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1. Abbreviations 

SNP Single nucleotide polymorphism 

DNA Deoxyribonucleic acid 
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FE Focal epilepsy 

GGE Genetic generalized epilepsy 

ASSET  Subset-based meta-analysis 
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cFDR Conditional false discovery rate 

MA Meta-analysis 

CPBayes Cross-phenotype Bayes 
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4. Summary 

Over the past decades, various methods have been used to scan the human genome to identify genetic 

variations associated with diseases, in particular with common, complex disorders. One of such 

approaches is the genome-wide association study (GWAS), which compares genetic variation between 

affected and healthy individuals to find genomic variants in the DNA sequence associated with a trait. 

GWAS are usually conducted separately for individual traits, and the same single nucleotide 

polymorphisms (SNP)/loci are associated with different traits in independent studies 7-10. These 

findings buttress the knowledge that most complex traits are correlated and have shared genetic 

architecture, therefore, sharing the same heritable risk factors11. Knowledge of the genetic risk factors 

can directly or indirectly contribute to improvements in risk assessment, drug target development, 

and ultimately in providing effective therapies to the affected individuals.  

Pleiotropy is the phenomenon of a hereditary unit affecting more than one trait, and the earliest 

reported evidence was provided by Mendel when he noted that some set of features were always 

observed together in a plant. Although this example could have been purely due to linkage and could 

be regarded as spurious pleiotropy in recent times, it opened up more discussion and research into 

pleiotropy, which has since been an active area of research12. In this work, I focused on complex 

epilepsies and the overlap in the genetic factors impacting their phenotypes.  

Epilepsy is a brain disorder comprising monogenic and common/complex forms characterized by 

recurrent partial or generalized seizures. However, the extent to which genetic variants contribute to 

the disorder and how much of the genetic contribution is shared between the different phenotypes is 

not yet fully understood. This motivated this project, where I benchmarked available pleiotropy 

detection approaches to select the best performing method in terms of power and false-positive rate 

to detect true pleiotropy. Then, I applied the selected method to summary statistics of focal epilepsy 

(FE) and genetic generalized epilepsy (GGE), provided by the International League Against Epilepsy 

Consortium (ILAE) on complex epilepsies and the EPI25 collaborative, to identify shared genetic factors 

in both phenotypes of epilepsy. 

Identifying pleiotropic SNPs or genes is an active area of research with multiple proposed 

approaches, broadly categorized into univariate and multivariate methods. Multivariate approaches 

have the limitation that they require all phenotypes to be measured in the same individual and their 

corresponding genotype data provided, which is often not the case since GWAS are usually performed 

per specific trait. However, various consortia studying complex traits readily share the summary 

statistics (effect sizes and p-values) from genome-wide association studies, making it easier to apply 

univariate pleiotropy detection approaches that combine these statistics to identify SNPs or loci with 

a concordant or discordant direction of effects.  

Therefore, in this project, I first compared the relative power and false-positive rate (FPR) 

performance of five univariate pleiotropy detection approaches, classic meta-analysis, cFDR, PLACO, 

ASSET, and CPBayes (see section 6.1), through simulation studies. After that, I applied the best-

performing method to the analysis of phenotypes of epilepsy using actual data. The data simulation 

procedure was performed in 3 steps. First, a population of 1 million individuals of European ancestry 

was simulated via resampling using the HAPGEN2 software13 and haplotypes of central Europeans 

from the 1000 genomes project14. In the second phase of the simulation, disease SNPs were randomly 
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selected and used for the additive liability threshold model (ALTM)15 to simulate multifactorial disease 

phenotypes from the simulated genetic data.  

As expected, the performance of the methods varied in terms of power and false positive rate 

(FPR). The variability between the methods is higher for FPR, while most methods are comparable in 

terms of power, especially for larger sample sizes and RR. Although the classical meta-analysis is very 

powerful, it is also riddled with a very high false-positive rate, making it less suitable for identifying 

pleiotropic loci.  While all the methods performed well in terms of power, the ASSET method gave a 

better trade-off between power and FPR for the different simulation approaches. Applying ASSET to 

the two phenotypes of epilepsy, GGE and FE, resulted in identifying a new putative locus 17q21.32 

while replicating locus 2q24.3, previously reported by the ILAE consortium 16. Further, applying the 

ASSET method to summary statistics of larger samples of epilepsy phenotypes resulted in the 

identification of loci 2q24.3 and 9q21.13. These findings corroborate the result obtained by the ILAE 

consortium through mega and meta-analysis. 

Classical meta-analysis (MA) is not recommended for pleiotropy detection, based on the simulation 

study results. Though MA demonstrated good power to detect pleiotropy, it also recorded high FPR 

across all simulation scenarios. However, the ASSET method is highly recommended as it kept the FPR 

low while demonstrating good power to detect pleiotropy. This study also contributed three new 

pleiotropic loci (2q24.3, 17q21.32, and 9q21.13) to understanding the relationship of genetic variation 

with epilepsy phenotypes and the inter-relationship between these phenotypes. Although the locus 

17q21.32 could not be replicated in the larger sample set, it is not necessarily a false positive discovery. 

The locus was genome-wide significant for GGE but marginally significant for FE, which confirmed the 

trend observed in the FE cases in the EPI25 collaborative dataset, where no genome-wide significance 

result was found. Therefore, replication in an independent sample is desirable. 

One limitation of using the univariate pleiotropy detection approaches as seen with the classical 

MA is that one trait with a very low P-value could drive the observed pleiotropic association. Also, 

methods like cFDR and PLACO could only accommodate two traits, though this was not a challenge in 

this project. Despite these limitations, the presented work established a benchmark of the relative 

performance of the assessed methods and could also guide researchers in related fields in their future 

work. This study also contributed to understanding the shared genetic factors between GGE and FE 

with the expectation that larger sample sizes will lead to more discoveries.  
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5. Introduction 

In sections 5.1, 5.2, and 5.3, I briefly introduce the notion of disease etiology, the impact of genetic 

variation on disease occurrence, as well as the functional consequences of the genetic variation in 

individuals and, by extension, the whole population. Sections 5.4, 5.5, and 5.6 describe gene mapping 

approaches, statistical methods to quantify disease risk, and ways to handle multiple testing 

challenges arising from these tests. In section 5.7, I extensively review epilepsy and its phenotypes 

while specifying the phenotypes of epilepsy I used in this work. Sections 5.8, 5.9, and 5.10 describe 

pleiotropy and available methods for pleiotropy detection, explain the univariate pleiotropy detection 

approaches used in this project, and the merits and drawbacks of these methods. In section 5.11, I 

state the objectives of this thesis. 

Section 6 describes the methods used to generate the simulated data and handle the actual 

epilepsy samples. In section 6.1, I explain in detail the data simulation steps and the identification of 

pleiotropy in the simulated data, while in section 6.2, I describe the epilepsy datasets and their 

sources, quality control checks, and the application of the method from the simulation study to the 

actual dataset. Section 7 contains the main results of the analyses. In section 8, I present my 

publications, my contributions to the publications included in this thesis, and outline the courses and 

meetings I attended during the Ph.D. program. Finally, section 9 gives a detailed discussion of the 

project, its limitations, and possible future work. 

5.1. Etiology of diseases 

The question of causality, spread, and progression of diseases is an important and complex topic. 

Factors predisposing individuals to disease are known as risk factors. These risk factors include 

biological, genetic, dysregulation of immune- or central nervous systems, or environmental factors, 

such as stress, trauma, and drug reactions17. Genetic diseases are classified into rare 

(monogenic/oligogenic), polygenic (complex), or chromosomal based on the underlying genetic defect 
18. Rare, Mendelian diseases have a single known genetic cause, while common (complex) diseases 

result from multiple genetic factors and their interaction with environmental factors. Chromosomal 

diseases result from large structural variations of large chromosomal segments, in some cases even 

the absence of whole chromosomes or polyploidies. The main goal of genetic studies is to identify and 

determine the contribution of genetic variation to disease risk by examining variations in the genomes 

of affected and un-affected individuals. It is well understood from theoretical considerations and 

confirmed by studies such as the 1000 Genomes Project14 that human DNA varies widely among 

healthy individuals, that no particular DNA sequence can be considered “normal" and that some 

regions of the DNA are highly conserved with inadequately known functions. However, to make 

genetic variation comparable and quantifiable among individuals, the Human Genome Project has 

developed a reference sequence of the human genome that serves as the basis for comparing and 

describing changes in the DNA sequence19. The reference genome serves as a reference frame that 

enables to describe genomic variation in terms of base-pair positions and alleles, which enables the 

comparison of genomic variants across individuals, for instance, in case-control studies. Although the 

human reference genome has been improved over the years, the current version (GRCh38) sequence 

does not completely cover the whole human genome sequence. This led to the current effort by the 
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Telomere-Telomere Consortium (T2T), resulting in a completely gapless human genome sequence, 

still in the early adoption phase20. 

5.2. Genetic variation 

Understanding systematic variation in DNA structure and function in the human genome is critical to 

understanding genetic disease processes19 because the human DNA sequence contains the 

information that encodes and regulates biological processes. Many of the naturally occurring 

variations have been shown to have functional consequences, with approximately 90% of genetic 

variants in humans falling into the single nucleotide polymorphisms (SNPs) class21. Other forms of 

variation include structural variations such as insertions, deletions, and repeats. In this work, the main 

focus is on SNPs. SNPs are occurrences of different nucleotides (alternative alleles) at a particular 

position (locus) in individuals or on different chromosome copies of individuals in the population. 

Polymorphisms result from random mutations and potentially contribute to the susceptibility of 

diseases and other traits in humans 22. Since SNPs frequently occur in the genome (1 in 300 bp on 

average)19, they are often used as genetic markers to identify disease-causing genes. Different 

functional consequences result from genetic variations in individuals based on the location and 

specific alleles of the polymorphisms. 

For practical purposes, genetic variants are often classified into rare and common variations based 

on the allele frequency in a given cohort or population. Different allele frequency thresholds are used 

in literature; for example, genetic variations with the frequency of less than 1% in the population can 

be called rare variations, while a frequency of the allele of more than 1% in the population can be 

classified as common variation19 (see Figure 2). Due to the effects of purifying selection, common 

variants usually have rather small effect sizes. Though this is valid for most common diseases, 

moderately high effect sizes have been observed for identified genetic variants in the APOE4 and 

LOXL1 genes predisposing individuals to Alzheimer’s disease and exfoliative glaucoma respectively23,24. 

Nevertheless, common variants, though not highly deleterious, play significant roles in common 

diseases because of the following reasons: risk alleles can have small effects on reproductive fitness, 

moderately deleterious alleles can rise to moderate frequencies, and multiple common variants can 

confer a higher disease risk through aggregating effect, some neutral or advantageous alleles may 

begin to confer susceptibility, and some beneficial phenotype may offset disease burdens when 

disease-causing alleles at high frequency are under balancing selection25,26. 

5.3. Functional consequences of polymorphisms 

The DNA sequence consists of four nucleotide bases (A, C, T, G) on one strand and a complementary 

sequence on the other. Protein-coding regions of the DNA sequence are transcribed into messenger 

RNA (mRNA), which encodes the information needed for protein synthesis. The mRNA produced 

during transcription directs translation, which leads to protein synthesis. However, the mRNA contains 

four bases (A, G, C, and U) organized into triplet codes (codons) representing amino acids which are 

building blocks for proteins, as well as the start and stop codons. The human genome consists of 

protein-coding regions, regions encoding regulatory RNA and many other functional elements, and 

regions with presumably no or unknown functional significance. The protein-coding genes contain 

exons (protein-coding sequence) and introns (the non-protein-coding sequence). Some RNA-coding 

sequences are involved in the regulation or expression of other genes. Among the regions that were 
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previously thought to be non-functional are pseudogenes, which are now known to promote 

recombination events, especially those that code for similar sequences as protein-coding genes19. 

The effect of SNPs on gene function depends on their position in the gene region, i.e., the coding 

or the non-coding region, and other factors such as their particular effect on the amino acid sequence 

of the protein product. The alteration of a single nucleotide by substituting the coding region can lead 

to different functional consequences. Substitutions that lead to the same amino acids, by extension, 

of the same protein sequence are referred to as silent or synonymous. Missense or non-synonymous 

mutations result from substituting genetic codes that lead to a change in the protein sequence such 

that the function of the original protein is altered19. Another possible consequence of the substitution 

of a single nucleotide is a nonsense mutation, which results in an amino acid being converted to a stop 

codon, leading to an abrupt truncation of a polypeptide chain or sequence. Some non-coding regions 

of the genome are known to be control regions that direct cell regulation and gene expression, but 

the functions of most intragenic and intergenic SNPs are still unknown27. Understanding these 

consequences of polymorphisms is critical to the understanding of the function of identified 

associated SNPs in GWAS. 

5.4. Linkage, linkage disequilibrium, and GWAS 

Due to the recombination events in DNA, SNPs in physical proximity are non-randomly linked together 

and co-transmitted from generation to generation, a phenomenon known as linkage26. Linkage 

disequilibrium is the nonrandom association of alleles at different loci, which results from linkage but 

can be influenced by mutation, genetic drift, and other factors28. Both concepts are essential for 

mapping genes to diseases and understanding the joint evolution of a linked set of genes, used in 

linkage analysis and GWAS. Linkage analyses are family-based studies that are performed to identify 

rare variations causing monogenic diseases, historically, through linkage and positional cloning and 

later exome and whole-genome sequencing29,30. Although linkage studies have been performed for 

common diseases, they often lack statistical power to detect common variants. GWAS are more 

powerful and preferable for studying complex diseases. 

GWAS assesses SNPs throughout the genome in a case-control cohort to identify alleles associated 

with a disease. It relies on LD throughout the genome since a variant at one locus can predict the 

genetic variance at the adjoining loci29. The fundamental basis of GWAS is the common 

disease/common variants (CD/CV) hypothesis, which implies that common variations may contribute 

to the susceptibility to common diseases29. However, the concept is valid for some diseases with well-

known etiology and simple allelic spectra but does not explain the total genetic variability in most 

complex diseases. Other researchers posited the hypothesis of common diseases/rare variants 

(CD/RV), which explained that rare variations with moderately sized effects also contribute to 

susceptibility to common diseases31,32. Both hypotheses though contrasting, have been found to 

overlap because studies over time showed that multiple common variations with low penetrance and 

multiple rare variants with moderate to high effect contribute to susceptibility to common diseases 

and their frequency in the human population32. For example, complex diseases such as epilepsy may 

be due to a wide range of factors, from rare variants with strong effects to relatively rare variants with 

moderate effects and common weak variants 33 (see Figure 1). 
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5.5. Study design, association tests, and heritability 

The risk of a disease is the likelihood or probability of an individual in a specified population developing 

the disease in a specified time, often referred to as incidence proportion. The risk could arise from 

genetic or environmental contributions to the disease occurrence. In epidemiological studies, it is 

often desirable to quantify the proportion of people who develop a disease over a specific period 

(incidence rate, 𝐼𝑟) or the proportion of people with a disease at a given point in time (prevalence, 

P)34. 

 
.

/
No of onset

Incidence proportion risk
baseline population at risk

=  (1) 

 
.

( )r

No of onset
Incidence rate I

population time at risk
=

−
 (2) 

 
.

( )
No of cases

Prevalence P
Total study population

=  (3) 

Observational study designs are often used to quantify exposures in a population and generate 

inferences about disease prevalences and incidences in that population. These studies are sometimes 

descriptive, prospective, i.e., they are conducted forward in time or retrospective (historical), an 

analysis conducted back in time35. Prospective studies usually take the form of cohort studies, where 

 

Figure 1: (Adapted from: Arnar, D.O. and Runolf, P. Genetics of common complex diseases: a view 

from Iceland. Copyright ©2017 European Federation of Internal Medicine. Published by Elsevier 

B.V.)1. The relationship between variant effect size and rare versus common variations here shows 

that the CD/CV and CD/RV hypotheses are partially correct and overlap for most common diseases.  
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a group of people with specific unique characteristics are followed over time to evaluate specific 

outcomes. Case-control studies are the main form of retrospective studies, often used in comparing 

risk factors in affected individuals (case group) with unaffected individuals (control group)36. A study 

design with a single time point that often estimates the prevalence in the present is called a cross-

sectional study37. In most epidemiological studies, we compare observed differences within the 

exposed group in the general population or different population groups in relation to exposure to a 

risk factor under study. 

GWAS are case-control studies identifying the association between genetic variants and 

phenotypic traits. It identifies SNPs for which the allele frequency varies systematically as a function 

of the phenotype between cases and control38. An allelic association (c and C) or genotype association  

(c/c, c/C, and C/C) test is performed based on how the genetic markers are represented, for a SNP 

with a minor allele c and a major allele C. There are four standard models that quantify the relationship 

between the genotype and phenotype, namely, multiplicative, additive, common recessive and 

common dominant models39. Given the disease penetrance (𝓇), the recessive model requires two 

copies of c alleles for increased risk, and the dominant model requires one or more alleles C for 

increased risk. In the multiplicative model, the risk is 𝓇2 for the CC genotype, while for the additive 

model, there is 𝓇-fold  and 2𝓇 increase in risk for cC and CC, respectively 39,40. The choice of which 

model and, by extension, the association test to use depends on the assumptions on the underlying 

inheritance patterns. The multiplicative model is allele-based and often used for binary phenotypes, 

while the additive model is most generally used for the genotypic association as it has reasonable 

power to detect additive and dominant effects41. 

Different statistical tests are used for association tests depending on the type of traits, quantitative 

or qualitative, to be analyzed. For quantitative traits, the genotypes serve as predictors, and linear 

models such as ANOVA are used. Binary case-control traits are often analyzed using contingency table 

methods or the logistic regression model41. The logistic regression model extends the linear regression 

model by transforming the binary outcome using the logit link function to predict the probability of 

having a case status given the genotype, as shown below: 

 
0( ) ln( )

1
G xlogit G X


   


= = + +

−
, (4) 

where 𝜋 is the probability of affection for the vector of outcome (Y), 𝛽0 is the intercept, 𝛽𝐺 is the 

vector of effect sizes for  genotypes G, and  𝛽𝑥 is the vector of effect sizes for covariates X. The odds 

ratio is estimated by exponentiating both sides of the equation (4) above.  

Contingency table methods such as 𝜒2 test of independence, Fisher, and likelihood ratio tests are 

also available for association tests. Extended statistical models are used, particularly if correction for 

confounding variables is required, such as population structure, environmental effects, family 

relatedness, and other epidemiological and clinical variables such as gender and age. Linear or 

generalized linear mixed models are more useful for testing the genetic association while accounting 

or controlling for confounding variables. In my simulation study, I used an extension of the additive 

model to estimate the genetic effect and define the traits and a logistic regression model to perform 

association (see section 6.1.1). 
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5.6. Statistical hypothesis testing and multiple comparisons 

Since each SNP is tested independently, each test gives a P-value, and its significance is tested 

individually based on a pre-specified significance threshold, which is the permissible type 1 error. 

Specifically, it is the probability of rejecting a null hypothesis of no association if the null hypothesis is 

indeed true. For example, if the significance threshold for each test is 0.05, on the average, 5% of 

independently tested SNPs are expected to give false-positive results assuming all null hypothesis is 

true. However, the number of false positives will increase with increasing numbers of tests, requiring 

the need to set the significance threshold to a lower value in order to reduce the number of false 

positives, in other words, methods for multiple testing correction are used. The most commonly used 

methods in GWAS are based on controlling the so-called family-wise error rate (FWER) 42.  

The FWER is the probability of making one or more type 1 errors in a set of tests 39. Bonferroni 

correction and Šidak correction are two common forms of FWER control that yield similar results if 

the number of tests is sufficiently large. The Bonferroni correction estimates the significance level per 

test (𝛼𝑝) as the ratio of the FWER (𝛼) and the total number of tests (𝑚); 𝛼𝑝 = 𝛼 𝑚⁄  while Šidak 

correction is 𝛼𝑝 = 1 − (1 − 𝛼)
1

𝑚⁄ . However, Bonferroni and Šidak corrections are conservative and, 

for GWAS,  lead to an increase in false-negative rate42, since both assume that each SNP is 

independent, whereas due to linkage disequilibrium, there is a high degree of correlation between 

neighboring SNPs.  

The FDR approach controls the expected proportion of false positives among all associated SNPs 

declared significant39. For example, for the Benjamini-Hochberg FDR procedure, the P-values of all 

SNPs tested are assigned ranks (i), and a global significance level (𝛼) is chosen. Then local FDR for each 

rank is computed as: 𝐹𝐷𝑅𝑖 = 𝛼(𝑖 𝑚⁄ ) and the null hypothesis is rejected for P-values lower than 𝐹𝐷𝑅𝑖 

.FDR is not optimal because of LD between markers and the small numbers of expected true positives 

the method yields. FDR procedures do not provide a notion of significance but correct for the number 

of expected false discoveries hence providing an estimate of the number of true results among those 

called “significant”41. 

Permutation testing is another approach for establishing significance in GWAS41. It compares the 

obtained P-values of association with the empirical distribution of P-values obtained for the case-

control identifiers43. However, it is computationally expensive, especially with increasingly large 

numbers of tests.  Based on the distribution of LD in the genome of specific populations, the concept 

of genome-wide significance was derived. The ‘effective’ number of independent genomic regions in 

a population, thus the number of statistical tests that should be corrected for being determined41. Due 

to limitations of correcting procedures, a genome-wide association P-value threshold of 5 × 10−8 for 

rejecting the null hypotheses for common diseases in the European population was estimated using 

FWER methods44. For FDR procedures, the recommended cut-off value is between 10−6 𝑎𝑛𝑑  10−84,5. 

5.7. Complex disorders 

5.7.1. Mendelian and complex diseases 

As mentioned in the introduction, diseases can be unifactorial or multifactorial. Unifactorial diseases 

are those that are known to be caused by single genomic variations. These monogenic diseases are 

called Mendelian disorders due to their inheritance patterns, based on Mendel's laws of segregation, 
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independent assortments, and dominance45. They are primarily classified as rare disorders because 

the coding genes harbor highly deleterious mutant alleles that occur at low frequency in the general 

population. This definition may not be entirely accurate for all rare disorders, as shown by previous 

studies, since some rare diseases do not harbor nonsense mutations and indicate that deleterious 

alleles may also be located outside the coding sequence of the gene46. Examples of monogenic 

diseases include Huntington's disease, achondroplasia, and cystic fibrosis. Methods for identifying 

Mendelian disease genes include positional mapping and sequencing, especially linkage studies in 

families and exome sequencing approach47.  

On the other hand, complex, multifactorial disorders are not caused by a single genetic risk factor. 

Instead, multiple genetic and environmental factors and their interactions might contribute to disease 

risk. Risk loci might be distributed throughout the genome, with some contributing to more than one 

trait (pleiotropy)48-50. Common examples of complex diseases include type 2 diabetes (T2D), epilepsy, 

hypertension, and asthma51. From our understanding that most common diseases are multifactorial, 

it is essential to decipher the sources of risk and their relative contributions to disease occurrence. 

The relative contribution of environmental and genetic factors can be very important in understanding 

disease susceptibility.  

In genetics, scientists assess heritability (H) as the proportion of variation for a given disease in a 

population attributable to genetic factors52. Heritability is broadly divided into broad-sense (𝐻2)  and 

narrow-sense (ℎ2). Narrow-sense heritability quantifies the proportion of variation due to additive 

genetic effects while broad-sense heritability (𝐻2) captures the proportion of phenotypic variation 

due to genetic factors, including allelic interaction, gene-gene interaction, within loci (dominance) and 

between loci (epistasis), and gene-environment interactions52,53.  

The narrow-sense heritability (ℎ2) is often estimated in polygenic additive liability models for 

estimating the heritability of common diseases with the assumption that common disorders are 

genetically homogenous, dominance and epistasis are negligible in the disease etiology, and that 

neither a genetic nor an environmental factor has a major contribution54,55. These models have been 

debated over the years, but the conclusion from empirical data shows that they are consistent for 

common diseases56,57 (see section 6.1.1). 

GWAS have identified variants associated with many traits. However, most of these studies explain 

only 5-10% of the heritable component of the disease, which means that the larger part of the 

heritable component cannot be explained by GWAS alone (missing heritability)32. Missing heritability 

may be due to undiscovered large numbers of variants with small effects, poorly detected rare 

variations contributing to common diseases, inability to detect gene-gene interactions, and 

improperly considered environmental factors, among other possible explanations58. For example, 

large sequencing studies have shown that relatively rare variations may play a significant role in the 

heritability of common epilepsy but are typically left out in GWAS due to the focus on variants present 

in 5% or more of the population33,58.  Furthermore, the knowledge of one genetic marker or gene 

affecting more than one trait (pleiotropy) is also gradually improving the discovery of associations, 

especially for complex trait phenotypes exhibiting cross-phenotype associations. This project is 

focused on epilepsy as a complex disease and examined the association of two well-characterized 

phenotypes of the disorder with genotypic variants (details in sections 6.2 and 9) 
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5.7.2. Epilepsies as complex diseases 

Epilepsy is a chronic disease of the brain characterized by an enduring (i.e., persisting) predisposition 

to generate seizures, unprovoked by any immediate central nervous system insult 59. It results from a 

number of nerve cells in the brain sending abnormal signals, causing seizures. It is worth noting that 

not all people who experience seizures have epilepsy, but the seizures must be recurrent or have a 

likelihood of recurrence to be called epileptic seizures60,61. The diagnosis of epilepsies is based on 

different clinical symptoms observed together in an individual, imaging findings, and age of onset. The 

burden of epilepsy is relatively high compared to other brain diseases62. Giourou et al. reported that 

epilepsy affects about 1% of the world's population, and about 10% will experience a seizure in their 

lifetime63.  

The prevalence of epilepsy varies from country to country and depends on sociodemographic, risk-

related, and etiological factors. However, the global average is thought to be 7.6 per 1000 people with 

the condition, with a slightly higher prevalence of 8.75 per 1000 in low and middle-income countries 

and a slightly lower prevalence of 5.18 per 1000 in high-income countries64. A recent meta-analysis in 

Latin America and the Caribbean found an overall higher prevalence of 14.09 per 1000 residents and 

a prevalence of 9.06 per 1000 individuals for active epilepsy65. The overall prevalence of active 

epilepsy in Nigeria (Africa) is 9.8 per 1000 but varies from north to south66, while the prevalence in the 

European Union varies widely from country to country but is lower compared to reports from Africa 

and Latin America. Early work on the genetics of epilepsy via twin studies showed that there are 

genetic risk factors for the disorder67-69 

There are different forms of epilepsy, including both monogenic and polygenic forms. The 

monogenic form of the disease is marked by rare variations with large effects, while the complex 

epilepsy form results from small but aggregating effects of common variation, some rare variations 

with small to moderate effects, and environmental factors33. The ILAE Consortium70 has categorized 

epilepsy based on seizure type, imaging findings, age of onset, and other clinical findings, such as co-

occurrence of different symptoms. Focal, generalized, and unknown onset are the categories of 

epilepsy based on the form of the seizures (see Figure 2). Focal onset seizures are characterized by 

seizures that originate from and are confined to one part of the brain. Generalized seizures originate 

from one source but spread throughout the brain network, while the type of seizures with unknown 

onset is undifferentiated. Focal onset seizures are further subdivided into seizures with consciousness 

or impaired consciousness, while generalized seizures are classified as motor seizures, including tonic-

clonic seizures and other motor seizure forms or non-motor seizures, also known as Absence60.  

Depending on the clinical diagnosis and EEG findings, epilepsy types are divided into focal, 

generalized, combined generalized and focal, and unknown epilepsies (see Figure 2). In generalized 

epilepsy, the affected person shows generalized spike-wave activity on the electroencephalogram and 

may have absence, myoclonic, atonic, tonic, and tonic-clonic seizures60,70. Focal epilepsy includes both 

unifocal and multifocal disorders and seizures in one hemisphere of the brain with one of the following 

seizure types: focal conscious seizures, focal seizures with impaired consciousness, focal motor 

seizures, focal non-motor seizures, and focal to bilateral tonic-clonic seizures70. The combined 

generalized and focal phenotypes of epilepsy were newly introduced by the ILAE consortium for 

patients clinically diagnosed with both focal and generalized seizures70. 
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Mendelian or monogenetic epilepsy disorders are rare, affecting less than 1 in 2000 people. They 

are usually developmental and begin in early childhood, causing severe impairment in those affected. 

Most forms of rare epilepsies are called developmental and epilepsy encephalopathy (DEE). Well-

known examples include Dravet syndrome, Ohtahara syndrome, West syndrome, Lennox-Gaustat 

syndrome, and infantile spasm71. Common epilepsy phenotypes affect about 1 in 200 people and are 

broadly classified as genetic generalized epilepsy (GGE) and focal epilepsy (FE). GGEs account for 15-

20% of all epilepsies72, while FE is responsible for about 60% of all epilepsies73. Focal epilepsies were 

initially thought to be acquired only through trauma, infection, and other non-genetic causes. 

However, genetic studies have identified variants predisposing to some form of FE, hence the 

distinction as non-acquired focal epilepsies (NAFE). Typical forms of GGE syndromes include childhood 

absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and 

generalized tonic-clonic seizures. 

 

The causes of epilepsy are diverse, ranging from structural, metabolic, infectious, immune, and 

unknown to genetic. These factors are intertwined to a large extent; for example, some structural 

abnormalities or metabolic disorders already associated with epilepsy could be acquired or genetic. 

Even in epilepsies resulting from trauma such as head injury or stroke, it has been shown based on 

studies of families that genetic factors still contribute to the observed trait74,75. However, genetic 

causes do not immediately translate to inheritance. Hence it is necessary to separate monogenic forms 

of epilepsy from complex epilepsies. Thus, epilepsies comprise rare monogenic phenotypes and 

common forms, widely referred to as complex epilepsies, with both common and rare-variants 

 

Figure 2: (Adapted from: Scheffer et al. ILAE classification of the epilepsies: Position paper of the 

ILAE Commission for Classification and Terminology. Copyright ©2017 International League 

Against Epilepsy). Forms of epilepsy are based on seizure types, epilepsy types, and syndromes. 

Epilepsies have also been found to be co-morbid but phenotypes based on onset seizure (*) are 

still the most well-categorized.  
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contributions71. To understand the genetic risk factors in the susceptibility to epilepsies, comparative 

twin studies have been performed between monozygotic twins and dizygotic twins through linkage 

studies to compare disease concordance67-69. Assuming the twins share the same environment, 

differences observed in disease occurrence are likely not by chance and are attributable to genetic 

variation33, raising the need to focus on unraveling the genetic architecture of diseases. 

From all indications, there is a strong genetic basis for the inheritance of epilepsies, but only a 

fraction of the trait variation due to genetic factors is currently known through GWAS and sequencing-

based analysis for common epilepsy forms. Since there are overlaps of the forms of epilepsies further 

corroborated by the new classification from the ILAE consortium, methods that can identify these 

shared or switch-like variants are essential to advance gene discovery and provide more information 

on the genetic basis of epilepsies. One of such valuable approaches is pleiotropy analysis which allows 

for joint analysis of samples from different disease traits, in this case, epilepsy phenotypes, GGE and 

FE. 

5.8. Introduction to pleiotropy  

Hereditary units like SNPs, loci, or genes combined with environmental factors determine the physical 

characteristics of organisms and humans. Over the past decades, enormous work has been done to 

link diseases to genetics, with or without accounting for environmental factors. One of the largest and 

still growing types of such studies, GWAS, has focused on identifying single locus-trait relationships, 

which has produced robust results in complex diseases. There has also been evidence of a single 

hereditary unit being associated with more than one trait45,76. For example, a single disease risk factor 

was shown to have multiple symptoms77. This phenomenon of one single unit affecting two or more 

phenotypes is often called pleiotropy, but it has not been well defined in the early days of genetics. 

“Cross-phenotype association” is a general term used to describe the correlation of a marker, gene, 

or genetic region with multiple traits, regardless of the underlying mechanism of correlation between 

the markers and the traits49.  Ludwig Plate (1910) coined the term pleiotropy ("Pleiotropie"), defined 

as the phenomenon of a hereditary unit affecting more than one trait12. Various studies12,49,77-79 since 

then have dissected and categorized pleiotropy into distinct meaningful forms. 

In the modern understanding of pleiotropy, it is broadly categorized into three forms, namely 

biological or horizontal pleiotropy, mediated pleiotropy, and spurious pleiotropy. Although spurious 

pleiotropy is basically the result of bias from different sources, it is often mentioned as a form of 

pleiotropy to guide researchers in interpreting their results. In the biological or horizontal form of 

pleiotropy, one or more variants in the same genomic region are associated with more than one trait 

(see Figure 3). This form of pleiotropy could be at the allelic or genic level. At the allelic level, an 

associated genetic maker could be in LD with one or more causal variants in the same gene that 

simultaneously affect different traits. At the genic level, markers in the same gene are in LD with 

different unobserved causal variants which independently affect two or more traits. For example, 

the SNP rs6983267 in the intergenic region of chromosome 8q24 is a risk variant for prostate and 

colorectal cancer49. In the case of mediated pleiotropy, the correlation of a variant to one trait that 

causally predicts another trait leads to the marker appearing to be associated with both traits (see 

Figure 3). For example, the CHRNA5 gene is known to be associated with lung cancer, chronic 

obstructive pulmonary disease (COPD), and smoking behaviors. However, the association with lung 

cancer could be either due to the effect of the gene variants on smoking intensity or indirectly through 
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effects on COPD80. Spurious pleiotropy arises from different forms of bias such as phenotype 

misclassification errors, overlapping controls cohort in independent studies, and high LD in regions, 

leading to marker tagging variants in different genes49,50  (see Figure 3).  

More recent examples of pleiotropy include the identification of loci 14q12-q23 and 12q24.2-q24.3 

as shared risk factors between migraine and epilepsy through linkage analysis81. Another notable 

example is the variation in the calcium channel activity genes such as CACNA1C and CACNA1D,  which 

were reported to be pleiotropic for psychiatric disorders like schizophrenia, bipolar disorder, and 

major depressive disorder 82. Overall, the study of pleiotropy is helpful and comprises a promising set 

of methods for disentangling causal relationships and genetic architectures in complex, multifactorial 

diseases, as exemplified in the current work, in which I apply pleiotropy analysis methods to well-

categorized phenotypes of epilepsy.  

 

5.9. Available methods for pleiotropy detection 

Pleiotropy detection methods can be classified into genome-wide, regional, or single variant-specific 

based on the level at which overlap of variants with traits is assessed. Genome-wide approaches are 

 

Figure 3: (Adapted from: Solovieff et al. Pleiotropy in complex traits: challenges and strategies. 

Copyright © 2013 Macmillan Publishers Limited). Types of Pleiotropy. Biological or horizontal: 

Genetic units exert their effects through one or two colocalizing variants associated with two traits 

(a, b, c). Mediated: a trait causally related to another trait, thereby a single variant appearing to be 

associated with both traits (d) or spurious: relationships due to different forms of bias (e, f). 
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only available for the simultaneous study of multiple traits. At the regional level, markers are grouped 

into genetically meaningful LD blocks and analyzed as sub-groups. In the statistical sense, these 

methods are broadly classified as univariate and multivariate approaches. The univariate methods 

directly quantify the effect of the variant on an outcome, which can be a trait or, in the case of 

pleiotropy, a parameter that represents the combination of effects from individual traits analysis, 

while the multivariate methods jointly test the association between variants and two or more traits in 

measured simultaneously in the same individual. The application and choice of methods are guided 

by data availability, of particular importance is the question of whether individual-level or summary 

statistics are available, the number of traits co-measured, and whether some samples are shared 

between studies (see Figure 4). Both multivariate and univariate pleiotropy approaches identify cross-

phenotype (CP) association. It is worth noting that pleiotropy analysis provides statistical evidence of 

pleiotropy which can be followed up by mapping, phenotype stratification, and further study of 

molecular mechanisms of the diseases, which is useful in clarifying the type of CP association 

identified.  

The availability of individual-level genotype and phenotype data allows for the use of multivariate 

pleiotropy detection approaches. One commonly used genome-wide pleiotropy detection method is 

the polygenic risk score (PRS). PRS combines polygenic effects across loci to check for association or 

predict risk and can be used for pleiotropy detection83. One approach to identify pleiotropy using PRS 

is by constructing genetic risk scores using effect estimates of markers selected from GWAS in a 

sample for each individual in another independent sample,68. An association of the score to the trait 

of interest in the second sample is evidence of an overlap between the genetic factors of both 

traits82,84.  Other noteworthy sets of multivariate genetic correlation approaches for identifying shared 

loci at the genome-wide level are implemented in GCTA85,86, BOLT-REML87, and multivariate linear 

mixed model (mvLMM)88.  These methods can accommodate continuous and binary variables except 

for mvLMM, which only allows normally distributed dependent variables50. The GCTA and BOLT-REML 

algorithms use restricted maximum-likelihood estimation to compute genetic correlation (rg), which 

expresses the influence of genetic factors on the covariance of two traits. 

Some methods are also available for identifying pleiotropy at the regional level. One popular 

multivariate approach implemented in the pleiotropic region identification method (PRIMe)89, bins 

the entire genome into non-overlapping blocks based on pre-defined criteria such as LD-blocks and 

gene boundaries50. The most significant variant in the block is termed ‘’a driver’’ for all other variants 

known as “passengers”. This process is repeated until all variants are partitioned into non-overlapping 

blocks, each containing a driver. Pleiotropy is identified based on some prespecified index in each 

block50. Other gene-based or locus-based multivariate methods such as Bayesian colocalization 

model90, canonical correlation analysis (CCA) methods91,92, and multi-trait set tests(mtSET)93 are also 

available. 

In summary, there are many available multivariate methods for individual-level pleiotropy analysis, 

for analysis at single-variant or genome-wide level, for either continuous, binary, or categorical 

variables. Analysis approaches include multinomial logistics regression94,95, generalized linear mixed 

model96,97, linear mixed-effects models98,99,  generalized estimating equations (GEE)100,101, frailty 

models 102, principal components analysis103,104 and others105 (see Figure 4). However, data availability 

is an issue in practice, as most individual-level genotyping studies are performed for studies of single 

phenotypes. Data sharing among researchers is complex due to regulations and concerns from ethical 
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considerations.  Single-trait GWAS summary statistics are more readily available. These reasons justify 

the existence of methods for combined analysis of univariate summary statistics from separate GWAS. 

It also motivates the use of univariate pleiotropy approaches in this project.  

Therefore, other valuable methods to harness increasingly available GWAS summary statistics have 

been developed. Most of the available univariate pleiotropy detection methods stem from the idea of 

meta-analysis, where separate studies are combined to increase the power of detecting association. 

The classical meta-analysis method combines effect sizes or p-values of two or more traits to generate 

a combined effect estimate or p-values for the traits2,106. However, the classical MA has major 

limitations, such as the requirement of very homogenous traits. Another limitation is that classical MA 

does not account for the directionality of effect, and samples overlap in the case that samples are 

present in multiple studies. The subset-based metal-analysis (ASSET)3 approach is an extension of 

fixed-effect meta-analysis that accounts for sample overlap and effect direction and allows for 

heterogeneous traits to be jointly analyzed. Other extensions of classical metal analysis are cross-

phenotype meta-analysis (CPMA)107, cross-phenotype association (CPASSOC108,109), trait-based 

association test (TATES),  MultiMeta110, pleiotropic analysis under the composite null hypothesis 

(PLACO)6, Multi-TRAIT Analysis of GWAS (MTAG)111,  and pleiotropic locus exploration and 

interpretation using optimal test (PLEIO)112. Some Bayesian univariate pleiotropy detection 

approaches are also available. The conditional false discovery rate (cFDR), as the name implies, tests 

a trait called “principal trait” conditional on the second, “conditional” trait 113. cFDR was further 

extended to account for overlapping samples5.  A more recent cross phenotype Bayes (CPBayes) 

approach computes local FDR and Bayes factors as evidence of overall pleiotropy 4. In the current 

study, I applied five of these univariate methods (see Table 1 for an overview), as discussed in the next 

section.  
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Figure 4: (Adapted from: Salinas Y. D., Wang Z., DeWan A. T. Statistical Analysis of Multiple 

Phenotypes in Genetic Epidemiologic Studies: From Cross-Phenotype Associations to Pleiotropy. 

Copyright © The Author(s) 2018).  Classification of available pleiotropy detection methods based 

on available data, the outcome, and samples overlap across studies.  
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5.10. Description of applied univariate approaches 

From the many available methods discussed in the previous section, I selected five recent, well-

implemented univariate pleiotropy detection approaches briefly described in the following sections 

using the simulated dataset to identify the best methods in terms of power and false-positive rate. 

These methods are meta-analysis-based in that they extend the framework of classical meta-analysis 

of combining effects sizes or P-values from independent GWAS, accommodate varying sources of 

heterogeneity, and allow for sample overlap. Some of the methods even generate inference via 

Bayesian sampling approaches. 

 

 

 

5.10.1. Classical fixed-effect meta-analysis (MA) 

This approach consolidates results from different studies by pooling the P-values or effect sizes from 

these studies to estimate an overall effect size. MA is not explicitly designed for pleiotropy detection 

but can be expected to identify variants that have concordant effects in separate studies of two or 

more phenotypes and, correspondingly, its use has been demonstrated in pleiotropy detection114,115. 

This method estimates an overall effect from the two phenotypes by computing the weighted mean 

from the effect sizes weighted by the inverse of the overall study variance. The assumption is that 

there is a true effect shared by all phenotypes being analyzed, and the difference in observed effect 

is due to sampling error116. This true effect is the estimated common effect. It typically assigns larger 

weights to a phenotype with more precise effect sizes, meaning that the weights are computed via 

the amount of information provided from each phenotype, hence, the use of sample sizes.  

Method Abbreviation Reference Web resource 

Classic fixed-effect 

meta-analysis  
MA 2 

http://csg.sph.umich.edu/abecasis/

metal/download/ 

Subset-based metal 

analysis   
ASSET 3 

https://bioconductor.org/packages/

release/bioc/html/ASSET.html 

Cross-phenotype Bayes  CPBayes 4 
https://github.com/ArunabhaCodes

/CPBayes 

Conditional false 

discovery rate  
cFDR 5 

https://github.com/jamesliley/cFDR

-common-controls 

Pleiotropic analysis 

under the composite 

null hypothesis  

PLACO 6 
https://github.com/RayDebashree/

PLACO 

 

Table 1: Univariate pleiotropy detection methods included in the analysis and their sources. 
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The basic approach underlying fixed-effect MA is the conversion of study-specific P-values (𝑃𝑘) and 

effect direction (𝛿𝑘) from K studies into standard normally distributed signed Z-scores  

 𝑍𝑘 = 𝛷−1(𝑃𝑘/2) ∗ 𝑠𝑖𝑔𝑛(𝛿𝑘)  (5) 

  

which are then combined to estimate an overall Z-score (𝑍𝑚𝑒𝑡𝑎) statistic by weights wk. Weights are 

typically assigned based on the inverse of the variance, which is also roughly proportional to sample 

size117. Therefore 𝑤𝑘 =
1

𝛿𝑘
  and the variance of the combined effect is 𝛿𝑚𝑒𝑡𝑎 =

1

∑ 𝑊𝑘
𝑘
𝑖=1

. Thus,  

𝑍𝑚𝑒𝑡𝑎 =
∑ 𝑍𝑘𝑘=1..𝐾 𝑊𝑘

√∑ 𝑊𝑘
2

𝑘=1..𝐾

 .                                                                   (6) 

The final overall P-value is then obtained by comparing this statistic against a standard normal 

distribution:  

𝑃𝑚𝑒𝑡𝑎 = 2[1 − (𝛷(|𝑍𝑚𝑒𝑡𝑎|))],                                                           (7) 

where 𝛷 denotes the standard normal distribution function. Here, I used the MA implementation in 

the METAL software2.  

5.10.2. Subset-based meta-analysis (ASSET) 

The ASSET method3 extends the classical meta-analysis approach by pooling multiple heterogeneous 

trait effects together and exploring exhaustively various subsets of these traits acting concordantly in 

the same or different directions. It generalizes the classical fixed-effect meta-analysis by exploring all 

possible subsets of non-null studies to check for strong association signals. This approach tests the 

null hypothesis of no association of SNPs in any of the individual traits by estimating the evidence of 

association for any SNP, Z-statistics (𝑍(𝐵)) in any given subset (𝐵) of traits. For a given subset B of 

m(B) studies, the respective overall Z-score Z(B) is obtained following the MA approach by  

 𝑍(𝐵) = ∑ √𝜋𝑘(𝐵)𝑍𝑘
𝑘∈𝐵

 , (8) 

where 𝜋𝑘(𝐵) = 𝑛𝑘/ ∑ 𝑛𝑘
𝑚(𝐵)
𝑘=1  weighs the different studies proportional to the square root of 

respective sample sizes. If covariate adjustments are similar across studies, then 𝐵𝑘 ∝
1

𝑛𝑘
  where nk is 

the sample size for the kth study 3. The score  is then maximized over all possible subsets: 

 𝑍𝑚𝑒𝑡𝑎−𝑚𝑎𝑥 = 𝑚𝑎𝑥𝐵⊆{1,..,𝐾}|𝑍(𝐵)| . (9) 

The overall hypothesis of a genetic marker to be associated with all traits is evaluated by Zmeta−max. 

The upper bound for the P-values from the defined multivariate distribution is obtained through the 

discrete local maxima (DLM) method (see 3 for full details). The aggregate evidence of pleiotropy is at 

GWAS significant P-value of 5 × 10−8 after correcting for multiple testing using Bonferroni standard 

procedure. 

5.10.3. Conditional false discovery rate (cFDR) 

This method leverages the available GWAS summary statistics by estimating the cFDR, which 

comprises an upper bound on the expected FDR across SNPs having p-values below a set threshold for 
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both traits5,118. As discussed in section 5.6, the FDR controls the expected proportion of false positives 

among all associated SNPs that were declared significant. Assuming that the P-value of a trait k across 

all variants is a realization of a random variable Pk, the unconditional FDR (uFDR) for the null 

hypothesis 𝐻0
(𝑘)

 of no association of this variant with phenotype k is then defined as the probability 

that a random variant from this set of rejected hypotheses falls under the null hypothesis for this 

phenotype 5. The uFDR can be estimated from a set of observed P-values: 𝑝𝑘
1, 𝑝𝑘

2, . . . , 𝑝𝑘
𝑁 for a set of N 

variants as the ratio of the expected quantile of Pk under 𝐻0
(𝑘)

and the observed quantile of Pk:  

 𝑢𝐹𝐷𝑅(𝑝𝑘)
̂ =

𝑝𝑘

#(𝑝𝑘
𝑖 | 𝑝𝑘

𝑖  ≤ 𝑝𝑘)

𝑁

 . (10) 

However, for cFDR, a trait selected to be the “principal trait” is conditioned on the second trait, 

“conditional trait,” the cFDR is then defined as the posterior probability that a given variant falls under 

the null hypothesis for the principal phenotype given that the P-values for both phenotypes are less 

or equal to the observed P-values (𝑝𝑘 , 𝑝𝑙): 𝑃 (𝐻0
(𝑘)

|𝑃𝑘 ≤ 𝑝𝑘 , 𝑃𝑙 ≤ 𝑝𝑙). Similar to the uFDR and based 

on observed P-value pairs {(𝑝𝑘
1, 𝑝𝑙

1), (𝑝𝑘
2, 𝑝𝑙

2), . . . , (𝑝𝑘
𝑁 , 𝑝𝑙

𝑁)} for two phenotypes k and l at N different 

SNPs, it is estimated by the ratio of the expected quantile of Pk under 𝐻0
(𝑘)

amongst those 𝑝𝑘
𝑖  where i 

satisfies 𝑃𝑙
𝑖 ≤ 𝑝𝑙  and the observed quantiles:   

 𝑐𝐹𝐷𝑅(𝑝𝑘|𝑝𝑙)
̂ =

𝑃(𝑃𝑘≤𝑝𝑘|𝑃𝑙≤𝑝𝑙,𝐻0
(𝑘)

)

#((𝑃𝑘
𝑤,𝑃𝑙

𝑤) 𝜖(𝑃𝑖,𝑃𝑗)|𝑝𝑘
𝑖  ≤ 𝑝𝑘 𝑎𝑛𝑑 𝑝𝑙

𝑖 ≤ 𝑝𝑙)

𝑁1

 (11) 

where N1 denotes the number of P-value pairs with 𝑃𝑙 ≤ 𝑝𝑙 and (𝑝𝑘 , 𝑝𝑙) is the P-value pair for a SNP 

of interest5. Suppose controls are shared between the two traits. In that case, there is a positive 

correlation between the estimated effect sizes for both traits and the distribution of P-values for the 

principal trait, given that the P-values for the conditional trait depends on the underlying effect of 

each SNP on the conditional trait; hence, the underlying effect (𝜂) is not known. Itd can be considered 

as a realization of random variable 𝐻. The expected P-value of principal trait, 𝑃(𝑃𝑘 ≤ 𝑝𝑘|𝑃𝑙 ≤

𝑝𝑙 , 𝐻0
(𝑘)

) is then evaluated by integrating over the true but unknown effects for conditional traits5. 

Association with both phenotypes is tested via a conjunction FDR procedure to minimize the effect of 

a single phenotype driving the association signal, and an FDR-controlling procedure is used to correct 

for multiple testing. 

5.10.4. Cross-phenotype Bayes (CPBayes) 

The cross-phenotype Bayes approach is a fully Bayesian meta-analysis-based approach that generates 

inference on overall evidence of pleiotropy for two or more traits using Gibb’s sampling form of the 

Markov chain Monte Carlo (MCMC) technique. The aggregate evidence of pleiotropy is given by the 

local false discovery rate (locFDR) and the Bayes factor (BF) through testing the global null hypothesis 

(Ho) of no association with any trait versus the alternative hypothesis (H1) of association with at least 

one trait. Prior information is provided by the spike and slab approach, where the spike element 

represents the null effect while the slab part represents the non-null effect. Let 𝛽𝑘̂ be regression 

estimates of true effect 𝛽 obtained from the separate univariate models of individual traits 𝑇𝑘 and 𝑠𝑘  

their standard errors. If the sample size is sufficiently large and 𝛽𝑘̂  are uncorrelated, we assume that 

 𝛽𝑘̂|𝛽𝑘 ~
𝑖𝑛𝑑

𝑁(𝛽𝑘 , 𝑠𝑘
2)  (k=1,..,K).  (12) 
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However, for correlated estimates (𝛽1̂, . . . ., 𝛽𝑘̂ ) with variance-covariance matrix 𝑆 that 

corresponds to the SNPs, 𝛽̂|𝛽~𝑀𝑉𝑁(𝛽, 𝑆). The prior information is given such that zk denotes the 

association status of Tk (see 4, page 22). The local false discovery rate (locFDR) equals the probability 

of null association (PNA) given the data: locFDR = 𝑃(𝐻0|𝐷). With the posterior odds (PO) equalling 

𝑃𝑂 =
𝑃(𝐻1|𝐷)

𝑃(𝐻0|𝐷)
 and the posterior probability of association equaling PO/(1-PO), we obtain the 

posterior probability of null association (PPNA) which is the same quantity as locFDR as: 

 𝑃𝑃𝑁𝐴 = 1 − 𝑃𝑃𝐴 =
1

1+𝑃𝑂
= 𝑃(𝐻𝑜|𝐷) . (13) 

Also, the Bayes Factor (BF) is obtained by:  

 𝐵𝐹 =
𝑃(𝐷|𝐻1)

𝑃(𝐷|𝐻0)
=

𝑃(𝐻1|𝐷)𝑃(𝐻0)

𝑃(𝐻0|𝐷)𝑃(𝐻1)
=

𝑃(𝑍 ≠ 0|𝐷)𝑃(𝑍=0)

𝑃(𝑍 = 0|𝐷)𝑃(𝑍≠0)
=

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠

𝑃𝑟𝑖𝑜𝑟 𝑜𝑑𝑑𝑠
 , (14) 

where the posterior odds are the ratio of the probability of non-null and null effect given the data 

while the prior odd is the ratio of the probability apriori of the effect being non-null and null, which is 

estimated from a Dirac distribution or mixture of normal distributions with mean zero and very small 

variance. locFDR and BF provide the evidence of aggregate pleiotropy such that if BF >1 and locFDR 

< 10−6  the variant is pleiotropic. In addition, the trait-specific posterior probability of association 

also provides information on the relative strength of association between a pleiotropic variant and 

the selected non-null trait contribution to the aggregate evidence of association. 

5.10.5. Pleiotropy analysis under the composite null hypothesis (PLACO) 

PLACO methods test for evidence of pleiotropy by testing the composite null hypothesis of no 

association with none or only one of the traits as opposed to the testing of the global null hypothesis 

of no association of the SNPs with any of the traits in the MA approach using the summary statistics 

from GWAS of individual traits. The null and alternative hypotheses are defined in such a way that the 

global null hypothesis consists of sub-null hypotheses 𝐻01and 𝐻02 where H01:  β1 = 0,   β2 ≠

0,  𝐻02:  β1 ≠ 0,  β2 = 0 for both traits. β1and β2 are the genetic effect of the variants for the first and 

second trait respectively, 𝐻01 is the sub-null hypothesis that the genetic effect is zero for the first trait 

and non-zero for the second trait, and vice versa for 𝐻02 . Assume the global null 𝐻00 holds with 

probability π₀₀ for asymptomatic standard normal distributions of phenotype-specific statistics Z1 and 

Z2. Additionally, assume 𝐻01 is a sub-null hypothesis with probability π₀₁ under which Z1 has a standard 

normal distribution and Z2 has a conditional 𝑁(𝜇2, 1) distribution where the mean parameter is 𝜇2 ∼

𝑁(0, 𝜏2
2) distributed and the sub-null hypothesis 𝐻02 holds with probability π₀₂ and 2Z  ∼ 𝑁(0,1) while 

𝑍1|𝜇1 ∼ 𝑁(𝜇1, 1), where 𝜇1 ∼ 𝑁(0, 𝜏1
2). Therefore, the composite null hypothesis of no pleiotropy 

and the alternative hypothesis using the special case of the principle of union-intersection of statistical 

hypothesis testing is:  

 
𝐻𝑎: 𝐻00

𝑐 ∩ 𝐻01
𝑐 ∩ 𝐻02

𝑐  ,    𝐻𝑎 = β1 β2 ≠ 0

𝐻𝑜: 𝐻𝜕00 ∪ 𝐻01 ∪ 𝐻02 ,    𝐻0 = β1 β2 = 0
  (15) 

Furthermore, assume Z1 and Z2 are independent normal variables under 𝐻00 and their product 𝑍1𝑍2 

has a normal product distribution under 𝐻00, 𝐻01and 𝐻02, respectively (if 𝜏1 and 𝜏2 are unknown). 
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Therefore, the P-value for testing the 𝐻𝑜: 𝛽1𝛽2 = 0 against 𝐻𝑎: 𝛽1𝛽2 ≠ 0 using products of the Z 

scores can be obtained from  

 𝑃𝑧1𝑧2
= 2 × 𝑃𝐻𝑜

(𝑧1𝑧2 > |𝑧1𝑧2|) = 2 × 𝛴
𝑘=0

2
𝑃(𝐻0𝑘)𝑃𝐻0𝑘

(𝑧1𝑧2 > |𝑧1𝑧2|). (16) 

Since the P-value is sensitive to the probabilities and variance, the asymptotic approximation of 

the P-value is given by  

 𝑃𝑧1𝑧2 
= 𝔽(𝑧1𝑧2 /√𝑣𝑎𝑟(𝑧1)) + 𝔽(𝑧1𝑧2 /√𝑣𝑎𝑟(𝑧1)) − 𝔽(𝑧1𝑧2 )  , (17) 

where 𝔽(𝑢) denotes the two-sided tail probability of a normal product distribution at value u. 

5.10.6. Pros and Cons of the Univariate pleiotropy detection approaches. 

All the applied univariate pleiotropy detection methods are simple to use because they only require 

effect sizes, standard error, and sample sizes from GWAS. All methods produce overall evidence of 

pleiotropy in the form of P-values. The measure of aggregate-level evidence for pleiotropy varies 

among the methods, with 10−6 being the recommended cut-off used for FDR-based approaches 

(cFDR, CPBayes 4,5and 5 × 10−8being the significance level for the other methods (MA; ASSET, PLACO). 

Additionally, the CPBayes approach also provides the percentage posterior contribution of each trait 

to the overall evidence, while ASSET gives evidence of directionality of effect and can identify switch-

like variants and their effects.  

Although the classical MA approach is quite simple and easy to use, it requires that the traits should 

be homogenous, and rejecting the global null hypothesis of no association of the SNPs with any traits 

does not necessarily translate to pleiotropy but, a strong effect of a SNP for a trait could motivate the 

observed evidence against the null hypothesis. PLACO and cFDR methods accommodate only two 

traits at once.  

5.11. Aims of the project 

Due to the mirage of univariate methods available in the literature with no recent existing 

benchmarking study to compare their power to detect pleiotropy and their error rate, I firstly 

performed a benchmarking study of five univariates pleiotropy detection approaches, namely: cFDR 
5,113,118, CPBayes4, ASSET3, PLACO6, and classical MA2 to select the best performing method through a 

simulation study. 

This method identified through the simulation study was applied to the GWAS summary statistics 

of two epilepsy phenotypes, generalized genetic epilepsy and focal epilepsy, obtained from the 

international league against epilepsy (ILAE) consortium16 to identify pleiotropic variants for both 

epilepsy traits. I further applied this method to a larger sample set of GGE and FE epilepsy forms to 

replicate the identified variants in the first dataset and discover new associations based on the fact 

that the power to discover such associations increases with increased sample size.  
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6. Methods 

6.1. Simulation study design 

While many very different approaches are available for simulating populations (e.g., coalescent-based 

methods, forward simulations, resampling approaches)119, they often scale unfavorably with growing 

sizes of populations and/or genetic variants. I used a resampling approach that is fast, efficient, uses 

available genetic data, and yields the same LD structure as in the base dataset119. Resampling 

approaches are also preferred when focusing on study design and analysis of actual genome data 

because they can preserve the allele frequency of the markers. However, if the interest is in studying 

evolutionary forces in the population, the other simulation approaches are more applicable119. 

Therefore, I employed a commonly used resampling algorithm to simulate the entire genome of 1 

million individuals of European ancestry, using Hapgen213 with the haplotype data of 99 CEU (Utah 

residents (CEPH) with Northern and Western European ancestry) individuals provided by the 1000 

Genomes project14 (retrieved from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html). I 

used only the polymorphic position of autosomes in the reference dataset. More specifically, I 

generated population genotypes under the null model of relative risk of 1.0. The Hapgen2 resampling 

algorithm is based on the Li & Stephen (LS) model of LD, where each new simulated haplotype is 

conditioned on the reference haplotype population and the estimates of fine-scale recombination rate 

across the region (retrieved from https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html), 

leading to the same LD pattern as in the reference data13,120. The size of the simulated data (~2 TB) 

forced me to simulate the population in 10 batches. When checking for batch effects, I identified three 

distinct clusters using principal component analysis (PCA). To avoid biasing or confounding effects by 

this substructure which may lead to inflated statistics, I included the first ten principal components 

(PCs) as covariates in all subsequent association analyses. This was based on my observation that the 

clustered structure disappeared when going from nine to ten PCs to be included as covariates.  

6.1.1. Case-control status assignment for pairs of phenotypes.  

To simulate multifactorial disease phenotypes from genetic data, I adopted the additive liability 

threshold model (ALTM)15, a simple but well-established theoretical model calibrated to empirical data 

and successfully used to describe the genetic architecture of different traits. This model does not 

consider interaction effects (intra- and inter-locus) because they are assumed to be very small for 

most common traits54. This model assigns dichotomous case-control status according to the 

exceedance of some liability thresholds following classical quantitative genetics theory. As previously 

stated, the ALTM is an allele-based model that assumes no intra- or inter-locus interaction but allows 

for different genetic effect sizes, narrow-sense heritability, and disease prevalence values. More 

specifically, let T denote the normally distributed liability, g the phenotype-impacting variant effects, 

and E the standard Gaussian random noise attributed to other non-genetic sources. For each 

individual (l=1, …, L), locus-specific variant effects gij (i=1, …, M) are summed up across all loci (j=1, …, 

N): 

 

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
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     𝐺𝑙 = ∑ ∑ 𝑔𝑖𝑗
𝑀
𝑖=1

𝑁
𝑗=1                              (18)

  

Subsequently, Gl is standardized by 

𝐺𝑙
𝑧 =

(𝐺𝑙−𝑚𝑒𝑎𝑛(𝐺𝑙))

𝑠𝑡𝑑𝑒𝑣(𝐺𝑙)
                                                                 (19)  

 

and E is randomly assigned to each individual (El ~ N(0,1) ∀l∈{1, …, L}) in such a way that the pre-

specified narrow-sense heritability ℎ2 =
var(𝐺)

(var(𝐺)+var(𝐸))
  is attained.   

To simulate the disease SNPs under different effect estimates, the standardized value of the 

genetic effect is multiplied by varying effect sizes.  Thus, the liability Tl of an individual l is then given 

by: 

 

𝑇𝑙 = 𝐺𝑙
𝑧 + √(1 − ℎ)/ℎ × 𝐸𝑙  .                                                     (20)  

Case-control status is finally assigned by imposing a threshold t on the liability so that a proportion 

of the population corresponding to the disease prevalence exceeds this threshold with their liability 

value, i.e., individuals assigned case status. In my simulations, I considered, in turn, prevalence values 

of 1% and 10%, thereby considering traits of moderate and of common prevalence, respectively.  

6.1.2. Case-control sample sets for pairs of traits. 

To simulate a pair of traits, I randomly selected 1,000 common SNPs with allele frequencies between 

5% and 20% in the simulated population. From those, I randomly selected five and ten disease-causing 

SNPs, respectively, to allow multiple markers to jointly contribute to the incidence of both traits as 

obtainable in GWAS, for each of the two traits to be simulated and assigned them a pre-defined 

relative risk (RR), namely 1.05, 1.2, 1.5, and 2.0 respectively. These RR values are selected based on 

typical values that have been observed in GWAS. I introduced biological pleiotropy by forcing the two 

respective causal SNP sets for the two traits to partially overlap by either 20% or 40%. More values of 

all the factors described here were not considered as more values will lead to many combinations that 

might be difficult to handle, summarize and visualize. These two SNP sets then entered the ALTM, and 

the traits were simulated separately across the entire population. Please note that the scenario of five 

causal SNPs and 20% overlap corresponds to the simplest case of a single SNP acting pleiotropically 

for the two traits. I defined the case-control status using the varying prevalence values as the quantile 

of the distribution of the liability of all individuals to define a threshold. Individuals with a liability 

greater than this threshold were assigned case status, otherwise keeping control status. To avoid 

reporting rare artifacts, I performed this step multiple times to assess variability and obtain average 

values close to the true mean. Hence, obtaining 100 replications where both traits would have a 

prevalence in the population of either 1% or 10%, respectively, given the pre-specified parameters of 

variant number, variant overlap, and effect size. I used these prevalence levels because the estimated 

prevalence of common diseases in GWAS is not often large.  Finally, I drew a single random sample of 

1,000, 5,000, and 10,000 cases, as often seen in real-world GWAS data, respectively, and an equal 
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number of controls for each trait of the pair from a given replication, resulting in sample sizes of 2000, 

10,000, and 20,000 for each trait, respectively.  

6.1.3. Identification of pleiotropy in simulated data 

Since I restricted the study to unidirectional biological pleiotropy for single variants, which implies that 

a variant is pleiotropic if it increases the risk of having the two traits, I defined the power of discovering 

pleiotropy and its corresponding false-positive rate as shown. Firstly, I performed a univariate 

association test for the individual trait using PLINK v1.9 beta 6.9121,122, including the first ten principal 

components as covariates (see section 6.1.2). The resulting effect sizes, standard error, or P-value in 

some cases from the association analysis served as input for the univariate pleiotropy detection 

method after ascertaining that only the selected diseased variants are causal for the traits in the 

association analysis. A true-positive (TP) finding is defined as the marker that reached an aggregate 

genome-wide significance level of  5 × 10−8. However, the measure of overall evidence of pleiotropy 

is different for the FDR-based approaches (CPBayes and cFDR), where 10−6 is the recommended FDR 

threshold value4,5,113.  

Variants are considered pleiotropic and true positives in all applied methods if they are causal for 

both traits, that is, they exceed the defined threshold for evidence of pleiotropy in each method. At 

the same time, false-negatives (FN) were the disease overlapping variants that did not reach the preset 

threshold of evidence of pleiotropy for both traits. Therefore, the power of each method to detect 

true pleiotropy is:  

 
1 ,

TP
Power FNR

TP FN
= = −

+  (21)                                            

where the false-negative rate (FNR) is the proportion of pleiotropic variants that are not associated 

with both traits. I estimated the type Ι error rate or the false-positive rate as the proportion of the 

non-pleiotropic causal variants that exceed the threshold values of evidence of pleiotropy in the total 

number of causal SNPs for the different approaches. FPR is obtained as follows: 

 1 ,
FP

FPR TNR
FP TN

= = −
+

 (22) 

where the false positives (FP) count is the number of non-pleiotropic causal SNPs, i.e., variants that 

are only causal for either phenotype but found to show evidence of pleiotropy for both traits, while 

the true negatives (TN) or specificity is the ratio of non-pleiotropic SNPs that are genuinely non-

pleiotropic. 

6.2. Pleiotropy detection in two epilepsy phenotypes 

The ILAE Consortium, established in 1909, is committed to working towards a world where no 

individual is limited by epilepsy through adequate research and education123. The consortium seeks to 

ensure the provision of resources and tools needed to the health care provider, caregivers, and people 

living with epilepsy to understand, prevent and treat different forms of epilepsy. However, the genetic 

analysis group of the consortium has focused on identifying genetic risks that predispose people to 
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develop epilepsy and disentangling different risk factors of epilepsy, especially in the complex forms 

of the disease. 

ILAE consortium on complex epilepsies in the past has published results of GWAS  on common 

forms of epilepsies (GGE and FE) and their phenotypes and reported some genes that are correlated 

to these traits. A meta-analysis of 34,853 (8,696 cases, 26,157 controls) individuals of European, Asian, 

and African-American origin resulted in the identification of voltage-gated sodium channel genes, 

SCNA1, and SCNA9 on chromosome 2  and Protocadherin gene, PCDH7 on chromosome 4 for all 

epilepsies which include in this study GGE and FE and unclassified124. They also found a locus 2p16.1 

implicating VRK2 and FANCL genes correlated to GGE124. In 2018, the consortium published a bigger 

genome-wide mega-analysis study which included an additional 6,516 cases and 3,460 controls to the 

previous GWAS samples, which led to a larger sample cohort comprising 15,212 epilepsy cases and 

29,677 controls.  The analysis found 16 loci associated with the different forms of epilepsies, with 11 

of these loci being novel.  Joint analysis of all epilepsies revealed a new locus at 16q12.1 in addition to 

loci 2p16.1 and 2q24.3 previously discovered on chromosome 2. Further, the study found 11 

associated loci for GGE and a locus for FE with about 21 prioritized epilepsy genes mapped to the 

resulting loci16. 

6.2.1. Description of the datasets 

6.2.1.1. ILAE dataset 

Based on epilepsy seizure types described in section 5.7.2, I obtained summary statistics of two well-

characterized epilepsy phenotypes, GGE and FE, from the ILAE mega-analysis study for the European 

cohort, which are more homogenous. I obtained effect sizes and standard errors for 3,708 FE cases, 

9,095 GGE cases, and 24,218 overlapping controls. Based on the results obtained in section 6.1, where 

the ASSET method performed best in the simulation study, I applied the ASSET method to this sample. 

The sample overlap between the controls was accounted for in the pleiotropy analysis by computing 

a correlation matrix for the samples and including the obtained correlations in the analysis.  

6.2.1.2. ILAE and EPI25 datasets 

In the second analysis phase, I received summary statistics of GGE and FE phenotypes from the ILAE 

consortium and EPI25 collective. I applied ASSET to the subset of European samples, comprising 6952 

(3244+3708) GGE cases and 14,939 (5344+9095) FE cases from the EPI25 and the ILAE Consortium as 

well as 42,434 partially overlapping controls from both sources (see Table 2 below). I performed the 

analysis in two different ways, firstly by considering four groups (2 GGE and 2 FE defined along with 

both ILAE and EPI25 cohorts) and secondly, by using two groups which consist of meta-analyzed 

summary statistics of GGE and FE phenotypes from both cohorts. In the first scenario, I could only 

account for study difference (samples cohort) in the ASSET formulation but could not expressly define 

GGE and FE phenotypes in both cohorts as belonging to the same trait. 

Therefore, ASSET was notably blind to the fact that GGE from both EPI25 and ILAE samples are the 

same phenotype (same for FE). Hence, a locus showed an opposite effect direction for GGEs in EPI25 

and ILAE cohorts. Considering the four groups could be an interesting analysis given the larger genetic 

and phenotypic homogeneity within the cohorts, but I dropped the analysis due to the above-stated 

concerns, which I could not directly fix in the software. To this end, I used the two cohorts' effect sizes, 

standard errors, and the effective sample sizes estimated from the meta-analysis for GGE and FE. The 
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data contained ~4.8 million common SNPs for which genotype data were available in both the EPI25 

and ILAE samples.  

 

6.2.2. Dataset quality control 

On these summary statistics output provided by the ILAE Consortium on complex epilepsies16, I 

compared the 𝜒2 of pairs of SNPs with LD value (r2 > 0.4) and removed SNPs having 𝜒2 values greater 

than 
3×√

𝑆𝑁𝑃1
𝜒2+𝑆𝑁𝑃2

𝜒2

2

(𝑅2)2  to exclude SNPs with inflated 𝜒2 (outliers) values which can bias the result16. 

Finally, I analyzed only those SNPs that were contained in the datasets of both GGE and FE after quality 

control, including about 4.1 million SNPs in the pleiotropic analysis using ASSET. 

6.2.3. Pleiotropy, annotation, enrichment, and colocalization analyses 

I applied the ASSET method, which has proven to be powerful from the simulation study, yielding a 

better trade-off between FPR and power to the datasets described in section 6.2.1 to identify shared 

loci between GGE and FE. Since the control samples are shared for these traits, I estimated the 

correlation between the Z statistics and the covariances, then the subset search procedure was carried 

out, and finally, the P-value was approximated with the DLM procedure. I obtained odds ratios, overall 

P-values, and directional P-values with subsets of the traits each variant is associated with from the 

analysis and further performed gene mapping, annotation, and prioritization of genome-wide 

significant variants using various tools. 

SNPs found to be significant in the pleiotropic analysis with ASSET were mapped to genes using 

FUMA125 (https://fuma.ctglab.nl/). The loci harboring these significant SNPs were delineated by 

clustering SNPs in LD at r2>0.2 within a ±250kb radius. The SNP with the smallest p-value was 

considered the “lead” SNP within a locus. I then performed functional annotation of the SNPs included 

in the above-defined loci to assess the potential consequences of these SNPs. To this end, I performed 

functional annotation of the variants that are in LD with one significant independent SNP using 

ANNOVAR126. I also performed functional annotation using the RegulomeDB database to check for 

evidence of SNPs affecting regulation, where RegulomeDB scores <6 are considered to affect the 

regulation of the mapped gene127. Deleteriousness of SNPs was predicted by CADD scores; scores 

higher than 12.37 were considered deleterious, as proposed by Kircher et al.128.  

Furthermore, I performed a tissue expression analysis using FUMA, based on the P-values from 

MAGMA129 gene-set analysis and GTEx v8 expression data, to quantify the relationship between the 

 
EPI25 ILAE Total 

GGE FE GGE FE  

Cases 3244 5344 3708 9095 21,891 

Controls 13,121 13,121 24,218 24,218  

 

Table 2: Sample sizes of the epilepsy phenotypes in both cohorts. GGE- generalized genetic 

epilepsy samples, FE- focal epilepsy, EPI25- samples from EPI25 collaborative, and ILAE-  samples 

from the International League Against Epilepsy Consortium.  
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average expression of a set of genes identified in the tissue and genetic association. I checked for 

previous reports on genetic association with epilepsy syndromes using the GWAS catalog 

(https://www.ebi.ac.uk/gwas/). Finally, I also performed a Bayesian co-localization test between GGE 

and FE to confirm whether the lead SNPs have a high probability of being associated and shared for 

both syndromes, using the R packages HyPrColoc130 (“hypothesis prioritization for multi-trait 

colocalization”; https://github.com/jrs95/hyprcoloc/) and coloc v5.1.090,131 (https://CRAN.R-

project.org/package=coloc). More specifically, I estimated the posterior probability of co-localization 

as evidence that a variant is shared or associated for multiple traits using HyPrColoc and of association 

of both syndromes with the lead SNPs using coloc tools.  
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7. Main results 

7.1. Simulation study 

• At a small variant effect size of 1.05, all five applied methods had no power to detect 

pleiotropic SNPs. 

• The power to detect pleiotropy for all methods increases with increasing sample sizes across 

all simulation scenarios except the cFDR approach, which showed a downward trend possibly 

due to software malfunction. 

• CPBayes performed best in terms of power, closely followed by ASSET and cFDR. 

• Prevalence seemed to have a modest effect on power. The effect is distinguishable at RR=1.2 

and a sample size of 2000. 

• All methods show considerably low FPR at RR=1.05 except CPBayes, which has >10% FPR 

across all simulation scenarios. 

• Classical MA is not recommended for pleiotropy detection as it performed poorly in terms of 

FPR.  

• The larger the number of disease SNPs and the degree of sharing of these SNPs between the 

traits, the lower the FPR for all approaches except for classical MA, which seems to have the 

opposite effect. 

• The larger the number of disease SNPs and the degree of sharing of these SNPs between the 

traits, the larger the Power for all approaches. 

• The ASSET method performed gave a good trade-off between power and FPR by keeping the 

FPR generally low while maintaining the high power to detect pleiotropy across all simulation 

scenarios. 

7.2. Pleiotropy detection in epilepsy phenotypes (ILAE dataset) 

• I identified 40 pleiotropic SNPs at two loci: 2q24.3 and 17q21.32, at a genome-wide 

significance, three of which were independent lead SNPs. SNPs rs60055328 and rs2212656 

mapped to locus 2q24.3, whereas rs16955463 mapped to 17q21.32. 

• Functional annotation using ANNOVAR126 shows that 11% of the SNPs are intergenic, 23% are 

intronic, and 61% are non-coding transcript intron variants. 

• Locus 2q24.3 had already been reported for GGE and FE and mapped to SCNA1, SCNA2, 

SCNA3, and TTC21B in the ILAE mega-analysis. 

• Locus 17q21.32 is the unreported new putative pleiotropic locus for FE and GGE comprising 

of SKAP1, OSBPL7, SP6, SP2, PNPO, PRR15L, CDK5RAP3, COPZ2, NFE2L1, CBX1, SNX11, HOXB1, 

HOXB2, and HOXB3 genes. 

• MAGMA tissue-specific expression of the genes found most to be preferentially expressed in 

the brain.  

• Based on the Ensembl variant effect predictor and FUMA, SCNA1, SCN9A, and TTC21B were 

the prioritized genes for Locus 2q24.3, while SKAP1 and PNPO are the prioritized genes for 

locus  

17q21.32. 
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7.3. Pleiotropy detection in epilepsy phenotypes (ILAE and 

EPI25 dataset) 

• Here, I identified 50 pleiotropic SNPs at genome-wide significance level in three loci. 

• I replicated locus 2q24.3 and found a new putative locus 9q21.13 to be pleiotropic for both 

GGE and FE. 

• The previously reported locus 17q21.32 could not be replicated in this new sample cohort as 

it was found to be strongly associated with GGE only with a marginally significant opposite 

direction of effect in FE. 

• Locus 2q24.3 had already been reported for GGE and FE and mapped to SCNA1, SCNA2, 

SCNA3, and TTC21B in the ILAE all epilepsy analysis via meta-analysis132. 

• The new locus 9q21.13 contains the RORB gene. 
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8. Publications 

8.1. Contribution to publications 

In the following paragraphs, I describe my contributions to the publications listed in this thesis. The 

first two journal articles directly contribute to my thesis subject, while the last publication I co-

authored is not directly linked to the thesis topic. For my first authorship article, I designed, wrote the 

simulation codes, performed the statistical analysis, interpreted the results, and wrote the first draft 

of the manuscript. In the second article I co-authored, I contributed to the design of the study, 

performed pleiotropy analysis, and contributed to the writing of the manuscript, as clearly stated in 

the manuscript. 

Benchmarking of univariate pleiotropy detection methods applied to epilepsy phenotypes – First 

author. 

This project's main objective was to identify shared variations between two epilepsy forms. I first 

performed a simulation study after extensively reviewing available methods for pleiotropy analysis in 

literature to identify the best method. I decided to use univariate meta-analysis-based approaches 

due to the unavailability of simultaneously measured phenotypes and the corresponding genotype 

data on individuals, but single-trait summary statistics of the epilepsy phenotypes. I applied five recent 

and well-implemented approaches (see Table 1)  to the simulated data and found the ASSET method 

as the best performing method in terms of power and FPR, which was then applied to the epilepsy 

phenotypes.  

Genome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-

specific genetic architecture – co-author 

In this co-authored project, the main objective was to identify genome-wide significant loci underlying 

epilepsy disorders in different ethnicity. Identified associated loci were further subjected to follow-up 

analyses, such as SNP-based heritability, tissue and cell enrichment, pleiotropy, correlation, and drug 

repurposing checks. I contributed to the study by performing pleiotropy analysis on the GWAS 

summary statistics of genetic generalized epilepsy and focal epilepsy phenotypes to identify 

overlapping loci between the two forms of epilepsy. I also contributed to the writing of the 

manuscript. 

 

8.2. Main Publications 

Adesoji, O. M., Schulz, H., May, P., Krause, R., Lerche, H., Nothnagel, M., & ILAE Consortium on 

Complex Epilepsies. (2022). Benchmarking of univariate pleiotropy detection methods applied to 

epilepsy. Human Mutation. Published online May 27, 2022. Doi: 

https://doi.org/10.1002/humu.24417. 

 

https://doi.org/10.1002/humu.24417
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International League Against Epilepsy Consortium on Complex Epilepsies (2022). Genome-wide 

meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-specific genetic 

architecture | medRxiv (Submitted). Doi: https://doi.org/10.1101/2022.06.08.22276120.  The 

authors' list can be found at the end of the manuscript. 

https://www.medrxiv.org/content/10.1101/2022.06.08.22276120v1.full-text
https://www.medrxiv.org/content/10.1101/2022.06.08.22276120v1.full-text
https://www.medrxiv.org/content/10.1101/2022.06.08.22276120v1.full-text
https://doi.org/10.1101/2022.06.08.22276120
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8.3. Other Publication 

Adebayo, O.C., Betukumesu, D.K., Nkoy, A.B., Adesoji, O.M., Ekulu, P.M., Van den Heuvel, L.P., 

Levtchenko, E.N. and Labarque, V., 2022. Clinical and genetic factors are associated with kidney 

complications in African children with sickle cell anaemia. British Journal of Haematology, 196(1), 

pp.204-214.published online September 20, 2021. Doi: 

https://onlinelibrary.wiley.com/doi/epdf/10.1111/bjh.17832. 

8.4. Meeting abstracts 

Adesoji, O. M. and Nothnagel, M., 2020. A Simulation Study to Evaluate Existing Pleiotropy Detection 

Methods. Hum. Hered., 84(4-5), pp.204-205. 

Adesoji O. M., Nothnagel M., Lerche H., May P., Krause R. A benchmarking of univariate pleiotropy 

detection methods, with an application to epilepsy phenotypes. 49th European Mathematical 

Genetics Meeting (EMGM) 2021. Paris, France. April 22 – 23, 2021. 

Adesoji O. M., Nothnagel M. Benchmarking of univariate pleiotropy detection methods, with an 

application to epilepsy phenotypes. European Society of Human Genetics Conference (ESHG), 2022. 

Vienna, Austria.  June 11-14, 2022. 

8.5. Attended courses  

Genomics and Transcriptomics, Integrated with Proteomics and Medical Informatics: learning the 

cornerstones of Systems Medicine (GTIPI). May 2022, Mainz, Germany 

Ph.D. Translational specialistic medicine “GB MORGAGNI” Winter School. Shaping a World-class 

University – Seed funding for Digitalization & Innovation”.  January 24 – 28, 2022. Padova, Italy. 

7th Sardinian international summer school. From genome-wide association studies to function. July 9-

13, 2018. Sardinia Technology Park, Pula (CA), Italy. 

Complex Trait Analysis of Next Generation Sequence Data. Max Delbrück Center (MDC) for Molecular 

Medicine. June 18-22, 2018. Berlin, Germany.  
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9. Discussion 

This project's main objectives were to identify the optimal method among selected methods for 

pleiotropy detection and identify pleiotropic SNPs overlapping between two common forms of 

epilepsy, GGE and FE, using the identified method. However, an extensive literature review showed 

that the comparative performance for many of the available methods was unknown. Therefore, using 

simulated data, I benchmarked five univariate pleiotropy detection methods, namely; cFDR, CPBayes, 

ASSET, PLACO, and classical MA, to assess their relative performance in terms of power and false-

positive rate. The ASSET method emerged as the best in terms of the power for detecting pleiotropy 

while keeping the FPR low in all simulation scenarios considered. Then, applying this optimal method 

to the summary statistics of the ILAE samples cohort, I identified two pleiotropic loci. Specifically, locus 

2q24.3, already identified by the ILAE consortium, was confirmed, and a new putative locus 17q21.32 

was identified. Using a larger sample cohort of the ILAE Consortium and EPI25 collaborative, I 

replicated the previously reported locus 2q24.3 and found a new locus 9q21.13 pleiotropic for GGE 

and FE.  

9.1. Simulation Study 

In this project, I compared the relative performance of recent univariate pleiotropy detection 

approaches alongside the well-known classical MA method on a large European population genotype 

data generated through resampling from the 1000 Genome haplotype data. One hundred replications 

of sub-samples of this population for the two phenotypes I studied were produced by repeatedly 

assigning the disease status to individuals through the additive liability threshold model (ALTM). Then, 

case-control study samples were simulated while also varying parameters that impact association 

analysis, such as effect size (RR= 1.05, 1.2, 1.5), sample size (n=2,000, 10,000, 20,000), diseases 

prevalence (1%, 10%), and varying numbers of diseased SNPs (5,10) and proportion of overlap (20%, 

40%) of disease SNPs between the two phenotypes. Values of the additional parameters were selected 

to be consistent with observed values in GWAS of common diseases. The varying factors I introduced 

into the data simulation steps yielded different effects on the results in the identification of pleiotropic 

SNPs for all the methods. 

Classical MA and Mega-analysis are not recommended for pleiotropy detection. The MA 

approach was characterized by a very high power to detect pleiotropy across simulation scenarios. At 

the same time, the FPR was also inflated due to the testing of the null hypothesis of no association 

with any of the traits and aggregating p-values across traits allowing for a trait with a very small p-

value to drive the observed association for both traits under study. Due to the inflated FPR produced 

by the MA approach (See paragraph “Inflated FPR”), it is not recommended for pleiotropy analysis, 

according to the simulation study, as most of the identified loci or SNPs will be false-positive 

discoveries. This same observation is expected for mega-analysis in which several phenotypes not 

measured in the same set of individuals are jointly analyzed in a case-control association test. 

Therefore, neither mega-analysis nor classical meta-analysis allows us to conclude pleiotropy for these 

reasons and are, as a result, not recommended for pleiotropy detection. 

The ASSET method is the optimal method for univariate single-marker pleiotropy detection. The 

ASSET approach maintained good power across all simulation scenarios. Though CPBayes, cFDR, and 
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PLACO methods also demonstrated good power to detect pleiotropy at larger sample sizes and effect 

sizes, they all differ considerably in their ability to keep a low FPR. Other methods apart from CPBayes 

recorded FPR of >10% in most simulation scenarios, while the ASSET maintained a much lower FPR 

(<10%) across all simulation scenarios. Based on this discovery in the simulation study, the ASSET 

method that gave a good trade-off between FPR and power to detect pleiotropy is hereby 

recommended for pleiotropy analysis. 

The impact of sample size and effect sizes on pleiotropy detection. All the methods detected no 

pleiotropic disease SNP at an effect size of 1.05 regardless of the sample size. This result suggested 

that a larger sample size than used in this study is needed to achieve any power if RR is 1.05 for all the 

simulation scenarios. It has been demonstrated in GWAS that approximately 50000 samples are 

needed at this effect size to have sufficient power to detect pleiotropy for some common diseases. 

The power to identify the association of a locus to some trait(s) depends on the prevalence of disease, 

linkage disequilibrium (LD), inheritance model, number of risk alleles, frequency of the risk alleles, and 

their effect sizes133. Hence, for small sample sizes, a common variant must have a strong effect and 

sufficient power to detect association. 

Inflated FPR. The inflated FPR observed for most of the methods, especially at larger sample sizes, 

appears somewhat counterintuitive. However, it is largely due to what hypothesis each method tests 

and how it estimates the overall p-value of pleiotropy, which in most cases allows one trait to drive 

the overall evidence of pleiotropy when its p-value is very small. Meta-analysis does not explicitly 

estimate the correlation between traits and aggregates P-values to test association, allowing for a 

single trait to drive observed association. The prevalence effect was more apparent on FPR and 

generally showed that samples from the population with 10% prevalence estimated lower FPR in all 

simulation scenarios compared to samples from the population with 1% prevalence of the trait. In 

addition, the more the number of disease SNPs simulated and the percentage overlap of these SNPs 

among the traits, the lower the FPR, confirming that common SNPs with average effect aggregate 

across the loci to produce the observed effect of the common variants on the phenotypes. 

9.2. Application to epilepsy phenotypes (ILAE dataset only) 

Findings. I applied the ASSET method, which gave a good trade-off between power and FPR while also 

correcting for sample overlap to the ILAE data samples. I identified pleiotropic loci 2q24.3 and 

17q21.32 for both GGE and FE. My finding on chromosome 2 confirms the results reported by the ILAE 

Consortium on complex epilepsies16 via mega-analysis as a likely pleiotropic locus, while locus 

17q21.32 is a new putative pleiotropic locus only previously reported for GGE. Further annotation, 

tissue expression, colocalization, and prioritization tests supported the discoveries. Nevertheless, 

replicating these signals in an independent dataset is desirable. 

True pleiotropy in loci 2q24.3. The loci 2q24.3 containing the SCN1A gene encodes the voltage-gated 

sodium channels and has been implicated in different forms of epilepsy134,135. This gene, expressed in 

both the peripheral and central nervous systems, is involved in transporting positively charged sodium 

atoms into cells and plays a crucial role in cells' ability to generate and transmit electrical signals136. 

Both common and rare variations in the SCN1A have been associated with epilepsy phenotypes with 

different severities, but the relatively common variants have been found to modulate the effect of the 
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SCN1A gene as well as other nearby genes such as SCN2A and SCN9A135. Therefore, with all the data 

available, loci 2q24.3 is truly pleiotropic for GGE and FE. 

9.3. Application to epilepsy phenotypes (ILAE and EPI25 

datasets). 

Additional findings. As seen in the simulation study, an increase in sample size increases the power 

of observing pleiotropic association even for variants with relatively small effect sizes. The application 

of the ASSET method to the largest available data of common epilepsies yielded a new locus 9q21.13 

in addition to locus 2q24.3. This confirms the observation in the simulation study that the larger the 

sample set, the more power to detect pleiotropy. Locus 9q21.13 contains the RORB gene, in which 

deletion of variants or single variant mutation has been associated with neurodevelopmental 

disorders such as developmental and epileptic encephalopathies and GGE137,138. The RORB gene 

encoded the beta retinoid-related orphan nuclear receptor (RORβ), a subfamily of nuclear hormone 

receptors NR1, present in immature neurons and thought to have a role in neuronal cell differentiation 

and hyperexcitability138. 

Replication. I could not directly replicate the initial finding on locus 17q21.32 in this new sample 

cohort as the locus was found to be only strongly associated with GGE with a marginally significant 

opposite direction of effect in FE. The observed result in the larger sample cohort corroborated the 

trend observed in the FE cases in the EPI25 collaborative dataset, where no genome-wide significance 

result was found. Further, only loci 2q24.3 and 9q21.13 were confirmed to be pleiotropic for GGE and 

FE among the four loci identified in the all epilepsy meta-analysis of the ILAE Consortium132. This 

finding reinforces my recommendation that classical meta-analysis and mega-analysis should not be 

used for pleiotropy detection. Locus 17q21.32 is not necessarily a false positive, but replication in an 

independent larger sample set is desirable. 

Form of the observed pleiotropy. Ascertaining true pleiotropy and differentiating between the 

forms of pleiotropy is desirable, although not straightforward. However, new methods are emerging, 

such as spatial mapping approaches, methods that include the biological or gene pathway as part of 

the analysis139,140, or screening out vertical pleiotropy by excluding correlated traits from the analysis 

and functional studies of the implicated genes. Until now, epilepsy phenotypes have not been found 

to be vertically related, i.e., one form of epilepsy phenotype has not been shown to mediate the effect 

of another epilepsy phenotype. Therefore, the identified pleiotropic SNPs are likely to be biological 

forms of pleiotropy. However, further functional studies of the identified genes, which are out of this 

project's scope, are necessary to understand the effects of the encoded proteins in these genes on 

epilepsy phenotypes. 

Spurious pleiotropy. Eliminating spurious pleiotropy due to different forms of bias such as 

phenotype misclassification errors, overlapping controls cohort in independent studies, and high LD 

in regions, leading to marker tagging variants in different genes49,50 is very important to reduce false 

positives rate in the application to the real dataset. Therefore, proper phenotyping, exclusion of high 

LD region from the analysis, accounting for overlapping samples, and ensuring that discovered 

pleiotropic markers are in the same gene are critical steps for consideration in pleiotropy analysis. In 

my analysis, the epilepsy phenotypes were properly classified, the applied ASSET method accounted 
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for the overlap between controls, and all identified pleiotropic variants are in LD in the same gene. I 

did not identify spurious pleiotropy in the samples, as all identified variants were contained in a gene. 

9.4. Limitations 

Some of the methods I applied here test the hypothesis of a variant being associated with any of the 

traits, hence, the observed significant pleiotropic association might be driven by a highly significant 

association of the variant to one phenotype. The newer pleiotropy detection methods like PLACO and 

CPBayes try to mitigate the one traits driving association issue but, from the observed results in this 

study, the FPR is still very high. 

Although multivariate methods are computationally expensive, they have been demonstrated to 

be more powerful compared to the univariate approaches I used in this project. However, the 

unavailability of sample sets containing multiple phenotypes measured simultaneously on the same 

set of individuals coupled with heterogeneity due to ethnicity, microarray chips, and other sources of 

confounding render these approaches difficult to use. A recent publication141 showed that a sparse 

group variable selection approach incorporating biological or gene pathways into the discovery of 

pleiotropic genes is more powerful than ASSET, nevertheless, this method also requires individual-

level data.  

While the univariate pleiotropy analysis is easy to perform with the readily available GWAS 

summary statistics, post-confirmatory functional studies of the identified genes are still very much 

needed to establish true pleiotropy. It is also difficult to distinguish between the different forms of 

pleiotropy, especially horizontal and vertical pleiotropy. Although correlated traits will mainly exhibit 

mediated or vertical pleiotropy, the underlying biological mechanism must be established to ascertain 

this claim. Mediation analysis, fine mapping, and pathway analysis can be useful methods to identify 

the form of pleiotropy139,140,142 

The simulated population data comprising 1,000,000 individuals is quite large (~2 TB), and the 

simulation was carried out in 10 batches. That made the simulation of a larger population difficult due 

to computational constraints of available memory disk space, affecting the number of resulting 

samples I could simulate and process. In addition, methods like PLACO and common cFDR can only 

accommodate two traits. While this is not a challenge in this current study, the methods will not be 

applicable when more than two traits are to be studied.  

9.5. Outlook 

For future studies, it will be interesting to investigate the performance of pleiotropy detection 

methods for more than two phenotypes, for more nuanced sharing of causal genetic variation, 

possibly different effects on the pleiotropic phenotypes, and for less common or rare causal variants. 

Identifying pleiotropy in rare variants will likely require more complex genotype simulation algorithms 

and larger reference sample sets. The availability of simultaneously measured individual-level data of 

epilepsy phenotypes in the future will also motivate the application of multivariate pleiotropy 

detection methods. 

Replicating the identified loci in larger independent samples of epilepsy phenotypes is also 

desirable to eliminate bias and confounding. Also, applying a new pleiotropy detection method that 
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considers the complex genetic architectures of traits, such as genetic correlations and heritabilities, 

could improve pleiotropy detection. One of such recent approaches is pleiotropic Locus exploration 

and interpretation using an optimal test (PLEIO)112.  
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