagon shell which is 61 bubble integrations. This grants as a numerical speedup of factor
6. An additional factor of 2 can then also be concluded from Eq. (2.132), although this symmetry is
useless for l = l′ = 1, i.e. the on-site form factor.

By geometry, it can be easily concluded that for a selected hexagon shell Ns the resulting combi-
nationsRl−l′ are lying in the hexagon shell up to 2×Ns. The strategy is then as follows:

1. We chose a form factor shellNs which we want to include in our TUFRG calculations.

2. For a fixedq, we calculate Ḃ(q)±l,l′ = Ḃ(q)±l−l′ for allRl−l′ which are lying in the hexagon shell
2×Ns where we also use the symmetry Eq. (2.132) to restore roughly half of these integrations
just by complex conjugation.

3. We repeat this for all desired q.

The speedup for the first four shells using this strategy is then given by presented Table 2.1. It can
not exaggerated how important these symmetries condition is for the actual implementation of the
TUFRG. We will see that using higher shellsNs is not only useful for achieving convergence, but that
there are still qualitative results which rely on taking a high amount of form factors into account. For
the fourth shell, performing 3721 calculations for each momentum q would be absolutely unfeasible,
but by reducing this number to 109, a calculation for this shell can be realistically carried out.
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Figure 2.10: Symmetry consideration of form factors: The combinations R2 − R5 (yellow) and
R12 −R6 (green) do both result toR10 (blue) such that the bubble integral for (l = 2, l′ = 5) and
(l = 12, l′ = 6) are equal.

Ns Nl Calculations without using symmetries Calculations with using symmetries Speedup
1 7 49 19 2.6
2 19 361 31 11.6
3 37 1369 64 21.4
4 61 3721 109 34.1

Table 2.1: Advantages of using symmetry properties of form factors for calculating Ḃ(q)±l,l′ for a fixed
momentum q.

2.3.3 Use of symmetries and momentum discretization

We will now finally use the advantage of including the symmetries of the underlying lattice to our
calculation. Effectively, the C6v structure will impose symmetry relations for the momentum q such
that the actual flow equations only have to be calculated for a smaller set of momenta, while the rest
is restored by these symmetry relations. We will see that for the models in project A and B this will
result into a speedup of factor 12. The philosophy of how to implement the point group symmetries
in the TUFRG scheme is concisely laid out in [78]. We will adapt this method to the triangular lattice
in detail now where we directly start from the action of the point group on the fermionic creation and
annihilation operators. For this discussion, we will call an arbitrary element of the point group C6v to
beQwhich can be either one of the rotations or reflections of said group. Given one of these symmetry
operationsQ, the fermionic operators in momentum space transform by a unitary transformUQ[78]:

Q : UQcσ(k)
(†)U †

Q = c(†)σ (Q−1k)(†). (2.134)

The property UQHU
†
Q = H holds for symmetries of the Hamiltonian. Since this has to be true for

all kinetic and interaction parts of the Hamiltonian Eq. (2.115), it also has to hold for the general
interaction Eq. (2.48) during the whole flow, since we do not assume that the symmetries are broken
at some point in flow. Therefore, the strategy is to derive constraints on the general interaction V Λ by
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applying the objectQ to Eq. (2.48)5:

Q : ΓΛ
V

=
1

2

∫
k1,k2,k3,k4

V Λ(k1, k2, k3, k4)δ(k1 + k2 − k3 − k4)
∑
σ,σ′

UQψ̄σ(k1)ψ̄σ′(k2)ψσ′(k4)ψσ(k3)U
†
Q

=
1

2

∫
k1,k2,k3,k4

V Λ(k1, k2, k3, k4)δ(k1 + k2 − k3 − k4)×

∑
σ,σ′

UQψ̄σ(k1)U
†
QUQψ̄σ′(k2)U

†
QUQψσ′(k4)U

†
QUQψσ(k3)U

†
Q

=
1

2

∫
k1,k2,k3,k4

V Λ(k1, k2, k3, k4)δ(k1 + k2 − k3 − k4)×

∑
σ,σ′

ψ̄σ(Q
−1k1)ψσ′(Q−1k2)ψσ′(Q−1k4)ψσ(Q

−1k3). (2.135)

Since the Brillouin zone inherits the C6v symmetry of the lattice, we can safely shift the integration
variables ki → Qki without changing the integral. Finally we arrive at:

Q : ΓΛ
V =

1

2

∫
k1,k2,k3,k4

V Λ(Qk1, Qk2, Qk3, Qk4)δ(k1+k2−k3−k4)
∑
σ,σ′

ψ̄σ(k1)ψ̄σ′(k2)ψσ′(k4)ψσ(k3)

(2.136)
and by ΓΛ

V = UQΓ
Λ
V U

†
Q the symmetry constraint is given by:

V Λ(Qk1, Qk2, Qk3, Qk4) = V Λ(k1,k2,k3,k4). (2.137)

To demonstrate the numerical advantage from this relation, we will as an example treat theP channel
flow equation. The effect of Eq. (2.137) must be applied on the vertices V P

l,l′(q) connected by the
bubble integration before deriving the cross-channel projections:

V P
l,l′(q) =

∫
k,k′

V Λ(q + k,−k, q + k′)× fl(k)f
∗
l′(k

′)

(2.137)
=

∫
k,k′

V Λ(Qq +Qk,−Qk, Qq +Qk′)× fl(k)f
∗
l′(k

′) (2.138)

k(′)→Q−1k(′)
=

∫
k,k′

V Λ(Qq + k,−k, Qq + k′)× fl(Q
−1k)f∗l′(Q

−1k′) (2.139)

=

∫
k,k′

V Λ(Qq + k,−k, Qq + k′)× fQl(k)f
∗
Ql′(k

′)

= V P
Ql,Ql′(Qq). (2.140)

Where in the last step we used the plane wave form of the form factors to shift Q to the real space
lattice vectorsRl,Rl′ . The same result can also be obtained for the other channels, i.e. V C,D

l,l′ (q). In a
similar fashion, it can be shown that just by a shift of integration variables and by using the symmetry
of the dispersion ξ(k), the bubble integrations inhabit a similar symmetry:

Ḃ(q)±l,l′ = Ḃ(Qq)±Ql,Ql′ . (2.141)

5The application of the operatorQ on k, i.e. Qk is still meant as only acting on the momentum k.
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Figure 2.11: Discretization of Brillouin zone and symmetry: in this example, the Brillouin zone is
sampled by 540momentumpoints. At first, the flow step forX l,l′(q) is actually calculated by the flow
equations for the momenta q in the yellow triangle. By using the reflection Q = σ2d , the symmetry
relation delivers the values for the momenta in the green triangle area. Finally, by fivefold application
ofQ = C6, the remaining blue area is recovered.

Finally, we can derive the symmetry condition for the P-channel as follows:

d

dΛ
P l,l

′
(q) =

∑
l1,l2

V P
l,l1(q)× Ḃ−

l1,l2
(q)× V P

l′,l2(q)

=
∑
l1,l2

V P
Ql,Ql1(Qq)× Ḃ−

Ql1,Ql2
(Qq)× V P

Ql′,Ql2(Qq)

=
d

dΛ
PQl,Ql

′
(Qq). (2.142)

This result does in the same way also hold for the C andD channel.

We directly see from the derived symmetry relation that it is not necessary to calculate the flow for
all momenta q which are chosen to sample the Brillouin zone, but only for a subset of them. The
majority of the entries of the vertices can be restored by symmetry relations. In practice, our method
of discretizing the Brillouin zone will be as follows:

• We will place Nq discrete points in the Brillouin zone to evaluate the flow equations. These
points will be placed in an equidistant manner and also in such a way that the different points
can be mapped on each other by the symmetry relations of the point group.

• We will only perform the actual TUFRG flow equations for a small subset of momenta (the
yellow triangle, see Fig. 2.11 ).
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• In a first step, we will use the reflection across the x-axis (σ2d) to restore the values for the
vertices of the second green triangle.

• Thenwewill recover the values of the remaining 5 blue triangles byusing the rotation symmetry
with angle 2π/6 (C6). For this purpose, each triangle is restored by the values of the triangle
which is its left neighbour.

• Evidently, the only two operations we therefore need areQ = σ2d andQ = C6, while the latter
is applied 5 times. In total, the amount of integrations is reduced by a factor of 12.

In consequence, this also means that the bubble integrations and cross-projections must not be per-
formed for all q, but only for the selected momenta in the yellow triangle area.

We exploited the symmetry of the lattice now in an optimal way. In addition to using the symmetries
of the form factors in the previous section, all symmetry considerations of the application are now
implemented. The final step for the implementation is now the integration of the actual differential
equations forX l,l′(q).

2.3.4 Integration of differential equations

Until this section, we focused on how the right hand side (RHS) of the flow equations can be efficiently
computed:

d

dT
P l,l

′
(q) =

∑
l1,l2

V P
l,l1(q)× Ḃ−

l1,l2
(q)× V P

l′,l2(q)︸ ︷︷ ︸
RHS

,

whereas we want now to discuss how to solve this differential equation in the numerical implementa-
tion. In comparison to evaluating the right hand side, this is actually much less challenging and will
be constructed in straight-forward way. Moreover, we alluded to a sign convention in section 2.1 with
respect to the flow equations which we will also explain now.

The initial temperature will be set to the bandwidth T0 = W , since all propagations above this
value are frozen out by the regularization inherent in FRG methods such that the bandwidth will
be a suitable starting point for the ultraviolet initial point. Basically, we will implement a forward
Euler scheme for solving our flow equations starting from W and going downwards to 0. If i marks
the discretized RG steps and considering that Ti > Ti+1, this is constructed for some test function
g(T ) as:

dg(T )

dT
= RHS,

→g(Ti)− g(Ti+1)

Ti − Ti+1
= RHS,

→g(Ti+1) = g(Ti)−RHS · (Ti − Ti+1).

Since Ti > Ti+1, the difference of temperature ∆T = (Ti − Ti+1) is positive. Conventionally, the
Euler method adds an increment to the former value of the function such that we absorb the sign in
RHS:

g(Ti+1) = g(Ti) + (−RHS)∆T. (2.143)

Therefore, if we use this Euler scheme, we have to add a global sign to the RHS, namely the flow equa-
tions. In the end, we will absorb this global sign just in the definition of the bubble integrals Ḃ(q)±l,l′
which is exactly the way it is done in the applications later.6 Since we are looking for the onset of an
instability in the channelsP,C andD, wemust consider the case that these instabilities are expressed

6We will highlight this aspect later when summarising the method before application in chapter 3.
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by divergent behaviour and therefore a steep increase of the respective component of the channel. For
that reason, it is not wise to use the Euler scheme Eq. (2.143) in terms of a linear discretization. In-
stead, we propose the following method.

We apply Eq. (2.143) on the channels with a variable step-size∆Ti:

∆Ti =min
(

1

20
Ti,

1

20
max |P l,l′(q)|, 1

20
max |Dl,l′(q)|, 1

20
max |C l,l′(q)|

)
,

Ti+1 =Ti −∆Ti,

P l,l
′

i+1(q) =P
l,l′

i (q) +

(
− d

dT
P l,l

′
(q)

)
∆Ti,

Dl,l′

i+1(q) =D
l,l′

i (q) +

(
− d

dT
Dl,l′(q)

)
∆Ti,

C l,l
′

i+1(q) =C
l,l′

i (q) +

(
− d

dT
C l,l

′
(q)

)
∆Ti.

Where
(
− d
dT P

l,l′(q)
)

is recovered from the RHS of the flow equation. This procedure takes two

considerations into account. At first, the scaling of the steps with 1
20Ti leads to a differential equation

solver which (in absolute numbers) takes larger steps in the beginning and smaller steps for lower
temperatures. Since we expect that the instabilities happen to occur at smaller scales, this step-size
ensures that the solver carefully approaches the temperature region of interest while also not wast-
ing computational power on irrelevant scale regimes. At some point, one component of the P,C or
D channel will diverge if the formation of an instability sets on. At this point, the second criterion
max |X l,l′(q)| kicks in which reduces the step-size even more if this instability becomes overwhelm-
ingly steep. While this Euler scheme looks at first glance quite simple, we will see later that it is a
sufficient way of solving the flow equations and find the respective instabilities. A recent study com-
paring an adaptive Euler integrator with various other schemes for the square lattice Hubbard model
revealed that no qualitative changes are to be expected by using more sophisticated integrators and
no dramatic changes in quantitative results were reported [8]. Since we are already confronted with
the challenging bubble integrals in the TUFRG implementation, we will allow us to refrain frommore
complex differential integrator schemes to keep computation times low.

The value of 1
20 in the adaptive Euler is purely empirical and maybe other values can be used to

improve the effectiveness of the scheme. Since the numerical bottleneck lies in the calculation the
bubble integrations, the small computational speedups which could be generated here are deemed as
negligible.

As a final remark on solving the differential equations, it should not only be mentioned how to start
the flow, but also how to end it. We will stop the solver if the absolute value of any component of the
P,C orD channel becomes larger than 3W . If no instability occurs, we will also implement a fixed
threshold TStop, at which we stop solving the flow equations. This threshold depends on the model
we investigate, but in general it will be something between 10−6 and 10−4.

2.3.5 Solving the gap equation

For a last minor aspect we want to focus once again on the calculation of the superconducting gap
function before summing up the whole procedure. We remind ourselves that the gap can be derived
from solving the eigenvalue equation of the pairing interaction Vk,k′ :

∆k = −
∑
k′

Vk,k′
∆k′

2ξk′
tanh

(
ξk′

2Tc

)
= −

∑
k′

Ṽk,k′∆k′ . (2.144)
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here we absorbed everything besides the gap itself on the right hand side by introducing Ṽk,k′ . From
the construction of the superconducting channel ΦP in the TUFRG section 1.2, it becomes clear that
the pairing interaction is precisely given by (compare Eq. (2.49)):

Vk,k′ = ΦP (q = 0,k,k′). (2.145)

Therefore, if we find a diverging P channel in our TUFRG calculations, we have to reconstruct the
initial superconducting channel eventually by the definition of the form factor expansion using the
final P channel:

ΦP (q = 0,k,k′) =
∑
l,l′

P l,l
′
(q = 0)× f∗l (k)fl′(k

′), (2.146)

which can be done directlywithout dealingwith any further challenges. Then, by inserting Eq. (2.145)
into Eq. (2.144) we get:

∆k = −
∑
k′

ΦP (q = 0,k,k′)
∆k′

2ξk′
tanh

(
ξk′

2Tc

)
, (2.147)

where Tc is the temperature T we stopped our flow at. If this happens to be very small, we can also
approximate the eigenvalue equation as:

∆k = −
∑
k′

ΦP (q = 0,k,k′)∆k′ . (2.148)

The diagonalization of the superconducting channels will then deliver the leading gap functions as
discussed in section 1.2. This final aspect closes the discussion of the implementation of the flow
equation. After a short précis and description of the workflow, we will proceed to the application of
the numerical machinery as it was laid out here.

2.3.6 Summary and workflow

In this last section, the TUFRG method and implementation is summarized such that the reader is
well equipped to proceed to the applications of the method to the triangular lattice systems in chap-
ter 3. We will furthermore describe how the workflow of this method in practice usually looks like.
This workflow is not hypothetical, but we will pick these notions up again in the first application as a
hands-on example of how to apply this framework.

The TUFRG is a method to treat a given Hamiltonian. In our case we developed this method towards
the application on a SU(2)-invariant Hubbard model on a triangular lattice with different - possibly
long-range - hoppings and interactions:

H =−
∑
n

∑
⟨ij⟩n

∑
σ

tn

(
c†iσcjσ + h.c.

)
− µ

∑
iσ

niσ

+ U
∑
i

ni↑ni↓ +
∑
n

∑
⟨ij⟩n

∑
σσ′

Vnniσnjσ′ . (2.149)

The selection of the kinetic parameters tn and µwill define the energy dispersion ξ(k) andwill there-
fore affect the bubble integrations. The choice of interaction parameters U, Vn affects the vertices of
the right hand side of the TUFRG flow equations, since they will be projected onto the channels as
initial conditions. By entertaining an overly simplified statement, the application of the TUFRG to this
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Hamiltonian is just solving three differential equations:

d

dT
P l,l

′
(q) =

∑
l1,l2

V P
l,l1(q)× Ḃ−

l1,l2
(q)× V P

l′,l2(q)

d

dT
Dl,l′(q) =

∑
l1,l2

[
V C
l,l1(q)× Ḃ+

l1,l2
(q)× V D

l′,l2(q)

+ V D
l,l1(q)× Ḃ+

l1,l2
(q)× V C

l′,l2(q)− 2V D
l,l1(q)× Ḃ+

l1,l2
(q)× V D

l′,l2(q)
]
,

d

dT
C l,l

′
(q) =

∑
l1,l2

V C
l,l1(q)× Ḃ+

l1,l2
(q)× V C

l′,l2(q).

For a selected amount ofNq momenta andNl form factors, this results into 3×Nq ×N2
l equations

to solve for each RG step (where we saw in the previous sections that a lot of these entries can be
gathered for free by symmetry relations). We will use between 180 and 1092 momentum points
and between 19 and 61 form factors in our calculations, see Fig. 2.12. These differential equations are
solved by applying the Euler scheme as presented in the previous section. The right hand side of these
equations consists of the contraction of three objects: two vertices V X

l,l′(q) and one bubble integration
Ḃ±
l,l′(q). We showed in section 2.2.3 that the vertices will decompose into four parts: the projection

of the initial conditions, the channel itself and the cross-channel projections of the other two channels
onto the selected channel:

V P
l,l′(q) =V

0,P
l,l′ (q) + P l,l(q) + V D→P

l,l′ (q) + V C→P
l,l′ (q),

V D
l,l′(q) =V

0,D
l,l′ (q) +Dl,l(q) + V P→D

l,l′ (q) + V C→D
l,l′ (q),

V C
l,l′(q) =V

0,C
l,l′ (q) + C l,l(q) + V P→C

l,l′ (q) + V D→C
l,l′ (q),

where also in section 2.2.3 the explicit form of the cross-channel projections were derived. These
objects are in a simple form due to the usage of the properties of the form factors. The concept of
projecting the initial conditions of a given interacting Hamiltonian into the channels was presented in
section 2.3.1. None of these tasks is either numerically or analytically difficult. In fact, both of these
objects can be implemented in a code in a straight-forward fashion without further challenges.

A more demanding numerical difficulty is presented by the bubble integration Ḃ±
l,l′(q) which con-

nects the vertices. We showed in section 2.3.2 how for a fixed momentum q not all combinations of
l, l′ actually have to be calculated, but can be restored by the symmetry properties of the plane wave
form factors. Still, for lower and lower scales, the integrand of this object will develop sharper fea-
tures and is therefore harder to integrate. We presented an adaptive scheme to treat these problematic
functions, but nevertheless the bubble integrations will be the computational bottleneck.

Once the bubble integrations are performed, the right hand side of the flow equations can be eval-
uated and the Euler scheme is applied. As described before, we will solve this equations starting at
the bandwidth T0 = W going downwards to 0. We will stop the flow if one of the channel com-
ponents exceeds 3W which we install as a criterion for an instability. If no instability occurs, a hard
threshold at small temperatures will stop the flow eventually.

If an instability occurs, we will basically be confronted with two options:

1. A divergence in C or D channel was found. In this case, we will have found a magnetic (C)
or charge-density (D) instability. Typically, for plain SDWs or CDWs the instability will only
express itselfs by peaks in the on-site component, i.e. C1,1(q) orD1,1(q). We will then inves-
tigate the momentum-resolved vertex for the on-site component to extract the position of the
peak in momentum space which is the modulation vector of the instability. Nevertheless, it is
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a5) b)a4)

a1) a2) a3)

Figure 2.12: Possible resolutions for momenta and form factors: a1)-a5) Resolutions for discretiza-
tion of the Brillouin zone with momenta q. In this work we will use with five different resolutions,
Nq = 180, 336, 540, 792 and 1092. The shaded area indicates for which momenta the flow equation
is actually calculated (yellow) and for which momenta the flow equations are derived by mirror sym-
metry (green) and rotation symmetry (blue). b) Different choices for the selection of form factorsNl.
In this work, we will use three different hexagonal form factor shells: Ns = 2 (19 form factors,green),
Ns = 3 (37 form factors, yellow) andNs = 4 (61 form factors, blue).

also possible that other form-factor components growwhich is typically connected to quantum
spin hall states [81]. However, in this work these phenomenawill only be of interest for aminor
aspect in the application for spinless models.

2. A divergence in the P channel was found. This indicates the onset of a superconducting insta-
bility. In this case, the peak is almost exclusively at zero momentum P l,l

′
(q = 0), but a lot of

different combinations of l, l′ are diverging simultaneously. The combination of all these form
factor combinations is indicative of the emerging symmetry of the gap function. We further-
more derive the pairing interaction from the P channel as described in section 2.3.5 and extract
the leading gap function ∆(k) to investigate the symmetry of the gap. This gap will then be
one of the basis functions of the C6v irreps as described in Figure 1.7.

In each case, it is always advised to inspect the behaviour of the bubble integrations while the flow is
calculated. For that reason, we will also save and return the bubbles at specific symmetry points for
q to ensure ourselves that the adaptive integration routine worked without failure. We can compare
the behaviour of these bubble integrations with analytical results in some cases which we will be pre-
sented in the next chapter when applying the method.

As a final remark it should be mentioned that the code which implements the TUFRG method, is
written in the Julia programming language. We implemented a simple parallelization scheme by us-
ing the inbuilt distributed package for shared memory parallelization. Here, we used the parallel map
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(pmap) approach which is beneficial if the chunks of code we want to parallelize have relatively long
execution times. This is the case for the bubble integrations. The optimal way to parallelize the bubble
integrations is therefore to implement q/12 worker, each worker performing one of the integrations
Ḃ±
l,l′(q) for all l, l

′. After the application of the pmap, the code is executed serially.
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CHAPTER 3

Application:
Instabilities in Triangular Lattice Hubbard Models

In this chapter, we will finally apply the developed numerical machinery to investigate the possibility
of competing instabilities in three different triangular lattice Hubbard models in the vicinity of Van
Hove singularities.

In application A, we will treat an extended SU(2)-invariant Hubbard model which we used as main
example in section 2 to develop and motivate the aspects of the numerical implementation. In more
detail, wewill treat two variations of this model. At first, themodel is reduced to only a small set of in-
teracting parameters, acting as a paradigmatic model. Here, it will become apparent that already in this
simple scenario an extensive amount of various instabilities towards superconductivity featuring dif-
ferent gap symmetries are detectable. Wewill use this paradigmaticmodel to demonstrate the TUFRG
workflow as presented in section 2.3.6 and then proceed to calculate a phase diagram. Then, in a sec-
ond variation of the model, we will add longer-ranged hoppings and electron-electron interactions to
describe a tTMD heterobilayer system as described in section 1.3. Interestingly, a lot of qualitative re-
sults of this realisticmodel are already present in the paradigmatic case. The results of this application
were published in [29]. Original figures of this publication used in this section are marked as such.
For visibility, wewill not adapt the color scheme of this thesis to those figures to highlight their origin.

In application B, the model of interest is given by a spinless Hubbard model with nearest-neighbour
interaction V1 and nearest-neighbour hopping t. Here, we will investigate the effects of the nearest-
neighbour interaction V1 for an attractive and a repulsive case, revealing instabilities towards super-
conductivity inhabiting various gap symmetries. Moreover, besides an ordinary charge density wave
stemming from the perfect nesting, also a charge instability with q = 0 emerges, whose origin is
grounded in a different mechanism. These results haven been published in paper [30]. In this publi-
cation, we used the proposed model to investigate qualitative differences of the results coming from
the TUFRG in comparison to the patching scheme. The results of the patching scheme are out of the
scope of this chapter and we will focus exclusively on the TUFRG data in this section.

In applicationC,wewill treat a spinfulmodelwithout SU(2)-invariance leading to twonon-degenerate
bands regarding the spin degrees of freedom. Effectively, this model will describe a tTMD homobi-
layer system where we also include the possibility of applying a displacement field as described in
section 1.3. With the loss of the spin symmetry, this model will be more complex than the model in
application A. We will show which tweaks and adjustments have to be made in contrast to the imple-
mentation in section 2.3 to render this application feasible again. At first, we will investigate how the
vertices of magnetic instabilities at Van Hove filling will change by increasing the displacement field.
Following this, wewill select some special values of the field and examine the effect of altering the fill-
ing of the system such that wewill again find instabilities of unconventional superconductivity. These
results are preliminary and more in a sense of being proof-of-concept and have not been published yet.
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3.1 Application A: Spinful triangular models with SU(2)-invariance

The triangular lattice Hubbard model is a suitable description for correlated electrons exposed to
geometrical frustration. The model happens to feature a rich variety of exotic phases, including var-
ious form of magnetism, unconventional superconductivity, spin-liquid phases and charge density
phenomena (e.g. see reviews [4],[87]). As prepared in this work, we will investigate this model at
Van Hove filling to study the possibility of competing instabilities. For our case, a foundational work
treating this model is presented by the application of the patching FRG scheme [41]. Furthermore,
competing instabilities at Van Hove filling were also already investigated in terms of QuantumMonte
Carlo [18], Parquet RG [75] and density-matrix RG [105] studies. Also, several (F)RG studies have
been conducted in addition to complementary many-body methods which reveal the onset of uncon-
ventional and topological superconductivity in triangular lattice Hubbard models [88, 56, 110, 111,
13, 33, 97].

Naturally, some of the basic equations and objects shown in the following subsection were already
presented in this thesis at earlier sections. Nevertheless, we decided to recapitulate all basic objects
here again to deliver a practical summary of the desired application.

3.1.1 Model and implementation

The general Hamiltonian is given by:

H =−
∑
n

∑
⟨ij⟩n

∑
σ

tn

(
c†iσcjσ + h.c.

)
− µ

∑
iσ

niσ

+ U
∑
i

ni↑ni↓ +
∑
n

∑
⟨ij⟩n

∑
σσ′

Vnniσnjσ′ . (3.1)

where c(†)iσ annihilates(creates) an electron on site iwith spin σ. For the kinetic part, we allow fornth-
nearest neighbour hopping, indicated by the hopping tn and the sum over nth-nearest neighbours
〈ij〉n. Moreover, the chemical potential µ coupling to the density operator niσ is included allowing
for varying the filling of the system. For the interactions we introduce a Hubbard interactionU repre-
senting the on-site Coulomb interaction and nth-nearest neighbour density-density interactions Vn.
For the kinetic and the interacting part, we will maximally allow for n = 3 regarding hoppings and
interactions. By defining this model on a triangular lattice, (see Fig. 3.1) the dispersion of this model
is given by:

ξ(k) = ϵ(k)− µ

− 2t1[cos(ky)+2 cos(ky/2) cos(
√
3kx/2)]

− 2t2[2 cos(3ky/2) cos(
√
3kx/2) + cos(

√
3kx)]

− 2t3[cos(2ky) + 2 cos(ky) cos(
√
3kx)]− µ, (3.2)

derived by a Fourier transform of the kinetic part in Eq. (3.1). The dispersion will feature a Van Hove
singularity at theMi points of the Brillouin zonewhere the density of states will feature a logarithmic
divergence:

ϵ(Mi) =2(t1 + t2 − 3t3) = ϵVH, (3.3)

ρ(ϵ) ∝ log
W

|ϵ− ϵVH|
, (3.4)

whereW is the bandwidth of themodel. If only nearest-neighbour hoppings t1 are included, then the
Fermi surface at Van Hove filling is nested with nesting vector Q. This vector is equivalent to one of
theMi vectors by backfolding. We want to implement the TUFRG as described in chapter 2. Starting
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a) b)

Figure 3.1: SU(2)-invariant Hubbard model on a triangular lattice: a) Real space lattice with hop-
pings t1,2,3, Hubbard interactionU anddensity-density interactionsV1,2,3. b)Dispersion for t1 = 1.0
and t2 = t3 = 0.0. The Fermi surfaces correspond to µ = 1.9t1 (blue), µ = 2t1 (black) and
µ = 2.1t1 (red). The M1,2,3 points are Van Hove singularities inhabiting a logarithmic divergence
regarding the density of states. At µ = 2.0t1 and t1 only, the model features perfect nesting with
nesting vectorQ.

from the SU(2)-invariant flow equations Eqs. (2.45)-(2.47), we gain the TUFRG flow equations:

d

dΛ
P l,l

′
(q) =

∑
l1,l2

V P
l,l1(q)× Ḃ−

l1,l2
(q)× V P

l′,l2(q), (3.5)

d

dΛ
Dl,l′(q) =

∑
l1,l2

[
V C
l,l1(q)× Ḃ+

l1,l2
(q)× V D

l′,l2(q) + V D
l,l1(q)× Ḃ+

l1,l2
(q)× V C

l′,l2(q)

− 2V D
l,l1(q)× Ḃ+

l1,l2
(q)× V D

l′,l2(q)
]
, (3.6)

d

dΛ
C l,l

′
(q) =

∑
l1,l2

V C
l,l1(q)× Ḃ+

l1,l2
(q)× V C

l′,l2(q). (3.7)

Here, the kinetic information of the Hamiltonian Eq. (3.1) is encoded in the bubble integrations1:

Ḃ(q)+l,l′ =+

∫
p

n′F (ξ(q+p))−n′F (ξ(p))
ξ(q+p)−ξ(p)

fl(p)f
∗
l′(p), (3.8)

Ḃ(q)−l,l′ =−
∫
p

n′F (ξ(q+p))+n′F (ξ(−p))

ξ(q+p)+ξ(−p)
fl(p)f

∗
l′(p), (3.9)

where we used the temperature flow scheme as described in section 2.2.3 such that n′F is the temper-
ature derivative of the Fermi function. The cross-channel projections are given as described in section

1Caution: notice that in the definition here, a global sign was included in contrast to the bubbles in section 2 as explained
in section 2.3.3.
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2.2.3. For the P channel:

V P
l,l′(q) =V

0,P
l,l′ (q) + P l,l(q) + V D→P

l,l′ (q) + V C→P
l,l′ (q), (3.10)

V D→P
l,l′ (q) =

∑
L

D̃L,−L+l−l′(−Rl′ −RL)× e−iqRL , (3.11)

V C→P
l,l′ (q) =

∑
L

C̃L,−L+l+l
′
(−RL +Rl′)× e−iq(RL−Rl′ ). (3.12)

For theD channel:

V D
l,l′(q) =V

0,D
l,l′ (q) +Dl,l(q) + V P→D

l,l′ (q) + V C→D
l,l′ (q), (3.13)

V P→D
l,l′ (q) =

∑
L

P̃L,L−l−l
′
(−Rl)× e−iq(RL−Rl′ ), (3.14)

V C→D
l,l′ (q) =

∑
L

C̃L,L−l+l
′
(−Rl)× e−iqRL . (3.15)

And for the C channel:

V C
l,l′(q) =V

0,C
l,l′ (q) + C l,l(q) + V P→C

l,l′ (q) + V D→C
l,l′ (q), (3.16)

V P→C
l,l′ (q) =

∑
L

P̃L,−L+l+l
′
(−RL +Rl′)× e−iq(RL−R′

l), (3.17)

V D→C
l,l′ (q) =

∑
L

D̃L,L−l+l′(−Rl)× e−iqRL . (3.18)

Finally, the interactions of the model Hamiltonian Eq. (3.1) are manifested in the initial conditions as
derived in section 2.3.1:

V 0,P
1,1 (q) =V 0,C

1,1 (q) = U (3.19)

V 0,P
l,l (q) =V 0,C

l,l (q) = V1, for : l ∈ {2, 3, 4, 5, 6, 7} (3.20)

V 0,P
l′,l′ (q) =V

0,C
l′,l′ (q) = V2, for : l′ ∈ {10, 11, 14, 15, 18, 19} (3.21)

V 0,P
l′′,l′′(q) =V

0,C
l′′,l′′(q) = V3, for : l′′ ∈ {8, 9, 12, 13, 16, 17} (3.22)

V 0,D
1,1 (q) =U + V1

∑
l

eiRlq + V2
∑
l′

eiRl′q + V3
∑
l′′

eiRl′′q. (3.23)

We will implement the TUFRG for the given model with resolutions as proposed in section 2.3.6. The
main results are calculatedwithNq = 540 and hexagon shellNs = 4, i.e. 61 planewave form factors.

3.1.2 Demonstration of workflow: competition of magnetism and superconductivity

We will now demonstrate the proposed workflow as presented in section 2.3.6 for application of
the TUFRG. For that purpose, we restrain ourselves to a simple model which only includes nearest-
neighbour hopping t = t1, Hubbard interaction U and the chemical potential µ and investigate
instabilities in the vicinity of Van Hove filling. We showed in section 1.1 that hints for instabilities are
already extractable from the particle-particle and particle-hole bubble. These effects are rooted in the
logarithmic divergence of those objects. We recall the three possible sources of these divergencies:

1. A generic logarithmic divergence exists always for the particle-particle bubble Bpp(0) as long
as the dispersion inhabits inversion symmetry which is evidently true here.

2. The presence of the Van Hove singularity leads to a logarithmic divergence of the density of
states which therefore also induces a logarithmic divergence in both bubbles.
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3. If nesting is present, i.e. ϵ(k) = −ϵ(k +Q) for some vector Q, then the particle-hole bubble
also gains a logarithmic divergence forBph(Q) .

At Van Hove filling and in the case of the two symmetry points Γ,M this leads to:

Bpp(Γ) ∝+ log2
(
W

T

)
(Generic + Van Hove), (3.24)

Bph(Γ) ∝− log
(
W

T

)
(Van Hove), (3.25)

Bpp(M) ∝+ log
(
W

T

)
(Van Hove), (3.26)

Bph(M) ∝− log2
(
W

T

)
(Nesting + Van Hove). (3.27)

Therefore, the strongest tendencies towards instabilities are stemming from the particle-hole bubble
with transfer momentum M and from the particle-particle bubble with transfer momentum Γ = 0.
As discussed in section 1.1, the first tendency describes the possibility of a SDW or CDW instability
with modulation vector M , while the latter tendency describes the possibility of an instability to-
wards superconductivity with zero transfer momentum. We also discussed in section 1.1 that just
from the initial interactions the onset of the superconductive instability is not possible if this initial
interaction happens to be repulsive. Therefore, the superconductivity can only emerge, if the strong
fluctuations of the particle-hole channels induce an attractive interaction component in the particle-
particle channel under the renormalization procedure. So, magnetism and superconductivity are in
competition in the present scenario. We will now study this competition in our TUFRG approach. At
first, we will run a calculation exactly at Van Hove filling. In detail, these parameters are:

t = 1.0,

U = 4t,

µ = 2.0t.

Here, we approximated U = 4t to be a reasonable value for an intermediate interaction regime. We
track the evolution of the maximal value of the P ,C andD channel. As described in the implemen-
tation section, we will stop the flow if one of these components exceeds a value larger than 3W (the
bandwidth is given as W = 9t here). The result of the calculation can be seen in Fig. 3.2 a. We
detect a flow to strong coupling which is mainly exerted in the C channel at a critical temperature of
Tc ≈ O(10−2t). So, the first result of the TUFRG calculation indicates an instability towards mag-
netism. In a next step, we will investigate which component of the C channel inhabits the divergent
peak. An examination reveals that the singular behaviour is only present in the on-site component
regarding the form factors, i.e. C1,1(q). Therefore we display the momentum dependence of this
object, as seen in Fig. 3.2 b. We acknowledge that the peaks are indeed near the different M points,
signaling a SDW instability where the modulation is given by one of the vectors q = M1,2,3. The
actual realized SDW imposed by these vectors has to be calculated by methods beyond our imple-
mentation. Other studies point to the formation of an uniaxial or chiral SDW state [74, 70].

Conclusively, the emerging instability at Van Hove filling is no surprise and was already telegraphed
by the strong double logarithmic divergence of the particle-hole channel. Nevertheless, we want to
support ourselves with a sanity check. As discussed in chapter 2, the bubble integrations remain
the most challenging part of the TUFRG for which we carefully implemented an adaptive integration
routine. At first, we identify that the on-site bubble integrations and the bubbles are connected by:

Ḃ(q)+1,1 =
d

dT
Bph(q) (3.28)

Ḃ(q)−1,1 =
d

dT
Bpp(q) (3.29)
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Figure 3.2: TUFRG flow and singular vertex at Van Hove filling µ = 2t: The TUFRG calculation
was done withNq = 540momenta and on the hexagon shellNs = 4. The Hubbard interaction was
chosen as U = 4t. a) Evolution of the maximum absolute value of the respective channels P ,C and
D. We observe that the C channel will develop the strongest divergence for the chosen parameters.
b) Momentum resolved on-site component of the magnetic channel C1,1(q) at the end of the flow.
We register pronounced peaks at theMi points.

Therefore, a comparison with the dependencies of the bubbles Eqs. (3.24)-(3.27) yields:

Ḃ(Γ)−1,1 ∝− log
(
W

T

)
1

T
⇐⇒ T × Ḃ(Γ)−1,1 ∝ − log

(
W

T

)
, (3.30)

Ḃ(Γ)+1,1 ∝+
1

T
⇐⇒ T × Ḃ(Γ)+1,1 ∝ +1, (3.31)

Ḃ(M)−1,1 ∝− 1

T
⇐⇒ T × Ḃ(M)−1,1 ∝ −1, (3.32)

Ḃ(M)+1,1 ∝+ log
(
W

T

)
1

T
⇐⇒ T × Ḃ(M)+1,1 ∝ + log

(
W

T

)
. (3.33)

So, we reach at a set of benchmark values which ensure the correctness of our bubble integrations.
We will save these quantities while performing the flow calculations such that we can check the ful-
fillment of these conditions after successfully detecting an instability. The results of these checks are
displayed in Fig. 3.3. Indeed, the behaviour of the bubble integrations is reproduced and we are con-
fident in the correctness of our application.

In the next step, we want to investigate the model by changing the electronic filling. We will treat
both cases here: underdoping µ < µVH and overdoping µ > µVH. We will start with the underdop-
ing case. In either filling situation, the Fermi surface is not directly at the Van Hove point anymore
(cf. Fig. 3.1 b) such that the the analysis for Eqs. (3.24)-(3.27) is not completely valid. Still, we expect
that remnants of the logarithmic divergence ρ(ϵ) ∝ log(W/|ϵ− ϵVH|) are still present since we will
tune the Fermi surface only slightly away from the this scenario. In terms of competing instabilities,
we are now interested if the weakening of the divergence leads to a different hierarchy of the singular
behaviour, i.e. if under the RG flow an attractive interaction for the particle-particle channel emerges.
For that purpose, we change the chemical potential to µ = 1.96t and perform the TUFRG calculation.

The results of these calculations are displayed in Fig. 3.4. Here, we detect an instability towards su-
perconductivity at Tc ≈ O(10−5t). Components of the particle-hole related channels C andD still
gain substantial increments in the beginning of the flow until a turning point at Tc ≈ O(10−2t) is
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Figure 3.3: Consistency check atVanHovefilling by trackingbubble integrationswhile performing
theTUFRGcalculation: Wechose an angular resolution ofNA = 120 in our calculations as described
in section 2.3.2. The bubble integrations multiplied with T fulfill the checks Eqs. (3.30)-(3.33). The
bubbles featuring a double logarithmic divergence develop a linear slope at low T while the bubbles
with the single logarithmic divergence become constant.

reached, after which these channels saturate. The extremely sharp behaviour of the P channel does
look peculiar at first glance, but can be reasonable explained. For the majority of the flow, some com-
ponent of the P channel will be the largest absolute value. While the flow continues, the growth of
the components of theC andD channel generate new momentum structures by the renormalization
procedure which eventually lead to contributions to some other P channel components. At some
point, this component will overtake the former largest component, such that the tracking of the abso-
lute value in Fig. 3.4 a will feature the apparent sharp kink.
In the Van Hove case, the singular C channel component was only given by the on-site vertex, i.e.
(l, l′) = (1, 1). In the present case of an instability towards superconductivity, the P channel does
actually inhabit divergent momentum peaks in several combinations of (l, l′) (and interestingly, not
in the on-site component). For example, we displayed the (l, l′) = (61, 61) component in Fig. 3.4 b,
where a sharp momentum peak sits at Γ, i.e. transfer momentum q = 0.

For a more concise overview about the diverging components of P l,l′(q) we advise to Fig. 3.5 a. The
peaks in this channel do always only occur at theΓ-point, and only differ in being either a positive or
negative valued peak. We see that all significant peaks are actually located in combinations of form
factors (l, l′)which lie in the outmost hexagon shell. By reminding ourselves howwe constructed the
different lattice harmonics in section 1.2, it is safe to assume that the symmetry of the corresponding
leading gap function of channel P on hand will be of higher order. Therefore, we proceed and calcu-
late the leading gap function as described in the implementation section, namely we reconstruct the
pairing interaction ΦP from the P channel and diagonalize the eigenvalue equation of the BCS the-
ory Eq. (1.49). The eigenvector corresponding to the highest eigenvalue is the leading gap function,
depicted in Fig. 3.5 b. A comparison with the lattice harmonics in section 1.3 (Fig. 1.7) reveals that
the symmetry of this gap corresponds to the A2 irrep of 7th order. From Fig. 3.5 a it is obvious that
the inclusion of long ranged form factors is absolutely crucial for resolving this gap symmetry. By
the amount of zero crossings of the Fermi surface in Fig. 3.5 b we will call this instability an i-wave
superconductor. The findings of our study here are consistent with previous patching scheme studies
[41, 97]. Again, we want to check the correctness of these results by checking how the bubble inte-
grations behaved while executing the TUFRG flow equations. Since we are still close - but not directly
at - the Van Hove point, we expect some remnant effects of the logarithmic divergence before these
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Figure 3.4: TUFRG flow and singular vertex below Van Hove filling µ = 1.96t: The TUFRG cal-
culation was done with Nq = 540 momenta and with hexagon shell Ns = 4. The Hubbard U is
chosen as U = 4t. a) Evolution of the maximum absolute value of the respective channels P ,C and
D. We observe that the P channel will develop the strongest divergence for the chosen parameters.
b) Momentum resolved (l, l′) = (61, 61) component of the pairing channel P 61,61(q) at the end of
the flow. A sharp peak at Γ emerges.
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Figure 3.5: Examination of the singular channel P at underdoping µ = 1.96t: a) All form factor
components (l, l′) for which the P channel features a peak, whereas positive (negative) peaks are
green (brown). The intensity of the color indicates the strength of the peak, whereas darker shades
imply larger values. The numbering of the axes intends to show that all strong dependencies are of
combinations with l, l′ ∈ [37 : 61], i.e. from form factors lying on the 4th hexagon shell. b) The
leading gap function reconstructed from the P channel. The symmetry of this gap can be classified to
be a 7th order lattice harmonic of the A2 irrep. If we draw the Fermi surface (red) on top of the gap
function, we will register 12 zero-crossings with the gap function.

contributions extinct. This holds also true for the logarithmic divergence contributed by the nest-
ing of the Fermi surface since the perfect nesting is only approximately present for the underdoped
Fermi surface. Conclusively, only the generic logarithmic divergence in the particle-particle channel
for zero transfer momentum should survive. For low temperatures we expect that - after the rem-
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Figure 3.6: Consistency check by tracking bubble integrations while performing TUFRG calcula-
tion for µ = 1.96t: Again, we chose an angular resolution ofNA = 120 as described before. Further
checks of increasing this value reveal that this resolution is already sufficient for reaching conver-
gence. Only the particle-particle channel at zero transfer momentum will have significant increments
for low temperatures, while the other temperature-scaled bubble integrations are approaching zero
due to the absence of perfect nesting and distance to the Van Hove point.

nants of the divergencies stemming from Van Hove filling and nesting are extinguished - the analysis
in Eqs. (3.24)-(3.27) can be reduced to:

Ḃ(Γ)−1,1 ∝ − 1

T
⇐⇒ T × Ḃ(Γ)−1,1 ∝ (−1)

while the other three temperature-scaled bubble integrations are going to zero. The numerical results
are displayed in Fig. 3.6 and confirm these considerations. We want to apply the TUFRG to a system
of overdoping now, i.e. µ > µVH. This will be the final case for illustrating the methodological work-
flow. For that purpose we select µ = 2.04t and apply the TUFRG again. From the phenomenological
understanding established before, we expect a similar behaviour of theP ,C andD channel also here:
the remnants of perfect nesting and the vicinity to the Van Hove point still induce fluctuations in the
particle-hole channels which eventually may trigger the possibility of an attractive interaction under
the renormalization procedure, leading to an instability towards superconductivity since the contri-
butions from the generic logarithmic divergencewill always contribute to the particle-particle channel
at zero transfer momentum. The results of the application are presented in Fig. 3.7.
Indeed, the behaviour of the system is qualitatively similar to the underdoping case. We detect again
a superconducting instability at Tc ≈ O(10−5t) (see Fig. 3.7 a). TheP channel does again happen to
form several peaks in various combinations of (l, l′). Analogous to the underdoping case, we present
the diverging components of the channel in Fig. 3.8 a. Interestingly, all divergent components are now
in the zeroth (l = 1) or first (l ∈ [1, 7]) hexagon shell. Consequently, we speculate that the leading
gap is of first order. As a matter of fact, by calculating again the leading gap function as before, we
can classify the leading gap as representing the first order lattice harmonic of the B1 irrep. This super-
conductivity instability is usually called f -wave superconductivity and has been found in this regime
also by previous RG studies [110]. Actually, we are not dependent on using the fourth hexagon shell
Ns = 4 here since the main contributions to the pairing function stem from components of small
distance. We will see in convergence checks later that the selection of different shells does not change
the qualitative result of this calculation, in contrast to the underdoping case with the emergent i-wave
which strongly depends on the inclusion of form factors of long range.
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Figure 3.7: TUFRG flow and singular vertex above VanHove filling µ = 2.04t: The TUFRG calcula-
tion was done withNq = 540momenta and on the hexagon shellNs = 4. The Hubbard U is chosen
as U = 4t. a) Evolution of the maximum absolute value of the respective channels P ,C and D.
The P channel will develop the strongest divergence for the chosen set of parameters. b) Momentum
resolved (l, l′) = (3, 3) component of the superconducting channel P 3,3(q) at the end of the flow,
again featuring a sharp peak at the Γ-point.
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Figure 3.8: Examination of the singular channel P at overdoping µ = 2.04t: a) All form factor
components (l, l′) for which the P channels features a peak, whereas positive (negative) peaks are
green (brown) and darker shades indicate stronger peaks. The numbering of the axes intends to show
that all strong dependencies are in the in combinations with l, l′ ∈ [1 : 7], i.e. from form factors lying
on the 0th or 1st hexagon shell. b) The leading gap function reconstructed from the P channel. The
symmetry of this gap can be classified to be an 1st order lattice harmonic of the B1 irrep. If we draw
the Fermi surface (red) on top of the gap function, we will register no zero-crossings with the gap
function. Interestingly, the leading gap therefore fulfills the heuristic argument made in section 1.2
which implies that the leading gap tends to be completely gapped.

For the presence of logarithmic divergencies, we safely assume a similar qualitative picture as in the
underdoping case. Although we already alluded in section 2.3.2 that the pockets, which are typically a
feature for overdoped Fermi surfaces, pose a numerical challenge. While checks for the Van Hove sce-
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Figure 3.9: Consistency check by tracking bubble integrations while performing TUFRG calcula-
tion for µ = 2.04t: For the angular resolutions we choseNA = 120 (dashed),NA = 240 (dotted),
NA = 360 (dashdotted) and NA = 480 (solid). The behaviour of the temperature-scaled bubble
integrations is qualitatively similar to the underdoping case as expected. However, it becomes appar-
ent that a higher angular resolution of the integration routine is necessary to reach convergence for
the overdoped case, especially for the particle-particle bubble at zero momentum. Here, the dashed-
dotted and the solid line lie upon on each other such that we assume reasonable convergence for
NA = 360.

nario and the underdoping scenario did not appear to be particularly challenging, this changes now
for the overdoping case. The results of the bubble integration checks are presented in Fig 3.9. From
these results we conclude that for an application to overdoped systems (i.e. the presence of pockets in
the Fermi surface), a higher angular resolution should be chosen for the adaptive integration routine.
We find that a reasonable convergence is reached for NA = 360, in contrast to using a resolution of
onlyNA = 120 in the underdoping case.

With the discussion of the three presented cases, the instruction of the TUFRG application is final-
ized. We will state a brief summary to cover the key elements which were provided here.

• In the paradigm of competing instabilities discussed in section 1.1, we expected strong particle-
hole fluctuations at Van Hove filling. Indeed, our numerical implementation confirms this as-
sumption and signals the occurrence of a SDW with modulating vector M in this scenario.
Since our bubble integrations can be related to the particle-hole and particle-particle bubble,
we could also recover the correct behaviour of these objects at low temperatures and frame the
considerations about the onset of instabilities valid.

• From the bubble analysis, the particle-hole and particle-particle fluctuations at VanHove filling
do both possess a double logarithmic divergence. Still, as we discussed also in section 1.1 and
1.2, the possibility of a superconductive instability is only possible for an attractive interaction.
We observe that away from Van Hove filling, the particle-hole fluctuations induce this attrac-
tive interaction under renormalization. The particle-hole fluctuations themselves extinct for
low temperatures away from Van Hove filling and - with the presence of the generic logarith-
mic divergence in the particle-particle channel - the emergence of superconductivity is finally
possible.

• In the TUFRG, we find these superconductive instabilities in the underdoping (µ < µVH) and
the overdoping (µ > µVH) case. The singular channel P l,l′(q) features a plethora of peaks
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at different combinations of (l, l′) at q = 0. By reconstructing the pairing interaction from
this channel, we successfully calculated the leading gap function∆(k) for the aforementioned
cases. As discussed in section 1.2, the symmetry of the gap functions are dictated by the under-
lying C6v point group. We find a gap function of 7th order of the irrep A2 (underdoping) and
a gap function of 1st order of the B2 irrep (overdoping). The former gap function highlights
the importance of taking long-ranged form factors into account since the strong divergencies in
components of high form factor indices l, l′ are crucial for deducing this gap function from the
singular vertex.

• As a final remark it should be mentioned that the examination of the values of the bubble in-
tegrations represents a helpful sanity check of the numerical implementation. The expected
behaviour of the bubbles at and in vicinity of the Van Hove singularity was well reproduced
and a reasonable convergence can be assumed. In addition, we extract from these checks that
for the overdoping case a higher angular resolutionNA should be used for the integration rou-
tine.

We will now proceed and map out a complete phase diagram for the model, including also longer
range interactions.

3.1.3 Instabilities of the paradigmatic Hubbard model

To pave the way to more realistic models we will now start to take interactions besides the local Hub-
bard interaction into account. For that purpose, we include a non-zero nearest-neighbour density-
density interaction V1. Before presenting the whole phase diagram, we want to keep the focus on
the effect of these new interactions to a single superconductive instability. Therefore, we consider the
previously discussed case at overdoping (µ = 2.04t) and add an interaction of V1 = 1t.

The application of the TUFRG to a model of these parameters finds indeed instabilities which were
not detected previously. The emerging instability is still a superconductor (cf. Fig. 3.10 a) at Tc ≈
O(10−4t), but the symmetry of the leading gap changes. In fact, we will find two degenerate leading
gaps with the same eigenvalue. This signals a symmetry which belongs to either the E1 or E2 irrep
since these are the two-dimensional irreps of the underlying point group C6v . A comparison with
the lattice harmonics derived in section 1.2. allows for the identification of these gaps as being second
order E2 gap functions. Typically, gaps which can be described by the first order lattice harmonics of
E2 are called a d-wave superconductors. By the doubling of zero-crossing of the Fermi surface in the
second order lattice harmonic (namely eight crossings), we will therefore call this emergent instabil-
ity a g-wave superconductor. Interestingly, by comparing the evolution of the channels in Fig. 3.10
a with the the counterpart plot Fig. 3.7 a, it becomes apparent that the evolution of the C channel
is barely altered, while the D channel is strongly affected. The inclusion of a non-zero V1 leads to
a strong enhancement of the D channel at the beginning of the flow before it eventually saturates.
While continuing the flow, the C channel overtakes the D channel at Tc ≈ O(10−1). We conclude
from this that the alteration of the gap function by including V1 is mainly mediated by the feedback
of theD channel to the P channel. It should be highlighted that the emerging gap symmetry opens
up the possibility of topological superconductivity as discussed in section 1.2. The two degenerate
leading gaps can be combined by a complex superposition, leading to a fully gapped function. In the
present case, this would be called a g+ig superconductor, featuring a Chern number of |N | = 4 [97].

Consequently, we calculate the phase diagram around Van Hove filling by employing a range be-
tween µ = 1.9t and µ = 2.1t for the chemical potential and between V1 = 0 and V1 = 1.6t for
the nearest-neighbour interaction. Our applications with larger interaction strengths for V1 showed
that the initial growth in the D channel is drastically enhanced, such that we directly find a CDW
after very short flows. Therefore, we keep the interaction V1 smaller than 1.6t, such that we are still
treating the model in the paradigm of a competition between magnetism and superconductivity. The
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Figure 3.10: TUFRGflowatµ = 2.06twithU = 4t and interactionV1 = 1t: The TUFRG calculation
was done withNq = 540 momenta and on the hexagon shellNs = 4 a) Evolution of the maximum
values of theP ,C andD channel. Eventually theP channelwill develop singular behaviour, signaling
the instability. In contrast to the calculations without a non-zero V1, the D channel has significant
initial growth but is eventually overtaken by the C channel. b) Leading gap functions reconstructed
from the singular vertex. The two degenerate leading gaps represent second order lattice harmonics of
the two-dimensional irrep E2. The red line indicates the Fermi surface which features 8 zero crossings
with the single gap functions.

results are compiled in the phase diagram Fig. 3.11. From examining this phase diagram, we divide
the occurring instabilities in three areas regarding the chemical potential. At first, there is a region at
and in close vicinity to the Van Hove filling µ = 2t. We know from the explanatory analysis that a
SDW is to be expected here for V1 = 0. In fact, this instability occupies a small range of the chemical
potential in regards of under- and overdoping before the respective superconductivity takes over. The
SDW instability is stable against effects of increasing the interaction V1 and the occupied region in the
phase diagram even broadens in size for higher interaction strength. For the overdoping case, even-
tually the f -wave superconductivity emerges when µ is tuned considerably enough away from Van
Hove filling as described in the previous section. The f -wave superconductivity occupies the whole
bottom right region of the phase diagram regarding chemical potential and interaction strength V1.
Then, by increasing V1, we can change the emerging superconductivity to have a g-wave symmetry,
as presented before. There exist transition lines by tuning V1 featuring a typical fan, such that the crit-
ical temperature for the f -wave steadily decreases until the transition point is met towards a g-wave
instability. From that point on, the critical temperature of the g-wave constantly increases again for
higher values of V1 for the rest of this region of the phase diagram. The third region at underdoping
(µ < 2.0t) behaves similarly to the overdoping region. Again for zero or lowvalues ofV1, wewill find
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Figure 3.11: Phase diagram of the paradigmatic t − U − V1 model: Original plot taken from [29].
For U = 4t and around Van Hove filling, various instabilities occur. Around Van Hove filling the
SDW (◦) dominates regardless of V1. At overdoping, we will find g-wave superconductivity (▽) and
f -wave superconductivity (□). At underdoping, the i-wave superconductivity (�) can be found.
If no instability occurs for T/t ≥ 10−6, then the area is marked as metallic (×). For the i-wave
superconductivity we use grey shades to highlight the fragility with respect to the inclusion of form
factor shells.

the i-wave superconductivity as described in the section before. This instability has the lowest critical
temperature and indeed we do not find another instability of this kind at zero interaction strength
when a cutoff of Tstop = 10−6 is employed. For chemical potentials below µ = 1.96t, the instability
will change to a f -wave superconductor, before no instability forms at all above the cutoff. For higher
interaction strengths, the i-wave appears again. Similar to the overdoping case, a transition towards
the g-wave is formed along the axis defined by V1. In the phase diagram, we displayed the markers
of the i-waves as grey to highlight their fragility with respect to the employed form factor shells. As
discussed before, this instability can only be correctly resolved by taking at leastNs = 4 form factor
shells into account. For a value belowNs = 4, we will find a f -wave instability instead.

3.1.4 Instabilities of the realistic tTMD model

In section 1.3, we discussed the possibility of describingMoiré materials effectively by Hubbard mod-
els. It has been shown for small twist angles that the AA-stacked WSe2/MoS2 can be effectively de-
scribed by an extended triangular lattice model where the spin index σ and valley index ξ play the
same role due to the strong spin-valley locking [112]. For that purpose we extract from [112] the
following parameters to describe the WSe2/MoS2 tTMD:

t1 ≈− 2.5meV,
t2 ≈ 0.5meV,
t3 ≈ 0.25meV.

The inclusion of t2 and t3 leads to a small curvature of the Fermi surface at Van Hove filling, such
that the nesting is not perfect anymore, but still approximately present. The interactions V1,2,3 are
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Figure 3.12: Phase diagram of the realistic tTMD model: Original plot taken from [29]. Around
Van Hove point we find SDW/VDW instabilities (◦). The remaning areas of superconductivity are
exclusively of the type of g-waves (▽). An absence of an instability for T/t ≥ 10−6, is marked as
metallic (×).

experimentally accessible and can tuned by the dielectric environment. We also extract here [121]:

V2/V1 ≈ 0.357meV,
V3/V1 ≈ 0.26meV.

We will again set U = 4t and vary V1 and µ to map out a phase diagram. For V1/|t1|, we again
chose the range between 0 and 1.6t such that the diagram is comparable to the paradigmatic case.
For the chemical potential it should be noticed that for the given parameters the Van Hove filling is
now located at µVH ≈ −5.5meV. We therefore select µ to be in the range between −5.3meV and
−5.7meV. The phase diagram can be seen in Fig. 3.12.

Both phase diagrams are qualitatively similar to each other, such that the majority of the effects
are already captured by the simple paradigmatic model. Again, we find around Van Hove filling an
extended region indicating the onset of a SDW(which can also be understood as a Valley densitywave
(VDW) due to the double role of the spin/valley index in the model). For both cases -underdoping
and overdoping- the areas which formerly inhabited superconductivity at low values of V1 do not fea-
ture any instability at all now. A possible explanation of this absence is given by the fact that the effect
of the parameters t2, t3 weaken the nesting quality of the Fermi surface so much that the necessary
fluctuations in the particle-hole channels are not significant enough to induce an attractive interaction
for the onset of superconductivity under renormalization. This effect basically erases most of the oc-
curring superconductivities for low values of V1. For higher values of V1, we still find an extensive
region of g-wave superconductivity for underdoping and overdoping. This does again reinforce the
hypothesis made in the paradigmatic case, namely that mainly the interaction V1 enhancing the den-
sity channelD is necessary for the emergence of the g-wave superconductivity. If this claim turns out
to be true, then it would be of no surprise that the superconductivity at the lower part of the phase di-
agram (i.e. smaller V1) disappears due to the weakening of the nesting, while the superconductivity
in the upper part (larger V1), mainly caused by interaction effects, remains stable.
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Figure 3.13: Convergence checks for critical temperature Tc: Original plot from [29]. Top: U = 4t
and V1 = 0. Bottom: U = 4t and V1 = 1t. We portray the dependence of the critical temperature
on the momentum resolution. Legend for form factor shells: Ns = 2 (dashed), Ns = 3 (dotted),
Ns = 4 (solid).

3.1.5 Convergence tests

Before summarizing the presented results, we briefly want to dive into a technical excursion and dis-
cuss the convergence of the calculations. As stated before, we calculated the phase diagrams with
Nq = 540 momenta in the Brillouin zone and using the fourth form factor shell Ns = 4, cor-
responding to 61 form factors. These parameters were naturally not chosen randomly, but turned
out to be a good trade-off of convergence and performance. At first, we ran convergence checks for
Nq ∈ [180, 336, 540, 792, 1092] andNs ∈ [2, 3, 4]. We did these tests for the selection of parameters
presented in section 3.1.1 and also for a different set of parameterswithV1 = 1t andµ = 1.9, 2.0, 2.1,
see Fig. 3.13. From these checks we conclude that Nq = 540 is a good value for running the calcu-
lations since the corrections to the critical temperatures beyond are small but numerically expensive.
For the form factor shells we always selectNs = 4 such that we do not overly bias the system which
is for example the case when we try to resolve the i-wave superconductivity with less than four form
factor shells. We employ a second convergence test to account for the effects of the form factor shells
on the critical temperature. We calculate two slices of the presented phase diagram at V1 = 0 and
V1 = 1t for Ns = 2, 3, 4 at a high momentum resolution of Nq = 1092, see Fig. 3.14. From these
plots we are generally satisfied with the quantitative convergence.
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Figure 3.14: Convergence checks for phase diagram at Nq = 1092 : Original plot from [PubA].
Top: U = 4t and V1 = 0. Bottom: U = 4t and V1 = 1t. Areas of instabilities are labeled as such,
with the grey bars representing phase boundaries. For the case with V1 = 0, the results of different
form factor shells do align very consistently, where a qualitative difference can be seen in the regime
of the i-wave superconductivity. For the case with V1 = 1t, desired convergence is harder to reach.
Phase boundaries may vary depending which form factors are included as seen in the bottom plot at
µ = 2.04t or µ = 2.08t. In both cases, the convergence of the SDW is extraordinary fast secured.

3.1.6 Summary

In this section, we successfully applied the derived TUFRG implementation to the SU(2)-invariant
triangular Hubbard model. The results of this application serve us in two different ways. At first, we
examined the paradigmatic model with t = 1 and U = 4t as fixed parameters at Van Hove filling
(µ = 2t) and slightly tuned away from it (µ = 1.96t, 2.04t). The results agree with the notions of
competing instabilities as presented in section 1.1 and by the connection of the bubble integrations to
the particle-particle and particle-hole bubble, we retrieved a practical criterion for the soundness of
the performed calculations. Following this, we mapped out a phase diagram for an extended range
of nearest-neighbour interactions V1 and chemical potentials µ. This phase diagram precisely reflects
the paradigm of competing instabilities where around Van Hove filling an extended range of mag-
netism (SDWs) appears which eventually translates to superconductivity for filling situations away
from Van Hove filling. By reconstruction of the pairing interaction from the TUFRG, we success-
fully identified the emergent symmetries of the leading gap functions and recognize f -wave, g-wave
and i-wave superconductivity. All of these symmetries were possible to expect by our analysis of
the C6v point group in section 1.2. For the realistic description of the tTMD material WSe2/MoS2,
we performed another set of TUFRG calculations, including also longer ranged hoppings t2, t3 and
interactions V2, V3. The established phase diagram in this case is qualitatively similar to the paradig-
matic case, highlighting that the mechanismwhich leads to superconductivity in this tTMD is already
present in the paradigmatic model. Noticeably, the variety of superconductive instabilities shrinks
down to the presence of the g-wave superconductivity only. The absence of the f -wave and i-wave
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may be explainable by the distortion of the nesting by additional hoppings t2, t3 while the g-wave re-
mains stable since it may be mainly caused by the interaction V1. Besides from these results, we want
to emphasize the technical advancement of this study. The features of the TUFRG method in general
lead to an advantageous FRG approach for strongly correlated systems, allowing for high momentum
resolution. The numerical challenge is posed by performing stable flow calculations down to very low
temperatures T and still maintaining reasonable computation times. By using the integration routine
and fully exploiting the geometrical structure of the plane wave form factors shown in section 2.3.2 we
did not only overcome this challenge, but also made it possible to include 61 form factors. This is an
unprecedented value for this parameter comparing to previous works and also enables the possibility
to correctly resolving the i-wave superconductivity.
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3.2 Application B: Spinless triangular models

In this section, wewill study competing orders of spinless fermions on a triangular latticewith nearest-
neighbour interaction V1. We already discussed in section 1.3 before that a single TMD system may
inhabit strong spin-orbit coupling leading to spin-splitting of the valence bands [65, 91]. Effective
models of tTMD systems formed by these split bands will inherit parts of this structure, leading also
to a description including spin-split bands [79, 112]. The model of an isolated band may be achieved
if we consider a strong spin polarization by external manipulation, e.g. applied fields. In this case, we
would then treat a single polarized band where all electrons carry the same spin (which is effectively
equivalent to excluding the spin quantum number). The main idea behind this analysis is driven by
the question if the emerging orders of the full model are also already encrypted in the behaviour of
electrons in a single band. Moreover, we used the spinless model for a technical case study. The re-
sults of this subsection were published in [30] where we compared the results of the TUFRG with the
patching scheme. Nevertheless, this section will purely focus on the TUFRG calculations.

Two distinct cases will be presented here. At first, we will set V1 < 0 to start with an attractive
interaction. By this choice, we will directly have an attractive component in the particle-particle chan-
nel without the necessity to generate it by the RG flow such that particle-hole and particle-particle
fluctuations are directly in competition from the start. In a second case, we will set V1 > 0, employ-
ing a repulsive interaction. In this scenario, we are closer to the situation already treated in application
A where it will become apparent in which way the instabilities change when the spin degree of free-
dom is absent. We will map out a correlated phase diagram for various values of V1 for a range of
the chemical potential µ for both of these cases. In this section, we will only treat underdoped cases
i.e. µ < µVH. This originated from the comparison with the patching code which was written for
underdoped cases only.

3.2.1 Model and implementation

We consider aminimalmodel for spinless fermions on a triangular lattice. Themost simple interaction
term is a nearest-neighbour interaction term V1, because no Hubbard interaction U can be included
since double occupation of a single site is not possible for spinless fermions. We also consider nearest-
neighbour hoppings only for the kinetic part and include the coupling to the density operator ni =
c†ici by the chemical potential:

H = −t
∑
⟨i,j⟩

(
c†icj + h.c.

)
+ µ

∑
i

ni + V1
∑
⟨i,j⟩

ninj , (3.34)

where c(†)i annihilates(creates) a fermion on lattice site i. The dispersion of the band can be retrieved
by Fourier transform:

ξ(k) = ϵ(k)− µ

= −2t[cos(ky)+2 cos(ky/2) cos(
√
3kx/2)]− µ (3.35)

which is of course the same dispersion already used in the previous application. Therefore, the Van
Hove singularity at the M points of the Brillouin zone is also present here, for which the chemical
potential has to be tuned to µVH = 2t. As stated before, we will only investigate underdoped cases
here and cover the whole range between µ = 0 and µ = 2t for our calculations.

For the application of the TUFRG to the spinless model, we are obligated to employ the TUFRG equa-
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a) b)

Figure 3.15: Spinless model on a triangular lattice: a) Real space lattice with hopping t and density-
density interactionsV1. b) Dispersion for t = 1.0. The Fermi surfaces correspond toµ = 2.0t (solid),
µ = 1t (dashed) and µ = 0 (dotted). The M1,2,3 points are Van Hove points with a logarithmic
divergences regarding the density of states. At µ = 2.0t.

tions stemming from the spinless FRG flow equations Eqs2. (2.40)-(2.42):

d

dΛ
P l,l

′
(q) =

1

2

∑
l1,l2

V P
l,l1(q)× Ḃ−

l1,l2
(q)× V P

l′,l2(q), (3.36)

d

dΛ
Dl,l′(q) =

∑
l1,l2

V D
l,l1(q)× Ḃ+

l1,l2
(q)× V D

l′,l2(q), (3.37)

d

dΛ
C l,l

′
(q) =

∑
l1,l2

V C
l,l1(q)× Ḃ+

l1,l2
(q)× V C

l′,l2(q). (3.38)

Since the dispersion of this model is equal to the dispersion of the model in application A, the bub-
ble integrations Ḃ± are also exactly the same objects as in the former application, see Eq. (3.8) and
Eq. (3.9). This also applies to the cross-projection operators V X which are identical to Eqs. (3.10)-
(3.23). A substantial difference in the application to spinless fermions (besides the structure of the
Flow equations (3.36)-(3.38)) is given by the implementation of the initial conditions. For the nearest-
neighbour interaction V1, these conditions are given by:

V 0,C
1,1 (q) = −V 0,D

1,1 (q) = −V1
∑
l

eiqRl , (3.39)

V 0,P
l,l (q) = V 0,C

l,l (q) = −V 0,D
l,l (q) = V1, (3.40)

V 0,P
−l,l (q) = −V1e−iqRl . (3.41)

Where l are the form factors in the first form factor shell, l ∈ {2, 3, 4, 5, 6, 7}. The notation −l indi-
cates the real space vector in the oppposite direction ofRl, e.g. −l = −2 → R−2 = R3 → l = 3.

For the numerical implementation, we follow the steps outlined in the second chapter. Since the
bubble integrations were already successfully tested for convergence and stability in application A

2We we again used the convention leading to global sign.
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a1) a2) b)

Figure 3.16: Momentum and form factor resolution used for the spinless model: a1) 180 and a2)
540momentum points. The first resolution is used to compare the TUFRG results to patching results.
The latter resolution is used to examine selected phases in more detail. The color of the discretization
points indicates the use of symmetries as described in section 2.3.3. b) For the main results, form
factors up to the second shell (green) Ns = 2 are used. Convergence checks including shells up to
Ns = 3 (yellow) andNs = 4 (blue) are contributed at the end of this section.

before, we do not expect any technical difficulties in the flows calculated here.
We will use two different resolutions to treat the spinless model. For laying out the phase diagrams,
we will use a rather small momentum resolution of Nq = 180. This choice was initially made to
compare it to patching calculation which are often implemented with a rather small choice of mo-
mentum patches. In publication [30] the complementary patching code used 192 patches, so we
choseNq = 180 for a better comparison. For further analysis of selected instabilities in the phase di-
agram, we then switch toNq = 540 as it already turned out to be a good trade-off between numerical
cost and convergence as demonstrated in the convergence checks in application A. For the resolution
regarding form factors, we chose to include form factors up to the second hexagon shell, i.e. Ns = 2
what translates to 19 form factors. From the calculations of the patching scheme, we do not expect to
be confronted with gap symmetries which need more than the second shell to be properly resolved
such thatNs = 2 can be safely selected to maintain computational speed. Nevertheless, we will com-
plete this section with a convergence check to investigate the effects of taking higher form factor shells
into account.

Before presenting the results, we want to briefly discuss the physical interpretation of the C chan-
nel. In the former application, this channel faithfully represented spin interactions like SDWs. Since
a spinless system cannot exhibit these types of interactions anymore, the question of a suitable inter-
pretation of the C channel is posed. At first it should be noted that the two particle-hole channels
are connected for a system without SU(2)-invariance. This can easily been seen by investigating the
diagram types in the FRG formalism Eq. (2.41) and Eq. (2.42). By using Grassmann anti-symmetry
we find:

τph,d(k1,k2,k3,k4) = −τph,cr(k1,k2,k4,k3). (3.42)

This translates to the TUFRG as:
Dl,l′(q) = −C l,l′(q). (3.43)

From which we conclude that the C channel is actually redundant and is just another density chan-
nel. This becomes also apparent whenwe compare the proposedmodel actionsSC Eq. (2.59) andSD
Eq. (2.53) where we motivated the channel decomposition. If we liberate both actions from their spin
degrees of freedom, then two identical actions will remain which only differ by a global sign. Conclu-
sively, we expect that the emerging instabilities are a result of the competition of superconductivity
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Figure 3.17: TUFRG results at Van Hove filling µ = 2t for V1 = −1t, withNq = 540 andNs = 2
(19 form factors): a) The tracking the evolution of the maximum absolute value of the three channels
while performing the TUFRG calculations reveals a divergence in the D/C channel. The matching
behaviour of these channels was not externally imposed and confirms the symmetry consideration
Eq. (3.43). b) Momentum resolved on-site component of the density channel D1,1(q) at the end of
the flow at Tc. The peak at the Γ point indicates a Pomeranchuk instability.

and charge density phenomena instead of superconductivity and magnetism in the present spinless
model. Although a TUFRG approach with P and D channels only certainly can be constructed for
the spinless model, we still keep the C channel as a sanity check to ensure the consistency of our im-
plementation. This also provides us with a sanity check for the application A retrospectively since the
projections and bubble integrations which have to work in a numerical flawless manner to fulfill the
symmetry relation Eq. (3.43) are also used in the former application. As before, wewill use T0 = 3W
as starting scale and impose a hard cutoff at Tstop = 10−5twhere the flow stops.

3.2.2 Instabilities at attractive interaction

Wewill start with an attractive nearest-neighbour interaction V1 < 0. From the analysis of the bubble
integrations in the SU(2) case before, we expect the following scenario: at Van Hove filling µ = 2t,
the particle-hole fluctuations are enhanced by perfect nesting and the Van Hove singularity. The
particle-particle fluctuations are also enhanced by the Van Hove singularity, in addition to the generic
logarithmic divergence at q = 0. Interestingly, the attractive interaction V1 < 0 allows directly
for Cooper pairing. So, although we are expecting a competition between charge density instabili-
ties (triggered by particle-hole fluctuations) and instabilities towards superconductivity (induced by
particle-particle fluctuations), it is not directly clear which of these effects will remain stronger at Van
Hove filling. We will therefore start at µ = 2t and systematically reduce the chemical potential to
investigate the effect on the emerging instabilities.

At Van Hove filling

By tracking down the evolution of the channels while integrating the TUFRGflow equations, we even-
tually find a divergence of theD/C channel at Tc ≈ O(10−1t) indicating a charge density instability.
Inspecting the momentum structure of the D1,1(q) component, a pronounced peak at q = 0 is re-
vealed (see Fig. 3.17 b). This instability is called a Pomeranchuk instability (for studies regarding
this instability in the square lattice Hubbard model, the reader is advised to [17, 118]) and can be
understood as the density channel counterpart to a ferromagnet since both phases are defined as the
special case of a SDW/CDW with zero momentum transfer.
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Figure 3.18: TUFRG results for µ = 1.8 and V1 = −0.6, withNq = 540,Ns = 2 (19 form factors)
: a) By tracking the maximum value of the channels, eventually a P divergence appears. The C/D
symmetry relation holds as expected. b) f -wave leading gap represented by a first order B1 lattice
harmonic. The red line represents the Fermi surface of the system.

The nature of this Pomeranchuck instability remains peculiar and cannot be explained completely in
the framework of our former bubble analysis. From the bubble integrations alone, there should be no
strong tendency for particle-hole instabilities at zero momentum transfer. Therefore, this mechanism
has to be explained by some other effects which are not provided by the bubbles. Also, a complete
description of the Pomeranchuck instability can not be made in our truncation since the order pa-
rameter which considerably grows for a Pomeranchuck instability (i.e. a CDW with zero momentum
transfer) is just the standard density operator. Therefore we are objected to a renormalization of the
chemical potential which should lead to changes of the Fermi surface while the flow integration is
performed. Since we discard self-energy corrections completely in our approach, there is no way to
faithfully incorporate the feedback of this effect to the Fermi surface.
In addition, wewill findminor contributions in other components ofDl,l′(q = 0) for various l, l′. At
this point, we could construct a decoupling of the density-density interaction similar to the BCS the-
ory to determine the symmetry of the order parameter. In fact, this analysis is a bit overeagerous since
the strong on-site component of the singular vertexD1,1(q) can only ever describe a A1 symmetry in
any way. Indeed, we performed this construction in [30] and confirm this intuitive expectation.

Below Van Hove filling

For values of µ below Van Hove filling, we can for find two different areas of superconductivity. Both
of these phases are again characterized by a singular P channel where the singular vertex again di-
verges at q = 0 in various combinations of l, l′. We reconstruct the leading gap ∆(k) from these
singular vertices and find the following two phases of superconductivity:

• Adjacent to the area of the Pomeranchuck instability, we will find a phase of f -wave supercon-
ductivity. The size of this phase shrinks with larger absolute values of the interaction |V1|. This
symmetry is described by a first order B1 lattice harmonic.

• By lowering µ even further, the symmetry of the superconductivity changes to p-wave. The
degenerated leading gaps are described by first order E1 lattice harmonics. For lower values of
|V1|, this phase occurs also at lower temperatures, until it eventually drops under the imposed
cut-off of T = 10−5. This instability is a candidate for a topological superconductor since the
two-dimensional irrep E1 allows for a complex superposition of the leading lattice harmonics.
This phase is called a p+ ip superconductor. The corresponding Chern number is C = −1.
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Figure 3.19: TUFRG results for µ = 1.2 and V1 = −1t, with N(q) = 540, Ns = 2 (19 form
factors) : a) Tracking the maximum value of the channels, eventually a P divergence appears. The
C/D symmetry relation holds as expected. b) p-wave leading gap represented by a two-dimensional
first order E1 lattice harmonic. The red line represents the Fermi surface of the system.
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Figure 3.20: Phase diagram for an attractive interaction V1: At and around Van Hove filling µ = 2t,
the Pomeranchuk instability consistently emerges for various interaction strengths V1. By lowering µ,
this phase is eventually replaced by a region of f -wave superconductivity (dot). For even lower chem-
ical potential, the symmetry of the superconductivity changes to a p-wave superconductor (cross). For
a weak interaction strength, i.e. V1 = −0.4t, this phase does not occur above the cut-off temperature
T = 10−5t.
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Figure 3.21: TUFRG results at VanHove fillingµ = 2t forV1 = 1t, withNq = 540 andNs = 2 (19
form factors): a) TheD/C channel will develop a divergence while tracking the maximum absolute
value in the TUFRG calculation. As before, these channels still align as predicted by the symmetry
condition. b)Momentum resolved on-site component of the density channelD1,1(q) at the end of the
flow at Tc. The peaks of the singular vertex are located at theM points, indicating a CDW instability.

The phase diagram for a selection of interaction strengths V1 is depicted in Fig. 3.20. In addition, we
display an example of the f -wave and p-wave superconductivity in Fig. 3.18 and Fig. 3.19 respectively.
Both of these superconducting phaseswere also found inmean-field studies before [19]. Interestingly,
the symmetries of the gaps in our studies do not deviate from the symmetries found in this mean-field
study. From thatwe conclude that the onset of the superconductivity ismainly an effect of the presence
of the bare attractive interaction V1 alone and that no additional momentum structures, which could
be formed under renormalization, are necessary to resolve the correct type of superconductivity of the
system. A leading question for further studies is posed by the suppression of this superconductivity
by the Pomeranchuck instability in close vicinity of the Van Hove singularity, for which we have to go
beyond our truncation scheme.

3.2.3 Instabilities at repulsive interaction

In a second variation, we will now change the interaction to be repulsive, V1 > 0. This case is much
more akin to the application A where also all initial interactions are repulsive. From the studies per-
formed for the spinful SU(2)model, we expect a very similar phase diagram here by tuning the chem-
ical potential. At Van Hove filling, the particle-hole fluctuations should enhance theD/C channel at
theM points. Away from Van Hove filling, it may be possible to generate an attractive component in
the P channel, such that by the divergent behaviour of the particle-particle bubble (stemming from
the generic logarithmic divergence at zero momentum), a region of superconductivity can appear in
the phase diagram.

At Van Hove filling

Directly at Van Hove filling (µ = 2t) we will find again a divergence in theD/C channel, similar to
the attractive case (see Fig. 3.21). In contrast to the former case, the peaks of the singular vertex are
now located at finite transfer momenta, namely the M points, and they strictly appear in the on-site
component. Therefore, the TUFRG indicates the onset of a CDWas expected from the bubble analysis.
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Figure 3.22: TUFRG results forµ = 1.7 and V1 = 1t, withN(q) = 540,Ns = 2 (19 form factors) :
a) By tracking the evolution of the channels, we recognize strong growth in theC/D channel initially,
before a phase of saturation begins. At low temperatures however, the P channel starts developing
singular behaviour. TheC/D symmetry relation holds as expected. b) extended p-wave leading gap
represented by a two-dimensional second order E1 lattice harmonic. The red line represents the Fermi
surface of the system.

Below Van Hove filling

Lowering the chemical potential leads to weakening the perfect nesting of the system such that the
system may undergo a transition to superconductivity. Interestingly, we will only find one type of
superconductivity regarding the gap function, instead of two symmetries like in the attractive case.
Here, the TUFRG detects two degenerate leading gaps which represent second order E1 lattice har-
monics. Since the first order variation of this symmetry is usually called p-wave, wewill call this phase
an extended p-wave, or p̃-wave for brevity (see Fig. 3.22 b).

By checking the evolution of the channels (see Fig. 3.22 a), there are noticeable differences to the
attractive case which reveal hints of the fundamental mechanisms of superconductivity in both in-
stances. In the repulsive case discussed here, the D/C channel grows initially before a saturation
eventually governs the evolution of these channels. In contrast, the P channel stays at a low value
for the majority of the time, until significant increments are gained at low temperatures. This fits
the paradigm established in application A where an attractive interaction has to be generated under
renormalization to eventually trigger the onset of an instability towards superconductivity. In the at-
tractive case however, the P channel grows already strongly in the beginning of the flow, induced by
an already present attractive interaction, such that the emerging superconductivity in this case does
not depend strongly on the feedback of the particle-hole channels to the particle-particle channels.
This claim is also supported by the single-channel treatment of this model in reference to [19] which
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Figure 3.23: Phase diagram for an repulsive interaction V1: Around Van Hove filling µ = 2t the
CDW instability consistently emerges for all values of V1. By lowering µ, the regime is replaced by a
phase of extended p-wave superconductivity. The transition is marked by a dot. The area occupied
by the CDW instability continuously shrinks with decreasing interaction strength V1. The areas of µ
where no instability forms above the cutoff T = 10−5t are be labeled as metal.

already finds the same superconductive gap symmetries completely without feedback. Therefore we
conclude that in the repulsive case V1 > 0, we are actually in the situation of competing instabilities
which are heavily influenced by each other, whereas in the attractive case it is more a race of which of
the single-channel summations wins at different filling situations.

We finally present the phase diagram for various repulsive interaction strengths V1 and an extended
range of fillings in Fig. 3.23.

3.2.4 Convergence tests

As a supplementary study, we will investigate the convergence in this section. We know that the sta-
bility and correctness of the implementation mainly depends on the bubble integration which was
already shown to work as intended in the previous application. Still, we will perform a quick test
for both, the attractive and repulsive case, to ensure that our choice of momenta and form factors are
converged and do not bias the system in any way.

The results are shown in Fig. 3.24 and Fig. 3.25 respectively. For the attractive case, we demonstrate
that the effects of increasing the momentum resolutionNq or taking higher form factor shellsNs into
account are minor. For the repulsive case, the effects are still small, but more noticeably. We can
find a reasonable convergence in momenta and form factors. The choice of resolution does mainly
affect the quantitative value of the critical temperatures, while the general properties of the phase
diagram are qualitatively unchanged. The shift of the phase boundary is also noticeable, but not of
a dramatic quality. Most importantly, we find that for both cases the inclusion of higher form factor
shells Ns does not lead to different types of superconductivity. This is in contrast to application A,
whereNs = 4 is a necessary parameter to resolve the i-wave instability. Therefore, we can safely use
Ns = 2 in this application here to gain a numerical advantage.
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Figure 3.24: Convergence check of the TUFRG calculations for attractive interaction: Original plot
taken from [30]. a) Dependence of critical temperatures on increasing momentum resolution Nq .
Overwhelming convergence is reached quickly for this model regarding the momentum resolution.
b) Dependence of critical temperatures on taking higher form factor shells Ns into account. While
the phase diagram is qualitatively unchanged, minor deviations in the superconducting branch are
induced by increasingNs.
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Figure 3.25: Convergence check of the TUFRG calculations for repulsive interaction: Original plot
taken from [30]. a) The dependence of the critical temperatures on increasing momentum resolution
Nq . We detect no qualitative changes due to increasing the momentum resolution. The value of the
phase boundary does slightly change. b) Dependence of critical temperatures on taking higher form
factor shells Ns into account. Again, the changes are only quantitative, where higher Ns typically
lead to slightly higher critical temperatures for the instabilities towards superconductivity.

3.2.5 Summary

In this section, we applied the TUFRG method to a minimal model of spinless fermions on a triangu-
lar lattice, including nearest-neighbour hopping t and nearest-neighbour interaction V1 around Van
Hove filling. For an attractive interaction V1 < 0, the TUFRG detects a Pomeranchuck instability in
close vicinity of the Van Hove filling. The exact nature of this instability remains peculiar since none
of the strong divergencies mediated by the particle-hole bubble does directly support an intuitive
understanding of this phase. Since the Pomeranchuk instability is directly linked to a change of the
chemical potential µ, we are advised at this point to study this phase with self-energy corrections to
fully account for the feedback caused by the formation of this instability. Away from Van Hove filling,
we will find f - and p-wave superconductivity. By examining the evolution of the flow, it appears that
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the mechanism for these regions of superconductivity is not sophisticated at all, and the instability is
directly induced by the presence of an attractive initial interaction. This claim is supported by the fact
that these superconductors are already found in single-channel studies [19] which omit the feedback
of theC/D channel. For the repulsive case V1 > 0, we find ourselves in a situation which resembles
the scenario in application A. The main difference is represented by the absence of spins such that the
competition is now between superconductivity and a charge-density effects instead of magnetism. In-
deed, we detect a CDW around Van Hove filling with pronounced peaks at the M points as expected
from the bubble analysis. Tuning µ away from this point leads to the formation of an extended p-
wave superconductor. By investigating the evolution of the flows, the mechanism seems to be similar
to the application A, whereas the particle-hole fluctuations eventually induce an attractive interaction
in the particle-particle channel, allowing the P channel to diverge. These results withstand conver-
gence tests for increasing momentum resolution and form factor shells and we are confident that no
qualitative changes to the phase diagrams of both cases may appear by increasing these parameters
even further.
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3.3 Application C: Spinful triangular models without SU(2)-invariance

In this last section, we are going to apply the TUFRG to a more complex model with additional quan-
tum numbers: a spinful model without SU(2)-invariance. As foreshadowed in section 1.3, the model
treated here is an effective description of a tTMD homobilayer system. More precisely, the presented
Hamiltonian may describe twisted tungsten diselenide (tWSe2) and allows for the application of an
out-of-plane electric field which is used to change the geometry of the Fermi surface [79]. As a con-
sequence of this field application, the degeneracy of the spin-up and spin-down bands is lifted such
that the model does not longer possess a C6v but features now a C3v symmetry. Since the two bands
will maintain an inversion symmetry, i.e. ϵσ(k) = ϵ−σ(−k), we will still be in the position to exploit
some symmetry considerations in the application of the TUFRG.

The results of this application are preliminary and are part of a larger study which still has to be con-
ducted. Therefore, the following results are not published anywhere yet and serve as a proof-of-concept
of the TUFRG application for models with additional quantum numbers where several adjustments
for the implementation as presented in section 2.3 have to be made. We will eventually treat scenarios
regarding specific displacement fields which help us to inspect the correctness of our implementation.
At first, we will treat systems at Van Hove filling only and investigate which effects to the nature of
emerging magnetic instabilities by variation of the displacement field. By the notions established in
section 1.1, we are able to understand these instabilities in terms of different nesting situations which
can be successfully reproduced by the TUFRG. In a second study, wewill generate some slices of a cor-
related phase diagram for different values of the displacement field by changing the filling around the
Van Hove situation. Especially, we will investigate the situation with a zero displacement field such
that the results are relatable to application A of this thesis. Other studies for this model haven been
conducted, including (F)RG studies [57, 113] and Hartree-Fock applications [116]. We will compare
results of these works with our calculations.

3.3.1 Model

The model of choice is given by:

H = −
∑
⟨i,j⟩

∑
σ

(
tσijc

†
iσcjσ + h.c.

)
− µ

∑
i,σ

ni + U
∑
i,σ

ni↑ni↓ (3.44)

where c(†)iσ annihilates(creates) an electron on site i with spin σ. The hopping tσij is complex and
incorporates the effect of the external field, modeled by the parameter ϕ, as follows:

tσij =


teiϕσ ,Ri −Rj ∈ [δ1, δ2, δ3]

te−iϕσ ,Ri −Rj ∈ [−δ1,−δ2,−δ3]

0 , else

where δi are the three real space lattice vectors defined in Fig. 3.44 a. By Fourier transformation, the
dispersion for both bands (σ =↑ and σ =↓) can be derived as:

ξσ(k) = ϵσ(k)− µ

= −2t
∑

i=1,2,3

cos (k · δi + ϕσ)− µ. (3.45)

From the expression of the dispersion, it is directly obvious that the bands of both spins are connected
by an inversion symmetry:

ξσ(k) = ξ−σ(−k). (3.46)

As usual, the chemical potential µ determines the filling of the system and for a minimal interaction
the Hubbard interaction U is added in Eq. (3.44). We displayed some of the dispersions for σ =↑
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a) b1) b2)

b4) b5)b3)

Figure 3.26: Model and dispersion of the spin-up band: a) Real space lattice with complex hoppings
and Hubbard interaction. b1-5) Dispersion fr t = 1.0 and σ =↑ for several choices of the paramter ϕ.
The black line indicates the Fermi surface at Van Hove filling. The Van Hove point (yellow) wanders
in the Brillouin zone depending on ϕ. Two example cases for overdoping (blue) and underdoping
(green) are also displayed for each ϕ.

in Fig. 3.26 b1-5. The band for σ =↓ will be of the same form, with the sole difference that by the
inversion symmetry Eq. (3.46) the whole dispersion is rotated by an angle of π. For ϕ = 0, we
actually recover the dispersion used in application A. This is the only scenario where both bands are
degenerated. Interestingly, the location of the Van Hove points change with the application of the
displacement field. By alternating ϕ starting from 0, the Van Hove points will wander from the M
points to theK− points (K+ for σ =↓) which are eventually reached for ϕ = π

6 . This value is of ϕ is
special, because the Van Hove point will transform to a higher order Van Hove point, where the density
of states will not feature a logarithmic divergence, but a divergence obeying a power law behaviour
[48, 21]. By increasing the parameter beyond π

6 , the point will start moving towards theΓ point. The
highest value we want to investigate here is ϕ = π

3 which will feature exotic behaviour regarding the
pairing vertex as we will see later. For the application of the TUFRG to this spinful model, we are now
obligated to employ the TUFRG to the spinful FRG equations without SU(2)-invariance Eqs. (2.40)-
(2.42). These translate to the TUFRG equations as follows:

d

dΛ
P l,l

′
σ1,σ2,σ3,σ4(q) =

1

2

∑
l1,l2

∑
ν1,ν2,
ν3,ν4

V P,(l,l1)
σ1,σ2,ν1,ν2(q)× Ḃ−,(l1,l2)

ν1,ν2,ν3,ν4(q)× V P,(l2,l′)
ν3,ν4,σ3,σ4(q), (3.47)

d

dΛ
Dl,l′
σ1,σ2,σ3,σ4(q) =

∑
l1,l2

∑
ν1,ν2,
ν3,ν4

V D,(l,l1)
σ1,σ2,ν1,ν2(q)× Ḃ+,(l1,l2)

ν1,ν2,ν3,ν4(q)× V D,(l2,l′)
ν3,ν4,σ3,σ4(q), (3.48)

d

dΛ
C l,l

′
σ1,σ2,σ3,σ4(q) =

∑
l1,l2

∑
ν1,ν2,
ν3,ν4

V C,(l,l1)
σ1,σ2,ν1,ν2(q)× Ḃ+,(l1,l2)

ν1,ν2,ν3,ν4(q)× V C,(l2,l′)
ν3,ν4,σ3,σ4(q). (3.49)
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Here, all objects are also equippedwith four spin indices. Wewill inspect the effect of these additional
degrees of freedom to our TUFRG method. By deriving the bubble integrations as laid out in section
2.2, the spin-dependent objects are defined as3:

Ḃ−,(l,l′)
ν1,ν2,ν3,ν4(q) =−

∫
p

d

dT

[
G0,T
ν1,ν3(iωp,p+ q)G0,T

ν2,ν4(−iωp,−p)
]
fl(p)f

∗
l′(p), (3.50)

Ḃ+,(l,l′)
ν1,ν2,ν3,ν4(q) =−

∫
p

d

dT

[
G0,T
ν1,ν3(iωp,p+ q)G0,T

ν4,ν2(+iωp,+p)
]
fl(p)f

∗
l′(p). (3.51)

In general, the TUFRG equations can be defined for an arbitrary additional quantum number owhich
can be for example an orbital, sublattice or spin degree of freedom. Here, we have the choice of
deriving the TUFRG in two different ways. The first possibility is given by describing the channels
with four band indices b which reflect the band structure after diagonalizing the Hamiltonian with
respect to the new quantum number o. This description comes with the disadvantage of choosing
an orbital makeup which is given by the non-unique unitary transformation which diagonalizes the
Hamiltonian. It has been shown that the choice of this transformation indeed effects the quantitative
results of the TUFRG [81, 66]. Instead, we will choose the description in the orbital indices o (i.e. the
spins in our case, as already employed in Eqs. (3.47)-(3.49)) which do not feature this problem. For
a general index o, the bare propagator has the form [78]:

G0,T
o1,o2(iωp,p) =

∑
b

Uo1b(k)U
∗
o2b(k)

1

iωp − ξb(k)
, (3.52)

where U is the unitary transform which diagonalizes the Hamiltonian. Fortunately, the Hamilto-
nian is already diagonal in spin space in our case by the given dispersion Eq. (3.45). Therefore, the
transformation matrix is given by Uν1b(k) = δν1b. The spin-dependent propagtor is therefore given
by:

G0,T
ν1,ν2(iωp,p) = δν1,ν2

1

iωp − ξν1(k)
. (3.53)

Finally, the spin-dependent bubble integrations are cast into the following form after executing the
Matsubara sum:

Ḃ−,(l,l′)
ν1,ν2,ν3,ν4(q)=− δν1,ν3δν2,ν4

∫
p

n′F (ξν1(q+p))+n′F (ξν2(−p))

ξν1(q+p)+ξν2(−p)
fl(p)f

∗
l′(p), (3.54)

Ḃ+,(l,l′)
ν1,ν2,ν3,ν4(q)= + δν1,ν3δν2,ν4

∫
p

n′F (ξν1(q+p))−n′F (ξν2(p))
ξν1(q+p)−ξν2(p)

fl(p)f
∗
l′(p). (3.55)

We will see in the next section how the form of the bubble integrations Eqs. (3.54),(3.55) allows for
further symmetry considerations. The vertices in the flow equations (3.47)-(3.49)), including their
respective cross-projections, are also equippedwith additional spin indices4 and are by the derivation
defined as follows. For the P channel:

V P,(l,l′)
σ1,σ2,σ3,σ4(q) =V

0,P,(l,l′)
σ1,σ2,σ3,σ4(q) + P l,l

′
σ1,σ2,σ3,σ4(q) + V D→P,(l,l′)

σ1,σ2,σ3,σ4(q) + V C→P,(l,l′)
σ1,σ2,σ3,σ4(q), (3.56)

V D→P,(l,l′)
σ1,σ2,σ3,σ4(q) =

∑
L

D̃L,−L+l−l′
σ1,σ3,σ4,σ2(−Rl′ −RL)× e−iqRL , (3.57)

V C→P,(l,l′)
σ1,σ2,σ3,σ4(q) =

∑
L

C̃L,−L+l+l
′

σ1,σ4,σ3,σ2(−RL +Rl′)× e−iq(RL−Rl′ ). (3.58)

3Again, using the convention of an additional sign
4For a detailed definition of the three channels regarding the spin indices, see App. A.4.
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For theD channel:

V D,(l,l′)
σ1,σ2,σ3,σ4(q) =V

0,D,(l,l′)
σ1,σ2,σ3,σ4(q) +Dl,l′

σ1,σ2,σ3,σ4(q) + V P→D,(l,l′)
σ1,σ2,σ3,σ4 (q) + V C→D,(l,l′)

σ1,σ2,σ3,σ4 (q), (3.59)

V P→D,(l,l′)
σ1,σ2,σ3,σ4 (q) =

∑
L

P̃L,L−l−l
′

σ1,σ4,σ2,σ3(−Rl)× e−iq(RL−Rl′ ), (3.60)

V C→D,(l,l′)
σ1,σ2,σ3,σ4 (q) =

∑
L

C̃L,L−l+l
′

σ1,σ3,σ2,σ4(−Rl)× e−iqRL . (3.61)

And for the C channel:

V C,(l,l′)
σ1,σ2,σ3,σ4(q) =V

0,C,(l,l′)
σ1,σ2,σ3,σ4(q) + C l,l

′
σ1,σ2,σ3,σ4(q) + V P→C,(l,l′)

σ1,σ2,σ3,σ4(q) + V D→C,(l,l′)
σ1,σ2,σ3,σ4 (q), (3.62)

V P→C,(l,l′)
σ1,σ2,σ3,σ4(q) =

∑
L

P̃L,−L+l+l
′

σ1,σ4,σ3,σ2(−RL +Rl′)× e−iq(RL−R′
l), (3.63)

V D→C,(l,l′)
σ1,σ2,σ3,σ4 (q) =

∑
L

D̃L,L−l+l′
σ1,σ3,σ2,σ4(−Rl)× e−iqRL . (3.64)

And the projections for the initial conditions read:

V 0,P,(l,l′)
σ1,σ2,σ3,σ4(q) =

∫
k,k′

V 0
σ1,σ2,σ3,σ4(q + k,−k, q + k′)× fl(k)f

∗
l′(k

′), (3.65)

V 0,D,(l,l′)
σ1,σ2,σ3,σ4(q) =

∫
k,k′

V 0
σ1,σ4,σ2,σ3(q + k,k′,k)× fl(k)f

∗
l′(k

′), (3.66)

V 0,C,(l,l′)
σ1,σ2,σ3,σ4(q) =

∫
k,k′

V 0
σ1,σ4,σ3,σ2(q + k,k′, q + k′)× fl(k)f

∗
l′(k

′). (3.67)

Where the initial interaction has to be cast into the form stemming from the vertex expansion with
including spin degrees of freedom as follows:

HInt →
1

4

∫
k1,k2,k3,k4

V 0
σ1,σ2,σ3,σ4(k1,k2,k3,k4)δ(k1 + k2 − k3 − k4)

∑
σ1,σ2,
σ3,σ4

×

c†σ1(k1)c
†
σ2(k2)cσ4(k4)cσ3(k3). (3.68)

From this, we can derive the (properly anti-symmetrized) initial conditions induced by the initial
Hubbard interaction U , exactly as in the other applications (see App. A.5):

V
0,P,(1,1)
↑↓↑↓ (q) = V

0,P,(1,1)
↓↑↓↑ (q) = −V 0,P,(1,1)

↑↓↓↑ (q) = −V 0,P,(1,1)
↓↑↑↓ (q) = U (3.69)

V
0,D,(1,1)
↑↑↓↓ (q) = V

0,D,(1,1)
↓↓↑↑ (q) = −V 0,D,(1,1)

↑↓↑↓ (q) = −V 0,D,(1,1)
↓↑↓↑ (q) = U (3.70)

V
0,C,(1,1)
↑↓↑↓ (q) = V

0,C,(1,1)
↓↑↓↑ (q) = −V 0,C,(1,1)

↑↑↓↓ (q) = −V 0,C,(1,1)
↓↓↑↑ (q) = U (3.71)

It should be noticed with great caution that the order of the spin indices on the right hand side do in
general appear in a different order compared to the left hand side for the majority of the objects presented
here. These definitions were chosen (see App. A.4) such that all three flow equations (3.47)-(3.49)
have the same simple structure which is a tensor contraction of the two vertices and a bubble inte-
gration from the left to right. Although the complexity of the TUFRG equations is now significantly
increased in contrast to the previous applications, the general workflow does not change at all. Even-
tually, we will solve the differential equations for the three channels P,C,D and find instabilities
by detecting diverging components of these objects which received four additional spin indices now.
Nevertheless, the introduced model Eq. (3.44) provides additional numerical challenges, for which
we have to adapt our implementation as presented in the next section.
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3.3.2 Alterations of implementation

Three aspects impede a straight forward application of the derived TUFRG method as described in
the previous sections:

1. Most obvious, the flow equations possess an additional scaling due to the spin degree of free-
dom, namely N4

σ , with Nσ = 2 accounting for spin-up and spin-down. Consequently, the
computational complexity increases instantaneously with a factor of 16. This is especially prob-
lematic for the bubble integrationswhich pose the numerical bottleneck of themethod. Without
any use of symmetries, we are now deemed to solve 2 ×Nq ×N2

l ×N4
σ bubble integrations

per renormalization step.

2. In application A and B, the underlying model Hamiltonians provided a C6v symmetry from
which we could deduce a numerical speedup of factor 12. Now, our model does only inhabit a
C3v symmetry (excluding the case for ϕ = 0 which is still C6v symmetric) such that we get a
lower speedup factor of only 6 instead 12. Therefore the new (lower) symmetry of the model
costs us a factor of 2 in comparison to the previous applications.

3. Most importantly, we have to be very careful with the bubble integrations regarding the form
of the dispersions. As it becomes apparent from Fig. 3.26 b1-5, we are confronted with compli-
cated forms for the Fermi surface depending on filling and displacement field ϕ. To ensure a
correct integration, we will have to include these complex features stemming from the disper-
sion accordingly to the integration routine.

With the addition of the spin indices and the reduction to C3v symmetry, our method is already af-
fected by being a factor of 16× 2 slower than before. On top of this slowdown, the used integration
routine which has to account to the various features of the complex Fermi surfaces, will also be slower.
We will guide through these three aspects and demonstrate how meaningful advantages can be ex-
ploited to mitigate these effects.

Symmetries of bubble symmetries and the C3v symmetry.

As a first obvious measure to improve the implementation, we register that the bubble integrations
Eqs. (3.54),(3.55) only allow for 4 non-zero components regarding the spin indices by the structure
of the Kronecker deltas. We will name these components:

(ν1, ν2, ν3, ν4) → (↑, ↑, ↑, ↑), (↓, ↓, ↓, ↓), Intra− spin
(ν1, ν2, ν3, ν4) → (↑, ↓, ↑, ↓), (↓, ↑, ↓, ↑), Inter− spin

Since all other combinations of the bubble integrations are directly 0, the slowdown factor is not given
by 16, but actually by just 4. This slowdown factor can even be further reduced by using the inversion
symmetry of the dispersion, ξσ(k) = ξ−σ(−k). By a change of integration variables,the following
symmetry of the bubble integrations is directly derived:

Ḃ±,(l,l′)
ν1,ν2,ν3,ν4(q) =Ḃ

±,(l′,l)
−ν1,−ν2,−ν3,−ν4(−q), (3.72)

→ Ḃ
±,(l,l′)
↑↑↑↑ (q) =Ḃ

±,(l′,l)
↓↓↓↓ (−q),

→ Ḃ
±,(l,l′)
↑↓↑↓ (q) =Ḃ

±,(l′,l)
↓↑↓↑ (−q).

Thus, we only need one intra-spin bubble integration and one inter-spin bubble integration and re-
store the complement bubble integration by symmetry. Admittely, we have to be careful which initial
momenta qwe select in our resolution to exploit this symmetry relation accordingly. Tomotivate this,
we will switch the focus on the use of the C3v symmetry.

The point group C3v includes the identiy operation E, two rotations around the angles ±2π
3 (2C3)
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Figure 3.27: Optimal exploitation of symmetries: Before the flow is calculated, the bubble integra-
tions for yellowmomenta for spin combinations ↑↑↑↑ and ↑↓↑↓ are calculated. Their respective coun-
terpart with flipped spins is then obtained by symmetry. Then, the flow equations can be calculated
for the complete yellow patch. By mirror symmetry, we can obtain the vertex values for the green
patch. Then, with the C3 rotations, the remaining patches are restored (blue).

and the three reflections according to the conjugacy class 3σv identically defined as in the case of
C6v symmetry. We only need the rotations and one of the three reflection planes in our application,
namely the reflection plane defined by the y-axis. From section 2.3.3, the point group still affects
the differential equations in the same way since the aforementioned selection of symmetry relations
(which are represented asQ) leave the spin indices untouched. We therefore use analogously:

X l,l′
σ1,σ2,σ3,σ4(q) = XQl,Ql′

σ1,σ2,σ3,σ4(Qq), (3.73)

with X = P,C,D. The optimal use of symmetries of both, bubbles and vertices, is then employed
as follows:

1. We will select a momentum patch in the momentum discretization which includes for each
momentum q also its inverted momentum −q (see yellow points Fig. 3.27). When the bub-
ble integrations are performed, we will only explicitly calculate those integrations for the spin
combinations ↑↑↑↑ and ↑↓↑↓. Their respective intra-spin and inter-spin counterpart can then
be restored by symmetry relation Eq. (3.72), such that we half the numerical effort.

2. When the flow equations are calculated, we will proceed using the mirror and rotation symme-
try as displayed in Eq. (3.73) (see green and blue points in Fig. 3.27), such that only 1/6 of the
flow equations are explicitly calculated, while the rest is restored by symmetry.

Conclusively, we want to compare the numerical advantage gained here with the speedup obtained
in the SU(2)-invariant case. We will discard the effects of the form factor symmetry here since this
speedup is achieved for both implementations equally. In the case including spin-rotation symmetry,
the bubbles are not equipped with spin indices and are exposed to a C6v point group symmetry.
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Therefore for each type of bubble integration, there are in totalNq ×N2
l integrations to perform. By

the C6v point group, this can be reduced by a factor of 12 since only for 1/12 of the momenta these
integrations have to be calculated:

# bubble integrations including SU(2)−invariance =
Nq

12
×N2

l .

In the case without SU(2)-invariance, we do have explicit spin indices for the bubble integrations
and the underlying symmetry of the Hamiltonian is C3v . Therfore, the total amount of integrations
Nq × N2

l × N4
σ can be reduced by a factor of 6 due to the momentum symmetry and by a factor

of 4 since only a selection of four spin index combinations is non-zero for the bubble integrations.
Furthermore, always two of these spin combinations are symmetrically connected, also delivering a
speedup of factor 2 such that in total:

# bubble integrations without SU(2)−invariance =
Nq

6
×N2

l × N4
σ

2 · 4
.

The quotient which indicating the overall slowdown in this application is then given by:

→ 12

6 · 2 · 4
N4
σ = 4,

where obviously Nσ = 2 since we include spin-up and spin-down. Therefore, we expect at least a
factor of 4 compared to application A when it comes to computational runtime of comparable pa-
rameters. This slowdown can also be considerably higher, when in addition the adaptive integration
routine takes more time to calculate the integrals correctly.

Adjusting integration routine

While the Fermi surface for different fillings was rather simple in application A and B, this radically
changes now, as already recognizable by the Fermi surfaces in Fig. 3.26 for different values of ϕ. In ad-
dition, the spin-dependent bubble integrations Eqs. (3.54),(3.55) will depend on both bands for the
inter-spin component. Therefore the integrand will develop sharp features for both Fermi surfaces
belonging to both of the two non-degenerated bands.

To treat these new structures accordingly, we have to adjust the proposed adaptive integration rou-
tine. The general procedure will still remain unchanged: we will perform 1D integrations of beams in
the Brillouin zone multiplied with the angular weight. The changes are as follows:

• We will integrate the objects Ḃ±,(l,l′)
↑↑↑↑ (q) (intra-spin) and Ḃ±,(l,l′)

↑↓↑↓ (q) (inter-spin) for the mo-
menta in the yellow patch in Fig. 3.27. The respective counterparts regarding the spin indices
of these objects are obtainable by symmetry.

• For a chosen µ and regardless of under- or overdoping, we will decompose the integration into
two parts: an interior and an exterior integration.

• The interior integration consists of beams starting at theΓ point of the Brillouin zone and going
radially until the Fermi surface of the VanHove doped scenario µVH is met. Any crossings with
the Fermi surface of the systemwith µ is chosen as an explicit discretization point similar to the
routine in the former application. In addition, the inter-spin integration will also include cuts
with the Fermi surfaces of both bands as discretization points. These points define the intervals
where the adaptive routine is applied to.

• The exterior integration uses beams starting at the K± points going radially to the Fermi sur-
face of the system at Van Hove filling µVH. Again, all cuts with Fermi surfaces are used as
explicit discretization points, where again for the inter-spin bubble integration both bands are
considered for these points.
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Figure 3.28: Example of integration beams for µ = 0.9µVH, ϕ = π
4 : a) Dispersion of the system.

The black solid line indicates the Fermi surface at Van Hove filling, while the dashed line is the actual
Fermi surface of the given µ. The blue lines are displayed for visibility and represent the Fermi sur-
face counterparts of the spin-down band drawn into the dispersion of the spin-up band. b1) Interior
integration for the intra-spin bubble integration. One example beam (yellow), defining the integra-
tion intervals, includes theΓ point and the Fermi surface at Van Hove filling as explicit discretization
points. b2) Exterior integration for the intra-spin bubble integration. The example beam (yellow)
goes radially from the K+ point to the Fermi surface at Van Hove filling. On this line, there is one cut
with the actual Fermi surface atµ, such that 3 explicit discretization points are included, forming 2 in-
tervals for the adaptive integration. b3),b4) Interior and exterior integration for the inter-spin bubble.
The construction is in general analogous to the intra-spin case, with the addition that also cuts with
the Fermi surface of the spin-down band at µ (blue) are included as explicit discretization points.

• The angular resolution is always to be chosen asNA = 360, regardless of the choice for µ. This
results in 360 beams for the interior integration and for the 6 pockets of the exterior integration
this results onto 60 beams for each K± point.

• The case ofϕ = π
6 is special since the Fermi surface has a triangular shape here. In consequence,

the exterior integration will be distributed to 3 pockets instead of 6with 120 beams.

To illustrate these changes we added Fig. 3.28. To save computational time, all the cuts with Fermi
surfaces resulting into discretization points are pre-calculated before starting the TUFRG flow calcu-
lation. These points are then repeatedly used throughout the application since the position of these
points do not change.

This finalises the changes of the implementation with respect to the bubble integrations. We will now
move forward to two case studies conducted with this method which proof the general correctness of
our implementation.

3.3.3 Model at Van Hove filling: effects of displacement field on magnetism

In this first study, wewill focus only on systems at VanHove filling for various values of the parameter
ϕ controlling the external displacement field. The values of the Van Hove filling for ϕ ∈ [0, π3 ] were
obtained numerically and can be seen in Fig. 3.29. Similarly to another study [57], we will choose
t = 1 and U = 6t for framing an intermediate coupling regime (this interaction value is still smaller
than the bandwidth). From application A and B, we are confident to assume that also in this model
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Figure 3.29: Values for µ determining Van Hove filling for t = 1: These values were obtained
numerically. For ϕ = 0 we recover the value µVH = 2 as in application A and B.

instabilities arise exactly at Van Hove filling and be in the form of magnetism. As the former results
showed, these instabilities are driven by the strong fluctuations of the particle-hole channels which are
induced by the presence of perfect nesting. Interestingly, the presence of two non-degenerate bands
opens up an interesting scenario for the presence of perfect nesting which was already previously
analysed in [116]. For this purpose, we want to examine the form of the intra-spin and inter-spin
particle-hole bubble to predict the occurring magnetic instabilities.

In terms of the formalism, the effects of nesting affect the denominator of the particle-hole bubble.
Since we deal with two non-degenerate bands for the different spins now, the bubble will also de-
pend on these spin degrees of freedom. From Eq. (3.55) the nesting condition is now:

ξν2(p) = −ξν1(q + p). (3.74)

Therefore, particle-hole instabilities are now also possible by finding a nesting vector q = Q which
connects the Fermi surfaces of two different bands ν1 6= ν2. Indeed, these inter-spin nesting vectors
do exist for different values of ϕ, see Fig. 3.30. Admittedly, we find that we can perfectly nest the
complete Fermi surface(s) only with vectors connecting two different bands for ϕ 6= 0. We want to
investigate the effect of this Fermi surface structure to the emergence of instabilities. Consequently,
we will keep the the system strictly at Van Hove filling and change the parameter ϕ. For each value a
TUFRG calculation is employed to analyse the emerging instability. From the view point of competing
instabilities, these situations are equivalent to the studies of application A and B at Van Hove filling.
We expect large enhancements of particle-hole fluctuations due to the perfect nesting and the presence
of a Van Hove singularity which should directly lead to the manifestation of a magnetic instability.

We performed TUFRG calculations with a momentum resolution Nq = 540 and Ns = 2 (19 form
factors). We chose this small amount of form factors since we expect ordinary SDW instabilities which
are only strongly pronounced in the on-site component (l, l′) = (1, 1). Therefore there is no danger
of biasing the system by not including enough form factors. The calculations do directly confirm the
aforementioned presumptions made about the onset of magnetic instabilities. For every ϕ, we find
the C channel to diverge at high scales Tc ≈ 0.1t at the nesting vectors Q in the on-site form factor
components. For the spin components, two specific spin components inhabit the divergences, such
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Figure 3.30: Intra- and inter-spin nesting vectors (yellow): a) For ϕ = 0 the bands are degenerated
and both types of nesting feature the same nesting vector Q = M1,2,3 (this can be seen by back-
folding the nesting vector into the first Brillouin zone). b) For 0 < ϕ < π/6, only the small edges
are nested, leaving a fraction of the long edges of the Fermi surface un-nested (left). For the nesting
between two different bands, we can find a two nesting vectors connecting the long edges and short
edges each (right). c) The special case ϕ = π/6 leading to a perfectly triangular Fermi surface. In
the intra-spin case, only the three corners of the Fermi surface are nested to the opposite edge (left).
In the inter-spin case (right), the complete edges are nested. The nesting vectors happens to be the
vectors pointing to the K± points. d) For π/6 < ϕ ≤ π/4, the nesting behaviour is equal to the
special case of ϕ = π/6with a decreasing length of the nesting vectorQ.

that we can reconstruct the effective interaction(s) as:

C1,1
↑↓↑↓(Q) →

∫
k,k′

C1,1
↑↓↑↓(Q) ψ̄↑(Q+ k)ψ̄↓(k

′)ψ↓(k)ψ↑(Q+ k′),

C1,1
↓↑↓↑(Q) →

∫
k,k′

C1,1
↓↑↓↑(Q) ψ̄↓(Q+ k)ψ̄↑(k

′)ψ↑(k)ψ↓(Q+ k′). (3.75)

Which are antiferromagnetic spin density waves with modulation vector Q. We displayed one of
these singular vertices for a selection of values of ϕ between 0 and π

3 , see Fig. 3.31. There are two
sanity checks which are fulfilled by these results. At first, for ϕ = 0we should recover the result from
application A which is a SDW with peaks at the M points. As a qualitative change, the region near
the Γ point does also grow significantly which we attribute to the larger initial Hubbard interaction
U = 6t as in contrast toU = 4tused in the first application. Moreover, the nesting vector forϕ = π/6
happens to be theK± pointswhichwe also successfully reproduce in our approach. The course of the
vertices in Fig. 3.31 is also identical found in the aforementioned FRG study [57]. Regarding the critical
temperature of these instabilities, we notice a peak at ϕ = π

6 and deviations from this value lead to a
lowering of the critical temperature, see Fig. 3.32. The maximal difference of the critical temperature,
as seen by comparing the values at ϕ = 0 and ϕ = π

6 , is posed by one order of magnitude. We will
offer an explanation for this peak in the next section. This first study ensures the correctness of our
implementation for the spinful model without SU(2)-invariance in the vicinity of Van Hove filling.
In a next step, we will chose some values of ϕ and examine the competing instabilities regarding the
filling as a preliminary study.
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Figure 3.31: Singular magnetic vertex for selection of ϕ, for t = 1 andU/t = 6 at Van Hove filling:
The effect of the wandering nesting vector by changing ϕ is reflected by the wandering of the peak
in the singular vertex. For the corresponding counterpart vertex with spin combination ↓↑↓↑, the
emerging vertices are inverted.
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Figure 3.32: Critical temperature for the selection of ϕ, for t = 1 and U/t = 6 at Van Hove filling:
The critical temperature has its highest value at ϕ = π/6where the value is separated from the value
at ϕ = 0 by one order of magnitude.
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3.3.4 Competing orders at fixed displacement fields

In this section we will treat competing instabilities for three cases:

1. ϕ = 0. This case is equivalent to the model treated in application A and will therefore serve as
a benchmarking case.

2. ϕ = π/6. Here, the Van Hove singularity will actually be of higher order. We will check the
behaviour of this new quality.

3. ϕ = π/3. A very exotic instabilitywill occur here, namely a pair densitywave. This is described
by a pairing vertex which does diverge, but not at the Γ point.

At this stage of the project we are still confronted with numerical limitations of our implementation
which affect the progress of this study in two ways. At first, there is the issue of computational time.
As discussed before, we have a non-negotiable slowdown factor of 4 in contrast to the implementa-
tion where SU(2)-invariance is employed. In addition to this, carrying out the bubble integrations
is also affected by the changes to the integration routine to handle the new Fermi surface geometries
properly. For this reason, these preliminary studies are carried out with a low momentum resolution
Nq = 180. However, we still employ a high resolution of form factors, i.e. Ns = 4 (61 form factors)
to avoid a bias affecting the instabilities towards superconductivity. The second issue is numerical
stability. We found that our integration routine seems starting to be unstable far away from Van Hove
filling approximately somewhere between T ≈ 10−3t and T ≈ 10−4t. Therefore, we set the cutoff of
the temperature to be TStop = 10−4t and only display results where the bubble integrations remain
stable.

A short final remark should be made regarding the analysis of superconductivity. In section 1.2,
we analyzed the resulting gap functions with respect to SU(2)-invariance or without spins with an
underlying C6v point group symmetry. While this discussion still holds for the ϕ = 0 case (and we
will apply the foundationsmade here in this case), it is not valid anymore forϕ 6= 0. Since this project
is still in its early phases, we will refrain of further analysing the gaps belonging to the instabilities of
superconductivity.

ϕ = 0, a benchmarking case

By settingϕ = 0, we restoring themodel from applicationAwith the difference that we do not use the
SU(2)-invariance to reframe the model in a simpler form. Also we useU = 6t for all studies in appli-
cation C - in contrast toU = 4t in application A - such that we expect some quantitative differences in
the results here. Since the only included interaction here is the Hubbard U interaction, the emerging
phases should resemble those discussed in the demonstration of the workflow of the SU(2)-invariant
model, section 3.1.2. These results are displayed section 3.1. in Fig. 3.11 as the V1/t = 0 cut of the
phase diagram.

The TUFRG results are shown in Fig. 3.33. As a matter of fact, the results are qualitatively agree-
ing with those of application A. The main difference is given by the fact that the critical temperatures
of the emerging instabilities are in general higher. We address this feature to the higher value of U .
Moreover, the i-wave which occupied in application A only a small portion of the phase diagram, is
now extensively stable along the underdoped regime of the phase diagram. Interestingly, this is in
conflict with the other FRG study [57] which does find other forms of superconductivity here. Al-
though, another weak coupling RG study [113] does also locate an i-wave in this regime.

ϕ = π/6, effects of higher order Van Hove singularity

For ϕ = π/6, the Fermi surface is triangular. At first we want to highlight a property which is also
shared by systems for 0 < ϕ ≤ π/6 regarding the onset of instabilities towards superconductivity. As
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Figure 3.33: Phase diagram around Van Hove filling µVH = 2t, atU = 6t: Around Van Hove filling
we find magnetic instabilities with peaks at the M points. Away from Van Hove filling we find for
both cases - underdoping and overdoping- superconductive instabilities (yellow). The reconstruction
of the gap functions results into an i-wave (underdoping) and f -wave (overdoping) gap symmetry.
The magnetic singular vertex and the gap functions are displayed as insets.

shown in section 1.1, the generic divergence of the particle-particle bubble is ensured by the inversion
symmetry of the dispersion5. This inversion symmetry is no longer present for a single band in our
model for the intra-spin bubble integrations. Consequently, the inversion symmetry Eq. (3.46) shifts
the generic divergence of the particle-particle bubble to the inter-spin bubble since this identity allows
to combine the terms in the denominator of Eq. (3.54) at zero momentum:

ξν1(p) + ξν2(−p) = 2ξν1(p).

Combined with the insight of the previous section that the nesting condition is also only fulfilled by
the inter-spin particle-hole bubble, the competition of instabilities in these scenarios happens to be
between inter-spin properties only. A special feature of the model at ϕ = π/6 is the occurrence of
a higher order Van Hove singularity. These kinds of singularities were already treated in the context
of competing instabilities recently [48, 21]. A higher order Van Hove singularity does not diverge
logarithmically, but in terms of a power law:

ρ(ξ) ∝ |ξ|−α (3.76)

with some exponent α. Besides this new scaling for the density of states, we expect qualitatively no
substantial changes in the narrative regarding the competition of instabilities. The particle-hole bub-
ble will inhabit strong fluctuations at the nesting vectors q = K± which may extinct by tuning away
from Van Hove filling. The generic divergence of the particle-particle bubble at zero momentum will
be preserved for other fillings and the particle-hole fluctuations may induce an attractive interaction,
ultimately triggering a superconductive instability. By following the calculation laid out in the ap-
pendices and replacing the density of states by the power-law, we find for the bubbles at Van Hove
filling:

B(0)
pp
↑↓↑↓ ∝ |T |−α, (3.77)

B(K+)
ph
↑↓↑↓ ∝ |T |−α. (3.78)

5Otherwise, we refer to App. A.1.

135



3.3. APPLICATION C: SPINFUL TRIANGULAR MODELS WITHOUT SU(2)-INVARIANCE

10−2 10−1 100 101

T/t

10−1

100

|T
·Ḃ
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Figure 3.34: Divergence of bubble integrations: a) At Van Hove filling µVH = 0, the double-log
plot confirms the power law behaviour of the respective inter-spin bubbles at the 0 (particle-particle)
andK± (particle-hole) at low temperatures. b) Away from Van Hove filling, the generic logarithmic
divergence in the particle-particle bubble persists, while - due to the lack of perfect nesting - the di-
vergent behaviour of the particle-hole bubble will vanish such that it eventually drops to zero at low
temperatures.

Which translates to our bubble integrations (as done similarly in application A):

T × Ḃ(0)−↑↓↑↓ ∝ |T |−α, (3.79)

T × Ḃ(K+)+↑↓↑↓ ∝ |T |−α. (3.80)

This delivers a sanity check for our application by the usage of a log-log plot to validate the power-
law of the bubble integrations. Away from Van Hove filling, the particle-particle bubble will remain
at a simple logarithmic divergence from the generic behaviour, while the singular behaviour of the
particle-hole bubble should extinct at low temperatures. We verified these characteristics in Fig. 3.34.

The TUFRG calculations for this model for small range of µ around Van Hove filling are displayed
in Fig. 3.35. As expected, we find a SDW at Van Hove filling with pronounced peaks at the K±

points as already shown in the previous section. At some point, the SDW will be replaced by a region
of superconductivity. Both instabilities appear in inter-spin components of theC andP channel only.

Coming back to the course of the critical temperature of magnetic instabilities in previous section,
we can now understand the peak in Fig. 3.32 in terms of the higher order Van Hove singularity. Since
the underlyingmechanism for the onset of a magnetic instability does not change, the only substantial
difference in the system at ϕ = π

6 is given by the power-law divergence of the particle-hole bubble.
This feature enhances the fluctuations by a larger amount in contrast to the logarithmically divergent
particle-hole bubbles, eventually leading to a higher critical temperature.

ϕ = π/3, the exotic case of pairing density waves

As a last selection of the preliminary TUFRG results, we want to examine the model at ϕ = π/3
where we will detect a pairing density wave, i.e. an instability in the P channel at a transfer momen-
tum different from 0. As a preparation, we once again investigate the behaviour of the bubbles since
they already encode the origin of this peculiar instability type.

As the in previous cases, the particle-particle bubble will only develop a generic divergence for the

136



3.3. APPLICATION C: SPINFUL TRIANGULAR MODELS WITHOUT SU(2)-INVARIANCE

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7

µ

100

10−1

10−2

10−3

T
c
/
t

φ = π
6

Figure 3.35: Phase diagram around Van Hove filling µVH = 0, at U = 6t: Widely around Van Hove
filling we find magnetic instabilities featuring peaks at the K± point (green). Away from Van Hove
filling, we find superconductive instabilities (yellow).

inter-spin component since no inversion symmetry is present for the intra-spin bubble. Regarding the
dispersion, the point ϕ = π/3 is special since a new symmetry emerges:

ξ↑(↓)(p+K∓) = ξ↓(↑)(p). (3.81)

This symmetry is valid for all momenta p and importantly persists at and away from Van Hove fill-
ing. Regarding the intra-spin bubble directly at Van Hove filling, we can find therefore the following
relation:

B(K−)
pp
↑↑↑↑ =

∫
p

1− nF [ξ↑(−p)]− nF
[
ξ↑(p+K−)

]
ξ↑(−p) + ξ↑(p+K−)

(3.81)
=

∫
p

1− nF [ξ↑(−p)]− nF [ξ↓(p)]

ξ↑(−p) + ξ↓(p)

(3.46)
=

∫
p

1− nF [ξ↑(−p)]− nF [ξ↑(−p)]

ξ↑(−p) + ξ↑(−p)

=

∫
p

1− 2nF [ξ↑(−p)]

2ξ↑(−p)

∝1

2
log2

(
W

T

)
. (3.82)

Since the symmetry Eq. (3.81) holds for all fillings, the intra-spin particle-particle bubbles inhabits a
generic logarithmic divergence atK± which becomes double-logarithmic at Van Hove filling. There-
fore, this model features two divergent particle-particle bubbles at different momenta, depending on
spin component. For the bubble integrations this translates to:

µ = µVH :

T × Ḃ(0)
−,(1,1)
↑↓↑↓ ∝− log

(
W

T

)
, (3.83)

T × Ḃ(K−)
−,(1,1)
↑↑↑↑ ∝− log

(
W

T

)
. (3.84)
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Ḃ
−,(1,1)
↑↓↑↓ (0)

Figure 3.36: Check of divergent behaviour of particle-particle bubble integrations at respective
momenta: a) At Van Hove filling, the bubble integrations feature the double logarithmic divergence
at low temperatures. b) Away from Van Hove filling, the double logarithmic divergence is lost and
only a single log divergence preserves at low temperatures. In both cases, the results deviate from
each other slightly which is interpreted as an artifact of the integration routine.

And:

µ 6= µVH :

T × Ḃ(0)
−,(1,1)
↑↓↑↓ ∝(−1), (3.85)

T × Ḃ(K−)
−,(1,1)
↑↑↑↑ ∝(−1). (3.86)

The fulfillment of these relations was successfully tested and is displayed in Fig. 3.36. While the be-
haviour of the bubble integrations are qualitatively correct, they feature a small quantitative devia-
tion from each other which indicates that the adapted integration routine still is not optimally imple-
mented. For these preliminary results, we are satisfied with the bubble integration and proceed with
the TUFRG calculations.

Consequentially, we can expect the possibility of a superconductivity instability which features diver-
gent peaks at the K± points. We will call this kind of superconductivity a pair density wave (PDW),
as an analogous phenomenon to the SDW and CDW instabilities. Furthermore, we cannot deduce
from this analysis which of the superconductive instabilities will eventually emerge since the ordinary
superconductivity tendency deviated by the inter-spin bubble and the PDW tendency deviated by the
intra-spin bubble exhibit the same scaling behaviour. For this purpose, we exercise again a prelimi-
nary TUFRG calculation of the system around Van Hove filling. The corresponding results are shown
in Fig. 3.37. Indeed, we find that the emerging instability succeeding in this scenario away from Van
Hove filling of is the PDW, see Fig. 3.38.
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Figure 3.37: Phase diagram aroundVanHove fillingµVH = −2t, atU = 6t: In a short region around
Van Hove filling we find the magnetic instabilities already described in the former section (green).
Away from Van Hove filling, we find PDW instabilities (yellow).
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Figure 3.38: TUFRG flow and singular vertex above Van Hove filling µ/µVH = 1.05: The Hubbard
interaction is chosen as U = 6t. a) Evolution of the maximum absolute value of the respective chan-
nelsP ,C andD. TheP channelwill develop the strongest divergence for the chosen set of parameters.
b) Momentum resolved (l, l′) = (7, 7) component of the superconducting channel P 7,7

↑↑↑↑(q) at the
end of the flow. The resulting instability is a PDW which features peaks at theK− points of the Bril-
louin zone for the inter-spin component. The peaks for the respective spin-down counterpart of this
vertex are placed at theK+ points.
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3.3.5 Summary

Wewant to finalize this section with a brief summary of the presented insights and results. In this ap-
plication, we explored first preliminary results of a non-SU(2) symmetric triangular Hubbard model.
This model offers the opportunity to present the potential of TUFRG towards application with ad-
ditional quantum numbers. This non-trivial extension of the method is accompanied with a set of
numerical challenges:

1. The addition of spin quantum numbers σ directly increases the amount of numerical calcula-
tions per RG step by a substantial amount. We showed how in this special case, we were able to
exploit the symmetries of the given model to successfully reduce this additional computational
workload.

2. Moreover, the complicated structures of the non-degenerated band dispersion calls for a careful
adaption of the bubble integration routine to the model. We implemented tentative alterations
to our proposed routine to tackle this problem. Careful checks of the divergent behaviour of the
bubbles at different values of ϕ deliver valuable sanity checks and benchmarks for the qualita-
tive behaviour of the integrations at low temperatures. We were able to successfully reproduce
these checks. In contrast, the routine behaves problematic for values too far away from Van
Hove filling at very low temperatures. Moreover, the bubble integration is still the bottleneck
regarding computation time while applying the TUFRG. We are advised at this point to invest
additional work to improve the stability and speed of this routine which is already close to the
necessary quality to investigate the model in a scope beyond what the results presented here.

The preliminary results displayed here confirm that we are still in a good position to understand the
emerging behaviour of the system at various fillings and field parameters ϕ in terms of a competition
of magnetic instabilities and superconductivity. The detected magnetic instabilities can be completely
understood by the presence of perfect nestingwhich in this scenario has to be examined also in various
geometries due to the shape of the two degenerated bands. Tuning the chemical potential around Van
Hove filling reveals superconductive instabilities eventually. Two special features of this model can
already be anticipated by the analysis of the bubble integrations:

1. Atϕ = π/6, the VanHove singularity will be of higher order, inducing a power-law divergence
of the density of states. We saw that this enhancement of the scaling has a direct effect on the
critical temperature of the emerging instabilities.

2. At ϕ = π/3, a special symmetry enables the onset of a PDW for the intra-spin P channel. This
instability should be in competition with the ordinary superconductivity regarding the inter-
spin component. The exact mechanism of this competition still has to be thoroughly investi-
gated.

Due to combination of analytic benchmarks derived from the bubbles which are successfully met by
the TUFRG code, we value our results as satisfying first preliminary results confirming the correct-
ness of our implementation. Starting from this, there is a clear road for further studies for this model
after the aforementioned numerical details are added. In a first step, the three presented cases for ϕ
can be completed by adding TUFRG calculations for the whole range between 0 and π/3, leading to
a comprehensive phase diagram. Regarding the superconductive phases, we still have to stringently
work out how to properly derive the gap functions which should be describable by lattice harmonics
stemming from the C3v point group irreps. Following this, we want to add a set of nearest-neighbour
interactions Vn such that our model resembles the description of a realistic tTMD homobilayer sys-
tem. This agenda would be similar to application A, where we also examined how the results of a
paradigmatic model change by adding realistic parameters.
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CHAPTER 4

Concluding remarks

Précis

In this thesis, we tried to paint a complete picture of competing electronic instabilities in triangular
lattice Hubbardmodels and how the development and application of the TUFRG serve as a promising
tool to capture them.

We showed that the tendencies of magnetic and superconductive instabilities are already encoded
in the kinetic part of the underlying Hamiltonian of a system. The selection of the actual manifested
instability however is highly dependent on the interacting part of the Hamiltonian and the electronic
filling. Although the scaling of the particle-hole and particle-particle bubbles, which enhance mag-
netic or superconductive instabilities respectively, are equally strong at Van Hove filling, the initial re-
pulsive interactions are not sufficient for the formation of superconductivity at bare level aswe showed
in terms of a ladder summation. Moreover, we presented that an attractive interaction is needed for
the onset of superconductivity. This interaction can actually be generated as demonstrated by renor-
malization [67, 93] which points in the direction of developing and implementing a renormalization
group method to treat the competing orders around Van Hove filling correctly.

As a centrepiece of this thesis, we then derived the TUFRGmethod [64, 40, 98]. FRGmethods already
proofed themselves as suitablemethods for resolving competing instabilities in condensedmatter sys-
tems in the past, especially also for Hubbardmodels defined on various lattice geometries [42, 39, 115,
32, 41, 55, 54]. The TUFRG advances these methods in two ways. At first, the channel decomposition
transforms the flow equations in a more ordered structure, where the careful analysis of diagrams in
the 2-level truncation FRG scheme revealed that different physical phenomena can actually be traced
to substantial contributions of specific diagram types. The FRG flow equations could therefore be
subdivided in a superconductive, magnetic and density channel, indicating the onset of a respective
instability. In a second step, the analysis of the diagrams also unveils that only one of the parame-
terizing momenta of each diagram is important for the formation of singular contributions, namely
the transfer momentum of the bubble. This fact could already be anticipated by the arguments made
by the summations in section 1.1. By expanding the unimportant momenta into plane wave form fac-
tors, the TUFRG achieves a linear scaling in momenta, greatly advancing the numerical performance
in contrast to previous FRG schemes. Nevertheless, the application of the TUFRG to a given model
is highly non-general such that we also included a detailed implementation section, discussing the
several numerical challenges arising by treating triangular lattice Hubbard models and how to over-
come them. Triangular models typically involve effects of geometric frustration such that the correct
and performant calculation of bubble integrations down to low temperature scales imposes the most
challenging obstacle in this application. By constructing an adaptive integration routine which was
explicitly tailored to the models of interest we were able to successfully tackle this problem.

After setting the physical context in section 1.2 and developing the method in section 2, we then pro-
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ceeded to treat three different triangular lattice Hubbard models. In each of these models, we could
successfully identify the situation of competing instabilities around Van Hove filling and generated
comprehensive phase diagrams in applicationA and B by the usage of the TUFRG. From the emerging
instabilities towards superconductivity, we subsequently constructed the according superconductive
gap functions. By the brief investigation of the unconventional superconductivity in section 1, we
are able to classify the gap symmetries according to the irreps belonging to the C6v point group. We
also showed here that the inclusion of longer ranged form factors is crucial to resolve the correct gap
functions and avoid bias in our implementation. These results were checked for correctness in two
ways. As an important first check, we could relate the behaviour of the bubble integrations to the
particle-hole and particle-particle divergences at low temperatures. Here, we recovered all scaling
laws stemming from the Van Hove singularity and the perfect nesting of the Fermi surface. As a
second check, we performed several convergence tests regarding the momentum resolution and the
amount of included form factors.
In application C, we considered a spinful model without spin-rotational invariance. Although this
part was presented as a work-in-progress section, already the first preliminary results are promising
and confirm the correctness of the non-trivial extension of our method to spin degrees of freedom.
The presence of a higher order Van Hove singularity and the occurrence of a pair density wave as an
exotic form of superconductivity are already foreshadowing the rich physical phenomena which are
to be found in this model. Again, the soundness of these results could be checked by reproducing the
complex behaviour of the particle-particle and particle-hole bubbles.

While the studies performed in this work are mostly done in the context of paradigmatic models, we
still want to highlight their importance of describing novel Moiré materials. The effective description
of these bilayer systems can be cast into the form of triangular lattice Hubbard models such that our
results may contribute to the explanation and understanding of strongly correlated electron physics
in these exiting novel materials.

Hic sunt dracones

The results presented in this thesis guide to several paths of research studies whichmay be performed
in the future.

Most obviously, the spinful Hubbard model presented in application C should be thoroughly ex-
amined after the necessary final improvements of the bubble integrations are worked out. From the
already presented results we expect that this approach could unveil a good amount of interesting
physics. The inclusion of additional interactions to this model is then almost trivial, delivering results
for amodel describing a realistic tTMDhomobilayer system. Candidate values for longer-ranged hop-
pings and interactions were already proposed in [79]. This study can potentially act as a convincing
showcase of the TUFRG method, accentuating it as a powerful numerical technique to investigate
multi-band models of correlated fermions at a level of performance beyond recent FRG applications
[57].

A qualitative change of the TUFRG equations can be employed by including self-energy corrections,
which haven been neglected in our studies. In the same vein, one could also include the novel mul-
tiloop scheme [61, 62] to the method to inspect the effect of truncations and how to control them.
Recent studies on the square lattice Hubbard model were already conducted [36, 35, 102], demon-
strating the general integration of these schemes. Nonetheless, the critical scales in the square lattice
Hubbardmodel are much higher compared to the model defined on a triangular lattice geometry due
to the absence of frustration. Also, fewer form factors are needed for the square lattice to resolve the
expected superconductive instabilities since it lacks exotic gap symmetries like the i-wave supercon-
ductor. Considering that the inclusion of self-energy strongly affects the structure of the bubble inte-
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grations, the task of including self-energy effects is possible, but will pose a huge numerical challenge.

A third direction is given by the treatment of honeycomb models. Triangular and honeycomb lat-
tice structures share several geometric properties since the honeycomb model is a triangular lattice
model with a two-atomic unit cell. A large amount of the structures and objects presented here are
therefore in general transferable to the description of honeycomb models. The sublattice degree of
freedom will then be incorporated as an additional quantum number, similar to the spin in applica-
tion C. Several works already implemented TUFRG schemes for honeycomb lattices at half filling [82,
81, 78] and Van Hove filling [77, 34], demonstrating the general possibility of the application of the
method. Although it should be remarked that some technical difficulties arise by using triangular lat-
tice plane wave form factors since they artificially break the point group of the underlying graphene
Hamiltonian pointed out by [77, 34] independently.
A working honeycomb implementation opens up the possibility to perform studies of various inter-
esting models. In particular, the tight-binding model derived by Koshino et al.[60] describing twisted
bilayer graphene represents an interesting and challenging case for the TUFRG. On the other hand,
several works point to the importance of higher order Van Hove singularities for describing the be-
haviour of Moiré materials [114, 31]. Here, it could be proposed to fit tight-binding parameters of a
graphene model to the band structure which then also poses a direct and promising case for a TUFRG
honeycomb implementation.

Conclusion

Naturally, the vast majority of studies in physics are minor, with the hope of being incremental. We
presented the basics, derivation and implementation of the novel TUFRG method here and demon-
strated its usefulness in a selection of effective triangular lattice Hubbardmodels linked to the current
research of Moiré materials. The examination of these results in combination with the analysis of the
underlying bubbles deliver a promising soundness of the presented methodology. We illustrated the
numerical and practical advantages of the TUFRG and the established results indicate that a wide
range of interesting physical models relevant to current research are waiting to be investigated. To
impose a callback to the overture of this thesis, we hoped to not only arrive at novel results, but also
to deliver a starting point of future investigations using the TUFRG. The author regards this agenda
as fulfilled.
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APPENDIX A

Appendix

A.1 Divergence of particle-particle bubble

Here, we investigate the divergent behaviour of the particle-particle bubble for T → 0 in more detail.
We will discuss both cases, a regular density of states and the presence of a Van Hove singularity.

The particle-particle bubble is (after carrying out the Matsubara sum) given by:

Bpp(q) =

∫
p

1− nF [ξ(−p)]− nF [ξ(p+ q)]

iωq + ξ(−p) + ξ(p+ q)
, (A.1)

with
∫
p = A−

BZ1
∫
BZ dp, the normalized integral over the Brillouin zone. In the most cases, (and

especially true for our ordinary triangular lattice Hubbard model) the dispersion features inversion
symmetry:

ξ(p) = ξ(−p). (A.2)

We will see that at zero external frequency iωq = 0 and zero external momentum q = 0 this object
will develop a generic logarithmic divergence. For this purpose, we set iωq = q = 0 and use the
inversion symmetry:

Bpp(0) =

∫
p

1− 2nF [ξ(p)]

2ξ(p)
. (A.3)

We will proceed by translating this object into an energy integral, covering the bandwidthW of the
model:

Bpp(0) =

∫ W

−W

1− 2nF [ξ]

2ξ
ρ(ξ)dξ. (A.4)

Where ρ(ξ) is the density of states. We are interested in the behaviour of the bubble at low tempera-
tures. Therefore we split the integral in two by imposing the following limit:

Bpp(0) = lim
T→0

(∫ −T

−W

1− 2nF [ξ]

2ξ
ρ(ξ)dξ +

∫ W

T

1− 2nF [ξ]

2ξ
ρ(ξ)dξ

)
. (A.5)

Approximating that this form holds for all situations where T is close to zero:

Bpp(0) ≈
(∫ −T

−W

1− 2nF [ξ]

2ξ
ρ(ξ)dξ +

∫ W

T

1− 2nF [ξ]

2ξ
ρ(ξ)dξ

)
, (A.6)

we can now investigate the divergent behaviour of the bubble with respect to the density of states. For
this purpose, we acknowledge that the Fermi function at zero temperatures behaves as:

nF (x) =

{
1, x ≤ 0, T = 0
0, x ≥ 0, T = 0

. (A.7)
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Figure A.1: Behaviour of Fermi function at lower temperatures:. For lower and lower temperatures
T , the Fermi function resembles the step function defined by Eq. (A.7).

Which we approximate to be the case in the vicinity of zero, T ≈ 0 (see Fig. A.2). In the first case,
we assume a regular density of states with no singular contributions. We approximate the density of
states to not vary much from the value at the Fermi surface, i.e. ρ(ξ) ≈ ρ(0). In this case, we can
combine both integrals (by a substitution of variables in one of them) and carry it out explicitly:

Bpp(0) ≈ ρ(0)

∫ W

T

1

ξ
dξ = ρ(0) log

(
W

T

)
(A.8)

The important feature of this logarithmic divergence is given by its generic quality. The particle-
particle bubble will feature a logarithmic divergence at zero transfer momentum for every dispersion
as long as an inversion symmetry is satisfied. Following the arguments in section 1.1 it becomes ap-
parent that for every initial attractive strength - regardless of how weak this interaction is - eventually
an instability of superconductivity will appear. This result is basically a re-iteration of the argument
made by Cooper [22] in terms of perturbation theory, leading to the BCS theory.

As a second case, we will now consider the presence of a Van Hove singularity, i.e. a logarithmic
divergence of the density of states at a specific point of the Brillouin zone. In the triangular lattice
Hubbard model these points happen to be the M points. We will consider our system to be tuned to
this point such that:

ρ(ξ) = log
(
W

|ξ|

)
. (A.9)

Repeating the calculation done before we eventually reach at:

Bpp(0) ≈
∫ W

T

1

ξ
ρ(ξ)dξ =

∫ W

T

1

ξ
log
(
W

|ξ|

)
dξ (A.10)

=
1

2
log2

(
W

T

)
. (A.11)

Such that the divergent behaviour is enhanced to be double logarithmic.
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A.2 Divergence of particle-hole bubble

Similarly to the particle-particle bubble, we will investigate the divergent behaviour of the particle-
hole bubble. After carrying out the Matsubara sum, the particle-hole bubble is given by:

Bph(q) = A−
BZ1

∫
BZ
dp

nF [ξ(p)]− nF [ξ(p+ q)]

iωq + ξ(p)− ξ(p+ q)
. (A.12)

Again, we are will set the external frequency to be zero, iωq = 0. From the former analysis of the
particle-particle hole bubble, the expression can develop a logarithmic divergence if:

ξ(p) = −ξ(p+ q). (A.13)

We can satisfy this condition to the whole Fermi surface (ξ(p) = 0), by tuning the chemical poten-
tial such that the perfect nesting is achieved, so that both sides of Eq. (A.13) are fulfilled by being
equally zero. We assume that the nesting condition holds for a small shell around the Fermi surface
[−∆ξNesting,+∆ξNesting] (see Fig. A.2 ).

We can rewrite then Eq. (A.12) again in terms of an energy integral, assuming that the major con-

K+

K−

Γ M1

M2

M3

ε(k)/t

Figure A.2: Dispersion and Fermi surface nesting:. The Fermi surface is nested perfectly for the black
dashed hexagon. For the red energy region, we assume that perfect nesting is approximately present.

tributions are coming from the aforementioned energy shell. We will again split this integral and
assuming a low temperature limit.

Bph(qNesting) ≈
∫ +∆ξNesting

−∆ξNesting

2nF [ξ]− 1

2ξ
ρ(ξ)dξ (A.14)

≈
∫ −T

−∆ξNesting

2nF [ξ]− 1

2ξ
ρ(ξ)dξ +

∫ +∆ξNesting

T

2nF [ξ]− 1

2ξ
ρ(ξ)dξ. (A.15)

We can calculate the integral in this form completely analogous to the particle-particle bubble by
combining the integrals when the function of the density of states is decided. We will again exploit
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the form of the Fermi function for T → 0. The results will differ with a global sign. For a regular
density of states, approximated as being constant ρ(ξ) ≈ ρ(0), the bubble results to:

Bph(qNesting) ≈ −ρ(0)
∫ +∆ξNesting

T

1

ξ
dξ ∝ − log

(
∆ξNesting

T

)
(A.16)

The nominator of the logarithm reflects the energetic range for which perfect nesting can be assumed.
In the case that the nested Fermi surface0 is at a Van Hove singularity ( which is indeed the case in
our model), the integral becomes:

Bph(qNesting) ≈ −
∫ +∆ξNesting

T

1

ξ
log
(
W

|ξ|

)
dξ ∝ − log2

(
W

T

)
. (A.17)

Conclusively: at Van Hove filling both, the particle-particle bubble (at q = 0) and particle-hole bub-
ble (at q = qnesting) , will develop a double logarithmic divergence at low temperatures. It should
be noted as a important difference that both sources of the particle-hole bubble divergence are not
generic. They strictly exist as qualities caused by the dispersion and Fermi surface. Remnants of these
effects can influence particle-hole bubbles which are slightly tuned away from Van Hove filling, but
the logarithmic enhancement of the bubble will not persist at low temperatures. This is in strong con-
trast to the particle-particle bubble. While the contribution coming from the Van Hove singularity is
also a quality reflecting the underlying system, there always exists one logarithmic divergence at low
temperatures, regardless of the form and shape of the Fermi surface (as long as inversion symmetry
is present).
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A.3 Initial conditions for application B

For the initial conditions of the spinless model, we follow the same method as presented in section
2.3.1. We only do have to care for a proper anti-symmetrization of the initial conditions here. The
initial condition projections for the three channels are given as:

V 0,P
l,l′ (q) =

∫
k,k′

V 0(q + k,−k, q + k′)× fl(k)f
∗
l′(k

′), (A.18)

V 0,D
l,l′ (q) =

∫
k,k′

V 0(q + k,k′,k)× fl(k)f
∗
l′(k

′), (A.19)

V 0,C
l,l′ (q) =

∫
k,k′

V 0(q + k,k′, q + k′)× fl(k)f
∗
l′(k

′). (A.20)

The initial interaction V 0 is restored by casting the interacting Hamiltonian in the form of the four-
legged vertex of the vertex expansion and Fourier transform it. For the spinless fermions this reads:

HInt →
1

4

∫
k1,k2,k3,k4

V 0(k1,k2,k3,k4)δ(k1 + k2 − k3 − k4)c
†(k1)c

†(k2)c(k4)c(k3). (A.21)

The initial interaction Hamiltonian does exclusively contain the nearest-nearest neighbour interaction
V1. We rewrite this interaction as follows:

Hint = V1
∑
⟨i,j⟩

ninj = V1
∑
⟨i,j⟩

c†icic
†
jcj =

V1
4

∑
⟨i,j⟩

(
c†ic

†
jcjci + c†jc

†
icicj − c†ic

†
jcicj − c†jc

†
icjci

)
(A.22)

The Fourier transform of this term reads:

Hint =
1

8

∫
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)×
∑
δ(

e−iδ(k2−k4) + e−iδ(k1−k3) − e−iδ(k2−k3)−e−iδ(k1−k4)

)
c†(k1)c

†(k2)c(k4)c(k3)

(A.23)

where a factor of 1/2 emerges due compensation of over-counting lattice sites. δ are the six displace-
ment vectors connecting to nearest-neighbour lattice sites. From this we deduce the initial interaction:

V 0(k1,k2,k3,k4) =
1

2

∑
δ

(
e−iδ(k2−k4) + e−iδ(k1−k3) − e−iδ(k2−k3) − e−iδ(k1−k4)

)
. (A.24)

This expression is now explictely anti-symmetric under switchingk1 andk2 ork3 andk4 as it should
be imposed by the Grassman properties of the fermionic fields. Plugging Eq. (A.24) finally into pro-
jections Eqs. (A.18)-(A.20) yields the initial conditions as presented in the application section:

V 0,C
1,1 (q) = −V 0,D

1,1 (q) = −V1
∑
l

eiqRl , (A.25)

V 0,P
l,l (q) = V 0,C

l,l (q) = −V 0,D
l,l (q) = V1, (A.26)

V 0,P
−l,l (q) = −V1e−iqRl . (A.27)

For l ∈ [2, 3, 4, 5, 6, 7].
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A.4. CHANNEL DECOMPOSITION WITH SPIN INDICES

A.4 Channel decomposition with spin indices

In application C, we use vertices and channels dressed with spin indices. We derived the general
flow equations including these spin indices (Eqs. (2.40)-(2.42)) already in section 2.1, fromwhich we
construct the TUFRG flow equations as described in section 2.2. This deriviation is carried out in a
complete analogous way. The spin-dependent channel decomposition reads:

V Λ
σ1,σ2,σ3,σ4(k1,k2,k3,k4) = V 0

σ1,σ2,σ3,σ4(k1,k2,k3,k4)

+ ΦP,Λσ1,σ2,σ3,σ4(k1 + k2;−k2,−k4)

+ ΦD,Λσ1,σ2,σ3,σ4(k1 − k3;k3,k2)

+ ΦC,Λσ1,σ2,σ3,σ4(k1 − k4;k4,k2). (A.28)

Now, we impose a specific order of the spin indices for the channels by imposing the form factor
expansion:

ΦP,Λσ1,σ2,σ3,σ4(q;k,k
′) =

∑
l,l′

P l,l
′

σ1,σ2,σ3,σ4(q)× f∗l (k)fl′(k
′), (A.29)

ΦD,Λσ1,σ2,σ3,σ4(q;k,k
′) =

∑
l,l′

Dl,l′
σ1,σ3,σ4,σ2(q)× f∗l (k)fl′(k

′), (A.30)

ΦC,Λσ1,σ2,σ3,σ4(q;k,k
′) =

∑
l,l′

C l,l
′

σ1,σ4,σ3,σ2(q)× f∗l (k)fl′(k
′). (A.31)

By this choice, the three final TUFRG flow equations Eqs. (3.47)-(3.49) have the same structure in
terms of spin indices which is a simple matrix contraction with the external indices at the out-most
left and right positions of the expression. The order of spin indices of the cross-projections and initial
conditions follow directly from imposing this convention.
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A.5 Initial conditions for application C

For the initial conditions of the spinful without SU(2), follow the method presented in section 2.3.1,
where we now have to take additional care for the spin indices. The projections for the initial condi-
tions read (including spin degrees of freedom):

V 0,P,(l,l′)
σ1,σ2,σ3,σ4(q) =

∫
k,k′

V 0
σ1,σ2,σ3,σ4(q + k,−k, q + k′)× fl(k)f

∗
l′(k

′), (A.32)

V 0,D,(l,l′)
σ1,σ2,σ3,σ4(q) =

∫
k,k′

V 0
σ1,σ4,σ2,σ3(q + k,k′,k)× fl(k)f

∗
l′(k

′), (A.33)

V 0,C,(l,l′)
σ1,σ2,σ3,σ4(q) =

∫
k,k′

V 0
σ1,σ4,σ3,σ2(q + k,k′, q + k′)× fl(k)f

∗
l′(k

′). (A.34)

The initial interaction is derivable from casting the interaction Hamiltonian explicitly in the form of
the four-legged contributions of the vertex expansion:

HInt →
1

4

∫
k1,k2,k3,k4

V 0
σ1,σ2,σ3,σ4(k1,k2,k3,k4)δ(k1 + k2 − k3 − k4)

∑
σ1,σ2,
σ3,σ4

×

c†σ1(k1)c
†
σ2(k2)cσ4(k4)cσ3(k3). (A.35)

In our application, the interaction Hamiltonian does only consist of the Hubbard interaction:

HInt =U
∑
i

ni,↑ni,↓ = U
∑
i

c†i↑ci↑c
†
i↓ci↓

=
U

4

∑
i

c†i↑c
†
i↓ci↓ci↑ + c†i↓c

†
i↑ci↑ci↓ − c†i↑c

†
i↓ci↑ci↓ − c†i↓c

†
i↑ci↓ci↑ (A.36)

Which we translate into the desired form by using a Fourier transform:

Hint =
U

4

∫
k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)
∑
σ1,σ2,
σ3,σ4

c†σ1(k1)c
†
σ2(k2)cσ4(k4)cσ3(k3)×

(
δσ1,↑δσ2,↓δσ3,↑δσ4,↓ + δσ1,↓δσ2,↑δσ3,↓δσ4,↑ − δσ1,↑δσ2,↓δσ3,↓δσ4,↑ − δσ1,↓δσ2,↑δσ3,↑δσ4,↓

)
.

(A.37)

Therefore, the initial interaction is given by:

V 0
σ1,σ2,σ3,σ4(k1,k2,k3,k4) =

U (δσ1,↑δσ2,↓δσ3,↑δσ4,↓ + δσ1,↓δσ2,↑δσ3,↓δσ4,↑ − δσ1,↑δσ2,↓δσ3,↓δσ4,↑ − δσ1,↓δσ2,↑δσ3,↑δσ4,↓) .
(A.38)

The initial conditions for the TUFRG are then derived by employing the corresponding projections
Eqs. (A.32)-(A.34). These are properly anti-symmetrized.

V
0,P,(1,1)
↑↓↑↓ (q) = V

0,P,(1,1)
↓↑↓↑ (q) = −V 0,P,(1,1)

↑↓↓↑ (q) = −V 0,P,(1,1)
↓↑↑↓ (q) = U (A.39)

V
0,D,(1,1)
↑↑↓↓ (q) = V

0,D,(1,1)
↓↓↑↑ (q) = −V 0,D,(1,1)

↑↓↑↓ (q) = −V 0,D,(1,1)
↓↑↓↑ (q) = U (A.40)

V
0,C,(1,1)
↑↓↑↓ (q) = V

0,C,(1,1)
↓↑↓↑ (q) = −V 0,C,(1,1)

↑↑↓↓ (q) = −V 0,C,(1,1)
↓↓↑↑ (q) = U (A.41)
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