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Abstract

We study a general class of inhomogeneous spatial random graphs, the
weight-dependent random connection model. Vertices are given through a
standard Poisson point process in Euclidean space and each vertex carries
additionally an i.i.d weight. Edges are drawn in such a way that short
edges and edges to large weight vertices are preferred. This allows in
particular the study of models that combine long-range interactions and
heavy-tailed degree distributions. The occurrence of long edges together
with the hierarchy of the vertices coming from the weights typically leads
to very well connected graphs. We identify a sharp phase transition where
the existence of a subcritical percolation phase becomes possible. This
transition depends on both, the power-law of the degree distribution and on
the geometric model parameter, showing the significant effect of clustering
on the graph’s topology. We further study the specifics of dimension one in
parameter regimes where a subcritical phase exists. Natural examples that
are contained in our framework are for instance the random connection
model, the Poisson Boolean model, scale-free percolation and the age-
dependent random connection model. We use our results to characterize
robustness of age-based spatial preferential attachment networks.
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CHAPTER 1

Introduction and summary of results

Complex real-world systems can be seen as a collection of numerous objects
interacting with each other in specific ways. This is applicable in many
different contexts and fields such as biology (e.g. communicating neurons),
physics (e.g. interacting (quantum-) particles), telecommunication (e.g. cell
phone users and cell towers), social sciences (e.g. social networks), informa-
tion technology (e.g. web pages that are linked by hyperlinks) and many
more. Put differently, many complex systems can be seen as a network
where the objects are described by the network’s nodes and a link between
two nodes in the network indicates the interaction of the corresponding
objects. In many of the previous examples further dynamics can be consid-
ered on top of the system, such as the spread of (fake) information through
a social network or the spread of a virus through society as present day
examples. These events can then be seen as a dynamic process happening
on a complex network. For these reasons, complex networks have become
a key tool used to describe real-world systems and related problems over
the last 20 years. Despite the large amount of uncertainty and complexity
arising from their dynamical nature, it is of great importance to under-
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Chapter 1. Introduction and summary of results

stand the structure of the underlying network when analysing a complex
system. Do global phenomena arise in the system and if so, can they be
explained by the way the network is built? These are typical questions
in the science community but which are also of public interest as their
answers may affect decisions made by political or economic leaders.

With growing computing power more and more real-world networks were
able to be analysed empirically in the recent years. Most interestingly,
many of them, despite different contexts often ended up having similar
structural properties, see e.g. [15, 23]. That implies that there exists some
universal structure for many of the above described systems. The question
of interest here is, why is this the case? Can it be explained in a compa-
rable way by basic building mechanisms which are shared by the different
networks.

The study of complex networks has attracted a lot of attention from the
mathematical community in recent years as this area contains important
and interesting mathematical problems starting with providing suitable
models replicating the observed behaviour. The probabilistic approach is
to build a network as a growing sequence of random graphs and to prove
the emerging features as limit theorems when the number of vertices tends
to infinity. An important aim of this thesis is to present a suitable network
model, the age-based spatial preferential attachment model. For this model,
a limit structure can not only be proven to exist but also constructed ex-
plicitly. We shall see that the limit model is contained in a large class
of inhomogeneous spatial random graphs, the weight-dependent random
connection model. Here, a random graph is constructed on a countably
infinite vertex set and edges are drawn dependent on the spatial distances
of vertices and additional introduced vertex weights. Such models provide
a different approach to model large interacting systems and their study
is of independent interest. From a mathematical perspective the study of
the weight-dependent random connection model contributes the most new
results and proof techniques in this thesis. These results can then be used
to derive results for the original network model using the limit structure.
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We call the limit model the age-dependent random connection model and
it will play a key role in this thesis as an interesting representative showing
newly observed behaviour in the class of weight-dependent random con-
nection models as well as the limit model that connects the two approaches
of modelling interacting systems.

We start however with the above described network model and formulate
its key features. We then explain how the limit model can be derived with
the help of a proper rescaling and how to generalise the picture from there
to a universal class of graphs. The features of networks we will focus on
in this thesis, as formulated in [32], are

• Networks are scale-free: When the number of vertices tends to infin-
ity, the asymptotic proportion of vertices with exactly k neighbours
is of order k−τ for some power-law exponent τ as k →∞. As a result,
on each scale one can find vertices with a large degree compared to
the majority of the other vertices; the so called hubs or stars.

• Networks show strong clustering: Nodes sharing a common neigh-
bour are much more likely to be connected by an edge themselves
than nodes that are picked randomly.

• Networks are robust under random attack: If an arbitrarily large
proportion of links is randomly removed from the network, the qual-
itatively topological features of the network remains unchanged.

An example for the first property are celebrities in a social network which
have considerably more followers than a typical user. Clustering essen-
tially says that people with a common friend are much more likely being
friends themselves then two randomly picked people. The robustness is the
hardest to prove and will contribute one of the main results of this thesis.
An example for it is the following: Consider a network of cell towers that
are linked when their signals reach each other. A cell phone user is auto-
matically connected to the nearest cell tower and we assume that there is
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always a cell tower close enough for this to happen. Then, it only depends
on the connectivity of the cell tower network whether the cell phone user
can reach people in every part of the world. Now imagine that each link
(or signal) between two towers has a failure probability q which essentially
says that a proportion of 1−q of the links is not working properly. Robust-
ness then means that if q increases due to some global event such as global
warming, the connectivity of the network remains qualitatively the same.
In other words, the cell phone user can still reach people all over the world.
We shall see that the age-based spatial preferential attachment model is
a model providing all three features. We shall further see that robustness
can only happen under the right interplay of the two former properties and
that the question of robustness is directly linked to the existence of infinite
clusters in the age-dependent random connection model.

In the following section we introduce the idea of preferential attachment
which is an established network building mechanism in the literature. We
give a brief overview over some interesting models and their evolution
which will lead to our model. Before doing so, we state two more interesting
features of networks for completeness, cf. [32]

• Networks are ultra-small: The shortest path between two randomly
picked vertices in the graph is of doubly logarithmic order in the
number of nodes.

• Networks are vulnerable under target attack: The topological fea-
tures of the network changes dramatically, if a small number of highly
influential nodes is strategically removed.

10



1.1. Preferential attachment

1.1. Preferential attachment

The idea of preferential attachment was introduced into network theory
by Barabási and Albert in 1999 [4], establishing a mechanism that repli-
cates the rich get richer concept. Here, at each time step a new node joins
the graph and connects to already existing nodes with a probability pro-
portional to the degree of current nodes. In this network, nodes are hence
ranked by their degree and a node with a large degree can be seen as highly
influantial or powerful. Having a large degree also enables a node to collect
further links over time and thus to increase its degree even further. We
speak therefore of degree-based preferential attachment. Due to this mech-
anism, it is reasonable to epect that there exist nodes with an exceptional
large degree at later times. Indeed, this model creates a scale-free net-
work with power-law exponent τ = 3 [4]. With small adjustments on the
model one can also attain all power-law exponents τ > 2 without changing
the construction principle [10, 22, 48]. This allows more flexibility in the
study of the other properties and one can ask how these properties are
affected when the power-law exponent changes. In fact, it is known that
this model is robust and ultra-small if τ ≤ 3 and not if τ > 3 [19, 20,
21, 26]. In other words, there occurs a phase transition when the empir-
ical degree distribution loses its second moment. To prove these results
the authors crucially rely on the fact that the exploration of the network,
starting from a typical vertex, can be coupled with rather complicated,
yet well-studied branching processes [20]. The coupling then yields that
the network is robust and ultra-small if and only if the branching process
survives. The offspring distribution of the branching process however is
determined by the degree distribution and power-law exponents τ ≤ 3 lead
to supercritical branching processes whereas τ > 3 lead to subcritical ones.
However, this representation of neighbourhoods immediately implies that
these models are locally tree-like and cannot have clustering.

An natural idea to tackle this issue is to embed the graphs into space
and give preference to short edges. We then speak of spatial preferential
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attachment. The idea is that the spatial location of a node represents its
individual features and nodes at a short distance can be seen as similar. In
2002 Manna and Sen studied such a model [56]. Here, at every time step
the new node is placed uniformly at random into space and is connected to
exactly one of the older vertices where each node is chosen for connection
with a probability proportional to the product of its degree and its distance
to the new vertex. Another model was introduced by Flaxman et al. in 2006
[27, 28] which combines the ideas of preferential attachment and random
geometric graphs, cf. [63]. In this model, each newly incoming node only
connects to vertices within a certain distance. Amongst all possible nodes
a fixed number is chosen for connection with a probability proportional to
current degrees. This model was further studied by Jordan [49, 50] and
Jordan and Wade [51]. An extension of this model was introduced by Aiello
et al. in 2008 [1] and further studied by Cooper et al. [16] and Janssen et al.
[47]. In their extension each node has a sphere of influence that grows with
the node’s degree. When a new node joins the graph, it connects to each
node in whose sphere of influence it has been placed independently with a
fixed probability p. We finally present the spatial preferential attachment
model of Jacob and Mörters, introduced in 2015 [44, 45]. In their model, a
growing sequence of random graphs in continuous time is built as follows:
the vertices arrive according to a standard Poisson process and are placed
onto the unit torus. Given the graph up to time t, a vertex x arriving
at time t connects to each already present vertex y independently with
probability

ρ
(

t d1(x, y)
f(indegt(y))

)
. (1.1)

Here, ρ is a non increasing and integrable profile function with image in
[0, 1] and d1 denotes the torus metric. In the denominator, indegt(y) de-
notes the number of connections of y to vertices that have been added
to the graph after it and up up time t and f is a function of asymptotic
linear slope γ ∈ (0, 1), i.e. f(x)/x→ γ as x→∞ modelling the influence
of the vertices degree. Further comments and details on the above men-
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1.1. Preferential attachment

tioned objects are given in the section below. The choice of ρ = p1[0,1/p]

reduces to a continuous time version of the model of Aiello et al.. However,
the introduction of a general profile function allows for more flexibility in
the model. In particular, one can chose functions of unbounded support,
softening geometric restrictions.

The previously described spatial preferential attachment models appear to
be too complicated to fully characterise features like robustness and ultra-
smallness. This is because the actual degree of each vertex depends in a
complex way on the graph geometry. At the same time there is a strong
link between the age of a vertex and its degree due to the building princi-
ples. The age-based preferential attachment model we study in this thesis
can be seen as a simplification and approximation of Jacob and Mörter’s
model where the denominator in the connection function is replaced by the
expected degree of the vertex y at time t. As the latter is just a function
of the age of a vertex which is a given quantity, this removes complicated
but on large scales inessential correlations between edges. This allows
more explicit calculations and we can focus on the more complex question
of robustness and its dependence on the spatial embedding. In the next
section, we introduce the model properly and formulate the main results
about it.

1.1.1. A preferential attachment model and results

In this section we introduce our model, state and discuss its features of
interest. In Section 1.2 a limit structure of the model which is necessary
to prove the features of our preferential attachment model is introduced.
This limit furthermore leads to a new class of graphs, the weight-dependent
random connection model. Both sections combined can be seen as a sum-
mary and explanation of the results of [32, 35, 36]. It is further explained
how the results of the papers connect. All three papers are published or
submitted for publication and build the core of my thesis. A more detailed
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Chapter 1. Introduction and summary of results

statement about which part of the thesis is built on which result and paper
and how I was involved in the research and writing process is provided in
Section 1.3.

We denote by Td
1 = (−1/2, 1/2]d the d-dimensional torus of unit volume,

endowed with the torus metric d1 defined by

d1(x, y) = min
{
|x− y + u| : u ∈ {−1, 0, 1}d

}
for x, y,∈ Td

1.

We introduce the age-based spatial preferential attachment model as a grow-
ing sequence of undirected graphs (Gt : t ≥ 0) in continuous time where
the vertex set is embedded into Td

1. We denote a vertex by y = (y, s) and
identify its spatial position by y ∈ Td

1 and by s > 0 its birth-time, the time
the vertex has been added to the graph. We start with the empty graph
G0. Then

• Vertices arrive according to a standard Poisson process in time and
are placed independently uniformly on the d-dimensional torus Td

1.

• Given the graph Gt−, a vertex x = (x, t) born at time t and placed
in position x connects by an edge to each existing node y = (y, s)
independently with probability

ρ

(
t · d1(x, y)d

β
(

t
s

)γ

)
, (1.2)

where

(a) ρ : (0,∞) → [0, 1] is the profile function. It is non increasing, inte-
grable and normalized in the sense that

∫
Rd

ρ(|x|d) dx = 1. (1.3)

The profile function can be used to control the occurrence of long edges

14



1.1. Preferential attachment

and models the strength of the geometrical restrictions.

(b) γ ∈ (0, 1) is a parameter that quantifies the strength of the preferential
attachment mechanism. We shall see that it alone determines the
power-law exponent of the network.

(c) β ∈ (0,∞) is an edge density parameter such that larger values of β

lead to more edges on average.

Some comments on the choices of the model parameter are in order.

Remark 1.1.

(i) For any r > 0, the profile function ρ and the parameter β define
the same model as the profile function x 7→ ρ(rx) and the parameter
rβ. Hence the normalisation convention (1.3) represents no loss of
generality. Similarly, if the intensity of the arrival process is taken
as λ > 0 the process (Gt/λ)t>0 is the original process with the same
profile function ρ and parameter βλ.

(ii) The form of the connection probability (1.2) is natural for the follow-
ing reasons: To ensure that the probability of a new vertex connecting
to its nearest neighbour does not degenerate, as t → ∞, it is neces-
sary to scale d1(x, y) by t−1/d, which is the order of the distance of
a point to its nearest neighbour at time t. Further, the integrability
condition of ρ ensures that the expected number of edges connecting
a new vertex to the already existing ones, remains bounded from zero
and infinity, as t→∞.

(iii) In the degree-based spatial preferential attachment model of Jacob
and Mörters [44], constructed via (1.1), a vertex y born at time s

has expected degree (t/s)γ at time t. The age-based spatial preferen-
tial model therefore is indeed the aforementioned simplification and
approximation of their model. We believe our approximation to be
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accurate for universal features such as robustness and ultra-smallness
as these questions depend only on the global structure of the network
which remains largely unchanged by our simplification. However,
there are certain questions such as the concrete value of critical pa-
rameters or the behaviour at criticality, where small changes in the
model description lead to significantly different answers. Answering
these questions for the simpler age-based models yields at best in-
sights for the same question for the degree-based version. Indeed,
in a non spatial setting certain critical parameters can be calculated
explicitly [26] and a difference between degree-based and age-based
preferential attachment can be observed.

Before we state the main theorem about preferential attachment, we define
the interesting key features of networks from the beginning of this chapter
in a rigorous mathematical way. In the definitions, we will use the Landau
notation f = o(g) to indicate that f(x)/g(x)→ 0 as x→∞ and f ≍ g if
f(x)/g(x) is bounded from 0 and∞. We denote by V (G) the vertex set of
a graph G and by ♯A the number of elements in a finite set A. We denote
by Nx(G) the neighbours of x in G.

Definition 1.2 (Scale-free networks). We say a network (Gt : t ≥ 0) is
scale-free with power-law exponent τ if there exists a sequence (µ(k) : k ∈
N0) such that it holds for all k ∈ N0

♯{x ∈ V (Gt) : ♯Nx(Gt) = k}
♯V (Gt)

−→ µ(k)

in probability as t→∞ and

µ(k) = k−τ+o(1), as k →∞.

Let V2(G) ⊂ V (G) be the set of vertices of the finite graph G that have at
least two neighbours. For x ∈ V2(G) we call any distinct pair of vertices
y, z ∈ Nx(G) a wedge with tip in x. Note that there are

(
♯Nx(G)

2

)
different
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1.1. Preferential attachment

wedges with tip in x. If further y and z are connected in G, i.e. y ∈ Nz(G),
then we call {x, y, z} a triangle in G. We now define the local clustering
coefficient of x ∈ V2(G) by

cloc
x (G) := ♯{triangles in G containing x}(

♯Nx(G)
2

)
and the average clustering coefficient of G by

cav(G) := 1
♯V2(G)

∑
x∈V2(G)

cloc
x

if V2(G) ̸= ∅ and as zero otherwise.

Definition 1.3 (Clustering). We say that a network (Gt : t ≥ 0) shows
clustering if there exists a constant c > 0 only depending on model param-
eters such that

cav(Gt) −→ c,

in probability as t→∞.

To define robustness we introduce Bernoulli bond percolation with reten-
tion parameter p ∈ (0, 1]. In a graph G any edge is independently removed
with probability 1− p or kept with probability p. We denote the resulting
graph by G(p). We denote by C (G) the largest connected component of
the graph G. We define robustness as in [36, 45].

Definition 1.4 (Robustness). Let (Gt : t ≥ 0) be a network. We say it
has a giant component if its largest connected component is asymptotically
of linear size, that is

lim
ε↓0

lim sup
t→∞

P{♯C (Gt) < εt} = 0.

We say the network is robust if the bond percolated sequence (Gt(p) : t ≥ 0)
has a giant component for every retention parameter p. Otherwise, we say
the network is non-robust.

17
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Theorem 1.5 (Age-based spatial preferential attachment).
Let ρ be a profile function, γ ∈ (0, 1) and β > 0. Let (Gt : t ≥ 0) be
the age-based spatial preferential attachment model constructed with ρ, γ, β

according to (1.2). Then (Gt : t ≥ 0) is a scale-free network with power-law
exponent τ = 1 + 1/γ that exhibits clustering. If ρ is further of the form

ρ(x) ≍ 1 ∧ ℓ(x)x−δ

for some δ > 1 and a slowly varying function ℓ, cf. [7], it holds

(a) if γ < δ
δ+1 , the network is non-robust and if

(b) if γ > δ
δ+1 , the network is robust.

Remark 1.6.

(i) The condition γ < δ/(δ+1) is equivalent to τ > 2 + 1/δ. Hence, the
qualitative change in the robustness behaviour does not occur when
τ passes the critical value 3 as observed for the non spatial models
but when it passes a strictly smaller value. This shows the significant
effect of clustering on the network topology.

(ii) In [44] Jacob and Mörters show that their degree-based spatial prefer-
ential attachment model is scale-free with the same power-law expo-
nent τ = 1 + 1/γ. They show robustness for their model if γ > δ/(δ+1)

but it remains an open problem to show non-robustness for γ < δ/(δ+1)

[45]. Theorem 1.5 is a strong indication that this is the case.

(iii) Theorem 1.5 shows that the power-law exponent is independent of
ρ and only determined by γ and that the model shows clustering
for any choice of γ and ρ. However, it also shows that robustness
can never occur if ρ has bounded support or decays faster than any
polynomial. This applies in particular to an age-based version of the
model of Aiello et al [1]. Hence the theorem also indicates that their
model is never robust.
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1.2. Inhomogeneous percolation

(iv) In [25] Eckhoff and Mörters show that robust non-spatial preferential
attachment models are vulnerable under targeted attack. More pre-
cisely, they show in the robust regime γ > 1/2 that the removal of an
arbitrarily small proportion of the oldest vertices leads to a network
that is no longer scale-free and robust. Theorem 1.5 shows that the
spatial embedding makes it harder for the network to be robust and
one can show for the spatial model that the vulnerability statement
remains true, cf. Chapter A.

(v) Combining the limit structure outlined in the next section and fre-
quently used to prove Theorem 1.5 with results of Gracar et al. [33]
shows that the age-based spatial preferential attachment model is
ultra-small in the robust regime γ > δ/(δ+1). All together, the age-
based spatial preferential attachment model is a tractable model only
relying on simple building mechanisms which provides all our features
of interest in a fully characterised parameter regime.

(vi) The proof of Theorem 1.5 is done in Chapter 3 and in particular in
the Corollaries 3.7, 3.10 and 3.19.

1.2. Inhomogeneous percolation

Percolation theory was introduced by Broadbent and Hammersley in 1957
[13] to model how random properties of a porous medium effects the per-
colation of a fluid through it. Typically, the medium is modelled as a
random graph and the question can be interpreted as the study of this
graph’s component structure. One of the first models that were studied
rigorously are graphs on a lattice and in particular the nearest-neighbour
graph Zd where edges are present independently with a given probability
p and absent with probability 1 − p. In this case we also speak of bond
percolation. Another approach is to remove vertices instead in which case
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Chapter 1. Introduction and summary of results

we speak of site percolation. These lattice models are well studied and
more general types of connections have been established; we refer to the
monograph of Gilbert [38] for an overview. If the vertex set is embedded
into continuum space, typically through a Poisson point process, we speak
of continuum percolation. One may think here of the spread of bark beetles
in a forest. The vertices of the graph then represents the trees and an edge
indicates that the bark beetles were transmitted from one tree towards the
other. A transmission is more likely to happen when the trees are spatially
close. Even though the trees are still a countable number of objects the
position of each tree is in continuum space; cf. [59] by Meester and Roy
for more examples.

We next consider a rescaling of the age-based spatial preferential attach-
ment model which leads in the limit to an inhomogeneous continuum per-
colation model, the age-dependent random connection model. From this
model we derive a general framework that covers many of the models es-
tablished in the literature which we will then discuss.

1.2.1. Transition to the age-dependent random
connection model

Recall the age-based preferential attachment network (Gt : t ≥ 0) con-
structed according to (1.2). We denote by Td

t = (− d√t/2,
d√t/2]d the torus of

volume t ∈ (0,∞] and its associated torus metric by dt where

dt(x, y) = min
{
|x− y + u| : u ∈ {−t1/d, 0, t1/d}d

}
for x, y,∈ Td

t . (1.4)

We identify the case t = ∞ with Td
∞ = Rd equipped with the standard

Euclidean metric.

For t > 0, we define the rescaling map
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1.2. Inhomogeneous percolation

ht : Td
1 × (0, t] −→ Td

t × (0, 1],
(x, s) 7−→

(
t1/dx, s

t

)
,

which stretches the space by the factor d
√

t and time by 1/t. The map also
operates on the graph Gt in the following way: The vertex set of ht(Gt) is
given by ht(V (Gt)) and each pair of vertices ht(x), ht(y) is connected by
an edge if and only if x and y are connected in Gt. Since V (Gt) is a unit
intensity Poisson process on Td

1× (0, t], the set ht(V (Gt)) is a unit intensity
Poisson process on Td

t × (0, 1), that is a Poisson process on Td
t where

each point is marked with an independent random variable distributed
uniformly on (0, 1] [55, Chapter 5]. Moreover,

ρ

u/t·dt( d√tx, d√ty)d

β

(
u/t
s/t

)γ

 = ρ
(

u·d1(x,y)d

β(u
s )γ

)
. (1.5)

Hence, ht preserves the connection rule (1.2) and it is the same to construct
the graph Gt and then rescale the marked space or to first rescale the
marked space and then construct the graph, see Figure 1.1.

Let G t be the graph, constructed on the points of a unit intensity Poisson
process on Td

t × (0, 1] where, given the vertex set, each pair of vertices
x = (x, u) and y = (y, s) with s < u is connected by an edge independently
with probability

ρ
(

u·dt(x,y)d

β(u
s )γ

)
.

Hence, the connection probability coincides with (1.5) and G t has the
same law as ht(Gt). Hence, to study degree-distribution, clustering and
robustness for Gt is the same as studying these questions for G t which we
will do in Chapter 3. However, as a process (G t : t ≥ 0) behaves differently
as the original process (Gt : t ≥ 0); while the degree of any given vertex
in the original process (Gt : t ≥ 0) goes to infinity, the degree of any fixed
vertex in (G t : t ≥ 0) stabilises. Due to the latter, (G t : t ≥ 0) converges
locally to a limit graph G ∞ in the sense that for large t bounded graph
neighbourhoods in G t and G ∞ coincide. This will be proven rigorously in
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Chapter 1. Introduction and summary of results

Figure 1.1.: The graph Gt on the left and its rescaling ht(Gt) on the right. The blue
vertices are born after time t and, therefore, the corresponding edges do not exist yet
and the vertices are not part of the rescaled graph. The yellow vertex is placed at
position 0 and remains in the centre after the rescaling; cf. [32, Figure 1].

Theorem 3.1. We will further show in Theorem 3.3 that G ∞ also plays the
role of the weak local limit for Gt in the sense of Benjamini and Schramm
[5]. Intuitively, this concept states that asymptotic local properties of a
graph sequence can be studied as they are seen by a typical vertex in
the limit graph. This concept has also been independently introduced by
Aldous and Steele [3]. The local limit structure will be shown to be crucial
for the proof of Theorem 1.5. We conclude this section with a closer look
on the limit graph G ∞. By construction its vertex set is given by a Poisson
process on Rd where each vertex carries an independent and uniformly on
(0, 1) distributed mark and, given their locations and marks, any pair of
vertices x = (x, u) and y = (y, s) is connected by an edge independently
with probability

ρ
(

1
β
(u ∧ s)γ(u ∨ s)1−γ|x− y|d

)
.
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1.2. Inhomogeneous percolation

The connection probability therefore depends on the Euclidean distance of
the vertices and their marks in a way where edges between spatially close
vertices and connections to vertices with small marks are more probable.
Here, small marks coincide with early birth times of vertices. We call this
model the age-dependent random connection model. It is a model of inde-
pendent interest as an inhomogeneous version of the random connection
model [59] which arises naturally. However, by making the way the marks
influence the connection mechanism more flexible this approach gives rise
to a general class of inhomogeneous spatial random graphs which we call
the weight-dependent random connection model. It was first introduced by
Gracar et al. [34] in 2019. We shall see that many well-established models
in the literature fall within this class.

1.2.2. A general inhomogeneous percolation model

We introduce the weight-dependent random connection model as in [34].
The model’s building mechanism is similar as above and has two principal
components:

• the kernel, a symmetric function g : (0, 1)2 → (0,∞) which is non
decreasing in both arguments and satisfies

∫ 1

0
ds
∫ 1

0
dt

1
g(s, t) <∞; (1.6)

• the profile, a non increasing function ρ : (0,∞)→ [0, 1] satisfying
∫
Rd

ρ(|x|d)dx = 1 (1.7)

as above in (1.3).

We generate a graph in two steps: Firstly, we sample vertices. Let η be a
unit intensity Poisson point process on Rd. We refer to the points of η as
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Chapter 1. Introduction and summary of results

vertex locations. Given η, each location x ∈ η is assigned an independent
vertex mark tx, distributed uniformly on (0, 1). The pairs x = (x, tx) form
the vertex set and we denote by X the collection of all vertices. Secondly,
we fix a β > 0, a profile ρ and a kernel g and, given X , we connect every
pair of vertices x, y ∈ X independently by an edge with probability

ρ
(

1
β
g(tx, ty)|x− y|d

)
(1.8)

and we denote this event by x ∼ y. We denote the resulting graph by G (β)
and by (G (β) : β > 0) the family of graphs of various edge densities.

Remark 1.7.

(i) As before, the normalisation condition of ρ and the fixed unit inten-
sity of the underlying Poisson process provide no loss of generality.

(ii) By the monotonicity assumptions on ρ and g, short edges and con-
nections to vertices with small marks are more probable. One can
think of the marks as inverse vertex weights, which give the model
its name.

(iii) By monotonicity of ρ, the parameter β > 0 affects the edge prob-
ability in the way where larger values of β result in more edges on
average. We hence call β the edge density.

(iv) As we shall see in Chapter 2, the integrability conditions of g and
ρ guarantee that G (β) has finite mean degree which in particular
means that the considered graphs are sparse. Moreover, due to the
normalisation of ρ, the degree distribution only depends on g and
the edge density β whereas the profile ρ controls the intensity of long
edges in the graph. This allows to independently tune the degree
distribution and the occurrence of long edges.

(v) By construction, edges are conditionally independent given X . How-
ever, due to the introduction of marks, edges are positively correlated
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1.2. Inhomogeneous percolation

whenever they share a common end vertex.

(vi) Throughout the manuscript, we always consider a Poisson point pro-
cess as the underlying vertex locations. However, the Poisson point
process can easily be replaced by a site percolated lattice, that is
the lattice Zd where each site is independently removed with a fixed
probability p ∈ [0, 1).

We now turn our attention to the second focus of this thesis: Does a
critical density parameter βc ∈ (0,∞) exist, such that the graph G (β)
contains an infinite connected component, or infinite cluster, for β > βc

and no infinite cluster for β < βc? The ergodicity of the vertex set together
with the conditional independence of edges yields that the existence of an
infinite cluster is a 0-1-event. Moreover, one can adapt [45, Proposition
4] to our setting to deduce that an infinite cluster, if it exists, is almost
surely unique. This proof follows an established technique of Burton and
Keane [14]. We will call the parameter regime (0, βc) the subcritical phase
and the regime (βc,∞) the supercritical phase of the model. In light of our
discussion about robust networks a natural equivalent to this question in
the context of percolation is whether there exist sparse models without a
subcritical phase, i.e. βc = 0.

Many models from the literature fit into the framework of the weight-
dependent random connection model by tuning ρ and g. In Chapter 2
we will discuss a general kernel, the interpolation-kernel, which contains
all the examples below and allows us to draw a rather complete picture
of percolation results from our perspective. However, in the remainder of
this chapter, we restrict ourselves to the following kernels corresponding to
concrete models from the literature, which we now discuss. An overview
about these kernels and the models they represent can be found in [34,
Table 1].
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Chapter 1. Introduction and summary of results

Homogeneous random connection model In this class of graphs,
vertices are sampled according to a standard Poisson process and given
two points the probability of drawing an edge between them is a function
of their spatial distance. In the framework of the weight-dependent ran-
dom connection model the vertex marks have no influence on the connec-
tion probability and these graphs are defined according to the plain-kernel
gplain(s, t) = 1. The connection probability (1.8) then reads ρ(1/β|x− y|d).
This class was first introduced by Penrose in 1991 [64] under the name
random connection model and various models can be derived by varying ρ.
The first model belonging to this class was introduced by Gilbert in 1961
[30]. Here, any pair of vertices is connected by an edge if their distance is
beneath a fixed threshold β corresponding to the choice of ρ = 1[0,1/2]. It is
well-known that this model has a non-trivial phase transition at βc ∈ (0,∞)
in dimension d ≥ 2 and no supercritical phase, i.e. βc = ∞, in dimension
d = 1. This behaviour extends to all models with bounded edge length
and is essentially a consequence of the existence of a supercritical phase in
two dimensional nearest-neighbour percolation on the lattice. In dimen-
sion one however one finds gaps in the Poisson process without any vertex
of arbitrary length and an infinite component can never be formed. The
same holds true if ρ decays faster than polynomial at infinity. Such a ρ

allows arbitrary long edges but with such small probabilities that there are
no qualitative changes to βc, cf. [60] in particular for profile-functions with
exponential tails. Hence, one may also speak of short-range percolation.
The behaviour in dimension d ≥ 2 extends to all following models and
the existence of a supercritical phase is the regular case. The remaining
question in this case is then whether βc > 0 or not.

A different approach to building the graph is to connect vertices over a
long distance where the connection probability decays polynomially in the
distance. This model was first introduced on the one-dimensional lattice
as long-range percolation [67] and extended to and studied on the Poisson
process by Penrose [64] and Meester et al. [57]. In the language of the
weight-dependent random connection model, this model coincides with a
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1.2. Inhomogeneous percolation

profile function
ρ(x) ≍ 1 ∧ ℓ(x)x−δ, (1.9)

where δ > 1 and ℓ(x) is a slowly varying function. In contrast to Gilbert’s
model above, extra randomness on the edges is introduced. In this setting,
it again holds βc ∈ (0,∞) in any dimension d ≥ 2. The picture for d = 1
however changes and it is known that βc <∞ for δ ∈ (1, 2) and βc =∞ for
δ > 2 [61, 67]. Moreover, even the boundary regime δ = 2 is known in this
model when the slowly varying correction term ℓ is constant. This is also
referred to as scale-invariant long-range percolation in the literature. It
holds βc <∞ in this case and it is even known that there exists an infinite
cluster at the critical point β = βc [2, 24] which is rather atypical. These
proofs are given for the original lattice model but can be transfered to the
Poisson process as well. The behaviour at criticality of the homogeneous
random connection model in higher dimensions are studied by Heydenreich
et al. [40]. The results of the preceding discussion can be found summarised
in the monograph of Meester and Roy [59]. These models also have a
finite volume analogue where the vertices are embedded into a bounded
domain. For the short-range regime, we refer to the monograph of Penrose
[63] about random geometric graphs. More general profile functions are
studied by Penrose in [65] under the name soft random geometric graphs.
In the following, we refer to all models constructed with the plain-kernel
as homogeneous random connection models.

Poisson Boolean model and associated graphs In the classical Pois-
son Boolean model each Poisson point is assigned an i.i.d. radius and the
model is given by the union of the balls centred around the Poisson points
with the assigned radii. One is interested in the space covered by the balls
and whether the covered space contains an unbounded connected compo-
nent. A similar representation is given by a graph where every pair of
vertices is connected by an edge if their associated balls intersect which
then can be seen as a generalisation of the Gilbert graph above. The ques-
tion of existence of an unbounded connected component in the union of
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Chapter 1. Introduction and summary of results

balls is equivalent to the existence of an infinite component in the graph.
However, a graph contains more structural informations and allows for
further variants and generalisations of the model. To ensure finite ex-
pected degrees the radius distribution must have finite d-th moment. The
Boolean model has been studied by various authors, e.g. Hall in 1985 [39]
and Meester and Roy in 1994 [58]. Again, the results are summarised in
detail in the monograph [59]. It is known, that in d ≥ 2 there exists a
non-trivial βc ∈ (0,∞) and in d = 1 it holds βc = ∞. This holds true
for all valid radius distributions with finite d-th moment and applies in
particular to heavy-tailed radii which allow vertices with an exceptionally
large radius and degree. These are the radius distributions we will focus
on in the following. In our framework, the profile function is given by the
indicator 1[0,1/2] and the radius distribution is derived from the vertices’
marks. We then define the graph derived from the Boolean model via the
sum-kernel

gsum(s, t) =
(
s−γ/d + t−γ/d

)−d
, for γ ∈ (0, 1). (1.10)

The radius of a vertex x = (x, tx) is then given by ((β/2)t−γ
x )1/d and hence

heavy-tailed. We shall see that these radii lead to a scale-free degree distri-
bution with power-law exponent τ = 1+1/γ. Note that this is the power-law
exponent of the age-based spatial preferential attachment model. To al-
low a direct comparison of our models, we will parametrise all models in
terms of γ ∈ (0, 1) in the following leading to the same power-law expo-
nent. A closely related variant of the Boolean model graph is given by the
strong-kernel

gstr(s, t) = (s ∧ t)γ, for γ ∈ (0, 1). (1.11)

Here, two vertices are connected by an edge if the vertex with the smaller
radius is contained in the ball associated with the vertex with the larger
radius. Hence, whether the vertices are connected or not only depends on
the stronger vertex. However, the radii are heavy-tailed and the order of
the sum of two radii is the same as the order of the larger radius. Indeed,
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Figure 1.2.: Examples for the model with the sum-kernel (left), strong-kernel (middle)
and weak-kernel (right) where ρ is an indicator function.

as
2−dgstr ≤ gsum ≤ gstr, (1.12)

both kernels show qualitatively similar behaviour. The strong-kernel model
has also been studied also under the name scale-free Gilbert graph by Hirsch
in 2017 [41]. If one allows γ = 0, one obtains the Gilbert graph of the
previous paragraph. Due to (1.12), in all our calculations we will work
with the strong kernel only.

A similar yet much more restrictive idea is to make the connection proba-
bility dependent on the weaker vertex. That is, two vertices are connected
whenever they are contained in each others’ associated ball. This corre-
sponds to the weak-kernel

gweak(s, t) = (s ∨ t)α, for α > 0. (1.13)

Typically, the weaker radius is of much smaller order than the stronger one
leading to a much less connected graph. If the radius distribution remains
integrable as before, i.e. α ∈ (0, 1), the degree distribution no longer follows
a power-law. To achieve the same power-law τ = 1 + 1/γ as above, one has
to choose α = 1 + γ. This model then coincides to a continuum version
of Yukich’s ultra-small scale-free geometric network [70]. In this situation,
the radii are big enough that we always have βc = 0.

All of the three discussed models have in common that each vertex has
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Chapter 1. Introduction and summary of results

assigned a sphere of influence and edges are drawn according to a mecha-
nism depending on the size of the involved spheres. Due to (1.12) we refer
to a model that is constructed with either the sum-kernel or the strong
kernel as Boolean model. Since the weak kernel behaves significantly dif-
ferent it is not contained in the Boolean model. Instead we simply refer
to it as weak-kernel model. Examples for the three models are given in
Figure 1.2.

Scale-free percolation This model was introduced by Deijfen et al. on
the lattice in 2013 [17] and translated to continuum space by Deprez and
Wüthrich in 2019 [18]. It can be seen as a generalisation of hyperbolic
random graphs [9, 54, 68]. Here, each vertex carries an independent and
heavy-tailed weight and the weights enter the connection probability as
a product. In [18] the weights are Pareto distributed. In [17] a further
slowly varying correction term is allowed in the weights’ tail distribution
function. However, for their percolation results they restrict themselves
to tail distribution functions that can be suitably bounded by a Pareto
tail with the same tail index. Hence, for their results Pareto distributed
weights are paradigmatic. In the notion of the weight-dependent random
connection model this coincides with the product-kernel

gprod(s, t) = sγtγ, for γ ∈ (0, 1) (1.14)

which again lead to a power-law degree distribution with τ = 1 + 1/γ. For
a translation from our parametrisation to the original one, we refer to [34,
Table 2]. The typical choices for profile functions in this model are the ones
of long-range percolation given by (1.9). In this model it is known that
βc = 0 if γ > 1/2 and βc > 0 if γ < 1/2. This question hence only depends
on the degree distribution and not on the geometry modelled by ρ and
the phase transition is the same as for the non spatial models discussed
in Section 1.1. If ρ fulfils (1.9) for some δ > 1 and γ < 1/2, we observe in
dimension d = 1 that βc < ∞ if δ < 2 and βc = ∞ if δ > 2 [18, Theorem
3.2]. Here, the picture equals the one of long-range percolation and the
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1.2. Inhomogeneous percolation

weights have no qualitative effect. Shortly, we discuss some models where
both questions depend on the combination of both the power-law and
the long-range effects. This model has also been studied under the name
geometric inhomogeneous random graphs by Bringmann et al. [11, 12] and
Komjáthy et al. [52]. They use a parametrisation closely related to the
weight-dependent random connection model that allows generalisations in
a very similar way.

The age-dependent random connection model For completeness,
we recall the previously discussed age-dependent random connection model
that is given by the preferential attachment-kernel

gpa(s, t) = (s ∧ t)γ(s ∨ t)1−γ, for γ ∈ (0, 1). (1.15)

1.2.3. Main percolation results

In the examples above we have seen models that have parameter regimes
providing no subcritical phase. However, in both situations this only de-
pends on the degree distribution: the influence of the vertex weights on
the connection probability is so strong that geometric restrictions have no
influence. Beside the question of this behaviour in the age-dependent ran-
dom connection model, we are therefore interested in whether there exist
models in general where the existence of a subcritical phase depends on
both the degree distribution and the geometry. Both of these questions
will be answered in the upcoming Theorem 1.8. Before stating it, let us
comment on the geometry of the graph and how the choice of ρ effects it.
The two canonical choices for profile-functions in the examples above are
the indicator function, i.e. the short-range regime, and a function of poly-
nomial decay, i.e. the long-range regime. In the homogeneous short-range
models whether two vertices are connected or not only depends on their
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Chapter 1. Introduction and summary of results

distance and hence the underlying Poisson process. In the homogeneous
long-range models, (very) long edges can occur spontaneously often enough
so that geometric restrictions are softened. These edges are also referred
to as weak links in the networks literature. This extends naturally to the
general setting. If ρ = 1[0,1/2], two vertices are connected if their ”mark
and kernel scaled distance“ fulfils

g(tx, ty)|x− y|d ≤ β

2 .

There is a hard bound given by β for the product of kernel and distance.
We therefore refer to these models as hard models. For a profile-function
that fulfils (1.9) we instead have the following. Given the Vertex set X ,
each potential edge {x, y} is assigned an independent heavy tailed random
variable Z(x, y) with tail distribution function P{Z(x, y) > z} = ρ(z) and
the edge is drawn if

g(tx, ty)|x− y|d ≤ βZ(x, y). (1.16)

The bound on the right-hand side is therefore randomised and we speak
of soft models. An advantage of this representation is the justification of
considering (G (β) : β > 0) as a growing family of graphs (in β) allowing
a direct coupling between graphs with various values of β. For each given
realisation of the vertex set X and the collection Z = (Z(x, y) : x ̸=
y ∈ X ), the ”mark and kernel scaled distance“ and the edge weights Z

are given quantities and whether the above inequality is fulfilled or not
depends only on β. Obviously, for the fixed realisation and β1 < β2,
the graph G (β2) contains all the edges of G (β1) and possibly more. The
picture is particularly nice for the soft Boolean model. Plugging in the sum
kernel (1.10), inequality (1.16) becomes

|x− y| ≤
(
βZ(x, y)t−γ

x

)1/d
+
(
βZ(x, y)t−γ

y

)1/d
.

Hence, for each potential edge, the radii of the two end vertices are stretched
by the same independent heavy tailed random variable and the edge is
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drawn if the stretched balls intersect, cf. [33]. In the following our main
focus lies on soft models and we therefore consider profile functions ρ that
are regularly varying at infinity with index −δ for some δ > 1. More
precisely, ρ fulfils

lim
r→∞

ρ(λr)
ρ(r) = λ−δ for all λ ≥ 1; (1.17)

see [7] for a monograph on regularly varying functions. Note that in partic-
ular functions of the form (1.9) are regularly varying. We can use a compar-
ison argument to derive the behaviour of profile-functions with lighter tails
(including those with bounded support) from a limit δ ↑ ∞. Therefore, to
include the hard models also, we identify the case ρ = 1[0,1/2] with δ =∞.
We set 1/∞ := 0. We now state the promised theorem giving a positive
answer to the question of percolation being affected by both marks and
spatial embedding and contextualising the behaviour of the age-dependent
random connection model.

Theorem 1.8 (Existence vs. non-existence of the subcritical phase). Let
(G (β) : β > 0) be the weight-dependent random connection model con-
structed with either the preferential attachment-kernel (1.15), the sum-
kernel (1.10) or the strong-kernel (1.11) for some γ ∈ [0, 1) and a profile-
function ρ satisfying (1.17) for some δ ∈ (1,∞]. It holds

(a) if γ < δ
δ+1 , then βc > 0;

(b) if γ > δ
δ+1 , then βc = 0.

Remark 1.9.

(i) We obtain the following estimates for βc from our proof:

• If γ < 1/2, then βc ≥ 1−2γ
4 .

33



Chapter 1. Introduction and summary of results

• If ρ(x) ≤ Ax−δ for A > 1 and 1/2 ≤ γ < δ/(δ+1), then

βc ≥
d(δ − 1)(δ(1− γ)− γ)

2dδ+4A1/δδ
.

(ii) We can use a simple coupling with the homogeneous random connec-
tion model to obtain that if γ < δ/(δ+1) in d ≥ 2 and for d = 1 if
additionally δ < 2 we have βc < ∞. We deal with the case δ > 2 in
d = 1 below in Theorem 1.11.

(iii) From the perspective of drawing edges, the edge density parameter
β scales the distance between points. Hence varying β is equivalent
to varying the intensity of the Poisson process which can be seen
easily by performing a linear coordinate transform on the underlying
space and using that a homogeneous Poisson point process is uniquely
characterised by its intensity and the condition that point counts in
disjoint Borel sets be independent [55]. Hence, if we build the graph
with a fixed β > 0 and vary the intensity λ of the Poisson process,
we obtain βc = 0 ⇔ λc = 0 and λc < ∞ ⇔ βc < ∞. Similarly,
performing Bernoulli bond percolation with retention parameter p on
the graph G (β) coincides with constructing the graph with profile-
function pρ by the conditional independence of the edges given the
vertices. Since pρ has the same tail as ρ and in particular fulfils (1.17)
with the same δ, we get pc = 0 ⇔ βc = 0. In a parameter regime
where βc <∞, we can build the graph with a fixed β > βc and have
pc < 1 in this case.

(iv) If we choose γ = 0 and the strong or the sum-kernel, we obtain
the known results for homogeneous random connection model. If we
choose the strong or the sum-kernel for some γ > 0 and a profile-
function of bounded support, i.e. δ = ∞, we reproduce the known
results for the hard Boolean model. Choosing γ = 0 and the prefer-
ential attachment-kernel, we obtain the weak-kernel at critical γ = 0
and find βc > 0 in that case.
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(v) If γ = δ/(δ+1), we do not expect a universal result and it may depend
on the exact form of the kernel g and the profile ρ whether βc = 0 or
not. However, for γ = 1/2 the product-kernel (1.14) and the prefer-
ential attachment-kernel coincide. Hence, the scale-free percolation
model in continuum space has βc > 0 at γ = 1/2 for a universal
class of profile-functions. The findings of the last two comments are
summarized in the following corollary.

Corollary 1.10. Consider the weight-dependent random connection model
(G (β) : β > 0) constructed with a profile-function ρ satisfying (1.17) for
some δ ∈ (1,∞]. Then we have βc > 0 for

(a) the weak-kernel at critical γ = 0, that is gweak(s, t) = s ∨ t, and

(b) the product-kernel at critical γ = 1/2, that is gprod(s, t) =
√

st.

The final important result of this thesis addresses the existence of a super-
critical phase in dimension d = 1, i.e. when the underlying Poisson process
is embedded into the real line. We have already seen in the model descrip-
tion above that in the homogeneous setting the supercritical phase can only
exist when there are sufficiently many long-range edges. In other words,
the critical density parameter βc is finite if ρ fulfils (1.17) for δ ∈ (1, 2). We
however consider inhomogeneous models where additional edges are drawn
through the influence of the vertex weights. Of particular interest are the
models constructed with some δ > 2 together with the kernels introduced
above and the question at hand is whether they can contain an infinite
cluster or not. The following theorem characterises the overall long-range
connectivity of the models and relates it to the finiteness of βc.

Theorem 1.11 (Existence vs. non-existence of a supercritical phase).
Consider the one-dimensional weight-dependent random connection model
(G (β) : β > 0) with kernel-function g and profile-function ρ.
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(a) The percolation threshold βc is finite, whenever

− lim inf
n→∞

log
(∫ 1

1/n

∫ 1
1/n ρ(g(s, t)n) ds dt

)
log n

< 2.

(b) The percolation threshold βc is infinite, whenever

− lim sup
n→∞

log
(∫ 1

1/n

∫ 1
1/n ρ(g(s, t)n) ds dt

)
log n

> 2.

Remark 1.12.

(i) For the concrete kernels above and our choices for profile-functions,
fulfilling (1.17), the limits appearing in the theorem coincide. If this
is the case, we define the effective decay exponent associated with ρ

and g as

δeff := − lim
n→∞

log
( ∫ 1

1/n ds
∫ 1

1/n dt ρ(g(s, t)n)
)

log n
. (1.18)

In this situation Theorem 1.11 states that, βc <∞ if δeff < 2 and βc =
∞ if δeff > 2. Note that in case of a regularly varying profile-function
it always holds that δ ≥ δeff and one obtains a strict inequality if g

vanishes sufficiently fast at (0, 0).

(ii) Note, that the order in n of the integrals appearing in the theorem
are independent of β for our choices of ρ except for the case when
g(s, s) ∼ s as s ↓ 0 and ρ = 1[0,1/2]. Then the integral is always zero.
However, we are interested in the behaviour for large β. Hence, we
fix a β > 1 and have

∫ 1

1/n
ds
∫ 1

1/n
dt 1[0,1/2]

(
β−1g(s, t)n

)
≍
∫ β/n

1/n
ds
∫ β/n

1/n
dt 1 = (β − 1)2n−2

and hence δeff = 2, the case which is not covered by the theorem.

36
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To give an intuition for δeff, consider two disjoint sets of n vertices at
distance roughly n. As n grows large the smallest mark in each of the two
sets is of order 1/n so that the integral appearing in (1.18) is essentially the
probability that two vertices picked randomly from each of the two sets
are connected by an edge. Ignoring the correlations between edges arising
from the vertex marks, the number of edges between the two vertex sets of
size n is roughly given by a binomial experiment with n2 trials and success
probability n−δeff . If δeff < 2 the probability of having an edge connecting
the two sets increases with n whereas it decreases for δeff > 2. The effective
decay exponent δeff hence measures the occurrence of long edges in a way
comparable to homogeneous long-range percolation models, seen from a
coarse grained perspective. The truncation of the integral bounds in (1.18)
is crucial to control the correlations arising from the vertex marks which is a
necessity to identify the phase transition for the existence of a supercritical
phase correctly. Indeed, at first glance, one might only want to calculate
the decay exponent of the marginal distributions of single edges which
is the rate at which the annealed probability of two typical vertices at
distance n being connected decays. In analogy with homogeneous long-
range percolation one might now assume that the graph contains an infinite
cluster if this decay exponent is smaller than two and does not contain an
infinite cluster if this exponent is larger than two. However, this does not
take the aforementioned correlations into account and does not capture
the behaviour accurately. In Remark 1.14 (i) below we give an explicit
example showing that this heuristic is indeed not sufficient.

Before applying the theorem to our examples, let us comment on the special
case δeff = 2. This can be seen as a generalisation of the ’1/|x−y|2-model‘ of
long-range percolation [2]. This explicit homogeneous model coincides with
ρ(x) ≍ 1∧x−2 and hence δeff = δ = 2 and it is known that in this βc <∞.
If we replace however the profile-function with ρ(x) ≍ 1∧ (x log(1 + x))−2

we still have δeff = δ = 2 but since now
∫ ∞

0
dx
∫ ∞

0
dy ρ(|x− y|) <∞,
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Scale-free percolation

γ
0 1/2 1

δ

1

2

βc ∈ (0, ∞) βc = 0

βc = ∞

Soft Boolean model

γ
0 1/2 1

βc = ∞

γ = δ
δ+1

γ = δ−1
δδ

1

2

βc ∈ (0, ∞) βc = 0

Age-dependent rcm

γ

δ
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δeff = 2

γ = δ
δ+1

Figure 1.3.: The diagrams show the parameter regimes for γ and δ and the corresponding
new results for βc for the soft Boolean and the age-dependent random connection model
and also the known results for the scale-free percolation model for comparison. The
green shaded areas are the newly observed regimes where βc ∈ (0,∞) even though
δ > 2. The gray shaded δeff = 2 phase is the part of the scale-invariant regime of the
age-dependent random connection model where the finiteness or infiniteness of βc is
unknown.

a standard first moment argument yields βc = ∞, cf. [67]. Hence, this
regime does not depend on the exponent δeff alone and we cannot adapt
our proof techniques to this boundary case. In analogy with long-range-
percolation, we refer to the δeff = 2 case as (weakly) scale invariant. We
now apply Theorem 1.11 to the instances from our examples where the
(non-)existence of a supercritical phase in d = 1 has not been proven
before. The findings are summarised in Figure 1.3. Corollary 1.13 is proven
in Section 2.7.2.

Corollary 1.13. Let (G (β) : β > 0) be the weight-dependent random
connection in dimension d = 1 with profile-function ρ satisfying (1.17) for
some δ ∈ (2,∞] and a kernel g.

(a) For the soft Boolean model, i.e. g = gstr (1.11) or g = gsum (1.10), we
have

• if γ < 1− 1/δ, then δeff > 2 and hence βc =∞ and

• if γ > 1− 1/δ, then δeff < 2 and hence βc <∞.

(b) For the age-dependent random connection model, i.e. g = gpa (1.15),
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1.2. Inhomogeneous percolation

we have

• if γ ≤ 1− 1/δ, then δeff = 2 and

• if γ > 1− 1/δ, then δeff < 2 and hence βc <∞.

(c) In the soft non scale-free weak-kernel model, i.e. g = gweak (1.13) with
α ∈ (0, 1), we have δeff > 2 and hence βc =∞.

Remark 1.14.

(i) The corollary shows together with Theorem 1.8 that the one dimen-
sional soft Boolean model provides three open parameter regimes:
one where the graph always contains an infinite cluster, an inter-
mediate regime where an infinite cluster exists for large values of β

and one where no infinite cluster can exists. Let us further calcu-
late the decay exponent of the marginal distribution of single edges
as mentioned in the explanation above the corollary. If we choose
ρ(x) ≍ 1∧ x−δ for δ > 2 and the strong kernel gstr(s, t) = (s∧ t)γ for
some 1/2 < γ < 1− 1/δ, we calculate

∫ 1

0
ds
∫ 1

0
dt
(
1 ∧ (s ∧ t)−γδn−δ

)
≍ n

− 1
γ + n−δ

∫ 1

n−1/γ
ds s−γδ ≍ n

− 1
γ .

Since γ > 1/2, the decay of the single edge distribution decays with
exponent 1/γ < 2 and one might guess βc < ∞. However, since
also γ < 1 − 1/δ, it holds δeff > 2 and we actually have βc = ∞ by
Corollary 1.13.

(ii) Usually one would expect that the δeff = 2 cases correspond to bound-
ary regimes. Corollary 1.13 however shows that the age-dependent
random connection model has δeff = 2 for the whole parameter regime
0 ≤ γ ≤ 1 − 1/δ for all profile-functions with δ > 2. This illustrates
a scale invariance property that is built into the model which might
be a result of the dynamics within the model coming from the role
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Chapter 1. Introduction and summary of results

of vertex marks beeing birth times. For γ = 1/2 the preferential
attachment-kernel and the product-kernel coincide and in [12, 43, 53]
it is shown that the ’KPKVB-model‘, a hyperbolic random graph
model, has the one-dimensional product-kernel model as weak local
limit after a change of coordinates. Results from Bode et al. [8] for
the KPKVB-model then show that there exists and infinite cluster
in the one-dimensional product-kernel model for all our choices of ρ

whenever γ = 1/2 and β is sufficiently large. By monotonicity, it fol-
lows that the same holds true for the preferential attachment-kernel
for any γ ≥ 1/2. It remains an interesting open problem to show
whether there can be percolation for γ < 1/2 for natural choices of
profile-functions. The findings of this remark are summarised in the
following corollary.

Corollary 1.15. Let (G (β) : β > 0) be the weight-dependent random con-
nection model in dimension d = 1 with profile-function ρ satisfying (1.17)
for some δ ∈ (2,∞] and a kernel g that is either

(a) the product-kernel at criticality, i.e. g(s, t) =
√

st, or

(b) the preferential attachment-kernel g = gpa (1.15) with γ ∈ [1/2, δ/(δ+1)),

then it holds βc ∈ (0,∞).

1.3. Structure of the thesis

In this section I lay out how the thesis is organised. I further explain,
which papers the models and results originate from and what my contri-
bution was. This thesis is based on the results of three papers: [32] with
Arne Grauer, Peter Gracar and Peter Mörters, [36] with Peter Gracar and
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Peter Mörters and [35] with Peter Gracar and Christian Mönch. The or-
ganisation of the thesis is as follows:

The current chapter gives a motivation and introduction to the topics of
the thesis, introduces the models under consideration and presents the
main results. The preferential attachment model of Section 1.1 and its
rescaling in Section 1.2.1 is introduced as origianlly done in [32]. Likewise,
the scale-free and clustering property of Theorem 1.5 are results of [32].
Robustness is a result of [36]. The framework of the weight-dependent
random connection model in Section 1.2.2 is introduced and discussed as
in [35, 36]. Theorem 1.8, its remarks and its corollaries are results of [36].
Theorem 1.11, its remarks and its corollaries are results of [35].

In Chapter 2, the weight-dependent random connection model is con-
structed more formally, as originally appeared in [35]. In Section 2.4,
the existence of a subcritical phase for a certain parameter regime and
in Section 2.5 the non existence of the subcritical phase in the other pa-
rameter regime is proved; combined proving Theorem 1.8. Chapter B of
the appendix contains technical integration results that are needed for the
proofs. Both sections and the appendix are from [36]. In the Sections 2.6
and 2.7 the existence and non existence of a supercritical phase in dimen-
sion one, based on the value of δeff is proved as in [35]; concluding the proof
of Theorem 1.11.

In Chapter 3, the age-based spatial preferential attachment model is stud-
ied. In Section 3.1, its weak local limit is constructed which is used in
Section 3.2 to prove results about the degree distribution, clustering and
edge lengths as in [32]. In Section 3.3, robustness is proved as in [36], but
in greater detail.

In all chapters, the notation might have slightly changed from the relevant
papers to guarantee a better readability and connection of the topics. I
had major contributions to all three papers as I explain now:
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Chapter 1. Introduction and summary of results

• I contributed significantly to [32], as I participated and contributed
in all group discussions leading to the new techniques and ideas and
co-authored together with Arne Grauer. I had major involvement in
the writing process and its revision.

• My contribution to [36] was essential, as under joint discussions with
my colleagues I was responsible for the development of the key ideas
and formulations and carried out the technical part of proving the
main results in this work. I also contributed significantly to the
writing process of this work and its revision. As the proofs of this
paper identify the precise parameter regimes for βc > 0 and βc = 0
in the models of interest as well as robustness and non-robustness
in the age-based spatial preferential attachment model, these proofs
can be seen as the core of this thesis.

• I contributed significantly to [35], as all ideas and techniques were
developed in group discussions and each one of the authors (includ-
ing myself) contributed crucial ideas. I also did a large part of the
writing.
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CHAPTER 2

The weight-dependent random connection
model

In this chapter we study intensively the weight-dependent connection model
introduced in Section 1.2.2. We start with a formal construction of the
model as a functional of Point processes. Afterwards we introduce the
interpolation-kernel which can be seen as a general kernel that describes
all of the previously discussed ones. We will use that kernel to describe
the neighbourhood and the degree distribution of the graph and draw a
complete picture of percolation for our setting. As outlined in Section 1.3,
from Section 2.4 on forward we prove the main results. The proofs of
Section 2.2.1 follow the arguments of [32]. The proofs of the Sections 2.4
and 2.5 can be found in [36]. The proofs of the Sections 2.6 and 2.7 can
be found in [35].
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Chapter 2. The weight-dependent random connection model

2.1. A formal construction

We construct the weight-dependent random connection model as a func-
tional Gβ,ρ,g of marked point processes and edge marks similarly as in [36]
and [40]. Let η be a stationary ergodic simple point process on Rd with
finite intensity λ > 0. We use the notation of η0 for its Palm version
containing a point at the origin, cf. [55, Chapter 9]. We may and shall
frequently use the representation

η0 = {Xj : j ∈ Z such that Xk <lex Xℓ for k < ℓ}

with X0 = 0 where <lex denotes the strict lexicographic order on Rd. We
call the elements of η0 the vertex locations and denote its law by Pη

0. Let
further T0 = {Tj : j ∈ Z} be a sequence of independent Uniform(0, 1)
random variables, independent of η0, which we call the vertex marks. The
vertex set is then given by

X0 := {Xj = (Xj, Tj) : Xj ∈ η0, Tj ∈ T0, j ∈ Z}.

We denote its law and expectation by P0 and E0. By [55, Proposition 5.5],
this is the Palm version of a point process on Rd × (0, 1) with intensity
measure Pη⊗Uniform(0, 1). We denote the vertex at the origin by 0 :=
X0 = (0, T0) and call it the root vertex. The Palm version construction
hence ensures that the root is a distinguished typical vertex and we will
study the local properties of the graph from its perspective. We finally
introduce another family of independent Uniform(0, 1) random variables

U0 := {Ui,j : i < j ∈ Z}

which is independent of X0 and we call its elements edge marks.

Now, fix β > 0, a profile-function ρ, cf. (1.7), and a kernel-function g,
cf. (1.6). Then Gβ,ρ,g(X0,U0) is the undirected graph with vertex set X0
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2.1. A formal construction

and edge set
{
{Xi, Xj} : Ui,j ≤ ρ

(
1
β
g(Ti, Tj)|Xi −Xj|d

)
, i < j

}
.

We denote its law by Pβ,ρ,g and its expectation by Eβ,ρ,g. To keep notation
concise, we write Gβ = Gβ,ρ,g(X0,U0) as well as Pβ = Pβ,ρ,g and Eβ = Eβ,ρ,g

whenever the profile and the kernel are fixed and clear from the context.
We denote by (Ω, A ) the underlying measurable space. Note that if η

is a unit intensity Poisson process then X0 is the Palm version of a unit
intensity Poisson process on Rd × (0, 1) and Gβ is the Palm version of the
graph G (β) from Section 1.2.2. That is the graph G (β) where an additional
vertex is added at the origin, marked with a Uniform(0, 1) random variable,
independent of everything else, and connected to the graph by the same
mechanism (1.8) used to build the graph. We will usually assume that η is
a Poisson process however this formal construction allows more flexibility
in the vertex locations. Indeed, in the construction η can for instance
be chosen to be the site percolated lattice Zd with retention parameter
p ∈ (0, 1]. In this case, the stationarity is with respect to shifts induced by
Zd and η0 is the percolated lattice conditioned on the event that the root
survived the percolation. In fact all our proves hold true in either case. In
Theorem 1.11 about one-dimensional percolation even more general vertex
locations are covered by our proof. We will comment on this in Section 2.6.
Also note that we may have used the Palm version from the beginning as
it allows the a priori ordering of the vertices and is the object we work with
in our proofs. However, the functional Gβ can be used to build graphs from
any sets of vertex locations, vertex marks and edge marks. This applies in
particular for the non Palm version of the point process above.

Distinguishable vertices To formulate the events we are interested in,
we often rely on the existence of distinguishable vertices. The first one of
this kind is the root vertex 0 = X0 = (0, T0) given by the Palm version.
Sometimes it is useful to consider a root with a fixed mark. In order to do
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Chapter 2. The weight-dependent random connection model

so, we use the probability kernel

A × (0, 1) −→ [0, 1], (A, u) 7−→ Pβ
(0,u)(A)

for the conditional probability of Pβ given T0 = u and we get Pβ =
Pβ

(0,u)du. Similarly, we can add further given vertices to the graph, say
v1 = (v1, s1), . . . , vn = (vn, sn), by doing the following: We add the ver-
tices to the graph’s vertex set and write X v1,...,vn

0 = X0 ∪{v1, . . . , vn}. Af-
terwards, for each vertex vi, i = 1, . . . , n, we sample a sequence (Uj,vi

)j∈Z

of independent edge marks and connect it to each vertex Xj ∈ X0 as before
if

Uj,vi
≤ ρ

(
1
β
g(Tj, si)|Xj − vi|d

)
.

The resulting graph is given by

Gβ
v1,...,vn

:= Gβ,ρ,g
(
X0 ∪ {v1, . . . , vn},U0 ∪

n⋃
i=1

(Uj,vi
)j∈Z

)

and we denote its law by Pβ
v1,...,vn

. If η is given by a Poisson process, the
Palm version η0 is given by η where an additional typical vertex is added
at the origin. Hence the notation is consistent with the probability kernel
given above. In the Poisson process case, the Mecke equation [55, Theorem
4.4] tells us how to use Gβ

v1,...,vn
as the graph Gβ conditioned on the event

that v1, . . . , vn are vertices of the graph; a terminology we will stick to in
the following. In the percolated lattice case, no further vertices have to be
added. Instead, Pβ

v1,...,vn
becomes the probability kernel for the conditional

probability given that v1, . . . , vn survived the site percolation and have
marks s1, . . . , sn.

2.1.1. Percolation notation

For two given vertices x and y we denote by {x ∼ y} the event that x and y
are connected by an edge. We define {0↔∞} as the event that the root 0
is starting point of an infinite self-avoiding path (0 := z0, z1, z2, . . . ). That
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is, zi ∈ X0 for all i, zi ̸= zj for all i ̸= j and zi ∼ zi−1 for all i. Throughout
the manuscript, all considered paths are assumed being self-avoiding. If
{0↔∞} occurs for Gβ, we say that the graph percolates. We denote the
percolation probability by

θ(β) = Pβ{0↔∞} =
∫ 1

0
du Pβ

(0,u){(0, u)↔∞}

which can be seen as the probability that a typical vertex belongs to the
infinite cluster. If θ(β) > 0, the graph almost surely contains an infinite
cluster. Vice versa, if the graph contains an infinite cluster, the root 0 is
connected to it with a positive probability and we have θ(β) > 0. We can
therefore write the critical edge density as

βc := inf{β > 0 : θ(β) > 0}. (2.1)

2.2. The interpolation-kernel

In Section 1.2.2 we have seen various kernels which lead to instances of
models from the literature. In all of them we transfer the vertex marks to
vertex weights by taking the mark to a negative power. The only exception
here is the plain-kernel where the exponent is zero and the marks do not
play any role. The idea now is to represent all of these kernels as a single
one. This allows a better and direct comparison of the various models. We
define the interpolation-kernel

gγ,α(s, t) := (s ∧ t)γ(s ∨ t)α, for γ, α ≥ 0. (2.2)

Note, that the integrability condition (1.6) for kernels is fulfilled precisely
if γ < 1 and α < 2 − γ. From the proof of Proposition 2.1 below we
can immediately derive that this condition is indeed a necessity for finite
mean degrees. Note that all previously discussed kernels can be written
as instances of the interpolation-kernel or can be bound from below and
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Chapter 2. The weight-dependent random connection model

above by a constant factor of it. We study the neighbourhood and degree
distribution in the following section. In Section 2.2.2 we summarise the
percolation results from Chapter 1 in terms of the new kernel. From now
on, we work explicitly on a standard Poisson process η. However, all results
remain valid if η is chosen to be a site percolated lattice. We comment at
the end where small changes in the proofs are to be made.

2.2.1. Neighbourhoods and degree distribution

We describe the neighbourhoods in terms of the root vertex 0. We write
N0 := N0(Gβ) for the neighbourhood of the root in Gβ. For a given vertex
y = (y, s) we also abbreviate Ny := Ny(Gβ

y). If the mark T0 = u of
the root is given, we also write N(0,u). It will show helpful to distinguish
between connections to vertices with smaller marks, the more influential
vertices, and connections to vertices with larger marks, the less influential
ones. In order to do so precisely, we think of edges as oriented from the
vertex with the larger mark to the vertex with smaller mark. We denote
by

N <
(y,s) := {x = (x, t) ∈ X0 : (x, t) ∼ (y, s), t < s}

the neighbours connected to y = (y, s) in Gβ
y by an outgoing edges and we

call ♯N <
y the outdegree of y. Similarly, we denote by

N >
(y,s) := {x = (x, t) ∈ X0 : (x, t) ∼ (y, s), t > s)}

the neighbours connected by an ingoing edges and call ♯N >
y the indegree

of y. The following proposition describes the neighbourhood of the root 0
in Gβ, see Figure 2.1.

Proposition 2.1 (Neighbourhood and degree distribution).
Let Gβ be the graph constructed with the interpolation-kernel gγ,α for γ ∈
[0, 1) and α ∈ [0, 2− γ) and a profile-function ρ.
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2.2. The interpolation-kernel

(a) For every u ∈ (0, 1), under Pβ
(0,u) the outgoing edges N <

(0,u) form a
Poisson process on Rd × (0, u) with intensity measure

λ<
(0,u) := ρ

(
β−1sγuα|y|d

)
ds dy.

(b) For every u ∈ (0, 1), under Pβ
(0,u) the ingoing edges N >

(0,u) form a Pois-
son process on Rd × (u, 1) with intensity measure

λ>
(0,u) := ρ

(
β−1sαuγ|y|d

)
ds dy.

(c) If α ≤ 1− γ, the outdegree of 0 in Gβ is stochastically dominated by a
Poisson distributed random variable with parameter β/(1− γ).
If α > 1−γ, the outdegree of 0 in Gβ is mixed Poisson distributed with
mixing density

f<(λ) = 1
α+γ−1

(
βλ−(α+γ)

1−γ

)1/(α+γ−1)
, for λ > β

1−γ
. (2.3)

(d) If α < 1, then the indegree of 0 in Gβ is mixed Poisson distributed
where the mixing density fulfils

f>(λ) ≍ 1
γ

(
β

1−α

)1/γ(
λ + β

1−α

)−1−1/γ
, for λ > 0. (2.4)

If α > 1, then the mixing density fulfils

f>(λ) ≍ 1
α+γ−1

(
β

α−1

)1/(α+γ−1)(
λ + β

α−1

)−(γ+α)/(γ+α−1)
, for λ > 0. (2.5)

Proof. All outgoing edges of (0, u) connect to end vertices with marks
smaller than u. Hence, N <

(0,u) ⊂ X0 ∩ (Rd × (0, u)). Now, given X0 and
T0 = u each vertex y = (y, s) ∈ X0 ∩ (Rd × (0, u)) is connected to (0, u)
independently with probability ρ(β−1sγuα|y|d). Thus, N <

(0,u) defines a thin-
ning, cf. [55], of X0 ∩ (Rd × (0, 1)) and (a) follows. Part (b) is proven by
analogous argumentation.
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Applying (a), we get for fixed u ∈ (0, 1).

Eβ
(0,u)[♯N

<
0 ] = λ<

(0,u)(Rd × (0, u)) =
∫ u

0
ds
∫
Rd

dy ρ
(
β−1sγuα|y|d

)
= β

1−γ
u1−γ−α,

using γ < 1 and the normalisation (1.3). If 1−γ−α ≥ 0 this is bound from
above by β/(1− γ) proving the first part of (c). If instead 1− γ − α < 0,
we have for each k ∈ N0 by independence of T0 and X0\{0}

Pβ{♯N <
0 = k} =

∫ 1

0
du Pβ

(0,u){♯N
<

(0,u) = k}

=
∫ 1

0
du exp

(
− β

1−γ
u1−γ−α

)( β
1−γ

u1−γ−α)k

k!
=
∫ ∞

β
1−γ

dλ
(
e−λ λk

k!

)(
1

α+γ−1

(
βλ−(α+γ)

1−γ

)1/(α+γ−1)
)

by a change of variables, proving the second part of (c).

We start the proof of (d) with the case α < 1. Similar as above using (b),
we get

λ>
(0,u)(Rd × (u, 1)) =

∫ 1

u
ds βu−γs−α ≍ β

1−α
(u−γ − 1).

Hence, for k ∈ N, we have

Pβ{N >
0 = k} ≍

∫ 1

0
du exp

(
− β

1−α
(u−γ − 1)

)( β
1−α

(u−γ − 1)
)k

k!
=
∫ ∞

0
dλ

(
e−λ λk

k!

)(
1
γ

(
β

1−α

)1/γ(
λ + β

1−α

)−1−1/γ
)

as claimed. The proof of the second statement of (d) works completely
analogous.

The previous theorem shows that the in- and the outdegree are independent
and hence the degree of the root is the convolution of both. In the following

50



2.2. The interpolation-kernel

−300 −200 −100 0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−300 −200 −100 0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 2.1.: Heatmaps of the neighbourhood of a relatively small mark root (left, mark
0.2) and of a relatively large mark root (right, mark 0.8) in Gβ constructed with the
preferential attachment kernel and β = 5, γ = 1/3 (hence α = 2/3) and φ(x) = 1 ∧ x−2;
cf. [32, Fig. 2].

lemma, we show that the indegree is heavy-tailed distributed with index

τ> := 1 +
(

1
γ
∧ 1

(α+γ−1)+

)
where (α + γ− 1)+ := (α + γ− 1∨ 0) and 1/0 :=∞. We further show that
the outdegree is heavy-tailed with index

τ< := 1 + 1
α+γ−1

in the mixed Poisson case α > 1−γ. In the other case, the outdegree follows
no power-law which we identify with the exponent τ< = ∞. Hence, the
root’s degree is heavy-tailed distributed with index τ = τ<∧τ> proving the
claimed power-law exponents of Section 1.2.2. There are hence three phases
depending on the value of α. If α ≤ 1−γ, the indegree is heavy-tailed and
the outdegree is light-tailed. If 1 − γ < α < 1 both are heavy-tailed but
the indegree is of higher order and if α > 1 both are of the same order.
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Chapter 2. The weight-dependent random connection model

Lemma 2.2. Let Gβ be the graph constructed with the interpolation-kernel
gγ,α with γ ∈ (0, 1) and α ∈ [0, 2− γ).

(a) It holds
Pβ{♯N >

0 = k} = k−τ>+o(1), as k ↑ ∞.

(b) If α > 1− γ, it holds

Pβ{♯N <
0 = k} = k−τ<+o(1), as k ↑ ∞.

Proof. Let α < 1 and hence τ> = 1 + 1/γ. By Proposition 2.1 (d), we have

Pβ{N >
0 = k} ≍

∫ ∞

0
dλ

(
e−λ λk

k!

)(
1
γ

(
β

1−α

)1/γ(
λ + β

1−α

)−1−1/γ
)

≍ 1
Γ(k + 1)

∫ ∞

0
dλ λ(k−1/γ)−1e−λ

= Γ(k − 1/γ)
Γ(k + 1)

= k−1−1/γ+o(1),

as k ↑ ∞ by Stirling’s formula. The remaining statements are proven
analogously.

Lemma 2.2 shows that the root vertex has finite expected degree. By the
refined Campbell theorem [55, Theorem 9.1], almost surely, this holds true
for every vertex in Gβ.

Corollary 2.3. Let Gβ be the graph constructed with the interpolation-
kernel gγ,α with γ ∈ (0, 1) and α ∈ [0, 2 − γ). Then Gβ is almost surely
locally finite.

In the lattice case, we do not have the Poisson structure of the neighbour-
hoods any longer. However, the expected number of incoming or outgoing
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Figure 2.2.: Phase diagram for the interpolation-kernel depending on the values of γ
and α. Dotted or dashed lines represent no change of behaviour. Shaded the main
results of Proposition 2.4 (a) in orange (i) and grey (ii). The d = 1 specifics only occur
for δ > 2. In hard models (δ =∞) the two δ-dependent phases at the bottom right do
not exist.

edges of the fixed root remains of the same order. Hence, one can apply
the proof method of [70, Theorem 1.1], also outlined in [17] to obtain the
same power-law exponents.

2.2.2. The percolation picture

The introduction of the interpolation-kernel allows us to study all models
of Section 1.2.2 at once and to compare their behaviour. Together with
the previous section we can further analyse how the observed behaviour
is influenced by the degree distribution. In the next proposition, we sum-
marise known results discussed in Section 1.2.2 and the main results of
Section 1.2.3 to draw a complete picture of percolation in the weight-
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Chapter 2. The weight-dependent random connection model

dependent random connection model with the interpolation kernel. Recall
the definition of regularly varying profile-functions (1.17) and the iden-
tification of ρ = 1[0,1/2] with δ = ∞. The Proposition is summarised in
Figure 2.2.

Proposition 2.4. Let (Gβ : β > 0) be the weight-dependent random
connection model constructed with a profile-function ρ fulfilling (1.17) for
some δ ∈ (1,∞] and the interpolation kernel gγ,α (2.2) for γ ∈ [0, 1) and
α ∈ [0, 2− γ).

(a) For α ≤ 1− γ, we have:

(i) If γ > δ
δ+1 , then βc = 0.

(ii) If γ < δ
δ+1 and

• either d ≥ 2 or d = 1 and δ < 2 or d = 1 and γ > 1− 1/δ or
d = 1 and α = 1− γ and γ ≥ 1/2, then βc ∈ (0,∞);

• d = 1 and α < 1−γ and δ > 2 and γ < 1−1/δ, then βc =∞.

(b) For α > 1− γ, we have βc = 0.

The statements of (a) are direct consequences of Theorem 1.8 and Corol-
lary 1.13 together with the monotonicity of gγ,α in γ and α. To prove (b)
it is important to note that in this case the outdegree is also heavy-tailed.
Hence, the smaller a vertex’s mark is the more neighbours with even smaller
marks this vertex has. This suffices to adapt the proof [18, Theorem 3.2
(a1)] of Deprez and Wüthrich showing that one can always build an infinite
self-avoiding path going directly from heavy to heavier vertices if starting
with a sufficiently heavy vertex. In contrast we shall see that for light-
tailed outdegree distributions it is a better strategy to connect two heavy
vertices through a connector, any vertex with potentially large mark but
connected to both of the heavy ones. However, this strategy only works for
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2.3. FKG- and BK-inequality

strong enough indegree distribution (determining the number of potential
connectors a heavy vertex has) combined with sufficiently many long edges
to overcome spatial restrictions. This idea is the core of the proof of The-
orem 1.8. In the remaining Chapter this theorem as well as Theorem 1.11
and Corollary 1.13 are proven as outlined in more detail in Section 1.3.

2.3. FKG- and BK-inequality

In this section, we present two standard tools in percolation theory that
are helpful dealing with correlated events; the so called FKG-inequality
named after Fortuin, Kasteleyn, and Ginibre [29] and the BK-inequality
named after van den Berg and Kesten [6]. We use variants of both from
[40]. Let f be a function, defined on a point process on Rd × (0, 1) and
an edge mark collection U0. We say such a function is increasing if it
is non decreasing in the underlying point process η with respect to set
inclusion, coordinate-wise non increasing with respect to vertex marks as
well as coordinate-wise non increasing with respect to edge marks. We say
an event E is increasing if 1E is increasing. Put differently, the probability
of E increases if either additional vertices are added to the graph or if
the vertex weights are increased (corresponding to decreasing the vertex
marks) or additional edges are drawn (corresponding to decreasing the
edge marks). If f1 and f2 are two such increasing functions, we have by
repeating the arguments of [40, Equation (2.21)]

Eβ[f1(X0,U0)f2(X0,U)] = Eβ
[
Eβ[f1(X0,U)f2(X0,U0) | η]

]
≥ Eβ

[
Eβ[f1(X0,U0) | η]Eβ[f2(X0,U0) | η]

]
≥ Eβ[f1(X0,U0)]Eβ[f2(X0,U0)].

(2.6)

This inequality is the FKG-inequality and it essentially says that the occur-
rence of an increasing event gives the positive information on the existence
of sufficiently many vertices, large vertex weights and edges which favours
the occurrence of another increasing event.
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Chapter 2. The weight-dependent random connection model

For the other inequality, consider again two increasing events on the ver-
tices and edges of a graph but which are now meant to occur disjointly.
Here, disjoint occurrence means that both events have to occur on disjoint
subsets of the vertices and edges. Again, both events profit from the ex-
istence of many large weight vertices and edges on the one hand but they
are also obstructing themselves as each vertex and edge can only be used
by one of the events. Hence, it is naturally to assume that the probabil-
ity of independent occurrence of the events in two independent copies of
the graph is larger than the probability of disjoint occurrence in the same
graph which is the statement of the BK-inequality. In full generality it is
outlined in [40, Section 2.4]. For the sakes of this thesis it suffices to deal
with the disjoint occurrence of certain paths. Let z1, z2 and z3 be given
points and denote by {z1 ←→ z2} the event that z1 is connected to z2 via
a self-avoiding path. We denote by {z1 ←→ z2} ◦ {z2 ←→ z3} the disjoint
occurrence of the two paths; that is z1 is connected by a path to z2 and z2

is connected by a path to z3 where both paths only share z2 as a common
vertex. Then [40, Equation (2.20)] yields

Pβ
z1,z2,z3({z1 ←→ z2} ◦ {z2 ←→ z3}) ≤ Pβ

z1,z2{z1 ↔ z2}Pβ
z2,z3{z2 ↔ z3}.

This extends easily to the existence of paths with further restrictions such
as required paths length or vertices from a certain range of locations or
vertex marks. Denote by {z1

k←→ z2} the event that z1 is connected to z2

by a path of length k. Here, the length of a path is defined as the number
of the edges on the path. We immediately get again by [40]

Pβ
z1,z2,z3({z1

k1←→ z2} ◦ {z2
k2←→ z3}) ≤ Pβ

z1,z2{z1
k1←→ z2}Pβ

z2,z3{z2
k2←→ z3}.

Let us further restrict the paths to vertices with certain vertex marks. Let
Ek

a1,a2(z1, z2) be the event that z1 is connected by a path of length k to
z2 where all vertices of the paths have marks in the interval (a1, a2) which
can be written as
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2.4. Existence of a subcritical phase

Ek
a1,a2(z1, z2) :=

{
∃y1, . . . ,yk−1 ∈ X0 ∩ Rd × (a1, a2) :

z1 ∼ y1 ∼ · · · ∼ yk−1 ∼ z2
}

Here, it is to note that this is still an increasing event with respect to
decreasing the vertex marks. It can be seen as being defined on the point
process X0 where all vertices with marks outside (a1, a2) have been re-
moved. Now, if a vertex mark is decreased such that it leaves the interval
this simply coincides with removing this vertex from the graph and the
monotonicity goes in the right direction still. We hence get

Pβ
z1,z2,z3

(
Ek1

a1,a2(z1, z2) ◦ Ek2
b1,b2(z2, z3)

)
≤ Pβ

z1,z2

(
Ek1

a,1,a2(z1, z2)
)
Pβ

z2,z3

(
Ek2

b1,b2(z2, z3)
)
.

(2.7)

2.4. Existence of a subcritical phase

We fix δ > 1 and γ < δ
δ+1 . Since gpa ≤ gγ,α for all α ≤ 1− γ, we have

Pβ,ρ,gpa{0↔∞} ≥ Pβ,ρ,gγ,α{0↔∞}

by a simple coupling argument. This includes in particular the strong-
kernel gstr = gγ,0. Since, it further holds gpa ≤ 2dgsum, we have by the
same argument

Pβ,ρ,gpa{0↔∞} ≥ Pβ,ρ̃,gsum{0↔∞},

where ρ̃(x) = 1
2d ρ(2dx). Thus, we focus on the preferential attachment

kernel and show that we can choose a β > 0 such that θ(β) = 0. Conse-
quently, we work in the following exclusively in the age-dependent random
connection model.

We use a first moment method approach for the number of paths of length
n. We start with γ < 1

2 and explicitly calculate the expected number
of such paths. This turns out to be independent of the spatial geometry
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Chapter 2. The weight-dependent random connection model

of the model and therefore cannot be used to prove the statement for
1
2 ≤ γ < δ

δ+1 . Recall the notation of E0 as the expectation of the Palm
version of a unit intensity Poisson point process on Rd× (0, 1) and Pβ

v1,...,vn

as the law of Gβ given v1, . . . , vn are points of the vertex set. If the whole
vertex set is given, we write Pβ

X0 .

Lemma 2.5. If 0 < γ < 1
2 , then θ(β) = 0 for all β < 1−2γ

4 or, equivalently,
βc ≥ 1−2γ

4 .

Proof. We set 0 = z0 = (0, t0) and get

θ(β) = lim
n→∞

Pβ{∃ a path of length n starting in z0}

≤ lim
n→∞

∫ 1

0
dt0 E(0,t0)

[ ∑
z1,...,zn∈X
zi ̸=zj∀i ̸=j

Pβ
X ∪{(0,t0)}

( n⋂
j=1
{zj ∼ zj−1}

)]
.

The inner probability is a measurable function of the Poisson process and
the points z1, . . . , zn and by Mecke’s equation [55, Theorem 4.4] we get,
with X ∗ denoting an independent copy of X ,

∫ 1

0
dt0

∫
(Rd×(0,1])n

n⊗
j=1

dzj E(0,t0)

Pβ
X ∗∪{(0,t0),z1,...,zn}

 n⋂
j=1
{zj−1 ∼ zj}



=
∫ 1

0
dt0

∫
(Rd×(0,1])n

n⊗
j=1

dzj Pβ
z0,...,zn

 n⋂
j=1
{zj−1 ∼ zj}

 .

Given the vertices, edges are drawn independently so we get by writing
zj = (zj, sj) for all j ∈ {1, . . . , n} that the previous expression equals

∫ 1

0
ds0

∫
(Rd×(0,1])n

n⊗
j=1

d(zj, sj)
(

n∏
j=1

ρ
(
gpa(sj−1, sj)|zj − zj−1|d

))

= βn
∫ 1

0
ds0

∫ 1

0
ds1· · ·

∫ 1

0
dsn

(
n∏

j=1
(sj ∧ sj−1)−γ(sj ∨ sj−1)γ−1

)
,

where we used the normalization condition (1.7). Since γ < 1
2 , Lemma 17
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of [45] states that

∫ 1

0
ds0

∫ 1

0
ds1· · ·

∫ 1

0
dsn

(
n∏

j=1
(sj ∧ sj−1)−γ(sj ∨ sj−1)γ−1

)

≤
(

1
1 + α− γ

− 1
α + γ

)n

,

for α ∈ (γ − 1,−γ). The minimum of the right-hand side over this non-
empty interval equals 4

1−2γ
and thus, setting β < 1−2γ

4 we achieve

θ(β) ≤ lim
n→∞

(
4β

1−2γ

)n
= 0.

2.4.1. Existence of a subcritical phase: Case γ ≥ 1/2.

We now turn to the more interesting case when γ ∈ [1
2 , δ

δ+1) where we
have to use the spatial properties of our model in order to prove our claim.
Intuitively, as “powerful” vertices are typically far apart from each other,
in order to create an infinite path in this spatial network one has to use
long edges often enough to reach them. Therefore, where the long edges are
used is the crucial and most interesting part of a path. On the other hand
Gβ is locally dense. Therefore, considering paths that stay for a long time
in a neighbourhood of a vertex before using long edges greatly increases
the number of possible paths we can construct. For γ < 1/2, the degrees
of typical vertices are small enough so that the number of possible paths
does not increase too much. This is not true any longer for γ > 1

2 where
the degree distribution has an infinite second moment. Thus, it becomes
difficult to bound the probability of the existence of an arbitrary path of
length n. In order to prove the existence of a subcritical phase, we start
by explaining how to limit our counting to paths that are not stuck in
local clusters. Then, we define what we call the skeleton of a path, which
will help with counting the valid paths. As we will see, the skeleton is
a collection of key vertices from a path ordered in a specific vertex mark
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Chapter 2. The weight-dependent random connection model

structure. In the end, we will use these paths to complete the proof of
Theorem 1.8(a).

Shortcut-free paths Let P = (v0, v1, v2, . . . ) be a path in some graph
G. We say (vi, vj) is a shortcut in P if j > i + 1 and vi and vj are
connected by an edge in G. If P does not contain any shortcut, we say
P is shortcut-free. If G is locally finite, i.e. all vertices of G are of finite
degree, then there exists an infinite path if and only if there exists one that
is also shortcut-free. To see how an infinite path P = (v0, v1, v2 . . . ) in G

can be made shortcut-free define i0 = max{i ≥ 1 : vi ∼ v0}. If i0 = 1,
then v1 is the only neighbour v0 has in P . If i0 ≥ 2, then (v0, vi0) is a
shortcut in P so we remove the vertices v1, . . . , vi0−1 from P . We have
thus removed all shortcuts starting from v0 and since v0 ∼ vi0 the new P

is still a path. We define analogously ik = max{i > ik−1 : vi ∼ vik−1} for
every k ≥ 1 and remove the intermediate vertices as needed. The resulting
path (v0, vi0 , vi1 , . . . ) is then still infinite but also shortcut-free.

Skeleton of a path Let P = ((v0, s0), (v1, s1), . . . , (vn, sn)) be a path of
length n in some graph G where every vertex vi carries a distinct vertex
mark si. Then, precisely one of the vertices in P has the smallest mark;
let kmin = {k ∈ {0, . . . , n} : sk < sj, ∀j ̸= k} be its index. Starting from
(v0, s0), we now choose the first vertex of the path that has a mark smaller
than s0 and call it (vi1 , si1). Continuing from this vertex, we choose the
next vertex of the path that carries a smaller mark still, call it (vi2 , si2)
and continue analogously until we reach the vertex with the smallest mark
(vkmin , skmin). We then repeat the same procedure starting from the end ver-
tex (vn, sn) and going backwards across the indices. The union of the two
subset of vertices is what we call the skeleton of the path P . More precisely,
for every path P = ((v0, s0), . . . , (vn, sn)), there exists unique 0 ≤ k ≤ n

and k ≤ m ≤ n as well as a set of indices {i0, i1, . . . , ik−1, ik, ik+1, . . . , im}
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1
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Figure 2.3.: A path where a vertex’s mark is denoted on the s-axis. The vertices of
the skeleton are in black. We successively remove all local maxima, starting with the
largest mark vertex, and replace them by direct edges until the path, only containing
the skeleton vertices, is left.

such that

i0 = 0, ik = kmin, and im = n as well as

siℓ−1 > siℓ
and si > siℓ−1 , ∀iℓ−1 < i < iℓ, for ℓ = 1, . . . , k and

siℓ−1 < siℓ
and si > siℓ

, ∀iℓ−1 < i < iℓ, for ℓ = k + 1, . . . m.

The skeleton of P is then given by ((vij
, sij

))j=0,...,m. We say it is of length
m and has its minimum at k.

We now give an alternative construction of the skeleton of P , which we call
the local maxima construction. A vertex (vi, si) ∈ P\{(v0, s0), (vn, sn)} is
called a local maximum if si > si−1 and si > si+1. We successively remove
all local maxima from P as follows: First, take the local maximum in P

with the greatest vertex mark, remove it from P and connect its former
neighbours by a direct edge. In the resulting path, we take the local
maximum of greatest vertex mark and remove it, repeating until there is no
local maximum left, see Figure 2.3. Therefore, the final path is decreasing
in the marks of its vertices until the minimum mark vertex is reached,
and only increasing in vertex marks afterwards. Hence, it is the uniquely
determined skeleton of the path. Note that the skeleton is not necessarily
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an actual path of the graph. Actually, the skeleton of a shortcut-free path
is not itself a path unless the path is its own skeleton.

Graph surgery In order to bound the probability of existence of an
infinite self-avoiding and shortcut-free path in Gβ starting in the origin we
increase the number of short edges in Gβ, which then allows us to make
better use of the shortcut-free condition. We choose ε > 0 such that

δ̃ := δ − ε >
γ

1− γ
.

This is equivalent to γ < δ̃
δ̃+1 . As ρ is regularly varying and bounded there

exists A > 1 such that

ρ(x) ≤ Ax−δ̃ for all x > 0,

by the Potter bound [7, Theorem 1.5.6]. We define

ρ̃(x) = 1[0,A1/δ̃](x) + Ax−δ̃
1(A1/δ̃,∞)(x).

We now choose ρ̃ as a profile function together with the preferential at-
tachment kernel (1.15) and construct Gβ,ρ̃,gpa(X0,U0). Put differently, we
connect two given vertices (x, t) and (y, s) with probability


1, if |x− y|d ≤ A

1
δ̃ gpa(t, s)−1

A
(
gpa(t, s)|x− y|d

)−δ̃
, otherwise.

Note that in general ρ̃ does not satisfy the normalization condition (1.7).
However, ρ̃ is still integrable and therefore the resulting graph Gβ,ρ̃,gpa is
still locally finite with unchanged power law and shows qualitatively the
same behaviour. Since ρ ≤ ρ̃, it follows by a simple coupling argument
that

θ(β) ≤ Pβ,ρ̃,gpa{0↔∞}.
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Due to the above it is no loss of generality to consider the graph Gβ =
Gβ,ρ,gpa where the profile function ρ is of the form

ρ(x) = 1 ∧ (Ax−δ),

which is what we do from now on. Note that we can no longer assume
that (1.7) holds, instead we have

Iρ :=
∫
Rd

ρ(|x|d) dx = A1/δ
(
J(d) δ

d(δ−1)

)

where J(d) = ∏d−2
j=0

∫ π
0 sinj(αj)dαj is the Jacobian of the d-dimensional

sphere coordinates. We look at the probability that a shortcut-free path
P = ((z1, s1), (z2, s2), . . . ) exists in Gβ. By choice of ρ, such a path satis-
fies

|zi − zj|d > A
1
δ gpa(si, sj)−1, for all |i− j| ≥ 2.

Strategy of the proof To build a long path, one needs to use vertices
with a small mark as those are the vertices with large degrees in our model.
Every path is divided into a skeleton, which encodes how it moves to ver-
tices with smaller and smaller marks, and subpaths connecting consecutive
points of the skeleton by any number of vertices with larger marks, which
we call connectors. We encode a characteristic feature of such a subpath by
an unlabelled binary tree using the local maxima construction. We show
that whenever γ < δ/(δ+1) the expected number of shortcut-free subpaths
with a given tree of size k is bounded by (KβIρ)k times the probability
that the two extremal vertices are connected by an edge, for some con-
stant K > 1. Combining this estimate with the BK-inequality allows us to
bound the probability of existence of a path with a given skeleton in terms
of the probability that this skeleton is a path. The probability of existence
of paths of the latter type can be estimated by a first moment bound. We
therefore obtain that the probability of existence of a shortcut-free path of
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length n starting in 0 is bounded from above by (KβIρ)n and hence

θ(β) ≤ lim
n→∞

(KβIρ)n = 0

for 0 < β < 1/(KIρ).

Connecting two powerful vertices Let P be a path of length k that
can be reduced to a skeleton with two vertices x and y. Let y0, . . . , yk

be the vertices of P , ordered by their marks from smallest to largest. We
assume without loss of generality that x carries a larger mark than y and
therefore x = y1 and y = y0. We denote by Tk−1 the set of all binary
trees1 with fixed vertex set {y2, . . . , yk} such that every child carries a
larger mark than its parent. With the path P we associate a tree in Tk−1

as follows, see Figure 2.4.

Step one: y2 is the root of the tree.

Step two: Suppose the tree with vertices y2, . . . , yi−1 is constructed. At-
tach yi as a new leaf of the tree. To find the place to attach the leaf
start at the root and branch at every vertex to the left if the path P

visits yi before the vertex and to the right otherwise. If this means
going to a place where there is no vertex, we attach yi there. We
continue like this until all y2, . . . , yk are attached.

Next, we explain how to construct a path P connecting x and y when
T ∈ Tk−1 is given, see Figure 2.5. Here, given a path (vi)n

i=1 and any
subpath (vj−1, vj, vj+1), we call vj−1 the preceding vertex of vj and vj+1 the
subsequent vertex of vj. We explore T using depth-first search and add the
vertex currently being explored to the path. Let P = (x, y) and let u be
the root of T . We define L = (u) to be the list of vertices to be explored
next (in the order as they are in L). We proceed as follows.

1Here, a binary tree is a rooted tree in which every vertex can have either (i) no child,
(ii) a left child (iii) a right child, or (iv) a left and a right child.
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Figure 2.4.: On the left the path P where the s-axis denotes the vertices’ marks. The
vertices y1 and y0, which will not appear in the tree, are in grey. We insert the vertex
y6 at the end of the branch that goes left at y2, right at y3, and right at y4.

Step one: We insert u into P as a local maximum between x, y. As a
result P = (x, u, y). We remove u from L and if u has children in
T , we add them to L, ordered from left to right.

Step two: While L is not empty, we do the following:

1. We take the first vertex in L, denote it by v and remove it from
L.

2. If v has children in T , we insert them at the beginning of L,
ordered from left to right. Having done that, we consider v
explored.

3. Let w be the parent of v in T and {z1, w}, {w, z2} its incident
edges in P , where z1 is the preceding vertex of w in P and z2

the subsequent one. If v is the left child of w, we insert v as a
local maximum between z1 and w in P by adding it to the path
and replacing the edge {z1, w} in P by the two edges {z1, v}
and {v, w}. If v is a right child, we insert v as a local maximum
between w and z2 in an analogous way.
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w

v

s

x

y

w

v

Figure 2.5.: On the left the binary tree T . The grey vertices are already explored by
depth-first search. The black vertex v is the vertex currently being explored. The
white vertices have not been discovered yet. On the right, the path P corresponding to
the already explored tree. The s-axis denotes the vertices’ birth times. Start and end
vertex, x and y, do not appear in the tree. Since v is the right child of w, we insert v
as a local maximum between w and y in the path P .

It is clear that for given y0, . . . , yk the two procedures establish a bijection
between the paths with vertices y0, . . . , yk that can be reduced to a skeleton
with two vertices y0 and y1 on the one hand, and the trees T ∈ Tk−1 on
the other hand. Removing the labels from a tree in Tk yields a binary
tree, which encodes important structural information about the path.

The following lemma shows that, if γ < δ/(δ + 1), the probability of two
vertices being connected through a single connector is bounded by a small
multiple of the probability that there exists a direct edge between them.

For two given vertices x and y, we denote by {x 2←→
x,y

y} the event that x
and y are connected by a path of length two where the connector carries
a larger mark than both of them.

Lemma 2.6. Let γ ∈ (0, δ
δ+1). Let x = (x, t) and y = (y, s) be two given

vertices satisfying |x− y|d ≥ A1/δgpa(t, s)−1. Then

Pβ
x,y{x

2←→
x,y

y} ≤
∫

Rd×((t∨s),1]

dzPβ
x,z{x ∼ z}Pβ

y,z{z ∼ y} ≤ βC1Pβ
x,y{x ∼ y},
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2.4. Existence of a subcritical phase

where C1 = 2dδ+1Iρ

δ(1−γ)−γ
.

Proof. Without loss of generality let t > s in which case gpa(t, s) = sγt1−γ.
Recall that {x 2←→

x,y
y} is the event that x and y share a common neighbour

that carries a larger mark than both of them. Such neighbours form a
Poisson point process on Rd × (t, 1] with intensity measure

ρ(β−1tγu1−γ|x− z|d)ρ(β−1sγu1−γ|z − y|d) dz du,

cf. the arguments of Section 2.2.1, from which the first inequality follows.
For the second inequality, we have

∫ 1

t
du
∫
Rd

dz ρ(β−1tγu1−γ|x− z|d)ρ(β−1sγu1−γ|z − y|d)

≤
∫ 1

t
du
[ ∫

Rd
dz ρ(β−1tγu1−γ|x− z|d)ρ

(
(2dβ)−1sγu1−γ|x− y|d

)
+
∫
Rd

dz ρ
(
(2dβ)−1tγu1−γ|x− y|d

)
ρ(β−1sγu1−γ|z − y|d)

]
.

Here, the inequality holds as for all z ∈ Rd either |x − z| ≥ 1
2 |x − y| or

|y − z| ≥ 1
2 |x− y|, and ρ is non-increasing. For the first integral, a change

of variables leads to
∫ 1

t
du βt−γuγ−1ρ

(
(2dβ)−1sγu1−γ|x− y|d

)
Iρ.

As ρ(x) = 1 ∧ (Ax−δ) this can be further bound by

A2dδβ1+δIρ

∫ 1

t
du s−γδt−γ|x− y|−dδu−δ(1−γ)+γ−1

≤ Aβδ+1 2dδIρ

δ(1− γ)− γ
(sγt1−γ|x− y|d)−δ

using that γ < δ/(δ + 1). A similar calculation for the second integral
yields the same bound and as |x− y|d > A1/δβs−γtγ−1 implies

A(β−1sγt1−γ|x− y|d)−δ ≤ 1,
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Chapter 2. The weight-dependent random connection model

and therefore

Pβ
x,y{x ∼ y} = A

(
β−1sγt1−γ|x− y|d

)−δ
,

which proves the claim.

We now extend this result to bound the probability that the two given
vertices x and y are connected through k−1 connectors. That is, x and y
are connected by a path of length k and x and y are the two vertices with
smallest marks within the path. We denote this event by {x k←→

x,y
y}.

Lemma 2.7. Let γ ∈ (0, δ
δ+1) and x = (x, t), y = (y, s) be two Poisson

points satisfying |x− y|d > A1/δgpa(t, s)−1. Then, for all k ∈ N, we have

Pβ
x,y{x

k←→
x,y

y} ≤ (βC2)k−1Pβ
x,y{x ∼ y}, (2.8)

where C2 = 2dδ+3Iρ

δ(1−γ)−γ
.

Proof. For k = 1 there is nothing to show, so we assume k ≥ 2. If T is an
unlabelled binary tree with k − 1 vertices we denote by X(T ) the number
of paths connecting x and y through k−1 connectors, which are associated
with a labelling of T . Taking the union over all (unlabelled) binary trees
on k − 1 vertices we get

Pβ
x,y{x

k←→
x,y

y} ≤
∑

T binary tree
on k−1 vertices

Eβ
x,y

[
X(T )

]
,

and as the number of binary trees on k− 1 vertices is bounded from above
by2 4k−1 it suffices to show

Eβ
x,y

[
X(T )

]
≤ Ck−1

1 Pβ
x,y{x ∼ y},

2The number of binary rooted trees of size n is given by the Catalan numbers
(2n)!/(n!(n + 1)!).
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2.4. Existence of a subcritical phase

for all binary trees T with k − 1 vertices where C1 is the constant of
Lemma 2.6. We show this by induction on k starting with the case k =
2, when T consist of just the root, which is shown in Lemma 2.6. For
the induction step we fix an unlabelled binary tree T with k − 1 vertices
and insert a new leaf. Denote the new tree with k vertices by T ′. We
identify the two vertices in the tree, which correspond to the preceding
and subsequent vertex of the new leaf in any path associated with T ′ as
follows:

• If the new leaf is a left child, its subsequent vertex in the path is
its parent, and its preceding vertex is determined by following its
ancestral line backwards along the tree until we find a vertex which
has a right child on the ancestral line. If there is no such vertex its
preceding vertex is x.

• If the new leaf is a right child, its preceding vertex in the path is
its parent, and its subsequent vertex is determined by following its
ancestral line backwards along the tree until we find a vertex which
has a left child on the ancestral line. If there is no such vertex its
subsequent vertex is y.

From the construction of the tree we make the following two observations
if a path is associated with T ′,

(i) the new leaf carries a larger mark than its parent and the path con-
tains two sequential edges, one connecting the preceding vertex to the
new leaf, and one connecting the new leaf to its subsequent vertex,

(ii) if the preceding and subsequent vertex of the new leaf are connected
by an edge, then the path using that edge instead of the the two
edges adjacent to the new leaf is associated with T .

We call a labelling of T by points of the Poisson process almost complete
if it becomes the labelling associated with a path when the preceding and
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Chapter 2. The weight-dependent random connection model

subsequent vertex of the new leaf are connected by an edge. Hence (ii)
can be restated saying that the labelling of T obtained by association of a
path with T ′ is almost complete.

Denoting the labels of the preceding and subsequent vertices of the new
leaf by zℓ = (zℓ, sℓ) resp. zr = (zr, sr) we get using (i) that

Eβ
x,y

[
X(T ′)

]
= Eβ

x,y

[
♯
{
paths x↔ zℓ ∼ znew∼ zr ↔ y associated with T ′

}]
≤ Eβ

x,y
∑

almost complete
labellings of T

1∫
sℓ∨sr

du
∫
Rd

dz Pβ
zℓ,(z,u){zℓ ∼ (z, u)}Pβ

(z,u),zr
{(z, u) ∼ zr}.

As the paths associated to T ′ are shortcut-free we have

|zℓ − zr|d > A1/δβgpa(sℓ, sr)−1

and hence Lemma 2.6 ensures that this is bounded by

βC1Eβ
x,y

[ ∑
almost complete

labelling of T

Pβ
zℓ,zr
{zℓ ∼ zr}

]
≤ βC1 Eβ

x,yX(T )

≤ (βC1)kPβ
x,y{x ∼ y},

using (ii) and the induction hypothesis.

Proof of the subcritical phase We now use the results of the previous
paragraphs to bound the probability of a shortcut-free path of length n

existing by some exponential, thus showing Theorem 1.8(a). To this end,
we have to distinguish between regular and irregular paths. Let S =
(z0, z1, . . . , zm) be a skeleton of length m. We say S is regular if its vertex
with smallest mark has a mark larger than 2−m. We say S is irregular if
it is not regular. Similarly, we say a path P of finite length is regular if its
underlying skeleton is regular and conversely, P is irregular if its skeleton
is irregular. Finally, let P = (v0, v1, . . . ) be an infinite path. We say P is
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2.4. Existence of a subcritical phase

irregular if for all k ∈ N there exists n ≥ k such that the path (v0, . . . , vn)
(of length n) is irregular. An infinite path P is regular if it is not irregular.
In other words, an infinite path is irregular if it has irregular subpaths
of arbitrarily large lengths. We first show that almost surely any path is
regular on a large enough scale, that is any irregular path becomes regular
if it is extended by enough additional vertices. Therefore, {0↔∞} equals
the event that the root 0 starts an infinite path that is regular and we then
show that no such path exists.

For given Poisson points z0, z1, . . . , zm, we write

{
z0

k←−−−−−→
z0,z1,...,zm

zm

}
for the event that z0 and zm are connected by a path of length k, that
has skeleton z0, z1, . . . , zm. Recall that the length of a path is the number
of edges on the path and note that this definition is consistent with the
previously introduced notation {x 2←→

x,y
y} and {x k←→

x,y
y}.

Proof of Theorem 1.8(a). Observe that if an irregular path of length n

exists, then an irregular path of length k ≤ n, whose end vertex carries
the smallest mark of the path also exists. Let Airreg(k) be the event that 0
starts an irregular path of length k where the end vertex has the smallest
mark. We will prove in the following lemma that

Pβ(Airreg(k)) ≤ (C3β)k

for some constant C3. We then choose β < C−1
3 and achieve

∞∑
k=1

Pβ(Airreg(k)) <∞.

Hence, the Borel-Cantelli-Lemma yields that almost surely any long enough
path is regular.
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Chapter 2. The weight-dependent random connection model

Lemma 2.8. Let γ ∈ [0, δ
δ+1). Then, for all k ∈ N,

Pβ(Airreg(k)) ≤ (C3β)k,

where C3 = 2C2 = 2dδ+4Iρ

δ(1−γ)−γ
.

Proof. A path of length k whose minimum mark vertex is also the end
vertex has a skeleton whose vertices’ marks are decreasing. Thus, we again
write 0 = z0 = (z0, s0) and have by the Mecke equation as in the proof of
Lemma 2.5 that

Pβ(Airreg(k))

≤
k∑

m=1
E0

[ ∑
(z1,s1),...,(zm,sm)∈X0

s0>s1>···>sm

sm<2−m

Pβ
X0

{
(z0, s0) k←−−−−−−−−→

(z0,s0),...,(zm,sm)
(zm, sm)

}]

=
k∑

m=1

1∫
0

ds0

∫
(Rd×(0,1])m

s0>s1>···>sm

sm<2−m

m⊗
j=1

d(zj, sj)Pβ
z0,...,zm

{
(z0, s0) k←−−−→

z0,...,zm
(zm, sm)

}
,

where we have written zj = (zj, sj) for j = 1, . . . , m as usual. Using the
BK-Inequality (2.7) and Lemma 2.7, we get for the last probability,

Pβ
z0,...,zm

{
(z0, s0) k←−−−−−−−−→

(z0,s0),...,(zm,sm)
(zm, sm)

}

≤
∑

(n1,...,nm)∈Nm:
n1+···+nm=k

m∏
j=1

Pβ
zj−1,zj

{(zj−1, sj−1)
nj←−−−→

zj−1,zj
(zj, sj)}

≤
∑

(n1,...,nm)∈Nm:
n1+···+nm=k

(βC2)k−m
m∏

j=1
Pβ

zj−1,zj
{(zj−1, sj−1) ∼ (zj, sj)}

=
(

k − 1
m− 1

)
(βC2)k−m

m∏
j=1

Pβ
zj−1,zj

{(zj−1, sj−1) ∼ (zj, sj)}.

Here, we used that either the consecutive skeleton vertices zi−1 and zi fulfil
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the minimum distance for shortcut-free paths or ni = 1. Therefore,

Pβ(Airreg(k))

≤
k∑

m=1

(
k − 1
m− 1

)
(βC2)k−m

1∫
0

ds0

s0∫
0

ds1

∫
Rd

dz1 . . .

· · ·
2−m∧sm−1∫

0

dsm

∫
Rd

dzm

( m∏
i=1

ρ(β−1s1−γ
i−1 sγ

i |zi−1 − zi|d)
)

≤
k∑

m=1

(
k − 1
m− 1

)
Im

ρ Ck−m
2 βm

1∫
0

ds0

s0∫
0

ds1· · ·
2−m∧sm−1∫

0

dsm sγ−1
0 s−γ

m

m−1∏
i=1

s−1
i

≤
k∑

m=1

(
k − 1
m− 1

)
βmIm

ρ Ck−m
2 (1− γ)−m

≤ (βC2)k
k∑

m=1

(
k − 1
m− 1

)
≤ (βC3)k,

where the third inequality follows from Lemma B.5.

The previous lemma shows that for β < C−1
3 , it suffices to show that 0

does not start an infinite path that is regular in order to obtain θ(β) = 0.
Let Areg(n) be the event that 0 starts a regular path of length n.

Lemma 2.9. Let γ ∈ [1
2 , δ

δ+1). Then, for all n ∈ N, we have

Pβ(Areg(n)) ≤ K(βC3)n,

where C3 = 2C2 = Iρ2dδ+4

δ(1−γ)−γ
and K is some constant.

Proof. Writing 0 = z0 = (z0, s0) and following the same arguments of
Mecke equation, BK-Inequality and Lemma 2.7 as done in the previous
proof of Lemma 2.8, we get for large enough n that
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Pβ(Areg(n))

≤
n∑

m=1

m∑
k=0

∫ 1

2−m
ds0

(
n− 1
m− 1

)
(C2β)n−m (2.9)

×
∫

(z1,s1),...(zm,sm)∈Rd×(0,1]
s0>s1>···>sk>2−m

sk<sk+1<···<sm

m⊗
j=1

d(zj, sj)
m∏

j=1
Pβ

zj−1,zj
{(zj−1, sj−1) ∼ (zj, sj)}.

Here, the two sums and integrals describe all regular skeletons a regular
path of length n can have. For the calculation, we focus on γ > 1/2. For
γ = 1/2 minor changes are needed; we comment on this below. Recall that

Pβ
zj−1,zj

{(zj−1, sj−1) ∼ (zj, sj)} = ρ(β−1gpa(sj−1, sj)|zj−1 − zj|d).

Therefore, the right-hand side of (2.9) reads

n∑
m=1

(
n− 1
m− 1

)
(C2β)n−m

×
m∑

k=0
(βIρ)m

∫
1>s0>s1>···>sk>2−m

sk<sk+1<···<sm

m⊗
j=0

dsj

m∏
j=1

gpa(sj−1, sj)−1.
(2.10)

For k = 0 the integral from (2.10) can be written as

∫ 1

2−m
ds0

∫ 1

s0
ds1· · ·

∫ 1

sm−1
dsm s−γ

0 sγ−1
m

m−1∏
j=1

s−1
j ≤

(
1

1− γ

)m

,

by Lemma B.1. For k = m, we obtain for the integral from (2.10)

∫ 1

2−m
ds0

∫ s0

2−m
ds1· · ·

∫ sm−1

2−m
dsm sγ−1

0 s−γ
m

m−1∏
j=1

s−1
j ≤

(
1

1− γ

)m

,

by Lemma B.5. For 1 ≤ k ≤ m − 1, we infer for the integral from (2.10),
using Lemma B.4,
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2.5. Absence of a subcritical phase

m−1∑
k=1

∫ 1

2−m
ds0

s0∫
2−m

ds1· · ·
sk−1∫

2−m

dsk

tγ−1
0

k−1∏
j=1

s−1
j

 s−γ
k

×
1∫

sk

dsk+1· · ·
∫ 1

sm−1
dsm

s−γ
k

 m−1∏
j=k+1

s−1
j

 sγ−1
m


≤ 2−m(1−2γ)(m log(2))m−2

γ2(2γ − 1)(m− 2)!

m−1∑
k=1

(
m− 2
k − 1

)
.

Since mm−2/(m − 2)! asymptotically equals 2log2(e)(m−2)/
√

2π(m− 2) by
Stirling’s formula, and ∑m−1

k=1

(
m−2
k−1

)
≤ 2m−2, we infer from (2.9) and (2.10)

Pβ(Areg(n))

≤ βnK
n∑

m=1

(
n− 1
m− 1

)
Im

ρ Cn−m
2

(
(1− γ)−m + (22γ+log2(e) log(2))m

)
,

for some constant K ≥ 2. As C2 > (1−γ)−1 and C2 ≥ 22γ+log2(e) log(2) we
infer that

Pβ(Areg(n)) ≤ K(βC3)n.

For γ = 1
2 , Lemma B.2 and Lemma B.4 have to be modified slightly.

The changes in the calculations only influence the value of K and not the
constant C3.

Setting β < C−1
3 concludes the proof of Theorem 1.8(a).

2.5. Absence of a subcritical phase

In this section, we prove Theorem 1.8(b) using a strategy of Jacob and
Mörters [45]. Starting from a sufficiently powerful vertex, we use a con-
nector to connect the powerful vertex with a much more powerful one;
we repeat this indefinitely, moving to more and more powerful vertices
as we go along. To ensure that this procedure generates an infinite path
with positive probability, we have to show that the failure probabilities of
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connecting the pairs of increasingly powerful vertices sum to a probability
strictly less than one.

To this end, we show that an powerful vertex is with extreme probabil-
ity connected to a much more powerful one by a single connector. Here,
if (A(t))t>0 is a family of events, we say an event A(t) holds with ex-
treme probability, or wep(t), if it holds with probability at least 1 −
exp(−Ω(log2(t))), as t → ∞, where Ω(t) is the standard Landau sym-
bol. Observe, if (A(t)n)n∈N is a sequence of events, holding simultaneously
wep(t) in the sense that

inf
n
P(A(t)n) ≥ 1− exp(−Ω(log2(t))),

as t→∞, then ⋂k≤⌊t⌋ A(t)k holds wep(t).

Because gpa, gsum ≤ gstr we can fix the kernel g to be the strong-kernel
gstr (1.11) throughout this section. Hence, for two given vertices x = (x, t)
and y = (y, s), the connection probability is given by

ρ(β−1(s ∧ t)−γ|x− y|d).

Recall that ρ is regularly varying with index −δ for δ > 1, cf. (1.17).
Further, γ > δ/(δ + 1). Thus, we can choose

α1 ∈
(
1, γ

δ(1−γ)

)
and then fix α2 ∈

(
α1,

γ
δ
(1 + α1δ)

)
.

The following lemma shows that the outlined strategy for an infinite path
works and thus proves Theorem 1.8(b).

Lemma 2.10. Let γ > δ
δ+1 and ρ be regularly varying with index −δ for

δ > 1. Let α1, α2 be as defined as above. Let z0 = (z0, s0) be a given
Poisson point with s0 < 1/2. Then, for any β > 0, there exists, wep(1/s0),
a sequence (zk)k∈N of vertices zk = (zk, sk) ∈ X0 such that for all k ∈ N

(i) sk < sα1
k−1 and |zk − zk−1|d < β

2 s−α2
k−1 and
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(ii) zk−1
2←−−−→

zk−1,zk
zk.

Proof. It suffices to show that, wep(1/s0), there exists a vertex z1 = (z1, s1)
satisfying (i) and (ii). The result then follows by induction. The number
of vertices, with mark smaller than sα1

0 and within distance ((β/2)s−α2
0 )1/d

from z0 is Poisson distributed with parameter

Volume
(
{|z1 − z0|d < β

2 s−α2
0 } × (0, sα1

0 )
)

= O(sα1−α2
0 ),

where O(·) again is the standard Landau symbol. Since α2 > α1, such
a vertex z1 exists wep(1/s0). To connect z0 to z1 via a connector, we
focus on connectors (y, t), with mark larger than 1/2 and within distance
((β/2)s−γ

0 )1/d from z0. Since, for such choices of (y, t), we have

|z1 − y|d ≤
(
(βs

−α2
0
2 )1/d + (βs−γ

0
2 )1/d

)d
≤ βs−α2

0 ,

the number of such connectors is Poisson distributed with its parameter
bounded from below by

∫ 1

1/2
dt

∫
{|y−z0|d≤ β

2 s−γ
0 }

dy ρ(β−1sγ
0 |y − z0|−d)ρ(sα1γ−α2

0 )

= 1
2βs−γ

0 ρ(sα1γ−α2
0 )

∫
{|y−z0|d≤1/2}

dy ρ(|y − z0|d).
(2.11)

Now, we choose ε > 0 such that δ̃ := δ + ε < γ
1−γ

, or equivalently γ >

δ̃/(δ̃ + 1), and infer by the Potter bound [7, Theorem 1.5.6],

ρ(sα1γ−α2
0 ) ≥ As

−δ̃(α1γ−α2)
0 ,

for some A < 1 and s0 small enough. Additionally, ρ(|x|d) ≥ ρ(1/2) > 0 for
all |x|d < 1/2. Hence, (2.11) is bounded from below by

Ω
(
s

−δ̃(α1γ−α2)−γ
0

)
.
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Therefore, wep(1/s0), the vertex z1 satisfies (ii) as

Pβ
z0,z1{z0

2←−→
z0,z1

z1} ≥ 1− exp(−Ω(s−δ̃(α1γ−α2)−γ
0 ))

and −δ̃(α1γ − α2)− γ < 0.

The proofs of this section and Section 2.4 remain valid if the underlying
Poisson process is replaced by a site percolated lattice. The only calcula-
tions in which we explicitly used the Poisson process are the applications
of Mecke’s equation and where we calculated the expected number of con-
nectors to get bounds for the probability of certain paths existing in the
graph. In the lattice case Mecke’s equation can be easily replaced by the
sum over all lattice point conditioned on the event that the considered
point survived the percolation, which is of the same order as the integral
coming from Mecke’s equation with an additional factor p for the survival
probability. Further, the expected number of points remains of the same
order and similar as for the degree distribution at the end of Section 2.2.1,
we can use the arguments of [17, 70].

2.6. Existence of a supercritical phase in
dimension one

In this section, we prove Theorem 1.11(a). Therefore, we work now explic-
itly in dimension d = 1. Recall that the vertex locations η0 are constructed
in a way such that Xi < Xj for all Xi, Xj ∈ η0 if i < j. For the proof the
only requirement on the vertex locations is that they behave ’lattice-like‘
on large scales. Hence the proof of Theorem 1.11 works whenever η0 fulfils
the following regularity condition.
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2.6. Existence of a supercritical phase in dimension one

Definition 2.11 (Evenly spaced point process). Let η be a stationary
ergodic simple point process on R and denote by P0 the law of its Palm
version η0. We say that η (and also η0) is evenly spaced, if

(a) there exists a constant a1 > 0 such that

∑
n∈N

P0{|X−Kn −XKn−1| > a1Kn} = o(1), as K →∞,

where Kn = (n!)3Kn, n ≥ 1;

(b) there exists a constant a2 > 0 such that we have

P0{|X−2n+1 −X2n| < a22n} = o(1), as n→∞.

Remark 2.12.

(i) There is some leeway in the choice of sequences in Definition 2.11 – for
canonical examples of evenly spaced processes other sequences can be
used to derive the same results. For example, choose a1 = 2(1+ε)λ in
(a), where ε > 0 and λ > 0 is the intensity of η. Then, by stationarity,
E0η(−Kn, Kn−1) = 2λKn and the speed at which Kn needs to grow
can be derived from existing large deviation estimates for η.

(ii) Property (a) is a stronger requirement than property (b) because
to prove the existence of a supercritical phase we need that vertex
locations are sufficiently dense uniformly over all scales whereas it
suffices for the non-existence proof that vertices are spaced out on
each scale.

(iii) Examples of evenly spaced point processes are:

• A Poisson process of intensity λ > 0.

• The point process induced by performing i.i.d. Bernoulli(p) site
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percolation on Z with retention probability p ∈ (0, 1]. Note that
in this case, stationarity is with respect to shifts induced by Z.

• Depending on the underlying random intensity measure, Cox
processes may be evenly spaced, see [46, Section 3] for examples.

We now state a proposition which proves a sufficient condition for the
existence of an infinite cluster.

Proposition 2.13 (Existence of an infinite component). Let η be a simple
and ergodic point process in dimension d = 1 satisfying assumption (a) of
Definition 2.11 and let X0 and U0 be defined as in Section 2.1. Let ρ be
a profile-function and g be a kernel-function and (Gβ = Gβ,ρ,g(X0,U0) :
β > 0) the associated weight-dependent random connection model. Let
Kn := (n!)3Kn, n ∈ N for some fixed K ∈ N. Assume that there exist
µ ∈ (0, 1/2) such that

lim
K→∞

sup
n≥2

n3K exp
(
−K2

n−1

∫
[Kµ−1

n−1 ,1−Kµ−1
n−1 ]2

dsdt ρ
(
g(s, t)Kn

))
= 0. (A1)

Then βc <∞.

The proof of Proposition 2.13 is in part based on [24, Theorem 1(i)]. Con-
dition (A1) can be seen as a version of [24, Eq. (8)]. Note that (A1)
is a slightly more technical assumption then the limit condition required
in Theorem 1.11(a). It precisely quantifies the order of the probability
that certain long edges are not present in the graph we need for our proof
to work. However, it is straightforward to deduce that (A1) is satisfied
whenever

− lim inf
n→∞

log
(∫ 1

1/n

∫ 1
1/n ρ(g(s, t)n) ds dt

)
log n

< 2.

Another application of our results is the existence of a component of linear
size in finite intervals. The paper [43] elaborates how weight-dependent
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2.6. Existence of a supercritical phase in dimension one

random connection-type models arise as weak local limits of models on
finite domains. There, growing sequences of graphs (Gn(β)) are constructed
where Gn(β) consists of n vertices which are independently placed into the
unit interval (−1/2, 1/2). Translated to our parametrisation each vertex
carries an independent uniform mark and, given locations and marks, each
pair (x, t), (y, s) of vertices is connected independently with probability
ρ(β−1g(s, t)n|x− y|). The scaling factor n ensures that the graph remains
sparse and the n vertices can hence be considered as being embedded into
(−n/2, n/2). Note that the graph sequence (Gt : t ≥ 0) of Section 1.2.1
arising from the rescaling of the age-based spatial preferential attachment
network is a special instance of this type of models which arises naturally
from this context. Our proofs yield the following corollary regarding finite
versions of the weight-dependent random connection model.

Corollary 2.14. Let (Gn(β) : n ∈ N) be the above sequence of finite graphs
on intervals with weak local limit G (β) given by an instance of the weight-
dependent random connection model with kernel g and profile ρ. If ρ and g

satisfy the assumptions of Theorem 1.11(a), then (Gn(β) : n ∈ N) contains
a giant component for large enough β. Conversely, if ρ and g satisfy the
assumptions of Theorem 1.11(b), then there is not giant component for any
β > 0.

It is well-known (cf. Lemma 3.16) that a graph sequence cannot have a
giant component when its weak local limit does not percolate. Hence it
remains to prove the first statement of Corollary 2.14 which is done at the
end of this section.

2.6.1. Proof of Proposition 2.13

We now proceed to prove the existence of an infinite component under the
assumptions of Proposition 2.13. Our proof is based on an argument given

81



Chapter 2. The weight-dependent random connection model

in [24, Theorem 1(i)], where the existence of an infinite path in classical
long range percolation on Z is proven in the scale-invariant regime δ = 2.
In their proof, Duminil-Copin et al. define a renormalisation scheme that
works roughly as follows: At stage n, the lattice is covered by half-way
overlapping blocks of Kn lattice points. The overlap has the effect that
if two adjacent blocks contain a rather dense connected component each,
the two components must intersect by necessity. They then argue that
since enough blocks at stage n have such components, a larger block of
size Kn+1 containing several Kn-blocks must also contain a component of
positive (but ever so slightly smaller) density. The result then follows by
iterating this construction and taking the limit n → ∞. In our model we
have to control the additional randomness of the marks, so we cannot quite
tackle the scale-invariant situation as in [24], but we demonstrate below
that a modified version of the strategy works under the assumptions of
Proposition 2.13, i.e. in particular if δeff < 2.

To apply ideas developed for the lattice model to the more general underly-
ing point process η, we make use of the evenly spaced property. This prop-
erty guarantees that in all ways that matter for the proof, η behaves like
the lattice on large scales. Let Kn = (n!)3Kn be as in Definition 2.11(a).
By the same assumption, we can choose a sufficiently large K such that
the probability measure

P̃β( · ) = Pβ
(
·
∣∣∣ ⋂

n∈N
{|X−Kn −XKn−1| ≤ aKn}

)

is well-defined. Define also θ̃(β) = P̃β{0↔∞} and note that if θ̃(β) > 0,
then θ(β) > 0 as well. Throughout this section, we make the standing
assumption that K is chosen large enough for P̃ to be well-defined.

For N ∈ N and i ∈ Z let

Bi
N := {XN(i−1), . . . , XNi, . . . , XN(i+1)−1}

and BN := B0
N = {X−N , . . . , XN−1}. Each set Bi

N consists of precisely 2N

82



2.6. Existence of a supercritical phase in dimension one

consecutive vertices. If η is the lattice, then Xj = j for each j ∈ Z and
Bi

N is simply the lattice interval [N(i − 1), N(i + 1)) ∩ Z, matching the
notation of [24]. In the general setting, the sets Bi

N are blocks of vertices
that all contain the same number of vertices but with random distances
between consecutive vertices. Note that two consecutive blocks Bi

N and
Bi−1

N overlap on half of their vertices. The blocks at stage n are then given
by the blocks Bi

Kn
for i ∈ Z.

Connecting vertex sets that are far apart. To make sure that the
strategy outlined at the beginning of this section works and that a Kn+1-
block at stage n+1 contains a “large” connected component (we will specify
this shortly), it is necessary that two stage n blocks at a given distance are
connected with a sufficiently high probability to overcome potentially bad
regions.

Recall that Kn = (n!)3Kn for some K ∈ N. For ϑ∗ ∈ (0, 1) and n ≥ 2, we
define the ‘leftmost’ and ‘rightmost’ parts of BKn

V n
ℓ (ϑ∗) := {X−Kn , . . . , X−Kn+⌊ϑ∗Kn−1⌋−1} and

V n
r (ϑ∗) := {XKn−⌊ϑ∗Kn−1⌋, . . . , XKn−1}.

Note that Kn−1 ≪ Kn and so V n
ℓ (ϑ∗) (resp. V n

r (ϑ∗)) is only a relatively
small number of vertices at the very left (resp. right) end of the block BKn .
Before calculating the probability of the two sets V n

ℓ (ϑ∗) and V n
r (ϑ∗) being

connected, we need to understand the behaviour of the vertex marks inside
each set.

For µ ∈ (0, 1/2), we denote for all i = 1, . . . , ⌊(ϑ∗Kn−1)1−µ⌋ the empirical
mark counts in V n

ℓ (ϑ∗) by

Nn
ℓ (i) :=

∑
S:(X,S)∈V n

ℓ
(ϑ∗)

1{
S≤ i

⌊(ϑ∗Kn−1)1−µ⌋

}
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and we say that V n
ℓ (ϑ∗) has µ-regular vertex marks if

Nn
ℓ (i) ≥ iϑ∗Kn−1

2⌊(ϑ∗Kn−1)1−µ⌋

for all i = 1, . . . , ⌊(ϑ∗Kn−1)1−µ⌋. A simple calculation yields that

EβNn
ℓ (i) = ϑ∗Kn−1i

⌊(ϑ∗Kn−1)1−µ⌋
.

Hence, by using a Chernoff bound for Uniform(0,1) random variables, we
have that

Pβ
{
Nn

ℓ (i) < EβNn
ℓ (i)/2

}
≤ exp

(
− c · i(Kn−1)µ

)
for some constant c > 0, depending only on the value of ϑ∗. Therefore,

Pβ{V n
ℓ (ϑ∗) is µ-regular} ≥ 1−K1−µ

n−1 exp(−cKµ
n−1). (2.12)

The same holds verbatim for V n
r (ϑ∗). Hence, both sets are µ-regular with a

stretched exponential error bound already in the first stage for a sufficient
large K. We therefore focus on the case when both sets have µ-regular
vertex marks when calculating the probability of both sets being connected,
which we do now.

Denote by {V n
ℓ (ϑ∗) ∼ V n

r (ϑ∗)} the event that the two sets are connected
by a direct edge, i.e. there exist X ∈ V n

ℓ (ϑ∗) and Y ∈ V n
r (ϑ∗) such that

X ∼ Y.

Lemma 2.15. Let ϑ∗ ∈ (0, 1) and write v := vn := ϑ∗Kn−1. There exists
a constant C = C(g, ρ) > 0 such that for all µ ∈ (0, 1/2) and n ≥ 2 we
have

P̃β
(
V n

ℓ (ϑ∗) ∼ V n
r (ϑ∗) | V n

ℓ (ϑ∗) and V n
r (ϑ∗) are µ-regular

)
≥ 1− exp

(
− Cv2

∫ 1−vµ−1

vµ−1
ds
∫ 1−vµ−1

vµ−1
dt ρ

(
β−1g(s, t)aKn

))
.
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Proof. To lighten notation we write Vℓ = V n
ℓ (ϑ∗) and Vr = V n

r (ϑ∗) and
denote

E = {Vℓ µ-regular} ∩ {Vr µ-regular}.

Denote by Fi the empirical distribution function of the vertex marks cor-
responding to Vi, where i ∈ {ℓ, r}. Writing h := ⌊(ϑ∗Kn−1)1−µ⌋, we have
on the event E for t ∈ [0, 1] by the definition of µ-regularity

vFℓ(t) =
−Kn+⌊ϑ∗Kn−1⌋−1∑

i=−Kn

1{Ti≤t} ≥
h∑

j=1
Nn

ℓ (j − 1)1{(j−1)/h<t≤j/h}

= Nn
ℓ (⌊th⌋) ≥ v⌊th⌋

2h
≥ v

2(t− 1/h) ≥ v

3(t− vµ−1).

(2.13)

The same holds for Fr. Under P̃β, the point process η is concentrated on
point configurations that satisfy for any (Xi, Ti) ∈ V1 and (Xj, Tj) ∈ V2

that |Xi −Xj| ≤ aKn. We call such a point configuration ω = (xi, i ∈ Z)
properly spaced. Further, for any fixed properly spaced ω, we denote by
P̃β

η=ω the measure on edge and vertex mark configurations given the vertex
locations ω. By construction P̃β

η=ω is a product measure with Uniform(0, 1)-
marginals. Under P̃β

η=ω, two vertices (xi, Ti) and (xj, Tj) are connected,
whenever their corresponding edge mark satisfies

Ui,j ≤ 1− exp(−ρ(β−1g(Ti, Tj)aKn)), (2.14)

since ω is properly spaced. In particular, there always exists a direct edge
connecting Vℓ and Vr if

Σ :=
∑

(xi,Ti)∈Vℓ,
(xj ,Tj)∈Vr

1{
Ui,j≤1−exp(−ρ(β−1g(Ti,Tj)aKn)

} > 0.

Since the edge marks are independent of the vertex marks and locations,
we have
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Ẽβ
η=ω(1{Σ=0}1E)

≤ Ẽβ
η=ω

1E

∏
(x,T )∈Vℓ

(y,S)∈Vr

exp
(
− ρ(β−1g(T, S)aKn)

)

= Ẽβ
η=ω

 exp
(
−

∑
(x,T )∈Vℓ

(y,S)∈Vr

ρ
(
β−1g(T, S)aKn

))
1E



≤ Ẽβ
η=ω

 exp
(
− v2

9

∫ 1−vµ−1

vµ−1
dt
∫ 1−vµ−1

vµ−1
ds ρ

(
β−1g(t, s)aKn

) )
1E


= P̃β

η=ω(E) exp
(
− v2

9

∫ 1−vµ−1

vµ−1
dt
∫ 1−vµ−1

vµ−1
ds ρ

(
β−1g(t, s)aKn

))
,

where we have used in the second inequality that on E and with (2.13)

∑
(x,T )∈Vℓ

(y,S)∈Vr

ρ
(
β−1g(T, S)aKn

)
= v2

∫ 1

0
Fℓ(dt)

∫ 1

0
Fr(ds)ρ

(
β−1g(t, s)aKn

)

≥ v2

9

∫ 1−vµ−1

vµ−1
dt
∫ 1−vµ−1

vµ−1
ds ρ

(
β−1g(t, s)aKn

)
.

The proof now concludes with the observation that the established bound
is uniform in all properly spaced configurations ω.

Renormalisation scheme. For N ∈ N, i ∈ Z, we denote by C (Bi
N)

the largest connected component of the subgraph of Gβ on the vertices of
Bi

N .

For ϑ ∈ (0, 1), we say a block Bi
N is ϑ-good, if it contains a connected

component of size at least 2ϑN ; otherwise we call it ϑ-bad. We denote
by

pβ(N, ϑ) := P̃β
{
♯C (BN) < 2Nϑ

}
the probability that the block BN is ϑ-bad. Here, ♯A denotes again the
number of points in a finite set A. We will show that the probability of
the scale n Block BKn being ϑ-bad can be bounded by the probability that
the smaller block BKn−1 is bad with a slightly larger value of ϑ.
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2.6. Existence of a supercritical phase in dimension one

Figure 2.6.: The overlapping blocks of scale n− 1 that together form the scale n block.
The cluster C − (resp. C +) on the left in blue (resp. on the right in red). The dark block
is the bad block and in light gray are the non overlapping halves of the two neighbouring
blocks. The dotted line indicates the existence of a direct edge connecting C − and C +

avoiding the bad region.

As a first step, we show that it is probable that the subgraph on BKn+1

contains a connected component of size proportional to ϑ−ε, provided that
BKn is ϑ-good with a sufficiently large probability. This is an adaptation of
[24, Lemma 2] to our setting. Afterwards, we show that for a large enough
K determining the initial scale, the subgraph on BK1 contains a sufficiently
large cluster. Combining both results yields Proposition 2.13.

Recall that we have Kn = (n!)3Kn. Define a sequence (Cn)n∈N as Cn =
n3K. Then K = K1 = C1 and Kn = CnKn−1 for n ≥ 2.

Lemma 2.16. Let ϑ∗ ∈ (3/4, 1) and ϑ ∈ (ϑ∗, 1). Under the assumptions
of Proposition 2.13 there exists M > 0 such that for all K ≥M and n ≥ 2
it holds ϑ− 2/Cn ≥ ϑ∗ and

pβ(Kn, ϑ− 2/Cn) ≤ 1
100pβ(Kn−1, ϑ) + 2C2

npβ(Kn−1, ϑ)2.

Proof. Let ϑ′ := ϑ − 2/Cn. We begin by considering the blocks Bi
Kn−1

for |i| ∈ {0, . . . , Cn − 1}, which together form BKn , and their largest con-
nected components C (Bi

Kn−1). Since ϑ > 3/4, C (Bi
Kn−1) is unique if Bi

Kn−1

is ϑ-good. Furthermore, due to the overlapping property of neighbouring
blocks, the largest components of two adjacent ϑ-good blocks have to in-
tersect in at least one vertex. Hence, if all the blocks Bi

Kn−1 are ϑ-good,
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then BKn is ϑ-good as well.

Define now for every |i| ∈ {0, . . . , Cn − 1} the event

Ei =
{
♯C (Bi

Kn−1) < 2ϑKn−1
}
∩

 Cn−1⋂
|j|=0

j ̸∈{i−1,i,i+1}

{
♯C (Bj

Kn−1) ≥ 2ϑKn−1
}.

That is, the set Bi
Kn−1 is ϑ-bad but all blocks Bj

Kn−1 with which it does
not intersect are ϑ-good. If we write

Fi = Ei ∩ {BKn is ϑ′-bad},

then BKn being ϑ′-bad implies that either Fi occurs for some i or at least
two disjoint blocks of scale n− 1 are ϑ-bad, since otherwise BKn would be
ϑ- and therefore also ϑ′-good. Consequently,

pβ(Kn, ϑ′)

= pβ(CnKn−1, ϑ′) ≤
Cn−1∑
|i|=0

P̃β(Fi) +
(

Cn

2

)
pβ(Kn−1, ϑ)2

≤ pβ(Kn−1, ϑ)
Cn−1∑
|i|=0

P̃β(BCnKn−1 is ϑ′-bad | Ei) + 2C2
npβ(Kn−1, ϑ)2.

To finish the proof it therefore remains to bound the sum of the conditional
probabilities by 1/100. To this end, define

C −
i :=

i−2⋃
j=1−Cn

C (Bj
Kn−1) and C +

i :=
Cn−1⋃
j=i+2

C (Bj
Kn−1).

Conditioned on Ei both sets C −
i and C +

i are connected sets. Further, if
i ∈ {Cn − 2, Cn − 1}, then

♯C −
i ≥ 2(Cn − 2)ϑKn−1 ≥ 2ϑ′CnKn−1

and hence BKn is ϑ′-good. The same holds for C +
i if i ∈ {1−Cn, 2−Cn}.

Therefore, the bad block and any neighbouring block cannot be the left-
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or the right-most ones in BKn . This then guarantees that C −
i , C +

i ̸= ∅.
Further, if C −

i and C +
i are connected by a direct edge, it is the case that

♯C −
i + ♯C +

i ≥ ϑKn−1(Cn + i− 2) + ϑKn−1(Cn − i− 2)

= 2ϑKn−1(Cn − 2) ≥ 2ϑ′CnKn−1,

and BKn is again ϑ′-good, see Figure 2.6. Writing

Ai :=
 Cn−1⋂

|j|=0
j ̸∈{i−1,i,i+1}

{
♯C (Bj

Kn−1) ≥ 2ϑKn−1
}

so that Ei =
{
♯C (Bi

Kn−1) < 2ϑKn−1
}
∩ Ai we have

P̃β(BKn is ϑ′-bad | Ei) ≤ P̃β(C −
i ̸∼ C +

i | Ai)

since C −
i and C +

i do not share any vertex or edge with the bad block
Bi

Kn−1 or its adjacent blocks. Now, Ai is an increasing event in the sense
of Section 2.3 and {C −

i ̸∼ C +
i } is a decreasing event in the sense that

−1{C −
i ̸∼C +

i } is an increasing function. Hence, by the FKG-inequality (2.6)
we have

Ẽβ
1Ai

1{C −
i ̸∼C +

i } ≤ P̃β(Ai)P̃β{V n
ℓ (ϑ∗) ̸∼ V n

r (ϑ∗)}

where we have used ♯C −
i ≥ ♯V n

ℓ (ϑ∗) and ♯C +
i ≥ ♯V n

r (ϑ∗), since ϑ′ > ϑ∗,
together with

min{|x− y| : x ∈ C −
i , y ∈ C +

i } ≤ min{|x− y| : x ∈ V n
ℓ (ϑ∗), y ∈ V n

r (ϑ∗)}.

Combining Lemma 2.15, Assumption (A1) of Proposition 2.13 and (2.12),
we can choose µ ∈ (0, 1/2) such that for sufficiently large C1 = K1 = K it
holds

Cn−1∑
|i|=0

P̃β(BCnKn−1 is ϑ′-bad | Ei)

≤ 2n3C1P̃β{V n
ℓ (ϑ∗) ̸∼ V n

r (ϑ∗)}
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≤ 2n3C1

[
exp

(
− Cv2

∫
[vµ−1,1−vµ−1]2

d(t, s) ρ
(
β−1g(s, t)aKn

))
+ K1−µ

n−1 exp(−cKµ
n−1)

]
≤ 1

100 .

Lemma 2.17. Let η be a point process such that assumption (a) of Def-
inition 2.11 is fulfilled. Then for every kernel g, every profile-function ρ

and every ϑ ∈ (0, 1), there exist constants M > 0, α > 0, and κ > 0 such
that for all K = C1 > M and β > αC1, it holds

pβ(ϑ, C1) ≤ exp(−κC1).

Proof. Denote by ERn(q) an Erdös-Renyi-graph on n vertices with edge
probability q and denote its law by Pq

n. If λ > 1, then ERn(λ/n) is su-
percritical, i.e. for all ε1 > 0, there exists c > 0 and N(ε1, λ) > 0 such
that

Pλ/n

n

{
♯C (ERn(λ/n)) > cn

}
≥ 1− ε1, n ≥ N(ε1, λ), (2.15)

where C (ERn(λ/n)) denotes the largest connected component of the graph
ERn(λ/n) [42]. The idea is to compare this behaviour with the behaviour of
the finite graph in the finite block BC1 by making use of the evenly spaced
property. We assume without loss of generality that ρ(1) > 0. We further
assume that g is bounded and remark on the unbounded case below. Let a1

be the constant from the evenly spaced condition and fix β > a1||g||∞C1.
Then, for all Xi, Xj ∈ BC1 , we have

P̃β{Xi ∼ Xj} ≥ ρ(1)

and we focus on the subgraph on BC1 where only the edges with marks
smaller than ρ(1) are present which is now independent of vertex marks
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and locations. For a fixed λ > 1 set c accordingly as above, fix ε2 < ϑ/c

and choose C1 large enough such that

2ε2C1ρ(α) ≥ λ and ⌊2ε2C1⌋ ≥ N(ε1, λ).

Denote by H the subgraph on the vertices {X0, . . . , X⌊2ε2C1⌋} ⊂ BC1 . By
(2.15), we have

P̃β
{
♯C (H) > c · 2ε2C1

}
≥ Pλ

2ε2C1

{
♯C
(
ER⌊2ε2C1⌋( λ

2ε2C1
)
)

> c · 2ε2C1

}
≥ 1− ε1.

On {♯C (H) > c·2ε2C1}, the block BC1 is ϑ-good if enough of the remaining
vertices in BC1\H are connected to C (H). Each such remaining vertex is
connected to C (H) with a probability of at least

q := q(C1) := 1− (1− ρ(1))2ε2C1 .

For ξ > (ϑ−cε2)/(1−ε2) and C1 large enough such that q > ξ, we have by
writing FBin(n,p) for the distribution function of a binomial random variable
with parameters n and p that

P̃β
{
♯C (BC1) > 2ϑC1

}
≥ (1− ε1)P̃β

(
♯C (BC1) > 2ϑC1

∣∣∣∣ ♯C (H) > c(2ε2C1)
)

≥ (1− ε2)
(

1− FBin(2(1−ε2)C1,q)
(
2ξ(1− ε2)C1

))
≥ 1− exp(−κC1),

for some κ > 0 by a standard Chernoff bound.

If g is not bounded we can instead do the following. We fix a small ε > 0
and only consider vertices with marks smaller than 1−ε and therefore each
vertex is removed independently with probability ε due to independence
of marks and locations. However, the new block BC1 still consists of order
(1−ε)C1 vertices with an error term exponentially small in C1 by Chernoff’s
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bound. Furthermore, the thinned process η is still evenly spaced and we
can repeat the proof above since it holds that g(s, t) ≤ g(1− ε, 1− ε) <∞
for all remaining marks s and t.

Finalising the proof of Proposition 2.13. We are now ready to prove
Proposition 2.13 which we do following the arguments of the proof of The-
orem 1(i) of [24] in the following lemma.

Lemma 2.18. Let the assumptions of Proposition 2.13 be fulfilled. Then
there exist βc ∈ (0,∞) such that

P̃β{0↔∞} ≥ 3
8

for all β > βc.

Proof. Fix ϑ∗ ∈ (3/4, 1) and ϑ1 ∈ (ϑ∗, 1). Choose K = C1 and afterwards
β both large enough, such that the Lemmas 2.16 and 2.17 hold. Recall also
that Cn = n3K, K1 = C1 and Kn = CnKn−1. Define ϑn := ϑ1−2/Cn+1 for
n ≥ 2. Since the assumptions of Lemma 2.16 are satisfied, we have that
ϑn > ϑ∗ for all n. We have by Lemma 2.17 that pβ(C1, ϑ1) ≤ (400C2

1)−1,
and by Lemma 2.16 that

pβ(Kn, ϑn) ≤ 1
100pβ(Kn−1, ϑn−1) + 2C2

npβ(Kn−1, ϑn−1)2, ∀n ≥ 2.

Inductively, this yields that pβ(Kn, ϑn) ≤ (400C2
n)−1. Hence, we have

P̃β{BKn is ϑn-good} ≥ 1− 1
400C2

n
≥ 1

2 .

We derive from this that

3
4Kn ≤ 3

4(2Kn)P̃β{BKn is 3/4-good}

≤ Ẽβ
[
♯C (BKn)1{BKn is 3/4-good}

]
≤ 2KnP̃β{∃ a cluster of size at least 3

2Kn}.
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Dividing both sides by 2Kn and then sending n → ∞ together with the
translation invariance yields the desired result.

It remains in this section to prove Corollary 2.14 and specifically the exis-
tence of a component of linear size in the constructed graph sequence for
large enough β if the assumption of Theorem 1.11(a) is fulfilled.

Proof of Corollary 2.14. Consider the sequence (G2m(β) : m ≥ m0), where
m0 will be determined below. Let (Ri)i∈N be a sequence of natural numbers
sufficiently large for Lemmas 2.16 and 2.17 to hold for K = Ri, such that

⋃
i

{2Kn : n ∈ N, K = Ri}

contains all sufficiently large natural numbers, and let m0 be an arbitrary
natural number contained in this set. Note that the sequence (Ri)i∈N can
be chosen to be simply all sufficiently large natural numbers.

Consider now the sequence (G2Kn(β) : n ∈ N) for fixed K ∈ (Ri)i∈N. Since
the assumption of Theorem 1.11(a) on the kernel g and the profile ρ is
fulfilled, Assumption (A1) in particular is also satisfied. Now, the 2Kn

points can be seen as embedded into the interval (−Kn, Kn) and therefore
the construction above (for the block BKn) guarantees that the proportion
of the largest connected component of the graphs G2Kn(β) is bounded from
below by 3/4 with a probability larger than 3/8 and this holds uniformly in
n. This holds furthermore uniformly along the sequence Ri and therefore
uniformly for all intervals (−m, m) with m > m0. Our claim then follows
by ergodicity.
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Chapter 2. The weight-dependent random connection model

2.7. Non existence of a supercritical phase
in dimension one

We start this section with stating a Proposition comparably to the previous
section which then implies Theorem 1.11(b). We denote by f(a+) the limit
limx↓a f(a).

Proposition 2.19 (Finite Components). Let η be a simple and ergodic
Point process in dimension d = 1 fulfilling condition (b) of Definition 2.11
and let X0 and U0 be defined as above in Section 2.1. Let g be a kernel-
function and ρ be a profile-function for which ρ(0+) < 1. Let (Gβ =
Gβ,ρ,g(X0,U0) : β > 0) be the associated weight-dependent random connec-
tion model. Assume that there exists µ ∈ (0, 1/2) such that

∑
n∈N

22n
∫ 1

2−(1+µ)n
ds
∫ 1

2−(1+µ)n
dt ρ(g(s, t)2n) <∞. (A2)

Then βc =∞.

The assumption ρ(0+) < 1 in Proposition 2.19 is a technical requirement
needed in the proof below and can essentially be viewed as a continuum
version of the analogous requirement in long-range percolation on Z that
not all nearest-neighbour-edges be present. If however η is a homogeneous
Poisson process, the additional condition ρ(0+) < 1 can be dropped which
is proved at the end of Section 2.7.1..

Corollary 2.20. Let η be a standard Poisson point process on R and let X0

and U0 be as above. Let g be a kernel and ρ be a profile-function such that
assumption (A2) of Proposition 2.19 is fulfilled and consider the weight-
dependent random connection model (Gβ = Gβ,ρ,g(X0,U0) : β > 0). Then
βc =∞.
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2.7. Non existence of a supercritical phase in dimension one

2.7.1. Proof of Proposition 2.19

Throughout the section, the vertex locations are assumed to belong to a
simple and ergodic point process η that fulfills assumption (b) of Defini-
tion 2.11. We consider edges that connect a vertex left of the origin to a
vertex right of the origin and say that such an edge crosses the origin. We
will show that the probability that there are no edges crossing the origin is
bounded away from zero, and since by stationarity the same bound holds
for crossings of any arbitrary point, we get by ergodicity that there exist
infinitely many points that are not crossed by an edge and all components
must be finite. Technically, the root X0 is neither right or left but at the
origin as we work on the palm version of η which allows the canonical or-
dering of the vertices. However, we declare without loss of generality X0

to be on the right of the origin.

We define the disjoint sets of vertices

Γℓ
k := {X−2k , . . . , X−1}, Γℓℓ

k := {X−2k+1 , . . . , X−2k−1}

Γr
k := {X0, . . . , X2k−1}, Γrr

k := {X2k , . . . , X2k+1−1}

for each k ∈ N. We say that a crossing of the origin occurs at stage

k = 1, if any edge connects the sets Γℓ
1 ∪ Γℓℓ

1 and Γr
1 ∪ Γrr

1 or at

k ≥ 2, if any edge connects either Γℓℓ
k to Γrr

k , Γℓℓ
k to Γr

k or Γℓ
k to Γrr

k . Note
that any edges between Γℓ

k and Γr
k have by necessity already been

considered at a smaller scale.

We denote by χ(k) ∈ {0, 1} the indicator that a crossing of the origin
occurs at stage k ∈ N. The event that there is no edge crossing the origin
is then given by ⋂k{χ(k) = 0}. Note that these events are all decreasing
and therefore positively correlated, implying that

Pβ

( ⋂
k∈N
{χ(k) = 0}

)
≥
∏
k∈N

Pβ{χ(k) = 0}.
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Chapter 2. The weight-dependent random connection model

To show that the product on the right-hand side is bounded away from
zero, it suffices to show the equivalent statement that

∑
k∈N

Pβ{χ(k) = 1} <∞.

For k ≥ 2 we have by symmetry,

Pβ{χ(k) = 1} = Pβ

{
Γrr

k ∼ Γℓℓ
k

}
+ 2Pβ

{
Γℓℓ

k ∼ Γr
k

}
≤ 3Pβ

{
Γℓℓ

k ∼ Γr
k

}
.

The following lemma shows that for profile-functions satisfying ρ(0+) < 1
the probability of the right hand side is bounded by the summand occurring
in Assumption (A2), which immediately implies Proposition 2.19.

Lemma 2.21. Assume that ρ satisfies ρ(0+) < 1. Then for all β > 0,
there exist constants c > 0 and K ∈ N such that for all k ≥ K, it holds

Pβ{Γℓℓ
k ∼ Γr

k} ≤ c22k
∫ 1

2−(1+µ)k
ds
∫ 1

2−(1+µ)k
dt ρ(β−1g(s, t)2k).

Proof. We begin by modifying the definition of µ-regularity, since we are
now interested in upper bounds on connection probabilities. Throughout
this proof, we say a set Γo

k, o ∈ {ℓ, ℓℓ, r, rr} is µ-regular if, for all i ∈
{1, . . . , ⌈2k(1−µ)⌉},

(i) ∑
T :(X,T )∈Γo

k

1{T ≤⌈2−(1+µ)k⌉} = 0,

(ii) ∑
T :(X,T )∈Γo

k

1{T ≤i/⌈2(1−µ)k⌉} ≤ i2k+1

⌈2(1−µ)k⌉ .

Note, that assumption (i) is fulfilled with a probability of order 1−2−kµ for
large k. For assumption (ii), we can again use Chernoff’s bound to deduce

Pβ
{ ∑

T :(X,T )∈Γo
k

1{T ≤i/⌈2(1−µ)k⌉} ≤
i2k+1

⌈2(1−µ)k⌉

}
≥ 1− 2(1−µ)k exp(−c2µk).

96



2.7. Non existence of a supercritical phase in dimension one

Hence, the event ⋂
o∈{ℓ,ℓℓ,r,rr}

{Γo
k is µ-regular}.

holds with a probability at least 1−ε for any ε ∈ (0, 1), if k is large enough.
Together with the evenly spaced condition (b) from Definition 2.11, we
have that the event

Ek :=
⋂

o∈{ℓ,ℓℓ,r,rr}
{Γo

k is µ-regular} ∩ {|X−2k+1 −X2k | > a22k}

holds with probability greater than 1−ε for large enough k. We now argue
as in the proof of Lemma 2.15. A point configuration ω = (xi, i ∈ Z) is
properly spaced if it satisfies the spacing condition of Definition 2.11(b),
namely |X−2n+1−X2n| < a22n. The µ-regularity is measurable with respect
to vertex marks only and thus independent of the vertex locations and edge
marks. Thus, denoting by Pβ

η=ω the law induced on vertex and edge mark
configurations given a fixed properly spaced vertex locations ω, we obtain

Eβ
η=ω

[
1{Γℓℓ

k
̸∼Γr

k
}1Ek

]
≥ Eβ

η=ω

1Ek

∏
(x,T )∈Γℓℓ

k
(y,S)∈Γr

k

(1− ρ
(
β−1g(S, T )a2k

)

≥ Eβ
η=ω

1Ek
exp

(
− c

∑
(x,T )∈Γℓℓ

k
(y,S)∈Γr

k

ρ(β−1g(S, T )a2k)
) (2.16)

= Eβ
η=ω

1Ek
exp

(
− c

∫ 1

0
2kFΓℓℓ

k
(ds)

∫ 1

0
2kFΓr

k
(dt) ρ(β−1g(s, t)a2k)

)

for some constant c > 0, where the second to last inequality follows from
the fact that ρ(x) ≤ ρ(0+) < 1 for all x > 0 by assumption. As before,
FΓℓℓ

k
denotes the empirical distribution function of the vertex marks in Γℓℓ

k .
By the µ-regularity of the marks, we have similarly as done in (2.13) that

2kFΓℓℓ
k

(t) ≤ 2k
⌈2k(1+µ)⌉∑

j=1

2j

⌈2k(1+µ)⌉
1{j−1<t⌈2k(1+µ)⌉≤j}
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≤

⌈
t⌈2k(1+µ)⌉

⌉
⌈2k(1+µ)⌉

2k ≤ c′2k(t + 2−k(1+µ))

for some c′ ≥ 2 uniformly for all µ-regular vertex mark configurations.
Plugging this into (2.16), we get

Pη=ω
β ({Γℓℓ

k ̸∼ Γr
k} ∩ Ek)

≥ exp
(
− c22k

∫ 1

2−k(1+µ)
ds
∫ 1

2−k(1+µ)
dt ρ

(
β−1g(s, t)a2k

))
Pη=ω

β (Ek).

Since this estimate is uniform in the properly spaced configuration ω for
large enough k, it follows that we have

Pβ{Γℓℓ
k ∼ Γr

k} ≤ 1− exp
(
− c22k

∫ 1

2−k(1+µ)
ds
∫ 1

2−k(1+µ)
dt ρ

(
β−1g(s, t)a2k

))
≍ 22k

∫ 1

2−k(1+µ)
ds
∫ 1

2−k(1+µ)
dt ρ

(
β−1g(s, t)a2k

)
,

which concludes the proof.

It remains to show that Corollary 2.20 holds when the vertex set is given
by a Poisson process without requiring ρ(0+) < 1, an assumption which is
crucial when doing the calculation leading up to (2.16).

Proof of Corollary 2.20. Let η be a Poisson point process of intensity λ >

0. In this case, β can be seen as a scaling parameter of the Euclidean dis-
tance between the vertices and therefore varying β is equivalent to varying
the intensity of the Poisson process, cf. Remark 1.9 (iii).

We now fix an arbitrarily β > 0 and show that no infinite component exists
in Gβ,ρ,g constructed on the Poisson process η, or rather on its Palm version
η0. By Poisson thinning, we can interpret Gβ,ρ,g as the graph resulting from
i.i.d. Bernoulli site percolation of the graph Gβ/p,ρ,g for some arbitrary p < 1.
We perform Bernoulli bond percolation on the graph Gβ/p,ρ,g with retention
parameter p′ ∈ (p, 1). That is, each edge is independently removed with
probability 1 − p′. By construction, this coincides with constructing the
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2.7. Non existence of a supercritical phase in dimension one

graph where the profile-function ρ is replaced by p′ρ. Hence, we are working
with the graph Gβ/p,ρ,g, its bond percolated version Gβ/p,p′ρ,g and its site
percolated version Gβ,ρ,g. Since vertex percolation removes at least as many
edges from the graph as bond percolation and p′ > p, we have

Pβ,ρ,g{0↔∞} ≤ Pβ/p,p′ρ,g{0↔∞},

see e.g. [37]. Note now that p′ρ(0+) < 1 by construction and assumption
(A2) is still fulfilled, so the right hand side equals zero by Proposition 2.19,
proving the claim.

2.7.2. Proof of Corollary 1.13

In this short section, we calculate the effective decay exponent δeff for our
examples and thus proving Corollary 1.13. For all our calculations we
assume without loss of generality that

ρ(x) ≍ x−δ for x > 1.

for δ ∈ (2,∞). The results for the hard models follow either by a limit
δ →∞ or by Remark 1.12(ii). We start with the soft Boolean model and
the strong-kernel and get for γ > 1/δ

∫ 1

1/n
ds
∫ 1

1/n
dtρ(gstr(s, t)n) ≍ n−δ

∫ 1

1/n
ds s−δγ = n−δ(1−γ)−1

and

1 + δ(1− γ)


> 2, γ < 1− 1

δ
,

= 2, γ = 1− 1
δ
,

< 2, γ > 1− 1
δ
.

For the preferential attachment-kernel, we get for γ < 1− 1/δ
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∫ 1

1/n
ds
∫ 1

1/n
dtρ(gpa(s, t)n) ≍

∫ 1

1/n
ds
∫ 1

s
dt s−γδt−δ(1−γ)n−δ

≍ n−δ
∫ 1

1/n
ds s1−δ ≍ n−2.

Finally, for the non scale-free weak kernel model, we get for 1 > α > 2/δ

∫ 1

1/n
ds
∫ 1

1/n
dtρ(gweak(s, t)n) ≍ n−δ

∫ 1

1/n
ds
∫ s

1/n
dts−αδ ≍

∫ 1

1/n
dss1−αδ

≍ n−2−δ(1−α)

and 2 + δ(1− α) > 2.
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CHAPTER 3

The age-based spatial preferential
attachment

This chapter is devoted to the age-based spatial preferential attachment
model, discussed in Section 1.1, and the proof of Theorem 1.5. To this
end, we extend the formal construction of Section 2.1 and recap the rescal-
ing arguments of Section 1.2.1. We then prove a law of large numbers
connecting the age-based spatial preferential attachment model with the
age-dependent random connection model. We use this to prove Theo-
rem 1.5. The proofs of the Sections 3.1 and 3.2 can be found in [32]. The
proofs of Section 3.3 can be found in [36] and are in particular based on
arguments of [45] as outlined in Section 1.3.

3.1. Construction and weak local limit

Recall the construction of the weight-dependent random connection model
as a functional of the points of a marked Poisson point process and edge
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Chapter 3. The age-based spatial preferential attachment

marks. We extend the notion of X to be a unit intensity Poisson point
process on Rd × (0,∞). The points of X play the role of the vertices of
the age-based spatial preferential attachment model and we say a vertex
x = (x, s) ∈ X is born at time s and placed at position x. We say that
(x, s) is older than (y, u) if s < u. We denote by

E(X ) := {(x, y) ∈ X × X : y older than x}

the set of potential edges. Given X we denote by U a family of independent
random variables, uniformly distributed on (0, 1), indexed by the set of
potential edges. We denote these variables by Ux,y and again call them
edge marks. For t > 0 write Xt for X ∩ Td

1 × (0, t], the set of vertices on
the unit torus already born at time t. Also, we write Ut for the restriction
of U to indices in Xt × Xt. Fix β > 0, a profile function ρ and γ ∈ (0, 1)
and define the graph Gβ,ρ,γ

1 (Xt,Ut) with vertex set Xt and two vertices
x = (x, s), y = (y, u) with s > u are connected by an edge if and only if

Ux,y ≤ ρ
(

s·d1(x,y)d)
β(s/u)γ

)
.

Observe that the graph sequence (Gβ,ρ,γ
1 (Xt,Ut) : t ≥ 0) has the law of the

age-based spatial preferential attachment model (Gt : t ≥ 0) constructed
according to (1.2). Similarly, we define X t as the restriction of X to Td

t ×
(0, 1] and U t the restriction of U to indices in X t × X t. Then the graph
Gβ,ρ,γ

t (X t,U t) is defined through the vertex set X t and x = (x, s), y = (y, u)
with s > u are connected by an edge if and only if

Ux,y ≤ ρ
(

s·dt(x,y)d)
β(s/u)γ

)
.

Then the law of (Gβ,ρ,γ
t (X t,U t) : t ≥ 0) is the same as of the family (G t :

t ≥ 0) of Section 1.2.1. Hence, from now on we identify Gt = Gβ,ρ,γ
1 (Xt,Ut)

and G t = Gβ,ρ,γ
t (X t,U t). All graphs are constructed on the probability

space carrying the Poisson process X and the edge marks U , whose joint
probability measure and expectation we denote by P and E. Recall further
the rescaling map ht of Section 1.2.1. It works canonically on the set Xt as

102



3.1. Construction and weak local limit

well as on Ut by ht(U)ht(x),ht(y) := Ux,y, and also on graphs with vertex set
Xt by mapping points x to ht(x) and introducing an edge between ht(x)
and ht(y) if and only if there is one between x and y. By the arguments
of Section 1.2.1 and (1.5) it follows

Gβ,ρ,γ
t (ht(Xt), ht(Ut)) = ht(Gβ,ρ,γ

1 (Xt,Ut)) = ht(Gt).

Since ht(Xt) has the law of X t, it follows that the law of G t is the same as
the law of ht(Gt), making the arguments for Figure 1.1 rigorous. Therefore,
to study degree distribution, clustering and robustness for the network
(Gt : t ≥ 0) is the same as studying (G t : t ≥ 0) instead.

We start by showing that, almost surely, t 7→ G t converges locally to the
graph G ∞ := Gβ,ρ,γ

∞ (X∞,U∞) which is the age-dependent random connec-
tion model. Recall that G ∞ is locally finite by Corollary 2.3.

Theorem 3.1. Almost surely, the graph sequence (G t : t ≥ 0) converges
to G ∞ in the sense that for each x ∈ X∞ the neighbours of x in G t and
G ∞ coincide for large t.

Proof. We work conditionally on x = (x, s) ∈ X∞. Our aim is to show
that there exists an almost surely finite random variable M such that, for
all t ∈ (0,∞] and y ∈ X∞ with distance at least M from x, the vertices
x and y are not connected in G t. To this end, observe that the distance
between x and any y ∈ Td

t can be up to 2
√

d|x| smaller than it would be
in Rd. Consider the model where the vertices within distance 2

√
d|x| of x

are deleted from X∞ and all the other vertices are moved towards x by
a distance of 2

√
d|x|. It is easy to see that all vertices y ∈ X∞, that are

at least 2
√

d|x| away from x and connected to x in the finite graph Gt for
some t > 0, are also linked to x in this new model. Furthermore, the degree
of x is still almost surely finite. Hence, we define the random variable M

as the distance of x to the furthest vertex it is linked to in this new model,
plus 2

√
d|x|. Then M is almost surely finite and, as for t > |x| + M the
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vertices in X∞ and in X t within distance M from x coincide, the edges of
x linking it to another vertex y that is at most M away coincide in G t and
G ∞ for sufficiently large t.

The above theorem only states the local convergence of the neighbourhood
of vertices. Global results require a specific law of large numbers for the
graphs rooted in a randomly chosen point. In order to do so, we add a point
at the origin to our Poisson process denoting X0 := X∞ ∪ {(0, U)} where
U is an independent, uniformly on (0, 1] distributed birth time and we
denote 0 = (0, U). As before let U0 be a family of independent uniformly
distributed random variables indexed by the potential edges in X0, and, for
0 < t ≤ ∞, let X t

0 = X0∩(Td
t×(0, 1]) and denote by U t

0 the restriction of U0

to indices in X t
0×X t

0 . We define rooted graphs G t
0 := Gβ,ρ,γ

t (X t
0 ,U t

0) with the
root being the vertex placed at the origin. Note that this is consistent with
the construction in Section 2.1 and in particular G ∞

0 = Gβ,ρ,gpa(X0,U0).
The graphs depend now on the Poisson process, the additional root and
the extended edge marks. We denote their joint law and expectation by
P0 and E0.

Definition 3.2. Consider a family (Ht : t ≥ 0) of non negative functionals
Ht acting on the root of finite rooted graphs and the whole graph. We say
such a family belongs to the class Hp for p > 0 if there exists a functional
H∞ acting on the root and the graph of an infinite rooted graph such that

(A) the random variable Ht(0, G t
0 ) converges in probability to the random

variable H∞(0, G ∞
0 ) as t→∞,

(B) the uniform moment condition

sup
t≥0

E0Ht(0, G t
0 )p <∞

holds and
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(C) for every t ∈ (0,∞], the functional Ht is invariant under shifts

θt
x : Td

t × (0, 1)→ Td
t × (0, 1), (y, s) 7→ (y − x, s),

where θt
x acts on graphs canonically by shifting all vertices and placing

an edge between shifted vertices if and only if there has been an edge
between the original vertices in the original graph.

Theorem 3.3 (Weak law of large numbers). Suppose (Ht : t ≥ 0) ∈ Hp

for some p > 1. Then

lim
t→∞

1
t

∑
x∈X t

Ht(x, G t) = E0H∞(0, G ∞
0 ) (3.1)

in probability as t→∞.

Remark 3.4. The proof can be found in [44, Theorem 7] where Jacob
and Mörters prove the the weak law of large numbers for the degree-based
model. Their arguments work mutatis mutandis in our setting. The the-
orem particularly allows that Ht additionally depend continuously on the
ages of vertices and the length of edges as it is formulated for the graphs
G t on the rescaled marked space. The theorem is an adaption of [66,
Theorem 2.1] by Penrose and Yukich. It shows that the age-dependent
random connection model is indeed the weak local limit of the age-based
spatial preferential attachment in the sense of Benjamini and Schramm [5]
as outlined in Section 1.2.1.

With the law of large numbers at hand we are ready to prove Theorem 1.5.
We prove the scale-freeness and clustering in Section 3.2 and robustness
in Section 3.3.
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3.2. Degree distribution, clustering and
edge length distribution

In this section, we consider the degree distribution and clustering of the
network. We further state some results about the empirical rescaled edge
length. To this end, we frequently define functionals of the form Ht(x, G t)
depending on a given vertex x of the graph G t and the graph G t to make
use of the weak law of large numbers.

3.2.1. Degree distribution

In the original network (Gt : t ≥ 0) a new vertex joins the graph and
connects to already existing vertices. Afterwards, one can think of the
vertex as waiting for new vertices connecting to it. We hence think of
edges as oriented from young to old. In the graph family (G t : t ≥ 0) the
birth times are represented by the vertices’ marks. Consequently, we use
the notation of Section 2.2.1 and write Nx(t) := Nx(G t) for the neighbours
of x in G t. For the older neighbours of x in G t, we write N <

x (t) and denote
the outdegree by ♯N <

x (t). The younger neighbours are denoted by N >
x (t)

and the indegree by ♯N >
x (t). If we work in the limiting graph, we simply

write Nx = Nx(∞) for the neighbourhood of x in G ∞ and do so like wise
for the younger and older neighbours.

We define the empirical outdegree distribution νt of the graph G t by

νt(k) := 1
t

∑
x∈X t

1{♯N <
x (t)=k} for k ∈ N0,

and note that (for convenience) we have normalised νt so that is mass
converges to one without necessarily equal to one for small t.
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Theorem 3.5. For any function g : N0 → [0,∞) growing no faster than
exponentially, we have

1
t

∑
x∈X t

g(♯N <
x (t)) =

∫
g dνt −→

∫
g dν

in probability, as t → ∞, where ν is the Poisson distribution with param-
eter β/(1− γ).

Proof. We define the functionals Ht(x, G t) = g(♯N <
x (t)) for all t ∈ (0,∞].

Since Ht only depends on the neighbourhood of x, assumption (A) of
Definition 3.2 is fulfilled by Theorem 3.1. Moreover, N <

x (t) is Poisson dis-
tributed with a bounded parameter by the same arguments as in Propo-
sition 2.1, and the uniform moment condition (B) is fulfilled as long as g

is not growing faster than exponentially. As (C) is trivially fulfilled, we
infer the result from the weak law of large numbers, Theorem 3.3, and
Proposition 2.1.

Define the empirical indegree distribution µt of the graph G t by

µt(k) = 1
t

∑
x∈X t

1{♯N >
x (t)=k}.

Theorem 3.6. For any function g : N0 → [0,∞) growing no faster than
linearly, we have

1
t

∑
x∈X t

g(♯N >
x (t)) =

∫
g dµt −→

∫
g dµ

in probability, as t→∞, where µ is mixed Poisson distributed with mixing
density f as in (2.4).

Proof. We define Ht(x, G t) = g(♯N >
x (t)) for all t ∈ (0,∞]. Assump-

tion (A) of Definition 3.2 holds with the same arguments as above. As
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♯N >
x (t) is dominated by ♯N >

x whose distribution µ has tails (calculated in
Lemma 2.2) that vanishes fast enough to ensure the uniform moment con-
dition (B), the result follows again by Theorem 3.3 and Proposition 2.1.

Corollary 3.7. The age-based spatial preferential attachment network (Gt :
t ≥ 0) is scale-free with power-law exponent τ = 1 + 1/γ.

Proof. This is immediate by the above and Lemma 2.2.

3.2.2. Local and global clustering

Recall the definition of the average clustering coefficient, cav above Defi-
nition 1.3. Let us further introduce another metric, the global clustering
coefficient or transitivity of a graph G, defined as

cglob(G) := 3♯{triangles in G}
♯{wedges in G}

,

if there is at least one wedge in G, and cglob(G) = 0 otherwise. Both coeffi-
cients, cav and cglob, are well-established in the applied networks literature,
see e.g. [62, 69] for some early papers.

Theorem 3.8 (Clustering coefficents).

(a) For the average clustering coefficient we have

cav(G t) −→
∫ 1

0
P
{
(X(1)

u , S(1)
u ) ∼ (X(2)

u , S(2)
u )

}
π(du),

in probability as t→∞, where (X(1)
u , S(1)

u ) resp. (X(2)
u , S(2)

u ) are two
independent random variables on Rd × (0, 1) with distribution

1
λu

(
ρ
(

s1−γuγ

β
|x|d

)
1(u,1)(s) + ρ

(
u1−γsγ

β
|x|d

)
1(0,u](s)

)
dxds, (3.2)
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3.2. Degree distribution, clustering and edge length distribution

where λu = β
γ
(2γ−1

1−γ
+ u−γ) is the normalising factor, and π is the

probability measure on (0, 1) with density proportional to 1− e−λu −
λue−λu.

(b) For the global clustering coefficient, there exists a number cglob
∞ ≥ 0

such that

cglob(G t) −→ cglob
∞

in probability, as t → ∞. The limiting global clustering coefficient
cglob

∞ is positive if and only if γ < 1/2.

Remark 3.9. The limiting average clustering coefficient can be interpreted
as the probability that in G ∞

0 two neighbours of the vertex at the origin
are connected by an edge. The density of the birth time of the vertex
at the origin here is not uniform but given by the measure π, which is
the conditional distribution of the birth time of a vertex given that it
has degree at least two. Observe that this coefficient is always positive.
By contrast the global clustering coefficient vanishes asymptotically when
preferential attachment to old nodes is strong (i.e. when γ is large). In this
case the collection of wedges is dominated by those with an untypically old
tip. These vertices have small local clustering as they are endvertices to a
significant amount of long edges.

Proof. Define Ht(x, G t) = H(x, G t) = cloc
x (G t) if x has at least two neigh-

bours in G t and Ht(x, G t) = H(x, G t) = 0 otherwise where cloc
x is the local

clustering coefficient used to define cav above Definition 1.3. As H only
depends on a bounded graph neighbourhood of x, is bounded and hence
uniformly integrable and translation invariant, we get by Theorem 3.3

1
t

∑
x∈X t

H(x, G t) −→ E0H(0, G ∞
0 ) = E0c

loc
0 (G ∞)

in probability, as t→∞. To calculate the limit, observe that, for a vertex
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x with degree k, the number of wedges with tip x is k(k−1)/2. Therefore,

E0c
loc
0 (G ∞) =

∫ 1

0
du
∑
k≥2

E
[

2
k(k−1)

∑
(x,s)∼(0,u)

∑
(y,t)∼(0,u)

t<s

1{(x,s)∼(y,t)}1{♯N(0,u)=k}

]
.

By Proposition 2.1, the neighbourhood of the root (0, u) is given by a Pois-
son point process with intensity measure λ<

(0,u) +λ>
(0,u). Conditioned on the

number of neighbours, the neighbours of (0, u) are independent and identi-
cally distributed as the normalised intensity measure of the neighbourhood
given in (3.2); see [55, Proposition 3.8]. It follows,

E0c
loc
0 (G ∞

0 ) =
∫ 1

0
du P

{
(X(1)

u , S(1)
u ) ∼ (X(2)

u , S(2)
u )

}
P(0,u)

{
♯N(0,u) ≥ 2

}
,

where (X(1)
u , S(1)

u ) and (X(2)
u , S(2)

u ) are independent and identically dis-
tributed as claimed. Choosing now H(x, G t) = 1{♯Nx(t)≥2} we get by the
law of large numbers for the number of vertices of degree at least two

♯V2(G t)
t

−→
∫ 1

0
du P(0,u)

{
♯N(0,u) ≥ 2

}
,

in probability. As ♯N(0,u) is Poisson distributed with intensity λu, we
conclude

cav(G t) −→
∫ 1

0 du(1− e−λu − λue−λu) P
{
(X(1)

u , S(1)
u ) ∼ (X(2)

u , S(2)
u )

}
∫ 1

0 du (1− e−λu − λue−λu)
,

in probability, as claimed in (a).

For the global clustering coefficient, we count the number of triangles and
wedges separately. To this end, define H(x, G t) to be the number of tri-
angles in G t which have their youngest vertex in x, and Ĥ(x, G t) to be
the number of wedges with tip in x. Again assumption (A) and (C) of
Definition 3.2 are fulfilled. The moment condition is fulfilled for any p > 1
as H(x, G t) ≤ (♯N <

x )2. Moreover,
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3.2. Degree distribution, clustering and edge length distribution

Figure 3.1.: Local clustering coefficient of a vertex (0, u) for parameters a = 1 and
β = ced(1−γ) chosen such that the asymptotic edge density is fixed at ced. The plot on
the left displays the behaviour of the model for high edge density (ced = 10) for various
values of γ. We remark that the shown behaviour is qualitatively independent of the
edge density. In the plot on the right, the clustering coefficient for γ = 0.2 is shown,
along with the probabilities of the event that u is younger (resp. in the middle or older)
than two randomly picked neighbours, which are connected, see [32, Fig 3].

Ĥ(x, G t) = 1
2(♯N <

x (t))(♯N <
x (t)− 1) + 1

2(♯N >
x (t))(♯N >

x (t)− 1)

+ (♯N <
x (t))(♯N >

x (t))

≤ 2
(
(♯N <

x )2 + (♯N >
x )2

)
.

If γ < 1/2 and 1 < p < 1/2γ, we have Ĥ ∈ Hp and Theorem 3.3 gives that

cglob(G t) =
∑

x∈X t H(x, G t)
t

· t

Ĥ(x, G t)
−→ E0H(0, G ∞

0 )
E0Ĥ(0, G ∞

0 )
> 0,

in probability. If γ > 1/2, we apply the theorem to the bounded functions
Ĥ ∧ k and send then k →∞ and we get t−1∑

x Ĥ(x, G t)→∞ and hence
cglob(G t)→ 0 in probability as t→∞.

Corollary 3.10. The age-based spatial preferential attachment network
(Gt : t ≥ 0) shows clustering in the sense of Definition 1.3.

The local and average clustering coefficients cannot be calculated explicitly,
but can be simulated. We focus on the profile functions ρ = 1

2a
1[0,a], for
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Chapter 3. The age-based spatial preferential attachment

a ≥ 1/2, dimension d = 1, and fixed edge density β/(1−γ). Figure 3.1 shows
the local clustering coefficient of a vertex of age u in G ∞ showing monotone
dependence on the age, i.e. the empirical probability that two neighbours
of a given vertex are connected to each other is larger for younger vertices.
This coincides with our intuitive understanding of the local structure of the
networks, in which a young vertex, typically, is connected to either very
close or very old vertices such that two randomly chosen neighbours have a
decent chance of being connected to each other as well. By contrast, an old
vertex typically has more long edges to younger vertices. Thus, two of its
neighbours are typically further apart, which reduces the chance of them
being each others neighbour. This monotonicity occurs independently of
the choice of β, γ and a.

Figure 3.2.: Average clustering coefficient for the network with profile function ρ =
1

2a1[0,a] plotted against the width a, for γ = 0.3 in the left resp. γ = 0.6 in the right
graphs. The graphs in the top row correspond to fixed edge density 1 while the bottom
row corresponds to edge density 10, see [32, Fig 4].
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3.2. Degree distribution, clustering and edge length distribution

In Figure 3.2 we see that the dependence of the average clustering coeffi-
cient with respect to the width a of the profile function is of order 1/a, a
scaling that we also see in the analysis of the global clustering coefficient
in the case γ < 1

2 . Hence, the average clustering coefficient and the global
clustering coefficient (if γ < 1

2) can be varied by the choice of ρ and can be
made arbitrarily small by choosing a large. Unlike with the global cluster-
ing coefficient, there is a mild dependence on β. Again, roughly speaking,
large width of ρ encourages long edges and reduces clustering.

3.2.3. Asymptotics for typical edge lengths

We define the empirical edge length distribution in G t by

λt = 1
♯E(G t)

∑
{x,y}∈E(G t)

δdt(x,y).

Theorem 3.11. For every continuous and bounded g : [0,∞) → R, we
have

1
♯E(G t)

∑
{x,y}∈E(G t)

g(dt(x, y)) =
∫

g dλt −→
∫

gdλ

in probability, as t→∞, where the limiting probability measure λ on (0,∞)
is given by

λ([a, b)) = 1−γ
β

∫ 1

0
du
∫ u

0
ds
∫

{a≤|y|<b}
dy ρ

(
β−1u1−γsγ|y|d

)
. (3.3)

Proof. For a < b ∈ [0,∞] and t ∈ (0,∞], define the functional

Ha,b
t (x, G t) =

∑
y∈N <

x (t)
1[a,b)(dt(x, y)). (3.4)

Observe that the law of λt[a, b)) in G t equals the law of

1
♯E(G t)

∑
x∈X t

Ha,b
t (x, G t).
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Since the sum in (3.4) is dominated by the outdegree, (Ha,b
t : t ≥ 0) ∈ Hp

for some p > 1. We thus get by Theorem 3.3

1
t

∑
x∈X t

Ha,b
t (x, G t) −→ E0H

a,b
∞ (0, G ∞

0 )

as well as ♯E(G t)/t → β/(1 − γ) in probability. By definition λ([a, b)) =
1−γ

β
E0H

a,b
∞ (0, G ∞

0 ), we infer that λt([a,∞)) → λ([a,∞)) in probability, as
t → ∞. Therefore, convergence in probability of λt to λ in the space of
probability measures on (0,∞), equipped with the Lévy-Prokhorov metric
follows.

Remark 3.12. Suppose there exists δ > 1 such that the profile function
satisfies ρ(x) ≍ 1 ∧ x−δ. Then, the explicit formula for λ in (3.3) can be
used to calculate the tail behaviour of λ. More precisely, separating the
integration into several domains, depending on whether one is integrating
the tail domain of ρ or not, results in terms decaying polynomial of order
d, d(1/γ − 1) and d(δ − 1). This gives that λ([K,∞)) ≍ 1 ∧ (β−1/dK)−η,
where

η := min
{
d, d

(
1
γ
− 1

)
, d(δ − 1)

}
. (3.5)

If ρ is a regularly varying profile function for δ > 1, cf. (1.17), one observes
the same tail behaviour for K →∞ by the Potter bounds [7]. In particular,
λ has finite expectation if η > 1 and infinite expectation if η < 1.

We denote by M∞
0 the length of the longest outgoing edge of the origin in

G ∞
0 . By the construction of λ above, λ([K,∞)) is the expected number

of outgoing edges of length bigger than K divided by the total number
of outgoing edges from the origin. If K is large, this should be of similar
order to the probability that M∞

0 ≥ K. This is confirmed in the following
lemma.

Lemma 3.13. Suppose ρ fulfils (1.17) for some δ > 1. Then E[(M∞
0 )a] is

finite if a < η and infinite if a > η where η is defined as in (3.5).
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3.2. Degree distribution, clustering and edge length distribution

Proof. We show that the tail probability P{M∞
0 ≥ K1/a} is of order K−η/a

as K →∞. The number of outgoing edges with length at least K1/a in G ∞
0

from the vertex (0, u) at the origin is Poisson distributed with parameter

λK1/a,u := λ<
(0,u)

(
{|x| ≥ K1/a} × (0, u]

)
by Proposition 2.1. Hence,

P
{
(M∞

0 )a ≥ K
}

=
∫ 1

0
du

(
1− exp(−λK1/a,u)

)
≍
∫ 1

0
du λK1/a,u

≍ λ([K1/a,∞)),

as λK1/a,u is bounded. The proof concludes by Remark 3.12.

Using this, we can establish a result about the average edge length in G t.

Theorem 3.14. Suppose that ρ fulfils (1.17) for some δ > 1. Then, for
all a > 0 and b ∈ [0, η/a), there exists a positive constant C, depending on
a, b, γ, β, ρ such that

1
♯E(G t)

∑
x∈X t

( ∑
y∈N <

x (t)
dt(x, y)a

)b

−→ C (3.6)

in probability as t→∞.

Remark 3.15. This theorem can also be applied on the preferential at-
tachment network (Gt : t ≥ 0) by replacing G t and X t by Gt and Xt and dt

by t−1/d d1. It hence gives a result about the average rescaled edge length
in the network. If η > 1, one can choose a = b = 1, and this yields that
the mean edge length in Gt is of order t−1/d. If η ≤ 1 (and in particular
always if d = 1), the mean edge length is of larger order.
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Proof. Define

H(x, G t) := Ht(x, G t) :=
( ∑

y∈N <
x (t)

dt(x, y)a
)b

so that the left-hand side in (3.6) can be written as

1
♯E(G t)

∑
x∈X t

H(x, G t).

If suffices to show that H fulfils the uniform moment condition of Defini-
tion 3.2 to prove the theorem since the weak law of large numbers then
ensures the convergence in probability to 1−γ

β
E0H(0, G ∞

0 ). To this end,
recall M∞

0 , the length of the longest outgoing edge of the root 0 in G t
0 and

observer that, almost surely, H(0, G t
0 ) ≤ (M∞

0 )ab(♯N <
0 )b. Since by choice,

ab < η, there exists some p, q > 1 such that α := pqab ≤ η. Lemma 3.13
then ensures E0[(M∞

0 )α] < ∞ and by applying Hölder’s inequality to the
observed bound for H(0, G t

0 ), we get

sup
t>0

E0H(0, G t
0 )p ≤

(
E0[(m∞

0 )α]
)1/q

(
E0
[
(♯N <

0 )α/(a(q−1))
])(q−1)/q

<∞.

3.3. Robustness vs. non-robustness

The proof of robustness and non-robustness follows the proof done by Jacob
and Mörters for the more complicated degree-based spatial preferential
attachment model [45] which can be adapted easily for the simpler age-
based model. Recall Bernoulli bond percolation with retention parameter
p ∈ (0, 1] above Definition 1.4 and the definition itself to refamiliarise
yourself with the notion of robustness.

We fix now β > 0, γ ∈ (0, 1) and a profile function ρ satisfying (1.17) for
some δ ∈ (1,∞) and perform Bernoulli bond percolation on the graphs G t.
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3.3. Robustness vs. non-robustness

We denote the resulting graphs by G t(p).

Recall that an event A(t) holds with extreme probability, wep(t) if it holds
with probability at least 1 − exp(−Ω(log2(t)), cf. Section 2.5. We say,
that A(t) holds with high probability, whp(t), if the probability of A(t)
converges to one, as t → ∞. If the parameter is clear, we simply write
whp and wep. Also, we use the standard Landau notation f = O(g) if
lim supx→∞ f(x)/g(x) < ∞ throughout this section. Further, since p is
now our main percolation parameter instead of β, we write

θ(p) := P0{0↔∞ in G ∞
0 (p)},

cf. Section 2.1.1.

We start with the proof of non-robustness for γ < δ/(δ + 1). Also recall
that for the age-dependent random connection model we have pc > 0 if
and only if βc > 0 by Remark 1.9(iii).

Lemma 3.16. Let γ < δ
δ+1 , then there exist pc > 0 such that for any

p < pc the graph family (G t(p) : t ≥ 0) contains no giant component.

Proof. Define for k ∈ N the functional Hk(x, G t(p)) as the indicator that
the component of the vertex x in G t(p) is of size at most k. Since Hk is
bounded and depends only on a bounded graph neighbourhood of x we
can apply Theorem 3.3 and get

lim
t→∞

1
t

∑
x∈X t

Hk(x, G t(p)) = E0H
k(0, G t(p))

in probability. The left-hand side is asymptotically in t the proportion
of vertices that are in components no bigger than k. As k → ∞, the
right-hand side converges to

1− P0{0↔∞ in G ∞
0 (p)} = 1,
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for a small enough p > 0 by Theorem 1.8 and Remark 1.9(iii) since γ <

δ/(δ + 1). Hence, with high probability, all vertices belong to finite sized
components and there is no giant component in (G t(p) : t ≥ 0).

We turn to the more complicated proof of robustness if γ > δ/(δ + 1).

Proposition 3.17. Let γ > δ
δ+1 and p > 0. With high probability, the

largest connected component C (G t(p)) of the graph G t(p) is of size (θ(p) +
o(1))t, while the second largest component is of size o(t). Hence, there is
a unique giant component of asymptotic density θ(p) > 0.

Proof. If we prove that ♯C (G t(p)) is asymptotically of linear density θ(p),
the uniqueness follows by the arguments of the proof of Lemma 3.16. The
proof is done in two steps: First, we study the component of the oldest
vertex in G t(p). Second, we use the weak law of large numbers to show
that the asymptotic proportion of vertices belonging to the cluster of the
oldest vertex equals the probability that the root 0 in the limiting graph
belongs to the infinite cluster. Since our arguments do not depend on the
value of p, we carry out the proof for p = 1 and the graphs G t = G t(1) to
simplify notation. Recall the exponents

α1 ∈
(
1, γ

δ(1−γ)

)
and α2 ∈

(
α1,

γ
δ
(1 + α1δ)

)
of Section 2.5. Since, with high probability, the oldest vertex in G t is born
before time log t/t, we work conditioned on this event in the following.
The first step of the proof is a version of Lemma 2.10 of connecting old
vertices through connectors in the finite graphs G t.

Lemma 3.18. Fix k > 1. Given that the oldest vertex in G t is born before
time log t/t , every vertex x = (x, u) with birth time u < t−1/αk

1 is connected
through a connector born after time 1/2 to a vertex y = (y, s) with s < uα1
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and |x−y|d < u−α2 or is connected through a connector to the oldest vertex
or is the oldest vertex, wep(t).

Proof. Let x = (x, u) be a given vertex with u < t−1/αk
1 . First consider

u ∈
(
t−1/α2 , t−1/αk

1
)
. Then u is large enough such that the ball with radius

u−α2 is completely contained in the torus Td
t and we find the vertex y,

wep, by the same arguments as in Lemma 2.10. If u < t−1/α2 , either x
is the oldest vertex or, due to the finite volume of Td

t , the oldest vertex
is within distance t1/d < u−α2/d. As the oldest vertex is born before time
(log t)/t, we can apply the arguments of Lemma 2.10 once more and, wep,
the vertex x is connected to the oldest one through a connector.

An important consequence of Lemma 3.18 is that for a fixed k > 1, all
vertices born before time t−1/αk

1 in G t belong with extreme probability to
the same cluster which is particularly the cluster of the oldest vertex in
G t.

For the second step define Ht(x, G t) as the indicator that the vertex x
belongs to the component of the oldest vertex in G t and H∞(x, G ∞) as
the indicator that x belongs to the infinite cluster of G ∞. Since the func-
tionals are bounded, the uniform moment condition (B) of Definition 3.2 is
fulfilled. Furthermore, the functionals are invariant under shifts. Assume
that Ht(0, G t

0 )→ H∞(0, G ∞
0 ) in probability, then Theorem 3.3 ensures

1
t

∑
x∈X t

Ht(x, G t)→ E0H∞(0, G ∞
0 ) = θ(1).

Hence, the proof concludes if we show the convergence assumption (A). To
this end, define by At the event that the root 0 = (0, U) is connected by
a path to the oldest vertex in G t

0 and A∞ := {0 ↔ ∞ in G ∞
0 }. Thus, we

have to show that

(a) P0(At ∩ Ac
∞) −→ 0 and (b) P0(A∞ ∩ Ac

t) −→ 0,
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as t → ∞. To prove (a), observe that on Ac
∞, the component of the

root in G ∞
0 is finite and depends only on a finite graph distance. Hence,

for large enough t the components of the root in G t
0 and G ∞

0 coincide by
Theorem 3.1. On At the oldest vertex of G t belongs to that component.
Therefore, for a sufficiently large t, the oldest vertex in G t

0 must remain
the oldest vertex forever which only happens with a probability converging
to zero as t→∞.

To prove (b), we introduce some notation:

• Let a, b > 0 be small parameters and m > 1 be a large parameter
which we specify later.

• Let Bt be the event that neither in G tm

0 nor in G ∞
0 a vertex located in

B(0, t1/d) is incident to an edge longer than tm/d

2 −t1/d where B(0, t1/d)
denotes the ball around the origin with radius t1/d.

• On the event {U > t−a}, that holds with high probability, we intro-
duce further objects:

– Denote by C0 the component of the root 0 = (0, U) in G ∞
0 ,

restricted to vertices located in B(0, t1/d) and born after time
t−a.

– Let Ât ⊂ {U > t−a} be the event that C0 is connected in G ∞
0

by a direct edge to a vertex located in B(0, t1/d) that is born
before time t−a.

The proof of (b) is carried out in the following three steps:

(I) P0(Bc
t )→ 0, as t→∞,

(II) P0
(
(A∞ ∩Bt) ∩ Âc

t

)
→ 0, as t→∞ and

(III) P0
(
(Ât ∩Bt) ∩ Ac

tm

)
→ 0, as t→∞.
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Proof of (I). The number of vertices located inside B(0, t1/d) is of order
t, wep(t). Each of the O(t) vertices carries an independent birth time
distributed uniformly on (0, 1). By Theorem 3.11 and Remark 3.12, the
probability that a vertex with uniform birth time is incident to an edge
longer than tm/d/2− t1/d in G ∞

0 is of order

(
tm/d

2 − t1/d
)−η

, where η = d ·min
{
1, 1

γ
− 1, δ − 1

}
. (3.7)

For large enough t the same holds true in the finite graph G tm

0 . Hence, the
number of vertices inside B(0, t1/d), incident to an edge longer than tm/d/2−
t1/d is bounded by a Binomial with O(t) trials and success probability (3.7).
We choose m/d > η−1, say m/d > η−1 + ε, and infer

t
(

tm/d

2 − t1/d
)−η
≤
(
t(m/d)−(1/η)

)−η
≤ t−ηε = o(1),

from which we conclude (I).

Proof of (II). We work on the event {U > t−a} and split the event depend-
ing on the size of C0. First, we show that

lim
t→∞

P
(
{♯C0 < tb/d} ∩ A∞ ∩Bt ∩ Âc

t

)
= 0.

On A∞ ∩ Âc
t , a vertex of C0 is connected by an edge to a vertex outside of

B(0, t1/d). On Bt ∩ Âc
t , this vertex has to be located in

[
− tm/d

2 , tm/d

2

]d
∩ B(0, t1/d)c.

Hence, on {♯C0 < tb/d}, one of the vertices of C0 is incident to an edge
longer than t(1−b)/d, called a long edge in the following. This edge either
connects two vertices inside C0 or it connects one vertex of C0 to some
vertex in

[
− tm/d

2 , tm/d

2

]d
∩ B(0, t1/d)c. We define the three subsets

Y1 := X∞
0 ∩

(
B(0, t1/d)× (t−a, 1)

)
,

Y2 := X∞
0 ∩

(([
− tm/d

2 , tm/d

2

]d
∩ B(0, t1/d)c

)
× (t−a, 1)

)
and
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Y3 := X∞
0 ∩

(([
− tm/d

2 , tm/d

2

]d
∩ B(0, t1/d)c

)
× (0, t−a]

)
.

Note that C0 ⊂ Y1 and Y2,Y3 are sets of potential end vertices of a long
edge. For two vertices x = (x, u), y = (u, sy) ∈ Y1 ∪ Y2 it holds

P0{x ∼ y} ≤ ρ
(

t−a|x−y|d
taγ

)
= O

(
ta(1+γ)(δ−ε)|x− y|−d(δ−ε)

)
, (3.8)

for some ε > 0 using the Potter bound [7]. Similarly, for x = (x, u) ∈ Y1

and y = (y, sy) ∈ Y3, we have

P0{x ∼ y} ≤ ρ
(

t−a|x−y|d
saγ

y

)
= O

(
ta(δ−ε)s−γ(δ−ε)

y |x− y|−d(δ−ε)
)
∧ 1,

≤ O
(
ta(δ−ε)

(
s−γ(δ−ε)

y |x− y|−d(δ−ε)
)
∧ 1

)
.

(3.9)

Given C0, we fix x = (x, u) ∈ C0. Our aim is to bound the probability
that x is connected a vertex y = (y, sy) with |x − y| > t(1−b)/d separately
for y ∈ Yi, i = 1, 2, 3. Given X∞, the probability that x is connected by a
long edge to some y ∈ Y1 is bounded by

E1 := cta(1+γ)(δ−ε)t(δ−ε)(1−b)(♯Y1),

for some constant c > 1 using (3.8). Hence, on {♯C0 < tb/d}, the expected
number of vertices in C0 connected by a long edge to another vertex in C0,
is bounded by

tb/dE0E1 ≍ ta(1+γ)(δ−ε)+b(1/d+δ−ε)+(1+ε−δ) = o(1),

as t→∞ for a, b, ε chosen small enough. Next for y ∈ Y2 ∪ Y3, it holds

|x− y| ≥ t(1−b)/d ∨ (|y| − t1/d) ≥ 1
2(|y|+ t(1−b)/d − t1/d).

Hence, the conditional probability of x being connected by a long edge to
a vertex in Y2, is bounded by

E2 := cta(1+γ)(δ−ε) ∑
y∈Y2

(
|y|+ t(1−b)/d − t1/d

)−d(δ−ε)
,
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by (3.8). Similarly, for the conditional probability of x being connected to
Y3 by a long edge, we observe the bound

E3 := cta(δ−ε) ∑
y∈Y3

(
s−γ(δ−ε)

y (|y| − t1/d + t(1−b)/d)−d(δ−ε) ∧ 1
)
,

by (3.9). Observe that both, E2 and E3, are independent of the location
of x. Using Campbell’s formula [55], we get

E0E2 ≍ ta(1+γ)(δ−ε)(1− t−a)
∫ tm/d

t1/d
dr rd−1(|r|+ t(1−b)/d − t1/d))−d(δ−ε)

≍ ta(1+γ)(δ−ε)t−(1−b)(δ−ε)+1

and hence

tb/dE0E2 ≍ t1+ε−δ+a(1+γ)(δ−ε)+b(1/d+δ−ε) = o(1),

as t→∞ for sufficiently small a, b, ε. Similarly,

EE3 ≍ ta(δ−ε)
∫ tm/d

t1/d
dr rd−1

∫ t−a

0
ds
((

sγ/d(r − t1/d + t(1−b)/d)
)−d(δ−ε)

∧ 1
)

≍ ta(δ−ε)
tm/d−t1/d+t(1−b)/d∫

t(1−b)/d

dy
(
y + t

1
d − t

1−b
d

)d−1

×
(

y
− d

γ +
1∫

y−d/γ

ds s−γ(δ−ε)y−d(δ−ε)
)

≤ ta(δ−ε)+1−(1−b)((1/γ)∧(δ−ε))

and hence, writing η′ := (1/γ ∧ (δ − ε)),

tb/dE0E3 ≤ ta(δ−ε)+b(1/d+η′)+1−η′ = o(1)

as t→∞, for small enough a, b, ε. The claim follows as

lim
t→∞

P0
(
{♯C0 < tb/d} ∩ A∞ ∩Bt ∩ Âc

t

)
≤ lim

t→∞
ctb/dE0[E1 + E2 + E3] = 0.
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The second part of the proof of part (II) is to show that

lim
t→∞

P0
(
A∞ ∩ {♯C0 ≥ tb/d} ∩ Âc

t

)
= 0.

On the event A∞ ∩ {♯C0 ≥ tb/d}, we try to connect a vertex of C0 to some
vertex in B(0, t1/d)× (0, t−a) which coincides with the event Ât happening.
Given C0 and a vertex x ∈ C0, pick some ε > 0, then wep there exists a
vertex y with birth time in (0, t−a]) and within distance ta/d+ε of x. The
two vertices are connected by a direct edge with probability at least

ρ
(

ta+ε

taγ

)
= Ω

(
t−(a(1−γ)+ε)(δ+ε′)

)
. (3.10)

Hence, the expected number of edges between C0 and B(0, t1/d) × (0, t−a]
is bounded from below by the expectation of a Binomial with parameters
⌊tb/d⌋ and (3.10). Therefore, C0 is linked by a direct edge to B(0, t1/d) ×
(0, t−a], whp, if b > d(a(1− γ) + ε)(δ + ε′). The proof of (II) concludes by
reducing a, ε and ε′ if necessary to ensure that this inequality is satisfied.

Proof of (III). Recall the claim

lim
t→∞

P0{Ât ∩Bt ∩ Ac
tm} = 0.

On Ât, the root 0 = (0, U) is connected in G ∞
0 to a vertex x = (x, s) located

inside B(0, t1/d) with birth time in (0, t−a]. On Bt, all these connections
remain in the finite graph G tm

0 . Thus, it suffices to show that x is, whp

connected by a path to the oldest vertex of G tm

0 . To this end, observe that,
for k > log(m/a)/ log α1, we have s ≤ t−a < t−m/αk

1 and the proof concludes
with Lemma 3.18.

Corollary 3.19. Assume that ρ fulfils (1.17) for some δ ∈ (1,∞). Then
the age-based spatial preferential attachment network (Gt : t ≥ 0), with
parameters β > 0, γ ∈ (0, 1) and ρ, is robust if γ > δ/(δ + 1) and non-
robust if γ < δ/(δ + 1).
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APPENDIX A

Related work and open problems

We list some related work on the weight-dependent random connection
model and state some open problems. This list is far from comprehensive
as a lot of interesting work in the context of inhomogeneous percolation
models is currently happening.

• In [34], Gracar et al. study the question of recurrence vs. transience
of the weight-dependent random connection model.

• In [33], Gracar et al. study chemical distances for general graphs
which also includes instances of the weight-dependent random con-
nection model. They precisely identify the ultra small regime for the
graphs studied in this thesis.

• Recall the open problem stated in Remark 1.14 (ii): Does the age-
dependent random connection model have a supercritical phase in
dimension one for natural examples of profile-functions in the regime
γ < 1/2. This includes the weak-kernel model at critical γ = 0 also.

• In [31], Gouéré studies the tail of the Euclidean diameter of the root’s
component in a subcritical regime of the hard Poisson Boolean model.
Denote by

D := sup{|x|d : x↔ 0}.

VII



Appendix A. Related work and open problems

Then, translated to our parametrisation, Gouéré proves that there
exists a βc > 0 such that for all β < βc

Pβ{D ≥ K} ≍ K1−1/γ, as K →∞.

What is the tail of D in the soft version of the model? The event
{D ≥ K} is the event that there exists a vertex x outside B(0, K1/d)
that is connected to 0 by a path where all the other vertices on the
path lie within the ball of radius K1/d. Using the strong kernel (1.11),
a lower bound is given by the probability of the event that there exists
a vertex with marker in (K−δ/γ(δ+1), tx ∨ t0 within the ball B(0, K1/d)
that is connected to x and 0. The probability of this event happening

is of order K
1− δ

γ(δ+1) . For γ < 1/2 an upper bound of the same
order can be calculated for significantly small β using a first moment
bound on the number of paths of length n connecting 0 and x where
the smallest mark within the path is larger than K−δ/γ(δ+1). The
probability that there is vertex with even smaller mark within the
ball is of the same order and hence

Pβ{D ≥ K} ≍ K
1− δ

γ(δ+1) , as K →∞

if γ < 1/2. As this exponent matches the one calculated by Gouéré
for the hard model when sending δ →∞, one might expect that this
exponent also holds in the remaining regime γ ∈ [1/2, δ/(δ+1)). An
interesting open problem is to prove this. A project to work on this
problem with Marcel Ortgiese has been initiated.

• In [25], Eckhoff and Mörters prove vulnerability for the non spatial
preferential attachment model. They show that in the robust regime
the network is no longer scale-free and robust if an ε-proportion of
the oldest vertices is removed, cf. Remark 1.6(iv). As the geometric
restrictions of our model make it harder to be robust, the same holds
true in our model. Indeed, if working in the rescaled graph G t, the
removal of the εt oldest vertices coincides with restricting the vertex
marks to the interval (ε, 1). Therefore, we can couple this graph
with a homogeneous random geometric graph and immediately get
the absence of scale-freeness, and non-robustness. The question of
interest is hence: what is the correct amount of old vertices that have
to be removed? Is it still necessary to remove a linear proportion or
is a strictly smaller order, e.g. log t, sufficient.
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APPENDIX B

Integration results

Lemma B.1. Let γ ∈ (0, 1) and t0 ∈ (0, 1). Then,

(a) for all k ∈ N, we have

∫ 1

t0
ds1

∫ 1

s1
ds2· · ·

∫ 1

sk−1
dsk

[
s−γ

0

( k−1∏
j=1

s−1
j

)
sγ−1

k

]
≤ s−γ

0 logk−1(1/s0)
γ(k − 1)! .

(b) for all k ∈ N, we have

∫ 1

0
ds

s−γ logk(1/s)
k! =

(
1

1− γ

)k+1

.

Proof. We prove (a) by induction. For k = 1, we have

s−γ
0

∫ 1

s0
ds1 sγ−1

1 ≤ s−γ
0
γ

.
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Appendix B. Integration results

For k + 1 we get using the induction hypothesis

∫ 1

s0
ds1

∫ 1

s1
ds2· · ·

∫ 1

sk

dsk+1

[
s−γ

0

( k∏
j=1

s−1
j

)
sγ−1

k+1

]

≤ s−γ
0

∫ 1

s0
ds1

s−1
1 logk−1(1/s1)

γ(k − 1)!

= s−γ
0 (−1)k−1

γ(k − 1)!

∫ 1

s0
ds1 log(s1)′ logk−1(s1)

= s−γ
0 logk(1/s0)

γk! .

We prove (b) by induction as well. As γ < 1, we get, for k = 1 using
integration by parts

∫ 1

0
ds

s−γ log(1/s)
1! =

∫ 1

0
ds

t−γ

1− γ
= 1

(1− γ)2 .

Analogously for k + 1,

∫ 1

0
ds

s−γ logk+1(1/s)
(k + 1)! =

∫ 1

0
ds

s−γ logk(1/s)
(1− γ)k! = 1

(1− γ)k+2

by the induction hypothesis.

Lemma B.2. Let γ ∈ (1/2, 1) and x ∈ (0, 1). Then, for all k ∈ N, it holds

∫ 1

x
ds

s−2γ logk(1/s)
k! ≤ x1−2γ logk(1/x)

(2γ − 1)k! .

Proof. Integration by parts yields

∫ 1

x
ds

s−2γ logk(1/s)
k! = x1−2γ logk(1/x)

(2γ − 1)k! −
∫ 1

x
ds

s−2γ logk−1(1/s)
(2γ − 1)(k − 1)!

≤ x1−2γ logk(1/x)
(2γ − 1)k! ,

as the second integral is bounded from below by 0.
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Lemma B.3. Let γ ∈ (0, 1), x ∈ (0, 1) and s0 ∈ (x, 1). Then, for all
k ∈ N, it holds

∫ s0

x
ds1

∫ s1

x
ds2· · ·

∫ sk−1

x
dsk

(
sγ−1

0

k∏
j=1

s−1
j

)
= sγ−1

0 logk(s0/x)
k! .

Proof. For k = 1, we get
∫ s0

x
ds1 sγ−1

0 s−1
1 = sγ−1

0 log(s0/x).

For k + 1, using induction hypothesis, we get

∫ s0

x
ds1

∫ s1

x
ds2· · ·

∫ sk

x
dsk+1

(
sγ−1

0

k+1∏
j=1

s−1
j

)
= sγ−1

0

∫ s0

x
ds1

s−1
1 logk(s1/x)

k!

= sγ−1
0

∫ log(s0/x)

0
dy

yk

k! = sγ−1
0 logk+1(s0/x)

(k + 1)! .

Lemma B.4. Let γ ∈ (1/2, 1) and m, k ∈ N, such that m ≥ 2 and
1 ≤ k ≤ m− 1. Further, let x ∈ (0, 1). Then,

1∫
x

ds0

s0∫
x

ds1· · ·
sk−1∫
x

dsk

sγ−1
0

( k−1∏
j=1

s−1
j

)
s−γ

k

×
1∫

sk

dsk+1· · ·
1∫

sm−1

dsm

[
s−γ

k

( m−1∏
j=k+1

s−1
j

)
sγ−1

m

] (B.1)

≤
(

m− 2
k − 1

)
x1−2γ logm−2(1/x)
γ2(2γ − 1)(m− 2)! .

Proof. We apply the previous lemmas. By Lemma B.1, we get

∫ 1

sk

dsk+1· · ·
∫ 1

sm−1
dsm

[
s−γ

k

( m−1∏
j=k+1

s−1
j

)
sγ−1

m

]
≤ s−γ

k logm−k−1(1/sk)
γ(m− k − 1)! .
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Appendix B. Integration results

Therefore, the integral in (B.1) can be bound by

1∫
x

ds0

s0∫
x

ds1· · ·
sk−2∫
x

dsk−1

[
sγ−1

0

( k−1∏
j=1

s−1
j

) sk−1∫
x

dsk
s−2γ

k logm−k−1(1/sk)
γ(m− k − 1)!

]
.

By Lemma B.2

∫ sk−1

x
dsk

s−2γ
k logm−k−1(1/sk)

γ(m− k − 1)! ≤ x1−2γ logm−k−1(1/x)
γ(2γ − 1)(m− k − 1)!

and by Lemma B.3

∫ s0

x
ds1· · ·

∫ sk−2

x
dsk−1 sγ−1

0

( k−1∏
j=1

s−1
j

)
= sγ−1

0 logk−1(s0/x)
(k − 1)! .

Therefore, the integral in (B.1) can be further bound by

∫ 1

x
ds0

tγ−1
0 logk−1(s0/x)

(k − 1)!
x1−2γ logm−k−1(1/x)

γ(2γ − 1)(m− k − 1)!

≤
(

m− 2
k − 1

)
x1−2γ logm−2(1/x)
γ(2γ − 1)(m− 2)!

∫ 1

x
ds0 sγ−1

0 .

The result follows by integrating with respect to s0.

Lemma B.5. Let γ ∈ (0, 1) and k ∈ N. Then

∫ 1

0
ds0

∫ s0

0
ds1· · ·

∫ sk−1

0
dsk sγ−1

0

(
k−1∏
j=1

s−1
j

)
s−γ

k ≤
(

1
1− γ

)k

.

Proof. We have

∫ 1

0
ds0

∫ s0

0
ds1· · ·

∫ sk−2

0
dsk−1

[
sγ−1

0

( k−1∏
j=1

s−1
j

) ∫ sk−1

0
dsk s−γ

k

]

= 1
1− γ

∫ 1

0
ds0

∫ s0

0
ds1· · ·

∫ sk−2

0
dsk−1 sγ−1

0

( k−2∏
j=1

s−1
j

)
s−γ

k−1

and the result follows by repeating this across all integrals.
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APPENDIX C

Frequently used notation

Euclidean space and sets

R the real numbers
Rd d-dimensional column vectors with real entries, i.e

Rd = {(x1, . . . , xd)T : xj ∈ R for j = 1, . . . , d}
|x| The Euclidean norm |x| =

(∑d
1 x2

j

)1/2
of x ∈ Rd

Td
t the d-dimensional torus of volume t, cf. above (1.4)

dt the torus metric, cf. (1.4)
<lex strict lexicographic order in Rd

B(x, r) the ball around x with radius r

♯A number of elements of the set A

Ac the complement of the set A
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Appendix C. Frequently used notation

Graph Theory

V (G) the vertex set of the graph G

C (G) the largest connected component of the graph G

Nx(G) the set of neighbours in G of the vertex x
N <

x set of neighbours of x with smaller mark
N >

x set of neighbours of x with larger mark
x ∼ y the vertices x and y are neighbours.
x↔ y x and y are connected by a path

Measures and random object

(Gt : t > 0) The age-based preferential attachment network
(G (β) : β > 0) The weight-dependent random connection model
η, η0 A stationary, ergodic, simple point process on Rd

and its Palm version. Mostly a Poisson process
Pη

0 The law of η0

Uniform(A) The uniform distribution on the set A

T0 A sequence of i.i.d. Uniform(0, 1) random variables,
the vertex marks

X0 A point process on Rd × (0, 1), the marked vertex set
P0, E0 Law and expectation w.r.t. X
U0 A sequence of i.i.d. Uniform(0, 1), the edge marks
Gβ Graph functional that builds G (β)
Pβ,Eβ Law and expectation w.r.t Gβ

Asymptotics of non negative functions

f = o(g) limx→∞ f(x)/g(x) = 0
f = O(g) lim supx→∞ f(x)/g(x) <∞
f = Ω(g) g = O(f)
f ≍ g f/g is bounded from zero and infinity
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