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Abstract

In this thesis we investigate a large class of geometric random graphs defined on

a Poisson point process on Rd, where each vertex carries an independent random

mark. On this vertex set edges are established at random, such that the class

is only determined by upper and lower bounds on the connection probabilities

between finitely many pairs of vertices, which depend crucially on the marks

and the spatial distance of each pair of vertices. This class includes different

geometric random graphs emerging from real-world network models, such as a

version of spatial preferential attachment (where marks can be understood as

birth times), and continuum percolation, such as the soft Boolean model, as well

as a whole range of further graph models with scale-free degree distribution and

edges between distant vertices.

For this class of geometric random graphs we study the occurence of short paths

leading to ultrasmallness of the graphs, i.e. that the graph distance of a pair of

distant vertices grows at most of doubly logarithmic order in the spatial distance

of the pair. We give a sharp criterion for the absence of ultrasmallness of the

graphs and in the ultrasmall regime establish a limit theorem for the chemical

distance of two very distant vertices. Unlike in non-spatial scale-free network

models and spatially embedded random graphs such as scale-free percolation the

boundary of the ultrasmall regime and the limit theorem depend not only on the

power-law exponent of the degree distribution but also on the rate of decay of

the probability of an edge connecting two vertices with typical marks in terms

of their Euclidean distance.

Furthermore, we study the effect of the short paths in the ultrasmall regime on

the survival of the contact process on geometric random graphs in this class. We

show that the non-extinction probability is positive for any positive choice of the

infection rate and give precise asymptotics for it when the infection rate decays

to zero. On finite spatial restrictions of the graphs we show that the extinction

time is of exponential order of the size of the graphs.

Finally, we provide various examples of geometric random graphs from the class

and discuss them with regard to the main result of this thesis.
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CHAPTER 1

Introduction

1.1 Motivation

In 1967, 160 people in Nebraska got sent a folder by the University of Harvard.

This folder included the name and address of a person in Boston, the target

person, and a set of rules to follow. The following two rules were essential.

(i) If the recipient knows the target person on a first name basis, he or she

should send the folder to the target person directly.

(ii) If this is not the case, the recipient should send the folder to the person he

or she know on a first name basis, who is most likely to know the target

person, and this person should proceed according to the same rules.

This process was part of a social experiment carried out by Milgram [82, 96] with

the aim of empirically answering the question whether there exists a “chain of ac-

quaintances” between two random people in USA connecting them and, should it

exists, how long this chain is. The experiment led to surprising results. Although

the folders needed to travel the large distance from sparsely populated Nebraska

to Boston via acquaintances and there was no guarantee that the participants
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1.1. MOTIVATION

would be willing to take part in this experiment, 44 of the 160 folders made it

to the target person and the mean of the number of people through which the

folder was sent by a successful chain was 5.5. Later experiments could increase

the success rate of the received folders to 0.95 by giving more information about

the target person and by pretending that the folder itself was valuable. The

mean number of intermediaries to form a successful chain was confirmed to be

between 5.5 to 6. This result led to the famous idea of “six degrees of separation”

which states that two random people in the world are typically connected by a

chain of at most 6 friends and friends of friends, which gained broad popularity

in 1991 through the homonymous Broadway play by John Guare.

1.1.1 Real-World Networks and random graphs

The study of real-world networks has played an increasingly important role in

science during the last several decades, such as with the internet and the world-

wide web. Examples also include electrical power grids and telecommunication

networks, (virtual) social networks as Twitter or Facebook or the friendship net-

work, collaboration networks or even biochemical networks and neural networks.

These networks are formed by a set of objects which will be called vertices and

the connections between the objects, called edges. For example, in the friendship

network the vertices are the people of the world and there exists an edge between

two people if they are friends. As all these real-world networks are large, the

main focus of the study of such networks does not lie in the analysis of the prop-

erties of individual vertices or edges but on the fundamental properties of the

entire network. With the technological progress of the last decades, especially in

terms of the storage and analysis of large datasets, the empirical study of large

networks has become possible. In fact, many real-world networks share similar

fundamental properties. In the following, three important properties will be de-

picted with the primary help of two examples for real-world networks. The first

example is the internet on the level of autonoumous systems (AS from here on

out). The second is the movie collaboration network, where the actors are the

vertices and an edge is formed between two actors if both played a role in the

same movie.
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CHAPTER 1. INTRODUCTION

The small-world phenomenon The experiment of Milgram was the first

demonstration of the small-world phenomenon. The observation that, although

a network is very large, it is sufficiently well connected that most pairs of vertices

are near to each other in the sense that they are connected via a short path of

edges through the network, is intriguing and has been personally experienced by

most when meeting a stranger who happens to have a friend in common. The

closeness of two vertices can be measured by the graph distance, defined as the

minimal amount of edges needed to be crossed to get from one vertex to the

other and set to infinity if there exists no path between the two vertices. For

networks with a finite amount of vertices, a good global measurement is given

by the graph distance of two vertices taken uniformly at random, which is called

the typical distance of the network. With this definition at hand, “six degrees of

separation” implies that the expected typical distance in the friendship network

with more than 7 billion vertices should be only around 7. This result has been

confirmed in an experiment at a larger scale than Milgram’s experiment in 2001

with more than 60.000 participants from 166 countries, where the packages have

been sent by e-mail. See [40] for a detailed analysis of the experiment. In fact,

such a small-world phenomen can be seen in other real-world networks as well.

In 2012, the expected typical distance of Facebook with more than 700 million

active users has been estimated to be 4.7 in [4]. Although Facebook has grown

over time the typical distance has been stable and actually decreased a bit,

see [11] for the analysis of Facebook done in 2016. In the movie collaboration

network with more than 200000 actors, the typical distance is estimated to be

around 3.6, see [97]. As a final example, the internet actually needs to have short

paths such that information packages can be sent across the world in as short

a time as possible. Indeed this is the case, as the internet on AS-level has an

estimated typical distance of 4.2 with more than 25000 autonoumous systems.

More impressively, this has been shown to be stable over a period of ten years

although the size of the network increased, see [38]. Such a sequence of growing

networks is small world if the typical distance growth is at most of logarithmic

order of the number of vertices. In fact, the analysis of real-world networks

indicate, that the typical distance may grow even slower in doubly-logarithmic

order of the number of vertices, leading to a so-called ultrasmall world.

3
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The scale-free degree distribution The small-world phenomenon is often

linked to another fundamental property of real-world networks. The shortest

paths between two vertices chosen uniformly at random mostly consist of power-

ful vertices with a large number of neighbours, i.e. vertices connected by an

edge to them. The number of a vertex’ neighbours is called the degree of the

vertex. Thus, to ensure short paths in a network, the degrees of the vertices

in the network must vary sufficiently, such that the proportion of vertices with

a large number of neighbours only decays slowly in the number of neighbours.

For real-world networks this is often the case, as the proportion of vertices with

degree k often decays polynomially as k−τ for some τ > 0 when k becomes large.

Then, although the average degree can be relatively small, there still exist ver-

tices with very large degree. For the movie collaboration network Barabási and

Albert estimated the power-law exponent τ to be 2.3, see [5]. The internet on the

AS-level also exhibits polynomial decay of the empirical degree distribution and

the power-law exponent τ has been first estimated as 2.15−2.2 in [47] and in 2012

the estimate was refined to 2.1, see [75]. An empirical degree distribution with

such a behaviour is called scale-free degree distribution, as for any real numbers

c1, c2 > 0, the proportion of vertices with degree c1k and the proportion of the

ones with degree c2k decay with the same speed as k goes to infinity.

Clustering Are two random friends of yours more likely to be friends with each

other than two random inhabitants of the world? This question leads to another

property of many real-world networks called clustering, where the information

that two vertices share a common neighbour increases the probability that there

exists an edge between these two vertices. By its definition this property is linked

to the number of triangles apparent in the network compared to the number

of wedges, i.e. the pairs of edges which share one of their endvertices. Two

measures for this effect of clustering are well established. The first one is the so-

called global clustering coefficient cglob, which is proportional to the proportion

of triangles to wedges in the network. More precisely, it is given by cglob :=

3Number of triangles
Number of wedges

, as the existence of each triangle implies the existence of three

wedges. Alternatively one can look more locally for each vertex at the proportion

of triangles containing the vertex to the wedges which share the vertex as an

endpoint, which is called the local clustering coefficient. The second measure is

then given by the average clustering coefficient cavg, which is the average over
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the local clustering coefficients of all vertices in the network. This measure

describes the probability that two random neighbours of a typical vertex, i.e. a

vertex drawn uniformly at random, are connected by an edge, whereas the global

clustering coefficient puts more weight on powerful vertices with large degrees.

Positive clustering coefficients have been estimated for many real-world networks,

see [89]. For the internet on AS-level the global clustering coefficient has been

estimated to be around 0.02 − 0.03 and the average clustering coefficient to be

0.3, see [79]. For the movie collaboration network the proportion of triangles to

wedges is much higher as the average clustering coefficient has been estimated

to be 0.79 in [97].

With these properties in mind, the modelling of such real-world networks be-

comes an interesting field, as real-world networks are typically large and com-

plex such that the complete analysis of such networks remains difficult. A good

choice for models of such networks have become random graphs, where vertices

are connected by probabilistic rules which may depend on local properties of the

vertices. The advantage of random graphs compared to deterministic models

is that the random occurence of edges by given local rules can model the com-

plexity of connections in real-world networks, whereas deterministic models are

either not defined by local rules or lead to networks which do not represent the

structure of real-world networks. The aim of these models is not to describe real-

world networks precisely, but to understand the influence of the given random

connection rules on the fundamental properties of the graph, as these rules could

be used to explain the empirically measured properties of real-world networks.

Graph metrics Before giving a short overview of well-known random graphs

and their properties, we define the previously outlined metrics and properties of

real-world networks on graphs. For an undirected graph G = (V,E) we write

x ∼ y if the vertices x, y ∈ G are connected by an edge, i.e. if {x, y} ∈ E. The

degree of a vertex x is then given by deg(x) :=
∣∣{y ∈ G : x ∼ y}

∣∣ as the number

of neighbours of x in G. When G is finite, the empirical degree distribution µG

of G is defined as

µG(k) :=
1

|V |
∑
x∈G

1{deg(x)=k}, for k ∈ N0.

5
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It is easy to see that µG(k) is also the probability that a vertex taken uniformly

at random from G has degree k. Thus, we can think of the empirical degree

distribution as the degree distribution of a typical vertex, in the sense that it

is uniformly drawn from G. A path of length n exists between two vertices x

and y in G, if there exists a sequence of vertices x1, . . . , xn−1 ∈ G such that

x ∼ x1 ∼ . . . ∼ xn−1 ∼ y. We write x
n↔ y if there exists a path of length

n between x and y in G and denote by x ↔ y if there exists a path of any

length between the two vertices, implying that both vertices belong to the same

connected component in G. The graph distance of two vertices x, y ∈ G is given

by

d(x, y) = min{n ∈ N : x
n↔ y}

and we set d(x, y) = ∞ when the vertices are not connected by a path of any

length. Similarly to the degree, we can observe the typical behaviour of the

distance of two vertices in a finite graph by taking a pair of vertices (X1, X2)

uniformly from all pairs of vertices with x ↔ y. We denote the graph distance

DG := d(X1, X2) between these two vertices as the typical distance of G.

As mentioned previously, we call a pair of edges in G a wedge, if they share an

endvertex (called the tip). We now give the exact definitions of the previously

mentioned clustering coefficients. The global clustering coefficient or transitivity

of a finite graph G is then given by

cglob(G) := 3
Number of triangles in G

Number of wedges in G
,

if there is at least one wedge in G and cglob(G) := 0 otherwise. By definition,

cglob(G) ∈ [0, 1]. Another way to study clustering is to count only the triangles

and wedges containing a fixed vertex x. For a vertex x with at least two neigh-

bours, define the local clustering coefficient by

clocx (G) :=
Number of triangles in G containing vertex x

Number of wedges with tip x in G
,

which is also an element of [0, 1]. Let V2(G) ⊆ G be the set of vertices in G with

6
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degree at least two, and define the average clustering coefficient by

cav(G) :=
1

|V2(G)|
∑

x∈V2(G)

clocx (G),

if V2(G) is not empty and as cav(G) := 0 otherwise.

In terms of modelling the behaviour of large real-world networks, one way is

to consider a growing graph sequence (Gn)n∈N, where n denotes the number of

vertices in Gn. We say such a graph sequence is sparse when the sequence of

empirical degree distributions (µGn)n∈N converges to a probability measure µ on

N0. We say a graph (sequence) has a scale-free degree distribution if it is sparse

and the measure µ satisfies

µ(k) = k−τ+o(1) as k → ∞ (1.1)

for some power-law exponent τ > 0. A graph (sequence) is small world if with

high probability the typical distance grows at most of logarithmic order in the

number of vertices, i.e. if there exists a constant c > 0 such that it holds

limn→∞ P(DGn ≤ c log n) = 1, and ultrasmall if there exists a constant c > 0

such that

lim
n→∞

P(DGn ≤ c log log n) = 1.

Random graphs The simplest probabilistic connection rule is to connect each

pair of vertices with the same probability independently of each other. Thus, for

a given set of n vertices, an edge is formed between each pair of vertices with a

fixed probability p. This graph was introduced in [52] and is called the Erdös-

Rényi graph, due to the extensive analysis done by Erdös and Rényi in various

papers, see [44, 45, 46]. It is easy to see that the degree of a vertex in this graph

is binomially distributed with parameters n − 1 and p. As we are interested

in large sparse graphs, the edge probability p should decay with the amount of

vertices n as n becomes large, since otherwise the structure of the graph becomes

dense as then the expected degree of each vertex is not finite. But, by taking

p = λ/n for some λ > 0 the degree distribution of a vertex converges to a Poisson

distribution with parameter λ as n → ∞. Thus, the Erdös-Rényi graph does

not have a scale-free degree distribution contrary to many real-world networks

7



1.1. MOTIVATION

as discussed beforehand.

One simple way to ensure a graph with scale-free degree distribution is to set

the degree of each vertex in advance. This idea leads to the configuration model

introduced in [15, 83], where an independent (possibly random) number of half-

edges is assigned to each vertex. Given theses half-edges, all half-edges are

paired uniformly. Note that this procedure allows the graph to have self-loops

and multiedges, but the number of both is sufficiently small, that the erasure of

self-loops and the merging of multiedges to one does not have any influence on

the degree distribution of a typical vertex when the number of vertices is large,

see [65]. Thus, a suitable choice for the number of half-edges for each vertex

yields a graph with scale-free degree distribution. An alternative way to enforce

a scale-free degree distribution is to assign to each vertex an independent identic-

ally distributed random weight and form edges independently with a probability

proportional to the product of both end vertices’ weights. This leads to ran-

dom graphs such as the Chung-Lu random graph discussed in [28, 29], where

the edge between two vertices occurs with a probability given by the product of

the two weights normalised by the sum over all weights, or the Norros-Reittu

random graph introduced in [91]. Here, if the random weights have a power-law

distribution, these graphs have a scale-free degree distribution, see [29] and [91].

Whereas these models are mostly static in their construction, the idea of prefer-

ential attachment by Barabási and Albert [5] gives a potential description of the

growth of real-world networks leading to a scale-free degree distribution. The

main idea of such models is that vertices are added to the graph one after the

other and new vertices are more likely to form an edge to already present vertices

with high degrees. First formally introduced in [17], where a fixed number of

new edges is formed when a new vertex is added to the graph and the probability

to connect to an already present vertex is proportional to its degree, the idea of

preferential attachment has been discussed in many different variants. See [42,

65] for general models with linear influence of the already present vertices’ de-

grees and [36, 37] for preferential attachment models, where newly added vertices

connect to a random number of already present vertices with a sublinear influ-

ence of the vertices’ degrees. As heuristically predicted in [6] for the first ideas of

random graphs with preferential attachment, the empirical degree distribution

of these variants converge to a scale-free degree distribution, see [18, 65, 85] for

8
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classical models with fixed number of edges added for each newly added vertex

and [36] for models with random number of new edges.

Beside having a scale-free degree distribution, such random networks also exhibit

the small-world phenomenon. In fact, the graphs are even ultrasmall, i.e. the

typical distance is of at most doubly-logarithmic order of the number of vertices,

when the power-law exponent τ of the degree distribution is between 2 and 3. See

[28, 67, 91] for the existence of an ultrasmall phase in the configuration model,

Chung-Lu random graph and Norros-Reitu random graph and [41, 84] for prefer-

ential attachment models. In [35] corresponding asymptotic lower bounds on the

typical distance are shown which lead to limit theorems in the ultrasmall phase.

Unlike the first two propertiers, clustering is not exhibit by these models. Such

random graphs tend to be locally tree-like, which is a useful property for their

global analysis, but leads to the clustering coefficients becoming zero when these

models get large, see [2, 19] for corresponding results on classical preferential

attachment models. This might be explained as the introduced random graphs

not capture the possible similarities of vertices in real-world networks, such as

location, age or mutual interests in social networks. Thus, several geometric vari-

ants of the models have been introduced, where the added spatial features of the

vertices do not necessarily describe locations in real-world networks but rather

the properties of vertices, such that vertices being near to each other indicates

that they are similar in some sense. Various geometric variants of preferential

attachment models have been studied in recent years. Flaxman, Frieze and Vera

[48] introduced a model where new vertices get a spatial position leading to a

set of candidate vertices which are sufficiently near to the new one. Then, by

classical preferential attachment a fixed number of edges is formed between the

new vertex and the candidates. This model was generalised and studied further

in [72, 73, 74]. An alternative model was introduced by Aiello et al. in [1] and

studied further in [30, 71]. In this model, each vertex has an influence region,

whose size grows linearly with the degree of the vertex. New vertices connect to

already existing vertices with a fixed probability if they fall into their influence

regions. A significantly generalization of this model is the spatial preferential

attachment network introduced and discussed by Jacob and Mörters in [69, 70].

In this model new vertices are added at the rate of a Poisson process of unit

intensity and placed uniformly on the torus Td
1 of width one. A new vertex x

9
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forms an edge to each already present vertex y independently with probability

φ

(
tdTd

1
(x, y)

f(indeg)

)
,

where

• t is the arrival time of the new vertex and dTd
1
(x, y) the distance of the two

vertices with respect to the torus metric,

• indeg the number of neighbours of y which arrived to the network after y,

• f : N → R+ an asymptotic linear function with slope γ ∈ (0, 1) and

φ : [0,∞) → [0, 1] a non-increasing integrable function.

This model preserves the mechanism of preferential attachment such that the

empirical degree distribution converges to a scale-free degree distribution with

power-law exponent τ = 1 + 1
γ
, but due to the induced spatial correlations the

model also exhibits a positive average clustering coefficient, see [69]. A key tech-

nique of the analysis of this model is a rescaling argument which changes the

analysis to a model where the arrival times of the vertices are uniform in the

interval (0, 1] but the width of the torus grows. This type of spatial preferential

attachment model ends up being too complicated to fully characterize ultrasmall-

ness. The existence of an ultrasmall phase in the rescaled model has been shown

by Hirsch and Mönch in [64], but a sharp phase transition and a limit theorem

in the ultrasmall phase remain an open problem.

1.1.2 Percolation

Beside the observation of the small-world phenomenon, the introductory example

of Milgram’s experiment offers an empirical view to another question. Given a

person with a folder as described in Milgram’s experiment, what is the probab-

ility that the folder reaches an arbitrary person by the defined process and in

particular do not get lost at some point? Such questions also arises for various

phenomena in nature. How does water flow through a porous medium? How

does a fire spread through a tree farm? These questions gave rise to the field of

discrete percolation, where such phenomena are modelled by geometric random

graphs defined on Zd. The edges in these models then represent the inner pas-
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sageways of the porous medium, the paths of aquantainces, or the neighbouring

trees of a tree on fire. The easiest model of discrete percolation is Bernoulli

percolation and was introduced in [23]. Starting with the lattice Zd, each edge

between neighbouring points on the lattice is declared to be open independently

with probability p and closed with probability 1 − p. Then, removing all closed

edges leads to a random graph with vertex set Zd, where an edge exists between

two nearest-neighbour vertices independently with probability p. Looking at the

original questions of having fire spreading between neighbours or water flowing

along open passages, one interesting aspect is to look at the size of the connected

component of the vertex 0, i.e. the set of vertices which are connected to 0 via a

path. In many cases, the main focus lies on whether the connected component of

0 is infinite, i.e. when information or fire can spread indefinitely. The probability

of this event is denoted as the percolation probability. It is easy to see that this

percolation probability is non-decreasing in p, the probability of an edge of the

lattice to be open. Thus, the critical percolation probability can be defined as

the infimum of all p for which the percolation probability remains positive. For

all p larger than the critical percolation probability the model percolates, which

means that there exists an infinite connected component in the random graph

with positive probability. These properties are well understood for Bernoulli

percolation. For dimension two or larger, the critical percolation probability is

positive and the infinite component is unique if it exists. See [60] for a discussion

of various properties of Bernoulli percolation on the lattice. Beside the existence

of an infinite component, another interesting topic is the comparison of Euclidean

distances of two points with their graph distance, often in this field referred to as

chemical distance. This can be linked to the speed of the spread in the introdu-

cing examples, when it is assumed that, for example the water needs a constant

time to cross one edge. Then, the time the water takes to get from the origin to

an arbitrary vertex is proportional to the chemical distance between the vertex

and the origin. Thus, a small chemical distance in comparison to the Euclidean

distance indicates a quick spread of water through a porous media for example.

In analogy to a sequence of finite random graphs, a geometric random graph is

ultrasmall when the chemical distance of two vertices of the infinite component

that are far apart in Euclidean distance is at most of doubly-logarithmic order in

their Euclidean distance with high probability. The idea of Bernoulli percolation

can be extended to other discrete percolation models such as inhomogeneous
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models, where edges have different probabilities to be open, or long-range mod-

els, in which open connections between pairs of vertices with large distance to

each other are possible, see for example [60, Chapter 12] for different variants of

discrete percolation.

As in the experiment of Milgram, typically the geometric foundation of real-

world problems does not coincide with a lattice but more with a random set of

vertices in Rd. Thus, beside discrete percolation models, the field of continuum

percolation has emerged. Here, the vertices are not given by Zd, but typically

by a homogenous Poisson point process on Rd. A major example is the Boolean

model introduced by Gilbert [53], where each vertex of the Poisson point process

represents the center of a ball with (random) radius, where the radii are drawn

independently from each other and from the Poisson point process itself. The

region covered by the balls is conventionally called the occupied region and the

complement the vacant region. From the Boolean model one can easily derive a

geometric random graph by taking the centers of the balls as the vertex set and

forming an edge between two vertices if their corresponding balls intersect. This

can be seen as a simplified model for a telecommunication system where each

cellphone tower has a random range. In order for the system to be functional, al-

though there might not necessarily exist a direct connection between two towers,

each pair of towers must be connected by a chain of towers. Furthermore, if

the chains are required to be short, this leads to the familiar areas of interest

seen already in discrete percolation, such as the existence of an infinite connec-

ted component and the behaviour of the chemical distance in comparison to the

Euclidean distance, in particular the occurence of ultrasmallness. A second ex-

ample is the random connection model, where the vertices are again given by a

Poisson point process and edges between vertices are formed independently from

each other with probability given by a non-increasing function of the Euclidean

distance of the pair. The flexible choice of the connection function allows con-

tinuum versions of Bernoulli percolation but also allows the appearance of edges

spanning large distances in the random graph. For a detailed discussion of both

models, we refer to [80].

12
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1.2 Aim and structure of the thesis

In this thesis a large class of geometric random graphs is discussed with examples

motivated either by random models for real-world networks or as an extension

of continuum percolation models. These graphs are defined on a Poisson point

process on Rd of unit intensity, where each vertex carries an independent uniform

mark in (0, 1). Given the Poisson point process and the marks of each vertex, the

discussed class of geometric random graphs is characterized by upper and lower

bounds on the connection probabilities between finitely many pairs of vertices,

which crucially depends on the Euclidean distance and the marks of each pair of

vertices. This characterization includes a whole range of graph models with long

edges and scale-free degree distributions. In analogy to random networks, the

latter is defined as a typical vertex of the Poisson point process having a degree

distribution which satisfies (1.1) for some τ > 0, where we understand a typical

vertex as a vertex with fixed location and uniform mark in (0, 1), see Section

1.2.2. In particular, the characterization includes two important main examples,

where it is helpful for the reader to think of them in terms of the results of this

thesis.

1.2.1 Main examples

The soft Boolean model The first example we consider is the soft Boolean

model. In this model the vertex set is given by a Poisson point process on

Rd × (0, 1) of unit intensity. For a vertex x = (x, t), the first entry x ∈ Rd

describes the center of a ball and the second entry t ∈ (0, 1) determines the radius

by t−γ/d of the corresponding ball, where γ ∈ [0, 1). This leads to a heavy-tailed

distribution of the radii, since a uniform random variable T on (0, 1) and s large

enough lead to P(T−γ/d > s) = s−d/γ. As described in the previous section, a

graph can be derived by taking the centers of the balls as the vertex set and by

drawing an edge between two vertices if the two corresponding balls intersect.

This yields that an edge is drawn between two vertices (x, t), (y, s) if and only

if |x− y| < s−γ/d + t−γ/d. For the soft Boolean model this condition is relaxed.

Instead, independent identically distributed random variables X = X(x,y) are

associated with every unordered pair of vertices {x,y} and an edge is drawn if

13
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and only if

|x− y| ≤ X · (s−γ/d + t−γ/d), (1.2)

where x, y are the locations and t, s the marks of the vertices. This new condition

can be interpreted in the following way. For each unordered pair of balls, consider

copies of them for which the radii are multiplied by X. Then, an edge is drawn

between the centers of the balls if the modified copies intersect. This mechanism

keeps the idea of the classical Boolean model to draw an edge when two balls

intersect but soften it by enlarging the corresponding balls. To fit this model

in the class of geometric random graphs discussed in this thesis, the random

variable X is chosen to be heavy-tailed with decay

P(X > r) ≍ r−δd as r → ∞,

for some δ > 1. This choice allows the appearence of long edges in the graph,

in fact taking γ = 0 in (1.2) yields the continuous long-range percolation model.

Whereas the soft condition on the connection of two vertices has no influence

on the scale-free degree distribution of the graph, see Proposition 4.14, an im-

portant result of this thesis shows that the appearence of long edges crucially

changes the behaviour of the chemical distance and thus enables the occurence of

ultrasmallness. For a formal introduction of the model and a detailed discussion

with regard to the main results, see Section 4.2.

The age-dependent random connection model The second major ex-

ample is the age-dependent random connection model, which will be introduced

and discussed in detail in Section 4.1. This model is motivated as the limit-

ing graph of a rescaled version of the following model. The age-based spatial

preferential attachment model is a simplified version of the spatial preferential

attachment model introduced by Jacob and Mörters and discussed in the previous

section. In both models vertices are added at the rate of a Poisson process with

unit intensity and placed uniformly on the torus Td
1. This time however, a new

vertex x forms an edge to each existing vertex y independently with probability

φ

(
tdTd

1
(x, y)

β(t/s)γ

)
,

14
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where t resp. s are the arrival times of x resp. y, γ ∈ (0, 1), β > 0 is a edge density

parameter and φ : [0,∞) → [0, 1] is a non-increasing profile function. This choice

for the probability function simplifies the model as it removes the complicated but

on large scale inessential correlations between the edges and allows to focus on

the crucial correlations coming from the spatial embedding. This is achieved by

replacing the influence of the degree with its asymptotic expectation, as for s < t,

the expected number of neighbours of a vertex added at time s, which are added

between time s and t, is of order (t/s)γ. This simplification still preserves the

properties of the spatial preferential attachment model as introduced by Jacob

and Mörters. It has a scale-free degree distribution with power-law exponent

τ = 1 + 1
γ
, see Section 4.1.3, and it exhibits positive clustering coefficients, see

Theorem 4.9(a) for the average clustering coefficient and Theorem 4.9(b) for the

global clustering coefficient. These results are proven in Section 4.1 through

the analysis of the limiting age-dependent random connection model. Here, the

vertex set is given by a Poisson point process on Rd × (0, 1) of unit intensity.

We denote by the first entry of a vertex x = (x, t) its location in Rd and by the

second entry the vertex’ birth time. Hence, vertices with small birth time are

considered old and vertices with birth time near to one are young. Given the

vertex set, edges are drawn independently between two vertices x = (x, t) and

y = (y, s) with probability

φ
(
β−1(t ∧ s)γ(t ∨ s)1−γ |x− y|

)
, (1.3)

where |x− y| is the Euclidean distance of the vertices. Note that by definition the

probability to form an edge between a vertex and an older vertex is similar to the

probability given in the definition of the age-based spatial preferential attachment

model, which allows to derive results from this model to the age-based spatial

preferential attachment model by rescaling arguments. This key technique and

the proofs of the stated results will be given in Section 4.1, introduced by a

discussion of the application of this thesis main results to the age-dependent

random connection model.
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1.2.2 Characterization of geometric random graphs

As mentioned previously the class of geometric random graphs which we are in-

terested in is characterized by upper and lower bounds on the connection prob-

abilities between finitely many pairs of vertices. All main results stated in this

thesis hold for geometric random graphs satisfying the following assumptions.

Let the vertex set of the geometric random graph G be given by a Poisson point

process X on Rd × (0, 1), and fix the parameters δ > 1 and 0 ≤ γ < 1. We write

the vertices of G as x = (x, t) and refer to x as the location and t as the mark

of the vertex x.

Assumption UBA*: Upper bound assumption

Given X , let edges be drawn independently of each other and there exists

κ > 0 such that for every pair of vertices x = (x, t) ∈ X and y = (y, s) ∈ X ,

the probability that there exists an edge between them is smaller than

κ(t ∧ s)−δγ(t ∨ s)δ(γ−1) |x− y|−δd .

Assumption LBA: Lower bound assumption

Given X , let edges be drawn independently of each other and there exists

α, κ > 0 such that for every pair of vertices x = (x, t) ∈ X and y = (y, s) ∈
X , the probability that there exists an edge between them is larger than

α
(
1 ∧ κ(t ∧ s)−δγ |x− y|−δd ).

The choice of the parameter γ in these assumptions controls the influence of the

marks on the connection probability, where larger values of γ imply a stronger

dependence of the connection probability on the vertex with the smaller mark,

i.e. the vertex with the larger ball in the soft Boolean model and the older vertex

in the age-dependent random connection model. In fact, since the assumptions

imply that given the Poisson point process X edges occur independently, the

degree of vertex with mark t is bounded from above and below by Poisson-

distributed random variables with parameter of order t−γ, see Proposition 4.5

and 4.14. Consequently, under Assumption UBA* and LBA the random graph

has a scale-free degree distribution with parameter τ = 1+ 1
γ
, see Section 4.1.3 for

16



CHAPTER 1. INTRODUCTION

the proof in the case of the age-dependent random connection model. However,

the parameter δ is a geometric quantity which influences the occurence of long

edges between vertices with typical marks by controlling the influence of the

Euclidean distance on the connection probability.

Remark 1.2.1. Although all main results of this thesis hold for this class of

geometric random graphs, it is worth mentioning that for some significant results

the assumptions can be relaxed, which leads to an even larger class with examples

discussed in Sections 4.5 and 4.6.

Throughout this thesis it is necessary to be able to distinguish between multiple

different vertices of the Poisson point process X . Thus, for x1, . . . ,xn ∈ Rd ×
(0, 1), we denote by Px1,...,xn the law of the graph G when the vertex set is given

by X ∪ {x1, . . . ,xn} and the connection rules remains as before. Since X is a

Poisson point process, Mecke’s equation [76, Theorem 4.1] and its multivariate

variant [76, Theorem 4.4] holds and we can think of Px1,...,xn as the law of G

conditioned on the event that x1, . . . ,xn are points of X ; we will refer to this

measure with this interpretation in mind throughout this thesis. At some points

in this thesis we will consider the Palm-version of G . More precisely, we add to

X a vertex (0, T0), where T0 is an independent on the interval (0, 1) uniformly

distributed random variable. We denote the resulting graph by G(0,T0)
and refer to

the vertex (0, T0) as the origin of the Palm-version. We denote the law of G(0,T0)

by P(0,T0)
and since T0 is independent of the underlying Poisson point process X

and by Assumption UBA* and Assumption LBA edges are drawn independently

given the vertex set, it holds P(0,T0)
= P(0,t0)dt0. We can roughly think of the

Palm-version as the random graph with a typical vertex at the origin.

1.2.3 Chemical distance

The main focus of this thesis is to analyse the behaviour of the chemical distance

of two vertices with large Euclidean distance. In particular, the focus lies on the

occurence of ultrasmallness in the graphs, i.e. that with high probability the

chemical distance of two vertices grows at most doubly-logarithmically in their

Euclidean distance.

In Chapter 2 a sharp criterion for the occurence and absence of ultrasmallness in
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geometric random graphs is given and in the ultrasmall regime a limit theorem

for the chemical distance of two vertices is established, both of which crucially de-

pend on the upper and lower bounds of the connection probabilities. In fact, the

occurence of ultrasmallness highly depends on both parameters γ and δ, which

control the influence of the marks and the Euclidean distance of two vertices on

their connection probability. A consequence of the main Theorems 2.1 and 2.2

of Chapter 2 is the following.

Theorem 1.1

Let G be a geometric random graph as characterized in Section 1.2.2 which

satisfies Assumption UBA* and Assumption LBA for some γ ∈ [0, 1) and

δ > 1. Then,

• if γ < δ
δ+1

, the graph is not ultrasmall and

• if γ > δ
δ+1

, the graph is ultrasmall and it holds

d(x,y)

log log(|x− y|)
→ 4

log
(

γ
δ(1−γ)

) with high probability as |x− y| → ∞,

where d(x,y) is the chemical distance of two vertices x and y and

|x− y| their Euclidean distance.

These results indicate a new universal behaviour of geometric random graphs

which differs markedly from the behaviour of the well-understood non-spatial

scale-free models discussed in Section 1.1.1 and spatial scale-free random graphs,

such as the ones investigated in [21]. For these models the occurence of ul-

trasmallness depends solely on the finiteness of the variance of the degree distri-

bution and therefore on the power-law exponent τ , whereas this new universal

behaviour exhibits a strong dependence on both, the power-law exponent τ and

the parameter δ. See Section 2.1 for a further discussion and a comparison to

other well-studied models.

In Chapter 2 the proofs of Theorem 1.1 are given and the application of the

theorem to various examples of geometric random graphs is discussed in Chapter

4. It is worth noting at this point that the main result can be broken into results

on asymptotic lower and upper bounds for the chemical distance (see Theorem
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2.1 and Proposition 2.13), where the upper bounds on the chemical distance

are a consequence of the lower bound assumptions and the lower bounds on the

chemical distance a consequence of the upper bound assumptions. The proof of

the upper bounds is a constructive proof, where a strategy is given to ensure

that two given vertices x and y are connected to the same vertex with very

small mark in a number of steps of order 2 log log(|x−y|)
log( γ

δ(1−γ)
)

, leading to the existence

of a path of length of order 4 log log(|x−y|)
log( γ

δ(1−γ)
)

between the two vertices. For the lower

bounds it is necessary to show that this strategy is actually the optimal one, i.e.

it connects two vertices with high probability in the shortest way possible. To do

so, new techniques are developed in Chapter 2 capturing not only the influence

of the degree distribution but also the subtle yet crucial influence of the spatial

embedding in terms of δ to the occurence of short paths in the graph, leading to

the given lower bounds in Theorem 2.1.

As mentioned earlier for the results on asymptotic lower bounds of the chemical

distance the upper bound assumption UBA* can be relaxed by replacing it with

the following more general assumption, as stated in Remark 1.2.1.

Assumption UBA: Upper bound assumption

Given X , there exists κ > 0 such that, for every finite set of pairs of vertices

I ⊂ X 2, where each vertex is part of at most two pairs, the probability that

an edge exists between each pair of I is smaller than∏
(xi,yi)∈I

κ(ti ∧ si)
−δγ(ti ∨ si)

δ(γ−1) |xi − yi|−δd ,

where xi = (xi, ti), yi = (yi, si).

This assumption does not include conditional independence of the occurence of

edges in the graph, which makes it much more difficult to track the behavior of the

graphs appropriately. Examples satisfying Assumption UBA but not Assumption

UBA* are given in Section 4.5 and 4.6.

19



1.2. AIM AND STRUCTURE OF THE THESIS

1.2.4 Contact process

In the second part of the thesis covered in Chapter 3 we shift the focus to the

analysis of the contact process on geometric random graphs, as a model for the

spread of infection on a population or a network. Here, each vertex is either

healthy or infected at any point in time. Infected vertices recover at a constant

rate and are able to transmit the infection to each of its healthy neighbours with

a given rate λ > 0, see Section 3.1.1 for a precise introduction of the contact

process. In epidemics literature this process is also known as the SIS-model,

as at any time each vertex is either infectious or susceptible for the infection,

even if the vertex has already recovered from the infection beforehand. This is

a significant difference to the SIR-model, where vertices are assumed to be able

to develop an immunity to the infection such that once they recovered from the

infection they are not susceptible to it any more.

The main interest in Chapter 3 lies in the time at which the infection reaches its

only absorbing state, which is given by the configuration where all vertices are

healthy. We denote this time as the extinction time of the process and look at

its behaviour, when the underlying geometric random graph exhibits sufficiently

short paths such that it is ultrasmall, i.e. when γ > δ
δ+1

. In this regime we

show that the graph is so well-connected that for any choice of λ the contact

process starting only in one vertex of the graph does not go extinct with positive

probability. Put differently, the extinction time of the process is infinite with

positive probability, and as a main result we give precise asymptotics of this

non-extinction probability in terms of λ when λ is small, see Theorem 3.1.

Theorem 1.2

Let G be a geometric random graph as characterized in Section 1.2.2 which

satisfies Assumptions UBA* and LBA for γ > δ
δ+1

and denote by Γ(λ) the

probability that the contact process with rate λ starting in the origin of the

Palm-version of G does not go extinct. Then, there exist constants c, C > 0

such that

c
λ2/γ−1

log(1/λ)(1−γ)/γ
≤ Γ(λ) ≤ C

λ2/γ−1

log(1/λ)(1−γ)/γ

for λ sufficiently small.
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A positive probability Γ(λ) for any choice of λ has been shown for the contact

process on various scale-free random graphs. This is unlike the behaviour of the

contact process on the lattice or regular trees, where there exists a critical value

λc such that the contact process almost surely dies out if and only if λ ≤ λc.

The result of Theorem 1.2 shows a remarkably different behaviour to the contact

process on other well-understood (spatial) scale-free random graphs such as the

configuration model or hyperbolic random graphs, since for those graphs Γ(λ)

exhibits multiple different rates of decay depending on the power-law exponent

τ , especially when τ is near to 2. For a further discussion and comparison to

recent other results see Section 3.1 and Section 3.2.

Furthermore, we look at the behaviour of the extinction time of the contact

process on finite versions of the geometric random graphs, where, for n ∈ N,

the graph is spatially restricted to a box Bn := [−n1/d

2
, n

1/d

2
]d. In this case the

extinction time is almost surely finite. However, we show in Theorem 3.14 that

with high probability the extinction time is of exponential order of the volume

in the box leading to the following result.

Theorem 1.3

Let (Gn)n∈N be the spatially on Bn restricted finite graph sequence of a general

geometric random graph G which satisfies Assumption LBA for γ > δ
δ+1

and

denote by τn the extinction time of the initially fully infected contact process

on Gn. For any λ > 0, there exists c > 0 such that

lim
n→∞

P{τn ≥ ecn} = 1.

This result agrees with well-known results on the lattice, where the range of

values of λ for which with positive probability the contact process does not

extinct coincides with the range that has an exponential extinction time on its

finite restriction. It is worth to note, as the main contribution to the proof of

this result, in Proposition 3.15 an explicit construction of a connected component

containing a positive proportion of vertices of Gn is given for n sufficiently large.
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1.2.5 Structure

We now give a quick overview of the thesis’ structure. In Chapter 2 the occurence

and absence of ultrasmallness of geometric random graphs is discussed and the

sharp criterion for the absence of ultrasmallness as well the limit theorem in

the ultrasmall regime stated in Theorem 1.1 is proven. Section 2.1 provides a

short overview and a discussion of the results of the chapter in comparison to

the behaviour of other well-known random graphs from the literature. In Section

2.2 the main results of this section are stated and the precise lower and upper

bound assumptions for the geometric random graphs are given. Section 2.3 is

dedicated to the proof of the asymptotic lower bounds for the chemical distance

of two distant vertices, where we start in Section 2.3.1 with an introduction of a

truncated first moment bound used in the following parts and simple applications

of the truncated first moment bound to geometric random graph models which

do not fit in the introduced class in Section 1.2.2. Section 2.3.2 provides a short

overview of the proof structure and its heuristic leading to the stated results.

The full proofs are carried out in Section 2.3.3 for the ultrasmall regime and

Section 2.3.4 for the non-ultrasmall regime. In Section 2.4 we complete the

proof by showing the corresponding upper bound on the chemical distance in

the ultrasmall regime.

Chapter 3 is dedicated to the behaviour of the contact process on geometric

random graphs in the ultrasmall regime. We give an introduction to the contact

process and an overview of its behaviour and extinction time on well-known

(random) graphs in Section 3.1. In Section 3.2 we discuss the non-extinction

probability of the contact process and prove the stated sharp asymptotics when

λ is small. This proof is divided into a proof of an asymptotic lower bound,

carried out in Section 3.2.1, and the corresponding upper bound in Section 3.2.2.

Finally, the proof of the exponential extinction time on finite restrictions of the

graph can be found in Section 3.2.

In Chapter 4 we provide various examples of the class of geometric random graphs

characterized in 1.2.2 and two examples of geometric random graphs which do

not fit this class but still satisfy upper bound assumptions on their connection

probability. Simpler applications of the truncated first moment bound are carried

out for them in Section 2.3.1. The first two sections are especially important, as
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in Section 4.1 we introduce the age-based preferential-attachment network and

the age-dependent random connection model and discuss various properties of it,

such as the degree distribution of a typical vertex, the global and local clustering

coefficients and the typical edge length. In Section 4.2 we introduce the soft

Boolean model and discuss it with regard to the main results of this thesis.

In the last Chapter 5 we conclude the thesis with a brief summary of the results

obtained and a discussion of possible open research possibilities.

This thesis includes the work of three papers or preprints. Namely,

[56] Chemical distance in geometric random graphs with long edges

and scale-free degree distribution with Peter Gracar and Peter Mörters,

Communications in Mathematical Physics (2022), DOI: 10.1007/s00220-

022-04445-3

[55] The age-dependent random connection model with Peter Gracar,

Lukas Lüchtrath and Peter Mörters, Queueing Systems. Theory and Ap-

plications (2019), DOI: 10.1007/s11134-019-09625- y

[54] The contact process on scale-free geometric random graphs with

Peter Gracar, ArXiv Preprint (2022) arXiv: 2208.08346

We now describe for each of the three works their inclusion in the thesis and give

a short description of the thesis’ author contribution to each. In the following

paragraphs of this section the thesis’ author is referred to in first person singular.

Chapter 2 contains the work of [56], namely the framework and the main results

of the chapter stated in Section 2.2 as well the corresponding proofs given in

Section 2.3 and Section 2.4. Furthermore parts of Section 4.5 and Section 4.6 are

part of [56]. Slight changes to the text and notation have been made to improve

the readability of the thesis. Figures in the mentioned sections have been taken

out of [56].

My contribution to the work in [56] was essential, as under joint discussions

with my colleagues I was responsible for the development of the key ideas and

formulations and carried out the technical part of proving the main results in

this work. I also contributed significantly to the writing process of this work and

its revision.
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The work of [55] is contained in Section 4.1, more precisely Sections 4.1.1-4.1.5.

For the readability of the thesis the notation has been adapted to the notation

used throughout this thesis. Figures in the mentioned sections have also been

taken out of [55].

I contributed significantly in this joint work, as I participated and contributed in

all group discussions leading to the new techniques and ideas and coauthored the

proofs together with Lukas Lüchtrath. Together with Peter Gracar, I developed

the code which provides the simulation results, see Section A.3.

Chapter 3 corresponds to the work in [54]. Slight changes have been made in

Section 3.1 due to the structure of the thesis and with regard to [54, Remark

1.1] the propositions and theorems in this chapter have been made stronger by

assuming only the relevant bound given by Assumption UBA* or Assumption

LBA. Figures in this chapter have been taken out of [54].

I was the primary contributor to the work in [54], as I proved the results in Section

3.2 independently and for the results in Section 3.3 I carried out the proof under

joint discussion with my colleague. I also did the majority of writing.

This thesis is written in Texmaker (Version 4.4.1) with LATEX(TeXLive 2022).

Figures which have not been taking out of the previous mentioned works were

created by the author using Jupyter Notebook (Version 6.0.3) with Python (Ver-

sion 3.7.7).
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CHAPTER 2

Ultrasmallness in scale-free geometric random graphs

In this chapter we discuss the occurence and absence of ultrasmallness in geo-

metric random graphs. For the main result of this chapter we state and prove

a sharp criterion for the absence of ultrasmallness and in the ultrasmall regime

we give a precise description of the asymptotic behaviour of the chemical dis-

tance of two vertices with large Euclidean distance by deriving a limit theorem

in Theorem 2.1 and 2.2. As mentioned in Section 1.2.5, this chapter contains

the work done in [56], as Sections 2.2 - 2.4 can be found in [56]. For a detailed

discussions of the parts coinciding with [56] and the thesis’ author’s contribution

to this work, see Section 1.2.5.

2.1 Literature review and discussion

First, we briefly review what is known for the comparison of the Euclidean dis-

tance of two vertices with their chemical distance for geometrically embedded

random graphs.

Starting with the work of Grimmett and Marstrand [59], this problem has been

extensively studied for Bernoulli percolation on the lattice Zd, as introduced
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in Section 1.1.2, where an edge is open between two nearest-neighbour vertices

independently with probability p and closed with probability 1 − p. In the su-

percritical phase the Euclidean and the chemical distance of two vertices on the

unbounded connected component are typically of comparable order when the

vertices are distant, see [59] and [51]. Further analysis of the chemical distance

for Bernoulli percolation has been done by Antal and Pistora [3] and Garet and

Marchand [49, 50] by deriving large deviation estimates for the chemical distance

[3, 50] and an asymptotic shape theorem [49]. The Euclidean distance and the

chemical distance of two distant vertices are also typically comparable in mod-

els with long range interactions, such as random interlacements (see Černý and

Popov [26]), its vacant set and the Gaussian free field, see Drewitz et al. [43]. In

[43] the authors provide general conditions for percolation models on Zd to share

this behaviour and give large deviation estimates as well as an asymptotic shape

theorem for the chemical distance. This behaviour is also apparent in continuum

percolation for the Boolean model where each ball has a fixed radius, see [98].

The behaviour of the chemical distance in comparison to the Euclidean distance

can change by the introduction of additional long edges to the graph. A classical

example is long-range percolation. Here, vertices x, y of a Poisson point process

in Rd or on the lattice Zd are connected independently with probability

p(x, y) = 1 ∧ |x− y|−δd+o(1) ,

for some δ > 1. Biskup et al. [13, 14] has shown that if 1 < δ < 2 then the

chemical distance for two vertices x, y of the infinite component is

d(x, y) = (log |x− y|)∆+o(1),

with high probability as |x− y| → ∞, where ∆ = log 2
log(2/δ)

. For δ < 1 the number

of long edges added to the graph is so high that the diameter of the graph is

finite, as shown in [8]. Benjamini et al. show that between all pairs of vertices x

and y the chemical distance is bounded by a constant term not depending on the

Euclidean distance. If δ > 2, not sufficiently many long edges are added to the

graph such that a change in the behaviour of the chemical distance in comparison

to Bernoulli percolation is not expected. It was shown by Benjamini and Berger

[7] that the diameter of one-dimensional long-range percolation restricted to finite
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intervals is at least linear in the size of the intervals. The boundary cases δ = 1

and δ = 2 have been discussed by Coppersmith et al. [31] and Ding and Sly [39],

but in general, ultrasmallness cannot occur in long-range percolation models.

Non-spatial scale-free networks

Ultrasmallness is however a well established phenomenon in scale-free networks,

such as the Chung-Lu random graph [28, 29], the Norros-Reittu random graph

[91], the configuration model [15, 83] or preferential attachment models [36,

37, 42, 65] discussed in Section 1.1.1. Since these networks are typically not

modelled as geometrically embedded graphs, in order to compare these models

to the class of geometric random graphs discussed in this thesis, we introduce

a geometrically embedded toy model which mimics the behaviour of the well-

studied non-spatial scale-free networks. Let the vertex set be given by the lattice

or a Poisson point process on Rd and restrict the graph to the vertices inside

a ball of radius R. Thus, the ball contains N lattice or Poisson points, where

N is of order Rd. The mean-field nature of these models is reflected in the

fact that connection probabilities do not depend on the location of these points.

Instead, each point carries independent uniform marks and connections between

vertices are established independently given the marks, with a probability 1∧ g(s,t)
N

depending on the marks s, t of the endvertices of a potential edge. Potential

dependencies g : (0, 1) × (0, 1) → R+ are given by

gprod(s, t) := s−γt−γ or

gpa(s, t) := (s ∧ t)−γ(s ∨ t)γ−1.

In both cases this leads to a random graph with scale-free degree distribution

with power-law exponent τ = 1 + 1
γ

as R → ∞. As mentioned beforehand, one

can think of these models as simplified versions of well-studied scale-free networks

showing the same behaviour in terms of degree distribution and the occurence of

ultrasmallness. Here, the toy model with g := gprod behaves like scale-free net-

works where the connection probability is proportional to the product of weights

assigned to each vertex, such as the Chung-Lu random graph, the Norros-Reittu

random graph or the configuration model. The toy model with g := gpa behaves

like classical non-spatial preferential attachment models.
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Why are these models ultrasmall when the power-law exponent τ is between 2

and 3 as mentioned in Section 1.1.1? Thinking about the scale-free networks

associated to the toy model with gprod, one can give a heuristic explanation of

this by using the fact that these models have a locally tree-like structure, see

[66, Theorem 4.1] in case of the configuration model and [66, Theorem 3.18] for

the Chung-Lu random graph and the Norros-Reittu random graph. Thus, the

neighbourhood of a vertex can be compared to a branching process with infinite

mean if τ ∈ (2, 3) and therefore the variance of the degree distribution does not

exist. In this case the branching process grows at a superexponential rate and

therefore the k-th neighbourhood of a vertex, i.e. all vertices which can be reached

from the vertex in k steps, also grows super exponentially at rate e(τ−2)−k
, see

[66, Theorem 7.17]. Hence, for two given vertices, both neighbourhoods given by

vertices reached in a number of steps of order log logN are so large that they need

to share at least one vertex and thus a path with length of doubly logarithmic

order of the amount of vertices N exists between the two given vertices. This

heuristic argument does not work for geometrically embedded random graphs as

these graphs tend to not be locally tree-like, but it still gives valuable insight

to the typical structure of a path connecting two vertices in such models. For

the size of the k-th neighbourhood of a vertex x to grow super exponentially

in k, x needs to be connected via a path to vertices which have an increasing

number of neighbours. For the toy model this means that x is connected by a

path to vertices with increasingly small marks such that longer paths starting in

x reach vertices with arbitrarily small marks. Thus, a typical short path between

two vertices x and y which minimizes their chemical distance is formed by two

subpaths starting in x, resp. y, which steadily lead to more powerful vertices

until both subpath reach the same powerful vertex, i.e. a vertex with a very

small mark. More precisely for the toy model with g := gprod, the probability

that a vertex with mark t has no neighbour with mark smaller than ℓ < t is close

to exp(−ct−γℓγ−1) for some constant c > 0. This holds since each of the other

N − 1 vertices is a neighbour with smaller mark with probability∫ ℓ

0

ds1 ∧ s−γt−γ

N
=

1

1 − γ

t−γℓ1−γ

N
− γ

1 − γ

(
ℓ−γ

N

)1/γ

and the second term on the right hand side becomes negligible as the number of

vertices N is made large. Thus, with high probability the vertex is connected by
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an edge to at least one vertex with mark of order tγ/(1−γ) or smaller. Repeating

this argument and using that τ − 2 = 1−γ
γ

leads to the heuristic observation that

after (1 + o(1)) log logN
|log(τ−2)| steps the vertices x and y can reach vertices with mark

smaller than N1/2 with high probability which are then connected by a direct

edge in the toy model and by at most two edges in the Chung-Lu random graph,

the Norros-Reittu random graph or the configuration model, see [66]. Thus, if

2 < τ < 3 these graphs are ultrasmall and for two randomly chosen vertices x, y

it holds
d(x, y)

log log(N)
−→ 2

|log τ − 2|
, (2.1)

with high probability as the number of vertices N goes to infinity.

In the case g = gpa this heuristic no longer works. Here, we cannot guarantee

with high probability that a vertex with a small mark is connected by an edge

to a vertex with even smaller mark, since for a vertex with mark t the expected

number of neighbours with mark smaller than t does not increase as t is made

smaller. This fits with the behaviour of non-spatial preferential attachment mod-

els where old vertices, i.e. vertices which have been added early to the graph, are

not connected to other significantly older vertices with sufficiently high probab-

ility. This is a consequence of the fact that vertices with high degree do not have

an increased probability to form an edge to every vertex of the graph but only to

those that have been added to the graph towards the end, since it takes time for

these vertices to achieve a high degree. On the other hand, although old vertices

are not connected by an edge to older vertices with high enough probability,

they have plenty of neighbours which have been added to the graph after their

own appearance. Thus, for non-spatial preferential attachment models, a vertex

with high degree can reach a vertex with significantly higher degree not through

an direct edge but via a path of length two, where the intermediate vertex is a

young vertex, i.e. a vertex which has been added to the random graph towards

the end. Consequently, it takes twice as many steps to connect two vertices and,

if 2 < τ < 3, for two randomly chosen vertices x, y, satisfy

d(x, y)

log log(N)
−→ 4

|log τ − 2|
, with high probability as N → ∞. (2.2)

To compare these results to geometrically embedded random graphs, note that

two randomly chosen vertices x, y in the toy model typically have Euclidean
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distance of order R. As N is of order Rd we can replace N in the preceding

statements by the Euclidean distance such that if 2 < τ < 3, for two randomly

chosen vertices x, y, it holds

d(x, y)

log log(|x− y|)
−→ c

|log τ − 2|
, with high probability as R → ∞, (2.3)

where c = 2 for g = gprod and c = 4 for g = gpa. When τ > 3 (or, equivalently,

γ < 1
2
) the chemical distance of two randomly chosen vertices x, y in the largest

connected component is of order logN or, equivalently, log |x− y|, see Bollobas

et al. [16].

Well-studied scale-free spatial models

Looking at geometrically embedded random graphs with scale-free degree dis-

tribution, a well-studied range of spatial models are geometric random graphs,

where vertices are endowed with weights which are independent sampled from

some heavy-tailed distribution. In these models an edge is formed between two

vertices with a connection probability depending on the product of the weights

and the spatial distance of the vertices. Popular examples are scale-free percola-

tion introduced and studied for the lattice by Deijfen et al. [33] and extended to a

continuum version on a Poisson point process by Deprez et al. [34] and geometric

inhomogeneous random graphs introduced by Bringmann et al. [20] which include

hyperbolic random graphs as a special case. As the heavy-tailed weights of the

vertices correspond loosely to negative powers of uniformly distributed marks

t, the following model shares the same properties as the previously introduced

examples. Let the vertex set be given by the lattice or a Poisson point process

of unit intensity on Rd and let each vertex carry an independent uniform mark.

Then, given the vertex set and the marks an edge is formed between two vertices

independently with probability

φ
(
β−1tγsγ |x− y|d

)
,

where φ : (0,∞) → [0, 1] is a non-increasing integrable function,the parameter

β controls the edge density and t, resp. s, are the marks of x, resp. y. These

models are all scale-free with power-law exponent τ = 1 + 1
γ
, independent of the

spatial embedding of the models, see [33], [21] and Section 4.3. Interestingly,
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the influence of the product of the weights on the connection probability is so

strong that the spatial embedding does not play a significant enough role and

the behaviour of the chemical distance does not deviate from the non-spatial

models. Namely, the transition between ultrasmall and small world behaviour

occurs at γ = 1
2

(equivalently, τ = 3) and in the former case a limit theorem

as in 2.3 with c = 2 holds. See [33] and [34] for details in the case of scale-free

percolation and its continuous version, and [21] for a large class of geometric vari-

ants of the Chung-Lu random graph, which includes geometric inhomogeneous

random graphs. Additionally, an interesting algorthmic view on this problem is

given by Bringmann et al. in [22]. In this work they look at the strategy of Mil-

gram’s experiment described in the beginning of this thesis and show that this

strategy actually works in geometric inhomogeneous random graphs and leads

to a shortest path between the starting vertex and the target.

In summary, for these models, there is no influence of the spatial embedding on

the absence and occurence of ultrasmallness and the results of [33], [34] and [21]

hold for models with induced long edges such as scale-free percolation as well

as for models like hyperbolic random graphs without long edges. We will see

now how not only the proof techniques but also the results themselves depend

crucially on the structure of the connection probability. Namely, the probability

depends on taking the product of the heavy-tailed weights of the vertices. In

fact, the situation changes drastically when other, equally natural forms of the

connection probability are considered, such as the two main examples introduced

in Section 1.2.1. We will see that the novel behaviour of these examples is also

of a universal nature, as it appears for a whole class of geometric random graphs

characterized in Section 1.2.2.

Novel universal behaviour of geometric random graphs

Recall the soft Boolean model introduced in Section 1.2.1. When the random

variable X in the connection rule (1.2) is heavy-tailed with decay P(X > r) ≍
r−δd as r → ∞ for δ > 1 the results of this chapter yield, as stated in Theorem

1.1,

• no ultrasmallness if γ < δ
δ+1

but,

• ultrasmallness if γ > δ
δ+1

.
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In the age-dependent random connection model, the marks of the vertices corres-

pond to birth times and an edge is drawn independently with probability

φ
(
β−1(t ∧ s)γ(t ∨ s)1−γ |x− y|d

)
where γ ∈ (0, 1). The behaviour is similar to the soft Boolean model when the

profile function φ : (0,∞) → [0, 1] determining the connection probability in

(1.3) decays polynomially at rate δ > 1, i.e. φ(r) ≍ r−δ as r → ∞. Our results

show that in the age-dependent random connection model ultrasmallness fails if

γ < δ
δ+1

and if γ > δ
δ+1

, the model is ultrasmall.

Note that this boundary depends not only on the power-law exponent τ = 1 + 1
γ

of the degree distribution, but also on the parameter δ, which is a geometric

quantity controlling the presence of long edges between vertices with typical

marks as described in Section 1.2.2. We will see that this behaviour holds not

only for the two main examples but for the whole class of geometric random

graphs satisfying Assumptions UBA* and Assumptions LBA and even further

examples. In particular ultrasmallness does not occur in these models when the

variance of the degree distribution becomes infinite, but at a threshold that de-

pends on spatial correlations influencing the graph topology beyond the degree

distribution, which is a new feature not seen in other well-studied models such as

scale-free percolation and hyperbolic random graph models. As a consequence,

the results cover many random graph models whose variance of the degree distri-

bution is infinite but where the graphs are not ultrasmall. An extreme example

is the age-dependent random connection model, when the function φ is an in-

dicator function on the interval [0, 1]. Our results show that this model is never

ultrasmall for any power-law exponent τ > 2, a behaviour remarkably different

from models such as hyperbolic random graph models.

In the ultrasmall phase of the soft Boolean model and the age-dependent ran-

dom connection model, as well as all models satisfying Assumptions UBA* and

Assumptions LBA we also get a new form of the limit theorem for the chemical

distance, namely

d(x,y)

log log(|x− y|)
→ 4

log
(

γ
δ(1−γ)

) with high probability as |x− y| → ∞, (2.4)
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as stated in Theorem 1.1. Here, the dependence of the limiting constant on δ

is another novel feature. Note that consequently the chemical distance in the

ultrasmall phase is larger than in non-spatial preferential attachment models

discussed in the beginning of this section, even when the power-law exponent is

kept the same. This effect vanishes if we allow very long edges in the models,

i.e. δ is near to one. In this case the behaviour once again is approximately the

same as for non-spatial preferential attachment models.

2.2 Framework and main result

2.2.1 Framework

As described in Section 1.2.2, we consider a geometric random graph G with

vertex set given by the points of a Poisson point process X of unit intensity on

Rd × (0, 1). Recall, that we write the vertices of G as x = (x, t) and refer to

x as the location and t as the mark of the vertex x and note that small marks

indicate powerful vertices, i.e. vertices with large neighbourhoods.

Recall that we write x ∼ y if the vertices x, y are connected by an edge in G

and by Px1,...,xn the law of G conditioned on the event that x1, . . . ,xn are points

of the Poisson point process X . By PX we denote the law of G conditioned on

the Poisson point process X .

We now state the assumptions in their full generality. The first leads to lower

bounds on chemical distances in the graph. As in Section 1.2.2 the assumption

depends on the parameters δ > 1 and 0 ≤ γ < 1.

Assumption UBA

There exists κ > 0 such that, for every finite set of pairs of vertices I ⊂ X 2

in which each vertex appears at most twice, we have

PX

( ⋂
(xi,yi)∈I

{xi ∼ yi}
)

≤
∏

(xi,yi)∈I

κ (ti ∧ si)
−δγ(ti ∨ si)

δ(γ−1) |xi − yi|−δd

where xi = (xi, ti), yi = (yi, si).
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This assumption is a relaxed version of the upper bound assumption UBA*. In

Chapter 4 we shall see several natural examples of geometric random graphs

which satisfy Assumption UBA and in Section 4.6 and 4.5 natural examples

which satisfy this assumption but not Assumption UBA*. Note that unlike

Assumption UBA* this assumption does not include conditional independence

of the events {xi ∼ yi}, which makes several classical tools, such as the BK-

inequality, unavailable in our proofs. Without the conditional independence

one cannot give a precise description for the degree distribution, as done in

Section 1.2.2. However, it is worth noting that Assumption UBA still implies the

existence of a constant C > 0 for which the expected degree of a vertex with mark

t is smaller than Ct−γ. The next assumption agrees with Assumption LBA and

is used to give matching upper bounds on chemical distances in the ultrasmall

regime. Unlike Assumption UBA, it does contain a conditional independence

assumption.

Assumption LBA

Given X , edges are drawn independently of each other and there exists α, κ >

0 such that, for every pair of vertices x = (x, t),y = (y, s) ∈ X ,

Px,y{x ∼ y} ≥ α
(
1 ∧ κ (t ∧ s)−δγ |x− y|−δd ).

As we will see in Section 4.7 many but not all of our examples of geometric

random graphs are incorporated in a general framework of geometric random

graphs, the weight dependent random connection model introduced in [57, 58].

In that context our assumptions can be interpreted to say that the random

graphs are stochastically dominated by the weight random connection model with

preferential attachment kernel (Assumption UBA) and they themselves dominate

the random connection model with min kernel (Assumption LBA). As discussed

in Section 1.2.2, these models have a scale-free degree distribution with power-

law exponent τ = 1 + 1
γ
. Hence, as previously mentioned these examples deviate

from the behaviour of non-spatial models and scale-free percolation in that the

emergence of ultrasmallness does not depend only on the power-law exponent.
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2.2.2 Statement of the main results

Recall, that we write x
n↔ y if there exists a path of length n from x to y in G

and we denote by x ↔ y if x
n↔ y holds for some n, i.e. if x and y are in the

same connected component in G . The graph distance, or chemical distance, is

given by

d(x,y) = min{n ∈ N : x
n↔ y}.

Our main results in this chapter identify the regime where G is ultrasmall, i.e.

where the graph distance behaves like an iterated logarithm of the Euclidean

distance. Moreover in this regime we provide a precise limit theorem for the

behaviour of the graph distance of remote vertices. The first and foremost result

in this context are lower bounds for the chemical distance of two points at large

Euclidean distance using only Assumption UBA.

Theorem 2.1

Let G be a general geometric random graph which satisfies Assumption UBA

for some γ ∈ [0, 1) and δ > 1.

(a) If γ < δ
δ+1

, then G is not ultrasmall, i.e. for x,y ∈ Rd × (0, 1), under

Px,y, the distance d(x,y) is of larger order than log log |x− y| with high

probability as |x− y| → ∞.

(b) If γ > δ
δ+1

, then for x,y ∈ Rd × (0, 1) we have

d(x,y) ≥ (4 + o(1))
log log |x− y|
log
(

γ
δ(1−γ)

)
under Px,y with high probability as |x− y| → ∞.

The second result provides a matching upper bound for the chemical distance

in the ultrasmall regime under Assumption LBA. Putting both results together

we get the following limit theorem for the chemical distance under Assumptions

UBA and LBA in the ultrasmall regime.
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Theorem 2.2

Let G be a general geometric random graph which satisfies Assumption UBA

and Assumption LBA for some γ > δ
δ+1

. Then G is ultrasmall and, for

x,y ∈ Rd × (0, 1), we have

d(x,y) = (4 + o(1))
log log |x− y|
log
(

γ
δ(1−γ)

) (2.5)

under Px,y( · | x ↔ y) with high probability as |x− y| → ∞.

Remark 2.2.1.

• An explicit lower bound on d(x,y) under Assumption UBA when G is not

ultrasmall is formulated in Proposition 2.10. Likewise the upper bound on

d(x,y) in the ultrasmall phase under Assumption LBA which matches the

lower bound in Theorem 2.1(b) is formulated in Proposition 2.13.

• For the convergence in Theorem 2.2 we fix marks s, t ∈ (0, 1) and add

points x = (x, s) and y = (y, t) to the Poisson process. Then we show that

Px,y

(∣∣∣ d(x,y)

log log |x− y|
− 4

log
(

γ
δ(1−γ)

)∣∣∣ > ϵ
∣∣∣x ↔ y

)
converges to zero if |x− y| → ∞, as a consequence of Theorem 2.1 and

Proposition 2.13.

• The results continue to hold mutatis mutandis when the underlying Poisson

process is replaced by the points of the (percolated) lattice Zd endowed with

independent uniformly distributed marks.

• In Section 2.3.1 we show lower bounds on d(x,y) under alternative assump-

tions which arise from other natural examples such as scale-free percolation

and the ultra-small scale-free geometric networks. It turns out that in

geometric random graphs under these assumptions d(x,y) is much more

tractable, as there is no significant influence of the spatial distance on the

chemical distance.
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2.3 Proof of the lower bounds for the chemical

distance

2.3.1 The truncated first moment method

To prove the lower bounds of Theorem 2.1 we find an upper bound for the

probability Px,y{d(x,y) ≤ 2∆} and choose ∆ as large as possible while keeping

the probability sufficiently small. Note that the definition of the graph distance

can be reduced to the existence of self-avoiding paths, i.e. paths in which each

vertex appears at most once, since if there exists a path of length n between

two given vertices there also exists a self-avoiding paths with shorter or equal

length between those two. Hence, the paths considered throughout this section

are assumed to be self-avoiding. The event {d(x,y) ≤ 2∆} is equivalent to the

existence of at least one path between x and y of length smaller than 2∆. Hence,

Px,y{d(x,y) ≤ 2∆} = Px,y

( 2∆⋃
n=1

̸=⋃
x1,...,xn−1∈G

{x0 ∼ x1 ∼ . . . ∼ xn−1 ∼ xn}
)

≤
2∆∑
n=1

E

[ ̸=∑
x1,...,xn−1∈G

PX∪{x,y}{x0 ∼ x1 ∼ . . . ∼ xn−1 ∼ xn}
]
,

where x = x0, y = xn,
⋃ ̸= (resp.

∑̸=) denotes the union (resp. sum) over

all possible sets of pairwise distinct vertices x0, . . . ,xn of the Poisson process

and E is the expectation with respect to the law of a Poisson process with unit

intensity on Rd × (0, 1). To keep notation throughout this chapter short we will

abbreviate the previous notation and write
∑

x1,...,xm
for the sum over all sets of

m distinct vertices of the Poisson process. We get, by using Mecke’s equation [76]

and Assumption UBA that

Px,y{d(x,y) ≤ 2∆}

≤
2∆∑
n=1

∫
(Rd×(0,1))n−1

n−1⊗
i=1

dxi E
[
PX∪{x,x1,...,xn−1,y}{x0 ∼ x1 ∼ . . . ∼ xn−1 ∼ xn}

]

≤
2∆∑
n=1

∫
(Rd×(0,1))n−1

n−1⊗
i=1

d(xi, ti)
n−1∏
j=0

1 ∧κ(tj ∧ tj+1)
−γδ(tj ∨ tj+1)

δ(γ−1) |xj − xj+1|−δd .
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This bound is only good enough if γ < 1
2
. If γ ≥ 1

2
the expectation on the right

is dominated by paths which are typically not present in the graph. These are

paths which connect x or y quickly to vertices with small mark t. Our strategy

is therefore to truncate the admissible mark of the vertices of a possible path

between x and y. We define a decreasing sequence (ℓk)k∈N0 of thresholds and

call a tuple of vertices (x0, . . . ,xn) good if their marks satisfy tk ∧ tn−k ≥ ℓk for

all k ∈ {0, . . . , n}. A path consisting of a good tuple of vertices is called a good

path. We denote by A(x)

k the event that there exists a path starting in x which

fails this condition after exactly k steps, i.e. a path ((x, t), (x1, t1), . . . (xk, tk))

with t ≥ ℓ0, t1 ≥ ℓ1, . . . , tk−1 ≥ ℓk−1, but tk < ℓk. Furthermore we denote by

B(x,y)
n the event that there exists a good path of length n between x and y. Then,

for given vertices x and y

Px,y{d(x,y) ≤ 2∆} ≤
∆∑

n=1

Px(A(x)
n ) +

∆∑
n=1

Py(A(y)
n ) +

2∆∑
n=1

Px,y(B(x,y)
n ). (TMB)

This decomposition is similar to the one for the mean-field models in [35]. The

main aspect of the proof is to properly capture the influence of the geometry. It

will turn out that the spatial correlations emerging in the discussed geometric

random graphs which satisfy Assumptions UBA make it significant more difficult

for a path to connect to a vertex with very small mark. Hence a slower decaying

threshold sequence (ℓk)k∈N0 can be chosen such that the two first sums on the

right of (TMB) are still small. Consequently, the third sum can be kept small

for a larger choice of ∆. This requires a much deeper analysis of the graph and

its spatial embedding.

In Section A.1 we give two examples for a direct application of (TMB) to geo-

metric random graphs satisfying different assumptions to Assumption UBA such

that they are much easier to handle. For these examples we state criteria when

they are not ultrasmall and otherwise give asymptotic lower bounds on the chem-

ical distance. The proofs of this results rely on simpler variants of arguments

which are used in the following proofs of the main results.
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2.3.2 Outline of the proof

The characteristic feature of the shortest path connecting two typical vertices is

that, starting from both ends, the path contains a subsequence of increasingly

powerful vertices. The two parts started at the ends meet roughly in the middle

in a vertex of exceptionally high power depending on the distance between the

starting vertices. In our framework powerful vertices are characterised by small

marks. For geometric random graphs fulfilling Assumption UBA we show that

arbitrary strategies connecting increasingly powerful vertices are dominated by

an optimal strategy by which paths make connections between vertices of in-

creasingly high power in a way depending on the parameters γ and δ in our

assumption:

• If γ > δ
δ+1

we connect two powerful vertices x and y via a connector, a

single vertex with a larger mark which is connected to both x and y;

• if γ < δ
δ+1

we connect them by a single edge.

In both cases, we now sketch how our argument works on paths containing only

the optimal type of connection between powerful vertices. The principal challenge

of the proof will however be to show how these proposed optimal strategies

dominate the entirety of other possible strategies. This is particularly hard in

the former case, because a vast number of potential strategies leads to a massive

entropic effect that needs to be controlled. Note also that at this point we need

not show that the proposed optimal strategies actually work. This (easier) part

of the proof requires Assumption LBA and is carried out in Section 2.4.

In the case γ > δ
δ+1

the optimal connection strategy is to follow a path of

length 2n between x and y, where we assume that n is even and that the vertices

x1 = (x1, t1), . . . , x2n−1 = (x2n−1, t2n−1) of the path satisfy t2(k+1) < t2k < t2k+1

and t2n−2(k+1) < t2n−2k < t2n−2k+1 for all k = 0, . . . , n/2, i.e. the vertices with

even index can be seen as powerful vertices, while the ones with odd index rep-

resent the connectors between them, see Figure 2.1. Note that at this point we

make no assumptions on the locations of these vertices.

For arbitrary ε > 0, we now determine a truncation sequence (ℓk)k∈N0 , such that

paths starting in x, resp. y, which are not good, only exist with a probability

smaller than ε. To do so, we establish an upper bound for the probability of the
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1

0

x

x2

xn

x2n−2

y
ℓ0

ℓ2

ℓn−2

ℓn

ℓn−2

ℓ2
ℓ0

Figure 2.1: An example of a path with optimal connection type for γ > δ
δ+1

.
The horizontal axis corresponds to the sequential numbering of vertices on the
path, the vertical axis represents the mark space. Powerful vertices (indicated
by black dots) alternate with connectors (indicated by grey dots).

event A(x)
n that there exists a path starting in x whose n-th vertex is the first ver-

tex which has a mark smaller than the corresponding ℓn. We denote by N(x,y, n)

the number of paths of length n from x = (x, t) to a vertex y = (y, s) whose ver-

tices (x1, t1), . . . (xn−1, tn−1) fulfill t2(k+1) < t2k < t2k+1 for all k = 0, . . . , ⌊n/2⌋−1

and which is one half of a good path, i.e. t ≥ ℓ0, t1 ≥ ℓ1, . . . , tn−1 ≥ ℓn−1. The

mark of y is not restricted in this definition and is therefore allowed to be smaller

than ℓn. Hence, in this case the event A(x)
n can only occur for n even, since by

definition a connector is less powerful than the preceding and following vertex

and therefore has a mark larger than the corresponding ℓn. For n even we have

by Mecke’s equation that

Px(A(x)
n ) ≤

∫
Rd×(0,ℓn]

dyEx,yN(x,y, n).

Since the existence of a path counted in N(x,y, n) is equivalent to the exist-

ence of vertices z1, . . . , zn/2−1 such that the marks are bounded from below by

ℓ2, ℓ4, . . . , ℓn−2, with z0 = x, zn/2 = y the marks u0, . . . , un/2 of z0, . . . , zn/2 are

decreasing, and zi, zi+1 are connected via a single connector, Mecke’s equation
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yields

Ex,yN(x,y, n) ≤
∫

Rd×(ℓ2,u0]

dz1 · · ·
∫

Rd×(ℓn−2,un/2−2]

dzn/2−1Ez0,...,zn/2

[ n/2∏
i=1

K(zi, zi−1, 2)

]
,

(2.6)

where K(zi, zi+1, 2) is the number of connectors between zi and zi+1. Using

Mecke’s equation and Assumption UBA we have

Ez0,...,zn/2

[ n/2∏
i=1

K(zi, zi−1, 2)

]
≤

n/2∏
i=1

eK(zi, zi−1, 2),

where

eK(zi, zi−1, 2) =

∫
Rd×(ui−1∨ui,1)

dz ρ(κ−1/δuγ
i−1u

1−γ |zi−1 − z|d)ρ(κ−1/δuγ
i u

1−γ |zi − z|d),

for ρ(x) := 1 ∧ x−δ and zi = (zi, ui), zi−1 = (zi−1, ui−1). We see in Lemma 2.3

that there exists C > 0 such that, for two given vertices x = (x, t) and y = (y, s)

far enough from each other,

eK(x,y, 2) ≤ Cρ
(
κ−1/δ(t ∧ s)γ(t ∨ s)γ/δ |x− y|d

)
. (2.7)

This inequality holds for the optimal connection type between two powerful ver-

tices of the path and we will see that this type of bound holds also for the case

of multiple connectors between two powerful vertices (cf. Lemma 2.5). It also

clearly displays the influence of the spatial embedding of the random geometric

graph via the parameter δ. Assuming (2.7) for the moment, we obtain

Px(A(x)
n ) ≤∫

Rd×(ℓ2,u0]

dz1 · · ·
∫

Rd×(ℓn−2,u0]

dzn/2−1

∫
Rd×(0,ℓn]

dzn/2

n/2∏
i=1

Cρ
(
κ−1/δuγ

i u
γ/δ
i−1 |zi − zi−1|d

)
,

(2.8)

where zi = (zi, ui) for i = 0, . . . n/2 and where we without loss of generality in-

tegrate up to u0 in all but the last integral. When dealing with a general (rather

than the optimal) connection strategy, we will use a classification of the strategies
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in terms of binary trees. Left-to-right exploration of the tree will reveal the

structure of the decomposition that replaces the straightforward decomposition

in (2.6) and additional information on the location of the vertices will be encoded

in terms of colouring of the leaves. Figure 2.2 displays the classifying binary tree

for the optimal connection type.

x

x1

x2

x3

x4

x5

x6

x7

y x6

x4

x2

x

x1

x3

x5

x7

Figure 2.2: Representation of a path with optimal structure by a binary tree.
For a less trivial example resulting from a general connection strategy, see Figure
2.5.

For a sufficiently large constant c > 0 the right-hand side of (2.8) can be bounded

by

cn/2ℓ1−γ
n ℓ

−γ/δ
0

n/2−1∏
i=1

ℓ
1−γ−γ/δ
2i

as shown in Lemma 2.7 considering all paths. With ℓ0 smaller than the mark of

x we choose the truncation sequence (ℓk)k∈N0 for ε > 0, such that

cn/2ℓ1−γ
n ℓ

−γ/δ
0

n/2−1∏
i=1

ℓ
1−γ−γ/δ
2i =

ε

π2n2
, (2.9)

and we have

∆∑
n=1

Px(A(x)
n ) =

∆∑
n=1

n even

Px(A(x)
n ) ≤

∆∑
n=1

n even

cn/2ℓ1−γ
n ℓ

−γ/δ
0

n/2−1∏
i=1

ℓ
1−γ−γ/δ
2i ≤

∞∑
n=1

ε

π2n2
=

ε

6
.

Writing ηn := ℓ−1
n we can deduce from (2.9) a recursive description of (ℓn)n∈N0

such that

η1−γ
n+2 =

(n + 2)2

n2
cηγ/δn .

Consequently there exist b, B > 0 such that ηn ≤ b exp(B(γ/(δ(1 − γ)))n/2). We
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close the argument with heuristics that lead from this truncation sequence to a

lower bound for the chemical distance. Let x and y be two given vertices. If

there exists a path of length n < log |x− y| between them, there must exist at

least one edge in this path which is longer than |x−y|
log|x−y| . For |x− y| large, this

edge typically must have an endvertex whose mark is, up to a multiplicative

constant, smaller than |x− y|−d. Hence, if we choose

∆ < (2 + o(1))
log log |x− y|
log
(

γ
δ(1−γ)

)
we ensure ℓ∆ is of larger order than |x− y|−d. Therefore there is no good path

whose vertices are powerful enough to be an endvertex of an edge longer than
|x−y|

log|x−y| and consequently no good path of length shorter than 2∆ can exist

between x and y.

Turning to the case γ < δ
δ+1

, we consider paths whose powerful vertices are con-

nected directly to each other. For a path of length n between two given vertices

x and y we assume that n is even and for the vertices x1 = (x1, t1), . . . ,xn−1 =

(xn−1, tn−1) of the path we assume that we have t0 > t1 > . . . > tn/2 and

tn > tn−1 > . . . > tn/2, where t0 is the mark of x and tn the mark of y. We again

make no restrictions on the locations of those vertices. Restricting the paths

described in A(x)
n and B(x,y)

n to paths with this structure we follow the same ar-

gumentation as above to establish sufficiently small bounds for the event A(x)
n for

a given vertex x = (x0, t0),

Px(A(x)
n ) ≤

∫
Rd×(ℓ1,t0]

dx1 · · ·
∫

Rd×(ℓn−1,t0]

dxn−1

∫
Rd×(0,ℓn]

dxn

n∏
i=1

Cρ
(
κ−1/δtγi t

1−γ
i−1 |xi − xi−1|d

)
,

where we again without loss of generality integrate over a larger range. For c > 0

large enough, the right-hand side can be further bounded by

cnℓ1−γ
n ℓγ−1

0

n−1∏
i=1

log

(
1

ℓi

)
,

see Lemma 2.12. Choosing ℓ0 < t0 and (ℓn)n∈N0 for ϵ > 0, such that the last

displayed term equals ε
π2n2 ensures that

∑
n Px(Ax

n) < ε
6

and by induction we

see that this choice is possible while for any p > 1 there exists B > 0 such that
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ηn ≤ Bn logp(n+1). Following the same heuristics as before leads to the choice

∆ ≤ c log |x− y|
(log log |x− y|)p

for some constant c > 0 such that paths between x and y with length shorter

than 2∆ do not exist with high probability.

2.3.3 The ultrasmall regime

We now start the full proof in the case γ > δ
δ+1

considering all possible connection

strategies. We prepare this by first modifying the graph by adding edges between

vertices which are sufficiently close to each other. We call a path step minimizing

if it connects any pair of vertices on the path by a direct edge, if it is available.

Note that the length of any path connecting two fixed vertices can be bounded

from below by the length of a step mimimizing path connecting the two vertices.

Two spatial constraints emerge from this: On the one hand, vertices on a step

minimizing path in the modified graph that are not neighbours on the path

cannot be near to each other. On the other hand, vertices connected by one

of the added edges have to be near to each other. To make full use of these

constraints we need to distinguish between original edges and edges added to the

graph. This can be done efficiently by endowing every edge with a conductance,

which is one for original and two for added edges.

More precisely, we consider a graph G̃ where edges are endowed with conduct-

ances as follows: First, create a copy of G and assign to every edge conductance

one. Then, between two vertices x = (x, t) and y = (y, s) of G̃ an edge is added

to G̃ with conductance two whenever

|x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ.

Since all conductances and edges of G̃ are deterministic functionals of G , there

exists an almost sure correspondence between G and G̃ , under which an edge

with conductance one in G̃ implies the existence of the same edge in G . With

conductances assigned to every edge of G̃ , we define the conductance of a path

P = (x0, . . . ,xn) in G̃ as the sum over all conductances of the edges of P and

denote it by wP .
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We call a self-avoiding path P = (x0, . . . ,xn) in G or G̃ step minimizing

if there exists no edge between xi and xj for all i, j with |i− j| ≥ 2. (2.10)

Note that a step minimizing path in G is not necessarily step minimizing in G̃ ,

since there could exist an edge of conductance two between two vertices of the

path that would reduce the number of steps. But by removing the vertices

connecting such a pair of vertices from the path we can shorten the path to a

step minimizing path in G̃ whose length and conductance is no more than the

length of the original path. Hence the chemical distance d(x,y) between vertices

x and y in G is larger or equal than the conductance dw(x,y) := min{wP :

P is a path between x and y} between them in G̃ .

To bound the probabilities occurring in (TMB), we express the events on G with

the help of corresponding events on G̃ by replacing the role of the length of a

path by its conductance. The role of the conductance is crucial, as it allows us to

distuingish newly added edges in a path, which is necessary to keep the bounds of

the probabilities in (TMB) sufficiently small. We call a path P = (x0, . . . ,xn) in

G̃ good if its marks satisfy tk ≥ ℓwP (k) and tn−k ≥ ℓwP−wP (n−k) for all k = 0, . . . , n,

where wP (k) is the conductance of P between x0 and xk. We denote by Ãx
k the

event that there exists a step minimizing path starting in x in G̃ with conductance

k which fails to be good on its last vertex. Notice that if there exists a path

described by the event Ax
k , i.e. a path for which the k-th vertex is the first one

whose mark is smaller than the corresponding truncation value ℓk, then due to

the correspondence between G and G̃ there also exists a step minimizing path

P in G̃ with wP ≤ k which also fails the condition on its last vertex. Hence, the

first two summands of the right-hand side of (TMB) can be bounded from above

by
∑∆

n=1 Px(Ã
(x)
n ) and

∑∆
n=1 Py(Ã

(y)
n ).

To bound Px(Ã
(x)
n ), we count the expected number of paths occurring in the

event Ã
(x)
n . Note that if |x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ holds for vertices x

and y, there exist no step minimizing paths between x and y with conductance

larger or equal three and there exists one step minimizing path with conductance

two, since there exists an edge of conductance two between the two vertices. This

property also holds for any of the subclasses of step minimizing paths introduced

in the following.
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For given vertices x = (x, t) and y = (y, s) define the random variable N(x,y, n)

as the number of distinct step minimizing paths P between x and y with wP = n,

whose connecting vertices (x1, t1), . . . (xm−1, tm−1) all have a larger mark than y

and fulfill t ≥ ℓ0, t1 ≥ ℓwP (1), . . . , tm−1 ≥ ℓwP (m−1). As Ã(x)
n is the event that there

exists a path with conductance n, where the final vertex is the first and only one

which has a mark smaller than the corresponding ℓn, the final vertex is also the

most powerful vertex of the path. Hence, the number of paths described by the

event Ã
(x)
n can be written as the sum of N(x,y, n) over all sufficiently powerful

vertices y of the graph and, by Mecke’s formula, we have

Px(Ã(x)
n ) ≤

∫
Rd×(0,ℓn]

dyEx,yN(x,y, n). (2.11)

We now decompose N(x,y, n). For k = 1, . . . , n − 1, define N(x,y, n, k) as the

number of step minimizing paths P between x and y with wP = n and

• whose connecting vertices (x1, t1), . . . (xm−1, tm−1) have marks larger than

the corresponding thresholds ℓwP (1), . . . , ℓwP (m−1) and larger than the mark

of y, and

• there exists r ∈ {1, . . . ,m − 1} such that we have wP (r) = n − k and the

connecting vertex xr = (xr, tr) has the smallest mark among the connecting

vertices and x.

The vertex xr can be understood as the powerful vertex of the path which con-

nects to y via a path of less powerful vertices with conductance k. Consequently,

we write N(x,y, n, n) for the number of step minimizing paths of conductance

n, which connect x and y via less powerful vertices. Then we have, for n ∈ N,

N(x,y, n) ≤
n∑

k=1

N(x,y, n, k). (2.12)

For k = 1, . . . , n− 1, the existence of a path counted in N(x,y, n, k) implies the

existence of a vertex z such that a step minimizing path counted by N(x, z, n−k)

exists which connects to y via a path of less powerful vertices with conductance

k. Hence

N(x,y, n, k) ≤
∑

z=(z,u)
ℓn−k∨s<u≤t

N(x, z, n− k)K(z,y, k), (2.13)
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for n ∈ N and k = 1, . . . , n−1, where we denote by K(z,y, k) the number of step

minimizing paths P between z and y with wP = k whose vertices have marks

larger than the marks of z and y. Note that unlike N(x,y, n), this random

variable is symmetric in its first two arguments and by definition we have that

N(x,y, n, n) = K(x,y, n). Observe that K(z,y, 1) is the indicator whether z

and y are connected by an edge with conductance one. We turn our attention

to K(z,y, k) in the case k ≥ 2, i.e. two powerful vertices are connected via one

or more connectors or an edge with conductance two.

Connecting powerful vertices.

First consider the random variable K(x,y, 2). If |x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ,

the vertices x and y are connected by an edge with conductance two and we in-

fer that K(x,y, 2) = 1. In the other case, K(x,y, 2) is equal to the number

of connectors between x and y, i.e. the number of vertices with mark larger

than the marks of x and y, which form an edge of conductance one to x and y.

The following lemma shows the stated inequality (2.7) from Section 2.3.2 for this

case. Recall that we write ρ(x) := 1 ∧ x−δ and define Iρ :=
∫
Rd dxρ(κ−1/δ |x|d).

Lemma 2.3: Two-connection lemma

Let x = (x, t),y = (y, s) ∈ Rd × (0, 1) be two given vertices with |x− y|d >
κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ. Then

Ex,yK(x,y, 2) ≤
∫
Rd×(t∨s,1]

dzρ
(
κ−1/δtγu1−γ |x− z|d

)
ρ
(
κ−1/δsγu1−γ |y − z|d

)
≤ Cκ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ

where C = Iρ2dδ+1

(γ−(1−γ)δ)
.

Proof. The first inequality follows directly by summing over all possible con-

nectors and applying Assumption UBA and Mecke’s formula. Observe that for

every vertex z = (z, u) either |x− z| ≥ |x−y|
2

or |y − z| ≥ |x−y|
2

, as the open balls
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B |x−y|
2

(x) and B |x−y|
2

(y) are disjoint. Hence, we have

∫
Rd×(t∨s,1]

dzρ
(
κ−1/δtγu1−γ |x− z|d

)
ρ
(
κ−1/δsγu1−γ |y − z|d

)
≤

1∫
t∨s

duρ
(
2−dκ−1/δtγu1−γ |x− y|d

) ∫
Rd

dzρ
(
κ−1/δsγu1−γ |y − z|d

)

+

1∫
t∨s

duρ
(
2−dκ−1/δsγu1−γ |x− y|d

) ∫
Rd

dzρ
(
κ−1/δtγu1−γ |x− z|d

)

≤ Iρ2
dδκ

[ 1∫
t∨s

du t−γδu(γ−1)δ |x− y|−dδ s−γuγ−1

+ s−γδu(γ−1)δ |x− y|−dδ t−γuγ−1

]
≤ Iρ2dδ

(γ−(1−γ)δ)
κ |x− y|−dδ [t−γδs−γ + s−γδt−γ

]
≤ Iρ2dδ+1

γ−(1−γ)δ
κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ .

We consider the event that vertices x and y are connected by multiple vertices

with larger marks. Recall that K(x,y, k) is the number of step minimizing paths

P between x and y with wP = k whose vertices have marks larger than the

marks of x and y. As before we call the vertices of such a path connectors.

To control the number of such paths, notice that for any possible choice of

connectors between x and y, there exists an almost surely unique connector

with smallest mark, i.e. the most powerful connector. For i = 1, . . . , k, we

denote by K(x,y, k, i) the number of step minimizing paths between x and y

where the connectors have a larger mark than x and y and there is a vertex xr

with wP (r) = i which is the most powerful connector of those vertices. Then,

K(x,y, k) ≤
k−1∑
i=1

K(x,y, k, i).

Assume now that the connector xr is the most powerful of all connectors and

wP (r) = i. In this case, the possible connectors x1, . . . ,xr−1 and xr+1, . . . ,xm−1
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need to have larger mark than xr. Hence, the paths between xr and x, resp.

y, considered on their own have the same structure as the initial path and this

leads to

K(x,y, k) ≤
k−1∑
i=1

∑
z=(z,u)
u>t∨s

K(x, z, i)K(z,y, k − i). (2.14)

1

ℓ
x

y

Figure 2.3: Decomposition of a path at the most powerful connector.

We use this decomposition together with Assumption UBA to find an upper

bound for Ex,yK(x,y, k). Recall that, when |x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ,

we have K(x,y, k) = 0 if k ≥ 3 and K(x,y, k) = 1 if k = 2 by definition. We

now introduce a mapping

eK : (Rd × (0, 1))2 × N → [0,∞).

by eK(x,y, 1) = ρ(κ−1/δ(t∧ s)γ(t∨ s)1−γ |x− y|d), for x,y ∈ Rd× (0, 1), and, for

k ≥ 2 under the assumption that |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ,

eK(x,y, k) =
k−1∑
i=1

∫
Rd×(t∨s,1)

dz eK(x, z, i)eK(z,y, k − i), for x,y ∈ Rd × (0, 1),

(2.15)

and otherwise eK(x,y, 2) = 1 and eK(x,y, k) = 0 for k ≥ 3.
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Lemma 2.4

Let x,y ∈ Rd × (0, 1) be two given vertices. Then, for all k ∈ N, we have

Ex,yK(x,y, k) ≤ eK(x,y, k). (2.16)

Note that by Assumption UBA and Lemma 2.3, we have Ex,yK(x,y, 1) ≤
eK(x,y, 1) and Ex,yK(x,y, 2) ≤ eK(x,y, 2). We prove the result for general

k by induction using (2.14), but to do so we need to classify the possible connec-

tion strategies according to the way in which powerful vertices are placed. This

classification is done by means of coloured binary trees. We write Tk−1 for the

set of all binary trees with k − 1 vertices. Here a binary tree is a rooted tree in

which every vertex can have either no child, a right child, a left child or both.

We colour the vertices of a tree T ∈ Tk−1 in such a way that the leaves of the

tree can be either blue or red, and every other vertex is coloured blue. Thus, for

each T ∈ Tk−1 there exist 2ℓ different colourings, where ℓ is the number of leaves

of T . Let T c
k−1 be the set of all coloured trees.

Before proceeding we outline the role of the tree and its coloured vertices in

regard to the information they capture. We will construct the tree so as to

describe the precise order of the connectors’ marks. In order to distuingish

between connections of vertices that are sufficiently close to form an edge with

conductance two and connections between vertices which are further apart, red

vertices of the tree will represent the first case and blue the second.

To each step minimizing path of conductance k between x and y we associate a

coloured tree T ∈ T c
k−1 in two steps, see Figure 2.4a:

(1) If the connectors of the step minimizing path P of conductance k are

x1, . . . ,xm with m ≤ k − 1, we associate a vector u = (u1, . . . , uk−1) to

the path defined as follows. We set uwP (i) := ti for all i ∈ 1, . . . ,m and

uj = 1 for all j ∈ {1, . . . , k − 1}\{wP (1), . . . , wP (m)}. Then

u ∈ Uk−1 := {u = (u1, . . . , uk−1) ∈ (0, 1]k−1 : ui ̸= 1 if ui−1 = 1}.
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Figure 2.4a: Classification of a connection strategy by means of a binary tree.
Local minima of the path correspond to branchpoints and local maxima to blue
leaves of the corresponding binary tree T . Matching labels in the tree on the
right are obtained by left-to-right labelling.
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Figure 2.4b: One connector of the path in Figure 2.4a is replaced by an edge of
conductance two. This edge corresponds to the red vertex in the tree to which
no label and hence no vertex of the path is attached.

(2) To u ∈ Uk−1 we associate a coloured tree T ∈ T c
k−1 as follows:

– For k = 2 we have u = (u1) and the set T c
1 contains two trees T ,

each consisting only of the root which may be coloured blue or red.

If u = (1), then u is associated to the tree T with the red root and

otherwise u is associated to the tree with the blue root.

– For k > 2, assume that to every tuple in u ∈ Uj−1 with 2 ≤ j <

k we have already associated a coloured tree T ∈ T c
j−1. Let u =

(u1, . . . , uk−1) and let ui be the smallest value of u. Then, there exist

trees T1 ∈ T c
i−1 and T2 ∈ T c

k−i−1 associated to u1 = (u1, . . . , ui−1),

resp. u2 = (ui+1, . . . , uk−1). To u we associate the tree T ∈ T c
k−1,

which has T1 as the left subtree of the root and T2 as the right subtree

and colour the root blue.
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Conversely, given a tree T ∈ T c
k−1 let m be the number of blue vertices of the

tree. We define a labelling

σT : {1, . . . ,m} → T, i 7→ σT (i),

of the blue vertices in T by letting σT (i) be the ith vertex removed in a left-

to-right exploration of the tree consisting of the blue vertices. This exploration

starts with the vertex obtained by starting at the root and going left at any

branching until this is no longer possible. Remove this vertex and repeat the

procedure unless the removal disconnects a part from the tree or removes the

root. If a part is disconnected explore this part (which is rooted in the right

child of the last removed vertex) until it is fully explored and removed, and

continue from there with the remaining tree. If the root is removed while it has

a right child, explore the tree rooted in that child until it is fully explored and

then stop. Similarly, define a bijection

τT : {1, . . . , k − 1} → T, i 7→ τT (i),

by letting τT (i) be the ith vertex seen by a left-to-right exploration of all vertices

on the tree T . We also set σ−1
T (τT (0)) := 0 and σ−1

T (τT (k)) := m + 1. Finally,

κT : T → {0, . . . , k}2, v 7→
(
κ(1)

T (v),κ(2)

T (v)
)

is defined recursively. For the root v of T , we set κT (v) = (0, k). As before,

removing v splits T into a left subtree T1 and a right subtree T2. If these trees

are nonempty, set κT (v1) =
(
κ(1)

T (v), τ−1
T (v)

)
for the root v1 of T1, resp. κT (v2) =(

τ−1
T (v),κ(2)

T (v)
)

for the root v2 of T2. Repeat this for the subtrees until κT (v)

is defined for all v ∈ T . Thus, for each vertex v ∈ T , its image κT (v) captures

• as its first entry the labelling τ−1
T of the last vertex seen by a left-to-right

exploration before the first vertex of the subtree rooted in v (and set to 0

if there is no such vertex),

• as its second entry the labelling τ−1
T of the first vertex seen by a left-to-right

exploration after the last vertex of the subtree rooted in v (and set to k if

there is no such vertex)
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With these labelings at hand, we now describe four restrictions that are satisfied

by the marks and locations of the connectors x1, . . . ,xm of every step-minimizing

path connecting x0 = (x0, t0) and xm+1 = (xm+1, tm+1) to which the coloured

tree T is associated, namely

(i) if σT (i) is the root in T , then ti > t0, tm+1;

(ii) if σT (i) is a child of σT (j) in T , then ti > tj,

(iii) if there is a red leaf v with i = σ−1
T (τT (κ(1)

T (v))) and j = σ−1
T (τT (κ(2)

T (v))),

then

|xi − xj|d ≤ κ1/δ(ti ∧ tj)
−γ(ti ∨ tj)

−γ/δ;

(iv) if there is a blue vertex v with i = σ−1
T (τT (κ(1)

T (v))) and j = σ−1
T (τT (κ(2)

T (v))),

then

|xi − xj|d > κ1/δ(ti ∧ tj)
−γ(ti ∨ tj)

−γ/δ.

Note that whereas (i) and (ii) describe the order of the marks, (iii) and (iv) encode

the spatial restrictions on the connectors via the colour of the tree vertices. In

(iv), xi (resp. xj) is the first vertex to the left (resp. right) with a smaller mark

than xσ−1
T (v) and the inequality ensures that xi and xj are far enough apart that

no edge with conductance two can exist between them. Conversely, the inequality

in (iii) ensures the existence of an edge with conductance two. These conditions

motivate the following definitions:

• MT as the set of vectors (t1, . . . , tm) ∈ (0, 1)m such that (i), (ii) hold,

• IrlT as the set of pairs (i, j) ∈ {0, . . . ,m + 1}2 for which a red leaf v of T

exists such that i = σ−1
T (τT (κ(1)

T (v))) and j = σ−1
T (τT (κ(2)

T (v))),

• IbT as the set of pairs (i, j) ∈ {0, . . . ,m + 1}2 for which a blue vertex v of

T exists such that i = σ−1
T (τT (κ(1)

T (v))) and j = σ−1
T (τT (κ(2)

T (v))),

• and IbcT as the set of pairs (i, i + 1) ∈ {0, . . . ,m + 1}2 for which we have

that τ−1
T (σT (i + 1)) − τ−1

T (σT (i)) = 1.

Whereas MT captures the restrictions on the marks, IrlT and IbT contain the indices

to which the the spatial restrictions (iii) and (iv) apply, as for (i, j) ∈ IbT the
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vertices xi and xj cannot be near to each other and for (i, j) ∈ IrlT the vertices

xi and xj have to be that near to each other so that an edge of conductance two

exists between them. For each pair (i, j) ∈ IrlT we have j = i+1 and IrlT , IbcT form

a partition of {(i, i + 1) : i = 0, . . . ,m}, because for any (i, i + 1) ∈ IbcT , there

exists an edge of conductance one between the vertices xi and xi+1.

Proof of Lemma 2.4. For T ∈ T c
k−1, we define KT (x,y) as the number of step

minimizing paths P between x and y with wP = k whose vertices have marks

larger than the marks of x and y to which T is associated. Then

Ex,yK(x,y, k) =
∑

T∈T c
k−1

Ex,yKT (x,y).

If k = 1 (or equivalently T = ∅) we have that KT (x,y) is the indicator of the

event that x and y are connected by an edge. For k = 2, if T is the tree consisting

of the red root KT (x,y) = 1{|x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ} and if T is the

tree consisting of the blue root

KT (x,y) ≤ 1{|x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ}
∑

z=(z,u)
u>t∨s

K∅(x, z)K∅(z,y).

For k ≥ 3 we split the tree at the root, i.e.

KT (x,y) ≤ 1{|x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ}
∑

z=(z,u)
u>t∨s

KT1(x, z)KT2(z,y).

(2.17)

where T1 and T2 are the left, resp. right, subtree of T obtained by cutting the

root. Repeat the step (2.17) by consecutively splitting the tree at the vertices as

seen in the order of a depth first search of the blue vertices in the tree, reducing

the product to terms corresponding to empty or single red vertex trees. We get

KT (x,y) ≤
∑

x1,...,xm

1{(t1, . . . , tm) ∈ MT}∏
(i,j)∈IbT

1{|xi − xj|d > κ1/δ(ti ∧ tj)
−γ(ti ∨ tj)

−γ/δ}

∏
(i,i+1)∈IrlT

Kv(i,i+1)
(xi,xi+1)

∏
(i,i+1)∈IbcT

K∅(xi,xi+1),
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where x0 = x, xm+1 = y and v(i,i+1) ∈ T is the red leaf associated to (i, j)

in the definition of IrlT . Note that the term Kv(i,i+1)
contains further spatial

restrictions on xi and xi+1, ensuring that these vertices are sufficiently close.

Taking expectations yields

EXKT (x,y) ≤
∑

x1,...,xm

1{(t1, . . . , tm) ∈ MT}∏
(i,j)∈IbT

1{|xi − xj|d > κ1/δ(ti ∧ tj)
−γ(ti ∨ tj)

−γ/δ}

∏
(i,i+1)∈IrlT

1{|xi − xi+1|d ≤ κ1/δ(ti ∧ ti+1)
−γ(ti ∨ ti+1)

−γ/δ}

EX
∏

(i,i+1)∈IbcT

1{xi ∼ xi+1}.

By Assumption UBA, we have

EX

[ ∏
(i,i+1)∈IbcT

1{xi ∼ xi+1}
]
≤

∏
(i,i+1)∈IbcT

eK(xi,xi+1, 1). (2.18)

Hence, using the Mecke formula for m points, we get

Ex,yKT (x,y) ≤
∫

dx1 · · ·
∫

dxm 1{(t1, . . . , tm) ∈ MT}∏
(i,j)∈IbT

1{|xi − xj|d > κ1/δ(ti ∧ tj)
−γ(ti ∨ tj)

−γ/δ}

∏
(i,i+1)∈IrlT

1{|xi − xi+1|d ≤ κ1/δ(ti ∧ ti+1)
−γ(ti ∨ ti+1)

−γ/δ}

∏
(i,i+1)∈IbcT

eK(xi,xi+1, 1).

(2.19)

What remains to be seen is that when the right-hand side in (2.19) is denoted

eTK(x,y) and summed over all T ∈ T c
k−1 we obtain eK(x,y, k). This is clearly

true when k = 1 and k = 2. Otherwise we use (2.15) to decompose eK(x,y, k).

By induction, the factors in this decomposition can be represented as in (2.19)
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and we obtain

eK(x,y, k) =1{|x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ}
k−1∑
i=1

∑
T1∈T c

i−1

∑
T2∈T c

k−1−i

∫
Rd×(t∨s,1)

dz eT1
K (x, z)eT2

K (z,y).

Writing the terms eT1
K (x, z) and eT2

K (z,y) as in (2.19) as integrals over x1, . . . ,xm1

and xm1+2, . . . ,xm we can insert z as xm1+1 and note that the conditions and

terms emerging in that integral are exactly the same as in (2.19) for the tree T

with T1 and T2 as left and right subtree of the root. Indeed,

• the vector (t1, . . . , tm) of the marks of x1, . . . ,xm is an element of MT iff

(t1, . . . , tm1) ∈ MT1 , (tm1+2, . . . , tm) ∈ MT2 and tm1+1 > s ∨ t,

• the spatial conditions described by IbT are fulfilled iff x1, . . . , xm1 fulfills the

ones decribed by IbT1
, xm1+2, . . . , xm the ones by IbT2

and

|x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ,

• IrlT is the union of IrlT1
and IrlT2

where the values of the pairs of IrlT2
have been

increased by m1 +1 and in the same way IbcT directly emerges from IbcT1
and

IbcT2
.

Hence, eK(x,y, k) can be obtained by summing eTK(x,y) over all T ∈ T c
k−1.

Lemma 2.5: k-connection lemma

Let x = (x, t),y = (y, s) ∈ Rd × (0, 1) be two given vertices with |x− y|d >
κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ and 0 < ℓ < 1

e
such that ℓ < t ∨ s. Then there exists

C > 1 such that, for k ≥ 3, we have

eK(x,y, k) ≤ Ck−1ℓ(⌊
k
2
⌋−1)(1−γ−γ/δ) log(1

ℓ
)k∗κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ

where k∗ := k mod 2.

Proof. Choose C > 1 such that C is larger than the constants appearing in
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Lemma 2.3 and Lemmas A.3 and A.4 of Section A.2. We now show by induction

that

eK(x,y, k) ≤ Cat(k − 1)Ck−1 ℓ(⌊
k
2
⌋−1)(1−γ−γ/δ)

log(1
ℓ
)k∗ρ

(
κ−1/δ(t ∧ s)γ(t ∨ s)γ/δ |x− y|d

) (2.20)

holds for all k ≥ 2, where Cat(k−1) is the (k−1)-th Catalan number. Note that,

for k ≥ 2, it holds eK(x,y, k) ≤ 1 for |x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ. Thus,

it remains to show (2.20) under the condition |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ.

For k = 2, the bound (2.20) is already established by Lemma 2.3. If k = 3 and

|x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ, by (2.15) we have

eK(x,y, 3) ≤
1∫

t∨s

du

∫
Rd

dzeK(x, z, 1)eK(z,y, 2) +

1∫
t∨s

du

∫
Rd

dzeK(x, z, 2)eK(z,y, 1).

Using the bounds established in Lemma 2.3 together with Lemma A.4 leads to

eK(x,y, 3) ≤ 2C2 log(1
ℓ
)κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ .

Let k ≥ 4 and assume that (2.20) holds for all j = 2, . . . , k − 1. For x,y such

that |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ, by (2.15),

eK(x,y, k) =
k−1∑
i=1

∫
Rd×(t∨s,1)

dzeK(x, z, i)eK(z,y, k − i).
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With (2.20) we hence get,

eK(x,y, k) ≤
k−2∑
i=2

[
Ck−2ℓ(⌊

i
2
⌋+⌊ k−i

2
⌋−2)(1−γ−γ/δ) log(1

ℓ
)i∗+(k−i)∗ Cat(i− 1)

Cat(k − i− 1)

1∫
t∨s

du

∫
Rd

dzρ
(
κ−1/δtγuγ/δ |x− z|d

)
ρ
(
κ−1/δsγuγ/δ |z − y|d

)]
+ Ck−2ℓ(⌊

k−1
2

⌋−1)(1−γ−γ/δ) log(1
ℓ
)(k−1)∗ Cat(0) Cat(k − 2)

×
1∫

t∨s

du

∫
Rd

dzρ
(
κ−1/δtγu1−γ |x− z|d

)
ρ
(
κ−1/δsγuγ/δ |z − y|d

)
+ Ck−2ℓ(⌊

k−1
2

⌋−1)(1−γ−γ/δ) log(1
ℓ
)(k−1)∗ Cat(k − 2) Cat(0)

×
1∫

t∨s

du

∫
Rd

dzρ
(
κ−1/δtγuγ/δ |x− z|d

)
ρ
(
κ−1/δsγu1−γ |z − y|d

)
.

Using Lemma A.3 and Lemma A.4 the last expression can be further bounded

by

κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ Ck−1

×
[ k−2∑

i=2

Cat(i− 1) Cat(k − i− 1)ℓ(⌊
i
2
⌋+⌊ k−i

2
⌋−1)(1−γ−γ/δ) log(1

ℓ
)i∗+(k−i)∗

+ 2l(⌊
k−1
2

⌋−1)(1−γ−γ/δ) log(1
ℓ
)(k−1)∗+1 Cat(0) Cat(k − 2)

]
.

If k is even, i and k−i need to be either both even or both odd, for i = 1, . . . , k−1.

Since ℓ > 0 is chosen small enough that log(1
ℓ
)2 < ℓ1−γ−γ/δ, we have that in both

cases

ℓ(⌊
i
2
⌋+⌊ k−i

2
⌋−1)(1−γ−γ/δ) log(1

ℓ
)i∗+(k−i)∗ < ℓ(⌊

k
2
⌋−1)(1−γ−γ/δ).

If k is odd, an analogous observation leads to

ℓ(⌊
i
2
⌋+⌊ k−i

2
⌋−1)(1−γ−γ/δ) log(1

ℓ
)i∗+(k−i)∗ < ℓ(⌊

k
2
⌋−1)(1−γ−γ/δ) log(1

ℓ
).
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Hence, we have

eK(x,y, k) ≤ κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ Ck−1ℓ(⌊
k
2
⌋−1)(1−γ−γ/δ)

× log(1
ℓ
)k∗

k−1∑
i=1

Cat(i− 1) Cat(k − i− 1)

≤ κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ Cat(k − 1)Ck−1ℓ(⌊
k
2
⌋−1)(1−γ−γ/δ) log(1

ℓ
)k∗

and (2.20) holds for k. The observation that Cat(k) ≤ 4k concludes the proof.

Probability bounds for bad paths.

With Lemma 2.5 we can establish a bound for Ex,yN(x,y, n), recall the defini-

tions in Section 2.3.3. As in (2.12) and (2.13), we have

N(x,y, n) ≤ K(x,y, n) +
n−1∑
k=1

∑
z=(z,u)

t>u>ℓn−k∨s

N(x, z, n− k)K(z,y, k) . (2.21)

Here z is the most powerful vertex of the path disregarding y and connects to

y via less powerful vertices. As done for K(x,y, k) in the previous section we

compare Ex,yN(x,y, n) with a deterministic mapping

eN : (Rd × (0, 1))2 × N → [0,∞),

defined as

eN(x,y, 1) = ρ(κ−1/δ(t ∧ s)γ(t ∨ s)1−γ |x− y|d), for x,y ∈ Rd × (0, 1),

and for n ≥ 2

eN(x,y, n) = eK(x,y, n) +
n−1∑
i=1

∫
Rd×(ℓn−k∨s,t]

dzeN(x, z, n− k)eK(z,y, k), (2.22)

for x,y ∈ Rd × (0, 1), if |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ, and otherwise

eN(x,y, 2) = 1 and eN(x,y, n) = 0 for n ≥ 3.
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Lemma 2.6

Let x,y ∈ Rd × (0, 1) be two given vertices. Then, for all n ∈ N, we have

Ex,yN(x,y, n) ≤ eN(x,y, n). (2.23)

Proof. First recall that for |x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)−γ/δ we have N(x,y, n) =

0 for n ≥ 3 and N(x,y, 2) = 1. Thus in this case N(x,y, n) is equal to eN(x,y, n)

and consequently their expectations are equal. Otherwise, the proof follows the

same argument as in Lemma 2.4, where we again classify the possible connection

strategies between x and y through coloured binary trees. We therefore only

briefly present the required class of trees, explain the association of a path to

the corresponding tree and the restrictions on marks and space which a step

minimizing path that associates to T has to satisfy.

Let T cb
n be a class of coloured rooted binary trees with n vertices which are

constructed as follows. For k ≤ n, we have a backbone consisting of k vertices,

starting with the root followed by k− 1 vertices, each a left child of the previous

one. The last vertex in this line is coloured red, the others blue. Let i1, . . . , ik ∈ N
with i1 + . . . + ik = n − k. A tree T ∈ T cb

n is formed by attaching to the j-th

vertex (as seen by a left-to-right exploration of the backbone) a coloured subtree

Tj ∈ T c
ij

rooted in its right child, for j = 1, . . . , k.

To any path P = (x0,x1, . . . ,xm+1) with x0 = x and xm+1 = y where the

connecting vertices have larger marks than y we associate a tree T ∈ T cb
n as

follows. We say xi is a powerful vertex of P if ti ≤ tj for all j = 0, . . . , i− 1. By

definition, the vertices x0 and xm+1 are always powerful vertices. We denote by

{xi1 , . . . ,xik+1
} the set of powerful vertices keeping the order in the path. Then

two consecutive powerful vertices xij and xij+1
are, by definition, connected via

a path of connectors xij+1, . . .xij+1−1 of conductance wj := wP (ij+1) − wP (ij).

If wj ≥ 2, associate the connectors of the path connecting xij and xij+1
to a

non-empty coloured tree Tj ∈ T c
wj−1 as in the proof of Lemma 2.4. Let T ∈ T cb

n

be the coloured tree which has a backbone of length k and where Tj is attached

to the j-th vertex (as seen by a left-to-right exploration of the backbone) such

that its right child is the root of Tj, see Figure 2.5 for an example.
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Figure 2.5: Associating a coloured binary tree to a path. The powerful vertices
of the path are indicated in black. We have k = 3 vertices on the backbone. The
three trees attached to the backbone are constructed as in Figure 2.4a, where
the vertices with the smallest mark on the connecting paths are the roots which
are attached as right children to the backbone.

Given a tree T ∈ T cb
n , let m be the number of blue vertices of the tree and k the

number of vertices of the backbone. As in the proof of Lemma 2.4, we define a

labelling

σT : {0, . . . ,m} → T, i 7→ σT (i),

by letting σT (0) be the red vertex on the backbone and σT (i) be the ith vertex

seen by a left-to-right exploration of the blue vertices of T . Define the bijection

τT : {0, . . . , n− 1} → T, i 7→ τT (i),

by letting τT (0) be the red vertex on the backbone and τT (i) be the (i + 1)st

vertex seen by a left-to-right exploration of all other vertices of the tree. Denote

by v1, . . . , vk the vertices of the backbone of T and T1, . . . , Tk the subtrees rooted

in their right child. Set ij := σ−1(vj), for i = 1, . . . , k, and ik+1 := m + 1.

Then, the following restrictions on marks and space are satisfied by the vertices

x1, . . . ,xm of any path connecting x0 = x and xm+1 = y to which T is associated:

(i) tij > tij+1
, for j = 1, . . . , k,

(ii) if there exists a vertex vj of the backbone with τ−1
T (vj) ≥ 2, then

∣∣x0 − xij

∣∣d > κ1/δ(t0 ∧ tij)
−γ(t0 ∨ tij)

−γ/δ,

(iii) for j = 1, . . . , k, the vertices xij+1, . . . ,xij+1−1 satisfy the four restrictions
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on marks and space given by the coloured tree Ti and xij ,xij+1
as described

prior to the proof of Lemma 2.4.

For T ∈ T cb
n , we define NT (x,y) as the number of step minimizing paths to

which T is associated. Denote again by v1, . . . , vk the vertices of the backbone

of T and set ij := σ−1(vj), ik+1 := m + 1. Splitting the tree at each blue vertex

of the backbone leads to

NT (x,y) ≤
∑

xi2
,...,xik

1{ti1 > . . . > tik+1
}

∏
2≤j≤k

τ−1
T (vj)≥2

1{
∣∣x0 − xij

∣∣d > κ1/δ(t0 ∧ tij)
−γ(t0 ∨ tij)

−γ/δ}

∏
1≤j≤k

KTj
(xij ,xij+1

),

where Tj is the subtree attached to the right child of vj. Proceeding for each KTj

and using the iterative structure of eN as in the proof of Lemma 2.4 yields the

result.

As a path described by the event Ã(x)
n (recall the definition from Section 2.4) has

a restriction on the mark but not on the location of its last vertex, we can use

the integral ∫
Rd

dy Ex,yN(x,y, n), (2.24)

with y = (y, s) and s smaller than some yet to be determined value to bound

Px(Ã(x)
n ). Thus, we define for given x = (x, t) and n ∈ N the mapping µx

n :

(0, t] → [0,∞) by

µx
n(s) :=

∫
Rd

dy eN(x,y, n), for s ∈ (0, t],y = (y, s). (2.25)

Recall that we write k∗ := k (mod 2) and Iρ :=
∫

dx ρ(κ−1/δ |x|d). By the

definition of eN(x,y, 1) we have µx
1 (s) ≤ Iρs

−γtγ−1, for s ∈ (0, t], and, for n ≥ 2,
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with a short calculation using Lemma 2.5 we get the recursive property

µx
n(s) ≤ IρC

n−1ℓ
(⌊n

2
⌋−1)(1−γ−γ/δ)

0 log( 1
ℓ0

)n∗s−γt−γ/δ (2.26)

+
n−1∑
k=2

IρC
k−1ℓ

(⌊ k
2
⌋−1)(1−γ−γ/δ)

n−k log( 1
ℓn−k

)k∗s−γ

t∫
ℓn−k

duµx
n−k(u)u−γ/δ (2.27)

+ Iρs
−γ

t∫
ℓn−1

duµx
n−1(u)uγ−1, for s ∈ (0, t], (2.28)

where C > 0 is the constant from Lemma 2.5. Here, the first summand (2.26)

corresponds to the first summand of (2.21), i.e. the number of paths with con-

ductance n where the first vertex x and the last vertex with mark s are the two

most powerful vertices of the path. The summands (2.27) and (2.28) describe

the second summand of (2.21), where (2.28) covers the case that the last vertex

of a path is directly connected to the preceding most powerful vertex.

Using the recursive inequality in (2.26) - (2.28) we now establish bounds for

µx
n. To make the proof more transparent we continue working with a general

sequence (ℓn)n∈N0 assuming only that it is at least exponentially decaying, i.e.

for any b > 0 it holds that ℓn+2 < bℓn. We choose b > 0 small enough such

that
∑∞

j=2 b
(γ+γ/δ−1)

(j−3)(j−1)
8 converges. This choice is possible because in our

regime γ + γ/δ is larger than one. We denote the limit of the series by cb > 1.

As we have already seen for the optimal path structure in Section 2.3.2, the

chosen sequence (ℓn)n∈N0 decays much faster than any exponential rate so that

this assumption will not have any effect on the result. Without loss of generality

we may additionally assume ℓ0 <
1
e
.
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Lemma 2.7

Let x = (x, t) be a given vertex and let the sequence (ℓn)n∈N0 be at least

exponentially decaying with ℓ0 < t ∧ 1
e
. Then, there exists a constant c such

that, for n ∈ N, we have

µx
n(s) ≤ Cns

−γ, for s ∈ (0, t], (2.29)

where

Cn+2 = c2ℓ1−γ−γ/δ
n Cn + c log

(
1

ℓn+1

)
Cn+1 (2.30)

and

C1 = cℓγ−1
0 , C2 = c2ℓ

−γ/δ
0 + c log( 1

ℓ1
)C1.

Proof. We choose the constant c > 0 such that it is larger than Iρcb
(γ+γ/δ−1)∧1 and

larger than the constant C from Lemma 2.5. Since this also implies that c > Iρ,

by the definition of µx
1 we have

µx
1 (s) = Iρs

−γtγ−1 ≤ cℓγ−1
0 s−γ = C1s

−γ for s ∈ (0, t].

For n = 2, the recursive inequality for µx
2 yields

µx
2 (s) ≤ IρCs−γt−γ/δ + Iρs

−γ

t∫
ℓ1

duµx
1 (u)uγ−1 for s ∈ (0, t].

Using the already established bound for n = 1 we have

µx
2 (s) ≤ c2ℓ

−γ/δ
0 s−γ + Iρs

−γ

t∫
ℓ1

duC1u
−1

≤ c2ℓ
−γ/δ
0 s−γ + c log( 1

ℓ1
)C1s

−γ =: C2s
−γ for s ∈ (0, t].

Now let n ≥ 3 and we assume that (2.29) holds for all ñ ≤ n − 1. Then, using
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the already established bounds and the recursive inequality property we have

µx
n(s) ≤ IρC

n−1ℓ
(⌊n

2
⌋−1)(1−γ−γ/δ)

0 log( 1
ℓ0

)n∗s−γt−γ/δ

+
n−1∑
k=2

IρC
k−1ℓ

(⌊ k
2
⌋−1)(1−γ−γ/δ)

n−k log( 1
ℓn−k

)k∗s−γ

t∫
ℓn−k

duCn−ku
−γ−γ/δ

+ Iρs
−γ

t∫
ℓn−1

duCn−1u
−1

≤ IρC
n−1ℓ

(⌊n
2
⌋−1)(1−γ−γ/δ)

0 log( 1
ℓ0

)n∗s−γt−γ/δ

+
n−1∑
k=2

Iρ
γ + γ/δ − 1

Ck−1ℓ
(⌊ k

2
⌋)(1−γ−γ/δ)

n−k log( 1
ℓn−k

)k∗Cn−ks
−γ

+ IρCn−1 log( 1
ℓn−1

)s−γ for s ∈ (0, 1).

Assume for the moment that

n−1∑
k=2

ck−1Cn−kℓ
(⌊ k

2
⌋)(1−γ−γ/δ)

n−k log( 1
ℓn−k

)k∗ + cn−1ℓ
(⌊n

2
⌋−1)(1−γ−γ/δ)

0 ℓ
−γ/δ
0 log( 1

ℓ0
)n∗

≤ cbcCn−2ℓ
1−γ−γ/δ
n−2

(2.31)

holds. Then, as c > C, the term µx
n(s) can be further bounded by

Iρcb
(γ+γ/δ−1)∧1cCn−2ℓ

1−γ−γ/δ
n−2 s−γ + IρCn−1 log( 1

ℓn−1
)s−γ,

which by (2.30) is smaller than Cns
−γ for s ∈ (0, t]. Hence, by induction the

stated inequality holds for all n ∈ N.

It remains to show that (2.31) holds. If k is even, a repeated application of (2.30)

and ℓn+2 < bℓn yields

ck−1Cn−kℓ
(⌊ k

2
⌋)(1−γ−γ/δ)

n−k log( 1
ℓn−k

)k∗ ≤ cCn−2ℓ
1−γ−γ/δ
n−2 b(γ+γ/δ−1)(

∑ k−2
2

j=0 j).

If k is odd a similar calculation leads to

ck−1Cn−kℓ
(⌊ k

2
⌋)(1−γ−γ/δ)

n−k log( 1
ℓn−k

)k∗ ≤ cCn−2ℓ
1−γ−γ/δ
n−2 b(γ+γ/δ−1)(

∑ k−3
2

j=0 j).
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Distinguishing whether n is even or odd, the second term of (2.31) can be

bounded in a similar way and so the whole expression can be bounded by

cCn−2ℓ
1−γ−γ/δ
n−2

 n∑
k=2

k even

b(γ+γ/δ−1)
(k−2)k

8 +
n∑

k=3
k odd

b(γ+γ/δ−1)
(k−3)(k−1)

8

 ,

where the two sums can be bounded by cb which implies that (2.31) holds.

Notice that, as stated in Section 2.3.2, the inequality (2.31) shows us that the

major contribution to the expected value of N(x,y, n) comes from the paths

where the two most powerful vertices are connected via a single connector. To

see why, notice that the right-hand side of (2.31) is, up to a constant, the same

as the k = 2 term of the left-hand side. In fact, Lemma 2.7 shows that the

dominant class of possible paths is the one described in Section 2.3.2.

We are now ready to bound the probability of the event Ã
(x)
n , i.e. the event that

there exists a path of conductance n where the final vertex is the first and only

one which has a mark smaller than the corresponding ℓn. In particular the final

vertex is the most powerful vertex of the path. By Mecke’s equation, we have

Px(Ã(x)
n ) ≤

∫
Rd×(0,ℓn]

dyEx,yN(x,y, n).

Hence, Fubini’s theorem and Lemma 2.7 yield

Px(Ã(x)
n ) ≤

ℓn∫
0

dsµx
n(s) ≤ 1

1 − γ
ℓ1−γ
n Cn.

As in Section 2.3.2, with ℓ0 < t ∧ 1
e

we choose the sequence (ℓn)n∈N0 for ε > 0,

such that
1

1 − γ
Cnℓ

1−γ
n =

ε

π2n2
, (2.32)

and we have

∆∑
n=1

Px(A(x)
n ) ≤

∆∑
n=1

Px(Ã(x)
n ) ≤

∆∑
n=1

1

1 − γ
Cnℓ

1−γ
n ≤

∞∑
n=1

ε

π2n2
=

ε

6
.

66



CHAPTER 2. ULTRASMALLNESS IN SCALE-FREE GEOMETRIC RANDOM GRAPHS

Since Cn is defined recursively, we can obtain a recursive representation of the

sequence (ℓn)n∈N0 . Let ηn := ℓ−1
n for n ∈ N0. Then, we have

η1−γ
n+2 =

π2(n + 2)2

3ε

1

1 − γ
Cn+2

=
π2(n + 2)2

3ε

1

1 − γ

[
c2ℓ1−γ−γ/δ

n Cn + c log

(
1

ℓn+1

)
Cn+1

]
=

(n + 2)2

n2
c2ηγ/δn +

(n + 1)2

n2
c log(ηn+1)η

1−γ
n+1.

(2.33)

Hence, there exists a different constant c > 0 such that η1−γ
n+2 ≤ cη

γ/δ
n +c log(ηn+1)η

1−γ
n+1.

By induction, we conclude that there exist b > 0 and B > 0 such that

ηn ≤ b exp

(
B

(
γ

δ(1 − γ)

)n/2
)
, (2.34)

and thus the rate of decay of (ℓn)n∈N0 is faster than exponential.

Probability bounds for good paths.

We now proceed to establish a bound on the last summand
∑2∆

n=1 Px,y(B(x,y)
n ) of

(TMB). To do so we consider the original graph G . Recall that B(x,y)
n is the event

that there exists a good path of length n between x and y. This can be bounded

by the union of all possible good paths given by the vertices of the Poisson point

process, i.e.

Px,y(B(x,y)
n ) = Px,y

 ̸=⋃
x1,...,xn−1∈G
(x0,...,xn) good

{x0 ∼ x1 ∼ . . . ∼ xn−1 ∼ xn}

 ,

where x = x0, y = xn,
⋃ ̸= denotes again the union across all possible sets of

pairwise distinct vertices x0, . . . ,xn of the Poisson process. By Mecke’s equation

the right-hand side can be bounded from above by∫
Rd×(ℓ1,1]

dx1 · · ·
∫

Rd×(ℓ⌊n
2 ⌋,1]

dx⌊n
2
⌋ · · ·

∫
Rd×(ℓ1,1]

dxn−1 Px,x1,...,xn−1,y{x ∼ x1 ∼ . . . ∼ xn−1 ∼ y}.
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The following lemma reduces this bound to a non-spatial problem for paths of

“reasonable” length which only depends on the marks of x1, . . . ,xn−1 but not

on their location. This allows us to use a similar strategy as the one used by

Dereich et al. in [35], where lower bounds for the typical distance of non-spatial

preferential attachment models are established.

Lemma 2.8

For given vertices x = (x, t) and y = (y, s), let ∆ ≤ cε |x− y|ϵ for some

1 > ε > 0 and cε > 0. Then, there exist constants a > 0 and κ̃ > 0 such

that, for n ≤ ∆, we have

∫
(Rd)n−1

n−1⊗
i=1

dxiPx,x1,...,xn−1,y{x ∼ x1 ∼ . . . ∼ xn−1 ∼ y}

≤ |x− y|−a
n∏

k=1

κ̃(tk−1 ∧ tk)−γ(tk−1 ∨ tk)γ−1,

where t0 = t resp. tn = s are the marks of x resp. y and xi = (xi, ti) for

i = 1, . . . , n− 1.

Remark 2.3.1. The constants a and κ̃ of Lemma 2.8 depend on the choice of ε

and cε. But for ∆ = O(log |x− y|), for any ϵ > 0 there exists a cϵ > 0, such

that, for |x− y| large enough, we have ∆ ≤ cε |x− y|ϵ. Thus, if |x− y| is large

enough, the choice of a and κ̃ does not depend on |x− y|.

Proof. Let {x,x1, . . . ,xn−1,y} be a set of given vertices. By Assumption UBA

we have∫
(Rd)n−1

n−1⊗
i=1

dxiPx,x1,...,xn−1,y{x ∼ x1 ∼ . . . ∼ xn−1 ∼ y}

≤
∫

(Rd)n−1

n−1⊗
i=1

dxi

n∏
i=1

ρ
(
κ−1/δ(ti−1 ∧ ti)

γ(ti−1 ∨ ti)
1−γ |xi−1 − xi|d

)
.

As n ≤ cε |x− y|ϵ, no matter the choice of vertices, there must exist at least one

edge between two vertices xk−1 = (xk−1, tk−1) and xk = (xk, tk) with |xk−1 − xk| ≥

68



CHAPTER 2. ULTRASMALLNESS IN SCALE-FREE GEOMETRIC RANDOM GRAPHS

c−1
ε |x− y|1−ε. Hence, the expression above can be further bounded by

n−1∑
k=1

∫
(Rd)n−1

n−1⊗
i=1

dxiρ
(
c−d
ε κ−1/δ(tk−1 ∧ tk)γ(tk−1 ∨ tk)1−γ |x− y|d(1−ε) )

×
n∏

i=1
i ̸=k

ρ
(
κ−1/δ(ti−1 ∧ ti)

γ(ti−1 ∨ ti)
1−γ |xi−1 − xi|d

)

≤
n−1∑
k=1

ρ
(
c−d
ε κ−1/δ(tk−1 ∧ tk)γ(tk−1 ∨ tk)1−γ |x− y|d(1−ε) )

×
n∏

i=1
i ̸=k

Iρ(ti−1 ∧ ti)
−γ(ti−1 ∨ ti)

γ−1,

where the last inequality is achieved by integration over the location of the ver-

tices. We choose κ̃ > 2cdεκ
1/δ ∨ 2Iρ. Since δ > 1, the term

ρ
(
c−d
ε κ−1/δ(tk−1 ∧ tk)γ(tk−1 ∨ tk)1−γ |x− y|d(1−ε) )

can be bounded by cdεκ
1/δ(tk−1 ∧ tk)−γ(tk−1 ∨ tk)γ−1 |x− y|−d(1−ε) and therefore

there exists a constant a > 0 such that we have∫
(Rd)n−1

n−1⊗
i=1

dxiPx,x1,...,xn−1,y{x ∼ x1 ∼ . . . ∼ xn−1 ∼ y}

≤ |x− y|−a
n∏

k=1

κ̃(tk−1 ∧ tk)−γ(tk−1 ∨ tk)γ−1.

By Remark 2.3.1, with Lemma 2.8 and Fubini’s theorem we obtain

Px,y(B(x,y)
n ) ≤ |x− y|−a

1∫
ℓ1

dt1 · · ·
1∫

ℓ⌊n
2 ⌋

dt⌊n
2
⌋ · · ·

1∫
ℓ1

dtn−1

n∏
k=1

κ̃(tk−1∧tk)−γ(tk−1∨tk)γ−1,
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where x = (x, t0) and y = (y, tn). We define,

νx
n(s) =

1∫
ℓ1

dt1 · · ·
1∫

ℓn−1

dtn−1

κ̃(tn−1 ∧ s)−γ(tn−1 ∨ s)γ−1

n−1∏
k=1

κ̃(tk−1 ∧ tk)−γ(tk−1 ∨ tk)γ−1

(2.35)

and set νx
0 (s) = δ0(t− s). Then, the inequality above can be rewritten as

Px,y(B(x,y)
n ) ≤ |x− y|−a

1∫
ℓ⌊n

2 ⌋

dsνx
⌊n
2
⌋(s)ν

y
n−⌊n

2
⌋(s).

Note that as defined, νx
n(s) can be written recursively as

νx
n(s) =

1∫
ℓn−1

du νx
n−1(u)κ̃(u ∧ s)−γ(u ∨ s)γ−1. (2.36)

This allows us to establish an upper bound for νx
n(s) analogous to the non-spatial

case in [35]. The following lemma is a corollary of [35, Lemma 1].

Lemma 2.9

Let (ℓn)n∈N be a given non-increasing sequence and νx
n(s) be as defined in

(2.35), where x = (x, t) and s ∈ (0, 1). Then, there exists a constant c > 0

such that, for all n ∈ N,

νx
n(s) ≤ αns

−γ + βns
γ−1, (2.37)

where

αn+1 = c
(
αn log

(
1
ℓn

)
+ βn

)
βn+1 = c

(
αnℓ

1−2γ + βn log
(

1
ℓn

)) (2.38)

and α1 = κ̃tγ−1, β1 = κ̃t−γ.
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Proof. For n = 1, we have by (2.35) that

νx
1 (s) = κ̃(t∧ s)−γ(t∨ s)γ−1 = 1{s≤t}κ̃s

−γtγ−1 +1{s>t}κ̃t
−γsγ−1 ≤ α1s

−γ +β1s
γ−1.

Assume (2.37) holds for n ∈ N. Then, by (2.36), we have that

νx
n+1(s) =

1∫
ℓn

duνx
n(u)κ̃(u ∧ s)−γ(u ∨ s)γ−1 ≤

1∫
ℓn

duνx
n(u)κ̃

(
s−γuγ−1 + u−γsγ−1

)

≤ κ̃s−γ

1∫
ℓn

du
(
αnu

−1 + βnu
2γ−2

)
+ κ̃sγ−1

1∫
ℓn

du
(
αnu

−2γ + βnu
−1
)

≤ κ̃s−γ

(
αn log

(
1
ℓn

)
+ βn

1

2γ − 1

)
+ κ̃sγ−1

(
αn

1

2γ − 1
ℓ1−2γ
n + βn log

(
1
ℓn

))
≤ αn+1s

−γ + βn+1s
γ−1.

Hence, by induction (2.37) holds for all n ∈ N.

Although Lemma 2.9 holds for an arbitrary sequence (ℓn)n∈N, recall that we have

chosen (ℓn)n∈N such that (2.32) holds. This implies by (2.33) that there exists a

constant c1 > 0 such that

ηn+2 ≥ c1η
γ/δ(1−γ)
n for all n ∈ N0, (2.39)

where ηn := ℓ−1
n as before. Additionally, notice that (αn)n∈N and (βn)n∈N are

non-decreasing sequences. By Lemma 2.9, we have that

2∆∑
n=1

Px,y(B(x,y)
n ) ≤ |x− y|−a

2∆∑
n=1

1∫
ℓ⌊n

2 ⌋

dsνx
⌊n
2
⌋(s)ν

y
n−⌊n

2
⌋(s)

≤ 2 |x− y|−a
∆∑

n=1

1∫
ℓn

ds
(
αns

−γ + βns
γ−1
)2

≤ 4

2γ − 1
|x− y|−a

∆∑
n=1

α2
nℓ

1−2γ
n + β2

n.
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It follows from the definition of (αn)n∈N and (βn)n∈N that βn ≤ c−1αn+1 and

βn ≤ c
(
αnℓ

1−2γ
n + αn log

(
1
ℓn

))
,

where the second summand on the right-hand side is bounded by a multiple of

the first. Therefore, there exists a constant c2 > 0 such that β2
n ≤ c2α

2
n+1ℓ

1−2γ
n+1 .

This and the monotonicity of the sequences (αn)n∈N and (ℓn)n∈N gives that

2∆∑
n=1

Px,y(B(x,y)
n ) ≤ 4(1 + c2)

2γ − 1
|x− y|−a

∆∑
n=1

α2
n+1ℓ

1−2γ
n+1 . (2.40)

Recall that the sequence (Cn)n∈N from Lemma 2.7 is defined as

Cn+2 = c2ℓ1−γ−γ/δ
n Cn + c log

(
1

ℓn+1

)
Cn+1

with C1 = cℓγ−1
0 and C2 = c2ℓ

−γ/δ
0 + c log( 1

ℓ1
)C1. We compare this sequence to

(αn)n∈N in order to bound (2.40) further. By writing αn+2 in terms of αn and βn

we have that

αn+2 = c2
(
αn

(
ℓ1−2γ
n + log( 1

ℓn+1
) log( 1

ℓn
)
)

+ βn

(
log( 1

ℓn+1
) + log( 1

ℓn
)
))

.

As all summands on the right-hand side are bounded by a multiple of αnℓ
1−2γ
n log(1/ℓn+1)

and log(1/ℓn+1) is smaller than a multiple of log(1/ℓn), there exists a constant c3

such that αn+2 ≤ c3αnℓ
1−2γ
n log(1/ℓn). To compare (αn)n∈N and (Cn)n∈N, notice

that, up to a constant, α1 and α2 are equal to C1 and C2. Moreover

αn+2

Cn+2

≤
c3ℓ

1−2γ
n log

(
1
ℓn

)
αn

c2ℓ
1−γ−γ/δ
n Cn

=
c3
c2
ℓγ/δ−γ
n log

(
1
ℓn

) αn

Cn

.

Applying this inequality recursively and expressing αn+2 we obtain that for some

c4 > 0

αn ≤ Cn

⌈n
2
⌉−1∏

i=1

c4ℓ
γ/δ−γ
n−2i log

(
1

ℓn−2i

)
for all n ∈ N.
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Hence, we have

α2
n+1ℓ

1−2γ
n+1 ≤ C2

n+1ℓ
1−2γ
n+1

⌈n+1
2

⌉−1∏
i=1

c24ℓ
2(γ/δ−γ)
n+1−2i log

(
1

ℓn+1−2i

)2
≤
(

3ε(1−γ)
π2(n+1)2

)2
ℓ−1
n+1ℓ

2(γ/δ−γ)
∑⌈n+1

2 ⌉−1

i=1 (δ(1−γ)/γ)i

n+1

⌈n+1
2

⌉−1∏
i=1

c
∑i

j=1(δ(1−γ)/γ)i

1 c24 log
(

1
ℓn+1−2i

)2
,

where the second inequality follows by (2.32) and (2.39). Observe that, as
δ(1−γ)

γ
< 1, the series

∑∞
i=1 (δ(1 − γ)/γ)i converges. Hence, there exists a con-

stant which is larger than c1 to the power
∑i

j=1(δ(1 − γ)/γ)i for any i ∈ N and

a constant c5 > 0 such that

ℓ
2(γ/δ−γ)

∑⌈n+1
2 ⌉−1

i=1 (δ(1−γ)/γ)i

n+1 ≤ ℓ−c5
n+1.

Furthermore since we have established that ηn is of the order displayed in (2.34) it

follows directly that the left-hand side multiplied with the product above can also

be bounded by ℓ−c5
n+1 for any sufficiently large constant c5 > 0. Hence, there exists

a further constant c6 > 0 such that 4(1+c2)
2γ−1

α2
n+1ℓ

1−2γ
n+1 ≤ c6

(n+1)4
ℓ
−(1+c5)
n+1 . Therefore,

we have by using (2.34) once more that

2∆∑
n=1

Px,y(B(x,y)
n ) ≤ c6

(∆ + 1)3
|x− y|−a ℓ

−(1+c5)
∆+1

≤ c6b

(∆ + 1)3
|x− y|−a exp

(
B(1 + c5)

(
γ

δ(1 − γ)

)∆+1
2

)
.

Let D > 0 such that B(1+c5)(γ/(δ(1−γ)))
1−D
2 < a and choose ∆ ≤ 2 log log|x−y|

log(γ/δ(1−γ)))
−

D. Then the above expression is of order O(log log |x− y|−2). Hence, for our

choice of ∆, we have

Px,y{d(x,y) ≤ 2∆} ≤ ε + O
(
log log |x− y|−2) ,

which implies the stated lower bound of Theorem 2.1(b).
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2.3.4 The non-ultrasmall regime

In this section we consider the case γ < δ
δ+1

and show that the graph is not

ultrasmall, i.e. the chemical distance in the graph is not of double logarithmic

order of the Euclidean distance. In particular, we show the following.

Proposition 2.10

Let G be a geometric random graph which satisfies Assumption UBA for

some δ > 1 and 0 < γ < δ
δ+1

. Then, for any p > 1, there exists c > 0 such

that, for x,y ∈ Rd × (0, 1), we have

d(x,y) ≥ c
log |x− y|

(log log |x− y|)p

under Px,y with high probability as |x− y| → ∞.

The proof is structurally analogous to the ultrasmall case, but significantly easier

due to the simpler nature of the dominating strategy. As in Section 2.3.3, we

bound the probabilities in (TMB) using a suitable truncation sequence (ℓn)n∈N0

such that the probability that bad paths starting in a vertex x exist can be made

arbitrarily small. In this case, however, the truncation sequence decreases only

exponentially. Similarly to the ultrasmall case, we construct a graph G̃ which

contains a copy of G and additionally an edge is added between two vertices

x = (x, t) and y = (y, s) of G̃ whenever

|x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)γ−1.

Unlike done previously in Section 2.3.3, we assign no conductance to any edge

in G̃ and therefore only consider the lengths of paths. We declare a self-avoiding

path P = (x0, . . . ,xn) in G̃ step minimizing if there exists no edge between xi

and xj for all i, j with |i− j| ≥ 2 and denote by Ãx
n the event that there exists a

step minimizing path starting in x of length n in G̃ , where the final vertex is the

first vertex which has a mark smaller than the corresponding ℓn. Then the first

two summands of the right-hand side of (TMB) can be bounded from above by∑∆
n=1 Px(Ã

(x)
n ) and

∑∆
n=1 Py(Ã

(y)
n ), since for any path implying the event A

(x)
n

there exists a step minimizing path in G̃ of smaller or equal length which also
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fails to be good on its last vertex.

To bound these probabilities, we define the random variable N(x,y, n) as the

number of distinct step minimizing paths between x and y of length n, whose

vertices (x1, t1), . . . (xn−1, tn−1) fulfill t ≥ ℓ0, t1 ≥ ℓ1, . . . , tn−1 ≥ ℓn−1 and which

all have a larger mark than y. By Mecke’s equation we have that

Py(Ã(y)
n ) ≤

∫
Rd×(0,ℓn]

dy Ex,yN(x,y, n), for n ∈ N.

As before, the paths counted in N(x,y, n) can be decomposed such that (2.21)

holds, where K(x,y, k) is the number of step minimizing paths between x and y

of length k such that the vertices x1, . . . ,xk−1 between them have marks larger

than x and y. We again refer to such vertices as connectors. Note that if

|x− y|d ≤ κ1/δ(t ∧ s)−γ(t ∨ s)γ−1, there exists no step minimizing paths of length

larger or equal two between x and y. Hence, we have N(x,y, n) = K(x,y, n) = 0

for n ≥ 2 under this assumption.

We now bound the expectation of K(x,y, k). As in Section 2.3.3, we define a

mapping

eK : (Rd × (0, 1))2 × N → [0,∞),

where eK(x,y, 1) = ρ(κ−1/δ(t ∧ s)γ(t ∨ s)1−γ |x− y|d), for x,y ∈ Rd × (0, 1) and

eK(x,y, k) =
k−1∑
i=1

∫
Rd×(t∨s,1)

dz eK(x, z, i)eK(z,y, k−i), for k ≥ 2,x,y ∈ Rd×(0, 1),

if |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)γ−1 and otherwise eK(x,y, k) = 0. As before we

use a binary tree to classify the connection strategies and use this together with

Assumption UBA to obtain Ex,yK(x,y, k) ≤ eK(x,y, k), for k ∈ N.
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Lemma 2.11

Let x = (x, t),y = (y, s) be vertices with |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)γ−1.

Then there exists C > 1 such that, for k ≥ 2, we have

eK(x,y, k) ≤ Ck−1κ(t ∧ s)−γδ(t ∨ s)(γ−1)δ |x− y|−dδ .

Proof. By [58, Lemma 2.2] there exists a constant C > 1 such that if |x− y|d >
κ1/δ(t ∧ s)−γ(t ∨ s)γ−1 we have

eK(x,y, 2) ≤
∫

Rd×(t∨s,1]

dzρ(κ−1/δtγu1−γ |x− z|d)ρ(κ−1/δsγu1−γ |y − z|d)

≤Cκ(t ∧ s)−γδ(t ∨ s)(γ−1)δ |x− y|−dδ .

(2.41)

We now show by induction that

eK(x,y, k) ≤ Cat(k − 1)Ck−1κ(t ∧ s)−γδ(t ∨ s)(γ−1)δ |x− y|−dδ (2.42)

holds for all k ≥ 2. This is sufficient, since Cat(k) ≤ 4k. For k = 2 this follows

from (2.41). Let k ≥ 3 and assume (2.42) holds for all j = 2, . . . , k − 1. For

|x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)γ−1 this, together with the definition of eK(x,y, k),

yields

eK(x,y, k) ≤
k−1∑
i=1

Cat(i− 1) Cat(k − i− 1)Ck−2×∫
Rd×(t∨s,1]

dz ρ(κ−1/δtγu1−γ |x− z|d)ρ(κ−1/δsγu1−γ |y − z|d).

With (2.41) the right-hand side can be further bounded by

k−1∑
i=1

Cat(i− 1) Cat(k − i− 1)Ck−1κ(t ∧ s)−γδ(t ∨ s)(γ−1)δ |x− y|−dδ .

As
∑k−1

i=1 Cat(i−1) Cat(k− i−1) = Cat(k−1) we get that (2.42) holds for k.
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Probability bounds for bad paths Using Lemma 2.11 and (2.21) we find a

suitable upper bound for
∫
Rd Ex,yN(x,y, n)dy, with y = (y, s), which leads to a

bound for Px(Ãx
n). Recall that by (2.21) we have, for n ∈ N,

N(x,y, n) ≤ K(x,y, n) +
n−1∑
k=1

∑
z=(z,u)

t>u>ℓn−k∨s

N(x, z, n− k)K(z,y, k).

As in Section 2.3.3, to establish an upper bound on Ex,yN(x,y, n), we define a

mapping

eN : (Rd × (0, 1))2 × N → [0,∞),

by setting eN(x,y, 1) = ρ(κ−1/δ(t ∧ s)γ(t ∨ s)1−γ |x− y|d), for x,y ∈ Rd × (0, 1),

and for n ≥ 2 if |x− y|d > κ1/δ(t ∧ s)−γ(t ∨ s)γ−1 we set eN(x,y, n) to be

eN(x,y, n) +
n−1∑
i=1

∫
Rd×(ℓn−k∨s,t]

dzeN(x, z, n− k)eK(z,y, k), for x,y ∈ Rd × (0, 1),

(2.43)

and otherwise eN(x,y, n) = 0. As in Section 2.3.3 we have Ex,yN(x,y, n) ≤
eN(x,y, n), for n ∈ N. Thus, for a given vertex x = (x, t) and n ∈ N, an

upper bound of
∫
Rd dyEx,yN(x,y, n) is given by the mapping µx

n : (0, t] → [0,∞)

defined by

µx
n(s) :=

∫
Rd

dy eN(x,y, n), for s ∈ (0, t], (2.44)

where y = (y, s). We interpret s as the mark of the last vertex of a path counted

by the random variable N(x,y, n). With Iρ =
∫

dxρ(κ−1/δ |x|d) we can see by

the definition of eN(x,y, 1) that µx
1 (s) ≤ Iρs

−γtγ−1 for s ∈ (0, t] and for n ≥ 2 it

follows by a short calculation and Lemma 2.11 that

µx
n(s) ≤ IρC

n−1s−γtγ−1 +
n−1∑
k=1

IρC
k−1s−γ

t∫
ℓn−k

duµx
n−k(u)uγ−1 for s ∈ (0, t],

where C > 1 is the constant from Lemma 2.11. To establish a bound for µx
n

no further assumptions on the truncation sequence (ℓn)n∈N0 are necessary. As

discussed in Section 2.3.2 we will see that the major contribution to the mass of

µx
n(s) comes from the paths where the two most powerful vertices are connected
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directly and not via one or more connectors. This is indicated by the definition

of the sequence (Cn)n∈N0 and the inequality (2.46) in the proof of the following

lemma.

Lemma 2.12

Let x = (x, t) be a given vertex and let the sequence (ℓn)n∈N0 be monoton-

ically decreasing with ℓ0 < t ∧ 1
e
. Then, there exists c > 0 such that, for

n ∈ N,

µx
n(s) ≤ Cns

−γ for s ∈ (0, t], (2.45)

where C1 = cℓγ−1
0 and Cn+1 = c log( 1

ℓn
)Cn.

Proof. We choose the constant c > 2(C∨Iρ), where C is as in Lemma 2.11. Then

by definition of µx
1 we have µx

1 (s) = Iρs
−γtγ−1 ≤ cs−γℓγ−1

0 = C1s
−γ for s ∈ (0, t].

Let n ≥ 2 and assume that (2.45) holds for all ñ ≤ n− 1. Then, by (2.45),

µx
n(s) = IρC

n−1s−γtγ−1 +
n−1∑
k=1

IρC
k−1s−γ

t∫
ℓn−k

duµx
n−k(u)uγ−1

= Iρs
−γ
(
Cn−1ℓγ−1

0 +
n−1∑
k=1

Cn−kC
k−1 log

(
1

ℓn−k

))
.

We now want to show that

Cn−1ℓγ−1
0 +

n−1∑
k=1

Cn−kC
k−1 log

(
1

ℓn−k

)
≤ 2 log

(
1

ℓn−1

)
Cn−1, (2.46)

since assuming this leads to µx
n(s) ≤ 2Iρ log( 1

ℓn−1
)Cn−1s

−γ ≤ c log( 1
ℓn−1

)Cn−1s
−γ

= Cns
−γ, which completes the proof. By definition of the constants Cn we have

that

Cn−1ℓγ−1
0 +

n−1∑
k=1

Cn−kC
k−1 log( 1

ℓn−k
) ≤ log( 1

ℓn−1
)Cn−1 +

1

2

n∑
k=2

Ck−2Cn−k+1.

As log( 1
ℓn

) > 1, for all n ∈ N0, we have Cn+1 ≥ cCn by definition of (Cn)n∈N0 ,

78



CHAPTER 2. ULTRASMALLNESS IN SCALE-FREE GEOMETRIC RANDOM GRAPHS

and using that c > 2C, the right-hand side can be further bounded by

log
(

1
ℓn−1

)
Cn−1 +

n∑
k=2

(
1
2

)k−1
ck−2Cn−k+1 ≤ 2 log

(
1

ℓn−1

)
Cn−1,

which shows (2.46).

Now we bound the probability of the event Ã
(x)
n , i.e. the event that there exists

a path of length n, where the last vertex is the only vertex which has a mark

smaller than its truncation bound ℓn. As in Section 2.3.3, Mecke’s equation yields

P(Ã(x)
n ) ≤

∫
Rd×(0,ℓn]

dyEx,yN(x,y, n) ≤
ℓn∫
0

dsµx
n(s) ≤ 1

1 − γ
ℓ1−γ
n Cn,

where we have used Fubini’s theorem in the second inequality and Lemma 2.12

in the third one. With ℓ0 < t ∧ 1
e

we choose the sequence (ℓn)n∈N for ϵ > 0, such

that
1

1 − γ
Cnℓ

1−γ
n =

ε

π2n2
,

and get P (Ã
(x)
n ) ≤ ε

6
. From the recursive definition of the sequence (Cn) we

obtain a recursive representation of (ℓn)n∈N0 . Let ηn := ℓ−1
n for n ∈ N0, then

η1−γ
n+1 = π2(n+1)2

3ε
1

1−γ
Cn+1 = π2(n+1)2

3ε
1

1−γ
(c log(ηn)Cn) = (n+1)2

n2 c log(ηn+1)η
1−γ
n+1.

Hence, there exists a new constant c > 0 such that η1−γ
n+1 ≤ c log(ηn+1)η

1−γ
n+1 and

by induction we get that for any p > 1 there exists B > 1 large enough such that

ηn ≤ Bn logp(n+1). (2.47)

Probability bounds for good paths We now consider the existence of good

paths between two given vertices x and y. We focus on the case γ ∈ (1
2
, δ
δ+1

),

as the cases γ = 1
2

and γ < 1
2

follow with analogous or simpler arguments. As

before we restrict the event Bx,y
n to the existence of a step minimizing good path

of length n connecting x and y in G̃ . Deviating a bit from the method of Sec-

tion 2.3.3 we relax the definition of Bx,y
n by defining B̃x,y

n as the event that there

exists a step minimizing path between x and y in G̃ where the most powerful
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vertex of the path has a mark larger than ℓ⌊n
2
⌋. Then the term

∑2∆
n=1 Px,y(Bx,y

n )

in (TMB) can be replaced by
∑2∆

n=1 Px,y(B̃x,y
n ).

We characterize the paths used in B̃x,y
n by their powerful vertices, as done for

regular paths in [58]. A vertex xk of a path (x0, . . . ,xn) is powerful if ti ≥ tk for

all i = 0, . . . , k − 1 or if ti ≥ tk for all i = k + 1, . . . , n. Note that by definition

the vertices x = x0 and y = xn are always powerful. The indices of the powerful

vertices are a subset of {0, . . . , n} which we denote by {i0, i1, . . . , im−1, im}, where

m + 1 is the number of powerful vertices in a path and i0 = 0, im = n. As the

most powerful vertex of a good path fulfils the assumption above, there exists

a k ∈ {0, . . . ,m} such that xik is the most powerful vertex of the path. We

decompose the good paths at the powerful vertices first and then proceed to

decompose the path between powerful vertices xij and xij−1
in the same way

as done for the random variable K(xij−1
,xij , ij − ij−1) in Section 2.3.3. Using

Mecke’s equation, we get

Px,y(B̃(x,y)
n )

≤
n∑

m=1

m∑
k=0

∫
(Rd×(0,1))m−1

t0>...>tk>ℓ⌊n
2 ⌋

tk<...<tm

m−1⊗
j=1

dxj

∑
{i1,...,im−1}
⊂{1,...,n−1}

m∏
j=1

eK(xij−1
,xij , ij − ij−1)

≤
n∑

m=1

(
n− 1

m− 1

)
Cn−m

m∑
k=0

∫
(Rd×(0,1))m−1

t0>...>tk>ℓ⌊n
2 ⌋

tk<...<tm

m−1⊗
j=1

dxj

m∏
j=1

ρ
(
κ−1/δ(tj−1 ∧ tj)

γ(tj−1 ∨ tj)
1−γ |xj − xj−1|d

)
.

Then, following the same arguments as in the proof of Lemma 2.8, there exists

a > 0 and κ̃ > 0 such that Px,y(B̃
(x,y)
n ) is bounded by

|x− y|−a
n∑

m=1

(
n− 1

m− 1

)
Cn−mκ̃m−1

m∑
k=0

∫
(0,1)m−1

t0>...>tk>ℓ⌊n
2 ⌋

tk<...<tm

m−1⊗
j=1

dtj

m∏
j=1

(tj−1 ∧ tj)
−γ(tj−1 ∨ tj)

γ−1.
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By a simple calculation1 the sum over k on the right-hand side can be bounded

by a constant multiple of

m−1∑
k=1

(
m− 2

k − 1

)ℓ1−2γ
⌊n
2
⌋ logm−2

(
ℓ−1
⌊n
2
⌋
)

(m− 2)!
+

2ℓ−1
0 logm−1

(
ℓ−1
0

)
(m− 1)!

.

Since
∑m−1

k=1

(
m−2
k−1

)
≤ 2m−2 and the second summand can be bounded by a mul-

tiple of the first, there exists a constant c1 > 0 such that Px,y(B̃
(x,y)
n ) is bounded

by

c1 |x− y|−a
n∑

m=1

(
n− 1

m− 1

)
Cn−mκ̃m−1

ℓ1−2γ
⌊n
2
⌋ logm−2(ℓ−1

⌊n
2
⌋)2

m−2

(m− 2)!

≤ c1 |x− y|−a
n∑

m=1

(
n− 1

m− 1

)
Cn−mκ̃m−1B(2γ−1)n

2
logp(n+2

2 )n
m−2 logp(m−2)(n+2

2
)

(m− 2)!
,

where we have used (2.47) for the second inequality and denoted (−1)! = 1 and

κ̃ might have changed between the steps. Since

nm−2 logp(m−2)(n+2
2

)

(m− 2)!
≤

nn−2 logp(n−2)(n+2
2

)

(n− 2)!

for all m = 1, . . . , n and
∑n

m=1

(
n−1
m−1

)
≤ 2n, there exists a constant c2 ≥ 2(C ∨ κ̃)

such that the right-hand side above can be further bounded by

c1 |x− y|−a cn2B
(2γ−1)n

2
logp(n+2

2 )n
n−2 logp(n−2)(n+2

2
)

(n− 2)!
.

By Stirling’s formula we have that nn−2

(n−2)!
≤ en. Hence, there exists c3 > 0 such

that

2∆∑
n=1

Px,y(B̃(x,y)
n ) ≤ c1 |x− y|−a

2∆∑
n=1

cn3e
p(n−2) log log(n+2

2 )B(2γ−1)n
2
logp(n+2

2 )

≤ c1 |x− y|−a 2∆c2∆3 ep(2∆−2) log log(∆+1)B(2γ−1)∆ logp(∆+1).

We can see that B(2γ−1)∆ logp(∆+1) dominates the right-hand side in the sense that

1For details see the proof of [58, Lemma 2.5], which differs from this calculation only in the
fact that the mark of the first and last vertex of a path is fixed in our setting.
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there exist constants c4, c5 > 0 such that

2∆∑
n=1

Px,y(B̃(x,y)
n ) ≤ c4 |x− y|−a Bc5∆logp(∆+1)

= c4 exp
(
c5 log(B)∆ logp(∆ + 1) − log(|x− y|a)

)
.

We now set

∆ ≤ log(|x− y|a)
c5 log(B)(log log(|x− y|a))p

− 1.

Then, we have that

c5 log(B)∆ logp(∆ + 1) − log(|x− y|a)

≤ log(|x− y|a)
(
1 − p log log log(|x−y|a)

log log(|x−y|a)

)p − log(|x− y|a).

A second order Taylor expansion shows that the right-hand side converges to

−∞ as |x− y| → ∞. Hence, for such a choice of ∆, we have Px,y{d(x,y) ≤
2∆} ≤ ε + o(1) which implies the statement of Proposition 2.10.

2.4 Proof of the upper bound for the chemical

distance

To prove the upper bound for the chemical distance, we show the following

proposition. Throughout this section let 0 be a fixed vertex with location 0.

Proposition 2.13

Suppose Assumption LBA holds for γ > δ
δ+1

. Then for any vertex x there

exists a path with no more than

(4 + o(1))
log log |x|

log
(

γ
δ(1−γ)

)
vertices connecting 0 and x, with high probability under P0,x( · | 0 ↔ x)

as |x| → ∞.

To prove this result, we rely on a strategy introduced in [64]. Since the vertices
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of G are given by the points of a Poisson process, the most powerful vertex inside

a box with volume of order |x|d around the midpoint between 0 and x typically

has a mark smaller than |x|−d log |x|. Hence, it is sufficient to construct a short

enough path from 0 resp. x to this most powerful vertex inside the box. Here,

as in Section 2.3.2, the typical connection type between two powerful vertices

is crucial. For γ > δ
δ+1

we expect two powerful vertices to be connected via a

vertex with larger mark, which we again call a connector. In fact, the following

lemma shows that for a powerful vertex with mark t and a suitable vertex with

a sufficiently smaller mark, the probability that there exist no connector which

neighbours each of the two vertices is decaying exponentially fast as the mark t

gets small. This is a corollary of [64] and follows with the same calculations as

in [58, Lemma 3.1]. We now fix for the rest of the section

α1 ∈
(
1, γ

δ(1−γ)

)
and α2 ∈

(
α1,

γ
δ
(1 + α1δ)

)
,

noting that our assumptions ensure that the intervals are nonempty.

Lemma 2.14

There exists c > 0 such that for two given vertices x = (x, t),y = (y, s) ∈ X
with t, s ≤ 1

4
, s ≤ tα1 and |x− y|d ≤ t−α2 we have

Px,y{x
2↔ y} ≥ 1 − exp

(
− ct(α2−α1γ)δ−γ

)
.

Proof. We only consider connectors z = (z, u) with u ≥ 1
2

and |x− z| < t−
γ
d .

Then, by the thinning theorem [76, Theorem 5.2] and Assumption LBA the

number of such connectors is Poisson distributed with its mean bounded from

below by∫ 1

1
2

du

∫
B

t−γ/d (x)

dz α2ρ(κ−1/δ)ρ(κ−1/δsγ |y − z|d)

≥ α2ρ(κ−1/δ)

2
t−γρ(κ−1/δsγ(t−γ/d + |x− y|)d),

where ρ(x) := 1 ∧ x−δ as in the previous section. As |x− y|d < t−α2 and s < tα1

this can be bounded from below by ct(α2−α1γ)δ−γ, where c = (α2ρ(κ−1/δ)κ2−(dδ+1))∧
(α2ρ(κ−1/δ)/2).
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We now look into a box H(x) = x
2

+ [−2 |x| , 2 |x|]d and introduce a hierarchy of

layers L1 ⊂ L2 ⊂ . . . ⊂ X ∩H(x) × (0, 1) of vertices inside the box containing 0

and x. While the layer L1 only contains vertices with very small mark, vertices

with larger and larger marks are included in layers with larger index. More

precisely, as in [64] we set

Lk = X ∩H(x) ×
(
0, (4 |x|)−dα−k

1
]

and

K = min
{
k ≥ 1: (4 |x|)−dα−k

1 ≥ (log(4 |x|)d)−η−1}− 1,

where η = (γ − (α2 − α1γ)δ) ∧ (α2 − α1) > 0. As the vertex set X is a Poisson

process, by Lemma 2.14 for a given vertex in layer Lk+1 there exists with high

probability a suitable vertex in layer Lk such that both vertices are connected

via a connector with high probability. As in [64] and [70] we can use an estimate

as in Lemma 2.14 to see that a vertex in L1 is either the most powerful vertex

in the box or connected to it via a connector, with high probability as |x| → ∞.

Hence, we get that diam(LK) ≤ 4K.

Since K is of order (1 + o(1)) log log|x|
logα1

, to finish the proof it suffices to show that the

vertices 0 and x are connected to the layer LK in fewer than o(log log |x|) steps.

To do so, we first show that 0 (resp. x) is connected to a vertex with sufficiently

small mark and within distance smaller than |x| in finitely many steps. Then,

we show that this vertex is connected to a vertex of LK in o(log log |x|) steps.

To keep the existence of these two paths sufficiently independent we rely on a

sprinkling argument. For b < 1 we assign independently to each vertex in X
the color black with probability b and red with probability r = 1 − b. Then, we

denote by G b the graph induced by restricting G to the black vertices and the

edges between them. In the same way we define G r for the black vertices. Note

that G r ∪ G b is a subgraph of G .

We use the black vertices to ensure the existence of the first part of the path

in G b. Thus, we define for 0 (and similarly for x) the event Eb(D, s, v) that there

exists a black vertex z with mark smaller than s and within distance shorter than

v such that there exists a path in G b of length smaller D between 0 and z. Then,

given z, we use the red vertices to show that z is connected to the layer LK in

sufficiently few steps. We denote by Lr
k the restriction of Lk to its red vertices.
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Observe that we still have diam(Lr
K) ≤ 4K in G r, as Lemma 2.14 restricted to

G r also holds if the constant c is multiplied by r. We define F to be the event

that z is connected by a path of length smaller than o(log log |x|) to Lr
K in G r.

Note that the event 0 ↔ x implies that with high probability 0 and x are part

of the unique infinite component K∞ of G , since P0,x({0 ↔ x}\{0,x ∈ K∞})

converges to zero as |x| → ∞. This is a consequence of the uniqueness of the

infinite component K∞ as {0 ↔ x}\{0,x ∈ K∞} implies that 0 and x are part

of the same finite component whose asymptotic proportion of vertices is zero.

Thus, to prove Proposition 2.13 it is sufficient to show that for any s > 0 there

exists a almost surely finite random variable D(s) such that

lim
b↗1

lim inf
s↘0

lim inf
|x|→∞

P0

(
{0 ∈ Kb

∞} ∩ Eb(D(s), s, |x|) ∩ F
)
≥ θ

where θ is the asymptotic proportion of vertices in the infinite component of

G and Kb
∞ is the infinite component of G b. Note that, as γ > δ

δ+1
, the critical

percolation parameter of the graph G is 0 by [58], and therefore Kb
∞ exists and

is unique. Now the probability above can be bounded from below by

P0

(
{0 ∈ Kb

∞} ∩ Eb(D(s), s, |x|) ∩ F
)

≥ P0{0 ∈ Kb
∞} − P0

(
{0 ∈ Kb

∞}\Eb(D(s), s, |x|)
)
− P0

(
Eb(D(s), s, |x|)\F

)
= P0{0 ∈ Kb

∞} − P0

(
{0 ∈ Kb

∞}\Eb(D(s), s, |x|)
)
− E0

[
(1 − Pz(F |G b))1Eb(D(s),s,|x|)

]
.

We show in the following two lemmas that the last two terms converge to 0 as

s → 0 and |x| → ∞ as in [64], which yields

lim inf
s↘0

lim inf
|x|→∞

P0

(
{0 ∈ Kb

∞} ∩ Eb(D(s), s, |x|) ∩ F
)
≥ θb,

where θb is the asymptotic proportion of vertices in the infinite component of G b.

As in [70, Proposition 7] it can be shown that the percolation probability θb is

continuous in b such that θb converges to θ as b ↗ 1, which completes the proof.
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Lemma 2.15

Let b, s > 0. Then, there exists an almost surely finite random variable D(s)

such that

lim
|x|→∞

P0

(
{0 ∈ Kb

∞}\Eb(D(s), s, |x|)
)

= 0.

Proof. Let Eb(D, s) be the event that there exists a black vertex z with mark

smaller than s which is connected to 0 in less than D steps. If 0 ∈ Kb
∞

there exists a path connecting 0 to at least one black vertex with mark smal-

ler than s. This follows from the results in [58] where it is shown that vertices

with arbitrarily small mark are contained in the infinite component Kb
∞. In

fact, the random variable D∞ = min{D : the event Eb(D, s) occurs} is fi-

nite. Hence, if |x| is large enough, Eb(D∞, s, |x|) occurs if 0 ∈ Kb
∞ and thus

lim|x|→∞ P0

(
{0 ∈ Kb

∞}\Eb(D(s), s, |x|)
)

= 0.

Lemma 2.16

Let b > 0 and, on Eb(D(s), s, |x|), denote by z the black vertex (x0, t0) with

t0 < s within graph distance D(s) from 0 in G b, which minimizes |x0|. Then,

lim
s↘0

lim sup
|x|→∞

E0

[
(1 − Pz(F |G b))1Eb(D(s),s,|x|)

]
= 0.

Proof. Starting in z = (x0, t0) we want to find a red vertex x1 = (x1, t1) ∈
X ∩H(x)× (0, 1) with |x0 − x1|d ≤ t−α2

0 and t1 ≤ tα1
0 which is connected to z via

one connector. Since |x0| ≤ |x|, we have that x0 ∈ H(x). Note that the volume

of the intersection of H(x) and the ball B
t
−α2/d
0

(x0) is a positive proportion of

the ball volume. Hence, there exists c > 0 such that the number of red vertices

inside the box H(x) with |x0 − x1|d ≤ t−α2
0 and t1 ≤ tα1

0 is Poisson-distributed

with parameter larger than crtα1−α2
0 and thus the probability that such a vertex

does not exist is bounded by

p1 = exp(−crtα1−α2
0 ) + exp

(
− crt

(α2−α1γ)δ−γ
0

)
,

where the second summand is a consequence of Lemma 2.14 restricted to G r.
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Repeating this strategy, the same arguments yield that for a vertex xj−1 =

(xj−1, tj−1) the probability that there does not exist a connection to a red vertex

xj = (xj, tj) inside H(x) with |xj−1 − xj|d ≤ t−α2
j−1 and tj ≤ tα1

j−1 is bounded by

pj = exp(−crtα1−α2
j−1 ) + exp

(
− crt

(α2−α1γ)δ−γ
j−1

)
.

As η = (γ − (α2 − α1γ)δ) ∧ (α2 − α1) and tj ≤ tα1
j−1, the right-hand side can be

further bounded such that pj ≤ 2 exp(−ct
−ηα

j−1
1

0 ). Applying a union bound, the

probability of failing to reach Lr
K from z is bounded by

2
∞∑
j=1

exp
(
− cs−ηαj−1

1

)
,

which converges to 0 as s ↘ 0, as shown in [64, Lemma A.4]. As tj ≤ tα
j

0 , it

takes at most O(log log log |x|) iterations of this strategy to arrive to a red vertex

inside H(x) with mark smaller than (log |x|)−η−1
. This completes the proof.
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CHAPTER 3

The contact process on scale-free geometric random graphs

In this chapter we discuss the behaviour of the contact process on geometric

random graphs. For the main results of this chapter we consider the graphs in

their ultrasmall regime, given by the results of Chapter 2. First, we study the

non-extinction probability of the contact process and give precise asymptotics for

this probability when the infection rate goes to zero, see Theorem 3.1. Second, we

show that the extinction time of the contact process on a finite spatial restriction

of the graphs is with high probability of exponential order of the number of

vertices. As mentioned in Section 1.2.5, this chapter contains the work of [54],

as the sections of this chapter can be found in [54]. For the discussion of the

thesis’ author’s contribution to this work and minor changes see Section 1.2.5.

3.1 Introduction

In recent years the contact process has been studied extensively as a simple model

for the spread of infection in a population or on a network. In this model each

vertex of a given locally-finite graph has one of two states, 0 or 1 for each t ≥ 0,

indicating whether the vertex is healthy or infected at time t. An infected vertex
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transmits the infection to a neighbouring vertex with rate λ > 0, independently

of everything else, and recovers at rate 1. Precisely, the contact process on a

locally-finite graph G = (V,E) is a continuous-time Markov process (ξt)t≥0 on

the space {0, 1}V . By identifying ξt with the subset {x ∈ V : ξt(x) = 1} ⊂ V for

each t ≥ 0 the transition rates are given by

ξt → ξt\{x} for x ∈ ξt at rate 1, and

ξt → ξt ∪ {x} for x /∈ ξt at rate λ
∣∣{y ∈ ξt : x ∼ y}

∣∣, (3.1)

where we denote like in the whole thesis by x ∼ y that x and y are connected by

an edge.

Note that the contact process has a single absorbing state, corresponding to the

configuration where all vertices are healthy. Thus, a natural question on the

behaviour of the contact process is whether this state is reached in finite time,

i.e. whether the extinction time of the contact process on G, defined by

ϖG := inf{t > 0 : ξt = ∅},

is finite.

On the lattice Zd there exists a critical value λc(Zd) exhibiting a phase transition

in whether the process dies out almost surely or not. If λ ≤ λc(Zd), the extinction

time ϖZd is almost surely finite for any finite initial configuration where only

finitely many sites are infected and we say it dies out, whereas if λ > λc(Zd)

there is a positive probability that the extinction time is infinite even if the

infection only starts in a single vertex, see [77]. Looking at the contact process

on finite graphs the extinction time is always almost surely finite and a more

natural question in this setting is to ask how long the infection survives until

it reaches the absorbing state. Interestingly, on the restriction of Zd to finite

boxes the critical value λc(Zd) again exhibit a phase transition. If λ < λc(Zd)

the extinction time is of logarithmic order in the volume of the box whereas if

λ > λc(Zd) the contact process survives much longer and the extinction time is of

exponential order in the volume of the box. In the later case the contact process

is said to be in a metastable situation where it stabilizes for an exponentially

long amount of time before it reaches the absorbing state where all vertices are

healthy, see [77] for further details. The behaviour of the extinction time of
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the contact process has been studied on various different finite graphs including

on finite regular trees by Stacey [94], Cranston et al. [32] and Mountford et al.

[86], on regular graphs by Mourrat and Valesin [88], on Erdós-Renyi graphs by

Bhamidi et al. [12] and for a general large class of finite graphs by Mountford et

al. [86] and Schapira and Valesin [93].

The situation changes dramatically if we consider random graphs with a scale-free

degree distribution such as the configuration model or preferential attachment

networks. On these graphs the critical value of λ is zero, therefore for any choice

of λ > 0 the extinction time is of exponential order in the size of the graph,

see [27] and [86] for the configuration model and [10] for preferential attachment

networks. For these models further results on the metastability are given by

Mountford et al. [87] on the configuration model, where they provide estimates

on the rate of decay of the density of infected vertices in terms of λ at a time

when the infection has not yet reached the absorbing states, for λ small and graph

large enough. This rate of decay solely depends on the power-law exponent τ of

the scale-free degree distribution, precisely it is given by

ρτ (λ) =


λ1/(3−τ) if τ ∈ (2, 5

2
]

λ2τ−3

log(1/λ)τ−2 if τ ∈ (5
2
, 3]

λ2τ−3

log(1/λ)2τ−4 if τ ∈ (3,∞)

. (3.2)

This result seems to have a universal character as the same rate of decay has

been shown for hyperbolic random graphs by Linker et al. [78]. The later can

be seen as a geometric variant of the configuration model, as in both cases the

probability to form an edge between two given vertices depends on the product of

independent weights which are assigned to each vertex in the graph. For further

results on the density of infected vertices at a time when the contact process is

still alive on the configuration model with τ ∈ (1, 2] and preferential attachment

networks see [25] and [24]. To obtain these estimates the analysis of the contact

process on the corresponding limit graphs is important, i.e. the corresponding

Galton-Watson process for the configuration model and the infinite hyperbolic

model. In fact, for these models the rate of decay given by ρτ coincides with the

rate of decay of the probability that the extinction time is infinite on the limit

graphs when λ goes to zero. Thus, the study of the non-extinction probability is
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a crucial step to obtain the stated metastability results.

In this chapter we will study the contact process on geometric random graphs

as characterized in Section 1.2.2 which satisfy Assumption UBA* and LBA.

In Chapter 2 we have seen that such graphs exhibit sufficiently short paths

such that the graphs are ultrasmall if γ > δ
δ+1

. In this regime we study in

Section 3.2 the probability Γ(λ) that the contact process starting in a typical

vertex does not go extinct. We prove that the critical value λc is zero for these

graphs and we give exact asymptotics on its rate of decay, when λ is small, see

Theorem 3.1. In Section 3.3 we study a spatial restriction of the these graphs to

boxes [−n1/d

2
, n

1/d

2
]d, still assuming that γ > δ

δ+1
, and show that the extinction

time exhibits no phase transition, i.e. for any λ > 0 the extinction time is of

exponential order in the volume of the boxes, see Theorem 3.14.

3.1.1 The contact process and its graphical representa-

tion

The contact process on an arbitrary locally-finite graph G = (V,E) with para-

meter λ is a continuous time Markov process (ξt)t≥0 on the space {0, 1}V . At time

t we say a vertex x ∈ V is infected if ξt(x) = 1 and healthy if ξt(x) = 0. Thus,

we can also view ξt as the subset {x : ξt(x) = 1} of V of the infected vertices at

time t. Infected vertices transmit the infection to each of their neighbours with

rate λ and recover with rate 1, yielding the transition rates given by (3.1). We

write (ξAt )t≥0 for the contact process with initial condition A ⊂ V , i.e. ξA0 = A

and (ξxt )t≥0 if A = {x}.

A very useful description of the contact process is its graphical representation

given by a family of independent Poisson processes on [0,∞). Assign to each

vertex x ∈ V a Poisson process Nx on [0,∞) of rate 1. For each edge in G

with endvertices x and y, assign to each of the pairs (x, y) and (y, x) a Poisson

process N(x,y), resp. N(y,x), on [0,∞) with rate λ. We can think of every element

t ∈ Nx as a recovery mark at x at time t, and every element t ∈ N(x,y) as a

transmission arrow from x to y at time t. Hence, on V × [0,∞) we assign a

recovery mark at (x, t) for all t ∈ Nx and x ∈ V and an arrow from (x, t) to (y, t)

for all t ∈ N(x,y) and x, y ∈ V which are connected by an edge. An infection

path in the graphical construction is a a function g : I → V for some interval I
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Figure 3.1: Sketch of the graphical representation of the contact process on Z.
Arrows represent (potential) infection transmissions and crosses represent the re-
covery marks. The blue path is one potential infection path in this representation
starting in the fourth vertex.

such that the process (g(t), t)t∈I on V × [0,∞) which goes up in time never hits

a recovery mark and only changes values in the first component by travelling

along an arrow in its given direction. We write (x, t) → (y, s) if there exists an

infection path g : [t, s] → V from x to y, i.e. an infection path with g(t) = x and

g(s) = y. Then the contact process starting in A can be derived from infection

paths of the graphical construction by

ξAt (x) = 1{A× {0} → (x, t)}, t ≥ 0, x ∈ V,

see Figure 3.1 for an example. This graphical representation allows to derive

important properties of the contact process easily, such as its monotonicity in

the initial configuration, its additivity and its self-duality relation

P(ξAt ∩B ̸= ∅) = P(ξBt ∩ A ̸= ∅) for A,B ⊂ V.

For further properties of the contact process we refer to [77].

Throughout the following sections of this chapter we denote by P the joint law of

the contact process and the underlying geometric random graph and with a slight

abuse of notation denote by Px1,...,xn and by P(0,T0)
the joint law of the contact

process and the respective geometric random graph law under the conditions

given in Section 1.2.2.
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3.2 Non-extinction probability

In this section we consider the probability Γ(λ) that the contact process with

parameter λ on G(0,T0)
starting in the origin (0, T0) does not go extinct, i.e.

Γ(λ) = P(0,T0)

(
ξ(0,T0)

t ̸= ∅ ∀ t ≥ 0
)
. (3.3)

Our main result describes the asymptotic behaviour of Γ(λ) as λ becomes small.

Here, we write f(λ) ≍ g(λ) , if there exist two positive constants c, C > 0 such

that cf(λ) ≤ g(λ) ≤ Cf(λ) for λ sufficiently small.

Theorem 3.1

Let G be a general geometric random graph which satisfies Assumption

UBA* and Assumption LBA for γ > δ
δ+1

. Then, as λ → 0,

Γ(λ) ≍ λ2/γ−1

log(1/λ)(1−γ)/γ
. (3.4)

As stated in the introduction for the ultrasmall regime the non-extinction prob-

ability is positive for any λ > 0 and therefore the critical value when the contact

process dies out is almost surely zero. To compare the result of Theorem 3.1 to

the rates (3.2) given in [87], resp. [78], for the contact process on the configur-

ation model and on hyperbolic random graphs, note that γ ∈ ( δ
δ+1

, 1) implies

τ ∈ (2, 3) since δ > 1. As τ = 1 + 1
γ

the rate given in (3.4) matches the case

τ ∈ (5
2
, 3] in (3.2). To see the reason why for geometric random graphs satisfying

Assumption UBA* and Assumption LBA only this case appears, it is helpful to

look at the survival strategies of the infection leading to the two cases of (3.2)

for which τ ∈ (2, 3]. If τ ∈ (2, 5
2
], the graph is so well connected that an infected

vertex with a high degree, i.e. a small mark, has with high probability at least

one neighbour with an even smaller mark to which the vertex transmits the in-

fection. Thus, when the origin infects a relatively powerful vertex, i.e. a vertex

with a small mark, with high probability the infection passes directly to more

and more powerful vertices and therefore survives. This way of direct spreading

does not work sufficiently well when τ ∈ (5
2
, 3] as the graph is not connected well

enough. In this case the survival strategy relies on the observation that, when a

vertex with sufficiently high degree is infected, the infection survives so long in
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the neighbourhood of the vertex which forms a star, that it reaches with high

probability another vertex with similarly high degree from which this kind of

delayed spreading can repeat, see [87, Section 3]. For geometric random graphs

satisfying Assumption UBA* and Assumption LBA the strategy of direct spread-

ing does not work, as for a vertex with mark t the expected number of neighbours

with mark smaller than t does not increase when t becomes small, unlike in the

configuration model or hyperbolic random graphs. Instead, two vertices with

small mark are usually not connected directly but via a connector, a vertex with

mark near one. This additional necessary step to transmit the infection to a

vertex with smaller mark makes this strategy worse than the strategy of delayed

spreading, which still works for the class of geometric random graphs, see Pro-

position 3.2, yielding that only the later one appears in Theorem 3.1. The same

behaviour also holds for dynamical non-spatial preferential attachment with slow

update rate, as studied in [68].

Remark 3.2.1. In Chapter 2 the upper bound assumption could be relaxed by

omitting the assumption of independent occurence of the edges given the Poisson

point process. This is not possible here, as the proof of the asymptotic upper

bound given in Proposition 3.5 requires not only the ability to control the oc-

curence of self-avoiding paths in the graph, but also the occurence of stars, i.e.

the neighbourhoods of vertices with high degree. An upper bound assumption

on the existence of paths as UBA does not yield any meaningful bound on the

size of stars.

3.2.1 Lower bound

We dedicate this section to proving a lower bound for Γ(λ) when λ is small.

Namely, we will prove the following result.

Proposition 3.2

Let G be a general geometric random graph which satisfies Assumption LBA

with γ > δ
δ+1

. Then, there exists a constant c > 0 such that, for λ small, it

holds

Γ(λ) > c
λ2/γ−1

log(1/λ)(1−γ)/γ
. (3.5)
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For the proof of Proposition 3.2 we exploit the following observation. Let us

denote by a star a connected graph where all but one vertex have degree one.

Then, the contact process restricted to a subgraph isomorphic to a star survives

for a constant time if the subgraph consists of at least order λ−2 vertices and

survives even long enough to infect other neighbouring stars if the subgraph

consists of order log(1/λ)λ−2 vertices, see [87]. We denote by Lr the graph

consisting of the half-line N0, where to each even vertex m ∈ N0, r additional

distinct neighbours are attached. Thus, Lr forms a half-line of stars consisting

of r + 1 vertices, where two consecutive stars are connected via a path of two

edges. Throughout this section we denote the vertex 0 ∈ N0 as the origin of

Lr. Notice that if the size r of the stars is of order log(1/λ)λ−2 and only the

origin of Lr is infected, there exists a constant p > 0 such that the survival

probability of the contact process on Lr is at least p. This is direct consequence

of Lemma [78, Lemma 2.4], since the stars are sufficiently large so that whether

two stars are connected by a single edge or a path of bounded length makes no

difference. Thus, as a first step we will show that such a half-line of stars exists

in G(0,T0)
. For x ∈ Rd, denote by Hx the plane through x with normal vector x.

Consequently, Hx divides Rd in two subsets and we denote by Rd
≥x the subset

that does not contain zero. As discussed in Section 1.2.2 the expected degree of

a given vertex with mark t in a geometric random graph G which satisfies both

Assumptions UBA* and LBA is of order t−γ. We therefore call vertices with

small mark powerful vertices. For β > 0 and r := β log(1/λ)λ−2, let T⊛ := r−1/γ

be the threshold such that vertices with smaller mark have an expected degree

of order at least log(1/λ)λ−2.

Lemma 3.3

Let x = (x, t) ∈ Rd × (0, 1) with t < T⊛. Then, given that x is a vertex of

G(0,T0)
, we have with high probability as λ → 0 that there exists a subgraph

of G(0,T0)
in Rd

≥x × (0, 1) which is isomorphic to Lr such that the origin of Lr

is identified with x.

To prove the existence of such a subgraph, we decompose Rd
≥x × (0, 1) into in

distinct parts, where areas with small marks represent potential midpoints of

stars and areas with large mark represent either neighbours of the midpoints or

vertices which are connected by an edge to two distinct midpoints. Choose θ > 0
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x

Hx

0

Ã1 Ã2 Ã3 · · ·

Figure 3.2: The anuli (Ak)k∈N centered around x and truncated with respect to
Hx, where the area Ã2 is shaded grey.

such that 1 < θ < γ + γ/δ and note that his is always possible since γ > δ
δ+1

.

Set

Tk = T θ
⊛e

−kθ and Rk = 1
2
T

−(γ+γ/δ)/d
⊛ ek(γ+γ/δ)/d, for k ∈ N

and R0 = 0. Given the vertex x = (x, t) define, for k ∈ N, the anuli Ak :=

B(x, Rk) ∩B(x, Rk−1)
c and the sets

Sk := Ãk × [Tk+1, Tk), S
(1)
k := Ãk × [1/2, 3/4) and S

(2)
k := Ãk × [3/4, 1),

where Ãk := Ak ∩Rd
≥x, see Figure 3.2. Notice that all these sets are disjoint and

therefore the point processes restricted to these sets are independent. For the

proof of Proposition 3.3 it will be helpful to interpret

• the vertices in Sk as the potential midpoints of the k-th star of the subgraph,

• the vertices in S
(1)
k as the potential neighbours of the midpoints forming a

sufficiently large star

• the vertices in S
(2)
k as the potential connectors between consecutive mid-

points, i.e. vertices which are connected to both midpoints.

Before we prove Lemma 3.3, we state the following lemma as a corollary of [70],

which follows with similar calculations as done in Lemma 2.14. With this lemma
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we can ensure that two vertices from consecutive areas Sk and Sk+1 are connected

via a connector with high probability.

Lemma 3.4

Given two vertices xk ∈ Sk and xk+1 ∈ Sk+1, the number of vertices in S
(2)
k

which form an edge to xk and xk+1 is Poisson-distributed with parameter

larger than

Ct−γ
k

(
1 ∧ t−γδ

k+1

(
|xk+1 − xk| + t

−γ/d
k

)−dδ)
, (3.6)

where C > 0 is a constant not depending on k.

Proof. We consider the vertices z = (z, u) ∈ S
(2)
k with |xk − z|d < t−γ

k . Note

that the volume of B
(
xk, t

−γ/d
k

)
∩ Ãk is a positive proportion ρ > 1

2d+1 of the

ball volume, as t
−γ/d
k < 1

2
(Rk −Rk−1) for sufficiently small λ. Then, the number

of those vertices which form an edge to xk and xk+1 is Poisson-distributed with

parameter bounded from below by∫ 1

3
4

∫
B(xk,t

−γ/d
k )∩Ãk

dzα2(1 ∧ κ)(1 ∧ κt−γδ
k+1 |z − xk+1|−dδ)

≥Vdρα
2(1 ∧ κ)

4
t−γ
k

(
1 ∧ κt−γδ

k+1

(
|xk+1 − xk| + t

−γ/d
k

)−dδ)
,

where Vd is the volume of the d-dimensional unit ball and α and κ comes from

Assumption LBA. Thus, there exist a constant C > 0 sufficiently small such that

(3.6) holds.

Proof of Lemma 3.3. Note that, for k ∈ N, the number of vertices in Sk is

Poisson-distributed with mean larger than

Vd(Tk+1 − Tk)(Rd
k+1 −Rd

k) ≥ c1T
−(γ+γ/δ−θ)
⊛ ek(γ+γ/δ−θ)

for some c1 > 0, which does not depend on k. Thus, Sk is non-empty with prob-

ability larger than 1 − exp(−c1T
−(γ+γ/δ−θ)
⊛ ek(γ+γ/δ−θ)). As the boxes S1, S2, . . .

are disjoint, the numbers of vertices in each box are independent from each other.
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Thus, it holds

P(Sk is non-empty ∀ k ∈ N) ≥
∞∏
k=1

(
1 − exp(−c1T

−(γ+γ/δ−θ)
⊛ ek(γ+γ/δ−θ))

)
.

For k ≥ 2, on the event that Sk is non-empty we denote by xk the vertex in Sk

with the smallest mark. For k = 1 we set x1 := x and always treat S1 as non-

empty. To keep notation cleaner we treat without loss of generality the mark of

x1 as smaller than T1 (this affects only the estimate in (3.7) below where γ + γδ

becomes γδ which does not change the rest of the argument).

Given Sk and Sk+1 are non-empty, the Euclidean distance of the corresponding

vertices xk and xk+1 is at most 2Rk+1 and both vertices have a mark smaller Tk.

Thus, by Lemma 3.4 there exists c2 > 0 such that, for all k ∈ N, the probability

that xk and xk+1 are connected via one connector in S
(2)
k is larger than

1 − exp(c2T
−(γ+γδ)(θ−1)
⊛ ek(γ+γδ)(θ−1)). (3.7)

Given Sk is non-empty, we now turn our attention to the number of neighbours

of xk in S
(1)
k . As in the proof of Lemma 3.4 we only consider the vertices z ∈ S

(1)
k

with |xk − z|d < T−γ
k . Note that the volume of B(xk, T

−γ/d
k ) ∩ Ak is again a

positive proportion ρ > 1
2d+1 of the ball volume itself for λ small enough. These

vertices are connected to xk with probability bounded from below by α(1 ∧ κ).

Thus, there exists c > 0 such that the number of neighbours of xk in S
(1)
k with

|xk − z|d < T−γ
k is Poisson-distributed with mean larger than cT−γ

k ≥ crekγ.

Thus, by a Chernoff-bound there exists c3 > 0 such that, given Sk is non-empty,

the probability that the number of neighbours of xk is larger than r is at least

1 − exp(−crekγ), for all k ∈ N.

We choose 0 < ε <
(
γ + γ/δ − θ

)
∧
(
(γ + γδ)(θ − 1)

)
. Given all sets Sk are

non-empty, the two previously discussed events only depend on disjoint subsets

of the Poisson-process. Thus, the probability that, for all k ≥ 2,

• Sk is non-empty,

• xk, the vertex with smallest mark in Sk, has at least r neighbours in S
(1)
k

and
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• xk−1 and xk are connected via a connector in S
(2)
k−1

is larger than
∞∏
k=1

(
1 − exp(−T−ε

⊛ ekε)
)(

1 − exp(−crekγ)
)

which tends to one as λ → 0 since r and T−ε
⊛ tend to infinity in this case.

With Lemma 3.3 in hand we are now ready to complete the proof of Proposition

3.2. Starting at the origin we explore the Poisson point process by expanding

a sphere centered at the origin (0, T0) until we find the nearest neighbour x of

(0, T0) with mark smaller T⊛. As the number of neighbours of (0, T0) with mark

smaller than T⊛ dominates a Poisson-distributed random variable with parameter

of order T 1−γ
⊛ , the probability that we find such a neighbour x and there is a

transmission from (0, T0) to x before (0, T0) recovers is larger than

cλ

1 + λ
T 1−γ
⊛ ≥ cλ2/γ−1

log(1/λ)(1−γ)/γ
(3.8)

for some c > 0, where λ
λ+1

occurs as the probability that, given x is a neighbour

of the origin (0, T0), x got infected by the origin before it recovers. Given the

nearest neighbour x = (x, t) with mark smaller T⊛, by Lemma 3.3, there exists

with probability larger than 1
2

as λ is small a subgraph in the yet unexplored

area Rd
≥x which is isomorph to Lr with origin in x. Conditioned on this subgraph

being present and the origin of it being infected, the infection survives with a

probability bounded away from zero, uniformly in λ, by [78, Lemma 2.4]. Hence,

Γ(λ) is up to a constant larger than the probability bound given in (3.8) which

completes the proof of Proposition 3.2.

3.2.2 Upper bound

Proposition 3.5

Let G be a general geometric random graph which satisfies Assumption

UBA* for γ > 1
2

and δ > 1. Then, there exists a constant C > 0 such

that

Γ(λ) < C
λ2/γ−1

log(1/λ)(1−γ)/γ
. (3.9)
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To prove this we generalize and extend the arguments from [78] for the geometric

random graphs characterized by the framework given in Section 1.2.2. Let the

function ρ : [0,∞) → [0, 1] be defined by ρ(x) := 1 ∧ x−δ and denote Iρ :=∫
Rd dxρ(κ |x|d) < ∞, where δ > 1 and κ > 0 are given in Assumption UBA*.

Note that, for geometric random graphs satisfying the Assumption UBA* and

LBA, there exists constants c, C > 0 such that, for any vertex x = (x, t) ∈
Rd × (0, 1), it holds ct−γ ≤ Ex deg x ≤ Ct−γ. With that in mind, we can think

of T (n) = n−1/γ as the mark of a vertex with expected degree of order n in such

a graph.

Throughout the proof we classify the vertices by their expected degree into dif-

ferent groups. Let n⋆ = λ−2 and, for some constant θ > 0 to be specified later,

n⊛ = θ
λ2 log

(
1
λ

)
. Vertices with degree larger than n⋆ are the midpoints of stars

on which the infection restricted to the star can survive for a constant time with

a probability bounded away from zero, without necessarily surviving long enough

such that it can reach other stars nearby. As we have seen in the proof of Pro-

position 3.2, this happens for stars with more than n⊛ vertices. For σ > 0, set

nσ = λ−2+σ. Vertices with degree smaller than nσ are centers of stars which are

not sufficiently large, in the sense that the infection does not propagate through

such stars and dies out when the graph is restricted to vertices with such small

degree; see Lemma 3.13. We denote by

T⋆ := T (n⋆), Tσ := T (nσ), T⊛ := T (n⊛)

the according mark of the vertices whose expected degree is by Assumption UBA*

at most of the corresponding order.

Proof of Proposition 3.5. We consider now the contact process (ξ(0,T0)

t )t≥0 on G(0,T0)

which starts from the origin (0, T0). For a vertex x, on the event that x and

(0, T0) are connected we denote by Ix the event that x got infected from the

origin (0, T0) before (0, T0) recovers. On Ix we denote by τx the time when x

got infected by the origin and by (ηxt )t≥τx the contact process started at time τx

with a single infection at x determined by the same graphical construction as

the original process (ξ(0,T0)

t )t≥0.

For σ > 0, denote by Eσ the event that each infection path g starting in the
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origin which jumps first to a vertex with mark larger than Tσ is finite and never

reaches a vertex with mark smaller than Tσ. We will see later that when the

mark of the origin is itself larger than Tσ, the probability that Eσ occurs goes

much quicker to one, when λ goes to zero, than the rate given in (3.4). In fact,

we show in Lemma 3.13 that for σ > 0 sufficiently small, it holds

P(0,T0)
(Ec

σ ∩ {T0 ≥ Tσ}) ≤ λ2/γ−1+ε. (3.10)

Let σ0 > 0 such that it holds σ0 > σ and let Tσ0 = T (nσ0) be the associated

boundary of the mark of vertices with expected degree of order λ−(2−σ0). Whereas

Tσ and T⊛ will be used to distinguish the neighbours of the origin by their marks,

for the survival of the contact process we consider whether T0 < Tσ0 or not. Then,

we have

1{ξ(0,T0)t ̸=∅ ∀ t≥0} ≤ 1{T0<Tσ0} + 1Ec
σ∩{T0≥Tσ}

+
∑
x∈X
t≤T⊛

1{(0,T0)∼x}1Ix1{T0≥Tσ0}

+
∑
x∈X

T⊛<t<Tσ

1{(0,T0)∼x}1Ix1{T0≥Tσ0}1{(ηxt )t≥τx survives}

(3.11)

In fact, if the right-hand side is zero it holds that

• every infection path starting in the origin which jumps in its first step to

a vertex with mark larger than Tσ is finite and never visits a vertex with

mark smaller than Tσ,

• there exists no vertex with mark smaller than T⊛ which is a neighbour of

the origin and got infected by it,

• there exists no vertex with mark inbetween Tσ and T⊛, which is a neighbour

of the origin and got infected by it and the infection emerging from this

vertex survives.

As these three points imply that the infection (ξ(0,T0)

t )t≥0 does not survive, the

left-hand side is then also zero, from which the stated inequality follows. Note

that this bound is especially not sharp in the second summand of the right-

hand side, as we allow T0 to take a larger range of values than needed. Taking
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expectation on both sides of (3.11) yields an upper bound for the probability of

interest and it is therefore sufficient to establish upper bounds for the expectation

of each of the four summands of the right-hand side.

First, by the definition of Tσ0 we have that

P(T0 < Tσ0) = λ(2−σ0)/γ < λ2/γ−1/2

for σ0 and λ > 0 small enough and a bound for the second summand is given by

(3.10), which will be proved in Lemma 3.13.

As mentioned beforehand, the third term on the right-hand side of (3.11) count

the number of vertices with mark smaller than T⊛ which got infected by the

origin (0, T0). We have seen in Section 3.2.1 that the contact process starting

in such a vertex would ensure a spreading over a chain of infinitely many other

stars with equally many neighbours. Thus, a sharp upper bound for the expected

number of such vertices is crucial. By Mecke’s equation, Assumption UBA* and

since T0 is independent of X it holds that

E(0,T0)

[ ∑
x∈X
t≤T⊛

1{(0,T0)∼x}1Ix1{T0≥Tσ0}

]
=

∫ 1

Tσ0

dt0

∫ T⊛

0

dt

∫
Rd

dxE(0,t0),x[1{(0,t0)∼x}1Ix ]

≤ λ

λ + 1

∫ 1

Tσ0

dt0

∫ T⊛

0

dt

∫
Rd

dx ρ(κ−1/δtγt1−γ
0 |x|d)

≤ λ
Iρ

(1 − γ)γ
T 1−γ
⊛ ≤ Iρ

(1 − γ)γ

λ2/γ−1

log(1/λ)(1−γ)/γ
.

In fact, this is the dominant term of the right-hand side of (3.11) which contrib-

utes to the stated upper bound.

For the last summand of (3.11) we have by Mecke’s equation, Assumption UBA*
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and since T0 is independent of X that

E(0,T0)

[ ∑
x∈X

T⊛<t<Tσ

1{(0,T0)∼x}1Ix1{T0≥Tσ0}1{(ηxt )t≥τx survives}

]

=

∫ 1

Tσ0

dt0

∫ Tσ

T⊛

dt

∫
Rd

dxE(0,t0),x[1{(0,t0)∼x}1Ix1{(ηxt )t≥τx survives}]

≤ λ

λ + 1

∫ 1

Tσ0

dt0

∫ Tσ

T⊛

dt

∫
Rd

dxE(0,t0),x[1{(ηxt )t≥τx survives} | (0, t0) ∼ x, Ix]ρ(κ−1/δtγt1−γ
0 |y|d).

In Lemma 3.12 we will show that there exist ε > 0 such that, for x = (x, t), y =

(y, s) ∈ Rd × (0, 1) with t > T⊛ and s > Tσ0 , it holds

Px,y(ξxt ̸= ∅ ∀ t ≥ 0 |x ∼ y) < λε, (3.12)

where (ξxt )t≥0 is the contact process of rate λ which starts in x and only in x. By

this inequality and the strong Markov-property of the contact process we have

that

E(0,T0)

[ ∑
x∈X

T⊛<t<Tσ

1{(0,T0)∼x}1Ix1{T0≥Tσ0}1{(ηxt )t≥τx survives}

]

≤ λ1+ε

∫ 1

Tσ0

dt0

∫ Tσ

T⊛

dt

∫
Rd

dxρ(κ−1/δtγt1−γ
0 |x|d)

≤ Iρ
(1 − γ)γ

λ2/γ−1+ε−σ(1/γ−1) <
Iρ

(1 − γ)γ
λ2/γ−1+ε/2

for σ > 0 and λ > 0 sufficiently small which completes the proof.

We now proceed to establish the probability bounds (3.10) and (3.12) of the

previous proof which have been left out. To show these bounds we need to have

control over the occurence of infection paths which correspond to the both events,

i.e. infection paths which jump from the origin to a vertex with mark larger than

Tσ and infection paths starting in a vertex with mark between Tσ and T⊛. For

these bounds we will rely on the arguments used in [78, Section 5], for which we

will give a short overview.

We consider now a graph G = (V,E) with root 0 and let P be the set of all finite
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and infinite paths of vertices in the graph G. Instead of looking at infection paths

themselves, we look at the paths of vertices which result from infection paths by

capturing the visited vertices. Precisely, for an infection path g : I → V we

define its ordered trace pg ∈ P as the path of vertices in G given by the vertices

visited by g in the same order. The following result by [78] shows the usefulness

of this definition, as to control the occurence of a given class of infection paths, it

is sufficient to control the number of ordered traces corresponding to this class.

Lemma 3.6: [78, Lemma 5.1]

Let λ < 1
2
. Given p ∈ P , the probability that there exists t ≥ 0 and an

infection path g : [0, t] → V with p as its ordered trace is at most (2λ)|p|.

We define the following subsets of P . Let A ⊂ V such that the root 0 is not in

A and define

• for n ≥ 1, Qn
A as the set of paths in G of length n starting in 0, where the

first n vertices are distinct and not in A but the last vertex is in A,

• for n ≥ 3, Rn
A as the set of paths in G of length n starting in 0, where the

first n vertices are distinct and not in A but the last vertex is equal to a

previous one.

We denote QA :=
⋃

k≥1Q
k
A and RA :=

⋃
k≥3R

k
A.

Typically A is a set of vertices with small mark, for example smaller than T⋆

or T⊛. These vertices are powerful as they have many neighbours and therefore

ensure the survival of the infection for longer time. The set Qn
A then describes

all ordered traces which get to such a powerful vertex in its n-th step. The

motivation for the second set Rn
A lies in the following result from [78]. Given a

vertex x ∈ V , the contact process (ξt)t≥0 starting in 0 is thin on x if there is no

infection path g : [0, t] → V for some t ≥ 0 with g(0) = 0 where x appears more

than once in the ordered trace pg of g. The contact process starting in 0 is thin

on a set V ′ ⊂ V if it is thin on every vertex of V ′.
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Lemma 3.7: [78, Lemma 5.4]

If V0 ⊂ V is finite, then on the event that (ξt)t≥0 is thin on (V0)
c, the contact

process almost surely dies out, that is, almost surely there is t ≥ 0 such that

ξt = ∅.

Ordered traces which are not in QA ∪ RA do not connect to a vertex with high

degree and visit each vertex at most once. Thus, by the previous lemma infection

paths which have such ordered traces typically do not contribute to the survival

of the contact process. A consequence is the following key result by [78].

Lemma 3.8: [78, Lemma 5.5]

There exists c > 0 such that, for any λ < 1
2
, the following holds. Let G be a

graph with root 0, A ⊂ V and let (ξt)t≥0 be the contact process on G starting

in 0. Then,

P(ξt ̸= ∅ ∀t ≥ 0) ≤
exp

(
cλ2 deg(0)

)
T

+ T
∑

p∈QA∪RA

(2λ)|p| for all T > 0.

We consider again geometric random graphs given by our framework in Section

1.2.2 and proceed to establish bounds for the number of ordered traces in QA

and RA on G for a suitable choice of A. As A is a set of vertices typically defined

in terms of their marks, the ordered traces in QA and RA have restrictions on

the marks of the vertices but not on their location. Thus, to control the number

of such ordered traces we rely on the following definition as also used in Chapter

2. Let ℓ ∈ (0, 1) be the truncation value and κ̃ ≥ Iρ. We define, for n ∈ N and

t0 ∈ (0, 1),

νt0
ℓ,n(s) :=

1∫
ℓ

dt1 · · ·
1∫

ℓ

dtn−1

κ̃(tn−1 ∧ s)−γ(tn−1 ∨ s)γ−1

n−1∏
k=1

κ̃(tk−1 ∧ tk)−γ(tk−1 ∨ tk)γ−1, (3.13)

for s ∈ (0, 1) and set νt0
ℓ,0(s) = δ0(t0 − s). Note that as defined, νx

ℓ,n(s) can be
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written recursively as

νt0
ℓ,n(s) =

1∫
ℓ

du νt0
ℓ,n−1(u)κ̃(u ∧ s)−γ(u ∨ s)γ−1. (3.14)

This allows us to establish an upper bound for νx
ℓ,n(s) analogous to the non-spatial

case in [35, Lemma 1]. This is a corollary of Lemma 2.9.

Lemma 3.9

Let ℓ ∈ (0, 1) and νt0
ℓ,n(s) be as defined in (3.13), where x = (x0, t0) and

s ∈ (0, 1). Then, there exists a constant c > 0 such that, for all n ≥ 2,

νt0
ℓ,n(s) ≤ αns

−γ + 1{s≥ℓ}βns
γ−1, (3.15)

where

αn+1 = c
(
αn log

(
1
ℓ

)
+ βn

)
βn+1 = c

(
αnℓ

1−2γ + βn log
(
1
ℓ

)) (3.16)

and α1 = κ̃tγ−1
0 , β1 = κ̃t−γ

0 .

Proof. This follows analogously to the proof of Lemma 2.9 by choosing a fixed

truncation value ℓ instead of an arbitrary truncation sequence.

The following result gives an explicit upper bound for the sequence (αn)n∈N.

Lemma 3.10

Let ℓ ∈ (0, 1) and (αn)n∈N, (βn)n∈N the sequences defined by 3.16. Then, it

holds

αn ≤ (2c)n−2c2
(
ℓ

1
2
−γtγ−1

0 + t−γ
0

)
ℓ(1−2γ)(n

2
−1) for n ≥ 2 (3.17)

for ℓ sufficiently small.

Proof. Let ℓ be small enough such that c−2 < log(1
ℓ
)2 < 1

3
ℓ1−2γ, where c > 0 is
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the constant given in Lemma 3.9. Then, it is easy to see that (3.17) holds for

n = 2. We show that it holds that

αn+2 ≤ (2c)2ℓ1−2γαn for n ≥ 2. (3.18)

By the definition (αn)n∈N and (βn)n∈N it holds that

αn+2 = c2
(

log(1
ℓ
)2 + ℓ1−2γ

)
αn + 2c2 log(1

ℓ
)βn for n ≥ 1. (3.19)

As (3.16) also implies that αn ∨ βn ≤ αn+1 for n ∈ N it is easy to see that is also

holds that

log(1
ℓ
)βn ≤ ℓ1−2γαn + log(1

ℓ
)2αn for n ≥ 2. (3.20)

Combining both inequalities (3.19) and (3.20) yields (3.18). Note that (3.19) also

implies that (3.17) holds for n = 3. Thus, (3.17) follows directly by induction

with (3.18).

Recall that

T⊛ =
λ2/γ

θ1/γ
log(1/λ)−1/γ, T⋆ = λ2/γ and Tσ = λ(2−σ)/γ.

For x,y ∈ Rd × (0, 1) with marks t > T⊛ and s > Tσ0 we consider now the

geometric random graph G under the law Px,y(· |x ∼ y). On the event that x

and y are vertices in G , we declare x as the root of the graph and set

A := {z = (z, u) ∈ X : u ≤ T⋆} ∪ {y} (3.21)

as the set of vertices in G with mark smaller than T⋆ together with y.

Lemma 3.11

Let x = (x, t),y = (y, s) ∈ Rd × (0, 1) with t > T⊛ and s > Tσ0 . Then, there

exists ε > 0 not depending on the choice of θ such that for A given in (3.21)

it holds

Ex,y

[ ∑
p∈QA∪RA

(2λ)|p|
∣∣x ∼ y

]
< λε.
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Proof. Let 0 < ε < ( 1
γ
− 1) ∧ σ0, which is possible as 1

γ
> 1. For n ≥ 1,

denote by Q̂n
A be the set of paths in Qn

A which do not visit y in its last step and

denote by Q̂n
y := Qn

A\Q̂n
A the set of paths in Qn

A with y as its last vertex. Note

that by definition the paths in (QA ∪ RA)\Q̂1
y never consist of the given edge

between the vertices x and y. Thus, the occurence of paths in G which belong

to (QA ∪ RA)\Q̂1
y is independent of the edge between x and y by Assumption

UBA*. Then, by Mecke’s equation and Assumption UBA* we have, for n ≥ 2,

that

Ex,y

[
|Q̂n

A|
∣∣x ∼ y

]
=

∫
Rd×(ℓ,1]

dx1 · · ·
∫
Rd×(0,ℓ]

dxn

n∏
i=1

ρ
(
κ−1/δ(ti ∧ ti−1)

1−γ(ti ∨ ti−1)
γ |xi − xi−1|d

)
,

where xi = (xi, ti) for i = 1, . . . , n and x = (x0, t0). Integration over the locations

on the right-hand side and using (3.17) yields, for n ≥ 2, that

Ex,y

[
|Q̂n

A|
∣∣x ∼ y

]
≤
∫ ℓ

0

dtnν
t0
ℓ,n(tn) = αn

ℓ1−γ

1−γ

≤ Cnλ(1/γ−2)nλ2
(
λ−1/γ log( 1

λ
)(1−γ)/γ + λ−2 log( 1

λ
)
)

for some constant C > 0, where we have used in the last step that t0 > T⊛. As

it is easy to see that this bound also holds for the case n = 1, there exists C > 0

such that, for λ small enough, we have

∞∑
n=1

(2λ)nEx,y

[
|Q̂n

A|
∣∣x ∼ y

]
≤ Cλ1/γ+1

(
λ−1/γ log( 1

λ
)(1−γ)/γ + λ−2 log( 1

λ
)
)
< 2Cλε.

By (3.16) there exists c > 0, such that αn > c(αn−1 + βn−1) for n ≥ 2, and

therefore similarly to the previous calculation it holds that

Ex,y

[
|Rn

A|
∣∣x ∼ y

]
≤ n

∫ 1

ℓ

dtn−1ν
t0
ℓ,n−1(tn−1) = cnαn

≤ cnλ(1/γ−2)(n−2)
(
λ−1/γ log( 1

λ
)(1−γ)/γ + λ−2 log( 1

λ
)
)
,

where c > 0 changes throughout the lines and therefore there exists C > 0 such
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that, for λ small enough, we have

∞∑
n=3

(2λ)nEx,y

[
|Rn

A|
∣∣x ∼ y

]
≤ Cλ1/γ+1

(
λ−1/γ log( 1

λ
)(1−γ)/γ + λ−2 log( 1

λ
)
)
< 2Cλε.

Note that with the same calculation this bound also holds for
∑∞

n=3(2λ)nE|Q̂n
y|.

Thus, it is left to find a bound for 2λEx,y

[
|Q̂1

y|
∣∣x ∼ y

]
and (2λ)2Ex,y

[
|Q̂2

y|
∣∣x ∼

y
]
. By definition it directly follows that the first term is smaller than 2λ < λε.

For the second term note that |Q̂2
y| is dominated by the number of neighbours of

y which are not x. As the expectation of this number is smaller than Iρ
(1−γ)γ

T−γ
σ0

,

we have (2λ)2Ex,y

[
|Q̂2

y|
∣∣x ∼ y

]
≤ Cλσ0 < Cλε for some C > 0.

Recall that there exists a constant C > 0 such that for any vertex x = (x, t) ∈
Rd × (0, 1), its expected degree is smaller than Ct−γ. We now set θ in the

definition of T⊛ as θ := ε
8Cc

, where ε > 0 is given by Lemma 3.11 and c > 0

by Lemma 3.8. The following result is then a consequence of Lemma 3.11 and

follows with the same argumentation as [78, Proposition 5.8]. It provides the

bound (3.12) in the proof of Proposition 3.5.

Lemma 3.12

Let x = (x, t),y = (y, s) ∈ Rd × (0, 1) with t > T⊛ and s > Tσ0 and (ξxt )t≥0

be the contact process on G with rate λ which only starts in x. Then, there

exists ε > 0 such that

Px,y(ξxt ̸= ∅ ∀t ≥ 0 |x ∼ y) ≤ λε

when λ is small.

Proof. As seen before the expected degree of a vertex with mark larger than T⊛ is

smaller than Cθ
λ2 log( 1

λ
). Thus, to find an upper bound for the survival probability

of (ξxt )t≥0 we look at whether the degree of x is smaller than 2Cθ
λ2 log( 1

λ
) or not.
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Then, by Lemma 3.8 with T = λ−ε/2 and Lemma 3.11 it holds that

Px,y(ξxt ̸= ∅ ∀t ≥ 0 |x ∼ y)

≤ Px,y

(
deg(x) >

2Cθ

λ2
log( 1

λ
) |x ∼ y

)
+

exp
(
ε
4

log( 1
λ
)
)

T
+ TEx,y

[ ∑
p∈QA∪RA

(2λ)|p| |x ∼ y
]

≤ Px,y

(
deg(x) >

2Cθ

λ2
log( 1

λ
) |x ∼ y

)
+ λε/4 + λε/2.

As the number of neighbours of x different to y is Poisson distributed with

parameter at most Cθ
λ2 log( 1

λ
), using a Chernoff bound yields

Px,y

(
deg(x) >

2Cθ

λ2
log( 1

λ
) |x ∼ y

)
≤ exp

(
− c1

θ

λ2
log( 1

λ
)
)
< λ

for λ small enough, where c1 > 0 is some constant. Thus, Px,y(ξxt ̸= ∅ ∀t ≥
0 |x ∼ y) ≤ 3λε/4 which completes the proof.

As the last step to complete the proof of Proposition 3.5 we show inequality

(3.10). Recall that, for σ > 0, Eσ denotes the event that each infection path of

the contact process (ξ(0,T0)

t )t≥0 which jumps at first to a vertex with mark larger

than Tσ is finite and never reaches a vertex with mark smaller than Tσ.

Lemma 3.13

There exists ε > 0 and σ > 0, such that

P(0,T0)
(Ec

σ ∩ {T0 ≥ Tσ}) ≤ λ2/γ−1+ε.

Proof. We denote by

Bσ = {x ∈ X : x ̸= 0, t ≤ Tσ}

the set of vertices with mark smaller or equal to Tσ and by Qn
Bσ

and Rn
Bσ

the

associated sets of paths, which either visit a vertex in Bσ in its last step or whose
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vertices are not in Bσ but the last vertex is equal to a previous one. We set

QBσ =
⋃
n≥2

Qn
Bσ
, RBσ =

⋃
n≥3

Rn
Bσ

and P0 =
{(

(0, T0),x, (0, T0),y
)

: x,y ∼ (0, T0)
}

. By [78, Lemma 5.10] the event

that no infection path starting in (0, T0) has an ordered trace in P0 ∪QBσ ∪RBσ

implies Eσ. In fact, if no infection path starting in (0, T0) has ordered trace in

P0 ∪QBσ ∪ RBσ , then each infection path g : I → V which starts at (0, T0) and

jumps to a vertex x = (x, t) with t ≥ Tσ never visits a vertex in Bσ and never

visits a vertex outside of Bσ more than once. Thus, by Lemma 3.7 any such

infection path is finite, as the contact process starting in (0, T0) and restricted

to Bc
σ is thin outside (0, T0) and dies out. Hence, it then holds

P(0,T0)
(Ec

σ ∩ {t0 ≥ Tσ})

≤ E(0,T0)

[
1{t0 ≥ Tσ}

∑
p∈P0∪QBσ∪RBσ

(2λ)|p|
]

≤ (2λ)3E(0,T0)
[|P0|1{t0 > Tσ}] +

∞∑
n=2

(2λ)nE(0,T0)

∣∣Qn
Bσ

∣∣+
∞∑
n=3

(2λ)nE(0,T0)

∣∣Rn
Bσ

∣∣ .
(3.22)

We will proceed to find upper bounds for the expected number of ordered traces

corresponding to each of the three classes P0, QBσ and RBσ . First, it holds by

Mecke’s equation and integration over the location of the vertices that

(2λ)3E(0,T0)
[|P0|1{T0 > Tσ}]

≤ (2λ)3I2ρ

∫ 1

Tσ

dt0

∫ 1

0

ds

∫ 1

0

dt(t0 ∧ s)−γ(t0 ∧ s)γ−1(t0 ∧ t)−γ(t0 ∧ t)γ−1

≤ (2λ)3(CIρ)
2

∫ 1

Tσ

dt0t
−2γ
0

≤ C3λ2/γ−1+σ(2−1/γ) < C3λ2/γ−1+ε,

for some small ε > 0 as 2/γ − 1 + σ(2 − 1/γ) is increasing in σ as γ > 1
2
. The

positive constant C does not depend on λ and σ but may change throughout the

lines.

Using Lemma 3.9 and (3.17) with ℓ = Tσ = λ2−σ as done in the proof of Lemma
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3.11 we have by Mecke’s equation and Assumption UBA*, for n ≥ 2, that

E(0,T0)

∣∣Qn
Bσ

∣∣ =

∫ 1

0

dt0

∫ ℓ

0

dtnν
t0
ℓ,n(tn)

≤ 1

1 − γ
(2c)n−2c2ℓ(1−2γ)(n/2−1)ℓ1−γ

∫ 1

0

dt0(ℓ
1/2−γt1−γ

0 + t−γ
0 )

≤ Cnλ(1/γ−2)(n/2−1)(2−σ)λ(1/γ−1)(2−σ)λ(1/(2γ)−1)(2−σ),

for some positive constant C > 0. Then, it follows that

∞∑
n=2

(2λ)nE(0,T0)

∣∣Qn
Bσ

∣∣ ≤ C2λ3/γ−1λ(2−1/γ−1/(2γ))σ < C2λ2/γ−1+ε

for σ > 0 sufficiently small. For the last summand Lemma 3.9 and (3.17) yield

similarly that

E(0,T0)

∣∣Rn
Bσ

∣∣ ≤ n

∫ 1

0

dt0

∫ 1

ℓ

dtn−1ν
t0
ℓ,n−1(tn−1)

≤ n

c(1 − γ)γ

∫ 1

0

dt0αn

≤ n

(1 − γ)γ
(2c)n−2cℓ(1−2γ)(n/2−1)

∫ 1

0

dt0(ℓ
1/2−γt1−γ

0 + t−γ
0 ).

and we have therefore

∞∑
n=3

(2λ)nE(0,T0)

∣∣Rn
Bσ

∣∣ ≤ ∞∑
n=3

Cnλ(1/γ−1)nλ2−1/γλ(2−1/γ)(n/2−1/2)σ)

≤ C3λ2/γ−1λ(2−1/γ)σ < λ2/γ−1+ε,

since 2/γ − 1 + σ(2 − 1/γ) is again increasing in σ. As all three summands of

the righthand side of (3.22) are bounded by Cλ2/γ−1+ε for some constants C > 0

and ε > 0 sufficiently small this completes the proof.
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3.3 Exponential extinction time on finite restric-

tions

In this section we consider the graph sequence (Gn)n∈N, where Gn is the spatial

restriction of G on [−n1/d

2
, n

1/d

2
]d. As this is a sequence of finite graphs, the

contact process with any potential initial condition will almost surely die out for

all n ∈ N. Thus, the more natural question is to estimate the time the infection

survives on these graphs when the infection starts with the best possible initial

condition, i.e. when the graph is fully infected. We denote by

ϖn := inf{t > 0 : ξGn
t = ∅} (3.23)

the extinction time of the contact process on Gn. The main result of this section

shows that for any choice of λ > 0 the extinction time is at least of exponential

order in the number of vertices of Gn with high probability as n becomes large.

Theorem 3.14

Let (Gn)n∈N be the restricted finite graph sequence of a general geometric

random graph which satisfies Assumption LBA for γ > δ
δ+1

. For any λ > 0,

there exists c > 0 such that

lim
n→∞

P{ϖn ≥ ecn} = 1.

Remark 3.3.1. Note that the result of Theorem 3.14 also hold when we consider

a graph sequence (Gn)n∈N, where each graph Gn is defined on a Poisson process

of unit intensity on the torus Tn with volume n and satisfies Assumption LBA,

where the Euclidean distance is replaced by the torus metric.

As seen in the proof of Proposition 3.2 the infection survives well on the neigh-

bourhood of sufficiently powerful vertices, the so called stars. Our main contri-

bution is to show that there exists a connected subgraph in Gn which contains

of order n stars. Then, with similar arguments as done in [86], it can be shown

that the infection survives on this subgraph at least for a time of exponential

order in n.
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Proposition 3.15

Let S > 0 be given and (Gn)n∈N the restricted finite graph sequence of a

general geometric random graph which satisfies Assumption LBA for γ >
δ

δ+1
. Then, there exists b > 0 and ε > 0 such that, for n sufficiently large,

the probability that Gn has a connected subgraph containing b · n disjoint

stars of at least S vertices each is larger than 1 − exp(−nε).

Proof. We fix 0 < a < 1
log 2

and choose ε1 > 0 small enough that log 2 > ε1+log 2
γ+γ/δ

,

which is possible since γ > δ
δ+1

. Similar the proof of Lemma 3.3, the vertices with

mark smaller than 1
2

will represent the potential midpoints of the stars of the

subgraph, whereas the vertices with larger mark represent potential neighbours

and connectors of the midpoints. For this proof it is not sufficient to use the

arguments of Lemma 3.3 to show that a line of stars exists in Gn, as such a

subgraph would only consist of order log(n) many stars. Hence, we need to to

break up the powerful vertices of Gn with mark smaller than 1
2

more carefully

into a system of boxes such that each of these boxes contains a midpoint of one

potential star. Let np = ⌊n(1−a log 2)/d⌋ and kp = ⌊(a log n)/d⌋. For k = 0, . . . kp,

we define

Vk := {0, . . . , np2
kp−k − 1}d.

and

Ak,v :=
d×

i=1

(
2kvi, 2

k(vi + 1)
)

for k = 0, . . . , kp and v = (v1, . . . , vd) ∈ Vk.

For each k = 0, . . . , kp, the cubes {Ak,v : v ∈ Vk} give a tessellation of [0, n
1/d

2
]d

into (np2
kp−k)d cubes of volume 2kd such that the finest tessellation is given for

k = 0 and the coarsest for k = kp. Furthermore, the cubes are nested in each

other in the sense that for each cube Ak+1,v the cubes {Ak,2v+e : e ∈ {0, 1}d} are

a tessellation of Ak+1,v.

Set θ > 0 such that log 2 > θ > ε1+log 2
γ+γ/δ

and define

Bk,v := Ak,v × (1
2
e−(k+1)θd, 1

2
e−kθd) for k = 0, . . . kp and v = (v1, . . . , vd) ∈ Vk.

We denote with the parameter k = 0, . . . kp the layer of the boxes {Bk,v : v ∈ Vk}
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which defines the range of the marks of points of X inside the boxes and the level

of coarsness of the tessellation of the space. Thus, large values of k imply more

powerful vertices and a coarser set of boxes to separate them. As an example,

the boxes of the most powerful layer kp have width of order na log 2 and the marks

of the vertices therein are of order n−aθ log 2. As we have already seen that the

cubes {Ak,v : k = 0, . . . , kp,v ∈ Vk} are nested in each other, the system of boxes

{Bk,v : k = 0, . . . , kp,v ∈ Vk} can be made to have a tree structure by treating

Bk+1,v as the parent of each box Bk,2v+e, for e ∈ {0, 1}d, see Figure 3.3. This

leads to nd
p distinct 2d-regular trees with roots {Bkp,v : v ∈ Vkp}.

1
2

0

...
...

...

B3,1 B3,2 B3,3

B2,1 B2,2 B2,3 B2,4 B2,5 B2,6

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6 B1,7 B1,8 B1,9 B1,10 B1,11 B1,12

Figure 3.3: Sketch of the structure of the boxes Bk,v in dimension one. The
y-axis represents the mark of the vertices and the x-axis the location.

Note that the amount of vertices in a box Bk,v is Poisson-distributed with para-

meter

2kd
(
1
2
e−kθd − 1

2
e−(k+1)θd

)
> cekd(log 2−θ)

for some constant c > 0 not depending on k and v. Thus, for ε2 = log 2 − θ > 0

it holds that

P{Bk,v is non-empty} ≥ 1 − exp
(
cekdε2

)
. (3.24)

On the event that Bk,v is non-empty we denote by xk,v the vertex with the

smallest mark in the box.

As mentioned above each of these boxes corresponds to one potential midpoint

of the stars. For each such midpoint, i.e. for each such box we need a distinct set

of potential neighbours and connectors. To this end, we colour the vertices with

mark larger than 1
2
. Choose 0 < ε3 < θγ ∧ δε1 such that

∑∞
k=0 e

−kd(θγ∧δε1−ε3)

converges and color the points of X on Rd × [1
2
, 1) by the colour set N independ-

ently such that the points with color k ∈ N form a Poisson point process Xk on

Rd × [1
2
, 1) with an intensity proportional to e−kd(θγ∧δε1−ε3). For k = 0, . . . , kp
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and v ∈ Vk, we denote by

• Nk,v = Xk ∩ Ak,v × [1
2
, 3
4
) the potential neighbours of xk,v, if Bk,v is non-

empty and by

• Ck,v = Xk ∩ Ak,v × [3
4
, 1) the potential connectors, which we will use to

connect xk,v to other midpoints.

Note that the intensity of these Poisson point processes is decreasing in k, as

it is easier for vertices with smaller mark to find sufficiently many neighbours

and connectors in the corresponding boxes, so we require fewer candidates to

succeed.

Since θγ < log 2, there exists c > 0 such that, for all k = 0, . . . , kp, on the

event that Bk,v is non-empty it holds ct
−γ/d
k,v < 2k, where tk,v is the mark of xk,v.

Thus for each k = 0, . . . , kp, the volume of B(xk,v, ct
−γ/d
k,v ) ∩ Ak,v is a positive

proportion ρ > 1
2d

of the volume of the ball itself. As in the proof of Lemma

3.3 this leads to two observations. First, given Bk,v is non-empty, by the same

arguments as in the proof of Lemma 3.4 the number of neighbours of xk,v in Nk,v

is Poisson-distributed with parameter larger than ce−kd(θγ∧δε1−ε3)ekdθγ > cekdε3

for some constant c > 0 not depending on k. We denote by Star(k,v) the event

that Bk,v is non-empty and xk,v has at least S neighbours in Nk,v. Then, by a

Chernoff bound there exists c > 0 and k0 sufficiently large and not depending on

n such that for all k ≥ k0 and v ∈ Vk it holds

P
(

Star(k,v) |Bk,v is non-empty
)
≥ 1 − exp(−cekdε3). (3.25)

Second, given the box Bk+1,v and one of its children Bk,2v+e are non-empty,

note that xk+1,v and xk,2v+e have distance at most
√
d2k+1 and both have marks

smaller 1
2
e−kθd. Thus, by the same argument as used in the proof of Lemma 2.3,

there exists a constant c > 0 such that the number of vertices in Ck,2v+e which

form an edge to both xk+1,v and xk,2v+e is Poisson-distributed with parameter

larger than

ce−kd(θγ∧δε1−ε3)t−γ
k,2v+e

(
1 ∧ t−γδ

k+1,v(|xk,2v+e − xk+1,v| + t
γ/d
k,2v+e)

−dδ
)
> cekdε3

where the constant c > 0 changes through the steps but does not depend on k

117



3.3. EXPONENTIAL EXTINCTION TIME ON FINITE RESTRICTIONS

and v and we have used that θ > ε1+log 2
γ+γ/δ

. Denote by xk+1,v
2↔ xk,2v+e the event

that the boxes Bk+1,v and Bk,2v+e are non-empty and the vertices xk+1,v and

xk,2v+e are connected via a vertex in Ck,2v+e. Then, we have for all k ∈ N and

v ∈ Vk that

P(xk+1,v
2↔ xk,2v+e |Bk+1,v and Bk,2v+e are non-empty) ≥ 1 − exp(−cekdε3).

(3.26)

With the structure of the boxes and the bounds (3.24)-(3.26) at hand we will

show that there exists a connected subgraph containing of order n distinct stars

with at least S vertices each. This will be done in two steps. First, we show that

the vertices in the most powerful layer kp form a connected subgraph containing

nd
p distinct stars, where each box Bkp,v contains one of the midpoints of these

stars. Second, recall that each box Bkp,v for v ∈ Vkp represents the root of a 2d-

regular tree. We will show that the trees resulting only from boxes contributing

a star to the connected subgraph are percolated 2d-regular trees with a depth of

order kp containing of order 2kpd distinct stars. As there are nd
p many trees like

this, this will lead to a connected subgraph of Gn with of order n distinct stars.

To simplify notation we redefine the labeling of the boxes of layer kp. Let

σ : {0, . . . , nd
p − 1} → Vk

be a bijection such that Bkp,σ(0) = Bkp,0 and the boxes Bkp,σ(i), Bkp,σ(i+1) are

adjacent to each other for i = 0, . . . , nd
p − 2. In the same way we relabel the

vertices with the smallest mark in a box, i.e. on the event that Bkp,σ(i) is non-

empty we denote by xkp,σ(i) the vertex with the smallest mark in that box. We

say Bkp,σ(0) is good if and only if the box is non-empty and the vertex xkp,σ(0) has

at least S neighbours in Nkp,σ(0). By (3.24) and (3.25), there exists c > 0 such

that

P(Bkp,σ(0) is good) ≥
(
1 − exp(−cekpdε2)

)(
1 − exp(−cekpdε3)

)
.

For i = 0, . . . , nd
p − 2, we say Bkp,σ(i+1) is good if

(i) Bkp,σ(i) is good,

(ii) Bkp,σ(i+1) is non-empty,

(iii) xkp,σ(i+1) has at least S neighbours in Nkp,σ(i+1) and
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(iv) xkp,σ(i+1) and xkp,σ(i) are connected via a connector in Ckp,σ(i+1)

and otherwise bad. Let ε4 < ε2 ∧ ε3. Then, by (3.24)-(3.26), there exists c > 0

such that, for i = 0, . . . , nd
p − 2, it holds

P(Bkp,σ(i+1) is good |Bkp,σ(i) is good) ≥
(
1 − exp(−cekdε4)

)
.

Thus we can deduce that

P(Bkp,v is good for all v ∈ Vkp) ≥ 1−nd
0 exp(−cekpdε4) ≥ 1−n1−a log 2 exp(−cnaε4).

(3.27)

We continue the definition of good boxes on the other layers. For v ∈ N denote

by ⌊v
2
⌋ the vector (⌊v1

2
⌋, . . . , ⌊vd

2
⌋). Then, for each k = 0, . . . , kp − 1 and v ∈ Vk

the parent box of Bk,v is given by Bk+1,⌊v
2
⌋. For k = 0, . . . , kp − 1 and v ∈ Vk,

we say that Bk,v is good if

(i) Bk+1,⌊v
2
⌋ is good,

(ii) Bk,v is non-empty,

(iii) xk,v has at least S neighbours in Nk,v and

(iv) xk,v and xk+1,⌊v
2
⌋ are connected via a connector in Ck,v

and otherwise we say that Bk,v is bad. Note that again (3.24)-(3.26) implies that

there exists c > 0 such that for all k = 0, . . . , kp − 1, v ∈ Vk and e ∈ {0, 1}d, it

holds

P(Bk,2v+e is good |Bk+1,v is good} ≥ 1 − exp(−cekdε4) (3.28)

and given Bk+1,v is good, the events that Bk,2v+e is good are independent of each

other and any other box on this layer, since they depend on disjoint subsets of

X and edges occur independently. Therefore, the number of good children of

Bk+1,v, given this box is good, is Binomial-distributed with parameters 2d and

pk > 1 − exp(−cekdε4) and, given the good boxes on layer k + 1, the numbers

of good children of each of those good boxes are independent of each other.

Consequently, denote by |Bk| the number of good boxes in layer k. Then, given

|Bk+1|, |Bk| is Binomial-distributed with parameters 2d |Bk+1| and pk.

With this observation we are able to give estimates on the number of good
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boxes in each layer and show that sufficiently many good boxes exists. For

k = 0, . . . , kp− 1, we denote by Ek := {|Bk| > 2d(1− k−2) |Bk+1|} the event that

layer k has sufficiently many good boxes in comparison to layer k+ 1 of the next

more powerful vertices and we denote by Ekp the event that all boxes in layer kp

are good. Then, the event Ek ∩ . . . ∩ Ekp implies that

|Bk| >
∣∣Bkp

∣∣ kp−1∏
i=k

2d(1 − i−2) > cnd
02

d(kp−k−1) > c2−kdn,

where c =
∏∞

i=1(1 − i−2). Thus, it is sufficient to show that there exists k0 such

that Ek0 ∩ . . .∩Ekp holds with high probability. We choose k0 large enough that

(3.25) still holds for all k ≥ k0 and v ∈ Vk and that 1 − exp(cek0dε4) > 1 − k−2
0 .

Then, by a Chernoff bound for Binomial-distributed random variables it holds

P
(
Ec

k

∣∣ |Bk+1|
)
≤ exp

(
− 2d−1 |Bk+1| cekdε4

k2

)
for all k ≥ k0. As a consequence, there exists c > 0 such that

P(Ek |Ek+1 ∩ . . . ∩ Ekp) ≥ 1 − exp(−c
ekdε42−kdnd

k2
) ≥ 1 − exp

(
− c

nadε4

(log n)2
)
.

Hence, it follows together with (3.27) that

P(Ek0 ∩ . . . ∩ Ekp) ≥ P(Ekp)

(
1 − ⌊a log n⌋ exp

(
− c

nadε4

(log n)2
))

≥ 1 − exp(−nε)

for some ε not depending on n. As Ek0 ∩ . . .∩Ekp implies the existence of up to

a constant at least 2−k0n good boxes and therefore the existence of a connected

subgraph of Gn containing bn distinct stars, for some b > 0, this completes the

proof.

Proof of Theorem 3.14. Given the subgraph Gn = (Vn, En) provided by Propos-

ition 3.15 note that Gn is a connected tree by construction. Denote by Mn ⊂ Vn

the set of vertices which are the midpoints of the stars containing S vertices. For

x,y ∈ Mn, write x
2↔ y if there exists a connector in Gn which forms an edge to

x and y. By definition all vertices x,y ∈ Mn with x
2↔ y have graph distance
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at most two in Gn. The graph Hn given by the vertex set Mn and the edge set

Fn := {{x,y} : x,y ∈ Mn,x
2↔ y}

is a connected tree with degree bounded by 2d + 2 and for each pair x,y ∈ Mn

with x
2↔ y the connector is unique. Hence, for any λ > 0 and with S > 0 chosen

sufficiently large depending on λ by the same arguments as used in the proof of

[86, Theorem 1.4] together with [86, Proposition 5.2] it holds limn→∞ P{ϖn ≥
ecn} = 1 for some constant c > 0.
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CHAPTER 4

Application of results to concrete examples of scale-free

geometric random graphs

In this chapter we introduce and discuss various different examples of scale-

free geometric random graphs. Those models are either part of the discussed

class characterized in Section 1.2.2 or are well-studied models from the literature

which serve as a comparison to the first. We discuss the application of the main

results of this thesis to these models, with the first two sections being the core

of the chapter, as in these we discuss the two main examples, the age-dependent

random connection model and the soft Boolean model.

4.1 The age-dependent random connection model

In the age-dependent random connection model each vertex is a point of a Pois-

son point process of unit intensity on Rd which carries an independent uniform

distributed birth time in (0, 1). Thus, the vertex set is given by a Poisson point

process of unit intensity on Rd× (0, 1) and, for a vertex x = (x, t), the first entry

x is its location in Rd and the second entry is the birth time of the vertex, as

introduced in Section 1.2.1. Let γ ∈ (0, 1) and β > 0. Then, given the vertex set,
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Figure 4.1: Snapshot of a simulation of the age-dependent random connection
model on R× (0, 1). Values on the horizontal axis represent the location of the
vertices and values on the vertical axis their birth times. For the simulation we
set β = 1, γ = 0.75 and φ(x) := 1∧x−δ with δ = 1.5. For comparison see Figure
4.8.

we connect two vertices x = (x, t) and y = (y, s) independently with probability

φ
(
β−1(t ∧ s)γ(t ∨ s)1−γ |x− y|

)
, (4.1)

where φ : [0,∞) → [0, 1] is a non-increasing integrable function. See Section

4.1.1 for comments on the role and the interplay of the parameters γ and β and

the profile function φ.

Applying our main results proven in Chapter 2 we are able to give a sharp

transition for the occurence of ultrasmallness under assumptions on the profile

function φ. If there exists δ > 0 such that, for every ε > 0, there is C > 0 for

which it holds φ(r) ≤ Cr−(δ−ε) for r ≥ 0, then the age-dependent random con-

nection model satisfies Assumption UBA*, and consequently Assumption UBA,

for the parameters γ and δ − ε for every small ε > 0. Thus by Theorem 2.1,

ultrasmallness fails under this assumption on φ when γ < δ
δ+1

. In particular, this

implies that there is no ultrasmallness if the profile function φ only has bounded

support since the parameter δ can be chosen arbitrarily large in this case.

However, if the profile function φ also satisfies that, for every ε > 0, there is c > 0

for which φ(r) ≥ cr−(δ+ε), for all r ≥ 1, then the model satisfies Assumption LBA

for the parameters γ and δ + ε for every ε > 0. Hence, if γ > δ
δ+1

the model is

ultrasmall and, since the asymptotic lower and upper bounds given in Theorem
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2.1 and Proposition 2.13 hold for the parameter γ and one arbitrarily close to

δ, we obtain the full limit theorem stated in (2.5). In summary, we obtain the

following theorem.

Theorem 4.1

Let δ > 1 and φ : [0,∞) → [0, 1] such that, for every sufficiently small ε > 0,

there are c, C > 0 such that

cr−(δ+ε) ≤ φ(r) ≤ Cr−(δ−ε) for all r ≥ 1. (A1)

Then, the age-dependent random connection model

• is not ultrasmall if γ < δ
δ+1

and

• is ultrasmall if γ > δ
δ+1

and, for x,y ∈ Rd × (0, 1), we have

d(x,y) = (4 + o(1))
log log |x− y|
log
(

γ
δ(1−γ)

) (4.2)

under Px,y( · | x ↔ y) with high probability as |x− y| → ∞.

Under the same assumption on the profile function φ we also obtain the main

results of Chapter 3 for the age-dependent random connection model. Thus, as

a consequence of Theorem 3.1 the non-extinction probability

Γ(λ) := P(0,T0)
(ξ(0,T0)

t ̸= ∅ ∀ t ≥ 0)

of the contact process (ξ(0,T0)

t )t≥0 starting in the origin (0, T0) of the Palm-version

of the age-dependent random connection model is positive for any λ > 0 and

decays at the rate given in the following result when λ is small.

Theorem 4.2

Let δ > 1 and φ : [0,∞) → [0, 1] a profile function which it satisfies (A1).

When γ > δ
δ+1

, there exists c, C > 0 such that, as λ → 0, it holds

c
λ2/γ−1

log(1/λ)(1−γ)/γ
≤ Γ(λ) ≤ C

λ2/γ−1

log(1/λ)(1−γ)/γ
. (4.3)
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For the second main result of Chapter 3 we do not consider the age-dependent

random connection model itself, but a sequence of random graphs (G n)n∈N defined

on a homogeneous Poisson point process on Td
n× (0, 1), where, given the Poisson

point process, edges occur independently with probability given by (4.1) with the

Euclidean distance replaced by the torus metric given by Td
n. To see how this

fits as a rescaled version of the age-based spatial preferential attachment network

see Section 4.1.2. Theorem 3.14 and Remark 3.3.1 then yield the following result

for the extinction time ϖn := inf{t > 0 : ξG n

t = ∅} of the initially fully infected

contact process (ξG n

t )t≥0 on G n.

Theorem 4.3

Let φ : [0,∞) → [0, 1] a profile function which satisfies (A1) such that

γ > δ
δ+1

. For any λ > 0, there exists c > 0 such that

lim
n→∞

P{ϖn ≥ ecn} = 1.

As discussed in Section 1.2.1, the age-dependent random connection model can

be motivated as the weak local limit graph of the age-based spatial preferential

attachment network. We introduce this network in Section 4.1.1 and in Section

4.1.2 we give a rescaling argument which leads to a weak local limit theorem,

see Theorem 4.4, where the limiting graph is in fact the age-dependent random

connection model. By this weak local limit theorem and the analysis of the age-

dependent random connection model we are able to analyse various properties of

the age-based spatial preferential attachment network. In Section 4.1.3 we look

at the neighbourhood of a typical vertex in these random graphs and show that

they have a scale-free degree distribution with power-law exponent τ = 1 + 1
γ
. In

Section 4.1.4 we discuss the behaviour of the global and average clustering coeffi-

cient when the age-based spatial preferential attachment network grows large and

in Section 4.1.5 we discuss the typical edge length in this network. Throughout

the following sections we denote the age-dependent random connection model by

G ∞ to emphasize its property as a limit graph. Note that in the following the

limit graph G ∞ is defined on a Poisson process on Rd × (0, 1], however this has

no influence on the results of this thesis.

As mentioned in Section 1.2.5, the following subsections form the work in [55] as
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they can be found in [55] with slight changes in text and notation. See Section

1.2.5 for a discussion of the thesis’ author’s contribution to this work.

4.1.1 The age-based spatial preferential attachment net-

work

The age-based spatial preferential attachment model is a growing sequence of

graphs (Gn)n>0 in continuous time. The vertices of the graphs are embedded in

the d-dimensional torus Td
1 = (−1/2, 1/2]d of side-length one, endowed with the

torus metric dTd
1

defined by

dTd
1
(x, y) = min

{
|x− y + u| : u ∈ {−1, 0, 1}d

}
for x, y ∈ Td

1,

where |·| denotes the Euclidean norm as in the whole thesis. Vertices are denoted

by x = (x, t) and they are characterised by their birth time t > 0 and by their

location x ∈ Td
1.

At time n = 0 the graph G0 has no vertices or edges. Then

• Vertices arrive according to a standard Poisson process in time and are

placed independently uniformly on the d-dimensional torus Td
1.

• Given the graph Gn− a vertex x = (x, t) born at time t = n and placed

in location x is connected by an edge to each existing node y = (y, s)

independently with probability

φ

(
t · dTd

1
(x, y)d

β ·
(
t
s

)γ )
, (4.4)

where

(a) φ : [0,∞) → [0, 1] is the profile function. It is nonincreasing, integrable and

normalized in the sense that∫
Rd

φ(|x|d) dx = 1. (4.5)

The profile function can be used to control the occurrence of long edges.
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(b) γ ∈ (0, 1) is a parameter that quantifies the strength of the preferential

attachment mechanism. We shall see that it alone determines the power-

law exponent of the network.

(c) β ∈ (0,∞) is a parameter to control the edge density, which is asymptot-

ically equal to β
1−γ

, hence the smaller β, the sparser the graph.

Some comments on our choices in (4.4) are in order.

(i) For any r > 0, the profile function φ and parameter β define the same

model as the profile function x 7→ φ(rx) and parameter rβ. Hence the

normalization convention (4.5) represents no loss of generality. Similarly, if

the intensity of the arrival process is taken as λ > 0 the process (Gn/λ)n>0

is the original process with the same profile function φ and parameter βλ.

(ii) The form of the connection probability (4.4) is natural for the following

reasons: To ensure that the probability of a new vertex connecting to

its nearest neighbour does not degenerate, as n → ∞, it is necessary to

scale dTd
1
(x, y) by n−1/d, which is the order of the distance of a point to

its nearest neighbour at time n. Further, the integrability condition of φ

ensures that the expected number of edges connecting a new vertex to the

already existing ones, remains bounded from zero and infinity, as n → ∞.

(iii) In the degree-based spatial preferential attachment model of Jacob and

Mörters [69], introduced in Section 1.1.1, the term (t/s)γ that creates the

age dependence in our model is replaced by a function of the indegree, the

number of younger vertices y is connected to at time t. If this function is

asymptotically linear with slope γ, the network is scale-free with power-law

exponent τ = 1+ 1
γ
. In this case, the expected indegree is of order (t/s)γ so

that the models remain comparable and this is the natural choice to ensure

that our network model will be scale-free.

(iv) For the profile function φ, one has different choices. We normally assume

that φ is either regularly varying at infinity with index −δ, for some δ > 1,

or φ decays quicker than any regularly varying function, in which case

we set δ = ∞. In the latter case a natural choice is to consider φ(x) =
1
2a
1[0,a](x) for a ≥ 1/2. In this case, a vertex born at time s is linked to a

new vertex at time t with probability 1/(2a) if and only if their locations
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are within distance (
1

t
βa (t/s)γ

)1/d

.

In the case a = 1/2, the profile function φ only takes the values zero and

one, thus the decision is not random and we connect two vertices whenever

they are close enough. The degree-based preferential attachment model in

discrete time for this choice of φ was introduced in [1] and further studied

in [30] and [71]. This particular choice for the profile function helps to

get a better understanding of the problems and properties of this model,

see for example Section 4.1.4. However, as seen in the introduction of this

example this choice is too restrictive as it does not allow the networks to

be ultrasmall.

4.1.2 Weak local limit

In this section, we introduce a graphical representation of the network Gn. This

representation allows a simple rescaling, and the rescaled graphs turn out to

converge to a limiting graph, which is the already introduced age-dependent

random connection model. This also turns out to be the weak local limit of

the graph sequence (Gn)n≥0, which enables us to achieve results for the network

(Gn)n≥0 by studying the age-dependent random connection model.

Let X denote a Poisson point process of unit intensity on Rd × (0,∞). We say

a point x = (x, t) ∈ X is born at time t and placed at location x. Observe that,

almost surely, two points of X neither have the same birth time nor the same

location. We say that (x, t) is older than (y, s) if t < s. For n > 0 write Xn for

X ∩ (Td
1 × (0, n]), the set of vertices on the torus already born at time n. We

denote by

E(X ) := {(x,y) ∈ X × X : x younger than y}

the set of potential edges in X . Given X we introduce a family V of independent

random variables, uniformly distributed on (0, 1), indexed by the set of potential

edges. We denote these variables by Vx,y or V(x,y). A realization of Xn and Vn,

defined as the restriction of V to indices in Xn×Xn, defines a network G(Xn,Vn)

with vertex set Xn placing an edge between x = (x, t) and y = (y, s) with s < t,
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if and only if

V(x,y) ≤ φ

(
t · dTd

1
(x, y)d

β
(
t
s

)γ
)
. (4.6)

Observe that the graph sequence (G(Xn,Vn))n>0 has the law of our age-based spa-

tial preferential attachment network and is therefore constructed on the prob-

ability space carrying the Poisson process X and the sequence V . Moreover,

G extends to a deterministic mapping associating a graph structure to any loc-

ally finite set of points in Y ⊆ Td
a × (0,∞) and sequence V in (0, 1) indexed

by E(Y) = {(x,y) ∈ Y × Y : x younger than y}, where Td
a = (−1

2
a1/d, 1

2
a1/d]d is

the torus of volume a equipped with its canonical metric dTd
a
(·, ·), and x, y are

connected if and only if (4.6) holds. We permit the case a = ∞, with Td
∞ = Rd

equipped with the Euclidean metric.

For finite n > 0, we define the rescaling mapping

hn : Td
1 × (0, n] −→ Td

n × (0, 1],

(x, t) 7−→
(
n1/dx, t/n

)
,

which expands space by a factor of n1/d and time by a factor of 1/n. The mapping

hn operates canonically on the set Xn as well as on Vn by hn(Vn)(hn(x), hn(y)) :=

Vn(x,y), and also on graphs with vertex set in Xn by mapping points x to hn(x)

and introducing an edge between hn(x) and hn(y) if and only if there is one

between x and y. As

φ

t/n · dTd
n
(n1/dx, n1/dy)d

β
(

t/n
s/n

)γ
 = φ

(
t · dTd

1
(x, y)d

β
(
t
s

)γ
)

the operation hn preserves the rule (4.6) and therefore

G(hn(Xn), hn(Vn)) = hn(G(Xn,Vn)).

In plain words, it is the same to construct the graph and then rescale the picture,

or to first rescale the picture and then construct the graph on the rescaled picture,

see Figure 4.2.

We now denote X n = X ∩ (Td
n × (0, 1]) and by Vn the restriction of V to indices
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Figure 4.2: The graph Gn on the left and its rescaling hn(Gn) on the right. The
blue vertices are born after time n and, therefore, the corresponding edges do not
exist yet and the vertices are not part of the rescaled graph. The yellow vertex
is placed at location 0 and remains in the centre after the rescaling.

in X n × X n. This gives rise to a graph G n := G(X n,Vn). As hn(Xn) is a

Poisson point process of unit intensity on Td
n× (0, 1] and hn(Vn) are independent

uniform marks attached to the potential edges, for fixed finite n, the graph G n

has the same law as G(hn(Xn), hn(Vn)) and therefore as hn(Gn). However, the

process (G n)n>0 behaves differently from the original process (Gn)n>0. Indeed,

while the degree of any fixed vertex in (Gn)n>0 goes to infinity, the degree of any

fixed vertex in (G n)n>0 stabilizes and the graph sequence converges to the graph

G ∞ := G(X∞,V∞); see the theorem below.

In order to formulate also a local version of this convergence result we add a point

at the origin to our Poisson process denoting X(0,T0)
:= X ∪ {(0, T0)} where T0 is

an independent, uniformly on (0, 1] distributed birth time. As before let V(0,T0)
be

a family of independent uniformly distributed random variables indexed by the

potential edges in X(0,T0)
, and, for 0 < n ≤ ∞, let X n

(0,T0)
= X(0,T0)

∩ (Td
n × (0, 1])

and denote by Vn
(0,T0)

the restriction of V(0,T0)
to indices in X n

(0,T0)
× X n

(0,T0)
. We
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define rooted graphs G n
(0,T0)

:= G(X n
(0,T0)

,Vn
(0,T0)

) with the root being the vertex

placed at the origin. For p > 0 define the class Hp of nonnegative functions H

acting on locally finite rooted graphs and depending only on a bounded graph

neighbourhood of the root with the property that

sup
0<n<∞

E[H(G n
(0,T0)

)p] < ∞.

Theorem 4.4

(i) G ∞ is almost surely locally finite, i.e. almost surely all its vertices have

finite degree.

(ii) Almost surely, the graph sequence (G n) converges to G ∞ in the sense

that for each x ∈ X∞ the neighbours of x in G n and in G ∞ coincide

for large n.

(iii) In probability, the graph sequence (Gn) converges weakly locally to

G ∞
(0,T0)

in the sense that for any H ∈ Hp, p > 1, we have

lim
n→∞

1

n

∑
x∈Gn

H(θxGn) = E[H(G ∞
(0,T0)

)] in probability, (4.7)

where θx acts on points y = (y, s) as θx(y) = (y − x, s) and on graphs

accordingly.

Theorem 4.4 will be proved in Section 4. As mentioned beforehand the limiting

graph G ∞ in (ii) is the age-dependent random connection model. The rooted

graph G ∞
(0,T0)

occurring as the local limit is the Palm version of the age-dependent

random connection model G ∞; loosely speaking the graph G ∞ with a typical

vertex shifted to the origin.

Remark 4.1.1.

• Weak local limits were introduced by Benjamini and Schramm [9] as distri-

butional limits for determinstic sequences of finite graphs randomized by

a uniform choice of root. The result in (iii) allows that H additionally de-

pends continuously on the ages of the vertices and the length of the edges if

taken in the scaled graphs hn(θxGn). Further generalisations of the results
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hold, see Yukich and Penrose [92] for seminal work on random geometric

graphs and Jacob and Mörters [69] for a similar proof in the case of the

degree-based model which can be adapted to our situation. We will not

need these more general results here.

• The age-dependent random connection model is in a different universality

class than other established models of infinite spatial scale-free graphs.

Examples as scale-free percolation, see Section 4.3, or ultra-small scale-free

geometric networks, see Section 4.4, do not arise naturally from sequences

of growing finite random graphs on a fixed space as the age-dependent

random connection model does.

• There is a similar convergence result for the degree-based spatial prefer-

ential attachment model, but the limiting graph is not as natural as the

age-dependent random connection model as the existence of edges between

vertices with given location and age depends in this graph on the existence

of edges between the older vertex and other vertices that may lie arbitrarily

far away, see Jacob and Mörters [69].

4.1.3 Convergence of neighbourhoods and degree distri-

butions

In this section we will study the asymptotic degree distribution and show that

the age-based spatial preferential attachment model is scale-free. To this end we

study the neighbourhood of a fixed vertex x = (x, t) in the graphs G n. We think

of edges as oriented from the younger to the older endvertex, so that the indegree

of x is the number of younger vertices that connect to it, and the outdegree is the

number of older vertices it connects to. As our construction is based on Poisson

processes and conditionally independent edges, the indegree and outdegree of a

fixed vertex are independent and Poisson distributed.

If G is a graph with vertices in Td
n × (0,∞), we write x ∼ y to indicate that

there is an edge between x and y in G. Now, let x = (x, t) be a vertex in G and

define its older neighbours,

Yx(G) := {y = (y, s) ∈ G : x ∼ y, s ≤ t},
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and its younger neighbours born before time s,

Zx(s,G) := {y = (y, r) ∈ G : y ∼ x, t < r ≤ s}.

For n ∈ (0,∞] and 0 < t < s ≤ 1, we write Yn
x := Yx(G n) and Zn

x (s) :=

Zx(s,G n), adding the point x = (x, t) to the underlying Poisson process X if it

is not already there.

Proposition 4.5

(a) For every n ∈ (0,∞], the older neighbours Yn
x of x = (x, t) form a

Poisson point process on Td
n × [0, t) with intensity measure

λYn
x

:= φ
(
β−1t

(s
t

)γ
dTd

n
(x, y)d

)
dy ds.

(b) For every n ∈ (0,∞], the younger neighbours Zn
x (s0) of x = (x, t)

at time s0 ∈ (t, 1] form a Poisson point process on Td
n × (t, s0] with

intensity measure

λZn
x (s0) := φ

(
β−1s

(
t

s

)γ

dTd
n
(x, y)d

)
dy ds.

(c) The outdegree of the origin in G ∞
(0,T0)

is Poisson distributed with para-

meter β
1−γ

and independent of the birth time T0 of the origin.

(d) The indegree of the origin in G ∞
(0,T0)

is mixed Poisson distributed, where

the mixing distribution has the density

f(λ) = β1/γ(γλ + β)−(1+1/γ) for λ > 0. (4.8)

Proof. The older neighbours of x = (x, t) are all neighbours with birth time

smaller than t, therefore, X ∩ (Td
n × [0, t)) is the set of all potential vertices

connected to x by an outgoing edge. Now, given X a vertex y = (y, s) ∈ X∩(Td
n×

[0, t)) is connected to x independently with probability φ(β−1t1−γsγdTd
n
(x, y)d).

Thus, Yn
x defines a thinning of X ∩ (Td

n × [0, t)) and (a) follows. The analogous

argument for the vertices in X ∩ (Td
n × (t, s0]) proves (b).
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Applying (a) to x = (0, t) and n = ∞ gives that the number of older neighbours

is Poisson distributed with parameter

λY∞
x

(
Rd × [0, t]

)
=

∫ t

0

ds

∫
Rd

dy φ
(
β−1t1−γsγ|y|d

)
=

∫ t

0

ds βtγ−1s−γ

∫
Rd

dyφ
(
|y|d
)

=
β

1 − γ
,

using the normalisation of φ. The claimed independence follows as the distribu-

tion does not depend on t, completing the proof of (c).

Applying (b) to x = (0, t) and n = ∞ gives that the number of younger neigh-

bours up to time s is Poisson distributed with parameter

λZ∞
x (s)

(
Rd × (t, s]

)
=

∫ s

t

dv

∫
Rd

dy φ
(
β−1v1−γtγ|y|d

)
= β

∫ s

t

dv t−γvγ−1

∫
Rd

dy φ(|y|d)

= β

∫ s

t

dv t−γvγ−1 = β
sγt−γ − 1

γ
.

As T0 is independent of X and V the probability that the indegree equals k is

therefore

∫ 1

0

dt exp
(
− β

t−γ − 1

γ

)
·
(
β t−γ−1

γ

)k
k!

=

∫ ∞

0

dλ exp(−λ) · λ
k

k!
·
(
β1/γ(γλ + β)−(1+1/γ)

)
,

as claimed.

Remark: Since, by construction, Yn
x and Zn

x (1) are independent Poisson point

processes, the neighbourhood of a point x = (x, t) added (if necessary) to G n is

a Poisson point process with intensity λZn
x (1) +λYn

x
. Let now n be finite and pick

a vertex x uniformly at random from the finite graph Gn. We easily see that

hn(θxGn) = G n
(0,T0)

in distribution. Hence Proposition 4.5 part (a) and (b) give a

precise description of the neighbourhood of a randomly chosen vertex in Gn.

Proof of Theorem 4.4(i). By Proposition 4.5 part (c) and (d), almost surely, the

origin has finite degree in G ∞
(0,T0)

. Hence, by the refined Campbell theorem (see
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Figure 4.3: Heatmaps of the neighbourhood of a relatively old root (left, birth
time 0.2) and of a relatively young root (right, birth time 0.8) in G ∞

(0,T0)
with

β = 5, γ = 1/3 and φ(x) = 1 ∧ x−2.

Theorem 9.1 in [76]), almost surely, every vertex in G ∞ has finite degree.

Proof of Theorem 4.4(ii). We work conditionally on x = (x, t) ∈ X∞. Our aim

is to show that there exists an almost surely finite random variable M such that,

for all n ∈ (0,∞] and y ∈ X∞ with distance at least M from x, the vertices x

and y are not connected in G n. To this end, observe that the distance between

x and any y ∈ Td
n can be up to 2

√
d |x| smaller than it would be in Rd. Consider

the model where the vertices within distance 2
√
d |x| of x are deleted from X∞

and all the other vertices are moved towards x by a distance of 2
√
d |x|. It is

easy to see that all vertices y ∈ X∞, that are at least 2
√
d |x| away from x and

connected to x in the finite graph G n for some n > 0, are also linked to x in this

new model. Furthermore, the degree of x is still almost surely finite. Hence, we

define the random variable M as the distance of x to the furthest vertex it is

linked to in this new model, plus 2
√
d |x|. Then M is almost surely finite and,

as for n > |x| + M the vertices in X∞ and in X n within distance M from x

coincide, the edges of x linking it to another vertex y that is at most M away

coincide in G n and G ∞ for sufficiently large n.

Proof of Theorem 4.4(iii). We can replace the left-hand side in (4.7) by the limit
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of 1
n

∑
x∈G n H(θxG n), which has the same distribution and, due to Campbell’s

formula, has expectation E[H(G n
(0,T0)

)]. Furthermore, the neighbourhoods of

the origin in G n
(0,T0)

and in G ∞
(0,T0)

agree for sufficiently large n. As the family

(H(G n
(0,T0)

))n>0 is bounded in Lp and therefore uniformly integrable, we infer

that E[H(G n
(0,T0)

)] converges to E[H(G ∞
(0,T0)

)]. Hence the first moments in (4.7)

converge, and we now argue that for bounded H the second moments converge,

too.

Spelling out the second moment of 1
n

∑
x∈G n H(θxG n) we get a term correspond-

ing to choosing the same x ∈ G n twice, which by the first moment calculation

applied to H2 converges to zero, and the term

E
[ 1

n2

∑
x,x′∈Gn

x̸=x′

H(θxG
n)H(θx′G n)

]
.

Using the boundedness of H we can chose ε > 0 so that the contribution from

pairs x,x′ for which one is born before time ε is arbitrarily small. We can then

find a large radius R so that the graph neighbourhood of the origin on which H

depends is contained in {y : dTd
1
(0, y) ≤ R} for θxG n for a proportion of vertices

x ∈ G n born after time ε arbitrarily close to one, for all sufficiently large n. We

can neglect the small proportion of exceptional vertices as well as pairs x,x′ with

distance smaller than R using again the boundedness of H. On the remaining

part the expectation factorizes and we see that second moment converges to

E[H(G ∞
(0,T0)

)]2. Hence we get convergence in L2.

It remains to remove the condition of boundedness of H. Let k ∈ N and observe

that our result applies to the bounded functional H ∧ k. Note that

E
[ 1

n

∑
x∈G n

H(θxG
n) −H ∧ k(θxG

n)
]

= E
[
H(G n

(0,T0)
) −H ∧ k(G n

(0,T0)
)
]

and the right hand side goes to zero uniformly in n as k → ∞ by the uniform

integrability implied in our Lp bound. This implies the required convergence.

We define the empirical outdegree distribution νn of the graph Gn by

νn(k) =
1

n

∑
x∈Gn

1{|Yx(Gn)|=k} for k ∈ N0,
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and note that (for convenience) we have normalised νn so that its mass converges

to one without necessarily being equal to one for small n. We now show that the

empirical outdegree distribution νn converges to a deterministic limit.

Theorem 4.6

For any function g : N0 → [0,∞) growing no faster than exponentially we

have
1

n

∑
x∈Gn

g
(
|Yx(Gn)|

)
=

∫
dνn g −→

∫
dν g,

in probability, as n → ∞, where ν is the Poisson distribution with parameter

β/(1 − γ).

Proof. For a finite graph G with vertices marked by birth times and a root

vertex x we can define H(G) = g(|Yx(G)|) where Yx(G) is the set of edges

from the root to older vertices in G. Note that the function H depends only

on the neighbourhood of the root within graph distance one and the relative

birth times of these vertices. Moreover, H(G n
(0,T0)

) = g(|Yx(G n
(0,T0)

)|) where x ∈
G n

(0,T0)
is the vertex placed at the origin, for arbitrary n, and as |Yx(G n

(0,T0)
)|

is Poisson distributed with a bounded parameter, the integrability condition

H ∈ Hp is satisfied as long as g is not growing faster than exponentially. As

H(θxGn) = g(|Yx(Gn)|) for all x ∈ Xn and finite n, we infer the result from

Theorem 4.4(iii).

Define the empirical indegree distribution µn of the graph Gn by

µn(k) =
1

n

∑
x∈Gn

1{|Zx(n,Gn)|=k}.

Similar to above, the empirical indegree distribution µn also converges to a de-

terministic limit.
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Theorem 4.7

For any function g : N0 → [0,∞) growing no faster than linearly we have

1

n

∑
x∈Gn

g
(
|Zx(n,Gn)|

)
=

∫
dµn g −→

∫
dµ g,

in probability, as n → ∞, where µ is the mixed Poisson distribution with

density f as in (4.8)

Proof. For a finite graph G with vertices marked by birth times and a root

vertex x we can define H(G) = g(|Zx(G)|) where Zx(G) is the set of edges

from younger vertices in G to the root. Note that the function H depends only

on the neighbourhood of the root within graph distance one and the relative

birth times of these vertices. Moreover, H(G n
(0,T0)

) = g(|Zx(G n
(0,T0)

)|) where x ∈
G n

(0,T0)
is the vertex placed at the origin, for arbitrary n. Now |Zx(G n

(0,T0)
)| is

dominated by |Zx(G ∞
(0,T0)

)| whose distribution µ has tails (calculated in Lemma 4.8

below) that vanish fast enough to ensure that H ∈ Hp for some p > 1. As

H(θxGn) = g(|Zx(Gn)|) for all x ∈ Xn and finite n, we infer the result from

Theorem 4.4(iii).

To complete the proof that the age-based preferential attachment model is scale-

free with power-law exponent τ = 1 + 1
γ

we observe that, by a similar argument

as in Theorem 4.6 and Theorem 4.7, the empirical degree distribution in Gn con-

verges in probability to the convolution of ν and µ. As ν has superexponentially

light tails, the tail behaviour of the convolution is inherited from that of µ, which

we now calculate.
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Lemma 4.8

µ(k) = k−(1+ 1
γ
)+o(1) as k → ∞.

Proof. Observe that

µ(k) = β1/γ

∫ ∞

0

dλ
λk

k!
e−λ(γλ + β)−(1+ 1

γ
) ≤ β1/γγ−1− 1

γ

Γ(k + 1)

∫ ∞

0

dλλ(k− 1
γ
)−1e−λ

=
β1/γ

γ1+1/γ

Γ(k − 1
γ
)

Γ(k + 1)
= k−1− 1

γ
+o(1),

as k → ∞, by Stirling’s formula. On the other hand, note that for some fixed

bound A > 0, there exists a constant c > 0 such that γx+β ≤ cγx for all x ≥ A.

Hence

µ(k) ≥ c−1− 1
γ β1/γ

Γ(k + 1)

∫ ∞

A

dλλke−λ(γλ)−1− 1
γ

= c̃
Γ(k − 1

γ
)

Γ(k + 1)
− c̃

Γ(k + 1)

∫ A

0

dλλ(k− 1
γ
)−1e−λ,

for some positive constant c̃. As the subtracted term, for fixed A, is of smaller

order, as k → ∞, we obtain the lower bound.

Remark 4.1.2. Note that by Proposition 4.5 the degree distribution of the origin

in G ∞
(0,T0)

is given by the convolution of ν and µ. Thus, Lemma 4.8 implies that the

age-dependent random connection model is scale-free with power-law exponent

τ = 1 + 1
γ
. We will use the arguments presented in Proposition 4.5 and 4.8 to

show that later examples of geometric random graphs are scale-free as well.

4.1.4 Global and local clustering coefficients

To show that the age-based spatial preferential attachment model has clustering

features we recall two metrics introduced in Section 1.1.1 which are well estab-

lished in the applied networks literature, see e.g. [90, 97] for some early papers. If

G is a finite graph, we call a pair of edges in G a wedge if they share an endpoint

(called its tip). Recall that the global clustering coefficient or transitivity of G is
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given by

cglob(G) := 3
Number of triangles in G

Number of wedges in G
,

if there is at least one wedge in G and cglob(G) := 0 otherwise.

Another way of thinking about clusters is locally; i.e. to count only the tri-

angles and wedges containing a fixed vertex x. For a vertex x with at least two

neighbours, the local clustering coefficient is given by

clocx (G) :=
Number of triangles in G containing vertex x

Number of wedges with tip x in G
,

which is also an element of [0, 1]. Let V2(G) ⊆ G be the set of vertices in G with

degree at least two, and define the average clustering coefficient by

cav(G) :=
1

|V2(G)|
∑

x∈V2(G)

clocx (G),

if V2(G) is not empty and by cav(G) := 0 otherwise. Note that this metric places

more weight on the low degree nodes, while the transitivity places more weight

on the high degree nodes.
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Theorem 4.9: Clustering Coefficients

(a) For the average clustering coefficient we have

cav(Gn) −→
∫ 1

0

π(dt)P
{

(Y (1)

t , S(1)

t ) ∼ (Y (2)

t , S(2)

t )
}
,

in probability as n → ∞, where (Y (1)

t , S(1)

t ) resp. (Y (2)

t , S(2)

t ) are two

independent random variables on Rd × [0, 1] with distribution

1

λt

(
φ(β−1s1−γtγ|y|d)1(t,1](s) + φ(β−1t1−γsγ|y|d)1[0,t](s)

)
dy ds, (4.9)

where λt = β
γ
(2γ−1
1−γ

+ t−γ) is the normalising factor, and π is the prob-

ability measure on [0, 1] with density proportional to 1− e−λt −λte
−λt .

(b) For the global clustering coefficient, there exists a number cglob∞ ≥ 0

such that

cglob(Gn) −→ cglob∞

in probability, as n → ∞. The limiting global clustering coefficient

cglob∞ is positive if and only if γ < 1/2.

Remark 4.1.3. The limiting average clustering coefficient can be interpreted as

the probability that in G ∞
(0,T0)

two neighbours of the vertex at the origin are

connected by an edge. The density of the birthtime of the vertex at the origin here

is not uniform but given by the measure π, which is the conditional distribution

of the birthtime of a vertex given that it has degree at least two. Observe that

this coefficient is always positive. By contrast the global clustering coefficient

vanishes asymptotically when preferential attachment to old nodes is strong (i.e.

when γ is large). In this case the collection of wedges is dominated by those

with an untypically old tip. These vertices have small local clustering as they

are endvertices to a significant amount of long edges.

Proof. Let G be a finite rooted graph and define the function H(G) = clocx (G) if

the root x has degree at least two, and H(G) = 0 otherwise. As H is bounded,
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we have H ∈ Hp for any p > 1 and, by Theorem 4.4 (iii), we get

1

n

∑
x∈Gn

H(θxGn) −→ E
[
H(G ∞

(0,T0)
)
]

in probability, as n → ∞. To calculate the limit, observe that, for a vertex x

with degree k, the number of wedges with tip x is k(k − 1)/2. It follows that

E
[
H(G ∞

(0,T0)
)
]

=

∫ 1

0

dt
∑
k≥2

E
[

2

k(k − 1)

∑
(y,s)∼(0,t)

∑
(z,u)∼(0,t)

u<s

1{(y,s)∼(z,u)}1{|Y∞
(0,t)

|+|Z∞
(0,t)

(1)|=k}

]
.

By Proposition 4.5, the neighbourhood of the root (0, t) is given by a Poisson

point process with intensity measure

λZ∞
(0,t)

(1) + λY∞
(0,t)

.

Conditioned on the number of neighbours, the neighbours of the root (0, t) are

independent and identically distributed by the normalized intensity measure of

the neighbourhood given in (4.9), see [76, Proposition 3.8]. Therefore,

E
[
H(G ∞

(0,T0)
)
]

=

∫ 1

0

dtP
{

(Y (1)

t , S(1)

t ) ∼ (Y (2)

t , S(2)

t )
}
P
{
|Y∞

(0,t)| + |Z∞
(0,t)(1)| ≥ 2

}
,

where (Y (1)

t , S(1)

t ) and (Y (2)

t , S(2)

t ) are independent and identically distributed as

claimed. Choosing H(G) as the indicator of the event that the root has degree

at least two, Theorem 4.4 (iii) gives

|V2(Gn)|
n

−→
∫ 1

0

dtP
{
|Y∞

(0,t)| + |Z∞
(0,t)(1)| ≥ 2

}
dt,

in probability. As |Y∞
(0,t)| + |Z∞

(0,t)(1)| is Poisson distributed with intensity λt we

conclude that

cav(Gn) −→
∫ 1

0
dtP

{
(Y (1)

t , S(1)

t ) ∼ (Y (2)

t , S(2)

t )
} (

1 − e−λt − λte
−λt
)∫ 1

0
dt 1 − e−λt − λte−λt

,

as claimed in part (a).
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For the global clustering coefficient, we count the number of triangles and wedges

separately. To this end, define H(G) to be the number of triangles which have

their youngest vertex in the root of G, and Ĥ(G) to be the number of wedges

with tip in the root x of G. Note that H(G n
(0,T0)

) ≤ |Yx(G ∞
(0,T0)

)|2 and thus H ∈ Hp

for any p > 1. Moreover,

Ĥ(G n
(0,T0)

) =
1

2
|Yn

x |(|Yn
x | − 1) +

1

2
|Zn

x (1)|(|Zn
x (1)| − 1) + |Yn

x ||Zn
x (1)|

≤ 2
(
|Y∞

x |2 + |Z∞
x (1)|2

)
.

If γ < 1/2 and 1 < p < 1/(2γ), we hence have Ĥ ∈ Hp and Theorem 4.4(iii)

gives that

cglob(Gn) =

∑
x∈Gn

H(θxGn)

n
· n∑

x∈Gn
Ĥ(θxGn)

−→
E[H(G ∞

(0,T0)
)]

E[Ĥ(G ∞
(0,T0)

)]
> 0

in probability. If γ > 1/2, applying the theorem to the bounded functions

Ĥ(Gn) ∧ k and then sending k to ∞, we get 1
n

∑
x∈Gn

Ĥ(θxGn) → ∞ and hence

cglob(Gn) → 0 in probability, as n → ∞.

Figure 4.4: Local clustering coefficient of a vertex (0, t) for parameters a = 1
and β = ced(1 − γ) chosen such that the asymptotic edge density is fixed at
ced. The plot on the left displays the behaviour of the model for high edge
density (ced = 10) for various values of γ. We remark that the shown behaviour
is qualitatively independent of the edge density. In the plot on the right, the
clustering coefficient for γ = 0.2 is shown, along with the probabilities of the
event that t is younger (resp. in the middle or older) than two randomly picked
neighbours, which are connected.
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The local and average clustering coefficients cannot be calculated explicitly, but

can be simulated; see the appendix of this paper for a discussion on the simulation

techniques used here. We focus on the profile functions φ = 1
2a
1[0,a], for a ≥ 1/2,

dimension d = 1, and fixed edge density β/(1 − γ). Figure 4.4 shows the local

clustering coefficient of a vertex of age t in G ∞ showing monotone dependence

on the age, i.e. the empirical probability that two neighbours of a given vertex

are connected to each other is larger for younger vertices. This coincides with

our intuitive understanding of the local structure of the networks, in which a

young vertex, typically, is connected to either very close or very old vertices such

that two randomly chosen neighbours have a decent chance of being connected

to each other as well. By contrast, an old vertex typically has more long edges to

younger vertices. Thus, two of its neighbours are typically further apart, which

reduces the chance of them being each others neighbour. This monotonicity

occurs independently of the choice of β, γ and a.

In Figure 4.5 we see that the dependence of the average clustering coefficient

with respect to the width a of the profile function is of order 1
a
, a scaling that

we also see in the analysis of the global clustering coefficient in the case γ < 1
2
.

Hence, the average clustering coefficient and the global clustering coefficient (if

γ < 1
2
) can be varied by the choice of φ and can be made arbitrarily small by

choosing a large. Unlike with the global clustering coefficient, there is a mild

dependence on β. Again, roughly speaking, large width of φ encourages long

edges and reduces clustering.

145



4.1. THE AGE-DEPENDENT RANDOM CONNECTION MODEL

Figure 4.5: Average clustering coefficient for the network with profile function
φ = 1

2a
1[0,a] plotted against the width a, for γ = 0.3 in the left resp. γ = 0.6 in

the right graphs. The graphs in the top row correspond to fixed edge density 1
while the bottom row corresponds to edge density 10.

4.1.5 Asymptotics for typical edge lengths

In this section we study the distribution of the length of typical edges in Gn. We

denote by E(G) the set of edges of the graph G and define λn, the (rescaled)

empirical edge length distribution in Gn, by

λn =
1

|E(Gn)|
∑

(x,y)∈E(Gn)

δn1/ddTd1
(x,y).
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Theorem 4.10

For every continuous and bounded g : [0,∞) → R, we have

1

|E(Gn)|
∑

(x,y)∈E(Gn)

g
(
n1/ddTd

1
(x, y)

)
=

∫
dλn g →

∫
dλ g,

in probability, as n → ∞, where the limiting probability measure λ on (0,∞)

is given by

λ([a, b)) =
1 − γ

β

∫ 1

0

dt

∫ t

0

ds

∫
a≤|y|<b

dy φ
(
β−1t1−γsγ|y|d

)
. (4.10)

Proof. For a finite graph G with vertices positioned in Rd and marked by birth

times and with a root vertex x placed at the origin define, for a < b ∈ [0,∞],

the function

Ha,b(G) =
∑

y∈Yx(G)

1[a,b)(|y|). (4.11)

Observe that the law of λn([a, b)) in Gn equals the law of

1

|E(G n)|
∑
x∈Xn

Ha,b(θxG
n).

As mentioned in the remark following the theorem, Theorem 4.4 is applicable to

functions Ha,b depending on the length of edges in the rescaled graphs (G n)n>0.

Since the sum in (4.11) is dominated by the outdegree, Ha,b ∈ Hp for some p > 1.

We thus get
1

n

∑
x∈Xn

Ha,b(θxG
n) −→ E[Ha,b(G

∞
(0,T0)

)],

and since Theorem 4.4 (iii) also gives |E(G n)| /n → β
1−γ

and it also holds that

λ([a, b)) = 1−γ
β
E[Ha,b(G ∞

(0,T0)
)] we infer that λn([a,∞)) −→ λ([a,∞)) in prob-

ability, as n → ∞. Therefore, convergence in probability of λn to λ in the

space of probability measures on R+, equipped with the Lévy-Prokhorov metric,

follows.
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Remark 4.1.4. Suppose there exists δ > 1 such that the profile function satisfies

φ(xd) ≍ 1 ∧ x−dδ. Then the explicit formula for λ in (4.10) can be used to

calculate the tail behaviour of λ. More precisely, separating the integration into

several domains, depending on whether we are integrating over the tail domain

of φ or not, results in the terms of order d, d( 1
γ
− 1) and d(δ − 1). This gives

that λ([K,∞)) ≍ 1 ∧ (β−1/dK)−η, where

η := min
{
d, d(

1

γ
− 1), d(δ − 1)

}
. (4.12)

In particular, λ has finite expectation if η > 1 and infinite expectation if η < 1.

We denote by M∞
(0,T0)

the length of the longest outgoing edge of the origin in G ∞
(0,T0)

.

By the construction of λ above, λ([K,∞)) is the expected number of outgoing

edges of length bigger than K divided by the total number of outgoing edges

from the origin. If K is large this should be of similar order to the probability

that M∞
(0,T0)

≥ K. This is confirmed in the following lemma.

Lemma 4.11

Suppose there exists δ > 1 such that the profile function satisfies φ(xd) ≍
1 ∧ x−dδ. Then, E

[
(M∞

(0,T0)
)a
]

is finite if a < η and infinite if a > η, where η

is as defined in (4.12).

Proof. We show that the tail probability P{(M∞
(0,T0)

)a ≥ K} is of order K−η/a as

K → ∞. The number of outgoing edges with length at least K1/a in G ∞
(0,T0)

from

the vertex (0, t) at the origin are Poisson distributed with parameter

λK1/a,t := λY∞
(0,t)

(
Rd\({|x| < K1/a}) × (0, t]

)
,

and hence

P{(M∞
(0,T0)

)a ≥ K} =

∫ 1

0

dt 1 − exp
(
− λK1/a,t

)
≍
∫ 1

0

dt λK1/a,t ≍ λ([K1/a,∞)),

recalling the asymptotic edge length distribution λ defined in (4.10). The estab-

lished tail behaviour of the measure λ yields P{(M∞
(0,T0)

)a ≥ K} ≍ 1∧K−η/a.

Using this, we can establish a result about the average rescaled length in the
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network Gn.

Theorem 4.12

Suppose that there exists δ > 1 such that the profile function satisfies φ(xd) ≍
1 ∧ x−dδ. Then, for all a > 0 and b ∈ [0, η

a
), there exists a positive constant

C, depending on a, b, γ, β, φ, such that

1

|E(Gn)|
∑
x∈Gn

( ∑
y∈Yx(Gn)

(
n1/ddTd

1
(x, y)

)a)b

→ C (4.13)

in probability, as n → ∞.

Remark 4.1.5. If η > 1 one can choose a = b = 1 and this yields that the mean

edge length in Gn is of order n−1/d. If η < 1 (and in particular always if d = 1)

the mean edge length is of larger order.

Proof. Consider again a finite graph G with vertices positioned in Rd and marked

by birth times and with a root vertex x placed at the origin. Define

H(G) :=
( ∑

y∈Yx(G)

|y|a
)b

and observe that the law of the left-hand side in (4.13) equals the law of

1

|E(G n)|
∑
x∈Xn

H(θxG
n).

It suffices to show that H ∈ Hp for some p > 1, since Theorem 4.4 (iii) then

ensures the convergence in probability to 1−γ
β
E[H(G ∞

(0,T0)
)], which is a positive

constant. To this end recall M∞
(0,T0)

, the length of the longest outgoing edge of

the root x in G ∞
(0,T0)

and observe that, almost surely, H(G n
(0,T0)

) ≤ (M∞
(0,T0)

)ab|Y∞
x |b.

Since, by choice, ab < η, there exist some p, q > 1, such that α := pqab < η.

Lemma 4.11 then ensures E[(M∞
(0,T0)

)α] < ∞ and, by applying Hölder’s inequality

to the observed bound for H(G n
(0,T0)

), we get

sup
n>0

E
[
H(G n

(0,T0)
)p
]
≤
(
E
[
(M∞

(0,T0)
)α
])1/q (E [|Y∞

x |
α

a(q−1)

]) q−1
q

< ∞.
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4.2 The soft Boolean model

As explained in Section 1.2.1 in the (soft) Boolean model on Rd each point x

of a Poisson point process of unit intensity carries an independent identically

distributed radius Rx and we assign to each unordered pair of vertices {x, y}
an independent identically distributed random variable X(x, y). Given these

random variables two vertices are connected by an edge if and only if

|x− y|
Rx + Ry

< X(x, y). (4.14)

x1

x2

x3

Rx1

Rx2

Rx3

x1

x2

x3

Figure 4.6a: Sketch of the construction of the hard version of the Boolean model.
Balls centered around the vertices are drawn with the corresponding radii and
edges are drawn when two balls intersect, leading to the graph given in the right
picture.

x1

x2

x3

x1

x2

x3

x1

x2

x3

Figure 4.6b: The coloured balls are the copies of the balls in Figure 4.6a, whose
radius is multiplied by the corresponding random variable X which is drawn for
each pair of vertices. Edges are drawn when the coloured balls intersect, leading
to a soft version of the model.

The choice X = 1, where X is an identically distributed copy of the random

variables X(x, y), corresponds to the hard version of the Boolean model where

an edge is drawn between x and y if and only if the balls centered around x, resp.
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y, with radius Rx, resp. Ry, intersect. An alternative choice of the distribution

of X allows us to relax this condition and enforce the occurence of long edges

in that way. As mentioned in Section 1.2.1 this influence can be interpreted

in the following way. Take for each pair of vertices {x, y} a copy from both

corresponding balls and modify them by multiplying their radii Rx and Ry by

X(x, y). Then, form an edge between the vertices if and only if the modified balls

intersect, see Figure 4.6b. To ensure that the expected number of neighbours of

a given vertex x is bounded away from zero and infinity, we have an integrability

condition on X. Namely, we assume that 0 <
∫
Rd dy P(X > |y|) < ∞.

This model can be put in our framework by taking a Poisson process of unit

intensity on Rd × (0, 1) as the vertex set and setting the radius of a vertex

x = (x, t) as Rx := F−1(1− t) where F is the distribution function of the radius

and F−1(t) = inf{u : F (u) > t} is the generalised inverse function. It then holds

for a uniform random variable U on (0, 1) that

P(F−1(1 − U) ≤ z) = P(U > 1 − F (z)) = F (z).

When the radius distribution is heavy-tailed, more precisely, if there exist γ ∈
(0, 1) and c1, c2 > 0 such that, for all r ≥ 1, it holds

c1r
−d/γ ≤ P(Rx > r) ≤ c2r

−d/γ, (4.15)

the (soft) Boolean model has a scale-free degree distribution, i.e. in the Palm

version G(0,T0)
of the model the degree distribution of the origin (0, T0) is scale-free

with power-law exponent τ = 1 + 1
γ
. We will show this by using the following

result, which is a corollary of Proposition 4.5 and Lemma 4.8.
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Lemma 4.13

Let γ ∈ (0, 1) and U be a uniform on (0, 1) distributed random variable.

Furthermore set Λ : (0, 1) → R+ to be a function for which there exists

c1, c2 > 0 such that it holds c1u
−γ ≤ Λ(u) ≤ c2u

−γ for all u ∈ (0, 1). Denote

by µ the mixed Poisson-distribution with mixing distribution Λ(U). Then,

it holds

µ(k) = k−(1+1/γ)+o(1) as k → ∞.

Proof. Let ν1, resp. ν2, be mixed Poisson distributions with mixing distribution

c1U
−γ, resp. c2U

−γ. By a coupling argument it holds, for all k ∈ N0, that

ν1({k, . . . ,∞}) ≤ µ({k, . . . ,∞}) ≤ ν2({k, . . . ,∞}). Hence, it is sufficient to

show that, for a mixed Poisson distribution ν with mixing distribution cU−γ,

c > 0, ν(k) decays polynomially at rate 1 + 1
γ

as k → ∞. As U is uniform

distributed it holds, for k ∈ N0, that

ν(k) =

∫ 1

0

du exp(−cu−γ)
(cu−γ)k

k!

=

∫ ∞

c

dλ
c1/γ

γ
exp(−λ)

λk

k!
λ−(1+1/γ) =

c1/γ

γ

Γ(k − 1
γ
)

Γ(k + 1)
− c1/γ

γ

∫ c

0

dλλk−1−1/γe−λ.

As the second term is of smaller order, by Stirling’s formula we obtain that

ν(k) = k−(1+1/γ)+o(1) as k → ∞.

Proposition 4.14

The origin in the Palm version G(0,T0)
of the (soft) Boolean model satisfying

(4.15) for γ ∈ (0, 1) has a scale-free degree distribution µ for which it holds

µ(k) = k−(1+1/γ)+o(1) as k → ∞.

Proof. Since edges are formed independently given the Poisson point process, by

the same arguments as in the proof of Proposition 4.5 the degree of a vertex
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x = (0, t) is Poisson distributed with parameter∫ 1

0

ds

∫
Rd

dy P
(
X ≥ |y|

F−1(1 − t) + F−1(1 − s)

)
= C

∫ 1

0

ds (F−1(1 − t) + F−1(1 − s))d

for some constant C > 0 given by the integrability condition on X. For functions

f : (0, 1) → R, g : (0, 1) → R we write f(t) ≍ g(t) if there exist constants

c1, c2 > 0 such that c1g(t) ≤ f(t) ≤ c2g(t) for all t ∈ (0, 1). Then, by (4.15) it

holds

C

∫ 1

0

ds (F−1(1 − t) + F−1(1 − s))d ≍
∫ 1

0

ds(t−γ/d + s−γ/d)d

≍
∫ 1

0

ds(t ∧ s)−γ ≍ t−γ.

As the mark T0 of the origin (0, T0) in the Palm version of the model is inde-

pendent of the other vertices and of the random variables X(x, y), the degree

distribution µ of the origin is mixed Poisson-distributed with a mixing distribu-

tion given by a functional of T0 which satisfies the condition in Lemma 4.13 and

therefore it holds µ(k) = k−(1+1/γ)+o(1) as k → ∞.

The claims of the main results of the previous chapters take hold fully if we

assume X to be heavy-tailed, see Figure 4.7 for a simulation of such a model.

First, we assume that there exists δ > 1 such that, for every small ε > 0, there is a

constant c3 such that P (X > r) ≤ c4r
−d(δ−ε) for all r ≥ 0. As the right inequality

of (4.15) implies that F−1(1−t) ≤ c
γ/d
2 t−γ/d we infer that the probability to form

an edge between x and y is bounded by

c4
(F−1(1 − t) + F−1(1 − s))d(δ−ε)

|x− y|d(δ−ε)
≤ c4c

γ(δ−ε)
3 (t ∨ s)−γ(δ−ε).

Hence, using the conditional independence of the edges, Assumption UBA* and

consequently Assumption UBA holds for the parameters γ and δ − ε for all

ε > 0. By Theorem 2.1 the assumption then implies no ultrasmallness if γ < δ
δ+1

.

In particular this implies that the hard version of the Boolean model is not

ultrasmall for any radius distribution satisfying P(Rx > r) ≤ c2r
−d/γ for any
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Figure 4.7: The left picture shows a simulation of the two-dimensional hard
Boolean model with γ = 0.75. The picture on the right-hand side gives a soft
version of the model, where X is heavy-tailed with δ = 1.5. For comparison, the
same other parameters and realisation of the Poisson point process as the hard
model have been used in this case. Note that the left graph is a subgraph of the
one on the right-hand side.

γ ∈ (0, 1) or having only bounded support almost surely.

If we additionally assume that for every ε > 0 there is a constant c3 > 0 such that

for all r ≥ 1 it holds P (X > r) ≥ c3r
−d(δ+ε) then both Assumptions UBA and

LBA hold for parameters arbitrarily close to γ and δ and hence by Theorem 2.1

and Theorem 2.2 the model is ultrasmall if γ > δ
δ+1

and in this case we obtain the

full limit theorem stated in (2.5). In particular, we obtain the following theorem.
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Theorem 4.15

Let the radii distribution satisfy (4.15) for some γ ∈ (0, 1) and let δ > 1 such

that, for every ε, there are c3, c4 > 0 such that

c3r
−d(δ+ε) ≤ P(X > r) ≤ c4r

−(δ−ε) for all r ≥ 1. (A2)

Then, the soft Boolean model

• is not ultrasmall if γ < δ
δ+1

and

• is ultrasmall if γ > δ
δ+1

and, for x,y ∈ Rd × (0, 1), we have

d(x,y) = (4 + o(1))
log log |x− y|
log
(

γ
δ(1−γ)

) (4.16)

under Px,y( · | x ↔ y) with high probability as |x− y| → ∞.

Under the same assumptions we obtain the results of Chapter 3 for the soft

Boolean model. We denote by Γ(λ) the non-extinction probability of the con-

tact process starting in the origin (0, T0) of the Palm-version of the soft Boolean

model and by ϖn the extinction time of the contact process on the soft-Boolean

model restricted to the box [−n1/d

2
, n

1/d

2
] with a fully infected initial condition.

Then, by Theorem 3.1 and 3.14 the following results hold for the contact process

on the soft Boolean model.

Theorem 4.16

Let the radii distribution satisfy (4.15) for some γ ∈ (0, 1) and let δ > 1 such

that (A2) is satisfied. When γ > δ
δ+1

, there exists c, C > 0 such that, as

λ → 0, it holds

c
λ2/γ−1

log(1/λ)(1−γ)/γ
≤ Γ(λ) ≤ C

λ2/γ−1

log(1/λ)(1−γ)/γ
. (4.17)
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Theorem 4.17

Let the radii distribution satisfy (4.15) for some γ ∈ (0, 1) and let δ > 1 such

that (A2) is satisfied and it holds γ > δ
δ+1

. For any λ > 0, there exists c > 0

such that

lim
n→∞

P{ϖn ≥ ecn} = 1.

An alternative soft Boolean model

An alternative version of the soft Boolean model is obtained by changing the

connection rule slightly. Instead of forming an edge between two vertices when

their balls intersect, we now create an edge if at least one vertex lies in the ball

of the other vertex. This means that we form an edge between two vertices if

and only if
|x− y|
Rx ∨Ry

< X(x, y) (4.18)

where Rx, Ry and X(x, y) play the same role as in (4.14). The hard version of

this model has been discussed by Hirsch [63], where he also gives a lower bound

for the chemical distance, which is of the form |x− y| / log |x− y|. As

(Rx + Ry)/2 ≤ Rx ∨Ry ≤ Rx + Ry,

both versions of the (soft) Boolean model behave similarly. In fact, our results

also show that the hard model is not ultrasmall and Proposition 4.14, Theorem

4.15, Theorem 4.16 and Theorem 4.17 hold as stated also for this version of the

(soft) Boolean model.

4.3 Scale-free percolation

Scale-free percolation is defined on the lattice Zd or on a Poisson point process

with unit intensity on Rd, where each vertex x is equipped with a random inde-

pendent identically distributed weight Wx, where we assume the weights to be

heavy-tailed, i.e. there exists γ ∈ (0, 1) such that

P(W > w) = w−1/γ, for w ≥ 1, (4.19)
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where W is a random variable with same distribution as the weights. Then,

given the vertex set and the weights edges are drawn independently and a pair

of vertices x, y is connected by an edge with probability

φ
(
β−1WxWy |x− y|d

)
,

where φ : [0,∞) → [0, 1] is a non-increasing integrable function and β > 0

controls the edge density. This model has been introduced and discussed for the

lattice by Deijfen et al. [33] and studied on a Poisson point process by Deprez

et al. [34].

Figure 4.8: Snapshot of a simulation of scale-free percolation on a Poisson point
process on R × (0, 1). For comparison, the same parameters and realisation
as in Figure 4.1 were used for this simulation. Notice that we can see in this
simulation that vertices with small mark are much better connected than in the
age-dependent random connection model, where two vertices with small mark
are connected via connectors.

We can put this model in our framework in the same way as done for the soft

Boolean model. Set a Poisson process of unit intensity on Rd×(0, 1) as the vertex

set. Denote by F the distribution function of W and set the weight of a vertex

x = (x, t) as Wx := F−1(1 − t) where F−1(t) = inf{u : F (u) > t}. As (4.19)

implies that F−1(1− t) = t−γ in our framework an edge is formed independently

between two vertices x and y with probability

φ
(
β−1t−γs−γ |x− y|d

)
.

The model has a scale-free degree distribution, see [33, Theorem 2.2] and [34,

Theorem 3.1], which we can easily see in our framework as the degree of a given
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vertex x = (x, t) is Poisson-distributed with parameter ct−γ for some c > 0.

Hence, by the same arguments as in Section 4.2 and Lemma 4.13 it follows that

the degree distribution of the origin of the Palm version of scale-free percolation

is scale-free with power-law exponent 1 + 1
γ
.

As mentioned in Section 2.1 the dependence on the weights in this model is so

strong that the geometry does not play a significant role and the techniques de-

veloped in Chapter 2 and Chapter 3 are not needed to understand the behaviour

of the model. In fact, Assumption UBA* only holds for γ < 1
2
, which recovers

the well-known result that the graph is not ultrasmall in this case. Recent work

for the behaviour of the chemical distance when γ < 1
2

has been done by Hao

and Heydenreich [61]. Adapting the upper bound assumption to the structure of

scale-free percolation improves our results on the chemical distance. The scale-

free percolation satisfies Assumption A.1 for any γ ∈ (0, 1), when there exists

δ > 1 such that for all ε > 0, there is C > 0 such that φ(r) ≤ Cr−(δ−ε) for all

r ≥ 1. Then, by Theorem A.1 we obtain again that scale-free percolation is not

ultrasmall if γ < 1
2

and in the case γ > 1
2

we obtain an asymptotic lower bound

on the chemical distance which is sharp in comparison to well-known results from

the literature, see [21] and [33]. In comparison to Section 2.3 we can see that

the proof of Theorem A.1 is structurally much simpler than the proofs of the

main results, as the geometry, described in our framework by the choice of φ,

turns out to have no influence at all. This observation agrees with the results,

shown in [21] and [33], that the geometry has no influence on the occurence of

ultrasmallness.

As mentioned in Chapter 3 the behaviour of the contact process on hyperbolic

random graphs has been studied in [78] and show the rate of decay of the non-

extinction probability Γ(λ) given in (3.2). This differs from Theorem 3.1 as

there exists another survival strategy leading to a different rate of decay on

hyperbolic random graphs when τ is near to two, i.e. γ near one. For this

choice of γ an infected vertex with relatively small mark has typically many

neighbouring powerful vertices with even smaller mark to which the infection

can spread directly. As a consequence the infection spreads to more and more

powerful vertices and survives in that way. We expect to see this behaviour also

on scale-free percolation with an arbitrary non-increasing integrable function φ,

as the expected number of neighbours of a given vertex x = (x, t) with mark
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smaller than t increases when t becomes small and therefore ensures there are

sufficiently many more powerful to which the infection can spread.

4.4 Ultrasmall scale-free geometric networks

In [99] Yukich introduces a model which is built up in a similar way as the soft

Boolean model either on the lattice or on a Poisson point process on Rd. Each

vertex x carries an independent identically distributed radius Rx and an edge is

formed between two vertices x and y if both vertices lie in the ball centered at

the other vertex with its corresponding radius. In other words we draw an edge

if and only if
|x− y|
Rx ∧Ry

< 1. (4.20)

This condition is structurally different to the ones presented in Section 4.2, as

this condition only depends on the smaller radius associated to the two vertices

whereas the conditions (4.14) or (4.18) of the hard Boolean model are mainly

influenced by the larger radius. Thus, it is easy to see that this condition is much

stricter, leading to a sparser graph when taking the same radii for this model and

the hard Boolean model. In fact, when the radius distribution satisfies condition

(4.15) the model is not scale-free. This is compensated by taking larger radii,

see Figure 4.9. Let γ > 0 and α > 0 throughout this section. As done in [99],

we assign to each vertex x an independent uniform random variable Ux on (0, 1)

and the radius of x is given by Rx := α1/dU
−(1+γ)/d
x .

This model can be put easily in our framework as the mark of each vertex is a

uniformly on the interval (0, 1) distributed random variable. Thus, we form an

edge between two vertices x = (x, t) and y = (y, s) if and only if

|x− y|d

α(t ∨ s)−(1+γ)
< 1. (4.21)

As shown in [99, Theorem 1.1] the model is scale-free with power-law exponent

τ = 1 + 1
γ
, which we can again check easily in our framework, since the number

of neighbours of a given a vertex x = (x, t) is Poisson-distributed with parameter

Λ(t) depending only on the mark of the vertex for which there exists c, C > 0

such that ct−γ < Λ(t) < Ct−γ for all t ∈ (0, 1). Hence, by Lemma 4.13 the origin
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Figure 4.9: Simulation of the two-dimensional ultrasmall scale-free geometric
network with parameter γ = 0.75 and α = 2.

in the Palm-version of the model has a scale-free degree distribution.

In [99, Theorem 1.2] it is shown that this model is ultrasmall for every γ > 0

by proving an asymptotic upper bound of the chemical distance of two given

vertices which is of doubly logarithmic order in their Euclidean distance when

the vertices are far apart. Our results in Chapter 2 provide an asymptotic lower

bound, which is smaller than the proven upper bound, see Theorem A.2. This

lower bound turns out to be sharp, as shown in [81] for the model on the lattice.

4.5 The reinforced-age-dependent random con-

nection model

In this section we consider a reinforced version of the age-dependent random

connection model described in Section 4.1, where the connection probability

between vertices is reinforced by additional weights of the nodes. The following

discussion can be found in part in [56]. Interestingly, although edges do not occur

independently of each other due to the additional weights, the results of Chapter

2 still apply in full generality. Let the vertex set be a Poisson point process X on

Rd × (0, 1) as before. We assign in addition to each point x ∈ X an independent

identically distributed reinforcement weight Wx, for which we assume the second

moment exists and that it is almost surely bounded away from zero, i.e. there

exists α > 0 such that P(W ≥ α) = 1, where W is an identically distributed
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random variable as Wx. Given X and the reinforcement weights, edges are then

formed independently between x = (x, t) and y = (y, s) with probability

φ
(

(WxWy)−1/δ

β
(t ∧ s)γ(t ∨ s)1−γ |x− y|d

)
,

where φ is as in Example 4.1. Let I ⊂ X 2 be a set of pairs of vertices where

each vertex appears at most twice. If there is C > 0 such that φ(r) ≤ Cr−δ for

all r > 0, then

EX

[ ∏
(xi,yi)∈I

1{xi ∼ yi}
]

≤ EX

[ ∏
(xi,yi)∈I

CWxi
Wyi

βδ(ti ∧ si)
−γδ(ti ∨ si)

(γ−1)δ |xi − yi|−δd

]
≤
∏

(xi,yi)∈I

Cβδ(ti ∧ si)
−γδ(ti ∨ si)

(γ−1)δ |xi − yi|−δd (E[W 2
xi

] ∨ 1)(E[W 2
yi

] ∨ 1),

where the second inequality holds since each reinforcement weight appears at

most twice in the product and they are independent of X . As the second moment

of the weights exists, Assumption UBA holds for an appropriately chosen κ.

Hence, ultrasmallness fails if γ < δ
δ+1

. Note that in the same way Assumption

UBA is satisfied for parameter γ and one arbitrarily close to δ, when we assume on

φ that for every small ε > 0 there exists C > 0 such that φ(r) ≤ Cr−(δ−ε) for all

r > 0, since the moment assumption on W implies that E[W 2−ε] < ∞ for all small

ε > 0. On the other hand, we can easily couple the reinforced age-dependent

random connection model to an age-dependent random connection model with

a modified density parameter, such that the latter is a subgraph of the former.

Indeed, for each pair of vertices we draw an independent uniform random variable

U(x,y). Given the Poisson process X , the reinforcement weights and the family

(U(x,y))x,y∈X , we can construct the age-dependent random connection model

and the reinforced model simultaneously in the following way. First, add an edge

between any pair of vertices when

U(x,y) ≤ φ

(
α−2/δ

β
(t ∧ s)γ(t ∨ s)1−γ |x− y|d

)
.

This leads to the age-dependent random connection model with new density

parameter β̃ = βα−2/δ. Since W ≥ α almost surely, each such edge is also added
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in the reinforced model. To get the full reinforced model, we add additional

edges to hitherto unconnected pairs of vertices if

U(x,y) ≤ φ

(
(WxWy)−1/δ

β
(t ∧ s)γ(t ∨ s)1−γ |x− y|d

)
.

As the age-dependent random connection model is ultrasmall when γ > δ
δ+1

and

if for every ϵ > 0, there exists c > 0 with φ(r) ≥ cr−(δ+ϵ) for all r ≥ 1, the rein-

forced model is ultrasmall as well and we get the asymptotic chemical distance as

stated in (2.5) under both tail assumptions stated for φ in this section. Combin-

ing these results provides a characterization of the occurence of ultrasmallness

of the same scope as for the age-dependent random connection model.

Theorem 4.18

Let δ > 1 and φ : [0,∞) → [0, 1] such that, for every sufficiently small ε > 0,

there are c, C > 0 such that

cr−(δ+ε) ≤ φ(r) ≤ Cr−(δ−ε) for all r ≥ 1.

Furthermore, assume that the second moment of W exists and that it is

almost surely bounded away from zero. Then, the reinforced age-dependent

random connection model

• is not ultrasmall if γ < δ
δ+1

and

• is ultrasmall if γ > δ
δ+1

and, for x,y ∈ Rd × (0, 1), we have

d(x,y) = (4 + o(1))
log log |x− y|
log
(

γ
δ(1−γ)

) (4.22)

under Px,y( · | x ↔ y) with high probability as |x− y| → ∞.

Remark 4.5.1. To depict the influence of the weights on the degree distribution,

we assign to each vertex x an independent on (0, 1) uniform distributed random

variable Ux and for α, η > 0 we set the weight of the vertex as Wx := αU−η
x .

As the assigned uniform random variables are additional independent marks of

the Poisson point process we can think of the model defined on a Poisson point
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process of unit intensity on Rd × (0, 1) × (0, 1), where for a vertex x = (x, t, w)

the first two entries are the same as in the age-dependent random connection

model and the last entry w describes the uniform mark which defines the weight

of the vertex. In this case, two vertices x = (x, t, w) and y = (y, s, v) form an

edge independently with probability

φ
(

(wv)η/δ

β
(t ∧ s)γ(t ∨ s)1−γ |x− y|d

)
.

Thus, with the same arguments as in the proof of Proposition 4.5 the degree

of a given vertex x = (x, t, w) is Poisson-distributed with parameter Λ(t, w),

where there exists c, C > 0 such that cw−η/δt−γ ≤ Λ(t, w) ≤ Cw−η/δt−γ for all

t, w ∈ (0, 1). An easy calculation similar to the proof of Lemma 4.13 shows that

the degree distribution of the origin (0, U,W ) of the Palm-version is scale-free

with power-law exponent τ = 1 + 1
γ

if η/δ < γ and otherwise with power-

law exponent τ = 1 + δ
η

as in this case the weights contribute more to the

connection probability than the marks of the vertices. Note that the second

moment assumption on the weight distribution implies η < 1
2
. Hence, as the

results in Theorem 4.18 are especially relevant for γ > 1
2
, the power-law exponent

in this case does not differ from the age-dependent random connection model.

Note that examples presented in Section 4.2 can similarly be reinforced, and

similar conclusions to the ones in this section can consequently be drawn.

4.6 Ellipses percolation

In [95] Teixeira and Ungaretti introduce a model on R2 as a collection of random

ellipses centred on points of a Poisson process X on R2 × (0, 1) with uniform

marks t, from which the size of the major half-axis is derived as t−γ/2 while

its direction is sampled uniformly. The size of the minor half-axis is one. The

random graph is then constructed by taking the Poisson process as the vertex

set and forming edges given the collection of random ellipses between pairs of

points of the point process if their ellipses intersect. Hilário and Ungaretti [62]

show that, for γ ∈ (1, 2), the model is ultrasmall.

We introduce a soft version of this model, where for each pair of vertices x,y we

consider copies of their ellipses where the size of the major axes are multiplied
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with independent, identically distributed positive heavy-tailed random variables

X = X(x,y) with P(X > r) ∼ r−2δ for some δ > 1. An edge between x and y is

then formed if the new ellipses intersect. Note that given X edges are not drawn

independently of each other, as the neighbourhood of each vertex depends on the

orientation of the ellipses. The results of Chapter 2 show that, for γ ∈ [0, 1), the

original model is never ultrasmall and the soft model is not ultrasmall if γ < δ
δ+1

.

We see that if an edge is formed between x = (x, t) and y = (y, s), this implies

that balls around x and y with radii X(x,y)t−γ/2 and X(x,y)s−γ/2 intersect.

Thus, there exists κ > 0 such that

PX{x ∼ y} ≤ P
(
X ≥ |x−y|

t−γ/2+s−γ/2

)
≤ κ(t ∧ s)−γδ(t ∨ s)(γ−1)δ |x− y|−2δ .

Since the random variables X(x,y) are independent, Assumption UBA holds for

γ ∈ [0, 1) and δ > 1 and the claimed result follows.

4.7 The weight-dependent random connection

model

Gracar et al. have introduced a framework for geometric random graphs in [57]

which include many but not all of the presented examples of this chapter. The

weight-dependent random connection model is defined on a Poisson point process

X of unit intensity on Rd × (0, 1) and for a vertex x = (x, t) we denote by x

the location of the vertex and by t its mark as done in Section 1.2.2. Given the

vertex set, edges are drawn independently and between two vertices x = (x, t)

and y = (y, s) an edge is formed with probability

φ(g(t, s) |x− y|d),

where φ : [0,∞) → [0, 1] is the profile function which is non-increasing, integrable

and normalized such that ∫
Rd

dxφ(|x|d) = 1

and the kernel function g : (0, 1) × (0, 1) → [0,∞) is symmetric and non-

decreasing in both arguments. Hence, preferences are given to connections

between near vertices and vertices with small marks. However, a suitable choice
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of the profile function enforces the occurence of long edges in the model, sim-

ilar to the role of φ in the previous examples, see for example Section 4.1. The

kernel function g on the other hand describes the influence of the marks on the

connection probability. This function is defined in terms of γ > [0, 1) and β > 0,

where β controls the edge density and γ determines the strength of the influence

especially of small marks on the connection probability. Special selections of this

function lead to some of the examples introduced in the previous sections of this

chapter.

• The preferential attachment kernel

gpa(t, s) :=
1

β
(t ∧ s)γ(t ∨ s)1−γ

leads directly to the age-dependent random connection model, see Section

4.1.

• We define the sum kernel as

gsum(t, s) :=
1

β
(t−γ/d + s−γ/d)−d.

We can easily see that this leads to the soft Boolean model, see Section 4.2,

when interpreting (βt−γ)1/d, resp. (βs−γ)1/d as the random radii of the two

vertices. The variant of the soft Boolean model given by the connection

rule 4.18 can be obtained with the min kernel which is defined as

gmin(t, s) :=
1

β
(t ∧ s)γ.

• As already shown in Section 4.3, we obtain a continuum version of the

scale-free percolation model of Deijfen et al. [33] when taking the product

kernel

gprod(t, s) :=
1

β
tγsγ.

• The final example is the max kernel defined as

gmax(t, s) :=
1

β
(t ∨ s)1+γ
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which leads to a continuum version of the ultra-small scale-free geomet-

ric networks of Yukich [99], see Section 4.4. For this kernel function any

parameter γ > 0 is suitable.

As we have already seen in the previous sections all these potential choices for the

kernel function lead to a geometric random graph which has a scale-free degree

distribution with power-law exponent τ = 1 + 1
γ
. In fact, this holds for arbitrary

choices for the kernel function satisfying one integral assumption.

Proposition 4.19

Let γ > 0 and g : (0, 1) × (0, 1) → [0,∞) be a function for which there

exists c, C > 0 such that ct−γ ≤
∫ 1

0
ds 1

g(t,s)
≤ Ct−γ for all t ∈ (0, 1). Then,

the origin in the Palm-version of the weight-dependent connection model

with kernel function g has a scale-free degree distribution with power-law

exponent τ = 1 + 1
γ
.

Proof. By the same arguments as in the proof of Proposition 4.5, the neighbour-

hood of a given vertex x = (x, t) forms a Poisson point process with intensity

measure

φ(g(t, s) |x− y|d)dyds.

Thus, the degree of the vertex is Poisson distributed with parameter λ(t) given

by

λ(t) =

∫ 1

0

ds

∫
Rd

dyφ(g(t, s) |x− y|d) = Iφ

∫ 1

0

ds
1

g(t, s)
,

where Iφ =
∫
Rd dy φ(|y|d). As the mark T0 of the origin (0, T0) in the Palm

version of the model is independent of the Poisson process, the degree of the

origin follows a mixed Poisson-distribution µ which satisfies the condition in

Lemma 4.13 and the weight-dependent random connection model is scale-free

with power-law exponent 1 + 1
γ
.

It is easy to see that the weight-dependent random connection models with the

preferential attachment kernel and the min kernel work as the boundary cases of

geometric random graphs satisfying Assumption UBA* and Assumption LBA. In

fact, the weight-dependent random connection model with a kernel g such that
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g ≤ gpa satisfies Assumption UBA* and the weight-dependent random connec-

tion model with a kernel g such that g ≥ gmin satisfies Assumption LBA. Hence,

all results of Chapter 2 and Chapter 3 hold for the weight-dependent random

connection model with any kernel g satisfying gmin ≤ g ≤ gpa in the same way

as for the age-dependent random connection model and the soft Boolean model.
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CHAPTER 5

Conclusion and further research possibilities

As we have seen in the last chapter there are various different examples of scale-

free geometric random graphs which fit into the class discussed in this thesis. In

each model the vertices are given by a Poisson point process in Rd× (0, 1), which

determines their location in Rd together with one other property, for example

their birth time in the age-dependent random connection model or the corres-

ponding radius of their ball in the soft Boolean model. Given this Poisson point

process, in most examples edges are drawn independently, as in the models in-

cluded in the weight-dependent random connection model, but we also provided

examples as the reinforced-age-dependent random connection model for which

this is not the case.

For these geometric random graphs we have shown in Chapter 2 a novel behaviour

in the occurence of short paths, as the absence and occurence of ultrasmallness

does not solely depend on the parameter γ determining the power-law exponent

of the scale-free degree distribution by τ = 1 + 1
γ
. Instead, it depends also

on the rate of decay of the connection probability of two vertices with typical

marks when their Euclidean distance is large, determined by the parameter δ.

This is remarkably different to well-known scale-free spatial models as scale-free
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percolation or geometric inhomogeneous random graphs, for which the regime

boundary depends only on the power-law exponent, or the ultrasmall scale-free

geometric networks model, which is ultrasmall for any positive choice of γ. The

universality of this novel behaviour is supported by the work by Gracar et al. [58]

which investigates the existence of a subcritical percolation phase and reveals

the same regime boundary depending on the parameters γ and δ. As seen in

Chapter 2 the occurence of ultrasmallness in the geometric random graphs relies

on the observation that a vertex with a small mark is typically connected to a

vertex with even smaller mark via a connector, i.e. a vertex with mark near one.

This argument can be repeated, such that there exists a path to vertices with

arbitrarily small marks, with high probability. We have seen that this type of

connection between two powerful vertices, i.e vertices with small mark, highly

depends on their Euclidean distance as the connector only forms an edge to both

powerful vertices with high probability if the influence of the Euclidean distance

is small, i.e. if δ is small, or the neighbourhoods of the two powerful vertices

are large, i.e. if γ is large. The major contribution of Chapter 2 has been to

show the corresponding lower bounds on the chemical distance in the ultrasmall

regime and a sharp criterion for the absence of ultrasmallness, especially under

the condition that we do not assume edges to be drawn independently, given

the Poisson point process. To establish sharp bounds for the probability of

the existence of short paths between two given vertices, we have developed in

Chapter 2 a classification of possible path structures appearing in the geometric

random graphs by the means of coloured binary tree. They do not only capture

the influence of the marks on the existence of such paths but also the subtle

influence of the spatial embedding in terms of δ.

The effects of such short paths on the spread of infection has been studied in

Chapter 3, where it is shown that in the ultrasmall regime the geometric random

graphs are so well connected, that the contact process with any positive infection

rate does not go extinct with positive probability. This strong behaviour of the

contact process is underlined by the shown result that, on a finite restriction of

the geometric random graphs, the extinction time of the contact process is of

exponential order in the size of the graph, again not depending on the choice of

the infection rate. Both results rely on the local survival of the contact process on

the neighbourhood of powerful vertices, i.e. vertices with small marks, on which

169



the contact process survives so long that the process can be transmitted to the

distinct neighbourhood of an other vertex with small mark. Thus, the short

paths between powerful vertices which lead to the occurence of ultrasmallness

turn out to also be crucial for the survival of the infection.

We conclude this thesis by addressing various open problems and further research

possibilities which are related to the work of the author presented in this thesis.

Chemical distance in the non-ultrasmall regime In this thesis we provide

in Proposition 2.10 a lower bound on the chemical distance of two spatially

distant vertices in the non-ultrasmall regime. What remains to show is a suitable

upper bound indicating for which choice of γ ∈ [0, 1) and δ > 1 the geometric

random graphs exhibit small-world behaviour. We do not expect our stated lower

bound to be sharp, as it can easily be improved for the soft Boolean model to a

lower bound of logarithmic order in the Euclidean distance of the two vertices.

Instead we might expect the existence of a polylogarithmic regime, as apparent

in scale-free percolation, see [33] and [61]. The methods presented in Chapter

2 do not seem to be suitable to show such type of lower bounds as they were

designed to exhibit a sharp distinction between the occurence and absence of

ultrasmallness. In [13] Biskup introduces a hierarchic classification of the vertices

which leads to polylogarithmic behaviour of the chemical distance in long-range

percolation which has been adapted by Hao and Heydenreich [61] to scale-free

percolation. It would be interesting to see whether with this type of argument

one can establish polylogarithmic upper and lower bound for a suitable choice of

γ and δ in the discussed class of geometric random graphs.

Survival of the contact process in the non-ultrasmall regime Similar

to the sharp upper and lower bounds for the chemical distance, the behaviour

of the contact process on geometric random graphs in the non-ultrasmall regime

remains an open problem. For the configuration model it has been shown in

[87] that for any power-law exponent τ > 2 the contact process with any given

positive infection rate λ does not go extinct with positive probability and for

non-spatial preferential attachment type models a metastable behaviour with

metastable density of order λ2τ−3+o(1) has been identified for any τ > 2 in [68].

As seen in Chapter 2 the spatial dependence of the connection probabilities
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reduces the possibility of short paths between powerful vertices which remain

crucial for the survival of the infection. Thus, it would be interesting to see

whether the discussed geometric random graphs exhibit a regime in which the

contact process goes extinct almost surely.

Algorithmic small-world phenomenon in the age-dependent random

connection model In [22] an algorithmic view of the small-world phenomenon

on the model of geometric inhomogeneous random graphs is studied. In this work,

Milgram’s experiment described in the beginning of this thesis is modelled by

a decentralized greedy routing protocol, which sends a message from a starting

vertex to a target vertex. Given these two vertices, in each step of greedy routing

the message is sent from the current vertex to the neighbour which has the

highest connection probability with the target vertex. Bringmann et al. show

that by greedy routing the message is sent to the target person with positive

probability and in case of success the length of the resulting path is of the same

order as the length of the shortest path between the two vertices. Thus, greedy

routing provides an algorithmic way to find a shortest path between two given

vertices. An interesting question would be the application of greedy routing

in the age-dependent random connection model or the soft Boolean model. As

discussed in Section 2.1 the typical structure of a short path differs to the one in

geometric inhomogeneous random graphs as two powerful vertices are typically

not connected directly but via a connector. This leads to the question whether

this protocol works in the same way for the age-dependent random connection

model as it does for geometric inhomogeneous random graphs or if the difference

in the structure of short paths in this models is so large that the greedy routing

protocol needs to be adapted to it.

Contact process with hibernation As the contact process survives well for

different scale-free random graphs models it might be interesting to study a vari-

ant of the process in which the vertices gain the ability to defend themselves from

the infection. We propose a variant of the contact process in which each healthy

vertex has the ability to hibernate depending on the spread of the infection in its

neighbourhood, thus preventing itself from being infected. Precisely, a healthy

vertex hibernates at rate proportional to the proportion of its infected neigh-

bours, which we can understand in the friendship network as self-isolation of a
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person if sufficiently many of its friends are infected. After some time, a hibern-

ating vertex wakes up and can become infected like before. To implement this to

the contact process, we add the following dynamics to the process, determined

by the hibernation rate ρ > 0 and the wake-up rate w > 0. An infected vertex

lets a neighbouring vertex hibernate at rate ρ/ deg, independently of everything

else, where deg is the degree of the neighbouring vertex, and a hibernating vertex

wakes up at rate w.
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Figure 5.1: Sketch of a contact process with hibernation on Z, where hibernation
arrows and wake-up marks are added to the given representation of the contact
process in Figure 3.1. The wake-up marks ◦ are given for each vertex by an
independent Poisson process with rate θ and the dotted arrows indicate the
hibernation of a vertex due to an infected neighbour. For each ordered pair of
neighbours the dotted arrows are given by an independent Poisson process with
rate ρ/2. The blue paths indicate the contact process with initial condition on
the fourth vertex, whereas the orange parts show phases of hibernation induced
by neighbouring infected vertices.

This variant is still a Markov process and can still be studied with the help

of a graphical representation. However, due to the hibernation mechanism the

variant loses crucial properties such as additivity and monotonicity in the initial

configuration, as we can see in Figure 5.1, which makes the study of the model

itself interesting.
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APPENDIX A

Appendix

A.1 Application of the truncated first moment

bound for other geometric random graphs

As mentioned in Section 2.3.1, we will give in the following an application of the

truncated first moment bound method to geometric random graphs, which are

not in the class of geometric random graphs discussed in this thesis but satisfy

alternative upper bound assumptions on their connection probabilities. By this

assumptions we will prove asymptotic lower bounds on the chemical distance as

well as sharp criteria when the corresponding geometric random graphs are not

ultrasmall. These proofs are much simpler than the one given in Chapter 2, as

no subtle influence of the spatial embedding occurs.

Assumption: The product-kernel

Let G be a graph with vertex set given by a Poisson process on unit intensity

on Rd × (0, 1) as described in Section 2.2.1 and let δ > 1 and 0 ≤ γ < 1 be the

parameter of the following assumption.
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Assumption A.1

There exists κ > 0 such that, for every finite set of pairs of vertices I ⊂ X 2

in which each vertex appears at most twice, we have

PX

( ⋂
(xi,yi)∈I

{xi ∼ yi}
)

≤
∏

(xi,yi)∈I

κ t−γδ
i s−γδ

i |xi − yi|−δd

where xi = (xi, ti), yi = (yi, si).

Contrary to Assumption UBA, for each pair of vertices, the influence of the

marks of both vertices in Assumption A.1 is given by their product to the

same power −γδ. Thus, this assumption corresponds to geometrically embedded

graphs where each vertex has a random weight and the connection probability

between two vertices depends on the product of those weights and their Euc-

lidean distance. As mentioned in Section 2.1 one major example of this is the

scale-free percolation model, which is discussed in Section 4.3. This assumption

leads to the following lower bounds on chemical distances in the graph.

Theorem A.1

Let G be a general geometric random graph which satisfies Assumption A.1

for some γ ∈ [0, 1) and δ > 1.

(a) If γ < 1
2
, then G is not ultrasmall, i.e. for x,y ∈ Rd × (0, 1), under

Px,y, the distance d(x,y) is of larger order than log log |x− y| with high

probability as |x− y| → ∞.

(b) If γ > 1
2
, then for x,y ∈ Rd × (0, 1), under Px,y, we have

d(x,y) ≥ (2 + o(1))
log log |x− y|

log
(

γ
1−γ

)
with high probability as |x− y| → ∞.

Proof. First, let γ < 1
2
. As discussed beforehand truncation of the marks in a

path between the vertices x and y is not necessary in this case. As done in the

beginning of Section 2.3.1 we get by using Mecke’s equation and Assumption A.1
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that

Px,y{d(x,y) ≤ 2∆} ≤
2∆∑
n=1

∫
(Rd×(0,1))n−1

n−1⊗
i=1

d(xi, ti)
n−1∏
j=0

1∧κt−γδ
j t−γδ

j+1 |xj − xj+1|−δd ,

where x = (x0, t0) and y = (xn, tn). With similar arguments as in the proof

of Lemma 2.8, for given vertices x and y, there exists constants a > 0 and

κ̃ > 0, which do not depend on |x− y| when it is large enough, such that for

n = O(log |x− y|), we have

∫
(Rd)n−1

n−1⊗
i=1

dxi

n−1∏
j=0

1 ∧κt−γδ
j t−γδ

j+1 |xj − xj+1|−δd ≤ |x− y|−a
n−1∏
j=0

κ̃t−γ
j t−γ

j+1. (A.1)

Thus (A.1) and Fubini’s Lemma yield

Px,y{d(x,y) ≤ 2∆} ≤ |x− y|−a
∆∑

n=1

∫
(0,1)n−1

n−1⊗
i=1

dti

n−1∏
j=0

κ̃t−γ
j t−γ

j+1

≤ |x− y|−a
2∆∑
n=1

t−γ
0 t−γ

n

(
1

1−2γ

)n−1

As the marks of x and y are fixed, there exists constant c, C > 0 such that

Px,y{d(x,y) ≤ ∆} ≤ |x− y|−a
∆∑

n=1

Cn ≤ |x− y|−a cC∆.

Choose 0 < b < a, then for ∆ ≤ b log|x−y|
logC

, it holds

Px,y{d(x,y) ≤ ∆} ≤ c |x− y|b−a = o(1)

as |x− y| → ∞. Thus, for γ < 1
2
, the chemical distance is with high probability

at least of logarithmic order in |x− y| as the Euclidean distance tends to infinity.

For γ > 1
2
, we will use a truncation of the marks leading to inequality (TMB).

First, we establish an upper bound for Px(A
(x)
n ) for a given vertex x. Denote by

N(x,y, n) the number of paths from x to y where the vertices of the path fulfill
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ti ≥ ℓi for all i = 0, . . . , n− 1. By Mecke’s equation we have

Px(A(x)
n ) ≤

∫
Rd×(0,ℓn]

dyEx,yN(x,y, n).

By Assumption A.1 and Mecke’s equation the expected number of such paths is

bounded by∫
Rd×(ℓ1,1]

dx1 . . .

∫
Rd×(ℓn−1,1]

dxn−1ρ(κ−1/δtγi t
γ
i+1 |xi − xi+1|d)

where ρ(x) := 1∧x−δ and x = (x0, t0), y = (xn, tn). We set Iρ :=
∫
Rd dxρ(κ−1/δ |x|d).

Then, integrating over the locations of the vertices yields that

Px(A(x)
n ) ≤ Inρ

∫ 1

ℓ1

dt1 . . .

∫ 1

ℓn−1

dtn−1

∫ ℓn

0

dtnt
−γ
0 t−γ

n

n−1∏
j=1

t−2γ
j .

To find a sharp bound of the right-hand side, we define

µx
n(s) = Kn

∫ 1

ℓ1

dt1 . . .

∫ 1

ℓn−1

dtn−1t
−γ
0 s−γ

n−1∏
j=1

t−2γ
j for s ∈ (0, 1),

where K > 0 is a constant. This is a simpler version of the definition given in

(2.25) in the proof of the main results of Chapter 2. Then, it holds Px(A
(x)
n ) ≤∫ ℓn

0
dsµx

n(s), when we choose K sufficiently large. Note that µx
n(s) has a recursive

structure given by

µx
n(s) = K

∫ 1

ℓn−1

dtn−1s
−γt−γ

n−1µ
x
n−1(tn−1) for n ≥ 2.

This leads to the following upper bound for µx
n. Let (ℓk)k∈N0 be the yet to be

fixed truncation sequence such that ℓ0 < t. Then there exists a constant c > 0

such that, for n ∈ N and a given vertex x, it holds

µx
n(s) ≤ Cns

−γ for s ∈ (0, 1), (A.2)

where Cn+1 = cℓ1−2γ
n Cn and C1 = cℓ−γ

0 (see Lemma 2.7 for the corresponding

bound in the proof of the main results of Chapter 2). In fact, it holds µx
1 (s) =
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Kt−γ
0 s−γ ≤ cℓ−γ

0 s−γ, when c ≥ K. And for n ≥ 2, we have

µx
n(s) = K

∫ 1

ℓn−1

dtn−1s
−γt−γ

n−1µ
x
n−1(tn−1)

≤ KCn−1s
−γ

∫ 1

ℓn−1

dtn−1t
−2γ
n−1 ≤ cCn−1ℓ

1−2γ
n s−γ = Cns

−γ.

By inequality (A.2) it holds Px(A
(x)
n ) ≤ Cn

1−γ
ℓ1−γ
n .

Now, we can choose the truncation sequence (ℓk)k∈N0 such that the first two

summands of (TMB) can be kept sufficiently small. For ε > 0, we choose the

truncation sequence with ℓ0 < t such that Cnℓ
1−γ
n

1−γ
= ε

π2n2 . Thus, by this choice

we have
∑∆

n=1 Px(A
(x)
n ) ≤ ε

6
. Note that, for n ∈ N, it holds with ηn := ℓ−1

n that

η1−γ
n+1 =

π2(n + 1)2

ε(1 − γ)
Cn+1 =

π2(n + 1)2

ε(1 − γ)
cCnη

2γ−1
n =

(
n+1
n

)2
cηγn (A.3)

and η1−γ
1 = cπ2

ε(1−γ)
ηγ0 . Thus, there exists constants b, B > 0 such that

ηn ≤ b exp
(
B
( γ

1 − γ

)n)
. (A.4)

In fact, there exists a constant c > 0 such that by using (A.3) repeatedly, it holds

ηn ≤ cη
γ

1−γ

n−1 ≤
(
c
∑n

i=1(
1−γ
γ

)iη0
)( γ

1−γ
)n
.

Since γ > 1
2
, the row

∑∞
i=1(

1−γ
γ

)i converges and there exists a new constant

c > 0 such that ηn ≤ (cη0)
( γ
1−γ

)n . Choosing B > log(cη0) completes the proof of

inequality (A.4).

Proceeding with a probability bound for the occurence of good paths between

two vertices x and y, by Mecke’s equation and (A.1), it holds

Px,y(B(x,y)
n )

≤
∫
Rd×(ℓ1,1]

dx1 · · ·
∫
Rd×(ℓ⌊n

2 ⌋,1]

dx⌊n
2
⌋ · · ·

∫
Rd×(ℓ1,1]

dxn−1

n−1∏
j=0

1 ∧κt−γδ
j t−γδ

j+1 |xj − xj+1|−δd

≤ |x− y|−a

∫ 1

ℓ1

dt1 · · ·
∫ 1

ℓ⌊n
2 ⌋

dt⌊n
2
⌋ · · ·

∫ 1

ℓ1

dtn−1κ̃
n

n−1∏
j=0

t−γ
j t−γ

j+1,
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where xj = (xj, tj) and x = (x0, t0), y = (xn, tn). Thus, choosing the constant

K in the definition of µx
n sufficiently large, it holds that

Px,y(B(x,y)
n ) ≤ |x− y|−a

∫ 1

ℓ⌊n
2 ⌋

dsµx
⌊n
2
⌋(s)µ

y
n−⌊n

2
⌋(s).

Then by the estimates (A.2) and (A.4) it follows that

2∆∑
n=1

Px,y(B(x,y)
n ) ≤ |x− y|−a

∆∑
n=1

∫ 1

ℓn

dsC2
ns

−2γ ≤ |x− y|−a ∆

2γ − 1
C2

∆ℓ
1−2γ
∆

≤ |x− y|−a 1

∆3
η∆ ≤ b

∆3
exp

(
B
( γ

1 − γ

)n)
.

Choosing ∆ ≤ log log|x−y|
log γ

1−γ
−D, where D > 0 such that B

(
γ

1−γ

)−D
< a, yields

2∆∑
n=1

Px,y(B(x,y)
n ) = o(log log |x− y|−3)

which by using (TMB) completes the proof of Theorem A.1.

Assumption: The weak-kernel

As before, let G be a graph with vertex set given by a Poisson process on unit

intensity on Rd× (0, 1) as described in Section 2.2.1. Let γ > 0 be the parameter

of the following assumption.

Assumption A.2

There exists κ > 0 such that, for every set of pairs of vertices I ⊂ X 2, we

have

PX

( ⋂
(xi,yi)∈I

{xi ∼ yi}
)

≤
∏

(xi,yi)∈I

1{|xi − yi|d ≤ κ(ti ∨ si)
−(1+γ)}

where xi = (xi, ti), yi = (yi, si).

By this assumption, for each pair of vertices only the mark of the weaker one,

i.e. the larger mark, influences the right-hand side. This is contrary to the
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examples which satisfy Assumption UBA, where the more powerful vertex with

the smaller mark has more influence on the connection probability. In fact,

the dependence on the weaker vertex is more restrictive than the previously

stated assumptions. This restrictive dependence on the marks of the vertices

is compensated by taking the marks to a much larger negative power than in

Assumption UBA and Assumption A.1 such that ultrasmallness can still occur in

examples satisfying Assumption A.2. The main example is a continuous version

of ultra-small scale-free geometric networks which is further discussed in Section

4.4.

Theorem A.2

Let G be a general geometric random graph which satisfies Assumption A.2

for some γ > 0, then for x,y ∈ Rd × (0, 1), under Px,y, we have

d(x,y) ≥ (2 + o(1))
log log |x− y|

log(1 + γ)

with high probability as |x− y| → ∞.

Proof. Again, we use the classification of good and bad paths by a truncation

sequence (ℓk)k∈N0 which leads to (TMB). First we consider the occurence of bad

paths starting in x, resp. y. Let Iρ̃ :=
∫
Rd dx1{|x|d ≤ κ}. Then, it holds by

Mecke’s equation and Assumption A.2

Px(Ax
n) ≤

∫
Rd×(ℓ1,1]

dx1 . . .

∫
Rd×(ℓn−1,1]

dxn−1

∫
Rd×(0,ℓn]

dxn

n−1∏
i=0

1{|xi − xi+1|d ≤ κ(ti ∨ ti+1)
−(1+γ)}

≤ (Iρ̃)
n

∫ 1

ℓ1

dt1 . . .

∫ 1

ℓn−1

dtn−1

∫ ℓn

0

dtn

n−1∏
i=0

(ti ∨ ti+1)
−(1+γ)

≤ (Iρ̃)
n

∫ 1

ℓ1

dt1 . . .

∫ 1

ℓn−1

dtn−1

∫ ℓn

0

dtn

n−1∏
i=0

t
−(1+γ)
i

≤ cnℓ
−(1+γ)
0 ℓn

n−1∏
i=1

ℓ−γ
i
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for c > 0 sufficiently large. We choose the truncation sequence such that it holds

cnℓ
−(1+γ)
0 ℓn

∏n−1
i=1 ℓ−γ

i = ε
π2n2 for all n ∈ N. Similar to the proof of Theorem A.1

we have as a direct consequence that
∑∆

n=1 Px(A
(x)
n ) ≤ ε

6
. Letting ηn := ℓ−1

n

for n ∈ N we see that the given definition of the truncation sequence implies

η1 = cπ2

ε
η1+γ
0 and

ηn+1 =
π(n + 1)2

ε
cη1+γ

n

(
cnη1+γ

0 η−1
n

n−1∏
i=1

ηγi
)

=
(
n+1
n

)2
cη1+γ

n .

Thus, by similar arguments as used in the proof of Theorem A.1, there exist

constants b, B > 0 such that ηn ≤ b exp
(
B(1 + γ)n

)
for n ∈ N.

Considering the good paths between the given vertices x and y, note that by

definition, vertices of a good path between x and y with length at most 2∆ must

have marks larger than ℓ∆. Thus by Assumption A.2, the longest edge of such a

good path must be shorter than (κη1+γ
∆ )1/d. Choosing ∆ ≤ log log|x−y|

log(1+γ)
−D, where

D > 0 such that (1 + γ)1−D
(
B + log(κb1+γ)

)
< d(1 − ξ) for some ξ > 0, then

yields that the edges of a good path of length at most 2∆ between x and y must

be shorter than |x− y|1−ξ. But a path between x and y of that length must

have at least one edge of length larger than |x−y|
log|x−y| since 2∆ is of smaller order

than log |x− y|. Hence, for |x− y| large enough there cannot exist a good path

between x and y and it holds
∑2∆

n=1 Px,y(B
(x,y)
n ) = 0 for the given choice of ∆

and |x− y| sufficiently large.
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A.2 Further calculations for the ultrasmall re-

gime used in Section 2.3

Lemma A.3

Let x, y ∈ Rd, t, s ∈ (0, 1) and ℓ > 0 with ℓ < t ∨ s. For γ > δ
δ+1

,

1∫
t∨s

du

∫
Rd

dzρ
(
κ−1/δtγuγ/δ |x− z|d

)
ρ
(
κ−1/δsγuγ/δ |y − z|d

)
≤ c̃ℓ1−γ−γ/δκ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ ,

where c̃ = 2dδ+1Iρ
(γ+γ/δ−1)

∨ 1.

Proof. Assume t < s, then we have

1∫
s

du

∫
Rd

dzρ
(
κ−1/δtγuγ/δ |x− z|d

)
ρ
(
κ−1/δsγuγ/δ |y − z|d

)

≤
1∫

ℓ

du ρ
(
2−dκ−1/δtγuγ/δ |x− y|d

) ∫
Rd

dz ρ
(
κ−1/δsγuγ/δ |y − z|d

)

+

1∫
ℓ

du ρ
(
2−dκ−1/δsγuγ/δ |x− y|d

) ∫
Rd

dz ρ
(
κ−1/δtγuγ/δ |x− z|d

)

≤Iρ2
dδκ
[
t−γδs−γ |x− y|−dδ

1∫
ℓ

duu−γ−γ/δ + t−γs−γδ |x− y|−dδ

1∫
ℓ

duu−γ−γ/δ
]

≤ Iρ2dδ

γ+γ/δ−1
κℓ1−γ−γ/δ

[
t−γδs−γ |x− y|−dδ + s−γδt−γ |x− y|−dδ

]
≤ Iρ2dδ+1

γ+γ/δ−1
κℓ1−γ−γ/δt−γδs−γ |x− y|−dδ ,

where we used for the first inequality that, for z ∈ Rd, either |x− z| or |y − z| is

larger than |x−y|
2

and for the third inequality that γ > δ
δ+1

implies γ + γ/δ− 1 >

0.
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Lemma A.4

Let x, y ∈ Rd, t, s ∈ (0, 1) and 1
e
> ℓ > 0 with ℓ < t ∨ s. For γ > δ

δ+1
,

1∫
t∨s

du

∫
Rd

dz ρ(κ−1/δtγuγ/δ |x− z|d)ρ(κ−1/δsγu1−γ |y − z|d)

≤ c̃ log(ℓ−1)κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ ,

where c̃ = Iρ2dδ+1

(δ−1)(γ+γ/δ−1)∧1 .

Proof. Since, for z ∈ Rd, either |x− z| or |y − z| is larger than |x−y|
2

, we have

1∫
t∨s

du

∫
Rd

dz ρ(κ−1/δtγuγ/δ |x− z|d)ρ(κ−1/δsγu1−γ |y − z|d)

≤
1∫

ℓ

du ρ(2−dκ−1/δtγuγ/δ |x− y|d)
∫
Rd

dz ρ(κ−1/δsγu1−γ |y − z|d)

+

1∫
ℓ

du ρ(2−dκ−1/δsγu1−γ |x− y|d)
∫
Rd

dz ρ(κ−1/δtγuγ/δ |x− z|d)

≤ Iρ2
dδκ

[
t−γδs−γ |x− y|−dδ

1∫
ℓ

duu−1 + s−γδt−γ |x− y|−dδ

1∫
ℓ

duu−γ/δ+(γ−1)δ

]
.

As γ > δ
δ+1

and δ > 1, we have −γ/δ+(γ−1)δ > −1. Hence, the last expression

can be further bounded by

Iρ2
dδκ
[

log(ℓ−1)t−γδs−γ |x− y|−dδ + 1
(δ−1)(γ+γ/δ−1)

s−γδt−γ |x− y|−dδ ]
≤ Iρ2dδ+1

(δ−1)(γ+γ/δ−1)∧1 log(ℓ−1)κ(t ∧ s)−γδ(t ∨ s)−γ |x− y|−dδ ,

since log(ℓ−1) > 1.
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A.3 Simulation of the age-dependent random

connection model

In this section, we give an overview of the code used to generate the pictures

shown throughout Section 4.1. It is also used for estimating the limiting average

clustering coefficient in Section 4.1.4. The code can be freely accessed at: http:

//www.mi.uni-koeln.de/~moerters/LoadPapers/adrc-model.R.

The main objective of the code is to sample neighbours of a given vertex (x, t) in

the age-dependent random connection model in dimension 1 for given parameters

β and γ and the profile function φ. Due to Proposition 4.5, which gives an explicit

description of the neighbourhood of a given vertex, we can use rejection sampling

to achieve this. The distribution in (4.9), defined on R × (0, 1], that we use to

sample the neighbours of (x, t) may be unbounded and heavy tailed in the first

parameter. To deal with this, we restrict the sampling to a region with mass

q = 0.99 with respect to this distribution. This sampling works for arbitrary but

reasonable choices of the profile function φ and parameters β, γ; we provide and

use an optimized sampling algorithm for φ = 1
2a
1[0,a] with a ≥ 1

2
. The advantage

of studying this class of φ is that expressions can be analytically simplified, which

allows us to improve the algorithm by dividing the region from which the points

are sampled into sub-regions with equal mass with respect to φ, thus increasing

the acceptance rate for points sampled far away from (x, t). That is, the code

first selects one of these equally likely sub-regions uniformly at random and then

points are sampled therein until one is accepted. The numerical optimization

method nlminb is used to calculate the boundaries of the ranges, i.e. quantiles

of the distribution from (4.9).

A first application of the sampling is the estimation of the expected local cluster-

ing coefficient of a vertex (0, t) in the age-dependent random connection model

(see Figure 4.4) and by Theorem 4.9 also the average clustering coefficient for

the age-based preferential attachment network (see Figure 4.5). To this end, the

code samples pairs of neighbours of (0, t) and averages the probability that the

pair is connected.

A second application of the sampling is generating heatmaps of the neighbor-

hoods of a given vertex (see Figure 4.3). The heatmaps are generated using the
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R library MASS and function kde2d by estimating the heat kernel for the sampled

neighbouring vertices. Further properties thereof can be studied with additional

heatmap generating functions that we provide.
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List of Principal Notation

Basic Notation

N Natural numbers {1, 2, 3, . . .}
N0 N ∪ {0}
R Real numbers

Zd d-dimensional lattice

Rd d-dimensional Euclidean space

|x− y| Euclidean distance between x and y

Td
n d-dimensional torus of width n

dTd
n

standard torus metric

a ∧ b min{a, b} for a, b ∈ R
a ∨ b max{a, b} for a, b ∈ R

1A and 1A Indicator function

P Probability measure

E Expectation with respect to P

f ∈ o(g) f/g converges to zero

f ∈ O(g) f/g is bounded away from infinity

f ≍ g f/g is bounded away from zero and infinity
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Graph metrics

G = (V,E) Graph G with vertex set V and edge set E p. 5

x ∼ y Vertices x and y are connected by an edge p. 5

x ↔ y Vertices x and y belong to the same connected compon-

ent

p. 6

deg(x) Degree of vertex x p. 5

d(x, y) Graph (chemical) distance between two vertices x and y p. 6

cglob(G) Global clustering coefficient p. 6

cav(G) Average clustering coefficient p. 7

τ Power-law exponent of a scale-free degree distribution p. 7

Geometric random graphs

X Poisson point process of unit intensity on Rd × (0, 1) p. 16

G Geometric random graph defined on X p. 16

x = (x, t) Vertex x of G with location x and mark t p. 16

γ Characterisation parameter - mark influence p. 16

δ Characterisation parameter - spatial influence p. 16

Px1,...,xn Law of G conditioned on the event that x1, . . . ,xn are

points of X
p. 17

G(0,T0)
Palm-version of G p. 17

(0, T0) Origin of the Palm-version p. 17

P(0,T0)
Law of the Palm-version p. 17

Contact process

λ Infection rate p. 90

ϖG Extinction time of the contact process p. 90

(ξAt )t≥0 Contact process with initial condition A ⊂ V p. 92

Γ(λ) Non-extinction probability of the contact process with

infection rate λ

p. 94
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[19] Béla Bollobás and Oliver M. Riordan. ‘Mathematical results on scale-free

random graphs’. Handbook of graphs and networks. (2002), pp. 1–34.

190

https://research.facebook.com/blog/2016/2/three-and-a-half-degrees-of-separation/
https://research.facebook.com/blog/2016/2/three-and-a-half-degrees-of-separation/
https://research.facebook.com/blog/2016/2/three-and-a-half-degrees-of-separation/


BIBLIOGRAPHY

[20] Karl Bringmann, Ralph Keusch and Johannes Lengler. ‘Sampling geomet-

ric inhomogeneous random graphs in linear time’. 25th European Sym-

posium on Algorithms. Vol. 87. Leibniz Int. Proc. Inform. (2017), 20:1–

20:15.

[21] Karl Bringmann, Ralph Keusch and Johannes Lengler. ‘Average Distance

in a General Class of Scale-Free Networks with Underlying Geometry’

(2018). arXiv: 1602.05712 [cs.DM].

[22] Karl Bringmann, Ralph Keusch, Johannes Lengler, Yannic Maus and An-

isur R. Molla. ‘Greedy routing and the algorithmic small-world phenomenon’.

Journal of Computer and System Sciences 125 (2022), pp. 59–105.

[23] S. R. Broadbent and J. M. Hammersley. ‘Percolation processes. I. Crystals

and mazes’. Proceedings of the Cambridge Philosophical Society 53 (1957),

pp. 629–641.

[24] Van Hao Can. ‘Metastability for the contact process on the preferential

attachment graph’. Internet Mathematics (2017), p. 45.

[25] Van Hao Can and Bruno Schapira. ‘Metastability for the contact process

on the configuration model with infinite mean degree’. Electronic Journal

of Probability 20 (2015), pp. 1–22.
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