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A short note on solving partial differential
equations using convolutional neural networks

Viktor Grimm, Alexander Heinlein, and Axel Klawonn

1 Introduction

Solving partial differential equations (PDEs) is a common task in numerical mathe-
matics and scientific computing. Typical discretization schemes, for example, finite
element (FE), finite volume (FV), or finite difference (FD) methods, have the dis-
advantage that the computations have to be repeated once the boundary conditions
(BCs) or the geometry change slightly; typical examples requiring the solution
of many similar problems are time-dependent and inverse problems or uncertainty
quantification. Every single computation, however, can be very time consuming, mo-
tivating the development of surrogate models that can be evaluated quickly. There
exist some possible surrogate models, including reduced order models [8], reduced
basis, and neural network-based models.

In this work, we will discuss an approach for predicting the solution of bound-
ary value problems using convolutional neural networks (CNNs). This approach is
particularly interesting in the context of surrogate models which predict the solution
based on a parametrization of the model problem, for instance, with respect to vari-
ations in the geometry or BCs; cf. fig. 1 for a sketch of the CNN-based surrogate
modeling approach. In [6, 2, 3], a CNN model has been trained to predict stationary
flow inside a channel with an obstacle of varying geometry; the model is trained in
a purely data-based way using high-fidelity simulation data. Other examples for the
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Fig. 1 ExemplaryCNN-based
surrogate model. The first
block transforms the problem
parametrization into a low-
dimensional representation
(latent representation) of the
solution, and the right part
of the model decodes the
corresponding image of the
solution field.
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CNN approach involve the use of a physics-based loss function, that is, based on the
residual of the partial differential equation (PDE), as well as the BCs of the BVP;
this is also often denoted as physics-informed or physics-aware machine learning
(ML). In particular, in [10], a model for predicting the solutions of the stationary
diffusion equation for a single fixed geometry but varying BCs, encoded as an in-
put image, is proposed. In [4], the authors employ a physics-based CNN model for
predicting incompressible Navier–Stokes flow in parameterized geometries that is,
the exact placement of the boundaries of the geometries depend on a parameter.
More recently, the authors of this work have extended the previous approaches to a
physics-aware CNN for predicting incompressible Navier–Stokes flow in more gen-
eral geometries and also varying boundary conditions; cf. [5]. For scientific machine
learning (SciML) overview papers with additional references on related approaches,
we refer to [1, 13].

In this paper, we will compare the accuracy and convergence of a CNN model,
optimized using a (stochastic) gradient descent-type method using a physics-based
loss function, with a classical FD discretization, solving the resulting discrete linear
system of equations using an (unpreconditioned) conjugate gradient (CG) method,
for a simple stationary diffusion problem. In order to focus on these aspects and
remove any other complexities, we focus on a single problem configuration, that is,
we neglect the encoder part in fig. 1 and focus on training the decoder path. The paper
is organized as follows: In section 2, we introduce our stationary diffusion model
problem and the simple difference discretization employed. Then, in section 3, we
briefly discuss how to solve the resulting discrete system of equations using the CG
method as well as how to optimize a CNN model for predicting the same solution.
Finally, we compare the performance of both solution frameworks with respect to
accuracy and convergence in section 4.
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2 Model problem and finite difference discretization

Let us consider a simple stationary diffusion problem on computational domain
Ω := [0, 1]2: find a function D, such that

−ΔD = 5 in Ω,
D = 0 on mΩ,

(1)

where 5 is some right hand side function. We discretize eq. (1) using FDs. In
particular, we approximate the Laplacian using the central difference scheme

m2D

mG2 (G) ≈
D(G + ℎ) − 2D(G) + D(G − ℎ)

ℎ2

in each dimension. In particular, we consider a uniform grid Ωℎ =
{
(G8 , H 9 )8, 9

}
with

G8 := 8ℎ and H 9 := 9 ℎ, the step size ℎ = 1/=, and D8, 9 := D(G8 , H 9 ). This yields a set
of linear equations

ΔD(G8) ≈
D8+1, 9 − 2D8, 9 + D8−1, 9

ℎ2 +
D8, 9+1 − 2D8, 9 + D8, 9−1

ℎ2 .

With 58 9 := 5 (G8 , H 9 ), the discrete form of eq. (1) corresponds to a system of (=−1)2
equations

−
D8+1, 9 − 2D8, 9 + D8−1, 9

ℎ2 −
D8, 9+1 − 2D8, 9 + D8, 9−1

ℎ2 = 58, 9 ∀0 < 8, 9 < =, (2)

where, due to the BCs,

D8, 9 = 0 for 0 ≤ 8, 9 ≤ = with 8 ∈ {0, =} ∨ 9 ∈ {0, =}.

This yields a sparse system of linear equations

�D = 1. (3)

with a symmetric positive definite (SPD) matrix.

3 Solving the model problem using classical methods versus
using convolutional neural networks

Efficient classical numerical solvers

Since our model problem, that is, stationary diffusion on the unit square, is arguably
one of the most investigated problems for the development of solvers, there is a wide
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range of efficient solvers for eq. (3). Hence, we keep this discussion rather short.
A standard solver for systems with an SPD matrix is the conjugate gradient (CG)
method. The convergence of the CG method is determined by the spectrum of the
matrix, and in particular, it can be bounded in terms of the condition number of the
system matrix �, which scales with 1

ℎ2 for our model problem. The ℎ dependence of
the convergence of theCGmethod can be fixed by acceleration using preconditioners,
such as domain decomposition [11] and multigrid [12] methods, to name just two
popular classes of efficient and scalable preconditioners for eq. (3).

For the purpose of comparing numerical solvers against a closely related ML
approach for solving a stationary problem, we will use the CG method without
preconditioning as the prototypical solver.

A solver based on convolutional neural networks (CNNs)

Solving eq. (3) corresponds to finding the coefficients D8, 9 , which are structured
based on the uniform grid Ωℎ =

{
(G8 , H 9 )8, 9

}
. We can simply interpret the discrete

solution as a pixel image, with each pixel corresponding to one coefficient in the
solution vector D. Hence, in several works, CNNs, which are very effective in image
processing, have been trained to learn the discrete solution of a partial differential
equation; cf. fig. 1 for a sketch of this approach and the discussion below. In practice,
as we will also see in section 4, this approach is not competitive for solving a
single BVP. However, when used as a reduced order model for a parametrized model
problem (e.g., with respect to the geometry), the higher computing costs for the
training can be justified if the solutions of multiple BVPs can be predicted using a
single model.

Here, we focus on training a neural network using a physics-informed, sometimes
also referred to as physics-aware or physics-constraint, approach. Then, a neural
network NN is trained to minimize the norm of the residual of the differential
equation, i. e.,

‖ΔNN + 5 ‖2Ω + ‖NN‖
2
mΩ → min,

where ‖·‖Ω and ‖·‖mΩ are some norms defined based on collocation points inside the
domain Ω and on the boundary mΩ. If the output of the neural network corresponds
to an image, that is, if the output data is a discrete vector on the uniform grid
Ωℎ =

{
(G8 , H 9 )8, 9

}
, we can employ an FD scheme to formulate the residual of the

PDE, resulting in
‖1 − � · NN‖22 → min, (4)

where the term corresponding to the boundary conditions vanishes since they are
hard-coded within the matrix �. Note that this can be efficiently implemented in
state-of-the-art ML libraries, such as Tensorflow: the matrix � does not have to be
assembled, but it can be applied in amatrix-free fashion by using the FD stencil eq. (2)
as a fixed kernel in a convolutional layer and applying it to the output of the network.
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We note that solving eq. (4) directly for D is equivalent to solving the least-squares
problem corresponding to eq. (3), which amounts to solving the normal equations

�>�D = �>1. (5)

The system matrix �>� is still SPD, so eq. (5) can also be solved using the CG
method. However, the convergence will be much slower, as the condition number

^
(
�>�

)
= ^ (�)2 .

The situation is changed further once D is replaced by a neural network NN .
Hence, minimizing the loss function with respect to the network parameters \ does
not correspond to solving a linear system anymore. Moreover, the loss function
is, in general, not even a convex function with respect to the network parameters
anymore. Thus, in addition to solving a problem eq. (4) that has a significantly worse
conditioning than the original problem eq. (3), we cannot use the CG method let
alone another Krylov subspace method anymore.

Minimizing eq. (4) with respect to the network parameters, which is also denoted
as training the neural network, is usually performed using either a variant of stochastic
gradient descent (SGD), such as the Adam (adaptive moments) optimizer [7], or a
second order quasi-Newton method, such as L-BFGS [9]. Those optimizers and their
parameters are typically chosen based on heuristics, which clearly shows that, at this
point, we have lost most of the properties of the original problem eq. (3) beneficial
for a numerical solver.

4 Numerical results

In this section, we compare different solution methods for an FD discretization
of eq. (1). In particular, we employ the gradient descent (GD) and conjugate gradient
(CG)methods for the original equations eq. (3) as well as the normal equations eq. (5)
arising from a least-squares formulation of the problem. We compare those results
against training a CNN to predict the coefficient vector using the GD and Adam [7]
methods for the physics-informed loss function, which corresponds to the least-
squares formulation eq. (4).

It should also be noted that the training performance and prediction accuracy of
neural networks strongly depend on the choice of the hyperparameters, which include
the specific network architecture and parameters of the optimizer. In advance of our
numerical study, we have carried out a detailed hyperparameter optimization to
obtain good performance of the CNN models. We have exclude the hyperparameter
optimization step from the discussion and only discuss the performance for the
optimized hyperparameters; in fact, it is not obvious how to take the hyperparameter
optimization into account in the comparison in a fair way.
The issue to be investigated in thiswork, the efficiency of CNNs for solving PDEs, has
arisen in the context of using CNNs as surrogate models, hence the chosen network
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Fig. 2: Convergence of the GD, CG and Adam methods for the original linear
equation system eq. (3) and the least-squares problem eq. (4) for the FD discretization
D and theCNN D## . Comparison of the absolute and relative residuum ‖A: ‖2 / ‖A0‖2
where A: = 1 − �D: , and the relative error ‖D: − D∗‖ / ‖D∗‖.

architecture and hyperparameters are based on this use case; for more details cf.
[3, 5]. Specifically, experiments have identified that we obtain optimal results here
for GD with a learning rate of 10−5 and for Adam with a learning rate of 5.0 · 10−5.
We always use swish as the activation function.

For our experiments, we choose 5 = 2c2 sin(cG) sin(cH) as the right hand side.
The resulting BVP has the analytical solution D∗ = sin(cG) sin(cH), which we use
as the reference. In this work, we exlusively consider an FD discrezation of the
computational domain Ω with # = 128 grid nodes in each direction; this results in
a total problem size of 16 384 nodes or degrees of freedom, respectively. For the
classical methods, we use a fixed but random initial guess, the parameters of the
CNNs are randomly initialized using the He normal initialization. We compare the
convergence of the methods via the squared relative residual ‖A: ‖2/ ‖A0‖2, which
corresponds to a relative mean squared error (MSE). For the classical numerical
methods, we stop the iteration once a tolerance of 10−12 for the relative residual or
an iteration count of 250 k iterations is reached. The CNNs are always trained for
250 k iterations or epochs.

We compare the relative residuals for the various methods applied to the stan-
dard and normal equations in fig. 2. As expected, the CG method applied to the
standard equation (CG-SE) converges the fastest after 221 iterations; note again that
the convergence could be significantly improved using preconditioning techniques.
The CG method applied to the normals equation (CG-NE) converges within 7 737
iterations, the GD method on the original equation (GD-SE) in 15 811 iterations.
The GD method on the normal equations (GD-NE) does not converge within 250 k
iterations and reaches a relative residual of 5.2 · 10−7 at termination of the iteration.

As can be seen in fig. 3d, the GD-NE solution, which has not converged within
250 k iterations, has a large relative !2-error of 34% compared with the analytical
solution. For CG-SE, CG-NE, and GD-SE, we obtain errors of 0.008%, 0.02%, and
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(a) CG-SE (b) GD-SE (c) CG-NE (d) GD-NE (e) ML-GD (f) ML-Adam

Fig. 3: The solutions (top row) achieved with the various methods and the corre-
sponding erorrs (D∗ − D) (bottom row) w.r.t the analytical solution at the grid nodes.

0.15%, respectively, at convergence. In terms of convergence with respect to the
relative squared residual norm, the ML approaches perform worse. Both ML-GD
andML-Adam do not achieve a relative tolerance of 10−12 and the training is stopped
after 250 k iterations/epochs with a final relative residual of 1.5 · 10−7 for ML-GD
and 3.1 ·10−8 for ML-Adam. Nonetheless, we achieve relative !2-errors of 0.7% for
ML-GD and 0.02% for ML-Adam. These are significantly lower than for GD-NE,
even though the methods terminate at a similar relative residual. In fact, the accuracy
is within one order of magnitude of the CG solutions and even better than the GD-SE
solution; cf. also fig. 3.

Let us discuss why, in comparison, the error may be much lower for the CNN
compared to the classical numerical solvers for a residual in the same order of
magnitude. In particular, for the error 4 and the residual A , we have

�4 = �(D∗ − D) = 1 − �D = A

Hence, of course, the relation of ‖4‖ and ‖A ‖ depends on how the error decomposes
into eigenfunctions of high/low eigenvalues. Since the CNNs were able to achieve
comparatively low error while exhibiting higher absolute and relative residual, es-
pecially compared to the CG solutions, this suggests that the corresponding error is
mainly composed of eigenfunctions corresponding to high eigenvalues. In particular,
this implies that the CNNs exhibit some form of spectral bias, i.e., that they tend to
learn eigenfunctions corresponding to low eigenvalues.

5 Conclusion

In this work, we have compared physics-informed CNNs with classical methods for
solvinge PDEs on the example of the stationary diffusion problem. We have shown
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that solution methods that take advantage of properties of the problem, such as the
CG method, outperform the ML approach both in the accuracy achieved and in
the speed of convergence. Yet, the ML solutions learned were within an order of
magnitude of the CG solutions, i.e., they were not infeasible. But the much slower
convergence coupled with the need for hyperparameter optimization as well as the
heuristic nature of the choice of method parameters argue for the use of classical
methods. Nonetheless, with an ML approach it is possible to include parameters,
such as boundary conditions, geometry, etc., as input. In such cases, ML approaches
are superior to classical methods and thus there is a sound reason again to use them.
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