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1. Abbreviations

SNP Single nucleotide polymorphism

DNA Deoxyribonucleic acid

mRNA Messenger ribonucleic acid

GWAS Genome-wide association study

LD Linkage disequilibrium

CcP Cross-phenotypes

bp Base pairs

RR Relative risk

OR Odds ratio

FWER Family-wise error rate

TILAE The International League Against Epilepsy
FE Focal epilepsy

GGE Genetic generalized epilepsy

ASSET Subset-based meta-analysis

PLACO Pleiotropic analysis under the composite null hypothesis
cFDR Conditional false discovery rate

MA Meta-analysis

CPBayes Cross-phenotype Bayes
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4. Summary

Over the past decades, various methods have been used to scan the human genome to identify genetic
variations associated with diseases, in particular with common, complex disorders. One of such
approaches is the genome-wide association study (GWAS), which compares genetic variation between
affected and healthy individuals to find genomic variants in the DNA sequence associated with a trait.
GWAS are usually conducted separately for individual traits, and the same single nucleotide
polymorphisms (SNP)/loci are associated with different traits in independent studies 7. These
findings buttress the knowledge that most complex traits are correlated and have shared genetic
architecture, therefore, sharing the same heritable risk factors!. Knowledge of the genetic risk factors
can directly or indirectly contribute to improvements in risk assessment, drug target development,
and ultimately in providing effective therapies to the affected individuals.

Pleiotropy is the phenomenon of a hereditary unit affecting more than one trait, and the earliest
reported evidence was provided by Mendel when he noted that some set of features were always
observed together in a plant. Although this example could have been purely due to linkage and could
be regarded as spurious pleiotropy in recent times, it opened up more discussion and research into
pleiotropy, which has since been an active area of research®. In this work, | focused on complex
epilepsies and the overlap in the genetic factors impacting their phenotypes.

Epilepsy is a brain disorder comprising monogenic and common/complex forms characterized by
recurrent partial or generalized seizures. However, the extent to which genetic variants contribute to
the disorder and how much of the genetic contribution is shared between the different phenotypes is
not yet fully understood. This motivated this project, where | benchmarked available pleiotropy
detection approaches to select the best performing method in terms of power and false-positive rate
to detect true pleiotropy. Then, | applied the selected method to summary statistics of focal epilepsy
(FE) and genetic generalized epilepsy (GGE), provided by the International League Against Epilepsy
Consortium (ILAE) on complex epilepsies and the EPI25 collaborative, to identify shared genetic factors
in both phenotypes of epilepsy.

Identifying pleiotropic SNPs or genes is an active area of research with multiple proposed
approaches, broadly categorized into univariate and multivariate methods. Multivariate approaches
have the limitation that they require all phenotypes to be measured in the same individual and their
corresponding genotype data provided, which is often not the case since GWAS are usually performed
per specific trait. However, various consortia studying complex traits readily share the summary
statistics (effect sizes and p-values) from genome-wide association studies, making it easier to apply
univariate pleiotropy detection approaches that combine these statistics to identify SNPs or loci with
a concordant or discordant direction of effects.

Therefore, in this project, | first compared the relative power and false-positive rate (FPR)
performance of five univariate pleiotropy detection approaches, classic meta-analysis, cFDR, PLACO,
ASSET, and CPBayes (see section 6.1), through simulation studies. After that, | applied the best-
performing method to the analysis of phenotypes of epilepsy using actual data. The data simulation
procedure was performed in 3 steps. First, a population of 1 million individuals of European ancestry
was simulated via resampling using the HAPGEN2 software®® and haplotypes of central Europeans
from the 1000 genomes project!. In the second phase of the simulation, disease SNPs were randomly
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selected and used for the additive liability threshold model (ALTM)® to simulate multifactorial disease
phenotypes from the simulated genetic data.

As expected, the performance of the methods varied in terms of power and false positive rate
(FPR). The variability between the methods is higher for FPR, while most methods are comparable in
terms of power, especially for larger sample sizes and RR. Although the classical meta-analysis is very
powerful, it is also riddled with a very high false-positive rate, making it less suitable for identifying
pleiotropic loci. While all the methods performed well in terms of power, the ASSET method gave a
better trade-off between power and FPR for the different simulation approaches. Applying ASSET to
the two phenotypes of epilepsy, GGE and FE, resulted in identifying a new putative locus 17q21.32
while replicating locus 2g24.3, previously reported by the ILAE consortium 6, Further, applying the
ASSET method to summary statistics of larger samples of epilepsy phenotypes resulted in the
identification of loci 2g24.3 and 9g21.13. These findings corroborate the result obtained by the ILAE
consortium through mega and meta-analysis.

Classical meta-analysis (MA) is not recommended for pleiotropy detection, based on the simulation
study results. Though MA demonstrated good power to detect pleiotropy, it also recorded high FPR
across all simulation scenarios. However, the ASSET method is highly recommended as it kept the FPR
low while demonstrating good power to detect pleiotropy. This study also contributed three new
pleiotropicloci (2924.3,17921.32, and 9921.13) to understanding the relationship of genetic variation
with epilepsy phenotypes and the inter-relationship between these phenotypes. Although the locus
17921.32 could not be replicated in the larger sample set, it is not necessarily a false positive discovery.
The locus was genome-wide significant for GGE but marginally significant for FE, which confirmed the
trend observed in the FE cases in the EPI25 collaborative dataset, where no genome-wide significance
result was found. Therefore, replication in an independent sample is desirable.

One limitation of using the univariate pleiotropy detection approaches as seen with the classical
MA is that one trait with a very low P-value could drive the observed pleiotropic association. Also,
methods like cFDR and PLACO could only accommodate two traits, though this was not a challenge in
this project. Despite these limitations, the presented work established a benchmark of the relative
performance of the assessed methods and could also guide researchers in related fields in their future
work. This study also contributed to understanding the shared genetic factors between GGE and FE
with the expectation that larger sample sizes will lead to more discoveries.



5. Introduction

In sections 5.1, 5.2, and 5.3, | briefly introduce the notion of disease etiology, the impact of genetic
variation on disease occurrence, as well as the functional consequences of the genetic variation in
individuals and, by extension, the whole population. Sections 5.4, 5.5, and 5.6 describe gene mapping
approaches, statistical methods to quantify disease risk, and ways to handle multiple testing
challenges arising from these tests. In section 5.7, | extensively review epilepsy and its phenotypes
while specifying the phenotypes of epilepsy | used in this work. Sections 5.8, 5.9, and 5.10 describe
pleiotropy and available methods for pleiotropy detection, explain the univariate pleiotropy detection
approaches used in this project, and the merits and drawbacks of these methods. In section 5.11, |
state the objectives of this thesis.

Section 6 describes the methods used to generate the simulated data and handle the actual
epilepsy samples. In section 6.1, | explain in detail the data simulation steps and the identification of
pleiotropy in the simulated data, while in section 6.2, | describe the epilepsy datasets and their
sources, quality control checks, and the application of the method from the simulation study to the
actual dataset. Section 7 contains the main results of the analyses. In section 8, | present my
publications, my contributions to the publications included in this thesis, and outline the courses and
meetings | attended during the Ph.D. program. Finally, section 9 gives a detailed discussion of the
project, its limitations, and possible future work.

5.1. Etiology of diseases

The question of causality, spread, and progression of diseases is an important and complex topic.
Factors predisposing individuals to disease are known as risk factors. These risk factors include
biological, genetic, dysregulation of immune- or central nervous systems, or environmental factors,
such as stress, trauma, and drug reactions’. Genetic diseases are classified into rare
(monogenic/oligogenic), polygenic (complex), or chromosomal based on the underlying genetic defect
18 Rare, Mendelian diseases have a single known genetic cause, while common (complex) diseases
result from multiple genetic factors and their interaction with environmental factors. Chromosomal
diseases result from large structural variations of large chromosomal segments, in some cases even
the absence of whole chromosomes or polyploidies. The main goal of genetic studies is to identify and
determine the contribution of genetic variation to disease risk by examining variations in the genomes
of affected and un-affected individuals. It is well understood from theoretical considerations and
confirmed by studies such as the 1000 Genomes Project’® that human DNA varies widely among
healthy individuals, that no particular DNA sequence can be considered “normal" and that some
regions of the DNA are highly conserved with inadequately known functions. However, to make
genetic variation comparable and quantifiable among individuals, the Human Genome Project has
developed a reference sequence of the human genome that serves as the basis for comparing and
describing changes in the DNA sequence®®. The reference genome serves as a reference frame that
enables to describe genomic variation in terms of base-pair positions and alleles, which enables the
comparison of genomic variants across individuals, for instance, in case-control studies. Although the
human reference genome has been improved over the years, the current version (GRCh38) sequence
does not completely cover the whole human genome sequence. This led to the current effort by the



Telomere-Telomere Consortium (T2T), resulting in a completely gapless human genome sequence,
still in the early adoption phase®.

5.2. Genetic variation

Understanding systematic variation in DNA structure and function in the human genome is critical to
understanding genetic disease processes’® because the human DNA sequence contains the
information that encodes and regulates biological processes. Many of the naturally occurring
variations have been shown to have functional consequences, with approximately 90% of genetic
variants in humans falling into the single nucleotide polymorphisms (SNPs) class?!. Other forms of
variation include structural variations such as insertions, deletions, and repeats. In this work, the main
focus is on SNPs. SNPs are occurrences of different nucleotides (alternative alleles) at a particular
position (locus) in individuals or on different chromosome copies of individuals in the population.
Polymorphisms result from random mutations and potentially contribute to the susceptibility of
diseases and other traits in humans 22. Since SNPs frequently occur in the genome (1 in 300 bp on
average)®®, they are often used as genetic markers to identify disease-causing genes. Different
functional consequences result from genetic variations in individuals based on the location and
specific alleles of the polymorphisms.

For practical purposes, genetic variants are often classified into rare and common variations based
on the allele frequency in a given cohort or population. Different allele frequency thresholds are used
in literature; for example, genetic variations with the frequency of less than 1% in the population can
be called rare variations, while a frequency of the allele of more than 1% in the population can be
classified as common variation®® (see Figure 2). Due to the effects of purifying selection, common
variants usually have rather small effect sizes. Though this is valid for most common diseases,
moderately high effect sizes have been observed for identified genetic variants in the APOE4 and
LOXL1 genes predisposing individuals to Alzheimer’s disease and exfoliative glaucoma respectively??.
Nevertheless, common variants, though not highly deleterious, play significant roles in common
diseases because of the following reasons: risk alleles can have small effects on reproductive fitness,
moderately deleterious alleles can rise to moderate frequencies, and multiple common variants can
confer a higher disease risk through aggregating effect, some neutral or advantageous alleles may
begin to confer susceptibility, and some beneficial phenotype may offset disease burdens when

disease-causing alleles at high frequency are under balancing selection?>26,

5.3. Functional consequences of polymorphisms

The DNA sequence consists of four nucleotide bases (A, C, T, G) on one strand and a complementary
sequence on the other. Protein-coding regions of the DNA sequence are transcribed into messenger
RNA (mRNA), which encodes the information needed for protein synthesis. The mRNA produced
during transcription directs translation, which leads to protein synthesis. However, the mRNA contains
four bases (A, G, C, and U) organized into triplet codes (codons) representing amino acids which are
building blocks for proteins, as well as the start and stop codons. The human genome consists of
protein-coding regions, regions encoding regulatory RNA and many other functional elements, and
regions with presumably no or unknown functional significance. The protein-coding genes contain
exons (protein-coding sequence) and introns (the non-protein-coding sequence). Some RNA-coding
sequences are involved in the regulation or expression of other genes. Among the regions that were
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previously thought to be non-functional are pseudogenes, which are now known to promote
recombination events, especially those that code for similar sequences as protein-coding genes®.

The effect of SNPs on gene function depends on their position in the gene region, i.e., the coding
or the non-coding region, and other factors such as their particular effect on the amino acid sequence
of the protein product. The alteration of a single nucleotide by substituting the coding region can lead
to different functional consequences. Substitutions that lead to the same amino acids, by extension,
of the same protein sequence are referred to as silent or synonymous. Missense or non-synonymous
mutations result from substituting genetic codes that lead to a change in the protein sequence such
that the function of the original protein is altered’®. Another possible consequence of the substitution
of a single nucleotide is a nonsense mutation, which results in an amino acid being converted to a stop
codon, leading to an abrupt truncation of a polypeptide chain or sequence. Some non-coding regions
of the genome are known to be control regions that direct cell regulation and gene expression, but
the functions of most intragenic and intergenic SNPs are still unknown?’. Understanding these
consequences of polymorphisms is critical to the understanding of the function of identified
associated SNPs in GWAS.

5.4. Linkage, linkage disequilibrium, and GWAS

Due to the recombination events in DNA, SNPs in physical proximity are non-randomly linked together
and co-transmitted from generation to generation, a phenomenon known as linkage?®. Linkage
disequilibrium is the nonrandom association of alleles at different loci, which results from linkage but
can be influenced by mutation, genetic drift, and other factors®. Both concepts are essential for
mapping genes to diseases and understanding the joint evolution of a linked set of genes, used in
linkage analysis and GWAS. Linkage analyses are family-based studies that are performed to identify
rare variations causing monogenic diseases, historically, through linkage and positional cloning and
later exome and whole-genome sequencing?®°. Although linkage studies have been performed for
common diseases, they often lack statistical power to detect common variants. GWAS are more
powerful and preferable for studying complex diseases.

GWAS assesses SNPs throughout the genome in a case-control cohort to identify alleles associated
with a disease. It relies on LD throughout the genome since a variant at one locus can predict the
genetic variance at the adjoining loci®®. The fundamental basis of GWAS is the common
disease/common variants (CD/CV) hypothesis, which implies that common variations may contribute
to the susceptibility to common diseases?. However, the concept is valid for some diseases with well-
known etiology and simple allelic spectra but does not explain the total genetic variability in most
complex diseases. Other researchers posited the hypothesis of common diseases/rare variants
(CD/RV), which explained that rare variations with moderately sized effects also contribute to
susceptibility to common diseases3"*2. Both hypotheses though contrasting, have been found to
overlap because studies over time showed that multiple common variations with low penetrance and
multiple rare variants with moderate to high effect contribute to susceptibility to common diseases
and their frequency in the human population®. For example, complex diseases such as epilepsy may
be due to a wide range of factors, from rare variants with strong effects to relatively rare variants with
moderate effects and common weak variants 3 (see Figure 1).
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Figure 1: (Adapted from: Arnar, D.O. and Runolf, P. Genetics of common complex diseases: a view
from Iceland. Copyright ©2017 European Federation of Internal Medicine. Published by Elsevier
B.V.)L. The relationship between variant effect size and rare versus common variations here shows
that the CD/CV and CD/RV hypotheses are partially correct and overlap for most common diseases.

5.5.  Study design, association tests, and heritability

The risk of a disease is the likelihood or probability of an individual in a specified population developing
the disease in a specified time, often referred to as incidence proportion. The risk could arise from
genetic or environmental contributions to the disease occurrence. In epidemiological studies, it is
often desirable to quantify the proportion of people who develop a disease over a specific period

(incidence rate, I,.) or the proportion of people with a disease at a given point in time (prevalence,
P)34.

. . . No. of onset
Incidence proportion/risk = - - - (1)
baseline population at risk
Incidence rate (1,) = NO_' of o_nset - (2)
population —time at risk
Prevalence (P) = No. of cases (3)

Total study population

Observational study designs are often used to quantify exposures in a population and generate
inferences about disease prevalences and incidences in that population. These studies are sometimes
descriptive, prospective, i.e., they are conducted forward in time or retrospective (historical), an
analysis conducted back in time®. Prospective studies usually take the form of cohort studies, where
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a group of people with specific unique characteristics are followed over time to evaluate specific
outcomes. Case-control studies are the main form of retrospective studies, often used in comparing
risk factors in affected individuals (case group) with unaffected individuals (control group)®. A study
design with a single time point that often estimates the prevalence in the present is called a cross-
sectional study®. In most epidemiological studies, we compare observed differences within the
exposed group in the general population or different population groups in relation to exposure to a
risk factor under study.

GWAS are case-control studies identifying the association between genetic variants and
phenotypic traits. It identifies SNPs for which the allele frequency varies systematically as a function
of the phenotype between cases and control®®. An allelic association (c and C) or genotype association
(c/c, ¢/C, and C/C) test is performed based on how the genetic markers are represented, for a SNP
with a minor allele c and a major allele C. There are four standard models that quantify the relationship
between the genotype and phenotype, namely, multiplicative, additive, common recessive and
common dominant models®. Given the disease penetrance (#°), the recessive model requires two
copies of c alleles for increased risk, and the dominant model requires one or more alleles C for
increased risk. In the multiplicative model, the risk is 7~ for the CC genotype, while for the additive
model, there is 7~-fold and 2+ increase in risk for cC and CC, respectively 3. The choice of which
model and, by extension, the association test to use depends on the assumptions on the underlying
inheritance patterns. The multiplicative model is allele-based and often used for binary phenotypes,
while the additive model is most generally used for the genotypic association as it has reasonable
power to detect additive and dominant effects®..

Different statistical tests are used for association tests depending on the type of traits, quantitative
or qualitative, to be analyzed. For quantitative traits, the genotypes serve as predictors, and linear
models such as ANOVA are used. Binary case-control traits are often analyzed using contingency table

1*1, The logistic regression model extends the linear regression

methods or the logistic regression mode
model by transforming the binary outcome using the logit link function to predict the probability of

having a case status given the genotype, as shown below:

logit(rz) = |n(£) =B, +GB, + X, (4)

where 7 is the probability of affection for the vector of outcome (Y), B, is the intercept, ; is the
vector of effect sizes for genotypes G, and f, is the vector of effect sizes for covariates X. The odds
ratio is estimated by exponentiating both sides of the equation (4) above.

Contingency table methods such as y? test of independence, Fisher, and likelihood ratio tests are
also available for association tests. Extended statistical models are used, particularly if correction for
confounding variables is required, such as population structure, environmental effects, family
relatedness, and other epidemiological and clinical variables such as gender and age. Linear or
generalized linear mixed models are more useful for testing the genetic association while accounting
or controlling for confounding variables. In my simulation study, | used an extension of the additive
model to estimate the genetic effect and define the traits and a logistic regression model to perform
association (see section 6.1.1).

13



5.6.  Statistical hypothesis testing and multiple comparisons

Since each SNP is tested independently, each test gives a P-value, and its significance is tested
individually based on a pre-specified significance threshold, which is the permissible type 1 error.
Specifically, it is the probability of rejecting a null hypothesis of no association if the null hypothesis is
indeed true. For example, if the significance threshold for each test is 0.05, on the average, 5% of
independently tested SNPs are expected to give false-positive results assuming all null hypothesis is
true. However, the number of false positives will increase with increasing numbers of tests, requiring
the need to set the significance threshold to a lower value in order to reduce the number of false
positives, in other words, methods for multiple testing correction are used. The most commonly used
methods in GWAS are based on controlling the so-called family-wise error rate (FWER) .

The FWER is the probability of making one or more type 1 errors in a set of tests *°. Bonferroni
correction and Sidak correction are two common forms of FWER control that yield similar results if
the number of tests is sufficiently large. The Bonferroni correction estimates the significance level per
test (a,) as the ratio of the FWER (a) and the total number of tests (m); a, = a/m while Sidak

correctionisa, = 1 — 1- a)l/m. However, Bonferroni and Sidak corrections are conservative and,
for GWAS, lead to an increase in false-negative rate*?, since both assume that each SNP is
independent, whereas due to linkage disequilibrium, there is a high degree of correlation between
neighboring SNPs.

The FDR approach controls the expected proportion of false positives among all associated SNPs
declared significant®. For example, for the Benjamini-Hochberg FDR procedure, the P-values of all
SNPs tested are assigned ranks (i), and a global significance level () is chosen. Then local FDR for each
rank is computed as: FDR; = a(i/m) and the null hypothesis is rejected for P-values lower than FDR;
.FDR is not optimal because of LD between markers and the small numbers of expected true positives
the method yields. FDR procedures do not provide a notion of significance but correct for the number
of expected false discoveries hence providing an estimate of the number of true results among those

called “significant”*%,

Permutation testing is another approach for establishing significance in GWAS*. It compares the
obtained P-values of association with the empirical distribution of P-values obtained for the case-
control identifiers®*. However, it is computationally expensive, especially with increasingly large
numbers of tests. Based on the distribution of LD in the genome of specific populations, the concept
of genome-wide significance was derived. The ‘effective’ number of independent genomic regions in
a population, thus the number of statistical tests that should be corrected for being determined*!. Due
to limitations of correcting procedures, a genome-wide association P-value threshold of 5 x 1078 for
rejecting the null hypotheses for common diseases in the European population was estimated using
FWER methods*. For FDR procedures, the recommended cut-off value is between 107 and 10784,

5.7. Complex disorders

5.7.1. Mendelian and complex diseases

As mentioned in the introduction, diseases can be unifactorial or multifactorial. Unifactorial diseases
are those that are known to be caused by single genomic variations. These monogenic diseases are
called Mendelian disorders due to their inheritance patterns, based on Mendel's laws of segregation,
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independent assortments, and dominance®. They are primarily classified as rare disorders because
the coding genes harbor highly deleterious mutant alleles that occur at low frequency in the general
population. This definition may not be entirely accurate for all rare disorders, as shown by previous
studies, since some rare diseases do not harbor nonsense mutations and indicate that deleterious
alleles may also be located outside the coding sequence of the gene®. Examples of monogenic
diseases include Huntington's disease, achondroplasia, and cystic fibrosis. Methods for identifying
Mendelian disease genes include positional mapping and sequencing, especially linkage studies in
families and exome sequencing approach?®’.

On the other hand, complex, multifactorial disorders are not caused by a single genetic risk factor.
Instead, multiple genetic and environmental factors and their interactions might contribute to disease
risk. Risk loci might be distributed throughout the genome, with some contributing to more than one
trait (pleiotropy)*®°°. Common examples of complex diseases include type 2 diabetes (T2D), epilepsy,
hypertension, and asthma®!. From our understanding that most common diseases are multifactorial,
it is essential to decipher the sources of risk and their relative contributions to disease occurrence.
The relative contribution of environmental and genetic factors can be very important in understanding
disease susceptibility.

In genetics, scientists assess heritability (H) as the proportion of variation for a given disease in a
population attributable to genetic factors®2. Heritability is broadly divided into broad-sense (H?) and
narrow-sense (h?). Narrow-sense heritability quantifies the proportion of variation due to additive
genetic effects while broad-sense heritability (H?) captures the proportion of phenotypic variation
due to genetic factors, including allelic interaction, gene-gene interaction, within loci (dominance) and
between loci (epistasis), and gene-environment interactions®%°3,

The narrow-sense heritability (h?) is often estimated in polygenic additive liability models for
estimating the heritability of common diseases with the assumption that common disorders are
genetically homogenous, dominance and epistasis are negligible in the disease etiology, and that
neither a genetic nor an environmental factor has a major contribution®**®, These models have been
debated over the years, but the conclusion from empirical data shows that they are consistent for
common diseases®®* (see section 6.1.1).

GWAS have identified variants associated with many traits. However, most of these studies explain
only 5-10% of the heritable component of the disease, which means that the larger part of the
heritable component cannot be explained by GWAS alone (missing heritability)®2. Missing heritability
may be due to undiscovered large numbers of variants with small effects, poorly detected rare
variations contributing to common diseases, inability to detect gene-gene interactions, and
improperly considered environmental factors, among other possible explanations®®. For example,
large sequencing studies have shown that relatively rare variations may play a significant role in the
heritability of common epilepsy but are typically left out in GWAS due to the focus on variants present

3358 Furthermore, the knowledge of one genetic marker or gene

in 5% or more of the population
affecting more than one trait (pleiotropy) is also gradually improving the discovery of associations,
especially for complex trait phenotypes exhibiting cross-phenotype associations. This project is
focused on epilepsy as a complex disease and examined the association of two well-characterized

phenotypes of the disorder with genotypic variants (details in sections 6.2 and 9)
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5.7.2. Epilepsies as complex diseases

Epilepsy is a chronic disease of the brain characterized by an enduring (i.e., persisting) predisposition
to generate seizures, unprovoked by any immediate central nervous system insult >°. It results from a
number of nerve cells in the brain sending abnormal signals, causing seizures. It is worth noting that
not all people who experience seizures have epilepsy, but the seizures must be recurrent or have a
likelihood of recurrence to be called epileptic seizures®®®, The diagnosis of epilepsies is based on
different clinical symptoms observed together in an individual, imaging findings, and age of onset. The
burden of epilepsy is relatively high compared to other brain diseases®2. Giourou et al. reported that
epilepsy affects about 1% of the world's population, and about 10% will experience a seizure in their
lifetime®3,

The prevalence of epilepsy varies from country to country and depends on sociodemographic, risk-
related, and etiological factors. However, the global average is thought to be 7.6 per 1000 people with
the condition, with a slightly higher prevalence of 8.75 per 1000 in low and middle-income countries
and a slightly lower prevalence of 5.18 per 1000 in high-income countries®. A recent meta-analysis in
Latin America and the Caribbean found an overall higher prevalence of 14.09 per 1000 residents and
a prevalence of 9.06 per 1000 individuals for active epilepsy®. The overall prevalence of active
epilepsy in Nigeria (Africa) is 9.8 per 1000 but varies from north to south®, while the prevalence in the
European Union varies widely from country to country but is lower compared to reports from Africa
and Latin America. Early work on the genetics of epilepsy via twin studies showed that there are

genetic risk factors for the disorder®”-°

There are different forms of epilepsy, including both monogenic and polygenic forms. The
monogenic form of the disease is marked by rare variations with large effects, while the complex
epilepsy form results from small but aggregating effects of common variation, some rare variations
with small to moderate effects, and environmental factors. The ILAE Consortium’® has categorized
epilepsy based on seizure type, imaging findings, age of onset, and other clinical findings, such as co-
occurrence of different symptoms. Focal, generalized, and unknown onset are the categories of
epilepsy based on the form of the seizures (see Figure 2). Focal onset seizures are characterized by
seizures that originate from and are confined to one part of the brain. Generalized seizures originate
from one source but spread throughout the brain network, while the type of seizures with unknown
onset is undifferentiated. Focal onset seizures are further subdivided into seizures with consciousness
or impaired consciousness, while generalized seizures are classified as motor seizures, including tonic-
clonic seizures and other motor seizure forms or non-motor seizures, also known as Absence®®.

Depending on the clinical diagnosis and EEG findings, epilepsy types are divided into focal,
generalized, combined generalized and focal, and unknown epilepsies (see Figure 2). In generalized
epilepsy, the affected person shows generalized spike-wave activity on the electroencephalogram and
may have absence, myoclonic, atonic, tonic, and tonic-clonic seizures®®’°. Focal epilepsy includes both
unifocal and multifocal disorders and seizures in one hemisphere of the brain with one of the following
seizure types: focal conscious seizures, focal seizures with impaired consciousness, focal motor
seizures, focal non-motor seizures, and focal to bilateral tonic-clonic seizures’®. The combined
generalized and focal phenotypes of epilepsy were newly introduced by the ILAE consortium for
patients clinically diagnosed with both focal and generalized seizures’.
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Mendelian or monogenetic epilepsy disorders are rare, affecting less than 1 in 2000 people. They
are usually developmental and begin in early childhood, causing severe impairment in those affected.
Most forms of rare epilepsies are called developmental and epilepsy encephalopathy (DEE). Well-
known examples include Dravet syndrome, Ohtahara syndrome, West syndrome, Lennox-Gaustat
syndrome, and infantile spasm’. Common epilepsy phenotypes affect about 1 in 200 people and are
broadly classified as genetic generalized epilepsy (GGE) and focal epilepsy (FE). GGEs account for 15-
20% of all epilepsies’?, while FE is responsible for about 60% of all epilepsies’®. Focal epilepsies were
initially thought to be acquired only through trauma, infection, and other non-genetic causes.
However, genetic studies have identified variants predisposing to some form of FE, hence the
distinction as non-acquired focal epilepsies (NAFE). Typical forms of GGE syndromes include childhood
absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and

Seizure types ‘ \

Etiology

generalized tonic-clonic seizures.

Generalized Unknown
Structural

-

Epilepsy types Infectious

. Combined
Focal Generalized Generalized Unknown Metabolic
& Focal
@

Epilepsy Syndromes /

Figure 2: (Adapted from: Scheffer et al. ILAE classification of the epilepsies: Position paper of the
ILAE Commission for Classification and Terminology. Copyright ©2017 International League
Against Epilepsy). Forms of epilepsy are based on seizure types, epilepsy types, and syndromes.
Epilepsies have also been found to be co-morbid but phenotypes based on onset seizure (*) are
still the most well-categorized.

Co-morbidities

The causes of epilepsy are diverse, ranging from structural, metabolic, infectious, immune, and
unknown to genetic. These factors are intertwined to a large extent; for example, some structural
abnormalities or metabolic disorders already associated with epilepsy could be acquired or genetic.
Even in epilepsies resulting from trauma such as head injury or stroke, it has been shown based on
studies of families that genetic factors still contribute to the observed trait’*’®>. However, genetic
causes do not immediately translate to inheritance. Hence it is necessary to separate monogenic forms
of epilepsy from complex epilepsies. Thus, epilepsies comprise rare monogenic phenotypes and
common forms, widely referred to as complex epilepsies, with both common and rare-variants
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contributions’. To understand the genetic risk factors in the susceptibility to epilepsies, comparative
twin studies have been performed between monozygotic twins and dizygotic twins through linkage
studies to compare disease concordance®” ®. Assuming the twins share the same environment,
differences observed in disease occurrence are likely not by chance and are attributable to genetic
variation, raising the need to focus on unraveling the genetic architecture of diseases.

From all indications, there is a strong genetic basis for the inheritance of epilepsies, but only a
fraction of the trait variation due to genetic factors is currently known through GWAS and sequencing-
based analysis for common epilepsy forms. Since there are overlaps of the forms of epilepsies further
corroborated by the new classification from the ILAE consortium, methods that can identify these
shared or switch-like variants are essential to advance gene discovery and provide more information
on the genetic basis of epilepsies. One of such valuable approaches is pleiotropy analysis which allows
for joint analysis of samples from different disease traits, in this case, epilepsy phenotypes, GGE and
FE.

5.8. Introduction to pleiotropy

Hereditary units like SNPs, loci, or genes combined with environmental factors determine the physical
characteristics of organisms and humans. Over the past decades, enormous work has been done to
link diseases to genetics, with or without accounting for environmental factors. One of the largest and
still growing types of such studies, GWAS, has focused on identifying single locus-trait relationships,
which has produced robust results in complex diseases. There has also been evidence of a single
hereditary unit being associated with more than one trait*>’¢. For example, a single disease risk factor
was shown to have multiple symptoms’’. This phenomenon of one single unit affecting two or more
phenotypes is often called pleiotropy, but it has not been well defined in the early days of genetics.
“Cross-phenotype association” is a general term used to describe the correlation of a marker, gene,
or genetic region with multiple traits, regardless of the underlying mechanism of correlation between
the markers and the traits*. Ludwig Plate (1910) coined the term pleiotropy ("Pleiotropie"), defined

12,49,77-79

as the phenomenon of a hereditary unit affecting more than one trait'?. Various studies since

then have dissected and categorized pleiotropy into distinct meaningful forms.

In the modern understanding of pleiotropy, it is broadly categorized into three forms, namely
biological or horizontal pleiotropy, mediated pleiotropy, and spurious pleiotropy. Although spurious
pleiotropy is basically the result of bias from different sources, it is often mentioned as a form of
pleiotropy to guide researchers in interpreting their results. In the biological or horizontal form of
pleiotropy, one or more variants in the same genomic region are associated with more than one trait
(see Figure 3). This form of pleiotropy could be at the allelic or genic level. At the allelic level, an
associated genetic maker could be in LD with one or more causal variants in the same gene that
simultaneously affect different traits. At the genic level, markers in the same gene are in LD with
different unobserved causal variants which independently affect two or more traits. For example,
the SNP rs6983267 in the intergenic region of chromosome 8qg24 is a risk variant for prostate and
colorectal cancer®. In the case of mediated pleiotropy, the correlation of a variant to one trait that
causally predicts another trait leads to the marker appearing to be associated with both traits (see
Figure 3). For example, the CHRNA5 gene is known to be associated with lung cancer, chronic
obstructive pulmonary disease (COPD), and smoking behaviors. However, the association with lung
cancer could be either due to the effect of the gene variants on smoking intensity or indirectly through
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effects on COPD®. Spurious pleiotropy arises from different forms of bias such as phenotype
misclassification errors, overlapping controls cohort in independent studies, and high LD in regions,
leading to marker tagging variants in different genes*>° (see Figure 3).

More recent examples of pleiotropy include the identification of loci 14q12-923 and 12q924.2-q24.3
as shared risk factors between migraine and epilepsy through linkage analysis®l. Another notable
example is the variation in the calcium channel activity genes such as CACNA1C and CACNA1D, which
were reported to be pleiotropic for psychiatric disorders like schizophrenia, bipolar disorder, and
major depressive disorder 82. Overall, the study of pleiotropy is helpful and comprises a promising set
of methods for disentangling causal relationships and genetic architectures in complex, multifactorial
diseases, as exemplified in the current work, in which | apply pleiotropy analysis methods to well-
categorized phenotypes of epilepsy.

a
Biological pleiotropy:
single causal variant

b

Biological pleiotropy: different causal
variants colocalizing in same gene and
tagged by the same genetic variant

Pl PI

d

C

Biological pleiotropy: different causal
variants colocalizing the same gene

e
Spurious pleiotropy: design artefact

f

Spurious pleiotropy:

causal variants in different genes

Mediated pleiotropy
Misclassification or
ascertainment bias
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Figure 3: (Adapted from: Solovieff et al. Pleiotropy in complex traits: challenges and strategies.
Copyright © 2013 Macmillan Publishers Limited). Types of Pleiotropy. Biological or horizontal:
Genetic units exert their effects through one or two colocalizing variants associated with two traits
(a, b, c). Mediated: a trait causally related to another trait, thereby a single variant appearing to be
associated with both traits (d) or spurious: relationships due to different forms of bias (e, f).

5.9.  Available methods for pleiotropy detection

Pleiotropy detection methods can be classified into genome-wide, regional, or single variant-specific
based on the level at which overlap of variants with traits is assessed. Genome-wide approaches are
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only available for the simultaneous study of multiple traits. At the regional level, markers are grouped
into genetically meaningful LD blocks and analyzed as sub-groups. In the statistical sense, these
methods are broadly classified as univariate and multivariate approaches. The univariate methods
directly quantify the effect of the variant on an outcome, which can be a trait or, in the case of
pleiotropy, a parameter that represents the combination of effects from individual traits analysis,
while the multivariate methods jointly test the association between variants and two or more traits in
measured simultaneously in the same individual. The application and choice of methods are guided
by data availability, of particular importance is the question of whether individual-level or summary
statistics are available, the number of traits co-measured, and whether some samples are shared
between studies (see Figure 4). Both multivariate and univariate pleiotropy approaches identify cross-
phenotype (CP) association. It is worth noting that pleiotropy analysis provides statistical evidence of
pleiotropy which can be followed up by mapping, phenotype stratification, and further study of
molecular mechanisms of the diseases, which is useful in clarifying the type of CP association
identified.

The availability of individual-level genotype and phenotype data allows for the use of multivariate
pleiotropy detection approaches. One commonly used genome-wide pleiotropy detection method is
the polygenic risk score (PRS). PRS combines polygenic effects across loci to check for association or
predict risk and can be used for pleiotropy detection®. One approach to identify pleiotropy using PRS
is by constructing genetic risk scores using effect estimates of markers selected from GWAS in a
sample for each individual in another independent sample®®. An association of the score to the trait
of interest in the second sample is evidence of an overlap between the genetic factors of both
traits®22%, Other noteworthy sets of multivariate genetic correlation approaches for identifying shared
loci at the genome-wide level are implemented in GCTA%%¢, BOLT-REML®’, and multivariate linear
mixed model (mvLMM)2, These methods can accommodate continuous and binary variables except
for mvLMM, which only allows normally distributed dependent variables®®. The GCTA and BOLT-REML
algorithms use restricted maximum-likelihood estimation to compute genetic correlation (rg), which
expresses the influence of genetic factors on the covariance of two traits.

Some methods are also available for identifying pleiotropy at the regional level. One popular
multivariate approach implemented in the pleiotropic region identification method (PRIMe)®, bins
the entire genome into non-overlapping blocks based on pre-defined criteria such as LD-blocks and
gene boundaries®®. The most significant variant in the block is termed “a driver” for all other variants
known as “passengers”. This process is repeated until all variants are partitioned into non-overlapping
blocks, each containing a driver. Pleiotropy is identified based on some prespecified index in each
block®. Other gene-based or locus-based multivariate methods such as Bayesian colocalization

|90

model®®, canonical correlation analysis (CCA) methods®*®2, and multi-trait set tests(mtSET)®® are also

available.

In summary, there are many available multivariate methods for individual-level pleiotropy analysis,
for analysis at single-variant or genome-wide level, for either continuous, binary, or categorical

variables. Analysis approaches include multinomial logistics regression®*%, generalized linear mixed

I°6%7, linear mixed-effects models®®%, generalized estimating equations (GEE)00101

102 103,104

mode , frailty

models ', principal components analysis and others!® (see Figure 4). However, data availability
is an issue in practice, as most individual-level genotyping studies are performed for studies of single

phenotypes. Data sharing among researchers is complex due to regulations and concerns from ethical
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considerations. Single-trait GWAS summary statistics are more readily available. These reasons justify
the existence of methods for combined analysis of univariate summary statistics from separate GWAS.
It also motivates the use of univariate pleiotropy approaches in this project.

Therefore, other valuable methods to harness increasingly available GWAS summary statistics have
been developed. Most of the available univariate pleiotropy detection methods stem from the idea of
meta-analysis, where separate studies are combined to increase the power of detecting association.
The classical meta-analysis method combines effect sizes or p-values of two or more traits to generate
a combined effect estimate or p-values for the traits*'%. However, the classical MA has major
limitations, such as the requirement of very homogenous traits. Another limitation is that classical MA
does not account for the directionality of effect, and samples overlap in the case that samples are
present in multiple studies. The subset-based metal-analysis (ASSET)? approach is an extension of
fixed-effect meta-analysis that accounts for sample overlap and effect direction and allows for
heterogeneous traits to be jointly analyzed. Other extensions of classical metal analysis are cross-

107 cross-phenotype association (CPASSOC%19%)  trait-based

phenotype meta-analysis (CPMA)
association test (TATES), MultiMetal?®, pleiotropic analysis under the composite null hypothesis
(PLACO)®, Multi-TRAIT Analysis of GWAS (MTAG)', and pleiotropic locus exploration and
interpretation using optimal test (PLEIO)!2. Some Bayesian univariate pleiotropy detection
approaches are also available. The conditional false discovery rate (cFDR), as the name implies, tests
a trait called “principal trait” conditional on the second, “conditional” trait 3. ¢cFDR was further
extended to account for overlapping samples®>. A more recent cross phenotype Bayes (CPBayes)
approach computes local FDR and Bayes factors as evidence of overall pleiotropy *. In the current
study, | applied five of these univariate methods (see Table 1 for an overview), as discussed in the next

section.
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summary statistics from separate subject-level data with all phenotypes

i ?
analyses of each phenotype Type of data available’ measured on same subjects
OO . .- ol B % from subjectlavel data |
Overlapping subjects? Phenotype distribution?
no yes continuous dichotomous combination ¢ survival
Fisher's Fixed | Random || CPMA ) Subset-based || FDR-based || TATES || Standard Seq- || Multinomial Lutz
META® || META: | META< | o META=c | methodat || ® py || PCA || PORATILME R PET |y or || Logistic e (| GLMM || BGEE | CCA | MultiPhen | e |f Models
L meta-analytic | Lindirect L direct 1
| univariate mathods |1 multivariate methods |

#Extensions for handling overlapping subjects are available for these methods.

" Methods based on p-values from single analyses; accommodate genetic effect heterogeneity and any phenotype distribution.

¢Methods based on effect sizes from single-trait analyses; power affected by genetic effect heterogeneity; phenotypes must be of same distribution.
4 Denotes a mixture of continuous and dichotomaous phenotypes.

¢ Multinomial logistic regression is an indirect method for dichotomous phenotypes.

Web Figure 1. Analytic options for detection of cross-phenotype associations across various types of data. The choice of analytic method in genetic epidemiclogical studies of pleiotropy largely
depends on the types of available phenotypic data. When relying on secondary data to study pleiotrapy, we may find that subject-level data with all phenotypes measured on the same subijects are not
available. In that case, each phenotype may be analyzed separately in different study populations, and the resulting summary statistics can be used to identify cross-phenotype associations by
employing univariate methods. When selecting a univariate method, it is impartant to consider the degree of overlap in the subjects contributing to the analysis of each phenotype, since most univariate
methods cannot accommodate overlapping subjects. If subject-level data in which all phenotypes have been measured on the same subjects are available, both univariate and multivariate methods
can be employed. When selecting a mullivariate method, it is important to consider the phenotype distributions, as in traditional epidemiological studies. We note that choosing among a set of
appropriate methods is not necessarily straightforward.  Many parameters affect their power and type 1 errors, including the number of phenatypes under analysis, cross-phenotype correlation
structure, SMP minor allele frequency, heritability of the phenotypes, and SNP effect size for each phenotype (25, 31). Simulation studies evaluating univariate and multivariate methods across different
values of these paramelers have concluded that there is no single method or type of method (univariate vs. multivariate) with consistently good performance amaong all possible scenarios (25, 31). For
this reasan, we suggest that, when possible (i.e., when subject-level data with all phenotypes measured on same subjects are available), bath univariate and multivariate methods be employed in
parallel to increase the probability of detecting cross-phenotype associations.

Abbreviations: CCA = canonical correlation analysis; CPMA = Cross-Phenotype Meta-Analysis; FDR = false-discovery rate; EGEE = exlended generalized estimaling equations; GLMM = generalized
linear mixed effects models; LME = linear mixed effects models;, META = meta-analysis; PCA = principal components analysis; PCHAT = Principal Component of Heritability Association Test; PET =
Pleiotropy Estimation and Test; Seq-LRT = sequential likelinood-ratio test; TATES = Trait-based Association Test that uses Extended Simes; UV = univariate.

Figure 4: (Adapted from: Salinas Y. D.,, Wang Z.,, DeWan A. T. Statistical Analysis of Multiple
Phenotypes in Genetic Epidemiologic Studies: From Cross-Phenotype Associations to Pleiotropy.

Copyright © The Author(s) 2018). Classification of available pleiotropy detection methods based

on available data, the outcome, and samples overlap across studies.
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5.10. Description of applied univariate approaches

From the many available methods discussed in the previous section, | selected five recent, well-
implemented univariate pleiotropy detection approaches briefly described in the following sections
using the simulated dataset to identify the best methods in terms of power and false-positive rate.
These methods are meta-analysis-based in that they extend the framework of classical meta-analysis
of combining effects sizes or P-values from independent GWAS, accommodate varying sources of
heterogeneity, and allow for sample overlap. Some of the methods even generate inference via
Bayesian sampling approaches.

Method Abbreviation Reference | Web resource
Classic fixed-effect MA 5 http://csg.sph.umich.edu/abecasis/
meta-analysis metal/download/
Subset-based metal ASSET 5 https://bioconductor.org/packages/
analysis release/bioc/html/ASSET.html
https://github.com/ArunabhaCodes
Cross-phenotype Bayes CPBayes 4 ps://g /
/CPBayes
Conditional false FDR s https://github.com/jamesliley/cFDR
c
discovery rate -common-controls
Pleiotropic analysis https://github /RayDebashree/
s://github.com/RayDebashree
under the composite PLACO 6 ps://8 y
. PLACO
null hypothesis

Table 1: Univariate pleiotropy detection methods included in the analysis and their sources.

5.10.1. Classical fixed-effect meta-analysis (MA)

This approach consolidates results from different studies by pooling the P-values or effect sizes from
these studies to estimate an overall effect size. MA is not explicitly designed for pleiotropy detection
but can be expected to identify variants that have concordant effects in separate studies of two or
more phenotypes and, correspondingly, its use has been demonstrated in pleiotropy detection!'#11>,
This method estimates an overall effect from the two phenotypes by computing the weighted mean
from the effect sizes weighted by the inverse of the overall study variance. The assumption is that
there is a true effect shared by all phenotypes being analyzed, and the difference in observed effect
is due to sampling error'®®, This true effect is the estimated common effect. It typically assigns larger
weights to a phenotype with more precise effect sizes, meaning that the weights are computed via
the amount of information provided from each phenotype, hence, the use of sample sizes.
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The basic approach underlying fixed-effect MA is the conversion of study-specific P-values (P, ) and
effect direction (J)) from K studies into standard normally distributed signed Z-scores

Zy = D71(Py/2) * sign(8y) (5)

which are then combined to estimate an overall Z-score (Z,,,.¢,) statistic by weights wy. Weights are
typically assigned based on the inverse of the variance, which is also roughly proportional to sample

L . Thus,

. 1 . : .
size'”. Therefore w;, = 5 and the variance of the combined effect is §yerq = S
k i=1"Vk

— Zk:l..KZka (6)

The final overall P-value is then obtained by comparing this statistic against a standard normal
distribution:

Preta = 2[1 — (@(IZmeta ], (7)

where @ denotes the standard normal distribution function. Here, | used the MA implementation in
the METAL software?.

5.10.2. Subset-based meta-analysis (ASSET)

The ASSET method? extends the classical meta-analysis approach by pooling multiple heterogeneous
trait effects together and exploring exhaustively various subsets of these traits acting concordantly in
the same or different directions. It generalizes the classical fixed-effect meta-analysis by exploring all
possible subsets of non-null studies to check for strong association signals. This approach tests the
null hypothesis of no association of SNPs in any of the individual traits by estimating the evidence of
association for any SNP, Z-statistics (Z(B)) in any given subset (B) of traits. For a given subset B of
m(B) studies, the respective overall Z-score Z(B) is obtained following the MA approach by

Z(B) = ZkEB\/nk(B)Zk , (8)

where m,(B) = nk/ZZ;(f)nk weighs the different studies proportional to the square root of
respective sample sizes. If covariate adjustments are similar across studies, then B, < - where ni is
k

the sample size for the k" study 3. The score is then maximized over all possible subsets:

Zmeta—max = maxBQ{l,..,K}lz(B)l . (9)

The overall hypothesis of a genetic marker to be associated with all traits is evaluated by Zneta-mox.
The upper bound for the P-values from the defined multivariate distribution is obtained through the
discrete local maxima (DLM) method (see 3 for full details). The aggregate evidence of pleiotropy is at
GWAS significant P-value of 5 x 1078 after correcting for multiple testing using Bonferroni standard
procedure.

5.10.3. Conditional false discovery rate (cFDR)

This method leverages the available GWAS summary statistics by estimating the cFDR, which
comprises an upper bound on the expected FDR across SNPs having p-values below a set threshold for

24



both traits>!!8. As discussed in section 5.6, the FDR controls the expected proportion of false positives
among all associated SNPs that were declared significant. Assuming that the P-value of a trait k across
all variants is a realization of a random variable P, the unconditional FDR (uFDR) for the null
hypothesis Hék) of no association of this variant with phenotype k is then defined as the probability
that a random variant from this set of rejected hypotheses falls under the null hypothesis for this
phenotype °. The uFDR can be estimated from a set of observed P-values: p},pZ,...,pY for aset of N

variants as the ratio of the expected quantile of P, under Hék)and the observed quantile of Py:

DR, = — Pk
uFDR(pk) = #(P}{l p%{ P (10)
N

However, for cFDR, a trait selected to be the “principal trait” is conditioned on the second trait,
“conditional trait,” the cFDR is then defined as the posterior probability that a given variant falls under
the null hypothesis for the principal phenotype given that the P-values for both phenotypes are less

or equal to the observed P-values (py, p;): P (Hék)|Pk <P < pl). Similar to the uFDR and based
on observed P-value pairs {(pi, p}), (P2, p?), ..., (Y, pN)} for two phenotypes k and / at N different

SNPs, it is estimated by the ratio of the expected quantile of P« under Hék)amongst those p},ic where i

satisfies Pli < p; and the observed quantiles:

k
P(PkSPkIPLSpllHé ))

((PR.PY) e(PiP;) D} = pyc and b} < 1))
N1

cFDRpyipy =3 (11)

where N; denotes the number of P-value pairs with P; < p; and (py, p;) is the P-value pair for a SNP
of interest®. Suppose controls are shared between the two traits. In that case, there is a positive
correlation between the estimated effect sizes for both traits and the distribution of P-values for the
principal trait, given that the P-values for the conditional trait depends on the underlying effect of
each SNP on the conditional trait; hence, the underlying effect (1) is not known. Itd can be considered
as a realization of random variable H. The expected P-value of principal trait, P(Py < px|P; <

148 Hék)) is then evaluated by integrating over the true but unknown effects for conditional traits>.
Association with both phenotypes is tested via a conjunction FDR procedure to minimize the effect of
a single phenotype driving the association signal, and an FDR-controlling procedure is used to correct
for multiple testing.

5.10.4. Cross-phenotype Bayes (CPBayes)

The cross-phenotype Bayes approach is a fully Bayesian meta-analysis-based approach that generates
inference on overall evidence of pleiotropy for two or more traits using Gibb’s sampling form of the
Markov chain Monte Carlo (MCMC) technique. The aggregate evidence of pleiotropy is given by the
local false discovery rate (locFDR) and the Bayes factor (BF) through testing the global null hypothesis
(Ho) of no association with any trait versus the alternative hypothesis (H;) of association with at least
one trait. Prior information is provided by the spike and slab approach, where the spike element
represents the null effect while the slab part represents the non-null effect. Let [/3; be regression
estimates of true effect 8 obtained from the separate univariate models of individual traits T}, and s,
their standard errors. If the sample size is sufficiently large and Z?; are uncorrelated, we assume that

ind

B;lﬁk ~ N(,Bk,S]%) (k=111K) (12)
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However, for correlated estimates (By,...., Br ) With variance-covariance matrix S that
corresponds to the SNPs, B|f~MVN(B,S). The prior information is given such that z denotes the
association status of Ti (see %, page 22). The local false discovery rate (locFDR) equals the probability
of null association (PNA) given the data: locFDR = P(Hy|D). With the posterior odds (PO) equalling

PO =£Egl1g% and the posterior probability of association equaling PO/(1-PO), we obtain the
0

posterior probability of null association (PPNA) which is the same quantity as locFDR as:

PPNA=1 — PPA=—— = P(H,|D). (13)

14+PO

Also, the Bayes Factor (BF) is obtained by:

_ p(D|Hy) _ p(H{|D)P(Hy) _ P(Z # 0|D)P(z=0) _ Posterior odds

BF = P(D|Hy) ~ P(Ho|D)P(Hy) ~— P(Z = 0|D)P(z#0) = Prior odds '

(14)

where the posterior odds are the ratio of the probability of non-null and null effect given the data
while the prior odd is the ratio of the probability apriori of the effect being non-null and null, which is
estimated from a Dirac distribution or mixture of normal distributions with mean zero and very small
variance. locFDR and BF provide the evidence of aggregate pleiotropy such that if BF >1 and locFDR
< 107 the variant is pleiotropic. In addition, the trait-specific posterior probability of association
also provides information on the relative strength of association between a pleiotropic variant and
the selected non-null trait contribution to the aggregate evidence of association.

5.10.5. Pleiotropy analysis under the composite null hypothesis (PLACO)

PLACO methods test for evidence of pleiotropy by testing the composite null hypothesis of no
association with none or only one of the traits as opposed to the testing of the global null hypothesis
of no association of the SNPs with any of the traits in the MA approach using the summary statistics
from GWAS of individual traits. The null and alternative hypotheses are defined in such a way that the
global null hypothesis consists of sub-null hypotheses Hy,and Hy, where Hyq: B =0, B, #
0, Hyy: B1 # 0, B, = 0 for both traits. 3;and 3, are the genetic effect of the variants for the first and
second trait respectively, Hy is the sub-null hypothesis that the genetic effect is zero for the first trait
and non-zero for the second trait, and vice versa for Hy, . Assume the global null Hyy holds with
probability Mmoo for asymptomatic standard normal distributions of phenotype-specific statistics Z: and
Z>. Additionally, assume Hy is a sub-null hypothesis with probability e under which Z; has a standard
normal distribution and Z; has a conditional N (u,, 1) distribution where the mean parameter is u, ~

N(0,7%) distributed and the sub-null hypothesis Hy, holds with probability 1oz and Z, ~ N(0,1) while
Z1|lty ~ N(uq, 1), where py ~ N(0,72). Therefore, the composite null hypothesis of no pleiotropy

and the alternative hypothesis using the special case of the principle of union-intersection of statistical
hypothesis testing is:

HaHgoanlanz, H(I:Bl Bz¢0

(15)
Ho:Haoo UHo1 UHy,, Hy=PB1B,=0

Furthermore, assume Z; and Z; are independent normal variables under Hy and their product 2 Z,
has a normal product distribution under Hyq, Hyiand Hy,, respectively (if T; and 7, are unknown).

26



Therefore, the P-value for testing the H,: {8, = 0 against H,: $; 5, # 0 using products of the Z
scores can be obtained from

2
Pz, = 2 X Py (2125 > |212,]) = 2 X k‘EOP(HOR)PHok(zlzZ > |z12,]). (16)

Since the P-value is sensitive to the probabilities and variance, the asymptotic approximation of
the P-value is given by

B, = ]F(zlzz /,/var(zl)) + IF(zlzZ /,/var(zl)) —F(z12,) , (17)

where F(u) denotes the two-sided tail probability of a normal product distribution at value u.

5.10.6. Pros and Cons of the Univariate pleiotropy detection approaches.

All the applied univariate pleiotropy detection methods are simple to use because they only require
effect sizes, standard error, and sample sizes from GWAS. All methods produce overall evidence of
pleiotropy in the form of P-values. The measure of aggregate-level evidence for pleiotropy varies
among the methods, with 107° being the recommended cut-off used for FDR-based approaches
(cFDR, CPBayes “*and 5 X 10~8being the significance level for the other methods (MA; ASSET, PLACO).
Additionally, the CPBayes approach also provides the percentage posterior contribution of each trait
to the overall evidence, while ASSET gives evidence of directionality of effect and can identify switch-
like variants and their effects.

Although the classical MA approach is quite simple and easy to use, it requires that the traits should
be homogenous, and rejecting the global null hypothesis of no association of the SNPs with any traits
does not necessarily translate to pleiotropy but, a strong effect of a SNP for a trait could motivate the
observed evidence against the null hypothesis. PLACO and cFDR methods accommodate only two
traits at once.

5.11. Aims of the project

Due to the mirage of univariate methods available in the literature with no recent existing
benchmarking study to compare their power to detect pleiotropy and their error rate, | firstly
performed a benchmarking study of five univariates pleiotropy detection approaches, namely: cFDR
>113118 CpBayes®, ASSET?, PLACO®, and classical MA? to select the best performing method through a
simulation study.

This method identified through the simulation study was applied to the GWAS summary statistics
of two epilepsy phenotypes, generalized genetic epilepsy and focal epilepsy, obtained from the
international league against epilepsy (ILAE) consortium®® to identify pleiotropic variants for both
epilepsy traits. | further applied this method to a larger sample set of GGE and FE epilepsy forms to
replicate the identified variants in the first dataset and discover new associations based on the fact
that the power to discover such associations increases with increased sample size.
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6. Methods

6.1.  Simulation study design

While many very different approaches are available for simulating populations (e.g., coalescent-based
methods, forward simulations, resampling approaches)!'®, they often scale unfavorably with growing
sizes of populations and/or genetic variants. | used a resampling approach that is fast, efficient, uses
available genetic data, and yields the same LD structure as in the base dataset!'®. Resampling
approaches are also preferred when focusing on study design and analysis of actual genome data
because they can preserve the allele frequency of the markers. However, if the interest is in studying
evolutionary forces in the population, the other simulation approaches are more applicable!’.
Therefore, | employed a commonly used resampling algorithm to simulate the entire genome of 1
million individuals of European ancestry, using Hapgen2!® with the haplotype data of 99 CEU (Utah
residents (CEPH) with Northern and Western European ancestry) individuals provided by the 1000

Genomes project®* (retrieved from https://mathgen.stats.ox.ac.uk/impute/1000GP Phase3.html). |

used only the polymorphic position of autosomes in the reference dataset. More specifically, |
generated population genotypes under the null model of relative risk of 1.0. The Hapgen2 resampling
algorithm is based on the Li & Stephen (LS) model of LD, where each new simulated haplotype is
conditioned on the reference haplotype population and the estimates of fine-scale recombination rate
across the region (retrieved from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html),
leading to the same LD pattern as in the reference data'*'?°, The size of the simulated data (~2 TB)
forced me to simulate the population in 10 batches. When checking for batch effects, | identified three
distinct clusters using principal component analysis (PCA). To avoid biasing or confounding effects by
this substructure which may lead to inflated statistics, | included the first ten principal components
(PCs) as covariates in all subsequent association analyses. This was based on my observation that the
clustered structure disappeared when going from nine to ten PCs to be included as covariates.

6.1.1. Case-control status assignment for pairs of phenotypes.

To simulate multifactorial disease phenotypes from genetic data, | adopted the additive liability
threshold model (ALTM)?®, a simple but well-established theoretical model calibrated to empirical data
and successfully used to describe the genetic architecture of different traits. This model does not
consider interaction effects (intra- and inter-locus) because they are assumed to be very small for
most common traits®*. This model assigns dichotomous case-control status according to the
exceedance of some liability thresholds following classical quantitative genetics theory. As previously
stated, the ALTM is an allele-based model that assumes no intra- or inter-locus interaction but allows
for different genetic effect sizes, narrow-sense heritability, and disease prevalence values. More
specifically, let T denote the normally distributed liability, g the phenotype-impacting variant effects,
and E the standard Gaussian random noise attributed to other non-genetic sources. For each
individual (=1, ..., L), locus-specific variant effects g; (i=1, ..., M) are summed up across all loci (j=1, ...,
N):
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G =X 12 g1 (18)

Subsequently, G, is standardized by

z _ (Gi=mean(Gp)
Gl - stdev(Gp) (19)

and E is randomly assigned to each individual (E; ~ N(0,1) VIE{1, ..., L}) in such a way that the pre-

pe _ . . 2 _ var(G) . .
specified narrow-sense heritability h* = (varG)+var(®) is attained.

To simulate the disease SNPs under different effect estimates, the standardized value of the
genetic effect is multiplied by varying effect sizes. Thus, the liability T; of an individual / is then given
by:

Case-control status is finally assigned by imposing a threshold t on the liability so that a proportion
of the population corresponding to the disease prevalence exceeds this threshold with their liability
value, i.e., individuals assigned case status. In my simulations, | considered, in turn, prevalence values
of 1% and 10%, thereby considering traits of moderate and of common prevalence, respectively.

6.1.2. Case-control sample sets for pairs of traits.

To simulate a pair of traits, | randomly selected 1,000 common SNPs with allele frequencies between
5% and 20% in the simulated population. From those, | randomly selected five and ten disease-causing
SNPs, respectively, to allow multiple markers to jointly contribute to the incidence of both traits as
obtainable in GWAS, for each of the two traits to be simulated and assigned them a pre-defined
relative risk (RR), namely 1.05, 1.2, 1.5, and 2.0 respectively. These RR values are selected based on
typical values that have been observed in GWAS. | introduced biological pleiotropy by forcing the two
respective causal SNP sets for the two traits to partially overlap by either 20% or 40%. More values of
all the factors described here were not considered as more values will lead to many combinations that
might be difficult to handle, summarize and visualize. These two SNP sets then entered the ALTM, and
the traits were simulated separately across the entire population. Please note that the scenario of five
causal SNPs and 20% overlap corresponds to the simplest case of a single SNP acting pleiotropically
for the two traits. | defined the case-control status using the varying prevalence values as the quantile
of the distribution of the liability of all individuals to define a threshold. Individuals with a liability
greater than this threshold were assigned case status, otherwise keeping control status. To avoid
reporting rare artifacts, | performed this step multiple times to assess variability and obtain average
values close to the true mean. Hence, obtaining 100 replications where both traits would have a
prevalence in the population of either 1% or 10%, respectively, given the pre-specified parameters of
variant number, variant overlap, and effect size. | used these prevalence levels because the estimated
prevalence of common diseases in GWAS is not often large. Finally, | drew a single random sample of
1,000, 5,000, and 10,000 cases, as often seen in real-world GWAS data, respectively, and an equal
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number of controls for each trait of the pair from a given replication, resulting in sample sizes of 2000,
10,000, and 20,000 for each trait, respectively.

6.1.3. Identification of pleiotropy in simulated data

Since | restricted the study to unidirectional biological pleiotropy for single variants, which implies that
avariant is pleiotropic if it increases the risk of having the two traits, | defined the power of discovering
pleiotropy and its corresponding false-positive rate as shown. Firstly, | performed a univariate
association test for the individual trait using PLINK v1.9 beta 6.92122, including the first ten principal
components as covariates (see section 6.1.2). The resulting effect sizes, standard error, or P-value in
some cases from the association analysis served as input for the univariate pleiotropy detection
method after ascertaining that only the selected diseased variants are causal for the traits in the
association analysis. A true-positive (TP) finding is defined as the marker that reached an aggregate
genome-wide significance level of 5 x 10~8. However, the measure of overall evidence of pleiotropy
is different for the FDR-based approaches (CPBayes and cFDR), where 10~° is the recommended FDR
threshold value*>13,

Variants are considered pleiotropic and true positives in all applied methods if they are causal for
both traits, that is, they exceed the defined threshold for evidence of pleiotropy in each method. At
the same time, false-negatives (FN) were the disease overlapping variants that did not reach the preset
threshold of evidence of pleiotropy for both traits. Therefore, the power of each method to detect
true pleiotropy is:

TP
Power = ———— =1—FNR,
TP+FN (21)

where the false-negative rate (FNR) is the proportion of pleiotropic variants that are not associated
with both traits. | estimated the type I error rate or the false-positive rate as the proportion of the
non-pleiotropic causal variants that exceed the threshold values of evidence of pleiotropy in the total
number of causal SNPs for the different approaches. FPR is obtained as follows:

FPR=—" __1_TNR, (22)

FP+TN

where the false positives (FP) count is the number of non-pleiotropic causal SNPs, i.e., variants that
are only causal for either phenotype but found to show evidence of pleiotropy for both traits, while
the true negatives (TN) or specificity is the ratio of non-pleiotropic SNPs that are genuinely non-
pleiotropic.

6.2. Pleiotropy detection in two epilepsy phenotypes

The ILAE Consortium, established in 1909, is committed to working towards a world where no
individual is limited by epilepsy through adequate research and education?. The consortium seeks to
ensure the provision of resources and tools needed to the health care provider, caregivers, and people
living with epilepsy to understand, prevent and treat different forms of epilepsy. However, the genetic
analysis group of the consortium has focused on identifying genetic risks that predispose people to
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develop epilepsy and disentangling different risk factors of epilepsy, especially in the complex forms
of the disease.

ILAE consortium on complex epilepsies in the past has published results of GWAS on common
forms of epilepsies (GGE and FE) and their phenotypes and reported some genes that are correlated
to these traits. A meta-analysis of 34,853 (8,696 cases, 26,157 controls) individuals of European, Asian,
and African-American origin resulted in the identification of voltage-gated sodium channel genes,
SCNA1, and SCNA9 on chromosome 2 and Protocadherin gene, PCDH7 on chromosome 4 for all
epilepsies which include in this study GGE and FE and unclassified*?*. They also found a locus 2p16.1
implicating VRK2 and FANCL genes correlated to GGE?*. In 2018, the consortium published a bigger
genome-wide mega-analysis study which included an additional 6,516 cases and 3,460 controls to the
previous GWAS samples, which led to a larger sample cohort comprising 15,212 epilepsy cases and
29,677 controls. The analysis found 16 loci associated with the different forms of epilepsies, with 11
of these loci being novel. Joint analysis of all epilepsies revealed a new locus at 16q12.1 in addition to
loci 2p16.1 and 2q24.3 previously discovered on chromosome 2. Further, the study found 11
associated loci for GGE and a locus for FE with about 21 prioritized epilepsy genes mapped to the
resulting loci’®,

6.2.1. Description of the datasets
6.2.1.1. ILAE dataset

Based on epilepsy seizure types described in section 5.7.2, | obtained summary statistics of two well-
characterized epilepsy phenotypes, GGE and FE, from the ILAE mega-analysis study for the European
cohort, which are more homogenous. | obtained effect sizes and standard errors for 3,708 FE cases,
9,095 GGE cases, and 24,218 overlapping controls. Based on the results obtained in section 6.1, where
the ASSET method performed best in the simulation study, | applied the ASSET method to this sample.
The sample overlap between the controls was accounted for in the pleiotropy analysis by computing
a correlation matrix for the samples and including the obtained correlations in the analysis.

6.2.1.2. ILAE and EPI25 datasets

In the second analysis phase, | received summary statistics of GGE and FE phenotypes from the ILAE
consortium and EPI25 collective. | applied ASSET to the subset of European samples, comprising 6952
(3244+3708) GGE cases and 14,939 (5344+9095) FE cases from the EPI25 and the ILAE Consortium as
well as 42,434 partially overlapping controls from both sources (see Table 2 below). | performed the
analysis in two different ways, firstly by considering four groups (2 GGE and 2 FE defined along with
both ILAE and EPI25 cohorts) and secondly, by using two groups which consist of meta-analyzed
summary statistics of GGE and FE phenotypes from both cohorts. In the first scenario, | could only
account for study difference (samples cohort) in the ASSET formulation but could not expressly define
GGE and FE phenotypes in both cohorts as belonging to the same trait.

Therefore, ASSET was notably blind to the fact that GGE from both EPI25 and ILAE samples are the
same phenotype (same for FE). Hence, a locus showed an opposite effect direction for GGEs in EPI25
and ILAE cohorts. Considering the four groups could be an interesting analysis given the larger genetic
and phenotypic homogeneity within the cohorts, but | dropped the analysis due to the above-stated
concerns, which | could not directly fix in the software. To this end, | used the two cohorts' effect sizes,
standard errors, and the effective sample sizes estimated from the meta-analysis for GGE and FE. The
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data contained ~4.8 million common SNPs for which genotype data were available in both the EPI25
and ILAE samples.

EPI25 ILAE Total
GGE | FE GGE | FE
Cases 3244 5344 3708 9095 21,891
Controls 13,121 13,121 24,218 24,218

Table 2: Sample sizes of the epilepsy phenotypes in both cohorts. GGE- generalized genetic
epilepsy samples, FE- focal epilepsy, EP125- samples from EPI25 collaborative, and ILAE- samples
from the International League Against Epilepsy Consortium.

6.2.2. Dataset quality control

On these summary statistics output provided by the ILAE Consortium on complex epilepsies®®, |

compared the y? of pairs of SNPs with LD value (r2 > 0.4) and removed SNPs having y? values greater

3 SNP1X2+SNP2X2
X —s

than (Rz)j to exclude SNPs with inflated y? (outliers) values which can bias the result™.
Finally, | analyzed only those SNPs that were contained in the datasets of both GGE and FE after quality

control, including about 4.1 million SNPs in the pleiotropic analysis using ASSET.

6.2.3. Pleiotropy, annotation, enrichment, and colocalization analyses

| applied the ASSET method, which has proven to be powerful from the simulation study, yielding a
better trade-off between FPR and power to the datasets described in section 6.2.1 to identify shared
loci between GGE and FE. Since the control samples are shared for these traits, | estimated the
correlation between the Z statistics and the covariances, then the subset search procedure was carried
out, and finally, the P-value was approximated with the DLM procedure. | obtained odds ratios, overall
P-values, and directional P-values with subsets of the traits each variant is associated with from the
analysis and further performed gene mapping, annotation, and prioritization of genome-wide
significant variants using various tools.

SNPs found to be significant in the pleiotropic analysis with ASSET were mapped to genes using
FUMA® (https://fuma.ctglab.nl/). The loci harboring these significant SNPs were delineated by
clustering SNPs in LD at r*>0.2 within a *250kb radius. The SNP with the smallest p-value was
considered the “lead” SNP within a locus. | then performed functional annotation of the SNPs included
in the above-defined loci to assess the potential consequences of these SNPs. To this end, | performed
functional annotation of the variants that are in LD with one significant independent SNP using
ANNOVAR??, | also performed functional annotation using the RegulomeDB database to check for
evidence of SNPs affecting regulation, where RegulomeDB scores <6 are considered to affect the
regulation of the mapped gene!?. Deleteriousness of SNPs was predicted by CADD scores; scores

higher than 12.37 were considered deleterious, as proposed by Kircher et al.??,

Furthermore, | performed a tissue expression analysis using FUMA, based on the P-values from
MAGMA? gene-set analysis and GTEx v8 expression data, to quantify the relationship between the
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average expression of a set of genes identified in the tissue and genetic association. | checked for
previous reports on genetic association with epilepsy syndromes using the GWAS catalog
(https://www.ebi.ac.uk/gwas/). Finally, | also performed a Bayesian co-localization test between GGE
and FE to confirm whether the lead SNPs have a high probability of being associated and shared for
both syndromes, using the R packages HyPrColoc!* (“hypothesis prioritization for multi-trait
colocalization”; https://github.com/jrs95/hyprcoloc/) and coloc v5.1.09%3!  (https://CRAN.R-
project.org/package=coloc). More specifically, | estimated the posterior probability of co-localization
as evidence that a variant is shared or associated for multiple traits using HyPrColoc and of association
of both syndromes with the lead SNPs using coloc tools.
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7.

7.1.

7.2

Main results

Simulation study

At a small variant effect size of 1.05, all five applied methods had no power to detect
pleiotropic SNPs.

The power to detect pleiotropy for all methods increases with increasing sample sizes across
all simulation scenarios except the cFDR approach, which showed a downward trend possibly
due to software malfunction.

CPBayes performed best in terms of power, closely followed by ASSET and cFDR.

Prevalence seemed to have a modest effect on power. The effect is distinguishable at RR=1.2
and a sample size of 2000.

All methods show considerably low FPR at RR=1.05 except CPBayes, which has >10% FPR
across all simulation scenarios.

Classical MA is not recommended for pleiotropy detection as it performed poorly in terms of
FPR.

The larger the number of disease SNPs and the degree of sharing of these SNPs between the
traits, the lower the FPR for all approaches except for classical MA, which seems to have the
opposite effect.

The larger the number of disease SNPs and the degree of sharing of these SNPs between the
traits, the larger the Power for all approaches.

The ASSET method performed gave a good trade-off between power and FPR by keeping the
FPR generally low while maintaining the high power to detect pleiotropy across all simulation
scenarios.

Pleiotropy detection in epilepsy phenotypes (ILAE dataset)

| identified 40 pleiotropic SNPs at two loci: 2g24.3 and 17q21.32, at a genome-wide
significance, three of which were independent lead SNPs. SNPs rs60055328 and rs2212656
mapped to locus 2924.3, whereas rs16955463 mapped to 17q21.32.

Functional annotation using ANNOVAR!?® shows that 11% of the SNPs are intergenic, 23% are
intronic, and 61% are non-coding transcript intron variants.

Locus 2g24.3 had already been reported for GGE and FE and mapped to SCNA1, SCNA2,
SCNA3, and TTC21B in the ILAE mega-analysis.

Locus 17g21.32 is the unreported new putative pleiotropic locus for FE and GGE comprising
of SKAP1, OSBPL7, SP6, SP2, PNPO, PRR15L, CDK5RAP3, COPZ2, NFE2L1, CBX1, SNX11, HOXBI,
HOXB2, and HOXB3 genes.

MAGMA tissue-specific expression of the genes found most to be preferentially expressed in
the brain.

Based on the Ensembl variant effect predictor and FUMA, SCNA1, SCN9A, and TTC21B were
the prioritized genes for Locus 2g24.3, while SKAP1 and PNPO are the prioritized genes for
locus

17q21.32.
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7.3. Pleiotropy detection in epilepsy phenotypes (ILAE and
EPI25 dataset)

e Here, | identified 50 pleiotropic SNPs at genome-wide significance level in three loci.

e |replicated locus 2g24.3 and found a new putative locus 9g21.13 to be pleiotropic for both
GGE and FE.

e The previously reported locus 17g21.32 could not be replicated in this new sample cohort as
it was found to be strongly associated with GGE only with a marginally significant opposite
direction of effect in FE.

e Locus 2924.3 had already been reported for GGE and FE and mapped to SCNA1, SCNA2,
SCNA3, and TTC21B in the ILAE all epilepsy analysis via meta-analysis'*2,

e The new locus 9921.13 contains the RORB gene.
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8. Publications

8.1.  Contribution to publications

In the following paragraphs, | describe my contributions to the publications listed in this thesis. The
first two journal articles directly contribute to my thesis subject, while the last publication | co-
authored is not directly linked to the thesis topic. For my first authorship article, | designed, wrote the
simulation codes, performed the statistical analysis, interpreted the results, and wrote the first draft
of the manuscript. In the second article | co-authored, | contributed to the design of the study,
performed pleiotropy analysis, and contributed to the writing of the manuscript, as clearly stated in
the manuscript.

Benchmarking of univariate pleiotropy detection methods applied to epilepsy phenotypes — First
author.

This project's main objective was to identify shared variations between two epilepsy forms. | first
performed a simulation study after extensively reviewing available methods for pleiotropy analysis in
literature to identify the best method. | decided to use univariate meta-analysis-based approaches
due to the unavailability of simultaneously measured phenotypes and the corresponding genotype
data on individuals, but single-trait summary statistics of the epilepsy phenotypes. | applied five recent
and well-implemented approaches (see Table 1) to the simulated data and found the ASSET method
as the best performing method in terms of power and FPR, which was then applied to the epilepsy
phenotypes.

Genome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-
specific genetic architecture — co-author

In this co-authored project, the main objective was to identify genome-wide significant loci underlying
epilepsy disorders in different ethnicity. Identified associated loci were further subjected to follow-up
analyses, such as SNP-based heritability, tissue and cell enrichment, pleiotropy, correlation, and drug
repurposing checks. | contributed to the study by performing pleiotropy analysis on the GWAS
summary statistics of genetic generalized epilepsy and focal epilepsy phenotypes to identify
overlapping loci between the two forms of epilepsy. | also contributed to the writing of the
manuscript.
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Abstract

Pleiotropy is a widespread phenomenon that may increase insight into the
etiology of biological and disease traits. Since genome-wide association studies
frequently provide information on a single trait only, only univariate pleiotropy
detection methods are applicable, with yet unknown comparative performance.
Here, we compared five such methods with respect to their ability to detect
pleiotropy, including meta-analysis, ASSET, conditional false discovery rate
(cFDR), cross-phenotype Bayes (CPBayes), and pleiotropic analysis under the
composite null hypothesis (PLACO), by performing extended computer simula-
tions that varied the underlying etiological model for pleiotropy for a pair of
traits, including the number of causal variants, degree of traits' overlap, effect
sizes as well as trait prevalence, and varying sample sizes. Our results indicate
that ASSET provides the best trade-off between power and protection against
false positives. We then applied ASSET to a previously published International
League Against Epilepsy (ILAE) consortium data set on complex epilepsies,
comprising genetic generalized epilepsy and focal epilepsy cases and corre-
sponding controls. We identified a novel candidate locus at 17921.32 and
confirmed locus 2q24.3, previously identified to act pleiotropically on both
epilepsy subtypes by a mega-analysis. Functional annotation, tissue-specific
expression, and regulatory function analysis as well as Bayesian colocalization
analysis corroborated this result, rendering 17q21.32 a worthwhile candidate for
follow-up studies on pleiotropy in epilepsies.
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association, epilepsies, meta-analysis, pleiotropy, SNPs
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1 | INTRODUCTION
1.1 | Pleiotropy

Pleiotropy is an early recognized (Stearns, 2010) and widespread
phenomenon for complex biological and disease traits. It is
defined as one or more genetic variants simultaneously having a
causal effect on two or more phenotypes. Pleiotropy is broadly
categorized into three forms, namely biological, mediated, and
spurious pleiotropy. Biological pleiotropy denotes the phenomenon
that a single variant truly affects multiple traits or that different
but neighboring markers in the same gene truly affect different
traits (Solovieff et al, 2013; van Rheenen et al, 2019).
This relationship can take different forms based on the association
of the unobserved causal variant to the observed associated
variant and linkage disequilibrium (LD) between variant alleles in a
gene. The underlying biological mechanisms of horizontal or
biological forms of pleiotropy can be easily understood as
mirroring disease pathways that include this or these variants,
respectively (Solovieff et al., 2013). On the other hand, mediated
pleiotropy is a form of pleiotropy in which a trait is causally related
to another such that a variant associated with one is indirectly
associated with the other. For example, while the CHRNAS gene is
known to be associated with lung cancer, chronic obstructive
pulmonary disease (COPD), and smoking behaviors, the associa-
tion with lung cancer could be directly due to the effect of
the gene variants on smoking intensity or indirectly through the
effects on COPD (Bien & Peters, 2019). Measurement or
identification errors, as well as design artifacts, can result in
spurious pleiotropy. A disease or subphenotype could be mis-
classified, or a genetic variant could be in LD with two different
associated single-nucleotide polymorphisms (SNPs) in different
genes affecting different traits.

Genetic association studies seek to establish a relationship
within genes, SNPs, or loci and a single trait. Genome-wide
association studies (GWAS) were mostly performed for this
purpose in the past 15 years. Independent GWAS have repeat-
edly identified the same locus or genetic variant to be associated
with multiple traits, generally referred to as cross-phenotype
association. For example, SNP rs6983267 (8q24) was found to be
associated with colorectal and prostate cancer in separate GWAS
studies (Haiman et al., 2007; Pomerantz et al.,, 2009; Thomas
et al., 2008; Tomlinson et al., 2007; Tuupanen et al., 2009; Zanke
et al., 2007), whereas SNP rs12720356, located in the TYK2 gene,
has been reported to be associated with Crohn's disease and
psoriasis in independent studies (Franke et al, 2010; Genet
et al., 2010), indicating a shared underlying etiology and the
existence of pleiotropic factors. On the other hand, studying two
or more traits in a combined way to identify possible pleiotropic
factors may help identify associated variation and provide insight
into the etiology of related traits and complex diseases by
identifying shared pathways.

1.2 | Epilepsy syndromes as a prime candidate for
pleiotropic mechanisms

Epilepsy is a common brain disorder characterized by unprovoked
recurring seizures. About 50 million people live with epilepsy
worldwide; 24 millions of these have active idiopathic or genetic
epilepsy (Cooper, 2019; Singh & Sander, 2020). As with most
complex traits, a number of genetic and environmental factors
contribute to the different epilepsy forms and their loci overlap
between them (Ottman, 2005).

In previous GWAS studies, the epilepsies are typically classified
as genetic generalized epilepsies (GGE), focal epilepsies (FE), and
unknown forms (International League Against Epilepsy Consortium
on Complex Epilepsies, 2018; International League Against Epilepsy
Consortium on Complex Epilepsies. Electronic address, 2014;
Wolking et al., 2020). FE is characterized by seizures originating in
a specific area of the brain, whereas seizures in GGE spread very
rapidly bilaterally throughout the cortex without a clearly identifiable
seizure origin. Generalized epilepsies have been reported to have
stronger genetic components than focal epilepsies. A number of
genes identified in GWAS have been reported for monogenic forms
of FE (International League Against Epilepsy Consortium on Complex
Epilepsies, 2018). A recent mega-analysis study by the ILAE
Consortium (International League Against Epilepsy Consortium on
Complex Epilepsies, 2018) jointly analyzed samples with different
forms of epilepsy by just considering epilepsy affection status while
ignoring the specifically manifested subphenotype. This study
established a few epilepsy loci that appear to be shared across all
subphenotypes, although it is unclear how large the contribution of
subphenotype to this joint association signal with each of the
identified loci is. The ILAE Consortium identified three lead SNPs,
namely rs4671319, rs6432877, and rs4638568, that were associated
with both FE and GGE. These loci were mapped to sodium channel-
encoding genes (SCN1A, SCN2A, and SCN3A), a transcription factor
(BCL11A), and a histone modification gene (BRD7), respectively.
Furthermore, the study provided evidence that the common
epilepsy-associated variants play a role in epigenetic regulation of
gene expression in the brain.

1.3 | Methods for pleiotropy detection

Numerous methods for detecting pleiotropy have been proposed in
the past, with this aspect of genetic studies still being an active field
of methodological development. Broad distinctions can be made
depending on the type of data being analyzed, on the availability of
individual-level genetic data versus summary statistics, and the joint
measurement of all considered phenotypes per individual. Availability
of individual-level data with all phenotypes simultaneously measured
in the same sets of individuals allows for the use of multivariate
statistical approaches, such as multinomial logistic regression
(Agresti, 2003; Morris et al., 2010), generalized linear mixed models
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(Fitzmaurice & Laird, 1993; Schaid et al., 2019), linear mixed-effects
models (Laird & Ware, 1982; Verbeke et al., 2010), frailty models
(Yang & Wang, 2012), principal component analysis (PCA) (Jolliffe,
2002; Jolliffe & Cadima, 2016), and others (Salinas et al., 2018),
depending on population structure, sample size and the type of trait
being studied: continuous, dichotomous (categorical), or time to an
event. However, many datasets available for the study of presumably
pleiotropic phenotypes are characterized by single-phenotype
measurements, such as most GWAS, with little or no sample overlap
between these phenotypes. This renders multivariate approaches
inapplicable and requires univariate approaches instead. Moreover,
individual-level genotype data from different studies are often hard
to combine due to legal or ethical restrictions, whereas GWAS
summary statistics are much more readily available. Besides
traditional meta-analysis (MA) (Willer et al., 2010), a range of novel
univariate methods has been proposed in recent years (see Section 2
for technical details), such as the conditional false discovery rate
(cFDR) (Andreassen et al., 2013; Liley & Wallace, 2015), subset-based
meta-analysis (ASSET) (Bhattacharjee et al., 2012), cross-phenotype
Bayes (CPBayes) (Majumdar et al., 2018), and pleiotropic analysis under
the composite null hypothesis (PLACO) (Ray & Chatterjee, 2020).

Traditional MA permits the combination of datasets, is computa-
tionally simple, and well suited for traits that are biologically
correlated, however, the marginal contribution of each trait to the
association signal cannot be estimated. On the other hand, ASSET
and CPBayes may provide more insight into the marginal contribu-
tions of traits under study while also evaluating the overall evidence
of association jointly for these traits. The cFDR and PLACO methods
can only be used to study a pair of traits at once but minimize the
probability that only a single trait is driving the observed joint effect.
All five methods allow accounting for potential correlation originating
from shared controls between traits as is frequently the case in
GWAS studies. While previous studies (Bhattacharjee et al., 2012;
Majumdar et al., 2018; Ray & Chatterjee, 2020) performed some
comparisons between univariate pleiotropy detection methods, these
studies were usually accompanying the proposition of a new method
while being limited in the scope of their comparisons. It is therefore
unclear what the comparative performance of the five above-
mentioned univariate approaches is and if there is an optimal choice
for univariate pleiotropy detection. An independent study bench-
marking all five approaches is so far lacking.

1.4 | Aim of the study

Here, we performed a comparative study of five univariate
approaches for pleiotropy detection, both frequentist and
Bayesian, including traditional MA and the recently proposed
ASSET, cFDR, CPBayes, and PLACO methods (Table 1). We
simulated genome-wide data and pairs of pleiotropic phenotypes
under different etiological models for pleiotropy, including
varying numbers of associated genetic variants and varying
degrees of their overlap between phenotypes, different single-
marker effect size, and phenotype prevalence values, and
benchmarked the five approaches with respect to their power
to detect true pleiotropy and the false-discovery rate (FDR) under
varying sample sizes. We subsequently used the method that
showed superior performance in our simulation study to identify
pleiotropic loci for a pair of epilepsy syndromes, namely GGE
and FE as two clinically well-characterized forms. To this end, we
analyzed GWAS summary statistics provided by the ILAE

consortium.

2 | METHODS
2.1 | Type of pleiotropy under consideration

In our comparison, we restricted ourselves to unidirectional
horizontal or biological pleiotropy involving a single variant. Thus,
a genetic marker was considered to act pleiotropically if it
simultaneously impacted two different traits, increasing the risk
for both traits. The direction of effect was not considered in this
simulation study; all disease SNPs increased the risk of having the
trait by the magnitude of the varying relative risk chosen. For
example, a marker that increased the risk of affection for two
diseases would fall into this category. On the other hand, a
marker marginally associated with one trait but not the other
would be considered not to act pleiotropically. Furthermore, two
markers at the same locus or gene and affecting two different
traits, respectively, were not considered. We also did not
consider scenarios where two markers were in strong allelic
association, or LD, and would have been found in phenotypic
association with two different traits. Notably, we did not only

TABLE 1  Univariate pleiotropy detection methods included in the analysis and their sources

Method

Classic fixed-effect meta-analysis (MA)
Subset-based meta-analysis (ASSET)
Cross-phenotype Bayes (CPBayes)

Conditional false discovery rate (cFDR)

Pleiotropic analysis under the composite null hypothesis
(PLACO)

Reference

Willer et al. (2010)

Majumdar et al. (2018)

Liley & Wallace (2015)

Ray & Chatterjee (2020)

Web resource

http://csg.sph.umich.edu/abecasis/metal/download/

Bhattacharjee et al. (2012)  https://bioconductor.org/packages/ASSET/

https://github.com/ArunabhaCodes/CPBayes

https://github.com/jamesliley/cFDR-common-
controls

https://github.com/RayDebashree/PLACO
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consider a single marker acting pleiotropically but allowed for
multiple markers jointly contributing to the incidence of two
phenotypes in our simulations (see below).

2.2 | Methods included in the comparison

We compared five univariate single-marker approaches with respect
to their power to detect pleiotropic factors in pairs of phenotypes
and their false-positive rate (FPR), including classical MA and four
recently proposed methods.

2.2.1 | Classical MA

MA is a long-established approach to combine several, often
heterogeneous studies in a joint analysis to synthesize or
consolidate results from those previous studies, to increase
power to detect true associations, and for others aims, often
using only aggregate data. MA has been originally designed to
pool different study statistics for efficiency and to circumvent
challenges arising due to population structures, study-specific
covariates, and individual-level data management. MA is not
specifically designed for pleiotropy detection but can be
expected to identify variants that have concordant effects in
separate studies of two or more phenotypes; correspondingly, its
use in pleiotropy detection has been demonstrated (Chung
et al.,, 2019; Kulminski et al., 2019). The basic approach under-
lying fixed-effect MA is the conversion of study-specific P-values
(P) and effect direction (&) from K studies into standard normally
distributed signed Z-scores

Zy = O Y(P,/2) #sign (5), (1)

which are then combined to an overall Z-score (Zt;) statistics by
weights wy. Weights are typically assigned based on the inverse of
the variance but this is also roughly proportional to sample size.

Therefore wy = 1 and the variance of the combined effect is

Bk

1
6, = o——. Thus,
meta = Ky

(2)

The final overall p-value is then obtained by comparing this
statistic against a standard normal distribution:

Preta = 2[1 = (O (| Zmetal))], @)

where @ denotes the standard normal distribution function. Here, we
have used the MA implementation in the METAL v2011-03-25
software (Willer et al., 2010).

2.2.2 | Subset-based meta-analysis method (ASSET)

Association analysis based on subsets (ASSET) (Bhattacharjee
et al., 2012) represents an extension of fixed-effects MA. It aims at
maximizing the association signal across all possible subsets of two or
more phenotype studies, thereby allowing for nonassociated pheno-
types that are not impacted by a pleiotropic variant, while also
correcting for multiple testing. For a given subset B of m(B) studies,
the respective overall Z-score Z(B) is obtained following the MA
approach by

Z(B) = Iy (B) Z,
kga V7 k (4)

where i (B) = nk/Zk'"ﬁ)nk weights the different studies proportional

to the square root of respective sample sizes; if covariate adjust-
ments are similar across studies, then By ;( where ny is the sample
size for the k™ study (Bhattacharjee et al., 2012). Formula (4) is then
maximized over all possible subsets:

Zineta-max = MaXgc(1,k)1Z (B)]. 5)

The overall hypothesis of a genetic marker to be associated with
all traits is evaluated by Z,,cta-max- The upper bound for the P values
from the defined multivariate distribution is obtained through the
discrete local maxima (DLM) method (see (Bhattacharjee et al., 2012)
for full details). One of the prerequisites of this method is that all
traits must be of the same type and depending on the number of
traits, the number of subsets could grow exponentially. We used the
ASSET v2.10.0 R implementation provided with the publication
(Bhattacharjee et al., 2012).

2.2.3 | Cross phenotype Bayes (CPBayes)

Unlike MA, CPBayes (Majumdar et al., 2018) is a fully Bayesian MA
approach that employs the Gibbs sampling form of the Markov chain
Monte Carlo (MCMC) technique to obtain posterior samples, hence
making inferences on pleiotropy. It measures the evidence of
aggregate-level pleiotropy as well as subsets of traits that are
pleiotropic. This evidence is given by the local false discovery rate
(locFDR) and the Bayes factor (BF) through testing the global null
hypothesis (H,) of no association with any trait versus the alternative
hypothesis (H1) of association with at least one trait. Prior information
is provided by the spike and slab approach where the spike element
represents the null effect while the slab part represents the nonnull
effect. Let fi, be regression estimates of true effect B obtained from
the separate univariate models of individual traits Ty and sg their
standard errors. If the sample size is sufficiently large and f are
uncorrelated, we assume that

ind

B ™ N (B s2)ik = 1, K. ©
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However, for correlated estimates (B1,fx) with variance-
covariance matrix S that corresponds to the SNPs,
BB ~ MVN(B, S). The prior information is given such that z, denotes
the association status of T, (see Majumdar et al. (2018), page 22). The
locFDR equals the probability of null association (PNA) given the

data: locFDR= P(Ho|D). With the posterior odds (PO) equaling

_ P(H11D)
PO = 4io10)

PO/(1-PO), we obtain the posterior probability of null association
(PPNA) which is the same quantity as locFDR as:

and the posterior probability of association equaling

1

PPNA=1—PPA=W

= P(H,ID). (7)
Also, the BF is obtained by:

P(DIH:) _ P(H1D)P(Ho) _ P(Z # OID)P(Z = 0)
P(DIHo) ~ P(HoID)P(H) ~ P(Z = OID)P(Z # 0)
_ Posteriorodds

" Priorodds

BF =
(8)

locFDR and BF provides the evidence of aggregate pleiotropy
such that if BF >1 and locFDR <107 the variant is pleiotropic. In
addition, the trait-specific posterior probability of association also
provides information on the relative strength of association between
a pleiotropic variant and the selected nonnull trait contribution to the
aggregate evidence of association. For details, see Majumdar et al.
(2018). We used CPBayes v1.1.0 implemented in R.

224 | cFDR

Benjamini and Hochberg (1995) defined the FDR as the proportion of
incorrectly rejected null hypotheses V among the rejected hypothe-
ses R (Benjamini & Hochberg, 1995), i.e. Q=V/R (assuming R >0).
Assuming that the P-value of a trait k across all variants is a
realization of a random variable Py, the unconditional FDR (uFDR) for
the null hypothesis Hg‘)
phenotype k is then defined as the probability that a random variant
from this set of rejected hypotheses falls under the null hypothesis
for this phenotype (Liley & Wallace, 2015). The uFDR can be
estimated from a set of observed P-values p}, p?, ..., pii for a set of N

of no association of this variant with

variants as the ratio of the expected quantile of P, under H(()k)and the
observed quantile of Py:

Pk .
#(pi|p£ < pk) ©)
N

UFUR(pk) -

The basic motivation for the conditional FDR (cFDR) is now that
variants that act pleiotropically should show a tendency toward
smaller association P-values for each of a pair of phenotypes. Thus,
selecting variants from the lower quantiles of the P-value distribution
of association with one phenotype (“principal phenotype”) by
applying thresholds should then lead to an enrichment of variants

with smaller P-values of association with a second phenotype

(“conditional phenotype”). The P-value distribution of the selected
variants for the second phenotype conditional on the P-value
distribution of the unselected variants for the first phenotype will
then deviate from that for all (unselected) variants for the second
phenotype. The cFDR is defined as the posterior probability that a
given variant falls under the null hypothesis for the principal
phenotype given that the P-values for both phenotypes are less
or equal to the observed P-values (py,p): P(H{,“’IPk < pe, P2 p,).
Similar to the uFDR and based on observed P-value pairs
(i P1), (PZ, PP), s (P, P} for two phenotypes k and | at N
different SNPs, it is estimated by the ratio of the expected quantile
of Py under Hg‘)among those p,‘; where i satisfies P,i < p; and the
observed quantiles:

P(Pc < pe 1 Pr< o1 HE?)
#((PEV, le) € (Ph P,-)|p,'; < p and pj < p,) '
Ny

CFDé(kam) =

(10)

where N; denotes the number of P-value pairs with P < p; and (py, p))
a P-value pair for an SNP of interest (Liley & Wallace, 2015).
Association with both phenotypes is tested via a conjunction FDR
procedure to minimize the effect of a single phenotype driving the
association signal; please refer to Andreassen et al. (2013) for details.
We used cFDR v1.1.

2.2.5 | Pleiotropic analysis under composite null
hypothesis (PLACO)

The PLACO approach uses aggregate level association statistics to
identify pleiotropy. In this approach, the composite null hypothesis is
that a variant is associated with none or only one of the phenotypes
compared with other methods that assume no association of the
SNPs to any of the traits (Ray & Chatterjee, 2020). The null and
alternative hypotheses are defined in such a way that the global null
hypothesis consists of subnull hypotheses Hpiand Hpy where
Ho1: PB1=0,B2#0,Ho2: By #0,B2=0 for both traits. Assume
the global null Hyy holds with probability 1 for asymptomatic
standard normal distributions of phenotype-specific statistics Z; and
Z,. Additionally, assume Hp is a subnull hypothesis with probability
T, under which Z; has a standard normal distribution and Z, has a
conditional N(up, 1) distribution where the mean parameter is
o ~ N(0, ) distributed and the subnull hypothesis Hy, holds with
probability m, and 2z ~ N(0,1) while Z | ~ Ny, 1), where
1 ~ N, rf). Therefore, the composite null hypothesis of no
pleiotropy and the alternative hypothesis using the special case of
the principle of union-intersection of statistical hypothesis testing is:

Ha : H§o n Hey 1 He, Hy = B1B2 # O,

Ho : Hzoo U Ho1 U Hoz, Ho = B1Ba = 0. a1

Furthermore, assume Z; and Z, are independent normal variables

under Hgo and their product Z 2, has a normal product distribution
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| wiLEY

under Hgo, Horand Hoy, respectively (if o and © are unknown).
Therefore, the P-value for testing the H,:Bif, =0 against
H, : B1B2 # 0 using products of the Z scores can be obtained from

Pz = 2 % Py, [2122 > |az

Since the P-value is sensitive to the probabilities and variance,
the asymptotic approximation of the P-value is given by

2
] = 2% 3 P(Ho)Pro,
k=0

(12)

242y

Poyzy = Flazs /var @) + Flanz /var @) - Flaz), (13

where F(u) denotes the two-sided tail probability of a normal
product distribution at value u. PLACO adjusts for correlation
between samples using sample sizes of cases and controls from both
traits where available. Another way to estimate correlation in the
absence of sample sizes is by selecting the variants that are not
associated with both traits and calculating correlation based on the Z
values. We used PLACO v0.1.1.

2.3 | Slmulation study

We adopted a three-stage simulation design to obtain repeated
case-control sample sets of pairs of phenotypes that could then be
used to evaluate the different pleiotropy detection methods. More
specific, we first simulated one large population that could be used as
a pool to simulate pairs of phenotypes. In a second step, we used the
additive liability threshold model (ALTM) (Agarwala et al., 2013) to
repeatedly assign case-control status to all individuals of that
population for pairs of phenotypes in accordance to preselected
characteristics of the phenotypes and the associated genetic
variation. Third, we repeatedly obtained case-control samples of
varying sizes and comparatively applied classical MA, ASSET, cFDR,
CPBayes, and PLACO.

2.3.1 | Simulation of one population of European
ancestry

While a number of very different approaches are available for
simulating populations (e.g., coalescent-based methods, forward
simulations, resampling approaches) (Carvajal-Rodriguez, 2010),
they often scale unfavorably with growing sizes of populations
and/or genetic variants. We used a resampling approach to
simulate the entire genome of 1 million individuals of European
ancestry, using Hapgen2 v2.2.0 (Su et al., 2011) with the haplotype
data of 99 CEU (Utah residents [CEPH] with Northern and
Western European ancestry) individuals provided by the 1000

Genomes project (Genomes Project et al., 2015) (retrieved
from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.
html). We used only the polymorphic position of autosomes in
the reference data set. Thus, we can exclude biasing effects by
either sex or ancestry. More specifically, we generated genotypes
of the population under the null model of relative risk of 1.0. The
Hapgen2 resampling algorithm is based on the Li & Stephen (LS)
model of LD where each new simulated haplotype is conditioned
on the reference haplotype population and the estimates of fine-
scale recombination rate across the region (retrieved from https://
mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html), leading to
the same LD pattern as in the reference data (Li & Stephens, 2003;
Su et al., 2011). The size of the simulated data (~2 TB) forced us to
simulate the population in 10 batches. This resulted in systematic
differences, likely induced by the random number generator and
the starting times of the simulation batches. When checking for
batch effects using PCA, we identified three distinct clusters. To
avoid biasing effects by this substructure, we eventually included
the first 10 principal components (PCs) as covariates in all
subsequent association analyses. This was based on our observa-
tion that inclusion of the first nine PCs was not sufficient to
resolve this cluster structure and that the clustered structure
disappeared when including the first 10 PCs as covariates
(Supporting Information: Figure S1). This was further corroborated
by a genomic inflation factor, as implemented in PLINK (Chang
et al., 2015; Purcell et al., 2007), of approximately 1.0 throughout
the single-trait association tests (see below).

2.3.2 | Assignment of case-control status for pairs
of phenotypes

To simulate multifactorial disease phenotypes from genetic data
(irrespective of any particular disease etiology such as certain
epilepsy forms), we adopted the additive liability threshold model
(ALTM) (Agarwala et al., 2013), which assigns dichotomous
case-control status according to the exceedance of some liability
thresholds following classical quantitative genetics theory. The ALTM
assumes no intra- nor inter-locus interaction but allows for different
values of genetic effect size, narrow-sense heritability, and disease
prevalence. More specifically, let T denote the normally distributed
liability, g the phenotype-impacting variant effects, and E the
standard Gaussian random noise attributed to other nongenetic
sources. For each individual (| = 1, ..., L), locus-specific variant effects
gji (i=1, ..., M) are summed up across all loci (j=1, ..., N):

Mz

M
G=22g (14)
j=1li=1

J

Subsequently, G, is standardized by

, _ (G - mean(G))

& stdev(G) (15)
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and E is randomly assigned to each individual (E, ~ N(0,1) VIe(1,
.., L}) in such a way that that the prespecified narrow-sense

T var(G)
heritability h? = e Ve
However, to simulate the disease SNPs under different effect

is attained.

estimates, the standardized value of the genetic effect is multiplied
by varying effect sizes. Thus, the liability T; of an individual | is then
given by:

T=G +J(1-h/h xE, (16)

Case-control status is finally assigned by imposing a threshold t
on the liability so that a proportion of the population that
corresponds to the disease prevalence exceeds this threshold with
their liability value, that is, individuals that are assigned case status.
In our simulations, we considered, in turn, prevalence values of 1%
and 10%, thereby considering traits of moderate and of common

prevalence, respectively.

2.3.3 | Case-control sample sets for pairs of traits

For a pair of traits to be simulated, we randomly selected 1000 SNPs
with allele frequencies between 5% and 20% in the simulated
population. From those, we randomly selected 5 and 10 disease-
causing SNPs, in turn, for each of the two traits to be simulated and
assigned them a predefined relative risk, namely 1.05, 1.2, 1.5, and
2.0, respectively. We introduced biological pleiotropy by forcing the
two respective causal SNP sets for the two traits to partially overlap,
namely by either 20% or 40%. These two SNPs sets then entered the
ALTM and the traits were simulated separately across the complete
population. Please note that the scenario of five causal SNPs and
20% overlap corresponds to the simplest case of a single SNP acting
pleiotropically for the two traits. We defined the case-control status
using the varying prevalence values as the quantile of the distribution
of the liability of all individuals to define a threshold and individuals
with a liability greater than this threshold were assigned case status,
otherwise keeping control status. We performed this approach
multiple times until we obtained 100 replications where both traits
would have a prevalence in the population of either 1% or 10%,
respectively, given the prespecified parameters of variant number,
variant overlap, and effect size. Finally, we drew a single random
sample of 1000, 5000, and 10,000 cases, respectively, and an equal
number of controls for each trait of the pair from a given replication,
resulting in sample sizes of 2000, 10,000, and 20,000 for each trait,
respectively.

2.3.4 | Method application and performance
measures

After generating our sample sets, we performed association analyses
separately for both traits using PLINK v1.9 beta 6.9, (Chang
et al.,, 2015; Purcell et al., 2007). The first 10 PCs were included in

this analysis as covariates. We used the univariate summary statistics
in the forms of effect estimates, standard error, and P-value in some
cases from the association analysis for pleiotropy analysis. Through-
out our simulations, all performance measures are with respect to
SNPs that are causal since we already checked from the association
study that no nondisease SNPs is causal to the defined phenotypes.
We defined a marker as a true-positive (TP) finding if its P-values
reached genome-wide “significance” levels for both traits. However,
the measure of aggregate-level evidence for pleiotropy varies among
the methods, with 107 being the cut-off used for FDR-based
approaches (cFDR, CPBayes) as suggested by Liley & Wallace (2015)
and 5 x 1078 being the significance level for the other methods (MA;
ASSET, PLACO).

A TP variant was defined as a pleiotropic variant, that is, a variant
that is causal for both traits, for which the applied method obtained a
“significant” result (exceeding the respective threshold) for both
traits, while false negative (FN) variants were those for which the
respective method did not yield a “significant” result for both traits.
Correspondingly, the power of a method to detect true pleiotropy
was estimated as the proportion

Power = 75 = 1 - FNR. 7)

We obtained estimates for the FPR, or type | error, of the
different methods as the ratio of nonpleiotropic causal SNPs wrongly
“significant” (exceeding the respective threshold) by the total number
of causal SNPs. It is estimated as:

FPR = oo =1 - TNR, 18)
where false positives (FP) count is the number of nonpleiotropic
causal variants, that is, variants that are causal for exactly one of the
two traits, that were wrongly found to be significantly associated
with both traits, while true negatives (TN) denote the count of
nonpleiotropic associated variants that were found not to be
associated with traits and the true negative rate (TNR) which is also
specificity is the proportion of nonpleiotropic SNPs that are truly
nonpleiotropic. Furthermore, the power of detecting true pleiotropy
for all methods is then power = 1 - FNR, false-negative rate (FNR) is
the proportion of pleiotropic variants that are not associated with
both phenotypes.

2.4 | Identification of pleiotropic loci for GGE
and FE

We applied ASSET, which showed superior performance for pleiotropy
detection in the simulation study (see Section 4) to identify pleiotropic
loci for GGE and FE. To this end, we were provided by the ILAE
Consortium with the summary statistics of their previous GWAS on
epilepsy (International League Against Epilepsy Consortium on
Complex Epilepsies, 2018), with data originating from a number of

different studies ([International League Against Epilepsy Consortium
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on Complex Epilepsies, 2018], Supporting Information: Tables 1 and 6),
but no further information on the sex and age distribution in these
studies. The data were generated based on the following ethics
statement (International League Against Epilepsy Consortium on
Complex Epilepsies, 2018): “We have complied with all relevant
ethical regulations. All study participants provided written, informed
consent for use of their data in genetic studies of epilepsy. For minors,
written informed consent was obtained from their parents or legal
guardian. Local institutional review boards approved study protocols at
each contributing site.” The data set used in our study comprised the
summary statistics from the analysis of the non-Finnish European
subset of both GGE and FE. The ILAE Consortium had reported
genetic associations with subphenotypes of epilepsy as well as joint
analysis of the subphenotypes that considered both epilepsy types to
be identical (mega-analysis) (International League Against Epilepsy
Consortium on Complex Epilepsies, 2018). This data set comprised
9095 FE cases, 3708 GGE cases, and 24,218 overlapping controls, and
approximately five million SNPs present in both subphenotype
datasets. FE and GGE cases were nonoverlapping and, thus, indepen-
dent. Due to the overlapping controls, we estimated correlation
statistics between Z statistics of traits using the sample sizes of cases,
controls, and samples for traits (see [Bhattacharjee et al., 2012] for full
detail) which are in turn were used in the DLM procedure to estimate
pleiotropy p-values in this approach.

For this analysis, a number of quality control steps samples and
SNPs, such as test for Hardy-Weinberg equilibrium (HWE) devia-
tions, excess heterozygosity and exceeding relatedness, filtering for
low minor allele frequency (MAF), and excessive genotype missing-
ness, had already been performed by ILAE (please refer to
[International League Against Epilepsy Consortium on Complex
Epilepsies, 2018] for details). This included a sample and SNP
removal of those presenting with genotype missing call rate
exceeding 0.05, removal of SNPs with MAF<0.01, heterozygosity
outside five SD across the sample set of the respective trait or a
P-value < 10"*° from an exact test for HWE deviations. Furthermore,
they excluded one sample from each pair that had an estimated
average identity-by-descent (IBD) allele sharing () > 0.1875 or the
complete pair with estimate m values >0.9. However, on the
summary statistics output provided by the ILAE consortium
(International League Against Epilepsy Consortium on Complex
Epilepsies, 2018), we compared the X2 of pairs of SNPs with LD

value (r2 > 0.4) and we removed SNPs having x2 values greater than
SNP1 2rSNP2x2
3xy—X
(Rzlzz to exclude SNPs with inflated x2 values. Finally, we
analyzed only those SNPs that were contained in the datasets of both
GGE and FE after quality control, finally including about 4.1 million

SNPs in the pleiotropic analysis using ASSET.

2.4.1 | Follow-up of significant loci

SNPs that were found to be significant in the pleiotropic analysis
with ASSET were mapped to genes using FUMA v1.3.7

(Watanabe et al., 2017) (https://fuma.ctglab.nl/). The loci
harboring these significant SNPs were delineated by clustering
SNPs in LD at r>0.2 within a £250kb radius. Within a locus, the
SNP with the smallest p-value was considered the “lead” SNP.
We then performed functional annotation of the SNPs included in
the above-defined loci to assess the potential consequences of
these SNPs. To this end, we performed functional annotation of
the variants that are in LD with one independent significant SNP
using ANNOVAR (Wang et al., 2010). We also performed
functional annotation using the RegulomeDB v1.1 database to
check for evidence of SNPs affecting regulation, where SNPs with
RegulomeDB scores <6 are considered to affect the regulation of
the mapped gene (Boyle et al., 2012). Deleteriousness of SNPs
was predicted by CADD scores v1.4; scores higher than 12.37
were considered deleterious as proposed by Kircher et al. (2014).
Furthermore, we performed a tissue expression analysis using
FUMA, based on the P-values from MAGMA v1.08 (de Leeuw
et al, 2015) gene-set analysis and GTEx v8 expression data,
to quantify the relationship between the average expression of a
set of genes identified in the tissue and genetic association.
We checked for previous reports on genetic association with
epilepsy syndromes using the GWAS catalog (https://www.ebi.
ac.uk/gwas/). Finally, we also performed a Bayesian colocaliza-
tion test between GGE and FE to confirm whether the lead
SNPs have a high probability of being associated and shared
for both syndromes, using the R packages HyPrColoc v1.0
(Foley et al., 2021) (“hypothesis prioritization for multi-trait
colocalization”; https://github.com/jrs95/hyprcoloc/) and coloc
v5.1.0 (Giambartolomei et al., 2014; Wallace, 2020) (https://
CRAN.R-project.org/package=coloc). More specifically, we esti-
mated the posterior probability of colocalization as evidence that
a variant is shared or associated for multiple traits using
HyPrColoc and of association of both syndromes with the lead
SNPs using coloc.

3 | RESULTS
3.1 | Simulation study results

We evaluated the relative performance of all five methods (Table 1)
in identifying true nonnull signals in terms of power (Figure 1) and
the FPR (Figure 2) under varying sample sizes, causal variant
numbers, and effect sizes as well as percentages of overlap
between causal SNPs for two traits and two different values for
disease prevalence using 100 replications (see also Supporting
Information: Tables S1 and S2 for exact numbers for the case of 5
and 10 causal SNPs, respectively). Our simulations revealed largely
concordant trends for all five methods, however, we observed a
few critical differences between the methods. We found cFDR,
METAL, and PLACO to work computationally very fast compared
with ASSET and CPBayes, with ASSET still performing faster than
CPBayes.
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FIGURE 1 Power estimates for five univariate pleiotropy detection methods. Power estimates are averaged over 100 replications (see
Section 2 for details). MA, meta-analysis; Overlap, proportion of causal SNPs for one trait that overlap with those for the other trait; Prevalence,
prevalence of each of the two traits; RR, relative risk per single causal variant; SNPs, number of causal SNPs modeled to increase susceptibility to
a particular trait; Sample size, total sample size with equal proportions of cases and controls.

3.1.1 | Power

With low variant effect sizes of 1.05, all five applied methods
(Table 1) were virtually powerless to detect any pleiotropic
variants, with power estimates equal or close to zero regardless
of sample size, causal SNP number, or degree of causal SNP
overlap (Figure 1); only CPBayes appeared to pick up pleiotropic
variants in a small fraction of the replications. For relative risks of
1.2, which are common in genome-wide association studies, and

moderate samples sizes, we observed notable differences
between the methods. While CPBayes outperformed all other
methods with respect to power, ASSET and MA followed as
second most powerful methods depending on the considered
scenario of variant number and degree of overlap. PLACO and
cFDR always presented with lower power than the previous
methods, although at differing extent. With larger sample sizes
(10,000 or larger) or larger relative risks (1.5 or larger), these
differences ceased to exist, rendering all methods, with one
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FIGURE 2 False-positive rate (FPR) estimates for five univariate pleiotropy detection methods. FPR (type | error) estimates are averaged

over 100 replications (see Section 2 for details). MA, meta-analysis; Overlap, proportion of causal SNPs for one trait that overlap with those for
the other trait; Prevalence, prevalence of each of the two traits; RR, relative risk per single causal variant; SNPs, number of causal SNPs modeled
to increase susceptibility to a particular trait; Sample size, total sample size with equal proportions of cases and controls.

exception, highly and uniformly powerful to detect pleiotropic
variants for both traits. Strangely, for scenarios of higher relative
risks (1.5 or larger), cFDR resulted in decreasing power levels for
increasing sample sizes, eventually assuming values equal or close
to zero. In general, a larger number of causal SNPs, as well as
increasing proportions of causal SNPs overlapping between the
two traits, led to higher power to detect pleiotropic variants and a
closer resemblance of the power performance across all five
methods. Not surprisingly, larger sample sizes also showed a

general trend toward increasing power for each of the methods,
except for the counterintuitive cFDR behavior.

312 | FPR

The FPR differed vastly between the methods (Figure 2). For relative
risks of 1.05, all methods showed very low FPR levels across all
considered sample sizes, with values being equal or close to zero,
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except for CPBayes. In particular, for moderate sample sizes, the FPR
of CPBayes approached values of up to 10%. This pattern of elevated
FPR values continued with larger relative risks (21.2) and now
additionally characterized the error rates of MA, PLACO, and MA.
Depending on the considered scenario, the FPR assumed values of up
to 60% for CPBayes, but even up to 80% for PLACO and 100% for
MA. PLACO showed a general trend toward higher FPR values with
growing sample sizes and relative risks, whereas CPBayes and cFDR
did not show a clear trend with respect to sample size or variant
relative risk. At a relative risk of 1.2 and a sample size of 2000
individuals, all approaches except CPBayes keep the 5% FPR level.
Just with sample sizes of 10,000 or larger and relative risks of 1.5 or
larger, MA always wrongly classifies variants as pleiotropic when they
in fact are causal only for one of the two traits. On the other hand,
cFDR and in particular ASSET did not yield such high FPR values in
any scenario. Values for cFDR reached about 20% and 25% in the
two scenarios, respectively, but were generally closer to or below
10%. ASSET showed the best performance across all simulations,
generally keeping the 5% level, except for 20,000 samples and effect
sizes of 1.5 or larger where the FPR did not exceed 9%. In general, a
larger number of causal SNPs led to decreasing FPR levels, although
often only slightly, whereas a higher overlap of causal SNPs between
the two traits increased the FPR, except for MA and CPBayes. Not
surprisingly, larger sample sizes led to increasing power for each of
the methods.

3.1.3 | Impact of trait prevalence

Trait prevalence seemed to have a modest effect on the performance
of the methods. The strongest differences could be seen for variant
relative risks of 1.2 and a sample size of 2000 regardless of the
number of causal SNPs and their overlap between traits. Common
traits (prevalence of 10%) resulted in lower power values for
moderate relative risks of 1.2 and moderate sample sizes of 2000
individuals (Figure 1). Otherwise, differences were indiscernible. For
the FPR (Figure 2), a more frequent trait (prevalence of 10%) almost
always resulted in, sometimes strongly, reduced FPR values than for a
moderate common trait (prevalence of 1%). Again, ASSET seemed to
be the method to be least affected by changes to the trait prevalence.

3.2 | Pleiotropy detection in the ILAE data set

Since we had identified ASSET as the method that gave a superior
trade-off between the FPR and the power to detect pleiotropy in our
simulations, we only applied this approach to the data set provided
by the ILAE consortium. Using ASSET, we identified 40 SNPs in two
loci being associated, at a genome-wide significance level, with both
epilepsy subphenotypes GGE and FE (Figure 3). The two loci are at
2q24.3 and 17q21.32 (Table 2). Locus 2q24.3 (Figure 4) had already
been reported and mapped to SCNA1, SCNA2, SCNA3, and TTC21B
in the ILAE mega-analysis (International League Against Epilepsy

Consortium on Complex Epilepsies, 2018) for both forms of epilepsy
which have been implicated to have an effect on the risk of different
forms of epilepsy (Epicure et al, 2012; Feenstra et al., 2014;
International League Against Epilepsy Consortium on Complex
Epilepsies, 2018; International League Against Epilepsy Consortium
on Complex Epilepsies. Electronic address, 2014). However, locus
17q21.32 has not been reported before, rendering it a new putative
pleiotropic locus for FE and GGE. This locus comprises the genes
SKAP1, OSBPL7, SP6, SP2, PNPO, PRR15L, CDK5RAP3, COPZ2,
NFE2L1, CBX1, SNX11, HOXB1, HOXB2, and HOXB3 (Figure 5).
Functional annotation of the 40 significant SNPs (Figure 6) showed
that 11% of the SNPs are intergenic, 23% are intronic, and 61% are
noncoding transcript intron variants (see Supporting Information:
Figure S2 for locus-specific results).

Furthermore, RegulomeDB scores below 6 were observed for
45% of the significant SNPs, indicating that these SNPs indeed affect
gene transcription. We then checked MAGMA tissue-specific
expression of the genes in FUMA and found them to be preferentially
expressed in the brain compared with other tissues using GTEx tissue
expression data of 53 tissue types and genetic association (Figure 6).
From the analysis in FUMA, we identified three lead SNPs. SNPs
rs60055328 and rs2212656 mapped to locus 2q24.3, whereas
rs16955463 mapped to 17q21.32. According to the GWAS catalog,
rs60055328 has already been implicated in epilepsy, febrile seizures
(Feenstra et al., 2014), and generalized epilepsy (Epicure et al., 2012;
International League Against Epilepsy Consortium on Complex
Epilepsies, 2018).

Locus 2g24.3 had a HyPrColoc-computed posterior probability
of colocalization of 77%, with rs2212656 explaining 68% of this
probability. The regional probability that one or more SNPs in the
region have shared associations across the syndromes was 94%,
thereby strongly indicating a shared association between GGE and
FE. However, based on the evidence of colocalization, rs60055328
does not seem to be associated with both traits but is part of the
credible set of SNPs that explains 95% of the posterior probability of
colocalization. At locus 17q21.32, the regional posterior probability
of shared association for rs16955463 was only 1.56%. However,
coloc-computed posterior evidence of association of both epilepsy
forms with different associated variants (PPy3) was 99.6% and 85.0%
for locus 2q24.3 and 17q21.32, respectively, thereby further
reinforcing the notion that different but highly correlated SNPs in
the same region are associated with both syndromes.

For method comparison only, we also applied the other four
methods to the ILAE data set (Supporting Information: Figures $S3-S6)
and assessed their overlap in significant associations with each other
(Supporting Information: Figures S7). Out of the 40 SNPs identified
by ASSET, all except one were also identified by at least one other
method. The largest overlap was observed with MA (39 out of 40)
and PLACO (32/40), while cFDR (23/40) and CPBayes (5/40) shared
lower proportions. Interestingly, 32 out the 33 associations identified
by PLACO were also found by ASSET. Notably, both CPBayes (103)
and MA (126) reported several dozen associations exclusively
identified by them and another 81 identified by both.
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TABLE 2 Genome-wide significant SNPs and their prioritized genes

Summary statistics of

Pleiotropy significant SNPs and nearest genes the SNPs ASSET result
Lead SNPs (Risk CADD
Locus allele) MAF score Nearest genes  P-value (GGE) P-value (FE) OR (95% Cl) P
2q24 rs60055328 (A) 0.24 2.95 SCN1A, SCN9A, 8.4x107® 7.3x107 1.109 (1.072,1.148) 2.03x1077
rs2212656 (C) 0.25 6.25 Tic=db 1.7x107¢ 1.5x107¢ 1327 (1008.4:160) 20ea0
17921.32  rs16955463 (T) 0.26 13.44 PNPO, SKAP1 ~ 2.3¢”7 8.3e7! 0.867 (0.828,0.909) 403x107®

Abbreviations: Cl, confidence interval; MAF, minor allele frequency; OR, odds ratio; P, P value; SNP, single-nucleotide polymorphism.
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4 | DISCUSSION

In this study, we compared four recently proposed methods for
univariate pleiotropy detection with single variants alongside classical
MA. To this end, we performed forward simulations for a large
population of European ancestry and repeatedly assigned affection
status for two pleiotropic traits, respectively, to all individuals of this
population while considering a variety of different parameters that
may impact the ability of these methods to detect pleiotropy in a
cross design, including sample size, number and effect size of trait-
associated genetic variants as well as their overlap between traits,
and the trait prevalence. We have chosen exemplary values for these
parameters in a range that has been often observed for GWAS and
that are plausible to expect for future studies on pleiotropy. Notably,
we also considered multivariant trait etiology models to include more
than one causal genetic variant to be shared between these traits,
mirroring the likely situation in real datasets. Trait assignment was
based on the ALTM which is a well-established theoretical model that
has been calibrated to empirical data and that has been successfully
used to describe the genetic architecture of different traits, including

type |l diabetes (Agarwala et al., 2013). While we did not explicitly
model the etiology of particular epilepsy forms, we strongly believe
that the ALTM provides a very good approximation for them.

41 | MA

While MA, as implemented in METAL (Willer et al., 2010), turned out
to be among the more powerful methods for pleiotropy detection, its
exceptionally high FPR forbids its application to detect pleiotropic
variants or loci. A likely explanation for this behavior is that a very
strong association of a variant with one trait will dominate the
P-value from the MA and decrease it below the threshold considered
significant, even though this variant shows no association at all with
the second trait. The same observation is to be expected for mega-
analysis in which several (sub-)phenotypes are analyzed jointly in a
single association test. Our observation also supports the suggestion
of superior performance of ASSET by the respective publication
(Bhattacharjee et al., 2012). Meta- or mega-analysis results, such as
those previously performed by the ILAE Consortium, therefore do
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not allow to draw any conclusions about a potential pleiotropic
nature of significant variants in these analyses.

4.2 | Recommendations for method application

All evaluated methods had virtually no power to detect pleiotropic
variants with low effect sizes (relative risk 1.05), for sample sizes up
to 20,000. Thus, studies aiming for pleiotropic variants of such small
effect likely require 100,000 samples or more to achieve a decent
power. For many traits, such sample sizes are likely out of reach,
rendering the identification of weak pleiotropic variants infeasible.
Furthermore, while all four newer methods appear to be able to
detect pleiotropic variants with larger sample sizes or variant effect
sizes, they substantially differ in their ability to hold a low FPR,
preferably below 5%. ASSET, despite being the first of the four

considered approaches to have been proposed, appears to provide
the best trade-off between power and controlling the FPR. While
CPBayes appeared to be the most powerful method, ASSET always
came in as second or third best. However, CPBayes, together with
cFDR and PLACO, presented with strongly elevated FPR values.
While CPBayes could be considered to represent a different
compromise between power and FPR than ASSET, any significant
finding obtained from applying CPBayes may then with considerable
likelihood represent a false-positive result, thereby diminishing the
success chances of subsequent variant follow-up. Since ASSET is not
or only moderately affected by increased FPR levels, we recommend
its preferable application to real-world datasets compared with that
of CPBayes, cFDR, and PLACO. The counterintuitive downward
trend in power observed for cFDR with growing relative risks is
apparently caused by a computational error of the R function
provided by Liley and Wallace (2015), for which very small p-values
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FIGURE 6 Functional annotation and enrichment of significant single-nucleotide polymorphism (SNPs) at loci 2q24.3 and 17q21.32.

(a) Enrichment of the genes expressed in 53 tissues of GTEx tissue expression data using MAGMA. Brain tissues are marked by dark-filled bars.
(b) RegulomeDB scores of all SNPs that were either genome-wide significant in the pleiotropic analysis or correlated with such SNPs (* > 0.2).
Dark-filled bars denote SNPs with RegulomeDB scores < 6 (considered to represent evidence for affecting regulation; see Section 2), whereas
the gray-filled bar denotes SNPs that are not available in RegulomeDB (“NA”). (c) Functional categories of all SNPs that were either genome-wide
significant in the pleiotropic analysis or correlated with such SNPs (r? > 0.2).

are reported as missing values when the result is generated. After a
revised software implementation solving this issue, cFDR may be
likely considered as a slightly less powerful but faster alternative to
ASSET.

Our study results are consistent with some previously published
method comparisons. For PLACO, we found a power of 3.0% at a

sample size of 2000 for a relative risk of 1.2 and a prevalence of 10%,
while the PLACO authors reported 7.1% power at an odds ratio of
1.5 for two studies for which the variant has the same direction of
effect for both traits (Ray & Chatterjee, 2020). For larger sample
sizes, the simulation results are not directly comparable but never-

theless show a similar trend. Regarding CPBayes, we could confirm
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the reported superior power for CPBayes at low sample sizes and
relative risks of 1.2 (Majumdar et al., 2018), which comes at the price
of strongly inflated FPR levels. Also, for CPBayes (Majumdar
et al., 2018), the authors' claims are partially confirmed but ASSET
demonstrated lower specificity compared with CPBayes. We could
not compare our results to those published in the original cFDR (Liley
& Wallace, 2015) and ASSET (Bhattacharjee et al., 2012) publications
because of large differences in the simulation designs. In particular,
this included differences in the considered values for allele frequen-
cies of causal variants, disease prevalence, sample size, and the
number of studies, or traits, rendering the results from these original
publications not directly comparable to our study.

4.3 | Pleiotropy between epilepsy subphenotypes

Using ASSET and its ability to correct for sample overlap, we
identified two pleiotropic loci, namely 2q24.3 and 17q21.32, for FE
and GGE. Evidence for simultaneous association of these syndromes
to locus 2q24.3 had already been reported in ILAE mega-analysis
(International League Against Epilepsy Consortium on Complex
Epilepsies, 2018). Our results thereby confirm the pleiotropic nature
of this locus. However, locus 17q21.32, although being already
reported to be associated with GGE (Epicure et al., 2012) but not FE,
represents a promising novel pleiotropic locus for both FE and GGE.
The evidence from formal statistical testing using ASSET is further
corroborated by various annotation, enrichment, expression, colo-
calization, and prioritization analyses. A statistical replication of this
finding in an independent data set would provide further evidence
once such a data set becomes available. From the analysis, three
strong pleiotropic signals are identified which are likely to have
effects on the regulation of SCNA1, SCN9A, TTC21B, SKAP1, and
PNPO but not SCN2A and SCN3A according to mapping done in
FUMA (Watanabe et al., 2017) and variant effect predictor (Howe
et al, 2021). The 17q21.32 association peak is located at the src
kinase-associated phosphoprotein 1 gene (SKAP1). SKAP1 is
positively involved in T-cell receptor signaling but is only weakly
brain expressed (https://gtexportal.org/home/gene/SKAP1) and
has not been functionally implicated in seizure disorders. Further-
more, the chromosome 17 locus of this study overlaps with the
17q21.32 region described as GGE-associated by the EPICURE
Consortium in 2012 (Steffens et al., 2012). The EPICURE Consor-
tium identified the pyridoxamine 5'-phosphate oxidase gene (PNPO)
in ~230 kb distance to SKAP1 as the most promising candidate for
GGE. PNPO mutations and the resulting impairment of pyridoxine
5'-phosphate (PNP) or vitamin Bé metabolism and insufficient
delivery of pyridoxal 5'-phosphate (PLP) to PLP-dependent enzymes
have neuropathological consequences in neonates (Ghatge
et al., 2021; Levtova et al., 2015; Lloreda-Garcia et al., 2017).
PNPO is required for the synthesis of pyridoxal 5'-phosphate (PLP)
whose role in neurotransmitter metabolism is thought to be the
primary cause of PNPO-dependent neonatal epileptic encephalo-
pathy (Mills et al., 2005).

Given the very similar prevalence values of GGE and FE (0.002
vs. 0.003, respectively (International League Against Epilepsy
Consortium on Complex Epilepsies, 2018) Supporting Information:
Table 11) and the sole use of summary statistics for the pleiotropy
detection, we do not expect the substantially different numbers of
GGE and FE cases in our study to have an impact on our study
results. Furthermore, reported top single-trait associations tended to
be generally fewer for FE compared with GGE despite the much
larger sample size, indicating on average smaller effect sizes for FE. A
random down-sampling of FE cases to match the number of GGE
cases, as may appear desirable in, for example, classification tasks,
would most likely have reduced the power to detect pleiotropy in the
ILAE data set.

Comparative application of the five methods to the ILAE epilepsy
datasets showed a large concordance between ASSET and PLACO in
identified significant associations, a large set of associations
exclusively identified by either CPBayes or MA and almost no
overlap between ASSET and CPBayes. While it is unclear whether
these associations represent true- or false-positives, the large excess
of observed significant associations for CPBayes and MA is
consistent with the largely increased FPRs that we observed for
these two methods in our simulations. Also consistent with our
simulation study is the much smaller number of reported associations
observed for ASSET as one would except with a well-controlled FPR.
The results from applying the five methods to two epilepsy datasets
do, thus, well conform to expectations based on our simulation study.

4.4 | Limitations & future work

While we have considered a substantial number of scenarios, we
could not consider all parameter values that may have been desirable
due to the large computational burden involved. Our results are
therefore uninformative about scenarios with intermediate parame-
ter values, for example, sample sizes of 2000 cases and 2000
controls, larger numbers of shared causal genetic variants between
traits or more than two traits. Studies that follow a cross-design for
numerous parameters, such as this one, require considerable time and
high computing power for data generation and analysis. This limits
the number of parameters that could be jointly studied due to the
exponential growth of computing time with the growing number of
parameter combinations. Furthermore, since the population base
data are generated according to some LD model, the LD pattern in
the data may also influence the results. It has been clearly shown in
the past by Su et al. (2011) that the LD pattern in simulated data
reflects that of the reference data. Since we simulated a population
of European ancestry, our results are not necessarily transferable to
pleiotropy detection studies in populations of other continental
origins. This should, however, only affect the actual values for power
and FPR, not the relative performance order of the five methods
considered here.

For future studies, it will be interesting to investigate the

performance of pleiotropy detection methods for more than two
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phenotypes, for more nuanced sharing of causal genetic variation and
possibly different effects on the pleiotropic phenotypes, and for less
common or rare causal variants, with the latter likely requiring more
complex genotype simulation algorithms and larger reference sample
sets. In any case, our study has revealed general trends that will likely
help guide the design of follow-up studies.

5 | CONCLUSIONS

Based on extended computer simulations, we find that the ASSET
method outperforms other univariate pleiotropy detection methods,
including classical MA, cFDR, CPBayes, and PLACO, with respect to
power and control of the FPR and recommend its use in future
studies. Application of ASSET to GWAS summary statistics on
generalized genetic epilepsies and on focal epilepsies, previously
published by the ILAE consortium, confirmed the truly pleiotropic
nature of the previously reported locus 2g24.3 (based on a mega-
analysis) for these epilepsy forms and identified a novel putative
pleiotropic locus at 17q21.32, the latter being corroborated by
further database and bioinformatic annotation.
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Supporting Figure S1. Principal compenents analysis (PCA) for the simulated population.
Shown are the principal components (PCs) of individuals of the simulated population of European
ancestry. A: PC1 vs PC2, B: PC1 vs PC4, C: PC1 vs PC8 and D: PC1 vs PC10. Panels A, B and

C indicate sub-structures and clusters while the observed structure is not seen in panel D

(randomness).
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Supporting Figure S2. Functional annotation and enrichment of significant SNPs separately
for both significant loci. The graph shows the enrichment of the genes expressed i 53 tissues of
GTEx tissue expression data using MAGMA. A: Locus 2q24.3; B: Locus 17q21.32.
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Supporting Figure S3. Manhattan plot of pleiotropy assaciation testing between GGE and FE using cFDR. Chromosomal variant
position is given on the x-axis, while -log), transformed P-values are given on the y-axis. The red horizontal line denotes the genome-
wide significance level.
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Supporting Figure S4. Manhattan plot of pleiotropy association testing between GGE and FE using CPBayes. Chromosomal
variant position is given on the x-axis, while -log; transformed P-values are given on the y-axis. The red horizontal line denotes the
genome-wide significance level.
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Supporting Figure S5. Manhattan plot of pleiotropy association testing between GGE and FE using classical meta-analysis.
Chromosomal variant position is given on the x-axis, while -log;, transformed P-values are given on the y-axis. The red horizontal line
denotes the genome-wide significance level.

e

“

— A NG ERIEY b sy,

DI e e TR AT,

60



Supplement to Adesoji et al. “Benchmarking of univariate pleiotropy detection methods applied to epilepsy”

Supporting Figure S6. Manhattan plot of pleiotropy association testing between GGE and FE using PLACO. Chromosomal
variant position is given on the x-axis, while -log; transformed P-values are given on the y-axis. The red horizontal line denotes the

genome-wide significance level.
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Supporting Figure S7. Overlap between the five considered pleiotropy detection methods. The Venn diagram gives the numbers
of SNPs that were found to be genome-wide significant for pleiotropy between the two epilepsy forms (GGE and FE) in the ILAE
dataset by one or more methods. MA: meta-analysis.
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Supporting Table S1: Power and false-paositive rate (FPR) for five univariate pleiotropy detection methods assuming 5 causal
SNPs. Given are the percentages for five methods (see Table 1) with respect to power and FPR for varying sample sizes and effect sizes
as well as percentages of overlap between causal SNPs for two traits and two different values for disease prevalence using 100
replications while assuming 5 causal SNPs for each of both traits.

Number of samples per phenotype
1,000 cases & 1,000 controls 5,000 cases & 5,000 controls 10,000 cases & 10,000 controls
Power FPR Pawer FPR Pawer FPR
Method| RR Overlap P Pr Prevalence Prevalence Prevalence Prevalence
1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%
1.00 1] 0 738 6.77 L] 1] 259 093 0 o ] 1]
120 06.67 8333 122 12.36 100 100 473 6.91 100 100 4.00 42
1.50 2 100 100 1932 15.09 100 100 10.86 756 100 100 10.86 643
CPBayes 2.00 100 100 15.73 19.58 100 100 15.07 8.58 100 100 2753 878
1.00 '] 0 7.81 10.08 0 0 1.19 296 0 0 0 0
120 100 84.13 16.99 16.85 100 100 6.69 595 100 100 4.09 42
1.50 a0% 100 100 1771 20.78 100 100 16.92 10.71 100 100 10.86 643
2.00 100 100 21.57 2141 100 100 2045 1403 100 100 27353 878
1.00 [\] 0 0 0 0 0 0 0 0 0 o 0
120 P 56 3 0.53 0 100 100 91.91 14.08 100 100 100 88.85
1.50 100 100 100 100 100 100 100 100 100 100 100 100
2.00 100 100 100 100 100 100 100 100 100 100 100 100
Ma 1.00 [\] 0 0 ] 0 0 0 0 0 0 0 0
120 83 16 248 0.14 100 100 QLTI 3034 100 100 100 96.52
1.50 e 100 100 100 9988 100 100 100 100 100 100 100 100
2.00 100 100 100 100 100 100 100 100 100 100 100 100
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1.00 0 0 0 0 0 a 0 0 0 0 0 0
1.20 78 40 0.84 0 100 100 1.61 145 100 100 1.72 1.72
1.50 % 100 100 183 172 100 100 339 172 100 100 317 324
s 2.00 100 100 239 183 100 100 428 339 100 100 6.43 437
1.00 0 0 0 0 ] o 0 0 0 0 o o
120 78 31.08 045 0 100 100 127 096 100 100 1.34 1.534
1.50 o 100 100 211 196 100 100 6.44 3.64 100 100 957 5.12
2.00 100 100 326 225 100 100 .09 585 100 100 12.18 85
1.00 0 0 0 0 ] 1] 1] 0 L] 0 o o
1.20 e 41 3 0.55 0 100 100 275 1.64 100 100 6.95 332
1.50 100 100 1091 483 100 100 23.67 1538 100 100 34121 2216
PLACO 2.00 100 100 11.06 708 100 100 3188 23.05 100 100 56.39 28908
1.00 0 0 0 0 ] o 0 0 0 0 0 0
1.20 ABiE 755 95 1.02 0 100 100 10.14 335 100 100 18.97 817
1.50 100 100 2447 1313 100 100 46.61 3247 100 100 65.68 493
2.00 100 100 30.79 2198 100 100 61.93 46.67 100 100 81.37 4723
1.00 0 0 0 0 ] 1] 1] 0 0 o 0.36 o
120 50 15.52 243 0.65 100 100 6.88 6.51 100 100 73 633
1.50 sk 100 100 6.56 518 ?2 100 939 711 0 13 5.04 4.83
2.00 100 100 7.7 787 0 9899 458 793 0 0 6.43 38
SR 1.00 0 0 0 0 ] o 0 0 0 0 0 0
120 4754 476 383 0.53 100 995 6.77 731 100 100 6.91 5.17
1.50 0% 100 100 813 747 76 100 1335 9.46 ] 19 915 T44
2.00 100 100 77 9.03 0 100 899 12.58 0 0 12.75 853

RR: relative nisk; Overlap: proportion of causal SNPs bemg shared between the two phenotypes; FPR: false-positive rare (type [

error).
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Supporting Table S2: Power and false-positive rate (FPR) for five univariate pleiotropy detection methods assuming 10 causal
SNPs. Given are the percentages for five methods (see Table 1) with respect to power and FPR for varying sample sizes and effect sizes
as well as percentages of overlap between causal SNPs for two traits and two different values for disease prevalence using 100
replications while assuming 10 causal SNPs for each of both traits.

Number of samples per phenotype
1,000 cases & 1,000 controls 5,000 cases & 5,000 controls 10,000 cases & 10,000 controls
Power FPR Pawer FPR Pawer FPR
Method| RR Overlap P Pr Prevalence Prevalence Prevalence Prevalence
1% 10% 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%
1.00 1] 0 353 4.06 357 1] 0.84 0.65 0 o 049 042
120 100 9912 14.03 13.35 100 100 534 5.28 100 100 348 283
1.50 2 100 100 1453 1438 100 100 288 642 100 100 104 6.13
CPBayes 2.00 100 100 14.83 14.13 100 100 10.57 6.94 100 100 16.65 6.53
1.00 '] 0 423 3.86 0.76 0 1.18 0.65 25 0 038 0
120 100 90.18 1551 14.26 100 100 7.61 6.81 100 100 6.38 3.55
1.50 a0% 100 100 17.7 1741 100 100 16.75 9.79 100 100 41.56 10
2.00 100 100 1782 1835 100 100 222 10.06 100 100 53.71 11.38
1.00 [\] 0 0 0 0 0 0 0 0 0 o 0
120 P 96 42 3.08 045 100 100 100 85.08 100 100 100 88.85
1.50 100 100 100 97.87 100 100 100 100 100 100 100 100
2.00 100 100 100 99.46 100 100 100 100 100 100 100 100
Ma 1.00 [\] 0 0 ] 0 0 0 0 0 0 0 0
120 100 80 248 0.14 100 100 100 94.85 100 100 100 100
1.50 e 100 100 100 9988 100 100 100 100 100 100 100 100
2.00 100 100 100 100 100 100 100 100 100 100 100 100
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1.00 0 0 0 0 0 a 0 0 0 0 0 0
1.20 97 &7 09 051 100 100 1.19 1.07 100 100 131 1.09
1.50 % 100 100 1.13 1.07 100 100 24 148 100 100 342 2
s 2.00 100 100 1.19 1.07 100 100 274 1.75 100 100 3353 242
1.00 0 0 0 0 ] o 0 0 0 0 o o
120 9775 70.75 1.63 0.89 9975 99.75 329 272 9974 99.74 37 332
1.50 o 9975 9975 359 294 99.75 99.75 5.89 429 9974 9974 845 59
2.00 99.75 9975 3.83 307 99.75 99.75 6.69 498 9974 99.74 848 641
1.00 0 0 0 0 ] 1] 1] 0 L] 0 o o
1.20 e 955 255 0.55 0 100 100 324 1.7 100 100 4.67 28
1.50 100 100 1091 483 100 100 10.7 6.75 100 100 2293 931
PLACO 2.00 100 100 11.06 708 100 100 1484 749 100 100 2074 14.64
1.00 0 0 0 0 ] o 0 0 0 0 0 0
1.20 ABiE 99.75 67.5 1.02 0 100 100 12.17 7.02 100 100 17.79 1244
1.50 100 100 2447 1313 100 100 37.76 2094 100 100 6593 2811
2.00 100 100 30.79 2198 100 100 46.29 2519 100 100 T1.42 33.14
1.00 0 0 0 0 ] 1] 1] 0 0 0.69 o 0.08
120 0417 4474 5.08 0.65 100 100 6.05 6.26 100 100 6.36 599
1.50 sk 100 100 624 518 100 100 883 6.69 0 100 334 749
2.00 100 100 6.55 787 995 100 11.33 73 0 315 4.42 5.99
SR 1.00 0 0 0 0 ] o 0 0 0 0 0 0
120 9881 4211 711 314 100 100 846 8 9975 100 87 167
1.50 0% 100 100 83 766 99.75 99.74 18.74 931 ] 99.75 887 1111
2.00 100 100 877 79 995 99.74 2453 10.27 0 36.73 885 87

RR: relative nisk; Overlap: proportion of causal SNPs bemg shared between the two phenotypes; FPR: false-positive rare (type [

error).
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Abstract

Epilepsy is a highly heritable disorder affecting over 50 million people worldwide, of which about
one-third are resistant to current treatments. Here, we report a trans-ethnic GWAS including 29,944
cases, stratified into three broad- and seven sub-types of epilepsy, and 52,538 controls. We identify
26 genome-wide significant loci, 19 of which are specific to genetic generalized epilepsy (GGE). We
implicate 29 likely causal genes underlying these 26 loci. SNP-based heritability analyses show that
common variants substantially close the missing heritability gap for GGE. Subtype analysis revealed
markedly different genetic architectures between focal and generalized epilepsies. Gene-set analysis
of GGE signals implicate synaptic processes in both excitatory and inhibitory neurons in the brain.
Prioritized candidate genes overlap with monogenic epilepsy genes and with targets of current anti-
seizure medications. Finally, we leverage our results to identify alternate drugs with predicted
efficacy if repurposed for epilepsy treatment.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

The epilepsies are a heterogeneous group of neurological disorders, characterized by an enduring
predisposition to generate unprovoked seizures.? It is estimated that over 50 million people
worldwide have active epilepsy, with an annual cumulative incidence of 68 per 100,000 persons.?

Similar to other common neurodevelopmental disorders, the epilepsies have substantial genetic risk
contributions from both common and rare genetic variation. Analysis of the epilepsies benefits from
deep phenotyping which allows clinical subtypes to be distinguished?, in contrast to other common
neurodevelopmental disorders where phenotypic subtypes are more difficult to define. Differences
in the genetic architecture of these clinical subtypes of epilepsies are also emerging to complement
the clinical partitioning.*”” The rare but severe epileptic encephalopathies are usually non-familial
and are largely caused by single de novo dominant variants, often involving genes encoding ion
channels or proteins of the synaptic machinery.® Common and rare variations have both been shown
to contribute to the milder and more common focal and generalized epilepsies. This is particularly
true for generalized epilepsy, which is primarily constituted by genetic generalized epilepsy
(GGE).*#>%10 Nevertheless, previous genetic studies of common epilepsies have explained only a few
percent of this common genetic variant, or SNP-based, heritability.*5°

Epilepsy is typically treated using anti-seizure medications (ASMs). However, despite the availability
of over 25 licensed ASMs worldwide, a third of people with epilepsy experience continuing seizures.!
Diet, surgery and neuromodulation represent additional treatment options that can be effective in
small subgroups of patients.'? Accurate classification of clinical presentations is an important guiding
factor in epilepsy treatment.

Here, we report the third epilepsy GWAS meta-analysis, comprising a total of 29,944 deeply
phenotyped cases recruited from tertiary referral centres, and 52,538 controls, approximately
doubling the previous sample size.* Results suggest markedly different genetic architectures between
focal and generalized forms of epilepsy. Combining these results with results from less stringently
phenotyped biobank and deCODE genetics epilepsy cases did not substantially increase signal,
despite almost doubling the sample size to 51,678 cases and 1,076,527 controls. Our findings shed
light on the enigmatic biology of generalized epilepsy and the importance of accurate syndromic
phenotyping, and may facilitate drug repurposing for novel therapeutic approaches.

Results
Study overview

We performed a genome-wide meta-analysis by combining the previously published effort from our
consortium*with unpublished data from the Epi25 collaborative!® and four additional cohorts
(Supplementary table 1). Our primary mixed model meta-analysis constitutes 4.9 million SNPs tested
in 52,538 controls and 29,944 people with epilepsy, of which 16,384 people had neurologist classified
focal epilepsy (FE) and 7,407 people had GGE. The epilepsy cases were primarily of European descent
(92%), with a smaller proportion of African (3%) and Asian (5%) ancestry (Supplementary table 2).
Cases were matched with controls of the same ancestry and GWAS were performed separately per
ancestry, before performing trans-ethnic meta-analyses for the broad epilepsy phenotypes ‘FE’
(n=16,384 cases) and ‘GGE’ (n=7,407 cases). We further conducted meta-analyses in subjects of
European ancestry of the well-defined GGE subtypes of: a) juvenile myoclonic epilepsy (JME), b)
childhood absence epilepsy (CAE), c) juvenile absence epilepsy (JAE), and d) generalized tonic-clonic
seizures alone (GTCSA), as well as the focal epilepsy subtypes of: a) focal epilepsy with hippocampal
sclerosis, b) focal epilepsy with other lesions, and c) lesion-negative focal epilepsy. We ran a variety
of follow-up analyses to identify potential sex-specific signals and obtain biological insights and
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opportunities for drug-repurposing. Sample size prevented inclusion of other ethnicities in the
subtype analyses.

GWAS for the epilepsies

Our ‘all epilepsy’ meta-analysis revealed four genome-wide significant loci, of which two were novel
(Figure 1). Similar to our previous GWAS?, the 2q24.3 locus was composed of two independently
significant signals (Supplementary table 3). Furthermore, a novel suggestive sighal (rs4932477,
p=5.04x10%) was found on chromosome 15, containing POLG, which is associated with one of the
most severe kinds of intractable monogenic epilepsy.'® Using ASSET to determine the extent of FE
and GGE-related pleiotropy, the 2924.3 and 9¢21.13 signals showed pleiotropic effects at a genome-
wide significance level, with concordant SNP effect directions for both forms of epilepsy
(Supplementary table 4). The 2p16.1 and 10q24.32 loci were primarily derived from GGE. The FE
analysis did not reveal any genome-wide significant signals.

Analysis of GGE cases only uncovered a total of 25 independent genome-wide significant signals
across 22 loci, of which 13 loci are novel. The strongest signal of association (p=6.6x10%'), located at
2p16.1, constitutes three independently significant signals. Similarly, the novel locus 12g13.13 was
composed of two independently significant signals (Supplementary table 3).

Functional annotation of the 2,355 genome-wide significant SNPs across the 22 GGE loci revealed
that most variants were intergenic or intronic (Supplementary data 1). 26/2355 (1.1%) SNPs were
exonic, of which 12 were located in protein-coding genes and nine were missense variants. Sixty-one
percent of SNPs were located in open chromatin regions, as indicated by a minimum chromatin state
of 1-7.1 Further annotation by Combined Annotation-Dependent Depletion (CADD) scores predicted
110 associating SNPs to be deleterious (CADD score >12.37).1> LDAK heritability analyses showed
significant enrichment of signal in “super-enhancers” (Supplementary table 5), suggesting that GGE
variants regulate clusters of transcriptional enhancers that control expression of genes that define
cell identity.16

To assess potential syndrome-specific loci, we performed GWAS on seven well-defined FE and GGE
subtypes (Supplementary figure 1A-G). We found three genome-wide significant loci associated with
JME (n=1,813), of which one was novel (8g23.1), and the other two (4p12 and 16p11.2) were
reported in our previous GWAS.* All three signals appear specific to JME; without reaching nominal
significance in any other GGE subtype. Furthermore, these loci did not reach genome-wide
significance when these subtypes were pooled in the GGE analysis. Our analysis of CAE (n=1,072)
consolidated an established genome-wide significant signal at 2p16.1, which was also observed in the
GGE and all epilepsy GWAS. We did not find any genome-wide significant loci for JAE (n=671), GTCSA
(n=499), ‘non-lesional focal epilepsy’ (n=6,367), ‘focal epilepsy with hippocampal sclerosis’ (n=1,375),
or ‘focal epilepsy with other lesions’ (n=4,661).

Genomic inflation was comparable to our previous GWAS and all linkage-disequilibrium score

regression (LDSR) intercepts were lower than in our previous GWAS (Supplementary table 6),*
suggesting that the signals are primarily driven by polygenicity, rather than by confounding or

population stratification.?”
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Figure 1. Manhattan plot of trans-ethnic all, focal epilepsy and genetic generalized epilepsy genome-wide meta-
analyses. The red line shows the genome-wide significance threshold (5x108). Chromosome and position are
displayed on the x axis and -log10 P-value on the y axis. Novel genome-wide significant loci are highlighted in
red and loci previously associated with epilepsy are labelled in orange. Annotated genes are those implicated by
our gene prioritization analyses.

Locus annotation, transcriptome-wide association study (TWAS) and gene prioritization

Using FUMA!2 (see Methods), the ‘all epilepsy’ meta-analysis was mapped to 43 genes and the GGE
analysis to 278 genes (Supplementary data 2). Thirty nine of the 43 ‘all epilepsy’ genes overlapped
with GGE, resulting in a total of 282 uniquely mapped genes. These 282 genes were enriched for
monogenic epilepsy genes (hypergeometric test, 18/837 genes overlapped; odds ratio [OR]=1.51,
P=0.04), and targets of ASMs (hypergeometric test, 9/191 genes overlap; OR=3.39, P=5.4x10*).

We calculated a gene-based association score based on the aggregate of all SNPs inside each gene
using MAGMA (see Methods).® This analysis yielded 39 significant genic associations, six with ‘all
epilepsy’, and 37 with GGE (four overlapped with the ‘all epilepsy’ analysis), after correction for
16,371 tested genes (p<0.05/16,371 genes; Supplementary data 3). Thirteen of these 39 genes
mapped to regions outside of the genome-wide significant loci from the single SNP analyses.
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Next, we performed a transcriptome-wide association study (TWAS) to assess whether epilepsy was
associated with differential gene expression in the brain (see Methods).2%?! These analyses revealed
significant associations of 27 genes total; 13 genes with ‘all epilepsy’, 16 with GGE and two with both
phenotypes (Supplementary data 4). Nineteen of the 27 genes mapped outside of the 26 loci
identified through the GWAS. Using Summary-data-based Mendelian Randomization (SMR)%, we
determined a potentially causal relationship between brain expression of RMI1 and ‘all epilepsy’, and
between RMI1, CDK5RAP3, TVP23B and GGE (Supplementary data 5).

Of note, expression of RMI1 was associated with GGE in both TWAS (p=4.0x10%°) and SMR (p=5.2x10"
8), as well as with ‘all epilepsy’ (TWAS p=1.3x10%; SMR p=2.6x10%). RMI1 has a crucial role in genomic
stability?® and has not been previously associated with epilepsy nor any other Mendelian trait (OMIM
#610404).

We used a combination of ten different criteria to identify the most likely implicated gene within
each of the 26 associated loci from the meta-analysis (see Methods). This resulted in a shortlist of 29
genes (Figure 2), of which ten are monogenic epilepsy genes, seven are known targets of currently
licensed ASDs and 17 are associated with epilepsy for the first time. Interrogation of the Drug Gene
Interaction Database (DGIdb) showed that 13 of the 29 genes are targeted by a total of 214 currently
licensed drugs (Supplementary data 6).

The strongest association signal for GGE was found at 2p16.1, consistent with our previous results
where we implicated the gene VRK2 or FANCL.?* Our gene prioritization analysis now points to the
transcription factor BCL11A as the culprit gene, located 2.5MB upstream of the lead SNPs at this
locus. Two of three lead SNPs are located in enhancer regions (as assessed by chromatin states in
brain tissue) which are linked to the BCL11A promoter via 3D chromatin interactions (Supplementary
figure 2). Rare variants in BCL11A were recently associated with intellectual disability and epileptic
encephalopathy.? However, interrogation of the MetaBrain eQTL database did not reveal a
significant association of our lead SNPs with BCL11A expression.
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Figure 2. Genome-wide significant loci and prioritized genes. Genome-wide significant loci are annotated with
details from the lead-SNP and prioritized genes. Loci were classified as novel or replication according to the
genome-wide significant results of previous GWAS publications. Genes were scored based on 10
criteria/methods, after which the gene with the highest score in the locus was selected as the prioritized gene.
Total: number of satisfied criteria for gene prioritization. Missense: the locus contains a missense variant in the
gene. TWAS: significant transcriptome-wide association with the gene. SMR: significant summary-based
mendelian randomisation association with the gene. MAGMA: significant genome-wide gene based association.
PoPS: gene prioritized by polygenic priority score. Brain exp: the gene is preferentially expressed in brain tissue.
Brain-coX: the gene is prioritized as co-expressed with established epilepsy genes. KO mouse: knockout of the
gene causes a neurological phenotype in mouse models. Monogenic: the gene is a known cause of monogenic
epilepsy. Genomic coordinates for each locus (hg19) can be found in Supplementary table 3.

The HLA system and common epilepsies

The highly polymorphic HLA region has been associated with various neuropsychiatric and
autoimmune neurological disorders following accurate capture of all its genetic variation. Therefore,
we imputed HLA alleles and amino acid residues using CookHLA?® and ran association across epilepsy,
focal and GGE phenotypes, as well as the seven sub-phenotypes (see Methods). No SNP, amino acid
residue or HLA allele reached the level of genome-wide significance (see Supplementary figure 3).
The most significant signal was with GGE, in which an aspartame amino acid residue in exon 2
position 31432494 had a p-value of 3.8x107.
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SNP-based heritability

We calculated SNP-based heritability using LDAK to determine the proportion of epilepsy risk
attributable to common genetic variants. We observed liability scale SNP-based heritabilities of
17.7% (95% CI 15.5 - 19.9%) for all epilepsy, 16.0% (14.0 - 18.0%) for FE and 39.6% (34.3 - 44.6%) for
GGE. Heritabilities for GGE subtypes were notably higher for all individual GGE subtypes: ranging
from 49.6% (14.0% - 85.3%) for GTCSA to 90.0% (63.3 - 116.6%) for JAE (Supplementary table 7).

Employing a univariate causal mixture model?’ (see Methods) we estimated that 2,850 causal SNPs
(standard error: 200) underlie 90% of the SNP-based heritability of GGE, comparable with previous
estimates.? Power analysis demonstrated that the current genome-wide significant SNPs only explain
1.5% of the phenotypic variance, whereas an estimated sample size of around 2.5 million subjects
would be necessary to identify the causal SNPs that explain 90% of GGE SNP-based heritability
(Supplementary figure 4).

To further explore the heritability of the different epilepsy phenotypes, we used LDSC to perform
genetic correlation analyses.?® We found evidence for strong genetic correlation between all four
GGE syndromes (Supplementary figure 5). We also observed a significant genetic correlation
between the focal non-lesional and JME syndromes, which has been reported previously.* Here, with
larger sample sizes, CAE also showed a significant genetic correlation with the focal non-lesional
cohort.

Tissue and cell-type enrichment

To further illuminate the underlying biological causes of the epilepsies, we used MAGMA? and data
from the gene-tissue expression consortium (GTEXx) to assess whether our GGE-associated genes
were enriched for expression in specific tissues and cell types (see Methods). We identified
significant enrichment of associated genes expressed in brain and pituitary tissue (Supplementary
figure 6). This is the first time the pituitary gland has been implicated in GGE and might reflect a
hormonal component to seizure susceptibility. Further sub-analyses showed that our results were
enriched for genes expressed in almost all brain regions, including subcortical structures such as the
hypothalamus, hippocampus and amygdala (Supplementary figure 7). We did not find enrichment
for genes expressed at specific developmental stages in the brain (Supplementary figure 8).

Cell-type specificity analyses of GGE data using various single-cell RNA-sequencing reference datasets
(see Methods) revealed enrichment in excitatory as well as inhibitory neurons, but not in other brain
cells like astrocytes, oligodendrocytes or microglia (Supplementary figure 9). Similarly, stratified LD-
score regression using single-cell expression data (see Methods) did not reveal a difference between
excitatory and inhibitory neurons (p=0.18).

Gene-set analyses

MAGMA gene-set analyses showed significant associations between GGE and biological processes
involving various functions in the synapse (Supplementary data 7). To further refine the synaptic
signal, we performed a gene-set analysis using lists of expert-curated gene-sets involving 18 different
synaptic functions.?® These analyses showed that GGE was associated with intracellular signal
transduction (n=139 genes, p=9.6x107°) and excitability in the synapse (n= 54 genes, p=0.0074). None
of the other 16 synaptic functions showed any association (Supplementary data 7). Genes involved
with excitability include the N-type calcium channel gene CACNA2D2, implicated at the novel GGE
locus 3p21.31. N-type calcium channel blockers such as levetiracetam and lamotrigine are amongst
the most widely used and effective ASMs for GGE as well as focal epilepsy.3®3? Together, these
results suggest that the genes associated with GGE are expressed in excitatory as well as inhibitory
neurons in various brain regions, where they affect excitability and intracellular signal transduction at
the synapse.
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Sex-specific analyses

There are known sex-related patterns in the epidemiology of epilepsy. Although females have a
marginally lower incidence of epilepsy than males, GGE is known to occur more frequently in
females.3® To test whether this sex divergence has a genetic basis, we performed sex-specific GWAS
for all, GGE and FE (Supplementary figures 10-12). Analyses revealed one female-specific genome-
wide significant signal at 10g24.32 (lead SNP: rs72845653), containing KCNIP2, implicated in our main
GGE meta-analysis (lead SNP: rs11191156). However, the lead SNPs of these two signals are not in LD
(r?=0.05). Interestingly, the direction of effect of this signal is opposite in females and males. This sex
difference is further corroborated by significant sex-heterogeneity (p=1.54x10%) and gender-
differentiation (p=5.6x107).3* Sex-related differences in transcription levels in human heart have
previously been reported for KCNIP2.3> We did not find any sex-divergent signals for ‘all’ or focal

epilepsy.

LDSC was used to assess the genetic correlation between male-only and female-only GWAS. The
male and female GWAS of all epilepsy, FE and GGE were strongly genetically correlated (all Rg>0.9)
and none of these correlations were significantly different from 1 (all p>0.05). These results suggest
that, with the exception of the female-specific 10g24.32 signal, the overall genetic basis of common
epilepsy appears largely similar between males and females.

Genetic overlap between epilepsy and other phenotypes

To explore the genetic overlap of epilepsy with other diseases, we first cross-referenced the 26
genome wide epilepsy loci with other traits with significant associations (p<5x107%) for the same SNP,
or SNPs in strong linkage disequilibrium with our lead SNPs (as detailed in figure 2). This analysis
revealed eighteen likely pleiotropic loci, with previous associations reported across a variety of traits,
the most common being cognitive, sleep, psychiatric, coronary and blood cell traits (Supplementary
figure 13). The remaining eight loci appear to be specific to epilepsy (3p22.3, 4p12, 5931.2, 7p14.1,
8g23.1, 9q21.13, 21q21.1, 21q22.1).

We then performed genetic correlation analyses between 18 selected traits and all, GGE and focal
epilepsy using LDSCY. The selected traits had either, or a combination of 1) epilepsy as a common
comorbidity or 2) pleiotropic loci shared with epilepsy. Significant correlations (P<0.05/54=0.0009)
were found with febrile seizures, stroke, headache, ADHD, type 2 diabetes and intelligence (Figure
3).
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Figure 3. Genetic correlations of epilepsy with other phenotypes. The genetic correlation coefficient was
calculated with LDSC and is denoted by color scale from -1 (red; negatively (anti-)correlated) to +1 (blue;
positively correlated). The square size relates to the absolute value of the corresponding correlation coefficient.
* P <0.05 ** P <0.0009 (Bonferroni corrected).

Genetic correlation analyses assess the aggregate of shared genetic variants associated with two
phenotypes. However, genetic correlations can become close to zero when there is consistent mixed
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directionality of SNP effects between two phenotypes.3® Autism spectrum disorder (ASD) was not
significantly correlated, despite monogenic pleiotropy with epilepsy genes supporting an overlap. To
explore whether inverse directionality could explain the lack of genetic correlation between ASD and
epilepsy we applied the MiXeR tool to GGE, intelligence and ASD, to quantify polygenic overlap
irrespective of genetic correlation (see Methods). Results showed that >99% of causal SNPs
underlying GGE are shared with intelligence, of which 58% have a discordant direction of effect
(Supplementary figure 14). Furthermore, despite a lack of genetic correlation with ASD (Rg=-0.12,
p=0.06, all epilepsy; Rg=-0.17, p=0.06 focal epilepsy; Rg=-0.09, p=0.09, GGE), we found that 95% of
causal SNPs underlying GGE are shared with ASD, but 59% have a discordant direction of effect. This
is consistent with the finding that epilepsy and ASD can have a shared genetic cause.?”* For
example, monogenic ASD and epilepsy can occur as the result of pathogenic variants in SCN2A.
Functional studies have shown that ASD without seizures can be caused by loss-of-function variants
in SCN2A 3°, whereas epilepsy can be caused by gain-of-function variants in SCN2A.*>*! Indeed, ASD
variants in SCN2A seem protective against neuronal hyperexcitability.*!

Leveraging GWAS for drug repurposing

To test the potential of our meta-analysis to inform drug repurposing, we predicted the relative
efficacy of drugs for epilepsy (see Methods). This analysis was based upon the predicted ability of
each drug to modulate epilepsy-related changes in the function and abundance of proteins, as
inferred from the GWAS summary statistics (see Methods).*? We validated the drug predictions by
determining if they are concordant with findings from clinical experience and trials. In our predictions
for all epilepsy, current ASMs were ranked higher than expected by chance (p < 1x10®), and higher
than drugs used to treat any other human disease. For GGE, broad-spectrum ASMs were predicted to
be more effective than narrow-spectrum antiseizure drugs (p < 1x10°), consistent with clinical
experience.” Furthermore, the predicted order of efficacy for GGE of individual ASMs matched their
observed order in the largest head-to-head randomized controlled clinical trials for generalized
epilepsy,32#4 an observation unlikely to occur by chance (p < 1x10°).

Using this approach, we highlight the top 20 drugs that are licensed for conditions other than
epilepsy, but are predicted to be efficacious for generalized epilepsy, and additionally have published
evidence of antiseizure efficacy from multiple published studies and multiple animal models
(Supplementary table 8). The full list of all predictions can be found in Supplementary data 8.

GWAS in epilepsies ascertained from population biobanks and from deCODE genetics

We performed GWAS using data from several large-scale population biobanks and from deCODE
genetics (total cases n=21,734, total controls n=1,023,989, phenotyped using ICD codes, see
Methods). Although the biobank and deCODE genetics-specific GWAS did not identify any genome-
wide significant loci for GGE or ‘all epilepsy’, one significant locus at 2q22.1 (nearest gene, NXPH2)
emerged for focal epilepsy (Supplementary figure 15).

Meta-analysis of the biobank and deCODE genetics summary statistics with those from the primary
epilepsy GWAS identified seven significant loci for the ‘all epilepsy’ phenotype. Six of these signals
were previously identified in the primary ‘all epilepsy’ (n=4) or the ‘GGE’ GWAS (n=2). One locus
(2g12.1) was novel. The combined biobank and deCODE genetics meta-analysis for GGE identified
five novel loci, but four loci from our primary GWAS fell below significance (Supplementary figure
16). The combined focal epilepsy meta-analysis showed no significant associations. LDSC between
the biobank/deCODE genetics and the primary GWAS results showed genetic correlations ranging
between 0.31 and 0.74 (Supplementary table 9).

81



medRxiv preprint doi: https://doi.org/10.1101/2022.06.08.22276120; this version posted June 14, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

All rights reserved. No reuse allowed without permission.

Discussion

In this study, we leveraged a substantial increase in sample size to uncover 26 common epilepsy risk
loci, of which 16 have not been reported previously. Using a combination of ten post GWAS analysis
methods, we pinpointed 29 genes that most likely underlie these signals of association. These signals
showed enrichment throughout the brain and indicate an important role for synapse biology in
excitatory as well as inhibitory neurons. Drug prioritization from the genetic data highlighted licensed
ASMs, ranked the ASMs broadly in line with clinical experience and pointed to drugs for potential
repurposing. These findings further our understanding of the pathophysiology of common epilepsies
and provide new leads for therapeutics.

The 26 associated loci included some notable monogenic epilepsy genes. These include the calcium
channel gene CACNA2D2, an established epileptic encephalopathy gene® that is directly targeted by
ten currently licenced drugs, including two ASMs (gabapentin and pregabalin) as well as the
Parkinson’s disease drug safinamide and the nonsteroidal anti-inflammatory drug celecoxib. Both
safinamide and celecoxib have evidence of anti-seizure activity.*®4” SCN8A, which encodes a voltage-
gated sodium channel, is an established epileptic encephalopathy gene and is associated with
common epilepsies for the first time here. Na,1.6 (encoded by SCN8A) is targeted by commonly used
sodium channel blocking drugs that have been found to be the most efficacious ASMs for people
with monogenic SCN8A-related epilepsies that are often due to channel gain-of-function.*® Additional
drugs targeting Na,1.6 include safinamide and quinidine. RYR2 encodes a ryanodine receptor, is an
established cardiac disorder gene, has recently been implicated in epilepsy “>*° and is targeted by
caffeine as well simvastatin, atorvastatin and carvedilol. The acetylcholine receptor gene CHRM3 has
been previously associated with epilepsy®* and is targeted by drugs including solifenacin, used to
treat urinary incontinence.

We found that GGE in particular has a strong contribution from common genetic variation. When
analyzing individual GGE syndromes, we found that up to 90% of liability is attributable to common
variants in the JAE subtype, making it amongst the highest of over 700 traits reported in a large
GWAS atlas®? (albeit with relatively large confidence intervals; Supplementary table 7). The
heritability estimates decrease to 40% for the collective GGE phenotype, possibly due to increased
heterogeneity from combining syndromes with pleiotropic as well as syndrome-specific risk loci.
Although statistical power drastically decreased when assessing specific GGE syndromes, three loci
appeared specific to JME. These findings highlight the unique genetic architecture of the subtypes of
common epilepsies, which are characterized by a high degree of both shared, and syndrome-specific,
genetic risk.

In contrast to GGE, for focal epilepsies we found only a minor contribution of common variants, with
no variant reaching genome-wide significance. It would seem that focal epilepsies, as a group, are far
more heterogeneous than GGE. Our attempt to mitigate this heterogeneity by performing subtype
analysis contrasted with the results from GGE, suggesting different genetic architectures, consistent
with the experience from studies of common® and rare® genetic variation and PRS.® There is also
emerging evidence for a significant role of non-inherited, somatic mutations in focal epilepsies.>?

This work highlights the challenges of working with epilepsy cohorts ascertained through large
biobanking initiatives. Accurate classification of epilepsy requires a combination of clinical features,
electrophysiology and neuroimaging. These details were not available from the biobanks we worked
with. Rather, phenotypes were generally limited to ICD codes, which are prone to misclassification.>*
Population biobanks are also probably ascertaining milder epilepsies that are responsive to
treatment, contrasting with the enrichment for refractory epilepsies at tertiary referral centres.
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Moreover, a proportion of adults with epilepsy have an acquired brain lesion, such as stroke,
tumors or head trauma. Biobanks typically provide self-reported clinical information and codes
from primary care and inpatient hospital care episodes, but not neurological specialist
outpatient records that would indicate whether previous brain insults were considered
relevant to the epilepsy. As a result, the inclusion of the biobank data appeared to introduce
more heterogeneity. This contrasts with genetic mapping of other polygenic diseases like type
2 diabetes and migraine, which are relatively easy and reliable to diagnose and classify,
resulting in a great increase in GWAS loci when including data from the same biobanks as
included in our study.>>5¢

We found enrichment of GGE variants in brain-expressed genes, involving excitatory and inhibitory
neurons, but not any other brain cell type. This contrasts with other neurological diseases. For
example, microglia are involved in Alzheimer’s disease®” and multiple sclerosis,>® whereas migraine
does not appear to have brain cell specificity.® We further refine this signal by showing an
involvement of synapse biology, primarily intracellular signal transduction and synapse excitability.
These findings suggest an important role of synaptic processes in excitatory and inhibitory neurons
throughout the brain, which could be a potential therapeutic target. Indeed, synaptic vesicle
transport is a known target of the ASMs levetiracetam and brivaracetam.*®

We confirmed that our GWAS-identified genes had significant overlap with monogenic epilepsy
genes. A similar convergence of common and rare variant associations has been observed for other
neurological neuropsychiatric conditions including schizophrenia® and ALS®.. The genes prioritized in
our GWAS signals also overlapped with known targets of current ASMs* and we have provided a list
of other drugs that directly target these genes. Moreover, using a systems-based approach?® we
highlight drugs that are predicted to be efficacious when repurposed for epilepsy, based on their
ability to perturb function and abundance in gene expression. Insights from GWAS of epilepsy have
the potential to accelerate the development of new treatments via the identification of promising
drug repurposing candidates for clinical trials.5? We anticipate that follow-up studies of the
highlighted drugs in this study could show clinical efficacy in epilepsy treatment.

In summary, these new data reveal markedly different genetic architectures between the milder and
more common focal and generalized epilepsies, provide novel biological insights to disease aetiology
and highlight drugs with predicted efficacy when repurposed for epilepsy treatment.

Methods

Ethics statement

Local institutional review boards approved study protocols at each contributing site. All study
participants provided written, informed consent for use of their data in genetic studies of epilepsy.
For minors, written informed consent was obtained from their parents or legal guardian.

Sample and phenotype descriptions

This meta-analysis combines previously published datasets with novel genotyped cohorts.
Descriptions of the 24 cohorts included in our previous analysis can be found in the Supplementary
table 6 of that publication.? Here we included 5 novel cohorts (Supplementary table 1), comprising
14,732 epilepsy cases and 22,362 controls, resulting in a total sample size of 29,944 cases and 52,538
controls. Classification of epilepsy was performed as described previously.* In brief, we assigned
people with epilepsy into focal epilepsy, genetic generalized epilepsy (GGE) or unclassified epilepsy.
‘All epilepsy’ was the combination of GGE, focal and unclassified epilepsy. Where possible, we used
EEG, MRI and clinical history to further refine the subphenotypes: juvenile myoclonic epilepsy (JME),
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childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), generalized tonic-clonic seizures
alone (GTCSA), non-lesional focal epilepsy, focal epilepsy with hippocampal sclerosis (HS) and focal
epilepsy with lesion other than HS.

Genotyping, quality control and imputation

Subjects were genotyped on single nucleotide polymorphism (SNP) arrays, see Supplementary table
1 for an overview of genotyping in novel cohorts. Quality control (QC) was performed separately for
each cohort. Prior to imputation, data from the Janssen, Austrian, Swiss, Norwegian, and BPCCC
cohorts were cross-referenced to the HRC panel to ensure SNPs matched in terms of strand, position,
and ref/alt allele assignment. Additionally, SNPs were removed if they were absent in the HRC panel,
if they had a >20% allele frequency difference with the HRC panel, or if any AT/GC SNPs had
MAFs>40%, using tools available from https://www.well.ox.ac.uk/~wrayner/tools/ . Data were then
imputed using the the Wellcome Sanger Institutes’ imputation server
(https://imputation.sanger.ac.uk/), using EAGLE v2.4.1% for phasing, and the Positional Burrows
Wheeler Transform algorithm®* for imputation. The Haplotype Reference Consortium (HRC)
reference panel rl.1 was used as a reference for imputation®, Post-imputation, SNPs with an INFO
score of <0.9 were removed. The high-INFO SNPs were then converted back to PLINK format and
once-again QC'd for genotype coverage (>0.98), minor allele frequencies (>5%) and Hardy-Weinberg
Equilibrium violations (p>10-*), following previously described methodologies®. We removed variants
<5% MAF in these 5 cohorts for QC reasons, and note there will be a corresponding loss in study
power for the ‘focal’ and “all epilepsy' epilepsy analysis.

QC for the Epi25 cohort was performed using a similar in-house pipeline. Samples were split by
ethnicity based on principal component analysis. Pre-imputation QC included filtering of SNPs with
call rate (<98%), differential missing rate, duplicated and monomorphic SNPs, SNPs with batch
association (p<10+), violation of Hardy-Weinberg Equilibrium (p<10-1°). Sample filtering included
removal of outliers (>4 SD from mean) of heterozygous/homozygous ratio, removal of one of each
pair of related samples (proportion identity-by-descent >0.2) and removal of samples with
ambiguous or non-matching genetically imputed sex. Furthermore, 3,180 duplicates between the
Epi25 cohort and the previously published genome-wide mega-analysis were identified based on
genotype, and were removed from the Epi25 cohort. Of the 3,180 duplicates, 1226 were GGE and
1402 focal epilepsy. Genotypes were imputed on the Michigan imputation server, using the
Haplotype Reference Consortium v1.1 (n=32470) reference panel for subjects of European and Asian
ancestry, and the 1000 Genomes Phase 3 v5 (n=2504) reference panel for subjects of African
ancestry. Default imputation parameters and pre-imputation checks were used. Imputed dosages
were used for subsequent analyses, filtering on imputation INFO>0.3 and minor-allele frequency
>1%.

Genome-wide association analyses

GWAS of the Janssen Pharmaceuticals, Swiss GenEpa, Norwegian GenEpa and Austrian GenEpa
cohorts was performed as a mega-analysis, as described previously.* GWAS of the Epi25 cohort was
performed with a generalized mixed model using SAIGE v0.38.%6 SAIGE was performed in two steps:
(1) fitting the null logistic mixed model to estimate the variance component and other model
parameters; (2) testing for the association between each genetic variant and phenotypes by applying
SPA to the score test statistics. For step 1, SNPs were filtered on call rate >0.98 and MAF >5%, and
SNPs were pruned to obtain approximate independent markers (window size of 100 kb and R2>0.3),
while including sex and the top 10 principal components as covariates. Next, we performed P-value
based fixed-effects meta-analyses with METAL®’ for each of the main phenotypes (all, GGE, and focal
epilepsy), as well as the subphenotypes, weighted by effective samples sizes (Nef

=4/(1/Ncases + 1/Ncontrois)) to account for case-control imbalance. We performed trans-ethnic and
European-only meta-analyses for the main phenotypes, and restricted the subphenotype analyses to
Europeans only, due to limited sample size in other ethnicities. We included all SNPs (~4.9 million,
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MAF>1%) that were present in at least the previous mega-analysis and the Epi25 dataset, which
together account for 88% of the total sample size. We calculated genomic inflation factors (A), mean
x% and LD score regression intercepts to assess potential inflation of the test statistic. Since A is
known to scale with sample size, we also calculated A1000, which is A corrected for an equivalent
sample size of 1000 cases and 1000 controls.5® We limited these analyses to subjects of European
ancestry, since LD-structure depends on ethnicity and Europeans constituted 92% of cases.

Data sources for the Biobank and deCODE genetics GWAS

Summary statistics for epilepsy GWAS were obtained from three population biobanks; UK
Biobank,®® Biobank Japan,”®’! Finngen release R6,”> and from deCODE genetics’ (Iceland). The
biobank Japan, Finngen and deCODE genetics epilepsy cases were further assigned into either ‘focal’
or ‘generalized’ epilepsy (see below), whereas the UK Biobank samples were not subdivided based on
seizure localisation, as the relevant clinical details were unavailable to facilitate an accurate
subdivision (see Supplementary table 10 for sample sizes per biobank and deCODE genetics). Control
data were population matched samples with no history of epilepsy.

Fixed-effects meta-analyses were conducted using METAL®, weighted by effective sample size (N
=4/(1/Ncases + 1/Ncontrois)) to account for case-control imbalance.

UK Biobank: We identified people with epilepsy from the UK Biobank using an analysis of self-
reported data, inpatient hospital episode statistics (HES), death certificate diagnostic data and
primary care diagnostic data as described elsewhere.”* This allowed us to interrogate the evidence
available to support a diagnosis of epilepsy rather than relying purely on UK Biobank generated data
fields 131048 and 13049 based on ICD-10 G40 mapping.

FinnGen: Epilepsy was determined with ICD-10 G40, ICD-9 345, ICD-8 345 and Social Insurance
Institution of Finland (KELA) code 111. Exclusion criteria were ICD-9 3452/3453 and ICD-8 34520. GGE
was determined with ICD-10 G40.3, ICD-9 345[0-3] and ICD-8 34519. Exclusion criteria were ICD-8
34511. Focal epilepsy was determined with ICD-10 G40.0, G40.1, G40.2, ICD-9 345[45] and ICD-8
3453.

DeCode genetics: Epilepsy was determined with ICD-10 G40 and ICD-9 345 excluding 3452/3453.
GGE with ICD-10 G40.3/G40.4/G40.6/G40.7 or ICD-9 3450/3451/3456, and focal epilepsy with ICD-10
G40.0/G40.1/G40.2 or ICD-9 3454/3455.

Biobank Japan: Cases were classified into "Broad_Epilepsy", being any form of epilepsy;
"Idiopathic_Epilepsy", being epilepsy with onset under 40 years and no known cause; or
"Idiopathic_Focal_Epilepsy" and "Idiopathic_Generalized_Epilepsy", where focal and generalized
syndromes could be ascertained.

Control data were population matched samples with no history of epilepsy. GWAS fixed-effects
meta-analyses were conducted using METAL®. To account for case-control imbalance the effective
sample size for each cohort was calculated as Neft = 4/(1/Ncases + 1/Neontrois)). GWAS Manhattan plots
were generated using the ggman R package’. Genome-wide significant loci were mapped onto
genes using the FUMA web platform?2,

We performed three meta-analyses. As a primary analysis, we meta-analysed all non-biobank
samples, then we meta-analysed only biobank/deCODE genetics samples and finally performed a
combined meta-analysis of biobank/deCODE genetics and non-biobank samples.
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Pleiotropy analysis

ASSET’® is a meta-analysis-based pleiotropy detection approach that identifies common or shared
genetic effects between two or more related, but distinct traits. We used ASSET with a genome-wide
significance level of @=5x10%. We applied ASSET to the subset of European samples, comprising 6952
(3244+3708) GGE cases and 14,939 (5344+9095) focal epilepsy cases from the Epi25 and our
Consortium as well as 42,434 partially overlapping controls from both consortia. Note that ASSET
accounts for sample overlap in the analysis. Effect sizes, standard errors and the effective sample
sizes estimated were from the main meta-analysis.

HLA association

Given the prior association of the HLA with autoimmune epilepsy””-78, we included a specific analysis
of the HLA. HLA types and amino acid residues were imputed using CookHLA software,? with the
1000 Genomes Phase 3 used as a reference panel.” Samples were grouped by genetic ancestry for
imputation.

Following imputation, association analysis was conducted using the HLA Analysis Toolkit (HATK).2°
Three phenotypes were analysed: ‘all epilepsy’, ‘focal epilepsy’ and ‘GGE’. Samples from the ILAE and
Epi25 datasets were analysed separately and the association results were meta-analysed across
datasets using PLINK.8!

Functional annotation

We annotated all genome-wide significant SNPs and tagged SNPs within the loci. ANNOVAR was used
to retrieve the location and function of each SNP,%? the CADD score was used as a measure of
predicted deleteriousness®® and chromatin states were incorporated from the ENCODE and NIH
Roadmap Epigenomics Mapping Consortium.**** We used FUMA to define the independently
significant SNPs within loci; i.e., SNPs that were genome-wide significant but not in LD (R?<0.2 in
Europeans) with the lead SNP in the locus.

Gene mapping

To map genome-wide significant loci to specific genes, we used FUMA!® with the same parameters as
published previously.* We defined genome-wide significant loci as the region encompassing all SNPs
with P<10 that were in LD (R%>0.2) with the lead SNP (i.e., the SNP with the strongest association
within the region). We used a combination of positional mapping (within 250 kb from the locus),
eQTL mapping (SNPs with FDR corrected eQTL P<0.05 in blood or brain tissue) and 3D Chromatin
Interaction Mapping (FDR p <10 in brain tissue).

Genome-wide gene based association study and gene-set analyses

We performed the genome-wide gene based association study (GWGAS) using default settings of
MAGMA v1.08, as implemented in FUMA, which calculates an association P-value based on all the
associations of all SNPs within each gene in the GWAS.'® Based on these GWGAS results, we
performed competitive gene-set analyses with default MAGMA settings, using 15,483 default gene
sets and GO-terms from MsigDB. In addition, we specifically assessed 18 curated gene-sets involving
different synaptic functions.?

Transcriptome wide association study

Transcriptome wide association studies (TWAS) were performed with FUSION v3, with default
settings.?’ We imputed gene expression based on our European-only GWAS (since the method relies
on LD reference data) eQTL data from the PsychENCODE consortium, which includes dorsolateral
prefrontal cortex tissue from 1,695 human subjects.?*
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Summary-data-based Mendelian Randomization

Summary-data-based Mendelian Randomization (SMR) v1.03 is an additional method to assess the
association between epilepsy and expression of specific genes.?? SMR tests whether the effect size of
a SNP on epilepsy is mediated by expression of specific genes. We performed SMR analyses with
default settings, using the MetaBrain expression data as reference; a new eQTL dataset including
2,970 human brain samples.®

Sex-specific analyses

We performed a GWAS as described above for all epilepsy (13,889 female cases and 19,676 female
controls; 12,259 male cases and 18,645 male controls) and GGE (3,946 female cases and 19,676
female controls; 2,603 male cases and 18,645 male controls) separately for subjects of either sex,
after which we performed fixed-effects meta-analyses with METAL to merge the different cohorts.
We performed meta-analyses between the male and female GWAS with GWAMAS®® to assess
heterogeneity of effect sizes between sexes and gender-differentiated associations.?

Gene prioritization

We combined 10 methods to prioritize the most likely biological candidate gene within each
genome-wide significant locus. For each gene in each locus, we assessed the following criteria:

- Missense: we assessed whether the SNPs tagged in the genome-wide significant locus
contained an exonic missense variant in the gene, as annotated by ANNOVAR.

- TWAS: we assessed whether imputed gene expression was significantly associated with the
epilepsy phenotype, based on the FUSION TWAS as described above, Bonferroni corrected
for each mapped gene with expression information.

- SMR: we assessed whether the gene had a significant SMR association with the epilepsy
phenotype, based on the SMR analyses as described above, Bonferroni corrected for each
mapped gene with expression information.

- MAGMA: we assessed whether the gene was significantly associated with the epilepsy
phenotype through a GWGAS analysis, Bonferroni corrected for each mapped gene.

- PoPS: we calculated the Polygenic Priority Score (PoPS)®’; a novel method that combines
GWAS summary statistics with biological pathways, gene expression, and protein-protein
interaction data, to pinpoint the most likely causal genes. We scored the gene with the
highest PoPS score within each locus.

- Brain expression: we calculated mean expression of all brain and non-brain tissues based on
data from the Genotype-Tissue Expression (GTEX) project v8% and assessed if the average
brain tissue expression was higher than the average expression in non-brain tissues.

- brain-coX: we assessed whether genes were prioritized as co-expressed with established
epilepsy genes in more than a third of brain tissue resources utilized, using the tool brain-coX
(Supplementary figure 17).%°

- Target of AED: we assessed whether the gene is a known target of an anti-epileptic drug, as
detailed in the drug-gene interaction database (www.DGidb.com; accessed on 26-11-2021)
and a list of drug targets from a recent publication (Supplementary data 9).°°

- Knockout mouse: we assessed whether a knockout of the gene in a mouse model results in a
nervous system (phenotype ID: MP:0003631) or a neurological/behaviour phenotype
(MP:0005386) in the Mouse Genome Informatics database (http://www.informatics.jax.org;
accessed on 26-11-2021).

- Monogenic epilepsy gene: we evaluated whether the gene is listed as a monogenic epilepsy
gene, in a curated list maintained by the Epilepsy Research Centre at the University of
Melbourne (Supplementary data 9).
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Similar to previous studies,*°* we scored all genes based on the number of criteria being met (range
0-10; all criteria had an equal weight). The gene with the highest score was chosen as the most likely
implicated gene. We implicated both genes if they had an identical, highest score.

Long distance expression regulation of BCL11A

Most eQTL databases, like PsychENCODE and MetaBrain, restrict eQTL analyses to 1 MB distance
between genes and SNPs. To specifically assess the hypothesis of long-distance regulation of BCLI1A
by the lead SNPs in the 2p16.1 epilepsy locus, we manually interrogated the MetaBrain database®
without distance restraints. Next, we calculated the association between the 3 lead SNPs in the locus
(rs11688767, rs77876353, rs13416557) with BCL11A expression.

Heritability analyses

We calculated SNP-based heritability on the European-only GWAS using LDAK with default settings
and pre-calculated LD weights from 2000 European (white British) reference samples under the BLD-
LDAK SumHer model, as recommended for human traits.®? SNP based heritabilities were converted to
liability scale heritability estimates, using the formula: h2L=h20%K2(1-K)2/p(1-p)*Z2, where K is the
disease prevalence, p is the proportion of cases in the sample, and Z is the standard normal density
at the liability threshold. To decrease downward bias, we performed these calculations based on the
effective sample sizes (see calculation above), after which p=0.5 can be assumed,®® with the same
population prevalences as our previous study.*

The total amount of causally associated variants (i.e., variants with nonzero additive genetic effect)
underlying epilepsy risk was calculated by a causal mixture model (MiXeR).3® MiXeR utilizes a
likelihood-based framework to estimate the amount of causal SNPs underlying a trait, without the
need to pinpoint which specific SNPs are involved. Furthermore, MiXeR allows for power calculations
to assess the required sample size to explain a certain proportion SNP-based heritability by genome-
wide significant SNPs.

Enrichment analyses

We used MAGMA (as implemented in FUMA) to perform tissue and cell-type enrichment. First, we
assessed whether our GGE GWAS was enriched for specific tissues from the GTEx database. Similarly,
we assessed enrichment of genes expressed in the brain at 11 general developmental stages, using
data from the BrainSpan consortium. Next, we assessed whether GGE was associated with specific
cell types, by cross-referencing two single-cell RNA sequencing databases of human developmental
and adult brain samples. The PsychENCODE database contains RNA sequencing data from 4,249
human brain cells from developmental stages and 27,412 human adult brain cells.®® The Zhong
dataset (GSE104276) contains RNA sequencing data from 2,309 human brain cells at different stages
in development.®> We performed FDR correction across datasets to assess which cell types were
significantly associated with GGE. As sensitivity analysis, we performed stratified LDSC with default
settings using the cell-specific gene expression weights from the PsychENCODE consortium to
compare GABAergic with glutamatergic neuron enrichment.®®

Genetic overlap with other diseases

Using the FUMA web application, we searched the GWAS Catalog for previously reported
associations with P< 5x108 for SNPs at all 26 genome-wide significant loci.

Genetic correlations between all, focal epilepsy and GGE and other traits were computed with LDSC,

using default settings. Traits highlighted by the GWAS catalog analysis and/or those with established

epilepsy comorbidity were prioritized and pursued provided recent summary statistics were available
for public download (Supplementary table 11).
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We used a recently described bivariate causal mixture model to quantify polygenic overlap between
GGE with intelligence and autism spectrum disorder (ASD). Publicly available summary statistics from
intelligence (n=269867) and ASD GWAS (n=46350) were downloaded,®” 8 after which bivariate MiXeR
was run with default settings.

Drug-repurposing analyses

We utilized a recently developed method that uses the GWAS for a disease to predict the relative
efficacy of drugs for the disease.*> We applied this method to the all epilepsy and GGE GWAS results,
using (1) imputed gene expression data from the FUSION analyses, as described above, and (2) gene-
based p-values from MAGMA (see above), with default settings. We predicted the relative efficacy of
1343 drugs in total (Supplementary data 8). We determined if our predictions correctly identify (area
under receiver operating characteristic curve) and prioritize (median rank) known clinically-effective
antiseizure drugs, as previously described.*” We determined the statistical significance of drug
identification and prioritization results by comparing the results to those from a null distribution
generated by performing 10° random permutations of the scores assigned to drugs.

Data availability

The GWAS summary statistics data that support the findings of this study (for both trans-ethnic and
European-only analyses) are available at https://www.epigad.org/.
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Supplementary Material

Supplementary Tables

Supplementary table 1. Overview of novel cohorts, genotyping array, relevant ethics/IRB approvals, ethnicity and sample
sizes. HK: Hong Kong; JPN: Japan. These details for previously published cohorts included in this current manuscript can be

found in the supplements of our 2018 study.!

Cohort G:?ac;gf:g Ethics ?lt'):{mBmittee Ethnicity Phenotype Cases
All epilepsy 11544
GGE 3153
European Focal 4523
Unclassified 3868
Control 13121
All epilepsy 474
GGE 91
European:
Finnish Focal 314
Unclassified -
Control 986
Massachusetts All epilepsy 612
General Brigham
llumina (formerly Partners) GGE 276
Epi257 Infinium GSA Institutional Review African Focal 230
Board Unclassified 106
(2012P000788)
Control 3838
All epilepsy 839
GGE 55
Asian: HK Focal 639
Unclassified 145
Control 594
All epilepsy 256
GGE 63
Asian: JPN Focal 4
Unclassified 189
Control 211
Regional All epilepsy 201
committees for Focal 201
. medical and health oca
NGonglzn HL(J:)TSZ\G/:O_ research ethics, European
P Norway (REK) Control -
(reference number:
S-01271)
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Ethics committee All epilepsy 231
llumina of the Canton of Focal 231
Swiss GenEpA Human610- Zéf(ﬂ.ckr:(( Kantonale European

Quadv1 Ixkommission,
Kanton Zirich") Control 259
All epilepsy 410

Janssen ' .

Pharmaceuticals lllumina 1M NA European Focal 410
Control 3016
llumina Et(r)'nfltiﬁecl\c;r:g?égzlee All epilepsy 165
Austrian GenEpA | Human CNV University of European Focal 165
370 duo Vienna Control 337

" Please see Supplementary Information below for detailed descriptions of control cohorts used for Epi25 analyses.

* The Janssen clinical studies were carried out in accordance with the ethical principles outlined in the Declaration of Helsinki,
Good Clinical Practices guidelines, and applicable regulatory requirements. The study protocols were approved by the local,
regional, or central Institutional Review Board (IRB) or Independent Ethics Committee (IEC) overseeing the numerous clinical
sites involved in multi-centre pharmaceutical trials.

Supplementary table 2. Overview of number of cases and controls, stratified by phenotype and ethnicity.

Phenotype | Sub-phenotype description n EUR ASI AFR
GGE Generalized Epilepsy, not otherwise specified, with spike | 3352 3024 44 284
and wave EEG
Childhood Absence Epilepsy (CAE) 1072 1049 17
Juvenile Absence Epilepsy (JAE) 671 662 5
Juvenile Myoclonic Epilepsy (JME) 1813 1732 61 20
GTCS only, with spike and wave EEG 499 485 3 11
Subtotal | 7407 6952 118 | 337
Focal Focal Epilepsy, not otherwise specified 3981 3688 140 153
Focal Epilepsy, documented lesion negative 6367 5778 466 123
Focal Epilepsy, documented hippocampal sclerosis (HS) 1375 1260 107 8
Focal Epilepsy, documented lesion other than HS 4661 4213 416 32
Subtotal | 16384 | 14939 | 1129 | 316
Unclassified | Epilepsy, not otherwise specified 6153 5668 379 106
Cases | 29944 | 27559 | 1626 | 759
Controls | 52538 | 42436 | 3680 | 6422
Total subjects | 82482 | 69995 | 5306 | 7181

Supplementary table 3. Summary of all genome-wide significant loci including genomic position and independent significant
SNPs. We defined the locus position as the region encompassing all SNPs with P<10-4 that were in LD (R?>0.2) with the lead

SNP.
Number of

Ph Locus . independent Inc_:lep_e n dent

enotype name Locus position (hg19) Lead SNP significant significant

9 SNPs
SNPs

All epilepsy | 2p16.1 chr2:57917222-58505679 rs13032423 1 rs13032423
_ rs59237858;

2924.3 chr2:166716305-167124221 rs59237858 2 161960242

9921.13 chr9:76297313-76625089 rs4744696 1 rs4744696

10g24.32 | chr10:103493226-103989812 rs3740422 1 rs3740422

GGE 1943 chr1:237846053-237908911 rs876793 1 rs876793
2
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rs11688767;
2p16.1 chr2:57917222-58756729 rs11688767 3 s77876353;
rs13416557
2g121 | chr2:104056769-104481325 | rs62151809 1 162151809
20243 | chr2:166818404-166994996 | rs11890028 1 rs11890028
2g32.2 | chr2:191504467-191710069 | rs6721964 1 rs6721964
3p223 | chr3:36218075-36345769 rs9861238 1 19861238
3p21.31 |  chr3:50184538-50421081 15739431 1 15739431
4p15.1 chrd:31107765-31204950 rs1463849 1 151463849
50223 | chr5:113837198-114440966 | rsd4596374 1 r$4596374
5031.2 | chr5:136459562-136684519 | rs2905552 1 1$2905552
6022.33 | chr6:128302874-128333682 | rs13219424 1 113219424
7p14.4 chi7:41334517-41411165 137276 1 1537276
9g21.32 |  chr9:86320233-86694759 152780103 1 152780103
1092432 | chr10:103493226-103989812 | rs11191156 1 rs11191156
1291313 | chri2:52319584-52348250 | rs114131287 2 rrssfgfg?fgé
16p13.3 |  chri6:7285674-7442293 1$62014006 1 1562014006
17p13.1 chr17:8036060-8219478 r$2585398 1 r$2585398
17q21.32 |  chr17:45938105-46554456 | rs16955463 1 116955463
19p133 |  chr19:2102543-2136680 r$75483641 1 175483641
21g214 | chr21:21655062-21719113 rs1487946 1 151487946
21g22.1 | chr21:32036541-32203274 17277479 1 17277479
2291332 | chr22:48615721-48639993 r$469999 1 r$469999
CAE 2p16.1 chr2:57942325.58484172 r$12185644 1 rs12185644
JME 4p12 chrd:46250605-46397617 117537141 1 117537141
8g231 | chr8:109733213-109922163 | rs3019359 1 13019359
16p11.2 | chr16:30603521-31275374 11046276 1 11046276

Supplementary table 4. Results from ASSET pleiotropy analyses for the 4 all epilepsy loci. The associated phenotype/s in
ASSET reflect the phenotypes driving the ASSET signal, which could be both GGE individually. *Evidence for pleiotropy
between GGE and Focal epilepsy.

SNP (Risk allele) | Chr. | Locus ':E‘;’g'é')e P'(‘,':aE';'e ( ASSRET) (:';g'é'% ?:E%EIE&“Z'?
*1$60055328(C) 2 | 20243 | 1.04e7 | 9627 1.07 | 28e-10 | GGE,FE
*1s4744696(G) 9 | 9921.13 | 3.07e7 | 8.63e5 0.93 4.4e-8 GGE, FE
rs13032423(G) 2 | 2p161 | 288e-17 | 2933 085 | 89e-17 | GGE only

rs3740422(G) 10 | 10g24.32 | 1.02e-13 | 4.07e-3 115 | 2.48e-12 | GGE only
3
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Supplementary table 5. Heritability enrichment of 26 functional categories, as assessed with LDAK heritability enrichment

analyses. Statistical significance (in bold) is defined as P<0.05/26=0.0019.

Annotation Share SD Expected | Enrichment sD Z-score P-value
Coding_UCSC 0.069948 | 0.027717 | 0.016079 4.350169 1.723782 | 1.943499 | 0.051956
Conserved_LindbladToh 0.132451 | 0.042109 | 0.028542 4.640618 1.475346 | 2.467637 | 0.013601
CTCF_Hoffman 0.017421 | 0.041158 | 0.023919 0.728312 1.720706 | 0.157893 | 0.874541
DGF_ENCODE 0.166208 | 0.095467 | 0.138091 1.203615 | 0.691336 | 0.294524 | 0.768358
DHS_Trynka 0.139003 [ 0.100726 | 0.167956 0.827614 0.599718 | 0.287445 | 0.773772
Enhancer_Andersson -0.00046 | 0.018624 | 0.004432 -0.104203 4.202414 | 0.262754 | 0.79274
Enhancer_Hoffman 0.065675 | 0.041653 | 0.042964 1.528598 0.969479 | 0.545239 | 0.585589
FetalDHS_Trynka 0.124737 | 0.077198 | 0.085617 1.456925 0.901664 | 0.506758 | 0.612325
H3K27ac_Hnisz 0.466327 | 0.030543 | 0.393028 1.186496 0.077713 | 2.399804 | 0.016404
H3K27ac_PGGC2 0.350543 | 0.056076 | 0.272914 1.284446 0.20547 | 1.384368 | 0.166246
H3K4me1_Trynka 0.578187 | 0.066915 | 0.428916 1.34802 0.156009 | 2.230769 | 0.025696
H3K4me3_Trynka 0.229663 | 0.052572 | 0.137162 1.674388 0.38328 | 1.759518 | 0.07849
H3K9ac_Trynka 0.253873 | 0.05353 | 0.129088 1.966671 0.414683 | 2.331108 | 0.019748
Intron_UCSC 0.45682 | 0.026361 | 0.394342 1.158437 0.066848 | 2.370108 | 0.017783
PromoterFlanking_Hoffman 0.021395 | 0.026356 | 0.008596 2.488946 3.066092 | 0.485617 | 0.627239
Promoter_UCSC 0.083972 | 0.035858 | 0.048118 1.74512 0.745213 | 0.999875 | 0.317371
Repressed_Hoffman 0.41399 0.06557 0.452761 0.914367 0.144823 | 0.591294 | 0.554323
SuperEnhancer_Hnisz 0.242302 | 0.019093 | 0.169819 1.42682 0.112434 | 3.796183 | 0.000147
TFBS_ENCODE 0.225196 | 0.07818 | 0.133056 1.692483 0.58757 | 1.178554 | 0.238576
Transcr_Hoffman 0.420967 | 0.057675 0.35335 1.191361 0.163225 | 1.172376 | 0.241046
TSS_Hoffman 0.046568 | 0.02996 | 0.018755 2.482921 1.5974 0.928334 | 0.353234
UTR_3_UCSC 0.013363 | 0.017055 | 0.011944 1.118787 1.427882 | 0.083191 0.9337
UTR_5_UCSC 0.02092 | 0.016217 | 0.005928 | 3.529243 | 2.735834 | 0.924487 | 0.355233
WeakEnhancer_Hoffman -0.03501 | 0.039502 | 0.021357 -1.63943 1.849623 | 1.42701 | 0.153577
Super_Enhancer_Vahedi 0.029165 | 0.008124 | 0.021624 1.348773 | 0.375709 | 0.928306 | 0.353249
Typical_Enhancer_Vahedi 0.026998 | 0.011727 | 0.022194 1.216444 0.528371 | 0.409644 | 0.682067

Supplementary table 6. Estimation of inflation factor and the LD-score regression intercept stratified by phenotype. A:
genomic inflation factor, Ai000: genomic inflation factor corrected for an equivalent study of 1000 cases and 1000 controls.

Phenotype A A1goo Mean x2 LDSC intercept
All epilepsy 1.25 1.01 1.27 1.10
Focal epilepsy 1.17 1.01 1.17 1.10
GGE 1.26 1.02 1.35 1.04

Supplementary table 7. SNP-based heritabilities as calculated by LDAK, with the BLD-LADK model. Observed-scale heritability
is calculated using effective-sample sizes, after which it was converted to liability-scale heritability using the same
prevalence estimates as our previous GWAS.!

Phenotype cases controls K: Obss:ar:;ed- Liabi_l ity _st_:ale
prevalence heritability heritability
All epilepsy 27559 42436 0.005 0.0145 0.3733 0.177 (0.155 - 0.199)
Focal epilepsy 14939 42436 0.003 0.0091 0.3733 0.160 (0.140 - 0.180)
GGE 6952 42436 0.002 0.0063 0.9955 0.395 (0.343 - 0.446)
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JME 1728 | 37339 0.00035 | 0.0013 21135 0.635 (0.510 - 0.760)
JAE 662 37339 0.00015 | 0.0006 3.3528 0.900 (0.633 - 1.166)
CAE 1049 | 37339 0.00015 | 0.0006 3.0427 0.816 (0.638 - 0.995)
GTCSA 485 37339 0.0002 | 0.0008 1.7824 0.496 (0.140 - 0.853)
Focal HS 1260 | 37339 0.00075 | 0.0026 1.4020 0.472 (0.294 - 0.649)
Focal other 4213 | 37339 0.00135 | 0.0044 0.6778 0.251 (0.188 - 0.313)

F:):;ngln 5778 37339 0.0009 0.0031 0.2452 0.085 (0.046 -0.124)

Supplementary table 8. Top 20 drugs that are licensed for conditions other than epilepsy, but are predicted to be efficacious
for GGE, and have published evidence of antiseizure efficacy from multiple published studies and in multiple animal models.
We do not advise immediate use of these drugs for people with epilepsy, prior to any clinical trials. AUD: audiogenic; electro:
maximal electroshock; Kin: kindling; PTZ: pentylenetetrazol. Drugs are listed in alphabetical order.

Drug Current indication Studies’ PubMed IDs Models
Ao N - 11883156, 14671677, 16844276, Pilo, PTZ,
spirin Pain; pyrexia; antiplatelet 20765917, 28060522 Electro
Biperiden Parkinson's disease 738231, 2858579 E(')?ﬁgf’
Hypertension; chronic PTZ AUD
Captopril heart failure; diabetic 2824310, 22107891, 25573423 ther ’
nephropathy
. Depression; panic 21531632, 21962757, 22429158, KA, PILO,
Citalopram disorder 22578701 PTZ
Leprosy; dermatitis )
Dapsone herpetformis 1817960, 7970237, 23729301 KA, Kin
1456842, 2079649, 2574061, 2666123,
2676564, 2806362, 3044591, 3374269, KA, PTZ,
o 3380326, 3768695, 8058587, 8094234, Electro,
Dextromethorphan | Pain; addiction; cough | g40509o" 8856734, 9179861, 9187330, | AUD, Kin,
10080248, 11182165, 12479976, other
12586225, 15084442, 15723099
Diltiazem Angina; hypertension | 2272645, 7681002, 8152336, 22661180 | g P
Doxepin Depression; pruritus 1456842, 19443935 P12, Electro,
Depression; bulimia 7999524, 8149989, 8384110, 8538363, _—
Fluoxetine nervosa; obsessive- 8816259, 9696406, 15680343, 16531634, AUD otr;er
compulsive disorder 17215106, 23530452, 25754610 ’
Isradipine Hypertension 8118482, 9595291 Electro, AUD
Lovastatin Hypercholesterolaemia 21224519, 23253428, 23352156 KA, AUD
NICardlplﬂE Angina; hypertension 7681 002’ 8152::3167'482857921866, 10608279’ r((lﬁ, st‘:”]é;’
1628595, 1698518, 1747472, 1865996,
o . 1946038, 2085727, 2272645, 2713089, KA, PTZ,
Nifedioine R:nr?;ﬁ’:yﬁ?aﬁiﬁ;%n- 2744396, 7681002, 7694769, 8054599, Electro,
P Y o atl?r o™ | 8118482, 8152336, 8474621, 8707372, AUD, Kin,
P 12126870, 12536054, 16573711, other
20113637, 22661180, 22801414
1628595, 1698518, 2272645, 2310938,
2463174, 2662221, 3784769, 7681002,
8152336, 8156970, 8156971, 8707372, KA, Pilo,
Nimodioi Subarachnoid 9389584, 9570719, 9689485, 10683952, | PTZ, Electro,
imodipine haemorrhage 12372903, 12536054, 12539272, AUD, Kin,
15123017, 17193898, 17344939, other
19761108, 23761887, 25225705,
25445375
Orphenadrine Parkinsonism 2624511, 19815957 PTZ, Electro
- . . PTZ, Electro,
Pimozide Schizophrenia 2272645, 6141554, 7875556 AUD, other
5
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Pioglitazone Diabetes mellitus 20599832, 22436324, 27527983 PTZ, other
Quetiapine S‘:hizgzgizﬁéra"im 21168466, 26188240 PTZ, AUD
Tamoxifen an O%rjzf;;amsgmy 12139106, 24903749 Electro, Kin

Thalidomide im;'{?n”js”l}pﬂf::‘;z; 17449064, 21592729, 24735834 PTZ, Kin

Supplementary table 9. Genetic correlations between our main GWAS and Biobank GWAS (including deCODE genetics). P-
values are shown, with standard errors in brackets.

Primary All epilepsy Primary Focal

Primary GGE

Biobank All epilepsy

0.74 (0.106) 0.5525 (0.1781)

0.7036 (0.0879)

Biobank Focal

0.5835 (0.1596) 0.7637 (0.2505)

0.4331 (0.1275)

Biobank Gen

0.6231 (0.1434) 0.307 (0.2176)

0.6521 (0.1373)

Supplementary table 10

. Sample sizes of the included Biobanks and deCODE genetics.

Cohort All epilepsy Focal GGE Controls

UK Biobank 7,006 - - 179,763
Japan Biobank 612 145 283 176,694
DECODE genetics 3,762 405 1,342 335,389
FinnGen 10,354 5,922 1,160 332,143
Total 21,734 6,472 2,785 1,023,989

Supplementary table 11.

Phenotypes and associated publications assessed for genetic correlations with epilepsy using LDSC.

Broad trait Trait Publication Notes
Psychiatric Bipolar disorder Mullins et al 20212
Psychiatric ADHD Demontis et al 2019°
Psychiatric ASD Grove et al 2019*
Psychiatric Schizophrenia Trubetskoy et al 20225
Psychiatric Depression Howard et al 20198 excz.SUaI'r:S’a:nd
Neurological Febrile seizures Skotte et al 20227
Neurological Parkinson's disease Nalls et al 20198 exc. 23andMe
Neurological Alzheimer's disease Wightman et al 2021° exc. 23andMe
Neurological Stroke Malik et al2018'°
Neurological Headache Meng et al 2018
I\/l-\i%?rl:r?'niﬁile/ Muttiple sclerosis |nternationglol\rfiléjlotirghemsg)e;g‘szis Genetics
Autoimmune Type 1 diabetes Chiou et al 202113
Autoimmune gﬁt::;;ca,:ggsss Morris et al 2016™
Cognitive Intelligence Savage, Jansen et a/ 2018'°
Sleep Insomnia Jansen et al 20191 exc. 23andMe
Smoking Ever smoked Karlsson Linnér et al 2019'7
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Metabolic Type 2 diabetes Mahajan et al 20188

Metabolic Coronary disease van der Harst, Verweij et al 20181°

Supplementary Figures
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Supplementary figure 1. Manhattan plots of epilepsy subphenotype GWAS. Chromosomal position is plotted on the X-axis
and -log10 transformed P-values are plotted on the Y-axis. A. juvenile myoclonic epilepsy (JME); B. childhood absence
epilepsy (CAE); C. juvenile absence epilepsy (JAE); D. generalized tonic-clonic seizures alone (GTCS); E. focal epilepsy due to
hippocampal sclerosis (focal HS); F. focal epilepsy with other lesion; G. lesion negative focal epilepsy.

112



1511688767

wen
a
. | 2
N it - i
L ‘ i e % &
iv ‘ 5 tH
? ol H
s - | do B i
. . & @ Top lens 310
t %Y allel we i o omgad ® Lo siey
s Y e . wete ot e © independent sgnticant S0y
-
9 -« R PR IC KT o SRR e - ST ~d. R
o T ——

[ —
T — ren cotrg gunes

o ¥ i ' )

i ' v -
| : L M 14 -
e o 2.5MB h
7 900,000 7,050,000 fmul c,:cmeu 5 58,100,000 50150 000 58.200 000 l:':ﬂ” ;amul 60,800,000 160,850,000

Enhancer BCL11A promoter

Supplementary figure 2. 3D chromatin interactions link the 2p16.1 locus with the promoter region of BCL11A. The upper
circus plot shows the 2p16.1 locus with GWAS P-values in the outer ring, with eQTL associations in green and HiC 3D
chromatin interactions in orange. The locuszoom below shows GWAS P-values with chromatin states and Hi-C chromatin
interactions below.
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Supplementary figure 3. Manhattan plots of HLA analysis for A) All Epilepsy, B) Focal Epilepsy, C) GGE, D) JME, E) Focal lesion
negative, F) Focal due to other lesion, G) Focal HS.
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Supplementary figure 4. Power analysis for GGE, using the MiXeR causal mixture model.?° The X-axis shows the current and
required sample size, and the Y-axis shows the corresponding explained variance by genome-wide significant SNPs at these
sample sizes. An explained variance of 100% corresponds to the identification of all SNPs that underlie GGE SNP-based
heritability.
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Supplementary figure 5. Heritability estimates and genetic correlations between epilepsy syndromes. The genetic correlation
coefficient was calculated with LDSC and is denoted by color scale from -1 (red) to +1 (blue). # rg out of bounds due to
phenotype not reaching significant heritability; * P < 0.05, ** P < 0.0024 (Bonferroni correction).

10

115



anjea-d 01 boj-

Supplementary figure 6. Tissue-type enrichment of broad tissue types, as calculated with MAGMA, ?! using data from the

Gene-Tissue Expression consortium (GTEx). The dotted line represents the significance threshold.
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Supplementary figure 7. Tissue-type enrichment of 54 tissues, including specific brain region

using data from GTEx. The dotted line represents the significance threshold.
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Supplementary figure 8. Enrichment of genes expressed in the brain at 11 general developmental stages, as calculated with
MAGMA,?! using data from the BrainSpan consortium. The dotted line represents the significance threshold.
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Supplementary figure 9. Cell-type enrichment analyses across datasets, as calculated with FUMA.?2 Two different single-cell
RNA sequencing datasets of human adult and developmental brain cells were assessed. Results from individual datasets are
displayed in A-D with significant associations (after FDR correction) in red. Significant cell types across datasets are
displayed in E, and significant cell-types after within dataset conditional analyses are displayed in F. Ex: excitatory neuron;
In: inhibitory neuron.
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Supplementary figure 10. Sex-specific GWAS of all epilepsy. The female-only is displayed at the top (n=13889 cases and
19676 controls) and male-only GWAS is displayed at the bottom (n=12259 cases and 18645 controls). We annotated genes

that were implicated by our gene prioritization analyses.
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Supplementary figure 11. Sex-specific GWAS of focal epilepsy. The female-only is displayed at the top (n=7175 cases and
19676 controls) and male-only GWAS is displayed at the bottom (n=6756 cases and 18645 controls).
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Supplementary figure 12. Sex-specific GWAS of GGE. The female-only is displayed at the top (n=3946 cases and 19676
controls) and male-only GWAS is displayed at the bottom (n=2603 cases and 18645 controls). We annotated genes that
were implicated by our gene prioritization analyses.
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Supplementary figure 13. GWAS traits each of the epilepsy genome-wide significant loci have been associated with indicated
by a purple cell. Prior trait associations were determined by a p < 5%10-8 GWAS Catalog entry for the same SNP, or SNPs in
high LD, as those reported in the epilepsy analysis.
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Supplementary figure 14. Bivariate MiXeR analyses?° showing the fraction of causal SNPs that are unique to GGE (blue), and
shared (grey) and unique to ASD (left) or intelligence (right). Rg: genetic correlation coefficient.
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Supplementary figure 15. Manhattan plots of Biobank-only GWAS of all (A), focal (B) and GGE (C). Chromosomal position is
plotted on the X-axis and -log10 transformed P-values are plotted on the Y-axis.
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Supplementary figure 16. Manhattan plots of meta-analysis combining the Biobanks with our primary GWAS of all (A), focal
(B) and GGE (C). Chromosomal position is plotted on the X-axis and -log10 transformed P-values are plotted on the Y-axis.
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Supplementary figure 17. Gene co-expression matrix produced by brain-coX?? for known (grey) and candidate (black)
epilepsy genes.

20

125



Supplementary References

1. International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide
mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common
epilepsies. Nat Commun 2018;9:5269.
2. Mullins N, Forstner AJ, O'Connell KS, et al. Genome-wide association study of more than
40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet
2021;53:817-829.
3. Demontis D, Walters RK, Martin J, et al. Discovery of the first genome-wide significant risk loci
for attention deficit’/hyperactivity disorder. Nat Genet 2019;51:63-75.
4. Grove J, Ripke S, Als TD, et al. Identification of common genetic risk variants for autism
spectrum disorder. Nat Genet 2019;51:431-444.
5. Trubetskoy V, Pardinas AF, Qi T, et al. Mapping genomic loci implicates genes and synaptic
blology in schizophrenia. Nature 2022;604:502-508.

Howard DM, Adams MJ, Clarke TK, et al. Genome-wide meta-analysis of depression identifies
102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci
2019;22:343-352.

7. Skotte L, Fadista J, Bybjerg-Grauholm J, et al. Genome-wide association study of febrile
seizures implicates fever response and neuronal excitability genes. Brain 2022;145:555-568.
8. Nalls MA, Blauwendraat C, Vallerga CL, et al. Identification of novel risk loci, causal insights,

and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies.
Lancet Neurol 2019;18:1091-1102.

9. Wightman DP, Jansen |E, Savage JE, et al. A genome-wide association study with 1,126,563
individuals identifies new risk loci for Alzheimer's disease. Nat Genet 2021;53:1276-1282.
10. Malik R, Chauhan G, Traylor M, et al. Multiancestry genome-wide association study of

520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet
2018;50:524-537.

11. Meng W, Adams MJ, Hebert HL, Deary IJ, McIntosh AM, Smith BH. A Genome-Wide
Association Study Finds Genetic Associations with Broadly-Defined Headache in UK Biobank
(N=223,773). EBioMedicine 2018;28:180-186.

12. International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map
implicates peripheral immune cells and microglia in susceptibility. Science 2019;365.

18. Chiou J, Geusz RJ, Okino ML, et al. Interpreting type 1 diabetes risk with genetics and single-
cell epigenomics. Nature 2021;594:398-402.

14. Morris DL, Sheng Y, Zhang Y, et al. Genome-wide association meta-analysis in Chinese and
European individuals identifies ten new loci associated with systemic lupus erythematosus. Nat Genet
2016;48:940-946.

15. Savage JE, Jansen PR, Stringer S, et al. Genome-wide association meta-analysis in 269,867
individuals identifies new genetic and functional links to intelligence. Nat Genet 2018;50:912-919.

16. Jansen PR, Watanabe K, Stringer S, et al. Genome-wide analysis of insomnia in 1,331,010
individuals identifies new risk loci and functional pathways. Nat Genet 2019;51:394-403.

17. Karlsson Linner R, Biroli P, Kong E, et al. Genome-wide association analyses of risk tolerance
and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic
influences. Nat Genet 2019;51:245-257.

18. Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant
resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 2018;50:1505-
1513.

19. van der Harst P, Verweij N. Identification of 64 Novel Genetic Loci Provides an Expanded
View on the Genetic Architecture of Coronary Artery Disease. Circ Res 2018;122:433-443.
20. Frei O, Holland D, Smeland OB, et al. Bivariate causal mixture model quantifies polygenic

overlap between complex traits beyond genetic correlation. Nat Commun 2019;10:2417.

21. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of
GWAS data. PLoS Comput Biol 2015;11:¢1004219.

22. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation
of genetic associations with FUMA. Nat Commun 2017;8:1826.

23. Freytag S, Burgess R, Oliver KL, Bahlo M. brain-coX: investigating and visualising gene co-
expression in seven human brain transcriptomic datasets. Genome Med 2017;9:55.

21

126



Supplementary information

Summary of external control datasets used in the Epi25 GWAS
FINRISK controls

Description:
The controls from FINRISK that contributed to the Epi25 GWAS study were part of the FINRISK inflammatory bowel disease

(1BD) cohort. The population-based FINRISK study has been followed up for IBD and other disease end-points using annual
record linkage with the Finnish National Hospital Discharge Register, the National Causes-of-Death Register and the
National Drug Reimbursement Register. Controls were chosen to have a high polygenic risk score for IBD without an IBD
diagnosis. A detailed description of the FINRISK cohort can be found at Borodulin et al (Borodulin, K., Tolonen, H., Jousilahti,
P., Jula, A., Juolevi, A., Koskinen, S., Kuulasmaa, K., Laatikainen, T., Mannisto, S., Peltonen, M., et al. (2017). Cohort Profile:
The National FINRISK Study. Int J Epidemiol.)

Acknowledgements/Funding:

The FINRISK controls were part of the FINRISK studies supported by THL (formerly KTL: National Public Health Institute)
through budgetary funds from the government, with additional funding from institutions such as the Academy of Finland,
the European Union, ministries and national and international foundations and societies to support specific research
purposes. Genotyping of FINRISK controls was supported by the Stanley Center for Psychiatric Research, Broad Institute,
Cambridge, MA. GSA data are available via an application through the THL Biobank portal https://thl-biobank.elixir-
finland.org/

Genomic Psychiatry Cohort (GPC)

Description:

The controls from GPC that were contributed to Epi25 study were a subset of the overall

control participants with no personal or family history of schizophrenia or bipolar disorder. All the samples were genotyped
on the GSA-MD v.1.0 at the Broad Institute. A detailed description of the GPC cohort can be found at Pato et al (Pato, M.T.,
Sobell, J.L., Medeiros, H., Abbott, C., Sklar, B.M., Buckley, P.F., Bromet, E.J., Escamilla, M.A., Fanous, A.H., Lehrer, D.S., et al.

(2013). The genomic psychiatry cohort: partners in discovery. Am J Med Genet B Neuropsychiatr Genet 162B, 306-312.)

Acknowledgements/funding:
The GPC controls were genotyped on the GSA-MD v1.0 by the Broad Genomics Platform with funding from NIH grant

U01MH105641 and the Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard.
Hong Kong Osteoporosis Study (HKOS)

Description:

The control samples were part of the follow-up study from the Hong Kong Osteoporosis Study (HKOS), which was described
elsewhere (Cheung et al 2018). Briefly, community-dwelling Southern Chinese were firstly recruited from public roadshows
in Hong Kong from 1995 to 2010. An extensive in-person follow-up study was initiated in 2015. At the in-person follow-up
visit, the study participants were required to complete a comprehensive self-reported questionnaire, comprising questions
related to their medical history, which were checked by experienced researchers or nurses based on a standard protocol.
Fasting blood samples were collected from the study participants and DNA was extracted from the sera samples. Study
participants without any history of epilepsy at the in-person follow-up in 2019 were included as controls of the epilepsy
project. The study protocol was approved by the Institutional Review Board of the University of Hong Kong and the Hospital
Authority Hong Kong West Cluster (Ref: UW 15-236). All HKOS participants provided informed consent for participation in
the study. (Cheung CL, Tan KCB, Kung AWC. Cohort Profile: The Hong Kong Osteoporosis Study and the follow-up study. Int J
Epidemiol. 2018 Apr 1,47(2):397-398f. doi: 10.1093/ije/dyx172. PMID: 29024957.)

Acknowledgements/funding:

The collection of samples was funded by the Bone Health Fund and Research Grants Council - Early Career Scheme (Project
number: 27100416). Genotyping of samples on the GSA-MD v1 was done by the Broad Genomics Platform and supported
by the NHGRI CCDG grant (LUM1HG008895). GSA data will be made available in dbGaP/AnVIL under phs001489.
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9. Discussion

This project's main objectives were to identify the optimal method among selected methods for
pleiotropy detection and identify pleiotropic SNPs overlapping between two common forms of
epilepsy, GGE and FE, using the identified method. However, an extensive literature review showed
that the comparative performance for many of the available methods was unknown. Therefore, using
simulated data, | benchmarked five univariate pleiotropy detection methods, namely; cFDR, CPBayes,
ASSET, PLACO, and classical MA, to assess their relative performance in terms of power and false-
positive rate. The ASSET method emerged as the best in terms of the power for detecting pleiotropy
while keeping the FPR low in all simulation scenarios considered. Then, applying this optimal method
to the summary statistics of the ILAE samples cohort, | identified two pleiotropic loci. Specifically, locus
2924.3, already identified by the ILAE consortium, was confirmed, and a new putative locus 17q21.32
was identified. Using a larger sample cohort of the ILAE Consortium and EPI25 collaborative, |
replicated the previously reported locus 2g24.3 and found a new locus 9921.13 pleiotropic for GGE
and FE.

9.1. Simulation Study

In this project, | compared the relative performance of recent univariate pleiotropy detection
approaches alongside the well-known classical MA method on a large European population genotype
data generated through resampling from the 1000 Genome haplotype data. One hundred replications
of sub-samples of this population for the two phenotypes | studied were produced by repeatedly
assigning the disease status to individuals through the additive liability threshold model (ALTM). Then,
case-control study samples were simulated while also varying parameters that impact association
analysis, such as effect size (RR= 1.05, 1.2, 1.5), sample size (n=2,000, 10,000, 20,000), diseases
prevalence (1%, 10%), and varying numbers of diseased SNPs (5,10) and proportion of overlap (20%,
40%) of disease SNPs between the two phenotypes. Values of the additional parameters were selected
to be consistent with observed values in GWAS of common diseases. The varying factors | introduced
into the data simulation steps yielded different effects on the results in the identification of pleiotropic
SNPs for all the methods.

Classical MA and Mega-analysis are not recommended for pleiotropy detection. The MA
approach was characterized by a very high power to detect pleiotropy across simulation scenarios. At
the same time, the FPR was also inflated due to the testing of the null hypothesis of no association
with any of the traits and aggregating p-values across traits allowing for a trait with a very small p-
value to drive the observed association for both traits under study. Due to the inflated FPR produced
by the MA approach (See paragraph “Inflated FPR”), it is not recommended for pleiotropy analysis,
according to the simulation study, as most of the identified loci or SNPs will be false-positive
discoveries. This same observation is expected for mega-analysis in which several phenotypes not
measured in the same set of individuals are jointly analyzed in a case-control association test.
Therefore, neither mega-analysis nor classical meta-analysis allows us to conclude pleiotropy for these
reasons and are, as a result, not recommended for pleiotropy detection.

The ASSET method is the optimal method for univariate single-marker pleiotropy detection. The
ASSET approach maintained good power across all simulation scenarios. Though CPBayes, cFDR, and
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PLACO methods also demonstrated good power to detect pleiotropy at larger sample sizes and effect
sizes, they all differ considerably in their ability to keep a low FPR. Other methods apart from CPBayes
recorded FPR of >10% in most simulation scenarios, while the ASSET maintained a much lower FPR
(<10%) across all simulation scenarios. Based on this discovery in the simulation study, the ASSET
method that gave a good trade-off between FPR and power to detect pleiotropy is hereby
recommended for pleiotropy analysis.

The impact of sample size and effect sizes on pleiotropy detection. All the methods detected no
pleiotropic disease SNP at an effect size of 1.05 regardless of the sample size. This result suggested
that a larger sample size than used in this study is needed to achieve any power if RR is 1.05 for all the
simulation scenarios. It has been demonstrated in GWAS that approximately 50000 samples are
needed at this effect size to have sufficient power to detect pleiotropy for some common diseases.
The power to identify the association of a locus to some trait(s) depends on the prevalence of disease,
linkage disequilibrium (LD), inheritance model, number of risk alleles, frequency of the risk alleles, and
their effect sizes'*3. Hence, for small sample sizes, a common variant must have a strong effect and
sufficient power to detect association.

Inflated FPR. The inflated FPR observed for most of the methods, especially at larger sample sizes,
appears somewhat counterintuitive. However, it is largely due to what hypothesis each method tests
and how it estimates the overall p-value of pleiotropy, which in most cases allows one trait to drive
the overall evidence of pleiotropy when its p-value is very small. Meta-analysis does not explicitly
estimate the correlation between traits and aggregates P-values to test association, allowing for a
single trait to drive observed association. The prevalence effect was more apparent on FPR and
generally showed that samples from the population with 10% prevalence estimated lower FPR in all
simulation scenarios compared to samples from the population with 1% prevalence of the trait. In
addition, the more the number of disease SNPs simulated and the percentage overlap of these SNPs
among the traits, the lower the FPR, confirming that common SNPs with average effect aggregate
across the loci to produce the observed effect of the common variants on the phenotypes.

9.2.  Application to epilepsy phenotypes (ILAE dataset only)

Findings. | applied the ASSET method, which gave a good trade-off between power and FPR while also
correcting for sample overlap to the ILAE data samples. | identified pleiotropic loci 2g24.3 and
17q21.32 for both GGE and FE. My finding on chromosome 2 confirms the results reported by the ILAE
Consortium on complex epilepsies'® via mega-analysis as a likely pleiotropic locus, while locus
17921.32 is a new putative pleiotropic locus only previously reported for GGE. Further annotation,
tissue expression, colocalization, and prioritization tests supported the discoveries. Nevertheless,
replicating these signals in an independent dataset is desirable.

True pleiotropy in loci 2q24.3. The loci 2g24.3 containing the SCN1A gene encodes the voltage-gated
sodium channels and has been implicated in different forms of epilepsy3#1%. This gene, expressed in
both the peripheral and central nervous systems, is involved in transporting positively charged sodium
atoms into cells and plays a crucial role in cells' ability to generate and transmit electrical signals®.
Both common and rare variations in the SCN1A have been associated with epilepsy phenotypes with

different severities, but the relatively common variants have been found to modulate the effect of the

131



SCN1A gene as well as other nearby genes such as SCN2A and SCN9A'®. Therefore, with all the data
available, loci 2g24.3 is truly pleiotropic for GGE and FE.

9.3.  Application to epilepsy phenotypes (ILAE and EPI25
datasets).

Additional findings. As seen in the simulation study, an increase in sample size increases the power
of observing pleiotropic association even for variants with relatively small effect sizes. The application
of the ASSET method to the largest available data of common epilepsies yielded a new locus 9921.13
in addition to locus 2g24.3. This confirms the observation in the simulation study that the larger the
sample set, the more power to detect pleiotropy. Locus 9g21.13 contains the RORB gene, in which
deletion of variants or single variant mutation has been associated with neurodevelopmental
disorders such as developmental and epileptic encephalopathies and GGE'”138, The RORB gene
encoded the beta retinoid-related orphan nuclear receptor (RORB), a subfamily of nuclear hormone
receptors NR1, present inimmature neurons and thought to have a role in neuronal cell differentiation
and hyperexcitability!3.

Replication. | could not directly replicate the initial finding on locus 17921.32 in this new sample
cohort as the locus was found to be only strongly associated with GGE with a marginally significant
opposite direction of effect in FE. The observed result in the larger sample cohort corroborated the
trend observed in the FE cases in the EPI25 collaborative dataset, where no genome-wide significance
result was found. Further, only loci 2g24.3 and 9921.13 were confirmed to be pleiotropic for GGE and
FE among the four loci identified in the all epilepsy meta-analysis of the ILAE Consortium?32, This
finding reinforces my recommendation that classical meta-analysis and mega-analysis should not be
used for pleiotropy detection. Locus 17g21.32 is not necessarily a false positive, but replication in an
independent larger sample set is desirable.

Form of the observed pleiotropy. Ascertaining true pleiotropy and differentiating between the
forms of pleiotropy is desirable, although not straightforward. However, new methods are emerging,
such as spatial mapping approaches, methods that include the biological or gene pathway as part of
the analysis!*¥%, or screening out vertical pleiotropy by excluding correlated traits from the analysis
and functional studies of the implicated genes. Until now, epilepsy phenotypes have not been found
to be vertically related, i.e., one form of epilepsy phenotype has not been shown to mediate the effect
of another epilepsy phenotype. Therefore, the identified pleiotropic SNPs are likely to be biological
forms of pleiotropy. However, further functional studies of the identified genes, which are out of this
project's scope, are necessary to understand the effects of the encoded proteins in these genes on
epilepsy phenotypes.

Spurious pleiotropy. Eliminating spurious pleiotropy due to different forms of bias such as
phenotype misclassification errors, overlapping controls cohort in independent studies, and high LD
in regions, leading to marker tagging variants in different genes***° is very important to reduce false
positives rate in the application to the real dataset. Therefore, proper phenotyping, exclusion of high
LD region from the analysis, accounting for overlapping samples, and ensuring that discovered
pleiotropic markers are in the same gene are critical steps for consideration in pleiotropy analysis. In
my analysis, the epilepsy phenotypes were properly classified, the applied ASSET method accounted
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for the overlap between controls, and all identified pleiotropic variants are in LD in the same gene. |
did not identify spurious pleiotropy in the samples, as all identified variants were contained in a gene.

9.4. Limitations

Some of the methods | applied here test the hypothesis of a variant being associated with any of the
traits, hence, the observed significant pleiotropic association might be driven by a highly significant
association of the variant to one phenotype. The newer pleiotropy detection methods like PLACO and
CPBayes try to mitigate the one traits driving association issue but, from the observed results in this
study, the FPR is still very high.

Although multivariate methods are computationally expensive, they have been demonstrated to
be more powerful compared to the univariate approaches | used in this project. However, the
unavailability of sample sets containing multiple phenotypes measured simultaneously on the same
set of individuals coupled with heterogeneity due to ethnicity, microarray chips, and other sources of
confounding render these approaches difficult to use. A recent publication'* showed that a sparse
group variable selection approach incorporating biological or gene pathways into the discovery of
pleiotropic genes is more powerful than ASSET, nevertheless, this method also requires individual-
level data.

While the univariate pleiotropy analysis is easy to perform with the readily available GWAS
summary statistics, post-confirmatory functional studies of the identified genes are still very much
needed to establish true pleiotropy. It is also difficult to distinguish between the different forms of
pleiotropy, especially horizontal and vertical pleiotropy. Although correlated traits will mainly exhibit
mediated or vertical pleiotropy, the underlying biological mechanism must be established to ascertain
this claim. Mediation analysis, fine mapping, and pathway analysis can be useful methods to identify
the form of pleiotropy?!39:140.142

The simulated population data comprising 1,000,000 individuals is quite large (~2 TB), and the
simulation was carried out in 10 batches. That made the simulation of a larger population difficult due
to computational constraints of available memory disk space, affecting the number of resulting
samples | could simulate and process. In addition, methods like PLACO and common cFDR can only
accommodate two traits. While this is not a challenge in this current study, the methods will not be
applicable when more than two traits are to be studied.

9.5. Outlook

For future studies, it will be interesting to investigate the performance of pleiotropy detection
methods for more than two phenotypes, for more nuanced sharing of causal genetic variation,
possibly different effects on the pleiotropic phenotypes, and for less common or rare causal variants.
Identifying pleiotropy in rare variants will likely require more complex genotype simulation algorithms
and larger reference sample sets. The availability of simultaneously measured individual-level data of
epilepsy phenotypes in the future will also motivate the application of multivariate pleiotropy
detection methods.

Replicating the identified loci in larger independent samples of epilepsy phenotypes is also
desirable to eliminate bias and confounding. Also, applying a new pleiotropy detection method that
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considers the complex genetic architectures of traits, such as genetic correlations and heritabilities,
could improve pleiotropy detection. One of such recent approaches is pleiotropic Locus exploration
and interpretation using an optimal test (PLEIO)*2.
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