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Abstract
In this thesis I take a look at stochastic models for fitness landscapes, specifi-

cally the House-of-Cards (HoC) model[26] of completely uncorrelated fitness values
and the NK-type models which are built through combination of HoC landscapes
as building blocks.[24] These models are parameterized by a parameter k, which is
considered to determined the “ruggedness” of the fitness landscape, with a maxi-
mal value of k corresponding to the HoC model and a value of k = 1 corresponding
to non-epistatic landscapes. I consider the behavior of two properties related to
ruggedness on these landscapes, namely the number of local fitness maxima and
the accessibility of genotypes via paths of monotonic fitness increase. Although
high ruggedness is connected to a higher number of local maxima and therefore
intuitively also a lower probability of distance genotypes being accessible from one
another, this turns out to not hold generally. Contrary to assumptions made when
the NK model was first introduced,[61] it can be shown that asymptotic different
quantitative results for the number of local maxima can be found for different
choices of interaction structures between loci of the genotype.

These models have analogous interpretations in solid state physics as the ran-
dom energy model[12] and spin glass models.[54,61]

Kurzzusammenfassung
In dieser Arbeit betrachte ich stochastische Modelle für Fitnesslandschaften, im

Speziellen das House-of-Cards (HoC) Modell[26] vollständig unkorrelierter Fitness-
werte und NK-artige Modelle welche durch Kombination von HoC Landschaften als
Baustein gebildet sind.[24] Diese Modelle sind von einem Parameter k parametrisiert,
welcher die “Rauheit” der Landschaft festlegt, mit einem Maximalwert von k
im HoC-Modell und einem Wert k = 1 auf nicht epistatischen Landschaften.
Ich betrachte das Verhalten von zwei Eigenschaften welche im Zusammenhang
mit Rauheit auf diesen Landschaften stehen, namentlich die Anzahl der lokalen
Fitnessmaxima und die Zugänglichkeit von Genotypen via Pfaden von monoton
steigender Fitness. Obwohl hohe Rauheit mit einer erhöhten Anzahl lokaler Max-
ima und damit intuitiv auch einer niedrigeren Wahrscheinlichkeit, dass entfernte
Genotypen zugänglich sind, zusammenhängt, stellt sich dies im Allgemeinen als
nicht wahr heraus. Entgegen Annahmen welche bei Einführung des NK-Modells
gemacht wurden,[61] kann gezeigt werden, dass asymptotisch quantitativ unter-
schiedliche Ergebnisse für die Anzahl der lokalen Maxima für verschiedene Wahlen
des Interaktionsnetzwerks zwischen Loci gefundenden werden kann.

Diese Modelle haben analoge Interpretationen in der Festkörperphysik als das
“random energy model”[12] und Spin-Glass-Modelle.[61]
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Chapter 1

Introduction

1.1 Biological context
The concept of a fitness landscape originates with Sewall Wright, as an assign-
ment of fitness values to all possible combinations of possible alleles in a given
evolutionary environment, coupled with a notion of distance in accordance with
the number of mutations separating these combinations. He observed that due
to the exponential number of combinations, in spite of the high dimensionality,
such landscapes ought to have many local fitness maxima, allowing for a view of
evolution in which populations cluster around and move from peak to peak.[65]

Underlying the static view of fitness landscapes is the assumption that a single
fitness value determines the adaptiveness or expected success in producing offspring
of an individual in the evolutionary dynamics. Other effects, such as phenotypic
plasticity,[52] time-dependent effects of environment changes,[39] intra-population
dependence[60] and development plasticity[58] are neglected in the static picture, but
extensions to dynamical fitness landscapes are used to incorporate such effects.[39,64]

Popular mathematical models used to simulate dynamics of populations such as
the Wright-Fisher[18,66,67] and Moran[38] models also take this point-of-view.

The fitness value assigned to an offspring under these conditions is expected to
be similar to that of the parent. This similarity of fitness is explained by inher-
itance of fitness-defining characteristics from the parent. The primary biological
mechanism for this inheritance is the passing on of genomic material, in particu-
lar the parent’s DNA, although other important mechanisms, collectively referred
to as epigenetics have been identified.[6,9,30] This genetic material encodes infor-
mation, used as blueprint for the construction and implementation of biological
processes in an organism, in the form of a sequence of discrete values identified by
different nucleolus.[31] The duplication and passing on of genetic material is not
perfect and free of error. Mutations can occur via multiple mechanisms, result-
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ing for example in substitutions of single nucleotides or deletions and duplications
of subsequences of nucleotides.[31] These mutations provide for the possibility of
change of fitness in the dynamical picture described above and combined with
natural selection on the fitness landscape form the basis for the modern synthesis
of evolution theory.[22]

Therefore, because the genome is a sequence of individually small informa-
tion units, the space of genotypes may be consider as a high-dimensional product
space of small discrete spaces. While more general forms of mutations could be
considered as well, this model effectively considers only point mutations on indi-
vidual nucleotides or equivalently point mutations on higher level abstractions of
the DNA, such as amino acids encoded by codons or alleles of genes.

The high dimensionality of this product space makes it difficult to visualize its
geometry. Wright originally provided a picture of fitness landscapes as continuous
maps from low dimensional spaces to real values, allowing a visual representation
of the meaning of peaks on the landscape and the behavior of populations as clouds
on the landscape, although he noted that this reduction of dimensionality is not
representative of the actual high-dimensional product space.[65]

Instead of this intuition, we consider the fitness landscape and its properties
rigorously as a function on a high-dimensional discrete space. Populations of
individuals can be viewed as a cloud of particles on the fitness landscape. Repro-
duction and natural selection result in these particles moving along on the fitness
landscape and in particular if natural selection is sufficiently strong and the rate
of mutation rate small, it is possible to approximate the whole population by its
majority genotype, resulting in dynamics described by an adaptive walk of a single
particle on the fitness landscape.

In this picture structural properties of the fitness landscape become relevant.
Because mutants with lower fitness are less likely to reproduce, movement of the
population on the fitness landscape is biased towards increasing fitness. A peak
on the landscape implies a hindrance for the population to obtain higher fitness
values and it would be expected that a fitness landscape with fewer peaks gives
the population more available escape routes to higher fitness, resulting in faster
adaption. Alternatively, the existence of such escape routes, or in general accessible
paths meaning monotonically increasing paths, on the landscape can be considered
directly. In this thesis I will consider both of these properties.

1.2 Other contexts
In the context of solid state physics and other areas of physics, the notion of fitness
landscapes may be recast into a notion of energy landscapes. Instead of genotypes,
in physics we often consider systems with states composed of many discrete units.
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As a simple example these units could be spin variables in a solid, each of which
can be found in one of two states. This again forms a high-dimensional prod-
uct space as the overall system state, with each system state having an assigned
energy, resulting in the equivalent notion of energy landscape as assignment of
energy values to system states. In this setting time evolution is biased towards
minimization of the energy and in particular at low temperatures the structure of
the energy landscape becomes relevant. For example local minima on the energy
landscape correspond to meta-stable states, which may prevent the system from
reaching its ground state or delaying its relaxation.

In the context of optimization in computer science, a common problem is to
optimize a function which takes a binary string as input. If not much about the
function is known, one may employ generic heuristic search algorithms to find as
good an optimum of the function as possible in reasonable time. Such algorithms
depend on functions in practice having the property that small changes to the
input do tend to result in small changes in the output overall, equivalently to the
biological picture of mutations and fitness effects. These functions can then be
viewed as fitness landscapes with the input sequence as genotype and the output
as fitness. Generic search algorithms are then often expressible as movement on
this fitness landscape with a tendency towards higher fitness values. This analogy
is made proper in particular for the so-called genetic search algorithms, which
explicitly use the analogy to biological evolution by using models of evolutionary
dynamics on a population of searching agents under natural selection with the
given fitness landscape.
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Chapter 2

Mathematical setting

2.1 Genotype spaces

2.1.1 Genotypes
The evolutionary dynamics of a population on the fitness landscape are modeled as
a stochastic process in time. The state of the population is given by the combined
state of all individuals in the population and in the picture of a static fitness land-
scape the state of individuals is characterized by a single discrete type, referred
to as genotype. Although the term indicates a relation to inheritable genetic in-
formation, it can also subsume non-genetic inheritable discrete properties of the
individual. Ultimately fitness is determined by phenotypes, which are often contin-
uous in nature, but under the constrains of a static fitness landscape, phenotypes
are a function of the discrete genotypes, so that they may be subsumed into the
characterization of genotypes.

Generally genotypes in a given evolutionary system therefore form some finite
set, or more generally some countable set, which I will denote G. A more general
approach to a fitness landscape framework can be found e.g. in.[53]

In the context of physics, the stochastic process in time describes the evolution
of a discrete set of system states, for example the combined states of a number
of spin objects. These system states corresponds to genotypes in the biological
setting.

2.1.2 Mutation graphs
Modes of reproduction can largely be separated by whether they involve recombi-
nation of genotypes of multiple parents or whether only the genotype of a single
parent is inherited. For the purpose of the description in this thesis I focus on
the non-recombining case. In the process of reproduction, the parent passes on its
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genotype to its offspring, but the possibility of mutations allows for changes in the
genotype of the offspring.

It is however expected that there is a notion of similarity between genotypes,
so that genotypes of the offspring are relatively similar to the genotype(s) of their
parent(s). Although the results of mutation are probabilistic in nature, one ap-
proximate approach is to separate parent-offspring genotype transitions by allowed
and forbidden transitions, corresponding to mutations that are reasonably possible
and those that are practically not likely to occur. For example, single-nucleotide
substitutions may happen on multiple locations of the genome, but under the
reasonable assumption of them occurring independently of one another, the prob-
ability that many such substitutions happen in a single reproduction cycle are low,
given that individual mutation rates are not large. In this picture, transitions in-
volving small number of nucleotide substitutions are allowed, while those involving
many are forbidden.

Based on this idea one can introduce a mutation graph, which is a directed graph
on the genotype set, such that arrows indicate allowed parent-to-child transitions
via mutations in a single reproductive cycle. With this graph all non-recombining
reproduction dynamics can be described as long as the likelihood of different mu-
tational transitions occurring can be neglected. If these likelihoods are relevant,
the graph’s arrows maybe equipped with a weight indicating them. However, I will
not consider this generalization in this thesis. The properties under consideration
here are static-structural in nature and not dependent on the specific mutation
probabilities, which are however relevant in the behavior of specific dynamics on
the fitness landscapes.

2.1.3 Loci and allele graphs
Typically the mutation graph exhibits certain structural properties due do the en-
coding scheme of genetic information. In particular, because the genome encodes
data as a sequence of small information units, each of which as a first-order ap-
proximation is able to mutate stochastically independently, it is useful to consider
the mutation graph as a product graph over smaller graphs describing mutations
on individual elements of the genomic sequence.

Under the assumption that mutation is weak enough that each parent-child
transition can mutate the genotype only at one element of the encoding sequence
at most, the resulting mutation graph can be written as a Cartesian graph product
of factor mutation graphs over the states of individual sequence elements.

The Cartesian product of two mutation graphs G and H is the mutation graph
G□H over the Cartesian product set of the corresponding genotype sets with an
arrow from (g, h) to (g′, h′) if and only if (g, g′) is an arrow in G or, exclusive,
(h, h′) is an arrow in H.
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I will refer to the individual factor graphs forming the overall mutation graph
as allele graphs and its vertices as alleles. The allele graphs are usually natu-
rally indexed, in which case the index of an allele graph in the mutation graph’s
factorization is referred to as locus or site of the genotype. Although the fac-
torization was motivated by the encoding of genetic information in a sequence of
nucleobases, alternative interpretations on a higher level are also possible, one of
which motivates the terminology chosen, as described below.

If the mutation graph is factorized into individual base pairs on the genome,
then the allele graph at each locus is best described as the complete graph on four
alleles K4. The four alleles account for the four possible nucleotide configurations
for each base pair and mutations are possible from any configuration to any other.
With L loci of this kind, the resulting mutation graph is the Hamming graph
H(L, 4) = K□L

4 .
In protein-coding regions of the genome each triple of subsequent base pairs

encodes an amino acid. These triples are referred to as codons and the mapping
of triples to amino acids as genetic code. The factorization of the mutation graph
may also be viewed as a factorization into codons, in which case the allele graph
can be chosen as the Hamming graph H(3, 4) = K□3

4 to still allow only mutations
resulting from single nucleotide substitutions. The complete mutation graph will
then coincide with the mutation graph in the single-nucleotide factorization, except
that the number of loci is reduced by a factor three.

If however codons are mapped via the genetic code to the amino acid they
encode, a structurally different mutation graph emerges. The 43 = 64 possible
codon states encode only 22 amino acids plus stop conditions (which I will consider
a fictional amino acid for simplicity). Therefore multiple codons are mapped to the
same amino acids. This allows for nucleotide substitutions to leave the encoded
amino acid unchanged, in which case the mutation is said to be synonymous.
Other single nucleotide substitutions may change the encoded amino acid and an
allele graph can be constructed by considering the 22+1 amino acids as alleles
and transitions between amino acids as allowed if there exists a single nucleotide
substitution resulting in the codon encoding changing from the first to the second
amino acid. In this interpretation the allele graph has a more complex structure,
but is still symmetric.

Moving up to an even higher-level abstraction, loci may be considered to be e.g.
individual protein-coding genes and the alleles to be sets of mutations of interest
on the individual genes. In this interpretation there are more possible choices of
allele graphs. For example, mutations are often strongly deleterious producing
non-viable offspring, in which case it is useful to exclude these mutations directly
from the allele and mutation graphs. As a result an allele graph may for example
be a subgraph of a Hamming graph, one example being a symmetric path graph
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describing a number of mutations which are required to occur in sequence to be
viable.

To avoid some uninteresting edge cases I will assume that the allele graphs
have at least two alleles and that the allele graph is at least weakly connected.
Furthermore I will assume that the allele graph is the same on all loci. This is
done to avoid overly complex formulas, but most results are extendable to the
more general case.

The simplest non-trivial allele graphs to consider are then the allele graphs
on two loci, of which there are two up to isomorphism. The first one is K2, the
complete graph on two vertices, on which it is possible to mutate from the wild-type
allele to the mutant allele, as well as back again. The second one is asymmetric
and allows only for mutations from the wild-type but not back again. I refer to this
as mutation graph without back-mutation and write it K′

2. A similar extension of
the allele graph without back-mutation for larger number of alleles is the complete
graph on A alleles with all arrows to the wild-type allele removed, which I write
as K′

A.
In this thesis, if not stated otherwise in context, I assume that the allele graph

is K2.

2.2 Fitness landscapes
In the picture of static fitness landscapes each genotype g is assigned a real value
Fg representing its fitness. The full mapping F of genotypes to fitness values is
the fitness landscape, which determines the natural selection aspect of evolutionary
dynamics in this setting.

Instead of analysing individual empirically obtained fitness landscapes, the goal
of probabilistic modelling of fitness landscapes is to find a probability distribution
or ensemble over the space of all fitness landscapes with a given underlying mu-
tation graph, such that empirical fitness landscapes are typical for this ensemble.
This allows calculation of typical values for quantities of interest in the model
ensemble, which are then expected to be similar to these quantities observed in
empirical landscapes.

2.2.1 Fitness graphs
The properties which I will consider in this thesis are of a specific form, allowing us
to ignore detailed quantitative interpretations of fitness. Both the number of local
optima, as well as the accessibility properties, the two properties I will discuss,
depend only on the ordering of fitness values relative to one another.
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Instead of analyzing fitness landscapes themselves it is therefore helpful to
consider a modified fitness landscape, which I will call the ranked fitness landscape.
Instead of the original fitness values it assigns each genotype its numeric rank in
the ordering of genotypes by their fitness values. In order to avoid specification of
the ranking behavior under fitness value ties, I will assume that fitness values are
never exactly equal. This assumption is trivially satisfied in the fitness landscape
models which I will use in this thesis almost surely, in the probabilistic sense.

The ranked fitness landscape reduces the space of landscapes to consider from
a continuous set to a discrete set, finite even, assuming the number of genotypes
is finite as well.

However, even further reduction of information is possible when talking about
the properties of interest in this thesis. All of them depend only on local orderings
of fitness values, meaning they depend only on the ordering of fitness value pairs
of genotypes adjacent on the mutation graph. The ordering of pairs of adjacent
genotypes can be encoded as an directed graph obtained from the mutation graph
by removal of arrows which do not point from a genotype of lower fitness to a
genotype of higher fitness. The resulting directed graph is known as fitness graph
and it encodes all information about the landscape relevant for processes that
are restricted to local movement on the mutation graph and are indifferent to
magnitudes of fitness differences.[8] In terms of evolutionary dynamics, this is just
the information relevant in the so-called strong selection weak mutation regime
(SSWM).[20,42] Under the SSWM regime mutations are rare enough that the whole
population can be modeled as a single particle moving on the fitness landscape
with the majority genotype as its genotype, resulting in random walk dynamics.
Strong selection further implies that mutations reducing fitness are unlikely to
fixate and therefore evolutionary dynamics can be reduced to an adaptive walk
along arrows in the fitness graph.

2.2.2 Epistasis
One important notion for the description of fitness landscapes is that of epistasis,
describing the interaction between mutational effect on different loci. Many defi-
nitions for the exact meaning of the notion of epistasis exist,[10,44] however I will
give a common definition of pairwise (in contrast to higher-order[47,57,62]) epistasis
in the context of the study of fitness landscapes in the following.

At a given initial genotype g, I use ∆a→b
l g to denote the genotype obtained

from g by replacing the allele at locus l from a to b. Typically (a, b) is assumed
to be an arrow in the allele graph and so (g, ∆a→b

l g) is an arrow in the mutation
graph. Point mutations are therefore identified by the operators ∆a→b

l and can be
applied to any genotype currently containing allele a at locus l. On the binary
allele graph I will omit the upper index a → b given that at every given genotype

12



there is only one valid choice.
Commonly I will also use the short-hand notation

∆a→b
l F (g) = F (∆a→b

l g) − F (g) (2.1)

describing the fitness effect of a mutation ∆a→b
l at a background genotype g.

A mutation ∆a→b
l is then said to be epistatically dependent on another mutation

∆a′→b′
l′ with l ̸= l′ at background g if

∆a→b
l F (∆a′→b′

l′ g) ̸= ∆a→b
l F (g) (2.2)

The difference between the two sides of this equality is a common measure for
the magnitude of epistasis and also differentiates between positive and negative
epistasis, which results in the approch to fitness landscape analysis by shapes.[3]

For the purposes of this thesis magnitudes of fitness differences are not a focus.
Instead I am interested in the signs of fitness differences. This leads to the notion
of sign-epistatic dependence[63] obtained by replacing the real-valued fitness effects
with their signs:

sgn
[
∆a→b

l F (∆a′→b′

l′ g)
]

̸= sgn
[
∆a→b

l F (g)
]

(2.3)

In other words, a mutation is not sign epistatically dependent on another mutation
at a given background if in the square formed by the four genotypes g, g′ = ∆a→b

l g,
h = ∆a′→b′

l′ g and h′ = ∆a→b
l ∆a′→b′

l′ g and the arrows between them in the mutation
graph, either both (g, g′) and (h, h′) remain (parallel) arrows when transitioning
to the fitness graph or both (g′, g) and (h′, h) remain (parallel) arrows.

The property of sign epistasis is not symmetric, meaning that a mutation X
may be sign-epistatically dependent on a mutation Y , but Y not sign epistatically
dependent on X. However, if both of these properties hold at the same time at a
given background, the two mutations are said to be reciprocal sign-epistatic at the
given background,[45] which is known to be a necessary condition for the existence
of multiple fitness peaks on the fitness landscape[46] and demonstrates mutations
that are strongly mutually antagonistic.

Generally all of the concepts introduced so far are dependent on the specific
background at which epistasis is investigated. Generally it is not to be expected
that there are strong correlations between these properties when compared across
large distances on the fitness landscape. However, if reciprocal sign-epistasis be-
tween two mutations extends to all background genotypes, I speak of global re-
ciprocal sign epistasis (GRSE) between the two mutations. As it turns out the
specific structure of NK fitness landscapes often can produce GRSE with drastic
consequences for the structure of the landscape.[23,48]
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2.3 Building block models

2.3.1 House-of-Cards (HoC) model
In search for a suitable model ensemble of fitness landscapes, one possible approach
is to start with a toy model with low complexity in terms of the mathematical
description, which nonetheless has interesting non-trivial behavior. A straight-
forward approach to this which applies to any mutation graph, is the House-of-
Cards model.[24,26,34] In this model a probability distribution over the reals is fixed
and the fitness value of each genotype is drawn from it independently.

Not only has this model a low complexity description, but it also has the nice
property that, with the exception of non-continuous distributions, the particular
choice of the probability distribution does not influence the distribution of the
fitness graph, because only the order of the individual fitness values affects the
ranked landscape and consequently the fitness graph.

The analogue of the House-of-Cards model in statistical physics is known as
the random energy model.[12]

2.3.2 Additive model
As an opposite to the House-of-Cards model, one can consider the so-called additive
model, linear model or non-epistatic model.[17]

As the name suggests this model describes fitness values that are purely additive
components per locus, such that no epistatic interactions between loci emerge.

Specifically, each allele on each locus is assigned a fixed fitness contribution.
The total fitness of a genotype is then the sum of these contributions for which it
contains the corresponding allele at its locus.

Under this construction, the fitness effect of a mutation on one locus and the
fitness effect on another locus can always be summed to yield the combined 2-
mutant fitness effect, implying that the landscape is completely non-epistatic.

As shown in the next section, the additive model can be viewed as a special
case of the NK model and at the same time the NK model can be viewed as an
extension of the additive model combined with the HoC model.

2.4 NK models
While the HoC model and additive model are simple and interesting as a toy model,
it is unlikely to be a good explanation of biological fitness landscapes. In particular
the HoC model ignores the underlying mutational structure of the genotype space
completely. Selection coefficients do not correlate with distance of genotypes in
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the HoC model. However, in actual organisms, we expect that small modifications
of genotypes tend to result in small effects on phenotype, expected survivability
and expected reproduction, so that fitness values should be correlated, at least for
small distances on the mutation graph.

Furthermore, at least locally, individual loci tend to have somewhat consistent
effects on fitness in organisms, often with epistatic interaction between limited sets
of loci.

One approach to incorporating these notions is to start from a number N of
individual building block landscapes defined on subsets of loci Bi, each of which
produces for every projection of a genotype to the corresponding block a fitness
contribution fi, which can then be combined to an overall fitness by some function.
These individual building blocks may also for example be considered individual
phenotypes.

This construction causes correlation between fitness values of close genotypes
by virtue of mutations on few loci modifying only a small subset of the building
block fitness values. It also imposes a structure on the set of loci, which can
be described as a hypergraph through the sets Bi as hyperedges. We refer to
this structure as the neighborhood structure and the building block sets Bi as
neighborhoods.

While it may also be of interest to consider other case, the combining function
is typically chosen to be addition, compatible with the additive choice of definition
for pairwise epistasis, and the individual building block landscapes are chosen to
be HoC landscapes with some fitness distribution. With this choice the resulting
model is known as the NK model. Originally this model was introduced by Kauff-
man[25] in a restricted form, specifically he required the number of building blocks
to be identified one-to-one with the loci, in such a way that the locus corresponding
to a neighborhood is contained in it, and that each neighborhood ought to share
the same size k. I refer to such neighborhood structures as classical.

In the description of neighborhood structures I make use of usual terminology
from the theory of hypergraphs. In particular a k-uniform neighborhood structure
is one in which all neighborhoods have size k and a r-regular neighborhood struc-
ture is one in which all loci are contained in exactly r neighborhoods. Even if a
structure is not k-uniform or r-regular, I will refer to the average size of neighbor-
hoods as k and the average number of occurrences of loci in neighborhoods as r.
As a consequence, by an analogue of the handshake lemma, the general equality
Nk = Lr holds. This allows reduction of the base parameters describing neighbor-
hood structures to r and k, both of which are intrinsic quantities with respect to
the number of loci. For the classical neighborhood structures r = k, but smaller as
well as larger r may be considered. In order to avoid neutral mutations I require
that each locus appears at least once in a neighborhood, resulting in a value r ≥ 1.
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A few common choices for neighborhood structures are:

• Block structure (BN):[41,43] The set of loci is divided into disjoint sets of
equal size k, each of which is chosen as a neighborhood. The structure is
regular and uniform. Choosing each such set k times results in a classical
NK structure.

• Generalized block structure:[50] The requirement of equal size may be lifted,
in which case uniformity is lost.

• Adjacent structure (AN):[25] Loci are given a ring structure and for each locus
its k − 1 nearest neighbors on the ring are chosen as part of its (classical)
neighborhoods. The structure is regular, uniform and classical.

• (Classical) Random structure (RN):[25] Any classical neighborhood structure
with specified k on the locus set is chosen with uniform probability. Here we
also consider the special cases of the rRN structure which restricts the choice
to regular structures. The RN structure, together with the AN structure,
are the specific choices first considered by Kauffman.

• Pure random structure (PR):[61] For specified values of k and r any, not
necessarily classical, neighborhood structure is chosen with uniform proba-
bility. Here additional requirements of uniformity and/or regularity may be
imposed, resulting in the uPR, rPR and urPR models.

• Mean field (MF):[23] All k-subsets are chosen as neighborhoods.

• Star structure (SN):[23,48] In this classical structure for each neighborhood
associated to a locus the remaining k − 1 loci are chosen as the first k − 1
remaining loci by their index.

The RN, PR and uPR structures are not regular, but many statements about
NK models with regular structures can be extended to them, since they are quasi-
regular in the sense that the distribution of degrees in the hypergraph converges
in all moments as L grows to infinity at constant k and r.

In contrast to this, the SN structure is specifically chosen, such that all moments
of the degree distribution quickly diverge to infinity, exemplifying a strongly non-
regular neighborhood structure.

Aside from the structures mentioned above, some models for spin-glasses also
can be directly interpreted as (generalized) NK models. Specifically, in either case
without external fields, the Sherrington-Kirkpatrick model[51] corresponds to an
NK model in which all two-element sets are chosen as neighborhoods, resulting
in the MF structure with k = 2. The Edwards-Anderson model[14] is obtained
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from a d-dimensional lattice on loci, choosing all locus pairs corresponding to
edges on the lattice as neighborhoods. Assuming circular boundary conditions on
the lattice, this results in a uniform and regular NK structure with k = 2 and r
the coordination number of the lattice. Specifically, the one-dimensional case is
identical to the AN structure with k = 2 and therefore classical.

Spin-glass models including external fields may also be represented to some de-
gree by NK models as defined here, assuming Gaussian distributions for interaction
terms. External fields in this context correspond to additional neighborhoods, each
containing only a single locus. However, this always results in external fields of
equal energy as single pair interaction contributions. To achieve different relative
strength of the external field, it is possible to add multiplicities to the neighbor-
hoods. Addition of external fields in this manner make the structure non-uniform,
but doesn’t affect regularity if the field is applied uniformly across sites.
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Chapter 3

Number of local maxima

3.1 Definitions and general bounds
A local maximum of a fitness landscape is a genotype g such that ∆a→b

l F (g) < 0
for all possible point mutations ∆a→b

l on g.
Note that I consider the orientation of arrows in the mutation graph as relevant

in this definition since ∆a→b
l is a point mutation only if there is an arrow from a

to b in the allele graph. Although a genotype may be a local fitness maximum by
this definition, there may be genotypes h such that there exists a point mutation
∆a→b

l such that g = ∆a→b
l h and ∆a→b

l F (h) < 0.
Equivalently a local fitness maximum is a leaf in the fitness graph, i.e. a

genotype without any outgoing arrows (which point to higher fitness).
Under adaptive walk dynamics a population is unable to escape such a local

maximum once it is reached and therefore the number of local maxima is considered
a measure of “ruggedness” of the landscape and is therefore often estimated for
fitness landscapes.[11,19,55]

In this chapter I will denote the number of local maxima of the fitness landscape
under consideration as Nmax and provide a short review of known results for the
number of local maxima in HoC and NK models, as well as new results. But first,
I will provide some general bounds on fitness landscapes on different allele graphs.

3.1.1 Minimal number of local maxima
In general, a fitness landscape must have at least one local maximum, its global
maximum.

With the complete graph as allele graph it is easy to see that it is always
possible to produce a fitness landscape with exactly one local maximum by choice
of an additive fitness landscape.
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Such a fitness graph can however not be produced by all allele graphs. Consider
L = 1. Then the allele graph and the mutation graph coincide. It may or may
not be possible to construct a fitness landscape with only one leaf in the fitness
graph. For example the allele graph over three alleles a, b and c with arrows (a, b)
and (a, c) already has two leafs and will always have at least two leafs on the
fitness graph, since the fitness graph is obtained by removal of arrows from the
mutation graph. Under such conditions the minimum number of local maxima may
be exponentially growing in L, e.g. with the previous example all combinations
of genotypes formed from only the alleles b and c must be local maxima, giving a
lower bound of 2L.

However, if the allele graph is symmetric and connected, then the allele graph
can be oriented into an acyclic directed graph with exactly one leaf. This orienta-
tion can be interpreted as a fitness graph for L = 1 and its L-times product will
produce a fitness graph for the corresponding mutation graph with L alleles.

3.1.2 Maximal number of local maxima
A more difficult problem in general is the maximum number of local maxima that
a fitness landscape can have, even in the symmetric allele graph case. Certainly
there can never be more than AL local maxima on an allele graph with A alleles,
however this is a very trivial bound.

For symmetric allele graphs another point-of-view to take on local maxima of
a fitness landscape is that they form an independent set of genotypes. A set of
genotypes (or generally vertices in an undirected graph) is called an independent
set if there is no edge between any pair of genotypes in the set.

Any independent set can therefore be chosen to form a subset of the local
maxima of the fitness landscape, by assigning high fitness values to the elements
of the set and smaller fitness values to all other genotypes. Conversely any set
of local maxima must form an independent set, as two local maxima cannot be
adjacent on a symmetric mutation graph.

A maximal independent set is an independent set to which no further genotype
may be added without the independent set property being lost. Equivalently an
independent set is maximal if we can’t find any remaining genotype which is not
adjacent to one of the elements of the set. This coincides with a maximal choice
of local fitness maxima on the landscape.

The independence number is the size of the largest maximal independent set.
The problem of finding the maximal number of local maxima on a fitness landscape
corresponding to a given symmetric allele graph therefore reduces to a search for
the independence number of the mutation graph.

With allele graph K2 a landscape with the maximal number of local maxima
is known as an egg-box landscape[16] and in it local maxima and local minima
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alternate starting from the wild-type, resulting in a fraction 1
2 of all 2L genotypes

being local maxima. The same idea shows that on KA, a fraction 1
A

of the AL

genotypes give the largest possible number of local optima on the fitness landscape.
This can also be seen as a consequence of Vizing’s bound on the independence
number of Cartesian products of graphs.[24,29,34,59]

Unfortunately, outside of the complete graph, determining the independence
number of the Cartesian product graph from the allele graph is not a simple
problem and only few general bounds are known.[29] In any case, removal of arrows
from the complete allele graph will only result in removal of arrows from the
genotype space and therefore can only increase the independence number. As
a result, the maximum number of local maxima is always at least that of the
complete graph on A alleles, meaning AL−1 as explained above.

Because the number of genotypes is however also limited by AL for any allele
graph, this then implies that the maximum number of local maxima on a given
genotype space is always growing exponentially in L with rate ln A with at most
a factor A variation between allele graphs of size A.

3.2 Number of local maxima in NK models

3.2.1 General behavior
The number local maxima on NK fitness landscapes have been investigated for
different choices of neighborhood structures, fitness distributions and limiting be-
haviors of the ruggedness parameter k.[13,24,33,43]

In general the expected number of local optima can be written as

E[Nmax] = ALe−λLQ(L) (3.1)

with 0 ≤ ln A − λ ≤ ln A the exponential rate at which the expected number of
local maxima increases and Q(L) the correction to the exponential terms. Here
AL is the total number of genotypes and the remaining terms then correspond to
the expected probability of a uniformly chosen genotype to be a local optimum.
Assuming that the expectation doesn’t fluctuate in its leading order term, the
correction Q(L) can be chosen to be sub-exponential. Even if that is not the
case, we may consider converging subsequences of the sequence of NK landscapes,
giving upper and lower bounds on the exponential rate λ between which the model
fluctuates.

The following known results typically consider only the complete graph on two
alleles K2 as allele graph, which is implied if not stated otherwise. The results can
further be categorized by the limiting behavior as L → ∞. In the first variant k is
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assumed a constant in the limit of L → ∞ and in the second variant k is assumed
to be linearly increasing with L as k = αL + O(1) with 0 < α ≤ 1 a constant.

3.2.2 Known results for fixed k

For some choices of neighborhood structure or fitness distribution it is possible to
determine λ, as well as the sub-exponential corrections exactly in these limits.

The HoC model may be viewed as a NK model with only one neighborhood
containing all loci. For it, the expected number of local maxima can be obtained
exactly for all complete allele graphs by a simple combinatorial argument:[24]

E[Nmax] = AL 1
1 + L(A − 1) (3.2)

implying λ = 0 and therefore the maximal possible exponential rate with which
the number of local maxima can increase in L. However, the sub-exponential
correction is Q(L) = 1

1+L(A−1) , an order L−1 reduction from the maximum possible
number of local maxima.

Also using combinatorial arguments, the variance of the number of local optima
can be calculated to[34]

Var[Nmax] = AL (A − 1)(L − 1)
2(1 + L(A − 1))2 (3.3)

Furthermore, the two events of a genotype g and a genotype h being local
maxima is independent if the distance between g and h is at least 2 on the mutation
graph and as a consequence a generalized form of the central limit theorem based on
dependency graphs[2] applies, implying that the number of local optima converges
in law to a normal distribution with the given mean and variance as L → ∞.[34]

For the BN structure the NK model effectively factorizes into a set of indepen-
dent HoC landscapes, so that the fitness distribution is, analogously to the HoC
model, not affecting its fitness ordering either. The number of local maxima is the
product of local maxima on each of these partial HoC landscapes with all factors
independent and so with KA as allele graph one obtains from the HoC result:[43,50]

E[Nmax] = AL

(
1

k(A − 1) + 1

)L
k

(3.4)

implying, at constant k, that λ = ln k(A−1)+1
k

and Q(L) = 0. At linearly increasing
k, it implies that λ = 0 and Q(L) = (αL)− 1

α + o(1).
The structure of a product of independent factors also implies that the distri-

bution of the number of local optima in the BN model converges at constant k in
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law to a log-normal distribution as L → ∞ and to a normal distribution if k scales
linearly with L.

For other choices of structure and fitness distribution, for some small constant
and non-trivial k > 1, specific values of λ have been found. These seem to always
fall strictly between 0 and ln A = ln 2, so that the expected number of local
maxima seems to always increase exponentially under these conditions, but with
suboptimal rate.

• AN, k = 2, positive exponential distribution:[15] λ ≈ 0.5627

• AN, k = 2, negative exponential distribution:[13]

λ = ln
(

18
5 +

√
29

)
≈ 0.5500 (3.5)

• AN; k = 2, Gamma distribution with shape parameter 2:[15] λ ≈ 0.5717

• AN, k = 2, Gamma distribution with shape parameter 1
2 :[40]

λ = ln
(√

10 + 6
√

3 −
√

3 − 1
)

≈ 0.5787 (3.6)

• AN, k = 2, uniform distribution:[13] λ ≥ 0.4954

• AN, k = 3, positive exponential distribution:[15] λ ≈ 0.4920

• SK/MF with k = 2, normal distribution:[56] λSK ≈ 0.494, the minimum of
the function f(x) = 1

2x2 − ln Φ(x).

• EA structure with normal distribution:[7,56] λ ≈ λSK − 0.0656
r

+ O(r−2)

Analogously to the BN model, under weak conditions on the probability dis-
tribution in the AN model at constant k the expected number of local maxima is
asymptotic to an exponential in L and the number of local maxima converges to
a log-normal distribution.[13,15]

3.2.3 Known results for large k

With linearly increasing k, known results which will be presented in this section
indicate that λ = 0, implying a maximal exponential rate of increase in the number
of local maxima. They also indicate that Q(L) is polynomial in L, as already seen
above for the BN structure:

Q(L) = e−ζ(α) ln L+o(ln L) (3.7)
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Specifically at α = 1 it is expected that ζ(1) = 1 as the NK model with k = L
must coincide with the HoC model. As seen above, for the BN model ζ(α) = 1

α
.

For both the AN and uRN structures with normal distributed fitness Wein-
berger[61] gives ζ(α) = 1

α
, coinciding with the BN structure. This seems to in-

dicate a universal behavior, at least for classical NK structures. However, in his
derivation he applies some mean approximations without rigorous justification.
The result turns out to be correct for the AN structure,[33] but the assumptions
made by Weinberger apply also e.g. to the rRN model, for which more specific
calculations yield different results, as will be discussed in the next section. This
issue has also been noted in.[15] It seems therefore unclear whether Weinberger’s
result for the uRN structure is asymptotically exact.

Limic and Pemantle[33] show that in the AN structure ζ(α) depends on the
choice of fitness distribution, but in such a way that always 1

α
≤ ζ(α) ≤ 3

α
They

also show that with a standard normal distribution ζ(α) = 1
α

and conjecture that
this holds for all distributions.

If k is constant in the increase of L, but taken to infinity after L, it is expected
from the above, that λ will coincide with the limit obtained by taking α → 0. In
all of the cases explained above asymptotically in that limit ζ(α) ∼ ζ′

α
for some

constant ζ ′ and so the expected asymptotic behavior is

λ ∼ ζ ′ ln k

k
(3.8)

which is indeed found in all the cases mentioned above.

• BN, any distribution:[43,50] ζ ′ = 1

• AN, normal distribution:[33,61] ζ ′ = 1

• AN, any distribution:[13,33] 1 ≤ ζ ′ ≤ 3

Based on these results it seems that the expected number of local maxima in
the NK model with regular structure is always of the forms eq. (3.7) and eq. (3.8)
in the respective limits. In the following section I investigate this apparent general
form, also for arbitrary (finite) allele graphs.

3.2.4 General bounds
I will start by considering some general bounds on the number of local maxima in
the NK model.

In the House-of-Cards model fitness values of different genotypes are mutually
independent and therefore the probability of a genotype being a local maximum
is simply 1

n+1 with n the number of out-degrees of the genotype. For r-regular
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allele graphs the expected number of local maxima is therefore exactly 1
Lr+1AL.

If the allele graph is not regular, 1
n+1 will vary between genotypes, however as

L → ∞, except for an exponentially small fraction of genotypes and an arbitrarily
small fraction of loci, all alleles will appear equally often on genotypes. Therefore
asymptotically the expected number of local maxima is still 1

Lr+1AL with r the
average (out-)degree on the allele graph, which has to lie between 1− 1

A
and A−1.

The number of local optima is therefore always growing with the maximal
exponential rate ln A. This makes the House-of-Cards fitness landscapes very
rough. This is not surprising since the House-of-Cards model does not take into
account the graph structure at all. In terms of an optimization problem it is the
worst possible case since no amount of knowledge about the fitness of a set of
genotypes can help in further optimization.

However, the expected number of local maxima in the House-of-Cards model
is still asymptotically negligible by a factor of order 1

L
relative to the maximum

possible number of local maxima, which always is up to a constant of order AL as
seen before.

In the NK model the choice of neighborhood enforces strict limitations on the
fitness landscapes which can be generated, because mutations on loci which are
independent in the neighborhood structure, that is which have no mutually shared
NK neighborhoods, are non-epistatic. This can be seen directly from the fitness
effect ∆a→b

l F (g) decomposing into a sum of fitness effects on the individual partial
HoC landscapes associated with the neighborhoods. In particular this also restricts
the possible rank orderings that can be generated by an NK model.

Suppose there is a subset M of loci, such that all loci in the set are mutually
independent with respect to the neighborhood structure. Then for any given state
of all the loci outside M, there can be only one local maximum:

Nmax ≤ AL−|M| (3.9)

If the NK neighborhoods are sufficiently small and few, then this results in
an exponentially smaller number of local optima than in the HoC model. In
particular, if all neighborhoods are at most of size k and the degree of loci in the
NK structure is at most r, then we can always choose L

kr
loci into any maximal

independent set and therefore

Nmax ≤ AL(1− 1
kr

) (3.10)

In general for classical NK models r = k and this bound only give a weak bound
of λ ≥ 1

k2 ln A. However in many classical NK neighborhood structure, such as the
block model and the AN model, the strong overlap of neighborhoods allows one
to draw independent sets of order L

k
, resulting in a bound that is asymptotically

of the form λ ≥ 1
k

ln A.
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While the NK neighborhood imposes a strict constraint on the maximum num-
ber of local maxima, it doesn’t do so for the lower bound on the number of local
maxima. It is always possible to construct for each NK structure a realization
which has the same ranked fitness landscape as the additive model on the same
landscape and therefore the minimal possible number of local maxima. For this
consider the ranked fitness landscape induced by the additive model on a partial
landscape corresponding to a single neighborhood. Because the partial landscape
is of HoC type, it generates this particular ordering with a finite probably. If
then all partial landscapes generate this ordering, the overall landscape has the
same ranked landscape as the additive model and the probability of this realization
occurring is non-zero.

A simple lower bound on the expected number of local maxima can however
be obtained if the number of NK neighborhoods is sufficiently small. If a given
genotype is a local maximum on the projections onto each partial landscape, then
it is one with respect to the full landscape as well. Since the i-th partial landscape
is of HoC type where this probability is 1

(A−1)ki+1 , this implies the bound

E[Nmax] ≥ AL exp
(

−
∑

i

ln((A − 1)ki + 1)
)

(3.11)

where i sums over all NK neighborhoods and ki is the size of the i-th neighborhood.
By Jensen’s inequality

E[Nmax] ≥ AL exp
(

−N
∑

i

ln((A − 1)k + 1)
)

(3.12)

where N = Lr
k

is the number of NK neighborhoods, r is the mean degree of loci and
k is the mean size of neighborhoods. For r and k constant with r < k ln A

ln((A−1)k+1) ,
this bound then shows that the expected number of local maxima must be growing
exponentially in L. For classical NK models with k = r or even more than L
neighborhoods this bound is however not useful.

In fact it can be seen that there are classical NK neighborhoods, for which the
number of local optima is constant as L → ∞ at all constant k. For example in
the star neighborhood with A = 2 the number of local maxima is at most (and
asymptotically almost surely) 2k−1, see[23] attached as chapter 5.

3.2.5 Regular- and uniform structures
While the above does not provide any useful lower bounds on the number of local
maxima in general, the situation changes for uniform and regular NK structures.

Uniformity and regularity constrain the structure of the neighborhood hyper-
graph and these restrictions may be used to derive lower bounds on the number of
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local maxima, in particular through the existence of global reciprocal sign epistasis
and similar motifs in the fitness graph.

The following is a slight generalization and summary of the reasoning I pre-
sented in[48] and in[23] which is attached as chapter 5.

For any given locus I define the induced distance-n subgraph around this locus
as the sub-hypergraph obtained by keeping only loci in distance n or less to the
focal locus, as well as hyperedges which are fully contained in this set of loci. In
regular and uniform hypergraphs the possible number of induced distance-n sub-
graphs is then finite for all fixed n, up to isomorphism. Essentially, there are only
a finite number of ways that the regular uniform structure can look locally.

Given two loci l and m which share a neighborhood, we can consider the
induced distance-2 subgraph of the neighborhood structure around one of the loci.
All loci not present in this subgraph will not share a neighborhood with either l
or m and therefore their state cannot influence the effect of mutations on l and m.

It is always possible to find an assignment of fitness contributions on the partial
landscapes of the subgraph so that the sign of effects of mutations on l and m are
completely independent of the state of the remaining loci. To see this consider first
a fixed background genotype and the partial landscape that would be obtained by
only mutations on loci l and m starting from g. This partial landscape can generate
all possible rank orderings of the corresponding NK model with L = 2 on the
same allele graph. We can choose any such rank ordering of interest and the HoC
model will generate it with some non-zero probability. We can then consider all
other backgrounds formed by loci in the induced subgraph and since the graph is
uniform and regular, there is an upper bound on the number of these backgrounds
in terms of r and k. The probability that the rank ordering of interest is generated
on all possible backgrounds is therefore a non-zero probability for fixed k and
r. Similarly, by expanding the induced subgraph to distance-3 we can further
obtain a non-zero probability that the chosen rank ordering on l and m is not only
persistent independent of background but also that mutations on l and m do not
affect the mutation effect of mutations on other loci.

Because the NK structure is uniform and regular at fixed k and r as L goes to
infinity, it is always possible to find a linearly increasing number of adjacent locus
pairs so that the distance-3 induced subgraphs mutually do not overlap. For each
pair then the probability of the ordering of interest being observed is independent
and as a consequence as L → ∞, the number of locus pairs which show the ordering
of interest will be stochastically dominated by a normal distribution with linearly
increasing mean.

As seen before, we can always find a fitness rank ordering on the mutation
graph with L = 2 and the given allele graph which has at least 2 local maxima.
For each pair of loci having this ordering globally as described above, there will
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then be 2 local maxima for any given local maximum and as a consequence the
number of local maxima will be at least 2Z where Z is the number of pairs with
this property. By Jensen’s inequality the expected number of local maxima is then
growing exponentially in L.

This extends the previously known result of exponentially increasing expected
number of local maxima in the AN structure to any uniform and regular structure
or with slight modification any NK structure with bounded ki and ri.

The same approach as above can be used to show that GRSE will be almost
surely present as L → ∞ and that this pair of globally reciprocal loci will satisfy
the even stronger variant of GRSE which I call separable global reciprocal sign
epistasis under which mutations of the two loci do not affect the sign of mutations
on other loci in addition to satisfying the GRSE property.

For more detailed argumentation see,[23,48] which is specifically discussing the
biallelic case, but also extends to the multi-allelic case in a straight-forward man-
ner. Obtaining explicit bounds on the exponential rate via this approach is however
somewhat convoluted and the resulting bounds are very weak for even moderate
k, so that I will not present them here. I gave some results in this direction in.[48]

3.2.6 New results for specific NK structures
I will now give some further new results presented in the publication[23] attached
as chapter 5 and in the appendices of this thesis.

For r-regular structures, one can consider the negative Gamma distribution
with shape parameter 1

r
, meaning the distribution of a random variable X for

which −X is Gamma distributed with the given shape parameter. With this
choice, the expected number of local maxima can be calculated exactly to[23]

E[Nmax] = 2L
( 1

k + 1

)L
k

(3.13)

coinciding with the results for the BN model.
While the BN model offers a choice of neighborhood structure under which

the expected number of local optima is invariant to the fitness distribution, the
negative Gamma distribution with the r-dependent shape parameter offers a fitness
distribution for which the expected number of local maxima is invariant to the
choice of neighborhood structure, assuming regularity.

For structures which are not sufficiently regular, the above does not apply.
As seen before strongly irregular landscapes can behave in strongly different ways.
Specifically the star neighborhood is here again a counter example since its number
of local optima is always strictly limited by a constant at constant k, also for the
negative Gamma distribution.[23]
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For the MF structure and the rRN structure with normal distributed fitness one
can find by asymptotically exact methods ζ(α) = 2

α
− 1 and ζ ′ = 2.[23] Weinberger

obtains ζ(α) = 1
α

for the uRN model, but uses a derivation that relies only on
approximations which also apply to the rRN structure. This result is therefore an
indication that Weinberger’s approximations do not result in the asymptotically
fully exact expression.

The normal distribution’s nice mathematical properties allow us to make more
general statements about larger classes of NK structures. In,[23] attached as chapter
5, I show that for all k-uniform and r-regular neighborhood structures with normal
distributed fitness 1

α
≤ ζ(α) ≤ 2

α
. A more careful derivation gives

1 + s
r

α
≤ ζ(α) ≤ 2

α
(3.14)

s

r
≤ ζ ′ ≤ 2 (3.15)

where s is the smallest singular value of the incidence matrix of the neighborhood
structure. The proof is attached as appendix A.1. The fraction s

r
can be seen to

lie between 0 and 1 and for the upper bound it results in tight bounds for ζ ′. A
possible realization of such a NK structure with s

r
= 1 is the mean field structure,

for which we had already obtained ζ ′ = 2 by other means.[23]

Universality for uniform and regular structures

Based on the previous results, ζ ′ = 1 seems to pose a general upper bound on the
number of local maxima and interestingly it is always possible to reach this upper
bound by adjustment of either structure or fitness distribution individually with
the k-dependent negative Gamma distribution always satisfying it for any uniform
and regular structure, while the BN structure generates it without any dependence
on the choice of distribution. Both structure and distribution do seem to impose
varying limits on the lower bounds though, but always staying within the expected
asymptotic form of eq. (3.8) with ζ ′ bounded above by some constant.

The general result on uniform and regular NK models with normal distributed
fitness is also expected to be relatively stable with respect other sufficiently regular
fitness distributions.

For extremely heavy-tailed distributions however, the behavior seems to change
and this is also where Limic and Pemantle find the upper bound ζ ′ ≤ 3 in the AN
model.[33] In particular they consider a distribution so heavy-tailed that sums of
many i.i.d. random variables are asymptotically almost surely dominated by the
addend with the largest absolute value.

I consider a similar distribution with the same property in order to investi-
gate whether the apparently universal behavior of (3.8) can be violated. Indeed
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I find interesting indications that there exist specific uniform- and regular NK
structures, such that the expected number of local maxima with this distribution
is asymptotically significantly smaller than in the usual cases discussed before,
namely that

λ = ω

(
ln k

k

)
(3.16)

A reasoning is provided in appendix A.2. As shown in the same appendix, there
is a general bound applying to the sum-dominating distribution of

λ = O
(

(ln k)2

k

)
(3.17)

which I expect to be actually achievable by some uniform and regular NK structure.
The considerations above show in any case, that the possible behavior of ex-

pected number of local maxima is quite limited at larger k. Only for strongly
irregular structures or strongly heavy-tailed fitness distributions can the expected
number of local maxima vary strongly. For strongly irregular structures it is easy
to reduce the expected number of local maxima drastically, as in the SN structure,
but heavy-tailed fitness distributions are also able to reduce the expected number
of local optima asymptotically significantly in the exponential rate.

Interestingly, either of these irregularities only decreases the expected number
of local optima and it does in fact seem that the BN structure has the highest
achievable value among all NK structures.

29



Chapter 4

Accessibility

4.1 Definitions
Local maxima determine the possible final states of populations under adaptive
walk dynamics. They do not however alone determine the likelihood of populations
reaching specific maxima. The structure of non-maximal genotypes may skew the
probability of specific maxima being reached in such a way that high fitness values
among the local maxima are more or less likely to be reached by adaptive walk
dynamics.

In particular, the structure of the landscape can, if it is sufficiently rough,
strongly constrain the number of local maxima and genotypes in general that are
reachable from any given starting genotype by an adaptive walk. We say that
one genotype h is accessible from another genotype g, if there exists a (directed)
path on the mutation graph from g to h in the usual graph-theoretic sense, along
which fitness values are strictly increasing on the fitness landscape. Such paths
are called accessible paths. If a genotype is accessible from another, then the
exact probability of it being reached will depend on the specifics of the population
dynamics model chosen. Wanting to abstract from these details, we may therefore
first consider the question of the probability that a given pair of genotypes is
accessible in a stochastic fitness landscape model. Furthermore, we may consider
the distribution of the number of accessible paths between the genotypes in the
model. This number does generally not correspond to the likelihood of the given
genotype being reached in adaptive dynamics, but may serve as a general indicator
to differentiate genotypes which are highly likely to be reached and genotypes
which are unlikely to be reached.

For the random variable representing the number of accessible paths between
genotypes g and h I will write Ng,h in this chapter.

In many stochastic fitness landscape models, such as the HoC or the NK model
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with RN neighborhood, the model is invariant under relabelling of loci and other
models can be made invariant by imposing the model to be applied to a random
permutation of loci. Under this symmetry Ng,h’s distribution is then invariant
under relabelling of loci and consequently only the equivalence classes of pairs
(g, h) under locus relabelling need to be considered. These classes can be identified
by a matrix M ∈ NA×A

0 , such that Ma,b determines the number of loci l on which
gl = a and hl = b. With this ∑a,b∈A Ma,b = L. In the limit L → ∞, this matrix
determines the direction and relative distance in which the two points g and h are
considered. In particular, we are interested in the limiting behavior where Ma,b

L

converges for all a and b, in which case this limit is denoted pa,b. The error term
Ra,b = Ma,b − Lpa,b determines the rate of convergence to this limit and may be
relevant for (higher-order) behavior of the probabilities involved. Finally, the null
matrix, which corresponds to sub-linear distances between the genotypes under
consideration will be excluded in the following. The probability of paths typically
has non-trivial behavior only in the linear-distance case as a result of the linear
increase in dimension of the mutation graph.

Specifically for the biallelic case, the notion of the matrix M can be simplified.
There are only two non-trivial allele graphs on two alleles, a directed one and a
symmetric (undirected) one. In the directed case, loci with al = bl are effectively
irrelevant to the accessibility of paths, since there is no walk on the mutation
graph from a to b mutating locus l. The result is simply the behavior of the model
for a reduced value of L. Therefore, with the directed biallelic case it is only
useful to consider accessibility from the wild-type to its single antipodal genotype
in maximal distance. For the symmetric biallelic case al = bl does result in walks
mutating locus l, but the allele graph is invariant under exchange of the two alleles
and this symmetry is preserved by the fitness landscape models which we consider
here analogously to the symmetry of locus exchange. Therefore only a single
quantity, the number of loci with al ̸= bl, or equivalently the distance between a
and b on the mutation graph is relevant. In this case the distance is denoted d
and the relative distance δ = d

L
, which in accordance with the requirements on M

is assumed to converge as L → ∞.

4.2 Accessibility in the HoC model
Accessibility between pairs of genotypes has been previously considered in the
HoC model for the biallelic case.[4,5,21,32,35,37] Typically in this setting a HoC model
with fitness values distributed according to a standard-uniform distribution is con-
sidered. The number of local maxima is not affected by the particular choice of
distribution.

Commonly in this setting the model is modified, imposing that the fitness at
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the destination d is the global maximum of the landscape, meaning that it has rank
1 on the ranked fitness landscape. This point of view is useful to demonstrate the
maximum possible accessibility of a local maximum. At the same time it turns
out that additional fixation of the fitness at a, results in a sharp transition of
accessibility in these models depending on this fixation. Instead of fixation of the
rank of the fitness at a directly, fixation is typically done in terms of the uniform
fitness. As a result the actual rank of the fitness value at a varies, but for large L
the relative ranking quickly converges to the equivalent fixed fitness.

Given fixation of fitness values at a and b with β = F (b) − F (a), assumed
positive, the accessibility question can always be mapped back to the HoC model
with fitness 0 at a and fitness value 1 at b with an additional Bernoulli percolation
imposed on all other genotypes, removing each independently with probability
1 − β.[49]

Therefore, only the difference β, rather than the choice of global maximum, is
relevant to the following results. In the following I write N ′

a,b(β) to refer to the
number of accessible paths in this model restricted by β. Because both the fitness
value at a and at b are independently uniformly distributed, the accessibility in
the original model can then be written as

P[Na,b ≥ 1] =
∫ 1

0
dβ (1 − β)P[N ′

a,b(β) ≥ 1] (4.1)

In the directed biallelic case, there is a threshold function at β = 1 − ln L
L

of
width at most

√
ln L
L

below which accessibility converges to 0, but above which it
converges to 1 as shown by Hegarty and Martinsson.[21] In particular, if the fitness
difference is fixed in L, it must be chosen as 1 in order to achieve accessibility. For
the accessibility in the original model, it follows that

P[Na,b ≥ 1] ∼ 1
2

(
ln L

L

)2

(4.2)

On the symmetric biallelic allele graph the number of walks between the initial
and final points are much larger, resulting in a critical value at β = β∗ with β∗

the unique positive solution to[4,32,35,37]

cosh(x)1−δ sinh(x)δ = 1 (4.3)

In particular at δ = 1 the value of β∗ becomes asinh(1) ≈ 0.881 and it falls
with decreasing δ to zero. As a consequence, in the unrestricted model, any two
genotypes are reachable from one another asymptotically with non-zero probabil-
ity.
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Moreover, it turns out that the critical point β∗ is also exactly the fitness differ-
ence at which the expected number of accessible paths changes convergence behav-
ior from convergence to zero to exponential divergence. Application of Markov’s
bound yields that convergence of the expected number of accessible paths to zero
implies convergence of the probability of accessibility to zero. Therefore the ex-
pected number of paths is sufficient to determine a lower bound β∗. However, since
β∗ turns out to be exactly the value of this bound we can say that the expectation
value of the number of accessible paths “tells the truth”[4] about the critical point.

Martinsson noticed that the accessibility question in the restricted and non-
restricted model can be mapped to a first-passage percolation problem on the same
graph with uniformly distributed weights on vertices.[35]

He also considered the equivalent first passage percolation problem with weights
on edges rather than vertices, which doesn’t directly map back to the accessibility
percolation problem. However he considered this first passage percolation problem
on arbitrary Cartesian graph products in analogy to allele graphs in the accessi-
bility percolation setting.[36]

Results equivalent to those by Martinsson can be obtained for the multi-allelic
House-of-Cards model accessibility percolation problem as I demonstrate in the
attached preprint[49] attached as chapter 6.

In the following I summarize the result: Assuming A is the adjacency matrix
of the allele graph we can define β∗ as the unique positive solution to

Γ(x) =
∑

i,j∈A
pi,j ln

(
exA

)
i,j

= 0 (4.4)

The term on the left-hand side is the limit of E[Na,b]
L

as L → ∞. In other words
Γ(x) is the exponential growth rate of the expected number of accessible paths. For
small β this term will have a negative exponential rate, implying that the expected
number of accessible paths decreases asymptotically to zero. At β∗ the exponen-
tial rate switches to an increasing exponential rate, implying that the number of
accessible paths above β∗ is exponentially large in L. β∗ is similarly a lower bound
on the percolation time in any of the first-passage percolation problems mentioned
above. As before this behavior of the expectation value gives a lower bound on the
critical point β∗, and the obvious question is whether this expectation also “tells
the truth”.

Martinsson shows[36] that this is the case in the edge-weighted first-passage
percolation problem if and only if a certain function of the adjacency matrix ful-
fills certain properties. As I show in the attached publication, the same function
determines whether or not β∗ is the critical value in the accessibility problem.
Martinsson considers only the case where the pairs (al, bl) are equal on all loci,
but in the following I give the condition in its straight-forward generalization to
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arbitrary a and b with the conditions laid out at the beginning. Specifically, the
condition is that

M(s, t) =
∑

i,j∈A
pi,j

∑
k,l∈A

(
eβ∗(1−s)tA

)
i,k

(
eβ∗sA

)
k,l

ln
(
eβ∗sA

)
k,l

(
eβ∗(1−s)(1−t)A

)
l,j

(exA)i,j

(4.5)
is negative for all 0 ≤ t ≤ 1 and 0 < s < 1 and that it satisfies certain additional
conditions at the boundaries which vary between the results obtain by Martinsson
and those I obtain in chapter 6. If these conditions are not satisfied, then the
critical value is strictly larger than β∗. The expectation value therefore doesn’t
always tell the truth. but while such cases do exist, as shown by Martinsson,[36] I
am not aware that any critical values have been obtained for these unusual cases.

The conditions above seem to only rarely be false, so most examples of allele
graphs can be applied to obtain the critical fitness difference from the expectation
value’s behavior. In particular for the complete graph on multiple alleles, numerical
derivations of the critical values were carried out by Zagorski et al.[68] with results
matching the analytical ones.

In addition to the critical fitness difference I also show in the derivation in the
attached preprint[49] in chapter 6 that at the critical fitness difference the length
of accessible walks can be determined to be up to lower order corrections Γ′(β∗)L.
The equivalent result for the first passage percolation problem with weights on
edges as well as more detailed analysis of path properties in this setting have been
given independently by Kistler et al.[27,28]

4.3 Accessibility in the NK model
In this section I will consider only K2 as allele graph.

While the expected number of accessible paths in the HoC model is always
growing at most exponentially with L and has a critical behavior for the probability
of accessibility of two genotypes in linear distance, the same does not generally
hold for NK model landscapes.

As a simple example, in the non-epistatic model the accessibility of two geno-
types in distance d depends only on their relative position to the global optimum.
If they are accessible, then it is possible to choose any ordering of the d mutations
required to reach the destination genotype in any order, resulting in an expected
number of paths growing factorially in d. On the other hand the probability for
the two genotypes to be ordered such that they are accessible is only 2−d, imply-
ing an unconditional exponential decrease in accessibility at linear distances in L.
However, in particular, choosing either the destination as global maximum or the
source as global minimum of the landscape, results in guaranteed accessibility.
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4.3.1 Accessibility in the SN structure
First I will consider the star neighborhood structure as an example of an NK
landscape which is easy to handle combinatorially, although it is very unusual in
its strong irregularity.

For each choice of alleles for the center loci of the star neighborhood, the sub-
landscape formed by the remaining ray loci is completely non-epistatic. This has
some immediate consequences for the accessibility of genotypes. Two genotypes g
and h may differ in some or all of the k−1 center loci, as well as at least d−(k−1)
of the ray loci. We can first consider only paths which are crossing the distance
on the center loci first. Since the partial landscape formed by the center loci is
a HoC landscape with the state of the remaining loci fixed, there is an expected
number of paths crossing this distance which is non-zero and either increasing or
decreasing exponentially in k. At the same time, once the center loci are crossed,
there is a probability of 1

2 for each of the remaining loci to be individually and
independently accessible. But since each ordering of the remaining loci in a path
implies the same accessibility, it follows that the expected number of accessible
paths is at least of order d! up to exponential factors.

Therefore, as in the non-epistatic model, the SN model always has a signif-
icantly larger expected number of accessible paths between genotypes in linear
distance than the HoC model does.

It is however less clear with what probability the two genotypes are actually
accessible, i.e. whether the large expectation value “tells the truth” about accessi-
bility, as it does for the non-epistatic model only if either the source or destination
genotype’s fitness is conditioned to be small/large.

For each state of the center loci, the ray loci form a non-epistatic sublandscape
and for each ray locus on which g and h differ, there is a probability 1

2 that the
mutation towards h increases fitness. This condition is satisfied independently
for all 2k−1 states of the center loci, since any state change on the center loci
changes the state of all partial landscape. There is then a chance of 2−2k−1 that
a locus is mutable towards h on any of the sub-landscapes. Because there are at
least d − (k − 1) loci which could independently satisfy this condition, there is a
probability of at least Ω

(
exp

(
−(d − (k − 1))2−2k−1

))
that one of the relevant loci

satisfies the condition. But if any locus satisfies this condition, then there is no
way to construct an accessible path from g to h. As a consequence, at fixed k,
the probability that two randomly chosen loci are accessible from one another is
decreasing exponentially to zero in the SN model.

If the source and destination genotypes are constrained to be at least global
minimum and maximum on their respective sub-landscapes formed by the ray
loci, the situation changes. It is then always possible to mutate the loci on which
the two loci differ either at the beginning or the end of the path. At the same
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time, there is a non-zero probability that it is possible to find an accessible path
across the HoC sub-landscape formed by the center loci directly at the beginning
of the path and this probability is also converging to a non-zero value as seen
in the previous section. Consequently under these constraints there is always an
asymptotically non-zero probability that any two genotypes are accessible.

It can therefore be said that the expectation value “tells the truth” in the SN
model only under constraint of the fitness values of the source and destination
genotype.

4.3.2 Accessibility in the BN structure
As example of a combinatorial tractable NK structure with the regularity property,
the block neighborhood may be considered.

It is easy to see that due to the modular structure, a path is accessible if
and only if it is accessible with respect to the sub-landscape formed by the NK
neighborhoods of a given block of the BN model. And since each of these block
sub-landscapes are effectively of HoC type, the overall accessibility can be derived
from the results for the HoC model.

In particular, at constant k, the size of blocks and the accessibility of individual
blocks remains unchanged, while the number of blocks increases linearly with L. As
a consequence the probability that two genotypes in linear distance are accessible
decreases exponentially in L. At the same time, if there is an accessible path, it
doesn’t matter in which order the individual sub-paths on blocks are ordered into
a path on the whole landscape. Therefore the expected number of accessible paths
will actually increase factorially with L, as in the SN model.

For k increasing linearly with L, the individual block sizes also increase linearly,
resulting for the complete graph on two vertices as allele graph in an asymptotically
non-zero probability of accessibility on each block. At the same time, the number
of blocks will be constant, implying that the BN model accessibility in this limit
also has a critical fitness difference threshold as the HoC model does. The expected
number of accessible paths under this limit also follows an exponential behavior
as in the HoC model.

In the BN model it can therefore be said that the expected number of accessible
paths “tells the truth” only if k is growing sufficiently fast with L.

Contrary to the irregular SN model, in the BN structure at constant k even
constraining the source and destination fitness values does not yield asymptotic
accessibility.
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4.3.3 Accessibility in other regular and uniform structures
In other regular- and uniform NK structures, it can be seen that the behavior at
constant k and r always qualitatively follows that of the BN structure.

As seen in the case of the number of local maxima, regularity and uniformity
of the NK structure implies that any given rank ordering of a two-locus landscape
will eventually be generated a linearly growing number of times between pairs of
adjacent loci in the neighborhood structure given that k and r are constant and
that they can also be generated in such a way that all mutations on the pair of
loci do not affect the signs of mutation effects on other loci.

In particular separable global sign epistasis will occur as one special case of
such a rank ordering. It is impossible to find an accessible path crossing both
of the two loci with this property. As a consequence the presence of a single
such pair is sufficient to make it impossible to find accessible paths of between
genotypes in distance L on the landscape at all. Even more so, since the set of
pairs with this property will linearly increase in L, eventually the probability that
one such pair is contained in the set of loci on which the source genotype g and
the destination genotype h differ, will converge to one and accessibility between
any pair of accessible loci in linear distance will decrease to zero.

Instead of separable global sign epistasis, simply all orderings of the two-locus
landscape can be considered, while still keeping the restriction on not influencing
signs on mutations of other loci. Such motifs will also appear in linear growing
number and therefore effectively there will be a sublandscape over a subset of loci
which behaves like a BN landscape with k = 2.

As seen before on the BN landscape accessibility at constant k converges to
zero, while the expected number of accessible paths increases factorially. While
the fraction of the overall landscape contained in this BN-like landscape may be
small, it is still sufficient to determine the qualitative behavior of both the expected
number of accessible paths and accessibility of uniform- and regular NK models.

More details on this approach are provided in the attached[23] in chapter 5 as
well as in my previous work.[48]
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Chapter 5

Publication 1: Universality
classes of interaction structures
for NK landscapes.

This chapter contains the first publication incorporated into this thesis. It provides
a more detailed review and new results for the behavior of local maxima in NK
models, as well as some other properties of NK landscapes, such as the existence
of accessible paths and properties of adaptive walks.

The following is the published online version of

S. Hwang et al., “Universality classes of interaction structures for nk fitness land-
scapes,” Journal of Statistical Physics 172, 226–278 (2018).

The results and wordings of sections “Mathematical Background and Defi-
nitions”, “Accessible Pathways” and appendix C are primarily contributions by
myself with supportive and editorial contributions by the co-authors. My con-
tributions to other sections of the article were to varying degrees editorial and
supportive on obtaining of results.

In accordance with the doctoral regulations, this article, already published in a
peer-reviewed scientific journal, is not attached in the published version of this
thesis.
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Chapter 6

Publication 2: Accessibility
percolation on cartesian power
graphs.

The following is a preprint reproduction of

B. Schmiegelt and J. Krug, “Accessibility percolation on cartesian power graphs,”
2021

Results were obtained primarily by myself under guidance by the co-author. With
the exception of parts of the introductory section and editorial influence, the word-
ing of the article is my own.
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Accessibility Percolation on Cartesian Power Graphs

Benjamin Schmiegelt · Joachim Krug

Abstract A fitness landscape is a mapping from a space of discrete geno-
types to the real numbers. A path in a fitness landscape is a sequence of
genotypes connected by single mutational steps. Such a path is said to be
accessible if the fitness values of the genotypes encountered along the path in-
crease monotonically. We study accessible paths on random fitness landscapes
of the House-of-Cards type, on which fitness values are independent, identi-
cally and continuously distributed random variables. The genotype space is
taken to be a Cartesian power graph AL, where L is the number of genetic
loci and the allele graph A encodes the possible allelic states and mutational
transitions on one locus. The probability of existence of accessible paths be-
tween two genotypes at a distance linear in L displays a transition from 0 to
a positive value at a threshold βc for the fitness difference between the initial
and final genotype. We derive a lower bound on βc for general A and show
that this bound is tight for a large class of allele graphs. Our results generalize
previous results for accessibility percolation on the biallelic hypercube, and
compare favorably to published numerical results for multiallelic Hamming
graphs.

1 Introduction

In the strong-selection weak-mutation (SSWM) regime evolutionary dynam-
ics reduces to an adaptive walk on what is known as a fitness landscape, the
map from genotypes to fitness values [20]. For low mutation rates the nearly
monomorphic population can be represented by a single majority genotype
moving through the space of genotypes by individual mutations that fix with
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Fig. 1 Example of a genotype space as the Cartesian graph product of two allele graphs.
The two allele graphs are shown on top with the genotype space below. While the second
factor graph represents a locus with three possible alleles, all of which may mutate freely
from one to another, the first factor graph represents a locus on which not all mutations
between the alleles are considered possible. Specifically mutations between 0 and 2 must
take an intermediate mutation through 1 and additionally the mutation from 0 to 1 is
considered irreversible and does not allow backstepping to 0. Although in this work we
define the genotype graph as the direct Cartesian power of a single allele graph, different
alelle graphs as shown here can still be modeled without loss of generality by assuming that
A is the distinct sum of the individual graphs. Since the individual constituent graphs are
not connected in this sum, this does not increase the accessibility.

a probability depending on the fitness of the mutant relative to the parental
genotype [8,19]. Under strong selection, the movement of such a walker is ad-
ditionally constrained towards increasing fitness values, making it an adaptive
walk [10]. This limits the number of selectively accessible paths a population
can take through the genotype space [5,7,21].

Here we investigate the impact that the mutational structure of the geno-
type space has on the number of evolutionary paths available to SSWM dy-
namics. We use a simple stochastic model for fitness landscapes known as the
House-of-Cards (HoC) model, in which each genotype g is assigned an i.i.d.
continuous random fitness value Fg [10,11]. As the property of a path to be
accessible only depends on the rank ordering of fitness values the particular
distribution chosen will not be of relevance. For simplicity we will assume the
standard uniform distribution.

A genotype is made up of many individual sites or loci, which can be found
in some given number of states called alleles and can be mutated individu-
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Fig. 2 Example of a fitness graph generated from the genotype space in Figure 1 according
to the HoC model. The opacity of nodes indicates the randomly chosen fitness value. Only
arrows representing mutations that were originally allowed in the genotype graph and also
point towards increasing fitness remain, resulting in an acyclic directed graph on genotypes.
The global minimum and maximum in this realization are (10) and (12) respectively and
the latter is accessible from the former by multiple accessible paths, for example the direct
one (10) → (12), but also (10) → (20) → (22) → (12). As a counter-example to accessibility
consider (01) and (12). Although (12) has higher fitness than (01), it is not accessible from
(01).

ally. For simplicity, but without loss of generality, we will assume that all
loci have the same set of possible states. Therefore genotypes are sequences
g = (g1, . . . , gL), with L determining the number of loci. Individual (point)
mutations, which are the only ones to be considered here, mutate only one
of the loci. The mutational structure of the system determines whether every
state of one locus is able to mutate to any other or whether some restrictions
apply. For example, whereas point mutations in the DNA sequence can mutate
any nucleotide base into any other, the genetic code constrains the possible
one-step transitions between amino acids. To accommodate general mutational
structures we describe the loci by a simple directed allele graph A. The vertex
set A of this graph is the set of all alleles, and its arrows indicate possible
one-step mutations between alleles. Again, for simplicity but without loss of
generality, we assume the allele graph to be the same on all loci and we will
identify the vertices by natural numbers.

The genotype space can then be described as the Cartesian graph product
AL [17], a directed graph whose vertices form the genotypes and with arrows
between genotypes that can be reached via one-step mutations (Figure 1).
The fitness landscape constrains which of these arrows may be taken by an
adaptive walker and we call the directed sub-graph of the genotype graph
obtained by removing arrows which do not point towards increasing fitness
the fitness graph [6] (Figure 2).
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Our goal is to determine, for a given pair of genotypes a and b, how likely it
is possible to reach b from a on the fitness graph when the fitness landscape is
of HoC type. In particular this question is non-trivial if the directed distance
dab from a to b on the genotype space is of linear order in L. Of special
importance for this question is the value β, which we define as the fitness
difference Fb − Fa. Conditioned on this value it is known from previous work
on the case of two alleles, A = {0, 1}, and linear distance dab ∼ δL, that there is
a critical value βc, depending on δ, such that for constant choices of β above or
below βc, asymptotically the probability of b being accessible from a converges
to 1 or 0, respectively, as L → ∞. [4,3,9,14,15]. The transition occurring at
β = βc has been referred to as accessibility percolation [13,18]. Apart from
a computational study [23], so far accessibility percolation has been studied
only for the biallelic case for which AL space is the L-dimensional (binary)
hypercube.

Results related to those presented here have been obtained in the context
of first-passage percolation [12,16,17], which is linked to accessibility perco-
lation through a mapping described in [15]. In [17] Martinsson considers a
first-passage percolation model that would map to the HoC accessibility per-
colation problem if fitness values were assigned to edges rather than vertices.
We will adapt and extend his methods to directly resolve the specific accessi-
bility problem introduced here without requiring the mapping to first-passage
percolation. Instead our results may be mapped to the first-passage percolation
problem with uniform weights on vertices as described in [15].

Another way of looking at the HoC accessibility problem conditioned on
the value β is to consider it as a Bernoulli percolation on a certain ensemble
of orientations of AL. Letting without loss of generality Fa = 0 and Fb =
β, only genotypes with fitness values below β are relevant in determining
whether an accessible path exists. Furthermore, after removal of the ineligible
genotypes, accessibility will depend only on the order of the fitness values on
the remaining vertices. Because the fitness values are chosen i.i.d. this implies
that the problem with some β is equivalent to the same problem with β = 1
after additional removal of each vertex (that is not a or b) with probability
1−β, i.e. a Bernoulli site percolation with rate β. In the base case with β = 1,
the problem reduces to whether or not b is reachable from a in a random
orientation of A obtained by intersection of its edge relation with a uniformly
chosen linear order of vertices. This perspective may be more suitable if one
is to consider the effect of decreasing β.

2 Results

In this section we present our general results for arbitrary allele graphs A
of which specific applications will be demonstrated in the following section.
First we define some attributes of the problem more carefully and state the
limitations imposed by our following proofs.
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2.1 Prerequisites

We assume that the allele graph A has a maximal (out-)degree of at most
∆ < ∞. In particular ∆ can always be chosen as the number of alleles for
finite A. If the degrees are not sufficiently bounded in an infinite allele graph,
then the number of walks from a to b may become so large that the problem
results in trivial accessibility.

In the following we denote the number of accessible paths from a to b

by Zab. The accessibility of b from a is then the probability P [Zab ≥ 1],
usually conditioned on β = Fb − Fa as P [Zab ≥ 1|β]. We study the behavior
of this quantity in the large-L limit under some given sequence of β in L. For
convenience the dependence of β on L is taken to be implicit and usually not
reflected in notation. As L, and with it the graph AL, changes we need to define
a sequence of endpoint pairs (a, b) in L. For general such sequences calculations
may become tediously complex and so we impose a few restrictions described
in the following on the sequences for which our results will apply. Because
the position of a locus in the sequence of the genotypes does not matter, all
relevant properties of the pair (a, b) can be expressed as an integer-valued
matrix:

Mvw = |{al = v ∧ bl = w | l = 1 . . . L}| (1)

where v, w ∈ A are alleles. This matrix counts for each pair of alleles the
number of loci on which the path is required to move from v to w, thereby
dividing out the permutation-symmetry of loci. A sequence of such matrices
M in L is then equivalent to a sequence of pairs (a, b) up to the irrelevant
symmetry of AL. To avoid trivial special cases, we assume that for each locus
l, on the single allele graph, bl is always reachable by at least one walk of
finite non-zero length from al and that a 6= b. The former requirement assures
that there are no loci which effectively cannot mutate and therefore either
inhibit accessibility a priori or could be removed from the problem without
influencing the result. For infinite allele graphs we require that there are only
finitely many pairs (v, w) for which Mvw is ever non-zero for any L. This
assures that distributions of quantities over loci are always well-behaved. We
also require that this sequence of matrices converges element-wise in the sense
that

pvw = lim
L→∞

Mvw

L
(2)

converges for all v, w ∈ A
L. This guarantees that there are no significant oscil-

lations in the sequence, which would be tedious to handle and not informative.
Further, we require that at least one of the off-diagonal terms of pvw is non-
zero. This assures that the directed distance from a to b is increasing linearly
in L. While the sub-linear case can be considered with the same methods,
it requires some special considerations which are out-of-scope here. We then
define

Rvw = Mvw − Lpvw (3)
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as the remaining corrections to the linear order.
In order to succinctly state our results, we introduce the following quantity

for pairs of alleles v, w ∈ A and t > 0:

Γvw(t) = ln
(

(

etA
)

vw

)

. (4)

Here and in the following A stands for the adjacency matrix of the allele graph
and the exponential is a matrix exponential from which the element represent-
ing alleles (v, w) is extracted, rather than the exponential of the element of the
matrix. In addition to the quantity Γvw(t), also its first two derivatives Γ ′

vw(t)
and Γ ′′

vw(t) with respect to t will be important. We indicate the derivative
with respect to the t argument by backticks as shown.

We define then the same quantity for pairs of genotypes v, w ∈ A
L as

averages over the per-locus quantity:

Γvw(t) = 〈Γvlwl
(t)〉l (5)

where

〈Xl〉l =
1

L

L
∑

l=1

Xl. (6)

As we already did for genotypes, quantities acting on AL will be written in
boldface, while equivalent quantities acting on a single A copy will be denoted
in normal font-face. The canonical connection between the former and latter
is averaging over loci.

Γvw(t) is non-decreasing in t and for v = w it is 1 at t = 0. For v 6= w, it
diverges to −∞ as t → 0. If w is reachable from v by at least one non-trivial
walk, i.e. a walk of finite non-zero length, then Γww(t) diverges to infinity as
t → ∞. Special care must be taken if w is not reachable from v, as the matrix
exponential is then 0 for all t. In this case we formally interpret eΓvw (t) as
(

etA
)

vw
, which would be zero.

We also require the following function with domain 0 ≤ r, s ≤ 1, which is
a slight generalization of a function introduced by Martinsson in [17]:

M(s, r, β) =
〈

〈Γxlyl
(βs)〉s,r

xl,yl

〉

l
, (7)

where r̄ = 1 − r and s̄ = 1 − s and 〈·〉s,r
xl,yl

is the mean over xl, yl ∈ A weighted
by

eΓalxl
(βs̄r)+Γxlyl

(βs)+Γylbl
(βs̄r̄), (8)

meaning that

M(s, r, β) =

〈

∑

xl,yl∈A
Γxlyl

(βs)eΓalxl
(βs̄r)+Γxlyl

(βs)+Γylbl
(βs̄r̄)

∑

xl,yl∈A
eΓalxl

(βs̄r)+Γxlyl
(βs)+Γylbl

(βs̄r̄)

〉

l

. (9)
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Accessibility Percolation on Cartesian Power Graphs 7

We refer to this function as Martinsson’s function. For the case that yl is
not reachable from xl or that s = 0, the formula yields negative infinities for
Γxlyl

(βs). We assume that in this case formally the natural choice

Γxlyl
(βs)eΓxlyl

(βs) = 0 (10)

holds.
With our assumptions on a and b, Γab(β) has a single positive root in β,

which we call β̂. This β̂ is our candidate for the critical point.
The objects introduced so far are dependent on L implicitly through the

averaging process over loci. In order to be able to make statements about
the limiting behavior, it is useful to consider the limits of these quantities as
L → ∞. We use the non-L-dependent mean

〈Xvw〉p
al,bl

=
∑

v,w∈A

pvwXvw (11)

as a replacement for 〈Xvw〉l. Assuming that the Xvw converge as L → ∞,
the restrictions we put on M result in convergence of 〈Xvw〉l to 〈Xvw〉p

al,bl
as

L → ∞.
In particular we write β∗ for the limit of β̂ as L → ∞, which is also the

unique positive root of 〈Γalbl
(β)〉p

al,bl
in β. Similarly we write for the limit of

Martinsson’s function

M∗(s, r, β) =
〈

〈Γxlyl
(βs)〉s,r

xl,yl

〉p

al,bl

. (12)

With the necessary quantities defined we can classify the different choices
of allele graphs and sequence pairs (a, b) as follows. M(s, r, β) can be seen to
always be zero at s = 0 and to be equal to Γab(β) at s = 1. Both statements can
be derived immediately by application of matrix multiplication. Specifically
M(s, r, β̂) is 0 at s = 1 by definition of β̂ and equivalently for M∗(s, r, β∗). If
not only at s = 0 and r = 0, but everywhere in its domain M∗(s, r, β∗) ≤ 0,
then we say that the problem is of semi-regular type. Otherwise we say that
it is of irregular type. If M∗(s, r, β∗) < 0 holds strictly everywhere except at
s = 0 and s = 1 and if additionally the derivative ∂sM

∗(s, r, β∗) is not zero at
s = 1, then we say that the problem is of regular type.

For our statements and in the following proofs we make use of Landau
notation with the usual meanings of O(·), o(·), ω(·) and Θ(·). In our notation of
arithmetic terms and equations these symbols are stand-ins for some function
in the respective class. The limit variable to which these symbols apply should
be evident from context, but is usually L → ∞. Functions in these classes are
not required to be non-negative. In particular e.g. |Θ(1)| is used to enforce
positiveness of a term that is of constant (non-zero) asymptotic order in L. If
not stated otherwise, these symbols are assumed to be uniform in the sense
that the functions represented depend only on the limit variable and model
parameters, but not on other local variables.
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8 Benjamin Schmiegelt, Joachim Krug

2.2 Statements

We state our results in terms of (weak) threshold functions defined as follows.
We say that a sequence cL in L is a f(L)-threshold function for some function
f(L) if for all g(L) = ω(f(L)), when the fitness difference between a and b is
conditioned to be βL = cL + |g(L)| it is true that

lim inf
L→∞

P [Zab > 0] > 0, (13)

and when it is conditioned to be βL = cL − |g(L)|

lim sup
L→∞

P [Zab > 0] = 0. (14)

In other words, cL determines the asymptotic transition from zero accessibility
to non-zero accessibility if we condition the fitness difference between initial
and final genotype, with a window of uncertainty of the same order as f(L). In
particular if cL is a f(L)-threshold for some f(L) = o(1), then the limit of cL

is the critical value βc. The notion of threshold chosen here is weak in the sense
that it doesn’t imply a transition from zero to one, but only from zero to some
non-zero probability. We do not think that our results are actually restricted
to this weak bound and we expect that arguments analogous to those made
in [17] may be used to extend our weak threshold result to a strong threshold
with lim inf

L→∞
P [Zab > 0] = 1, but we did not pursue this improvement here.

Our first main statement is that for problems of regular type a
1

L
-threshold

function is given by

cL = β̂ − Γ ′
ab

(

β̂
)−1 ln L

L
, (15)

which in particular implies that βc = β∗ in this case. Additionally the zero-
accessibility side of this threshold statement holds irrespectively of (semi-
)regularity.

Our second main statement is that for problems of irregular type βc, if it
exists, is strictly larger than β∗.

Lastly we show that for problems of regular type at the critical point βc =
β∗, all accessible walks are asymptotically almost surely of length Γ ′

ab(β∗)β∗L±
o(L).

The zero-accessibility side of the threshold functions for (semi-)regular
types can be derived directly from a consideration of the expected number
of (quasi-)accessible walks and an application of Markov’s inequality. This ap-
proach will be explained in Sect. 4, where we also introduce the notion of
quasi-accessibility as a tool to simplify the counting of accessible paths. In ad-
dition, the first-moment approach allows us to prove the last statement about
accessible walk lengths by consideration of the expected values separated by
walk length.

To prove the positive accessibility side of the threshold function, it is nec-
essary to bound a higher moment of the expected number of (quasi-)accessible
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Accessibility Percolation on Cartesian Power Graphs 9

walks in relation to the mean. In particular, using a generalized version of the
second moment method, it is sufficient to bound moments of the form

E

[

Zab

E [Zab]
ln

Zab

E [Zab]

]

to show asymptotic boundedness of the accessibility away from zero. The eval-
uation of this expected value will follow the general ideas used by Martinsson
in [17] to bound for every given (quasi-)accessible focal walk the number of
other (quasi-)accessible walks, through the deviating arcs on the focal walk
that generate all such other walks. In the mean taken over xl and yl in Mar-
tinsson’s function (9), the focal walk is represented by the walk sequence

al → xl → yl → bl (16)

and the corresponding three Γ -terms in the weights, while the deviating arcs
are represented by the additional term corresponding to xl → yl over which the
average is performed. Because Martinsson considers a model that corresponds
to putting weights on edges rather than nodes, our calculations need to be
adjusted accordingly (see Sect. 6).

The lower bound on βc for the irregular case is again obtained following
an approach used by Martinsson, by considering walks through pairs of edges
(x, x′) and (y, y′), applying Markov’s inequality separately, and union bound-
ing the resulting probability to improve on Markov’s inequality from the total
expected number of (quasi-)accessible walks (see Sect. 5).

2.3 Asymptotic form

The theorems as stated in the previous section are dependent on β̂ and 〈·〉l

averages, which are L-dependent quantities. From the assumptions, we do how-
ever know that β̂ converges to β∗ and averages of the form 〈·〉l are asymptoti-
cally of the form 〈·〉p

al,bl
, both of which are L-independent quantities. Depend-

ing on the specific choice of pairs (a, b), the rate of convergence for these quan-
tities may however differ and add additional significant terms in the threshold
function, which we detail in this section.

For finite graphs immediately, and for infinite allele graphs due to the addi-
tionally stated restrictions on Mvw , the linear order of the (directed) distance
from a to b is given by the sum of off-diagonal terms of pvw :

dab = δL + o(L) (17)

where δ =
∑

v 6=w

pvw . Because we have δ > 0, the value of β∗ will be positive,

i.e. not zero, and then we can expand β̂ around β∗ in L:

0 = Γab

(

β̂
)

= 〈Γalbl
(β∗)〉p

al,bl
(18)

+
1

L

∑

v,w∈A

RvwΓvw(β∗) +
〈

Γ ′
albl

(β∗)
〉p

al,bl

(

β̂ − β∗
)

+ . . . (19)
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10 Benjamin Schmiegelt, Joachim Krug

The term 〈Γalbl
(β∗)〉p

al,bl
is zero by definition of β∗ and for

〈

Γ ′
albl

(β∗)
〉p

al,bl
we

introduce the short-hand notation Γ ′∗. So, to highest order

β̂ = β∗ − Γ ′∗−1

L

∑

v,w∈A

RvwΓvw(β∗) + o
(

L−1
)

. (20)

Inserting this into the candidate threshold function (15) we have

cL = β∗ − Γ ′∗−1 ln L +
∑

v,w∈A
RvwΓvw(β∗) + o(1)

L
. (21)

In general, the candidate critical value does not depend on the non-linear
corrections in the behavior of (a, b), but the leading correction to the critical
value is dependent if the non-linear corrections are of order ln L or higher.
In particular, if we are looking in a completely linear direction, such that
∑

v,w∈A

|Rvw | = O(1), then the formula reduces to

cL = β∗ − Γ ′∗−1 ln L + O(1)

L
(22)

where the O(1) contribution is irrelevant since cL represents a
1

L
-threshold

function.

3 Applications

3.1 Complete graph

The simplest application is to the complete graph on A alleles, which leads to
genotype spaces known as Hamming graphs. By symmetry, in this case there
are only two choices for the initial and final allele on a locus, either al = bl or
al 6= bl. Therefore the setup can be fully described by just the relative distance
δ, which is then also the relative Hamming distance. As shown in [17], the
problem is always of regular type for the complete graph. One obtains

Γab(β) = − lnA − β + δ ln
(

−1 + eAβ
)

+ δ̄ ln
(

A − 1 + eAβ
)

, (23)

where δ̄ = 1 − δ. In the biallelic case A = 2 the condition Γab

(

β̂
)

= 0 reduces

to the relation sinh(β̂)δ cosh(β̂)δ̄ = 1 which was first conjectured in [3] and
proved in [15,14]. At full distance δ = 1 without any variation of δ with L,

β̂ = β∗ and

Γab(β) = − lnA − β + ln
(

−1 + eAβ
)

. (24)

The values of β∗ and Γ ′∗ for small A are shown in Table 1.
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0

al

1

3

2

bl

0

al

1

3

2

bl

.

0

al

1 2 3

bl

Fig. 3 Allele graph structures described in this section. Top left: Complete graph on four
alleles with backmutations to the wild-type. Top right: Complete graph on four alleles with
backmutations to the wild-type removed. Bottom: Path graph on four alleles. In each case
possible pairs of initial and final alleles as used in this section are indicated by the labels al

and bl.
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1
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lim
L→∞

dab/L

β
∗

Fig. 4 β∗ as a function of the relative distance δ = lim
L→∞

dab

L
for the complete allele graph

with 2 − 6 alleles. On the complete graph the distance specifies the choice of a and b up to
irrelevant symmetries, so that this figure captures the full behavior.
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A β∗ Γ ′∗ β∗Γ ′∗

2 arcsin(1) ≈ 0.881
√

2 ≈ 1.41 ≈ 1.25

3 ln

(

2 cos
π

9

)

≈ 0.631 1 + 2 cos

(

2π

9

)

≈ 2.53 ≈ 1.82

4 ln

(

1
√

2
+

√

√
2 −

1

2

)

≈ 0.509 ≈ 3.60 ≈ 1.83

Table 1 Results for the complete allele graph with 2-4 loci at full distance δ = 1. The
last column shows the prefactor of the asymptotic walk length at the critical point. In the
biallelic case A = 2 the result for the walk length was also obtained in [12].

In general eβ∗

is the unique positive solution of the polynomial equation

(

eβ∗

)A

− Aeβ∗ − 1 = 0. (25)

For A ≥ 5 the solution of this equation cannot be expressed in closed form,
however it can be expanded around A → ∞ as

β∗ =
lnA

A
+

1 + lnA

A2
+ O

(

lnA

A3

)

, (26)

Γ ′∗ = A + O
(

1

A

)

, (27)

β∗Γ ′∗ = lnA +
1 + lnA

A
+ O

(

lnA

A2

)

. (28)

As the number of alleles increases, accessibility increases and the required fit-
ness difference between the start and end point decreases. In fact this quantity
vanishes to zero for A → ∞. At the same time the length of accessible walks
close to the critical fitness difference increases, but slowly. The minimal length
of a path covering the full distance dab is L, and hence β∗Γ ′∗ −1 is the fraction
of mutational reversions (where a mutated locus reverts to the allele it carried
in the initial genotype al) and sideways steps (where a mutation occurs to an
allele that is part of neither the initial nor the target genotype) [22]. The frac-
tion of all alleles on a given locus that appear along an accessible path close
to the critical point is given by A−1β∗Γ ′∗ which decreases with increasing A.
Zargorski, Burda and Waclaw carried out simulations of this model, giving β∗

with two digit precision for different values of A [23]. Their results match the
values derived here up to ±0.01.

3.2 Complete graph without return to the wild type allele

We can modify the complete graph slightly to disallow mutations back to the
allele that was present in the initial genotype (the wild type allele), while
still allowing mutations between all other alleles. In this case the expressions
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Accessibility Percolation on Cartesian Power Graphs 13

simplify significantly to

Γab(β) = ln
e(A−2)β − 1

A − 2
, (29)

β∗ =
ln (A − 1)

A − 2
, (30)

Γ ′∗ = A − 1. (31)

The asymptotic behavior for large A is the same as for the complete graph.
For A = 2, the expressions are ill-defined, but the correct expressions coincide
with the limits:

Γab(β) = ln β, (32)

β∗ = 1, (33)

Γ ′∗ = 1. (34)

In the biallelic case A = 2 this describes accessibility percolation on the di-
rected hypercube, which was considered by Hegarty and Martinsson in [9].
In this case β∗ = 1, which implies that the directed hypercube is marginally
accessible under the HoC model [7]. For the biallelic case not only the crit-
ical value, but also the leading order corrections in the threshold function

are known [9] and coincide with the order
ln L

L
contribution in our candidate

threshold function and the value of Γ ′∗ given above.

3.3 Path graph

The complete graph is in some sense the best-case scenario for accessibility.
On the opposite side of the spectrum of possible (undirected) allele graphs
one can choose the path graph on A vertices. In this case the distance between
the two end points increases linearly with the number of alleles and there is
a unique order in which mutations on a locus must be applied. This causes
accessibility to become very low. For A = 2 the path graph is identical to the
complete graph. However, already for A = 3 we find

β∗ =
ln
(

3 + 2
√

2
)

√
2

≈ 1.25. (35)

Since β∗ represents a fitness quantile which must lie between 0 and 1, this
value implies that the path graph on three vertices can never be accessible
for any fitness difference if (almost) all loci need to mutate from one end of
the graph to the other. For higher A this effect becomes more pronounced.
As a possible biological application of the path graph the description of copy-
number variants of genes can be mentioned [2].

Since the complete graph on two vertices without reversions has β∗ = 1
as shown before in (30) and adding edges can only decrease β∗, it is actually
required that the distance between al and bl on the allele graph is at least 2
in order for β∗ > 1 to be possible.
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14 Benjamin Schmiegelt, Joachim Krug

al

bl

Fig. 5 Example of an allele graph that leads to a problem setup of irregular type with
β∗ < 1.

3.4 Example of non-trivial irregular type

Many graphs seem to be of completely regular type in the sense that no matter
which sequence of pairs (a, b) are chosen, the problem is always of regular type.
Martinsson [17] considered different sufficient conditions on graphs to have this
property. But he also lists the smallest graph, of order 4, which does not have
it. While this example demonstrates that it is possible to have problems of
irregular type, it can also be used to generate semi-regular, but not regular,
problem types by carefully interpolating the matrix pvw defined in (2) between
a regular and irregular type pair of alleles.

However, the example shown by Martinsson turns out to have β∗ > 1,
which automatically implies asymptotic inaccessibility in the accessibility per-
colation context due to the defined range of β = Fb − Fa as a difference of
uniform random variables. We therefore searched for the smallest graph with-
out the regularity property and β∗ ≤ 1 numerically and found the example in
Fig. 5 which has β∗ ≈ 0.983.

3.5 Genetic code

While the complete graph with A = 4 may serve as a model for the allele graph
of single-nucleotide mutations on DNA or RNA, the expected effect of such a
substitution depends significantly on whether or not it changes the amino acid
that is encoded by the corresponding three-nucleotide codon. Mutations not
affecting the encoded amino acids are known as synonymous. To specifically
model the fitness effects of non-synonymous point mutations we therefore con-
sider the allele graph of all amino acids with edges representing the mutual
reachability by single-nucleotide substitutions (Figure 6).

This graph is considerably less symmetric than the complete graph and in
particular the resulting quantities β∗ and Γ ′∗ will depend on the particular
choices of the path endpoints a and b rather than simply on their distance.
We consider here all pairings of amino acids al and bl, assuming them to be
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equal for all loci. Other cases may be interpolated from these. The results are
shown in Table 2. Whether the given values determine the asymptotic behavior
of accessibility exactly depends on whether the regularity criteria relating to
Martinsson’s function (9) are satisfied. Due to the degree of the graph we
limited ourselves to numerical tests, which did not indicate any violation of
the criteria, although such violations may be more subtle than our tests could
verify.

The critical point β∗ and in particular the expected walk length β∗Γ ′∗L

are, as one would expect, strongly correlated with the distance between alleles.
The only distance-3 pair of amino acids is Tyr/Met which also corresponds to
the largest walk length with a value of β∗Γ ′∗ ≈ 4.7567. All other amino acids
lie at mutual distance 1 or 2. Nonetheless, the critical point β∗ ≈ 0.4527 for
the distance-3 pair lies slightly below that of the distance-2 pair Asp/Met with
β∗ ≈ 0.4570, demonstrating that the overall structure of the allele graph can
have a significant impact on accessibility beyond distance. For comparison,
the accessibility of paths between any pair of codons can be obtained from the
values for the complete graph with 4 alleles (Table 1). This gives β∗ ≈ 0.51,
while accounting for the multiplication of three bases per codon yields the
expected mean critical walk length per codon as β∗Γ ′∗ ≈ 5.5.

4 First moment bound and walk length

We start with an upper bound for accessibility based on the mean number
of accessible paths, or rather the mean number of quasi-accessible walks. We
define the term quasi-accessible as a generalization of the notion of accessibility
used up to now as described in the following.

4.1 Quasi-accessibility

In the original definition of accessibility, a non-self-avoiding walk is never acces-
sible, because it would have to visit the same fitness value twice, which makes
it impossible for the walk to have increasing fitness. Handling self-avoidance
is non-trivial. To remedy this in a simpler manner, instead of considering self-

avoiding paths on AL, we consider an extension of AL to AL′
as follows. The

vertex set of AL′
is the set A

L′
= A

L ×N and there is an arrow from (v, n) to
(w, m) iff there is an arrow from v to w in AL. In other words we duplicate ev-
ery genotype a countable infinite number of times in such a way that traversal
of one of its copies can always be replaced by traversal of another copy. The
1-section containing vertices (v, 1) can be identified with the vertices on AL.

We then assign each of the vertices in AL′
i.i.d. fitness values. The mentioned

1-section then corresponds to the original HoC problem. All other fitness val-
ues do not affect this underlying model. However, it is convenient to introduce
these additional fitness values for the following reasons.
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Ala
Arg

Asn

Asp

Cys

Gau

Gln

Gly

His

Ile

LeuLys

Met

Phe

Pro

Ser

Stop

Thr

Trp

Tyr

Val

Fig. 6 Allele graph constructed from possible point-mutations on codons. Two amino acids
are connected by an arrow iff there is a possible point mutation on a single nucleotide that
changes one into the other.

We define the following map of walks on AL to AL′
. Each self-avoiding

walk is mapped to the corresponding walk on the 1-section of AL′
. But instead

of mapping non-selfavoiding walks from AL to the 1-section of AL′
, we can

make use of the additional vertex copies to replace all vertices that are visited

multiple times in AL with distinct copies in AL′
. To make this unique, we

assume that the n-th visit of vertex v in AL is mapped to the vertex (v, n) in

AL′
, except if v is the final vertex of the walk, in which case we map the n-th

visit in reverse order to (v, n) in AL′
. The resulting walk is always selfavoiding

in AL′
and the special case assures that every walk in AL is mapped to a walk

with endpoints on the 1-section in AL′
. A walk on AL is then said to be quasi-

accessible if its mapped walk on AL′
is accessible. We say that a walk on AL′

is valid if there is a walk in AL mapped to it and define valid-accessibility as
accessibility via valid walks. This guarantees that all walks of equal length in
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Phe Leu Ile Met Val Ser Pro Thr Ala Tyr Stop His Gln Asn Lys Asp Gau Cys Trp Arg Gly
Leu 0.34

Ile 0.35 0.30

Met 0.42 0.33 0.33

Val 0.37 0.33 0.34 0.37

Ser 0.32 0.28 0.30 0.36 0.35

Pro 0.42 0.32 0.37 0.41 0.41 0.31

Thr 0.41 0.35 0.32 0.35 0.40 0.30 0.34

Ala 0.43 0.38 0.39 0.43 0.36 0.33 0.37 0.36

Tyr 0.37 0.37 0.39 0.45 0.42 0.32 0.42 0.41 0.43

Stop 0.38 0.30 0.35 0.39 0.38 0.29 0.37 0.37 0.38 0.34

His 0.43 0.33 0.39 0.43 0.42 0.35 0.35 0.40 0.43 0.37 0.38

Gln 0.44 0.32 0.38 0.41 0.42 0.35 0.35 0.39 0.42 0.42 0.33 0.36

Asn 0.42 0.38 0.34 0.42 0.42 0.32 0.41 0.35 0.42 0.36 0.39 0.37 0.42

Lys 0.43 0.35 0.33 0.35 0.40 0.34 0.39 0.33 0.41 0.42 0.33 0.40 0.35 0.36

Asp 0.44 0.40 0.41 0.46 0.36 0.37 0.43 0.42 0.36 0.38 0.40 0.38 0.43 0.38 0.43

Gau 0.45 0.38 0.41 0.43 0.36 0.37 0.42 0.42 0.36 0.43 0.34 0.43 0.37 0.43 0.37 0.37

Cys 0.36 0.35 0.38 0.43 0.41 0.30 0.41 0.40 0.42 0.35 0.31 0.42 0.41 0.42 0.41 0.43 0.42

Trp 0.41 0.33 0.39 0.42 0.41 0.31 0.40 0.40 0.42 0.41 0.32 0.42 0.40 0.43 0.41 0.44 0.42 0.34

Arg 0.36 0.27 0.29 0.32 0.36 0.27 0.30 0.30 0.36 0.36 0.28 0.32 0.31 0.35 0.30 0.39 0.36 0.31 0.31

Gly 0.40 0.35 0.37 0.41 0.34 0.30 0.39 0.38 0.34 0.39 0.31 0.40 0.39 0.40 0.38 0.35 0.34 0.33 0.33 0.30

Phe Leu Ile Met Val Ser Pro Thr Ala Tyr Stop His Gln Asn Lys Asp Gau Cys Trp Arg Gly
Leu 2.68

Ile 2.65 2.60

Met 3.91 2.68 2.48

Val 2.70 2.71 2.67 2.71

Set 2.62 2.61 2.63 3.66 3.54

Pro 4.13 2.63 3.66 3.85 4.08 2.66

Thr 4.07 3.52 2.53 2.62 3.84 2.61 2.66

Ala 4.14 3.85 3.86 4.13 2.58 2.72 2.74 2.74

Tyr 2.68 3.70 3.87 4.76 4.10 2.62 4.10 4.12 4.10

Stop 3.69 2.68 3.68 3.89 3.84 2.59 3.67 3.84 3.85 2.76

His 4.13 2.69 3.85 4.13 4.13 3.54 2.62 3.85 4.09 2.69 3.68

Gln 4.43 2.62 3.85 3.85 4.11 3.67 2.64 3.84 4.11 4.13 2.61 2.61

Asn 3.89 3.83 2.65 3.86 4.06 2.71 3.85 2.62 3.88 2.58 3.88 2.69 4.09

Lys 4.34 3.52 2.60 2.61 3.86 3.55 3.81 2.58 4.07 4.15 2.71 3.85 2.64 2.72

Asp 4.14 4.08 4.11 4.53 2.56 3.68 4.13 4.13 2.53 2.65 3.86 2.68 4.15 2.66 4.14

Gau 4.47 3.87 4.10 4.15 2.58 3.83 4.11 4.11 2.56 4.14 2.67 4.10 2.71 4.14 2.73 2.52

Cys 2.71 3.53 3.87 4.42 4.10 2.53 4.08 4.11 4.10 2.61 2.54 4.10 4.09 4.11 4.12 4.13 4.11

Trp 3.85 2.71 3.88 4.16 4.11 2.58 3.87 4.09 4.12 3.84 2.54 4.12 3.86 4.41 4.08 4.44 4.10 2.54

Arg 3.67 2.51 2.63 2.64 3.68 2.54 2.59 2.61 3.69 3.68 2.54 2.72 2.58 3.55 2.60 4.05 3.68 2.67 2.59

Gly 3.84 3.55 3.86 4.12 2.65 2.62 3.86 3.88 2.55 3.66 2.58 4.07 3.85 4.08 3.87 2.61 2.54 2.59 2.58 2.70

Table 2 Top: Critical fitness difference β∗ for accessible paths between homopolymer amino
acid sequences consisting of the indicated pairs. Bottom: Value of Γ ′∗β∗ representing the
expected per-locus length of accessible walks at the critical point. All values are obtained
numerically and rounded to two digits. Colors represent the magnitude of the displayed
values from low (yellow) to high (red).

AL are equally likely to be quasi-accessible and that valid-accessibility on AL′

coincides with quasi-accessibility on AL. Additionally, while quasi-accessibility
is different from accessibility for individual walks on AL, accessibility and
quasi-accessibility of one genotype from another on AL coincide, because non-
selfavoiding walks are never accessible, but for each quasi-accessible walk there
is a selfavoiding accessible walk obtainable by removal of all cycles from the

walk or equivalently by restriction of the walk to the 1-section of AL′
. This

implies that we can restrict our investigation to quasi-accessible walks. We

denote the number of valid-accessible walks from (v, 1) ∈ A
L′

to (w, 1) ∈ A
L′

,
or equivalently quasi-accessible walks from v to w with v, w ∈ A

L, by Z̃vw.
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18 Benjamin Schmiegelt, Joachim Krug

4.2 Upper bound

In order to give an upper bound on quasi-accessibility, we will consider the
mean number of quasi-accessible walks from a to b. We condition here on the
difference Fb − Fa being β. Each walk of length N from a to b on AL is then
quasi-accessible with probability

βN−1

(N − 1)!

where the numerator accounts for the probability that all inner vertices of the
walk are found inside the range of fitness values Fa to Fb and the denominator
accounts for the increasing order required on these values. The number of walks
taking n steps from al to bl on one locus l is given by (An)albl

. A walk of length
N could take each step on any of the loci, so that the total number of walks
of length N can be written as

∑

n1+...+nL=N

(

N

n1, . . . , nL

) L
∏

l=1

(Anl)albl
(36)

where

(

N

n1, . . . , nL

)

is the multinomial coefficient accounting for the different

orderings of steps on individual loci. Multiplication of this expression with the
probability of quasi-accessibility of each such walk gives the mean number of
quasi-accessible paths

E
[

Z̃ab

]

=

∞
∑

N=0

∑

n1+...+nL=N

(

N

n1, . . . , nL

)

βN−1

(N − 1)!

L
∏

l=1

(Anl )albl
. (37)

The term (N − 1)! can be reduced to N ! by introduction of a derivative

E
[

Z̃ab

]

= ∂β

∞
∑

N=0

∑

n1+...+nL=N

(

N

n1, . . . , nL

)

βN

N !

L
∏

l=1

(Anl )albl
(38)

and redistributing all the factorials and βN into the product yields

E
[

Z̃ab

]

= ∂β

∞
∑

N=0

∑

n1+...+nL=N

L
∏

l=1

βnl

nl!
(Anl )albl

. (39)

Finally the sums and the product can be interchanged and

E
[

Z̃ab

]

= ∂β

L
∏

l=1

∞
∑

n=0

βn

n!
(An)albl

= ∂β

L
∏

l=1

(

eβA
)

albl
= ∂βeLΓab(β) (40)

= LΓ ′
ab(β)eLΓab(β). (41)
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This function is monotonically increasing in β and by expansion around some
β0 > 0 we find

E
[

Z̃ab

]

= L(Γ ′
ab(β0) + O(β − β0))eL(Γab(β0)+Γ ′

ab(β0)(β−β0)+O((β−β0)2)).

(42)

If (β − β0) = o(1) and Γab(β0) < 0, the mean falls to zero exponentially

quickly. On the other hand for β0 = β̂, by definition Γab(β0) = 0, and the
higher-order behavior of (β − β0) is relevant. In particular the expected num-
ber of quasi-accessible walks converges to any given constant η > 0 for all
sequences

β = β̂ − Γ ′
ab

(

β̂
)−1 ln L

L
+ Γ ′

ab

(

β̂
)−1 ln η − ln Γ ′

ab

(

β̂
)

L
+ o

(

1

L

)

(43)

By subtracting an additional term
|ω(1)|

L
from β it decreases to zero and by

application of Markov’s inequality so does the (quasi-)accessibility of b from
a, proving the upper bound on accessibility in our first main statement.

4.3 Walk length

The upper bound can be strengthened by considering intervals of walk lengths.
Let hN be the expected number of quasi-accessible walks of length N at some
β. This number is an expectation value over realizations of fitness values, but
in the following we will consider it as just a number indexed by some number N

representing the walk length. Summation of all of these numbers then yields the
total expected number of quasi-accessible walks which we calculated already
above:

E
[

Z̃ab

]

= ∂βeLΓab(β) =

∞
∑

N=1

hN (44)

We can interpret this as the value φ(1) of the function

φ(z) = ∂zβeLΓab(zβ) =

∞
∑

N=1

hN zN−1. (45)

This function can be viewed as an (ordinary) generating function for the se-
quence hN shifted by one. The generating function here is not related to the
probability distribution of fitness values, but is rather to be understood as
simply a counting tool that separates the total expectation value into slots for
different walks lengths using the additivity of the expectation value.

The effect of the derivative ∂zβ in the generating function can be reversed
by integration of each of the monomials, so that

φ̃(z) = eLΓab(zβ) =

∞
∑

N=1

β

N
hNzN =

∞
∑

N=1

h̃N zN (46)
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20 Benjamin Schmiegelt, Joachim Krug

is the generating function of the unshifted hN multiplied by
β

N
, which is

another sequence that we define as h̃N . Normalizing φ̃(z) through division by
φ̃(1) = eLΓab(β) turns the generating function into a probability generating
function over the parameter N as random variable and this allows us to apply
theorems from probability theory. Again, this probability is not related to the
distribution of fitness values, but is introduced here artificially as a counting
tool. The integrated (probability) generating function factorizes over loci

φ̃(z)

φ̃(1)
=

L
∏

l=1

eΓalbl
(zβ)

eΓalbl
(β)

(47)

and therefore the random variable N under the generating function’s distribu-

tion can be written as a sum N =

L
∑

l=1

nl, where nl are random variables with

probability generating function

eΓalbl
(zβ)−Γalbl

(β) =

∑∞
nl=0

βnl

nl! (Anl )albl
znl

∑∞
nl=0

βnl

nl! (Anl )albl

(48)

Because the degree of A is bounded by ∆, (Anl)albl
≤ ∆nl and the tail of the

distribution is dominated by an exponential. This bound is also independent
of the chosen loci al and bl and therefore, with β being bounded in L as well,
the central limit theorem applies to the sum N . The mean Lµ and variance
Lσ2 of N under this distribution can be obtained from the first and second
derivatives of the probability generating function as

µ = βΓ ′
ab(β) (49)

σ2 = βΓ ′
ab(β) + β2Γ ′′

ab(β), (50)

and the central limit theorem implies that for constants c > 0:
∑

|N−µL|≥cσ
√

L

h̃N = 2eLΓab(β)Φ(−c)(1 + o(1)) (51)

where Φ is the standard normal CDF. Since the sum’s upper bound is asymp-

totic to µL, for all h̃N terms appearing in the sum h̃N ≥ β

µL
hN , so that

∑

|N−µL|≥cσ
√

L

hN ≤ 2
µL

β
eLΓab(β)Φ(−c)(1 + o(1)). (52)

In particular at the threshold function of the form of eq. (43) the bound
converges:

∑

|N−µL|≥cσ
√

L

hN ≤ 2ηΦ(−c)(1 + o(1)). (53)
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This allows one to reduce the mean number of quasi-accessible walks of length
outside the interval µL ± cσ

√
L to any arbitrarily small value by choosing c

large enough. In other words, if there are quasi-accessible walks at the sug-
gested threshold function, then they are of length µL with fluctuations of at
most order of

√
L. Since the total mean number of quasi-accessible walks at

this threshold function is η, this then implies that the mean number of quasi-
accessible walks inside the stated interval is converging to η(1 − 2Φ(−c)) and
for any c > 0 and η > 0 this mean still converges to a non-zero value.

5 Improved upper bound on accessibility

The upper bound on accessibility obtained from the expected value does not
take into account any dependence between walks. We can improve the bound
by including some of the dependencies. This will make it possible to show our
second main statement that βc > β∗ for irregular types.

Let in this section 0 < r < 1 and 0 < s < 1 be constant. The intention is
to choose them later such that M∗(s, r, β∗) > 0 as application to the irregular
type. This choice is always possible in the irregular case since by continuity
M∗(s, r, β∗) cannot be strictly positive only on the boundaries.

The interpretation of r and s is as determining the fitness spanned by three
segments of each walk with s determining the fitness fraction spanned by the
middle segment, and r determining the distribution of the remaining fitness
span onto the first and last segment. More concretely the intended fitness span
of the first segment is βs̄r, of the second βs and the third βs̄r̄, adding up to
the full fitness span β that needs to be crossed (see Sect. 2.2, eq. (16) ).

For each edge on the genotype space we can consider the interval formed by
the fitness values of the two nodes incident to it. If a walk from a to b is quasi-
accessible, then it contains exactly one edge with a fitness interval containing
the fitness value βs̄r. Let this edge be (x, x′). Similarly there is exactly one
edge containing the fitness value β(1 − s̄r̄). Let this edge be (y, y′). These two
edges segment the walk in the closest possible way according to the intended
fitness spans mentioned above. A walk is quasi-accessible only if each of the
three segments a → x, x′ → y and y′ → b are quasi-accessible. In the
following we refer to these segments as segment 1, 2 and 3 respectively. To
obtain an upper bound on the (quasi-)accessibility of b from a it is therefore
sufficient to form a union bound over these edges:

P
[

Z̃ab ≥ 1
]

≤
∑

(x,x′),(y,y′)

P
[

Z̃ax ≥ 1 ∧ Z̃x′y ≥ 1 ∧ Z̃y′b ≥ 1
]

. (54)

Here the sum is over pairs of edges of AL and the probability is assumed to be
implicitly conditioned on the edges containing the fitness values as mentioned

above. It is not necessary to sum over all allowed edges in AL′
, since quasi-

accessibility and accessibility coincide. Effectively we ignore edges in AL′
only

belonging to non-selfavoiding walks in AL when forming the sum.
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22 Benjamin Schmiegelt, Joachim Krug

In the following we condition the probability on the fitness values Fx, Fx′ ,
Fy and Fy′ to be fixed. The total probability is then the expectation over
these conditioned probabilities. As a result of this conditioning, the quasi-
accessibilities of the three segments mentioned in the equation are negatively
dependent. For example if Z̃ax is at least 1, then Z̃x′y ≥ 1 becomes less
likely since the existence of a quasi-accessible walk from a to x implies that
some fitness values of other genotypes fall in the range [Fa, Fx], excluding
them for consideration in the range [Fx′ , Fy] required for them to be part of
a quasi-accessible walk from x′ to y. Consequently:

P
[

Z̃ab ≥ 1
]

≤
∑

(x,x′),(y,y′)

E
[

P
[

Z̃ax ≥ 1|·
]

P
[

Z̃x′y ≥ 1|·
]

P
[

Z̃y′b ≥ 1|·
]]

(55)

Here the conditioning on the fitness values incident to the chosen edges is
implied by · and the outer expectation value is over these values. Since prob-
abilities lie in [0, 1], we can use the upper bound x ≤ x1−α for 0 < α < 1
on the middle factor and afterwards we can apply Markov’s inequality to all
three terms to obtain

P
[

Z̃ab ≥ 1
]

≤
∑

(x,x′),(y,y′)

E

[

E
[

Z̃ax ≥ 1|·
]

E
[

Z̃x′y ≥ 1|·
]1−α

E
[

Z̃y′b ≥ 1|·
]

]

(56)

The remaining inner expectation values depend only on the differences of the
fitness values that they are conditioned on, not the actual placement of that
difference. We introduce the following quantities:

ǫ1 = βs̄r − (Fx − Fa) (57)

ǫ2 = βs − (Fy − Fx′) (58)

ǫ3 = βs̄r̄ − (Fb − Fy′ ) (59)

(60)

These quantities measure how much the fitness difference allocated to one of
the three walk segments differs from what it would be assigned if r and s

determined it exactly. For example the (x, x′) edge is required to contain the
fitness value βs̄r. Therefore the first walk segment can span a fitness distance
of at most βs̄r, but this happens exactly only if Fx − Fa = βs̄r is chosen. All
other valid choices set the fitness value lower than this and ǫ1 measures the
reduction of the segment’s length. As it will turn out only the point with all
epsilons equal to zero contributes to the expectation value in leading order.
Intuitively any constant offset from the intended segment length corresponds
to an effective reduction of β by a constant, resulting in an exponentially
lower likelihood of walks being quasi-accessible. Nonetheless we will carry the
epsilons through the calculation.

The remaining inner expectation values are of the same form as the simple
expectation of walks from a to b calculated in the previous section:

E
[

Z̃vw|t
]

= ∂te
LΓvw(t) = Γ ′

vw(t)LeLΓvw(t). (61)
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The expectation values are dominated by the exponential terms eLΓvw(t) with
an additional linear factor L resulting from the derivative. However, the deriva-
tive also adds the term Γ ′

vw(t). As an average over loci it can be seen that
pointwise in t and uniformly over v and w, this quantity is bounded by a con-
stant from above. However the bound is not uniform in t. At t = 0 it diverges,
as can be seen from the expansion

LΓ ′
vw(t) ∼ dvw

t
. (62)

To avoid this issue we rewrite the expectation value including the sum resulting
from application of the product rule of differentiation

E
[

Z̃vw|t
]

=

L
∑

l′=1

(

AetA
)

vl′ wl′

∏

l 6=l′

eΓvlwl
(t) (63)

In each summand the value is a product over terms, each of which depends
only on quantities on a single locus and the bulk of the contributions of
loci contribute simply the exponential eΓvlwl

(t) =
(

etA
)

vlwl
. Only the locus l′

gives a different contribution, namely the derivative of the exponential term,
(

AetA
)

vl′ wl′

.

Our goal is to bring eq. (56) into the form of a sum over products, such
that the product factorizes in the same sense as it does for a single expectation
value. In particular the current form is a sum of a product of three expecta-
tion values. If we expand each expectation as shown in eq. (63), we obtain
three sums, each accounting for one special locus on which the corresponding
derivative is taken. We name these special loci l1, l2 and l3, corresponding to
the means in eq. (56) in the order they appear there. The sum in the middle

term can be taken out of the (·)1−α
form to give an upper bound, because

1 − α ∈ [0, 1] and therefore the form is subadditive. Having done so, the sum
over the pair of edges on the genotype space may similarly be factorized over
loci. Each edge on the genotype graph corresponds to a step on one locus.
Therefore it is sufficient to sum over individual genotypes together with an-
other special locus, and one edge on the allele graph corresponding to that
locus. We denote the sum over loci for these two edges l12 and l23 respectively.
The initial sum then factorizes over loci:

P
[

Z̃ab ≥ 1
]

≤
L
∑

l1,l2,l3,l12,l23=1

E

[

L
∏

l=1

Fl

]

(64)

Here Fl is the resulting factor collecting all sums over quantities on locus l

and all factors of the product of the three expectations that are functions of

quantities on locus l, as well as potentially e.g. a form
∑

xl
′

(A)xlxl
′ if l = l12. Fl

is implicitly dependent on l1, l2, l3, since these three variables decide whether
the contribution resulting from any of the three expectation values has the
usual exponential form or that of its derivative. If l 6∈ {l1, l2, l3, l12, l23}, then
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the contribution of all three expectation values and the edge sum is of the
usual form, i.e. the exponential term of the expectation value and no sum over
edges and we give it the name Gl:

Gl =
∑

xl,yl

eΓalxl
(βs̄r−ǫ1)+(1−α)Γxlyl

(βs−ǫ2)+Γylbl
(βs̄r̄−ǫ3) (65)

=
∑

xl,yl

(

e(βs̄r−ǫ1)A
)

alxl

(

(

e(βs−ǫ2)A
)

xlyl

)1−α
(

e(βs̄r̄−ǫ3)A
)

ylbl

. (66)

If l is equal to any of the set of special loci, then some of these exponential
terms will be modified and there might be additional sums. For example if l

is equal to l3 and l12, but not equal to any of the other special loci, then

Fl =
∑

xl,yl,xl
′

(

e(βs̄r−ǫ1)A
)

alxl

(A)xlxl
′

(

(

e(βs−ǫ2)A
)

xl
′yl

)1−α
(

Ae(βs̄r̄−ǫ3)A
)

ylbl

.

(67)

By assumption s 6= 0 and also 0 6= r 6= 1. Then, with the fixed s and r, Gl

is bounded away from zero everywhere except at the boundary, because as
long as one of the matrix exponentials has non-zero argument, it contributes
a finite term to the sum by adequate choice of xl and yl so that the indices
of the matrix exponential become (al, bl). More generally Gl is also uniformly
bounded over s and r, since by definition of s and r at least one of the matrix

exponential arguments must be at least
β

3
, epsilon shifts notwithstanding. This

then allows us to write each Fl as a product GlHl, with Hl bounded away from
infinity except at the mentioned boundary. In the next section we will use the
same approach with a more detailed handling of Hl, but here it is sufficient to
apply such a simple uniform bound with a constant.

However first we consider the behavior at the boundary where all epsilon
shifts force the matrix exponential arguments to become zero. Due to the
bounded degree of the graph, as t → 0, the diagonal terms of the matrix
exponential with argument t drop to 1 and the off-diagonal ones to 0 uniformly.
If al 6= bl, Fl therefore falls to zero as all the epsilons reach their maximum
boundary and similarly it falls to 1 for al = bl. Since there is by assumption
at least a finite fraction of loci with al 6= bl, this then implies that eventually,
at a finite distance to the boundary

L
∏

l=1

Fl ≤ O
(

CL
)

(68)

for some C < 1. The special loci on which Fl 6= Gl are not relevant to this,
since there are only finitely many of them and each one is bounded. The
contribution to the probability from the boundary is therefore asymptotically
zero, since the exponential decay in the integrand cannot be compensated by
the additional L5 factor from the special loci sum.

63



Accessibility Percolation on Cartesian Power Graphs 25

Returning to the general case away from the boundary, we can bound all
Hl with l ∈ {l1, l2, l3, l12, l13} by some constant C uniformly, yielding a factor
of at most C5, while all other Hl are 1. This removes the dependence of the
product on the particular choice of the special loci:

P
[

Z̃ab ≥ 1
]

≤ L5C5
E

[

L
∏

l=1

Gl

]

+ o(1) = L5C5
E
[

eLT
]

(69)

with

T =

〈

ln
∑

xl,yl

eΓalxl
(βs̄r−ǫ1)+(1−α)Γxlyl

(βs−ǫ2)+Γylbl
(βs̄r̄−ǫ3)

〉

l

(70)

The epsilons are always non-negative in the valid domain and T is decreasing
in all of them. Therefore we can give an upper bound by setting all of them
to 0 and obtain the upper bound on accessibility:

P
[

Z̃ab ≥ 1
]

≤ eL(T0+o(1)) (71)

with

T0 =

〈

ln
∑

xl,yl

eΓalxl
(βs̄r)+(1−α)Γxlyl

(βs)+Γylbl
(βs̄r̄)

〉p

al,bl

(72)

where it is assumed that β is constant in L. This value is then independent of L

and if it is negative, the probability that b is accessible from a is asymptotically
exponentially falling to zero. We may choose α ∈ (0, 1) as well as s and r freely
except for their boundary values. But specifically for α close to zero, we obtain
the following expansion by matrix multiplication:

T0 = 〈Γalbl
(β)〉p

al,bl
− α

〈

〈Γxlyl
(βs)〉s,r

xl,yl

〉p

al,bl

+ O
(

α2
)

(73)

At β∗ the zeroth order term is simply zero. The coefficient of the linear order
term is exactly M∗(s, r, β) and in the irregular type problem r and s can be
chosen such that it is negative at β∗. With this choice there is then some
suitable small α > 0, so that T0 is negative at β∗. T0 is continuous as a
function of β and therefore we can then also find some β > β∗ such that T0

is still negative at the same choice of α, r and s. This shows that the critical
point βc is strictly larger than β∗ in the irregular case, if it exists at all.

6 Lower bound on accessibility

In this section we derive a lower bound on accessibility, allowing us to show
that the candidate threshold function found for the regular type from the first

moment method is indeed a
1

L
-threshold function.
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6.1 Moment bounds

To prove the lower bound on (quasi-)accessibility, we use a generalization of
the second moment method. The idea of the second moment method is to
bound the second moment of Z̃ab from above in order to apply the inequality
[1,9]

P
[

Z̃ab > 0
]

≥ E
[

Z̃ab

]2

E
[

Z̃2
ab

] . (74)

Z̃ab is bounded from above through the maximum length of walks and the
bounded degree limiting the possible choices in each step and therefore the
second moment always exists. In our proof method we do however find that,
at least with our non-tight bounds on it, the second moment grows too quickly
for some allele graphs to give a non-trivial bound. On the other hand, for some
class of allele graphs this bound may be used to obtain a sufficient bound.

To generalize the applicability of the result, we will use a modification of
the second moment method which relies on a lower order moment. In particular
we know from Hölder’s inequality that for all ξ > 0:

E
[

Z̃ab

]

= E
[

Z̃abIZ̃ab≥1

]

(75)

≤ E

[

Z̃
1+ξ
ab

]
1

1+ξ

E

[

I

1

1−
1

1+ξ

Z̃ab≥1

]1− 1
1+ξ

(76)

= E

[

Z̃
1+ξ
ab

]
1

1+ξ

P
[

Z̃ab ≥ 1
]

ξ
1+ξ (77)

and therefore

P
[

Z̃ab ≥ 1
]

≥





E
[

Z̃ab

]1+ξ

E

[

Z̃
1+ξ
ab

]





1
ξ

. (78)

Because the number of walks of length N is at most exponential due to the
bounded degree of A, while the probability of a walk to be quasi-accessible

falls as fast as
1

N !
, the tail of Z̃ab is dominated by an exponential decay. In

particular all moments of Z̃ab exist. This allows us to take the limit ξ → 0,
dropping all higher order terms:

P
[

Z̃ab ≥ 1
]

≥ E
[

Z̃ab

]

e−K (79)

where

K = E

[

Z̃ab

E
[

Z̃ab

] ln Z̃ab

]

. (80)

Our goal here is to show that lim inf P
[

Z̃ab ≥ 1
]

> 0, i.e. that there is at
least a non-vanishing probability of b being accessible from a asymptotically.
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a/x1
y1 x2 y2 y3 b

Fig. 7 Illustration of the estimation of Z̃ab. The focal walk π from a to b is marked in
red. Relative to π there is one non-trivial arc from x1 to y1, one non-trivial arc from x2 to
y2 and two non-trivial arcs from x2 to y3. Between any two adjacent vertices on π there
is furthermore one trivial arc. All other non-empty path subgraphs are not arcs, since they
intersect π more than twice. Each walk is fully specified by choice of one of the arcs for each
pair of loci. In fact it would be sufficient to choose one out-going arc per site to account for
all walks. By the construction of quasi-accessibility the graph is guaranteed to be free cycles
as in the example.

This is enough to show that the candidate threshold function is indeed a
threshold function at which there is a transition from zero accessibility to
non-zero accessibility, but it remains to be shown that the accessibility above
the threshold is one. In any case we assume for this section that β is chosen
as the threshold function cL from our main statement, so that in particular
E
[

Z̃ab

]

converges to a non-zero value. This assures that it is sufficient to show
that K does not diverge. The following method of bounding K adapts the idea
used in [17] to account for the correlations of accessible walks using the notion
of shortcuts or arcs to obtain alternative walks from a focal one.

Let Xπ be the indicator variable that the walk π is quasi-accessible, then

K =
∑

π

E

[

Xπ

E
[

Z̃ab

] ln Z̃ab

]

(81)

where the sum is over all walks from a to b on AL or equivalently all valid

walks on AL′
.

Similarly we can expand the right-hand Z̃ab over individual walks. We will
however intentionally over-count these in the following way: Each valid walk

π′ from (a, 1) to (b, 1) in AL′
trivially crosses π in at least two vertices, namely

(a, 1) and (b, 1). Furthermore if we list out for each valid walk π′ the vertices

it shares with π in AL′
, then the segment of π′ between two adjacent vertices

x ∈ A
L′

and y ∈ A
L′

in that list does not intersect π a third time in AL′
.

We call such a segment on AL′
an arc through x and y on π. An arc is said

to be trivial if it is a segment of π itself. Immediately from the definition a
trivial arc can only contain a single edge. We denote the number of non-trivial
arcs which are accessible by Z̃ ′

xyπ . Each walk π′ generates at most one arc
through x and y on π. Also each walk π′ is uniquely identified by the set of

arcs it generates on π and π′ is accessible on AL′
if and only if all of the arcs
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it generates on π are accessible. Therefore we can bound for any valid walk π:

Z̃ab ≤
∏

x,y∈AL′

(

1 + Z̃ ′
xyπ

)

. (82)

With this we have

K ≤
∑

x,y∈AL′

∑

π

IxyπE

[

Xπ

E
[

Z̃ab

] ln
(

1 + Z̃ ′
xyπ

)

]

(83)

where Ixyπ is an indicator variable which is 1 iff π contains x and y in AL′

and 0 otherwise.
Conditioned on the two fitness values Fx and Fy, Z̃ ′

xyπ becomes indepen-
dent of Xπ since x and y are the only vertices whose fitness values influence
both the quasi-accessibility of candidate arcs and π:

K ≤
∑

x,y∈AL′

∑

π

IxyπE

[

E

[

Xπ

E
[

Z̃ab

] |Fx, Fy

]

E
[

ln
(

1 + Z̃ ′
xyπ|Fx, Fy

)]

]

(84)

For convenience we also assume that the conditioning of the fitness values
F(a,1) and F(b,1) to a difference of β is contained in the outer expectation.

Currently Z̃ ′
xyπ is stochastically independent of Xπ, but still explicitly

dependent on π in the choice of candidate arcs that need to be counted. We
can remove this dependence by loosening the restriction that included arcs
must not be trivial and must not intersect π except at x and y. Doing so
Z̃ ′

xyπ is upper bounded by Z̃ ′
xy, where the lack of third index indicates the

loosened restriction. The resulting bound is not in general good enough for
all choices of x and y in the sum. We will later revisit and adjust it for these
special cases.

Because the logarithm is concave, the mean over it can be bounded by

exchange of the two. Let ↓ x be the projection of x ∈ AL′
on the first com-

ponent or equivalently the 1-section of AL′
. Compared to all walks on AL′

generated from walks on AL from ↓ x to ↓ y, arcs from x to y in AL′
are

more restricted in the number of times vertices with projection ↓ x or ↓ y may
or must be visited. Therefore the expectation over Z̃ ′

xy may be bounded by

the expectation over Z̃↓x↓y.

K ≤ E





∑

x,y∈AL′

E

[

∑

π IxyπXπ

E
[

Z̃ab

] |Fx, Fy

]

lnE
[

1 + Z̃↓x↓y|F(↓x,1), F(↓y,1)

]





(85)

Similarly all walks π through x and y can be separated into three segments
from (a, 1) to x, from x to y and from y to (b, 1). Each walk is uniquely deter-
mined by these three segments and for any choice of these segments forming a
valid walk, their accessibility is independent under the conditioning since valid
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β2

2

1
∫

0

1
∫

0

drds s̄
∑

x,y∈AL

a x

E

[

Z̃ax

]

y

E

[

Z̃xy

]

b

E

[

Z̃yb

]

E

[

Z̃xy

]α

βrs̄ βs βr̄s̄

Fig. 8 Graphical representation of K’s bound given in eq. (87). The fitness range β is
split into three segments corresponding to paths a → x, x → y and y → b, indicated by
black arrows. Each segments contributes the given expectation value conditioned on the
specified fitness difference between its endpoints into a product. The blue line represents the
contribution of all arcs from x to y, which contribute the given α-dependent factor.

walks are selfavoiding in AL′
. Taking all triples of walk segments from a to

↓ x, from ↓ x to ↓ y and from ↓ y to b, all valid walks from a to b through any

copy of the genotypes ↓ x and ↓ y in AL′
are generated. This allows together

with the previous arguments for the bound

K ≤ E





∑

x,y∈AL

E
[

Z̃ax|Fx, Fy

]

E
[

Z̃xy|Fx, Fy

]

E
[

Z̃yb|Fx, Fy

]

E
[

Z̃ab

] ln
(

1 + E
[

Z̃xy|Fx, Fy

])



.

(86)

Further we use that the logarithm can be bounded from above by any power
law ln(x) ≤ ᾱ(x − 1)α for x ≥ 1, 0 < α < 1 and a constant ᾱ depending
on α. In particular ᾱ as a function of α can be chosen so that it is bounded
except around α = 0, where it must diverge. Therefore, as long as we choose
later any non-zero but constant α, the additional factor ᾱ will not change the
asymptotic order of K. All in all:

K ≤ E



ᾱ
∑

x,y∈AL

E
[

Z̃ax|Fx, Fy

]

E
[

Z̃xy|Fx, Fy

]1+α
E
[

Z̃yb|Fx, Fy

]

E
[

Z̃ab

]



 (87)

The remaining expectation values depend only on the differences of the
fitness values that they are conditioned on, not the actual placement of that
difference. It is therefore convenient to use the variables s and r with s̄ = 1−s

and r̄ = 1 − r introduced previously, such that

Fx − Fa = s̄rβ (88)

Fy − Fx = sβ (89)

Fb − Fy = s̄r̄β (90)
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with which the outer expectation value of K can be expressed as an integral

over the unit square (s, r) ∈ [0, 1]2 with a surface element
β2s̄

2
drds, which

through the factor
1

2
already conditions on Fx and Fy being correctly ordered.

We need to show that this integral is asymptotically bounded by a constant
in order to show that K is asymptotically bounded by a constant from above
as we intend.

The expectation value E
[

Z̃ab

]

may be bounded using eq. (61):

E
[

Z̃ab

]

= Θ(1)LeLΓab(β) (91)

The same bound does not in general apply to the other expectation values
uniformly over the integration domain due to the divergence of the constant
term with vanishing fitness difference. For this reason, we split the integration
region. For some sufficiently small constant ǫ > 0 we will consider integration in
the regions with s ∈ [0, ǫ] and s ∈ [ǫ, 1] separately and name the corresponding
contributions to K accordingly with an index.

6.2 Case s ∈ [ǫ, 1]

In the interval [ǫ, 1], s is bounded away from zero and therefore using eq. (61),
the expectation values E

[

Z̃xy|βs
]

can be bounded uniformly by

E
[

Z̃xy|βs
]

≤ O(1)LeLΓxy(βs) (92)

For the remaining expectation values we follow the procedure used in the
previous section and expand with eq. (63) to obtain a sum of locus-factorized
terms. We name the special loci according to the walk segment’s index. As we
have already expanded the contributions for the second segment, only the first
and third remain.

K[ǫ,1] = O(1)ᾱLα

L
∑

l1,l3=1

E

[

L
∏

l=1

Fl

]

= O(1)ᾱLα

L
∑

l1,l3=1

E

[

L
∏

l=1

GlHl

]

(93)

Again, the usual form for loci l 6∈ {l1, l3} can be given through the exponential
terms in the expectation values

Gl =
∑

xl,yl∈A

eΓalxl
(βs̄r)+(1+α)Γxlyl

(βs)+Γylbl
(βs̄r̄)−Γalbl

(β) (94)

and again for loci l ∈ {l1, l3} one or more of the exponential factors will be
replaced by their derivatives. For the same reasons as used previously, in these
cases Hl is uniformly bounded by a constant and therefore

K[ǫ,1] = O(1)ᾱL2+αeLT (95)
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where

T =

〈

ln
∑

xl,yl∈A

eΓalxl
(βs̄r)+(1+α)Γxlyl

(βs)+Γylbl
(βs̄r̄)−Γalbl

(β)

〉

l

(96)

T can be considered a function of β, s, r and α. At α = 0, it is always 0 as can
be verified by matrix multiplication. The first derivative towards α at α = 0
is found to be exactly M(s, r, β). It is therefore possible to bound

T = αM(s, r, β) + O
(

α2
)

. (97)

In the regular case, as β converges to β̂, M(s, r, β) is eventually bounded from
above by a negative constant in the region s ∈ [ǫ, 1 − ǫ], so that in this region
the integrand falls exponentially quickly to zero for suitable choice of α > 0,
resulting in no asymptotic contribution to K. In the interval s ∈ [1 − ǫ, 1] we
need to account for the boundary term at s = 1. At s = 1, T is exactly αΓab(β).

At the candidate threshold function Γab(β) simply evaluates to − ln L

L
up to

irrelevant higher orders in L. By assumptions for the regular case we also have
that the derivative ∂α∂sT is positive at (s, α, β) = (1, 0, β̂), so that

T ≤ −α
ln L

L
+ O

(

(

ln L

L

)2
)

− cs̄α (98)

for some c > 0. The term −α
ln L

L
exactly compensates a factor Lα to the

integrand of K and with a factor s̄ in the surface element of the integration,
the contribution to K from s ∈ [1 − ǫ, 1] is then for suitably small constant
α > 0:

K[1−ǫ,1] = O(1)L2

1
∫

1−ǫ

ds s̄e−cLs̄α = O(1). (99)

6.3 Case s ∈ [0, ǫ]

For the integration interval [0, ǫ] we will fix α = 1 and since we cannot apply

the simple bound to the expectation E
[

Z̃xy|βs
]1+α

used before uniformly in
this region, we will expand it using the sum form of the expectation value.
Since 1 + α = 2 now, there will effectively be two additional sums resulting
from this, for which we label the corresponding locus variables l21 and l22.
Again, we bring the contribution into the form

K[0,ǫ] = O(1)L−1
∑

l1,l21,l22,l3

E [Fl] = O(1)L−1
∑

l1,l21,l22,l3

E [GlHl] (100)
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Here, since all expectation values in the numerator of K were expanded into
sums, only a single factor L−1 remains from the expectation value in its de-
nominator. The usual form Gl is unchanged from the region [ǫ, 1] except for
the choice α = 1. As before Hl can be bounded by a constant for all special l,
but this will turn out not to be sufficient here. Suppose we used such a bound,
then we would obtain

K[0,ǫ] ≤ O(1)L3
E
[

eLT
]

(101)

where T is unchanged from the previous integration region except for the
choice α = 1. At s = 0 only terms with xl = yl can contribute to T and so
it becomes 0 by matrix multiplication. The first derivative towards s can be
formed directly, using that derivatives of matrix exponentials correspond to
multiplication with the matrix exponent. Using that (A)xlyl

Ixlyl
= 0 since the

allele graph is simple, the derivative evaluates exactly to −βΓ ′
ab(β), so that:

T = −βΓ ′
ab(β)s + O

(

s2
)

(102)

As βΓ ′
ab(β) is strictly positive and bounded away from zero asymptotically,

this shows that ǫ can always be chosen such that T is negative for s ∈ (0, ǫ]
with negative first derivative at s = 0. Consequently the integration at the
boundary is of the form

K[0,ǫ] ≤ O(1)L3

ǫ
∫

0

ds e−cLs = O
(

L2
)

(103)

for some constant c > 0. In contrast to the boundary at s = 1 the surface
element does not contribute here and does not yield an additional factor L−1.
The naive bound shown above is not sufficient and two powers of L remain
that we have to suppress.

To cancel these factors, we need to bound the terms Hl more carefully
around small s instead of applying uniform constant bounds. In particular it
would be sufficient to show that these terms introduce at least two factors s

into the integrand, since the integration over sne−cLs would result in a value
of order L−1−n instead of just L−1. Depending on the choices of distances
between x and y and the choices of the special loci it is possible to provide
these two factors. However not all combinations of these choices yield such
a factor. The problematic cases will however turn out to be marginal in the

sense that they only apply to a fraction
1

L
or

1

L2
of the summands in the

sums over special loci. Each such factor L−1 offsets the need for one s factor
in the integrand, allowing the total contribution to K to still be constant. In
the following we need to list all of the relevant combinations and show their
contributions of s orders.

The method of bounding Hl is to consider the small-s behavior of the
factors

(

esβA
)

xlyl
and

(

AesβA
)

xlyl
which appear in it. In particular, depending
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on the distance we have

(

esβA
)

xlyl
=

{

1 + O
(

s2
)

xl = yl

O
(

sdxlyl

)

xl 6= yl

(104)

(

AesβA
)

xlyl
=

{

O(s) xl = yl

O
(

sdxlyl
−1
)

xl 6= yl

(105)

and due to the bounded degree of the graph, all of these bounds are uniform.
Using the bounds above, we can obtain the necessary factors of s. First

consider the case of all four special loci distinct. We then have for the two loci
l21 and l22:

Hl2i
=

∑

xl2i
,yl2i

∈A

(

eβs̄rA
)

al2i
xl2i

(

eβsA
)

xl2i
yl2i

(

AeβsA
)

xl2i
yl2i

(

eβs̄r̄A
)

yl2i
bl2i

∑

xl2i
,yl2i

∈A
(eβs̄rA)al2i

xl2i
[(eβsA)xl2i

yl2i
]2(eβs̄r̄A)yl2i

bl2i

(106)

From eq. (104) we can see that for all distances
(

eβsA
)

xlyl

(

AeβsA
)

xlyl
= O(s) (107)

and therefore each of Hl21
and Hl22

constribute at least one factor s, resulting in
a sufficient contribution of s2 as explained above. If not all of the four loci are
distinct the form of H2i will be different. However, the only modifications are in
the placement of derivatives of matrix exponentials. As long as still l21 6= l22,
the relevant terms which are small around s = 0, namely the exponentials for
the second walk segment, remain unchanged.

Therefore the remaining cases are for l21 = l22, for which we will write
l2. This equality reduces the number of summands to consider by a factor
L−1 as discussed before and consequently we need to find only one factor s. In
particular if either l1 or l3 are equal to l2 as well, then the weight of these cases
is reduced by another factor L−1, so that no s is required anymore. Therefore,
we can focus only on the case where l1, l2 and l3 are all distinct. For this case
the contribution of locus l2 is

Hl2
=

∑

xl2
,yl2

∈A

(

eβs̄rA
)

al2
xl2

[
(

AeβsA
)

xl2
yl2

]2
(

eβs̄r̄A
)

yl2
bl2

∑

xl2
,yl2

∈A
(eβs̄rA)al2

xl2

[(eβsA)xl2
yl2

]2(eβs̄r̄A)yl2
bl2

(108)

Following again eq. (104), the numerator is of order O
(

s2
)

except if dxl2
yl2

= 1,
in which case there is a zeroth order contribution. The latter case requires
additional considerations to resolve.

First, we consider the subcase with dxy ≥ 2. In this case it is possible
that dxl2

yl2
= 1, but if this is the case we always have another locus l′ with

dxl′ yl′
≥ 1. Following the separation of edges in the previous section, we can

handle one such locus as a special locus in exchange for another sum over of
order L. However, the xl′ → yl′ factor contributions in Hl′ ’s numerator will

then always be
[

(

eβsA
)

xl′ yl′

]2

without any derivatives since l′ 6= l2. From eq.
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x · · · y

Fig. 9 Distance-1 case for Z̃′

xyπ. The dots represent an arbitary acyclic subgraph. The
blue path is always accessible, assuming that the initial and final fitness values for x and
y are correctly ordered, which we enforce through integral bounds. The focal path is also
conditioned on being accessible. Assumming that π is the focal red path and π′ the blue
path, then in Z̃′

abπ′ all paths except π′ are counted, while in Z̃′

abπ
at least one accesible

path (π) is excluded, but more paths that are not arcs may also be excluded. Therefore
Z̃′

abπ
≤ Z̃′

abπ′ under the stated conditioning.

(104), such a factor results in a factor s2 compensating the additional L sum
as well as the required s factor to the integrand.

The only remaining case is then dxy = 1. For this case the contribution to
K is indeed not bounded as we require. However, this contribution turns out to
be an overcounting issue introduced by our loosening of the arc restrictions on
Z̃ ′

xyπ . Specifically, if dxy = 1, we will enforce the restriction that Z̃ ′
xyπ should

not count the direct walk segment x → y if π is taking this direct step. Since
the direct step is always accessible given that Fx and Fy are ordered correctly,
this segment contributes exactly 1 to the expectation value E

[

Z̃xy|βs
]

, which
we can therefore substract from it. This is possible even if π does not use this
direct step since Z̃ ′

xyπ ≤ Z̃ ′
xyπ′ if π does not use the trivial arc, but π′ does

(Figure 9). With this modification the value of Hl2
becomes

Hl2
=

∑

xl2
,yl2

∈A

(

eβs̄rA
)

al2
xl2

(

AeβsA
)

xl2
yl2

(

(

AeβsA
)

xl2
yl2

− 1
)

(

eβs̄r̄A
)

yl2
bl2

∑

xl2
,yl2

∈A
(eβs̄rA)al2

xl2

[(eβsA)xl2
yl2

]2(eβs̄r̄A)yl2
bl2

(109)

Since (A)xl2
yl2

= 1, the leading order in the numerator is now O(s), which is

sufficient to obtain a bounded contribution to K.
All in all, the total contributions to K are bounded in L at the candidate

threshold function for the regular type, implying that there is a constant C > 0,
such that

lim inf P
[

Z̃ab ≥ 1
]

≥ C (110)

implying the (weak) critical point given in our main statement. It remains to
improve this bound from non-zero C to 1, which we expect can be done as
mentioned in the Introduction.
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Chapter 7

Discussion

NK fitness landscapes are a simple approach to model fitness landscapes of varying
ruggedness, fitness distribution and interaction structure between loci. Nonetheless
many of their structural properties can be characterized by few parameters of
the NK model, the mean size of neighborhoods k and the mean degree r in the
neighborhood structure.

In particular for uniform- and regular NK structures these two parameters
largely determine the qualitative behavior of the landscape.

At constant values of these parameters accessibility of distant genotypes drops
quickly to zero, while the expected number of such accessible paths given accessibil-
ity increases factorially in L. This can be contrasted with the HoC model in which
the expected number of accessible paths never increases faster than exponentially
and, dependent on the particular arrangement of the allele graph, accessibility
between distant genotypes is often asymptotically non-zero, although one might
intuitively expect HoC landscapes to be more rugged than fixed-k NK landscapes.

For the expected number of local maxima the particular choices of fitness distri-
bution and NK structure do have some influence on the asymptotic leading order
behavior, even if restricted to uniform- and regular NK structures, although the
variation seems to be limited to a finite power in the per-genotype probability for
well-behaved fitness distributions. Only for fitness distributions with extremely
long tails my considerations suggest a possibly stronger deviation towards fewer
local maxima. Although not presented in fully here, I believe that this qualitatively
different behavior can be proven.

Interestingly, it seems that among all uniform- and regular NK structures, the
block structures is optimal for the expected number of local maxima in the sense
that no other such structures seem to result in a asymptotically significantly higher
expected number of local maxima. I am not aware of any proof of this.

The results for the NK model are qualitatively independent of the particular
allele graph chosen, as long as it is considered fixed, however in the HoC model the
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choice of allele graph may have more significant ramifications. In particular allele
graphs with distant alleles result in pairs of genotypes which are asymptotically
never accessible, while especially for high-degree allele graphs of small diameter
even distant genotypes often are asymptotically accessible with finite probably.
The presented results allow to make this determination explicitly for many choices
of allele graphs, however the remaining cases in which the conditions on Mar-
tinsson’s function are not satisfied and the expected number of accessible paths
doesn’t “tell the truth”, remains an open problem.
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Appendix A

Proofs and other calculations

A.1 Expected number of local optima for normal-
distributed uniform and regular NK land-
scapes

This is a more precise implementation of the strategy in,[23] attached as chapter 5.
Here I assume a standard normal distribution for individual fitness values.

The probability that a genotype is a local fitness maximum is the probability
that the fitness difference to all one-mutant steps is positive. Given that all fitness
contributions are independently standard-normal distributed, these differences will
be jointly normal distributed with zero mean. The covariance matrix A will have
diagonal values of 2r for an r-uniform NK landscape, accounting for differences
of two fitness values on all r partial landscapes contributing to the associated
mutation. There is a contribution of 1 to each off-diagonal term Aij for each
partial landscape containing loci i and j. These are the only partial landscapes
contributing to the covariance between the two mutations associated with i and
j, since the only possible shared fitness contribution in the fitness difference is the
fitness of the partial landscape at the focal genotype.

Given k-uniformity in addition to regularity, the column and row sums are
therefore all the same with value r(k + 1). The smallest eigenvalue of this matrix
satisfies λ− ≥ r and by the Perron-Frobenius theorem its largest eigenvalue is
r(k + 1) with corresponding eigenvector the constant vector.

The probability for the genotype to be a local optimum is then

Popt =
〈

L∏
i=1

Θ(xi)
〉

(A.1)

where x is distributed as explained above. We can rescale x to x′ = x
λ−

. Fur-
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thermore separating x′ into a sum of two jointly normal random vectors, the first
independent with variances 1, we have

Popt =
〈

L∏
i=1

Φ(yi)
〉

(A.2)

where Φ is the standard normal cdf and y is distributed jointly normal with co-
variance matrix B with diagonal values 2r

λ−
− 1 and off diagonal values Bij = Aij

λ−
.

It’s smallest eigenvalue is zero and its largest eigenvalue is λ′
+ = r(k+1)

λ−
− 1. The

integration variable may be shifted by a vector c, which given the PDF of the joint
normal distribution results in

Popt = e− 1
2 ⟨c|B−1|c⟩

〈
e−⟨y|B−1|c⟩

L∏
i=1

Φ(yi + ci)
〉

(A.3)

where y is still distributed as before. Technically the matrix inverse does not exist,
this is however not relevant for the considerations here, since we will consider only
shifts without contribution of the zero eigenvector. Alternatively one may consider
λ− to be offset by some small ϵ from the real smallest eigenvalue, so that B is
positive-definite.

Choosing c as a constant vector and using q for its entries, we have then

Popt = e
− q2

2λ′
+

L
〈

L∏
i=1

e
− q

λ′
+

yiΦ(yi + q)
〉

(A.4)

because the constant vector is the Frobenius-Perron eigenvector for B.
Bounds on this expression can now be obtained by application of Jensen’s

inequality and by considering the maximum argument of the expectation.
For the maximum argument we can consider the factors for each entry of y

independently. Each entry has the form

exp
(

− q

λ′
+

yi + ln Φ(yi + q)
)

(A.5)

A shift of yi back by q modifies this to

exp
(

q2

λ′
+

− q

λ′
+

yi + ln Φ(yi)
)

(A.6)

Choosing roughly q =
√

2 ln λ′
+, as λ′

+ → ∞, the term q
λ′

+
tends towards 0. The

maximal value of yi therefore will diverge to infinity in the same limit, maximizing
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ln Φ(yi). Expanding ln Φ(yi) yields

ln Φ(yi) = −
(

1
yi

√
2π

+ O
(

1
y2

i

))
e− 1

2 y2
i (A.7)

∂yi
ln Φ(yi) =

(
1√
2π

+ O
(

1
yi

))
e− 1

2 y2
i (A.8)

and so by comparison with the linear term in the exponent, the maximum is
reached at

yi =

√√√√2 ln
(

λ′
+

q
√

2π
+ O(1)

)
(A.9)

where the order of the remaining terms can be estimated from the leading correc-
tion of the expansion of ∂yi

ln Φ(yi). This yields a maximum for the expectation’s
argument and the overall upper bound on the probability

Popt ≤ exp

L

 q2

2λ′
+

−
q

√
2 ln

(
λ′

+
q
√

2π
+ O(1)

)
λ′

+


 (A.10)

Here I dropped the ln Φ(yi) term which is always negative for simplicity. Choosing
q =

√
2 ln λ′

+, this bound yields

Popt ≤ exp
(

−L
ln λ′

+ − 1
2 ln ln λ′

+ − ln(2
√

π) + o(1)
λ′

+

)
(A.11)

For the lower bound, instead of searching for the maximum of the expectation’s
argument, we apply Jensen’s inequality to the exponential:

Popt ≥ exp
(

L

(
− q2

2λ′
+

+ ⟨ln Φ(yi + q)⟩
))

(A.12)

The linear term in yi does not contribute since yi’s expectation is zero. The term
⟨ln Φ(yi + q)⟩ is the same for all i due to the regularity assumption. Only the
marginal distribution of yi is relevant for this expectation, which is a normal dis-
tribution with variance Bii = 2r

λ−
− 1. λ− is at least r and therefore this variance is

asymptotically bounded. At yi → −∞, the term ln Φ(yi +q) falls to negative infin-
ity only quadratically, so that the expectation always exists. With this, assuming q
is diverging, the contributions to the expectation may be pointwise asymptotically
expanded to

⟨Φ(yi + q) − 1⟩ (A.13)
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which evaluates to

Φ
(

q√
1 + Bii

)
− 1 (A.14)

Choosing q =
√

2(1 + Bii) ln λ′
+ then yields the overall bound

Popt ≥ exp
(

−L(1 + Bii)
ln λ′

+ + O(1)
λ′

+

)
(A.15)

The maximal value for λ− is 2r, in which case Bii becomes 0 and λ′
+ becomes

k−1
2 . For this constellation the resulting bounds become

−2 ln k + O(1)
k

≤ ln Popt

L
≤ −2 ln k − ln ln k + O(1)

k
(A.16)

In particular the leading order term is tight.
On the opposite side of the spectrum, the smallest eigenvalue is only λ− = r.

In this case Bii = 1 and λ′
+ = k. The bounds are not tight in this case yielding

−2 ln k + O(1)
k

≤ ln Popt

L
≤ −

ln k − 1
2 ln ln k + O(1)

k
(A.17)

Since we did not actually use the fact that λ− is the smallest eigenvalue, rather than
just a positive value not larger than the smallest eigenvalue, this bound applies in
general to all cases.

The bound also applies in the case of k growing with L, as all L dependencies
are explicit. Therefore with α = k

L
constant:

C1(αL)− 2
α (1 + o(1)) ≤ Popt ≤ C2(αL

√
ln L)− 1

α (A.18)

where C1 and C2 are positive constants independent of α and L. I expect the addi-
tional logarithmic correction on the upper bound to be an artifact of a suboptimal
bound and not to be actually achievable.

A.2 Mean number of local optima in regular and
uniform NK models with sum-dominating
distribution

In this section I obtain bounds on the expected number of local optima for NK
structures under an extremely heavy-tailed distribution. The derivation will as-
sume the complete graph on two vertices as allele graph.
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Specifically I consider a specific sequence ϕN of sum-dominating distributions,
as follows. Let θn be the standard uniform distributions centered at cn with cn =
1 + ∑

i<n(ci + 1
2) and c1 = 1

2 . Now let the distribution ϕN be the distribution
obtained by drawing a value from θn with n an integer chosen uniformly between
1 and N .´

Drawing elements from ϕN and taking N to infinity, the probability of the
same n being drawn twice becomes zero and so asymptotically almost surely for
all subsets of the chosen elements a sum of the elements of the subset multiplied
with ±1 is dominated by the largest element. This means that the signed subset
sums will be positive if the sign of the largest element is positive and negative
otherwise.

Whether a genotype is a local maximum is only dependent on the signs of
sums of fitness differences. As a consequence this distribution allows, in the limit
N → ∞, to reduce the problem to a property of the ranking of the individual
fitness values.

With the sum-dominating distribution with sufficiently large N , we can now
consider the possible orderings of the individual fitness contributions and how they
affect the sign of individual mutation effects on the landscape.

The relevant fitness contributions can be labeled by a pair (i, l). Here i it the
partial landscape to which they belong. If the fitness contribution is contributing
to the mutant obtained by a mutation on a given locus, then l is the index of
that locus. If the fitness contribution is contributing to the focal genotype, then
l = −1.

In each mutation, only the sign of the largest fitness contribution matters.
That means, for each locus l, the mutation on l decreases fitness if and only if all
(i, l) for all i are smaller than (i, −1).

Given an ordering of the individual fitness value contributions from highest
to lowest, we can use the following algorithm to determine whether all mutations
decrease fitness and therefore result in a local maximum:

• Initially, for all loci l, sl is unset.

• Iterate in the given order through fitness contributions (i, l).

– If l = −1:
∗ For all l in the neighborhood i, set sl.

– If l ̸= −1:
∗ For all l in the neighborhood i:

· If sl is not yet set, exit the algorithm, the genotype is not a
local maximum.
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Successively this algorithm sets the values sl indicating the mutations which are
known to be decreasing fitness based on the highest fitness contributions considered
so far. The algorithm exits if one of the signs is found to be positive, indicating
absence of a local maximum. If the algorithm terminates without explicit exit,
all sl will be set and the genotype is a local maximum. Once a sign has been
found other fitness values cannot influence it anymore, since the earlier fitness
contribution determining its sign dominates all possible sums of remaining fitness
contributions.

The algorithm can be terminated early, once all sl are found. An alternative
point-of-view for the algorithm is to consider only the (i, −1) contributions and
their ordering first. A (i, −1) contribution is reached in the algorithm, only if none
of the (i, l) contributions with l ̸= i and sl unset has been reached before and if
it reached, it sets all sl with l in the NK neighborhood i. The probability that
(i, −1) is the first among the (i, l) is simply 1

k′
i+1 where k′

i is the number of unset
sl with l in i.

Popt =
〈

exp
(

−
∑

i

ln(k′
i + 1)

)〉
(A.19)

where the average is over all orderings of NK neighborhoods and the sum is over
all indices corresponding to NK neighborhoods.

Trivial bounds on P can be obtained by the fact that NK blocks chosen with
k′

i = 0 do not contribute to the exponent and that ∑i k′
i = 0. Worst-case all

non-zero k′
i are 1, in which case there must be L of them. Best case all k′

i are k,
in which case there are L

k
of them. This implies the bounds

exp (−L ln 2) ≤ lim Popt ≤ exp
(

−L
ln(k + 1)

k

)
(A.20)

The lower bound is the trivial lower bound for any fitness landscape and the upper
bound corresponds to the value of the BN structure for any distribution, indicating
again that the BN structure seems to be optimal in terms of the number of local
maxima.

Given the bounds above, in the limit of L growing sufficiently faster than k, it
is expected that lim Popt decreases exponentially. As a consequence it is possible
that only a small probability mass contributes to the expectation in eq. (A.19).
This may be used to optimize the bounds obtained so far.

The upper trivial bound requires that, except for already fully covered NK
blocks, each chosen NK block covers exactly L

k
loci without overlap, meaning that

up to duplicates, the chosen edges form a perfect cover of the NK structure. An
(edge) cover of a hypergraph is a subset of its edges such that each vertex is
contained in at least one of the edges in the subset. A perfect (edge) cover of a
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k-uniform hypergraph with L vertices is a cover which contains exactly L
k

edges,
the minimal possible value. The (edge) covering number of a hypergraph is the size
of its smallest cover. We write ν for the covering number divided by the number
of vertices.

The BN structure is the only one in which all possible choices yield perfect
covers. However, it is often possible to find covers which are close to perfect in
k-uniform r-regular NK structures. In any case, by selection of a random subset
of edges it can be seen that[1]

ν ≤ ln k + 1
k

(A.21)

Although it is generally unlikely that a random ordering of the edges starts with a
minimal cover, the probability that it happens is at least

(
L

Lν

)−1
≥ e−Lν ln ν−1 and

furthermore, the above bound on ν can be obtained by a random uniform choice of
edges with finite probability, making it unnecessary to account for the likelihood
of one particular ordering. Depending on the order in which the edges of the cover
are chosen, the distribution of k′

i differs, however by Jensen’s inequality

⟨ln(k′
i + 1)⟩i ≤ ln(⟨k′

i⟩ + 1) = ln(ν−1 + 1) (A.22)

and so

lim Popt ≥ exp
(
−2Lν ln(ν−1 + 1) − 1

)
(A.23)

lim Popt ≥ exp
(

−L
ln k + 1

k
ln
(

k

ln k + 1 + 1
)

+ O(1)
)

(A.24)

= exp
(

−L

(
(ln k)2

k
(1 + o(1))

)
+ O(1)

)
(A.25)

The second inequality yields exponential growth factors which are smaller than
ln 2 for all k ≥ 2, implying that with the sum-dominating distribution all non-
trivial uniform and regular NK structures have an exponentially growing expected
number of local optima.

Further, if there exists a almost-perfect cover, meaning a cover of size L
k

+ o(1),
then

lim Popt ≥ exp
(

−2L
ln k

k
(1 + o(1))

)
(A.26)

and if there exists a decent cover, meaning a cover of size O
(

L
k

)
, then

lim Popt ≥ exp
(

−LΘ
(

ln k

k

))
(A.27)
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So far, I am not aware of any k-uniform regular NK structure and fitness distri-
bution for which this growth rate is not O

(
ln k
k

)
. This poses the question whether

there is such a structure with the sum-dominating fitness distribution. The possi-
bility remains since the covering number may be of order L ln k

k
. In fact Alon et al.[1]

show that for all k ≤ r ≤ e4k there exist k-uniform r-regular simple hypergraphs
with ν ≥ Cν

ln k
k

for some universal constant Cν > 0. Simple here means that the
co-degree of all pairs of edges is at most 1, meaning that edges never intersect in
more than one locus.

This alone is not sufficient to establish a non-O
(

ln k
k

)
behavior. It still needs

to be shown that the expectation of exp (−∑
i ln(k′

i + 1)) must be small if ν as
above. In particular there are different orderings in which the cover can be chosen.

However, the considerations above seem to be an interesting indicator that
it is indeed possible to achieve a uniform- and regular NK landscape with an
asymptotically lower expected number of local maxima than

E[Nmax] = AL exp
(

−LΘ
(

ln k

k

))
(A.28)
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Appendix C

Teilpublikationen

I included the following articles published in peer-reviewed journals or as preprints
to this thesis and detail my contributions to these articles as follows:

• S. Hwang et al., “Universality classes of interaction structures for nk fitness
landscapes,” Journal of Statistical Physics 172, 226–278 (2018)

The results and wordings of sections “Mathematical Background and Defi-
nitions”, “Accessible Pathways” and appendix C are primarily contributions
by myself with supportive and editorial contributions by the co-authors. My
contributions to other sections of the article were to varying degrees editorial
and supportive on obtaining of results.

• B. Schmiegelt and J. Krug, “Accessibility percolation on cartesian power
graphs,” 2021

Results were obtained primarily by myself under guidance by the co-author.
With the exception of parts of the introductory section and editorial influ-
ence, the wording of the article is my own.
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Nach § 7 Absatz 8 Satz 1 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen
Fakultät der Universität zu Köln vom 12. März 2020 gebe ich die folgende Erklärung
im Wortlaut der Ordnung ab:

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation selb-
stständig und ohne die Benutzung anderer als der angegebenen Hilfsmittel und Lit-
eratur angefertigt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten
und nicht veröffentlichten Werken dem Wortlaut oder dem Sinn nach entnommen
wurden, sind als solche kenntlich gemacht. Ich versichere an Eides statt, dass diese
Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen
hat; dass sie - abgesehen von unten angegebenen Teilpublikationen und eingebun-
denen Artikeln und Manuskripten - noch nicht veröffentlicht worden ist sowie, dass
ich eine Veröffentlichung der Dissertation vor Abschluss der Promotion nicht ohne
Genehmigung des Promotionsausschusses vornehmen werde. Die Bestimmungen
dieser Ordnung sind mir bekannt. Darüber hinaus erkläre ich hiermit, dass ich
die Ordnung zur Sicherung guter wissenschaftlicher Praxis und zum Umgang mit
wissenschaftlichem Fehlverhalten der Universität zu Köln gelesen und sie bei der
Durchführung der Dissertation zugrundeliegenden Arbeiten und der schriftlich ver-
fassten Dissertation beachtet habe und verpflichte mich hiermit, die dort genannten
Vorgaben bei allen wissenschaftlichen Tätigkeiten zu beachten und umzusetzen. Ich
versichere, dass die eingereichte elektronische Fassung der eingereichten Druckfas-
sung vollständig entspricht.
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