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Abstract

A major goal of today’s biology is to understand the genetic basis of quantitative
traits. This can be achieved by statistical methods which evaluate the association
between phenotypic observations and molecular markers.

The objective of this work was (i) to evaluate different kinds of populations in
regard to their suitability for quantitative trait loci (QTLs) mapping; (ii) the de-
velopment of statistical methods with improved power for association mapping;
and (iii) the analysis of the Arabidopsis multi-parental recombinant inbred lines
version 2 (AMPRILv2).

The examined mating designs differed strongly with respect to the statistical power
to detect QTLs. We observed the highest power to detect QTLs for the diallel
cross with random mating design. Our results, however, revealed that using designs
in which more than two parental genomes are segregated in each subpopulation
increases the power even more.

The quantitative trait cluster association test (QTCAT) was developed, which
allows the joint association of all available single-nucleotide polymorphisms (SNPs)
to the phenotype. Furthermore, the test accounts for the correlation among SNPs
by integrating a hierarchical clustering structure of the SNPs into the testing
procedure. SNPs near to the base of this hierarchy are strongly correlated, so it is
therefore not always possible to decide which of them is carrying the causal variant.
In these cases it is best to further join these clusters as one and associate them
jointly, which is the fundamental idea of the QTCAT approach. This has appealing
consequences for cases in which SNP density is high and every causal variant is
expected to be highly linked to one of the SNPs, then no further correction of the
population structure is needed. In a simulation-based comparison we will show the
benefits of QTCAT in comparison to other methods.

The AMPRILv2 population is a multi-parental mapping population based on eight
founders. 2 million SNPs were accessible and could be used for the analysis with
QTCAT. We found 14 genomic regions associated to flowering time. Furthermore,
we found epistatic interactions which were able to improve the predictability of
flowering time. Our results showed the improved power of QTCAT compared to
other methods. Moreover, we found several pairs of regions in the genome with
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dependency among alleles. For a known hybrid incompatibility we were able to
detect an additional modifier locus involved.

We were able to show that multi-parental populations are beneficial not only for as-
sociation studies but also for the detection of hybrid incompatibility. The QTCAT
approach is able to improve association testing compared to other methods.



Zusammenfassung

In der heutigen biologischen Forschung ist ein detailliertes Verständnis über die
Vererbung quantitativer Merkmale eine der großen Herausforderungen. Mittels
statistischer Methoden kann zu diesem Zweck eine Assoziation zwischen phänoty-
pischer Beobachtung und molekularen Markern vorgenommen werden.

Die Ziele dieser Arbeit waren: (i) eine Evaluation verschiedener Kreuzungspopula-
tionen bezüglich ihre Eignung für die Identifikation von ‘Quantitative Trait Loci’
(QTLs); (ii) die Entwicklung von statistischen Methoden für die Assoziationsana-
lyse; und (iii) die Auswertung der ‘Arabidopsis Multi-Parental Recombinant Inbred
Lines Version 2’ (AMPRILv2) Population.

Die untersuchten Kreuzungsschemata unterschieden sich deutlich hinsichtlich der
Möglichkeit, in den entsprechenden Populationen QTLs zu identifizieren. Die Dial-
lele Kreuzung mit drei darauffolgenden Generationen von Zufallskreuzungen erwies
sich als besonders geeignet. Eine Durchmischung von mehreren elterlichen Linien
innerhalb einer Sub-Populationen erwies sich ebenfalls als vorteilhaft.

Für die Assoziationsanalyse wurde eine Methode entwickelt welche es ermöglicht,
alle verfügbaren ‘Single-Nucleotide Polymorphisms’ (SNPs) gemeinsam mit dem
Phänotyp zu assoziieren. Der Test nennt sich ’Quantitative Trait Cluster Associa-
tion Test’ (QTCAT). Dieser Test bezieht eine hierarchische Clusterstruktur aller
SNPs in die Assoziationsanalyse mit ein. Die Clusterstruktur ermöglicht es SNPs,
die in ihrer Assoziation nicht unterscheidbar sind, zusammenzufassen und gemein-
sam zu assoziieren. Dies führt im Falle einer hohen SNP Dichte zu einem weiteren
Vorteil; die Notwendigkeit weiterer Korrekturen der Analyse für Verwandschaftss-
trukturen entfällt. Im Vergleich zu herkömmlichen Methoden schnitt QTCAT deut-
lich besser ab.

Die AMPRILv2 Population beruht auf einem Kreuzungsschema das von acht El-
tern ausgeht. Zur Analyse mittels QTCAT standen 2 Mio. SNPs zur Verfügung.
Für das Merkmal Blühzeitpunkt wurden 14 Regionen im Genome gefunden. Zu-
dem wurden Interaktionen identifiziert, die die Güte der Vorhersage erhöhten und
damit herkömmliche Methoden übertrafen. Des Weiteren wurden Abhängigkeiten
zwischen Allelen an verschieden Loci gefunden. In diesem Zusammenhang konnte
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ein zusätzlicher Locus einer bereits bekannten Hybridinkompatibilität aufgedeckt
werden.

Es konnte gezeigt werden, dass Populationen die aus Kreuzungen mehrerer Eltern
stammen, Vorteile hinsichtlich der Analyse von quantitativen Merkmalen haben.
Des Weiteren sind diese Populationen gut geeignet um Hybridinkompatibilität zu
analysieren. Es wurde gezeigt, dass die QTCAT Methode die Assoziationsanalyse
im Vergleich zu herkömmlichen Methoden verbessert.
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“More attention to the History of Science is needed,
as much by scientists as by historians, and especially
by biologists, and this should mean a deliberate attempt
to understand the thoughts of the great masters of the
past, to see in what circumstances or intellectual milieu
their ideas were formed, where they took the wrong
turning or stopped short on the right track.”

Ronald A. Fisher (1959)

1
Genetics of quantitative traits

1.1 Principles of quantitative genetics

Quantitative traits, like most fitness and agronomic traits, show a continuous distribution of
phenotypic values, as they are influenced by many genetic and environmental factors (Lynch
and Walsh 1998). Quantitative genetics, which explores the genetic basis of such traits, has
a rich century-old history, in which however, many questions still remain unanswered. Before
we discuss new developments in the field and our contribution to them, we will give a brief
overview of the historical achievements in this field.

1.1.1 Formation of quantitative genetics

Today, the year 1900 is considered to be the time of the origin of genetics. It was the year in
which Mendel’s hybridization paper (Mendel 1866), containing the phenotypic ratios of Pisum
sativum (common pea) crosses was rediscovered. He observed, for example, a 3:1 ratio of
yellow to green seeds in the F2 generation. Today this can be interpreted as one locus with a
dominant allele for a yellow seed colour and a recessive allele for green seed colour, giving a
first systematic description of inheritance. The new field of genetics was quickly connected to
recent research in cytology, by the proposal of “chromosomal theory of inheritance” (Sutton
1903; Boveri 1904). This theory was confirmed shortly afterwards by Morgan’s (1910) work
on Drosophila. Bateson (1909) extended Mendelian theory with the term ‘epistatic’ effect, a
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masking effect when the occurrence of an allele at one locus is dominant over the effect of
the alleles at another locus.

A completely different observation of inheritance was made by Galton, a cousin of Darwin.
When he plotted offspring height against parent height; he observed a linear relation. However,
the slope indicated that the offspring were on average less exceptional than their parents, which
he called “Regression towards mediocrity” (Galton 1886). As this non-mathematical approach
inspired Pearson (1896) to develop the correlation coefficient and simple regression, it is seen
as the start of biometrics.

When the new idea of Mendelian genetics came up, these two views of inheritance clashed,
leading to a two-decade lasting debate. The biometrical school proposed small changes (grad-
ualism) while the Mendelians propounded macromutations (saltationism) as an evolutionary
process. Nilsson-Ehle ran a similar experiment like Mendel but with wheat seed colour and
observed ratios, which he interpreted to be the result of three independent genes (Nilsson-Ehle
1909). Although findings like this supported a multi-gene hypothesis, it was Fisher (1918)
who finally interconnected biometric and Mendelian theories. Fisher showed that continuous
variation of traits is the result of Mendelian inheritance, which became the basic concept of
today’s genetics and can be considered as the origin of quantitative genetics.

1.1.2 Dissecting genetic variance

As these early concepts still play a central role, it is worthwhile to explain these basic concepts
a little further. Johannsen (1903) introduced the term ‘phenotype’ to describe the observed
value of an individual and ‘genotype’ for the inherited part. This led to the basic model of
quantitative genetics.

P = G + E , (1.1)

with the phenotypic value P , the genotypic value G , and the environmental deviation E .
The left-hand side of the equation can be observed with single individuals. However, the
right-hand side is non-observable. Under constant global environmental conditions the micro-
environmental differences were expected to be behaving normally distributed, with mean zero.
Under these circumstances the mean of a replicated homozygous strain is an estimate for its
genetic value. The differences from the mean in the replications are named ‘residuals’ and they
are, as described, normally distributed environmental deviations. This basic idea is the building
block of quantitative genetics, and following that the goal is to decompose the phenotype even
further.

In these early years the individual was the smallest unit to study, as adequate genetic
markers were not yet derived, which made a further dissection of the genetic values impossible.
Fisher (1918) used the variance of a population, which allowed him to dissect the variance
of genetic values into components. The phenotypic variance VP can be divided as a genetic
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component VG and an environmental component VE :

VP = VG + VE .

These are the variances of the terms in model 1.1. The genotypic variance VG can be further
subdivided into three components: (i) additive genetic variance VA; (ii) dominance variance
VD (one locus interactions); and (iii) epistatic variance VI (different loci interactions),

VP = VA + VD + VI + VE .

These variance components can be estimated from phenotypic observation. In order to do
so, the phenotyped individuals have to be part of a population with specific requirements
of the relationships. Estimates rely therefore only on phenotypic observations and pedigree
informations and hence it was possible to derived them early in the history of quantitative
genetics. However, a discussion of these exact requirements for the estimation goes beyond
the scope of this chapter.

The epistatic interaction in this model has a much broader interpretation as compared to the
earlier-mentioned definition of Bateson. In this case it is any type of interaction. Furthermore,
it is worthwhile to mention that these models are of great importance for applied genetics,
especially breeding, as they allow the calculation of heritability and response to selection. Basic
research, in contrast, is more interested in studying causal genetic basis of quantitative traits,
which became possible to study only after the establishment of molecular markers.

1.1.3 Genotyping

Even for qualitative traits, the exact description of the segregation based on phenotypes was
just a first step. Likewise, it was of interest to understand which traits were linked, and
furthermore, at which position of the chromosomes the underlying genetic elements were
located. Phenotypic observations of segregating Mendelian factors were therefore the first
genetic markers used to construct a genetic map (Sturtevant 1913). The greater the distance
separating two marker loci at the chromosome, the less the observed correlation of them in a
population. Crossingover is the underlying genetic process, where homologous chromosomes
exchange segments during meiosis. Hence, in a population loci are less correlated if they get
separated by more crossingovers. This process where correlation among loci depends only on
the distinguishing amount of crossingovers is named linkage. The concept of a linear order of
genes on chromosomes was formalized by Haldane (1919) through his mapping function. A
genetic map derived in this way builds linkage groups which should be equal to the chromosome
number and order the genetic marker according to their crossingover distances (Lander and
Green 1987). A requirement for a correct estimation of genetic maps is that linkage is the only
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factor which forces correlation between loci. These requirements are usually only met by bi-
parental populations, as more complex populations usually exhibit population structure which
will by explained in the following section. Since these early days, different genetic markers
have been used to continuously improve genetic maps.

With the rapid developments in molecular biology, molecular markers such as proteins and
isozymes have been utilized (Weeden and Wendel 1989). At the same time numerous deoxyri-
bonucleic acid (DNA) markers have been explored, including: Restriction Fragment Length
Polymorphisms (RFLP), Amplified Fragment Length Polymorphisms (AFLP), and Microsatel-
lites (Powell et al. 1996). These developments have enabled the mapping of quantitative
traits below the individual level (Lander and Botstein 1989). However, the developments in
genotyping has rapidly moved on conjointly with biotechnological, computational innovations,
and novel markers, such as Single Nucleotide Polymorphisms (SNP) (Altshuler et al. 2000). In
the early 2000s, when the first genome sequences of higher eukaryotic species were released,
e.g. The Arabidopsis Genome Initiative (2000) and Lander, Linton, et al. (2001), a shift from
genetic maps to the newly developed physical maps began. Now, with the drop in the costs of
next-generation sequencing, this technology started to become a common way of genotyping
(Elshire et al. 2011), which is unsurprisingly called ‘genotyping by sequencing’. In contrast
to the early days of genetics, we have today, at least for most of the model species, high
resolution maps, either physical or genetic. This enables us to study quantitative traits in
more detail than any time before.

1.1.4 Quantitative trait loci detection

Mendel observed in his experiments, as described above, a 3:1 ratio in the phenotype of an
F2 generation. The clear segregation ratio was due to the qualitative nature of the trait.
However, the majority of traits is far more complex and cannot be studied as easily. However,
dissecting the variance of phenotypic values was an important step, and dissecting quantitative
traits into their ‘Mendelian factors’ is the question many researchers are interested to solve.
The first attempts in this direction date back to the 1920s (Sax 1923). A more detailed study
of quantitative traits was possible only after an adequate number of molecular markers was
established (Lander and Botstein 1989).

The population used to dissect quantitative traits is an important factor for its success. One
popular type of population are recombinant inbred lines (RILs), which, for a self-pollinating
plant like Arabidopsis thaliana, are usually derived from a cross of two accessions, followed
by multiple generations of inbreeding. These accessions are chosen in such a way that they
differ strongly in the trait of interest. During inbreeding in every generation heterozygosity is
reduced by a half, which leads in six generations to lines with an average homozygoity of 97%.
Plants derived in such a way differ by the segregation of chromosomes due to recombination
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which have occurred during the breeding process. A recently popularized approach, called
association mapping, instead uses many natural accessions as the mapping population. It
makes use of all the historical recombinations by which those individuals are distinguished.
These two strategies differ in their requirements, statistical methods, and interpretation of
their results. Hence, these points will be addressed in more detail in the following section.

QTL mapping

QTL stands for ‘quantitative trait locus’ which refers to regions of the genome that are
associated with the quantitative trait of interest. QTL mapping (QTL analysis or linkage
mapping) usually begins with the phenotyping and genotyping of a bi-parental population
followed by a statistical analysis in which these two data sets are associated.

The by far most commonly used molecular markers today are SNPs, and therefore we will
focus only on them. For SNPs we either know their physical map position or we can construct
a genetic map as we work with bi-parental populations. Until recently, the genetic map was
the only opportunity and it is still helpful for understanding the concept of QTL mapping.
Nearby SNPs are, if at all, only separated by a small amount of crossingover and therefore are
linked with each other. Linkage exists, of course, also to close-by genetic elements which are
not genotyped. This circumstance is the basic idea of QTL mapping, as it allows viewing an
SNP as representative for a linked region in the genome. Linkage allows the mapping of QTLs
with a relatively small number of markers, which was an advantage in the days when only
small numbers of markers were accessible. Today, where dense marker information is available
it has become a limitation of QTL mapping, as expansive linkage makes a further dissection
of large QTL regions impossible, although many markers may exist in such region.

Many statistical methods have been developed in order to dissect quantitative traits (Bro-
man 2001; Li and Sillanpää 2012). However, here we will concentrate only on some basic
concepts of QTL mapping techniques.

If a dense map of SNPs is available we can assume that all causal elements are perfectly
linked to an SNP. Furthermore, we restrict ourselves as is commonly done to bi-allelic SNPs.
An SNP is, from a statistical point of view, a factor (or categorical variable) with two levels,
e.g. encoded with A and B. Thus a diploid organism may have four states: AA, AB, BA, and
BB, where, if the population is completely homozygous, only AA and BB occur, resulting again
in a factor with two levels. If the population is heterozygous, it is often not possible and not of
interest to separate the heterozygous states, AB and BA. Thus they are treated as one level,
which results in a factor with three levels: AA, H, and BB. If we take one homozygous SNP
and group the individuals of the mapping population, depending on the occurring levels of AA
or BB, we can compare the phenotypic mean of these two groups. If we can detect significant
differences between these two groups, we have detected that the SNP under consideration is
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linked to a genetic element which causes the phenotype of interest. This simple idea is the
basis of QTL mapping. However, it still must be clarified how significance can be tested and
how this can be extended to all the SNPs.

A vector of all individuals at a single SNP with alleles AA, H, and BB can, under the
expectation of additive effects only, be coded by 0, 0.5, and 1. Together with an intercept,
this SNP vector forms the N × 2 design matrix X, where N is the number of observations,
which leads to the following linear model (LM):

y = Xβ + ε,

ε ∼ N
(
0, Iσ2

)
,

(1.2)

with response vector y, in our case N phenotypic observations, a parameter vector β>, where
the first element is an intercept β0 and the second elements β1 the SNP parameter, and N×1

vector ε of random errors. In this case β1 represents the difference in mean of the two levels.
Genetically, it is two times the additive effect, assuming perfect linkage between SNP and the
genetic element underlying the QTL. However, β is unknown and has therefore to be estimated
from the data via the least square estimation, deriving a point estimator β̂.

In order to detect differences in means between the two groups for a continuously distributed
trait, analysis of variance (ANOVA) is the common choice. Here we focus on the commonly
used F-test for LMs. In a general definition an F-test compares a full (f ) and a reduced (r)
model,

ŷf = Xfβf

ŷr = Xrβr ,

where the full model contains all columns of Xf = X and accordingly all coefficients βf = β.
Xr is reduced by the SNP column and coefficient βr . Hence, both predictions differ only by the
effect of the SNP. The sum of squares (SS) for the SNP and the residuals (e) are calculated in
the following way: SSSNP = (ŷf − ŷr )>(ŷf − ŷr ), and SSe = (y− ŷf )>(y− ŷf ). Mean squares
(MS) are the sum of squares divided by degrees of freedom MSSNP = SSSNP/(kfhis − kr ),
where kf , and kr are the number of β’s in the models without intercept. The residual mean
squares are MSe = SSe/(N − kf − 1), and the F-value is the ratio MSSNP/MSe . Finally, a
p-value can be derived from an F distribution F(kf−kr ),(N−kf−1).

In this way, every SNP can be tested one by one for its significance. However, as it is
expected that many genes underlie quantitative traits, this is a strong simplification. Therefore,
a better way would be to test a model including all SNPs against a reduced model in which
one SNP at a time is dropped. The difference between these models is the significance of the
SNP. Although this approach reflects the complexity of the problem and makes it a more valid
approach, it has some drawbacks: (i) many non-influential SNPs are included, which would
unnecessarily increase kf . A large kf decreases the residual degrees of freedom, resulting in
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reduced power; (ii) even more important ordinary least squares are only defined in cases where
N > P , and where P is the number of SNPs. But in many cases, P exceeds N by far, and
consequently methods for selection of important SNPs are a key point in QTL mapping.

Stepwise regression is an algorithm which adds and removes covariates stepwise to a model
in order to find the best subset of covariates. In QTL mapping the covariates are SNPs which
are added or removed to find a subset often referred to as cofactors. Subsequently, a genome
scan with an F-test as described before is carried out, in which, in the full and reduced models
the cofactors are included to control for complexity. Only if the tested SNP is close to one
of the cofactors, this cofactor is dropped from the model, as these variables are otherwise in
strong collinearity. This type of testing is in slightly modified form part of common mapping
approaches like composite interval mapping (CIM) and multiple QTL mapping (MQM) (Jansen
1994; Zeng 1994).

Until recently, SNP density was low and their physical positions were unknown. Therefore
QTL mapping in bi-parental populations was the main strategy for QTL detection. But with
high-density SNP sets and knowledge of their physical positions it became possible to move
beyond QTL mapping.

Association mapping

An advantage of bi-parental populations is their consistent relationship between individuals,
together with a negligible amount of drift and novel mutations. Therefore, only linkage leads
to correlation between SNPs and, more importantly, between SNP and the QTL underlying
genetic elements. In contrast, natural populations often suffer from non-random mating, in
combination with selection, drift, and mutations; in this context often jointly referred to as
population structure. As this can lead to correlation among loci in addition to the effect of
linkage it is named linkage disequilibrium (LD). In such populations distant SNPs and QTLs
can be correlated due to population structure, potentially even across different chromosomes.
These correlation have to be accounted for in the analysis of QTLs. Besides these disadvan-
tages, there are important advantages when compared to classical QTL mapping. In natural
populations one can make use of historical recombinations in the population, which allows
mapping with a much higher resolution. Furthermore, such population can reflect more of the
genetic variance of the species, allowing a more detailed view of the trait under consideration
(Astle and Balding 2009).

Several methods have been proposed for the correction of spurious associations due to
population structure. Here we will focus on a recent approach using a linear mixed model
(LMM) (Yu, Pressoir, et al. 2006). In this approach a relationship matrix among all individuals
studied is used. This matrix, commonly referred to as kinship matrix, can be computed from
SNP data in the following way (Endelman and Jannink 2012): W = S − 1s> where S is a
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N×P matrix of N individuals and P SNPs, in which the alleles AA, H, and BB are accordingly
encoded with 0, 0.5, 1. 1 is a vector of N ones. s is a vector of length P containing column

means of S. v =
1

p

∑P
i=1 si(1 − si) is computed and from this the kinship identity by state

matrix can be estimated as:

K =
1

N

WW>

v
.

The relationship matrix can be used in a LMM to account for population structure. The LMM
approach is a single marker test.

y = Xβ + Zu + ε

u ∼ N
(
0,Kσ2

G

)
ε ∼ N

(
0, Iσ2

)
,

y, X, and β represent, similar to the QTL mapping model, response variable, design matrix,
and parameter vector. Z is a dummy-coded design matrix for the individuals of this study.
The random effect u for every individual is drawn from a multivariate normal distribution with
which the relationship matrix is considered. This model has been shown to account efficiently
for population structure, but in fact it is doing much more.

Theoretically, a relationship matrix can account for an infinite number of independent small
additive effects, called the infinitesimal model (Mrode 2014). In fact, the LMM as described
is used without the SNP effects in genomic selection with great success (Ober et al. 2012).
Genomic selection is a new branch of quantitative genetics focusing on the prediction of traits
on the basis of SNP data without trying to identify the genetic basis of quantitative traits
(Hayes et al. 2009). What does this mean to association mapping? On the one hand, it is
good, as it controls the genetic background, but on the other hand, it penalizes the detection
of QTLs (Vilhjálmsson and Nordborg 2013).

Association mapping can overcome some of the major drawbacks of QTL mapping, but
in its current state it suffers from some disadvantages. One strategy to overcome these
disadvantages is to use multi-parental populations and new statistical methods.

1.2 Objectives of this work

In this work we are focusing on multi-parental mapping populations and additionally on the
integration of new statistical methods into the analysis of quantitative traits. In Chapter 2 we
will concentrate on different mating designs and compare their advantages and disadvantages
in terms of additive effect loci detection, and the number of crosses, and generation of the
population. This will be carried out by computer simulation based on empirical genetic data
from A. thaliana. This part of the work was published in Heredity (Klasen et al. 2012).
Chapters 3 and 4 present work which is part of a project carried out by several groups at the Max
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Figure 1.1: AMPRIL project: (a) mating design of one of the AMPRIL subpopulations;
(b) re-sequencing of the founders and RAD-seq of the recombinants; (c) phenotyping of
the population; (d) reconstruction of the genome sequence of the recombinants from the
sequencing data; (e) association of the phenotypic observation and the genetic data derived
from the previous steps.

Plank Institute for Plant Breeding Research and the Eidgenössische Technische Hochschule
Zürich. The Arabidopsis multi-parental recombinant inbred line (AMPRIL) project is based on
a multi-parental mapping population which was established earlier by Maarten Koornneef and
co-workers (Fig. 1.1.a). They have in addition phenotyped the population for several traits
(Fig. 1.1.c). The population is based on eight founders which were re-sequenced. Furthermore,
all recombinants of the mapping population were sequenced with a RAD-seq (restriction-site
associated DNA sequencing) approach. Based on this sequencing data, a probabilistic model
was used to reconstruct the recombinant genomes from the founder genomes. This was done
in parts by Ales Pecinka and co-workers, who made the sequencing library preparation (Fig.
1.1.b) and by Vipul Patel, who carried out the reconstruction of the recombinant genomes (Fig.
1.1.d). The part of the project presented here focuses on the association of the phenotypic
observation to the genetic data (Fig. 1.1.e). In Chapter 3 we will present a new mapping
approach developed for this purpose. Thereby, we will focus on the underlying theory and
implementation followed by a simulation-based comparison to common approaches. Chapter 4
is focusing on the actual analysis of data from the AMPRIL project. Here we will concentrate
on the analysis of genomic incompatibilities and the association analysis of flowering time. The
association test will be carried out by our new method introduced in chapter 3. A comparison
to common methods will be made and novel possibilities in the application to structured
population will be discussed. The organization of this work into two chapters reflects our
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current effort in deriving two publications from this work.
Chapter 5 gives an overview of some collaborative work. These collaborations had in com-

mon that questions emerged that could only be answered with the help of statistical methods.
For each of these projects the questions will be presented, followed by an explanation of the
approach taken to answer them. The first project focuses on simulation data of forward ge-
netic screens and specifically how to formalize the simulation process (James et al. 2013).
The question tackled in the second project was the definition of an optimal threshold between
heterozygous and homozygous states in noisy sequencing data in order to detect gene conver-
sions (Wijnker et al. 2013). The third project was challenging whether gene expression derived
in the context of a gating experiment was significantly gated or not (Berns et al. 2014). The
fourth project compared semi-dwarf plants to wild-type plants under water withholding con-
ditions (Barboza et al. n.d.). In the last project, typical population genetic parameters were
estimated for 30 re-sequenced Lotus accessions (Sato et al. n.d.).



“Imagination is more important than knowledge.
For knowledge is limited, whereas imagination embraces
the entire world, stimulating progress, giving birth to
evolution. It is, strictly speaking, a real factor in
scientific research.”

Albert Einstein (1931)

2
Simulation-based comparison of multi-parental

mating designs for their QTL detection

suitability

2.1 Introduction

The population type is a crucial part in the design of experiments for quantitative trait anal-
ysis. In this way it is possible to guide some parameters in one or another direction. The
number of loci is potentially increasing with more natural accession involved. The same is
true for the number of alleles at one locus. The population type is strongly influencing the
mapping resolution. In this case the ancestral recombination separating natural accessions or
recombinations occurring during the breeding process are essential. These factors influence
the power to detect QTLs and an optimal balance is therefore of great interest and this can
be archived by mating designs.

For the development of bi-parental linkage mapping populations, two founders are used
which differ with respect to the trait of interest. From a cross of these founders, a segregating
population is derived. The genomes of the individuals of this population are mosaics of the
genomes of the founder genotypes due to the recombination events occurring during breeding
(Mackay et al. 2009). Many QTL have been detected for different quantitative traits using
such bi-parental linkage mapping populations. With a few exceptions, however, most of these
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QTLs have not been successfully validated in other populations (Bernardo 2008). To overcome
this problem, the detection of QTLs using a set of genotypes with unknown ancestry, which
is called association mapping, has become popular.

The use of association mapping populations allows the evaluation of a high number of alleles
in multiple genetic backgrounds (for review see: Zhu et al. 2008). The mapping resolution of
association mapping populations compared to bi-parental populations is high, as the former
allow the utilization of historical recombination events (Mackay et al. 2009). A problem of
association mapping populations, however, is that some individuals might be more related to
each other than individuals are related on average and this leads to false-positive associations
between pheno- and genotypes (Breseghello and Sorrells 2006; Sneller et al. 2009). This
problem cannot always be completely prevented, even by considering the population structure
in the statistical analysis. Furthermore, the loci that are correlated to the population structure
cannot be detected with such approaches (Vilhjálmsson and Nordborg 2013). Therefore, the
concept for mapping in the multi-parental linkage mapping population was developed, which
minimizes the effect of population structure by crossing diverse individuals but still providing
a high mapping resolution (Stich 2009).

Rebaï and Goffinet (1993) proposed the extension of the bi-parental population to a four-
parental population in which the founders were crossed in a half diallel. A method combining
the strengths of linkage mapping and association mapping was proposed in the field of animal
genetics (Mott et al. 2000; Churchill et al. 2004). In addition, statistical methods for the
analysis of multi-parental populations were developed (Xu 1998; Rebaï and Goffinet 2000;
Jannink and Wu 2003). Subsequently, different mating designs were recommended and used
for QTL detection in a plant genetics context (Blanc et al. 2006; Paulo et al. 2008; Yu,
Holland, et al. 2008; Buckler et al. 2009; Kover et al. 2009; Stich 2009). These designs differ
with respect to their strategy as well as the complexity of the required crosses. The mating
design underlying the nested association mapping (NAM) strategy (Yu, Holland, et al. 2008)
is based on crosses between one founder with all other founders. In contrast, crosses between
all founders are required for the diallel cross (Rebaï and Goffinet 1993). In the first step of the
AMPRIL mating design (Paulo et al. 2008), hybrid crosses between pairs of the founders were
performed. The second step was a diallel cross between the F1 individuals. The multi-parent
advanced generation intercross design (MAGIC) (Kover et al. 2009) is based on a diallel cross
of all founders followed by four generations of random mating. Furthermore, sibling mating
within bi-parental populations has been proved to increase the mapping resolution (Lee et
al. 2002). The different approaches result in mapping populations which differ with respect
to the number of combined parental genomes per individual, the number of recombination
breakpoints, and the allele frequencies. This in turn is expected to influence the power to
detect QTL. To the best of our knowledge, however, the relative contribution of the individual
factors to increasing the power is unknown.
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The objectives of this chapter are to evaluate the power of QTL detection of various multi-
parental mating designs for A. thaliana based on different scenarios, as well as to assess the
reasons for the observed differences.

2.2 Materials and Methods

Our study was based on empirical data of 20 A. thaliana accessions, namely Bay-0, Bor-4,
Br-0, Bur-0, C24, Col-0, Cvi-0, Est-1, Fei-0, Got-7, Ler-1, Lov-5, Nfa-8, Rrs-7, Rrs-10, Sha,
Tamm-2, Ts-1, Tsu-1, and Van-0 (Clark et al. 2007). These accessions were selected on the
basis of polymorphisms in 876 genome-wide distributed fragments from a sample of 96 A.
thaliana genotypes to capture the maximum genetic diversity (Nordborg et al. 2005). A total
of 648,570 non-redundant SNPs was available for these accessions (Clark et al. 2007). For
this study, 653 sets of markers, each comprising five closely linked SNPs, were selected from
the total number of SNPs. The 5 SNPs of a haplomarker were located within a physical
map distance of 300 to 3,000 bp. Each set of 5 SNPs was considered to be one multi-allelic
marker locus, called ‘haplomarker’ hereafter. The 653 haplomarkers were evenly distributed
throughout the physical map of A. thaliana. Genetic map positions for the haplomarkers were
lacking. Therefore the physical map position of the middle SNP of each haplomarker was
linearly projected onto the genetic map (Singer et al. 2006) resulting in an average genetic
map distance of ∼0.7 cM. The number of haplotypes per haplomarker ranged from 2 to 9,
with an average of 5.

2.2.1 Mating designs

The 20 A. thaliana accessions were used to examine 8 different mating designs using computer
simulations.

In the first design, here referred to as the ‘reference design’ (REF), the founder line Col-0
was crossed with the other 19 founders (Fig. S1). Each hybrid was selfed for 4 generations to
create a set of N RILs (Fig. S2).

For the reference design with sibling mating (REFS), sibling mating was performed for
3 generations among the progenies of each of the 19 F1 hybrids, which were designated in
our study as subpopulations. Each of the S = 19 sibling mating subpopulations consisted
of 5 individuals. The 950 individuals of the third sibling mating generation were selfed for 4
generations to create a set of N RILs (Fig. S2).

For the diallel cross design (DC), each founder was crossed with the other 19 founders
resulting in a total of 190 different F1 hybrids (Fig. S3). Each hybrid was selfed for 4
generations to create a set of N RILs.

For the diallel cross with sibling mating design (DCS), sibling mating was performed for
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3 generations among the progenies of each of the 190 F1 hybrids, which were designated in
our study as subpopulations. Each of the S = 190 sibling mating subpopulations consisted
of 5 individuals. The 950 individuals of the third sibling mating generation were selfed for 4
generations to create a set of N RILs.

For the diallel cross with random mating design (DCR), random mating was performed for
3 generations among the progenies of all the 190 F1 hybrids from the DC design. The 950
individuals of the third random mating generation were selfed for 4 generations to create a set
of N RILs (Fig. S2).

For the four-way hybrids cross design (FHC), the 20 founders were crossed in pairs to
create 10 F1 hybrids. The 10 F1 hybrids were further crossed in pairs to establish S = 5

subpopulations with a total of N four-way hybrids (Fig. S4). Each of the N four-way hybrids
was selfed 4 times to generate N RILs.

For the two-way hybrids diallel cross design (THDC), the 20 founders were crossed in pairs
to create 10 F1 hybrids. The 10 F1 hybrids were crossed in a half diallel to establish S = 45

subpopulations with a total of N four-way hybrids (Fig. S5). N RILs were created by selfing
these individuals for 4 generations.

The four-way hybrids diallel cross design (FHDC) was examined in 2 scenarios. For the
FHDC10 design, 20 founders were crossed in pairs to create 10 F1 hybrids. These 10 F1 hybrids
were crossed in pairs to establish 5 subpopulations with 10 four-way hybrids per subpopulation.
The four-way hybrids were crossed in a half diallel so that each four-way hybrid was crossed with
one individual from the other subpopulations (Fig. S6) to establish S = 10 subpopulations.
With this procedure, a total of N F3 individuals was generated from which N RILs were
obtained by 4 generations of selfing. The FHDC100 design differed from the FHDC10 design
by involving 100 instead of 10 four-way hybrids per subpopulation.

The number of individuals per subpopulation S was calculated in a two-step procedure.
Firstly, the minimum number of individuals per subpopulation was calculated as bN/Sc, which
is the integer part of N/S . Secondly, a number of N−bN/Sc ∗S random subpopulations was
assigned one additional individual. The number of required generations as well as the total
number of individuals across all generations differed considerably among the examined designs
(Tab. 2.1).

The mating designs were compared based on different scenarios, which differed with respect
to the population size N = 1, 250, 2, 500, 5, 000, heritability, and the number of QTL. Choice
of heritability and number of QTL will be described in the following section.

2.2.2 Genotypic and phenotypic values

A total of 50 simulation runs were performed for each of the examined mating designs. For each
run, 3 subsets of haplomarkers K = 25, 50, 100 were randomly sampled without replacement
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Table 2.1: Number of individuals per cross and number of crosses and selfings

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
P 20× 20× 20× 20× 20× 20× 20× 20× 20×
F1 19⊗ 19⊗ 190⊗ 190⊗ 190× 10× 10× 10× 10×
F2 5000⊗ 950× 5000⊗ 950× 950× 5000⊗ 5000⊗ 50× 500×
F3 5000⊗ 950× 5000⊗ 950× 950× 5000⊗ 5000⊗ 5000⊗ 5000⊗
F4 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗
F5 5000 5000⊗ 5000 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗ 5000⊗
F6 5000⊗ 5000⊗ 5000⊗ 5000 5000 5000⊗ 5000⊗
F7 5000⊗ 5000⊗ 5000⊗ 5000 5000
F8 5000 5000 5000
Sum indiv. 20019 26919 20190 27090 27090 25010 25010 25060 25510
Crosses × 19 1919 190 2090 2869 15 55 115 1015
Selfings ⊗ 15019 20019 15190 20190 20000 20000 20000 20000 20000

Mating designs: reference design (REF), reference with sibling mating (REFS), diallel cross
(DC), diallel cross with sibling mating (DCS), diallel cross with random mating (DCR),
four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids
diallel cross with 10 or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).

from the linkage map and defined as QTL. The maximum genotypic effect per QTL ak with
k = 1, 2, ...,K was drawn randomly without replacement from the geometric progression
ak = a0q

k with a0 = 100(1 − q)/(1 − qK ) and q = 0.90 for 25 QTL, q = 0.96 for 50 QTL,
and q = 0.99 for 100 QTL (Lande and Thompson 1990). The number of alleles per QTL M

was given by the number of haplotypes at the sampled haplomarker. The effect of each QTL
allele at a given locus was randomly drawn without replacement from the arithmetic progression
akm = ak − ((m − 1)ak/(M − 1)) with m = 1, 2, ...,M , where the effect ak given from the
geometric progression was gradually reduced to zero and the number of steps was given by
the number of alleles M that are present at this locus. The genotypic value of an individual
was the sum of all of its QTL effects. From the genotypic values of the set of founders, the
genotypic variance σ2

G was calculated (Valdar et al. 2006), which was the same for all mating
designs. The phenotypic values of the RILs of each subpopulation were generated by adding
a realization from a normal distribution N (0, (1− h2)σ2

G/h
2) to the genotypic values of the

RILs, where h2 denotes the heritability. For our simulations, h2 = 0.5, 0.8 was assumed. All
simulations were performed with software PLABSOFT (Maurer et al. 2007).

2.2.3 QTL detection method neglecting population structure

The comparison of statistical analyses concerning the power requires an equal empirical type I
error rate α∗. To meet this requirement, the following two-step procedure for QTL detection
was applied. Firstly, a stepwise LM was used to select a set of cofactors based on the Bayesian



16 Comparison of mating designs for their QTL detection suitability

information criterion (BIC). The model was:

y = Xβ + ε, (2.1)

where y is the vector of the phenotypic values of all RILs. X has at least a column for the
intercept, the model is rerun several times and dependent on the model-selection criteria,
haplomarkers are added or removed in order to find an optimal set of cofactors C . β are
accordingly regression coefficients and ε the vector of residual errors. The assumption for
the QTL analysis was that the number of haplomarkers was so high that each QTL had a
haplomarker which was in complete LD with the QTL. Therefore, all haplomarkers, including
those treated as QTL, were included in the QTL detection procedure.

In the second step, a p-value for the association of each haplomarker i was estimated.
For this, an F-test with a full model against a reduced model was fitted. The reduced model
contained the cofactors in the model matrix X{C} which were selected in the previous model
2.1. The full model contained in addition columns for the haplomarker i under consideration
X{C ,i}. In the F-test, only those cofactors were used which are not identical to the haplomarker
under consideration i /∈ C , in order to avoid collinearity. These constraints were inevitable to
detect also those QTLs for which a cofactor was selected in the first step. The QTL detection
was performed within R (R Core Team 2014).

2.2.4 QTL detection method considering population structure

The following LMM was used:

y = Zu + ε, (2.2)

where the random term for individuals where normally distributed:

u ∼ N (0,Kσ2
G ).

K is the relationship matrix, and σ2
G is the additive genetic variance. The relationship matrix

was calculated from pedigree records or based on the proportion of shared haplomarker for
each pair of individuals (Zhao et al. 2007). The LMM was fitted using the statistical software
ASReml (Gilmour et al. 2006) and the R package, GenABEL (Aulchenko et al. 2007).

For QTL detection, the above-described two-step procedure was used, where instead of phe-
notypic values, the residuals of the LMM 2.2 were considered as response variates (Aulchenko
et al. 2007).
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2.2.5 Power calculation

Because the haplomarkers that were considered as QTLs were known, the power to detect
a QTL 1 − β∗ was calculated as follows: For each scenario, the nominal α-level was chosen
in such a way that the empirical type I error rate α∗ was 0.5, 0.1, 0.01, 0.001, 0.0001, or
0.00001. The power for QTL detection 1−β∗ was calculated on the basis of these α levels as
the proportion of correctly identified QTLs from the total number of QTLs K (Stich 2009).

For each scenario, a Kruskal-Wallis test was performed on the 50 replications to examine
the presence of significant differences among all mating designs. If this test was significant,
a Mann-Whitney test was performed to calculate the asymptotic p-value for pairwise differ-
ences. The pairwise differences (significance level P < 0.05) were presented via letter-based
comparisons (Piepho 2004).

2.2.6 Genome structure analysis

We calculated the number of recombination breakpoints as the average number of alterations
between the parental genomes along the genome of one individual in the mapping population
of the considered mating designs. Furthermore, we inferred the number of founders that
contributed to the genome of an individual of a mapping population. In both cases, identity
by descent was considered as the reference point. For all mating designs, the average of
measures across all individuals and all replications was calculated.

2.3 Results

2.3.1 Mating designs

The lowest average number of recombination breakpoints per individual was 9 for the REF and
DC designs (Tab. 2.2). For the REFS and DCS design, sibling mating increased the number
of recombination breakpoints to 12.7. The highest number of recombination breakpoints was
observed with 20.2 for the DCR mating design. The average number of combined parental
genomes per individual in the mapping population was 2 for the REF, REFS, DC, and DCS
designs. The highest number of combined founder genomes was 9.4 per individual for the
DCR design.

The allele frequency of 2.3 of the 5 alleles at an average QTL was 0.05 (Fig. 2.1). In
the REF and REFS design, the frequency of the most alleles was 0.025, whereas for the
other mating designs values of about 0.05 were observed. For the DCS, DCR, FHDC10, and
FHDC100, allele frequency changes due to genetic drift were observed (Fig. 2.1).
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Figure 2.1: Histograms of the allele frequencies at an average quantitative trait locus
(QTL) for the following mating designs compared to the founders (F): reference design
(REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with sibling
mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and
four-way hybrids diallel cross with 10 or 100 individuals per F2 subpopulation (FHDC10 or
FHDC100).
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Table 2.2: Recombination breakpoints and combined parental genomes per individual

No. of recombination No. of combined
Mating breakpoints parental genomes

design mean SD mean SD
REF 9.0 3.1 2.0 0.0
REFS 12.7 3.7 2.0 0.0
DC 9.0 3.1 2.0 0.0
DCS 12.7 3.7 2.0 0.0
DCR 20.2 4.5 9.4 1.5
FHC 13.1 3.7 4.0 0.2
THDC 13.1 3.7 4.0 0.2
FHDC10 17.2 4.2 7.4 0.7
FHDC100 17.2 4.2 7.4 0.7

Mating designs: Reference design (REF), reference with sibling mating (REFS), diallel cross
(DC), diallel cross with sibling mating (DCS), diallel cross with random mating (DCR),
four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids
diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100). Cells
contain: Mean number and standard deviation (SD)

2.3.2 Method neglecting population structure during QTL detec-

tion

For the scenario with 5,000 RILs and h2 = 0.5, the power across all mating designs decreased
from the variant with 25 QTLs to the variant with 100 QTLs from 0.72 to 0.27, while the
variant with 50 QTLs had a power of 0.57 (Fig. 2.2; Tab. S1). In the scenario with h2 = 0.8,
the power to detect QTL was higher and ranged across all mating designs from 0.91 to 0.64
for 25 to 100 QTLs, respectively.

The reduction of the number of RILs from 5,000 to 2,500 and 1,250 individuals led to
a decrease of the power to detect a QTL for all mating designs (Tab. 2.3). The power
trends observed in the scenarios with N = 1, 250 and N = 2, 500 were identical to those with
N = 5, 000, irrespective of the number of QTLs and h2 values considered.

The power decreased with the empirical α∗ level, but the ranking of the mating designs
with respect to the power was largely unchanged (Fig. S13 – S7). The ranking of the mating
designs also remained constant across all examined QTLs and h2 scenarios. The DCR mating
design showed the highest power and the REF design the lowest. The difference in power
(α∗ = 0.01) between these designs was significant (significance level of 0.05) for all examined
scenarios (Tab. S2 – S9). The mating designs with sibling mating (REFS and DCS) had
a significantly higher power than the same mating designs without sibling mating (REF and
DC).
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Figure 2.2: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population
structure for different α∗ levels in a scenario with 50 QTLs, heritability h2 = 0.5, and
population size N = 5, 000. The following mating designs were examined: reference design
(REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with sibling
mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and
four-way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or
FHDC100). The whiskers represent the standard error of the mean across all replications.
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2.3.3 Methods considering population structure during QTL de-

tection

All mating designs with the exception of DCR were also examined with QTL detection methods
considering the population structure based on pedigree information. For all examined mating
designs, the power to detect QTL was lower for the methods considering population structure
than for those neglecting population structure (Tab. 2.3). For all mating designs, the power
of the analysis considering population structure calculated from haplomarker information was
lower than for the analysis considering pedigree population-based structure (Fig. S14, S15;
Tab. S10, S11). The ranking of the mating design was not influenced by the QTL detection
method.

Table 2.3: Power to detect quantitative trait loci

Mating NPS CPS-P CPS-M

design Value N = 1, 250 N = 2, 500 N = 5, 000 N = 5, 000 N = 5, 000

REF Power 0.22 0.31 0.42 0.34 0.30
SE 0.010 0.011 0.015 0.015 0.007

REFS Power 0.24 0.35 0.46 0.39 0.31
SE 0.010 0.013 0.015 0.018 0.008

DC Power 0.29 0.37 0.50 0.39 0.34
SE 0.012 0.013 0.013 0.016 0.008

DCS Power 0.30 0.43 0.57 0.45 0.38
SE 0.012 0.015 0.013 0.016 0.007

DCR Power 0.42 0.55 0.68 not 0.43
SE 0.013 0.017 0.014 applicable 0.008

FHC Power 0.36 0.44 0.56 0.53 0.37
SE 0.010 0.012 0.014 0.016 0.007

THDC Power 0.35 0.48 0.60 0.54 0.40
SE 0.011 0.014 0.015 0.014 0.007

FHDC10 Power 0.37 0.51 0.65 0.62 0.40
SE 0.013 0.014 0.012 0.013 0.006

FHDC100 Power 0.40 0.54 0.66 0.64 0.42
SE 0.013 0.012 0.013 0.015 0.007

Standard error (SE) of the mean across replications, for different population sizes (N). QTL
detection approaches: neglecting population structure (NPS) and considering population
structure (CPS) either calculated from pedigree (P) or from marker (M) information. A
total of 50 QTLs and a heritability of 0.5 was assumed. The following mating designs
were examined: reference design (REF), reference with sibling mating (REFS), diallel cross
(DC), diallel cross with sibling mating (DCS), diallel cross with random mating (DCR),
four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids
diallel cross with 10 or 100 individuals per F2 subpopulation (FHDC10 or FHDC100). The
empirical type I error rate α∗ was 0.01. For the DCR design random mating was performed
across all subpopulation and, thus, no pedigree-based population structure exists.
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2.4 Discussion

2.4.1 Factors influencing the power to detect QTL

In our study, the power to detect QTLs of the REF and DC design was considerably lower than
that observed by Stich (2009). This finding can be explained by the different benchmarks of
residual variance and hence of heritability used in these two studies when simulating phenotypic
values. (Stich 2009) considered the genetic variance per subpopulation, whereas we used the
genetic variance of the founders as basis for the simulation of phenotypic values. A second
reason is the number of degrees of freedom required in the stepwise regression in our study,
due to the higher number of assumed alleles compared to the study of Stich (2009). This
leads to a decreased number of selected cofactors, which in turn reduces the power to detect
QTLs.

In our study, we assumed that the haplomarkers were in complete linkage equilibrium with
the QTL, which increases the power in comparison to experimental data where linkage is not
complete. This simplification, however, is the same for all examined mating designs and thus
is expected not to influence the ranking of the mating designs.

We observed a lower power to detect QTL for the approaches taking population structure
into account than for the approaches neglecting this information (Tab. 2.3). This finding
can be explained by the fact that association between haplomarkers, which differ only in state
between subpopulations, and the phenotype cannot be as simply detected when population
structure is corrected during the QTL analysis (Yu, Holland, et al. 2008; Sneller et al. 2009;
Brachi et al. 2010). The analyses considering population structure calculated from haplomarker
information were more effective in reducing the risk of false-positive QTLs than the analyses
considering population structure calculated from pedigree information. However, our strategy
for calculating the significance threshold, which is described in detail in material and methods,
masks this advantage. Furthermore, our results suggested that under a fixed empirical type I
error rate the former analysis leads to a lower power compared to the latter analysis.

In contrast to studies based on experimental data, the QTLs underlying phenotypic varia-
tion are known in studies using computer simulations. Therefore, in the latter case it is possible
to calculate the significance threshold in such a way that it is not influenced by false-positive
associations due to population structure, as outlined in materials and methods. This, how-
ever, makes a comparison between the different QTL detection methods unfair. Nevertheless,
it allows in our study the comparing of different designs with respect to their QTL detection
power despite their difference in the importance of population structure. When analyzing ex-
perimental data of the examined mating designs, population structure has to be considered in
order to control the nominal type I error rate.

Because the ranking of the examined mating designs with respect to the power was largely



Discussion 23

constant across the studied scenarios, we discuss in the following section only the results of
the scenario with h2 = 0.5, 50 QTLs, N = 5, 000, α∗ = 0.01, and consider the QTL detection
method neglecting population structure.

2.4.2 Comparison of the examined mating designs

We examined the power of the REF design, which is similar to the design used to establish the
NAM population (Yu, Holland, et al. 2008; McMullen et al. 2009). This value was compared
with that of the DC design, which corresponds to the design described by Rebaï and Goffinet
(1993). Across all examined scenarios, we observed a higher power to detect QTL for the DC
design than for the REF design (Tab. 2.3, S1). Our observation accords with the findings of
Stich (2009). This difference in estimated power between the REF and DC designs can be
explained by differences in genetic variance, which are caused by difference in allele frequencies.
The allele frequency differences are due to the crossing scheme underlying the REF design and
the fact that not all parental genotypes contribute to the segregating population to the same
extent. The alleles of the common founder have a high allele frequency, whereas the alleles
of the other founders occur less frequently. In the DC design, however, crosses between all
founders are created and thus the allele frequency should remain unchanged compared to that
of the founders. This explanation accords with the observed allele frequency pattern (Fig.
2.1).

Another interesting question is how the number of combined genomes per individual influ-
ences the power. Therefore, the THDC and FHC designs were examined. The THDC design
is similar to the AMPRIL design (Paulo et al. 2008; Huang, Paulo, et al. 2011), where the
founders are crossed in pairs to create two-way hybrids, which were then crossed in a diallel.
Instead of a diallel cross, the FHC had a second generation of pairwise hybridizations. In all
examined scenarios, the FHC design and the THDC design had a higher power to detect QTLs
than the DC design (Tab. 2.3, S1). This difference can be explained by the higher number of
combined parental genomes per individual for THDC and FHC than for the DC design (Tab.
2.2). This, in turn, resulted in the combination of one QTL allele with more diverse genetic
backgrounds, which increased the power.

The THDC design showed a higher power than the FHC design (Fig. 2.2). The FHC and
the THDC had the same number of recombination breakpoints as well as the same number
of combined parental genomes per individual (Tab. 2.2). However, as discussed above for the
REF and DC design, the THDC design is based on the combination of all founders, which is
not the case for the FHC design. Therefore, the THDC design has a higher power than the
FHC design.

The FHDC design is a combination of the AMPRIL design and the MAGIC (Cavanagh
et al. 2008). For all examined scenarios, we observed a higher power for the FHDC100 and
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FHDC10 designs compared to the THDC design, despite the only marginally increased crossing
effort (Tab. 2.3). The difference between the FHDC and the THDC design can be explained
by a higher number of combined parental genomes per individual, as was discussed before for
THDC vs. DC designs.

We observed a higher power for the FHDC100 than for the FHDC10 design (Tab. 2.3).
This difference can be explained by the reduced effect of genetic drift, i.e. the random changes
of the allele frequency, in the former than in the latter. In the FHDC10 design, one of the
alleles at an average QTL became lost in some replications (Fig. 2.1).

For the designs with sibling mating (REFS and DCS), we observed a higher power than
for the designs without sibling mating (REF and DC) in all examined scenarios (Fig. 2.2).
The increase in power by sibling mating accords with earlier results (Rockman and Kruglyak
2008), and was due to a slower increase of homozygosity by sibling mating compared to selfing.
This leads to more genetic recombination in the segregating populations and thus to a better
resolution but also to a higher power in the detection of QTLs (Vales et al. 2005; Rockman
and Kruglyak 2008). However, the increase in power by sibling mating within subpopulations
is small compared to the random crosses of the DCR design.

The DCR design is similar to the design described by Kover et al. (2009) for which three
generations of random crosses among all progenies followed a diallel cross. Our results indicated
that this strategy has a higher power than the DCS design. This finding can be explained
by the higher probability that recombination leads to new allele combinations for the DCR
than for the DCS design. Our explanation is in agreement with the observation that the
detected number of recombination breakpoints per individual differed considerably (Tab. 2.2).
This result indicated that populations with a high number of combined parental genomes
have a higher effective recombination rate, which means that recombination occurs more
often between genomes of different founders. Furthermore, the finding that the DCR design
requires the same effort for establishing the population as the DCS design suggests that the
DCR is a very promising approach for creating multi-parental RIL populations.

2.4.3 Conclusions

Our results indicate that crossing all founders in a diallel and creating segregated populations
from each F1 hybrid is a promising way of creating multi-parental population for QTL detec-
tion. However, a diallel cross of founders followed by hybrid crosses or random crosses among
the F1 increases the number of combined parental genomes and results in an even higher
power. Sibling mating increases the number of recombinations but not the number of com-
bined parental genomes and is therefore less effective than the previously described crossing
strategies. A crossing strategy like the REF design results in populations with low power and
is only useful in specific situations, e.g. when the genetic diversity must be reduced in order
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to allow testing all entries in the same field experiment. The similar ranking of the examined
mating designs across all studied scenarios suggests that our results are broadly applicable.
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“Essentially, all models are wrong, but some are useful.”

George E. P. Box (1987)

3
Theory and implementation of the quantitative

trait cluster association test

3.1 Introduction

Mapping genetic elements that underlie a quantitative trait is a challenging task. Even if
we assume that the trait is controlled by a relatively small number of additive effect loci,
the challenge is how to identify those from the large number of loci in the genome. From
a statistical point of view this is a model-selection problem, in which we try to find the
combination of SNPs that are able to explain the phenotypic observation best. This, however,
comes along with some further difficulties. The number of SNPs typically exceeds by far the
number of phenotypic observations. This makes it impossible to fit a model containing all
SNPs with classical methods like least squares and makes the selection technically difficult.
Furthermore, the SNPs are correlated and therefore not easily distinguishable, as they have
similar allele distribution over the individuals. If the correlation occurs due only to linkage
between SNPs in the same genomic region, this is not causing great problems since we are
able to find the region if not the right SNP. If, however, long-range distance correlations occur,
this can lead to the selection of an entirely wrong-associated region. Long-range correlation
is induced by population structure and often in such a way accounted for, that parts of the
phenotypic variation are prohibited from associating with SNPs. This reduces the power to
find the best subset of SNPs. From what is described, we can deduce two problems which are
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challenging the selection of the right SNPs: (i) the number of SNPs exceeds by far the number
of phenotypic observations, which makes a joint analysis difficult; and (ii) the correlation among
SNPs leads to a higher susceptibility to error-prone selection. After a short overview of current
methods we will show that these problems have to be tackled at the same time in order to
solve either of them.

In QTL mapping, long-range correlation is expected to be non-existent due to the popu-
lation type. However, the short-range correlation is strengthened by the low number of accu-
mulated recombinations during the establishment of a bi-parental population. Simple genome
scans ignore the complexity of this problem and test the loci one by one. As mentioned before,
the goal is the selection of a subset of SNPs. However, if we test only single SNPs, ignoring the
remaining part of the genome, the result is limited (Section 1.1.4). Therefore, a joint analysis
is preferable and was the goal of developments like CIM and MQM (Jansen 1994; Zeng 1994).
At the time when CIM and MQM were introduced, the modern penalized likelihood meth-
ods for model-selection were not yet developed. Therefore, these QTL mapping methods are
mainly using forward, backward, or stepwise regression techniques. This means that a model
is extended or reduced by SNPs and checked if it explains the phenotype better than before.
In the case of the models behaving similarly well, the simpler model is preferred based on the
parsimony principle. The decision is based on a model-selection criterion. The introduction of
the least absolute shrinkage and selection operator (LASSO) in 1996 by Tibshirani established
a new branch of model-selection based on penalized likelihood estimation. This was followed
by research on the theoretical properties of the LASSO and extension and modification of the
penalization (for review, see Bühlmann and Geer 2011). Recently, there were several attempts
to integrate these developments into QTL detection (Li and Sillanpää 2012). However, in any
case model-selection is only the first step in a QTL analysis like CIM or MQM. The second
step is an F-test for all SNPs in the data set by accounting for the previously selected SNPs,
which are in this context named ‘cofactors’. In this regard CIM and MQM use slightly different
approaches, and both methods have to deal with the problem that cofactors are correlated to
their neighbouring SNPs and are thereby accounting for the same effect. Therefore, cofactors
have to be removed from the model if a nearby SNP is tested resulting in sudden changes
in the significance whenever this happens. In summary, this means that major algorithms for
QTL mapping are as yet not properly accounting for the correlation among the SNPs, neither
in the model-selection nor during the significance testing.

In association mapping, the challenges are even larger, as due to population structure
correlations across the whole genome occur (Larsson et al. 2013). So far, mainly genome
scans have been used that in addition control for population structure and in some way for the
genetic background (Yu, Pressoir, et al. 2006; Kang et al. 2008; Vilhjálmsson and Nordborg
2013). The LMM which controls population structure via a random term by considering the
relationship matrix of individuals (Section 1.1.4), is in addition also accounting for a part of
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the genetic effect (Vilhjálmsson and Nordborg 2013; Mrode 2014). The problem is that the
loci under consideration are likewise partially absorbed by this term. Attempts in the direction
of model-selection have been made (Segura et al. 2012), however, these approaches are based
on LMMs as well and are therefore not able to overcome the described shortcomings.

All these approaches rely on the statistical methods available at the time of their devel-
opment. New developments in the field of statistics carry the promise to overcome some of
their major shortcomings. High-dimensional statistical inference where the number of covari-
ates P might be much larger than the sample size N has become a key issue in many fields.
Under standard conditions, significance tests like the F-test described in Chapter 1 are well
established, but the extension to high-dimensional scenarios has some challenges. In order to
explain them we would like to recall some basic concepts of the linear model. For a LM (model
1.2) the coefficients can be estimated via ordinary least squares (OLS):

β̂(OLS) = argmin
β

(
‖y − Xβ‖22

)
,

which have the closed-form solution of:

β̂(OLS) =
(
X>X

)−1
X>y.

If the following assumptions are met, the β̂(OLS) estimates are best linear unbiased estimators
(BLUE): (i) response and covariates relation is linear; (ii) expected value for the errors is zero;
(iii) homoscedasticity (variance homogeneity); (iv) independence of covariates and error; and
(v) no perfect multicollinearity among covariates. Furthermore, often normality is assumed
ε ∼ N

(
0, Iσ2

)
(model 1.2). This allows us to derive the OLS estimator as a maximum

likelihood (ML) estimator. This estimation is defined only in cases where P < N . If these
assumptions are met, inference tests like the F-test are well defined and widely used.

In a high-dimensional setting with P > N and under a sparsity assumption, which assumes
that most entries of β are actually zero, the LASSO has become a popular model-selection
estimation method (Bühlmann and Geer 2011). For a usual linear model, the LASSO estimator
is defined as:

β̂(LASSO) = argmin
β

(
‖y − Xβ‖22 + λ‖β‖1

)
,

with ‖β‖1 =
∑P

j=1 |βj |. The penalized ML estimator β̂(LASSO) can be seen as a shrunken
OLS estimator. In this way, the parameter for high-dimensional LMs can be estimated
(Bühlmann and Geer 2011). However, inference tests remain difficult as the coefficients are
not BLUEs or more generally, not point estimators. For penalized coefficients common tests
are not valid, and furthermore, for correlated covariates the LASSO is known to select only
one of them, which ignores the dependency among covariates (Meinshausen 2008).
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Significance testing in the high-dimensional framework, where the estimates are not BLUE,
have recently been proposed (Bühlmann, Rütimann, et al. 2013). Wasserman and Roeder
(2009) proposed an approach based on single sample-splitting, and Meinshausen et al. (2009)
improved the reliability and power of the method based on multiple sample-splitting. How-
ever, the techniques mentioned so far are not proven to yield valid results if covariates are
correlated. For such scenarios, Meinshausen (2008) proposed a method by integrating a hier-
archical structure of the covariates into the significance testing. This was further developed
by Mandozzi and Bühlmann (2013) who combined these attempts with those of Meinshausen
et al. (2009). The principle of these tests is that hypotheses are tested along the hierarchy of
correlated covariates. At the root of the hierarchy the global hypotheses are tested, whereas
at the other extreme, single covariates are tested. As discussed before, inference testing of
LASSO estimates is not possible with common methods. Therefore, Mandozzi and Bühlmann
(2013) used repeated sample-splitting between a LASSO and an F-test to archive the p-values.
This will be described in the following section in more detail, as this algorithm was used to
implement a new method for association mapping. This type of test is here referred to as
‘hierarchical interference test’ (HIT) and builds the foundations of the presented framework.

The objective of this chapter is to describe a solution for the above-mentioned problems
in the analysis of quantitative traits through application of these new methods. In order to
use this method for our purposes, this method is slightly adopted and implemented into a
framework named ‘quantitative trait cluster association test’ (QTCAT), which is part of the
R package qtcat. Standard methods for hierarchical clustering are not applicable, as the
data size in association mapping exceeds the possibilities of these methods. Therefore, we
additionally developed a clustering algorithm which is likewise part of the qtcat package.
Together, these construct the major building blocks of the QTCAT approach: (i) hierarchical
clustering of all genetic elements; and (ii) testing of association between phenotype and genetic
elements.

3.2 Theoretical foundation of QTCAT

The statistical methods described above are not limited to specific scenarios of association
between phenotype and SNPs. Therefore, in this section we refer to them as response variates
and covariates respectively. In this section we focus at the underlying theory of the QT-
CAT approach, for which in the next section we will discuss some specific properties of the
implementation.
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3.2.1 Hierarchical clustering of the covariates

In the clustering process, the first covariates which are perfectly correlated are detected. There-
after a hierarchical order of the imperfectly correlated covariates is generated. In order to
achieve this, standard algorithms are not applicable mainly for two reasons: (i) the fastest
hierarchical clustering algorithms have a runtime of O(n2); and (ii) this speed relies on pre-
computed distances between all covariates, which has memory usage of O(n2) as well as
runtime. If the number of covariates is large, algorithms which scale quadratic in computing
time and memory usage become computationally very demanding. Therefore, a more efficient
implementation is needed.

The algorithm we developed is an approximation which is able to process the problem in a
acceptable computing time in combination with a small memory footprint (Algorithm 1). The
algorithm contains three steps: (i) perfect similarity clustering; (ii) K-medoids clustering; and
(iii) agglomerative hierarchical clustering.

Similarity function

Hierarchical clustering has no specific requirements regarding its similarity function. However,
our approximation relies on K-medoids clustering, in which it is often assumed that the sim-
ilarity function fulfils metric conditions. Clustering in the QTCAT approach is based on the
similarity d(Gi ,Gi ′) = |1− rGiGi′

| with Pearson correlation,

rGiGi′
=

∑N
j=1(Gji − Ḡi)(Gji ′ − Ḡi ′)√∑N

j=1(Gji − Ḡi)2
∑N

j=1(Gji ′ − Ḡi ′)2
,

with the covariate indices {i , i ′} ⊆ {1, ...,P} and the restriction i 6= i ′. G is the dummy coded
matrix of all covariates.

A metric relies on the following conditions: (i) d(Gi ,Gi ′) ≥ 0 (non-negativity); (ii)
d(Gi ,Gi ′) = d(Gi ′ ,Gi) (symmetric relation); (iii) d(Gi ,Gi ′) = 0 if and only if Gi = Gi ′

(identity of indiscernible); (iv) d(Gi ,Gi ′) ≤ d(Gi ,Gi ′′) +d(Gi ′ ,Gi ′′) (triangle inequality). The
first two conditions are fulfilled in our case. The third condition is not met, but this is not
a condition needed for K-medoids clustering. It depends on the clustering purpose if it needs
to be fulfilled and in our case perfect correlation should cause zero similarity. The triangle
inequality is a key condition of K-medoids clustering. It guarantees that all covariates which
are closely related to one medoid are themselves related. It can not formally be proven if this
condition is met, however, we confirmed in a simulation that it is fulfilled if more than 40
observations per covariate are considered. Therefore, this similarity function is valid for our
K-medoids clustering.
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Perfect similarity clustering

The first step of the clustering procedure is the construction of clusters containing covari-
ates which are perfectly correlated. The covariate indices are all clustered into Z clusters,
{1, ...,P} = C1 ∪ ... ∪ CZ . The clusters are non-overlapping Cz ∩ Cz ′ = ∅ with z 6= z ′. The
distance of the covariates which belong to one cluster is zero, d(Gi ,Gi ′) = 0 with {i , i ′} ⊆ Cz .
Finally, one index per cluster iz ∈ Cz is selected as a subset of indices iz = i1, ..., iZ . Hence, a
subset of Z covariates is selected, further referred to as representative covariates, which will
be used in the following steps.

K-medoids clustering

The second step of the clustering procedure is the construction of clusters k = {1, ...,K}
among the representative covariates G(z). The representative covariates’ indices are all grouped
into K clusters, {i1, ..., iZ} = C1∪ ...∪CK . The clusters are non-overlapping Ck ∩Ck ′ = ∅ with
k 6= k ′. The K clusters are generated by minimizing an objective function of the similarity of
representative covariates to a medoid M ,

O =
K∑

k=1

∑
iz∈{i1,...,iZ}

d(Giz (k),Mk).

Hence, all representative covariates are partitioned into clusters, where the number of clusters
K is usually in the range of a few dozen.

Algorithm 1 Three-step clustering
Input: Covariate matrix, K (where K is usually < 100).
First step:

1. Cluster all covariates with perfect similarity.

2. Select one representative covariate per cluster.

Second step:

1. Cluster the representative covariates into K clusters.

Third step:

1. Hierarchical clustering in each of the K clusters.

2. Joining of the K hierarchical clustering structures at their roots.

Output: Hierarchical structure of representative,
perfect similarity clusters of all covariates.
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Agglomerative hierarchical clustering

In a third step for each of the K clusters hierarchical clustering is performed. A hierarchy Tk is
a set of clusters {Ch} with Ch ⊆ Ck . At the basis of this hierarchy every covariate represents
a distinct cluster. All pairs of clusters fulfil the following condition:

Ch,Ch′ ∈ Tk , (Ch ⊂ Ch′) ∨ (Ch ⊃ Ch′) ∨ (Ch ∩ Ch′ = ∅).

In this way K independent hierarchical structures Tk are generated. These are joined at their
roots to one hierarchical structure T , resulting in one hierarchical structure for all representative
covariates. This procedure makes hierarchical clustering for extremely large data sets possible,
which is a requirement of QTCAT. In the second part of QTCAT the representative covariates
are tested in their relation to the response variate.

3.2.2 Hierarchical inferences test

In the following, the HIT algorithm of QTCAT is described (Algorithm 2), which is based on
repeated sample-splitting and follows the ideas described in Mandozzi and Bühlmann (2013).
The HIT algorithm is based on four steps: (i) sample-splitting; (ii) screening of covariates;
(iii) significance testing; and (iv) aggregation of the results of individual sample-splittings.

Sample-splitting

The sample of N observation is B times randomly split into two groups Gb(1) and Gb(2), with
b = {1, ...,B}. Such that {1, ...,N} = Gb(1) ∪ Gb(2) and Gb(1) ∩ Gb(2) = ∅. The group sizes
g1 = |Gb(1)| and g2 = |Gb(2)| are set to be g1 ≤ g2.

Screening of covariates

For every sample split, the first group Gb(1) of observation is screened for an active set of
covariates. Thereby the following model is assumed:

yGb(1)
= XGb(1)

β + ε

with response variate of the sample split yGb(1)
, design matrix of the sample split XGb(1)

. This
is done via the LASSO framework where λ is chosen per 10-fold cross-validation. In this way
B active sets Ŝb of covariates are selected.
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Algorithm 2 Hierarchical inferences test
Input: Response variate, representative covariates matrix,
hierarchical structure of representatives, number of sample slittings (B).
First step:

1. B random sample-splittings in two groups (groups I and II).

Second step:

1. Selection of an active set of covariates via LASSO for each of group I.

Third step:

1. Testing significance for each active set in each of group II
at every node in the hierarchy.

2. Multiplicity adjustment of p-values.

Fourth step:

1. Aggregating of results from sample splits.

2. Hierarchical adjustment of p-values.

Output: p-value for every node in the hierarchy.

Significance testing

Since the active sets Ŝb are estimated in the first group Gb(1) of the sample-splittings and we
restricted the group sizes to be g1 ≤ g2, it follows that the covariates are not high-dimensional
anymore |Ŝb| ≤ g2. Hence the active sets Ŝb are tested within a sequential F-test setting in the
second groups Gb(2). The tested hypothesis is H (C∩Ŝb)

0 where C ∈ T is a given cluster. The
p-value of the test, p(C∩Ŝb), is multiplicity adjusted and thereafter, assigned to all covariates
which are members of the cluster C . This is done even though only the covariates in C ∩ Ŝb

are tested. If the intersection is empty, C∩Ŝb = ∅, the p-value of this covariates cluster C is
reported to be one. In short:

p
(C ,b)
adj =

min

(
p(C∩Ŝb) |Ŝb||C∩Ŝb|

, 1

)
if C ∩ Ŝb 6= ∅

1 if C ∩ Ŝb = ∅

Aggregation over samples

In the last step, all p-values p(C ,1)
adj , ..., p

(C ,B)
adj for cluster C must be aggregated, for which the

procedure developed by Meinshausen et al. (2009) is used. The aggregated p-values Q(C) are
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defining with γ ∈ (0, 1),

Q(C)(γ) = min

{
1, qγ

({
p
(C ,b)
adj

γ
; b = 1, ...,B

})}

Q(C)(γ) relies on the arbitrarily chosen γ. To be rid of this value Meinshausen et al. (2009)
developed a procedure which results in:

P (C) = min
{

1, (1− logγmin
) inf
γmin,1

Q(C)(γ)
}

Finally, the p-values can be hierarchically adjusted

p
(C)
h = max

D∈T :C⊆D
P (C)

In this way, it is possible to compute p-values for high-dimensional and possibly multicollinear
covariates. A further discussion of these theoretical properties can be found in Mandozzi and
Bühlmann (2013).

3.2.3 Implementation of QTCAT

In the following, some specific points of the implementation are explained in more detail in
order to outline how the theory of QTCAT is computationally approached. Handling of big
data sets in a memory-efficient way is the basis for straightforward data analysis. The qtcat

package uses an object-oriented strategy and implements the analysis algorithms optimized for
these objects and thereby avoids computational costs, e.g. extra copies of objects. Although
QTCAT is implemented in R (R Core Team 2014), major parts of the package are written
in C++ (Stroustrup 2013), mainly to improve computing speed and memory efficiency. For
an efficient combination of R and C++ the Rcpp package is used (Eddelbuettel and Francois
2011). The qtcat package will be made publicly available upon publication.

Implementation of Clustering algorithm

Perfect similarity clustering implementation should avoid calculating all pairwise simi-
larities to find the identical covariates. First, a data-size-dependent number of covariates is
selected as medoids. Those medoid covariates are selected to have a similarity greater than
zero. All the remaining covariates are assigned to the closest medoid. Only in these clusters
identical covariates can occur and therefore pairwise search is reduced to these clusters. For
this step all similarity estimates are calculated on the fly. The algorithm is implemented in
C++.
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K-medoids clustering expects one covariate from each similarity cluster as input. In prac-
tice the number of representative covariates can be still very high. Therefore, K-medoids
clustering has the same challenges as the perfect similarity clustering in calculation of all
pairwise similarities which need to be avoided. The K-medoids clustering is implemented as
clustering large applications based upon randomized search (CLARANS) algorithm (Ng and
Han 2002). CLARANS is a modification of the partitioning around medoids (PAM) algorithm
(Kaufman and Rousseeuw 1987). Where the PAM algorithm is estimating all similarities be-
tween covariates and the respective medoids, CLARANS is searching a random subset of the
covariates. This is independently repeated several times and the result which minimises the
average similarity the most is reported. This produces results close to those of the PAM al-
gorithm (Ng and Han 2002), even though the number of runs and the subset size have to be
arbitrarily chosen by the user. The algorithm has two advantages: (i) the number of similarity
comparisons is dramatically reduced; and (ii) parallelizing is straightforward. In the qtcat

package single runs are implemented in C++, where similarities are calculated on the fly and
parallelization of different runs is realized with R.

Hierarchical clustering is performed in parallel by complied linkage agglomerative hierar-
chical clustering (Everitt et al. 2011). For each of the parallel runs a cluster of covariates from
the previous step is expected as input. For those covariates a similarity matrix is estimated.
Thereafter, the standard implementation of hierarchical clustering implemented in R is used
to perform the clustering.

Implementation of the hierarchical inferences test

The HIT approach is computationally demanding. It is based on repeated sample-splitting,
which implies that every task has to be repeated several times. Furthermore, at every sample
split the computational requirements are already extremely high. An efficient implementation
is therefore a key point for its usefulness.

The implementation in qtcat allows the user to choose the number of repeated sample-
splittings; by default this is 50. The ratio between the two groups of the sample-splitting can
be defined by the user to be between 10% to 50% for the first half, where the rest is assigned
to the second group.

Screening of covariates for an active set is done at the first half of each repeated sample-
splitting. The model-selection is performed via a LASSO model, for which a highly efficient
implementation is available in the glmnet package (Friedman et al. 2010). This implemen-
tation integrates tenfold cross-validation for selecting the penalization parameter λ. This, in
combination with parallelization of repeats, makes a fast selection possible. The repeats are
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independent from each other, which allows a straightforward implementation of the paralleliza-
tion.

Significance testing was the most challenging part of the implementation. The number
of nodes in a hierarchy structure is P × 2 − 1 which means that if P is large, it becomes
impractical to validate each node in the hierarchy. Therefore, the implementation allows
choosing a interval of similarity in which the hierarchy is tested. In most situations it is not
of interest to find clusters of covariates which are hardly related. Therefore, the part of the
hierarchy outside of the defined interval does not have to be tested. Furthermore, not every
node in a hierarchy is tested; rather it is possible to define a number of similarity values at
which the tests are performed. These two relaxations can drastically reduce the number of
tests compared to the theoretical algorithm. However, if the relaxations become too drastic,
significant clusters will be perhaps overlooked.

In one QTCAT run the number of sequential F-tests reaches easily hundreds of thousands.
Therefore, a fast implementation of the F-test is crucial. Moreover, the F-test must be able
to deal with highly correlated covariates. The qtcat package implements an F-test which,
similarly to the standard implementation in R, is based on pivoted QR decomposition and
hence is able to deal with perfectly correlated covariates. However, as F-test implementation
of qtcat is highly optimized for its specific purpose, it is approximately five times faster than
the standard implementation.

The HIT algorithm computes a p-value for every tested similarity point and every covariate.
From this information significant clusters can be selected. In this way, the HIT algorithm of
the QTCAT approach is able to deal with large numbers of covariates.

Extension for interaction terms

As yet, we have only considered additive effects. However, the QTCAT implementation has
an extension which enables the integration of interaction terms.

In general, the goal of the clustering is to construct a hierarchical structure of the columns
of the design matrix which thereafter can be used in the HIT analysis. The above-mentioned
implementation relies on the data object which is constructed in order to deal efficiently with
the data. Therefore, the design matrix does not need to be constructed for all covariates before
clustering, but only for the representative covariates afterwards. This has great advantages for
the memory requirements of the implementation. The extension for interactions follows the
same idea; it is relying only on the data object. For two covariates an interaction term is the
element-wise multiplication of the two covariates, and hence the similarity of two interaction
terms relied on four covariates. The implementation enables calculation of similarity of such
interaction terms, directly from the four covariates involved. The user has to specify only
which interaction to included into the hierarchy. It is typically not possible to consider all
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interactions as there are too many possibilities. The number of interactions is P × (P − 1)/2

where P is the number of covariates.
For the selection of candidate interactions an F-test is implemented. This implementation

is parallelized and also does not require the full design matrix. It is important to clarify that
the pre-screening of interaction cannot be made on the same data set at which afterwards the
QTCAT is carried out. Here, the implementation is discussed. The strategy for interaction
detection will be discussed in Chapter 4.

3.3 Simulation-based showcase

The application of QTCAT will be exemplified in the context of the analysis of the AMPRIL
population. However, in order to achieve a first overview of the analytical power of this
method, we apply QTCAT and other methods to a simulated data set.

The data is simulated in the following manner: (i) three subpopulations, each with 100
individuals; (ii) five chromosomes, each containing 200 SNPs; (iii) 12 of these SNPs have an
effect; (iv) the phenotype is based at the SNPs effects and a random environmental compo-
nent; and (iv) the heritability is 0.74. Even if the data set is small compared to common data
sets analyzed today, the high linkage between causal SNPs makes detection extremely diffi-
cult. Therefore, this data set is sufficient to showcase some of the main problems commonly
occurring in association mapping.

The first model used is a simple F-test applied to each SNP separately. The second model
extends the first one by accounting for subpopulation effects. The third model extends the
first model by a random term. This random term is estimated by accounting for a relationship
matrix of all individuals. This accounts not only for population structure but also for the
genetic background. Finally, the fourth model is the QTCAT model.

The results of applying the models to the simulated data are shown in Fig. 3.1. For the
first model major parts of the genome associate significantly with the phenotype even after
Bonferroni correction. This is due to linkage and population structure. The second model
controls for population structure. Both models test significance at each locus independent
from the rest of the genome. This means that even if the focal SNP is a causal SNP, 11
other SNPs are segregating as noise in the background. A consequence of this simplification
is that significant regions can likely disappear. Furthermore, regions of significant associations
are extremely broad as SNPs which are closely linked to the causal SNP also show correlation
to the phenotype. The third model is superior as compared with the first two models, as it
controls the genetic background as well. However, it is not only controlling the background,
but at the same time also the loci under consideration. This results in a power loss, as many
loci cannot reach the significance threshold any more. QTCAT tackles the shortcomings of
the first two models more efficiently as compared to the third model. QTCAT is not predicting
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Figure 3.1: Comparisons of association methods using simulated data. The first model in
the comparison is a simple F-test executed on each SNP separately. The second model
extends the first one by accounting for subpopulation effects in order to remove population
structure. The third model extends the first model by a random term. The random term is
estimated by accounting for a relationship matrix of all individuals. The fourth model is the
QTCAT model. Below it are the effect estimates from the QTCs as predicted by QTCAT.
The bottom panel shows the simulated effects.
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broad peaks and is highly efficient in detecting the causal SNPs in combination with SNPs
highly correlated ones. As all SNPs are analyzed, at the same time the complexity of the trait
is properly considered. Furthermore, population structure is not controlled in the classical way
by restricting the power of findings, as done by the two models before. Instead, the correlations
between SNPs is properly considered, which does not penalize the results.

Only highly correlated loci are not distinguished properly (see Fig. 3.1), but even in these
regions QTCAT outperforms the other methods. The estimated effects of the quantitative trait
clusters (QTCs) are able to explain 72% of the variance. This is close to the heritability which
means that our findings are nearly accounting for all simulated genetic variance. Hence, it
shows how difficult the dissection of closely linked regions is. The first two loci at chromosome
1 are highly correlated and the co-occurring alleles have similar signs in the effects. Therefore,
the larger one is absorbing the smaller one. For the fourth and fifth effect at chromosome 1
the effects are opposite to each other, which does not allow for proper identification. However,
QTCAT is still able to find two QTCs at the top of chromosome 1, and the results from the
other methods are not clear and would properly be treated as one locus.

This small showcase gives a first impression of the power of QTCAT as compared to the
other methods. In the following chapter the same comparison is performed with real data.
QTCATs advantages and the reasons for differences in the results from other methods are
discussed in more detail.



“... the totality is not, as it were, a mere heap,
but the whole is something besides the parts ...”

Aristotle

4
Detecting additive and epistatic loci in the

Arabidopsis multi-parental RIL population

4.1 Introduction

In the last two decades great advances in understanding quantitative traits have been made.
However, some fundamental questions remain unanswered. Among them: Why are we only
able to explain such a small fraction of the observed genetic variance by the detected loci?
How important are epistatic interactions for the inheritance of quantitative traits? Hence the
composition of the effects underlying quantitative traits is still unclear. The genetic influences
with impact on quantitative traits are: (i) additive effects of different size, allele number,
and allele frequencies; (ii) dominance effects of different size, depending on heterozygosity
and allele frequencies; (iii) additive and dominant epistatic interaction effects with different
effect sizes, different numbers of loci involved, differing allele frequencies of those loci, and
differences in occurrence of inter-loci allele combinations; (iv) interaction of the first three
points with the environment; and (v) inherited epigenetic modifications.

One of the classical examples of quantitative genetics is human height. This trait is
easy to assess and the narrow-sense heritability is about 80%. In early stages of genome-
wide association mapping, 54 loci have been found to influence human height. However,
those loci were only able to explain about 5% of the phenotypic variation (Visscher 2008).
Observations like this led to a discussion about “missing heritability”, involving discussions
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about the importance of different kinds of genetic influences (Eichler et al. 2010). For single
locus effects, the contribution of common alleles with small effects or rare alleles with larger
effects are a possible explanation for the low percentage of variance explained, as both types
are difficult to detect (Gibson 2012). As the majority of studies makes an assumption of
additivity for technical reasons, the importance of non-additive effect is mainly unknown (Wei
et al. 2014). It is known, however, that non-additive effects can contribute to the additive
variance of a trait and therefore heritability measurements have limited explanatory power with
regard to this point (Hill et al. 2008; Zuk et al. 2012; Mackay 2014). With advancements
in computational power, more and more studies have been carried out over the recent years,
which have integrated epistatic interactions (for review, see Mackay 2014). Bloom et al.
(2013), for example, for several traits were able to identify loci which explained the majority
of the heritability estimates. These experiments were made with a large bi-parental mapping
population of yeast. Depending on the trait, epistatic interaction explained from 0% to 50%
of the phenotypic variance.

In natural population, all kinds of the above-mentioned genetic influences are possibly
acting together, which makes them particularly interesting, but at the same time extremely
difficult to study. Therefore, a restriction or even elimination of some genetic influences is ex-
pected to allow a more detailed investigation of the remaining ones. Such a restriction can be
achieved by study design and the type of population explored. In multi-parental mapping pop-
ulations the number of founders controls the allele frequencies, which eliminates the problem
of rare variants. Therefore, the number of the founders is balanced between the competing in-
fluences of genetic diversity and extreme allele frequencies. Inbreeding over several generations
leads to homozygosity and thereby eliminates all dominance effects. Furthermore, we assume
that theoretically possible inherited epigenetic differences are reduced by several generations
of crossing and inbreeding in controlled conditions. Lastly, phenotyping under controlled envi-
ronmental conditions plays an important part in the control of genetic influences, as constant
environmental conditions are important in controlling genotype-environment interactions. This
leaves additive effects and additive epistatic interactions, in which the crosses of genetically
distant individuals can introduce new inter-loci allele combinations which emphasize epistatic
interactions. This makes such a population well suited for studying epistatic interactions.

Several multi-parental populations in different species have been introduced over the recent
years (Mott et al. 2000; Churchill et al. 2004; Paulo et al. 2008; Buckler et al. 2009; Kover
et al. 2009; Mackay et al. 2009; Stich 2009; Huang, Paulo, et al. 2011; Huang, George,
et al. 2012; Bandillo et al. 2013; Mackay 2014). These populations differ not only in regard
to the species but in the number of founders, the mating designs including outcrossing or
inbred population, and population size (see Chapter 2). In this chapter, we will focus on
the AMPRILv2 population, which is based on eight A. thaliana accessions. The AMPRIL
population was previously introduced (Huang, Paulo, et al. 2011). Now, however, the whole
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population is derived a second time based on the same founder accessions but doubling the
population size from about 540 individuals of the first half to about 1090 individuals for both
halves. We will hence refer to the first half as AMPRIL I and the second half as AMPRIL II.
Both populations together are referred to as AMPRILv2. A. thaliana has some benefits for the
study of quantitative traits and especially with regard to multi-parental mapping populations,
e.g. extensive natural variation, a small and well-explored genome, a short generation cycle,
easy and fast generation of homozygous lines (self-pollinating), seeds allowing easy storage and
distribution, and phenotyping of a diverse set of traits under controlled conditions is relatively
easy. This allows combining the reduction of genetic influences with the advantages of a
well-studied model organism.

Furthermore, the additional benefit of a population based on a limited number of founders
is that it is possible to sequence the genomes of all founders. As the individuals of the mapping
population are recombinants of the founder genomes, it is possible to transfer detailed infor-
mation of the founder genomes to their progenies. In order to do so, only sparse information of
the genome of each recombinant is required to find the genetic makeup of the recombinants,
which is a combination of the founder genomes introduced by recombination. Knowledge on
the genetic makeup allows the insertion of the detailed founder genome information to the
genome of each recombinant. In this way it becomes possible to work with a large popula-
tion in which genome information is available. Such data is established for the AMPRILv2
population and gives access to about 2 million high-quality SNPs.

The major objective of this study was the improvement of statistical methods for an
advanced detection of genetic elements underlying quantitative traits in the AMPRILv2 popu-
lation. This resulted in a new mapping approach, the quantitative trait clustering association
test. The mathematical details of this approach have been stated in the previous chapter.
Here we will discuss its application to the AMPRILv2 population.

Quantitative trait studies are getting closer to the stage of moving from genomic markers
to all differences among the genomes under consideration. Therefore, the applicability of the
method to big data sets was one of the driving motivations for the method development.
Furthermore, QTCAT enables joint analysis of all loci in one model, which can be applied
to structured populations like the AMPRILv2 population. These advantages will be used
to detect genetic elements underlying the variation in flowering time. In addition to the
identification of additive effects we will make some first attempts to extend these techniques
to the identification of epistatic interactions. Moreover, we will highlight ways to detect hybrid
incompatibilities in the AMPRILv2 population.
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4.2 Material and Methods

4.2.1 Material

Population

In the AMPRILv2 mating design eight founders were crossed in a pairwise manner and the
resulting hybrids were thereafter crossed in a diallel. The resulting four-way hybrids were
inbred by several generations of single-seed decent in order to generate near to homozygous
RILs. The eight A. thaliana founder accessions are: An-1, C24, Col-0, Cvi, Eri, Kyo, Ler,
and Sha. These accessions were chosen by their geographical and genetic distances to reflect
a great part of the natural variation of A. thaliana. The AMPRIL I population was derived
from the following hybrid crosses: A: Col-0 × Kyo, B: Cvi × Sha, C: Eri × An-1, and
D: Ler × C24, in which AMPRIL II was derived from a different combination of the same
founders: E: Col-0 × Cvi, F: Sha × Kyo, G: Ler × An-1, and H: Eri × C24. The full
diallel cross was done leading to reciprocal crosses, e.g. AB01: A × B and BA01: B × A.
Considering reciprocal-crossing direction, 24 groups of individuals can be distinguished. We
will refer to these groups as ‘subsubpopulations’; they are named AB, BA, AC, CA, etc. If the
reciprocal-crossing direction is ignored the number of groups is reduced to 12; here we refer
to these groups as ‘subpopulations’; they are named ABBA, ACCA, etc. Each subpopulation
contains approximately 90 individuals. In total, 992 individuals have been genotyped.

Genotyping by sequencing

The genomes of the founders were resequenced using Illumina paired-end technology; the
average coverage was 45-fold. The SHORE pipeline (Ossowski et al. 2008) was used to align
the reads against the A. thaliana reference TAIR10, from the results high-quality SNPs have
been called. About 2 million high-quality SNPs between all eight founders were identified.
All individuals of the AMPRILv2 population were sequenced using a RAD-seq strategy (Baird
et al. 2008). In this protocol, DNA is digested by a restriction enzyme and only DNA next to
the cutting sites is sequenced. In this way only a fraction of the genome is sequenced, which
allows a high multiplexing of individuals during sequencing. As enzyme CviQI was used, bar-
coded libraries were generated and sequenced with Illumina paired-end technology. The reads
were aligned against the reference genome and SNPs were called. Thereafter the genomes
of all RILs were reconstructed. This was done with a hidden Markov model approach by my
colleague Vipul Patel.

From these reconstructed genomes, different information was selected. The 2 million
SNPs were selected for the whole population as identity by descend (IBD) information. The
reconstruction of the genomes predicted 12,877 recombination break-points for the whole
population (Fig. 4.11). This information was used to divide the genome into 12,878 blocks,
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which were separated by those recombination break-points. These blocks reflect the IBD
information of the AMPRILv2 and are hereafter are referred to as ‘IBD-blocks’.

4.2.2 Methods

Phenotyping

The AMPRILv2 population was phenotyped in a randomized complete block design with four
replications. AMPRIL I and AMPRIL II populations were independently phenotyped and the
eight founder lines were included as controls. This made it possible to account in the analysis
for the observed differences among the two experiments.

Population structure

Relationship matrices were estimated in three different ways. The expected relationship matrix
KeIBD contained the coefficients of co-ancestries derived from the pedigree (Lange 2003). The
coefficients were estimated with kinship2 package (Therneau et al. 2014). The second matrix
KoIBD gave the realized relationships. The observed relatedness between individuals at every
position in the genome was used to estimate the KoIBD matrix. This could be calculated from
IBD-block data. These two relationship matrices relied on IBD information of the individuals
which could be only estimated in specific types of population, like the AMPRILv2 population,
in which IBD data is available. A relationship matrix from IBS data was computed as described
in the Section 1.1.4, here referred to as KIBS . The last two matrices were estimated with qtcat
package. In order to visualise the population structure, principal coordinates were estimated
from the KIBS matrix.

Heritability

As the lines of the AMPRIL II population were highly homozygous, the broad-sense heritability
(H2) was calculated with a LMM containing a random term for replication Zr and a random
term for the recombinants ZG . They were combined in the random design matrix Z = [Zr ,ZG ].
u> = [u>r ,u>G ] are the according random effects. The fixed design matrix X contains the
intercept term and β is the intercept. The residuals ε are assumed to be the environmental
influence, leading to the following model:

y = Xβ + Zu + ε

ur ∼ N
(
0, Iσ2

r

)
uG ∼ N

(
0, Iσ2

G

)
ε ∼ N

(
0, Iσ2

)
.
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The random terms were assumed to be normally distributed, and the variance component σG
of the recombinants and the residual variance σ for micro-environmental influences were used
for the H2 estimation,

H2 =
σG

σG + σ
.

The narrow-sense heritability (h2) was calculated from a slightly more sophisticated LMM,
which is also referred to as pseudo-heritability. The LMM with random term for replication
Zr and a random term for the recombinants, accounted for the additive variance ZA and one
random term accounted for the non-additive part of the variance ZnA, resulting in the random
design matrix Z = [Zr ,ZA,ZnA]. u> = [u>r ,u>A ,u>nA] were the according random effects. The
fixed design matrix X contained the intercept term and β was the intercept. The residuals ε
were assumed to be the environmental influence, leading to the following model:

y = Xβ + Zu + ε

ur ∼ N
(
0, Iσ2

r

)
uA ∼ N

(
0,Kσ2

A

)
unA ∼ N

(
0, Iσ2

nA

)
ε ∼ N

(
0, Iσ2

)
.

K was one of the described relationship matrices. The h2 was estimated from the variance
components: σA was the additive variance, σnA was the non-additive variance, and σ was the
environmental variance,

h2 =
σA

σA + σnA + σ
.

The LMM was fitted with the function lmekin from the coxme package (Therneau 2012).

Linkage disequilibrium

The LD estimated D ′ and r 2 were calculated for all pairwise combinations of a random subset
of 5,000 SNPs. Furthermore, LD decay was estimated for a random subset of 15,000 SNPs; all
pairwise combinations of this data set which were not further apart than 4Mb were considered.
LD was computed with the R package qtcat.

Chi-square test for inter-loci allele dependence

Inter-loci allele dependence was calculated based on the IBD-blocks. A chi-square test was
derived, which accounted for the population structure. The different combination of founder-
alleles at two loci had a non-equal chance to occur together, as the same founder occurred more
often together than others. In contrast to the normal chi-square test the expected allele counts
were not estimated at the population level but at subpopulation level instead. The expected
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values for the whole population were the sum of the expected values of the subpopulation.
This made the expected values independent to the population structure, and therewith avoided
enriched p-values due to population structure. As loci at the same chromosome were not
independently inherited, the test for loci at the same chromosome would have been affected
by linkage. For this reason, the test was only executed for loci at different chromosomes. The
described adaptations made the results of this test free of systematic influences. This is part
of the qtcat package.

Hierarchical clustering of SNPs

One part of the QTCAT approach is a hierarchical clustering of the whole SNP data set. This
was a challenging task due to the size of the data set. The algorithm which made this possible
is explained in more detail in Chapter 3 and is implemented in qtcat.

Common association tests

Several association tests are used to identify SNP-trait association. The first is a LM F-test
for each SNP in the genome, which was explained in Section 1.1.4 in the context of QTL
mapping. The model is extended by a term accounting for the differences of replications
from the phenotyping experiment, which is included in all the following models as well. A
slightly more sophisticated test is an F-test which accounts for population structure through
covariates, by either the subpopulation or the related founders. The commonly used LMM was
used with all previously described relationship matrices. The LMM estimation was performed
with the rrBLUP package, and the LM was computed with qtcat.

Quantitative trait cluster association test

The QTCAT approach was implemented in the qtcat package. The details of the test have
been described in detail in the previous chapter. Here we will only briefly describe the specific
parameters we chose in the analysing process. The cluster of perfectly correlated SNPs reduced
the complexity to 106,708 representative SNPs; these were considered in the analysis. The
testing procedure was based on repeated sample-splitting; in this analysis 50 resampling runs
were performed. The sample-splitting was done with a ratio of 25% for model-selection and
75% for inference testing. The clustering tree was tested at 250 points between absolute
correlation of |r | = 1, ..., 0.75. Furthermore, a term for the replications of the phenotyping
experiment was included in the model, which was not penalized in the LASSO selection and
was in addition always part of the F-test model.

The approach was extended in order to account for epistatic interactions, which was done
in the following way: The clusters from the described hierarchy were generated in such a
way that the most distant SNPs in a cluster with absolute correlations |r | > 0.95. For each
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cluster a medoid was estimated, which reduced the complexity from 106,708 representatives-
SNPs to 27,306 medoid-SNPs and the number of possible interactions from 5,693,245,278
to 372,785,165. These medoid-SNPs were the basic data set for the detection of epistatic
interactions. As it was not possible to incorporate all interaction terms, a pre-selection was
performed. One replication of the phenotyping experiment was used for pre-selection via an
F-test for each pairwise interaction among medoid-SNPs and the phenotype, in which the
full model included additive and interaction terms and the reduced model included only the
additive terms. From all medoid-SNP interactions only the 100,000 with the smallest p-values
were used in the QTCAT approach. The 100,000 interaction terms were jointly clustered. In
the following step all these variables were analyzed in a way similar to the analysis for additive
effects. In this analysis only the remaining three phenotypic replications were considered.
Furthermore, the medoid-SNP of each additive QTC were considered in the analysis. These
medoid-SNPs were not penalized in the LASSO selection and also were always part of the
F-test model.

Genome Browser

For an overview of the AMPRILv2 population, genome data, and QTCs we configured an
AMPRILv2 GBrowse (Stein 2013) to show common A. thaliana information together with
AMPRILv2 specific information. At the time of writing, this browser can only be reached with
an account from the MPIPZ.

4.3 Results

4.3.1 Phenotypic analysis

Flowering time

The AMPRILv2 population was phenotyped for a large set of traits. For this work we focused
only on flowering time. The whole population was phenotyped in a greenhouse experiment
with four replications. Flowering time varied from 20 to 65 days to flowering in the AMPRILv2
population, in which the variation in the founders was from 25 to 35 days (see Fig. 4.1). The
H2 for the AMPRILv2 population was 0.65. The two halves of the population were indepen-
dently phenotyped, and therefore the estimates for each half were higher as the environment
was more similar. H2 for the AMPRIL I population was 0.83 and 0.9 for the AMPRIL II pop-
ulation. For AMPRIL II also h2 was estimated using a LMM. Different relationship matrices
were used for this estimate. h2 based on the pedigree estimate was 0.57. However, if observed
relationship matrices were used, the h2-values dropped to 0.13 for IBD and 0.11 for IBS.

https://gbrowse.mpipz.mpg.de/cgi-bin/gbrowse/Ampril/
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Figure 4.1: Distribution of flowering time as measured by days to flower. The founder
distribution is shown in yellow-green, the AMPRILv2 population blue.

4.3.2 Genotype analysis

Heterozygosity

The two populations were in different generations and therefore different levels of heterozy-
gosity were expected (Fig. 4.2). AMPRIL I was in an F2S4 generation which would yield in
an expected heterozygosity of 0.063. We observed, however, for the majority of subsubpopu-
lations a heterozygosity of about 0.23. Subsubpopulations AB, AC, and DA had only slightly
higher values than expected for an F2S4 generation. AMPRIL II was in an F2S6 generation with
an expected heterozygosity of 0.016 and was observed to be only slightly higher. For some
individuals, recent outcrossing could be observed, due to the combination of founders that
contradicted the expected founder combinations and, furthermore, were affected by higher
heterozygosity. This increases the average and could therefore explain the enriched values
heterozygosity in AMPRIL II. The reason for the strong difference between the observed and
expected values in the AMPRIL I population remained still unresolved. Therefore, we used
only AMPRIL II for analyses, which relied on high levels of homozyosity.

Population structure

The AMPRIL mating design yields in a population, where each individual is a progeny of four
founders. All 12 subpopulations contain individuals which are recombinants of the same four
founders. Individuals of different subpopulations have mainly two founders in common (Fig.
4.3), but some subpopulations share no founders and in two cases all four founders are in
common.
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Figure 4.2: Heterozygosity per subsubpopulation of the AMPRILv2 population estimated
from IBD data. The dashed lines represent the expected heterozygosity in different gener-
ations of inbreeding, starting with the second inbreeding generation at 0.25.

In order to explore the relationship of individuals, three different relationship matrices were
used: (i) expected IBD relationship (Fig. 4.3); (ii) observed IBD relationship; and (iii) IBS
relationship matrix (Fig. 4.3). Principal coordinate analysis was performed using the realized
IBS relationship matrix. The analysis separates two groups of founders in the first principal
coordinate: Col-0, Cvi, Kyo, and Sha as well as An-1, Eri, C24, and Ler. These groups
of founders have more common progenies than other combinations (Fig. 4.4). The second
principal coordinate explains mainly differences in An-1, Eri, C24, and Ler. The fraction of
explained variance from the first two principal coordinates is IBS 0.07 and 0.05.

Allele frequency

If the number of individuals per subpopulation was equal, the AMPRIL mating design was not
affecting the allele frequencies. Therefore, with eight homozygous founders the expected MAF
depended on the allele distribution among the founders (Fig. 4.5). Alleles with an expected
MAF of 1/8 were especially interesting, as these alleles were unique to one of the founders.
If these alleles differed systemically from their expected MAF, the appropriate founder was
under- or over-represented. In Fig. 4.5 MAF of alleles which were unique for one founder
are shown. In order to distinguish random drift from selection, simulation-based confidence
intervals for 0.95 and 0.999 were calculated. These confidence intervals accounted for random
drift expected from the mating design.

Although the MAF were for all subpopulation stronger fluctuating than expected (Fig. 4.6,
S16 – S26), the subpopulation ABBA and EFFE which share the same founders had specially
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Figure 4.3: Observed and expected coefficients of relatedness among all individuals of the
AMPRILv2 population. In the lower triangle are the expected values estimated from the
pedigree, whereas in the upper triangle the observed values estimated from the SNP data
are shown. The grey levels rank from unrelated (black) to homozygous identical (white).



52 Detecting additive and epistatic loci in the AMPRIL population

−
0.

8
−

0.
7

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

P
C

o 
II

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

PCo I

*

*

*

*

*

*

*

*

An−1

C24

Col−0

Cvi

Eri

Kyo

Ler

Sha

ABBA
EFFE

ACCA
EGGE

ADDA
EHHE

BCCB
FGGF

BDDB
FHHF

CDDC
GHHG

Figure 4.4: The first two principal coordinates of the population structure. The estimates
of the IBS kinship matrix are used as distance.



Results 53

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

M
in

or
 a

lle
le

 fr
eq

ue
nc

y

Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5

An−1 C24 Col−0 Cvi Eri Kyo Ler Sha

Figure 4.5: Minor allele frequencies for a random subset of 50,000 SNPs of the AMPRIL II
population. The dashed lines show the expected frequencies. Allele frequencies which are
unique for one founder (expected allele frequency of 1/8) are accordingly coloured. The
grey region gives simulation-based confidence intervals for individual locus (in dark grey for
a probability of 0.95 and in lighter grey for 0.999).
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Figure 4.6: Minor allele frequencies for a random subset of 50,000 SNPs of the EFFE
subpopulation. The dashed line gives the expected frequencies. Alleles which were unique
for one founder (expected allele frequency of 1/4) are accordingly coloured. The grey region
gives simulation-based confidence intervals for one individual (in dark grey for a probability
of 0.95 and in lighter grey for 0.999).
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strong fluctuation in their MAF.

Linkage disequilibrium and inter-loci allele dependency
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Figure 4.7: Linkage disequilibrium for a random subset of 5,000 SNPs: in the lower triangle
D’, in upper triangle r2.

The LD heatmap of D’ and r2 (Fig. 4.7) gives an overview of dependencies of SNPs on the
genome scale. In populations without population structure, alleles from two loci of different
chromosomes were expected to occur independently of each other. This was the case only for
the AMPRIL II population at subpopulation level. At the population level some inter-loci SNP
alleles were expected to occur more often than under random condition due to the mating
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Figure 4.8: Chi-square test results from a test of independence for inter-loci allele dis-
tribution. The expected values were estimated considering putative effects of population
structure. Bonferroni corrected 0.05 significance threshold is given by a red line in the
colour legend.
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design. However, it was possible to construct a modified chi-square test considering founder-
alleles which was not affected by the population structure. This allowed mapping of hybrid
incompatibilities which is a special case of epistasis. Fig. 4.8 shows the results of a genome
scan for such dependencies. This test gives several combinations of regions which were,
after Bonferroni correction, significantly dependent. One prominent dependence of founder-
alleles occurred between loci at the bottom of chromosome 1 and the top of chromosome
5. In Tab. 4.1 allele combinations are shown which are expected to be lethal (Bikard et
al. 2009). For example, the combination of the homozygous Col-0 allele at chromosome 1
and the homozygous Cvi allele at chromosome 5 are reported to be lethal. Tab. 4.1 shows
individuals which have this combination. All of those individuals have a Kyo allele at a locus
at chromosome 4.

Table 4.1: Three-locus hybrid incompatibility

Chr 1 Chr 4 Chr 5
Cvi/Cvi Col-0/Col-0 Cvi/Cvi
Cvi/Cvi Col-0/Sha Cvi/Cvi
Cvi/Cvi Cvi/Cvi Cvi/Cvi
Cvi/Cvi Sha/Sha Cvi/Cvi
Cvi/Col-0 Col-0/Col-0 Cvi/Cvi
Cvi/Kyo Col-0/Col-0 Cvi/Cvi

Col-0/Col-0 Kyo/Kyo Cvi/Cvi
Col-0/Col-0 Kyo/Kyo Cvi/Cvi
Col-0/Col-0 Kyo/Kyo Cvi/Cvi
Col-0/Cvi Kyo/Kyo Cvi/Cvi
Kyo/Kyo Kyo/Kyo Cvi/Cvi
Kyo/Kyo Kyo/Kyo Cvi/Cvi
Kyo/Kyo Kyo/Kyo Cvi/Cvi
Sha/Sha Kyo/Kyo Cvi/Cvi
Sha/Sha Kyo/Kyo Cvi/Cvi
Sha/Sha Kyo/Kyo Cvi/Cvi
Sha/Sha Kyo/Kyo Cvi/Cvi
Kyo/Kyo Sha/Kyo Cvi/Cvi

Individuals with a non-functional allele from Cvi at chromosome 5 have either a functional
Cvi copy at chromosome 1 or contain Kyo at a region between 9.5Mb to 13Mb at chromo-
some 4, separated by the dashed line.

Dependencies, estimated between loci of the same chromosome, give insights into the
decay of dependence with physical distance. Therefore, LD was calculated for all two-way
combinations of a random subset of 5,000 SNPs which were not further apart than 4Mb.
It is important to distinguish between the overall level of LD and the decay. The decay is
mainly affected by recombination, whereas the level of LD is effected by other influences, like
population structure. The D’ decay (Fig. 4.9) gives information on the average decay due to
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Figure 4.9: D’ decay by distance. D’ is unaffected by allele frequencies.
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Figure 4.10: r2 decay by distance. r2 is affected by allele frequencies.



58 Detecting additive and epistatic loci in the AMPRIL population

recombination. On the other hand, the decay of r2 (Fig. 4.10) is additionally affected by allele
frequencies and is therefore not only reflecting recombination, but also the diversity between
the founders. SNPs with the same allele distribution among the founders are only influenced
by recombination within the r 2 calculation. This appears as a band in the upper part of Fig.
4.10 and is directly related to the D’ estimation (r 2 is squared whereas D’ is not).

4.3.3 Association analysis

Hierarchical clustering of SNPs
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Figure 4.11: The grey histogram shows the number of perfectly correlated SNP clusters
in 30,000 bp windows. The red line represents the density of these SNP clusters, the
gene density of Col-0 is shown in green, and the recombination density of the AMPRIL II
population is drawn in blue. The grey line indicates the chromosomes the thinner part
shows the location of the pericentromeric regions according to Giraut et al. (2011).

Clustering of the 2 million SNPs allowed the reduction of redundancy on the SNP data
set. SNPs which were in perfect correlation were joined together in clusters. These SNPs were
interchangeable in association tests and therefore only one of them needs to be considered as
representative. However, knowledge of all positions which are related to such a representative
is valuable in case of a significant association for further analyses. In the AMPRIL II population
all SNPs could be clustered into 106,708 clusters. The median size of SNPs per clusters was
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Figure 4.12: All perfectly correlated SNP clusters, in which the most distant SNPs (ac-
cording to their physical location) are more than 100kp apart. The grey line indicates the
chromosomes the thinner part shows the location of the pericentromeric regions according
to Giraut et al. (2011).
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3, but in the centromeres the size might have been as high as 8198. Similarly the extent of
the region in which the SNPs of individual clusters were distributed had a median size of 1798
bp, whereas in the centromeres this could be up to 3Mb.

All clusters spanning ≥ 100kp are shown in Fig. 4.12. Fig. 4.11 shows a histogram as
well as density of the clusters along the five chromosomes together with the gene density, and
recombination density of the AMPRIL II population.

Common association tests
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Figure 4.13: Result from a genome scan between flowering time and each individual SNP.
Furthermore a term accounting for the differences among replications in the phenotyping
experiment was included into the analysis.

The following association tests for single SNPs were performed with one representative
from each of the 106,708 clusters. In the first test, each such tag SNP was tested in a genome
scan with correcting neither for population structure nor for the genetic background. This
test led to significant SNPs all over the genome (Fig. 4.13). Two prominent peaks were
identified, one at the top of chromosome 4 and the other one at the beginning of chromosome
5. A second genome scan was performed by correcting for population structure via a term
for subpopulation, but without control of the genetic background. The p-values were higher
as compared to the first test but still major parts of the genome were significant (see Fig.
4.14). As a third model, a LMM with a random term controlling for population structure
and the genetic background was used. The random term incorporated the pedigree-based
IBD relationship matrix. Only the two major peaks remained significant (see Fig. 4.15). Fig.
4.16 shows the results of an association test in which the correction was performed using the
observed IBD relationship matrix and Fig.4.17 shows the results for a model with which the
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Figure 4.14: Results from a genome scan between flowering time and individual SNPs
including a term accounting for subpopulation differences. Furthermore a term accounting
for the differences among replications in the phenotyping experiment was included into the
analysis.
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Figure 4.15: Results from a genome scan between flowering time and individual SNPs
including a random term accounting for individual relations. The random term was esti-
mated considering the expected IBD information. Furthermore, a term accounting for the
replications of the phenotyping experiment was included in the model.
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Figure 4.16: Results from a genome scan between phenotype and individual SNPs including
a random term accounting for individual relations. The random term was estimated con-
sidering the observed IBD information. Furthermore, a term accounting for the replications
of the phenotyping experiment was included in the model.
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Figure 4.17: Results from a genome scan between flowering time and individual SNPs in-
cluding a random term accounting for individual relations. The random term was estimated
considering the IBS information. Furthermore, a term accounting for the replications of the
phenotyping experiment was included in the model.
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correction was performed via an observed IBS relationship matrix. In both scenarios only the
top of chromosome 4 remains significant.

Quantitative trait cluster association test

Chr. 1 Chr. 2 Chr. 3 Chr. 4 Chr. 5

0.05 < 1e−16

Figure 4.18: Result from a joint analysis between flowering time and all SNPs. Furthermore,
a term accounting for the replications of the phenotyping experiment was included in the
model. The colour gradient shows p-values.

The QTCAT approach yields in 14 significant clusters (Fig. 4.18). For each cluster the
region between the most distant SNPs are shown. Some loci have more than two alleles
indicated by overlapping clusters (Fig. 4.18).

In order to validate the association of our new test, the explained variance was estimated.
The explained variance of these QTCs in the AMPRIL II population was 0.667 (see Fig. 4.20).
Ten-fold cross-validation was used to estimate the explained variance more robustly. This
resulted in an estimate of 0.653, which nearly matched the non-cross-validated result. The
QTC-estimates from the AMPRIL II population were also used to predict the phenotypes of
the AMPRIL I population (Fig. 4.20). Here the prediction of the explained variance was 0.445.
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Figure 4.19: Observation of flowering time versus prediction based on QTCs for the AM-
PRIL II.
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Figure 4.20: Observation of flowering time versus prediction based on QTCs. The QTC
is observed in the AMPRIL II population and the prediction is made for the AMPRIL I
population.
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Chr. 4: 267000-349000

Figure 4.21: QTC (red lines) at the top of chromosome 4. Genes in the region are shown
in brown, and the causal gene is expected to be FRIGIDA (grey vertical bar). Below one
line for each recombinant horizontal colour changes indicate a recombination.
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Figure 4.22: QTC (red lines) at the top of chromosome 5. Genes in the region are shown
in brown, and the causal gene is expected to be FLC (grey vertical bar). Below one line for
each recombinant horizontal colour changes indicate a recombination.
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For two candidate genes FRIGIDA and FLC Fig. 4.21 and Fig. 4.22 show the QTCs and
the recombination of the mapping population in these regions. The QTCs are only a small
fraction of all the SNPs in this region.

Chr 1
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Chr 4

Chr 5

0.05 < 1e−16

Figure 4.23: Results from a joint analysis between flowering time and SNP-interaction
terms. Furthermore, a term accounting for the replications of the phenotyping experiment
was included in the model as well as all additive QTCs. The colour gradient shows p-values.

The results of an association test for epistatic interaction are shown in Fig. 4.23. The
analysis of additional QTCs of epistatic interactions resulted mainly in a strong epistatic
interactions between the prominent additive loci at chromosomes 4 and 5. The findings
improved the explained variance from 0.667 for the additive effects only to 0.703, including
the epistatic interactions.

4.4 Discussion

The AMPRILv2 population is in many aspects a unique resource. The 2 million high-quality
SNPs made it possible to work with nearly all SNPs which distinguish the founders. Further-
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Figure 4.24: Flowering time versus prediction by QTCs including epistatic interactions, for
the AMPRIL II.
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Figure 4.25: Flowering time versus prediction by QTCs including epistatic interactions.
The QTC were observed in the AMPRIL II population and the prediction is made for the
AMPRIL I population.
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more, the data set was not limited to only SNP information, but gave access to information
like the distribution of recombination and founder frequencies along the genome.

Currently, we are coming closer to the point of obtaining knowledge on all the genetic
elements to possibly cause genetic variation, not only SNPs, but also, e.g. deletions and
insertions. In this regard we could be move from genetic markers to causal elements and
thereby from IBD to IBS. In classical QTL mapping a few hundred markers were enough, as
in a bi-parental population those markers where carrying IBD information and were reflecting
the few occurred recombinations. In a more complex population IBD information is often not
accessible, and therefore current genome-wide association mappings rely on the assumption
that an IBS marker is highly correlated to the causal element. If this is not true, IBS markers
have less explanatory power than IBD. Therefore attempts are undertaken to reconstruct IBD
information from IBS data by haplotype prediction (Stephens et al. 2001). In the long run,
however, all genetic elements will be available and at this point IBS will be preferable to IBD,
as it allows the search for causal elements instead of regions. Also this is not yet completely
the case in ultra-dense maps like the AMPRILv2 data set. It is reasonable to assume that
a genetic element which is not considered is linked to a neighbouring element, or at least a
combination of neighbouring elements which are part of the data set. We therefore believe
that the future of quantitative trait analyses is moving completely towards IBS data. The
challenge is how to associate millions of genetic elements in a meaningful way. New strategies
are needed which are able to deal with this amount of data in a smart way. Here we presented
a new association test which was developed for these challenges. This will be discussed in more
detail in the context of the differences of the association tests and will show the advantages
of IBS data in practice. Also IBS data is of interest for association mapping. The AMPRILv2
population gives us, furthermore, access to a precise reconstructed IBD founder-block data
set. This data is ideal for the search of incompatibilities between founders and allows us to
test inter-loci allele dependency in a straightforward way.

4.4.1 Hybrid incompatibilities

During the development of the AMPRILv2 population, special care was taken for no selection
to occur, e.g. plants with a much longer life cycle than usual were carried through the breeding
process. However, we observed allele frequencies which were far more extreme than expected
under such conditions. Even though simulation-based confidence intervals shown in Fig. 4.5
accounted for random drift, several loci have MAF which could not be explained by random
chance, and thus indicated selection.

Hybrid incompatibilities, with which specific allele combinations at different loci result
in inviability or sterility (Wu and Ting 2004), could be one possible explanation. Such an
incidence would lead to the loss of the particular recombinants which would have carried these
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banded allele combinations at the involved loci. A consequence of this specific type of epistatic
interaction would be a systematic shift in allele frequencies at the loci. This type of interaction
is, furthermore, of great interest as it is discussed in the context of speciation as described
by the Dobzhansky-Muller model. Understanding of these hybrid incompatibilities and their
frequency is of great interest for a better understanding of their importance in evolution. These
types of interactions can be detected by a test of independence of alleles from unlinked loci.

In AMPRIL II we could find a clear significant spot of founder-allele dependence between
the bottom of chromosome 1 and the top of chromosome 5. These regions were described
as the incompatibility of a duplicated gene occurring at both positions (Bikard et al. 2009).
With these genes encoded for a protein (Histidinol-phosphate aminotransferase) which is im-
portant in the histidine biosynthesis (Ingle 2011), one functional copy of the genes was nec-
essary for healthy plants (Bikard et al. 2009). Col-1, Ler, and Sha had a non-functional gene
(AT1G71920) at the bottom of chromosome 1, but had a functional copy instead at the top
of chromosome 5 (AT5G10330). In contrast, Cvi had a functional copy at chromosome 1,
but lacked the copy at chromosome 5. The remaining founders were not described in this
regard. As the combination of (homozygous) non-functional alleles at both loci is lethal, one
would not expect such a combination in our recombinants. However, surprisingly they oc-
curred in some individuals of two subpopulations. Both subpopulations (ABBA and EFFE)
had the founders: Col-1, Cvi, Kyo, and Sha. Although the Kyo alleles of both genes are not
described in literature, the observed pattern suggested that it had the same allele combination
as Col-1, Ler, and Sha. From this observation we hypothesized that Kyo had an additional
locus which was able to compensate, should the lethal allele combination occur. In the two
mentioned subpopulations the MAF were strongly fluctuating, as shown in Fig. 4.6 and Kyo
especially had a very extreme peak at chromosome 4. In addition, a closer investigation of
the individuals carrying the lethal allele combination was carried out (Tab. 4.1). Individuals
which had the non-functional gene from Cvi at chromosome 5 had either a functional Cvi copy
at chromosome 1 or contained Kyo in a region at chromosome 4. These individuals had at
least one Kyo copy at the region between 9.5Mb to 13Mb at chromosome 4. The paired-end
reads of Kyo indeed suggested that three copies of the gene existed. This example illustrates
how powerful multi-parental populations are in order to map such complex dependencies. The
advantage relies on the IBD knowledge of a limited number of founders, which is not in this
kind accessible in natural populations. Even more important is the crossing of the founders,
which makes the incompatibility more pronounced and more easily separable from population
structure.

Results from chi-square tests and the extreme allele frequencies suggest that there is
more of such hybrid incompatibilities in the AMPRILv2 data. Therefore, it is likely that
further investigation in this direction would uncover other hybrid incompatibilities between
the AMPRILv2 founders. Several incompatibilities between pairs of loci in population based

https://www.arabidopsis.org/servlets/TairObject?id=28147&type=locus
https://www.arabidopsis.org/servlets/TairObject?id=130758&type=locus
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on diverse accessions was also observed in Drosophila, A. thaliana, and maize (Corbett-Detig
et al. 2013). Multi-parental populations are an important tool for a better understanding of
the amount of incompatibilities in species and thereby for their importance in evolution.

4.4.2 Statistical model comparison

In dense SNP data sets SNPs which are in perfect LD are sharing redundant information;
those SNPs are associated identically to the phenotype. Therefore tag SNPs are often used
to represent a region in high LD. This reduces complexity in the data set. Our method goes
one step beyond and ignores genomic order, instead clustering the SNPs according to their
correlation only. This may seem ironic, given that the physical position for all SNPs in a
population is available.

The underlying advantage can be understood when looking at the r 2 decay (Fig. 4.10).
Only a small group of SNPs in a region has the same allele frequency and thereby perfect
correlation. This leads to the band starting from the top left and decreasing with distance.
However, the majority of close-by SNPs differs, resulting in low r 2 values. Therefore, only a
fraction of neighbouring SNPs of a region are highly correlated.

In our method we are clustering all SNPs according to their correlation similarity. For the
AMPRILv2 this clustering resulted in 106,708 clusters of perfectly correlated SNPs. These
clusters reflect to the same extent the order along the genome, but they are not dividing
the genome into blocks; instead they are overlapping. All SNPs of a cluster can be jointly
associated to a phenotype, as they share the same information. Therefore the complexity in
the data set can be reduced in the first step to 106,708 representative SNPs without loss of
information.

As clusters themselves can be strongly correlated, it is not always possible to decide which
of them contains the causal variant. In these cases it is best to further join these clusters
to one another and associate them jointly, which is the fundamental idea of the QTCAT
approach. Therefore, the hierarchical clustering tree is integrated into the analysis and clusters
are eventually joint ones during the association procedure.

The correct handling of correlations between clusters is a central part of the QTCAT
approach. It allows the joint analysis of all loci simultaneously, which is expected to be
advantageous, compared to single loci methods. Furthermore, it allows for a completely new
control of population structure. In order to discuss the QTCAT approach in more detail a
closer look at population structure is needed.

In structured populations some individuals are systematically more similar then others,
which separates individuals into subpopulations and those can differ systemically in their allele
frequencies. These differences in allele frequency result in LD between unlinked loci at the
population level. In a simple genome scan this circumstance results in an inflated number of
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false-positive associations (Fig. 4.13). In order to avoid this type of suspicious association, the
testing procedure has to control this. It is important to recall that population structure does
not cause differences in the phenotype. However, in order to avoid false-positive associations
due to population structure, parts of the phenotypic variation have to be withdrawn by the
statistical testing approach. This penalizes the finding of the genetic elements underlying this
variation. Correction is an accepted way and the commonly tackled question is how to do this
in the most efficient way (Yu, Pressoir, et al. 2006; Kang et al. 2008; Segura et al. 2012). Here
we will, however, show that we can control for an increased level of LD without penalizing
our findings. In order to do so we will start with a closer look at common methods and will
emphasize their shortcomings. Thereafter, our method is compared to those methods.

The AMPRIL II population was well suited for this, as it has a well-known population
history. If we, for example, fit a LM for every SNP without any correction for population
structure or genetic background, the whole genome associates significantly with flowering time
(Fig4.13). Repeating this fit and controlling only for population structure by correcting for the
subpopulation still results in associations, in which major parts of the genome are significantly
associated (Fig. 4.14). But if we control for population structure by the commonly used LMM
only one region remains significantly associated (Fig. 4.17, 4.16).

The model accounting for subpopulations controls properly for population structure, hence
it still has inflated p-values. The relationship matrix used in the LMM accounts not only for
population structure, but to a substantial extent, also for the genetic basis of the trait. The
LMM accounts for the genetic basis in the form of the infinitesimal model, which assumes that
quantitative traits are determined by many unlinked loci with small additive effect. Variation
in traits inherited in such a way could be perfectly explained by the relationship of individuals.
Although this is for some quantitative traits a somewhat unrealistic assumption, it is one of
the central assumptions in many models used in quantitative genetics, e.g. it is used for the
estimation of breeding values. In such scenarios the model has been proved to be a good
approximation, specifically when the trait is very complex. In genomic prediction, which is
often performed for highly complex traits, this concept is used, and the method used is named
GBLUP. Oligogenic traits are, in contrast, only dominated by a few genes which account
for major variance. Traits commonly studied in fundamental research, e.g. resistances, are
expected to be oligogenic traits, and therefore it is not clear to what extent the random term
in the LMM approach controls the genetic basis of these traits. However, the hypothesis for
an SNP tested by a LMM is different from those of simple genome scans. If a random term
with relationship matrix is used to control for population structure, this results in hypothesis:
Is the effect of an SNP larger than expected under the infinitesimal model? The hypothesis
which most researchers are interested to answer is, however: Is the effect of an SNP different
from zero?

In summary, two things are required for a successful association method: control for pop-
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ulation structure and testing loci in the context of the rest of the genome. The LMM does
this, but not in a straightforward way. Therefore, a method is needed which is more directly
adapted to the challenges of association mapping. The QTCAT approach proceeds based on
the following idea: A joint analysis of all loci by integrating their correlation into the testing
makes it possible to avoid false-positive association due to population structure. This is based
on the following reasoning: If it is realistic to assume that causal loci or highly linked loci
are part of the data set, then the control for correlation among SNPs is likewise controlling
for false-positives due to population structure. This idea and the resulting method must be
discussed in more detail.

The LM allows associating a response variable to several covariates at the same time.
However, when the covariates are highly correlated with each other this becomes ambiguous.
In this situation it is not possible to distinguish the effects of the covariates. This makes
model-selection difficult, as often only one of many highly correlated covariates is selected. In
our scenario the phenotype is the response variable and the SNPs are the covariates and, as
SNPs are correlated, we must find ways to deal with this correlation, since in particular our
main interest is model-section in order to identify those SNPs with a significant effect. Recent
developments in statistics allow LMs, in which the covariates are correlated (Meinshausen 2008;
Mandozzi and Bühlmann 2013). These methods integrate the correlation-based hierarchical
tree of all covariates. Such tests are not only for single covariates, but also for all nodes in the
tree of covariates. As a result, significant covariates or groups of highly correlated covariates are
reported. This allows the finding of clusters of correlated SNPs. This has, as discussed before,
appealing consequences, as it makes possible the association tests in structured population
without further correction for population structure. In this case, population structure influences
the size of SNP clusters, and under strong population structure the cluster becomes larger.
The QTCAT results show clusters of significant associations, which are only a small fraction
of the genome, even though no population structure correction was applied.

4.4.3 QTC validation

Flowering time has a H2 = 0.9 in the AMPRIL II population, for AMPRIL I population
H2 = 0.83. The value for AMPRIL I was lower, which was expected as individuals are more
heterozygous. This value contrasts previous estimates (Huang, Paulo, et al. 2011). The reason
for the difference is that we reported individual-based heritability estimates, whereas previously
reported estimates were plot mean heritabilities. In our view, individual-based estimates were
more appropriate for our purposes. In comparison, plot mean estimates have their advantages
in breeding application.

The observed h2 differs substantially, depending on the relationship matrix used, which was
unexpected and makes the estimates equivocal. As discussed earlier, LMM estimation relies
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on infinitesimal assumption. The strong effect at the top of chromosomes 4 and 5 were not
fitting for this assumption (Fig. 4.13). Individuals which shared great parts of the genome,
but differed at the top of chromosomes 4 and 5 were expected (under the infinitesimal model)
to have similar phenotypes. In reality, however, they differed substantially. Also the expected
relationship matrix and the two observed matrices were on the large scale similar, in that they
differed only at the single estimate level. The realised relationship matrices have been reported
to be preferable (Veerkamp et al. 2011), but our results report that this is questionable if the
assumptions are not closely met.

Fornara et al. (2010) collected 174 genes controlling flowering time from literature. Al-
though these genes were detected with all kinds of methods, and therefore not necessarily
expected to contribute to natural variation, it showed the complexity of flowering time. In
the association test, which only accounted for differences due to subpopulations (Fig. 4.14),
major parts of the genome were associated with flowering time. As the subpopulation term
accounted for the population structure, this was most likely because all loci had loose physical
linkage to a genetic element which influenced flowering time. This suggested that there were
many loci involved, distributed all over the genome, and in regard to the discussion before, it is
no surprise that all these associations disappear once the relationship matrices are integrated.
This finding suggests that the natural variation among the AMPRIL founder was dominated
by two genes; one at the top of chromosome 4 and one at the top of chromosome 5. The
additional variation seemed to be distributed among many loci with comparatively small effect.

QTCAT found more loci than the other methods. In order to validate the results we
inspected their prediction accuracy and compared our findings to the literature.

The explained variance of all additive QTCs was 0.667. This made the h2 estimates even
more questionable, as these were expected to be the upper bounds for the explained variance.
Here, however, this was not the case. A common phenomenon is the over-prediction of the
explained variance (Melchinger et al. 2004). Cross-validation is reported to give more realistic
estimates. Applying such cross-validation to the AMPRIL II decreased the explained variance
only slightly to 0.653. As QTCAT is based on resampling, it was expected to yield stable
estimates anyway. In order to validate these estimates even further, we could make use of the
other part of the population. For this the phenotype was predicted from the effects estimated
for the AMPRIL II population using the SNP data from the AMPRIL I population. The genetic
variation at these loci explained 0.446 of the observed phenotypic variance. The drop in the
explained variance might have had different reasons: (i) the data was more heterozygous
and phenotypic data, and genotypic data did not match perfectly as it was observed with
siblings which could be genetically different; (ii) the phenotyping was performed in independent
experiments, which made genotype-environment interaction possible. A combination of both
points might be the best explanation. However, the prediction was, under those circumstances,
good, and gave further validation for the correctness of our estimates.
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When we extended our search to pairwise interactions, the explained variance increased to
0.703. If we compare this value with the more reliable H2 estimates there is a gap of 0.2.
This is not surprising as we are only considering a preselected part of all possible interactions.
Therefore, we are likely to miss some small effect interactions. The integration of the epistatic
interactions improves the prediction for the AMPRIL I population as well, and the explained
variance due to the prediction was 0.59.

Compared to previous work on the AMPRIL I (Huang, Paulo, et al. 2011), we were able to
find the regions reported, except for one at the top of chromosome 2. Furthermore, we found
additional regions or were able to fragment peaks into multiple independent regions.

How precise were the estimated QTCs? This could be validated by looking at loci, in
which only one flowering time gene was known and where we could assume safely that our
cluster related to this gene. At the very top of chromosome 4, we found only FRIGIDA, a
major flowering time gene (Fornara et al. 2010). The genetic differences between the different
FRIGIDA alleles are deletion polymorphisms, which were not included in our data set. However,
we did find highly linked SNPs. Fig. 4.21 shows two QTCs and the FRIGIDA gene. The QTCs
with the bigger effect found at this position separated the founders An-1, Col-0, Cvi, Eri, and
Ler from C24, Kyo, and Sha by about eight days. The coloured bars below the gene model
show the genomes of the AMPRIL II population.

Although more genes are known to have been involved in the control of flowering time
at the top of chromosome 5, FLC played such an important role that it was likely that the
QTC in this region refers to this gene Fornara et al. (2010). FLC alleles are reported to differ
in their expression, which can have diverse genetic reasons. The QTC overlaps with FLC as
shown in Fig. 4.22.

In both examples the causal element was not an SNP directly. However, the idea of
having all genetic difference in the data set, even though the density was by far below, the
resolution could be made clear at this point. In classical mapping strategies we used markers
as representatives of a region, but in future it will be possible to have a cluster of a few
elements instead. For all population types except bi-parental populations a cluster contains
only a small fraction of the elements of a region. This has advantages for further evaluation
of the findings, as it reduces the genetic elements which have to be validated.

Conclusion

Using hybrid incomparability as an example we showed that the mating of diverse accessions like
the AMPRIL founders can introduce epistatic interactions. Although hybrid incompatibilities
are a very drastic form of epistatic interaction it seems reasonable to assume that milder forms
of epistatic interaction frequently occur. Here we showed that QTCAT is not only improving
the identification of additive effects, but also helps finding epistatic interactions. Nevertheless,
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the ratio of additive effects to epistatic interactions is likely to be strongly biased towards
additive effects, as only second-order interactions are considered. This suggests that the gap
between the H2 and the explained variance is mainly due to undetected epistatic interactions. It
is possible that further improvements in the association methods will close this gap. Therefore
we are hoping that in the near future all the genetic elements will be detected, at least in
populations in which we can control parts of the genetic complexity.



“The best thing about being a statistician is
that you get to play in everyone else’s backyard.”

John Tukey

5
Statistical genetics applied in cooperative

projects

Biological questions are becoming more complex and the observed measurements are often
influenced by several factors plus random noise. For inference in these cases, statistical models
are needed. In the following text some cooperative projects will be presented. We will give a
short overview of the biological question followed by the specific problem which was answered
by statistical techniques.

5.1 Generating a user guide for mapping-by-sequencing

Forward genetic screens are a major tool in the functional annotation of individual genes in
model organisms like A. thaliana. Mapping-by-sequencing combines common genetic mapping
and whole-genome sequencing in order to detect mutations underlying phenotypic differences
more efficiently (Schneeberger 2014). For this purpose, a mapping population is generated
from a cross of a wild type with a mutant strain which differs in the phenotype of interest. The
recombinants of the resulting mapping populations are bulked according to their phenotypes
and the bulks are sequenced. Regions with extreme allele frequencies within the sequencing
data of the bulk of recombinants are detected as loci of interest, as they harbour the causal
mutation (Schneeberger 2014). However, application of mapping-by-sequencing requires de-
cisions about several parameters of the experimental design, e.g. the number of recombinants
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of the bulks or the sequencing depth. Therefore the goal of this study was to identify an
optimal combination of these parameters, based on simulations. The simulation of such map-
ping populations and the according sequencing data involves some stochastic processes. The
underlying theory of this is outlined as follows:

In the first step of the simulation a genome is artificially mutated at random position
throughout the whole genome. The wild type and the mutant genomes are than used as
founders for the mapping population. Generation of the mapping population includes crossing
and self-fertilizing of plants, which in reality introduces recombination events between the
chromosomes of the individual plants. To simulate recombination during mapping-population
generation the following steps were considered.

The recombination frequency and distribution are simulated based on empirical observa-
tions (Salomé et al. 2012). Based on the empirical probabilities of recombination per chro-
mosome it is possible to draw the number of recombinations per chromosome by simulated
meiosis from a trinomial distribution,

r ∼ Trinomial(1, [p1, p2, p3]),

where p1, p2 and p3 are the empirical frequencies of none, one, and more than one recom-
bination per chromosome. In this way, r , the number of recombinations per chromosome,
was simulated. Should r be larger than zero, a recombination was placed in the chromosome
according to an empirical recombination landscape (Salomé et al. 2012). As the observed
probability p(s) of recombination was reported for S segments between markers when they
were observed in but not for individual positions, the probability was equally distributed to
every base of these segments.

p(j) =
p(c)

|jc |
, s = 1, ..., S , and j = 1, ...,K ,

where p(j) is the probability at each position in a chromosome, s is a segment, and j is the
index for every base of the chromosome. |js | is the number of bases in segment c . In this way,
a recombination probability p(j) for every position at the chromosome was computed. Under
consideration of these probabilities, the recombination was randomly assigned to chromosomal
position. The position of the first recombination in a chromosome was randomly sampled under
consideration of p(j). If a second recombination had to be drawn, the probability p(j) were
multiplied by crossing-over interference probability i(j). This was necessary since multiple
recombinations on one chromosome do not occur independently from each other, but are
observed at greater distance than expected. This observation is referred to as ‘crossing-over
interference’. p(j) were derived from a gamma distribution for which the shape and scale
parameters were estimated from the empirical recombination data (Salomé et al. 2012). From



Genome-wide distribution of meiotic recombination events in A. thaliana 81

the resulting probability p(j)new = p(j)× i(j) the second recombination was drawn in the same
way as the first one. This approach guaranteed a realistic distance between recombination
points.

In order to bypass simulation of whole-genome sequencing data, only consensus information
at marker positions was simulated. In a first step for every marker m a coverage cm was
randomly assigned considering normalized empirical coverage data (Schneeberger et al. 2011).
Thereafter, for every marker an observed allele frequency was determined. For this the coverage
per marker defined the number of random draws from a trinomial distribution in order to
simulate the alleles of individual reads.

dm ∼ Trinomial(cm, [f1, f2, e]),

where dm is a vector of read-alleles at marker m. f1, f1, and e are the frequencies for allele
one, allele two, and a sequencing technology-inherent sequencing error.

Based on this theory my colleagues Geo Velikkakam James and Vipul Patel have imple-
mented a simulation tool, named ‘Pop-seq simulator’. This program was subsequently used
to simulate different scenarios of forward genetic screens in order to define optimal parameter
conditions for such experiments and was published in Genome Biology in 2013 (James et al.
2013).

5.2 Genome-wide distribution of meiotic recombina-

tion events in A. thaliana

A better understanding of the occurrence of the different kinds of recombination is of great
relevance for an improved understanding of evolutionary processes. During recombination
events homologous chromosomes are sheared and thereafter repaired, either leading to the
initial connection of chromosome arms (non-crossovers) or the chromosome arms are arranged
in a swapped fashion (crossover). Furthermore, in either case during DNA repair small parts of
DNA may be resected and subsequently repaired. The repair mechanism introduces sequence
of the homologous chromosome (San Filippo et al. 2008). This can lead to non-Mendelian
segregation and is named gene conversion. These gene conversions were of specific interest
in this study. The part of the project presented as follows focuses on the detection of gene
conversions from sequencing data.

In order to identify and verify gene conversions, it is of great advantage to analyze all four
products of one meiosis. The qrt mutant of A. thaliana (Preuss et al. 1994), which is not able
to separate the four pollen grains resulting from one meiosis, can be utilized to analyze the
respective products of individual male meiosis.
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The sequenced individuals inherited one chromosome set from the accession Cvi and one
from a hybrid of Col and Ler. Such individuals as well as the three parental accessions, Col, Ler,
and Cvi, were sequenced and 269,842 high-quality SNPs between Col and Ler were defined.
As SNPs are typically biallelic, either the Col and Ler alleles were always confounded with the
Cvi allele. Therefore, dependent on the co-occurrence of the Col and Ler alleles with the Cvi
allele the recombinants were expected to be heterozygous or homozygous. From this data
the recombined genomes of Col and Ler were reconstructed using a sliding-window approach
to remove false signals from the sequencing data. This accurately reconstructs crossing-over
events as they exchange chromosome arms, which is easily recognized. However, it does not
allow identifying gene conversions. In the next step, SNPs which do not agree with this broad
pattern were identified. In this step it was important to distinguish precisely between heterozy-
gous and homozygous status. Mistakes would lead to wrong assignments and consequently
to miscalled or missed gene conversions. In order to distinguish the status two things are
important: (i) read coverage of the SNPs; and (ii) a precisely defined threshold for the as-
signment of the zygosity status. Although it was surprisingly high, in this collaborative effort
we could show that a 50-fold coverage was required in order have recall values independent of
the coverage.

The results of the sliding-window approach were used to divide the SNPs into groups of
heterozygous and homozygous SNPs. In order to find the best threshold, two beta distributions
were fitted. For each group the distribution parameter was estimated in the following way:

x =
1

n

∑n
i=1 xi ,

σ2 =
1

n − 1

∑n
i=1(xi − x)2,

the group under consideration x the mean x and variance σ2 were used to estimate shape
parameters α and β,

α = x ×

((
x(1− x)

σ

)
− 1

)
,

β = (1− x)×

((
x(1− x)

σ

)
− 1

)
,

once the parameter was estimated for both distributions. Quantiles may be estimated in such
a way that they become similar. This makes it possible to distinguish with a well-defined error
rate between the two zygosity. These thresholds were used to identify gene conversions and
the project was published in eLife in 2013 by Wijnker et al. (2013).



Gated response of conserved regulatory modules of the GIGANTEA promoter 83

5.3 Gated response of conserved regulatory modules

of the GIGANTEA promoter

The circadian clock of plants allows them to react in a synchronized way to rhythmic environ-
mental influences. Thereby the circadian clock modulates a wide range of physiological and
biochemical processes. For this, environmental conditions are censored to regulate the rhythm
of the circadian clock. As a consequence, external stimuli of the same strength applied at
different times of the day can result in responses of different intensities, an effect known as
‘gating’ (Harmer 2009).

In A. thaliana GIGANTEA contributes to photoperiodic flowering, circadian clock control,
and photoreceptor signalling. Its transcriptional pattern is conserved between several related
species. In this study the evolutionary conserved regulatory modules in the promoter of GI-
GANTEA were of interest. One of the experiments focused on gating of plants with different
genetic constructs of the luciferase gene as marker, which were controlled by different parts
of the regulatory modules of GIGANTEA. In the experimental set-up plants were kept under
continuous darkness but at different time points exposed to light when expression was mea-
sured. The main question of this part of the study was whether the expression response showed
significant evidence for gating.

This question was answered with the help of a generalized additive model (Hastie and
Tibshirani 1990). This model allows the modelling of non-linear relationships between response
variate (expression of the luciferase gene) and the explanatory variate (time). This non-linear
relationship of expression and time was tested via an F-test.

In this way different conserved regulatory modules were tested for their contribution to
gating. Further discussion of this experiment and its relevance to the understanding of circadian
control and gating is discussed in Berns et al. (2014) published in The Plant Cell.

5.4 Comparison of semi-dwarf and wild-type A. thaliana

plants under reduced water-availability

Semi-dwarf A. thaliana accessions occur which carry inactive alleles at the gibberellin (GA)
biosynthesis GA5 locus (Sun 2008). The question raised in this study was whether there
are pleiotropic effects on traits at the root level, such as rooting depth. Furthermore, it
is unknown whether semi-dwarfism in A. thaliana confers a growth advantage under water-
limiting conditions compared with wild-type plants. One of the experiments to study the
performance of semi-dwarf plants in comparison to wild-type plants is explained in the following
paragraph in more detail.

Plants were grown in pots of soil and phenotyped in an automated plant-evaluation routine
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for several traits once per day. This automated system made it possible to grow the plants
in three phases: (i) watering; (ii) water-withholding; and (iii) rewatering. The system was
controlling the water content of the pots so that the condition of the pots was comparable.
Every accession was screened 10–20 times. It was of interest to compare the behaviour of the
accessions in the different phases in regard to their differences in growth rates.

For every accession a grow curve was estimated. In order to do so a natural spline was
fitted. Furthermore, to find the area under the curve (AUC), an integral for each of the
three grow phases was estimated using the MESS package (Ekstrom 2014). To compare the
behaviour of the accession between Phases Two and Three a ratio of these AUC values for
each accession was estimated. This process from curve-fitting to the ratio-estimation was
bootstrapped (Canty and Ripley 2014) to construct confidence intervals. In this way the ratios
of different accessions became comparable.

This experiment was one of several experiments performed to answer the question of semi-
dwarfism and the GA5 locus. It is recorded as part of an article, which is currently under
review (Barboza et al. n.d.).

5.5 Population structure and phylogeny of 30 rese-

quenced Lotus accessions

Lotus is an interesting model organism with which to study plant-microbe symbiosis, partic-
ularly in reference to rhizobial and arbuscular mycorrhiza symbiosis. It has a small genome
size of about 470 Mb. Furthermore, it is diploid with six haploid chromosomes (Tabata and
Stougaard 2014). The short life cycle of about 3 months makes it a convenient model plant.
The genome of Lotus was sequenced, and the genome assembly covered about 98% of the
Lotus gene space. In addition, 30 accessions were resequenced and SNPs were called. The
part of the project presented here was dealing with common population genetic estimates.

In a first step the population structure of the 30 accessions was analyzed. A random
subset of 10,000 SNPs was used to estimate a relationship matrix of the accessions. The
estimation procedure was explained in Chapter 4. Based on this matrix principal coordinates
were estimated. In addition, a neighbour-joining tree was estimated (Saitou and Nei 1987) in
order to reconstruct the phylogenetic relation of the accession.

Moreover, LD-decay was estimated based on average r 2-decay. This was done in a similar
way described for the AMPRIL population of Chapter 4.

These results are part of a larger research effort which discusses these estimates in the
context of resistance genes and is currently under preparation for publication (Sato et al.
n.d.).
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Supplemental figures and tables

Chapter 2: Comparison of mating designs for their QTL

detection suitability

Figure S1: The first step of the reference design (REF) and reference with sibling (REFS) mating
design. A cross between the parental inbred line Col-0 and the other 19 parent inbred lines to create
19 F1 hybrids. The color indicates the pedigree information.
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Figure S2: The three procedures to create homozygous individuals from the F1 hybrids. Left: Start-
ing point is a heterozygous individual, followed by four generations of selfing to create homozygous
recombinant inbred lines (RILs). Middle: sibling mating in subpopulations derived from one heterozy-
gous individual, which was performed over three generations, followed by four generations of selfing.
Right: three generations random mating across the whole populations, followed by four generations
of selfing.
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Figure S3: The first step of the diallel cross (DC) and diallel cross with sibling (DCS) mating design.
A half diallel cross between all 20 parental inbred lines, to generate 190 F1 hybrids. The color indicates
the pedigree information.
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Figure S4: The first step of the four-way hybrids cross (FHC) design. The 20 parental inbred lines
were crossed in pairwise fashion to create ten F1 hybrids. The ten F1 hybrids were crossed pairwisely
to generate five four-way hybrids subpopulations. The color indicates the pedigree information.
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Figure S5: The first step of the two-way hybrids diallel cross (THDC) design. The 20 parental inbred
lines were crossed in pairwise fashion to create ten F2 subpopulations, followed by a half diallel cross
between the F2 individuals. The color indicates the pedigree information.
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Figure S6: The first step of the four-way hybrids diallel cross (FHDC) design. The 20 parental inbred
lines were crossed in pairwise fashion to create ten F1 hybrids. The ten F1 hybrids were crossed
pairwisely to generate five four-way hybrid subpopulations, followed by a half diallel cross between the
F2-individuals. The color indicates the pedigree information.
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Table S1: Power to detect quantitative trait loci (QTLs) and the corresponding standard error (SE) of
the mean across replications, for the analysis neglecting population structure, for different heritabilities
(h2), at population size N = 5, 000, for the following mating designs: reference design (REF),
reference with sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS),
diallel cross with random mating (DCR), four-way hybrids cross (FHC), two-way hybrids diallel cross
(THDC), and four-way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10
or FHDC100). The empirical type I error rate α∗ was 0.01.

Mating 25 QTL 50 QTL 100 QTL

design Value h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8 h2 = 0.5 h2 = 0.8

REF Power 0.61 0.82 0.42 0.74 0.18 0.43
SE 0.014 0.014 0.015 0.015 0.007 0.017

REFS Power 0.63 0.86 0.46 0.78 0.22 0.53
SE 0.016 0.011 0.015 0.012 0.011 0.018

DC Power 0.68 0.89 0.50 0.82 0.21 0.53
SE 0.012 0.011 0.013 0.014 0.011 0.022

DCS Power 0.69 0.91 0.57 0.86 0.27 0.65
SE 0.011 0.009 0.013 0.011 0.013 0.020

DCR Power 0.80 0.95 0.68 0.92 0.36 0.81
SE 0.011 0.007 0.014 0.008 0.016 0.018

FHC Power 0.74 0.92 0.56 0.85 0.26 0.60
SE 0.015 0.009 0.014 0.016 0.012 0.020

THC Power 0.75 0.91 0.60 0.88 0.28 0.70
SE 0.013 0.009 0.015 0.011 0.012 0.018

FHDC10 Power 0.77 0.94 0.65 0.90 0.33 0.74
SE 0.015 0.008 0.012 0.008 0.013 0.019

FHDC100 Power 0.79 0.95 0.66 0.91 0.36 0.79
SE 0.012 0.006 0.013 0.009 0.015 0.017
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Figure S7: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 100 QTLs, heritability h2 = 0.8, and population size N =
5, 000. The following alternative mating designs were examined: reference design (REF), reference
with sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way
hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with
ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the
standard error across all the mean of replications.

Table S2: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
100 QTLs, heritability h2 = 0.8, and population size N = 5, 000 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.43 0.53 0.53 0.65 0.81 0.60 0.70 0.74 0.79
PD a b b cd f c d e ef
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Figure S8: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 50 QTLs, heritability h2 = 0.8, and population size N = 5, 000.
The following alternative mating designs were examined: reference design (REF), reference with
sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way hybrids
cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with ten or 100
individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the standard error
across all the mean of replications.

Table S3: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
50 QTLs, heritability h2 = 0.8, and population size N = 5, 000 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.74 0.78 0.82 0.86 0.92 0.85 0.88 0.90 0.91
PD a a b bc e bc cd de e
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Figure S9: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 25 QTLs, heritability h2 = 0.8, and population size N = 5, 000.
The following alternative mating designs were examined: reference design (REF), reference with
sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way hybrids
cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with ten or 100
individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the standard error
across all the mean of replications.

Table S4: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
25 QTLs, heritability h2 = 0.8, and population size N = 5, 000 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.82 0.86 0.89 0.91 0.95 0.92 0.91 0.94 0.95
PD a b bc c d c c d d
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Figure S10: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 100 QTLs, heritability h2 = 0.5, and population size N =
5, 000. The following alternative mating designs were examined: reference design (REF), reference
with sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way
hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with
ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the
standard error across all the mean of replications.

Table S5: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
100 QTLs, heritability h2 = 0.5, and population size N = 5, 000 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.18 0.22 0.21 0.27 0.36 0.26 0.28 0.32 0.36
PD a b ab c d c c d d
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Table S6: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
50 QTLs, heritability h2 = 0.5, and population size N = 5, 000 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.42 0.46 0.50 0.57 0.68 0.56 0.60 0.65 0.66
PD a b c d e d d e e
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Figure S11: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 25 QTLs, heritability h2 = 0.5, and population size N = 5, 000.
The following alternative mating designs were examined: reference design (REF), reference with
sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way hybrids
cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with ten or 100
individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the standard error
across all the mean of replications.

Table S7: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
25 QTLs, heritability h2 = 0.5, and population size N = 5, 000 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.61 0.63 0.68 0.69 0.80 0.74 0.75 0.77 0.79
PD a a b b e c cd cd de



S15

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

REF
REFS
DC
DCS
DCR
FHC
THDC
FHDC10
FHDC100

1e−05 1e−04 0.001 0.01 0.1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical type I error rate  (α*)

P
ow

er
 (

1
−

β* )

Figure S12: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 50 QTLs, heritability h2 = 0.5, and population size N = 2, 500.
The following alternative mating designs were examined: reference design (REF), reference with
sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way hybrids
cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with ten or 100
individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the standard error
across all the mean of replications.

Table S8: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
50 QTLs, heritability h2 = 0.5, and population size N = 2, 500 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.31 0.35 0.37 0.43 0.55 0.44 0.48 0.51 0.54
PD a b b c e c d de e
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Figure S13: Power to detect quantitative trait loci (QTLs) 1−β∗ when neglecting population structure
for different α∗ levels in a scenario with 50 QTLs, heritability h2 = 0.5, and population size N = 1, 250.
The following alternative mating designs were examined: reference design (REF), reference with
sibling mating (REFS), diallel cross (DC), diallel cross with sibling mating (DCS), four-way hybrids
cross (FHC), two-way hybrids diallel cross (THDC), and four-way hybrids diallel cross with ten or 100
individuals per F2 subpopulation (FHDC10 or FHDC100). The whiskers represent the standard error
across all the mean of replications.

Table S9: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with neglected population structure,
50 QTLs, heritability h2 = 0.5, and population size N = 1, 250 for the following mating designs:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
Designs with a common letter are not significantly different (P > 0.05) according to a Mann-Whitney
test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.22 0.24 0.27 0.30 0.42 0.34 0.35 0.37 0.40
PD a ab bc c f d d de ef
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Figure S14: Power to detect quantitative trait loci (QTLs) 1 − β∗ when considering population
structure per pedigree information for different α∗ levels in a scenario with 50 QTLs, heritability
h2 = 0.5, and population size N = 5, 000. The following alternative mating designs were examined:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
The whiskers represent the standard error of the mean across all replications.

Table S10: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with considering population structure
per pedigree information, 50 QTLs, heritability h2 = 0.5, and population size N = 5, 000 for the
following mating designs: reference design (REF), reference with sibling mating (REFS), diallel cross
(DC), diallel cross with sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel
cross (THDC), and four-way hybrids diallel cross with ten or 100 individuals per F2 subpopulation
(FHDC10 or FHDC100). Designs with a common letter are not significantly different (P > 0.05)
according to a Mann-Whitney test.

REF REFS DC DCS FHC THDC FHDC10 FHDC100
Power 0.34 0.39 0.39 0.45 0.53 0.54 0.62 0.64
PD a b b c d d e e
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Figure S15: Power to detect quantitative trait loci (QTLs) 1 − β∗ when considering population
structure per marker information for different α∗ levels in a scenario with 50 QTLs, heritability
h2 = 0.5, and population size N = 5, 000. The following alternative mating designs were examined:
reference design (REF), reference with sibling mating (REFS), diallel cross (DC), diallel cross with
sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel cross (THDC), and four-
way hybrids diallel cross with ten or 100 individuals per F2 subpopulation (FHDC10 or FHDC100).
The whiskers represent the standard error of the mean across all replications.

Table S11: Letter-based representation of significant pairwise differences (PD) in the statistical power
(α∗ = 0.01) to detect quantitative trait loci (QTL) in a scenario with considering population structure
per marker information, 50 QTLs, heritability h2 = 0.5, and population size N = 5, 000 for the
following mating designs: reference design (REF), reference with sibling mating (REFS), diallel cross
(DC), diallel cross with sibling mating (DCS), four-way hybrids cross (FHC), two-way hybrids diallel
cross (THDC), and four-way hybrids diallel cross with ten or 100 individuals per F2 subpopulation
(FHDC10 or FHDC100). Designs with a common letter are not significantly different (P > 0.05)
according to a Mann-Whitney test.

REF REFS DC DCS DCR FHC THDC FHDC10 FHDC100
Power 0.30 0.31 0.34 0.38 0.43 0.37 0.40 0.40 0.42
PD a a b c e c d d e
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Chapter 4: Detecting additive and epistatic loci in the

AMPRIL population
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Figure S16: Minor allele frequencies for a random subset of 50,000 SNPs of the ABBA subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S17: Minor allele frequencies for a random subset of 50,000 SNPs of the ACCA subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S18: Minor allele frequencies for a random subset of 50,000 SNPs of the ADDA subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S19: Minor allele frequencies for a random subset of 50,000 SNPs of the BCCB subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S20: Minor allele frequencies for a random subset of 50,000 SNPs of the BDDB subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S21: Minor allele frequencies for a random subset of 50,000 SNPs of the CDDC subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S22: Minor allele frequencies for a random subset of 50,000 SNPs of the EGGE subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S23: Minor allele frequencies for a random subset of 50,000 SNPs of the EHHE subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S24: Minor allele frequencies for a random subset of 50,000 SNPs of the FGGF subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S25: Minor allele frequencies for a random subset of 50,000 SNPs of the FHHF subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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Figure S26: Minor allele frequencies for a random subset of 50,000 SNPs of the GHHG subpopulation.
The dashed line gives the expected frequencies. Alleles which were unique for one founder (expected
allele frequency of 1/4) are accordingly coloured. The grey region gives simulation-based confidence
intervals for one individual (in dark grey for a probability of 0.95 and in lighter grey for 0.999).
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