
 

 

Development of Novel Diagnostic Tools for Dry Eye Disease 

using Infrared Meibography and In Vivo Confocal Microscopy 

 

I naugur a l  D i sse r ta t i on  

 

zur 

 

Erlangung des Doktorgrades 

philosophiae doctor (PhD) in Health Sciences 

der Medizinischen Fakultät 

der Universität zu Köln 

 

 

 

 

 

 

 

 

 

 

 

 

 

vorgelegt von 

Md Asif Khan Setu 

aus Narail, Bangladesh 

 

Digital Express 24 

Köln, 2022 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Betreuer:     Prof. Dr. Philipp Steven 

 

Gutachter:    Prof. Dr. Joseph Kambeitz  

     Prof. Dr. Achim Tresch 

 

Datum der Mündlichen Prüfung: 22.11.2022  



 

1 | P a g e  
 

Table of contents 
 

TABLE OF CONTENTS ............................................................................................................ 1 

SUMMARY ................................................................................................................................ 2 

ZUSAMMENFASSUNG ............................................................................................................. 4 

1 INTRODUCTION ................................................................................................................ 7 

1.1 DRY EYE DISEASE .......................................................................................................... 7 

1.1.1 Role of the meibomian gland in dry eye disease ................................................... 7 

1.1.2 Role of corneal nerve fibers and dendritic cells in dry eye disease ........................ 9 

1.2 DRY EYE IMAGING IN CLINICAL PRACTICE ........................................................................12 

1.2.1 Meibomian gland imaging ....................................................................................14 

1.2.2 In vivo confocal microscopy .................................................................................16 

1.3 ARTIFICIAL INTELLIGENCE IN OPHTHALMOLOGY ...............................................................18 

2 RESULTS ..........................................................................................................................21 

2.1 DEEP LEARNING-BASED AUTOMATIC MEIBOMIAN GLAND SEGMENTATION AND MORPHOLOGY 

ASSESSMENT IN INFRARED MEIBOGRAPHY .................................................................................21 

2.2 SEGMENTATION AND EVALUATION OF CORNEAL NERVES AND DENDRITIC CELLS FROM IN 

VIVO CONFOCAL MICROSCOPY IMAGES USING DEEP LEARNING .................................................22 

3 DISCUSSION ....................................................................................................................24 

3.1 MAIN FINDINGS OF THE TWO PRESENTED RESEARCH STUDIES IN SUMMARY ......................24 

3.2 MEIBOMIAN GLAND SEGMENTATION AND QUANTIFICATION ................................................25 

3.3 CORNEAL NERVES AND DENDRITIC CELLS SEGMENTATION AND QUANTIFICATION ...............27 

3.4 FUTURE STUDIES ..........................................................................................................28 

3.5 CONCLUSION ................................................................................................................29 

REFERENCES .........................................................................................................................31 

ACKNOWLEDGEMENTS .........................................................................................................38 

ERKLÄRUNG ...........................................................................................................................39 

CURRICULUM VITAE ..............................................................................................................41 

PUBLICATIONS………………………………………………………………………………………...44 

 

 

 

  



 

2 | P a g e  
 

Summary 
 

Dry eye disease (DED) is a multifactorial disease of the ocular surface where tear film 

instability, hyperosmolarity, neurosensory abnormalities, meibomian gland dysfunction, ocular 

surface inflammation and damage play a dedicated etiological role. Estimated 5 to 50% of the 

world population in different demographic locations, age and gender are currently affected by 

DED. The risk and occurrence of DED increases at a significant rate with age, which makes dry 

eye a major growing public health issue. DED not only impacts the patient’s quality of vision and 

life, but also creates a socio-economic burden of millions of euros per year.  

DED diagnosis and monitoring can be a challenging task in clinical practice due to the 

multifactorial nature and the poor correlation between signs and symptoms. Key clinical 

diagnostic tests and techniques for DED diagnosis include tearfilm break up time, tear secretion 

– Schirmer’s test, ocular surface staining, measurement of osmolarity, conjunctival impression 

cytology. However, these clinical diagnostic techniques are subjective, selective, require 

contact, and are unpleasant for the patient’s eye. Currently, new advances in different state-of-

the-art imaging modalities provide non-invasive, non- or semi-contact, and objective parameters 

that enable objective evaluation of DED diagnosis. Among the different and constantly evolving 

imaging modalities, some techniques are developed to assess morphology and function of 

meibomian glands, and microanatomy and alteration of the different ocular surface tissues such 

as corneal nerves, immune cells, microneuromas, and conjunctival blood vessels. These clinical 

parameters cannot be measured by conventional clinical assessment alone. The combination of 

these imaging modalities with clinical feedback provides unparalleled quantification information 

of the dynamic properties and functional parameters of different ocular surface tissues. 

Moreover, image-based biomarkers provide objective, specific, and non / marginal contact 

diagnosis, which is faster and less unpleasant to the patient’s eye than the clinical assessment 

techniques.  
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The aim of this PhD thesis was to introduced deep learning-based novel computational 

methods to segment and quantify meibomian glands (both upper and lower eyelids), corneal 

nerves, and dendritic cells. The developed methods used raw images, directly export from the 

clinical devices without any image pre-processing to generate segmentation masks. Afterward, 

it provides fully automatic morphometric quantification parameters for more reliable disease 

diagnosis. Noteworthily, the developed methods provide complete segmentation and 

quantification information for faster disease characterization. Thus, the developed methods are 

the first methods (especially for meibomian gland and dendritic cells) to provide complete 

morphometric analysis.  

Taken together, we have developed deep learning based automatic system to segment and 

quantify different ocular surface tissues related to DED namely, meibomian gland, corneal 

nerves, and dendritic cells to provide reliable and faster disease characterization. The 

developed system overcomes the current limitations of subjective image analysis and enables 

precise, accurate, reliable, and reproducible ocular surface tissue analysis. These systems have 

the potential to make an impact clinically and in the research environment by specifying faster 

disease diagnosis, facilitating new drug development, and standardizing clinical trials. Moreover, 

it will allow both researcher and clinicians to analyze meibomian glands, corneal nerves, and 

dendritic cells more reliably while reducing the time needed to analyze patient images 

significantly. Finally, the methods developed in this research significantly increase the efficiency 

of evaluating clinical images, thereby supporting and potentially improving diagnosis and 

treatment of ocular surface disease.      
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Zusammenfassung 
 

Das Syndrom des trockenen Auges (DED) ist eine multifaktorielle Erkrankung der 

Augenoberfläche, bei der Tränenfilminstabilität, Hyperosmolarität, neurosensorische Anomalien, 

Funktionsstörungen der Meibomschen Drüsen sowie Entzündungen und Schädigungen der 

Augenoberfläche eine wichtige Rolle spielen. Derzeit sind schätzungsweise 5 bis 50 % der 

Weltbevölkerung in verschiedenen demografischen Regionen, Altersgruppen und 

Geschlechtern von DED betroffen. Das Risiko und Auftreten von DED nimmt mit dem Alter 

deutlich zu, was das trockene Auge Syndrom zu einem wichtigen und wachsenden Problem der 

öffentlichen Gesundheit macht. DED beeinträchtigt nicht nur die Seh- und Lebensqualität der 

Patienten, sondern verursacht auch eine sozioökonomische Belastung in Höhe von Millionen 

Euro pro Jahr.  

Die Diagnose und Überwachung von DED kann in der klinischen Praxis aufgrund des 

multifaktoriellen Charakters und der geringen Korrelation zwischen Anzeichen und Symptomen 

eine schwierige Aufgabe darstellen. Zu den wichtigsten klinischen Diagnosetests und -techniken 

für die DED-Diagnose gehören die Tränenfilmaufreißszeit, die Tränensekretion (Schirmer-Test), 

die Färbung der Augenoberfläche, die Messung der Osmolarität und die 

Bindehautabdruckzytologie. Diese klinischen Diagnoseverfahren sind jedoch subjektiv, selektiv, 

erfordern Kontakt und sind für das Auge des Patienten unangenehm. Gegenwärtig bieten neue 

Fortschritte bei verschiedenen modernen bildgebenden Verfahren nicht-invasive, 

berührungsfreie oder halb-berührungsfreie und objektive Parameter, die eine objektive 

Bewertung der DED-Diagnose ermöglichen. Unter den verschiedenen und sich ständig 

weiterentwickelnden bildgebenden Verfahren wurden einige Techniken entwickelt, um die 

Morphologie und Funktion der Meibom-Drüsen sowie die Mikroanatomie und Veränderungen 

der verschiedenen Gewebe der Augenoberfläche wie Hornhautnerven, Immunzellen, 

Mikroneurome und konjunktivale Blutgefäße zu beurteilen. Diese klinischen Parameter können 
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nicht allein durch die herkömmliche klinische Beurteilung gemessen werden. Die Kombination 

dieser bildgebenden Verfahren mit klinischem Feedback liefert unvergleichliche Informationen 

zur Quantifizierung der dynamischen Eigenschaften und funktionellen Parameter der 

verschiedenen Gewebe der Augenoberfläche. Darüber hinaus bieten bildbasierte Biomarker 

eine objektive, spezifische und kontaktfreie Diagnose, die schneller und weniger unangenehm 

für das Auge des Patienten ist als die klinischen Beurteilungsverfahren.  

Ziel dieser Dissertation war die Einführung neuer, auf Deep Learning basierender 

Berechnungsmethoden zur Segmentierung und Quantifizierung von Meibom-Drüsen (Ober- und 

Unterlider), Hornhautnerven und dendritischen Zellen. Die entwickelten Methoden verwendeten 

Rohbilder, die direkt von den klinischen Geräten exportiert wurden, ohne jegliche 

Bildvorverarbeitung, um Segmentierungsmasken zu erzeugen. Anschließend liefert es 

vollautomatische morphometrische Quantifizierungsparameter für eine zuverlässigere 

Krankheitsdiagnose. Bemerkenswert ist, dass die entwickelten Methoden vollständige 

Segmentierungs- und Quantifizierungsinformationen für eine schnellere 

Krankheitscharakterisierung liefern. Somit sind die entwickelten Methoden die ersten 

(insbesondere für Meibom-Drüsen und dendritische Zellen), die eine vollständige 

morphometrische Analyse ermöglichen.  

Zusammengenommen haben wir ein auf Deep Learning basierendes automatisches 

System zur Segmentierung und Quantifizierung verschiedener Augenoberflächengewebe im 

Zusammenhang mit DED entwickelt, nämlich Meibom-Drüse, Hornhautnerven und dendritische 

Zellen, um eine zuverlässige und schnellere Charakterisierung der Krankheit zu ermöglichen. 

Das entwickelte System überwindet die derzeitigen Grenzen der subjektiven Bildanalyse und 

ermöglicht eine präzise, genaue, zuverlässige und reproduzierbare Analyse des 

Augenoberflächengewebes. Diese Systeme haben das Potenzial, sich sowohl in der Klinik als 

auch in der Forschung auszuwirken, indem sie eine schnellere Krankheitsdiagnose 
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ermöglichen, die Entwicklung neuer Medikamente erleichtern und klinische Studien 

standardisieren. Darüber hinaus können Forscher und Kliniker Meibom-Drüsen, 

Hornhautnerven und dendritische Zellen zuverlässiger analysieren und gleichzeitig die für die 

Analyse von Patientenbildern benötigte Zeit erheblich reduzieren. Schließlich erhöhen die in 

dieser Forschungsarbeit entwickelten Methoden die Effizienz der Auswertung klinischer Bilder 

erheblich, wodurch die Diagnose und Behandlung von Augenoberflächenerkrankungen 

unterstützt und potenziell verbessert werden kann.    
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1 Introduction 

1.1 Dry eye disease 

Over the last three decades, the prevalence of Dry Eye Disease (DED) has significantly 

increased in the population and therefore understanding of DED has grown [1]. This immune-

based inflammatory disease of the ocular surface and tears is characterized by its multifactorial 

nature where tear film instability, hyperosmolarity, neurosensory abnormalities, meibomian 

gland dysfunction (MGD), ocular surface inflammation, and damage play etiological role [2]. An 

estimated 5% to 50% of the world population in different geographic locations, age, and gender 

are currently affected by DED [3]. The risk and occurrence of DED increases at a significant rate 

with age, which makes dry eye a major growing public health issue as the population of older 

people is expected double from its current number by 2050 [4]. DED not only impacts the 

patient’s quality of vision and life, but also creates a socio-economic burden [5,6] of millions of 

euros per year.  Dry Eye is a disease of the lacrimal functional unit [7] resulting in inadequate 

tear film composition. The disturbance of tear production and tear evaporation causes ocular 

discomfort, dryness, pain, and alteration of tear composition. DED is mainly categorized into two 

categories, aqueous-deficiency dry eye (ADDE) and evaporative dry eye (EDE), however these 

two categories exist on a continuum rather than as different entities [8]. Epidemiological and 

clinical evidence suggested that evaporative category is preponderance of DED in nature which 

makes EDE the most common type of DED[3,8]. Most patients demonstrate features of 

enhanced tear film evaporation, clinical signs of MGD, and ocular surface inflammation [8,9].  

1.1.1 Role of the meibomian gland in dry eye disease 

Meibomian glands (MG) are the large sebaceous glands that are located below the 

tarsal conjunctiva of both upper and lower eyelid and within the tarsal plate (Fig. 1) [10]. They 

produce lipids (an oily substance) which are the key component of the lipid layer of the tear film. 

In the tear film, the lipid layer is superficial to the aqueous layer and prevents early evaporation 



 

8 | P a g e  
 

of the aqueous phase.  The lipid layer also balances the tear film by lowering surface tension 

[11].  Therefore, lipids produced by MG are an indispensable part of ocular surface health. In 

general, a healthy upper eyelid contains 25-40 glands with an average of around 31 and the 

lower eyelid contains 20-30 glands with an average of around 26. The individual gland length is 

approximately 5.5 mm and 2 mm in the middle of the upper and lower eyelid, respectively. The 

volume of the total MGs are approximately twice as large in the upper eyelid (26 µL) than in the 

lower eyelid (13 µL) and the number of acini is also higher in the upper eyelid. However, MG of 

the lower eyelid are wider than the upper eyelid [12].  

 

Figure 1. Meibomian glands with cellular physiology. (a) MG within the tarsal plate of the upper 
and lower eyelids. Red arrow indicates single MG. (b) Morphology of a single MG. The oily 
secretum (meibum) is synthesized within the secretory acini and transported (yellow arrows) in a 
distal direction toward the orifice. Figure 1b is reproduced from [13] with kind permission of 
Springer Science. 

MGD is commonly described by functional abnormalities of MGs. It is a chronic, diffuse 

abnormality of MGs, which is caused by terminal duct obstruction and quantitative or qualitative 

changes in glandular secretion [9]. The term dysfunction is used as the systematic function of 
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MGs is interrupted and the term diffuse abnormality is used as the disorder associates with 

most of the MGs. MGD causes alteration of the tear film, eye irritation, inflammation, and ocular 

surface disease, including dry eye. Obstruction of the MG orifices and ducts and quantitative or 

qualitative changes in MG secretions are the most well-known clinical characteristics of MGD. 

These lead to an unstable lipid layer of the tear film and cause an increase in the evaporation of 

the underlying aqueous layer [14]. Therefore, any change in the structure or function of MGs 

could have an important clinical impact [1]. MGD is considered the major cause of EDE and lipid 

layer deficiency [9,12,15]. Therefore, thorough analysis of MGD in patients with DED provides 

insight of changes to the phenotype of disease.   

1.1.2 Role of corneal nerve fibers and dendritic cells in dry eye disease 

The human cornea is a transparent, avascular tissue [16] and has a higher distribution of 

sensory nerves than tooth pulp or finger tips. The sensory nerve fibers largely originate from the 

ophthalmic trigeminal nerve with free nerve endings terminating in the corneal epithelium [17]. In 

addition to these sensory nerve fibers, the cornea has autonomic nerves who play a role in 

important corneal function such as corneal epithelial proliferation, integrality, wound healing and 

homeostasis [17,18] . For instance, if any foreign body enter the ocular surface and stimulate 

mechano-nociceptors, thus cause production of overflow tears that wash away harmful 

materials. Hence sensory nerves are able to rapidly response to a wide range of environmental 

changes by altering volume of tear production [17]. Histologically, the cornea consists of five 

basic layers: (1) Epithelium, (2) Bowman’s layer, (3) Stroma, (4) Descemet’s membrane, and (5) 

Endothelium (Fig. 2a). The sensory and autonomic nerve fibers are located between Bowman’s 

layer and basal epithelium [19]. Corneal nerve fibers (CNF) (subbasal nerve plexus) derive from 

the anterior stroma and run forward to the central area of the cornea in a radial fashion parallel 

to the corneal surface [20] and giving rise to branches that innervate the anterior and mid 

stroma  [18,21]. Peripheral stromal nerves contain both myelinated and unmyelinated nerve 
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fascicles. These fascicles turn anteriorly towards the corneal surface in a 90-degree angle, 

penetrate Bowman’s layer, after which they extend as nerve axons in the form of epithelial 

leashes parallel to the corneal surface. The subbasal nerve plexus forms between Bowman’s 

and basal epithelial layer that supplies the overlying corneal epithelium (Fig. 2b)[21,22].   

 

Figure 2. Corneal layers and nerve fibers. (a) Five basic layers of the cornea. Reproduced from 
[19] with kind permission of Elsevier. (b) Diagrammatic representation of human corneal nerves. 
Reproduced from [22] with kind persion of Elsevier.   

Corneal dendritic cells (DCs) are antigen-presenting cells which are derived from bone 

marrow and play a vital role in the corneal immune defense system against the external 

environment [23,24]. DC are broadly distributed on the ocular surface and are mainly 

processing and presenting antigens to other immune cells, hereby play a key role in ocular 

surface immunity [24]. DCs appear as a white reflective structures (Fig. 3) when imaged in-vivo 

using confocal microscopy [23].  



 

11 | P a g e  
 

 

Figure 3. In vivo confocal microscopy image of cornea. White reflective structures are DCs. 

DCs are categorized into immature and mature based on their location and dendrites 

(branch-like structure) [16]. In the healthy state, most of the immature cells without dendrites are 

located at the center of the cornea and mature cells with dendrites are located at the peripheral 

cornea. Zhivov et al. further classified DCs into three types: (1) immature cells without dendrites, 

(2) cells with small dendrites (transition stage cells which start dendrite process), and (3) mature 

cells with long dendrites [25]. Recent research showed that the changes in DCs play an 

important role in the pathogenesis of DED which induces T-cell activation and create an 

inflammatory cascade in DED [26].    

Corneal nerve fibers play an integral role by mediating touch, pain, chemical and 

mechanical stimuli, and temperature signals to our brain. Moreover, they induce reflex tear 

production, blinking, and release tropic factors with the aim of preserving the structural and 

functional integrity of the ocular surface [27]. In addition to CNF, DCs are also an essential 

regulator of both innate and adaptive immune systems to maintain a healthy ocular surface [24]. 

Altered morphological structure of CNFs and DCs could destabilize the tear film and lead to 

ocular surface disease such as DED. These abnormalities of CNFs and DCs are generally 

found to correlate with DED severity leading to further ocular surface damage and also corneal 
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neuropathic pain [28] which has gained increasing attention in the near past and has developed 

into an own field of research.  

Patients with corneal neuropathic pain may suffer from diverse symptoms such as light 

sensitivity, irritation, and a vague sensation of pressure. Routine activities like reading, driving, 

and work are heavily affected which impairment patient’s overall quality of life [27]. In general 

pain is defined as “an unpleasant sensory and emotional experience associated with potential or 

actual tissue damage which might exist over a short or a prolonged period” [29]. This also 

applies to the eye. Ocular pain may be caused by a wide range of ocular disorders. However, 

the most common causes of ocular pain are ocular surface and corneal disorders [30–32], 

including DED [22,33,34], refractive surgery [35], Sjögren’s syndrome [36], diabetes [37], small 

fiber neuropathy [32,38]. Pain from DED not only causes irritation but can also indicate the 

severity of the disease. Several studies [30] [39] have shown that patients who suffer from DED 

with ocular pain have more severe signs (such as decreased CNF number and density, 

increased DCs density) and symptoms (such as burning, hypersensitivity to wind, sensitivity to 

light and temperature) than patients without ocular pain. Patients suffer from small fiber 

neuropathy demonstrated reduced sensitivity, nerve fiber density, length, branching points, and 

increased tortuosity [40]. Furthermore, patients often report burning sensation and other 

somatosensory features [41]. It could also serve as a driver of centralized ocular pain [37]. 

Therefore, evaluation of these corneal nerves and DC in patients with ocular surface disease 

including DED, and neuropathic corneal pain could provide better insight into the changes of the 

clinical expression.  

1.2 Dry eye imaging in clinical practice 

DED diagnosis and monitoring can be a challenging task in clinical practice [42]. This is 

due to the multifactorial nature of the disease and the poor correlation between signs and 

symptoms of DED [43,44]. The TFOS DEWS II [45] Diagnostic Methodology Subcommittee 
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recommended key diagnostic tests and techniques for DED diagnosis. These include tearfilm 

break up time, tear secretion – Schirmer’s test, ocular surface staining with fluorescein and 

lissamine (observing the cornea, conjunctiva, and eyelid margin), measurement of osmolarity, 

conjunctival impression cytology [45]. However, these clinical diagnostic techniques are 

subjective, selective, in part require contact to the eye, and are therefore unpleasant or bear 

risks of damaging the delicate ocular surface. Furthermore, sensitivity and specificity of these 

techniques heavily rely on the inclusion criteria, population examined, and severity of the DED 

group.        

At present, there is a growing need in developing biomarkers for ocular surface disease 

diagnosis in particular DED, and advancements in imaging technologies allowing image based 

biomarkers to serve as a prospective solution and most promising approach to this need 

[46,47]. Different imaging modalities allow clinicians to image ocular surface tissues for 

quantitative and/or qualitative evaluation. Currently, new advances in different state-of-the-art 

imaging modalities provide non-invasive, non or semi contact, and objective parameters that 

enable objective evaluation of DED diagnosis. Among the different and constantly evolving 

imaging modalities, namely, meibomian gland imaging, in vivo confocal microscopy, and optical 

coherence tomography are developed to assess tear film stability and volume, morphology and 

function of meibomian gland (structural abnormalities or gland dropout), and microanatomy and 

alteration of the different ocular surface tissues such as corneal nerves, immune cells, 

microneuromas, and conjunctival blood vessels [46]. These clinical parameters cannot be 

measured by conventional clinical assessment alone. The combination of these imaging 

modalities with clinical feedback provides unparalleled quantification information of the dynamic 

properties and functional parameters of different ocular surface tissues. Moreover, image-based 

biomarkers provide objective, specific, and non / marginal contact diagnosis, which is faster and 

less unpleasant to patient’s eye than the clinical assessment techniques [44].      
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1.2.1 Meibomian gland imaging 

Infrared (IR) meibography is routinely used and widely accepted in clinical practice as a 

method for imaging and quantifying MGs during ocular surface disease examination. IR 

meibography is a non-contact MG imaging technique, where a camera and an IR light source 

are used to image MG by not touching patient eyelid during examination [48,49]. It was first 

introduced by Mathers et al. [50] in 1994 where the authors developed a video meibography 

system to observe MG real time on a computer. An IR charged-coupled camera was used to 

develop this system. Later, Arita et al. [48,49,51–53] used non-contact infrared meibography 

device which consisted of a regular slit-lamp microscope, with an IR charge-coupled device 

(CCD) video camera, and an IR transmitting filter. It allows clinicians to observe both upper and 

lower eyelids, when they are everted, without the contact of a probe as the lids are illuminated 

by an IR light source. The silicon-based CCD digital video camera’s chip is sensitive to IR light 

around 850 nm. IR images enhance the visibility of MG morphology as the glands are IR 

hyperreflective. It currently not known what elements of MG (connective tissue, cell type, and 

secretion) are IR hyperreflective, therefore knowledge of such would be beneficial for clinicians 

to assess the MG using meibography. Overall, non-contact IR meibography is preferable for the 

patient's comfort during examination [49]. 

To date, several commercially available clinical IR meibography devices have been 

developed for the European market: (1) Oculus Keratograph 5M (OCULUS Optikgeräte GmbH, 

Wetzlar, Germany), (2) bon ANTARES – the High-End Dry Eye Topographer (bon Optic 

Vertriebsges GmbH, Lübeck, Germany), and (3) ANTARES (CSO, Costruzione Strumenti 

Oftalmici, Florence, Italy). These three different IR meibography devices technical and optical 

information are tabulated in table 1.  

Table 1: Different IR meibography devices - technical and optical information [49,54,55].  
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IR 

meibography 

device 

Camera 

type 

IR light 

source 

Accuracy Number of 

rings 

Number 

of data 

points 

Keratograph 

5M 

Digital CCD 840 nm + 0.1D 22 22000 

Bon 

ANTERAS 

Digital CCD No 

information 

+ 0.01D 24 6144 

CSO 

ANTERES 

Digital CCD 875 nm No 

information 

24 6144 

 

IR meibography provides a physiological visualization of the eyelid along with MG. For 

reliable disease diagnosis, clinicians need to segment MG accurately in IR images. 

Traditionally, the techniques used to segment MG were manual or semi-automated, which 

require experienced personnel. However, manual or semi-automatic techniques were laborious, 

cost-ineffective, and potentially subject to user bias. To address these issues, several automatic 

MG segmentation methods have been published by Koh et al. [56], Llorens-Quintana et al. [57], 

Arita et al. [58], Celik et al. [59], and Koprowski et al. [60]. However, all of these methods heavily 

depend on traditional image processing techniques which performance relies on IR 

meibography image quality. It is quite challenging for examiners and clinicians to repeatedly 

acquire sufficient good quality images [10]. Figure 4 represents the oculus keratography 5M 

device (Fig. 4a) and both upper and lower eyelids IR meibography images (Fig. 4b and Fig. 4c).       
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Figure 4. IR meibography device and meibomian gland imaging. (a) IR meibography device, 
Oculus Keratograph 5M, (b) Upper eyelid IR meibography image, and (c) Lower eyelid IR 
meibography image. Red arrow indicates individual MG in both upper and lower eyelids. Oculus 
Keratograph 5M device image reproduced from [61] with kind permission of Frontiers in 
Medicine (Ophthalmology). 

1.2.2 In vivo confocal microscopy 

In vivo confocal microscopy (IVCM) is clinically widely accepted and routinely used in the 

diagnosis of various ocular surface disorders including dry eye, neuropathic corneal pain (NCP) 

and diabetic neuropathy by providing detailed morphometric information of CNF and DC [62,63]. 

Confocal microscopy known as confocal laser scanning microscopy (CLSM) is a non-invasive 

optical imaging technique that provides high-resolution images with a better rejection of out-of-

focus information than regular light microscopy. It provides multiple advantages over optical 

microscopy by controlling the depth of field, eliminating background information from the focal 

plane, and collecting a series of optical sections from thick tissue specimens. It uses spatial 

filtering techniques to reduce out-of-focus light in tissue with thickness exceeding the immediate 

plane of focus. Thereby, it is uniquely fitted to image and analysis tissue specimens in the living 

subjects. IVCM has been used over the last 25 years since it was developed in various areas of 

corneal research. Unlike other non-invasive anterior segment imaging techniques such as 

optical coherence tomography, IVCM provides high resolution en face images of various corneal 

structures and cells [64].  
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To date, three important confocal microscopy systems have been introduced for in vivo 

corneal imaging: (1) Heidelberg Retina Tomograph with Rostock Cornea Module (HRT-RCM, 

Heidelberg Engineering GmbH, Heidelberg, Germany) [64,65], (2) Tandem Scanning Confocal 

Microscope (TSCM) [64,66], and (3) Confoscan 4 (Nidek Technologies Srl, Padova, Italy) 

[64,67], and (3). The HRT-RCM is a CLSM that uses a 670 nm laser beam in a raster pattern 

over the field of view. It uses a very high numerical aperture of 63× objective lens which 

provides images of high contrast and better axial resolution (7.6 µm) than the other mentioned 

IVCM systems (9 µm resolution for TSCM and 24 µm resolution for confoscan) [64,66,68].  

IVCM enables live cellular physiological visualization of corneal nerve fibers (CNF) and 

dendritic cells (DC). For accurate quantification of CNF morphology and detection of DC, nerves 

and DCs must be accurately segmented in the IVCM images. Traditionally, the methods used to 

segment CNFs and DCs have been manual or semi-automated techniques. These require 

experienced personnel, which is laborious, cost-ineffective, and potentially subject to user bias. 

To address these issues, several automatic CNF segmentation and quantification software tools 

have been developed [69–72] using traditional image processing or machine learning where 

manually selected features were used. For example, Dabbah et al. developed a dual-model 

automated CNF detection method which showed excellent correlation with manual grading (r = 

0.92) and further extension of this method using dual-model property in a multi scale framework 

to generate feature vectors at every pixel and achieved high correlation with manual grading (r = 

0.95) [69,73]. Figure 5 demonstrates an in-vivo confocal microscopy device (HRTIII-RCM) (Fig. 

5a) and an example IVCM image of CNF and DCs (fig. 5b).  
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Figure 5. IVCM device along with corneal nerves and DCs. (a) Heidelberg Retina Tomograph - 
Rostock Cornea Module (HRT-RCM), in vivo confocal microscopy device image reproduced 
from [74] with kind permission of Springer Science (b) IVCM image. Red arrow indicates CNF 
and green arrow indicates DC.  

1.3 Artificial intelligence in ophthalmology 

The recent advancements in computer hardware, software, and data have enabled the 

use of artificial intelligence (AI) using deep learning (DL) to achieve high performance in several 

applications including healthcare. These advancements include decreasing the cost of a 

graphics processing unit (GPU), significant improvement of mathematical modeling, and 

availability of high volume of big data.  Utilization of DL provides robust performance and 

improved capability in image segmentation and evaluation. In medicine, DL systems have 

demonstrated significant progress in image-based disease diagnosis in radiology, dermatology, 

pathology, and ophthalmology [75]. Ophthalmology is spearheading AI applications in medicine 

[76,77], and, currently, DL techniques have been increasing in popularity in the field of 

ophthalmology [75,76,78,79].     

Deep learning proves the ability of deep neural networks to learn useful features and 

visual representations from a big dataset of manually labeled images, without explicitly defining 

hand crafted rules. Deep neural network is a cascade of processing layers which mimic the 
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human visual cortex signaling processes. Each neuron of the visual cortex response to a 

specific region or object of an image, similar to this, each layer of a deep neural networks 

extracts specific features of a particular region or object of an image [75].  In contrast to 

traditional image processing techniques, a DL system has an advantage of extracting and 

representing useful features from the raw images automatically and demonstrated significant 

performance on image segmentation and classification tasks [80]. Thus, it overcomes the need 

for manual cumbersome feature selection or use of several filters for image enhancement to 

noise reduction. DL is more preferable to traditional techniques or machine learning techniques 

as manually selected features for a specific disease may not be transferable to another disease 

[81,82]. Using CNN and a high volume of image data, a DL system can learn to segment 

specific objects from several ophthalmic images including retinal blood vessels [83], retinal 

layers [84], optic disc [85], and anterior chamber angle [86]. To date, several DL based MG and 

CNF segmentation models have been proposed. There are only few commercially established 

DL-based automatic software that were developed specially for retinal disease diagnosis such 

as diabetic retinopathy, glaucoma, and age-related-macular degeneration. However, these 

software are not available for all markets worldwide [87]. Thus, there is a need for the anterior 

segment and ocular surface disease diagnosis DL-based commercial software.  Prabhu et al. 

[88] developed the first DL based MG segmentation where they achieved acceptable p values 

between manual and automatic segmentation. Wang et al. [89] developed another DL system to 

analyze gland atrophy, however, their model could not segment or evaluate individual MG which 

is clinically important for reliable ocular surface disease diagnosis. Maruoka et al. [90] proposed 

a DL method to detect obstructive MGD using IVCM images, however, IVCM is not routinely 

used to image and analyze MG in clinical practice. In addition, a small field of view of IVCM 

images refrains to image full length of MG or total eyelid area. The first DL based CNF 

segmentation model was developed by Williams et al. [91]. They demonstrated the efficacy of 

deep learning models to identify DPN with high interclass correlation with manual ground truth 
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annotation. Wei et al. [92] and Colonna et al. [93] developed a model that provides high 

sensitivity and specificity in the segmentation task of corneal nerve fibers (CNF). Oakley et al. 

[94] developed a DL model to analyze macaque CNF which achieved a high correlation 

between manual and automatic segmentation. Yıldız et al. [95] proposed CNF segmentation 

using generative adversarial network (GAN), which is different from traditional CNN, and they 

achieved similar correlation and Bland-Altman analysis results with the traditional DL model, U-

Net. Though several DL based MG and CNF segmentation models have been developed by 

different research groups, the developed models provide only segmentation without further 

morphometric evaluation. Additionally, for IVCM image analysis, researchers have focused on 

CNF segmentation alone, and not DC segmentation. Therefore, there is a need for fully 

automatic segmentation and morphometric evaluation of MG, CNF, and DC. 

In this PhD thesis, deep learning-based novel computational methods for the 

segmentation and quantification of meibomian glands (both upper and lower eyelids), corneal 

nerves, and dendritic cells are introduced. The developed methods use raw images, directly 

export from the clinical devices without any image pre-processing to generate segmentation 

masks. Afterward, it provides morphometric quantification parameters for more reliable and 

faster disease diagnosis. Noteworthily, the developed methods provide complete and automatic 

segmentation and quantification information for faster disease characterization. This is a 

significant improvement compared to current traditional image processing or AI-based 

segmentation methods. Most of the deep learning-based methods provide segmentation without 

further morphometric analysis. Thus, the here developed methods are the first methods 

(especially for meibomian gland and dendritic cells) to provide complete morphometric analysis 

information.  
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Finally, the developed deep learning-based method’s performance was analyzed and 

compared with the manual annotation and currently available state-of-the-art software (for 

corneal nerves analysis).     

2 Results 

2.1 Deep learning-based automatic meibomian gland segmentation and morphology 

assessment in infrared meibography  
 

Md Asif Khan Setu, Jens Horstmann, Stefan Schmidt, Michael E. Stern, Philipp Steven 

Objectives: Meibomian glands (MG) are large sebaceous glands located below the tarsal 

conjunctiva and the abnormalities of these glands cause Meibomian gland dysfunction (MGD) 

which is responsible for evaporative dry eye disease (DED). Accurate MG segmentation is a key 

prerequisite for automated imaging-based MGD related DED diagnosis. However, Automatic 

MG segmentation in infrared meibography is a challenging task due to image artifacts.  

Methods: A deep learning-based MG segmentation has been proposed which directly learns 

MG features from the training image dataset without any image pre-processing. The model is 

trained and evaluated using 728 anonymized clinical meibography images. Additionally, 

automatic MG morphometric parameters, gland number, length, width, and tortuosity 

assessment were proposed.  

Results: The average precision, recall, and F1 score were achieved 83%, 81%, and 84% 

respectively on the testing dataset with an AUC value of 0.96 based on ROC curve and dice 

coefficient of 84%. Single image segmentation and morphometric parameter evaluation took on 

average 1.33 s.  

Conclusions: The trained U-Net model is able to learn specific and prominent features of MG 

from input training meibography images which may improve the MG segmentation performance. 
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There is a need for validation procedures by expert clinicians. To the best of our knowledge, this 

is the first time that a validated deep learning-based approach is applied in MG segmentation 

and evaluation for both upper and lower eyelids. 

Translational Relevance: This automatic MG segmentation method could overcome current 

limitations such as time and accuracy. It provides accurate, faster, and reliable automatic MG 

segmentation than conventional MG segmentation methods. 

Own Contribution to publication 1: 

Md Asif Khan Setu designed and developed the deep learning algorithm and automatic 

morphometric parameters assessment software for meibomian glands, wrote python-based 

code to develop deep learning algorithm and automatic morphometric parameter assessment 

software, anonymized the clinical meibography image data, pre and post processed images, 

generated ground truth mask images, algorithm and software performance evaluated, data 

evaluated and interpreted, statistical analysis, and wrote the main manuscript text.  

Co-authors contribution to publication 1: 

Jens Horstmann and Stefan Schmidt provided technical knowledge and reviewed the 

manuscript text. Mike E. Stern participated in study design and reviewed and commented on the 

manuscript. Philipp Steven generated the main idea of this research, provided clinical 

background knowledge, collected clinical meibography image data, verified ground truth masks 

and wrote and reviewed the manuscript. 

2.2 Segmentation and Evaluation of Corneal Nerves and Dendritic Cells from In Vivo 

Confocal Microscopy Images using Deep Learning 
 

Md Asif Khan Setu, Stefan Schmidt, Gwen Musial, Michael E. Stern, Philipp Steven 
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Purpose: Segmentation and evaluation of in vivo confocal microscopy (IVCM) images requires 

manual intervention, which is time consuming, laborious, and non-reproducible. The aim of this 

research was to develop and validate deep learning–based methods that could automatically 

segment and evaluate corneal nerve fibers (CNFs) and dendritic cells (DCs) in IVCM images, 

thereby reducing processing time to analyze larger volumes of clinical images. 

Methods: CNF and DC segmentation models were developed based on U-Net and Mask R-

CNN architectures, respectively; 10-fold cross-validation was used to evaluate both models. The 

CNF model was trained and tested using 1097 and 122 images, and the DC model was trained 

and tested using 679 and 75 images, respectively, at each fold. The CNF morphology, number 

of nerves, number of branching points, nerve length, and tortuosity were analyzed; for DCs, 

number, size, and immature–mature cells were analyzed. Python-based software was written 

for model training, testing, and automatic morphometric parameters evaluation. 

Results: The CNF model achieved on average 86.1% sensitivity and 90.1% specificity, and the 

DC model achieved on average 89.37% precision, 94.43% recall, and 91.83% F1 score. The 

interclass correlation coefficient (ICC) between manual annotation and automatic segmentation 

were 0.85, 0.87, 0.95, and 0.88 for CNF number, length, branching points, and tortuosity, 

respectively, and the ICC for DC number and size were 0.95 and 0.92, respectively. 

Conclusions: Our proposed methods demonstrated reliable consistency between manual 

annotation and automatic segmentation of CNF and DC with rapid speed. The results showed 

that these approaches have the potential to be implemented into clinical practice in IVCM 

images. 

Translational Relevance: The deep learning–based automatic segmentation and quantification 

algorithm significantly increases the efficiency of evaluating IVCM images, thereby supporting 
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and potentially improving the diagnosis and treatment of ocular surface disease associated with 

corneal nerves and dendritic cells. 

Own contribution to publication 2: 

Md Asif Khan Setu designed and developed both deep learning algorithms and automatic 

morphometric parameters assessment software for corneal nerves and dendritic cells, wrote 

python-based code to develop deep learning algorithm and automatic morphometric parameter 

assessment software, anonymized the clinical confocal microscopy image data, pre and post 

processed images, generated ground truth mask images, algorithms, and software performance 

evaluated, data evaluated and interpreted statistical analysis, and wrote the main manuscript 

text.  

Co-authors contribution to publication 2: 

Stefan Schmidt and Gwen Musial provided technical knowledge and reviewed the manuscript 

text. Mike E. Stern participated in study design and reviewed and commented on the 

manuscript. Philipp Steven generated the main idea of this research, provided clinical 

background knowledge, collected clinical confocal microscopy image data, verified ground truth 

masks images, and wrote and reviewed the manuscript. 

3 Discussion 

3.1 Main findings of the two presented research studies in summary 
 

Fully automatic deep neural network-based novel computational methods for MG, CNF, 

and DC segmentation and quantification in infrared meibography and corneal IVCM images 

have been developed in this PhD research. The developed methods use a novel strategy where 

it first segments the desired objects from the raw images and then provides morphometric 
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quantification parameters for reliable disease diagnosis. To the best of the authors knowledge, 

this is the first deep neural network-based MG (both upper and lower eyelids) and DC 

segmentation and evaluation method which have been developed and validated. This PhD 

research study validates the here developed deep-learning methods and confirms that the 

segmentation performance is comparable with manual ground truth images while significantly 

reducing amount of time to analyze those images. In particular, the here developed methods 

provide high accuracy between manual ground truth images and automatic segmentation in the 

quantification metrics even in images with reduced acquisition quality. In addition to automatic 

segmentation, the newly developed methods provide fully automatic, morphometric, clinical 

variables which have utility in the diagnosis of DED, corneal neuropathic pain, and other ocular 

surface diseases.     

3.2 Meibomian gland segmentation and quantification 
 

Infrared meibography images play an important role to analyze MG of both upper and 

lower eyelids in the diagnosis of MGD. In clinical practice, ophthalmologists need to analyze the 

images multiple times to ensure accurate results for reliable disease diagnosis. During the 

manual analysis, the ophthalmologist may evaluate the MG differently at different patient 

appointments which could lead to within observer variability. Furthermore, eversion of the upper 

eyelid is never the same and differences in positioning of the eyelid have vast impact on two-

dimensional topography of MGs. In addition, two different observers could quantify the same 

image differently leading to observer variability. Therefore, a fully automatic MG segmentation 

and evaluation software is needed for reliable, faster, and reproducible results. In contrast to 

traditional image processing techniques, where various filters were used [60-63], DL-based 

techniques are much faster and more reliable to segment and quantify desired objects from the 

clinical images. Unlike the traditional machine learning methods where manually selected hand 
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crafted features were used to segment or classify object [61], the DL method waives the need 

for complex manual feature selection by using automatic feature extraction and representation.    

The developed deep neural network-based method in this PhD research provides fully 

automatic MGs segmentation and morphometric evaluation from infrared meibography images 

without any image pre-processing. DL model achieved high performance (97% accuracy, 84% 

dice similarity, 83% precision, and 81% recall) with 0% variability and 100% repeatability (test-

retest reliability). The average segmentation and evaluation time per meibography image was 

approximately 1.33 seconds which means the model could evaluate 1000 clinical images only in 

22 minutes without any user involvement. It reduces significant image processing time and 

computational cost to analyze clinical images and assist clinicians to take faster and better 

disease diagnosis decision. The single trained model is able to segment MGs from both upper 

and lower eyelids. There is no failed case to segment MG in the test dataset. From the 

visualization of the automated segmentation of MGs has high visual similarity with manual 

ground truth MGs. Furthermore, statistical analysis (Bland-Altman method) supports the 

similarity between automatic segmentation and manual annotation. Overall, the research results 

demonstrate a fully automated and reliable deep learning-based technique for MG segmentation 

and morphometric evaluation from IR meibography images.  

MGs segmentation and quantification model has some limitations. Firstly, the developed 

method is device and location specific, where all the images (training, validation, and testing) 

were acquired using an Oculus Keratograph 5 M (Oculus GmbH, Wetzlar, Germany) from the 

Department of Ophthalmology, University Hospital Cologne, Germany. Secondly, the ground 

truth images were created manually where there is a chance of observer variability. However, all 

manually labeled images were verified and corrected by a senior experienced ophthalmologist. 

Thirdly, DL model did not perform well in all test images. In some cases, a single gland is 

separated into multiple one and in other cases two glands are connected and considered as a 
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single gland. In all of these unusual cases, images were not acquired correctly and had strong 

artifacts such as specular reflection and MGs morphological deformation. Moreover, the model 

should be validated and tested using patient longitudinal data, which will make the model more 

robust to diagnosis follow-up cases. Finally, the developed model does not provide any clinical 

correlation to differentiate disease versus health and meibography score to distinguish disease 

severity stage. 

3.3 Corneal nerves and dendritic cells segmentation and quantification 
 

IVCM images play an important role in clinical practice to diagnosis and analyze many 

corneal diseases. To ensure accurate results, ophthalmologists often need to analyze the 

patient images multiple times for disease diagnosis or scientific research. The ophthalmologist 

may evaluate CNF and DC differently at different patient appointments during their manual 

image analysis which could lead to within observer variability. Therefore, there is a need for 

reliable, faster, and reproducible fully automatic CNF and DC segmentation and evaluation 

methods. Unlike the traditional image processing techniques where various filters and graphs 

were used [69–72], deep learning-based methods are comparatively faster to segment objects 

from the clinical images. In contrast to traditional machine learning method where handcrafted 

features are needed to segment or classify the object [70], the deep neural network-based 

method replaces the manual complex feature selection with automatic feature extraction using 

hundreds of filters.       

In this PhD research study, a novel method was developed to classify corneal nerves into 

main nerves and branch nerves for further quantitative evaluation after the binary segmentation. 

CNF deep neural network model achieved on average 84% sensitivity, 91% specificity, and 

AUC of 0.88 on the test dataset. Corneal nerve fiber length, fiber density, number of branching 

points, and tortuosity were calculated automatically using the newly developed software which 
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are useful clinical parameters to diagnose dry eye and neuropathic corneal pain severity 

[30,31,34].    

The research results demonstrate that the developed deep learning models can reliably 

segment and evaluate the CNF and DC with rapid speed. The CNF and DC model took on 

average 4.5 seconds and 3 seconds per image, respectively, to segment and evaluate IVCM 

images. Both deep learning-based models significantly reduce clinical image analysis time of a 

large volume of patient data. Visibly, both manual annotation and automatic segmentation of 

CNF and DC appear similar with important clinical features. Overall, the developed methods 

provide an objective, fast, and reliable approach to segment and morphometric analysis of CNF 

and DC in IVCM images.    

CNF and DC segmentation and quantification models have some limitations. Firstly, CNF 

and DC images were acquired from Peking University Third Hospital, China and Department of 

Ophthalmology, University Hospital Cologne, Germany, respectively using the Heidelberg 

Retina Tomograph (HRT3) with the Rostock Cornea Module (RCM) (Heidelberg Engineering 

GmbH, Heidelberg, Germany) based on small patient cohort. Therefore, a large and more 

diverse patient cohort with regards to age, gender and regional origin, and different types of 

IVCM devices could potentially increase the generalizability and robustness of the developed 

model. Moreover, the model should be validated and tested using patient longitudinal data, 

which will make the model more specific to diagnose follow-up cases. Finally, the developed 

model could not automatically differentiate disease versus healthy cornea instead of providing 

different morphometric quantification parameters.  

3.4 Future studies 
 

Further research and clinical validation (clinical trials) are needed to be carried out to 

identify the feasibility of introducing this system into ophthalmic practice and commercially 
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available diagnostic devices. Noteworthily, the DL-based model should provide clinical 

explainability and interpretability instead of some deep learning probability score to assist 

medical doctors make better and faster diagnosis decision. Furthermore, the DL model should 

meet regulatory guidelines in order to be trustworthy, namely accuracy, resiliency, reliability, 

safety, and accountability. This could significantly help to close the critical gap between deep 

learning model development and deployment into clinical practice. In order to gain trust, 

different stakeholders such as AI designers, medical doctors, reading centers, hospitals, 

patients, regulatory bodies, payers should work together closely from the development to 

integration phase of the deep learning model. Collectively, deep learning could be used to 

identify, process and define image-based biomarkers and help to better diagnose and 

differentiate ocular disease, as DL is able to seek for useful characteristics or pattern by 

themselves and is not limited to identify clinical features only.    

3.5 Conclusion 
 

In this PhD research study, deep neural network-based fully automatic segmentation and 

quantification methods were developed for MG, CNF, and DC. The developed techniques 

overcome current limitations of subjective image analysis and enable faster, precise, accurate, 

reliable, and reproducible ocular surface tissue characterization. These techniques have the 

potential to make an impact clinically and in the research environment by specifying faster 

disease diagnosis, facilitating new drug development, and standardizing clinical trials for a new 

drug of ocular surface disease related to DE. The developed automatic and objective image 

analysis methods could assist researchers and clinicians in the diagnosis of several ocular 

surface diseases including DED, neuropathic corneal pain, and reduce inter- or intra-observer 

variability and time to analyze a large volume of clinical images. Thus, the methods demonstrate 

that deep neural network-based systems provide automatic segmentation and morphometric 
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evaluation of MG, CNF, and DC and have the potential to be implemented into clinical practice 

in infrared meibography and IVCM images.    

The author believes that the developed methods would contribute towards initializing a 

new phase of ocular surface tissue segmentation and analysis. It will allow both researchers 

and clinicians to analyze MG, CNF, and DC more reliably while reducing a significant amount of 

time to analyze the patient images. Finally, the methods developed in this research significantly 

increase the efficiency of evaluating clinical images, thereby supporting and potentially 

improving diagnosis and treatment of ocular surface disease related to dry eye.    
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Deep learning‑based automatic 
meibomian gland segmentation 
and morphology assessment 
in infrared meibography
Md Asif Khan Setu  1,2, Jens Horstmann1, Stefan Schmidt4, Michael E. Stern1,2,3 & 
Philipp Steven1,2* 

Meibomian glands (MG) are large sebaceous glands located below the tarsal conjunctiva and the 
abnormalities of these glands cause Meibomian gland dysfunction (MGD) which is responsible for 
evaporative dry eye disease (DED). Accurate MG segmentation is a key prerequisite for automated 
imaging based MGD related DED diagnosis. However, Automatic MG segmentation in infrared 
meibography is a challenging task due to image artifacts. A deep learning-based MG segmentation 
has been proposed which directly learns MG features from the training image dataset without any 
image pre-processing. The model is trained and evaluated using 728 anonymized clinical meibography 
images. Additionally, automatic MG morphometric parameters, gland number, length, width, and 
tortuosity assessment were proposed. The average precision, recall, and F1 score were achieved 83%, 
81%, and 84% respectively on the testing dataset with AUC value of 0.96 based on ROC curve and 
dice coefficient of 84%. Single image segmentation and morphometric parameter evaluation took on 
average 1.33 s. To the best of our knowledge, this is the first time that a validated deep learning-based 
approach is applied in MG segmentation and evaluation for both upper and lower eyelids.

Dry eye disease (DED) is one of the pervasive diseases of the ocular surface due to its multifactorial nature where 
tear film instability, hyperosmolarity, neurosensory abnormalities, ocular surface inflammation, ocular surface 
damage, and meibomian gland dysfunction (MGD) play etiological roles1–4. DED affects visual acuity and causes 
ocular discomfort and other symptoms, leading to changes in the quality of life2,5.

MGD is a chronic disease and caused by diffuse abnormalities of meibomian glands, terminal duct obstruc-
tion, and changes in the glandular secretion. Obstructive MGD is a common cause of evaporative dry eye and 
lipid layer deficiency5–7. Infrared (IR) Meibography is a well-established non-contact optical imaging technique, 
which uses IR illumination to depict MG morphology by examining the everted eyelid7. Clinically, it is widely 
accepted, and also recommended to image and quantify MG during dry-eye examination. Meibography is non-
invasive, provides large image areas, detailed morphometric information of MG, and is easy to operate for 
clinicians and technicians.

Several grading schemes and methods to analyze MG have been published by Pult et al.8, Srinivasan et al.9, 
Arita et al.10, and Engel et al.11 However, these MG segmentation methods are subjective or semi-automatic 
and require user interaction, which is laborious, time-consuming and non-repeatable. In previous research8–11, 
meibography images have been segmented and quantified using ImageJ (National Institute of Health; http://​
imagej.​nih.​gov/​ij) software where clinicians need to involve manually to identify the MG. In addition, different 
clinicians identify glands differently, which causes inter-observer variability12.

A reliable automatic MG segmentation technique may overcome the difficulties of manual image segmenta-
tion, as infrared meibography images often contain various artifacts such as low contrast, non-uniform illumi-
nation, defocus gland area, or specular reflections which make image segmentation more challenging13. Until 
now, Koh et al.12, Llorens-Quintana et al.13, Arita et al.14, Celik et al.15, and Koprowski et al.16 have proposed 
automatic MG segmentation methods. However, all of these methods rely on intensity-thresholding based image 
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segmentation which performance heavily depends on image quality. At the same time, it is quite challenging for 
examiners to repeatedly acquire sufficient quality images.

In contrast to intensity-thresholding based image segmentation methods, a deep learning-based method has 
the advantages of learning useful features and representations from the raw images automatically17 and could 
thus overcome the above-mentioned restrictions. In a previous study18, we have compared intensity-thresholding, 
region growing, and deep learning method to automatic analysis of IR meibography images. Among these three 
implemented approaches, we have demonstrated that deep learning could produce high quality and reliable 
results for the challenging task of automated IR meibography image segmentation and quantification. In the 
past years, deep learning has been paid increasing attention in the field of ophthalmology19–22. Using a neural 
network and a high volume of image data, a deep learning algorithm can learn to detect specific objects from the 
images. Nowadays, deep learning algorithms perform well due to increased computational power and image data. 
U-net, a state-of-the-art biomedical image segmentation method was first introduced by Ronneberger et al.23 
The algorithm provides high performance while requiring less training image data and gaining more accuracy 
than the conventional neural network.

In this research, an automatic MG segmentation method is proposed based on U-net. The detailed deep 
learning model training procedure and application to new images is illustrated in supplementary Fig. S1.

Unlike previous image segmentation techniques whose performance heavily depends on the image quality, 
the proposed deep learning-based MG segmentation method directly learns the MG features from the train-
ing images, which does not require any pre-processing such as artifact removal or image enhancement. It can 
automatically segment MG on new images. We demonstrate the good performance of the proposed technique 
by assessing various evaluation metrics.

Materials and methods
Meibography data collection.  In total 728 anonymized clinical infrared meibography images of both 
upper (398) and lower (330) eyelids of adults male and female humans (age > 18 years) were randomly collected 
using the database of an Oculus Keratograph 5 M (Oculus GmbH, Wetzlar, Germany) device at the Eye Hos-
pital, Department of Ophthalmology, University Hospital Cologne, Germany. The image collection adhered to 
the tenets of the Declaration of Helsinki and was approved by the Ethics and Institutional review board (IRB) 
from the University of Cologne—Germany (approval number #16-045). As this research study was conducted 
retrospectively using anonymized non-biometric data, the need for participant’s informed consent was waived 
by the Ethics committee and IRB.

Data annotations.  All collected clinical meibography images were manually annotated using Fiji (fiji.sc), 
which is an open-source image processing software, with the Segmentation Editor (https://​imagej.​net/​Segme​
ntati​on_​Editor) plugin to generate ground truth masks. In the segmentation editor plugin window, the Exterior 
was set to black, and the Interior was set to white to generate a binary ground truth mask. One of the authors 
(M.A.K.S.) created a polygon boundary around the glands and saved the annotation mask images as JPG file 
format. Ground truth masks were generated for both upper and lower eyelids. Examples of training images and 
their corresponding masks of upper and lower eyelids are presented in Fig. 1. Finally, all annotated ground truth 
mask images were verified and corrected by an experienced senior ophthalmologist (P.S.) from the University 
Hospital Cologne before they were used in deep learning model training and testing.

Data preparation and allocation.  From the overall collected 728 anonymized clinical meibography 
images, 100 were prepared as a test dataset to measure the true performance of our trained model. The remain-
ing 628 images were randomly divided into training and validation datasets. Approximately, 80% (502 images) 
and 20% (126 images) of image data were used to train and validate respectively the deep learning model. Due 
to variations in the size of data set images, all images were resized to 256 × 256 pixels (width × height). Training 
images were used for deep learning model training and validation images were used to fine-tune the hyper-
parameters such as epochs, learning rate, momentum, validation steps.

Deep learning model design and training.  We have applied transfer learning with a pre-trained back-
bone to increase the learning efficiency of the deep learning model. In this research work, Inception-ResNet-
v224, a pre-trained backbone based on a publicly available ImageNet25 dataset was used for transfer learning. 
In the beginning, we pre-trained our model with the Montgomery Chest X-ray images26 for five epochs, which 
helps transfer learning performance as such medical image data is closer to our target application than the origi-
nal ImageNet dataset. There are 138 publicly available X-ray images acquired by the Department of Health and 
Human Services of Montgomery County, MD, USA. The approach is to pre-train the baseline U-Net model to 
increase learning efficiency. After that, we re-trained the U-net model again using the meibography images and 
their respective masks. To optimize the deep learning model, both cross-entropy (CE) and Dice loss were used. 
The CE loss, Dice loss, and total loss were computed by the following equations,

(1)CE =

∑

x∈Ω

w(x)gl(x) log
(

pl(x)
)

(2)Dice = 1−
2�x∈�pl(x)gl(x)

�x∈�g
2
l (x)+�x∈�p

2
l (x)
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where w(x) is the weight assigned to the pixel x ∈ Ω , gl(x) is the ground truth pixel for layer l  , pl(x) is the seg-
mented pixel for layer l  and total loss is the summation of the cross-entropy and dice loss.

Adam27, a gradient-based stochastic optimizer that is one of the most efficient optimization algorithms for 
deep learning model optimization was also used to optimize the deep learning model.

Cross‑validation study.  To evaluate a deep learning model k-Fold cross-validation is generally used. In 
this research, k = 5 was applied. The total 628 images were randomly split into 5 sub-groups and each time four 
groups were selected as a training dataset and one group was selected as a validation dataset. In total 502 and 126 
images were used as training and validation datasets respectively on every fold for training the model.

Evaluation metrics.  For the MG segmentation task in this research, the common evaluation metrics Pre-
cision (P), Recall (R), and F1 score have been used. The MG pixels (e.g. white pixels in the binary segmented 
masks) are considered as positive instances. Based on the combination of the ground truth masks and segmented 
masks, these pixels are categorized into four categories: true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN). Then we can interpret Precision, and Recall in the following equations:

(3)Total loss = CE + Dice

(4)P =
TP

TP + FP

Figure 1.   Example of training images and their corresponding ground truth images. (a1–a2) anonymized 
upper eyelid images, (a3–a4) anonymized lower eyelid images, (b1–b2) upper eyelid ground truth images, and 
(b3–b4) lower eyelid ground truth images.
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F1 score is interpreted as a weighted average of precision and recall and based on the following equation:

Morphometric parameters assessment.  To better analyze the MG’s morphology, gland number, 
length, width, and tortuosity were measured. These morphometric parameters were computed directly from the 
output of a deep learning-based binary segmentation image. To calculate the morphometric parameters, each 
segmented gland was analyzed individually. However, to generalize these morphometric parameters, the mean 
gland length, width, and tortuosity were calculated for an individual eyelid.

To compute the individual gland width, the difference of the leftmost white pixel (X0) and the rightmost 
white pixel (X1) at each row (Y) within the range of the length of the gland (Ymin, Ymax) were measured and then 
averaged (Fig. 2c). The number of MGs were computed based on the total number of separated white objects in 
the binary segmented image and put the number on top of each MG (Fig. 2d).

To compute the length and tortuosity of the gland, first, the binary-segmented image (Fig. 2a) was skel-
etonized (Fig. 2b) into one-pixel width using a custom-made python-based software. Then the path length 
(distance over the gland’s skeletonized path) and the chord length (Euclidean distance between the first and last 
pixel of an individual skeletonized gland) were calculated. Finally, tortuosity τ for each gland g was measured as:

The deep learning model training, validation, testing, data preparation, and morphometric parameters assess-
ment were conducted on a laptop running on Windows 10 Professional, 64-bit Intel Core i7-9750H CPU @ 
2.6 GHz with 12 MB of cache memory, SSD 512 GB M.2 Samsung 970 Pro PCIe 3.0 × 4 NVMe, RAM 32 GB 
DDR4 @ 2666 MHz and NVIDIA GeForce RTX 2070 Max-Q with 8 GB GDDR6 of memory. Data preparation, 
deep learning model design, and training, morphometric parameters assessment software was written in Python 
(version: 3.6.6) using Keras (version: 2.2.5) with TensorFlow (TensorFlow version: 1.4, CUDA version: 10.0, 
cuDNN version: 7.6.3) in the backend.

Test–retest reliability.  To determine the variability and repeatability (test–retest reliability)28,29 of the 
developed algorithm, we additionally have compared two manual annotations by the same observer with two 
automatic segmentations, using the same test dataset of 100 images (50 upper and 50 lower eyelids). The same 
observer (M.A.K.S.) manually re-annotated individual MG of the test dataset. Dice similarity coefficient (DSC)30, 
Cohen’s kappa coefficient31, and inter-class correlation coefficient (ICC)32 were used to measure the variability 
and repeatability between manual annotations and between automatic segmentations of the test dataset.

(5)R =
TP

TP + FN

(6)F1 =
2 · P · R

P + R

(7)τ
(

g
)

=
Path length

Chord length

Figure 2.   Morphometric parameters assessment of MG. (a) Binary segmented image, (b) skeletonized MGs of 
one-pixel width, (c) Individual gland width measurement. The Red line indicates the leftmost white pixel (X0) 
and rightmost white pixel (X1) at the Yth row, and (d) Number of each MG is presented on top of each gland.
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Statistics.  The deep learning-based MG segmentation method was compared with the manually segmented 
MGs. The performance of the deep learning-based segmentation was measured using the Bland–Altman 
method33. Open-source program Python (version 3.6.6) based SciPy (version 1.5.2) library was used to perform 
the statistical analysis.

Results
Meibomian glands segmentation.  MG segmentation model training for 30 epochs with a batch size of 
5 took approximately 8 h and 24 min using the above described hard- and software. To segment and evaluate all 
100 testing images, took 1 min 58 s on average 1.33 s per image. The average precision, recall, and F1 score were 
achieved 83%, 81%, and 84% respectively on the testing dataset with an AUC value of 0.96 based on the ROC 
curve (Supplementary Fig. S2) and dice coefficient of 84%. Examples of upper and lower eyelid testing images 
segmentation are presented in Figs. 3 and 4.

In general, MGs were reliably segmented in all testing images of both upper and lower eyelids using the 
trained deep learning model. However, the glands were not accurately segmented in all-test images. In some 
cases, two glands were connected which need to appear separately and the single gland was divided into two, 
which need to be a continuous gland. Examples of segmented MGs where glands are connected and separated are 
illustrated in Fig. 5. Among the 100 upper (50) and lower (50) eyelid test images, 39 upper and 37 lower eyelid 
images were segmented correctly. One MG was missing in 6 upper and 7 lower eyelid images while two MGs 
missing in only one lower eyelid image. Furthermore, one MG was falsely segmented in 4 upper and 5 lower 
eyelid images while two MGs falsely segmented only one upper eyelid image.

Figure 3.   Example of MG segmentation from upper eyelid on test images. (a1–a3) Original images, (b1–b3) 
ground truth MG, (c1–c3) segmented MG, and (d1–d3) overlay of the original image and segmented MG. The 
red (b2) and green (c3) arrows indicate the missing gland and false gland segmentation respectively.

Figure 4.   Example of MG segmentation from lower eyelid on test images. (a1–a3) original images, (b1–b3) 
ground truth MG, (c1–c3) Segmented MG, and (d1–d3) overlay of the original image and segmented MG. The 
red (b2) and green (c3) arrows indicate the missing gland and false gland segmentation respectively.
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Morphometric parameters assessment.  The morphometric parameters MGs number, length, width, 
and tortuosity were computed from the binary-segmented images of test dataset. These are important clini-
cal parameters to analysis the MG status. Our developed Python-based software provides automatic morpho-
metric parameters assessment from the binary segmented image. All morphometric parameters of the binary 
segmented images of test dataset for both upper and lower eyelids were compared with the manually annotated 
images and the p value (using paired t-test) between ground truth and automatic segmentation is also presented. 
The results are tabulated in Tables 1 and 2.

To determine the consistency of the automatic MGs segmentation and manual annotation, Bland–Altman 
analysis was performed for all morphometric parameters. The statistical plots for upper eyelid are presented in 
Fig. 6. The total 50 upper eyelid testing images were used for this analysis. The middle solid line indicates the 
mean of manual and segmented MG which are 0.02, 20.67, − 1.06 and 0.07 for gland number, length, width and 
tortuosity respectively. All mean values are close to zero, thus the ground truth and automatic segmentation are 
not significantly different (p > 0.005). The two dotted lines indicate the limit of agreement (+ 1.96 SD) and the 
values were in between 1.13 and − 1.09 for gland number, 88.45 and − 47.11 for length, 1.27 and − 3.39 for width 
and 0.72 and − 0.59 for tortuosity. The gray bar indicates the confidence interval of 95%. Among the all 50 test 
images only 1, 2, 0, and 3 values were outside the limit of agreement thus the 98%, 96%, 100%, and 94% of the 
values are within the limit of agreement.

Figure 5.   Example of MG segmentation where MG did not segment accurately. (a,c) Original images. (b,d) 
Segmented MGs. Green arrows indicate the MGs where glands need to appear separate and red arrows indicate 
where MGs need to become continuous.

Table 1.   Morphometric parameters analysis of upper eyelid. p value is between ground truth versus 
segmented MGs.

Upper eyelid parameters Ground truth MG Segmented MG p value

Number of glands 15.02 ± 2.68 15.00 ± 2.61 0.79

Mean gland length 269.87 ± 188.78 249.20 ± 181.65 0.58

Mean gland width 18.14 ± 2.95 19.20 ± 2.81 0.07

Mean tortuosity 1.74 ± 0.95 1.68 ± 0.91 0.18

Table 2.   Morphometric parameters analysis of lower eyelid. p value is between ground truth versus segmented 
MGs.

Lower eyelid parameters Ground truth MG Segmented MG p value

Number of glands 15.41 ± 3.18 15.32 ± 3.19 0.32

Mean gland length 105.60 ± 90.21 99.96 ± 87.36 0.09

Mean gland width 22.33 ± 5.40 22.66 ± 5.21 0.04

Mean tortuosity 1.78 ± 0.94 1.83 ± 0.94 0.61
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Figure 7 represents the lower eyelid analysis. The total 50 lower eyelid testing images were used for this 
analysis. The middle solid line indicates the mean of manual and segmented MG which are 0.08, 5.64, − 0.34 
and − 0.04 for gland number, length, width and tortuosity respectively. All mean values are close to zero, thus 
the ground truth and automatic segmentation are not significantly different (p > 0.005). The two dotted lines 
indicate the limit of agreement (± 1.96 SD) and the values were in between 1.20 and − 1.04 for gland number, 
40.04 and − 28.75 for length, 1.72 and − 2.39 for width, and 0.93 and − 1.00 for tortuosity. The gray bar indicates 
the confidence interval of 95%. Among the all 50 test images only 1, 0, 1, and 2 values were outside the limit of 
agreement thus the 98%, 100%, 98%, and 96% of the values are within the limit of agreement.

Test–retest reliability.  The developed algorithm achieved 0% variability and 100% repeatability, while 
running two tests, in contrast, there was variability between two manual annotations with the same observer 
and using the same test dataset. The variability and repeatability between manual annotations (intra-observer) 
and between automatic segmentations (intra-method) are presented in the Table 3.

Performance evaluation of inferior quality images.  The trained deep learning model was also able to 
segment MGs from different inferior quality of meibography images, which were not considered during the deep 
learning model training, validation, and testing such as out of focus image, eyelashes in the glands area, partially 
everted upper eyelid, and artifact of everting finger in the top left of the image. Examples of MGs segmentation 
on inferior quality images are illustrated in Fig. 8.

Discussion
In several previous publications, MGs were detected using the image processing software ImageJ8–11. User inter-
action is needed with this software to define the MGs manually for each image to quantify the meibography 
images. Users may draw the gland regions differently and therefore intra- or inter-observer variability occurs. 
The first automatic MG detection algorithm was published by Koh et al.12 and the algorithm was able to detect 
glands from both healthy and unhealthy glands. The most important part of this research work depended on 
how the meibography images were acquired. Small artifacts may cause complications during the MG detection 
and thus the final result was affected. Later, another automated algorithm for quantitative analysis of MG was 
developed by Arita et al.14 based on image enhancement methods where various image processing techniques 
were applied. In their research work, user interaction was needed for a manual correction after the MG detection 

Figure 6.   Bland–Altman plots of MGs number, length, width, and tortuosity between ground truth and deep 
learning segmentation for upper eyelid. The middle solid line indicates the mean value, the two dotted lines 
indicate the limit of agreement (± 1.96 SD), and the gray bar indicates the confidence interval of 95%.
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when the images had too many specular reflections and extensive MG loss. Thus, the algorithm was not fully 
automatic. In recent works, Llorens-Quintana et al.13 proposed a fully automatic MG detection based on image 
enhancement methods using various image processing techniques. In their research work, they also proposed 
a gland irregularity measurement which was very helpful for clinicians for a follow-up checkup. However, user 
input was necessary, and the algorithm did not work for several images as they were not taken properly and 
there were some artifacts such as defocus areas, out of frame image and everted upper eyelid touching the lower 
eyelid. Additionally, this algorithm was designed only for the upper eyelid MG detection.

A machine learning-based automatic MG detection was developed by Celik et al.15, which was able to detect 
MG using the Gabor filter. A supervised machine learning algorithm, support vector machine (SVM), was used 
to classify the pixels that belong to either glands or inter-glands areas. However, while our model is trained with a 
gland class and a general background class, their model solely learns from the gland and inter-gland areas, which 
could potentially lead to false detection. Furthermore, this algorithm was tested for the upper eyelid. Another 
artificial intelligence (AI) based MG detection was proposed by Koprowski et al.16, where the SVM classifier was 
used to classify healthy, at-risk, and affected subjects with very high sensitivity (99.3%) and specificity (97.5%). 
The main limitations of this algorithm were the use of handcrafted features and preprocessing, which provided 
only the centerline information of each MG and there were no options to separate the glands. Also, the quanti-
fication of MGD was not possible using global analysis, and the AI (SVM classifier) sometimes produced false 
results due to the lack of classification features.

Figure 7.   Bland–Altman plots of MGs number, length, width, and tortuosity between ground truth and deep 
learning segmentation for lower eyelid. The middle solid line indicates the mean value, the two dotted lines 
indicate the limit of agreement (± 1.96 SD), and the gray bar indicates the confidence interval of 95%.

Table 3.   Variability and repeatability analysis of intra-observer and intra-method on test dataset images. 
Intra-observer = between manual annotations of the same observer, Intra-method = between automatic 
segmentations running two tests.

Metrics

Upper eyelid Lower eyelid

Intra-observer Intra-method Intra-observer Intra-method

DSC 0.96 ± 0.01 1.0 ± 0.0 0.97 ± 0.01 1.0 ± 0.0

Kappa 0.87 ± 0.04 1.0 ± 0.0 0.83 ± 0.08 1.0 ± 0.0

ICC 0.90 ± 0.06 1.0 ± 0.0 0.86 ± 0.11 1.0 ± 0.0
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Unlike the traditional AI, deep learning-based methods do not require handcrafted features or image pre-
processing and it extracts the useful features from the raw images automatically17 using the hidden layers. 
First‚ deep learning-based MG segmentation and morphometric quantification based on U-Net architecture 
was proposed by Prabhu et al.34 They achieved acceptable p values (p > 0.005) between manual annotation and 
automatic segmentation method. However, comparison to our model performance is not possible as no deep 
learning performance metrics were mentioned. The authors calculated gland width by measuring the pixels 
exclusively at the mid-line of the automatic segmented image. In our research study, we instead calculated indi-
vidual gland width by measuring the difference of the leftmost pixel and the rightmost pixel at each row within 
the range of the length of the gland and then averaged. Furthermore, in contrast to the previously published 
model, which was trained for 300 epochs without transfer learning, our model was trained using two stage 
transfer learning, enabling 30 epochs, which is more efficient and computationally inexpensive35. In addition, 
their proposed method tested only upper eyelid meibographies. Another deep learning-based MG segmentation 
based on pyramid scene parsing (PSP) network has been proposed by Wang et al.36, where they achieved 95.4% 
accuracy and 66.7% intersection over union (IoU) to analyze gland atrophy regions. In contrast, our proposed 
U-Net based method achieved 84% dice coefficient to segment individual MGs. Maruoka et al.37 proposed a deep 
learning-based method to detect obstructive MGD using in vivo confocal microscopy (IVCM). They achieved 
94.2% sensitivity and 82.1% specificity to detect normal and obstructive MG acini. Though IVCM provides 
high resolution images but it is not routinely used to image meibomian gland, and their field of view is small to 
analyses the full length of MG or total area of the eyelid.

Our research study proposed a deep learning-based method to automatically segment and evaluate various 
morphometric features of MGs from IR meibography images without any image pre-processing. This deep 
learning model achieved high performance with 0% variability and 100% repeatability (test–retest reliability). 
The average computational time for segmentation and evaluation per IR meibography image was approximately 
1.33 s (experiments were performed on above mentioned laptop). To evaluate 1000 disease images our method 
could take only 22 min without any clinicians’ involvement within a single click which reduces significant 
processing time and computational cost. Furthermore, statistical analysis presents that more than 95% of all 
morphometric parameters value for both upper and lower eyelids are within the limit of agreement. Our pro-
posed method achieved very high performance with on average 84% dice coefficient. The single trained model 
is able to segment MG of both upper and lower eyelids. From the visualization of the automated segmentation 
of MGs have high visual similarity with manual ground truth MGs. Overall, our research results demonstrate a 
fully automated and reliable deep learning-based technique for MG segmentation and morphometric evaluation 
from IR meibography images.

Figure 8.   Example of MG segmentation on inferior quality images. (a1–a3) Out of focus image, segmented 
MGs, and overlay, (b1–b3) Eyelashes in the glands area image, segmented MGs, and overlay, (c1–c3) Partially 
everted upper eyelid image, segmented MGs, and overlay, and (d1–d3) Artifact of everting finger in the top left 
of the image, segmented MGs, and overlay.
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This research work has some limitations. Firstly, the proposed deep learning-based technique is device-
specific, where training, validation, and testing images were acquired using a Keratography 5 M device. However, 
for the training of the neural network, MG features were automatically selected from training images by the 
model itself. Thus, the algorithm may segment MG from images of other IR meibography devices that need to 
be tested and validated. Secondly, all ground truth masks were generated manually where there is a possibility 
of inter-observer variability. However, all ground truth masks were validated and corrected by an experienced 
clinician. Finally, MGs are not accurately segmented in all test images. In some cases, two glands are connected, 
which need to appear separately and in other cases, single glands are separated into two or more glands, which 
need to be a continuous gland (Fig. 5). In all of these cases, meibography images were not acquired correctly and 
the acquisition problems were encountered due to the strong specular reflections, unfocused image, and MGs 
morphology. From Fig. 5a and c, it is clearly visible in the original images, where the glands are separated (red 
arrows), and the glands are connected (green arrows), that the images were not acquired correctly and the MGs 
are connected or overlapping. To overcome these limitations, in the future, we plan to increase the number of 
training dataset to more than 1000 patients and increase the number of inferior quality images thus the trained 
model could learn the MG features more precisely. This would also increase the learning efficiency of the deep 
learning model and able to segment MG more accurately from the inferior quality of images.

Conclusions
A deep learning-based automated IR meibography image segmentation method has been proposed in this 
research work. It reliably segments the MG as well as provides automated morphometric evaluation. The pro-
posed technique overcomes the limitations of subjective MG segmentation and assessments which enables faster, 
non-invasive, precise, accurate and reproducible MG characterization thus specify better and faster disease diag-
nosis, new drug development, and clinical trials for a new drug of MGD related DED. These automated analyses 
provide valuable objective information regarding MG, which reduces, inter- or intra-observer variability and 
time associated with manual perception to analyze the large volume of clinical images.

Data availability
The image data utilized in this study are not publicly available due to the patients’ privacy.

Received: 7 October 2020; Accepted: 21 March 2021

References
	 1.	 Craig, J. P. et al. TFOS DEWS II report executive summary. Ocular Surf. 15, 802–812 (2017).
	 2.	 Stapleton, F. et al. TFOS DEWS II epidemiology report. Ocular Surf. 15, 334–365 (2017).
	 3.	 Craig, J. P. et al. TFOS DEWS II definition and classification report. Ocular Surf. 15, 276–283 (2017).
	 4.	 Stern, M. E., Gao, J., Siemasko, K. F., Beuerman, R. W. & Pflugfelder, S. C. The role of the lacrimal functional unit in the patho-

physiology of dry eye. Exp. Eye Res. 78, 409–416 (2004).
	 5.	 Nichols, K. K. et al. The international workshop on meibomian gland dysfunction: executive summary. Investig. Ophthalmol. Vis. 

Sci. 52, 1922–1929 (2011).
	 6.	 Knop, E., Knop, N., Millar, T., Obata, H. & Sullivan, D. A. The international workshop on meibomian gland dysfunction: report 

of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investig. Ophthalmol. Vis. Sci. 52, 
1938–1978 (2011).

	 7.	 Mathers, W. D. Ocular evaporation in meibomian gland dysfunction and dry eye. Ophthalmology 100, 347–351 (1993).
	 8.	 Pult, H. & Nichols, J. J. A review of meibography. Optom. Vis. Sci. 89, E760–E769 (2012).
	 9.	 Srinivasan, S., Menzies, K., Sorbara, L. & Jones, L. Infrared imaging of meibomian gland structure using a novel keratograph. 

Optom. Vis. Sci. 89, 788–794 (2012).
	10.	 Arita, R., Itoh, K., Inoue, K. & Amano, S. Noncontact infrared meibography to document age-related changes of the meibomian 

glands in a normal population. Ophthalmology 115, 911–915 (2008).
	11.	 Engel, L. A. et al. Meibography and meibomian gland measurements in ocular graft-versus-host disease. Bone Marrow Transplant. 

50, 961–967 (2015).
	12.	 Koh, Y. W. Detection of meibomian glands and classification of meibography images. J. Biomed. Opt. 17, 086008 (2012).
	13.	 Llorens-Quintana, C., Rico-Del-Viejo, L., Syga, P., Madrid-Costa, D. & Iskander, D. R. A novel automated approach for infrared-

based assessment of meibomian gland morphology. Transl. Vis. Sci. Technol. 8, 17–17 (2019).
	14.	 Arita, R. et al. Objective image analysis of the meibomian gland area. Br. J. Ophthalmol. 98, 746–755 (2014).
	15.	 Celik, T., Lee, H. K., Petznick, A. & Tong, L. Bioimage informatics approach to automated meibomian gland analysis in infrared 

images of meibography. J. Optom. 6, 194–204 (2013).
	16.	 Koprowski, R. et al. A quantitative method for assessing the quality of meibomian glands. Comput. Biol. Med. 75, 130–138 (2016).
	17.	 Lundervold, A. S. & Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 29, 102–127 

(2019).
	18.	 Abstractband DOG 2019. Ophthalmologe 116, 25–218 (2019).
	19.	 Ting, D. S. W. et al. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 103, 167–175 (2019).
	20.	 Gargeya, R. & Leng, T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124, 962–969 (2017).
	21.	 Grewal, P. S., Oloumi, F., Rubin, U. & Tennant, M. T. S. Deep learning in ophthalmology: a review. Can. J. Ophthalmol. 53, 309–313 

(2018).
	22.	 Ting, D. S. W. et al. Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 

(2019).
	23.	 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 9351, 234–241 
(Springer Verlag, 2015).

	24.	 Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. A. Inception-v4, inception-ResNet and the impact of residual connections on 
learning. In 31st AAAI Conference on Artificial Intelligence, AAAI 2017 4278–4284 (AAAI Press, 2017).

	25.	 Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015).



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7649  | https://doi.org/10.1038/s41598-021-87314-8

www.nature.com/scientificreports/

	26.	 Jaeger, S. et al. Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quant. Imaging Med. Surg. 
4, 475–477 (2014).

	27.	 Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations, 
ICLR 2015—Conference Track Proceedings (International Conference on Learning Representations, ICLR, 2015).

	28.	 Haarburger, C. et al. Radiomics feature reproducibility under inter-rater variability in segmentations of CT images. Sci. Rep. 10, 
12688 (2020).

	29.	 Gerig, G., Jomier, M. & Chakos, M. Valmet: a new validation tool for assessing and improving 3D object segmentation. In Lecture 
Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 2208, 
516–523 (Springer, 2001).

	30.	 Zou, K. H. et al. Statistical validation of image segmentation quality based on a spatial overlap index. Acad. Radiol. 11, 178–189 
(2004).

	31.	 McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Medica 22, 276–282 (2012).
	32.	 Koo, T. K. & Li, M. Y. A Guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. 

Med. 15, 155–163 (2016).
	33.	 Martin Bland, J. & Altman, D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 

327, 307–310 (1986).
	34.	 Prabhu, S. M., Chakiat, A., Shashank, S., Vunnava, K. P. & Shetty, R. Deep learning segmentation and quantification of Meibomian 

glands. Biomed. Signal Process. Control 57, 101776 (2020).
	35.	 Raghu, M., Zhang, C., Kleinberg, J. & Bengio, S. Transfusion: understanding transfer learning for medical imaging. arXiv (2019).
	36.	 Wang, J., Yeh, T. N., Chakraborty, R., Yu, S. X. & Lin, M. C. A deep learning approach for meibomian gland atrophy evaluation in 

meibography images. Transl. Vis. Sci. Technol. 8, 37–37 (2019).
	37.	 Maruoka, S. et al. Deep neural network-based method for detecting obstructive meibomian gland dysfunction with in vivo laser 

confocal microscopy. Cornea 39, 720–725 (2020).

Acknowledgements
This research work is funded by the European Union’s Horizon 2020 Innovative Training Network (ITN) under 
the Marie Skłodowska-Curie Actions [Integrated Training in Dry Eye Disease Drug Development (IT-DED3), 
Grant Number 765608].

Author contributions
M.A.K.S. developed the deep learning algorithm and morphology assessment software, processed, and 
anonymized the meibography data, generated ground truth mask images, and wrote the main manuscript text. 
J.H. and S.S. provided technical knowledge and reviewed the manuscript. M.E.S. participated in study design 
and reviewed and commented on the manuscript. P.S. generated the main idea of this research, provided clinical 
background knowledge, collected clinical meibography data, and wrote and reviewed the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
MAKS, JH has no conflict of interest. SS is an employee of Heidelberg Engineering GmbH. MES is the chief 
scientific officer of ImmunEyez LLC and a member of the scientific advisory board of Novaliq GmbH. PS has 
received financial support from Novaliq GmbH, Roche, Bausch&Lomb, Ursapharm. The Division of Dry-eye 
and Ocular GvHD received donations from Novaliq, Ursapharm, and Juergen‚ and Monika Ziehm.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​87314-8.

Correspondence and requests for materials should be addressed to P.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-87314-8
https://doi.org/10.1038/s41598-021-87314-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/


Article

Segmentation and Evaluation of Corneal Nerves and
Dendritic Cells From In Vivo Confocal Microscopy Images
Using Deep Learning
Md Asif Khan Setu1,2, Stefan Schmidt4, GwenMusial1,2, Michael E. Stern1,2,5, and
Philipp Steven1–3

1 Department of Ophthalmology, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
2 Division of Dry Eye and Ocular GvHD, University Hospital Cologne, University of Cologne, Cologne, Germany
3 Cluster of Excellence: Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
4 Heidelberg Engineering GmbH, Heidelberg, Germany
5 ImmunEyez LLC, Irvine, CA, USA

Correspondence: Philipp Steven,
Uniklinik Koeln, Kerpenerstrasse 62,
50937 Koeln, Germany. e-mail:
philipp.steven@uk-koeln.de

Received: September 10, 2021
Accepted:May 25, 2022
Published: June 28, 2022

Keywords: deep learning; confocal
microscopy; segmentation; corneal
nerves; dendritic cells

Citation: Setu MAK, Schmidt S,
Musial G, Stern ME, Steven P.
Segmentation and evaluation of
corneal nerves and dendritic cells
from in vivo confocal microscopy
images using deep learning. Transl
Vis Sci Technol. 2022;11(6):24,
https://doi.org/10.1167/tvst.11.6.24

Purpose: Segmentation and evaluation of in vivo confocal microscopy (IVCM)
images requires manual intervention, which is time consuming, laborious, and non-
reproducible. The aim of this researchwas to develop and validate deep learning–based
methods that could automatically segment andevaluate corneal nerve fibers (CNFs) and
dendritic cells (DCs) in IVCM images, thereby reducing processing time to analyze larger
volumes of clinical images.

Methods:CNF andDC segmentationmodelswere developed based onU-Net andMask
R-CNN architectures, respectively; 10-fold cross-validation was used to evaluate both
models. The CNF model was trained and tested using 1097 and 122 images, and the
DC model was trained and tested using 679 and 75 images, respectively, at each fold.
The CNF morphology, number of nerves, number of branching points, nerve length,
and tortuosity were analyzed; for DCs, number, size, and immature–mature cells were
analyzed. Python-based softwarewaswritten formodel training, testing, and automatic
morphometric parameters evaluation.

Results: The CNF model achieved on average 86.1% sensitivity and 90.1% specificity,
and the DC model achieved on average 89.37% precision, 94.43% recall, and 91.83%
F1 score. The interclass correlation coefficient (ICC) between manual annotation and
automatic segmentationwere 0.85, 0.87, 0.95, and 0.88 for CNF number, length, branch-
ing points, and tortuosity, respectively, and the ICC for DC number and size were 0.95
and 0.92, respectively.

Conclusions: Our proposed methods demonstrated reliable consistency between
manual annotation and automatic segmentation of CNF and DC with rapid speed. The
results showed that these approaches have thepotential to be implemented into clinical
practice in IVCM images.

Translational Relevance: The deep learning–based automatic segmentation and
quantification algorithm significantly increases the efficiency of evaluating IVCM
images, thereby supporting and potentially improving the diagnosis and treatment of
ocular surface disease associated with corneal nerves and dendritic cells.

Introduction

Dry eye disease (DED) is a multifactorial, immune-
based inflammatory disease of the ocular surface and

tears that includes ocular discomfort, dryness, pain,
and alteration of tear composition, resulting in distur-
bance of tear production and tear evaporation. DED
currently impacts 5% to 35% of the world’s population,
with variation in prevalence due to geographic location,
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age, and gender.1–3 Currently, DED is considered a
major health problem due to its significant impact on
the patient’s quality of vision and life, which leads to
socioeconomic burdens.4,5

Pain is defined as an unpleasant sensory and
emotional experience that might exist or occur over a
short or a prolonged period.6 A wide range of ocular
disorders can cause ocular pain; however, the most
common denominator of ocular pain is ocular surface
and corneal disorders,7–9 including dry eye.10–12 In
DED patients, this ocular pain not only is creating
irritation but also indicates the severity of DED.Moein
et al.7 and Galor et al.13 have shown that, compared
with patients without ocular pain, patients who suffer
from DED with ocular pain have more severe signs
(such as decreased corneal nerve fibers [CNFs] number
and density and increased DCs density) and symptoms
(such as burning, hypersensitivity to wind, and sensi-
tivity to light and temperature). Diabetic peripheral
neuropathy (DPN) affects roughly 50% of the patients
that suffer from diabetes and is the main driving factor
for painful diabetic neuropathy. A major challenge
is identifying early neuropathy, which predominantly
affects small nerve fibers first, rather than advanced
neuropathy, which later affects the large nerve fibers.
Furthermore, DPN showed a progressive reduction
in corneal nerve fiber density, length, and branching
points in patients with increasing severity of diabetic
neuropathy.14

In vivo confocal microscopy (IVCM) is a non-
invasive optical imaging modality that enables histo-
logical visualization of the CNFs and dendritic
cells (DCs). IVCM is clinically widely accepted and
commonly used in the diagnosis of various ocular
surface disorders because it provides high resolu-
tion and detailed morphometric information regard-
ing CNFs and DCs.15,16 Previous work has utilized
IVCM to demonstrate that the density of CNF is
significantly reduced and the number of DCs is signifi-
cantly higher in patients with dry eye.7,12,17–19 Further-
more, CNFs demonstrate early and progressive pathol-
ogy in a range of peripheral and central neurodegen-
erative conditions.20–23 Previous studies have demon-
strated analytical validation by showing that IVCM
reliably quantifies early axonal damage in diabetic
peripheral24,25 neuropathy with high sensitivity and
specificity.26,27

For accurate quantification of CNF morphology
and detection of DC, the nerves and DCs must be
accurately segmented in the IVCM images. Tradi-
tionally, the methods used to segment CNFs and
DCs have been manual or semi-automated techniques
that require experienced personnel and are labori-

ous, cost ineffective, and potentially subject to user
bias. To address these issues, several automatic CNF
segmentation and quantification software tools have
been developed.28–31 For example, Dabbah et al.28,32
developed a dual-model automated CNF detection
method that showed excellent correlation with manual
grading (r = 0.92); further extension of this method
used a dual-model property in a multi-scale frame-
work to generate feature vectors at every pixel. The
authors achieved high correlation with manual grading
(r = 0.95).

In contrast to traditional image processing
or machine learning–based image segmentation
techniques, a deep learning–based method offers
the advantage of learning useful features and represen-
tations from raw images automatically. This method is
preferable, as manually extracted features selected for a
specific corneal disease may not be generally transfer-
able to other corneal diseases.33,34 The implementation
of deep learning in the field of ophthalmology has
increased in recent years.35–37 Using a convolutional
neural network (CNN) and a large volume of image
data, a neural network can learn to segment and
detect specific objects from ophthalmic images such
as retinal blood vessels,38 retinal layers,39 optic disc,40
anterior chamber angle,41 and meibomian glands.42
Several CNN-based CNF segmentation models have
been proposed. Williams et al.43 demonstrated the
efficacy of deep learning models to identify DPN with
high interclass correlation with manual ground-truth
annotation. Wei et al.44 and Colonna et al.45 developed
a U-Net–based CNN model to segment CNF that
provides high sensitivity and specificity in the segmen-
tation task. Oakley et al.46 developed a U-Net–based
model to analyze macaque corneal sub-basal nerve
fibers which achieved high correlation between readers
and CNN segmentation. Yıldız et al.47 proposed CNF
segmentation using a generative adversarial network
(GAN), and they achieved correlation and Bland–
Altman analysis results similar to those for U-Net;
however, the GAN showed higher accuracy compared
to U-Net in receiver operating characteristic (ROC)
curves. Most of the previous studies, however, have
provided only nerve segmentation without further
quantification, with the exception of Williams et
al.,43 and all CNN-based models focus on CNFs, not
DCs. Therefore, there is a need for fully automatic
segmentation and quantification of both CNFs and
DCs.

The aim of this research study was to develop and
validate deep learningmethods for automatic CNF and
DC segmentation and the morphometric evaluation of
IVCM images.
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Materials and Methods

Datasets

Corneal Nerve Fiber Dataset
In total, 1578 images were acquired from both

normal (n = 90) and pathological (n = 105, including
52 patients with diabetes) subjects using the Heidelberg
Retina Tomograph 3 (HRT3) with Rostock Cornea
Module (RCM) (Heidelberg Engineering GmbH,
Heidelberg, Germany) at the Peking University Third
Hospital, Beijing, China. This dataset is available for
further research purposes on request.48,49 After remov-
ing the 359 duplicate images, the remaining 1219
images were used for our model training and testing.
All images cover an area of 400 × 400 μm (384 ×
384 pixels). On average, eight images were obtained per
subject. The images were from both central and inferior
whorl regions.

Dendritic Cells Dataset
A total of 754 clinical IVCM images of both males

and females from patients with dry eye and neuro-
pathic corneal pain (n = 54) were collected using the
HRT3-RCM at the Eye Hospital, University Hospi-
tal Cologne, Germany. These images have the same
dimensions as the cornea nerve dataset (400 × 400
μm; 384 × 384 pixels). On average, 14 images were
obtained per subject. The image collection adhered
to the tenets of the Declaration of Helsinki and was
approved by the ethics and institutional review board
(IRB) at the University of Cologne, Germany (#16-
405). As this study was conducted retrospectively using
completely anonymized non-biometric image data, the
ethics committee and IRB waived the need to obtain
informed consent from the participants.

Image Annotation

Corneal Nerve Fiber Annotation
The CNF dataset from Peking University Third

Hospital, Beijing, China, was manually annotated
using ImageJ (National Institutes of Health, Bethesda,
MD) with the NeuronJ (Biomedical Imaging Group,
Lausanne, Switzerland) plug-in. All ground-truth
images were verified and corrected by experienced
ophthalmologists, thus providing validated ground-
truth masks images along with raw IVCM images for
further research.48,49

Dendritic Cells Annotation
All collected DC images were manually annotated

using VGG Image Annotator (VIA),50 an open-source,

web-based, image annotation software. The user draws
a polygon region around the DC body and hyper-
reflective (dendrite) area. The VIA software tool saves
all polygons in a JSON file format, which forms the
ground-truth mask for the DC image dataset. One
author (MAKS) created all of the initial ground-
truth masks. The initial ground-truth masks were
then verified and corrected by an experienced senior
ophthalmologist (PS) from the University Hospital
Cologne, Germany, before they were used in deep
learning model training, validation, and testing.

Data Allocation

Corneal Nerve Fiber Data Allocation
The CNF image dataset, comprised of a total of

1219 images, was divided into training and testing
datasets. Among 1219 images, ∼1097 were used for
training, and ∼122 were used to test the model at each
fold during the cross-validation.

Dendritic Cells Data Allocation
Images of DCs were also divided into training,

and testing datasets. Among 754 images, ∼679 were
used for model training and ∼75 images were used
to test the model at each fold during cross-validation.
To increase the number of training images and reduce
the risk of model overfitting during the model train-
ing phase, data augmentation techniques were applied.
The applied augmentations were horizontal flip, verti-
cal flip, rotation (90°), gamma contrast (±30%), and
random crop (25%) with subsequent resizing to origi-
nal image size (Supplementary Fig. S1). Data augmen-
tation increased the total number of training images to
around 4753 (679 × 7).

Deep Learning Model Design and Training

Corneal Nerve Fiber Segmentation Model
The CNF segmentation model was based on the

U-Net architecture.51 A U-Net CNN architecture
establishes a pixel-wise segmentation map to attain
full-image resolution segmentation which makes it
an ideal choice for medical image segmentation.52–54
The detailed U-Net network architecture is shown
in Figure 1. The ability of U-Net to provide pixel-
level segmentation is a feature of the two sides of the
“U” shape which form an encoding and a decoding
path, respectively. The general pattern of encoding path
includes a repeating group of convolution, dropout,
convolution, batch normalization, and max pooling
layer; the pattern of decoding path includes a repeating
group of transpose convolution, concatenation, convo-
lution, dropout, convolution, and batch normalization.
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Figure 1. Detailed U-Net architecture. Each dark blue rectangular block represents a multi-channel feature map passing through 3 × 3
convolution followed by rectified linear unit (ReLU) operations. Dark gray and light blue blocks denote dropout with a rate of 0.2 and batch
normalization. Orange and dark yellow blocks denote 2× 2 max pooling and 3× 3 transpose convolution, respectively. Green blocks denote
the concatenation of feature maps. The light gray block denotes a 1× 1 convolution operation followed by sigmoid activation. The number
of convolution filters is indicated at the top of each column.

The direct connections between the encoding path and
the decoding path allow reuse of the extracted features
and strengthen feature propagation. At the end of the
network architecture, the fully connected layer used a
sigmoid activation function to produce the probabilis-
tic segmentation map. This probabilistic segmentation
map was converted into a binary image using a cut-off
threshold value of 0.1.

A topology-preserving loss function, clDice,55 was
used during the CNF segmentation model training.
Briefly, clDice preserves connectivity while segment-
ing tubular-like structures. One of the most efficient
gradient-based stochastic optimization algorithms,
Adam,56 was used to optimize the CNF segmentation
model during training. It optimizes individual learning
rates for individual parameters used in the model train-
ing. The CNF segmentation model was trained for 50
epochswith an initial learning rate of 0.0001, amomen-
tum of 0.9, and a batch size of 32 per fold during cross-
validation.

Dendritic Cells Detection Model
The DC detection model was adopted from the

Mask R-CNN architecture.57 Mask R-CNN is divided
into two stages: a Region Proposal Network (RPN),
which proposes bounding boxes and objects, followed

by a binary mask classifier to generate segmentation
masks for each detected object inside the bounding
box. The detailed Mask R-CNN network architecture
is presented in Figure 2. First, the CNN (light yellow
box in Fig. 2), based on theResNet10158 backbone that
was pretrainedwith theMSCOCOdataset,59 generates
a feature map (Fig. 2b) from the input image (Fig. 2a).
Then, the RPN network (denoted by the purple box
in Fig. 2) generates multiple regions of interest (ROIs)
(dotted bounding box in Fig. 2c) using predefined
bounding boxes referred to as anchors. Then, the ROI
align network (green box in Fig. 2) takes both the
proposed bounding boxes from the RPN network and
the feature maps from the ResNet101 CNN as inputs
and uses this information to find the best-fitting bound-
ing box (Fig. 2d) for each proposed dendritic cell.

These aligned bounding box maps are then fed into
fully connected layers (gray box in Fig. 2) to predict
object class and bounding boxes (Fig. 2f) using softmax
and regression models, respectively. Finally, the aligned
bounding box maps are also fed into another CNN
(light blue box in Fig. 2) consisting of four convo-
lutional layers, transpose convolution, and sigmoid
activation. This CNN is named the mask classifier, and
it generates binary masks (Fig. 2e) for every detected
DC. The completeMaskR-CNNuses amulti-task loss
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Figure 2. Mask R-CNN architecture. The pretrained ResNet101 (light yellow box) generates feature maps (b) from the input image (a). From
the feature maps, the RPN (purple box; 3 × 3 convolution with 512 filters, padding the same) generates multiple ROIs (dotted bounding box)
with the help of predefined bounding boxes referred to as anchors (c). The green box denotes the ROI Align network, which takes both the
proposed bounding boxes from the RPN network and the featuremaps as inputs and uses this information to find the best-fitting bounding
box (d) for each proposed DC. These aligned box maps are fed into fully connected layers (7 × 7 convolution with 1024 filters + 1 × 1
convolution with 1024 filters), denoted by the gray box, and then generates a class and bounding box for each object using softmax and
a regression model, respectively (f ). Finally, the aligned box maps are fed into the Mask classifier (4 3 × 3 convolution with 256 filters +
transpose convolution with 256 filters and stride = 2 + 1 × 1 convolution + sigmoid activation), denoted by the light blue box, to generate
binary masks for each object (e).

function that combines object class, bounding box, and
segmentation mask. The loss function is

Lloss = Lclass + Lbox + Lmask (1)

where Lloss is the total loss, and Lclass, Lbox, and
Lmask are the loss of object class, bounding box,
and segmented masks, respectively. The model train-
ing occurred in two steps with the Adam56 optimizer.
First, the model was trained for 25 epochs with a
learning rate of 0.0001 and a momentum of 0.9 and
without data augmentations. In the second stage, we
trained ourmodel for another 25 epochs with a reduced
initial learning rate of 0.00001, with momentum of 0.9,
and with data augmentations per fold during cross-
validation.We removed allDCdetectionswith less than
90% confidence.

Both deep learningmodels training and testing were
conducted on a laptop computer running Windows 10

Professional on a 64-bit Intel Core i7-9750H processor
at 2.6 GHz with 12 MB of cache memory; Samsung
970 PRO NVMe Series SSD 512 GB M.2; Samsung
970 PRO PCIe 3.0 × 4 NVMe, RAM 32 GB DDR4
at 2666 MHz; and NVIDIA GeForce RTX 2070 Max-
Q with 8 GB of GDDR6 memory. Data preparation,
deep learning model design, training, evaluation, and
testing were written in Python 3.6.6 using Keras 2.3.1
with TensorFlow 1.14.0 (CUDA 10.0, cuDNN 7.6.2)
as the backend.

Cross-Validation Study

To evaluate our deep learning models, k-fold cross-
validation was used. In this study, k = 10 was applied.
The entire dataset of images (1219 for CNFs and
754 for DCs) was randomly split into 10 subgroups,
and each time nine groups were selected as a training
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dataset and one group was selected as a test dataset. In
total ∼1097 and ∼122 images were randomly selected
as training and testing datasets, and ∼679 and ∼75
images were randomly selected as training and testing
datasets, respectively, for the CNF and DC segmen-
tation models on every fold for training. To improve
the accuracy of the CNF and DCmodels, an ensemble
network of 10 trained models obtained using 10-fold
cross-validation was used. The final segmentation was
computed by a majority vote over the segmentation of
the ensemble network.

Evaluation Metrics

For the CNF segmentation and DC detection tasks,
sensitivity (Sen) and specificity (Spe) were used for
CNFs, and precision (P), recall (R), and F1 score were
used for DC detection. The CNF or DC pixels (e.g.,
white pixels in the binary predicted masks) are consid-
ered as positive instances. Based on the combination
of the ground-truth masks and predicted masks, these
pixels are categorized into four categories: true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN). Sensitivity, specificity, precision, and
recall are defined by the following equations, respec-
tively:

Sen = TP
TP + FN

(2)

Spe = TN
TN + FP

(3)

P = TP
TP + FP

(4)

R = TP
TP + FN

(5)

The F1 score is a weighted average of precision and
recall and is defined by the following equation:

F1 = 2 · P · R
P + R

(6)

Morphometric Parameter Assessment

To better analyze the CNFmorphology, the number
of nerves (number/frame), number of branching points
(number/frame), length (mm), and tortuosity were
measured; for the DC morphology, total cell number,
cell size (μm2), and mature–immature cell number were
determined. All of these morphometric parameters

were directly computed from the binary segmented
image.

Nerve Length

To compute the nerve length (mm), the binary
segmented image was first skeletonized. The branching
points were then found to break up the total nerve into
branches segments. Finally, the total CNF length was
calculated by summing up the distance between two
consecutive pixels in the nerve branch segments using
the following equation:

CNFlength =
N−1∑
i=1

√
(xi−1 − xi)2 + (yi−1 − yi)2 (7)

where N is the total number of pixels of a nerve
segment, and (xi, yi) is the coordinate of the corre-
sponding pixel; the inter-pixel distance is 1.0416 μm.

Nerve Tortuosity

For a curvilinear structure such as corneal nerves,
tortuosity is a useful metric to calculate the curvature
changes of the nerves. In this study, the average tortu-
osity of all detected CNFs in the image was calculated.
First, the nerve length was calculated for each nerve
segments. Then, the tortuosity60 τ was calculated for
each nerve segment (n) dividing the path length by the
straight distance (Euclidean distance) between the start
and end points of that nerve segment as follows:

τ (n) = Path length
Straight length

(8)

Finally, the average tortuosity was calculated for the
whole image by calculating the arithmetic average of
the tortuosity values derived from each nerve segment.
To calculate the average tortuosity, both main nerves
(red) and branch nerves (orange) (Fig. 3c) were consid-
ered.

Branching Points

To calculate the branching points, we first automat-
ically defined the start and end points for each nerve
segment. All of these points are stored and evaluated.
Then, if the same point is both a start and an end point
for one nerve segment and a start and en end point for a
different nerve segment, then this point is classified as a
branch point. For example, in cluster A (Fig. 3a), there
are three nerve segments (A1–A3, A2–A3, and A3–A4)
and four points. A1–A2 is the starting point, and A4 is
the end point. However, A3 is both an end point for
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Figure 3. Calculation of number of corneal nerves. First, the corneal nerves were divided into clusters (A, B, and C) and then each start and
end point was provided with a cluster point number (A1, A2, …, B1, B2, …, C1, C2, …). After that, an abstract graph was created for each
cluster using the associated nodes and edges. Then, all possible paths (if branch nerves exist in a cluster such as clusters A and C) within
the abstract graph were created, and the tortuosity was calculated for each path. The main nerve was selected with the lowest tortuosity
for all clusters (a). All nodes creating this main nerve were removed and the process was run again to find another main nerve if one exists
(cluster C); otherwise, the remaining nerve was considered the branch nerve (cluster A) (b). If there was no additional main nerve, then the
remaining nodes and edges were considered branch nerves (orange and green in cluster C) (c). Finally, the total number of corneal nerves
was calculated by summing the red and orange nerves while discarding the branch nerves (green) with length less than 20% (80 μm) of the
image.

the A1–A3 and the A2–A3 nerve segments and a start
point for the A3–A4 nerve segments. So, A3 is consid-
ered a branch point.

Number of Corneal Nerves

To calculate the total number of nerves presented
in a frame, we first created an abstract graph using
the nodes (corresponding to the start or end points of
nerve segments) and edges (corresponding to the nerve
segments between the start and end points) for each
separated CNF cluster. Then, we extracted all of the
possible paths in the graph between the isolated nodes
(the start/end points that are not branching points),
thus ensuring that all of the paths were “long”—
more specifically, that they extended through the entire
CNF cluster. Next, the tortuosities for each path were
calculated. The main nerve was selected as the path
with the lowest tortuosity (depicted as the red nerves
in Fig. 3a). We then removed the main nerve and
the branch nerves connected to it from the abstract
graph and iteratively re-ran the process to find other
main nerves on that CNF cluster, if existing (cluster
C in Fig. 3b), until there are only two nodes left.
Otherwise, the remaining edgeswere considered branch
nerves (cluster A in Fig. 3b). Finally, we calculated
the total number of nerves in a frame by summing
the number of main nerves (red) and branch nerves

(orange) that were longer than a predetermined thresh-
old length. Here, we discarded nerves whose length was
less than 20% (80 μm) of the image height (green).
However, these discarded nerves were still considered
for total nerve length, branching points, and tortuosity
calculations.

Comparison with ACCMetrics

We compared corneal nerve fiber length (CNFL)
using the widely used automated CNF analysis
software, ACCMetrics (Early Neuropathy Assessment
Group, University of Manchester, Manchester, UK).29

DC Size

TheDC size, representing the total area surrounding
the cell body and hyperreflective (dendrites) area,61,62
was measured by calculating the segmented polygon
area around the DC and reported as square microm-
eters.

Immature andMature DCs

Hamrah et al.63 differentiated immature DCs from
mature DCs by their location and the absence or
presence of dendrites; immature cells were located at
the center of the cornea and had no dendrites, and
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Figure 4. Immature andmature cell number calculation. (a) Original image, (b) binary segmented image with individual cell identification
number, and (c) skeletonize image. The green arrows indicate immature cells (<50 μm) without dendrites, yellow arrows indicate transition-
stage cells (<50 μm) with dendrites, and orange arrows indicate mature cells (>50 μm) with or without dendrites.

mature cells were located in the peripheral cornea and
had dendrites. Building on this classification system,
Zhivov et al.64 proposed three types of DCs: (1) individ-
ual cell without dendrites (immature cell), (2) cell with
small dendrites in the transition stage (starting dendrite
processes), and (3) cell with long dendrites (mature
cell). To differentiate among the three types of DCs, a
total cell length threshold and the presence of dendrites
were used as parameters. Mature cells were defined
as greater than 50 μm in length with or without the
presence of dendrites; immature cells were defined as
cells without the presence of dendrites and less than 50
μm in length.65,66 Finally, dendritic cells in the transi-
tion stage were defined as less than 50 μm in length
with the presence of dendrites (Fig. 4a). To calcu-
late the cell length and number of dendrites, first the
binary segmented image (Fig. 4b) was skeletonized
into one pixel width (Fig. 4c). Then, total cell length
including dendrites and the presence of dendrites
(branch numbers) were calculated for each individ-
ual cell presented in the skeletonized image using the
Python-based library FilFinder 1.7.

Statistics

Our proposed CNF andDCmodels were compared
with manual segmentation and detection. The perfor-
mance of both deep learning models was measured
using the Bland–Altman method.67 Interclass correla-
tion coefficient (ICC)68 was used to measure agreement
betweenmanual annotation and deep learning segmen-
tation. Python 3.6.6–based SciPy 1.5.2 and NumPy
1.18.1 libraries were used for the statistical analysis.

Results

CNF Segmentation

Training the CNF segmentation model for 50
epochs with a batch size of 32 per epoch on the full
training dataset took approximately 10 hours and 28
minutes to complete, and segmenting the 122 testing
images took around 9minutes per fold on the described
hardware and software. Figure 5 presents an example
of testing images, along with their respective manual
annotations, and automated segmentation obtained by
our developed model. In general, the CNF segmen-
tation model reliably segmented all testing images in
each fold. The model achieved on average 86.1% ±
0.008% sensitivity and 90.1% ± 0.005% specificity with
an average area under the ROC curve (AUC) value of
0.88 ± 0.01 (Supplementary Fig. S2) during 10-fold
cross-validation.

Morphometric Parameter Assessment

The morphometric parameters of CNF number,
CNF length (mm), number of branching points, and
tortuosity were computed from the binary segmented
image. These are important clinical parameters to
analyze the CNF health status. Our software provides
all of these morphometric parameters automatically
from the binary segmented image. Figure 6 shows an
example image where the total CNFs number (sum of
red and orange) is 11, total nerve length is 3.59 mm
(density, 22.43 mm/mm2), number of branching points
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Figure 5. Three examples of CNF segmentation. (a–c) Original image, (d–f ) manually segmented CNFs, and (g–i) predicted CNFs by the
deep learning model.White marked arrows in the predicted images indicate the thin CNFs that were predicted by the deep learning model
but were not annotated in the ground-truth images.

is 9, and average tortuosity of the nerves present in the
frame is 1.18.

Morphological parameters from the automatically
segmented images from the test dataset of 10-fold
cross-validation were compared with the parameters

from the manually annotated images with the P values
(paired t-test) presented in the Table. The ICC of
CNF number, length, branching points, and tortuos-
ity were compared between automatic segmentation
and manual annotation, and the values were 0.85, 0.87,
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Figure 6. Example of an automatic CNF quantification from the segmented binary image of the deep learning model. (a) Original image,
and (b) binary segmented image with automatic quantification.

Table. Morphometric Parameter Analysis of 10-Fold CNF Testing Dataset

Mean ± SD

Parameter Manual Annotation Automatic Segmentation P

CNF number 10.14 ± 3.37 9.97 ± 3.26 0.06
CNF length (mm) 4.29 ± 3.81 4.30 ± 3.85 0.97
Branching points, n 6.45 ± 5.99 6.36 ± 5.85 0.31
Tortuosity 2.05 ± 1.34 2.00 ± 1.32 0.40

P values are between manual annotation and automatic segmentation.

0.95, and 0.88, respectively, for 1219 (∼122 × 10)
testing images from 10-fold cross-validation.

To determine the consistency between automatic
and manual segmentation, Bland–Altman analysis was
performed for CNF number, length (mm), branch-
ing points, and tortuosity. The results are presented
in Figure 7. A total of 1219 (∼122 × 10) test images
from 10-fold cross-validation were used for this analy-
sis.

ComparisonWith ACCMetrics

The total mean CNFL of 1219 (∼122 × 10)
test images from 10-fold cross-validation were 26.81
mm/mm2, 26.87 mm/mm2, and 13.94 mm/mm2 for
segmentation of manual ground truth, our proposed
method, and ACCMetrics, respectively. The remaining
quantification parameters from ACCMetrics software
are tabulated in the Supplementary Table.

To better understand the difference between the
proposed method and ACCMetrics, we performed
further in-depth analyses by grouping the image dataset
of 1219 images according to image quality: (1) high-
/average-quality images (∼691), defined by uniform
illumination and high contrast; (2) low-quality images
(∼428), defined by non-uniform illumination, contrast
variations, and artifacts; and (3) images of the endothe-
lial layer, epithelial layer, and stromal keratocytes
(∼100). For the high-/average-quality images, there
was better concordance between ACCMetrics (20.03
mm/mm2) and the deep learning–based method (29.84
mm/mm2). Also, there was concordance between both
methods in images of the endothelial layer, epithe-
lial layer, and stromal keratocytes (where there were
no nerves present). However, there was clear discor-
dance between ACCMetrics (7.36 mm/mm2) and the
deep learning–based method (22.98 mm/mm2) for low-
quality images containing artifacts such as nerves
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Figure 7. Bland–Altman plots present the consistency of CNF number, CNF length (mm), number of branching points, and tortuosity
betweenmanual annotation and deep learning segmentation methods. Themiddle solid line indicates the mean value of the twomethods,
and the two dotted lines indicate the limits of agreement (±1.96 SD). The gray bands indicate a confidence interval of 95%.

slightly out of focus, strong specular reflection, faint
nerves, nerves that are not continuous (interrupted),
speckle noise, and low contrast. Comparisons between
the ACCMetrics and deep learning–based segmenta-
tion methods for low-quality images are presented in
Supplementary Figure S3.

Dendritic Cell Detection

Training the DC detection model for 50 epochs,
in two stages, on the full training dataset with data
augmentation took approximately 3 hours per fold,
and DC detection from 75 test images took around
3 minutes 45 seconds on the described hardware
and software. A comparison between manual and
automatedDC detection of the test images is presented
in Figure 8. The model achieved on average 89.37% ±
0.12% precision, 94.43% ± 0.07% recall, and 91.83%
± 0.09% F1 score. The means of the total number of
DCs and DC size were 9.74 ± 7.74 and 11.41 ± 7.75

(P = 0.38) and 1269.40 ± 939.65 μm2 and 1296.84 ±
832.37 μm2 (P = 0.11), respectively, for 754 (∼75 × 10)
testing images from 10-fold cross-validation of manual
annotation and automatic segmentation.

Morphometric Parameter Assessment

The morphometric parameters of DC number,
size (μm2), and number of immature, transition-stage,
and mature cells were computed directly from the
binary segmented image. These are important clini-
cal parameters for analyzing corneal health status.
Our software provides all of these morphomet-
ric parameters automatically from binary segmented
images. Figure 9 shows an example image of automatic
DC segmentationwithmorphometric evaluationwhere
the total number of DCs was 20, with seven immature
cells (cell identification numbers 2, 4, 8, 10, 16, 17, and
20), one transition-stage cell (cell identification number
13), and 12 mature cells (cell identification numbers 1,
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Figure 8. Three examples of DC prediction by the deep learning model. (a–c) Original image, d–f ) predicted DC regions, and (g–i) overlay
of manual annotation and predicted DCs.

3, 5, 6, 7, 9, 11, 12, 14, 15, 18, and 19); DC density was
125.0 cells/mm2, and total cell size was 7555.34 μm2.

The Bland–Altman analysis was also performed on
754 (∼75 × 10) images from 10-fold cross-validation
to determine the consistency of manual annotation

and automatic segmentation of total DC number and
size (μm2), and the results are shown in Figures 10a
and 10b. Furthermore, the total number of segmented
cells without branches (dendrites) is shown in a scatter-
box plot (Fig. 10c), and the immature, transition-stage,
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Figure 9. DC segmentation and quantification. (a) Original image, (b) segmentation overlay with quantification parameters, and (c) skele-
tonized binary segmented image with cell identification numbers. The immature cell identification numbers are 2, 4, 8, 10, 16, 17, and 20;
the transition-stage cell identification number is 13; and the mature cell identification numbers are 1, 3, 5, 6, 7, 9, 11, 12, 14, 15, 18, 19.

Figure 10. Bland–Altman plots indicate the consistency of the total DC number (a) and size (μm2) (b) between manual annotation and
automatic segmentation. Themiddle solid line indicates the mean value of the two methods, and the two dotted lines indicate the limits of
agreement (±1.96 SD). The gray bands indicate a confidence interval of 95%. (c) Scatterbox plot of all segmented cells from the test images,
and (d) scatterbox plot of the number of immature, transition-stage, and mature cells identified in the test images.
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and mature dendritic cells are shown in a scatter-
box plot (Fig. 10d) where the length of most of
the immature cells (n = 6405) was between 10 and
20 μm (dense data point cloud). The lengths of the
mature cells (n = 972) and transition-stage cells (n
= 168) were evenly distributed. All 754 (∼75 × 10)
test images from 10-fold cross-validation were used to
analyze the results for immature, transition-stage, and
mature cells.

Discussion

In this study, fully automatic CNF and DC segmen-
tation and quantification methods have been devel-
oped for corneal IVCM images. To the best of our
knowledge, this is the first deep neural network–
based DC segmentation and evaluation method to be
proposed. This research study validates our deep learn-
ing methods and demonstrates segmentation perfor-
mance that is comparable with manual annotation
while reducing the amount of time required for analy-
sis. In particular, the methods we developed show high
interclass correlation between manual annotation and
automatic segmentation in quantification metrics. In
addition to automatic segmentation, our developed
methods provide fully automatic, quantitative, clinical
variables that can have utility in the diagnosis of dry eye
disease, neuropathic corneal pain, and other corneal
diseases.

IVCM images play an important role in the diagno-
sis of many corneal diseases in clinical practice. Clini-
cians must analyze the images multiple times to ensure
accurate results for disease diagnosis or scientific
research. During their manual analyses, clinicians may
quantify the CNFs or DCs differently at different
patient appointments which could lead to within-
observer variability. In addition, two different clini-
cians could quantify the same image of CNFs or DCs
differently, leading to between-observer variability.
Therefore, a fully automatic quantitative evaluation of
IVCM images is needed to obtain stable, constant, fast,
and reproducible results. Unlike traditional feature
engineering, deep neural network–based automatic
segmentation is comparatively easier and faster
than the conventional image processing approaches
where various types of filters and graphs have been
used.28–31 In contrast to conventional machine learn-
ing methods such as support vector machine,29 the
deep learning–based method eliminates the need for
manual feature selection and extraction and allows the
machine to learn complex features using hundreds of
filters.

We developed a new method of automatically
characterizing corneal nerves into main trunk nerves
and branching nerves for further morphometric analy-
sis after segmentation using a deep neural network.
Our trained model achieved on average 86.1% sensi-
tivity and 90.1% specificity and AUC of 0.88 on the
test dataset during cross-validation. We automatically
calculated average nerve tortuosity, total nerve density,
and total number of branch points, which have been
shown to be useful clinical parameters to measure the
severity of DED and ocular pain.7,8,12 Our work builds
upon the first deep learning–based CNF segmentation
and evaluation method based on U-Net architecture,
which was proposed byWilliams et al.43 This approach
achieved ICC of 0.933 for total CNF length, 0.891 for
branching points, 0.878 for number of nerve segments,
and 0.927 for fractals between manual annotation
and automatic segmentation (Liverpool Deep Learn-
ing Algorithm (LDLA) method) but had a different
method for corneal nerve characterization. Williams et
al.43 calculated the total number of nerve segments by
calculating the nerve segments between two branch-
ing points, two end points, or an end and a branch-
ing point, and they used fractal dimensions to describe
the nerve curvature. Supplementary Figure S4 illus-
trates the difference between the method of Williams
et al.43 and our new proposal for detecting the trunk
and branch nerves, highlighting the difference in total
nerve count. Our work also differs in the loss function
used. Williams et al.43 used the Dice similarity coeffi-
cient as a loss function, whereas we used clDice,55 a
state-of-the-art topology preserving loss function that
preserves connectivity among the segmented nerves.
Another recent deep learning–based CNF segmen-
tation based on U-Net was proposed by Wei et
al.44 This method achieved 96% sensitivity and 75%
specificity for segmenting CNFs from IVCM images.
In contrast, our U-Net–based model has achieved
86.1% sensitivity and 90.1% specificity for segmenting
CNFs and provides validated automatic morphometric
evaluation parameters such as the number of nerves,
nerve density, nerve length, branching points, and
tortuosity. Furthermore, our proposedmethod demon-
strates better performance compared to ACCMetrics
for low-quality images. In particular, average CNFL
per segment obtained by our proposed method are
closer to those obtained bymanual annotation than the
values obtained by ACCMetrics. By comparing both
methods with regard to the image quality of the dataset
used, we found that there is a higher requirement
for image quality when using ACCMetrics to calcu-
late CNFL, as out-of-focus, faint, or thinner nerves
on the images cannot be detected properly. This is
in agreement with previous studies using ACCMetrics
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in which only images with high optical quality with
regard to brightness, contrast, and sharpness were
selected for the analysis.69,70 In this context, Williams
et al.43 proposed further research on interrupted CNF
segments. Our proposed deep learning model was
trained using low-quality images; thus, it seems able
to segment more nerves in the category of low-quality
images.

We have proposed a new method of automati-
cally differentiating among immature, transition-stage,
and mature DCs for different pathological (dry eye,
diabetic, and neuropathic corneal pain) patient data,
along with cell density and cell size after the segmen-
tation, using a deep neural network. This method
could be a potential image-based biomarker to differ-
entiate the severity of patients among the different
pathological patient groups. However, in our future
work, we will correlate these findings with clinical
information for various patient groups. To segment
DCs, we used the instance segmentation algorithm
Mask R-CNN,57 which is different from the seman-
tic segmentation algorithm U-Net.51 Mask R-CNN
first predicts the bounding boxes that contain a DC,
then segments the DC inside the bounding box. There-
fore, the Mask R-CNN has the potential to detect
objects more accurately than U-Net71,72; however, it
struggles to predict good segmentation masks inside
the bounding box.71 A previous study71 in microscopy
image segmentation found that the two-step CNN
process of the Mask R-CNN enables more precise
localization compared with the single-step CNN used
in typical U-Net architectures. For DCs, determin-
ing accurate localization and number is important;
therefore, we compromised on accurate segmenta-
tion of dendritic cell border in favor of focus-
ing on precise localization and determining accurate
numbers.

In this research study, our results demonstrate
that the methods we have developed can reliably
and automatically segment and quantify CNFs and
DCs with rapid speed. The average individual image
segmentation and quantification time for CNFs was
approximately 4.5 seconds, whereas for DCs it was
approximately 3 seconds (based on the mentioned
software and hardware). Our developed deep neural
network–based methods significantly reduce image
analysis time when applied to a large volume of clinical
images. Manual annotation and automated segmenta-
tion of the same images appear similar, with important
features segmented in both methods. Overall, the newly
developed CNN models significantly reduce compu-
tational processing time while providing an objective
approach to segmenting and evaluating CNFs and
DCs.

Further studies are needed to identify the feasibility
of implementing these methods in clinical practice and
diagnostic devices. The CNF images that were acquired
from Peking University Third Hospital in China and
the DC images obtained from University Hospital
Cologne in Germany were based on a small group
of patients. Therefore, a larger patient cohort data in
other racial populations could potentially enhance the
strength and generalizability of the developedmethods.
Finally, the developed software should be assessed
using different types of IVCM devices.

Conclusions

Deep neural network–based fully automatic CNF
andDC segmentation and quantificationmethods have
been proposed in this work. Automatic and objective
analysis of IVCM images can assist clinicians in the
diagnosis of several corneal diseases, thereby reducing
user variability and time required to analyze a large
volume of clinical images. Our results demonstrate that
the deep learning–based approaches provide automatic
quantification of CNFs and DCs and have the poten-
tial to be implemented in clinical practice for IVCM
imaging.
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