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Abstract

The center of our Galaxy, the Milky Way, conceals one of the most fascinating astrophysi-
cal phenomena of the universe. Located approximately 28000 light-years away from our
Solar system in the constellation Sagittarius close to the border to Scorpius, it harbors
a bright radio source, Sagittarius A* (Sgr A*). It is nowadays strongly believed, that
Sgr A* is the radiative counterpart of a Supermassive Black Hole (SMBH) with a mass of
approximately four million solar masses. Astrophysicists have strong evidence that most
regular galaxies contain a SMBH in their center. Due to its proximity, Sgr A* provides
us with an unique opportunity to study such an object with the highest obtainable
resolution. Investigating Sgr A* may thus not only help us to understand the physical
processes in the heart of our Galaxy but might also be a blueprint for a more general
understanding of galactic nuclei.

Sgr A* has been first detected as a steady radio source. Ongoing observations at
different wavebands with increasing resolution and sensitivity have revealed that on
top of the steady, so-called quiescent emission, Sgr A* shows radiation outbursts, also
referred to as flares, across the entire frequency regime. It has been found that these
flares must have their origin in the innermost accretion flow onto Sgr A*. Therefore,
their investigation and understanding might be crucial to shed light on the physical
conditions in the direct vicinity of a SMBH.

The concrete physical mechanisms in the accretion flow onto Sgr A* giving rise to
the flares are not yet fully understood. Although most models include some form of
synchrotron emission to explain the occurring flares from the radio to the NIR regime,
the mechanisms behind X-ray flares are highly disputed. Mainly two concurrent models
are currently debated: high energy synchrotron, or synchrotron self-Compton (SSC)
emission. Both possible explanations differ significantly in terms of the predicted
electron energies and plasma densities. In this thesis I present three papers (two of
them already published, the last one to be submitted) which statistically elaborate on
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ii ABSTRACT

the putative emission mechanism.

In the first paper, I present both submillimeter (submm) data obtained with the LArge
BOlometer CAmera (LABOCA), which was mounted at the Atacama Pathfinder EXpe-
riment (APEX) telescope, and radio data from the Australia Telescope Compact Array
(ATCA). I analyze the flux density distribution of these lightcurves and find that both
distributions can be described by power-laws with similar scaling indices. An almost
identical scaling index has previously been found by another group for the near-infrared
(NIR) emission. This strongly suggests that the flaring emission at these three wavebands
originate in the very same source regions. That finding is furthermore compatible with
a physical model of adiabatically expanding, self-absorbed synchrotron plasmons.

In the second paper, I investigate X-ray data from the Chandra X-ray Observatory
(CXO) obtained during the X-ray Visionary Project (XVP) campaign. Here, the analytical
challenge is that X-ray lightcurves are subject to instrumental pile-up phenomena and
low count rate Poisson statistics. I present a count rate distribution fitting routine, which
is based on Approximate Bayesian Computation (ABC). Having developed this fitting
routine I am able to describe the X-ray count rate distribution as a power-law with an
exponential cutoff and estimate its parameters. Using analytical considerations, I deduce
that the X-ray flares are most likely produced by an SSC mechanism.

In the third paper, I again present and analyze APEX/LABOCA submm data. Our
workgroup conducted new observations in 2016 and 2017. I compare this data with
the already published data from the first paper. I find that the statistical description
of both datasets is very similar, i.e., that the flaring mechanism was stationary at least
between 2008 and 2017. This is particularly interesting as an object called G2/DSO had
its closest approach to Sgr A* in spring 2014. It has been speculated whether this flyby
might lead to an increased accretion rate onto Sgr A* and therefore to increased flaring
activity. I am able to rule out such an increase at least up to 2017.

Altogether, my statistical analyses reveal, that the observed lightcurves of Sgr A* at
different wavebands are fully compatible with the following emission model: adiaba-
tically expanding synchrotron blobs are the origin of the observed radio to NIR flares.
The X-ray flares are most probably produced by an SSC mechanism.



Zusammenfassung

Das Zentrum unserer Galaxie, der Milchstraße, birgt eines der faszinierendsten astrophy-
sikalischen Phänomene des Universums. Etwa 28000 Lichtjahre von unserem Sonnensy-
stem entfernt, im Sternbild Schütze an der Grenze zum Skorpion liegend, beinhaltet
es eine helle Radioquelle, Sagittarius A* (Sgr A*). Es wird heutzutage stark davon
ausgegangen, dass Sgr A* der radiative Gegenpart eines supermassiven Schwarzen
Loches (englisch: Supermassive Black Hole, SMBH) mit einer Masse von ungefähr
vier Millionen Sonnenmassen ist. Astrophysiker haben starke Belege dafür, dass die
meisten regulären Galaxien ein SMBH in ihrem Zentrum besitzen. Aufgrund seiner
Nähe bietet uns Sgr A* die einzigartige Gelegenheit, ein solches Objekt mit der höchsten
erreichbaren Auflösung zu untersuchen. Die Erforschung von Sgr A* kann daher nicht
nur dabei helfen, die physikalischen Prozesse im Herzen unserer Galaxie zu verstehen,
sondern könnte auch eine Blaupause für ein allgemeineres Verständnis von galaktischen
Kernen liefern.

Sgr A* wurde zunächst als stetige Radioquelle entdeckt. Fortwährende Beobach-
tungen in verschiedenen Wellenbändern mit zunehmender Auflösung und Empfind-
lichkeit haben gezeigt, dass Sgr A* neben der stetigen, sogenannten Ruheemission
auch Strahlungsausbrüche, die auch als Flares bezeichnet werden, über den gesamten
Frequenzbereich zeigt. Es wurde festgestellt, dass diese Flares ihren Ursprung im in-
nersten Akkretionsfluss auf Sgr A* haben müssen. Daher könnte ihre Untersuchung
und ihr Verständnis entscheidend dafür sein, die physikalischen Bedingungen in der
unmittelbaren Umgebung eines SMBH zu erhellen.

Die konkreten physikalischen Mechanismen im Akkretionsfluss auf Sgr A*, welche die
Flares hervorrufen, sind bisher nicht vollständig verstanden. Auch wenn die meisten
Modelle eine Form von Synchrotronstrahlung beinhalten um die auftretenden Flares
vom Radio- bis zum NIR-Bereich zu erklären, sind die Mechanismen hinter der Rönt-
genstrahlung äußerst umstritten. Hauptsächlich zwei konkurrierende Modelle werden
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derzeit debattiert: hochenergetische Synchrotron-, oder Synchrotron-Selbst-Compton-
Emission (SSC). Beide Erklärungsversuche unterscheiden sich signifikant hinsichtlich
der prognostizierten Elektronenenergien und Plasmadichten. In dieser Arbeit stelle ich
drei Artikel vor (zwei davon bereits veröffentlicht, der letzte muss noch eingereicht
werden), welche die vermuteten Emissionsmechanismen statistisch untersuchen.

Im ersten Artikel stelle ich sowohl Daten aus dem Submillimeter (submm) vor, die mit
der LArge BOlometer CAmera (LABOCA) gewonnen wurden, das am Atacama Pathfinder
EXperiment (APEX) montiert war, als auch Radiodaten vom Australia Telescope Compact
Array (ATCA). Ich analysiere die Flussdichteverteilung dieser Lichtkurven und stelle fest,
dass beide Verteilungen durch ein Potenzgesetz mit einem ähnlichen Skalierungsindex
beschrieben werden können. Ein fast identischer Skalierungsindex ist zuvor von einer
anderen Gruppe für die Emission im Nahinfrarot (NIR) gefunden worden. Dies deutet
stark darauf hin, dass die Flareemissionen in diesen drei Wellenbändern aus denselben
Quellregionen stammen. Dieser Befund ist zudem mit einem physikalischen Modell
adiabatisch expandierender, selbstabsorbierter Synchrotronplasmen vereinbar.

Im zweiten Artikel untersuche ich Röntgendaten des Chandra-Röntgenobservatoriums
(CXO), die während der X-ray Visionary Project (XVP) Kampagne gewonnen wurden.
Hier besteht die analytische Herausforderung darin, dass die Röntgenlichtkurven in-
strumentellen Pile-up-Phänomenen und Poisson-Statistiken mit niedriger Zählrate un-
terliegen. Ich präsentiere eine Routine zum Fitten der Zählratenverteilung, die auf
Approximate Bayesian Computation (ABC) basiert. Nach der Entwicklung dieser Anpas-
sungsroutine kann ich die Zählratenverteilung der Röntgenstrahlung als Potenzgesetz
mit exponentiellem Abfall beschreiben und seine Parameter abschätzen. Mit Hilfe
analytischer Überlegungen komme ich zu dem Schluss, dass die Röntgenflares höchst-
wahrscheinlich durch einen SSC-Mechanismus erzeugt werden.

Im dritten Artikel präsentiere und analysiere ich erneut APEX/LABOCA-submm-Daten.
Unsere Arbeitsgruppe führte in den Jahren 2016 und 2017 neue Beobachtungen durch.
Ich vergleiche diese Daten mit den bereits veröffentlichten Daten aus dem ersten Artikel.
Dabei stelle ich fest, dass die statistische Beschreibung beider Datensätze sehr ähnlich
ist, d.h., dass der Flaremechanismus zumindest zwischen 2008 und 2017 stationär war.
Dies ist besonders interessant, da ein Objekt namens G2/DSO seine naheste Annäherung
an Sgr A* im Frühjahr 2014 hatte. Es ist spekuliert worden, ob dieser Vorbeiflug zu
einer erhöhten Akkretionsrate auf Sgr A* und damit zu einer gesteigerten Flareaktivität
führen könnte. Ich kann eine solche Zunahme zumindest bis 2017 ausschließen.

Insgesamt ergeben meine statistischen Analysen, dass die beobachteten Lichtkurven
von Sgr A* in verschiedenen Wellenbändern vollständig mit dem folgenden Model
kompatibel sind: adiabatisch expandierende Synchrotronblobs sind die Quelle der
beobachteten Flares vom Radio bis zum NIR. X-ray flares werden höchstwahrscheinlich
von einem SSC-Mechanismus generiert.
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1Astrophysical Background

1.1 The Milky Way and its Place in the Universe

One of the most prominent astronomical objects in the nightly sky is the Milky Way (MW).
In every culture one finds tales that tell about the bright band of light which stretches
across the firmament and can be observed during dark and cloudless nights. For the
Inca people of the Andes that band was the Mayu, the celestial river, which is connected
to the Earth and is the wellspring of all water on Earth. The Aboriginal Australian
Euahlayi people saw the Gawarrgay, the figure of an emu in the dark clouds covering
the MW, whose change of shape and position during the seasons was supposed to be
closely related to terrestrial events (Fuller et al., 2014). In Ancient Greek mythology
it was the goddess Hera who created the MW by having spilled milk over the sky
while breastfeeding Heracles. The word galaxy actually stems from the old Greek word
galaxías (γαλαξίας) which is derived from gala (γάλα), meaning “milk”. People from
Saxony called the MW Iring’s Way, according to their god of light and protection. The
11th century Arabic author Ibn Rah. ı̄q described the MW in his astronomical work as the
“mother of stars” and “split in the heavens” (ZAÒ�Ë@ h. Qå

�
�, Eckart 2019). In the more than

2500 years old Shijing, the Book of Songs, a story of “The Cowherd and the Weaver Girl”
is told. It is a tale about the forbidden love between Zhinü and Niulang, which were
dispelled to opposite sides of the heaven, separated by the “Silvery River” (銀河), the
MW. Only once per year the Emperor of Heaven let the lovers meet, on the seventh day
of the seventh month.

1



2 CHAPTER 1. ASTROPHYSICAL BACKGROUND

The modern, scientific “tale” about the MW starts in 1920, with the “great Debate”
between the astronomers Harlow Shapley and Heber Curtis. They discussed whether the
MW encompasses the entirety of the cosmos (Shapley) or if there are objects outside the
MW (Curtis) and our Galaxy is just one among other galaxies. Shortly after that debate
took place, in the mid-1920s, Edwin Hubble was able to show that some “spiral nebulae”
were too distant to be part of the MW. Up to 1929, he was able to identify at least 46
distant galaxies (Hubble, 1929) and to determine their distances and redshifts. Hubble
also discovered that the redshift for far away galaxies increases with their increasing
distance. This, and other theoretical considerations let astronomers develop the idea of
an expanding universe that began in a singularity event, the Big Bang (BB, Lemaître
1931). At the latest, the discovery of the Cosmic Background Radiation (CMB) by
Penzias and Wilson (1965) established the BB theory and astronomers were able to
estimate the age and therefore the dimensions of the universe.

According to human imagination, these dimensions are inconceivable. The time since
the BB and thus the age of the universe has been estimated to be about 13.8 billion
years (Planck Collaboration et al., 2016). Since then, spacetime has expanded, so that
the observable universe reached a radius of 45.7 billion light-years. The universe is also
a very empty space. Its average density is about 9 × 10−27 kg m−3 (Spergel et al., 2007)
which corresponds to approximately six hydrogen atoms per cubic meter1. However,
matter is not uniformly distributed in space (that would make the universe a very boring
place) but clumped in structures. An elementary building block of these structures
are galaxies, which are ensembles of stars, planets, gas clouds, dust and dark matter,
gravitationally bound together. Typical galaxies contain about 109 to 1013 M⊙ of matter
and have diameters between 3000 and 300000 light-years. The visible universe contains
about 200 billion galaxies, though recent observations have suggested that this number
might be underestimated by a factor of 10 (Conselice et al., 2016). Galaxies are also not
distributed homogeneously in space but form honeycomb- or foam-like superstructures,
i.e., they form clusters and filaments around almost empty regions, so-called voids. Our
Galaxy, the MW, is part of the Laniakea supercluster (Tully et al., 2014). It contains
about 105 galaxies (∼ 1017 M⊙) and has an expansion of about 500 million light-years.
Within the Laniakae supercluster, several substructures can be observed, one of which is
the Virgo Supercluster, also called the Local Supercluster (LC, Chon et al. 2015) with a
mass of ∼ 1015 M⊙ and a diameter of about 100 million light-years. The LC, in turn, can
also be subdivided into smaller galaxy groups. One of these groups is the Local Group
(LG). The LG has a diameter of about 10 million light-years, a total mass of ∼ 4×1012 M⊙
(González et al., 2014) and harbors more than 50 galaxies. The two biggest galaxies
inside the LG are the Andromeda galaxy (M31) with a mass of ∼ 1.5 × 1012 M⊙ and the
MW with a similar mass (McMillan, 2017). Both, the MW and M31, have a diameter of
about 200000 light-years and are approximately 2.5 × 106 light-years apart (Ribas et al.,
2005). The Triangulum galaxy (M33) is the third largest galaxy of the LG, whereby
its mass is already more than one order of magnitude smaller than M31 or the MW
(∼ 5 × 1010 M⊙). The MW builds a substructure of the LG: the Milky Way subgroup.
It consists of the MW itself and several smaller orbiting satellite galaxies. Two of the

1In fact, the ratio between dark matter and visible matter is roughly six to one. That means, that the
average density of protons per cubic meter is even less.
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most prominent satellite galaxies are the Large and the Small Magellanic Cloud (LMC
and SMC). The LMC has a mass of approximately 1 × 1010 M⊙, a diameter of 25000
light-years and a distance of 160000 light-years from the MW, the corresponding values
for the SMC are 2×109 M⊙, 15000 light-years and 210000 light-years. The closest orbiter
of the MW is the dwarf galaxy Canis Major (CMa Dwarf). It has a distance from the
center of the Milky Way of 42000 light-years. Interestingly, it is only 25000 light-years
away from our solar system which is a bit less than the distance from our Solar system
to the center of the Milky way.

The MW itself is a Hubble type SBc galaxy with a diameter of about 50 kpc. SBc
galaxies are spirals with S-shaped, loosely wound arms and a bar-shaped central stellar
structure instead of a spherical core. It is believed that the MW contains at least 4
major spiral arms: the Perseus Arm, the Norma Arm, the Scutum–Centaurus Arm and
the Carina-Sagittarius Arm. Several minor spiral arms have also been observed, one
of them is the Orion–Cygnus Arm. Our Solar system is part of the Orion-Cygnus Arm
and lies on its inner rim, facing toward the center of the Galaxy at a distance of about
8.3 kpc (Gillessen et al., 2009). The entire Galactic plane is enshrouded by a sparse
stellar halo of about 109 M⊙ which extends up to 100 kpc (Cooper et al., 2010). As only
about 10% of the total virial mass of the MW can be attributed to luminous matter, it is
nowadays believed that the MW is also surrounded by a dark matter halo. Its volume
density has been estimated to be around 0.009 M⊙/pc−3 (Kafle et al., 2014). The Galactic
plane consists of two layers: the thin disk with a scale height of about 350 pc and a
young stellar population and the thick disk with a scale height of about 1 kpc containing
predominantly older stars. The scale height of the thin disk increases toward the center
where it finally dissolves in the central bulge with a scale height of 3 kpc. For SB-type
galaxies as the MW the central bulge is not spheroidal but bar-shaped. The inner kpc of
the bulge is dominated by a stellar structure called the Nuclear Bulge (not to be confused
with the Galactic bulge itself) with a stellar mass of approximately 109 M⊙(Launhardt
et al., 2002). It consists of a disk-like structure, the Nuclear Stellar Disk, with a radius
of ∼ 230 pc and a scale height of ∼ 45 pc, and a spherical inner structure of a few pc in
diameter, the so-called Nuclear Star Cluster (NSC). The exact dimensions and definition
of the NSC is not unambiguous (see Neumayer et al., 2020 for a general review on
galactic NSCs). In the context of the MW one can define the NSC as the region of up
to 15 pc around Sgr A*, where the number density of bright stars down to ∼ 0.5 pc
can be well described by a power-law of the form ρ(r) ∝ r−2. The power-law index of
∼ 2 suggests a thermalized, i.e., old population of stars. At smaller radii, i.e. r < 1 pc
or 25 ′′, where the gravitational sphere of influence of Sgr A* becomes relevant, the
power-law breaks and exhibits a flatter distribution (Fritz et al., 2016). Within this
sphere the enclosed stellar mass is approximately as big as the mass of the central black
hole, i.e., of the order of 106 M⊙. The stars in the innermost arcsec of this region are
called S-cluster stars. Depending on their brightness, the orbital movement around
Sgr A* can nowadays be traced. This will be further discussed in the next section.
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Figure 1.1: Simulated view on the Galactic center (GC) with the constellations of Sagittarius,
Scorpius and Corona Australis as seen from Earth with a field of view ∼ 35 deg using inverse
colors. The GC is marked with concentric red circles at the center of the map. The image was
created (own work) with the software stellarium (Zotti et al., 2021).

1.2 The Galactic Center and its Supermassive Black Hole

From the Earth’s perspective, the barycenter of the MW lies close to the constellation
Sagittarius (see Fig. 1.1). In this direction the “band” of the Galaxy appears to be
brightest and densest. The observational challenge when monitoring the Galactic Cen-
ter (GC) is the band of dust in the Galactic plane, almost completely blocking optical
and ultraviolet (UV) radiation from that region and a dense population of stars which
confuses observation especially in the infrared (IR). Radio, IR and X-ray emission can
pass through the dust layers so that the GC is observable from our position in the Galaxy.
The atmosphere of the Earth in turn, blocks X-ray radiation entirely and attenuates IR
emission significantly. Radio waves with frequencies between 15 and 100 GHz pass
through the atmosphere with almost no attenuation. This frequency band is also called
the “radio window”. Thus, ground-based radio, high altitude IR and space-based IR and
X-ray telescopes are best suited to observe the GC.

The radiative counterpart of the dynamical center of the MW was first spotted by Karl
Jansky, one of the pioneers of early radio astronomy, in 1932. By that time, he was an
employee at Bell Telephone Laboratories and tried to find out the origin of interference
which caused problems in the transatlantic radio communication at 20 GHz. He build
a rotatable radio dish (Jansky, 1932) and found that there is a strong radio emitter
outside of the Solar system in the direction of the GC (Jansky, 1935). This finding was
later reproduced, e.g., by Reber (1940), Bolton and Westfold (1950) and Piddington
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and Minnett (1951). Early detailed maps of the Galactic radio emission at different
radio frequencies with a clearly identifiable bright structure, the so called Sagittarius A
complex, or in short Sgr A, in the direction of the GC can be found in Burke (1965).
Shortly after that, the first IR maps of the GC were compiled (Becklin and Neugebauer,
1968; Rieke and Low, 1973), also yielding strong infrared emission from the direction
of Sgr A. Finally, Balick and Brown (1974) observed the very center of Sgr A with the
National Radio Astronomy Observatory (NRAO) radio interferometer at 3.7 and 11 cm.
They report on a “bright”, “unresolved”, i.e., θ ≤ 0.1 ′′ structure at the very center of
Sgr A, “unique in the Galaxy” and conclude:

“The unusual nature of the sub-arcsecond structure and its positional coin-
cidence with the inner 1-pc core of the galactic nucleus strongly suggests
that this structure is physically associated with the galactic center (in fact,
defines the galactic center).”

Because of its unique- and brightness, Brown (1982) later coined the term “Sagittar-
ius A*”, or in short, “Sgr A*” as

“[...]the bright nonthermal radio core of Sgr A (which we hereafter refer to
as Sgr A*).”

Before addressing further research on the properties of the point-like radiation source
Sgr A* itself, I will first take a step back and briefly discuss its closest environment. Look-
ing in detail at the Sgr A complex, prominent substructures become visible. Two major
components can be identified: Sgr A East and Sgr A West. Sgr A East is a non-thermal,
6-9 pc in diameter, shell-like structure and might be a supernova remnant (Ekers et al.,
1983; Zhou et al., 2021). However, it is still subject of ongoing observations and theo-
retical consideration, details of the state of research can be found in Lee et al. (2006) or
Zhou et al. (2021). Sgr A West on the other hand is a seemingly spiral-like structure
with three arms of ionized gas streams, the so-called minispiral, with Sgr A* close to its
center. The term “spiral” is misleading though as it is a 3-dimensional structure which
only resembles the spiral-like appearance on the 2-dimensional plane of sky. A detailed
analysis of its spatial structure can be found in Zhao et al. (2010). Nevertheless, the
three apparent arms are called Northern and Eastern arm and the Western Arc. All com-
ponents meet in a bar-like structure, located 0.1-0.2 pc south of Sgr A*, and contain in
total a mass of approximately 60 M⊙. Along the arms, a mass transport toward the center
can be observed. It is estimated to be of the order of 10−3 M⊙ yr−1 (Lo and Claussen,
1983). The minispiral is surrounded (and probably fed) by a torus-shaped structure,
mostly containing gas and dust, the Circum Nuclear Ring (CNR), sometimes also called
Circum Nuclear Disk (CND). Depending on the observed wavelength, the CNR has an
inner and outer radius between 1.5-2 and 2-5 pc, respectively (Montero-Castaño et al.,
2009; Tsuboi et al., 2018). Its total mass is surprisingly uncertain, estimates go from
6×102 to 2×105 M⊙ (Lau et al., 2013; Smith and Wardle, 2014). The CNR rotates around
Sgr A* with a velocity of approximately 100 km s−1 and a distance of 2 pc (Guesten et al.,
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1987). A multi-waveband image of Sgr A West can be seen in Fig. 1.2.

From the analysis of gas motion in the CNR and the minispiral mass estimates on the
enclosed mass could be derived. Wollman et al. (1977) concluded from line emission
and assuming orbital motion that the total mass within the central one parsec had to
be approximately 4 × 106M⊙. Lacy et al. (1982) estimated the total mass to be about
6 × 106M⊙, where only 3 × 106M⊙ could be attributed to distributed mass, the remaining
3 × 106M⊙ had to be concentrated in a central massive black hole. Similar results were
reproduced by follow-up observations of gas motion, e.g., by Serabyn et al. (1988).
Herbst et al. (1993) could show that ∼ 4 × 106M⊙ of mass had to be within the central
0.17 pc and that the barycenter coincides with the position of Sgr A*. Nevertheless, gas
kinematics is not only affected by gravitation. Therefore, a mass determination of the
central object from gas dynamics kept being uncertain. More accurate mass estimates

Figure 1.2: Multi-waveband image of Sagittarius (Sgr) A West with a field of view of 120×120 as
and Sgr A* at its very center. Green and red colors show radio data from the Very Large
Array (VLA) and the Berkeley-Illinois-Maryland Association (BIMA) telescope, respectively. In
blue infrared data from the Spitzer Space Telescope (SST) is depicted. Cold gas from the
circum nuclear ring (CNR) as well as hot gas from the minispiral is clearly visible. The blue
point-like sources indicate stars orbiting Sgr A*. Image credit: Legacy Astronomical Images,
“Stars and Gas Orbiting the Massive Black Hole,” NRAO Archives, accessed November 3, 2021,
https://www.nrao.edu/archives/items/show/33428.

can be done by observing stellar dynamics. Measuring the velocity dispersion of two
dozen blue supergiants, Krabbe et al. (1995) were able to roughly calculate the central

https://www.nrao.edu/archives/items/show/33428
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mass by using the virial theorem. The first conclusive estimates of the barycenter’s
mass could be obtained by the detection of proper motion of stars orbiting Sgr A*
in the innermost few arcseconds, also called the S-cluster (Eckart and Genzel, 1996,
1997; Genzel et al., 1997; Ghez et al., 1998). All papers concluded a central mass of
approximately 2.5 × 106M⊙. Finally, several groups were able to first determine parts
of, later complete individual orbits of S-cluster stars (Eckart et al., 2002; Schödel et al.,
2002; Ghez et al., 2003). Solving the equation of motion yields the central mass. Since
then, ongoing observations with increasing astrometric precision have revealed detailed
knowledge of the orbits of more than 40 S-cluster stars (Gillessen et al., 2009; Peißker
et al., 2020; Ali et al., 2020). A black hole mass of 4.3 × 106M⊙ seems to be the most
cited value nowadays (Parsa et al., 2017; Gillessen et al., 2017). Fitting the equations
for a two body problem also allows the determination of the distance R0 between our
Solar system and the GC. So far, the most accurate distance estimate has been made by
Gravity Collaboration et al. (2019). They determined R0 with an accuracy of 0.3%, the
value to memorize is R0 ≈ 8.2 kpc.

In the last paragraph of this section I will again return to the radiative source Sgr A*
itself. As mentioned earlier, Sgr A* was first detected in the radio regime, observations in
other waveband regimes followed such that the steady spectral energy distribution (SED)
of Sgr A* was relatively well known in the late 1990s. It can roughly be described as
follows: in the radio regime we observe an inverted power-law spectrum with a S ν ∝ ν1/3,
or ν4/3 in the νLν display, respectively (Falcke et al., 1998). The spectrum rises up to
a peak in the submillimeter (submm), the so called “submm bump” at approximately
350 GHz (Zylka et al., 1995). Here, the flux density S ν is about 3 Jy, which corresponds
to a flux νLν ≈ 5 × 1035 erg/s. Toward higher frequencies, the SED steeply drops. In
the far-infrared (FIR), the upper limits for the flux densities have been reported to be
∼ 1.1, ∼ 0.6 and ∼ 0.8 Jy at 160, 100 and 70 µm, respectively (von Fellenberg et al.,
2018). Schödel et al. (2011) have not detected Sgr A* in the mid-infrared (MIR), and
therefore give an upper limit of ∼ 84 mJy at 8.6 µm. They furthermore report on ∼ 4,
∼ 5 and ∼ 1.5 mJy at 4.8, 3.8 and 2.2 µm, respectively. Faint emission at a few keV
(∼ 2 × 1033 ergs/s, Quataert 2002) can be considered as the upper end of the observable
SED of Sgr A*. A graphical display of the observed SED and an over-plotted emission
model from different electron populations (see Yuan et al. 2003) can be seen in Fig. 1.3.
Integrating over the entire SED, Sgr A* shows a remarkable low bolometric luminosity of
L ≈ 1036erg s−1 which is just a few hundred times brighter than the Sun. In terms of the
Eddington luminosity Ledd, the total bolometric luminosity of Sgr A* can be expressed
as L ≤ 10−8Ledd. This luminous faintness can either be explained by very low accretion
rates onto Sgr A*, radiative inefficient accretion flows (RIAF) or a combination of both.
Modelling the accretion flow onto SMBHs is its own field of research and often requires
complex magnetohydrodynamic (MHD) simulations. I would like to refer the interested
reader to, e.g., the publications of Yuan and Narayan (2014) or Mościbrodzka et al.
(2014) and references therein. The SED, as discussed in this paragraph, describes the
steady emission of Sgr A*, i.e., the emission that is always observable. In the next
section I will show, that the SED changes from time to time, namely whenever Sgr A*
shows radiation outbursts and enters a temporal “active” state. Therefore, the state,
which I have described in this section, is called the “quiescent” state and the observed
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Figure 1.3: Quiescent spectral energy distribution (SED) of Sagittarius A* (Sgr A*) from the radio
to the X-ray regime with data and overplotted model from Genzel et al. (2010) and references
therein. The short dashed line shows the emission from thermal synchrotron electrons, the
dash-dotted line represents the synchrotron spectrum from non-thermal, power-law distributed
electrons. Inverse Compton effects lead to a secondary hump in the optical/ultraviolet (long
dashed line). In the X-ray regime thermal bremsstrahlung can be observed (dotted line). Image
credit: Genzel et al. (2010)

radiation “quiescent emission”.

1.3 Flares from Sagittarius A*

Shortly after the detection of Sgr A*, Brown and Lo (1982) reported about long term
variability of the radio emission. They observed Sgr A* over a period of 3 years (1976-
1978) with the Green Bank radio-link Interferometer (GBI) at 2695 and 8085 MHz and
detected monthly flux density variations of 25% and 40%, respectively. They interpreted
these alterations as “flickering” source size changes of the emitter. Zhao et al. (1989)
reported on observations between 4 and 20 cm between 1974 and 1987 and detected
magnitude variabilities in the range of 15 to 20%. However, they attributed this variabil-
ity to interstellar refractive scintillation. In the years 1990 and 1991 they monitored
Sgr A* at 1.5, 5, 8.4, 15 and 22.4 GHz (Zhao et al., 1992). At 8.4 GHz and above
they reported on significant flux density variations, with increasing magnitude toward
higher frequencies. They also stated three clearly identifiable “radio outbursts”. Their
interpretation of the flux density modulations changed from scintillation to “intrinsic
activity”. Wright and Backer (1993) report on flux density variations of 0.8 to 2.3 Jy in
their 3 mm observations between 1985 and 1990. This is also one of the first papers
where the term flare is used in the context of Sgr A*. Six years later the term flare
for the radiation outbursts of Sgr A* seems to have established, Tsuboi et al. (1999)
report on a “Flare of SGR A* at Short Millimeter Wavelengths”. It has to be mentioned
though, that despite the fact that flares had certainly been observed in the radio regime,
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toward the submm and even higher frequencies the existence of intrinsic variability was
not clearly confirmed. Calibration problems and measurement uncertainties left the
question whether observed flux density variations were real or just instrumental effects.
These problems were debated, e.g., in Beckert et al. (1996).

Nevertheless, flares of Sgr A* had been detected successively across the entire wave-
length regime: Baganoff et al. (2001) were the first who observed an X-ray flare in
the 2-8 keV band with a peak luminosity ∼ 40 times brighter as in the quiescent state.
Goldwurm et al. (2003) mentioned another X-ray flare, 20-30 times brighter than the
steady count rate. The flare detected by Porquet et al. (2003) exceeded the quiescent
level by a factor of 160. In the NIR, observations of the galactic center are more diffi-
cult due to dust absorption and stellar confusion. The enhanced adaptive optics (AO)
technology in the early 2000s finally made it possible to also observe Sgr A* at these
frequencies with sufficient accuracy. Genzel et al. (2003) were the first to identify flaring
NIR activity. With an AO instrument they observed at least one flare at 1.65 µm and two
flares at 2.16 µm. The peak fluxes were three times larger than the background level.
Using the Keck telescope at 3.8 µm, Ghez et al. (2004) identified Sgr A* as a “variable
point source” with flux density variations between 4 and 17 mJy. The aforementioned
papers were just the earliest of a bunch of following papers which all clearly identified
Sgr A* as a point-like source with radiation outbursts. The tendency for the wavelength
dependency of the flare magnitudes was already recognizable in the aforementioned
early publications and was later established (Herrnstein et al., 2004; Miyazaki et al.,
2004; Bélanger et al., 2005; Gillessen et al., 2006). From the radio to the X-ray regime
the amount of variability steadily increases: in the radio regime one observes flux density
variations of the order of 50%, in the submm, infrared and X-ray peak amplitudes with
factors of up to 2, 20 and 200, respectively (see, e.g., Fig. 1.4 for a typical X-ray light
curve). I want to stress that these numbers are not statistically hardened quantities but
just a rule of thumb to get an easy to memorize overview of the occurring magnitudes
across the entire observed wavelength regime.
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Figure 1.4: Concatenated X-ray light curve obtained with the Chandra X-ray Visionary Project
(XVP) campaign in 2012. Sagittarius A* (Sgr A*) is most of the time in a quiescent state and
shows only emission of a few counts per 300 s. From time to time distinct emission outbursts
can be observed, exceeding the quiescent emission by almost up to two orders of magnitude.



10 CHAPTER 1. ASTROPHYSICAL BACKGROUND

Figure 1.5: Parallel monitoring of Sagittarius A* (Sgr A*) at different wavebands. The upper
panel shows an X-ray light curve, the middle near-infrared (NIR) and the bottom submillimeter
and radio observations. The tight temporal correlation between X-ray and NIR flares is obvious,
they occur simultaneously. A 43 GHz flare follows with a time delay of several hours. Image
credit: Yusef-Zadeh et al. (2009)

Nowadays there is a consensus that the source regions which give rise to the flares
have to originate from very compact regions in the innermost accretion flow around
Sgr A*. Light travel arguments strongly suggest compactness of the regions. Do et al.
(2019) detected a brightness change of Sgr A* during a flare by a factor of 9 within 2
minutes, which corresponds to ∼3 Schwarzschild radii (RS ) for the mass of Sgr A*. From
an expanding source model and from typical flare rise times of ∼ 30 minutes, Eckart
et al. (2012) derived a source region size of 2.7 RS . Gravity Collaboration et al. (2018)
reported on the direct observation of compact and bright regions orbiting Sgr A* during
“flaring state” and estimated a distance of these “blobs” of about ∼9 RS from Sgr A* and
a source diameter of ∼5 RS (see also Gravity Collaboration et al. 2020). Furthermore, it
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has been detected that flares are linearly polarized in the submm and NIR (Marrone et al.,
2007; Shahzamanian et al., 2015). This and the observed spectral index of ∼ 0.6 in the
NIR (see, e.g., Bremer et al. 2011 or Witzel et al. 2014b and references therein) strongly
indicates that synchrotron emission plays a predominant role in the emission mechanism.

Multi-waveband campaigns (see Fig. 1.5 for an example) have also revealed that radio
flares follow NIR and submm flares with increasing time delays toward lower frequencies
(Brinkerink, 2015; Marrone et al., 2008). This has been successfully modeled within the
framework of expanding synchrotron blobs, which initially turnover close to the submm
regime and become successively optically thin toward lower frequencies due to adiabatic
expansion (Yusef-Zadeh et al., 2009; Mossoux et al., 2016) . The relation between
NIR and X-ray emission has been debated more controversially. Observationally, it has
manifested that there is a tight temporal correlation between flares in both regimes:
every X-ray flare seems to go together with an NIR flare (Eckart et al., 2004; Trap et al.,
2010), the opposite is not always true: NIR flares without an X-ray counterpart have
been observed (e.g., Hornstein et al. 2007). In general, NIR flares occur approximately
four times a day whereas on average only once per day an X-ray burst can be detected
(Baganoff et al., 2003; Eckart et al., 2006). A time delay between flares at both
frequencies is not ascertainable (Boyce et al., 2019). At the moment, two concurrent
models are proposed that try to explain the tight correlation between flares at both
wavelengths: pure synchrotron models and combined synchrotron and synchrotron
self-Compton (SSC) models (see Sec. 1.4). In the former scenario, the optically thin
synchrotron spectrum extends from the NIR to the X-ray regime, i.e, the observed X-ray
emission is part of the synchrotron spectrum (e.g., Dodds-Eden et al. 2009; Ponti et al.
2017). In the SSC case, the synchrotron spectrum cuts-off somewhere between the NIR
and the optical. X-ray emission is produced due to inverse Compton scattering within the
synchrotron source (Sabha et al., 2010; Eckart et al., 2012; Mossoux et al., 2016). Both
models have different physical implications: while a pure synchrotron model needs very
high energetic electrons in the synchrotron plasma, an SSC scenario is less demanding
in terms of electron energies but presumes higher volume densities. Therefore, the
question which model fits the observed flaring activity better yields answers about
concrete physical conditions in the innermost accretion flow onto Sgr A*.

1.4 General Emission Mechanisms

In this section, I will give a brief overview of some of the emission mechanisms that play
a relevant role in the radiative processes around Sgr A* and SMBHs in general. In my
humble opinion, excellent textbooks, in which most of the here mentioned mechanisms
are exhaustively discussed are, e.g., Rybicki and Lightman (1979), Lang (1999) or
Ghisellini (2013).

Thermal emission

Thermal black body emission is one of the most fundamental emission mechanisms.
All matter, regardless of its state of aggregation, emits thermal radiation if it has a
temperature above absolute zero. An idealized thermal emitter, i.e., an object which
is in local thermodynamical equilibrium (LTE) and absorbs all incident radiation, is
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called a black body. Although this ideal state rarely occurs in the real world, the
black body approximation is omnipresent in physical models. First, many astronomical
objects nearly behave like black bodies: stars, planets, dust particles, to name just a few.
Secondly, the black body approximation plays an important role in many theoretical
derivations. For instance, no thermal, incoherent emitter can radiate more efficiently
than a black body. Therefore, black body radiation can often be used as an upper limit
for the radiance of an emission process. The spectral radiance of a black body is given
by

B(ν,T ) =
2hν3

c2

1
exp(hν/kbT ) − 1

. (1.1)

For astronomers, Wien’s displacement law is one of the most important applications
of Planck’s law. Given a temperature T , the displacement law gives the frequency ν at
which B(ν,T ) becomes maximal. Formally, it can be derived by differentiating B(ν,T )
with respect to ν, set the derivative to zero and (numerically) solve for ν. This yields

νmax ≈ 5.8789 × 1010 Hz
K
· T . (1.2)

For instance, cold dust in the CND around Sgr A* can have temperatures below 10 K.
That means that its thermal emission peaks below 600 GHz, i.e., in the submm regime.
Accretion disks around SMBHs reach temperatures of several 106 K and more, so that the
thermal spectrum might be relevant up to the X-ray regime (e.g., the thermal spectrum
of a 107 K hot object peaks at ∼1 keV).

Thermal bremsstrahlung

From the basic theory of electromagnetism it is known that de- and accelerated charged
particles emit radiation. In astronomy, this typically happens when electrons get de-
flected in the Coulomb-field of ionized atoms or atomic nuclei. The kinetic energy which
is lost by the electron is emitted in form of photons. It is beyond the scope of this basic
introduction to derive explicit formulae for different kinds of bremsstrahlung. Here, I
will only give the formula for bremsstrahlung from hot, i.e., thermal plasma. In general,
the volume emissivity is given by

ϵν ∝ nνNe

4π

∫
Pr(v, ν) f (v)dν , (1.3)

with the refraction index nν, electron density Ne, the total bremsstrahlung power in a
frequency interval Pr(v, ν)dν and the electron velocity distribution f (v). Pr(v, ν) depends
on the number of ions Ni, the velocity of the electrons v and the radiation cross section
(which is in turn a function of the proton number Z). One can show that if the velocity
distribution f (ν) is Maxwellian, i.e.,

f (v)dv =
( m
2πkT

)3/2
4πv2 exp

(
−mv2

2kT

)
dv , (1.4)

Eq. 1.3 becomes

ϵν ∝ 8
3

(
2π
3

)1/2 nνZ2e6

m2c3

(
m

kBT

)1/2

NiNeg(ν,T ) exp(−hν/kBT ) . (1.5)
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Here, g(ν,T ) is the free-free Gaunt factor which accounts for quantum mechanical
corrections and often calculates to the order of unity.

Bremsstrahlung, self-absorption

To get the total brightness of an emitting source one needs to consider radiative transfer,
i.e., not only the emissivity ϵν but also the absorption coefficient αν. Thus, obtaining
the full spectrum of thermal bremsstrahlung requires an expression for αν. I assumed
that the electrons have a thermal, i.e., Maxwellian distribution. If one now additionally
considers the plasma to be at a LTE, Kirchhoff’s law applies and the source function S in
the LTE can be written as

S =
ϵν
αν
= B(ν,T ) , (1.6)

with the radiance of a black body B(ν,T ) as given in Eq. 1.1. Calculating this out and
omitting the numerical constants, one obtains

αν =
B(ν,T )
ϵν

∝ Z2NeNi

T 1/2

1 − exp(hν/kbT )
ν3

g(ν, t) (1.7)

≈ N2
e T−1/2ν−3 (

1 − exp(−hν/kBT )
)
.

Considering that the optical depth is given by

τ = ανds , (1.8)

one can see that toward lower frequencies (due to αν ∝ ν−3) thermal bremsstrahlung
sources tend to be optically thick (τ ≫ 1) and therefore absorbed. Looking at the specific
intensity Iν in the radiative transfer equation

Iν = S · (1 − exp(−τ)) , (1.9)

it is also easy to see that for sources above some densities (αν ∝ N2
e ) and below some tem-

peratures (αν ∝ T−1/2), the entire frequency spectrum becomes optically thick. Then, the
bremsstrahlung spectrum approaches the spectrum of a black body with Iν = S = B(ν,T ).

Synchrotron emission

The physical mechanism behind synchrotron emission is basically the same as the princi-
ple of bremsstrahlung. Charged particles (mostly electrons) get accelerated and thus
produce electromagnetic radiation. The difference compared to classical bremstrahlung
is that a) the electrons have relativistic velocities, i.e., v ≲ c, and b) the force which
accelerates the electrons is produced by magnetic fields, i.e., is the Lorentz force2. The
acceleration a on an electron with rest mass m and total energy E in a magnetic field B
is given by

a =
e
γmc

v × B =
ec
E

v × B , (1.10)

2In older publications, often the term magnetobremsstrahlung is used instead of synchrotron radiation.
In my opinion the former nomenclature should have prevailed as it labels the radiation mechanism, namely
bremsstrahlung in a magnetic field very precisely.
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where e is the charge of the electron. Here,

γ =
1√

1 − v2c2

=
1√

1 − β2
(1.11)

is the so-called Lorentz factor and can be considered as a measure for the “relativity” of
the electrons. For simplicity, I assume that the path of an electron is helical around the
magnetic field line B. At non-relativistic energies, i.e., γ ∼ 1, the electron emits dipole
radiation with the cyclotron frequency

νL =
eB sin θ
2πmc

≈ 2.8 · 106 Hz/Gs · B . (1.12)

For relativistic electrons with γ ≫ 1 the gyration frequency is reduced to

νg =
νL
γ
. (1.13)

In the relativistic regime, also the geometry of the dipole radiation has to be transformed
from the electron’s rest frame (ERF) to the observer’s frame of reference (ORF). If ζ′ is
the opening angle of the forward lobe in the ERF, it can be shown that in the ORF it is
given by

ζ =
sin ζ′

γ(1 + β cos ζ′)
=

1
γ
. (1.14)

If I now imagine a distant ORF, where “distant” means that the opening cone completely
fills the observer’s field of view (FoV), the observer would repeatedly (with the Doppler-
shifted gyration frequency) see synchrotron pulses. One can show that the duration of
each pulse is given by

∆t ≈ 1
2πγ3νg

. (1.15)

Vice versa, the inverse of that timescale defines a frequency νc at which the observer
receives the most power from the signal. Then we have

νc =
1

2π∆t
= γ3νg = γ

2νL = γ
2 eB sin θ

2πmc
. (1.16)

To get the full spectrum, the entire electric field in the synchrotron pulse has to be
calculated and Fourier-transformed. The resulting power spectrum is

p(ν, γ) =

√
3e3B sin θ

mc2 · F(ν/νc) , (1.17)

where

F(ν/νc) =
ν

νc

∫ ∞

ν/νc

K5/3(y)dy . (1.18)

K5/3 is the modified Bessel function of the order 5/3. It can be shown that

F(ν/νc) ≈


4π√
3Γ(1/3)

(
ν

2νc

)1/3
for ν ≪ νc

(
π
2

)1/2 (
ν
νc

)1/2
exp(−ν/νc) for ν ≫ νc

. (1.19)

This means that the power spectrum of a single synchrotron electron can be approx-
imated with a power-law with a slope of 1/3 up to the critical frequency and an
exponential decay for higher frequencies.



1.4. GENERAL EMISSION MECHANISMS 15

Ensemble of synchrotron electrons

In astrophysical cases, one does not observe synchrotron radiation from single electrons
rather from ensembles of them, for instance from a plasma in the magnetic field next to
a SMBH. The spectral volume emissivity of such an ensemble is given by

ϵν =
1

4π

∫ ∞

0
N(E)p(E, ν)dE , (1.20)

if we assume isotropic synchrotron emission3. With E = γmc2, we already have an ex-
pression for p(E, ν) by Eq. 1.17. For the energy distribution of astronomical synchrotron
sources one often finds power-law distributions. Thus, in the energy range between E1
and E2 one can write

n(E)dE = N0E−pdE . (1.21)

The volume emissivity of the ensemble of electrons is therefore given by

ϵν = C1 · N0 B
∫ E2

E1

E−pF(ν/νc)dE . (1.22)

The integral can be solved and written as

ϵν = C2 ·G(ν, p) · N0B(p+1)/2ν−(p−1)/2 (1.23)

It can be shown that within a reasonable range of energy limits and power-law indices,
the function G(ν, E1, E2, p) does not change the total expression by more than 10%
(Moffet, 1975), so can often be neglected. Thus, for the emissivity the simple expression
can be noted:

ϵν ∝ ν−(p−1)/2 = ν−α . (1.24)

This is a remarkable result: a synchrotron plasma with power-law distributed electron en-
ergies ∼ E−p will yield an emission spectral index ∼ ν−(p−1)/2. Vice versa, if a synchrotron
source with a power-law SED and spectral index α is observed, one can automatically
infer that the underlying electron energy distribution is also a power-law with p = 2α+14.

Synchrotron self-absorption

As for any radiation, also for synchrotron emission radiative transfer has to be considered.
To derive the absorption coefficient for a synchrotron emitter, two lines of reasoning can
be followed: first the mathematically and physically exhaustive and stringent method
using radiative transfer equations and Einstein coefficients. Secondly, one can use a
more heuristic argumentation which I will use here for simplicity: I have mentioned
that for many astronomical synchrotron sources the electron energy distribution is a

3This assumption is often made when performing simple synchrotron calculations: an isotropic energy
distribution of electrons and tangled magnetic fields with no preferred orientation of the magnetic field
lines.

4For typical astronomical synchrotron sources one often observes the “canonical” spectral index α ∼ 0.7
and therefore p ∼ 2.4. Caution is advised when referring to a cited spectral index. Depending on the
context and convention, some authors omit the sign of α, i.e., a given spectral index of α = 0.6 could either
mean ϵν ∝ ν0.6 or ϵν ∝ ν−0.6.
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power-law as in Eq. 1.21, not thermal as in Eq. 1.4. Nevertheless, one can imagine
the power-law distribution as a superposition of Maxwellians. Thus, one can formally
associate the energy of an electron with a corresponding effective temperature via

3kBTe = γmc2 =

(
ν

νg

)1/2

mc2 . (1.25)

For a completely absorbed thermal emitter, the Rayleigh-Jeans law for the relation
between brightness temperature T and radiance Iν can be used:

Iν =
2kbTeν

2

c2 . (1.26)

Plugging in Eqs. 1.12, 1.25 and 1.26, one obtains

Iν ∝ ν
5/2

B1/2 . (1.27)

This is again a remarkable result. The spectral index of optically thick synchrotron
emission does not depend on the underlying energy distribution of the electrons but
calculates to the fixed value of 5/2. This also means that for an absorbed synchrotron
source one can directly derive the strength of the magnetic field from the observation
of the flux density (knowing its angular dimension, see below). Using the definition
of the source function S , it can additionally be shown that the synchrotron absorption
coefficient αν has to scale with

αν ∝ ν−(p+4)/2 . (1.28)

One can now combine what has so far been shown about the emissivity and absorption
of a spherical synchrotron source. Introducing the angular diameter of the source as
θ and integrating over the angular dimension, one finds an expression for the entire
synchrotron spectrum:

S (ν) =


C1B1/2θ2ν5/2 if ν ≪ νm
C2N0B(p+1)/2θ3ν−(p−1)/2 if ν ≫ νm

. (1.29)

Here, νm is the so-called turnover frequency, i.e., the frequency at which the emission
turns from optically thick to thin, i.e, where τ ≈ 1.

Synchrotron self-Compton:

A well known phenomenon is the so-called Compton effect: high energetic photons scat-
ter with electrons, lose energy, and thus change their frequency. The energy difference is
transferred to the kinetic energy of the electrons. This is expressed by the famous Comp-
ton scattering formula ∆λ = (1− cos θ)h/mec for the wavelength shift. Yet, in high energy
physics the inverse effect might also happen: relativistic electrons scatter with photons
and transfer parts of their energy such that the photons get “up-scattered” to higher
frequencies. External photons might enter a high energetic plasma and gain energy
by scattering. In the astrophysical community, this is then often specified as external
Comptonization or simply inverse Compton (IC). Another scenario is also possible and
was considered in my research: high energetic electrons produce synchrotron emission
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and these synchrotron photons get up-scattered by the very same electron population.
Very suggestively, this process is referred to as synchrotron self-Compton (SSC, see also
Sec. 1.3). The formal derivation of IC and SSC formulae is beyond the scope of this
introduction as it requires certain mathematical and physical effort. Details can be found
in, e.g., Blumenthal and Gould (1970) or Gould (1979). Here, I will only show the, in
the context of this thesis, relevant results for the SSC mechanism. First, there is a simple
relation between the total power emitted due to synchrotron emission Psyn and SSC
emission PSSC. If umag = B2/2µ0 is the magnetic, and urad = S ν/c the radiative energy
density, the ratio is given by

PSSC

Psyn
=

urad

umag
=

2S νµ0

cB2 . (1.30)

In addition, the scaling of the (first order) SSC with the synchrotron flux density can be
simply expressed as

S 1,SSC
ν ∝ N0θS

syn
ν ln(ν2/νm) , (1.31)

where N0 is the electron density and ν2 the upper synchrotron cutoff frequency given by
E2 = γ2mc2 and ν2 = 2.8 · 106B/Gs γ2

2 Hz. If photons gain energy by multiple scattering
events, higher order SSC flux densities then scale with

S n,SSC
ν ∝ N0θS

(n−1),SSC
ν , (1.32)

whereas second and higher order scattering only appear in physically extreme cases
(ultra-relativistic electron energies and very high plasma densities) and are mostly
used to explain observed GeV to TeV emission, e.g., from blazars. For my research
on Sgr A*, all higher than first order SSC is negligible, thus I will always assume that
S SSC
ν = S 1,SSC

ν . The SSC formalism was further developed and adapted to concrete
astrophysical use-cases by Marscher (1983, 1987). He introduced relativistic bulk
motion of the synchrotron source (important for SSC, e.g., in jets or relativistic orbits)
and accurate formulae to calculate SSC flux densities from observable variables. First,
for the bulk motion, the boosting factor δ is introduced which is given by

δ =
1

γ(1 − β cos ϕ)
, (1.33)

with the Lorentz factor γ and relativistic velocity β as in Eq. 1.11 and the angle ϕ
between the velocity vector and the line of sight. It can be shown that the synchrotron
flux density then scales as

S (ν) ∝


B−1/2θ2ν5/2δ1/2 if ν ≪ νm
B1+αθ3ν−αδ3+α if ν ≫ νm

. (1.34)

Thus, one obtains formulae for the Doppler-boosted synchrotron flux (Eq. 1.34) and
the SSC flux density (Eq.1.31). In principle, all variables are directly observable, except
the magnetic field B and the electron density N0. Both quantities can be expressed in
terms of the turnover frequency νm and flux density S m = S ν (ν/νm)−α. This is a very
“canonical” point in the spectrum: at the turnover frequency, both optically thin and
thick properties of the source can be observed. From the formulae for the optically thick
part, the magnetic field B can be derived with

B ∝ θ4ν5mS −2
m (1.35)
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and from the optical thin properties one can get an expression for the electron density
N0 with

N0 ∝ θ−(4α+7)ν−(4α+5)
m S 2α+3

m . (1.36)

Combining Eqs. 1.31, 1.35 and 1.36 and considering numerical constants, we obtain an
“accurate formula for the self-Compton X-ray flux density” (Marscher, 1983):

S SSC
ν (EkeV) ≈ d(α)θ−2(2α+3)ν−3α+5

m S 2(α+2)
m (hν)−αkeV ln

(
ν2
νm

)
δ−2(α+2) mJy . (1.37)

Here, all frequencies are given in units of keV, the dimensionless parameter d(α) is
tabulated in the literature and is, for instance, approximately 20 for a spectral index
α = 0.7. A note on the here presented equations: in the literature, in all formulae for the
Doppler-boosted synchrotron and SSC flux densities (e.g., Eqs. 1.34 and 1.37) one finds
an additional term for the luminosity distance expressed by the cosmological redshift
z. As I only investigated Sgr A*, the redshift can be completely ignored and the z-term
omitted. A final remark has to be done about the validity of Eq. 1.37: it only strictly
applies within the limits

5.5 × 10−9
( E1

mc2

)2
νm ≲ (hν)keV ≲ 5.5 × 10−9

( E2

mc2

)2
ν2 , (1.38)

where the frequencies νm and ν2 are given in GHz. Below and above these energy
boundaries the spectrum cuts off.

Adiabatically expanding synchrotron sources

In the former synchrotron formalism it was assumed that the source stays spatially
invariant, i.e., that the angular diameter θ remains constant over time. Motivated by
the observation of supernova remnants and their expanding synchrotron shells, several
authors introduced models to describe the time dependency of such synchrotron spectra
(Shklovskii, 1960; Kellermann and Pauliny-Toth, 1967). Here, I will briefly present
the formalism as elaborated by van der Laan (1966) where the following scenario is
considered: given is a spherical self-absorbed synchrotron source with initial radius r0
and turnover frequency νm,0. The source now expands adiabatically with a constant
velocity v, such that r(t) = r0 + v · t. Then the angular diameter scales with

θ(t) = θ0

(
r(t)
r0

)
= θ0 · ρ , (1.39)

where ρ is a dimensionless parameter for the temporal evolution with ρ(t) = r(t)/r0
5.

Adiabatic expansion implies that the magnetic flux and the total energy is conserved, so
it holds that

B(ρ) = B0 ρ
−2 and (1.40)

E(ρ) = E0 ρ
−1 . (1.41)

It can be shown that the turnover frequency then evolves with

νm(ρ) = νm,0 ρ−(4p+6)/(p+4) . (1.42)
5In principle ρ allows for other expansion models r(t) than simple constant velocity.
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For the time-dependent flux densities one finally obtains

S (ν, ρ) =


S 0(ν) ρ3 if ν ≪ νm(ρ)
S 0(ν) ρ−2p if ν ≫ νm(ρ)

. (1.43)

The interpretation of this formula is quite suggestive: if we observe an adiabatically
expanding, self-absorbed synchrotron source over time, the optically thin synchrotron
flux densities will continuously decrease. The decrease of the volume density of electrons
is the physical reasoning for this phenomenon. However, for some wavelength in the
initially optically thick part of the spectrum, the flux density will first increase (physically,
due to the increase of the emitting surface area), up to that time where that frequency
becomes optically thin. Thinking of simultaneously observed light curves at different
frequencies (see, e.g., Fig. 1.5 for a parallel NIR and radio light curve of Sgr A*), the
time delay between flare peaks is easily explainable. The source is initially optically
thick in the radio regime and optically thin in the NIR regime and adiabatically expands.
Although the flux density in the NIR is already dropping, the flux density in the radio
has not yet reached its maximum. It increases until the turnover frequency νm(ρ) lies
in the radio regime from where on the radio flux also decreases. Both light curves are
correlated but time delayed.





2Observational Background

During my PhD-research, my main focus was the statistical investigation and interpreta-
tion of pre-reduced data. Neither did I conduct any observation nor did I perform any
data reduction by myself. For all three manuscripts (Chaps. 4, 5 and 6) the credit for
the data reduction goes in each case to the second author (and the fourth author for
paper I). Nevertheless, in my opinion this thesis would be incomplete if I had not at least
briefly discussed the used telescopes and some of their underlying techniques. Therefore,
in this section I will give a short introduction to the involved facilities and their working
principles. For a deeper understanding and more explanations I would like to refer the
reader to the references given in each section or to standard astronomical textbooks.

2.1 Radio and Submillimeter Observations

Compared to optical observations, radio astronomy is a relatively young branch of
science (optical observations contain both observations with the naked eye, as ancient
astronomers did, as well as observations with early types of refracting telescopes whose
invention is attributed to Galileo Galilei at the beginning of the 17th century). As
already mentioned in Sec. 1.2, it was Karl Jansky who built the first radio telescope
for astronomical observations in the early 1930s, followed by Grote Reber’s research
in the early 1940s. During World War II, enormous efforts were spent to intensively
research and use radar (Radio Detection and Ranging) technology. This knowledge
played an important role in the development of radio astronomy during and after the
war. For instance, in February 1942, British radar stations detected extraordinary strong
noise always coming from a distinct direction (Elgarøy, 1982). First assuming that the
noise stems from an enemy interfering transmitter, British scientists soon found out that
the source was the Sun with strong sunspot activity by that time. The newly detected
“window” to the sky was then extensively used to conduct radio observations of the Sun,
the Moon and the Milky Way (Unsöld, 1947). In 1948, the first radio interferometer
was constructed (a so called “sea interferometer” which uses the reflection of radio
waves from the ocean as second ray path) and, for instance, the radio source Cygnus A
was identified (Bolton and Stanley, 1948). In the following decades, radio astronomy

21
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greatly improved. Progressively, larger and larger telescopes with better sensitivity were
constructed, here I just want to give a brief overview of historically important single-dish
radio telescopes: The Ohio State Big Ear telescope, which is famous for the observed
“Wow!”-signal in 1977, was build in 1963 (Kraus, 1963). It had a collecting area of
103×33 m2. The Arecibo Telescope, also completed in 1963, had a reflector of more than
300 m in diameter. It was the largest radio telescope for more than half a century. Main
parts of it spectacularly collapsed in 2020. The Effelsberg Radio Telescope (Wielebinski,
1970) located near Cologne: it started its operation in 1973 and has a steerable dish
of 100 m in diameter. For almost 30 years, it was the biggest rotatable radio telescope.
The reflector is build in such a way that gravitational deformation always preserves
the parabolic shape. Nowadays, the largest steerable radio telescope it the Green Bank
Telescope (GBT) with a collection area of 100 × 110 m2. The largest non-steerable radio
telescope is the Five-hundred-meter Aperture Spherical radio Telescope (FAST) with a
diameter of its main mirror of about 520 m.

Principles of a radio telescope

Technically, most modern radio telescopes are reflectors. In practical terms, this means
that a curved mirror is used to reflect the incident radio waves to a feed antenna. This
antenna can be as simple as a dipole, yet mostly a small horn antenna, the feed horn
is used. The feed can either be directly mounted in the focal point of the mirror or a
subreflector in the focal point is used to concentrate the light beam onto the feed. From
here, the signal is send to a receiver and an amplifier system. Due to the usually little
power of astronomical radio sources (a mobile phone on the moon would be one of the
strongest sources for radio astronomy), the receiver system needs to be very sensitive and
thus cooled down to very low temperatures. Additionally, due to their weakness, radio
signals have to be amplified to be able to detect and post-process them. Unfortunately,
most amplifiers perform very bad at GHz frequencies. Therefore, the radio signals first
need to be down-converted to the so-called intermediate frequency (νIF or simply IF).
Typically the desired IF is of the order of a few hundred MHz. The down-conversion is
done by mixing, also called heterodyning, the incident signal with frequency νradio with
the signal of a local oscillator (LO) with a fixed frequency νLO. Mixing can be performed
with any device that shows a non-linear current-voltage relationship such as a diode.
From the mixed signal, the lower heterodyne frequency

νIF = |νLO − νradio| (2.1)

is filtered out, passed to the amplifier chain and finally to the evaluation electronics.

In radio astronomy, the strength of a signal is often measured in terms of the flux
density S ν. It describes the spectral (per frequency) rate (per time) of energy which is
received by the detectors surface (per projected area). Thus, in SI-units the flux density
is given by

[S ν] =
J

Hz m2 s
=

W
Hz m2 . (2.2)
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Due to the low received energies in radio astronomy, in this branch the unit Jansky was
established:

1 Jy = 10−26 W
Hz m2 = 10−23 erg

s Hz cm2 (2.3)

The right side of Eq. 2.3 is given in cgs-units, which are also still often used in the
radio community. For most thermal radio sources, the Rayleigh-Jeans-approximation of
Planck’s radiation law can be applied (hν ≪ kBT) and the flux density can therefore be
converted to a corresponding brightness temperature TB given by

TB =
S νc2

2ν2kBΩ
, (2.4)

where Ω is the effective solid angle of the antenna beam. The association with a physical
temperature can certainly only be made for thermal emitters. Nevertheless, the term
brightness temperature is also used for non-thermal sources (e.g. synchrotron sources,
see Sec. 1.4).

Radio telescopes are particularly different from optical telescopes in terms of dish
sizes and surface textures: from optics, it is known that the diffraction-limited resolution
θ of a circular aperture is approximately given by

θ ≈ 1.22
λ

D
, (2.5)

where D is the diameter of the aperture1. For instance, if a diffraction-limited resolution
of 10 arcsec is desired with a NIR K-band (2.2 µm) telescope, a 5 m dish had to be built.
If the same resolution is wanted to be achieved at 3 cm (100 GHZ), the dish needed to
have a diameter of more than 750 m. On the other hand, mirrors for radio telescopes
are technically less demanding than for higher frequencies. The surface accuracy of the
reflector has to be of the order of fractions of the incident radiation (Mar and Liebowitz,
2003). This means, that the construction of mirrors toward higher frequencies becomes
increasingly challenging as the requirements on the surface accuracy also increase.

Principles of radio interferometry

Although interferometry is mostly and extensively used in radio astronomy (I will
explain the reason later), the first interferometer for astronomical observation was
optical. Michelson and Pease (1921) tried to measure the angular diameter of stars,
which appeared as unresolved, point-like sources for a single telescope. They created a
device, where the light rays coming from the star were first split into two different beam
paths separated by an adjustable distance D, and then brought to interference. If the
star was an unresolvable point source, interference patterns as known from a double
slit experiment would be observed. If the source was extended, then different points
on the source’s surface create different interference patterns, leading to a mixture of
various interference patterns. The regions of positive (bright) and destructive (dark)
interference are called fringes. The relative amplitudes of bright (B+) and dark (B−)

1For practical calculations, the conversion 1 rad = 206264 arcsec has to be applied.
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fringes define the so-called visibility, which is an important function in interferometry:

V =
B+ − B−
B+ + B−

. (2.6)

One can show that fringe patterns disappear if the condition

θ =
λ

2D
(2.7)

is satisfied. Comparing this with Eq. 2.5, the basic benefit of interferometry can be seen:
in the former equation, the obtainable resolution was limited by the telescope’s dish
diameter D, now high resolution is obtained by a spatial separation D of two telescopes
and the interference of their signals. This is called aperture synthesis. The distance
vector D of the telescopes is in interferometric terms often referred to as the baseline.

Modern interferometers may consist of arrays of multiple telescopes separated by
different baselines. The Earths rotation is then used to let the projected baselines “sweep”
over the source on the plane of sky. It can be shown (Zernike, 1938) that the complex
visibility function V(D) is the Fourier-transformed brightness function Iν of the source,

V(D) =
∫

Iν(s) exp (−2iπνDs/c) dΩ , (2.8)

where s denotes the unity vector in the direction of the source. Eq. 2.8 is the so-called
Van Cittert-Zernike theorem. As it can be seen, the observed quantity in interferometry
is the visibility in the coordinate system of the baseline D, where D is defined in the
so called (u, w)-plane. The physically interesting and tangible quantity though is the
brightness function Iν in the (l,m)-plane, where l and m are the direction cosine of s.
The inverse Fourier transformation

I(l,m) =
∫

V(u, v) exp
(
2iπν(ul + vm)/c

)
dudw (2.9)

is often mathematically difficult and not unambiguous as most observations only cover
tiny fractions of the entire (u, w)-plane. Techniques for deducing I(l,m) from V(u, v) go
under the term “image reconstruction” and are beyond the scope of this brief overview.

A final note on the technical difficulties of interferometry: earlier in this section, I
mentioned that interferometry has been mostly used in the radio domain. In the IR and
optical domain, interferometric multi-telescope instruments have only been introduced
in the early 1980s (see, e.g. Gravity Collaboration 2017 for a most recent development).
This has the following reasons: first, with increasing frequency, the precision of the
optics becomes more demanding. Along the whole optical path, the light has to be kept
coherent, optical accuracies below fractions of a micron have to be achieved. Secondly,
in radio astronomy, especially when the different telescopes of an array are separated by
very long baselines (VLBI), the signals from the single telescopes can first be recorded
and later be superimposed in a central correlator. This also requires the recording of
accurate timestamps for the precise correlation. High frequency signals would need
such a high time resolution, that the recording of the received signals is not feasible.
Therefore, IR and optical interferometers need fast real-time correlation of the signals,
which puts additional high demands on the involved facilities.
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Principles of a bolometer

Bolometers are special kinds of thermal detectors that are often used in submm as-
tronomy. In principle, incident radiation is absorbed, converted into heat and then
electrically read out. Bolometers are a very effective radiation detection method espe-
cially in the submm regime. Toward higher frequencies, charge-coupled devices (CCDs)
are better suited to fully convert the incident energy into a measurable signal, toward
lower frequencies the photon energies are so low that absorption becomes inefficient
and heterodyne receivers are preferable. The working principle of a bolometer can be
described as follows (see Hollister 2009): a thermistor with resistance R(T ) is embedded
in an absorption material with heat capacity C. The absorber is also thermally coupled
via a heat link with heat conductance G to a low temperature heatsink of temperature
T0. Incident radiation heats up the absorber and induces an amount of heat Q. The
absorber’s temperature therefore increases by ∆T . This changes the resistance of the
thermistor, which then can be used, e.g., by a simple electric voltage divider circuit, to
measure the incident signal.

Two main parameters describe the performance of a bolometer: first, the time constant
τ which is a measure for the speed of a temperature change due to incident radiation
with power P = dQ/dt. This constant is given by

τ =
C
G
. (2.10)

Secondly, it is the Noise Equivalent Power (NEP). It is defined as the minimum strength
of an input signal that outputs a signal with power PR as strong as the instrument’s
noise power PN at a given bandwidth:

NEP =
PN

PR
. (2.11)

It can be shown (Richards, 1994) that the NEP critically depends on the bolometer’s
temperature (simply put, the cooler, the less noise). Therefore, for best performance the
heat sink has to be cooled down to fractions of a Kelvin.

2.1.1 The Australia Telescope Compact Array (ATCA)

The Australia Telescope Compact Array (ATCA) is an aperture synthesis interferometric
array of six 22 m telescopes. Taken into service in September 1988, it is located at the
Paul Wild Observatory 30 km east of Narrabri in New South Wales Australia. Operated
by the Commonwealth Scientific and Industrial Research Organisation (CSRIO), it is
one of the four telescopes of the Australia Telescope National Facility (ATNF). ATCA is
an Earth-rotation interferometer and can operate at frequencies between 1 and 100 GHz
(Frater et al., 1992). Five of the six antennas are mounted on a 3 km long railway track
with a 214 m long, rectangular spur and can be moved separately for the desired array
configuration. A sixth antenna is fixed at a distance of another 3 km. This means that
as a single interfermometer, ATCA has a maximum baseline of 6 km. Together with the
other three ATNF telescopes, i.e., the Parkes Observatory, the Mopra Observatory, and
the Australian Square Kilometre Array Pathfinder (ASKAP), ATCA can be also used for
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Figure 2.1: Image of the Australia Telescope Compact Array (ATCA). Five of the six 22 m radio
antennas can be seen. Different array configurations can be achieved by moving the dishes on
the railway track. The east-west railway is 3 km long, the north-south (not yet constructed when
this photo was taken) 214 m. Image credit: CSIRO, licensed under CC BY 3.0

VLBI. In standalone mode, ATCA can be operated in seven observing bands: 20 cm,
13 cm, 6 cm, 1 cm, 7 mm and 3 mm. The angular resolution depends on the observed
waveband, ranging from 6 arcsec at 20 cm down to 0.1 arcsec at 3 mm (Wilson et al.,
2011).

2.1.2 The Atacama Pathfinder EXperiment (APEX) and the LArge
Bolometer CAmera (LABOCA)

The Atacama Pathfinder EXperiment (APEX) is a mm to submm (1.5 to 0.2 mm) tele-
scope located at an altitude of more than 5000 metres in the Atacama desert in Northern
Chile. It is operated jointly by the Max Planck Institute for Radio Astronomy (MPIfR),
the European Southern Observatory (ESO) and the Swedish Onsala Space Observatory
(OSO) at the site of the Atacama Large Millimeter Array (ALMA) radio interferometer
and saw its first light in 2005. With a dish diameter of 12 m, it is the largest submm
telescope in the southern hemisphere. After assembly, the dish, with its 264 aluminium
panels, had a surface accuracy of about 40 µm rms. With near-field holography con-
ducted with a ∼ 90 GHz transmitter under an elevation of 13 deg, the surface accuracy
was re-calibrated to even less than 15 µm. For higher elevations, gravitational deforma-
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Figure 2.2: Image of the Atacama Pathfinder EXperiment (APEX) telescope. It can be seen
that the 12 m dish consists of different aluminium panels (264 in number). Image credit: ESO,
licensed under CC BY 4.0

tions reduce the surface accuracy by a few micron (Güsten et al., 2006).

A crucial parameter for ground based submm observations is the precipitable water
vapour (PWV), which is defined as the total amount of water (in mm) in an atmospheric
column above a location if all the water vapor in that column would condense:

PWV =
∫ h

0
ρw(h)dh . (2.12)

At 345 GHz, the atmospheric transmission has for instance a value of ∼ 0.9 for PWV =
0.2 mm and ∼ 0.8 for PWV = 1 mm, but drops to ∼ 0.5 for PWV = 3.75 mm (Güsten
et al., 2006; Plume et al., 2007). The location of the APEX telescope is best suited for
ground-based submm observations, as it is one of the driest places on Earth with a
median value of PWV ≈ 1 mm for the telescope operation time from April to December
(Lundgren et al., 2010).

One of the science instruments mounted at APEX was the LArge APEX Bolometer
CAmera (LABOCA, Siringo et al. 2009). It had been developed at the MPIfR in Bonn,
was installed at APEX in 2006 and operated since 2007. LABOCA was a multi-channel
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bolometer array, composed of 295 single bolometers. Operating at a central frequency
of 345 GHz with a spectral bandpass of 60 GHz, it was cooled down during operation
to a temperature of ∼285 mK. Each single bolometer was fed by a horn antenna, the
individual beam shapes had been determined to be a circular Gaussian with a FWHM ≈
19.2 arcsec. With its hexagonal arrangement and a channel separation of 36 arcsec,
the total FoV was 11.4 arcmin. LABOCA’s noise-equivalent flux density (NEFD) had
been determined to be 60 mJy s1/2 (Lundgren et al., 2010)2. Over the years, technical
difficulties arose with an increasing number of single channels (see Fig. 2.3). Thus,
LABOCA has been decommissioned in December 2020 (Lundgren et al., 2020).
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Figure 2.3: The LArge BOlometer CAmera (LABOCA) suffered from aging effects over the
years. This plot show the number of bad channels at the end of each year, the data is
taken from the “channel-flags-*”-files available at https://www.apex-telescope.org/
bolometer/laboca/calibration/array/. The true number of defunct bolometers from all
295 single channels was even higher as some channels were sealed with an absorber, showed
cross-talk or were not connected at all. LABOCA was taken out of operation in December 2020.

.

2.2 X-ray Observations

As already mentioned earlier, the Earth’s atmosphere is not transparent for X-ray radia-
tion. This is due to the photo-electric effect where atoms in the atmosphere absorb X-ray

2The NEFD is defined as NEFD≈ NEP/(Aν), where A is the the detectors collection area, ν the frequency
bandwidth and the NEP is given by Eq. 2.11.

https://www.apex-telescope.org/bolometer/laboca/calibration/array/
https://www.apex-telescope.org/bolometer/laboca/calibration/array/
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photons and emit electrons. Thus, almost no X-ray photons reach the Earth’s surface,
making X-ray astronomy a difficult and relatively new observational branch. One has to
get to high layers of the atmosphere, e.g., with balloons or rockets, or even above, to
space, to be able to observe extraterrestrial X-ray radiation. One of the earliest astro-
nomical X-ray campaigns was started in the late 1940s with sounding rockets based on
the German V2s (Friedman, 1963). The solar X-ray emission was continually observed
for more than 11 years, i.e., a full sunspot cycle. In 1960, only three years after the
first-ever launch of a satellite, namely Sputnik, the first successful X-ray satellite mission
was launched, SOLRAD 1, followed by a series of SOLRAD missions (Evans and Pounds,
1968). Not only that these missions successfully monitored the Sun’s X-ray spectrum,
they also detected strong solar variability, so-called flares, in the X-ray. The first satellite
dedicated exclusively for X-ray observations was Uhuru in 1970. For the first time,
an exhaustive all-sky X-ray survey was conducted. Amongst other achievements, the
mission confirmed the detection of the variable X-ray source Cygnus X-1 (Oda et al.,
1971), which can be considered as the first-ever detected black hole candidate. In
1983, the European Space Agency (ESA) started its own X-ray satellite programme with
the European X-ray Observatory Satellite (EXOSAT). Due to its highly eccentric orbit
with a ∼90 hours period, it was capable of long continuous monitoring of X-ray sources.
Therefore, it was able to observe the count rate variability of active galactic nuclei
(AGNs, McHardy 1988). The first X-ray satellites which exhaustively monitored Sgr A*
were the X-ray Multi-Mirror (XMM-Newton) mission and the Chandra X-ray Observatory
(CXO), both launched in 1999 and still in operation.

Basic principles of an X-ray mirror

Incoming
X-rays

Parabolic
mirrors

Hyperbolic
mirrors

Focus

Figure 2.4: Schematic view of a nested Wolter Type-I mirror. This optics is a combination of
paraboloid and hyperboloid mirrors. The incoming beam is almost parallel to the optical axis
to obtain total external reflection. The positioning of both mirrors in a single setup allows
for nesting several layers of mirrors to increase the optical aperture. Image Credit: CMG Lee,
licensed under CC BY 4.0 (a label was removed from the original image)
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X-ray telescopes are different in design compared to telescopes that operate at smaller
frequencies. Refracting optics are difficult to build for X-rays as most materials which
are transparent to these frequencies have a refraction index close to unity. Due to their
high energies, standard designs for reflecting mirrors are also not possible: under larger
incidence angles, X-ray photons just pass through or get absorbed by most reflecting
mirrors due to their high energies. Only under small incidence angles, X-ray photons
can get reflected. For materials with refraction indices below unity and smooth surfaces,
it is possible to get total external reflection (TER) for the X-ray beam. If the complex
refraction n is given by

n = 1 − δ − iβ (2.13)

and 1 − δ < 1, one can show that the critical angle, under which TER occurs, is given by

cosαTER = 1 − δ (2.14)

and for δ ≪ 1
αTER =

√
2δ . (2.15)

One can also show that for the parameter δ it holds that

δ ∝ Z
A
ρλ2 , (2.16)

where Z is the proton number, A is the mass number, ρ is the mass density of the
reflectors material, and λ is the X-ray’s wavelength. This suggests heavy and dense
materials as X-ray reflectors. In so-called grazing incidence mirrors, TER is used to
effectively focus X-rays. One of the most common type of a grazing incidence mirror
is a Wolter Type-I mirror (Wolter, 1952). In this kind of telescope, the beam is first
reflected on a paraboloid mirror, followed by a hyperboloid mirror. To guarantee for
TER, the optical axis is almost parallel to the incoming beam. This setup has two major
advantages: first, it has a relatively short focal length. Secondly, it allows for nesting
several shells of mirrors. This gives the possibility to build compact telescopes with a
large aperture. A sketch of a nested Wolter Type-I optics is shown in Fig. 2.4.

2.2.1 The Chandra X-ray Observatory (CXO)

The Chandra X-ray Observatory (CXO, or just Chandra) satellite was launched on July
23, 1999. It is named after the famous astrophysicist Subrahmanyan Chandrasekhar and
was delivered to space by the Space Shuttle Columbia. Chandra carries two focal plane
science instruments: the Advanced CCD Imaging Spectrometer (ACIS) and the High
Resolution Camera (HRC). In addition to the two primary instruments, Chandra is also
equipped with diffraction gratings for high resolution spectroscopy: the High Energy
Transmission Grating (HETG), and the Low Energy Transmission Grating (LETG). HETG
is mostly used with ACIS, the LETG with HRC (Weisskopf et al., 2000). The former
configuration was used for the GC observations during the X-ray Visionary Project (XVP)
campaign. Therefore, I will briefly summarize some of its operating principles:

ACIS consists of ten CCDs, each of them with a FoV of approximately 8.3 arcmins.
Four of the CCDs are arranged in a 2x2 array used for imaging (and therefore called
ACIS-I), giving the entire array a FoV of ∼ 16 arcmin. The other six CCDs are assembled
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Figure 2.5: Schematic view of the Chandra X-ray Observatory. For the Galactic Center ob-
servations during the X-ray Visionary Project (XVP) campaign, the High Energy Transmission
Grating (HETG) transmission grating and the Advanced CCD Imaging Spectrometer (ACIS) CCD
were used. The High Resolution Mirror Assembly (HRMA) consists of four concentric grazing
incidence Wolter Type-I mirrors. Image credit: NASA/CXC/NGST, Public domain, via Wikimedia
Commons

in an 1x6 array. This array (called ACIS-S) can either be also used for imaging or for
energy spectroscopy. Spectroscopy is conducted via the HETG. This diffraction grating
can be optionally inserted into the X-ray beam. From the theory of diffraction gratings, it
is known that the dispersion angle ϕ depends on the wavelength λ, the spacing between
the slits d and the diffraction order n:

ϕ = arcsin
(nλ

d

)
. (2.17)

Thus, the dispersion angle is a measure for the photon’s energy and can be used for
spectral analysis. Photons passing undispersed through the grating to the central CCDs
are called 0th-order photons, dispersed photons ±1st-order photons. 0th-order photons
represent the spatial image of the source, higher order photons the spectral information.
It has to be kept in mind that 0th-order photons are often affected by pile-up. This is an
observational phenomenon which can occur with X-ray photon counting CCDs. Simply
put, pile-up is the inability of a CCD to distinguish between single and multiple photon
detection events within a readout frame. Two scenarios have to be considered here:

• Multiple photons hit the detector within a readout frame and the cumulated sum
of the photon energies exceeds the limit of the energy bandpass. Then the readout
software will reject the detection for the respective readout frame and zero counts
are detected.
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• Multiple photons hit the detector within a readout frame and the cumulated sum
of the photon energies does not exceed the limit of the energy bandpass. The
detector software will report a single count with an energy equal to the sum of the
individual energies.

In either case, pile-up will lead to an underestimation of the incident source count rate.
The brighter the source the more pile-up has to be considered. In Sec. 3.3.1, I discuss
the implicated mathematical and statistical challenges in more detail.



3Statistical Background

3.1 Basic Statistical Concepts

In this chapter, I will introduce some basic concepts which are important for the statisti-
cal analyses I conducted throughout my PhD-research. Especially this first section might
appear as too basic and textbook-like, but I nevertheless deem it to be an important part
of this thesis. During my PhD-studies, I had the impression that in parts of experimental
physics, statistics is considered to be a subordinate subject. Thus, when it comes to
probability theory, I sometimes noticed subtle misconceptions. To address this issue,
I will first introduce some very basic definitions of probability distributions. Later, in
Sects. 3.2, 3.3 and 3.3.1, I will discuss some of the statistical tools that were necessary
to analyze the given light curves of Sgr A*.

In all three manuscripts I analyzed distribution functions, continuous flux density
distributions in the case of submm and radio data, discrete count rate distributions in
the case of X-ray data. Some of the underlying questions are:

• What is the probability of observing a certain flux density or count rate? (This is
more a question of descriptive statistics.)

• Which model and which model parameters describe the probability function? (This
question belongs to the field of inferential statistics.)

Let me first begin with the very basic question: What is a probability? For discrete values,
this question is straightforward to answer. The probability is described by a function fX

which assigns each (discrete) value x, i.e., each possible outcome of an experiment, a
certain probability between zero and one. This function is called the probability mass
function (PMF),

fX(x) = Pr(X = x) , (3.1)

33
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and X is called a random variable. Of course all probabilities must add up to one (there
is a 100% chance that any of all possible events will occur). As a simple example, one
may write down the PMF of a fair six-sided dice as

Pr(X = i) =
1
6

for i = 1, 2, . . . , 6. (3.2)

Another example of a PMF is the probability of observing n photon counts within a
certain readout cycle or time bin. For instance, steady, low count rate processes are
often described by a Poissonian PMF

Pr(X = x) =
λx

x!
exp(−λ) , (3.3)

where λ is both the expected value and the variance of the distribution.

For continuous random variables, the concept of probabilities is slightly different. The
probability that a random variable takes exactly one value is in fact -leastways due to
uncertainties- zero (How big is the probability that an object is observed with a flux density
of 3 Jy? Zero, as the flux density will never be exactly 3 Jy). One can only define the
probability of a value falling into a specific range of values as

Pr(a ≤ X ≤ b) =
∫ b

a
fX(x)dx . (3.4)

Then fX(x) is called the probability density function (PDF). This function has to be nor-
malized, i.e.,

∫ ∞
−∞ fX(x)dx = 1, always non-negative and of course integrable. Considering

an infinitesimally small interval (a, b), one can also formally write for the PDF

fX(x) =
dPr
dx
. (3.5)

Closely related to the PDF is the so-called cumulative distribution function (CDF). This
function gives the probability of a random variable being less or equal a certain value x
(How big is the probability that I observe 3 Jy or less?):

FX(x) = Pr(X ≤ x) (3.6)

Thus, the CDF is given by the integral over the PDF:

FX(x) =
∫ x

−∞
fX(x)dx (3.7)

It is often useful to consider the complementary question, namely what is the probability
that a random variable is above a certain value:

S X(x) = Pr(X > x) = 1 − FX(x) (3.8)

This function is called the complementary cumulative distribution function (CCDF) or
the survival function. Later we will see that, e.g., for power-law distributions, it is more
convenient to work with the CCDF than with the CDF.
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In descriptive statistics, the task is often to obtain model-free estimators either for the
PDF or the CDF of a given sample of random variables. PDFs have the main advantage
that their meaning is often directly and intuitively understandable. For instance, the
statement “The probability that Sgr A* exhibits a flux density between 2.5 and 3.5 Jy is
50%” might be considered as easier to understand than the statement “The probability
that the flux density is less than 2.5 is 35% and that it is less than 3.5 Jy is 85%”. Without
claiming general validity, I tend to say that human beings think more in PDFs than
in CDFs. This might also be caused by the fact that the PDF of a standard normal
distribution, namely

f (x) =
1√
2π

exp
(
− x2

2

)
, (3.9)

is well known and easy to understand, whereas its CDF, given by

F(x) =
1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt =

1
2

[
1 + erf

(
x√
2

)]
, (3.10)

does not appear to be similarly intuitive. Additionally, the graph of a PDF often tends
to be easier to interpret and seems to give more directly tangible information than
the corresponding CDF (see Fig. 3.1). Nevertheless, the use of a CDF has one major
advantage compared to a PDF: it is directly accessible from the data without additional
choices and biases. To construct an estimator for a PDF, two of the most commonly
applied techniques are histograms and kernel density estimations (KDEs). A histogram
of N samples is defined by its j bins, each of which contains ci observations. For a
histogram, it holds that:

N =
j∑

i=1

ci . (3.11)

It is easy to understand that the number of bins j is a crucial parameter in the con-
struction of histograms. If j is chosen too low, the PDF estimator tends to over-smooth
potentially interesting features of the data. Choosing a too high j leads to a clustered
histogram with many spikes and empty bins. Estimating the best number of bins for a
histogram is its own field of research and has exhaustively been discussed in, e.g., Knuth
(2006) or Shimazaki and Shinomoto (2007). KDEs are subject to a similar problem. A
KDE is given by

f̂ (x) =
1
nb

n∑

i=1

k
( x − xi

b

)
(3.12)

with a kernel k and a bandwidth b. Again, the obtained estimator depends on the
made choices, i.e., the chosen kernel and the smoothing bandwidth (Shimazaki and
Shinomoto, 2010). Both applications, histograms and KDEs, therefore always go together
with information loss and biases. Conversely, CDF estimators can be constructed as
functions, which take the observations as only input parameter. If X is a sample of n
random variables given by an observation, an expression for the empirical CDF is given
by

Fn(x) =
1
n

n∑

i=1

1{Xi ≤ x} (3.13)
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Figure 3.1: Comparison of the visual impression of probability density functions (PDFs) and
cumulative distribution functions (CDFs) for a triangular (left side) and a standard normal
distribution (right side). In the upper panels, the respective PDFs are shown, in the bottom
panels both CDFs. The PDFs are visually and intuitively distinguishable, whereas this is more
difficult for the CDFs. That is one of the main reasons for using PDF estimator when visualizing
data, whereas CDF estimators are mathematically more informative (see text for details).

where

1{Xi ≤ x} =


1 Xi ≤ x
0 else

(3.14)

is the indicator function. No additional choices about other parameters such as number
of bins, kernel selection or bandwidths have to be done and the complete information
of the observed random variables is preserved. Because of this property, CDFs are
preferably used to define distance metrics between probability distributions or their
realization in form of a given sample of random variables. Popular applications of
CDF-based distances are, e.g., the Kolmogorov-Smirnov (Kolmogorov, 1933) or the
Anderson-Darling (Anderson and Darling, 1952) test.

Inverse transform sampling

The CDF can also be used to draw random numbers from the underlying distribution
if the CDF is invertible, i.e., if we are able to write down CDF−1. This is called inverse
transform sampling or the inversion method. The procedure for generating n samples X
can be given as follows:
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1. Draw a random number u from the uniform distribution between [0, 1]

2. Calculate x =CDF−1(u)

3. Repeat n times

Algorithm 3.1: Scheme for inverse transform sampling. Knowing the cumulative distribution
function (CDF) of a probability distribution allows for generating random numbers from that
distribution.

The random variables X will follow the distribution given by its CDF (Devroye, 1986).
As I will show later (Sec. 3.3 about Bayesian inferential statistics), it is often very useful
to be able to create simulated data from a given model. If the CDF of that model is
known, inverse transform sampling can be conveniently used as mock data generator.

Distribution fitting, maximum likelihood estimation (MLE)

In the last paragraph of this section, I want to briefly discuss a widely used method to
estimate the parameters θ of a PDF model p from a set of given samples x. (To take up
the earlier introduced nomenclature, this is part of inferential statistics.) Without loss
of generality, I assume a one-dimensional sample, i.e., there is one quantity which is
observed multiple times. If one wants to estimate the best fit parameters of an assumed
PDF, one might be tempted to create a histogram or KDE as introduced above, interpret
this as a function p(x; θ) in an (x, y)-plane and perform an ordinary curve fitting routine,
for instance a minimum chi-square estimation. For several reasons, this is not the
mathematically correct approach though. First, least square fitting assumes that the
errors of a data point are symmetric around zero. This cannot be true for a function
which is only allowed to take non-negative values. Secondly, least square fitting expects
the different data points to be independent and identically distributed (i.i.d.). This is
also not true for a probability distribution which has to be normalized (for a histogram
that means, if the heights of all bins up to the second last are known, the heights of the
last bin is automatically determined as the sum of all bin heights has to be one). Thus,
curve fitting techniques are not applicable for PDFs. Instead, one tries to maximize the
so-called likelihood function L, defined as

L(x|θ) =
n∏

i=1

p(xi|θ) . (3.15)

L describes the joint probability of observing x given a model described by its PDF with
parameters θ. The greater the value of the product, the more likely it is that the data
was “generated” from the assumed model. The maximum of L can either be found by
analytically solving the equations

∂L
∂θi
= 0 , (3.16)

or, if these equations have no analytical solution, by numerically solving Eq. 3.16 by
varying θ. Often it is more convenient not to use the likelihood function itself, but
its logarithm, the log-likelihood ln(L). This has the computational advantage that the
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product as given in Eq. 3.15 becomes a sum, which is numerically easier to handle:

ln(L(x|θ)) =
n∑

i=1

ln (p(xi|θ)) . (3.17)

3.2 Power-law Distributions

Power-law distributions are omnipresent not only in natural but also in social sciences.
From the energy of solar flares (Lu and Hamilton, 1991), the diameter of moon craters
(Young, 1940), the initial mass function of stars (Salpeter, 1955), the magnitude of
earthquakes (Gutenberg and Richter, 1956), the size and duration of neural avalanches
(Friedman and Landsberg, 2013), the distribution of wealth in modern societies (Pareto,
1964), Zipf’s law of the frequency of words in languages (Powers, 1998) to the number
of links to websites in the world wide web (Adamic et al., 2000): power-laws seem to
able to describe a wide range of different phenomena. Additionally, as I will also show
in this thesis, the flux density distribution of flares from Sgr A* at different wavebands
are also well modeled with power-law distributions (Witzel et al., 2012; Neilsen et al.,
2015; Subroweit et al., 2017, 2020). In this section, I will therefore discuss general
mathematical properties of power-laws.

Our daily life is based on subconsciously assessing probabilities of certain events and
the evolution has giving us a decent sense for this assessments. For instance, we know
how much time it approximately takes to do the grocery shopping at the supermarket.
We have an intuition about how many people might approximately attend to the talk
we will give in the lecture hall or how likely it is that is rains tomorrow. But human
common sense is in some situations also subject to cognitive biases and may fatally
fail. In my opinion, this is often caused by the lack of intuition toward processes
where exponential growth or shrinkage leads to “non-Gaussian behaviour”, i.e., where
the underlying probability distribution differs significantly from a normal distribution.
There is a famous example which is often given when it comes to misconceptions in
understanding the properties of heavy-tailed, e.g., power-law distributions: we imagine
a situation where a room is filled with 50 people. Now one estimates the average height
µ of all attendants according to µ = 1/N

∑
xi. Some people will be taller, some shorter,

but one would possibly find that on average the people are about 1.75 m tall with a
standard deviation σ =

(
1/N

∑
(xi − µ)2)1/2 of, say 20 cm. Now the tallest person on

Earth enters the room. Let us assume he or she is 2.5 m tall. It is easy to calculate
that the average height of all people inside the room has only increased by less than
2 cm to now approximately 1.77 m. The updated standard deviation is 22 cm.1 Now
we make another evaluation: we calculate the average income off all people inside
the room. Some may be professors, some construction workers, some unemployed, so
there is some span in their income. Let us assume we have determined the average
income to be 40000 C per year with a standard deviation of 20000 C. Now the richest
person on Earth enters the room. Say, his or her annual income is 3 billion C. Now the
statistics yields that the average income in the room increased to about 59 million C per
year with a standard deviation of 420 million C. The question arises what commonly

1The update standard deviation σn is given by σn =
(
(n − 2)σn−1 + (xn − µn)(xn − µn−1)

)
/(n − 1)
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used statistical descriptions, like the mean or the standard deviation, really tell about
the underlying distribution of income and how we can make predictions from our
observations. For instance, if another person enters the room, what properties are
expected? A good bet would be to say the person is probably around 1.8 m tall, but it is
obviously not a good assumption that this person earns approximately 60 million C per
year! This “odd” behavior of the income statistics stems from the underlying distribution
of income, namely the Pareto or power-law distribution. Similar statistical caveats
have to be considered, to come back to the astrophysical topic of this thesis, when the
flaring activity of Sgr A* is statistically analyzed. I will later show that the flux density
distributions also follow power-laws. For that reason, one has to keep in mind that
typical behavior, as expected by a normal distributed processes, cannot be assumed for
Sgr A*’s flaring activity. Thus, some questions cannot be answered with common sense,
i.e., in a Gaussian manner. For instance, if we have previously observed a light curve
and have found that the maximum value is, e.g., 4 Jy, how likely is it that we observe a
flare twice as bright in the future? And if we observe a radiation outburst of, say, 10 Jy,
how does this newly obtained value change the statistical description of the emission
process? Is the old model still valid or does it need to be adjusted or even completely
rejected? And finally, if we assume that a power-law process is at work, how can we
estimate the parameters of that distribution? To be able to answer this questions one
needs to get familiar with the basic math of power-law distributions. Therefore, I will
briefly describe some of their statistical properties in the following paragraphs.

The PDF of a simple power-law is given by

PDF(x) ∝ x−α . (3.18)

This function approaches infinity for x→ 0 and is not defined for x = 0 (division by zero).
Thus, there has to be a lower bound xmin only above which the power-law distribution is
defined. Because a PDF has to normalized, i.e., the integral over the whole domain has
to be unity, the PDF must contain a normalization constant C. This constant can easily
be calculated:

∫ ∞

xmin

PDF(x) = C · x−α+1

−α + 1

∣∣∣∣∣∣
∞

xmin

= C · −x−α+1
min

−α + 1
!
= 1 (3.19)

⇒ C =
α − 1
x−α+1

min

. (3.20)

Thus, the complete PDF of a power-law writes as

PDF(x) =


0 for x ≤ xmin
α−1
xmin

(
x

xmin

)−α
otherwise .

(3.21)

By the definition in Eq. 3.7, it then follows that the CDF of a power-law is given by

CDF(x) =


0 for x ≤ xmin

1 −
(

x
xmin

)−α+1
otherwise .

(3.22)

and thus the respective CCDF as given in Eq. 3.8:


0 for x ≤ xmin(
x

xmin

)−α+1
otherwise .

(3.23)
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The result is remarkable and a special property of power-laws: the survival function of a
power-law is a power-law again, the scaling index is just shifted by one. This is a very
useful relation because, as we have seen in Eq. 3.13, the empirical CDF can directly be
constructed from a given sample without further assumptions or information loss. Thus,
if (1 − CDF) yields a power-law with a scaling index of β, the slope of the underlying
PDF is automatically determined to be β − 1.

Moments of a power-law

Some surprising properties of power-laws can be understood when looking at the raw
moments, i.e., the moments about zero, of these distributions. The nth raw moment is
defined as:

mn = ⟨xn⟩ =
∫ ∞

xmin

xnPDF(x)dx =
α − 1
x−α+1

min

∫ ∞

xmin

x−α+ndx (3.24)

=
α − 1

x−α+1
min (−α + n + 1)

· x−α+n+1

∣∣∣∣∣∣
∞

xmin

(3.25)

It can be seen, that Eq. 3.24 only converges, if the condition α > n + 1 is satisfied. Then
the nth moment is given by

mn =
α − 1
α − n − 1

xn
min (3.26)

where m1 is the expression for the mean value. Thus, for α < 2 the mean and all higher
moments are infinite, for 2 < α < 3 the mean is defined, but the distribution has an
infinite variance. This is the reason for the “strange” results we obtained for the income
example in the introduction of this chapter. If a quantity (as wealth and income) is
power-law distributed and the slope is shallow enough, it is not meaningful to calculate
the sample mean or variance.

For the sake of completeness I will also give the analytical formula for the nth central
moment, i.e., the moment about the mean m1, namely m′n =

∫ ∞
xmin

(x − m1)nPDF(x)dx. One
can show (Papoulis, 1984) that the following relations hold:

m′2 = m2 − m2
1 (3.27)

m′3 = m3 − 3m1m2 + 2m3

m′4 = m4 − 4m1m3 + 6m2
1m2 − 3m4

1 (3.28)

Thus, with Eqs. 3.26 and 3.27 we have a closed-form expression for the mean, the
variance, the skewness and the kurtosis of a power-law.

MLE for power-laws

The likelihood function of a power-law is given by

L(xmin, α) = p(x|xmin, α) =
n∏

i=1

α − 1
xmin

(
xi

xmin

)−α
. (3.29)
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Taking the logarithm we obtain the following expression for the log-likelihood:

logL = log p(x|xmin, α) = n log(α − 1) − n log xmin − α
n∑

i=1

xi

xmin
. (3.30)

Here, the crucial point is that the PDF is only defined for values xi ≥ xmin, otherwise it is
zero (see Eq. 3.21). As a consequence, there is neither an analytic expression for the
maximum likelihood in respect to xmin nor a numerical way of maximizing the likelihood
function for this parameter. The larger xmin becomes, the larger will be L. This means
that the MLE for xmin will always yield the highest values of all xi. As a result, only for a
fixed value of xmin an MLE for α can be given:

∂L
∂α
= 0 (3.31)

⇒ α = 1+n


n∑

i=1

log
xi

xmin

 (3.32)

The best fit value for xmin has to determined by other means.

Slope of a power-law

Power-laws are often identified by plotting their PDF estimator (histogram or KDE) in a
log-log diagram. The PDF transforms to a linear relation with a slope m = α:

log PDF(x) ∝ −α log x (3.33)

The same applies to the log-log plot of the (information-preserving) CCDF, the slope
now is β = α + 1. Thus, a naive power-law slope estimation would be a linear fit in
the log-log space. However, in Sec. 3.1, I have argued that it is not the mathematically
correct approach to apply curve fitting techniques to distributions. Nonetheless, one
could argue that it is sufficient for a rough estimate of the power-law slope. In the
following, I will show that the slope in a log-log diagram only represents the power-law
scaling index, if we have a pure, not modified power-law. For other types of power-laws,
namely shifted, bound and exponentially truncated power-laws (I will define this terms
later) the slope of the log-log plot may significantly deviate from the scaling index α
(see Fig. 3.2). Therefore, it should be avoided to identify power-law parameters by
“graphical” means.

Shifted power-law

A power-law distributed random variable might be superimposed by a constant shift
s. Thinking in terms of a random number generator, this means that for every drawn
random value a constant s is added or subtracted. Such a situation is physically often
given; one can think about power-law distributed flux densities of an object that are
enhanced by some constant background radiation. Flares of Sgr A* are a concrete
example: the observed flux densities of a flare come on top of the steady quiescent
emission. An opposite case can be imagined as a power-law process that is attenuated
by some constant value. The resulting distribution can be called a shifted power-law
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Figure 3.2: Comparison of survival functions of different power-law types. All shown power-
laws have a scaling index α = 4.5 and left side limit xmin = 1. The blue solid line shows a pure
power-law, all other power-laws are generated with the following parameters: shifted power-law
(dashed orange line): s = 1, bounded power-law (dotted green line): xmax = 15, exponentially
truncated power-law (dash-dotted red line): λ = 0.2. Although all power-laws share the same
“slope” α, it is obvious that this parameter cannot be estimated by linear regression in the log-
log-plane. Depending on the type of power-law, the “true” slope is either identifiable in the left
or right tail. Combinations of deviations from a pure power-law (e.g., a shifted power-law with
an upper bound) can even lead to a situation where the complementary cumulative distribution
function (CCDF) is completely S-shaped, without any linear section. The plot does deliberately
not show the analytical functions but empirical CCDFs from randomly generated data so that
the under-sampling in the high end tail becomes visible.

and its PDF is given by

PDF(x) =


0 for x ≤ xmin + s

C1 ·
(

x−s
xmin−s

)−α
otherwise .

(3.34)

Following basic definitions, one obtains for the CDF of a shifted power-law the following
expression:

CDF(x) =


0 for x ≤ xmin + s

1 −
(

x−s
xmin

)−α+1
otherwise .

(3.35)

In the case of a shifted power-law, the aforementioned linearity of the power-law in a
log-log plane (Eq. 3.33) does not hold anymore. If we take the PDF, the logarithmic
application gives

log PDF(x) ∝ −α log x − α log
(
1 − s

x

)
, (3.36)

and thus no longer a liner relation. Again, it can be seen that other fitting methods than
linear regression in the log-log space have to be used to fit general power-law models.
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Bounded power-law

Another modification of a pure power-law is the introduction of a fixed upper limit for
the possible outcome of the stochastic process. This then yields a distribution that I call a
bounded power-law. It can be imagined as a stochastic process with a physically limited
reservoir from which random variables can be drawn. For instance, the size of forest
fires have often been modeled with a power-law distribution (Malamud et al., 1998)
and it is obvious that the size of such a fire is limited by the largest connected forest
area. Another example, from the context of my work, is that it has been proposed by
Neilsen et al. (2015) that the X-ray count rate distribution follows a bounded power-law
(which I questioned in my publication because no physical reasoning was given, see
Chap. 5). The PDF of a bounded power-law is given by

PDF(x) =


0 for x ≤ xmin and x ≥ xmax

C2 · x−α otherwise ,
(3.37)

its CDF by

CDF(x) =


0 for x ≤ xmin and x ≥ xmax
x−α+1−x−α+1

min
x−α+1

max −x−α+1
min

otherwise .
(3.38)

Exponentially truncated power-law

Power-law distributions can show a decay in their tail. If this decay is described
by an exponential, the resulting distribution is called exponential truncated power-
law. Although, this kind of distribution can certainly also be introduced in a strictly
mathematical way, I prefer to see them as a trade-off between a bounded and a pure
power-law: in some situations a power-law distributed quantity is observed where it
makes sense to introduce a sharp upper limit as in a bounded power-law. Often, though,
it is not justifiable to define such a hard upper cutoff. On the other hand, I have shown
that for power-law exponents below some threshold (three and two), the variance and
the expected value, respectively, become infinite. For many real world examples, this
seems unrealistic. A prototype for such a situation would be the distribution of group
sizes of herd animal populations (Minasandra and Isvaran, 2018): neither an upper
limit can be given nor infinitely large populations can be expected. Thus, an exponential
truncation seems a sensible modification to “tame” the power-law’s tail. Mathematically,
the PDF of this distribution is given by

PDF(x) =


0 for x ≤ xmin

C2 · x−α exp(−λx) otherwise .
(3.39)

The CDF is expressed via the generalized incomplete gamma function Γ(a, b,∞) as

CDF(x) =


0 for x ≤ xmin
Γ(−α+1,λ·x)
λ−α+1 otherwise .

(3.40)

In Subroweit et al. (2020) (Chap. 5), I demonstrated a concrete use case for an expo-
nentially truncated power-law. I analyzed the X-ray count rate distribution of Sgr A*
and found that using this kind of distribution yields a very canonical explanation of the
observed emission statistics.
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3.3 Bayesian Distribution Fitting, Markov Chain Monte Carlo
(MCMC) and Approximate Bayesian Computation (ABC)

Bayesian statistics and Markov Chain Monte Carlo (MCMC) methods have evolved to
become an important tool in astronomy during the past two decades. Fig. 3.3 shows the
immense growth of popularity of these methods in astronomical papers since the early
2000s. In this section I will briefly explains these methods and demonstrate why they
are so beneficial in modern astrophysics.
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Figure 3.3: Number of refereed papers published on the Astrophysics Data System (ADS) with
the keywords “bayesian” (red) and “mcmc” (blue). The almost exponential rise of publications
containing these keywords in the last 20 years is remarkable and shows the increasing importance
of these fields of statistics.

Let me first start to explain one of the main differences between Bayesian and fre-
quentist statistics: the concept of probability. In the frequentist approach, the probability
of an event A, pA, is the relative frequency of the event A in many trials. If n is the
number of trials and nA is the number of events where A is true, the frequentist defi-
nition of the probability of A is given by pA = na/n. In the frequentist approach, the
probability has a true, yet at the beginning of an experiment hidden, value which can be
determined by following the law of large numbers. This means that if an experiment
is repeated a large number of times, the relative frequency of an event will approach
its true probability: pA = lim

n→∞ na/n. Vice versa, this definition of a probability leads

directly to the concept of the likelihood function L = p(x|Θ). In the frequentist’s world,
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a system is described by a model with its true parameters θ and an experiment randomly
yields measurements or data x drawn from that model. The likelihood function thus
answers the question How likely is the observed data x given the system’s parameter’s θ?.
The Bayesian concept of probability differs from the frequentist’s definition. In Bayes
theory, the probability for an event A is the reasonable expectation that the event A
occurs, data updates the degree of belief for the probability pA. As a consequence, the
concept of true, only hidden, parameters θ of a system is weakened. The parameters
itself become random variables with some probability after the observation of events x.
Thus, an important quantity in Bayesian statistics is the posterior distribution p(Θ|x)
which answers the question How likely are system parameters Θ given the observed data x?.

Closely related to the Bayesian concept of probability is Bayes’ theorem which I will
give in a form which is required later:

p(θ|x) =
p(θ)p(x|θ)

p(x)
(3.41)

Here, p(θ|x) and p(x|θ) are the aforementioned posterior and likelihood functions, p(θ)
is called the prior and p(x) the evidence. The prior represents the prior belief of the
parameters θ as a distribution2, the evidence is the total probability of observing x
irrespective of the knowledge about θ. Generally p(x) is often difficult to calculate as
it requires the integration about all possible states of a given system. This might be
the reason why Bayesian inference, though known since more than 250 years, has just
recently become so popular. Some Bayesian evaluations tend to be computationally
more expensive than frequentist approaches. The steadily increasing availability of
computational power in the past 50 years has certainly led to a revival of Bayesian
methods.

Another important development, which is closely related to the increase of computa-
tional power, is the use of Monte-Carlo-simulation in mathematical problems. Up to the
first half of the 20th century, most physical systems were analytically analyzed. Monte-
Carlo-simulations use methods of repeated random sampling and stochastic variables,
e.g., to estimate uncertainties, perform numerical integration and draw random numbers
from probability distributions. One important application are Monte-Carlo-Markov-chain
algorithms which can sample from a given distribution, the so called target distribution.
This is done by constructing a Markov-Chain with properties of the desired target dis-
tribution. Markov-Chains describe “memoryless” stochastic processes where different
states of that process are connected with each other through transition probabilities.
In this context “memoryless” means that the knowledge of just a few previous states
is sufficient to make predictions about future states. This condition for the chain is

2I want to point out that I deem the introduction of priors as one of the main advantages of Bayesian
statistics. Although, it seems subjective to introduce prior knowledge or beliefs into an equation, in my
opinion this is a more “honest”, objective way compared to some classical frequentist approaches. In
the latter case, often boundary conditions and initial guesses are introduced or solutions are dismissed
as “non-physical”. That means, also frequentist statistics often uses implicit a priori beliefs without an
underlying clearly defined mathematical concept. I my opinion, the explicit use of priors in Bayesian
inference makes the approach more “objective”.
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also called the Markov property. Most chains need some number of initial transitions
between different states until they reach the Markov property or so-called equilibrium
state. This is often referred to as the “burn-in”-time. Let me give an example of an
early and famous MCMC-algorithm, which is called the Metropolis-Hastings-algorithm
(Hastings, 1970). It can be used to draw samples from an arbitrary target distribution
p(ϕ). We define a transition distribution, Q(ϕ|ϕ′), which gives the probability of a state
transition between ϕ′ and ϕ. Often a symmetric transition distribution is chosen, so that
Q(ϕ|ϕ′) = Q(ϕ′|ϕ). Then the algorithm is only called Metropolis-algorithm. We construct
our Markov-chain as follows:

I Initialize random state ϕ

II Propose new state ϕ→ ϕ′ with Q(ϕ′|ϕ)

III Accept new state with probability a(ϕ′, ϕ) = min
[
1, p(ϕ′) Q(ϕ′ |ϕ)

p(ϕ) Q(ϕ|ϕ′)
]

IV If ϕ′ is accepted, push it to sample chain, else go to step II)

V Set ϕ = ϕ′, go to step II)

Algorithm 3.2: Schematics of the Metropolis-Hastings algorithm.

It can be shown that this algorithm constitutes a random number generator for the
target distribution p(ϕ), a chain of stochastic samples from p will be generated.

I have now introduced some basic concepts of Bayesian inference and MCMC sam-
pling. The question remains how this is useful for an astronomer having to deal with a
probability distribution. To give an astrophysical example of what the posterior distri-
bution actually is, the following situation can be imagined: given is a light curve x of
an emitting source and we want to estimate the parameters of an assumed generative
process with parameters θ. We are not only interested in the best fit parameters, but
also in their uncertainties. The solution is given by the posterior distribution p(θ|x). If
we knew that distribution we would know about, e.g., the mean (best fit) or standard
deviation (uncertainty) values of θ. With Bayes theorem and the MCMC-algorithm, we
are able to sample from p(θ|x) and thus numerically estimate it. The only difference to
the MCMC sampling from a simple target distribution as shown before, is that we now
replace the target distribution with the p(θ|x) as given in Eq. 3.41. If we plug that into
the MCMC algorithm, we obtain an acceptance ratio

a(θ′, θ) = min
[
1,

p(θ)p(x|θ) Q(θ′|θ)
p(θ′)p(x|θ′) Q(θ|θ′)

]
. (3.42)

It is important to note that the evidence term p(x) as given in Eq. 3.41 has canceled
out as it appears both in the numerator and the denominator of the fraction. Thus, the
often very expensive calculation of p(x) is no more necessary in the MCMC algorithm.
The priors for θ can be chosen according to the prior knowledge of their parameters,
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estimated from an independent previous observation.3 In this context, “independent”
could mean an estimate from another observation campaign (ideally with another
instrument), a theoretical prediction and so forth. If no prior knowledge about θ is
available, uninformative priors have to be used. Having chosen the prior distribution,
one can now utilize the likelihood function to generate samples from the posterior using
Alg. 3.2. Figure 3.4 depicts a simple example of the evolution of different sampler during
an MCMC run.
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Figure 3.4: Markov Chain Monte Carlo (MCMC) samples produced by the Metropolis-Hastings
algorithm with 16 walkers per parameter. In this simple example, a normal distribution is fit to
a randomly generated sample with parameters µ = 1 and σ = 2. For each parameter, uninform
priors were used. It can be seen that after the “burn-in” phase of approximately 60 iteration
steps, the walkers have reached their equilibrium state. The Markov chains are memoryless, i.e.,
independent from their previous states. No matter of the initial starting position, each walker
generates samples from the posterior distribution.

3Sometimes a shortcut for constructing the priors of the parameters θ is used: the best fit parameters
are estimated using some traditional, frequentist optimization, e.g., MLE and these estimates are taken
to form informative prior distributions for θ. Strictly taken this violates the condition for Bayes’ theorem,
namely that the prior has to come from prior knowledge. The given data cannot be utilized twice to both
get the prior and the posterior. Although seen in some publications, this is considered bad practice and
called “double-dipping”.
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Intractable likelihoods and ABC

A crucial point to perform these kind of MCMC analyses is the knowledge of the
likelihood function. In the previous paragraphs, I have assumed that one is able

• to write down the likelihood function and

• to calculate it with reasonable computational expense.

The first point might often be satisfied: either one knows an analytical expression
for the likelihood or is able to calculate it via its basic definition (see Eq. 3.15). If
two or more probability densities are given and the convolution integrals cannot be
solved analytically, it is also possible to numerically calculate them and thus create
an “empirical” likelihood function. For function fits, it can furthermore be shown that
the logarithmic likelihood function is simply half of the negative χ2-value (Berkson
1980 and references therein). But what can be done if the likelihood-function cannot
be written down or cannot be efficiently calculated? Examples for the first case are
some quantile distributions (McVinish, 2012), which are only defined via their quantiles
without an explicit probability density, power-laws, as we have previously seen because
there is no MLE estimator for the parameter xmin (see also Pilgrim and Hills 2021)
or, in general, many dynamical evolution processes. For the latter case, it is easy to
imagine that, especially for high dimensional systems, the calculation of the likelihood
function tends to be time consuming if not completely unreasonable (this is sometimes
called the curse of dimensionality). In Subroweit et al. (2020) (paper II, Chap. 5), I
describe a situation where the likelihood function for an X-ray count rate distribution
is given by a complicated mixture of multiple probability densities, Poisson noise and
instrumental pile-up effects. This likelihood can certainly be considered as intractable.
Here, a relatively new Bayesian technique comes into play, called Approximate Bayesian
Computation (ABC). Imagine the following situation: given is some dataset of discrete
samples. We have an intractable likelihood, but a generative model, i.e., a simulator,
which can produce random samples x with the given parameters θ. Rubin (1984)
propose the following algorithm:

I Draw a proposal θ′ from the prior p(θ)

II Simulate data x′ with the generative model and θ′

III Accept θ′ if x′ = x

IV Go to I)

Algorithm 3.3: Schematics of a simple Approximate Bayesian Computation (ABC) rejection
algorithm for discrete data. Samples are accepted if the simulation yields exactly the same result
as the observed data.

As all proposals, which do not fulfill the condition x′ = x, are rejected, this scheme is
also called simple rejection. Rubin (1984) argue that this algorithm is equivalent to
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sampling from the posterior:

p
(
θ|(x′ = x)

)
= p(θ|x) (3.43)

This means that without knowing and calculating the likelihood function we are able to
draw samples from the posterior distribution. This is therefore also called likelihood free
inference. Of course, the proposed algorithm has two major disadvantages: first, it only
works with discrete data, as it needs an exact identity between simulated and observed
data. Secondly, it is also computational ineffective as the acceptance ratios tend to be
small. Most proposed parameters will be rejected and the sampler chain only slowly fills.
To circumvent these problems, Pritchard et al. (1999) used a slightly modified approach.
By defining some distance metric ρ(x, y) between two datasets x and y, the algorithm is
given by

I Draw a proposal θ′ from the prior p(θ)

II Simulate data x′ with the generative model and θ′

III Accept θ′ if ρ(x′, x) ≤ ϵ
IV Go to I)

Algorithm 3.4: Schematics of a simple Approximate Bayesian Computation (ABC) rejection
algorithm for continuous data. Samples are accepted if the simulation yields approximately the
same result as the observed data.

Using this scheme, we now sample from

p
(
θ|ρ(x′, x) ≤ ϵ) ≈ p(θ|x) for small ϵ , (3.44)

thus, from an approximation to the true posterior. What values of ϵ are small enough to
have a good approximation depends on the specific case. Anyhow, this algorithm is now
also applicable to continuous data.

Nevertheless, this algorithm may also lack computational efficiency. Depending
on the size of ϵ, the rejection rate still might be high. Also, the distance between
observed and modeled data has to be calculated in each iteration step. In the case
of one-dimensional data this could for instance be the Kolmogorov-Smirnov or the
Anderson-Darling distance, to name just two examples. In general, the calculation of
the distance can still be expensive if the the dataset is large in numbers or dimensions
(I mentioned the so-called curse of dimensionality earlier). Therefore, Beaumont et al.
(2002) proposed an updated version of an ABC algorithm. The idea is that if one finds a
summary statistics S (x), which summarizes the data x sufficiently enough, one can use
the distance between summary statistics instead of the data itself, which can significantly
reduce the computational effort:

I Draw a proposal θ′ from the prior p(θ)

II Simulate data x′ with the generative model and θ′
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III Calculate the summary statistics S (x′)

IV Accept θ′ if ρ(S (x′), S (x)) ≤ ϵ
V Go to I)

Algorithm 3.5: Schematics of an Approximate Bayesian Computation (ABC) rejection algorithm
using summary statistics. Samples are accepted if the summary statistics of the simulation and
the observed data are approximately identical.

It can be shown that

p
(
θ|ρ(S (x′), S (x)) ≤ ϵ) ≈ p(θ|x) for small ϵ and sufficient S . (3.45)

The term sufficient is, of course, crucial in this context. Whether some data is decently
summarized by some statistics is case dependent. Nonetheless, to give a simple example,
it is obvious to see that two normal distributed samples are decently summarized by
their mean and some quantile. It is not necessary to compare the entire datasets, e.g.,
by a CDF-based metric.

It is beyond the scope of this thesis to give an exhaustive overview of the most
recent developments in ABC-based statistics. As a final example of an optimization
of the aforementioned algorithms, I want to mention another enhanced ABC-scheme.
All previously introduced procedures still may be subject to low acceptance ratios.
Marjoram et al. (2003) introduce a new approach which finally connects ABC with
MCMC methods. Their recipe can be summarized as follows:

I Initialize some initial θ

II Propose a new θ′ according to the proposal distribution Q(θ′|θ)
III Simulate data x′ with the generative model and θ′

IV Calculate the summary statistics S (x′)

V If ρ(S (x′), S (x)) ≤ ϵ go to VI, else return to II)

VI Accept θ′ with probability a(θ′, θ) = min
[
1, p(θ′) Q(θ′ |θ)

p(θ) Q(θ|θ′)
]

VII If θ′ is accepted, push it to sample chain, else go to II)

VIII Set θ = θ′ and return to II)

Algorithm 3.6: Schematics of an Approximate Bayesian Computation - Markov Chain Monte
Carlo (ABC-MCMC) algorithm using summary statistics. Samples from the approximated
posterior function are generated by Markov chains.

Conceptually, this algorithm closes the gap between ABC and classical MCMC ap-
proaches. ABC sampling is now performed via a Markov Chain. In the given scheme
the Markov Chain is implemented via the Metropolis-Hastings algorithm. Nevertheless,



3.3. BAYESIAN DISTRIBUTION FITTING, MARKOV CHAIN MONTE CARLO (MCMC)
AND APPROXIMATE BAYESIAN COMPUTATION (ABC) 51

the Metropolis-Hastings algorithm is just one among other procedures that fulfills the
Markov-Chain criteria. Many optimized algorithms have been developed in the last
15 years. For instance, ABC - Sequential Monte Carlo (SMC, Sisson et al., 2007) is
one of those schemes. The principal idea behind SMC to sequentially (i steps) create
populations of sampled parameters θn, i (each population contains n so called particles)
with successively decreasing thresholds ϵ0 > ... > ϵi ≥ 0. The particles of the first
population are drawn from the prior distributions, following populations are drawn
from the perturbed4 population. Therefore, the populations are supposed to sequentially
evolve toward the desired posterior distribution (see Fig. 3.5 for an example of an
ABC-SMC sampling). Good overviews and more explanations about ABC-SMC are, for
instance, given in Toni et al. (2009) or Beaumont (2010). Some examples for MCMC
and ABC libraries which I often used throughout the course of my PhD-studies are emcee
Foreman-Mackey et al. (2013), PyMC Salvatier et al. (2016) and pyABC Klinger et al.
(2018).
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Figure 3.5: Example of a Sequential Monte Carlo - Approximate Bayesian Computation (SMC-
ABC) sampling routine. The same data as in Fig. 3.4 is fitted, i.e., samples from a normal
distribution with µ = 1 and σ = 2. As a summary statistics, I used the 50th and 68th percentile,
P50% and P68%. The distance function was defined as L2-metric between the vectors (P50%, P68%)
of the original and the simulated data. A population size of 1000 was chosen and uniform priors
used. It can be seen that the 95th confidence interval of the approximate posterior distribution
contracts and converges increasingly with consecutive populations. The true posterior can be
considered as well approximated, the chosen summary statistics and metric as sufficient (see the
text for details).

4ABC SMC requires the use of a perturbation kernel. That means that an accepted particle is taken and
its parameter vector is randomized to sufficiently explore the parameter space
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3.3.1 Astrophysical Example of an Intractable Likelihood and ABC:
Pile-up on an X-ray CCD

In the previous section, I have motivated the use of ABC by intractable likelihoods.
Though I have not demonstrated yet how this was relevant in my concrete astrophysical
research. In the following, I will describe in more detail why ABC significantly facilitated
my statistical analyses. As mentioned in Sec. 2.2.1, X-ray observations with Chandra
are often affected by pile-up. Additionally, the X-ray count rate from Sgr A* are so low
that Poisson statistics has to be applied. Thus, both effects have to be incorporated into
a parametric description of the emission process. I will now show, how a likelihood
function for the X-ray count rate distribution had to be constructed, why this is a difficult
task and how ABC is relatively easy to implement for this kind of problem.

First, I want to address the problem of Poissonian photon noise in the field of X-ray
observations of Sgr A*. The observed count rates are in general very low, i.e., even for
the brightest flares the count rates rarely exceed 0.1 counts per second (30 counts in
a 300 s bin). Therefore, any estimate for the count rate distribution has to consider
Poisson statistics. Let dN/dr be the noise-free PDF of the count rate r, but r underlies
Poisson noise. Then the PDF for the observed variable r′ is given by

dN
dr′
=

∫
rr′

r′!
exp(−r)

dN
dr

dr , (3.46)

and the process is called a Cox-process. This formula is quite suggestive: the PDF of
the random variable r′ is a “poissonized realization” of the PDF of r. In principle, one
can now formulate a model for dN/dr (for instance, a truncated power-law), plug it
in into Eq. 3.46 and utilize the outcome for the likelihood function. Nevertheless,
one has to keep in mind that r is not the incident count rate Λi, i.e., the count rate
as theoretically expected from the emission model, but the pile-up reduced, observed
count rate. Following the official Chandra guidelines (see Subroweit et al. 2020 and
references therein), the fraction of photon counts which are lost due to pile-up, fd, can
be estimated by

fd = 1 −
(

exp(α − Λi) − 1
)

exp(−Λi)
αΛi

. (3.47)

Here, α is the grade migration parameter and Λi is the incident, that means the true
source count rate. The parameter α describes the probability p(e) ∼ αn−1, that an event e
is detected, when n photons hit the detector within a readout frame without exceeding
the energy limit. Often, α has to be determined as a free parameter through spectral fits.
Due to the faintness of Sgr A*, α can safely be assumed to be ∼ 1, though. Eq. 3.47 can
also be formulated in a slightly different way: if r is the observed count rate, it is given
by

r = Λi · (1 − fd(Λi)) . (3.48)

This is obviously true, as 1 − fd is the fractions of photons not lost due to pile-up. If all
photons were affected by pile-up, Eq. 3.48 would fully describe the relation between
observed and incident count rate due to pile-up. However, only non-dispersed, 0th-order
photons are affected by pile-up, for dispersed, higher order (mainly 1st-order) photons
pile-up is negligible. Thus, r is given by

r = r0 + r1 . (3.49)
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This means that if an observed, pile-up affected count rate r is given, one first needs to
know about the ratio of 0th to 1st-order photons. Then, one can calculate r0 and r1. For
the data I used, one empirically finds that the ratio of 0th to 1st-order photons is given by

Λi,0

Λi,1
= 1.6 . (3.50)

⇒ Λi,0 = 1.6Λi,1 and Λi,1 = 0.625Λi,0 , (3.51)

where the total number of counts Λi is, of course, given by

Λi = Λi,0 + Λi,1 . (3.52)

Thus, we have

Λi = 1.6Λi,1 + Λi,1 = 2.6Λi,1 and Λi = Λi,0 + 0.625Λi,0 = 1.625Λi,0 (3.53)

⇒Λi,0 =
1

1.625
Λi ≈ 0.6154Λi and Λi,1 =

1
2.6
Λi ≈ 0.3846Λi (3.54)

We can now bring Eqs. 3.48, 3.49 and 3.54 together to get a final expression for the
observed count rate r, given as a function of the incident photon count Λi:

r(Λi) =
(

exp(1 − 0.6154Λi) − 1
)

exp(−0.6154Λi) + 0.3846Λi . (3.55)

Thus, if we have a model for the PDF of the incident count rate dN/dΛi, we can write
down a formula for the noise-free, pile-up affected count rate distribution as

dN
dr
=

dN
dΛi

dΛi

dr
. (3.56)

Together with Eq. 3.46, which accounts for photon noise, we obtain for the observed,
piled-up up count rate

dN
dr′
=

∫
rr′

r′!
exp(−r)

dN
dΛi

dΛi

dr
dr . (3.57)

In the concrete case, I assumed that an exponentially truncated power-law with
dN/dΛi ∝ Λ−αi · exp(−λΛi) (see Eq. 3.39) describes the incident count rate. dΛi/dr
can be calculated according to Eq. 3.55. However, without writing down the final
equation, it is easy to see that the resulting PDF and the respective likelihood function
tends to be very unwieldy. In addition, to get the full description of the entire emission
mechanism, Eq. 3.57 has to be convolved with another Poisson distribution which
accounts for the quiescent background emission (due to the low count rates, pile-up can
be neglected for the quiescent emission). Thus, the calculation becomes computationally
very expensive, especially when repetitively computed hundreds or thousands of times
in an optimization routine. This is exactly what can been called an intractable likelihood
function and what initially motivated the use of ABC.

Let me now consider the given case within an ABC framework. I recall that for
implementing an ABC sampler, the knowledge of the likelihood function is not necessary,
the only requirement is the ability to simulate data according to a given model. Power-
law distributed random variables can efficiently be generated by inverse transform
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sampling because we know the analytical expression for the CDF (see Eq. 3.40 for an
exponentially truncated power-law). Applying pile-up corrections (as given in Eq. 3.55)
and Poisson noise is also straightforward. Thus, we can construct a random number
generator that simulates observational data according to the power-law emission model.
In each ABC iteration step, mock data is created, and the distance to the observed data
is calculated, to sample from the posterior of the parameters θ. The resulting fitting
routine is depicted in Fig. 3.6 and can schematically be summarized as follows:

• Generate incident count rate:
inverse transform sampling from power-law model→ Λi(θ)

• Simulate pile-up→ r(Λi)

• Apply Poissonian photon noise→ r′(r)

• Compare r′ with the observed data

This scheme can be plugged in into an efficient ABC sampler as described in Sec. 3.3.
In this specific case, the ABC approach is easier to implement and computational less
expensive compared to classical likelihood-based fitting routines.
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radiative model:
draw from power-law with parameters θ

incident count rate Λi

0th-order incident photons:
Λi,0 ≈ 0.6154Λi

1st-order incident photons:
Λi,1 ≈ (1 − 0.6154)Λi

0th-order count rate:
r0 = Λi,0 · (1 − fd(Λi,0)

) 1th-order count rate:
r1 = Λi,1

pile-up count rate:
r = r0 + r1

apply Poisson noise
total count rate: r′ = rpoi(r)

calculate distance to observed data

Figure 3.6: Scheme of the count rate simulation used in the Approximate Bayesian Computation
(ABC) sampling in Subroweit et al. (2020) (Chap. 5). It is easy to generate mock data from a
model with parameters θ and compare it to the observed data with a custom metric, but not to
write down and calculate the explicit likelihood L(x|θ). This makes the perfect case for ABC. The
division into two paths for the 0th and 1st order count rates is not necessary (see Eq. 3.55) but
helps to intuitively understand the underlying observational process and to mathematically keep
track of the count rate contributions.





4Paper I: Submillimeter and Radio
Variability of Sagittarius A* - A Statistical

Analysis

Over almost three decades, the flaring activity of Sgr A* has been monitored at different
wavebands. One of the most comprehensive studies was published by Witzel et al.
(2012). Using K-band (2.2 µm) lightcurves obtained between 2003 and 2010 using the
Nasmyth Adaptive Optics System (NAOS) - Near-Infrared Imager and Spectrograph
(CONICA) instrument, in short NaCo, at the Very Large Telescope (VLT), the authors
presented an analysis of the NIR flux density distribution. They found that above
the detection limit of the instrument, all observed flares can be described by a pure
power-law with a scaling index α = 4.2. Due to spectral index (Bremer et al., 2011)
and polarization measurements (Shahzamanian et al., 2015), it is evident that the NIR
flares are optically thin synchrotron emission. Additionally, it has been observed that
flares in the radio regime follow NIR flares with time delays of several 10 minutes to
hours Yusef-Zadeh et al. (2009). This suggest that the flare emitting source regions
are initially optically thick in the radio regime and become optically thin after a source
expansion has taken place. The modeling of individual multi-waveband observations
has also revealed that the initial transition between optically thin and thick emission,
the so-called synchrotron turnover frequency, lies approximately in the submm regime
(Eckart et al., 2012). In this paper, I analyze the flux density distribution of two data
sets: first, 350 GHz submm lightcurves obtained with APEX/LABOCA between 2008 and
2014 with additional data taken from the literature from 2004 to 2009 with similar
frequencies. Secondly, 100 GHz radio lightcurves obtained with ATCA between 2010
and 2014. The ATCA data had previously been published by Borkar et al. (2016). I
am able to show that, within the uncertainties, the flux density distributions at both
wavelengths can also be described by a power-law with scaling index α ∼ 4. This implies
that the variability in the radio, submm and NIR share a common origin. Furthermore,
it is compatible with an adiabtically expanding plasmon model.

In general the fitting of power-law distributions in observational data requires special
techniques as described in this paper. It is neither sufficient to identify a power-law by
its slope in the log-log-space nor is it possible to conduct classical MLE. Special fitting
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techniques are described and successfully applied in the paper. Here, the identification
of the submm flux density distribution as a shifted power-law (see Sect. 3.2) was the
crucial point in the analysis, otherwise too steep power-law could have mistakenly been
identified.

As mentioned earlier, all the data acquisition and reduction has not been performed
by me. The LABOCA data was reduced by the second author of this paper, Macarena
García-Marín, the ATCA data by the fourth author, Abhijeet Borkar. The rest of the
analysis was conducted by myself.
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ABSTRACT

We report on a statistical analysis of the 345 GHz submillimeter (submm) and 100 GHz radio flux density distribution of Sagittarius A*
(Sgr A*). The submm data set consists of 345 GHz data obtained from different Large Apex Bolometer Camera (LABOCA) campaigns
between 2008 and 2014, and additional literature data from 2004 to 2009 at comparable wavelengths. The radio observations were
carried out with the Australia Telescope Compact Array (ATCA) between 2010 and 2014. We used a combined maximum likelihood
estimator (MLE) and Kolmogorov-Smirnov (KS) statistics method to test for a possible power-law distribution in the high flux density
excursions (flares) at both wavebands. We find that both flux density distributions can be described by a shifted power-law of the form
p(x) ∝ (x − s)−α with α ∼ 4 (submm: α = 4.0 ± 1.7; radio: α = 4.7 ± 0.8). The same power-law index was previously found
for the near-infrared (NIR) flux density distribution. These results may strengthen our preferred flare emission model: a combined
synchrotron self-Compton (SSC) and adiabatically expanding self-absorbed synchrotron blob model where the flaring activity across
all wavebands stem from the same source components and the variable emission can be described by a single state red noise process.
Within the framework of the expanding blob model the similarity of the radio and the submm flux density distribution may also narrow
down possible initial synchrotron turnover frequencies ν0 to be mainly around 350 GHz and possible expansion velocities vexp to be
predominantly around 0.01 c.

Key words. black hole physics – galaxies: statistics – Galaxy: nucleus – radio continuum: general – submillimeter: general –
Galaxy: center

1. Introduction

Observations of stellar motions in the nuclear star cluster
(S-cluster) and the fitting of individual S-cluster star orbits
have brought compelling observational evidence for a supermas-
sive black hole (SMBH) at the very center of the Milky Way
(Eckart & Genzel 1996; Genzel 2000; Schödel et al. 2002). The
position of this compact and massive object coincides with an
uncertainty of less than a few milliarcseconds with the posi-
tion of the emission source Sagittarius A* (Sgr A*) (Trippe et al.
2006). Therefore the gravitational center of the Galactic center
(GC) and the radio emission source are associated with the same
object.

Sgr A* is, in terms of the Eddington luminosity LEdd, a
faint galactic nucleus with a total bolometric luminosity of only
10−8×LEdd. First detected in the radio regime by Balick & Brown
(1974), over the past decades Sgr A* has been monitored across
various wavebands. Though optical and ultraviolet emission of
the source is not detectable due to the absorption of the Galac-
tic plane’s dust band, the radio, submillimeter (submm), in-
frared (IR) and X-ray spectrum is relatively well known. Most
? Tables of the photometry are only available at the CDS via

anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A80

of the energy is emitted in the submm regime, therefore this
area in the spectral energy distribution (SED) is also referred
to as the “submm bump”. The steady quiescent flux density
emitted in the submm regime has been found to be about 3 Jy
(García-Marín et al. 2011; Dexter et al. 2014). This corresponds
to a luminosity Lsubmm ∼ 1035 erg s−1. Sgr A* is also always
bright at radio bands (1–300 GHz). The rise of the spectrum from
radio frequencies to the submm-bump can roughly be described
as a power-law with an exponent of one third (Falcke et al.
1998). The existence of a quiescent IR emission is still debated,
only strong upper limits for a possible steady emission could
be constrained so far (Hornstein et al. 2002; Genzel et al. 2003;
Sabha et al. 2010). The SED of Sgr A* shows a rapid drop from
the submm bump to the IR regime. Faint quiescent X-ray emis-
sion has been observed to be about L2−10 keV ∼ 1033 erg s−1

(Baganoff et al. 2003; Quataert 2002).
Sgr A* also shows flaring activity across all observed wave-

lengths. Typically, these emission outbursts occur on timescales
of approximately one hour (Ghez et al. 2004; Herrnstein et al.
2004). Light-travel arguments imply that the flaring mech-
anism originates from compact regions on scales of a few
Schwarzschild radii (Genzel et al. 2003). Very long baseline in-
terferometry (VLBI) observations have also revealed, that these
regions are located in the innermost accretion region in the direct
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vicinity of the SBMH (Doeleman et al. 2009). Therefore the in-
vestigation of the flaring activity of Sgr A* provides important
information about emission processes next to the SMBH.

The highest variabilities can be found in the X-ray regime,
where flaring events with flux densities reaching to two orders
of magnitude above the quiescent state can be observed approx-
imately once a day (Porquet et al. 2003; Neilsen et al. 2014).
Concurrent multi-waveband observations have also revealed that
these X-ray flares are always accompanied by IR flares, but
not vice versa (Eckart et al. 2008a; Dodds-Eden et al. 2009;
Yusef-Zadeh et al. 2009). Flaring events with maximum flux
densities of about one order of magnitude above the quiescent
state are detected in the near-infrared (NIR) regime approx-
imately four times a day. The simultaneity of IR and X-ray
flares indicates that both emission types stem from the same
source components. This can conveniently be explained by
a synchrotron self-Compton (SSC) process (Marscher 1983;
Eckart et al. 2012): the same population of electrons that emits
optically thin NIR synchrotron radiation interacts with the pro-
duced synchrotron photons again and scatters them in an inverse
Compton process to X-ray energies. High flux density excur-
sions in the submm regime of a factor of up to two above the qui-
escent emission have been detected (Yusef-Zadeh et al. 2006a;
Trap et al. 2011). Toward radio frequencies the amount of vari-
ability continuously decreases. Herrnstein et al. (2004) report on
rms variations at 43 GHz and 14 GHz of 21% and 15%, respec-
tively, and according to Falcke (1999) the variation at 8.3 GHz
and 2.3 GHz decreases to 6% and 2.5%, respectively.

Simultaneous multi-wavelength campaigns have revealed
that the radio, submm, NIR and X-ray emission are correlated.
Submm flares seem to follow concurrent NIR and X-ray out-
bursts with time delays ∼1 h (Marrone et al. 2008; Trap et al.
2011; Eckart et al. 2012). Delayed flares can also be observed at
lower frequencies. Yusef-Zadeh et al. (2008) report on time de-
lays of about 0.75 h between submm and 40 GHz flares. Addi-
tionally, time delays of about 0.5 h between 40 GHz and 20 GHz
have been reported by the same authors (Yusef-Zadeh et al.
2006b). These delayed low frequency flares can be described
with a model of adiabatically expanding electron clouds that
emit through the synchrotron self-absorbed mechanism (later
also referred to as blobs or synchrotron clouds, Eckart et al.
2012, 2009; Marrone et al. 2008; van der Laan 1966). Hence, a
combined SSC/expanding blob model is well suited to interpret
the flaring activity of Sgr A* across all observed wavebands:
synchrotron clouds with initial turnover frequencies ν0 in the
submm or above1 emit optically thin (ν > ν0) IR emission and
optically thick (ν < ν0) radio to submm emission. An SSC pro-
cess simultaneously gives rise to the X-ray flares. These syn-
chrotron blobs expand adiabatically which leads to a decrease of
the turnover frequency and therefore to delayed flares through-
out the radio frequencies.

Albeit, at the moment there is no consensus about the phys-
ical origin of flares. Possible other explanations are, without
any claim to completeness, orbiting hotspots (Broderick & Loeb
2006), mildly relativistic jet outflows (Falcke et al. 2009), accre-
tion instabilities (Tagger & Melia 2006), shock heating (Dexter
& Fragile 2013), tidal disruption of asteroids (Zubovas et al.
2012), self-organized criticality (Li et al. 2015) or general rel-
ativistic magnetohydrodynamic (GRMHD) models (Chan et al.
2015).

1 This can be derived from polarization measurements of flare emis-
sion (Eckart et al. 2007; Marrone et al. 2008).

Over the past decades sufficient data sets have been com-
piled that it is also possible to analyze the flaring emission of
Sgr A* with statistical methods (e.g., Yusef-Zadeh et al. 2011;
Dexter et al. 2014; Neilsen et al. 2014). These statistical investi-
gations can put additional constraints on emission models of the
SMBH. Witzel et al. (2012) presented a comprehensive analysis
of the KS-band (2.2 µm) NIR emission. They found that the high-
flux part of the KS-band emission is well described by a single
state power-law distribution of the form p(x) ∼ x−α with an in-
dex α ∼ 4. Shahzamanian et al. (2015) have also successfully
described the distribution of the polarized KS-band flux density
with a power-law distribution of the same index. In the frame-
work of a combined SSC/expanding blob model the NIR flux
density distribution ought to be tightly linked to the flux density
distributions at other wavebands.

In this paper we present a statistical analysis of the 345 GHz
(submm) and 100 GHz (radio) emission under the hypothesis
of a power-law distribution. In Sect. 2.1 we present the submm
data and in Sect. 2.2 the radio data. The statistical analysis of the
submm and radio data is shown in Sects. 3 and 4, respectively.
Sect. 3.4 might be of general interest, as we review a power-law
fitting technique introduced by Rácz et al. (2009), hereinafter
RKE09, which is perfectly suited for situations, where a power-
law distribution is superimposed by a strong steady contribution.
This may be the case for the submm dataset. The fitting algo-
rithm is able to estimate and separate the quiescent contribution
from the power-law distributed variable emission. In Sect. 5 we
discuss the results in the context of the adiabatic expanding blob
model. Finally we summarize our findings in Sect. 6.

2. Observations and data reduction

2.1. The submm data

Our analysis of the submm flux density distribution of Sgr A*
is based on two different data resources. First, we used data
coming from the Large Apex Bolometer Camera (LABOCA)
mounted at the Atacama Patfinder Experiment (APEX) telescope
(Siringo et al. 2009). The light curves were obtained between
2008 and 2014. Secondly, to have a more statistically significant
sample, we extended our data set with literature data.

2.1.1. LABOCA observations

LABOCA is a multi-channel bolometer array, consisting of
295 channels, installed at the APEX telescope. APEX is a 12 m
radio telescope located at the Llano de Chajnantor Observatory
50 km east of San Pedro de Atacama in northern Chile. It is situ-
ated at an altitude of 5014 m. LABOCA operates in the 345 GHz
(870 µm) atmospheric window and has a bandwidth of 60 GHz.
The beam shape can be described as a circular Gaussian with
a full width half maximum (FWHM) ∼19′′. For a detailed de-
scription of the observational process and data reduction we refer
the reader to Eckart et al. (2008a,b). Here we only give a short
overview:

The GC observations were performed using the On-the-fly
(OTF) mapping technique with about 280 s integration time,
map sizes of about 0.7◦ × 0.4◦, with a fully sampled map2

of 0.5◦ × 0.17◦. For different observations the position angle
of the scan with respect to the Galactic plane was changed to
average out artificial scanning effects. During observations in
2008 and 2009 we switched the angle between 10◦, 0◦and −10◦;

2 No measurement gap larger than half of the beamwidth.
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Fig. 1. Data reduction process for the LABOCA campaigns. All maps are zoomed to the innermost 3.5′ × 3.5′. Left: a single measurement map of
the GC from 2009-05-17T04:19:58. Center: model of the extended submm emission from the GC: co-added maps with subtracted point source at
the position of Sgr A*. Right: remaining map for the 2009-05-17T04:19:58 map after subtraction of the GC model for the extended emission. The
point like source represents the submm emission from Sgr A* itself.

all other observing campaigns used a random angle between
−47◦ and −17◦. Furthermore, measurements of secondary cal-
ibrators (G10.62, IRAS 16293-2422) and skydips were carried
out for different observations. Skydips allow to determine the
opacity of the atmosphere as a function of elevation and sec-
ondary calibrators are close to the GC and therefore allow cali-
bration with a minimum amount of telescope driving time.

Data reduction was done with the Bolometer Array Analy-
sis Software (BoA, Schuller 2012). This involves the following
steps: atmospheric correction, flat-fielding, de-spiking, (spatially
correlated) sky noise removal, correlated instrumental noise re-
moval and a correction for pointing offset. In the left panel of
Fig. 1 we show a resulting GC map after having applied these
corrections.

We present data obtained in a time span of seven years, with
variable observing conditions. In this context one of the param-
eters that changes the most is the atmospheric opacity. With the
LABOCA data there are three different options to estimate it:
skydips3, radiometer values4, or a combination of both. It has
been studied that opacities estimated with skydips tend to un-
derestimate the flux density5, whereas those derived with the
radiometer tend to overestimated it6. A weighted average of
both radiometer and skydips gives an intermediate result that
occasionally7 is better adjusted (A. Weiss, priv. comm.). We
performed all three estimations for every observing night, and
chose the technique that optimized the agreement between the
secondary calibrator values as well as the individual maps and
the co-added reference map (see below). The variations in re-
spect with the corresponding reference values result in an esti-
mate of the relative uncertainty in the light curve measurements
of the order of 4% (1σ). After this initial step all good quality

3 By measuring the emission of the atmosphere as a function of
elevation, proportional to (1 − e−τ), the atmospheric opacity τ can be
determined.
4 Measuring a water line intensity with a water vapor radiometer the
precipitable water vapor column density along the line of sight (and
therefore the atmospheric opacity τ) can be determined.
5 Skydips are usually taken under good weather conditions whereas
the conditions for the measurements may be less preferential.
6 Positive biases toward the detection of precipitable water overesti-
mates the opacity.
7 For instance if the weather conditions differ in both directions
from average conditions under which the calibration was done; using
a weighted average is less susceptible to excursions in the weather
conditions.

images of one campaign were co-added, in other words aligned,
added and normalized to the total number of added images.
A Gaussian point source was fit at the position of Sgr A*. This
point source was subtracted from the co-added GC map leav-
ing a model of the extended submm emission of the GC (Fig. 1,
middle). Afterwards this model was subtracted from each indi-
vidual map (Fig. 1, right). On the remaining flux density map
again a Gaussian point source was fit at the position of Sgr A*.
The peak of the Gaussian is supposed to yield the flux density of
Sgr A* at the observation time. From all 8 LABOCA campaigns
between 2008 and 2014 we obtained 24 light curves with a total
of 792 data points.

2.1.2. Literature data

We extended the submm data set with archival data at compa-
rable wavelengths (see Table 1). Though there is a small scat-
ter in the observed central frequencies, in a good approximation
all measurements can be treated equally. The difference between
850 and 890 µm is negligible (Fig. 1 in Marrone et al. 2006b).
The literature datasets contain additional 345 data points in total.
Thus the complete submm sample consists of 1137 flux density
values. Figure 2 gives an overview of all used observations in the
decade between 2004 and 2014.

2.2. The radio data

To investigate the flux density distribution of Sagittarius A* in
the radio regime we used data from the Australia Telescope
Compact Array (ATCA) at a frequency of 100 GHz which are
already published in Borkar et al. (2016). For more details about
the observation campaigns and data reduction we refer the reader
to their paper. Here we only give a brief overview.

ATCA is an array of six 22-m antennas of which five are
available for 100 GHz observations. It is located at the Paul Wild
Observatory, about 25 kilometers west of Narrabi in Australia
and at an altitude of 234 m. Differential flux density light curves
were collected for a total of 16 observation days during 2010
and 2014. Four observation days were excluded from our data
set due to bad weather conditions.

As the antenna gain of ATCA is highly dependent on the
elevation angle, calibrators within 10◦ from the GC were used
(mainly PKS 1741-312 as a flux density and visibility calibra-
tor). After each observation a flux density calibration was carried

A80, page 3 of 13
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Table 1. Literature data used to extend the submm sample.

Source Telescope Wavelength (µm) Frequency (GHz) Dates Beam
Eckart et al. (2009) SMA 890 340 5–7 July 2004 1′′.5 × 3′′.0
Yusef-Zadeh et al. (2006a) CSO 850 350 2–4 Sept. 2004 21′′
Yusef-Zadeh et al. (2008) CSO 850 350 16–17 July 2006 20′′
Yusef-Zadeh et al. (2009) CSO 850 350 6 April 2007 18′′.8
Trap et al. (2011) LABOCA 870 345 1–5 April 2009 19′′
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Fig. 2. Top: all available submm light curves between 2004 and 2014.
The plot contains both the LABOCA data (blue circles) and the litera-
ture data (green down-pointing triangles: Eckart et al. 2009; cyan left-
pointing triangles: Yusef-Zadeh et al. 2006a; magenta right-pointing
triangles: Yusef-Zadeh et al. 2008; yellow squares: Yusef-Zadeh et al.
2009; red up-pointing triangles: Trap et al. 2011). Bottom: a concate-
nated light curve of the submm data. Time gaps greater than 10 min
were replaced by gaps of 300 s.

out using Uranus. Only observational data from elevations above
40◦ were processed. At smaller elevations gravitational defor-
mation of the dishes, atmospheric effects and shadowing may
lead to unreliable measurements. The observations were pre-
dominantly carried out in the H214 configuration with a max-
imum available baseline of 214 m. At a frequency of 100 GHz
this corresponds to a synthesized beam of 2′′. For the GC ob-
servations this means, that the correlated flux densities on dif-
ferent baselines are dominated by the extended emission8 from
the surroundings of Sgr A* on size scales of 20 to 30 arcesconds
with peak flux density contributions at 100 GHz of the order
of 0.1–0.2 Jy per beam; hence, the integrated values per base-
line and hour angle are larger. To obtain the intrinsic variabil-
ity of Sgr A* a method introduced by Kunneriath et al. (2010)
was used (see also Borkar et al. 2016). Though the authors pro-
vide a formula for the time depend uncertainty of the differ-
ential flux density, δS (t), we took the median of these values,
δ̃S = ±0.15 Jy, as an estimate of the overall uncertainty.

The used Compact Array Broadband Backend (CABB) has
an average time resolution of 10 s. As we do not expect in-
trinsic flux density variations at timescales below minutes (in
Borkar et al. 2016 it is shown that the structure functions of the

8 For a detailed discussion of the extended mm emission from the
inner few parsecs of the GC we refer to Kunneriath et al. (2012) and
Moser et al. (2017).
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Fig. 3. Top: all ATCA 100 GHz light curves obtained between 2010
and 2014. The flux density values are averaged over a window of 300 s.
Bottom: concatenated light curve of the averaged radio data after back-
ground reduction and removal of negative values. Time gaps greater
than 10 min were replaced by gaps of 300 s.

daily differential light curves are flat up to time lags of approx-
imately 10 min), and to make the time resolution comparable
to the LABOCA data, we averaged the differential flux density
values over 300 s. Rough calculations have shown that the esti-
mated distribution parameters (see Sect. 4) do not change signif-
icantly by averaging over timescales of up to several minutes9.
The differential light curves contain both negative and positive
values. To obtain the physically relevant value, namely the posi-
tive deviation from the quiescent state, we subtracted the lowest
10th percentile of the complete data set from the binned light
curves. Finally we omitted all remaining negative flux density
values. The original data sample contains 24 877 data points, af-
ter averaging and background subtraction we end up with 613
and 552 flux density values, respectively. A concatenated light
curve of these values is shown in Fig. 3.

3. Statistical analysis of the submm flux density
distribution

For the distribution analysis of the submm (and later also the
radio) light curves we assume that all single flux density mea-
surements can be treated as interchangeable random values.
While this is not strictly true for short time scales (flux den-
sity values within distinct flaring events follow a temporal se-
quence typically of the order of one hour), these correlations

9 For example we performed a power-law fit with the later introduced
CSN07 method to differently averaged data sets. The obtained estima-
tor α = 4.7 for the power-law index is stable up to an averaging over
7 min and only slightly diverges to higher values, for instance 5.0 for an
average over 10 min.
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Fig. 4. Histogram of the submm flux density values. The steady qui-
escent emission leads to the average of ∼3 Jy, the high-flux tail up to
∼6 Jy is supposedly power-law distributed.

disappear on larger time scales of the order of days or even
years (Yusef-Zadeh et al. 2011; Dexter et al. 2014; Bower et al.
2015). Thus, for a long-term analysis all flux density values can
be handled in a good approximation as uncorrelated stochastic
variables.

To get a first impression of the underlying distribution sev-
eral methods of visualizing the data can be considered. A com-
mon way is to create a histogram of the flux density values. His-
tograms though face the problem of properly binning the data,
which is connected to additional analytic challenges (e.g., Knuth
2006 or Shimazaki & Shinomoto 2007). If the number of bins is
chosen too large, a histogram will overemphasize statistical fluc-
tuations, while a too small number of bins may cause a loss of
information of the underlying data structure. Without going into
detail we used the algorithm introduced in Knuth (2006) to de-
termine the optimal number of bins for the data sets, yielding
17 bins for the submm data (Fig. 4) and later seven bins for the
radio data (Sect. 4). For the logarithms of the submm and ra-
dio data used in log-log histograms the optimal number of bins
computes to 16 and ten, respectively.

3.1. Modeling a power-law distribution

We begin the flux density distribution analysis by introducing
some basic definitions and considerations about power-law dis-
tributions. The probability density function (PDF) of a power-
law distributed variable can be written as

p(x) = C · x−α =
α − 1
xmin

(
x

xmin

)−α
, (1)

where xmin is the domain’s lower bound, α the power-law index
and C = (α− 1)xα−1

min the normalization constant. The cumulative
distribution function (CDF) is then given by

P(x) = 1 −
(

x
xmin

)−α+1

, (2)

with the survival function or complementary cumulative distri-
bution function (CCDF)

F(x) = 1 − P(x) =

(
x

xmin

)−α+1

· (3)

A commonly used indicator for an underlying power-law is a lin-
ear behavior of the empirical PDF or CCDF tail in a log-log plot
with log p(x) ∝ −α log x. The slope of this graph then indicates
the power-law index α.

If we now consider a power-law with a constant shift s,
for instance a red noise emission process superimposed with
a steady quiescent contribution, the form of the power-law
changes to what we call a shifted power-law:

p(x) =
α − 1

xmin − s

(
x − s

xmin − s

)−α
· (4)

In a log-log view, a shifted power-law does not show the linear
behavior unless for large values of x, as

log p(x) ∝ −α log x − α log(1 − s/x). (5)

The second term at the right-hand side of Eq. (5) leads to a curva-
ture in a log-log plot as shown in Fig. 5. This term is determined
by the ratio between quiescent and flaring emission and therefore
is crucial particularly for the analysis of the submm flux density
distribution. Only for x � s ⇒ s/x → 0 the slope converges
to α. If we consider a steady quiescent submm emission of about
3 Jy and flaring peaks of up to 6 Jy (Fig. 4), we expect s/x-ratios
of about 0.5 or higher. That implies, that even if the variable radi-
ation is generated by a power-law distributed process, the steady
quiescent emission causes a curvature in a logarithmic probabil-
ity plot. This might lead to a premature rejection of a power-law
hypothesis or a broken power-law conjecture. Figure 6 shows a
log-log histogram of the submm data. A negative curvature in
the histogram’s high-flux tail >∼3.5 Jy is visible. Therefore, the
challenge for the submm analysis is to separate the quiescent
from the variable flaring emission. In the following sections we
present two methods of doing so:

– A heuristic method, which is based on physical and obser-
vational considerations (Sect. 3.2). After having subtracted
a heuristic model for the quiescent emission from the light
curve, the remaining flux density sample can be tested for an
unshifted power-law distribution (Sect. 3.3) as in Eq. (1).

– A numerical method (Sect. 3.4) which is based on Eq. (4)
(a shifted power-law) and contains a mathematical estimator
for the quiescent emission, s.

The analysis of the radio data (Sect. 4) copes without the ad-
ditional estimator s as the method of taking differential light
curves already inherently includes the subtraction of a quiescent
contribution.

3.2. Heuristic estimation of the quiescent submm emission

Possible estimators for the quiescent radiation can be found by
simple heuristic considerations. For instance, our submm sam-
ple spans a flux density range from about 2 Jy to 6 Jy. Thus,
as a lowest bound for an estimator we may just take the low-
est 1st percentile of the sample (∼2 Jy). This can be seen as the
lowest possible quiescent baseline. An upper limit for a constant
estimator is the 50th percentile (median, ∼3 Jy). This value is
based on the idea, that if all radiation stems from one quies-
cent process, meaning that the variable emission is negligible,
the median flux density value is a good estimator for the most
probable flux density value. If we now consider two combined
emission processes, one quiescent process and a flaring activity,
the median surely is the upper limit for the quiescent emission
estimator. However, this constant estimator s may take all values
between the 1st and the 50th percentile.
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Fig. 5. PDFs for shifted power-laws (α = 12, xmin = 3.5) with different
shifts, solid line without shift, dashed line with positive, dash-dot line
with negative shift. The slope only becomes constant for large x.

1.6 3.2 6.4
Flux density (Jy)

10-2

10-1

100

101

D
e
n
si

ty
 (

1
/J
y
)

Fig. 6. log-log histogram of the submm data. The curvature of the
high-flux tail >∼3.5 Jy indicates a shifted power-law of the form
p(x) ∼ (x − s)α.

Another consideration can be given to the temporal devel-
opment of the quiescent emission: though long term observa-
tions of Sgr A* have shown, that on time scales above days
no periodicities can be found (Dexter et al. 2014), the possi-
bility of long term variations can not completely be ruled out
(Pierce-Price et al. 2003). Therefore we have to consider a pos-
sible change in the quiescent emission over longer timescales. As
no further information about a putative temporal development of
the quiescent flux density distribution is available, we used three
simplistic models for the long term variability: a linear trend, a
constant quiescent level per each observing campaign and a third
polynomial order trend modeled by a cubic spline. In summary,
we define 4 models, which may possibly represent the steady
quiescent emission:

A Constant quiescent flux density contribution (Fig. 7): we as-
sumed a constant low-flux contribution yielding a global es-
timator s for the quiescent emission. As possible values for s
we took the range of the [1, 5, 10, 30, 50]th percentile of the
flux density values.

B Quiescent flux density contribution with linear trend (Fig. 8):
we calculated the mean flux density value for each observing

campaign. A trend line was fit to these values, the differ-
ence between the trend line and the global mean was sub-
tracted from the light curves. After having detrended the
data a global value for the quiescent emission was assumed
(according to the model described in A).

C Non-parametric variable quiescent flux density contribution
(Fig. 9): we supposed a long term variability in the quies-
cent emission without assuming a parametric equation. In-
stead, for each observing campaign we took the lowest nth
([1, 5, 10, 30, 50]th) percentile. To not overestimate outliers
we introduced a threshold of 30 data points per campaign. If
an campaign contains less data we calculated the quiescent
emission’s value by a linear interpolation of the two neigh-
boring campaigns.

D Variable quiescent flux density contribution modeled by a
cubic spline (Fig. 10): we modeled the variability in the qui-
escent emission with a third order polynomial. The nth per-
centile of each campaign was calculated and a cubic spline
fit was performed on these values.

The resulting models were then subtracted from the observed
light curves to obtain the variable emission.

3.3. Fitting the variable submm emission

We used a distribution fitting formalism which has been intro-
duced by Clauset et al. (2007), hereinafter CSN07. This formal-
ism is briefly summarized in Appendix A. We point out, that
the CSN07 algorithm is only applicable to unshifted power-laws,
meaning that it only yields estimators for xmin and α, not for a
possible shift s. Thus we had to subtract the quiescent emission
using the heuristic methology described in Sect. 3.2 and fit the
remaining dataset with a power-law model. The results of this
procedure are summarized in Table 2.

If we choose a significance level of 0.05, some power-law fits
have to be rejected due to their low p-value (see Appendix A).
The corresponding data set is unlikely power-law distributed. Al-
though we note that higher p-values can not be used for model
verification, we can nevertheless formulate the results as follows:
we found some heuristic models for the quiescent emission
which yield, after subtraction, high flux density samples that can
be described by power-law distributions. The power-law distri-
bution fits yield a range of best estimators for α and xmin:

α ∈ [(3.3 ± 0.3), (6.9 ± 0.7)] and (6)
xmin ∈ [(0.46 ± 0.07), (1.50 ± 0.08)]Jy. (7)

The mean of the obtained parameters from all non rejected fits is

α = (4.8 ± 1.2) and xmin = (0.9 ± 0.3) Jy. (8)

The statistical meaning of Eq. (8) might be weak, as the different
fits were performed on different data sets. Though it gives an
impression of the numerical size of α and xmin.

In Table 2 we also include a column with a new param-
eter x∗min. Before we applied a power-law fitting routine we
subtracted different models for the unknown quiescent emission
from the original sample. Thus, the resulting xmin is the flux den-
sity value where the power-law begins for the data where the
quiescent emission has been subtracted. Instead x∗min indicates
where the power-law tail starts in the original sample. Hence,
from an observer’s perspective, x∗min is the more interesting pa-
rameter. To obtain this value, the estimator for xmin needs to be
re-shifted again, such that x∗min = xmin + s. For models C and D
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Fig. 7. Quiescent emission model A: subtraction of a constant contribu-
tion from the data. In this example the steady contribution is the lowest
30th percentile of all data points.
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Fig. 8. Quiescent emission model B: linear detrending, followed by the
subtraction of a global constant for the quiescent emission (not depicted
in this plot).

we added a single value s although we had subtracted a func-
tion for the quiescent radiation (i.e., a per campaign value and
a cubic spline). As the different values for x∗min mostly serve
for consistency comparison, a decent approximation for this re-
shifting is to take the nth percentile from the original data (de-
pending on the percentile parameter we used in the correspond-
ing model) and add this value to the calculated xmin. For model B
we added the nth percentile of the detrended data. This method
yields only rough estimates for x∗min, and thus we omit uncer-
tainty considerations.

3.4. Numerical estimation of the quiescent and variable
submm emission

In the previous section we analyzed the submm flux density dis-
tribution by introducing several heuristic models for the non-
flaring, quiescent emission of Sgr A*. We subtracted these mod-
els from the measured data sets and performed a power-law
hypothesis test according to CSN07 on the remaining data.
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Fig. 9. Quiescent emission model C: subtraction of a variable quiescent
emission. In this example for each campaign the 10th percentiles of the
campaign’s data is subtracted.
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Fig. 10. Quiescent emission model D: the variable quiescent emis-
sion is modeled by a cubic spline. Here the spline fit is applied to the
20th percentile values of each campaign.

Under the assumption of a constant quiescent contribution it is
also possible to numerically obtain an estimator s for the qui-
escent emission out of the given data set. This method was pro-
posed by RKE09. We briefly describe the fitting procedure in the
following:

As we have already discussed in Sect. 3.1, a quiescent con-
tribution to a power-law process leads to a curvature in a log-
log representation of the flux density distribution (Fig. 5 and
Eq. (4)). RKE09 inverse the argument, such as the curvature of
such a plot is vice versa a direct mathematical indicator for the
unknown power-law shift s. That is, in this context, the steady
quiescent emission. The estimator for s can be found by straight-
ening out the log-log plot through adding an appropriate constant
to the flux density distribution. The constant, that minimizes the
deviation from a best linear fit is an estimator s for the steady
shift of the power-law. Once we obtained s, it is possible to
test the sample for a shifted power-law hypothesis. The resulting
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Table 2. Best fit parameters for the variable submm emission after hav-
ing subtracted the quiescent emission using the heuristic methodology
described in Sect. 3.2.

Model Percentile xmin (Jy) x∗min (Jy) α p-value

*A(raw) 0 3.4 ± 0.1 3.4 12.1 ± 1.6 0.02
A 1 1.50 ± 0.08 3.4 6.8 ± 0.7 0.17
A 5 1.13 ± 0.07 3.4 5.6 ± 0.5 0.30
A 10 0.96 ± 0.07 3.4 5.0 ± 0.4 0.38
A 20 0.76 ± 0.08 3.4 4.4 ± 0.8 0.46
A 30 0.67 ± 0.08 3.5 4.1 ± 0.4 0.60
A 50 0.6 ± 0.1 3.6 3.5 ± 0.3 0.37
B 1 1.5 ± 0.2 3.5 6.4 ± 0.9 0.84
*B 5 0.7 ± 0.2 3.0 4.0 ± 0.8 0.03
*B 10 0.6 ± 0.2 3.1 3.6 ± 0.6 0.00
*B 20 0.7 ± 0.1 3.4 3.9 ± 0.5 0.03
*B 30 0.6 ± 0.1 3.4 3.6 ± 0.5 0.02
*B 50 0.5 ± 0.1 3.5 3.6 ± 0.5 0.04
C 1 1.41 ± 0.07 3.2 6.9 ± 0.7 0.13
C 5 0.96 ± 0.05 3.2 5.3 ± 0.5 0.32
C 10 0.84 ± 0.04 3.3 4.8 ± 0.4 0.41
C 20 0.67 ± 0.05 3.4 4.2 ± 0.3 0.56
C 30 0.56 ± 0.05 3.4 3.8 ± 0.3 0.67
C 50 0.46 ± 0.07 3.5 3.3 ± 0.3 0.68
D 1 1.3 ± 0.1 3.2 6.0 ± 0.7 0.63
*D 5 0.80 ± 0.09 3.2 4.4 ± 0.5 0.01
*D 10 0.8 ± 0.1 3.3 4.3 ± 0.5 0.03
*D 20 0.7 ± 0.1 3.4 4.1 ± 0.5 0.04
D 30 0.61 ± 0.09 3.4 3.8 ± 0.4 0.36
D 50 0.52 ± 0.09 3.5 3.5 ± 0.4 0.18

Notes. For an explanation of the different models and percentile val-
ues see the text. Rows with rejected power-law fits are marked with a
leading asterisk.

fitting procedure for a shifted power-law according to RKE09
can briefly be described as follows:

– Sort the elements of the data set: {X1, . . . , XN}→
{x1, . . . , xN} =: S with x1 ≤ . . . ≤ xN .

– For each value xi in S assume it to be xmin (i.e., xi = xmin,i)
and create a new ordered data set Ti := {xmin,i, . . . , xN}.

– For each possible value s j in a given shift range
{smin, . . . , smax} shift Ti with s j: Ti, j := Ti + s j. For the pos-
sible shift range we assume the range between −5 and 5 Jy
with iteration steps of 0.1 Jy.

– For each Ti, j calculate the empirical survival function F̃(Ti, j)
(see Eq. (A.4)) and do a linear fit in a log-log representation.

– The value s j that minimizes the R2-value of the linear fit, is
the shift estimator si for a given xmin,i.

– Shift the data set with the shift estimator si: Si := S + si
and calculate the Hill estimator for αi (see Eq. (A.3)) with
x∗i ≥ x∗min = xmin,i + si.

– For each xmin,i calculate the KS-distance D between the em-
pirical survival function F̃(Si) (see Eq. (A.4)) and the theo-
retical survival function F(S) with αi, si and xmin,i:

D = max
x>xmin

∣∣∣F̃(Si) − F(S)
∣∣∣ . (9)

For a shifted power-law, F(x) is given by

F(x) =

(
x − s

xmin − s

)−α+1

· (10)
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Fig. 11. log-log histogram of the submm flux density with shifted
power-law fit (blue line) from the RKE09 algorithm and a pure power-
law fit (green line) according to CSN07. The obtained power-law
indices for the RKE09 and CSN07 method are α ∼ 4 and ∼12,
respectively.

– As best fit accept the estimators xmin,i, si and αi which mini-
mize the parameter D.

– Error estimations and a goodness of fit value are obtained by
the bootstrapping techniques described in Appendix A.

Applying this method to the submm sample yields the shifted
power-law parameters:

xmin = (0.6 ± 0.1) Jy, α = 4.0 ± 1.7, s = (2.8 ± 0.6) Jy (11)

with a p-value of 0.53.
Figure 11 demonstrates the difference between both power-

law fitting methods we presented: the CSN07 algorithm fits an
unshifted power-laws without the additional parameter s, so the
fit in the log-log plot will always be linear. The shown fit cor-
responds to the first row in Table 2. The RKE09 fitting proce-
dure can reproduce the internal shift by a quiescent contribution
which is manifested as the curvature of the probability density
distribution. Although both fits look similar, the resulting power-
law indices are very different.

In Table 3 we compare the mean results (Eq. (8)) from
Sect. 3.3 (I) with the results from the RKE09 method (II) from
this section. Within uncertainties, both results appear to be in
agreement and suggest, that the power-law index α is consistent
with a value of four. Moreover we compare the RKE09 results
to a specific model from Sect. 3.3: model A (a constant quies-
cent emission) with a percentile parameter of 30% (III). This
percentile parameter corresponds to a value of 2.79 Jy. The mo-
tivation for comparing the RKE09 with this specific model is the
following: although we have considered different models for a
varying quiescent emission (models B–D), the simplest model
(a constant quiescent emission) should always be preferred un-
til observational evidence demands for more complexity (e.g., a
significant detection of long-term periodicities in the quiescent
emission). The fact that applying a CSN07 fit to this specific
model is in good agreement with the RKE09 results primarily
only shows, that both fitting approaches yield unbiased estima-
tors and work accordingly. Moreover, we are able to suggest a
statistical model of the submm emission which is both heuris-
tically and analytically consistent: a power-law with an intrinsic

A80, page 8 of 13

66



M. Subroweit et al.: Submillimeter and radio variability of Sagittarius A*

Table 3. Comparison of the results for the submm data from parameter
estimation approaches.

Method α xmin (Jy) s (Jy) x∗min (Jy)
I 4.8 ± 1.2 0.9 ± 0.3 – 3.4 ± 0.1
II 4.1 ± 0.4 0.67 ± 0.08 2.79 ± 0.01 3.46 ± 0.08
III 4.0 ± 1.7 0.6 ± 0.1 2.8 ± 0.6 3.4 ± 0.6

Notes. (I) shows the mean results from the CSN07 fits to the mod-
els shown in Sect. 3.3; (II) shows the results from the RKE09 algo-
rithm and (III) from the CSN07 fit after having subtracted the lowest
30th percentile.
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Fig. 12. Histogram of the 100 GHz flux density values.

lower bound ∼0.6 Jy10 and an index α ∼ 4 which is superimposed
by a constant quiescent emission with an average flux density of
about 2.8 Jy. Though, if more complexity is demanded in the
modeling of the quiescent emission, we have also shown that
the results for the submm emission model do not change signif-
icantly. In the later discussion we refer to the parameters found
with the RKE09 method as we deem this the superior approach.

4. Statistical analysis of the radio flux density
distribution

The results from the previous section show, that the variable
submm emission can be described by a power-law with an index
of about four. A power-law analysis of the 100 GHz ATCA data
(shown in a histogram in Fig. 12) can be done accordingly. With
the introduced methods (CSN07 and RKE09) power-law distri-
butions in differential light curves (the ATCA radio data) and in
light curves with absolute flux density values (the submm data)
can directly be compared. In differential light curves the quies-
cent emission is already pre-subtracted; hence a pure power-law
(CSN07) can be assumed. Absolute light curves may addition-
ally contain the quiescent emission, so that a shift estimator has
to be included (RKE09). Thereby, the RKE09 estimator for the
power-law index α is shift invariant. Thus, the fitting algorithm
of CSN07 for pure power-laws can be applied to the ATCA data

10 As explained in Appendix B the real value for xmin might indeed be
smaller if one considers the possible influence of uncertainties (uncer-
tainties in the light curves, variability in the quiescent emission, etc.).
The value for α, which is the parameter from which we later draw con-
clusions, is not effected by these uncertainties though.

Table 4. Comparison of the results (for the radio data) from the CSN07
fitting method (I) to the results from the RKE09 algorithm (II).

Method α xmin (Jy) s (Jy) p-value
I 4.7 ± 0.8 0.65 ± 0.04 0 0.08
II 4.8 ± 1.1 0.63 ± 0.08 0.1 ± 0.2 0.46
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Fig. 13. log-log histogram of the radio flux density with power-law
fits. Both the CSN07 (green line) and the RKE09 (blue line) method
yield similar fits, the power-law slopes are within uncertainties consis-
tent with α ∼ 4.

and the submm and radio power-law indices can directly be com-
pared. For the 100 GHz data we find as best fit parameters10

xmin = (0.65 ± 0.04)Jy and α = 4.7 ± 0.8 (12)

with a p-value of 0.08. To check for consistency we also per-
form a fit based on the RKE09 method. Table 4 shows, that
the results from both fitting techniques are in good agreement.
Figure 13 depicts a log-log histogram with both the best un-
shifted (CSN07) and shifted (RKE09) power-law fit. Within un-
certainties, the power-law index is consistent with the one found
in the NIR and submm distributions, namely approximately four.

5. Consequences for the model of adiabatically
expanding blobs

The fact that at 100 GHz and 350 GHz we find power-law flux
density distributions with exponents α ∼ 4.0 suggests that the
(sub)mm- and NIR-flares are linked to each other and have the
same origin. Witzel et al. (2012) find in the NIR a power-law
with α = 4.2 ± 0.1. Under the assumption that the NIR spectra
are the optically thin extension of the submm flare component
spectra, a different flux density distribution in the submm do-
main than a power-law would be inconsistent with the NIR mea-
surements. The similar nominal value of the power-law indices
at different wavebands (mm, submm and NIR) can also put addi-
tional constraints on the model of adiabatically expanding self-
absorbed synchrotron blobs:

Previous measurements have already suggested that con-
tributions from flares with initial turnover frequencies below
100 GHz are less likely as the variability drops toward lower
frequencies (see Sect. 1 and references therein). A significant
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Fig. 14. Schematic representation of possible peak contributions to dif-
ferent frequency channels from different temporal spectra of adiabati-
cally expanding flares.

population of flares peaking at or below 100 Hz would contra-
dict this trend. A substantial contribution from flares peaking be-
tween 100 GHz and 350 GHz has the same problem. Flares with
initial turnover frequencies well above 350 GHz are also prob-
ably rare as the overall spectrum drops strongly toward the far-
infrared in the frequency range of 300–400 GHz (Marrone et al.
2006a,b; Marrone 2006; Eckart et al. 2012). In the following we
investigate this formaly.

In Fig. 14 we show a schematic representation of possible
peak contributions to different frequency channels from differ-
ent temporal spectra of adiabatically expanding flares. With re-
spect to the peak frequency, contributions to higher frequencies
are due to the optically thin synchrotron part of the contami-
nating flare component spectrum. In the (sub)mm domain flare
components of Sgr A* have not yet been isolated spectrally or
spatially. As we are only considering frequently observed strong
flares with amplitudes between a few tenths and a few Janskys,
we assume that the optically thin synchrotron spectral index is
also close to the one measured in the infrared, that is around
αsync = −0.7. Steeper spectral indices in the NIR wavelength do-
main are most likely due to synchrotron losses and do not reflect
the intrinsic optically thin spectral index (see Bremer et al. 2011
and Witzel et al. 2014 for details).

Contributions to lower frequencies are mainly due to the adi-
abatic expansion process. Low frequency contributions due to
the optically thick part of the synchrotron components are not
considered as the spectrum there rises with a very steep index of
∼+2.5. In Fig. 14a we show a generic temporal spectrum peak-
ing around 350 GHz. In Fig. 14b we show the case of a spec-
trum peaking between 100 GHz and 350 GHz. The optically
thin synchrotron spectrum and the adiabatic expansion process
result in contributions at the neighboring frequencies. In Fig. 14c
we show the case of a spectrum peaking above 350 GHz. Here,
only the adiabatic expansion process results in contributions at
the lower frequencies. In case of the presence of contaminating
flares like the ones shown in Fig. 14bc their contribution should
be added to the generic flare spectrum peaking at 350 GHz as
shown in Fig. 14a. In both cases the contaminating flares below
and above 350 GHz contribute to the high or low end of the flux
density distribution at 100 GHz and 350 GHz.

In the following we use the concept of Fig. 14 to quantify
the effect the contaminating flare populations have on the flux
density power-law index of the generic flare spectrum shown
in Fig. 14a. We use D to denote the dynamic range, defined as

the ratio between brightest and faintest (significant) flare fluxes
that contribute to the power-law section of the flux density his-
togram. The flux densities are corrected for the constant s by
which the power-law has been shifted and normalized to unity
by division by xmin. The frequencies of occurrence are also nor-
malized (so that highest frequency becomes unity). From our
(sub)mm-light curves we find D in the range of ∼2.5–5. Then
the frequencies of flare amplitudes at the low and high end of
the power-law part of the distribution are unity and P and the
power-law index α is defined as:

log(1) − log(P)
log(1) − log(D)

= α. (13)

Here the frequencies and dynamic range values can now be
modified according to the situations at the different observing
wavebands resulting in power-law indices for the simple extreme
cases. If we assume that the nominal value of the power-law in-
dex of our generic (sub)mm-flare spectrum peaking at 350 GHz
is the same as the index α = −4.2 found in the NIR, one can show
that the corresponding power-law index of the contaminated flare
flux density spectrum can be described via

α = −4.2 ± ∆α = −4.2 ± log(R)
log(D)

· (14)

Here, R is the factor by which the flux density frequency is in-
creased due to the contamination, which means that R = 2 for
a 100% additional contribution from contaminating flares. The
varying operation signs reflect that the index can be lowered or
enlarged depending on whether the faint of bright end of the
distribution is enhanced. As a result we find that with the cur-
rent typical uncertainty in the power-law index in the (sub)mm-
regime around ∆α = 1, we can only exclude contamination flare
flux contributions that increase the flux density frequencies by
a factor of about 5. However, if we assume an intrinsic power-
law index equals that found in the NIR and the power-law index
uncertainty that is not larger than the value ∆α = ±0.1 derived
from the NIR, then the contaminating contributions to the un-
contaminated flux density frequencies at 100 GHz and 350 GHz
of around 15% to 20% can be excluded. This assumption implies
that the measured difference between the submm and the radio
power-law indices and the NIR power-law index are entirely due
to measurement uncertainties and (currently) smaller statistics
in the submm and radio domain. This then supports the picture,
that most of the flares are indeed borne within the 300–400 GHz
domain and are to first order of similar nature consistent with
the spectral index and power-law distribution index information
found in the NIR and the (sub)mm domain.

Accepting that the bulk of observed flares have the same ori-
gin and initially peak at ∼350 GHz and above, consequences
for the possible expansion velocity of the adiabatic expansion
can be inferred: according to van der Laan (1966) the peak fre-
quency, νm, decreases as:

νm = νm0

(
R(t)
R0

)−(4p+6)/(p+4)

= νm0

(
R(t)
R0

)Γ

, (15)

where p is the power-law index of the energy spectrum of the
synchrotron emitting electrons with n(E) ∝ E−p, νm0 the initial
peak frequency, R0 the initial source size and R(t) the source
size after the expansion time t. R(t) can be modeled by linear
expansion at constant expansion speed, vexp, as

R(t) = vexp(t − t0) + R0. (16)
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If one again assumes the measured NIR spectral information,
namely p = 2αsync + 1 ≈ 2.4 with the synchrotron spectral
index αsync, as also being valid for the (sub)mm flares, the ex-
ponent Γ of the right-hand side of Eq. (15) becomes ≈−2.44.
Therefore

R(t)
R0
≈

(
νm

νm0

)−1/2.44

=

(
100 GHz
350 GHz

)−1/2.44

≈ 1.67. (17)

We note that Eq. (17) is only mildly sensitive to p. If one as-
sumes extreme cases, such as p in the range between 1 and 9
(e.g., Yusef-Zadeh et al. 2006a or Hornstein et al. 2007), the nor-
malized expansion radius R(t)/R0 would range from 1.87 to 1.47,
and thus the result would deviate only by ∼10%.

Using Eqs. (15) and (16) the time delay t4− t3 between peaks
at two arbitrary frequencies ν4 and ν3 can be calculated if the
time lag t2 − t1 between peaks at two frequencies ν2 and ν1 is
known:

t4 − t3 =
ν1/Γ

m4 − ν1/Γ
m3

ν1/Γ
m2 − ν1/Γ

m1

× (t2 − t1). (18)

Yusef-Zadeh et al. (2006b, 2008) found time delays between
peaks at 44 and 23 GHz to be ∼0.5 h, in Brinkerink et al. (2015)
the time lag between a peak at 100 and 19 GHz was measured as
∼1.1 h. Thus, typical time delays between peaks at 350 GHz and
100 GH are expected to be ∼0.5 h. Therefore, using Eqs. (16)
and (17), we get

vexp × 0.5 h ≈ 0.67 R0. (19)

R0 can additionally be constrained to be of a typical size scale of
the order of 1 Schwarzschild radius (RS) (Doeleman et al. 2009;
Fish et al. 2011; García-Marín et al. 2011; Eckart et al. 2012).
Hence,

vexp ≈ 1.34 RS/h. (20)

For Sgr A* an expansion velocity of 1 c corresponds to about
100 RS per hour. If one introduces the terms fast, intermediate
and slow expanding synchrotron blobs for expansion velocities
of 0.1, 0.01 and 0.001 c, respectively, it can be seen that under the
aforementioned assumptions the bulk of observed flares expand
at intermediate velocities, meaning that vexp ∼ 0.01 c. Fast and
slow expansion velocities would require initial blob sizes R0 of
the order of 10 and 0.1 RS, respectively.

6. Conclusions

We compiled both submm light curves obtained mainly from
LABOCA observation campaigns extended with literature data
and 100 GHz radio data from observations carried out with
ATCA. Having investigated these data sets we found that the
variable flux density distribution for both wavelength regimes
are well described by a single state power-law distributed emis-
sion process with a power-law index α ∼ 4. This finding may
put general constraints on any emission model for the observed
flares of Sgr A*. The fact, that the NIR flaring emission follows
the same distribution can be seen as an additional indicator that
the radio, submm and NIR variability stem from the same source
components. This has already been predicted by the model of
adiabatically expanding synchrotron blobs, which is capable to
fit simultaneous multi-wavelength light curves. Our statistical
findings may strengthen this model. A situation, where the ra-
dio, submm and NIR emissions stem from different source com-
ponents or even different mechanisms and are describable by the
same flux density distribution is possible though, but unlikely.

Inside the framework of a model of adiabatically expand-
ing synchrotron blobs we may also conclude, that the initial
turnover frequencies ν0 of the synchrotron sources are predom-
inantly around 350 GHz. Otherwise the radio flux density dis-
tribution would either yield a significantly different power-law
index than approximately four or be a completely different distri-
bution. Moreover, the conclusion that the bulk of observed flares
are of similar nature may also infer an average expansion veloc-
ity of the synchrotron blobs of the order of ∼0.01 c.
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Appendix A: Power law fitting: the Clauset
algorithm (CSN07)

The likelihood function of a power-law is given by

L(Θ; X) =

n∏

i=1

α − 1
xmin

(
xi

xmin

)−α
(A.1)

with Θ as free parameters, here xmin and α.
The logarithm of the likelihood function is then given by

lnL = n ln(α − 1) − n ln xmin − α
n∑

i=1

ln
xi

xmin
· (A.2)

Maximum Likelihood Estimations (MLEs) face a special prob-
lem when applied to power-laws: the parameter xmin is both a
variable of the density function and a lower bound for the func-
tion’s domain. As the likelihood function increases monotoni-
cally with decreasing domain, the MLE for xmin converges to ∞
or max(xi). For this reason maximization of the likelihood func-
tion is only possible for the parameter α with a conditioned xmin.
If we set ∂ lnL/∂α = 0 we obtain an estimator for the scaling
parameter α:

α = 1 + n


n∑

i=1

ln
xi

xmin


−1

· (A.3)

Equation (A.3) is known as the Hill estimator (Hill et al. 1975).
Common approaches for getting an estimator for xmin used

visual inspection of log-log plots of the distribution function
or so called Hill plots (α vs. the conditioned xmin). CSN07 in-
troduced an algorithm where the best estimator for xmin is ob-
tained by applying Kolmogorov-Smirnov (KS) statistics. For ev-
ery value xi in the order statistics (the set of the ordered values
of the sample) one assumes this value is xmin and calculates the
corresponding Hill estimator α(xmin). One also calculates the
KS-statistics for this value, which is defined as the maximum
difference between the empirical survival function

F̃(x) = 1/n
n∑

i

I(xi ≥ x) (A.4)

(where I is the indicator function, that takes the value 1 if the
argument is true and 0 otherwise) and the theoretical survival
(see Eq. (3)) function with that xmin and α. As best fit one accepts
the estimators xmin and α(xmin) which minimize the KS-statistics.

For the error estimation of the parameters CSN07 suggest
the following bootstrapping technique: first, about 1000 samples
each of length n are created by bootstrapping with replacement.
For each sample, a power-law fit is performed. The errors for
xmin and α(xmin) are then given by taking the standard deviation
of the 1000 bootstrapped values for xmin and α(xmin).

A goodness of fit parameter is derived by a modified boot-
strapping technique. About 2500 surrogate samples of length n
are created. Let ntail be the length of the power-law tail with

1 x1 x2 5 10
x

10-3

10-2

10-1

100

101

102

p(
x)

power law
power law ⊗ gaussian

Fig. B.1. Schematic example for the convolution of a power-law with
a Gaussian distribution and its effect on the apparent xmin. Due to
the influence of the Gaussian uncertainty distribution the fitted lower
bound x2 takes a higher value than the intrinsic paramter x1.

xi ≥ xmin. Then each value of a surrogate sample is generated
as follows: with a probability of ntail/n a random variable from
the fitted power-law with xmin and α is drawn, with a probability
of 1− ntail/n a value from the original data set with x < xmin. For
each of the surrogate samples a power-law fit is performed and
the KS value is noted. The goodness of fit (p-value) is defined as
fraction of surrogate data sample which have larger KS-values
than the original data set. If the p-value is below a chosen signif-
icance level (e.g., 0.05), the power-law hypothesis is rejected.
In this case there are only 5% of the surrogate samples with
KS-statistic larger than the one of the “best” fit, meaning that
most of the “fake” data fit better the model. In the opposite case,
where the p-values are large, the majority of the fake samples
have KS-statistics larger than our best fit, so its KS-statistic can
be seen as a statistical fluctuation.

Appendix B: Convolution of a pure power-law
with a Gaussian distribution

Here we show the influence of uncertainties and noise in the
data acquisition on the obtained power-law parameter xmin. We
assume an power-law distributed random variable and an error
statistics which can be modeled by a Gaussian distribution. Pro-
vided that both probabilities are independent the joint probability
density is given by the convolution. A schematic representation
of this convolution is depicted in Fig. B.1. It can be seen that the
apparent lower bound of the power-law, that is the parameter xmin
which is obtained by a power-law fitting routine, takes a higher
value due to the uncertainty distribution. Nevertheless the power-
law index α does not change significantly. A detailed quantitative
discussion about power-laws convolved with a Gaussian can be
found in Sect. 3.2 of Witzel et al. (2012).
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5Paper II: Synchrotron Self-Compton
Scattering in Sgr A* Derived from NIR and

X-Ray Flare Statistics

In the previous paper (Chap. 4, Subroweit et al. 2017), I analyzed radio and submm
lightcurves and was able to show that the radio, submm and NIR emission can be
described by a similar flux density distribution. I took this as a strong evidence that the
flares at these wavebands originate from the very same source components. Theoretical
considerations also revealed that the most probable emission mechanism is self-absorbed
synchrotron emission, perhaps combined with an adiabatically expansion of the emitting
source region.

The physical relation between flares from the radio to the NIR on one hand and
the observed X-ray flares on the other hand have been discussed more controversial.
The tight temporal correlation between X-ray and NIR flares also indicates common
source components for both types of radiation. Nevertheless, the concrete emission
mechanism giving raise to the observed X-ray outbursts is disputed. It has been proposed
that the X-ray emission can either be the high energy part of an overall synchrotron
spectrum (Dodds-Eden et al., 2009) or the Compotonized emission from lower frequency
synchrotron radiation which has a energy cut-off shortly after the NIR (Marrone et al.,
2008). Both models have different physical consequences: the synchrotron scenario
requires ultra-relativistic electrons in the vicinity of Sgr A* whereas the SSC scenario
requires higher electron densities in this region.

In this paper, I re-analyzed already published data from the Chandra X-ray Visionary
Project (XVP) campaign. This campaign was conducted between February and October
2012 and collected in total 3 Msec of observation of Sgr A*. By that time, this almost
doubled the available X-ray data of Sgr A* and therefore provided a very unique dataset.
The publicly available data was reduced by the second author of this paper, Enmanuelle
Mossoux (Mossoux and Grosso, 2017). Using this data, I show that the observed count
rate distribution can be explained when assuming an SSC mechanism at work. As in the
previous paper, the crucial point of this work is the descent application of power-law
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theory. Another workgroup previously conducted a statistical analysis using a bounded
power-law (BPL) to describe the count rate distribution of the same data (Neilsen et al.,
2015). Using this model, the authors obtained a power-law scaling index of α ∼ 1.9. I
argue that a BPL is physically difficult to motivate because a hard upper limit for possible
count rates cannot be theoretically justified. I alternatively suggest an exponentially
truncated power-law (TPL) which accounts for the observed decay in the high energy
tail of the count rate distribution as well as for potentially brighter X-ray flares than the
ones so far been observed.

Fitting a power-law distribution to the count rate statistics of Sgr A* has turned out to
be a theoretically and technically challenging task. Combining Poisson photon statistics
and instrumental pile-up effects prohibits the use of “classical” parameter estimation
techniques. Therefore I have explored an - up to that point unknown to me - field of
statistics: Approximate Bayesian Computation (ABC, see Sec. 3.3). Using this method, I
am able to estimate the parameters of the TPL model and obtain a scaling parameter
for the power-law of α ∼ 1.6. I am then able to show that this value can be naturally
explained within the framework of an SSC model.
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Abstract

The flaring activity of Sagittarius A* (Sgr A*) can be analyzed by statistical means to test emission models for its
accretion flow. A particular modeling question is whether the observed X-ray flares are the high-energy end of a
synchrotron spectrum or if they arise from self-Comptonized photons of a lower-energy synchrotron process. We
use already published Chandra X-ray Visionary Project data to statistically investigate the X-ray count-rate
distribution of SgrA*. Two previous workgroups have already undertaken such an analysis on that data. They
modeled the flaring part of the emission with a bounded power law, i.e., a power-law distribution with a hard cutoff
at the highest measured count rate. With this model, both teams obtain a power-law index a ~ 2X . We show that
the flare count-rate distribution can also be well described by a truncated, i.e., an exponentially decaying power
law. We argue that an exponential truncation is a more natural model than a hard cutoff. With this alternate model,
our fit yields a power-law index a ~ 1.66X . We find that this slope can be canonically explained by a synchrotron
self-Compton (SSC) process. Therefore, we argue that SSC models are the best ones suitable to explain the
observed X-ray count-rate distribution.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Galactic center (565); Supermassive black
holes (1663); X-ray active galactic nuclei (2035)

1. Introduction

The radio object Sagittarius A* (Sgr A*) is considered to
coincide with the gravitational center of our Galaxy (Balick &
Brown 1974; Brown & Lo 1982; Goss et al. 2003).
Observations of gas clouds and stellar motions have revealed
that at a distance of 8 kpc, SgrA* is associated with a central
mass of ~ ´ M4 106 concentrated in a very small volume
(Lacy 1980; Herbst et al. 1993; Horrobin et al. 2004; Boehle
et al. 2016). Such a high-mass concentration indicates that
SgrA* is most likely a supermassive black hole (SMBH;
Eckart et al. 2002; Gillessen et al. 2009; Eckart et al. 2017;
Gravity Collaboration et al. 2018a, 2018b). Nowadays it is
assumed that SMBHs exist in the center of every massive
galaxy and play an important role in the evolution of galaxies
(Silk & Mamon 2012). Furthermore, SMBHs are supposed to
be the central engine of active galactic nuclei (AGNs), one of
the most energetic phenomena in the universe (Shields 1999).
Therefore, these objects are subject of highest interest and
comprehensive investigations in modern astrophysics. Due to
its relative vicinity of a few kpc, SgrA* is the perfect candidate
to use for studying physics in the strong-gravity environment of
a SMBH.

Most of the time SgrA* resides in a quiescent, faint state,
predominately emitting and always visible in the radio to
submillimeter regime. The spectral energy distribution (SED)
shows an inverted spectrum in these domains with a peak at the
so called “submm bump.” Typical mean-flux density values
are, e.g., 1 Jy at 100 GHz and 3 Jy at 350 GHz. After a turnover
in the 300–400 GHz regime, the SED shows a steep drop.
While von Fellenberg et al. (2018) report on a detectable mean
quiescent flux of SgrA* in the far-infrared, in the mid- and
near-infrared (NIR), so far only upper limits for a quiescent
emission have been constraint (Schödel et al. 2007, 2011).

SgrA* is not visible in the optical and UV band, due to
extinction by dust along the line of sight through the Galactic
plane. In the X-ray regime, it “reapears” as a faint source (e.g.,
~ -10 8 Jy in the 2–10 keV band, Baganoff et al. 2003).
Modeling the entire SED, SgrA*s bolometric luminosity is
of the order of ~1036 erg s−1 (Narayan et al. 1998), which
corresponds to ~ L100 . The underluminous nature of SgrA*

(~ -10 9 times the Eddington luminosity) makes the case for
both low mass accretion rates toward the SMBH and inefficient
radiation processes. It is still not yet clear if our Galactic center
has to be classified as an inactive, quiescent galactic nucleus, or
if it is on the borderline to low-luminous AGNs (Ho 2008;
Eckart et al. 2017).
However, SgrA* shows intermittent, short time scaled (∼1

ks) radiation outbursts, also referred to as flares, across all
observed wave bands. Light travel arguments imply that these
events have their origin in the innermost accretion flow toward
the black hole. Thus, the investigation of flaring processes is a
unique possibility to derive physical parameters from regions
near the black hole’s event horizon.
Generally speaking the flare amplitudes (compared with the

quiescent level or with the upper detection limit) increases with
increasing frequency. Herrnstein et al. (2004) report on
variations of up to 55%, 75%, and 85% at 15, 23, and
43 GHz, respectively (see also Yusef-Zadeh et al. 2006a). At
100 and 140 GHz, flux density peaks of ∼100% above the
quiescent ∼1 Jy level were observed (Tsuboi et al. 1999;
Borkar et al. 2016), the same order of magnitude variations can
be seen at 350 GHz (Dexter et al. 2014; Subroweit et al. 2017).
In the NIR flare, peak flux densities of 30 mJy and more have
been observed, which is a factor of 10 higher then the detection
limit (Genzel et al. 2003; Ghez et al. 2004; Sabha et al. 2010;
Witzel et al. 2012). X-ray flare peak count rates can exceed the
quiescent level by a factor of 100 (Baganoff et al. 2001;
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Porquet et al. 2008; Nowak et al. 2012; Mossoux &
Grosso 2017).

Simultaneous multiwave band observations have revealed
tight temporal correlations between flares at different frequen-
cies. X-ray flares seem to always be accompanied by NIR flares
with little, i.e., of the order of a few minutes, or no time delays
(Marrone et al. 2008; see Boyce et al. 2019). The opposite is
not always true (Eckart et al. 2004, 2006; Yusef-Zadeh et al.
2012; Mossoux et al. 2016; Capellupo et al. 2017). Lower-
frequency flare peaks appear to follow with increasing time
delays of up to several hours in the mm regime (Yusef-Zadeh
et al. 2006a; Brinkerink et al. 2015; Capellupo et al. 2017). The
observed temporal links between flares at different frequencies
hint toward common spatial source components, although at
the moment there is no consensus about the physical origin of
these flares. Possible explanation models span from magneto-
hydrodynamical turbulences, orbiting hotspots, jets, expanding
plasmon blobs, and magnetic reconnections in an accretion disk
(Markoff et al. 2001; Yusef-Zadeh et al. 2006b; Mościbrodzka
et al. 2009; Karssen et al. 2017; Li et al. 2017) to name but a
few. Models of adiabatically expanding synchrotron blobs may
be of particular importance in this context as they imply a quite
naturally explanation of the observed time delays between flare
peaks (van der Laan 1966).

While polarization measurements in the NIR indicate that
synchrotron radiation plays a predominant role in the radiative
process of flares (Eckart et al. 2008; Shahzamanian et al. 2015),
it is still being debated how the X-ray counterpart is to be
interpreted. Some authors prefer pure synchrotron models
where the X-ray flares are the high-energy part of a synchrotron
spectrum with a possible additional cooling break between the
NIR and the X-rays (Dodds-Eden et al. 2009; Ponti et al. 2017).
Other authors have interpreted X-ray flares as a result of
synchrotron self-Compton (SSC) emission from a synchrotron
spectrum that does not extend to keV energies (Marrone et al.
2008; Eckart et al. 2012; Dibi et al. 2016). SSC models have
already been fit to individual (multiwave band) light curves so
that physical source parameters of the emission process, such
as synchrotron turnover and cutoff frequencies, electron
energies and densities, etc., have been successfully constrained
(Sabha et al. 2010; García-Marín et al. 2011; Eckart et al. 2012;
Mossoux et al. 2016).

Apart from the analysis of individual flare events, during the
past three decades SgrA* has been monitored sufficiently
enough, so that it is also possible to investigate the flaring
behavior with statistical means. For the context of this paper
the following results should be mentioned:

1. The NIR variability of SgrA* can be described as a
single state, red noise like process (Do et al. 2009; Meyer
et al. 2014). The flux density distribution in this wave
band can be described by a power law with a scaling
parameter a ~ 4.2NIR (Witzel et al. 2012).

2. The 350 GHz flux density distribution follows a power
law with a slope ∼4, very similar to the NIR flux density
distribution (Subroweit et al. 2017).

3. The 2–8 keV count-rate distribution can also be modeled
by a power law. Using a power-law model with an upper
bound (details will be mathematically described in
Section 3), Li et al. (2015 hereafter L15) and Neilsen
et al. (2015, hereafter N15) derived a power-law
slope a ~ 2X .

4. The spectral index ζ (with nµn
z-S ) in the NIR

approaches ∼0.6 for bright flares. Fainter flares seem to
have a steeper spectrum (Bremer et al. 2011; Witzel et al.
2018, but also see the discussion in Section 6).

5. For X-ray flares, ζ is less well constrained. In the
literature, one mostly finds values between 0.3 (Baganoff
et al. 2001; Bélanger et al. 2005) and 1 (Nowak et al.
2012; Yuan et al. 2018) generally consistent with a value
of 0.6. Albeit even extremer spectra have been reported
(Goldwurm et al. 2003; Ponti et al. 2017).

In this paper we statistically reanalyze X-ray Visionary
Project (XVP) data published in Mossoux & Grosso (2017,
hereafter M17; see Section 2). The same observations were
already analyzed by L15 and N15. These groups model the
flaring X-ray count-rate distribution with a bounded power law.
By contrast, in Section 3 we introduce a new model for the
flaring emission: an exponentially truncated power law. We
reason an exponential truncation of the count-rate distribution
to be a more physical approach compared with a hard cutoff
with a fixed upper limit. In Section 4 we then derive the main
parameter of the count-rate distribution, i.e., the power-law
index αX and find a » 1.66X . In Section 5 we introduce an
algebraic derivation of αX under the assumption of a simple
SSC scattering model with a constant synchrotron spectral
index ζ. The algebraically predicted parameter a = 1.6X
convincingly matches the empirically derived parameter
a » 1.66X from Section 5. In Section 6 we discuss and
validate the assumption of a constant and common spectral
index for both the optically thin synchrotron and the SSC
emission. We then interpret our results in the context of the
pure synchrotron versus SSC debate and argue that SSC
models should be favored over pure synchrotron models.

2. Data Selection

From the data presented in M17 we solely use the XVP
campaigns for our analysis. This data frame does not suffer
from instrument aging, time-dependent calibration problems or
the lack of angular resolution. By restricting our analysis on
this data, our results also become directly comparable with N15
and L15.
The light curves of SgrA* were constructed in exactly the

same way as presented in M17: the data were reduced using the
Chandra Interactive Analysis of Observations package (version
4.7) and the calibration database (CALDB; version 4.6.9). The
source and background events were then extracted from a
1 25-radius disk centered on the radio position of SgrA* and
from a 8 2-radius disk at 0 54 south of SgrA*. During the
XVP campaign, SgrA* was observed with the High Energy
Transmission Grating (HETG), which disperses the source
events on the detector. We thus extracted the dispersed events
from wide rectangle of 2 5 width. The light curves in a
2–10 keV energy range were then created by merging zero-
order and±1-order events and grouping the events using a
time bin of 300 s.
Due to the nature of its CCD detectors, count-rate

measurements with Chandra are subjected to pile-up effects.
These effects occur whenever two or more photons arrive at a
single CCD in the same readout interval. Instead of resolving
multiple photon counts, the detector associates the sum of the
photon energies with a single event. This can even lead to a
nondetection if the sum of the single photons energies exceed
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the energy bandpass of the detector. Thus, pile-up phenomena
both distort measured spectra and count rates.

According to the “The Chandra ABC Guide to Pile-up”4 the
fraction of counts lost due pile-up, fr, is given by

[ ( ) ] ( ) ( )a
a

= -
L - -L

L
f 1

exp 1 exp
, 1r

i i

i

where α is the grade migration parameter (which we assume to
be α=1) and Λi is the incident count rate measured in counts
per frame (a frame is 3.14 s for HETG observations). However
it must be held that only zero-order photons are affected by
pile-up, not dispersed±1st-order events. We find that on
average the ratio of zero- to first-order events is approximately
1.6. This agrees with the ratios mentioned in Nowak et al.
(2012) and Bouffard et al. (2019).

With this relations, we are able to incorporate pile-up into
the count-rate distribution models. Methodologically, we note
that we do not “unpile” the observational data but simulate pile-
up effects on generated mock data as described in the next
section.

3. Count-rate Distributions and Photon Statistics

In this section we introduce the probability density functions
(pdfs), which we assume to be able to summarize both the
quiescent and the flaring emission and discuss the challenges of
fitting low count-rate distributions. We assume that the
convolution of two pdfs make up the observed X-ray count-
rate distribution of SgrA*: a pdf for the steady quiescent
emission and a pdf for the flaring component which can be
described by some realization of a power-law distribution.5 The
power laws we take into consideration are either a bounded
power law with

⎧
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⎩⎪
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and parameters ( aQ = x ,min and )xmax , or a truncated power
law with
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-a-


x

x x
C x x

PDF
0 for

exp
, 3min

2

and parameters ( aQ = x ,min and )l . For physical reasons, we
deem a truncated power law to be the better approach compared
with a bounded power-law model. An exponential truncation is
more physical than a hard cutoff. With a bounded power law,
the probabilities for count rates xmax approach zero.6 This
implies that if brighter flares were observed (e.g., in future
observations), the model had to be adjusted (refitted). By
contrast, a truncated power law assigns a nonvanishing
probability to higher count rates, and therefore naturally
includes potentially brighter, not yet observed flares. X-ray

echoes detected near the Galactic center suggest that brighter
flares indeed occurred in the past (Koyama et al. 2008; Ryu
et al. 2013). Also, the history of X-ray flare observations shows
that the upper flare flux density increase steadily as the
monitoring time increases. Furthermore, exponentially trun-
cated power laws are a common description of quasi-scale free
processes which are constrained by limited mass, volume, or
energy reservoirs. For instance, Schechter (1976) found a
exponentially truncated power law for the luminosity function
of galaxies, Abod et al. (2019) model the mass and size
distribution of planetesimals with a similar distribution.
Synchrotron spectra of jets (Meisenheimer & Heavens 1986),
SSC spectra of blazars (Schlickeiser & Röken 2008), and
spectra of X-ray binaries (Cadolle Bel et al. 2006) also exhibit
exponential truncation of power laws at high energies. In
general, sharp cutoff power laws are harder to justify and need
evident and compelling physical boundaries. Although we
therefore question the idea of a hard cutoff of SgrA*ʼs X-ray
count-rate distribution as in a bounded power law, we
implemented that model to check our routines for consistency
with N15 and L15.
In the following, we discuss some statistical subtleties that

need to be considered when fitting SgrA*ʼs X-ray count-rate
distribution: standard approaches for fitting a distribution

( )ZPDF to observed data Z commonly involve first construct-
ing the likelihood function ( ) ( ∣ )=  = Q z P ZPDFi i and
then performing a maximization routine for . Without pile-up
effects and counting noise, and assuming that there is a simple
conversion factor between observed count rates and flux
densities S (see N15 or Nowak et al. 2012), finding an
expression for  would be straightforward. In a generic, simple
model, the flaring emission may be assumed to follow a pure
power law of the form ( ) µ a-p S S and the quiescent emission
a normal distribution ( ) ( ( ) )sµ - -g S S Pexp 2 2 with mean
value P and variance σ. Then the convolution of both
distributions and thus the likelihood function is easy to form.
As a simple example, in the idealized limit of negligible
variance g(S) can formally be reduced to a delta distribution

( ) ( )d» -g S S P . The ( )SPDF would then be given by

( ) ( ) ( ) ( ) ( ) ( )= * = - = - a-S f S g S f S P S PPDF . 4

This is called a shifted power law. We comprehensively
analyzed such a model for submm data in Subroweit et al.
(2017).
However, in case of the X-ray distribution examined here,

the situation is unfortunately more complicated. First, as
mentioned above, the data is affected by pile-up effects. This
implies that if the PDF for a variable X is know, but a piled-up
quantity ¢X with ( )¢ = X X is observed, the probability
density function for ¢X is given by

·¢ = ¢dN dX dN dX dX dX . second, the pile-up corrected
variable is governed by Poisson statistics, i.e., it is subject to
counting noise. We then call the observed variable X and its
distribution dN dX is given by

⎛
⎝⎜

⎞
⎠⎟! ( ) ( )ò

=
¢


- ¢
¢

¢
¥ dN

dX

X

X
X

dN

dX
dXexp . 5

X

0

Such a distribution is referred to as doubly stochastic Poisson
or Cox process.

4 https://cxc.harvard.edu/ciao/download/doc/pileup_abc.pdf
5 By “realization of a power law,” we mean that the underlying power-law
pdf has to be pile-up corrected and treated as a Poisson process. Mathematical
details will be discussed later.
6 If one considers additional counting noise, the probability of observing
count rates xmax are not exactly zero. For instance, count rates of up to

+x xmax max still are in the 1σ-interval for the expected maximum values.
Nevertheless, a bounded power law introduces a hard physical constraint on
predicted flux densities and count rates where a truncated power law does not.
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As for the quiescent emission, Equation (5) can be reduced
to a simple form: if we assume a constant quiescent
background process (which could be expressed by a δ-
distribution as explained above) and neglect pile-up effects (
i.e., = ¢X X , which is justified by the low count rates in the
quiescent emission), Equation (5) becomes

! ( ) ( )

! ( ) ( )

ò d= - -

= -

¥ X
X X X

dN

dk k
P d

P

k
P

exp

exp . 6

P

k

k

0

Here we have set ≔ k X for better readability where k is the
observed discrete count rate. Thus, the quiescent emission can
be described by a simple homogeneous Poisson distribution
which is completely determined by its only parameter P.

For a power-law process with pile-up effects and counting
noise though, the integral in Equation (5) can in general not
easily be simplified. For instance, the resulting probability mass
function from an underlying truncated power law is given by
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The total count-rate distribution, i.e., the combination of both
the quiescent and the flaring emission, then has to be computed
by convolving Equations (6) and (7). Hereafter, we will refer to
it as a BPL model, if we plug in a bounded power law into
Equation (5), and a TPL model if we use the truncated
power law.

4. ABC Fitting

In the previous section we proposed that the entire count-rate
distribution of SgrA* can be expressed by the convolution of
two pdfs. However, although this convolution can in principle
be computed numerically and then be used to calculate the
likelihood function , these calculations tend to be complicated
and time intensive. For instance, setting up an Markov chain
Monte Carlo routine to draw samples from the posterior
distribution ( ∣ )qP Z needed the convolution integral to be
computed at least several –10 104 5 times for good convergence.
While it is difficult and expensive to draw samples from ( ∣ )qP Z
(due to what is also called a intractable likelihood), it is
comparatively easy to generate mock data according to the
aforementioned class of models. This makes the case for a
parameter estimation strategy referred to as approximate
Bayesian computation (ABC). The idea behind ABC is to not
draw samples directly from the exact posterior distribution

( ∣ ) ( ) ( ∣ )Q = Q QP Z P P Z but from an approximation to ( ∣ )QP Z .
If Z is the observed data, M is a mock sample generated by
simulation, D is a distance metric, and ò a distance threshold, it
can be shown (Marjoram et al. 2003) that ( ∣ ( ∣ ) )Q P D M Z is
a good approximation for the “true” posterior distribution if ò is
sufficiently small and D is a sensible metric.7

To implement an ABC parameter estimation routine, we thus
first need to define the simulator for the mock data M. If X are

samples from the quiescent emission and Y from the flaring
emission, the expected count rate = +M X Y can be
simulated as follows: for the quiescent emission we draw
samples from a Poisson random number generator ( )Prpoi with
a mean value P (see Equation (6)). The flaring emission can be
simulated by first generating a power law distributed random
variable (·)=x rpl , apply pile up corrections to this variable,
i.e., ( )¢ = x x and account for counting noise by drawing from
a Poisson distribution so that ( ) = ¢x xrpoi . Here, the power
law random number generator (·)rpl is a placeholder for the
respective power law used in the two models. We note that
only for the BPL there exists a closed analytical form for the
random number generator. For the TPL model we generated
random numbers by numerical inverse transform sampling. The
resulting mock data generator for the X-ray emission can now
be written as

( ) ( ( (·))) ( )= + = + M X Y Prpoi rpoi rpl . 8

We draw samples from ( ∣ ( ∣ ) )Q P D M Z by setting up a
sequential Monte Carlo (SMC) ABC routine. In ABC–SMC
the posterior distribution is approximated sequentially by
iteratively reducing the acceptance threshold ò and thus
creating intermediate distributions of Θ, called populations.
The first population of parameters is created by drawing from
the priors ( )QP . We then accept those parameters with

( ( )∣ )Q D M Z 1. Accepted parameters are also called parti-
cles. After a specific number of particles have been collected
the next iteration step will be executed. In the following
iteration the prior gets replaced by the perturbed, i.e., weighted
and randomized8 previous particle ensemble and i with

<+ i i1 . Thus, consecutive particle ensembles are supposed
to approximate ( ∣ )qP Z increasingly better. Our ABC–SMC
sampler is implemented in the Python framework pyabc
(Klinger et al. 2018). As distance function D between M and
Z we use the energy distance (Székely & Rizzo 2013) defined
as square root of

( ) ( ( ) ( )) ( )ò= -
-¥

¥
D M Z F x G x dx, 2 92 2

where F and G are the cumulative distribution functions
(CDFs) of M and Z. The used priors are listed in Table 1.
We set up the ABC sampler with a fixed particle number of

10,000 per population. As a stop condition for the sampler we
define ( ) =D M Z, 0.01. This is an empirical choice that
has no influence on the outcome of the investigation if the
chosen ò is sufficiently small. By tracking the parameter
convergence over several particle ensembles it can be shown

Table 1
Parameter Priors

Model P xmin αX λ

( )- -10 cts s3 1 ( )- -10 cts s4 1 ( )-s ct s 1

BPL u(1–20) u(0.1–10) u(1.1–3) L
TPL u(1–20) u(0.1–10) u(1.1–3) u(0–20)

Note. Priors for the ABC fitting, u stands for a uniform prior within a given
range.

7 In ABC it has to be examined for each use case what is a “sufficiently small
distance” and a “sensible metric.” If, for instance, the algorithm reproduces
results obtained by other methods these conditions can be considered as
fulfilled.

8 A detailed mathematical description of particle perturbations can be found
in, e.g., Toni et al. (2009).
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(we omit the demonstration here) that this distance is
appropriately small, so that the particle distributions have
stabilized. We therefore can safely consider the last generated
particle ensemble as good approximation of the posterior
distribution.

In Figure 1 we show scatter plots of the last particle
ensembles from both models. It can be seen that the posterior
distributions are well-behaved and not degenerate. The best-fit

parameter estimates and their errors are listed in Table 2. The
respective empirical cumulative distribution functions (ECDFs)
are shown in Figure 2 (see the caption for details). Our ABC

Figure 1. (a) Corner plot of the BPL parameters. (b) Corner plot of the TPL
parameters. The marginalized posterior distributions of the estimated
parameters are almost Gauss-shaped which indicates a good convergence of
the fits.

Table 2
ABC–SMC Fitting Results

Model P xmin αX λ

( )- -10 cts s3 1 ( )- -10 cts s4 1 ( )-s ct s 1

BPL -
+5.4 0.3

0.2
-
+4 1

2
-
+1.99 0.08

0.08 L
TPL -

+5.9 0.2
0.2

-
+1.1 0.4

0.5
-
+1.66 0.09

0.07
-
+6 2

3

Note. For the later analysis, the scaling parameter αX is the most interesting. It
differs significantly depending on the used fitting model.

Figure 2. (a) ECDF of the simulated data according to the best-fit BPL model.
(b) ECDF of the simulated data according to the best-fit TPL model. Both plots
show the ECDF of the observed data as well as the 1σ, 2σ, and 3σ intervals of
the ECDF given by simulations. For each model we generated 1000 synthetic
samples with the best-fit parameters and calculated the resulting ECDF on the
same grid. The σ intervals shown in different gray levels are evaluated by
taking the respective percentile functions. Both models seem to fit the data
equally well. Although the visual impression of both models is similar, the
underlying power-law models are different (a = 1.99X for the BPL vs.
a = 1.66X for the TPL model favored by us). The estimated scaling parameter
of the power-law distribution is very sensitive toward the behavior at the high
count-rate tail (i.e., hard cutoff vs. exponential truncation).

5

The Astrophysical Journal, 898:138 (10pp), 2020 August 1 Subroweit, Mossoux, & Eckart

79



parameter estimation approach reproduces the results of N15.
With a BPL model we find a Poisson parameter
P=( -

+5.4 0.3
0.2)́ -10 3 cts s−1 and a power-law slope of αX=

-
+1.99 0.08

0.08. This is consistent with P=(5.24±0.08) cts s−1 and
a = 1.92X 0.02

0.03 from N15. L15 found a ~ 2.2X which is
inconsistent with N15 but lies within the 3σ-interval of our
value.

We finally compare the statistical performance of the the
BPL and the TPL model by using the standard test for equality
of distributions in the energy distance framework, namely the
T-statistics (Szekely & Rizzo 2004): if ( )D M Z, is the energy
distance between the observed data Z with length n and a
simulated sample M of length m, the T-statistic is defined as

( ) ( )=
+

T
nm

n m
D M Z, . 102

For each model we generated 1000 samples Mi with the best-fit
parameters given in Table 2 and calculated the respective
T-statistic. The results are shown in histograms in Figure 3. For
the BPL model we obtain a mode of 2.83 and a highest
posterior density (HPD) interval of (1.71–7.46). The mode of
the TPL T-statistic is 2.81 with a HPD interval of (1.66–7.17).
This suggests that the TPL model performs marginally better
(lower mode and HPD interval) without giving a strong
decisive criterion for that model. Nevertheless we can
demonstrate that the TPL model fits the data at least
comparably well as the BPL model. This backs up our former
heuristic preference for the TPL model.

5. The Link between X-Ray and NIR Distributions:
Plausibility of an SSC Scenario

In Section 3 we have argued that a TPL model should be
preferred over a BPL model, and have shown in Section 4 that
the power-law index of the count-rate distribution is then given
by a = 1.66X . Now we present an approach to interpret this
finding particularly in the context of the pure synchrotron
versus SSC debate.

If one considers a pure synchrotron model with nµn
z-S ,

the X-ray count rates are always proportional to the NIR flux
densities. A straightforward deduction then would be that both
the NIR and the X-ray flare distributions simply share the same
power-law index α: the X-ray distribution just inherits the
statistics of the lower, optically thin frequencies. Alternatively,
recent models involve a synchrotron power law nµ z- that is
continued with a steeper power-law spectral index ( )nµ z- +1 2

after a cooling break at nc between the NIR and X-ray domain.
This additional assumption of a (constant or stochastically
distributed) cooling break does not weaken the former
statement about the similarity of both distributions: though
the spectra in the X-ray regime are steeper in this case, the
scaling behavior of the distribution after the cooling break stays
the same. N15 have already shown, that in the case of this pure
synchrotron model only an unphysical positive correlation
between the cooling break frequency nc and the NIR flux
density SNIR would be able to explain the smaller X-ray power-
law index (see their discussion in Section 5).
Here we suggest another approach which might explain the

link between NIR and X-ray statistics. If one accepts that both
the NIR and the X-ray distributions are power-law distributed (
i.e., ( ) = aS SPDF NIR NIR

NIR and ( ) = aS SPDF X X
X), and furthermore

claims a functional relationship between X-ray count rate and
NIR flux density of the form ( )=S f SX NIR , the scaling
invariance suggests that the function f can also be written as
some power law, i.e.,

( )µ bS S . 11X NIR

Under this condition, and using the formal approach
( ) ·= =S dN dS dN dS dS dSPDF X X NIR NIR X N15 have

shown (see their Equations (8)–(11)) that it holds that

( )a
a

b
= +

-
1

1
. 12X

NIR

Moreover, Witzel et al. (2012) have found, that a ~ 4.2NIR . It
then follows that

( )a
b

@ +1
3.2

. 13X

If we now assume approximately spherical and homogeneous
plasma blobs (which are optically thin in the NIR) as source
regions of the flares, we can implement the SSC formalism of
Marscher (1983). In this framework, the entire spectrum of
synchrotron photons gets upscattered by the synchrotron
radiation emitting ensemble of electrons. With

( )n n= z-S SNIR m NIR m , the first-order Compton flux density
can be written as

( ) ( )
( ) ( ) ( )

( )
n

n n d

µ Q

´

z z z z

z

+ - + - - +

- +

S S

ln 14

xray
SSC

NIR
2 2

m
2 7 5 2 2 3

c m
2 2

where Sm is the flux density at the synchrotron turnover
frequency nm, z the spectral index for the optically thin
synchrotron emission, nc the upper cutoff frequency of the
synchrotron spectrum, Θ the angular diameter of the source
region and δ the relativistic boosting factor. For typical values
of nc (i.e., between 102 and 106 THz) and nm (i.e., of a few
hundred GHz) the term ( )n nln c m can be approximated by

( ) ( )n n n n» cln c
c m 1 c m 2, with ~c 0.072 (see Eckart et al.

Figure 3. Distribution of T-statistics for both the BPL (blue) and the TPL(red)
model and the corresponding HPD intervals (see the text for details). Lower
values indicate a better fit. The lower mode and HPD interval range of the TPL
model distribution may suggest a preference for this model albeit both models
seem to perform comparably.
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2012). This means that due to the small exponent c2 this term
can be neglected here. Furthermore, we assume only mildly
relativistic bulk motion of the emitting source regions as, e.g.,
derived in Subroweit et al. (2017) so that in a first
approximation relativistic boosting also does not need to be
considered. Therefore, in this context Equation (14) reduces to

( )( ) ( ) ( )nµ Qz z z z+ - + - - +S S . 15xray
SSC

NIR
2 2

m
2 7 5 2 2 3

From synchrotron theory it is known that the occurring
quantities are interdependent. For instance, in stationary
synchrotron sources with magnetic field B and electron density
ne the synchrotron flux density for some optically thin
frequency scales with nµ Qz z- +S n BeSYN

3 1. The self-Compton
flux density is then given by µ QS n SeSSC SYN. B and ne in turn
can be expressed by nµ Q -B S4

m
5

m
2 and

( ) ( )nµ Q z z z- + - + +n Se
4 7

m
4 5

m
2 3. Therefore, without further con-

siderations, it is not easy to recognize that Equation (14) can in
this statistical context be approximated with a form similar to
Equation (11).

Let us first focus on the three physical parameters nS ,NIR m,
and Θ in Equation (15). SNIR is the one with the highest
observed variability: Witzel et al. (2012) have shown, that flux
density variations in the NIR of factors 30 and above can be
observed. In contrast to that, the emitting source size Q is
considered to have significantly smaller variations: time travel
arguments and modeling results imply, that Θ is at least
approximately 1 RS (Mossoux et al. 2015; Karssen et al. 2017).
On the other hand, recent observations have revealed orbital
motions of these emitting regions at a distance of ~ R4 S
(Gravity Collaboration et al. 2018a), which therefore we use as
an upper limit for the source size. Thus, source size variations
are only of the order of unity. Similar small variations can be
assumed for the synchrotron turnover frequencies nm. Although
the distribution of nm for different flares has not been directly
observed yet as this would require full spectral measurements
of multiple flares, modeling approaches have shown that the
bulk of flares seem to have a turnover point near the submm
bump, again with variations of only a few times unity (Eckart
et al. 2012; Mossoux et al. 2016). Thus, from basic
considerations about the likely variations of the physical
parameters in Equation (15) it appears that the flux density
variations in SNIR presumable play the dominant role for the
inter-flare variations in the SSC process.

It is therefore legitimate to approximate the general behavior
of the SSC flux density with

˜ ˜ ( )( ) ( ) ( )nµ Qz z z+S S , 16a b
xray
SSC

NIR
2 2

m

where ñm and Q̃ are mean values and ( )za and ( )zb exponents
as given in Equation (15). The distribution of Sxray

SSC can be
imagined as the product of the random variables nm, Θ and
SNIR, where the pdfs of nm and Θ have such narrow variances,
that the pdf of SNIR dominates the shape of the product
distribution.9 Therefore, for the statistical average of an

ensemble of flares it is valid to write

( )( )µ µz b+S S S . 17xray
SSC

NIR
2 2

NIR

Coming back to Equation (13) we then obtain

( ) ( )a
b z

@ + @ +
+

1
3.2

1
3.2

2 2
. 18X

Considering that the synchrotron spectral index for bright NIR
flares has been derived to be z ~ 0.6 (a detail discussion on
that value can be found in Sections 1 and 6), we expect β to be
∼5.2 and thus

( )a » 1.6. 19X

This value is in good agreement with the previously obtained
αX= -

+1.66 0.09
0.07 derived via the ABC analysis.

6. Conclusions

We have shown that the X-ray emission of SgrA* is well
described by a convolution of a (quiescent) Poisson and a
realization of a (flaring) exponentially truncated power-law
count-rate distribution. An ABC analysis yields a power-law
index a = 1.66X . Within a theoretical SSC framework we have
also derived that for a constant synchrotron spectral index of
ζ=0.6 one expects the X-ray flux density distribution to
follow a power law with scaling parameter a » 1.6X . The
theoretically expected and the empirically derived value are
statistically consistent.
However, for the theoretical derivation we used a constant

spectral index of ζ=0.6. While that value seems to be valid
for the bulk of bright NIR flares (Eisenhauer et al. 2005;
Hornstein et al. 2007; Bremer et al. 2011; Witzel et al. 2014),
Witzel et al. (2018) have also shown, that the NIR spectral
index ζ is a function of flare brightness. For fainter flares ζ
tends to be significantly steeper and approaches 0.6 only for
brighter flares. As outlined by Eckart et al. (2006), Bremer et al.
(2011) and Witzel et al. (2018) most of the variation can be
explained by alterations of the synchrotron loss cutoff
frequency n2. This explains the spectral steepening toward
faint infrared flares. Bright NIR flares are dominated by a
spectral index around 0.6 as expected for optically thin
synchrotron radiation (Hornstein et al. 2007; Witzel et al.
2018).
Furthermore, SSC theories imply that the spectral index of

the optically thin synchrotron emission is preserved and
therefore should also be observed in the X-ray regime. As
already mentioned in Section 1, the measured X-ray spectral
indices scatter significantly around the predicted value of 0.6
(e.g., Bélanger et al. 2005; Barrière et al. 2014; Zhang et al.
2017; Haggard et al. 2019). It could be argued that this might
be contraindicative for an SSC scenario in the case of SgrA*.
Nevertheless, the following arguments have to be consid-
ered here.

1. The derived spectral indices in the X-ray regime are in
general subject to high uncertainties. Not only that the
low 2–8 keV flare count rates of SgrA* lead to high
uncertainties in the obtained spectra but also the spectral
fits are highly model dependent (e.g., models for dust
scattering and the NH column density). Regardless of this,
the spectral index of bright X-ray flares is to within the
uncertainties consistent with or shows the tendency to
approach the spectral index expected from SSC scattering

9 In the Appendix, we also demonstrate that under the additional assumption
of adiabatic expansion as mechanism for intra-flare flux density variations at
different wave bands the dominance of SNIR on variations in Sxray

SSC becomes
even more evident.

7

The Astrophysical Journal, 898:138 (10pp), 2020 August 1 Subroweit, Mossoux, & Eckart

81



of a synchrotron spectrum with z ~ 0.6 (see Figure 7 in
Eckart et al. 2017).

2. The demand for similarity of both the spectral indices in
the optically thin and the X-ray emission in SSC models
only holds for the instantaneous, in situ spectra without
cooling effects. Chiang & Böttcher (2002) have shown
that if synchrotron radiation is the dominant cooling
mechanism the time-averaged SSC spectral index can
become significantly steeper (up to ( )z a= +3 2 4SSC ).
Thus, although we have not incorporated such a time-
dependent analysis here, possible steeper X-ray spectral
index than ζ=0.6 do not exclude an SSC scenario.

Other authors have presented SSC models where the location
of the SSC flux peak lies close to or within the 2–8keV band
(Dodds-Eden et al. 2009). Then the assumption of a common
in situ spectral index ζ in the NIR and the observed X-ray
regime as required by Equation (14) would not apply. These
models presuppose seed photons with distinct frequencies
(either submm or NIR) scattering with IR emitting synchrotron
electrons. In contrast to that, in the SSC framework we are
considering here the entire spectrum of synchrotron photon
interacts with the entire ensemble of synchrotron emitting
electrons.10 Following standard synchrotron theory we are
assuming a power-law distribution for the ensemble of
synchrotron electron Lorentz factors, with ( )g gµ -N p within
the limits g g g 1 2. Then, according to Marscher (1987),
the limits for which Equation (14) is valid and, thus, for which
a common spectral index can be assumed, is given by

( )g n g n´ < < ´- -E5.5 10 5.5 10 , 209
1
2

m keV
9

2
2

2

where nm and n2 are the synchrotron turnover and upper cutoff
frequency given in units of GHz. The observed synchrotron
spectrum ranges at least from the submm bump (n = 350m

GHz) to the NIR (n ~ 2002 THz). Magnetic fields can be
assumed to be of a few ten Gauss (10–30 G). If we now
imagine the observed synchrotron spectrum as sum of single
electron spectra which emit most at their energy at the critical
frequency n g= ´ B4.2 10crit

6 2, the spectrum of Lorentz
factors roughly spans from 50 to 2000. Using Equation (20)
we find that the used SSC formalism should approximately be
valid for SSC energies between < <E5 eV 5 MeVkeV .
Neither the lower cutoff frequency nor the higher frequency
cutoff are predicted to lie in the 2–8 keV band. Any putative
spectral structure in that range is therefore unlikely to be due to
the underlying SSC mechanism. Hence, in consideration of
general properties of SgrA*ʼs synchrotron mechanism, a
common in situ spectral index ζ in the NIR and the observed
X-ray regime can from a theoretical perspective safely be
assumed.

We conclude that the predictions made by a first principle
SSC model are generally fully consistent with the observed
X-ray count-rate distribution. We find that not only detailed

modeling of individual NIR/X-ray flares (Eckart et al. 2012;
Mossoux et al. 2016) but also the statistical analysis (as
presented here) of the flare fluxes and the spectral index
behavior supports the dominant presence of an SSC mech-
anism. Additionally, an SSC mechanism is less demanding on
the electron acceleration process compared with a pure
synchrotron process. In the SSC case electrons with
g  1000 are sufficient to explain the observed X-ray flux
density (Markoff et al. 2001; Eckart et al. 2012). The electrons
efficiently scatter the seed spectrum that stretches from the
submm turnover peak to the optically thin NIR with a cooling
break in or short of the NIR domain (Bremer et al. 2011; Witzel
et al. 2018). Such a spectral behavior is also well know for
powerful extragalactic synchrotron sources (Meisenheimer
et al. 1996; Shi et al. 2007). Producing the X-ray spectrum
out of the optically thin submm to infrared spectrum by an SSC
mechanism requires higher volume densities of relativistic
particles. However, r = 108– -10 cm9 3 for SSC compared with
r = 106– -10 cm7 3 for pure synchrotron solution is not
excessive at all (Markoff et al. 2001; Eckart et al. 2012).
Densities in the 108– -10 cm9 3 range are also required by the
radiative-transfer model of the mid-plane of the accretion
stream onto SgrA* as presented in Table 1 by Mościbrodzka &
Falcke (2013). Such densities of relativistic electrons are also
favorable to explain the large Faraday rotation measure
observed on the line of sight close to SgrA* (Beckert &
Falcke 2002; Bower et al. 2018). Furthermore, an SSC
mechanism explains quite naturally the presence of extremely
bright flares in the past that have been reported in the X-ray
domain (Sunyaev & Churazov 1998; Revnivtsev et al. 2004;
Terrier et al. 2010). These flares may simply be a result of not
yet observed very bright NIR flares compatible with a power-
law NIR flux statistics and an SSC scenario as explained by
Witzel et al. (2012).
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This project was realized as part of the study of the conditions
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within the Collaborative Research Centre 956, sub-project
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– project ID 184018867. This work was also supported by the
German Science Foundation grant EC137/10-1 “The Largest
Black Holes in the Sky” as well as by fruitful discussions in the
framework of the Czech Science Foundation grant No. 19-
01137J.

Appendix
SSC Flux Density Variations and Adiabatic Expansion

Models of adiabatic expansion or compression of emitting
synchrotron blobs have been successfully used to explain the
time delay between flare peaks from higher to lower
frequencies. Here we consider how that mechanism can be
linked with the SSC formalism we introduced earlier and how it
may strengthen the argument, that the NIR flux density
variations dominate the variation in the SSC X-ray flux density.
If R(t) is the source radius at any given time and R0 is the

initial source size, the parameter ( ) ( )r =t R t R0 determines
the temporal evolution of physical quantities due to adiabatic
expansion or compression. According to van der Laan (1966)

10 Synchrotron radiation flare spectra are red in the nS versus ν spectral
representation. This is important because the energy density in the radiation
field is n=U Nh , with the photon energy nh and photon density N with

n~ nN S h . So we have ~ nU S . As nS in the submm is a few Janskys
compared with a few milli-Janskys in the NIR, the radiation field in the submm
is ∼1000 times stronger. This is exactly the reason why the bulk of the photons
at the submm peak flux Sm with peak frequency nm is scattered to the bulk of
the X-ray spectrum at energies around g n1

2
m, i.e., for the low energy X-ray

spectrum the NIR SSC scattered photons are less relevant.
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Θ, nm and SNIR then scale as follows:

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( )
( )

r
n n r

r

Q = Q
=
=

z z

z

- + +

- +

t t

t t

S t S t . A1

0

m m0
8 10 2 5

NIR NIR0
2 2 1

Thus, combining adiabatic expansion with the SSC formalism
of Equation (14) we obtain the the following relations:

( )( ) ( ) ( )nµ Qz z z z+ - + - - +S S A2xray0
SSC

NIR0
2 2

m0
2 7 5

0
2 2 3

( ) ( ) ( ) ( ) ( )( ) ( ) ( )nµ ´ Qz z z z+ - + - - +tS t S t t A3xray
SSC

NIR
2 2

m
2 7 5 2 2 3

( ( ) )
( ( ) ) ( ( ))

( )

( ) ( )
( ) ( ) ( ) ( )

r
n r r

µ
´ ´ Q

z z

z z z z z

- + +

- + + - + - - +

S t

t t
A4

NIR0
2 2 1 2 2

m0
8 10 2 5 2 7 5

0
2 2 3

( ( ) )
( ( ) ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

r

r r

µ

´ ´

z z

n
z z z z z

- + +

- + + - + -
Q

- +

S t

t t . A5

Sxray0
SSC 2 2 1 2 2

8 10 2 5 2 7 5 2 2 3

The subscripts S (which here is a short form of SNIR), ν and Θ

of ρ(t) in the last equation denote whose parameter’s temporal
evolution has been expressed by ρ in each case. We thus arrive
at an equation which describes the relative impact of each
parameter’s variation on the temporal variation of the SSC flux:

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

r

r r

µ

´

z z

n
z z z z z

- + +

+ + - +
Q

- +

S t

S
t

t t . A6

S
xray
SSC

xray0
SSC

4 2 5 2

2 8 38 15 25 2 5 2 2 3

2

3 2

In Figure A1 we show the size of the exponents of ρS, ρν and
ρΘ depending on the spectral index ζ. For instance, with a
spectral index of ζ=0.6 we obtain

( ) ( )r r rµ n
- -

Q
-S t

S
. A7S

xray
SSC

xray0
SSC

22.9 0.2 8.4

It is obvious that the evolution of SNIR due to possible adiabatic
expansion dominates the temporal behavior of Sxray

SSC.
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6Paper III (in prep.): Ongoing Submm
Observations of Sagitarius A* - No

Indication for an Increased Flaring Acitivity
between 2014 and 2017

In the previous two papers (Chaps. 4 and 5, Subroweit et al. 2017, 2020), I statistically
analyzed radio, submm and X-ray lightcurves from Sgr A*. Using modified power-law
models and Bayesian statistics, I was able to show a) that the observed emission from
the radio to the NIR most likely is self-absorbed synchrotron emission and that the flux
density distribution at these frequencies can be described by power-laws with a scaling
index α ∼ 4 and b) that the observed X-ray radiation is in all likelihood produced by
an SSC mechanism and that the X-ray count rate distribution follows a power-law with
scaling index α ∼ 1.6.

Nevertheless, these results are not “cast in stone” but have to be taken with a grain of
salt: first, the quality of every statistical investigation is closely related to the amount of
available data. While the data coverage in the X-ray can be considered as sufficiently
large, the data in the radio and submm regime, that was used for my analyses, is
relatively sparse: in the X-ray, in total approximately 100001 single data points were
available (3 Ms in total, binned to 300 s blocks), in the radio and in the submm, it
was only 552 and 792, respectively. Secondly, it is not guaranteed that the emission
mechanism of flares is describable as a stationary process. The environment around
Sgr A* is a dynamical system, and physical events might lead to a significant long-term
change of the system’s parameters. Then, the former statistical description would be
obsolete or at least had to be notably adjusted.

Such a change of the environment’s parameters could be an altered accretion rate
and therefore, e.g., a long-term variation in the electrons acceleration mechanism or
the plasma densities. In the early 2010s, a source was detected which might lead to
such a scenario: a putative gas cloud, labeled G2, on its way onto Sgr A*, “ready” to
get disrupted and accreted onto the SMBH (Gillessen et al., 2012). In the following
years, this object has been intensively monitored and a dispute about its nature started.

1The exact number is 9903.
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An alternative interpretation of the available data was to identify that source as a dust
enshrouded stellar object, also called dusty S-cluster object (DSO, Eckart et al. 2013).
Such an object would not get disrupted at its flyby close to Sgr A*. Although the time of
the closest encounter, the periapse, has been indisputably identified to have happened
in spring 2014, the nature of this source has not yet been deciphered. Some groups
claim to have observed an elongation of that object and a deviation from a Keplerian
orbit (Pfuhl et al., 2015), others saw an always compact source on a regular Keplerian
trajectory (Witzel et al., 2014a).

Our workgroup therefore proposed additional APEX/LABOCA observation of the GC
to monitor Sgr A*’s submm variability. These observations were conducted in 2016
and 2017, i.e., after the periapse of G2/DSO and the data later reduced by the second
author of the following manuscript, Shayoni Panja. I present a statistical analysis on
this data, namely I compare the post- with the preperiapse data presented in my first
paper (Subroweit et al. 2017). I show that the statistical properties of the pre- and the
postperiapse data have not changed, i.e., that the power spectral densities and structure
functions are, within the uncertainties, identical. Therefore, I conclude that the physical
conditions around Sgr A* have not changed up to 2017, and that we thus have observed
a stationary process between 2008 and 2017. For this reason, an influence of the flyby
of G2/DSO up to 2017 can safely be ruled out. I also perform a Bayesian flux density
distribution fit on the entire data between 2008 and 2017 and demonstrate that the
power-law description with a scaling index of α ∼ 4 is still valid.
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ABSTRACT

We report on submillimeter (submm) observations of the flux density variations of Sagitarrius A*

(Sgr A*) between 2014 and 2017 conducted with the Large APEX Bolometer Camera (LABOCA) at

the Atacama Pathfinder EXperiment (APEX) telescope. It has been discussed whether the periapse of

an infrared-excess object of unknown nature, called G2/DSO, in spring 2014 has changed the accretion

and emission processes around Sgr A*. By statistically comparing the available data with already

published lightcurves from 2008 to 2014 obtained with the same instrument, we find that the statistical

parameters, i.e., the power spectral density and the structure function have not significantly changed.

In addition, we show that the description of the flares with a power-law flux density distribution and a

scaling parameter α ∼ 4 is still valid as we found in a previous paper for the 2008-2014 data. This means

that up to 2017, the periapse of G2/DSO has not affected the flare physics of Sgr A*. In conclusion,

our findings might strengthen the argument that G2/DSO is a stellar object which remained compact

during and after its periapse and therefore has not affected the emission mechanism of Sgr A*.

Keywords: galaxies: active, Galaxy: center, galaxies: supermassive black holes, submillimeter: galaxies

1. INTRODUCTION

The gravitational center of our Galaxy coincides with

the compact radio source Sagittarius A* (Sgr A*, Brown

et al. 1981; Brown 1982). It is assumed that Sgr A* is

the radiative counterpart of a supermassive black hole

(SMBH) with a mass of ∼ 4.3 × 106M⊙ at a distance

of ∼ 8.2 kpc from our solar system (Gillessen et al.

2017; Gravity Collaboration et al. 2019). Sgr A* shows

quasi-steady, so-called quiescent emission across the

wavelength regime from radio to X-ray (Corrales et al.

2020; Zhao et al. 2001) with a peak of its spectral energy

distribution in the submillimeter (submm) (Dexter et al.

2010). On top of the quiescent emission, Sgr A* also

shows radiation outbursts, also referred to as flares, on

minutes to hours time-scales at all observed frequencies

(Witzel et al. 2021).

While the quiescent emission is well understood as

Corresponding author: Matthias Subroweit

subroweit@ph1.uni-koeln.de

mostly due to synchrotron emission and bremsstrahlung

from the accretion flow (Yuan et al. 2002; Aitken et al.

2000), the mechanisms giving rise to flares are rather

debatable. First, it is unclear where the matter and

energy reservoir for the radiation outbursts physically

stems from: magnetic reconnections and shocks in the

accretion flow (Li et al. 2017; Okuda et al. 2019), tidal

disruption of asteroids (Zubovas et al. 2012) or orbit-

ing “hot spots” (Gravity Collaboration et al. 2018) are

just a few examples of possible explanations for the

driving physical mechanisms. Irrespective of the pre-

sumed specific physical particle acceleration process,

most models include some combination of self-absorbed

synchrotron and synchrotron self-Compton (SSC) emis-

sion to explain the spectral and temporal behaviour of

the observed flares (Eckart et al. 2012; Gravity Collab-

oration et al. 2020).

During the past 30 years, statistics on Sgr A*s light

curves at different wavebands has become an important

tool to constrain the possible emission mechanisms. For

instance, structure functions (SF) in the time- and pe-

riodograms in the frequency domain have been used to
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find possible periodicities and typical timescales in the

observed lightcurves (Beaklini & Abraham 2013; Witzel

et al. 2018). Flux density distributions have been in-

vestigated to describe the occurring flare magnitudes

(Witzel et al. 2012; Subroweit et al. 2020). In Sub-

roweit et al. (2017) (hereinafter referred to as Sub17),

we analyzed submm lightcurves obtained with the Large

APEX Bolometer Camera (LABOCA) at the Atacama

Pathfinder EXperiment (APEX) telescope from 2008 to

2014. We were able to describe the flux density dis-

tribution of the submm flares with a power-law with a

scaling index of ∼ 4 and inferred that submm flares are

the predominantly optically thin part of an adiabati-

cally expanding, synchrotron emitting plasma.

At the beginning of the last decade, several authors

detected a - until that point - unknown source approach-

ing Sgr A* (Gillessen et al. 2012; Eckart et al. 2013).

Ongoing observations revealed, that this object had its

periapse to Sgr A* in spring 2014 (Valencia-S. et al.

2015; Plewa et al. 2017). Since its detection, there has

been an ongoing debate about the nature of this object.

One of the key questions is whether this object is a

core-less gas cloud, which should therefore be referred

to as G2 (according to the gas cloud G1, see McCourt

& Madigan 2016 and references therein) or a dust en-

shrouded stellar object (DSO) as proposed by Eckart

et al. (2013). In the gas cloud case, the object should

a) show a bright bow shock while approaching Sgr A*

(Narayan et al. 2012), b) then gets tidally stretched

at and disrupted after its closest approach to Sgr A*

(Pfuhl et al. 2015) and c) eventually release its tidal

remnants into the accretion flow onto Sgr A* which

then leads to an increased flaring activity (Gillessen

et al. 2012; Saitoh et al. 2014). In the DSO case a)

the object stays compact during its periapse passage

and b) therefore little material gets strapped away from

that object that infalls to Sgr A*, i.e., the impact on

the flaring activity should be marginal. It is beyond

the scope of this paper and the used statistical tools

to conclusively comment on that debate. Nevertheless,

it is important to note in which context the statistics

of the flaring activity was and currently still is discussed.

The goal of this paper is the following: as mentioned

earlier, in Sub17 we already published and analyzed

LABOCA/APEX data from 2008-2014, i.e., data before

the periapse of G2/DSO in spring 2014. For simplicity,

we call this data the preperiapse data. We fitted the

right tail, i.e., the bright flares part of the flux den-

sity distribution with a power-law with scaling index

α = 4.0 ± 1.7 . In this paper, we present additional

data obtained with the same instrument, starting from

late 2014 up to 2017. We call it simply the postperiapse

data. We analyze the data with different statistical

tools, mainly Lomb-Scargle-Periodograms (LSP) and

structure functions (SF), and compare the postperi-

apse statistics with the preperiapse data. We find that

the statistical parameters and therefore the general be-

haviour of the emission process has not significantly

changed after 2014.

A note on the used fitting method throughout this

paper: all fits were conducted using an Approximation

Bayesian Computation (ABC) method implemented in

the Python package pyABC (Klinger et al. 2018). For

the function fits in Sects. 3.1 and 3.2 this may seem

unwieldy and over-complicated as regular least-square

fitting or simple MCMC methods would have also per-

formed well. However, the convolution of probability

distributions, as considered and needed in Sect. 3.3,

can be most conveniently fitted with ABC methods.

For simplicity and self-consistency, we used ABC for all

fits in this work.

Another note for the quick orientation on the used

color scheme throughout the paper: for all plots related

to preperiapse data, we used the color black. Postpe-

riapse data and related plots are shown in red, blue is

used for the entire dataset (pre- and postperiapse data

together).

2. OBSERVATIONS

We used the LABOCA bolometer array on the 12m

single dish APEX telescope located at the Llano de Cha-

jnantor Observatory in northern Chile to obtain on-the

fly (OTF) maps of the Galactic center (GC) at 870 µm

(345 GHz). APEX has a bandwidth of 60 GHz and the

beam shape can be described as a circular Gaussian with

a full width half maximum (FWHM) ∼19”. All data was

acquired between October 2014 and May 2017, after the

periapse of G2/DSO. A detailed list of observation dates

and their programme ids can be found in Tab. 1.

Primary calibrators such as Mars, Neptune and

Uranus, secondary calibrators such as G5.89, G10.62

and IRAS16293 and sky-dips were observed in between

the OTF maps of the GC to regularly check the opacity

of the sky. Secondary calibrators were chosen such that

they are close to the GC, in order to reduce the telescope

driving time. They were observed before and after ev-

ery GC observation. Sky-dips allowed us to determine

the overall opacity of the sky as a function of eleva-

tion. The GC maps were obtained with an inclination

of -10◦, 0◦ and 10◦ with respect to an axis orthogo-
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Table 1. Observations

Programme ID Date

094.B-0015(B) 2014-10-04

2014-10-05

2014-10-06

098.B-0207(A) 2016-09-26

2016-09-27

2016-09-28

2016-09-29

2016-09-30

2016-10-01

2016-10-02

2016-10-03

2016-10-04

2016-10-05

099.B-0108(A) 2017-04-24

2017-04-25

2017-04-28

2017-04-29

2017-04-30

2017-05-01

2017-05-02

2017-05-03

2017-05-04

2017-05-05

2017-05-07

2017-05-08

Note—APEX/LABOCA GC ob-
servations conducted between
October 2014 and May 2016 with
their respective programme IDs.

nal to the Galactic plane to avoid scanning artefacts

in the reconstruction of the extended thermal emission

surrounding Sgr A*. The observations were conducted

with a scanning speed of 3 ’/s, an integration time of

280 s and a mapping step of 30 ”, yielding an rms (Root-

Mean-Squared values of the fluctuations measured over

time) noise level of 150mJy/beam for each map of

size 0.7 × 0.4 deg, with the fully sampled map of size

0.5× 0.17 deg.

The data was reduced using the BOlometer Array

Analysis (BOA) software package. The main objective

was to achieve light curves of Sgr A*. Corrections were

made during the reduction process for zenith opacity,

flat-fielding and noise removal of two kinds, i.e., corre-

lated sky noise as well as noise caused by instrumental

effects. For estimating the zenith opacity, two differ-

ent methods were used: a precipitable water vapour

(PWV) radiometer and sky-dips. Both method have

their caveats, the radiometer tends to over-, the sky-

dip to underestimate the opacity (for details see Sub17).

Therefore, we used a weighted average to calculate the

opacity of the zenith τ as given on the LABOCA cali-

bration website1:

τ =
0.9τr + 1.3τs

2
, (1)

where τr is the opacity obtained from the PWV radiome-

ter and τs the opacity according to the skydip method.

To obtain light curves of Sgr A*, the following proce-

dure was used: all GC scans of one observation day

were first co-added. A Gaussian point source was fitted

on the co-added GC map at the position of Sgr A*. This

was then subtracted from all the individual GC scans,

leaving maps of the extended submm emission. These

extended submm emission maps were co-added again to

obtain a model of the extended GC submm emission

with a high signal-to-noise ratio. This model was then

again subtracted from each GC scan, providing us with

maps of just the central point source. By doing so, we

made sure that the background excess emission was re-

moved, and we were able to better isolate the contribu-

tion made by Sgr A*. These maps were again fitted with

a central Gaussian. The peak yielded the flux density

of Sgr A* for each GC scan.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Time

2

3

4

5

6

Fl
ux

 d
en

sit
y 

(Jy
)

2008-2014
2014-2017

Figure 1. APEX/LABOCA lightcurves of Sgr A* between
2004 and 2014. The black markers indicate observations be-
fore April 2014 (preperiapse), red markers after April 2014
(postperiapse).

1 https://www.apex-telescope.org/bolometer/laboca/calibration/
opacity/
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Figure 2. Concatenated APEX/LABOCA lightcurves of
Sgr A* between 2004 and 2014. As in Fig. 1, black markers
indicate preperiapse, red markers postperiapse observations.
Time gaps greater than 1 day are replaced by 1 day.

4 6 8 10 12 14 16 18 20
Time lag (min)

0

20

40

60

80

100

Co
un

t

Figure 3. Histogram of time spans between consecutive
observations up to 20 minutes in the preperiapse data. Most
observations are either separated by ∼ 5 or ∼ 8 minutes lags.
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Figure 4. Histogram of time spans between consecutive
observations up to 20 minutes in the postperiapse data. Most
observations are separated by ∼ 8 minutes time lags.

3. ANALYSIS

In Fig. 1, we show the total available submm data be-

tween 2008 and 2017, i.e., both the newly obtained post-

periapse and the already published preperiapse data.

The preperiapse data contains 782 single observations,

the postperiapse data 322. Fig. 2 shows a concatenated

graph of both datasets, observation gaps longer than one

day are replaced with a gap of one day.

In Figs. 3 and 4, we show the histograms of the time

gaps between two consecutive observations (up to 20

minutes). In the preperiapse data, two peaks can be

seen, one at about 6 minutes, another at about 8 min-

utes. This can be considered as the minimum time it

takes between two full GC scans. The telescope oper-

ation mode has changed so that the minimal time gap

between two full scans is always about 8 minutes in the

postperiapse observations. This information is impor-

tant in understanding the power spectrum analysis in

the next section.

3.1. Power spectral distributions

A popular tool for the investigation of variability in

light curves is the estimation of the power spectral dis-

tribution (PSD). PSDs contain information about the

“color” of noise and, if present, about additional com-

ponents in the frequency spectrum. For instance, pe-

riodicities appear as “spikes” in the PSD. If an object

is monitored over a longer period, the comparison of

PSDs for different sub-samples of the entire light curve

may answer the question whether a stationary or a non-

stationary process is observed. In the context of the

DSO/G2-debate, this means that if major properties of

the accretion and emission process had changed after

periapse, the observed PSD should have significantly al-

tered.

For evenly sampled data, the computation of the PSD

can be simply performed by fitting a series of sinusoidals

or discrete Fourier transform (DFT). In the unevenly

sampled case, the PSD estimation is mathematically

more tempting. A often used method is the Lomb-

Scargle-periodogram (LS-periodogram). The LS-power

is given by

PLS(ω) =
1

2σ2

((∑
i(yi − ȳ) cosω(ti − τ)

)2
∑

i cos
2 ω(ti − τ)

(2)

+

(∑
i(yi − ȳ) sinω(ti − τ)

)2
∑

i sin
2 ω(ti − τ)

)
, (3)

where ȳ is the mean and σ the variance of the data and

τ a frequency dependent offset that guarantees that PLS

stays invariant against time-shifts (VanderPlas 2018).

To obtain a decent coverage in the frequency domain,

we constrain the PSD analysis to those observation

nights which contain at least 20 data points. Less data

might lead to spurious spikes in the PSD. For all this

single observations, we calculate the PSD on a 2048
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step frequency grid between 5 minutes and one day 2.

For each frequency, we calculate the mean value and its

standard deviation by averaging over the single PSDs).

Figure 5 depicts the two averaged PSDs with the 1σ-

uncertainty interval from the preperiapse data. By eye

inspection of this plot, one can state that both PSDs

seem to be “similar”, i.e., the postperiapse PSD lies al-

most completely in the 1σ-uncertainty interval of the

preperiapse PSD. The general behaviour of both PSDs

can be described as follows: in the log-log-space, the LS-

power seems to decrease linearly from lower to higher

frequencies, up to a certain break-point from where

on the PSD remains relatively stable at some plateau.

For high frequencies, one can see significant spikes in

the PSD. These spikes correspond to instrumental ef-

fects, namely the typical time lag between two consec-

utive observations. The preperiapse data shows two

spikes at approximately 5 and 8 minutes, the postpe-

riapse one spike at approximately 8 minutes (see Figs. 3

and 4). To statistically characterize and compare both

datasets, we assume a broken power-law for the PSDs

with PSD(f) = i ·fs for frequencies f below some break

frequency fb and a constant value above fb. Thus, the

logarithmic PSD is given by

log PSD(f) =




s · log f + i for f ≤ fb

s · log fb + i otherwise
, (4)

where the symbols s, i and fb indicate the slope, the in-

tercept and the break frequency of the logarithmic PSD.

We fit the model to the averaged PSD over the frequency

range from 1/200 to 1/16min−1. The left boundary is

given by the minimum total observation time of all aver-

aged observation (all included observations cover at least

a timespan of 200min). The right boundary is given by

the Nyquist-theorem: at a given sampling frequency of

fs = 1/8min−1 the maximum frequency which contains

information in a spectral analysis is fmax = fs/2, thus

1/16min−1. The fit was conducted using an ABC sam-

pler, with uninformative priors on all parameters. A

corner plot of the marginalized posteriors is shown in

Fig. 6, the numerical values are summarized in Tab. 2.

It can be seen that the parameters of the PSD model

for the post- and preperiapse data are within uncertain-

ties the same. The resulting broken power-law mod-

els on the fitting frequency domain are also shown in

Fig. 7 which gives a good visual impression of the sim-

2 Of course there is no power on time scales above 8 hours, which
is the maximum length of an observation night. We used the
24/2048 hours grid for computational convenience.

ilarity of both PSD models. The slope of both PSDs

with −2 ≤ s ≤ −1 indicates a red noise process. Below

the break timescales of 1/10−(1.39) min ≈ 25min and

1/10−1.37 min ≈ 23min, the flux density variations turn

into white noise, i.e., they are dominated by non-flaring

background variations and instrumental uncertainties.

10 2 10 1

Frequency (1/min)

10 2

10 1

100

PS
D

Figure 5. Averaged PSDs of the pre- (black) and postperi-
apse (red) data. The grey contours show the 1σ-confidence
interval of the preperiapse data, calculated as the stan-
dard deviation in each frequency bin. Several characteristic
timescales (in min−1) are marked from right to left: the 1/5
and 1/8 timescale which corresponds to the temporal sepa-
ration between consecutive observations, 1/16 and 1/200 as
boundary frequencies for the PSD fit, see the text for details.
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Figure 6. Overplot of marginalized posteriors for the pre-
and postperiapse PSD models with 1 and 2σ credibility in-
tervals in the 2D-histograms. The overlap of the 1σ credible
intervals show that the PSD models for both datasets can be
considered as identical.
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Table 2. Best fit parameters for the broken power-law PSD
models

observation slope intercept fb

log(Jy2/min−1) log(Jy2) log(min−1)

2008-2014 −1.03+0.16
−0.20 −2.98+0.31

−0.38 −1.39+0.26
−0.16

2014-2017 −1.19+0.14
−0.17 −3.21+0.27

−0.32 −1.37+0.23
−0.11

Note—As visually indicated in Figs. 6 and 7, the best fit
parameters are, within the uncertainties, consistent. The
given logarithmic break frequencies of -1.39 and -1.37 cor-
respond to a break timescale of approximately 24.5 and
23.4 in units of minutes.
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2014-2017

Figure 7. Observed PSDs and fitted broken power-law
model for the pre- (black) and postperiapse (red) data. The
dotted lines indicate the respective position of the break-
points.

3.2. Structure functions

Another often used tool in the analysis of times series

variability is the structure function (SF) with

SF(τ) =
1

N

N∑

i=1

(x(ti)− x(ti + τ))
2
. (5)

It is a measure for the mean variance over all data points

of the time series x(ti) separated by a time lag τ . Al-

though it is by definition closely related to the PSD via

the autocorrelation function (ACF), this relation is only

unambiguous for evenly spaced data and an infinity time

or frequency domain. We note that both conditions are

not met in the underlying datasets, the consequences

will be discussed later. In the context of this analysis,

we use the SF for the following reasons:

First, as we have argued before, the PSD analysis only

yields meaningful results if a single observation contains

enough data points to make a decomposition into multi-

ple frequency dependent sinusoidals justifiable. There-

fore, the PSD analysis cannot yield the lower break fre-

quency, i.e., the upper timescale, from where on the red

noise characteristics of the flaring flux density variations

turn into long-term variations. The SF is not subjected

to these limitations. The determination of the SF would

even make sense if just two datapoints with an arbitrary

time lag between them were given. As exhaustively dis-

cussed in Witzel et al. (2021), the SF is better suited

to answer the question up to which timescale a time se-

ries “knows” about its previous states and from which

timescale on the variations turn into a “memoryless”

white noise process. Therefore, we can use the SF to

get an estimate of the upper timescale of the flaring pro-

cess. We thus follow the idea of Hughes et al. (1992) (see

their Fig. 1) and model the SF as a broken power-law,

where the break-timescale defines the transition between

colored noise and the overall long-term variance of the

signal:

log SF(τ) =




s · log τ + i for τ ≤ τb

s · log τb + i otherwise
. (6)

We fit the SF with an ABC sampler and uninformative

priors over the range up to 8 hours, i.e., the maximum

time of one observation run (see Fig. 8). The resulting

marginalized posterior distributions are shown in Fig. 9,

the corresponding best fit values are tabulated in Tab.

3. Just like the PSDs, no significant difference between

both SFs can be stated. This is also visually underlined

through Fig. 10. We can therefore conclude that the

SFs for both the pre- and postperiapse data are approx-

imately the same. The break timescales in days, as given

in Tab. 3, correspond to ∼ 109.2 and ∼ 104.3min, re-

spectively. As mentioned before, a translation between

SF and PSD parameters is not possible for unevenly

sampled, limited data. Nevertheless, one often finds a

relation between the SF slope βs and the PSD slope βp

similar to βp ≈ 2βs (see, e.g., Hughes et al. 1992 or Do

et al. 2009). This relation also approximately holds for
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Table 3. Best fit parameters for the broken power-law
SF models

observation slope intercept τb

log(Jy2/day) log(Jy2) log(day)

2008-2014 0.59+0.28
−0.22 0.17+0.47

−0.33 −1.12+0.32
−0.23

2014-2017 0.49+0.21
−0.14 0.15+0.37

−0.24 −1.14+0.34
−0.24

Note—As visually indicated in Figs. 9 and 10 the
best fit parameters are within uncertainties consis-
tent. The given logarithmic break timescales of −1.12
and −1.14 correspond to approximately 109.2 and
104.3 in units of minutes.

the here estimated slopes, which might be taken as an

indicator for the consistency of the analysis.
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Figure 8. Structure functions of the pre- (black) and
postperiapse (red) data. The grey contours show the 1σ-
confidence interval of the preperiapse data, calculated as the
standard deviation in each time lag bin. The dashed lines
indicate the time gap between consecutive observing nights.

3.3. Flux density distributions

In the previous two subsections, we have shown that

the pre- and postperiapse data show almost identical

variability patterns in terms of similar PSDs and SFs.

Another way of describing statistical characteristics of

light curves are flux density distributions. Common

non-parametric tests to check whether two data sets

stem from the same underlying generating distribution

are, for instance, the Kolmogorov-Smirnov (KS) or the

Anderson-Darling (AD) test. Both tests define a dis-

tance metric between two empirical distribution func-

tions and return a p-value as a measure for the statistical

significance of observed differences. Low p-values indi-

cate a high probability that both samples are not drawn

from the same distribution. In this specific case, neither
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Figure 9. Overplot of marginalized posteriors for the pre-
(black) and postperiapse (red) SF models. The overlap of
the credible intervals indicate that the SF models for both
datasets are consistent with each other.
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Figure 10. Observed SFs and fitted models for the pre-
(black) and postperiapse (red) data. The dotted lines indi-
cate the respective position of the breakpoints.

the KS nor the AD test yield unambiguous results: the

KS test provides a p-value of 0.09, the AD test a signifi-

cance level of 0.02. Both values lie in a range where it is

difficult to decide whether both data sets are probably

drawn from the same distribution (usually thresholds in

the range between 0.01 and 0.05 are chosen).

In Sub17, we have shown that the preperiapse flux den-

sity distribution of submm flares can be described by a

power-law with a scaling index α ∼ 4. A similar fit3

to the postperiapse data yields a power-law index ∼ 7,

which would imply a different underlying flux density

3 We omit the demonstration here.
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distribution. Nevertheless, this results has to be taken

with a grain of salt as it is very counter-intuitive. The

flaring activity of Sgr A* is expected to have stayed sta-

ble after the periapse of G2 (i.e., the power-law index

should remain around 4) or to have increased. An in-

crease of flaring activity would mean more bright flares,

i.e., an enhancement of the high flux density tail of the

distribution which would lead to a lower power-law in-

dex, i.e., α < 4. We are not aware of any paper which

reported on a decrease of flaring activity. Therefore,

we interpret the resulting power-law index of ∼ 7 as

an indication for a under-sampled (low number of single

measurements) flux density distribution after the peri-

apse. This can be understood when looking at the light

curve after 2014: no bright flares, i.e., flares with peak

flux densities above 5 Jy have been observed. As there

is no physical indication for a decrease in the flaring ac-

tivity, we therefore compare the post- and preperiapse

flux density distributions in a different manner: we ad-

dress the question, whether the parameters of the flux

density distribution fit change, if we first solely fit the

preperiapse data and then the complete data set of the

combined pre- and postperiapse data.

In Sub17, we chose a semi-analytic method introduced

by Rácz et al. (2009) to fit the flux density distribution,

namely fitting a so-called shifted power-law of the form

p(x) ∝ (x− s)−α , (7)

where the shift parameter s summarizes the quiescent

emission with a single value. We obtained α = 4.0± 1.7

and s = (2.8 ± 0.6) Jy. In this work, we enhance

the fitting routine by modeling the entire submm flux

distribution as the convolution of a Gaussian distribu-

tion g(x|µ, σ) (simulating the quiescent emission) and a

power-law f(x|xmin, α) (representing flare emission):

p(x|µ, σ, xmin, α) =

∫ ∞

−∞
g(z)f(x− z)dz . (8)

The best fit parameters µ, σ, xmin and α are then esti-

mated by an ABC routine with uniform, non-negative

priors. The ABC sampler is set up such that each se-

quential population contains 5000 accepted particles.

After the generation of 20 populations, the acceptance

ratios became small and the estimated parameter dis-

tributions stable enough to be sure that the true poste-

rior distributions of parameters are sufficiently approx-

imated.4. In Tab. 4, we summarize the fit results.

For the preperiapse data, we obtain a scaling param-

eter α = 4.41+0.88
−0.81 which is in good agreement with the

4 Details of an ABC fitting procedure are also described in Sub-
roweit et al. (2020).

Table 4. Best ABC fit parameters for the flux density dis-
tribution

observation µ σ xmin α

(Jy) (Jy) (Jy)

2008-2014 2.38+0.24
−0.27 0.41+0.01

−0.01 0.48+0.24
−0.21 4.41+0.88

−0.81

2008-2017 2.42+0.18
−0.20 0.45+0.01

−0.01 0.53+0.18
−0.15 4.59+0.68

−0.58

Note—Results from the ABC fitting routine using a com-
bined Gaussian and power-law model. All parameters for
the pre- and postperiapse data, except σ are in excellent
agreement, see the text for details.

result from Sub17. This may also taken as an indicator

for the robustness of both fitting routines. A histogram

of the preperiapse data, with the semi-analytic fit from

Sub17 and the ABC fit from this work, is depicted in

Fig. 12. The overplotted histogram of the postperiapse

data shows the aforementioned abscence of bright flares

with Sν > 5 Jy in that dataset.

In Tab. 4, we also list the ABC fit results for the en-

tire dataset, i.e., all observations between 2008 and 2017.

It shows that, within the uncertainties, the parameters

µ, xmin and α stayed the same. Only the standard de-

viation of the Gaussian probability density changed sig-

nificantly. A graphical representation of these facts can

be seen in Fig 11. The discrepancy of the standard devi-

ation though has to be put into perspective: first, their

estimated uncertainties are very low, i.e., below 3% and

might be underestimated by the fitting routine. An ab-

solute difference of 0.04 Jy appears not significant. Sec-

ondly, this parameter only describes the scatter of the

quiescent emission and therefore to some extent gen-

eral uncertainties of the measurement process. As the

data reduction with the BoA software package, as de-

scribed in Sect. 2, includes some manual steps, it might

be attributed to minor differences in the data reduction

process such as opacity estimates or the Gaussian fit on

the central regions in the GC scans. Therefore, it does

not affect the description of the flaring emission, defined

by the power-law parameters α and xmin. Thus, we can

safely conclude that the parametric description of the

flaring emission has not changed.

4. DISCUSSION AND CONCLUSIONS

In this paper, we have presented LABOCA/APEX ob-

servations of Sgr A* conducted between 2014 and 2017.

All observations took place after the periapse of the

G2/DSO object in spring 2014. We statistically an-

alyzed these, and the lightcurves presented in Sub17,

with PSDs and SFs to get typical timescales and noise
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Figure 11. Overplot of marginalized posteriors of the com-
bined Gaussian and power-law model with 1 and 2σ credibil-
ity intervals in the 2D-histograms. In black the posteriors for
the preperiapse data is shown, in blue for the entire dataset.
All parameters except “sigma” are in excellent agreement,
see the text for details.
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Figure 12. Histograms of the pre- (black) and postperiapse
(red) data and best fits to the preperiapse data. The dashed
and the dotted black show best fits to the preperiapse data:
the former is the best fit with a semi-analytical model of a
shifted power-law (RKE) according to Sub17, the latter is a
combined Gaussian and power-law model ABC fit as worked
out in this paper. The postperiapse data is not considered
in the fits and is only shown for comparison.

characteristics of the flaring activity. We find that all es-

timated postperiapse parameters show no significant de-
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Figure 13. Best fit for the flux density distribution with a
combined Gaussian and power-law model. The dotted black
line shows the fit on the postperiapse data as also shown in
Fig. 12. In blue the histogram of the entire dataset and
the best fit is depicted. It can be seen, that the model, i.e.,
the best fit parameters only slightly changed. The entire
emission process between 2008 and 2017 can be described as
a stationary process.

viations from the parameters describing the preperiapse

data. Therefore, we conclude that the general proper-

ties of the emission process have not changed, and that

we have observed a stationary process between 2008 and

2017. The relevance of this result is twofold:

first, in the context of the G2/DSO debate, this shows

that the flyby of that object has not, or at least not

yet changed the accretion and emission physics in the

submm regime around Sgr A*. Nevertheless, we note

that the impact of these findings for the question about

the nature of the G2/DSO object is limited. We can

only state that up to 2017 the periapse of this object

has not yet influenced the flaring activity of Sgr A*.

While this might strengthen the compact core argument,

even with gas cloud models the time-scales on which in-

creased flaring activity should appear are still not clear

and highly model dependent. For instance, using vis-

cosity arguments Murchikova (2021) calculated an in-

fall time of leftover material between 6 and 10 years

after periapse, Kawashima et al. (2017) estimate similar

time scales based on magnetohydrodynamic simulations.

This implies that even if the object G2/DSO was a gas

cloud and a significant amount of matter was injected to

the accretion flow onto Sgr A*, it does not necessarily

mean that one should have observed increased flaring

activity up to 2017.

Secondly, we can therefore claim that the flare generat-

ing process remained stationary and that the statistical

description of this process has improved. We compiled

a submm lightcurve of Sgr A* spanning over the period
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of 9 years with 1104 data points in total. We can show

that the emission process is a red noise process charac-

terized by an PSD slope between −1.19 and −1.03 for

timescales above 23.4 and 24.5min, respectively. The

SF slope is between 0.49 and 0.59 for timescales below

109.2 and 104.3min, respectively. Considering the un-

certainties, one can conclude that the flaring activity

has typical timescales between 0.5 and 2 hours. Fur-

thermore, the flux density distribution is described by a

power-law with scaling index α ∼ 4.6. Within the un-

certainties, this is consistent with the value of ∼ 4 as we

have found in Sub17. Moreover, it is also in agreement

with the value of ∼ 4.2 as found by Witzel et al. (2012)

in the infrared, strengthening the picture of a common

physical origin of both emission processes.

In addition, we claim that the here presented observa-

tions (including the data from Sub17) is by itself a very

valuable and unique dataset. We conducted long-term

monitoring of Sgr A* in the submm with a single instru-

ment over a period of 9 years. This dataset can be used

in further, for instance multi-waveband, analyses of the

emission processes of Sgr A*. The more consistent data

is acquired the better we might understand the statis-

tics and therefore the physical conditions in the close

environment of a SMBH.
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7Summary, Conclusions and Outlook

In this thesis, I analyzed submm-, radio and X-ray emission coming from the direct
vicinity of the Sgr A*. I statistically investigated these lightcurves and related the results
with presumed emission models to check for their consistency. Detailed discussions of
the specific results can be found in the conclusion sections of the respective papers. Here
I will just list the main astrophysical results in a brief recap. The main conclusions of
paper I (Chap. 4, Subroweit et al. 2017) can be summarized as follows:

• The 100 GHz radio data between 2010 and 2014 can be described by a power-law
with scaling index α = 4.0 ± 1.7.

• The 350 GHz submm data between 2008 and 2014 yield a power-law with scaling
index α = 4.7 ± 0.8.

• Both results are compatible with the NIR flux density distribution with α = 4.2±0.1.

• All three emission types stem from the same source components, most likely from
a self-absorbed synchrotron plasma.

• The results are comaptible with an expanding synchrotron blob model.

The central statements of paper II (Chap. 5, Subroweit et al. 2020) can be outlined by:

• The X-ray count rate distribution of the 2012’s XVP campaign is best described
by an exponentially truncated power-law, not a bounded power-law as other
workgroups have suggested.

• Using this power-law model, one obtains a scaling index α = 1.66+0.07
−0.09.

• The power-law index fits very well to an SSC model explaining the X-ray emission.

• The presented statistics allows for brighter flares in the past and the future than
those that have been observed so far.
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The key messages of paper III (Chap. 6, Subroweit et al., in prep.) can be summed up
with the following:

• The pre- (2008-2014) and the postperiapse (2014-2017) submm datasets are
statistically similar.

• Both share a PSD with a slope between -1.19 and -1.03 and a lower break timescale
between 23.4 and 24.5 min and a structure function with a slope between 0.49
and 0.59 and an upper break timescale between 109.2 and 104.3 min.

• The entire submm data between 2008 and 2017 can be described by a power-law
with scaling index α = 4.59+0.58

−0.58. This is consistent with the previous results from
paper I.

• The periapse of the G2/DSO object has not affected the emission mechanism of
Sgr A* up to 2017.

The here presented statistical parameters are specifically fully compatible with the
physical flare model as proposed and discussed in the attached publications: adia-
batically expanding, self-absorbed synchrotron plasmas which produce X-ray emission
through an SSC mechanism. The source regions probably have an angular diameter of
approximately 1 RS and slowly expand at the speed of ∼ 0.01 c. Where pure synchrotron
models require a demanding electron acceleration process, i.e., an electron population
with γs of up to 104, the SSC mechanism predicts a less violent environment. Electron
energies of γ < 103 are sufficient to explain the observed X-ray flares. On the other hand,
an SSC model postulates electron densities above 109 cm−3 and therefore higher densi-
ties as typically found in the steady accretion flow onto Sgr A*. The physical mechanism
that leads to those temporal overdensities still has to be investigated. Regardless of the
concrete physical model which is used to explain the estimated statistical parameters:
these parameters put additional constraints on and have to be explained by any physical
theory of the accretion and emission mechanisms around Sgr A*. Therefore, I deem the
statistical findings - independendly from the concretely assumed radiation model - as a
very valuable outcome, possibly being adopted in future research.

The observational future in terms of monitoring Sgr A* seems to be very bright and
promising at the moment. The Event Horizon Telescope (EHT), with a unpredecent
resolution of less than 20 µas, has already produced ground breaking results with the
observation of M87*, the SMBH at the very center of M87 (Event Horizon Telescope
Collaboration et al., 2019). Observations of Sgr A* have already been conducted, the
scientific community expects the first results to be published soon. With GRAVITY+,
an upgrade of the Very Large Telescope Interferometer (VLTI), mas imaging and µas
astrometry will be available soon (Eisenhauer et al., 2020). Stellar orbits and emission
structures around Sgr A* will be resolved with an unpredecent accuracy. The James
Webb Space Telescope (JWST, Kalirai 2018) will hopefully be launched by the end of
2021. Scientists will be able to observe the GC with a space-based facility unaffected
by unavoidable disturbances of Earth-based observations. Finally, the Extremely Large
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Telescope (ELT, Vernin et al. 2011) is being constructed at the moment. With an aper-
ture diameter of 39 m and a collecting area of almost 1000 m2, it will outperform all
existing optical telescopes in terms of resolution and sensitivity. This will allow for the
detection of faint sources very close to Sgr A*. All four observational facilities will not
only immensly improve the flare statistics in terms of numerical accuracy but will also
provide insights in the spatial structure of the flare emitting source regions.

Finally, a personal remark and conclusion: not only the concrete astrophysical prob-
lems and objectives but also their computational solutions took a lot of passion, effort
and time during my PhD-research. Computational capabilities and well developed
software libraries allowed me to investigate physical problems with an accuracy and
sofistication that I could not have imagined before the start of my work. Software
development became an important part of my entire work. Especially the realm of
Bayesian statistics, namely MCMC and ABC, was an entirely new experience for me.
The benefits of this accumulated knowledge go far beyond the concrete physical results
of this thesis. In my opinion, the adopted and developed tools can prove extremely
valuable in future research also in other fields of astrophysics.
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