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Kurzzusammenfassung

Es werden Vorschläge für Vielteilcheninvarianten in Superspinketten geprüft. Durch
Symmetrie geschützte Phasen werden als Homotopieklassen von Grundzuständen mit
Anregungslücke modelliert. Der Matrixproduktzustandsformalismus wird systematisch
auf fermionische Systeme mit antiunitären Symmetrien ausgeweitet. Ein basisunab-
hängiger diagrammatischer Zugang, der mit anti-unitären Symmetrien kompatibel ist,
wird entwickelt. Vorschlägen aus der Literatur folgend werden Observablen vom Ty-
pus der Verschränkungsentropien mit Modifikationen für fermionische Matrixprodukt-
zustände berechnet und ihre Homotopieinvarianz bewiesen. Die Nützlichkeit von Klassi-
fikationen durch diese und ähnliche Observablen wird im Lichte der Klassifikation ein-
dimensionaler fermionischer durch Symmetrie geschützter Phasen mit Gruppenkohomolo-
gie bewertet. Die Homotopieinvarianz wird im Limes divergierender virtueller Dimension
bei beschränkter Korrelationslänge gezeigt.
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Abstract

Proposals for many-body invariants for super-spin chains with anti-unitary symmetries
are evaluated. Symmetry protected phases are modeled as homotopy classes of gapped
ground states. The formalism of matrix product states is systematically extended to
fermionic systems with anti-unitary symmetries. A basis-independent diagrammatic ap-
proach capable of handling anti-unitary symmetries is developed. Suggestions from the
literature for observables of a twisted entanglement entropy type are calculated and
proven to be topological invariants of fermionic matrix product states. The viability of
classifications via these invariants is discussed as well as the connection to the cohomol-
ogy classification of one-dimensional fermionic symmetry protected phases. Taking the
limit of diverging bond dimension while controlling the correlation length, the homotopy
invariance is proved to persist.
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Introduction

Matter at equilibrium is characterized by only a few variables, rather than the myriads of
degrees of freedom specifying the configuration of its constituents.
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Sketch of the phase di-
agram of water. The
straight dashed line ( a)
cuts two phase tran-
sition lines at atmo-
spheric pressure; the ice
melting transition, and
the liquid-vapor transi-
tion. For the latter,
however, one can use
path (b) to avoid the
phase transition. This
is possible by the con-
tinuity of the order pa-
rameter.

The behavior of water in equilibrium, be it in a wa-
ter glass or a steam engine, can be characterized by
such a small set of variables as temperature and pres-
sure. All other observables, like compressibility or den-
sity, are functions of these two. Continuously varying the
variables will, in general, produce continuous variations of
the observables, with exceptions: Due to the large num-
ber of constituents involved, it is possible for the ob-
servables to acquire jumps or kinks – a phase transi-
tion.
This is a most happy fact of nature, for it allows us to cool our
cocktails: At atmospheric pressure and 273 Kelvin, the melt-
ing transition binds a specific enthalpy of fusion of around 300
Joules per Gram, enough to cool water by 80 Kelvin. Thus,
ice cubes can cool a drink considerably without diluting it
much.
If an observable with a continuous target space shows non-
analytic behavior, then there might be another path through
the phase diagram avoiding the transition. For exam-
ple, liquid water and vapor are connected by the boiling
transition, but also through the supercritical state of wa-
ter.

On the other hand, observables taking values in a discrete set can vary only in jumps.
Therefore, there are patches characterized by the value of that quantized observable,
which are separated from others by phase transitions: Discrete observables are homo-
topy invariants of non-critical states of matter.
Often, symmetries are necessary to stabilize quantization. This is the case for the systems
considered in this thesis. For illustration, consider the Haldane phase of integer-valued
spin chains [70], or, less generally, the AKLT chain [2]. In the AKLT construction, on-
site vector degrees of freedom are presented as the symmetrization of two virtual spinors.
The two half-spins across any bond are projected into their singlet state. This results,
for a finite chain, in an unpaired spinor at each edge of the chain. This feature of frac-
tionalization is generic in the presence of a symmetry protecting the edge modes, and it
is particularly significant in the case of uneven integer spins, where it yields spinors at
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the edge as in the AKLT case. For example, a time-reversing symmetry T in the bulk
forces a Kramers degeneracy at the boundary. The edge modes of two identical chains
combine to a non-anomalous representation of the symmetry, rendering the degeneracy
removable. Thus, the number of half-spins at the edge modulo two is the quantized
observable. By breaking the symmetry, for example by coupling the chain to an external
magnetic field, the edge modes can get removed without any phase transition.

These two examples should indicate already the versatility of so-called topological phases.
In order to bring this variability into a common framework, it is helpful to turn again to
the idea of paths in a phase diagram alluded to in the beginning – now enlarged by all
possible couplings consistent with a prescribed set of symmetries.
By considering deformations by smooth paths in this infinite-dimensional space, states
with widely different phenomenology can be joined by paths not crossing any phase tran-
sition line. Can all states be joined by such a smooth path, or are there disconnected
states? Which? And – how to detect to which of such sets a given state belongs? More
formally, what is the set of path-connected components of the set of ground states? If
there is more than one such component, some states are necessarily separated by a phase
transition.
In recent years, a multitude of methods has been developed to compute such groups.
There is now a complete and mathematically rigorous understanding of such phases in
one and two spatial dimension [17, 120]. In two space dimensions, an important distinc-
tion arises, whether or not anyonic quasiparticles are present in the system. Anyons,
however, are out of the scope of this thesis and are ignored in the following discussion.
The method used is a refinement or re-application of methods first developed in the con-
text of matrix product states (MPS). To represent the AKLT state, the physical spin
was augmented by two virtual spins. In analogy, a larger number of virtual degrees of
freedom can be introduced to represent more general states – in fact, any state can be
approximated by states constructed in this manner [50]. Imposing invariance of the state
under a group action G on the physical spins is manifested by a projective symmetry
action on the virtual spins. For a finite chain, in general, the two ends together form
a proper representation of G. Since projective representations are classified by group
cohomology, this yields an algebraic classification of topological phases, in particular in
one spatial dimension. In the AKLT-chain, the time-reversal symmetry with T 2 = 1
factorizes to two projective representations with T̂ 2 = −1.

Another line of inquiry, not so encumbered with microscopic details, has advanced to
similar results. There, topological phases are modeled by invertible topological field the-
ories (TFTs). A general motivation why this could work are the observations that (a)
the partition sums of invertible TFTs can be computed on triangulated manifolds, and,
for suitable choice of manifold, yield states that are representatives of certain topological
phases [85, 86]. Secondly, since the formulation of the problem of classification of topo-
logical phases with unique ground states allows for a quite large range of deformations
of the initial Hamiltonian and even the degrees of freedom present in the system, one
can hope that it is (b) possible to deform any state to one of the type mentioned in
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(a). This intuition is difficult to formulate precisely, let alone to prove. In the context of
tensor networks, a more limited claim is investigated under the program of entanglement
renormalization [171], a coarse graining procedure. The states mentioned in (a) are then
thought to arise as fixed points of this renormalization procedure, that is, invertible TFTs
would characterize the long-range behaviour of topological phases with unique ground
states.
The arguments in this thesis do not depend on the subscription to the above belief.
Rather, the claim is used in the following way: A given invertible TFT is completely
characterized by its value on a relatively small set of manifolds. Therefore, if it is true
that invertible TFTs characterize topological phases, then it should be possible to di-
agnose topological phases by computing expressions corresponding to these partition
sums. Once these expressions are found, it is no longer necessary to know that they are
motivated by TFT. Instead, this thesis proves that they are, in fact, topological invari-
ants of gapped ground states, without using field theoretic methods. As it turns out,
this TFT-inspired program gives a good picture at least of one-dimensional topological
phases which is why this approach is introduced shortly in the following.
If GTFT → O(d) is a group homomorphism (with some additional constraints), certain
d-manifolds can be equipped with GTFT-structures, similar to how certain Riemannian
manifolds can be endowed with a spin structure. GTFT is related to the condensed-matter
symmetry group G and contains space-time symmetries. The bordism group is the set
of all closed d-manifolds with GTFT-structures, where those manifolds are considered
equivalent that are the boundary of a (d+1)-manifold with GTFT-structure, with appro-
priate gluing conditions. Then unitary invertible TFTs – and, by the assumption of a
continuum limit, topological phases with G-symmetry – are classified by their partition
sum, a homomorphism Z: bordism group → U(1) [176]. The classifications obtained
in this way agree with more rigorous results in one spatial dimension, while in higher
dimensions some phases seem to not be captured by TFTs [120].
It is also quite straightforward to determine to which class a given TFT belongs. If
X1, ..., Xn are generators of the bordism group, the set of unit complex numbers

Z(X1), ..., Z(Xn)

completely determines the theory.
From the perspective of condensed matter physics, this of course is quite abstract. What
is the Hubbard model on a Klein bottle? To motivate the meaningfulness of these words,
recall that in the path integral formalism, the reduced density matrix on a region A is
represented pictorially by a torus with slits along A, in the continuum limit. Taking
powers and tracing produces higher-genus surfaces, as has been first exploited to analyze
the entanglement properties of conformal field theories [27]. Non-orientable surfaces can
be realized through anti-unitary operations like motion-reversal or particle-hole trans-
formations [154]. In this way, one obtains, for generating manifolds X1, ..., Xn, a set of
polynomial expressions P1(ρ), ..., Pn(ρ) in the reduced density matrix of the given ground
state of some condensed matter system such that Tr(Pi(ρ)) is related to Z(Xi).
This thesis aims to make this connection precise. To this end, it proceeds in two steps.
First, the candidate partition sums are examined for matrix product states, where they
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are related to the known cohomological invariants. Then, the bond dimension – the
number of virtual degrees of freedom adjoined to the physical ones – is sent to infinity.
The phase of the partition sums is shown to be continuous and quantized in this limit,
assuming exponential correlations. The modulus is non-topological in origin.
For convenience, only two partition sums are investigated: those associated with the
real projective plane and the Klein bottle. With the exception of class D topological
superconductors, these two suffice to diagnose the various commonly discussed topo-
logical phases of one-dimensional fermions, i.e., those labeled by pseudo-Cartan labels
DIII, CII, CI,AI,BDI,AIII in the periodic table of topological insulators and super-
conductors [90]. In fact, except for class DIII, all topological phases are diagnosed by
the real projective plane invariant Z(RP 2). The corresponding invariant for the class D
case, on the other hand, is already well-known [125]. The labels are used here to facilitate
comparison to other approaches and have no connection to symmetric spaces.
In any case, as the calculations are not very specific to the chosen invariants to compute,
it is not hard to generalize the argument. In particular, the extension to infinite bond
dimension carries over to more complicated polynomials in the density operators.

Chapter 1 starts by introducing graded linear algebra, together with a diagrammatic
formalism to ease computations. There is a discussion of peculiarities pertaining to
completely positive maps, and to anti-linear operations, in the graded context. Then,
chapter 2 sets up the physical models – they are called super quantum spin chains in
analogy to quantum spin chains. This class includes spin chains, fermions, and every-
thing in between. The formalism is chosen for its compatibility with matrix product
state methods. After these preliminaries, the space of ground states is introduced and
the notion of a topological phase is formulated. An overview of both TFT and MPS
methods as previously applied in this context is added, which finishes by motivating
candidates for many-body topological invariants. In order to advance along these lines,
chapter 3 generalizes matrix product states to the graded setting. The real projective
plane and the Klein bottle partition sum are computed for matrix product states. The
calculation shows that they are topological invariants on the set of matrix product states
with finite bond dimension by connecting the partition sums to cohomological objects.
The advantage of analytical topological invariants appears most succinctly in the limit
of infinite bond dimension, which is the subject of chapter 4. Recall that matrix product
states can approximate ground states effectively, but the size of the auxiliary systems
increases as the gap of the spectrum diminishes. In particular, critical systems of finite
size L can be approximated by MPS only if the bond dimension is chosen polynomial in
L [169]. Working in an infinite system, this implies that as the state adiabatically ap-
proaches criticality, its bond dimension has to diverge. Starting from this phenomenon,
topological phases with symmetry group G have been modeled in the literature as classes
of matrix product states of arbitrarily large, but finite, bond dimension, where two MPS
are said to be in the same class if their parent Hamiltonians can be deformed into each
other within the class of parent Hamiltonians without breaking G nor closing the gap
[145]. Hence, instead of looking at gapped states modulo deformations preserving the
gap, the setting has shifted to G-symmetric matrix product states modulo structure pre-
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serving deformations – phase transitions are identified through the divergence of bond
dimension.
However, generic non-critical states, for example free-fermion states with non-flat bands,
have infinite bond dimension. It is likely that there is no new physics associated to such
problems, as one can argue using entanglement renormalization ideas [171]. Neverthe-
less, an approach to topological phases that does not depend intrinsically on the choice
of formalism helps when combining different methods to deal with the same physical
system. Here, this generality is achieved by sending the bond dimension to infinity and
maintaining control through the imposition of finite correlation length, thus establishing
the aforementioned partition sums as topological invariants on exponentially correlated
states.
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1. Super Linear Algebra

This chapter reviews some aspects of the theory of Z2-graded vector spaces, and follow the
ramifications of the grading through all the machinery built on top of them, in particular
the theory of completely positive maps. Afterwards, some issues relating to G-actions on
the previously defined objects are investigated, with a focus on anti-unitary operations.
Importantly, the Z2 fermion parity operation is not treated as a symmetry.
While there are some original contributions in this chapter, these are to be seen as
auxiliary to the discussion of super matrix product states. Those well-acquainted with
the ungraded theory might often guess the correct generalization. In appendix A, some
of the developments of this section are generalized to Zp-graded vector space.
For calculations it is useful to employ a diagrammatic formalism quite common in the
tensor network literature, e.g., [24]. The treatment here focuses on the inclusion of: (i)
The grading and (ii) The implementation of anti-unitary symmetries. To deal with sign
factors appearing by (i), a variety of proposals exists in the literature, e.g., [25] localize
the necessary bookkeeping to the tensor lines (here it is the nodes), while [173] uses
Grassmann calculus. The presentation here has the advantage that it reduces without
further modifications to the bosonic case once all the gradings are chosen trivial. (ii) The
inclusion of anti-unitary symmetries is complicated by the fact that tensor diagrams are
linear. This can be resolved in two ways. There is the possibility of working over the
real numbers, and return to the standard diagrams with the help of complex structures
which then commute or anti-commute with the symmetries. The other path chosen here
is viable if the vector spaces are Hilbert, for this gives another, canonical, antilinear
operation. Then, anti-unitary operations are implemented by bilinear forms. This does
not depend on the choice of basis, is more natural in quantum mechanics, and simplifies
the algebra.

1.1. Vector Spaces

Definition 1. A super vector space V is a vector space together with a decomposition
V = V 0 ⊕ V 1.

If not further indicated, vector spaces are over the field of complex numbers. Otherwise
they are referred to as a vector spaces over K, where K is the field used for scalar
multiplication.
The set (V 0 ∪V 1) \ {0} is called the homogeneous vectors, and |ξ| ∈ Z2 is the parity of a
homogeneous vector ξ ∈ V |ξ|. The fermion parity of V is the operator PV (ξ) = (−1)|ξ|ξ.
The tensor product X = V1 ⊗ V2 of super vector spaces is endowed with a grading
by declaring Xλ =

∑
µ1+µ2=λ(V1)µ1 ⊗ (V2)µ2 . The resulting super vector space X =
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X0⊕X1 is then denoted by V1⊗̂V2. For super vector spaces V1, V2 introduce the braiding
isomorphism B : V1⊗̂V2 → V2⊗̂V1 by extending linearly from its action on homogeneous
product vectors: B(ξ1⊗̂ξ2) = (−1)|ξ1||ξ2|ξ2⊗̂ξ1. Here, Z2 × Z2 3 (µ, ν) 7→ µν ∈ Z2 is the
parity pairing.
Given a super vector space V , an element ξ ∈ V is simply represented by ξ , that
is: A node labeled by the vector and an outgoing arrow. The tensor product of n vectors
ξ1, ..., ξn with ξi ∈ Vi is then depicted as

ξ1 ξn

· · ·
· · · . (1.1)

It is important orient the arrows since the vector spaces are complex; in particular it
allows to take the complex conjugate of a diagram, reversing arrows.
Similarly, an element of the dual space ϕ ∈ V ∗ is represented by ϕ , that is: A
node labeled by the covector, with an ingoing arrow. This notation is chosen to suggest
contractions V ∗⊗̂V → C, ϕ⊗̂ξ 7→ ϕ(ξ) by attaching the outgoing line of a vector to the
ingoing line of a covector, C : ϕ ξ 7→ ϕ ξ .
Finally, the braiding of tensor factors is implemented by exchanging the endpoints of the
arrows (while keeping the nodes fixed). The untying of the resulting crossing, achieved
by exchanging the nodes, introduces a Koszul sign:

ξ1 ξ2
B7−→ ξ2ξ1 = (−1)|ξ1||ξ2| ξ1ξ2 . (1.2)

Note that the crossing is unsigned. This is because the super tensor product defines
a symmetric tensor category. As explained in appendix A, working with more general
gradings can change this.
Present the image of ξ ∈ V under L ∈ L (V,W ) by L(ξ) = L ξ . That
is, by a node decorated with that operator, and a box around it, with an ingoing
and an outgoing line. L (V,W ) is a super vector space with grading L (V,W )λ =∑

µ1+λ=µ2
L (V µ1 ,Wµ2).

Definition 2. Let L : V → W be a linear map between super vector spaces V and W .
Then, the dual to L is the linear operator L′ : W ∗ → V ∗ defined by

L′(ϕ) = (−1)|L||ϕ|ϕ ◦ L . (1.3)

Diagrammatically this corresponds to exchanging the legs of the diagram:

L′ = L .

The map L→ L′ behaves well under tensor products. Indeed, if Li : Vi →Wi for i = 1, 2,
then

(L1⊗̂L2)′ = L′1⊗̂L′2 .
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This is proven diagrammatically:

(L1⊗̂L2)
′ = L1⊗̂L2

=

L1

L2

=

L′
1

L′
2

.

Moreover, the definition of the dual map implies that it is a graded anti-homomorphism

(L1L2)′ = (−1)|L1||L2|(L2)′(L1)′ (1.4)

Mapping L 7→ L′ gives a linear graded anti-homomorphism L (V )→ L (V ∗).

Super Hilbert Spaces. Often, vector spaces carry inner products. In the superworld,
standard inner products have the disadvantage of not factoring on super tensor products.
This motivates a modification that forces compatibility with the tensor product [166,
Section 3.4].

Definition 3. A super vector space V is called super Hilbert space if there is a sesquilin-
ear form h, called a super hermitian form, satisfying:

(i) h(ξ1, ξ2) = 0 unless |ξ1| = |ξ2|,

(ii) ξ 7→ ‖ξ‖h := |h(ξ, ξ)| 12 is a norm satisfying the parallelogram identity

1

2
‖ξ1 + ξ2‖2h +

1

2
‖ξ1 − ξ2‖2h = ‖ξ1‖2h + ‖ξ2‖2h , (1.5)

(iii) h(·, ·) is super hermitian:

h(ξ1, ξ2) = (−1)|ξ1||ξ2|h(ξ2, ξ1) . (1.6)

On the other hand, V can be endowed with a Hilbert structure. What is their connection?
Before this question can be answered first recall that given a bilinear form β : Z2×Z2 →
Z2, a map q : Z2 → Z4, satisfying

q(µ+ ν)− q(µ)− q(ν) = 2 · β(µ, ν) , (1.7)

is called a quadratic extension of β. Equation 1.7 used the embedding Z2 = {0, 1} 2·7→
{0, 2} ⊂ Z4.

Lemma 1. The following are equivalent, for V a super vector space:

(i) A super hermitian form h on V .
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(ii) A tupel (〈·, ·〉, q) with 〈·, ·〉 an inner product on V and q a quadratic extension of
the parity pairing.

Proof. Start with a super hermitian form. Then, the parallelogram condition 1.5 deter-
mines an inner product 〈·, ·〉h through polarization:

4〈ξ1, ξ2〉h := ‖ξ1 + ξ2‖2h − ‖ξ1 − ξ2‖2h − i‖ξ1 + iξ2‖2h + i‖ξ1 − iξ2‖2h . (1.8)

Anticipating the result, write 1
4qh(ξ) := 1

2π arg h(ξ, ξ) for homogeneous ξ. By the her-
miticity of h, equation 1.6:

h(ξ, ξ) = (−1)|ξ|h(ξ, ξ) ⇒ qh(ξ) = 2|ξ| − qh(ξ) mod 4Z ⇒ 2qh(ξ) = 2|ξ| mod 4Z .
(1.9)

It follows that qh is constant on homogeneous vectors, i.e. qh(ξ) = qh(|ξ|). Hence
qh : Z2 → Z4 takes the form qh(µ) = ±µ2. It is a quadratic extension of the parity
pairing, and well-defined on Z2 as (µ+ 2)2 = µ2 + 4Z.
On the other hand, given an inner product 〈·, ·〉 and a quadratic extension q of the parity
pairing, h(ξ1, ξ2) := iq(|ξ1|)〈ξ1, ξ2〉 is a super hermitian form.

Superalgebras. Consider the ring of endomorphisms L (V ) on some super vector space
V . It has a grading-preserving product given by the composition of maps. This is
formalized by the following definition:

Definition 4. A superalgebra A = (V, ·) is a super vector space V equipped with a
bilinear associative pairing (ξ1, ξ2) 7→ ξ1 · ξ2 satisfying V µV ν ⊂ V µ+ν .

Superalgebras fit (by construction) nicely into the super diagrams, mostly owing to the
fact that multiplication is an even operation.
The tensor diagram notation makes the multiplication rule on tensor products obvious.
Consider the following diagrammatic equality, arising from the Koszul rule of horizontal
reordering of tensor nodes:

L1 M1

L2 M2

= (−1)|L2||M1|
L1 M1

L2 M2

.

The left hand side of this tensor diagram amounts to the multiplication (L1⊗̂L2)(M1⊗̂M2),
while the right hand side is (−1)|L2||M1| L1M1⊗̂L2M2. This shall serve as the motivation
to introduce the following multiplication on the tensor product A1⊗̂A2 of two superal-
gebras1

(x1⊗̂x2) · (y1⊗̂y2) := (−1)|x2||y1|x1x2⊗̂y1y2 . (1.10)

The super tensor product multiplication rule gives by construction the isomorphism of
super algebras L (V1⊗̂V2) ∼= L (V1)⊗̂L (V2).

1It will not have gone unnoticed that the notation switched from greek, to large latin, to small latin
letters, used for vectors, linear operators, and elements of abstract algebras, respectively.
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C∗-Superalgebras. If V is a Hilbert space, then A = L (V ) carries a natural Banach
norm, the operator norm

‖L‖ := sup
ξ∈V
{‖L(ξ)‖ : ‖ξ‖ ≤ 1} ,

and an anti-linear involutive antiautomorphism L 7→ L∗ defined by 〈L(ξ1), ξ2〉 = 〈ξ1, L
∗(ξ2)〉.

These two structures satisfy the so-called C∗-property

‖L∗L‖ = ‖L‖2 . (1.11)

This has been axiomatized into the following:

Definition 5. A C∗-superalgebra A is a superalgebra A, which carries a norm ‖ · ‖ and
an antilinear involutive even antiautomorphism x 7→ x∗ such that ‖x∗x‖ = ‖x‖2.

The notion of a state as a normed element of a Hilbert space is generalized in this context
by axiomatizing the expectation value functional furnished by such a vector:

Definition 6. A state ω on a C∗-superalgebra A is an even linear functional ω : A→ C
that is positive and of unit norm.

The norm is the usual operator norm ‖ω‖ := sup{|ω(x)| : ‖x‖ ≤ 1}, but by positivity2

‖ω‖ = ω(1).
As argued above, closed sub-superalgebras of L (V ) for a Hilbert space V are C∗-algebras,
and one obtains states on such algebras through homogeneous vectors.
If ξ is a homogeneous vector in a super Hilbert space, consider the functional L 7→ 〈L〉ξ :=
‖ξ‖−2〈ξ, L(ξ)〉 with 〈1〉ξ = 1. This is positive:

〈L∗L〉ξ =
‖L(ξ)‖2
‖ξ‖2 ≥ 0 .

In fact, given a state on a C∗-algebra, this can be reversed:

Theorem 1. Gel’fand-Naimark-Segal (GNS). If A is a C∗-superalgebra and a state ω ∈
A∗, then there is a super Hilbert space Hω, a homogeneous vector Ωω and an even ∗-
homomorphism πω : A→ L (Hω) such that

ω(x) = 〈Ωω, πω(x)Ωω〉 . (1.12)

(Hω,Ωω, πω) is called a Gel’fand-triple.
This representation is unique in that if (H,Ω, π) is another triple such that equation
1.12 holds, then there is a unitary U : H → Hω such that Ωω = UΩ and πω(x) =
(−1)|U ||π(x)|Uπ(x)U∗.

2This is a special case of the proof in footnote 5 below. Alternatively check [15, Chapter II.6].
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The above theorem shows the importance of states to characterize a given physical sys-
tem. In this context it is useful to have a topology on the set of states, i.e. to have a
notion of states being ‘close’ to each other, or of a sequence converging to a state.
Recall the notion of the graded dual of a map L : V →W from definition 2. In particular,
a vector ξ ∈ V is dualized to a linear functional ξ′ : V ∗ → C.
The weak∗-, or w∗-,topology on V ∗ is defined by demanding that the ξ′ are continuous.
That is, the open subsets in V ∗ – the dual space equipped with this weak∗-topology –
are those of the form

(ξ′)−1(S) , ξ ∈ V , S ⊂ C open . (1.13)

If (ϕn)n∈N is a sequence, says that ϕn → ϕ, if for each neighborhood M of ϕ there is an
N s.t. ϕn>N ∈ M . Since the neighborhoods take the form indicated in equation 1.13,
demand equivalently that for each ξ ∈ V , ϕn(ξ) → ϕ(ξ). Conversely, assume that for
a sequence (ϕn)n ∈ V ∗ and for any ξ ∈ V it holds that ϕn(ξ) converges. If the ϕn are
bounded and linear, the limit depends linearly on ξ and is continuous, that is, there is
an element ϕ ∈ V ∗ such that limn→∞ ϕn(ξ) = ϕ(ξ). But then ϕn converges to ϕ in the
w∗-topology.

Supercentral Superalgebras Superalgebras may have, in general, a complicated struc-
ture. For reasons that will become clear while studying maps on superalgebras below, it
suffices – for the applications to be considered in this work – to focus on a subclass.
If A is a superalgebra and S ⊂ A a subset, introduce the commutant3 S′ and the super-
commutant S#:

S′ := {x ∈ A : xs = sx ,∀s ∈ S} , (1.14)

S# := {x ∈ A : xs = (−1)|x||s|sx ,∀s ∈ S} . (1.15)

The center of an algebra A is Z(A) = A ∩ A′ and its supercenter is Z (A) = A ∩ A#.
The (super-)center of a superalgebra is a (super-)commutative superalgebra. If A is
a ∗-algebra, then Z (A)1 = 0: For z ∈ Z (A)1 both z ± z∗ ∈ Z (A)1. Moreover, if
(z ± z∗)2 = 0 then z = 0. But (z ± z∗)2 = 0 as z, z∗ anti-commute with each other.
An algebra with Z(A) = C1 or Z (A) = C1 is called central, or supercentral4, respectively.
A subset I ⊂ A is called a left ideal if AI ⊂ I, a right ideal if IA ⊂ I and two-sided if it
is a left and a right ideal. It is called proper if I 6= A, {0} and a (left, right, two-sided)
superideal if I = (I∩A0)⊕(I∩A1). If a superalgebra A has no proper two-sided (super-)
ideals, it is (super-)simple. If A is a direct sum of simple or supersimple algebras, it is
called semisimple. Any supersimple algebra is semisimple, but not necessarily simple.
A semisimple superalgebra can be decomposed into either its supersimple or its simple

3Unfortunately I use the prime both for the commutant and the dual of a linear map. This is unavoidable
since both is quite standard. The dual of a linear map L could also be denoted Lt, but this I
already use for the transpose w.r.t. a bilinear form. The context will however always unambiguously
determine the meaning.

4Often A is called supercentral if Z(A)0 is trivial.

12



components.
Often in this work, there is a connection between the requirement to be (super-) simple
and to be (super-)central. Assume A acts non-degenerately on a super Hilbert space V ,
meaning that if xξ = 0 for all x ∈ A, then ξ = 0. To a two-sided ideal I ⊂ A associate
the projection PI on the complement of the annihilator subspace of I, i.e. the largest
subspace such that xξ = 0 for all x ∈ I. Then denote by pI the central support of
PI , i.e., the smallest projection in the center of A containing PI . On the other hand,
every central projection p gives an ideal in A, the principal ideal generated by p given by
I = Ap. Now, if A is a matrix algebra (or more generally if it is a von-Neumann algebra
and the ideals are weakly closed [15]), then this is indeed the general case, and there
is a one-to-one-correspondence between weakly closed ideals in A and principal ideals
generated by central projections.

Theorem 2 ([172],[81]). If A is a finite-dimensional supercentral supersimple superalge-
bra, then either A is central simple, or A0 is central simple and there is η ∈ A1 which
commutes with all elements of A such that η2 = 1 and A1 = ηA0.

Introduce an index

µA :=

{
0 if A central simple ,
1 if A0 central simple .

(1.16)

1.2. Positive and Completely Positive Maps

So far, I introduced vector spaces V and linear maps L (V ) on these vector spaces – which
are of course again a special class of vector spaces. – Now the turn has come to consider
linear maps on linear maps on vector spaces, or L 2(V ).
Relevant here are structures inherited from the cone of positive
elements within L (V ). General references to the theory of the
ungraded positive and completely positive maps that are used
freely are [126, 47, 161].
Recall that for a C∗-algebra A, a linear map φ ∈ L (A) is called
positive if x ≥ 0 implies φ(x) ≥ 0. φ is called unital if φ(1A) =
1A. For positive maps5 ‖φ‖ = ‖φ(1A)‖ so that unital positive
maps are automatically of unit operator norm.
If A is super, assume that φ is homogeneous. Since there are no odd positive maps6

this is the same as assuming φ1 = 0. Here and in the following, assume that A is
finite-dimensional.

Definition 7. A positive map φ on a C∗-algebra A is reduced by a projection p ∈ A if

φ(pAp) ⊆ pAp . (1.17)

5To get a lower bound on ‖φ‖, consider positive x. Since 1− x
‖x‖ ≥ 0, by positivity φ(1)− φ(x)

‖x‖ ≥ 0.
6Take positive even x ∈ A, then φ(x) is odd and positive. Write φ(x) = (a0 + a1)

2 = (a0)
2 + (a1)

2 +
a0a1 + a1a0 for self-adjoint a. The even part vanishes by assumption, hence a0 = 0 = a1.
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If there is no such p, then φ is called irreducible. If A is a superalgebra, and there is no
homogeneous projection reducing φ, then φ is superirreducible.

In the super case, homogeneity preserves the superalgebra structure on pAp. However,
since odd operators cannot be positive, superirreducibility amounts to excluding the
existence of an even projection reducing φ.
For projections p1, p2 onto subspaces V1, V2, let p1 ∨ p2 be the projection onto V1 ∪ V2

and p1 ∧ p2 the projection on V1 ∩ V2. Furthermore p1 < p2 if V1 ( V2. For x : V → V ,
let supp(x) be the support projection of x.

Lemma 2. Assume φ is even positive and that p+ = p0 + p1 reduces φ. Then (i)
p− := p0 − p1 and q = p+ ∨ p− = supp(p0) are projections reducing φ, if q 6= 1A.
Furthermore, assume that φ is superirreducible. Then (ii) q = 1A and p± are the only
projections reducing φ.

Proof.

(i) Apply the fermion parity automorphism PA to both sides of 1.17 and use that φ is
even. Thus, φ is reduced by p0 − p1. Hence, it is also reduced by q. Write p0 + p1 =
(x0 +x1)2 = (x2

0 +x2
1)+(x0x1 +x1x0) to see that p0 is positive and p1 self-adjoint but not

positive. Thus, the support of p1, p0±p1 has to be contained in the support of p0. On the
other hand, suppose ξ is in the support of p0. Then, 0 6= 2p0ξ = [(p0 + p1) + (p0 − p1)] ξ
and at least one of the (p0 ± p1)ξ is non-zero, so that ξ is in the support of q.

(ii) By part (i) p0 is full rank. Suppose there is another pair of projections q± = q0 ± q1

reducing φ, and let sab = pa ∧ qb for a, b = ±. A non-trivial sab reduces φ. However, if
always either sab = 0 or sab = pa = qb, then q0 = p0 and p1 = ±q1. Therefore assume that
sab < pa for some a, b. Then PsabP−1 = s−a,−b < p−a and hence, qab = sab ∨ s−a,−b <
p+ ∨ p− = 1A. Thus qab is an even non-trivial projection reducing φ, which contradicts
the superirreducibility of φ.

If a positive map φ is reducible, it is not necessary decomposable into irreducible maps.
Since this is a property that is needed later, it is formalized as:

Definition 8. A homogeneous positive map φ on a C∗-algebra A is completely reducible
if for each projection p reducing φ, (1− p) also reduces φ and

φ = φ(p · p) + φ((1− p) · (1− p)) . (1.18)

Moreover, if there is no reducing projection p s.t. ‖φ(p · p)‖ < ‖φ‖, then φ is said to be
incontractible.

A completely reducible φ can be decomposed into irreducible parts. Pick a projection p1

such that φ1 = φ(p1 ·p1) is irreducible. Then proceed with φ̃ = φ((1−p1) · (1−p1)) until
there is a set of projections p1, ..., pn reducing φ such that

∑
i pi = 1A and φ =

⊕
i φi;

where φi := φ|Ai is irreducible and Ai = piApi.
If A is a superalgebra and φ is homogeneous, then the set of projections takes the form
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p1, ..., pn = q1, ..., qr, s±,1, ..., s±,n−r
2

where the qi are even and the s±,i are parity conju-
gates. Hence, φ can also be decomposed into r + n−r

2 superirreducible maps
⊕

i φi.
In both cases, φ is incontractible if ‖φi‖ = ‖φj‖ for all i, j. This is obviously a fine-tuned
demand. However, it arises quite naturally from the applications that is made of positive
maps in section 3.2.
Next are spectral considerations. The main tool here is the C∗-version of Perron-
Frobenius:

Theorem 3 ([47]). If φ : A → A is positive irreducible, then there are unique posi-
tive invertible e, ρ ∈ A such that φ(e) = ‖φ‖e and φ′(tr(ρ ·)) = tr(ρφ(·)) = ‖φ‖tr(ρ ·).
Moreover, the eigenvalue ‖φ‖ is simple.

In the following, usually only the spectrum of φ and not its dual φ′ are discussed, with
the understanding that they are exactly parallel, with an explicit isomorphism given by
the trace inner product.
Complete reducibility allows to draw conclusions from theorem 3 in the reducible case.
Assume for simplicity ‖φ‖ = 1 and introduce the set of fixed points of φ, and the vector
space spanned by the reducing projections,

FP(φ) := {x ∈ A : φ(x) = x} and Red(φ) := span{p projection reducing φ} .
(1.19)

Notice that Red(φ) is a superalgebra. The projections that reduce to an irreducible φ
are precisely the extremal points of the cone of positive elements of Red(φ).

Corollary 1. Let φ be a superirreducible homogeneous positive map. Then, there is an
invertible positive even e s.t. φ(e) = e. If φ is reducible, it is incontractible and there is
an invertible self-adjoint odd z s.t. φ(ze) = ze and z2 = 1. That is, 1 is a semisimple
eigenvalue of degeneracy µφ + 1 = 1, 2.

The index µφ ∈ 0, 1 introduced in part (i) of the lemma is used throughout to character-
ize positive maps. Later on, it will be related to the index introduced below theorem 2.
The corollary luminates the fixed points of an incontractible completely reducible homo-
geneous positive φ. Decompose φ =

⊕r
i=1 φi with the φi superirreducible. By theorem 3

and incontractability they have unique left, resp. right fixed points tr(ρi ·) and ei. Adopt
the standard normalization ‖ei‖ = 1 from which it follows7 that ‖ρi‖1 = 1. The ei span
the vector space of right fixed points FP(φ). It is convenient to use a standard element:

e =
⊕

i

ei (1.20)

All other right fixed points have the form
⊕

i ciei = (
∑

i cipi) · e, with ci ∈ C and pi the
reducing projections, and thus

FP(φ) = Red(φ) · e . (1.21)

7Combine the following two inequalities: (i) |tr(ρe)|2 = |tr(√ρ√ρe)|2 ≤ tr(√ρ2)tr|√ρe|2 ≤ (‖ρ‖1‖e‖)2,
and (ii) ‖ρ‖1 = sup{|tr(ρx) : ‖x‖ ≤ 1} ≤ |tr(ρe)|.
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For the left fixed points, adopt a standard form in terms of weights wi:

ρ =

r⊕

i=1

wiρi ,

r∑

i=1

wi = 1 ; (1.22)

this parameterizes the set of positive left fixed points.

Proof of corollary 1. φ is either already irreducible, or there is a unique pair of projections
p± reducing φ as in part (ii) of lemma 2. In the first case, theorem 3 applies directly and
gives a simple positive invertible eigenvector e to the eigenvalue 1; by homogeneity, e is
even. In the second case, complete reducibility yields φ = φ+ ⊕ φ−, with φ± irreducible.
Since PA ◦ φ+ ◦ PA = φ−, ‖φ+‖ = ‖φ−‖ = ‖φ‖. Hence, again by theorem 3, there
are simple positive invertible e± with φ±(e±) = ‖φ‖e±. Then, let e = e+ ⊕ e− and
ze = e+ ⊕ (−e−).

Completely Positive Maps. More can be said for a subclass of positive maps which
satisfy a stability condition:

Definition 9. For φ : A→ A and an integer n, introduce maps φ(n) ∈ L (Matn(C)⊗A)
by: φ(n)(M ⊗ x) = M ⊗ φ(x). Then φ is completely positive (c.p.), if all of the φ(n) are
positive.

By Stinespring’s dilation theorem ([159]), c.p. maps φ : A → L (V ) can be written in
terms of a faithful ∗-representation π : A → L (K) where w.l.o.g. π(1A) = idK , and a
bounded linear U : K → V , which is isometric if φ is unital, as

φ(x) = U∗π(x)U . (1.23)

Suppose that A is a superalgebra, V a super Hilbert space and φ homogeneous. Then,
K is a super Hilbert space as well: The parity automorphism of A is represented by a
unitary on K.
Furthermore, restrict to the situation where source and target of φ are identical, i.e.,
A = L (V ). Then the representations are of the form π : L (V ) → Matd(C)⊗̂L (V ),
π(x) = 1⊗̂x, where the first factor counts the multiplicity [48, 38]. Such maps are called
homogeneous completely positive (h.c.p) maps.
Thus, pick a homogeneous basis ψ1, .., ψd ⊂ Cd and operators E1, ..., Ed ⊂ L (V ) with
|Es| = |ψs| to write Uξ =

∑
s ψs⊗̂(Es)

∗ξ. This allows to get the more explicit form

φ(x) ≡ φE(x) ≡ E(x) =
d∑

s=1

(−1)|Es||x|Esx(Es)
∗ . (1.24)

There is some lavishness in using three different symbols for the same map; this is done
to interpolate between general statements and the explicit considerations done in the
main part of the work, dealing with h.c.p. maps originating in the world of super matrix
product states.
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In this context, the Es are called the Kraus operators and the closed subsuperalgebra
generated by them the Kraus algebra A(E).
For h.c.p. maps, there is a connection of the supercommutant Z (E) := A(E)# ⊂ L (V )
and projections reducing said h.c.p. map.

Lemma 3. Let φ = φE be a completely reducible, incontractible, h.c.p. map. Then

(i) Red(φE) = Z (E).

(ii) Z (E)1 ∩A(E) = {0}.

In combination with part (ii) of corollary 1, this gives

FP(φE) = Z (E) · e . (1.25)

Proof.

(i)"⊆": Any x ∈ Red(φ) can be decomposed as x =
∑

a capa where pa is a projection.
Therefore, it suffices to show that all of the projections are in the supercommutant. So,
pick a projection p reducing φ and homogeneous ξ1, ξ2 ∈ V . Then:

〈ξ1, (1− p)φ(p|ζ〉〈ζ|p)(1− p)ξ2〉 =

=
∑

|Es|=0

|〈ξ1, (1− p)Espξ2〉|2 +
∑

|Es|=1

|〈ξ1, (1− p)Es(p0 − p1)ξ2〉|2 .

If p reduces φ, then the left hand side of this equation is zero, and hence, as the right-
hand side is a sum of positive terms, it follows that pEs = Es(p0 + (−1)|Es|p1). Then p
is in the supercommutant: px =

∑
µ,ν=0,1(−1)µνxµpν for all x in the Kraus algebra.

(i)"⊇": In virtue of being a finite-dimensional C∗-algebra, Z (E) is generated by its pro-
jections. Hence, focus on a projection p in the supercommutant.
A positive map φ is reduced by p, if and only if there is a positive real number r s.t.
φ(p) ≤ rp ([47]). Now, let z = z0 +z1 be in the supercommutant. By direct computation,
for φ in the Kraus form of equation 1.24:

φ(z) =
∑

s

[
Esz0(Es)

∗ + (−1)|Es|Esz1(Es)
∗
]

= zφ(1) = z . (1.26)

So in fact the supercommuting operators are fixed points of φ. By taking z to be a
projection, the result follows.

(ii) This follows since Z (E)1 ∩A(E) is the supercenter of A(E).

For φ positive and ‖φ‖ = 1, the peripheral spectrum of φ is:

Per(φ) := {x : φ(x) = λx for |λ| = 1} ⊇ FP(φ) . (1.27)

If the inclusion is an equality, φ is called strongly completely reducible. If φ is additionally
(super-)irreducible, it is called strongly (super-)irreducible.
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For completely positive maps, there is the the Kadison-Schwarz inequality [126, 31],
proven for completeness in the appendix, φ(x∗x) ≥ φ(x∗)φ(x). This allows to prove that
Per(φ) is a group [47]. Then by finite-dimensionality, there is an integer n such that
Per(φn) = FP(φn). In the physical applications that are considered here, it is always
permissible to effectively replace φ → φn, which corresponds to enlarging the unit cell.
A non-trivial peripheral spectrum translates to breaking of translation invariance in spin
chains [50].
Furthermore, strongly (super-)irreducible completely positive maps are dense in the set
of all completely positive maps [49]. For these reasons, completely positive maps with
non-trivial peripheral spectrum are absent from further discussion.

Iterating. After investigating the set of fixed points, turn the attention to the sequence
{φn}n. As n→∞, and in finite dimensional algebras, this converges to the projector on
the set of fixed points. For later applications it is incumbent to characterize the speed
with which this happens.
Recall that the index indλ(φ) of an eigenvalue λ of a linear operator φ is the dimen-
sion of the largest Jordan block corresponding to λ in the decomposition of φ along its
eigenspaces. Relatedly, let the index of an operator φ be the maximum of the indices of
the eigenvalues of φ,

ind(φ) := max{indλ(φ) : λ in the spectrum of φ} . (1.28)

Furthermore, for φ a contraction introduce the gap δφ:

1− δφ := sup{|λ| : λ 6= 1 in the spectrum of φ} . (1.29)

Proposition 1. Let φ : A → A be a positive contraction. Then ind1(φ) = 1. If φ is
strongly completely reducible, then φ∞ := limn→∞ φ

n exists and

‖φn − φ∞‖ ≤ Cnind(φ)−1(1− δφ)n for n > 2 ind(φ) .

Moreover, if ind(φ) = 1, then

‖φn − φ∞‖ ≤ (1− δφ)n .

Finally, if φ = φE is h.c.p. and completely reducible, then

φ∞(x) =
∑

a

tr(ρzax) zae =
∑

a

str(Λzax) zae , (1.30)

where {za}a are a set of self-adjoint homogeneous elements of Z (E) such that za is a
projection if it is even, otherwise (za)

2 is a projection. Here, str(Λ ·) := tr(ρ ·).

Remark 1. Maps with ind(φ) = 1 are important in this work. Recall that such operators
are called diagonalizable, and are dense in the set of all operators.
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Proof. For the first part, consider φ in its Jordan normal form, i.e.,

φ =
∑

λ

(λPλ +Rλ) ,

where the sum extends over the spectrum of φ. Here, the Pλ are disjoint projections,
the Rλ are nilpotent of order indλ(φ). They satisfy the relations Pλ1Rλ2 = Rλ2Pλ1 =
δλ1λ2Rλ1 . Using the convention

(
a
b

)
= 0, if b > a:

φn =
∑

λ

indλ(φ)−1∑

α=0

(
n

α

)
λn−αPλ(Rλ)α

To show that 1(φ) = 1, assume R1 6= 0. Then pick x ∈ im(P1) s.t. R1(x) 6= 0 but
(R1)2(x) = 0. Then φn(x) = x+ nR1(x), which contradicts φ being a contraction.
Let n > 2 ind(φ) and x ∈ A,

‖φn(x)− P1(x)‖ =

∥∥∥∥∥∥
∑

λ 6=1

indλ(φ)−1∑

α=0

(
n

α

)
λn−αPλ(Rλ)α(x)

∥∥∥∥∥∥
=

= sup

{(
n

α

)
|λ|n−α‖Pλ(Rλ)α(x)‖ : λ 6= 1 , α < indλ(φ)

}
≤

≤ sup

{(
n

α

)
|λ|n−α : λ 6= 1 , α < ind(φ)

}
‖x‖ ≤

≤ sup

{(
n

α

)
: α < ind(φ)

}
sup

{
|λ|n−α : λ 6= 1 , α < ind(φ)

}
≤

≤
(

n

ind(φ)− 1

)
(1− δφ)n−ind(φ)+1‖x‖ .

Using the bound
(
n
k

)
≤
(
ne
k

)k:

‖φn(x)− P1(x)‖ ≤
(

ne

ind(φ)− 1

)ind(φ)−1

(1− δφ)n−ind(φ)+1‖x‖ .

If ind(φ) = 1, the spectral representation is simplified to

‖φn(x)− P1(x)‖ =

∥∥∥∥∥∥
∑

λ 6=1

λnPλ

∥∥∥∥∥∥
= sup{|λ|n : λ 6= 1} = (1− δφ)n .

For the explicit form of φ∞, use equation 1.25.

Completely positive maps are, by Stinespring’s dilation theorem cited above, the compo-
sition of a representation on some auxiliary space, and an isometry. This auxiliary space
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allows to consider variations of the given map.
For φ = U

[
1Cd⊗̂(·)

]
U∗ ∈ L 2(V ) a h.c.p. map and L ∈ Matd(C), consider:

φ[L](x) ≡ φE [L](x) ≡ EL(x) := U
[
L⊗̂x

]
U∗ =

=
d∑

s,t=1

(−1)|Et||x|〈ψs, L(ψt)〉Esx(Et)
∗ .

(1.31)

There is a convenient way of expressing these maps. Represent E by a tensor diagram
as

E(v) = E

v

’ E∗(ϕ) = E∗
ϕ

.

In fact it is often useful to use also E which is obtained from E by reversing all the
arrows. For example, the operators EL of equation 1.31 are presented diagrammatically
as

EL(x) = E

L

E

x .

The limit formula 1.30 for example is expressed diagrammatically as

E

E∗

E

E∗

· · ·

· · ·

n

n→∞−−−−→ ∑
a

va Λa ,

(1.32)

using the shorthand va = zae and Λa = Λza.
Furthermore, define maps EO ≡ φE,n[O] for O ∈ Matd(C)⊗̂n as the linear extensions of

φE,n[L1⊗̂ · · · ⊗̂Ln](x) := φE [L1] ◦ · · · ◦ φE [Ln](x) . (1.33)

Lemma 4. Let φ = φE be h.c.p. Consider for x ∈ L (V ) and f ∈ L (V )∗:

φE,x,n : Matd(C)⊗̂n → L (V ) , φE,x,n(O) = φE,n[O](x) ; (1.34)

φE,f,n : Matd(C)⊗̂n → L (V )∗ , φE,f,n(O) = f ◦ φE,n[O] . (1.35)

Then φE,x,n or φE,f,n are positive and homogeneous if x respectively f are.
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Proof. The proof shows the statement only for φE,x,n, as the other result is strictly
analogous.
The first step is to show, by induction in n, that, for O ∈ Matd(C)⊗̂n and x even:

φE,n,x(O) =
∑

s1···sn
r1···rn

〈ψs1⊗̂ · · · ⊗̂ψsn ,O(ψr1⊗̂ · · · ⊗̂ψrn)〉Es1 · · ·Esnx(Er1 · · ·Ern)∗ . (1.36)

Indeed, the case n = 1 is clear so assume the statement to be true for k = 1, ..., n − 1.
Consider operators L⊗̂On−1 ∈ Matd(C)⊗̂Matd(C)⊗̂(n−1). Then:

φE [L] ◦ φE,x,n−1(On−1) =
∑

s,r

(−1)|ψr||O|〈ψs, Lψr〉×

×
∑

s1···sn−1
r1···rn−1

〈ψs1⊗̂ · · · ⊗̂ψsn−1 ,On−1(ψr1⊗̂ · · · ⊗̂ψrn−1)〉EsEs1 · · ·Esn−1x(Er1 · · ·Ern−1)∗(Er)
∗ .

The statement follows by observing that

(−1)|ψr||O|〈ψs, Lψr〉〈Ψ1,OΨ2〉 = (−1)|ψr||O|〈ψs⊗̂Ψ1, Lψr⊗̂OΨ2〉 =

= 〈ψs⊗̂Ψ1, (L⊗̂O)(ψr⊗̂Ψr)〉 .

The second step is to become convinced that the expression in equation 1.36 is positive
whenever O, x are positive. Let O1, x1 s.t. O = (O1)∗O1 and x = x1(x1)∗. Then:

EO(1A) =
∑

t1,...,tn

Xt1···tn(Xt1···tn)∗ ≥ 0 ;

where Xt1···tn :=
∑

s1···sn
〈O1(ψs1⊗̂ · · · ⊗̂ψsn), ψt1⊗̂ · · · ⊗̂ψtn〉Es1 · · ·Esnx1 .

The discussion is finished by describing some relations between various cute properties
of the objects introduced in this section, all parametrized by one tensor E.

Lemma 5. Suppose φ = φE is a h.c.p. map. Then t.f.a.e.:

(i) A(E) = A(E)∗.

(ii) A(E) is a C∗-subsuperalgebra of L (V ).

(iii) A(E) is semisimple.

(iv) φ is strongly completely reducible.

(v) For x ∈ A(E) invertible, the image of the family (φE,x,n)n exhausts A(E).

(vi) For f ∈ A(E)∗ non-degenerate, the image of the family (φE,f,n)n exhausts A(E)∗.

Furthermore, t.f.a.e.:
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(vii) φE is strongly superirreducible.

(viii) A(E) is supercentral supersimple.

Proof.

(i)⇒ (ii): Except the closure under the star, A(E) already inherited all properties from
L (V ).

(ii)⇒ (iii): This is as finite-dimensional C∗-algebras are isomorphic to direct sums of ma-
trix algebras [38].

(iii)⇔(iv): Decompose Es =
⊕

aEa,s into its simple components which gives φ =
⊕

a φEa .
But A(Ea) is simple and central, so that φEa is strongly irreducible ([141], also (vii) ⇒
(viii) below, after trivializing the grading). The implications can be traced backwards.

(iii)⇒(i): A(E), being a direct sum of matrix algebras, is closed under the adjoint.

(i)⇔(v),(vi): If A(E)∗ = A(E) then the span of Es1 · · ·Esn is the same as

Es1 · · ·Esn(Etn)∗ · · · (Et1)∗ .

Conversely if these two spans agree, they are closed under the star since the latter is.

(vii)⇔(viii): Any two-sided superideal I gives a projection pI reducing φE , so A(E) has to
be supersimple. Furthermore, by lemma 3 there is a 1 : 1 correspondence between the su-
percenter of A(E) and projections reducing φE , so supercentrality and superirreducibility
are equivalent.

In the case where A(E) is supercentral supersimple but not central simple, the η heralded
in theorem 2 can be given in terms of quantities already introduced. Let P be the parity
operator in L (V ) and ze the odd fixed point of φ. Then η = −iPz. This implies that the
indices introduced below theorem 2 and in corollary 1 agree for a strongly superirreducible
h.c.p. map φE :

µAE = µφE . (1.37)

Since φE being strongly superirreducible, A(E) supersimple etc. can be read off from
the tensors E, they are called the respective property; i.e., E is called supersimple if it
generates a supersimple A(E) etc.

1.3. G-Actions

All of the objects introduced in the previous section are endowed with the action of a
group G, with the relevant case being some g ∈ G acting by anti-unitaries. The type of
group considered is restricted by

Definition 10. A symmetry group (G, p) is a compact group G together with a group
homomorphism p : G→ Z2.
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Later on, the unitary part will mostly be ignored, and the important part will be whether,
and which, anti-unitary symmetries are present.
As mentioned above, fermion parity is always present and not included in G. The group
homomorphism p is used to keep track of whether a given operation reverses the flow
of time, i.e., whether it is represented by anti-unitaries. Since the reversal of time is an
involution on observables, this restricts the form.
Relatedly, denote the action of Z2 on C by complex conjugation as

( · ) r : z 7→
{
z r = 0 ,

z r = 1 .
(1.38)

Definition 11. For V a vector space, a projective representation of a symmetry group
G is a map α : G→ Aut(V ) such that (i) αg is p-linear, meaning αg(zξ) = zp(g)αg(ξ) for
ξ ∈ V and z a scalar; (ii) α1 = idV and (iii) αg1αg2 = v(g1, g2)αg1g2 where v : G×G→
U(1) is a function that satisfies

1 = dv(g1, g2, g3) :=
v(g1, g2g3)v(g2, g3)

p(g1)

v(g1, g2)v(g1g2, g3)
. (1.39)

If V is normed, demand that the representation is isometric, ‖αg(ξ)‖ = ‖ξ‖. If V is
super, αg should have a definite fermion parity αg(P ) =: (−1)|αg |P .

The easiest case of a projective representation is when there is a function φ : G→ U(1)
such that

v(g1, g2) = dφ(g1, g2) :=
φ(g1)φ(g2)

p(g1)

φ(g1g2)
, (1.40)

which solves equation 1.39. Then the function v is eliminated by choosing α̃g := φ(g)αg.
A projective representation with trivial or trivializable (by a redefinition) v is called
a (proper) representation of G, and sometimes the term “projective representation" is
reserved the situations where v cannot be eliminated. When v 6= dφ, equation 1.39
ensures associativity, αg1(αg2αg3) = (αg1αg2)αg3 . If |αg| = 0 for all g, the representation
is called even.
Suppose that A is a C∗ superalgebra carrying a proper (G, p)-representation α, and ω is
a G-invariant state on A. Then by the uniqueness of the Gel’fand construction 1.1 there
is a projective representation α̂ : (G, p)→ Aut(Hω) such that

πω ◦ αg(x) = (−1)|α̂g ||x|α̂gπ(x)α̂−1
g .

The study of completely positive maps on L (V ) has revealed that they should be studied
in terms of auxiliary (here, in strict inversion of the later dependencies) vector spaces H.
Definition 12. A tensor E : H → L (V ) is G-symmetric if there is an even representa-
tion αH : G→ Aut(H), and a projective homogeneous representation αV : G→ Aut(V )
satisfying the equivariance condition

sAdαH ◦ E = E ◦ αH , sAdu(w) := (−1)|w||u|uwu−1; (1.41)

For simplicity use the abbreviations αH = α and αV = α̂.
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This definition allows to lift symmetry action between the two spaces, in the following
way:

EsAdαg (L) = sAdα̂g ◦ EL ◦ (sAdα̂g)
−1 . (1.42)

Hence, if z is a fixed point of E, so is sAdα̂g(z).
Equation 1.41 has also diagrammatic representation, where, however, one strictly has to
differentiate between (i) the unitary and (ii) the anti-unitary case. Case (i) is quite easy:
for a given unitary operation α and its lift α̂, there is the equivariance condition

E(αψ) = (−1)|α̂||ψ|α̂E(ψ)α̂−1 , (1.43)

To deal with the second possibility, one first has to introduce a bit more machinery.

Anti-Linear Structrures on Super Vector Spaces. Consider a super Banach space
(V, ‖ · ‖) together with a homogeneous anti-linear, isometric K : V → V , i.e. KV µ =
V µ+k, K(zξ) = zK(ξ) and ‖K(ξ)‖ = ‖ξ‖. If V is a super Hilbert space, the last condition
is 〈K(ξ1),K(ξ2)〉 = 〈ξ1, ξ2〉, that is, K is anti-unitary. Demand that AdK is an involution
on the even operators.
The first possibility is that AdK is already an involution, which allows for K2 = z1
with z a unit complex number. However, it is easy to see that z = (−1)εK , by using
zK = K3 = Kz. In the εK = 0 case, K is a real structure, while in the εK = 1 case it is a
quaternionic structure, and V is called a real or a quaternionic vector space, respectively.
The terminology acquires its justification as K permits to view V as a vector space over
the real or quaternionic numbers, respectively:
R) Any complex vector space can be seen as a real vector space as R ⊆ C, but not
canonically so. If V is equipped with a real structure, K2 = 1, introduce the real
vector space of fixed points of K, VR = Fix(K), and a complex structure on VR ⊕ VR by
J(x, y) = (−y, x). Then V ∼= (VR ⊕ VR, J).
H) To give V the structure of a quaternionic vector space it is necessary to define an
associative and distributive multiplication of quaternions q ∈ H with vectors ξ ∈ V .
This is possible by an anti-linear K with K2 = −1. Denote the imaginary units as i, j, k.
Scalar multiplication with q = (q0 + iq1) + (q2 + iq3)j is

qξ = (z + wj) · ξ := zξ + wK(ξ) . (1.44)

Associativity q1(q1ξ) = (q1q2)ξ follows since the imaginary units anticommute.

The second possibility is that K2 = zP . This can be rearranged to show that (−1)k =
KPK−1P−1 = z2. There are two roots for z, but they can be exchanged by a redefinition
P → −P .
It turns out to be more convenient to group (k, z) into one number as

exp(iπqK/2) := zik .

If K2 = zP , then exp(iπqK/2) = (−1)k. The possible values for qK are tabulated here:
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K2 = z K2 = zP

(−1)ε (−1)k q (−1)k q

1 1 0 1 0
1 −1 1
−1 1 2 −1 2
−1 −1 3

Anti-linear operation of the the first kind are referred to as particle-hole transformations
and denoted by C, while those of the second kind are called motion-reversal transforma-
tions and indicated by the letter T .
These anti-linear operations, together with the Hilbert structure, allow to introduce non-
degenerate bilinear forms on V , which play decisive rôles in this work.
An obvious way of obtaining a bilinear form on V is the following: (ξ1, ξ2) 7→ 〈K(ξ1), ξ2〉.
However, this expression is impractical, since it does not behave well under tensor prod-
ucts. To see this, write down the natural tensor product of two bilinear forms (V1, κ1)
and (V2, κ2):

[κ1⊗̂κ2](v1⊗̂v2, w1⊗̂w2) := (−1)|v2||w1|+k2(|v1|+|w1|)κ1(v1, w1)κ2(v2, w2) , (1.45)

where ki = |κi|.
Now a short calculation shows that the naïve choice of bilinear form does not satisfy this:

〈
[K1⊗̂K2](ξ1⊗̂ζ1) , ξ2⊗̂ζ2

〉
= (−1)k2|ξ1| 〈K1(ξ1)⊗̂K2(ζ1) , ξ2⊗̂ζ2

〉
=

= (−1)k2|ξ1| 〈K1(ξ1) , ξ2〉 〈K2(ζ1) , ζ2〉 .

This non-super factorization produces all kinds of inconveniences on tensor products and,
consequently, in diagrams.

Doubling down on the introduction of super hermitian structures of definition 3, define
the following canonical bilinear form on a super Hilbert space (V, h) with anti-unitary
K:

κ(ξ1, ξ2) := h(K(ξ1), ξ2) = iq(|K(ξ1)|) 〈K(ξ1) , ξ2〉 . (1.46)

Write τ and χ instead of κ to indicate that a bilinear form is induced from a motion-
reversal or a particle-hole type transformation, respectively.
With this definition, κ12 = κ1⊗̂κ2: Then using |K(vi)| = |wi|:

κ12(ξ1⊗̂ζ1, ξ2⊗̂ζ2) := i|ξ2⊗̂ζ2|
〈
[K1⊗̂K2](ξ1⊗̂ζ1) , ξ2⊗̂ζ2

〉
=

= i|ξ2|i|ζ2|(−1)|ξ2||ζ2|+k2|ξ1| 〈K1(ξ1) , ξ2〉 〈K2(ζ1) , ζ2〉 =

=: (−1)|ξ2||ζ2|+k2|ξ1|κ1(ξ1, ξ2)κ2(ζ1, ζ2) .

Resting assured that κ behaves well under tensor products, it can be put into the tensor
diagram language as ξ1 ξ2κ = (−1)k|ξ1|κ(ξ1, ξ2) .
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This diagram can be read in all directions; importantly, consider κ as an isomorphism
V → V ∗:

(κξ1)(ξ2) := κ(ξ1, ξ2) . (1.47)

The adjoint map κ∗ : V ∗ → V is defined, as usual, as

〈κ∗ϕ , ξ〉V := 〈ϕ , κξ〉V ∗ . (1.48)

This is useful as κκ∗ = idV ∗ and κ∗κ = idV .

Since the anti-linear operations are of a special form, the bilinear forms have symme-
try properties. Note first that

κ(v, w) = i|K(v)| 〈K(v) , w〉 = i|K(v)| 〈K∗(w) , v〉 = ik(−1)|k||v|
[
i|K(w)| 〈KK∗K∗(w) , v〉

]
=

= ik(−1)|k||v|κ((K∗)2w, v) , (1.49)

where the anti-unitarity was used. Now, for the two relevant cases:

τ(v, w) = zT i
kT (−1)kT |v|+|w|τ(w, v) = exp(−iπqT /2) (−1)|v||w|τ(w, v) , (1.50)

χ(v, w) = ikC (−1)kC |v|χ(w, v) = exp(−iπqC/2) (−1)|v||w| χ(Pw, v) . (1.51)

For diagrams, it is more useful to use the isomorphism κ′ : V ∗∗ → V ∗ obtained by
dualizing. Then:

τ ′ = (−1)k τ . (1.52)

χ′ = exp(−iπqC/2) χ P . (1.53)

The conjugate diagrams are:

(−1)k τ∗′ = τ ′∗ = (−1)k τ∗ .
(1.54)

(−1)k χ∗′ = χ′∗ = exp(iπqC/2) χ∗P . (1.55)

Induced Anti-linear Structures on Superalgebras. If A ⊆ L (V ) and V carries a ho-
mogeneous antilinear map K, then Γ(x) = sAdK(x) = (−1)k|x|KxK−1 is an antilinear
structure on A.

Definition 13. A complex superalgebra A is called real if there is an anti-linear involutive
even automorphism Γ. A is called graded real if there is an anti-linear automorphism Γ
that squares to the parity on A: Γ2(x) = (−1)|x|x.
If A is a C∗-algebra, Γ is demanded to be compatible with the ∗-structure, and is hence
an isometry.
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Heed the choice of words here: A real algebra is an algebra over C with an antilinear
involution – an algebra over the reals is called an algebra over R. There is also the
possibility to define the term “real algebra" to refer to an algebra over the reals, and such
is the habit in algebra proper. The convention here, on the other hand, is more common
among the C∗-community, and is adopted as for physical reasons, complex vector spaces,
complex algebras are the primitive objects, from which the vector spaces and algebras
over the real numbers emerge in certain contexts. A source on C∗-algebras over the real
numbers is [137].
All real central simple algebras are isomorphic to Matn(R) or Matn(H) [33, p. 137ff.].
For a real supercentral supersimple algebra, introduce an index:

εA :=

{
0 if either A or A0 is isomorphic to Matn(R) ,

1 if either A or A0 is isomorphic to Matn(H) .

Finally, for a ∗-representation of A on a Hilbert space V , the parity on A is induced
by a parity operator P on V . Then, define (−1)kA := Γ(P ). Thus, there are three Z2

indices for real supercentral supersimple algebras, giving 8 = 23 possibilities. That these
possibilities are actually realized can be demonstrated by considering Clifford algebras
[57, 7].
All graded real supercentral supersimple algebra (A,Γ) are actually already central sim-
ple: Suppose A0 is central simple and let η be the central odd element given by theorem
2. Then η and Γ(η) are non-zero, linearly independent (by Wigner’s theorem) and both
central and odd, so that Γ(η)η is a non-trivial even central element.

In the following, the (graded) real structure is used to define a graded linear anti-
automorphism on A = L (V ). To that end, recall that an antilinear K on V combines
with a super hermitian structure on V to a graded bilinear form κ, as defined in equa-
tion 1.46, which in turn gives linear isomorphisms κ : V → V ∗ and κ∗ : V ∗ → V as in
equations 1.47 and 1.48. These define a graded transpose on A, that is, a linear anti-
automorphism on A.
Combining the dual of definition 2 with the κ-isomorphisms V ∼= V ∗ therefore produces
a linear graded anti-automorphism, a graded transpose:

Definition 14. Suppose L is a linear operator on a super Hilbert space with a graded
bilinear form κ. Then the graded transpose is the linear map L 7→ Lt defined by

Lt := (−1)|κ||L|κ∗ ◦ L′ ◦ κ , (1.56)

This is conveniently expressed diagrammatically:

Lt = (−1)k|L| κ∗ L′ κ. . (1.57)

Since κ and dualization factors under super tensor products:

(a⊗̂b)t = at⊗̂bt .
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To derive an expression for Lt in terms of K, first express equation 1.56 in terms of the
bilinear form κ as

κ(Ltv, w) = (κLtv)(w) = (−1)|κ||L|(L′(κv))(w) = (−1)|L||v|κ(v, Lw) . (1.58)

Using furthermore the relations between the graded hermitian form, the bilinear form
and the inner product on a super Hilbert space:

〈
w ,Ltv

〉
=
〈
KLtv ,Kw

〉
= (−i)|KLv|κ(Ltv,Kw)

def
= (−i)|KLv|(−1)|K||v|κ(v, LKw) =

= (−i)|L|(−1)k|L| 〈Tv , LKw〉 = (−i)|L|(−1)k|L| 〈w , [KL∗K−1]v〉 .

Hence:

Lt = (−i)|L|(−1)k|L|KL∗K−1 . (1.59)

This formula simplifies to make certain observation about the algebraic nature of this
graded transpose:

Ltt = (−1)|L|K2LK−2 . (1.60)

If V is a super Hilbert space, note the following relation between dualization and taking
the Hilbert space adjoint for a map L : V →W :

(L∗)′ = (−1)|L|(L′)∗ . (1.61)

This equation will be useful later. It is shown by explicit calculation:
〈
(L′)∗ϕ ,ψ

〉
W ∗ = (−1)|L||ψ| 〈ϕ ,ψ ◦ L〉V ∗ =

= (−1)|L||ψ| 〈ϕ ◦ L∗ , ψ〉W ∗ = (−1)|L|
〈
(L∗)′ϕ ,ψ

〉
.

The notion of a transpose now allows to return to the quest of finding diagrammatic
expressions for the anti-unitary case of 1.41 postponed above. Indeed, assume an anti-
linear K and its lift K̂ satisfy the equivariance condition,

E(Kψ) = (−1)k̂|ψ|K̂E(ψ)K̂−1 .

In order to allow for diagrammatic expressions, turn to the bilinear forms κ, κ̂ defined by
K, K̂ respectively and their notion of transposition. Then:

E(κ∗ϕ) = E∗(ϕ)t , (1.62)

as is demonstrated by a calculation,

E∗(κψ)∗ = (−i)|ψ|E(Kψ) = (−i)|ψ|(−1)k̂|ψ|K̂E(ψ)K̂−1 = [E(ψ)∗]t .

Equation 1.62 is equivalently expressed diagrammatically as
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E

κ∗ ϕ

= E(κ∗ϕ) = (−1)k̂|ϕ| κ̂∗ E(ϕ) κ̂ =

= κ̂∗ E κ̂

ϕ

.

Another form will be useful later on. First study the case of particle-hole symmetry
κ = χ.

E

χ∗

= E

χ∗′P

= χ̂∗ E χ̂

P

=

= P̂ χ̂∗ E χ̂ P̂

= exp(−iπqC/2)

χ̂′∗
= exp(iπqC/2)

χ̂′

= χ̂′∗ E χ̂′ .

(1.63)

Notice that the identity holds for the time-reversal case κ = τ as well, by simply omitting
the fermion parities from the diagrams.
By conjugation:

E∗

κ

= κ̂′∗ E′ κ̂′ . (1.64)
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These diagrams behave well under concatenation.

E∗
κ

E∗
κ

= κ̂′∗ E′ κ̂′

κ̂′∗ E′ κ̂′

=

= E′ κ̂′

κ̂′∗ E′

= E

κ̂′

κ̂′∗

E

.

(1.65)

Similarly:

E

κ∗

E

κ∗
=

κ̂′∗

E∗

E∗

κ̂′

. (1.66)

In the anti-unitary case, when sAd
K̂

is an involution, it is useful to choose a basis za of
the set of fixed points which is fixed by its action,

za = sAd
K̂

(za) . (1.67)
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2. Super Quantum Spin Chains

The question of quantum phases is tackled via states on local algebras. This formalism is
introduced. It follows a discussion how that very reduced view - states with certain prop-
erties on certain algebras – encapsulate the information necessary to grasp the universal
content of topological quantum matter.

2.1. Local Algebras

The goal of this section is to construct an algebra of graded operators on the one-
dimensional lattice Z, allowing for the presence of on-site symmetry groups G. In the
ungraded case, this is a well-known procedure, for a detailed account of this consult
[109]. The exposition is inserted here in order to fix the notation, and also to explain
modifications which are appropriate to the graded case.
To each lattice point x ∈ Z associate a graded unital finite-dimensional C∗-algebra A{x}.
For points x1 < · · · < xn ∈ Z define

A{x1,...,xn} := A{x1}⊗̂ · · · ⊗̂A{xn} . (2.1)

Notice that the ordering is crucial since the tensor product is no longer commutative.
Quite generally one can find a H{x}, termed the on-site super Hilbert space, such that
A{x} ⊆ L (H{x}), and here the assumption is that this is in fact an equality, so that A{x}
is isomorphic to some matrix algebra.
More generally, for any finite subset X ⊂ Z, AX shall denote the algebra which is
obtained by first ordering the elements of X and then applying 2.1.
Using the unit 1A{x} ∈ A{x}, there is a way of embedding AX into AY for X ⊂ Y .
Denote by BY,X the braiding isomorphism that braids in AY all factors associated to
points x ∈ X to the left of those associated to points y ∈ Y \ X. For example if
Y = {1, 2, 3, 4} and X = {1, 3}, then BY,X permutes Y to {1, 3, 2, 4}. Then define

ιX,Y : AX → AY , OX 7→ B−1
Y,X(OX⊗̂1AY \X ) . (2.2)

Since the identity is in the 0-component of A, this braiding does not introduce any signs.
For that reason ιX,Y are injective homomorphisms, and ιY,Z◦ιX,Y = ιX,Z forX ⊂ Y ⊂ Z.
Such a collection of algebras AX and homomorphisms ιX,Y is called a direct system over
subsets of Z.
Given such a direct system, take the direct limit, denoted as

AX = lim
→
A•‖·‖ , (2.3)
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for X ⊆ Z possibly infinite, where a subsequent norm completion is indicated by the
customary bar accompanied by the employed norm, not to be confused with complex
conjugation, for which the bar is used also.
The direct limit is taken in two steps. First, consider the disjoint union of all AY such
that Y is a finite subset of X:

⊔

Y⊂X
AY . (2.4)

On this set, introduce an equivalence relation Rι between objects OY1 ∈ AY1 and OY2 ∈
AY2 , denoted OY1RιOY2 , if there is a finite Z ⊂ X such that Y1 ⊂ Z and Y2 ⊂ Z, and:

OY1RιOY2 ⇔ ιY1,Z(OY1) = ιY2,Z(OY2) . (2.5)

The direct limit is then:

AX,loc := lim
→
A• :=

⊔

Y⊂X
AY /Rι . (2.6)

By the general properties of direct limits1, this is a graded algebra.

Definition 15. Let A be a graded finite-dimensional C∗-algebra. Then AZ,loc is called
the algebra of graded local operators. For each graded local operator O there are finite
subsets X such that there are OX ∈ AX with OX ∈ O. The smallest such subset is called
the support of O and written as supp(O). AZ is called the algebra of graded quasi-local
operators.

The discussion adhered to the definition of AX,loc as an algebra of equivalence classes of
operators. Commonly, the distinction between an element and its class is blurred, and
such is the practice in the following.
The epithet of locality had to be qualified for the following reason: Take local O1,2 with
disjoint supports. They act on degrees of freedom separated by a possibly large spatial
distance, and therefore should not know of each other – this is exactly what the notion of
“locality" was invented to capture. This “not knowing of each other" in terms of operators
means of course that they should commute.
Now, it is not difficult to see from the structure of these algebras that operators do not
do that, but instead graded commute:

O1O2 = (−1)|O1||O2|O2O1 . (2.7)

For that reason, the above operators are not "local" in the physical sense. In particular,
operators which anti-commute when spatially separated cannot correspond to observ-
ables.
This property of the algebra AZ is called graded asymptotic abelianness.

1A discussion can be found in [16]. For a modern reformulation – and a change of terminology to colimit
– check the nlab [115].
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2.2. Symmetry Actions

Symmetry actions can be grouped into two types: external and internal operations. Of
the former kind, only translations and time-reversals are considered here, although time
– or more apt: motion – reversal is, in the non-relativistic Hilbert space formalism, closer
to an internal symmetry and is thus dealt with in conjunction to those. The external
symmetry operations of reflections or shift-reflections are not treated in this work. A
treatment of one-dimensional topological phases with reflection symmetry can be found
in [26].

When translation invariant system are to be described, there
should be graded isomorphisms A{x} ∼= A{y}, or, more conve-
niently, πx : A{x} → A for some fixed A.
Whence the translation action S on operators O supported at
a single site x is S(O) := π−1

x+1 ◦ πx(O). Extend this action to
tensor products by

S(O1⊗̂ · · · ⊗̂On) = S(O1)⊗̂ · · · ⊗̂S(On) , (2.8)

and finally to all of AZ,loc by continuity and linearity. Thus, there is a Z-action on the
quasi-local algebra by translations.

The discussion of internal symmetry groups supposes translation symmetry.
For a group G pick an even representation αH : G → Aut(H)0. Then this induces an
even group action αA : G→ Aut(A) by

αg(L) = αHg ◦ L ◦ (αHg )−1 . (2.9)

This can be lifted to a representation αA{x} : G∆ → Aut(A{x}) simply by

α
A{x}
g := πx ◦ αAg ◦ π−1

x . (2.10)

On tensor products of the form 2.1, define a representation by

α
A{x1,...,xn}
g := α

A{x1}
g ⊗̂ · · · ⊗̂αA{xn}g . (2.11)

If X ⊂ Y , then αAYg ◦ ιX,Y = ιX,Y ◦ αAXg . Hence, this induces a representation αAZ .

Definition 16. A quasi-local algebra AZ together with a G-action as described is termed
a graded quasi-local algebra with on-site symmetry group G.

A necessary ingredient for this to work so smoothly is the assumption that all the αHg are
even. If a symmetry G acts by odd operators on a super Hilbert space, invariant states
cannot have definite fermion parity, and hence by the parity super-selection rule, the
odd symmetries are in fact broken. Now, in super quantum spin systems it is possible to
have, locally, odd symmetry generators, which always combine to even ones in a suitably
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chosen thermodynamic limit; i.e., by a convenient choice of unit cell. This guarantees
the existence of G-invariant trivial states, i.e., states that have zero correlation length
and no entanglement. This is theoretically convenient, but might not always map to a
concrete physical lattice system in the presence of crystalline symmetries [19].

What are reasonable choices for G? It is helpful to consider what systems are supposed
to be described by the formalism of super quantum spin systems: Systems of electrons.
That is, the on-site super Hilbert spaces are typically fermionic Fock space H ∼= Λ(V ),
where V is a (ungraded/trivially graded) N -dimensional Hilbert space describing or-
bitals, for example of Wannier type, or obtained in tight-binding approximation.
To be more explicit, consider some integer N and the super Hilbert space H = Λ(V ), the
exterior algebra over V ∼= CN with an ONB e1, ..., eN and parity operator P |Λk = (−1)k.
The creation operator of mode ei, denoted as c∗i , is:

c∗i (ei1 ∧ · · · ∧ eik) := ei ∧ ei1 ∧ · · · ∧ eik .

Furthermore, let ci be its adjoint, the annihilation operator. These satisfy canonical
anticommutation relations (CAR):

{c∗i , c∗j} = 0 , {ci , cj} = 0 , {c∗i , cj} = δij .

One way of obtaining symmetry transformations on H is by tensoring transformations
on V . These are called single-particle symmetries: Suppose u : V → V is a unitary,
then u⊗n is a unitary on V ⊗n. This is left unchanged by anti-symmetrization, so that
α|Λk := u⊗k is a many-body unitary operation. For example, if u is the multiplication
by a complex number eix, then, with ψn ∈ Λn(V ):

αeix

(∑

n

ψn

)
=
∑

n

eixnψn . (2.12)

This is the U(1)Q global phase rotation symmetry, whose presence indicates that the
system is not in a superconducting state. Similarly, e.g., for the SU(2)spin group of spin
rotations, which is also induced through its action on the single-particle space.
There is also one anti-unitary symmetry of this type, the operation of time- or motion-
reversal T . This is the part of fundamental time-reversal that acts on the electrons, and
for that reason it inherits from its relativistic counterpart the relation

T 2 = P .

For even N define an anti-linear operation T |V as

T (e2i−1) = e2i , T (e2i) = −e2i−1 ,

so that T 2|V = −1. Then, extend T to Λ(V ) by

T (ei1 ∧ · · · ∧ eik) = [T |V (ei1)] ∧ · · · ∧ [T |V (eik)] ,
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so that indeed T 2 = P . This symmetry acts on the creation and annihilation operators
as

Tc2i−1T
−1 = c2i , T c2iT

−1 = −c2i−1 .

A symmetry which is not obtained in this way is termed a many-body symmetry. It
can only arise in many-body systems. Focus on one such operation: The anti-unitary
Particle-hole transformations Ξ, exchanging creation and annihilation operators:

Ξ ciΞ
−1 = c∗i , Ξ c∗iΞ

−1 = ci .

Because of this property, Ξ has to map Λk into ΛN−k.
Following [179], the most convenient way to define Ξ is by using the wedge-product on
Λ(V ):

〈Ξ(ξ1), ξ2〉Λk := 〈Ωk, ξ1 ∧ ξ2〉 , (2.13)

where Ωk is a top-dimensional unit vector with Ωk = (−1)N−kΩk−1. Some manipulations
then show that Ξ2 = (−1)N(N−1)/21.
An operation of the form Ξ is fine as it is, but it will usually not be a symmetry of
realistic Hamiltonians. This is because it forbids all two-body terms. Indeed observe
that for Aij = Aji:

Ξ


∑

ij

Aijc
∗
i cj


Ξ−1 = −

∑

ij

Aijc
∗
i cj +

∑

i

Aii .

This does not rule out that such a transformation appears as a symmetry; it just requires
some fine-tuning of the Hamiltonian, as can appear for example in quantum Hall systems
at half filling [62, 156, 157, 179]. To allow for one-body terms in a particle-hole symmetric
Hamiltonian, twist Ξ with some unitary single-particle involution u. Such transforma-
tions are denoted by C. They can appear as symmetries of gapped ground states, for
example in Hubbard models at half filling when correlated hopping is negligible [93, 155].
This operation is even if N is even, and C2 = det(u)(−1)N(N−1)/21. Since it is conve-
nient to choose the unit cell such that there are symmetric states with no entanglement,
assume N even and such that C2 = 1.
Both the single-particle symmetries and C map quasi-particle excitations to other quasi-
particle excitations, in the limit where band theory applies. In such a limit, it is hard to
motivate other types of symmetries.

Note that both C and T reverse the direction of time. In a space-time picture, reversing
time t 7→ −t is a Z2 subgroup. Thus, it has to act as an involution on all observables,
i.e., even operators. This allows exactly for the above extensions to odd operators: Ei-
ther T 2OT−2 = −O or C2OC−2 = +O. In this light, the aforementioned constructions
are just an explanation of how such symmetries may come about in condensed matter
systems.
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2.3. States

After introducing the way in which operators are to be modeled in the previous sec-
tion, this one turns to states on super spin chains. The spatiality and the asymptotic
abelianess of the chain algebra reflects on the set of states. Hamiltonians and ground
states are introduced. The section finishes with a discussion of states that exhibit su-
perconductivity, and how to model them. The formalism of super matrix product states
is committed to the particle-number non-conserving wavefunctions used in this setting
and the interpretational problems of the latter are inherited by the former. I argue that
such problems loose their edge in the limit of infinite volume, as they become more a
question of definition and convenience as of physical phenomena, which are equal in any
case. This gives license in handling these mathematical idealization as is deemed most
useful.

If ω is a state on a graded quasi-local algebra AZ equipped with a translation auto-
morphism S, then ω is translational invariant if ω ◦ S = ω. Throughout assume that ω
is an even functional. If A comes with an on-site G-action, then ω has G-symmetry if
ω ◦ αg = ω for all g ∈ G. These are the states of concern from now on.
A state ω is said to strongly cluster if for any two observables O1,O2:

lim
r→∞

ω(O1 S
r(O2)) = ω(O1)ω(O2) . (2.14)

As I do not deal with weakly clustering states – which allows for some averaging – the
property 2.14 is referred to as clustering.
Consider the quantity

Corrω(r) := sup

{
|ω(O1⊗̂1⊗̂r⊗̂O2)− ω(O1)ω(O2)|

‖O1‖‖O2‖
: O1,O2 ∈ AZ,loc

}
, (2.15)

which gives the smallest correlation length in the system. Say that ω has exponential
decay with correlation length `c if there is a constant C such that

Corrω(r) ≤ C exp(−r/`c) . (2.16)

A state ω is mixed if there are states ω1, ω2 and 0 < x < 1 s.t. ω = xω1 + (1 − x)ω2.
Otherwise ω is pure.
There is a connection between the decomposition of states into pure ones and the clus-
tering of expectation values:

Theorem 4 ([87, 138, 108, 23]). An even translational invariant state ω on AZ is pure
if and only if it is strongly clustering.

The discussion above focuses on properties of the states, which are supposed to be given,
and such is the general approach in this work, as is ubiquitous in the tensor network
literature. These states model ground states or low-energy descriptions of matter subject
to local gapped dynamics.
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Hamiltonians. The first notion is an interaction, which is a map Φ from the power set
of Z into AZ: for X ⊂ Z, Φ(X) ∈ AX . There are various conditions that can be imposed
on Φ in order to allow for analytical control. Here, assume that Φ is finite range, i.e.,
there is a constant R such that Φ(X) = 0 for all |X| > R, and that Φ is translation
invariant, i.e., Φ(X + r) = Sr ◦ Φ(X).
The Hamiltonian is given, formally, in terms of the interaction as H =

∑
X⊂Z Φ(X);

however this is not in the operator algebra, so it is necessary to be careful. For a finite
subset X, let HX =

∑
Y⊂X Φ(Y ). This is a bounded operator in AY and can be used

to give more rigorous meaning to H : Let O be a local operator then the limit

[H ,O] = lim
X→Z

[HX ,O]

exists by virtue of Φ being finite-range: Only finitely many terms contribute to the limit.

Definition 17. A state ω on AZ is a ground state to a Hamiltonian H if

ω(O∗[H ,O]) ≥ 0 (2.17)

for all local operators O.
In order to compare this to a more standard notion of ground state, let (Hω, πω,Ωω) be
the GNS-representation of ω, and Hω be the Hamiltonian implementing the dynamics
generated by O 7→ i[H ,O] on O. Then w.l.o.g. HωΩω = 0 and the condition 2.17 reads
(discarding the subscript ω indicating the dependence on the state, and π):

0 ≤ ω(O∗[H ,O]) = 〈Ω,O∗(H O −OH )Ω〉 = 〈OΩ,H OΩ〉 .
Since Ω is cyclic for the representation, the requirement is thus 〈Ψ,Hω(Ψ)〉 ≥ 0 for all
Ψ ∈ H, i.e., Hω has positive spectrum. The state ω is called gapped if there is a ∆ > 0
such that the spectrum of Hω is contained in {0} ∪ [∆,∞).

To make this explicit, look at some examples.

Heisenberg Model. Suppose the on-site Hilbert space is trivially graded and isomorphic
to a spin s representation of SU(2), and let {Sα,x}α=1,2,3 be the spin operators acting
on site x. Then the spin-s Heisenberg model in an external magnetic field Mα is given
by the interaction

Φ({x}) =
∑

α

MαSα,x ,

Φ({x, y}) = Jδy,x+1

3∑

α=1

Sα,xSα,x+1 ,

Φ(X) = 0 for all |X| ≥ 3 .

For M = 0, if s is chosen even, and J < 0, then such a model can be in the Haldane
phase [70, 2, 1, 162], which is here seen as a special case of fermionic topological phases
following [168, 179]. There is some discussion below in section 2.6. Note that if s is
chosen odd instead, any translation invariant ground state is gapless [3].
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Hubbard Model Consider the situation where the on site Hilbert space describes a single
spinful electron, H = Λ(C2). Denote the electron creation and annihilation operators of
spin 1

2 at position x by c∗σ,x and cσ,x respectively. Then, the Hubbard model is obtained
by choosing the interaction

Φ({x}) = U c∗+,xc+,xc
∗
−,xc−,x ,

Φ({x, y}) = −tδy,x+1

∑

σ

(c∗σ,x+1cσ,x + c∗σ,xcσ,x+1) ,

Φ(X) = 0 for all |X| ≥ 3 .

If one adds a term −U
2 (c∗+,xc+,x + c∗−,xc−,x) to Φ({x}), the resulting Hamiltonian is

particle-hole symmetric with uσ,xσ′x′ = δσσ′δ
x
x′(−1)x.

Of course, to obtain formulas for the ground states of such models is not easy. Even
determining whether a given model is gapped is a hard problem [92, 111, 36, 13, 73].
However, assuming a state to be a unique ground state to a local H allows to draw
qualitative conclusions about its correlation functions. The earliest such result were the
bounds derived by Lieb and Robinson [97, 112, 109] on the velocity with which pertur-
bations spread. From there Hastings and Koma proved:

Theorem 5 ([74, 73]). If ω is the unique ground state of a finite range Hamiltonian
with gap ∆, then there is `c such that ω has exponential decay with correlation length
`c ∝ ∆−1.

It should be noted that theorem 5 does not apply directly to physical systems. Consider,
e.g., an electron gas with density ρ(x) and Coulomb interactions:

H ⊃ 1

4πε0e2

∫
: ρ(x)ρ(y) :

‖x− y‖ ddxddy .

This is not finite range, not even exponentially decaying. However, one expects that
the charges are screened, and that the emergent quasiparticles in turn obey some local
dynamics with exponentially decaying interactions ‖x− y‖−1 → exp(−‖x−y‖/`s)

‖x−y‖ .

Superconductivity and BCS Ground States Physically motivated Hamiltonians always
preserve global phase rotation symmetry. In contrast to this, in Bogoliubov mean-field
theory, quasi-free “Hamiltonians” of the form

∑

ij

Aijc
∗
i cj +

1

2

∑

ij

(
Bijc

∗
i c
∗
j +Bijci cj

)
(2.18)

are used, which give an effective description of low energy excitations in superconductors.
However, these are not “Hamiltonians” in the unambigious sense as discussed above. They
describe the physical state only after an additional variational procedure (the famous
gap equation), as is expected from a mean-field ansatz: Start with a Hamiltonian H
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preserving global phase rotation symmetry. Then, introduce trial wave functions (here
for the case of s-wave superconductivity) [11, 67]:

ΨBCS
φ := N − 1

2

∏

k

(
uk + e2iφvkĉ

∗
+,kĉ

∗
−,k

)
|0〉 (2.19)

in terms of the wavenumber k creation operators ĉ∗σ,k, the electron vacuum |0〉 and some
variational parameters uk, vk. Under the U(1) action

αeix(ΨBCS
φ ) = ΨBCS

φ+x ,

that is, they do not preserve global phase rotation symmetry. Calculating the energy of
this state, or its excitations, with an interacting Hamiltonian with global phase rotation
symmetry is equivalent with using operators of the form 2.18, since

〈
ΨBCS
φ , c∗+,xc

∗
−,xc+,xc−,xΨBCS

φ

〉
≈
〈
ΨBCS
φ , c∗+,xc

∗
−,xΨBCS

φ

〉 〈
ΨBCS
φ , c+,xc−,xΨBCS

φ

〉
.

This allows the determination of a candidate wavefunction after minimization.
In recent years sub-gap excitations localized to order parameter fluctuations – for example
superconductor-metal interfaces – came in experimental and theoretical focus. They are
called Majorana bound states and of the form

aσ,kĉ
∗
σ,k + bσ,kĉ−σ,−k . (2.20)

They are not to be confused with the solutions to the Dirac equation pioneered by E.
Majorana [102] in 1937, in particular they are not fermions proper but rather obey some
parastatistics.
The interest in bound states of the form 2.20 is driven by Kitaev’s realization that they
could be used for quantum computing [91, 101, 123, 53, 144, 143, 134].
The problem with this ansatz is that it is quite unclear whether the resulting particle is
observable in principle, and if there is something like a Majorana, whether it is described
by an operator of the form 2.20. Indeed [96] argued that instead good Majorana operators
to use are

∫ ∑

σ

(uσ(x)ψσ(x) + vσ(x)ψ∗σ(x)X)ddx , ψσ(x) =
∑

i

φσ,i(x)cσ,i . (2.21)

Here, X is some non-local operator with charge −2 and φσ,i(x) are some orbitals localized
around ion positions xi.
Moreover, they argued that the exact ground states of superconductors preserve particle
number, and that taking generalized coherent states of the BCS type is unphysical.
In mean-field theory, the fluctuations of X are ignored, thereby reducing 2.21 to 2.20. In
s-wave superconductivity the damage is negligible, since the order parameter does not
have any internal structure. This is different in, and could lead to severe problems for,
spinful superconductors. Building up from this work, [99, 98] moved towards a descrip-
tion of Majorana zero modes beyond mean field.
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With a similar motivation, [125, 124] demonstrated the existence of Majorana zero modes
localized to the edge in a particle-conserving one-dimensional integrable model for su-
perconductivity. While they are skeptical whether their edge modes are experimentally
observable due the presence of superselection sectors, they define and calculate a many-
body invariant distinguishing trivial from topological superconductors.
It should be mentioned that their model is a bit different in flavor to most suggestions
for experimental realization since the superconductivity is not induced by proximity, but
arises through spontaneous symmetry breaking 2.

Since this work deals with topological superconductors, it is important to clarify how
the approach here avoids the aforementioned problems. The most pertinent ambigui-
ties are avoided here simply by not considering finite systems, and hence no Majoranas.
Thus, the wavefunctions constructed below in section 3.2 should not be used to describe
finite systems, or only with qualifications. It remains to explicate the status of infinite
volume states without phase rotation symmetry. This is achieved through a discussion
of superconductivity via off-diagonal long-range order (ODLRO) [127, 128, 175]. For
comparisons between the BCS and the ODLRO approach, consult [135, 22], and more
detailed explanations as presented here can be found in [150, 41].

Off-Diagonal Long-Range Order. Superconductors are aptly described as charged su-
perfluids, that is, they are systems in which the global U(1) phase rotation symmetry is
spontaneously broken. Again Goldstone’s theorem does not apply since the constituents
are charged and Coulomb forces are long-range [63],[160, Part II, Chapter 15].
For simplicity, the discussion restricts to s-wave superconductivity and all complications
pertaining to either the continuum (e.g. UV-divergences) or the lattice (e.g. high sym-
metry points in the Brillouin zone) are ignored. Let ω be the state of a quantum system
whose operator algebra is generated by the electron operators ψσ(x) of spin σ at position
x. Introduce the pair field Φ(X) := ψ+(x1)ψ−(x2) for X = (x1, x2).
The state ω is said to possess off-diagonal long-range order if there is a classical field
φ(X) such that

lim
|x|→∞

∣∣∣ω(Φ(X + x)∗Φ(X ′))− φ(X + x)φ(X ′)
∣∣∣ = 0 ,

and φ(X + x) does not tend to zero as x→∞. It is possible to derive the Meissner and
Josephson effect [149] and flux quantization [113] directly from this.
Suppose such a state ω is to be defined as a sequence of states in larger and larger volumes
V , with Hamiltonians HV . For each volume V , and particle number N , let HV,N be the
Hilbert space of N particles in that volume.
Let |N〉 be the unique ground state of HV in HV,N . The thermodynamic limit is taken

2Note that Mermin-Wagner type results [105, 77, 34], [56, Chapter 9] do not prohibit this as they
use a Coulomb-type interaction which is long-range. The necessity of short-range interactions for the
application of this theorem is underscored by classical 1dmodels with symmetry breaking [139, 42, 43].
This is not to say that long-range interactions are a fail-safe recipe for spontaneous symmetry breaking
in low dimensions, see [100] for a Mermin-Wagner type for some subclasses of systems.
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at constant density N/V .
If |N〉 indeed converges to a state ω with ODLRO, then for large enough V and ‖x‖:

〈N |Φ(X + x)∗Φ(X ′)|N〉 ≈ φ(X + x)φ(X ′) . (2.22)

On the left side, insert a resolution of HV,N−2 by Hamiltonian eigenstates |α〉:

φ(X + x)φ(X ′) ≈
∑

α

〈N |Φ(X + x)∗|α〉〈α|Φ(X ′)|N〉 .

Assuming approximate translation symmetry allows to write, with pα the momentum of
|α〉,

〈N |Φ(X + x)∗|α〉 = ei(pα,x)/~fα(X) , fα(X) = 〈α|Φ(X)|N〉 .

This allows to write both sides of 2.22 as a Fourier series
[∑

q

ei(q,x)/~φ̂q(X)

]
φ(X ′) ≈

∑

α

ei(pα,x)/~fα(X)fα(X ′) .

By independence of X and X ′, the sum on the right collapses to α = α0 and fα0(X) =
φ(X). Then, by uniqueness of Fourier series, the sum on the left hand side collapses to
q = pα0 , too, and φ̂q(X) = fα0(X) = φ(X). Hence pα0 = 0.
Now, assume that the ground state is the only vector with zero momentum – akin to
demanding uniqueness of the vacuum state:

〈N − 2|Φ(X)|N〉 ≈ φ(X) . (2.23)

Thus the presence of ODLRO forces an infinite degeneracy onto the states |N + 2k〉 in
the thermodynamic limit [67]. They are indistinguishable by all observables, but have to
be represented by distinct states ωk = 〈Ψk, ·Ψk〉 in the infinite volume Hilbert space.
Moreover, these states Ψk actually do not represent pure states, in infinite volume. This
somewhat paradoxical statement can be seen in the following way: For simplicity assume
k = 0 and 〈N | · |N〉 → ω0, a pure state. Then, by theorem 4, it has to cluster:

〈N |Φ(X + x)∗Φ(X ′)|N〉 ∼ 〈N |Φ(X + x)∗|N〉〈N |Φ(X)|N〉 = 0 , (2.24)

in direct conflict to the assumption of ODLRO.
This is indeed what one would expect when a symmetry is spontaneously broken; namely
that while for all finite volumes symmetry-preserving ground states can be found, they
become decoherent mixtures in the thermodynamic limit. The difference between a su-
perconductor and, for example, a ferromagnet, is that the exact degeneration of ground
states for different particle number only occurs in the thermodynamic limit. However,
this holds , e.g., also for antiferromagnets [65].
The discussion also hints at which infinite volume pure states show ODLRO: states that
satisfy ω(Φ(X)) = φ(X), i.e., infinite volume limits of BCS states.
This is not too surprising as it is important to realize what it means to say that a state is

41



pure in infinite volume, a notion that depends heavily on what is the algebra of operators.
The discussion above indeed presumed the whole CAR algebra over L2(Rd;C2), and thus
was forced to adopt generalized coherent states of BCS type. Instead, one may restrict
the algebra of observable to particle-number preserving operators, i.e., to the subspace
ker[Q, ·] within the algebra of electron operators, where Q is the electric charge. Then,
while the condition of ODLRO still makes sense to impose on a state, one would not de-
mand a clustering like in equation 2.24 as Φ(X) is not a local operator in that restricted
sense, and hence would not face a contradiction.
While there is no a priori reason to discard such a viewpoint, it should be clear that it
complicates considerably the analysis. In particular, ker[Q, ·] has a much more compli-
cated structure than the CAR algebra.

This is in stark contrast to Fermi metals [67]: There, ψ+(x1)ψ−(x2)|N〉 resembles more
closely two holes in the Fermi sea, ergo an excited state. Its overlap with the vacuum
state |N−2〉 vanishes in the thermodynamic limit. The states |N+k〉, with k a constant
integer, become indistinguishable in the thermodynamic limit. Thus, there is a unique
ground state preserving global phase rotation symmetry.

2.4. The Structural Rôle of Gradings

The exact content of declaring an algebra to be graded – and enforcing it on all derived
objects – becomes more apparent in comparison to the ungraded case. This is done by
fixing an integer N and considering the algebra of operators on the subset {1, ..., N}.
On finite intervals all operators are finite range. Locality is restored as a restriction by
considering families of systems, and keeping the allowed range fixed.
Any super algebra A is an ungraded algebra by deleting the grading, which is indicated
by a superscript “b" for “bosonic": Ab. In the following, there is the construction of an
isomorphism of algebras,

φN : A{1,...,N} → (L (C2)⊗Ab)⊗N . (2.25)

To that purpose, introduce Pauli X,Y, Z operators on C2. Then φN is a homomorphism
characterized by

1⊗̂ · · · ⊗̂
x
L ⊗̂ · · · ⊗̂1 7→ (Y ⊗ 1)⊗ · · ·⊗

x

(X ⊗ L) ⊗ · · · ⊗ (1⊗ 1) . (2.26)

To see that this is well-defined, check that it fares well with multiplications. This is
precisely ensured by the anti-commutativity ofX and Y . Furthermore, φ is a ∗-morphism
since X,Y are hermitian.
Construct an algebra of quasi-local operators with on-site algebra L (C2) ⊗ Ab. This
carries a Z2-action by the Z-operator. However, a operator O of degree µ 6= 0 is not
mapped to a local operator as N → ∞. Indeed, it carries a string of operators which
enforce the anticommutation relations. Restricting to the operators of trivial degree:

φ : (AZ)0 → (L (C2)⊗Ab)Z/2ZZ ; (2.27)
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where the superscript 0 on the left sides indicates that only those objects are to be con-
sidered the domain of φ which are globally in the trivial component – which does include
spatially separated pairs of oppositely graded objects. The superscript Z2 on the right
side indicates that φ only maps to those operators that are uncharged under the action
of Z2.
With domain and image restricted as in 2.27, φ is an algebra isomorphism; note though
that both source and target are not of the type of the algebras constructed earlier.
To be uncharged resembles to be trivially graded, but the charged objects on the right
hand side of equation 2.27 do not have a preimage on the left side and the non-trivially
graded operators from the left cannot be mapped to the right.
The isomorphism φ can be used, in a limited way, for using states obtained on one side
for problems on the other. This is the famous Jordan-Wigner transformation. The topic
is taken up again to some degree for matrix product states in section 3.2. Pick ω, a state
on AZ. Then ω ◦ φ−1 is a state defined on the uncharged operators in (L (C2) ⊗ Ab)Z.
Imposing that only the uncharged operators are observable, i.e., that only their expecta-
tion values are to be defined, is the equivalent to imposing a super-selection rule for the
Z2-charge.
The advantage of using Z2-graded states is in facilitating certain calculations without
introducing spurious parity-changing operators. Chain algebras as constructed in section
2.1 have a much simpler structure compared to the objects considered in this section.

Besides being unwieldy, there is also a further disadvantage, pointed out by [58]. The
problem is that these “bosonization" maps are obtained at the level of operator alge-
bras, but they do not lift to the underlying Hilbert spaces. The reason the Gel’fand
construction 1.1 does not save us, is, of course, the non-locality of the charged opera-
tors. This results in a mischaracterization of entanglement properties of ground states,
without impeding the numerical use to obtain, e.g., variational eigenenergies. Given a
bosonic model with Z2 symmetry, the mapping to a fermionic model can be interpreted
as “gauging" the symmetry. This changes the character of possible boundary states [60].

2.5. Symmetry Protected Phases and Topological Field
Theory

Thermal states, and, in the limit of low temperatures, ground states of local Hamilto-
nians, can have manifold and intricate structures. Here, only quite general features of
these states are of interest, which are analyzed more easily.
Consider the set ∂SG(A) of all G-symmetric pure states with exponential decay on a
given chain algebra AZ. Within this set, consider the mean-field states3 ∂SG1 (A) which

3The subscript refers to the fact that they appear as the D = 1 case of the yet-to-be-introduced matrix
product states with bond dimension D.
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are formed, after choosing a vector ψ in the on-site Hilbert space, as:

η(L1⊗̂ · · · ⊗̂Ln) :=
n∏

i=1

〈ψ,Li(ψ)〉 .

Notice that for ω1/2 ∈ SG(A1/2), the tensor product state ω1⊗̂ω2 is an element of
∂SG(A1⊗̂A2). Hence, consider the semigroup ∂SG =

⋃
A ∂SG(A), where the multi-

plication is the super tensor product and the union is over all simple finite dimensional
superalgebras.
Define an equivalence relation on ∂SG in the following way: Say ω1/2 ∈ SG(A1/2) are
equivalent, if there is an on-site algebra A3 and a continuous path [1, 2] 3 t 7→ νt in
∂SG(A3) such that

ν1
∼= ω1⊗̂η1 ; ν2

∼= ω2⊗̂η2 ,

where η1, η2 are mean-field states.
Now, typically one would want that the correlation length stays bounded away from
infinity along the path, and require some regularity on the path. It is often useful to
turn to the Hamiltonians of these ground states, and demand regularity of those [10, 17].
My respective approach in section 4 uses a different assumption about approximability
in terms of matrix product states, which is not obviously connected.
Denote the equivalence class of a state ω by [ω], and define a multiplication by [ω1]·[ω2] :=
[ω1⊗̂ω2]. Declare [η] to be the trivial class for any mean-field state η. If, for a given ω,
there is a ν such that [ω] · [ν] = [η], denote [ν] = [ω]−1.
Such a class [ω] is called a topological phase. This resembles the more usual notion of a
phase, in some respect. This is because they are all connected to each other by paths of
finite correlation length. If two states are separated by a phase transition, the correlation
length diverges on the path joining them.
The discussion so far has given a construction of π0(∂SG), the zeroth homotopy group
of the set of G-symmetric states with exponentially decaying correlation length. This is
the first reason to call these phases ‘topological’, as they are defined up to continuous
deformations [54].
There is another important distinction. If H ⊂ G, then ∂SG ⊂ ∂SH . Take ω ∈ ∂SG. If
[ω] 6= 0 in ∂S∅, this phase is said to have topological order, otherwise it is a symmetry
protected topological (SPT) phase. If ω1, ω2 both map to the same non-trivial element
in π0(∂S∅) but are distinct as elements of π0(∂SG), they are said to be in a symmetry-
enriched topological (SET) phase [28]. As this work restricts itself to the one-dimensional
case, where SET and SPT phases can be dealt with in an unified approach, there is no
further distinction in terminology.
It should be noted that many interesting topological effects cannot be seen in this frame-
work. For example, Verresen et al. showed that states in homotopically trivial phases
can have topological phenomena, roughly when there is some low-energy subspace that
has symmetries allowing for SPT phases [167].
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If ω is a G-symmetric ground state with correlation length ξ, it can be deformed so
that ξ = 0. Hence, in each class [ω], there are states of zero correlation length. In par-
ticular, the classes cannot be distinguished by the expectation values of local operators.
This is the second reason for the description of these states as ‘topological’: They are
locally indistinguishable.
Finally, this freedom of choosing a representative can be used to pick special states,
which are more amenable to analysis. For this, note the following. Consider a (1 + 1)-
dimensional quantum field theory of a fermion field ψ(x), say, with canonical anticom-
mutation relations

ψ(x)ψ(y)∗ + ψ(y)∗ψ(x) = δ(x− y) , etc.

and let ω be a state on this continuum QFT. For a field f consider the ‘smeared’ op-
erators ψ(f) =

∫
f(x)ψ(x)dx. Now divide the real line into intervals of size a. Con-

sider a sequence of on-site algebras at position x ∈ aZ as Ai ⊂ Ai+1 ⊂ · · · ⊂ A∞ =
L (L2([x, x+ a))). Then ω is a state on the super spin chains L (Hi)Z, for all i, and as
i→∞ one obtains the original state. If the original theory has a local G-symmetry, the
Hi can be chosen to have it too, and the state ωi = ω|(Ai)Z has exponential decay since
ω has it, and is thus pure. If the local basis is chosen in a good way, the expectation is
that universal/large-scale phenomena are captured by ωi even for small i. This justifies
analysis of topological phases by relativistic field theories [148, 174].
These comments should serve as a motivation to restrict to a subclass of states in ∂SG:
Those that have zero correlation length and, additionally, continuum limits. Consider
expectation values ω(O1(t1, x1) · · · On(tn, xn)) of local operators Oi(ti, xi). By the as-
sumption of a relativistic continuum limit, and zero correlation length, such expectation
values no longer depend on the space-time coordinates (xi, ti), as long as the spacetime
points do not coincide. Then the distinction between the continuum and its discretiza-
tions has properly disappeared, and ω is a state of a topological field theory (TFT) [54],
which for computational reasons might be calculated on a discretization of the space-time
manifold [12]. From this perspective, it is incumbent to study the subset of G-symmetric
TFT states [83, 54], ∂SGTFT ⊂ ∂SG, expecting

π0(∂SG) = π0(∂SGTFT) .

A slightly weaker claim has been established [145]:

π0(∂SGMPS) = π0(∂SGTFT) , (2.28)

where the set of states on the right side is characterized by satisfying an area law for the
zeroth entanglement entropy, and are introduced systematically in chapter 3.

Invertible Unitary TFT. Now follows an overview of some classification results achieved
within a topological field theory perspective. For this a few mathematical notions are
necessary.
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Definition 18. A bordism Σ : X0 → X1 is a d-manifold with ∂Σ = (∂Σ)0 t (∂Σ)1,
and isomorphisms ϕi : (∂Σ)i → Xi, which extend to isomorphism of a neighborhood
∂Σ ⊂ Uε ⊂ X to ([0, ε)×X0) t ((−ε, 0]×X1).

For topological purposes, the collars are not strictly necessary; they are crucial however
for the operations of differential topology, and if any differentiable structures are to be
put on the manifolds.

For two bordisms Σ,Σ′ with

X0
Σ−→ X1

Σ′−→ X2 , (2.29)

denote by ΣΣ′ the bordism X0 → X1 obtained by gluing Σ,Σ′

alongX1 using their respective boundary isomorphisms [76, 176].
A 2-dimensional topological field theory is a function Z that
associates to one-manifolds X Hilbert spaces Z(X) := HX and

to bordisms Σ : X0 → X1 linear maps Z(Σ) : HX0 → HX1 [6]. For two bordisms as in
2.29, Z(Σ) maps HX0 to HX1 , which is mapped to HX2 by Z(Σ′). Thus, Z(Σ′) can be
composed with Z(Σ). The gluing axioms posit that this composition is the value of the
TFT on the composed bordism ΣΣ′:

Z(ΣΣ′) = Z(Σ′)Z(Σ) .

If Σ : X0 → X1 is oriented, it induces orientations on X0, X1. Denote by Σ : X1 → X0

the orientation-reversed Σ. Consider a one-manifold X and oriented bordisms ∅ Σ,Σ′−→ X.
Notice that Z(Σ), Z(Σ′) are vectors in HX . Hence, there is a form

hX : HX ×HX → C , (Z(Σ), Z(Σ′)) 7→ Z(ΣΣ′) .

The TFT Z is called reflection positive or unitary4 if hX is positive definite. Finally, Z
is called invertible if dim(HX) = 1 for all X [55]. This assumption is designed to capture
the uniqueness of the ground state.

In order to describe fermions, the manifolds have to be endowed with Spin structures
[95, 57, 89, 117]. The Spin group Spin(d)

ρ→ SO(d) is the simply connected double-cover
of the rotation group. A Spin structure on an orientable manifold Σ is Spin(d)-principal
bundle P π→ Σ together with an equivariant covering map to the frame bundle F → Σ
[95]. If Σ is not orientable, the structure group of the frame bundle is O(d). There
are the so-called Pin± groups, which are double-covers of the orthogonal group. They
are distinguished by the square of the orientation-reversing element. In two space-time
dimensions, every manifold has a Pin− structure [89]. The structure group can be en-
larged by tensoring with other unitary groups. Spinc and Pinc are related to Spin and

4Trying to formalize (real) time evolution on manifolds encounters the difficulty that the existence of
a Minkowski structure on a given manifold imposes strong topological restrictions [122]. In partic-
ular, such a rigidity would stall all attempts at characterizing topological phases with anti-unitary
symmetries in this way. Instead one uses a ‘local’ version of this constraint as is done here.
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Pin± respectively by adding U(1) to the local group. The Pinc̃,± groups are defined by
letting the orientation-reversing element act on the U(1) group by z 7→ z−1. Similarly,
define Spinh and Pinh,± by adding the unit quaternions ∼= SU(2) [4]. In all of these
constructions, one has to identify the elements (−1) in both groups, which correspond
to the fermion parity operator.
The input, or insight, from physics used here is the spin-charge relation of condensed
matter physics [148, Section 2.3]. This is a formalization of the fact that electrons, the
fundamental constituents, have electric charge −e and spin ~/2. This bears fruit if the
unit complex numbers and the unit quaternions are identified with the groups of phase
and spin rotations respectively, which are gauge symmetries of non-relativistic system of
electrons [59]. Once dynamical gauge fields are coupled to their respective currents, and
the theory is transported to some arbitrary manifold, all these different structures are
allowed to mix. The resulting enlarged space provides greater versatility. This allows
to define fermions on manifolds which do not carry any Spin structure. For orientable
manifolds, this is important in higher dimensions, since all orientable manifolds of di-
mensions ≤ 3 are spin5. The real projective plane RP 2 does not admit a Pin+ structure,
but Pin−, Pinc, etc. structures [154, Appendix D].
Table 2.1 summarizes which structure group GTFT should be taken to correspond to
which non-relativistic symmetry group G. Note that there is a reversal of sign, T 2 = P
maps to Pin+ structures, while C2 = 1 to Pin− structures [176, Section 2.3]. The general
procedure G → GTFT is still under discussion, but for those groups appearing in the
table there is wide consensus6 [83, 84, 82, 176, 55]. One peculiarity is the appearance of
a modified U(1)-symmetry that is twisted by particle-hole conjugation. In the literature
this is sometimes called a time-reversal symmetry, which, however, squares to the iden-
tity. The physical motivation is not entirely clear.
This list has a two-fold justification. (i) The anti-unitary symmetries are chosen like
this since these are the only ones appearing in condensed matter systems. The unitary
symmetries are those for which there is physical motivation to ‘gauge’ them, i.e., include
them in the structure group. (ii) Any other structure group is Morita-equivalent to one
of the GTFT in table 2.1. Morita equivalence between groups G,H is a very weak form
of equivalence, demanding only that there is an equivalence of the category of represen-
tations of G and H [107]. In the free fermion case, classifications of topological phases in
terms of K-theory [90] do depend only on the representations of a symmetry group. In
the interacting case however, this is not the case, and there are examples where Morita-
equivalent groups have different classifications [158]. It is not clear whether this also
happens in (1 + 1)d. Nevertheless, this gives some motivation to be interested in these

5In dimension 4, the complex projective space CP 2 is not spin, while all orientable manifolds of di-
mension d ≤ 4 are spinc [64]. The 5-manifold SU(3)/SO(3) is not spinc [57, Section 2.4], but every
orientable manifold of dimension d ≤ 7 is spinh [4]. The introduction of bordism groups below will
make it clear that the (non-)existence of spin structures on certain 5-manifolds is important for the
classification of SPTs in (3 + 1) space-time dimensions. However, that is beyond the scope of this
thesis, which is confined to one-dimensional physics.

6It should be mentioned that the matching was to some degree done by comparing the cobordism
classification to results for interacting SPTs obtained by other means.
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Cartan G GTFT ΩGTFT
2 Generator

D ∅ Spin Z2 T 2

DIII ZT4 Pin+ Z2 K
AII ZT4 n U(1)Q Pinc̃,+ Z RP 2

CII ZC2 × SU(2)spin Pinh,− Z2 RP 2

C SU(2)spin Spinh 0 ∅
CI ZT4 × SU(2)spin Pinh,+ Z2 RP 2

AI ZC2 n U(1)
Q̃

Pinc̃,− Z⊕ Z2 T 2,RP 2

BDI ZC2 Pin− Z8 RP 2

A U(1)Q Spinc Z T 2

AIII ZC2 × U(1)Q Pinc Z4 RP 2

Table 2.1.: The first column refers to the labels used in the periodic table of topolog-
ical insulators and superconductors [90, 140]. The names in principle refer
to Cartan’s classification of symmetric spaces, however here they are con-
ventional labels. Both C and T commute with the group of non-relativistic
rotations SU(2)spin. The charge Q commutes with T and anti-commutes with
C, the opposite for Q̃. Concerning the fifth column, the spin structures are
not indicated here. For example, the torus T 2 has to be endowed with its
non-bounding spin structure in order to generate ΩSpin

2 , and for Spinc one has
to put a non-trivial line bundle on the Torus. K is the Klein bottle and RP 2

the real projective plane. The table is adapted from [55, 89, 154].

groups in particular.
In this thesis, the precise choices of symmetry groups and their labels is not too impor-
tant. What is essential is the presence of anti-unitary symmetries, which allow to define
partition functions on non-orientable manifolds, and, finally, that the value of this parti-
tion function on these non-orientable generators determines – for some symmetry groups
– the class a given state is in. From this perspective, the symmetry groups labeled BDI
and DIII in table 2.1 can be seen as ‘fundamental’, and all that additional symmetries
can do is to restrict the values of the partition function, which happens in section 3.4.
There is one exception, which is that in the presence of an SU(2)-symmetry, the state
can factor, as is explained later. From table 2.1 it can be inferred, that this classifies the
symmetry groups labeled DIII, CII, CI,AI,AIII. Note that AII does not allow for a
SPT phase since a factor Z is trivial in homotopy, as is explained below.

Classification of Invertible Unitary TFT. Invertible unitary TFTs are particularly sim-
ple, since they are classified by their partition function. To quote the precise statement,
the following definition is lacking:

Definition 19. The d-dimensional bordism group with structure group H is the set of
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equivalence classes

ΩH
d :=

{
closed d-manifolds
with H structure

}
{

(d+ 1)-bordisms
with H structure

} ,

with the group operation given by the disjoint sum (Σ,Σ′)→ Σ t Σ′.

For example, the torus is in the same equivalence class as the empty set in ΩSO
d , since

the solid torus is a bordism T 2 → ∅.

Theorem 6 ([176]).
{

invertible unitary TFTs
with H structure
and Z(S2) = 1

}

{Isomorphisms}
∼= Hom(ΩH

2 , U(1)) . (2.30)

This is not quite the answer yet, since for SPT phases one needs deformation classes not
isomorphism classes. This is not too dramatic, however. For suitable structure groups
H, the bordism group is (non-canonically) isomorphic to [176]:

Ωd
H
∼= Zn ⊕ Zn1

k1
⊕ · · ·Znrkr .

Some examples are listed in table 2.1. The Z summands are not relevant for topological
phases in d dimensions, since they can be deformed away: Let Σ0 be the generator of
such a subgroup. Then Z(Σn

0 ) = zn for some unit complex number z. Once deformations
are allowed, this can be continued to z = 1, therefore giving a trivial theory. This is not
the case for Zk-factors, since the allowed values for z are kth roots of unity, which cannot
be continuously connected.
Z-summands do play a rôle in one dimension lower. They give rise to a Chern-Simons
theory. In this way, e.g., the thermal quantum Hall effect can be understood to descend
from the Z-classification given by the gravitational Chern-invariant on 4-manifolds with
Spin structure [83, Appendix].
Hence, taking deformation classes of TFTs and theorem 6, combine to the following
classification of SPT phases:

π0(∂SGTFT) ∼= Hom((ΩGTFT
2 )torsion, U(1)) ,

where the subscript indicates that only the torsion part of the bordism group is included.
The task is then the following: For a given symmetry group G, determine the generating
manifolds Σ1, ...,Σn of the torsion subgroup of ΩGTFT , and compute the partition function
on them. For basic G, there might be but one generator, but for sufficiently complicated
G one could think of intricate non-bounding manifolds, on which the partition sum has
to be computed. This gives many-body indices that determine in which deformation
class a given state is.
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Partition Functions generalized beyond TFT. Considering a not purely topological,
but continuum quantum field theory with a given symmetry group G, the partition func-
tion contains information on its topological sectors. The partition function on a closed
surface Σ has the form (in euclidean signature) Z(Σ) = exp(−∆+iη), with η the topolog-
ical contribution [121, 106]. Since the topological part cannot be sensitive to short-range
regulators, this opens the possibility to calculate partition functions on discretized space-
times.
Manipulations of the spatial manifold are not very difficult to envision [20, 39], and are
physically realizable by compactifying the system on a ring and threading some mag-
netic flux through the system, or endowing it in some other way with some non-trivial
holonomy. This was exploited for example by [125], who used such a method to obtain
an invariant for Kitaev-type models. A more classic example is the Chern invariant for
the quantum Hall phases in two spatial dimensions [114, 8].

A less restricted manipulation of the space-time manifolds ap-
peared in the study of entanglement in conformal field theories,
where it was useful to interpret gth powers of the reduced den-
sity matrix σX of a given state ω as the partition sum on a genus
g Riemann surface Σg [27]:

Tr((σX)g) = Z(Σg) .

This is derived using the path integral, where σX has a representation as a 2-torus, with
a slit along X. The surface Σg is then obtained by gluing g tori along these slits.
The spatial slices of such manifolds are disconnected circles, so that all the interesting
features appear only through the (imaginary) time direction.
By using similar path integral methods, [154] realized that applying a partial transpose
to the reduced density operator has the effect of inducing an orientation-reversing oper-
ation along the cut. It thus can be used to manufacture non-orientability.
Doing this properly requires the development of quite some machinery of differential
topology – and even then this would only address topological phases in relativistic quan-
tum field theories. As an exposition of these techniques would be rather tangent to the
main line of thought, I feel justified to exclaim: Vita brevis, ars longa! and instead just
give a glimpse of how one would proceed, and otherwise refer to the works of Shiozaki et
al. [153, 151, 154, 152].
The coherent state representation of the density operator on the discretized ring S1 =
{1, ..., N}, with periodic boundary conditions, has the following (schematic) form

σS1 =

∫
DS1(ξ−)DS1(ξ+) Zξ+,ξ−(S1 × I)|ξ+;S1〉〈ξ−;S1| . (2.31)

The terms appearing in this formula need explanation. For X ⊂ S1, |ξ;X〉 =
exp(

∑
i γiξi)|0〉X is a fermionic coherent state on HX parametrized by the Grassmann

variables ξi, the Majorana operators γi and the Fock vacuum |0〉. The “integral"
∫
DX(ξ)

refers to Grassmann “integration" on X. Finally, the term Z has the interpretation as
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the partition function of a Grassmann field ψ on the discretized cylinder S1 × I, with
the boundary values

ψ|S1×{0} = ξ− , ψ|S1×{1} = ξ+ .

Starting from equation 2.31, form the reduced density matrix on X ⊂ S1:

σX =

∫
DX(ξ−)DX(ξ+) Zξ+,ξ−(Σ)|ξ+;X〉〈ξ−;X| .

In this expression, the partition sum is now over the discretized manifold Σ, which is
S1 × I, where the ends of the interval have been identified along Xc, and anti-periodic
boundary conditions on ψ have been imposed on the Grassmann field ψ. The anti-
periodic boundary condition marks the necessity of a Spin structure to define a spinor
field on a manifold, which is ignored in the following. Note that ∂Σ = X+ ∪X−. The
splitting of X in X+ and X− should indicate that indeed X has doubled, as S1 had
before; one for the ket and one for the bra. Topologically, Σ is thus a torus with a hole.
For the first check, consider Tr((σX)g). This corresponds to g tori with holes which are
glued to each other; thus a genus-g surface.
In the following the objects corresponding to the partition function on the real projective
plane RP 2, and the Klein bottle K, are explained in more detail for a quantum super
spin system.
Therefore, suppose a super quantum spin system with local Hilbert space H has an on-
site anti-linear symmetry K. Denote by L 7→ Lt the graded transposition introduced in
definition 14 in terms of the bilinear form κ induced by K as in equation 1.46.

Definition 20. If A1, A2 are superalgebras with graded transposition,

x1⊗̂x2 7→ (x1⊗̂x2)t = (−1)k(|x2|+|x1|)(x1)t⊗̂(x2)t , (2.32)

introduce the partial graded transposes by transposing just one factor:

(x1⊗̂x2)t1 := (−1)k|x2|(x1)t⊗̂x2 , (x1⊗̂x2)t2 := (−1)k|x1|x1⊗̂(x2)t . (2.33)

The notion of (bosonic) partial transpositions is ancient in the field of quantum informa-
tion theory [129, 78], where it is used for detection of entanglement. Indeed, take a density
matrix σ on a bipartite system, H1⊗̂H2. Now, suppose σ is a product state, σ = σ1⊗̂σ2,
in particular both σ1, σ2 are even and positive. Then σt1 = (σ1)t⊗̂σ2 = (Kσ1K

−1)⊗̂σ2

is positive. Thus, if Tr(σt1σ) is not positive, then σ cannot be a product state. As is
shown later, the argument of this object is quantized.
One of the earlier attempts to define such objects consistently on fermionic objects is
[46]. However, this definition does not work very nicely with tensor products, which was
remedied by Shapourian et al. [151, 154, 152]. They introduced the graded transpose
and graded partial transpose as described above, working out the transformations of
CAR-operators7.

7To convince yourself that I indeed use the same notion as them, comparison with equation 1.59 will
be useful.
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The same authors also proposed to use such partial transposes to detect topological
phases, inspired by topological quantum field theory [153]. In the bosonic case, this had
already been done using a different language drawing more from the analogy to string
operators [133].

Denote the partial graded transpose on X as OtX . If the subset X is of the form
{1, ..., n} then the partial transpose is abbreviated as Ot{1,...,n} ≡ Otn . Next, for ω a
translation invariant state on said super quantum spin system, let σn = σn(ω) be the
n-site reduced density matrix, i.e., ω|A{1,...,n}(O) = TrH⊗̂n(σnO). For

Y = {1, ..., k1, } ∪ {d+ k1 + 1, ..., d+ k1 + k2} ,

denote the reduced density matrix as σX = σk1,k2|d(ω).
Then, let

ZCk,`(ω) := Tr(σk+` [σk+`]
tk) , (2.34)

ZTk1,k2|d(ω) := Tr(σk1,k2|d[σk1,k2|d]
tk1 ) . (2.35)

[154] argued that ZC is a partition function on the discretized real projective plane RP 2,
and ZT is a partition function on the discretized Klein bottle K. For the latter, observe
that σk1,k2|d approximately corresponds to a two-holed torus. The partial transpose
reverses the boundary orientation on one of them, after which the two tori are glued
back together [35, 79].

2.6. Cohomology Classifications

The TFT perspective can be generalized to higher space dimensions. In one space di-
mension however, there is another approach to the classification and characterization of
SPT phases, which is explained in this section.
It relies strongly, in its formulation, on a setting which is akin to matrix product repre-
sentations. While this does not confine them to those states, as is to be explained below,
this leads to the invariants effectively characterizing boundaries, may they be virtual or
real. This is no restriction to their usefulness, however their computation is convoluted.

Since SPT phases do not differ in any local expectation value, the pertinent question
is what distinguishes such states. The answer is: The entanglement structure, or equiv-
alently, the structure of edge states.
One of the earliest examples, in hindsight, of a SPT phases was the Haldane phase [70, 2]
of SO(3)-symmetric spin-1 chains. It exhibits the entanglement structure typical for
SPT states. If the chain is cut at any bond, a degeneracy in the entanglement spectrum
appears. This degeneracy is protected, since the edge carries a projective representation
of SO(3), which combines with the representation on the other edge to a proper one.
Within the framework of bosonic matrix product states, this was generalized to obtain
the group cohomology classification of bosonic SPT phases [145, 30, 29]. To that end,
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consider a G-symmetric matrix product state on a ring, in terms of D × D-matrices
E1, ..., Ed:

Ψ =
∑

s1,...,sn

tr(Es1 · · ·Esn)|s1 · · · sn〉 .

Cutting the ring at any bond, gives the following set of unnormalized vectors, all yielding
equivalent states in the bulk:

Ψ(v, w) =
∑

s1,...,sn

(v,Es1 · · ·Esnw)|s1 · · · sn〉 ,

where v, w are in the bond space. Since they are equivalent in the bulk, these are all
ground states, with some exponential corrections in system size. As is explained below,
the G-representation on the on-site Hilbert space g|s〉 = |g · s〉 splits into two projec-
tive representations α̂g, or equivalently a proper representation of a centrally extended
symmetry group Ĝ, such that α̂gEg·sα̂−1

g = Es. The G-action on Ψ then localizes and
fractionalizes to the edge:

αgΨ(v, w) = Ψ(α̂g(v), α̂g(w)) .

Introducing additional G-invariant local interactions may reduce or enhance, but never
lift, the edge degeneracy, if the extended symmetry group Ĝ does not sport one-dimensional
representations. Of course, non-G-symmetric boundary terms can lift the multiplicity,
and so do G-symmetric terms that couple the two edges, which are, however, non-local.
As projective representations of a group G are in one-to-one-correspondence with the
second group cohomology group H2(G,U(1)p), so are the distinct SPT phases described
by uniform matrix product states for a given group G. Here, the subscript p indicates
the conjugation action of anti-unitary g on the U(1) factor. That the chosen cycle in
H2(G,U(1)p) is indeed stable within the realm of matrix product states can proven by
constructing, for any two matrix product states within the same class, a path of matrix
product states connecting the two [145]. Hence at least within the set of bosonic ma-
trix product states, the classification by H2(G,U(1)p) characterizes the set of homotopy
classes:

π0(∂SGMPS) ∼= H2(G,U(1)p) .

A crucial element in this construction was the so-called entanglement renormalization
[171], which yields fixed-point-wave functions in a limiting procedure [146]. They are
characterized by a vanishing correlation length and are thus connected to topological
field theory [85, 153].
Since the work of Kitaev [91], it had been known that fermionic chains in one dimension
sport one example of topological order, hallmarked by the appearance of non-abelian
quasi-particles, the celebrated Majorana fermions. While in higher dimensions, these
anyons force a radical split between the treatment of topological ordered phases, and
the more tame SPT phases, in one dimensions this was realized to be unnecessary on
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account of the topographic restrictions of these excitations. This is a fundamental fact
of one-dimensional physics, that the import of exchange statistics, so crucial in higher
dimensions, is diminished by the inability to actually implement any adiabatic exchange
protocol [68, Chapter IV.5], unless they are allowed to cross through each other [66].
This has forced those desiring to harvest the computing power of Kitaev’s Majoranas to
elaborate geometries [143].
More systematically, [164] developed the connection between TFT and fixed-point MPS
to a connection between spin TFT and fixed-point super MPS, thereby attaining a clas-
sification of G-symmetric super matrix product states by

π0(∂SGsMPS) ∼= Z2 ×H1(G,Z2)×H2(G,U(1)p) , (2.36)

as a set.
The meaning of these factors can be elucidated again by cutting. The first factor counts
whether there is a Hilbert space localized to either edge, or to both together. The second
factor, whether the symmetry action can be chosen in terms of even operators. The last
is the group cohomology known from the bosonic case.
To spell out two examples that are used later, for superconductors with particle-hole
symmetry, G = ZC2 , the cohomology groups areH1(G,Z2) ∼= Z2 andH2(Z2, U(1)p) = Z2.
Therefore such phases are classified by (µ, k, ε) ∈ Z3

2, which correspond to the indices of
real supersimple superalgebras defined in section 1.3. Cohomology cycles may also be
used as data to construct TFTs, through state-sum constructions [28], to obtain a TFT
state corresponding to that cycle. In these constructions, a given manifold is triangulater
and dressed with a copy of G at each vertex. The action functional is a function on G×G.
In order for the partition function not to depend on the choice of triangulation – any
two of which are connected by the so-called Pachner moves – this function has to be a
cocycle. This can be extended to construct spin TFTs [117, 14, 163]. This is important
to show equation 2.28.
These cohomology programs still bore the stigma that they strictly speaking only applied
to (super) matrix product states. Since matrix product states are believed to approximate
ground states well, it was known to be complete, i.e., for each SPT phase there are
sMPS representing it. However, at this point it was unclear whether it was separating,
i.e., whether distinct sMPS-SPT phases always corresponded to distinct SPT phases, or
whether distinct [ω], [ω′] could be mapped to the same SPT phase.
This remained possible, since continuous deformations within sMPS do not allow for the
possibility to join two such classes by a path of states with diverging bond dimension,
but finite correlation length. Such states are not very exotic, all free-fermion models that
do not have flat bands are of this type.
Besides this, it is theoretically a bit unsatisfactory to define an invariant of a given state
by some property of an approximating state.
In this context [103, 104] showed that states that satisfy an area law for the von-Neumann
entanglement entropy satisfy the split property8, which is the following statement:

8A state being split should be interpreted as the statement that it has no long-range entanglement;
being trivially true in 1d, the split property in 2 spatial dimensions implies the absence of topological
order [110].
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Definition 21. Suppose ω is a state on the chain algebra AZ. Denote by πωN the GNS
representation of ω restricted to the half-space algebra AN. Then ω is said to be split if
πωN(AN)′′ is a type I von-Neumann algebra.

Recall that any such double commutant is a von-Neumann algebra, i.e. a weakly, and
strongly, closed ∗-subalgebra of L (HωN), but that it is type I is a strong restriction [15].
This allowed to introduce an index with values in the Cohomology group on the r.h.s. of
2.36 for such half-space algebras, and so mutatis mutandis for area law states on quantum
spin chains. In a second step the stability of this index under deformations was proven,
thus demonstrating homotopy invariance [17, 18, 120].

In one space dimension, the quest of classifying SPT phases with G-symmetry has there-
fore been achieved rigorously. The invariants which detect a given phase are primarily
defined in terms of observables on a virtual or real cut through the chain. As unprob-
lematic as this is from a classificatory perspective, it leaves the determination of a state’s
class difficult practically. Suppose given is a gapped and G-symmetric state ω. Pick an
integer n and a positive ε, and find a G-symmetric MPS with bond dimension D, ωD,n
which approximates ω on observables of support at most n:

|ω(O)− ωD,n(O)| < ε‖O‖ .

The cohomology class of ωD,n can be computed by investigating the transformation
properties of its generating tensor under the G-symmetry. If ε is chosen sufficiently
small, and n sufficiently large, then this should characterize the given state ω.
The classification using von-Neumann algebras encounters practical problems as well. It
guarantees that the index is well-defined for ω. But exact expressions for ground state
are rare. So again it might be necessary to turn to approximations, e.g., if it has been
determined numerically. So here, too, the problem of algebraically characterizing an
object of only approximate quality would appear.
This is not impossible. It shows however the usefulness of many-body invariants which are
defined directly in terms of the ground state, and which allow for a notion of convergence,
such as to have a tool to measure the quality of approximations when using them. For
unitary symmetries, this can be done in terms of string order parameters [131, 133, 132].
The invariants used below in section 3.3 have a similar function, but differ by indicating
a topological phase through a quantized argument.
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3. Super Matrix Product States

This chapter shall deal with a set of construction methods for states on a chain algebra
AZ, with on-site Hilbert space H.
I begin by generalizing the approach of [50, 49] to the case of graded algebras, i.e., con-
structing states on AZ directly in the infinite volume limit. There is a discussion of some
crucial properties of the states thus obtained: Where they differ from the well-known
properties of finitely correlated states (FCS) on quantum spin chains, and where they
agree. An emphasis is laid here on expectation values and their clustering; this clarifies
some ambiguities pertaining to an approach that focuses on wavefunctions.
Afterwards, the focus is shifted to a complementary point of departure. Starting from
matrix product vectors (MPVs), i.e., families of vector states defined on H⊗̂n for all n
given by a tensor network, the thermodynamic limit is taken, generalizing some known
results to the graded case. This is done here for twofold reasons; on the one hand, some
things are easier to conceptualize or even to prove starting from more standard vector
states; on the other hand, the community usually discusses matrix product states in this
way [26, 130, 24, 146, 32].
Furthermore, it clarifies the rôle of the grading in super matrix product states. In ap-
proaches which are centered on discussing decomposition properties of wave-functions
only, the grading appears as some additional Z2-symmetry. The discussion of expecta-
tion values and decomposition of states corrects such a view.
Auch a detailed exposition also allows to unambiguously use the diagrammatic formalism
for graded linear algebra developed in chapter 1 for computations. This stays as true
to the simpler bosonic formalism as possible, in particular there is no use of Grassmann
variables [173] or modified contractions [25]. This in turn allows for the existence of a
forgetful functor which takes a super matrix product state on AZ, and turns it into a
matrix product state on (A0)Z, i.e., on the quantum spin system whose on-site algebra
are just the even elements of A = L (H).
Before diving into the (rather technical) constructions, a final warning is to be heeded:
It is not advisable to interpret the (super) matrix product vectors Ψn (sMPVs) defined
on some finite interval {1, ..., n} as to correspond to the ground state of some system
on that very interval. If the wave-function preserves global phase rotation symmetry
this is rather unproblematic, but if superconductors are to be described, the intricacies
discussed in section 2.3 should be considered. It might be asvisable to project such a
family onto a subspace of fixed particle number.
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3.1. Super Matrix Product States

The states on L (H)Z that are to be constructed directly in the infinite volume limit
are parametrized by the following data: A D-dimensional super Hilbert space H, a map
E : H → L (H), and a special element ρ ∈ L (H). Indeed, introduce an even map, in
terms of operators E1, ..., Ed ⊂ L (H), and an orthonormal basis ψ1, ..., ψd ∈ H:

UE : H → H⊗̂H , ξ 7→
d∑

s=1

ψs⊗̂(Es)
∗ξ . (3.1)

As explained in section 1.1, these are in one-to-one-correspondence with h.c.p. maps
E ∈ L 2(H) as given in equation 1.24.
At first sight, the definition 3.1 depends on the choice of basis. This appearance can
be dispelled by introducing a linear map E : H → L (H) such that E(ψs) = Es. This
has the right transformation properties. Assume w.l.o.g. that the Kraus algebra A(E)
acts non-degenerately – otherwise replace H with pA(E)H where pA(E) is the largest
projection in A(E). Finally, for On ∈ L (H)⊗̂n, let EOn be the map of equation 1.33.

Proposition 2. For H,E as above, assume that (i) ‖E‖ = 1 and (ii) that E is completely
reducible and incontractible as defined in definition 8. Let e be the standard right fixed
point of equation 1.20 and pick a positive left fixed point ρ parametrized by weights wi as
in equation 1.22. Then define the sequence of functionals

ω(n)E,ρ : L (H)⊗̂n → C , On 7→ tr(ρEOn(e)) . (3.2)

Then:

(i) The sequence (ω(n)E,ρ)n combines to a state ωE,ρ on the chain algebra AZ.

(ii) EO and E′O satisfy the inequalities:

|ωE,ρ(O)| ≤‖EO(e)‖ ≤ ‖O‖ , (3.3)
|ωE,ρ(O)| ≤‖E′O(tr(ρ ·))‖ ≤ ‖O‖ , (3.4)

(iii) The correlations of this state are determined by the transfer operator in that there
is a constant C > 0 such that

C‖Ek − e⊗̂tr(ρ ·)‖A(E) ≤ CorrωE,ρ(k) ≤ ‖Ek − e⊗̂tr(ρ ·)‖A(E) . (3.5)

(iv) The state ωE = ωE,ρ is pure if and only if E is strongly superirreducible.

(v) ωE has correlation length `c = − 1
log(1−δ) if and only if E is strongly superirreducible

and has gap δ.
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A state ωE,ρ defined as in part (i) of the proposition in terms of a tensor E and a fixed
point ρ is here called a super matrix product state. In the situation of part (iv) of this
theorem, when E is superirreducible, there is a unique fixed point. Thus in that case
ωE ≡ ωE,ρ is determined by E alone.
By the assumed complete reducibility of E, any given ωE,ρ can always be decomposed as

ωE,ρ =
∑

i

wi ωE(i)

Where ωE(i) is pure and the weights wi are those appearing in the decomposition of ρ
as in equation 1.22. This is a barycentric subdivision of the original state into extremal
states, which is therefore mixed.
Observe that the state clusters, according to part (iv) even when E is not irreducible; it
allows for a second fixed point [26]. This is possible because this second fixed point never
appears in expectation values, thus not interfering with the clustering. However, the
many-body invariants discussed below in section 3.3 are able to extract some dependence
on this hidden structure.
Finally, if E is diagonalizable, the constant C in part (iii) can be taken to be unity by
part (v).

Proof of proposition 2.

(i) To see that the ω(n)E,ρ combine to a functional on AZ, check that

ω(n+1)E,ρ(1⊗̂On) = ω(n)E,ρ(On) = ω(n+1)E,ρ(On⊗̂1) ,

i.e., that equivalent elements of AZ have the same value. Indeed, this follows by using
that e and ρ are right, respectively left, fixed points of E:

EOn⊗̂1(e) = EOn ◦ E(e) = EOn(e) , tr(ρE1⊗̂On(·)) = tr(ρE ◦ EOn(·)) = tr(ρEOn(·)) .

Thus define a linear functional ωE,e ∈ (AZ,loc)
∗ by

ωE,ρ(O) = ω(supp(O))E,ρ(O) . (3.6)

Note that the ω(n),E,ρ are positive by lemma 4, and so is ωE,ρ. So to check that it is
continuous and normalized it suffices to evaluate it on the identity: ωE,ρ(1) = tr(ρe) = 1.
By continuity ωE,ρ can be extended to AZ.

(ii) The second inequality of the proposition follows by the fact that the operator norm
of a positive map between C∗-algebras is determined by its value at the identity. The
first one is proven by:

|ωE,ρ(O)| = |tr(ρEO(e))| ≤ tr|ρ| ‖EO(e)‖ ,

whence the statement.
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(iii) Consider operators O1,O2 of finite support. Then

|ω(O1⊗̂1⊗̂k⊗̂O2)− ω(O1)ω(O2)| = |tr(ρEO1 ◦ (Ek − e⊗̂tr(ρ ·)) ◦ EO2(e))| ≤
≤ ‖Ek − e⊗̂tr(ρ ·)‖A‖EO2(e)‖‖(EO1)′(tr(ρ ·))‖ ≤
≤ ‖Ek − e⊗̂tr(ρ ·)‖A‖O1‖‖O2‖ ;

where part (ii) was used. Hence

Corrω(k) ≤ ‖Ek − e⊗̂tr(ρ ·)‖A .

On the other hand:

‖Ek − e⊗̂tr(ρ ·)‖A = sup
a,b∈A

{|tr(b(Ek − E∞)(a))| | ‖a‖ = 1 , ‖tr(b ·)‖ = ‖b‖1 = 1} , (3.7)

where ‖x‖1 := tr|x| is the 1-norm on A. Since both O 7→ EO(1A) and O 7→ (EO)′(tr(ρ ·))
are surjective by lemma 5, find Oa,Ob s.t. a = EOa(1A) and tr(b·) = tr(ρEOb(·)). Then:

|tr(bE◦(a))|
‖a‖‖b‖1

=
‖Oa‖‖Ob‖
‖a‖‖b‖1

|ω(Ob⊗̂1⊗̂k⊗̂Oa)− ω(Ob)ω(Oa)|
‖Oa‖‖Ob‖

.

Note that the association of Oa to a is by no means unique. What seems appropriate,
to obtain the smallest upper bound, is to take the infimum over all possible choices for
Oa,Ob:

M(a) := inf
Oa

‖Oa‖
‖a‖ = inf

{ ‖O‖
‖EO(1A)‖ : EO(1A) = a

}
=

=

[
sup

{‖EO(1A)‖
‖O‖ : EO(1A) = a

}]−1

≤
[
sup

{ |ω(O)|
‖O‖ : EO(1A) = a

}]−1

,

where again part (ii) gave the inequality. Similarly define N(b), with the operator norm
on a replaced by the 1-norm. Taking the supremum over a, b as required in equation 3.7
can be split into taking the supremum over a, b and Oa,Ob separately, which gives

sup
a,b∈A

{|tr(b(Ek − E∞)(a))| | ‖a‖ = 1 , ‖b‖1 = 1} ≤

≤
[

sup
‖a‖<1

M(a)

]

︸ ︷︷ ︸
C1

[
sup
‖b‖1≤1

N(b)

]

︸ ︷︷ ︸
C2

sup
O1 6=06=O2

{
|ω(O1⊗̂1⊗̂k⊗̂O2)− ω(O1)ω(O2)|

‖O1‖‖O2‖

}
.

Both C1 and C2 are non-zero by finite-dimensionality of the bond algebra. Thus, with
C = (C1C2)−1:

C‖Ek − e⊗̂tr(ρ ·)‖A ≤ Corrω(k) .
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(iv) By theorem 4, a state is pure if and only if it is clustering. Observe that lemma 5
establishes that the Kraus algebra of a superirreducible E is supercentral. By lemma
3 this implies that E∞|A = e⊗̂tr(ρ ·). Then proposition 1 yields that ‖Ek − e⊗̂tr(ρ ·)‖
decays exponentially. By part (iii), ω clusters exponentially, and thus it is pure.
For ⇒, suppose A was not supercentral. Then ‖E∞ − e⊗̂tr(ρ ·)‖A = 1. By the inverse
triangle inequality,

‖Ek − e⊗̂tr(ρ ·)‖A ≥
∣∣∣‖Ek − E∞‖A − ‖E∞ − e⊗̂tr(ρ ·)‖A

∣∣∣ , (3.8)

and the right side approaches 1 exponentially fast by proposition 1. For completely
irreducible h.c.p. maps supercentrality and supersimplicity are equivalent.

(v): Assume E has gap δ. Then proposition 1 and part (iv) of this proof give C ≥ 0 and
α ∈ N such that

Corrω(k) ≤ ‖Ek − E∞‖ ≤ Ckα(1− δ)k . (3.9)

On the other hand, assume that ω has exponential decay of correlations, with correlation
length `c. Gelfand’s formula expresses the spectral radius of an operator x as ‖xk‖1/k.
Consequently:

1− δE = lim
k→∞

‖Ek − E∞‖1/k ≤ lim
k→∞

[
C−1Corrω(k)

]1/k ≤ exp(−1/`c) . (3.10)

Suppose the tensor E is G-symmetric with on-site representation g 7→ αg and virtual
representation α̂g as explained in definition 12. Then by using equation 1.42, it follows
that ωE,ρ ◦ αAZ

g = ωE,ρ, where αAZ
g is the G-representation of equation 2.11. Hence, ω is

G-symmetric.
Denote the set of G-symmetric super matrix product states on AZ of bond dimension
D by SGD(A), and the pure states within this set as ∂SGD(A). The notation with the
boundary symbol should indicate that any ω ∈ SD(A) has a convex decomposition in
terms of ωi ∈ ∂SGDi(A) with

∑
iDi = D.

After this ad-hoc construction of ∂SGD(A), whose elements are characterized by a finite-
dimensional Hilbert space H and a map E : H → L (H), it is natural to ask whether
there can be given some characterization to the set of all such states. The answer is
positive, but first recall the definition of Renyi entanglement entropies, where σn(ω) is
the reduced density matrix of ω on {1, ..., n} and α ≥ 0:

Rα(ω, n) =
1

1− α logTr(σn(ω)α) . (3.11)

There are some special cases: R0(ω, n) = rank(σn) and R1(ω, n) = S(σn) with S(σ) =
−Tr(σ log σ) the von Neumann entropy.

Theorem 7 ([17]). Let ω be a pure, translation invariant and G-symmetric state sat-
isfying an area law for R0, i.e., the rank of its reduced density matrices is bounded.
Then there is a finite-dimensional super Hilbert space H and a G-symmetric pure tensor
E : H → L (H) such that ω = ωE.
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While this is explicit, the physical relevance is obscure. Compare to the discussion in
section 4.2 below; there it is argued that from physical grounds there are area laws for
Rs, with the parameter s strictly greater than zero. For example all gapped free fermion
ground states with non-trivial dispersion do not satisfy this bound.

For later use, the constructions explained above are put into diagrams. To make ev-
erything super, switch from ρ to Λ = P̂ ρ:

λ(a) = str(Λa) = Λ a .

It should be noted that while ρ is in the Kraus algebra, Λ does not need to be.
The expectation value of an operator L1⊗̂ · · · ⊗̂Ln is then simply

ω(L1⊗̂ · · · ⊗̂Ln) =

Λ E

L1

E

· · ·

· · ·

E

Ln

E

e

. (3.12)

The reduced density operator σn is awkward to use in the fermionic tensor diagrams,
since it is partnered with the “unnatural"(in the superworld) operation of taking a trace.
Thence a graded density operator Σn := Pnσn, where Pn is the fermion parity, is more
convenient:

sTr(ΣnOn) = Tr(σnOn) = ω(On) .

In such calculations it is helpful to let the lines of the physical Hilbert space run vertically,
i.e., rotate the diagram of equation 3.12 by π/2. As E is an even tensor, this poses no
problems and yields

Σn =

Λ

EE∗

EE∗

· · ·· · ·
...

...

EE∗

e′

. (3.13)

Here it is understood that the physical in- and outgoing lines have some common ordering.
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3.2. Matrix Product Vectors and Thermodynamic limits

As advertised, this section takes a step back and discuss vector states on sites {1, ..., n}.
LetH, H be super Hilbert spaces. Consider pairs {ψs ≡ |s〉}s=1,..,d ⊂ H and {Es}s=1,..,d ⊂
L (H), both of which are assumed to be homogeneous. Let x ∈ L (H). This defines a
family of matrix product vectors (MPV) :

ΨE|x
n :=

∑

s1,...,sn

str(xEs1 · · ·Esn) ψs1⊗̂ · · · ⊗̂ψsn ∈ H⊗̂n . (3.14)

If |Es| = |ψs|, then ΨE,x
n is called a super matrix product vector (sMPV) or fermionic

matrix product vector (fMPV). Since the parity operations P and P̂ on H and H respec-
tively are allowed to be trivial, the class of super matrix product states contains the class
of matrix product vectors in the more conventional sense [146]. More explicitly, observe
that if the sMPV constraint is satisfied, it allows to introduce a map E : H → L (H) as
a linear extension of ψs 7→ Es satisfying the Z2-equivariance condition

P̂E(ψ)P̂−1 = E ◦ P (ψ) . (3.15)

More non-trivially, the above definition without the constraint |Es| = |ψs| describes the
possibility of using ungraded MPVs for graded quantum spin systems, and the other way
around.
The set {Es}s allows the introduction of a h.c.p. map E as in equation 1.24. Denote the
Kraus algebra generated by the Es as A(E).

Two-sided ideals in A(E) translate to a decomposition of ΨE into a superposition of
matrix product vectors with more elementary tensors: Suppose E to be semisimple and
unital. Then there is a decomposition of super Hilbert spaces H =

⊕
iHi such that

ΨE|x
n =

∑

i

(di)
n/2ΨE(i)|xi

n , (3.16)

where E(i) ∈ L 2(Hi) is supersimple and unital and di ≤ 1.
To that purpose, decompose A(E) into its supersimple components Ai with support pro-
jections pi. Then Hi = piH and E(i)

s = (di)
−1/2piEs where di ≤ 1 is chosen such that

‖E(i)‖ = 1. Moreover, write xi = pixpi.

After these preliminary, algebraic concerns, the task is to take the limit n→∞ in some
way, and recover the infinite volume state ωE,ρ introduced in the previous section. Begin
the discussion by computing matrix elements of factorized operators O = L1⊗̂ · · · ⊗̂Ln
between sMPVs generated by {E(i)

s }s ⊂ L (Hi). First observe:
〈

ΨE(1)|x1
n ,OΨE(2)|x2

n

〉
=

=
∑

s1...sn
r1...rn

str
(
x1E

(1)
s1 · · ·E(1)

sn

)
str
(
x2E

(2)
r1 · · ·E(2)

rn

)

︸ ︷︷ ︸
(1)

〈s1 · · · sn|L1⊗̂ · · · ⊗̂Ln|r1 · · · rn〉︸ ︷︷ ︸
(2)

.
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Let’s first compute (2):

〈s1 · · · sn|L1⊗̂ · · · ⊗̂Ln|r1 · · · rn〉 =

[∏

k>`

(−1)|Lk|||r`〉|

][∏

k

〈sk|Lk|rk〉
]
. (3.17)

For (1) use str(x) = str(x∗) and the notation x = (x∗)′, where the graded dual of
definition 2 is deployed:

str
(
x1E

(1)
s1 · · ·E(1)

sn

)
str
(
x2E

(2)
r1 · · ·E(2)

rn

)
=

= x1 E
(1)
s1 · · · E

(1)
sn (E

(2)
rn )∗ · · · (E

(1)
r1 )∗ (x2)

∗ =

=

[∏

k>`

(−1)|E
(2)
r`
|(|E(1)

sk
|+|E(2)

rk
|)

] x1 E
(1)
s1 · · · E

(1)
sn

E
(2)
r1 · · · E

(1)
rn x2

. (3.18)

In general, the combined sign factor
∏

k>`

(−1)|E
(2)
r`
|(|E(1)

sk
|+|E(2)

rk
|)+|Lk|||r`〉| (3.19)

forbids simplification. There are two scenarios which allow to proceed. (i) If the sMPV
constraint |Es| = |ψs| is satisfied, the two factors in 3.19 exactly cancel. (ii) Somewhat
more artificially: If |Lk| = 0 and |E(2)

r | = 0, both terms vanish individually. Then,
A(E(2)) consists only of even operators and is called bosonic. In either case:
〈

ΨE(1)|x1
n ,

[
L1⊗̂ · · · ⊗̂Ln

]
ΨE(2)|x2
n

〉
= strH1⊗̂H∗2

(
[x1⊗̂1] ◦ E(1,2)

L1
◦ · · · ◦ E(1,2)

Ln
◦ [1⊗̂x2]

)
,

(3.20)

with a newly defined family of operators E(1,2)
L ∈ L 2(H2, H1):

E(1,2)
L (x) =

∑

s,r

(−1)|x||E
(2)
r |〈ψs, Lψr〉E(1)

s ◦ x ◦ (E(2)
r )∗ .

Proposition 3. Suppose E is supersimple and satisfying the sMPV constraint. Then for
O ∈ AZ,loc:

lim
n→∞

‖E‖−n
〈

ΨE|x
n , Sbn/2c(O)ΨE|x

n

〉
= f(x)ωE(O) , f(x) =

µ∑

a=0

(−1)a|x|str(xvax∗Λa) ;

(3.21)

where ωE is the state defined in proposition 2, S is the shift operator of equation 2.8,
and va, str(Λa ·) are the unique right, respectively left, eigenvectors of E to the eigenvalue
‖E‖. This is written as Ψ

E|x
n → ωE.
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The proposition shows that for a supersimple E the choice of x does not matter, as the
state does not depend on it. For that reason it is suppressed in the notation ΨE,x

n = ΨE
n

with the understanding that some x is chosen such that f(x) = 1. The following choice
is convenient: x = 1 if µ = 0 and x = 2−1/2z if µ = 1. Note the factum that if µ = 1,
one should choose x to not belong to A(E). Indeed, for x ∈ A(E) and µ = 1:

f(x) = str(xexΛ) + (−1)|x|str(xzex∗Λz) = str(xexΛ)− str(xexΛ) = 0 .

A discussion of this can be found in [26].

Proposition 4. Suppose E supersimple and bosonic (i.e., simple). Then, for O ∈
(A0)Z,loc:

lim
n→∞

‖E‖−n
〈

ΨE|x
n , Sbn/2c(O)ΨE|x

n

〉
= f(x)ωE(O) , f(x) = tr(ρxex∗) ; (3.22)

where ωE is the state defined in proposition 2 and e, tr(ρ ·) are the unique right, respec-
tively left, eigenvectors of E to the eigenvalue ‖E‖.

Within the formalism developed so far, it seems unnatural to consider such objects.
However, note that often the interest lies in calculating observables like the energy density.
In this situation there is no reason to burden yourself with gradings on your auxiliary
Hilbert spaces. The proof is omitted here, as it is sufficiently analogous to the proof of
proposition 3, and can be found in the literature [146].

Proof of proposition 3. The limit is understood in the following way: It suffices to con-
sider O with support contained in some finite subset of size 2k + 1. Hence, for large
enough n:

〈
ΨE|x
n , Sbn/2c(O)ΨE|x

n

〉
= strH⊗̂H∗

(
[x⊗̂1] ◦ Ebn/2c−k ◦ EO ◦ Edn/2e−k ◦ [1⊗̂x]

)
.

If A(E) is supersimple, by lemma 5 the h.c.p. map E is strongly superirreducible. Hence,

lim
n→∞

〈
ΨE|x
n , Sbn/2c(O)ΨE|x

n

〉
=

µ∑

a,b=0

x va Λa vb Λb

x
EO

=

=
∑

a,b

(−1)b|x|str(xvax∗Λb) str(ΛaEO(vb))︸ ︷︷ ︸
=δabωE(O)

.

For simplicity this assumed that ‖E‖ = 1.

After constructing states in the thermodynamic limit, it is natural to ask what can be
said about overlaps between different such sMPVs. The answer is surprisingly simple:
They all vanish in the thermodynamic limit. This is the fundamental theorem of matrix
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product states, due to its extensive ramifications, and is proven here in its graded version;
the ungraded statement can be found in [130, 142, 146].
It is a consequence of the uniqueness of the GNS constructions explained in theorem 1.1,
and indeed that is how the authors of [17] proved the related theorem 7.
Afterwards, three consequences are explored. First of all, suppose a matrix product
vector representation Φn is given for a family of vector states on graded Hilbert spaces,
which are parity eigenstates. Then part (i) of corollary 2 shows that it is possible to
construct a grading on the virtual space such that Φn is a family of super matrix product
vectors. This is a useful result since while the grading on the physical space is given
and fixed, this does not hold for the virtual grading. In particular a grading has to
be distinguished from a Z2-symmetry. The latter would make sMPS a special case of
G-symmetric MPS. Such differences are not visible if the structure of expectation values
remains outside the discussion [26]. Here, I show the reversed inclusion. Notably, part
(ii) of corollary 2 shows that the proper notion of lifting an on-site symmetry involves the
grading. Finally, corollary 3 shows how to form the tensor product of sMPVs: By taking
the graded tensor product. This again drives home the point that fermion parity is not
a symmetry, on account of being interwoven into the structures. Breaking it renders the
expressions ill-defined.

Theorem 8. Suppose E(1), E(2) supersimple, unital, and satisfying the sMPV constraint.
Then either there is a homogeneous isometry u : H2 → H1 and a phase eiφ such that

E(1)
s = (−1)|u||E

(2)|eiφuE(2)
s u−1 ; (3.23)

or there is r < 1 such that for all O ∈ AZ,loc, n > supp(O):
∣∣∣
〈

ΨE(1)

n , Sbn/2c(O)ΨE(2)

n

〉∣∣∣ . rn−supp(O)‖O‖ . (3.24)

Furthermore, suppose E is supersimple, unital, and bosonic. Then, either there is a
isometry u : H2 → H1 and a phase eiφ such that 3.23 holds (with trivial grading), or 3.24
is true for all O ∈ (A0)Z,loc.

Before proving this statement, observe that it implies that two supersimple sMPS are
either identical or in different superselection sectors of AZ or (A0)Z respectively.
Indeed, suppose E(1) is not isomorphic to E(2). Then in the thermodynamic limit super-
positions become decoherent:

c1ΨE(1)

n + c2ΨE(2)

n −→ |c1|2ωE(1) + |c2|2ωE(2) , (3.25)

which indicates they live in different superselection sectors.
Importantly, the phenomenon of equation 3.25 also allows for the appearance of spon-
taneous symmetry breaking. Observe what happens when there are two distinct sM-
PVs Ψn,Φn together with a Z2 symmetry action g · Ψn = Φn and g · Φn = Ψn.
Then for all finite n, there is a basis of singlet states (Φn ± Ψn)/

√
2. Importantly

though, by the above argument, these become decoherent in the thermodynamic limit
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(Φn±Ψn)/
√

2→ (ωΨ +ωΦ)/2, and the symmetry is broken1. The usage of a Z2 symme-
try was for convenience, the analysis can be repeated to yield that only one-dimensional
representations on sMPVs remain unbroken.
Indeed, this allows to take the thermodynamic limit of quite general matrix product
vectors of the form 3.16:

ΨE|x
n −→

∑

i:di=1

f(xi)ωE(i) . (3.26)

In lieu of the alternative between isomorphy and orthogonality stated in theorem 8,
call a MPV reduced if all of the di in equation 3.16 are unity; in other words: if E
is incontractible in the sense of definition 8. Recall from that this ensures that E has
positive invertible left and right fixed points, which in turn guarantees that E can be
used to build a super matrix product state in the sense of proposition 2.

Proof of theorem 8. Assume w.l.o.g. ‖E(1)‖ = 1 = ‖E(2)‖. Then, by lemma 6 proven in
appendix B, ‖E(1,2)‖ ≤ 1. Assume first equality, i.e., there is u : H2 → H1 normalized
by ‖u‖ = 1 such that E(1,2)(u) = eiφu. Then, by the Kadison-Schwarz inequality from
aforementioned lemma 6:

E(2)(u∗u) ≥ E(1,2)(u)∗E(1,2)(u) = u∗u , E(1)(uu∗) ≥ E(1,2)(u)E(1,2)(u)∗ = uu∗ .

Now by Theorem 2.3 of [47], this implies that u∗u and uu∗ are fixed points of E(2) and
E(1) respectively. Hence, by strong irreducibility, u is an isometry.
Finally, consider, for ξ ∈ H1:

∑

s

‖(E(1)
s − (−1)|u||E

(2)
s |eiφuE(2)

s u∗)∗ξ‖2 =

=
∑

s

〈ξ,
[
E(1)
s − (−1)|u||E

(2)
s |eiφuE(2)

s u∗
] [
E(1)
s − (−1)|u||E

(2)
s |eiφuE(2)

s u∗
]∗
ξ〉 =

= 〈ξ, (E(1)(1H1) + uE(2)(u∗u)u∗ − eiφuE(1,2)(u)∗ − e−iφE(1,2)(u)u∗)ξ〉 = 0 .

Equation 3.23 follows as each summand of a vanishing sum of non-negative terms has to
vanish individually, and the arbitrariness of ξ.
Now for the second alternative ‖E(1,2)‖ = r < 1, use equation 3.20 for any local observable
with connected support:

∣∣∣
〈

ΨE(1)

n , Sbn/2c(O)ΨE(2)

n

〉∣∣∣ . rn−supp(O)‖O‖ . (3.27)

As before, there is no proof of the bosonic version as it is strictly analogous.

1A connection to the more usual accounts in the difference: symmetric Hamiltonian – symmetry broken
ground state can be taken by the construction of so-called parent Hamiltonians [50, 130] which are
not featured here.
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Now in general this fundamental theorem can be used to lift symmetries from the physical
to the virtual Hilbert space. In this, the Z2-parity transformation plays a structural rôle.
Indeed, start with a MPV tensor E : H → L (H̃), where H̃ is here endowed with the
trivial grading. Suppose that ΨE,x

n is eigenvector of the n-site parity operation Pn. Then
by the second part of the theorem 8, there is a unitary P̂ such that the sMPV constraint
3.15 is fulfilled. By a redefinition, P̂ 2 = 1, and hence H = (H̃, P̂ ) is a super Hilbert
space.

Corollary 2. Let Ψ
E|x
n be a matrix product vector given in terms of a semisimple reduced

unital E : H → L (H). Suppose α : (G, p)→ Aut(H) is an even representation.

(i) If the Ψ
E|x
n are eigenvectors of Pn, then there is a unitary involution P̂ on H such

that E satisfies the sMPV constraint for P, P̂ .

(ii) If the Ψ
E|x
n are eigenvectors of all the (αg)

⊗̂n, satisfy the sMPV constraint, and
there is no symmetry breaking in the thermodynamic limit, then there is a projective
homogeneous representation α̂ : (G, p)→ Aut(H) such that for all g ∈ G:

E ◦ αg = sAdα̂g ◦ E . (3.28)

As this proposition shows, the virtual grading modifies how symmetries are lifted to the
virtual level.

Proof.

(i) Denote byQ the parity operator ofH, andHb the Hilbert space obtained by trivializing
the grading. Since Ψ

E|x
n = Ψ

E|Qx
n , where on the right hand side the virtual gradings have

been trivialized, reduce to the situation of trivial virtual grading.
Decompose E into its (super-)simple elements as in equation 3.16. Then, by assumption:

Pn

(
r∑

i=1

ΨE(i)

)
= ±

r∑

i=1

ΨE(i)
.

Since P 2
n = 1, there is an involution π on {1, ..., r} with PnΨE(i)

= ±ΨE(π(i)) . If a given
i is a fixed point of π, use the second part of theorem 8 to obtain a unitary P̂ such that
the sMPV constraint 3.15 is fulfilled. If i 6= π(i), define a parity operator P̂ = ( 0 1

1 0 ) on
Hi ⊕Hπ(i). Then, E(i) ⊕ E(π(i)) satisfies the sMPV constraint.

(ii) By excluding spontaneous symmetry breaking, assume that each of the supersimple
components of Ψ

E|x
n is mapped onto itself by the action of G. Therefore assume that

A(E) is supersimple.
The following identity for f ∈ H∗, u a unitary, and an ONB {ψs}s is useful:

∑

s

f(ψs)
1−p(g)

αg(ψs) =
∑

s

f((αg)∗ψs)
1−p(g)

ψs . (3.29)
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Acting with αg on the sMPV:

α⊗̂ng ΨE
n =

∑

s1,...,sn

str(xE(ψs1) · · ·E(ψn))
1−p(g)

(αgψs1)⊗̂ · · · ⊗̂(αgψsn) . (3.30)

Note that for each tensor factor, ψ 7→ str(xE(ψs1) · · ·E(ψ) · · ·E(ψn)) is a linear func-
tional. Use identity 3.29 to shift the αg-action:

α⊗̂ng ΨE
n =

∑

s1,...,sn

str(xE(α∗gψs1) · · ·E(α∗gψn))
1−p(g) |s1 · · · sn〉 . (3.31)

If αg is unitary, the r.h.s. has already the form of a sMPV Ψ
E◦(αg)∗
n , and the assumption

that the sMPVs are fixed by the symmetry gives ΨE
n = Ψ

E◦(αg)∗
n . Hence, by the first part

of theorem 8, there is a unitary homogeneous α̂g such that equation 3.28 is satisfied.
If αg is anti-unitary, this is not so obvious and indeed there is some massaging necessary
to get a similar result. Recall that anti-unitary operations K give rise to bilinear forms
κ.
It is furthermore convenient to introduce the super Hilbert adjoint L? defined by

h(L?ξ1, ξ2) = (−1)|L||ξ1|h(ξ1, Lξ2) . (3.32)

This is useful as it gives rise to an anti-linear homomorphism L (V,W ) → L (V ∗,W ∗),
L 7→ Lc = (L?)′, with the property

strV (x) = strV ∗(xc) . (3.33)

This identity allows to rewrite equation 3.31 in standard form:

α⊗̂ng ΨE|x
n =

∑

s1,...,sn

strH∗(xcE(α∗gψs1)c · · ·E(α∗gψn)c)|s1 · · · sn〉 = Ψ
(E◦α∗g)c|xc
n .

The first part of theorem 8 gives a homogeneous unitary α̃g : H → H∗ such that

[E ◦ αg(ψ)]c = (−1)|α̃g ||ψ|α̃gE(ψ)α̃−1
g . (3.34)

That is, there is an anti-linear, anti-unitary lift α̂g : H → H defined by

hH(α̂g(ψ1), ψ2) = α̃g(ψ1)(ψ2) . (3.35)

Having thus obtained a set {α̂g}g∈G, dive into the task of characterizing the structure of
this set.
The condition E = E ◦ αg1 ◦ αg2 ◦ α(g1g2)−1 leads to the constraint:

v(g1, g2) x = x v(g1, g2) , v(g1, g2) := α̂g1α̂g2α̂(g1g2)−1

for all x ∈ A(E). Thus v(g1, g2) is in the even center of A(E), hence proportional to the
identity. This furnishes a projective representations in the sense of definition 11.

The corollary allows to give the following cute construction:
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Forgetful Map. As advertised above, one can introduce a map

F : SGD(A)→ SGD(A0)

in the following way. Pick a ωE,ρ ∈ SGD(A) with E : H → L (H). For a super Hilbert
space V , denote by V b the Hilbert space which is V with trivial grading. Let Eb : Hb →
L (Hb) be the map E, but with all gradings trivialized. Then F(ωE,ρ) = ωEb,ρ. Note
that (A0)Z ⊂ AZ, and F has the property that

F(ωE,ρ) = ωE,ρ|(A0)Z .

This is most easily seen by comparing the wavefunctions. Moreover, corollary 2 implies
that F is invertible: Suppose there is given a state ωE,ρ ∈ (A0)Z. Then the bond space
can be endowed with a grading such that F−1(ωE,ρ) := ωEf,ρ ∈ AZ is an extension to
the complete chain algebra, where for a Hilbert space V and a unitary involution P , V f

refers to V as a super Hilbert space with parity P .

The grading enters in one more structural aspect; and this is in tensor products of
states.

Corollary 3. The tensor product of two sMPVs ΨE(1/2)

n with on-site Hilbert spaces H1/2

is

Bmix

(
ΨE(1)|x1
n ⊗̂ΨE(2)|x2

n

)
= (−1)|x1||x2|ΨE(1)⊗̂E(2)|x1⊗̂x2

n ,
[
E(1)⊗̂E(2)

]
(ψ1⊗̂ψ2) = E(1)(ψ1)⊗̂E(2)(ψ2) .

(3.36)

Here, Bmix is the braiding operation that maps the Hilbert spaces

Bmix : (H1)⊗̂n⊗̂(H2)⊗̂n → (H1⊗̂H2)⊗̂n . (3.37)

Proof. Given two graded quantum spin systems with on-site Hilbert spaces H1,H2 and
MPVs Φi = Ψn(ϕi, Ei) ∈ Hi,n, the tensor product Φ1⊗̂Φ2 is a family of vectors with on-
site Hilbert space H1⊗̂H2. Note that as the algebras are graded, expectation values do
not factor. Also, writing Φ1⊗̂Φ2 as a tensor product over sites introduces braiding factors.

Denote by {ψ(i)
s }s=1,...,di a orthonormal basis of Hi. Then:

〈
ΨE(1)

n ⊗̂ΨE(2)

n , [ψ(1)
s1 ⊗̂ · · · ⊗̂ψ(1)

sn ]⊗̂[ψ(2)
r1 ⊗̂ · · · ⊗̂ψ(2)

rn ]
〉

=

=
〈

ΨE(1)

n , ψ(1)
s1 ⊗̂ · · · ⊗̂ψ(1)

sn

〉〈
ΨE(2)

n , ψ(2)
s1 ⊗̂ · · · ⊗̂ψ(2)

sn

〉
=

= str
(
x1E

(1)(ψ(1)
s1 ) · · ·E(1)(ψ(1)

sn )
)
str
(
x2E

(2)(ψ(2)
r1 ) · · ·E(2)(ψ(2)

rn )
)

=

= (−1)|x1||x2|str
(

[x1⊗̂x2]
[
E(1)(ψ(1)

s1 ) · · ·E(1)(ψ(1)
sn )⊗̂E(2)(ψ(2)

r1 ) · · ·E(1)(ψ(2)
rn )
])

.
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Braiding on both sides with Bmix gives, in terms of ψ(12)
sr = ψ

(1)
s ⊗̂ψ(2)

r :
〈
Bmix

(
ΨE(1)

n ⊗̂ΨE(2)

n

)
, ψ(12)

s1r1⊗̂ · · · ⊗̂ψ(12)
snrn

〉
=

= (−1)|x1||x2|str
(

[x1⊗̂x2]
[
E(1)(ψ(1)

s1 )⊗̂E(2)(ψ(2)
r1 )
]
· · ·
[
E(1)(ψ(1)

sn )⊗̂E(2)(ψ(2)
rn )
])

,

which proves the claim.

3.3. Many-Body Invariants of Super Matrix Product States

Recall the density matrix bilinears defined in terms of the partial transpose 20:

ZCk,`(ω) := Tr(σk+` [σk+`]
tk) ,

ZTk1,k2|d(ω) := Tr(σk1,k2|d[σk1,k2|d]
tk1 ) ,

∆n(ω) := − logTr([σn]2) .

The last line is the second Renyi entropy, which plays a distinguished rôle.
In this section, I compute ZC/T in the thermodynamic limit for super matrix product
states. This establishes them as homotopy invariants of super matrix product states with
particle-hole, respectively motion-reversal, symmetry.

Proposition 5. Let ω be a pure super matrix product state with bond algebra A and
virtual parity operator P̂ . Then ∆(ω) := limn→∞∆n(ω) exists and

|e−∆n(ω) − e−∆(ω)| ≤ 2‖En − E∞‖ . (3.38)

Moreover:

(i) Suppose ω is invariant under a particle-hole symmetry C. Denote by Ĉ the lift of
C on the bond space, and recall the three indices µ = µA, (−1)ĉ = ĈP̂ Ĉ−1P̂ and
(−1)ε = Ĉ2. Then ZC(ω) := limk,`→∞ Z

C
k,`(ω) exists and

ZC = exp

(
−3

2
∆− 2πi

ηC
8

)
, ηC(ω) = 4ε+ 2ĉ− µ ∈ Z/8Z . (3.39)

The convergence is estimated by

|ZCk,`(ω)− ZC(ω)| ≤ 2
(
‖Ek − E∞‖+ ‖E` − E∞‖

)
. (3.40)

(ii) Suppose ω is invariant under a time-reversal symmetry T with lift T̂ . Let (−1)t̂ =
T̂ P̂ T̂−1P̂ . Then ZT (ω) := limk1,k2,d→∞ Z

T
k1,k2|d(ω) exists and

ZT = exp
(
−2∆ + 2πi

ηT
2

)
, ηT (ω) = t̂ ∈ Z/2Z , (3.41)

The convergence is estimated by

|ZTk1,k2|d(ω)− ZT (ω)| ≤ 2
(
‖Ek1 − E∞‖+ ‖Ed − E∞‖+ ‖Ek2 − E∞‖

)
. (3.42)
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In [133], the authors obtained a similar result for ZC on (bosonic) matrix product states,
in which case the motion-reversal and the particle-hole case are not distinct. The au-
thors of [151, 154, 152], which proposed to calculate ZCk,`(ω) and ZTk1,k2|d(ω), were able
to compute them for certain fixed-point states. They motivated that it would indeed
apply to general states, and would be a topological invariant by numerics on a quasi-free
translation invariant Hamiltonian, and arguments from topological quantum field theory.
Proposition 5 summarizes what can be said about ZCk,`(ω) and ZTk1,k2|d(ω) for the larger
class of super matrix product states. Moreover, by connecting the values of these objects
to topological invariants on the set of super matrix product states, it establishes that ZT

and ZC , or rather their arguments, indeed do give invariants of super matrix product
states.
The stress which is laid on the convergence is important in lieu of section 4, which pushes
beyond super matrix product states.
Before jumping to the proof, a few comments as to how the continuity of these quantities
can be estimated, as a function of the state ω. For simplicity, focus on ZCk,` = Zk,`:

|Zk,`(ω1)− Zk,`(ω2)| =
= |Tr(σk+`(ω1)tk [σk+`(ω1)− σk+`(ω2)] + σk+`(ω2)[σk+`(ω1)− σk+`(ω2)]tk)| .

Using identity 3.44 below, the partial transpose in the second term can be shifted to
yield

|Zk,n−k(ω1)− Zk,n−k(ω2)| = |(ω1 − ω2)([σn(ω1) + σn(ω2)]tk)| =
≤ 2‖σn(ω1)− σn(ω2)‖1 . (3.43)

Where the inequalities |Tr(X)| ≤ Tr|X| and Tr|XY | ≤ ‖X‖∞‖Y ‖1 found application.

The partial transpositions commute and combine to full transpositions, (xt1)t2 = (xt2)t1 =
xt. Moreover, similar to the usual transpose, it holds that tr(xt1) = tr(x), where tr is the
trace on A1⊗̂A2. This is most easily proven in the case that A1⊗̂A2

∼= Matn(C), or some
subset thereof, in which case x may be decomposed as x = n−1tr(x)1 + (x− n−1tr(x)1).
This can then be used to show that

tr(xt1y) = tr(xyt1) . (3.44)

The first step is tr(xt1y) = tr((xt1y)t1). As the partial transpose is not an anti-automorphism,
the product reads somewhat complicated

[
(x1⊗̂x2)t1(y1⊗̂y2)

]t1 = (−1)k|y2|+|x2||y1|+|x1||y1|(y1)t(x1)tt⊗̂x2y2 .

But once this is traced over:

(−1)k|y2|+|x2||y1|+|x1||y1|tr((x1)tt(y1)t)tr(x2y2) = (−1)|x1|+|x1||y1|tr(xyt1) ,

where the last sign is seen to disappear as the trace is nonzero only for |x1| = |y1|.
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Proof of part (i) of proposition 5. Qua assumption, there is an anti-linear on-site invo-
lutive transformation C. As developed in section 1.3, this may be combined with the
super-hermitian form introduced in definition 3 to give a bilinear form χ : H⊗̂H → C.
Then equation 1.58 gives the graded transpose of an operator in terms of the bilinear
form.
Since C is assumed to be even:

(Σn)tk = Pn(σn)tk .

Simplification is most easily done diagrammatically. By equation 1.57, the transpose is
implemented by exchanging incoming with outgoing legs of the graded density operator
of equation 3.13, and to add tensors χ, χ∗ on both sides. This explains the first step:

(Σn)tk =

Λ

E E∗
χ∗ χ

· · ·· · ·

...
...

E E∗
χ∗ χ

EE∗

· · ·· · ·

...
...

EE∗

e

=

Λ

χ̂′∗ χ̂′

EE∗

· · · · · ·

...
...

EE∗

χ̂′ χ̂′∗

EE∗

· · ·· · ·

...
...

EE∗

e

.

(3.45)

Again, the fact that χ is even has been used to discard all precautions about tensor
ordering. By assumption there is a lift Ĉ on H, of the form explained in section 1.3. It
allows to push the χs to the virtual level, as in equations 1.63 and 1.64. This, together
with the composition identities 1.66 and 1.65 gives an expression for the partially trans-
posed density operator with just four χ̂ tensors. If this is performed, the second equality
in 3.45 arises.
The object that is to be calculated is

ZCk,` ≡ Zk,` = Tr(σk+`[σk+`]
tk) = sTr(Pk+`Σk+`[Σk+`]

tk) .
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Gluing together diagrams 3.45 and 3.13 gives

Λ Λ

χ̂′∗ χ̂′

E

E∗ P E

E∗

· · ·
· · · · · ·

· · ·...

E

E∗ P E

E∗

χ̂′ χ̂′∗

E

E∗ P E

E∗

· · ·
· · · · · ·

· · ·
...

E

E∗ P E

E∗

e′ e′

=

Λ

P̂Λ

χ̂′∗ χ̂′

E E∗ EE∗

· · ·· · ·· · · · · ·

E E∗ EE∗

χ̂′ χ̂′∗

E E∗ EE∗

· · · · · · · · ·· · ·

E E∗P̂ EE∗ e

e′

,

(3.46)

where the fermion parities are pushed to the virtual level and the vertical strands are
exchanged such that physical contractions are adjacent.
If the state ω is pure, by proposition 2 the transfer operator is strongly irreducible. By
proposition 1:

limk→∞

E∗ E

· · · · · ·

E∗ E

k =
∑

a

va

Λa

. (3.47)

Inserting equation 3.47 for the limiting behavious of Ek into equation 3.46 for Zk,` yields
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the following:

Z∞,∞ =
∑

abcd

Λ

P̂Λ

χ̂∗′ χ̂′

va

Λa

vb

Λb

χ̂

χ̂∗

vc

Λc

vd

ΛdP̂ e

e′

=: (−1)abIab

=: (−1)c(a+b+d)IIabcd

=: IIIcd

.

(3.48)

Before turning to the computation of the indicated subdiagrams, note that the speed with
which the limit is attained can be estimated in terms of the approximation of Ek to its
limit. Indeed, Zk,`−Z∞,∞ can be written as a sum of four terms, each of which have an
insertion of En−E∞ in one of the four subdiagrams of equation 3.46 containing strings of
transfer operators. This already implies equation 3.40, by applying the Cauchy-Schwarz
inequality for the trace pairing on Ak+` since |Zk,`| ≤ 1.
The definitions of the subdiagrams I, II and III should be read with caution. To properly
disassemble the diagram into its factors one first has to separate its parts horizontally,
accumulating signs in the process.
The signs included in the right side are such that

Z∞,∞ =
∑

abcd

IabIIabcdIII
cd , (3.49)

where each of the factors in the sum is given by the diagram is obtained by removing the
other subdiagrams, with signs. Thence, the remaining task is the computation of these
subdiagrams.
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Begin with Iab:

Iab = (−1)ab

Λ′

P̂Λ

χ̂∗
χ̂

vavb

= (−1)abstr(P̂ΛvbΛ
tva) .

(3.50)

For the second diagram, use the symmetry properties of χ∗. Then:

IIabcd = e−
iπ
2
qC

Λa Λb

χ̂′ P̂

χ̂∗

vc vd

= (−i)qC str(vcΛa(P̂Λbvd)
t) . (3.51)

The third subdiagram is disentangled to:

IIIcd = Λc ΛdP̂ e

e′

= str(P̂ΛceΛde) .

The penultimate step is to compute the above supertraces. As an entrée

IIIcd = sTr(P̂ΛceΛde) = δcdtr(Λe)2 . (3.52)

The next course, Iab, is not too difficult either. Use Λt = (−1)ĉΛ and, with va = zae and
Λa = Λza, that Λza = (−1)azaΛ and zazb = za+b.
Whence:

Iab = (−1)abstr(P̂ΛvbΛ
tva) = (−1)ab+ĉ+aδabtr(ΛeΛeza+b) = (−1)ĉδabtr(Λe)2 . (3.53)

Finally, the pièce de résistance, IIabcd. Use vt
a = iava and Λt

a = (−1)ĉ(−i)aΛa

IIbbaa = (−i)qC str(vbΛa(P̂Λavb)
t) = (−i)qC (−1)abia−b(−1)ĉtr(z2

a+beΛeΛ) =

= (−i)qC (−1)ĉi(a−b)
2
tr(Λe)2 .

(3.54)

Inserting equations 3.53, 3.54 and 3.52 into 3.49 gives, for µA = 0:

ZC =
[
(−1)ĉtr(Λe)2

] [
(−i)qC (−1)ĉtr(Λe)2

] [
tr(Λe)2

]
= (−i)qC

[
tr(Λe)2

]3
.

76



For µA = 1 instead:

ZC =

µ∑

ab=1

[
(−1)ĉtr(Λe)2

] [
(−i)qC (−1)ĉi(a−b)

2
tr(Λe)2

] [
tr(Λe)2

]
=

=
[
tr(Λe)2

]3
(−i)qC

∑

ab

i(a−b)
2

=

[
(−i)qC 1 + i√

2

] [√
2tr(Λe)2

]3
.

The combined expression is for µ = µA and qC = ĉ+ 2ε:

ZC(ω) =
[
2µ
(
tr(Λe)2

)2] 3
2

exp

(
−2πi

8
(4ε+ 2ĉ− µ)

)
. (3.55)

To interpret this expression, compute ∆(ω). The definition is:

e−∆(ω) = lim
n→∞

Tr(σn)2 = lim
n→∞

sTr(Pn(Σn)2) .

The limit is again conveniently done diagrammatically:

Λ

P̂Λ

E E∗ EE∗

· · · · · · · · ·· · ·
...

E E∗P̂ EE∗ e

e′

−→ ∑
ab

Λ

P̂Λ

va vb

Λa ΛbP̂ e

e′

.

(3.56)

By similar reasoning as for the approach of Z to its limit, this also shows 3.38. The right
hand side of equation 3.56 is translated into equations as

e−∆(ω) =

µ∑

ab=0

tr(ΛvbΛva)tr(eΛaeΛb) =

µ∑

ab=0

[
(−1)|va|δabtr(Λe)2

]2
= 2µ

[
tr(Λe)2

]2
.

(3.57)

Remark 2. If, instead of a particle-hole type symmetry a time-reversal symmetry is used,
the parity factor in the second diagram 3.51 is deleted. Thus, for e = 1:

IIT = (−1)t̂str(ΛΛt) = str(ρ2) .

This, too, can be expressed in terms of the density matrix, sTr(σn)2 −→ str(ρ2). However,
this does not satisfy any area law; so while it is some real number, there is no reason
why it should be bounded away from zero. Thus, calculating the adjacent transpose with
a time-reversal symmetry does not give a homotopy invariant.
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Proof of part (ii) of proposition 5. This is done a bit hastier than before, since the meth-
ods are the same. The expression is

Tr(σk1,k2|d(σk1,k2|d)
tk1 ) = sTr(Pk1,k2|dΣk1,k2|d(Σk1,k2|d)

tk1 ) , (3.58)

As that the state ω is T -symmetric, and in the limit where k1, k2, d are all taken to
infinity:

Λ

P̂Λ

τ̂ ′∗ τ̂ ′

E E∗ EE∗

· · ·· · ·· · · · · ·

E E∗ EE∗

τ̂ ′ τ̂ ′∗ P̂

EE∗ EE∗

· · · · · · · · ·· · ·

EE∗ EE∗

E E∗

P̂

EE∗

· · · · · · · · ·· · ·

E E∗P̂ EE∗ e

e′

→

Λ

P̂Λ

τ̂ ′∗ τ̂ ′

e e

Λ Λ

τ̂ ′ τ̂ ′∗ P̂

ee

ΛΛ

P̂

e e

Λ Λ

e′

eP̂

.

(3.59)

The details are not included here. The uppermost and the lowermost subdiagrams cor-
respond to subdiagrams I and III, respectively, of 3.48. The other two are new, but both
just give another factor of tr(Λe)2. Hence:

ZT (ω) = (−1)t̂
[
tr(Λe)2

]4
= (−1)t̂e−2∆(ω) . (3.60)

The speed of convergence can be similarly estimated through the number of transfer
operator limit subdiagrams.

Remark 3. Similar to the discussion in remark 2, using a particle-hole symmetry here
instead of a time-reversal symmetry does not produce a homotopy invariant: Again, a
factor of str(ρ2) appears, which can be smoothly continued through zero within matrix
product states, generically.
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3.4. Calculation of π0(∂S
G) for some G

The partition functions ZT and ZC can be used to determine π0(∂SG) for some partic-
ularly simple G, namely those mentioned in table 2.1.

Particle-Hole Symmetry. Recall from table 2.1, that the entries labeled by BDI, AIII,
CII and AI are completely classified by their value on RP 2, and the presence of a particle
hole symmetry allows to define ZC .

BDI. For the label BDI, all eight possibilities can be realized, which reproduces the Z8

classification for superconductors with particle-hole symmetry in the presence of
interactions [51].

AIII. The label AIII here indicates an insulator with particle-hole symmetry, i.e., on
top of the lifted particle hole symmetry Ĉ, there is also a U(1)Q charge symmetry,
with lifted representation eiφ 7→ eiφQ̂. Then ĈQ̂Ĉ−1 = −Q̂, as can be seen by
differentiating the action of both symmetries on an element x of L (H):

d

dφ

∣∣∣∣
φ=0

[
Ad

eiφQ̂
◦Ad

Ĉ
(x)
] !

=
d

dφ

∣∣∣∣
φ=0

[
Ad

Ĉ
◦Ad

eiφQ̂
(x)
]

⇒ [Q̂, ĈxĈ−1] = −Ĉ[Q̂, x]Ĉ−1 .

A continuous connected symmetry group is necessarily represented by even oper-
ators, i.e., Q̂ ∈ L (H)0. If µ = 1, there is an element ν in the odd center. If
νφ = exp(iφ[Q̂, ·])(ν) is not proportional to ν, then there would be another linearly
independent element in the center. However, if ν is Ĉ-invariant, so is νφ, and hence
νφ = ν. Finally, the parity of ν is given by

−ν = PνP−1 = exp(iπ[Q̂, ·])(ν) = νπ = ν ,

a contradiction! Hence, µ = 0. That both k and ε can be non-zero is most
easily seen by constructing particle-hole conjugations on Fock spaces Λ(CN ) for
N = 1, 2, 3, 4. Thus, ηC(ω) ∈ Z4, which reproduces the Z4 classification of one-
dimensional insulators with particle-hole symmetry.

AI. Differentiate the symmetry action as in case AIII. Thus on virtual Hilbert space,
Ĉ
̂̃
QĈ−1 =

̂̃
Q. Suppose µ = 1, with ν the odd real central element, then νφ 6=0,π,

defined as in case AIII, is linearly independent from ν and hence A(E) cannot be

supercentral. Thus, µ = 0. Then, since Ĉ preserves the eigenspaces of ̂̃Q, by the
spin-charge relation it preserves eigenspaces of the parity operator and k = 0. The
common eigenspaces of both have no further structure. Hence, they admit ε = 0, 1
and ηC(ω) ∈ Z2.

CII. If, instead of a charge symmetry, a spin rotation symmetry is present, similar
arguments give that ĈŜiĈ−1 = −Ŝi, where Ŝi are the generators of the spin rotation
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group. This allows to conclude as before that µ = 0. Since Ĉ commutes with
the Casimir operator of SU(2)spin, it can only mix representation of the same
spin quantum number, which have the same parity by the spin-charge relation of
SU(2)spin. Hence, Ĉ is even. As in the AI case, ε = 0, 1 is possible since the
common eigenspace have no further structure. Thus ηC(ω) ∈ Z2.

Motion-Reversal Symmetry. The presence of a motion-reversal symmetry T allows to
define the “Klein bottle" partition function ZT . According to table 2.1 this allows to
classify the SPT phases labeled therein as DIII, CI and AII. The last two are special
as they have a time-reversal symmetry, but their bordism group is generated by RP 2.

DIII. As remarked above, the lifted time-reversal symmetry can be even or odd. T̂ even
is the standard case and corresponds to the trivial phase, T̂ odd is a bit more
exotic. It can be realized on a Fock space over an odd-dimensional single particle
space V , by a modified particle-hole conjugation T̂ := ΞQ := Ξ exp(iπQ/2), where
Q|Λk = k − dimV

2 . This is odd, and:

(ΞQ)2 = ±e iπ2 dimV P .

Hence, ηT = 0, 1, which recovers the Z2-classification for time-reversal symmetric
superconductors.

AII. The lifted time-reversal symmetry and the lifted phase rotation symmetry have
to satisfy T̂ Q̂T̂−1 = Q̂. Hence, T̂ is even and ηT = 0. In this symmetry group,
table 2.1 reveals an oddity, namely that the bordism group is Z, and generated by
RP 2. As was explained above, Z-summands in bordism groups do not correspond
to SPT phases since they do not yield non-trivial deformation classes. This is
reflected in the fact noted in remark 2: Using the adjacent partial transpose with a
T -symmetry gives a finite result, with a non-trivial phase; but there is no constraint
that prohibits deformations. As an example that gives str(ρ2) = 0 consider H =
Λ(C2), with ρ = 1

4 idH and T̂ acting on C2 irreducibly. Then str(ρ2) = 1
16(1 +

(−2) + 1) = 0. Therefore, this is no candidate for a homotopy invariant.

CI. Similar to case CII above, the spin-charge relation forces T̂ to be even, so ηT = 0.
However, the SU(2) symmetry has a peculiar effect [178]. As explained in appendix
C, one may deform the state to one which is non-trivial only on local SU(2)-
singlets. This corresponds to a reduction of the symmetry group to ZT2 , which then
is implemented in a bosonic MPS. Bosonic MPS with time-reversal symmetries
are subsumed, in this work under particle-hole symmetric insulators with trivial
grading, and hence fall into the series classified by the partition function ZC . Since
µ = k = 0, only a Z2-classification remains, by the sign of T̂ 2, the lift of the time-
reversal symmetry to the virtual Hilbert space. Essential ingredient here was the
spin-charge relation, which allows to reduce to a bosonic MPS.

Since the invariants (µ, ĉ, ε) and t̂ characterize a given cohomology class for G = ZC2
and G = ZT4 respectively [52, 168], proposition 5 gives a link between the classifications
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in terms of bordisms and cohomology, respectively. Thereby, these algebraic invariants,
which are connected to the virtual boundaries, attain a purely bulk character.

Here, the labels used to refer to specific symmetry groups are purely conventional. They
refer to the periodic table of free-fermion topological superconductors and insulators.
In the free fermion classification, which uses K-theory, the usage of these labels is vin-
dicated by connections to Cartan’s classifications of symmetric spaces. In particular,
there is some freedom in which symmetries are chosen to represent a given symmetric
space. For example, class BDI is sometimes represented as a system with C, T, U(1)Q
and SU(2)spin symmetry [88, 5]. This freedom is lost in the approach here. Indeed, a
state with these symmetries is forced, by the argument put forward concerning the label
CII, to have ηC(ω) ∈ Z2. This does not imply that the SPT phases with this symmetry
has only a Z2 classification, since for this more complicated structure group the bordism
group is more complicated as well. In higher dimensions, this equivalence seems to be
lost [158].
This indicates that the many-body invariants introduced above, which may be used in
principle to classify the set of SPT phases for a given symmetry group G, are not the best
tool to do so. In particular in one space dimension, the most effective such tool is the
classification by group cohomology alluded to in section 2.6. Their use is therefore more
to extract the topological indices from a given state, when the symmetry classification,
and the generators of the bordism group, are already known.
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4. Beyond Finite Bond Dimension

So far, invariants have been defined and calculated for super matrix product states with
arbitrary but finite bond dimension D. The next development is to consider sequences
(ωα)α of such states, with bond dimensions Dα, with Dα →∞ but ωα → ω. Which set
of states is reached in such a manner?

4.1. Approximation by Matrix Product States

First of all, it is important to notice that the more prevalent approximation results for
ground states of local Hamiltonians, both those for approximations of vector states on
finite chains [170, 169, 71] and those for uniform approximations of density matrices in
the thermodynamic limit [37, 147] are not helpful in this respect despite appearance and
their usefulness in numerical simulations [94]. The reason for this is that these results
deal with matrix product states in a generalized sense compared to this work, namely
those where to each lattice point a different tensor is associated. For finite chains, such
a state can be written as a manifestly translation invariant matrix product state – those
that were considered in this work – whose bond dimension however can diverge in the
thermodynamic limit [130, 141]. For these generalized matrix product states, much of
the machinery essential to compute the above invariants is not available. In particular,
it is unclear how to lift symmetries or take limits of large separations.
In light of these difficulties, a set of more rough approximation results turns out to be
more helpful. Fannes et al. proved that any translation-invariant state ω on a quantum
spin chain can be approximated by a sequence ωα of mixed matrix product states [50, 49].
The states ωα are obtained from ω by restricting them to finite subsets, and translating
them along the chain. From this procedure it is clear that if ω is a state on a super
spin chain and invariant under the action of an on-site symmetry group G, so will be
the approximating series ωα. In a second step, they proved that the series could be
purified, i.e., ωα could be taken to be pure even if ω was mixed. This is quite similar
to the approximation of matrices by diagonalizable ones, in that here too the mixedness
of ωα is related to some geometric degeneracy condition within the space V of matrix
product tensors which is untypical in the sense that infinitesimal perturbations suffice to
lift it. Similarly, if some of the ωα have non-diagonalizable transfer operators, they can
be perturbed infinitesimally to lift the degeneracies. Any present symmetries or gradings
are not touched by this argument, assuming them to remain unbroken in the limit. To
see this, the theorem 7 of Bourne-Ogata cited above is helpful.
This argument is summarized as:

Theorem 9 ([50, 49]). Let ω be a translation-invariant state on the super chain algebra
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AZ with G-symmetry. Then there is a sequence of pure G-symmetric super matrix product
states (ωα)α∈Z with diagonalizable transfer operators approximating ω in the w∗-topology.

In general, the bond dimension Dα diverges, i.e., the limiting state is not a super matrix
product state. In particular, while the partial transpose and ZCk`(ω) as defined in equation
2.34 are well-defined, proposition 5 does not apply and hence, it is unclear whether the
limits of proposition 5 exists.

4.2. Exponentially Clustering States

The failure to define an invariant for general ω ∈ T hints at a certain over-ambitiousness
of the program, as this allows for systems at a second order phase transition or other
gapless states. Therefore, the set of states should be restricted to gapped ground states
of local Hamiltonians:

TGS := {ω ∈ T : ∃ local Hamiltonian H s.t. ω unique G.S. to H} . (4.1)

This definition is sensible, but difficult to work with from the formalism chosen here, as it
lies heavy focus on the Hamiltonians. An easier subset are states that have exponentially
decaying correlations:

Texp :=
⋃

C,`c∈R+

TC,`c , (4.2)

TC,`c := {ω ∈ T : Corrω(`) ≤ C exp(−`/`c)} . (4.3)

Note that if `1 < `2 then TC,`1 ⊂ TC,`2 , and similarly for C. Thus (TC,`c)C,`c is a filtration
of Texp. Also, in the following C is not discussed explicitely and it should be just assumed
that it is treated analogously.
By theorem 5:

TGS ⊆ Texp . (4.4)

Thus, proving a quantization of η on Texp would render the classification task complete.
The proof that is used below requires one more information on the state considered: it
needs an upper bound on the Rényi entropy, an area law. This is a property generic
states do not have [75]. Another theorem by Hastings [72] however proves that, in one
dimension, ground states of local Hamiltonians indeed satisfy such an area law. Consult
[44, 45, 61] for a more general review.
At this point it is not yet clear what the connection between the area-law and the
exponential-decay states is, i.e., if it is necessary to impose the area-law condition inde-
pendently from the exponential-decay condition to model ground states without having
to explicitly reference their local Hamiltonians. In fact, [21] proved that if ω has (C∗, `∗)
decay, then there is a bound ∆∗ on the von-Neumann entropy S. The authors of that
paper have a slightly different way of defining exponential decay of correlations which
is particular convenient in their quantum information setup. They say a state ω has
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(`0, `
′
c)-exponential decay if Corrω(`) ≤ 2−`/`

′
c for all ` ≥ `0. Here is how to translate

between the two: If ω has (C, `c)-decay as used in this work, then for all `0 > `c logC it
has (`0, `

′
c)-decay as used by Brandão et al. where 1

`c
= log(2)

`′c
+ logC

`0
. In terms of these

new quantities

S(σn(ω)) ≤ ∆∗ = A1`0 exp(A2`
′
c log(`′c)) , (4.5)

where A1, A2 are universal constants. Since the Rényi entropies are monotonously de-
creasing with the order, this automatically gives a bound

∆n(ω) ≤ ∆∗ . (4.6)

Thus,m Texp seems to be the right space to look for a quantization of η. I show first a
weaker result. Consider the subset sMPS ∩ TC∗,`∗ ; i.e., those states ω that are w∗-limits
of sequences of sMPS (ωα)α ⊂ TC∗,`∗ . For such states:

Proposition 6. For all C∗, `∗: Let ω ∈ sMPS ∩ TC∗,`∗.

(i) If ω is invariant under particle-hole symmetry C, then

exp

(
2πi

8
ηC(ω)

)
:= lim

k,`→∞
e

3
2

∆k+`(ω)ZCk,`(ω) (4.7)

is well-defined and ηC(ω) ∈ Z/8Z.

(ii) If ω is invariant under time-reversal symmetry T , then

exp

(
2πi

2
ηT (ω)

)
:= lim

k1,k2,d→∞
e2∆k1+k2+d(ω)ZCk1,k2|d(ω) (4.8)

is well-defined and ηC(ω) ∈ Z/2Z.

Proof of proposition 6. The proof restricts to η = ηC , but the proof for ηT is similar.
Pick an G-symmetric pure approximation series (ωα)α ∈ sMPS ∩ TC∗,`∗ with diagonaliz-
able transfer operators for ω. The proof proceeds in four steps:

(i) Let n = (k, `). For convenience, the limit n→∞ is used to denote the limit when
both k and ` are taken to infinity. Sometimes the notation is abused in that a
quantity is written as if it only depended on n when it depends on k, ` separately.
Thus, let Qn(ωα) := e

3
2

∆n(ωα)Zk,`(ωα). Then, there is xα ∈ Z/8Z such that
∣∣∣Qn(ωα)− e 2πi

8
xα
∣∣∣ ≤ 7C∗e

5
2

∆∗e−n/`∗ , (4.9)

in particular the limit is uniform in α.

(ii) The limit 4.7 exists.

(iii) xα → x ∈ Z/8Z.
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(iv) η(ω) = x.

(i) The ωα are super matrix product states. Hence, by proposition 5, there is xα ∈ Z/8Z
such that Qn(ωα)

n→∞−→ exp(2πixα/8).
Quite generally for states ν1, ν2 ∈ TC∗,`∗ :

|Qn1(ν1)−Qn2(ν2)| =
∣∣∣e 3

2
∆n1 (ν1)Zk1`1(ν1)− e 3

2
∆n2 (ν2)Zk2`2(ν2)

∣∣∣ =

≤
∣∣∣e 3

2
∆n1 (ν1) − e 3

2
∆n2 (ν2)

∣∣∣ |Zk1`1(ν1)|+ e
3
2

∆n2 (ν2) |Zk1`1(ν2)− Zn2(ν2)| .

For the first term, the middle-value theorem yields |x−3/2 − y−3/2| ≤ 3
2 |z|−5/2|x − y|,

if z is an upper bound of both x and y. This can be combined with the upper bound
∆n1/2(ν1/2) ≤ ∆∗ to

|Qn1(ν1)−Qn2(ν2)| ≤ 3e
5∆∗

2

2

∣∣∣e−∆n1 (ν1) − e−∆n2 (ν2)
∣∣∣+ e

3∆∗
2 |Zk1`1(ν1)− Zk2`2(ν2)| .

(4.10)

Thus, using equations 3.38 and 3.40:

∣∣∣Qn(ωα)− e 2πi
8
xα
∣∣∣ ≤ 3e

5
2

∆∗

2
2‖En − E∞‖+ 2e

3
2

∆∗
(
‖Ek − E∞‖+ ‖E` − E∞‖

)
≤

≤
(

3e
5
2

∆∗ + 4e
3
2

∆∗
)
C∗e

−n/`∗ ,

thus the claim.

(ii): First combine equations 3.43, a similar result for ∆n, and 4.10 to conclude

|Qn(ν1)−Qn(ν2)| ≤ 5e
5∆∗

2 ‖σn(ν1)− σn(ν2)‖1 . (4.11)

The next step is to prove that (Qn(ω))n is Cauchy. Pick ε > 0 and write

|Qn(ω)−Qm(ω)| ≤ |Qn(ω)−Qn(ωα)|+ |Qm(ω)−Qm(ωα)|+ |Qn(ωα)−Qm(ωα)| .

By part (i) (Qn(ωα)n converges uniformly in α. Thus, pick n and m large enough such
that the last term is smaller than ε/3. With the integers n and m fixed to some values,
the first two terms are bounded with the help of equation 4.11 by the 1-distance of the
density operators of ω and ωα onHn andHm. But since all operator norms are equivalent
on finite-dimensional Hilbert spaces, the 1-distances converge both to zero as α → ∞.
Hence, pick α large enough s.t. either of the terms is smaller than ε/3. Thus, (Qn(ω))n
is Cauchy and the limit exists.

(iii): Note that the 8th roots of unity have a distance from each other of
√

2−
√

2. Hence,
pick ε <

√
2−
√

2/2. Write:
∣∣∣e 2πi

8
xα − e 2πi

8
xβ
∣∣∣ ≤

∣∣∣Qn(ωα)− e 2πi
8
xα
∣∣∣+
∣∣∣Qn(ωβ)− e 2πi

8
xβ
∣∣∣+ |Qn(ωα)−Qn(ωβ)| .
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Pick n large enough such that either of the first two terms is smaller than ε/3. Then, pick
α and β big enough such that the last term is smaller than ε/3. But, since exp(2πixα/8)
is pinned to the 8th roots of unity, and ε is smaller than half the smallest distance between
any of them, the sequence actually has to be constant for large enough α.

(iv): The only thing left to show is that η(ω) = x, that is, that the limits of α→∞ and
n→∞ of the sequence (Qn(ωα))n,α commute. A ε/4 argument confirms this:

∣∣∣e2πix/8 − e2πiη(ω)/8
∣∣∣ ≤
∣∣∣e2πix/8 − e2πixα/8

∣∣∣+
∣∣∣e2πixα/8 −Qn(ωα)

∣∣∣+

+ |Qn(ωα)−Qn(ω)|+
∣∣∣Qn(ω)− e2πiη(ω)/8

∣∣∣ .

By parts (i) and (ii), the second and the fourth term can each be made smaller than ε/4
by choosing n large enough, and by parts (ii) and (iii), the first and the third term can
each be made smaller than ε/4 by chooising α large enough. thus proving the claim.

This chapter finishes with a discussion in which way proposition 6 defines a homotopy
invariant for gapped ground states, or possibly fails to do so.
A given ground state ω describing a topological phase is exponentially correlated, i.e.,
there are (C, `c) < ∞ s.t. ω ∈ TC,`c . Consider a pure super matrix product state ap-
proximating series, (ωα)α. Since these are pure states and have finite bond dimension,
they are exponentially clustering with constants (Cα, `α), i.e., ωα ∈ sMPS ∩ TCα,`α . Now
if, after deleting finitely many elements from this sequence, there is an upper bound
(C∗, `∗) of (Cα, `α), then ω ∈ sMPS ∩ TC∗,`∗ and the above proposition applies. Hence,
the difficulty is whether it is possible to give an upper bound of the correlations of the
approximating sequence of super matrix product states given a bound on the correlations
of the approximated state.

There are several difficulties in obtaining such a bound. Their nature is explained in
the following. They seem to be connected to the approximability of the low-energy spec-
trum of gapped ground states.
The prime obstacle in advancing is that w∗-convergence is very weak. In particular, it is
not necessary, or at least it is noy clear whether it is necessary, that Corrωα(`)→ Corrω(`).
Denote by Corrν(n1 : n2|`) the correlations of a state ν between patches of size n1, n2

separated by a distance `. In finite dimensions, all notions of convergence are identical1.
Therefore, for fixed n1, n2, `, the w∗-convergence of ωα implies that Corrωα(n1 : n2|`)→
Corrω(n1 : n2|`). Furthermore, Corrν(n1 : n2|`) ≤ Corrν(`).

It holds that Corrν(n1 : n2|`) ≤ Corrν(`), and of course it converges for n1, n2 →∞.
Define an integer-valued function N(ω) by

Corrω(N(ω) : N(ω)|`) = Corrω(`) ∀ ` ∈ N .

1More details on the relationship between the different topologies on the set of states can be found for
example in [136].
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If there is a uniform bound N(ωα) ≤ N∗, the correlation length of ωα is uniformly
bounded by the correlation length of the limit state ω:

Corrωα(`) = Corrωα(N∗ : N∗|`)→ Corrω(N∗ : N∗|`) ≤ Corrω(`) ≤ Ce−`/`c ;

that is, Corrωα(`) Cauchy-converges to an uniformly bounded sequence. Hence, for any
C ′ > C, by deleting finitely many elements of the sequence:

Corrωα(`) ≤ C ′e−`/`c ,

and sMPS ∩ TC,`c = TC′,`c . Thus, proposition 6 would define a homotopy invariant on
all gapped ground states.

However, it is not quite clear how to obtain such a bound N∗. For finite bond dimension,
introduce the injectivity index ι(ω). This is the smallest integer such that EO(e) gener-
ates the whole bond algebra, where the support of O is ι(ω). Obviously N(ω) ≤ ι(ω).
The latter can be bounded by a polynomial in the bond dimension [141]. This bound
therefore diverges as Dα →∞, and there is furthermore no reason to believe that ι(ωα)
would not share its fate. It is possible that N(ωα) follows suit. This would correspond to
the scenario that while the correlation length of the approximating matrix product states
diverges, the strongly correlated operators need larger and larger patches to manifest in
the bond algebra, and proposition 6 does not define a homotopy invariant on the set of
gapped ground states.

On the other hand, there are reasons for hope. The objection to the above scenario
sustains that there is no need to generate the full bond algebra to obtain the necessary
bound. What should happen is that the eigenvectors of the transfer operator to eigen-
values very close to the unit disc are generated on small patches. This could be quite
a general feature of gapped ground states, assuming that ω has particle-like excitations.
This is expressed more technically as the statement that the low-lying energy-momentum
spectrum consists of isolated energy shells [109, Section 6.1.2]. Then the low-lying exci-
tations, i.e., those operators that maximize the correlation bound, can be approximated
exponentially fast in the support size by the action of local operators on the ground state
[69]. Numerical and analytical studies indicate furthermore that the highest magnitude
eigenvalues of approximating MPS approximate the dispersion relations of low-lying ex-
citations [177, 165]. This seems to indicate that Corrω(n : n|`) converges to Corrω(`)
with exponential speed, and the spectrum of the transfer operator could be controlled
through knowing the low-energy spectrum of the approximated state.
In line of such inquiries, it is tempting to model sufficiently well-behaved state di-
rectly as a kind of matrix product state, albeit with infinite dimensional bond space
[103, 118, 119, 17, 120, 104, 103]. Algebraic methods are unproblematic, and if the dif-
ficulties sketched above could be overcome, a fair deal could be said furthermore about
the analytic structure of these matrix product presentations.
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Summary and Outlook

The long-range physics of gapped ground states is described in terms of topological
quantum field theory. Advances in the latter, which were to some extent driven by the
challenge from physics, give a characterization of symmetry protected phases in terms of
cobordisms. Re-importing this knowledge into the environment of interacting fermions
in one dimension leads to proposals for many-body invariants, analogous to partition
functions of field theories on non-orientable manifolds, for topological phases protected
by anti-unitary symmetries.
In this thesis, this connection has is made more precise. It is proven that ZC and ZT are
indeed topological invariants in the set of states approximable by super matrix product
states with an upper bound on their correlation length. This defines purely bulk in-
variants of topological phases with anti-unitary symmetries, which can be connected, for
super matrix product states, with invariants defined on the boundary, or entanglement,
Hilbert spaces.
To calculate these invariants, the theory of super matrix product states is developed.
While the theory of ungraded matrix product states is quite comprehensive, the graded
one has important gaps in the literature. This includes certain facts about completely
positive maps on superalgebras, which are the bread-and-butter of all calculations in the
matrix product world. Furthermore, to properly lift anti-unitary symmetries to graded
bond spaces, and to define graded transposes, in a basis-independent way, bilinear forms
appropriate to super vector spaces are introduced. In this context it also became possible
to elucidate the necessity to use graded bond algebras for fermionic systems.
Equipped with this machinery, the calculation of the proposed many-body invariants for
particle-hole or motion-reversal symmetric super matrix product states poses no further
challenge. This proves them to be homotopy invariants on the set of super matrix prod-
uct states. Since their definition is neither algebraic nor dependent on any particular
formalism to describe ground states, they can be extended to limits of super matrix
product states. In order to restrict to gapped ground states as limits, a uniform bound
on the correlation length of the states in the sequence is imposed. While this is not
yet necessarily the set of all gapped ground states, arguments are given why it should
capture the relevant set. With this assumption, the proposed quantities are shown to be
homotopy invariants on this set.
The many-body invariants calculated in this work allow to reproduce the known classifi-
cations of one-dimensional symmetry protected phases for particularly simple symmetry
groups. To gain many-body invariants for more general phases is not difficult in light of
this work; what is necessary is to know the bordism group corresponding to that sym-
metry, and how to obtain the generating manifolds by the cutting and gluing operation
possible in condensed matter systems. The expressions can then be evaluated using the
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formalism of super matrix product states as is done here. However, the primary usage
of the invariants is to extract information about the class of a given state.
The gap between the two assumptions – of the limit of a sequence of matrix product
states being gapped, and the sequence itself having a uniform bound – is connected to
questions about the excitations of general gapped ground states, and their entanglement
structures. In particular, it is incumbent to turn the numerical and heuristic results of
[177] more comprehensive.
Generalizations to higher dimensions, with similar methods, mostly face the challenge
that such a powerful tool is not available to compute in the thermodynamic limit, as
is the transfer operator in one spatial dimension. The strictures imposed against chiral
tensor networks [40] are tangent here since d-dimensional chiral states are to be under-
stood as connected to (d+ 1)-dimensional bordism groups and have to be dealt with in
other ways anyhow, e.g., [9].
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A. Zp-graded Linear Algebra

Graded Vector Spaces A vector space V is graded with type ∆ if V =
⊕

λ∈∆ V
λ. It is

not required that the V λ are non-trivial vector spaces, in particular V λ = {0} for all λ
is included. Any vector space V can be considered as a graded vector space by declaring
V 0 = V and V λ 6=0 = {0}. The union (of sets)

⋃
λ V

λ \ {0} are the homogeneous vectors.
On homogeneous vectors introduce a map | · | such that |ξ| = λ if λ ∈ V λ, called the
degree or parity of ξ. Any vector can be decomposed as ξ =

∑
λ ξ

λ.

Examples of Graded Vector Spaces. For F a vector space, the exterior algebra over
F , denoted by Λ(F ), is a N-graded vector space: Λ(F ) =

⊕
n∈N Λn(F ). If F is finite-

dimensional of dimension k, then Λn(F ) = {0} for n > k. Similarly, one may form the
symmetric algebra S(F ), which is also N-graded, but with Sn(F ) 6= {0} for all n ≥ 0,
unless F = {0}. Both Λ(F ) and S(F ) can be considered as Z-graded vector spaces by
taking all negative-graded spaces to be trivial. Furthermore, to obtain a Z2-graded vector
space, group Λ(F ) = Λeven(F )⊕ Λodd(F ).

Graded Tensor Products Consider graded vector spaces V1, V2. Their tensor product
V1 ⊗ V2 can be endowed with a ∆-grading by

(V1 ⊗ V2)λ :=
⊕

µ+ν=λ

V µ
1 ⊗ V ν

2 . (A.1)

The resulting ∆-graded vector space is denoted as V1 ⊗∆V2.
Observe that there are isomorphisms, for z ∈ C, ξ ∈ V : ξ ⊗∆z 7→ zξ and z ⊗∆ξ 7→ zξ,
so that one can consider C with its trivial grading as a unit w.r.t. the graded tensor
product:

V ⊗∆C ∼= V ∼= C⊗∆V . (A.2)

The tensor product, as a bilinear operator, can be concatenated. However, the associator
a : (V1 ⊗∆V2)⊗∆V3 → V1 ⊗∆(V2 ⊗∆V3), defined simply by

(ξ1 ⊗∆ξ2)⊗∆ξ3 7→ ξ1 ⊗∆(ξ2 ⊗∆ξ3) , (A.3)

determines an isomorphism of theses concatenations. The brackets indicating the order
of tensor products are hence omitted.
This allows to endow the category of ∆-graded vector spaces ∆Vect with a monoidal1

structure. The pair (∆Vect,⊗∆) is called a monoidal category.
1For more details check the n-lab [116]. The associator and the unit need to satisfy some coherence
axioms, called the triangle and the pentagon equation. They are not listed here because they are
trivially satisfied in the abelian case considered here.
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Braiding. For vector spaces V1, V2 the tensor products V1⊗∆V2 and V2⊗∆V1 are vector
spaces of the same dimension, hence isomorphic. Pick an ε : ∆×∆→ C, and define one
such isomorphism, called a braiding, as

BV1,V2 : V1 ⊗∆V2 → V2 ⊗∆V1 ,

ξ1 ⊗∆ξ2 7→ ε(|ξ1|, |ξ2|) ξ2 ⊗∆ξ1 .
(A.4)

The above defined ∆Vect together with the braiding B defines a braided monoidal cat-
egory [80], if a coherence condition – the hexagon equations – holds. Due to the trivial
associator, these coherence conditions further boil down to demanding that the following
diagrams commute (suppressing the reference to the grading on the tensor products):

V1 ⊗ V2 ⊗ V3

V2 ⊗ V1 ⊗ V3

V2 ⊗ V3 ⊗ V1

BV1,V2⊗V3

BV1,V2 ⊗ idV3 idV2 ⊗BV1,V3

V1 ⊗ V2 ⊗ V3

V1 ⊗ V3 ⊗ V2

V3 ⊗ V1 ⊗ V2

BV1⊗V2,V3

idV1 ⊗BV2,V3 BV1,V3 ⊗ idV2

Both these diagrams express that for braiding purposes one can lump tensor factors
together in an arbitrary fashion. In terms of ε, they read:

ε(µ+ µ′, ν) = ε(µ, ν)ε(µ′, ν) , ε(µ, ν + ν ′) = ε(µ, ν)ε(µ, ν ′) . (A.5)

Consider µ′ = 0 = ν ′ in the above equations:

ε(µ, ν)ε(0, ν) = ε(µ, µ) = ε(µ, ν)ε(µ, 0) . (A.6)

Hence, ε(µ, 0) = 1 = ε(0, ν). The special case µ = −µ′ gives:
ε(0, ν) = 1 = ε(µ, ν)ε(−µ, ν) ⇔ ε(−µ, ν) = ε(µ, ν)−1 ,

ε(µ, 0) = 1 = ε(µ, ν)ε(µ,−ν) ⇔ ε(µ,−ν) = ε(µ, ν)−1 ,
(A.7)

A simplifying assumption is that braiding back and forth gives the identity, or in terms
of ε:

ε(µ, ν)ε(ν, µ) = 1 . (A.8)

A tensor category with an ε satisfying A.8 is called a symmetric2 monoidal category. For
now, however, the categories are not necessarily symmetric.
For example, let ∆ = Zp for p ∈ N. Then for each r = 0, 1, ..., p − 1 there is a possible
choices of ε:

εp,r(µ, ν) = exp

(
2πir

p
µν

)
. (A.9)

If p = 2r, ε(µ, ν) = (−1)µν induces a symmetric monoidal structure. This leads back to
the super vector spaces of chapter 1.

2In tensor diagrams, this manifests itself that for symmetric monoidal categories it is not necessary to
distinguish between the different ways two lines can cross.

92



Example: The Clock and Shift Operators. Pick an integer p. Let z = exp(2πi/p)
be a p-th root of unity. Define an operator P on V = Cp by P(eµ) = zµeµ, where
{eµ}µ=1,...,p is the standard basis of Cp which defines the standard inner product. This
P operator grades V : Cp =

⊕
µCeµ, so that P appears as a parity operator for the

group homomorphism

γ : Zp 3 ` 7→ z` ∈ {zr : r = 0, 1, ..., p− 1} . (A.10)

Let X be the operator defined by 〈ei, Xej〉 = δi+1,j . By direct calculation

PXP−1 = zX . (A.11)

Denote by A the C∗-algebra generated by X. Furthermore, define Y := PX. Then (a)
Y µ ∈ L (V )µ, (b) Y µ /∈ A for µ 6= 0 mod p, and (c) xY µ = zµ|x|Y µx for x ∈ A. Hence,
the graded commutant of A in L (V ) is the algebra generated by the Y µ.

∆-Graded Local Algebras Very Similar to the construction of Z2-graded local algebras
in section 2.1, associate a ∆-graded Hilbert space H{x}, a ∆-graded closed subalgebra
A{x} ⊂ L (H{x}), where as before the easiest choice is in the presence of isomorphisms
H{x} ∼= H{y}. As before, introduce algebras associated to subsets by picking points
x1 < · · · < xn ∈ Z and defining

A{x1,...,xn} := A{x1} ⊗∆ · · · ⊗∆A{xn} . (A.12)

Finally, AZ is the ∆-graded chain algebra.
AZ is ∆-asymptotically abelian. Take local O1,2 with disjoint supports. From the struc-
ture of these algebras that generic operators do not do that, but instead graded commute:

O1O2 = ε(|O1|, |O2|)O2O1 . (A.13)

Why ∆-Graded Algebras? The bosonization map of section 2.4 can be generalized to
the setting of ∆ = Zp, for which task the clock and shift operators introduced above
come in handy. The isomorphism of algebras that is constructed as, for L ∈ Aµ:

φN : A{1,...,N} → (L (Cp)⊗ Ã)⊗N .

This is characterized by

1⊗∆ · · · ⊗∆

x
L ⊗∆· · · ⊗∆1 7→ (Y µ ⊗ 1)⊗ · · · ⊗ (Y µ ⊗ 1)⊗

x

(Xµ ⊗ L) ⊗1⊗ 1 · · · ⊗ 1 .

As in the bosonization case, the correct ∆-graded commutation relations are guaranteed
by the clock- and shift operators.
One can construct an algebra of quasi-local operators with L (Cp)⊗ Ã. However, fixing
some operator O, of degree µ, φN (O) does not correspond to a local operator as N →∞.

93



Indeed, it carries a string of operators which enforce the graded commutation relation.
Restricting to the operators of trivial degree, one may indeed construct a mapping

φ : (AZ)0 → (L (Cp)⊗ Ã)
Zp
Z ;

where the superscript 0 on the left sides indicates that only objects those are to be
considered the domain of φ which are globally in the trivial component – which does not
include spatially separated pairs of oppositely graded objects – while the superscript Zp
on the right side indicates that φ only maps to those operators that are uncharged under
the action of Zp.

∆-Graded Matrix Product States It is not difficult to continue further the construction
to ∆-graded matrix product state. For this, consider tensors E : H → L (H) and
introduce EL ∈ L 2(H) for L ∈ L (H),

EL(x) :=
∑

s,r

ε(|ψs|, |x|) 〈ψs, L(ψr)〉 E(ψs)xE(ψr)
∗ .

Again, E = E1 is the transfer operator, and if tr(ρ ·) and e are left resp. right eigenvalues
this allows to define as before a state

ωE,ρ(L1 ⊗∆ · · · ⊗∆Ln) := tr(ρEL1 · · ·ELn(e)) .

One can proceed again through the decomposition theory of such states, and of the
transfer operators, and will obtain structurally analogous results; in particular the bond
algebra A(E) of a pure ∆-graded MPS is ∆-graded central; and

lim
n→∞

En(x) =
∑

a

vatr(ρax) ,

where va is in the ∆-commutant of A(E) in L (H), which is at most p-dimensional as
for the clock and shift operators.
Zp-graded super matrix product states could be used to calculate expectation values and
partition functions for Zp-gauge theories. The charged operators correspond to matter
fields with gauge strings attached. As indicated above in the discussion of the braiding,
the diagrams are more involved as two lines can wind around each other.
It could also be used in order to define matrix product states for parafermionic systems,
for example spinons with p = 4 [66].
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B. Kadison-Schwarz Inequality for h.c.p.
Maps

Homogeneorus completely positive maps satisfy a generalization of the Cauchy-Schwarz
inequality, proven first by Kadison:

Lemma 6 (Generalized Kadison-Schwarz). Assume E(α) : H → L (Hα) generate strongly
irreducible unital transfer operators E(α). Introduce the “mixed" operator E(1,2) ∈ L 2(H2, H1):

x 7→
∑

s

(−1)|x||E
(2)
s |E(1)

s x (E(2)
s )∗ .

Then E(1,2) and E(2,2) = E(2) satisfy a Kadison-Schwarz like inequality

E(2)(x∗x) ≥ E(1,2)(x)∗E(1,2)(x) .

Furthermore ‖E(1,2)‖ ≤ 1.

As this is a bit more general than the usual version, discussing super vector spaces and
allowing for different spaces to mediate a short proof. For the ungraded case check [146].
The proof of this statement needs the following technical result [126]:

Lemma 7. Let x : H2 → H1, then:
(

1H1 x
x∗ 1H2

)
≥ 0 ⇔ ‖x‖ ≤ 1 .

Proof of lemma 6. For the first statement consider the positive map φ = E(1) ⊕ E(2) on
L (H1 ⊕H2). Pick some y : H2 7→ H1. Pick a positive element:

(
1 y
y∗ y∗y

)
=

(
1H1 y
0 0

)∗(
1H1 y
0 0

)
≥ 0 ;

As φ is positive:

0 ≤ φ
(

1 y
y∗ y∗y

)
=

(
1H1 E(1,2)(y)

E(1,2)(y)∗ E(1,2)(y∗y)

)
.

Pick ξ ∈ H2 arbitrary. Then

0 ≤
〈(
−E(1,2)(y)ξ

ξ

)
,

(
1H1 E(1,2)(y)

E(1,2)(y)∗ E(2)(y∗y)

)(
−E12(y)ξ

ξ

)〉
=

= 〈ξ, [E(2)(y∗y)− E(1,2)(y)∗E(1,2)(y)]ξ〉 ,
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and the statement follows.

To the second claim, consider

φ

(
1H1 x
x∗ 1H2

)
=

(
1H1 E(1,2)(x)

E(1,2)(x)∗ 1H2

)
.

By lemma 7, ‖E(1,2)(x)‖ ≤ 1 if ‖x‖ ≤ 1.
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C. Reduction of Symmetry Group

Consider a (G, p)-symmetric pure super matrix product tensor E : H → L (H) and
denote by ω the state generated by E. Let G0 := p−1(0) be the compact subgroup of
unitarily represented symmetries. Both the on-site algebra A and the bond algebra A
decompose, as vector spaces, under the unitary G0:

A =
⊕

∆∈S
A∆ , A =

⊕

∆∈Ŝ

A∆ ; (C.1)

here S respectively Ŝ is the set of isomorphism classes of representations of G0 appearing
in the decomposition. Fix a standard representation R∆ for each type ∆. Then following
[178]

A∆
∼= HomVect

G0
(R∆,A)︸ ︷︷ ︸

=:B∆

⊗̂R∆ , A∆
∼= HomVect

G0
(R∆, A)︸ ︷︷ ︸

=:B∆

⊗̂R∆ ,

by using the homomorphism to map a standard representation element into the algebra,
X⊗̂r 7→ X(r). The superscript Vect should remind that these are vector space homo-
morphisms.
Consider the special case that the anti-unitaries in G commute with the action of G0.
This is for example the case for G0 = SU(2) and with the anti-unitaries K = T,C of
time-reversal and motion-reversal respectively. In this case, K preserves the type ∆ of a
representation, and thus it has to factor. In the following, the virtual algebra is discussed,
but the on-site algebra behaves strictly analogous:

K =
⊕

∆

K∆ , K∆
∼= KB∆

⊗̂KR∆
.

Restricting to one definite type ∆ and henceforth supressing its reference, there can occur
modifications of the algebraic properties of the factor KB. For example, for K = T and
G0 = SU(2), it holds that K2 = P . But on an irreducible SU(2)-module R with spin
∆ = j ∈ 1

2Z, time-reversal squares to (TR)2 = (−1)2j . Furthermore, by the spin-charge
relation of SU(2), the parity operator factors as P = 1⊗̂(−1)2j . Hence, (TB)2 = 1. Thus,
there appears a change from a graded real structure on A to a real structure on B, which
is trivially graded by the generalized spin-charge relation.
Turning to the super matrix product state transfer operator, recall the lift E· : L →
L 2(H) and denote φ(L⊗̂x) := EL(x). For L ∈ A∆ and x ∈ A∆′ , find r, r′ ∈ R∆,∆′ and
` ∈ B∆ and X ∈ B∆′ such that L = `(r) and x = X(r′).
Consequently:

φ(L⊗̂x) =: φ∆,∆′(`⊗̂X⊗̂r⊗̂r′) .
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Since representations tensor,

R∆⊗̂R∆′
∼=

⊕

∆′′∈S(∆,∆′)

R∆′′ , |∆, k〉⊗̂|∆′, k′〉 =
∑

∆′′

∑

k′′
c∆′′

∆,∆′(k, k
′, k′′)|∆′′, k′′〉 ,

with S(∆,∆′) the set of isomorphism classes of representations of G0 appearing in the
decomposition into irreducibles, and |∆, k〉 some basis of R∆. Thus, the above map
decomposes

φ∆,∆′(`⊗̂X⊗̂|∆, k〉⊗̂|∆′, k′〉) =
∑

∆′′

∑

k′′
c∆′′

∆,∆′(k, k
′, k′′)φ∆′′

∆,∆′(`⊗̂X⊗̂|∆′′, k′′〉) .

Use that φ is G0 equivariant. This forces

φ∆′′
∆,∆′(`⊗̂X⊗̂r) = ψ∆′′

∆,∆′(`⊗̂X)⊗̂r =: [Ψ∆′′
∆,∆′ ]`(X)⊗̂r .

The developments are summarized as

E`(|∆1,k1〉)(X(|∆2, k2〉)) =
∑

∆3

∑

k

c∆3
∆1∆2

(k1, k2, k3) [Ψ∆3
∆1,∆2

]`(X)⊗̂|∆3, k〉 . (C.2)

Taking again the example of G0 = SU(2), these coefficients have a particular simple
form, namely

cj3j1j2(m1,m2,m3) = 〈j1m1j2m2|j3m3〉 ,

with the Clebsch-Gordan matrix elements.
So far, the analysis has produced not much more than cumbersome notation. To obtain
license for some drastic steps, it is necessary to switch gears and ponder for a moment
the super matrix product state ω defined by the expectation values

ω(`1(r1)⊗̂ · · · ⊗̂`n(rn)) = tr(ρ(1)E`1(r1) ◦ · · · ◦ E`n(rn)(e(1)) ,

where the left, resp. right fixed points of the transfer operator have been represented by
maps ρ, e : R0 → A, and with operators from isomorphism classes ∆1, ...,∆n. I want to
argue that it is permissible to locally average over G0, without leaving the SPT class [ω].
Local averaging, here, refers to defining a state as

ω(L1⊗̂ · · · ⊗̂Ln) =

∫

Gn0

[
n∏

i=1

dµ(gi)

]
ω
(
αg1(L1)⊗̂ · · · ⊗̂αgn(Ln)

)
.

ω is positive as a sum of positive terms; it is normalized as

ω(1An) =

∫

Gn0

[
n∏

i=1

dµ(gi)

]
ω ◦

(
αg1⊗̂ · · · ⊗̂αgn

)
(1An) =

[∫

G0

dµ(g)

]n
ω(1An) = 1 ,
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and it clusters since
∣∣∣∣∣∣
ω(O1⊗̂ 1⊗̂ · · · ⊗̂1︸ ︷︷ ︸

n times

⊗̂O2)− ω(O1)ω(O2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ω(O1⊗̂ 1⊗̂ · · · ⊗̂1︸ ︷︷ ︸

n times

⊗̂O2)− ω(O1)ω(O2)

∣∣∣∣∣∣
≤

≤ Corrω(n)
∥∥O1

∥∥∥∥O2

∥∥ .

This also neatly shows that what is done here effectively is to add a projection on the
G0-invariant subspace at each lattice site.
To see that it is in the same SPT class as ω, modify the Haar measure to a normalized
dµt(g), which satisfies

∫
dµ0(g)f(g) = f(1) and dµ1(g)dµ(g). This gives a continuous

path of G-symmetric clustering states, hence a homotopy. For example, if G0 = SU(2),
a possible choice is

dµt(g) =
det(1− g)

1
t
−1dµ(g)

∫
G0

det(1− g′) 1
t
−1dµ(g′)

.

Bolstered by these arguments, the task is to average equation C.2. This produces imme-
diate simplification. Indeed, the averaging forces ∆1 = 0, the trivial representation. But
then the coefficients simplify,

c∆3
0∆2

(0, k2, k3) = δ∆3
∆2
δk2
k3
.

Since the right-most transfer operator starts with ∆ = 0, the averaged state has the
following representation on operators Li = `i(1) from the trivial representation:

ω(`1(1)⊗̂ · · · ⊗̂`n(1)) = tr(ρΨ`1 ◦ · · · ◦Ψ`n(e)) , Ψ` = [Ψ0
0,0]` .

Since ω has finite entanglement spectrum across any link, it is a super matrix product
state. The next step is to study the symmetry action on this state.
To that effect recall the decomposition of the physical and virtual algebras C.1. The local
averaging had the effect to restrict to the singlet subalgebras. Note that B0 and B0 carry
an algebra structure by (X1 ·X2)(1) = X1(1)X2(1). Since the X are G0-equivariant, the
only non-trivial remaining symmetries are the anti-unitary ones, which can be lifted to
B0. In this context a sMPS with ZT2 × SU(2)spin symmetry can transform effectively to
a MPS with ZT4 -symmetry.
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