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Abbreviations 

- fused to (in the context of gene/protein fusion constructs) 

◦C Degree Celsius 

µ Micro 

µM Micromolar 

Aad α-aminoadipic acid 

ABA Abscisic acid 

Ala alanine 

ALD1 AGD2-like defense response protein1 

At Arabidopsis thaliana 

Avr avirulence 

CC Coiled-coil 

cDNA Complementary DNA 

d Day(s) 

ddH2O Demineralized, deionized water 

Dex Dexamethasone 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

DNase Deoxyribonuclease 

dNTP Deoxynucleosidetriphosphate 

DTT Dithiothreitol 

EDS1  Enhanced Disease Susceptibility1 

EDTA Ethylenediaminetetraacetic acid 

ETI Effector-triggered immunity 

EtOH Ethanol 

FW  Fresh weight 

g Gram 

GUS Glucuronidase 

h /H Hour(s) 

Hpa Hyaloperonospora arabidopsidis 

HR  Hypersensitive response 
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HTS High-throughput-screening 

IAA Indole-3-acetic acid 

IC50 Half maximum inhibitory concentration 

ICS1 Isochorismate Synthase1 

JA Jasmonic acid 

kDa kiloDalton(s) 

l / L Litre 

LOX 13-Lipoxygenase 

LRR  Leucine-rich repeats 

LUC Luciferase 

Lys lysine 

m Milli 

M Molar(mol/L) 

MAMP Microbe-associated molecular patterns 

MAPK Mitogen-activated protein kinase 

MeJA Methyl jasmonate 

min Minute(s) 

mM millimolar 

mRNA  Messenger ribonucleic acid 

MW Molecular weight 

n Nano 

NB Nucleotide binding site 

ng Nanogram 

NLR NOD-like receptor 

nM nanomolar 

NPR1 Nonexpresser of PR genes1 

N-terminal amino-terminal 

p35S 35S promoter of CaMV 

PAD4 Phytoalexin Defient4 

PAGE Polyacrylamide gel-electrophoresis 

PCR Polymerase chain reaction 
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pEDS1 Native EDS1 promoter 

PEPC Phosphoenolpyruvate carboxylase 

pH Negative decimal logarithm of H+ concentration 

PR Pathogenesis related 

PRR PAMP/ pattern recognition receptor 

Pst Pseudomonas syringae pv tomato 

PTI PAMP-triggered immunity 

pv. Pathovar 

qRT-PCR Quantitative real time polymerase chain reaction 

R Resistance 

RB Rose bengal 

RFU Relative fluorescence units 

RLU Relative light units 

RNA Ribonucleic acid 

rpm Revolutions per minute 

RPM Resistance to Pseudomonas syringae pv. maculicola 

RPP Resistance to Peronospora parasitica 

RPS Resistance to Pseudomonas syringae 

RT Room temperature 

SA Salicylic acid 

SAG101 Senescence Associated Gene 101 

SAR Systemic acquired resistance 

SAR Structure-activity relationship 

SDS Sodium dodecyl sulphate 

Sec/s Second(s) 

SID2  Salicylic Acid Induction Deficient2 

TBS Tris buffered saline 

TBTA  Tris(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine 

TIR Drosophila Toll and mammalian interleukin-1 receptor 

Tris Tris-(hydroxymethyl)-aminomethane 

Trp tryptophan 
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Tyr tyrosine 

UV Ultraviolet 

V Volt(s) 

v/v Volume per volume 

VSP Vegetative storage protein 

w/v Weight per volume 

wt Wild-type 

YFP Yellow fluorescent protein 
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Summary 

Plants have to survive in an environment where they are constantly under attack from a 

wide range of pathogens, and they utilise sophisticated, multi-layered defence mechanisms to 

resist infection. The Arabidopsis thaliana protein Enhanced disease susceptibility1 (EDS1), 

together with its signalling partners, Phytoalexin deficient4 (PAD4) and Senescence associated 

gene101 (SAG101), constitutes a central regulatory hub in plant immunity. EDS1 is essential for 

basal defence and for effector-triggered immune responses mediated via TIR-NB-LRR (Toll-

Interleukin1 receptor-Nucleotide Binding site-Leucine Rich Repeat) receptors. EDS1-dependent 

signalling can be divided into two branches: a salicylic acid (SA)-dependent branch and a SA-

independent branch. Flavin-dependent mono-oxygenase 1 (FMO1) is a marker gene for the EDS1-

dependent, SA-independent signalling pathway. FMO1 is dependent on EDS1 and PAD4, and plays 

a crucial role in basal defence and TIR-NB-LRR-mediated immune responses. However, the 

mechanistic details of FMO1 signalling and other components involved modulation of EDS1-

dependent, SA-independent defence signalling are unknown. I aimed at identifying some of these 

unknown components, using a chemical biology approach and screening for selective compounds 

that can be used as tools in applications complementing genetic approaches. The advantage of 

this method lies in its potential to circumvent problems generally encountered in genetic 

approaches, such as redundancy of gene function, lethality of mutants and pleiotropic effects. 

I developed a bi-directional screening procedure for chemicals activating or inhibiting FMO1 

accumulation, using a transgenic A. thaliana line expressing a YFP-tagged FMO1 protein under 

control of the native FMO1 promoter in a fmo1-1 mutant background. Three compounds 

selectively activating FMO1 expression were identified after screening and verification, from 

amongst a library of 1488 compounds. The selected chemicals; merbromin, monensin sodium salt, 

and thaxtomin A, could induce expression of FMO1, independent of SA accumulation, thus 

confirming the SA-independent nature of FMO1 defence regulation.  All three chemicals were 

extensively tested for their role in modulation of plant immune responses. Merbromin leads to 

the upregulation of several defence genes known to be linked to FMO1, such as EDS1, PAD4 and 

Isochorismate synthase1 (ICS1). However, it does not induce accumulation of SA and expression 

of Pathogenesis related1 (PR1), suggesting that it causes perturbations at several points in the 

FMO1-related signalling pathway. Monensin sodium salt also leads to an increase in expression of 

EDS1, PAD4, ICS1 and PR1, along with SA accumulation. Monensin sodium salt activates mitogen-

activated protein kinases (MAPKs), which could play a role in induction of FMO1 expression. 
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Thaxtomin A was the most specific modulator of FMO1 signalling, and does not affect early 

defence responses such as MAPK activation and production of reactive oxygen species. It causes 

SA accumulation and enhances expression of EDS1, PAD4, ICS1, and PR1. Thaxtomin A-induced 

FMO1 expression is dependent on EDS1 and PAD4. I found thaxtomin A to be a specific activator 

of PAD4 expression, with enhanced PAD4 mRNA accumulation, independent of EDS1. There are 

also indications that PAD4 may have an EDS1-independent role in thaxtomin A-induced FMO1 

upregulation. However, the presence of both, EDS1 and PAD4, is essential for maximum 

upregulation of FMO1 by thaxtomin A. Identification of the molecular target of thaxtomin A may 

lead to unknown components involved in EDS1-dependent, SA-independent signalling and greater 

mechanistic knowledge of the signalling pathway. 
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Zusammenfassung 

Pflanzen leben in einer Umgebung in der sie ständigen Angriffen durch Unmengen von 

Pathogenen ausgesetzt sind. Dabei benutzen Pflanzen hochentwickelte, mehrschichtige 

Verteidigungsmechanismen um einer Infektion zu widerstehen. Das Protein „Enhanced disease 

susceptibility1“ (EDS1) bildet zusammen mit seinen Interaktionspartnern „Phytoalexin deficient4“ 

(PAD4) und „Senescence associated gene101“ (SAG101) eine zentrale regulatorische Einheit in der 

Signalweitergabe des pflanzlichen Immunsystems von Arabidopsis thaliana. EDS1 ist sowohl 

unverzichtbar für basale Immunantworten, als auch für Effektor-induzierte Immunantworten, 

welche durch „Toll-interleukin1 receptor-nucleotide binding site-leucine rich repeat“ (TIR-NB-LRR) 

Rezeptoren ermöglicht werden. EDS1-vermittelte Signalwege können dabei salicylsäure(SA)-

abhängig oder SA-unabhängig sein. Das Gen Flavin-dependent mono-oxygenase1 (FMO1) gilt als 

Repräsentant des EDS1-abhängigen, SA-unabhängigen Signalwegs. FMO1 benötigt EDS1 und 

PAD4 und spielt ebenfalls eine entscheidende Rolle für die basale Resistenz und während TIR-NB-

LRR-vermittelter Immunantworten. Details der FMO1-übermittelten Signalwege, sowie andere 

Komponenten die einen Einfluss auf EDS1-abhängige, SA-unabhängige Immunsignalwege haben, 

sind bis jetzt noch nicht bekannt. Das Ziel meiner Arbeit war diese unbekannten zusätzlichen 

Komponenten zu identifizieren. Dafür wurde ein chemisch-biologischer Ansatz gewählt der auf 

einer Selektion chemischer Komponenten basiert, welche eine genetische Komplementation 

hervorrufen. Der Vorteil dieser Methode besteht in der Vermeidung von häufig auftretenden 

Problemen genetischer Selektionsansätze, z.B. Redundanz der Genfunktion, hohe 

Sterblichkeitsrate der Mutanten oder pleiotropische Effekte. 

Ich habe ein bidirektionales Selektionsverfahren entwickelt, wodurch chemische 

Substanzen die eine Akkumulation von FMO1 anregen bzw. verhindern mit Hilfe einer transgenen 

A. thaliana Linie, welche ein YFP-markiertes FMO1 Protein unter seinem nativen Promoter im 

fmo1-1 Mutantenhintergrund exprimiert, identifiziert werden konnten. Aus einer Sammlung von 

1488 chemischen Substanzen konnten drei Chemikalien identifiziert und verifiziert werden, 

welche die Aktivierung der FMO1 Expression hervorriefen. Alle drei Komponenten: Merbromin, 

Monensin-Natriumsalz und Thaxtomin A, induzierten die FMO1 Expression unabhängig von einer 

SA Akkumulation, was ebenfalls eine SA-unabhängige Regulation von FMO1 bestätigt. Daraufhin 

wurde der Effekt der drei Chemikalien auf pflanzliche Immunantworten untersucht. Merbromin 

führte zur Induktion von verschiedenen FMO1 verbundenen Abwehrgenen, wie beispielsweise 

EDS1, PAD4 und „Isochorismate synthase1“ (ICS1). Jedoch führte es nicht zu einer Erhöhung des 

SA Gehalts oder der Genexpression von „Pathogenesis related1“ (PR1), was darauf deutet, dass 
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es verschiedenen Stellen in FMO1-regulierten Signalwegen stören kann. Monensin-Natriumsalz 

bewirkte neben der Expressionsinduktion von EDS1, PAD4, ICS1 und PR1 auch eine Anreicherung 

von SA.  Monensin-Natriumsalz aktiviert die Mitogen-aktivierten Proteinkinasen (MAPKs), welche 

eine Rolle in der Induktion der FMO1 Expression spielen könnten. 

Thaxtomin A wirkte am spezifischsten auf FMO1-vermittelte Signalwege und hatte keinen 

Einfluss auf frühe Immunantworten, wie beispielsweise die Aktivierung der MAPKs oder die 

Produktion von reaktiven Sauerstoffspezies. Es bewirkt die Anreicherung von SA und eine erhöhte 

Expression von EDS1, PAD4, ICS1 und PR1. Die von Thaxtomin A-induzierte FMO1 Expression ist 

abhängig von EDS1 und PAD4. Dabei habe ich ermittelt, dass Thaxtomin A auch ein spezifischer 

Aktivator der PAD4 Expression ist, wodurch es zur erhöhten Anreicherung von PAD4 mRNA 

unabhängig von EDS1 kommt. Weitere Hinweise deuten auf eine EDS1-unabhängige Funktion von 

PAD4 während der Thaxtomin A-induzierten FMO1 Expression. Eine maximale Induktion der 

FMO1 Expression durch Thaxtomin A ist jedoch nur möglich, wenn sowohl EDS1 als auch PAD4 

vorhanden sind. Die Identifikation des molekularen Angriffsziels von Thaxtomin A könnte die bis 

jetzt unbekannten Komponenten des EDS1-abhängigen, SA-unabhängigen Signalweges aufzeigen 

und unser Verständnis über Prozesse dieser Signalweiterleitung erweitern.   
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1 Introduction 

Plants have to survive in an environment where they are constantly under attack 

from a wide range of pathogens. They utilise a sophisticated, multi-layered defence 

strategy comprising preformed and inducible defence mechanisms to combat pathogens 

(Jones and Dangl, 2006; Spoel and Dong, 2012). Preformed anti-microbial compounds, 

and surface structures such as waxy cuticles, act as the primary barrier for the entry and 

colonisation by non-specialised pathogens. The primary mechanism of inducible defence 

involves recognition of certain microbe associated molecular patterns (MAMPs) to trigger 

a basal resistance response known as pattern-triggered immunity (PTI). The second layer 

of defence is a result of plant-pathogen co-evolution, wherein pathogen-secreted effector 

molecules are recognised in the plant, leading to a stronger defence response known as 

effector triggered immunity (ETI). Systemic acquired resistance is an event when local 

infection by a pathogen immunises the whole plant against subsequent infections (Shah 

and Zeier, 2013)  

 

1.1 Initial response: MAMP-triggered immunity 

Microbial organisms express highly conserved molecular signatures, generally 

termed as microbe-associated molecular patterns (MAMPs). Chitin and ergosterol from 

fungi, and flagellin and lipopolysaccharides from bacteria are some of the MAMPs that act 

as general elicitors in plants (Zipfel et al., 2004). Plant cells have surface pattern 

recognition receptors (PRRs) which can perceive MAMPS. This MAMP-recognition triggers 

a number of defence responses such as reactive oxygen species (ROS) and nitrogen oxide 

(NO) production, altered cytoplasmic Ca2+ levels, callose deposition at the site of infection, 

induction of mitogen-activated protein kinases (MAPKs), and transcriptional activation of 

defence genes (Nürnberger and Lipka, 2005). These immune responses are together 

termed as MAMP-triggered immunity and help to arrest pathogen growth (Jones and 

Dangl, 2006). 

Currently described plant PRRs belong to a family of receptor-like kinases (RLKs).  

The recognition of bacterial flagellin by FLS2 (FLAGELLIN SENSING 2), and of bacterial 
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elongation factor Tu by EFR (EF-TU RECEPTOR), and the subsequent defence responses in 

plants, are two well characterised examples of MAMP-triggered immunity (Gómez-Gómez 

and Boller, 2002; Zipfel et al., 2006). Fungal oligosaccharide perception by the LysM-RLK 

CERK1 (CHITIN ELICITOR RECEPTOR KINASE 1) receptor has also been studied in detail 

(Miya et al., 2007). 

Pathogens suppress MTI by injecting effector proteins into the plant cell. Effectors 

can disrupt MTI responses by various means, leading to successful colonisation by the 

pathogen. This includes disruption of defence signalling or alteration of MAMP perception 

by the plant. Such pathogens are termed virulent and the plant-microbe interaction is said 

to be compatible (Chisholm et al., 2006). The resistance activated by virulent pathogens 

on susceptible hosts is defined as basal disease resistance (Jones and Dangl, 2006). 

 

1.2 Secondary response: Effector-triggered immunity 

Plants, unlike mammals, do not possess an adaptive immune system, with highly 

specific circulating antibodies for pathogen recognition (Stuart et al., 2013). Instead, 

diverse pathogen virulence factors, called effectors, are recognised in plants using 

genetically encoded receptor proteins (Dangl et al., 2013). A ‘gene for gene’ model for ETI 

in plants was first proposed in the 1940s, and was based on the inherent complementary 

resistance (R) gene pairs in the host plant and the pathogen avirulence (Avr) genes, 

determining disease resistance (Flor, 1971). R proteins comprise a central nucleotide 

binding (NB) and a C-terminal leucine-rich repeat (LRR) domain. Depending on their N-

terminal domain, R proteins can be separated into two subclasses (Meyers et al., 2003). 

One subclass of NB-LRRs contains a N-terminal coiled-coil (CC) domain, whereas the N-

terminal of the other subclass resembles the Drosophila and mammalian toll-interleukin1 

receptor (TIR) (Maekawa et al., 2011). These TIR/CC- NB-LRR receptors can perceive 

effector molecules secreted by pathogens, thus leading to an immune response, known 

as R gene-mediated resistance or effector-triggered immunity (ETI). Activation of the NB-

LRR proteins triggers transcriptional reprogramming of pathogen-responsive genes and 

accumulation of salicylic acid (SA) and ROS within the cell. A hypersensitive response (HR) 
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associated with the programmed cell death (PCD) of infected cells, is a characteristic of 

ETI.  

R proteins can recognize effectors molecules either through direct physical 

interaction, or indirectly, through host target-perturbation by effectors. Direct effector-R 

gene interaction is compatible with the gene-for-gene hypothesis (Flor, 1971), but is rare, 

since plant pathogen effectors far outnumber the more than 150 NB-LRR proteins found 

in A. thaliana. One model of indirect effector recognition involves modification of a host 

factor that is bound to and monitored (or guarded) by a NLR, leading to activation of that 

NLR (Deslandes and Rivas, 2012). Another indirect method of effector recognition is based 

on a ‘decoy’ strategy, wherein the monitored host protein has no role in resistance, but is 

merely a bait to trap effectors which target structurally related components of basal 

defence, thus triggering ETI (van der Hoorn and Kamoun, 2008; Collier and Moffett, 2009). 

Since both, MTI and ETI, utilise a highly overlapping signalling network, ETI can be 

termed as a rapid and heightened MTI response (Tsuda et al., 2009). Immune responses 

evoked by MTI and ETI in infected plants are similar, such as accumulation of free SA and 

enhanced expression of pathogenesis-related (PR) genes (Glazebrook, 2005; Vlot et al., 

2009), but the differences in the timing and amplitude of these responses is what 

distinguishes ETI from MTI (Katagiri and Tsuda, 2010).  

 

1.3 Global response: systemic acquired resistance 

Furthermore, alongside local defence responses, MTI and ETI also induce defence 

in the systemic (uninfected) regions of the plant, including PR gene expression, SA 

accumulation and a long-lasting, broad-spectrum resistance to pathogen infection, 

termed systemic acquired resistance (SAR) (Ryals et al., 1996; Durrant and Dong, 2004; 

Shah, 2009; Vlot et al., 2009). SAR leads to ‘priming’ of systemic tissue to evoke faster and 

stronger defence responses against subsequent infections (Conrath, 2011), analogous to 

vaccination in humans. Long-distance communication between the primary pathogen 

infected tissue, and the uninfected systemic tissue, is crucial for SAR activation (Dempsey 

& Klessig, 2012). Several small molecule plant metabolites, such as methyl salicylate 
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(MeSA), SA, pipecolic acid (Pip), azelaic acid (Aza), dehydroabietinal (DA) and glycerol-3-

phosphate, have been proposed to function in long-distance transport and/or signal 

amplification during SAR (Shah and Zeier, 2013). 

 

1.4 The EDS1/PAD4 regulatory node 

The enhanced disease susceptibility1 protein (EDS1) is a central regulatory hub in 

plant immunity. It was first identified in a genetic screen for new factors involved in the 

RPP resistance to P. parasitica (RPP) gene-mediated resistance against the obligate 

biotrophic oomycete, Hyaloperonospora arabidopsidis (Hpa) (Parker et al., 1996). EDS1 

was found to play an essential role in TIR-NB-LRR mediated immunity, and also contribute 

to basal immunity (Parker et al., 1996; Aarts et al., 1998). Resistant to pseudomonas 

syringae 4 (RPS4) triggers a TIR-NB-LRR mediated resistance upon recognition of the 

bacterial effector AvrRPS4 (Hinsch and Staskawicz, 1996). This signalling pathway has 

been extensively studied and was shown to be EDS1-dependent (Wirthmueller et al., 

2007). EDS1 activity was determined to be downstream of TIR-NB-LRR activation, but 

upstream of defence gene activation, cell death induction and SA production (Feys, et al., 

2001; Wirthmueller et al., 2007; Zhang et al., 2003). In contrast to TIR-NB-LRR mediated 

resistance, the CC-NB-LRR protein resistance to Pseudomonas syringae pv maculicola1 

(RPM1) influences local programmed cell death, SA production and resistance 

independent of EDS1. However, the EDS1 pathway is still essential for the transduction of 

defence and death-promoting signals to cells surrounding the infection hub (Rustérucci et 

al., 2001; Wiermer et al., 2005). 

EDS1 interacts directly with two sequence-related signalling partners, phytoalexin 

deficient 4 (PAD4) (Feys et al., 2001; Feys et al., 2005; Jirage et al., 1999) and senescence-

associated gene 101 (SAG101) (Feys et al., 2005), to form heteromeric complexes (Wagner 

et al., 2013).   PAD4 was initially identified from a genetic screen for plants with enhanced 

susceptibility to Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) (Glazebrook 

et al., 1996).  Genetically, PAD4 and SAG101 are partially redundant. PAD4 can 

compensate for the lack of SAG101 and regulate basal and R gene-mediated immunity. 

However, SAG101 cannot completely compensate for the loss of PAD4, thus hinting at a 
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unique role for PAD4 in plant defence. Both PAD4, and EDS1, have important intrinsic 

signalling functions in immunity, since pad4/sag101 double mutants do not have 

functional basal and TIR-NB-LRR-mediated resistance, similar to the eds1 mutant (Feys et 

al., 2005).  Interestingly, monocotyledonous plants lack TIR-NB-LRR proteins, but possess 

EDS1 and PAD4 orthologs, thus indicating an ancestral function of EDS1 and PAD4 in basal 

immunity (Meyers et al., 2003).  

Activation of EDS1 and PAD stimulates synthesis of the defence hormone SA via 

upregulation of Isochorismate synthase1 (ICS1) (Zhou et al., 1998; Feys et al., 2001; 

Dempsey et al., 2011). SA plays a central role in resistance against biotrophic and 

hemibiotrophic pathogens (Vlot et al., 2009).  Additionally, EDS1 and PAD4 expression can 

also be stimulated by SA, as a part of a positive feedback loop that amplifies resistance 

locally, and systemically (Jirage et al., 1999; Feys et al., 2001; Vlot et al., 2009). EDS1 and 

PAD4 are crucial for SAR due to their role in regulation of SA activity (Malamy et al., 1990; 

Métraux et al., 1990; Gruner et al., 2013). 

EDS1, when bound in a complex with PAD4 or dissociated from it, performs different 

roles in pathogen resistance. EDS1-PAD4 complex formation is necessary for effective 

basal resistance (Rietz et al., 2011). In transgenic plants with a single amino acid exchange 

in EDS1 (eds1L262P), the mutated EDS1 cannot bind to PAD4, but retains interaction with 

SAG101. Infection by P. syringae DC3000 failed to induce SA accumulation and PR1 

expression in the eds1L262P mutants plants, and hence SAR in these plants was 

compromised. These mutants were found to have reduced resistance to virulent H. 

arabidopsidis isolates and P. syringae bacteria (Rietz et al., 2011). Conversely, EDS1 

dissociated from PAD4 could activate TIR-NB-LRR-triggered cell death upon infection by 

H. arabidopsidis.  Reports also suggest that SAG101 cannot compensate for PAD4-

dependent induction of cell death (Rietz et al., 2011). 

PAD4 is not only important for effective basal and R gene-mediated resitance, but 

is also essential for resistance to green peach aphid (Myzus persicae) (Pegadaraju et al., 

2007). This PAD4 activity in plant defence against M. persicae was proven to be 

independent of EDS1 and pathogen-induced SA accumulation (Louis et al., 2012). 

Resistance to microbial pathogens was not compromised when a conserved serine in the 

predicted lipase catalytic triad of PAD4 was mutated. However, this mutation partially 
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compromised resitance to M. persicae. Hence, PAD4 was demonstrated to have different 

molecular functions in defence responses against pathogens and M. persicae (Louis et al., 

2012). A chemical biology study discovered interaction between PAD4 and a newly 

identified TIR-NB-LRR protein, VICTR, thus providing the first evidence of association 

between TIR-NB-LRR proteins and PAD4. 

Thus, both EDS1 and PAD4 play crucial regulatory roles in plant defence signalling. 

There has been some evidence for an EDS1-independent role of PAD4 in resitance 

reactions. However, both EDS1 and PAD4 are necessary for a full resistance response to 

pathogens. 

 

1.5 Flavin-dependent mono-oxygenase 1 

Flavin-containing monooxygenases (FMOs) were first discovered in 1960s. Since 

then, mammalian FMOs have been extensively studied (Krueger and Williams, 2005). 

FMOs can catalyse oxygenation of nucleophilic, heteroatom-containing substrates (i.e. 

compounds containing nitrogen, sulphur, selenium or iodine), thus rendering them more 

polar and readily excreted (Cashman, 2002; Krueger and Williams, 2005). There are five 

functionally expressed FMO genes in humans, i.e., human FMO1-FMO5. (Lawton et al., 

1994). FMOs have also been found in bacteria and yeast (Suh et al., 1996; Chen et al., 

2011). 

FMO diversity in plants is much greater than in other organisms, with 29 genes 

annotated as FMO-like in Arabidopsis thaliana (Schlaich, 2007). The first FMO-like gene to 

be characterised in plants was termed YUCCA (YUC1), whose overexpression led to 

elevated auxin levels (Zhao et al., 2001). In petunia, overexpression of the YUCCA ortholog 

FLOOZY also resulted in endogenous accumulation of indole-3-acetic acid (IAA) (Tobeña-

Santamaria et al., 2002). FMO-like genes involved in auxin signalling have also been found 

in strawberry, tomato and rice (Expósito-Rodríguez et al., 2011; Liu et al., 2012; Yi et al., 

2013). The possible involvement of plant FMO-like genes in auxin biosynthesis implicates 

some plant FMOs in a substrate-specific manner of compound oxidation, distinct from the 



19 
 

non-specific detoxifying mechanisms suggested for the mammalian FMOs (Olszak et al., 

2006).  

Phylogenetic analysis of Arabidopsis thaliana FMOs separates them into three 

distinct clusters, with group 1 FMOs involved in auxin synthesis, group 2 FMOs involved in 

sulphur-oxygenation (Olszak et al., 2006; Schlaich, 2007). Group 3 consists of a 

pseudogene AtFMOp, and its close homolog AtFMO1, which has important functions in 

plant defence signalling (Bartsch et al., 2006; Koch et al., 2006; Mishina and Zeier, 2006; 

Olszak et al., 2006). 

 

1.5.1 FMO1 in EDS1/PAD4 dependent defence 

AtFMO1 (FMO1) was identified as a gene upregulated in A. thaliana wild-type plants 

infected with Pst DC3000 strains expressing the effectors avrRPM1 or avrRPS4 (Bartsch et 

al., 2006). This FMO1 expression was dependent on EDS1 and PAD4 and was suppressed 

in eds1-1 and pad4-5 mutants. Arabidopsis thaliana plants constitutively overexpressing 

FMO1, displayed enhanced resistance to P. syringae (Koch et al., 2006). The role of FMO1 

in defence against pathogens was additionally analysed using a T-DNA insertion mutant, 

fmo1-1 (Bartsch et al., 2006). 

Infection of the A. thaliana fmo1-1 mutant with the oomycete pathogen H. 

arabidopsidis (Cala2), that is recognized by the TIR-NB-LRR–type R gene RPP2, displays a 

loss-of resistance phenotype with trailing necrosis. Defects in FMO1 also partially disabled 

TIR-NB-LRR mediated resistance and basal defence against Pst DC3000 expressing 

avrRPS4. However, resistance mediated by the CC-NB-LRR proteins RPP8 and RPM1 was 

unaffected in the fmo1-1 mutant plants. SA accumulates to wild type levels in the fmo1-1 

mutant, during RPM1 and RPS4 responses.  

Thus, SA production in CC and TIR-NB-LRR triggered resistance is independent of 

FMO1 (Bartsch et al., 2006). However, FMO1 is required for basal resistance to invasive 

virulent pathogens and for TIR-NB-LRR conditioned resistance and HR lesion formation 

due to avirulent pathogens (Bartsch et al., 2006; Olszak et al., 2006). The resistance 

response evoked by RPP8 and RPM1 recognition in the A. thaliana fmo1-1 mutants was 

similar to that in plants with defects in EDS1, PAD4 or SAG101. All the above factors lead 
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to the conclusion that, FMO1 is involved in an SA-independent branch of EDS1/PAD4 

defence signalling. 

 

1.5.2 FMO1 in systemic acquired resistance 

Analysis of publicly available microarray experiment data led to the identification of 

uncharacterized Arabidopsis thaliana genes involved in SAR establishment. FMO1 

expression was found to be upregulated after infection with the virulent Pst DC3000 and 

avirulent Pst avrRpm1 bacterial strains, with the avirulent bacterial strains inducing a 

faster transcriptional upregulation as compared to virulent strains (Mishina and Zeier, 

2006). FMO1 expression at the site of pathogen inoculation was independent of SA 

production and signalling, however, an intact SA-signalling pathway was essential for 

systemic FMO1 expression. SAR establishment was also closely correlated to enhanced 

FMO1 expression in systemic tissue (Mishina and Zeier, 2006). A high-throughput genetic 

screen for SAR-deficient mutants in A. thaliana also isolated plants with hitherto 

uncharacterised mutations in FMO1 (Zhang et al., 2011). Thus, FMO1 was proven to be an 

essential component of SAR development. 

A study by the Zeier group has delved deeper into the role of FMO1 in SAR induction 

and had identified the lysine catabolite pipecolic acid (Pip) as a critical regulator of 

inducible plant immunity (Navarova et al., 2012). Their data suggests that Pip is the mobile 

signal which is transported from the primary infected leaves to the distal uninfected 

leaves of the plant during SAR. Within the distal leaf tissue, Pip upregulates expression of 

AGD2-like defense response protein1 (ALD1) and FMO1. This in turn potentiates SA 

production in the systemic leaves, via upregulation of ICS1. It was also shown that FMO1 

is required for dehydroabietinal (DA) and azelaic acid (Aza) induced resistance (Chaturvedi 

et al., 2012; Jung et al., 2009). Moreover, Aza enhances resistance in an ALD1-dependent 

manner (Jung et al., 2009). These findings suggest that a Pip-/FMO1-dependent 

amplification loop is an essential mediator for SAR signal transduction of at least a section 

of mobile SAR signals. Based on current data, and adapted from a recent publication 

(Gruner et al., 2013) a model of the position and role of FMO1 in plant defence signalling 

(Fig. 1) was created. 
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Figure 1: Current model of FMO1 involvement in plant defence. Infection by pathogens causes 

upregulation of the EDS1/PAD4 signalling node, which in turn, promotes production of SA via ICS1, 

causing upregulation of NPR1 and other SA-dependent defence responses. Infection and 

activation of EDS1/PAD4 expression also leads to enhanced production of the SAR signalling 

metabolite, Pip and expression of ALD1 in systemic tissues. Enhanced EDS1/PAD4 expression, as 

well as Pip production/ALD1 expression upregulate expression of FMO1. FMO1 expression also 

feeds back into the SA-loop by enhancing ICS1 expression. FMO1 is a marker gene for the 

EDS1/PAD4 pathway and promotes SA-independent defence responses. Adapted from (Gruner et 

al., 2013)  

 

1.5.3 FMO1 and cell death 

One of the first studies on AtFMO1 dealt with its role in programmed cell death. 

AtFMO1 was initially identified as a gene upregulated in the Arabidopsis thaliana acd11 

mutant, which constitutively activates EDS1, PAD4 and SA-dependent PCD and defence 

(Brodersen et al., 2002; Olszak et al., 2006). Expression was also increased in the lsd1 

mutant, which causes run-away cell death (Dietrich et al., 1997). However, analysis of 

acd11/fmo1 mutant plants indicated that FMO1 is not essential for the activation and 

progression of run-away cell death in acd11. FMO1 was also found to be expressed during 

developmental senescence, avirulent, and virulent bacterial infections (Olszak et al., 

2006). FMO1 was also expressed in response to the cell-death inducing chemicals 

fumonisin B1 (FB1) and rose bengal (RB). Although FMO1 expression in all the above cases 

occurred in the region of senescence/HR-like lesions, it does not resolve whether FMO1 

expression has a role in cell death initiation or execution, or whether it is a symptom of 

cell death. 
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1.5.4 FMO1 function 

Current knowledge about FMO1 prompts speculation about its role in plant 

defence. FMO1 expression is upregulated upon application of FB1, a toxin produced by 

the necrotrophic fungal plant pathogen Fusarium moniliforme (Stone et al., 2000). This 

could indicate a potential function of FMO1 in detoxification of pathogen-derived 

compounds, which would be analogous to the function of FMOs in animals.  

Another interesting possibility is that FMO1 can influence the redox state of plant 

cells. Pathogen-defence responses, especially EDS1/PAD4-mediated defence responses, 

can be regulated by changes in the redox state (Mou et al., 2003; Wiermer et al., 2005). 

This modulation of the redox state by FMO1 would also be in accordance with the role of 

FMOs in yeast and animals. The redox changes could be a result of ROS production, or 

influence on the intracellular glutathione levels (Rauckman et al., 1979; Tynes et al., 1986; 

Suh et al., 1996). FMO1 was induced by the extracellular superoxide generating system 

xanthine/xanthine oxidase (X/XO) and the xanthine dye rose bengal (Olszak et al., 2006). 

However, this superoxide-induced FMO1 expression occurred independently of the ROS 

signal transducing protein kinase OXI1. Hence, the precise relationship between ROS 

production, FMO1 activity and defence signalling remains unresolved. 

Functional FMO enzymes are characterised by the presence of FAD binding sites, 

FMO-identifying motifs, and NADPH binding domains. Multiple sequence alignments of 

FMO1 with functionally characterized FMOs from Arabidopsis, bacteria, yeast, insect, and 

humans indicated that A. thaliana FMO1 also possesses these domains (Bartsch et al., 

2006). The conserved Gly residues in the FAD and NADPH binding sites of FMO1 are 

important for its enzymatic activity and for cofactor binding (Rescigno and Perham, 1994; 

Kubo et al., 1997). Transgenic fmo1-1 plants expressing fmo1 with a site–directed 

mutation converting the conserved Gly residues of the FAD- and NADPH-binding motifs 

to Ala had impaired pathogen resistance. However, the fmo1-1 lines could be 

complemented for pathogen resistance by constitutively expressing wild-type FMO1 

(Bartsch et al., 2006). Thus, flavin-dependent monooxygenase activity is essential for 

FMO1 defense function. 
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1.6 Chemical biology and screening strategies 

Direct or indirect alteration of protein function via gene mutations to create 

detectable phenotypes is the key to discovery of new biological functions (Hicks and 

Raikhel, 2012). The most common approach involves random or directed mutagenesis, 

e.g. EMS treatment, and gene mapping by breeding. However, such genetic approaches 

entail several limitations such as lethality due to essential gene functions, genetic 

redundancy, and pleiotropic effects due to multi-functionality of a gene product. 

Chemical genetics is defined as the use of small molecules to alter protein function 

and thus, analyse the biological function of the target protein (Zheng et al., 2004). Small, 

cell-permeable molecules can complement classic mutational approaches to analyse 

biological mechanisms, since interference with small molecules can create swift, 

conditional and reversible alterations of biological functions (Smukste and Stockwell, 

2005). Additionally, chemical activity can be specific for different isoforms of a gene 

product, e.g. due to formation of a protein complex or post-translational modifications 

(Tóth and van der Hoorn, 2010). Chemical genetic approaches have been utilised in animal 

models for cell death and cancer research, and drug development since several years 

(Schreiber, 1998; Stockwell, 2000; Mayer, 2003; Gangadhar and Stockwell, 2007). In the 

past decade, use of chemical biology to identify molecules altering plant phenotype and 

application of such molecules in genetic screens has found broader applications in plant 

biology as well (McCourt and Desveaux, 2010; Hicks and Raikhel, 2012). 

Since the model plant A. thaliana can be cultivated in microplates, it is eminently 

suitable for adoption in high throughput chemical biology assays to identify cellular 

targets that are inaccessible or recalcitrant to conventional mutational analysis. The first 

step of a chemical biology study involves development of a robust assay to screen for 

phenotypic changes (e.g. reporter gene activity or growth inhibition) upon chemical 

treatment. The next phase involves primary screening with a library of chemical 

compounds to identify chemicals modulating activity of the targeted gene/protein. 

Identification of candidate compounds, or ‘hits’ is only one part of a successful chemical 

biology screen. The selected compounds need to be critically validated to confirm their 

activity in the targeted biological process. This validation involves verification of their 
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activity in secondary screens (e.g. using a different biological readout related to the 

primary screen), determination of half minimum inhibitory or activating concentration 

(IC50/EC50) values, and determination of selectivity by comparing their effects on a variety 

of biological responses. Counterscreening is also necessary to eliminate false positive hits, 

and isolation of biologically relevant chemicals. These chemicals are useful tools for 

biological studies involving their target signalling pathway. 

However, the ultimate aim of a chemical biology screen is to identify the target of a 

selected chemical, often a protein, which is essential to analyse the precise mode-of-

action of the chemical. The classical and predominant approach for target identification 

is screening of EMS-mutagenised plants for resistance to the selected chemical. This 

combination of a chemical screen with a genetic approach is defined as ‘chemical 

genetics’. This approach has been successfully applied for identification of the target of  

gravicin, and the ABA agonist pyrabactin (Rojas-Pierce et al., 2007; Park et al., 2009). 

Nevertheless, the step from initial mutant identification to target identification in this 

approach, is time consuming and labour intensive. Recently, a successful chemical biology 

screen has identified the target of the chemical jarin, based on its activity within known 

signalling pathways (Meesters et al., 2014). In addition to genetic approaches, 

biochemistry techniques such as affinity purification are also widely used for target 

identification of selective chemicals (Dejonghe and Russinova, 2014). Affinity purification 

typically involves binding of a tag (e.g. biotin) to the selective small molecule to enable 

pulldown of the target from amongst a complex mixture. Determination of the structure-

activity relationship of the selective compound is crucial before derivatization of the 

compound for affinity tagging. Analogs of the selected chemical are tested for their 

activity in the target pathway, to determine the functional groups and moieties vital for 

its activity. Structure activity relationship is not just useful for compound derivatization, 

but also provides important clues about the mode-of-action of the candidate chemical. 

Additional target identification techniques include molecular biology approaches such as 

the yeast-three-hybrid technology (Cottier et al., 2011) and protein microarrays (Huang 

et al., 2004). Overall, plant chemical biology has opened new avenues for research into 

gene function, where traditional genetic techniques have been hitherto ineffective or 

time consuming. 
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1.7 Aims of this thesis 

The initial discovery of A. thaliana FMO1 was followed by several important 

breakthroughs concerning the role of FMO1 in plant defence within the span of a year 

(Bartsch et al., 2006; Koch et al., 2006; Mishina and Zeier, 2006; Olszak et al., 2006). The 

role of FMO1 in SAR has also been analysed (Navarova et al., 2012; Gruner et al., 2013). 

However, genetic approaches have failed to unravel the mechanism of FMO1 function, 

and additional components involved in mediating EDS1-dependent, SA-independent 

signalling. Therefore, novel research techniques need to be applied to dissect the 

intriguing role and function of FMO1 in plant defence signalling. 

Chemical biology has the potential to resolve unsolved research questions, where 

traditional genetic approaches have failed. The aim of this thesis is to establish a high 

throughput chemical screen to identify compounds modulating expression of FMO1 in A. 

thaliana. The candidate chemicals would then undergo secondary and counter-screening 

to eliminate compounds that affect the reporter readout, leaving only chemicals with 

activity specific to the FMO1-related defence pathway. 

Such selective chemicals would then be used as probes to analyse the EDS1-dependent 

and SA-independent defence signalling mechanism in plants. The compound could also 

help dissect the complex interplay between FMO1 and cell death activation in plants. 

Ultimately, biochemical methods and genetic screens could be used to identify the mode-

of-action of the chemical and might help identify new FMO1-regulatory factors, and 

provide greater mechanistic knowledge about the EDS1-dependent and SA-independent 

signalling pathway. 
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2 Screening of natural and synthetic compound libraries uncovers 

several putative activators 

I aimed at identifying small molecules that selectively modulate FMO1 signalling in 

Arabidopsis thaliana. For this challenging task, I developed a chemical screen using 

Arabidopsis thaliana seedlings expressing a YFP tagged FMO1 fusion protein, under 

control of the native FMO1 promoter in a fmo1 mutant background. Fumonisin B1 (FB1), 

which is a chemical inducer of FMO1 (Olszak et al., 2006) was used as a positive control. 

Initially, I treated Arabidopsis thaliana pFMO1::FMO1:YFP seedlings of different ages, with 

varying concentrations of FB1 and monitored the YFP fluorescence emitted from the 

plants, over a course of several days. 

Eighteen day old seedlings emitted higher fluorescence than thirteen day old 

seedlings. Hence, 18-day old seedlings were selected for the screening, since the higher 

fluorescence made YFP detection in a fluorometer easier, and more consistent. I could 

observe a significant increase in fluorescence in the FB1 treated seedlings, over the mock 

(DMSO) treated seedlings, starting from 4 days post treatment (Fig. 1). Six days after 

treatment, there was a three-fold increase in fluorescence relative to the negative control 

treatment. The standard deviation of the relative fluorescence values at this time point 

was also lower than that at 7 days post treatment (Fig 1). 

Treatment with 10µM FB1 also resulted in a more consistent increase in 

fluorescence, with lesser variation, in contrast to the treatment with 5µM and 10µM FB1 

(data not shown). The negative control treatment with the chemical solvent DMSO (1%), 

had no effect on the YFP levels of the seedlings, and the fluorescence was constant like 

non-treated seedlings (data not shown). Hence, the assay conditions were set as 

treatment of 18-day old Arabidopsis thaliana pFMO1::FMO1:YFP seedlings for 6 days with 

10µM FB1 as the positive control and 1% DMSO as the negative control (Fig. 3). The effect 

of FB1 on the pFMO1::FMO1:YFP seedlings was also confirmed by fluorescence 

visualisation using confocal microscopy (Fig. 2). 

I performed two chemical screens in this study: (1) a screen for inhibitors of FB1-

induced FMO1-YFP expression and (2) a screen for activators of FMO1-YFP expression. 
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The inhibitor screen utilised the positive control FB1 to induce FMO1-YFP expression in 

chemical pre-treated seedlings. The chemicals inhibiting FB1-induced YFP fluorescence in 

the seedlings were considered as inhibitors of FMO1-YFP expression. In the activator 

screen, A. thaliana pFMO1::FMO1:YFP seedlings were treated only with chemicals and the 

fluorescence emitted was compared to the FB1 (positive) and DMSO (negative) control 

treatments. Chemicals enhancing YFP fluorescence in the seedlings were considered as 

activators of FMO1-YFP expression. 

   

Figure 1: Time course of the effect of fumonisin B1 on Arabidopsis thaliana pFMO1::FMO1:YFP 

seedlings grown in liquid culture. 18 day old seedlings were treated with 10µM FB1 or 1% DMSO 

(mock). The fluorescence emitted from the seedlings was monitored daily for 7 days after initial 

treatment. Asterisks indicate significant differences compared to the mock control (Student’s t-

test ***p<0.001). 

 

 

Figure 2: Effect of fumonisin B1 on fluorescence in Arabidopsis thaliana pFMO1::FMO1-YFP 

seedlings. 18 day old Arabidopsis thaliana pFMO1::FMO1:YFP seedlings were treated with DMSO 

and FB1 at the indicated concentrations. Four days after the treatment, the seedlings were 

examined under a confocal microscope for presence of YFP fluorescence. 
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Figure 3: Graphic representation of the chemical screening protocol for activators of FMO1:YFP. 

18 day old Arabidopsis thaliana pFMO1::FMO1:YFP seedlings were treated for 6 days with 1488 

chemical compounds (each at 10-20µM) in duplicate/triplicate. 10µM FB1 and 1% DMSO were the 

positive and negative controls, respectively. The fluorescence emitted from the seedlings was 

measured 6 days post treatment. A similar protocol was followed for the inhibitor screen, but the 

seedlings were treated with 10µM fumonisin B1 one hour after chemical treatment with 1287 

chemicals (each at 10-20µM). 
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2.1 Screen for inhibitors 

The inhibitor screen did not yield any chemical inhibitor of FMO1-YFP. The primary 

reason for this was that FB1, the chemical inducer used for the screen, was a relatively 

weak activator of FMO1-YFP. The low YFP fluorescence of the treated samples, coupled 

with their relatively high variance, made it difficult to distinguish any inhibitor hits. The 

difference between the positive and negative controls was too low to identify a chemical 

hit inducing YFP fluorescence to an intermediate value. 

 

 

Figure 4: Chemical screen for inhibitors of pFMO1::FMO1:YFP expression. 18 day old A. 

thaliana pFMO1::FMO1:YFP seedlings were pre-incubated for 1 h with 1287 chemical compounds 

(10-20µM each) and expression of the reporter gene was induced by 10µM fumonisin B1. YFP 

activity was determined after 6 days in duplicate/triplicate samples and the average fluorescence 

value per compound was normalised to the average activity of the whole plate (96 samples). The 

shaded area represents the threshold determined for selection of inhibitors. 
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2.2 Screen for activators 

Arabidopsis thaliana pFMO1::FMO1:YFP seedlings were screened for chemicals 

increasing YFP fluorescence using a library of 1488 compounds (Fig. 5). The screening 

revealed that the vast majority of compounds had no effect on YFP levels in the plants. 

Around 200 compounds increased the fluorescence to more than 1.5 times the 

fluorescence value of the plate average/negative DMSO control. The principle behind 

using the plate average or the negative control for normalisation of the fluorescence, is 

that since, most chemicals have no effect on YFP levels in the plants, the average 

fluorescence values of the entire screening plate resemble the negative control. All of 

these compounds were then rescreened to confirm their role in increasing FMO1-YFP 

activity. For the majority of these 200 compounds, activity could not be confirmed. 

However, this was not unexpected, since several of these already showed large variation 

in activity in the primary screen. Additionally, I had included weak activators of FMO1-YFP 

expression in the rescreening to avoid missing on false negatives. Hence, I applied a 

stringent criteria for rescreening putative hits found in the primary activator screen. 

Thirteen compounds (Fig. 5) could be confirmed as activators of FMO1:YFP expression 

through the rescreening, giving me a hit rate of 0.87%. 

 

Figure 5: Chemical screen for activators of pFMO1::FMO1:YFP expression. 18 day old 

pFMO1::FMO1:YFP seedlings were treated with 1488 chemical compounds (10-20µM each). YFP 

activity was determined after 6 days in duplicate/triplicate samples and the average fluorescence 

value per compound was normalised to the average activity of the whole plate (96 samples). The 

shaded area represents the threshold determined for selection of activators. Rescreening of the 

candidates above this threshold identified 13 compounds (indicated in green) increasing YFP 

activity. 
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Figure 5: Names and strucutres of selected chemical activators of pFMO1::FMO1:YFP 

expression 

 

2.2.1 Verification of activator chemicals 

It was necessary to independently verify that the thirteen selected activator 

compounds indeed lead to accumulation of FMO1-YFP protein and subsequent increase 

in YFP fluorescence. Several of the chemicals used in the screening, including the positive 

control FB1, are known to induce programmed cell death in Arabidopsis thaliana (Stone 

et al., 2000). Auto-fluorescence due to cell death in the plants has a wavelength similar to 

YFP, which might lead to selection of phytotoxic compounds in the primary screen. Hence, 

it was important to distinguish between chemicals affecting YFP fluorescence in the 

original screen, from those modulating FMO1-YFP protein levels, to exclude false positives 

from the screening hits (Fig. 5). 

In order to exclude interference due to autofluorescence, I monitored expression of 

a different reporter, ß-glucuronidase (GUS) under control of the FMO1 promoter (Olszak 
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et al., 2006). However, the pFMO1::GUS reporter line proved to be unstable, with high 

variation of GUS activity even in the untreated samples and after DMSO control treatment 

(data not shown). Hence, for confirmation of the activator candidates, a Western Blot 

experiment was performed to check for the accumulation of FMO1-YFP protein after 

chemical treatment.  

Western blot analysis was performed with protein samples extracted from 

pFMO1::FMO1:YFP seedlings treated with the thirteen primary hit compounds  (10 µM 

each) for 1 day and 4 days. The blot was probed with an anti-GFP antibody to detect the 

presence of FMO1-YFP in the samples. The analysis indicated, that out of the thirteen 

chemical candidates tested, five led to an increase in accumulation of the FMO1-YFP 

protein (Fig. 6).  FMO1-YFP protein accumulation was strongly induced in seedlings 

treated for 1 day with thaxtomin A, 5-iodotubercidin and monensin sodium salt. A weaker 

induction was observed in the merbromin and staurosporine treated samples. No signal 

was recorded for 4 day-treatment (data not shown). 

A time course experiment conducted on similar lines revealed that maximum 

protein accumulation could be detected 24 hours post treatment, and thereafter declined 

again (data not shown). Thus, the ideal treatment time for FMO1 activity was 24 hours, 

and not 4-6 days as observed under primary screening conditions. The five confirmed 

chemical candidates do not have any obvious structural similarity (Fig. 5, Fig. 6).  
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Figure 6: Accumulation of FMO1-YFP protein in response to treatment with primary hit 

compounds using a Western blot. 18 day old Arabidopsis thaliana pFMO1::FMO1:YFP seedlings 

were treated with 10µM chemical compounds for 24 h. Western blotting was performed with 

protein extracts from these seedlings using an α-GFP antibody, which binds to YFP. Five of the 

initial 13 compounds were confirmed as activators of FMO1-YFP. These are listed above along with 

their chemical structures. At least two independent experiments revealed comparable results. 

Ponceau staining confirmed loading of equal amounts of protein. 

 

2.2.2 Confirmation of FMO1 induction in wild-type seedlings by qRT-PCR 

The primary and secondary screen had identified five chemicals which increased 

FMO1-YFP accumulation in A. thaliana seedlings. However, I also wanted to know 

whether treatment with activator candidates could promote FMO1 transcript 

accumulation in wild-type Columbia (Col-0) seedlings. It was important to identify 

whether the effect on FMO1 in A. thaliana seedlings was a general response, or was 

restricted to the fmo1-1 mutant background of the seedlings used for the primary screen. 

Therefore, I analysed the changes in FMO1 gene expression over time by qRT-PCR, after 

treatment with the candidate activators. Two week old A. thaliana Col-0 seedlings were 

treated with 10µM merbromin, monensin sodium salt, thaxtomin A, staurosporine and 5-

iodotubercidin. The negative control was treatment with 1% DMSO. Samples were 

collected, up until 48h post-treatment. All five selected chemicals significantly increasing 



35 
 

FMO1 expression 24h post treatment (Fig. 7). Hence, 24h was selected as the ideal 

treatment time for all future experiments. 

 

Figure 7: Changes in transcription of FMO1 over time after treatment with 10µM activator 

compounds. 14 day old Arabidopsis thaliana Col-0 seedlings were treated with 10µM each of A: 

thaxtomin A, merbromin, monensin sodium salt, 5-iodotubercidin and B: staurosporine. Plants 

were harvested at the indicated time points and expression was monitored by qRT-PCR. All five 

compounds induced FMO1 expression. Expression was normalized to the untreated control at 

time 0h and is shown as average of 3 biological replicates ± standard deviation. Asterisks indicate 

significant differences compared to the mock control (Student’s t-test ***p<0.001, **p<0.01, 

*p<0.05). 

 

The aim of this study was to identify chemicals which selectively activate the EDS1-

dependent and salicylic acid-independent signalling mechanism in plants. However, 

staurosporine and 5-iodotubercidin are general kinase inhibitors, and thus are likely to 

perturb several plant signalling pathways (Massillon et al., 1994; Meggio et al., 1995). 

Previous screens in our laboratory indicated that staurosporine and 5-iodotubercidin 

inhibit jasmonic acid and calcium signalling, and also impair expression of PR1-GUS, which 
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is a marker of salicylic acid signalling (Christian Meesters, Jens Maintz, Vivek Halder and 

Mohamed Suliman; personal communication). Hence, these two chemicals were excluded 

from further analysis, and I focused on investigating the activity of thaxtomin A, 

merbromin and monensin sodium salt. 
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2.3 Thaxtomin A is a potent FMO1 upregulator 

Thaxtomin A was the strongest activator of FMO1-YFP accumulation (Fig. 6). FMO1 

expression was also enhanced by thaxtomin A (Fig. 7). Thaxtomin A is a phytotoxic 

compound produced by several Streptomyces scabies (King et al., 1989), which is a 

pathogenic bacterium, responsible for scab disease in potatoes (Lambert and Loria, 1989). 

Thaxtomin A production is associated with the pathogenicity of the bacteria, and causes 

formation of scab-like lesions on the potato tuber, which are characteristic of the disease 

(King et al., 1991; Goyer et al., 1998; Kinkel et al., 1998). Thaxtomin A inhibits cellulose 

synthesis in plants (Scheible et al., 2003). The strong activity in FMO1 upregulation, 

coupled with the known role in plant disease induction, made thaxtomin A an interesting 

candidate for further analysis. 

 2.3.1 Timeline and dose-dependence of thaxtomin A-induced FMO1 

I wanted to determine whether the concentration of thaxtomin A used in previous 

experiments was appropriate, or whether it needed to be adjusted for an optimal output. 

A. thaliana Col-0 seedlings were treated for 24h with increasing concentrations of 

thaxtomin A. qRT-PCR analysis was used to determine FMO1 expression in the seedlings. 

FMO1 expression increased with an increase in the concentration of thaxtomin A used for 

the treatment, upto 50nM thaxtomin A. Beyond this concentration, there was no major 

and consistent increase in FMO1 expression, and expression was high, albeit variable. 

Thus, treatment with 50nM or higher concentration of thaxtomin A significantly increases 

expression of FMO1 in A. thaliana seedlings. Thaxtomin A had been used before in studies 

on A. thaliana seedlings at a concentration of 100nM (Scheible et al., 2003). 100nM 

thaxtomin A also had a consistently robust effect on FMO1 in all my experiments, and 

hence, this concentration was selected for use in all further experiments, unless otherwise 

stated. 
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Figure 8: Dose-response of thaxtomin A-induced FMO1 expression. 14 day old Arabidopsis 

thaliana Col-0 seedlings were treated for 24h with 1%DMSO or with thaxtomin A at the indicated 

concentrations. FMO1 activity was quantified using qRT-PCR. Expression was normalized to the 

DMSO control and is shown as an average of 3 biological replicates ± standard deviation. This 

experiment was repeated twice with similar results. Asterisks indicate significant differences 

compared to the DMSO control (Student’s t-test ***p<0.001, **p<0.01, *p<0.05). At least two 

independent experiments revealed comparable results. 

 

The effect of thaxtomin A on FMO1 over time had been analysed (Fig 7). However, 

I wanted to ensure that the expression pattern held true for the concentration selected 

through the thaxtomin A dose dependency test. Thaxtomin A at a concentration of 100nM 

was used to analyse expression of FMO1 at different time points. A. thaliana seedlings 

were treated with 100nM thaxtomin A and samples were collected at various time points 

up until 48h post treatment. There is a low expression of FMO1 at early time points, but 

it increases rapidly after 8h post treatment (Fig 9). FMO1 expression reaches a maximum 

at 24h, and declines thereafter. 
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Figure 9: Changes in FMO1 expression over time, after treatment with 100nM thaxtomin A. 13 

day old Arabidopsis thaliana Col-0 seedlings were treated for 24h with 1% DMSO or 100nM 

thaxtomin A. Plants were harvested at the indicated time points, and expression was monitored 

by qRT-PCR. Expression was normalized to the DMSO control and is shown as an average of 3 

biological replicates ± standard deviation. Asterisks indicate significant differences compared to 

the DMSO control (Student’s t-test ***p<0.001, *p<0.05) 

 

2.3.2 Thaxtomin A affects seedling growth, but not germination 

Since thaxtomin A is such a potent activator of FMO1 expression even at low 

concentrations, the question was whether it also affects plant germination and growth. 

Wild-type Arabidopsis thaliana Col-0 seeds were grown liquid medium containing 

increasing concentrations of thaxtomin A. All the seeds in the plate germinated. Growth 

was normal in 2nM thaxtomin A. However, in 5-10nM and higher concentrations of 

thaxtomin A, the seedlings failed to develop and their growth was arrested (Fig. 10). The 

seedlings grew normally in the untreated and the 1% DMSO control solutions. Thus, 

thaxtomin A affects seedling growth, but not germination. 
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Figure 10: Effect of increasing concentrations of thaxtomin A on germination and growth. 

Arabidopsis thaliana Col-0 seedlings were sown in media containing thaxtomin A at the indicated 

concentrations. After 2 days of vernalization, the seeds were left to germinate and grow for two 

weeks. The picture depicts representative plants. Three independent experiments gave similar 

results. 

 

2.3.3 Thaxtomin A does not trigger MAPK and ROS signalling 

Reactive oxygen species (ROS) can act directly as antimicrobial agents (Peng and 

Kuc, 1992) or indirectly as messengers involved in activation of defence genes in plants 

(Jabs et al., 1997). I wanted to determine whether thaxtomin A produces ROS signals 

within the plant, thus leading to activation of defence responses. A. thaliana Col-0 

seedlings were treated with 100nM thaxtomin A, and the rate of ROS production was 

compared to treatment with the ROS-inducer flg22 (1µM). ROS production was measured 

in relative luminescence units produced after injection of a luminol and hydrogen 

peroxide containing solution. As previously reported (Shi et al., 2013), the flg22-treated 
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seedlings produced a strong, transient increase in luminescence, over a time period of 

about 30 minutes (Fig 11). By contrast, thaxtomin A did not affect luminescence and 

values remained low, similar to the DMSO treatment. Thus, thaxtomin A does not lead to 

ROS production within the plant. 

 

Figure 11: Effect of thaxtomin A and flg22 application on production of reactive oxygen species. 

14 day old Arabidopsis thaliana Col-0 seedlings in liquid medium were treated with either 100nM 

thaxtomin A or 1µM flg22 to induce ROS production. 1% DMSO treatment served as a negative 

control. A solution containing luminol and peroxidase was immediately injected and luminescence 

was monitored over the indicated time course. Luminescence is depicted in relative light units 

(RLU). The graph depicts 12 biological replicates ± standard deviation. Two independent 

experiments gave similar results. 

 

Prolonged activation of MAPK cascades has been known to induce FMO1 expression 

(Tsuda et al., 2013). Hence, I wanted to determine whether thaxtomin A triggers MAPK 

responses, leading to an increase in FMO1 expression. Seedlings were treated with 100nM 

thaxtomin A, and DMSO and flg22 treatment were used as negative and positive controls 

respectively. As expected, there was an accumulation of the active, phosphorylated MPK6 

and MPK3 after flg22 application. However, thaxtomin A was unable to trigger 

accumulation of phosphorylated MAPK proteins (Fig. 12). Thus, thaxtomin A probably acts 

downstream of MAPK phosphorylation, to induce FMO1 expression. 

Therefore, thaxtomin A is a potent activator of FMO1 expression, but does not 

perturb jasmonic acid signalling, and does not trigger early defence signalling responses 

such as MAPK activation, intracellular calcium spiking and ROS production (Table 1). 
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Hence, going further, I analysed the role of thaxtomin A in late defence signalling, and 

activity in regulation of FMO1-related defence responses. 

 

 

Figure 12: Role of thaxtomin A in MAPK activation. 14 day old Arabidopsis thaliana Col-0 

seedlings were treated for the indicated time with either 1% DMSO, 100nM thaxtomin A or 1µM 

flg22 to activate mitogen-activated protein kinases (MAPKs). Accumulation of phosphorylated 

MAPKs upon application of chemicals was analysed by α-phospho-p44/42-MAPK immunoblot. At 

least three independent experiments revealed comparable results. Ponceau staining confirmed 

loading of equal amounts of protein.  

 

Table 1: Overview of the effect of thaxtomin A on plant defence markers. The observed role of 

thaxtomin A in plant defence in the current screen was compared to its activity in screens for 

calcium signalling, salicylic acid-dependent PR1 signalling and in inhibition of the jasmonic acid 

marker gene VSP1. Data compiled from screens by Jens Maintz, Vivek Halder and Mohamed 

Suliman. 

Name FMO1:YFP PR1:GUS 

Calcium 

signalling VSP1:GUS 

ROS 

production 

MAPK 

activation 

Thaxtomin A Activator Activator No effect No effect No effect No effect 

 

2.3.4 Analysis of perturbations in amino acid levels 

FMO1 is an essential component of systemic acquired resistance (SAR) development 

in plants and establishment of SAR is closely correlated to enhanced FMO1 expression in 

systemic tissue (Mishina and Zeier, 2006). Upon activation of SAR in plants, there is a 

change in the amino acid profile of the plant (Navarova et al., 2012). There is a significant 

increase in levels of the defence-inducible amino acids, tyrosine and tryptophan, and a 

massive accumulation of α-aminoadipic acid (AAD) and the lysine derivative, pipecolic 

acid. Pipecolic acid is hypothesised to be a mobile signal which is transmitted across the 

plant, mediating SAR, and leading to upregulation of AGD2-like defense response protein1 
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(ALD1) (Navarova et al., 2012). ALD1 has been suggested to be important for FMO1 

activation in SAR reactions. Hence, I wanted to know if thaxtomin treatment also perturbs 

AAD and pipecolic acid accumulation in A. thaliana seedlings, thus leading to enhanced 

FMO1 expression. Additionally, I also wanted to find out if treatment with thaxtomin A 

affects the levels of defence-inducible amino acids such as tyrosine and tryptophan. A. 

thaliana Col-0 seedlings were treated with either 1% DMSO or 100nM thaxtomin A and 

their amino acid profile was analysed. 

There was a high alanine content in both, the DMSO and the thaxtomin A-treated 

seedlings. However, there was no major difference between the treatments. By contrast, 

levels of pipecolic acid and α-aminoadipic acid were very low (hardly detectable) and did 

not change upon thaxtomin A treatment (Fig. 13). The levels of the defence-inducible 

amino acids were also unchanged. Thus, there does not seem to be a role of amino acid 

signalling in thaxtomin A- induced FMO1 upregulation.  

 

Figure 13: Thaxtomin A induced changes in free amino acid content of Arabidopsis thaliana 

seedlings. 14 day old Arabidopsis thaliana Col-0 seedlings were treated for 24h with 1% DMSO or 

100nM thaxtomin A. The content of A: alanine and B: other amino acids in the seedlings was 

quantified using GC/MS and is shown as an average of 3 biological replicates ± standard deviation. 
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2.3.5 Thaxtomin A leads to an increase in salicylic acid levels 

FMO1 activation triggers a downstream defence responses, leading to upregulation 

of the salicylic acid biosynthesis gene Isochorismate Synthase1 (ICS1) and production of 

the defence metabolite, salicylic acid (Mishina and Zeier, 2006). Hence, I wanted to probe 

whether thaxtomin A, together with induced FMO1 expression, leads to changes in the 

salicylic acid content in the plant. The total and free salicylic acid levels in the plant were 

quantified 24h after treatment with 100nM thaxtomin A, and were compared to the 

untreated and DMSO controls. 

There was a highly significant increase (4-5-fold) in both, the total and the free 

salicylic acid content of the seedlings after treatment with thaxtomin A (Fig. 14). Thus, 

thaxtomin A not only induced FMO1 expression (Fig. 6, Fig. 9), but also led to an increase 

in salicylic acid production. 

 

Figure 14: Changes in free and total salicylic acid content of Arabidopsis thaliana seedlings due 

to thaxtomin A treatment. 14 day old Arabidopsis thaliana Col-0 seedlings were treated for 24h 

with 100nM thaxtomin A. The negative controls were treatment with 1% DMSO or no treatment. 

The free and total salicylic acid content of the seedlings was quantified using GC/MS and is shown 

as an average of 3 biological replicates ± standard deviation. Asterisks indicate significant 

differences compared to the DMSO control (Student’s t-test ***p<0.001). Two independent 

experiments gave similar results. 

 

2.3.6 Structure-activity relationship of thaxtomin A 

Thaxtomin C is a precursor of thaxtomin A, lacking a methyl group and a phenolic 

hydroxyl group, and was also isolated from Streptomyces species (King et. a., 1994). It is 
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responsible for induction of soil rot in sweet potatoes and causes necrosis in root tissue 

(Guan et al., 2012). A. thaliana Col-0 seedlings were treated with varying concentrations 

of thaxtomin C to determine whether it can also induce FMO1 expression. My analysis 

indicates that thaxtomin C could also upregulate FMO1, although to a lower extent than 

thaxtomin A (Fig. 15). 

Protein target identification and cellular localisation of binding proteins are crucial 

steps following of a successful chemical screen. Both require covalent modification of the 

identified chemical. Two such modified thaxtomin A derivatives were available. 

Thaxtomin 1378 was modified to replace the phenolic –OH group of thaxtomin A with an 

alkyne group, and thaxtomin 1379 had a rhodamine tag substituting the phenolic –OH 

group. Thaxtomin 1379, was able to significantly increase FMO1 expression, albeit to a 

lower extent, and at higher concentrations, as compared to thaxtomin A. Thaxtomin 1378 

was unable to cause significant changes in FMO1 expression (Fig. 15).  

Comparison between activities of thaxtomin A and thaxtomin C indicates that the 

phenolic –OH group of thaxtomin A, which is absent in thaxtomin C is not essential for 

its role in upregulation of FMO1. The substitution of this –OH group by the rhodamine 

did not affect activity in thaxtomin 1379, while the alkyne substitution in 1378 greatly 

reduced activity. This result could be related to differences in charge distribution 

between the chemicals, leading to differences in uptake by the plant. Alternatively, 

thaxtomin 1378 could have undergone degradation, since it was synthesized several 

years ago. It needs to be resynthesized and tested before drawing conclusions from the 

current results. Thus, changes in thaxtomin A structure can affect its activity in FMO1 

upregulation. 
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Figure 15: Activation of FMO1 expression by different thaxtomin A derivatives. 13 day old 

Arabidopsis thaliana Col-0 seedlings were treated for 24h with thaxtomin A, alkyne-tagged 

thaxtomin A 1378, rhodamine-tagged thaxtomin A 1379 and the thaxtomin A precursor, 

thaxtomin C, at the indicated concentrations. The negative control was treatment with 1% DMSO. 

Expression of FMO1 in the chemical treated samples was normalized to that of the DMSO control 

samples and is shown as an average of 3 biological replicates ± standard deviation. Asterisks 

indicate significant differences compared to the DMSO control (Student’s t-test ***p<0.001, 

**p<0.01, *p<0.05). Two independent experiments had similar results. Structures of the 

thaxtomin A derivatives are depicted below the graph of their activity. 

 

2.3.7 Role of thaxtomin A in other signalling pathways 

An ideal hit compound from a chemical screen should act specifically on the 

pathway of interest, and not create perturbations in other signalling pathways. This 

increases the likelihood that a single target within the pathway of interest is affected. 
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Through screens conducted by colleagues in our laboratory, I knew that thaxtomin A has 

no effect on calcium signalling, and does not inhibit VSP1, which is a marker gene for 

jasmonic acid signalling. I wanted to identify whether thaxtomin A has any role in the 

activation of jasmonic acid, abscisic acid or auxin signalling. A. thaliana Col-0 seedlings 

treated for 24h with thaxtomin A were analysed for expression of VSP1, PIN1 and RAB18, 

which are marker genes for the jasmonic acid, auxin and the abscisic acid pathways 

respectively. Negligible changes (<10-fold increase) in the expression of these genes were 

observed, when compared to the highly significant changes in FMO1 expression (150-fold 

increase) (Fig. 16). Hence, thaxtomin A appears to act specifically on the EDS1-dependent 

defence signalling pathway. 

Thaxtomin A is an inhibitor of cellulose synthesis (Scheible et al., 2003). I wanted to 

ascertain whether activation of FMO1 is a consequence of the inhibition of cellulose 

synthesis, or whether FMO1 upregulation it is independent of cellulose synthesis 

inhibition. Hence, I measured the changes in FMO1 expression after treatment with 

isoxaben, another cellulose synthase inhibitor.  

 

Figure 16: Effect of thaxtomin A treatment on expression of marker genes of major plant 

signalling pathways. 13 day old Arabidopsis thaliana Col-0 seedlings were treated for 24h with 1% 

DMSO or 100nM thaxtomin A. Activity of FMO1, VSP1, PIN1, and RAB18 in thaxtomin A treated 

samples was normalized to that of the DMSO control samples. Gene expression is shown as an 

average of 3 biological replicates ± standard deviation. Asterisks indicate significant differences 

compared to the DMSO control (Student’s t-test ***p<0.001). Two independent experiments had 

similar results. 
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Figure 17: Impact of different cellulose synthesis inhibitors on FMO1 expression. 13 day old 

Arabidopsis thaliana Col-0 seedlings were treated for with 24h with 1% DMSO, 100nM thaxtomin 

A, and 5nM or 10nM isoxaben. Expression of FMO1 in the chemical treated samples was 

normalized to that of the DMSO control samples and is shown as an average of 3 biological 

replicates ± standard deviation. 

 

There was a 6-10-fold increase in FMO1 transcription due to Isoxaben, however, it 

was far less than the change in FMO1 transcription (54-fold) due to thaxtomin A (Fig. 17). 

Thus, there does seem to be some role of cellulose synthase inhibition in FMO1 activation. 

But, there is an indication that thaxtomin A also has another mechanism of FMO1 

upregulation, which is independent of its role in inhibition of cellulose synthesis. 

 

2.3.8 FMO1 expression due to thaxtomin A is dependent on EDS1 and PAD4  

During pathogen infection, FMO1 expression is fully dependent on EDS1 and PAD4, 

and independent of SA signalling (Bartsch et al., 2006; Mishina and Zeier, 2006). ALD1 is 

also important for systemic FMO1 upregulation during SAR (Navarova et al., 2012). This 

prompted me to test whether these genes are also essential for thaxtomin A-induced 

FMO1 expression. I chose key genes known or hypothesised to be directly upstream or 

downstream of FMO1 in the EDS1-dependent defence pathway. FMO1 expression after 

treatment with thaxtomin A was determined in null mutants of these genes, to help 

pinpoint the target node/pathway for the chemical. FMO1 expression was quantified 

relative to expression of the control gene EXPR, since different mutant backgrounds had 

different basal FMO1 levels, and led to skewed results when thaxtomin A-induced FMO1 
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expression in mutant seedlings was measured as the fold value of expression in DMSO-

treated mutant seedlings. 

My analysis indicated that thaxtomin A- induced FMO1 expression was dependent 

on EDS1 and PAD4, but not on SAG101 (Fig. 18). It was also independent of ICS1/SID2. This 

fits with previous published data that FMO1 activity is EDS1- and PAD4-dependent, but 

ICS1 independent (Bartsch et al., 2006). The data indicates that thaxtomin A-induced 

FMO1 is also independent of ALD1 (Fig. 18). This corresponds to the lack of increase in 

pipecolic acid levels upon thaxtomin A treatment (Fig. 13) since ALD1 expression is tightly 

linked to an increase in pipecolic acid (Navarova et. al., 2012).  

 

 

Figure 18: Thaxtomin A induced FMO1 expression in wild-type and mutant Arabidopsis thaliana 

seedlings. 13 day old Arabidopsis thaliana wild-type Col-0 and the indicated mutant seedlings 

were treated for with 24h with 100nM thaxtomin A. Expression of FMO1, relative to EXPR 

expression, is shown as an average of 3 biological replicates ± standard deviation. Two 

independent experiments showed similar results. 

 

2.3.9 Thaxtomin A is a PAD4 transcription activator 

I had determined that thaxtomin A increased expression of FMO1 (Fig. 9). However, 

it was also important to find out which other genes have a change in expression due to 

thaxtomin A treatment. As thaxtomin A specifically affects FMO1 expression dependent 

on EDS1-family signalling (Fig. 18), I tested if other EDS1-dependent genes are 

transcriptionally induced upon the chemical application. 
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Thaxtomin A led to the upregulation of all the genes tested, 24h post treatment. 

EDS1 and its signalling partners, PAD4 and SAG101 had a significant (>4-fold) increase in 

expression (Fig. 19). There was a major increase (100-fold) in expression of PBS3, which is 

linked to EDS1 activation. There was also massive upregulation (140-fold) of the salicylic 

acid marker gene PR1, while the salicylic acid synthesis gene ICS1 was also upregulated 

(24-fold) (Fig. 19). This corresponds to the increase in production of salicylic acid observed 

after thaxtomin A treatment (Fig. 14). Transcription of ALD1 is also increased (35-fold), 

although there was no change in pipecolic acid accumulation (Fig. 13). Thus, there is an 

overall increase in EDS1-dependent gene activity.  

 

 

Figure 19: Role of thaxtomin A in EDS1-dependent gene upregulation. 13 day old Arabidopsis 

thaliana Col-0 seedlings were treated for 24h with 1% DMSO or 100nM thaxtomin A. Activity of 

indicated genes in the thaxomin A treated samples was normalized to that in the DMSO control 

samples. Gene expression is shown as an average of 3 biological replicates ± standard deviation. 

Asterisks indicate significant differences compared to the DMSO control (Student’s t-test 

***p<0.001, **p<0.01, *p<0.05). Two independent experiments had similar results. 
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Figure 20: Mutant background influences thaxtomin A induction of EDS1 and PAD4. 13 day old 

Arabidopsis thaliana eds1 and pad4 mutant seedlings were treated for 24h with 1% DMSO or 

100nM thaxtomin A. A: PAD4 expression in eds1 mutant background and B: EDS1 expression in 

pad4 mutant background relative to EXPR expression, is shown as an average of 3 biological 

replicates ± standard deviation. Asterisks indicate significant differences compared to the DMSO 

control (Student’s t-test **p<0.01). The results were confirmed in two independent experiments. 

 

EDS1 and PAD4 were found to be crucial for thaxtomin A-induced FMO1 

upregulation (Fig. 18). Thaxtomin A also leads to an increase in transcription of EDS1 and 

PAD4 (Fig. 19). EDS1 is important for stabilising PAD4 protein structure and they form a 

heterodimeric complex, which is necessary for basal resistance involving up-regulation of 

PAD4 transcription (Rietz et. al., 2011). Hence, the question was, how does thaxtomin A 

affect PAD4 transcription in the absence of EDS1, and vice versa? EDS1 expression in a 

pad4 null mutant background and PAD4 expression in an eds1 null mutant background 

was analysed after treatment with thaxtomin A. Surprisingly, there was a significant (4-

fold) increase in PAD4 expression in the eds1-2 background (Fig. 20). This is interesting, 

since even in the absence of PAD4 protein stabilisation by EDS1, thaxtomin A still drives 

PAD4 expression. 

However, EDS1 is not upregulated in the pad4 mutant background (Fig. 20). Instead, 

there is a small, but not statistically significant, decrease in EDS1 expression after 

thaxtomin A treatment, as compared to the DMSO control. Thus, it appears as if thaxtomin 

A actively drives PAD4 expression, while the increase in EDS1 expression in the wild-type 

Col-0 seedlings is a feedback effect of PAD4-downstream signalling. 
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Figure 21: Thaxtomin A induced FMO1 expression in an eds1L262P mutant seedlings. 13 day old 

Arabidopsis thaliana eds1L262P seedlings were treated for 24h with 1% DMSO or 100nM thaxtomin 

A. FMO1 expression in thaxtomin A treated plants, relative to DMSO treated plants, is shown as 

an average of 3 biological replicates ± standard deviation. Asterisks indicate significant differences 

compared to the DMSO control (Student’s t-test **p<0.01). 

 

I further explored the interaction between EDS1 and PAD4, and the influence of 

PAD4 stability on FMO1 expression, by treating A. thaliana eds1L262Pseedlings with 100nM 

thaxtomin A. The eds1L262P mutant plants have a mutation in EDS1, which prevents 

interaction with PAD4 and formation of an EDS1-PAD4 protein heterodimer, while 

retaining interaction with SAG101 (Rietz et al., 2011). It was hypothesised that PAD4 

needs EDS1 for protein stabilisation and driving downstream signalling, and thus 

thaxtomin A would not increase FMO1 expression in the eds1L262P mutant. However, there 

was a significant (20-fold) induction of FMO1 after thaxtomin A treatment in the eds1L262P 

plants (Fig. 21). Thus, PAD4 may have a role in FMO1 induction, which is independent of 

its interaction with EDS1. However, a functional EDS1 is still required for complete wild-

type-like induction of the FMO1 gene (Fig. 18). 

 

  

**

0

5

10

15

20

25

1% DMSO 100nM
Thaxtomin A

FM
O

1
 e

xp
re

ss
io

n
 (

fo
ld

 
o

f 
co

n
tr

o
l)



53 
 

2.4 Monensin sodium salt and merbromin increase FMO1 expression 

Monensin sodium salt and merbromin were identified as activators of FMO1-YFP in 

the primary screen (Fig. 5). This was confirmed through a Western blot (Fig. 6). Secondary 

screening also revealed that monensin sodium salt and merbromin positively affect FMO1 

transcript levels (Fig. 7). They seem to be specific for defence against microbial pathogens, 

since other screens conducted in our laboratory revealed that they do not act as inhibitors 

of the jasmonic acid pathway and also do not interfere with calcium signalling (Christian 

Meesters, Mohamed Suliman and Jens Maintz; personal communication) (Table 2). 

 

2.4.1 EC50 determination 

The term ‘half maximal effective concentration’ (EC50) refers to the concentration 

of a drug, antibody or toxicant which induces a response halfway between the baseline 

and the maximum. It is commonly used as a measure of a drug's potency. I performed a 

concentration dependence test of chemical-induced FMO1 expression by treating A. 

thaliana seedlings for 24h with increasing concentrations of monensin sodium salt and 

merbromin. 

The FMO1 expression increased with an increase in concentration of chemicals used 

for the treatment, reaching a maxima at 1 µM for monensin sodium salt treatment (Fig. 

22A), and at 20 µM for merbromin treatment (Fig. 22B), before decreasing. The EC50 value 

was calculated as 1 µM for monensin sodium salt and 1µM for merbromin. However, since 

10 µM monensin sodium salt and 20 µM merbromin resulted in a consistently high 

expression of FMO1, these concentrations was chosen for most of my subsequent 

experiments. 
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Figure 22: Dose-response of monensin sodium salt and merbromin-induced FMO1 expression. 

14 day old Arabidopsis thaliana Col-0 seedlings were treated for 24h with A: monensin sodium 

salt or B: merbromin at the indicated concentrations. FMO1 expression was quantified using qRT-

PCR. Expression was normalized to the DMSO control and is shown as an average of 3 biological 

replicates ± standard deviation. This experiment was repeated twice with similar results. 

 

2.4.2 Monensin sodium salt and merbromin affect germination and growth in a 

concentration-dependent manner 

Monensin sodium salt and merbromin are activators of FMO1 expression (Fig. 7) 

and protein accumulation (Fig. 6). FMO1 upregulation in plants has been linked with an 

increase in programmed cell death (Olszak et. al., 2006). Hence, I wanted to know whether 

increasing concentrations of monensin sodium salt and merbromin would hamper 

germination and growth in the A. thaliana seedlings. 
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Figure 23: Effect of increasing concentrations of monensin sodium salt on germination and 

growth. Arabidopsis thaliana Col-0 seedlings were sown in media containing monensin sodium 

salt at the indicated concentrations. After 2 days of vernalization, the seeds were left to germinate 

and grow for two weeks. The picture depicts representative plants. Two independent experiments 

gave the same results. 

 

Wild-type Arabidopsis thaliana Col-0 seeds were sown into liquid medium 

containing increasing concentrations of monensin sodium salt and merbromin. The 

seedlings germinated and grew well in the untreated and the 1% DMSO control 

treatments (Fig. 23). However, germination was reduced and growth was stunted in plants 

grown in monensin sodium salt above a concentration of 500 nM and merbromin above 

a concentration of 10 µM. There was a gradual reduction in size of the seedlings, due to 

an increase in the concentration of the chemical treatment. Thus, monensin sodium salt 

and merbromin have a concentration dependent effect on germination and growth of A. 

thaliana seedlings, and a chemical concentration which induces high FMO1 expression 

(Fig. 22), also causes severe developmental defects. 
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2.4.3 Interaction between early defence signalling and FMO1 upregulation 

Monensin sodium salt and merbromin were demonstrated to affect FMO1 

expression (Fig. 7), which is a part of late defence signalling (Bartsch et. al., 2006; Mishina 

and Zeier, 2006). The above chemicals did not trigger early calcium spikes in plants (Jens 

Maintz, personal communication). Arabidopsis thaliana react to stress or PAMPs 

(pathogen associated molecular patterns) by production of an oxidative burst, which is a 

very fast generated signal leading to upregulation of several defence responses (Zipfel et. 

al., 2004; Mersmann et. al., 2010). Prolonged activation of MAPK signalling can lead to 

enhanced FMO1 expression (Tsuda et. al., 2013)  However, it was not known whether 

monensin sodium salt and merbromin triggered these early defence signalling events, 

which could lead to long term changes in defence gene expression in the plants (Jabs et 

al., 1997; Tsuda et al., 2013). Therefore, I analysed A. thaliana seedlings treated with 

monensin sodium salt (10 µM) and merbromin (20 µM) for accumulation of active, 

phosphorylated MAPKs, and production of reactive oxygen species (ROS). 

Similar to thaxtomin A treatment, application of monensin sodium salt and 

merbromin did not generate ROS production in A. thaliana seedlings, as compared to the 

transient increase in ROS after treatment with flg22 (Fig. 24). Thus, ROS production does 

not mediate upregulation of FMO1 expression by monensin sodium salt and merbromin. 

The active, phosphorylated form of MAPKs was detected in protein extracts of the 

treated seedlings using an α-phospho-p44/42 antibody. As expected, there was an 

accumulation of MAPK after flg22 activation (Fig. 25). Merbromin did not influence MAPK 

phosphorylation. However, monensin sodium salt-treatment increased accumulation of 

phosphorylated MPK6 and MPK3 protein. Therefore, monensin sodium salt-induced 

FMO1 expression could be potentially mediated by MAPK signalling. 
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Figure 24: Effect of chemical application on production of reactive oxygen species. 14 day old 

Arabidopsis thaliana Col-0 seedlings in ½ MS medium were treated with either 1% DMSO, 10µM 

monensin sodium salt, 20µM merbromin or 1µM flg22 to induce ROS production. A solution 

containing luminol and peroxidase was immediately injected and luminescence was monitored 

over the indicated time course. Luminescence is depicted in relative light units (RLU). The graph 

depicts 12 biological replicates ± standard deviation. Two independent experiments gave similar 

results. 

 

 

 

Figure 25: Role of monensin sodium salt in MAPK activation. 14 day old Arabidopsis thaliana Col-

0 seedlings were treated for the indicated time with either 1% DMSO, 10µM monensin sodium 

salt, 20µM merbromin or 1µM flg22 to activate mitogen-activated protein kinases (MAPKs). 

Accumulation of phosphorylated MAPKs upon application of chemicals was analysed by α-

phospho-p44/42-MAPK immunoblot. At least two independent experiments revealed comparable 

results. Ponceau staining was used to compare loading amounts of protein. 
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Table 2: Overview of the effect of monensin sodium salt and merbromin on plant defence 

markers. The observed role of monensin sodium salt and merbromin in plant defence in the 

current screen was compared to its reported activity in screens for calcium signalling, salicylic acid-

dependent PR1 signalling and in inhibition of the jasmonic acid marker gene VSP1. Data compiled 

from screens by Jens Maintz, Christian Meesters, Vivek Halder and Mohamed Suliman. 

Name FMO1:YFP PR1:GUS 

Calcium 

signalling LOX2:LUC VSP1:GUS 

ROS 

production 

MAPK 

activation 

Merbromin Activator Inhibitor No effect Inhibitor Inhibitor No effect No effect 

Monensin 

sodium salt Activator Inhibitor No effect Inhibitor Inhibitor No effect Activator 

 

2.4.4 Role of monensin sodium salt in other signalling pathways 

Monensin sodium salt and merbromin were demonstrated to be inducers of FMO1 

expression (Fig. 7). They were also found to be inhibitors of the jasmonic acid pathway 

(Christian Meesters and Mohamed Suliman; personal communication) (Table 2). Salicylic 

acid and jasmonic acid pathways in plants, have antagonistic functions (Spoel et. al., 2003; 

Mur et. al., 2006). Thus, monensin sodium salt and merbromin could possibly cause an 

inhibition of the jasmonic acid marker genes VSP1 and LOX2, due to their activity on 

FMO1. However, it was important to identify whether the compounds had any effects on 

other major plant signalling pathways.  

  

Figure 26: Effect of Monensin sodium salt and merbromin treatment on expression of marker 

genes of major plant signalling pathways. 13 day old Arabidopsis thaliana Col-0 seedlings were 

treated for 24h with 1% DMSO or A: 10µM monensin sodium salt and B: 20µM merbromin. Activity 

of FMO1, VSP1, PIN1, and RAB18 in chemical treated samples was normalized to that of the DMSO 

control samples. Gene expression is shown as an average of 3 biological replicates ± standard 

deviation. Two independent experiments had similar results.  
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I tested the effect of treatment with monensin sodium salt and merbromin on the 

activation of the key marker genes in major plant signalling pathways. Compared to the 

increase in FMO1 expression (>100-fold), there was little change (<5-fold increase) in the 

expression of VSP1, PIN1 and RAB18 which are marker genes for the jasmonic acid, auxin 

and abscisic acid signalling pathways, respectively. Thus, monensin sodium salt and 

merbromin seem to be selective activators of FMO1 expression. 

 

2.4.5 Analysis of changes in amino acid concentration 

FMO1 expression is enhanced in systemic tissues during SAR in plants, which is 

characterised by perturbations in the amino acid content of the plants (Mishina and Zeier, 

2006; Navarova et al., 2012). A. thaliana seedlings were treated with monensin sodium 

salt and merbromin for 24h and the seedlings were processed to extract amino acids. The 

amino acid content of the chemical and the control (1% DMSO), treated seedlings was 

compared. A. thaliana seedlings contained high levels of alanine, whereas all other amino 

acids were low. However, this is not specific to the treatment, but rather seems to be an 

artefact of the developmental stage of the plant (Limami et. al., 2008). Importantly, 

treatment with monensin sodium salt and merbromin did not result in an increase in 

amino acid content of A. thaliana seedlings, including that of the defence inducible amino 

acids like tyrosine, tryptophan, Pip and α-aminoadipic acid (Fig. 27). Thus, there does not 

seem to be a role of amino acid signalling in monensin sodium salt and merbromin-

induced FMO1 upregulation. 
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Figure 27: Effect of merbromin and monensin sodium salt treatment on free amino acid content 

of Arabidopsis thaliana seedlings. 14 day old Arabidopsis thaliana Col-0 seedlings were treated 

for 24h with 1% DMSO or 300nM monensin sodium salt. The amino acids content of the seedlings 

was quantified using GC/MS and is shown as an average of 3 biological replicates ± standard 

deviation. 

 

2.4.6 Effect of monensin sodium salt and merbromin on defence gene expression 

I had established that monensin sodium salt and merbromin act as an inducers of 

FMO1 (Fig. 7). However, I also wanted to identify whether they act on FMO1 alone, or also 

on other genes known to be dependent on EDS1/PAD4. I treated seedlings with monensin 

sodium salt and analysed the expression of genes known to be upstream or downstream 

of FMO1 in the EDS1/PAD4 signalling pathway (Gruner et al., 2013). 

qRT-PCR analysis of the treated seedlings revealed that, not only did the chemical 

treatments significantly increase expression of EDS1 and its associated genes PAD4 and 

SAG101, but they also led to upregulation (>20-fold) of other EDS1 and PAD4 dependent 

genes such as ICS1 and ALD1 (Fig. 28). Monensin sodium salt also caused a massive 

increase (>300-fold) in transcription of PR1, and thus, causes a strong transcriptional 
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upregulation of genes involved in resistance to pathogens. On the contrary, merbromin 

significantly induces expression of EDS1-dependent genes such as PBS3, and the SA-

biosynthesis gene ICS1, but does not significantly increase expression of the SA-marker 

gene PR1. Therefore, merbromin activates EDS1/PAD4 dependent signalling responses, 

but may cause blocking of signalling downstream of ICS1. 

 

 

   

Figure 28: Effect of Monensin sodium salt and Merbromin on defence gene expression. 13 day 

old Arabidopsis thaliana Col-0 seedlings were treated for 24h with 1% DMSO, A: 10µM monensin 

sodium salt or B: and C: 20 µM merbromin. Activity of indicated genes in the chemical-treated 

seedlings was normalized to that in the DMSO-treated seedlings. Gene expression is shown as an 

average of 3 biological replicates ± standard deviation. Asterisks indicate significant differences 

compared to the DMSO control (Student’s t-test ***p<0.001, **p<0.01, *p<0.05). Two 

independent experiments had similar results. 
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2.4.7 Monensin sodium salt, but not merbromin leads to an increase in salicylic acid 

Monensin sodium salt and merbromin were proven to increase transcription of the 

SA synthesis gene, ICS1 (Fig.28). Thus, it was hypothesised that the production of SA 

within the plant should increase after the chemical treatment. 

 

Figure 29: Changes in free and total salicylic acid content of Arabidopsis thaliana seedlings due 

to monensin sodium salt and merbromin treatment. 14 day old Arabidopsis thaliana Col-0 

seedlings were treated for 24h with A: 300nM monensin sodium salt and B: 20 µM merbromin. 

The negative controls were treatment with 1% DMSO or no treatment. The free and total salicylic 

acid content of the seedlings was quantified using GC/MS and is shown as an average of 3 

biological replicates ± standard deviation. Asterisks indicate significant differences compared to 

the DMSO control (Student’s t-test ***p<0.001, **p<0.01). Two independent experiments gave 

similar results. 

 

I treated A. thaliana seedlings with monensin sodium salt (300 nM) and merbromin 

(20 µM) for 24h. The SA content of the seedlings was analysed after extraction according 

to a previously published protocol (Straus et. al., 2010). Treatment with monensin sodium 

salt caused a significant (4-fold) increase in both, the total and the free SA levels, as 

compared to the untreated and the DMSO control treatments (Fig. 29A). This increase in 

**

***

0

1000

2000

3000

4000

5000

Untreated
control

DMSO
control

300 nM
Monensin

sodium salt

SA
 (

n
g/

g 
fr

e
sh

 w
e

ig
h

t) A

Free SA

Total SA

0

200

400

600

800

1000

1200

1400

1% DMSO 20 µM
Merbromin

SA
 (

n
g/

g 
fr

e
sh

 w
e

ig
h

t) B

Free SA

Total SA



63 
 

the SA content of the plant also corresponds to the massive increase in transcription of 

PR1 after treatment with monensin sodium salt. On the contrary, merbromin which 

enhances expression of the SA-biosynthesis gene ICS1, did not increase SA content in the 

treated seedlings. The absence of an increase in SA could account for the lack of 

upregulation of PR1 expression by merbromin. This bolsters my hypothesis that 

merbromin could potentially cause a block in defence signalling, downstream of ICS1. 

 

2.4.8 Role of monensin sodium salt and merbromin in other signalling pathways 

Several genes which have a role in modulating FMO1 expression, have been 

identified previously (Bartsch et. al., 2006; Mishina and Zeier, 2006; Navarova et. al., 

2012).  I wanted to identify whether activation of FMO1 expression by monensin sodium 

salt and merbromin also involves these genes. Hence, I treated seedlings of different 

mutants in key genes related to FMO1 and analysed the FMO1 expression in these 

mutants. As in the case of thaxtomin A treatment, changes in FMO1 expression was 

quantified as fold of EXPR expression. 

Monensin sodium salt-induced expression of FMO1 was independent of SA 

synthesis and signalling, with an increase in FMO1 expression in the SA-mutants sid2 and 

sid2/npr1 after chemical treatment (Fig. 30A). The overall expression level of FMO1 was 

low in the wild-type and mutant seedlings, even after chemical treatment (Fig. 30A). 

Hence, this experiment needs to be repeated for greater clarity about additional genes 

mediating monensin sodium salt-induced FMO1 expression.  
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Figure 30: Monensin sodium salt and merbromin-induced FMO1 expression in wild-type and 

mutant Arabidopsis thaliana seedlings. 13 day old Arabidopsis thaliana wild-type Col-0 and the 

indicated mutant seedlings were treated for with 24h with 1% DMSO, A: 10 µM monensin sodium 

salt, or B: 20 µM merbromin. Expression of FMO1, relative to EXPR expression, is shown as an 

average of 3 biological replicates ± standard deviation. Two independent experiments showed 

similar results. 

Merbromin-induced FMO1 expression was dependent on EDS1, and was 

independent of SID2 and ALD1 (Fig. 30B). The lack of dependence on ALD1, together with 

unchanged Pip content in merbromin-treated A. thaliana seedlings suggests that 

merbromin-induced FMO1 expression, unlike FMO1 expression during SAR is not 

mediated by Pip and ALD1. Thus, merbromin- and monensin sodium salt-induced FMO1 

expression is independent of SA, confirming previously published reports about FMO1 

(Bartsch et al., 2006; Mishina and Zeier, 2006). 
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3 Discussion 

3.1 Primary screening and hit selection 

For a good inhibitor screen, one needs a high difference between the negative and 

positive controls. The higher the difference between the absolute values and lower the 

variation (standard deviation), the easier it is to clearly distinguish inhibitors from 

amongst a whole library of chemicals. The high difference between the controls also 

makes it easier to identify intermediate hits, which mildly reduce activity of the positive 

control. However, in the screen for inhibitors of FMO1-YFP, the positive control could only 

increase YFP fluorescence to about 3-fold of the negative control activity. The inhibitor 

screen revealed that the chemicals tested did not clearly reduce YFP fluorescence, and it 

remained within the zone of standard deviation of the positive control (Fig. 4). Hence, I 

could not successfully identify any inhibitors of FMO1-YFP.  

The hunt for activators also faced problems due to the low difference (3-fold) in 

FMO1-YFP fluorescence values between the controls (Fig. 1). The time point selected for 

the screen was later than the reported timeline for FMO1 expression (Bartsch et al., 2006; 

Mishina and Zeier, 2006). However, chemical induced FMO1 expression was 

demonstrated to increase from 2 days post treatment, with a maximum at 4 days post 

treatment (Olszak et al., 2006). Since I was using a chemical inducer, fumonisin B1 (FB1), 

reported in the same publication, the timeline was thought to be appropriate. As an 

additional proof, the YFP fluorescence emitted from the seedlings was also visualised at 

the same time point, 4 days post treatment, under a confocal microscope. Fluorescence 

microscopy confirmed that FB1 treatment enhanced YFP fluorescence in A. thaliana 

pFMO1::FMO1:YFP seedlings. 

Cantharidin and methotrexat were identified twice from different libraries, which 

confirmed their stable activity under the screening conditions. The fact that known 

activators of FMO1, such as methyl viologen and cycloheximide (Arabidopsis EfP browser- 

Winter et al., 2007) were identified, was proof of principle for the activator screen. 

However, there is another aspect to the detection of cycloheximide as an activator of 

FMO1. Cycloheximide inhibits protein synthesis (Lüttge et al., 1974) and thus, leads to cell 
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death. FMO1 is tightly linked to cell death in plants (Olszak et al., 2006). A large number 

of compounds used for screening, including the positive control FB1, were phytotoxic, and 

induced cell death in the plants after 6 days of incubation (Stone et al., 2000). Cell death 

produces auto-fluorescence in the plants, which can be detected at the same wavelength 

as YFP fluorescence. Hence, this created the possibility of selecting several false hits, 

which would cause cell death in the plants, but not induce FMO-YFP. This made the 

stringent rescreening I used essential for confirmation of activators. Hence, every 

compound which increased activity to more than the standard deviation of the negative 

control was rescreened. This low threshold helped to identify several activators which 

might have been missed otherwise. 

Programmed cell death reduces the pH inside the plant cells, which quenches YFP 

fluorescence (Young et al., 2010). This could possibly be a reason behind the low YFP 

activity observed in our screen. Since FMO1 is linked to cell death, an activator of FMO1 

could potentially induce cell death after 6 days of treatment, and thus quench the YFP 

signal, making it harder to identify hits.  

In retrospect, it might have been faster and more convenient to perform the screen 

with another reporter tagged to FMO1, but the current screen also was successful at 

identifying chemicals with a hitherto unknown activity on FMO1 expression. In this sense, 

the original aim of this project was achieved. However, perhaps a modified screen would 

have been successful at identifying inhibitors of FMO1 and increasing the hit rate of the 

activator screen from the current 0.87%. However, the hit rate may also be linked to the 

composition of the library used for screening. In this project, small hand-selected libraries 

had a higher hit rate (2.8%) than the large Prestwick chemical library (0.5%), which mainly 

comprised of human drugs selected for high chemical and pharmacological diversity. A 

small kinase-inhibitor library also had a high hit rate (3.75%), possibly due to the ubiquity 

of kinase involvement in several signalling pathways.  

The data from the initial activator screen was scrutinized, and several analysis 

methods were applied, to prevent intermediate hits from falling between the cracks. A 

graph was made for every screening plate, inclusive of the positive and negative control 

values for that plate. Each data point was considered in relation to the controls, and the 

standard deviation of the control values. Every chemical with an average data value equal 
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to or more than twice the standard deviation of the negative control was selected for 

rescreening. 

 I also utilized another analysis method, wherein the individual compound values 

were normalised to the average value of their screening plate. A threshold of 1.5 times 

the average plate values was set and all compounds with a mean value at or above this 

threshold were rescreened. A graph utilising this normalisation technique is depicted in 

Fig. 3 and Fig. 4. 

The third method employed for selection of candidate activators utilised the so-called 

Z score (Malo et al., 2006). The Z score considers the variation in the measurements of 

the readout while normalizing the data and thus adds a higher degree of confidence to 

candidate selection. The average of the whole screening plate is compared to individual 

compound measurements, since a majority of compounds are expected to be inactive, 

and thus can function as controls.  

The candidates selected via all three statistical methods were pooled together to 

make a list of compounds for rescreening. Although most of the candidates could be 

picked from any of the three methods employed, a few were unique to only one of these 

techniques. Thus, I utilised three different methods for analysis of the primary screen 

data, to prevent missing out on false negatives in the screen. 

The western blot after a time-course assay (data not shown) revealed that FMO1-YFP 

accumulation was maximum at 24h post treatment. This time point also coincided with 

the observed maxima of FMO1 expression. However, FMO1-YFP accumulation could not 

be detected in plants, after 4 days of treatment with chemicals. This observation 

contradicts the time line of maximum FMO1-YFP fluorescence activity in the primary 

screen. This data again points to the role of cell-death induced auto-fluorescence 

interfering with the actual YFP fluorescence in the primary screen. However, this very 

screen was successful in the goal of identifying chemical activators of FMO1-YFP.  

One hypothesis to explain this time of accumulation is that, activators of FMO1-YFP 

produce an increase in fluorescence, one day post treatment, but this fluorescence may 

be too low to detect in our experimental setup. The chemical upregulation of FMO1 

expression, which has been linked to programmed cell death (Olszak et al., 2006) might 
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increase auto–fluorescence in the seedlings, thus boosting the total fluorescence readout 

after 6 days of treatment. Hence, activators of FMO1 expression, along with cell-death 

inducers such as cycloheximide and methotrexate were selected from the primary screen. 

Ultimately, the screen for activators of FMO1-YFP was successful, and I could identify 

5 chemicals increasing expression of FMO1. Since staurosporine and 5-iodotubercidin 

were general kinase inhibitors, and are likely to be involved in perturbations of several 

plant signalling pathways (Massillon et al., 1994; Meggio et al., 1995), I only focused on 

three chemicals for subsequent analysis of their role in FMO1 upregulation. The three 

selected chemicals are: thaxtomin A, merbromin and monensin sodium salt. 

Determination of the concentration dependence of these chemicals in various 

bioassays, revealed that activator concentrations which greatly increase FMO1 expression 

(Figs. 8, 22), also cause severe retardation of germination and growth in the seedlings 

(Figs. 10, 23). While all three selected activator chemicals have a known cytotoxic effect 

(Duval et al., 2005; Gores et al., 1988; Puerner & Siegel, 1972), the loss of seedling viability 

may also be a contribution of sustained high expression of FMO1, since FMO1 has been 

linked to programmed cell death (Olszak et al., 2006). Additionally, since thaxtomin A is a 

cellulose synthesis inhibitor (Scheible et al., 2003), and thaxtomin A treatment also 

increases cell death in A. thaliana over time (Duval et al., 2005), it can explain the stunted 

growth and death observed in thaxtomin A-treated seedlings in the germination and 

growth assay (Fig. 10). 

 

3.2 Origin and activity of thaxtomin A: a potent FMO1 inducer 

In this study, thaxtomin A was found to be a potent activator of FMO1, also causing 

significant increases in the expression of several other defence-related genes. 

Determining the concentration dependence revealed that FMO1 expression can be 

significantly induced by thaxtomin A, even at nanomolar concentrations (Fig. 8), with 

maximum expression at 24h post treatment (Fig. 9).  For ease of use and to evoke a 

consistent response, treatment for 24h with 100nM thaxtomin A was used for all 

subsequent experiments.  
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Thaxtomin A is a phytotoxin secreted by several species of the gram-positive 

filamentous bacteria in the genus Streptomyces, including S. scabies, S. acidiscabies, and 

S. turgidiscabies (King et al., 1989; Loria et al., 1995). Thaxtomin A causes scab disease in 

potatoes and other taproot crops like turnip and radish (Lawrence et al., 1990; King et al., 

1991; King et al., 1992; Loria et al., 1997). Scab disease has a major economic impact on 

worldwide potato production (Lambert and Loria, 1989; Loria et al., 2006). The 

pathogenicity of various S. scabies isolates is positively correlated to their ability to 

produce thaxtomin A (King et al., 1991; Loria et al., 1995; Goyer et al., 1998; Kinkel et al., 

1998), and thaxtomin A is responsible for the formation of scab-like lesions on the potato 

tuber, which are characteristic of the disease (King et al., 1991; Goyer et al., 1998; Kinkel 

et al., 1998). 

Thaxtomin A causes reduced seedling growth, dramatic cell swelling, and inhibition 

of cellulose synthesis in A. thaliana, even at nanomolar concentrations (Scheible et al., 

2003). The same group later discovered that thaxtomin A reduces crystalline cellulose and 

increases pectins and hemicellulose in the cell wall. Like the cellulose-synthase inhibitor 

isoxaben, thaxtomin A also changes the expression of genes involved in primary and 

secondary cellulose synthesis as well as genes associated with pectin metabolism and cell 

wall remodelling (Bischoff et al., 2009).  Defects in cell wall integrity and callose deposition 

have been shown to trigger defence responses in plants (Cano-Delgado et al., 2003; 

Hernández-Blanco et al., 2007). 

Hence, plants were treated with the cellulose synthesis inhibitor isoxaben, to 

determine whether thaxtomin A-induced FMO1 expression is a consequence of its action 

on the cell wall. Comparison of FMO1 expression in thaxtomin A-treated plants versus 

isoxaben-treated plants revealed that while isoxaben does lead to mild (10-fold) 

accumulation of FMO1 mRNA, thaxtomin A has a far more potent effect on FMO1 with a 

50-fold increase in expression (Fig. 17). Previous studies have also confirmed that 

thaxtomin A has a greater effect on defence gene expression, as compared to isoxaben 

(Bischoff et al., 2009). The concentration of isoxaben and thaxtomin A used for the 

treatment was comparable for their effect on cellulose synthesis inhibition (Desprez et al., 

2002; Scheible et al., 2003; Bischoff et al., 2009). Therefore, FMO1 expression is not 

merely a result of perturbations in the cell wall structure and integrity, but thaxtomin A 
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seems to have a role in plant defence signalling that is unique from the cellulose synthesis 

inhibitor isoxaben. 

Previous reports indicated that application of 200nM thaxtomin to A. thaliana 

seedlings for 48h can induce expression of the JA marker genes VSP1 and VSP2 (Bischoff 

et al., 2009). However, the thaxtomin A producing S. scabies did not alter JA-related gene 

expression in potato plants (Arseneault et al., 2014). Additionally, in my experiments, 

100nM thaxtomin A did not have a significant effect on expression of the JA-marker gene 

VSP1. Expression of the abscisic acid marker gene RAB18, and the auxin marker gene PIN1 

was also not enhanced (Fig. 16). Therefore, thaxtomin A seems to have a specific effect 

on activation of FMO1-related defence signalling. 

 

3.2.1 Structure-activity relationship of thaxtomin A bioactivity 

Thaxtomin A production by S. scabies is correlated to its pathogenicity on potato 

plants in scab disease development, and is responsible for development of necrotic scab-

like lesions on the potato tubers (King et al., 1991; Loria et al., 1995; Goyer et al., 1998; 

Kinkel et al., 1998). The 4-nitrotryptophan and phenylalanine groups in thaxtomin A were 

deemed important for its phytotoxicity (King et al., 1992). Glucosylation of thaxtomin A 

by Bacillus mycoides ameliorated its toxicity, and potato tuber necrosis was reduced by 

more than 80% (King et al., 2000). Glucosylation of thaxtomin A occurred at the C-14 

hydroxyl group, and not at the more reactive C-20 phenolic group, as might have been 

expected (King et al., 2000). Thaxtomin A (Fig. 3.1 A) also undergoes in vitro glucosylation 

in S. scabies to form thaxtomin A-di-glucoside (TAG) (Acuna et al., 2001). TAG (Fig. 3.1 B) 

fails to produce thaxtomin A-like necrosis symptoms on potato tubers. Inoculation of 

potato tubers with 14C-radiolabelled thaxtomin A revealed that scab-resistant potato 

cultivars have the ability to glucosylate thaxtomin A, while scab-susceptible cultivars do 

not. Thus, glucose conjugation is a method of thaxtomin A detoxification in potato plants 

and plays an important role in resistance to scab disease. 

Thaxtomin C (Fig. 3.1 C) is a precursor of thaxtomin A, and was also isolated from 

Streptomyces species (King et al., 1994). Thaxtomin C induces soil rot in sweet potatoes 

and causes necrosis in root tissue (Guan et al., 2012). It is structurally similar to thaxtomin 
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A, and the structural domains deemed important for bioactivity are intact (King et al., 

1992). Application of thaxtomin C to A. thaliana seedlings also significantly increases 

FMO1 expression, albeit to a lower extent than thaxtomin A. 

Identification of a direct target of a compound, and its mode of action, is the ultimate 

goal of a chemical biology approach. A popular technique to identify direct protein targets 

of a chemical is to attach an alkyne group to the chemical, which enables subsequent 

labelling of the protein-compound complex via the so-called ‘click-chemistry’ (Speers et 

al., 2003). Fluorescent labelling of a compound enables localisation of the compound and 

potentially of the compound-protein complex within an organism. Hence, thaxtomin A 

with an alkyne or a rhodamine label was applied to A. thaliana seedlings and FMO1 

expression was quantified. The labels were attached by substituting the phenolic –OH 

group, which was shown to be dispensable by the comparison of FMO1 expression 

between thaxtomin A, and thaxtomin C, which lacks the aforementioned –OH moiety. 

Rhodamine-labelled thaxtomin A, but not alkyne-labelled thaxtomin A, could significantly 

induce FMO1 (Fig. 15). This difference in activity between the two thaxtomin A derivatives 

could possibly be due to a difference in charge distribution. However, this data needs to 

be confirmed with freshly synthesised thaxtomin A derivatives before drawing 

conclusions. Microscopic analysis of treated A. thaliana seedlings indicated that 

rhodamine-labelled thaxtomin A could be easily taken up, because it was clearly 

detectable within the cells of all tissues (data not shown). 

 
 

Fig 31: Structure of thaxtomin A (A), thaxtomin A-di-glucoside (TAG) (B) (Acuna et al., 2001) and 

thaxtomin C (C) 
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3.2.2 Auxin inhibits thaxtomin A-induced FMO1 

Several greenhouse and field trials established that foliar treatment of potato plants 

with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) reduced common scab on 

the harvested tubers (McIntosh et al., 1982; McIntosh et al., 1985; McIntosh et al., 1988; 

Thompson et al., 2014). 2,4-D treatment reduced scab disease symptoms and the 

harvested potato tubers had decreased sensitivity to thaxtomin A, with a reduction in 

thaxtomin A-induced necrosis. In Arabidopsis thaliana, thaxtomin A–induced chlorosis 

and seedling death was also reduced by the 2,4-D treatment (Tegg et al., 2008). 

Monitoring of FMO1 expression after thaxtomin A treatment with or without 2,4-D, 

revealed that 2,4-D significantly inhibits thaxtomin A-induced FMO1 expression (Supp. Fig. 

1). This result is intriguing because it raises the question whether reduction in necrotic 

cell death due to 2,4-D application leads to inhibition of FMO1, or whether the reduced 

FMO1 expression causes inhibition of cell death and necrotic scabs. 

It is also possible that the reduced FMO1 expression is due to crosstalk between auxin 

and EDS1/PAD4 dependent signalling pathways. Overexpression of the FMO-like YUCCA 

genes leads to overproduction of auxin in several plant species (Zhao et al., 2001; Tobeña-

Santamaria et al., 2002; Expósito-Rodríguez et al., 2011; Liu et al., 2012). The YUCCA 

protein YUC6 has been implicated in auxin biosynthesis by converting indole-3-pyruvate 

(IPA) to indole-3-acetate (IAA) (Dai et al., 2013). Salicylic acid (SA) causes stabilization of 

the Aux/IAA repressor proteins due to global repression of auxin-related genes, including 

the gene encoding the TIR1 receptor. This inhibitory effect of SA on auxin responses is a 

part of the SA-mediated disease resistance mechanism (Wang et al., 2007). Application of 

100nM thaxtomin A reduced expression of the auxin marker gene PIN1 about three-fold. 

However, treatment with IAA increases EDS1 expression (Arabidopsis eFP Browser- 

Winter et al., 2007). This data raised intriguing questions about the involvement of auxin 

signalling in modification of FMO1 activity. However, they were beyond the scope of this 

project, and hence, were not addressed and explored further. 
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3.2.3 FMO1 expression in plants: at death’s door? 

One of the first studies on FMO1 dealt with its role in programmed cell death. FMO1 

was initially identified as a gene upregulated in the Arabidopsis thaliana acd11 mutant, 

which constitutively activates EDS1, PAD4 and SA-dependent PCD and defence (Olszak et 

al., 2006). FMO1 was also found to be expressed during developmental senescence, 

infection by avirulent and virulent bacteria, and in response to the cell-death inducing 

chemicals FB1 and rose bengal (RB) (Olszak et al., 2006). Although in all the above cases 

FMO1 expression occurred in the region of senescence/HR-like lesions, it does not resolve 

whether FMO1 expression has a role in cell death initiation or execution or whether it is 

a symptom of cell death. 

In the current study, several cell death inducers were also identified as activators of 

FMO1 expression in the activator screen. One rationale for this could be that the primary 

screening conditions were such that they cell death-inducers could be selected as putative 

hits, since cell death-induced auto-fluorescence overlapped with the targeted YFP signals. 

However, secondary screens eliminated these false hits and only compounds activating 

FMO1 expression were selected. These confirmed inducers of FMO1 expression such as 

thaxtomin A, merbromin and monensin sodium salt have also been linked to cell death 

induction (Puerner and Siegel, 1972; Gores et al., 1988; Duval et al., 2005). These results, 

therefore hint at underlying ties between cell death and FMO1 expression. 

Thaxtomin A has been reported to induce PCD in A. thaliana cell culture. The lowest 

concentration of thaxtomin A tested, 500nM, lead to a 25% cell death rate after 24h, as 

compared to a 12% cell death rate in the control at the same time point (Duval et al., 

2005). In the current study, A. thaliana seedlings were treated with a maximum 

concentration of 100nM thaxtomin A for 24h, which is 5-fold lower than that used by 

Duval et al (2005). Therefore, I hypothesise that there would only be a minor increase in 

PCD due to thaxtomin A treatment in this study. However, this needs to be confirmed with 

a cell death assay under my experimental conditions. 

One rationale behind identifying a chemical inducer of FMO1 was that it would help 

us dissect the complex interplay between FMO1 and cell death activation in plants and 

identify components mediating FMO1 expression. Induction of FMO1 by chemical 
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treatment would identify whether FMO1 alone could trigger plant cell death. However, 

none of the FMO1 activators identified in this study have been proven to act exclusively 

on FMO1 expression. Additionally, other studies have found them to be involved in cell 

death induction (Puerner and Siegel, 1972; Gores et al., 1988; Duval et al., 2005). Hence 

they cannot, at present, be used to investigate FMO1-cell death interactions. One way to 

resolve this question is to control FMO1 expression with an inducible promoter, such as 

promoters responsive to dexamethasone, ethanol, tetracycline, etc. (Schena et al., 1991; 

Moore et al., 2006). This would create a clean system wherein all parameters except 

FMO1 expression would be unchanged, which can then be used to monitor cell death 

induction as compared to that in a dexamethasone-treated wild-type plants. 

 

3.2.4 Positioning thaxtomin A activity within the signalling network 

Thaxtomin A was apparently not involved in early defence responses such as ROS 

production, MAPK activation, and intracellular calcium spiking (Fig. 11, 12, 13). Hence, it 

was hypothesised that thaxtomin A acts on defence gene transcription without the 

involvement of the aforementioned signalling cascades. Previous reports suggest that 

thaxtomin A can induce defence responses in A. thaliana (Errakhi et al., 2008; Bischoff et 

al., 2009; Duval and Beaudoin, 2009). Multiple studies on this subject produced conflicting 

results (Duval et al., 2005; Errakhi et al., 2008; Bischoff et al., 2009). Thaxtomin A was 

found to increase expression of the SA-marker gene PR1 (Bischoff et al., 2009), whereas 

other studies (Duval et al., 2005; Errakhi et al., 2008) found no evidence of thaxtomin A-

induced increase in PR1 expression. In the current work, Thaxtomin A (100nM) was found 

to strongly activate (140-fold) PR1 expression (Fig. 19). Application of the thaxtomin A-

producing S. scabies to potato plants was also proven to upregulate expression of the SA-

related genes PR-1b, PR-2 and PR-5 (Arseneault et al., 2014). Duval et al(2005) and Errakhi 

et al(2008) had used 2µM and 10µM thaxtomin A respectively, for their experiments, 

which is 20-100 times more concentrated than the thaxtomin A used in this study. Thus, 

thaxtomin A-induced PR1 expression could be concentration dependent. 2µM and 10µM 

thaxtomin A were also found to produce 40-50% cell death in A. thaliana cell culture 
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(Duval et al., 2005), and this could also contribute to the lack of PR1 induction by 

thaxtomin A. 

Several independent studies have established that during local defence responses in 

plants, FMO1 expression is independent of SA production and signalling (Bartsch et al., 

2006; Gruner et al., 2013; Koch et al., 2006; Mishina & Zeier, 2006; Olszak et al., 2006). 

Thaxtomin A-induced FMO1 was proven to be independent from SA signalling by 

monitoring expression in the A. thaliana salicylic acid deficient2 (sid2) mutant seedlings. 

Pathogen-induced FMO1 expression does not trigger SA accumulation in basal defence, 

but is crucial for SA production and signalling in systemic tissue during SAR (Bartsch et al., 

2006; Mishina and Zeier, 2006). Thaxtomin A triggered a 4-5-fold increase in free and total 

SA levels in wild-type Arabidopsis thaliana. This also corresponds to the increase in 

expression of the SA-marker gene PR1 after thaxtomin A application. 

Since pipecolic acid (Pip) has been shown to be an important defence signal leading 

to FMO1 activation during SAR (Navarova et al., 2012), I measured Pip levels by gas 

chromatography-mass spectrometry (GC/MS) in activator-treated plants. However, there 

was no obvious change in the Pip content of the treated plants as compared to the control 

plants. This data corresponds to the wild type-like thaxtomin A-induced increase in FMO1 

expression in the A. thaliana ald1 mutant, which is defective in Pip accumulation. Thus, 

thaxtomin A treatment does not trigger Pip production in plants, and thaxtomin A-induced 

FMO1 upregulation is not dependent on ALD1. However, thaxtomin A treatment leads to 

an increase in PAD4 expression, and P. syringae-induced ALD1 expression and Pip 

production in systemic tissues is dependent on PAD4 (Mishina and Zeier, 2006). Thus, the 

increase in ALD1 expression after thaxtomin A treatment can be linked to enhanced PAD4 

activity in the treated plants. 

Pathogen-induced FMO1 expression is controlled by EDS1 and PAD4 (Bartsch et al., 

2006). Notably, thaxtomin A-induced FMO1 is also completely dependent on EDS1 and 

PAD4, but independent of SAG101 (Fig. 18). EDS1 is known to form structurally similar 

heterodimers with PAD4 and SAG101, leading to downstream defence signalling cascades 

(Wagner et al., 2013). However, if both the heterodimers use similar or different pathways 

is currently unknown. In the case of thaxtomin A treatment, the EDS1-PAD4 heterodimer, 

but not the EDS1-SAG101 heterodimer, might be crucial for FMO1 activity. Hence, the 
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dimers formed between EDS1 and its interaction partners PAD4 and SAG101 may have 

distinct roles in plant defence signalling. Thaxtomin A can thus be a useful tool to 

functionally investigate the dimers formed between EDS1 and its interaction partners, 

PAD4 and SAG101. 

EDS1 and PAD4, amongst other genes, are significantly upregulated in response to 

thaxtomin A (Fig. 19). This shifted the focus of thaxtomin A activity to a potential target 

upstream of FMO1, and it gave rise to the hypothesis that thaxtomin A targets the 

signalling pathway upstream of, or directly at EDS1-PAD4. This makes thaxtomin A a 

potential tool to probe the dynamics of the EDS1-PAD4 signalling mechanism. Additional 

analyses with mutants in EDS1 and PAD4 revealed that thaxtomin A-induced PAD4 

expression is partially EDS1-independent (Fig. 20). However, EDS1 cannot be upregulated 

by thaxtomin A in the absence of PAD4. Therefore, thaxtomin A actively drives PAD4 

expression. The enhanced EDS1 expression in A. thaliana wild-type seedlings upon 

thaxtomin A treatment might be due to a feedback mechanism of PAD4-controlled 

defence signalling. In the A. thaliana eds1L262P mutant, the interaction between EDS1 and 

PAD4 is impaired and formation of an EDS1-PAD4 protein heterodimer is prevented, while 

interaction with SAG101 is retained. Surprisingly, thaxtomin A treatment significantly 

enhanced FMO1 expression in the A. thaliana eds1L262P mutants (Fig. 21). This observation 

indicates that PAD4 may act independently of EDS1 to drive FMO1 expression, similar to 

previous reports describing the independence of PAD4 from EDS1 in certain defence 

processes (Pegadaraju et al., 2007; Rietz et al., 2011; Louis et al., 2012).  However, the 

presence of both, EDS1 and PAD4, is essential for maximum possible upregulation of 

FMO1 expression by thaxtomin A. 

 

3.3 Merbromin and monensin sodium salt induce FMO1 expression 

Two additional chemicals, merbromin and monensin sodium salt, were also identified 

as activators of FMO1 expression during the library screening. Merbromin is produced and 

used globally as an antiseptic under the trademark ‘mercurochrome’. It is a xanthene dye 

and acts as a photosensitizer for the generation of singlet oxygen (Gollnick et al., 1992; 
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Martínez et al., 1993). Interestingly, another xanthene dye, rose bengal (RB), has also 

been proven to upregulate FMO1 in A. thaliana. Shikimate dehydrogenase is a conserved 

and essential enzyme in plants, fungi, and bacteria, and hence, is an attractive target for 

herbicides and antimicrobial agents. A recent study discovered that merbromin is an 

inhibitor of the shikimate dehydrogenase enzyme from the bacterium, Pseudomonas 

putida (Peek et al., 2014).  

The third chemical activator of FMO1 expression, monensin sodium salt, is derived 

from Streptomyces cinnamonensis (Westley, 1982) and is a monovalent cation ionophore 

which facilitates the exchange of Na+, K+ and protons across membranes and thus affects 

the acidification of cellular compartments (Pressman and Fahim, 1982). It has been used 

extensively to analyse the function of the Golgi apparatus in a variety of animal and plant 

systems. Ultrastructure studies indicate that monensin causes accumulation of Golgi-

derived swollen vesicles in the cytoplasm of treated plant cells (Morré et al., 1983; 

Mollenhauer et al., 1988; Zhang et al., 1993). 

However, there has not been any substantial research into the interactions between 

plants and merbromin and monensin sodium salt in the past decade. To my knowledge, 

this is the first report about the involvement of merbromin and monensin sodium salt in 

plant defence signalling. 

Merbromin and monensin sodium salt were found to activate FMO1 expression in a 

chemical screen for activators of FMO1-YFP. Both chemicals showed a concentration 

dependent effect on FMO1 expression. The EC50 value was calculated to be 1µM for 

monensin sodium salt and 10µM for merbromin. Interestingly, monensin sodium salt 

drastically affects growth and germination at concentrations exceeding EC50 value (1µM), 

and growth of A. thaliana seedlings was completely blocked at 10µM. This inhibition could 

be linked to cytotoxic effects of the induced FMO1-expression in these seedlings (Olszak 

et al., 2006). Likewise, 10µM monensin was also shown to inhibit the germination and 

growth of ryegrass seedlings (Mollenhauer et al., 1986). Merbromin, in a concentration 

dependent manner, also impaired germination and growth of A. thaliana seedlings, and 

was previously shown to inhibit growth of cucumber seedlings (Puerner and Siegel, 1972). 

In the current experiments, seedlings grew normally in 1µM merbromin, but at higher 

concentrations, growth was inhibited, and germination and growth were completely 
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blocked at 100µM merbromin. Thus, the growth of A. thaliana seedlings is repressed at a 

chemical concentration proven to induce strong FMO1 expression. 

Reactive oxygen species (ROS) are signalling molecules that accumulate rapidly in 

response to pathogen infection. The superoxide producer RB has previously been found 

to induce FMO1 expression (Olszak et al., 2006). Prolonged activation of MAPK signalling 

cascades has also been shown to upregulate FMO1 (Tsuda et al., 2013). Hence, I tested 

ROS production and MAPK activation in seedlings after merbromin and monensin sodium 

salt application. Like in the case of thaxtomin A, merbromin did not activate MAPK and 

ROS production (Fig. 24, 25), and thus, these processes do not mediate merbromin-

induced FMO1 expression. However, monensin sodium salt had no effect on ROS 

production, but induced accumulation of phosphorylated MPK6 and MPK3. Thus, 

monensin sodium salt-induced MAPK activation could possibly mediate enhanced 

expression of FMO1 in A. thaliana seedlings. 

Evaluation of the specificity of merbromin and monensin sodium salt activity on 

EDS1/PAD4 dependent signalling revealed that while both chemicals strongly induced  

FMO1 expression (>100-fold), they have a negligible effect on the JA-marker gene VSP1 

and the abscisic acid marker gene RAB18 (<5-fold). Previous experiments in our laboratory 

indicate that merbromin and monensin sodium salt act as inhibitors of JA signalling, while 

they have no effect on intracellular calcium signalling (Christian Meesters, Mohamed 

Suliman and Jens Maintz; personal communication). Inhibition of JA-mediated processes 

by an activator of EDS1/PAD4-dependent signalling is possible due to the antagonistic 

nature of SA and JA signalling pathways (Spoel et al., 2003; Koornneef and Pieterse, 2008). 

Since Pip was deemed to be an important signal in SAR reactions, responsible for 

triggering FMO1 expression (Návarová et al., 2012), I also analysed the amino acid content 

of merbromin and monensin sodium salt treated plants. However, there was no effect of 

the chemical treatment on the levels of defence-inducible amino acids such as Pip and α-

aminoadipic acid (Fig. 27). Thus, induced expression of FMO1 by selected chemical 

activators is not mediated by perturbations of amino acid content of the plants. 

The effect of chemical treatment on genes known to be involved in the EDS1/PAD4 

pathway was analysed to identify the potential target site/location of chemical activity 
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within the signalling pathway. Both monensin sodium salt and merbromin significantly 

upregulated expression of EDS1, and its signalling partners, PAD4 and SAG101. The activity 

of genes known to be dependent on EDS1/PAD4 such as ICS1, ALD1 and PBS3 was also 

significantly enhanced (Fig. 28). Thus, both these chemicals act upstream of FMO1 and 

drive its expression. Application of monensin sodium salt increased FMO1 expression in 

the SA-defective A. thaliana mutants, sid2 and sid2/npr1 (Fig. 30A). This provides 

additional proof for previously published reports about the SA-independence of FMO1 

expression (Bartsch et al., 2006; Gruner et al., 2013; Koch et al., 2006; Mishina & Zeier, 

2006; Olszak et al., 2006). However, treatment of other signalling mutants with monensin 

did not modulate FMO1 expression. Merbromin treatment of mutant and wild-type A. 

thaliana seedlings revealed that merbromin-induced FMO1 expression is independent of 

ICS1 and ALD1, and is partially dependent on EDS1 (Fig. 30B). Therefore, I unfortunately 

cannot draw any conclusions about the dependence of merbromin and monensin sodium 

salt-induced FMO1 expression on other genes in the EDS1/PAD4 pathway. 

Pathogen-induced FMO1 expression is crucial for SA production and signalling in 

systemic tissue during SAR (Mishina & Zeier, 2006). Monensin sodium salt also promotes 

SA accumulation and leads to a 4-5-fold increase in free and total SA levels in treated 

plants. This also corresponds to the increase in expression of the SA synthesis gene ICS1, 

and the SA-marker gene PR1 in monensin sodium salt-treated plants. Monensin sodium 

salt was found to be a mild inhibitor of PR1 in a screen for PR1-GUS inhibitors (Vivek 

Halder; personal communication). However, that data was only semi-quantitative, and 

the current study has proved on several fronts that monensin sodium salt is involved in 

upregulating SA signalling. Merbromin, on the other hand, has quite an intriguing role in 

SA signalling. It can significantly upregulate expression of the SA-biosynthesis gene ICS1, 

but not of the SA-marker gene PR1 (Fig. 28B). There was also no increase in free and total 

SA content of the plant after treatment with merbromin (Fig. 29B). Hence, merbromin 

could activate expression of all genes in the EDS1/PAD4 pathway, but potentially block 

signalling downstream of ICS1, causing a lack of increase in SA accumulation and SA-

dependent signalling.  
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Thus, merbromin and monensin sodium salt have been proven to be chemical 

inducers of the EDS1/PAD4 defence signalling pathway, and can be used as tools to 

analyse the activity of genes in this pathway. 

 

3.4 Concluding Remarks 

I established and performed a chemical screen for activators and inhibitors of FMO1 

expression. The primary screen and stringent secondary screening yielded five chemicals 

significantly increasing FMO1 expression. Three candidate compounds, namely, 

thaxtomin A, merbromin and monensin sodium salt, were selected for additional 

analyses. All three candidate compounds did not enhance expression of marker genes of 

other major plant signalling pathways, and are selective activators of EDS1/PAD4 

dependent signalling. Merbromin is a strong activator of EDS1-dependent gene 

expression, but possibly blocks signalling downstream of ICS1. Monensin sodium salt 

triggers MAPK activation, which could play a role in upregulation of FMO1 expression in 

monensin sodium salt-treated A. thaliana seedlings. Thaxtomin A is a potent activator of 

FMO1 expression, and selectively acts on PAD4 expression, thus driving defence signalling 

downstream of EDS1/PAD4. Interesting parallels can be drawn between pathogen- and 

chemical-induction of EDS1/PAD4 dependent defence responses in plants. Thaxtomin A 

treatment could potentially mimic pathogen infection in plants, thus triggering significant 

transcriptional changes in defence gene expression. However, all the experiments in this 

study used A. thaliana seedlings in liquid culture enhanced with activator chemicals. 

Additional experiments are needed to determine whether application of thaxtomin A on 

soil-grown A. thaliana plants can trigger similar defence responses. If soil-grown plants 

respond to thaxtomin A treatment in in a similar manner to the seedlings, further 

experiments can be developed to test microbial interactions with thaxtomin A-treated 

plants. A potential decrease in pathogen activity and disease symptoms after infection of 

thaxtomin A-treated plants would be proof of the biological role of thaxtomin A in plant 

immunity.  
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Overall, the screen was successful in its main goal of identifying chemical modulators 

of FMO1 expression. These candidate chemicals can be useful tools for dissection of 

FMO1-related defence responses, for identification of new components involved in 

modulation of EDS1-dependent, SA-independent signalling. 
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5 Materials & methods 

5.1 Materials 

5.1.1 Plant materials 

Arabidopsis thaliana ecotype, mutant lines and transgenic lines used in this study are 

listed in Table 5.1, 5.2 and 5.3. 

Table 5.1: Wild type Arabidopsis lines used in this study 

Accession  Abbreviation  Original Source 

Columbia  Col-0 J. Dangla 

aUniversity of North Carolina, Chapel Hill, NC, USA 

Table 5.2: Mutant Arabidopsis lines used in this study 

Mutant allele Accession Reference/Source 

eds1-2 Col-0/ Ler0a Bartsch et al., 2006 

pad4-1 Col-0 Glazebrook et al., 1996 

ald1 Col-0 Návarová et al., 2012 

sid2-1 Col-0 Wildermuth et al., 2001 

sag101-1 Col-0 Feys et al., 2005 

pad4-1/sag101-1 Col-0 Feys et al., 2005 

a Ler eds1-2 allele introgressed into Col-0 genetic background, 8th backcross generation 

 
 

Table 5.3: Transgenic Arabidopsis lines used in this study 

Line   Construct  Reference/Source 

FMO1-YFP  pFMO1::FMO1-YFP Michael Bartscha 

FMO1-GUS  pFMO1::GUS Olszak et al., 2006 

EDS1L262P  HA:eds1L262P Rietz et al., 2011 

aMax Planck Institute for Plant Breeding Research, Cologne, Germany 

 



84 
 

5.1.2 Chemicals 

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich 

(Deisenhofen, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), 

InvitrogenTM (Karlsruhe, Germany), Bio-Rad (Hercules, USA), SYNCHEM OHG 

(Felsberg/Altenburg, Germany). 

The following chemical libraries were used: 

- Hand-selected libraries (204 compounds, 10mM) 

- Prestwick chemical library (1,280 compounds, 10 mM) (Prestwick Chemical, Illkirch, 

France) 

- Kinase inhibitor library (84 compounds, 2 mM) (Biomol GmbH, Hamburg, Germany) 

 

5.1.3 Media 

Media were sterilized by autoclaving for 20 min at 121◦C. Before addition of heat labile 

compounds the media or solutions were cooled to approx. 60°C. 

MS medium: 1/2× Murashige and Skoog Basal Salt Mixture (Sigma-Aldrich) 

0.5% (w/v) Sucrose 

4 g/L Phytagel (Sigma-Aldrich) for solid medium 

pH 5.8 

 

5.1.4 Buffers and solutions 

Buffers were sterilized by autoclaving for 20 min at 121°C if needed sterile. Before 

addition of heat labile compounds, the media were cooled to approx. 60°C. Stock 

solutions of compounds for plant treatment were dissolved in DMSO at 10 mM 

concentration, if not stated otherwise. 
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5.2 Methods 

5.2.1 Maintenance and cultivation of Arabidopsis plants 

Arabidopsis thaliana seeds were germinated by directly sowing them on moist 

compost (Stender AG, Schermbeck, Germany) supplemented with Wuxal fertilizer 

(Nitzsch; Kreuztal, Germany). Pots were transferred to a controlled environment growth 

chamber, covered with a propagator lid (10 hour photoperiod, light intensity of 

approximately 200 μEinsteins/m/sec, 23◦C day, 22◦C night and 65% humidity). Propagator 

lids were removed when seeds had germinated. To allow early bolting and setting of 

seeds, 4 week old plants were transferred to long day conditions (16 hour photoperiod). 

Seeds were collected by enveloping aerial tissue with a sealed paper bag until siliques 

were shattered.  

 

5.2.2 Chemical treatment of Arabidopsis plants 

Arabidopsis thaliana seeds were sown in liquid medium, vernalised for 2 nights at 

4°C and then transferred to a controlled environment growth chamber with 12h 

photoperiod. The seedlings were treated with different chemicals as indicated in micro 

well plates. Double treatments were performed such as that the compound of interest 

was incubated 1 h before stimulus with fumonisin B1.  

5.2.3 Confocal laser scanning microscopy (CLSM) 

Detailed analysis of intracellular fluorescence war performed by confocal laser 

scanning microscopy using a Leica TCS SPS AOBS (Leica, Wetzlar, Germany) based Axiovert 

microscope equipped with an Argon ion laser as an excitation source. YFP tagged proteins 

were excited by a 514 nm laser line. YFP fluorescence was selectively detected by using 

an HFT 514 dichroic mirror and BP 535-590 band pass emission filter. Images were 

analyzed with Leica Lite software. 
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5.2.4 Biochemical methods 

5.2.4.1 Isolation of total protein extract from Arabidopsis 

Proteins from 1 Arabidopsis seedling were extracted by grinding frozen material and 

subsequent addition of 80 μL protein extraction buffer (50 mM Tris-HCl pH 7.5, 150 mM 

NaCl, 1 mM EDTA, 10mM NaF, 25 mM _-Glycerophosphate, 2 mM Na3VO4, 10% (v/v) 

Glycerol, 0.1% (v/v) Tween 20, 1 mM DTT (added fresh from 100 mM stock solution), 1 

mM PMSF (added fresh from 200 mM stock solution in ethanol)). 

The lysate was mixed thoroughly and chilled on ice. Cell debris was spun down by 

centrifugation at 4◦C for 1 min at 15,000 g. The supernatant was transferred to a fresh 

tube. Protein amounts were determined using the method of Bradford (1976) with the 

Bio-Rad Protein Assay (Bio-Rad Munchen, Germany) and BSA solutions between 0 and 1.6 

mg/ml as internal standard. 

 

5.2.4.2 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples boiled for 5 min in Laemmli Sample Buffer (Bio-Rad, Munchen, 

Germany) were subjected to SDS-PAGE on a gel containing 12% polyacrylamide. The 

whole amount of proteins was visualized by coomassie blue R250 (Thermo Scientific, 

Rockford, USA).  

 

5.2.4.3 Immunublot analysis 

On a SDS-PAGE separated proteins were electroblotted onto a Hybond ECL 

nitrocellulose membrane (Amersham, GE Healthcare) in Towbin buffer (25 mM Tris, 195 

mM Glycin, 20% (v/v) methanol). To monitor protein transfer and loading, the membrane 

was stained with 0.1% Ponceau S (Sigma-Aldrich) in 5% (v/v) acetic acid, followed by 

extensive washes in water. The membrane was blocked for at least 1 hour with milk 

powder in TBST (10 mM Tris, 1.5 mM NaCl, pH 7.5, 0.05% (v/v) Tween20). The α-Phospho-

p44/42 MAPK (Erk1/2) (Thr202/Tyr204), Cell Signaling Technology / New England Biolabs 

GmbH, Frankfurt am Main, Germany) has been used already for detection of Arabidopsis 

MPK3, MPK4 and MPK6 (Ranf et al., 2011). The α-GFP mouse monoclonal antibody 

(Roche, Mannheim, Germany) was used for detection of FMO1-YFP. The primary antibody 
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was diluted 1:5000 (α-Phospho-p44/42) or 1:2000 (α-GFP ) in TBST and hybridized with 

the membrane over night at 4◦C. After washing the membrane 3 times in TBST, the second 

anti-body (α-rabbit-HRP, Amersham, GE Healthcare) or goat anti-mouse IgG-HRP (Santa 

Cruz Biotechnology, USA) was hybridized (1:5000 in TBST) with the membrane. After 1 

hour incubation with 3 subsequent washing steps, the secondary antibody was detected 

using the Pierce ECL Western Blotting Substrate (Thermo Scientific, Rockford, USA) and 

Kodak biomax light autoradiographic film (Sigma-Aldrich). 

 

5.2.4.4 Salicylic acid measurement 

SA measurements was obtained of leaf material (100 to 200 mg fresh weight) 

according to Straus et al. (2010), using a chloroform/methanol extraction and analyzed by 

gas chromatography coupled to a mass spectrometer (GC-MS, Agilent, Santa Clare, USA). 

 

5.2.5 Molecular biological methods 

5.2.5.1 Isolation of total RNA from Arabidopsis 

Total RNA was extracted from 2 week old plant material. Liquid nitrogen frozen 

samples (approximately 20 mg) were homogenized using a bead shaker in 1.5 ml 

centrifuge tubes. Further processing was performed using the RNeasy Plant Mini Kit 

(QIAGEN, Hilden, Germany) and the Bio-Budget Plant RNA kit following the 

manufacturer’s instructions. The RNA was eluted with 20 µl RNase-free water. 

 

5.2.5.2 cDNA synthesis 

Synthesis of cDNA was performed using SuperScriptTMII Reverse Transcriptase (RT) 

(Invitrogen) following the suppliers instructions. Briefly, 1 μl Oligo(dT) primers, 1 µg RNA 

and 1 μl dNTP Mix was incubated for 5 min at 65◦C. 1× Reaction buffer, 10 μM DTT and 1 

µl RT were added to the samples. The synthesis was performed over 60 min at 42°C, with 

heat inactivation of the enzyme for 15 min at 70°C. 
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5.2.5.3 Quantitative real-time PCR (qRT-PCR) 

Transcript analysis in time course experiments and before microarray hybridization 

were performed by qRT-PCR. cDNA corresponding to 500 ng RNA from three biological 

replicates was diluted 1:20 before continuing the protocol. SYBR green assays were 

developed using iQ™SYBR®Green Supermix (Bio-Rad, Hercules, USA) with gene-specific 

primers and an adapted protocol. The reaction set up was adjusted to a total volume of 

25 μl with 12.5 μL iQ SYBR® Green Supermix, 0.1 μl of each primer (100 μM), 2.3 µl of 

distilled water and 10 μl diluted cDNA template. PCR was performed on a ‘iQ5 multicolor 

real-time PCR detection system’ (Bio-Rad). Expressions were calculated using the CT 

method (Schmittgen and Livak, 2008). To simplify data interpretation, expression levels in 

DMSO treated control were fixed to 1 and relative values were calculated. The gene of an 

expressed protein (At4g26410) served as internal control. This was previously proposed 

as reference gene (Czechowski et al., 2005) and RefGenes analysis (Hruz et al., 2011) 

revealed this gene to be the most stable expressed gene in A. thaliana seedlings.   

 

qRT-PCR program: 

Step Temperature Time  Cycles 

Initial denaturing 95°C 2 min  

Denaturing 

Annealing 

Elongation 

95°C 

55°C 

72°C 

20 sec 

30 sec 

25 sec 

 

           40X 

Denaturing 95°C 1 min  

Melting curve 55-95°C 1 min Gradual step-wise increase 

of temperature by 0.5°C 

per step 

 

The following primers (listed as 5’-3’) have been used: 

- FMO1-qRT-fw: GTTCGTGGTTGTGTGTACCG 

- FMO1-qRT-rw: TGTGCAAGCTTTTCCTCCTT 



89 
 

- EDS1-qRT-fw: CGAAGACACAGGGCCGTA 

- EDS1-qRT-rw: AAGCATGATCCGCACTCG 

- PAD4-qRT-fw: GGTTCTGTTCGTCTGATGTTT 

- PAD4-qRT-rw: GTTCCTCGGTGTTTTGAGTT 

- SAG101-qRT-fw: CATTCCTCTGCTCCGAGAAC 

- SAG101-qRT-rw: CGTTTTAACGTCGGTTCGAT 

- PR1-qRT-fw: TTCTTCCCTCGAAAGCTCAA 

- PR1-qRT-rw: AAGGCCCACCAGAGTGTATG 

- ALD1-qRT-fw: ACTTGGTGGCAGCACAAAAC 

- ALD1-qRT-rw: ATCACCAGTCCCAAGGCTTATC 

- ICS1-qRT-fw: TTCTGGGCTCAAACACTAAAAC 

- ICS1-qRT-rw: GGCGTCTTGAAATCTCCATC 

- PBS3-qRT-fw: ACACCAGCCCTGATGAAGTC 

- PBS3-qRT-rw: CCCAAGTCTGTGACCCAGTT 

- VSP1-qRT-fw: TCATACTCAAGCCAAACGG 

- VSP1-qRT-rw: ATCCTCAACCAAATCAGC 

-PIN1-qRT-fw: ACA AAA CGA CGC AGG CTA AG 

-PIN1-qRT-rw: AGC TGG CAT TTC AAT GTT CC 

-RAB18-qRT-fw: ATCCAGCAGCAGTATGACGA 

-RAB18-qRT-rw: CCAGTTCCGTATCCTCCTCC 

- Expr-qRT-fw: GAGCTGAAGTGGCTTCCATGAC 

- Expr-qRT-rw: GGTCCGACATACCCATGATCC 
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5.2.6 Reporter assays 

5.2.6.1 Quantitative GUS assay 

For quantitative GUS analysis, two to four Arabidopsis seeds were germinated in 

each well of a 48-well microplate and grown in MS medium. Chemical treatment was 

performed at the indicated concentration and incubated for five to 24 hours as indicated. 

Seedling extracts were prepared and fluorimetric GUS activities relative to protein 

concentration were determined as described by Kienow et al. (2008). Briefly, seedlings 

were frozen in liquid nitrogen and homogenized in 100 μL Lysis-buffer (50 mM Na(PO4), 

1 mM EDTA, 0.1% (v/v) Triton X-100, 10 mM _-mercaptoethanol (fresh), pH 7.0). Debris 

was spun down at 15,000 g and the supernatant was transferred to a fresh tube. To 50 μL 

sample were added 50 μL of MUG-substrate (2 mM 4-methylumbelliferyl-_- D-glucoronid 

in lysis buffer). These samples were incubated at 37◦C and aliquots were taken after 0, 30 

and 60 minutes. The reaction was stopped by an excess of 0.2 M Na(CO)3 and 

fluorescence was measured in a fluorimeter. The GUS activity was calculated in relation 

to a internal standard and normalized to the protein concentration. Latter was 

determined using the method of Bradford (1976) with the Bio-Rad Protein Assay (Bio-Rad 

Munchen, Germany) and BSA solutions between 0 and 1.6 mg/ml as standard. 

 

5.2.7 Chemical screen 

Chemical screens were performed using the transgenic Arabidopsis 

FMO1p::FMO1:YFP reporter line. Arabidopsis seedlings were grown in hydroponic culture 

under sterile conditions directly in 96-well microplates. Each well contained one seedling 

in 160 μl ½ MS medium. 17 day old seedlings were treated for the activator screen in 

duplicate or triplicate with chemicals in ½ MS medium (10 μM: Kinase inhibitor library and 

Prestwick library; 10-20 μM: Hand-selected library). 10μM FB1 was added as a positive 

control, and DMSO served as a negative control. The seedlings were pre-treated with the 

chemicals for 1 h before adding 10µM FB1 for the inhibitor screen. 6 days after chemical 

treatment the semi quantitative fluorescence measurement assay was performed using a 

fluorometer. Fluorescence values were measured thrice per well and averaged for 
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analysis. Each screening plate had alternating positive and negative controls on the 

columns at the left and right edges.  

 

5.2.8 Monitoring the oxidative burst 

Oxidative burst analysis assay in Arabidopsis seedlings was adapted from a 

previously published protocol (Mersmann et. al., 2010). The assay measures active oxygen 

species released by seedlings by H2O2 dependent luminescence of luminol (Keppler et 

al.,1989). Briefly, Arabidopsis thaliana seedlings were grown in ½ MS media in 96-well 

microplates for 2 weeks. The seedlings were washed with 300 μL H2O and then relaxed in 

98 µl H2O under light for 2 hours. The chemicals to be tested were added to the seedlings, 

immediately prior to triggering the reaction with flg22. This was performed automatically 

in a luminometer by injecting 100 μl of a solution containing flg22 (2 μM), luminol (400 

μM) and horseradish peroxidase (0.02 mg/ml, Sigma-Aldrich, P6782). Luminescence from 

each single well was detected for 2 seconds and each well was measured every 2 minutes. 

Luminescence was measured in 31 cycles over a total period of 72 minutes. Each 

experiment contained 12 biological replicates. 

 

5.2.9 Probe synthesis 

Synthesis of molecular probes containing a rhodamine and an alkyne tag attached 

to thaxtomin A was performed by the group of Prof. Markus Kaiser (ZMB, Universiat 

Duisburg Essen). 
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Supplementary data 

 

Supplementary figure 1: Effect of thaxtomin A treatment, with or without 2,4-D, on FMO1 

expression. 13 day old Arabidopsis thaliana Col-0 seedlings were treated with 1% DMSO+1% 

ethanol and 100nM thaxtomin A+ 1% ethanol, 100nM 2,4-D or 200nM 2,4-D for 24h. FMO1 

expression in treated seedlings, relative to that in DMSO and ethanol (mock) treated seedlings is 

depicted as an average of 3 biological replicates ± standard deviation. Asterisks indicate significant 

differences compared to the mock treated thaxtomin A sample (Student’s t-test **p<0.01). 
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