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Abstract

In the context of this work, three different materials are studied via optical spec-
troscopy methods. The three materials are La2Cu2O5, Fe3O4, and Ca2RuO4, where
the first one is investigated via Fourier spectroscopy, while the latter two are stud-
ied via spectroscopic ellipsometry.

La2Cu2O5 is a low-dimensional material, particularly, a spin-1/2 4-leg ladder
system that dimensionally lays in between the 1D chain and the 2D layer. While
2-leg ladder systems have been studied before, growing in the number of legs
involved allows us to study the dimensional crossover towards 2D and attempt
to understand the physics in the complex 2D layered cuprates that show, among
other things, high-temperature superconductivity. We successfully measured the
first optical spectra of this kind of material, obtaining a spectra that in many ways
resembles the one obtained for 2-leg ladders.

The second material, Fe3O4, a very classic material of study in the field of cor-
related electron systems still hosting controversies is revisited. We thoroughly
studied the optical spectra as a function of temperature, particularly across the
magnetic phase transition. In return, we were able to clarify a discrepancy in the
literature concerning the temperature behavior of the features observed in the op-
tical spectra. There we observe clearly two excitation features, where one of them
was not completely clear from previous reports. Furthermore, both features show
opposite temperature dependence. Having this experimental result, enabled us
to dispel a second controversy, where the interpretation of these features was not
clear. Thus, we interpret the features observed in the optical spectra, based on
their temperature dependency, as intersite transitions of minority spins from the
Fe 2+

B t2g levels to the t2g and eg levels of Fe 3+
B site.

At last, Ca2RuO4, is a layered bulk system where the spin-orbit coupling po-
tentially plays a role due to the 4d Ru. And while there was agreement in the
presence of two features, at about 1 eV and 2 eV, in the optical spectra belonging
to d4d4→ d3d5 Mott-Hubbard excitations, the detailed behavior of those features
as a function of temperature was not previously reported. Our measurements and
analysis permitted us to establish that the spectral weight of the first feature con-
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0. ABSTRACT

siderably increases as the temperature increases, while the second feature margin-
ally does so. We attempted, with a simple theoretical model considering only spin
changes, to explain this behavior in the spectral weight. While the behavior of the
lowest energy feature can be explained, the second one shows opposite directions
clearly indicating the shortcomings of our assumptions, namely, not considering
distortions and spin-orbit coupling.
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1. Introduction

Not only is the Universe stranger
than we think, it is stranger than
we can think.

Werner Heisenberg

IN CONTEMPORARY PHYSICS, as in many other areas of science, the study of proper-
ties that emerge from the interaction of elements is a vibrant and active topic. In
condensed matter physics such subfield is called correlated electron systems (CES).
These systems’ hallmark is the many-body character arising out of the strong in-
teractions between the electrons in the material. Due to the many-body nature of
these systems, the basic premise of what could be regarded as "classical" or "text-
book" Condensed Matter Physics, namely to consider electrons as non-interacting
entities in a periodic potential, is not the right approach.1 For this, the Pauli
exclusion principle can be held responsible as it constrains the phase space avail-
able for electron excitations small compared to the Fermi energy. This means
that electron-electron interactions often have a small effect on the properties of
materials, and thus, in many materials, it can be safely disregarded.

In correlated electron systems, the strong electrostatic electron-electron inter-
action gives rise to a plethora of fascinating, puzzling, and highly complex phe-
nomena. For example, new ground states like quantum spin liquids with corres-
pondingly new excitations are observed.

Not surprisingly, some commonly experienced phenomena like magnetism are,
ultimately, due to electron-electron interaction. Magnetism is not the only one.
Other phenomena originating from electronic correlations are colossal magnetores-
istance (CMR) in manganates [1], metal-insulator transitions (MIT) [2, 3] in, e.g.,

1It is worthy to note that it is somewhat surprising at first sight that the independent electron
approximation describes many materials very well.
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Chapter 1: Introduction

vanadates, and unconventional2 superconductivity [4] in cuprates to name a few
of them [5].

Correlated electron systems play a central role in contemporary condensed mat-
ter physics, as they provide a rich and varied playground to explore fundamental
issues in physics. Exotic states of matter like Weyl quasiparticles [6], Majorana
fermions [7], among others, can be realized in this class of systems.

Besides these fundamental topics, correlated electron materials have tremend-
ous potential for technological devices [8]. One such example exploits the metal-
insulator transition driven by temperature found in vanadates to make windows
that switch between reflecting or transparent to infrared radiation, at high and
low temperatures, respectively [9]. Moreover, there is not only a significant po-
tential for applications but there are already some available. One of the most com-
mon ones is the use of manganates, which are already in use in magnetic storage
solutions, e.g., magnetic hard drives, by exploiting the colossal magnetoresistance
(CMR) where small changes in an applied magnetic field yield massive changes
in electrical resistivity [10]. This effect has been responsible for the explosion
in the storage density of magnetic hard drives. Furthermore, it is impossible not
to mention the wide breadth of high-temperature superconductivity applications,
as people have been fascinated by the potential they promise. High-temperature
superconducting materials are already applied to reduce the size, increase the
efficiency, or make new devices available in power generation and transmission,
transport, information technology, science, and medicine [11].

Ultimately, all these interesting emerging phenomena in correlated electron
materials arise from the interaction of the electron’s charge, spin, orbital, and
lattice degrees of freedom. The competition between these many degrees of free-
dom provides complex, rich, and sometimes mind-boggling phenomena. Unfor-
tunately, many-body physics is a complicated subject as most relevant models are
not exactly solvable and, in many cases, even too costly to explore computation-
ally.

This emerging complexity can be seen in the rather complex and rich phase dia-
grams of this class of materials. For example, one such phase diagram is sketched
in fig. 1.1 for a typical layered cuprate material like La2 – xSrxCuO4, where many
different phases compete and emerge in the various regions of the temperature-
doping diagram. Most notably is the destruction of the low-temperature antifer-
romagnetic (AF) order and the emergence of a superconducting (SC) state when

2Namely not through a phonon induced Cooper pairing of electrons and where the order para-
meter has a lower symmetry than the one shown by the lattice.
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sufficiently hole-doped. It is believed that antiferromagnetic interactions could be
the driving mechanism behind correlated superconductivity and other electronic
ordered phases present [12].

Figure 1.1.: Sketch of a temperature-doping (T,x) phase diagram of a correlated elec-
tron system like La2–x Srx CuO4. It shows the competition between differ-
ent phases. Antiferromagnetic (AF), superconducting (SC), and spin-glass
(SG) phases are reached by varying the temperature (T) and the doping
level (x) of the system. Reproduced from [13].

Not only the localization of electrons due to their correlations and the interac-
tion between different degrees of freedom are relevant for the physical properties
of these systems. Another essential concept is dimensionality, since reducing it
enhances the correlations and their effects. For example, going from a 3D sys-
tem to a quasi-2D system composed of stacked layers is critical for the emergence
of superconductivity in the cuprates. Going even further, to a spin 1/2 quasi-1D
system, the role of quantum fluctuations in the observed phenomena is greatly
enhanced. For example, in the S = 1/2 spin chain, this enhancement leads to
complete long-range order suppression even at T = 0.

In the context of correlated electron systems, optical spectroscopy is a versatile
tool to explore the electrons’ behavior. Optical methods allow us to study mater-
ials in a non-destructive way and to peek into the microscopic behavior of the
electrons. The two techniques used in this work are Fourier transform infrared
(FTIR) spectroscopy and spectroscopic ellipsometry.

3



Chapter 1: Introduction

This thesis’ organization is as follows: Chapter 2 starts with a general descrip-
tion of the main elements to understand correlated electron systems and their
relationship with optics. Then in chapter 3, the basics of optical spectroscopy and
the experimental methods used in this work are briefly described. The core of
this thesis follows by exploring a diversity of correlated electron systems.

In chapter 4, we study the magnetic excitations as a function of temperature
of the 4-leg ladder system La2Cu2O5 employing infrared spectroscopy. Until now,
the primary outcome of light absorption and scattering experiments on the 2-leg
ladder has been the observation of magnetic singlet bound states arising from
strong triplet-triplet interactions [14]. These bound states characterize the ex-
citation spectra of these low-dimensional spin systems. Besides a fundamental
interest in low-dimensional quantum magnets, a strong motivator in studying the
magnetic excitations in 4-leg ladders cuprates lies in the fact that the current un-
derstanding of the optical spectroscopy of the quasi-2D square layer cuprates is
not fully described. By trying to perform a dimensional crossover from the well-
understood 1D chain to the 2D square layer, i.e., going through the ladders, we
expect to learn how to better describe the spectra of such a cornerstone piece of
modern condensed matter physics.

We successfully measured the first optical spectra of a 4-leg S = 1/2 ladder
cuprate via Fourier spectroscopy. There is a strong resemblance between the meas-
ured spectra of the 4-leg ladder and the 2-leg ladder. This similitude gives a hint
that some 2-leg character continues to be present when transitioning from 2 to 4
legs, which leads to an interpretation of the features in similar terms. Thus, we
interpret the features observed as coming from a 2-triplon quasi-bound state and
a continuum of magnetic excitations. There is one extra feature, a clear peak with
a satellite shoulder whose origin is unclear so far.

Then, in chapter 5, the behavior of Fe3O4 (magnetite) across the Verwey trans-
ition is studied. Magnetite has been studied for more than a century and is known
for even longer, leading to many applications since its discovery. Despite this fact,
magnetite still offers open questions regarding its physics. There is currently an
experimental disagreement on the shape and temperature dependence of the op-
tical spectra, which we set to answer. Moreover, high-quality measurement and
modeling of magnetite’s optical spectra also set the basis for further research into
the non-equilibrium optical response. The literature on magnetite’s optical con-
ductivity is controversial, particularly around the optical feature around 2eV, as
reported by reflectivity measurements performed via Fourier spectroscopy.

We can clarify the behavior and character of the two observed features in the
optical spectroscopy that show opposite temperature-dependent behavior. Given

4



this behavior, we interpret the excitation as intersite transitions of minority spin
from the t2g levels to the t2g and eg levels. Moreover, the detailed measurement
across the Verwey metal-insulator transition shows an explicit step-like behavior
of these two features.

Finally, the ruthenate Ca2RuO4, being a prototypical multi-orbital Mott system,
is studied in chapter 6. Materials of the family Ca2 – xSrxRuO4, are layered per-
ovskite that are isostructural to the La2 – xSrxCuO4 high-temperature superconduct-
ing cuprates. The understanding of the orbital degree of freedom in the ground
state of Ca2RuO4 has been elusive. We use spectroscopic ellipsometry to follow
the optical spectra’s temperature dependence and assign the observed features to
plausible electronic transitions.

We dispel the contradiction in the literature, where the behavior of the two
features observed was not clear. Our measurements establish that the first ob-
served feature increases considerably in spectral weight while the second does it
marginally as a function of increasing temperature. We also calculated the trans-
ition matrix element to estimate the spectral weight changes between a low- and
a high-temperature state. The result of this calculation agrees with the observed
temperature dependence of the first spectral feature as a function of tempera-
ture but gives the opposite direction for the second one hinting to a possible role
played by the spin-orbit coupling in this material.
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2. Correlated Electron Systems

The miracle of the appropriateness
of the language of mathematics for
the formulation of the laws of
physics is a wonderful gift which
we neither understand nor deserve.

Eugene Wigner

BY THE EARLY 1930S, very shortly after the development of quantum mechanics,
a successful quantum theory of electrons in solids was developed. This theory,
based on weakly interacting electrons in a periodic potential, classifies solids as
metals, insulators, and semiconductors depending on the filling of their electronic
bands [15–18]. It is formidable that such a crude approximation can provide so
much, but this is not an isolated case in physics.1 Regardless of this feat, this
theory fell short of classifying some transition-metal oxides correctly.

Two early examples showing the limitations of band theory are NiO and Fe3O4
[19, 20]. For these materials, band theory predicts a metallic state due to partially
filled bands. However, experiments showed that NiO behaves as an insulator, and
Fe3O4 is a very poor conductor at room temperature while showing an unexpec-
ted temperature-driven metal-insulator transition at about 121 K [21]. It can be
claimed that with these observations, the field of strongly correlated electron sys-
tems got kickstarted. This situation led to the realization that something was
missing in the basic description of solids. Mott and Peierls [20] stated in 1937:

A rather drastic modification of the present electron theory of metals
would be necessary to take these facts into account.

1Particularly interesting is the result of Drude for the electrical conductivity that regardless of
being based on a classical approach coincided with the semi-classical one performed by Som-
merfeld later on.
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Chapter 2: Correlated Electron Systems

With such modification being that strong Coulomb interaction play a pivotal
role for compounds like NiO and Fe3O4. Ultimately, this modification meant that
such interaction could not be considered as an afterthought as in a perturbation.
However, it has to be fully considered from the beginning into the physics of
these systems. Unfortunately, explicitly treating the electron interaction leads to
the enormous and complicated task of handling many-body problems.

Many of these materials are transition-metal oxides (TMO) with partially filled
d bands. In these materials, the narrow radial extension, or bandwidth, of the d
orbitals boosts the importance of the repulsive Coulomb interaction between the
electrons. The stronger Coulomb interaction with the reduced bandwidth gives
rise to correlation effects between electrons beyond what a mean-field approxim-
ation can describe. Ultimately, the correlation of electrons leads to the scenario
where the electrons are forced to be localized in real space at half-filling. This is
the opposite picture compared to the free, fully delocalized states in band theory
and closer to atomic physics. Strong electron-electron interactions are not only
present in TMO’s like NiO or Fe3O4, but also in other d- and f - electron systems,
heavy metals [22]. This strong electron-electron interaction also gives rise to a
wide variety of physical phenomena due to the interplay of various degrees of
freedom present: spin, charge, and orbital, plus their interactions with the lattice
and each other. Furthermore, when these systems are doped, the electrons are not
necessarily localized, which leads to complex interactions between the degrees of
freedom previously mentioned.

This chapter aims to provide a basic vocabulary and qualitative descriptive
framework regarding correlated electron systems. It starts with a description
of on-site properties commonly found in transition-metal oxides, then describes
inter-site properties through the Hubbard model and how it opens the door to un-
derstanding correlated electron phenomena, to later explain the role of optics in
investigating this class of materials. A more extended introduction and detailed
description of the theory can be found in [23, 24].

2.1. 3d orbitals and crystal-field splitting

Knowing the local environment of the relevant ion and the on-site orbital prop-
erties is crucial to understanding the phenomena observed in solids. The local
environment dramatically influences the excitations possible in a material.

The d orbitals (L = 2) in a free transition-metal ion are five-fold degenerate,
as seen in fig. 2.1. For example, in YTiO3 the electronic configuration of the

8



2.1 3d orbitals and crystal-field splitting

Figure 2.1.: When placed in an octahedral environment, the five 3d orbitals split into
the t2g (upper row) and eg (lower row) groups. By CK-12 Foundation [CC
BY-SA 3.0].

transition-metal ion is Ti3+ ([Ar]3d1) with one electron in the 3d level. Or con-
sider the case of La2CuO4 with a Cu2+ ([Ar]3d9) state, where the Cu ion has nine
electrons or alternatively one hole. The question is which orbitals are occupied in
each case. For this, we need to know the local environment of the transition-metal
ion.

The transition-metal ion is surrounded by, e.g., oxygen ions, so-called ligands.
The ligands’ electric fields introduce anisotropy at the transition metal position,
producing a local crystal field that lifts the degeneracy of the d orbitals. Simple
cases of typical local environments in transition-metal compounds, as shown in
fig. 2.2, are the octahedral (left) and tetrahedral (right) ones.

When placed in octahedral (fig. 2.2 left) or tetrahedral (fig. 2.2 right) coordin-
ation, the d orbitals split into a double and a triple degenerate level, named eg

and t2g , respectively. The energy splitting is commonly expressed as 10Dq with
a typical energy of about 1 eV to 5 eV, and it is schematically shown in fig. 2.3.
The eg orbitals consist of the dx2−y2 and d3z2−r2 orbitals, whereas the t2g orbitals
consist of the dx y , dyz, and dxz orbitals. In octahedral coordination, the lobes of
the t2g orbitals point towards the midpoints between ligands while the eg ones
towards the ligands. This orientation means that the t2g orbitals are lower in
energy than the eg ones. For tetrahedral coordination, the splitting is inverted.
Additional anisotropies, caused by distortions like Jahn-Teller or steric effects or

9



Chapter 2: Correlated Electron Systems

Figure 2.2.: The pink (central) balls represent the transition-metal ion, whereas the
ligands are represented as grey balls. The ligands are usually oxygen thus
leading to the name transition-metal oxides. Two common coordination
geometries are octahedral (left) and tetrahedral (right).

3d

eg
dz2 dx2−y2

t2g
dxz dx y dyz

eg
dz2dx2−y2

t2g
dxzdx ydyz

OctahedralTetrahedral

Figure 2.3.: For octahedral and tetrahedral coordination, the five d orbitals split into
two groups, a triply degenerate t2g , and a double degenerate eg .

different coordination, further split the 3d ion orbitals’ degeneracy.

2.2. Hubbard Model

The simplest theoretical model capturing the essential physics of correlated elec-
trons is the one-band Hubbard model [25, 26], which consists of a single non-
degenerate orbital per site2 and an on-site Coulomb interaction. Regardless of
the many simplifications involved in this model, it can describe low-energy and
low-temperature properties of correlated electron systems. This model shows the
competition between delocalizing and localizing effects in these systems. It has

2It can be visualized as a lattice of hydrogen atoms with a non-degenerate 1s orbital at each site.
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2.2 Hubbard Model

two parts,

HH = H0 +HI (2.1)

where H0 expresses the kinetic energy or electron hopping in the lattice as in band
theory, i.e., an electron in a periodic potential, and HI the interaction between elec-
trons describing the penalty incurred for double occupancy. Here it is very explicit
the interplay between electron kinetic energy reduction by delocalization and the
localization of the electrons due to Coulomb interaction. Despite its simplicity,
this model can describe the Mott insulating state, the emergence of long-range
magnetic order, and the metal-insulator transition [25, 26] among other correl-
ated electron phenomena.

The term H0 is given by

H0 = −t
∑
〈i, j〉,σ

(c†
iσc jσ + h.c) (2.2)

where the sum, in the simplest case, is carried over the nearest neighbors and
over the electron spins σ =↑,↓. c†

iσ (c jσ) is the creation (annihilation) operator,
which operates on site i ( j) with spin σ =↑,↓. The parameter t is the hopping
matrix element given by the overlap of the electrons between sites.

Regarding the interaction term, the most straightforward description is provided
by taking into account only an on-site effect given by

HI = U
∑

i

n̂i↑n̂i↓ (2.3)

where n̂iσ = c†
iσciσ is the occupation number operator on site i and spin σ =↑,↓,

and U describes the strength of the electron-electron on-site interaction.3 Thus U
is the energy cost of double occupancy on a site.

3The parameter U is formally defined as the overlap integral between the electrons given by

U =

∫
dr1

∫
dr2|ϕ(r1 −Ri)|2 e2

|ϕ(r1 − r2)| |ϕ(r2 −Ri)|2 (2.4)

where ϕ is the electron wavefunction and Ri is a lattice site. Frequently this parameter acts
as a phenomenological one and is determined experimentally.
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Chapter 2: Correlated Electron Systems

U=0 U>W

LHB UHB

Figure 2.4.: Single non-degenerate orbital at half-filling (n = 1). Left: At U = 0,
a single band is filled producing a metallic state (delocalized electrons).
Right: At U >W , two subbands emerge, the lower Hubbard band (LHB)
and upper Hubbard band (UHB), producing a Mott insulator. For both
panels, the horizontal axis is in units of energy.

Adding the two contributions we obtain

HH = −t
∑
〈i, j〉,σ

c†
iσc jσ + U
∑

i

n̂i↑n̂i↓ (2.5)

showing that effectively, the Hubbard model is governed by only two paramet-
ers. The first is the relative interaction strength U/t, or U/W , where W is the
bandwidth W = 2zt and z being the coordination number. The second relev-
ant parameter is the electron density n = Ne/N where Ne is the total number of
electrons, and N is the number of lattice sites or unit cells.

At half-filling, i.e., one electron per lattice site (n= 1), excursions of an electron
from its site will produce a gain t in energy while paying an energy penalty of U
for double occupancy. When considering the non-interacting limit (U = 0), there
is one half-filled band with 2N states, recovering the metallic state of band theory.
For U >W , electrons stay at their sites rendering the system insulating. Thus, the
original band splits and gives rise to two subbands. The subbands are called lower
Hubbard band (LHB) depicting states with N − 1 electrons (one hole) and upper
Hubbard band (UHB) depicting states with N + 1 (one doublon).4 In this case, to
create an electron-hole excitation, an energy gap of Eg ∼ U −W = U − 2tz must
be overcome. This insulating state is called Mott insulator.

The energy gap in a Mott insulator plays a similar role as the energy gap
between valence and conduction bands in standard insulators or semiconductors.
Regardless of this similarity, the nature of this energy gap is very different, and it
is borne from the electron-electron interaction instead of the periodic potential.

4The electron addition and removal spectra can be measured via inverse photoemission (IPES)
and photoemission (PES) spectroscopy, respectively.
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Moreover, metal-insulator transitions are usually linked to structural changes
that reduce the bandwidth and switch from a metallic to insulating behavior. Also,
the preference of antiferromagnetic ordering of the spins in the insulating state
(t << U) can be argued from this simple model. Electrons have an energy gain of
J = 4t2/U by performing virtual hopping (superexchange), which is only allowed
for antiferromagnetic ordering since Pauli’s exclusion principle blocks such virtual
hopping for ferromagnetic order.

2.3. Mott-Hubbard and Charge-Transfer Insulators

In the previous section, a model for a single non-degenerate orbital was intro-
duced. This model allows us to understand the phenomena observed in correl-
ated electron systems in broad terms. However, transition-metal oxides are more
complex than isolated ions, and the role of the ligand ions has to be taken into ac-
count. To make the discussion a bit more explicit, oxygen ions will be considered
as ligands.

The inclusion of the O2p states leads to two different energies to be considered.
The first is an excitation from one d orbital of a transition-metal ion to another one
(|dndn〉 → |dn−1dn+1〉) requiring an energy ∼ U . The second is an excitation from
an O2p orbital to a transition-metal ion d orbital (|dn2p6〉 → |dn+12p5〉) requiring
and energy ∆. By comparing the energy of both excitations, a material can be
classified as (following [27]):

• If U < ∆, upper panel in fig. 2.5, the excitation between two transition-
metal ions (|dn

i dn
j 〉 → |dn−1

i dn+1
j 〉) is the lowest energy charge fluctuation

which corresponds to an optical gap at an energy ∼ U . This case corres-
ponds to a Mott-Hubbard (MH) insulator and it is found on the left-hand
side of the 3d elements, e.g., titanates and vanadates.

• If U >∆, lower panel in fig. 2.5, the excitation between a transition-metal
ion and an oxygen (|dnp6〉 → |dn+1p5〉) is the lowest energy charge fluc-
tuation which corresponds to an optical gap at energy ∆. This case corres-
ponds to a charge-transfer (CT) insulator and it is common on the right-hand
side of the 3d elements, e.g., nickelates and cuprates.
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UHB

UHBO-2p

O-2p

LHB

LHB

U

Δ

U

Δ

a) Mott-Hubbard insulator

b) Charge Transfer Insulator

Figure 2.5.: Scheme of the electron addition (IPES) and electron removal spectra (PES)
for (a) Mott-Hubbard (MH) and (b) charge-transfer (CT) insulators. LHB
stands for Lower Hubbard Band, UHB for Upper Hubbard Band, and O-2p
refers to the oxygen 2p band.

2.4. Spin-Orbit Coupling

As seen in the previous sections, many transition-metal compounds happen to be
Mott insulators, where strong electron correlation suppresses low-energy charge
dynamics. Nevertheless, there are still rich physics remaining that originate in
the unquenched spin and orbital magnetic moments. In the case of Mott insulat-
ors where the relevant orbitals are of eg symmetry, the angular momentum L of
the ground state is quenched, for example, in manganites and cuprates. On the
other hand, the threefold degenerate t2g level shows an effective orbital angular
momentum L = 1 leading to an intricate interplay between spin-orbit coupling
and the superexchange interaction.

Spin-orbit coupling (λL·S) plays a significant role in atoms, mainly determining
their multiplet structure. In a crystal, it can still play a significant role even when,
due to the breaking of rotational symmetry caused by the crystal field, L and J
are not good quantum numbers. How relevant the spin-orbit coupling is in a
compound depends on the ratio between the spin-orbit coupling and the crystal-
field splitting.

For most 3d transition-metal compounds, the role of spin-orbit coupling can be
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2.5 Correlations and optics

treated as a weak perturbation because the crystal field splitting ∆C F is consider-
ably more significant. For example, a typical value of λ is of the order of 20 meV
in Ti and 70 meV for Co. This perturbation leads to single-site and exchange
magnetic anisotropy while also leading to possible anti-symmetric exchange in-
teractions. Even when ∆C F is usually much more significant than λ, the splitting
of d levels due to distortions can be comparable with the spin-orbit coupling and
thus affect them.

In 4d and 5d systems, the spin-orbit coupling is considerably stronger since the
coupling scales as Z4, while the on-site Coulomb repulsion is significantly smaller.
A stronger spin-orbit coupling leads to novel phenomena like Weyl semimetal,
axion insulator, topological Mott insulator, and topological insulators [28].

2.5. Correlations and optics

Optical means are extremely powerful experimental techniques to study the elec-
trodynamic response of correlated electron systems because the response of these
systems to an electromagnetic wave gives key information about them. The inter-
play between localization and delocalization of electrons, which is at the core of
these systems, is contained in electrons’ behavior under the action of an electric
field. Such an interaction between an electromagnetic wave and matter yields
information in an energy range where elementary and collective modes can be
found. A remarkable feature of correlated electron systems is that low-energy
physics, in the meV range, can be probed by its influence at higher energy scales.
An in-depth review of many experimental results of this can be found in [29].

In Mott insulators, the Coulomb interaction dominates, and electron motion is
suppressed, which is seen as an energy gap in the optical spectra. Optical experi-
ments show substantial deviations from what a conventional free-electron mater-
ial shows upon doping or changes in temperature. This can be seen in fig. 2.6
where the optical conductivity for the layered cuprate compound La2 – xSrxCuO4
is shown for different doping levels. In optics, a fundamental concept is the spec-
tral weight, which depends on the number of states contributing to a given trans-
ition. In band insulators such as Si, the spectral weight for the excitation from
the valence band to the conduction band is constant. If we dope Si by, eg , substi-
tuting P, a Drude peak appears but the spectral weight of excitations across the
band gap is not affected.

In band insulators, the spectral weight is constant with a value of 2N for each
band. In contrast, the number of states in a Hubbard subband is not constant and
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Chapter 2: Correlated Electron Systems

Figure 2.6.: Optical spectra of a layered cuprate (La2–x Srx CuO4) showing how upon
doping it evolves from an insulator (x = 0) to a system with metallic char-
acteristic. Note the change of spectral weight around 2.0 eV Reproduced
from [30].

depends on the number of electrons available. When the number of electrons
changes, a redistribution of states between these subbands occurs. This explains
why the spectral weight of excitations across the Mott gap is substantially reduced
upon doping in La2 – xSrxCuO4, see fig. 2.6.

Correlated electron systems are very susceptible to ordered states, making them
especially suitable to be probed by optical means, particularly to study spin and or-
bital correlations and thus to ordering phase transitions or any symmetry-breaking
phenomena. For example, YVO3 is a compound that shows a spin- and orbital-
ordering phase transition at around 77 K. At this temperature, the spin and or-
bital order of the system changes, allowing and prohibiting certain excitations in
a given polarization due to the selection rules. This change is clearly seen in the
optical spectra’s substantial change, as shown in fig. 2.8 [31]. Particularly, when
focusing on the c axis, the spectral features at low energies (∼2 to 2.5 eV) are
suppressed upon cooling below 77 K whereas at high energies (∼3.8 eV), a peak
in the optical conductivity emerges. This redistribution of spectral weight signals
the spin and orbital ordering changes in YVO3, highlighting the power of optical
methods and ellipsometry in particular. Via the selection rules, the temperature
dependence also provides hints for the assignment of the observed features. Pro-
ceeding in a similar way, we will study the temperature dependence of excitations
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2.5 Correlations and optics

Figure 2.7.: Spin selection rules for inter-site excitations. a) for a ferromagnetically
ordered system. b) for an antiferromagnetically ordered system.

across the Mott gap in Fe3O4 and Ca2RuO4 in chapters chapter 5 and chapter 6,
respectively.

More specific introductions to the questions addressed in this thesis are given
in the later chapters concerning each one of the systems studied.
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Chapter 2: Correlated Electron Systems

Figure 2.8.: The optical conductivity of YVO3 shows the sensitivity of optical methods
to spin and orbital phase transitions. Phase transitions can be detected
by optical spectroscopy through a spectral weight redistribution due to
changes of spin and orbital order which subsequently enhance or suppress
excitations that can be observed given by the selection rules. Focusing
on the c axis, the spectral features at low energies are suppressed while
the ones at high energies become allowed when the sample enters the
low-temperature phase below 77 K. Reproduced from [31].
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3. Optical Spectroscopy

We have to remember that what
we observe is not nature herself,
but nature exposed to our method
of questioning.

Werner Heisenberg

THE BASIC PRINCIPLE of optical spectroscopy is very simple and straightforward,
to direct light onto a sample and see what goes through or gets reflected from it.
Now, if optical spectroscopy were that simple, this chapter would not be needed.
Written more formally, as defined by Dressel and Grüner [32], optical spectro-
scopy is the "information gained from the absorption, reflection, or transmission
of electromagnetic radiation, including models which account for, or interpret, the
experimental results."

Ultimately, the objective of optical spectroscopy is to obtain the so-called dielec-
tric function or, alternatively, the optical conductivity, which describes the optical
properties of the sample. The dielectric function of a material contains contribu-
tions of many phenomena, e.g., lattice vibrations, electronic excitations, or mag-
netic excitations, among others. All these excitations can dramatically change the
absorption spectra providing information about the electronic structure of the ma-
terial.

Optical spectroscopy encompasses a broad energy range from ∼0.5× 10−3 eV
in the far infrared (FIR) to 12 eV in the ultraviolet (UV). For convenience as well
as for historical reasons, many different units are in use in spectroscopy. This
broad range of energies is a great advantage, as it covers many single-particle
and collective excitations present in solids.

Multiple instruments and techniques have to be employed to cover this broad
range of energies due to sources and detectors’ limitations. Fourier transform in-
frared spectroscopy (FTIR) is a well-established technique commonly able to meas-
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ω (cm−1) E (eV) Technique

Far infrared (FIR) 4–400 0.5× 10−3–0.05 F. Transform

Mid infrared (MIR) 400–4000 0.05–0.5 F. Transform & IR-Ellipsometry

Near infrared (NIR) 4000–12500 0.5–1.5 Ellipsometry & F. Transform

Visible (VIS) 12500–25000 1.5–3.1 Ellipsometry

Ultraviolet (UV) 25000–100000 3.1–12 Synchrotron Radiation

Table 3.1.: Frequency and energy range for different segments of the optical part of
the electromagnetic spectrum, accompanied by the preferred experimental
technique to explore such region. Note that the limits of each segment are
not a standard, but are a rough guideline to follow. Adapted from [33, 34].

ure from the far-infrared into the visible, and will be described in section 3.3. Spec-
troscopic ellipsometry can cover from near-infrared (NIR) into the UV in its most
standard configuration and will be described in section 3.4. In the far-infrared,
terahertz spectroscopy is nowadays widely available, whereas synchrotron radi-
ation is used for the ultraviolet region.

First, we will review the basics of light-matter interaction to understand how
we can learn about materials by using light in condensed matter physics. Then,
we describe some key elements in the analysis of optical spectroscopy. Finally,
the experimental techniques used for this work will be introduced, highlighting
key elements of the theory and implementation details behind them. An intro-
duction to optical spectroscopy covering basics, methods, and instrumentation
in condensed matter physics can be found in references [33, 35, 36] and with
considerably more depth in [32].

3.1. Light-matter interaction

When an electromagnetic wave encounters a medium, matter responds to it by
creating electric dipoles, magnetic moments, polarization charges, induced cur-
rents, and others, thus modifying the electromagnetic field within the material.1

The interaction between light and matter can be highly complex, and here we

1There are two processes involving electrons and light: dispersion and dissipation. From a mac-
roscopic point of view, the first has to do with a change in the propagation speed of light in the
material (n) while the second with absorption (k). From a microscopic point of view, what is
known as the dielectric function ϵ is a better quantity to describe the properties of a solid. As
it will be shown later, both descriptions are equivalent.
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3.1 Light-matter interaction

will assume a linear response2 to the electric field vector E. Thus, the response3

of matter at position r and time t when interacting with an electromagnetic wave
given by E(r′, t ′) at position r′ and time t ′ is given by

Di(r, t) =

∫ ∫
ϵi j(r, r′, t, t ′)E j(r

′, t′)dt ′ dr′ (3.1)

where i and j refer to the vector components of the electric field E and displace-
ment field D. Here, ϵi j is the complex dielectric tensor which encodes the response
of matter to the electromagnetic wave. Ultimately, the complex dielectric tensor
summarizes the optical properties of matter.

For most solids, two simplifying assumptions can be considered.

1. assuming a homogeneous solid and for wavelengths much bigger than the
lattice constants, the spatial response depends only on r− r′.

2. assuming that the Hamiltonian does not depend explicitly on time, the time
response depends only on t − t ′.

By using these two considerations, equation (3.1) reduces to

Di(r, t) =

∫ ∫
ϵi j(r− r′, t − t ′)E j(r

′, t′)dt ′ dr′ . (3.2)

Taking the Fourier transform in space and time of equation (3.1)

Di(q,ω) = ϵi j(q,ω)E j(q,ω) (3.3)

the response takes a wavevector q, and frequency ω dependence. Equation (3.3)
shows that the response of matter is dependent on the frequency, and all frequen-
cies are independent of one another. It also shows that the response happens at
the same frequency as the one from the applied external field.4 Both of these facts

2There are some fascinating phenomena when higher orders of E and B are considered. These
usually play a role when the intensity of the light∝ E2 is very high, as encountered in highly
focused laser light.

3The response can be described by many equivalent ways: polarization P, current J, or displace-
ment vector D, each having a different but related representation and physical meaning.

4Due to the linearity of the response when considering an oscillating electric field of the form

E(r, t) = E0 exp[i(q · r−ωt)] (3.4)

the response happens at the same frequency as the one from the applied field. This can be
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are at the core of the power of optical spectroscopy.

Since the wavelength of the electric field is large compared to the lattice spa-
cing5, and since the wave vector is inversely proportional to the wavelength, we
are restricted to probe close to q = 0. In other words, the effect is local. This loc-
ality is paramount in condensed matter physics as it plays a role in the selection
rules of optical transitions. Thus, we can drop the explicit wave vector depend-
ence of our equations.

For example, we can also simplify and consider isotropic media, reducing our
second rank tensor ϵi j(ω) to a scalar function ϵ(ω) called complex dielectric func-
tion

D(ω) = ϵ(ω)E(ω). (3.5)

Now the question is how to go from something that we can measure in a labor-
atory to the response function. This will be covered in sections 3.3 and 3.4 when
discussing the particular experimental techniques used. For now, we will continue
exploring some other essential elements6, which will give us tools to answer this
question.

3.1.1. Optical constants

Once equipped with the dielectric function, other optical properties can be defined.
There are many equivalent ways to describe the interaction of light and matter.
An alternative one is by using a frequency-dependent version of Ohm’s law given
by

j(ω) = σ(ω)E(ω) (3.6)

where σ is the optical conductivity. Both descriptions are analogous, and one can

evidenced by the Fourier transform of equation 3.1.
5A typical value for visible light is 105 cm−1. In contrast, the Brillouin zone extends typically for

about 108 cm−1.
6Until now, no mention to the magnetic field of the electromagnetic wave has been discussed.

Most materials couple very weakly to the magnetic field; this is the case for the materials
investigated in this thesis. This means that magneto-optical effects can be ignored and assume
that µr = 1.
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3.1 Light-matter interaction

go from one to the other by the following transformation

4πi
ω
σ(ω) = ϵ(ω)− 1, (3.7)

Furthermore, an extra set of optical constants commonly used is the complex
refractive index N

N(ω) =
Æ
ϵ(ω) = n+ ik, (3.8a)

n=
1
2

�
ϵ1 +
q
ϵ2

1 + ϵ
2
2

�1/2
, (3.8b)

k =
1
2

�−ϵ1 +
q
ϵ2

1 + ϵ
2
2

�1/2
, (3.8c)

where n is the refractive index and k is the extinction coefficient.

If the reflectivity (R) and the transmittance (T) of a sample can be measured7,
then to obtain ϵ or σ is straightforward since R and T are functions of n and k,
and thus of ϵ (see eq. (3.8)).

T (ω) =
(1− R(ω))Φ
1− (R(ω)Φ)2 , (3.9a)

R(ω) =
(n(ω)− 1)2 + k2(ω)
(n(ω) + 1)2 + k2(ω)

, (3.9b)

Φ(ω) = e−2ωk(ω)d/c, (3.9c)

where d is the sample thickness, c the speed of light in vacuum. Furthermore, if
k� n, a simplification for the reflectivity can be achieved as

R(ω) =
(n(ω)− 1)2

(n(ω) + 1)2
(3.10)

7Experimentally, we cannot measure the exact same sample. Equation eq. (3.9b) is valid for a
semi-infinite sample to avoid contributions from the back side of the sample. Whereas equation
?? assumes finite thickness.
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3.1.2. Kramers-Kronig relations

Due to causality, there cannot be an absorption before the beginning of the ex-
periment. This means that the real and imaginary parts of a response function,
e.g., ϵ or σ, are not independent of each other, see fig. 3.1. Both quantities are
related through what is known as a Kramers-Kronig relation [32]. Considering
the response function ϵ = ϵ1 + iϵ2, the real and imaginary parts are related as
follows

ϵ1(ω) = 1+
2
π
P
∫ ∞

0

ω′ϵ2(ω′)
ω′2 −ω2

dω′, (3.11a)

ϵ2(ω) = − 2
πω
P
∫ ∞

0

ω′2[ϵ1(ω′)− 1]
ω′2 −ω2

dω′, (3.11b)

where P is the principal value of the integral. Ultimately, the absorption at a
frequencyω implies that a shift in the phase at other frequencies (ω′) is required
not to violate causality. The reverse also holds, a change in the phase at a specific
frequency necessarily is connected to an absorption.

Kramers-Kronig analysis is a powerful tool, but it also provides some challenges.
As shown in the previous equation, knowing the full spectrum of ϵ2, from 0 to∞
is needed to construct the real part of the dielectric function. Experimentally, it
is not possible to know the full absorption spectrum of a sample. This means that
an extrapolation to low and high frequencies has to be made. This step is critical
to the whole procedure and may generate errors, affecting particularly close to
the measured frequency window’s borders.

Similar expressions can be found for other response functions or derivations
like the reflectivity R(ω). This is the main ingredient to obtain the real part of the
optical conductivity σ1 from reflectivity measurements performed with a Fourier
spectrometer, as explained in the section 3.3.

3.1.3. Oscillators

To describe the features observed in optical spectroscopy, different functions de-
scribing the dielectric function are used. The absorption features can be de-
scribed by various lineshapes, whose shape can provide some information about
the nature of the absorption in question.
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3.1 Light-matter interaction

Figure 3.1.: Top: A wave packet existing for t > 0 as input A. Such a wave packet is
formed by many Fourier components. Middle: One such component is B,
which extends in time from −∞ to∞. Bottom: If such component B is
subtracted from input A, the result would be an output containing contri-
butions for t < 0, which would violate causality. To mend this situation,
the phases of all other Fourier components change. Thus the absorption
at a certain frequency is linked to the phase at all other frequencies, which
is encoded in the Kramers-Kronig relations given in equations (3.11). Re-
produced from [32].
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The most standard lineshape to describe an excitation is a Drude-Lorentz one.
It comes naturally when considering a bound charge driven by an external electric
field in a harmonic potential, and can be used to describe free electrons in a metal
or bound electrons in insulators.

The definition of a Drude-Lorentz oscillator is given by

ϵDL = 1+
4πNe2

m
1

ω2
o −ω2 − iωγ

(3.12)

where N is the effective number of electrons, e the electron charge, m the elec-
tron mass, ω0 the center frequency, and γ the damping. Separating in real and
imaginary parts one obtains

ϵ1(ω) = 1+
ω2

p(ω
2
0 −ω2)

(ω2
0 −ω2)2 +ω2γ2

, (3.13a)

ϵ2(ω) =
ω2

pω/τ

(ω2
0 −ω2)2 +ω2γ2

, (3.13b)

ω2
p =

4πNe2

m
(3.13c)

When considering unbound charged particles as in the case of metals, ω0 = 0,
and in such case, it is called Drude oscillator8.

Even when the Drude-Lorentz oscillator is pervasive and a good descriptor of
many physical phenomena, nature is not so simple. Factors like instrumental
function, bandgap, coupling to a continuous background, and interactions can
strongly influence the lineshape of an excitation. This leads to the introduction
of other lineshapes. The most common ones are the Gaussian and Tauc-Lorentz
oscillators.

In the case of the Gaussian lineshape, the imaginary part (ϵ2) is defined as
follows [37]

ϵG
2 (ω) = Ae−4 ln2(ω−ω0

σ )
2 − Ae−4 ln2(ω+ω0

σ )
2

(3.14)

where A, ω0, and σ are the amplitude, peak frequency, and full width at half
maximum, respectively. Note that the second term produces an inverted Gaussian

8In the Drude and Lorentz lineshapes, an explicit analytical description of the full dielectric
function is available, but this is not the general case.
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3.1 Light-matter interaction

at −ω0, thus outside of the physical range. The introduction of such a term is
needed to assure that causality is not being violated. The real part (ϵ1) is defined
to be Kramers-Kronig consistent as follows

ϵG
1 (ω) =

2Ap
π

h
D
�

2
p

ln2
ω+ω0

σ

�
− D
�

2
p

ln2
ω−ω0

σ

�i
(3.15)

where D is the Dawson function9.

Another useful lineshape is the Tauc-Lorentz [38]. This lineshape provides a
generalization to the Lorentz one and allows for asymmetric lineshapes, thus be-
ing able to account for, e.g., a bandgap.

ϵT L
2 (ω) =

Aω0γ(ω−ωg)2

(ω2 −ω2
0)2 + γ2ω2

Θ(ω−ωg)

ω
(3.16)

where A, ω0, and γ are the amplitude, peak frequency, and damping constant,
respectively, as for the Lorentz model. The new parameter ωg is the bandgap
frequency, and Θ is the Heaviside function yielding a value of ϵT L

2 = 0 for fre-
quencies below the bandgap. The real part of the dielectric function is obtained
through a Kramers-Kronig transformation [38]. Compared to the Lorentz or Gaus-
sian lineshapes, the Tauc-Lorentz lineshape has the drawback of needing an extra
parameter.

The imaginary part of the dielectric function of the three previously described
oscillators is shown in fig. 3.2. We can observe how the Gaussian oscillator (left)
contributes mainly around the center and rapidly goes to 0. In this case, with
σ = 0.5eV, at a distance of 1 eV from the center the contribution is already mar-
ginal. In contrast, the Lorentz oscillator (middle) shows a broader contribution
with a softer decay. In this example, there is still a considerable contribution to
ϵ2 for energies which are about 1.5 eV above the peak frequency. On the other
hand, the Tauc-Lorentz oscillator (right) shows how the extra parameter can in-
troduce a strong asymmetry in the lineshape. Here, ϵ2 sharply goes to 0 on the
left of the center reaching it at ωg = 1.5eV whereas, towards the right, it extends
considerably.

Beyond oscillators, other types of contributions can be included in modeling
the optical response of a material. One such contribution is ϵ∞, which is a con-
stant real value and accounts for high-energy contributions to ϵ1. Poles are con-

9The Dawson function is defined as D(x) = e−x2 ∫ x
0 et2

d t.
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Figure 3.2.: Comparison of the imaginary part of the Gauss, Lorentz, and Tauc-Lorentz
oscillators. For the Lorentz oscillator, A corresponds to ω2

p in eq 3.13. The
parameters for each oscillator are indicated in the plot.

tributions to ϵ1 of excitations far outside the measured range, providing some
dispersion in ϵ1. Their functional form is given by

ϵ
pole
1 (ω) =

A
E2

n − E2
(3.17)

where A is the magnitude in eV2 and En is the energy position of the pole.

An optical model can be built by using a combination of oscillators and other
contributions. Building models is a significant step in analyzing Fourier trans-
form spectroscopy and spectroscopic ellipsometry, as will be described in their
respective sections. In this model building process, care must be taken to keep
the constructed and then fitted model physical. Since, in most cases, the paramet-
ers in oscillators are linked to physical processes, by building a model, one can
estimate some microscopic information about the sample under study.

An optical model is given by the sum of lineshapes and other contributions as
follows

ϵ(ω) = ϵ∞ + ϵDrude + ϵpoles +
∑
ϵLorentz +
∑
ϵGauss + . . . (3.18)

where ϵ∞ is a real value that accumulates all the high-energy contributions to ϵ1.

3.2. Sample preparation

In studying crystals, it is vital to know their crystallographic orientation before
doing a measurement. The orientation of a sample is achieved by the x-ray Laue
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method. Once oriented, the sample can require cutting to provide the oriented
surface. In some fortunate cases, the crystal can be readily cleaved to expose a
well-defined surface.

Once cut and oriented, the sample is lapped down and polished to obtain a
uniformly flat and smooth surface as required in optical methods. To lap the
sample, a cast iron plate is used together with an aluminum oxide water suspen-
sion of 3µm sized particles. Lapping a sample is also used to thin out samples
for transmission measurements when required. After the lapping procedure, the
sample is polished to obtain a smooth and shiny surface. This is important since,
after lapping, the surface is coarsely grained, producing strong scattering and
losing specularly reflected light. A plate made of polyurethane foam is used to-
gether with a fine colloidal suspension of SiO2 of 0.032µm in water. For transmis-
sion measurements, both sides of the sample have to be polished, whereas, for
reflectivity-based measurements, only one side is needed. The plate is placed on
a Logitech PM2 machine in both cases, which rotates it at a constant speed up to
50 rpm.

After lapping and polishing, the sample is transferred to a sample holder. In
most cases, silver paste is used to glue the sample due to good thermal conduct-
ivity. When doing transmission measurements, the sample holder contains an
aperture to let the light go through. The aperture size has to be the same for the
reference and sample.

3.3. Fourier spectroscopy

Fourier transform spectroscopy is a very versatile technique to investigate the
optical properties of materials. Nowadays, it is a well-established technique in
many areas of physics, chemistry, environmental sciences, and industry10. In-
depth descriptions are readily available [33, 39, 40], thus we are going to focus
on the basic principles of Fourier transform spectroscopy.

At its core, Fourier spectroscopy is an interferometric technique. A detailed
scheme of the Bruker IFS 66v instrument’s experimental setup used in the labor-
atory is shown in fig. 3.3. Using a Michelson interferometer, the white light from
a source is separated in two and then merged with the addition of time-dependent
path difference through a moving mirror. After the production of the interference
10Outside the laboratory, uses of Fourier spectroscopy can be found in diverse areas, for example,

food processing, quality control, pharmaceutics, and forensics. There are even devices small
enough to be used in the field.
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Figure 3.3.: Fourier transform IR setup. Light from the source is directed to the Michel-
son interferometer. Later the beam goes through a polarizer and is focused
onto the sample. Afterwards, the light is collected and directed into the
detector. Reproduced from [41].

pattern11, the light is optionally polarized and then focused onto the sample/aper-
ture. The transmitted light is then collected and focused onto a detector where
the interferogram is recorded. Once the interferogram is obtained, a Fourier trans-
form is applied to obtain the intensity spectra. The following ratios then give the
transmitivity/reflectivity

T (ω) =
S t

s (ω)

S t
r(ω)

, (3.19a)

R(ω) =
S r

s (ω)

S r
r (ω)

(3.19b)

where Ss, and Sr are the sample and reference spectra, respectively, and the su-
perscripts t and r refer to the transmitted and reflected cases.

This technique provides two significant advantages when compared with dis-
persive spectroscopic techniques that use a grating monochromator. The first one
is called Fellgett or multiplex advantage, amounting to an improvement of the

11Effectively performing a physical Fourier transform! Thus the name of the technique.
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signal-to-noise ratio (SNR) through an increased number of measurements in a
given time interval compared to dispersive methods. An amount of N independ-
ent measurements can be done at the same time interval that would take for a
dispersive technique to measure one single spectrum consisting of N frequency in-
tervals. This leads to an improvement of the SNR on the order of

p
N . The second

advantage, called Jacquinot or throughput advantage, stems from the fact that
no narrow slit is needed, but circular apertures can be used leading to less light
intensity being lost. This increases the light intensity reaching the sample and
detector. This is particularly critical in frequency regions where the light sources
have very low intensity, like in the far-infrared. Both together also imply a reduc-
tion in acquisition time. Other advantages are an excellent frequency calibration
and a very high resolution of the order of 0.01 cm−1.

However, not everything is so perfect in experimental physics. There are two
main disadvantages to FTIR. The first one is that it requires a reference measure-
ment, namely an open aperture for transmission, or, e.g., gold surface for reflec-
tion. Since reference and sample cannot be measured simultaneously, having to
measure twice implies that drifts in the light sources’ output, particularly for long
measurements, can introduce errors in the acquired spectra. The second disad-
vantage is that when reflection and transmission cannot be obtained, Kramers-
Kronig analysis is employed. This limits the measurements’ sensitivity due to pos-
sible artifacts introduced through the extrapolations performed in the Kramers-
Kronig process, as discussed in section 3.1.2.

Once the reflectivity is measured, we want to extract the dielectric function, and
for that, we have two options. The first one is to use a Kramers-Kronig analysis.
For this, we take a more general expression [42] than equation 3.9b

Æ
R(ω)eiϕr (ω) =

1−pϵ(ω)
1+
p
ϵ(ω)

(3.20)

where ϕr(ω) is the phase shift experienced by the electromagnetic wave upon
reflection. In reflectivity, the value of the phase is lost since the employed detector
can measure only the intensity of the light but it can be reconstructed by using
the following Kramers-Kronig formula

ϕr(ω) = −2ω
π

P

∫ ∞
0

ln
p

R(ω′)
ω′2 −ω2

dω′ (3.21)

As seen in section 3.1.2, the use of the Kramers-Kronig relations means a know-
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ledge of the full spectrum. Since this is not possible, extrapolations to low and
high frequencies are used.

The second option is to build an oscillator model that can be used to fit the
reflectivity derived from it to the measured reflectivity. Alternatively, a combined
strategy can be employed, where the oscillator fit is used to provide the extrapol-
ations for the Kramers-Kronig analysis.

3.3.1. Setup and measurement

The spectrometer used is a Bruker IFS 66/v, and its scheme is shown in fig. 3.3.
The set of detector, polarizer, cryostat windows, beam splitter, and lamp were
chosen to maximize the signal in the mid-infrared range 0.2 eV to 1.1 eV.

Liquid nitrogen cooled MCT (HgCdTe) detector with a proper calibration was
used. The spectrometer is maintained at approximately 10 mbar throughout the
measurements. Also, it is continuously being flushed with N2 to reduce the ab-
sorption lines of common elements in air.

The sample is placed into a He-flow cryostat, with a temperature range from
about 4 K to 500 K and with a 0.1 K temperature stability. The cryostat pressure
is kept below 10−5 mbar to avoid the build-up of ice on the surface of the sample
as it could produce artifacts like interference fringes on the acquired spectra.

The sample and aperture are placed on the same axis but might have slightly
different positions. First, the sample is measured and immediately after the ref-
erence is measured under the same experimental conditions. For each measure-
ment, the vertical and horizontal positions, together with the azimuthal angle,
are optimized to obtain the maximum intensity at the detector.

3.3.2. Spins, phonons, and light: bimagnon-plus-phonon
absorption

Since in chapter 4 we will be concerned with magnetic excitations, the question
is what and how can we learn from these low-dimensional quantum spin systems
with infrared spectroscopy. To a first approximation, only electric-dipole-allowed
excitations are probed by optical spectroscopy. Thus, we have to find a way to
study the spin-spin correlation function by measuring the dipole-dipole correla-
tion function. A magnetic excitation, or spin-flip, has∆Sz = 1. Spin conservation
in optical spectroscopy implies that ∆Sz = 0 has to be fulfilled. This means that
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Figure 3.4.: Local (planar) environment of the spins in 2D cuprates. Small orange circle
is copper, and big gray circle is oxygen. Left: The structure is inversion
symmetric upon spin exchange. Right: Bond-stretching phonon breaks the
symmetry, and IR absorption becomes weakly allowed.

the optical excitation of a single magnetic excitation is not possible12, and spin
degrees of freedom are not directly accessible by linearly polarized light.

Due to the presence of an inversion center in the tetragonal structures of cu-
prates, as shown in fig. 3.4 (left), an asymmetric displacement of charge is not
possible in this material and, thus, no electric dipole to couple to and observe.
One alternative to circumvent this limitation and fulfill the optical selection rule,
is to have two magnetic excitations with a total spin of zero involved in the pro-
cess. When a general Hamiltonian, including lattice and spin degrees of freedom
coupling to an electromagnetic field, is considered, the Taylor expansion at second
order in the ion’s displacement and the electric field produces spin-dependent ef-
fective dipole moments terms [43]. Thus, the observation of magnetic excitations
employing FTIR in this class of materials is then possible by the simultaneous ex-
citation of two elementary magnetic excitations plus a bond-stretching symmetry
breaking phonon [44]. This mechanism is commonly referred to as bimagnon-
plus-phonon absorption13. The phonon breaks the symmetry along the Cu-O-Cu
bond (fig. 3.4 right), such that the exchange of two spins now creates a weak
effective dipole moment, thus making the whole process infrared active.

As it will be discussed in chapter 4, this approach has been particularly success-
ful in describing magnetic excitations in spin chains [45, 46] and 2-leg ladders
[47].

12This is the case when neglecting spin-orbit coupling.
13The name is slightly misleading because the magnetic excitation changes in character depending

on the dimensionality of the system, but calling it double-"magnetic excitation"-plus-phonon
would be too cumbersome.
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The simultaneous excitation of a phonon has some consequences. Besides
breaking the symmetry, it adds momentum and an energy shift to the process.
Since the photon transfers almost no momentum, and because of momentum
conservation, ktotal ∼ 0 and ktotal = kph + km1

+ km2
. This means that the two

magnetic excitations are created with arbitrary momentum, and since kph covers
the whole Brillouin zone, the observed absorption is a weighted average over the
Brillouin zone. Due to energy conservation, the energy scale will be shifted as the
phonon also carries energy. Since only optical phonons are involved in this pro-
cess, it is safe to consider dispersionless phonon modes, and the shift considered
is ħhωph.

3.4. Spectroscopic ellipsometry

Spectroscopic ellipsometry (SE) is a very sensitive method to determine the op-
tical constants of materials. This technique particularly excels in studying and
characterizing thin films and has wide applications in areas like semiconductors,
chemistry, and real-time monitoring of PVD, CVD, and MBE growth processes. A
selection of various books covering ellipsometry in great depth can be found in
the following references [48–50]. Here the basic principles behind ellipsometry
will be described, with a focus on bulk materials.

The core strength of ellipsometry resides in being able to measure two inde-
pendent quantities simultaneously. Having two measured quantities amounts to
be able to determine the full dielectric function in the measured energy range
without resorting to extrapolations as required for a Kramers-Kronig analysis, as
seen in section 3.1.2. The price to pay is that, in a general case, there is no in-
vertible relationship between the measured quantities and the optical constants
of the material. This means that building an optical model is a necessary and crit-
ical step for interpreting the measured data. However, since the two measured
quantities are physically related, as shown in section 3.1.2, a strong constraint is
placed to model the optical properties. A second advantage is that ellipsometry
is a self-normalizing technique, which removes the need for a reference sample
and issues related to fluctuations in the light source.

Ellipsometry has two general restrictions, one related to the surface roughness,
and another to the light beam’s angle of incidence. The sample’s surface rough-
ness has to be small since the light scattering produced by it strongly reduces
the reflected intensity, making it challenging to determine the polarization state.
When the surface roughness’s size exceeds about 30% of the wavelength being
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measured, the error increases considerably. In ellipsometry, the measurement has
to be performed at an oblique angle14 because close to normal angle of incidence,
it becomes tough to distinguish between p- and s- polarizations since they become
the same for normal incidence (see ??). Despite these restrictions, spectroscopic
ellipsometry can achieve excellent quantitative results.

3.4.1. Ellipsometric angles

First, we need to describe the polarization state of the electromagnetic wave. We
can split the electric field vector into two components, parallel (Ep

i,r) and perpen-
dicular (Es

i,r) to the plane of incidence. Figure 3.5 shows the basic geometry of
how the physics behind ellipsometry works for fixed photon energy. A linearly
polarized wave with amplitude Ei and wave vector ki impinges on the surface of
the sample under study. Upon reflection, a wave with field amplitude Er emerges
with the same wave vector magnitude (|kr |= |ki|) but with a different amplitude
and polarization state.

Ellipsometry measures the ratio of amplitudes (Ψ) and the relative phase differ-
ence (∆) between the parallel and perpendicular components of the reflected elec-
tromagnetic wave. The incidence angle is usually close to the Brewster angle15,
because there we find the maximal difference between the Fresnel coefficients for
parallel (rp) and perpendicular (rs) components.

The ratio between reflected and incident field amplitudes for p- or s- polariza-
tion are called Fresnel coefficients and are given as

E r
p

E i
p

= rp(ϵair ,ϵbulk;θ ) (3.22a)

E r
s

E i
s

= rs(ϵair ,ϵbulk;θ ). (3.22b)

In the most simple case of a bulk sample in air, they are a function of the corres-
ponding dielectric functions and the angle of incidence. Fresnel coefficients are
complex quantities, which can be written in polar form as

14In contrast to Fourier transform spectroscopy where the angle of incidence can be normal for
transmission and almost normal, about 11◦, for reflection measurements.

15The Brewster angle depends on the frequency of light ΘB = ΘB(ω).
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Figure 3.5.: Ellipsometry consists, in its most basic setup, of linearly polarized light that
interacts with the surface of the sample with the reflection being measured.
Due to the interaction, the polarization state changes depending on the
optical properties of the sample. In the general case, the polarization’s
elliptical state is obtained because of a change in the amplitudes and a delay
of one component of the polarization relative to the other. Reproduced
from [51].

36



3.4 Spectroscopic ellipsometry

rp = |rp| eiδrp (3.23a)

rs = |rs| eiδrs (3.23b)

where is clear that upon reflection an attenuation and phase delay are introduced.
The connection between the so-called ellipsometric angles Ψ and∆ and the phys-
ical properties of a sample, namely the Fresnel coefficients, is given by

ρ =
rp

rs
= tanΨei∆ (3.24)

Using the polar representation given in equations (3.23) one obtains

tanΨ =
|rp|
|rs| (3.25a)

∆= δrp −δrs (3.25b)

which means that Ψ and∆ are the ratios of the electric field amplitudes and phase
difference between the reflected p- and s-polarizations.

Naively, one can consider the bulk sample under investigation to be infinite and
isotropic. In this particular case, a direct inversion from the ellipsometric angles
(Ψ,∆) to what is called the pseudo-dielectric function 〈ϵ〉 is possible and given as

〈ϵ〉= sin2 θ

�
1+
�

1−ρ
1+ρ

�2
tan2 θ

�
(3.26)

where θ is the angle of incidence and ρ is defined as in equation (3.24) [52].
Since we are interested in the samples’ bulk properties, we could stop here as is
commonly done.

However, we know that the bulk-air interface is not perfectly flat, or the mater-
ial can have some anisotropy. Both of these cases cannot be described by such a
simple analysis as given by equation (3.26), leading to erroneous results. Thus, a
more sophisticated analysis method is presented later on in section 3.4.3.
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3.4.2. Setup and measurement

The ellipsometer used throughout the measurements is a J.A. Woollam VASE unit,
corresponding to a rotating analyzer ellipsometer. It consists of three main units:
monochromator unit, and the source and detector arms, as shown in fig. 3.6.
Multiple angles of incidence, in the range 20◦ to 90◦ can be measured by rotating
the sample stage and the detector arm.

The light is provided by a single source, a broad-band Xenon lamp, located
in the monochromator unit. The monochromator unit also hosts two reflection
(Czerny-Turner) gratings to perform the chromatic dispersion, which later is fo-
cused on the exit slit and delivered to the source arm of the ellipsometer through
an optical fiber.

At the source arm, an initial linear polarizer is used to select a particular po-
larization state. Then the autoretarder, consisting of a computer-controlled MgF2
Berek waveplate, turns the linear state into an elliptical one. After interaction
with the sample, the light beam goes to the detection arm. The detection arm
contains a constant speed rotating analyzer and two detectors, a Si diode and an
InGaAs photodiode covering two distinct energy ranges. Through the parameters
of a fit of the modulated intensity, the values of Ψ and ∆ are extracted.

The introduction of an autoretarder obeys the following rationale. If the reflec-
ted light is nearly linearly polarized, the ellipsometer has very low precision. This
happens when ∆ is close to 0 or 180◦. An autoretarder allows a higher level of
accuracy by avoiding this situation and allowing the ellipsometer to differentiate
between ∆= δ and ∆= 360◦ −δ.

To perform temperature-dependent measurements, the setup is equipped with
a KONTI flowing Helium cryostat manufactured by Cryovac and kept in UHV con-
ditions to reduce the build-up of absorbates, which strongly affect the measured
properties of the sample. This cryostat is capable of attaining temperatures ran-
ging from 12 K to 500 K. The temperature accuracy at the sample is ±1 K with a
stability better than 0.2 K throughout a measurement. Due to this cryostat design,
the angle of incidence is constrained to a few particular values, the most used be-
ing fixed at 70◦. When using the cryostat, a calibration procedure is performed
against an in-situ silicon wafer reference sample to account for the effects of the
entrance and exit windows as well as slight off-angle measurement on the polar-
ization state of the light.
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Figure 3.6.: Ellipsometer setup scheme: Light is generated by a Xe lamp, which goes
through a monochromating unit (two diffraction gratings) before being
sent through an optical fiber to the source arm. There a polarizer and
auto-retarder manipulate the polarization state before the light reaches the
sample at an angle of θ . On the detector arm, a rotating analyzer is placed
before the detector stack. The sample can be placed in a liquid-Helium
cryostat allowing low-temperature measurements. Reproduced from [51].

3.4.3. Data analysis

The data analysis of the ellipsometric data, namely, the ellipsometric angles, is
a critical step. The analysis is performed in the WVASE software provided by
J.A. Woollam, which is highly specialized in analyzing ellipsometric data. Still,
ellipsometry analysis is somewhat more art than science.

As stated before, once more complex situations than a pure bulk material are
considered, an optical model must be built. The workflow of the data analysis can
be seen in fig. 3.7 and can be summarized as i) construction of an optical model,
ii) selection of dielectric functions, iii) fit model to ellipsometric angles, iv) and
evaluate. Effectively, we search for the values of ϵ1 and ϵ2 that, given the optical
model, reproduce the ellipsometric angles measured.

Since ellipsometry is a very surface-sensitive technique, a more sophisticated
analysis is required to obtain the sample’s proper bulk dielectric function. To
achieve this, a multilayer formalism is used, which is a generalization of the core
principle of bulk ellipsometry. Although very elegant, a full account of the mul-
tilayer formalism to analyze ellipsometric measurements is beyond the scope of
this work. For us, in most cases, the primary source of error in the determination
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Figure 3.7.: The workflow to analyze the ellipsometric data starts with the construction
of an optical model. In our case, the model consists only of a substrate,
which is equivalent to our bulk material and a surface roughness layer of
a certain thickness. In the second step, we populate the optical model
with a set of oscillators. These oscillators are chosen to approximate the
measured ellipsometric data. A fit of the optical model’s parameters is
performed between the Ψ and ∆ given by the model and the measured
ones. Reproduced from [50].
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Substrate/Bulk

Film

r01
t01

r12

t12

Figure 3.8.: When encountering a system of a bulk sample and a film one has to consider
two interfaces and multiple reflections originating from them. Interfaces
01 and 12 are between ambient/film and film/substrate, respectively.

of the dielectric function of bulk materials is the existence of a surface roughness
layer.16

When considering an extra layer on top of the bulk, as shown in fig. 3.8, equa-
tion (3.26) is not valid since the relationship is not invertible. Without going into
the derivation, when considering two interfaces, the ratio between reflected and
incident light is a function of the Fresnel coefficients at both interfaces r01 and r12

and given by [48]

E r

E i
=

r01 + r12e−i2β

1+ r01r12e−i2β
(3.27)

where β is the optical thickness of the film which depends on the thickness d,
wavelength λ, and angle of incidence θ given by

β = 2π
d
λ

q
n2

1 − n2
2 sin2 θ (3.28)

Equation (3.27) holds for both polarizations, parallel and perpendicular. By
combining both orientations, the ellipsometric angles are obtained. Here it is
very explicit the difficulty of ellipsometry as, in principle, there are five unknown

16Effectively this also could consider other things like adsorbates, surface reconstruction, or slight
surface oxidation.
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parameters for a single thin layer on top of the substrate ϵbulk, ϵ f ilm, and the
film thickness but only two measured values. Usually, the film’s thickness is an
externally known parameter that is independent of the photon energy. Measuring
at different angles or with different thicknesses for the thin film can provide the
extra information needed.

In the context of investigating bulk materials, we assume that the thin film
is, effectively, only a surface roughness of undetermined thickness but with op-
tical properties defined by the bulk material. This thin film is present in our ex-
periments regardless of how well we prepare the surface by careful polishing.
Eventually, oxidation or adsorbates (contamination) will always be present since
the sample preparation is done ex-situ. Previous work in this setting established
that the data for single crystals, the measured pseudo-dielectric function < ϵ >
is almost independent of the angle of incidence, thus indicating that such cover
layer must be thin [31]. Thus, the measured optical properties are primarily de-
termined by the bulk and only marginally impacted by the thin cover layer of
adsorbates. This cover layer’s primary effect is an energy-dependent vertical shift
of the calculated dielectric function of the bulk material that does not change the
relative spectral weights of the features as a function of temperature. Regard-
less, we aim to take this thin cover layer to obtain absolute values of the bulk
optical properties. Due to this situation with the cover layer, measurements are
performed in one extended session to avoid or minimize issues with an evolving
surface layer or other measuring device drifts.

The most straightforward way to account for surface roughness effects is by us-
ing an effective medium approximation (EMA). In this approximation, an equally
weighted average of the dielectric functions at the interface, in this case, the bulk
and air/vacuum, are used as the dielectric function of a thin film representing the
surface roughness. Using such an approximation reduces the number of paramet-
ers to determine by two since the thin layer’s dielectric function is given only by
the dielectric function of the bulk material.

Now, the problem is how to determine the thickness of such a thin cover layer.
A strategy to do so is to look for a non-absorbing region and do a fit of the EMA
cover layer thickness using a Cauchy model for the bulk in that region. Going
into a non-absorbing region implies that the optical parameter k is absent; thus,
instead of having three parameters (n, k, d) to determine, we only have two. In
the case of materials that show no transparent region in the measured range, then
a reasonable thickness is used.

To obtain the optical constants from the ellipsometric angles, there are two
main strategies. The first tries to fit the data point-by-point at each measured
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wavelength. At each measured wavelength, the best ϵ1 and ϵ2 are chosen to de-
scribe the measured Ψ and ∆ given a model. This strategy has the advantage of
assuming very little about the sample being investigated and performing quickly.
However, it has some problems, like not being necessarily Kramers-Kronig con-
sistent, or in some cases, not converging. The second option is to build an oscil-
lator model, as discussed in section 3.1.3, and fit the parameters to the measured
data. This strategy has the potential to describe microscopic features, but it is not
guaranteed or necessary that an oscillator used in the modeling has a physical
meaning. Compared with the point-by-point strategy, this has the advantage of
using a reduced set of parameters to fit and being Kramers-Kronig consistent if
the oscillators used are so.

Once a fit is obtained, it is evaluated to see if it is consistent and makes physical
sense. At this step, the analysis can be considered done, or if the fit is not good
enough, the optical model can be further modified and refined to describe the
measured data better.

In the case of anisotropic samples, to fully describe the dielectric function one
needs to measure different orientations and then fit them simultaneously with a
anisotropic-aware model [49, 50]. Alternatively, one may use eq. eq. (3.26) to ob-
tain the pseudo-dielectric function instead, which often is a good approximation
in layered systems.
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4. La2Cu2O5: a 4-Leg Spin-1/2
Ladder System

THE DISCOVERY OF unconventional superconductivity at relatively high temper-
atures in the two-dimensional doped cuprates [4] gave a substantial research
boost to the whole field of low-dimensional quantum spin systems. Two reas-
ons behind this are the suggestion of a close relationship between magnetism
and high-temperature superconductivity [53], and the belief that the relevant
physics emerges from the degrees of freedom on the planes. The parent com-
pounds of the high-temperature superconductors consist of stacked CuO2 layers,
which are considered to be the best experimental realization of 2D square-lattice
Heisenberg antiferromagnets. This has led to the exploration of alternative low-
dimensional magnetic systems in transition-metal oxides like vanadates, mangan-
ites, nickelates, and of course, cuprates, looking for clues and hints to understand
the microscopic mechanisms of superconductivity at high temperature. For ex-
ample, quite recently, Li et al. [54] reports superconductivity in a nickelate layered
system which is isostructural to copper oxides layered systems.

Although a lot is known, the understanding of low-dimensional quantum spin
systems is still far from complete. Here, we are interested in how the properties of
spin ladders evolve with an increasing number of legs. It is expected that a cros-
sover to the 2D square lattice can be approached by adding more and more legs.
Thus, the aim is that through the study of the ground state and elementary excita-
tions of S = 1/2 n-leg ladders, new insights can be gained towards understanding
the parent compounds of high-temperature superconductivity [55].

4.1. Low-dimensional quantum spin systems

Dimensionality plays a significant role in the behavior of materials, e.g., the shape
of the density of states is strongly influenced by it. In magnetic systems, as the
dimension and spin are reduced, quantum fluctuations become increasingly more
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relevant. For example, in the 2D S = 1/2 square lattice, long-range order is
achieved only at T = 0. The appearance of long-range order in actual materials at
T 6= 0 is due to finite 3D coupling [56]. Also, in the 1D S = 1/2 chain, not even at
T = 0 long-range magnetic order is achieved [57]. This means that fundamental
to low-dimensional quantum spin systems is the concept of spin liquids1 where
the ground state is dominated by these strong quantum fluctuations that suppress
long-range magnetic order.

A way to describe spin liquids, pioneered by Anderson [53], is called resonating
valence bond (RVB). This model considers a ground state of nearest-neighbor
singlet ( 1p

2
[|↑↓〉 − |↓↑〉]) pairs. This resonating valence bond picture is supported

in the 2- and 4- leg ladders by mean field [58], density matrix renormalization
group (DMRG) [59, 60], Quantum Monte Carlo (QMC) [61], Lanczos [55], and
variational ansatz [62, 63]. Analogous to the carbon single and double bonding
in aromatic rings found in organic chemistry, where the double bond alternates
position, in an antiferromagnetically ordered spin system, the singlets alternate
pairing partners.

The lack of long-range magnetic order in spin liquids leads to new magnetic
excitations different from magnons found in long-range ordered systems. For
example, optical spectroscopy studies and inelastic neutron scattering have shown
the existence of triplet bound states in S = 1/2 two-leg ladders. These bound
states stem from strong triplet-triplet interactions. The way spins pair is essential
as it provides a way to form charged hole pairs when doped, possibly giving rise
to charge density wave or superconducting states in these materials [55]. These
magnetic excitations will be explored in more detail in sections 4.1.1 and 4.1.2,
for chains and 2-leg ladders, respectively.

It is worthy of mentioning that nowadays, in theoretical circles, the emphasis
has moved towards topological aspects [64].

4.1.1. Spin chain

The lowest-dimensional extended spin structure is the 1D spin chain. It is also
a relevant system because it provides a way to test exactly solvable theoretical
models or to test and benchmark numerical calculations against experimental
realizations like the spin-1/2 chain Sr2CuO3 or the spin-Peierls system 2 CuGeO3.

1Analogous to real liquids, the correlations, magnetic in this case, are very short-ranged leading
to short-range order.

2A spin-Peierls system consists of a dimerized spin chain.
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4.1 Low-dimensional quantum spin systems

a)

b)

Figure 4.1.: Two sketches of the ground state of a spin-1/2 chain. a) Classical Neél
ground state. b) Resonating valence bond picture of the ground state
showing two resonating configurations of singlets.

Chains also provide an excellent playground where to understand and visualize
some of the physics of low-dimensional systems.

The spin-1/2 Heisenberg antiferromagnetic chain is one of the simplest quantum
many-body systems. Thus it has attracted much interest since the early days of
quantum physics. It is simple enough to have an exact analytic solution through
the Bethe ansatz [15]. Regardless of this apparent simplicity, it shows a lot of
exciting physics. Some of this wealth of physics will be exposed in the following.

In its most simple scenario, an array of spins can be considered to have only
nearest-neighbor interactions3. The Hamiltonian of such a Heisenberg spin chain
can be written as

H = J
∑

i

SiSi+1, (4.1)

where Si are the spins of the chain, and J their coupling strength. The interesting
case is when the coupling is positive, J > 0, where the interaction is antiferro-
magnetic. In contrast to the ferromagnetic case, where the ground state shows
a parallel alignment of the spins, in antiferromagnetic chains, the classical Néel
configuration as shown in fig. 4.1a) is not the ground state. Instead, the ground
state is better represented by a collection of singlets in the resonating valence
bond model, which schematically is shown in fig. 4.1b). Regardless of this, the
Néel picture can be used to draw some quick understanding of the systems.

The elementary excitations of a Heisenberg antiferromagnetic spin-1/2 chain
are described by spinons with spin 1/2. Since a spin flip changes Sz by±1, spinons
are excited in pairs [45, 65]. A spinon can be visualized, semiclassically, as a

3When considering further interactions, frustration effects set in enhancing the quantum fluctu-
ations.
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Chapter 4: La2Cu2O5: a 4-Leg Spin-1/2 Ladder System

Figure 4.2.: Semiclassical picture of a spinon as a domain wall is indicated as the blue
dashed bar between two magnetic domains. When creating an excitation
via a spin-flip, two spinons (domain walls) are created as indicated by the
green spin. Adapted from [34].
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Figure 4.3.: Left: Schematic of the two-spinon continuum [66]. Right: Inelastic neutron
scattering (INS) and theory excitation spectra of the magnetic excitations
of CuSO4. Most of the weight is located close to the lower boundary of
the two-spinon continuum. Reproduce from [67].

domain wall between two magnetic domains, as shown with blue dashed bars in
fig. 4.2. When creating an excitation, meaning performing a spin-flip shown in
green in fig. 4.2, two domain walls are formed. Since two spinons are created,
the total momentum k is given by the sum of two contributions as k = k1 + k2.
This leads to the two-spinon continuum in the excitation spectrum because there
is effectively one free parameter. Figure 4.3, on the left, shows the theoretical
two-spinon continuum for the antiferromagnetic spin-1/2 chain with its lower
and upper boundaries. Experimental evidence of this excitation spectrum can be
seen in fig. 4.3 on the right part as obtained by inelastic neutron scattering, and
most of the intensity is located close to the lower boundary of the continuum.
Note that this excitation is gapless at k = 0 and k = π.

The absorption of infrared light of the Sr2CuO3 S = 1/2 chain is shown in
fig. 4.4 as measured by Suzuura et al. [45] and used by Lorenzana and Eder [46]
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4.1 Low-dimensional quantum spin systems

Figure 4.4.: Optical absorption in the mid-infrared range of Sr2CuO3 showing a good
fit between experiment and bi-magnon-plus-phonon theory. Reproduced
from [46].

to test the bi-magnon-plus-phonon theory as described in section 3.3.2 on page 32.
The elementary magnetic excitation used here was spinons instead of a classical
magnon. After the subtraction of a linear term, a very good fit between theory
and experiment is obtained. Particularly notable is the reproduction of a sharp
cusp located close to 0.5 eV.

4.1.2. n-leg spin ladders

A crossover from 1D to 2D is offered by n-leg spin ladders [5]. By coupling a
number n of chains, one obtains an n-leg ladder. A physical realization of ladders
can be found in the family of compounds of the type Srn – 1Cun+1O2n [68, 69]which
give rise to ladder structures with n legs. Figure 4.5 shows the cases for n = 3, 5,
which give rise to a two and a three-leg ladder, respectively. The ladders are
composed of CuO2 planar structures, which are highlighted in blue. In this series,
Cun+1O2n sheets alternate with Srn – 1 ones along the c axis, decoupling ladders in
the perpendicular direction.

Two in-plane ladders are decoupled through the combined effects of two effects.
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Chapter 4: La2Cu2O5: a 4-Leg Spin-1/2 Ladder System

The first is that the spins in the trellis structure shown in the rightmost highlight
(light red) of fig. 4.5 have a weak ferromagnetic exchange interaction given by

��J ′��= 8t ′4pd

∆2

�
1

ET + 2∆
− 1

ES + 2∆

�
(4.2)

where tpd is the nearest neighbor hopping between Cu 3dx2−y2 and O 2px ,y , ∆
is the difference between on site energies between Cu 3dx2−y2 and O 2px ,y , and
ET,S is the triplet (singlet) energy level [58]. Using the estimated parameters, one
can estimate |J ′|/J ∼ 0.1−0.2, showing that it is a weak ferromagnetic exchange
interaction. This is a more elaborate way to say that the exchange between spins
in two ladders is ferromagnetic and weak due to the 90◦ Cu-O-Cu bonds. This
leads to frustration and, thus, to a negligible coupling between ladders.

Spin ladders show many exciting properties arising from their low dimension-
ality, and their study is crucial due to their possible relevance in connection to
the high-temperature superconductivity phenomena. Remarkably, Dagotto and
Rice [70] predicted that even-leg ladders could show superconductivity under
slight hole doping. This has been found in the 2-leg ladder Sr14-xCaxCu24O41 with
x = 13.6 at T = 13K under high pressure of 3 GPa [71]. Moreover, Dagotto and
Rice [70] predicted that whether n is even or odd produces striking differences
in the properties of each system. Ladders with even n show a spin-liquid ground
state with a gapped (spin) excitation spectrum and short-range (spin) correla-
tions. In contrast, odd n ladders show a ground state which is isomorphous to the
1D chain and power-law (spin) correlations. This predicted behavior, has been
confirmed experimentally through the physical realizations of the 2-leg SrCu2O3
and 3-leg Sr3Cu2O5 [69] ladders. Observations for higher n are scarce.

As the number of legs is increased, the physical properties should converge to
the 2D square layer. This convergence is not necessarily smooth; for example, odd
ladders show no spin gap like the chain and 2D square layer. This dimensional
crossover is one of the driving forces in the research of this class of materials.
We will keep the discussion focused mainly on 2-leg ladders, with some odd-leg
ladders’ observations when needed. It also serves as an excellent introduction to
the similar physics in the compound of interest, the 4-leg ladder.

The most straightforward ladder corresponds to a 2-leg spin ladder, consisting
of two spin chains coupled through an inter-chain exchange J⊥. It is schematically
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4.1 Low-dimensional quantum spin systems

Figure 4.5.: The ladders are highlighted in blue. The legs of the ladders run along the
a direction and the rungs along the b direction. The 90◦ degree Cu-O-Cu
bond between neighboring ladders is shown in purple, while the frustration
situation is highlighted in red. a) 2-leg ladder SrCu2O3 b) 3-leg ladder
Sr2Cu3O5. Reproduced from [69].

shown in fig. 4.6. The simplest Hamiltonian for the 2-leg ladder is given as

H =
∑

i

J‖(S1,iS1,i+1 + S2,iS2,i+1) + J⊥S1,iS2,i, (4.3)

where the first term represents two Heisenberg chains as in equation (4.1) with
coupling constant J‖ and the second term describes the interaction between chains
with coupling constant J⊥. The first subscript of the spin 1/2 operator denotes
the legs, while the second one (i) denotes the rung index.

The most straightforward way to understand the physics of the 2-leg ladder is
by considering the strong-coupling4 limit where J⊥� J‖. In this case, the ground
state can be described by a product of independent rung singlets sitting on each
rung shown as blue bars in fig. 4.6. This means that the elementary spin excitation
is the creation of a triplet state |ϕT 〉= {|↑↑〉 , |↓↓〉 , (|↑↓〉+ |↓↑〉)/p2} (S = 1) from
a singlet, shown as red bars in fig. 4.6. This well-defined spin excitation, also

4Another possibility is to start from the weak-coupling limit J‖ � J⊥. However, the strong-
coupling limit has proven to be an excellent starting point to describe the physics in ladders
[72].
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singlet triplet S=1 2-triplon S=0
bound state 

J∥

J⊥ Jcyc

Figure 4.6.: Sketch of a 2-leg ladder in the strong coupling limit (J⊥ � J‖) indicating
the rung J⊥, leg J‖, and cyclic Jc yc exchange interactions. Blue (red) thick
bars are the singlet S = 0 (triplet S = 1) states on the rungs. Due to the
antiferromagnetic interaction two triplets/triplons can bind together. One
such scenario is depicted in green, where the 2-triplon bound state with
S = 0 is shown. Reproduced from [34].

called triplon, has due to a finite5 J‖ exchange interaction a dispersion as shown
in fig. 4.7 with closed symbols for different coupling ratios. Figure 4.7 also shows
the lower boundary of the 2-triplon continuum with open symbols, showing that
the triplet dispersion merges into the continuum for small wave vectors.

Evidence of the elementary triplon dispersion of a 2-leg ladder can be observed
in fig. 4.8 for the nearly ideal system La4Sr10Cu24O41 as obtained by inelastic
neutron scattering [74]. The figure shows that most of the weight is located at
k = 0.52π/c. The white line shows the calculated6 1-triplon excitation.

Due to the antiferromagnetic interaction, 2-triplon bound states in the 2-leg
ladder were expected [76–78]. Two triplons can interact and form a bound state
with S = 0, 1, 2. The S = 0 bound state is naively depicted inside the green
blob in fig. 4.6. Figure 4.9 shows, for the isotropic 2-leg ladder (J⊥/J‖ = 1),
the elementary triplon excitation, the S = 0 and S = 1 bound states, and the
2-triplon continuum [72]. For the isotropic case, the binding energy of the bound
state vanishes below k ∼ 0.3π as it merges into the continuum. Still, inside the
continuum, a resonance may appear due to the attractive interaction. The S = 1

5If J‖ would be zero, then the system consists of a collection of "diatomic molecules" showing no
dispersion. An isolated singlet’s energy is −3/4J⊥, whereas the one for a triplet is J⊥/4. The
difference yields J⊥ as the excitation gap.

6The model used is slightly more complex than the one described in equation (4.3) by including
a cyclic four-spin interaction. The introduction of this cyclic interaction is essential to describe
the 2-leg ladders accurately [75].
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4.1 Low-dimensional quantum spin systems

Figure 4.7.: Calculated one-triplon dispersions (closed symbols) and lower boundary
(open symbols) of the 2-triplon continuum for different J⊥/J‖ ratios (J ′/J
in the figure) for an isolated 2-leg (2x12) ladder. Reproduced from [73].

Figure 4.8.: The 1-triplon dispersion of the 2-leg ladder La4Sr10Cu24O41 obtained by
inelastic neutron scattering. It shows a spin gap of 26.4± 0.3 meV. The
white curve shows the calculated 1-triplon dispersion. Most of the scattered
intensity lays around 0.52π/c. Reproduced from [74].
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Chapter 4: La2Cu2O5: a 4-Leg Spin-1/2 Ladder System

Figure 4.9.: The calculated excitations for the isotropic 2-leg ladder (J⊥/J‖ = 1). It
shows the triplon dispersion in red, and the 2-triplon continuum in green
area. Furthermore, it shows the S = 0 and S = 1 bound states in blue and
dashed red, respectively. Reproduced from [72].

bound state has lower binding energy than the S = 0 one; thus, it is shown closer
to the continuum and enters earlier into it. For S = 2, one finds an anti-bound
state, for which we will not go into detail.

Inelastic neutron scattering (INS) is the de facto tool to investigate magnetic
excitations. However, the dynamical structure factor of the S = 1 bound state is
20 times smaller than the one for the triplet excitation [76]. Moreover, the high
energy of these bound states in the cuprates makes inelastic neutron scattering
experiments challenging. Besides, the S = 0 bound state is invisible to INS since
its structure factor is zero. These three facts open the door to optical methods like
infrared absorption, as described in section 3.3.2 to probe these bound states.

As mentioned in section 3.3.2, infrared absorption of the bi-magnon-plus phonon
process measures the whole magnetic Brillouin zone. Thus it is equivalent to
making a horizontal cut in fig. 4.9 (or vertical one in fig. 4.10) and adding the
contribution to the absorption in a weighted fashion. This means that the op-
tical absorption calculations require the momentum-resolved spectral densities
of the S = 0 channel, i.e., bound state and continuum. The momentum-resolved
spectral densities are shown in fig. 4.10 for leg (top) and rung (bottom) polar-
ization for the isotropic 2-leg ladder (J⊥/J‖ = 1). Thus, the optical conductivity
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4.1 Low-dimensional quantum spin systems

Figure 4.10.: The k-resolved spectra for a 2-leg ladder for the S = 0 channel showing
the bound state (dashed) and the 2-triplon continuum (bold area) as
obtained by continuous unitary transformation technique for J⊥/J‖ = 1.
Top: Rung polarization shows a strong reduction of the bound state
weight approaching k = π. Bottom: Leg direction shows a steadily strong
weight over the whole bound state. Here the continuum contribution is
multiplied by 4 to make the features more visible. Adapted from [72].
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Chapter 4: La2Cu2O5: a 4-Leg Spin-1/2 Ladder System

Figure 4.11.: Optical conductivity of the 2-leg ladder La5.2Ca8.8Cu24O41 for polariza-
tion along the ladder and rung directions. Density-matrix renormaliza-
tion group (DMRG) calculations [75] show a good fit between theory and
experiment. Through the theoretical models, the broad feature at high
energies is interpreted as the contribution of the continuum to the spec-
tra, while the peaks correspond to contributions stemming primarily from
the S = 0 bound state [47]. Top: Leg direction. Bottom: Rung direction.
Reproduced from [75].

is obtained by integrating the k-resolved spectra with a suitable weighting factor,
which accounts for the phonon involved in the process.

The 2-triplon bound state was first observed in La5.2Ca8.8Cu24O41 employing
infrared spectroscopy [47]. In fig. 4.11, the optical conductivity (light gray) for
light polarized in leg (top) and rung (bottom) polarization is shown. Interestingly,
in contrast to the single peak in 2D square layers, the infrared absorption of 2-leg
ladders shows two peaks. Moreover, similar to the 2D square layer in YBa2Cu3O6
(YBCO) as described in 4.1.3, the 2-leg ladder shows a high-energy contribution
to the optical conductivity.

The first feature is easily explained. The spectral intensity is proportional to
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4.1 Low-dimensional quantum spin systems

the integrated density of states. This means that singularities in the density of
states, also known as van Hove singularities, which are located at the maxima
or minima of a dispersion curve, produce peaks in the optical absorption. Since
the S = 0 bound state has a maximum and a minimum at k ∼ π/2 and k = π
as shown in figs. 4.9 and 4.10, two peaks can be expected in optical absorption.
Contributions to the optical absorption at higher energies come mainly from the
2-triplon continuum7 [47].

From the position of the peaks in the optical conductivity and the value of
the spin gap from neutron scattering, a set of exchange constants can be extrac-
ted [74]. Besides the experimental data, density-matrix renormalization group
(DMRG) calculations based on the extracted parameters are displayed in fig. 4.11,
showing a good fit of the features [75]. The DMRG calculation shows that the
optical conductivity has two contributions to the leg polarization (py). One in-
phase (py = 0) excitation mode that contains the S = 0 two-triplon bound state
with some contribution to the continuum stemming from 2- and 4-triplon excita-
tions. And one out-of-phase (py = π) mode contains contributions from 3-triplon
continuum excitations [75]. The source of the differences between the DMRG
calculated and experimental data are related to effects stemming from the choice
of the weighting function.

In this section, we have seen how the 2-leg ladder is well described and un-
derstood, with a particular focus on the optical spectra of a specific 2-leg ladder
realization. This knowledge and experience will allow the possibility of exploring
the 4-leg ladder in section 4.2.

4.1.3. 2D S = 1/2 square lattice

In 2D, instead of trying to do a full review of its properties, we will focus on the
optical spectra of spin-1/2 antiferromagnetic square lattices. These systems also
show interesting features in their infrared data, but they are still not completely
understood. As shown in fig. 4.12, different 2D cuprates feature an absorption
lineshape, which is independent of the chemical composition of the material8

[79]. Every compound shows a sharp peak close to 3J , which for the compound
La2CuO4 means about 0.4 eV (see left panel of fig. 4.13), and sidebands at higher
energies. The strong features present below 0.1 eV are the fingerprints of the
phonons, whereas at high energy (above ∼ 1eV), the feature originates from the

7Contributions of 4-triplon and higher-order excitations can also be present.
8Note that the authors of reference [79] subtracted different backgrounds from the data.
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Chapter 4: La2Cu2O5: a 4-Leg Spin-1/2 Ladder System

Figure 4.12.: Comparison of absorption measurements of several 2D cuprates (dot-
dashed: La2CuO4, solid: Sr2CuO2Cl2, and dotted: YBa2Cu3O6) showing
a similar behavior. All compounds show a peak close to 3J plus higher-
energy sidebands. The dashed line shows the theoretical expectation in
spin-wave theory, and the thin line for a cluster calculation. Reproduced
from [79].

charge transfer (electronic gap) excitation. The dashed line in fig. 4.12 shows
the theoretical description based on a bimagnon-plus-phonon absorption process
within the spin-wave theory, as described in section 3.3.2, while the thin gray line
depicts the result of a cluster calculation.

The bimagnon-plus-phonon absorption theory manages to fit very well to the
sharp peak at about 3J but does not describe the high-energy spectral weight at
about 4J and above [80]. One alternative is that multi-magnon contributions
carry the missing spectral weight. However, this weight is also missing when do-
ing exact diagonalization of the square-lattice Heisenberg model [79]. Including
a cyclic exchange has been suggested as a possible solution [79]. The cyclic ex-
change is ruled out since Jc yc/J is comparable between the 2-leg ladder and the
2D square lattice, and in the 2-leg ladders, it only enhances the spectral weight
by about 20% [81].

When an isostructural compound to La2CuO4 is considered, namely La2NiO4
with S = 1, the complete magnetic absorption spectrum is well reproduced as it
can be seen in fig. 4.13. In this case, the higher value for the spin (S = 1) drastic-
ally reduces the effects of quantum fluctuations, and the spin-wave description of
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4.2 4-leg ladder La2Cu2O5

Figure 4.13.: Comparison of S = 1/2 and S = 1 square-lattice compounds La2CuO4
(left) [82] and La2NiO4 (right) [83]. The dashed lines are the bi-magnon-
plus-phonon predicted outcome. Clearly, the case for S = 1 shows a very
good agreement between experiment and theory, giving a strong hint
towards the role of quantum fluctuations in the nature of the sidebands.

magnetic excitations is enough to describe the optical absorption.

The role of quantum fluctuations is further confirmed by the optical absorption
results in spin chains, as shown in section 4.1.1. The starting point to describe
the magnetic absorption feature is not a conventional spin-wave but a two-spinon
structure that encodes the quantum fluctuations directly, where the high-energy
spectral weight arises from the continuum of excitations of the spinons involved
in the process. This leads to the hypothesis that quantum fluctuations beyond
spin-wave theory should be considered to describe the infrared absorption in 2D
cuprates [84] fully.

4.2. 4-leg ladder La2Cu2O5

A physical realization of a 4-leg ladder can be found in the La2Cu2O5 compound9.
This compound’s growth is complicated [86], due to a very narrow temperature
tolerance in its growth process, leading to a scarcity of experimental data on it.

The crystal structure of La2Cu2O5 is monoclinic (space group C 2/c) with lattice
parameters a = 13.869(3)Å, b = 3.7487(5)Å, and c = 27.967(5)Å, with an angle

9This material is a member of the homologous series of lanthanum cuprate
La4+4nCu8+2nO14+8n[85, 86] with n = 2. This series with n = 3 gives rise to a 5-leg
ladder.
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Chapter 4: La2Cu2O5: a 4-Leg Spin-1/2 Ladder System

Figure 4.14.: Simplified view of the crystal structure of La2Cu2O5. The big open circles
correspond to La. The ladder structures are made of two different envir-
onments, tetrahedral and octahedral ones. The Cu(1) is inside the solid
octahedra which is slightly distorted by a Jahn-Teller effect, while the
small solid circles are the Cu(2) inside a highly flattened tetrahedron.
Reproduced from [87].
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4.2 4-leg ladder La2Cu2O5

Figure 4.15.: Alternative view of the crystal structure of La2Cu2O5 showing more de-
tails of the bonding scheme of the Cu–O planes. The big open circles
correspond to O while the small ones to Cu. Highlighted in the center,
are the Cu(3) ions forming a double chain along the b direction. Adapted
from [87].

α (◦) d (Å) bond

Rung
J⊥1 179.87 3.87 Cu(1)-Cu(1)

J⊥2 178.65 3.93 Cu(1)-Cu(2)

Leg
J‖1 179.11 3.75 Cu(1)-Cu(1)

J‖2 154.73 3.85 Cu(2)-Cu(2)

Table 4.1.: Angle (α) and distance (d) between the different Cu ions involved in the
formation of the 4-leg ladder.

β = 106.06(1)◦ and is depicted in 4.14 [85] showing the two Cu environments
present. Within the unit cell, three different crystallographic Cu2+ sites are found,
but only two of the three different Cu ions participate in the ladder structure, the
other (Cu(3)) forms a Cu – O chain along the b axis shown in fig. 4.15.

La2Cu2O5 contains Cu2+ ions that are coupled by almost 180◦ Cu-O-Cu bonds
along leg and rung directions shown in a top view of the structure in fig. 4.16.
The figure shows the two Cu environments involved in the ladder structure in
green the Cu(2) ions and in blue the Cu(1) ones. The ladders are composed by
Jahn-Teller-elongated CuO6 octahedra (Cu(1)) at the center of the ladder forming
CuO2-layer-like pieces composed of 2 Cu(1) units, and a complex copper-oxygen
structure of CuO4 tetrahedra at the borders of the ladder (Cu(2)). When consider-
ing nearest-neighbor interactions only, four different possible exchange couplings
are expected due to the bond angles and lengths (cf. fig. 4.16 and table 4.1).
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Figure 4.16.: A simplified top view of a layer of La2Cu2O5. Cu(1) in blue and Cu(2) in
light green. The legs of the ladder are along the b direction.

Since copper’s valence state is 2+, it is expected to be a bad electrical con-
ductor. The electrical resistivity of an as-grown La2Cu2O5 crystal measured along
the leg direction at room temperature gives a value of 1.7× 103Ω cm[85]. It
has been found that La2Cu2O5 has an antiferromagnetic ordering temperature of
TN = 130K [86, 88]. The magnetic susceptibility shows a broad peak near 190 K
with a FWHM of about 200 K [87, 88].

4.3. Results

The sample used in this work was grown and structurally characterized in-house
by Martin Valldor. Then it was prepared for transmission measurements by Luis
Fels, with a thickness of 200µm.

The transmission was obtained from 0.1 to 1.2 eV and is shown in fig. 4.17
for leg (upper) and rung (bottom) polarizations exhibiting a strong polarization
dependence. We can observe a steep suppression of the transmission for leg po-
larization in the range 0.25 eV–0.6 eV for the 15 K measurement, where it does
not surpass the 1% transmittance. For rung polarization, the suppression is more
gradual, showing a minimum at about 0.53 eV. The most notable feature in the
transmission is in the leg polarization, where a double bump is seen at 15 K. A
hint of a similar but much weaker absorption is also seen for the transmittance in
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Figure 4.17.: The transmission spectra for La2Cu2O5 at 10 K and 300 K for leg (top)

and rung (bottom) polarizations.

the rung polarization. At 300 K, the features broaden considerably. These dips in
the transmission are the interesting features as they directly relate to absorption.

Since only the transmission was measured, a constant reflectivity value was
assumed to obtain the optical conductivity. This is justified since, by experience,
the reflectivity for insulating cuprates in the measured region is relatively flat [89]
which stems from a small value of k which further implies a relatively constant
value for n. Thus, the reflectivity value is calculated by assuming the extinction
coefficient k = 0 and calculating n through the interference fringes10 in the trans-
mittance data by using

∆ν=
1

2nd
, (4.4)

where∆ν is the frequency distance between two maxima of the fringes in cm−1, d
the sample thickness in cm, and n the refractive index. ∆ν is calculated by taking
the average of at least 10 consecutive maxima in the low-energy sector. Once n is
determined as a constant value, the reflectivity value is obtained using equation
(3.10).

10The interference fringes are a result of multiple reflections inside the sample due to the smooth-
ness of the interfaces after polishing.
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Figure 4.18.: Optical conductivity of La2Cu2O5 for leg (blue) and rung (red) polar-
izations. Phonons can be clearly seen below 0.15 eV, whereas a clear
electronic gap is observed above about 1.1 eV. In between, the magnetic
excitations are present, showing distinctive behavior for both polarizations.

Once equipped with the measured transmission and calculated constant re-
flectivity, the set of equations (3.9) are used to obtain the optical conductivity, as
shown in fig. 4.18 for both leg (blue) and rung (red) polarizations at 10 K. Strong
phonon lines below 0.15 eV and a clear, steep electronic gap above 1.1 eV domin-
ate the spectra at both ends. A tiny background contribution of about 0.1Ω−1 cm−1

can be observed at about 1.1 eV, indicating a good quality of the sample with few
impurities and defects. The optical conductivity value is extremely low, not sur-
passing 1.5Ω−1 cm−1, as expected due to the only weakly allowed process. Three
marked peaks are observed for leg polarization, at 0.27 eV, 0.37 eV, and 0.5 eV.
The peak at 0.37 eV shows a soft shoulder at slightly lower energy (∼ 0.35eV),
whereas the peak at 0.5 eV presents a more pronounced one at higher energy
(∼ 0.56eV). For rung polarization, there is a small feature at about 0.36 eV and
a clear one at 0.52 eV with a similar shoulder as for leg polarization. At even
higher energy, at about 0.85 eV, there is a broad feature present in both polariz-
ations. Drawing from what has been learned in the 2-leg ladder (cf. figs. 4.11
and 4.20), the magnetic contributions to the optical conductivity are clearly vis-
ible in the range 0.2 eV to 1.1 eV.

Figure 4.19 shows the optical spectra for different temperatures. As the tempe-
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Figure 4.19.: Temperature-dependent optical conductivity of La2Cu2O5 for leg (top)
and rung (bottom) polarizations.

rature increases, the features broaden considerably. Curiously enough, the tem-
perature behavior measured differs substantially from the one reported for the
2-leg ladder La5.2Ca8.8Cu24O41 where substantial redistribution of spectral weight
is observed [47].

4.4. Analysis

When comparing the results for 2- and 4-leg ladders, as shown in fig. 4.20, it is
remarkable how similar they look. Qualitatively, there are some minor differences
between them. For both polarizations, the spectra of the 4-leg ladder are slightly
shifted to higher energies. In leg polarization, the optical conductivity in the 4-
leg ladder is slightly lower than in the 2-leg ladder, while the broad high-energy
feature shows a big difference. Part of that difference could originate from an
overly aggressive background subtraction performed on the 2-leg ladder data [34,
47]. Interestingly, as noted in the previous section, the second prominent feature
at about 0.35 eV shows a non-resolved double peak structure, which is absent
from the 2-leg ladder measurement. In rung polarization, the main feature shows
a more asymmetric profile, while only one peak-like structure is observed on the
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Figure 4.20.: Optical conductivity of the 2-leg ladder La5.2Ca8.8Cu24O41 [47] (blue) and

the 4-leg ladder La2Cu2O5 (red). For both polarization directions, there is
a great degree of similarity on the features present in the optical spectra.

low-energy side.

It is tempting to interpret the 4-leg ladder features as having the same origin
as in the 2-leg ladder, namely, to interpret the two peaks as signals from a bound
state and the high-energy feature as contributions from a triplon continuum. How-
ever, without further theoretical support11, such an interpretation is just wishful
thinking because the jump from 2 to 4 legs can considerably change the physics
involved.

Physically, due to the structure of the 4-leg ladder, we can expect at least four
different couplings. These being J‖1 for the inner sites along the legs, J‖2 for the
outer sites along the legs, J⊥1 for the inner sites along the rungs, and J⊥2 for the
outer sites along the rungs, which is schematically shown in fig. 4.21.

To make it computationally tractable and to provide for a continuous transition
from 2- to 4-leg ladders, the model Hamiltonian for a 4-leg ladder is written as
two coupled isotropic 2-leg ladders showing identical coupling J in rung and leg

11The discussion of the theory for 4-leg ladders to some extent follows [90–92] as part of a col-
laboration.
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J⊥2
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Figure 4.21.: Sketch of a 4-leg ladder system, showing four different couplings. In the
case when J = J⊥2 = J‖1 = J‖2 and J⊥1 = xJ as written in eq. (4.5), two
isotropic 2-leg ladders is obtained. As a function of x one can go from
two independent 2-leg ladders to an isotropic 4-leg ladder. Adapted from
[93]

directions and with a coupling (J⊥1 = xJ), where x controls the strength of the
coupling between the two 2-leg ladders [93]. The following equation gives such
a model

H = J
4∑

l=1

N−1∑
i=1

Sl,iSl,i+1 +
N∑

i=1

�
J{S1,iS2,i + S3,iS4,i}+ xJS2,iS3,i

�
, (4.5)

where Sl,i is the spin-1/2 operator at leg index l and rung index i and can be seen
in fig. 4.21.

In Nunner [93], the optical conductivity of the 4-leg ladder system was ex-
plored via exact diagonalization and DMRG methods for a 4x5 and a 4x16 ladder,
respectively. As shown in fig. 4.22 for an isotropic 4 × 16-site, the out-of-phase
Cu – O bond stretching along the leg direction (py = π open square) mode shows
a broad and asymmetric contribution with a maximum at about 3.5J . In the 2-leg
ladder, the py = π mode gives rise to the continuum sector and is slightly differ-
ent, peaking at about 3J and showing a relatively symmetric profile (see fig. 4.11).
The DMRG result for the in-phase Cu – O bond stretching along the leg direction
(py = 0 filled circle) shows a prominent peak at about 2.4J plus a strong peak
at about 2J , which is located at slightly higher energy than the 2-triplon bound
state of the 2-leg ladder.
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Figure 4.22.: Optical conductivity of an isotropic 4× 16-site 4-leg ladder obtained by
DMRG method . py = 0 (filled circle), py = π (open square), and
py = π/2+−π/2 (filled triangle). Reproduced from [93].

There are more features in the py = 0 mode of the 4-leg ladder than for the
2-leg ladder. Some of these observed features could arise from finite-size effects,
particularly due to an expected relevance of it due to a reduced spin gap and
enhanced correlation length when compared with the 2-leg ladder12.

Tentatively, the interpretation given by Nunner [93] to the peak found at about
2J is as a 2-triplon bound state-like feature, a remnant of the 2-leg ladder. In
comparison, the peak at about 2.4J is interpreted as a precursor of the bimagnon
resonance of the 2D S = 1/2 square antiferromagnet. Thus, the 2J and the 2.4J
features are assigned to spin-flip processes at the edges and center of the 4-leg
ladder. One way to view this is to consider that in the Ising limit, the cost of
flipping two neighboring spins at the edge of the 4-leg ladder is 2J , while for
the center spin-flip, the cost is 3J . Although 2.4J is considerably smaller than
3J , in the case of the 2D square lattice, the bi-magnon resonance is also found
at a lower energy of 2.7J due to magnon-magnon interactions. Simultaneously,
quantum fluctuations are expected to be stronger in the 4-leg ladder pulling the
value even lower in energy.

12For the 4-leg ladder spin gap∆s and correlation length ξ are 0.190 [59] and 10.3 [61], respect-
ively. In comparison, the values are 0.504 and 3.19 for 2-leg ladder [59]
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To further complement the interpretation of our data, we collaborated with K.
Cöster and K. P. Schmidt, who performed perturbative Continuous Unitary Trans-
formation (pCUT) calculations, and S. Wessel who performed Quantum Monte-
Carlo simulations (QMC) on 4-leg ladder systems. These two techniques are com-
plementary as they cover distinct regimes of the interladder coupling x with dif-
ferent resolutions. The main idea behind perturbative continuous unitary trans-
formations is to transform, in a continuous fashion, the basis of the Hamiltonian
to find a more straightforward representation of the problem [94]. pCUT cannot
explore the case for an isotropic 4-leg ladder, and the isotropic case is investigated
by QMC calculations but offers a more constrained resolution. In Cöster [90], the
values for x equal to 0.1, 0.3, and 0.5 were explored with the pCUT method, but
here we will focus only on the x = 0.5 and the isotropic QMC case.

Since the Hamiltonian commutes with the reflection operator along the center-
line, there are eigenstates of the Hamiltonian with even or odd parity. This means
that the 4-leg ladder has two 1-triplon branches, one with even (+) and one with
odd (-) parity. In the 2-leg ladder, there is no connecting matrix element between
even and odd channels meaning that 1-triplon cannot decay into the 2-triplon
continuum. The situation is slightly different for the 4-leg ladder. There, matrix
elements that connect the 1-triplon to the 2-triplon channel allow the 1-triplon
to decay into the 2-triplon continuum. This decay is only possible when the con-
tinuum’s quantum numbers coincide with those for the 1-triplon dispersion.

Figure 4.23 shows the calculated dispersions of the odd (red) and even (black)
1-triplon branches and boundaries of the 2-triplon continua for the 4-leg ladder
for the case x = 0.5. Both 1-triplon dispersions have similar shapes, but the odd
triplon is at lower energy and shows a maximum at about k = 0.3π. The odd
1-triplon has very similar behavior to the one observed for the 2-leg ladder in
section 4.1.2. Both triplons enter the continuum, but only the even-parity trip-
lon (black line) crosses into the same parity 2-triplon continuum (red line) close
to k = 0.5π. This means, a decay of the triplon is expected, but no indication
of decay is observed in pCUT. One possibility for this is that a much too small
perturbation order of the calculation was used [90].

To obtain the infrared absorption, the two-particle spectral densities are needed.
The observable used for the S = 0 channel is SiS j where i and j are nearest-
neighbor spins. This leads to 4 observables in leg and 3 in rung polarization for
a 4-leg ladder. Since the Hamiltonian has a symmetry about the centerline, it is
convenient to express the observables in question with respect to such symmetry
by taking linear combinations of the original Si operators. In the leg direction, the
four contributions are labeled from 1 to 4, where 1 and 3 are the even (+) parity
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Figure 4.23.: Theoretical dispersion of the magnetic contributions of a 4-leg ladder
with coupling x = 0.5. Due to symmetry, two different triplons are found
with even (+) and odd (-) parity, shown in black and red, respectively.
The green and blue lines are the 2-triplon upper and lower boundary,
respectively, for the 2-triplon continuum for non-interacting triplons.
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Figure 4.24.: Leg polarization IR spectra for pCUT x = 0.5 (left) and QMC x = 1
(right). The energy units are ω/J with J = 1. Reproduced from [90].

label (j) parity main contribution

1 +
2 -

continuum

3 + low-E bound state

4 - high-E bound state

Table 4.2.: Summary of the spin observables along the legs, indicating their label, parity,
and where their main contribution lays.

while 2 and 4 correspond to odd (-) parity states as summarized in table 4.2. This
situation is radically different from the case of the 2-leg ladder.

Figure 4.24 shows the calculated contributions to the infrared absorption in leg
polarization for each channel. For x = 0.5, the peaks between 1 J to 2 J arise from
the 2-triplon bound state. The lower peak corresponds to even parity channels
while the higher peak to the odd parity ones. The origin of the high-energy spectra
is mostly arising from the 2-triplon continuum. When considering the QMC results
for x = 1, a congruent picture emerges. There is a strong suppression of the 2-
triplon bound states contribution for the inner operators while the spectral weight
at higher energies is increased. Both channels show some structure, with a feature
below 3J and another at about 4J . The outer operators continue contributing as
sharp features while also showing a marked (subtle) contribution at about 3J .

Based on the pCUT, QMC, and DMRG results, our interpretation of the observed
optical spectra for the 4-leg ladder in leg polarization is that the lowest-energy
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Figure 4.25.: Rung polarization IR spectra for pCUT x = 0.5 (left) and QMC x = 1
(right). The energy units are ω/J with J = 1. Reproduced from [90].

peak corresponds to a 2-triplon quasi-bound state. In contrast, the one above 4J
corresponds to the continuum of excitations. The feature in between could arise
from a high-energy quasi-bound state contribution as in the 2-leg ladder plus an
incipient response from a bimagnon excitation.

The theoretical analysis shows that the 2-triplon bound state is more like a
resonant or quasi-bound state that survives in the continuum, unlike the proper
bound state in the 2-leg ladder. Thus the difference in the strength of the low-
energy feature observed between the 2- and 4-leg ladders can be tentatively un-
derstood as a consequence of the resonant nature of the bound state in the latter.

Rung direction shows a more ambiguous situation as the evolution from pCUT
to QMC is less clear. Shortcomings of the pCUT method like not considering
higher particle channels, which are considered in QMC, could be a possible ori-
gin13. Regardless of this, the QMC result shows a high degree of resemblance
with the observed data. The j = 1, 2, 3 channels show mostly contributions from
the continuum while the j = 2 channel shows a shoulder at about ω= 2J .

4.5. Discussion

As already discussed in section 4.1.3, the high-energy spectral weight in 2D at
about 4J and above is still not well understood. Figure 4.26 shows the optical con-

13Already in the 2-leg ladder, the pCUT method is not capable of describing all the spectral weight
of the triplon continuum since it only takes 2-triplon contributions into account whereas the
continuum also shows contributions of all other S = 0 multiple-triplon excitations.
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Figure 4.26.: Optical conductivity for a 2-leg, 4-leg ladder, and a 2D square layer. The
energy is shifted by the phonon’s energy involved in the bi-magnon-plus-
phonon (BIMP) process and scaled by the effective exchange coupling.
The contribution from the continuum stays roughly constant at about
2νSJ . Adapted from [81].

ductivity of three different low-dimensional cuprates, namely, the 1D spin chain
CaCu2O3 (top panel), 2-leg ladder La5.2Ca8.8Cu24O41 for leg polarization (middle
panel), and 2D square layer YBa2Cu3O6 (bottom panel) [81] together with their
theoretical description based on a two-"magnon"-plus-phonon absorption process.
The magnetic excitation corresponds to a spinon, triplon, and magnon for chain,
ladder, and square layer, respectively. The spectra are shifted by the phonon fre-
quency and scaled to make their comparison easier. The observed trend is that
as the dimensionality increases from the chain to the square layer, the spectral
weight is transferred to higher frequencies reflecting the increase in the number of
nearest-neighbors spins ν in each of these system14. Grüninger et al. [81] observe
that the chain, the 2-leg ladder, and the 2D square lattice all show a contribution
from an incoherent continuum located at about 2νSJ . Furthermore, they suggest
that "the position of the continuum thus may reflect the rather local nature of the
incoherent excitations".

14For chain, 2-leg ladder, and 2D square layer there are 2, 3, and 4 nearest neighbors, respectively.
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Figure 4.27.: Comparison of the optical conductivity for the 4-leg ladder, 2-leg lad-
der (blue), and 2D square lattice (red). The phonon shift for the 4-leg
ladder is 0.071 eV (570 cm−1), while three different scalings are shown.
(νJ)e f f = 3000cm−1, 3120 cm−1, and 3200 cm−1. The 2-leg ladder and
2D square lattice are the same as shown in fig. 4.26.

In fig. 4.27, we compare the shifted and scaled optical spectra of the 4-leg
ladder, 2-leg ladder, and 2D square lattice. For the 4-leg ladder, we have diffi-
culty determining which values for ν and J should be chosen since both para-
meters are expected to lay somewhere between the values for the 2-leg ladder
and the 2D square lattice. The 2-leg ladder has an effective νJ of 3000 cm−1

whereas the 2D square lattice has a value of 3120 cm−1. Lines in cyan and pink
in fig. 4.27 show the 4-leg ladder scaled by the effective νJ of the 2-leg ladder
and the 2D square lattice, respectively. We can observe that the stronger scal-
ing provided by (νJ)e f f = 3120cm−1 provides a better match of the pattern
observed but is far from being satisfactory. Considering an even stronger scal-
ing, (νJ)e f f = 3200cm−1, we observe a very good alignment, particularly of the
second peak at about 0.37 eV with the bimagnon resonance of the 2D square
lattice. Also, as seen for the other two cuprates, for the 4-leg ladder, we find
a broad spectral weight at about 2νSJ . If we assume that for the 4-leg ladder
Je f f ≈ 900cm−1, slightly smaller to the one for the 2-leg ladder, then the effective
ν would be of the order of 3.55.

Trying to extract detailed quantitative results from the comparison between
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the measured spectra and the calculated one is not feasible. We have to keep
in mind that the theoretical model used in DMRG, pCUT, and QMC is based on
an isotropic ladder, which is a somewhat unrealistic assumption for a real system.
Already in the successful description of the 2-leg ladder shown in section 4.1.2, an
anisotropic coupling was needed besides the inclusion of a cyclic exchange (Jc yc)
interaction. Adding to the difficulty, in the 4-leg ladder, there is a distinction
between inner and outer legs leading to different exchange interactions, respect-
ively. In the 2-leg ladder, Jc yc renormalizes the exchange interactions (J⊥ and J‖)
and adds a repulsive interaction between triplons on neighboring rungs reducing
the binding energy of the bound state [75]. Thus, a better model would yield dif-
ferent shapes of the dispersion of the triplons, and thus their (quasi)-bound states
would lead to different details emerging from the calculated infrared absorption
spectra.

4.6. Conclusions

We successfully measured the first optical spectra of a S = 1/2 four-leg ladder.
Somewhat surprisingly, the obtained spectra have a high degree of resemblance
to the 2-leg ladder ones, indicating that some 2-leg character survives when in-
creasing the ladder’s number of legs. The similitude between 2- and 4-leg ladders
prompts us to interpret the observed features in similar terms. Noteworthy is the
presence of a broad contribution at high-energy, stemming from the triplon con-
tinuum of excitations. This further supports the interpretation of the high-energy
continuum found above 4J in the 2D square layer systems.

With the guidance of theoretical calculations, we can interpret the optical spec-
tra’s features as follows. The first peak originates from a 2-triplon quasi-bound
state. The broad feature above 0.4 eV comes from the continuum of magnetic
excitations. For the feature at about 0.37 eV, which shows a clear peak plus a
shoulder to the left, the origin is less clear. It could be originating from a combin-
ation of a higher-energy bound state and an incipient bimagnon-like resonance.

Moreover, the theory provides a consistent picture where contributions to the
magnetic excitations can be distinguished between outer and inner legs in origin
as schematically shown in fig. 4.16. The calculations show that the bound state
signal’s contributions come primarily from the outer legs, while the contributions
to the continuum stem from the inner legs. This distinction is very interesting
since the inner response should be more closely related to the 2D behavior and
growing in relevance as wider ladders are considered.
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However, drawing too many conclusions from the theoretical work is challen-
ging due to the assumption of isotropic exchange interactions. This assumption
deviates from the reality of the physical system as it is expected that the ex-
change interactions at the outer legs of the ladder are different. Also, the in-
clusion of cyclic exchange interactions is expected to influence the results consid-
erably. Certainly, computational studies can be highly time-consuming, but we
could profit significantly from more refined models considering anisotropic and
cyclic exchange interactions.

n-leg ladders with n≥ 3 are never isotropic in real materials due to the different
crystallographic sites and thus the potentials involved. With increasing n, the edge
states may remain quasi-1D or ladder-like, while the inner part will resemble 2D.
Our measurement shows that the 2D situation is already closely realized with
n= 4.
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MAGNETITE (Fe3O4) is a natural permanent magnet known for its magnetic prop-
erties since ancient times. One of the earliest uses of magnetite lodestones was in
compasses for navigation. In more modern times, derived materials like γ-Fe3O4
were employed in transformers, inductors, and magnetic recording applications.
Nowadays, polycrystalline thin films of magnetite are of interest for spin electron-
ics applications because of their magnetoresistive properties [95] or in nanowires
of Au – Fe3O4 – Au heterostructures [96]. Beyond physics, magnetite is also of
interest in mineralogy, geophysics, and biology. Magnetite is also a biomineral
present in certain animals, providing a mechanism of magnetic sensing [97].
Small single-domain permanently magnetized magnetite crystals of about 50 nm
have been found in bacteria, honeybees, and birds, among other animals. If al-
lowed to rotate freely, they can align with Earth’s magnetic field, providing what
would be an inbuilt compass!

In condensed matter physics, this material is one of the most studied ones in the
family of transition-metal oxides. Modern interest in this ancient mineral started
with the first observations of a first-order transition in the magnetic susceptibility
of synthetic polycrystalline magnetite. Later on, magnetite gained traction, when
Verwey [21] found an abrupt change, by two orders of magnitude, in its electrical
resistivity upon cooling down below what is now known as the Verwey tempera-
ture, TV ∼ 123K, as shown in fig. 5.1. The Verwey transition also shows abrupt
changes in other physical properties of magnetite as heat capacity, magnetization,
and coercitivity [99–101]. These properties are being explored for possible ap-
plications, for example, resistive switching [102], Fe3O4-based tunnel junctions
[103], and solid-state energy conversion devices [104].

One of the main reasons behind the extensive studies of the Verwey transition
in magnetite is that it does not involve changes in its spin ordering. This fact sim-
plifies a great deal the situation allowing a study of the electronic and lattice de-
grees of freedom without considering the behavior of the spins. Thus, magnetite
was thought to be a good starting point to understand the mechanisms behind the
metal-insulator transition in a broad class of materials. However, in the end, mag-
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Figure 5.1.: The resistivity of magnetite shows a sharp change as a function of tem-
perature at around 123 K. This temperature (TV ) marks the first-order
metal-insulator transition, also known as the Verwey transition. Repro-
duced from [98].

netite is too complicated as a starting point to study the metal-insulator transition.
The long history of the study of magnetite is summarized in a somewhat dated
but very extensive review by Walz [105], which includes a particularly interesting
historical perspective on the experimental and theoretical work accumulated over
90 years on this material.

The microscopic description of the mechanism behind this transition in mag-
netite has been a long-standing problem in condensed matter physics. Already in
1939, Verwey attempted a first microscopic description of this transition, arguing
that a charge ordering takes place [21]. Since then, numerous theoretical and
experimental studies have been performed to understand the mechanism behind
the Verwey transition. Detailed investigations have shown a complex picture in-
volving not only charge order but also orbital order in the low-temperature phase
[106–114].

Quite recently [115], it has been suggested that originating from the charge and
orbital order, a complex state that spreads over three neighboring sites emerges.
These structures, called trimerons, form a network. Thus, the Verwey transition
has been interpreted as a transition between a fixed trimeron network and a fluc-
tuating one. The trimerons may be cataloged as orbital molecules, "locally coupled
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orbital states on two or more metal ions within an orbitally ordered solid" [116].
Previously, two-electron "orbital molecules" have been found in compounds like
CuIr2S4 [117] and MgTi2O4 [118]. Although charge and orbital orders are widely
known in a broad range of transition-metal oxides, the inclusion of trimeron or-
der turns magnetite into one of the most complex electron-ordered ground states
known so far. This picture has rekindled the interest in studying this material.

Despite the relevance and long history of magnetite, precise and thorough
optical investigations are still missing. Our motivation to study this material
is threefold. First, it is triggered by a need for a solid starting point for non-
equilibrium measurements on the same batch of samples. Second, to obtain a
precise temperature dependence around Tv which is still missing, and understand
how the electronic structure changes as a function of temperature. Third, we
want to dispel the disagreement and challenge the peak assignment found in the
published literature on the optical spectroscopy of this venerable material.

As it will be shown in section 5.2, the temperature dependence of the features
observed via optical spectroscopy has been addressed only on a qualitative level at
the phase transition. Moreover, the literature disagrees regarding the behavior of
the optical conductivity above 1.5 eV [30, 119]. This means that the temperature
dependence, particularly around TV is not clear. This chapter will present an
overview of this material before showing detailed temperature-dependent optical
spectroscopy results published in Randi et al. [120].

5.1. Crystal, Magnetic, and Electronic Structure

Magnetite crystallizes in an inverse spinel structure with space group Fd3m and
formula AB2O4 with a lattice constant of 8.394 Å [121]. The inverse-spinel chem-
ical formula consists of two different iron sublattices, A and B, distinguished by
their point symmetry and their averaged Fe-O distance. Moreover, its chemical
formula can be written as Fe3+[Fe2+Fe3+]O4 to show the nominal valence state of
the A and B sites explicitly, mainly the mixed-valence state on the B site. The iron
ions in the A and B sublattices form highly frustrated diamond and pyrochlore lat-
tices with an average Fe-O distance of 1.8885(2)Å and 2.0582(1)Å in the cubic
phase at 130 K, respectively [115].

The iron ions on the B sites are octahedrally coordinated (D3d) by six oxygen
ions and shown in blue in fig. 5.2, with a formal average valence Fe 2.5+

B through
an equal proportion of randomly distributed 2+ and 3+ iron cations. The ones
on the A sites are tetrahedrally coordinated (Td) by four oxygen ions and shown
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Figure 5.2.: Room-temperature unit cell of magnetite (cubic inverse spinel Fd3m). Fol-
lowing the chemical formula of an inverse spinel AB3O4, there are two
iron sublattices, A and B, with point symmetries Td and D3d , respectively.
The gray spheres are oxygen, green spheres are trivalent tetrahedrally co-
ordinated iron Fe 3+

A , and blue spheres are octahedrally coordinated iron
Fe 3+/2+

B . By David Schrupp, CC BY-SA 2.0 DE.

in green in fig. 5.2, with a formal valence Fe3+. The electronic configuration
of the Fe2+ ion is t4

2g e2
g with spin S = 2, while for the Fe3+ ions the electronic

configuration is t3
2g e2

g with spin S = 5/2 as shown in fig. 5.3.

At the Neél temperature of ∼ 858K [122], magnetite goes through a transition
between the para and ferrimagnetic states. Within the B sublattice Fe3+ and Fe2+

ions couple ferromagnetically, through a double exchange mechanism, whereas
the Fe ions between A and B sites have an antiferromagnetic coupling through
a common oxygen ion. Thus, for the total magnetic moment, only the unpaired
spins in the Fe2+ in B sites result in ferrimagnetism, as exemplified in fig. 5.3. The
extra minority-spin electron in the octahedral B sites (red arrow) delocalizes as
illustrated in fig. 5.3 shown by the gray arrow. This delocalization renders the
B sites structurally and spectroscopically equivalent and leads to a minority-spin-
polarized electrical conductivity with a resistivity of about 4 mΩ cm at 300 K as
shown in fig. 5.1 [98].

The Verwey transition at about 123 K is a first-order phase transition as ob-
served in heat capacity, conductivity, magnetization, and other measurements [3].
Early on, Verwey, Haayman and Romeijn [123] interpreted this transition as a
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Tetrahedral (A)

Octahedral (B)

Fe3+

Fe2+Fe3+

Figure 5.3.: The magnetic moments on the A site couple antiferromagnetically to the B
site magnetic moments, whereas between B sites the coupling is ferromag-
netic. These couplings give rise to ferrimagnetic ordering with a magnetic
moment of about 4µB. The extra minority-spin electron in the Fe 2+

B site,
shown in red, delocalizes above TV as shown by the light grey arrow, giv-
ing magnetite its half-metallic state with a resistivity of about 4 mΩ cm at
room temperature.

charge order-disorder transition of the Fe2+ and Fe3+ ions on the B sites, where
the minority spin electron localizes. In this interpretation, the high-temperature
metallic phase shows an equal number of Fe 3+

B and Fe 2+
B ions randomly distrib-

uted on the B sites. Upon cooling down, Fe 3+
B and Fe 2+

B layers were thought to
stack in an alternating fashion along the [001] direction to minimize Coulomb
interaction leading to a charge-order scenario in agreement with the Anderson
criterion1 [124]. This interpretation had to be discarded as experimental evid-
ence piled contradicting it, e.g., observation of half-integer extra reflections at
(h,k,l+1/2) indicating a doubling of the unit cell along the c direction [125]. Nev-
ertheless, it has been found that Verwey’s hypothesis "is correct to a useful first
approximation" [116]. Since the FeB ions form a frustrated pyrochlore lattice, the
resulting charge-order superstructure is highly complex. This complexity reflects
the competition between Coulomb interactions and the coupling to both lattice
and orbital degrees of freedom [24, 126].

The low-temperature ground state has been a long-standing problem, mainly
due to the difficulty of determining the crystal structure because of microtwin-

1The Anderson criterion refers to minimizing electrostatic repulsion which in this case leads to a
short-range charge order pattern.
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ning2 and the tremendous complexity of the crystals [115, 127]. For a long time, it
has been known that below TV , the crystal undergoes a complex lattice distortion
showing a monoclinic

p
2×p2×2 superstructure of the cubic room-temperature

lattice [106] where the cubic cell is elongated and tilted along the [111]c direc-
tion3. The resulting supercell contains 224 atoms and belongs to the Cc space
group. It contains eight crystallographically independent tetrahedral A sites and
16 octahedral B sites. The lattice parameters for the low-temperature structure
are a = 11.8802(24), b = 11.8389(25), c = 16.7671(29)Å, and β = 90.167(5)◦
[126].

Quite recently, Senn, Wright and Attfield [115] reported a high-quality X-ray
refinement of the full low-temperature structure by using a small, almost single-
domain4 grain of the order of 40µm. They propose that Fe2+/Fe3+ charge order-
ing and Fe2+ t2g orbital ordering due to the Jahn-Teller distortions of the Fe2+O6
octahedra explain the observed interatomic distances, consistent with previous
calculations [128, 129]. Furthermore, they estimate that the formal oxidation
states for the eight Fe2+ and Fe3+ ions on the B sites are 2.47 and 2.75, respect-
ively. This means that the disproportion of charge is 0.28 e in agreement with the
value of 0.23 e as found by Leonov et al. [130] via LSDA+U method.

Moreover, they argue that a network of three-Fe-site distortions emerges. In
these three-site distortions called trimerons5, due to anomalously shortened Fe-Fe-
Fe structures, the single minority ↓ electron of a central Fe 2+

B ion delocalizes over
the neighboring outer Fe 3+

B sites, forming a linear object [115, 116]. Since only
two B site Fe ions per minority-spin electron are available, trimerons are forced
to share sites and thus form a network. This trimeron lattice tends to equalize the
charges on the FeB sites and increases the polarizability [131].

Concerning the band structure and total density of states, the result of a self-
consistent calculation using LSDA+U for a tentative P2/c low-temperature struc-
ture of magnetite with parameters U = 5eV and JH = 1eV is shown in fig. 5.4. It
reproduces the expected insulating behavior correctly. The calculated band gaps
in the minority (indirect) and majority (direct) spin bands are 0.18 eV and 2 eV,
respectively. For the chosen parameters, the 0.18 eV gap agrees well with experi-
mentally determined values, as discussed below [130]. In the minority spin band
(upper panel of fig. 5.4), just below the Fermi level, a predominately Fe 2+

B t2g

2In contrast to the cubic axes of the high-temperature phase, the low-temperature Cc cell has 24
unique domain orientations.

3The subscript c refers to the high-temperature cubic unit cell.
4In the best quality sample measured, Senn, Wright and Attfield [115] report 89% scattering

from a single orientation.
5A trimeron is a highly structured three-site polaron. They can be regarded as orbital molecules.
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Figure 5.4.: Total density of states (left panels) and band structure (right panels) of the
tentative P2/c low-temperature phase. A bandgap of 0.18 eV and 2 eV is
obtained for the minority and majority spins, respectively. The horizontal
dashed line indicates the Fermi level, designed as zero energy. Upper:
minority spin. Red and green bands originate primarily from Fe 3+

B t2g and
eg states, whereas the bands in blue come from Fe 2+

B t2g states. The gap
opens between Fe 3+

B and Fe 2+
B t2g bands. Lower: majority spin. In blue,

the Fe 2+
B eg state bands, and in green, the ones for FeA are shown, where

a gap between both states opens. Among the occupied states, the minority
electron in the t2g level of a Fe 2+

B site is the closest to the Fermi level. In
contrast, the lowest unoccupied states were identified as the empty t2g ↓
states of Fe 3+

B sites. Reproduced from [130].

band is found (blue), while above it Fe 3+
B t2g (red) and eg (green) bands are

found. When using the Cc refined structure, a similar result for the band struc-
ture and density of states is found [116]. Furthermore, Senn et al. [116] find that
the spatial distribution of the minority spin is consistent with charge ordering and
orbital ordering at the Fe 2+

B sites. They further support the trimeron formation
picture by observing a significant transfer of the minority-spin electron density to
Fe3+ together with variations in the density between neighboring B site ions.
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Figure 5.5.: The real part of the optical conductivity of Fe3O4 at room temperature.
The three measurements show a similar behavior below 1.5 eV, where a
broad mid-infrared feature is observed. Adapted from [30, 119, 132].

5.2. Optical Spectroscopy

The optical spectra of magnetite have been studied via spectroscopic ellipsometry
[132] and via Kramers-Kronig analysis of reflectivity data [30, 119, 133]. Fig-
ure 5.5 shows the real part of the optical conductivity σ1(ω) for all three meas-
urements at 300 K. Park, Ishikawa and Tokura [30] (fig. 5.5 in red) report that,
below 2.5 eV, σ1 is dominated by two distinguishable features at about 0.6 eV
and 1.9 eV. Fontijn et al. [132] (fig. 5.5 in black) also find features at 0.6 eV and
1.9 eV, although the second one is more subtle and with a larger spectral weight.
In contrast, Gasparov et al. [119] (fig. 5.5 in blue) discern only the 0.6 eV fea-
ture, whereas the second one is mostly lost in the background of higher-energy
excitations and not addressed. Above 2.5 eV, Park, Ishikawa and Tokura [30]
and Fontijn et al. [132] show strong absorption originating from charge-transfer
excitations but again reflectivity provides more marked features, e.g., at about
3.2 eV.

The temperature-dependent optical spectra obtained by Park, Ishikawa and Tok-
ura [30] and Gasparov et al. [119] are shown in figs. 5.6 and 5.7. Both studies
use a Kramers-Kronig analysis of reflectivity data and display a broad Drude re-
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sponse above TV , i.e., a metallic phase with delocalized carriers. Below the metal-
insulator transition temperature TV , both figures show a strong suppression of
this Drude response in agreement with DC resistivity measurements [30].

Regarding the first feature at about 0.6 eV, its spectral weight increases when
decreasing the temperature from 490 K to 290 K (see fig. 5.6). Upon further de-
crease, this feature sharpens while the low-energy spectral weight diminishes.
Figure 5.7 shows qualitative agreement with this behavior.

The second feature at about 1.9 eV presents some differences between the two
reflectivity measurements. Park, Ishikawa and Tokura [30] observe that the fea-
ture shows a shift to higher energies while also lowering the total spectral weight
as the temperature is decreased, and they assign it to a Fe3+ → Fe2+ between A
and B sites. However, Gasparov et al. [119] find no clear temperature dependence
as this feature is virtually non-existent. Moreover, there is not only a temperature
dependence across TV but also above it, for both features shown in fig. 5.6.

Thus, the open question is what exactly is the origin of these features in the
optical conductivity spectra.

5.3. Measurements and Results

A Fe3O4 sample6 was oriented in a [100] direction and prepared as described
in section 3.2. Optical spectroscopic data were acquired in the range 0.75 eV
to 3.5 eV as a function of temperature with a particular focus around the phase
transition at TV . For the analysis of the ellipsometry data, cubic symmetry was
considered. Concerning the surface roughness, an independent estimate of it
was not possible to obtain because the sample did not show any non-absorbing
region in the measured range. The ellipsometric result for ε2 at 300 K as obtained
by a point-by-point fit of the data and considering different thicknesses for the
surface roughness are shown in fig. 5.8. Regardless of the thickness used, a strong
absorption at the low-energy side, a shoulder at about 2 eV, and a broad feature at
about 3.2 eV are observed. With increasing thickness, the valley at about 1.5 eV
deepens while shifting to higher energies. Likewise, the feature at about 2 eV
also shifts to higher energies and is pulled down. At about 2.8 eV, the trend
changes and the absorption is enhanced. For reference, the data for undoped
Fe3O4 and slightly Al-doped samples from Fontijn et al. [132] are also shown.
For the remainder of the analysis, a surface roughness of 4 nm was used as a

6Same sample as used in non-equilibrium optical studies [120, 134].
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Figure 5.6.: Temperature dependence of the optical conductivity of Fe3O4 in the region
below 3 eV as obtained through Kramers-Kronig analysis of reflectivity data.
The features are interpreted as intersite transitions originating from the Fe
t2g electrons on the B sites, for the one at 0.6 eV, and between the A and
B sites for the one at 1.9 eV. Reproduced from [30].
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Figure 5.7.: The optical conductivity of Fe3O4 shows a broad temperature-dependent
feature peaking at about 0.62 eV (5000 cm−1). The measurement shows
clearly the suppression of the conductivity below 0.12 eV (1000 cm−1) at
temperatures below TV . Reproduced from [119].

conservative value that shows a reasonable match with the data of Fontijn et al.
[132] and also aligns with values used in previous research [31, 135].

Figure 5.8 also shows the dielectric function reported by Fontijn et al. [132] for
undoped Fe3O4 (black dashed line) and for 2% Al substitution at the Fe 3+

B site
(black dotted line). Both measurements qualitatively agree in their significant
features. However, for the undoped sample in the range 1.5 eV to 3 eV Fontijn et
al. [132] report a more moderate absorption and show more prominent features
at around 2 eV and 3.2 eV.

Even though the ellipsometry data shows some uncertainty concerning the pre-
cise absolute value of the spectral weight due to the sensitivity to the surface
roughness, it provides an excellent determination of the temperature dependence.
The temperature dependence of the optical spectra, fig. 5.9 shows the result of a
point-by-point fit of the ellipsometric data in the form of σ1 and ϵ1 for selected
temperatures between 15 K and 300 K using a 4 nm surface roughness layer. A
clear distinction between high- and low-temperature phases is observed. In partic-
ular, an abrupt change occurs across TV . This change is most clearly visible in the
sharp upturn in ϵ1 for the low-temperature phase at the spectra’s low-energy side.
Broadly, there is good agreement with previous temperature-dependent results
based on Kramers-Kronig analysis of reflectivity measurements [30], as shown in
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Figure 5.8.: The imaginary part of the dielectric function of Fe3O4 at room temperature
obtained by a point-by-point fit with different thickness of the surface-
roughness layer. Two higher-energy features can be discerned at about
2 eV and 3.2 eV. For comparison the results by Fontijn et al. [132] for
undoped Fe3O4 (black dashed line) and a slightly Al-doped sample (black
dotted line) are also shown. The difference between both measurements is
most pronounced at around 2.0 eV until about 3.0 eV, where the undoped
sample shows a reduced absorption and more prominent features.
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Figure 5.9.: Real parts of the optical conductivity (top) and the dielectric function

(bottom) of Fe3O4 for selected temperatures. Most of the changes occur
below 2.5 eV.
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Figure 5.10.: Constant-energy cuts of the measured imaginary part of the dielectric
function obtained by a point-by-point fit shown for all measured temper-
atures. At TV a kink is observed in all 4 curves clearly indicating the
change of the electronic structure at the metal-insulator transition.

fig. 5.6, where most of the changes with temperature happen below 2.5 eV.

To better get a grasp of the temperature dependence, fig. 5.10 plots σ1(T,ω0)
at four selected energies (ω0) showing an evident steplike change at TV , a finger-
print of a change in the electronic structure across the Verwey transition. This
pronounced effect of the phase transition on the electronic structure has not been
revealed in previous optical studies with very coarse temperature steps. Besides
the step-like change, the optical conductivity keeps evolving as the temperature
is increased above TV , particularly noticeable at 0.8 eV.

We want to better interpret and understand the observed features and the tem-
perature dependence, and to this effect, we build an optical model. Moreover,
since the low-energy excitation at 0.6 eV (compare fig. 5.8 with figs. 5.6 and 5.7)
is only partially covered by the measurement, an optical model enables us to es-
timate values of the optical constants at lower energy. These were relevant for
the non-linear experiments described in [120].

To construct the optical model, we consider the results for the DC measure-
ments to set a Drude contribution. We constrain the parameters of the Drude
contribution by using published DC conductivity data to set the amplitude of the
oscillator. As for the oscillator used to describe the main feature at about 0.6 eV,
early modeling efforts showed a strong asymmetry of this feature, which made it
challenging to describe reliably with two Gaussian or Lorentzian oscillators. Such
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Figure 5.11.: Real parts σ1 (top) and ϵ1 (bottom) of Fe3O4 for selected temperatures

obtained by direct inversion (continuous lines) of the measured data. Ad-
ditionally we plot the low-energy extension by an optical model (dashed
lines). The opening of a gap below TV gives rise to a peak in ϵ1 at
about 0.3 eV. The model contains a Drude contribution above TV , a
Tauc-Lorentz oscillator describing the 0.6 eV feature, and several Gaussi-
ans describing the shoulder at about 2 eV as well as other charge-transfer
transitions. Due to the availability of two Kramers-Kronig-related meas-
ured values and the knowledge of the DC properties, a reliable fit of
partially measured features can be achieved (see main text).
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a scenario would yield six highly coupled parameters. Moreover, since the 0.6 eV
feature corresponds to the gap in the insulating phase, a Tauc-Lorentz lineshape
was used to describe it, reducing from six to four parameters the modeling of the
feature. The fact that the feature has a large contribution in the measured range
and that we obtain ϵ1 and ϵ2 makes it possible to derive reasonable results with
this (see section 3.4.3).

In fig. 5.11, the real parts of the optical conductivity (σ1) and of the dielectric
function (ϵ1) are shown for selected temperatures, extended at the low-energy
side with the result of an oscillator-based model. Due to the lack of far-infrared
data, the Drude contribution parameters were fixed at each temperature as fol-
lows. Above TV , the reported DC conductivity σDC of about 270Ω−1 cm−1 for
the room-temperature data of Park, Ishikawa and Tokura [30] and a suitable
temperature-independent value for the scattering time τ were chosen. Below
TV , the Drude contribution’s spectral weight was set to zero in agreement with
the insulating behavior.

Figure 5.12 shows the profound effect that the Tauc-Lorentz oscillator has in
the optical spectra of the 300 K measurement. Even when such an oscillator is
partially located below the experimental window, it strongly influences the optical
properties within the measured range.

At 1.9 eV, a Gaussian oscillator describes the upturn in the optical spectra, while
at energies above 2 eV, a collection of four Gaussian oscillators describes higher-
energy contributions to the optical absorption located at 2.29 eV, 2.6 eV, 2.89 eV,
and 3.69 eV. In the optical model, a pole at 7 eV with a magnitude of 87 eV, a
Gaussian at 6 eV describing the background, and ε∞ = 1 were kept fixed during
all the fitting procedures.

Figure 5.13 shows the spectral weight for some of the oscillators used in the
model. With increasing temperature above TV , the spectral weight of the Drude
contribution associated with the delocalized carriers (downward red triangles) in-
creases following the change in DC resistivity, whereas the spectral weight of the
0.6 eV Tauc-Lorentz feature decreases (upward red triangles). The loss of spec-
tral weight in the Tauc-Lorenz oscillator is mostly compensated by the increase in
the Drude one, as shown for the sum of both spectral weights (open squares) as it
shows no temperature dependence. This is in agreement with the Kramers-Kronig
results of Gasparov et al. [119], who report that the spectral weight is relatively
independent of temperature below 0.8 eV, further confirming the reliability of our
model. The continuous evolutions of both the Drude and the Tauc-Lorentz oscil-
lators spread to temperatures far above TV . This behavior has been attributed to
short-range charge order [30]. Concerning the 1.9 eV feature (green squares), its
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Figure 5.12.: Full model (blue line) compared to the same model but with the Tauc-
Lorentz contribution removed (red line) based on the 300 K measurement.
The dashed line indicates the lower limit of the measured data.
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Figure 5.13.: Above TV , some carriers become delocalized, which leads to an increase
of the low-energy spectral weight of the Drude oscillator (downward tri-
angles) and a reduction of the spectral weight of the Tauc-Lorentz oscil-
lator (upward triangles). The sum of the Drude and Tauc-Lorentz spectral
weights (open squares) is nearly temperature independent.

93



Chapter 5: Revisiting Magnetite

0 1 0 0 2 0 0 3 0 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

 

 
Ta

uc
-Lo

ren
tz 

ga
p p

ara
me

ter
 (e

V)

T  ( K )
Figure 5.14.: Estimated band gap of the Tauc-Lorenz oscillator as a function of tem-

perature. At 15 K, a value of ∆ = 0.2 eV is obtained in agreement with
experimental [30, 119] and theoretical [130] results. Above TV , the fit
yields a gap of 0 eV as expected for the metallic phase of magnetite.

spectral weight shows a steady increase as a function of temperature in agreement
with the behavior observed by Park, Ishikawa and Tokura [30].

The Tauc-Lorentz oscillator used in the model to account for the 0.6 eV feature
estimates the value of the bandgap deep in the insulating phase at about ∆15 K =
0.2eV (see fig. 5.14). This value is in agreement with the values reported by
Gasparov et al. [119], Park, Ishikawa and Tokura [30], and Leonov et al. [130]
namely, 0.18 eV, 0.19 eV, and 0.14 eV. At TV , the fitted band gap parameter goes
to zero as expected for the metallic behavior in the high-temperature phase.

Now, we address the assignment of the features observed in the optical spectra
to electronic transitions. For charge-transfer excitations (O2p→Fe3d), the spectral
weight tends to be bigger than the one originating from excitations between Fe3d
states. In magnetite, these strong excitations set in at about 2.5 eV [30, 130].
This leads to attribute the observed features at 0.6 eV and 1.9 eV to excitations
between Fe3d states. Due to two different sites, A and B, and two iron oxidation
states (2+/3+) on the B sites, a multitude of excitations is possible. Considering
first intersite excitations of the type 3d5

i 3d5
j → 3d4

i 3d6
j , the high spin S = 5/2 3d5

configuration is very stable such that those excitations are commonly found above
3 eV [135]. Hence, the features observed at 0.6 eV and 1.9 eV can be reasonably
identified as 3d6

i 3d5
j → 3d5

i 3d6
j excitations.
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0.6 eV

2.0 eV

Figure 5.15.: Sketch of the assignments of the two intersite excitations observed at
0.6 eV and 2.0 eV, originating from the minority spin electron in the Fe 2+

B
as shown in red, as observed in the optical spectra.

As described earlier, Leonov et al. [130] find (see fig. 5.4) that the minority
electron in the t2g level of the Fe 2+

B site is the closest to the Fermi level whereas
the lowest empty one is identified as a t2g ↓ state on Fe 3+

B . Thus, the peak at
0.6 eV can be assigned to the intersite excitation between those two states, in
agreement with previous reports [30, 119, 130].

Since in magnetite, neighboring FeB sites are connected via 90◦ Fe-O-Fe bonds,
not only the intersite t2g → t2g hopping is allowed but also the intersite t2g → eg

hopping is allowed [24], as sketched in fig. 5.15. Again, Leonov et al. [130] find
a minority spin Fe 2+

B t2g electron excitation to an empty eg state on an Fe 3+
B site

at about 2 eV. This assignment is different than the one in Park, Ishikawa and
Tokura [30], which assigns this peak in the optical conductivity to a Fe3+ −> Fe2+

transition within A and B sites

Since both features originate from the excitation of a minority electron on an
Fe 2+

B site to an Fe 3+
B site, the expectation is that both excitations show the same

temperature dependence regarding their spectral weight. Our experimental result
disagrees with this expectation, as the two features show an opposite behavior in
their temperature dependence (see fig. 5.13). However, Leonov et al. [130] find
that below TV , Fe 3+

B sites have an enhanced occupation of the eg ↓ arising from
hybridization with O2p states. This means that a change of covalency strongly
screens the charge order below TV . Therefore, the spectral weight for excitations
into the eg levels diminishes in the charge-ordered state, in agreement with our
observation.
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5.4. Conclusions

We performed temperature-dependent measurements of the equilibrium optical
properties of magnetite in a broad spectral range. The optical spectra show good
qualitative agreement with previously reported optical data [30, 119, 132, 133]
but offer more insight into the temperature dependence. Like those previous
reports, we observe that the two lowest-energy electronic absorption features7

are located at 0.6 eV and 1.9 eV.

A detailed measurement of the optical response around the Verwey transition
temperature, i.e., across the charge-ordered and charge-disordered phases, shows
a steplike behavior. Our temperature-dependent measurements permitted us to
determine the behavior of the spectroscopic features at 0.6 eV and 1.9 eV, which
was unclear from previous optical studies [30, 119]. We observe that the two
features show an opposite temperature dependence, in agreement with what was
reported by Park, Ishikawa and Tokura [30].

By considering their temperature-dependent behavior, we interpret those excit-
ations in a new fashion that differs from previous reports. Our interpretation of
both features is as intersite transitions of minority spins from the Fe 2+

B t2g levels
to the t2g and eg levels of Fe 3+

B sites, respectively. The spectral intensity of the
first excitation, Fe 2+

B t2g → Fe 3+
B t2g , grows upon cooling, i.e., upon increasing

charge disproportionation, as expected. In contrast, the temperature dependence
of the second excitation, Fe 2+

B t2g → Fe 3+
B eg , goes in the opposite direction. The

1.9 eV feature decreases upon cooling as the hybridization of Fe 3+
B eg with O2p

orbitals gets enhanced by the charge ordering, thus increasing the occupation of
minority spin ↓ of the Fe 3+

B eg states.

In the literature, there is a discrepancy concerning the 1.9 eV feature found in
reflectivity measurements [30, 119]. While in Park, Ishikawa and Tokura [30], the
1.9 eV feature is a prominent and well resolved one, in Gasparov et al. [119] it is
essentially non-existent and not even mentioned. From the LSDA+U calculation,
Leonov et al. [130] find that the contribution of the t2g to eg minority electron ex-
citation has a minimal intensity, in disagreement with Park, Ishikawa and Tokura
[30]. To amend the discrepancy between theory and experiment, they argue that
using an averaged P2/c structure for the low-temperature phase while neglecting
dynamical correlations results in a small calculated intensity. When comparing
theory [130], other optical spectroscopy data [132, 133], and our results, the
existence of the 1.9 eV feature is unambiguous.

7Beyond the Drude peak in the metallic phase.
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The data obtained via spectroscopy ellipsometry was subsequently used as a
solid base for a non-equilibrium study8. Below TV , the out-of-equilibrium spectra
show three different regimes depending on the pump’s fluence, demonstrating
that the photoexcitation process can trigger an out-of-equilibrium response ana-
logous to the Verwey phase transition. In the low-fluence regime, the observed
response corresponds to the one associated with a warmer charge-ordered system.
In the intermediate-fluence regime, nucleation of high-temperature phase with
isolated patches of the low-temperature charge-ordered phase is observed. Finally,
in the high-fluence regime, the system is instantly homogeneously driven into the
high-temperature phase, and no nucleation process can be observed. Above TV ,
the response as a function of fluence is linear, with no evidence of a photoinduced
phase transition. ferromagnetic/

8The non-equilibrium part was measured and analyzed in Randi et al. [120].
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6. Mott-Hubbard excitations in
Ca2RuO4

Ruthenates of the family Ca2 – xSrxRuO4 [136], a 4d electron system with nearly
degenerate t2g orbitals, are single-layered transition-metal oxides with a complex
phase diagram. Moreover, this family is isostructural to the La2 – xSrxCuO4 high-
temperature superconducting cuprates. The rich physics they show, the potential
role of the spin-orbit coupling, together with the structural similarity with the
high-temperature cuprate-based superconductors, have given a strong research
push to this 4d transition-metal oxide family of compounds.

On the x = 2 end of the family, Sr2RuO4 (SRO) with critical temperature of
1.35 K [137]. Although the superconducting phase transition temperature of SRO
is considerably low, its relevance resides in the differences it presents compared
to the cuprate-based superconductors. For example, in SRO, the superconducting
phase exists only in undoped samples, whereas some doping is needed in cuprates.
Moreover, the Tc shows no significant dependence on oxygen content [138], but
it displays a strong dependence on non-magnetic impurities.

On the other end of the family, at x = 0, Ca2RuO4 (CRO) is a Mott insulator with
a metal-insulator transition at about 357 K [139, 140]. The root of this transition
has been the object of extensive studies [136, 137, 139, 141], for the most part
agreeing that its origin lies in strong correlations and structural changes. Below
110 K the spins order antiferromagnetically at the level of the RuO2 layer. By the
application of small electric fields of the order of 40 V cm−1 or current Ca2RuO4
can undergo a insulator-to-metal transition into a conducting non-equilibrium
phase [142–145]. Moreover, a close relationship between electrical, magnetic,
and structural properties exists [136, 146–150].

In contrast with the cuprates, where just a single active electronic band plays a
role, ruthenates, like most other transition-metal oxides, are multiband materials.
Particularly evasive has been the understanding of the orbital degree of freedom in
the ground state of Ca2RuO4. Early experimental and theoretical work suggests an
important role of the orbital degree of freedom [141, 151–156]. Thus, Ca2RuO4
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provides an excellent opportunity to study the interplay between spin and orbital
degrees of freedom.

In contrast to LCO, an effectively half-filled single 3d band electron system
where the Mott transition arises due to a high U/W ratio, CRO presents a more
complex situation. Because of the 2/3-filling of the t2g level for 4d4Ru4+, the
Hund coupling becomes a relevant energy scale to consider [157], but it has been
widely neglected.

Overall, the Ca2 – xSrxRuO4 family shows multi-orbital Mott physics and super-
conductivity while having a strong spin-orbit coupling and therefore is of high
current interest. Furthermore, recently, the interest in 4d electron systems has
been focused on the role of the spin-orbit coupling in their physical properties.

For example, in layered t5
2g 5d iridates [158], spin-orbit coupling presents a new

type of Mott insulating state. It has also been proposed that doping the effective
j = 1/2 Mott insulating state could lead to an exotic type of superconductivity
[159], where Cooper pairs are composed of spin-orbit coupled electrons. This is
also relevant in t5

2g α − RuCl3, highly debated as a proximate Kitaev spin-liquid
[160]. In Ca2RuO4, the central question concerns the ratio of the crystal field split-
ting (∆C F) to the spin-orbit coupling (2λ). This ratio affects directly, for example,
the character of magnetic moments and of the magnetic excitations [161–170].

6.1. Physical Characterization

Similar to the layered cuprates, Ca2RuO4 is based on RuO2 layers of corner-sharing
RuO6 octahedra, belonging to a distorted K2NiF4 structure [139]. Structural dis-
tortions are not uncommon in perovskite-related compounds. In most cases they
arise due to a rotation and/or tilt of the octahedra as seen in similar compounds
Sr2IrO4 [171, 172] and Sr2RhO4 [173]. The isostructural compound La2CuO4
also presents a similar distortion but with a smaller orthorhombic splitting. Fig-
ure 6.1 shows the crystal structure of the unit cell of Ca2RuO4 with in-plane O(1)
and apical O(2) ions in red, the Ca ions are in light blue, and Ru4+ ions in grey.
At room temperature its lattice constants are a = 5.4097(3)Å, b = 5.4924(4)Å,
and c = 11.9613(6)Å in space group Pbca1[147, 174].

When compared to its Sr2RuO4 sibling, Ca2RuO4 naively may be expected to
show metallic behavior due to the increased bandwidth arising from a shorter

1In this space group, the octahedra combine a rotation around the c axis and a tilt around a
parallel axis to an in-plane edge.
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Figure 6.1.: Ca2RuO4 crystal structure in the low-temperature phase. The gray spheres
denote the octahedral Ru4+ sites, the light blue spheres denote Ca, and
the red ones denote O. The blue arrows on each Ru site show the magnetic
moment on that site. In the inset, the local xyz frame around Ru1 is shown.
The RuO6 octahedra show tilting, rotation, and a contraction along the
local c axis. CC licensed from [175].

Ru-O distance. However, distortions from the K2NiF4 type structure lead instead
to a substantial reduction in bandwidth, making Ca2RuO4 an insulator. Ca2RuO4
undergoes a first-order metal-insulator (MI) transition at about 357 K [140]. This
MI phase transition is accompanied by a tetragonal to orthorhombic structural
transition, as evidenced in the two leftmost panels in fig. 6.2. The orthorhombicity
gets enhanced as the temperature is further reduced. Below TN ∼ 110 K, the spins
order antiferromagnetically aligned parallel to the layers in the b direction which
corresponds to the tilt axis [174, 176]. A finite Dzyaloshinsky-Moriya interaction
originating from the crystal structure’s low symmetry produces canting of the
magnetic moments around the a direction. The rotation of the RuO6 octahedra
around the c axis (ϕ) is 11.8◦ showing no temperature dependence, while the tilt
angle varies from 11.2◦ to 12.7◦ between room temperature and 11 K [147].

Above TM I , the RuO6 octahedra are elongated in the perpendicular direction
to the RuO2 layers. As the temperature is reduced and TM I is crossed, the oc-
tahedra flattens as evidenced by the reduction of Ru-O(2) bond length shown in
fig. 6.3. This flattening continues until close to the onset of the magnetic ordering
temperature [147, 174].

Due to the substantial change in the lattice parameters at TM I , in particular for
the c axis, the crystals tend to crack and break while cooling down after growing.
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Figure 6.2.: Temperature dependence of the lattice parameters a, b, c (left panels). At
TM I ∼ 357 K, Ca2RuO4 undergoes a tetragonal to orthorhombic structural
transition. The orthorhombicity (top right) and unit cell volume (bottom
right) increase as the temperature is reduced. Open and closed symbols
correspond to high-flux and high-resolution experiments, respectively. The
observed changes in the physical properties are evidence of the strong
correlation between charge, spin, orbitals, and lattice degrees of freedom.
Adapted from [147].
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Figure 6.3: The RuO6 octahedra octa-
hedra flatten with decreas-
ing temperature leading to
a tetragonal distortion be-
low 300 K. The flattening
continues until the onset of
the magnetic ordering. At
about 300 K the octahedra
show a cubic symmetry. Ad-
apted from [147].

This renders the crystals unusable for many experiments, like inelastic neutron
scattering. A minor substitution of 1% of Ti for Ru ameliorates this issue, allow-
ing for bigger crystals to be obtained [164]. The introduction of the smaller Ti
diminishes the amount of distortion in the structure, where at 10% substitution,
the tilt and rotation angles are slightly reduced [163].

Physical characterization of Ca2RuxTi1 – xO4 for x = 0.01 and x = 0.1 Ti substi-
tuted samples is shown in fig. 6.4. For the 1% substitution, resistivity measure-
ments find a slight shift of the MIT temperature where it is slightly lowered by
4 K, while magnetization measurements find no change in its Neél temperature
(TN ). At a substitution of 10%, the Neél temperature shifts to a lower tempera-
ture (107.2 K) while the MIT is destroyed, resulting in insulating behavior up to
at least 700 K.

As discussed earlier, in Ca2RuO4, there is a crossover from elongated to contrac-
ted octahedra happening close to room temperature upon cooling, see fig. 6.3.
The introduction of Ti also affects the temperature where this crossover happens,
placing it somewhere between 100 K and 300 K, as shown in fig. 6.5-a). Also, the
distortion of the RuO6 octahedra is suppressed by 10% Ti substitution as shown
by the ratio of O-O bond lengths2 on the edges of the RuO6 octahedra parallel to
a and b directions in fig. 6.5-b). The suppression of the distortions in the RuO6
octahedra with the inclusion of 10% Ti+4 with an empty 3d shell supports the or-
bital ordering character of these distortions. However, Kunkemöller et al. [164]

2This ratio is related to the orthorhombic splitting ε= (b− a)/(a+ b)
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Figure 6.4.: Magnetization (left) and resistivity (right) as a function of temperature
for different Ti content. The magnetic ordering temperature slightly shifts
with increased Ti content while the MIT is completely suppressed for a
10% substitution. Adapted from [164].

observe that the average in-plane parameter increases while the c parameter de-
creases with increasing Ti substitution, a behavior that is the crucial element of
the insulating state in Ca2RuO4.

Regarding the electronic structure of Ca2RuO4, the oxidation state of Ru is +4.
When compared to the 3d transition metal oxides, the on-site Coulomb interaction
is weaker due to the more extended nature of the 4d orbitals. This increased
extension also leads to an enhanced t2g-eg crystal field splitting arising from a
more considerable overlap of those 4d orbitals and the 2p ones from the ligand
oxygen. Fatuzzo et al. [177] suggest a splitting of about 2 eV and 3 eV–4 eV for t2g-
d3z2−r2 and t2g-dx2−y2 , respectively. Hence the low-spin state S = 1 (t4

2g) is favored
instead of the high-spin one as in the case of the isoelectronic 3d LaMnO3.

6.1.1. Crystal-field splitting vs. spin-orbit coupling

At the core, the question resides on the precise character of the local electronic
state of the four electrons within the t2g shell. This local state depends on the
non-cubic distortions splitting the t2g level together with the spin-orbit coupling.
The roles that the non-cubic distortions and the spin-orbit play, and their compet-
ition, has been discussed already for a long time. Thus we start our discussion
by addressing first the effect of the crystal field while neglecting the spin-orbit
coupling. Jung et al. [155], by using LDA+U calculations, suggest that in the
low-temperature structure and AFM order, one electron occupies each one of the
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Figure 6.5.: a) Out-of-plane to in-plane Ru–O bond length ratio. b) Ratio of two O-O
bond lengths. Adapted from [164].

three t2g orbitals with majority spin and the remaining electron predominantly
occupies the minority spin in the dx y orbital resulting in ferro-orbital ordering,
as depicted in fig. 6.6. LDA+DMFT results with and without spin-orbit coupling,
Zhang and Pavarini [167] and Gorelov et al. [178], agree that in the insulating
state, the orbital ordering is xy-like and when considering the AFM spin order
the predominantly xy orbital order is maintained. Fang, Nagaosa and Terakura
[156] identify three main factors responsible for the xy orbital stabilization. The
first one is a geometrical factor due to the 2D nature of the crystal field and the
subsequent energy-level splitting. The second factor relates to the Jahn-Teller
compression along the c axis, which lowers the energy of the xy orbital. The third
one is due to an orbital-dependent intersite hybridization between occupied and
unoccupied orbitals pushing the yz/zx orbitals up. Now, due to the radial exten-
sion of the 4d orbitals, hybridization with the O 2p orbitals alters this situation.
In another LDA+U study, Fang, Nagaosa and Terakura [156] find the orbital pop-
ulations as n↑x y = 0.86, n↑yz/zx = 0.87, n↓x y = 0.79, n↓yz/zx = 0.28, where ↑ (↓)
indicates majority (minority) spin.

As discussed in section 2.4, in 4d systems, the spin-orbit coupling can become
relevant. Particularly for Ru the spin-orbit coupling is of the order of 0.1 eV. In
heavy ions with t4

2g occupation (e.g., Re3+, Ru4+, Os4+, and Ir5+), under the strong
spin-orbit coupling, in a local picture, the ground state should be a non-magnetic
j = 0 singlet where the magnetism arises from virtual transitions to higher levels
with finite j [162]. Such a ground state has been considered for Ca2RuO4, re-
producing the observed magnetic order while predicting some unusual magnetic
features [161, 162]. An X-ray absorption study [152] agrees that spin-orbit coup-
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Figure 6.6.: The octahedral crystal field splits the 4d states in an upper eg and a lower
t2g level. Due to the contraction of the octahedron along the c-axis, the
tetragonal distortion lifts the degeneracy in the t2g level, lowering the d x y

orbital. Naively, the four electrons in Ru4+ occupy the d x y level with two
electrons, and one in d xz and another in d yz . Theoretical and experimental
studies refine this picture [152, 155, 156, 177] where it is found that the
orbital occupation is temperature-dependent, as is also the structure (see
fig. 6.2).
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ling plays an important role suggesting a mixing of the t2g orbitals leading to a
partial occupation of each t2g orbital. However, they argue that the SOC present
in Ca2RuO4 is not strong enough to stabilize the j = 0 state. A similar x-ray ab-
sorption study [177] also supports this mixing of the t2g orbitals due to the spin-
orbit coupling. However, via inelastic neutron scattering (INS) Kunkemöller et al.
[163] have shown that a conventional exchange Hamiltonian that considers the
spin-orbit coupling through a single-site anisotropy term describes the observed
dispersion, which features a sizeable in-plane spin gap of about 13 meV. This is
further supported by the sign of the distortion (contraction) observed, indicating
that the Jahn-Teller effect is stronger than the spin-orbit coupling.

In SRO and CRO, crystal-field splitting plus spin-orbit coupling has been ne-
cessary in describing the band structure. In an LDA+U+SO study [179], it has
been suggested that the Mott insulating state present in CRO can be understood
as being caused by a Coulomb-enhanced spin-orbit coupling. Recent LDA+DMFT
calculations [167] that explicitly consider spin-orbit coupling and anisotropic Cou-
lomb interaction find that the introduction of spin-orbit coupling does not lead to
a j = 0 ground state and that the dx y orbital order persists, and that the contrac-
tion of the c axis is the most critical factor driving the metal-insulator transition.
Furthermore, the study reproduces the magnon dispersion found in Kunkemöller
et al. [163]. Moreover, recent dynamical mean-field theory calculations on the
Sr2RuO4 structure [180] find that the spin-orbit coupling does not affect much,
supporting that they are Hund’s metals.

6.2. Optics on Ca2RuO4

Moving onto optical spectroscopy, fig. 6.7 shows the Ca2RuO4 temperature-dependent
optical conductivity obtained via Kramers-Kronig analysis of the reflectivity of the
(a) in-plane (E ‖ ab) and (b) out-of-plane (E ‖ c) polarizations as reported by
Jung et al. [155]. Both polarizations show a strong feature at about 3 eV that
broadens as the temperature is increased. For E ‖ c, this feature is reminiscent
of the one of Sr2RuO4 [181]. As such, this feature can be interpreted as the
charge-transfer excitation from O 2p to Ru 4d. The small difference in energy
of this charge excitation peak between in-plane and out-of-plane stems from the
different basal and apical O 2p energy levels due to the distortion of the RuO6
octahedra.

The temperature dependence of the in-plane optical spectra (fig. 6.7 a)) shows
a metallic feature above TM I . In contrast, below TM I , the insulating nature of
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Figure 6.7.: Optical conductivity of Ca2RuO4 obtained via Kramers-Kronig analysis of
broadband reflectivity measurement. a) In-plane (E ‖ ab): Two Mott ex-
citation features below 2.5 eV and one charge-transfer excitation above
3 eV. The peak of the first feature shifts to lower energies as the tempera-
ture increases while also increasing its spectral weight. The second feature
loses spectral weight as the temperature increases. b) Out-of-plane (E ‖ c):
Charge-Transfer excitation without clear features below it, similar to the
case of other layered oxides. Adapted from [155].
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Figure 6.8.: Optical conductivity of Ca2–x Srx RuO4 for x = 0.06 obtained via Kramers-
Kronig analysis of reflectivity measurement in the insulating state with the
contributions of the phonons and charge-transfer excitations subtracted.
The peaks at about 1 eV and 1.9 eV are labeled α and β , respectively.
Adapted from [153].

this material with a gap below 1 eV is observed. The data seems to suggest a gap
opening from about 250 K, which is much lower than the TM I . Three principal
features are observed at about 1.0 eV, 2.0 eV, and 3.2 eV. As the temperature
decreases, the first feature’s spectral weight diminishes while its energy shifts
slightly to higher energies, whereas the spectral weight of the second feature
increases.

Lee et al. [153] study the CSRO series from x=2 to x=0 via Kramers-Kronig ana-
lysis of the reflectivity measurements of the ab plane. For the x = 0 sample, they
observe a strong peak at about 3.0 eV, which they assign to a charge-transfer ex-
citation while assigning the features below 2.5 eV to Mott excitations, coinciding
with the interpretation of Jung et al. [155]. The peaks at about 1 eV and 1.9 eV
are labeled α and β , respectively. As a function of x , they observe that the peak
at about 2 eV decreases in spectral weight and attribute this decrease to the re-
duction of U/W with increasing3 x . The nearest neighbor spin correlation below
the Néel temperature (TN ) is, for the most part, antiferromagnetic (AFM). Follow-
ing a simple representation of the electronic configuration based on a 3-orbital
Hubbard model (see fig. 6.9), Lee et al. [153] expect excitations only arising from

3With decreasing x , the distortions increase, making the bandwidth (W ) narrower.
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Figure 6.9.: Possible spin/orbit configurations for fully degenerate t2g orbitals in a
4d system with two sites in a 3-orbital Hubbard model. The interac-
tion energies involved are the Coulomb on-site U for electrons occupy-
ing the same orbital, U ′ for electrons in different orbitals but with op-
posite spin, and U ′′ for electrons in different orbitals and same spin.
Considering the orbital rotational symmetry of the system, a simplifica-
tion is obtained as U ′ = U − 2J , and U ′′ = U − 3J , where J is the
Hund’s exchange interaction between two electrons in the t2g orbitals
[182]. a) ferromagnetic/ferro-orbital (FM/FO), b) ferromagnetic/antiferro-
orbital (FM/AFO), c) antiferromagnetic/ferro-orbital (AFM/FO), and d)
antiferromagnetic/antiferro-orbital (AFM/AFO). In panel a) no transition
can take place due to Pauli’s exclusion principle. In panels b) to d) the
possible excitations are indicated with dotted arrows plus with the energy
involved. Only for panel d) two transitions are allowed with energies U − J
and U+J , leading to an experimental value of 2J of about 1.0 eV. Adapted
from [153].

spin/orbital configurations of the type AFM paired with antiferro-orbital ordering
since it is the only spin/orbit configuration where two optical transitions are al-
lowed. However, this sketch does not describe the physics of the system correctly
as it neglects rotation and tilts of the octahedra which enable other excitations.

Lee et al. [153] also report the temperature dependence, where they report
that "... exist systematic spectral changes between peaks α and β even in the insu-
lating state.". They find that the spectral weight of the first peak decreases with
decreasing temperature. In contrast, the spectral weight for the second peak in-
creases with decreasing temperature. Thus, Lee et al. [153] argue that given the
temperature dependence of both features (see in fig. 6.10), that the relevance of
ferro-orbital (FO) correlation increases with decreasing temperature.
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Figure 6.10.: Temperature dependence of the difference in spectral weight for peaks α
and β (∆Sα(T ) = Sα(T )−Sα(T = 100K) and ∆Sβ (T ) = Sβ (T )−Sβ (T =
220K)). Reproduced from [153].

Figure 6.11.: Schematic of the energy level for the antiferromagnetic/antiferro-orbital
ordered state with doubly occupied d x y and d yz orbitals and Jahn-Teller-
like distortions of the octahedra which gives rise to a U − J + 3Eph excit-
ation. Adapted from [153].

Furthermore, they also observe a shift of about 0.24 eV of the α peak between
100 K to 250 K, whereas the β peak shows no significant shift. To explain this shift
in one of the peaks, they argue that it has to do with electron-phonon coupling
arising from a Jahn-Teller distortion that lifts the degeneracy of the t2g orbitals
changing their energies by −2Eph and Eph for double and single occupancy, re-
spectively, adding an energy cost of 3Eph to the lowest excitation in the AFM/AFO
configuration as schematically shown in fig. 6.11. Taking Eph ≈ωTO ≈ 600cm−1,
the shift of the peak is about 0.22 eV which they claim it agrees with the observed
shift of 0.24 eV.

Comparisons of the experimental optical conductivity with the one obtained
through LDA+U [155] and LSDA+U [156] show, in both cases, a good agree-
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α

β

xy

yz/zx

Figure 6.12.: Single particle picture of the low-energy excitations in Ca2RuO4 as sug-
gested for the interpretations of optical data and complementary LDA+U
and LSDA+U calculations [155, 156]. Note the antiferro alignment of
the magnetic moments on adjacent sites.

ment. Based on the calculated density of states, Jung et al. [155] attribute the
origin of each feature in the optical conductivity as follows: the first two features
at about 1.0 eV and 2.0 eV come primarily from excitations between lower and up-
per Hubbard bands of the Ru 4d electrons. The first feature (α) is a dx y,i → dxz/yz, j

excitation, whereas the second feature (β) is a transition from an occupied major-
ity spin on site i to an unoccupied dxz/dyz orbital on site j, as shown in fig. 6.12.
Above 3.0 eV, charge-transfer excitations from occupied O 2p to unoccupied Ru
t2g states are located. By comparing the spectra calculated for the 11 K AFM and
the 295 K FM states, the changes in the first peak are related to the increased
dx y hole population and the decrease of the Jahn-Teller splitting, whereas for the
second peak, they are related to the change of the relative orientation between
the moments on neighboring sites, comparing the ferromagnetic and antiferro-
magnetic states.

6.3. Results

As mentioned earlier, since significant lattice changes accompany the metal to
insulator transition in Ca2RuO4, the crystal tends to break apart into small pieces
not suitable for many experiments. A 1% Ti doping stabilizes the sample during
cooling after the growing process [163]. Besides the 1% Ti substituted Ca2RuO4,
a second sample with a 10% Ti substitution was also investigated.
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Figure 6.13.: Temperature-dependent in-plane optical conductivity of the 1% Ti sub-
stituted Ca2RuO4 calculated from the psuedo dielectric function.

6.3.1. 1% Ti doped

The temperature-dependent optical spectra of Ca2RuO4 with 1% Ti are shown in
fig. 6.13. The measurement has considerable noise at high energy due to the
lower light intensity from the source and the small sample size. We can observe
four clear features at about 1.2 eV, 2.0 eV, 3.2 eV, and 4.9 eV. The data at 15 K ex-
hibit good qualitative agreement with those measured by Jung et al. [155] shown
in fig. 6.7. Here, we observe how the feature at about 1 eV shifts towards lower
energies with an increase in spectral weight as the temperature is increased. The
feature at about 2 eV also shows a slight shift towards lower energies plus a no-
torious broadening. For the 3.2 eV feature, we observe that it broadens without
showing signs of much shift in energy, leading to a reduction of the optical con-
ductivity at the peak. The highest energy feature at about 5.0 eV shows a similar
behavior as the previous one, but with a more substantial reduction of the op-
tical conductivity value as a function of temperature. Overall, qualitatively, the
measured optical spectra’s temperature dependence agrees with the previously
reported data by Jung et al. [155].
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6.3.2. 10% TI doped

The temperature-dependent optical spectra are shown in fig. 6.14. Below 2.7 eV,
the optical conductivity shows a very similar structure compared to the measure-
ment of the 1% doped sample shown in fig. 6.13 displaying two features at about
1 eV and 2 eV. The lowest energy feature shows mostly the same behavior as in
the 1% Ti substituted sample, the peak shifting to lower energies. The second fea-
ture shows a more pronounced change as a function of temperature than in the
1% substituted sample, keeping the energy mostly fixed and primarily showing a
broadening and a monotonous reduction of the optical conductivity at the peak.

At high energies, there is a substantial reduction of the optical conductivity as
a function of temperature. The peak found at 3.2 eV in the undoped sample is
now much sharper and at lower energy than the equivalent one in the undoped
sample, while the higher feature, at about 4.5 eV, is very much broadened and
lower in energy. The high-energy features show an evident broadening with an
increase of the optical conductivity’s peak value as the temperature increases until
about 310 K. There is a sudden drop in the optical conductivity in the high-energy
region of the measured spectra at higher temperatures.

6.4. Analysis

To get further insight into the optical spectra as a function of temperature of both
samples, particularly for the low-energy features, we built an optical model for
each one of them. The optical model includes a surface roughness layer. Since
the sample does not have a transparent region in the measured spectra which was
set at 4nm as a value representative of what we have encountered previously in
modeling similar materials.

6.4.1. 1% Ti doped

The optical model for the 1% Ti sample consists of six oscillators in total. Four
Gaussian oscillators with two of them below 2.1 eV and the other two above
4.5 eV, and two Tauc-Lorenz in between both groups of Gaussians. The full set
of fitted parameters is shown in table 6.1 for the 15 K measurement. Besides the
oscillator parameters, the magnitudes of a low- and a high-energy pole plus ϵ∞

114



6.4 Analysis

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 4 . 5
0

2 5 0

5 0 0

7 5 0

1 0 0 0

1 2 5 0

1 5 0 0

1 7 5 0

2 0 0 0
 

 

σ 1 (Ω
-1 cm

-1 )

P h o t o n  E n e r g y  ( e V )

   1 5  K      1 9 0  K
   4 0  K      2 3 0  K  
   8 0  K      2 7 0  K
 1 1 0  K      3 1 0  K
 1 5 0  K      3 4 0  K

                       3 7 0  K

Figure 6.14.: Temperature dependent in-plane optical conductivity of 10% Ti substi-
tuted Ca2RuO4 from the pseudo dielectric function. Above 310 K, the
high-energy data suffer a significant drop. Thick lines correspond to 15 K
and 310 K.
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Oscillator # Energy (eV) Amplitude (eV) Width (eV) Gap (eV)

1 1.13 2.33 0.65 -

2 2.06 3.05 0.91 -

3 2.64 63.06 1.58 2.07

4 2.92 99.53 0.42 2.74

5 4.59 1.12 0.63 -

6 5.15 2.24 0.96 -

Table 6.1.: Set of oscillators and their fit parameters used in the optical model for
Ca2RuO4 with % doping at 15 K. The entries with a value in the gap
column correspond to Tauc-Lorentz oscillators.

were set as parameters to be fitted. The positions of the poles were fixed4 at 0.1 eV
and 6.7 eV, respectively, for all temperatures.

The two oscillators below 2.5 eV are the ones we will focus on through the
analysis, located at 1.13 eV and 2.06 eV at 15 K, respectively. Figure 6.15 shows,
as a function of temperature, the energy, amplitude, width, and the normalized
spectral weight at 15 K of both oscillators. The energy of both Gaussian oscillators
(fig. 6.15 a)) shows a shift to lower energies as temperature increases, where the
lowest energy oscillator shows the largest shift. More change happens in the fitted
amplitude (fig. 6.15 b)), particularly for the first oscillator, which shows an almost
140% increase between 15 K and 300 K. The width (fig. 6.15 c)) for both of the
oscillators increases with increasing temperature, more noticeable for the second
one where there is an increase of 50%. In summary, the first oscillator increases
considerably in amplitude while the second oscillator primarily broadens as a
function of temperature.

Ultimately, the physical behavior of the oscillators is encoded in the spectral
weight (fig. 6.15 d)), which is shown normalized by its value at 15 K. We can
observe an increase in the spectral weight as a function of temperature for both
oscillators. For the first oscillator, most of the increase in spectral weight comes
from the increase in its amplitude, whereas for the second oscillator the increase is
closely related its broadening. Interestingly, there is no noticeable change across
the Neél temperature of the sample.

In the previous analysis, there is an issue. Ca2RuO4 is not a cubic sample, this

4We kept them fixed since the position and magnitude of a pole are highly correlated while
making the fit numerically better due to an extra parameter.
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Figure 6.15.: Fitted parameters (a) - c)) and normalized spectral weight (d)) as a
function of temperature of the first two oscillators used in the optical
model for the 1% Ti substituted Ca2RuO4.

Osc. # Temperature (K) Energy (eV) Amplitude (eV) Width (eV)

1
15 1.14 2.33 0.65

300 0.81 5.61 0.82

2
15 2.06 3.05 0.92

300 1.92 3.23 1.38

Table 6.2.: Fit parameters of the two lowest energy Gaussian oscillators for 15 K and
300 K for 1% Ti substituted Ca2RuO4

.
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Figure 6.16.: Comparison of the pseudo-dielectric point-by-point (blue) to the uniaxial
model (red) results of the optical conductivity at 15 K for the 1% Ti
doped Ca2RuO4. For the uniaxial model, the c-axis data from Jung et al.
[155] is employed to be able to account for effects stemming from the
anisotropy of the sample.

means that eq. eq. (3.26) is not strictly correct as it assumes an isotropic sample.
In this case, multiple orientations should be measured and modeled considering
the anisotropic nature of the sample. Unfortunately, the available samples did
not allow the measurement of the optical spectra along the c axis. However, the
pseudo-dielectric function serves us well in our purpose of analyzing the Mott-
Hubbard excitations which do not contribute to the c-axis response. The agree-
ment between our experimental data as analyzed with eq eq. (3.26) and the data
from reflectivity-based measurements [153, 155] serves as extra support. Fur-
thermore, to further validate the decision to use the pseudo-dielectric function
we used a second model where we analyzed our measured data together with the
c-axis data from Jung et al. [155] to be able to explicitly take into consideration
the anisotropy of the sample. As seen in fig. 6.16, this new model (red) produces
a very similar fit to the one ignoring anisotropic effects (blue), particularly for
both Mott-Hubbard peaks of interest. For the relevant measure we are interested
in, namely the ratio of their spectral weight, we find that the anisotropy-based
model produces a value of 0.29 in agreement with what we already calculated.
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6.4.2. 10% Ti doped

For the 10% doped sample, the optical model used to fit the observed data consist
of four Gaussian oscillators, two Tauc-Lorentz ones, together with the amplitudes
of two poles located at 0.1 eV and 6.7 eV, respectively. The value of ϵ∞ was
kept fixed at 1 because otherwise, it did fit to values lower than 1, which is a
nonphysical result.

Analogous to the 1% Ti doped sample, we will focus on the two lowest-energy
oscillators, as shown in fig. 6.17. Concerning the high-energy oscillators, since
the optical spectra show broad and incomplete features, the uncertainty of the fit
parameters is relatively high. Thus, they have to be taken with caution. This will
not be a big issue since we are primarily interested and will be focusing on the
low-energy features, which are well defined.

The energies (fig. 6.17 a)) of the first three oscillators at 15 K are 0.98 eV,
1.83 eV, and 2.5 eV, respectively, see table 6.3. Similar to the 1% doped sample,
the energy of the two lowest oscillators show changes as a function of tempera-
ture, where the first one shifts monotonously to lower energies. The second one
slightly shifts down, reaching a minimum at about 200 K, to then increase again.

The amplitude (fig. 6.17 b)) increases as a function of temperature for both
oscillators. Particularly interesting is that the oscillator centered at 0.9 eV at 15 K
shows the increase mainly starting at about 110 K, while the second oscillator
seems to reach a saturation value at that temperature. As for the width of the
oscillators (fig. 6.17 c)), both oscillators have opposite tendencies becoming nar-
rower and broader, for the first and second oscillators, respectively. At last, the
spectral weight (fig. 6.17 d)) shows an interesting trend as a function of tem-
perature. Whereas the first oscillator shows a rather constant value, the second
oscillator shows a steady increase from about 110 K, reaching a plateau above
300 K following the amplitude and width behavior.

With increasing Ti content, we expect to lose spectral weight as there are fewer
electrons available. We can observe this at the high energy part of the spectra
but not at low energy. The Ti ions may be affecting the Ru – O energy in their
neighborhood, which could shift the weight of the charge-transfer excitations to
lower energies.
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Figure 6.17.: Fitted parameters (a) - c)) and normalized spectral weight (d)) as a
function of temperature of the first two oscillators used in the optical
model for the 10% Ti substituted Ca2RuO4.

Oscillator # Energy (eV) Amplitude (eV) Width (eV) Gap (eV)

1 0.98 4.52 0.94 -

2 1.83 3.36 0.76 -

3 2.5 2.49 0.76 -

4 2.89 2.98 0.47 1.54

5 3.28 3.7 1.06 1.13

6 4.45 1.20 1.52 -

Table 6.3.: Fit parameters for the 10% Ti substituted Ca2RuO4 at 15 K. The entries
with a value in the gap column correspond to Tauc-Lorentz oscillators.
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Osc. # Temperature (K) Energy (eV) Amplitude (eV) Width (eV)

1
15 0.98 4.52 0.94

300 0.74 6.91 0.85

2
15 1.83 3.36 0.76

300 1.77 4.17 1.26

Table 6.4.: Summary of the first two oscillators for the 10% Ti substituted Ca2RuO4
at 15 K and 300 K.

4A2|0> 2E 2T2
2T1

Figure 6.18.: Sketch of the t4
2g ground-state multiplet as well as of the different t3

2g
multiplets available. The nomenclature refers to the idealized case of a
cubic crystal field. From [135].

6.4.3. Peak assignment

Focusing on the two lowest energy features for the 1% doped sample observed
at about 1 eV and 2 eV, we concur in the assignment of them to Mott-Hubbard
excitations between neighboring Ru sites i and j ( |4d4

i 4d4
j 〉 → |4d3

i 4d5
j 〉) as previ-

ously done [153, 155]. As discussed previously, given the large cubic crystal field,
the 4 available electrons occupy the t2g shell in the ground state. Furthermore,
this large crystal field allows us to neglect the eg orbitals when discussing the
lowest excitations. As with previous reports [153, 155], strong charge-transfer
excitations of the type |Ru 4d4, O 2p6〉 → |Ru 4d5, O 2p5〉 set in at about 3 eV (see
fig. 6.7.

We analyze the local multiplet scenario for a t4
2g electronic configuration in

the idealized case of a cubic crystal field and without spin-orbit coupling. In this
scenario, the energy difference between excitations across the Mott gap originates
only from the multiplets within the t3

2g sector because all six t5
2g configurations

have the same energy forming a 2T2 multiplet. The t3
2g sector has 6 · 5 · 4/6=20

states, being classified into the multiplets 4A2, 2E, 2T1, and 2T2 which are shown
in fig. 6.18 in a simple single particle picture. Thus, the energies of the possible
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Figure 6.19.: Local picture of the energy levels of the d3 and d5 excited states of a t4
2g

system.

Mott-Hubbard excitations are given by

∆E = E(5) + E(3)− 2E(4) (6.1)

which leads to U − 3JH for 4A2, U for 2E, 2T1, and U + 2JH for 2T2, where U
and JH are the on-site Coulomb repulsion and the Hund coupling, respectively
(see fig. 6.19). LDA+DMFT calculations performed by Zhang and Pavarini [167]
show a good agreement with experimental results when using either U = 2.3eV
and JH = 0.4eV, or U = 3.1eV and JH = 0.7eV as parameters. Thus, in a local
picture, this set of parameter values describes the observed energies of the first
two peaks well.

The multiplets arising from a cubic scenario are a good starting point to estim-
ate the energies involved. However, to make a reasonable comparison with exper-
imental results, additional effects like a tetragonal crystal-field splitting∆CF, spin-
orbit coupling λ, and band-structure effects have to be eventually considered.

When the spin-orbit coupling λ ≈ 0.1eV [167] is compared to the other para-
meters, it is rather small and thus can be neglected for the peak assignment. Note
that the crystal-field splitting is the only parameter that can be expected to have
a pronounced temperature dependence arising from the temperature-induced
change in the crystal structure as described previously. First-principles calcula-
tions presented by Zhang and Pavarini [167] display a temperature-induced shift
of ∆CF of about 0.2 eV between the insulating phase at 180 K (∆CF = 0.3eV)
and the metallic phase at 400 K (∆CF = 0.1eV). Resonant inelastic x-ray scat-
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tering experiments [183] estimate that for Ca2RuO4 at 15 K the parameters are
∆CF = 0.25eV, λ = 0.13eV, and JH = 0.34eV. When we calculate the shift of
the energy of the lowest oscillator used in the modeling (table 6.2) between the
highest (300 K) and lowest (15 K) temperatures, we obtain the value of 0.31 eV.

In principle, there are four possible d3 multiplets that should give rise to three
different excitation energies, but with optical spectroscopy, only two of them are
observed. ARPES measurements [184] on Ca2RuO4 in its insulating phase at
150 K show two rather flat Ru bands, called A and B, respectively. These two flat
bands give rise to two peaks in the energy-distribution curves, located at 0.8 eV
and 1.7 eV below the Fermi level5. The data also shows a third low-energy band,
called C, with a larger dispersion that is shifted by about 1.2 eV with respect to
the lowest band and by 0.3 eV with respect to the second one. The split observed
between the A and B bands, by about 0.9 eV, agrees well with the splitting of the
features in our optical data (table 6.2). A comparison with LDA+DMFT calcula-
tions leads to the assignment of peak A to the 4A2 multiplet and peak B to the
2T1 multiplet, namely removing an electron from the dxz or dyz orbitals. Above,
we discussed the energies of possible multiplets in a local picture leading to an
energy splitting between the 2T1 and 2T2 multiplets to the 4A2 one of 3JH −∆CF

and 5JH −∆CF, respectively. This suggests that peak B should be assigned to the
2T1 multiplet and to argue that the 2T2 one might be hidden under the stronger
charge-transfer excitations.

The larger dispersion of the C band suggests an xy character since, due to the
layered nature of Ca2RuO4, the xy bandwidth should be about twice as large as the
xz or yz bandwidth. Thus, this broad band can be assigned to the 2E multiplet, and
then the energy shift between the lowest 4A2 band and this one is 1.2eV = 3JH

allowing an estimation of JH = 0.4 eV [184]. The splitting observed in ARPES,
between the B (2T1) and the C (2E) bands is 0.3eV, which can be associated with
∆C F which is in line with previous estimations and our data, where we estimate
∆C F@15 K = 0.3eV and ∆C F@300K = 0.1eV. The results obtained by ARPES map
directly to optical spectroscopy, the flat dispersion of the bands A and B gives rise
to clear peaks in the optical conductivity. In contrast, the large dispersion of band
C explains the absence of a well-resolved peak in the optical conductivity.

To summarize, the peak assignment we describe agrees with the results of Jung
et al. [155], which uses optical spectroscopy and a LDA+U study while neglecting
spin-orbit coupling. On the other hand, the assignment reported by Lee et al.
[153], where they neglect neglect rotation and tilt of the octahedra leading to

5The ARPES experimental technique measures the electron removal states, i.e., the d3 sector,
which in this case dominates the multiplet splitting in Ca2RuO4.
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vanishing matrix elements for peak A, is different.

6.4.4. Transition matrix elements

To further interpret the measured spectra, we calculate the transition matrix ele-
ments of the excitations involved and then the ratio of the intensities between
low- and high-temperature states to estimate the change in spectral weight. For
such calculation, one has to sum over all bonds available. In our case, it means to
sum all the excitations from a single site to its four neighbors in the ab plane. The
hopping matrix elements might differ among the bonds when tilts and rotations
of the participating octahedra are involved, but to make this simpler, we will as-
sume that the four bonds on the ab plane are the same. This is motivated by the
absence of any difference between polarizations parallel to a or b in our optical
data.

Neglecting spin-orbit coupling, the ground state of Ca2RuO4 can be approxim-
ated in the conventional xy orbital order by the d4 states given by

|d4 ↑〉= c†
yz↑c

†
xz↑c

†
x y↑c

†
x y↓ |0〉 (6.2a)

|d4 ↓〉= c†
yz↓c

†
xz↓c

†
x y↑c

†
x y↓ |0〉 (6.2b)

for the Sz = ±1 components and

|d4, Sz = 0〉= 1p
2

�
c†

yz↑c
†
xz↓ + c†

yz↓c
†
xz↑
�

c†
x y↑c

†
x y↓ |0〉 (6.3)

for the Sz = 0 one. Here, |0〉 is the state with no electrons, and where c†
ασ

and cασ
are the annihilation and creation operators for an electron in orbital α with spin
σ. Notice that here we are omitting the site indexing label. The Sz = 0 compon-
ent describes, at 0 K, a magnetic excitation (magnon). For the calculation of the
transition matrix elements, this magnon can be neglected in the low-temperature
phase but not in the high-temperature disordered phase.

Now, we discuss the possible d5 and d3 excited states. For the d5 state, we have
the following possible configurations,

|d5, yz ↑〉= c†
yz↑c

†
xz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉 (6.4a)

|d5, yz ↓〉= c†
yz↓c

†
xz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉 , (6.4b)
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and likewise with a doubly occupied yz instead of the xz. In principle, the d5

configurations with a singly occupied xy orbital given by

|d5, x y ↑〉= c†
yz↑c

†
yz↓c

†
xz↑c

†
xz↓c

†
x y↑ |0〉 (6.5a)

|d5, x y ↓〉= c†
yz↑c

†
yz↓c

†
xz↑c

†
xz↓c

†
x y↓ |0〉 , (6.5b)

could be considered, but those states cannot be reached with a single transition
from the d4 states described in eq. (6.2) or eq. (6.3) and thus are not observable
with optical spectroscopy. Thus, we will not consider them in the calculation of
the spectral weight. Eventually, these states might be somewhat relevant if one
considers that the xy orbital is not fully occupied.

Now, focusing on the d3 states, we have the 4A2, 2E, and 2T1 multiplets that
have been discussed previously as the most prominent ones.

The 4A2 multiplet has states with |Sz| ± 3/2 and ±1/2 given by

|d3,4 A2, 3/2〉= c†
yz↑c

†
xz↑c

†
x y↑ |0〉 (6.6a)

|d3,4 A2, 1/2〉= 1p
3

�
c†

yz↑c
†
xz↑c

†
x y↓ + c†

yz↑c
†
xz↓c

†
x y↑ + c†

yz↓c
†
xz↑c

†
x y↑
� |0〉 , (6.6b)

where the states with Sz = −3
2 and −1

2 are omitted.

At T = 0, the ground state is antiferromagnetic. In a two-site scenario, the
ground state is a spin singlet. However, on a square lattice, the AFM ground state
is a total singlet and not a singlet on a particular given bond. Thus, when consid-
ering two adjacent sites in the AFM ordered state, we use the Neél state as the
ground state, which is given by a product of the states described by eq. (6.3) of
the form |d4

i ↑〉 |d4
j ↓〉. The contribution of excitations from this ground state to

d3d5 states involving the |d3
i , 4A2, 3/2〉 state is zero. This is the case because,

if we consider the spin selection rule for optical spectroscopy, i.e., only spin-
conserving hopping allowed, the |d3

i ,4 A2, 3/2〉 state cannot be reached because
on site j (|d4

j ↓〉) all down-spin states are occupied. On the other hand, trans-
itions to the |d3

i ,4 A2, 1/2〉 state are not spin-forbidden in the AFM ground state.
This can be easily seen by checking that the hopping of a x y ↑ electron on site
i to the xz ↑ on site j is allowed6 and connects the |d4

i ↑〉 |d4
j ↓〉 ground state to

6This is the case because of rotations and tilt of the octahedra. It is not the case in a cubic situation
with 180◦ bonds. The latter had been assumed by [153]. In the preset case, neglecting the
rotations and tilts hence yields an erroneous peak assignment.

125



Chapter 6: Mott-Hubbard excitations in Ca2RuO4

|d3
i ,4 A2, 1/2〉 |d5

j yz ↓〉. Writing this last statement in an equation form we get the
transition matrix element

M = 〈d3
i ,4 A2, 1/2| 〈d5

j , yz ↓| t x y,xzc†
xz↑, jcx y↑,i |d4

i ↑〉 |d4
j ↓〉 . (6.7)

and when considering the prefactor for |d3
i ,4 A2, 1/2〉 in eq. (6.6b) we obtain that

the transition matrix element is

M = t x y,xz/
p

3 (6.8)

thus giving an intensity of

I = M2 = t2
x y,xz/3 (6.9)

Now, we have to consider the related excited state |d3
i ,4 A2, 1/2〉 |d5

j , xz ↓〉. Fol-
lowing the same argument, this state can be reached from an AFM ground state
with a matrix element given by t x y,yz/

p
3 and intensity t2

x y,yz/3. This is a different
final state but sharing the same energy as the process shown in eq. (6.7), and the
resulting intensities must be added.

If we swap i and j in the previous argument, we obtain two more contributions
to the intensity. Thus, ultimately, four orthogonal final states can be reached from
|d4

i ↑〉 |d4
j ↓〉 given by

|d3
i ,4 A2, 1/2〉 |d5

j , yz ↓〉 (6.10a)

|d3
i ,4 A2, 1/2〉 |d5

j , xz ↓〉 (6.10b)

|d5
i , yz ↑〉 |d3

j ,4 A2,−1/2〉 (6.10c)

|d5
i , xz ↑〉 |d3

j ,4 A2,−1/2〉 (6.10d)

and resulting in a total intensity for the 4A2 multiplet for two sites in the antifer-
romagnetic ordered state as

IT=0,↑↓(4A2) =
2
3

�
t2

x y,xz + t2
x y,yz

�
. (6.11)

Considering ferromagnetic order instead, the situation is reversed, and it can
be easily checked that only the |4A2, 3/2〉 state is part of the transition. Thus, for
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ferromagnetic order as the ground state given by |d4
i ↑〉 |d4

j ↑〉 the transition matrix
element to a final state |4A2, 3/2〉 reads

M = 〈d3
i ,4 A2, 3/2| 〈d5

j , yz ↑| t x y,xzc†
xz↓, jcx y↓,i |d4

i ↑〉 |d4
j ↑〉

and since the prefactor of the |4A2, 3/2〉 state is 1 (see eq. (6.6)a), the transition
matrix element is given by

M = t x y,xz (6.12)

As in the previous case, it is possible for both xz and yz orbitals and in both
directions, i to j or vice versa. Thus, from |d4

i ↑〉 |d4
j ↑〉 we ultimately obtain again

four orthogonal final states with the same energy given by

|d3
i ,4 A2, 3/2〉 |d5

j , yz ↑〉 (6.13a)

|d3
i ,4 A2, 3/2〉 |d5

j , xz ↑〉 (6.13b)

|d5
i , yz ↑〉 |d3

j ,4 A2, 3/2〉 (6.13c)

|d5
i , xz ↑〉 |d3

j ,4 A2, 3/2〉 (6.13d)

where we have to add their intensities, yielding a total intensity of

IT =0,↑↑(4A2) = 2
�
t2

x y,xz + t2
x y,yz

�
(6.14)

for two sites with parallel moments.

We proceed to calculate the situation at high temperatures, where no magnetic
order is present. For the sake of simplicity, we will consider the Sz = 0 states
later and first will focus on the case when the ground state has only the Sz = ±1
components. In this case, the magnetically disordered state at high temperature
is a mix of four configurations, (↑↑ + ↓↓ + ↑↓ + ↓↑) with a probability of 1/4 each.
As we saw before, the final states are orthogonal for T = 0 in AFM and FM order.
Thus we have to add the intensities originating from each configuration weighted
by 1/4. With this, we have all the pieces to obtain the intensity at high tempera-
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ture for two sites which is given by

Ihigh(
4A2) =

1
4

�
IT =0,↑↑(4A2) + IT =0,↑↓(4A2)

+ IT =0,↓↑(4A2) + IT =0,↓↓(4A2)
�

=
1
2

�
IT =0,↑↑(4A2) + IT =0,↑↓(4A2)

�
=

4
3

�
t2

x y,xz + t2
x y,yz

�
Now, the ratio of the intensities, which is directly related to the ratio of spectral

weight, between the high- and low-temperature states for the 4A2 multiplet is
given by

Ihigh(4A2)

IT=0,↑↓(4A2)
= 2, (6.15)

and thus we expect that the spectral weight of the peak associated with the mul-
tiplet 4A2 to double from low to high temperature when neglecting the Sz = 0
states.

It is worthy to note, that in the ideal cubic case, the hopping t x y,xz vanishes,
but it is finite when tilts and rotations of the octahedra are in play, which is the
case for Ca2RuO4 as we have already seen previously when discussing the crystal
structure. However, structural changes will affect the hopping and thus also the
temperature dependence of the spectral weight.

We continue with the 2E multiplet, once again taking into account only the
Sz = ±1 components and following the same kind of argument as with the 4A2

multiplet.

|2E, a〉= 1p
6

�−2c†
yz↑c

†
xz↑c

†
x y↓ + c†

yz↑c
†
xz↓c

†
x y↑ + c†

yz↓c
†
xz↑c

†
x y↑
� |0〉 , (6.16a)

|2E, b〉= 1p
2

�
c†

xz↑c
†
yz↓ − c†

xz↓c
†
yz↑
�

c†
x y↑ |0〉 (6.16b)

As with the previous case, the calculation of the transition matrix elements is
straightforward to perform. Transitions from the ground state (eq. (6.2)) into
states in the d3 sector can be reached only when the spins on the xz and yz
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orbitals are parallel. Thus, when the ground state has AFM order, the first term of
eq. (6.16)a) can be reached with a matrix element of −p2/3t x y,xz. This matrix
element is

p
2 larger than the one for the 4A2 multiplet. Thus, we expect a factor of

2 in the intensity compared to the 4A2 multiplet. For FM order, the matrix element
is 0, indicating that this excitation is not possible. This leads to the expectation of
a drop in intensity by a factor of 2 from the low- to the high-temperature phase.

Ihigh(
2E) =

1
4

�
IT =0,↑↑(2E) + IT =0,↑↓(2E)

+ IT =0,↓↑(2E) + IT =0,↓↓(2E)
�

=
1
2

IT =0,↑↓(2E)

Unfortunately, this value does not bring us very far because the peak originating
from the 2E multiplet is from a very broad band which overlaps with charge-
transfer excitations, thus making this very difficult to corroborate experimentally.

At last, we have the 2T1 multiplet. As described above, we hence assign the
second peak in σ1(ω) at about 2 eV to the 2T1 multiplet. This multiplet is given
by

|2T1, xz ↑〉= 1p
2

�
c†

xz↑c
†
x y↑c

†
x y↓ − c†

yz↑c
†
yz↓c

†
xz↑
� |0〉 , (6.17a)

|2T1, yz ↑〉= 1p
2

�
c†

x y↑c
†
x y↓ − c†

xz↑c
†
xz↓
�

c†
yz↑ |0〉 , (6.17b)

where the singly occupied xy orbital is omitted due to the impossibility of reaching
it from the xy ordered ground state.

Extracting from the appendix the allowed transitions for the AFM ground state,
we obtain the intensity as

IT =0,↑↓(2T1) =
�
t2

yz,yz + t2
yz,xz + t2

xz,xz + t2
xz,yz

�
. (6.18)

When considering a ferromagnetic ground state, excitations to the 2T1 mul-
tiplets are forbidden, which can be quickly corroborated by checking the tables in
the appendix, thus

IT =0,↑↑(2T1) = 0. (6.19)
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This means that when we calculate the total intensity for the 2T1 multiplet in
the high-temperature state, we obtain

Ihigh(
2T1) =

1
4

�
IT =0,↑↑(2T1) + IT =0,↑↓(2T1)

+ IT =0,↓↑(2T1) + IT =0,↓↓(2T1)
�

=
1
2

IT =0,↑↓(2T1)

namely, the intensity related to the 2T1 multiplet shows a reduction by a factor of
2 when neglecting the Sz states.

6.4.5. Sz = 0 states

The calculation considering only the Sz = ±1 components already gives the cor-
rect order of magnitude and direction of the change in the spectral weight as
a function of temperature in line with what we observed in our measurements
only for the lowest energy peak. Although this straightforward estimation points
us in the right direction, at high temperature, the Sz = 0 component of the d4

configurations also should be taken into account to get a more complete picture.

When considering contributions stemming from the Sz = 0 component of the
ground state (eq. (6.3)), for a nearest-neighbor pair, we obtain 3 ·3= 9 different
states represented as

|↑↑〉 , |↓↓〉 , |↑↓〉 , |↓↑〉 , |↑ 0〉 , |0 ↑〉 , |↓ 0〉 , |0 ↓〉 , |00〉 (6.20)

At high enough temperatures far above TN , the Sz = 0 component has the same
probability as the Sz = ±1 components, i.e., 1/9 each. Now, we only have to com-
pute the contributions of the states that include the Sz = 0 component, namely,
the last 5 terms of eq. (6.20) since the first four states were already calculated. As
done in the case where we only considered the Sz = ±1 components, the intensit-
ies also must be added. Since the density of magnons is temperature dependent,
it is clear that more care has to be taken with the probabilities of each state for
intermediate temperatures closer to the magnetic ordering. For our purposes, it
is enough to focus on high temperature, the fully disordered state.

As in the previous case, we can use a symmetry argument to simplify the calcu-
lation by noting that the matrix elements for the 4 states |↑ 0〉, |0 ↑〉, |↓ 0〉, |0 ↓〉
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are identical.

Starting with the 4A2 multiplet and using the transition matrix elements calcu-
lated in the appendix, we obtain the intensity for the transition d4

0 d4
↑

I(4A2)0↑ =
2
3

�
t2

x y,xz + t2
x y,yz + t2

xz,x y + t2
yz,x y

�
. (6.21)

Then, the only one missing from the nine possible ground states is the d4
0 d4

0
one. Again, consulting the summary table in the appendix, we obtain for the 4A2

multiplet

I(4A2)00 =
2
3

�
t2

x y,xz + t2
x y,yz + t2

xz,x y + t2
yz,x y

�
(6.22)

With all the pieces calculated, we can sum them all up

I(4A2) =
1
9

�
4I(4A2)0↑ + I(4A2)00 + 4Ihigh(

4A2)Sz=1

�
=

1
9

�
4

2
3
+

8
3
+

2
3

��
t2

x y,xz + t2
x y,yz + t2

xz,x y + t2
yz,x y

�
=

2
3

�
t2

x y,xz + t2
x y,yz + t2

xz,x y + t2
yz,x y

�
and then divide by the intensity for this multiplet in the ground state at low-
temperature

I(4A2)
I(4A2)↑↓

= 2 (6.23)

We hence obtain the same ratio as with the calculation that takes into account
only the Sz = ±1 components.

We do the same for the 2T1 multiplet. First, we obtain the intensity of the d4
0 d4
↑

contribution to the intensity, which leads to

I(2T1)0↑ =
1
2
(t2

yz,xz + t2
yz,yz + t2

xz,xz + t2
xz,yz). (6.24)
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1 eV 2 eV

Exp ∼ 2.4 ∼ 1.3

Sz = ±1 2 0.5

Sz = ±1, 0 2 0.5

Table 6.5.: Summary of the ratio of the spectral weight between high and low tempera-
ture for both oscillators observed and the calculations considering only the
Sz = ±1 component or including the Sz = 0 one too.

Then, we perform the same calculation for the d4
0 d4

0 ground state, obtaining

I(2T1)00 =
1
2

�
t2

yz,xz + t2
yz,yz + t2

xz,xz + t2
xz,yz

�
. (6.25)

With all the pieces calculated, we can sum them all up

I(2T1)00 =
1
9

�
4I(2T1)0↑ + I(2T1)00 + 4Ihigh(

2T1)S=1

�
=

1
9

�
4

1
2
+

1
2
+ 2
��

t2
yz,xz + t2

y y,yz + t2
xz,xz + t2

xz,yz

�
=

1
9

9
2
(t2

yz,xz + t2
yz,yz + t2

xz,xz + t2
xz,yz),

(6.26)

and then divide by I(2T1)↑↓ =
�
t2

yz,xz + t2
yz,yz + t2

xz,xz + t2
xz,yz

�
. Then, the ratio

between disordered and ordered states for the 2T1 is

I(2T1)
I(2T1)↑↓

=
1
2

. (6.27)

This value is the same as the one obtained with the calculation considering only
the Sz = ±1 ground states. The same caveats apply, as factors like changes of tilts,
distortions, and rotations are not being considered.

To summarize, in the case of the first peak, our calculated ratio is in the right
direction and magnitude of what we experimentally estimate, recognizing an in-
crease in the spectral weight as a function of temperature. However, our calcula-
tions expect a halving of the spectral weight for the second peak, which contra-
dicts our experimental finding by a fair margin.
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These results have to be taken with care, as we are neglecting how tilts, rota-
tions, and distortions of the octahedra may change as a function of temperature.
Moreover, we are using an effectively infinite temperature scenario where all the
possible ground states contribute the same weight to the result. Furthermore,
the spin-orbit coupling may affect the selection rules and thus how the transition
matrix elements show up.

Furthermore, the absence of clear changes in the spectral weight in the vicinity
of TN suggests that the spin degree of freedom is not the dominant factor for the
spectral weight. A more detailed analysis has to consider the role of spin-orbit
coupling and its effect on the electronic states and the matrix elements.

6.5. Conclusion

We measured the linear optical response of two calcium ruthenate samples that
differ in the amount of Ti doping. We aimed to map the temperature dependence
of the optical conductivity in a more precise fashion. The 1% Ti in Ca2RuO4 is a
necessity to stabilize the structure. Furthermore, the absence of clear changes of
the spectral weight in the vicinity of TN suggests that the spin degree of freedom
is not the dominant factor for the spectral weight. A more detailed analysis has
to consider the role of spin-orbit coupling and its effect on the electronic states
and the matrix elements.

As with previous reports, we observe two main features in the low energy sector
of the spectra. The first feature increases in spectral weight while shifting to
lower energies as a function of temperature. The second feature’s temperature
behavior has not been unambiguously described in the literature. Based on our
experimental data, we observe an increase in its spectral weight as a function of
temperature.

A more detailed analysis of the optical properties is achieved by using an optical
model fitted to the data. This step is enabled reliably by measuring both parts of
the optical properties provided by spectroscopic ellipsometry. Focusing on the
1% doped sample, the best-constructed model to describe the features observed
in the data consists of 5 Gaussian oscillators. From those, the first and second
lowest energy oscillators are the most interesting ones since they correspond to
inter-site Mott-Hubbard excitations. With the help of the oscillators defined in
the model, we confirm the already mentioned behavior of the first and second
features obtaining a change of ∼ 2.4 and ∼ 1.3, respectively, in their spectral
weights when going from 15 K to 300 K. Moreover, we do not observe a significant
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change across TN .

Our peak assignment, considering cubic approximation, results in the peaks
at 1 eV and 2 eV to correspond to the excitations from the ground state to the
|d3

i (
4A2), d5

j (
2T2)〉 and |d3

i (
2T2/

2E), d5
j (

2T2)〉, respectively. This assignment dis-
agrees with the one by Lee et al. [153], who omits the tilt and rotation of the
octahedra on top of neglecting spin-orbit coupling.

Furthermore, we attempted to estimate the magnitudes and direction of the
change in spectral weight by calculating the matrix elements of the possible excit-
ations. We compute the change of spectral weight between the antiferromagnet-
ically ordered and fully disordered states in the scenarios of pure Sz = ±1 or with
Sz = 0,±1 components for the ground state of Ca2RuO4 which is summarized in
table 6.5. We find the same values for both cases, namely, a ratio of 2 for the
first oscillator and 0.5 for the second. The calculated ratio provides the correct
direction and magnitude for the observed behavior in the optical conductivity of
the 1 eV feature. Still, the magnitude falls a bit short. When considering the fea-
ture at about 2 eV, the situation is very different, and the opposite direction than
the one found experimentally is to be expected. It is clear that our picture, even
when considering the Sz = 0 states, is not enough to describe the behavior of both
peaks fully, in particular, the second peak in the optical conductivity.

Considering only the spin takes us far into trying to understand this system,
particularly the behavior of the first peak; however, it is clear that something is
missing, namely the spin-orbit coupling to account for the observed data fully.
More in-depth analysis of the role of the spin-orbit coupling (ζ = 2λ) in this
compound, based on these optical conductivity measurements [185], reveals that
the optical spectral weight of the Mott-Hubbard excitations to be a direct measure
of ∆C F/ζ where it is estimated to have a lower bound of 2.4. As concluded in
Vergara et al. [185] "In the end, the captivating character of Ca2RuO4 is based on
the competition of spin-orbit coupling and crystal field rather than on the dominance
of one of them.".

A few words on the 10% Ti doped sample. When comparing both samples’ be-
havior, the temperature dependence of the oscillators’ energy is very similar. This
indicates that the basic energy levels do not change much with the distortion in-
troduced by doping. The shift of the two lowest oscillators, by about 0.2 eV, may
indicate a change in ∆C F . Furthermore, the enhancement of the optical conduct-
ivity for the 10% doped sample compared to the 1% doped one may be explained
by oscillator number 3, which has very different characteristics between the two
samples. Such peak is possibly a charge-transfer excitation that is considerably
lowered in energy due to the Ti doping.
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You see, one thing is, I can live
with doubt and uncertainty and
not knowing. I think its much
more interesting to live not
knowing than to have answers
which might be wrong.

Richard P. Feynman

In this work, different strongly correlated materials were investigated with op-
tical spectroscopic tools, namely spectroscopic ellipsometry and Fourier spectro-
scopy. We studied three materials corresponding to three different systems: the
classic magnetite (Fe3O4) as a bulk 3d5/3d6 system, La2Cu2O5 as a low-dimensional
spin-1/2 ladder system, and Ca2RuO4 as a layered 4d4 system.

In all the studied systems, the biggest challenge was the construction of an op-
tical model allowing us to describe and understand the system and the measure-
ments, mainly while using ellipsometry. As discussed in this work, spectroscopic
ellipsometry is a very powerful tool as it can measure enough information to con-
struct the full dielectric function of the sample being studied and thus obtain the
real and imaginary parts of the optical conductivity of the material. Having both
parts tends to make the fitting of optical models more stable, or in some cases,
even possible since the model has to be consistent for two different but highly
correlated values.

The study of the low-dimensional system La2Cu2O5, a 4-leg ladder, is strongly
motivated by the particular physics found in other low-dimensional systems like
the S = 1/2 chain or 2-leg spin ladder. Even more so, it is motivated by the
puzzling emergence of superconductivity in two-dimensional cuprates and doped
2-leg cuprate spin ladders. In particular, the 4-leg ladder can be seen as a small
step moving from an almost 1D system towards a quasi-2D system. Understanding
the dimensional crossover could lead to a better understanding of the physics in
the complex 2D layered cuprates.
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We successfully measured the first optical spectra of a 4-leg S = 1/2 ladder via
Fourier spectroscopy. The obtained spectra have a strong resemblance to the 2-
leg ladder ones, hinting that some 2-leg character still survives when going from
2 to 4 legs. This similitude in the spectra of 2- and 4-leg ladders leads to inter-
preting their features in similar terms. With the help of numerical calculations
of two different theoretical models, we interpret the observed features as a low-
energy peak stemming from a 2-triplon quasi-bound state and a broad feature
arising from the continuum of magnetic excitations. Furthermore, there is one
extra feature of a clear peak with a satellite shoulder. Its origin is not completely
clear but could be from the combination of a higher-energy bound state and a
bimagnon-like resonance which resembles the case of a 2D square lattice.

One extra insight from theory is that it provides a very plausible argument re-
garding the contributions to the magnetic excitations, which could be assigned
to the outer and inner legs. Thus, from the outer legs come most of the contri-
butions to the bound state signal, whereas from the inner legs originate mainly
contributions to the continuum. Although this outcome would be challenging to
test, particularly with static optical techniques, as an insight, it is very interest-
ing since it makes sense that the response from the inner legs resembles the 2D
behavior.

Magnetite is most likely one of the most studied materials in the field of cor-
related electron systems. Regardless of this fact, there are still controversies and
open questions regarding its physics. What began as a collaboration to obtain this
material’s optical spectra to support non-linear reflectivity measurements ended
up being an in-depth investigation with spectroscopic ellipsometry. In this work,
we report the optical conductivity behavior as a function of temperature focusing
on the magnetic phase transition.

The existing literature on magnetite’s optical conductivity was unclear, particu-
larly around the optical feature around 2eV, as reported by reflectivity measure-
ments performed via Fourier spectroscopy. In one case, this feature was not ob-
served and, in other instances, showed different temperature-dependent behavior
[30, 119]. Our ellipsometric measurements allowed us to clarify the discrepancy
found in the literature. We clearly observe two features, sitting at 0.6 eV and
1.9 eV. Those features show opposite temperature dependence, where the first
increases while the second one decreases as the temperature increases. The de-
tailed temperature-dependent measurement displays a step-like behavior across
the Verwey metal-insulator phase transition for these features. Furthermore, the
interpretation of these features was controversial. We interpret the excitations as
intersite transitions of minority spins from the Fe 2+

B t2g levels to the t2g and eg
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levels of Fe 3+
B sites, respectively.

Our data was used to establish the baseline reflectivity of magnetite for a non-
equilibrium study [120]. This study found that three different regimes of the out-
of-equilibrium spectra can be triggered below TV , which depends on the pump’s
fluence. This shows that a strong photoexcitation process can produce an out-of-
equilibrium response analogous to the Verwey phase transition.

As with La2Cu2O5, the last system studied is a layered bulk system that also
has connections to superconducting materials. The ruthenates differ considerably
from the cuprates since they belong to the 4d class of materials with significantly
different physics than the 3d systems due to the larger electronic radius of the
orbital and eventual spin-orbit coupling effects. Notably, the role of magnetism
is more relevant in this class of materials, and the close relationship between this
and superconductivity is not what is expected in classical superconductors.

The ruthenate studied here, Ca2RuO4, has been studied previously but with
contradicting optical spectra and interpretations. It is agreed that the two features
observed at about 1 and 2eV belong to d4d4 → d3d5 Mott-Hubbard excitations.
Still, the behavior of those features as a function of temperature was not clearly
reported. We set to investigate in depth, with spectroscopic ellipsometry, the
temperature-dependent optical spectra of Ca2RuO4 with 1% and 10% Ti doping.
Since the 1% doped system is the closest one to the pure system, this one took
most of our attention. The Ti doping of 1% is needed to ensure the sample’s
mechanical stability while cooling in the crystal growth process.

Our measurement and analysis allowed us to dispel the contradiction between
previous reports, establishing that the first feature increases considerably in spec-
tral weight as a function of temperature while the second one marginally in-
creases. Furthermore, we performed a transition matrix element calculation to
obtain the expected changes in spectral weight between the magnetically ordered
ground state at low temperature and a fully disordered state at high temperature.
From these results, only the one for the first feature shows a correct magnitude
when contrasted with the experimental value obtained. As for the second trans-
ition, it shows the opposite behavior as what is experimentally observed, namely
a reduction of the spectral weight as a function of temperature. It is important to
mention that the calculation only considers spin changes, excluding orbitals and
spin-orbit coupling. Given the results obtained, there are certainly some aspects
of the system that our simple model doesn’t cover, one that predominantly affects
the 2 eV feature. In any case, we have to keep in mind that effects stemming from
the temperature dependence of tilts, distortions, and rotations of the RuO6 octa-
hedra were not considered. Furthermore, we are also assuming that all possible
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Sz = 0 ground states contribute equally in the high-temperature situation.
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A. Appendix

Two-site matrix elements elements like

〈d5
i,s| 〈d3

j,s′ | tk,k′c
†
i,kc j,k′ |d4

i,r〉 |d4
j,r ′〉 (A.1)

with site i, j, and states distinguished by s, s′, r, r ′ and orbitals k, k′, can be
separated into one-site matrix elements

−tkk′ 〈d5
i,s| c†

i,k |d4
i,r〉 〈d3

j,s′ | c j,k′ |d4
j,r ′〉 (A.2)

For the matrix elements in 〈d5
s | c†

k |d4
r 〉, applying all possible c† on the doubly

occupied xy orbital as initial |d4〉 state, and accounting for the commutation rules
for fermionic creation/annihilation operators we obtain

c†
xz↓ |d4 ↑〉= c†

yz↑c
†
xz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= + |d5

yz,↑〉

c†
yz↓ |d4 ↑〉= −c†

yz↑c
†
yz↓c

†
xz↑c

†
x y↑c

†
x y↓ |0〉= −|d5

xz,↑〉

c†
xz↑ |d4 ↓〉= −c†

yz↓c
†
xz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= −|d5

yz,↓〉

c†
yz↑ |d4 ↓〉= c†

yz↑c
†
yz↓c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= + |d5

yz,↓〉

c†
xz↓ |d40〉= 1p

2
c†

yz↓c
†
xz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= + 1p

2
|d5

yz,↓〉

c†
yz↓ |d40〉= − 1p

2
c†

yz↑c
†
yz↓c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= − 1p

2
|d5

xz,↓〉
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c†
xz↑ |d40〉= − 1p

2
− c†

yz↑c
†
xz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= − 1p

2
|d5

yz,↑〉

c†
yz↑ |d40〉= 1p

2
c†

yz↑c
†
yz↓c

†
xz↑c

†
x y↑c

†
x y↓ |0〉= + 1p

2
|d5

xz,↑〉
This set of equations can be easily reused to obtain the matrix elements for

initial states with double occupancy in xz or yz orbitals.

The same procedure can be performed for the matrix elements in 〈d3
s | ck |d4

r 〉

cx y↓ |d4 ↑〉= −c†
yz↑c

†
xz↑c

†
x y↑cx y↓c†

x y↓ |0〉= −|yz ↑ xz ↑ x y ↑〉

cx y↑ |d4 ↑〉= c†
yz↑c

†
xz↑cx y↑c†

x y↑c
†
x y↓ |0〉= + |yz ↑ xz ↑ x y ↓〉

cxz↑ |d4 ↑〉= −c†
yz↑cxz↑c†

xz↑c
†
x y↑c

†
x y↓ |0〉= −|yz ↑ x y ↑ x y ↓〉

cyz↑ |d4 ↑〉= cyz↑c†
yz↑c

†
xz↑c

†
x y↑c

†
x y↓ |0〉= + |xz ↑ x y ↑ x y ↓〉

cx y↓ |d4 ↓〉= −c†
yz↓c

†
xz↓c

†
x y↑cx y↓c†

x y↓ |0〉= −|yz ↓ xz ↓ x y ↑〉

cx y↑ |d4 ↓〉= c†
yz↓c

†
xz↓cx y↑c†

x y↑c
†
x y↓ |0〉= + |yz ↓ xz ↓ x y ↓〉

cxz↓ |d4 ↓〉= −c†
yz↓cxz↓c†

xz↓c
†
x y↑c

†
x y↓ |0〉= −|yz ↓ x y ↑ x y ↓〉

cyz↓ |d4 ↓〉= cyz↓c†
yz↓c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= |xz ↓ x y ↑ x y ↓〉

cyz↓ |d40〉= 1p
2

cyz↓c†
yz↓c

†
xz↑c

†
x y↑c

†
x y↓ |0〉= + 1p

2
|xz ↑ x y ↑ x y ↓〉

cyz↑ |d40〉= 1p
2

cyz↑c†
yz↑c

†
xz↓c

†
x y↑c

†
x y↓ |0〉= + 1p

2
|xz ↓ x y ↑ x y ↓〉

cxz↓ |d40〉= − 1p
2

c†
yz↑cxz↓c†

xz↓c
†
x y↑c

†
x y↓ |0〉= − 1p

2
|yz ↑ x y ↑ x y ↓〉
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cxz↑ |d40〉= − 1p
2

c†
yz↓cxz↑c†

xz↑c
†
x y↑c

†
x y↓ |0〉= − 1p

2
|yz ↓ x y ↑ x y ↓〉

cxz↓ |d40〉= 1p
2

�−c†
yz↓c

†
xz↑c

†
x y↑cx y↓c†

x y↓ − c†
yz↑c

†
xz↓c

†
x y↑cx y↓c†

x y↓
� |0〉

= − 1p
2
[|yz ↓ xz ↑ x y ↑〉+ |yz ↑ xz ↓ x y ↑〉]

cxz↑ |d40〉= 1p
2

�
+c†

yz↓c
†
xz↑cx y↑c†

x y↑c
†
x y↓ + c†

yz↑c
†
xz↓cx y↑c†

x y↑c
†
x y↓
� |0〉

= − 1p
2
[|yz ↓ xz ↑ x y ↓〉+ |yz ↑ xz ↓ x y ↓〉]

With all these transition matrix elements, we can project onto the respective
multiplets of interest, namely |4A2〉 and |2T1〉 (eqs. (6.6) and (6.17)) to obtain the
transition matrix elements of interest.

To make use of tables A.1 and A.2, one has to find the entries of interest in each
one of them and then multiply them following eq. (A.2) and remembering that
we have spin conservation, namely that we can not have a transition involving a
spin flip.

For example, we were interested in knowing which is the transition matrix ele-
ment connecting 〈4A2, 1/2| 〈d5

j yz ↓| with |d4
i ↑〉 |d4

j ↓〉. First, we search for the

entries 〈4A2, 1/2| , |d4
i ↑〉 in table A.1 obtaining 1p

3
cx y↑. Then, we do the same

with 〈d5
j yz ↓| , |d4

j ↓〉, but looking in table A.2 instead, we obtain −c†
xz↑. Since

both are different orbitals and same spin, it’s allowed and its value is

〈4A2, 1/2| 〈d5
j yz ↓| 1p

3
cx y↑ |d4

i ↑〉 |d4
j ↓〉·−〈4A2, 1/2| 〈d5

j yz ↓| c†
xz↑ 〈4A2, 1/2| , |d4

i ↑〉= − 1p
3

t x y,xz.

(A.3)
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|d4 ↑〉 |d40〉 |d4 ↓〉
〈4A2, 3/2| −x y ↓ 0 0

〈4A2, −3/2| 0 0 x y ↑
〈4A2, 1/2| 1p

3
x y ↑ −q2

3 x y ↓ 0

〈4A2, −1/2| 0
q

2
3 x y ↓ − 1p

3
x y ↓

〈2T1, xz ↑| 1p
2

yz ↑ 1
2 yz ↓ 0

〈2T1, xz ↓| 0 1
2 yz ↑ 1p

2
yz ↓

〈2T1, yz ↑| − 1p
2
xz ↑ −1

2 xz ↓ 0

〈2T1, yz ↓| 0 −1
2 xz ↑ − 1p

2
xz ↓

Table A.1.: Summary of single-site transition matrix elements from d4 initial states with
doubly occupied x y orbital to |4A2〉 and |2T1〉 d3 multiplets, where x y ↓
stands for cx y↓.

|d4 ↑〉 |d40〉 |d4 ↓〉
〈d5 xz ↓| 0 − 1p

2
yz ↓ yz ↑

〈d5 xz ↑| −yz ↓ 1p
2

yz ↑ 0

〈d5 yz ↓| 0 1p
2
xz ↓ −xz ↑

〈d5 yz ↑| xz ↓ − 1p
2
xz ↑ 0

Table A.2.: Summary of single-site transition matrix elements from d4 initial states with
doubly occupied x y orbital to all available d5 states, where x y ↓ stands
for c†

x y↓.
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