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Learning Adaptive FETI-DP Constraints for
Irregular Domain Decompositions

Axel Klawonn, Martin Lanser, and Janine Weber

Abstract Adaptive coarse spaces yield a robust convergence behavior for FETI-DP
(Finite Element Tearing and Interconnecting - Dual Primal) and BDDC (Balancing
DomainDecomposition byConstraints)methods for highly heterogeneous problems.
However, the usage of such adaptive coarse spaces can be computationally expensive
since, in general, it requires the setup and the solution of a relatively high amount of
local eigenvalue problems on parts of the domain decomposition interface. In earlier
works, see, e.g., [2], it has been shown that it is possible to train a neural network
to make an automatic decision which of the eigenvalue problems in an adaptive
FETI-DP method are actually necessary for robustness with a satisfactory accuracy.
Moreover, these results have been extended in [6] by directly learning an approx-
imation of the adaptive edge constraints themselves for regular, two-dimensional
domain decompositions. In particular, this does not require the setup or the solu-
tion of any eigenvalue problems at all since the FETI-DP coarse space is, in this
case, exclusively enhanced by the learned constraints obtained from the regression
neural networks trained in an offline phase. Here, in contrast to [6], a regression neu-
ral network is trained with both, training data resulting from straight and irregular
edges. Thus, it is possible to use the trained networks also for the approximation
of adaptive constraints for irregular domain decompositions. Numerical results for
a heterogeneous two-dimensional stationary diffusion problem are presented using
both, a decomposition into regular and irregular subdomains.
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1 Introduction

Adaptive, that is, problem-dependent coarse spaces provide a robust condition num-
ber estimate and thus a robust convergence behavior for FETI-DP (Finite Element
Tearing and Interconnecting - Dual Primal) and BDDC (Balancing Domain De-
composition by Constraints) methods for highly heterogeneous model problems;
see, e.g., [10, 7] for a condition number indicator and a related proof for a specific
adaptive coarse space in two spatial dimensions. In general, the setup of an adaptive
coarse space usually requires the solution of local eigenvalue problems on egdes,
faces, or local parts of the domain decomposition interface. Even though the setup
and the solution of these eigenvalue problems can be parallelized in a parallel im-
plementation, it can take up the largest part of the overall time to solution, especially
for three-dimensional problems. Thus, in [2], we have proposed to train a supervised
classification model in form of a dense feedforward neural network to make an a
priori decision, which of the eigenvalue problems are actually necessary for a robust
FETI-DP coarse space. By testing our approach for different realistic heterogeneous
model problems as, e.g., arising from a dual-phase steel in solid mechanics, we have
shown that it is possible to drastically reduce the number of necessary eigenvalue
problems while still maintaining the robustness of the iterative solver.

In [6], we have extended these results by directly learning the adaptive edge
constraints themselves. Hence, we have trained different regression neural network
models to compute an a priori approximation of the first : ∈ N adaptive edge con-
straints which are then used to enhance the classic FETI-DP method. In particular,
this approach does not require the setup or the solution of any eigenvalue problems
at all. In [6], we have trained the regression neural network models exclusively with
training data obtained from straight edges and consequently evaluated the trained
network for test problems based on a regular domain decomposition only. In this pa-
per, we extend our idea from [6] by training regression neural networks which can be
applied to both, regular domain decompositions as well as irregular decompositions
as obtained by METIS [4]. To generalize our approach to arbitrary edge structures,
we also train the network models with training data obtained from irregular edges
and, additionally, with a set of randomized coefficient distributions. We provide
numerical results for different heterogeneous stationary diffusion problems in two
spatial dimensions for both, regular and irregular domain decompositions, and the
adaptive coarse space from [10, 11].

2 Test Problem and Adaptive FETI-DP

As a test problem, we consider a stationary diffusion problem in two spatial dimen-
sions

− div (d∇D) = 1 in Ω
D = 0 on mΩ, (1)
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where d : Ω := [0, 1] × [0, 1] → R denotes a heterogeneous coefficient function. Its
weak formulation is discretized with piecewise linear conforming finite elements.

In this paper, we consider a hybrid FETI-DP method which uses supervised
machine learning to setup a robust and efficient coarse space. Thus, we decompose
our domain Ω ⊂ R2 into a number of nonoverlapping subdomains Ω8 , 8 = 1, . . . , # .
Due to space limitations, we refrain from explaining the standard, that is, the classic
FETI-DPmethod in detail. For a detailed description of the classic FETI-DPmethod,
we refer to, e.g., [9]. Let us note that in our implementation, we always choose
the vertices of the subdomains as primal variables. Additionally, we implement
adaptive, that is, problem-dependent edge constraints to enhance the robustness of
our methods; see the following discussion. For the remainder of the paper, we denote
by E8 9 the edge shared by the two neighboring subdomains Ω8 and Ω 9 .

The classic FETI-DP condition number bound using exclusively primal vertex
constraints is only robust under fairly restrictive assumptions on the coefficient
function d; see, for example, [8]. Thus, we enhance the FETI-DP method with a very
specific adaptive coarse space which was originally introduced in [10, 11].

Here, the main idea is to add selected eigenvectors to the coarse space which are
obtained from the solution of the following generalized local eigenvalue problem for
each edge E8 9 : find F8 9 ∈

(
ker (8 9

)⊥ such that

〈%�8 9
E8 9 , (8 9%�8 9

F8 9〉 = `8 9 〈E8 9 , (8 9F8 9〉 ∀E8 9 ∈
(
ker (8 9

)⊥
. (2)

Here, (8 9 =
(
( (8)

( ( 9)

)
denotes a local Schur complement matrix with ( (8) and ( ( 9)

being the Schur complements of  (8) and  ( 9) , respectively, and %�8 9
= �)

�,E8 9�E8 9

is a local jump operator, with ��,E8 9 =
(
�
(8)
�,E8 9 , �

( 9)
�,E8 9

)
being a local submatrix of(

�
(8)
�
, �
( 9)
�

)
obtained by exclusively taking the rows corresponding to the edge E8 9 ;

see [10] for more details. The matrix �E8 9 is obtained by taking the same rows from(
� (8) , � ( 9)

)
. We assume that ' eigenvectors FA

8 9
, A = 1, ..., ', belong to eigenvalues

which are larger than a user-defined tolerance )$! and then enhance the FETI-DP
coarse space with the edge constraints

��,E8 9 (8 9%�8 9
FA8 9 , A = 1, ..., '. (3)

When enhancing the FETI-DP coarse space with these adaptive constraints one can
prove a robust condition number bound which exclusively depends on the user-
defined tolerance )$! and some geometrical constants; see, e.g., [7]. On the one
hand, this ensures a robust convergence behavior of the resulting FETI-DP algorithm,
but, as a drawback, one has to setup and solve the eigenvalue problems in Eq. (2) for
all edges belonging to the interface of our domain decomposition. Even though the
setup and the solution of the eigenvalue problems can be parallelized, it can make
up the largest part of the overall time to solution, especially for three-dimensional
problems. Hence, in [6], we have proposed a hybrid FETI-DP method which uses a
supervised regression model to directly learn approximations of the adaptive edge
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Fig. 1 Visualization of our network models #; and #̃; , ; ≤ 3. As input data for the neural network,
we use samples of the coefficent function for the two neighboring subdomains of an edge (left).
Here, dark red corresponds to a high coefficient and white corresponds to a low coefficient. The
output of the network is a discretized egde constraint (right). Figure taken from [6, Fig. 1].

constraints resulting from Eq. (3) such that the solution of any eigenvalue problems
is not necessary.

3 Learning Adaptive Coarse Constraints in Adaptive FETI-DP

The aim of our work is to compute discrete approximations of the first : adaptive
edge constraints resulting from the local eigenvalue problem in Eq. (2) and to use
the learned constraints to enhance the classic FETI-DP coarse space; see [6]. In
particular, for each of the first : adaptive edge constraints, we train a separate
regression neural network model that we denote by #; , ; ≤ : . In the following, we
always consider : = 3 and thus, train 3 different network models #; , ; ≤ 3, to obtain
3 discrete approximations of the constraints resulting from the first 3 eigenmodes;
see also [6]. As explained in more detail in [6], we additionally train separate neural
network models for edges which have direct contact to the Dirichlet boundary mΩ�
of the domain and for edges without any contact to mΩ� since both cases result in
different edge constraints due to the influence of the Dirichlet boundary condition
on the local Schur complement matrices (8 9 in Eq. (2). To distinguish between these
different network models, we denote the respective regression networks for edges
with direct contact to mΩ� by #̃; , ; ≤ 3; see also [6].

As input data for all neural network models #; , ; ≤ 3, we use a mesh-independent
image representation of the underlying coefficient function d within the two subdo-
mains Ω8 and Ω 9 adjacent to the edge E8 9 . The concrete details of the computation
of this image representation are described in [2] such that, in the following, we only
briefly sketch the main idea. First, we compute an auxiliary grid of points which
we denote by sampling grid and which is independent of the finite element grid.
Then, we evaluate the coefficient function d for each of these sampling points within
the sampling grid and use the corresponding d values as input data for the neural
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networks. In order to make sure that the input data always have the same length and a
consistent structure, we define a concrete order within our sampling grid and encode
sampling points with the dummy value −1 if they fall outside the two neighboring
subdomains for a given edge E8 9 . Let us note that this is especially relevant for
irregular decompositions of the domain as obtained by METIS [4]. In particular,
all trained network models #; and #̃; , ; ≤ 3, share the same input data and only
differ by their output data in order to define the concrete regression tasks. As specific
output data for the different network models, we use discrete values of the adaptive
edge constraints resulting from the local edge eigenvalue problems in Eq. (2). For the
training of the ;-th network #; , we hence use a discretized version of the respective
edge constraint resulting from the eigenvector F;

8 9
belonging to the eigenvalue `;

8 9
.

All in all, we use 3 200 sampling points as input data for the neural networks and 19
output nodes, that is, 19 discrete values to approximate the adaptive edge constraints.
In principle, the output space of our networks corresponds to an edge length defined
by �/ℎ = 20. However, in order to be able to evaluate the trained network for dif-
ferent finite element discretizations, we use an interpolation technique to generalize
our approach to different mesh sizes and thus only use the number of 19 degrees of
freedom for each edge as the basis for the interpolation. In case we want to apply
the approximated constraints for finer or coarser finite element meshes, we linearly
interpolate the obtained regression values by using the finite element mesh points as
the interpolation points and the finite element basis functions as interpolation basis.
An exemplary visualization of our network models #; and #̃; is given in Fig. 1.

Other than in [6], where we have trained and tested the different network mod-
els exclusively for regular edges, in this paper, we generalize these results also to
irregular decompositions obtained by METIS [4]. Therefore, we train the different
networks #; and #̃; , ; ≤ 3, with both, regular and irregular edges. Additionally, in
contrast to [6], we do not train the networks with our manually constructed set of
coefficient distributions that we have denoted by smart training data in [6], but use a
set of randomized coefficient distributions. In [3], we have shown that it is possible
to achieve comparable accuracy results for the classification model as defined in [3]
when using randomized training data with a slight structure compared to the smart
training data. Considering these results and with regard to better expected general-
ization properties in three spatial dimensions, here, we have decided to also train our
regression neural networks with randomized coefficient distributions. Three exem-
plary randomized coefficient distributions where we have additionally controlled the
ratio of high versus low coefficient values are shown in Fig. 2. To obtain the entire
set of training and validation data, we have generated various randomized coefficient
distributions and combined them with pairs of subdomains adjacent to both, straight
edges and edges resulting from the respective decompositions obtained by METIS.
In particular, to generate the input and output data for the networks, we have used
a regular decomposition of the unit square into 4 × 4 subdomains and a mesh size
defined by �/ℎ ∈ {10, 20, 40} as well as the corresponding irregular decomposi-
tions obtained by METIS. All in all, this results in 4 800 training and validation data
configurations. In all coefficient configurations, we always set the high coefficient
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Fig. 2 Examples of three different randomly distributed coefficient functions obtained by using the
same randomly generated coefficient for a horizontal (left) or vertical (middle) stripe of a maximum
length of four finite element pixels, as well as by pairwise superimposing (right).

to d1 = 146 and the low coefficient to d2 = 1. For the selection of the necessary
adaptive constraints, we always choose the tolerance )$! = 100.

Finally, for each of the networkmodels #; and #̃; , ; ≤ 3, we train a separate dense
feedforward regression neural network [1, 12] with 4 hidden layers and 50 neurons
per layer. For each layer, we use the ReLU activation function and 20% dropout
for each layer. For the optimization process, we have chosen the stochastic gradient
descent (SGD) method using the Adam optimizer [5] with its default parameters,
the initial learning rate of 0.001, and a batch size of 32. As loss function, we use the
MSE (mean squared error) loss. For the final model, we obtain a MSE of 9.774-03
for the training data and a MSE of 4.624-02 for the validation data.

4 Numerical Results

In this section, we provide numerical results for our proposed hybrid FETI-DP
method using the approximated edge constraints as learned by the neural networks
in direct comparison with the adaptive coarse space from [10].

To test our approach, we consider both, a regular decomposition and an irregular
METIS decomposition of basically the same test problem. In both cases, the un-
derlaying problem is a heterogeneous stationary diffusion problem which we have
already used in [6, Sect. 3]; see also Fig. 3 for a visualization. Only the underlying
finite element discretization differs in both cases. Let us remark that this test con-
figuration was of course not included in the training or validation data used for the
training of the networks. For the test case with regular subdomains, we decompose
our domainΩ = [0, 1]2 into 4×4 square subdomains and use a regular finite element
mesh defined by �/ℎ = 10. We choose all vertices as primal variables and consider
a coefficient contrast of d1/d2 = 146. In particular, we compare the robustness of the
resulting coarse space when implementing our trained edge constraints to the adap-
tive coarse space from [10] and the condition and iteration numbers from [6, Sect. 3]
where we have trained the regression networks exclusively with training data from
straight edges. Note again that in this paper, we train the networks with both, training
data from straight edges and from irregular edges resulting from a decomposition by
METIS. In Fig. 4 (top), we show the two adaptive edge constraints resulting from the
local eigenvalue problem in Eq. (2) for the tolerance )$! = 100, that is, the ground
truth as well as the learned approximations from our regression neural networks.
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As we can see from Fig. 4 (top), for an exemplary straight edge E8 9 between two
floating subdomains, both approximations using either just straight edges for the
training or using both, straight and irregular edges, result in quantitatively similar
approximations of the two adaptive edge constraints. Using the approximated edge
constraints in our hybrid FETI-DP method leads to an iteration number of 14 and
a condition number estimate of 35.5 when training the network with straight edges
only while training the network with both straight and irregular edges results in an
iteration number of 17 and a condition number estimate of 57.9; see also Table 1.
In particular, both approximate coarse spaces result in robust condition number es-
timates independent of the coefficient contrast and using both, straight and irregular
edges for the training of the network models provides qualitatively similar results as
we have obtained in [6].

To test the performance of our approach with a METIS decomposition, we con-
sider a decomposition of the unit square into 4×4 irregular subdomains computed by
METIS [4] and we choose 3 200 finite elements for each subdomain; see also Fig. 3
(right). Again, we consider a coefficient contrast of d1/d2 = 146. We evaluate our
regression neural networks #; and #̃; , ; ≤ 3, trained with straight and irregular
edges for all 34 irregular edges resulting from the domain decomposition obtained
by METIS in Fig. 3 (right), and integrate the learned edge constraints into the FETI-
DP coarse space. The resulting iteration number and condition number estimate are
given in Table 1, wherewe also show the corresponding values for the adaptive coarse
space from [10] and the tolerance )$! = 100. As we can observe from Table 1,
using the learned constraints leads to a condition number estimate of 67.64 that is
clearly independent of the coefficient contrast and in a quantitatively similar order
of magnitude as the respective condition number for the adaptive FETI-DP coarse
space. Thus, the learned coarse space seems to serve as a good approximation of
the respective adaptive FETI-DP coarse space. Furthermore, in Fig. 4 (bottom), we
show the learned constraints as well as the ground truth for an exemplary edge within
the irregular decomposition. We can see that the learned constraints when training
the networks with both, straight and irregular edges, are quantitatively similar to the
ground truth. However, evaluating our networks from [6], which were only trained
with straight edges, for an irregular edge, provides a relatively poor approximation
of the constraints. Note again that the setup of the learned coarse space does not
require the solution of any eigenvalue problems at all and the training of the differ-
ent network models can be executed in parallel and in an apriori offline phase. In
particular, in this work, we have shown that it is possible to generalize our results
from [6] also to non-straight edges as, e.g., resulting from METIS [4].
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