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1. Zusammenfassung / Summary 

Zusammenfassung 

 

Eine der größten Herausforderungen für die globale Gesundheit ist die weltweit steigende 

Prävalenz von Adipositas. Die Untersuchung der Entscheidungs- und Lernprozesse für 

fehlreguliertes Essverhalten und das konsekutiv bessere Verständnis dieser ist entscheidend 

für die Bekämpfung der Adipositas-Epidemie. 

Das Ziel dieser Studie ist die Entwicklung und Validierung eines Experiments, welches diese 

Prozesse untersucht. 

 

Zu diesem Zweck untersuchten wir zehn gesunde Probanden mittels einer modifizierten 

„Probabilistic Selection Task“ (PST) – einer wissenschaftlich etablierten Aufgabe zur 

Bewertung von Lernverhalten. In der ersten Phase müssen die Probanden zwischen zwei 

visuellen Reizen wählen, die jeweils eine unterschiedliche Gewichtung aufweisen und 

entsprechend mit unterschiedlicher Wahrscheinlichkeit zu einer Belohnung führen werden. 

Z.B.: hat der visuelle Reiz A eine intrinsisch höhere Gewichtung als Reiz B und entscheidet 

sich der Proband richtigerweise für A, so wird eine Belohnung mit höherer Wahrscheinlichkeit 

ausgegeben; entscheidet er sich für B, entfällt mit höherer Wahrscheinlichkeit die Belohnung. 

In der zweiten Phase werden die Probanden an weiteren Reiz-Kombinationen getestet, ohne 

eine Rückmeldung für ihre Entscheidungen zu erhalten. 

Die ursprüngliche PST modifizierten wir für diesen Versuch: Statt einer monetären Belohnung 

wurden gustatorische Stimuli ausgegeben mit dem Ziel, den Effekt von Nahrungsmitteln auf 

das Lernverhalten zu untersuchen. Anschließend analysierten wir die Ergebnisse mit 

computergestützten Modellierungsmethoden und kombinierten diese mit den zeitgleich 

akquirierten Multiband-Sequenz-basierten fMRT-Bildgebungsdaten. 

 

Allen Probanden dieser Studie gelang es, die gustatorischen Stimuli angemessen zu 

interpretieren und darauf zu reagieren. Für den am höchsten gewichteten visuellen Reiz (A) 

zeigte sich eine durchschnittliche Genauigkeit von 88%±20.0%; für den am niedrigsten 

gewichteten Reiz (B) eine Genauigkeit von 73%±18.0%. Diese Ergebnisse stimmen überein 

mit denen anderer Studien. 

Hervorzuheben ist, dass der Erfolg der Aufgabe teils von der individuellen Bewertung der 

ausgegebenen Belohnung abhing. Verloren Probanden im Laufe der Aufgabe die Motivation 

zur Belohnung, so zeigten sie eine schlechtere Fähigkeit, höher gewichtete Reize korrekt zu 

wählen.  
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Bei der computergestützten Modellierung war das sogenannte asymmetrische Lernmodell 

überlegen. Bei diesem Lernmodell wird positive Verstärkung und negative Bestrafung 

unterschiedlich stark gewertet.  

Die durchschnittliche Lernrate für positive Verstärkung betrug 𝛼+ = 0.13 ± 0.15, für negative 

Bestrafung 𝛼− = 0.08 ± 0.17 (Durchschnitt ± Standardabweichung). 

Die fMRT-Bildgebungsdaten waren von suboptimaler Qualität. Während wir einige der von uns 

erwarteten Haupteffekte im visuellen, motorischen und sensorischen Kortex beobachten 

konnten, fehlte die erwartete neurologische Aktivität im Belohnungssystem – die für unsere 

wissenschaftliche Frage von zentraler Bedeutung ist. 

 

Zusammenfassend zeigt unsere Studie, dass eine Umsetzung der PST mit gustatorischen 

Stimuli möglich ist. Um die entsprechende neurologische Aktivität evaluieren zu können, sind 

jedoch Verbesserungen der fMRT-Einstellungen erforderlich. 

Ein optimiertes System könnte in weiteren Studien zu einem besseren Verständnis über 

neurobiologische Lernprozesse, die zu Adipositas führen beitragen, insbesondere die Rolle 

von Nahrungsmitteln als besondere Verstärker. 
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Summary 

 

One of the main challenges for global public health in the modern world is the rising prevalence 

of obesity. Obtaining a better understanding of the dysregulated feeding behaviour that leads 

to obesity, by investigating the decision making and learning processes underlying it, could 

advance our capabilities in battling the obesity epidemic.  

Consequently, our aim in this study is to design and validate an experiment that could evaluate 

these processes. 

To do so, we examined ten healthy participants using a modified version of the "probabilistic 

selection task" (PST) - an established behavioural task for evaluating learning behaviour. In 

the first phase of this task, the participants are presented with pairs of visual cues and are 

required to select one cue on each trial. Each cue has a different win probability and 

participants are tasked with identifying the more rewarding options. For example, if the 

participants correctly choose the visual cue A, which has a higher win probability, they would 

likely receive a reward. If the participants choose the less rewarding cue B, the reward would 

likely be omitted. In the second phase of the task, the participants are tested on their acquired 

knowledge, without receiving feedback for their choices. We modified the paradigm by 

delivering gustatory stimuli as a replacement for monetary rewards, to assess the effect of 

nutritional rewards on the learning behaviour. We subsequently analysed the behavioural 

results with computational modelling and combined this with imaging data simultaneously 

acquired with a functional magnetic resonance imaging (fMRI) multiband sequence. 

All ten healthy participants in this study succeeded in interpreting and interacting with the 

gustatory stimuli appropriately and consequently managed to conduct the task as expected. 

The participants successfully learned the task, presenting an average accuracy of 88%±20.0% 

for the most rewarding cue (A) and 73%±18.0% for the least rewarding cue (B), resembling 

performance results from other studies. 

Noticeably, the performance on the task was partially affected by the participants' subjective 

valuation of the reward. Participants whose motivation to drink the reward and liking of its taste 

decreased during the task presented more difficulties correctly choosing the more rewarding 

cues. 

Computational modelling of the behaviour found that the so-called asymmetric learning model, 

in which positive and negative reinforcement are differently weighted, best explained the 

group. For this model, the average learning rate for positive feedback was 𝛼+ = 0.13 ± 0.15, 

for negative feedback 𝛼− = 0.08 ± 0.17 (average ± standard deviation). 

The acquired fMRI data was suboptimal. While we could observe some of the main effects we 
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expected in the visual, motor and sensory cortices, we did not detect the neurological activity 

we expected in the reward system, which is central to our scientific question. 

Thus, our study shows it is possible to implement the PST with gustatory stimuli. However, to 

evaluate the corresponding neurological activity, our fMRI configuration requires improvement. 

An optimised system could be used in further studies to improve our understanding of the 

neurobiological mechanisms of learning that lead to obesity and elucidate the role of food as 

a distinctive reinforcer.  



 

13 
 

2. Introduction 

2.1 Obesity and health 

2.1.1. The epidemiology of obesity 

 

Obesity is a known major risk factor for various diseases such as cardiovascular disease, type 

2 diabetes mellitus, osteoarthritis and some types of cancer. 

1 This is a widespread problem 

and the prevalence of obesity is rising quickly among both adults and children worldwide. The 

rate of obesity has almost tripled globally between 1975 and 2016 to a mean rate of 39% of all 

adults being overweight and 13% being obese, with an even higher prevalence in member 

countries of the Organisation for Economic Co-operation and Development (OECD).

2 

 

Consequently, obesity is a substantial problem for global public health. In 2017, high body 

mass index (BMI) has risen to be the fourth leading independent risk factor causing death and 

disability in the world's population in total and the third highest factor for women. This was 

surpassed, aside by smoking, only by high systolic blood pressure and high resting plasma 

glucose, factors which are themselves both components of the metabolic syndrome, for which 

obesity is a risk factor. 

3,4 It is estimated that reducing the prevalence of high BMI has the 

potential for the greatest reduction of years of lost life among all major risk factors. 

4,5 

 

In addition to the individual health risk, obesity also poses a heavy financial burden on many 

countries, especially in high-income countries. The ever-increasing rate of obesity and related 

diseases is projected to constitute 8.4% of health expenditure in average in the OECD until 

2050.

6 

 

Thus, the endeavour to reduce obesity in the world's population is a major goal for the global 

health community. In order to successfully combat obesity, the health community requires a 

better understanding of its causes. 

 

2.1.2. Defining obesity 

 

When total energy intake exceeds energy expenditure, the body stores the excess energy as 

a reserve for future use. For short-term storage, the body stores energy in the form of glycogen, 

deposited primarily in the liver and skeletal muscle. The typically larger, more long-term 

reserve is stored mainly in adipose tissue in the form of triglycerides. 

7,8 If the excess in energy 

balance persists over time, adipose tissue proliferates and expands, resulting in increased 
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body weight.

8 When an individual's weight crosses a predefined threshold, he or she is 

considered overweight. When crossing an even higher threshold, he or she is then considered 

obese.

9 

 

In order to properly investigate obesity, one needs a reliable definition and measurable 

parameters. Imaging based analyses, such as dual-energy X-ray absorptiometry (DEXA),  

computed tomography (CT) or magnetic resonance imaging (MRI) allow a precise 

measurement of the amount and distribution of body fat. 

9 However the comparably high cost 

of imaging methods, their lower availability and, in the former cases, exposure to radiation, 

make them impractical for many studies. 

9 

 

In place of these more direct measurements, one can attempt using surrogate parameters to 

indirectly estimate body fat. 

One of the most widespread normative parameters for quantifying weight is the BMI, which 

requires knowing only the individuals' height and weight. For adults, a BMI of 18.5 − 24.9 
𝑘𝑔

𝑚2  

is considered normal, 25 − 29.9 
𝑘𝑔

𝑚2 is considered overweight and individuals with a BMI over 

30
𝑘𝑔

𝑚2 are considered obese, categorized further into grades I-III when the BMI is over 30
𝑘𝑔

𝑚2 , 

35
𝑘𝑔

𝑚2 or 40
𝑘𝑔

𝑚2 respectively.

9 This parameter is useful when investigating large populations and 

has been shown to correlate with disease and disability. However, this simple parameter 

provides only a relativity crude assessment of body fat and can often misrepresent the 

individual's constitution. On one hand, BMI can overestimate overweight in some individuals, 

such as exceptionally muscular individuals with low body fat percentage.10 On the other hand, 

BMI has been found to significantly underestimate body fat percentage in some cohorts, when 

compared to more precise results from imaging based analyses. 

9,11–14  

 

Alternative proportion parameters such as waist circumference, waist-to-height ratio and waist-

to-hip ratio have also been suggested to estimate body fat. These parameters were found to 

estimate especially intra-abdominal fat (also known as visceral fat) more accurately than BMI 

and thus correlate better to clinical end-points.13,14 Another, more technology-based method to 

measure body fat is a bio-electrical impedance analysis. This method potentially allows an 

even more precise characterisation of body fat in general and visceral fat in particular, while 

still avoiding the disadvantages inherit to imaging based analyses.15–17  

 

Visceral adipose tissue has a considerably higher endocrine activity than subcutaneous 

adipose tissue and this is likely the reason why abdominal fat correlates more directly to clinical 

endpoints. It is thought to be through the secretion and metabolism of various hormones, 
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adipokines and pro-inflammatory cytokines, that visceral adipose tissue exerts its negative 

impact on the body and drives disease. 

8,18–20 It may therefore also be useful to characterise 

these mediators more directly. Peripheral levels of adipokines such as leptin, hormones that 

interact with adipose tissue such as insulin or ghrelin, and metabolic compounds such as 

fasting glucose, cholesterol and triglyceride can all help in assessing the effect an individual's 

fat deposits have on his health.11,21,22 These parameters can also be combined, such as with 

homoeostatic model assessment of insulin resistance (HOMA-IR) to achieve a more nuanced 

estimation of the individual's metabolic status.23,24 Finally, the measurement of clinical 

parameters such as blood pressure may be useful in gauging the more downstream effects of 

obesity on the individual's health.25  

 

2.2 The causes of obesity 

2.2.1. Obesity and behaviour 

 

In the modern world, where access to energy dense foods is easy and food cues are 

ubiquitous, rising levels of obesity are commonly attributed to dysregulation of feeding 

behaviour, i.e. overeating.26–29 Principally on an individual level, a positive caloric balance can 

also occur when an individual is maintaining a stable amount of caloric intake, if they reduce 

caloric expenditure too greatly. However, at least in some populations, excessive caloric intake 

alone seems to sufficiently explain rising obesity rates, as average caloric expenditure in these 

populations has remained equal or even risen over the decades. This finding strengthens the 

importance of overeating as a main factor promoting obesity, regardless of physical activity 

levels.28,29 Furthermore, there is some evidence that total energy expenditure in humans is 

constrained, meaning weight gain through increased intake cannot be entirely impeded by 

increasing physical activity.30 

 

Consequently, it is of particular importance to understand feeding behaviour and overeating - 

the conscious or unconscious decision-making process that leads to the action of consuming 

more calories than needed for the body's energy balance. Improving our understanding of the 

cognitive mechanisms underlying overeating can provide us with valuable insight into how to 

slow down or even reverse the global trend of rising obesity rates. 

  

2.2.2. Feeding behaviour and learning 

 

In humans and other higher animals, feeding behaviour is regulated centrally by the brain. 

Information from the external world, such as the presence of food or anticipation of food 
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shortage, information from the body, such as status of current energy reserves or expenditure, 

as well as information from the brain itself, such as subjective memory of the food presented, 

is collected by the brain, which then performs a decision-making calculation regulating feeding 

behaviour.27,31,32 

 

These neural calculations are not static, but are adaptive and can change with new evidence, 

attempting to optimize the calculation and take the most appropriate decision for unknown 

conditions with uncertain results. This adaptation to additional information is understood as the 

process of learning.33–36 

Learning itself is not a singular process but takes place in several different forms. For example, 

learning can be based on positive or negative feedback, be implicit or explicit, goal-directed or 

habitual. Different types of learning and their degree can depend on the circumstances, but 

will also vary between individuals in the same circumstances.37 

In the case of obesity, inappropriate learning is suspected to be the root of dysregulated 

feeding behaviour. Obese individuals have been previously shown to present impaired 

learning, especially from negative feedback, when compared to lean age-matched adults. This 

impaired learning shown not only for food-related behaviour38,39 but also in non-food-related 

learning tasks.38,40,41 

 

2.2.3. The connection between the brain and obesity 

 

Feeding behaviour is regulated by two nominal brain systems: the homoeostatic system and 

the non-homoeostatic, or hedonic, system. 

The more primitive homoeostatic system functions to maintain and balance the body's energy 

needs. Signals from this system promote feeding behaviour when energy and nutritional 

deficits are detected but evoke an anorexic response when those needs are met.  

In contrast, the hedonic system allows a person or animal to attribute a subjective positive or 

negative value to food, beyond its nutritional value. It is within this system that learning 

mechanisms play a central role in defining behaviour. 

The value attribution performed through the hedonic system can override the signals of the 

homoeostatic system in a top-down fashion and can promote the consumption of nutrition 

beyond the body's energetic needs, which, if persisted over a sufficient period of time, results 

in obesity. Conversely, the hedonic signalling can also drive the person or animal to avoid 

certain substances, such as unpalatable food, even while experiencing strong hunger. 

Additionally, an interaction of the two systems exists also in the opposite direction. The 

homeostatic system modulates hedonic signals in a bottom-up fashion and can, for example, 

raise the perceived value of a food when hungry or decrease it when full.27,31,32 
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Figure 1: Schematic overview of the main pathways of the hedonic system and hedonic-homoeostatic relationship. 
The hedonic system is illustrated on the left and the interaction with the homoeostatic system on the right. 
PFC=prefrontal cortex; VS=ventral striatum; DS=dorsal striatum; VP=ventral pallidum; GP=globus pallidus; 
Th=thalamus; MC=motor cortex; VTA=ventral tegmental area; LHA=lateral hypothalamic area; BS=brain stem. 

 

2.2.4. The hedonic system 

 

In order to better understand how the hedonic system attributes positive value to stimuli, i.e., 

perceives them as rewards or reward predictors, and how learning processes influence this 

mechanism, it is important to understand the structure of this system. The hedonic system, 

sometimes known as the reward system, is activated not only in food related scenarios, but 

coordinates learning and decision making also from other primary reinforcers as well as from 

secondary reinforcers, enabling learning also in more abstract contexts.42 

 

While many different brain regions and the interactions between them are involved in the 

different aspects of reward evaluation and response, the core of the hedonic system is 

considered to be the cortico-ventral basal ganglia circuit. Put simply, information is processed 

in the prefrontal cortex and passed to the ventral striatum, from there to the ventral pallidum, 

then to the thalamus and back to the cortex, with the signals being modified by dopaminergic 

projections from the midbrain, especially at the ventral striatum. This is however not a one way 

loop, but rather a complex interconnected network with many signals travelling directly and 

reciprocally between the mentioned structures.42 

 

In this circuit, the forebrain processes input from sensory and internal sources to formulate 

multiple possible plans, actions and orchestrate behaviour. Here, especially the orbitofrontal 

cortex, and several regions of the anterior cingulate cortex: the dorsal anterior cingulate cortex, 
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ventromedial prefrontal cortex and the subgenaul area play a major role in reward valuation.  

These signals are sent to the ventral striatum (which includes the nucleus accumbens and the 

olfactory tubercle) to be evaluated and perform critical computations on reward prediction and 

reward prediction errors. This computation allows the selection and acquisition of specific 

behaviours and is heavily modulated by dopamine, originating mainly from projections rising 

from the ventral tegmental area in the midbrain in what is known as the mesolimbic pathway. 

The chosen behaviour is then further regulated by the ventral pallidum and then passed on to 

the thalamus (especially to its mediodorsal nucleus), which projects back to the cortex which 

then executes the learned behaviour.42 

 

The interaction of this circuit with the basal ganglia motor loop allows the execution of concrete 

motor actions needed to perform the behaviour. The basal ganglia motor loop has a similar 

hierarchy to the cortico-ventral basal ganglia and is composed of the motor regions of the 

cortex, the dorsal striatum, the pallidum and the thalamus and is modified by dopamine 

projections mainly from the substantia nigra pars compacta.42 

Interaction of the two circuits also occurs in the midbrain itself, as the ventral tegmental area 

and the substantia nigra pars compacta do not have clearly defined borders, but are more 

contiguous and share some overlapping projection fields. This may explain why the motor loop 

also plays a direct role in reward and reinforcement learning, partially overlapping in function 

with the cortico-ventral basal ganglia circuit.43 

 

Dopamine and reward prediction errors 

 

A major component of the acquisition of new behaviour through the hedonic system is its 

reaction to reward prediction error (PE), mediated mainly by the dopaminergic neurons of the 

midbrain. 

These neurons constantly release a tonic amount of dopamine to the synapses of their 

respective projections in the striatum. When receiving input about an unexpected stimulus, 

these neurons react with a phasic change in the dopamine levels they secret. When 

unexpected reward arrives the levels rise as a burst, which activates the "Go" pathway over 

D1-like receptors. After an unexpected omission of reward there is a sharp dip in this 

neurotransmitter's levels in the synapses, which activates the "NoGo" pathway over D2-like 

receptors. The magnitude of this phasic change has been shown to be linear in size with 

respect to the level of "unexpectedness" of the reinforcer, i.e., with the PE amplitude. This 

means, that as learning progresses and the reward (or the omission thereof) becomes more 

expected, the magnitude of phasic dopamine change reduces. If the reward or its omission is 

completely expected, no change in dopamine level occurs. In parallel, as the reward becomes 
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more expected, this dynamic of the PE gradually shifts to the context associated with the 

reward. For example, the action taken or the cue that was perceived just before the salient 

reward was received would now assume the PE dynamic for the release of dopamine. This 

process can also repeat and chain more distant actions or stimuli to the primary reward.44–48 

 

The basal ganglia govern this associative learning in several forms. Firstly, the association 

between an action and its outcome, which is central for goal-directed behaviour. Secondly, 

between a stimulus and the person's response, an association central in habit formation. The 

basal ganglia can also shift an association and turn a previously goal-directed action into a 

more habit-based behaviour.48,49 

 

In addition to phasic changes, the tonic level of dopamine secretion also affects the pattern of 

learning. Tonic level and rewards seem to have a linear correlation, with higher tonic levels of 

dopamine secretion promoting learning from positive reinforcement. The relationship with 

negative reinforcement has an inverted U-shape form, so both too low and too high tonic levels 

of dopamine impede learning from reward omission.50,51 

 

It should be noted that the dopamine neurons of the ventral tegmental area and the substantia 

nigra pars compacta present a rather homogeneous electrical activity, likely because they are 

interconnected with gap junctions, which allow for a faster electrical coupling than chemical 

synapses .52–55 This makes it plausible to model their output as a single scalar value, such as 

the scalar prediction error described below in section “Computational modelling: reinforcement 

learning”.55,56  

In addition, while the dopaminergic neurons of the midbrain are especially reactive to 

unexpected reward or it's omission, they also react to physical salience, risk and weakly also 

to punishment.57  

 

Food and dopamine 

 

Food intake has a dual effect on dopamine signals - first through taste and then through 

nutritional digestion. Both these responses elicit dopamine release in the brain but do so over 

segregated pathways and with different results. The immediate orosensory response releases 

dopamine in key regions for reward valuation and motivation, reflecting the desire to eat and 

assigning value to the food as reward. The delayed post-ingestive response induces dopamine 

release mainly in the inhibitory pathway of the putamen, suggesting the intake of nutrition may 

dampen the desire to feed in a response taking place about 15 minutes after the orosensory 
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input of the same food.58 This dynamic gives food rewards another characteristic that 

distinguishes it from other reinforcers. 

 

2.2.5. The homoeostatic system 

 

Abstract rewards such as money or psychostimulants such as cocaine and methamphetamine 

play out their effects mainly in the hedonic system. In contrast, food rewards also affect the 

more basal homeostatic system, which in turn affects the hedonic system in a bottom-up 

fashion. For example, food deprivation has been shown to increase hedonic response to the 

consumption of food and even enhances the response of the hedonic system to non-food 

rewards.59–61 

 

One of the main neuronal circuits managing this interaction between the hedonic and 

homoeostatic systems is the neuronal loop between the nucleus accumbens and the lateral 

hypothalamic area. 

The lateral hypothalamic area is the primary orexigenic nucleus in the brain and receives 

feeding-related homeostatic and circadian signals. The lateral hypothalamic area can send 

excitatory signals to the nucleus accumbens, which itself can send disinhibiting signals back 

to the lateral hypothalamic area, over both a direct and an indirect pathway (over the ventral 

pallidum). The lateral hypothalamic area can then influence feeding behaviour by sending 

signals to brain stem regions involved in feeding-related motor control as well as sympathetic 

and parasympathetic nuclei controlling feeding-related functions such as salivation and gastric 

acid secretion. This reciprocity between centres of both the hedonic and homoeostatic systems 

forms a self-reinforcing connection between the nutritional and motivational value of food, 

strengthening feeding behaviour.31,62 It is therefore possible that dysregulation of this 

interaction also influences obesity. 

2.3 How to research learning behaviour 

 

After establishing that dysregulated learning can lead to obesity and describing which brain 

systems play a central role in this mechanism, it should be discussed which methods and 

models can be implemented to further investigate these mechanisms in a human population. 

 

2.3.1. Modelling learning behaviour 

 

In order to properly interpret data from an experiment and infer upon the learning progress of 

the participants, a good model of the learning process is needed. 
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In modern learning theory, there are three established theories describing the acquisition and 

adaptation of new decision-making-related behaviour: classical Pavlovian conditioning (the 

association of a natural unconditioned stimulus and a learned conditioned stimulus), operant 

conditioning (the individual's or animal's behaviour influences the stimulus and is negatively or 

positively reinforced by the outcome) and social learning through observation and imitation. In 

addition, there are crossovers between these types of learning, such as general and specific 

Pavlovian-instrumental transfer.63,64 

 

Another important hypothesis in learning behaviour is the dual-system theory of instrumental 

conditioning. According to this theory, an individual's decision-making process is determined 

through a balance between two separate types of instrumental learning: goal-directed and 

habitual learning.49,65 In obesity, especially habitual learning has been implicated in the 

determination of behaviour. Feeding behaviour learned this way can override suppressive 

homoeostatic signals and, unlike goal-directed decision making, ignores the possible long term 

negative ramifications of overeating.39,66 

 

Measuring learning 

 

In order to evaluate if and to what extent learning has been accomplished, we need to be able 

to measure it. The success of learning is however not a universally defined parameter and may 

be depended on the behaviour being learned and the observer's expectation of the wanted 

result.67,68  

In the context of operant conditioning and instrumental tasks, for tasks containing binary 

choices with one choice being considered correct (e.g., rewarding or avoiding punishment) and 

the other incorrect, one can divide the experimental paradigm into a learning phase, during 

which new knowledge is acquired and a testing phase, to measure the acquisition. 

If the learning process was successful, the participant should be able to perform in the testing 

phase with an adequate success rate (e.g. better than a predefined threshold).69 

If the task contains multiple possible choices with an intrinsic hierarchy on an ordinal, interval 

or ratio scale, one could evaluate the participant's ability to successfully order the choices on 

their place in the hierarchy. 

 

In addition to measuring learning by observing its final state as measured in the testing phase, 

one could also attempt to evaluate the learning process with a more mechanistic approach by 

analysing the learning phase itself. By fitting the participant's conduct during the acquisition 

phase to a learning curve, one could try assessing the speed and efficiency of his or her 

learning process.67,68,70 
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However, as the participant's strategy at each step of the task is hidden from the observer, 

such a learning curve can only be approximated, and a robust model is required to derive a 

sufficiently accurate result.  

This type of model, which approximates the participant's behaviour based on an assumption 

of its underlying mechanism, is known as a generative model and often needs to be calculated 

in a computational modelling framework.  

Importantly, for the generative model to be useful and give a good estimation of the true 

computation performed by the brain, it must also be generalisable to new participants or 

tests.68,70–72 

 

The value of such model-derived learning curves and associated parameters comes into play, 

especially when validating them with external measures. Correlating the learning curve 

parameters with imaging data greatly enhances the interpretation of imaging signals by 

enabling us to localize and quantify activity in the brain related to the concrete learning 

process.72,73 

 

Computational modelling: reinforcement learning 

 

While each of the models of learning theory tries to explain how new behaviour is acquired in 

somewhat a different way, and they may truly describe biologically separate mechanisms, they 

have all been mathematically modelled quite reliably by implementing the concept of (reward) 

PE in appropriate algorithms.71,73 

According to the concept of PE, it is not the intrinsic value of the reward itself that drives 

learning, but the discrepancy between the actor's expectation and the actual outcome. A 

surprising reward is much more salient than a predictable one, and an unexpected punishment 

is much more penalizing than one which was seen coming. Stimuli that are entirely expected 

by the actor have no effect on the learning process for that behaviour.45,46,71,73 

 

One of the most successful algorithms for generative models of learning behaviour is that of 

reinforcement learning, when based on PE. This class of algorithms, originating from computer 

science and artificial intelligence, have been used quite successfully in the fields of 

neuroscience and behavioural science. Interpreting data in a reinforcement learning framework 

has significantly improved our ability to investigate the function of specific brain structures 

during learning.73,74 

Especially model-free reinforcement learning has been shown to correspond well with 

dopamine-based and habit learning, as opposed to model-based reinforcement learning which 

corresponds more with goal-directed learning.74 
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Figure 2: The Interaction between the brain and the world according to the Bayesian brain hypothesis mirroring the 
relationship between generative models and experimental observations in the context of Bayesian statistics 

𝑝(𝜃|𝑦,𝑚)⏟      
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

= 
𝑝(𝑦|𝜃,𝑚)⏞      
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

∙ 𝑝(𝜃|𝑚)⏞    
𝑝𝑟𝑖𝑜𝑟

 

𝑝(𝑦|𝑚)⏟    
𝑚𝑜𝑑𝑒𝑙 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

 

Equation 1: Bayes' theorem. p()=probability; θ=model parameters; y=observation data; m=model. 

 

Computational modelling: approach learning vs. avoidance learning 

 

As discussed in section 2.2.4, individuals likely differ in their learning dynamic from positive 

feedback, also known as approach learning, and their learning dynamic from negative 

feedback, also known as avoidance learning40,48,50,51,57,69 Moreover, learning from negative 

feedback would likely differ if the stimulus is an explicit punishment or an omission of reward.57 

 

When designing a reinforcement learning-based generative model, one can model each 

different learning dynamic as a separate learning rate. However, adding more parameters to 

a model can potentially allow more overfitting and thus weaken the model evidence. This 

creates a trade-off between generalisability and precision of the model for real-world data.72 

 

Computational modelling: model inversion 

 

After gathering data and constructing a generative model to interpret that data, we need to fit 

the data to the model and assess its accuracy in a process known as model inversion. 

Additionally, we can set up alternative generative models and test which one best explains the 

observed data.72 

 

Different statistical techniques exist to perform model inversion of reinforcement learning 

models.  
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In the past, maximum likelihood estimation was a popular technique for fitting data, as it is 

often easy to compute and relatively straightforward to interpret. However, maximum likelihood 

estimation gives a point estimate without a representation of uncertainty and is susceptible to 

overfitting.72 

Advances in computational capabilities have promoted Bayesian estimation as an often-

superior approach. The Bayesian estimator is based on Bayesian statistics and therefore 

requires calculating full posterior densities, which can in turn be approximated with various 

algorithms.  

Two main algorithms groups are currently being used in the research of learning behaviour: 

Monte-Carlo sampling methods and variational Bayes. Monte Carlo sampling methods such 

as Markov chain Monte Carlo are based on repeated random sampling. These methods tend 

to be slow but principally (according to the law of large numbers) converge to the real posterior 

density and thus can generate relatively exact estimations of the posterior. In contrast, 

variational Bayes methods tend to be faster to compute while still generating a good 

approximation of the posterior densities. An additional advantage is their capability to directly 

measure model evidence, useful for comparing models.72,75,76 

 

Interestingly, according to a popular theory known as "Bayesian brain hypothesis", the brain 

itself may be inferring on the outside world (or on the inner states of the body) by performing 

Bayesian estimations. Correspondingly, the brain is assumed to have a model or an 

expectation of the world (or of the body) used as the prior. Once the brain receives sensory 

input, it performs model inversion and calculates a posterior probability. If the prior and 

posterior diverge, the brain strives then to resolve this prediction error by mobilizing the body 

to change sensory input, by updating its prior beliefs, i.e. learning, or a mixture of both 

solutions.36 This concept is schematically shown in figure 2.  

In this framework, the dysregulated learning driving obesity could be understood as a 

systematically inadequate resolution of prediction errors.40,41 

 

Computational modelling: model selection 

 

As all models are simplifications of the real world, we can take an extra step in improving the 

accuracy of our chosen model by suggesting alternatives and calculating which model best 

explains our observations. This comparison can be performed on an individual level, assessing 

which model best explains the data obtained from an individual participant. However, for an 

experiment assessing a group of participants or comparing between groups, a calculation must 

be carried out to select one or more models which are most appropriate across all participants 

examined. 
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Assuming one model best explains all participants is known as a fixed-effects assumption.  

This approach is very susceptible to outliers. Allowing the calculation to fit different models to 

different participants is known as a random-effects model selection approach.77 

 

As with model inversion, one can perform the computation of log model evidence needed for 

the above-mentioned methods with variational Bayes using the Laplace approximation or by 

using a sampling method such as Monte Carlo sampling methods. Due to variational Bayes' 

superior speed, it is currently the more commonly used approach in the field of behavioural 

neuroscience.72 

 

However, it is important to note that while these comparisons can find the best model among 

the suggested ones, they are not capable of assessing how the models fit the real world. The 

best model from the comparison still needs to be assessed in an independent manner for its 

actual accuracy.77 

 

2.3.2. A behavioural task to assess reward-based learning 

 

The behavioural paradigm and the related components of an experiment must be carefully 

constructed, depending on the aspects one wishes to investigate. For researching 

dysregulated learning in feeding behaviour, it would be advantageous if the paradigm gathers 

data that would be appropriate to model as model-free learning and could ideally differentiate 

between approach learning and aversion learning. Although a Pavlovian task can also be used, 

an instrumental task would likely be more engaging and hence improve participant 

participation. Finally, one could design a completely novel task or use a previously established 

task. Reusing or modifying an established task has the advantage of building on existing 

literature and simplifies the comparison of results, especially if the task has already been 

examined with the additional investigatory tools (e.g., imaging methods) one would also like to 

use. 

 

Probabilistic selection task 

 

The probabilistic selection task (PST) is an established paradigm for evaluating reinforcement 

learning, which is also capable of differentiating between learning from positive and negative 

reinforcement.67 The original study examined a cohort of patients with Parkinson's disease, 

comparing different medication statuses as well as against a control group. It has since been 

expanded to study other populations, as well as adding imaging data with functional magnetic 

resonance imaging (fMRI) 78–82 and electroencephalography (EEG).78 
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The original PST used a performance-based criterion to determine how the individual 

participant advances through the phases of the task.69 However, as an adaptation to the 

constraints of fMRI analysis, the studies acquiring fMRI data choose to set a fixed amount of 

trials for each phase of the task.78–82 

 

Previous studies implementing the PST to study reinforcement learning could show that 

variation of dopamine responses in the brain can substantially affect learning. This was shown 

in participants with abnormal dopamine levels resulting either from pharmacological 

manipulation81, medical conditions such as parkinsonism67,79,83 or even genetic 

polymorphisms50,84, indicating this task is appropriate for investigating dopamine-based 

learning. 

 

Choosing the visual cue set 

 

Choosing the visual cue set for a paradigm is not a trivial task, as it can affect the results of 

both behavioural performance and imaging data. Choosing the cue set must therefore be done 

with careful consideration. On a behavioural level, certain cues may affect the participant's 

prior valuation of the cue, e.g. the participant's associations or affinity towards the chosen 

objects or colours can change his or her expectations, and therefore performance, when 

choosing between the pairs.85 Stimulus discriminability can influence the difficulty level of 

learning and inconsistency between cues within the same task can create an uneven playing 

field, thus biasing learning. This has been specifically shown to happen with the set of hiragana 

symbols used in the original PST.86 

Differences between cues in visual factors like intensity, brightness, and abstractness can all 

affect the signals acquired by the fMRI, potentially introducing unwanted variability. It is 

therefore important to minimize such differences between the presented cues as much as 

possible. As a result, a popular choice for fMRI tasks is using black and white images with 

similar properties.85 

 

The original PST and many following studies used a set of hiragana symbols, as mentioned 

above.69,78,79,83,84,86–88 However, some later studies 81, including some which have also studied 

obesity,80 have used a cue set containing drawings of more easily identifiable animals or other 

simple symbols.89  
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Choosing the reward modality 

 

For either Pavlovian or instrumental learning tasks, reinforcers are needed to induce learning. 

The reinforcer should have a value, either positive or negative in nature, before the beginning 

of the experiment. In a Pavlovian context, the reinforcer would be called the unconditioned 

stimulus and in an operant conditioning context, the reinforcer is a reward or punishment. 

By process of conditioning, a previously neutral stimulus (the Pavlovian conditioned stimulus, 

or the operant conditioned response) is then associated with the value of reinforcer. This can 

be an auditory signal, a visual cue, an odour, etc.37,64  

 

The reinforcer can belong to one of two types: primary or secondary. Primary reinforcers are 

of inherent biological value to the body, instigate reflexes in the body and the more primitive 

parts of the brain and do not need to be actively learned by more advanced areas of the brain. 

Examples of primary reinforcers are food, drink, warmth, sex, sleep or relief from pain.37,64,90  

Secondary reinforcers are stimuli that have been associated with a primary reinforcer and thus 

gain value, but this association can principally also be unlearned. In an experimental setting, 

this value should be present before and outside the context of the experiment. For example, 

sight or smell of food can be used to proxy the reinforcement value of actual food.37,64,90,91   

Money has also found widespread use as the reward in human experiments, because of its 

close association as a token for more primary reinforcers.37,90,92 

Money also has some practical advantages, as it likely keeps a relatively steady value as a 

reinforcer during the experiment and simply informing the participant about his win or loss is 

likely enough to capitalize on its value, without needing to physically give to or take away 

money from the participant on a trial-to-trial basis. This reward modality has been used in many 

studies investigating behaviour and learning, also in the context of obesity, as the condition is 

assumed to be a result of more general inadequate learning processes.38,40,41,80 

 

However, while money may be closely associated with reward in general, it is likely that primary 

and secondary reinforcers still differ in the way they are evaluated by the brain. Food also 

triggers other brain systems, which can, in turn, interact with the reward system.58,90 

Food rewards may therefore have a specific effect on the learning process, which may differ 

between obese and normal-weight adults in a greater manner than non-food reward-based 

learning. This makes it worthwhile investigating learning in obese adults while using gustatory 

stimuli. 
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Optimizing the task paradigm for imaging acquisition 

 

As discussed below, imaging data is noisy and certain adaptations of the task paradigm can 

be implemented a priori to improve the signal-to-noise ratio (SNR). 

For fMRI data, temporal resolution can be improved by "jittering" the interstimulus intervals, 

i.e., using (preferably varying) delays between stimulus onset and sampling of brain images 

with delays that are not multiples of the repetition time (TR) of the MRI sequence. This enables 

the acquisition of responses to stimuli at different time points, improving the reconstruction of 

brain activity from the observed hemodynamic response.93,94 

 

Another method is the inclusion of "null events", events that are similar to the intertrial interval 

and should not be detectable by the participants. These events aim to create an approximation 

of a baseline neuronal activity that can assist in the analysis of main effects.94 

 

2.3.3. Imaging data acquisition 

 

Different techniques exist to investigate functional activity in the brain. While in animal research 

some invasive tools exist, human research is usually constrained to non-invasive or minimal-

invasive methods. 

Popular methods used for such studies include EEG, magnetoencephalography (MEG),  

functional near-infrared spectroscopy (functional near-infrared spectroscopy), positron 

emission tomography (PET), single-positron emission computed tomography (SPECT) and 

fMRI. 

These methods vary in the directness of the measure of neuronal activity, temporal resolution, 

spatial resolution, mobility as well as related costs and accessibility. 

EEG which measures electrical potentials over the brain and MEG which measures the 

neuromagnetic field, both have the most direct measure for the actual electrical and therefore 

functional activity of neurons with excellent temporal resolution (under 1 𝑚𝑠). However, EEG 

has the worst spatial resolution of the above-mentioned methods (ca. 10 𝑚𝑚) and can only 

indicate the broad area from which the activity arises but is the cheapest and most accessible 

method. MEG's spatial resolution is moderate (ca. 5 𝑚𝑚) but this can be improved by 

simultaneous use with EEG. However, the relatively high cost of this dedicated equipment 

minimises the extent of its use. fNIRS also has a slightly higher spatial resolution than EEG 

(5 − 10 𝑚𝑚) and a similar temporal resolution but only measures the delayed hemodynamic 

response and not the direct electrical activity. EEG, MEG and fNIRS are all limited in 

measurement-depth mostly to measuring in cortical regions. In contrast, PET, SPECT and 

fMRI can also accurately examine deeper regions of the brain. fNIRS, PET, SPECT and fMRI 
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all measure neuronal activity indirectly by measuring the haemodynamic response, while the 

radioactive tracer used in PET and SPECT can also be used to measure more differentiated 

aspects of the brain, such as the distribution of dopamine receptors captured with a dopamine 

transporter scan (DaT-Scan). However, these techniques also mean exposing the participants 

to radiation. The spatial resolution of PET and SPECT is similar to MEG (ca. 4 𝑚𝑚 and 6 𝑚𝑚, 

respectively) but the temporal resolution is much poorer (1 − 2 𝑚𝑖𝑛 and 5 − 9 𝑚𝑖𝑛 , 

respectively) with PET also being the costliest of all the above-mentioned methods. Finally, 

fMRI shows the best spatial resolution (ca. 2 𝑚𝑚) of all methods, while showing a reasonable 

temporal resolution (4 − 5 𝑠, primarily due to the delay of the hemodynamic response). It is 

also possible to combine fMRI with EEG or fNIRS in an attempt to combine the respective 

advantages in spatial and temporal resolution. While fMRI is relatively costly and an indirect 

measurement for neuronal activity, this method presents a good balance between resolutions, 

safety and cost, which has promoted its popularity in the field.95–97 

 

fMRI and BOLD 

 

MRI is an imaging technique, that uses a strong static magnetic field, gradient magnetic fields 

and radiofrequency pulses to create images that can display the insides of the human body 

while differentiating various tissue types. 

Paramagnetic materials, i.e., atoms with unpaired electrons, most abundantly found in the 

body as protons in water molecules, align themselves mostly parallel but also anti-parallel to 

external magnetic fields and precess with a Larmor precession frequency dependent on the 

field strength. Using additional gradient magnetic fields, one can force the protons to precess 

in various frequencies according to their location, thus encoding their position. Such atoms can 

be tilted out of alignment by applying energy - in the form of radio waves, which also makes 

them precess together (in-phase) in the transversal plane to the main magnetic field. The in-

phase precession also emits a signal in radio frequency which can be picked up by a receiver 

coil. 

Once the radio frequency is turned off, the atoms start realigning themselves to the main 

magnetic field with a rate defined by the time constant T1. At the same time, they also begin 

de-phasing at a rate defined by the constant T2, which also decays the emitted signal. 

However, this dephasing is susceptible to inhomogeneities in the magnetic field and the 

observed decay rate constant, without accounting for inhomogeneities, is called T2*. 

Put together, these properties can be combined and manipulated to create a map of signals 

from protons and other paramagnetic atoms, differentiated by location and quantity, which are 

then reconstructed into an image.98 
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Functional imaging with MRI was made possible by combining two further discoveries. Firstly, 

changes in blood oxygenation from the diamagnetic oxyhaemoglobin to paramagnetic 

deoxyhaemoglobin, give a measurable signal, now known as blood-oxygen-level-dependent 

contrast.99 Secondly, changes in local neural activity are coupled with a hemodynamic 

response. Increased neuronal activity, which requires more glucose and oxygen, is responded 

to by increasing arterial blood flow. This delivers more oxyhaemoglobin and, as the neurons 

show an only slightly higher oxidative metabolism, results in a higher ratio of oxyhaemoglobin 

to deoxyhaemoglobin, a decrease in the deoxyhaemoglobin induced T2* shortening effect and 

thus a stronger BOLD signal.100–102  

The most common sequences used to detect BOLD signals are echo-planar imaging (EPI) 

sequences. Their design allows acquiring images very quickly which enables the temporal 

resolution needed for functional imaging, but their reliance on the artefact prone T2* weighting 

lowers the SNR. This requires efficient preprocessing of the images to remove noise, before 

performing any statistical analysis.103 

 

Simultaneous Multislice Imaging 

 

Simultaneous multislice imaging techniques, also known as multiband sequences, are an 

advancement in imaging techniques. These protocols can be used to acquire multiple slices 

at once with a reduced TR, enabling a higher temporal resolution while showing minimal to no 

reduction of SNR - all properties which are especially useful in fMRI.104 

The advantages of this technique are especially pronounced in resting-state fMRI and when 

analysing task-based fMRI with Multi-Voxel Pattern analysis. However, the benefits of this 

technique are not as definite when analysing task-based data with a general linear model 

(GLM), compared to more classical echo-planar imaging protocols.105 The effects on SNR 

seem also to be dependent on the region in the brain, and the exact protocol parameters 

should therefore be carefully weighed according to the goals of the task paradigm and the 

specific brain structures under investigation.106 

 

Analysis of fMRI data 

 

In order to interpret and draw conclusions from the fMRI data, one must first preprocess the 

raw data. This includes correcting for noise and artefacts which can arise from head motion, 

signal drifts, slice timing offset, spatial distortions, etc., as well as preparing individual data-

sets for group-wise analysis by normalizing and smoothing the brain structure.107 

Once the preprocessing is complete, statistical analysis can then be performed on the 

corrected data sets. For task-based fMRI, the most common analysis is using a GLM. The 
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results of the GLM can then be used as parameter estimates for  statistical parametric mapping 

(SPM), which is a mathematical technique (and matching software package) that enables the 

construction and assessment of statistical maps, showing activation levels across different 

regions of the brain under different conditions of the task paradigm. These maps can then be 

used to infer on the study hypotheses.103,108  

 

Reinforcement learning in fMRI 

 

Although fMRI cannot by itself directly quantify levels of dopamine release, change in 

hemodynamic activity in brain structures known to be part of the dopaminergic pathways 

indicate a respective change in dopamine levels. Studies observing activity in these structures 

during learning tasks strengthened the findings of other methods in making the connection 

between dopamine and learning behaviour.  

Multiple fMRI studies have shown increased activity in response to reward PE in the striatum, 

particularly in the ventral putamen and caudate, especially in the left hemisphere, as well as 

increased activity in the left frontal operculum. Several studies have also shown increased 

activity in the thalamus.92 

 

In addition to PE response, another parameter of interest in reward-based learning behaviour 

is the expected value or state-action value (SAV) of the cue signalling reward. This value 

seems to be processed by the ventromedial prefrontal cortex, and especially in the subgenual 

cingulate cortex.92 

 

It is important to note, that while some of these effects are found in all instrumental learning 

tasks regardless of reward modality, some modalities have additional specific effects. PE from 

liquid rewards, which were designed to quench thirst, showed additional clusters in the lateral 

putamen and amygdala.92 Food rewards showed additional clusters in the anterior insulae but 

showed less of a response in the amygdala as elicited from erotic stimuli, a different type of 

primary reinforcer.90 

 

In addition to reward modality and experiment design, the computational model and the 

specific parameters calculated for the model can also affect the fMRI analysis. For example, 

choosing between individually fitted learning rates and a fixed value for the entire group can 

result in different structures of the reward system showing activity in response to PE.92  

Consequently, the methods used in analysing task results must be chosen after careful 

consideration. This includes not only the fitting of the learning rate but also choosing the 

number of learning rates (a single learning rate or separate ones for different stimulus types), 

fitting of additional parameters (e.g., temperature) and the setting of priors. 
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2.4 The neurobiological mechanisms of learning in obesity 

 

In summation, we could gain valuable information about the learning process which is 

influencing feeding behaviour and driving obesity by studying its underlying neurobiological 

mechanisms. This can be achieved by coupling an appropriate task paradigm such as the PST 

with an imaging technique such as fMRI. By comparing individuals with such a method based 

on obesity-related parameters, we may be able to draw useful conclusions on learning patterns 

that promote obesity and gain insight into how these patterns are formed. 

 

A growing number of studies suggest that obese and obesity-predisposed individuals 

performing on reinforcement learning tasks, including the PST, encounter difficulties 

specifically in learning from negative feedback, but can generally learn appropriately from 

positive rewards.38,40,41,80 This raises the question if this behavioural difference also originates 

from a variance in dopamine responses compared to non-obese individuals, and would 

suggest especially the D2R-mediated NoGo Pathway is affected. 

Imaging studies could indeed show a link between obesity and reduced D2-receptors.109 There 

is also some genetic evidence for this link, such as with the fat mass and obesity-associated 

gene (FTO), which is associated with a predisposition towards obesity, with impaired learning 

behaviour from negative feedback and with altered D2-dependent midbrain responses.80 

 

Most studies investigating reinforcement learning in obesity with fMRI used monetary rewards. 

One of these studies observed a diverging reaction to monetary loss in the medial prefrontal 

cortex, with increased activity in obese adults and a decrease in lean adults. This study 

observed no difference in the dopamine-dependent PE response between the groups.40 

 

fMRI studies using food as the reward modality showed obese participants had an increased 

gustatory response towards cues signalling food reward, but a decreased response in the 

striatum to the reward itself. This dynamic also predicted later weight gain.110,111 Variability of 

response to food reward in the nucleus accumbens was also found to correlate with weight 

gain.112 A decrease of activity in the caudate nucleus in response to food reward was also 

found to correlate with BMI.113 

 

To our knowledge, only a few studies have combined all the elements mentioned above and 

investigated the learning processes predisposing to obesity with fMRI in a reinforcement 

learning framework using gustatory rewards. None of these studies used paradigms that can 

explicitly examine avoidance learning, which is of particular interest in obesity 
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2.5 Aims and Objectives 

 

The research question for this scientific program was to increase our understanding of the 

neurobiological mechanisms of learning, especially in the context of nutrition as a primary 

reinforcer. 

 

The aim of this study was to develop a method for the investigation of the above mentioned. 

This was chosen to be an implementation of the PST, using nutritional liquid responses and 

simultaneously acquiring fMRI data. 

 

In order to achieve our study aims, following objectives were defined. 

 

1. Write a computer program which runs a customized PST paradigm, which can interact 

with participants who are laying in an MRI machine. The program should receive the 

participant's input and activate the gustometer in response.  

2. Customize a setup for a gustometer - a mechanical system that can selectively deliver 

gustatory stimuli. 

3. Validate the timing of all steps of the paradigm as well as the synchronization of the 

paradigm with the MRI. 

4. Analyse the acquired behavioural data to determine if the participants successfully 

learned during the paradigm. This includes investigating the learning curves, response 

speeds and computational modelling of the data and comparing these to results from 

previous studies which implemented the PST with other types of stimuli. 

5. Evaluate the acquired imaging data to assess the capability of the multiband sequence 

to show main effect activation in expected systems, i.e., the reward system, visual 

cortex, motor cortex, somatosensory and gustatory cortex. 

6. If main effect acquisition is successful, analyse the imaging data for associations 

between behaviour and neural activity, based on parameters derived from the 

computational modelling. 

7. Assess if imaging data from the fMRI has a significant added value to data from the 

behavioural task when studying and comparing reinforcement learning behaviour 

between participants in the context of gustatory based rewards.   
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3. Materials and Methods 

 

Figure 3: Participant examination workflow. Time from arrival is denoted in minutes. 

3.1 Participants 

 

10 healthy male volunteers were recruited for the study. 

The participants were recruited via the Max Planck Institute for Metabolism Research. We 

excluded female participants to avoid the effects of the menstrual cycle on the dopaminergic 

system and reward-related neural function.114–117 In addition, potential volunteers were 

screened for age (18-40), having normal BMI, being non-smokers and being free from 

neurological, psychiatric, metabolic or gastrointestinal diseases including lactose intolerance 

as well as any other severe chronic or acute illnesses. Finally, participants were asked to 

express a general liking for milkshakes, as they were expected to perceive the flavoured fluid 

as a reward. 

The workflow for the examination of an individual participant is schematically shown in figure 

3. 

 

All participants provided informed consent prior to participating in the study, which had been 

approved by the local ethics committee of the Medical Faculty of the University of Cologne 

(Cologne, Germany). 

 

3.1.1. Metabolic parameters - blood tests and BIA 

 

Participants were instructed to fast for a minimum of six hours before arriving at the laboratory 

but at the same time to drink a sufficient amount of water as to not arrive thirsty for the 

examination. 

Each participant was weighed and measured, and their respective BMI was calculated. An 

automatic bio-electrical impedance analysis was performed with a medical body composition 

analyzer (Seca GmbH, Hamburg, Germany) to assess visceral fat mass.15–17 
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Blood samples were taken and analysed for glucose and insulin levels. From these values the 

HOMA-IR23,24 was calculated. 

 

3.1.2. Gustatory stimuli and taste test 

 

As we wished to provide the participants with gustatory stimuli while they are lying supine in 

the MRI, we opted for using liquids rather than solid food, as they are easier to quickly deliver 

in small amounts to the participants during the examination. We chose to use milkshakes as 

the positive feedback instead of juice or other sugary drinks, as their composition from fat in 

addition to carbohydrates was shown to have a stronger effect with increased reward response 

when compared to purely carbohydrate-based drinks, even independent of the participants' 

subjective liking of the taste.118 

In order to make the negative feedback more comparable to the positive feedback in non-

reward aspects and thus reduce unwanted variability in the fMRI analysis, we choose to deliver 

a neutral-tasting fluid as the negative feedback. This would require the participant to sense a 

fluid and swallow it, thus mimicking the sensory and motoric brain activity observed when 

receiving a positive outcome, while the lack of taste and caloric value would represent a lack 

of reward. 

In order to create a setting where the milkshake fluid would indeed be perceived as a positive 

reward and the tasteless solution as a lack of reward, taste tests were carried out on the scan 

day shortly before performing the experiment. First, participants were given samples of four 

different crystalloid solutions and were asked to choose the one most "neutral-tasting" by 

pipetting a small amount of the fluid into their mouths, while reclining their heads backwards 

to simulate the application of the stimuli in the MRI machine. 

Similarly, participants were given samples from four different flavours of milkshake and were 

additionally asked to fill an on-screen questionnaire which included the following questions: 

firstly, general levels of hunger, satiety and thirst, quantified with a visual analogue scale (VAS) 

and subsequently for each flavour their perception of its sweetness and intensity, quantified 

with a general labelled magnitude scale119,120, their liking of the taste, their perception of the 

liquid's fattiness, creaminess and oiliness and finally how much they would want to drink the 

milkshake, all of which were quantified with a visual analogue scale. 

Subsequently, the milkshake flavour with the highest “liking” and “wanting” scores was chosen 

for the experiment. 

Participants repeated the questionnaire directly after performing the experiment, answering for 

the flavour they chose for the experiment.  

See appendix 7.4.2 for the recipes used. 
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Table 1: Participant characteristics. Data are given as mean ± standard deviation. 

Parameter Healthy Volunteers (N=10) 

Age 26.2±4.2 (years) 

Handedness right/left  10/0  

BMI 22.3±1.9 (
𝑘𝑔

𝑚2) 

Fat mass index 3.85±1.48 (
𝑘𝑔

𝑚2) 

Visceral fat 1.03±0.61 (𝑙) 

Glucose 87.5±6.1 (
𝑚𝑔

𝑙
) 

Insulin 6.58±2.92 (
𝑚𝑈

𝑙
) 

HOMA-IR Index 1.50±0.70 (
𝑚𝑈∗𝑚𝑚𝑜𝑙

𝑙2
) 
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3.2 Experiment setup 

 

Figure 4: Overview of the experiment setup 

 

3.2.1. Coordination of the experiment components 

 

Synchronisation of stimulus presentation and fMRI data acquisition was accomplished with a 

SyncBox (NordicNeuroLab, Bergen, Norway), which sent a signal to the task-computer each 

time a volume was being acquired by the MRI. 

The paradigm was presented on a computer screen placed behind the MRI and the participant 

viewed it through a mirror mounted on the head coil. During each trial, the participant chose a 

cue by clicking on either the left or right button of a computer mouse placed in his dominant 

hand and the output was sent to the computer running the task, which then calculated the 

expected feedback. A control signal was subsequently sent to the gustometer pumps, which 

then delivered one of the fluids. 

The scripts managing the visual presentation of the paradigm, the participants' interaction with 

it and the activation of the gustometer were implemented in MATLAB (version R2014b, The 

Mathworks Inc.) using the Psychtoolbox function library (version 3.0.13.).121–123 For the scripts 

used in this study, refer to appendix 7.4.1. 
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3.2.2. Gustometer setup 

 

The Gustometer is a mechanical system, which allows the delivery of fluids to the test 

participant in the MRI with exact control of timing and quantity, enabling gustatory-stimuli-

based feedback for each individual trial. Our Gustometer setup was a modified version of the 

setup described by Veldhuizen et al.,124 and consisted of four programmable syringe pumps 

(model LA-100, HLL Landgraf Laborsysteme, Langenhagen, Germany), each loaded with a 

50 𝑚𝑙 syringe (Braun, Melsungen, Germany). Two Syringes were filled with a milkshake 

individually pre-chosen by the participant and two with a pre-chosen neutral-tasting solution. 

The use of a second syringe for each fluid was used as a reserve to assure sufficient total fluid 

amount for the entire experiment. From the syringes, the fluids arrived at the participant’s 

mouth over four silicon beverage tubes (Lindemann GmbH, Helmstedt, Germany) with an 

inside diameter of 2 𝑚𝑚. The tubes were held in the participant’s mouth by fixing them to a 

custom-made adapter attached to the head coil and the length was individually adjusted so 

that the tubes’ end rested comfortably on the participant’s teeth row. 

Each activation of a pump delivered ca. 0.45 𝑚𝑙 of fluid to the participant's mouth. Participants 

were instructed to swallow the delivered amount immediately and to not accumulate it between 

trials.  

For the settings we applied for the gustometer, refer to appendix 7.4.5. 

 

 

Figure 5: Illustration of a participant laying in the MRI machine, viewing the computer screen through a mirror 
mounted on the head coil and receiving gustatory stimuli directly to his mouth. 
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3.3 Behavioural task 

3.3.1. Paradigm design - probabilistic selection task 

 

For the behavioural task, we implemented a modified version of the previously established 

PST which compromised two phases: a learning phase and a testing phase.69,80,81  

The learning phase was designed as a “multi-armed bandit” task – each trial consisted of a 

choice between two visual cues, each with a different probability to receive a reward.125 In total, 

six unique visual cues were presented (marked here as A-F) each with a certain predetermined 

win probability (A: 80%, B: 20%, C: 70%, D: 30%, E: 60%, F: 40%) which was hidden from the 

participant and remained consistent throughout the entire phase. In this phase, only three 

combinations of cues were presented: A-B, C-D and E-F, with each pair recurring 92 times. 

Pair order was randomized and individual cues were pseudo-randomized to appear on the left 

side of the screen in exactly half of their respective trials and on the right side in the other half. 

In order to allow a better comparison of results to similar previous studies we used the same 

set of visual cues as previously used by Jocham et al.81 and Sevgi et al.80. This simple cue set 

had the advantage of reducing reliance on working memory, supporting our focus on habitual 

learning and would avoid concerns of discernibility with the original cue-set used by Frank et 

al.69, which led to inconsistent task performance.86  

Each participant received a different randomly picked set of six cues from a larger pool of 

possible images. See figure 6 for an example pairing structure. 

Feedback outcomes were pseudo-randomized in consecutive bins of ten for each cue (with 

the last bin consisting of only two trial outcomes), each bin with a set amount of positive and 

negative outcomes according to the contingency of the cue, with the internal order of the bin 

randomized irrespective of the pair partner. e.g., for cue A with 80% win probability, each of 

the bins (except the last) consisted of precisely eight positive and two negative feedbacks in 

random order. 

In addition, 27 null events were inserted randomly between the trials, each 4.3 𝑠 long. In these 

trials, participants were shown only the fixation crosshairs and were neither required to make 

a decision nor received any gustatory stimulus.  

For a schematic description of the structure and timings of an example trial, refer to figure 7. 

If the participant did not click any mouse-button in the allotted 1.7 𝑠, he was presented with a 

message informing him he was too slow, which remained on-screen for 2 𝑠 before moving on 

to the next trial. 

In the analysis, we calculated accuracy as the percentage of correct choices for all trials in 

total as well as for each individual pair. We also calculated the cumulative accuracy for each 

pair as the task progressed. 
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In the testing phase, participants were presented all possible pair permutations of the same 

six visual cues they were presented in the learning phase, with each combination repeating 

eight times. During this phase, participants no longer received feedback and were instructed 

during their pre-scan training to choose the “better” cue, i.e., the cue associated with more 

positive feedback, as deduced in the learning phase. 12 null events were added to the set of 

trials and were each 4 𝑠 long. 

For a schematic description refer to figure 7. 

In the analysis, we computed the accuracy for all trials, trials containing the original pairs from 

the learning phase A-B, C-D and E-F as well as trials with the 12 novel combinations. 

Moreover, we calculated the accuracy for "choose A" (A-C, A-D, A-E, A-F) and "avoid B" (B-

C, B-D, B-E, B-F) trials. Finally, we calculated the accuracy for high conflict trials: win-win (A-

C, A-E, C-E) and lose-lose (B-D, B-F, D-F) as well as for the remaining 9 low conflict trials. 

 

In both phases, the intertrial intervals were randomised, or "jittered", and varied between 0.6 𝑠 

and 2 𝑠, determined by randomly sampling from a truncated exponential distribution as 

described in equation 2, chosen after performing the design efficiency analysis as described 

in section 7.4.4. 

 

𝐽 =  𝑚 +  𝑋 , {  𝐽 ∈ ℝ+
𝑙  ,𝑚 = 0.6𝑠  ;  𝑙 =  276 𝑜𝑟 𝑙 =  120 } 

𝑋 ∼ 𝐸𝑥𝑝(𝜇) , 𝜇 = 0.3  

𝑓𝑥(𝑥|µ) = µ𝑒
−µ𝑥  , {𝑥 > 0} 

Equation 2: Jitter length distribution 

 

where J is a vector whose components are the jitter time length for each individual trial, m is a 

scalar that denotes the minimal jitter time and X is a vector whose elements donate to the jitter 

time and have an exponential distribution with the rate parameter µ. 𝑓𝑥(𝑥|µ) is the probability 

density function for 𝐸𝑥𝑝(𝜇). 
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Figure 6: Design of the PST visual cue-pairs in the learning phase. Six cues were chosen at random for each 
participant from a larger pool of possible images. 

 

Figure 7: Trial structure. The learning phase trial design is shown on the left and the testing phase trial design on 
the right. 

 

3.3.2. Pre-scan training 

 

Before entering the MRI, participants were familiarized with the task by receiving an 

explanation and performing a short simulation on a computer. In the simulation, participants 

were presented three pairs of cues and one null event for each phase of the experiment and 

were also instructed not to choose during one trial in order to simulate a "missed event". During 

the simulation, the outcome of each trial was given on-screen as direct visual feedback in place 

of the gustatory stimuli. Participants were notified that the cues in the experiment may be 

different from the ones presented during the simulation. 

After confirming that the task was understood, participants were prepared for the MRI to 

perform the task. 
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3.3.3. Computational modelling 

 

Data from each individual participant were fitted to the Q-Learning model as described by the 

following formula126: 

𝑄𝑐𝑢𝑒(𝑡 + 1) = 𝑄𝑐𝑢𝑒(𝑡) +  𝛼 ∙ 𝛿(𝑡 + 1) 

Equation 3: Q-learning rule 

where 𝑄𝑐𝑢𝑒(𝑡) is the SAV (or Q-Value) attached to the cue at time point (trial number) t, 𝛼 is 

the learning rate parameter of the actor and 𝛿(𝑡) is the PE at time t. 

In addition to the model with a uniform learning rate for all trials, we evaluated models with 

separate learning rates: 𝛼+ for trials which resulted in positive feedback and 𝛼− for trials which 

resulted in negative feedback. 

PE was defined as: 

𝛿(𝑡 + 1) = 𝑟(𝑡 + 1) − 𝑄𝑐𝑢𝑒(𝑡)  

Equation 4: Prediction error rule 

where positive feedback at trial t is defined as 𝑟(𝑡) = 1 and negative feedback as 𝑟(𝑡) = 0. 

For the decision-making function, which gives the model's probability P of choosing a cue X 

over the alternative cue Y at trial t, we used the SoftMax decision rule: 

𝑃(𝑡)𝑥 =
𝑒
𝑄𝑥(𝑡)
𝛽

𝑒
𝑄𝑥(𝑡)
𝛽 + 𝑒

𝑄𝑦(𝑡)
𝛽

 

Equation 5: SoftMax decision rule 

where 𝛽 is the temperature parameter. The SAV, learning rate and temperature were 

calculated for each participant using a modified version of the "VBA toolbox" software package 

for MATLAB.75 

8 different models were compared by combining different constraints for the Q-Learning 

algorithm: 

Learning rate 𝛼: uniform vs. separate for positive and negative feedback, 

Temperature 𝛽: individually fitted vs. a fixed value for the entire group, 

Data input: only from the learning phase vs. combined from both phases. 

Prior state-action values were set to 0.5 for all cues. 

In order to find the model from the above that best describes the participants, we performed a 

random-effects Bayesian model selection with the free energy approximation as the selection 

criterion, similar to the method described by Rigoux et al.77 
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3.4 fMRI 

3.4.1. Jitter design efficiency analysis 

 

In order to choose a design for the paradigm which will also be efficient for the imaging 

analysis, a custom script was written in MATLAB which simulated data with different intertrial 

and interstimulus intervals distributions.  

The efficiency of each design was compared for each of the contrasts of interest using a 

method similar to the one described by Henson et al.94 using the formula in equation 1.  

In addition, Laplace Chernoff risk was computed in order to estimate general efficiency over 

the various contrasts for each design, in a method similar to that described by Daunizeau et 

at.127 

𝑒𝑓𝑓(𝑐) =  
1

𝑐𝑡  ∗ 𝑝𝑖𝑛𝑣(𝑋𝑡 ∗ 𝑋) ∗ 𝑐
 

Equation 6: Efficiency score for a single contrast  

𝐿𝐶 = −𝑡𝑟𝑎𝑐𝑒(𝐶𝑡  ∗ 𝑝𝑖𝑛𝑣(𝑋𝑡 ∗ 𝑋) ∗ 𝐶) 

Equation 7: Laplace-Chernoff risk for all contrasts 

Where eff(c) is the efficiency for the contrast c, which is a vector consisting of values of 1 for 

regressors of interest, -1 for regressors of interest in the negative weight and 0 for regressors 

of non-interest. X is the design matrix of the GLM. LC is the Laplace-Chernoff risk and C 

denotes the matrix of all contrasts of interest. 

The pinv function gives the Moore-Penrose Pseudoinverse and the trace function is the sum 

of the elements in the diagonal of the matrix.  

Initially, the test was performed with choice data acquired from a pilot participant, who 

experienced feedback in the form of visual outcomes - smiley-faces and frowny-faces instead 

of gustatory stimuli and performed a slightly shorter task consisting of a learning phase with 

only 80 repetitions per pair in the learning phase instead of 92 repetitions as later performed 

by the study cohort. The analysis of the data from the pilot participant was only performed for 

a single contrast of positive PE over negative PE. 500 iterations were run for each jitter design. 

A jitter design was chosen by balancing the differences in efficiency scores against additional 

scan time. 

The results of this analysis, which was based on a different paradigm design and only had a 

narrow scope of contrasts was limited in its value. In order to investigate concerns that the 

chosen paradigm design was suboptimal and weakened the differentiation of contrasts in SPM, 

a post hoc analysis was performed by repeating the test using the data acquired from all 10 

participants and comparing further jitter designs and contrasts. Each design was run with 50 

iterations for each choice set acquired from the participants. For the full set of tested 

distributions refer to appendix 7.4.4. 
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3.4.2. fMRI and anatomical MRI data acquisition 

 

The imaging data were acquired at the Max Planck Institute for Metabolism Research at the 

University Hospital of Cologne using a 3T MRI Scanner (Siemens Magnetom Prisma, 

Erlangen, Germany) equipped with a 64-channel head coil. 

fMRI data were acquired using a gradient echo-planar imaging technique. 60 axial slices were 

sampled in a multiband sequence. Phase encoding direction was anterior-posterior. TR was 

1220 𝑚𝑠, echo time (TE) 30 𝑚𝑠, flip angle 80°, echo spacing 0.93 ms, echo-planar imaging 

factor 140, voxel size 1.5𝑥1.5𝑥1.5 𝑚𝑚3, field of view (FOV) 210 𝑚𝑚. The FOV was set parallel 

to the commissural line and then tilted ca. 30° dorsally, using the ventral edge of the frontal 

lobe as the bottom edge of the FOV. 

After acquiring the functional data from the task, two additional brief echo-planar imaging-

scans were acquired, each with three volumes, with the above-mentioned parameters but each 

sequence with opposite phase encoding direction (one sequence in anterior-posterior 

direction, the second in posterior-anterior). These were used for the estimation of 

susceptibility-induced off-resonance fields. 

 

Anatomical imaging was performed in a separate session previous to the fMRI data acquisition. 

High-resolution T1-weighted and T2-weighted were acquired with whole brain coverage using 

a 64-channel array head coil. The T1 images were acquired using the following parameters: 

192 sagittal slices, TR=2300 𝑚𝑠, TE=2.32 𝑚𝑠,  inversion time (TI)=900 𝑚𝑠, flip angle 8°, voxel 

size 0.9𝑥0.9𝑥0.9 𝑚𝑚3, FOV=230 𝑚𝑚.  

The T2 images were acquired using the following parameters: 224 sagittal slices, TR=3200 𝑚𝑠, 

TE=460 𝑚𝑠, TI=900 𝑚𝑠, voxel size 0.8𝑥0.8𝑥0.8 𝑚𝑚3, FOV=256 𝑚𝑚. For both sequences the 

FOV was set parallel to the commissural line. 

 

3.4.3. Preprocessing 

 

Preprocessing of individual imaging data sets was performed using with the FMRIB (Oxford 

Centre for Functional MRI of the Brain) Software Library (FSL) (version 5.0.11, 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)72,128,129   and SPM (version 12, Wellcome Trust Centre for 

Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm) software.108,130 

First, the initial 10 echo-planar imaging volumes (“dummy scans”) were discarded to allow for 

T1-equilibrium effects. The volumes were then corrected for head motions by realignment with 

the MCFLIRT tool131 and corrected for susceptibility distortions using the topup tool with a 

similar method to that described by Andersson et al.132 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://www.fil.ion.ucl.ac.uk/spm
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The functional volumes were then co-registered to the anatomical T1 images using the 

anatomical T2 images as an intermediary. We then used SPM to perform tissue segmentation 

of the images (Bias regularization=0.001, Bias FWHM=60 𝑚𝑚 cutoff), normalization to the 

Montreal Neurological Institute (MNI)-152 standard brain and Gaussian smoothing (8 𝑚𝑚 

FWHM kernel). 

In addition, following nuisance signals were calculated using FSL and added to the realignment 

parameters as multiple regressors to account for further artefacts: motion outliers, calculated 

as "Derivative or root mean square variance over voxels" (DVARS)133–135, as well as mean 

signal derived from spatial masks from tissue compartments of non-interest (white matter and 

cerebrospinal fluid)135 eroded using a spherical kernel with a 9 𝑚𝑚 radius for the white matter 

mask and 2 𝑚𝑚 radius for the cerebrospinal fluid mask. 

 

3.4.4. First-level statistical analysis 

 

On the first-level analysis, data from individual participants and phases were fitted to a GLM 

using SPM to investigate neurological activity related to the reward system as well as to 

investigate the main effects of vision, motor control, tasting and sensing while performing the 

paradigm. The canonical hemodynamic response function with temporal and dispersion partial 

derivatives was used to model the data. 

For the learning phase, the following regressors (with their respective parametric modulators 

in parenthesis) were chosen: 

onsets of cue presentation (SAV of the chosen cue in the trial), positive outcome arrival 

(positive PE), negative outcome arrival (negative PE), missed events, motion parameters, 

motion outliers and nuisance signals from white matter and cerebrospinal fluid. PE and SAV 

were derived from the superior model as chosen in the model comparison. 

For the testing phase, the following regressors were chosen: onsets of events choosing cue 

A, avoiding cue B (i.e. choosing the alternative cue in trials that also present cue B) and other 

choice events. The GLM also included regressors for onsets of missed events, motion 

parameters, motion outliers and nuisance signals from white matter and cerebrospinal fluid. 

 

3.4.5. Second-level statistical analysis 

 

Group-level analysis was performed on the first-level results using a flexible fractal design. For 

the learning phase, we analysed the main effects of cue presentation, outcome arrival, SAV 

and PE. We also analysed the contrasts between the different outcome and PE types.  

For the testing phase, we analysed the main effect of any cue presentation, as well as the 

contrasts between choose A and avoid B events.  
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4. Results 

4.1 Participants 

 

One participant has been excluded from the analyses of both behavioural and fMRI data of his 

testing phase due to a technical issue with the MRI machine preventing him from completing 

the phase.  

Another participant was analysed only for his behavioural data and excluded completely from 

the fMRI analysis, due to a technical failure with the acquisition of the imaging data.  

For a characterization of the participants, including blood test and bio-electrical impedance 

analysis results, refer to table 1. 

 

4.1.1. Taste test - milkshake ratings 

 

One participant did not perform the entire post-scan rating due to technical issues and 

therefore has no results for that test. A second participant had technical issues with a few of 

the post-scan subtests (hunger, thirst and satiety) so these results were excluded from the 

analysis. 

All the participants showed reduced post-scan scores for “liking” and “wanting”, but for some 

participants the decrease was more pronounced than for others. Refer to figure 8. 

When correlating the change in rating scores of each participant to their corresponding 

performance in the testing phase, a moderately strong negative monotonic correlation was 

found between the amount of reduction in the “wanting” visual analogue scale rating from pre- 

to post-scan (Δ”wanting”) and accuracy in “choose A” trials in the testing phase (𝑟𝑠 = −0.6, 

Spearman's rank correlation coefficient). In addition, a fairly strong negative monotonic 

correlation was found between the Δ”liking” score and win-win accuracy (𝑟𝑠 = −0.49), as well 

as a fairly strong positive monotonic correlation with “avoid B” accuracy (𝑟𝑠 = 0.47). For a more 

detailed overview, refer to table 2. 
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Table 2: Correlation matrix between participants' rating scores and accuracy performance in the testing phase. 
Results are given in Spearman's rank correlation coefficients. 

  Δ"liking" Δ"wanting" Δ"hunger" Δ"satiety" Δ"thirst" 
accuracy 

total 
accuracy 
choose A 

accuracy 
avoid B 

accuracy 
win-win 

Δ"wanting" 0.08         

Δ"hunger" -0.71 0.21        

Δ"satiety" 0.47 -0.19 -0.76       

Δ"thirst" -0.73 -0.10 0.60 -0.17      

accuracy total 0.32 -0.10 -0.14 0.33 -0.14     

accuracy choose A -0.05 -0.60 0.01 0.17 0.34 0.41    

accuracy avoid B 0.47 0.07 -0.30 0.33 0.26 -0.05 0.31   

accuracy win-win -0.49 -0.38 0.22 -0.11 0.26 0.43 0.69 -0.36  

accuracy lose-lose 0.36 -0.11 -0.11 0.38 0.45 0.33 0.50 0.85 -0.14 

 

Figure 8: Milkshake taste-test rating scores. Scores are given on a visual analogue scale, mean rating score 
change is shown as a bold line ± standard deviation as a grey band. 
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4.2 Behavioural results 

4.2.1. Task performance 

Learning phase 

 

For the least difficult pair A-B, all participants were able to successfully learn the task, 

consistently achieving over 75% accuracy after an average of only 7 trials out of a maximal 92 

trials with this pair, and achieving a mean accuracy of 91.3%±8.4% at the end of the learning 

phase. For the more difficult pairs C-D and E-F, not all participants were able to learn the task 

correctly or have managed to do so only very late in this phase, with two participants 

performing around or below chance level (i.e., 50% accuracy at the end of the phase) for each 

pair. Nonetheless, on average, the group managed to learn the tasks also for these pairs, 

achieving an accuracy of 76.3%±18.7% for the C-D pair, and 73.0%±25.3% for E-F at the end 

of the phase. The difference between the accuracies of the pairs was not statistically significant 

(repeated measures ANOVA F(2,18)=3.52, p=0.051). Total mean accuracy at the end of the 

phase was 80.2%±13.2% (Data are given as mean±SD). 
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Figure 9: Cumulative accuracy in the learning phase by pair. Each individual participant’s cumulative accuracy as 
trials progressed is shown as an individual line. Mean cumulative accuracy is shown as a bold line ± standard 

deviation as a grey band. 
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Testing Phase 

 

Total mean accuracy for all trials was 79.3%±8.8%. Combined mean accuracy for the three 

original pairs from the learning phase was 88.6%±13.3% at the end of the testing phase. The 

accuracy for the A-B pair was 94.4%±12.7%, for C-D 88.9%±15.9% and for E-F 76.0%±32.7%. 

The lowest individual scores were 62.5% for both C-D and E-F pairs, thus all participants 

managed to perform the previously learned task at least slightly better than at chance level. 

The difference between the mean accuracies of the original pairs was not statistically 

significant (repeated measures ANOVA F(2,16)=1.61, p=0.23). 

For the novel pairs, the mean accuracy was 77.5%±10.1%, with the difference to the original 

pairs not being statistically significant (unpaired t-test t(16)=1.62). Mean accuracy for choose 

A trials was 88%±20.0% and for avoid B 73%±18.0%, with the difference not being statistically 

significant (unpaired t-test t(16)=1.67). When comparing individual choose A and avoid B 

results to classify the participants using the approach suggested by Frank et al.69,89, six of the 

participants were classified as approach learners, one as an avoidance learner and the 

remaining two had an equivalent performance in both criteria. One participant had a noticeably 

low accuracy at the choose A trials (37.5%) and win-win trials (25%) which also contributed to 

him obtaining the lowest total accuracy in the group (63%). According to his self-reporting, he 

incorrectly estimated the internal order of the winner cues (C>E>A). 

When excluding this participant, the difference between the choose A (94.1%±7.0%) and avoid 

B trials (72.3%±19.1%) is statistically significant (unpaired t-test t(14)=3.05, p<0.01). Accuracy 

of high/low conflict pairs: win-win: 73.6%±23.5%, lose-lose: 57.9%±26.0%, low conflict: 

88.4%±11.1% (repeated measures ANOVA F(2,16)=4.57, p<0.05). When excluding the 

participant who performed weakly: F(2,14)=4.22, p<0.05. significance between conditions 

does not change. (Data are given as mean±SD) 

 

Response times: mean response time across all trials was 892 ± 157 𝑚𝑠. For choose A trials 

response time was 774 ± 119 𝑚𝑠 and for avoid B trials 964 ± 189 𝑚𝑠 (paired t-test t(9)=4.27, 

p<0.005). For win-win trials, mean response time was 853 ± 56 𝑚𝑠, for lose-lose trials 1025 ±

60 𝑚𝑠 and for low conflict trials 861 ± 53 𝑚𝑠 (repeated measures ANOVA F(2,16)=19.01, 

p<0.001). (Data are given as mean±SD) 
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Figure 10: Mean accuracy for choose A and avoid B 
trials in the testing phase. n.s. = not significant 

 

Figure 11: Mean accuracy for high- and low-conflict 
trials in the testing phase. *p<0.05, n.s. = not significant 

 

Figure 12: Mean response times for choose A and 
avoid B trials during the testing phase. **p<0.005 

 

Figure 13: Mean response times for high- and low-
conflict pairs during the testing phase. ***p<0.001, n.s. 

= not significant 

  



 

52 
 

4.2.2. Computational modelling 

 

Comparative analysis of the 8 proposed models for the reinforcement learning framework 

showed most participants could best be modelled by the "extended asymmetrical" model and 

to a lesser extent with the "extended unitary" model, which were both based on data from both 

phases and used an individually fitted temperature parameter 𝛽. The asymmetrical model used 

separate learning rates 𝛼+ and 𝛼− for positive and negative feedback and the unitary model 

used a single uniform learning rate 𝛼 for both types of feedback.  

Five participants were explained best by the extended asymmetrical model, of them three had 

also a partial attribution to the extended unitary model. Four participants were better modelled 

with the extended unitary model, yet all had partial attributions to the asymmetrical model. 

Noticeably, one of these participants was completely lacking data from the testing phase due 

to technical issues, so the results contain an artefact and should be disregarded. 

One participant was best modelled solely with the "canonical" model, which used a single 

learning rate, an individually fitted temperature and data only from the learning phase. 

Interestingly, this participant was also the participant who showed the worst total accuracy 

(63%) and worst accuracy for novel pairs in the testing phase (57%), despite showing a very 

good accuracy in the learning phase (94%).  

For a detailed graphical overview, see figure 24. 

 

For the extended asymmetrical model, mean 𝛼+ was calculated to be 0.13±0.15, mean 𝛼− was 

0.08±0.17 and mean 𝛽 was 0.11±0.06. 

For the extended unitary model, mean 𝛼 was 0.14±0.17 and mean 𝛽 was 0.13±0.08. 

For the canonical model, mean 𝛼 was 0.19±0.23 and mean 𝛽 was 0.16±0.15. 

For a detailed overview of the correlation between the participants' task performance and the 

parameters calculated in the computational models, refer to table 3. 

 

Final SAV for the extended asymmetrical model were: A(80%): 80%±17%, B(20%): 40%±15%, 

C(70%): 71%±21%, D(30%): 46%±19%, E(60%): 65%±19%, F(40%): 50%±21%. (Data are 

given as mean±SD) 

For a more detailed comparison refer to figure 14. For a comparison between the three models 

on how the individual SAV for a single cue progressed over the course of the learning phase, 

refer to figure 15 and to appendix figure 25 to 29 for the remaining cues.  
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Table 3: Correlation matrix between participants' task performance and calculated learning parameters. Results are 
given in Spearman's rank correlation coefficients. Positive LR, negative LR and temperature asym are derived from 
the extended asymmetrical model. LR = learning rate ; asym = asymmetrical learning rate. 

  
total 

accuracy 
choose 

A avoid B win-win 
lose-
lose 

low 
conflict 

positive 
LR 

negative 
LR 

canonical
LR 

accuracy choose A 0.41         

accuracy avoid B -0.05 0.31        

accuracy win-win 0.43 0.69 -0.36       

accuracy lose-lose 0.33 0.50 0.85 -0.14      

accuracy low conflict 0.51 -0.47 -0.58 0.00 -0.35     

positive LR  0.07 0.39 0.69 0.09 0.41 -0.43    

negative LR 0.18 0.14 -0.07 0.45 -0.23 0.13 0.53   

Canonical LR 0.07 0.14 0.37 -0.12 0.18 -0.29 0.38 0.45  

extended unitary LR 0.10 0.42 0.60 0.10 0.36 -0.36 0.88 0.67 0.60 

Temperature asym -0.37 -0.19 0.59 -0.37 0.18 -0.39 0.67 0.47  

 

 

Figure 14: State-action values for each cue at the end of the task. Comparison of the theoretical values with the 
mean contingencies experienced by the participants and different calculations of SAV from three different models. 
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Figure 15: SAV for cue F as calculated in three different models. Each individual participant’s SAV as trials 
progressed in the learning phase is shown as an individual line. Mean SAV is shown as a bold line ± standard 

deviation as a grey band. 
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4.3 Neuroimaging results 

4.3.1. Design efficiency analysis 

 

Figure 16: Jitter design efficiency 

 

(1) Jitter design used in the study – truncated exponential distribution (m=0.6;  µ=0.3) with real 

response time 

(2) Jitter design used in the study (m=0.6; µ=0.3) with maximal response time 

(3) Design split into two jitters sets (each m=0.3; µ=0.15) with simulated response time 

(4) Design split into two jitters sets (each m=0.3; µ=0.15) with maximal response time 

(5) Jitter design used in the study, duplicated also for the second jitter set (each m=0.6; µ=0.3) with 

maximal response time (adding ca. 4 minutes total scan time to design N°4) 

 

The post hoc jitter design analysis showed that the efficiency of the fMRI analysis could have 

been improved both by jittering for longer lengths of time in general and especially by 

lengthening the interval between the onsets of cue presentation and feedback arrival in each 
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trial. In figure 16, the efficiency of the design we implemented in the study is compared to 

similar designs with increased interstimulus intervals, achieved by either complementing the 

response time the participants had remaining in each trial (N°2), by exchanging a part of the 

intertrial intervals for longer interstimulus intervals (N°3) or with both adaptations combined 

(N°4) as well as with a longer total scan time (N°5). For a more comprehensive analysis, also 

comparing designs with a different distribution of jitters and varied total jitter time refer to 

appendix 7.4.4. 

 

4.3.2. Learning phase 

 

Group-level analysis of cue presentation shows a cluster of activation in the visual cortex 

(cluster maximum x=22 y=-84 z=-16, T=30.59, kE=26561 for uncorrected p<0.001, kE=75 for 

FWE<0.05) 

as well as some activation in the left motor cortex, likely corresponding to clicking the mouse 

button with the right hand (cluster maximum x=-50 y=-4 z=34, T=4.45, kE=4261 for uncorrected 

p<0.001, no cluster at FWE<0.05). See figure 17. 

 

 

 

Figure 17: Main effect of cue presentation. Learning Phase. Display threshold set to p<0.001 uncorrected. 
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Reward outcome, as well as outcome of negative feedback, showed bilateral activation on the 

face or lips part of the sensorimotor cortex - likely corresponding to the action of sensing and 

swallowing the fluid (cluster maximum, x=57 y=-2 z=30, T=11.83, kE=473 uncorrected 

p<0.001, no cluster at FWE<0.05). The contrast of negative outcomes over positive outcomes 

showed activation in the anterior insula, especially of the left side (cluster maximum x=-26 

y=20 z=10, T=17.62, kE=902 for uncorrected p<0.001, kE=3 for FWE<0.05) as well as activity 

in further structures such as the dorsolateral prefrontal cortex (cluster maximum x=32 y=40 

z=14, T=12.20, kE=4226 for uncorrected p<0.001, no cluster at FWE<0.05) and the anterior 

cingulate cortex (cluster maximum x=-2 y=-1 z=40, T=8.78, kE=1399 for uncorrected p<0.001, 

no cluster at FWE<0.05). However, the reverse contrast showed no major activations, 

including a lack of gustatory cortex activation. See figure 18 and figure 19. 

For the analysis of brain activity related to the SAV and PE parameters analysis from the 

extended asymmetrical model, see figure 20 and figure 21. 

 

 

 

 

 

 

Figure 18: Main effect of reward. Learning Phase. Display threshold set to p<0.001 uncorrected. 
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Figure 19: Contrast of negative outcomes (tasteless solution) over positive outcomes (milkshake). Blue voxels 
represent deactivation (i.e., activations in the reversed contrast). Learning phase. Display threshold set to 

p<0.001 uncorrected. 

 

Figure 20: Brain activity related to the state-action value of the chosen cue. The parameters were derived from 
the extended asymmetrical model. Learning phase. Display threshold set to p<0.001 uncorrected. 
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Figure 21: Prediction error-related brain activity for both outcome types. The parameters were derived from the 
extended asymmetrical model. Learning phase. Display threshold set to p<0.001 uncorrected. 

 

 

4.3.3. Testing phase 

 

Group-level analysis of cue presentation for all event types shows a cluster of activation in the 

visual cortex (cluster maximum x=20 y=-96 z=14, T=15.87, kE=12310 for uncorrected 

p<0.001). Refer to figure 22. 

 

The contrast of avoid B over choose A showed some activity in the dorsomedial prefrontal 

cortex (cluster maximum, x=-2 y=34 z=34, kE=545 uncorrected p<0.001, no cluster at 

FWE<0.05) and the anterior cingulate cortex (cluster maximum, x=4 y=36 z=16, kE=227 for 

uncorrected p<0.001). The reverse contrast showed no major activity. See figure 23. 
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Figure 22: Main effect of cue presentation. Testing Phase. Display threshold set to p<0.001 uncorrected. 

 

Figure 23: Contrast of avoid B over choose A trials. Testing phase. Display threshold set to p<0.001 uncorrected.  
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5. Discussion 

 

Obesity is a major challenge for global public health, especially in more economically 

developed countries.  

To address this issue, we aimed to better our understanding of the dysregulated decision 

making and learning processes underlying feeding behaviour in humans. The main purpose of 

our study was to develop an experiment to evaluate such learning processes. To do so, we 

designed an experiment that included the PST, an established behavioural task for evaluating 

learning behaviour, which we modified to assess the effect of nutritional rewards as reinforcers 

more directly, as opposed to the secondary reinforcers used in previous studies. In addition, 

we acquired imaging data using a modern multiband technique to gain a better insight into the 

neurological mechanisms behind the measured behaviour. 

5.1 Participants 

 

As we only examined healthy volunteers, without characterising their predisposition for obesity 

(such as with genetic screening, or with questionnaires to evaluate external or emotional eating 

tendencies) we could not perform any inter-group analysis. However, the average results and 

variance of the group could be used as reference values for future studies 

 

5.1.1. Taste test 

 

One of our main questions regarding gustatory stimuli in our experiment was about the stability 

of their value as reward throughout the experiment. We wished to determine if the value 

changes during the task and if this would affect performance in the task. Unlike monetary or 

visual rewards, which are assumed to retain a constant value, we did indeed observe a variable 

decrease in the subjective value of the nutritional reward. The amount of this decrease 

influenced performance, when comparing between participants. The greater the reduction of 

either the liking or wanting ratings, the worse the performance was for the highly rewarding 

cues in the testing phase. This suggests that a participant whose motivation for receiving 

reward decreased markedly during the task, also had more difficulties learning from rewarding 

trials, particularly for the highest rewarding cue A. Participants whose liking of the reward 

decreased markedly during the task, had more difficulties to differentiate between the values 

of the more rewarding cues (i.e., during win-win trials). These correlations are in line with our 

hypotheses and indirectly confirm the validity of the task, showing a higher valuation of reward 

leads to better results with reward related events. 
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Surprisingly, participants who reported reduced liking showed a better estimation of the values 

of the less-rewarding cues, especially of the least rewarding cue B. This may indicate that 

these participants began to perceive the neutral-tasting solution as salient or even rewarding, 

and this heightened attention to the outcome of cue B improved their performance on the 

related trials. This effect is problematic, as it undermines the purpose of the task and needs to 

be minimized. One possible solution would be to reduce the number of trials in the learning 

phase, reducing the total amount of reward delivered and thus lowering the risk of developing 

negative reactions towards it. However, a reduced number of trials would make the task more 

difficult and a balance between these two factors would need to be found. A second possible 

solution would be to use an aversive fluid instead of the neutral tasting one. An unpleasant 

flavour would unlikely become perceived as a reward even in later trials of the task but may 

shift the neurological reaction from “lack of reward” to “punishment” or to a combined response, 

which we expect to be different to some extent. Finally, some participants reported developing 

dryness of the mouth after a certain amount of time due to their lips always being slightly 

opened and thus likely regarded any form of liquid as positive in later stages of the learning 

phase. This could possibly be countered by adding a rinse with the tasteless solution to each 

trial or as an occasional pause in the paradigm. However, the additional time required for such 

a step needs to be considered. 

 

5.2  Behavioural task 

5.2.1. Task performance 

 

Accuracy results from the testing phase show the participants managed to satisfactorily 

perform on the PST, demonstrating one can use gustatory stimuli successfully as the feedback 

modality for the paradigm, also when the participants are lying in an MRI machine. The average 

accuracy for the choose A and avoid B trials was similar to or even higher than studies using 

the same cue set, despite the participants experiencing fewer learning trials to train on.80,81 

The results were also similar to a study with other cues that can be easily verbally encoded.89 

Furthermore, the participants in our study showed a higher average accuracy than several 

studies implementing the PST with the more complex hiragana symbols, reflecting the reduced 

difficulty with our cue set.38,50,69,79,83,84,88,136 The participants showed the most difficulty in 

differentiating between less rewarding cues (B/D/F), presenting a significantly lower accuracy 

as well as a slower response time for lose-lose trials compared to low conflict trials. While the 

difference in accuracy to the win-win high conflict trials is not statistically significant, there is 

indeed a trend of win-win trial accuracy being higher than lose-lose accuracy, further 

supporting the notion that these trials were easier for the participants. Additionally, the 
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response speed on lose-lose trials was significantly slower, implying the participants needed 

more time to decide due to the increased challenge. This accuracy trend is opposite from the 

one reported by Jocham et al.81, but it is possible that the cohort of that study was compromised 

mainly of avoidance learners, as opposed to approach learners as in our group, reversing the 

performance results. However, response times for the three conflict types were similar 

between that study and ours, which also tested healthy young adults 81. In another study, 

healthy seniors generally showed slower responses, but the relationship between response 

time for low- and high-conflict trials was similar to our own.83 

Overall, the similarity of results for the behavioural task to previous studies suggests our setup 

with gustatory stimuli is a viable implementation of the PST, and the modified trial length and 

number do not impede performance, allowing comparison between studies using the different 

configurations. 

 

5.2.2. Computational modelling 

 

The functional structure of the basal ganglia and their Go/NoGo pathways is well 

established.44,48 This structure makes distinct learning rates for approach and aversive based 

learning plausible. 

Our data seems to be mostly in line with this hypothesis, with the asymmetrical model best 

explaining most participants from the group. However, this was not the case for all participants, 

possibly reflecting the contradiction between these participants performing during the testing 

phase as approach learners but the calculation of their parameters from both phases better-

reflecting avoidance or completely balanced learners.  

Previous studies which reported model selection showed mixed results, with some studies 

finding the asymmetrical model superior88,89, while others found no advantage for the additional 

learning rate parameter79,80. Importantly, these studies used somewhat weaker calculations, 

partially using cruder model inversion techniques such as a grid-search-based approach and 

other model selection criteria such as the Akaike’s information criterion or the Bayesian 

information criterion, which is likely inferior to the variational free energy which we used in our 

analysis.137 This may have hindered the success of the model selection for the mentioned 

studies, so it is possible the asymmetrical model would have been more appropriate for their 

data as well, when fitted with our method. In addition, in our cohort most of the participants 

were not fully associated with only a single model and this may have also been the case with 

previous studies. It is presumably most appropriate to account for this uncertainty and perform 

random-effects analyses and Bayesian model averaging. 
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For both asymmetrical and unitary models, we found a clear advantage for using data from 

both phases as opposed to only using the learning data. The only exception was a participant 

who showed a strong performance in the learning phase but a weak performance in the testing 

phase. Thus, the contradiction between the choices he "should" have made according to the 

learning phase and choices he made in practice in the testing phase likely worsened the model 

evidence for all models which were fitted on the additional phase. However, this failure of 

learning is of interest, and it may be prudent to still use the extended model for such 

participants, as it may more closely reflect the real learning behaviour.  

It should be noted that the calculated parameters for the extended models and the shorter 

models may reflect different mechanisms of learning and so possibly not directly comparable. 

Frank et al. proposed that the purely learning phase based calculation assesses working 

memory while the calculation on extended data better reflects habitual learning.84 As we are 

more interested in the habitual learning mechanism, this only strengthens the advantage of 

using the extended models. 

 

While it seems the optimal learning rates for reinforcement tasks are task-specific,138 for the 

PST, studies have suggested that a lower 𝛼+ improves performance on the approach-based 

choose A trials and a lower 𝛼− improves performance on the avoid B trials. According to the 

hypothesis, lower learning rates allow the slow integration of feedback from multiple trials into 

the cue's value instead of relying on the most recent outcomes.84,89 However, our results are 

not in line with this hypothesis. The suggested correlation between 𝛼− and avoid B trials is 

poor, while 𝛼+ and choose A show a fair correlation in the opposite direction.  

Also unexpected was the moderate correlation between 𝛼+ and avoid B trials as well as the 

fair correlations between high conflict trials and their opposing learning rates. 

It is possible performance on high-conflict trials may benefit from a different strategy than low-

conflict trials. A larger opposite learning rate may be beneficial in high-conflict trials by greatly 

changing the value of a cue according to the rare event (reward for cues B/D/F and omission 

of reward for cues A/C/E) expanding the value difference between cues where this gap is 

otherwise subtle. As the lose-lose trials also include half of the avoid B trials, this effect would 

also influence their results. As the majority of participants in our group were approach learners, 

this alternative strategy possibly came stronger into play than the low 𝛼− they would otherwise 

need for the avoidance strategy.  

Nevertheless, the suggested correlation between low learning rates and performance does 

seem to exist for the low conflict trials, which compromise most of the trials in the testing phase 

and thus had the highest effect on overall task performance. In addition, this effect for the 

asymmetrical model is for 𝛼+ and not 𝛼−, and this is more pronounced for 𝛼+ than for the single 
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learning rates from the unitary models, in agreement with the bias of learning type in the group 

and further supporting the use of the asymmetrical model. 

 

Calculations of state-action values show that according to all models the more rewarding cues 

were on average estimated quite well by the participants, while less rewarding cues were 

overestimated. While this is plausible for cue F, as most participants experienced a 

contingency higher than the planned 40%, this is somewhat surprising for cues B and D, as 

the experienced contingency for some of the participants was even lower than planned. This 

overestimation may be an artefact of the computation, as some participants only rarely choose 

these cues. When combined with a low (negative) learning rate, the posterior value could only 

be slightly adjusted from the prior value of 0.5. However, this may indeed reflect the true 

difficulties the participants had with evaluating the less rewarding cues and consequently 

performing worse on lose-lose and avoid B trials. 

 

5.3 Neuroimaging 

5.3.1. Jitter design efficiency analysis 

 

The jitter design of a task is essential for an effective analysis of fMRI data93 and our design 

turned out to be detrimental to our analysis. We made several suboptimal choices for the 

experiment. Firstly, the choice of contrasts for the original efficiency analysis was not extensive 

enough and did not allow us to properly choose a jitter design optimized for the contrasts we 

later focused on. Secondly, we originally decided not to use an explicit jitter between cue 

presentation and feedback arrival, assuming the participants will jitter naturally by taking a 

variable decision time from trial to trial. This decision was made to shorten scan time. However, 

the small variance in this form of jitter proved to be less efficient in separating activations and 

likely weakened results, especially for the feedback outcomes stimuli and the derived PE, as 

discussed below. 

Finally, we completely randomized a new jitter-list for each participant, which resulted in a 

variation of efficiency between participants. The analysis showed the efficiency for the same 

design varied significantly between iterations and it would have been preferable to select the 

jitter-list(s) from the iteration that showed the best efficiency. In addition, even if the efficiency 

of each list were equal, using a different list for each participant likely introduced unwanted 

variability between participants. Using a randomized cue set for each participant likely 

introduced unwanted variability in a similar manner. On the other hand, using an identical list 

of jitters and cues for all participants could introduce a bias, so our recommendation for future 

studies would be to pseudo-randomize and balance a few select lists across participants.  
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The post hoc jitter design efficiency analysis showed that the specific jitter design we 

implemented in the experiment for the learning phase had a relatively low efficiency score 

compared to some of the alternatives and a relevant increase in efficiency would have been 

easy to implement, in part even without extending the total scan time.  

A large boost in efficiency could have been achieved by lengthening the interstimulus interval 

between cue presentation and the feedback arrival. By splitting the jitters into two separate 

sets, with half of the time invested in the intertrial intervals and the other half in the interstimulus 

intervals between the two mentioned stimuli of each trial, efficiency would have been 

significantly increased even without spending additional scan time. Another, even greater 

increase in efficiency could have been achieved by lengthening the interstimulus intervals by 

presenting the cues for the maximal allotted 1.7s response time instead of continuing to 

feedback delivery immediately when participants chose a cue. This would have likely also 

reduced unwanted variability for the cue presentation contrast. While this would have required 

adding time to the experiment (in this group 2.9-5.0 minutes for each participant, depending 

on their individual speed) this time frame was already calculated for the BOLD sequence and 

was already taken into account as part of the maximal time participants might spend in the 

scanner. Implementing both changes would have had an additive effect. 

Finally, adding more time to either intertrial intervals, interstimulus intervals or both would have 

improved efficiency with a cumulative effect proportional to the additional time. While 

lengthening the trials' duration may have negatively affected participants' attention span, the 

improved efficiency would have made it plausible to reduce the number of trials and thus keep 

the experiment length reasonable. 

 

5.3.2. Learning phase 

 

The presence of the main effects for visual cortex and motor cortex activation at cue 

presentation (and button click) as expected from the literature100,101 suggest the acquisition and 

analyses of the fMRI data were generally successful. 

However, the results for feedback outcomes were only partially as expected from the literature. 

The main effect of reward outcomes showed only weak activity in the sensorimotor cortices 

without any activity in the gustatory cortices or the ventral striatum.58,91 The contrast of negative 

outcomes over positive outcomes was somewhat closer to what we expected, showing some 

activity in the anterior insula and the anterior cingulate. However, expected activity in the dorsal 

striatum was missing.139 The results of the parametric modulators were also lacking, showing 

no activity in the ventromedial prefrontal cortex for SAV and only weak activity in the 

dorsolateral prefrontal cortex, with no activity in the striatum or amygdala for PE.92 These 

partial results suggest the acquisition of the functional data was considerably suboptimal. 
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Modifications we made in the behavioural task, such as a smaller set number of trials 

compared to some of the previous studies could have contributed to this issue by making the 

task less robust. However, this is unlikely the main cause, as other studies implementing the 

PST with an even smaller number of trials were successful in observing activity in the reward 

system.79  

It is more probable that the use of a suboptimal MRI-sequence led to a drastically worse quality 

of the functional data. In addition, specifically observation of activity in the ventromedial 

prefrontal cortex, which was expected for the SAV regressor, was hampered by tilting the field 

of view. Visually inspecting our data showed this region appears somewhat distorted also after 

correction, especially compared to other studies on the same MRI-scanner which used an 

optimized multiband sequence with the field of view parallel to the commissural line. Finally, 

as previously mentioned, the inefficient jitter design we used also likely contributed to this 

problem, especially weakening the analysis of the feedback outcomes and the related PE. 

 

5.3.3. Testing phase 

 

The analysis of the testing phase was likely also severely impacted by the suboptimal MRI-

sequence. The inefficient jitter design likely also impacted our results, but to a lesser extent, 

as the trials in this phase did not encompass a second stimulus. For this phase, we also 

observed activity in the visual cortex for the general stimulus of cue presentation, but the 

investigated contrasts did not present the activity we expected for the reward system and the 

prefrontal cortex. However, in this case, it is important to note that the other studies 

investigating this phase did not show any or showed only very little activity in the ventromedial 

prefrontal cortex or reward system for participants who were not pharmaceutically 

manipulated.79,81  Nevertheless, the contrast of avoid B over choose A trials presented activity 

in the dorsomedial prefrontal cortex and anterior cingulate cortex, structures which also play a 

role in decision making and conflict management,140–142 possibly reflecting the fact that these 

trials were more difficult for most of the participants. 

 

5.4 Limitations 

 

A major limitation of the analyses of our study was the sample size, which was small in 

comparison to similar fMRI studies and likely underpowered our statistical tests. 
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Interpretation of the neuroimaging data was limited by the technical quality of the scans. Visual 

inspection of the scans aroused suspicions that the parameters of sequence we used for 

acquired functional data were suboptimal. All scans had quite low spatial resolution and 

structures of the brain were difficult to identify. 

A finger tapping task experiment comparing the sequence we used to one with modified 

parameters (voxel size 2𝑥2𝑥2 𝑚𝑚3 and TR of 0.81 𝑚𝑠) performed on the same MRI machine, 

showed that optimisation of the sequence parameters resulted in significantly improved results 

for the same stimuli. 

 

5.5 Conclusions and future prospects 

 

Our study showed that it is possible, using our setup, to conduct the PST whilst using gustatory 

stimuli as feedback and simultaneously acquiring fMRI data, and that this can be used to 

investigate learning. This system could prospectively be used to investigate the difference 

between groups of participants, such as between obese and normal-weight participants or 

between participants carrying genes predisposing to obesity. It would be of interest to see if 

gustatory rewards play a role in the dysregulated learning mechanism which are related to 

obesity, in a manner that is different to other reward modalities.  

 

Several changes and additions could be made to improve interpretation of results in future 

studies. Extending the characterisation of the participants, both by using focused 

questionnaires and by relevant genetic characterisation could help differentiating between the 

various types of learners. Another improvement could be accomplished by adding the neutral-

tasting solutions to the on-screen questionnaire in the taste test. Results of this test could aid 

in ratings-normalisation for the milkshake questionnaire and enable better comparison 

between participants. 

Our computational modelling analysis showed that it is advantageous to compare alternative 

models using modern techniques such as variational Bayes and that use of observed data 

from both phases of the PST is superior to the traditional methods used by most previous 

studies with the PST, which relied only on the data from the learning phase. 

Finally, while we did not observe the expected neuronal activity for model-free reinforcement 

learning in our fMRI analysis, we did manage to observe expected effects of visual and 

sensorimotor activity, which suggests an improvement of the fMRI settings, jitter design and 

better correction of artefacts could enable future studies to acquire better results of the activity 

in the reward system. 

The combination of all these elements would hopefully allow a future study to gain important 

insight into the mechanisms of dysregulated feeding behaviour in obese adults.  
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7.4 Supplementary Material 

7.4.1. Digital resources 

 

The scripts used in this study and the raw data acquired from the behavioural task are available 

on my GitHub repository: https://github.com/oreiner/FPST  

 

The following software programs and packages were used in the implementation and analysis 

of the scientific experiment described in this dissertation: 

(1) MATLAB. Version R2014b. Natick, Massachusetts: The MathWorks Inc. 

https://de.mathworks.com/products/matlab.html 

(2) Psychtoolbox function library for MATLAB. Version 3.0.13.121–123  

http://psychtoolbox.org  

(3) VBA-Toolbox package for MATLAB75 https://mbb-team.github.io/VBA-toolbox/  

(4) SPM Package for MATLAB. Version 12, Wellcome Trust Centre for Neuroimaging108,130  

http://www.fil.ion.ucl.ac.uk/spm 

(5) FMRIB Software Library (FSL). Version 5.0.11.72,128,129 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki  

(6) MCFLIRT tool for FSL.131  

(7) Topup tool for FSL.132 

 

7.4.2. Recipes 

 

Table 4: Milkshake recipes from which the participants could choose the flavour. 

Commercial milkshake powder  

(Flavours: Chocolate, Vanilla, Banana, Strawberry) 

12g 

Full cream milk 170g 

Whipping cream 30g 

 

Table 5: Recipes for “tasteless” solutions from which the participants could choose. 

 NaHCO3 KCl 

Full concentration 2.5 mM 25 mM 

75% 1.875 mM 18.75 mM 

50% 1.25 mM 12.5 mM 

25% 0.625 mM 6.25 mM 

 

 

https://github.com/oreiner/FPST
https://de.mathworks.com/products/matlab.html
http://psychtoolbox.org/
https://mbb-team.github.io/VBA-toolbox/
http://www.fil.ion.ucl.ac.uk/spm
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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7.4.3. Computational modelling - model comparison 

Bayesian model selection 

Figure 24: Comparison of competing models for the Q-Learning algorithm 

 

Legend: design number. data input 𝑦, learning rate 𝛼, temperature 𝛽 

1. both phases, asymmetrical, fixed  

2. both phases, asymmetrical, individually fitted  

3. both phases, uniform, fixed 

4. both phases, uniform, individually fitted  

5. only learn phase, asymmetrical, fixed 

6. only learn phase, asymmetrical, individually fitted  

7. only learn phase, uniform, fixed  

8. only learn phase, uniform, individually 
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State-action values learning curves 

 

Figure 25: SAV for cue A as calculated in three different models. Each individual participant's SAV as trials 
progressed in the learning phase is shown as an individual line. Mean SAV is shown as a bold line ± standard 
deviation as a grey band. 
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Figure 26: SAV for cue B as calculated in three different models. Each individual participant's SAV as trials 
progressed in the learning phase is shown as an individual line. Mean SAV is shown as a bold line ± standard 
deviation as a grey band. 
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Figure 27: SAV for cue C as calculated in three different models. Each individual participant's SAV as trials 
progressed in the learning phase is shown as an individual line. Mean SAV is shown as a bold line ± standard 

deviation as a grey band. 
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Figure 28: SAV for cue D as calculated in three different models. Each individual participant's SAV as trials 
progressed in the learning phase is shown as an individual line. Mean SAV is shown as a bold line ± standard 
deviation as a grey band. 
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Figure 29: SAV for cue E as calculated in three different models. Each individual participant's SAV as trials 
progressed in the learning phase is shown as an individual line. Mean SAV is shown as a bold line ± standard 

deviation as a grey band. 
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7.4.4. Jitter design efficiency analysis 

 

The design efficiency analyses compared the efficiency of different jitter distributions, either 

with a uniform distribution defined between a minimal and maximal value, or with a truncated 

exponential distribution defined with a minimal value and a rate parameter. 

 

Original analysis 

 

In the analysis performed in preparation for the study, the data set for choices was acquired 

from a pilot participant, who performed a learning phase composed of 240 trials and received 

feedback in the form of on-screen cues: a drawing of a smiley-face as a positive outcome and 

a frowney-face as a negative outcome. Response times were simulated from a uniform 

distribution between 0.5 𝑠 and 1.5 𝑠. 

Only the contrast positive PE > negative PE was analysed. The other contrasts (cue 

presentation, SAV of chosen cue, positive feedback, positive PE) and several additional 

designs (N° 8,9,10,12) that were tested in the post hoc test, were added here for context. 

For the designs tested, refer to figure 30. 

 

post hoc design efficiency analysis 

 

For the post hoc analysis the 10 choice sets acquired from the participants in the study were 

used. The efficiency of the jitter distribution with the real response times was compared to 

other designs with simulated response times sampled from a normal distribution with a mean 

of 1 𝑠 and a standard deviation of 0.2 𝑠. 

For the designs tested, refer to figure 31 & figure 32. 
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Figure 30: Jitter design efficiency - original analysis 

 

1.  uniformly distributed 0-1.2s with simulated response time 

2.  uniformly distributed 0-2.0s with simulated response time 

3.  uniformly distributed 0.5-2.5s with simulated response time 

4.  uniformly distributed 0.2-1.5s with simulated response time 

5.  uniformly distributed 0.5-3.0s with simulated response time 

6.  fixed at 1.0s with simulated response time 

7.  truncated exponential distribution ( m=0.5; µ=0.3 ) with simulated response time  

8. truncated exponential distribution ( m=0.6; µ=0.15 ) with simulated response time  

9. truncated exponential distribution ( m=0.6; µ=0.3 ) with simulated response time  

10. truncated exponential distribution ( m=0.7; µ=0.15 ) with simulated response time  

11.  truncated exponential distribution ( m=0.7; µ=0.3 ) with simulated response time  

12.  truncated exponential distribution ( m=0.8; µ=0.15 ) with simulated response time  

13.  truncated exponential distribution ( m=0.9; µ=0.15 ) with simulated response time  

14.  truncated exponential distribution ( m=0.9; µ=0.3 ) with simulated response time  

15.  truncated exponential distribution ( m=1.2; µ=0.3 ) with simulated response time  

16.  truncated exponential distribution ( m=1.7; µ=0.9 ) with simulated response time 
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Figure 31: Jitter design efficiency - comparison of exponent distributions 

 

1.  jitter design used in the study - truncated exponential distribution ( m=0.6; µ=0.3 ) with real response time 

2.  truncated exponential distribution ( m=0.6; µ=0.3 ) with simulated response time 

3.  jitter design used in the study with 1.7s response time 

4.  truncated exponential distribution ( m=0.3; µ=0.15 ) with simulated response time 

5.  truncated exponential distribution ( m=0.9; µ=0.3 ) with simulated response time 

6.  truncated exponential distribution ( m=1.2; µ=0.3 ) with simulated response time 

7.  truncated exponential distribution ( m=1.2; µ=0.6 ) with simulated response time 

8.  truncated exponential distribution ( m=1.5; µ=0.6 ) with simulated response time 

9.  truncated exponential distribution ( m=2.0; µ=0.9 ) with simulated response time 

10.  two jitter sets, each ( m=0.3; µ=0.15 ) with simulated response time 

11.  two jitter sets, each ( m=0.3; µ=0.15 ) with 1.7s response time 

12.  two jitter sets, each ( m=0.6; µ=0.3 ) with simulated response time 

13.  two jitter sets, each ( m=0.6; µ=0.3 ) with 1.7s response time 

14.  two jitter sets, each ( m=0.9; µ=0.3 ) with simulated response time 

15.  two jitter sets, each ( m=0.9; µ=0.3 ) with 1.7s response time 

16.  two jitter sets, each ( m=1.2; µ=0.3 ) with simulated response time 

17.  two jitter sets, each ( m=1.2; µ=0.3 ) with 1.7s response time 
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Figure 32: Jitter design efficiency - comparison of uniform distributions 

 

1.  jitter design used in the study - truncated exponential distribution ( m=0.6; µ=0.3 ) with real response time 

2.  truncated exponential distribution ( m=0.6; µ=0.3 ) with simulated response time 

3.  jitter design used in the study with 1.7s response time 

4.  uniformly distributed 0-0.75s with simulated response time 

5.  uniformly distributed 0-0.75s with 1.7s response time 

6.  uniformly distributed 0-1.5s with simulated response time 

7.  uniformly distributed 0-1.5s with 1.7s response time 

8.  random jitter between 0,0.5s,1s,1.5s with simulated response time 

9.  random jitter between 0,0.5s,1s,1.5s with 1.7s response time 

10.  two jitters, each uniformly distributed 0-0.75s with simulated response time 

11.  two jitter sets, each uniformly distributed 0-0.75s with max 1.7s response time 

12.  two jitter sets, each uniformly distributed 0-1.5 with simulated response time 

13.  two jitter sets, each uniformly distributed 0-1.5 with max 1.7s response time 

14.  two jitter sets, each random between 0,0.5s,1s,1.5s with simulated response time 

15.  two jitter sets, each random between 0,0.5s,1s,1.5s with max 1.7s response time 

16.  two jitter sets, each uniformly distributed 0-3s with simulated response time 

17.  two jitter sets, each uniformly distributed 0-3s with max 1.7s response time 
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7.4.5. Gustometer configuration 

Table 6: Pump settings 

Parameter Setting 

Speed 
28
𝑚𝑙

ℎ
 

Phase 1 0.2 𝑚𝑙 

Phase 2 (milkshake | tasteless) 0.8 𝑚𝑙 | 0.6 𝑚𝑙 

Phase 3 (milkshake | tasteless) 0.6 𝑚𝑙 | 0.4 𝑚𝑙 

 

Testing the amount of fluid delivered showed that the pumps didn't deliver the exact amount 

they were programmed to deliver, and the delivered amount also differed between the fluids, 

presumably due to their different viscosity. The parameters were fine-tuned to output a de facto 

value of 0.49 ± 0.1 𝑚𝑙 for the tasteless solution and 0.43 ± 0.05 𝑚𝑙 for the milkshakes. (N=100 

pump runs per fluid type. data given in 𝑚𝑒𝑎𝑛 ± 𝑆𝐸𝑀)  

 

 

 

 


