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Abstract

The scope of this dissertation is two-fold. The first part studies the planet-disk interactions
in the binary system Kepler 38. Close binary stars like Kepler 38 hosting a circumbinary
planet are, with 23 systems known, not unusual. A number of those systems exhibit a
non-zero mutual inclination between the planetary orbit and the orbital plane of the central
binary. Such systems are excellent laboratories to test theories describing the dynamical in-
teractions between the binary star, the primordial circumbinary disk and the planet during
its formation process. In order to address the question of the physical mechanisms at the
origin of the observed misalignment between any of the three different components of the
system (binary star, CB planet, CB disk), three-dimensional hydrodynamic simulations are
required.
In this thesis, in contrast to previous works, the orbital evolution of a circumbinary Saturn-
Mass planet in a scenario of primordial co-alignment of the system (binary orbit, planet
orbit, disk mid-plane) is studied. Based on the hypothesis that due to the tidal influence
of the central binary turbulence across the disk develops, such turbulence could generate
hydrodynamical forces onto an existing, migrating, planet, in a plane not co-planar with the
binary orbit and the disk mid-plane. This could trigger an initial inclination of the planet
orbit, which can be investigated with three-dimensional hydrodynamical codes (and only
with 3D codes).

The second part of this dissertation describes the laboratory research work completed for
the METIS project, one of the first-light instrument of the ELT with high relevance of
high angular resolution studies of circumstellar disks and binary systems. The mid-infrared
imager and spectrograph (METIS) will be equipped with a warm calibration unit (WCU),
which is developed at the University of Cologne. Its task will be to deliver simulated sources
for the test and calibration of the METIS instrument. In this thesis, general concepts of the
WCU are presented together with the laboratory work to validate those concepts. This thesis
aimed to produce the prototyping measurement to document and verify the temporal and
spatial properties delivered by the integrating sphere. Furthermore, the calibration accuracy
is determined, and the contribution to the development of the aperture mask and the pinhole
wheels are presented.
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1 Introduction

1.1 Motivation

At least 217 of the already known exoplanets are in binary star systems (Schwarz et al.,
2016)1. Since multiplicty is a feature common to about half of the solar-type stars (Duquen-
noy & Mayor, 1991; Raghavan et al., 2010), binary stars represent an important aspect of
our understanding of the formation and evolution of planetary systems. Twenty-three of the
already found exoplanets in binary systems are p-type (circumbinary, CB) planets which
means that the planet circles both central stars (Pilat-Lohinger et al., 2019, p. 118). The
discovery of which has been largely achieved by the Kepler mission. A number of p-type
planets in the Kepler systems exhibit a non-zero mutual inclination of their orbit relatively
to the central binary orbital plane as, e.g., in Kepler 16, Kepler 34, Kepler 35, Kepler 38,
and Kepler 413 (e.g. review by Welsh & Orosz (2018, pp. 9-13)). In these systems, the
inner planets have been observed close to the stability limit (Orosz et al., 2012, p. 3; Kostov
et al., 2014, p. 1; Welsh & Orosz, 2018, p. 15), which corresponds to the shortest separation
before the planet becomes dynamically unstable, being then potentially ejected or accreted
onto the star (Holman & Wiegert, 1999). The inclination values are small (<0.5◦, except
for Kepler 413 with a 2.5◦ misalignment) but not negligible (Doyle et al., 2011, p. 4; Welsh
et al., 2012, p. 476; Orosz et al., 2012, p. 22; Kostov et al., 2014, p. 1). The central stars are
close binaries with orbital periods ranging from 10 to 41 days (Thun & Kley, 2018, p. 2).
The orbital period of the planets varies from 66 to 289 days (Welsh et al., 2013, p. 7; Kostov
et al., 2014, p. 1). Similarly, the mutual inclination between the binary star and the CB disk
in which planets form is found to be statistically small (θ<3◦) for short-period binary stars
similar to the Kepler targets (Czekala et al., 2019, p. 1).

Such systems are excellent laboratories to test theories describing the dynamical interac-
tions between the binary stars, the primordial circumbinary disk and the planet during its
formation process. For instance, Thun & Kley (2018) have studied the aforementioned Ke-
pler systems in the context of planetary migration through two-dimensional hydrodynamical
(HD) simulations to support the formation in the outer accretion-friendly regions of the disk
1https://www.univie.ac.at/adg/schwarz/multiple.html (2022-06-01)
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Chapter 1. Introduction 1.2. Objectives

as opposed to in-situ formation, which appears unlikely (Pierens & Nelson, 2007, p. 993;
Silsbee & Rafikov, 2015, p. 1) due to the expected destructive collisions of the planetesimals
in close orbits. They could show that the planet migrates down to the edge of the disk’s inner
cavity that resulted from the dynamical interactions with the close binary star (Artymowicz
& Lubow, 1994, p. 662), and that this cavity acts an inner barrier due to the sharp density
drop.

Now, in order to address the question of the physical mechanisms at the origin of the ob-
served misalignment between any of the three different components of the system (binary
star, CB planet, CB disk), three-dimensional hydrodynamic simulations are required.

Already in the single star case harboring a planet, different teams exploited 3D simulation
results to show how a primordial misalignment between the disk and an inclined planetary
orbit can be damped over time following a damping law di/dt that is strongly depending
on the initial inclination and eccentricity values (Cresswell et al., 2007, p. 329; Bitsch &
Kley, 2011, p. 1). In the context of multiplicity, the perturbation effect of a close stellar
companion on the disk inclination is evidenced by Smallwood et al. (2019, p. 2919). These
authors investigated with the smoothed particle hydrodynamical (SPH) code PHANTOM
tilted (10◦ – 60◦) low-mass (∼0.001Mb) circumbinary disks around eccentric binaries and
found the latter to trigger tilt oscillations which amplitude correlates with the eccentricity
of the binary star. Namely, the larger the eccentricity, the larger the amplitude of the tilt
oscillations, and the smaller the damping of these oscillations. They further reveal that
those disks may increase their inclination by a significant factor before they realign. Pierens
& Nelson (2018, p. 2548) studied, in the specific case of the Kepler 413 planetary system,
the impact of a primordial misalignment of circumbinary disk relative to the binary orbit
onto the final orbital properties of a migrating planet embedded in the disk and initially
co-aligned with it. The authors show that whether the planetary orbit realigns with the
central binary stars or remains co-aligned with the disk depends on the disk’s mass.

1.2 Objectives

In this thesis, in contrast to previous works, the orbital evolution of a circumbinary Saturn-
Mass planet in a scenario of primordial co-alignment of the system (binary orbit, planet
orbit, disk mid-plane) is studied. Indeed, earlier theoretical works by Kurbatov et al. (2014,
2017) have evidenced the development of turbulence across the disk due to the tidal influence
of the central binary. Based on this hypothesis, such turbulence could generate hydrody-
namical forces onto an existing, migrating, planet, in a plane not co-planar with the binary
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orbit and the disk mid-plane. This could trigger an initial inclination of the planet orbit,
which can be investigated with three-dimensional hydrodynamical codes (and only with 3D
codes).
As such inclination effects are expected to be small, the system Kepler 38 is adopted as
a test case, in which the circumbinary planet is tilted by less than 0.2◦, and investigated
how the disk properties (in particular its mass and viscosity) combined to the dynamical
interaction with the central binary may result in inhomogeneities in the vertical disk’s struc-
ture that may directly influence the inclination of the planetary orbit. For this purpose,
the FARGO3D three-dimensional hydrodynamical (HD) code (Benítez-Llambay & Masset,
2016, p. 1) is used, which has been exploited to investigate the disk-response to inclined
massive planets in single star systems or the processes of realignment of a planetary orbit in
binary systems (Pierens & Nelson, 2018, p. 2547). In this thesis, it is referred to numerical
experiments rather than numerical simulations for the following reason: The goal was not to
develop a new code based on first principle equations which have already been done in the
past, but to use existing code, to run different tests.
First, a test case to understand the limitation of the author’s numerical experiment has to
be examined, i.e., distinguish physical effects from numerical noise. Therefore, a single star
has been implemented in the FARGO3D code instead of a binary star. Then the binary star
of interest has been analyzed, Kepler 38, by studying the influence of different parameters
on the planet’s orbit. Consequently, different starting scenarios for the FARGO3D code have
been implemented.

From the observations point of view, the questions addressed numerically are not simple to
investigate. However, indirect effects on the planetary environment – namely the disk – could
be investigated through observations. In the recent years, many infrared imaging campaigns
have highlighted the complex spatial structure of disks (Garufi et al., 2017) resulting from
the interaction with a possible (proto)planet. The type of disks relevant for the simulations
in this thesis can be observed in the near- and mid-infrared. However, until recently, the
current observational facilities lacked enough angular resolution. Through interferometry,
there have been some attempts to reach the required angular resolution, but in the end, the
results are models, not direct images. Nevertheless, the new telescope ELT with METIS will
change this in the future, enabling direct imaging of these disks in the mid-IR and at high
angular resolution.
Because of the high relevance of such instrumentation for the study of disks in single and
binary systems, the opportunity arises with this thesis to contribute to the development of
the METIS instrument. Concretely, this thesis will investigate and test parts of the warm
calibration unit (WCU), a sub-system of the METIS instrument. The WCU is developed
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by the working group of Prof. Dr. Labadie and belongs to the METIS instrument that will
be part of the 39m Telescope ELT. The first light of the ELT is planned for 20272 and will
improve the observing quality of e.g. exoplanets and disks3.

METIS, the mid-infrared imager and spectrograph for the wavelength range 2.9-13.5µm (as-
tronomical L-, M- & N bands)4, will be equipped with a calibration unit, developed at the
University of Cologne, which aims at delivering simulated sources for the test and calibration
of the main imaging and spectral functionalities of METIS. The subsystem, as the entire
METIS instrument, is currently in Phase C of the project, which leads to the Final Design
Review expected by the end of November 2022.
This thesis aimed to produce the prototyping measurement to verify the flux properties
coming from the integrating sphere. This helps to provide the calibration of the integrat-
ing sphere output. Furthermore, the calibration accuracy should be determined, and the
contribution to developing the aperture mask and the pinholes are displayed. Thus this
thesis will provide an estimate of the mask that should be used within the WCU. This work
contributing to developing METIS will bring forward the understanding of the evolution of
exoplanets in binary systems.

1.3 Procedure

This thesis is structured as follows, in chapter 2 the theoretical background of protoplanetary
disks is given, with a focus on their structure, evolution, and the influence of binary stars
on the disk structure. This is significant for choosing the initial parameter of the simulation
and comparing it with the observational data. In addition, planet evolution is explained.
Primarily type I migration is essential for evaluating the results of the Kepler 38 simulation.
As the simulation is 3D, the angular momentum in those young stellar systems can be an-
alyzed. A short introduction of resonance processes is given as well. Then, the numerical
methods for simulations are displayed including two more theoretic sections on fluid motion
and hydrodynamics to understand the science behind the FARGO3D code. The closing sec-
tion of this chapter displays state of the art 3D simulations of planet formation. This overall
view helps to place the analysis and results in the context of the findings in the scientific
community.

In chapter 3 the setup of Kepler 38 FARGO3D simulations is presented. Firstly, observational

2https://www.elt.eso.org/about/timeline/ (2021-07-06)
3https://www.elt.eso.org/instrument/METIS/ (2021-06-17)
4https://www.elt.eso.org/instrument/METIS/ (2021-06-17)
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data is presented; secondly, the setup with all the parameters is described. The simulations
of disks are addressed by focusing on the description of FARGO3D. In particular, the main
equations are discussed, together with the numerical and physical setup, the surface density,
disk mass, and boundary conditions, followed by the explanation of the transformation of
the code units and the Coordinates. Those sections are crucial for understanding FARGO3D
and choosing parameters consistent with the physics of these systems.

In chapter 4 the results of simulations of Kepler 38 are discussed. The first part focuses
on the results of a single star system with a default star, followed by a single star system
with no default star. Those preliminary setups were test cases to validate the setup and are
the base for comparisons to the binary setup. The results of the binary setup were done
with one significant difference; one time with the Stockholm condition and one time without
it. This condition has a significant influence on the boundary condition and thus the disk
mass. Those setups were also simulated, e.g., without a planet, to study the binary and disk
interaction. The convergence of resolution was also tested because of the dependency of the
results on the grid used in the code. Afterward, the Neptune-sized planet was inserted into
the disk and studied in more detail.

In chapter 5 the basics about METIS and the WCU are presented. This is important for
understanding the requirements, which will be tested in the following section. There the lab-
oratory tests and the proof-of-concept experiments are discussed. As an introduction, the
different measuring devices used in later experiments are displayed. The hub of delivering
the calibration functionalities is the integrating sphere combined with the blackbody. Thus
stability tests in the laboratory were performed on the blackbody. Another key concept for
linear calibration is the aperture mask, as the tuning of the temperature of the blackbody
changes the flux and the wavelength range. To keep those parameters constant is essential
for linear calibration of the blackbody. The ideas to realize this setup are tested through
experiments. Moreover, to generate artificial point sources, different pinholes were tested.
Those components will enable the WCU to calibrate the METIS instrument to observe, for
example, the inner parts of protoplanetary disks.

In chapter 6 a conclusion is given, and the results are discussed.

5



2 Planets in binary systems and
numerical methods

This thesis focuses on the planet-disk interactions in the binary system Kepler 38. In the first
section of this chapter, a closer look at the physics of planets in binary systems is taken. The
protoplanetary disks, the influence of a stellar companion on the disk, the planet evolution,
and the angular momentum in Young Stellar Objects (YSO) systems are detailed. The
second section focuses on the numerical methods. Where the first two subsections are about
the mathematical constructs within the disk. This includes the simplification of handling
the gas as a fluid and the hydrodynamics within a disk. The closing subsection details the
state of the art of three-dimensional (3D) simulations in planet formation to place this work
in the current context of the scientific community.

2.1 Physics of planets in binary systems

It is observed that planets form in protoplanetary disks during the first few millions of years
in the lifetime of a star. These protoplanetary disks consist of gas (99% by mass) and dust
(1%) (Beckwith & Sargent, 1996, p. 141). Stars are born in prestellar cores with particle
number densities of n ∼ 105 cm−3. As the angular momentum is too large to collapse directly
to stellar densities of n ∼ 1024 cm−3, a disk is formed (Armitage, 2009b, p. 34). A dense core
in such a scenario would have an angular momentum of 1021−22 cm2s−1 which evolves into
pre-main-sequence binaries with an angular momentum of 1019−20 cm2s−1. Thus the angular
momentum needs to be reduced by two orders of magnitude for a disk to form (Belloche, 2013,
p. 2). For accretion to happen, angular momentum needs to be redistributed or lost within
the gas disk. The specific angular momentum is approximately an increasing function of the
radius (l = r2Ωk =

√
GMr with the Keplerian angular velocity Ω2

k = GM/r3) (Armitage,
2007, p. 17). This angular momentum loss happens at time scales which are a lot longer
than the dynamical (orbital) time scale (tdyn = 1/Ωk ) (Armitage, 2009b, p. 34; Rosotti,
2014, p. 12; Klahr et al., 2018, p. 9).

6
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2.1.1 Protoplanetary disk structure and evolution

It has been shown observationally that, as stars form in stellar clusters, most of these stars
are part of binary or multiple systems (Duquennoy & Mayor, 1991, p. 520). Around half of
the solar-type stars form in binary systems (Duquennoy & Mayor, 1991, p. 520; Raghavan
et al., 2010, p. 28). The presence of binary systems will have an effect in the disk properties,
such as initial mass, size, and chemical composition. Furthermore, the evolution of proto-
planetary disks can be influenced by stellar radiation, stellar flybys, or ongoing gas accretion.
Another dominant environmental effect can be external radiation from other stars within the
cluster (Armitage, 2009b, pp. 34-35).

The early developing stages of stars are called Young Stellar Objects (YSO). YSOs are
objects which have an evolving disk. They are often classified into four classes 0-III through
the spectral energy distributions (SED) (Lada, 1987, pp. 6+10). The disk structure varies
depending on the different classes (see Fig. 2.1). In this Ph.D. thesis, Class II YSOs are of
interest. The infrared (IR) excess in those YSOs indicates the presence of a disk (Armitage,
2009b, pp. 37-38). In this stage, the envelope is gone, and the protoplanet has already formed.
Class I objects also have a disk, but they are still embedded in an envelope. To simulate
those objects is not the primary purpose of the FARGO3D code, other codes (e.g., FLASH)
are more suited for it. In Class III objects, the disk has already dissipated. Disk masses of
Class II objects range from approximately 0.001 to 0.5 solar masses (M�) (Beckwith, 1990,
p. 940) while the disk mass of the minimal-mass solar nebula (MMSN) lies between 0.01 and
0.1M� (Weidenschilling, 1977, p. 158).
Observations show that disks evolve. As a consequence, in-flowing gas needs to lose angular
momentum to be accreted by the star. This is called angular momentum transport, as it
allows local gas packages to reduce their angular momentum and spiral towards the star. It is
generally considered that the loss of angular momentum can be caused by viscosity or loosely
"friction" (Armitage, 2009c, p. 68). Out of different mechanisms to generate viscosity, the
molecular viscosity of the gas is insufficient. For example, in a single star system with a sound
speed of 0.5 km s−1 at 10AU, the molecular viscosity is roughly 2.5 · 107cm2 s−1. Therefore,
the viscous time scale (τυ ∼ r2/υ = 3 · 1013 yr) would be longer than the age of the universe
(∼ 14 ·109 yr) (Armitage, 2009c, p. 79). This is in direct conflict with the observations. Thus
there needs to be other causes for angular momentum loss. Those sources are still debated,
with the magneto-rotational instability (MRI) being the most accepted theory (Birnstiel
et al., 2010, p. 2). A parametrized description of the viscosity was introduced in the models
of turbulent α viscosity by Shakura & Sunyaev (1973). These models can be tuned to make
the disk viscous enough. The turbulent viscosity can be written as υ = αcsh, where α is the
turbulence parameter (α < 1), cs the sound speed and h the disk scale-height (Armitage,
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Fig. 2.1: The classification of YSOs. Showing, the evolution of the disk structure. A T Tauri Star is a
young star with less than 2M�. The classification of YSOs Class I-III was done by Lada (1987, pp. 6+10).
Class 0 was added later.

2009c, p. 79; Birnstiel et al., 2010, p. 2). In FARGO3D, which is used in this thesis, this
turbulent viscosity drives the evolution of the disk and is represented by α. As mentioned
before, the angular momentum is an increasing function of the radius. Thus because of
viscosity, local gas packages reduce their angular momentum. Nevertheless, through the
same viscosity, the disk gas must gain angular momentum and move outward because global
angular momentum conservation is still valid (Armitage, 2009c, p. 68).

2.1.2 Influence of binary stars on disk structure

Compared to the single star system, the structure of protoplanetary disks in binary systems
is strongly influenced by tidal forces from the binary system (Kley & Nelson, 2010, p. 136).
The separation of the binary influences the strength of gravitational perturbations, which
generate spiral waves in the disk (Pringle, 1991, p. 754; Thun et al., 2017, p. 2). These waves
transport energy and angular momentum from the binary to the disk (Pringle, 1991, p. 754;
Thun et al., 2017, p. 2). The effects mentioned above also lead to quicker disposal of the
disk depending on the separation (Cieza et al., 2009, pp. L86-L87). Observational evidence
for intermediate binaries shows that the circumstellar disks are 10 times smaller and are
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disposed around 10% quicker than in single star systems (Cieza et al., 2009, p. L87). Cieza
et al. (2009, p. L86) found that this leads to lifetimes between 0.3-0.5Myr for these disks.

Depending on the separation of the binary star, the disk forms as a circumbinary, circumpri-
mary, or circumsecondary disk (Prato & Weinberger, 2010, p. 1) or combinations of it (see
Tab. 2.1).
Tight binaries are defined as having a separation between 0.05AU and 0.4AU, models sug-
gest a circumbinary disk is formed around those binaries (Quintana & Lissauer, 2006, p. 1).
Observational evidence of circumbinary disks was found in the T Tauri binary systems DQ
Tau (Mathieu et al., 1997, p. 1841) and UZ Tau E (Martín et al., 2005, p. 1). In these
systems, the binary orbital period is between 15 and 18 days (Mathieu et al., 1997, p. 1841;
Martín et al., 2005, p. 1). This indicates a separation of roughly 0.06AU (Mathieu et al.,
1997, p. 1844). Moreover, observations show, that those circumbinary accretion disks are
turbulent. This nonmagnetic turbulence of the gas-dynamic is caused by instabilities pro-
duced by the tidal influence of the binary star (Kurbatov et al., 2014, p. 787). Kurbatov et al.
(2014, p. 787) found through two-dimensional hydrodynamic simulations that the perturba-
tions of the second binary component occur in the interior of the disk and produce turbulent
gas. This turbulence propagates outwards through the disk (Kurbatov et al., 2017, p. 1036).
Also, in already evolved tight binary systems, with main-sequence stars and fully developed
planets, the remains of such a circumbinary disk are indicated through an existing circumbi-
nary planet. In 2011, the first planet orbiting a tight main-sequence binary was discovered
around Kepler 16 (Doyle et al., 2011, p. 1603). The binary of Kepler 16 consists of a K-type
main-sequence star and an M-type red dwarf. The semi-major axis of the binary is 0.22AU
(41 days) and the semi-major axis of the discovered exoplanet is 0.7048AU (228 days) (Doyle
et al., 2011, p. 1605). Already one year later, Welsh et al. (2013, p. 7) listed the first six
circumbinary exoplanets known, one of them being Kepler 38 (Orosz et al., 2012, p. 1).
A small binary is defined as a binary with a separation of the components between 0.4AU
and 40AU. It hosts circumbinary and circumstellar disks (Augereau et al., 2015, p. 65).
Observationally, the T Tauri WWCha binary has shown evidence that it hosts circumstellar
and circumbinary disks. Its separation is 1.01AU (207 days) (Eupen et al., 2021, p. 1). It
is a unique system where the presence of circumstellar disks can be derived through the
magnitude of excess (Eupen et al., 2021, p. 8). Binaries with separations between 40AU
and 100AU are denoted as intermediate binaries, whereas binaries with separations larger
than 100AU are called wide binaries. Wide binaries and intermediate binaries host circum-
stellar disks (Augereau et al., 2015, p. 65). In the survey of T Tauri (Class II) stars, Akeson
et al. (2019, p.20) found that the circumstellar disks around intermediate binaries are sig-
nificantly less massive than those around wide binaries or single stars. A good example of
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a T Tauri intermediate binary is DD Tau. Its separation is 79AU and it has circumstellar
disks (Duchêne, 2010, p. L117; Bouvier et al., 1992, p. 456). Recent examples of wide bi-
naries are KK Oph and HD 144668 T Tauri binary systems (Panić et al., 2021, p. 4317).
They have separations of 356AU (KK Oph) and 235AU (HD 144668) (Panić et al., 2021,
pp. 4320-4321). Both systems hosts circumstellar disk with no evidence of a circumbinary
disk (Panić et al., 2021, p. 4318) but asymmetries are found in the primary disk in the outer
regions, which are due to the secondary (Panić et al., 2021, p. 4317; Augereau et al., 2015,
p. 61).

Tab. 2.1: Binary separations with disk types
typical binary separation [AU] disk type
0.05-0.4 circumbinary
0.4-40 circumbinary and circumstellar
>40 circumstellar

Planet migration and terrestrial planet formation are more likely to be observed in the inner
few AU of a circumstellar disk (Prato & Weinberger, 2010, p. 5). Thus this Ph.D. thesis
focuses on this part of circumstellar disks.

2.1.3 Planet evolution

In the protoplanetary disks mentioned in the previous section, planets can evolve. Up until
now, 217 exoplanets in 154 binary systems have been found (Schwarz, 2021). In this section,
first, a closer look at planet evolution in single star systems is taken because later in the
simulations conducted in this thesis, single star systems are used for comparison. This is
followed by exploring planet evolution in binary star systems, which is the main focus of this
thesis.

Planet evolution in single star systems

The core accretion model and the gravitational instability model are the two basic scenarios
of planet formation today. Simplified, the accretion model is a multistage process starting
with a collisional growth of submicron-sized dust gains, continuing with the formation of
kilometer-sized planetesimals, and eventually leading to the growth of terrestrial planets in
the inner region of the disk. Gas planets can form their massive cores in the outer region
where they can accrete gas (Kley & Nelson, 2012, p. 212). In the second model, the grav-
itational instability model, the protoplanetary disk fragments into gaseous clumps. These
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clumps have planetary masses. In this model, planet formation happens during the early
stages when the disk mass is comparable to the central star’s mass. Fragmentation is more
likely to happen at large distances (>50AU) in the disk where the cooling times are short
(Kley & Nelson, 2012, p. 212).

In the disk of a single star system, a young planet disturbs the disk dynamically in two ways
(see Fig. 2.2). First, through spiral waves, caused by the Keplerian differential rotation
(Kley & Nelson, 2012, p. 213). Those spiral waves are radially propagating density waves
(Kley & Nelson, 2012, p. 213) (see Fig. 2.2a). Second, the planet’s disturbance separates the
outer and inner disk by a co-orbital region (Kley & Nelson, 2012, p. 213)(see Fig. 2.2b). As
the density structures are not symmetrical, gravitational torques are exerted on the planet.
This causes changes in the orbital elements (Kley & Nelson, 2012, p. 213) which lead to
migration of the planet. Thus, in viscous disks where these effects come to play, a planet
always migrates (Kley & Nelson, 2012, p. 212).

The spiral arms are caused by the effect called Lindblad torques. The inner spiral which
pulls the planet forward generates a positive torque. Through this effect, the planet gains
angular momentum and migrates outwards. On the other hand, the outer spiral drives the
migration inwards because of its pullback. The migration is the net effect of the residual
between the two pulls. It depends on the physical details of the disk and is called type I
migration (Kley & Nelson, 2012, p. 213).

Type I migration is characteristic for low-mass planets, which do not significantly alter the
global disk, and no gaps are opened in the disk (Kley & Nelson, 2012, p. 216). For giant
planet masses, ‘the interaction becomes increasingly nonlinear’ (Kley & Nelson, 2012, p. 223).
Thus the density profile is modified, and a gap forms.

The gap opening criterion (P ) is defined by Crida et al. (2006, p. 17) and transformed by
Thun & Kley (2018, p. 8) to:

P =
h

q1/3
+

50αh2

q
≤ 1 (2.1)

where h corresponds to the disk’s constant aspect ratio, α is the turbulent viscosity (α vis-
cosity), and q is the mass-ratio of the planet and the star/binary.

Depending on the planet-to-star/binary mass-ratio and disc parameters, like alpha viscosity
and aspect ratio, a Saturn-mass planet can undergo a type I migration.
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Fig. 2.2: A constant surface density disk which is normalized with an embedded planet with a mass-ratio
q = 9 · 10−5 as a disk surface density and flow structure. This mass-ratio is comparable to a planet with
0.1MJupiter around a solar-mass star. (a) Spiral arms and the inner leading and the outer trailing are visible.
The planet was inserted five orbits before. The disk is in Keplerian rotation. Thus the gas-particle on smaller
radii have larger velocities. (b) Topology of the flow field with the planet as the reference. The disk is split
into an outer disk with clockwise moving material, a horseshoe-shaped co-rotation region (within the thick
black lines), and an inner disk with counterclockwise movement. The clockwise moving of the material is
because the planet acts as a reference frame. From its point of view, the slower outer particle seems to
move backward and the quicker inner particles forward, but in the reference frame where the star is the
reference, the particles still move in the same direction. The inner particle is faster than the outer one. This
phenomenon can be seen on Earth with Mars when he has an apparent retrograde motion because Earth
surpasses him. Of course, Mars still moves forward; that is why the reference frame is important. This figure
is adopted from Kley & Nelson (2012, p. 214).

Planet evolution in binaries

In a single-star formation scenario, the giant gas planets need to form further outside in
the disk, and migrate to the observed locations. In the binary case, the in situ formation
scenario is even more unlikely than the accretion model because destructive collisions of
the planetesimals in close orbits are expected (Pierens & Nelson, 2007, p. 1001; Silsbee &
Rafikov, 2015, p. 1). Additional observations provide evidence for migration (Kley & Nelson,
2012, p. 212) and further evidence for this migration are the observations of giant planets
in mean motion resonance (Kley & Nelson, 2012, p. 212). An example of a planet which
underwent migration is the hot Saturn Kepler 38b (Orosz et al., 2012, p. 1).

A planet in a binary system can form in two ways. Firstly, the planet can form in a circum-
stellar disk around one of the two stars; then, it is called an s-type configuration. Secondly,
the planet can form around both stars, then it is called p-type configuration (Kley & Nelson,
2010, p. 136).
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The binary impacts the disk, leading to disadvantages for planet formation compared to
single star systems (Marzari & Thebault, 2019, p. 1). The gravitational influence of the
binary companion influences all stages of planet formation. The shorter lifetimes of disks in
binary systems were mentioned before, but the proto-planetary disk formation and evolution
are influenced as well. Also, the dust accumulation into planetesimals and the growth into
planets is negatively influenced as the hindering accretion velocities are increased by the
perturbations of the binary (Marzari & Thebault, 2019, p. 1). Another negative impact for
the probability of planet formation in binary stars is the mean motion resonances which lead
to unstable regions (Marzari & Thebault, 2019, p. 1). In those regions, planet formation is
inhibited (Marzari & Thebault, 2019, p. 1). Furthermore, an already formed planet would
be ejected out of the system if the planet migrates into this region (Marzari & Thebault,
2019, p. 1). Those effects exist in both s- and p-type systems (Marzari & Thebault, 2019,
p. 1).

Planet migration in circumbinary disks (p-type) differs significantly from circumstellar disks
around single stars. In circumbinary disks, spiral waves are generated due to the gravitational
perturbation of the central binary star. These alter the evolution of the circumbinary disk
and form an important dynamical feature, for instance, a central cavity in the circumbinary
disk (Artymowicz & Lubow, 1994, p. 665; Thun et al., 2017, p. 4) (see Fig. 2.3).

Fig. 2.3: The surface density of a 2AU by 2AU sized circumbinary disk around a binary is shown. The
binary parameters are similar to Kepler 38. The red numberindicates the time in Earth years. The two grey
dots in the center are the locations of the binary stars, and the planet is the grey dot within the disk. This
figure shows the spiral waves generated by the binary and the central cavity of the disk. This figure is taken
from Kley & Haghighipour (2015, p. 8).
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Dynamics of p-type planets
As mentioned above, at least twenty-three of the already found exoplanets in binary systems
are in p-type systems (Pilat-Lohinger et al., 2019, p. 118; Schwarz, 2021). Primarily, the
goal of the space-based Kepler Mission was to search for Earth-sized planets around solar-like
stars (F to K dwarfs) (Koch et al., 2010, p. L79) analogue to our solar system. Searching in
binary systems was not the focus. However, observing those stars, it was later found that
1.3% of them were actually binary systems (Kirk et al., 2016, p. 1). This corresponds to a
total of 2878 objects out of roughly 200.000 observed objects (Kirk et al., 2016, p. 1). From
the 217 exoplanets found in binary systems, 63 exoplanets were discovered in the original
Kepler mission, and 12 exoplanets were discovered with the follow-up mission K2 (Schwarz,
2021; Johnson, 2017). For the 23 p-type exoplanets, nine were found in the original Kepler
mission, and one was found in the following up mission (Schwarz, 2021).
Their orbits inclinations towards the binary plane are relatively low (mostly < 0.5◦ (Thun
et al., 2017, p. 1; Doyle et al., 2011, p. 4; Welsh et al., 2012, p. 476; Orosz et al., 2012, p. 22;
Kostov et al., 2014, p. 1)) because the probability of transits is higher if the planet’s orbit is
aligned with the binaries orbit. Thus coplanar systems are easier to detect with the transit
method which the satellite Kepler (Johnson, 2017) uses.

Kepler 38, for example, has an inclination smaller than 0.2◦ (Kley & Haghighipour, 2014,
p. 2). In contrast the maximal inclination in the solar system is Mercury which has an
inclination of 7.0◦ toward the ecliptic (UCLA, UCLA).

A p-type planet has a stable orbit at the separation from the central binary given by the
following equation (Haghighipour et al., 2010, p. 299), which shows the critical semi-major
axis ac corresponding to the closest stable orbit (Holman & Wiegert, 1999, p. 626).

ac =[(1.60± 0.04) + (5.10± 0.05)eb + (4.12± 0.09)µ

+ (−2.22± 0.11)e2b + (−4.27± 0.017)µeb + (−5.09± 0.11)µ2

+ (4.61± 0.36)µ2e2b ]ab

(2.2)

with eb being the binary’s eccentricity, ab being the semi-major axis of the binary, and µ

being the reduced mass (m1m2/(m1 +m2)). This is an empirical expression derived through
a fit after studying test particles around eccentric binary systems by Holman & Wiegert
(1999, pp. 621+626). Test particles that encounter one of the stars or escape are removed
from the integration; only stable orbits were considered to find the critical semi-major axis
(Holman & Wiegert, 1999, p. 622).
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Through the ± signs in Eq. 2.2 a region with a mix of stable and unstable orbits is created
(Haghighipour et al., 2010, p. 299). As expected, the zone of instability widens for more
eccentric binaries and more massive secondaries (Winn & Fabrycky, 2015, p. 433).

The observational data known today show that planets cluster ‘just outside of the zone of
instability’ (Winn & Fabrycky, 2015, p. 434) (see Fig. 2.4). This accumulation can only be
explained with migration of these planets (Pierens, A. & Nelson, R. P., 2008, p. 1).

Fig. 2.4: Largest critical semi-major axis vs. the binary separation. The functions show the critical semi-
major axis for a binary with a reduced mass of ∼ 0.2 and with an orbits’ eccentricity of 0.1 and 0.5. Added
are the known p-type planets around tight binaries from the Kepler Mission where all the needed information
is published in Pilat-Lohinger et al. (2019, p. 118). The dots show the calculated critical semi-major axis
and the same colored squares is the observed location of the planet.

2.1.4 Angular momentum in YSO systems

The full coplanarity between binary orbit, circumbinary disk, and planetary orbit is easy to
understand because they follow a general expectation: as the system develops from the same
cloud, the angular momentum vector of the disk and the binary should be aligned (Pierens
& Nelson, 2018, p. 2548). However, there is observational evidence that around 30% of the
disks in tight binary systems are misaligned (>3◦) with respect to the orbital plane of the
binary star (Czekala et al., 2019, p. 1). Czekala et al. (2019, p. 1) also found a dependency
of misalignment and separation; with larger separations, a wide range of mutual inclina-
tions are possible. This misalignment is expected to come from post-nebular multi-body
interactions (Batygin, 2012, p. 418), like planet-planet scattering (Chatterjee et al., 2008,
p. 580), Kozai cycles with tidal friction (Fabrycky & Tremaine, 2007, p. 1313) and chaotic
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secular excursions (Wu & Lithwick, 2011, p. 1). But these effects are not enough to explain
the population of misaligned hot Jupiters or hot Saturns (Batygin, 2012, p. 418). Although
disk-driven migration theoretically should tend to maintain coplanar (Kley & Nelson, 2012,
p. 243), studies of Batygin (2012, p. 420) suggest that disk-torque is the likely origin of the
misalignment. Therefore, the missing link could be migration.

In the case of a slight misalignment with respect to the binary’s orbit, the planet’s orbit
undergoes nodal precession circulating with a nearly constant tilt (Martin & Lubow, 2017,
p. 1), resulting from a coupling between the binary’s angular momentum and the planet’s
specific angular momentum. This coupling produces a torque on the planet which leads to
the gyroscopic motion about the orbital rotation axis of the binary (Doolin & Blundell, 2011,
p. 2657).

In a binary system each star, the planet and the disk has an angular momentum vector:

L = mr× v (2.3)

with m being the mass, r being the vector to the center of mass, and v being the vector of
the object’s velocity. These vectors are important to calculate the mutual inclination:

i = arccos
(
L1 · L2

|L1||L2|

)
(2.4)

between two angular momentum vectors, e.g., the angular momentum vector of the secondary
(L1) and the planet (L2).

2.1.5 Resonance Processes

Apart from the already mentioned resonances (Lindblad und Corotational resonances), more
resonances like the mean-motion resonances (between the planet and the binary companion)
are important. Those mean-motion resonances are frequent conjunctions at the same orbital
location (Armitage, 2009a, p. 239). Thus a 2:1 resonance is when conjunction between the
secondary and the planet occurs every period of the planet. Whereas in a 3:1 resonance, the
conjunction happens every second orbit of the planet. During the migration process planets
can be captured in into a mean-motion resonance (Baruteau et al., 2013, p. 43). Nevertheless,
a planetary system has more resonances, e.g., the Kozai-Lidov resonances (Armitage, 2009a,
p. 244). Resonance processes can also create regions of instabilities.
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2.2 Numerical methods for simulations

In the scientific community, there are typically two ways of treating hydrodynamical simu-
lations (HD) of 3D protoplanetary disks. One is based on the grid method, which uses fluid
dynamical equations to transfer information between adjacent cell boundaries (Agertz et al.,
2007, p. 963). The other one is the smoothed particle hydrodynamical (SPH) method, where
for each gas-particle, the properties are calculated though averaging neighboring particles
(Agertz et al., 2007, p. 963). The advantage of grid codes, which are used in this thesis,
is the capability to resolve and treat dynamical instabilities (Agertz et al., 2007, p. 963).
An example of such a dynamical instability would be the Kelvin-Helmholz instability which
occurs when a velocity shear in a single continuous fluid is present (Agertz et al., 2007,
p. 965). This instability should not be neglected as it is happening in the disk. However,
with SPH codes, this process was poorly resolved until recently (Agertz et al., 2007, p. 963;
Tricco, 2019, p. 1).

Fluid motions

One would think that as stars are gaseous, they should be dealt with kinetic theory and
gas dynamics (Shore, 1992, p. 1). However, as the star creates its own gravitational field,
it rather mimics the behavior of a fluid moving under gravity (Shore, 1992, p. 2). It is
applicable to treat the collection of gas in disks as a continuum or fluid (Shu, 1992, p. 3),
because the mean free path l is much smaller than the macroscopic length scale L, on which
the properties of the fluid change measurably.

Fig. 2.5: As the mean free path l for particle collisions is small compared to the dimensions of the fluid
element ε, the particle will be swept along by the fluid motions at bulk velocity u.

Physically it makes sense to use the concept of a fluid element ε with volume V which is
small in comparison to the separation of elements (L) but large in comparison to the mean
free path (l) (Shu, 1992, p. 4) (see also Fig. 2.5). This allows to define a mean velocity u
for the collection, as the number of particles per fluid element is large. Adding a random
component w, the individual particle motions v can be described (Shu, 1992, p. 3):
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v = u + w . (2.5)

In this thesis, the fluid hydrodynamical (HD) code FARGO3D (Benítez-Llambay & Masset,
2015a) is used. The important hydrodynamical equations used by FARGO3D are briefly
described in this section.

There are two cases of hydrodynamical equations, for the perfect fluid, the Euler Equations,
and for the non-ideal fluids, the Navier-Stokes Equations (Chorin & Marsden Jerrold E.,
1993, p. 1). The continuity equations do not change for fluids with viscosity and heat trans-
portation. Nevertheless, the formulas for momentum and energy conservation do change.

All formulas used in this thesis follow the Eulerian description. This means that the flow
of the fluid, which is characterized by the density ρ, velocity u, pressure P , temperature T ,
etc. are functions of the time t at different fixed locations x (Shu, 1992, p. 44).

2.2.1 Euler equations

A continuum, consisting of perfect fluid or gas, is considered as described in Sect. 2.2. For
the derivation of the Euler equations, three basic principles are used (Chorin & Marsden
Jerrold E., 1993, p. 2):

• mass conservation (mass is neither created nor destroyed)

• momentum conservation (Newton’s second law: the rate of change of momentum of a
portion of the fluid equals the force applied to it)

• energy conservation (energy is neither created nor destroyed)

Mass conservation

With no volumetric sinks and sources of matter, the changing rate of the mass in volume
V must be equal minus the changing rate of mass in flux ρu ‘past the element of area n dA
integrated over the entire area A’ (Shu, 1992, p. 45):

d

dt

∫
V

ρ dV = −
∮
A

ρu · ndA = −
∫
V

∇ · (ρu)dV (2.6)

The divergence theorem was used for the last expression.
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∫
V

[
d

dt
ρ+∇ · (ρu)

]
dV = 0 (2.7)

It is valid for arbitrary volumes, thus the integrand vanishes (Shu, 1992, p. 45) which leads
to the equation of continuity in differential form:

∂ρ

∂t
+∇ · (ρu) = 0 (2.8)

Momentum conservation

The force on the surface element dA is −p(x, t)ndA because the pressure p acts vertically
onto the surface. From the definition of the normal vector n the force has a negative sign,
as it should always be pointing away from the surface. For perfect fluids (Kley, 2013, p. 15):

−
∮
A

PndA = −
∫
V

∇PdV (2.9)

Again the divergence theorem was used to get the last expression of the force on a surface
element. For the external forces the expression is (Kley, 2013, p. 15):

∫
V

ρkdV (2.10)

with the specific external forces k. Those external forces include the Gravitation, Lorentz–,
Coriolis- or Centripetal force. In combination with the pressure term, one has −∇P + ρk
(Kley, 2013, p. 15).

Equations 2.9 and 2.10 with the second Newtonian law in integral form then reads (Kley,
2013, p. 15):

d

dt

∫
V

ρu dV = −
∫
V

∇PdV +

∫
V

ρkdV (2.11)

The left term describes the whole momentum change of one fluid element in the volume V .
The differential form for arbitrary volumes can be derived from this integral form (Kley,
2013, pp. 15-16).
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ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇P + ρk (2.12)

To get this equation it is necessary to write out the substantial derivative:

d

dt
=
∂

∂t
+
dx

dt
· ∂
∂x

+
dy

dt
· ∂
∂y

+
dz

dt
· ∂
∂z

=
∂

∂t
+ u · ∇

(2.13)

where (u · ∇)u is the flow of momentum through the surface.

Energy conservation

The first law of thermodynamic can be reduced for adiabatic changes (See Eq. 2.14). Adia-
batic changes have no energy sources and dissipative operations (Kley, 2013, p. 16).

dU = −PdV (2.14)

U = mε and ε is the specific inner energy, whereas dV/dt = −V/ρ dρ/dt. This leads analo-
gously to Eq. 2.12 to (Kley, 2013, p. 17):

∂(ρε)

∂t
+∇ · (ρεu) = −P∇ · u (2.15)

2.2.2 Navier-Stokes Equations

The Euler Equations describe the perfect fluid, whereas the Navier-Stokes Equations de-
scribe the non-ideal fluids. In non-ideal fluids, dissipative effects like viscosity and heat
transportation take place. In those fluids the continuity equation (see Eq. 2.8) is still valid,
but the momentum and energy equations need to be changed (Kley, 2013, p. 18).

Momentum equation

The momentum equation with viscosity becomes (Kley, 2013, p. 19):

ρ
du
dt

= −∇P + ρk +∇ · σ (2.16)
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with σ as the friction tensor (see Eq. 2.17). Friction consists of kinetic viscosity ν and
the bulk viscosity ζ as friction is the relative movement between two fluid elements. The
components ν and ζ are functions of the thermal state of the fluid. Thus, they are material
properties that depend strongly on local pressure and temperature (Kley, 2013, p. 19; Dellar,
2001, p. 2).

σij = 2ν

[
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
(∇ · u)δij

]
+ ζ(∇ · u)δij (2.17)

Energy equation

The energy equation is (Kley, 2013, p. 21):

∂(ρεtot)

∂t
+∇ · (ρεtotu) = −∇ · (Pu) +∇ · (u · σ) + ρu · k−∇ · F (2.18)

where F is the energy flux [W/m2] and εtot = εin + 1
2
u2 is the specific total energy. The

specific total energy consists of the specific inner energy and the kinetic energy. Energy
sources are changing the total energy Etot in a volume V . The total energy is defined (Kley,
2013, p. 20):

Etot =

∫
V

ρεtotdV (2.19)

Inner forces within the fluid, the work by external forces per time, and the energy supply
through the surface (i.e., radiative transport and heat transportation) cause the energy
production (Kley, 2013, p. 20).

2.2.3 State of the art in the field of the 3D simulations in planet

formation

In the following subsection, the state of the art of 3D simulations is portrayed. The focus is
on the founding work of simulation in different star system setups.

Previous 3D simulations in single star systems

The first setup explored for 3D HD simulation was undertaken for a single star embedded in
a disk. Numerous teams have analyzed that setup and the migration of a planet embedded
in the circumstellar disk, e.g., in Cresswell et al. (2007) and Bitsch & Kley (2011). The
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author of the thesis takes the work of Cresswell et al. (2007) as founding work for the main
focus of this thesis.

Cresswell et al. (2007) performed non-linear locally isothermal 3D HD-simulations with a
planet embedded in a protoplanetary disk around a single star in order to study the migration
of eccentric and inclined planets with respect to the disk’s midplane. They also investigated
the impact of those planet parameters on the disk structure (Cresswell et al., 2007, p. 329).
To do so, they used the codes NIRVANA and RH2D (Cresswell et al., 2007, p. 331). Both
codes are HD codes, but the NIRVANA code is a 3D magneto-hydrodynamical (MHD) code,
and RH2D is a 2D HD code (Ziegler, 1998, p. 111; Günther & Kley, 2002, p. 552). Although
NIRVANA is designed to include the effect of the disk’s magnetic field, this component was
neglected. Cresswell et al. (2007) used both codes to verify the robustness of the codes.
In their simulations the planet was light (20mearth) in a low-mass disk (mdisk = 0.007M�)
with a computation domain from 2.08AU to 13AU. The planets orbit was influenced by the
torque exerted by the disks gas (Cresswell et al., 2007, p. 331). Using a low mass disk and
a low mass planet, the planet experienced a type I migration (see Eq. 2.1). In this regime
they compared their results with known analytical studies (Tanaka et al., 2002; Tanaka &
Ward, 2004, p. 388) of the inclination and the eccentricity damping rates (Tanaka & Ward,
2004, p. 388; Cresswell et al., 2007, pp. 334+340). For small values for the eccentricity and
inclination (ep < 0.1 and ip < 5◦) Cresswell et al. (2007) results agreed with linear wave
theory (Cresswell et al., 2007, pp. 338+340). With the linear wave theory the disk-planet
interaction can be formulated, as the planet excites density waves in the disk. Those waves
originate from Lindblad resonances and corotation resonances (see Sec. 2.1.3). In return
the planet is influenced by that exerted torque of those density waves (Tanaka et al., 2002,
p. 1257). The linear wave theory was derived by Tanaka & Ward (2004, p. 394) which found
the exponential inclination damping (di/dt ∼ -i).

Thus following the above theoretical model, the setup of Cresswell et al. (2007) led to the
rapid damping of its inclination (Cresswell et al., 2007, p. 341).
Moreover Cresswell et al. (2007) compared their 3D simulations with 2D simulations. They
reported that for coplanar planetary orbits (plane of the disk and the planets orbit are
aligned) and small eccentricities, the simulations are similar in terms of migration (Cresswell
et al., 2007, p. 340).
In short, they confirmed through numerical simulations the analytically predicted effect of
inclination damping depending on the initial inclination and eccentricity of the planet.

Bitsch & Kley (2011) also used local isothermal disks to explore the planet-disk interaction
and the variation of the inclined and eccentric orbits of the migrating planet. They could
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confirm, using NIRVANA and FARGO in a 3D context, exponential inclination damping for
small inclinations (di/dt ∼ -i like Cresswell et al. (2007)) and inward migration for planets
in single star systems (Bitsch & Kley, 2011, p. 1).

In addition to the dynamical effects of the planet, Kley & Nelson (2012) focused on the
features of the disk. They investigated the disk-planet interaction and described that non-
axisymmetric features (for instance, spiral waves and horseshoe region) create gravitational
torques on the planets, which impact the orbital elements eccentricity, semi-major axis, and
inclination (Kley & Nelson, 2012, pp. 4+37).
Kley & Nelson (2012) describe how those torques of the non-axisymmetric disk features in-
fluence the different orbital elements. For example, the semi-major axis is influenced through
both disk features resulting in migration. On the one hand, the spiral waves create a net
torque that leads to the migration of the planet (see Sec. 2.1.3). The sign of that net torque
decides the direction of the migration (Kley & Nelson, 2012, p. 6). On the other hand, the
horseshoe drag, which also leads to a non-zero net torque, is created by asymmetries be-
tween the two U-turns. It is called U-turns as the gas motion in the corotating planet frame
performs U-turns and exchanges angular momentum between the disk and planet (Kley &
Nelson, 2012, p. 9). This angular momentum exchange slows down the migration process
(Kley & Nelson, 2012, p. 10).
For the effects on the eccentricity and inclination parameters, the forces on the planet need
to be analyzed, taking the orbital plane into account. With no fixed vertical and radial
position, the disk forces vary within an orbital period (Kley & Nelson, 2012, p. 20).
Thus Kley & Nelson (2012) is an excellent review paper on disk-planet interaction. In that
paper, the authors do not run 3D simulations themselves but summarize and connect the
findings of other authors.

Following these groundwork results, other authors explored several other aspects of single-
star systems, e.g., Chametla et al. (2017) studied a gap opening inclined Jupiter mass planet
in a singular system with FARGO3D and Kloster & Flock (2019) studied evolution with
2D/3D simulations of inclined and non-inclined planets which are low-mass and Jupiter
size. As most stars form in multiple systems and half of the solar-type stars form in binary
systems (Duquennoy & Mayor, 1991, p. 509; Raghavan et al., 2010, p. 38), it is not enough
to understand planet formation in singular systems but also in binary systems.

Previous 3D simulations in s-type systems

As described in Subsec. 2.1.3, the planets in s-type systems are orbiting one star. The
"first" s-type exoplanet was discovered by Campbell et al. (1988), but since they discovered
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it before the first exoplanet around a sun-like star was discovered, they let themselves be
convinced by the scientific community that this was not possible (Walker et al., 1992, p. L91;
Haghighipour, 2008, p. 3). It was only re-announced by Hatzes et al. (2003, p. 1383) that γ
Cephei has an s-type exoplanet after Queloz et al. (2000, p. 99) announced the first s-type
exoplanet in Gliese 86.

In binary systems, the torque forced on the disk from the secondary can impact the planet
formation differently than in a single star system (Batygin, 2012, p. 418; Foucart & Lai,
2014, p. 1740), this is because the disk is perturbed by a secondary star (Foucart & Lai,
2014, p. 1742) (see Fig. 2.6).

Fig. 2.6: Drawing of a s-type configuration with a misaligned disk/planet. Top: face-on view of the system.
Bottom: edge-on view of the system.

Regarding 3D simulations in s-type systems, the first papers for planets in s-type systems
were published relatively late as the simulations are more complex than single star simula-
tions.

Batygin (2012) used Gauss’s method, where an algorithm of algebraic equations solves the
secular evolution of Keplerian rings which are gravitationally connected (Touma et al., 2009,
p. 1087; Batygin, 2012, p. 418), to analyze the influence of a stellar companion in an s-type
system taking inclination into account. This was an intermediate step before 3D hydrody-
namic simulations were done.
The author showed that the initial aligned planetary orbits become misaligned with respect
to the disk’s midplane in s-type systems (Batygin, 2012, p. 418). This could be a consequence
of the planet migration in the circumstellar disk and a distant massive body (Batygin, 2012,
p. 418).

Picogna, G. & Marzari, F. (2015) analyzed planet inclination in s-type systems with the
focus on migration and the influence of the secular star (Picogna, G. & Marzari, F., 2015,
p. 1). Simulations were done with the 3D smoothed particle hydrodynamics (SPH) codes
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VINE and PHANTOM (Picogna, G. & Marzari, F., 2015, p. 1).
The system which they analyzed is a circular, equal mass binary (1M� each) with a Jupiter-
mass planet circling the primary (ap = 5AU) in a protoplanetary disk (0.01M�). The disk
extends from 0.5 to 30AU, and the distance to the secondary star is 100AU. The disk’s
aspect ratio (h/r) is 0.037 and the α viscosity is 0.02 for the VINE code and 0.04 for the
PHANTOM code (Picogna, G. & Marzari, F., 2015, p. 4).
The planet and the disk are initially coplanar and tilted by 45◦ or 60◦ towards the binary
plane (Picogna, G. & Marzari, F., 2015, p. 4).
In both scenarios, the secular star led to a planet’s inclination that differed from the inclina-
tion of the disk. Thus the planet was influenced by the second body evolving independently
from the disk (Picogna, G. & Marzari, F., 2015, p. 1). The second focus of the paper was
planet migration. Due to the inclination of the planet induced by the secondary, the planet
leaves the disk. With every passing of the planet through the disk, it loses angular momen-
tum through friction, which leads to a migration inward. But this migration is different from
the type I/II migration described in an earlier section (Picogna, G. & Marzari, F., 2015, p. 1).

Martin et al. (2016) investigated via 3D simulations the evolution of a equal mass s-type
system where the accreting planet is initially coplanar with the disk but misaligned (20◦, 40◦,
60◦) towards the binary plane (Martin et al., 2016, p. 4346). The planet is massive (0.001Mb)
enough to open a gap in the disk (0.001, 0.008 and 0.01Mb) (Martin et al., 2016, p. 4347)
(see Eq. 2.1). The computational domain ranges from 0.025 ab to 0.25 ab, the alpha viscosity
is 0.05, the disk aspect ratio is set to 0.036 and the initial surface density is Σ ∼ R−3/2. The
simulations were done with the SPH code PHANTOM (Price & Monaghan, 2004, p. 139),
where only the parameter of the disk inclination and the disk mass was changed (Martin
et al., 2016, p. 4347).
In their studies, they found that the planet undergoes two types of oscillation. Even at small
inclination angles, the first type comes from the interaction with the stellar companion and
the disk of the host star. Secular resonance amplifies this first oscillation (Martin et al.,
2016, p. 4345). The second oscillation originates from the Kozai-Lidov oscillation at larger
inclination angles (Martin et al., 2016, p. 4345). This oscillation influences the disk and the
planet as it leads to an exchange of eccentricity and inclination of the planet. (Martin et al.,
2016, p. 4345). That is why the Kozai-Lidov (KL) mechanism can lead to highly eccentric
and inclined exoplanets as those planets are disturbed secular by the outer binary companion
(Martin et al., 2016, p. 4347).
Thus, due to those mechanisms, an initial only low inclined planet in a massive disk can be-
come highly inclined due to the KL oscillation (20◦ < i < 160◦) (Martin et al., 2016, p. 4346).
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Lubow & Martin (2016) is a work published before the latter and focused on accreting mildly
inclined planets in s-type systems via SPH simulations (Lubow & Martin, 2016, p. 1). The
3D hydrodynamical setup is very similar (Lubow & Martin, 2016, p. 9).
Again the gap opening planet (0.003Mb) is initially coplanar with the disk (0.0004, 0.004
and 0.006Mb) but this time, less misaligned with the binary plane (10◦). The computational
domain, the aspect ratio, the initial surface density power-law, and the α viscosity is the
same in both (Lubow & Martin, 2016, p. 9).
In this paper, the only variable is the disk mass. As the mass of the disk influences the
gap opening, this leads to a different misalignment of the planet (Lubow & Martin, 2016,
p. 12). Towards higher disk masses, the misalignment becomes more significant because of
the secular resonance (Lubow & Martin, 2016, p. 13). They also found that the disk, on the
other hand, re-aligns with the orbital plane because of disk dissipation (Lubow & Martin,
2016, p. 13). As those disks were only mildly inclined, they did not find KL and eccentricity
oscillations.

Based on these works, other authors conducted further studies, e.g., Franchini et al. (2020)
who studied a multiplanet-disk around one star of the binary. A general finding common in
all works is that the planet’s inclination increases due to the binary companion’s presence.

Previous 3D simulations in p-type systems and their goals

Several authors guessed that additional perturbers, like a stellar companion, could excite the
inclination of the planet/disk (Cresswell et al., 2007, p. 341; Batygin, 2012, p. 418; Small-
wood et al., 2019, p. 2919). In contrast to the s-type system, the stellar companion is inside
the planet’s orbit.

Smallwood et al. (2019) investigated mildly tilted low-mass (0.001Mb) circumbinary disks
around eccentric binaries with the SPH code PHANTOM (Smallwood et al., 2019, p. 2921).
In their simulation they vary the eccentricity of the binary (0.0, 0.3, 0.6 and 0.8) and the
initial inclination of the disk (10◦, 15◦, 30◦, 50◦ and 60◦). The computational domain ex-
tends from 2 ab to 5 ab. For one simulation the outer boundary is set to 40 ab. The initial
surface density profile is Σ ∼ R−3/2, the α viscosity is 0.01 and the disk’s aspect ratio is 0.1
(Smallwood et al., 2019, p. 2922).
They discovered that disks have tilt oscillations due to effects of the binary eccentricity
(Smallwood et al., 2019, p. 2930). Furthermore, they found the relation between the binary
eccentricity and the tilt oscillations. The larger the binary eccentricity, the larger the tilt
oscillations and the smaller the damping of these oscillations. On top of it, they found that
those disks increase their inclination by a significant factor before they align again (Small-

26



2.2. SOA of 3D simulations Chapter 2. Planets in binary systems an numerical methods

wood et al., 2019, p. 2919). For example, for a binary eccentricity of 0.8 and an initial
inclination of 15◦ the disk’s inclination increased to 50◦ (Smallwood et al., 2019, p. 2922).
Another important aspect of that work was the analysis of the properties of the circumbinary
disk around KH 15D. They used SPH simulations and linear theory and determined that
that disk has a slight warping. Moreover, they found that small tilts are well in agreement
with linear theory (Smallwood et al., 2019, p. 2930).
To do so, Smallwood et al. (2019) compared the 1D model with simulations assuming that
the level of tilt is small. Moreover, they neglected the density evolution (Smallwood et al.,
2019, p. 2926). This approach saves computational time in comparison to SPH simulations
(Smallwood et al., 2019, p. 2926). To compare the simulations with linear theory, the secular
torque equations (Farago & Laskar, 2010, p. 1190) due to the binary are implemented to
calculate the maximum inclination (Smallwood et al., 2019, p. 2926):

imax = i0

√
1 + 4e2b
1− e2b

(2.20)

where i0 is the initial inclination and eb is the eccentricity of the binary. The theoretical
equation was compared with the results from the above-mentioned SPH simulations. They
found that they are in good agreement for little tilts (= 10◦) (Smallwood et al., 2019, p. 2928).

The disk warping was introduced by Pierens & Nelson (2018) as a consequence of the find-
ing of misaligned exoplanets in binary systems. They analyzed modestly inclined binary
systems (eb = 0.12) with 3D hydrodynamical simulations using FARGO3D and matching
the observations of Kepler 413, 0.1AU binary with a circumbinary planet detected (Kostov
et al., 2014, p. 1). Using different disk parameters, for instance alpha viscosity α (0.0004,
0.0001 and 0.1), constant aspect ratio h0 (0.05 and 0.01), flaring f (0 and 0.25) and binary
inclination (0◦ , 2.5◦, 5◦ and 8◦) they could observe that the disks develop slowly varying
warps (Pierens & Nelson, 2018, pp. 2547+2250). In those simulations a large outer bound-
ary (80 abin) is used. Due to computational time, their results stop between 103 and 108

binary orbits (Tbin) (Pierens & Nelson, 2018, pp. 2551-2552). All simulations with tilted
planets embedded suggest that the planet re-aligns with the binary orbit planet because of
the disks age and mass loss, but the simulations were not long enough (Pierens & Nelson,
2018, p. 2547).
The authors put the mid-plane of the circumbinary disk at the equatorial plane of the com-
putational disk but put the binary at an inclination. The disk does not have self-gravity, and
it does not affect the binary orbit (Pierens & Nelson, 2018, p. 2549). Their approach had
two goals, first to study the disk parameter over time and then, in later simulations, embed

27



Chapter 2. Planets in binary systems an numerical methods 2.2. SOA of 3D simulations

a planet. The planet is inserted in the mid-plane of the disk and is not accreting material
(Pierens & Nelson, 2018, p. 2552). Its mass-ratio is in some simulations small enough that
it is undergoing a type I migration, but they also tested simulations where the planet can
open a gap (type II migration). In the first case, it stops just outside the inner cavity. But
for the latter migration type, the planet gets pushed by the outer disk into the cavity, and
the fate of the system is uncertain, as simulations take too much time (Pierens & Nelson,
2018, pp. 2552-2553).
Pierens & Nelson (2018) found that for small disk masses, the planet re-aligns with the
binary orbit plane, and thus the coplanarity with the circumbinary disk is not maintained.
However, with higher disk masses (>2MMSN), the disk gravity starts to change the evo-
lution of the planet (Pierens & Nelson, 2018, p. 2558). Their main finding was that the
disk has not to re-align with the orbital plane of the binary for the planet to re-align. The
disk can be misaligned, but through mass loss, over time, the planet tends to re-align with
the binary orbit nevertheless (Pierens & Nelson, 2018, p. 2559). This is in contrast to other
studies where the disk aligns with the binary orbit, not only the planet (Lai & Foucart, 2012,
p. 150; Foucart & Lai, 2014, p. 1743; Czekala et al., 2019, p. 19).
Several studies with non-eccentric binaries found that a previous misaligned disk aligns with
the orbital plane of the binary (Nixon, 2012, p. 2597; Foucart & Lai, 2014, p. 1731). In
circumbinary disks systems with a binary eccentricity, the angular momentum of the disk
aligns with the angular momentum of the binary orbit or with the eccentricity vector of the
binary (Aly et al., 2015, p. 1; Martin & Lubow, 2017, p. 3).

Chen et al. (2019) simulated, as well as Smallwood et al. (2019), misaligned planets around
an eccentric orbit. To do so, they used the N-body simulation package REBOUND (Chen
et al., 2019, p. 5635). They used three-body simulations where the planet and the binary
interact gravitationally. Different values for the binary eccentricity (0.2, 0.5 and 0.8), the
mass fraction (0.1 and 0.5) and the planet’s initial inclination (10◦ - 180◦) were used (Chen
et al., 2019, pp. 5636, 5637+5644).
Their focus was on mapping possible orbits in these systems and determining stationary
orbits. The authors identified the parameters that influence those possible orbits as being
the binary eccentricity and the planet-to-binary angular momentum ratio (Chen et al., 2019,
p. 5644).

Later studies by other authors focused on other objectives; they are only stated quickly to
give an overview of the state of the art.

Monnier et al. (2019) studied the origin of disk features with FARGO3D. They wanted to
know whether an unseen companion could be responsible for the disk structures in the HD
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34700A system (Monnier et al., 2019, p. 15). They run different parameters for the compan-
ion and used the radiative transfer code RADMC3D (Dullemond et al., 2012) to compare
the simulation results to the observations (Monnier et al., 2019, p. 16). Unfortunately, they
could not find the same structures, as the stellar binary, the planetary orbit, and the disk
could be misaligned instructing additional dynamics (Monnier et al., 2019, p. 16).

Pierens et al. (2020) simulated with FARGO3D, using a modified version which includes
a particle module, three dimensional simulations with inviscid circumbinary disks (Pierens
et al., 2020, pp. 2849-2850). This modification particle allows trajectories to be computed
(Nelson & Gressel, 2010, p. 654; McNally et al., 2019, p. 6). They simulated circumbinary
disks with binary parameters similar to Kepler 16 and focused on the eccentricity of the disk
coming from the inner boundary and the formation of the inner cavity (Pierens et al., 2020,
p. 2866).
They found that parametric instability is triggered through the interaction of the binary
and the resulting disk eccentricity. Those instabilities generate turbulence and vertical ve-
locity fluctuations which are small compared to the sound speed (∼ 0.1%) (Pierens et al.,
2020, p. 2866). Moreover, they looked at pebble accretion and found it is rather difficult
for pebbles to grow close to the cavity edge. They suggest that the core is forming further
away from the binary, as there is less turbulence, and then followed by migration towards
the cavity (Pierens et al., 2020, p. 2866).

Chen et al. (2020) continued their studies with the REBOUND code to study the orbital
stability of a close circumbinary planet around an eccentric binary. They varied the binary
parameters: eccentricity (0.2, 0.5 and 0.8) and mass fraction (0.1 and 0.5). But they also
varied the planet parameters: mass (0.001, 0.005 and 0.01mb), semi-major axis (1.5 abin -
6 abin) and inclination (0 - π) (Chen et al., 2020, pp. 4645+4647). They found that the
orbital alignment of the planet depends on the final alignment of the disk. Thus with a
low-mass disc aligns either coplanar or polar (Chen et al., 2020, p. 4654). In their simulation
the binary orbit is not fixed as the planet and disk interference (Chen et al., 2020, p. 4646).

Recent observations show that mostly short period binaries with periods (<20 d) have aligned
coplanar within 3◦. Binaries with larger periods have more significant inclinations and binary
eccentricities (Czekala et al., 2019, p. 1). The binary eccentricity for binaries with periods
smaller than 30 d seems limited due to effects of stellar tidal dissipation (Chen et al., 2020,
p. 4654). Thus the coplanarity found in the Kepler systems may be caused by smaller orbital
periods and low binary eccentricities (Chen et al., 2020, p. 4654).
There are other theories on how these misaligned exoplanets evolve, for example, through
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turbulence in the forming gas clouds (Bate, 2012, p. 3121; Smallwood et al., 2019, p. 2920) or
through the accretion process in a young binary where the material is likely to be misaligned
(Bate et al., 2010, p. 3121; Smallwood et al., 2019, p. 2920).
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3 Setup of the Kepler 38 FARGO3D
simulations

This chapter introduces the observed parameters for the Kepler 38 system and the FARGO3D
code used for the simulations in this thesis. The observed Kepler 38 system parameters
provide information either used as input for the FARGO3D code or output. Of course,
the simulation results come only close to the observed parameters, but this is discussed
further when it occurs. Therefore, the FARGO3D code needs to be understood. Thus, the
main equations, the numerical and physical setup, and the boundary conditions of the setup
are explained. This includes the initial disk parameters. Moreover, if a parameter is not
mentioned as being changed in the next chapter, this means that it is used as described in
this chapter.

3.1 Kepler 38: observed parameters as input/output for

simulation

The binary system Kepler 38 is roughly 1.22 kpc away and is located in the constellation
of Lyra at 19h07mR.A. and 42.16◦Dec in the sky (NASA, NASA). In October 2012, it was
discovered that a circumbinary planet is circling both stars (Orosz et al., 2012, p. 1). The
period of the binary is 18.8 days and the period of the planet is 105.6 days (Orosz et al.,
2012, p. 1). The orbit of the binary is slightly eccentric (0.103), whereas the planet’s orbit
is almost circular (ep<0.03) (Orosz et al., 2012, p. 1). The binary’s semi-major is 0.1469AU
and the planet’s semi-major axis is 0.46AU (Orosz et al., 2012, p. 1). The planet’s orbit
has an inclination of <0.02◦ (Orosz et al., 2012, p. 1). The depth of eclipses of the binary
are 3% for the primary and 0.1% for the secondary (Orosz et al., 2012, p. 2). The depth of
eclipses for the planet is 0.05% (Welsh & Orosz, 2018, p. 11). The system is approximately
10 ± 3 billion years old (Orosz et al., 2012, p. 12) and consists of a primary main-sequence
star with a mass of M1 = 0.95M�. The primary is larger (1.76R�) than the sun, whereas
the secondary is a red dwarf (0.27R�) (Orosz et al., 2012, p. 1). It roughly has a quarter of
the mass of the sun (M2 = 0.249M�) (Orosz et al., 2012, pp. 11-12). The semi-major axis of
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the binary is 0.1469AU (Orosz et al., 2012, p. 10). The planet in the system is Saturn-size
(Orosz et al., 2012, p. 1). The planet and the binary parameters from observations are shown
in Tab. 3.1.

mass ratio q= M2/M1 period [days] ab [AU] eb
0.2626 18.8 0.1469 0.1032

mass [MJup] period [days] ap [AU] ep ip
0.34 105.6 0.46 < 0.03 < 0.2

Tab. 3.1: Top: Binary parameters of Kepler 38 from observations. Bottom: Planet parameters of Kepler 38
from observations (Orosz et al., 2012, p. 13)

3.2 FARGO3D – MHD Code

FARGO3D is a three-dimensional magneto-hydrodynamical (MHD) code. Protoplanetary
disks and the interaction of the disks with embedded planets can be quickly simulated
(Benítez-Llambay & Masset, 2016, p. 1). It achieves high speeds of processing by avoiding
data transfer, as the whole simulation fits on the memory of GPU(s) (Benítez-Llambay &
Masset, 2016, p. 1). On top of it, through automatic compilation to CUDA code, the code
can be modified without knowledge of GPU programming.

FARGO3D can solve numerous problems, e.g., single star systems or binary star systems.
One can create a specific setup subdirectory for the input parameters in order to structure
each problem (see Fig. 3.1). The FARGO3D algorithm then builds the setup with the
makefile using all the parameters given in the setup directory. The makefile was created
by the developers of the code and did not need to be modified. The code can then be
run by telling FARGO3D how many GPUs should be used with which parameters from the
parameter file. Thus the code does not need to be rebuilt if only parameters in the parameter
file are changed. One can use the output files created by FARGO3D to analyze, e.g., the
disk structure and the planet’s migration.

3.2.1 Main equations

FARGO3D can solve three-dimensional MHD equations on an Eulerian mesh. This mesh
can be cartesian, cylindrical, or spherical (Benítez-Llambay & Masset, 2016, p. 3). In this
Ph.D. thesis, the code is used as an HD code (see Sect. 2.2). Thus all magnetic field terms
can be neglected, and they become HD equations. The studies presented in Sec. 2.2.3, where
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Fig. 3.1: Structure and float chart for FARGO3D. Pictured are the input and output files. The focus is set
for the usage in this thesis, thus the float chart is reduced to the steps important for this work. Information
taken from Benítez-Llambay & Masset (2015b, pp. 15-16, 65-68).
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the state of the art of current 3D simulations is shown, have not included the magnetic field.
Thus to make it comparable with those previous studies, the magnetic field is neglected in
this thesis, too.

The gravity in the FARGO3D code is created by the objects in the planet file or the object
in the center of mass. Furthermore, the code is designed to simulate a migrating planet
in a non-self gravity disk. This means that the disk does not feel its own gravity, but the
planets feel the disk’s gravity (Benítez-Llambay et al., 2016, p. 5). This leads to the mutual
interaction of the planet and the disk. It is reasonable to ignore self-gravity as described in
Subsec. 2.2.3, since it is only important for disks larger than two times the MMSN (Pierens
& Nelson, 2018, p. 2558), with MMSN having masses between 0.01 and 0.1 solar masses
(Weidenschilling, 1977, p. 158) (see Subsec. 2.1.1).

In this thesis, the viscosity in the disk is modeled with the α-disk model by Shakura &
Sunyaev (1973, p. 338). Therefore, the kinematic viscosity is ν = αcsH with the parameter
α ≤ 1 (Shakura & Sunyaev, 1973, p. 338) (see Subsec. 2.1.1).

As a locally isothermal disk model is used, the (locally) isothermal equation of state is given
by:

P = c2sρ (3.1)

with the isothermal sound speed cs and the volumic density ρ. The field cs(r) = hΩk is con-
stant in time and it is set by the initial conditions (Benítez-Llambay & Masset, 2016, p. 3),
exactly like the aspect ratio h = H/r (see Fig. 3.2) and the Keplerian velocity of gas located
at distance r (Ωk =

√
GMbin/r) (Benítez-Llambay & Masset, 2015b, p. 36). Physically the

aspect ratio h is the vertical thickness of the disk H at distance r.

Fig. 3.2: Sketch of aspect ratio h and it dependence on vertical thickness H(r) and r.

In the (local) isothermal case, the Eq. 2.15 is decoupled from the others and does not need
to be solved (Benítez-Llambay & Masset, 2016, p. 3).
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FARGO3D coordinates are named X, Y, and Z independently of Cartesian, spherical, or
cylindrical coordinates. In this thesis, a spherical grid is used for the corresponding coordi-
nates see Tab. 3.2.

Geometry X Y Z
spherical azimuth (φ) radius (r) colatitude (θ)

Tab. 3.2: Correspondence between X, Y, Z and the spherical coordinate system (Benítez-Llambay & Masset,
2016, p. 3).

For stability reasons, information like density, energy, and momenta cannot travel over
more than one cell per time step (Benítez-Llambay & Masset, 2016, pp. 7-8). This is the
Courant–Friedrichs–Lewy (CFL) condition or the Courant condition (Benítez-Llambay &
Masset, 2016, p. 8), which is independent of substeps. It performs substeps; for example,
first, it updates the velocity field, and then viscosity is added (Benítez-Llambay & Masset,
2016, p. 6), as the code cannot calculate every hydrodynamical equation at once. However,
this means that the substeps performed per integration time step ∆t (performs a complete
cycle of hydrodynamic substeps) have to be limited (Benítez-Llambay & Masset, 2016, p. 8).

Heuristic methods are used to determine the maximum allowed time step in the FARGO3D
code. The maximum time step is (Stone & Norman, 1992, p. 768; Benítez-Llambay &Masset,
2016, p. 8):

∆t = C ·min

(∑
i

∆t−2i

)−1/2 (3.2)

where C ∈ [0, 1) is the Courant number and the different processes that individually limit the
time step are represented with ∆ti like sound waves, fluid motion, viscosity, etc. (Benítez-
Llambay & Masset, 2016, p. 8). The min-function takes the minimum of the sum, which
is calculated for each cell separately. The limitation most likely arises from the cells with
the smallest radii, as the angular velocity is largest there (Crida et al., 2007, p. 1181). In
FARGO3D this parameter is set to C = 0.44 which compromises between stability and speed
for a wide range of problems (Benítez-Llambay & Masset, 2016, p. 8).

Whereas the time intervals are required to fulfill the CFL condition, the real parameter DT
represents the time between two outputs (Benítez-Llambay & Masset, 2015b, p. 69). Thus,
the time interval DT can be sliced in many ∆t intervals to fulfill the CFL condition, allowing
the last interval to be smaller than the CFL condition to exactly fit DT (Benítez-Llambay
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& Masset, 2015b, p. 69). Therefore, DT can be smaller than the CFL condition and restrict
the time step manually by setting DT in the parameter file (Benítez-Llambay & Masset,
2015b, p. 69). One should avoid this for the code to run (Benítez-Llambay & Masset, 2015b,
p. 107). In this thesis, the time step DT is set to 1/10 of an orbit. Thus, the time step is
larger than the CFL condition as the units of this simulation are set to:

• semi-major axis of the binary orbit: abin = 1

• mass of the binary: Mbin = 1

• gravitational constant: G = 1.

Thus, the unit of surface density is M0/R
2
0 = Mbin/a

2
bin = 1. The binary orbit (Tbin) can be

calculated by the third Kepler’s law:

Tbin = 2π

√
a3b

G ·Mb

= 2π (3.3)

DT which represents 1/10 of an binary orbit is:

DT = 2π/10 > C(= 0.44) (3.4)

A fifth-order time-fixed Runge-Kutta method is used to simulate point-like masses which
interact with the gas (Benítez-Llambay & Masset, 2016, p. 15).

3.2.2 Numerical and physical setup

For the simulations in this thesis, the parameters chosen are similar to the parameters of
Kepler 38 to examine the evolution of the disk. For example, the simulations are done with
and without a planet, the disk mass is varied, or the setup is simulated with just one star in
the center. With those experiments, one can learn about the disk evolution and the planet
parameters.

In simulations with the planet, the planet gets inserted with its final mass MPlanet =

0.34MJupiter = 1.14MSaturn = 6.34MNeptune (see Tab. 3.1) at 0.98AU from the center of
mass. The planet interacts with the disk and the binary but does not accrete material.
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Surface density: The initial disk surface density is set to a Σ(r) = Σref(r/Rref)
−3/2 profile

for all models, where r is the distance from the binary’s center of mass, Rref is 1 aabin, and
the surface density at 1 aabin is Σref. The surface density depends on two parameters. Where
in this thesis, only the reference surface density (Σref) is varied, and the power-law (p) is
kept constant at -3/2. In this thesis the power-law p = −3/2 is chosen as it is a good
parameterization of the planet-forming regions (< 40AU) of the disk (Dullemond, 2013,
p. 3). Nevertheless, one has to keep in mind that this is only a commonly used assumption
(Dullemond, 2013, p. 3).
A test with p = −1/2 is done to verify the influence on the planet migration, at least in
the same scenario (see Appendix. 6.2). Later in this thesis, the dependency on the reference
surface density with a constant power-law of p = −3/2 is analyzed further.
Σref reflects the mass of the disk because the FARGO3D code takes the surface density as an
input and not the disk mass. The calculation of acquiring the surface density depending on
the disk mass is described in Sec. 3.2.3 and the calculation of acquiring the disk mass is shown
in Sec. 3.2.4. The disk mass is adapted from the minimum mass solar nebula, because the
combined stellar mass of Kepler 38 is approximately Mb = 1.2M� (Mprimary = 0.949M�).
Thus, it is a good approximation to assume the mass of the circumbinary disk to be the
same as the protosun (Kley & Haghighipour, 2014, p. 3).
The migration speed is directly influenced by the disk mass (Thun & Kley, 2018, p. 3); thus,
in this thesis, several different surface densities are simulated.
The initial surface density at 1 aabin is set to values between Σref = 6.2 · 104 g/cm2 (in
code units (CU) 1.257 · 10−4 Σ0 with Σ0 = M0/R

2
0 = 1) and Σref = 1.2 · 106 g/cm2 (in CU

2.514·10−3 Σ0). This initial surface density is corresponding to a disk mass between 0.005M�

and 0.1M� following the description of the disk mass (Dullemond & Dominik, 2004, p. 162):

Mdisk = 2πΣrefR
−p
ref

1

p+ 2

[
Rp+2

out −R
p+2
in

]
(3.5)

with the initial slope p = −3/2, Σ(r) = Σref(r/Rref)
p is the surface density as a function of

the radius and Rout/in is the outer/inner radius of the disk.

Limitations of the disk mass: The disks analyzed in this thesis do not represent the
majority of disks, as they are quite heavy. For example, the 0.01M� disk ranging from
0.1469AU to 2.1AU, corresponds according to Dullemond & Dominik (2004, p. 162), to
a disk mass of 0.09M� for a classical disk size ranging from 0.1469AU to 100AU. This
shows that rather heavy disks are simulated in this thesis, but there are a few heavy disks,
according to Beckwith (1990, p. 936).
When analyzing the even smaller 0.01M� disk between 0.19AU to 2.1AU, it is clear that it
is over-dimensional and unrealistic. Nevertheless, it is crucial to understand what happens in
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such an unrealistic case with fast evolution timescales. This is needed because long low-mass
simulations consume much computational time and are not feasible for this Ph.D. thesis.
Nevertheless, a search for trends is possible with these different disk masses. With knowing
those limitations, the results of the simulations are discussed later on.

Parameters: The viscosity parameter in the simulations is set to α = 0.01 leading to an
evolution fast enough to be numerically simulated (Kley & Haghighipour, 2014, p. 3). It is
varied to analyze the influence (see Sec. 4.3.4). Another disk parameter is H/r = 0.05 and
represents the aspect ratio of the disk. It is kept constant in all the simulations. The smooth-
ing parameter ε = 0.6 accounts for the finite thickness of the disk (Kley & Haghighipour,
2014, p. 3; Thun et al., 2017, p. 3). It is represented in the smoothed potential function
Φ ∝ −1/(r2 + ε2)1/2 with r being the distance to the gravitating object. In 3D simulations,
this parameter assures stability as with point-like masses in the disk, singularities through
diverging distances in the potential could arise (Masset, 2002, p. 608; Müller et al., 2012,
p. 1; Kley & Haghighipour, 2014, p. 3). For the shift of positions between the binary’s center
of mass and the origin of the coordinate system, indirect terms are used. They compensate
the fictitious force arising from frame acceleration (Masset, 2002, p. 608).
As an inner cavity develops, a density floor Σfloor = 10−13 (in code units) is used to avoid
numerical overflow, as the surface density drops significantly (Thun et al., 2017, p. 4). All
the simulations start at the periastron of the binary (Kley & Haghighipour, 2014, p. 3).

Computational domain: It ranges in the radial direction from Rmin = 1/1.3 ab =

= 0.15/0.19AU to Rmax = 14.28 ab = 2.1AU, in the azimuthal direction from −π to π

and from π/2-3H/R0 to 3H/R0+π/2 in the colatitude. The parameter abin is the semi-
major axis of the binary star and H/R0 is the disks aspect ratio at r = R0. As it is a scale
free unit system, R0 is 1.
The outer boundary abin = 2.1AU is close to the parameter used by Kley & Haghighipour
(2014, p. 3) and a good trade-off between computational time and size. Tests with a larger
outer boundary were performed, too. The results are quite similar; thus, for time efficiency,
the smaller setup is used (see Appendix 6.2).
The binary orbit is not included in the computational domain, which means the gas flow
from the disk onto the stars is not shown. This is an acceptable limitation as it is assumed
that there will be no circumstellar disks in tight binaries (Quintana & Lissauer, 2006, p. 1)
like Kepler 38. This setup leads to a time-efficient simulation. Nevertheless, the different
potentials and orbits of the stars are included in the simulations. As a rule of thumb, the
inner computational radius should be close to Rmin ≈ ab in a circumbinary disk model to
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have a realistic model (Thun et al., 2017, p. 8).
The resolution was tested through a convergence tests and is set in the main simulations to
216 × 512 × 39 grid cells (see Appendix 6.2). Thus the number of azimuthal cells (Nx) are
216, the number of radial cells (Ny) are 512 and the number of colatiute cells (Nz) are 39.
The grid is logarithmically spaced.

3.2.3 Surface density

The surface density is in direct relation with the disk mass (Σ ∼ Mdisk) and the size of the
disk (Σ ∼ (Rin, Rout)) (Dullemond & Dominik, 2004, p. 162). Thus, the density increases by
taking the same mass in a small disk instead of a large disk. Therefore, when simulating a
small disk with ∼2AU, while keeping the results comparable to an observed disk, one needs
to decrease the mass in the central region.

To calculate Σref in g/cm2 for the classical case presented in Dullemond & Dominik (2004,
p. 162) with a total mass of the disk of 0.012M� and a Rin = 0.15AU and Rout = 200AU
at Rref = 200AU, one needs Eq. 3.5 to calculate:

Σ(200AU) =
Mdisk

2π(2001.5) 1
−1.5+2

[
2000.5 − 0.150.5

]
= 2.18040 kg/m2

= 0.21804 g/cm2

(3.6)

This leads to a surface density at the inner radius:

Σ(0.15AU) = Σ(200AU)
(0.15

200

)−1.5
= 10615 g/cm2

(3.7)

This scheme can be used to calculated the surface density of any disk size and mass. Ex-
emplary, the values from Thun & Kley (2018) (Rin/out = 0.15/6AU with a total mass of
0.012M�) and from this thesis (Rin/out = 0.15/2AU with a total mass of 0.012M�) are
implemented (see Tab. 3.3).
In some of the literature, like in Thun et al. (2017, p. 4) and Thun & Kley (2018, p. 3), an
fgap (Günther & Kley, 2002, p. 555) as a dampening function is included:

fgab =
(

1 + exp
(
−r − rgap

0.1rgap

))−1
(3.8)
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where rgap is an approximate gap radius (∼2.5 abin) estimated by Artymowicz & Lubow
(1994, p. 651).

It already represents the gap that will be created by the binary (Thun & Kley, 2018, p. 3).
Neglecting this dampening function does not influence the outcome of the simulation, as the
cavity is a physical result of the binary interacting with the disk (Artymowicz & Lubow,
1994, p. 665; Thun et al., 2017, p. 4). Thus, this cavity is formed without the dampening
factor fgap, too. This will be shown later in this thesis when the results of binary simulations
are discussed (i.e., see Fig. 4.45). The dampening function only starts the simulation with a
starting curve closer to the observed one, saving computational time. To show the slope of
different surface densities over the disk radius, Fig. 3.3 was added. As expected, the surface
density is higher for smaller disks when the disk mass is kept constant.

The comparisons with surface densities that are used for 2D simulations are possible as the
vertical direction can be analytically modeled (Taha et al., 2018, p. 12). Thus in the 3D
case, a factor, which FARGO3D automatically implements, is scaling the density depending
on the distance to the mid-plane (Taha et al., 2018, p. 12):

h(r) =
H(r)

r
=

(
H
( r

R0

)1+β)
· 1

r
= h

( r

R0

)β
(3.9)

with h being the aspect ratio (H/R0) and β the flaring index. In this thesis, the flaring index
is always zero; this is a common assumption for models (Pierens & Nelson, 2018, p. 2549).
Furthermore, Thun et al. (2017, p. 3), Thun & Kley (2018, p. 2) and Kley & Haghighipour
(2014, p. 3) made the same assumption of a constant aspect ratio, and with their results,
the results in this thesis are mainly compared.
The reference surface density, the aspect ratio, and the flaring index are all input parameters
needed from the FARGO3D code; the code can calculate all required and dependent values.

Tab. 3.3: Surface density of different disk sizes and masses at the inner boundary of 0.15AU. The calculations
where done analogue to Eq. 3.6 and 3.7. Except of the last line, this was calculated from the values presented
by Thun & Kley (2018, p. 3) with Σref = 1.67535 ·10−4 ·1.2 ·M�/(0.15AU)2 multiplied by the fgap function.

Rin/out and disk mass Σ(0.15AU)
0.15/200AU and 0.012M� 10615 g/cm2

0.15/6AU and 0.012M� 70842 g/cm2

0.15/2AU and 0.012M� 142261 g/cm2

0.15/6AU and 0.012M� with fgap 196 g/cm2
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Fig. 3.3: Slopes of the surface density of different disk sizes and masses. The same disks as in Tab. 3.3 are
displayed. In the outer part of the disk, the densities are similar, but the surface density strongly differs
in the inner region. The blue curve shows the surface density of a classical disk described in Dullemond &
Dominik (2004, p. 162) adapted to a total mass of 0.012M�. Thus if one wants to simulate a similar but
smaller disk, one needs to decrease the mass. The orange curve displaces the surface density for a similar
mass but a smaller disk. This disk is similar to the disk implemented by Thun & Kley (2018, p. 3). The
green curve shows the surface density very similar of one of the setups used in this thesis. The red curve
shows the case of Thun & Kley (2018, p. 3), but with the damping factor fgap.

3.2.4 Disk mass

The disk mass is not given as output directly but can be calculated from the gas densities.
In case of the spherical output generated by FARGO3D one needs to calculate the volume
of each cell:

dV = dx dy dz = dr r dθ r sin θ dφ = r2 sin θ dr dθ dφ (3.10)

and then multiply it by the density of that volume. This has to be done for the entire disk,
and the sum results in the total disk mass.

One could also do a transformation to linearly spaced Cartesian Coordinates (see Sec. 3.2.7).
Then it is possible to calculate the size of a cell. Therefore, in the transformed output file
with the gas densities all the values of the cell need to be summed and then multiplied with
the factor mtrans (see Eq. 3.11).

mtrans =
M0

R3
0

· (size_of_cell_CU ·R3
0) (3.11)

where M0 is the combined mass of the central stars which is 1 in CU, R0 is the reference
distance to the center of mass which is also 1 in CU and size_of_cell_CU is the size of

41



Chapter 3. Setup of the Kepler 38 FARGO3D simulations 3.2. FARGO3D – MHD Code

one cell. The calculation how to get size_of_cell_CU is explained in the Sec. 3.2.7. To
transform the CU in CGS units the equivalents for those values need to be inserted.

To calculate the starting disk mass from the simulation results, one needs to use the gas
densities at t = 0. The starting disk mass at t = 0 can be analytically calculated for the
setup, too. Therefore, the density taken from Taha et al. (2018, p. 6) is integrated over
cylindrical coordinates.

M =

∫ ∫ ∫
ρ(r, z) r dr dφ dz

= 2π

∫ ∫
Σ(r)

H(r)
√

2π
r exp

(
−1

2

(
z

H(r)

)2
)
dr dz

(3.12)

with Eq. 3.9 and the surface density as function of the radius:

Σ(r) = Σref

(
r

Rref

)p
(3.13)

the function of the mass can be written as:

M =
2π√
2π

Σref

H
Rβ+1−p

ref

∫ ∫
rp−β exp

(
−1

2

z2

H2

r

Rref

−2−2β
)
dr dz (3.14)

The term in the exponent can be rewritten:(
−1

2

z2

H2

r

Rref

−2−2β
)

= −
(

z2√
2H2

r

Rref

−1−1β
)2

(3.15)

so that the term inside the brackets can be substituted by Z leading to dz =
√

2H(r/R0)
(1+β)dZ.

Multiplying and dividing the mass function by 2/
√
π leads to:

M =
√

2π

√
π

2

Σref

H
Rβ+1−p

ref

∫
rp−β

∫
2√
π
exp (−Z)2

√
2H

r

Rref

(1+β)

dZ dr (3.16)

with
∫

2√
π
exp (−Z)2 dZ being the Gaussian error function. If this function is integrated from

minus infinity to plus infinity the result is two (Andrews, 1997, p. 110). This leads to:

M = 2πΣrefR
−p
ref

∫
rp−β

∫ Rout

Rin

r1+p dr

= 2πΣrefR
−p
ref

1

p+ 2

[
Rp+2

out −R
p+2
in

] (3.17)

which is the same function as in Dullemond & Dominik (2004, p. 162) (see Eq. 3.5). Even
so Dullemond & Dominik (2004, p. 162) uses the 2D case and Eq. 3.17 is the 3D case where
the scale height is parametrised. Now with that value one has the z information and thus a
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3D description of the disk.

With β = 0 and p = −1.5 Eq. 3.17 simplifies to

M = 4πΣrefR
1.5
ref

[
R0.5

out −R0.5
in

]
. (3.18)

This last Eq. 3.18, with the values for the setup, results in the total disk mass.

For calculating the total disk mass, the Cartesian transformed approach is possible. However,
for calculating only the mass of the inner disk, this approach becomes less accurate (see
Tab. 3.4). The transformation to linearly spaced Cartesian Coordinates loses information,
especially towards the inner parts (see Sec. 3.2.7).

Tab. 3.4: Disk mass calculated with the different methods. As an example, the results of a binary setup
with Rin/out = 0.19/2.09AU and Σref = 2.51390456 · 10−4 is used. This setup will be discussed further in
Sec. 4.3.5. First column: analytically (see Eq. 3.18). Second column: directly from the spherical coordinates
FARGO3D output file. Third column: from the transformed FARGO3D output file to a linearly spaced
Cartesian grid. In brackets the derivation to the analytically calculated mass is displayed.

disk size masscalc [M�] masssph [M�] masseCart [M�]
0.19 - 2.09AU 0.010305 0.0099543 (-3.40%) 0.0099852 (-3.10%)
0.19 - 0.3AU 0.001141 0.0010961 (-3.94%) 0.0014257 (24.95%)
0.19 - 0.5AU 0.002768 0.0026645 (-3.74%) 0.0031147 (12.53%)
0.19 - 0.6AU 0.003457 0.0033302 (-3.67%) 0.0038052 (10.07%)

3.2.5 Boundary conditions

In a polar-coordinate and spherical-coordinate grid, Rmin cannot be zero; therefore, all sim-
ulations using this kind of grid will have a computational hole in the domain (Thun et al.,
2017, p. 5). Thus, in every simulation there is an inner boundary. The inner boundary
condition can have a significant influence on the outcome of the simulations (Thun et al.,
2017, p. 5), e.g., the inner cavity is highly influenced by the location of the inner boundary
(Thun et al., 2017, p. 5). Previous studies by Thun et al. (2017, p. 7) analyzed this problem
and found approaches to minimize the effect of the inner boundary condition.

In the simulations done in this thesis, the outer boundary condition is closed, which does not
allow a mass flow. The inner boundary is open. This means the gas can leave the compu-
tational domain, but it is not accreted onto the stars. The mass of the stars stays constant
over all simulations. For the open inner boundary, the Keplerian extrapolation is used; as
the simulation is in 3D, the extrapolation is on ρ (volumic density). At the mid-plane, it
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follows a power-law with the exponent SIGMASLOPE+1. Due to strong binary-disk in-
teraction, there is no well-defined Keplerian velocity at the inner boundary. This is why a
Keplerian extrapolation boundary condition is also used for the angular velocity Ωφ = uφ/R

with uφ being the azimuthal velocity, which is periodic in the φ direction (Thun et al.,
2017, p. 4). Also, in the colatitude, a Keplerian extrapolation is used, which means, e.g.,
the volumic density ρ at the mid-plane is extrapolated with a power-law slope to the ghost
cells (Kimmig, C. N. et al., 2020, p. 3). Outside of the mid-plane, the extrapolation is no
longer a simple power-law. An open inner boundary is needed because of numerical and
physical reasons. Previous studies by other authors showed that closed inner boundary con-
ditions could lead to unstable numerical results (Thun et al., 2017, p. 7). In the case of a
closed boundary, there would be no mass flow through the inner gap (Thun et al., 2017, p. 7).

In the FARGO3D code, a damping criterion for the boundary conditions is included. This
means that this criterion takes cells from the active mesh and adds a damping region between
the ghost cells and active cells (Benítez-Llambay et al., 2016, p. 3). The ghost and buffer
cells (each three cells wide) are the cells where the boundary conditions are applied (Benítez-
Llambay & Masset, 2019). The buffer cells should not be confused with the damping region.
Those buffer cells are defined as the three outermost cells of the active mesh. The active mesh
is defined by Nx, Ny, and Nz (Benítez-Llambay & Masset, 2019). The damping criterion is
called STOCKHOLM, and it activates the wave-killing recipe of De Val-Borro et al. (2006,
p. 533):

dx
dt

= −x− x0
τ

R(r) (3.19)

where R(r) is a parabolic function (0 inside the wave-killing zone inside the domain and 1
at the domain boundary), τ is the orbital period of the boundary, and x is either the surface
density or the velocity components. This damping criterion does not conserve mass, but the
loss is very small (De Val-Borro et al., 2006, p. 533). This criteria only becomes necessary
when there is a solid inner boundary (De Val-Borro et al., 2006, p. 533). As this is not the
case in this thesis, using the condition is optional. Thus, it needs to be tested how the results
are influenced. It is designed to damp disturbances near the boundary of the mesh and is
set in the FARGO3D code to 10% of the radius of the mesh (Benítez-Llambay & Masset,
2019). The size of the dampening zone depends on the size of the of the mesh in the radial
direction (Benítez-Llambay & Masset, 2019). The decision of the usage of the damping of the
boundary condition depends on each setup and the science goal (Benítez-Llambay & Masset,
2019). In the following, simulations with and without this condition are made. Because of
the small computational area, this criterium has a significant impact on the results. Using
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the Stockholm condition in this setup, it damps the set boundary conditions so much that
the set boundary parameters do not influence the simulation anymore. Thus the results are
all the same, no matter which set boundary condition is used. If the Stockholm condition
is not used, the boundary conditions of the setup are dominant. In the simulations, the
boundary conditions are set to lead to a decreasing disk mass over time.

Thun et al. (2017, p. 7) investigated the optimal location of Rmin with 2D FARGO3D sim-
ulations. In their study, they focused on computational efficiency and reliable results. Con-
cluding, all major mean-motion resonances should be inside of the computational domain
to obtain physical solutions. Especially the 3 : 1 Lindblad resonance needs to be inside this
domain, as it is important for the disk eccentricity (Thun et al., 2017, p. 7; Pierens, A. &
Nelson, R. P., 2013, p. 16).
Another finding was that there is an increase of surface density at the inner radius with a
smaller inner radius (Thun et al., 2017, p. 7). Thus, the material can leave the computational
domain through a smaller area. Consequently, a too large Rmin allows too much mass to leave
the computational domain. Thus it has to be chosen small to show all the dynamics. This
will be discussed in more detail in the next section. Nevertheless, the surface density profile
did not depend on the location of the inner boundary in their studies (Thun et al., 2017, p. 8).

Regarding the outer radius Rmax, it should have a value large enough to not interfere with
the dynamical behaviour of the inner disk (Thun et al., 2017, p. 8). Thun et al. (2017, p. 8)
adopted Rmax = 4.0AU. In this thesis Rmax = 2.1AU is used which is similar to Kley &
Haghighipour (2014, p. 7) but smaller than Thun et al. (2017, p. 8). Tests with a larger
outer boundary were performed, too. The results were quite similar; thus, for time efficiency,
the smaller setup is used (see Appendix 6.2).

3.2.6 Transformation Code Units (CU) to CGS units

Very crucial for analyzing the results is the correct transformation from CU to CGS units.
Test simulations with the standard single star setup were done to understand the transfor-
mation. Depending, if one wants to have results in CU or CGS units, one has to select for
compiling "make UNITS = 0 RESCALE = 0" in the first case and "make UNITS = CGS
RESCALE = 1" in the second case. The keyword "RESCALE = 1" enables FARGO3D to
produce the result already in physical units. This allows one to test the correctness of the
transformation of units. As a test, values at the same location for the different unit systems
and different evolution times of the binary (Tbin) were picked, and the following transforma-
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tion formulas were tested. In all simulations, the results at the same location need to be the
same no matter which unit system was used. This was confirmed with this very fast and
basic test.

In this thesis, the transformation of the binary setup is of interest, but testing the trans-
formation of units only works in the single star setup with a default star. In this case, the
FARGO3D code places a star with a defined mass in the center of mesh of the simulation.
The transformation has to be performed manually as soon as the stars are inserted in the
planetary file because FARGO3D uses the mass of the default star as a mass reference for
the transformation. The input needs to be in CGS units to get CGS units directly from
FARGO3D in the binary case. This was not done, as the input parameters in CU are sim-
plified.
To transform the gas density from CU to CGS units one has to multiply each cell by a
multiplication factor ρtrans defined by:

ρtrans =
M0

R3
0

=
Mbin · 1Msun

(abin · 1AU)3
(3.20)

It already includes the variables for the binary transformation, but for the single setup
these values for abin and Mbin are assumed 1. The units for Msun and Astronomical Unit
(AU) were CGS in Units. The same holds for the following multiplication factor.

To transform the velocities from CU to CGS units one has to multiply each cell by a multi-
plication factor vtrans defined by:

vtrans = Ω · (R0) =

√
GM0

R3
0

· (R0) =

√
GMbinMsun

(abinAU)3
· (abinAU) (3.21)

It could be confirmed that the transformation was done correctly (see Fig. 3.4 and Fig. 3.5).
With this knowledge, the simulations can be analyzed.

3.2.7 Transformation from Spherical to Cartesian coordinates

This subsection tests whether the calculation of the size of a cell in code units in a linearly
spaced and Cartesian grid simplifies the calculating and plotting of the results. Therefore, the
spherical logarithmic spaced output file coming from FARGO3D needs to be transformed. To
do this transformation, Pablo Benitez-Llambay (Co-Developer of the FARGO3D code) devel-
oped a script that can be publicly accessed (https://bitbucket.org/pbllambay/f3d2x3d/
src/master/ Accessed: 2021-03-10). With this transformation, the cells become linearly
spaced on a 600x600x40 grid (see Fig. 3.6). Knowing the grid size of this linearly spaced
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Fig. 3.4: Density transformation CU to CGS units at different coordinates inside the disk. The differ-
ence between the transformation done by the FARGO3D code automatically with "make UNITS = CGS
RESCALE = 1" (triangles) is the same as the transformation done manually in this thesis (dots) with "make
UNITS = 0 RESCALE = 0" and then manually transformed with Eq. 3.20. It was tested for five different
coordinates in the disk at the mid-plane at two different times (Tbin = 1 and Tbin = 101).

Fig. 3.5: Velocity transformation CU to CGS units at different coordinates inside the disk. The differ-
ence between the transformation done by the FARGO3D code automatically with "make UNITS = CGS
RESCALE = 1" (triangles) is the same as the transformation done manually in this thesis (dots) with "make
UNITS = 0 RESCALE = 0" and then manually transformed with Eq. 3.20. It was tested for five different
coordinates in the disk at the mid-plane at two different times (Tbin = 1 and Tbin = 101).
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grid and the size of the mesh used to compile the code, one can calculate the size of a cell.

Fig. 3.6: Sketch of linearly spaced grid cells after the transformation. The size of each cell can be calculated
by knowing the dimensions of the disk and the number of cells in each direction. The yellow disk displays
the simulated area. Thus, the grid is equally spaced within the computational area and outside. The red
cubes visualize the three dimensions of the grid.

After that transformation, one can calculate the cell size in xy direction with:

(14.28 · 2)/600 = 0.0476CU (3.22)

14.28 is the radius of the disk in CU, which was the input in the FARGO3D setup file (see
Appendix 6.2). In the transformed Cartesian grid, one can calculate the size of each cell
in xy direction by dividing the diameter of the disk through the numbers of cells which are
linearly spaced within that disks diameter.

One has to use the mesh’s borders in the code to calculate the size of the cell in z direction,
which is 3 H/r. To get the max height of the disk, one has to multiply 3 H/r (3 · 0.05) by
the radius of that disk. As the disk extent is symmetrical to the mid-plane in z direction,
one needs to multiply everything by two before dividing it by the number of cells in the
z direction.

(0.15 · 14.28 · 2)/40 = 0.107CU (3.23)

By comparing the transformed results with the results without using the transformation code
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to space each cell linearly, one can see the results are visually the same; just at the edge of
the disk, the transformed file is less accurate (see Fig. 3.7). At first glimpse, for displaying
the results, this limitation is acceptable. However, this transformation becomes inaccurate
for calculating the disk mass and later the force on the planet. As shown in Sec. 3.2.4, the
transformation in the inner region of the disk deviates more the closer one comes to the
inner edge. This is because the resolution is lost at the inner edge (see Fig. 3.8). The 39
cells of the disk in the FARGO3D simulation get linearly spread over 40 cells. Now at the
inner edge, the disk only fills the inner cells of the linearly spaced Cartesian grid. Thus
the resolution is drastically reduced. This is also visible when performing a subtraction of
the mid-plane and plotting the results at point unequal zero (see Fig. 3.9). Thus, using the
transformation code for a linearly spaced Cartesian grid needs to be handled with care as
the resolution is influenced and thus the result. If one wants to use this code in the future,
one needs to test whether an increase of resolution solves that problem.

Fig. 3.7: The volume density distribution of the z plane of a binary setup at Tbin = 0. (left) Plotted directly
from the density output file from FARGO3D and then transformed into Cartesian coordinates. (right)
Plotted from the transformed density file with the Code by Benitez-Llambay, all cells are equal size.
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Fig. 3.8: Disk with Cartesian Grid vs. polar grid of the z plane. For simplicity reasons, the drawing is in
2D. (red) Cartesian coordinates. (grey) polar coordinates. One can see that the size of each cell varies for
the polar coordinates. This is also true for the spherical coordinates. More importantly, one can see that the
resolution of the grid is much less in the inner region with the transformed linearly spaced Cartesian grid.

Fig. 3.9: The volume density distribution of the z plane of a binary setup plotted at Tbin = 17, where the
mid-plane is subtracted. (left) Directly plotted from the volume density output file from FARGO3D and
then transformed into Cartesian coordinates. (right) Plotted from the transformed volume density file with
the code by Benitez-Llambay, all cells are equal in size. Even so, the color-code and the unit ranges are
different; one can see the significant differences.

50



4 Results of the FARGO3D
simulations

The Kepler 38 system is analyzed with 3D simulations in this section. Different simulations
with varied parameters were run to understand how the system evolved towards today’s
observed status.

As mentioned before, the Kepler 38 system hosts a planet with an inclination smaller than
0.2◦ (Kley & Haghighipour, 2014, p. 2). Previous studies by Kley & Haghighipour (2014)
and Thun & Kley (2018) were assuming that 0.2◦ (Orosz et al., 2012, p. 10) is small enough
to simulate the system in 2D as they were focusing mainly on the planet migration. Here
the focus is on very small effects using the 3D code. Usually, those effects are neglected,
for instance, in the papers mentioned earlier. However, with a 3D code, it is possible to
investigate those effects. In this thesis, the focus is on understanding the origin of those
small characteristics, i.e., the gas distribution in z direction and movement of the planet in
the z direction. Furthermore, the hydrodynamic and gravitational interactions between the
planet, the host disk, and the stars are investigated.
At the beginning (t = 0Tbin), in all the simulations, the binary orbit and the disk’s mid-plane
are always aligned. Moreover, the planet’s orbit is also initially aligned with the binary orbit
and the mid-plane of the disk (z = 0). In this thesis, two types of inclination are considered:
the mutual inclination of the angular momentum vectors (see Fig. 4.1 i1) and the angle
coming from the displacement of the planet in the z direction towards the mid-plane (i2).
Thus, if the planet is no longer in the mid-plane, the angle between the angular momentum
vectors of the binary and the planet is considered as inclination as well as the angular offset
towards the binary orbital plane (mid-plane).

4.1 The case of the single star system (default case)

The single star setup with a default case enables testing the simulation results and the self-
written codes for this Ph.D. thesis. Moreover, it validates the transformation of units and
the stringency of the analyzing codes written during this thesis (see Chapter 3).
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Chapter 4. FARGO3D simulations 4.1. Single default case system

Fig. 4.1: Sketch of setup. Initially, the binary and planet (red dot), as well as the disk, are aligned.
Later, the planet becomes misaligned; therefore, two different kinds of inclination are discussed. First, the
inclination between the angular momentum vector of the binary (which is also the normal vector to the
computational mid-plane as the binary components are kept aligned in this plane, orange arrows) and the
angular momentum vector of the planet (black arrow) is indicated through i1. Second, the inclination angle
displays the offset of the planet towards the mid-plane is indicated trough i2.

In the FARGO3D CU single star setup, which is used in this thesis, the term Tbin = 2π is
an absolute reference time and is therefore also valid in the single star setup.

4.1.1 Velocity field

The velocity vectors of the setup with just a central star and a disk were analyzed. The
transformation to CGS units was performed with Eq. 3.21. The vector field was plotted after
the time unit 1 Tbin (see Fig. 4.2). The shape is expected; one can see a higher velocity at the
inner region and a slower at the out regions as expected of a disk in Keplerian rotation. This
is quantitative analysed by plotting the azimuthally-averaged radial velocity as a function
of the radius. This is then compared with the analytical solution of the Keplerian velocity
(Ω2

k = GM/r) (Armitage, 2007, p. 17)) (see Fig. 4.2). No further analysis of the vector field
is intended. It will be later used, e.g., to calculate the angular momentum vector of the disk
and the total force derivated from the first Newtonian law. Therefore, it is important to
check whether the data is extracted correctly, and this is the case here.

4.1.2 Boundary conditions with Stockholm vs. no Stockholm

condition

Calculating the disk mass over time (Sec. 3.2.4) showed that the boundary conditions are
too much damped with the Stockholm condition (see Sec. 3.2.5). Especially in the binary
case, this has a significant impact on the results. This is discussed further in Sec. 4.3.

For the single star case, the simulation was run one time with Stockholm and one time
without Stockholm (Sec. 3.2.5) with an initial disk mass of 0.01M�. In those simulations
the mass develops differently over time (see Fig. 4.3).
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Fig. 4.2: (right) The growing vector size towards the center of the plot is expected, as the disk is in Keplerian
rotation. The vectors shown are normalized. (left) The velocity from the simulation is plotted against the
radius, and the velocity is analytically calculated. The figures displace the disk at 1Tbin.
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Fig. 4.3: The plot shows the development of the disk mass over time. In the case of Stockholm conditions
turned on (orange plot), the disk’s mass is slowly rising, as the open inner boundary condition and the
closed outer boundary condition are damped and thus have no influence on the result. This leads to an
increase of mass of 0.7% over 15.3 years. With the Stockholm conditions turned off (blue plot), the set
boundary condition can function properly, and the disk mass drops over time. The mass reduction is 7.7%
over 15.3 years. The single star setup is used with the default star in the center of the grid, and the inner
boundary location is at 1.3 code units. On the top axis time is indicated in earth years, on the lower in
binary revolutions.
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Chapter 4. FARGO3D simulations 4.1. Single default case system

This dampening of the boundary conditions through the Stockholm condition also influences
the planet parameter (see Fig. 4.4). Nevertheless, the planet migrates towards the central
star with a low eccentricity and almost no inclination in both cases. This is expected for the
singular case. In the following paragraphs, the singular case is only discussed without the
Stockholm condition, as the Stockholm criterion only becomes necessary for a closed inner
boundary (De Val-Borro et al., 2006, p. 533). As this is not the case here, the dampening
condition is unnecessary. Nevertheless, in this thesis it will be analyzed to see correlations
depending on mass.
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Fig. 4.4: In these plots the different planet parameters are displayed. In the top left plot one can see
that the migration of the planet is similar with and without the Stockholm condition. The same holds for
the movement in the mid-plane in the top right plot. The planet eccentricity in the bottom left plot is
slightly different between the two setups, whereas the inclination from the mid-plane in in degree overtime
is influenced by the boundary condition significantly more (see the bottom right plot). It is calculated as
the angular offset from the binary orbital plane through i2 = tan(z/R), where R and z are the radial and
vertical positions of the planet in the grid. Compared to later simulations with a binary, those inclination
regimes are negligibly small. The cause of the inclination is discussed later. In all plots the same setup as
in Fig. 4.3 (without Stockholm condition) is used. Thus the single star setup with default star in the center
of the grid, the disk mass is 0.01M� and the inner boundary location is at 1.3 code units. On the top axis
time is indicated in earth years, on the lower in binary revolutions.
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4.1.3 Angular momentum of the disk

The results of the single star setup are used to analyze the disk’s angular momentum and
validate the self-written python analyzing code. The star in the center of mass is not rotating.
Nevertheless, it is assumed that the star’s angular momentum corresponds to the normal
vector, which is perpendicular to the mid-plane of the disk. In a single star system that
was initialized co-planar with the mid-plane of the disk and the planet, one would expect
that the vectors of the star’s angular momentum (in this thesis: N which equals the normal
vector) are aligned with the angular momentum of the disk. The angular momentum of
every disk cell is calculated with the following formula:

L = mr× v (4.1)

with the knowledge of the gas density distribution and the velocity field. The resulting
vector and the normal vector can be used to calculate the mutual inclination (i1) between
those vectors:

i1 = arccos

(
N · Ldisk

|N||Ldisk|

)
(4.2)

All results from the simulations were first transformed into CGS units. For the mid-plane,
the results can be shown graphically (see Fig. 4.5). Therefore, the vectors for each cell in
every plane are calculated and then summed up, resulting in an angle of ∼ 0.0000444◦ after
17 binary revolutions, which is numerical noise and negligibly small. More evolved cases are
tested for the single star setups without the default star.

4.1.4 Angular momentum of the planet

The angular momentum of the planet and star can also be calculated. Again the results of
the simulations with a single star system with default star and an inner boundary location of
1.3 code units are used. The mutual inclination between the angular momentum vector of the
planet and the normal vector (0,0,1) is shown in Fig. 4.6. Again the angle is negligibly small
and results out of numerical noise. The degree of inclination calculated with the formula for
the angular momentum results in the same regime, as calculating the degree of inclination
from the angular offset from the binary orbital plane (see Fig 4.4 (bottom right plot, without
Stockholm condition)). This is expected as those are two different methods to display the
same physical effect, i.e., the displacement of the planet from the mid-plane.
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Fig. 4.5: Mutual inclination in degree between the angular momentum of each cell of the disk and the
normal vector in the mid-plane. The initial disk mass is 0.01M�. For the single star setup with planet
the inner boundary is set to 1.3 abin and no Stockholm condition is used. As expected the disk’s angular
momentum vector is parallel with the normal vector in the disk’s mid-plane. Only close to the planet and
along the spiral arms it is slightly not zero. The time is indicated on the top of the figure.
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Fig. 4.6: Mutual inclination in degree between the angular momentum vector of the planet and the angular
momentum vector star (normal vector) for a 0.01M�. It is the same simulation as in Fig. 4.5. On the top
axis time is indicated in earth years, on the lower in binary revolutions.
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4.1.5 Force on a planet

A code was written to calculate the force on the planet coming from the disk and the star
(later in the binary case from the stars). This code uses the simulation results and the
following equations:

Fstar = G
Mstarmplanet

d3star_planet
dstar_planet (4.3)

Fdisk = ΣijkG
Mcellmplanet

d3cellijk_planet
dcellijk_planet (4.4)

with Mstar/cell being the mass of the star/each cell, mplanet being the mass of the planet and
dstar_planet/cell_planet being the distance between the location of the star/each cell and the
location of the planet.
The results of the combined forces in the single star setup for two different disk masses are
shown in Tab. 4.1. The force from the default star on the planet at Tbin = 0 is mainly in
x direction. For example, for the setups with 0.01M� and 0.1M�, the force from the central
star in x direction is −4.42 · 1029 g cm/s2 (CGS units). This number is reasonable, as the
star and the planet are aligned on the x axis, and the star is at the center of mass. If one
calculates the force with the analytical formula, one gets −4.25 · 1029 CGS units which is
in the same regime. The direction of the force acting on the planet is along the negative
x axis. Focusing on the disk at Tbin = 0, the disk should be homogeneous, and thus the
force in z direction from the disk should be zero. As a result of the numerical experiment,
the gas distribution in the disk is not completely homogeneous. Thus those small differences
add up and for a simulation with a starting disk mass of 0.01M� the force vector is at the
beginning of the simulation (−3.57 ·1018, 2.97 ·1016,−3.57 ·1017) CGS units. The forces along
the y and z axis are orders of magnitude below the force along the x axis. The force of the
0.01M� disk in z direction is −3.57 · 1017 which is 10x smaller than the force coming from
the 10x heavier 0.1M� disk in z direction (−3.57 · 1018).
The analyzing codes written for this thesis work can now be transformed for a setup with
no default star. The single star setup with no default star is later transformed to a binary
setup.

4.2 The case of the single star system (no default case)

The previous section looked at the results of a default single star system, which is good
for testing the code and the transformation from CU to CGS units. In a second step, the
feature of FARGO3D to remove the default star is used. All simulations in this section were
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Tab. 4.1: Force in CGS units in x,y,z direction on planet at different Tbin for different disk masses.
0.01M� 0.1M�

Tbin = 0 x
y
z

-4.42·1029

2.97 ·1016

-3.57·1017

-4.42·1029

2.97·1017

-3.57·1018

Tbin = 17 x
y
z

-4.45·1029

1.89 ·1027

-4.51 ·1019

-3.83·1029

-3.37·1029

-1.65·1020

Tbin = 910 x
y
z

-4.36·1029

-2.09 ·1029

-9.83·1022

3.66·1029

-4.54·1030

1.01 ·1024

performed with the Stockholm condition turned off. With FARGO3D, one can define planets
and stars in the planet file in the code. The code detects through the mass of the object, when
a star or a planet is added. For this purpose, the code checks whether the object is bigger or
smaller than an arbitrary threshold (e.g. 0.05·MSTAR) (Benítez-Llambay & Masset, 2015b,
p. 50). In this setup, MSTAR is set to 1. Thus it is, for example, possible to add one star
with planets or multiple stars with planets. In this thesis, the focus is on adding one star with
and without a planet and adding two stars as a tight binary system with or without a planet.

The scenario in this section with a single star is the benchmark scenario, as the setup results
of the single star system can be compared with the results of the binary setup later. This
enables one to confirm the physical nature of the observed objects. One has to be careful
only to compare the single case without the Stockholm condition with the binary case with-
out the Stockholm condition. Nevertheless, comparing two simulations needs to be handled
carefully, as the planet is at different locations in the single and binary case with respect to
the central star object(s). Of course, the simulations were also run for the setup with the
Stockholm condition. Those results are discussed later, directly comparing it to the binary
setup.

For the single star setup, the star is put with a distance of zero to the center of the grid in
the planet file. As the center of mass is the center of the mesh, the star needs to move around
that center, as the center of the mass of the system considers the mass of the planet and
the mass of the star. This leads to a tiny movement of the star on the mesh (see Fig. 4.7).
Everything else is kept the same towards the previous setup.
In the single star system, one can see spiral arms and the migration of the planet towards
the star-like expected (see Fig. 4.8 and Fig. 4.9). This has been discussed lengthily in the
past by publications of other authors, e.g., Cresswell et al. (2007) and Kley & Nelson (2012)
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Fig. 4.7: Plots of stellar parameter for a star in a 0.01M� disk and 0.1M� disk. The top plots show the
stellar movement in the xy plane (astar and movement in xy axis), and the bottom plot shows the stellar
movement in the z plane (inclination of the star with respect to the mid-plane). For the lighter disk, the star
moves closely around the center of mass. In contrast, the star with the heavier disk has a larger semi-major
axis and thus larger movement in the xy axis. Nevertheless, it is still close to the center of mass. This
movement of the stars seems large compared to the lighter disk, but if one looks at the axis displacement
of the star, one can see that it is still very close to the center of mass and very far away from the inner
boundary location. This simulation of a single star system is without a default star, the boundary location
is 1.3 abin and the Stockholm condition is turned off. On the top axis time is indicated in earth years, on
the lower in binary revolutions.
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and in Sec. 2.1.3.

Fig. 4.8: Evolution of the 0.01M� disk (top) and a 0.1M� disk (bottom) single star disk shown in a
two-dimensional surface density plot at the mid-plane with an isothermal simulation and a planet (indicated
through the cross). The perturbations of the surface density at different times are shown. It is color-
coded with the logarithm of the gas surface density at the mid-plane. The white areas are outside of the
computational domain. The plots are 4.2×4.2 AU in size. On top of each figure, time is indicated as a
multiple of the orbital period. One can see the spiral arms and the migration of the planet. The setup is
used like in Fig. 4.7

The angular momentum of the whole 0.01M� disk at Tbin = 910 is 2.21·1051 g cm2/s. The
angular momentum of a disk ten times heavier is 2.21·1052 g cm2/s. This is expected as a
10x heavier disk leads to a 10x larger angular momentum (see Eq. 4.1).

The mutual inclination of the disk’s angular momentum vector and the normal vector in
the single stare case is quite small (see Tab. 4.2). The mutual inclination of the planet’s
angular momentum vector and the star’s angular momentum vector in a 0.01M� and 0.1M�
disk is displayed in Tab. 4.3 for 17Tbin and 910Tbin. Those tables display a negligible small
inclination compared with the results later in the binary case. This can be further analysed
by looking at the mutual inclination over time in a 0.1M� disk (see Fig. 4.10). One can see
how small the mutual inclination between the normal vector and the angular momentum
vector of the planet is. This also holds for the force on the planet resolving from the star
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Fig. 4.9: Plots of planet parameter for a planet in a 0.01M� disk and 0.1M� disk. The top plots show
the planet movement in the xy plane (ap and movement in xy axis), and the bottom plot shows the planet
movement in the z plane (inclination of the star with respect to the mid-plane). This simulation of a single
star system is without a default star, the boundary location is 1.3 abin and the Stockholm condition is turned
off, like in Fig. 4.7. On the top axis time is indicated in earth years, on the lower in binary revolutions.
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and the disk (see Tab. 4.4). Again in this setup, the force in z direction coming from the
disk is for the 10x lighter disk roughly 10x smaller than for the 10x heavier disk.

Tab. 4.2: Mutual inclination in degree of the normal vector and the disk’s angular momentum vector at
different Tbin for different disk masses. The normal vector is used as the star has only a inclination of 0.001◦
later in the simulation with the lighter disk (0.01M�) at 910Tbin. At 910Tbin in the heavier disk (0.1M�)
the star has a inclination of 179.993◦. Which comes from angular momentum which points in the opposite
direction of the star.

0.01M� 0.1M�
T bin = 17
Tbin = 910

0.0000703
0.000119

0.0000636
0.000358

Tab. 4.3: Mutual inclination in degree of the normal vector and the planet’s angular momentum vector at
different Tbin for different disk masses.

0.01M� 0.1M�
T bin = 17
Tbin = 910

0.0
7.24·10−6

0.0
2.59·10−5

Tab. 4.4: Force in CGS units in x, y, z direction on planet at different Tbin for different disk masses. The
values for y and z direction at 0Tbin is due to numerical noise.

0.01M� 0.1M�
Tbin = 0 x

y
z

-4.42·1029

2.97 ·1016

-3.57 ·1017

-4.42·1029

2.97 ·1017

-3.57 ·1018

Tbin = 17 x
y
z

-4.44·1029

6.09 ·1027

-2.98·1019

-3.86·1029

3.32 ·1029

-1.02·1020

Tbin = 910 x
y
z

4.98·1029

2.28 ·1029

2.28·1022

2.00·1030

4.07 ·1030

-4.80·1023

The boundary conditions in the singular setup lead to a mass reduction of the disk (see
Fig. 4.11). This mass reduction is in the same order as in the single star setup with a default
star (see Fig. 4.3).

4.3 The case of binary systems

As a proper and physical singular setup with no default star is established, adding another
star in the planet file is the next step. As stated earlier, one needs to define the star pa-
rameters in this planet file, e.g., star eccentricity and mass. To analyze and understand the
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Fig. 4.10: Mutual inclination of the planet’s angular momentum vector and the star’s angular momentum
vector (normal vector) for the single star setup with no default star and a 0.1M� disk.
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Fig. 4.11: Evolution of the disk mass of the single case with Mdisk = 0.01M�, no default star and without
the Stockholm condition. The mass decreases over time, i.e it decreases 7.8% over 15.3 years and 13.2%
over 51 years.
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binary system, Kepler 38 is the primary goal of this thesis.

Different parameters were tested to reach this goal, and the results are displayed in this
section. In the following, the section is split by the main parameter. The simulation was
run with different parameters with and without the Stockholm condition. As shown in the
previous section, this has a significant impact on the disk mass; the results are shown af-
ter each other to discuss the impact of the disk mass on all other parameters more closely.
Nevertheless, it is clear that the Stockholm condition needs to be turned off for a physical
result. This is also advised by the literature, as the inner boundary condition is open (De
Val-Borro et al., 2006, p. 533). This is done similarly to the single star setup.

4.3.1 Convergence in resolution

The numerical schemes of the grid code can influence the results because of the dependency
of the disk structure on numerical parameters (Thun et al., 2017, p. 17). Thus the grid
resolution needs to be tested.

Therefore, the system of Kepler 38 is tested with different resolutions. The results are shown
in the Appendix 6.2. As the results of the different resolutions are similar, the resolution
with the shortest simulation time is chosen which is Nx = 256, Ny = 512 and Nz = 39.

4.3.2 Simulation with the Stockholm conditions - basic tests

The following simulations were done with an inner boundary location of 1 abin and an initial
disk mass of 0.007M� (Σref = 82466 g/cm2 at 1 abin or Σp = 4791 g/cm2 at 0.98AU).

Planet does not feel disk

In the following test simulation, the planet does not feel the influence of the disk. The planet
file needs to be changed to simulate this. In all the simulations, the stars are not influenced
by the gas gravity. Expectedly, this reduces the simulation to a simple three-body problem
in which, after several hundreds of binary revolutions, no variations in the orbital properties
of the planet can be observed, i.e., there is no movement in the z direction, planet migration,
or change in the planet’s eccentricity (see Fig. 4.12).
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Fig. 4.12: Simulation of a binary system with the Stockholm condition, but the planet does not feel the
disk. The figure shows the first 120Tbin. The vertical dashed lines show the revolutions of the planet. Left:
planet inclination towards the mid-plane. The horizontal lines indicate the inclinations with the disk in later
simulations. Middle: planet semi-major axis. Where the horizontal line shows the observed location of the
planet. Right: planet eccentricity. On the top axis, time is indicated in Earth years on the lower in binary
revolutions.

Pure disk-binary interaction

The planet is removed from the simulation, and it is just run with the binary and the disk
to analyze the influence of the binary on the disk in more detail. For analyzing the results,
the mid-planes gas surface density was subtracted from each gas surface density value at
the same radial distance to highlight the disk’s asymmetry. Even without a planet, one
can see that the binary is influencing the gas surface density distribution (see Fig. 4.13).
This contrasts with the single star system, where there is no asymmetry in the disk (see
Appendix. 6.2).

Fig. 4.13: Evolution of the Kepler 38 0.007M� disk without a planet and with the Stockholm condition
shown in a two-dimensional surface density plot of the xz plane at (left) 101 and (right) 767 binary revolutions,
where the mid-plane is subtracted from each plane in the disk. The figure displays a zoom on the gas on the
right side of the disk. The asymmetry in the gas density in the disk is shown even without a planet. The
difference in the gas density is linear color-coded. The plot is 0.4×0.1626AU in size.

Analyzing the gas surface distribution of the disk leads to the conclusion that there is an
asymmetry in the disk. Especially interesting is the asymmetry in the xz plane.
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Furthermore, the mutual inclination of the angular momentum vector of each disk cell to-
wards the normal vector in the mid-plane is displayed (see Fig. 4.14). This figure shows a
turbulent inner region that comes from the influence of the binary onto the disk, which is in
contrast to the single star case where there is no turbulence in the disk even though a planet
is present (see Fig. 4.5).

Fig. 4.14: Mutual inclination in degree between the angular momentum of each cell of the disk and the
normal vector in the mid-plane. The initial disk mass is 0.007M�. For this binary star setup without planet
the inner boundary is set to 1.0 abin and the Stockholm condition is used. One can see that the inner region
is turbulent.

The mutual inclination between the angular momentum vector of the disk and the angular
momentum vector of the binary is calculated for a few Tbin and displayed in Tab. 4.5 and
Fig 4.15. These show that the mutual inclination of the disk varied over time and was influ-
enced highly by the binary.

Tab. 4.5: Mutual inclination in degree between the normal vector and the angular momentum of the disk
at different Tbin for 0.007M� disk mass. The normal vector is used as the binary has no inclination.

0.007M�
T bin = 17
Tbin = 101
Tbin = 767
Tbin = 910

0.00863
0.102
0.0112
0.00556
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Fig. 4.15: Evolution of the mutual inclination in degree between the angular momentum of the disk and
the normal vector in the mid-plane. The initial disk mass is 0.007M�. For this binary star setup without
planet the inner boundary is set to 1.0 abin and the Stockholm condition is used.

Disk mass

Again, one can calculate the disk mass of the previous simulation over time (see Fig. 4.16).
This rising disk mass is due to the dampening of the boundary conditions through the
Stockholm condition. In all setups with the Stockholm condition, the dampening leads to
no influence of the set boundary conditions; instead, the code runs as if no special boundary
conditions were set. This is because the computational domain is too small for that criteria
to fulfill its purpose.

The disk with the Stockholm condition is like a slowly accreting star with a vast mass reser-
voir outside of the computational domain which supplies the inner region.

4.3.3 Simulation with Stockholm conditions - final setup

The same simulations as in the previous section were performed but with a planet to analyze
the influence of the disk with its asymmetries on the planet to simulate a system close to
the Kepler 38 system.

Structure of disk and disk mass

The Kepler 38 system has been studied through observations and simulations. Kley &
Haghighipour (2014) and Thun & Kley (2018) have studied it through two-dimensional hy-
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Fig. 4.16: Disk mass over time increases linearly by a factor of up to 10. The Stockholm condition is turned
on, the inner boundary is at 1 abin and no planet is inserted. Thus the setup is the same as in Fig. 4.13

drodynamical (HD) simulations. They analyzed the circumbinary exoplanets’ properties,
focusing on the exoplanet’s migration, neglecting 3D constraints.

To compare the 3D simulations with the 2D simulations, not only the surface density of
the disk’s mid-plane is analyzed (see Fig. 4.17), but also it’s overall surface density (see
Fig. 4.18). Therefore, all surface densities of the xy planes of the 3D simulation were inte-
grated to derive the 2D surface density.

As reported in the previous figures (see Fig. 4.17 and Fig. 4.18), the central binary star
rapidly opens a cavity within the first ∼ 30 orbital periods. This is in agreement with Arty-
mowicz & Lubow (1994, p. 662). The cavity grows in radius to reach ∼ 2.5 abin after a few
hundred orbital periods. As described in the previous chapter, the fgap function by Pierens
& Nelson (2018, p. 2549) to produce an analytically cavity is not implemented, as the cavity
forms due to the binary truncations even with the steep surface density profile at the edge of
the computational domain. In agreement with Kley & Haghighipour (2014), the precession
of the cavity is observed.

The disk mass development over time is not influenced by the planet and keeps rising over
time (see Fig. 4.19). This increase is in agreement with the evolution of the surface density
(see Fig. 4.20). At 2018Tbin the peak is roughly at 1200000 g/cm2. The planet forms no clear
dip, which the large surface gas density values with respect to the planet’s mass explain.
Nevertheless, one can see a clear density drop at the inner edge. Previous studies (Masset &
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Fig. 4.17: Evolution of the Kepler 38 disk shown in a two-dimensional surface density plot at the mid-plane
with an isothermal simulation and a planet (indicated through the cross) migrating from ∼ 1AU to 0.51AU.
The perturbations of the surface density at different times are shown. It is color-coded with the logarithm of
the gas surface density at the mid-plane. The white areas are outside of the computational domain. Thus,
the binary revolutions are not included in the simulation. The black circle at 0.4AU is the stability radius
for Kepler 38. The dotted line is the observed orbit of Kepler 38 at 0.46AU. The plots are 4.2×4.2 AU in
size. On top of each figure, time is indicated as a multiple of the orbital period (0Tbin, 17Tbin, 615Tbin,
671Tbin, 1496Tbin and 2018Tbin).
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Fig. 4.18: Evolution of the Kepler 38 disk shown in a two-dimensional xy plane plot of the surface density
with an isothermal simulation and a planet (indicated through cross) migrating from ∼ 1AU to 0.51AU. It
is the same setup as Fig. 4.17 but now showing the surface density of each plane integrated over the disk
height. However, the perturbations of the surface density at different times are shown. It is color-coded with
the logarithm of the gas surface density. The white areas are outside of the computational domain. Thus,
the binary revolutions are not included in the simulation. The plots are 4.2×4.2 AU in size. On top of each
figure, time is indicated as a multiple of the orbital period (0Tbin, 17Tbin, 615Tbin, 671Tbin, 1496Tbin and
2018Tbin).
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Benítez-Llambay, 2016, p. 485; Thun et al., 2017, p. 15; Pierens & Nelson, 2018, pp. 2552-
2553; Pierens et al., 2020, pp. 2866) showed that this prevents the migration of the planet
further in. Another factor that influences the migration process is the mass of the disk. As
the disk mass is analytically derived from the surface density of the disk, the density of the
disk or mass of the disk is highly influencing the migration process (see Fig. 4.21) because
the migration speed is proportional to the disk mass (Thun & Kley, 2018, p. 11). However,
the stopping location is the same. The planet stops outside of the cavity. The migration is
further discussed in the last paragraph of Sec. 4.3.3.

0 200 400 600 800 1000
t [Tbin]

0.00

0.02

0.04

0.06

0.08

0.10

M
di

sk
 [M

]

Binary Setup Mdisk = 0.007 M BL = 1.0 CU

with Stockholm, no planet
with Stockholm, with planet

0.0 10.2 20.4 30.6 40.8 51.0
t [Tyr]

Fig. 4.19: Disk mass over time. The Stockholm condition is turned on; the inner boundary is at 1 abin.
The blue dots show the simulation with no planet (comparable with Fig. 4.16), and the orange dots show
the simulation with a planet inserted. The difference in increase is 0.6% between the simulation with the
planet and without planet after 40.8 years. This is the turning point where the disk in the simulation with
no planet becomes more massive than the disk in the simulation without the planet.

Inclination of the planets orbit

The disk/planet/binary system is initially co-planar. Thus, angular momentum transfer has
to occur to change the planet’s orbital properties. Turbulence in the disk is expected to play
a role and is investigated further. FARGO3D enables to explore the evolution of the vertical
gas density.

In this simulation (see Fig. 4.22), the planet, which is initially co-planar with the binary
star orbit, shows a non-zero inclination starting at ∼ 50Tbin that steadily increases over the
first 120Tbin to i2 = 0.08◦ (middle plot). The inclination i2 is simply calculated with the
arctangent of the z coordinate divided by the distance to the center of mass (

√
x2 + y2).
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Fig. 4.20: Evolution of Kepler 38 disk shown in an azimuthally-averaged plot of the surface density and a
planet migrating from ∼ 1AU to 0.51AU. It is the same setup as Fig. 4.17. The points indicate the location
of the planet on the x-axis, not on the y-axis as they are manually placed on the density curve. In the
legend, time is indicated as a multiple of the orbital period (0Tbin, 17Tbin, 615Tbin, 671Tbin, 1496Tbin and
2018Tbin).
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Fig. 4.21: Evolution of the Kepler 38 with different densities of the disk indicated as multiples of the
standard surface density used in the setup. The mass of the planet and all the other parameters are kept
the same. Left: the semi-major axis of the planet at different densities as a multiple of the original setting.
The stopping location of the planet is independent of the density of the disk, but the speed is. Right: the
inclination of the planet in in degree for the different densities.
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The plots visually analyzed show that a large amount of inclinations stay between 0.2◦ and
∼ 0.4◦ over 5500Tbin and are synchronized with the planet’s revolutions. The alterations
of the planet’s inclination are in the range of the observed inclination of the planet in the
Kepler 38 system (see Tab. 3.1). A comparison with the inclination of the single star sys-
tem with the Stockholm condition shows the inclination towards the mid-plane is zero over
1400Tbin (see Appendix 6.2). This result already points at the critical influence of the bi-
narity on the induced planet misalignment, even for the case of initial co-planarity. In this
thesis the notion of “plane-symmetry” is used to describe the level of symmetry/asymmetry
of the gas distribution with respect to the mid-plane of the disk at z = 0.

In Fig. 4.23 one can observe, on top of an overall plane-symmetric distribution, clear asym-
metries in the disk gas density within 0.25AU of the migration planet, due to the binary,
planet, and spiral arms. This figure shows the xz plane at the location of the planet of the
surface density. They are at the same points in time as in Fig. 4.17, where the xy plane
is shown. To highlight the non-axisymmetric gas surface distribution with respect to the
mid-plane, Fig. 4.24 is displayed. The value of the mid-plane’s surface density (Φ = 0) was
subtracted from the value of the gas surface density at each plane. In the figure the most
pronounced asymmetry is well visible for 17Tbin at ∼ 0.5AU, for 615Tbin at ∼ 0.6AU, for
671Tbin at ∼ 0.25AU, for 1496Tbin at ∼ 0.35AU and for 2018Tbin at ∼ 0.4AU. Such over-
densities are a factor of more than 250 in excess of the mid-plane density. If one compares
the axis symmetries with the simulation without the planet in Fig. 4.13, one can see that
the planet has a significant impact on the density clusters. In the numerical experiments
with the planet those clusters are larger compared to the simulations without the planet.
To analyze the influence of these disk asymmetries, the gravitational forces exerted on the
planet are calculated, as the planet feels the gravitation of the disk (Kley & Haghighipour,
2014, p. 3).

That gravitational pull can be calculated by the force in the z direction for different points
in time. Similar to the single star setup case (see Eq. 4.3), but with the binary force included.

The final equation for the force of the binaries is:

Fbin = G
Mprimarymplanet

d3primary_planet
dprimary_planet

+G
Msecondarymplanet

d3secondary_planet
dsecondary_planet

(4.5)
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Fig. 4.22: The plot shows the inclination of the planet with respect to the mid-plane. The stars are not
shown, as they do not incline. The left plot shows the evolution of the inclination over 5500 binary revolutions
(280.6 Earth years). The solid lines show the observed inclination of 0.2◦ and -0.2◦ (axis-symmetric) in the
Kepler 38 system. The area between the dashed horizontal lines shows where most of the inclinations lie (the
lower area shows the axis-symmetry area). Those areas expand from 0.05 to 0.4 and from -0.05 to -0.4. The
dashed black lines in the middle and right figure show the time the planet needs for a revolution. The middle
plot shows the first 120 orbits, and the right plot shows the last 120 orbits until the end of the simulation.

Fig. 4.23: Evolution of the Kepler 38 disk shown in a two-dimensional surface density plot of the xz plane
with an isothermal simulation at the same points in time as Fig. 4.17. The black marker shows the location
of the planet. The white area is outside of the computational domain. The plots are 2.25×0.63AU in size
and in CGS units. The logarithm of the gas surface density is color-coded, and the time is indicated on top
of each figure.
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Fig. 4.24: Evolution of the Kepler 38 density shown in a two-dimensional plot of the xz plane, where the
surface density of the mid-plane is subtracted from the surface density of each plane in the disk. It is the
same setup as in Fig. 4.23. The asymmetry in the gas surface density in the disk shows the gravitational
influence on the planet. The planet is marked with a white cross. The gas density is linear color-coded. The
plots are 2.25×0.63AU in size. On top of each figure, time is indicated as a multiple of the binary’s orbital
period.
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The way of how the force of every cell acting on the planet (Fdisk) is calculated stays the
same as in the single star system. Thus Eq. 4.4 stays the same.

The evolution of the force in z direction is displayed in Fig. 4.26. This is hard to com-
pare with the singular case as the mass rises differently over time (see Fig. 4.25). At
Tbin = 0, when one analyzes further and compares the force on the planet from the disk
for the single case (−2.64 · 1018, 2.20 · 1016,−2.64 · 1017) in CGS untis and for the binary case
(−2.64 ·1018, 2.20 ·1026,−2.64 ·1017) in CGS units in the x and y direction, then one sees they
are the same. This is the starting disk which should be as homogeneous as possible. Hence,
the numerical noise in z direction is in the order of a few times 1017 in CGS units. However,
as the force on the planet is higher in later parts of the simulation, a mass-force relation
can be seen. Moreover, one can see that the force coming from the binary dominates the
force in z direction. In order to induce a tilt of the planet’s orbit with respect to the binary
orbit, a force component in the vertical z direction needs to act on the planet. Beside the
gravitational forces from the disk and the binary, the planet is subject to the hydrodynamic
forces due to the viscous disk.

From the computed velocity of the constant mass planet companion and the resulting linear
momentum p, the total resulting force on the planet is calculated through:

Ftot = dp/dt (4.6)

using a temporal resolution ∆T = 1Tbin.

The hydrodynamic force action on the plane is obtained as

Fhd = Ftot − Fbin − Fdisk (4.7)

These same equations are used accordingly for the single star setup. In the following the
vertical component Fz of these forces is treated.

In this simulation with the Stockholm condition and an initial disk mass of 0.007M�, the
comparison between the single star and binary star setup in Fig. 4.27 (right plot) indicates
that the planet becomes rapidly (at ∼ 10Tbin) subject to the pull of Ftot,z, which amplitude
starts oscillating from ∼ 50Tbin with the planetary period of ∼ 17Tbin. This results from
the planet with its increasingly inclined orbital plane periodically crossing the binary star
orbital plane. Comparatively, the pull in Fz in the single star case remains negligibly. The
gravitational force contribution of the binary star Fbin,z and the total force magnitude change
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the domination of the vertical component Fz, as this is visible in Fig. 4.27 (left plot).
Thus, in the early phases, i.e., within the first 10Tbin of the system evolution, it is visible
that the hydrodynamic force causes the original misalignment of the planet with respect to
the binary.
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Fig. 4.25: The mass of the binary disk rises much more rapidly as the mass in the singular disk. In the
singluar case the mass increase is 1.98% over 40.8 years and in the binary case the mass increase is 868%.

Fig. 4.26: Evolution of the force on the planet in a 0.007M� system in z direction. Thus the sign shows the
direction of the force. The blue and orange dots/lines signal the binary simulation running up to 1300Tbin
and the green/red dots signal the single case simulation up to 1000Tbin. One can see, later in the simulation
of the binary case the force on the planet is much higher compared to the single case. Moreover, once can
see that the stars dominate of the force in z direction.
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Fig. 4.27: Evolution of the force on the planet in a 0.007M� disk mass system in z-direction. Thus the
negative sign shows the direction of the force. The gravitational force of the stars and disk in the z-direction
starts later than the force calculated from the impulse of the planet.

Angular momentum of the disk and planet

To analyse the angular momentum transfer the angular momentum of the disk and the planet
are investigated and compared to the angular offset from the binary orbital plane analysed
earlier in this section.

To be able to compare the single star setup with the binary setup and the different binary
setup with each other, the mutual inclination of angular momentum vector of each cell of
the mid-plane of the disk and the normal vector is displayed (see Fig. 4.28). The inner
region is similarly disturbed as in the setup without a planet (see Fig. 4.14). The mutual
inclination between the angular momentum vector of the disk and the angular momentum
vector of the binary is written in Tab. 4.6 (left table). If one compares those values to the
values of the single star setup (right table), one can see that the values in the binary setup
are significantly higher.

Tab. 4.6: Mutual inclination in degree between the normal vector and the angular momentum of the disk
at different Tbin for 0.007M� disk mass. The normal vector is used as the binary has no inclination. The
left table shows the results for the binary case and the right table for the single case.

binary 0.007M�
T bin = 17
Tbin = 101
Tbin = 767
Tbin = 910

0.00118
0.0916
0.0630
0.0493

single 0.007M�
T bin = 17
Tbin = 101
Tbin = 767
Tbin = 910

0.0000622
0.0000368
0.0000715
0.0000708

In a second step, the angular momentum of the planet is analyzed. At 1Tbin the planet’s
angular momentum vector has a mutual inclination of 0◦ towards the normal vector (which
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Fig. 4.28: Mutual inclination in degree between the angular momentum of each cell of the disk and the
normal vector in the mid-plane. The initial disk mass 0.007M�. For this binary star setup with the planet,
the inner boundary is set to 1.0 abin, and the Stockholm condition is used. One can see that the inner region
is turbulent. At the location of the planet at ca. 0.98AU, the disk is not inclined. The disk looks very
similar to the Fig. 4.14.

is the same as Lsecond and Lprimary) in z direction, whereas the planet’s angular momentum
vector has a mutual inclination of 0.04◦ towards the normal vector at 101Tbin, for more
results see Tab. 4.7 and Fig. 4.29. The binary values are compared with the single star
values in the table, in the single star setup all values show a mutual inclination of 0◦. Thus
in the single star simulation, where the second star is removed, and everything else is kept
the same, the planet is aligned with the star in the mid-plane of the simulation grid. This
es expected as the results are comparable to the results shown earlier when analysing the
angular offset towards the mid-plane. Again, this result points at the critical influence of the
binarity on the induced planet misalignment even for the case of initial coplanarity. Thus
the inclination of the planets’ orbit is induced by the binary. Towards the end of the single
star simulation, a small angle is 0.0000012◦ seen, which is so small that it is in the noise
regime. The mutual inclination in the binary setup derived from the angular momentum
vector of the planet and the normal vector can be compared with the inclination towards
the mid-plane derived from the planets’ orbit parameter in Fig. 4.22

Noise of simulation

The same setup was run 3x with precisely the same setup. This simulation shows that the
simulations are quite similar (see Fig. 4.30). Thus the numerical noise, which is in z direction
roughly 0.1◦ is smaller than the inclination of the planet.

79



Chapter 4. FARGO3D simulations 4.3. The case of binary systems

Tab. 4.7: Mutual inclination in degree between the normal vector (binary angular momentum) and the
angular momentum of the planet at different Tbin for 0.007M� disk mass. The left table shows the results
for the binary case and the right table for the single case.

binary 0.007M�
T bin = 17
Tbin = 101
Tbin = 767
Tbin = 910

0.000075
0.041
0.81
0.35

single 0.007M�
T bin = 17
Tbin = 101
Tbin = 767
Tbin = 910

0.0
0.0
0.0
0.0
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Fig. 4.29: Mutual inclination in degree of the angular momentum vector of the planet towards the normal
vector in z direction/Lbinary. The initial mass of the disk is 0.007M� and the star eccentricity is 0.1. The
single star setup (blue) is compared to the binary case setup (orange)
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Fig. 4.30: Simulation of setup run several times nothing on the setup was changed. Left: planet inclination.
Middle: planet semi-major axis. Right: planet eccentricity.

Migration

The evolution of the planet through the disk is shown in Fig. 4.31. The left plot shows the
planet’s evolution over 5500 binary revolutions, which are ∼ 279 Earth years. The middle
and right plots show a zoom on the first 120 binary revolutions and the last 120 binary
revolutions. These one-dimensional plots show a slight periodic change of the planet’s dis-
tance to the center of mass. This movement corresponds to the planet’s evolution around
the binary star, which the plots with its periodicities show. At the beginning in the simu-
lation the migration is relatively low. In 6.1 Earth years, the migration is just ∼ 0.02AU.
The simulation shows that the planet has a period of 17 binary revolutions in the beginning
and six binary revolutions towards the end of the simulation that equals 111.6 Earth days,
thus Tp/Tbin ≈ 6.0. During observations, the planet period was determined to be five binary
revolutions which equal 105.6 Earth days, thus Tp/Tbin ≈ 5.0.
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Fig. 4.31: The planets’ evolution of the semi-major axis. The left figure shows the evolution of over 5500
binary revolutions (On the top axis, the transformation to Earth years is shown). The horizontal line is the
observed planet’s location (0.46AU). The migration happens mostly between 615 and 671 binary revolutions
(solid vertical lines). The quasi-equilibrium state is reached roughly after 1500 binary revolutions. Then the
planet periodically changes around its final position. The dashed black lines in the middle and right two
plot show the time the planet needs for a revolution. The duration of the planet orbits was reduced from
18 binary revolutions (middle plot) to six binary revolutions (right plot) at the end of the simulation. The
middle figure shows the evolution in the first 120 binary revolutions (6.1 Earth years), and the right figure
shows the last 120 orbits (274.5 to 280.6 Earth years).
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To check whether the evolution of the planet in the simulation compares with the third
Kepler Law the following equation was solved:

a3

T 2
=
G(M +m)

4π2
(4.8)

This lead to an evolution time of

T = 2π

√
a3

G(M +m)
= 2π

√
6.66673

1(1 + 0.00025)

= 108.14CU | : 2π

= 17.21Tbin

(4.9)

Thus the simulation is an excellent fit for the third Kepler Law. The influence of the disk is
not visible after the first few revolution.

The migration of the planet stops shortly outside of the inner cavity (see Fig. 4.17). The
planet migrates from having a semi-major axis of 0.98AU to 0.51AU (min. 0.44AU) and
stop’s shortly outside the inner cavity. Moreover, the stopping location is larger than the
stability limit (ac) which is in case of Kepler 38 around 0.4AU (Kley & Haghighipour, 2014,
p. 5; Holman & Wiegert, 1999, p. 626). The inner cavity acts as an inner barrier because
of the sudden drop of density as shown in previous studies (Masset et al., 2006, p. 485).
That drop is also visible in this simulation (see Fig. 4.20). No clear gap is opened in the
disk because the gap opening criterion is not met (Eq. 2.1), which indicates type I migration.

Kley & Haghighipour (2014, p. 7) found in their simulation that the planet migrates to an
average value of ap = 0.436AU. This difference to the value ap = 0.51AU found in this
simulation could be due to the larger inner radius of the computational domain in their
simulation. Whereas Thun & Kley (2018, p. 8) found that with the similar inner boundary
condition the slightly heavier planet (0.384MJup) migrates to 0.597AU in two-dimensional
simulations. So the results found here are well in between the values found in those papers.
Thun & Kley (2018, p. 8) showed that the planet’s final position is independent of its initial
position. They conclude that this is because of the type I migration of the planet. Thus the
slightly different starting distance does not influence the outcome. The same is observed in
this thesis; the final position does not depend on the starting distance (see Fig. 4.32). More-
over, the stopping location of the migration process is not influenced by the disk mass (see
Fig. 4.21 (left plot)), just the migration timescale is influenced. This is addressed further in
the next section without the Stockholm condition.
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Fig. 4.32: The planet’s evolution of the semi-major axis with different starting positions of the planet
(0.6AU, 0.98AU and 1.6AU). It shows that the migration process is independent of the starting point it
will reach the same final position.

Fig. 4.33 shows the evolution of the planet’s eccentricity. One can see that the eccentricity
of the planet rises with the migration towards the binary. In this simulation, an oscillation
of the planet’s eccentricity between ∼ 0.06 and 0.25 is found, which is very similar to the
findings of Kley & Haghighipour (2014, p. 7). They found a planet oscillation of 0.15 and
0.2. Thun & Kley (2018, p. 9) showed that the eccentricity is dependant on the mass of
the planet. With a 0.384MJup planet, he gets an eccentricity oscillation of ∼ 0.03. Whereas
with a 0.3MJup planet he gets an eccentricity oscillating around 0.2.
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Fig. 4.33: The eccentricity of the planet is plotted against the number of binary revolutions (lower axis)/
Earth years (top axis). The left figure shows the evolution of over 5500 binary revolutions (280.6 Earth
years). Between 615 and 671 orbits, there is a big periodic change of eccentricity (vertical solid lines). The
horizontal lines display the area of the oscillation (between 0.07 and 0.18). The middle figure shows the
evolution in the first 120 binary revolutions, and the right figure the last 120 orbits are shown. The dashed
black lines in the middle and right plot show the time the planet needs for a revolution.
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4.3.4 Simulation without Stockholm conditions - basic tests

The previous section tested and analyzed the simulation with the Stockholm condition. In
this section, the focus is on simulation without Stockholm conditions. This means a mass
transfer from the disk onto the star, and no material from the outer disk enters the simula-
tion. Thus, this scenario compares to other studies by other authors.

Thus the disk mass is reduced over time (see Fig. 4.34) where the calculated disk total mass
vs. time is plotted. This was already visible in the single star case with the default star
(see Fig 4.3). In the case of the binary setup, a rapid exponential decay up to 4000Tbin
is observed. Followed by a linear decay with a slope of Ṁdisk = 1.26×10−6M�/yr. The
linear decay results from the choice of a closed outer boundary condition which prevents
a replenishing inflow from outside to compensate the outflow at the open inner boundary.
The theoretical accretion rate for a steady-state disk is obtained with Ṁth≡3πΣν, which
translates into Ṁth = 5.9×10−7M�/yr for an isothermal disk at T = 300K.
The decrease over 51 years in the binary (13.17%) and single (13.2%) cases are in the same
regime (see Fig. 4.11 and Fig. 4.34). In roughly 500 years the mass decreases by ∼ 25%. In
comparison the mass in Kley & Haghighipour (2014, p. 4) the mass decreases by ∼ 13% over
500 years. They lose less mass even so their inner boundary (0.25 abin) is larger than in this
thesis (1.3 abin). However, they simulate the disk in 2D, and here it is done in 3D, which
adds vertical space to the inner boundary condition where mass can be accreted.
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Fig. 4.34: Evolution of the disk mass for the case Mdisk = 0.01M�, the boundary location is 1.3 abin and a
binary orbit eccentricity of 0.1. The mass decreases over time as the Stockholm condition is turned off, i.e.,
it decreases 12.29% over 40.8 years, 13.17% over 51 years and about 24.52% over 459 years.
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No Planet, just disk, and binary

A closer look is taken on just the disk for the setup without the Stockholm condition. If one
compares the disk with the previous setup, one can see that the asymmetry in this setup is
smaller, see Fig. 4.35. This is expectable, as the disk mass is significantly smaller than in
the previous setup.

Fig. 4.35: Simulation with no planet and without the Stockholm condition with a zoom on the inner disk.
The evolution of the surface density is shown in a two-dimensional plot of the xz-plane, where the mid-plane
is subtracted from each plane in the disk. The asymmetry in the disk is smaller than in the setup with
the Stockholm condition (see Fig. 4.13). In the beginning, the disk mass is 0.01M�, the binary has an
eccentricity of 0.1, and the boundary location is 1.3 abin.

Influence of different inner boundary location

In these simulations, the influence of the binary parameter on the planet’s parameter is a
focus. Thus different binary orbit eccentricities are simulated. For this purpose, a bigger
inner boundary is needed as the secondary is entering the mesh with the 0.5 binary eccen-
tricity when the inner boundary stays at 1 abin. This induces an acceleration on the fluid
and the time step goes to zero and the simulation is not possible.

Thus the inner boundary is moved from 1 abin to 1.3 abin for the planet parameter evolution
(see Fig. 4.36). The movement of the planet is similar in both simulations. However, a wider
inner boundary location reduces the inclination of the planet. Thun et al. (2017, p. 7-8)
found that the inner boundary condition does not influence the results of the simulation sig-
nificantly as long the 3:1 Lindblad resonance (R3:1 =∼ 0.28AU) is inside the computational
domain. Nevertheless, he states that the surface density profile is influenced as less mate-
rial can leave the domain with a smaller inner boundary. This can be shown, here as well,
through the evolution of the disk mass over time (see Fig. 4.37). Nevertheless, he concludes
that it is enough to be in the order of abin, but for compromises, in long-term simulations,
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he also uses a 1.3 abin inner boundary location as a smaller inner radius is more time-intensive.
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Fig. 4.36: Movement of the planet with different boundary locations. (top) The starting disk mass was
0.021M�. (bottom) The starting disk mass was 0.01M�.
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Fig. 4.37: Evolution of the disk mass. The starting disk mass was 0.01M�. One can see that the simulation
with the greater inner boundary loses more mass (13.17% over 51 years) than the simulation with a closer
inner boundary location (9.64% over 51 years).

Nevertheless, it is important to keep in mind that the larger inner boundary influences the
size of the cavity (see Fig. 4.38). One can see that the cavity of the larger inner boundary
(1.3 abin) is slightly larger than the other simulation (1.0 abin).
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Fig. 4.38: The Kepler 38 0.01M� disk shown in an azimuthally-averaged plot of the surface density without
the Stockholm condition. One time, the simulation with the boundary location at 1.0CU is displayed, and
the other time the boundary location is at 1.3CU. The blue/green point indicates the planet’s location on
the x-axis, not on the y-axis. The time is 1200Tbin in both simulations.

Influence of viscosity

The viscosity of the simulation also influences the simulations. Thun et al. (2017, p. 14)
showed that with higher viscosities, the cavity size is reduced. This influences the stopping
location of the planet. He explains that a larger viscosity leads to an increase of the disk’s
viscous spreading, which counteracts the gravitational torques of the binary. Those torques
are responsible for the cavity creation.

To verify his finding is not part of this thesis. Nevertheless, though a quick check at
t = 1200Tbin it could be confirmed that a higher viscosity leads to a smaller cavity (see
Fig. 4.39). However, one can see that with the lower viscosity, the inclination of the planet
increases (see Fig. 4.40) as the torques of the binary play an important role.

This is further analysed by computing simulations with Mdisk = 0.01M� and Mdisk = 0.1M�

with three different α viscosities, namely 0.01, 0.001 and 0.0001. The focus is on the first
10Tbin (see Fig. 4.41). Thus, the simulation output is set to every 1/10th of the binary orbit.
The time resolution of the simulation in this thesis is the same for all simulations (1/10th of
the binary orbit), but for data storage reasons, the output in the long term evolutions of the
planet and disk is saved only every Tbin. In this figure, as it only displays the first 10Tbin,
it is important to show the full time resolution of the hydrodynamic force acting on the
planet. One can detect that the force rises with a decrease of the α viscosity, in both cases
independent of the disk mass. Nevertheless, one can also detect that the forces are higher

87



Chapter 4. FARGO3D simulations 4.3. The case of binary systems

on the planet in the disk with the higher mass. A higher hydrodynamic force in z direction
leads to a higher inclination that is already displayed in Fig. 4.40.
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Fig. 4.39: The Kepler 38 disk is shown in an azimuthally-averaged plot of the surface density without the
Stockholm condition. One time, the simulation with the α viscosity 0.01 is displayed, and the other time
the α viscosity 0.0001. The blue/green point indicates the planet’s location on the x-axis, not on the y-axis.
The time is 1200Tbin in both simulations.
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Fig. 4.40: Movement of the planet with different alpha viscosity’s. The starting disk mass was 0.01M�.
Right: The migration is slower with the lower alpha viscosity of 0.0001. Middle: the eccentricity of the
planet is similar in both simulations. Left: the inclination of the planet towards the mid-plane is larger with
the lower alpha viscosity.

Noise

The same noise test as with the Stockholm condition was done again. This time the simu-
lation was run 4x precisely with the same setup. Resulting in quite similar simulations (see
Fig. 4.42). Thus the numerical noise, which is in z direction roughly 0.001◦ smaller than the
inclination of the planets’ orbit towards the mid-plane.
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Fig. 4.41: Hydrodynamic force in z direction on the planet with different alpha viscosities and disk masses.
The starting disk mass was (left) 0.01M� and (right) 0.1M�.
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Fig. 4.42: Simulation of the no Stockholm binary setup run several times where nothing on the setup was
changed. Left: planet’s orbit inclination. Middle: planet’s orbit semi-major axis. Right: planet’s orbit
eccentricity.
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4.3.5 Simulation without Stockholm conditions - final setup

Simulations with the same setting as in the section with the Stockholm condition were per-
formed but without this particular condition to analyze the influence of the disk with its
asymmetries on the planet. A closer look at other aspects was also taken for further investi-
gations of the results. For example, the disk mass is varied between 0.005M� and 0.1M�,
the binary eccentricity is also varied between 0.1 and 0.5, and the boundary location is set
to 1.3 abin = 0.19AU.

All other parameters are kept the same. The alpha viscosity is 0.01, and the outer boundary
is still 2.1AU. The planets’ mass is also kept constant.

Structure of disk and disk mass

The gas surface density files of the mid-plane are displayed to compare the 3D simulation
without the Stockholm condition to the simulations done with the Stockholm condition (see
Fig. 4.43). Again, one can report that the central binary star rapidly opens a cavity in the
0.01M� within the first ∼ 30 orbital periods in agreement with the previous simulations and
Artymowicz & Lubow (1994, p. 662). The gap grows in radius to reach ∼ 2.5 abin after a few
hundreds of orbital periods. Furthermore, enabling the comparison with previous studies by
Kley & Haghighipour (2014) and Thun & Kley (2018) the integral over all planes was done
to calculate the surface density (see Fig. 4.44).

Similar to the previous section, those figures show the spiral arms, inner cavity, and preces-
sion. The difference is in the slightly larger inner boundary location, which does not influence
the simulation (see previous paragraphs), and in the smaller gas surface density as the disk
mass decreases. Again the sudden drop of density is shown in the azimuthally-averaged sur-
face density profiles (see Fig. 4.45). In this figure, one can not observe a clear gap opening
in the disk, suggesting type I migration. The gap opening criterion P . 1 (Eq. 2.1) stays the
same, comparing it to the previous section with the Stockholm condition, as this criterion
depends on the viscosity and aspect ratio disk parameters (α = 0.01, h = 0.05) which are
the same in both setups. Thus the value of P ∼ 5.4 is independent of the Stockholm condi-
tion. Thus this confirms that the condition for a type II migration is not met in this thesis.
Moreover, it is noteworthy that the planet does not form a clear dip in the radial profile of
the gas density values, which are larger by a factor of ∼ 4.5 to Kley & Haghighipour (2014,
p. ). Σdisk/Mp (in g/cm2 and Mjup, respectively) for the different cases of Thun & Kley
(2018, Fig. 7), a dip is observed for t = 12000Tbin for ratios below 2×104. The higher ratio
of 2.6×104 observed in this simulation for t = 9000Tbin could explain the absence of a clear
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Fig. 4.43: Evolution of the Kepler 38 0.01M� disk is shown in a two-dimensional surface density plot
of the mid-plane with an isothermal simulation without the Stockholm condition and a planet migrating
from ∼ 1AU to 0.54AU. The perturbations of the surface density at different times are shown. It is color-
coded with the logarithm of the gas surface density at the mid-plane. The white areas are outside of the
computational domain. Thus the binary revolutions are not included in the simulation. The black circle at
0.4AU is the stability radius for Kepler 38. The dotted line is the observed orbit of Kepler 38 at 0.46AU.
The plots are 4.2×4.2 AU in size. On top of each figure, time is indicated as a multiple of the orbital period
(0Tbin, 17Tbin, 609Tbin, 910Tbin, 2020Tbin and 9000Tbin).
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Fig. 4.44: Evolution of the Kepler 38 0.01M� disk is shown in a two-dimensional plot of the surface
density with an isothermal simulation without the Stockholm condition and a planet migrating from ∼ 1AU
to 0.54AU. It is the same setup as Fig. 4.17. However, the perturbations of the surface density (ρ) at
different times are shown. It is color-coded with the logarithm of the gas density. The planet is visible
through a density accumulation. The white areas are outside of the computational domain. Thus, the
binary revolutions are not included in the simulation. The plots are 4.2×4.2 AU in size. On top of each
figure, time is indicated as a multiple of the orbital period (0Tbin, 17Tbin, 609Tbin, 910Tbin, 2020Tbin and
9000Tbin).
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dip in the surface density.
The evolution of the surface density profile of the disk over 14000Tbin is also displayed in the
previous mentioned figure. This evolution is in agreement with a decreasing disk mass mainly
in the inner region, with a surface density peaking at about 8500 g/cm2 after 14000Tbin.

In this simulation, the initial planet migration speed is rapid within t = 4000Tbin then slows
down before reaching its final separation after ∼ 400 years for an initial disk mass of 0.01M�.
Nevertheless, the migration of the planet takes much longer in this simulation than in the
previous ones with the Stockholm condition (see Fig. 4.46), where it reaches a stable sepa-
ration ∼ 0.54AU beyond the stability limit of ∼ 0.4AU for Kepler 38 (Holman & Wiegert,
1999, p. 626). The planet migration stops outside of the inner disk’s cavity, which is opened
by the central binary star, where its relative period verifies Tp/Tbin≈7.0. As shown in the
previous setup and by Masset et al. (2006, p. 481), the cavity acts as a barrier to a fur-
ther migration resulting from a sudden drop of density. The final stopping location of the
planet (0.54AU) is slightly further out in the simulation without the Stockholm condition
compared with the planet’s stopping location with the Stockholm condition (0.51AU) due
to the slightly larger cavity resulting from the marginally larger inner boundary location.
As shown in the paragraph comparing the different inner boundary locations, the stopping
location is further out for the 1.3CU boundary condition as for the 1.0CU. This explains
the difference in the stopping location with and without Stockholm condition setups. In
this simulation, as before in the section with the Stockholm condition, one can see that the
sudden drop of density prevents the migration of the planet further in.

Another factor that influences the migration process is the disk mass. Thus, the migration
timescale is influenced by the surface density at the planet’s location and, therefore, by the
total disk mass for a given disk size. This dependency was already shown with the Stockholm
condition but is now confirmed for the case without the Stockholm condition (see Fig. 4.47).
In the left figure, the migration for the higher disk masses is very similar to the migration
with the Stockholm condition turned on (see Fig. 4.21). Thus, those figures evidence the
evolution of the migration timescale, which shortens with increasing surface densities at the
location of the planet following Tanaka et al. (2002, p. 1271). The migration process starts
quicker than in the simulation without the Stockholm condition, as the maximum disk mass
is already reached. In the simulation with the Stockholm condition, the starting disk mass
is lower and rises over time. With rising mass, the migration process accelerates. The fast
migration process is happening in the setup with the Stockholm condition at a disk mass
between 0.05 and 0.06M�.
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Fig. 4.45: Evolution of the Kepler 38 disk is shown in an azimuthally-averaged plot of the surface density
without Stockholm condition and a planet migrating from ∼ 1AU to 0.54 au. It is the same setup as Fig. 4.43.
The colored points indicate the location in the x-axis of the planet. Time is indicated as a multiple of the
orbital period (609Tbin, 2020Tbin, 9000Tbin and 14000Tbin).
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Fig. 4.46: Evolution of the disk mass for the case Mdisk = 0.01M� over 14000 binary revolutions (On the
top axis, the transformation to Earth years is shown). The horizontal line is the observed planet’s location
(0.46 AU). The solid vertical lines indicate the migration in the setup with the Stockholm condition turned
on.
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Tab. 4.8: Computed migration time tmig following Baruteau et al. (2013) (B13) and Tanaka et al. (2002)
(T02) for the 2D and 3D simulation case, respectively, and applied to the system parameters of Kley &
Haghighipour (2014) (KH14), Thun & Kley (2018) (TK18) and this work. In the last column is reported
the estimated migration time scale tmig,exp from the numerical experiments of the three different works.
Reference Mp [Mjup] (rp) Mdisk [M�] Σp [g/cm2] p tmig [yr] tmig,exp [yr]

(B13) (T02)
KH14 0.34 (1AU) 0.0038 3000 0.5 2387 1098 3000-5000
TK18 0.384 (0.88AU) 0.012 5582 1.5 1210 557 900-1400
This work 0.34 (0.98AU) 0.01 7210 1.5 1004 461 306-406

This thesis can confirm the finding of Thun & Kley (2018, p. 11) that the disk mass and the
migration speed are proportional, and the stopping location is independent of them. This is
also analytically shown by Tanaka et al. (2002, p. 1271), where he treats theoretically the
three-dimensional evolution for disks. He found for the case of an isothermal disk and type
I migration, the migration timescale of:

tmig = (2.7 + 1.1 p)−1
h2

Mp

M2
∗

Σp r2p
Ω−1p (4.10)

where Σp is the disk surface density at the planet’s starting radius rp, Ωp the angular velocity
of the disk perturber and p is the exponent of the surface density. This formulation shows
in the prefactor a dependence of the migration timescale with p, which is taken constant to
1/2 in Eq. 3 of Baruteau et al. (2013, p. 3). This implies that for a disk setup with negative
radial gradient of the surface density (p>0), the migration timescale tmig will be shorter by
a factor ∼ 2 following Tanaka et al. (2002, p. 1271). In Table 4.8 a comparison of tmig for
different simulations of the Kepler 38 system is reported. Without tackling here the impor-
tant problem of the far too efficient migration type I migration, the results are consistent
with the expectations of the three-dimensional approach and with the trend showing that,
for typical disk surface density profiles (i.e. p∼ 0.5–1.5), the migration timescale diminishes
when the effect of the steeper density profile is included.

In this simulation, it is confirmed again that the inner cavity is the main factor for the
stopping location of the planet. Further tests to prove this statement are performed later
in this section by varying the inner cavity size with different star eccentricities or star mass
ratios.

The disk mass over time is decreasing (see Fig. 4.37), which is a significant difference from
the simulation with the Stockholm condition (see Fig. 4.19). This means that the open
inner boundary condition allows mass transfer on the star and the outer boundary condition
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Fig. 4.47: Evolution of the Kepler 38 without Stockholm condition and different densities of the disk, with
the surface density at the location of the planet (Σp) is displayed. The timescale is given in number of binary
periods Tbin (bottom) and in years (top). Left: observed migration via change in the semi-major axis. The
continuous black horizontal line defines the observed planet separation of ∼ 0.46AU. Middle: eccentricity of
the planet. The horizontal lines display the extent of the oscillations beyond t = 3000Tbin. Right: inclination
of planet towards the mid-plane. The mass of the planet and all the other parameters are kept the same.
Those initial disk masses Mdisk of 0.005, 0.01 and 0.021M� are in agreement with the observed masses of
disks in low-mass pre-main sequence stars (Beckwith, 1990, p. 936).

prevents inflow from the outer disk.

Influence of central binary’s parameters

In this paragraph, a closer look is taken at the binary’s parameter. Those parameters,
namely the eccentricity eb and mass ratio µ, influence the critical semi-major axis, which is
the smallest stable orbit for a p-type planet (see Eq. 2.2) (Holman & Wiegert, 1999, p. 626).
These authors treat however the case of a system governed by celestial mechanics in which
the interaction with the circumbinary disk is not included. Nevertheless, this equation shows,
the binary’s parameters influence the migration process.

Here, a disk with a larger initial disk mass Mdisk = 0.021M� is simulated with three different
eccentricity values of the central binary star, namely eb = 0.1, 0.3, and 0.5. This enables
testing the influence of the binary eccentricities, which led to new stability limits for the
planet (see Tab. 4.9). Moreover, the larger the binary eccentricity, the larger is the inner
cavity (see Fig. 4.48). For example, in the left plot with eb = 0.5, one needs to remember
that the planet has an elliptic orbit with its semi-major axis around 0.8AU with an eccen-
tricity of the orbit ep = 0.26 after the migration process at 1200Tbin. Thus in the figure, the
current location is not the semi-major axis, but the planet’s position within the disk, and
this position can be smaller than the semi-major axis. The larger cavity leads to different
stopping locations of the planet (see Fig. 4.49). This figure shows a significant impact of
the binary eccentricity on the stopping location of the migrating planet. One can conclude
that binaries with higher eccentricities have a stopping location of the planet’s migration
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Fig. 4.48: Formation of the disk inner cavity as a function of the eccentricity of the central binary star after
1200Tbin for an initial disk mass of 0.021Mdisk. From left to right, the binary eccentricity eb is 0.1, 0.3 and
0.5 respectively. The computational hole is marked as a white disk, and the blue and orange dots show the
location of the stars. The dashed-line circle indicates the reported location of Kepler 38 at 0.46AU. The
continuous-line circle indicates the critical radius ac derived from Holman & Wiegert (1999), which from top
to bottom is calculated at ∼ 0.4, 0.5 and 0.6, respectively. See text for details.

process further out if all parameters are kept the same. This confirms Thun et al. (2017,
p. 15) finding with 2D simulations.

Tab. 4.9: Stability limits for p-type planets semi-major axis (see Eq. 2.2), for different binary eccentricities.
eb ac [AU]
0.1 0.394
0.3 0.498
0.5 0.580
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Fig. 4.49: Evolution of the Kepler 38 0.021M� disk without the Stockholm condition and different eb. Left:
Time evolution of the planet semi-major axis ap. For each value of eb, the colored horizontal lines give the
estimated critical semi-major axis ac. Right: Inclination of planet towards the mid-plane. The mass of the
planet and all the other parameters are kept the same.

The disk mass does not influence the location of the stability limit of the semi-major axis,
but the disk mass still influences the migration process. In this case, the relatively massive
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disk results in a rapid migration with an eccentricity-dependent ending location that is pro-
portional to the critical semi-major axis by an empirical factor of ∼ 1.5(1−eb). Nevertheless,
for a simulation with a heavy disk mass and a large binary eccentricity, the planet may get
ejected out of the system (see Fig. 4.50).
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Fig. 4.50: Evolution of the Kepler 38 without Stockholm condition, eb = 0.5 and different disk masses.
Left: Time evolution of the planet semi-major axis ap. Right: Inclination of planet towards the mid-plane.
The mass of the planet and all the other parameters are kept the same.

A closer look at the influence of a different mass ratio is taken. The different mass ratio
µ (ranging from 0.25-1) of the binary also leads to a different stability limit for the planet
(see Tab. 4.10). Compared to the influence of the binary eccentricity, the influence of the
mass ratio is moderate. This explains the finding of very similar stopping locations for the
planet (see Fig. 4.51). Only for the smallest value of µ a noticeable difference is seen in
the stopping location of the planet following a rapid migration. This corresponds to findings
of Thun et al. (2017, p. 15) who only found a weak impact through variation of the mass ratio.

Tab. 4.10: Stability limits for p-type planets semi-major axis (see Eq. 2.2) for different binary mass ratios
and eb = 0.1.

binary ratio ac [AU]
0.8/0.2 0.394
0.7/0.3 0.408
0.6/0.4 0.414
0.5/0.5 0.415

If one looks at the inclination of the planet towards the mid-plane in the simulation with
different binary eccentricities (see Fig. 4.49), one can see that the location of the stars pri-
marily affects the inclination. Thus, the eccentricity of the stars seems to disturb the disk
faster, and the planet’s inclination happens earlier.
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Fig. 4.51: Evolution of the planet in a circumbinary disk. The simulation is done without the Stockholm
condition, eb = 0.1 and different mass ratios. Left: semi-major axis. Right: inclination of planet towards
the mid-plane. The mass of the planet and all the other parameters are kept the same.

The star mass ratio seems to have a negligible influence on the amplitude of inclination to-
wards the mid-plane of the planet (see Fig. 4.51). The times of the episodes with inclinations
vary, but that is explainable, as it is influenced by the location of the planet towards the
binary stars and the planet is at different locations at the same Tbin.

Inclination of planet

In the previous section and paragraphs, the validity of the three-dimensional simulation
approach was established by reproducing results on the planet migration process and disk
evolution that are coherent with previous studies and with the parameters assumed, in par-
ticular regarding the higher disk surface density. Also, here, in the simulation without the
Stockholm condition, an inclination of the planet is visible. As shown before, it is highly
dependent on the disk mass; thus, it is hard to compare this simulation to the simulation
with the Stockholm condition. In the simulation with the Stockholm condition, the mass
raises over time from 0.007M� to over 0.1M� (see Fig. 4.19). Thus for the simulation
without the Stockholm condition the disk mass of 0.01M� and 0.1M� are compared (see
Fig 4.52). Focusing on the inclination one can detect, that for the case of Mdisk = 0.01M�,
the planet, which is initially co-planar with the binary star orbit, shows a non-zero inclina-
tion starting at t ∼ 60Tbin that steadily increases over the first 120Tbin timescale to ∼ 0.01◦.
The same can also be detected while analyzing the mutual inclination of the binary/planet
(see Fig. 4.53). There the inclination rises to 0.015◦ in the first 120Tbin. Beyond that point
in time, the inclination towards the mid-plane and the mutual inclination varies but never
exceeds i1/2 ∼ 0.025◦ over a timescale of 9000Tbin. A direct comparison with the case of
the single star scenario is shown in Fig. 4.53, and the planet’s inclination with respect to
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Tab. 4.11: Mutual inclination in in degree between the normal vector and the angular momentum vector of
the disk at different Tbin for different disk masses and star eccentricities. Left: the planet gets ejected out of
the system at the simulation 0.1M� & 0.5 e�. At 910Tbin the planet is already 200 AU away. Right: single
star case.

binary 0.01M� 0.1M�
0.1 e� T bin = 17

Tbin = 910
0.00116
0.00588

0.00111
0.00667

0.5 e� T bin = 17
Tbin = 910

0.00292
0.00684

0.00228
0.00789

single 0.01M� 0.1M�
T bin = 17
Tbin = 910

0.0000703
0.000119

0.0000636
0.000358

the mid-plane in a single star case for different disk masses is shown in Fig. 4.9 (bottom
plot). Those plots show that in the single star case, both types of inclinations are almost
zero over 1400Tbin. This results again points out the critical influence of the binarity on the
introduced planet misalignment, even for the case of initial co-planarity.

The more extreme case is also explored (see Fig. 4.52 (bottom plots) and Fig. 4.53 (right
plot)). This case with Mdisk = 0.1M� is unlike a real T Tauri system. It has an inner disk
ten times more massive than the previously discussed system. In this case, the evolution
timescale was limited to 1/6th of the lower disk’s mass case. In those figures, one can ob-
serve a behavior comparable to the lower disk’s mass case in terms of increase of mutual
inclination, but with an amplitude up to 0.2◦, i.e., about ten times larger than the case
Mdisk = 0.01M� and close to the observed inclination of Kepler 38.
An important aspect concerns the disk dynamics under the gravitational potential of the cen-
tral binary star. The author computed the binary/disk mutual inclination i1 up to 200Tbin
due to the high computation cost. One can observe in Fig. 4.54 the rapid development of the
mutual inclination with a modest amplitude .0.02 ◦. For more comparisons of the mutual
inclination of the disk at a later point in time (see Tab. 4.11). The Tab. 4.12 is added to
show the direct comparison of the mutual inclination of the planet at the same points in
time. Nevertheless, one needs to be careful because of the high fluctuations not to compare
a large angle at 0.01M� with a low angle at 0.1M�. As one can not read a trend from
a single data point, one needs to be careful before drawing conclusions from it. However,
one can compare the two later tables with each other as one displays the planet’s mutual
inclination and the other the disk’s mutual inclination. For the general trend of the planets
evolution (see Fig. 4.52 and Fig. 4.53).

In both simulation asymmetries in the xz plane are visible (see Fig. 4.55). Fig. 4.56 shows
the z plane at the same points in time as Fig. 4.44. Those are similar points in time as
used with the Stockholm condition, where the planet just finished a revolution, to make
it comparable. Again the focus is on the asymmetries in the z plane. Thus Fig. 4.57 are
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Fig. 4.52: The planets’ evolution of the semi-major axis. The left figure shows the evolution over 1400
binary revolutions (on the top axis, the transformation to Earth years is shown). The horizontal line is the
observed planet’s location (0.46AU). The migration in the setup with Stockholm condition happened mostly
between 615 and 671 binary revolutions (solid vertical lines). In the top simulation the migration process
takes much longer and in the bottom process it happens in the first 200Tbin. The middle figure shows the
evolution of the eccentricity of the planet and the right figure the planet’s inclination towards the mid-plane
is shown. In the later figures the black lines are the same as in the with Stockholm setup. This helps with
the comparison. The top row shows the evolution for a disk with the mass of 0.01M� and the bottom row
shows the disk with the mass of 0.1M�. One can see, the inclination towards the mid-plane is smaller in
this setup compared to the setup with the Stockholm condition.

Fig. 4.53: Mutual inclination of the angular momentum vector of the planet towards the normal vector in
z direction/Lbinary. The mass of the disk is (left) 0.01M� and (right) 0.1M�. The star eccentricity is 0.1.
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Fig. 4.54: Mutual inclination of the angular momentum vector of the disk and the angular momentum
vector of the normal vector, as well as, the mutual inclination of the angular momentum vector of the planet
and the angular momentum vector of the normal vector in a 0.01M� disk mass system.

Tab. 4.12: Mutual inclination in degree between the normal vector and the angular momentum vector of
the planet at different Tbin for different disk masses and star eccentricities. Left: the planet gets ejected out
of the system at the simulation 0.1M� & 0.5 e�. At 910Tbin the planet is already 200AU away. Right:
single star case.
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done the same way as Fig. 4.24 in the previous section. In contrast to the simulations with
the Stockholm condition, the asymmetries are towards the beginning of the simulation and
become less towards the end (see Fig. 4.57 and Fig. 4.58). This is explainable as the mass of
the disk decreases over time. The time points vary in both simulations a bit, as the planet’s
evolution depends on the disk mass. The times were chosen that the planet had just finished
a revolution.

Fig. 4.55: Evolution of the Kepler 38 disk is shown in a two-dimensional surface density plot of the z plane
after the migration process at (left) 9000 binary revolutions and 0.01M� disk mass (right) 607 binary
revolutions and 0.1M� disk mass, where the mid-plane is subtracted from each plane in the disk. A zoom
on the inner gas around the planet is shown. The asymmetry in the gas density in the disk shows the
gravitational influence on the planet. The the gas density is linear color-coded. The plot is 0.43×0.26AU in
size.

Comparing the axis symmetries with the simulation without the planet in Fig. 4.35, one can
see that again; the planet has a significant impact on the density clusters. Thus not only
the binary and the spiral arms influence the disk structure but also the planet itself.

Moreover, comparing the results with the single-star case and the planet at ∼ 1AU. The
simulation was evolved until t∼ 9000Tbin. Figure 4.59 shows a visually plane-symmetric
gas density distribution in the vertical plane at the planet azimuth at t = 8008Tbin for the
single-star case.

When comparing the central binary case corresponding to Kepler 38 by similarly tracing
the vertical gas density distribution for the same time duration, up to t∼ 9000Tbin. On top
of an overall plane-symmetric distribution, once can observe clear asymmetries in the disk
gas density within 0.1AU of the migrating planet. Note that the Hill radius of the planet is
typically less than 0.03AU. In Fig. 4.57, the plane-asymmetry is well visible for t = 2020Tbin
at ∼ 0.6AU as well as for t = 9000Tbin at ∼ 0.5AU, although with lower contrast between
the upper and lower overdensities in the latter case. Such overdensities are found to be of
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Fig. 4.56: Evolution of Kepler 38 0.01M� disk shown in a two-dimensional surface density plot of the
xz plane with an isothermal simulation without the Stockholm condition at the same points in time as
Fig. 4.43. The black marker shows the location of the planet. The white area is also outside of the computa-
tional domain as it is the same setup. The plots are 2.25×0.63 AU in size and in CGS units. The logarithm
of the gas density is color-coded, and the time is indicated on top of each figure.
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Fig. 4.57: Evolution of the Kepler 38 0.01M� disk surface density is shown in a two-dimensional plot of the
xz plane, where the mid-plane is subtracted from each plane in the disk. It is the same setup as in Fig. 4.56.
The asymmetry in the gas surface density in the disk shows the gravitational influence on the planet. The
planet is marked in the right zoomed area with a white cross. The gas surface density is linear color-coded.
The plots are 2.25×0.63AU in size. On top of each figure, time is indicated as a multiple of the binary’s
orbital period.
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Fig. 4.58: Evolution of the Kepler 38 density is shown in a two-dimensional surface density plot of the
xz plane, where the mid-plane is subtracted from each plane in the disk. The disk mass is 0.1M�. The
asymmetry in the gas surface density in the disk shows the gravitational influence on the planet. The planet
is marked in the right zoomed area with a white cross. The gas surface density is linear color-coded. The
plots are 2.25×0.63AU in size. On top of each figure, time is indicated as a multiple of the binary’s orbital
period.
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Fig. 4.59: The evolution of the single star case surface density of the 0.01M� disk is shown in a two-
dimensional plot of the xz plane, where the mid-plane is subtracted from each plane in the disk. The
asymmetry in the gas density in the disk shows the gravitational influence on the planet (white marker).
The author zooms on the inner region of the disk. The gas density is linear color-coded. The planet is in
the migration process. The time Tbin is a fixed time frame and corresponds to 19.6 years. Thus, 8008Tbin
equals ∼ 409Earth years.

∼ 100-200 in excess to the mid-plane density.

The comparison between the single-star and binary-star cases points at the gravitational in-
fluence of the central binary star withm = 0.26 mass ration in the formation and evolution of
plane-asymmetric gas density structures. The strength and contrast of the plane-asymmetric
structure appears to depend on the disk mass. In the extreme case of Md = 0.1M�, one
can observe in Fig. 4.58 the rapid formation (t = 768Tbin) of vertical asymmetries with a
density of ∼ 3000 g/cm2 in excess to the mid-plane.

Then, as a possible quantitative metric of the vertical disk symmetry/asymmetry, one can
compute the ratio ρφ(r) = Σup/Σlow where Σup and Σlow is the integrated surface density in
the upper and lower disk hemisphere, respectively, at the radial an azimuthal positions r and
φ (see Fig. 4.61). Deviations from ρφ = 1 indicate the strength of the asymmetry relative
to the mid-plane.

Furthermore the influence of the disk asymmetries by calculating the gravitational and hydro-
dynamic forces exerted on the planet are analyzed. In this setup the total force is calculated
using a temporal resolution ∆T = 0.1Tbin. The comparison between the single star and bi-
nary star setups in Fig. 4.62 indicate that the planet becomes rapidly (at ∼ 25Tbin) subject
to the pull of Ftot,z, which amplitude starts oscillating from ∼ 55Tbin with the planetary
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Fig. 4.60: The evolution of the Kepler 38 0.1M� disk is shown in a two-dimensional surface density plot of
the xz-plane at 17 binary revolutions, where the mid-plane is subtracted from each plane in the disk. The
author zooms on the gas around the inner disk at the planet’s side. The asymmetry in the gas density in the
disk shows the gravitational influence on the planet. The gas density is linear color-coded. The migration
process is already finished.

period of ∼ 17Tbin. This results from the planet with its increasingly inclined orbital plane
periodically crossing the binary star orbital plane. Comparatively, the pull of Ftot,z in the
single star case remains negligible by a factor &100. Beyond ∼ 70Tbin, the gravitational
force contribution of the binary star Fbs,z dominates the total force in magnitude, as this is
visible in Fig. 4.62. In the early phases, i.e. within the first 10Tbin of the system evolution,
it is visible that the hydrodynamic force Fhd,z is the dominant contribution to the total net
force, which causes the original misalignment of the planet with respect to the binary orbit.

As the planet feels the gravitation of the disk, the pull in z direction first increases and then
decreases over time (see Fig. 4.63). The force was calculated using the Eq. 4.5 and Eq. 4.4.
This time the mass-force relation is less visible as the mass decrease is much smaller (see
Fig. 4.64), compared to the mass increase in the simulation with the Stockholm condition.
In the simulation with the Stockholm condition the mass increases over time and the force
increases as well. Furthermore, to compare the results with the corresponding single star
setups where the secondary were removed from the simulations, the results were added to
the figure. Then, when comparing the single star setup with the binary setup, one can
see that the force in z direction is significantly lower in the single case than in the binary
case. This is in line with the observed z movement of the planetary orbit in the binary
case. By only looking at the force of the disk on the planet at 400Tbin (20.4 years) for the
binary setup 0.01M� (−2.22 · 1019, 1.45 · 1018,−5.87 · 1018) and the binary setup 0.1M�
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Fig. 4.61: The evolution of 0.01M� disk is computed by the ratio ρφ(r) = Σup/Σlow (top) binary case and
(bottom) single case. (left top) binary simulation at the start of the simulation 0Tbin. (right top) binary
simulation after the migration process 9000Tbin. (left bottom) single simulation at the start of the simulation
0Tbin. (right bottom) single simulation during the migration process 8008Tbin. The red marker indicates
the location of the planet.
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Fig. 4.62: Evolution of the force on the planet in a 0.01M� disk mass system in z-direction. Thus the
negative sign shows the direction of the force. The gravitational force of the stars and disk in the z-direction
starts later than the force calculated from the impulse of the planet.
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(−8.64 ·1019,−2.02 ·1019,−1.26 ·1019), one can see that again the higher disk mass influences
the force by a factor of ten which was also the case for the single star setup. Nevertheless,
the force on the planet is dominated by the gravitational force of the binary stars.

Fig. 4.63: Evolution of the force on the planet in a 0.01M� (top) and 0.1M� (bottom) system in z direction.
Thus the negative sign shows the direction of the force. One can see in the binary case the force on the
planet is higher. The force in z direction of the stars and the total force are roughly the same. Thus the
main force is exerted from the stars. Furthermore, the force is depending on the location of the planet.

The mass-force relation can be seen if one compares different binary eccentricities and disk
masses (see Tab. 4.13). The binary orbits’ eccentricities do not lead to an increase in force,
but for 17Tbin, the force is higher at a higher eccentricity. This is not contradicting the
findings in the previous paragraph. There it was shown that a higher binary eccentricity
leads to an earlier inclination.
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Fig. 4.64: Normalized disk mass over time for a disk with initial 0.01M� (decrease 13.17% over 51 years)
and 0.1M� (13.98% over 51 years) disk mass. The Stockholm condition is turned off and the inner boundary
is at 1.3 abin.

The comparison of the different mass ratios and the influence on the force is difficult. As
the planet is at different locations at the same point in time and the force of the planet is
highly dependent on the location within the disk plus the binary.

Physical effect vs. numerical noise The author tested a different boundary condition to
verify that the above effects are physical and not originating from numerical noise. Therefore,
the author changed the open inner OUTFLOW boundary condition to the ANTISYMMET-
RIC closed boundary condition. This new boundary condition prevents mass flow onto the
stars, and the mass of the disk stays constant during the simulation (see Fig. 4.65). Those
simulations show that the inclination is independent of the choice of the boundary condi-
tion. Therefore, the inclination has a physical origin. If it would depend on the boundary
condition, than the chance is high that it is numerical noise. With the ANTISYMMETRIC
setup, a higher mutual inclination between the angular momentum of the planet and the
normal vector (see Fig. 4.66) than with the open boundary condition can be detected. The
higher disk mass leads to a higher force onto the planet (see Fig. 4.67).
In the last three months, a new version of the code was released due to the findings in
this thesis. To understand the effects of this thesis, Frédéric Masset needed to investigate
the viscosity tensor in spherical coordinates. He found a change was needed to ensure the
physical correctness of the code. The author tested the simulations with the new code (see
Fig. 4.68). Despite the new version of the code, the physical effect found by the author
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Tab. 4.13: Force in CGS units in z direction on planet of the Kepler 38 system at different Tbin for different
disk masses and star eccentricities. The planet gets ejected out of the system at the simulation 0.1M� &
0.5 e�. At 910Tbin the planet is already 200AU away.

0.01M� 0.021M� 0.05M� 0.1M�
0.1 e� T bin = 17x

y
z

-4.50·1029

-8.06 ·1027

1.15 ·1021

-4.51·1029

-4.26 ·1028

-1.67 ·1022

-4.45·1029

-1.38 ·1029

3.61 ·1022

-3.90·1029

-3.19 ·1029

-2.22 ·1022

e� T bin = 910x
y
z

-5.85·1029

-1.09 ·1028

-7.30 ·1025

4.84·1029

1.39 ·1030

-3.09 ·1026

-1.37·1030

1.21 ·1030

-4.33 ·1026

6.33·1029

-5.59 ·1029

-1.46 ·1026

0.5 e� T bin = 17x
y
z

-4.53·1029

-2.49 ·1028

-3.53 ·1021

-4.52·1029

-5.72 ·1028

2.44 ·1022

-4.52·1029

-1.72 ·1029

-6.00 ·1025

-3.74·1029

-3.45 ·1029

-1.45 ·1024

e� T bin = 910x
y
z

4.81·1029

-3.02 ·1029

5.72 ·1025

1.23·1028

-5.42 ·1029

-6.87 ·1023

-1.05·1030

-3.94 ·1029

-3.44 ·1026

1.11·1016

1.14 ·1015

3.47 ·1012

before is kept. This gives even more confidence in the physicality of the effect. One can see
that the effect develops slightly later. Nevertheless, the effects described previously are vis-
ible, and the results reinforce the previous findings of this physical effect. Significantly, the
early development of the hydrodynamical force shows the same physical behavior, and just
the starting time is delayed (see Fig. 4.69). Another symmetry test is performed to ensure
the physical effect. Therefore, the velocity field of the disk is analyzed with the following
equation:

vz(r, φ, π + θ) + vz(r, φ, π − θ) = vzc (4.11)

where vz is the Cartesian velocity in the z direction with an offset (positive and negative)
towards the mid-plane of θ. For mirror symmetry towards the mid-plane in the disk vzc from
the Eq. 4.11 should be zero.

The author applies this formula to the velocity field of the new simulation, and the results
lead to a comparable result to the density distribution. Namely, zero at the beginning of
the simulation (0Tbin) and non-zero at a later point in time of the simulation (150Tbin).
Similarly, the asymmetries are located in the inner part of the simulated disk. The results of
the binary and single star setup are displayed in Fig. 4.70. It visualizes that the turbulence
displayed through the velocity is neglectable small in the single star system and significantly
large in the binary system. This underlines the findings of the significant role of the binary
in this thesis. Letting the binary system further evolve, one can observe a broader region
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with vzc velocities 6= 0 (see Fig. 4.71). The asymmetry level is 18 times smaller in the outer
region than in the inner region. Nevertheless, in the more involved case, the turbulent inner
region expanse to 1.5AU (small turbulence is seen over the complete disk) where the tur-
bulent inner region expanse to 1AU at an early stage. This is in line with the findings of
Kurbatov et al. (2014, p. 787) and Kurbatov et al. (2017, p. 1036) where he found that the
turbulence is induced by the binary and propagates through the disk.
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Fig. 4.65: Disk mass over time for a disk with 0.01M�. The blue dots show the ANTISYMMETRIC
boundary condition, where the disk mass stays constant over the simulation. The orange dots show the
previous open boundary condition which is called in the code OUTFLOW. The Stockholm condition is
turned off and the inner boundary is at 1.3 abin.

Therefore, the author found a correlation between the turbulence and the vertical displace-
ment of the planet. The turbulence is the initiator of the vertical displacement, and then
the influence of the binary takes over.
Future studies need to analyze how to maintain this inclination, e.g., a larger computational
domain could be of interest. In this chapter, it was found that the planet’s inclination
depends on the disk mass, and on the perturbation induced by the binary, mainly via its
eccentricity. The mass ratio of the binary as well as the starting position of the planet play a
secondary role. The viscosity parameter influences the inclination of the planet significantly.
This thesis did not analyze the influence of the planet’s mass itself, but this would be an
exciting additional point for future work. Another interesting numerical experiment could
be to test the influence of the binary semi-major axis on the inclination of the planet.
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Fig. 4.66: Mutual inclination of the planet’s angular momentum and the normal vector for a disk with
0.01M� with the ANTISYMMETRIC closed boundary condition and the OUTFLOW open boundary con-
dition. The blue curve shows the ANTISYMMETRIC boundary condition, where the inclination is higher.
The orange curve shows the previous open boundary condition which is called in the code OUTFLOW. The
Stockholm condition is turned off, and the inner boundary is at 1.3 abin.
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Fig. 4.67: Evolution of the force on the planet in a 0.01M� disk mass system in z-direction with the
ANTISYMMETRIC closed boundary condition and the OUTFLOW open boundary condition. Thus the
negative sign shows the direction of the force. The blue curve shows the ANTISYMMETRIC boundary
condition, where the force grows and stays at a higher level. The orange curve shows the previous open
boundary condition, which is called in the code OUTFLOW. There the force is initially higher but decreases
over time. The force of the ANTISYMMETRIC condition stays higher. This compares with the inclination
development in Fig. 4.66, where the inclination raises first equally. Then, the inclination of the OUTFLOW
condition elevates higher, but after roughly 200Tbin the inclination of the ANTISYMMETRIC boundary
condition becomes higher and stays higher. The Stockholm condition is turned off, and the inner boundary
is at 1.3 abin.
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Fig. 4.68: Mutual inclination of the planet’s angular momentum and the normal vector for a disk with
0.01M� with the old and the new version of the code. The blue curve shows the new code, where the
inclination starts later. The orange curve shows the previous setup of the code. The Stockholm condition is
turned off, and the inner boundary is at 1.3 abin.

0 25 50 75 100 125 150 175 200
t [Tbin]

0.5

0.0

0.5

1.0

1.5

F z
 [g

 c
m

/s
2 ]

×1025
hd force, new setup
hd force, old setup

0.0 1.3 2.6 3.8 5.1 6.4 7.7 8.9 10.2
t [Tyr]

Fig. 4.69: (left) Hydrodynamical force for a disk with 0.01M� with the old and the new version of the
code. The blue curve shows the resulting hydrodynamical force of the new code, where the inclination starts
later. The orange curve shows the previous setup of the code. The Stockholm condition is turned off and
the inner boundary is at 1.3 abin. Comparing the results to the mutual inclinations in Fig. 4.68, one can
see that the inclination rises earlier and higher with the old setup, thus the hydrodynamical force also rises
earlier and higher. (right) Evolution of the total force and gravitational force in z-direction for a disk with
0.01M� and for the new version of the code. One can see that the inclination behaves similar to the old
version of the code.
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Fig. 4.70: 19 combined (π + θ and π − θ) velocities in z direction in the disk in the single star setup (top)
and new binary setup for a disk (bottom) with 0.01M� plotted against the radial distance to the center
of mass. The Stockholm condition is turned off and the inner boundary is at 1.3 abin. (left) 0Tbin (right)
150Tbin. As expected, the mirror symmetry is at the beginning of the simulation (vzc is zero over the whole
disk) and it becomes asymmetric over time. If one compared the evolved single star setup with the binary
setup, one can see the difference of magnitude between those cases.
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Fig. 4.71: 19 combined (π + θ and π − θ) velocities in z direction in the disk in the new binary setup for
a disk with 0.01M� plotted against the radial distance to the center of mass. The Stockholm condition is
turned off and the inner boundary is at 1.3 abin. (left) 3004Tbin (right) 3907Tbin. The velocity is displayed
in the xz plane where the planet is located. As expected, the turbulence is distributing thought the disk.
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5 Contribution to the METIS
instrument

In parallel to the work presented in Chapter 4 in the field of numerical experiments and
comparison to observations, the author of this thesis contributed to the instrument develop-
ment of the Mid-infrared ELT Imager and Spectrograph (METIS). The scientific objective
of METIS is, among other goals, to serve the science of protoplanetary disks (Brandl et al.,
2016, p. 2), which the author has discussed in the context of Kepler 38 in the first part of
this thesis.
The current instruments on the Very Large Telescope (VLT)1, an 8.2m telescope, have a lim-
ited angular resolution (λ/D) by the VLT’s diameter and focus mainly on the UV, visible and
near-infrared spectrum of the light. Only two instruments, the CRyogenic high-resolution
InfraRed Echelle Spectrograph (CRIRES) and the VLT Imager and Spectrometer for mid-
InfraRed (VISIR), focus on the mid-infrared. The METIS instrument is the successor of
those two infrared instruments at the VLT2 and will provide a roughly five times higher an-
gular resolution considering the 40-meter diameter of the Extremely Large Telescope (ELT)3.
In this chapter, the author will highlight the results she contributed. Therefore, a general
overview of the instrument METIS is given, followed by the laboratory tests and proof-of-
concept for the METIS instrument.

5.1 METIS

To improve the sensitivity and (spatial) resolution of telescopes observing, e.g., protoplane-
tary disks, the European Southern Observatory is developing the largest mirror telescope for
optical and infrared observations in the world, the ELT. The ELT is a 40m class telescope
which is currently under construction in Chile and should start operations in 20274.
It will be a next-generation telescope which is enabled through technological improvements,

1https://www.eso.org/public/germany/teles-instr/paranal-observatory/vlt/ (2021-07-06)
2https://www.eso.org/public/announcements/ann15073/ (2022-03-16)
3https://www.eso.org/sci/facilities/eelt/ (2018-04-09)
4https://www.elt.eso.org/about/timeline/ (2021-07-06)
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e.g., in the area of adaptive optics (AO) and large segmented mirrors, combined with learn-
ings from past ground-breaking developments like the ground-based VLT (pioneering adap-
tive optics5) and the Keck telescopes (pioneering segmented telescope technology6). The ELT
has a primary mirror which is 16 times larger than the primary mirror of the widely known
Hubble Space Telescope (HST)7. However, the HST observes in the wavelength range of 0.1
- 2.5µm (UV, visible, and near-infrared), whereas the wavelength range of METIS/ELT cov-
ers the wavelength regime 3 - 13.5µm (mid-infrared) (Brandl et al., 2016, p. 1). Therefore
the instrumentation of Hubble and METIS are not directly comparable. METIS on the ELT
is more directly comparable with the successor of the Hubble telescope, namely the James
Webb Space Telescope (JWST)8 and its 6.5 m primary mirror, which was recently launched
and designed for observing primarily in the infrared. The JWST instrumentation covers a
wavelength range from 0.6 to 28µm. The ELT will have a much-increased collecting power
as this is proportional to D2, where D is the telescope diameter. Thus, in theory the sen-
sitivity of the ELT is much increased. However, the ELT remains a ground-based telescope
and therefore faces the problem of the strong contribution from thermal background, which
is of course not the case for the space telescope JWST. This means that even though the
ELT benefits from a larger diameter than the JWST, it will be less sensitive because of the
presence of the huge infrared thermal background on Earth.

One of the first light instruments of the European ELT is METIS9, which will be installed on
the Nasmyth platform (Brandl et al., 2016, p. 1). The other two first-light instruments, MI-
CADO and HARMONI, focus diffraction-limited imaging and integral field spectroscopy in
the optical and near-infrared ranges (0.47 - 2.45µm). A fourth instrument, MAORY, will not
perform observations by itself, but will rather implement multi-conjugated adaptive optics
to compensate for the atmospheric turbulence10 and mainly serve the MICADO instrument.
The role of MAORY is to provide MICADO with stable and sharp images across a large
field of view through state of the art adaptive optics. MICARDO and MAORY together
will provide a 50.5"×50.5" field of view with a pixelscale of 4milli-arc seconds (mas), and a
higher resolution option with 1.5mas over a 19"×19" field of view11.

The METIS instrument will enable the study of high redshift infrared galaxies, active galac-
tic nuclei, Solar System bodies, protoplanetary disks, and exoplanets (Brandl et al., 2016,

5https://www.eso.org/public/announcements/ann18066/ (2022-03-16)
6https://www.keckobservatory.org/about/telescopes-instrumentation/ (2022-03-16)
7https://www.hubblesite.org/mission-and-telescope/the-telescope (2021-09-06)
8https://www.webb.nasa.gov/content/about/comparisonWebbVsHubble.html (2022-03-16)
9https://www.elt.eso.org/instrument/METIS/ (2021-06-17)
10https://www.elt.eso.org/instrument/ (2021-06-17)
11https://www.elt.eso.org/instrument/MICADO/#science (2022-03-16)
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p. 2). In particular, since one of the key science cases of METIS concerns the study of
protoplanetary disks and exoplanets, it is especially interesting for the author of this thesis
to participate to the development of this instrument.
On the topic of circumstellar/circumbinary disks and planet formation, METIS will be able
to study the dynamics of the molecular gas in the planet-forming region. Moreover, gaps
and cavities in disks will be observed (Brandl et al., 2018, p. 2). Even though METIS cannot
directly image the Kepler 38 system due to the small separation of 0.37mas in comparison to
the ∼ 20mas resolution of the instrument in the L band, comparable low-mass young binary
stars hosting disks such as the famous GGTau system could be observed in order to obtain
a direct insight into the structure and the planet-induced asymmetries of the host disk(s).
Therefore, the work of the author of this thesis in helping developing the METIS instrument
is an indirect contribution to these future studies.

The instrument is built by a consortium consisting of the University of Cologne (Germany),
NOVA (The Netherlands), MPIA Heidelberg (Germany), CEA-Saclay (France), UK-ATC
(United Kingdom), KU Leuven (Belgium), ETH Zürich (Switzerland), University of Michi-
gan (US), ASIAA (Taiwan) and the A Consortium (Austria). The instrument will be fully
assembled and tested in Leiden before being shipped to Chile (Rutowska et al., 2020, p. 1).
It consists of two separate units. Those units are the imager and the spectrograph, both
located inside a cryostat, which reduces the instrumental thermal background radiation
(Brandl et al., 2016, p. 12). This is especially important for an instrument operating from
the ground in the mid-infrared since the thermal background from the night sky and in par-
ticular from the telescope itself are already orders of magnitudes larger than the scientific
signal. By putting the instrument in a cryostat, the thermal background from the instru-
ment itself is much reduced, while the detector is separately cooled down to its operational
temperature of a few tens of Kelvins. A schematic overview of the METIS instrument is
shown in Fig. 5.1.
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5.1.1 Warm Calibration Unit

The METIS instrument is divided into different sub-systems to be developed by different
consortium partners. One of the sub-systems is the Warm Calibration Unit (WCU) devel-
oped at the University of Cologne, Germany. As the name suggests it, the WCU is located
outside of the cryogenic part of METIS and delivers calibration during on-sky operations en-
suring long-term measurement repeatability. The foreseen WCU calibration functionalities
are summarized in Fig. 5.2.

Conceptual design of the WCU

In this paragraph, the general design chosen for the WCU and developed by the team in
Cologne is introduced (see Fig. 5.3). The WCU is built on an optical bench that holds the
relay optics and the focal plane sources. It is supported by an hexapod, which is interfaced
with the METIS cryostat in order to maintain the WCU on top of the instrument (see
Fig. 5.1). A folded mirror placed on a translation stage in the periscopic arm can be moved
into the beam in order to inject the light from the calibration sources into METIS. When
scientific operations are carried out during the night, the folded mirror is translated out from
the beam in order to let the ELT beam through.
In the WCU, there are two focal-plane stations: one for the infrared wavelength range
(named WCU-FP2.1) and one for the visible wavelength range (named WCU-FP2.2). Both
focal planes of WCU-FP2.1 and WCU-FP2.2 can be re-imaged at a particular location in
the periscopic arm named WCU-FP1, which is the replication of the ELT focal plane. This
is illustrated in Fig. 5.3.
The visible station WCU-FP2.2 contains a CCD camera, which is used for the visualization
and inspection of the focal plane inside the METIS cryostat, in particular during the AIV
phase.
The infrared station WCU FP2.1 is the main calibration station and is the focus of this
part of the thesis. It generates the majority of spectral and spatial sources (Baccichet et al.,
2018, p. 4), in the form of extended sources, or a series of point sources (i.e., pinholes which
are back-illuminated). These artifical sources can emit over the L (3.8µm), M (4.7µm),
and N (10µm) bands (Baccichet et al., 2018, p. 1). The main role of the artificial sources
at FP2.1 is to provide calibration sources for the monitoring of the image quality and the
field distortion of the METIS imager, the linearity and flat-field of the detector, as well as
the spectral response of the METIS high-resolution spectrograph. The hardware components
generating those artificial sources are, in particular, the blackbody source (BB), the aperture
mask wheel, and the integrating sphere (IS). The inputs of the integrating sphere are one port
for interfacing the blackbody source and three fiber ports for the monochromatic calibration
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Fig. 5.1: Schematic view of the METIS instrument. On the top is the Warm Calibration Unit (WCU).
The three essential measurement devices (aperture mask, blackbody source, and integrating sphere) for this
thesis are indicated within the WCU. The periscopic arm consists of mirrors that root the light from the
artificial sources of the WCU into METIS. When the calibration unit is no longer operated, the mirror in the
periscopic arm can be translated out to let the ELT beam through. The Warm Support Structure (WSS)
forms the hexapod structure supporting the METIS cryostat. This figure is adapted from Rutowska et al.
(2020, p. 2).
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Fig. 5.2: Structure of the WCU calibration functionalities adapted from the WCU Preliminary Design
Review documentation.

sources. These are three laser sources used to calibrate the response of the spectrograph using
the precise knowledge of laser lines. In between the blackbody source, which temperature
is roughly tunable in termperature between 290 and 1300K, and the integrating sphere, an
aperture mask is placed, which role is to rapidly vary the flux entering the integrating sphere
for the purpose of detector linearity tests.

Contributed tests

In the following the experiments and tests which were led by the author of this thesis on the
METIS part are listed. They are essentially presented in a chronological order.

• Measurements on the influence of the external and laboratory-specific air-conditioning
system onto the overall temporal stability: the goal is to identify potential biases on
the measured quantities.

• Measurements on the blackbody response time scale: for calibration purpose, the black-
body source is expected to emit a highly stable flux over several hours. The author
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Fig. 5.3: Schematic of the WCU. The dashed orange squares indicate the two focal-plane stations (FP2.1
and FP2.2), the focal plane in the periscopic arm (FP1), as well as the position of the pupil-plane WCU-
PP1. The light path is indicated as a green light in the configuration where FP2.1 is active. By inserting a
beam-splitter (not visualized here) the station FP2.2 can become active for alignment monitoring.

investigated this parameter and estimated the intrinsic source stability.

• Measurements on the flux passing through the integrating sphere as a function of the
blackbody temperature: these measurements enable the comparison with the analyt-
ically calculated flux to ensure the correctness of the assumed theory. In particular,
this permits to benefit from a model of the flux emitted by the blackbody+ integrating
sphere assembly for the purpose of signal-to-noise ratio.

• Measurements on the thermal characteristics of the assembly blackbody source cou-
pled to integrating sphere: the influence of the self-radiation through heating of the
integrating sphere was investigated by the author. In an experiment, one must ensure
to measure real signals and not the thermal background.

• Measurement of the flux temporal stability of the assembly blackbody source coupled
to the integrating sphere.

• Measurement of the spatial uniformity of the integrating sphere output: the METIS
requirement on the spatial uniformity is on the order of better than 1%. The author
therefore investigated the level of uniformity reachable using a similar laboratory setup.

• Proof-of-concept of the aperture mask assembly for the measurement of the METIS
detector linearity. The goal is to control the flux input but without varying the flux
spectrum that would result from a change in the temperature of the blackbody. This
characterization should be achievable in a short amount of time (typically less than
∼ 1 hour).
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• Measurements of suitable material to serve as pinhole sources: the METIS instrument
relies on the usage of the integrating sphere, which output port is masked by different
pinhole geometries.

5.2 Laboratory tests and proof-of-concept

In this section, the details of the laboratory work pursued by the author are presented.
Thanks to this work, most of the concepts presented at the Preliminary Design Review and
in the subsequent period could be validated.

5.2.1 Description of the measurement devices

For the experiments, different measuring devices are used, with their properties described
hereafter.

Blackbody source

The blackbody source used in the WCU is the IR-563/301 blackbody system by Infrared
Systems Development Corporation. It is an industry-standard ideal source for near-, mid-,
and far-infrared. In Tab. 5.2.1 the important specifications of the device are presented.

Parameter Value
BB source operating temperatures [◦C] 50 - 1050

Emissivity of the internal coating > 0.99
Diameter of the cavity aperture [mm] 25.4

Tab. 5.1: Parameters of the blackbody source12

.

Powermeter

The powermeter is the S302C Thermal Power Head by Thorlabs, which was made for broad-
band measurements13. Specifications of the powermeter are shown in Tab. 5.2. An important
information is that the powermeter presents a relatively flat response across the operational
bandwidth.

12https://www.infraredsystems.com/Products/blackbody563.html (2018-04-09)
13https://www.infraredsystems.com/Products/blackbody563.html (2018-04-09)
14https://www.thorlabs.de/drawings/d132d3a99d47351d-13910445-96EE-2E09-184EEB7D98BE0866/
S302C-SpecSheet.pdf (2018-04-09)
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Parameter Value
Optical power range 100µW - 2W

Wavelength range of operation 190 nm - 25µm
Power resolution 1µW

Tab. 5.2: Parameters of the powermeter14.

Testo 174-2010 Mini-Datalogger for temperature

The Testo 174-2010 is a temperature sensor that is made for long-term temperature moni-
toring. It can measure up to 16000 values which can be read out via a USB-connection15.
The key parameters of the Testo Mini-Datalogger are displayed in Tab. 5.3.

Parameter Value
Range -30 to + 70◦C

Resolution ± 0.5◦C

Tab. 5.3: Parameters of the Testo 174-2010 Mini-Datalogger16.

Integrating sphere

The integrating sphere planned for the final WCU will have an internal diameter of 30 cm,
while the output port will be 10 cm in diameter (see Fig. 5.4). It will host one input port to
feed in the radiation from the blackbody source, as well as three ports to find in monochro-
matic radiation through fibers. A CAD17 model of the sphere is shown in Fig. 5.4.

15https://www.testo.com/de-DE/testo-174-t-set/p/0572-0561 (2018-04-27)
16https://www.thorlabs.de/drawings/d132d3a99d47351d-13910445-96EE-2E09-184EEB7D98BE0866/
S302C-SpecSheet.pdf (2018-04-09)

17Computer Aided Design
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Fig. 5.4: Computer Aided Design model of the Integrating Sphere which will be placed in the WCU. It has
three fiber ports for laser sources and one port for interfacing the blackbody source.

For the tests made in this thesis, a smaller commercial integrating sphere with a diameter
of 15.24 cm was used instead18, namely the integrating sphere 819D by Newport. The inte-
grating sphere used for the tests has a diameter of 15.24 cm and three output ports (two of
them with a diameter of 2.54 cm and one of them with a diameter of 6.35 cm)19.
The basic principle of the integrating sphere is to allow multiple inner reflections of the
ray entering the sphere to produce a spatially smooth and uniform output radiance profile
through multiple reflections (Hanssen & Snail, 2006, p. 3). The inner area of an integrating
sphere is typically coated with a highly reflective diffusive material to enable as many mul-
tiple reflections as possible. Since the IS needs to operate over a large wavelength range, the
material gold is chosen to cover that large wavelength range (see Fig 5.5). In this case, the IS
is made out of infragold (Baccichet, 2017, p. 15). Thus, the IS allows a detector to receive,
independently of its location, flux proportional to the light entering the sphere (Hanssen &
Snail, 2006, p. 3).

18https://www.newport.com/medias/sys_master/images/images/hc3/h13/8797116858398/
Integrating-Spheres-Datasheet.pdf (2021-06-17)

19https://www.newport.com/medias/sys_master/images/images/hc3/h13/8797116858398/
Integrating-Spheres-Datasheet.pdf (2021-06-17)

20https://host.web-print-design.com/labsphere/products/images/graphs/infragold.gif (2022-
03-17)
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Fig. 5.5: The reflectance of infragold is displayed against the wavelength. The reflectance of infragold is
stable at 95% over a large wavelength range in the mid-infrared. This figure has been plotted from data
provided by labsphere20.

The radiance at the output port of the integrating sphere can be calculated as

LS =
Φi

πAS
M + Lis [W/m2/sr] (5.1)

Φi is the incoming flux crossing the input port. AS is the internal surface area of the sphere,
Lis is the self-emission generated by the sphere, which can be understood as background con-
tribution, andM is the sphere multiplier factor. Physically, this factor represents the increase
in the radiance due to the numerous reflections inside the integrating sphere. This factor is
calculated as

M =
ρ

1− ρ(1− f)
(5.2)

with ρ being the average internal coating’s reflectivity (∼ 95 %) and f being the port fraction
given by

f =
Ai + Ae
AS

(5.3)

where Ai is the area of the input port, whereas Ae is the area of the output port. In case
the sphere presents more than two ports, f is computed from the sum of all the ports.

From those formulas, one can deduce that an efficient integrating sphere needs to have a small
total area of the ports compared to the total internal area in order to keep the parameter f
as small as possible. In most real integrating sphere, a typical value is 0.02<f < 0.05 (see
Fig. 5.6). Later in this chapter, those formulas are applied in a test case.
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Fig. 5.6: Dependence of the sphere multiplier M as a function of the reflectivity of the coating ρ and the
port fraction f (top). The input reflectivity is varied from 90% to 99.5%. With the port parameters of the
sphere used in the author’s experiment, one obtains a port fraction of f = 0.014, hence a sphere multiplier
of ∼ 15.

Uncooled IR camera - Gobi640 GigE

The uncooled IR camera - Gobi640 GigE hosts an uncooled microbolometer detector with a
resolution of 640 x 480 pixels21. A microbolometer detector is made of amorphous silicon and
is used for detecting infrared radiation. The radiation heats a thermally insulated membrane
which has its electrical resistance changed. This change is measured and converted into a
electrical signal22. Some parameters of the Gobi640 GigE are displayed in Tab. 5.4.

Parameter Value
Temperature range -40 to + 60◦C

Spectral range 8 - 14 µm
Integration time range 1 - 80 µs
Size of the detector chip 640×480 pixels

Tab. 5.4: Parameters of the uncooled IR camera - Gobi640 GigE23.

21https://www.xenics.com/long-wave-infrared-imagers/gobi-640-series/ (2020-04-24)
22https://www.ims.fraunhofer.de/en/Business_Units_and_Core_Competencies/IR-Imagers/
Technologies/Microbolometers.html (2020-05-17)

23https://www.xenics.com/long-wave-infrared-imagers/gobi-640-series/ (2020-04-24)
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Temperature sensor from Lake Shore Cryotronics

The product "Model 218 Temperature Monitor" has eight sensor inputs and supports Cryo-
genic Temperature Sensor with which it can measure temperatures from∼ 20mK to 1,500K24.
In this case, PT100 sensors are used.

5.2.2 Laboratory tests of source stability

Since the blackbody source is a core calibration element of the Warm Calibration Unit, the
author has carefully characterized the temporal and spatial stability of this unit. Further-
more, one needs to test how the laboratory environment influences the stability of the source.
The settling times to reach the required stability are also measured, as well as the temporal
stability expected at different temperatures.

Air-conditioning dependence

This test analyses the influence of the laboratory environment, and in particular of the air-
conditioning system, on the environmental temperature as well as on the flux measurement.
The lab air-conditioning system is based on an active monitoring of the ambient temperature
following a rectangular function aiming at maintaining this temperature as stable as possible
within ±0.5 ◦C. The air-conditioning cools down the environment to a nominal temperature.
As soon as this value is reached, the air-conditioning stops. As a consequence, the environ-
ment slightly heats up, which triggers again a cooling cycle by the air-conditioning, following
a saw-tooth behavior around the desired temperature.
In order to test the influence of the air-conditioning, two simultaneous measurements are
conducted. The powermeter is placed in front of the blackbody cavity aperture, at a distance
which is not essential since the goal is to measure a temporal stability. In parallel, the Testo
Mini-Datalogger was positioned on the lab table to monitor the environmental temperature.
Both the flux and the temperature were recorded simultaneously and this simple experiment
was run over different week-ends, free of any human presence. A close view on a fraction of
this temporal window is shown in Fig. 5.7, where it becomes visible that the spike-like pat-
tern of the flux measured by the powermeter is correlated with the temperature correction
induced by the air-conditioning system. The author does not need here for the purpose of
this work to analyze quantitatively this behavior. What is important is to identify a possible
bias in the measurement of the flux stability that results from small but regular variations
of the laboratory environment. These variations do not probably impact the temperature
of the ceramic in the blackbody source, but rather the thermal background in the lab that

24https://www.lakeshore.com/products/cryogenic-temperature-monitors/model-218/Pages/
Overview.aspx (2018-05-03)

129

https://www.lakeshore.com/products/cryogenic-temperature-monitors/model-218/Pages/Overview.aspx
https://www.lakeshore.com/products/cryogenic-temperature-monitors/model-218/Pages/Overview.aspx


Chapter 5. Contribution to METIS 5.2. Laboratory tests and proof-of-concept

is measured by the powermeter up to 25µm. The only measure that can be taken in the
case of a need for a highly stable environment over a short amount of time is to turn off the
air-conditioning system and avoid the presence of a person in the room.

Fig. 5.7: Comparison of the measurements of the background flux with the background temperature.

Blackbody settling and cooling timescales

When turning on and operating the blackbody source, a procedure is required to indicate the
characteristic time for the source to reach the nominal temperature desired by the operator,
as well as the settling time after which the output power reaches a specific flux stability.
The powermeter described in Sect. 5.2.1 was connected to one of the output port of in-
tegrating sphere, itself coupled to the blackbody source (see Fig. 5.8). In this setup, the
blackbody output power was recorded over several hours to take the first glimpse on its
temporal stability.
First, the characteristic time needed for the blackbody to heat up is measured. The pow-
ermeter measured the incoming flux while the blackbody was turned off to start each mea-
surement. After 30min of background measurements, the blackbody was turned on and set
successively to 50◦C, 100◦C, 200◦C, 300◦C, 400◦C, 500◦C, 600◦C, 800◦C, and 1000◦C.
From the results shown in Fig. 5.9, a warming up time from 35min up to 67min is mea-
sured before the flux stabilises. The criterion to assess sufficient flux stability is based on
the visual inspection of the curve, when a horizontal plateau is reached for the flux. This
qualitative criterion is sufficient to estimate the order of magnitude of source settling time.
Similarly, one observes that the horizontal plateau is reached quicker for higher than lower
temperatures. Generally, the stability timescale appears to be relatively long (∼45min on
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Fig. 5.8: Configuration of the setup for the stability measurement. The blackbody source is coupled to the
integrating sphere and the flux is measured with the powermeter at the 25.4mm diameter output port. The
third output output port is kept closed. The temperature sensors monitor the warm up of the integrating
sphere itself. This figure is taken from Graf et al. (2020, p. 2).

average) which sets a constrain on the calibration plan of METIS.

Fig. 5.9: The flux for different temperatures of the blackbody, measured by the powermeter, is plotted
against time. The periodic oscillations visible in the plateau region originate from the air-conditioning
influence. This figure is taken from Graf et al. (2020, p. 3).

Finally, a more detailed characterization of the properties of the blackbody source was con-
ducted in order to better understand the timescales for cooling down the source using the
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same setup of Fig. 5.8. The blackbody was initially set by its controller at 30◦C and then
raised to 350◦C, 500◦C, 750◦C and finally to 1000◦C. From the maximum value, the tem-
perature was then reduced following the inverse sequence. Every set temperature was kept
for one hour before changing it. The sequence of measurement is presented in Fig. 5.10.
The temperature value entered with the controller (dashed line) is compared to the effective
blackbody temperature that is read out from the controller (black line). As expected, a
transition regime in which a characteristic peak of of the physical temperature of the black-
body is observed before its final stabilization. The amplitude of this peak is considerably
reduced towards the higher temperatures. On the contrary, during the process of decreasing
the temperature, the transition ’reversed’ peak is not as strong, but the cooling time scales
appear to be longer than the warm-up timescales. Globally speaking, it is found that set-
ting the temperature from one temperature to another should be about 45min apart as the
transition times for the lower temperatures take longer (Graf et al., 2020, p. 2).

These measurements are important in order to prepare the calibration time schedule pre-
cisely. The time in this schedule is limited, as the main part of the observing time should
be observing and not calibrating. In addition, the measurements provided information, for
example, about repeatability and stability of the blackbody temperature and generated flux
intensity (Graf et al., 2020, p. 3).
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Fig. 5.10: Transition regime of the blackbody source in the warm-up and cool-down phases. The dashed
curve indicate the different nominal temperatures set by the controller: 30◦ C, 350◦ C, 500◦ C, 750◦ C and
1000◦ C. The continuous line shows the effective changes in temperature as monitored through the read
out temperature and for which a transition regime is observed. The red curve corresponds to the flux as
measured with the powermeter.

133



Chapter 5. Contribution to METIS 5.2. Laboratory tests and proof-of-concept

Flux temporal stability

In a second step, the author measured the source stability over several hours for the different
setting temperatures reported in Fig. 5.11 (Graf et al., 2020, p. 2). In this case the residual
influence of the air-conditioning system of the laboratory is clearly visible and penalizing.
In particular for low flux values, it is seen that the relative stability is worse than 10% over
a zoomed in time duration of about 70min (see Table 5.5).

Fig. 5.11: Long-term stability of the blackbody where the periodic effect of the air-conditioning is visible.

Tab. 5.5: Mean and standard deviation of the flux temporal sequence reported in Fig. 5.11. The last column
reports the flux relative stability over about one hour, which is in this case dominated by the influence of
the air-conditioning in the lab.

Temperature [C◦] mean [W ] std [W ] relative stability [%]
50 4e-6 9e-6 225
100 1.3e-5 9e-6 69
200 4.4e-5 9e-6 20
300 1.02e-4 9e-6 8.8
400 1.96e-4 9e-6 4.6
500 3.31e-4 9e-6 2.7
600 5.06e-4 9e-6 1.8
800 1.071e-3 1.3e-5 1.2
1000 1.879e-3 1.4e-5 0.7

Before discussing the mitigation of the air-conditioning bias, the author exploits the results
of Fig. 5.11 and Table 5.5 to allow a direct comparison between the (normalized) measured
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flux and the expected theoretical flux for the nine different temperatures, as this is later done
in Sect. 5.2.2. According to the specifications of the powermeter, the measured flux should
be in principle integrated from 0.2 to 25µm for a given temperature of the blackbody.
This comparison is shown in Fig. 5.12 (left) where the measured flux normalized to its
maximum value (red filled circles) is compared to the theoretical blackbody emission in the
aforementioned spectral range. While the exponential trend is observed, the theoretical and
experimental values are not perfectly matching. It was then observed than when the lower
cut-off wavelength was increased to 2.2µm instead of 0.2µm in the theoretical calculation,
the match becomes almost excellent (see Fig. 5.12, right). This can easily be explained if
one recalls the graph of Fig. 5.5: indeed, the gold reflectivity decreases very rapidly below
∼ 1.5 to 2µm, which results into an almost negligible flux contribution in the visible range.
This shows that the conditions of testing of the WCU module are well understood.
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Fig. 5.12: Experimental (red filled dots) versus theoretical (blue crosses) normalized flux. On the left,
the Planck’s function is integrated from 0.2 to 25µm whereas on the right the lower cut-off wavelength is
increased to 2.2µm.

In order to further mitigate the stability bias due to the air-conditioning, the author simply
reported the corresponding situation, namely with the A/C off. On the long-term this might
not be a desirable solution, but it becomes critical for the goal of estimating the ultimate
temporal stability of the source. Fig. 5.13 illustrates in a more direct way the comparison
between the two situation for the case where the blackbody source temperature was set to
200◦C. These plots illustrate both the settling time condition, which is confirmed to be in
the range of ∼ 1 h, but more importantly the intrinsic stability of the source possibly. For
T = 200◦C is absence of A/C, the relative stability reaches, after flux stabilization, the
value of ∼ 1%, which is a factor 20 better than in the case of the use of the A/C system.
It is important to mention that in this experiment the author might ultimately be limited
by the specification of the powermeter stability, and not by the stability of the blackbody
source. Indeed, the blackbody source stability specified by the manufacturer is below 0.1%.
However, the WCU team is interested here in an upper limit of the stability of the complete
setup (blackbody source+ integrating sphere+powermeter). For photometric calibration in
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the mid-infrared range, a 1% stability of the calibration source will allow quite accurate
estimates.
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Fig. 5.13: Setup of the experiment is the same as in Fig. 5.18 but this time the measurements of the
powermeter is displayed. (top) Measurements performed with air-conditioning. (bottom) Measurements
performed without air-conditioning. One can see that the noise is also reduced. ts is the settling time in
minutes.
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Comparison of flux experimental values with theoretical predictions

Here, a simple theoretical model of the flux output from the author’s setup made of a
blackbody source coupled to the integrating sphere is build and confronted to the measured
experimental values. Once validated, this model can be later used to predict flux levels
for different temperatures of the blackbody, which is relevant to estimate the achievable
signal-to-noise ratio using the WCU calibration sources. The geometry used to perform the
radiometric calculations is shown in Fig. 5.14 and Fig. 5.15.

Fig. 5.14: Input geometry involving the blackbody source and the integrating sphere for the theoretical
radiometric calculations. BBopening is the diameter of the output aperture of blackbody source. Di is the
diameter of the input port of the integrating sphere. The emitting, lambertian, ceramic is located >2.54 cm
ahead from the blackbody output aperture. The relevant solid angle for the radiometric calculation is set
by the input port of the integrating sphere.

Following Eq. 5.1 in the context of Fig. 5.14 the radiance at the integrating sphere output
port can be estimated.
First, the flux Φi passing through the sphere input port is:

Φi =

(
π · (BBopening

2
)2
)
·
(
π · (sin(arctan(

Di/2

L+ l
)))2
)
·
∫ λstop

λstart

2hc2

λ5
· 1

(e
hc

λkTBB − 1)
dλ (5.4)

withBBopening =Di = 25.4mm. L and l are defined in Fig. 5.14. The quantities λstart = 0.2·10−6m
and λstop = 25·10−6m are the wavelength boundaries for the powermeter. Then, h is the
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Fig. 5.15: Geometrical setup to determine the flux measured by the powermeter. To do so, it is important
to know the path of the light between integrating sphere and powermeter. Dpm is the active area of the
detector and Do is the diameter of the opening of the integrating sphere.

Planck’s constant, c the speed of light, k the Boltzmann’s constant. The temperature of the
source TBB is varied between 320K and 1300K.
The sphere multiplier factor is

M =
R

1−R · (1− Ai+Ao
AS

)
(5.5)

where AS = πD2
sphere is the internal surface of the integrating sphere with DSphere = 15.24 cm

and Ai/o = π
(
Di/o
2

)2
is the area of the input, respectively output port of the sphere with

Di/o = 2.54 cm. R is the average gold reflectivity set to 0.95.

The radiance due to the self-emission of the sphere is further calculated following

Lis = 0.05

∫ λstop

λstart

(
2hc2

λ5
· 1

(e
hc

λkTis − 1)

)
dλ (5.6)

where the factor 0.05 accounts for the low emissivity (i.e. high reflectivity) of the gold coated
internal surface and Tis is the equilibrium temperature of the integrating sphere.
To compare it with the measurements done by the powermeter, the geometrical setup be-
tween the integrating sphere and the powermeter needs to be considered, which results in
(see Fig. 5.15):

Ω = π · (sin(arctan(
Do/2

a
)))2 (5.7)
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Lpm = 0.97LSΩApm (5.8)

with Ω being the solid angle, 0.97 is the “efficiency” of the powermeter detector (not 100% of
the radiation is absorbed), LS is the flux exiting the integrating sphere and Apm = π(Dpm/2)2

is the active area of the powermeter detector.

The measured results are within the approximated range of the calculated fluxes (see Fig. 5.16).
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Fig. 5.16: Comparison of flux experimental values with theoretical predictions. The full spectral measure-
ment range of the powermeter is considered from 0.2 to 25µm, which implies that the self emission of the
sphere is accounted for. The plot is very sensitive on the geometry (especially, the distance between BB and
IS). As the cavity is far inside the blackbody, the light path is not straight, but is reflected inside the tube.
Therefore, in this thesis three assumptions for the starting location for a straight path of the light (l = 0,
15 and 25.4mm) are made. The blackbody temperature ranges from 300K to 1300K. For the self-emission
of the sphere a fixed sphere temperature of Tis∼ 25◦ C is considered.

These calculations were made to ensure that the measured results are in agreement with the
theory.

Thermal stability of the integrating sphere

The surface of integrating sphere is a potential source of undesired thermal background,
which may add up to the contribution of the room temperature thermal emission. For this
work, the author focuses on probing the expected temperature of the outer structure of the
sphere to provide elements for the thermal assessment of the WCU through heat dissipation.
Therefore, on top of the previous measurements with the powermeter, measurements with
the PT100 sensors were performed to measure the temperature distribution on the sphere
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and its influence and the environment. Six sensors were positioned on the surface of the
sphere and distributed evenly, and two sensors were placed on the bench to appreciate pos-
sible heat dissipation via conduction in the metallic structures. Fig. 5.17 shows the results
for two cases in which the blackbody source is set at 500◦C and then 1000◦C, with the
air-conditioning system of the lab turned on. In all cases, the the distinguishable rise with
the turning on of the blackbody is seen. To a smaller degree, the sensors positioned on the
bench detect an increase in temperature due to heat conduction.
As expected, it is found that the increase in temperature of the surface of the integrating
sphere depends on the blackbody set temperature. The sphere temperature does not exceed
22◦C for a blackbody temperature set at 500◦C, and ∼ 27◦C in the worst case for a black-
body temperature of 1000◦C, respectively. The rather small increase in temperature of the
bench suggests a relatively low efficient heat conduction process between the sphere and the
bench, likely because of the small cross-section of the supporting post. This efficiency can
be improved by inserting an optimized heat sink in the future.
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Fig. 5.17: Evolution of the temperature at the outer surface of the integrating sphere with the air-
conditioning on. Six PT100 sensors where evenly distributed over the surface of the integrating sphere
(plots 1-4 in the left column and the first plot on the top, as well as third plot in the right column), whereas
two additional were positioned on the bench (second and last plots in the right column). The second plot in
the right column measures the temperature on the bench roughly 1m from the sphere and the last plot in
the right column measures the temperature right underneath the integrating sphere. The eight plots on the
top part correspond to the case where the temperature of the blackbody, to which the sphere is coupled, is
set to 500◦ C. The eight plots on the bottom part correspond to a blackbody temperature of 1000◦ C.
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To test how the measurements are effected by the laboratory environment without the air-
conditioning, the previous measurements were repeated with this time a blackbody temper-
ature set at 200◦C, and with the air-conditioning turned on and off (see Fig. 5.18). First, as
one expected the high-frequency variations due to the active control of the lab temperature
clearly disappear when the air-conditioning is turned off.
With the air-conditioning turned on, only a small increase in temperature of .1◦C is ob-
served for the sphere surface, which is in line with the sphere temperature being correlated
with the set temperature for the blackbody. No clear temperature increase of the bench
itself is being detected.
The results with the air-conditioning turned off are interesting. Apart from the disappear-
ance of the high-frequency fluctuations, the author observes as expected an increase in the
temperature deviation in comparison to the case where the air-conditioning is used. This
temperature increase remains nonetheless reasonable, i.e. in the order of .1◦C. However, it
is observed that the temperature of the underlying bench increases in the same proportions.
The argument on the heat conduction advanced previously can be seen under different light
here: the absence of a temperature regulated by the air-conditioning allows the bench to
behave as a heat sink, which in returns is observed in the form of an increased temperature
change. The latter experiment is closer to the final operating condition of the WCU on the
mountain, suggesting that efficient heat conduction could be the solution to mitigate the
presence of unwanted localized hot spots in the WCU. Hence, the heat dissipation in the
final WCU sub-system remains a critical point to be taken into account in the near future.
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Fig. 5.18: Influence of the air-conditioning system of the laboratory on the heat dissipation from the
integrating sphere. The setup for the top part is similar to Fig. 5.17. In the bottom part, the second
plot in the right column measures the temperature of the airstream coming from the blackbody’s fan. The
last plot in the right column measures the temperature right next to the output of the blackbody on the
manufacturer’s aperture mask. In the top part, the air-conditioning is turned on. In the eight plots of the
bottom part the air-conditioning was turned off.

5.2.3 Characterization of the spatial uniformity

In a second step, the output of the integrating sphere was measured with an uncooled thermal
camera (N-Band: Gobi640 GigE) to test the spatial uniformity.

Spatial uniformity measurements

A spatially uniform output illumination from the integrating sphere of the WCU is key to
allow the flat-field calibration of the detector. For this purpose, the focus is set on the
integrating sphere and on the spatial uniformity of the output, which can be tested in the
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laboratory. The camera was directed to image the 25.4mm output port, while the black-
body is coupled to the input port of the integrating sphere (namely a 62.55mm opening that
has been reduced to 25.4mm thanks to a gold cap provided by the manufacturer). Before
characterizing the spatial flatness of the illumination at the output port of the sphere, it
is necessary to characterize the flatness of the response of the Gobi640 camera itself. This
is done by measuring a cold black surface cooled with liquid nitrogen (Graf et al., 2020, p. 3).

Fig. 5.19: Schematic view of the setup for the measurement of the spatial uniformity as seen from the
camera. The camera is aligned with the 25.4mm output port at a 120mm distance. In this setup, the
62.55mm input port faces the blackbody source with a gold coated mask in between that reduces the
62.55mm port to a diameter of 25.4mm. The second 25.4mm output port on the top can be closed or used
to attach the powermeter. This figure is taken from Graf et al. (2020, p. 3).

With the Gobi640 10-µm camera, a frame is taken every 2µs with up to 15.000 frames that
can be temporally co-added in order to reduce the noise associated to the thermal back-
ground.

In order to characterized the spatial uniformity camera’s detector chip, the Gobi640 is di-
rectly imaging a highly spatially uniform cold load made out of a black metallic plate cooled
in a liquid nitrogen bath. Once the LN2 has completely evaporated, the camera objective
is placed in direct contact with it and the frame recording process starts. This leads to a
measurement of a camera "flat field", which helps to understand what is the limiting factor
in later measuring the spatial uniformity of the illumination produced by the integrating
sphere. Fig. 5.20 shows the final flat-field image of the Gobi 640 camera obtained by av-
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eraging 15.000 frames. The detector region that is not relevant for the later measurement
using the integrating sphere is masked in blue. This leaves about 10000 pixels for which the
histogram of the relative flux values is plotted in Fig. 5.20. It is observed that the standard
deviation of the pixel values around the unity mean value is about 0.147%, which indicates
that the uniformity across the area of interest does not deviate from pixel to pixel by more
than 0.147% rms.

Fig. 5.20: Detector output while observing cold surface cooled with liquid nitrogen, where 15.000 frames
are summed and then divided by that number. Top: two-dimensional output with no hot pixel found and
corrected by the mean value. The top left figure shows the corrected output of the detector, while the right
figure shows only the relevant area for the measurements of the sphere’s output later. The blue area is not
taken into account. The values inside the circle area were used to calculate the bottom picture. Bottom: In
this plot, the relative flux against each pixel was plotted. This leads to a one-dimensional output plot of the
sphere with the standard deviation (σ) calculated.

Before moving to the characterization of the flat-field produced by the sphere itself, it is
interesting to analyse the uniformity of the camera flat-field as a function of the number of
frames N that are co-added. Since the frame averaging increases the signal-to-noise ratio, it
is expected that the spatial dispersion of the pixel values decreases with increasing N , up to
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a point where the camera flat-field becomes dominated by the intrinsic non-uniformity of the
camera itself (differences in pixel’s gain, optical distortions etc...). This behavior is visible
with the orange curve in Fig. 5.21 where a rapid increase of the field uniformity (i.e. a rapid
decrease of the spatial dispersion in the pixel values) is observed when a larger number of
frames is averaged. A plateau seems to be reached around σ = 0.15% although some further
decrease cannot be completely excluded.

Fig. 5.21: Sigma (standard deviation of the flux) for a cold surface cooled with liquid nitrogen (orange
line) and for the output of the sphere plotted (blue line) vs. the number of frames (N). This figure is taken
from Graf et al. (2020, p. 5).

The author now turns to the characterization of the flat-field produced by the integrating
sphere. Similarly, several images of the sphere output are recorded with the previously
characterized Gobi camera and then temporally averaged.
From these images, the spatial uniformity is estimated by calculating the standard deviation
of the pixel values distribution (see Fig. 5.22). In the case of the flat-field produced by the
integrating sphere, the measured level of dispersion of the highest value of N is σ = 0.386%.
This value also reflects the impact of the camera flat-field since the two effects (sphere on
one side, camera on the other side) are not disentangled. The comparison between the plots
showing the relative flux as a function of the pixel number (Fig. 5.20 and Fig. 5.21), as well
as the visual inspection of the integrating sphere’s flat-field (Fig. 5.21), shows that a residual
gradient. Despite this effect, it is shown that a spatial uniformity as high as 99.614% can be
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Fig. 5.22: Image of the output port of the integrating sphere obtained with the Gobi camera with the
blackbody temperature set at 1000◦ C and averaged over 15.000 frames. The top left figure shows the
integrating sphere’s output with the sphere metallic body seen around (black area in the background). In
the top right figure, the metallic housing has been masked (blue region) in order to account only for the
values relevant for the uniformity measurement. Bottom: normalized flux against per pixel in the active
area. This is comparable to an histogram plot for which the standard deviation can be estimated.

reached. It is important to remind that this number also includes the deviation to spatial
uniformity of the camera.

In a comparable way to the case of the camera flat, Fig. 5.21 shows the influence of the
frames co-addition on the level of uniformity. It is noticeable that the turnoff occurs around
N = 4000 frames to reach a plateau not as deep as in the case of the camera flat, namely
σ = 0.38%. This clearly indicates that the flat-field obtained with the integrating sphere
becomes dominated by static spatial structures, which is in adequacy with the goal of char-
acterizing the ultimate level of achievable uniformity.
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5.2.4 Aperture Mask experiment to measure the detector linearity

A functionality offered by the WCU of METIS is the assessment of the detector linearity, or in
other words the proportionality between the number of photons incident on the detector and
the number of electrons detected and measured by the read-out electronics. The detector
linearity is an important aspect of astronomical cameras in order to measure a reliable
photometry of stars or objects with different magnitude or brightness. Outside the so-called
linearity range of the detector, the measured flux ratio between two astronomical objects
does not reflect any longer the real flux ratio. Determining the range of linearity of an
astronomical detector and how it may change over time is therefore an important calibration
task. For METIS, the calibration of the detector linearity should be measured with an
accuracy of less than 1%, which means than the flux ratio between two objects measured
on the camera should corresponds to the real flux ratio with an error of less than 1%. This
is of course a challenging requirement, which demands a highly repeatable method. The
simple idea to measure the detector linearity consists in illuminating the detector with a flat
field that varies in intensity over time in regular, well characterized, steps. The instrumental
concept to implement this idea is presented hereafter.
An obvious way to proceed in order to have a time-variable flux would be to change the
temperature of the blackbody, which would result in different flux levels within a given
spectral band. However, the author’s measurements showed that after a modification of the
blackbody temperature the settling time can be long before the flux level stabilizes again (see
Fig. 5.10). Furthermore, with changing the temperature of the blackbody, the spectrum of
the blackbody sources changes as well, which means that the detector linearity measurement
may depend on the temperature of the source.
The WCU team, which includes the author, proposes to employ a wheel mask placed in
between the blackbody source and the integrating sphere (see Fig. 5.23), having 20 different
apertures with diameters ranging from 0.5mm to 20mm to efficiently crop the beam and
control the amount of flux entering the integrating sphere, without modifying the spectrum
of the source. One aperture of the wheel is actually a closed position with no hole drilled,
which the author will refer to "blank". The blank area was included in order to estimate the
thermal background contribution of the wheel mask itself. Each different aperture allows
to change the incident flux in the sphere within minutes. The holes were drilled with an
accuracy of 1µm and are listed in Table 6.1. The wheel consists of 5mm thick aluminum,
and each mask is made of 1mm thick aluminum as it is shown in Fig. 5.24. The wheel
and the integrating sphere are aligned with the blackbody’s output, and the powermeter is
connected to one of the output ports of the sphere (see Fig. 5.23).
In one single run, the flux passing through each of the twenty apertures is measured for
20 minutes per aperture. Five runs are acquired over several days. In order to identify
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Fig. 5.23: Geometrical setup to test the aperture mask method. BBopening is the output diameter for the
blackbody, D is the diameter of the opening of the aperture wheel and Di is the diameter of the opening of
the integrating sphere.

Fig. 5.24: Setup of with the aperture mask wheel. In the original setup, the mask wheel had to be turned
manually. The apertures with the diameter of 0.5mm and 1.53mm are generally to small in radius to deliver
a flux level distinguishable from noise. In the fifth run, the 25.4mm diameter gold cap visible in the front
of the picture and protecting the sphere from dust contamination is removed as the IR camera is collecting
data simultaneously. This figure is taken from Graf et al. (2020, p. 6).

those apertures for which the signal-to-noise ratio is insufficient, the level of background flux
emanating from the "blank" position before and after each measurement was estimated. As
reported in Fig. 5.25, any measured flux level of the order of ∼ 0.1-0.2mW or less can be
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considered as being in the noise. This led to observe that the apertures with a diameter of
0.5mm and 1.53mm deliver flux levels that are generally indistinguishable from the thermal
background (Graf et al., 2020, p. 4).
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Fig. 5.25: Mean flux coming from all the blank aperture measurements measured with the powermeter.
Those values indicate the background noise in the aperture wheel measurements. These values suggest that
the smallest and second smallest apertures do not allow to reach sufficient signal-to-noise ratio.

Description of the measurement procedure

In the first place, the aperture wheel was rotatedmanually in order to position as accurately
as possible each aperture in front of the opening of the blackbody source. As it was needed
to understand the influence of the rotating order on to the flux measurement stability, the
different apertures were positioned in front of the blackbody opening in a random order for
the first three runs over five. For the following two runs the measurement was achieved from
the smallest diameter to the largest one (Graf et al., 2020, p. 4). For each run, the standard
deviation of the flux per aperture is measured and reported in Fig. 5.26. One can observe
that the standard deviation of the measured flux per aperture is generally larger when the
apertures are positioned in a random order (e.g., run#1,#2 and #3) than when they are
positioned following the increasing order (e.g., run#4,#5). This can be explained as the
metallic region around the corresponding aperture reaches more rapidly thermal equilibrium
when moving from one aperture to the next nearby one (Graf et al., 2020, p. 4). This
generally suggests that a sequential rotation of the wheel needs to be respected.
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Fig. 5.26: Flux standard deviation per aperture for the different four manual runs. The fifth run is neglected
as the air-conditioning is turned off and the IS sphere is opened to add the IR camera as a second detector.
The blue curves corresponds to the first, second and third runs, the orange curve corresponds to the fourth
run.

The author then used the values of the five different runs to build and inspect the corre-
sponding linearity curve for the manual procedure. The average value per aperture with the
associated standard deviation is displayed in Tab. 5.6. The results are reported in Fig. 5.27,
where the output flux is measured as a function of the opening area.
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Fig. 5.27: Mean flux coming per aperture versus aperture area. For each aperture area, five measurements
are acquired and plotted as colored dots, each color indicating the same measurement run. The black circles
with error bars correspond to the average and standard deviation between the different runs. The red line
is a second-degree polynomial regression. The fifth run is neglected as the air-conditioning is turned off and
the IS sphere is opened to add the IR camera as a second detector.
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Tab. 5.6: Flux average value per aperture with its standard deviation. The coefficient is the ratio between
the standard deviation and the mean, in percent. One observes that handling the wheel manually leads to a
stability not better than ∼ 5%, likely due to the difficulty of a repeatable alignment of each aperture with
the blackbody opening.

areas [mm2] mean [mW] std [mW] coefficient [%]
0.2 0.082 0.019 23.35
1.83 0.145 0.016 11.0
5.12 0.261 0.024 9.19
10.06 0.449 0.031 6.99
16.66 0.699 0.043 6.22
24.91 1.023 0.055 5.39
34.81 1.398 0.072 5.14
46.37 1.857 0.084 4.53
59.59 2.362 0.112 4.73
74.46 2.958 0.143 4.84
90.98 3.439 0.273 7.96
109.16 4.215 0.136 3.24
128.99 5.037 0.209 4.14
150.48 5.678 0.293 5.15
173.62 6.661 0.272 4.08
198.42 7.513 0.309 4.12
224.87 8.24 0.280 3.39
252.98 8.91 0.298 3.35
282.74 9.8 0.418 4.27
314.15 10.3 0.562 5.46

It is noticeable that a linearity trend is observed for the first half of the curve, whereas a
second-degree polynomial is required to fit the full data, pointing at a significant deviation
from the expected linear behavior between the area of the apertures and the measured flux.
This may result from a bias in the manual measurement, as one will see later. Furthermore,
the quantification of the standard deviation of the five measurements per aperture, quoted as
"coefficient" in Tab. 5.6, tests the repeatability of the method, which is a highly important
parameter to guarantee the stability of the calibration of the detector linearity in the final
instrument: one can observe a stability of ∼ 5%, which is not ideally suited to characterize
the intrinsic linearity of a science grade detector. Therefore, a different approach is investi-
gated through an automated method. Before presenting this approach, the influence of the
environmental conditions as well as the impact of the detector being used are investigated.

Influence of the air-conditioning In the fifth and last run of this measurement serie,
the air-conditioning in the optical lab was turned off. This allowed to check whether the
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air-conditioning is influencing the outcome of the powermeter measurement (see Fig. 5.28).
One can see that without the air-conditioning, the spikes coming from the air-conditioning
are reduced but not fully gone. This is in agreement with the previous air-conditioning test
performed for this thesis. This simple test reminds us that, during the AIV phase of METIS,
the accurate control of the environmental conditions through appropriate control of the air
flow is of major importance for the stability of the WCU thermal sources.

Fig. 5.28: Aperture mask measurements with the air-conditioning on and set at 18.9◦ C (top); With the
air-conditioning turned off and the lab temperature around 22.5◦ C (bottom). The normalized flux is plotted
against the time. As it takes one minute for the flux to stabilize, the first minute is not displayed in order
to focus on the interesting part of the plot. For the first cycle (from first minimum to second minimum),
the mean, the standard deviation and the slopes of the flux curve (displayed as the red lines) are calculated.
The dashed vertical lines identify possible minima/maxima.

Automation of the measurement procedure

The downside of the manual intervention to rotate and position the wheel is the unavoidable
influence of an external heat source – the operator’s hand – that may limit the repeatability
of the measurement. In order to further improve the temporal stability of the experiment,
the author attempted to automate the measurement, hence removing any human presence in
the laboratory. For this, Moritz Prenzlow from the institute electrical workshop introduced
a stepper motor to remotely control the wheel via a python code. The author set up the
mechanism in the experiment and performed a realignment of the system.
As in the previous tests, five consecutive runs were acquired with the wheel. The first three
and the last two runs were executed at a different day, which allowed to take as much as
possible into account the temporal variability of the environment, and therefore deliver a
more robust comparison between the runs. As the 0.5mm aperture was delivering flux at
the background level, this measurement was removed. The last aperture, named here "fully
open" position, has a diameter of 36.1mm that is oversized with respect to the aperture of
the blackbody source. The source was heated up with the wheel positioned in its fully open
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position.

Fig. 5.29: Flux measurement obtained with the 7.68mm aperture, with the air-conditioning system on,
and setting the room temperature at 18.9◦ C (top). Zoom on the constant flux region after the first 20 s
(bottom). The mean and the standard deviation as well the slope were calculated. The vertical line in the
top figure indicates the beginning of the stable part. "PM" stands for "Power Meter".

After a warm-up of one hour to stabilize the source, the measurement was commenced by
choosing the blank aperture as a starting point. Right after the wheel moved to the blank
position, the measurement starts and lasts for a duration of 3min per aperture before switch-
ing to the next aperture. For a given aperture, the flux recording rate is 1Hz, giving about
180 measurement points per aperture. The full process is automated through a python code
which the author wrote using existing scripts from the METIS team. As an example, the
measurement of one aperture with the powermeter is shown in Fig. 5.29. In the figure, one
can see that only 20 s are necessary for the flux to stabilize, instead of the 60 s necessary
with the manual setup. When looking into more details, the author observes a slight drift
of ∼ 0.1µW/s of the measured power, or ∼ 0.9% of the mean flux over the duration of the
measurement. This is probably due to residual environmental or source instabilities (mainly
due to the air-conditioning).
The main advantage of the automated method is that the wheel apertures are positioned
with high repeatability (i.e. higher than with a manual adjustment) in front of the black-
body aperture, which translates into a higher stability of the setup. The author analyzed the
repeatability of the automated linearity measurement by monitoring the relative differences
between the different runs. In Tab. 5.7 are reported for each aperture the mean and stan-
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dard deviation of the measured power over the five runs. The relative error (fourth column)
provides a robust indication on the repeatability of the process.

Tab. 5.7: Average flux value per aperture with its standard deviation with the automated approach. The
coefficient is the ratio between the standard deviation and the mean, in percent. On can see that the
coefficient, tracing the stability of the measurement, is significantly smaller than with the manual handling
of the wheel.

areas [mm2] mean [mW] std [mW] coefficient [%]
0 0.16 0.068 42.4
1.83 0.18 0.036 19.73
5.12 0.27 0.023 8.49
10.06 0.43 0.014 3.18
16.66 0.65 0.013 1.96
24.91 0.93 0.007 0.77
34.81 1.28 0.006 0.46
46.37 1.65 0.009 0.53
59.59 2.14 0.013 0.61
74.46 2.68 0.016 0.60
90.98 3.23 0.019 0.60
109.16 3.85 0.021 0.54
128.99 4.52 0.025 0.55
150.48 5.23 0.032 0.61
173.62 5.99 0.038 0.64
198.42 6.8 0.038 0.56
224.87 7.59 0.048 0.63
252.98 8.38 0.048 0.58
282.74 9.3 0.061 0.65
314.15 10.24 0.068 0.66
506.70 13.73 0.081 0.59

Linearity and R2 coefficient The visual inspection of the curve of Fig. 5.30 shows a
clear linear relationship between the apertures and the measured power, except towards the
high end of the curve for the largest aperture, as well as in the region of very small apertures
(i.e. less than ∼ 20mm2) where the signal-to-noise ratio is lower. The calculation of the
linear regression suggests a linear model given by

y = 0.249 + 3.23× 10−2 x (5.9)

where x is aperture area in mm2 and y the flux in mW. The quality of this fit is best
made looking at the R2 coefficient. The author derives the coefficient of determination R2

that quantifies the quality of the fit between a serie of experimental points [xi,yi] and the
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parametrized model describing them. In the simple case of a linear fit like here, the coefficient
of determination is the square of the more classical (Pearson) regression coefficient. R2 is
then given by

R2 = 1−
∑n

1 (yexp,i − ymod,i)
2∑n

1 (yexp,i − ȳ)2
(5.10)

where yexp,i is the experimental measurement number i, ymod,i is the value predicted by
the linear model for the input value and xi, and ȳ the mean of the experimental points
(see Tab. 5.7). When the full serie of 21 measurements is taken into account to estimate
the goodness of the linearity fit, the value of R2 = 0.9829 is retrieved, which suggests an
adequacy with a linear model to better than 2%. However, this remains unsatisfactory for
a calibration of the METIS detector linearity to better than 1%. As the first points relative
to the small apertures correspond to a poor signal-to-noise ratio and the largest aperture
appears to be a clear outlier to the linear fit, these measurement are removed to estimate
the goodness of the fit. When considering the measurements from 5 to 20, a coefficient of
determination R2 = 0.9989, which indicates a much superior goodness of fit between the
measured data and the linear model to better than 0.2%.
This clearly indicates that, despite the tiny fluctuations of the blackbody source and the
intrinsic non-linearities of the powermeter, the method based on an automated aperture
mask wheel is able to deliver a fairly good linear progression of the delivered flux levels,
maintaining at the same time the temperature of the blackbody constant, and hence the
spectral slope of the emission.
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Fig. 5.30: The aperture mask test results where the mean flux measured by the powermeter is plotted
against the aperture area. For each area, five measurements were conducted and plotted as a colored dot.
The same color belongs to the same measurement run. The black dots are the average of each aperture
opening area. The error analysis has been completed for the aperture mask tests. However, the error bars
are presented here due to their low order value (<1% of value) they are almost not visible. The linear
regression is fitted to match the apertures between 24.91mm2 and 314.15mm2.

Repeatability Following the previous result, a more detailed analysis of the accuracy and
stability of the linearity calibration can be obtained when looking at the repeatability of
the linearity curve. This is measured through the coefficient reported in the last column of
Tab. 5.7 which describes the relative dispersion of the flux measurement per aperture over
the five different runs. It shows that, starting from the fifth aperture, the dispersion – and
therefore the repeatability – lies between 0.5% and 0.7%. The automated approach, similar
to what will be implemented in the WCU, is compliant with the original objective.

Detector dependency of the measurement As a confirmation test, the same test as
above was conducted with the mid-IR camera as a detector instead of the powermeter. Five
consecutive runs were acquired within a day. Positioned at 120mm from the 25.4mm output
port of the sphere, one frame of 25µs per aperture was acquired. The measured flux values
(in counts) versus aperture size is reported in Tab. 5.8).
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Tab. 5.8: Average flux value measured by the IR camera per aperture with its standard deviation with the
automated approach. The coefficient is the ratio between the standard deviation and the mean, in percent.
On can see that the coefficient, tracing the stability of the measurement, is significantly smaller than with
the manual handling of the wheel.

areas [mm2] mean [pixel] std [pixel] coefficient [%]
0 5177 2607 50.36
1.83 4487 1906 42.48
5.12 4611 1342 29.10
10.06 4887 1170 23.94
16.66 5277 931 17.64
24.91 6443 990 15.37
34.81 8105 525 6.48
46.37 10288 848 8.25
59.59 12476 678 5.43
74.46 15919 723 4.54
90.98 19301 485 2.51
109.16 22505 919 4.08
128.99 25992 1219 4.69
150.48 30040 785 2.61
173.62 34651 806 2.33
198.42 39585 1080 2.73
224.87 45149 328 0.73
252.98 48798 1664 3.41
282.74 50841 725 1.43
314.15 51963 287 0.55
506.70 51477 220 0.43

Similarly to the measurements conducted with the powermeter, the linearity and the repeata-
bility of the method are analyzed. The inspection of the curve shows a linear relationship
between the apertures and the measured power when neglecting several of the smallest and
largest apertures (Fig. 5.31). The calculation of the linear regression in the range from 24.91
to 282.74 mm2 gives for the linear model:

y = 1557 + 190x (5.11)

Therefore, similarly to the powermeter measurements those apertures were removed for the
estimation of the goodness of the fit. When considering the measurements from 5 to 18,
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a coefficient of determination R2 = 0.9993 can be reached (see Tab. 5.8). This indicates a
goodness of the fit between the measured data and the linear model to be better than 0.1%
which means the automated aperture mask wheel can deliver independent of the detector
fairly good linear progression.
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Fig. 5.31: Aperture mask test results with the mean flux measured with the mid-IR Gobi camera. For
each area, five measurements were conducted and plotted as a colored dot. The same color belongs to the
same measurement run. The black dots are the average of each aperture opening area. The linear regression
accounts only for the aperture values ranging from 24.91mm2 and 282.74mm2. Beyond these boundaries,
linearity is not possibly observed.

The more interesting comparison with the measurement of Tab. 5.7 is on the repeatability,
which can be assessed with the last column of Tab. 5.8. Using the IR camera as the detector,
the dispersion lies between 0.43% and 15.37% starting from the fifth aperture. Therefore,
the measurement appears less repeatable than with the powermeter detector. This may
due to the short integration time of 25µs imposed with the mid-IR camera, as opposed to
the 3min time span in the case of the powermeter, with the consequent degradation in the
signal-to-noise ratio.

One last remark needs to be made regarding the temporal stability of the source itself.
The controller of the blackbody source allows to monitor accurately the temperature of the
ceramic producing the infrared radiation, showing a stability of ±0.1◦C over a one-hour
duration (Fig. 5.32). Integrating the Planck’s radiation law and assuming an emissivity of
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one, this translates into an uncertainty of about ±0.02% on the radiance of the blackbody
source at T = 1000◦C over the mid-infrared range. This suggests that the limiting factor for
the stability and repeatability of the linearity measurement resides primarily in the accuracy
of the powermeter itself rather than on the intrinsic variability of the blackbody source.

Fig. 5.32: Temperature of the blackbody ceramic over one hour for each of the five run. The graphs report
the temperature excess (positive values) or deficit (negative values) with respect to the set temperature of
1000◦ C. The temperature remains highly stable with an error of ±0.1◦ C.
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5.2.5 Pinhole tests

Pinhole masks need to be developed and inserted in front of the output port of the sphere in
order to generate point sources for the calibration of the imaging performances of METIS. In
the current laboratory setup, these pinhole masks are connected to the 90◦ one-inch output
port.

Material tests

The material choice to fabricate the pinhole masks is critical for generating a point source
well contrasted against its the surrounding material acting as a background source. For
example, if PVC is used as a material, it heats up rapidly so that the contrast between the
pinhole and the surrounding material decreases significantly. Different materials with dif-
ferent thermal conductivity were tested for this purpose (see Tab. 5.9). Another parameter
influencing the results is the coating/structure of the surface of the pinhole mask. Towards
the inside of the integrating sphere, the radiation impinging on the mask should be reflected
back in order to minimize the heat generated into the mask’s substrate. On the other hand,
if the mask surface oriented outwards the sphere is a high reflectivity and polished surface,
this would impacts negatively the measurement as it would reflect the background infrared
radiation from the laboratory towards the detector. Hence, the mask surface oriented out-
wards should be possibly be a matt surface. Note that this is true because the imaging
system in the author’s lab experiment is not telecentric.
Pinholes made from steel, brass, and aluminum were produced to test the materials and
surface structure. To test the materials, the same setup shown in Fig. 5.19 is used. The
pinhole mask is adjusted at the output port of the integrating sphere and the mid-infrared
IR camera Gobi640 is used as the imager.

When using the pinholes made of brass and steel, i.e. the two materials with lowest thermal
conductivity, it was very difficult to distinguish the pinhole from the surrounding mask ma-
terial due to the low brightness contrast (see Fig. 5.33). Thus, those two materials were no
longer tested and were discarded from the possible solutions to be adopted for the pinhole
masks. Copper and silver could not be tested. The aluminum pinhole was tested further,
as well as the idea of gold coating a pinhole entirely to possibly reach a higher thermal
conductivity (see Fig. 5.34).

The gold-coated pinhole was manufactured using first an aluminum substrate that was sand-
blasted first on both sides in order to increase the surface roughness. The substrate was then
coated with gold deposited on the both sides. In this way, the aspect of the gold-coated pin-
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Material Thermal Conductivity [W/(mK)]
steel 46
brass 121

aluminium 237
gold (pure) 318
copper 401
silver 429

Tab. 5.9: Thermal conductivity of different materials at 20◦ C (Tipler & Mosca, 2009, p. 782; Davis & et.
al., 2001, p. 64).

Fig. 5.33: Imaging of the back-reflected pinhole in the case of a brass pinhole mask (left) and a steel pinhole
mask (right) as measured with IR camera. One observes the low resulting contrast between the central
pinhole and the surrounding metal of the mask.

hole mask is similar to internal and external surfaces of the integrating sphere (see Fig. 5.35),
which maximizes the uniformity of the radiation field. For the case where the pinhole mask
is made only of aluminum, i.e. with no coating, a spray paint was applied on the surface
to produce a matt effect. Note that the matt property of the surface was sought because
of the configuration of the author’s measuring setup. In the case of the final WCU, the
optical design is telecentric. This means that if a high-reflectivity and low-roughness mask is
positioned at the focal plane, the METIS detector will be pointing at a mirror-like surface:
this means that the detector will actually "see" inside the cryostat, which will significantly
reduce the thermal background captured by the detector.
This qualitative experiment shows the importance of properly selecting the material of the
pinhole mask in order to obtained a contrasted point-like source.

Analyzing the images obtained with the aluminum pinhole mask, the author measures that
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Fig. 5.34: Pinhole mask made of aluminium (top) and later coated with gold (bottom) as measured with
IR camera.
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Fig. 5.35: Pinhole mask with different sizes for openings.

the intensity of the pixels in the pinhole region is 9.22% higher than the pixel intensity in
the area surrounding the pinhole. This level of contrast is significant, as this can be visually
seen in Fig. 5.34. For the case of gold-coated pinhole mask, the contrast measured is 10.68%.
This data suggests that the gold-coated pinhole mask leads to a higher intensity contrast.
It should be noted that the reported contrast correspond to the case of a direct image, as op-
posed to a "background-subtracted" image. The latter case would correspond to a situation
where the image in Fig. 5.34 with the blackbody source turned off would be subtracted to the
same image with the blackbody source turned on. This is typically referred as "chopping" in
astronomy. The resulting subtracted image would allow to compare the pinhole flux directly
to the background noise. However, the presented result already allows to appreciate the level
of reachable contrast.

A similar measurement was later executed but this time with a PT100 temperature sen-
sor attached to the surface of the pinhole (see Fig. 5.36). The goal is to measure, in the
same experimental conditions for the blackbody source, the temperature of the pinhole mask
surface.

The results of those measurements are presented in Fig. 5.37. First, they indicate that a
comparable temperature higher than 25◦C is reached. Despite the higher thermal conduc-
tivity of (pure) gold compared to aluminum, a slightly lower temperature is measured for the
latter. This small difference might be explained by the fact that the gold is applied here just
as a coating, meaning the author is not in presence of a pure gold pinhole mask. But most
probably the difference comes from the different geometries between the gold-coated and the
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Fig. 5.36: Setup with a temperature sensor PT100 connected to the pinhole mask.

aluminum pinhole masks. The former has three clear apertures whereas the second has only
one (see Fig. 5.34). Hence, the radiating surface for the gold-coated pinhole mask is not
as large as in the case of the aluminum mask, leading to the small increase in temperature
observed.

pinhole mask temperature

Fig. 5.37: Comparison of aluminium and gold-coated pinhole.
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6 Discussion

First, the results discovered in this thesis are discussed then they are concluded. To keep
the same order as in the thesis, the first part of each section is about FARGO3D, and the
second part is about the contribution to METIS.

6.1 Discussion

In this section the findings of this thesis are discussed.

6.1.1 Kepler 38

In this Ph.D. thesis, numerical experiments on the Kepler 38 test case were conducted. For
the setup, the author visited the expert of circumbinary exoplanets, Professor Dr. Nader
Haghighipour. In this early phase, the initial conditions and boundary parameters were
studied and tested. Those tests were compared with previous studies of Kley & Haghigh-
ipour (2014) and improved with the newest knowledge from Thun et al. (2017) and Thun
& Kley (2018). Moreover, the results were discussed with the developer of the FARGO3D
code, Dr. Fréderić Massét. This was required to ensure a proper setup of the simula-
tion parameter to have results accepted by the scientific community and which could then
be analyzed. The advantage of the three-dimensional simulation is, of course, to provide a
more detailed picture of the system and in particular of possible non-plane symmetric effects.

One initial goal was to understand the migration of Kepler 38 in a 3D disk perturbed by the
tidal effects of the central binary and to compare the results with previous studies. After
performing extensive tests of the binary setup, the results showed that an inclination of the
planet’s orbit with respect to the computation mid-plane could be triggered, despite the full
initial coplanarity of the system at T = 0Tbin. This can be considered as a new result since
most of the hydrodynamic simulations investigating the feedback of the binary’s tidal effect
were conducted through two-dimensional codes, or using three-dimensional codes only in the
case of primordially misaligned systems (Pierens & Nelson, 2018). To understand the cause
of the induced misalignment in the Kepler 38 system, different numerical experiments were
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performed. First, a single star setup was implemented to serve as a reference to be compared
to. Then, several tests involving the presence of the central binary star with different orbital
parameters were conducted. The knowledge gained through those numerical experiments
inspired additional investigation involving the varying of the disk’s parameters (e.g. the
disk’s mass). The results clearly indicate that the measured inclination, despite its small
value, is not resulting from numerical noise and that the overall behavior of the planet
appears in agreement with previous studies.
The results for the Kepler 38 simulations with an embedded planet were validated through
comparisons to former studies done in this field.

Planet Parameter

The planet (0.34MJup) is inserted at 0.98AU in a locally isothermal disk with an aspect
ratio (H/r = 0.05) and viscosity parameter (α = 0.01). It was found that the migration of
the planet stops, for a binary system with ebin = 0.1, just outside of the cavity and remained
in orbit with ap = 0.51 (using the Stockholm condition) and ap = 0.54 (without using the
Stockholm condition). The stopping location is close to the stability radius 0.40AU and
comparable to the reported separation of 0.46AU of the planet with respect to the central
binary (Orosz et al., 2012, p. 13). This agrees with previous studies by Kley & Haghigh-
ipour (2014) and Thun & Kley (2018). Moreover, the independent findings on the stopping
location of the planet as a function of the disk mass and starting location reported by Thun
& Kley (2018, p. A47) could be confirmed.
Thun et al. (2017, p. 15) indicated that the disk’s inner boundary needs to be of the same
order as the binary separation. Accordingly, the inner boundary (i.e., the radius of the
computational hole) in this work is chosen to be smaller than the value used by Kley &
Haghighipour (2014). Furthermore, the influence of the location of the inner boundary on
the size of the cavity could be confirmed. The simulation of the same setup but with different
inner boundary locations (1.0/1.3 CU or 0.1469AU/0.1910AU) showed a slightly larger cav-
ity with an increasing inner boundary condition. As stated before, the influence is minimal.
However, according to Thun et al. (2017, p. 15), this correlation of the inner boundary’s
location and the size of the cavity only holds as long the boundary location is in the same
order as the binary separation and the 3:1 Lindblad resonance remains in the computational
domain.
The binary’s eccentricity is another factor influencing the inner cavity’s size and thus the
planet’s stopping location. With larger binary eccentricities, the inner cavity grows in size.
This is in agreement with the theory of stable orbits around binary stars (Holman & Wiegert,
1999, p. 626). According to this reference, the larger the stellar eccentricity, the larger the
stability radius. In the simulations without the Stockholm condition, i.e. with 0.021M�
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disk mass and for the binary eccentricity of 0.1, the periastron of the inner cavity is about
0.54AU away from the center of mass and the stability radius is roughly 0.40AU. Using a
binary eccentricity of 0.5, the periastron of the inner cavity is moved to roughly 0.75AU
from the center of mass, with the stability radius being about 0.58AU.
The influence of the mass ratio of the binary on the inner cavity is found to be negligibly
small. This is in agreement with the equation for the stability radius by Holman & Wiegert
(1999, p. 626). A change in the mass ratio has only a minor influence on the location of the
smallest stable orbit.
The disk mass is not influencing the inner cavity’s radius. However, the disk mass influences
the migration speed. For heavier disks, a faster migration is seen, whereas, in disks with a
lower mass, the migration speed is reduced. This follows the analytical Eq. 4.10 by Tanaka
et al. (2002, p. 1271) where they treat the three-dimensional evolution of the disk. Similar
results are obtained when comparing the results of our numerical experiments with the an-
alytically computed values.

The eccentricity of the planet’s orbit increases as it migrates closer to the central binary.
As it reaches its final position, the oscillations in the planet’s eccentricity becomes regular.
Depending on the simulation, the eccentricity varies between ∼ 0.06 and 0.25 (using the
Stockholm condition and for an initial disk mass 0.007M�) and between ∼ 0.075 and 0.21
(without the Stockholm condition and an initial disk mass 0.01M�). For the latter case, and
considering the mass of 0.34Mjup adopted in this thesis, the author observes a rapid increase
of the planet eccentricity that converges towards ep∼ 0.15, hence at an intermediate value
between ep∼ 0.03 and ep∼ 0.2 as reported by Thun & Kley (2018) for Mp = 0.38Mjup and
Mp = 0.3Mjup, respectively. The turning point occurs around t = 3000Tbin, which corre-
sponds roughly to the point in time when the migration speed strongly decreases. Moreover,
the type I migration with no gap opening is observed. This is in agreement with the gap
opening criterion by Crida et al. (2006, p. 17).

Planet parameters relevant for the 3D simulation case

The planetary system Kepler 38 has not been simulated with 3D hydrodynamical simula-
tions until this thesis. The detection of the movement of the planet in the z direction was
obtained in this thesis. In the Kepler 38 setup using implementing the Stockholm condition
and a disk mass of 0.007M�, the planet’s inclination oscillates between 0.05◦ and ∼ 0.4◦,
which is well in agreement with the observed upper limit of ∼ 0.2◦ for the inclination (Orosz
et al., 2012, p. 13). The temporal evolution of the planet’s inclination indicates that "spike"
values as high as 0.4◦ are detected, although for most of the time covered by the simulation

168



6.1. Discussion Chapter 6. Discussion

(T =5500Tbin), the inclination value is lower than 0.2◦.
In the simulation without the Stockholm condition and with a highly massive disk of 0.1M�
the inclination oscillates around 0.05◦ but with higher "spikes" in the initial phases of the
simulation for which the disk mass has not yet significantly decreased. For lower disk masses,
the inclination decreases. This indicates a relationship between the mass of the disk and the
inclination.
The author could show a correlation between the disk mass and the amplitude of the incli-
nation, if all other parameters are kept the same. Therefore, it is important to remember
that in the setup with the Stockholm condition the 0.007M� disk mass raises by a factor
of 10 within the first 1000Tbin. For the setup without the Stockholm condition the 0.1M�
disk mass is roughly decreasing by 13% over 1000Tbin. This very different disk behavior is
influencing the amplitude of the inclination.
Pierens & Nelson (2018, p. 2555) studied in the Kepler 413 planetary system the impact of a
primordial misalignment of the circumbinary disk relative to the binary orbit onto the final
orbital properties of a migrating planet embedded in the disk and initially co-aligned with
it. The authors show that whether the planetary orbit realigns with the central binary stars
or remains co-aligned with the disk depends on the disk’s mass. Disks around 1 or 2MMSN
lead to either damping of the planet’s orbit towards the binary orbit for the first case, or an
inclined planet’s orbit smaller than the inclination of the disk in the latter case.
The tidal forces of the binary influence the structure of the gas distribution, leading to spatial
asymmetries with respect to the mid-plane. Such asymmetries remain undetectable, within
the numerical noise, in the single star setup. In the case with the Stockholm condition being
implemented and with a consequently (unphysical) rising disk mass, one can see in the den-
sity distribution of the xz vertical plane that asymmetries are building up over time. Even
so, the simulation started completely co-planar. A similar effect can be seen in the setup
without the Stockholm condition being implemented. However, the vertical asymmetries
are observed at the beginning of the simulation when the disk mass is still high, while they
visually diminish as the disk mass decreases. The decrease in the intensity of the vertical
asymmetries in the gas distribution and the decrease of inclination correlate. The author
can analyze the cause of these asymmetries by calculating the different forces acting on the
planet at the beginning of the simulation. One sees already within the first 10Tbin that the
total force on the planet has a vertical z component.
As the gravitational force due to the central binary takes over only beyond this point in
time, one can see turbulence building up in the gas density as suggested by Kurbatov et al.
(2014, 2017), with the α viscosity being responsible for this turbulence (Shakura & Sunyaev,
1973, p. 343).
This α parameter combines two important mechanisms for the angular momentum trans-
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port, i.e., the magnetic field and the turbulence. Thus, it allows computing the appearance
of the disk without needing a detailed account of the mechanisms of the angular momentum
transfer (Shakura & Sunyaev, 1973, p. 343). The hydrodynamic force resulting from this
α viscosity is the origin of the vertical movement in the z direction, but it is impossible
to determine the exact source as the α viscosity accounts for two effects, indistinguishably.
However, turbulence is seen in the vertical distribution of the gas density, and the α viscosity
also reflects the turbulence. Therefore, it is likely that hydrodynamic forces connected to the
turbulence in the disk are at the origin of the primordial change in the mutual inclination of
the planetary orbit.

The relationship between the inclination and the α viscosity shows that an increasing mag-
nitude of the z component of the hydrodynamical force is seen with a decreasing viscosity
parameter. The author concludes that a higher viscosity creates more friction, and thus the
inclination introduced by the binary is damped. Reversely, a lower value of the α viscosity
parameter would induce a higher mutual inclination of the planet’s orbit.

In disks with an identical value of the α viscosity, the inclination of the planet’s orbit increases
with the disk mass if all the other simulation parameters are kept the same. Therefore, this
correlation holds when comparing the results from simulations with the Stockholm condition
or without the Stockholm condition separately. Thus, one cannot compare the simulation
results with the Stockholm condition with the simulation results without the Stockholm
condition. Hence, the hydrodynamical force increases with the disk’s mass, assuming a fixed
value of the α viscosity. This proportionality relationship between the inclination of the
planet’s orbit and the disk mass is also shown in this thesis through various simulation ex-
periments. The author could confirm that Mdisk ∝ i1/2 in simulations with raising and falling
disk masses. As a consequence, the planet’s orbit is affected by a larger inclination with a
heavier disk. Other authors also showed the influence of the disk mass onto the planet’s evo-
lution. For example, Pierens & Nelson (2018, p. 2558) found that with higher disk masses
(>2MMSN), the disk gravity starts to change the evolution of the planet. Lubow & Martin
(2016, p. 13) found in s-type systems that towards higher disk masses, the misalignment
becomes more significant because of the secular resonance.

The α viscosity alone is not the origin of the vertical displacement of the planet, as in the
single case with the same setup as in the binary case, this movement is insignificant. It only
becomes significant in the binary case, with the tidal forces generating increased turbulence.
By comparing both cases, a significant difference in the vertical gas density distribution in
the disk is shown, as well as in the magnitude of the different force components.
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The author could also visualize the turbulence with the z velocity in the disk, which is ne-
glectable small in the single star system and significantly large in the binary system. More-
over, the turbulence is first in the inner region, and later in the simulation, it is throughout
the disk.
The simulations suggest that the tidal effects resulting from the binary nature, significantly
influencing the circumbinary disk environment. This was also suggested by Kurbatov et al.
(2017), who found that already small-scale perturbations in the inner disk create turbu-
lence in the entire disk. Stronger asymmetries in the vertical gas density distribution were
observed in the binary case compared to the single star case. This implies that this effect
results from enhanced turbulence due to the binary nature of the central star. In return, this
impacts the magnitude of the hydrodynamic force acting on the planet in the early phases
of the simulation. This thesis concludes that the enhancement of turbulence leads to the
observed vertical displacement of the planet. It is unlike that the disk is solely responsible
for the misalignment of the planet, as the numerical experiment shows a misalignment of
0.05◦ for the more realistic case without the Stockholm condition and the Kepler 38 system
has a misalignment of ≤ 0.2◦.

Even with different boundary conditions and the newly released code, the author could con-
firm those results.

The limitations of the simulations are mainly due to the assumptions made. For instance,
the planet is not accreting, the disk size is only presenting the inner region of the CB disk
(due to computational limitations), the (vertical) resolution of the grid is limited (one could
get finer details on the small spatial scales, but at the cost of a significanlty higher compu-
tational cost), and the effect of a potential magnetic field is not included. As opposed to
the case of the more massive Herbig stars in which the stellar magnetic field has a minimal
influence, TTauri stars similar to Kepler 38 in its early evolution stage exhibit stronger,
detectable, magnetic fields which may also influence the question studied in this thesis.

In future studies, the behavior of an already inclined planet or an inclined disk could be stud-
ied to analyze if this initial inclination gets amplified. Another interesting study could be to
consider a larger circumstellar disk in order to simulate a larger mass reservoir in the outer
regions of the disk. Moreover, one could study a larger sample of different binary systems
and the influence of the binary separation on the vertical displacement of the planet. The
accretion from material onto the planet, and thus a changing planet mass, would improve
the model to a more realistic one. One could also test the setup of Kepler 38 with different
hydrodynamical codes to further reinforce the conclusions, and account for the effects of the
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stellar magnetic field.

FARGO3D is developed to study the temporal evolution of a disk or accreting systems.
Thus, another element of future work could be implementing the connection to the radia-
tive transfer code RADMC3D. It calculates how the flux is radiated throughout the disk.
Making an hypothesis on the gas-dust coupling factor, the time-dependent maps of the gas
density distribution can be used to generate synthetic observables from existing or future
instruments such as METIS on the ELT. Nonetheless, it is unclear yet if such small effects
could be assessed observationally with the current instrumentation. This would justify the
development of a corresponding feasibility study.

6.1.2 METIS

The future METIS instrument will play a vital role in observing the above’s findings. The
sub-systems Warm Calibration Unit (WCU) is located outside of the cryogenic part of
METIS and delivers calibration during on-sky operations ensuring long-term measurement
repeatability, which is crucial for precise measurements. Since the blackbody source com-
bined with the integrating sphere is a core calibration element of the WCU, the author has
carefully characterized the temporal stability and spatial uniformity of this unit.

Therefore, the settling times to reach the required stability were measured. The warming
up time of the blackbody was found to be dependent on the final temperatures. Higher
temperatures a reached quicker than lower temperatures. Nevertheless, 35min up to 67min
are needed to get a stable output.
The temporal stability expected at different temperatures is clearly influenced by the A/C
which influences particularly low flux values. The relative stability is worse than 10% over
a time duration of about 70 min.
Thus, the author tested how the laboratory environment influences the stability of the source.
The relative stability measured by the powermeter coming from the blackbody at T = 200◦C
has a value of ∼ 1% with the absence of the A/C and is by a factor of 20 better than with
the A/C. It is important to mention that in this experiment, the author might ultimately be
limited by the specification of the powermeter stability, not by the blackbody source’s sta-
bility. Indeed, the blackbody source stability specified by the manufacturer is below 0.1%.
However, the WCU team is interested here in an upper limit of the stability of the complete
setup (blackbody source + integrating sphere + powermeter). For photometric calibrations
of the WCU this will allow quite accurate estimates.
The surface of integrating sphere is a potential source of undesired thermal background,
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which may add up to the contribution of the room temperature thermal emission. For this
work, the author measured the temperature of the outer structure of the sphere to provide
elements for the thermal assessment of the WCU through heat dissipation. As expected, it
is found that the increase in temperature of the surface of the integrating sphere depends on
the blackbody set temperature. The sphere temperature does not exceed 22◦C for a black-
body temperature set at 500◦C, and ∼ 27◦C in the worst case for a blackbody temperature
of 1000◦C, respectively. The rather small increase in temperature of the bench suggests
a relatively low efficient heat conduction process between the sphere and the bench, likely
because of the small cross-section of the supporting post. This efficiency can be improved
by inserting an optimized heat sink in the future.
The results at 200◦C with a turned off A/C are interesting. Apart from the disappearance of
the high-frequency fluctuations, the author observes an increase in the temperature deviation
compared to the case where the A/C is used. This temperature increase remains nonetheless
reasonable, i.e., in the order of ≤ 1◦C. However, it is observed that the temperature of the
underlying bench increases in the same proportions. The argument on the heat conduction
advanced previously can be seen under different light here: the absence of a temperature
regulated by the A/C allows the bench to behave as a heat sink, which in returns is observed
in the form of an increased temperature change. The latter experiment is closer to the final
operating condition of the WCU on the mountain, suggesting that efficient heat conduction
could be the solution to mitigate the presence of unwanted localized hot spots in the WCU.
Hence, the heat dissipation in the final WCU sub-system remains a critical point to be taken
into account in the near future.
The output of the integrating sphere was measured with an uncooled thermal camera to test
the spatial uniformity. A spatially uniform output illumination from the integrating sphere
of the WCU is key to allow the flat-field calibration of the detector. The spatial uniformity
is 99.614% for 15.000 frames. Much less frames can be taken to reach a sufficient accuracy.
4.000 frames with the IR camera already generate a measurement accuracy of >99.5%.

A functionality offered by the WCU of METIS is the assessment of the detector linearity.
For METIS, the calibration of the detector linearity should be measured with an accuracy of
less than 1%, which means that the flux ratio between two objects measured on the camera
should correspond to the real flux ratio with an error of less than 1%. An obvious way to
proceed in order to have a time-variable flux would be to change the temperature of the
blackbody, which would result in different flux levels within a given spectral band. However,
the author’s measurements showed that after a modification of the blackbody temperature
the settling time can be long before the flux level stabilizes again. Furthermore, with chang-
ing the temperature of the blackbody, the spectrum of the blackbody sources changes as
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well, which means that the detector linearity measurement may depend on the source’s tem-
perature. The author found that this mask (in the current layout) can reduce the calibrating
time for each aperture to 20 min in the manual setup and 3 min in the automated setup.
For the manual setup, there is significant deviation from the expected linear behavior be-
tween the area of the apertures and the measured flux. This results from a bias in the manual
measurement. Furthermore, the repeatability of the method, which is a highly important
parameter to guarantee the stability of the calibration of the detector linearity in the final
instrument: one can observe a stability of ∼ 5%, which is not ideally suited to characterize
the intrinsic linearity of a science grade detector. Therefore, a different approach is investi-
gated through an automated method.
Considering the automated mask and measuring the output flux of each aperture with the
powermeter shows the linear relationship between the apertures and the measured power.
Using only the apertures between 24.91mm (aperture 5) and 314.15mm (aperture 20), one
gets a fit better than 0.2%. This is better than the requirement of the METIS detector
(< 1%). Using only apertures starting from aperture five is due to the high signal-to-noise
ratio. This influences the repeatability as well. Therefore, only masks with a repeatability
between 0.5 and 0.7% are used. This clearly indicates that, despite the tiny fluctuations of
the blackbody source and the intrinsic non-linearities of the powermeter, the method based
on an automated aperture mask wheel is able to deliver a fairly good linear progression of
the delivered flux levels, maintaining at the same time the temperature of the blackbody
constant, and hence the spectral slope of the emission.
Adding the uncooled IR camera as a second detector and only considering the measurements
between 24.91mm (aperture 5) to 282.74mm (aperture 18) a coefficient of determination
R2 = 0.9993 can be reached. This indicates a goodness of the fit between the measured data
and the linear model to be better than 0.1%, which means the automated aperture mask
wheel can deliver fairly good linear progression independent of the detector.

The pinholes need to be developed and inserted in front of the output port of the sphere in
order to generate point sources for the calibration of the imaging performances of METIS.
The key to successfully developing those pinholes is finding the suitable material/coating for
the pinhole. As different materials heat up differently, it adds noise to the measurements.
Thus, a material with a surface is needed that does not heat up quickly, does not reflect
heat from the detector itself or surrounding (important for laboratory setup, not final WCU
design as the latter is telecentric), and transports heat away quickly. Thus in this work,
different materials were tested; aluminum and gold-coated pinholes were the ones that had
promising results. In the detector’s IR spectrum, the gold-coated pinhole had the higher
ratio (10.68%) between the pixel intensity from the pinhole region compared with the pixel
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intensity of the pixel in the area surrounding the pinhole.
A similar measurement was later executed but this time with a PT100 temperature sensor
attached to the surface of the pinhole. They indicate that a comparable temperature higher
than 25◦C is reached. Despite the higher thermal conductivity of (pure) gold compared to
aluminum, a slightly lower temperature is measured for the latter. This small difference
might be explained by the fact that the gold is applied here just as a coating. But most
probably, the difference comes from the different geometries between the gold-coated and
the aluminum pinhole masks. The radiating surface for the gold-coated pinhole mask is not
as large as in the case of the aluminum mask, leading to the small increase in temperature
observed. For future work, the gold-coated surface pinholes with the final design geometry
for the WCU should be tested.

Theory and observation are equally necessary and need to be further developed. In the
future, the planet’s parameters mentioned above can be better determined in observations
through new telescopes or instruments with better resolution and sensitivity.

6.2 Conclusion

In contrast to previous works, this thesis showed the orbital evolution of a circumbinary
Saturn-Mass planet in a scenario of primordial co-alignment of the system (binary orbit,
planet orbit, disk mid-plane). The author tested the hypothesis of whether turbulence could
generate hydrodynamical forces onto an existing, migrating planet. This triggers an initial in-
clination of the planet’s orbit, which was investigated with the FARGO3D three-dimensional
hydrodynamical (HD) code in this thesis.
As such inclination effects were expected to be small, the system Kepler 38 was adopted
as a test case, in which the circumbinary planet is tilted by less than 0.2◦. Then, it was
investigated how the disk properties (in particular its mass and viscosity) combined with the
dynamical interaction with the central binary result in inhomogeneities in the vertical disk’s
structure directly influencing the inclination of the planetary orbit.

Below, the most important results are summarized.

• The author could confirm the influence of the inner cavity on the stopping
location of the planet: The planet’s migration stopped just outside the cavity and
remained in orbit with ap = 0.51 (using the Stockholm condition) and ap = 0.54 (with-
out using the Stockholm condition). The stopping location is close to the stability
radius 0.40AU and comparable to the reported separation of 0.46AU.
The stopping location of the planet is independent of the function of the disk mass
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and the starting location of the planet.
The author could confirm the influence of the location of the inner boundary on the
size of the cavity. The simulation showed a slightly larger cavity with an increasing
inner boundary condition. As stated before, the influence is minimal.
The binary’s eccentricity influences the inner cavity’s size, i.e., larger binary eccen-
tricities lead to larger inner cavity size. In the simulations with a binary eccentricity
of 0.1, the periastron of the inner cavity is about 0.54AU away from the center of
mass, and the stability radius is roughly 0.40AU. Using a binary eccentricity of 0.5,
the periastron of the inner cavity is moved to roughly 0.75AU from the center of mass,
with the stability radius being about 0.58AU.
The influence of the mass ratio of the binary on the inner cavity is found to be negli-
gibly small. A change in the mass ratio has only a minor influence on the location of
the smallest stable orbit.
The disk mass does not influence the inner cavity’s radius, but the disk mass influ-
ences the migration speed. For heavier disks, a faster migration is seen, whereas the
migration speed is reduced in disks with a lower mass.

• The author showed the correlation between the disk mass and the ampli-
tude of the inclination: Therefore, experiments with rising (with Stockholm) and
decreasing disk mass (without Stockholm) were performed. The higher the disk mass,
the higher the asymmetries (with the same Stockholm condition).

• The author demonstrated the tidal forces of the binary influence the struc-
ture of the gas distribution: Those forces lead to spatial asymmetries with respect
to the mid-plane. In the single star setup, such asymmetries remain undetectable
within the numerical noise. In the xz vertical plane density distribution asymmetries
are building up over time. Even so, the simulation started completely co-planar. A
later decrease in the intensity of the vertical asymmetries in the gas distribution and
the inclination decrease correlates. The hydrodynamic force resulting from this α vis-
cosity originates from the vertical movement in the z direction. Later, the gravitational
force due to the central binary takes over.

• The author displays the inclination of the planet’s orbit increases with the
disk mass (with all other parameters kept the same): Hence, the hydrodynam-
ical force increases with the disk’s mass.

• The author proves the α viscosity alone is not the origin of the vertical
displacement of the planet: This vertical displacement is insignificant in the single
case with the same setup as the binary case. It only becomes significant in the binary
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case, with the tidal forces generating increased turbulence. By comparing both cases,
a significant difference in the vertical gas density distribution in the disk is shown, as
well as in the magnitude of the different force components.
The visualized turbulence with the z velocity in the disk is neglectable small in the
single star system and significantly large in the binary system. This underlines the
findings of the significant role of the binary in this thesis. Moreover, the turbulence is
first in the inner region, and later in the simulation, it is throughout the disk.
Nevertheless, it is unlike that the disk and binary star is solely responsible for the
misalignment of the planet, as the numerical experiment shows a misalignment of
0.05◦ for the more realistic case without the Stockholm condition and the Kepler 38
system has a misalignment of ≤ 0.2◦.

From the observations point of view, the questions addressed numerically are not simple to
investigate. However, indirect effects on the planetary environment – namely the disk – could
be investigated through observations. The type of disks relevant to this thesis’s simulations
can be observed in the near- and mid-infrared. However, the current observational facilities
lack enough angular resolution.
This thesis produced the prototyping measurements to verify the flux properties coming from
the integrating sphere. This helps to provide the calibration of the integrating sphere output.
Furthermore, the calibration accuracy was determined, and the contribution to developing
the aperture mask and the pinholes were detailed. Thus this thesis provides an estimate of
the mask that should be used within the WCU. This work contributed to developing METIS
and will bring forward the understanding of the evolution of exoplanets in binary systems.

In the following, the most important METIS results are displayed:

• The warming up time of the blackbody is dependent on the final temperatures. Higher
temperatures a reached quicker than lower temperatures. The experiments show the
blackbody needs from 35min up to 67min to get a stable output.

• The temporal stability is clearly influenced by the A/C, which influences particularly
low flux values, where the relative stability is worse than 10% over a time duration of
about 70 min.
The relative stability at T = 200◦C has a value of ∼ 1% with the absence of the A/C
and is by a factor of 20 better than with the A/C.

• The increase in temperature of the surface of the integrating sphere depends on the
blackbody set temperature. The sphere temperature does not exceed 22◦C for a black-
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body temperature set at 500◦C, and ∼ 27◦C in the worst case for a blackbody tem-
perature of 1000◦C.

• To reach the spatial uniformity of >99.5%, one should take at least 4.000 frames to
minimize the noise.

• It is recommended to use the automated aperture wheel mask to control the flux level
without changing the flux spectrum. The linear relationship between the apertures and
the measured power was shown using only the apertures between 24.91mm (aperture
5) and 314.15mm (aperture 20). There the repeatability is between 0.5 and 0.7% and
the fit is better than 0.2% (requirement of the METIS detector < 1%).

• The uncooled IR camera is a second detector, where only the measurements between
24.91mm (aperture 5) to 282.74mm (aperture 18) are considered. Then a coefficient
of determination R2 = 0.9993 can be reached. The goodness of the fit between the
measured data and the linear model is better than 0.1%, which means the automated
aperture mask wheel can deliver fairly good linear progression independent of the
detector.

• The coating/material of the pinhole also significantly influences the outcome of the
results. Testing two pinholes with the most promising results, aluminum, and gold-
coated aluminum, they reach a comparable temperature higher than 25◦ C. Depending
on the material, the temperature and the flux vary.

All results of the numerical experiments and laboratory experiments are stored on hard
drives for 10 years with Prof. Dr. Lucas Labadie.
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Convergence tests of the grid

Eight different grid resolutions were simulated for 20 binary revolutions (1.08 Kepler 38 years
=̂ 0.003 Earth years) to test the convergence of the grid, which is roughly one orbit of the
planet. The setup is simulated with the Stockholm criteria turned on. Nx is varied between
the values 256, 512, and 1024, Ny between 512 and 1024, and Nz between 39, 64, 80, 128,
and 256. The value Nz is influencing the computational time significantly (see Fig. 6.1). In
all the simulations, the results fluctuate around the same values. Moreover, the size of the
grid chosen does not influence the movement in the xy-plane of the planet (see Fig. 6.2).
That is why the setup with the shortest calculation time (256 × 512 × 39) was choosen.
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Fig. 6.1: Results of simulations with different grid resolutions with the planet’s semi-major axis plotted
against the time in binary evolution. Every color corresponds to one grid resolution that is displayed with
the computational time needed for that simulation. One can see that with the same Nx, Ny but with the
largest Nz (256) and smallest Nz (39), one gets the same results in the last two calculation steps.

Fig. 6.2: Results of simulations with different grid resolutions. The planets y-position is plotted against the
x-position. One can see in all the simulations the result is basically the same. No significant difference.
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Migration of the planet with sigmaslope -0.5

The migration of the planet is much quicker with the lower sigmaslope, the eccentricity
higher, as well as the inclination (see Fig. 6.3). Thus this parameter influences the outcome
of the simulation as the diskmass is much higher when Σref is kept constant.
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Fig. 6.3: The planets’ evolution of the semi-major axis of the binary setup without the Stockholm condition,
with Σ = 2.514 × 10−4 and power-law for Σ being -1.5 resulting in a disk mass 0.01M� (top) and with
Σ = 2.514 × 10−4 and power-law for Σ being -0.5 resulting in a disk mass ∼ 0.07M� (bottom). The left
figure shows the evolution over 1400 binary revolutions (on the top axis, the transformation to Earth years
is shown). The horizontal line is the observed planet’s location (0.46AU). The migration in the setup with
Stockholm condition happened mostly between 615 and 671 binary revolutions (solid vertical lines). In
the top simulation the migration process takes much longer and in the bottom simulation with p = -0.5
the migration process it happens in the first 500Tbin as the mass is higher. The middle figure shows the
evolution of the planet’s eccentricity, and the right figure shows the inclination. In the latest figures, the
black lines are the same as in the with Stockholm setup. This helps with the comparison.

Disk with no planet in the single setup with default star

The simulation in Fig. 6.4 was done with a starting disk mass 0.007M� and with the Stock-
holm condition turned on. It is a single setup with default star simulation but without a
planet.
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Fig. 6.4: The results of the simulation without a planet are shown. One can see that the single setup is
symmetric over time and not disturbed in any way. This is expected by a single default star in the center of
mass with no planet inserted.
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Inclination of the planet towards the mid-plane in single

star system with Stockholm condition

The inclination towards the mid-plane in the single star case with the Stockholm condition
is shown in Fig. 6.5. One can see the inclination stays zero.
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Fig. 6.5: The plot shows the inclination of the planet with respect to the mid-plane in the z direction.

Different location of the outer boundary

According to Thun et al. (2017, p. 8) the optimal outer boundary is set to 40 abin which would
be in our case roughly 6AU. Because of the long computational times, the outer boundary
is reduced. Test simulations showed that this reduction does not influence the output (see
Fig. 6.6). Thus the outer boundary of abin = 2.1AU is taken, which is close to Kley &
Haghighipour (2014, p. 3) and a good trade-off between computational time and size. This
simulation was done with a starting disk mass 0.007M� and the Stockholm condition turned
on.
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Fig. 6.6: The results of simulations with different outer boundaries are shown, where the planet’s semi-
major axis is plotted against the time in binary revolutions with an outer boundary of 2.1AU and 6AU.
The figure shows a bit of difference because of the different outer boundary locations.

FARGO3D Inputfiles

Input file for the setup without the Stockholm condition.

p3disof_test.par file:

Setup p3disof_test

### Disk parameters

AspectRatio 0.05 Thickness over Radius in the disc

Sigma0 2.51390456e-4 1.25695228e-3 2.51390456e-3

Alpha 1.0e-2

SigmaSlope 1.5 Slope of surface

FlaringIndex 0.0

### Planet parameters

PlanetConfig planets/SuperEarth_test.cfg

ThicknessSmoothing 0.6 Smoothing parameters in disk thickness

Eccentricity 0.0

ExcludeHill No

INCLINATION 0.0
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### Numerical method parameters

Disk YES

OmegaFrame 0.0

Frame F

IndirectTerm Yes

Spacing log

### Mesh parameters

Nx 256 Azimuthal number of zones

Ny 512 Radial number of zones

Nz 39 Number of zones in colatitude

Ymin 1.3 Inner boundary radius

Ymax 14.28 Outer boundary radius

Zmin 1.42079632679489661922

Zmax 1.72079632679489661922

Xmin -3.141592653589793

Xmax 3.14159265358979

### Output control parameters

Ntot 200000 Total number of time steps 10000

Ninterm 10 Time steps between outputs

DT 6.28318530717959e-1 Time step length. 2PI = 1 orbit

OutputDir /projects/...

Field gasdens

PlotLine field[-1,:,:]

RHOFLOOR 1.0e-13

p3disof_test.opt file:

MONITOR_2D = MASS | MOM_X
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#Dimension(s) of Simulation. Here 3D (Phi,r,theta)

FARGO_OPT += -DX

FARGO_OPT += -DY

FARGO_OPT += -DZ

#Coordinate System.

FARGO_OPT += -DSPHERICAL

#Equation of State

FARGO_OPT += -DISOTHERMAL

FARGO_OPT += -DNODEFAULTSTAR

FARGO_OPT += -DSTOCKHOLM

FARGO_OPT += -DALPHAVISCOSITY

FARGO_OPT += -DPOTENTIAL

#Cuda blocks

ifeq (${GPU}, 1)

FARGO_OPT += -DBLOCK_X=16

FARGO_OPT += -DBLOCK_Y=8

FARGO_OPT += -DBLOCK_Z=4

endif

Planetary file SuperEarth_test.cfg:

# Planet Name Distance Mass Accretion Feels Disk Feels Others

Kepler38A 6.28 0.8 0.0 NO YES

Kepler38B 0.1 0.2 0.0 NO YES

Kepler38c 6.6667 0.00025 0.0 YES YES

Boundary Conditions:

Density:

Ymin: SYMMETRIC

Ymax: SYMMETRIC

Zmin: KEPLERIAN3DSPHDENSCOL

Zmax: KEPLERIAN3DSPHDENSCOL
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Vx:

Ymin: KEPLERIAN3DSPHVAZIMRAD

Ymax: KEPLERIAN3DSPHVAZIMRAD

Zmin: KEPLERIAN3DSPHVAZIMCOL

Zmax: KEPLERIAN3DSPHVAZIMCOL

Vy:

Ymin: OUTFLOW

Ymax: ANTISYMMETRIC

Zmin: SYMMETRIC

Zmax: SYMMETRIC

Vz:

Ymin: SYMMETRIC

Ymax: SYMMETRIC

Zmin: ANTISYMMETRIC

Zmax: ANTISYMMETRIC
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Aperture Mask

Manuel Setup

Tab. 6.1: Sizes of the apertures for manual setup

diameters [mm] areas [mm2]
blank 0
0.50 0.2
1.526 1.83
2.553 5.12
3.579 10.06
4.605 16.66
5.632 24.91
6.658 34.81
7.684 46.37
8.711 59.59
9.737 74.46
10.763 90.98
11.79 109.16
12.816 128.99
13.842 150.48
14.868 173.62
15.905 198.42
16.921 224.87
17.947 252.98
18.974 282.74
20.00 314.15
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Automated Setup

Tab. 6.2: Sizes of the apertures for automatic setup

diameters [mm] areas [mm2]
blank 0
1.526 1.83
2.553 5.12
3.579 10.06
4.605 16.66
5.632 24.91
6.658 34.81
7.684 46.37
8.711 59.59
9.737 74.46
10.763 90.98
11.79 109.16
12.816 128.99
13.842 150.48
14.868 173.62
15.905 198.42
16.921 224.87
17.947 252.98
18.974 282.74
20.00 314.15
25.40 (36.1) 506.71
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