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Abstract

For hundreds of years, human beings have developed technologies based on magnetism.
From the humble compasses of our ancestors to the smartphones, hard drives and maglev
trains that have come to symbolise the modern age, magnets have shaped civilisations
and will continue to do so for generations to come.

Recently, physicists have discovered a new class of magnets known as chiral magnets,
which are characterised by a lack of inversion symmetry. This property encourages the
formation of twisted magnetic structures such as helices and exotic topological particles
called skyrmions. Touted as promising candidates for use in future memory storage
devices, skyrmions in particular have enjoyed a boom in scientific interest since their
experimental discovery over ten years ago.

To use a chiral magnet in a technological setting, we have to interact with it via
external forces, for example electric and magnetic fields, heat gradients or currents. In this
thesis, we will investigate how chiral magnets can be manipulated by driving them with
oscillating magnetic fields. We will do this for both the helical phase and for the single
skyrmion, in both cases showing that such driving activates the translational Goldstone
modes of the system at second order in the amplitude of the field. Translated into plain
English, this means that the magnetic helices start to rotate on their axes at constant
speed ωscrew, a type of rotational motion which exactly mimics that of Archimedean
screws, while the skyrmion starts to slide like an air hockey puck at constant velocity vslide.
We will show how the magnetic Archimedean screw, in particular, can be used as a tool
to transport electrons, with the potential of generating large DC electric currents in very
clean metallic chiral magnets such as MnSi. We will also see how stronger driving leads
to the formation of an interesting “time quasicrystal” instability, where the magnetisation
oscillates at temporal and spatial frequencies which are incommensurate with the driving
frequency and lattice momentum.

We will also explore the theme of topology, in particular the concept of fractional
topological charges in magnets. We will show that such objects exist in both quantised
and non-quantised form, including at the intersections of three or more domain walls or
in the remnants of exploding skyrmions. There will be a discussion of their exceptional
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scattering properties, a feature which distinguishes them from ordinary integer charges
which are not able to scatter electrons and magnons. Using these scattering properties
we will suggest how to build a magnon-powered fractional charge engine.

The thesis is organised as follows: in chapter 1 we provide an introduction to the
chiral magnet model and its different phases, as well as the equation of motion governing
magnetisation dynamics. Chapters 2 (“Archimedean screw”), 3 (“Driven skyrmions”)
and 4 (“Fractional charges”) then contain the actual research work. We recommend
reading chapters 2 and 3 consecutively, as a lot of the ideas for the driven skyrmions
project build on the first third or so of the Archimedean screw work. Chapter 4 is a
stand-alone chapter which can be understood separately. Finally in the Conclusion and
Outlook we provide a summary of our achievements and suggest some natural follow-up
questions to think about.
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1

Model and Fundamentals

1.1 Introduction

The average person probably doesn’t realise how much of their life they owe to magnets.
Every second of every day the Earth’s magnetic core shields our planet and its inhabitants
from lethal cosmic radiation which would otherwise penetrate our cells, causing unwanted
mutations and ultimately fatal damage. Without magnetic compasses, our ancestors
could never have navigated the world, explored continents or established important
trading links. And neither would any of the comforts of the modern day, such as cars,
dishwashers, coffee machines, computers, phones (indeed anything at all that runs on
an electric motor) have ever been invented. Not to mention the fact that the absence
of cheap souvenir magnets would force us to think twice as hard during our holidays
about what gifts to get our friends back home. So magnets certainly are omnipresent
and all-important.

In reality the particular type of magnetic behaviour discussed in the previous para-
graph, called ferromagnetism1, forms only a tiny subset of a vast wealth of magnetic
phenomena which have been — and are still being — observed in nature. Some of these
phenomena, for instance paramagnetism and diamagnetism, have been known about for
a long time, but a lot of new and exciting types of magnets have only been discovered in
recent years. In their laboratories, physicists have identified helical and conical magnets,
and even exotic topological textures known as magnetic skyrmions. In addition to being
a fun playground for physicists, a proper understanding and harnessing of these new
magnetic phenomena could pave the way to various technological applications in the
future, for instance in the form of new more efficient data storage devices [1, 2]. The

1the name comes from the Latin word ferrum — iron — a metal where this magnetic behaviour
occurs naturally.



2 Model and Fundamentals

potential positive consequences for humanity as a whole could be as far-reaching as when
our ancestors learned to use ferromagnetism to help them navigate the globe.

Although, as already mentioned, experimentalists have observed a huge range of
magnetic textures in their labs, many of these can in fact be understood theoretically
as originating beautifully from the same basic physics. The philosophy consists of
considering magnets as collections of thousands and thousands of microscopic spins, each
of which interacts with its neighbours as well as any externally applied magnetic fields. In
this thesis we will consider a microscopic model for a broad subset of magnetic textures
in nature which are known as chiral magnets. Their behaviour can be well-modelled by
the following microscopic Hamiltonian

H =
∑

⟨i,j⟩
−JSi · Sj − D · (Si × Sj) − γBext · Si +Hdip, (1.1)

where the indices i, j label the lattice positions of the individual spins Si,j and ⟨i, j⟩
indicates nearest neighbour summation. Different types of lattices (e.g. hexagonal,
triangular, etc) are of course possible, but we will stay with the simplest cubic lattice,
where all lattice positions can be reached by a combination of the three orthogonal
cartesian basis vectors ex, ey, ez. Let us unpack this Hamiltonian and understand
the physical origin of each term. The term −JSi · Sj is known as the Heisenberg or
exchange energy, and favours parallel alignment of neighbouring spins for positive J —
ferromagnetism — or antiparallel for negative J — antiferromagnetism. D · (Si × Sj)
is the Dzyaloshinskii-Moriya2 term, often shortened to DMI for Dzyaloshinskii-Moriya
Interaction. DMI finds its physical origin in weak spin orbit interactions [3–5]. It is
responsible for the “chiral” part of the name “chiral magnet” because it is the only energy
term to breaks spatial inversion symmetry in Eq. (1.1). The D vectors point in the same
directions as the displacement vectors between the spins Si and Sj, i.e. parallel to the
three orthogonal cartesian basis vectors ex, ey, ez, and have magnitude D. DMI favours
neighbouring spins being at right angles to each other, which encourages twisting in the
magnetic texture. The third term in our Hamiltonian accounts for the Zeeman energy
that the spins will acquire in the presence of any externally applied magnetic field Bext.
Depending on the sign of the gyromagnetic ratio γ — positive if the atoms are “hole-like”
and negative if they are “electron-like” — it favours spin alignment or anti-alignment with
Bext. Finally Hdip, whose precise mathematical form we will elaborate on later, contains
all the long-range demagnetisation field and dipolar interaction energy contributions.

2The name is an homage to Russian and Japanese physicists Igor Dzyaloshinskii and Toro Moriya,
who both made seminal contributions to the field in the 1950s
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So far we have discussed the discrete lattice Hamiltonian, but a continuous version
of Eq. (1.1) is also possible. To achieve this, we must switch from the discrete Si to a
continuous vector field M(r) known as the magnetisation field. Mathematically, the
magnetisation corresponds to the local magnetic moment per unit volume. By defining
the cubic lattice spacing a in our discrete model Eq. (1.1) we arrive at the following
mathematical relations between Si,mi and M(r)

mi = γSi, M(r) = mi

a3 . (1.2)

The continuous version of the Hamiltonian, more often referred to as the free energy F
in the literature, takes the form

F =
∫

d3r

(
− J̃

2 M̂ · ∇2M̂ + D̃M̂ · (∇× M̂) − Bext · M
)

+ Fdip, (1.3)

where M̂ = M/M0, with M0 = |M|, is the reduced magnetisation and we introduced
rescaled exchange and DMI couplings J̃ = Ja5M2

0/γ
2 and D̃ = Da4M2

0/γ
2 to make

the formula neater. Eq. (1.3) is generally a valid approximation to the discrete model
Eq. (1.1) if M(r) varies on a scale much larger than the lattice spacing a.

In the next section we will take a short look at the phase diagram which is generated
for this model by varying the external magnetic field Bext and temperature T .

1.2 Phase Diagram and Experimental Realisation

By varying the temperature T and the applied magnetic field H = Bext/µ0, we obtain the
phase diagram shown in Fig. 1.1a. At high temperatures T > Tc one finds a ferromagnetic
(FM) or paramagnetic (“para”) phase, depending on the strength of the applied magnetic
field, H. To distinguish between these two phases we look at the order parameter ⟨M⟩,
which is non-zero for a ferromagnet but vanishes in a paramagnet. For a representation of
the ferromagnet and paramagnet on a two-dimensional lattice, see panels i),ii) in Fig. 1.1c.
The phase transition between the ferromagnet and paramagnet is usually second order,
but turns into a first order phase transition if we enter the fluctuation driven regime
(FD). If the applied field H is not too large, H < Hc2, the behaviour of the ⟨M⟩ will be
determined by a competition between the DMI term and crystalline anisotropies (more
on those in Chapter 4). If the DMI term dominates, the magnetic texture will start
to twist. In this case, for T < Tc we generally enter either a helical or conical phase,
panels iii) and iv), respectively, in Fig. 1.1c). Both are characterized by a winding local
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(a) Phase diagram (from [6]).
(b) Experimental evidence of helical/conical
and skyrmion phases (from [7]).

(c) Spin textures in a chiral magnet. i) Ferromagnet. ii) Paramagnet. iii) Helical state.
iv) Conical state. v) Néel skyrmion. vi) Bloch skyrmion.

Figure 1.1 Phases in a Chiral Magnet and their Experimental Signatures

magnetisation which rotates in space around a fixed vector q, called the pitch vector. At
zero or very small values of the applied field H the direction of q is usually determined
by the anisotropies in the system, but as H increases q becomes parallel to H. In the
helical phase, the local magnetisation is always perpendicular to q, resulting in net zero
total magnetisation, ⟨M⟩ = 0. By contrast, in the conical phase the spins form some
angle θ < 90◦ with q, resulting in a net total magnetisation ⟨M⟩ = q̂M0 cos(θ). This
occurs because for larger applied fields H > Hc1 it becomes energetically beneficial for
the magnetisation to tilt in the direction of the field. As H is further increased to a
critical value H > Hc2 the cone angle θ decreases to zero and M ∥ q, i.e. we reenter the
ferromagnetic phase via a second order phase transition. A more exotic type of magnetic
ordering forms in a small region of the phase diagram just below Tc. Historically called
the “A”-phase, but nowadays more commonly referred to as the skyrmion lattice phase
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(SkX), this phase has the peculiarity of being topologically non-trivial (more on this
later). It was first experimentally observed in small angle neutron scattering (SANS)
experiments by Mühlbauer et al. in 2009 [8]. This discovery proved to be a turning
point, and in the following decade and beyond the field of skyrmionics has enjoyed a
boom in scientific interest and publications. Experimentally, the defining signature of the
skyrmion phase is a six-peak pattern in the momentum-space intensity spectrum, which
arises because of the hexagonal nature of the underlying skyrmion lattice, see the bottom
left-most panel of Fig. 1.1b). Techniques such as Magnetic Force Microscopy (MFM)
and Transmission Electron Microscopy (TEM) additionally provide the opportunity to
compare and contrast the different magnetic phases in real space, see also the second
and third columns in Fig. 1.1b. Looking at these images, one can clearly distinguish
the wave front-like pattern generated by the winding magnetisation in the helical and
conical phases from the six-fold pattern which characterises the skyrmion lattice. By now
experimentalists have discovered a great deal of alloys which are well described by the
chiral magnet model. The best investigated one is arguably manganese silicide (MnSi), a
metal which can be grown with remarkable purity — with electrons enjoying mean free
paths of up to 1000 Å at low temperatures [9] — making it a very good candidate for
experiments involving conductivity measurements. Also commonly used are the insulator
copper oxide selenite (Cu2OSeO3) and metal iron germanium (FeGe).

Note that we have deliberately kept this overview of chiral magnets and their experi-
mental realizations brief, as excellent overviews already exist elsewhere in the literature,
e.g. see [10] for more details. In this thesis we will work in particular with the heli-
cal, conical and skyrmion phases of chiral magnets, which we explore in the next two
subsections in more mathematical detail.

1.3 Helical & Conical State

In this section we concentrate on the helical and conical phases which occupy the lower
left side of the phase diagram in Fig. 1.1a. We set up our coordinate axes such that the
constant magnetic background field Bext = B0 points parallel to ez. With this choice
of coordinates, q ∥ B0 ∥ ez if we are in the conical phase. For the helical phase we are
free to choose the direction of spontaneous symmetry breaking for the pitch vector q,
and for simplicity we also set it to be ez. The unit magnetisation vector M̂ can then be
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parametrised as

M̂ =




sin(θ0) cos(qz)
sin(θ0) sin(qz)

cos(θ0)


 . (1.4)

The variables q and θ0 are usually referred to as the pitch and conical angle of the helix,
respectively. They can be determined by substituting Eq. (1.4) into the Hamiltonian
Eq. (1.1) and (1.3) and minimising the energy with respect to q, θ0, see App. A for a
detailed derivation. Neglecting the demagnetisation fields and dipolar interactions for
now, we obtain the following discrete lattice expressions for q, θ0

tan(qa) = d, cos(θ0) = b0
1

2
d2 (

√
1 + d2 − 1)

, (1.5)

for the discrete model. For simplicity of notation we have switched to the dimensionless
reduced quantities d = D/J = aD̃/J̃, b0 = γB0JS/D

2 = B0M0J̃/D̃
2, defined here in

terms of the dimensional couplings of both the discrete and continuous models, Eq. (1.1)
and (1.3). The expressions for q, θ0 in the continuous limit may be easily accessed by
going to the limit qa ≪ 1, where the helix wavelength is much greater than the lattice
spacing. Then q ≃ D̃/J̃ and cos(θ0) ≃ b0. The helical phase (θ0 = π

2 ) occurs when b0 = 0
exactly, and the conical phase occurs when 0 < b0 < 1. When b0 = 1 exactly, the cone
angle θ0 = 0 and we are in the ferromagnetic (FM) phase.

We will now take a short excursion into dipolar interactions, explaining their physical
origin and how they affect the helical pitch q and conical angle θ0 of our helices.

1.3.1 Dipolar Interactions

The following model for including dipolar interactions closely follows section 3.3 of J.
Waizner’s thesis [10]. Hdip arises because in addition to the short range Heisenberg and
DMI interactions, the spins also experience long range interactions. Each spin can be
thought of as a tiny magnet whose magnetic moment m1 produces a magnetic field

Bdip(r) = µ0

4π
3r̂(m1 · r̂) − m1

r3 (1.6)

at position r relative to itself. Another spin with magnetic moment m2 located at r
would therefore experience a Zeeman-like energy Edip = −m2 · B(r) . Typically, the
exchange constant is approximately a thousand times larger than the dipolar interaction
on the atomic scale, but the dipolar interaction is long-ranged and therefore becomes
increasingly important for large sample sizes.
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As we are dealing with macroscopic solids rather than a few individual spins, it is
usually too difficult to calculate the dipolar energy contribution by summing up all
the individual dipole energies between each pair of spins. However, for spin textures
with regular modulations in space, a calculation in the Fourier domain can be much
cost-effective and easy to implement. In our particular case we are investigating helical
and conical magnetic textures, which have only three non-zero Fourier components: k = 0
and k = ±q, making them ideal for a momentum space approach. We will therefore
switch to momentum space from now on. The limit of k = 0 actually needs to be treated
separately, thus we will split

Fdip = Fdip,k=0 + Fdip,k ̸=0, (1.7)

and explain the physical origin and mathematical treatment of the these two sub-
contributions in the following two short subsections.

Demagnetisation Fields

When k = 0 we are dealing with a uniform component of magnetisation, which will
lead to the formation of demagnetisation fields. Historically, Kittel was the first to take
into account the effect of these fields on ferromagnetic resonances [11]. The calculation
of demagnetisation fields is particularly simple for samples which have an ellipsoidal
shape. When a constant background field B0 is applied along one of the principal axes of
an ellipsoidal magnetisable body, the microscopic magnetic moments inside the sample
will try to line up with the direction of that field. This means that inside the sample,
neighbouring “north” and “south” poles cancel, whereas at the boundaries there will be
an accumulation of “north” poles on one side and “south” poles on the opposite side of the
sample. The net result is that these surface “magnetic charges” set up a demagnetisation
field Bdemag, which points opposite to the applied field. The physical idea here is very
similar to the polarization field created by surface electric charges that arises inside a
dielectric material when it is subjected to an external electric field, B0. The strength and
direction of Bdemag is determined not only by B0 but also by demagnetisation factors,
which depend purely on the shape of the ellipsoidal sample and always obey the identity

Nx +Ny +Nz = 1.

The demagnetisation factors reflect the symmetry of the sample. In highest symmetry case,
where the sample is spherical, they would all be equal to each other, Nx = Ny = Nz = 1

3 .
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The next highest symmetry case would be cylindrical symmetry, where only two of the
demagnetisation factors are equal. In general, each demagnetisation factor is inversely
proportional to the length of the sample in that direction, because the larger the
distance between the surface “north” and “south” poles, the smaller the corresponding
demagnetisation field. So for example if we had a thin film which extends infinitely in
the xy-plane we would expect Nx = Ny = 0, Nz = 1. Once we know the demagnetisation
factors we can write down the expression for the demagnetisation field Bdemag which gets
induced inside the sample,

Bdemag = −µ0N · M = −µ0




Nx 0 0
0 Ny 0
0 0 Nz


 ·




Mx

My

M z


 , (1.8)

where the components M i are measured relative to the three principal axes of the sample.
The bar over M denotes the spatially uniform component of the magnetisation M. It is
mathematically defined via a spatial average over all space, M =

∫
d3rM(r). From the

relation between free energy density and magnetisation δF
δM = −Bdemag, we can deduce

that the total energy contribution due to demagnetisation fields is

Fdip,k=0 = 1
2µ0(M ·N · M)V, (1.9)

where V is the total volume of the sample.

Dipolar Interactions at Finite k

For all the finite momentum modulations in the spin texture, the dipole-dipole interaction
energy can be calculated using the following formula in Fourier space,

Fdip = µ0V

2
∑

k ̸=0

(Mk · k)(M−k · k)
k2 , (1.10)

where Mk are Fourier components with spatial frequency k, defined according to the
Fourier convention given in Eq. (B.2). A detailed derivation of Eq. (1.10) is given in
App. B.1. Note that Eq. (1.10) is valid for 3D samples, in 2D the term looks somewhat
different, see [10, 6] for details. However this doesn’t concern us in this thesis, as we will
be dealing exclusively with dipolar interactions in 3D textures.
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Summarising the results of these two short subsections in a single expression, we can
write

Fdip =





µ0V
2 (M ·N · M), k = 0,

µ0V
2
∑

k ̸=0
(Mk·k)(M−k·k)

k2 , k ̸= 0.
(1.11)

1.3.2 Effect of Dipolar Interactions on Helical & Conical state

Let us now see what effect dipolar interactions have on our helical and conical textures.
We know that the magnetisation in these phases only has one non-zero spatially uniform
component, M = M0 cos(θ0)ez using the parametrisation in Eq. (1.4). Thus the additional
term in the Hamiltonian due to demagnetisation fields is

Fdip,k=0 = 1
2µ0M

2Nz cos2(θ0)V = 1
2NJS

2d2(δNz cos2(θ0)). (1.12)

For the second equals sign we substituted m = γS/a3. We then used V = Na3, where
N is the total number of spins in the system and additionally defined a dimensionless
number δ = γ2µ0

d2a3J
= µ0M2

0 J̃

D̃2 , a measure of the “strength” of dipolar interactions. The
addition of Hdip,k=0 to the Hamiltonian does not change the equilibrium value of q, but
it does modify θ0 to

cos(θ0) = b0
1

2
d2 (

√
1 + d2 − 1) + δNz

, (1.13)

see App. A for a derivation of this result. As δ is a positive number, the demagnetisation
field increases the opening angle θ0 of the conical state. We expect this to happen because
the demagnetisation fields always try to oppose the applied background field, in this
particular case reducing it from b0ez to (b0 − δNz cos(θ0))ez.

For the finite k dipolar energy contribution we first need to calculate Mk. Applying
the Fourier tranform defined in Eq. (B.2) to the parametrisation Eq. (1.4), we obtain

Mk = M0V




1
2 sin(θ0)[δ(k − qez) + δ(k + qez)]
1
2 sin(θ0)[δ(k − qez) − δ(k + qez)]

cos(θ0)δ(k)


 . (1.14)

As we have Mk · k = 0 for all k there can be no energy contribution to the Hamiltonian
from dipolar interactions. This term will however contribute when we start driving the
system in Chapter 2.
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1.4 Skyrmions

The building blocks of the skyrmion lattice phase are unsurprisingly called skyrmions.
They owe their name to Tony Skyrme, a British physicist who pioneered the mathematical
formulation of topological solitons in particle physics [12]. Topological solitons in
condensed matter settings, first predicted as metastable excitations of ferromagnets
in 1989 by Bogdanov and Yablonskii [13], later earned the shorter and catchier name
“skyrmions”. In this thesis we will concentrate in particular on two-dimensional magnetic
skyrmions, the two most common examples of which are the Bloch and Néel skyrmion.
In Fig. 1.1cv),vi) we show two differemt representations of these two skyrmions. The top
row shows them in their actual physical manifestation as magnetic textures on a 2D plane,
while the bottom row is a mathematical representation of the skyrmions’ magnetisation
on a 2-sphere. Mathematically we can describe the skyrmion magnetisation on the 2D
plane in the following way,

M̂ =




sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)


 θ = θ(r), φ = χ+ h. (1.15)

Here r, χ are the usual polar coordinates parametrising the 2D plane, related to the
cartesian coordinates via x = r cos(χ), y = r sin(χ). h, short for helicity, is the quantity
which determines whether we have a Néel (h = 0) or Bloch (h = π

2 ) skyrmion. These
two skyrmions are therefore mathematically related to each other via a local rotation of
each spin by ±π

2 around the z-axis. The 2D plane and 2-sphere representations shown in
Fig. 1.1c are related to each other via stereographic projection. Stereographic projection
is a very useful practical tool, commonly used for example by cartographers to make 2D
maps of our 3D Earth. Mathematically, it consists of the following mapping [14],

x = X

1 − Z
, y = Y

1 − Z
,

where we start with a point (X, Y, Z) on the unit sphere centred at the origin, and end
up with a point (x, y) on the 2D plane. With this mapping every point on the sphere
is mapped to a single other point on the plane, with the exception of the North pole,
which gets mapped to infinitely many points at x, y = ∞. Representing skyrmions on a
sphere in this manner is useful because it allows us to intuitively understand why they
are topological objects. To determine whether a magnetic texture is topologically trivial
or non-trivial, we compare it to a texture we know to be topologically trivial, the easiest
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one to consider being a ferromagnet. In a ferromagnet, the spins are all parallel to each
other, and in Fig. 1.2 we show their representation on a sphere. Note that you can’t
see the spins on the lower half of the sphere because they are pointing up inside the
surface of the sphere. If another magnetic texture can be transformed by continuous
deformation to this arrangement, it too must be topologically trivial. Let us play the
following game: imagine that the spins are all tiny hairs3, with their bottom part (the
non-arrowhead end) firmly attached to the surface of the sphere and the top end (with
the arrowhead) free to move. Continuous deformations are those achievable by combing
these tiny hairs with a hair comb. There is a further important rule to the game: we
may not force the hairs through the surface of the sphere. If we try this with either of
the skyrmions shown in Fig. 1.1c v),vi), we quickly realise that combing them into the
ferromagnetic arrangement is an impossible task, as we would need to force the spins
on the bottom hemisphere out through the surface of the sphere. Thus skyrmions are
topologically non-trivial objects. Further experimentation with the comb shows that
the Néel skyrmion can quite comfortably be combed into the Bloch skyrmion and vice
versa, suggesting that these two objects have the same topology. While this qualitative

Figure 1.2 Ferromagnet projected on a sphere and topological hair comb

picture is pleasing, it is also helpful to have a concrete mathematical framework for
the topological properties of magnetic systems. A useful quantity to consider is the
topological charge Q, defined as

Q = 1
4π

∫
d2rM̂ · (∂xM̂ × ∂yM̂), (1.16)

where M̂ is again the unit local magnetisation and the integral is taken over the entire
2D domain of the magnetic texture. For Q to be non zero we require a magnetic texture
that twists and turns in space — a collinear texture (e.g. a ferromagnet) will have

3see also the Hairy Ball Theorem [15] (I mostly included this remark because I find the name of the
theorem hilarious).
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∂xM̂ = ∂yM̂ = 0 everywhere, resulting in zero topological charge, Q = 0. In a twisting
texture such as a skyrmion, Q measures the total solid angle spanned by the magnetisation
field M̂ divided 4π, the solid angle of a sphere. Inserting the skyrmion parametrisation
Eq. (1.15) into Eq. (1.16), and performing the calculation with the boundary conditions
θ(r = 0) = π, θ(r = ∞) = 0, we find that both Néel and Bloch skyrmions have a
topological charge of exactly Q = −1, which confirms the topological equivalence we
expected intuitively from the comb thought experiment. The topological charge Q can
also be a non-integer number. Non-integer, or fractional topological charges can form
for example at the meeting point of three or more domains, or when a skyrmion splits
into several smaller fragments. Fractional topological charges have the distinguishing
property that they scatter low energy electrons or magnons very strongly, which is not
the case for charges of integer Q. All of this and more will be discussed in Chapter 4.

1.4.1 Physical Consequences of Non-Trivial Topology

Non-trivial topology in magnetic textures is not just a pretty mathematical phenomenon
— it also has important physical consequences. One such consequence is that charged
particles, in particular electrons, moving in the vicinity of topological magnetic textures
experience forces which modify their trajectories. An electron traversing a magnetic
texture does so adiabatically, meaning that the spin of the electron σ always points
parallel to the local magnetisation M. This means that if the local magnetisation twists
in real space, the spin of the electron will move around in spin space over the course of
its trajectory, picking up a Berry phase in the process. This Berry phase can be used to
calculate the emergent electric and magnetic fields which act on the electron. They are
given by

Ee
i = ~

2|e|M̂ · (∂iM̂ × ∂tM̂),

Be
i = ~

2|e|
1
2ϵijkM̂ · (∂jM̂ × ∂kM̂).

(1.17)

We will derive Eq. (1.17) properly in Sec. 4.2.
Note the resemblance of the emergent Be

i field experienced by the electron in Eq. (1.17)
to the topological charge density from Eq. (1.16). As these two quantities are proportional
to each other a physical measurement of the Be field experienced by an electron traveling
through the magnetic texture gives us information on the latter’s topological charge Q. In
experiments, this has been widely studied in measurements of the so-called topological Hall
effect, which gets its name from the emergent Be-field’s dependence on the topological
charge. As a reminder, a Hall effect experiment usually involves measuring the resistivity
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of a sample as a function of applied current, in a direction perpendicular to both the
applied current and the total B-field experienced by the electrons. From this resistivity
measurement one can deduce the magnitude of the B-field felt by the electrons. In the
presence of a topological magnetic texture we would expect an additional contribution
from the topological Hall effect, alongside the usual normal and anomalous Hall effects
[16–18]. In fact, it was a topological Hall effect measurement that first confirmed the
experimental existence of the skyrmion lattice phase in 2009 [19], by allowing it to be
distinguished from the topologically trivial helical, conical and ferromagnetic phases.

From Eq. (1.17) we can immediately conclude that an emergent Ee-field is only
possible in the presence of a moving magnetic texture, where ∂tM̂ ̸= 0. Experimentally
this can be achieved for example by applying an electric current to the skyrmion lattice
phase. Above an ultrasmall threshold current density of 106A/m2 the skyrmion lattice
starts to move, generating an emergent E-field which can again be measured in Hall
effect experiments [20].

So far we have discussed how a topological magnetic texture influences the trajectories
of conduction electrons through emergent electric and magnetic fields. The reverse effect
also occurs, i.e. moving electrons produce forces on the skyrmions — in fact this is what
caused the skyrmion lattice to move under application of an electric current in the first
place! In addition to electric currents one can also manipulate skyrmions (and magnetic
textures more generally) by applying temperature gradients, electromagnetic fields and
pinning forces [21–25].

In the following section we will introduce a model for describing how magnetic textures
evolve in time and their dynamic response to externally applied forces.

1.5 Landau-Lifshitz-Gilbert Equation

Spins evolve in time according to the Landau-Lifshitz-Gilbert (LLG) equation of motion,

Ṁ = γM × Beff − γ

|γ|αM̂ × Ṁ, (1.18)

where Beff = − δF [M]
δM is the local effective magnetic field felt by the spin, γ is the

gyromagnetic ratio and α is a dimensionless positive damping constant. Note that in our
convention, γe = − |e|g

2me
is negative for an electron with charge −|e|, mass me and g-factor

g. The slightly awkward-looking prefactor γ/|γ| ensures that the formula remains valid
independently of the sign of γ. The LLG was first proposed by Landau and Lifshitz in
1935 [26]. In 1955 it was modified by Gilbert, who introduced a time derivative to the
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Figure 1.3 Path of a damped, non-driven single spin over time for positive γ or “hole-
like” spin (for negative γ it would precess in the opposite direction, i.e. anticlockwise).
The spin (blue arrow) experiences a torque perpendicular to itself and Beff (black
vertical arrow), which makes it precess around Beff. The phenomenological damping
force −αsgn(γ)M̂ × Ṁ (red arrow) always points in towards the axis of precession and
forces the spin to spiral inwards over time, losing speed and angular momentum until it
eventually comes to rest parallel to Beff. We used Eq. (D.3) to plot the path of the spin
over time, with ωL = −1, α = 0.04, θ0 = 0.81 for 0 < t < 2.9 × 2π.

damping term [27]. Physically, the LLG says that the rate of change of M̂ is given by
the sum of two different forces on the RHS of the equation. The first force term causes
the spin to precess around the local effective magnetic field at the Larmor frequency
ωL = γ|Beff|, and can be derived both using classical and quantum physics. We know
from classical physics that a magnetic moment m placed inside an external magnetic
field will experience a torque

τ = m × B.

In addition, the rotational mechanics version of Newton’s II law relates the rate of change
of angular momentum J to the applied torque τ

J̇ = τ.

Putting these two equations together, and using m = γJ, we derive the following equation
of motion of a magnetic moment in an external magnetic field,

ṁ = γm × B. (1.19)
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For the quantum version, one can write down the Heisenberg equation of motion for the
spin operator

˙̂S = i

~
[Ĥ, Ŝ],

with Hamiltonian Ĥ = −γŜ·Beff. Using the spin commutation relation [Ŝi, Ŝj ] = i~ϵijkŜk
4

we once again obtain Eq. (1.19).
The second term on the RHS of Eq. (1.18) is a phenomenological damping term.

There is no proper microscopic derivation of it, except to notice that it leads to sensible
physical behaviour. The damping term is perpendicular to both the spin’s direction
and its velocity and always points inwards, towards the effective magnetic field. In the
absence of external driving the spin spirals inwards over time and eventually reaches
the lowest energy configuration, where is parallel to Beff. See Fig. 1.3 for a graphical
representation and App. D for a precise analytical derivation of the dynamics of the
damped, non-driven spin.

Other Versions of the LLG

In the literature Eq. (1.18) has been reworked into other forms to make it more useful
for specific applications. Perhaps most notably, in 1972 A. A. Thiele remoulded the LLG
into the Thiele equation [28], a clever formalism to describe purely translational modes
of motion in magnetic textures. The idea is to assume that all the time-dependence of
the magnetisation can be transferred to a generalised coordinate R(t), so that M(r, t) =
M(r − R(t)). By a series of projections and spatial integration it is then possible to
rewrite Eq. (1.18) as an equation of motion for R,

sgn(γ)G × Ṙ − αDṘ = −∂F

∂R
, (1.20)

where Gα = 1
2

M0
|γ| ϵαβγ

∫
d3rM̂·(∂βM̂×∂γM̂)5 and Dαβ = M0

|γ|
∫

d3r∂αM̂·∂βM̂ are known as
the gyrocoupling vector and dissipation matrix, respectively, see App. C for a derivation.
On the RHS of Eq. (1.20) we have − ∂F

∂R = Fext. These are all the external forces that
might be acting on the magnetic texture, such as pinning by disorder or temperature
gradients [29–32]. In Chapter 3 we will show how an effective force arising from oscillating
magnetic fields can also be included within the Thiele framework. The Thiele equation

4Note that here, the hat symbol in Ŝi is used to specify that Ŝi is a quantum operator, and not that
it is normalized, in contrast to the usage we made of it for M̂.

5Note again the resemblance of G to the topological charge Q and emergent magnetic field Be,
Eq. (1.16) and (1.17)! When the same quantity appears three times in different contexts you know it
must be important :).
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is particularly useful for investigating the dynamics of skyrmions or other topologically
charged magnetic objects. Solving Eq. (1.20) for the coordinate R, which could for
example designate the centre of a skyrmion, gives an idea of the main dynamical features
of the problem without having to solve the full space- and time-dependent LLG.

Another useful way to rewrite Eq. (1.18) involves getting a little inspiration from
quantum mechanics. We already showed that the precessional force has a direct analog
in the quantum language via the Heisenberg equation of motion and spin commutation
relations. What about the damping force? From a classical perspective, we are free
to add damping forces to our equation of motion, but in quantum mechanics this is
more tricky to do conceptually with the Heisenberg equation approach adopted so far, as
Hamiltonian physics becomes ill-defined in the presence of damping. To do it properly,
one could for example write down the Lindblad master equation for open quantum
systems, which incorporates damping through dissipation of energy to the surroundings
while preserving the important properties that the density operator is positive, ρ > 0,
and its trace remains unity, tr(ρ) = 1 [33]. In this thesis we will not take this Lindbladian
approach, instead choosing to remain completely classical and use the Gilbert damping
provided by the LLG. Nevertheless, the mathematical formalism of commutators in the
quantum mechanics inspired approach is very useful for calculations. In classical physics
commutators are replaced by Poisson brackets, so that the correspondence between the
quantum mechanical commutator of the spin operators Ŝi, Ŝj and the Poisson bracket
classical magnetisation fields Mi(r),Mj(r′) is given by

[Ŝi(r), Ŝj(r′)] = i~ϵijkŜkδ(r − r′) ⇔ {M̂i(r), M̂j(r′)} = iϵijkM̂k(r)δ(r − r′). (1.21)

This allows us to rewrite Eq. (1.18) as

Ṁ = iγ{F, M̂} − γ

|γ|αM̂ × Ṁ. (1.22)

Eq. (1.22) will be very useful once we introduce the Holstein-Primakoff spin expansion in
Chapters 2 and 3.
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Archimedean Screw
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Music engraving by LilyPond 2.20.0—www.lilypond.org

– “Screw” theme from B. Britten’s 1954 opera “The Turn of the Screw”

The Archimedean screw is one of the simplest and oldest machines known to mankind.
This chapter will reveal to you how to build a nano-size Archimedean screw of approxi-
mately 20 nm, or about 1

80,000 of the thickness of a single strand of human hair (!) using
a chiral magnet. By driving the conical state of the chiral magnet with an oscillating
magnetic field B1(t) we can activate the rotational Goldstone mode of the system, setting
the “screw” into motion with angular frequency ωscrew ∝ |B1|2. This kind of motion is
directly analogous to the rotational motion of a mechanical Archimedean screw. Just like
regular Archimedean screws, which we use daily for transport in a variety of settings, the
nano-size magnetic Archimedean screw can also be used to transport nano-scale materials
such as spin or charge. At the end of the chapter we give an example of this transport
application by estimating the electric current generated by the nano-Archimedean screw
as it pumps electrons in metallic chiral magnets (experiments are already underway to
check this effect...). In addition, some cool physics occurs upon increasing the amplitude
of B1(t) with the formation of a new “time quasicrystal” phase, where the magnetisation
oscillates in space and time at frequencies that are incommensurate with the lattice pitch
vector and the driving frequency of the oscillating magnetic field. We will show that this
effect can be predicted and explained theoretically using Floquet spin wave theory.

Many of the results presented in this chapter were published in [34], written in
collaboration with Lukas Heinen and Achim Rosch.



18 Archimedean Screw

– smurfs trying to use an Archimedean screw
to deliver gifts to an uninterested smurfette.

(made by NdS with help from [35–39])
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2.1 Origin and Principles of the Archimedean Screw

The Archimedean screw owes its name to Archimedes of Syracuse, the famous Greek
scientist and polymath, who first mentioned it in one of his texts in 234 BC. There is
some evidence that even before his time the device already existed in Egypt and was
used to transport water from the Nile for irrigation purposes [40]. However Archimedes’
story with the screw, even if it might be slightly apocryphal, is too good not to be
mentioned here. According to legend, Archimedes had been hired by the king of Syracuse
(modern day Sicily) to build him a ship, larger and more luxurious than that of any of
the neighbouring rulers. Back then, Syracuse was the capital of a prosperous empire
which excelled in trading and was especially proud of its naval fleet. So when Syracusia
– the ship built by Archimedes – started to show signs of leakage, it was the ultimate
form of embarrassment for everyone involved in the enterprise, and most of all for
its architect. Necessity being the mother of invention, this urgent situation spurred
Archimedes to design a manually activated screw-shaped pump to drain the water from
the ship, helping to keep it — and the reputation of Syracuse — intact. The screw-
shaped pump, subsequently referred to simply as the Archimedean screw, is still used
widely to this day. Its most obvious and widespread applications are in irrigation and
for transport of powders and grains in industrial and agricultural settings. Perhaps
more surprisingly, Archimedean screws are also used on fish farms as “pescalators” to
transfer fish delicately and safely between reservoirs. Long before Archimedes, Darwinian
evolution had already harnessed Archimedean screws, and plenty of examples of their
occurrence can be found in the natural world. For example many bacteria grow corkscrew
shaped tails (flagella) to propel themselves through liquids using a mechanism analogous
to that of the Archimedean screw.

With all that said, how does an Archimedean screw actually work? As with many
good things in physics, symmetry is the driving principle. Specifically, one kind of
symmetry known as helical, or more colloquially “screw”, symmetry. Helical symmetry
occurs in objects where rotation and translation along the axis of rotation are equivalent
operations. This is precisely the case for a screw — if you imagine rotating or translating
an infinitely long screw, the two actions look identical. Therefore, a precise mathematical
formulation of screw symmetry is that translation of the texture by ∆z in the +z direction
combined with rotation clockwise by ∆φ = q∆z around the z axis leaves screw unchanged.
Another important aspect to consider is the chirality, or equivalently the handedness, of
the screw. To determine whether a screw is left- or right-handed just align the thumbs
on both of your hands parallel to the axis of the screw and check in which sense the
screw rotates as you move your eyes up, along your thumb. If the screw rotates clockwise,
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(a) Archimedes thoughtful,
painted by Domenico Fetti
in 1620.

(b) Archimedes’ ship Syracu-
sia and the screw pump to
drain it (from [41, 42]).

(c) A modern Archimedean
screw, photographed by
Anne Matthies in 2021.

Figure 2.1 History and Applications of the Archimedean Screw

like the fingers on your right hand, it is right-handed1, if it rotates anti-clockwise, it is
left-handed. Using these definitions, we conclude that the conical phase magnetisation
defined in Eq. (1.4) is right-handed2.

So the scene is set: we have a perfect candidate for realising an Archimedean screw in
the conical phase of a chiral magnet, because of the shared helical and chiral symmetry
properties. Now we need to figure out a way to “activate” our magnetic screw, i.e. make
it rotate on its axis in time just like an Archimedean screw!

2.2 Driven Conical Phase: Steady State

Mechanical Archimedean screws only start to turn when we provide energy for them
to do so. In the old days this power was supplied by men or horses, nowadays the job
is often done by electric motors. Naturally to “activate” our magnetic Archimedean
screw, we also need to inject some power into the chiral magnet. We choose to do this
by driving the system with an oscillating magnetic field, B1(t).

The problem of driving magnetic textures with oscillating magnetic fields was first
studied in experiments by Onose et al. [43], using the insulating chiral magnet Cu2OSeO3.
For weak driving fields B1(t), spin waves — modes of collective excitation — are excited
at linear order in B1 in the magnetic texture. Theoretical calculations of the spin waves

1in most cases screws are right-handed as there are overwhelmingly (over 90%!) more right-handed
than left-handed people in the world. Using a screwdriver of the same handedness as your dominant
hand means you can apply more force to it.

2For the chiral magnet, the handedness is determined by the sign of D, the DMI constant. Making it
negative would make our conical phase left-handed.
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and their resonances in the different phases of the chiral magnet (skyrmion, conical, etc)
and in different materials have also been performed in the past [44–47]. However, up
until now analytical treatment of damping as well as higher than linear order dynamics
constituted a mostly unexplored territory. In this thesis we address these aspects in
detail for the first time.

Let us now set up our problem more concretely. We take a chiral magnet in the
conical phase and apply to it an external magnetic field Bext, which consists of a static
component B0 and a sinusoidally time-varying “driving” component B1(t),

Bext = B0 + ϵB1(t), B0 =




0
0
B0


 , B1(t) =




Bx
⊥ cos(Ωt)

By
⊥ sin(Ωt)

B∥ cos(Ωt+ ∆)


 . (2.1)

We assume that the driving frequency Ω is in the GHz range, which is the “fast"-driving
regime. The problem of “slow” driving, when Ω is in the Hz range, is currently also
being investigated in the group of Prof. Rosch. The physics there is very different and
results for example in “bending” or even “breaking” of skyrmion lines in the SkX phase

— something we need not concern ourselves with here. We assume that the driving
field is very weak compared to the static field, with B1

B0
∼ 1

100 . This allows us to take
a perturbative approach in solving for the dynamics of the system; the parameter ϵ
is a book-keeping device which will help us with that. Note also that both the static
and driving components are chosen to be homogeneous in space, i.e. independent of
the location r. This simplifies the analysis significantly and further theoretical work
will be needed to address the problem of non-homogeneous magnetic fields in realistic
experimental setups, a complication which we do not consider in the present thesis. The
notation B∥, B⊥ designates components of the driving field parallel and perpendicular
to the constant B0 field, respectively. With the inclusion of a phase ∆ in the parallel
component, this form of driving field is the most general one possible if one assumes
a sample of cylindrical symmetry where the demagnetisation factors in the xy-plane
are identical, Nx = Ny

3. In the following analysis we will show that driving with a
purely parallel (Bx,y

⊥ = 0) or purely perpendicular (B∥ = 0) magnetic field results in
qualitatively different dynamics, with the Archimedean screw-type motion only activated
by perpendicular driving. We will cover both types of response, as the comparatively
more simple parallel driving analysis serves as a good pedagogical stepping stone for the
more complicated of perpendicular driving.

3for the asymmetrical case Nx = Ny one would have to add a further phase to either of the Bx,y
⊥

components.
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One final thing we need to write down before starting to calculate is a dynamic
ansatz for the magnetisation. As already mentioned, the driving field is very weak, which
motivates us to use a perturbative analysis to obtain the dynamical response. Practically,
this means solving the LLG Eq. (1.18) in powers of B1. To do this, we also need to
expand our magnetisation ansatz in powers of B1. The following ansatz achieves this,
while also keeping the magnetisation unit vector normalized to unity,

M̂ =




sin (θ0 + ϵθ1 + ϵ2θ2 +O(ϵ3)) cos (qz + ϵφ1 + ϵ2φ2 +O(ϵ3))
sin (θ0 + ϵθ1 + ϵ2θ2 +O(ϵ3)) sin (qz + ϵφ1 + ϵ2φ2 +O(ϵ3))

cos (θ0 + ϵθ1 + ϵ2θ2 +O(ϵ3))


 , (2.2)

where ϵ is the same book-keeping device we introduced in Eq. (2.1). Note that for the
moment the fields θn, φn are completely general functions of both space r and time t.
Later we will see that the direction of the drive (parallel vs. perpendicular) and the
order n very helpfully restrict the kind of functions we can use to very few candidates.
The game now consists of inserting Eq. (2.2) and Eq. (2.13) into the LLG and expanding
the equation order by order in ϵ. At each consecutive order n we solve for θn, φn ∝ Bn

1 .
Throughout this thesis we will be doing this up to order n = 2 — this is enough to
capture the most salient physics for reasons that will soon be revealed.

We are now all set to get our hands dirty with calculating the dynamic response
of the conical state to parallel and perpendicular drive. We investigate each of these
respectively in the next two subsections.

2.2.1 Parallel Driving

As a gentle introduction, let us calculate the response of the conical state to purely
parallel driving. We set Bx,y

⊥ = 0 in Eq. (2.1). The phase ∆ can also be set to zero
without loss of generality, as in the absence of perpendicular driving field components it
would just change the phase of the spin response without introducing any new dynamical
features. Thus we want to solve for the dynamical response of the conical texture to

b∥(t) = ϵb∥ cos(ωt)ez, (2.3)

where we use the same definition of reduced magnetic field b∥ = |γ|
JSd2B∥ = M0J̃

D̃2 B∥

as previously. We also introduced the reduced frequency ω = J
SD2 Ω = J̃M0

|γ|D̃2 Ω and
corresponding reduced time t̃ = SD2

J
t = |γ|D̃2

J̃M0
t, immediately dropping the tilde on t̃
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to avoid cluttering the notation unnecessarily. All these reduced quantities have the
advantage of being dimensionless and being in the more user friendly 10−3 − 1 range.

Now we begin the perturbative calculation. As a sanity check, we first consider order
n = 0. At zeroth order there is no driving term in the LLG, which only enters for orders
n ≥ 1. Consequently, expanding Eq. (2.2) to zeroth order in ϵ just returns us the static
spin ansatz Eq. (1.4), as expected.

For the non trivial higher orders n > 0 we can make the LLG equation, which is a
vector equation, more tractable by projecting it onto the two vectors ∂M̂

∂θ
and ∂M̂

∂φ
, both

of which are instantaneously orthogonal to M̂(r, t) and to each other. This gives us two
sets of coupled differential equations in θn and φn at each order of bn

∥ . At first order in ϵ
the coupled differential equations are

sgn(γ)θ̇1 − αsφ̇1 = −sφ′′
1,

sgn(γ)sφ̇1 + αθ̇1 = θ′′
1 − s2(1 + δNz)θ1 − sbz cos(ωt),

(2.4)

where we have used the shortened notation s = sin(θ0), c = cos(θ0). The dashes denote
spatial derivatives in the z direction, eg θ′

1 = ∂θ1
∂z̃

, with respect to a rescaled dimensionless
coordinate z̃ = qz. For notational simplicity we dropped the tilde on z̃, just like we did
for t̃. Notice that there are no spatial derivatives in the x, y directions — this is because
we have simplified the problem by tacitly assuming that the magnetisation remains
translationally invariant in the xy-plane. This simplifying assumption is justified by the
fact that we are considering an infinite system and only homogeneous magnetic fields.
Looking at the driving term on the RHS of the second equation in Eq. (2.4), sbz cos(ωt),
we see that it actually doesn’t contain any spatial dependence at all, so that θ1, φ1 must
have the form

θ1(t) = θ
(1)
1 eiωt + θ

(−1)
1 e−iωt,

φ1(t) = φ
(1)
1 eiωt + φ

(−1)
1 e−iωt.

(2.5)

θ
(±1)
1 , φ(±1) are constant coefficients which we can solve for by substituting Eq. (2.5) into

Eq. (2.4) and comparing terms oscillating at the same frequency. We obtain

θ
(1)
1 = b∥α

√
1 − c2

2 (α (c2 − 1) (δNz + 1) − i(1 + α2)ω) ,

φ
(1)
1 = b∥sgn(γ)

2 (α (c2 − 1) (δNz + 1) − i(1 + α2)ω) .
(2.6)

We have not taken the trouble to write out θ(−1)
1 , φ

(−1)
1 because they are just the complex

conjugates of θ(1)
1 , φ

(1)
1 in Eq. (2.5), respectively — this guarantees that the overall first
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order solutions θ1(t), φ1(t) are real. Note that incorporating dipolar interactions as we
have done above can be a bit tricky; if you are trying to reproduce this calculation
see Sec. B.2 for technical tips on how to do it. We can check the physical validity of
our solution at the special point ω = 0. At ω = 0, we are not really driving with a
time-dependent field — rather we are adding a static component b∥ to the background
static field b0. This additional background field changes c, the cosine of the equilibrium
angle θ0, to c+ sθ1, in exactly the same way as if we had just replaced b0 → b0 + b∥ in
Eq. (1.5) — as expected. Physically, the main features that we extract from the first
order dynamical response are that θ1(t) and φ1(t) oscillate in phase with each other, and
that the amplitude of oscillation in the ∂M

∂θ
direction is reduced by a factor α

√
1 − c2.

An important physical feature of the dynamical first order solution Eq. (2.5) is that the
magnetisation retains its screw symmetry to first order in b∥, see also Fig. 2.2b. This
might be because parallel driving preserves the rotational symmetry of the free energy of
the system. One useful quantity to plot using our first order solution is the deviation of
the magnetisation from its equilibrium (non-driven) value, δM̂ = M̂(z, t) − M̂0. This is
given by

δM̂ = ϵ

(
∂M̂
∂θ

θ1(t) + ∂M̂
∂φ

φ1(t)
)

+ O(ϵ2) (2.7)

to first order in ϵ. By taking the norm of Eq. (2.7), averaging it in space over one
wavelength of the helix and in time over one period of oscillation, one obtains

δM =
√

⟨|δM̂|2⟩t,z =
√

|θ(1)
1 |2 + s2|φ(1)

1 | + O(b2
∥). (2.8)

In Fig. 2.2a we have plotted this quantity as a function of the driving frequency ω. δM
has a single resonance frequency at ω = 0, and the width δω of the resonance peak is
proportional to α(1 − c2)(1 + δNz)/(1 + α2).

At O(ϵ2) there are many more terms, because in addition to θ2 and φ2 and their
spatial and temporal derivatives we can also get combinations of θ1 and φ1 with each
other as well as with terms proportional to the driving field,

sgn(γ)θ̇2 − α
(
cθ1φ̇1 + sφ̇2

)
= −2cφ′

1θ
′
1 − cφ′′

1θ1 − sφ′′
2

cθ1
(
2sgn(γ)sφ̇1 + αθ̇1

)
+ s

(
sgn(γ)sφ̇2 + αθ̇2

)
= cθ1

(
θ′′

1 − 2b∥s cos(ωt)
)

−5
2cs

2(1 + δNz)θ2
1 − s

(
csφ′2

1 + s2(1 + δNz)θ2 − θ′′
2

)
.

(2.9)

Luckily, we can greatly simplify this mess by choosing a clever ansatz for θ2, φ2. By
inspecting the terms containing θ1(t), φ1(t) ∼ e±iωt in eq. (2.9), we conclude that at
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δM

(a) δM , defined in Eq. (2.8), as a func-
tion of driving frequency ω for parameters
b∥ = 0.02, b⊥ = 0, c = 0.71, α = 0.03, δ =
1.76, Nx = Ny = 1/3.

(b) Conical phase driven with b∥(t). All spins
oscillate in phase around their equilibrium
value, preserving the screw symmetry.

Figure 2.2 Conical Phase Driven in the Parallel Direction

second order the response will contain terms which oscillate at frequencies ±2ω or 0 —
these are the only three possible ways of combining eiωt and e−iωt. In addition, we see
that we don’t expect any spatial dependence of θ2, φ2 on z. Thus in general we would
expect the following response at second order

θ2(t) = θ
(2)
2 e2iωt + θ

(−2)
2 e−2iωt + θ

(0)
2

φ2(t) = φ
(2)
2 e2iωt + φ

(−2)
2 e−2iωt + φ

(0)
2 + Φ2(t).

(2.10)

Actually I cheated and added a mysterious function Φ2(t) to the ansatz for φ2(t) without
giving you any warning. What is this Φ2(t)? From a physical perspective, it is exactly
the mode we need to activate in order to realise an Archimedean screw-type motion.
But what of its functional form? One could try to make an argument for it on the
basis of symmetries. If we drive in the parallel direction we have already seen that the
screw symmetry is conserved by the magnetisation at first order in b∥, and the ansatz
Eq. (2.10) suggests it is conserved at second order too. As screw symmetry remains
intact, translational symmetry would therefore also be conserved by any choice of Φ2(t).
Considering just the symmetries of the system is insufficient, and as it turns out damping
plays a vitally important role in restricting the form of Φ2(t). Taking our equations of
motion at second order, Eq. (2.9) and substituting in the first order solution Eq. (2.6)
and second order ansatz Eq. (2.10), we see that the only possible non-trivial functional
form for Φ2(t) is

Φ2(t) = ωscrewt. (2.11)
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In contrast to all the other allowed terms at second order, which are either constant
or oscillate in time, Φ2(t) is divergent. However, it does not describe an instability in
the system but rather the activation of the Archimedean screw-type rotation of the
entire helix about its axis, with angular velocity ωscrew. To determine ωscrew let’s insert
Eq. (2.11) into the first equation in Eq. (2.9). As none of the terms have any spatial
dependence on z, the RHS of the equation vanishes, leaving

α
(
sωscrew + icω

(
θ

(−1)
1 φ

(1)
1 − θ

(1)
1 φ

(−1)
1

))
= 0. (2.12)

Substituting values for θ(±1)
1 , φ

(±1)
1 from Eq. (2.6) into the above and solving for ωscrew

we get the trivial result
ωscrew = 0.

How disappointing — no Archimedean screw for a conical state driven in the parallel
direction. But I guess you were expecting it, as I did warn you the result would be a bit
boring at the end of the previous section :). Now we will shift our focus to perpendicular
driving, which, it turns out, does activate the elusive ωscrew we are after.

2.2.2 Perpendicular Driving

We would now like to investigate the dynamic response of the conical phase to a
perpendicular driving field,

b⊥(t) = ϵ (bx cos(ωt)ex + by sin(ωt)ey) . (2.13)

Just like for the parallel driving case, we proceed order by order in ϵ. Skipping the trivial
zeroth order, at first order the equations of motion read

sgn(γ)θ̇1 − αsφ̇1 = −sφ′′
1 + bx(t) sin(z) − by(t) cos(z) + RHSdip

1,θ ,

ssgn(γ)φ̇1 + αθ̇1 = θ′′
1 − (s2 + 2c2δNz)θ1 + cbx(t) cos(z) + cby(t) sin(z) + RHSdip

1,φ,

(2.14)
The RHS’s of these equations are no longer spatially independent, in contrast to the
parallel driving case — instead they oscillate with spatial momentum ±1 (remember we
are working in dimensionless units, in physical units this corresponds to ±q, the pitch
vector of the helix). This motivates us to modify our first order steady state ansatz for
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θ1, φ1 to

θ1(z, t) = θ
(1,1)
1 ei(ωt+z) + θ

(−1,−1)
1 e−i(ωt+z) + θ

(1,−1)
1 ei(ωt−z) + θ

(−1,1)
1 e−i(ωt−z),

φ1(z, t) = φ
(1,1)
1 ei(ωt+z) + φ

(−1,−1)
1 e−i(ωt+z) + φ

(1,−1)
1 ei(ωt−z) + φ

(−1,1)
1 e−i(ωt−z).

(2.15)

In contrast to the parallel driving case, now the first order solution oscillates in both
space and time, at spatial and temporal frequencies ±1,±ω (in dimensionless units),
respectively. Consequently, the screw symmetry, which was conserved at all orders in b∥

under parallel driving, is already lost at first order in b⊥ under perpendicular driving.
Physically, Eq. (2.15) describes two compression waves running up and down the helix,
with the direction determined by the relative sign in ωt ± z, see also Fig. 2.5c. It
should also be noted that the condition on both θ1(z, t) and φ1(z, t) being real imposes
that θ(−1,±1)

1 = θ
(1,∓1)∗
1 , φ

(−1,±1)
1 = φ

(1,∓1)∗
1 . As a consequence of the added e±iz spatial

dependence in the first order magnetisation ansatz, Eq. (2.15), the effective dipolar field,
which is itself a function of the magnetisation field, ends up being more complicated for
the perpendicular driving case. See App. B.2 for details on how to incorporate these
dipolar interactions terms into Eq. (2.15) and Eq. (B.10) for the precise forms of RHSdip

1,θ/φ.
Substituting the first order ansatz Eq. (2.15) into the first order equations of motion,
Eq. (2.14), and comparing terms oscillating at the same spatial and temporal frequencies,
one obtains analytical expressions for the coefficients θ(1,±1)

1 , φ
(1,±1)
1 . These are listed in

full (gory) detail in App.E. Eq. (E.3) gives the coefficients for the most general case
Nx ̸= Ny, while Eq. (E.7) gives them for the simplified symmetric case Nx = Ny, which
we will focus on in our discussion. It should be mentioned that during the derivation of
these coefficients, we defined the quantities N± = Nx ±Ny as well as bR/L = bx ±by, which
lead to neater formulas. If we choose our perpendicular driving field such that either
bL = 0 or bR = 0 we obtain right- and left- circularly polarised driving fields, respectively.
Right or left circular polarisation can also be understood intuitively in the same way as
the handedness of a helix. One aligns the thumb on the relevant (right or left) hand
with the +ez direction; the other fingers then curl in the direction in which the magnetic
field rotates in time. Looking at the θ(1,±1)

1 , φ(1,±1)
1 coefficients for the symmetric case

Nx = Ny, Eq. (E.6), we can see that for circularly polarised driving, only one direction of
traveling wave gets excited — up-traveling (ωt− z) if bL = 0 and down-traveling (ωt+ z)
if bR = 0.

The resonance frequencies activated by perpendicular driving constitute our next
topic of discussion. In the presence of dipolar interactions there are generally two resonant
frequencies, which we denote by E+ and E−. We give their analytical formulas, which can
be obtained by setting the denominator of the θ(1,±1)

1 or φ(1,±1)
1 coefficients, Eq. (E.4), to
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Figure 2.3 Real and imaginary parts of dimensionless resonance frequencies E± of the
conical phase driven in the perpendicular direction, plotted as a function of c = cos(θ0),
with γ < 0, α = 0.03, Nx = Ny = 1/3 and dipolar interactions switched on (δ = 1.76,
which describes Cu2OSeO3) and off (δ = 0). In the absence of an external static magnetic
field, b0, c = 0, or dipolar interactions, δ = 0, the two resonances do not get split.
See Eq. (E.7) for the exact analytical expressions of E±. Im(E) is not quite simply
−α|Re(E)|, see Eq. (E.8) for an expansion of E± in powers of α up to O(α1) for the
correction factors.

zero and solving the resulting quartic equation, in Eq. (E.7). E± are in general complex
due to the presence of damping in the system: the real part, Re(E±), gives the actual
resonance frequency, while the imaginary part, Im(E±), quantifies the broadening due
to damping. In Fig. 2.3 we plot the real and imaginary parts of E± as a function of
c = cos(θ0), the cosine of the opening angle of the helix. With dipolar interactions
switched off, δ = 0, E− = E+ are the same. For finite δ they split apart, E+ ̸= E−, as
long as c ̸= 0, i.e. there is a finite static magnetic field, b0 > 0. It should be noted that
we have chosen γ to be negative, as that is the case for most experimental systems of
interest. Switching to positive γ would inverse the sign of Re(E±), which we expect from
our discussion of the damped spin motion in Sec. 1.5, where we learned that the sign of
the gyromagnetic ratio determines the sense of rotation of the spin. Importantly, making
γ > 0 leaves Im(E±) unchanged, see Eq. (E.8), where we have expanded E± up to order
O(α) — the imaginary part is independent of sgn(γ). When we do Floquet spin wave
theory later we will see that the sign of Im(E±) determines whether the system is stable
or not, with negative Im(E±) indicating stability in our convention. Switching the sign
of γ is an innocent act which cannot influence the stability of the system. To see what
does cause instabilities in the driven system you’ll have to keep patient until Sec. 2.3.
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(a) δM , defined in Eq. (2.16), as a function of driving frequency ω for the conical phase driven
with b⊥(t) for left-, right- and linearly polarised driving, with parameters α = 0.03, Nx = Ny =
1/3 and different c, δ. Note how the resonant frequencies ω+, ω− only get split when both δ
and c are finite, panel (iv).
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Figure 2.4 Conical Phase Driven in the Perpendicular Direction, First Order Response
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Using the knowledge we gained about the two resonance frequencies E±, together
with the formulas for the coefficients θ(1,±1)

1 , φ
(1,±1)
1 in Eq. (E.6), we can make some

further statements about the first order driven steady state. If we choose circularly
polarised driving, set sgn(γ) < 0 and restrict ourselves to driving frequencies ω > 0
(which contains all the physical information anyway, as negative ω just switches the
polarisation from left to right and vice versa, bL ↔ bR for ω < 0), then purely left-
polarised driving bR = 0 excites only θ(1,1)

1 and φ(1,1)
1 , with resonance frequency −Re(E−),

while purely right-polarised driving bL = 0 excites only θ(1,−1)
1 and φ(1,−1)

1 , with resonance
frequency −Re(E+). If we switch to positive γ, Re(E±) become positive and the resonance
frequencies excited by bR/L get swapped.

In the perpendicular driving case, the space and time averaged magnitude of the
deviation is

δM =
√∣∣∣θ(1,1)

1

∣∣∣
2

+
∣∣∣θ(1,−1)

1

∣∣∣
2

+ s2
(∣∣∣φ(1,1)

1

∣∣∣
2

+
∣∣∣φ(1,−1)

1

∣∣∣
2
)

+ O(b2
⊥). (2.16)

Eq. (2.16) was obtained using the same procedure as for the parallel driving case (read
the text under Eq. (2.7) for details), we just used the perpendicular ansatz Eq. (2.15)
instead of the parallel version Eq. (2.5). In Fig. 2.4a we have plotted this quantity for
left- (bR = 0), right- (bL = 0) and linearly (by = 0) polarised driving and different settings
of δ and c. In the absence of an external magnetic field (c = 0) (first and third rows in
Fig. 2.4a), δM is identical for left- and right- polarised driving. For linearly polarised
driving the space and time average deviation is simply

√
2 times either of these. At

finite static magnetic field c = 0.71 but with dipolar interactions turned off, δ = 0, the
resonance frequencies are still the same for left- and right- polarised driving but the
heights of the peaks are now different. For a system with both an external static field and
dipolar interactions c ≠ 0, δ ̸= 0, both the resonance frequencies and the heights of the
peaks are different for left- and right- circularly polarised driving. Fig. 2.4b is perhaps a
more useful way of presenting the same information for experimentalists. Here we plot
the maximum value over the course of one period of oscillation of the space-averaged
x, y components of the magnetisation, maxt(Mx,y), in experimental units describing
Cu2OSeO3. For left and right circular polarised driving maxt(Mx) = maxt(My) are the
same, but for linear driving in the x direction maxt(Mx) ̸= maxt(My). If we instead
choose y-polarised driving Mx and My get swapped.
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(a) Dimensionless rotational frequency ωscrew as a function of the driving frequency ω for left-
right- and linearly polarised perpendicular driving fields with parameters α = 0.03, Nx = Ny =
1/3 and different c, δ. Some features we saw at first order (see Fig. 2.4a) are inherited by ωscrew:
the two resonance frequencies ω±

res. only get split at finite δ and c. When c = 0 (left column)
ωscrew is equal and opposite for left- and right- polarised driving; consequently linearly polarised
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resonance peaks get split and the sign of the resulting ωscrew can be controlled by using linearly
polarised driving field and varying the driving frequency ω. The analytical formula for ωscrew is
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(c) Conical phase driven with b⊥(t). The first
order response manifests in the red and blue
collective compressional wave and the small
circles traced out by each spin. The second
order ωscrew manifests in a slow rotation of the
entire helix on its axis.

Figure 2.5 Conical Phase Driven in the Perpendicular Direction, Second Order Response
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Now we move on to the second order response of the conical phase to perpendicular
driving. The equations of motion at order O(ϵ2) (warning: very gory!) read

sgn(γ)θ̇2 − α
(
cθ1φ̇1 + sφ̇2

)
= (bx(t) cos(z) + by(t) sin(z))φ1

− 2cφ′
1θ

′
1 − cφ′′

1θ1 − sφ′′
2 + RHSdip

2,θ ,

cθ1
(
2sgn(γ)sφ̇1 + αθ̇1

)
+ s

(
sgn(γ)sφ̇2 + αθ̇2

)
= sθ′′

2 + cθ1θ
′′
1 − cs2φ′2

1

+ −s(s2 + 2c2δNz)θ2 + RHSdip
2,φ

− 1
2θ

2
1c
(
5s2 + 2(c2 − s2)δNz

)

+ (c2 − s2)θ1 (bx(t) cos(z) + by sin(z))
+ scφ1 (by cos(z) − bx sin(z)) .

(2.17)
The general response we expect at order O(ϵ2) includes temporal oscillations at ±2ω, 0,
just like in the parallel driving case, but now we additionally expect spatial oscillations at
k = ±2, 0. We also include the Archimedean screw mode ωscrewt in the φ2(z, t) component.
Putting this together we obtain the following ansatz for the second order response to
perpendicular driving

θ2(z, t) = θosc.
2 (z, t) + θ

(0,0)
2 ,

φ2(z, t) = φosc.
2 (z, t) + φ

(0,0)
2 + ωscrewt.

(2.18)

Again, we use Eq. (2.18) to self-consistently identify the dipolar interaction contributions
RHSdip

2,θ/φ to Eq. (2.17); these are given in full detail in Eq. (B.11). We could in principle
solve Eq. (2.17) completely — we have all the information we need to do it, as we have
already have full knowledge of the first order coefficients. However we will not do this,
for the good reason that the only thing we are really interested in is whether a non-zero
ωscrew gets activated by perpendicular driving. Also, the oscillatory terms θosc.

2 , φosc.
2 are

suppressed by a factor ϵ compared to the first order oscillatory terms, so we can safely
neglect them anyway. The constant term θ

(0,0)
2 is not so important for the present analysis

but turns out to be crucial for the correctness of the Floquet spin wave analysis we will
perform in Sec. 2.3, so we solve for it exactly as well. As for φ(0,0)

2 — a quick inspection
of Eq. (2.17) shows that φ(0,0)

2 doesn’t appear anywhere explicitly. As such we can give
constant value we wish — for the sake of simplicity we choose to set φ(0,0)

2 = 0.
We now just solve for ωscrew and θ(0,0)

2 simultaneously by comparing the coefficients of
the terms in Eq. (2.17) which are constant in both space and time. In the most general
case of finite δ and asymmetrical demagnetisation factors Nx ̸= Ny the resulting formulas
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for ωscrew, θ
(0,0) are very long and complicated, eg see Eq. (E.11) for the full general form

of ωscrew. For the symmetric case Nx = Ny, one can write ωscrew and θ
(0,0)
2 in a form

which is much easier to interpret, see Eq. (E.12) and (E.13). Note that the combined
transformations ω → −ω and bR ↔ bL leave the formulas for ωscrew, θ

(0,0)
2 unchanged

— this is expected, as inverting the sign of the driving frequency when the driving is
circularly polarised is equivalent to inversing the polarisation. The formulas Eq. (E.12)
and (E.13) suggest that ωscrew and θ(0,0)

2 in general have two pairs of resonant frequencies,
ωres. = ±Re(E−) and ±Re(E+). However if we just consider positive driving frequency,
ω > 0, only two of these can be excited. For γ < 0 and ω > 0, right-polarised driving,
bL = 0, excites the upper resonance −Re(E+), while left-polarised driving, bR = 0, excites
the lower resonance −Re(E+). This should come as no surprise, as we had seen the same
behaviour in the resonances of the first order time- and space-averaged deviation δM .
Neglecting dipolar interactions, ωscrew has the compact form

ωscrew = ω [(b2
R − b2

L) ((α2 + 1)ω2 + 4)]
8 [(1 + α2)2ω4 + (5α2 − 4)ω2 + 4]

≈ 3
√

2
32

b2
R − b2

L

(ω −
√

2)2 + 9α2/4
, (2.19)

where in the second row we expanded around the resonance frequency ωres =
√

2. In
Fig. 2.5a we have plotted ωscrew as a function of the driving frequency ω for left-, right-
and linearly polarised perpendicular driving and various δ, c. By choosing different
polarisations of the driving field, varying the static background field b0 or the driving
frequency ω one can control the magnitude and sign of ωscrew.

There is actually a nicer way of obtaining ωscrew, which allows us to write it purely
as a function of the first order coefficients θ±1,±1, φ±1,±1. The method is inspired by the
Thiele approach, where one M̂×LLG onto the Goldstone mode of the system, which in
this case is ∂M̂

∂z
, and then integrates over space,

∫
dz

∂M̂
∂z

·
(
sgn(γ)M̂ × Ṁ − αṀ

)
= |γ|

∫
dz

∂M̂
∂z

·
(
(M̂ · Beff)M̂ − Beff

)
M0.

The RHS of the above equation disappears, as M̂ ⊥ ∂M̂
∂z

and − ∫
dz ∂M

∂z
· Beff = δF

δz
= 0

due to the translational symmetry of F . Using the chain rule, ∂M̂
∂z

= θ′∂θM̂ + φ′∂φM̂,
one obtains after integration that the first term on the LHS also disappears, leaving only

∫
dz α

∂M̂
∂z

· Ṁ = 0. (2.20)
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This is a useful equation because it directly asserts that the Archimedean screw motion
in the driven conical state is a mechanism driven by damping, i.e. it requires a finite α
to exist. Note also the resemblance of Eq. (2.20) to Eq. (2.12) — this is not coincidental.
It can be explained by the fact that for the system driven in the parallel direction
∂M̂
∂z

∥ ∂φM̂, as the screw symmetry is conserved. Substituting the first and second order
ansatzes Eq. (2.15) and (2.18) into Eq. (2.20) and time-averaging over one period of
oscillation one can solve for ωscrew,

ωscrew = 2ω
s2



(
θ

(−1,1)
1 θ

(1,−1)
1 − θ

(−1,−1)
1 θ

(1,1)
1 + s2φ

(−1,1)
1 φ

(1,−1)
1 − s2φ

(−1,−1)
1 φ

(1,1)
1

)

+ ics
(
θ

(1,1)
1 φ

(−1,−1)
1 + θ

(1,−1)
1 φ

(−1,1)
1 − θ

(−1,1)
1 φ

(1,−1)
1 − θ

(−1,−1)
1 φ

(1,1)
1

)

.

(2.21)

This way of writing ωscrew is more compact and makes clear why its resonances directly
coincide with those of the first order response.

The rotational frequency ωscrew can also be obtained numerically from mumax3
[48, 49] simulations. To extract ωscrew from the numerics, one plots the azimuthal angle
φ(z, t) = φosc. + ωscrewt of a given single spin in the helix over time. Averaging out the ω
oscillations one obtains a straight line, whose slope is ωscrew. It is also possible to skip the
averaging step by plotting φ(z, t) stroboscopically, in other words at time intervals equal
to integer multiples of the time period T = 2π

ω
— in this case the first order oscillations

are automatically suppressed. In Fig. 2.5b we show a comparison of this numerically
calculated Ωscrew (data collection and analysis done by Lukas Heinen) with our analytical
result. We observe an excellent fit between the two methods.

Let us now get an idea of the magnitude of the quantities involved. Driving the
system perpendicularly in the GHz range results in a rotational screw frequency Ωscrew

in the MHz range. Due to the helical symmetry, the rotation of the conical phase at
frequency Ωscrew can equivalently be interpreted as a translation of the entire helical
texture at constant velocity Vscrew parallel to q̂, with

Vscrew = q̂
Ωscrew

q
. (2.22)

For a helical pitch wavelength of roughly λ =200 Å, this results in Vscrew ∼200 mm s−1.
We can compare this to a familiar example of the Archimedean screw from everyday life:
hydro-turbines usually rotate at around 25 Hz and have a pitch wavelength on the order
of 1 m [50], resulting in a Vscrew ∼25 m s−1, or roughly two orders of magnitude larger than
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for our nano-Archimedean screw — so we are not doing too badly! The biggest enemy
to the operation of the magnetic Archimedean screw is pinning by disorder, which is
inevitable in real experiments. To overcome this pinning we need to apply a driving field
larger than a minimum critical amplitude Bcrit

1 (t). Useful knowledge can be extracted
from previous studies performed on skyrmions, which are expected to have similar friction
and pinning to conical magnets because the magnetisation varies on the same length
scale. In experiments were skyrmions were subjected to an electric current, it was found,
using Hall effect measurements, that the skyrmions only started to move if the applied
current was larger than a critical minimum current jc [51]. At current 2jc the skyrmion
velocity was estimated to be 0.2 mm/s, three orders of magnitude smaller than vscrew.
Thus we can be optimistic that, at least for resonant driving, the Archimedean screw
will not be hampered by pinning from the lattice and should therefore be observable in a
real experimental setting.

We have reached our first goal: to realise an Achimedean screw in a driven chiral
magnet. We saw that this could be achieved by driving the conical phase of a chiral
magnet with an oscillating magnetic field b1(t) perpendicular to the pitch vector q,
resulting in a frequency of rotation ωscrew ∝ b2

1. But how stable is this dynamics? In
the next section, we will see that increasing the amplitude b1 of the driving magnetic
field actually causes the system to become unstable and investigate the nature of these
instabilities.

2.3 Dynamics beyond the Archimedean Screw

The analysis presented in this section was initial motivated by unusual patterns in
numerical simulations. Fig. 2.6a shows the azimuthal angle φ(t) of a single spin extracted
from simulations where the conical phase was driven with an increasingly strong linearly
polarised driving field Bx

⊥(t), oscillating at driving frequency f =4.15 GHz. For weak
driving, Bx

⊥ =0.5 mT, we recognise the regular Archimedean screw solution, obtained
by perturbative treatment of the LLG in Sec. 2.2.2. As a reminder, the Archimedean
screw solution is characterised by a φ(t) which oscillates at driving frequency f and
simultaneously increases linearly in time with slope Ωscrew. We can also check this in the
frequency domain: in Fig. 2.6b we show the Fourier transform in time of φosc.(t) = φ(t) −
Ωscrewt (Ωscrewt was removed to obtain a cleaner spectrum). At amplitude Bx

⊥ =0.5 mT,
frequency peaks occur at integer multiples of the driving frequency f , in accordance with
what we expected from our perturbative analysis in Sec. 2.2.2, which only admits higher
order solutions oscillating at frequency nf, n ∈ Z. If we increase Bx

⊥ to 0.69 mT the Fourier



36 Archimedean Screw

0.488 0.49 0.492 0.494 0.496 0.498
−2

0

2

4

time t [µs]

an
gl

e
φ

Bx
⊥ = 0.5 mT

Bx
⊥ ≈ 0.69 mT

Bx
⊥ = 4 mT

(a) φ(t) as a function of time.

0.33 4.15 8.30

frequency f [GHz]

F.
T

.[φ
os

c.
(t

)]

B1 = 0.5 mT
B1 = 0.69 mT

(b) Fourier transform in time of φosc..

Figure 2.6 (a) Azimuthal angle φ(t) of a single spin in the conical phase driven in the
perpendicular direction (data generated on mumax3 by Lukas Heinen). The parameters
α,B0, δ, Nx, Ny are the same as in Fig. 2.5b, with driving frequency f =4.15 GHz. For
weak driving field Bx

⊥ =0.5 mT we observe the Archimedean screw solution: φ(t) oscillates
at driving frequency f and increases linearly in time with slope Ωscrew. For intermediate
amplitude of driving Bx

⊥ =0.69 mT the system forms a “time quasicrystal” with one
single additional frequency fnew =0.33 GHz, which we can explain using Floquet spin
wave theory. At larger amplitude many additional frequencies of oscillation appear,
resulting in a kind of chaotic behaviour, and an analytical explanation becomes difficult.
(b) Fourier transform of φ(t)screw = φ(t) − ωscrewt, extracted from the time-dependent
data in panel (a), for driving amplitudes Bx

⊥ = 0.5, 0.69 mT. For 0.5 mT only peaks
at integer multiples of the driving frequency f, 2f are observed. At higher amplitude
0.69 mT additional peaks at the incommensurate frequency fnew =0.33 GHz, as well as
Fourier copies f ± fnew, 2f ± fnew form. At still higher amplitude 4 mT many more peaks
appear (not included here to preserve the clarity of the figure).

analysis shows additional frequency peaks at fnew and f±fnew, with fnew =0.33 GHz. fnew

is incommensurate with f (not an integer multiple of f) — therefore it cannot be explained
using the same perturbative techniques developed for the Archimedean screw dynamics
in Sec. 2.2.2. Thus we need to develop different analytical tools to adequately describe
this new response. The other main motivation for seeking an analytical explanation is
that the numerics shown here is strongly influenced by factors such as system size, which
reduces their reliability. The analytical approach, as we shall see, explains this strong
sensitivity on system size and gives us full confidence in the results.

2.3.1 Floquet Spin Wave Theory

We will investigate the stability of the driven spin system using an approach related to
linear spin wave theory. Linear spin wave theory helps us determine the energy spectra
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of small spin excitations δS around static spin textures S0. We base ourselves on the
Holstein-Primakoff (HP) expansion, a technique pioneered in 1940 by Theodore Holstein,
then a graduate student, and Henry Primakoff [52]. To get us started, let’s review how
the HP expansion can be applied to obtain the spin wave spectra in ferromagnets and
antiferromagnets. For a ferromagnet with spins pointing parallel to ez the HP expansion
reads

S = Ŝzez + Ŝ+e− + Ŝ−e+, (2.23)

Ŝz = ~
(
s− a†a

)
, Ŝ+ = ~

√
s

√

1 − a†a

2s a, Ŝ− = ~
√
sa†

√

1 − a†a

2s ,

where s is the spin quantum number, e± = 1√
2(ex ± iey), Ŝ± = 1√

2(Ŝx ± iŜy) and
a, a† are bosonic operators obeying the usual bosonic commutation relation

[
a, a†

]
= 1.

In Eq. (2.23) the static spin S0 is given by the O(a0) terms, i.e. S0 = ~sez, while
the higher order terms O(an), n > 0 describe the perturbation δS. There are two
things to note about the Holstein-Primakoff expansion. The first is that it is only
valid in the so-called “large S” limit, s ≫ 1. The “large S” limit is also sometimes
called the “classical limit”, because the quantum expectation and classical length of
the spin tend to the same value,

√
⟨Ŝ2⟩ = ~

√
s(s+ 1) ≈ ~s. Secondly and crucially,

Eq. (2.23) preserves the spin commutation relation [Ŝi, Ŝj] = i~ϵijkŜk to any order in
a, a†. One just needs to truncate Eq. (2.23) one order in a, a† higher than the desired
accuracy. As an example, if we consider the easiest case of accuracy to order O(a0),
we must truncate Ŝ at order O(a), giving Ŝ+ = ~

√
sa, Ŝ− = ~

√
sa† and Ŝz = ~s. It

is easy to check that the commutation relation, which can equivalently be written as
[Ŝ+, Ŝ−] = Ŝz, is in this case valid to order O(a0). Satisfied that Eq. (2.23) fulfils the
necessary spin algebra requirements, we substitute it into the Heisenberg Hamiltonian
H = J

∑
⟨i,j⟩ Si · Sj, and collect all terms which are quadratic in δS, or equivalently all

order O(a2) terms. In the final step, the quadratic Hamiltonian gets diagonalised in
momentum space into the form H = ∑

k ϵkã
†
kãk to obtain the band energy spectra ϵk

of the system. For a ferromagnet, one can directly read off the band energy, resulting
in ϵF(k) = ±4JS~ sin2(ka

2 ) for a 1D Heisenberg chain. For an antiferromagnet, an
additional Bogoliubov transformation is needed due to the presence of a2, a†2 terms,
which results in a different band energy, ϵAF(k) = ±2JS~| sin(ka)|, see e.g. [53] for
concrete details on how to do this. It is a property of Bogoliubov quasiparticles that their
eigenenergies always come in positive-negative pairs ±ϵ(k), although the negative copy is
an unphysical artefact of the Bogoliubov transformation. In Fig. 2.7 we show the physical
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Figure 2.7 Band energy spectra for a 1D Heisenberg ferromagnet and antiferromagnet.

positive energy band spectrum ϵ(k) for a 1D ferromagnetic and antiferromagnetic chain.
Notice the quadratic dependence limk→0 ϵ(k) ∼ k2 in the ferromagnet — this is typical
for systems where a rotational Goldstone mode is present with spontaneous symmetry
breaking, which is the case for the Heisenberg model. Also note that the spectrum for
the antiferromagnet has periodicity π

a
in momentum space, vs. a periodicity of 2π

a
for

the ferromagnet — this is because the unit cell for for the antiferromagnet contains two
spins, one up and one down, and thus has size 2a, twice as big as the ferromagnet.

For our Archimedean screw system, the spin wave calculation is a lot more complicated
than the simple static (anti)ferromagnet case, for several reasons. Firstly, we need to
expand around a non-collinear magnetic texture — the conical state, rather than the
simple (anti)ferromagnetic arrangement. On top of that the magnetic texture around
which we expand is not static, but moving in time according to the dynamics described
in Sec. 2.2.2. Secondly, we want to include the effects of the Gilbert damping in our
calculation, an aspect which is usually ignored in spin wave calculations presented in
textbooks. As Gilbert damping is a classical phenomenon, we need to derive a classical
equivalent to the quantum spin wave formalism discussed in the previous paragraph. We
already touched on this in Sec. 1.5, where we showed that the classical equivalent of the
commutation relation for spin quantum mechanical operators Ŝi is a Poisson bracket
for the classical magnetisation field Mi, see Eq. (1.22). Now we want to extend this
Poisson bracket property to the perturbed magnetisation M = M0 + δM. To this end,
and taking inspiration from Eq. (2.23), we write the perturbed magnetisation as follows

M = M0


e3(1 − a∗a) + e−a

√
1 − a∗a

2 + e+a
∗

√
1 − a∗a

2


 , (2.24)
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where a(r, t) and a∗(r, t) are now complex time- and space-dependent fields, rather than
operators. a(r, t) and a∗(r, t) obey the Poisson bracket {a(r, a∗(r′)} = δ(r − r′), which
guarantees that the Poisson bracket condition on the magnetisation, {M̂i, M̂j} = iϵijkM̂k,
is fulfilled to any order in a, a∗. Writing the excitations as complex fields a, a∗ rather
than operators a, a† has a bonus from the technical point of view: the ordering no longer
matters, which makes calculations easier4. In contrast to the global static coordinate
system used in Eq. (2.23), here we must use a local, time dependent coordinate system,
because the magnetisation around which we expand is space- and time-dependent. We
achieve this by choosing e3 ∥ Mscrew, the Archimedean screw solution obtained in
Sec. 2.2.2, with e± spanning the plane perpendicular to e3

e3 =




sin (θ(z, t)) cos (φ(z, t))
sin (θ(z, t)) sin (φ(z, t))

cos (θ(z, t))


 , e∓ = 1√

2




cos (θ(z, t)) cos (φ(z, t)) ± i sin (φ(z, t))
cos (θ(z, t)) sin (φ(z, t)) ∓ i cos (φ(z, t))

− sin (θ(z, t))


 ,

(2.25)
where θ(z, t), φ(z, t) describe the perturbative Archimedean screw solution up to quadratic
order O(b2

⊥), Eq. (2.15) and (2.18). More precisely, at order b2
⊥ we will only include the

DC response — i.e. ωscrew and θ(0,0)
2 — neglecting any temporally or spatially oscillating

terms. This makes the implementation considerably less painful, and is also sufficient
to obtain the leading order instability, as we shall see. The next step is to substitute
the expansion Eq. (2.24) into the LLG written in the notation of classical Hamiltonian
dynamics, Eq. (1.22). A useful check that we calculated the Archimedean screw solution
correctly is that all O(a0) terms drop out of this equation. Thus, to leading order the
LLG is linear in a, a∗. By projecting the LLG onto e∓, see App. F.1 for details, we obtain

ȧ = i(sgn(γ) − iα)
1 + α2 {F (2), a} − iφ̇ cos(θ)a,

ȧ∗ = i(sgn(γ) + iα)
1 + α2 {F (2), a∗} + iφ̇ cos(θ)a∗,

(2.26)

where F (2) is the contribution of the free energy F which is quadratic in a, a∗, with
an additional factor |γ| absorbed into it. One immediately notices the resemblance of
Eq. (2.26) to the well-known Heisenberg equations of motion for the quantum operators
a and a†, ȧ = i[H, a] and ȧ∗ = −i[H, a∗]. The differences are the additional presence of
damping (terms proportional to α) as well an extra term ∝ φ̇ (a consequence of the time

4if you are extra observant, you might have noticed that the
√

1 − a∗a term is in last position in both
terms on the RHS of Eq. (2.24), which would not be allowed in Eq. (2.23) because ordering matters
there.
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Figure 2.8 Two identical footballs, one sitting at the bottom of a valley, one at the top of
the hill. A sudden gust of wind leads to two very different outcomes. The football at
the bottom of the hill oscillates a little and eventually comes to rest in its equilibrium
position due to damping. The football at the top of the hill rolls off the cliff, never
returning to its initial position.

dependent coordinate system). The goal now is to solve Eq. (2.26) for the perturbations
a(t), a∗(t), as their behaviour in time determines the stability of the driven system.

Why is this the case? To understand this, let us take a step back and perform a little
gedankenexperiment on a much more familiar physical system. Picture two identical
footballs, the first sitting at the bottom of a valley and the second at the top of a hill, as
shown in Fig. 2.8. The Hamiltonian for these two systems is

H = p2

2m + V0x
2, (2.27)

where p,m, x are the momentum, mass and displacement of the footballs from their
equilibrium position, respectively (for simplicity, we neglect the rotational energy). The
sign of V0 determines the system: positive for the valley and negative for the hill. We
can also define a natural frequency of oscillation ω =

√
2V0/m. By using the canonical

transformations

a =
√
mω

2 x+ i

√
1

2mωp, a∗ =
√
mω

2 x− i

√
1

2mωp,

we can rewrite the Hamiltonians in the form Hvalley = ωa∗a, Hhill = −ω
2 (a2 + a∗2). If

we define the Poisson bracket {f, g} = i
(

∂f
∂x

∂g
∂p

− ∂f
∂p

∂g
∂x

)
5, then Hamilton’s equation of

motion takes the form ḟ = i{H, f} for any function f . Note the resemblance to Eq. (2.26)
if we set sgn(γ) = 1, which motivates us to just add in the damping “by hand” here too,

5Note the extra factor i compared to the usual definition! This is necessary to establish the link with
our spin system formalism.
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leading to ȧ = i
1+iα

{H, a}, ȧ∗ = i
1−iα

{H, a∗}6. Using the Poisson bracket {x, p} = i we
obtain {a, a∗} = 1, and the equations of motion in matrix form are


ȧvalley

ȧ∗
valley


 =




−iω
1+iα

0
0 iω

1−iα




avalley

a∗
valley


 ,


ȧhill

ȧ∗
hill


 =


 0 iω

1−iα
−iω
1+iα

0




ahill

a∗
hill


 . (2.28)

These two matrix equations can be solved by the ansatz

 a(t)
a∗(t)


 =


 a(0)
a∗(0)


 e−iλt, (2.29)

which removes the time dependence from Eq. (2.28), giving the matrix eigenvalue equation

M


 a(0)
a∗(0)


 = λ


 a(0)
a∗(0)


 , (2.30)

where the matrices for the two systems are defined as

Mvalley =



ω
1+iα

0
0 − ω

1−iα


 , Mhill =


 0 −1

1−iα
1

1+iα
0


 . (2.31)

Diagonalising the matrices Mvalley, Mhill gives the following two sets of eigenvalues,

λvalley,1 = ω

1 + iα
, λhill,1 = −iω√

1 + α2
,

λvalley,2 = −ω
1 − iα

, λhill,2 = iω√
1 + α2

.
(2.32)

For both matrices, the pair of eigenvalues comes in the form λ,−λ∗. This is in fact a
general property of damped Bogoliubov systems which we will see over and over again.
It is a consequence of the property M = −σxM∗σx, which one can easily check for the
two matrices in Eq. (2.31). Taking the trace and determinant of M = −σxM∗σx gives

tr(M) = −tr(M∗) det(M) = det(M∗)
=⇒ λ1 + λ2 = − (λ∗

1 + λ∗
2) , =⇒ λ1λ2 = λ∗

1λ
∗
2,

which implies that λ2 = −λ∗
1.

If one substitutes the eigenvalues in Eq. (2.32) back into Eq. (2.29), it becomes clear
that for λvalley,1, λvalley,2 a(t), a∗(t) experience damped oscillations and for λvalley,1 they

6I pulled a bit of a rabbit out of the hat here, but bear with me... you’ll see that it works :)
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decay exponentially in time. However, λvalley,2 leads to exponential growth in a(t), a∗(t)!
This is the signature of an instability. More precisely, any eigenvalue whose imaginary
part is positive, Im[λ] > 0, leads to an instability. Coming back to our footballs, the
initial amplitudes of the perturbations a(0), a∗(0) could be provided, for instance, by a
sudden gust of wind blowing on our system. If this happens we know that the football at
the bottom of the hill will oscillate a little and then eventually return to equilibrium due
to damping, whereas the football at the top is unstable and will fall off the hill, never to
return to its initial position. The instability predicted by the maths is thus in complete
accordance with our physical intuition.

Having gained some useful physical insight from this little aside, let us come back to
our spin system. The goal here is the same: we want to solve the equations of motion
Eq. (2.26) to determine whether the system is stable or unstable. Compared to the
football system the driven spins system has two notable complications. The first is
that F contains energy contributions from many interacting spins rather than just the
single particle contribution in Eq. (2.27) from the football. Luckily this complication can
be overcome by Fourier transforming to momentum space, where we make use of the
underlying periodicity of the helical texture. The second complication of the driven spin
system is the presence of explicitly time-dependent terms arising from the driving and
expansion around the time-dependent Archimedean screw solution. Due to the periodic
nature of the drive b⊥(t), all these explicitly time-dependent terms are periodic in ω.
This again screams for Fourier transformation, this time in the time domain. In fact,
“Floquet theory” is a fancy term for doing just that. By the way, this means that the
fancy-sounding title “Floquet spin wave theory” should not scare you as on the technical
level it simply translates to an additional Fourier transformation in time.

As stipulated in the previous paragraph we solve the additional complications by
simultaneously Fourier transformating in space and time. We begin by defining the space
and time Fourier transformed fields ãm

k+nq, ã
m∗
k+nq as

ãm
k =

∫
dt
∫
d3reimωt+ik·(r+vscrewt)a(r),

ã−m∗
−k =

∫
dt
∫
d3reimωt+ik.(r+vscrewt)a∗(r).

(2.33)

Note the factor r + vscrewt, which puts us in a frame co-moving with the Archimedean
screw. Within the perturbative scheme we are using, only the fields ãm

nq+k, ã
m∗
nq+k with

m = −1, 0, 1, n = −1, 0, 1 couple to each other. We can collect these fields in an
18-component Floquet vector ΨF

k , see Eq. (F.3) for its exact definition. This restriction
in both the number of Floquet zones and the number of momentum copies is justified
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Figure 2.9 Real and imaginary parts of the eigenenergies of spin waves in the undriven
conical phase, b1 = 0, as a function of k∥. For small momenta k∥ and c < 1 the spin
waves are purely diffusive, λ ∼ iαk2

∥. Analytical formula given in Eq. (2.36).

in the limit of small driving amplitudes b⊥, and the resulting eigenvalues are formally
correct to quadratic order in b⊥. After a somewhat lengthy analysis involving Bogoliubov
transformations and other fun stuff, see Sec. F.2 for technical details, it is possible to
recast the EoM Eq. (2.26) into the following matrix eigenvalue equation

MF
k ΨF

k = λkΨF
k , (2.34)

with ΨF
k (t) = e−iλktΨF

k (0). Here MF (k) is the 18 × 18 so-called “Floquet-Bogoliubov”
matrix. Just like the matrices Mvalley,Mhill we saw earlier MF

k is not Hermitian. Thus
its eigenvalues are in general complex,

λk = Re[λk] + iIm[λk]. (2.35)

The physical interpretation for the real and imaginary parts is very different: the real
part gives the frequency of oscillation, while the imaginary part determines whether the
spin wave grows or decays exponentially in time. As before, the sign of the imaginary
part determines whether the system is stable — Im[λk] < 0 — or unstable — Im[λk] > 0).
We will use this criterion to show that the Archimedean screw solution is stable against
spin wave perturbations a, a∗ up until a critical strength of driving bcrit.

⊥ . But first let
us simplify the problem a little in order to gain some intuition on the characteristics of
spin waves in the conical and helical phases. In the next short subsection we turn off the
driving magnetic field and just consider the spin wave spectra around a static conical
state.
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Spin Waves in the Undriven Conical State

In the absence of driving there is no coupling between different Floquet zones and MF

collapses into the block diagonal form . . .M−1,−1⊗M0,0⊗M1,1 . . . . The matrices Mn,n

are all equal to each other up to a term nωI proportional to the identity — thus it is
sufficient to diagonalise just M0,0 to obtain the full spin wave spectrum of the system.
Formally, M0,0 is infinitely large, but in practice we need to truncate it in order to be able
to diagonalise it numerically. After truncation, the matrix M0,0 carrying m momentum
copies has size 2m× 2m7. In general, this truncated M0,0 needs to be diagonalised on
a computer, but in the special case k⊥ = 0 it collapses into the block diagonal form
M0,0 = . . .M(k∥ − q)⊗M(k∥)

⊗
M(k∥ + q), where M(k∥) is a 2 × 2 matrix, defined in

Eq. (F.14). Diagonalising M(k∥) gives the lowest two energy bands of the system

λ± = 1
2 (1 + α2)

[
±
√

4k4
∥ + 4k2

∥(1 + δ)s2 − α2s4(1 + δ)2 − iα
(
(1 + δ)s2 + 2k2

∥

)]
.

(2.36)

The real and imaginary parts of λ± are plotted in Fig. 2.9 as a function of the parallel
momentum k∥ in the first Brillouin zone −1

2 < k∥ <
1
2 , for three different values of c,

c = 0, 0.71, 1. For k∥ ≥ kcrit., where

k2
crit. = 1

2(1 − c2)(1 + δ)
(√

1 + α2 − 1
)
,

λ± obey the same property λ− = −λ∗
+ we derived earlier for the football system. However

this is not the case for k∥ < kcrit., where both λ± becomes purely diffusive, Reλ± = 0. In
this range the Goldstone mode of the system is described by λG ∼ −iαk2

∥. This remains
true as long as c < 1 and α is finite. Such purely diffusive behaviour has also been
observed in the Goldstone modes of other systems where the translational symmetry is
broken but the model simultaneously lacks momentum conservation [54–56]. Both of
these conditions are fulfilled in our system as long as c < 1 — i.e. we remain in the conical
or helical phase, where the continuous translational symmetry is broken. The momentum
non-conservation comes from having finite damping in the system, α > 0. Another
important feature to note about the dispersion in Eq. (2.36) is the shift of λ± from linear
to quadratic dependence on k∥. This shift can easily be explained by considering again
the energy spectra for the antiferromagnet and ferromagnet Heisenberg chains shown
in Fig. 2.7. At small momenta, or large wavelengths, kcrit. < k∥ .

√
1 + δs, the magnon

7The factor 2 comes from the contribution of one ak∥+mq and one a∗
k∥+mq field for each momentum

copy.



2.3 Dynamics beyond the Archimedean Screw 45

0

2

4

6

8

10

12
R

eλ

−0.4 −0.2 0 0.2 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

k‖

Im
λ

−0.4 −0.2 0 0.2 0.4
k‖

−0.4 −0.2 0 0.2 0.4
k‖

(a) (b) (c)

(d) (e) (f)

k⊥ = 0 k⊥ = 0.1 k⊥ = 1.5

k⊥ = 0 k⊥ = 0.1 k⊥ = 1.5

Figure 2.10 Real and imaginary parts of the eigenenergies of spin waves in the undriven
conical phase, b1 = 0, for increasing values of k⊥. The other system parameters are
δ = 1.76, Nx = Ny = 1/3, c = 0.71, α = 0.03. As k⊥ increases the energy bands become
flat, like for a simple harmonic oscillator, and also more damped. Note the asymmetry
around k∥ = 0 in the real parts, Reλ, due to the presence of a symmetry breaking finite
static b0-field, c ̸= 0. If b0 = 0 or k⊥ = 0, this symmetry is recovered.

“sees” the twisting in the helical/conical texture, similar to an antiferromagnet, which also
“twists” by π at every consecutive spin. Thus, at low k∥ the helix and antiferromagnet
share the same linear in k∥ band energy dependence. At larger momenta, or smaller
wavelengths, k∥ &

√
1 + δs, the magnon only sees the nearest neighbour spins, which are

practically parallel to the each other, like in a ferromagnet. Thus, at larger k∥ the helix
and ferromagnet share the same quadratic in k∥ band energy dependence.

What happens if we now consider spin waves with finite perpendicular momentum
k⊥ ̸= 0? The matrix MF loses its block diagonal form and acquires some off-diagonal
perturbations proportional to sk⊥, see Eq. (F.16) for details (note that for simplicity
we are neglecting dipolar interactions, δ = 0). For k⊥ ≪ q, k∥, we can treat the
problem perturbatively in k⊥. Using degenerate perturbation theory8, this results in
band gaps opening up at the degenerate points at the edges of the Brillouin zone with
gap energy δλgap ∼ sk⊥/m

2, where m indicates the index of the band. This is pretty
generic behaviour, which we know also occurs for example at the band edges in the
energy spectrum of an electron placed in a periodic potential [58]. At larger k⊥ ≫ k∥,

8I haven’t provided the details of the calculation but it’s fairly generic, eg see [57]. One just needs to
watch out a bit because M0,0 is not a Hermitian matrix so the left and right eigenvectors in the first
diagonalisation step are not the same.
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perturbation theory is no longer valid for the lower energy bands. In this case, it is
easiest to go back to the original equation of motion Eq. (2.26), Fourier transforming in
the x, y directions but not in the z direction. For k⊥ ≫ 1 this gives

λa ≃ 1
sgn(γ) + iα

(
k2

⊥ − ∂2
z + 2sk⊥ cos(z)

)
a, (2.37)

where we dropped all O(k0
⊥) terms. If we expand cos(z) = 1 − z2

2 + O(z4), we recognise
this immediately as the Schrödinger equation for a simple harmonic oscillator, with
energy levels given by

λm ≃ 1
sgn(γ) + iα

(
k2

⊥ + 2sk⊥ + 2
√
sk⊥

(
m+ 1

2

))
.

This means that at larger k⊥ we expect to see the lower energy bands becoming flat
bands, with spacing δλm =

√
sk⊥, see also [46, 45] for experimental confirmation of this

effect.
In Fig. 2.10 we have plot the band spectrum, evaluated numerically for three different

values k⊥ = 0, 0.1, 1.5, as a function of k∥. At k⊥ = 0, we just have Eq. (2.36) folded
back into the first Brillouin zone. At k⊥ = 0.1, band gaps open up at the edges; they are
most notable at the intersection of the m = 0 and m = 1 bands and get suppressed for
higher energy bands by the factor 1

m2 . At k⊥ = 1.5 both the real and imaginary parts of
the lowest two bands are already flat, as suggested by the SHO approximation. Note
the lack of symmetry about the k∥ = 0 axis for the finite k⊥ plots — the finite static
magnetic field b0 is responsible for breaking this symmetry.

Spin Waves in the Driven Conical State

Now that we have gained some intuition about the spin waves in the undriven conical
state, we turn on the perpendicular driving field b1,⊥, which activates the Archimedean
screw. At the level of our spin wave calculation, a finite b1,⊥ has the effect of making
the off-diagonal elements M0,±1,M1,−1,M−1,1 in the Floquet-Bogoliubov matrix MF

non-zero. This means that crossings between bands from different Floquet copies can
start to couple to each other. To understand the effect of a driving perpendicular field
on the spin wave spectrum, compare the two columns in Fig. 2.11. The left column,
panels (a) and (c), contains the real and imaginary parts of the spectrum for the undriven
conical state — this is the same as the leftmost panel in Fig. 2.10 with two extra ±ω
Floquet copies. These Floquet copies are visible in the real part of the eigenspectrum,
where we see copies of the original spectrum translated up and down by ω. When we
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Figure 2.11 Eigenvalues λk of the matrix MF as a function of k∥ in the first Brillouin
zone −1

2 < k∥ <
1
2 , for an undriven (left column) and driven (right column) conical state

with parameters α = 0.03, c = 0.71, δ = 1.76, Nx = Ny = Nz = 1/3, k⊥ = 0. The real
parts are plotted in the first Floquet zone −ω

2 < Reλ < ω
2 with ω = 2. All eigenvalues

are plotted in the first Brillouin zone −1
2 < k < 1

2 . Turning on a right-polarised driving
field bL = 0, bR = 0.01 causes some parts of the imaginary spectrum (highlighted in red
in panel (d)) to become positive and therefore unstable. The instability occurs near
the crossing k∥ ∼ ±0.13,Reλ = ∓0.16 between the 0 and ±ω Floquet zones (the two
magnified areas in panel (b)). The crosses on the y axis give the eigenvalues at exactly
k = 0, which is not the same as for lim k → 0 in the presence of dipolar interactions.
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turn on a right-polarised driving field, bL = 0, bR = 0.01, we obtain the eigenspectra in
the right column, panels (b) and (d). The most notable change is in the imaginary parts
in panel (d), where in the region k∥ ∼ ±0.13, a sign change occurs in the least negative
band. This changing sign of Im λ, highlighted in red, is the signature of an instability in
the system. The origin of this instability can be explained using degenerate perturbation
theory, which reduces the problem to the following simple 2 × 2 matrix,

M res ≈

 ϵ0

i,k − iαΓi µ(1)
ω

−µ(2)
ω −ϵ0

j,−k + ω − iαΓj


 . (2.38)

Here, ϵ0
ik = Re[λ0

i ] denotes the energies of spin waves with band index i of the unperturbed
system and αΓi = Imλ0

i are the corresponding lifetimes. The indices i and j label the
two bands whose degenerate crossing is magnified in Fig. 2.11, panel (b). The presence
of the +ω term in M res

22 indicates that this band belongs to the first Floquet copy of the
original spectrum. The frequency-dependent prefactors µ(i)

ω describe how the oscillating
fields couple the energy levels on the diagonal of the matrix to each other. The coupling
is most efficient when the driving frequency hits one of the two k = 0 resonances of the
helix (these were defined analytically in Eq. (E.7) and plotted in Fig. 2.3, panel (a)).
Schematically, we find

µ(1)
ω µ(2)

ω ∼ b2
⊥

(ω − ωres)2 + (αΓ)2 . (2.39)

The instability is most pronounced when the two unperturbed energy levels are degenerate,

ϵ0
i,k + ϵ0

j,−k = ω. (2.40)

When this resonance condition is met, the eigenvalues of Mres are given by

λ±
res = ϵ0

i,k − iα
Γ1 + Γ2

2 ± i

√√√√µ(1)
ω µ

(2)
ω + α2

(
Γ1 − Γ2

2

)2

. (2.41)

Importantly, the sign of Imλ+
res changes when b⊥ grows and the square root term becomes

larger than αΓ1+Γ2
2 . Assuming that Γ1 ∼ Γ2 ∼ Γ the system is only stable if

b2
⊥ .

(
(ω − ωres)2 + (αΓ)2

)
α2Γ2. (2.42)
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Figure 2.12 Largest Im λk plotted as a function of k = (k∥, k⊥) in the first Brillouin zone
−1

2 < k∥ <
1
2 , for ω = 2, bx = 0.02, by = 0, α = 0.03, c = 0.71, δ = 1.76, Nx = Ny = Nz =

1/3. The colour code works as follows: red when Im λk > 0, white when Im λk = 0 and
blue when Im λk < 0, indicating regions where the system is unstable, on the verge of
becoming unstable and stable, respectively. The largest instability occurs for spin waves
with k⊥ = 0, k∥ = 0.13, i.e. travelling parallel to the helical pitch q.

More precisely, this formula is only valid for ω ≈ ωres. If one stays away from this point,
then µ(i)

ω ∼ b⊥ is independent of α and the system is only stable for

b⊥ . α const. (2.43)

In the limit α → 0, our calculation predicts that an arbitrarily weak oscillating field
induces an instability. This is, however, an artefact of our approximation, which ignores
that the modes with finite energy and momentum can also decay via scattering processes.
The lifetimes resulting from such processes would require an additional calculation,
involving higher order magnon interactions.

The resonance condition Eq. (2.40) is met along curves in the 2D space, parametrised
by k∥, k⊥. Therefore, we also need to investigate what happens to the spin waves with
finite k⊥ in the driven system. This is done in Fig. 2.12, where we plot max(Imλk) as
a function of k∥ and k⊥ with all other system parameters kept constant. We see that
the dominant instability occurs at k⊥ = 0, with k∥ = 0.13. Thus, k⊥ can safely beset to
zero to determine the onset of the leading instability. We show the onset of this leading
instability, as a function of the frequency and amplitude of the driving field, in Fig. 2.13.
We see that as we increase the amplitude bx of the driving field, the first instabilities
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Figure 2.13 Largest Im(λk) plotted as a function of driving frequency ω, obtained by
diagonalising MF at the momentum k = (k∥, 0) of the leading instability, see Eq. (2.40)
and Fig. 2.12. The parameters are bx = 0.02, by = 0, α = 0.03, c = 0.71, δ = 1.76, Nx =
Ny = Nz = 1/3 with a linearly x-polarised driving field (by = 0). At small driving field
amplitude bx = 0.005 the system is stable at all driving frequencies, max(Im(λk)) < 0.
At the critical field amplitude bcrit = 0.0073, max(Im(λk)) = 0 at ω ≈ 2. For bx > bcrit
max(Im(λk)) > 0 and the system becomes unstable. The instabilities first occur around
the resonance frequencies of the system, ωres

− ≈ 1.59, ωres
+ ≈ 2 for these parameters.

appear at the two resonance frequencies of the system. This confirms the analysis in
Eq. (2.42) and (2.43), which predicted that on-resonance the instability onset occurs at
b⊥ ∼ α2, whereas off-resonance it occurs at b⊥ ∼ α ≫ α2, for α ≪ 1. A natural question
to ask next is, at what frequency should we drive our system if we want to extract the
maximum ωscrew while avoiding crossing over into the unstable regime? Surprisingly, our
stability analysis suggests that ultimately, it doesn’t really matter. Using Eq. (2.19),
on-resonance max(ωscrew) ∼ b2

crit
α2 ∼ α2. Off-resonance, we have max(ωscrew) ∼ b2

crit ∼ α2.
So, up to numerical factors, the maximum attainable, but still stable, ωscrew is independent
of the driving frequency. However, the critical bcrit to obtain this ωscrew is smaller by a
factor α if we drive on-resonance, so that’s perhaps the wiser choice if we want to save
some energy :).

2.3.2 What is the Fate of the Unstable System?

While Floquet spin wave theory can predict the onset of the leading order instability in
the driven system with great precision, it cannot tell us what fate awaits the unstable
system. For that we need to run some numerics. Using our analytical results, we know
that the leading instability occurs for k⊥ = 0, which means it is sufficient to simulate



2.3 Dynamics beyond the Archimedean Screw 51

re
gu

la
r

time quasicrystal

chaos

0 1 2 3 4 5 6
−25

0

25

50

75

100

driving amplitude Bx⊥ [mT]

Ω
sc

re
w
/
2π

[M
H

z]

sim. 7 2π
q

sim. 15 2π
q

analytical

Nx = Ny = 1/3
B0 = 84 mT êz
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Figure 2.14 (a) Rotational frequency fscrew as a function of driving amplitude Bx
⊥

(in experimental units), for a system driven at f =4.15 GHz, with the other system
parameters as in Fig. 2.5b. The simulation was run for two different system sizes: 7 and
15 times the pitch of the helix. For small amplitudes, Bx

⊥ < 0.56mT, both systems host
the Archimedean screw solution, where fscrew ∼ B2

⊥. At about Bcrit
x = 0.56 − 0.62mT, a

departure from this quadratic behaviour is observed as the system enters the quasicrystal
phase and fscrew becomes system size-dependent. The onset of the time quasicrystal
regime happens later for the smaller system because the predicted wavelength of the
instability, λ ≈ 7.7λhelix, doesn’t fit into 7λhelix as well as into 15λhelix. For still larger
driving amplitude, Bx

⊥ =3.8 mT, the system enters a chaotic regime. (b) M̂x and M̂y

components of a single spin, recorded stroboscopically at times tn = 2πn/(ω − Ωscrew),
n ∈ N, and rotated by −Ωscrewtn to eliminate the screw rotation. Again we keep all
parameters constant and vary only the external Bx

⊥ field, indicated in mT on each panel.
Parameters are as in Fig. 2.14a, for the system of size 152π

q
. (a)–(d) Archimedean screw

regime, where within numerical precision we obtain a single point. (e)–(k) A closed orbit
signals that we are in the time quasicrystal regime. (l)–(o) The onset of chaos manifests
itself in aperiodic trajectories, covering a significant area of the configuration space. Close
to the onset of chaos, panel (k), we also see signatures of higher order time quasicrystals,
with extra oscillation frequencies. (Both figures were made by Lukas Heinen.)
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a 1D9 conical state propagating in the z direction. We set up a numerical experiment
where we drive two systems of 7 and 15 helix windings, respectively, with an increasingly
strong driving field Bx

⊥(t), while keeping the frequency f =4.15 GHz and all other system
parameters constant. Fig. 2.14a and 2.14b are two different ways of visualising the results
of this experiment. In Fig. 2.14a, we plot fscrew, the average slope in time of φ(t). In
Fig. 2.14b, we extract a single spin from the system containing 15 windings and plot
its projection onto the xy-plane at stroboscopic time intervals, ∆t = 2π/(ω − Ωscrew),
removing the rotational frequency ωscrewt to obtain neater plots. We see the emergence
of three distinct regimes as the strength of the driving field, Bx

⊥, is increased, and will
now proceed to describe each of these in detail.

Archimedean Screw Regime

At small amplitudes of driving, Bx
⊥ ≤ 0.56mT, both the 7λhelix and the 15λhelix systems

show exactly the same fscrew ∼ B2
⊥ behaviour, as expected for the Archimedean screw

solution. In the stroboscopic plots, the signature of the Archimedean Screw is a single
point, pannels (a)–(d).

Time Quasicrystal Regime

For slightly larger driving amplitudes, Bcrit
x = 0.56 − 0.62mT we see that fscrew starts

to shift away from quadratic dependence on Bx
⊥ and instead grows roughly linearly,

fscrew ∼ Bx
⊥, at a rate which is now system size dependent. For this set of parameters,

Floquet spin wave theory predicts that bcrit
x = 0.008 or Bcrit

x =0.59 mT in physical units,
which fits right inside the range where we observe the change in behaviour of fscrew in
the numerics. Thus, there can be no doubt that the change in behaviour we are seeing in
the numerics is connected to the Floquet instability predicted by the analytics. Looking
back at Fig. 2.6a and 2.6b, the other indicator that we have entered a new regime is the
emergence of a new mode with a new frequency of oscillation fnew =0.33 GHz and spatial
momentum λnew = 7.7λhelix, or about knew = 0.13q. In the stroboscopic plots, the single
additional mode manifests itself as a closed orbit. There, the system takes an excursion
in phase space, caused by the new incommensurate frequency of oscillation, fnew, before
eventually returning to its initial position after a time t = m

f
= n

fnew
, m, n ∈ Z. ωnew

and knew correspond exactly to those of the unstable crossing k = 0.13,Reλ = 0.16ω
in Fig. 2.11. The physical explanation for this new mode is that the magnetisation
starts producing a cascade of magnons, all carrying the same unstable spatial momentum

9the reduction from 3D to 1D also has the very appreciable advantage of significantly reducing the
computational costs associated with running the numerics!
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and corresponding temporal frequency — a mechanism similar to lasers and Bose-
Einstein condensates. The spatial and temporal frequencies of this magnon laser are
incommensurate with the helical pitch q10 and driving frequency 4.15 GHz of the system.
In our driven system up until now time translational invariance was discrete, as we had
a periodic driving term, but the introduction of an additional incommensurate frequency
breaks this discrete symmetry. This broken symmetry motivates us to describe this
intermediate phase as a time quasicrystal.

Chaotic Regime

At still stronger driving fields, beyond about Bx
⊥ =3.95 mT, fscrew loses its roughly linear

dependence on Bx
⊥ and has no discernible pattern. In the stroboscopic plots this new

phase manifests itself in the form of non-closing orbits, which cover most of the phase
space when the simulations are run long enough. It should be mentioned that in this
regime, the translational invariance in the xy-plane is lost, in contrast to the Archimedean
screw and time quasicrystal phases. As a result, the dynamics also becomes dependent
on Lx, Ly, the sample size in the x and y directions. Thus, the results for these larger
amplitudes, beyond about Bx

⊥ ∼3.95 mT, are not as reliable and should be treated with
a dose of scepticism.

2.4 Transport

In the last part of this chapter, we explore a practical application of the magnetic
Archimedean screw as a tool for transport. In principle we could use our nano-screw to
transport a range of nano-objects, including spin, charge and electrons. Here, we focus
only on the transport of electrons, which leads to the generation of a DC electric current

— for the simple reason that this quantity is easy to measure experimentally. We use the
following Hamiltonian to model the electronic system,

Hel = Hsys +Hdis,

Hsys =
∫
d3rC†(r)

(
p̂2

2m + λSOp̂ · σ − JHnscrew(r, t) · σ
)

C(r),

Hdis =
∫
d3r V (r)C†(r)C(r),

(2.44)

10This, by the way is why one needs to pick the system size suitably in the numerical simulation in
order to observe the time quasicrystal phase adequately. The total system size should simultaneously be
as close as possible to an integer number of λhelix and λnew to see the biggest effect.
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(a) Electron transport
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Figure 2.15 (a) Transport of electrons by the magnetic Archimedean screw in the presence
of disorder (artist’s impression). (b) Band spectra of electrons in the co-moving frame
(schematic). Only the majority electron bands are shown (the minority bands can be
obtained by translating these spectra a distance +2JH vertically and reflecting them in
the k∥ = 0 axis). The band spectra are symmetric about k0, resulting in a shift of the
first Brillouin zone to −1/2 + k0 < k∥/q < 1/2 + k0. Finite λSO and k⊥ are required to
generate band gaps and mini-bands.

where C(r) = (c↑(r), c↓(r))T is a spinor containing the up and down components of the
spin-1

2 electron annihilation operators. In addition to the kinetic energy p̂2

2m
, the electrons

also experience a spin orbit interaction λSOp̂ · σ, which tries to align the spin of the
electron with its momentum. The electrons couple to the space and time dependent
magnetisation through the exchange coupling JHnscrew · σ. Here nscrew is the simplified
Archimedean screw solution from Sec. 2.2.2,

nscrew =




sin(θ0) cos(qz − ωscrewt)
sin(θ0) sin(qz − ωscrewt)

cos(θ0)


 (2.45)

where we have suppressed the first order driving frequency oscillations because we want
to concentrate solely on the effects of the rotational screw motion ωscrew. Finally, the
disorder term Hdis captures the effects of dirt and other impurities in the system which
slow the electrons down, resulting in a reduction of the net electronic current. We
model Hdis as a spin-independent random potential V (r), with a scattering rate 1

τ
. We

assume the hierarchy of energy scales ϵF > JH ≫ ~
τ
, λSO~kF , where ϵF , kF are the Fermi
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energy and velocity, respectively. This is typical for chiral magnets with weak spin orbit
interactions.

Electronic Current Density Operator

Following [59] a generic spin-1
2 electron Hamiltonian takes the form

H =
∫
d3r

1
2mC†(r) (−i~∇ − eA(r))2 C(r) + Vother, (2.46)

where A(r) = Ai
σσ′ is a 2 × 2 matrix gauge-field and Vother carries all the energy terms,

which are independent of A. The electronic current density operator, j, is then given by

j(r) = −δH

δA
=
∑

σ,σ′
− ie~

2m
(
c†

σ(r)∇cσ(r) − ∇c†
σ(r)cσ(r)

)
− e2

m
c†

σ(r)Aσσ′cσ′(r). (2.47)

For our specific Hel, defined in Eq. (2.44), Ai = −λSOm
e
σi, where σi with i = x, y, z are

the usual Pauli spin matrices. We are interested only in the jz component, which is
parallel to the Archimedean screw,

jz = − ie~
2m

(
c†

↑∂zc↑ + c†
↓∂zc↓ − ∂zc

†
↑c↑ − ∂zc

†
↓c↓
)

+ eλSO
(
c†

↑c↑ − c†
↓c↓
)
. (2.48)

Using the Fourier convention cσ(r) = ∑
σ,k e

−ik·rcσ,k, c
†
σ(r) = ∑

σ,k e
ik·rc†

σ,k, the total
electronic current in the z direction is

Jz =
∫
d3r jz =

∑

k
−e~kz

m

(
c†

↑,kc↑,k + c†
↓,kc↓,k

)
+ eλSO

(
c†

↑,kc↑,k − c†
↓,kc↓,k

)
. (2.49)

The goal is to calculate the expectation value ⟨Jz⟩, where we average over quantum states
and time, to obtain the DC current generated by our magnetic Archimedean screw.

Electron Transport in the Clean System

In a clean system, where V (r) = 0, ⟨Jz⟩ is easiest to calculate in a frame which is co-
moving with the Archimedean screw. In this co-moving frame, defined via r′ = r−vscrewt,
Hel is time-independent. The band spectra for electrons in a static conical chiral magnet
have been studied in the past in [60], where it was found that spin orbit coupling induces
the formation of exponentially flat mini-bands with periodicity q. An alternative to the
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method used in [60] is to define the rotated operators C̃T = U †CT


c̃↑(r′)
c̃↓(r′)


 =


 cos(θ0/2) sin(θ0/2)e−iqz′

sin(θ0/2)eiqz′ − cos(θ0/2)




c↑(r′)
c↓(r′)


 , (2.50)

c̃†
↑, c̃

†
↓ create electrons whose spins align and anti-align with the local magnetisation —

this can be checked by calculating U †nscrew · σU = σz. As JH is the dominant energy
scale, one can ignore spin non-conserving terms such as c̃†

↑,kc̃↓,k. This leaves two types of
terms: momentum-conserving diagonal terms, c̃†

σ,kc̃σ,k, and momentum non-conserving
terms, c̃†

σ,kc̃σ,k±q, which act as an off-diagonal perturbation,

Hcm ≈
∑

σ,k

[
~2

2m

((
k∥ − σk0

)2
+ k2

⊥

)
− σJH

]
c̃†

σ,kc̃σ,k − 1
2λSO~k⊥s(c̃†

σ,kc̃σ,k+q + c̃†
σ,kc̃σ,k−q),

k0 = (1 − c)q
2 + cmλSO

~
,

(2.51)
where “cm” is shorthand for “co-moving frame”. Hcm can be diagonalised numerically to
give

Hcm =
∑

σ,k,i

ϵσ,k,ic̃
†
σ,k,ic̃σ,k,i, (2.52)

where i denotes the index of the mini-band. In Fig. 2.15b, we plot ϵσ,k,i as a function of
k∥. The band energies ϵ↑,↓ are symmetric about the point k∥ = ±k0, k⊥ = 0 in momentum
space. The expansion coefficients relating c̃σ,k to c̃σ,k,i are encoded in the components
of the eigenvectors of Hcm, which are also symmetric about k∥ = ±k0, k⊥ = 0. Notice
how Eq. (2.51) has the same form as the static spin wave matrix discussed in Sec. 2.3.1.
Reusing those previous results, we conclude that lowest bands becomes flat with a band
gap ∆ ∼ ~q

√
λSO~k⊥/m.

Rewriting Eq. (2.49) in terms of c̃σ, c̃
†
σ gives

Jcm
z = −e~

m

∑

k
(k∥ − k0)c̃†

↑,kc̃↑,k + (k∥ + k0)c̃†
↓,kc̃↓,k, (2.53)

where we neglected terms such as c̃†
↑,kc̃↓,k′ , c̃†

↓,kc̃↑,k′ , k ̸= k′, as they vanish once we
average over the quantum eigenstates. Note that in contrast to the energy ϵσ,k,i, the
group velocity vk = (k∥ ∓ k0) is antisymmetric about ±k0, 0. The electronic quantum
states get filled up starting from the lowest energy level, i.e. — symmetrically about
(±k0, 0), until the Fermi energy ϵF is reached. This means that overall, the total current
vanishes, ⟨Jcm

z ⟩ = 0, as there are equal amounts of electrons going in the negative and
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Figure 2.16 Electronic current density ⟨jz⟩ as a function of electron lifetime τ (schematic).
We have suppressed the spin indices, which is justified for a strongly spin polarised
system N↑ ≫ N↓. For a strongly disordered system, τ ≪ (qvF )−1, ⟨j∥⟩ = 3s2λ2

soq2τ2

2 is
quadratic in τ . In the range (qvF )−1 ≪ τ ≪ (q√vF )−1, ⟨j∥⟩ grows linearly with τ . Our
perturbative assumptions λSO break down in the dashed region, but we know that for a
very clean system with no disorder, τ ≫ 1, the current must plateau at ⟨jz⟩ = envscrew.

positive z directions. A zero net current in the co-moving frame means that we must
have a finite net current back in the laboratory frame. By simple Galileo transformation,
the current density in the lab frame must be

⟨jclean
z ⟩ = evscrew(n↑ + n↓). (2.54)

Electron Transport in the Dirty System

In reality, disorder is always present to some extent and is actually expected to dominate
electronic transport properties. If V (r) ̸= 0, we can no longer use the same Galileo
transformation trick, as the impurities move in the co-moving system. Any transformation
we perform must therefore have two properties: i) the impurities remain stationary and
ii) the dominant energy scale JH ends up on the diagonal of the Hamiltonian. The
way to achieve this is by a local time-dependent rotation of the electron creation and
annihilation operators,


d↑(r)
d↓(r)


 =


 cos(θ0/2) sin(θ0/2)e−i(qz−ωscrewt)

sin(θ0/2)ei(qz−ωscrewt) − cos(θ0/2)




c↑(r)
c↓(r)


 , (2.55)

which (anti)aligns the spin axis of the electrons with the local time-dependent magneti-
sation nscrew. Importantly, under this transformation we remain in the laboratory frame.
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In terms of the new d†
σ, dσ operators, Hel reads

Hel ≈
∑

σ,k
ϵσ,kd

†
σ,kdσ,k +H1(t) +Hdis (2.56)

H1(t) =
∑

σ,k

~sk⊥λso

2 (d†
σ,kdσ,k+qe

−iωscrewt + h.c.) (2.57)

ϵ↑/↓,k ≈ ~2

2m
(
(k∥ ∓ k0)2 + k2

⊥

)
∓ JH

k0 = (1 − c)q
2 + cmλso

~
, s = sin(θ0), c = cos(θ0). (2.58)

Here we ignored some small static correction terms to ϵσ,k, as well as spin-mixing terms of
type d†

↑d↓, due to the large separation between the energy levels of majority and minority
electrons. Importantly, the unitary transformation does not affect the disorder term Hdis.

While the transformations we did for the clean case resulted in a purely static
Hamiltonian, the transformation Eq. (2.55) does not remove the explicit time dependence,
instead transferring it from the exchange coupling term to the spin-orbit terms in H1(t).
This is the price we pay for keeping the impurities static.

The terms in the current operator relevant to our calculation are identical in form to
Eq. (2.53),

Jz = −e~
m

∑

k
(k∥ − k0)d†

↑,kd↑,k + (k∥ + k0)d†
↓,kd↓,k. (2.59)

We want to calculate the expectation value of this current operator, treating H1(t) as a
small perturbation. This can be formulated as a Keldysh problem [61],

⟨Jz(t)⟩ =
〈
U(−∞,+∞)T

(
U(−∞,+∞)J̃z(t)

)〉
, (2.60)

where the time evolution operator U(t2, t1) = e
−i
∫ t2

t1
H̃1(t′)dt′

evolves a quantum state
from time t1 to time t2. Note also that we are working in the interaction picture, where
operators also carry some time-dependence via Õ = eiH0tOe−iH0t. After a fairly long
calculation, the details of which are given in App. G, one arrives at

⟨Jz⟩ = 2λ2
sos

2e~4qvscrew

m

∑

σ,k

k2
⊥(k∥ − σk0)(nσ,k − nσ,k+q)(ϵσ,k − ϵσ,k+q)

(
(ϵσ,k+q − ϵσ,k)2 + (~τ−1)2

)2 , (2.61)

where we have used that ωscrew = qvscrew. Here, nσ,k is the Fermi distribution function,
(1 + eβ(ϵσ,k−ϵσ,kF

))−1. Performing the integral in k space at T = 0 amounts to integrating
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over the previously described two Fermi spheres located at ±k0. We obtain

⟨jz⟩ ≈
∑

σ=↑,↓
enσvscrew





3s2λ2
soq2τ2

2 , vF,σ τ ≪ 2π
q

3πs2λ2
soqτ

4vF,σ
, 2π

q
≪ vF,σ τ ≪

√
vF,σ

q
√

λso
.

(2.62)

In the limit when the mean free path of the electrons is smaller than the wavelength of the
helix, vF τ ≪ 2π

q
, the current is quadratically dependent on the electron’s lifetime τ . In the

opposite limit, vF τ ≫ 2π/q, in contrast, the current is linear in τ and thus proportional
to the conductivity of the system. Eq. (2.62) has been derived in perturbation theory in
λso — therefore it cannot describe the formation of band-gaps and mini-bands triggered
by λso. These mini-bands have a band splitting of the order of ∆ ∼ ~q

√
vFλso, thus

perturbation theory is only reliable for τ∆/~ ≪ 1, which sets an upper limit for the
regime of validity of the second line in Eq. (2.62). We summarize these results pictorially
in Fig. 2.16.

Current Estimate for a Real Material

We can use the calculation we did in the previous section to estimate the electronic current
density induced by a rotating Archimedean screw in MnSi, arguably the best investigated
metallic chiral magnet. At the end of Sec. 2.2.2 we estimated vscrew ∼200 mm s−1 for a
resonantly driven conical system. An estimate of λSO can be obtained by looking at the
band-splitting in the electronic spectra: in CoGe this band-splitting is on the order of
10% of the bandwidth [62], with similar values expected for MnSi. Thus we can assume
λso/vF ∼ 10−2 − 10−1. MnSi can be grown with exceptional crystal quality, with residual
resistivities well below 1 µΩ cm, resulting in mean free paths up to 1000 Å at low T [63].
Assuming a mean free path of the order of the pitch of the helix, λhelix =200 Å, and using
n ∼ 4 · 1022 cm−3 [64], our calculation predicts current densities of order 104 – 107 A m−2.
The voltage build-up caused by values even on the smaller end of this range should be
very easy to detect in an experiment.
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Driven Skyrmions

–

Skyrmions are undoubtedly the cool kids of the chiral magnet phase diagram. They
boast a range of qualities such as robustness, mobility and easy manipulability by external
forces, which make them particularly attractive for potential technological applications.
In this chapter, we study how a single skyrmion responds to a homogeneous external
magnetic field B1(t) = (B⊥(t),Bz(t))T , oscillating in the GHz range. With the help of
the shooting method, we solve semi-analytically for the first order damped oscillatory
response. Compared to the Archimedean screw, this is technically much trickier to
implement because, due to its non-trivial Fourier decomposition, a skyrmion has infinitely
many scattering modes, where the conical state has only two: +q and −q. The skyrmion
bound states and the ferromagnetic resonance coming from the background require
additional careful treatment. At second order, a constant force ∝ BzB⊥ appears on the
RHS of the Thiele equation for the skyrmion, activating the two translational Goldstone
modes so that the skyrmion starts to “sliding” at constant velocity vslide = (vx, vy)T .
vslide can be computed exactly from the semi-analytical first order response, and we
observe an excellent fit with results obtained from numerical simulations.
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3.1 Background and Setup

Many mechanisms have already been proposed and, in some cases, even investigated
experimentally, to manipulate skyrmions. These include, but are not limited to: placing
skyrmions in magnetic field [65] or temperature [66, 67] gradients, subjecting them to
external electric fields [68], electric currents or spin currents [69, 70], and even firing
magnons onto skyrmions to excite their internal modes [71, 72]. However, as you might
have noticed, in this thesis we are primarily interested in driving stuff with oscillating
magnetic fields, and driving skyrmions in this way is the natural extension of the work
we already did for the Archimedean screw. Of course, owing to their popularity, we are
not the first to consider driving skyrmions with oscillating magnetic fields, and a number
of publications on the topic deserve to be mentioned here. In [73], the authors studied
the dynamics of single skyrmion subjected to a small constant in-plane field, Bx, and
a weak out-of-plane field Bz(t), oscillating in the GHz regime. They observed a linear
in time motion of the centre of the skyrmion, rskyr. = vt. In [74], my colleague Bernd
Grosse Jütterman investigated two further similar setups, placing a single skyrmion
placed near a wall in the first setup and near another skyrmion in the second one,
before driving the system with a purely out-of-plane oscillating field Bz(t). In the first
setup, this again resulted in the skyrmion moving at net constant velocity, v, while in
second the two skyrmions started “dancing” around each other, but did not experience
any net linear motion. It turns out that the linear motion is only achievable if one
breaks certain specific symmetries in the system. In the first case of the tilted static
magnetic field it is actually a combination of two separate symmetries — time translation
by half a driving period followed by a rotation around the ez axis by π — that gets
broken. For the systems where the skyrmion is placed near a wall or near another
skyrmion the translational symmetry is broken. However the combined symmetry of time
translation and rotation around the ez is still there in the system with two skyrmions,
which explains why there is no net linear motion. Another interesting idea is to break
the time translation symmetry sufficiently strongly by using biharmonic in-plane driving
fields, Bx = sin(mωt) + sin(nωt), n + m ∈ odd Z, as done in [75]. There, they applied
this type of asymmetrical driving to a skyrmion placed both in the bulk and at the
edge of a sample. The only problem with this approach is that the resulting speeds are
very small in the bulk if one uses weak driving fields — at least three powers of b1 for
the smallest allowed values (n = 1,m = 2) would be required to obtain a DC response
from the magnetisation. Nevertheless, the authors report that the skyrmion accelerates
dramatically near the edge, with the speed increasing about tenfold as a consequence of
the strong repulsive force coming from the edge. Other creative setups could probably
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be found, but our aim will be instead to get a detailed analytical understanding of the
phenomenon, instead of trying to play the “break enough symmetries and it starts to
move” numerical game. To this end, we want to use the simplest possible setup such that
enough symmetries are broken but the problem is still analytically tractable. It turns
out that placing a skyrmion in the bulk and subjecting it to an external magnetic field

Bext = B0 + ϵB1(t), B0 =




0
0
B0


 , B1(t) =




Bx cos(ωt)
By sin(ωt)

Bz cos(ωt+ δ)


 , (3.1)

fulfils both of these conditions. In the above equation, ϵ is the same book-keeping
parameter we introduced for the Archimedean screw calculation in Chapter 2. δ is a
parameter which changes the relative phase between the out-of-plane and in-plane driving
field components, which allows us to control the angle at which the skyrmion moves, as
we shall later see. Actually, this setup has already been investigated purely numerically
in [76], but their results are confusing and seem to differ from ours. Also, the fully
analytical treatment we provide is novel. With all that said, let us roll up our sleeves
and get our hands dirty with some concrete calculations.

3.2 Static Skyrmion

The first thing we need to do is to get more familiar with the static skyrmion solution
(oscillating field B1(t) turned off). This is already well known in the literature, but for
completeness we show how to do it here too, as all the analysis that follows also depends
on it. Substituting the skyrmion parametrisation, Eq. (1.15) with h = π

2
1, into the chiral

magnet free energy, Eq. (1.3), one obtains the energy of the skyrmion

ϵskyrmion =
∫∫

dr dχ r

(
sin2(θ0) + r2θ′2

0
2r2 + 1

2r sin(2θ0) + θ′
0 − b0 (cos(θ0) − 1)

)
, (3.2)

where for simplicity we ignored dipolar interactions and switched to the reduced quantities
r, bi, following the convention introduced in Chapter 2. In eq. (3.2), we also subtracted
off the energy

∫∫
r dr dχ b0, corresponding to a ferromagnetic system with no skyrmion.

Thus, ϵskyrmion actually represents the energy that the skyrmion adds or subtracts from
the ferromagnetic background. If ϵskyrmion is positive, the skyrmion is considered to

1For the free energy in Eq. (1.3) with the bulk DMI, DM̂ ·∇× M̂, one must use the Bloch skyrmion,
h = π

2 . The Néel skyrmion, h = 0, requires a slightly different DMI energy term, D(M̂z∇·M̂−M̂·∇M̂z),
known as interfacial DMI. The resulting energy Eq. (3.2) is however identical in both cases.
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be a stable excitation, as it is energetically unfavourable for more skyrmions to form.
However if it is negative, the system is unstable towards the creation of more skyrmions,
which leads to the formation of a skyrmion lattice. This is something we do not want
in the present setup, as we are interested in driving a single skyrmion rather than a
skyrmion lattice2. By using the Euler-Lagrange equations ∂L

∂θ0
= 1

r
d
dr

(
r ∂L

∂θ′
0

)
, where L is

the integrand of Eq. (3.2), one obtains a differential equation for the skyrmion profile
angle θ0,

r2θ′′
0 + rθ′

0 − sin(θ0)
(
b0r

2 − 2r sin(θ0) + cos(θ0)
)

= 0, (3.3)

with boundary conditions θ(0) = π and θ(∞) = 0. Eq. (3.3) is a non-linear second
order differential equation with no known analytical solution, but it can be solved
numerically using the shooting method. The idea of the shooting method is very simple:
one numerically solves the differential equation, varying the boundary condition θ′(0) (the
other boundary condition θ(0) = π is already fixed) until the other boundary condition,
limr≫r0 θ0 = 0, is reached with sufficient accuracy3. Fig. 3.1a shows the resulting skyrmion
profiles θ0(r) for a few different values of b0. In Fig. 3.1b we show the energy of the
skyrmion as a function of b0, obtained by substituting the numerical solution θ0 back
into Eq. (3.2) and numerically integrating. As the external field b0 increases, it becomes
more and more energetically unfavourable for the skyrmion to form, so its size decreases.
The most important thing to note is that at b0 ≈ 0.8, ϵskyrmion switches sign. As we are
interested in the regime where the single skyrmion is stable, ϵskyrmion > 0, we conclude
that we need a minimum static background field, b0 ≥ 0.8. For simplicity, we pick b0 = 1
for all the calculations that follow.

3.3 Damped Eigenbasis

In Chapter 2, we saw that a spatially homogeneous, time-oscillating magnetic field excites
the two internal k = 0 modes (also known as ±q in the literature [44]) of the conical
state. Naturally, we can expect that driving a single skyrmion with the same spatially
homogeneous driving field will excite its internal modes in similar fashion. The trouble is
that the skyrmion is a very non-trivial object compared to the conical state. Unlike the

2driving a skyrmion lattice with an oscillating field is also an interesting problem. As we speak,
calculations aiming to calculate the rotational torque exerted on the SkX lattice as a consequence of
such driving are being done in the Rosch group.

3In technical terms, the shooting method reduces an insoluble problem with boundary conditions at
two different points, θ0(r = 0) and θ0(r = ∞), into an easier problem where the two boundary conditions
are at the same point, θ0(r = 0) and θ′

0(r = 0). In a nutshell, we “shoot” for a solution from the origin
r = 0 by varying θ′(0) until the other boundary condition, θ(r ≫ 0) = 0, is satisfied.
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Figure 3.1 (a) Skyrmion angle θ0(r) as a function of radius r, for static fields b0 =
0.8, 1, 1.3, 1.5, obtained using the shooting method. As b0 increases the radius of the
skyrmion decreases. (b) Energy of a single skyrmion as a function of the exernal static
field b0. The skyrmion is only stable for b0 & 0.8, as below this value of b0 its energy
is negative and it becomes energetically favourable for the system to form a skyrmion
lattice.

conical state, which has a neat Fourier spatial decomposition carrying only two momenta
±q, see Eq. (1.14), in the case of the skyrmion we do not even know the analytical form
of its profile θ0(r)! This forces us to stick to real space for our analysis, which on the
technical level will translate into a lot of overlap integrals in the 2D plane.

Fortunately for us, some of the path has already been paved, in the sense that work has
already been done to identify the eigenmodes of a skyrmion. In [71], the eigenspectrum
were evaluated numerically, while [72] presents a very useful semi-analytical approach for
calculating the eigenspectrum and eigenmodes of the undamped system. As damping is
present in our problem, we need to extend these analyses to allow for a finite α damping
contribution to the eigenefrequencies and eigenmodes. In [71], they touched upon the
correction due to damping to the scattering mode eigenfrequencies, but this is insufficient
for our purposes, as we also need to correct the scattering eigenmodes, as well as the
bound state eigenenergies and eigenmodes, for finite damping. To incorporate damping,
we will resort to perturbation theory, correct in the small damping limit, α ≪ 1. Luckily,
the low damping limit also happens to be the experimentally relevant limit in many
systems.

So how do we actually go about obtaining the eigenmodes and corresponding eigen-
frequencies of the skyrmion? One way is to reuse the spin wave formalism we developed
in Sec. 2.3.1, where we expanded around the dynamic Archimedean screw solution,
M̂screw(r, t), in small excitations a, a∗ and then solved for the energy spectra of these
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excitations. To adapt it to the present problem, we expand instead around the static
skyrmion, M̂skyrmion(r, χ), in a, a∗, and use polar coordinates, as they are more suited to
the symmetry of the problem. To obtain the eigenmodes of the system, we switch off the
driving field, b1(t) = 0. In this case the free energy F is to lowest order quadratic in
a, a∗, and the equation of motion reads

(sgn(γ) + iασz)

 ȧ
ȧ∗


 = i


 {F (2)

skyr., a}
{F (2)

skyr., a
∗}


+ O(a2), (3.4)

where F
(2)
skyr. depends on both r and χ, see Eq. (H.2) for its detailed form. The χ

dependence can be removed by switching to angular momentum eigenstates am(r) =
1

2π

∫
dχ e−imχa(r, χ), a∗

m(r) = 1
2π

∫
dχ eimχa∗(r, χ), see App H.2 for technical details. The

resulting r- and t-dependent equation can be reduced to a time-independent eigenvalue
equation by choosing the ansatz (am(t), a−m(t))T = e−iEt(am(0), a−m(0))T , giving

(sgn(γ) + iασz)Em,n,α |m,n, α⟩ = σzHm |m,n, α⟩ , (3.5)

where we defined the vector |m,n, α⟩ = (am(0), a−m(0))T . Here, m is the angular
momentum number, and shall see in Sec. 3.4.1 that only the m = 0,±1 eigenmodes can
be activated by a spatially homogeneous driving field. n is a further label to parametrise
the energy Em,n,α — this is necessary to distinguish between the different bound and
scattering states within each m-sector. The label α has been included to remind us that
the eigenmode is damped. Beneath all the fancy QM-inspired notation, Eq. (3.5) is “just”
a non-linear second order differential equation in r, which we need to solve for different
m and n, while treating α as a perturbative parameter. Before proceeding with this, it’s
worth pointing out an important property of the eigensystem of Eq. (3.5). As can easily
be checked from its definition, Eq. (H.8), Hm = σxH−mσ

x and Hm = H∗
m. Supposing we

know an eigenstate |m,n, α⟩ with eigenenergy En,α, we can apply this property to give

(sgn(γ) + iασz)(−E∗
n,α)σx |m,n, α⟩∗ = σzH−mσ

x |m,n, α⟩∗ , (3.6)

which means that σx |m,n, α⟩∗ is also an eigenstate of H−m, with eigenenergy −E∗
n,α.

This is a useful property which saves us doing half the work in the long run. The idea
now is to solve eq. (3.5) perturbatively in α, using the perturbative expansions

|m,n, α⟩ =
∣∣∣m,n(0)

〉
+ iαsgn(γ)

∣∣∣m,n(1)
〉

+ O(α2),

En,α = sgn(γ)ϵ(0)
n − iαϵ(1)

n + O(α2).
(3.7)



3.3 Damped Eigenbasis 67

3.3.1 Zeroth Order in α

At order O(α0), Eq. (3.5) reads

ϵ(0)
n

∣∣∣m,n(0)
〉

= σzHm

∣∣∣m,n(0)
〉
. (3.8)

This eigenvalue equation is not Hermitian, but its eigenvalues and eigenvectors still
obey some useful mathematical properties. For example, the eigenvectors still form an
orthogonal eigenbasis, provided we modify the definition of the inner product between
eigenvectors. We can find out these properties by taking the conjugate transpose of
Eq. (3.8) and projecting it onto |m,n, 1⟩(0) and integrating this over all 2D space4, giving

ϵ
(0)∗
n,1

〈
m,n, 1(0)

∣∣∣ =
〈
m,n, 1(0)

∣∣∣Hmσ
z

=⇒ ϵ
(0)∗
n,1

〈
m,n, 1(0)

∣∣∣σz
∣∣∣m,n, 1(0)

〉
= ϵ

(0)
n,1

〈
m,n, 1(0)

∣∣∣σz
∣∣∣m,n, 1(0)

〉
,

where we used the hermiticity of Hm, H†
m = Hm. The second line implies that ϵ(0)

n,1 is
real. The same argument can be used to show that eigenstates with different eigenvalues
are orthogonal, if we redefine the inner product to be ⟨m,n|σz |m′, n′⟩. The zeroth order
eigenstates therefore form an orthogonal eigenbasis,

⟨m,n, s|σz |m′, n′, s′⟩ = Nδm,m′δn,n′δs,s′ , (3.9)

where N is a normalisation factor we can freely choose.
Let us now inspect in more detail the kind of eigenmodes and eigenenergies admitted

by Eq. (3.8). Two types of modes exist — bound and scattering — which we now discuss
in short succession. We base ourselves strongly on the formalism developed in [72].

Bound Modes

Bound modes are characterised by eigenenergies ϵ(0)
bound which are smaller than the gap

energy of the bulk ferromagnet surrounding the skyrmion, ϵ(0)
bound < ϵgap = b0. As these

energies are forbidden in the bulk, the bound states are “bound” to the region of the
skyrmion. Just like for the famous particle-in-a-box quantum mechanics problem, bound
states are quantised. In the m = 0 sector, there is a single bound state, known as the
breathing mode,

∣∣∣m = 0, br,,+(0)
〉
, with energy +ϵ(0)

br.. As we have already explained,
this physical eigenstate will also have an unphysical copy, given by

∣∣∣m = 0, br.,−(0)
〉

=
σx
∣∣∣m = 0, br,,+(0)

〉
, with negative energy −ϵ(0)

br..
∣∣∣m = 0, br.,−(0)

〉
, as well as all the

4defined here in polar coordinates, i.e. ⟨...⟩ =
∫∫

...r dr dχ.
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Figure 3.2 (a) Spatial profile of magnetic drive. Out-of-plane driving profile is bz

2
√

2 sin(θ0).
In-plane driving has two different contributions, bL/R

4
√

2 (cos(θ0) ± 1). bz

2
√

2 sin(θ0) and
bL/R

4
√

2 (cos(θ0) − 1) are bounded, but importantly the bL/R

4
√

2 (cos(θ0) + 1) profile is unbounded
at r = ∞, as there we excite the ferromagnetic resonance of the background. (b) Skyrmion
bound states in the m = 0,±1 angular momentum sectors. For m = 0 there is a single
positive energy bound state, the breathing mode, denoted

∣∣∣m = 0, br.,+(0)
〉

(shortened
to |br.⟩ in the plot). The m = ±1 sectors each have a bound state which is also the
translational Goldstone mode of the system,

∣∣∣m = ±1, trans.(0)
〉
. They are related via∣∣∣m = −1, trans.(0)

〉
= σx

∣∣∣m = +1, trans.(0)
〉∗

, so we show only the m = +1 components
in the plot (shortened to |trans.⟩). Only the m = 0 breathing modes are excited at first
order by a homogeneous driving field. (c) Skyrmion positive energy scattering states
|m, k,+⟩(0) (shortened to |m⟩ in the plot) obtained via the shooting method, here with
k = 1.5, m = 0,+1,−1. The upper “u” components are well-described in the asymptotic
limit by Bessel functions of the first and second kind, cos(δm)Jm−1(kr)−sin(δm)Ym−1(kr),
while the lower “l” components decay exponentially. (d) Fourier weights of the scattering
states |m, k,+, α⟩ which are required to construct the first order steady state solutions
in Eq. (3.20) and (3.30).
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other negative energy copies, don’t require any additional work to calculate, but we can’t
forget about them either as they constitute half the orthogonal basis, eq. (3.9), in our
mathematical formalism. We can obtain

∣∣∣m = 0, br.,+(0)
〉

numerically using the shooting
method in similar fashion to how we solved for the profile θ0(r). One uses the energy ϵ(0)

br.

and the ratio of the initial slopes at r = 0 of the upper and lower vector components in∣∣∣m = 0, br.,+(0)
〉
,
∣∣∣m = 0, br.,+(0)

〉′

u
(0) and

∣∣∣m = 0, br.,+(0)
〉′

l
(0), as the two shooting

parameters, varying both until the boundary condition that both
∣∣∣m = 0, br.,+(0)

〉
u

and∣∣∣m = 0, br.,+(0)
〉

l
vanish at r = ∞ is satisfied. In a last step, we pick a normalisation

factor N such that ⟨m = 0, br.,+|(0) σz
∣∣∣m = 0, br.,+(0)

〉
= 1 is normalised to unity. For

b0 = 1, we obtain ϵ
(0)
br. = 0.839 and the eigenstate components shown in Fig. 3.2b, which

both vanish beyond the radius of the skyrmion r0 ≈ 5, as required for a bound mode. In
each of the m = ±1 sectors, there is also a single bound state, each of which also happens
to be a translational mode of the system (as we are in 2D, there are two translational
modes). We denote these as

∣∣∣m = ±1, trans.(0)
〉
, and both have energy ϵ

(0)
trans = 0, as

it costs no energy to translate the skyrmion in the xy-plane. We do not need to solve
numerically for these, as there is a neat analytical formula, given in Eq. (3.33). A useful
exercise to make sure these are indeed the translational modes is to apply H±1 to each of
them, and check that the result vanishes. It turns out that these translational modes do
not get activated at all by homogeneous driving at first order, but they do get activated at
second order. In Fig. 3.2b we plot the spatial profiles of the upper and lower components
of
∣∣∣m = 1, trans.(0)

〉
(those of

∣∣∣m = −1, trans.(0)
〉

= σx |m = 1, trans.⟩∗(0) are the same
but inverted).

Scattering Modes

Scattering modes are modes whose energy ϵ(0)
scatt is greater than or equal to the gap energy,

ϵ
(0)
scatt ≥ ϵgap. As they are able to propagate in the ferromagnetic bulk, we expect them to

extend spatially to infinity, albeit with decreasing amplitude in order to conserve energy
(e.g. in 2D, amplitude is expected to decay as 1√

r
5). Unlike the bound states, which

are quantised, they exist on an energy continuum, which we can parametrise through
ϵ

(0)
k = b0 + k2. To solve for the scattering eigenfunctions, it is useful to get some intuition

by first considering the large r-limit, where r ≫ r0. There, the spin waves do not see
the skyrmion, as V m

z , Vx and V m
0 all vanish. In this limit, Hm is therefore reduced to a

5remember that we have not yet included the effects of the damping term α in this Subsection. Once
α is included, the scattering modes actually decay with amplitude e−αωr/vg√

r
, where vg = 2k0 is the group

velocity of a scattering mode with momentum k0.
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diagonal form, giving rise to the following two decoupled equations
(

− d

dr2 − 1
r

d

dr
+ (m− 1)2

r
+ b0

)
|m, k⟩(0)

u = (b0 + k2) |m, k⟩(0)
u ,

−
(

− d

dr2 − 1
r

d

dr
+ (m+ 1)2

r
+ b0

)
|m, k⟩(0)

l = −(b0 + k2) |m, k⟩(0)
l ,

(3.10)

which admit the solutions

lim
r≫r0

|m, k,+⟩(0) =

cos(δm)Jm−1(kr) − sin(δm)Ym−1(kr)

0


 , ϵ

(0)
k,+ = b0 + k2,

lim
r≫r0

|m, k,−⟩(0) =

 0

cos
(
δ̃m

)
Jm+1(kr) − sin

(
δ̃m

)
Ym+1(kr)


 , ϵ

(0)
k,− = −(b0 + k2).

(3.11)
Here, Jm, Ym are Bessel functions of the first and second kind. The eigenvectors in
eq. (3.11) are normalised according to ⟨m, k, s|σz |m′, k′, s′⟩ = 1

k
δm,m′δk,k′δs,s′sgn(s),

thanks to the property
∫
r dr Jm(kr)Jm(k′r) = 1

k
δk,k′ of Bessel Functions (also true

for Ym(kr)). δm, δ̃m are phase shifts, analogous to the phase degree of freedom φ0 we
know from the solution of an non-damped, non-driven 1D simple harmonic oscillator,
x(t) = x0 cos(ωt+ φ0). If this really were a free problem, we could choose δm, δ̃m freely.
However, as we shall see, the presence of the skyrmion at r = 0 restricts δm, δ̃m for us.

As we can’t ignore the influence of the skyrmion on the scattering modes for too
long, we now switch to the near-field limit, at r . r0. Amazingly, Hm is again diagonal
to leading order, O

(
1
r2

)
, and takes the same form as Eq. (3.10), but with the sign

change m → −m. Thus, the Bessel solutions Jm±1(kr) are again valid, although we
discard Ym±1(kr) because it has a singularity at r = 0. For small arguments kr ≪ 1,
limkr→0 Jm±1 = (kr)m±1, suggesting the following near-field form,

lim
kr→0

|m, k,+⟩(0) = N+


 (kr)m+1

c+(kr)m−1


 ,

lim
kr→0

|m, k,−⟩(0) = N−


 (kr)m+1

c−(kr)m−1


 .

(3.12)

c± are shooting parameters, which we determine by enforcing that |m, k,+⟩(0)
l and

|m, k,−⟩(0)
u vanish as r ≫ r0 to match the far field solutions, Eq. (3.11). N± and δm, δ̃m

can then be determined by matching the near- and far-field non-vanishing components,
|m, k,+⟩(0)

u and |m, k,−⟩(0)
l , as well as their derivatives, at r ∼ 2π

k
. Such a scheme needs
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to be implemented numerically for each value of m, k6. An example of the scattering
modes obtained using this method are shown in Fig. 3.2c, where we show the upper
and lower components of the positive energy eigenstates for k = 1.5 of the three angular
momentum sectors m = 0,±1 relevant to our problem. One can easily check that the
asymptotic limit, |ψ⟩u ∼ rm+1, |ψ⟩l ∼ rm−1 for r ≈ 0, is satisfied for each of these
components. In the far field, the non-vanishing components oscillate with wavelength
λ = 2π

k
∼ 4 and decay at a rate 1√

r
.

3.3.2 First Order in α

At order O(α), Eq. (3.5) reads

ϵ(0)
n

∣∣∣m,n, s(1)
〉

− ϵ(1)
n

∣∣∣m,n, s(0)
〉

+ σzϵ(0)
n

∣∣∣m,n, s(0)
〉

= σzHm

∣∣∣m,n, s(1)
〉
, (3.13)

where we have added s, which denotes the sign of the energy of eigenstate, as we proved in
Sec. 3.3.1 that they occur in positive-negative pairs ±ϵ(0). The analysis done in Sec. 3.3.1
also gifted us a complete orthogonal eigenbasis, which we can use to expand the first
order in α eigenstate corrections |m,n, s⟩(1),

∣∣∣m,n, s(1)
〉

=
∑

scatt.,k,s′=±
∆k k

〈
m, k, s′(0)

∣∣∣σz
∣∣∣m,n, s(1)

〉 ∣∣∣m, k, s′(0)
〉

+
∑

bound,s=±

〈
m, s′(0)

∣∣∣σz |m,n, s⟩(1)
∣∣∣m, s′(0)

〉
,

(3.14)

where we sum over all the O(α0) positive and negative energy scattering and bound
states of the same angular momentum sector m. Note the extra k∆k k factor in the first
sum, which is required because the scattering states carry a 1/k in their normalisation
factor. The σz sandwiching the projections is required because of the definition of the
inner product between zeroth order eigenstates, Eq. (3.9). We can check that Eq. (3.14)
is a valid expansion by projecting it onto any of the zeroth order bound or scattering
modes,

〈
m, k′, s′(0)

∣∣∣,
〈
m, bound, s′(0)

∣∣∣. Using the orthogonality property, we recover the
expected overlaps

〈
m, k′, s′(0)

∣∣∣m,n, s(1)
〉
,
〈
m, bound,±(0)

∣∣∣m,n(1)
〉
. By going through the

usual motions of perturbation theory, see App. H.3 for technical details, one obtains the
6Here I must thank my colleague Vivek Lohani, who wrote an efficient Julia [77, 78] code to generate

these scattering eigenmodes. I promptly “borrowed” this code, as my own version written on Mathematica
was not as numerically precise and also periodically caused my laptop to crash.
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following damped complex energies

Ebr.,+,α = 0.839sgn(γ) − 1.02iα Ebr.,−,α = −0.839sgn(γ) − 1.02iα,
Ek,+,α = (1 + k2) (sgn(γ) − iα) Ek,−,α = (1 + k2) (−sgn(γ) − iα) ,

Em=±1,trans.,α = 0,
(3.15)

correct to order O(α). The numerical values for the breathing mode energy are given
for the case b0 = 1. The first order in α corrections to the eigenmodes have also been
calculated and are listed in App. H.3, as they are quite long.

3.4 Dynamic Response to Drive

Now we turn on the external driving field b1(t), defined in Eq. (3.1). We want to solve
for a(t), a∗(t), to describe the dynamic response of the magnetisation to the drive. To
this end we expand both fields in powers of b1, using the same book-keeping parameter ϵ
as before

a(t) = ϵa(1) + ϵ2a(2) + O(ϵ3),
a∗(t) = ϵa∗(1) + ϵ2a∗(2) + O(ϵ3).

(3.16)

We will see that solving up to quadratic order in ϵ is sufficient to get the salient physics.

3.4.1 First Order Oscillatory Response

At order O(ϵ), the EoM for a(1), a∗(1) looks the same as Eq. (3.4), provided we replace
a → a(1), a∗ → a∗(1) and add the term

i


 {F (1)

drive, a
(1)}

{F (1)
drive, a

∗(1)}


 (3.17)

to the RHS of the equation. F
(1)
drive, given in Eq. (H.1), is the only linear in a, a∗

contribution to the free energy F . Remember that the undriven system is by definition
to lowest order quadratic in a, a∗ (otherwise the static texture around which we are
expanding would not be at an energy minimum) — hence finite bz, bR or bL are required
to obtain a finite F (1)

drive. Let us look at purely out-of-plane (bR = bL = 0) and purely
in-plane (bz = 0) driving separately.
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Out-of-Plane Drive

For out-of-plane driving, bL = bR = 0, the driving term Eq. (3.17) takes the form

−ibzsσ
z

2
√

2


e

i(ωt+δ) + e−i(ωt+δ)

ei(ωt+δ) + e−i(ωt+δ)


 , (3.18)

where s = sin(θ0(r)). We plot the spatial profile of this driving term in Fig. 3.2a, and
see that it vanishes for r & r0. This is what we expect from a physical perspective, as for
r ≫ r0 the spins are parallel to the driving field, M̂ ∥ bz, so that the torque M̂× bz = 0
to order O(ϵ). As there is no angular dependence on χ in Eq. (3.20), we conclude that
out-of-plane driving can only excite the m = 0 angular momentum eigenstates. The
equation of motion then reads

(sgn(γ) + iασz)

 ȧ

(1)
0

ȧ
∗(1)
0


 = −iσz


H0


 a

(1)
0

a
∗(1)
0


+ bzs

2
√

2


e

i(ωt+δ) + e−i(ωt+δ)

ei(ωt+δ) + e−i(ωt+δ)




 , (3.19)

We can solve eq. (3.19) using the eigenbasis we developed in Sec. 3.3,

 a

(1)
0 (t)

a
∗(1)
0 (t)


 =


 a

(1)
0,1e

iωt + a
(1)
0,−1e

−iωt

a
∗(1)
0,1 e

−iωt + a
∗(1)
0,−1e

iωt


 =

bz


∑

k

∆kk
[
ck,α |m = 0, k,+, α⟩

(
ei(ωt+δ)

ω + Ek

+ e−i(ωt+δ)

−ω + Ek

)

− c∗
k,α |m = 0, k,−, α⟩

(
ei(ωt+δ)

ω − E∗
k

+ e−i(ωt+δ)

−ω − E∗
k

) ]

+ cbr.,α |br.,+, α⟩
(
ei(ωt+δ)

ω + Ebr.
+ e−i(ωt+δ)

−ω + Ebr.

)

− c∗
br.,α |br.,−, α⟩

(
ei(ωt+δ)

ω − E∗
br.

+ e−i(ωt+δ)

−ω − E∗
br.

)
.

(3.20)

The Fourier coefficients ck,α, cbr.,α can also be expanded perturbatively in α,

ck,α = c
(0)
k + iαsgn(γ)c(1)

k + O(α2),
cbr.,α = c

(0)
br. + iαsgn(γ)c(1)

br. + O(α2).
(3.21)

c
(0)
k,br., c

(1)
k,br. are calculated by substituting ansatz (3.20) into Eq. (3.19), expanding up to

zeroth and linear order in α and then projecting
〈
m = 0, k,+(0)

∣∣∣ ,
〈
m = 0, br.,+(0)

∣∣∣ onto
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the two resulting equations. We obtain

c
(0)
k′ = −sgn(γ) bz

2
√

2

〈
k′,+(0)

∣∣∣∣∣∣
sin(θ0)


1

1



〉
,

c
(0)
br. = −sgn(γ) bz

2
√

2

〈
br.,+(0)

∣∣∣∣∣∣
sin(θ0)


1

1



〉

≈ −0.618sgn(γ).
(3.22)

The expressions for c(1)
k′ , c

(1)
br. are longer and given in Eq. (H.14). These Fourier coefficients

are evaluated by numerically integrating the integrand over r. In Fig. 3.2d we plot the
resulting c

(0)
k′ , c

(1)
k′ and note with relief and happiness that they are both bounded, so

that we don’t need to include any scattering wavefunctions with k & 6 in the sum over
scattering states, Eq. (3.20). We implement Eq. (3.20) numerically on Mathematica by
summing over the m = 0 scattering wavefunctions between k = 0 and k = 6 in steps
∆k = 0.01, evaluating the sum for different driving frequencies ω. One way to visualise
the result is to look at the time-averaged deviation from the equilibrium skyrmion
configuration, δM =

√
⟨|M̂(t) − M̂0|2⟩t. The result is plotted in Fig. 3.3a, for a few

different values of ω. We note that the biggest deviation occurs when we drive near the
breathing mode resonance frequency, ω = 0.84. The snapshots in Fig. 3.4a–e show the
time-dependent first order response when we drive a Néel skyrmion at this breathing
mode resonance. Note how the radial symmetry is preserved as we are only exciting the
m = 0 eigenstates.

In-Plane Drive

For in plane driving, bz = 0, the driving term Eq. (3.17) takes the form

iσz

4
√

2




(bRe

−iωt + bLe
+iωt)(c− 1)

(bRe
−iωt + bLe

iωt)(c+ 1)


 eiχ +


(bRe

iωt + bLe
−iωt)(c+ 1)

(bRe
iωt + bLe

−iωt)(c− 1)


 e−iχ


 , (3.23)

where c = cos(θ0(r)). We plot the two spatial profiles of this driving term in Fig. 3.2a,
and notice that while 1

4
√

2 (cos(θ0) − 1) is bounded and vanishes for r & rskyr., this is not
the case for 1

4
√

2 (cos(θ0) + 1), which plateaus at 1
2
√

2 . This means that we cannot blindly
repeat the procedure we used in Sec. 3.4.1 to calculate the Fourier coefficients of the
steady state, as we would now have to deal with unbounded integrands arising from
the non-vanishing driving profile 1

4
√

2 (cos(θ0) + 1). To come up with a solution to this
problem it is helpful to understand where this finite plateau comes from. As it happens
in the bulk, far away from the skyrmion, the behaviour must be related to the presence
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Figure 3.3 Time averaged deviation of the unit magnetisation, δM =
√

⟨2a∗(1)a(1)⟩χ,t, for a
range of driving frequencies ω and polarisations bz, bR, bL, with damping α = 0.03, a fixed
static magnetic field b0 = 1 and γ < 0. (a) Purely out-of-plane driving bz = 0.01, bR =
bL = 0. The resonance is at the breathing mode frequency, ωbr. = 0.839. δM is confined
to the region of the skyrmion, r . r0, because out-of-plane driving does not excite the
ferromagnetic background. (b) In-plane right-polarised driving, bR = 0.01, bz = bL = 0.
The Kittel (background ferromagnet) mode at ωKittel = 1 is resonantly excited. For ω > 0
we also start to excite the scattering modes, resulting in oscillations at wavelength 2π/k
in the spatial profile of δM . (c) In-plane left-polarised driving, bL = 0.01, bz = bR = 0.
The Kittel mode is not resonantly excited, and δM is three orders of magnitude smaller
than for right-polarised driving. Using a material with positive γ would inverse panels
(b) and (c). For both left- and right-polarised driving δM is not confined to the radius
of the skyrmion, δM > 0 for r ≫ r0, because in-plane driving excites the ferromagnetic
background. (Made using Eq. (3.20) and (3.30).)

(a) t = 0 (b) t = T/5 (c) t = 2T/5 (d) t = 3T/5 (e) t = 4T/5

(f) t = 0 (g) t = T/5 (h) t = 2T/5 (i) t = 3T/5 (j) t = 4T/5

Figure 3.4 Snapshots of a skyrmion driven with (a)–(e) out-of-plane, bz = 0.05, bR = bL =
0, ω = 0.84, and (f)–(j) in-plane right-polarised magnetic field, bR = 0.05, bz = bL = 0,
ω = 1. In both cases, α = 0.03 and b0 = 1.
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of the ferromagnet. Imagine for a moment that there is no skyrmion at all, θ0 = 0 in
Eq. (3.23). This leads to the following EoM,

(sgn(γ) + iασz)

ȧFM

ȧ∗
FM


 = −iσz

[
H0


a

(1)
FM

a
∗(1)
FM




−

0

1


 eiχ

2
√

2
(
bRe

−iωt + bLe
iωt
)

−

1

0


 eiχ

2
√

2
(
bRe

iωt + bLe
−iωt

) ]
.

(3.24)

As the driving terms on the RHS are spatially independent, we would expect that
only spatially independent scattering eigenfunctions get excited. The positive energy
ferromagnetic eigenstates are given by Jm−1(kr), and the only spatially independent
non-trivial eigenstate is the one with m = 1, k = 0, as J0(0) = 1. If we had instead
considered the (unphysical) negative energy copies, we would have gotten that the only
relevant spatially independent mode is in the m = −1 sector. Thus, we know that, at least
in the case of a bulk ferromagnet, perpendicular driving excites only the |m = 1, k = 0⟩
and |m = −1, k = 0⟩ eigenfunctions, with eigenenergies E0,+,α = b0(sgn(γ) − iα) and
E0,−,α = −b0(sgn(γ) + iα), respectively. Together, these constitute the Kittel mode of
the ferromagnet. Now we put the skyrmion back into the system. The trouble with
identifying the k = 0 eigenfunction in this case is that the boundary matching approach
we used so far to determine the skyrmion scattering eigenfunctions fails for k = 0, as the
boundaries between the near-field and far-field solutions need to be matched at r ≫ 1

k
,

which is effectively infinity for k = 0. But we know from the physical point of view
that one such k = 0 eigenstate must exist for each of the angular momentum sectors
m = 1 and m = −1. Assuming they do exist, the m = ±1, k = 0 modes should obey the
following eigenvalue equations,

(sgn(γ) + iασz)(−E∗
0,α) |m = 1, k = 0,−, α⟩ = σzH1 |m = 1, k = 0,−, α⟩ ,

(sgn(γ) + iασz)E0,α |m = −1, k = 0,+α⟩ = σzH−1 |m = −1, k = 0,+α⟩ .
(3.25)

It is in fact sufficient to determine just |m = 1, k = 0,−, α⟩, as |m = −1, k = 0,+, α⟩
is automatically obtained by taking the complex conjugate of |m = 1, k = 0,−, α⟩ and
pre-multiplying with σx. We know that for large r, |m = 1, k = 0,−, α⟩ is the only
surviving contribution to the steady state, as all the finite k average each other out with
their oscillations. We can use this and the form of the driving term, Eq. (3.23), to make
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a guess at the form of |m = 1, k = 0, α,−⟩. How about trying

|m = 1, k = 0,−, α⟩ = sgn(γ)
1 + iαsgn(γ)σz

σz

4
√

2


c− 1
c+ 1


+ dtrans.,α |m = 1, trans.⟩

+
∑

k>0
∆k k [ak,α |m = 1, k,+, α⟩ − bk,α |m = 1, k,−, α⟩] .

(3.26)

What is the logic of this? Well, in the limit r ≫ r0 the first term on the RHS of Eq. (3.26)
solves the EoM by balancing the driving term Eq. (3.23). This term guarantees that
the lower component of the m = 1, k = 0 mode plateaus to a constant finite value as
r ≫ r0, which we have argued is a requirement of the k = 0 mode. But this gives us
no guarantee that |m = 1, k = 0,−, α⟩ will also be a solution of the k = 0 eigenvalue,
Eq. (3.25), so there must be a missing part of the wavefunction for which we need to
solve. We expand this missing part in the complete eigenbasis provided by the scattering
eigenfunctions, |m = 1, k,+, α⟩ , |m = 1, k,−, α⟩ and translational mode, |m = 1, trans.⟩.
The coefficients ak,α, bk,α, dtrans. can be Taylor expanded in α just like ck,α,

ak,α = a
(0)
k + iαsgn(γ)a(1)

k + O(α2),
bk,α = b

(0)
k + iαsgn(γ)b(1)

k + O(α2),
dtrans,α = d

(0)
trans. + iαsgn(γ)d(1)

trans..

(3.27)

To determine these coefficients we substitute ansatz (3.26) into Eq. (3.25), expand the re-
sulting equation order by order in α and project ⟨m = 1, k,+|(0) σz,

〈
m = 1, k, α,−(0)

∣∣∣σz

or
〈
m = 1, trans., α(0)

∣∣∣σz onto it. At order )(α0) we obtain

a
(0)
k = − sgn(γ)

ϵ
(0)
k + ϵ

(0)
0

∫ ∞

0
dr r ⟨m = +1, k,+|(0) (ϵ(0)

0 +H1σ
z)
∣∣∣∣∣∣

1
4
√

2


c− 1
c+ 1



〉
,

b
(0)
k = sgn(γ)

ϵ
(0)
k − ϵ

(0)
0

∫ ∞

0
dr r ⟨m = +1, k,−|(0) (ϵ(0)

0 +H1σ
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∣∣∣∣∣∣
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4
√

2
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c− 1
c+ 1



〉
,

d
(0)
tr. = −sgn(γ)

ϵ
(0)
0

∫ ∞

0
dr r ⟨m = +1, tr.|(0) (ϵ(0)

0 +H1σ
z)
∣∣∣∣∣∣

1
4
√

2


c− 1
c+ 1



〉

= 0.

(3.28)

In eq. (3.28), ϵk = b0 + k2. a(0)
k is well behaved at all values of k, but bk ∼ 1

k2 diverges
at low k7. The O(α) corrections are too long to be listed here and given instead in

7Note, however, that this divergence is counteracted by a factor Ek − E0 ∼ k2 in the steady state,
see Eq. (3.30). Thus, there are no convergence problems if we consider the steady state, instead of the
k = 0 mode in isolation
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Eq. (H.15). We plot a(0)
k , a

(1)
k , k2b

(0)
k , k2b

(1)
k (adding a factor k2 to remove the singularity)

as a function of k in Fig. 3.2d and note with relief and satisfaction that they too are
bounded to within about k . 6, which is great news for numerical implementation.

Given that in-plane driving activates the m = ±1 angular momentum sectors, we can
write down the following general ansatz for the first order response,


 a

(1)(t)
a∗(1)(t)


 =


 a1(t)
a∗

−1(t)


 eiχ +


a−1(t)
a∗

1(t)


 e−iχ, (3.29)

with

 a

(1)
1 (t)

a
∗(1)
−1 (t)


 = |m = 1, k = 0,−, α⟩

(
bLe

iωt

ω − E∗
0,α

+ bRe
−iωt

−ω − E∗
0,α

)

−
∑

k

∆kk

ak,α |m = 1, k,+, α⟩

(
bLe

iωt

ω + Ek,α

+ bRe
−iωt

−ω + Ek,α

)

− bk,α |m = 1, k,−, α⟩
(

bLe
iωt

ω − E∗
k,α

+ bRe
−iωt

−ω − E∗
k,α

)
.

(3.30)

Just as for the out-of-plane driving case we implement Eq. (3.30) numerically on Mathe-
matica, summing over the scattering eigenstates for 0.01 < k < 6 in steps ∆k = 0.01.
We plot the polar angle- and time-averaged deviation δM = ⟨2(a∗(1)

1 a
(1)
1 + a

∗(1)
−1 a

(1)
−1)⟩χ,t in

Fig. 3.3b and c for a system with α = 0.03 and γ < 0, for right- and left-polarised in
plane driving, respectively. Negative γ means that the real part of E0,α = b0(sgn(γ)− iα),
b0(sgn(γ), is negative. Therefore we need to use a right-polarised driving field if we
wish to drive the |m = 1, k = 0, α,−⟩ mode resonantly. This is exactly what we ob-
serve in Fig. 3.3b and c, the deviation deltaM is more than one hundred times larger
for right-polarised than left-polarised driving when we drive at the Kittel resonance
ωKit. = b0 = 1. We also used Eq. (3.30) to generate the snapshots in Fig. 3.4f–j, which
shows the time-dependent first order response of a Néel skyrmion in a background field
b0 = 1 driven at the Kittel resonance ω = 1 with a right-polarised in plane driving
field. Note how the radial symmetry we had for the out-of-plane driving case has been
replaced by an angular dependence ei(χ−ωt), as we are now exciting the m = ±1 angular
momentum eigenstates of the system.



3.4 Dynamic Response to Drive 79

3.4.2 Second Order Translational Motion

At O(ϵ2), our perturbative approach once again admits three kinds of response: oscillations
at twice the driving frequency, ±2ω, a DC response at 0ω and a linear in t growing term,
which describes the translational motion of the skyrmion at velocity vslide = (vx, vy, 0)T .
We can write the full response in the language of the O(ϵ2) contributions to a, a∗,


 a

(2)

a∗(2)


 =


a

(2)
osc. + a

(2)
stat. + a

(2)
trans.

a∗(2)
osc. + a

∗(2)
stat. + a

∗(2)
trans.


 . (3.31)

As before, we are mainly interested in calculating the vslidet response, encoded in the
a

(2)
trans., a

∗(2)
trans. terms. The full O(ϵ2) equation of motion reads

(sgn(γ) + iασz)

ȧ

(2)
trans. + ȧ(2)

osc.

ȧ
∗(2)
trans. + ȧ∗(2)

osc.


 = i


 {F (3)

skyr. + F
(2)
skyr. + F

(2)
drive, a}

{F (3)
skyr. + F

(2)
skyr. + F

(2)
drive, a

∗}


 . (3.32)

Note how the static components disappears from the LHS, as by definition ȧ(2)
stat, ȧ

∗(2)
stat = 0.

The free energies densities for the terms F (3)
skyr., F

(2)
skyr., and F (2)

drive on the RHS are defined in
Eq. (H.3) and (H.4). We left the a, a∗-fields general on the RHS on purpose, as there will
be contributions from both a(1), a∗(1) and a(2), a∗(2) after the Poisson bracket operations,
depending on which part of the free energy we evaluate the Poisson bracket with.

When written in the a(2), a∗(2) language, the translational mode −t(vslide · ∇)M̂(0)

takes the form

a

(2)
trans.

a
(2)
trans.


 = vslidet

[
|m = 1, trans.⟩ e−iβ + |m = −1, trans.⟩ eiβ

]
, (3.33)

where vslide =
√
v2

x + v2
y and β is the angle the velocity vector makes with the x-axis,

vslide = vslide(cos(β), sin(β), 0)T . For the derivation of eq. (3.33), see App. H.4. Note that
eq. (3.33) is only valid for short times, as over time it grows linearly, eventually breaking
the perturbative assumption that the O(ϵ2) terms are small. However, its time derivative
is constant in time and therefore valid for all times.

As there are two translational modes in the xy-plane, we need to solve for two
parameters vx, vy, or equivalently, vslide, β. We do this in two steps. First, we project〈
m = 1, trans.(0)

∣∣∣σz onto Eq. (3.33), which gets rid of the problematic (because it grows
linearly in time!) a(2)

trans. and the unknown a
(2)
stat. terms on the RHS. To understand how

this works, notice that the a(2)
trans., a

(2)
trans. can only result from the {F (2)

skyr., a}, {F (2)
skyr., a

∗}
Poisson bracket, which is also the Poisson bracket we originally showed could be written
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as σzHm(a(1)
m , a∗(1)

m )T . Projecting onto this with ⟨m = 1, trans.|σz, and remembering that
translational modes have zero energy, ⟨m = 1, trans.|(0) H1 = 0, we conclude that this
contribution conveniently vanishes. After the projection step, the next step is to take
the time average ⟨...⟩t, which removes the oscillatory parts of the response. This gives
the familiar (dimensionless) Thiele equation

sgn(γ)G̃ × vslide − αD̃vslide = fslide, (3.34)

where G̃ and D̃ are the dimensionless gyro-coupling and dissipative matrix of the skyrmion.
While G̃ = −4πez is a topological invariant, and therefore the same for any skyrmion,
D̃ depends on the static external field b0 in the system, see Eq. (C.4). For b0 = 1
D̃xx = D̃yy = 14.6. The force fslide causing the skyrmion to “slide” at constant velocity
vslide is given by

fslide =




Im(f)
Re(f)

0


 ,

f = − i√
2

∫∫
r dχ dr e−iχ

[

(
−θ′

0 + sin(θ0)
r

)〈
{F (3)

skyr. + F
(1)
drive, a}

〉

t

+
(
θ′

0 + sin(θ0)
r

)〈
{F (3)

skyr. + F
(1)
drive, a

∗}
〉

t

]
.

(3.35)

In Eq. (H.16) we list the time- and angle- averaged Poisson bracket
〈

{F (3)
skyr.+F

(1)
drive, a

∗}
〉

χ,t
.

Due to the e−iχ factor in the integrand of f , the only non-vanishing contributions come
from products of a(1), a∗(1) terms which carry a net angular momentum m = 1. The only
way to have this at quadratic order is to have one a(1) or a∗(1) field which carries no angular
momentum, m = 0, and is therefore proportional to bz, and one which carries angular
momentum m = ±1, and is thus proportional to bR or bL. This explains why Eq. (H.16),
and consequently also fslide, have two mixed contributions proportional to bzbR and
bzbL, but no contributions proportional to b2

z or b2
L, b

2
R. Thus, we need a tilted magnetic

field b1(t) = (b⊥, bz), b⊥, bz > 0, in order to obtain a finite translational motion of the
skyrmion at order O(ϵ2). The resulting skyrmion speed is proportional to a product of the
out-of-plane and in-plane components of the driving field, vslide ∼ bzbR/L. It is interesting
to contrast this with the Archimedean screw, where we saw that ωscrew ∼ b2

L, b
2
R, meaning

that a perpendicular driving field b1,⊥(t) was sufficient to activate the Goldstone mode.
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Figure 3.5 Comparison between analytically predicted (red smooth curves) and numeri-
cally extracted (blue dots, data from mumax3) second order skyrmion velocities vslide
for a system with damping α = 0.03, fixed static magnetic field b0 = 1, phase difference
δ = 0 and γ < 0. (a) Skyrmion speed vslide for out-of-plane, bz = 0.01, and right-polarised
in-plane, bR = 0.01, bL = 0, driving. Both the breathing mode and Kittel mode are
resonantly excited. (b) Skyrmion speed vslide for out-of-plane, bz = 0.01, and left-polarised
in-plane, bR = 0, bL = 0.01, driving. Only the breathing mode is resonantly excited, and
vslide is about an order of magnitude smaller on-resonance than in panel (a). (c) Angle
β between vslide and the x-axis for out-of-plane, bz = 0.01, and right-polarised in-plane,
bR = 0.01, bL = 0, driving. (d) Angle β for out-of-plane, bz = 0.01, and left-polarised
in-plane, bR = 0.01, bL = 0, driving.
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Using the previously calculated Fourier coefficients a(1)
0,±1, a

(1)
1,±1, a

(1)
−1,±1 for the first

order response, we evaluate fslide. Solving the simple 2 × 2 matrix equation Eq. (3.34),
we obtain values for the translational second order velocity of the skyrmion, vslide =
vslide (cos(β), sin(β)). In Fig. 3.5 we plot the resulting speed vslide and angle β of the
velocity vector for a range of driving frequencies, 0 < ω < 2. We do this for two different
polarisations of the in-plane field: purely right-polarised, bR = 0.01, bL = 0, panels a
and c), and a purely left-polarised, bL = 0.01, bR = 0, panels b and d), while keeping
the out-of-plane driving field component, bz = 0.01, constant. We also choose to set
the phase difference (see Eq. (3.1) for the definition) to zero, δ = 0. For these in-plane
circularly polarised drives, the phase difference δ can actually be tuned to control the
direction of the skyrmion (see Eq. (H.16)) — a finite δ will rotate the angle β to β± δ for
left- and right-polarised in-plane driving, respectively. Purely left- and right- polarised in
plane field are in a sense the “normal modes” of the system. This means that the velocity
vector resulting from any mixed in-plane driving can be obtained by adding vectorially
the individual velocities resulting from the decomposed purely circularly polarised drives,
vslide(bR, bL) = vslide(bR = 0) + vR

slide(bL = 0). Thus we can obtain all the information
we need to make any further predictions already from Fig. 3.5. The first thing to note
is that for negative γ, right-polarised driving excites both the breathing and the Kittel
modes, whereas left-polarised driving excites only the breathing mode. As a consequence,
the speed vslide is about an order of magnitude smaller on-resonance for left-polarised
driving compared to right-polarised driving. The second thing to note is that we can also
tune the direction of motion of the skyrmion by varying the driving frequency ω, with
left-polarised driving affording more control, as for right-polarised driving the change in
β happens very fast in a small region around ωbr,, ωKit.. To test our analytical predictions
we also ran some numerical simulations on mumax3, driving a single Néel skyrmion
with a tilted oscillating field and tracking its centre rc

8. This data was only taken at
stroboscopic time intervals ∆t = 2π

ω
, so that vslide could be calculated simply as the slope

in time of rc, vslide = drc

dt
. The resulting data matches our analytical prediction very well.

To get an idea of the size of the velocity in experimentally relevant units we switch
back to dimensional quantities r = J̃

D̃
r̃, t = t̃ J̃M0

D̃2|γ| , giving V = v D̃|γ|
M0

. Using the MnSi
values D̃ = 2.46 × 10−4Jm−2, M0 = 1.52 × 105Am−1, γ = 1.76 × 1011T−1s−1 [44, 79, 80]
and v ∼ 10−4 for right-polarised driving on resonance, we obtain V ∼28 mms−1 for
a tilted right-polarised driving field with amplitude ∼10 mT. For comparison, this is

8We took rc to be the coordinates of the most negative spin in the output magnetisation data. To
get a more precise value of rc, we actually interpolated using two parabolas, one in the x and one in
the y directions, in the neighbourhood of the most negative spin. We then took the minimum of both
parabolas as the rc = (x, y) coordinates of the centre of the skyrmion.
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two orders of magnitude larger than the experimentally verified speed of skyrmions
driven by ultra-small electric currents, recorded using Hall effect measurements to be
Vc ∼0.2 mms−1 at twice the de-pinnning current 2jc [20]. Therefore, pinning is not
expected to dominate the dynamics and the “slide of the skyrmion” should be easy to
observe in an experiment!
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24 in just one bar (!) of A. Scriabin’s 1898 “Sonate-Fantaisie”

As it happens, fractions exist not just to torture small children in maths and music
class — they can also turn up in magnets. So-called fractional magnetic charges are
characterised by a non-integer topological charge Q. In this chapter, we will go on a hunt
for these mysterious creatures and try to understand more about their properties. We
will uncover fractional charges of both quantised

(
1
4 ,

1
6

)
and non-quantised (0.603, 0.23,

whatever you like..) Q, hiding at intersections of cubic domain walls, inside magnetic
skyrmions and vortices and at domain walls with a spontaneously broken symmetry. We
will also look at some of their superpowers and what distinguishes them from well-behaved
integer-valued magnetic charges, in particular their ability to scatter low energy electrons
and magnons with exceptional strength.

The work presented in this chapter was done in collaboration with Imane El Achchi,
Vivek Lohani and Achim Rosch [81].
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4.1 Definition & Examples

In this final chapter, our protagonist is the topological charge Q, a quantity we already
met briefly in Sec. 1.4 and defined in Eq. (1.16). There we saw examples of objects
with integer Q: the ferromagnet with Q = 0 and the Néel and Bloch skyrmions with
Q = −1, and how they could be represented as stereographic projections from a 2-sphere
onto the 2D plane, see Fig. 1.1c and 1.2 v),vi). In both cases the magnetic textures
covered the entire sphere, from north pole to south pole. What distinguishes fractional
topological charges from integer charges is that they cannot be represented in this way,
i.e. — they cover only a fraction of the 2-sphere. Consider Fig. 4.1, where we represent
three different topological textures — an antiskyrmion, an antimeron and a fractional
antivortex (we chose the anti-versions for all three as they result in a positive Q) — on
both a 2-sphere and on the 2D plane. While the antiskyrmion magnetisation covers the
entire sphere once, the antimeron covers only half of it and the fractional antivortex an
even smaller fraction. The key distinguishing feature between these types of textures is
the boundary condition at x, y = ∞. For the antiskyrmion it is single-valued, M̂z = 1,
whereas for the antimeron and fractional vortex it is multi-valued, M̂2

x + M̂2
y = const..

This makes representing the antimeron and fractional antivortex on the full area of the
sphere impossible, as it would require a multi-valued magnetisation M̂ at the pole which
maps to x, y = ∞1. In terms of realisation, it has been shown that (anti)merons are one
of the leading instabilities for (anti)skyrmions to decay into when the stabilising external
magnetic field B0ez is decreased [82], with each skyrmion decaying into two identical
merons to keep the topological charge Q = −1 constant. Recently, pairs of oppositely
charged (anti)merons have also been created and observed experimentally in Py films [83].
The fractional (anti)vortex could be realised for instance in a system with an out-of-plane
external magnetic field and easy-plane anisotropy, with free energy density

F = J̃
(1

2∇iM̂j∇iM̂j − b0M̂z + κuM̂
2
z

)
, (4.1)

where we have defined the parameters b0 = M0B0
J̃

, κu = Kc

J̃
, which have dimension

1/length2. As the potential energy density terms in Eq. (4.1) are independent of the
azimuthal angle φ, the minimum energy configuration M̂min lies on a circle with constant
nz = cos(θ0), and it is easy to show that the minimum potential energy is obtained when
cos(θ0) = b0

2κu
. Assuming that at the edges of the sample, x, y = ∞, the magnetisation

1in this case the South Pole. We switched around the pole convention in Fig. 4.1 compared to the
standard one used in Fig. 1.1c and 1.2 to get a clearer picture, as otherwise the magnetisation would
have mostly been on the bottom of the sphere for the meron and fractional vortex!
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(a) Antiskyrmion (b) Antimeron (c) Fractional Antivortex

2Q /∈ ZQ = 1/2Q = 1

Figure 4.1 Representation of integer and fractional topological magnetic textures in
2D and on a 2-sphere. (a) Antiskyrmion. Q = 1 ∈ Z (note the sign change compared
to the normal skyrmions in Fig. 1.1c v),vi)!). The magnetisation M̂ covers the entire
sphere. The boundary condition is single-valued, M̂z = 1. (b) Antimeron. Q = −1

2 /∈ Z,
but 2Q ∈ Z. M̂ covers exactly half of the entire sphere. The boundary condition is
multi-valued, M̂2

x + M̂2
y = 1. (c) Fractional Antivortex. Q = 1

2

(
1 − b0

2κp

)
, 2Q =/∈ Z. M̂

covers less than half of the entire sphere, and the boundary condition is multi-valued,
M̂2

x + M̂2
y = 1 − b2

0
4κ2

u
. (Figure made by Vivek Lohani.)

adopts this minimum energy configuration and the azimuthal angle φ spans the full range
(0, 2π), Q is simply given by the area of the enclosed spherical cap,

Q(anti)vortex = ∓ 1
4π

∫ 2π

0
dφ
∫ θ0

0
dθ sin(θ) = ∓1

2

(
1 − b0

2κu

)
, (4.2)

where the sign is negative for vortices and positive for antivortices. If there is no external
magnetic field, b0 = 0, we get back our (anti)meron with Q = ∓1

2 . Here we have done
the most straightforward spin interpolation for a boundary vortex configuration. For
more exotic examples see [84], where the authors investigated so-called screw dislocations
and the resulting non-integer topological charges.

While the fractional vortex is a nice theoretical object to demonstrate the concept of
fractional topological charges, it is not the easiest thing to realise experimentally, as it
involves controlling the boundaries of the sample in a very specific way to obtain the
required spin interpolation. Luckily, we were able to find some more experimentally-
friendly systems which also host fractional charges. We discuss these next.
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Figure 4.2 Fractional charges in magnets with cubic anistropy. (a) and (b) Potentials (in
M̂-space) for κc > 0, κc < 0, respectively, see Eq. (4.3) for the definition of V (M̂). The
easy/medium/hard axis directions are indicated by green/blue/red dots. (c) Meeting
point (in real space) between three domains (1, 0, 0), (0, 0, 1) and (0, 1, 0) for κc = 0.05.
Colour code indicates the magnitude of the nz component: green for nz = 0, dark blue for
nz = +1. (d) Meeting point between four domains 1√

3(±1,±1, 1) for κc = −0.05. Colour
code as in (c). (e) and (f) Representation of magnetisation interpolation in M̂ space
of the magnetisation shown in panels (c) and (d). In the case κc > 0 M̂ interpolates
directly from (1, 0, 0) to (0, 0, 1) via (1, 0, 1), etc. and therefore covers 1/8 of the unit
cube, resulting in Q = −1/8. In the case κc < 0 M̂ interpolates directly from (1, 1, 1) to
(1,−1, 1) via (1, 0, 1), etc. and covers 1/6 of the. cube, yielding Q = −1/6. The negative
sign results from the magnetisation winding in the opposite sense (clockwise) as one
moves on an anticlockwise loop around the origin in the real space space representation
in panel (c), (d). (g) and (h) Representations of the topological charge in real space for
the cases κc > 0, κc < 0. Most of the charge is concentrated in the region where all three
or four domain walls meet.
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4.1.1 Meeting of Domains in Cubic Magnets

To lowest order, a magnet with cubic magnetocrystalline anisotropy can be described by
the following free energy,

F = J̃

2 ∇iM̂j∇iM̂j −Kc

(
M̂4

x + M̂4
y + M̂4

z

)
+Kd(M̂2

xM̂
2
y M̂

2
z ). (4.3)

The constants Kc, Kd determine the easy, medium and hard axes of the magnetisation,
which correspond to the directions of lowest, medium and highest energy, respectively.
Owing to the cubic symmetry, the three possible orientations for these axes are (±1, 0, 0),
(±1,±1, 0) and (±1,±1,±1), and permutations thereof. To simplify matters, we will set
Kd = 0, which has the effect of fixing the direction of the medium axis to (1, 1, 0) and its
permutations. Meanwhile, the directions of the easy and hard axes are determined entirely
by the sign of Kc

2. We define κc = Kc/J̃ , from which we obtain the natural length scale
l ∼ 1/√κc in the system. In Fig. 4.2, panels (a) and (b), we plot the potential defined in
Eq. (4.3) for the cases κc > 0, κc < 0, as a function of M̂x, M̂y, M̂z. We conclude from
these plots that the easy and hard axes for κc > 0 are (1, 0, 0), (1, 1, 1) respectively, and
vice versa for κc < 0. In a cubic magnet, magnetic domains, where the magnetisation
aligns with one of the easy axis directions, will form naturally. Suppose we have a 1D
system with two different domains at the boundaries, let’s say M̂(x = −∞) = (1, 0, 0)
and M̂(x = +∞) = (0, 1, 0) for the case κc > 0 — what will happen then to M̂ in
between these two domains? To find out, we need to solve the Euler Lagrange equations
resulting from Eq. (4.3). Looking at the shape of the potential, it is logical to assume
that θ = π

2 stays constant throughout the interpolation, as that is the path of minimum
energy between (1, 0, 0) and (0, 1, 0). Thus, we obtain an equation of motion purely in
terms of the φ angle, d2φ

dx2 = sin(4φ), also known as the Sine-Gordon equation [86]. This
equation admits the so-called kink and and anti-kink solutions φ(x) = arctan

(
e±2√

κcx
)
.

Er conclude that the magnetisation interpolates smoothly between the two domains
φ(x = −∞) = 0, φ(x = +∞) = π/2, with most of the change happening in the region
− 1

2√
κc
< x < 1

2√
κc

. This is something we could also have guessed just dimensional
analysis. One can understand this intuitively as follows: if κc ≫ 1 then M̂ wants to stay
close to the easy axis directions as long as possible, so the domain wall is very thin. As κc

is reduced, there is less energy penalisation for drifting away from the easy axis directions,
and so the domain wall thickens. An analogous calculation can also be done for the κc < 0
case, one just has to add an extra minus sign to one of the sides in the Sine-Gordon

2for a full discussion with Kd ̸= 0, see [85]. If both couplings are finite, the direction of the easy,
medium and hard axes depends on their ratios as well as signs.
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equation and change the boundary conditions to, e.g., M̂(x = −∞) = (1, 1, 1) and
M̂(x = +∞) = (1,−1, 1). The results of this analysis are qualitatively the same as in
the κc > 0 case.

Now, what happens when we upgrade from a 1D system, where two domains at
x = ±∞ meet, to a 2D system, where more than two domains can coexist? This
is exactly the situation depicted in Fig. 4.2, panels (c) and (d) (data from mumax
simulations). In panel (c) we have placed three domains (1, 0, 0), (0, 0, 1) and (0, 1, 0) on
the left, bottom and right of the sample, fixing about 25% of the spins along each edge,
with a width corresponding to about 5% of the total width. In (d) we have done the
analogous thing, but with four domains, (1, 1, 1), (1,−1, 1), (−1,−1, 1) and (−1, 1, 1).
These domains are also depicted as green points on a cube in spin space in panels (e) and
(f). After relaxing the system, 1D domain walls, indicated by dashed lines in panels (c)
and (d), form between the different domains. The spin interpolation inside the domain
walls happens along straight lines via the medium axes (±1,±1, 1) in spin space, as
shown in panels (e) and (f). Thus, the topological charge Q, represented by the green
area enclosed by these lines, is quantised. It is given by Q = −1/8 for κc > 0 and
Q = −1/6 for κc < 0 (the sign is negative because the magnetisation winds clockwise as
we move anticlockwise around the edge of the system). In panels (g) and (h) we finally
show the spatial distribution of the topological charge density (integrand of Eq. (1.16))
in 2D, and see that it is mostly concentrated around the region where the three or four
domain walls meet.

4.1.2 Exploding Skyrmion

We already mentioned that a skyrmion can decay into two identical merons, but could it
decay into anything smaller? In this subsection we will show that by adding some cubic
anistropy to the system, it is indeed possible to get it to decay into smaller quantised
charges of Q = −1

4 . We use the following free energy density,

F = D̃2

J̃

(1
2∇iM̂j∇iM̂j + ϵijkM̂i∇jM̂k − b0M̂z − κ̃c(M̂4

x + M̂4
y + M̂4

z )
)
, (4.4)

where we rewrote everything inside the brackets in dimensionless parameters by defining
b = M0B0J̃/D̃

2, κ̃c = KcJ̃/D̃
2 and the length scale 1/q = J̃/D̃. Using mumax3, we

prepare a system where a skyrmion placed at the origin, with parameters b0 = 0.8,
κ̃c = 3.2. After relaxing the system, the skyrmion remains in the middle with a somewhat
shrunken radius (a consequence of using a relatively high value of κ̃c), which suggests
that the parameters b0,κ̃c we have chosen are stable. We then suddenly switch off
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(a) (b) (c) (d)

(e) (f) (g) (h)

t=0 t=7 t=25 t=141

Figure 4.3 A skyrmion with Q = −1 is prepared in a system with cubic anistoropy,
κ̃c = 3.2, and a stabilising magnetic field, b0 = 0.8. Suddenly turning off the magnetic
field, b0 = 0, makes the skyrmion unstable, and it decays into four topological sub
particles of charge Q = −1

4 . Panels (a)–(d) show the magnetisation, with the colour
describing the value of the M̂z component: blue for M̂z = +1, green for M̂z = 0 and
red for M̂z = −1. Panels (e)–(f) show the spatial distribution of the topological charge
density.

the stabilising magnetic field, b0 = 0. In Fig. 4.3 we show how the magnetisation,
panels (a)–(d), and distribution of topological charge, panels (e)–(h), are affected by
this quench. Looking at panels (e)–(h), we see that over time the skyrmion decays into
four sub-particles with charge Q = −1

4 . Looking at the panels (a)–(d), we conclude
that each of these Q = −1

4 charges is concentrated at the meeting of two domain walls.
In each of these domain walls, φ = (0, π/2, π, 3π/4) stays constant, but θ interpolates
between 0 and π, with the in-plane magnetisation in the two neighbouring domain walls
differing by ∆φ = π/2. We also tried a similar experiment with negative κ̃c. In this case,
the domains become (±1,±1,±1), so that following a similar domain wall argument
we would expect six Q = −1

6 particles to form when the skyrmion explodes. However
this is not what happens — instead, positive and negative Q = −1

6 charges proliferate
(although always such that there are six more negative ones than positive ones to conserve
Qtot = −1) in the system, resulting in a very messy-looking magnetisation. The reason
for this is that for κ̃c < 0, we no longer have an easy axis that aligns nicely with the
background ferromagnetic magnetisation M̂FM = (0, 0, 1). Instead the system has to
“choose” between the four closest identically-likely possibilities, (±1,±1, 1), and thus gets
“confused” about how to form its domain walls.
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M̂z

Figure 4.4 (a) Potential V (M̂) plotted for Eq. (4.5), with b0 = 0.35, κ̃p = 1.25, κ̃u = 2.5.
There are four energy minima, with coordinates φ = π

4 ,
3π
4 ,

5π
4 ,

7π
4 , cos(θ0) = 0.137. (b)

Asymmetric domain walls (red and blue dotted lines) between the φ = π
4 and φ = 5π

4
domains. (c) Magnetisation plot showing the fractional defect, which forms at the
meeting point between the two asymmetric domain walls from (b). To plot the domain
wall interpolation in (b) we used the spins located along the red/blue dashed lines
in panel (c). Due to the asymmetry of the domain walls, the defect has fractional,
non-quantised topological charge Q = −0.603. The system is translationally symmetric
in the y direction, but not in the x direction. Magnons with ki = (k, 0) are pumped
into the system by wiggling the spins on the left boundary with a frequency ω(k) in a
spatially uniform manner. As the magnons scatter off the defect they transfer momentum
∆k = ki − kf to the defect, generating a force which makes it move.

4.1.3 Trapping by Domain Walls with Broken Symmetry

So far, the fractional magnetic charges we have generated share the unfortunate property
that they are pretty difficult to control externally. In the case of the cubic magnet
domain walls, we would have to move one of the domains to move the topological charge,
which is energetically costly. In the case of the exploding skyrmion, the Q = −1

4 charges
forming at the intersections of two domain walls naturally move apart by themselves
over time. This comes about because the domain walls have negative energy, so that it is
energetically favourable for the system to make them as long as possible. Again, this
is something we have little control over. In this subsection, we show how to generate a
topological defect which is fractionally charged but also, at least in theory, mobile and
easy to manipulate.

The idea is to use the following free energy density,

F = D̃2

J̃

(1
2∇iM̂j∇iM̂j + M̂z∇ · M̂ − M̂ · ∇M̂z + κ̃p(M̂4

x + M̂4
y ) + κ̃uM̂

2
z − b0M̂z

)
,

(4.5)
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where in addition to the usual Heisenberg term we included some interfacial DMI as part
of the spatial gradient terms. The potential energy terms include in-plane anisotropy,
κ̃p(M̂4

x + M̂4
y ), uniaxial anisotropy, κ̃uM̂

2
z − b0M̂z, and a Zeeman term due to an external

magnetic field, −b0M̂z, with the dimensionless couplings defined as κ̃c = KcJ̃/D̃
2, κ̃p =

KpJ̃/D̃
2, and b0 = M0B0J̃/D̃

2. For κ̃p, κ̃u > 0 the potential energy has four equal energy
minima at φn = π

4 + nπ
2 , n ∈ 0, 1, 2, 3, with θ0 determined by the relative sizes of b0, κ̃p, κ̃u.

In Fig. 4.4a we plot the potential energy for the parameters b0 = 0.35, κ̃p = 1.25, κ̃u = 2.5.
Suppose we take a 1D system and fix the magnetisation at x = ±∞ to point in the φ0 and
φ2 minimum energy directions, respectively, M̂(x = ∞) = ( 1√

2 sin(θ0), 1√
2 sin(θ0), cos(θ0))

and M̂(x = −∞) = (− 1√
2 sin(θ0),− 1√

2 sin(θ0), cos(θ0)). This time, the interpolation
between the two boundaries can happen via two different energy degenerate paths, shown
in Fig. 4.4b. The cause of this symmetry-breaking is the DMI term, which breaks the
chiral symmetry of the system. To see what happens in 2D, we prepare a system of size
−x0 < x < x0,−y0 < y < y0, where we again fix the spins on the two edges x = ±x0

to point in the same φ0 and φ2 minimum energy directions. In Fig. 4.4c we see that
between y = −y0 and y = 0, M̂ chooses to interpolate via the red path, but then at
around y = 0 it spontaneously switches to the blue path and remains this way until
y = y0. The blue region in Fig. 4.4c, where the interpolation switches from the red path
to the blue path, results in a “trapped” topological charge of Q ≈ −0.603. If the system
were infinite in the y direction it would be translationally invariant in that direction, as
the two domain walls are degenerate. Thus we have a Goldstone mode which we could
potentially activate to set the fractional defect into motion, something we will try to
exploit in Sec. 4.4.

4.2 Emergent Electromagnetic Fields

Back in Sec. 1.4.1, we claimed that electrons traversing a topologically non-trivial
magnetisation experience emergent B and E fields, given in Eq. (1.17). This is in fact
also true for magnons, but they experience emergent fields twice as large as electrons, so
that we should update Eq. (1.17) to

Ee
i = s

~
|e|M̂ · (∂iM̂ × ∂tM̂),

Be
i = s

~
|e|

1
2ϵijkM̂ · (∂jM̂ × ∂kM̂),

(4.6)
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where s = 1
2 for the electron and s = 1 for the magnon. The theory for this is well-known

and provided in detail for example in [87] for the magnons and [88] for the electrons. The
similarity comes about because for both particles their spin vector instantaneously aligns
with the local magnetisation, Se,Sm ∥ M̂, as the particles move through the system. In
the case of the electrons this is because the exchange coupling −JHM̂ · σ is the dominant
energy scale of the system, while in the case of the magnons it is because magnons are by
definition the small excitations around the local magnetisation, M̂. Here we will briefly
derive the result for electrons, with the understanding that the calculation for magnons
is analogous. Let ψ = (c↑, c↓), ψ′ = (c′

↑, c
′
↓) be the original and rotated wavefunction

of the electron, respectively, where the spin axis of ψ′ is parallel to M̂. We can write
ψ′ = U−1ψ, where

U =

 cos(θ/2) − sin(θ/2)e−iφ

sin(θ/2)eiφ cos(θ/2)


 . (4.7)

In terms of ψ′, the kinetic energy (for the magnon, it would be the Heisenberg energy)
reads

1
2mψ′†U−1pµpµ(Uψ′) = 1

2mψ′†(pµ − i~U−1∂µU)2ψ′. (4.8)

This reminds us of minimal coupling, pi → pi − qAi for a charged particle with charge q.
The difference is that here we are dealing with two-component spinors ψ, rather than
one component fields, so that the effective gauge field sandwiching them, i~

q
U−1∂µU , is

a 2 × 2 “vector matrix”, rather than a one-component vector field. Only the diagonal
part3 of i~U−1∂µU is relevant for calculating the emergent electromagnetic fields. This
leads us to define the vector gauge field

Aµ = ± ~
|e|

1
2(1 − cos(θ))∂µφ, (4.9)

where the sign depends on the spin alignment of the electron’s spin axis with respect
to M̂: positive for c′

↑ (aligned) and negative for c′
↓ (anti-aligned). Most of the electrons

align with M̂, as this is energetically much more favourable, so we suppress the − sign.
From this gauge field we can easily obtain the electric and magnetic fields Eq. (4.6) via
the EM tensor defined in the usual way, Fµν = ∂µAν − ∂νAµ.

3For the magnon the corresponding thing to do would be to take only the Lz component of the
i~U−1∂µU object. In this case U is a 3 × 3 rather than 2 × 2 matrix, U = eiθ(− sin(φ)Lx+cos(φ)Ly) with
[Lj , Lk] = iϵijkLi.
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Figure 4.5 Ahoronov Bohm effect for electrons and magnons traveling in a magnetic
system with a localised topological charge, Q. Electrons experience a flux Φe = h

e
Q,

while magnons experience a flux Φm = 2h
e
Q.

4.3 Scattering from Fractional Charges

Let us now provide an argument for why scattering of low energy electrons and magnons
from fractional (as opposed to integer) charges is particularly strong. We use the setup
depicted in Fig. 4.5, for simplicity sending the radius of the cylinder rc → 0, where all the
topological charge is concentrated at the origin r = 0. This mimics the Aharonov-Bohm
setup, which was already solved in 1959 [89]. We can define the gauge field as Aχ = ~sQ

r
,

Ar = Az = 0, which gives the Schrödinger equation

~2

2m


− ∂2

∂r2 − 1
r

∂

∂r
+ 1
r2

(
−i ∂
∂χ

− sQ

)2

 = Eψ,

Expanding the wavefunction into angular momentum eigenstates, ψ = ∑
m e

imχψm(kr),
we can be reduce this to Bessel’s equation

r2∂
2ψm(r)
∂r2 + r

∂ψm(r)
∂r

+
(
k2r2 − (m− sQ)2

)
ψm(r) = 0 (4.10)

with k2 = 2mE/~2. The solution of this Bessel equation is the Bessel function of the
first kind, ψm(r) = J|m−sQ|(kr) (we throw away Y|m−sQ|(kr) as it blows up at r = 0,
which we don’t want). For large arguments, kr ≫ 1, the Bessel function has the
asymptotic form Jm(kr) =

√
2

πkr
cos
(
kr − |m|π

2 − π
4

)
. The phase shift, defined through

limkr≫1 ψm(kr) =
√

2
πkr

cos
(
kr + δm − |m|π

2 − π
4

)
, is given by

δm = π

2 (|m| − |m− sQ|) . (4.11)
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Phase shifts are important for calculations involving scattering. Following the convention
used in [72], we send in a stream of electrons or magnons from x = −∞ with momentum
k = (k, 0, 0)T onto the topological charge located at r = 0. As usual for scattering theory,
we assume that in the far field the resulting scattered wavefunction consists of a free part,
eik cos(χ)r, and a scattered part, eikr

√
r
f(χ). We can set this equal to the general solution of

the differential equation Eq. (4.10), ∑m cmψm(kr),

∑

m

cm

√
2
πkr

cos
(
kr + δm − |m|π

2 − π

4

)
≃ eikr cos(χ) + eikr

√
r
f(χ).

Using the plane wave expansion, ∑n i
nJn(kr)einχ, and comparing the coefficients of

ei(±kr+mχ), it is possible to solve for the unknown coefficients cm. Using those, we obtain
the following standard result for the scattering amplitude,

f(χ) = e−iπ/4
√

2πk
∑

m

eimχ
(
eiδm − 1

)
. (4.12)

The scattering cross-section is then given by dσ(χ)
dχ

= |f(χ)|2. We can also define the
following parallel and perpendicular transport scattering cross-sections,

σ∥ =
∫
dχ(1 − cos(χ))dσ

dχ
= 2
k

∑

m∈Z

sin2 (δm+1 − δm) ,

σ⊥ =
∫
dχ sin(χ)dσ

dχ
= 1
k

∑

m∈Z

sin (2(δm+1 − δm)) .
(4.13)

Using the formula in Eq. (4.11), all terms in the sum for σ∥,⊥ vanish if sQ ∈ Z. Physically
speaking, all integer flux can be gauged away and won’t scatter an incoming magnon
or electron. However, if sQ /∈ Z, then δ⌊sQ⌋ = π

2 (2⌊sQ⌋ − sQ) and δ⌊sQ⌋+1 = π
2sQ, so

the terms 1
k

sin2 (δm+1 − δm) = 1
k

sin2(πsQ) or 1
k

sin (2(δm+1 − δm)) = 1
k

sin(2πsQ) don’t
vanish, as long as sQ, 2sQ /∈ Z, respectively. If these conditions are fulfilled, σ∥ and σ⊥

can get really large for low energy particles, k → 0.

4.4 Magnon Engine

We now want to test the knowledge we gained about the scattering cross-sections σ∥

and σ⊥ in a concrete numerical experiment involving magnons. We know from the
analysis we just performed that 2Q /∈ Z in order to see any effects from scattering, so
we must avoid using a Q = 1

2 fractional charge. Luckily, the fractional defect we found
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(a) t = 0 (b) t = 100T (c) t = 200T (d) t = 300T

Figure 4.6 Fractional defect (parameters b0 = 0.62, κ̃p = 2.22, κ̃u = 4.44, α = 0.1) driven
by magnons with ω = 3.65 (dimensionless units). The defect moves both left and down
over time, and loses its translational invariance in the y direction. Time t is counted in
units of the time period T = 2π

ω
.

in Fig. 4.4 had Q = −0.603, so it fits the bill nicely. By simultaneously wiggling all
the spins in the region x = −x0,−y0 < y < y0 at the frequency ω(k) = ϵ(k)/~, where
ϵ(k) is the dispersion of the magnons, we pump magnons with momentum ki = (k, 0)
into the system. As the magnons scatter off the topological defect, their momentum
changes by ∆k = kf − ki = k(cos(χ) − 1, sin(χ))4, so that by conservation of momentum
dP = −~∆k is transferred to the defect. Assuming that the magnons are being pumped
at a rate Nm−1s−1, there will be Ndσ magnons being scattered into the differential angle
dΩ per second. This generates a differential force dFscatt. = −N(dσ∥, dσ⊥)~k on the
defect. Integrating dFscatt. over all polar angles we obtain the total scattering force,

Fscatt.(k) = −

σ∥(k)
σ⊥(k)


N~k. (4.14)

Assuming that the fractional defect retains its shape and only its translational Goldstone
mode is activated in the ensuing dynamics, we can obtain the velocity of the defect by
solving the 2D Thiele equation, Eq. (1.20). The general solution for the defect’s velocity

4Here we assume that scattering is elastic, kf = ki, which is valid if we assume that the energy of the
incoming magnon is much larger than the scattering potential of the defect (Born approximation)
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is then

Vx

Vy


 = 1

α2DxxDyy − α2D2
xy + (4πQ)2


 −αFxDyy + Fy (4πsgn(γ)Q+ αDxy)

−αFyDxx + Fx (−4πsgn(γ)Q+ αDxy)


 ,

(4.15)
where F = Fscatt. + Fwall is the total force acting on the defect, made up of the scattering
force, Fscatt., and any other additional forces from the sample walls, Fwall. For our defect,
Dxx scales with the system length in the y-direction, while Dxy,Dyy, Q are all constant.
Thus, Dxx ≫ Dxy,Dyy, Q for a long enough system. In addition, we will assume that
the scattering force in the x direction is compensated by an equal and opposite reaction
force from the wall, such that Fx = F scatt.

x + Fwall
x = 0. Under these two assumptions,

the velocity in Eq. (4.15) reduces to V = −F scatt.
y /(αDyy)ey. Thus, we would expect the

defect to start moving in the vertical direction with constant speed proportional to σ⊥

as we pump the system with magnons. Unfortunately, this theory is contradicted by the
reality of the numerical experiment, where we actually observe something else! The defect
indeed does move over time, but it does so diagonally rather than vertically, see Fig. 4.6.
In addition, the defect does not retain its translational symmetry in the y-direction,
but actually deforms, see Fig. 4.6. The intermediate domains which form in the upper
right and lower left of the sample are none other than the domains corresponding to the
remaining two easy axis directions, φ = 3π

4 and 7π
4 . The ensuing loss of translational

invariance means that the approximations Dxx ≫ Dxy,Dyy we used are no longer valid.
One possible way to remedy this is to use anisotropic exchange coupling, with J̃y ≫ J̃x.
This makes the system stiffer in the y-direction, and increases the chances of translational
invariance being preserved in that direction. Preliminary experiments with a system
where J̃y = 100J̃x are showing encouraging results, as the defect does not deform over
the course of the driving anymore. However, the fact that the defect’s mass tensor now
becomes non-isotropic means that more work is needed to give an accurate analytical
prediction for Fscatt..
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As all good things, this thesis too must come to an end. Before we part, dear reader, a
few words to summarise what we have achieved and what still remains to be done.

Our story began with the Archimedean screw, and how a nano-sized version of
it could be constructed using a chiral magnet. We saw that, by driving the conical
phase of the magnet with an oscillating GHz magnetic field B1(t), we could activate the
translational/rotational Goldstone mode of the system, resulting in rotational motion
reminiscent of the Archimedean screw, with rotational speed ωscrew ∼ |B1|2. We derived
this effect analytically and confirmed it with numerical simulations, obtaining a perfect
match between the two methods. We suggested how, by tuning external parameters such
as the polarisation and driving frequency of B1(t), or the strength of the static magnetic
field B0, the user could adjust the size and direction of ωscrew. Just like the Archimedean
screws we know from everyday life (turbines, drills, etc), the nano Archimedean screw
can be used as a tool to transport nano-materials such as spin and charge, resulting in
spin and electric currents. A calculation of the Archimedean screw-generated electric
current, taking into account the effects of disorder, yielded a current density estimate
on the order of 104 − 107Am−2 for the metallic chiral magnet MnSi — a huge number
which gives every hope of being experimentally detectable. In fact, an experiment to test
this is currently under way in the group of Prof. Pfleiderer in TUM. The plan is to drive
a sample of MnSi both parallel and perpendicular to the helical axis q and measure the
DC voltage generated by the electric current parallel to q. As the Archimedean screw
mode is only activated by perpendicular driving, B⊥(t) ⊥ q, a finite voltage should only
build up in the latter of the two setups. This provides an easy way, at least in theory, to
confirm the origin of the Archimedean screw effect.

To test the stability of the Archimedean screw we investigated what fate awaited small
magnonic excitations. Using Floquet spin wave theory, we calculated the eigenspectra (in
particular, the imaginary parts) of these magnons, and concluded that the Archimedean
screw solution would be stable up to a critical driving strength proportional to the Gilbert
damping in the system, Bcrit.

1 ∼ α. We saw in numerical experiments that upon increasing
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the driving strength, B1 > Bcrit.
1 , the system developed a new mode with incommensurate

frequency ωnew and momentum knew — the signature of a time quasicrystal. The ωnew and
knew found numerically corresponded exactly to the values calculated analytically for the
leading order magnon instability, confirming that this was indeed the correct theoretical
explanation for the effect. Actually, such magnon instabilities are pretty universal and
one could expect them to occur in other driven systems too. A possible extension would
be to do this same calculation for driven skyrmions, although it might be technically
much more challenging to implement, as we cannot use the same neat spatial Fourier
transform tricks there. Experimentally speaking, the detection of a monochromatic
frequency in the 100 − 1000 MHz range would be a smoking gun for identifying the time
quasicrystal instability.

After the conical state, we shifted our attention to skyrmions. We saw that, just like
for the Archimedean screw, the two translational Goldstone modes of a single skyrmion
could also be activated at quadratic order in B1, but only if the driving field was tilted,
B1(t) = (B1,⊥(t),B1,∥(t)). In the Thiele equation framework, such driving generates
a constant force fslide ∼ B1,∥B1,⊥ which results in a constant “sliding” velocity of the
skyrmion, vslide ∼ B1,∥B1,⊥. To calculate fslide we needed detailed knowledge of the first
order oscillatory response of the skyrmion. Using a semi-analytical approach we were
able to obtain this first order response in terms of the m = 0,±1 angular momentum
bound and scattering states of the skyrmion. The non-trivial treatment of damping and
the Kittel resonance of the ferromagnetic background made this a much more technically
challenging calculation than its analogue in the Archimedean screw project. Comparing
our analytically obtained vscrew with numerical simulations we again observed a perfect
fit. The success of the perturbative approach we used for both the Archimedean screw
and the sliding skyrmion gives us hope that it could be replicated in other magnetic
systems with Goldstone modes. For example, the skyrmion lattice has a Goldstone mode
involving a combined local spin and a global orbital angular momentum rotation of the
magnetisation about the z axis — it would only be natural to expect B1(t) to activate
this too. Using the well-known approximation of the skyrmion lattice as a three-pronged
node of helices propagating at 120° to each other, it might even be possible to develop
an analytical expression for the resulting rotational speed of the skyrmion lattice.

In the final part, we looked at fractional topological charges in two-dimensional
magnetic systems. We saw that such quantised charges could manifest themselves at the
meeting point between three or more magnetic domains in systems with cubic anistropy
(Q = −1

6 ,−1
8), or in the shrapnel of exploding skyrmions (Q = −1

4). By trapping some
(non-quantised) topological charge between two symmetry-broken degenerate domain



Conclusion and Outlook 101

walls, we were able to construct a system which could host a fractional charge, while
remaining translationally invariant in the direction perpendicular to the domain walls.
This implies the existence of a Goldstone mode in the direction parallel to the domain
walls. We tried to exploit the strong scattering properties of fractional charges to activate
this Goldstone by pumping the system with magnons. Unfortunately, the numerical
simulations for this experiment are not yet fully working as expected, probably due
to the translational symmetry which guarantees the Goldstone mode’s existence being
too sensitive to the driving. One idea we are currently trying out to better protect
the translational symmetry is stiffening the system preferentially in the direction of
translational invariance, for instance by using an anisotropic exchange constant. This is
showing promising numerical results, but an anisotropic theory to understand how this
modifies the forces pushing the defect still needs to be developed.

As always in science though, we can plot and plan all we like but nature dances to its
own tune. And the right idea is just as likely to be borne out of some craftily constructed
argument as it is to hit you in the head, like Newton’s apple, when you least expect it!
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Appendix A

Minimizing the Hamiltonian for the
Static Conical State

Substituting the conical spin parametrization Eq. (1.4), into the discrete Hamiltonian
eq. (1.1), we obtain

H0 = NJS2
[

− (cos2 θ + sin2(θ0) cos(qa))
︸ ︷︷ ︸

Heisenberg

− d sin2(θ0) sin(qa)
︸ ︷︷ ︸

DMI

− b0d
2 cos(θ0)︸ ︷︷ ︸
Zeeman

+ 1
2δNzd

2 cos2(θ0)
︸ ︷︷ ︸

Demag

]
,

(A.1)

where N is the total number of spins and we have switched to dimensionless units
d = D/J, b0 = γB0/JSd

2, δ = γ2µ0/d
2a3J inside the square braces. Note that for the

Heisenberg term we get two different contributions: one where the neighbouring spins
are parallel (if the bond joining them is parallel to êx/êy) and one where they are not (if
the bond is parallel to êz). Now we minimize Eq. (A.1) with respect to q, θ0

∂H

∂q
= NJS2 sin2(θ0)a[sin(qa) − d cos(qa)] = 0

=⇒ tan(qa) = d (A.2)
∂H

∂θ0
= NJS2 sin(θ0)a[2 cos(θ0)(1 − cos(qa) − d sin(qa)) + d2(b0 − δNx cos(θ0))] = 0

=⇒ cos(θ0) = b0
2
d2 (

√
1 + d2 − 1) + δNz

, (A.3)

where we have used sin(qa) = d√
1+d2 , cos(qa) = 1√

1+d2 to simplify the expression for
cos(θ0).





Appendix B

Dipolar Interactions: Further
Details

B.1 Derivation of Eq. (1.10)

The energy contribution due to dipolar interactions is

Fdip = −µ0

2

∫
d3rM(r) · Bdip,

Note the extra factor of 1
2 compared to, for example, energy contributions due to static

external magnetic fields. This is needed because dipolar field Bdip is itself a function
of M. Without the factor of 1

2 the effective dipolar field, ∂F
∂M would be double what it

should be due to this extra dependence. Inserting Bdip from Eq. (1.6) we have

Fdip = µ0

2

∫
d3r d3r′ Mi(r)Nij(r − r′)Mj(r′),

Nij(r − r′) =
(

δij

|r − r′|3 − 3(ri − r′
i)(rj − r′

j)
|r − r′|5

)
.

(B.1)

We want to Fourier transform Eq. (B.1) using the Fourier conventions

M(r) = 1
(2π)3

∫
d3kM(k)e−ik·r M(k) =

∫
d3rM(r)eik·r

Nij(r) = 1
(2π)3

∫
d3k Nij(k)e−ik·r Nij(k) =

∫
d3rNij(r)eik·r

δ(r − r′) = 1
(2π)3

∫
d3k e−ik·(r−r′) δ(k − k′) =

∫
d3re−ir·(k−k′).

(B.2)
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Here is a trick which will save us a lot of effort: Nij can actually be rewritten as a perfect
double derivative

Nij(r − r′) = − ∂

∂ri

∂

∂r′
j

1
|r − r′|

which means that its Fourier transform is just given by

Ñij = kikj F.T.
[

1
|r − r′|

]

Thus we just need to calculate the Fourier Transform of 1
r
. This is the same functional

form as for the Coulomb potential, or the limλ→0
Ae−λr

r
of the Yukawa potential and is

given by 4π
k2 using the convention Eq. (B.2). Finally we can write Eq. (B.1) in momentum

space as follows

Fdip = µ0

2

∫
d3r d3r′

∫ d3k1

(2π)3
d3k2

(2π)3
d3k

(2π)3Mi(k1)
kikj

k2 Mj(k2)e−i(k1+k)·re−i(k2−k)·r′

= µ0V

2

∫ V d3k

(2π3)
(M−k · k) (Mk · k)

k2 ,

(B.3)

For textures with discretised spatial wave-vectors (eg. the conical state, which has
only 3 wave-vectors k = 0,±q), we want the discrete, rather than continuous version of
Eq. (B.3). This is obtained by using the quantisation properties of wave-vectors and
changing

∫ V d3k
(2π)3 → ∑

k. These two steps finally result in Eq. (1.10).

B.2 Incorporating Dipolar Interactions into the LLG
for the Driven Conical Phase

The two dipolar energy terms given in Eq. (1.11) contribute the following total magnetic
field to the LLG

Beff, dip(r) = − ∂

∂M(r)
µ0

2


(M ·N · M) +

∑

k ̸=0

(Mk · k)(M−k · k)
k2




Tidying this up a little bit by using M = M0M̂ together with the reduced magnetic field
bi and strength of dipolar interactions δ introduced in the main text we obtain

beff, dip(r) = −δ

2
∂

∂M̂(r)


(M̂ ·N · M̂) +

∑

k ̸=0

(M̂k · k)(M̂−k · k)
k2


 (B.4)
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In the above equation, we can use the chain rule and the definition of the Fourier transform
for M̂ (same as for M(r),Mk in Eq. (B.2), divided by M0) to replace ∂

∂M̂ → ∑
k′ eik′·r ∂

∂M̂k′
.

Also, M̂ =
∫

d3rM̂(r) = M̂k=0 = M̂0. This allows us to write Eq. (B.4) purely in terms
of the Fourier components M̂k of magnetisation

beff, dip(r) = −δ

N · M̂0 +

∑

k ̸=0

e−ik·r(M̂k · k)k
k2


 . (B.5)

Now, for the driven conical phase Eq. (B.6) can be considerably simplified because of
our assumption that the system remains translationally invariant in the xy plane. This
means that only k ∥ ez wave-vectors are allowed, which simplifies the effective magnetic
field due to dipolar interactions to

beff, dip, conical phase(r) = −δ
(
N · M̂0 +

∑

k ̸=0
e−ikz(M̂k)z

︸ ︷︷ ︸
=nz(r)|no DC

êz

)
. (B.6)

Depending on the type of driving (parallel or perpendicular), the form of the dipolar
effective field is different. This occurs because the different driving directions force us to
adopt different ansatzes for M̂ at first and second order in ϵ.

For parallel driving these ansatzes are given by Eq. (2.5) and (2.10) – substituting
these into Eq. (B.6) suggests that the only non-zero contribution comes from the first
term originating from the demagnetisation fields. This is given by

beff, dip, conical phase,∥(r)êz = −δNz cos(θ)

= −δNz

(
c− ϵsθ1(t) − ϵ2

(
sθ2(t) + 1

2cθ
2
1(t)

)
+ O(ϵ3)

)
êz,

(B.7)
where we have expanded up to order ϵ2.
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For perpendicular driving, the effective dipolar field is more complicated. Using the
ansatzes Eq. (2.15) and (2.18) we obtain

(M̂0)x = ϵ

2

(
c
(
(θ(1,1)

1 + θ
(1,−1)
1 )eiωt + (θ(−1,1)

1 + θ
(−1,−1)
1 )e−iωt

)

− is
(
(φ(1,1)

1 − φ
(1,−1)
1 )eiωt + (φ(−1,1)

1 − φ
(−1,−1)
1 )e−iωt

) )

(M̂0)y = ϵ

2

(
ic
(
(θ(1,1)

1 − θ
(1,−1)
1 )eiωt + (θ(−1,1)

1 − θ
(−1,−1)
1 )e−iωt

)

+ s
(
(φ(1,1)

1 + φ
(1,−1)
1 )eiωt + (φ(−1,1)

1 + φ
(−1,−1)
1 )e−iωt

) )

(M̂0)z = c− ϵ2
(
c(θ(1,1)

1 eiωt + θ
(−1,1)e−iωt

1 )(θ(1,−1)
1 eiωt + θ

(−1,−1)
1 e−iωt) + sθ

(0,0)
2

)

(B.8)

and ∑

k ̸=0
e−ikz(M̂k)z = −ϵsθ1(z, t) − ϵ2cθosc.

2 (z, t). (B.9)

So, in contrast to the parallel driving case for perpendicular driving the effective dipolar
field now contains additional x, y component contributions from the demagnetisation
fields, as well as a non-zero contribution from the finite k term.

Below we list the contributions from dipolar interactions to the RHS of the first order
and second order equations of motion, Eq. (2.14) and (2.17), for a system driven in
the perpendicular direction. These are obtained by taking the cross product of M̂ with
Eq. (B.6) (with Eq. (B.8) and (B.9) substituted in), projecting onto ∂M̂

∂θ,φ
and Taylor

expanding in ϵ. Also we define N+ = Nx + Ny, N− = Nx − Ny, without which the
following ugly formulas would look even uglier.

First order:

RHSdip
1,θ = δeiωt

4

(
(N+e

iz −N−e
−iz)(icθ(1,1)

1 + sφ
(1,1)
1 )

+ (N+e
−iz −N−e

iz)(−icθ(1,−1)
1 + sφ

(1,−1)
1 )

)
+ h.c.

RHSdip
1,φ = −δeiωt

4

( (
c2N−e

−iz + eiz(4 − 12c2 + 9N+c
2)
)
θ

(1,1)
1

+
(
c2N−e

iz + e−iz(4 − 12c2 + 9N+c
2)
)
θ

(1,−1)
1

− ics
(
(N−e

−iz +N+e
iz)φ(1,1)

1 − (N+e
−iz +N−e

iz)φ(1,−1)
1

) )
+ h.c.

(B.10)
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Second order:

RHSdip
2,θ |0,0 = −δ

4


c(N+φ

(−1,−1)
1 +N−φ

(−1,1)
1 )θ(1,1)

1 + c(N+φ
(−1,1)
1 +N−φ

(−1,−1)
1 )θ(1,−1)

1

+
(
c(N+θ

(−1,−1)
1 +N−θ

(−1,1)
1 − 2isN−φ

(−1,1)
1 )

)
φ

(1,1)
1

+
(
c(N+θ

(−1,1)
1 +N−θ

(−1,−1)
1 + 2isN−φ

(−1,−1)
1 )

)
φ

(1,−1)
1


+ h.c.

RHSdip
2,φ|0,0 = −δ

4




+
(
N+cθ

(−1,−1)
1

(
6c2 − 6s2 − 1

)
+ 2N−c(c2 − s2)θ(−1,1)

1

+ i(N+φ
(−1,−1)
1 −N+φ

(−1,1)
1 )s

(
2c2 − s2

))
θ

(1,1)
1

+
(
N+cθ

(−1,1)
1

(
6c2 − 6s2 − 1

)
+ 2N−c(c2 − s2)θ(−1,−1)

1

+ i(N+φ
(−1,−1)
1 −N+φ

(−1,1)
1 )s

(
2c2 − s2

))
θ

(1,−1)
1

+
(
cs(N+φ

(−1,−1)
1 − 2N−φ

(−1,1)
1 ) − i(2c2 − s2)(N+θ

(−1,−1)
1 +N−θ

(−1,1)
1 )

)
sφ

(1,1)
1

+
(
cs(N+φ

(−1,1)
1 − 2N−φ

(−1,−1)
1 ) + i(2c2 − s2)(N+θ

(−1,1)
1 +N−θ

(−1,−1)
1 )

)
sφ

(1,−1)
1


+ h.c.− δs2(c+ s(1 −N+))θ(0,0)

2

(B.11)
Note that for the second order contribution, we have given only the DC frequency and
momentum component – |0,0 stands for ω = 0, k = 0. This is because this is the only
component relevant to the calculation of ωscrew.





Appendix C

Derivation of the Thiele Equation

The derivation of the Thiele equation from the LLG involves two steps: i) crossing
Eq. (1.18) with M̂ and ii) dotting the resulting expression with ∇iM̂ and integrating
over space. We also make use of the translational ansatz ˙̂M(r − R) = −(Ṙ · ∇)M̂.

Step i):

M̂ × ˙̂M = −γBeff + γ

|γ|α
˙̂M

=⇒ −sgn(γ)ϵjklM̂k∂mM̂lṘm + α∂mM̂jṘm = |γ|
M0

δF [M̂]
δM̂j

(C.1)

where we used M = M0M̂ and got rid of the (Beff · M̂)M̂ term because it is orthogonal
to M̂ × ˙̂M.

Step ii):

∫
d3r

[
−sgn(γ)∂iM̂jϵjklM̂k∂mM̂lṘm + α∂iM̂j∂mM̂jṘm

]
=
∫

d3r
|γ|
M0

δF [M̂]
δM̂j

∂iM̂j

=⇒ −sgn(γ)ϵinmGnṘm + DijṘj = − ∂F

∂Ri

(C.2)

with
Gk = 1

2
M0

|γ| ϵijk

∫
d3rM̂ · (∂iM̂ × ∂jM̂)

Dij = M0

|γ|
∫

d3r∂iM̂ · ∂jM̂.

(C.3)

Gk is a three component vector with k = {x, y, z}, while Dij is a 3 × 3 symmetric matrix,
also with i, j = {x, y, z}.
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For a static skyrmion, G = −4πM0
|γ| ez and D is a diagonal matrix,

D =




Dxx 0 0
0 Dyy 0
0 0 0


 ,

with Dxx = Dyy = M0

|γ| π
∫ ∞

0
r dr

(
θ′2

0 + sin2(θ0)
r2

)
.

(C.4)



Appendix D

Motion of a Damped, Non-Driven
Spin

It turns out that the motion in time of a damped non-driven spin can be easily obtained
by generalising the spin position vector ansatz which we always use for Larmor precession,
M̂ = (sin(θ0) cos(ωLt), sin(θ0) cos(ωLt), cos(θ0))T to allow θ, φ to be time dependent

M̂ =




sin(θ(t)) cos(φ(t))
sin(θ(t)) sin(φ(t))

cos(θ(t))


 . (D.1)

We now introduce two useful vectors ∂M̂
∂θ
, ∂M̂

∂φ
, which span the plane perpendicular to S

∂M̂
∂θ

=




cos(θ) cos(φ)
cos(θ) sin(φ)

− sin(θ)


 ,

∂M̂
∂φ

=




− sin(θ) sin(φ)
sin(θ) cos(φ)

0




Substituting Eq. (D.1) into the LLG Eq. (1.18) and projecting it onto ∂M̂
∂θ,φ

respectively
gives us two differential equations for φ(t), θ(t)

sgn(γ)θ̇ = α sin(θ)φ̇
αθ̇ + sgn(γ) sin(θ)φ̇ = −ωL sin(θ),

(D.2)

where we have already substituted in the Larmor frequency ωL = γB. We can easily solve
for φ(t) by substituting the first equation into the second, giving φ(t) = − 1

1+α2 sgn(γ)|ωL|t.
Substituting this back into either of the two equations gives us a differential equation in



122 Motion of a Damped, Non-Driven Spin

θ only, which can be integrated by parts
∫ dθ

sin(θ) = − α|ωL|
1 + α2

∫
dt.

Here we can use the standard integral
∫
dθ csc(θ) = − ln (cot(θ) − csc(θ)). Then, setting

the initial condition θ(t0) = θ0, and with the help of the trigonometric identities cot(θ) −
csc(θ) = cot(θ/2), we obtain

tan
(
θ(t)
2

)
= tan

(
θ0

2

)
e

− α
1+α2 |ωL|t

.

Thus we can describe the damped motion of a spin around a static field B = Bez via

θ(t) = 2 arctan
(

tan
(
θ0

2

)
e

− α
1+α2 |ωL|t

)

φ(t) = − 1
1 + α2 sgn(γ)|ωL|t.

(D.3)



Appendix E

Steady State Formulas for the
Archimedean Screw

In this appendix we list the main analytical expressions for the steady state response
of the system to perpendicular driving. As a reminder c = cos(θ0), ω is the driving
frequency, α is the damping, δ is the strength of dipolar interactions and Nx, Ny are
demagnetisation factors (Nz is already constrained to be Nz = 1 −Nx −Ny, so needn’t
be included as an argument). All the parameters are dimensionless as we are working
with reduced units.

In Sec. E.0.1 we list the θ(1,±1)
1 , φ

(1,±1)
1 coefficients of the time and space dependent

first order steady state response

θ1(z, t) = θ
(1,1)
1 ei(ωt+qz) + θ

(1,−1)
1 ei(ωt−qz) + h.c.

φ1(z, t) = φ(1,1)ei(ωt+qz) + φ(1,−1)ei(ωt−qz) + h.c.
(E.1)

At second order the steady state response also contains oscillating terms with Fourier space
and time components ±q,±2q and ±ω,±2ω. More importantly there is an emergent
linearly increasing term ωscrewt in φ2, so that we can write the general steady state
response as

θ2(z, t) = θosc.
2 (z, t) + θ

(0,0)
2

φ2(z, t) = φosc.
2 (z, t) + ωscrewt.

(E.2)

In Sec. E.0.2 we give the analytical forms of ωscrew and θ(0,0)
2 , both of which are necessary

for the Floquet stability analysis.



124 Steady State Formulas for the Archimedean Screw

E.0.1 First Order Response to Perpendicular Driving

The most general first order steady state coefficients with dipolar interactions, δ > 0,
and not necessarily symmetrical demagnetisation factors, Nx ̸= Ny, are given by

θ
(1,1)
1 = (−ωsgn(γ) − c(1 + iαω))

f(ω, α, c, δ,N+, N−)




bRδN−

(
iαω(1 + c2) + (1 − c2)δ − 2cωsgn(γ) + 2

)

+ bL

(
4
(
α2ω2 − 3iαω + ω2 − 2

)
+ c2

(
4iαω + δ(4 − iαω(N+ − 4)) + δ2N+ + 4

)

+ 2cδN+ωsgn(γ) + δ(−4iαω − iαωN+ − 2N+ − 4) − δ2N+

)


φ
(1,1)
1 = i (−iαω + c2(δ + 1) − cωsgn(γ) − δ − 2)√

1 − c2f(ω, α, c, δ,N+, N−)




bRδN−
(
iαω(1 + c2) + (1 − c2)δ − 2cωsgn(γ) + 2

)

+ bL

(
4
(
α2ω2 − 3iαω + ω2 − 2

)
+ c2

(
4iαω + δ(4 − iαω(N+ − 4)) + δ2N+ + 4

)

+ 2cδN+ωsgn(γ) + δ(−4iαω − iαωN+ − 2N+ − 4) − δ2N+

)


θ
(1,−1)
1 = (ωsgn(γ) − c(1 + iαω))

f(−ω, α, c, δ,N+, N−)




bLδN−
(
iαω(1 + c2) + (1 − c2)δ + 2cωsgn(γ) + 2

)

+ bR

(
4
(
α2ω2 − 3iαω + ω2 − 2

)
+ c2

(
4iαω + δ(4 − iαω(N+ − 4)) + δ2N+ + 4

)

− 2cδN+ωsgn(γ) + δ(−4iαω − iαωN+ − 2N+ − 4) − δ2N+

)


φ
(1,−1)
1 = −i (−iαω + c2(δ + 1) + cωsgn(γ) − δ − 2)√

1 − c2f(−ω, α, c, δ,N+, N−)




bLδN−
(
iαω(1 + c2) + (1 − c2)δ + 2cωsgn(γ) + 2

)

+ bR

(
4
(
α2ω2 − 3iαω + ω2 − 2

)
+ c2

(
4iαω + δ(4 − iαω(N+ − 4)) + δ2N+ + 4

)

− 2cδN+ωsgn(γ) + δ(−4iαω − iαωN+ − 2N+ − 4) − δ2N+

)


(E.3)
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where we have used the shortened notation N+ = Nx + Ny and N− = Nx − Ny. The
denominator f(ω, α, c, δ,Nx, Ny) is given by

f(ω,α, c, δ,N+, N−) = 4



− 1
4c

4
(
4iαω − 4δ + iαδω(N− −N+ + 4) + δ2(N− −N+) − 4

)
·

(
−4iαω + δ(4 + iαω(N− +N+ − 4)) + δ2(N− +N+) + 4

)

+ 1
2c

2
(

16
(
−iα3ω3 + 4α2ω2 − iα

(
ω2 − 5

)
ω + ω2 − 2

)

+ δ2
(
α2
(
N2

− + 16
)
ω2 + 2iα

(
N2

− + 16
)
ω + 2

(
N2

−ω
2 − 8

)

+N2
+(−ω)

(
α2ω + 2iα + 2ω

)
+ 4N+

(
α2ω2 + 6iαω + ω2 − 5

) )

+ δ4
(
N2

− −N2
+

)
+ 2δ3

(
N2

− −N+(−4iαω +N+ + 4)
)

+ 4iδ
(
N+

(
α3ω3 + 2iα2ω2 + α

(
ω3 + ω

)
+ 2i

)

− 4
(
α3ω3 + 5iα2ω2 + α

(
ω2 − 7

)
ω + i

(
ω2 − 3

)) ))

+
(

− 2
(
α2ω2 + 3iαω + ω2 − 2

)
+ δ

(
−2iαω + 1

2i(αω + 2i)(N− −N+) + 2
)

+ 1
2δ

2(N+ −N−)
)

·
(

− 2
(
α2ω2 + 3iαω + ω2 − 2

)
+ δ

(
−2iαω + 1

2(2 − iαω)(N− +N+) + 2
)

+ 1
2δ

2(N− +N+)
)


(E.4)
f(ω, α, c, δ,Nx, Ny) is quartic in ω and has four complex roots which are related to the
complex resonance frequencies of the system. Due to time translation symmetry these
four roots can be grouped into two pairs −E,E∗

− and −E+, E
∗
+, letting us write f(. . . ) as

f(ω, α, c, δ,Nx, Ny) = 16(1 + α2)2(ω + E−)(ω − E∗
−)(ω + E+)(ω − E∗

+). (E.5)

In the main text we simplify the geometry by setting the demagnetisation factors in
the plane perpendicular to the conical state equal to each other, i.e. Nx = Ny. This sets
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N− = 0 and the expressions in Eq. (E.3) and (E.4) simplify to

θ
(1,1)
1 = bL(−sgn(γ)ω + c(−1 − iαω))

4(1 + α2)(ω + E−)(ω − E∗
+)

θ
(1,−1)
1 = bR(sgn(γ)ω + c(−1 − iαω))

4(1 + α2)(ω + E+)(ω − E∗
−)

φ
(1,1)
1 = ibL (−iαω + c2(δ + 1) − csgn(γ)ω − δ − 2)√

1 − c24(1 + α2)(ω + E−)(ω − E∗
+)

φ
(1,−1)
1 = −ibR (−iαω + c2(δ + 1) + csgn(γ)ω − δ − 2)√

1 − c24(1 + α2)(ω + E+)(ω − E∗
−)

(E.6)

Where the complex energies E−, E+ are given by

E− = − 1
8 (α2 + 1)


4iαδ + 12iα− 4iαc2δ − 4iαc2 + iαc2δN+ + 2cδN+sgn(γ) + iαδN+

− sgn(γ)

√√√√
(

− 16
(
α2 + 1

) (
c2
(
4δ + δ2N+ + 4

)
− (δ + 2)(δN+ + 4)

)

−
(
α
(
c2(δ(N+ − 4) − 4) + δ(N+ + 4) + 12

)
− 2icδN+sgn(γ)

)2
)


E+ = − 1
8 (α2 + 1)


4iαδ + 12iα− 4iαc2δ − 4iαc2 + iαc2δN+ − 2cδN+sgn(γ) + iαδN+

− sgn(γ)

√√√√
(

− 16
(
α2 + 1

) (
c2
(
4δ + δ2N+ + 4

)
− (δ + 2)(δN+ + 4)

)

−
(
α
(
c2(δ(N+ − 4) − 4) + δ(N+ + 4) + 12

)
+ 2icδN+sgn(γ)

)2
)


(E.7)
We can expand the above energies up to first order in α, giving

E− = ϵ−

(
sgn(γ) − iα (c2(δ(N+ − 4) − 4) + δ(N+ + 4) + 12)

2(4ϵ− + cδN+)

)
+ O(α2)

E+ = ϵ+

(
sgn(γ) − iα (c2(δ(N+ − 4) − 4) + δ(N+ + 4) + 12)

2(4ϵ+ − cδN+)

)
+ O(α2)

(E.8)

where
ϵ± = 1

4

(√
(δN+ + 4) (c2(δ(N+ − 4) − 4) + 4(δ + 2)) ± cδN+

)
(E.9)

This expansion makes clear the fact that changing the sign of γ inverses the sign of the
real part of the complex eigenergies of the system, leaving the imaginary part unaffected.
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We expect this physically because the sign of γ controls the direction of precession while
having no effect on the rate at which the spins get damped.
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E.0.2 Second Order Response to Perpendicular Driving

At second order the general expression (δ ̸= 0 and Nx ̸= Ny) for ωscrew reads

ωscrew = ω




2bRbLcωsgn(γ)δN−

(
− 4

(
α4ω4 + α2

(
2ω2 + 3

)
ω2 + ω4 − 4

)

+ c4
(
4
(
α2ω2 + 3

)
+ δ

(
24 − α2(N+ − 4)ω2

)

+ 2δ4N+ + δ3(7N+ + 4) + 2δ2(3N+ + 8)
)

− 2c2
(
δ2
(
−2

(
α2 + 1

)
ω2 +N+

((
α2 + 1

)
ω2 + 13

)
+ 18

)

+ δ
(
−4

(
α2 + 1

)
ω2 +N+

((
α2 + 2

)
ω2 + 6

)
+ 28

)

+ 2δ4N+ + δ3(9N+ + 4) − 4
(
ω2 − 4

))

+ 2δ2
(
−2

(
α2 + 1

)
ω2 +N+

((
α2 + 1

)
ω2 + 10

)
+ 10

)

+ δ
(
−4

(
3α2 + 2

)
ω2 +N+

((
3α2 + 4

)
ω2 + 12

)
+ 32

)

+ 2δ4N+ + δ3(11N+ + 4)
)

+ (b2
R + b2

L)1
2cωsgn(γ)

(
16
((
α2 + 1

)2
ω4 +

(
5α2 − 4

)
ω2 + 4

)

− c4
(

− 16
(
α2ω2 + 1

)
− δ2

(
α2
(
N2

− + 16
)
ω2 + α2N2

+ω
2 − 8N+

(
α2ω2 + 6

)
+ 16

)

+ 2δ5
(
N2

− +N2
+

)
+ δ4

(
7N2

− +N+(7N+ + 8)
)

+ δ3
(
6N2

− + 2N+(3N+ + 16)
)

+ 8δ
(
−4α2ω2 + α2N+ω

2 + 3N+ − 4
))

+ 2c2
(

16
((

1 − 2α2
)
ω2 − 2

)
+ δ2

(
− 16

(
α2ω2 + 1

)
+N2

−

((
α2 + 2

)
ω2 + 6

)

+N2
+

((
α2 + 2

)
ω2 + 6

)
− 8N+

((
α2 + 1

)
ω2 − 7

) )
+ 2δ5

(
N2

− +N2
+

)

+ δ3
(
N2

−

((
α2 + 1

)
ω2 + 13

)

+N+
(
−4

(
α2 + 1

)
ω2 +N+

((
α2 + 1

)
ω2 + 13

)
+ 36

) )

+ δ4
(
9N2

− +N+(9N+ + 8)
)

− 8δ
((

6α2 − 2
)
ω2 +N+

(
ω2 − 4

)
+ 6

) )

− δ2
(

− 16
(
α2ω2 + 1

)
+N2

−

((
3α2 + 4

)
ω2 + 12

)

+N2
+

((
3α2 + 4

)
ω2 + 12

)
− 8N+

((
3α2 + 2

)
ω2 − 8

))
− 2δ5

(
N2

− +N2
+

)

− 2δ3
(
N2

−

((
α2 + 1

)
ω2 + 10

)

+N+
(
−4

(
α2 + 1

)
ω2 +N+

((
α2 + 1

)
ω2 + 10

)
+ 20

) )

− δ4
(
11N2

− +N+(11N+ + 8)
)

+ 8δ
((

8α2 − 4
)
ω2 +N+

(
α4ω4 + α2

(
2ω2 + 3

)
ω2 + ω4 − 4

)
+ 8

))

(E.10)
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+ 1
4(b2

L − b2
R)



(
− 3

(
N2

− −N2
+

)
δ6 − 8

(
2N2

− −N+(2N+ + 3)
)
δ5

+
((

3ω2 − 26
)
N2

− + 48
(
α2ω2 + 1

)
− 8N+

(
2α2ω2 + ω2 − 18

)
+N2

+

(
26 − 3ω2

))
δ4

+ 4
( ((

α2 + 2
)
ω2 − 3

)
N2

− + 80α2ω2 − 8ω2 −N2
+

((
α2 + 2

)
ω2 − 3

)

+N+
(
72 − 2

(
10α2 + 3

)
ω2
)

+ 80
)
δ3

+
(

−
(
N2

− − 16
)
α2
(
α2 + 1

)
ω4

+ 2
((
α2 + 6

)
N2

− + 384α2 − 72
)
ω2 +N2

+

(
ω2α4 +

(
ω2 − 2

)
α2 − 12

)
ω2

− 8N+
((
α4 + α2

)
ω4 + 2

(
9α2 − 1

)
ω2 − 27

)
+ 752

)
δ2

− 8
(
N+

((
α4 + α2

)
ω4 + 2

(
5α2 − 2

)
ω2 − 6

)
− 4

((
α4 + α2

)
ω4 + 6

(
4α2 − 1

)
ω2 + 23

))
δ

+ 16
((
α4 + α2

)
ω4 +

(
17α2 − 5

)
ω2 + 16

))
c4

−
(

− 3
(
N2

− −N2
+

)
δ6 − 4

(
5N2

− −N+(5N+ + 6)
)
δ5 +

(
−
((
α2 − 2

)
ω2 + 47

)
N2

−

+ 48
(
α2ω2 + 1

)
+N2

+

((
α2 − 2

)
ω2 + 47

)
− 8N+

((
α2 + 2

)
ω2 − 21

) )
δ4

+ 4
((
ω2 − 11

)
N2

− + 88α2ω2 − 16ω2 −N2
+

(
ω2 − 11

)
− 2N+

((
3α2 + 8

)
ω2 − 53

)
+ 88

)
δ3

+
( (

2α4ω4 + α2
(
6ω2 + 5

)
ω2 + 4

(
ω4 − 3

))
N2

−

− 8N+

((
α2 + 1

)2
ω4 + 3

(
α2 + 2

)
ω2 − 56

)

+ 16
((

3α4 + 4α2 + 1
)
ω4 +

(
62α2 − 20

)
ω2 + 59

)

−N2
+

(
2α4ω4 + α2

(
6ω2 + 5

)
ω2 + 4

(
ω4 − 3

)) )
δ2

− 8
(
N+

(
2
(
α4 + 3α2 + 2

)
ω4 +

(
3α2 − 4

)
ω2 − 20

)

− 4
((

5α4 + 6α2 + 1
)
ω4 +

(
39α2 − 16

)
ω2 + 34

) )
δ

+ 16
((

7α4 + 8α2 + 1
)
ω4 +

(
35α2 − 16

)
ω2 + 28

))
c2

+
(
δ2 + 4δ +

(
α2 + 1

)
ω2 + 4

)( (
N2

+ −N2
−

)
δ4

+
(
4N+(N+ + 2) − 4N2

−

)
δ3

+
(
−
(
α2ω2 + 4

)
N2

− − 8N+
(
ω2 − 4

)
+ 16

(
α2ω2 + 1

)
+N2

+

(
α2ω2 + 4

))
δ2

+ 8
((

8α2 − 4
)
ω2 +N+

((
α2 − 2

)
ω2 + 4

)
+ 8

)
δ

+ 16
((
α2 + 1

)2
ω4 +

(
5α2 − 4

)
ω2 + 4

))

− c6
(
δ2 + 4δ + 3

)( (
N2

+ −N2
−

)
δ4

+ 8N+δ
3 +

(
N2

+α
2ω2 −

(
N2

− − 16
)
α2ω2 +N+

(
8 − 8α2ω2

)
+ 16

)
δ2

− 8
(
(N+ − 4)α2ω2 − 4

)
δ + 16

(
α2ω2 + 1

))



(E.11)
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The general expression for θ(0,0)
2 is even more complicated, and not given here out of

laziness (contact me if you need it...). In the case Nx = Ny things simplify somewhat
and we obtain the following expression for ωscrew and θ

(0,0)
2 , where the energies E± are

the same as the ones we defined in Eq. (E.7)

ωscrew =2ω

b

2
R ((1 + α2)ω2 − c2 (δ2 + 4δ + 3) + δ2 + 4δ + 4 − 2sgn(γ)cω)

(ω − E−)(ω − E∗
−)(ω + E+)(ω + E∗

+)

− b2
L ((1 + α2)ω2 − c2 (δ2 + 4δ + 3) + δ2 + 4δ + 4 + 2sgn(γ)cω)

(ω + E−)(ω + E∗
−)(ω − E+)(ω − E∗

+)




(E.12)

θ
(0,0)
2 = −b2

R√
1 − c2(δNz + 1)(ω − E−)(ω − E∗

1)(ω + E2)(ω + E∗
2)




+ 2sgn(γ)ω
(
2
(
α2 + 1

)
ω2 + δ2 + 3δ + 2

)
− 2sgn(γ)c2ω

(
δ2 − δ(N+ − 6) + 5

)

+ c3
(
α2ω2 + 1

)
(1 + δNz) + c

( (
4α2 − 3

)
ω2 + δ

(
ω2
(
2α2 −N+ + 3

)
+ 2

)
+ 4

)


+ −b2
L√

1 − c2(δNz + 1)(ω + E−)(ω + E∗
1)(ω − E2)(ω − E∗

2)




− 2sgn(γ)ω
(
2
(
α2 + 1

)
ω2 + δ2 + 3δ + 2

)
+ 2sgn(γ)c2ω

(
δ2 − δ(N+ − 6) + 5

)

+ c3
(
α2ω2 + 1

)
(1 + δNz) + c

( (
4α2 − 3

)
ω2 + δ

(
ω2
(
2α2 −N+ + 3

)
+ 2

)
+ 4

)


(E.13)





Appendix F

Floquet Spin Wave Theory:
Auxiliary Calculations

F.1 Derivation of Eq. (2.26)

Let us first state a few identities between the basis vectors e3, e± which will be useful for
our calculation:

e3 · e3 = 1 e± · e± = 0
e± · e∓ = 1 e± · ė∓ = ±i cos(θ)φ̇
e± · ė± = 0 e± · (ė3 × e∓) = 0

e± · (ė± × e3) = 0 e± · (ė∓ × e3) = cos(θ)φ̇.

As suggested in the main text, the idea is to substitute the expansion Eq. (2.24) into
Eq. (1.22), retaining only terms linear in a, a∗, and then project this equation onto e∓.
Here we list the results of this operation for each term in Eq. (2.24)

e+ · M̂ = e∓ (ȧe− + aė+ȧ
∗e+ + a∗ė+) = i cos(θ)φ̇a+ ȧ

e+ ·
(

M̂ × ˙̂M
)

= e+ · ((ae− + a∗e+) × ė3 + e3 × (ė−a+ e−ȧ+ ė+a
∗ + e+ȧ

∗))

= iȧ− cos(θ)φ̇a
e+ · i{F (2), e−a+ e+a

∗} = i{F (2), a}
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Collecting these terms back together in the EoM and bringing the damping term over to
the LHS gives

sgn(γ)(ȧ+ i cos(θ)φ̇a) = i{F (2), a} − iα(ȧ+ i cos(θ)φ̇a).

Finally, multiplying both sides of the equation by sgn(γ)−iα
1+α2 gives us the equation of motion

shown in Eq. (2.26). Note that we have only shown the projection onto e+ here, the
analogous result for projection with e− can be obtained by simply taking the complex
conjugate of the result.

F.2 Derivation of MF

In this sub-appendix we derive the Floquet equation Eq. (2.34) as well as the Floquet
matrix MF . Using the definition in Eq. (2.33) for the Fourier transformed fields ãm

k , ã
∗m
k

we can write the back Fourier transform for a, a∗ as

a(r, t) =
∑

k∥,k⊥
m,j∈Z

ãm
jq+ke

−i(mωt+(jq+k∥)(z+vscrewt)+ρk⊥)

a∗(r, t) =
∑

k∥,k⊥
m,j∈Z

ã−m∗
−jq−ke

−i(mωt+(jq+k∥)(z+vscrewt)+ρk⊥),
(F.1)

where k = k∥+k⊥ and we switched to cylindrical coordinates r = (z,ρ)T , with ρ = (x, y)T .
Due to the cylindrical symmetry of the problem, the azimuthal angle between kx, ky has
no physical importance and can be set to zero. Also note that k∥ is only defined in the
first Brillouin zone, −q/2 < k∥ < q/2 due to the periodic nature of the underlying helical
texture.

Now we define the column vector Ψm(k) from which we then build the Floquet vector
ΨF (k), Eq. (F.3).

Ψm(k) =
(
. . . ãm

k−q, ã−m∗
−k−q, ãm

k , ã−m∗
−k , ãm

k+q, ã−m∗
−k+q . . .

)T
(F.2)

ΨF (k) =
(
. . . Ψ−1(k)eiωt, Ψ0(k), Ψ1(k)e−iωt, . . .

)T
(F.3)
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Let us now substitute Eq. (F.1) into the EoM Eq. (2.26). The LHS of this equation
requires calculating the time derivative of ȧ, ȧ∗,

ȧ =
∑

m,j∈Z

( ˙̃am
jq+k − (imω + (jq + k∥)vscrew)ãm

jq+k)e−i(mωt+(jq+k∥)(z+vscrewt)+ρk⊥) (F.4)

=
∑

m,odd l

(
Ψ̇m

l (k) − i(mω + (f(l)q + k∥)vscrewt)Ψm
l (k)

)
e−i(mωt+(f(l)q+k∥)z̃+ρk⊥)

ȧ∗ =
∑

m,j∈Z

( ˙̃a−m∗
−jq−k − (imω + (jq + k∥)vscrew)ã−m∗

−jq−k)e−i(mωt+(jq+k∥)(z+vscrewt)+ρk⊥) (F.5)

=
∑

m,even l

(
Ψ̇m

l (k) − i(mω + (f(l)q + k∥)vscrewt)Ψm
l (k)

)
e−i(mωt+(f(l)q+k∥)z̃+ρk⊥),

where we defined z̃ = z + vscrewt and f(l) =
⌊

1
2(l − lmax

2 )
⌋
. Here the index l designates

the lth component of the Floquet subvector vector Ψm
l (k). Due to two fields ãm

k and ãm∗
k

for each value of l lmax is always even. Formally l runs from lmin = 1 to lmax = ∞ but in
our perturbative scheme it needs to be cut off at lmax = 6 because we only include three
momentum copies q = −1, 0, 1. For the ȧ expression we sum over only odd l = 1, 3, 5,
whereas for the ȧ∗ expression we sum over even l = 2, 4, 6.

Let’s now look at the RHS of Eq. (2.26). The first term involves computing the
Poisson bracket {F (2), a/a∗}. As mentioned in the main text, F (2) is obtained by inserting
Eq. (2.24) into Eq. (1.3) and keeping only the terms quadratic in a, a∗. By using the
Fourier convention Eq. (2.33) we obtain F (2) in terms of the ãm

jq+k,ãm∗
jq+k operators. Here

are the ways in which these fields could be combined

ãm∗
j′q+kã

l
jq+k, ãm

j′q−kã
l
jq+k, ãm∗

j′q−kã
l∗
jq+k

Note how the perpendicular component k⊥ must be the same (up to a negative sign) in
both fields but the parallel component k∥ is allowed to differ by an integer multiple of
q, a consequence of the underlying helical texture which allows for Umklapp scattering.
Due to the presence of the a2, a∗2 terms a Bogoliubov transformation is required, and the
method we use implicitly accomplishes the same thing. By choosing appropriate values
for j, j′ in the expression Ψm∗(k)j′Ψl(kj) (definition given in Eq. (F.2)) one can obtain
all the combinations given in Sec. F.2. This makes it possible to write F (2) as

F (2) =
∑

k,n,m,l,j,j′
e−iωt(n−m+l)Ψm∗

j (k)F̃ n
jj′(k)Ψl

j′(k). (F.6)
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F̃ n
jj′ can be quite tricky to calculate – if you need help contact me for the Mathematica

code. Now, the Poisson bracket of F (2) with a, a∗ can also be written purely in terms of
the vector Ψm

i as

{F (2), a/a∗} =
∑

k,k′,j,j′,j′′
n,m,l,m′

e−iωt(n−m+l)e−i(m′ωt+(jq+k∥)z̃+ρk⊥)F̃ n
j′j′′(k′)

{
Ψm∗

j′ (k′)Ψl
j′′(k′),Ψm′

j (k)
}

=
∑

k,n,l,j,j′′
e−iωt(n+l)e−i((f(j)q+k∥)z̃+ρk⊥)


(−1)jF̃ n

jj′′(k)Ψl
j′′(k) +


F̃

n
j′,j+1(−k)
︸ ︷︷ ︸

j odd

− F̃ n
j′,j−1(−k)
︸ ︷︷ ︸

j even


Ψ−l∗

j′ (−k)




=2
∑

k,n,l,j,j′
(−1)je−iωt(n+l)e−i((f(j)q+k∥)z̃+ρk⊥)F̃ n

jj′(k)Ψl
j′(k),

(F.7)

where j is odd if we are evaluating the Poisson bracket with a and even for the Poisson
bracket with a∗. Above we used

{
Ψm

i (k),Ψn∗
j (k′)

}
= (−1)i−1δi,jδm,nδk,k′

{
Ψm

i (k),Ψn
j (k′)

}
= (δi∈odd:i,j−1 − δi∈even:i,j+1)δm,−nδk,−k′

{
Ψm∗

i (k),Ψn∗
j (k′)

}
= (δi∈even:i,j+1 − δi∈odd:i,j−1)δm,−nδk,−k′ .

(F.8)

and

F̃ n
i,j(k) =





F̃ n
j+1,i+1(−k) i odd, j odd
F̃ n

j−1,i+1(−k) i odd, j even
F̃ n

j+1,i−1(−k) i even, j odd
F̃ n

j−1,i−1(−k) i even, j even

, Ψ−l∗
j (−k) =





Ψl
j+1(k) j odd

Ψl
j−1(k) j even

. (F.9)

The second term on the RHS of Eq. (2.26) is the φ̇ cos(θ) term. This term, built
from the steady state solutions θ(z, t), φ(z, t), oscillates in both space and time with
components eimωt, einqz̃,m, n ∈ Z, and can be written as

φ̇ cos(θ) =
∑

m,n∈Z

e−i(mωt+nqz̃)gm
n . (F.10)

Finally, putting together Eq. (F.4), (F.7) and (F.10) and setting the coefficients of
the terms which oscillate at the same spatial and temporal frequencies equal to each
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other, we obtain an equation of motion for Ψm
j

Ψ̇m
j = i

(
(mω + (f(l)q + k∥)vscrew)δm,lδj,j′ + 2 (sgn(γ)(−1)j + iα)

1 + α2 F̃m−l
jj′ + (−1)jgm−l

j−j′

)
Ψl

j′ .

(F.11)

From this, we can define the matrix Mml used to build the Floquet matrix MF with

Mml
jj′ = −

(
(mω + (f(l)q + k∥)vscrew)δm,lδj,j′ + 2 (sgn(γ)(−1)j + iα)

1 + α2 F̃m−l
jj′ + (−1)jgm−l

j−j′

)

(F.12)

MF =




. . .

M1,1 M1,0 M1,−1

M0,1 M0,0 M0,−1.

M−1,1 M−1,0 M−1,−1

. . .




. (F.13)

The Floquet matrix MF is non-Hermitian, meaning its eigenvalues are complex. These
complex eigenvalues describe the energy and decay rate of the the spin wave excitations
on top of the Archimedean screw solution.

F.2.1 MF for the Non-Driven Conical State

When b1 = 0, only the ω = 0 Floquet zone needs to be included in MF , i.e. the matrix
M0,0. For spin waves which propagate purely parallel to the pitch of the helix, k ∥ q,
the matrix M0,0 can be decomposed into 2 × 2 block diagonal form,

M0,0 =




. . . 0 0 0 0
0 M(k∥ − q) 0 0 0
0 0 M(k∥) 0 0
0 0 0 M(k∥ + q) 0

0 0 0 0 . . .




with

M(k∥) = 1
2




s2(δ+1)+2k2
∥

sgn(γ)+iα
s2(δ+1)

sgn(γ)+iα

− s2(δ+1)
sgn(γ)−iα

− s2(δ+1)+2k2
∥

sgn(γ)−iα


 . (F.14)
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The two eigenvalues of M(k∥) are given in Eq. (2.36).
For spin waves with finite perpendicular momentum k⊥ M

0,0 acquires some off-diagonal
perturbations proportional to k⊥. For δ = 0, these are quite simple,




. . . P 0 0 0
P M(k∥ − q) + L P 0 0
0 P M(k∥) + L P 0
0 0 P M(k∥ + q) + L P

0 0 0 P
. . .




(F.15)

with

L = k2
⊥




1
sgn(γ)+iα

0
0 1

sgn(γ)−iα


 , P = sk⊥




1
sgn(γ)+iα

0
0 1

sgn(γ)−iα


 . (F.16)

If k⊥ ≪ 1 perturbation theory can be used to solve Eq. (F.15).



Appendix G

Electron Transport Calculation

In order to evaluate the expectation value of Eq. (2.59) up to second order in H1(t), we
must also expand the time-evolution operator U(+∞,−∞) up to second order

U(+∞,−∞) ≈ 1 − i
∫ ∞

−∞
H1(t)dt− 1

2

∫∫ ∞

−∞
T [H1(t)H1(t′)]dtdt′. (G.1)

The expression for U(−∞,+∞) is the same as Eq. (G.1) with the changes −i → i, T → T̃ ,
where T̃ is the anti-time ordering operator.

We define the electron Green’s function as usual through

Gσ(k, t′ − t) = −i⟨Tdσ,k(t′)d†
σ,k(t)⟩H0 = [−iθ(t′ − t)(1 − ⟨nσ,k⟩) + iθ(t− t′)⟨nk⟩] e−iϵk(t′−t)

= lim
δ→0

∫ ∞

−∞

dω

2π e
−iω(t′−t)

[
1 − ⟨nσ,k⟩
ω − ϵk + iδ

+ ⟨nσ,k⟩
ω − ϵk − iδ

]

︸ ︷︷ ︸
G(k,ω)

,

(G.2)
where we use the Fourier convention Gσ(k, ω) =

∫
dteiω(t−t′)Gσ(k, t−t′) to switch between

frequency and time domain. Here nσ,k = (1 + eβ(ϵσ,k−ϵσ,kF
))−1 is the Fermi distribution

function and ϵσk are the eigen-energies given in Eq. (2.58).

Figure G.1 Keldysh Contour
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On the Keldysh contour, one needs to define four such Green’s functions, which can
be split into two pairs: G++ and G−− which are same-branch Green’s functions and
G+− and G−+ which are opposite-branch Green’s functions, see fig. G.1 for a pictoral
representation. Below we list the four Keldysh Green’s function in the frequency domain

G++
σ (k, ω) = −(1 − nσ,k)

ω − ϵσ,k − i
2τ

− nσ,k

ω − ϵσ,k + i
2τ

G−−
σ (k, ω) = 1 − nσ,k

ω − ϵσ,k + i
2τ

+ nσ,k

ω − ϵσ,k − i
2τ

G+−
σ (k, ω) = 1 − nσ,k

ω − ϵσ,k + i
2τ

− 1 − nσ,k

ω − ϵσ,k − i
2τ

G−+
σ (k, ω) = nσ,k

ω − ϵσ,k − i
2τ

− nσ,k

ω − ϵσ,k + i
2τ

, (G.3)

We model the effects of disorder by a finite scattering rate 1/(2τ). To simplify the
calculation, we ignore the vertex corrections arising from disorder as for short-ranged
impurities they are expected to be minor.

We now have all the tools we need to evaluate ⟨Jz(t)⟩. Using Wick’s theorem, we
obtain

⟨Jz(t)⟩ ∝
∫∫ +∞

−∞
dt1dt2

∑

σ,k1,k2,k
k2

⊥(k∥ − σk0)e−iωscrew(t1−t2)·

⟨TCd
†
σ,k1(t1)dσ,k1+q(t1)d†

σ,k2+q(t2)dσ,k2(t2)d†
σ,k(t)dσ,k(t)⟩ + h.c.

(G.4)

= 1
i

∑

σ,k
k2

⊥(k∥ − σk0)
∫∫ +∞

−∞
dt1dt2e

−iωscrew(t1−t2)

[
G−−

σ (k, t− t1)G−−
σ (k, t2 − t)G−−

σ (k + q, t1 − t2)

+G−−
σ (k, t1 − t)G−−

σ (k, t− t2)G−−
σ (k − q, t2 − t1)

+G−+
σ (k, t− t1)G+−

σ (k, t2 − t)G++
σ (k + q, t1 − t2)

+G+−
σ (k, t1 − t)G−+

σ (k, t− t2)G++
σ (k − q, t2 − t1)

−G−+
σ (k, t− t1)G−−

σ (k, t2 − t)G+−
σ (k + q, t1 − t2)

−G+−
σ (k, t1 − t)G−−

σ (k, t− t2)G−+
σ (k − q, t2 − t1) + h.c.

]

(G.5)

The next step consists in Fourier transforming the Green’s functions in time, as well as
time-averaging ⟨Jz(t)⟩ to obtain the DC component ⟨JDC

z ⟩. In addition, we can Taylor
expand to first order in ωscrew = qvscrew (as ωscrew will be smaller than all electronic energy
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scales) to obtain

⟨Jz⟩ ∝ 2qvscrew

i

∫ ∞

−∞

dω

2π
∑

σ,k
k2

⊥(k∥ − k0,σ)
[
G−−

σ (k, ω)2∂ωG
−−
σ (k + q, ω) +G+−

σ (k, ω)G−+
σ (k, ω)∂ωG

++
σ (k + q, ω)

−G−−(k, ω)
(
G−+(k, ω)∂ωG

+−
σ (k + q, ω) +G+−

σ (k, ω)∂ωG
−+
σ (k + q, ω)

)]
.

(G.6)

Restoring pre-factors and using cylindrical momentum coordinates, we obtain at T = 0

⟨Jz⟩ =
∑

σ=↑,↓
J̃σ

∫ kF,σ

−kF,σ

∫ √k2
F,σ−k2

∥

k⊥=0

dk∥dk⊥k
3
⊥(q/2 − k∥)(

(k∥ − q/2)2 + (qτ̃−1)2
)2

J̃σ = eNσvscrew
3s2λ2

so
v3

F,σ

~
qm

(G.7)

τ̃ = ~q2τ

m
, vF,σ = ~kF,σ

m
.

Integrating first over k⊥ and then by parts over k∥ yields

⟨Jz⟩ ≃
∑

σ=↑,↓
eNσvscrew

3s2λ2
so

v3
F,σ

(
q2v2

F,στ
2 + 3

)
arctan(qvF,στ) − 3qvF,στ

2qτ , (G.8)

where we have neglected small contributions of order q/kF,σ. Taking the limits vF τ ≪ q−1,
vF τ ≫ q−1 gives Eq. (2.62).





Appendix H

Driven Skyrmion Auxiliary
Calculations

H.1 Free Energy Terms

H.1.1 Linear in a, a∗ contribution, F (1)

When we turn on a driving field

b1(t) =




1
2(bR + bL) cos(ωt)
1
2(bR − bL) sin(ωt)
bz cos(ωt+ δ)




there is a linear in a, a∗ contribution to the free energy density,

F (1)
drive = − 1

2
√

2




+ bR

(
cos(θ0) cos(χ− ωt)(a+ a∗) − 1

i
(a− a∗) sin(χ− ωt)

)

+ bL

(
cos(θ0) cos(χ+ ωt)(a+ a∗) − 1

i
(a− a∗) sin(χ+ ωt)

)

− 2bz cos(ωt+ δ) sin(θ0)(a+ a∗)

.

(H.1)
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H.1.2 Quadratic in a, a∗ contribution, F (2)

The quadratic in a, a∗ contribution to the free energy density independent of the driving
field b1(t) contribution, is

F (2)
skyr. = − 1

4r2




+ aa∗
(
−4b0r

2 cos(θ0) + 2r2θ′2
0 + 4r2θ′

0 + 6r sin(2θ0) − 3 cos(2θ0) − 1
)

+ 4ia∗∂χa(cos(θ0) − r sin(θ0)) − 4ia∂χa
∗(cos(θ0) − r sin(θ0))

− 4
(
∂χa∂χa

∗ + r2a′a∗′)

+ a2
(
−r2θ′2

0 − 2r2θ′
0 + sin2(θ0) + r sin(2θ0)

)

+ a∗2
(
−r2θ′2

0 − 2r2θ′
0 + sin2(θ0) + r sin(2θ0)

)

.

(H.2)

F (2)
skyr. is the free energy density we use in order to calculate the eigenbasis of the system.

There is also a quadratic contribution which is proportional to bL, bR, bz

F (2)
drive = 1

2a
∗a
[
bR sin(θ0) cos(ωt− χ) + bL sin(θ0) cos(ωt+ χ)

+ 2bz cos(θ0) cos(ωt+ δ)
] (H.3)

which does not contribute to the EoM for a, a∗ at order O(ϵ), but does contribute at
order O(ϵ2).

H.1.3 Cubic in a, a∗ contribution, F (3)

The cubic in a, a∗ contribution to the free energy density is

F (3)
skyr. = 1

4
√

2r




− 1
2aa

∗
[
4r (θ′

0 + 1) (∂ra+ ∂ra
∗) − 4i(∂χa− ∂χa

∗)(r sin(θ0) + cos(θ0))

+ (a+ a∗) (2r sin(θ0)(b0 + 5 cos(θ0)) + 10 cos(2θ0))
]

+ 3a∗2
[
r (θ′

0 + 1) ∂ra+ i∂χa(r sin(θ0) + cos(θ0))
]

+ 3a2
[
r (θ′

0 + 1) ∂ra
∗ − i∂χa

∗(r sin(θ0) + cos(θ0))
]


(H.4)
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There will also be a cubic in a, a∗ contribution from the driving terms, but we don’t care
about it as it will produce O(ϵ) terms, which are one order too high for our calculation,
after the Poisson bracket operation.

H.2 Angular Momentum Eigenstates

We use the approach presented in [72], where the problem is simplified by switching to
angular momentum eigenstates am, a

∗m with the following Fourier definition

a(r, χ) =
∑

m

eimχam(r) am(r) = 1
2π

∫ 2π

0
dχe−imχa(r, χ)

a∗(r, χ) =
∑

m

e−imχa∗
m(r) a∗

m(r) = 1
2π

∫ 2π

0
dχeimχa∗(r, χ).

(H.5)

The Poisson bracket in polar coordinates carries an extra factor 1
r

compared to the
Cartesian version

{a(r, χ), a∗(r′, χ′)} = 1
r′ δ(χ−χ′)δ(r−r′), {am(r), a∗

m′(r′)} = 1
2πr′ δm,m′δ(r−r′). (H.6)

Using these definitions one obtains

 {F (2)

skyr., a}
{F (2)

skyr., a
∗}


 = −

∑

m

eimχσzHm


 am

a∗
−m


 (H.7)

with

Hm = 1

(
− d

dr2 − 1
r

d

dr
+ m2 + 1

r2 + b0 + V m
0

)
− σz 2m

r2 + σzV m
z + σxVx

V m
0 = 3 (cos(2θ0) − 1)

4r2 − 3 sin(2θ0)
2r + b0 (cos(θ0) − 1) − θ′

0 − θ′2
0
2

V m
z = 2m

r2 (cos(θ0) − 1 − r sin(θ0))

Vx = − 1
2r2

(
sin2(θ0) + r sin(2θ0) − r2θ′2

0 − 2r2θ′
0

)

(H.8)
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H.3 Perturbation Theory in α

To obtain the first order in α correction to the eigenenergies, we project ⟨m,n, s|σz onto
Eq. (3.13). Using the property ⟨m,n, s|Hm = ϵn,sσ

z ⟨m,n, s| we obtain

ϵ(1)
n,s = ⟨m,n, s|m,n, s⟩

⟨m,n,+|σz |m,n,+⟩ϵ
(0)
n,+. (H.9)

where we additionally used the fact that we normalised ⟨m,n, s|σz |m,n, s⟩ = sgn(s).
We immediately see that the first order energy correction for the translational mode also
vanishes, as ϵ(0)

trans. = 0. For the scattering modes, the prefactor in front of ϵn,+ is unity,
as in the far limit only one component is non-vanishing so that the top and the bottom
of the fraction are the same. For the breathing mode this is not the case and ⟨br.|br.⟩
needs to be calculated explicitly; in the case b0 = 1 its value is approximately 1.22.

To obtain the first order in α correction to the eigenmodes, we instead project
⟨m′, n′, s′|σz ̸= ⟨m,n, s|σz onto Eq. (3.13). After some algebra, we obtain the following
corrections to the m = 0,±1 scattering states, m = 0 breathing mode and m = ±1
translational modes

∣∣∣m = 0, k,+(1)
〉

= −

∑

k′
−∆k′k′ ϵ

(0)
k

ϵ
(0)
k + ϵ

(0)
k′

〈
0, k′,−(0)

∣∣∣0, k,+(0)
〉 ∣∣∣0, k′,−(0)

〉

+ ϵ
(0)
k

ϵ
(0)
k − ϵ

(0)
br.

〈
0, br.,+(0)

∣∣∣0, k,+(0)
〉 ∣∣∣0, br.,+(0)

〉

− ϵ
(0)
k

ϵ
(0)
k + ϵ

(0)
br.

〈
0, br.,−(0)

∣∣∣0, k,+(0)
〉 ∣∣∣0, br.,−(0)

〉



(H.10)

∣∣∣m = 0, k,−(1)
〉

= −

∑

k′
∆k′k′ ϵ

(0)
k

ϵ
(0)
k + ϵ

(0)
k′

〈
0, k′,+(0)

∣∣∣0, k,−(0)
〉 ∣∣∣0, k′,+(0)

〉

+ ϵ
(0)
k

ϵ
(0)
k + ϵ

(0)
br.

〈
0, br.,+(0)

∣∣∣0, k,−(0)
〉 ∣∣∣0, br.,+(0)

〉

− ϵ
(0)
k

ϵ
(0)
k − ϵ

(0)
br.

〈
0, br.,−(0)

∣∣∣0, k,−(0)
〉 ∣∣∣0, br.,−(0)

〉


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∣∣∣m = 0, br.,+(1)
〉

= −

− 1

2
〈
0, br.−(0)

∣∣∣0, br.+(0)
〉 ∣∣∣0, br.−(0)

〉
+

∑

k′
∆k′k′

[
ϵ

(0)
br.

ϵ
(0)
br. − ϵ

(0)
k′

〈
0, k′,+(0)

∣∣∣0, br.,+(0)
〉 ∣∣∣0, k′,+(0)

〉

− ϵ
(0)
br.

ϵ
(0)
br. + ϵ

(0)
k′

〈
0, k′,−(0)

∣∣∣0, br.,+(0)
〉 ∣∣∣0, k′,−(0)

〉 ]



∣∣∣m = 0, br.,−(1)
〉

= −

1

2
〈
0, br.+(0)

∣∣∣0, br.−(0)
〉 ∣∣∣0, br.+(0)

〉
+

∑

k′
∆k′k′

[
− ϵ

(0)
br.

ϵ
(0)
br. − ϵ

(0)
k′

〈
0, k′,−(0)

∣∣∣0, br.,−(0)
〉 ∣∣∣0, k′,−(0)

〉

+
ϵ

(0)
0,br.

ϵ
(0)
br. + ϵ

(0)
k′

〈
0, k′,+(0)

∣∣∣0, br.,−(0)
〉 ∣∣∣0, k′,+(0)

〉 ]



∣∣∣m = +1, k,+(1)
〉

= −

∑

k′
−∆k′k′ ϵ

(0)
k

ϵ
(0)
k + ϵ

(0)
k′

〈
1, k′,−(0)

∣∣∣1, k,+(0)
〉 ∣∣∣1, k′,−(0)

〉

+
〈
1, tr.,+(0)

∣∣∣1, k,+(0)
〉 ∣∣∣1, tr.(0)

〉



∣∣∣m = +1, k,−(1)
〉

= −

∑

k′
∆k′k′ ϵ

(0)
k

ϵ
(0)
k + ϵ

(0)
k′

〈
1, k′,+(0)

∣∣∣1, k,−(0)
〉 ∣∣∣1, k′,+(0)

〉

+
〈
1, tr.,+(0)

∣∣∣1, k,−(0)
〉 ∣∣∣1, tr.(0)

〉



|m = +1, tr.⟩(1) = 0

where ϵ(0)
br. ≈ 0.839 and ϵ(0)

k = 1+k2 for b0 = 1. The corrections from them = −1 sector can
be calculated from the corrections in the m = 1 sector via |m = −1,∓⟩ = σx |m = 1,±⟩∗

and are therefore not listed here explicitly.

H.4 Translational Mode in Terms of a, a∗

The ansatz which describes pure translation of an otherwise static magnetic texture M̂(0)

by velocity vslide is M̂(r, t) = M̂(0)(r − vslidet)1. Taylor expanding to first order in vslidet,
1note that this is not the same situation as our driven texture. There, there would be extra

contributions coming from the first and second order oscillating terms M(1)
osc., M(2)

osc., as well as the static
second order component, M(2)

stat..
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we obtain the translational mode M(2)
trans. = −t(vslide · ∇)M̂(0). We want to express this

in the a, a∗ basis. We use the definition Eq. (2.24),

M(2) = (1 − a∗a)e3 + e−a+ e+a
∗. (H.11)

Projecting e± onto M(2)
trans., and using M̂(0) = e3 and ∇M̂(0) ⊥ M̂(0), we obtain

atrans.

atrans.


 = −t


e+ · ((vslide · ∇)e3)

e− · ((vslide · ∇)e3)


 . (H.12)

Using the following coordinate identities

∂x = cos(χ)∂r − 1
r

sin(χ)∂χ

∂y = sin(χ)∂r + 1
r

cos(χ)∂χ

(H.13)

as well as the identities ∂re3 = θ′
0∂θe3, ∂χe3 = ∂φe3 ∂re3 = θ′

0∂θe3, which are valid in the
case that e3 describes a static skyrmion Eq. (1.15), we obtain Eq. (3.33).

It is easy to check that each of the translational mode vectors in Eq. (3.33) is
normalised under

⟨m = ±1, trans.|σz |m = ±1, trans.⟩ = ±1.
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H.5 Fourier Coefficients for First Order Steady State

The first order in α Fourier coefficients for the out of plane driving case are

c
(1)
k′ = −


c(0)

k′ +
∑

k

∆k kc(0)
k

[
−
〈
k′,+(0)

∣∣∣σz

∣∣∣k,−(1)
〉

−
〈
k′,+(0)

∣∣∣k,−(0)
〉]

+ c
(0)
br.

[ 〈
k′,+(0)

∣∣∣σz

∣∣∣br.+(1)
〉

−
〈
k′,+(0)

∣∣∣σz

∣∣∣br.−(1)
〉

+
〈
k′,+(0)

∣∣∣br.+(0)
〉

−
〈
k′,+(0)

∣∣∣br.−(0)
〉 ]



c
(1)
br. = −


c(0)

br.

[
−
〈
br.,+(0)

∣∣∣σz

∣∣∣br.−(1)
〉

+
〈
br.,+(0)

∣∣∣br.+(0)
〉

−
〈
br.,+(0)

∣∣∣br.−(0)
〉]

+
∑

k

∆k kc(0)
k

[ 〈
br.,+(0)

∣∣∣σz

∣∣∣k,+(1)
〉

−
〈
br.,+(0)

∣∣∣σz

∣∣∣k,−(1)
〉

+
〈
br.,+(0)

∣∣∣k,+(0)
〉

−
〈
br.,+(0)

∣∣∣k,−(0)
〉 ]



(H.14)
For b0 = 1, c(1)

br. ≈ 0.491.
The first order in α Fourier coefficients for the |m = 1, k = 0, α,−⟩ mode are
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H.6 Poisson Bracket O(ϵ2) Contribution

For reference, we list the time- and angular– averaged Poisson bracket at order ϵ2,
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where the subscripts χ, ω on the a(1)

χ,ω, a
∗(1)
−χ,−ω field components give us the angular

momentum m and frequency ω, eg. a11 would be the coefficient of the ei(χ+ωt) in the
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dynamic response.
〈

1
2π

∫
dχ e−iχ{F (3)

skyr. + F
(1)
drive, a}

〉

t

can be obtained by taking the

complex conjugate of all the Fourier components in Eq. (H.16) and inverting the signs of
the subscripts, eg a(1)

1,1 → a
∗(1)
−1,−1, a

(1)
1,−1 → a

∗(1)
−1,1, as well as inverting the sign in front of

the blue-coloured terms.
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